Skip to content
Snippets Groups Projects
Commit de26e32d authored by Arpit's avatar Arpit
Browse files

Adding the SVR Model for Garment dataset

parent 62122528
No related branches found
No related tags found
2 merge requests!19Final iteration of SVR model for Regression of garment dataset,!17Regression/svm/arpit/small regression model
Pipeline #109125 failed
%% Cell type:code id:02242d2f tags:
``` python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
# Load preprocessed dataset
df = pd.read_csv("C:/Users/Arpit Mahapatra/Desktop/MLDM Coursework 2025/mlmavericks_coursework/data/processed/tree_model_ready.csv")
# Define features and target
X = df.drop(columns=["actual_productivity", "date"])
y = df["actual_productivity"]
# Encode categorical features
bool_cols = X.select_dtypes(include=["bool"]).columns
X[bool_cols] = X[bool_cols].astype(int)
if 'overtime_bin' in X.columns:
X = pd.get_dummies(X, columns=["overtime_bin"], drop_first=True)
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Feature scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Define and tune SVR
param_grid = {
"C": [0.1, 1, 10],
"epsilon": [0.01, 0.1, 0.2],
"kernel": ["rbf"]
}
svr = SVR()
grid_search = GridSearchCV(svr, param_grid, cv=5, scoring="r2", n_jobs=-1)
grid_search.fit(X_train_scaled, y_train)
# Evaluate best model
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test_scaled)
# Performance metrics
rmse = mean_squared_error(y_test, y_pred, squared=False)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# Print results
print("Best SVR Model Parameters:", best_model)
print("Root Mean Squared Error (RMSE):", rmse)
print("Mean Absolute Error (MAE):", mae)
print("R² Score:", r2)
```
%% Output
Best SVR Model Parameters: SVR(C=1, epsilon=0.01)
Root Mean Squared Error (RMSE): 0.13203110041677338
Mean Absolute Error (MAE): 0.08847032288463337
R² Score: 0.343480521413826
C:\Users\Arpit Mahapatra\anaconda3\Lib\site-packages\sklearn\metrics\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.
warnings.warn(
%% Cell type:code id:4e0f7d9d-ee69-476b-93d4-d42d10110001 tags:
``` python
```
%% Cell type:code id:2a9796b5-d6ad-49e0-9c89-2d8220b2e61f tags:
``` python
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment