-
David Hendriks authoredDavid Hendriks authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
test_grid.py 35.11 KiB
"""
Test cases for the grid
Tasks:
TODO: write tests for load_from_sourcefile
TODO: Set the temp_dir to grid_tests subdir. Should use that as an argument for the temp_dir() function
"""
import os
import sys
import json
import unittest
import numpy as np
from binarycpython.utils.grid import Population
from binarycpython.utils.functions import (
temp_dir,
extract_ensemble_json_from_string,
merge_dicts,
remove_file,
Capturing,
)
from binarycpython.utils.custom_logging_functions import binary_c_log_code
TMP_DIR = temp_dir("tests", "test_grid")
TEST_VERBOSITY = 1
def parse_function_test_grid_evolve_2_threads_with_custom_logging(self, output):
"""
Simple parse function that directly appends all the output to a file
"""
# Get some information from the
data_dir = self.custom_options["data_dir"]
# make outputfilename
output_filename = os.path.join(
data_dir,
"test_grid_evolve_2_threads_with_custom_logging_outputfile_population_{}_thread_{}.dat".format(
self.grid_options["_population_id"], self.process_ID
),
)
# Check directory, make if necessary
os.makedirs(data_dir, exist_ok=True)
if not os.path.exists(output_filename):
with open(output_filename, "w") as first_f:
first_f.write(output + "\n")
else:
with open(output_filename, "a") as first_f:
first_f.write(output + "\n")
# class test_(unittest.TestCase):
# """
# Unittests for function
# """
# def test_1(self):
# pass
# def test_(self):
# """
# Unittests for the function
# """
class test_Population(unittest.TestCase):
"""
Unittests for function
"""
def test_setup(self):
with Capturing() as output:
self._test_setup()
def _test_setup(self):
"""
Unittests for function _setup
"""
test_pop = Population()
self.assertTrue("orbital_period" in test_pop.defaults)
self.assertTrue("metallicity" in test_pop.defaults)
self.assertNotIn("help_all", test_pop.cleaned_up_defaults)
self.assertEqual(test_pop.bse_options, {})
self.assertEqual(test_pop.custom_options, {})
self.assertEqual(test_pop.argline_dict, {})
self.assertEqual(test_pop.persistent_data_memory_dict, {})
self.assertTrue(test_pop.grid_options["parse_function"] == None)
self.assertTrue(isinstance(test_pop.grid_options["_main_pid"], int))
def test_set(self):
with Capturing() as output:
self._test_set()
def _test_set(self):
"""
Unittests for function set
"""
test_pop = Population()
test_pop.set(amt_cores=2, verbosity=TEST_VERBOSITY)
test_pop.set(M_1=10)
test_pop.set(data_dir="/tmp/binary_c_python")
test_pop.set(ensemble_filter_SUPERNOVAE=1, ensemble_dt=1000)
self.assertIn("data_dir", test_pop.custom_options)
self.assertEqual(test_pop.custom_options["data_dir"], "/tmp/binary_c_python")
#
self.assertTrue(test_pop.bse_options["M_1"] == 10)
self.assertTrue(test_pop.bse_options["ensemble_filter_SUPERNOVAE"] == 1)
#
self.assertTrue(test_pop.grid_options["amt_cores"] == 2)
def test_cmdline(self):
with Capturing() as output:
self._test_cmdline()
def _test_cmdline(self):
"""
Unittests for function parse_cmdline
"""
# copy old sys.argv values
prev_sysargv = sys.argv.copy()
# make a dummy cmdline arg input
sys.argv = [
"script",
"--cmdline",
"metallicity=0.0002 amt_cores=2 data_dir=/tmp/binary_c_python",
]
# Set up population
test_pop = Population()
test_pop.set(data_dir="/tmp", verbosity=TEST_VERBOSITY)
# parse arguments
test_pop.parse_cmdline()
# metallicity
self.assertTrue(isinstance(test_pop.bse_options["metallicity"], str))
self.assertTrue(test_pop.bse_options["metallicity"] == "0.0002")
# Amt cores
self.assertTrue(isinstance(test_pop.grid_options["amt_cores"], int))
