- Feb 14, 2025
- Feb 07, 2025
-
-
# Evaluate the optimized ResNet on test data correct, total = 0, 0 net.eval() with torch.no_grad(): for x, y in testloader: x, y = x.to(device), y.to(device) outputs = net(x) _, predicted = torch.max(outputs.data, 1) total += y.size(0) correct += (predicted == y).sum().item() accuracy = correct / total print(f'Accuracy after CMA-ES optimization: {accuracy:.4f}')
-