self.assertTrue(test_pop.grid_options["amt_cores"] == 2)
# datadir
self.assertTrue(isinstance(test_pop.custom_options["data_dir"], str))
self.assertTrue(test_pop.custom_options["data_dir"] == "/tmp/binary_c_python")
# put back the other args if they exist
sys.argv = prev_sysargv.copy()
def test__return_argline(self):
with Capturing() as output:
self._test__return_argline()
def _test__return_argline(self):
"""
Unittests for the function _return_argline
"""
# Set up population
test_pop = Population()
test_pop.set(metallicity=0.02, verbosity=TEST_VERBOSITY)
test_pop.set(M_1=10)
argline = test_pop._return_argline()
self.assertTrue(argline == "binary_c M_1 10 metallicity 0.02")
# custom dict
argline2 = test_pop._return_argline(
{"example_parameter1": 10, "example_parameter2": "hello"}
)
self.assertTrue(
argline2 == "binary_c example_parameter1 10 example_parameter2 hello"
)
def test_add_grid_variable(self):
with Capturing() as output:
self._test_add_grid_variable()
def _test_add_grid_variable(self):
"""
Unittests for the function add_grid_variable
TODO: Should I test more here?
"""
test_pop = Population()
resolution = {"M_1": 10, "q": 10}
test_pop.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
test_pop.add_grid_variable(
name="q",
longname="Mass ratio",
valuerange=["0.1/M_1", 1],
resolution="{}".format(resolution["q"]),
spacingfunc="const(0.1/M_1, 1, {})".format(resolution["q"]),
probdist="flatsections(q, [{'min': 0.1/M_1, 'max': 1.0, 'height': 1}])",
dphasevol="dq",
precode="M_2 = q * M_1",
parameter_name="M_2",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
self.assertIn("q", test_pop.grid_options["_grid_variables"])
self.assertIn("lnm1", test_pop.grid_options["_grid_variables"])
self.assertEqual(len(test_pop.grid_options["_grid_variables"]), 2)
def test_return_population_settings(self):
with Capturing() as output:
self._test_return_population_settings()
def _test_return_population_settings(self):
"""
Unittests for the function return_population_settings
"""
test_pop = Population()
test_pop.set(metallicity=0.02, verbosity=TEST_VERBOSITY)
test_pop.set(M_1=10)
test_pop.set(amt_cores=2)
test_pop.set(data_dir="/tmp")
population_settings = test_pop.return_population_settings()
self.assertIn("bse_options", population_settings)
self.assertTrue(population_settings["bse_options"]["metallicity"] == 0.02)
self.assertTrue(population_settings["bse_options"]["M_1"] == 10)
self.assertIn("grid_options", population_settings)
self.assertTrue(population_settings["grid_options"]["amt_cores"] == 2)
self.assertIn("custom_options", population_settings)
self.assertTrue(population_settings["custom_options"]["data_dir"] == "/tmp")
def test__return_binary_c_version_info(self):
with Capturing() as output:
self._test__return_binary_c_version_info()
def _test__return_binary_c_version_info(self):
"""
Unittests for the function _return_binary_c_version_info
"""
test_pop = Population()
binary_c_version_info = test_pop._return_binary_c_version_info(parsed=True)
self.assertTrue(isinstance(binary_c_version_info, dict))
self.assertIn("isotopes", binary_c_version_info)
self.assertIn("argpairs", binary_c_version_info)
self.assertIn("ensembles", binary_c_version_info)
self.assertIn("macros", binary_c_version_info)
self.assertIn("dt_limits", binary_c_version_info)
self.assertIn("nucleosynthesis_sources", binary_c_version_info)
self.assertIn("miscellaneous", binary_c_version_info)
self.assertIsNotNone(binary_c_version_info["argpairs"])
self.assertIsNotNone(binary_c_version_info["ensembles"])
self.assertIsNotNone(binary_c_version_info["macros"])
self.assertIsNotNone(binary_c_version_info["dt_limits"])
self.assertIsNotNone(binary_c_version_info["miscellaneous"])
if binary_c_version_info["macros"]["NUCSYN"] == "on":
self.assertIsNotNone(binary_c_version_info["isotopes"])
if binary_c_version_info["macros"]["NUCSYN_ID_SOURCES"] == "on":
self.assertIsNotNone(binary_c_version_info["nucleosynthesis_sources"])
def test__return_binary_c_defaults(self):
with Capturing() as output:
self._test__return_binary_c_defaults()
def _test__return_binary_c_defaults(self):
"""
Unittests for the function _return_binary_c_defaults
"""
test_pop = Population()
binary_c_defaults = test_pop._return_binary_c_defaults()
self.assertIn("probability", binary_c_defaults)
self.assertIn("phasevol", binary_c_defaults)
self.assertIn("metallicity", binary_c_defaults)
def test_return_all_info(self):
with Capturing() as output:
self._test_return_all_info()
def _test_return_all_info(self):
"""
Unittests for the function return_all_info
Not going to do too much tests here, just check if they are not empty
"""
test_pop = Population()
all_info = test_pop.return_all_info()
self.assertIn("population_settings", all_info)
self.assertIn("binary_c_defaults", all_info)
self.assertIn("binary_c_version_info", all_info)
self.assertIn("binary_c_help_all", all_info)
self.assertNotEqual(all_info["population_settings"], {})
self.assertNotEqual(all_info["binary_c_defaults"], {})
self.assertNotEqual(all_info["binary_c_version_info"], {})
self.assertNotEqual(all_info["binary_c_help_all"], {})
def test_export_all_info(self):
with Capturing() as output:
self._test_export_all_info()
def _test_export_all_info(self):
"""
Unittests for the function export_all_info
"""
test_pop = Population()
test_pop.set(metallicity=0.02, verbosity=TEST_VERBOSITY)
test_pop.set(M_1=10)
test_pop.set(amt_cores=2)
test_pop.set(data_dir=TMP_DIR)
# datadir
settings_filename = test_pop.export_all_info(use_datadir=True)
self.assertTrue(os.path.isfile(settings_filename))
with open(settings_filename, "r") as f:
all_info = json.loads(f.read())
#
self.assertIn("population_settings", all_info)
self.assertIn("binary_c_defaults", all_info)
self.assertIn("binary_c_version_info", all_info)
self.assertIn("binary_c_help_all", all_info)
#
self.assertNotEqual(all_info["population_settings"], {})
self.assertNotEqual(all_info["binary_c_defaults"], {})
self.assertNotEqual(all_info["binary_c_version_info"], {})
self.assertNotEqual(all_info["binary_c_help_all"], {})
# custom name
# datadir
settings_filename = test_pop.export_all_info(
use_datadir=False,
outfile=os.path.join(TMP_DIR, "example_settings.json"),
)
self.assertTrue(os.path.isfile(settings_filename))
with open(settings_filename, "r") as f:
all_info = json.loads(f.read())
#
self.assertIn("population_settings", all_info)
self.assertIn("binary_c_defaults", all_info)
self.assertIn("binary_c_version_info", all_info)
self.assertIn("binary_c_help_all", all_info)
#
self.assertNotEqual(all_info["population_settings"], {})
self.assertNotEqual(all_info["binary_c_defaults"], {})
self.assertNotEqual(all_info["binary_c_version_info"], {})
self.assertNotEqual(all_info["binary_c_help_all"], {})
# wrong filename
self.assertRaises(
ValueError,
test_pop.export_all_info,
use_datadir=False,
outfile=os.path.join(TMP_DIR, "example_settings.txt"),
)
def test__cleanup_defaults(self):
with Capturing() as output:
self._test__cleanup_defaults()
def _test__cleanup_defaults(self):
"""
Unittests for the function _cleanup_defaults
"""
test_pop = Population()
cleaned_up_defaults = test_pop._cleanup_defaults()
self.assertNotIn("help_all", cleaned_up_defaults)
def test__increment_probtot(self):
with Capturing() as output:
self._test__increment_probtot()
def _test__increment_probtot(self):
"""
Unittests for the function _increment_probtot
"""
test_pop = Population()
test_pop._increment_probtot(0.5)
self.assertEqual(test_pop.grid_options["_probtot"], 0.5)
def test__increment_count(self):
with Capturing() as output:
self._test__increment_count()
def _test__increment_count(self):
"""
Unittests for the function _increment_probtot
"""
test_pop = Population()
test_pop._increment_count()
self.assertEqual(test_pop.grid_options["_count"], 1)
def test__dict_from_line_source_file(self):
with Capturing() as output:
self._test__dict_from_line_source_file()
def _test__dict_from_line_source_file(self):
"""
Unittests for the function _dict_from_line_source_file
"""
source_file = os.path.join(TMP_DIR, "example_source_file.txt")
# write
with open(source_file, "w") as f:
f.write("binary_c M_1 10 metallicity 0.02\n")
test_pop = Population()
# readout
with open(source_file, "r") as f:
for line in f.readlines():
argdict = test_pop._dict_from_line_source_file(line)
self.assertTrue(argdict["M_1"] == 10)
self.assertTrue(argdict["metallicity"] == 0.02)
def test_evolve_single(self):
with Capturing() as output:
self._test_evolve_single()
def _test_evolve_single(self):
"""
Unittests for the function evolve_single
"""
CUSTOM_LOGGING_STRING_MASSES = """
Printf("TEST_CUSTOM_LOGGING_1 %30.12e %g %g %g %g\\n",
//
stardata->model.time, // 1
// masses
stardata->common.zero_age.mass[0], //
stardata->common.zero_age.mass[1], //
stardata->star[0].mass,
stardata->star[1].mass
);
"""
test_pop = Population()
test_pop.set(
M_1=10,
M_2=5,
orbital_period=100000,
metallicty=0.02,
max_evolution_time=15000, verbosity=TEST_VERBOSITY
)
test_pop.set(C_logging_code=CUSTOM_LOGGING_STRING_MASSES)
output = test_pop.evolve_single()
#
self.assertTrue(len(output.splitlines()) > 1)
self.assertIn("TEST_CUSTOM_LOGGING_1", output)
#
custom_logging_dict = {"TEST_CUSTOM_LOGGING_2": ["star[0].mass", "model.time"]}
test_pop_2 = Population()
test_pop_2.set(
M_1=10,
M_2=5,
orbital_period=100000,
metallicty=0.02,
max_evolution_time=15000, verbosity=TEST_VERBOSITY
)
test_pop_2.set(C_auto_logging=custom_logging_dict)
output_2 = test_pop_2.evolve_single()
#
self.assertTrue(len(output_2.splitlines()) > 1)
self.assertIn("TEST_CUSTOM_LOGGING_2", output_2)
class test_grid_evolve(unittest.TestCase):
"""
Unittests for function Population.evolve()
"""
def test_grid_evolve_1_thread(self):
with Capturing() as output:
self._test_grid_evolve_1_thread()
def _test_grid_evolve_1_thread(self):
"""
Unittests to see if 1 thread does all the systems
"""
test_pop_evolve_1_thread = Population()
test_pop_evolve_1_thread.set(
amt_cores=1, M_2=1, orbital_period=100000, verbosity=TEST_VERBOSITY
)
resolution = {"M_1": 10}
test_pop_evolve_1_thread.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
analytics = test_pop_evolve_1_thread.evolve()
self.assertLess(
np.abs(analytics["total_probability"] - 0.10820655287892997), 1e-10, msg=analytics["total_probability"]
)
self.assertTrue(analytics["total_count"] == 10)
def test_grid_evolve_2_threads(self):
with Capturing() as output:
self._test_grid_evolve_2_threads()
def _test_grid_evolve_2_threads(self):
"""
Unittests to see if multiple threads handle the all the systems correctly
"""
test_pop = Population()
test_pop.set(amt_cores=2, M_2=1, orbital_period=100000, verbosity=TEST_VERBOSITY)
resolution = {"M_1": 10}
test_pop.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
analytics = test_pop.evolve()
self.assertLess(
np.abs(analytics["total_probability"] - 0.10820655287892997), 1e-10, msg=analytics["total_probability"]
) #
self.assertTrue(analytics["total_count"] == 10)
def test_grid_evolve_2_threads_with_custom_logging(self):
with Capturing() as output:
self._test_grid_evolve_2_threads_with_custom_logging()
def _test_grid_evolve_2_threads_with_custom_logging(self):
"""
Unittests to see if multiple threads do the custom logging correctly
"""
data_dir_value = os.path.join(TMP_DIR, "grid_tests")
amt_cores_value = 2
custom_logging_string = 'Printf("MY_STELLAR_DATA_TEST_EXAMPLE %g %g %g %g\\n",((double)stardata->model.time),((double)stardata->star[0].mass),((double)stardata->model.probability),((double)stardata->model.dt));'
test_pop = Population()
test_pop.set(
amt_cores=amt_cores_value,
verbosity=TEST_VERBOSITY,
M_2=1,
orbital_period=100000,
data_dir=data_dir_value,
C_logging_code=custom_logging_string, # input it like this.
parse_function=parse_function_test_grid_evolve_2_threads_with_custom_logging,
)
test_pop.set(ensemble=0)
resolution = {"M_1": 2}
test_pop.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
analytics = test_pop.evolve()
output_names = [
os.path.join(
data_dir_value,
"test_grid_evolve_2_threads_with_custom_logging_outputfile_population_{}_thread_{}.dat".format(
analytics["population_name"], thread_id
),
)
for thread_id in range(amt_cores_value)
]
for output_name in output_names:
self.assertTrue(os.path.isfile(output_name))
with open(output_name, "r") as f:
output_string = f.read()
self.assertIn("MY_STELLAR_DATA_TEST_EXAMPLE", output_string)
remove_file(output_name)
def test_grid_evolve_with_condition_error(self):
with Capturing() as output:
self._test_grid_evolve_with_condition_error()
def _test_grid_evolve_with_condition_error(self):
"""
Unittests to see if the threads catch the errors correctly.
"""
test_pop = Population()
test_pop.set(amt_cores=2, M_2=1, orbital_period=100000, verbosity=TEST_VERBOSITY)
# Set the amt of failed systems that each thread will log
test_pop.set(failed_systems_threshold=4)
CUSTOM_LOGGING_STRING_WITH_EXIT = """
Exit_binary_c(BINARY_C_NORMAL_EXIT, "testing exits. This is part of the testing, don't worry");
Printf("TEST_CUSTOM_LOGGING_1 %30.12e %g %g %g %g\\n",
//
stardata->model.time, // 1
// masses
stardata->common.zero_age.mass[0], //
stardata->common.zero_age.mass[1], //
stardata->star[0].mass,
stardata->star[1].mass
);
"""
test_pop.set(C_logging_code=CUSTOM_LOGGING_STRING_WITH_EXIT)
resolution = {"M_1": 10}
test_pop.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
analytics = test_pop.evolve()
self.assertLess(
np.abs(analytics["total_probability"] - 0.10820655287892997), 1e-10, msg=analytics["total_probability"]
) #
self.assertEqual(analytics["failed_systems_error_codes"], [0])
self.assertTrue(analytics["total_count"] == 10)
self.assertTrue(analytics["failed_count"] == 10)
self.assertTrue(analytics["errors_found"] == True)
self.assertTrue(analytics["errors_exceeded"] == True)
# test to see if 1 thread does all the systems
test_pop = Population()
test_pop.set(amt_cores=2, M_2=1, orbital_period=100000, verbosity=TEST_VERBOSITY)
test_pop.set(failed_systems_threshold=4)
test_pop.set(C_logging_code=CUSTOM_LOGGING_STRING_WITH_EXIT)
resolution = {"M_1": 10, "q": 2}
test_pop.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
test_pop.add_grid_variable(
name="q",
longname="Mass ratio",
valuerange=["0.1/M_1", 1],
resolution="{}".format(resolution["q"]),
spacingfunc="const(0.1/M_1, 1, {})".format(resolution["q"]),
probdist="flatsections(q, [{'min': 0.1/M_1, 'max': 1.0, 'height': 1}])",
dphasevol="dq",
precode="M_2 = q * M_1",
parameter_name="M_2",
# condition="M_1 in dir()", # Impose a condition on this grid variable. Mostly for a check for yourself
condition="'random_var' in dir()", # This will raise an error because random_var is not defined.
)
# TODO: why should it raise this error? It should probably raise a valueerror when the limit is exceeded right?
# DEcided to turn it off for now because there is not raise VAlueError in that chain of functions.
# NOTE: Found out why this test was here. It is to do with the condition random_var in dir(), but I changed the behaviour from raising an error to continue. This has to do with the moe&distefano code that will loop over several multiplicities
# TODO: make sure the continue behaviour is what we actually want.
# self.assertRaises(ValueError, test_pop.evolve)
def test_grid_evolve_no_grid_variables(self):
with Capturing() as output:
self._test_grid_evolve_no_grid_variables()
def _test_grid_evolve_no_grid_variables(self):
"""
Unittests to see if errors are raised if there are no grid variables
"""
test_pop = Population()
test_pop.set(amt_cores=1, M_2=1, orbital_period=100000, verbosity=TEST_VERBOSITY)
resolution = {"M_1": 10}
self.assertRaises(ValueError, test_pop.evolve)
def test_grid_evolve_2_threads_with_ensemble_direct_output(self):
with Capturing() as output:
self._test_grid_evolve_2_threads_with_ensemble_direct_output()
def _test_grid_evolve_2_threads_with_ensemble_direct_output(self):
"""
Unittests to see if multiple threads output the ensemble information to files correctly
"""
data_dir_value = TMP_DIR
amt_cores_value = 2
test_pop = Population()
test_pop.set(
amt_cores=amt_cores_value,
verbosity=TEST_VERBOSITY,
M_2=1,
orbital_period=100000,
ensemble=1,
ensemble_defer=1,
ensemble_filters_off=1,
ensemble_filter_STELLAR_TYPE_COUNTS=1,
ensemble_dt=1000,
)
test_pop.set(
data_dir=TMP_DIR,
ensemble_output_name="ensemble_output.json",
combine_ensemble_with_thread_joining=False,
)
resolution = {"M_1": 10}
test_pop.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
analytics = test_pop.evolve()
output_names = [
os.path.join(
data_dir_value,
"ensemble_output_{}_{}.json".format(
analytics["population_name"], thread_id
),
)
for thread_id in range(amt_cores_value)
]
for output_name in output_names:
self.assertTrue(os.path.isfile(output_name))
with open(output_name, "r") as f:
file_content = f.read()
self.assertTrue(file_content.startswith("ENSEMBLE_JSON"))
ensemble_json = extract_ensemble_json_from_string(file_content)
self.assertTrue(isinstance(ensemble_json, dict))
self.assertNotEqual(ensemble_json, {})
self.assertIn("number_counts", ensemble_json)
self.assertNotEqual(ensemble_json["number_counts"], {})
def test_grid_evolve_2_threads_with_ensemble_combining(self):
with Capturing() as output:
self._test_grid_evolve_2_threads_with_ensemble_combining()
def _test_grid_evolve_2_threads_with_ensemble_combining(self):
"""
Unittests to see if multiple threads correclty combine the ensemble data and store them in the grid
"""
data_dir_value = TMP_DIR
amt_cores_value = 2
test_pop = Population()
test_pop.set(
amt_cores=amt_cores_value,
verbosity=TEST_VERBOSITY,
M_2=1,
orbital_period=100000,
ensemble=1,
ensemble_defer=1,
ensemble_filters_off=1,
ensemble_filter_STELLAR_TYPE_COUNTS=1,
ensemble_dt=1000,
)
test_pop.set(
data_dir=TMP_DIR,
combine_ensemble_with_thread_joining=True,
ensemble_output_name="ensemble_output.json",
)
resolution = {"M_1": 10}
test_pop.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
analytics = test_pop.evolve()
self.assertTrue(isinstance(test_pop.grid_ensemble_results["ensemble"], dict))
self.assertNotEqual(test_pop.grid_ensemble_results["ensemble"], {})
self.assertIn("number_counts", test_pop.grid_ensemble_results["ensemble"])
self.assertNotEqual(
test_pop.grid_ensemble_results["ensemble"]["number_counts"], {}
)
def test_grid_evolve_2_threads_with_ensemble_comparing_two_methods(self):
with Capturing() as output:
self._test_grid_evolve_2_threads_with_ensemble_comparing_two_methods()
def _test_grid_evolve_2_threads_with_ensemble_comparing_two_methods(self):
"""
Unittests to compare the method of storing the combined ensemble data in the object and writing them to files and combining them later. they have to be the same
"""
data_dir_value = TMP_DIR
amt_cores_value = 2
# First
test_pop_1 = Population()
test_pop_1.set(
amt_cores=amt_cores_value,
verbosity=TEST_VERBOSITY,
M_2=1,
orbital_period=100000,
ensemble=1,
ensemble_defer=1,
ensemble_filters_off=1,
ensemble_filter_STELLAR_TYPE_COUNTS=1,
ensemble_dt=1000,
)
test_pop_1.set(
data_dir=TMP_DIR,
combine_ensemble_with_thread_joining=True,
ensemble_output_name="ensemble_output.json",
)
resolution = {"M_1": 10}
test_pop_1.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
analytics_1 = test_pop_1.evolve()
ensemble_output_1 = test_pop_1.grid_ensemble_results
# second
test_pop_2 = Population()
test_pop_2.set(
amt_cores=amt_cores_value,
verbosity=TEST_VERBOSITY,
M_2=1,
orbital_period=100000,
ensemble=1,
ensemble_defer=1,
ensemble_filters_off=1,
ensemble_filter_STELLAR_TYPE_COUNTS=1,
ensemble_dt=1000,
)
test_pop_2.set(
data_dir=TMP_DIR,
ensemble_output_name="ensemble_output.json",
combine_ensemble_with_thread_joining=False,
)
resolution = {"M_1": 10}
test_pop_2.add_grid_variable(
name="lnm1",
longname="Primary mass",
valuerange=[1, 100],
resolution="{}".format(resolution["M_1"]),
spacingfunc="const(math.log(1), math.log(100), {})".format(
resolution["M_1"]
),
precode="M_1=math.exp(lnm1)",
probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 100, -1.3, -2.3, -2.3)*M_1",
dphasevol="dlnm1",
parameter_name="M_1",
condition="", # Impose a condition on this grid variable. Mostly for a check for yourself
)
analytics_2 = test_pop_2.evolve()
output_names_2 = [
os.path.join(
data_dir_value,
"ensemble_output_{}_{}.json".format(
analytics_2["population_name"], thread_id
),
)
for thread_id in range(amt_cores_value)
]
ensemble_output_2 = {}
for output_name in output_names_2:
self.assertTrue(os.path.isfile(output_name))
with open(output_name, "r") as f:
file_content = f.read()
self.assertTrue(file_content.startswith("ENSEMBLE_JSON"))
ensemble_json = extract_ensemble_json_from_string(file_content)
ensemble_output_2 = merge_dicts(ensemble_output_2, ensemble_json)
for key in ensemble_output_1["ensemble"]["number_counts"]["stellar_type"]["0"]:
self.assertIn(key, ensemble_output_2["number_counts"]["stellar_type"]["0"])
# compare values
self.assertLess(
np.abs(
ensemble_output_1["ensemble"]["number_counts"]["stellar_type"]["0"][
key
]
- ensemble_output_2["number_counts"]["stellar_type"]["0"][key]
),
1e-8,
)
if __name__ == "__main__":
unittest.main()