Newer
Older

Izzard, Robert Dr (Maths & Physics)
committed
{
"cells": [
{
"cell_type": "markdown",
"id": "bbbaafbb-fd7d-4b73-a970-93506ba35d71",
"metadata": {},
"source": [
"# Example use case: Zero-age stellar luminosity function in binaries\n",

Izzard, Robert Dr (Maths & Physics)
committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"\n",
"In this notebook we compute the luminosity function of the zero-age main-sequence by running a population of binary stars using binary_c. \n",
"\n",
"Before you go through this notebook, you should look at notebook_luminosity_function.ipynb which is for the - conceptually more simple - single stars.\n",
"\n",
"We start by loading in some standard Python modules and the binary_c module.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "bf6b8673-a2b5-4b50-ad1b-e90671f57470",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import math\n",
"from binarycpython.utils.grid import Population\n",
"\n",
"# help(Population) # Uncomment this line to see the public functions of this object"
]
},
{
"cell_type": "markdown",
"id": "f268eff3-4e08-4f6b-8b59-f22dba4d2074",
"metadata": {},
"source": [
"## Setting up the Population object\n",
"To set up and configure the population object we need to make a new instance of the `Population` object and configure it with the `.set()` function.\n",
"\n",
"In our case, we only need to set the maximum evolution time to something short, because we care only about zero-age main sequence stars which have, by definition, age zero."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "79ab50b7-591f-4883-af09-116d1835a751",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"adding: max_evolution_time=0.1 to BSE_options\n",
"verbosity is 1\n"
]
}
],
"source": [
"# Create population object\n",
"population = Population()\n",
"\n",
"# If you want verbosity, set this before other things\n",
"population.set(verbosity=1)\n",
"\n",
"# Setting values can be done via .set(<parameter_name>=<value>)\n",
"# Values that are known to be binary_c_parameters are loaded into bse_options.\n",
"# Those that are present in the default grid_options are set in grid_options\n",
"# All other values that you set are put in a custom_options dict\n",
"population.set(\n",
" # binary_c physics options\n",
" max_evolution_time=0.1, # maximum stellar evolution time in Myr\n",
" )\n",
"\n",
"# We can access the options through \n",
"print(\"verbosity is\", population.grid_options['verbosity'])"
]
},
{
"cell_type": "markdown",
"id": "f9a65554-36ab-4a04-96ca-9f1422c307fd",
"metadata": {},
"source": [
"## Adding grid variables\n",
"The main purpose of the Population object is to handle the population synthesis side of running a set of stars. The main method to do this with binarycpython, as is the case with Perl binarygrid, is to use grid variables. These are loops over a predefined range of values, where a probability will be assigned to the systems based on the chosen probability distributions.\n",
"\n",
"Usually we use either 1 mass grid variable, or a trio of mass, mass ratio and period (other notebooks cover these examples). We can, however, also add grid sampling for e.g. eccentricity, metallicity or other parameters. \n",
"\n",
"To add a grid variable to the population object we use `population.add_grid_variable`"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "68c84521-9ae8-4020-af7a-5334173db969",
"metadata": {},
"outputs": [],
"source": [
"# help(population.add_grid_variable)"
]
},
{
"cell_type": "markdown",
"id": "bd75cebe-2152-4025-b680-dc020b80889b",
"metadata": {},
"source": [
"All the distribution functions that we can use are stored in the `binarycpython.utils.distribution_functions` or `binarycpython/utils/distribution_functions.py` on git. If you uncomment the help statement below you can see which functions are available now:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "048db541-3e92-4c5d-a25c-9c5a34b9c857",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"import binarycpython.utils.distribution_functions\n",
"# help(binarycpython.utils.distribution_functions)"
]
},
{
"cell_type": "markdown",
"id": "2a9104fc-4136-4e53-8604-f24ad52fbe56",
"metadata": {},
"source": [
"First let us set up some global variables that will be useful throughout.\n",
"\n",
" * The resolution is the number of stars we simulate in our model population.\n",
" * The massrange is a list of the min and max masses\n",
" * The total_probability is the theoretical integral of a probability density function, i.e. 1.0.\n",
" * The binwidth sets the resolution of the final distribution. If set to 0.5, the bins in log*L* are 0.5dex wide."

Izzard, Robert Dr (Maths & Physics)
committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "aba3fe4e-18f2-4bb9-8e5c-4c6007ab038b",
"metadata": {},
"outputs": [],
"source": [
"# Set resolution and mass range that we simulate\n",
"resolution = {\"M_1\": 40} # start with resolution = 10, and increase later if you want \"more accurate\" data\n",
"massrange = (0.07, 100.0) # we work with stars of mass 0.07 to 100 Msun\n",
"total_probability = 1.0 # theoretical integral of the mass probability density function over all masses \n",
"# distribution binwidths : \n",
"# (log10) luminosity distribution\n",
"binwidth = { 'luminosity' : 1.0 }"
]
},
{
"cell_type": "markdown",
"id": "1b3a007b-5c17-42a7-a981-7e268e6f545c",
"metadata": {},
"source": [
"The next cell contains an example of adding the mass grid variable, sampling the phase space in linear mass *M*_1."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "47979841-2c26-4b26-8945-603d013dc93a",
"metadata": {},
"outputs": [],
"source": [
"# Set up the binary grid in \"cubic\" M1 - M2=q*M1 - log10 period space\n",
"\n",
"population = Population()\n",
"\n",
"# resolution on each side of the cube, with more stars for the primary mass\n",
"nres = 10\n",
"resolution = {\"M_1\": 4*nres,\n",

Izzard, Robert Dr (Maths & Physics)
committed
" \"q\": nres,\n",
" \"per\": nres}\n",
"\n",
"massrange = [0.07,100]\n",
"logperrange = [0.15, 5.5]\n",
"\n",
"population.add_grid_variable(\n",
" name=\"lnm1\",\n",
" longname=\"Primary mass\",\n",
" valuerange=massrange,\n",
" samplerfunc=\"const(math.log({min}), math.log({max}), {res})\".format(min=massrange[0],max=massrange[1],res=resolution[\"M_1\"]),\n",

Izzard, Robert Dr (Maths & Physics)
committed
" precode=\"M_1=math.exp(lnm1)\",\n",
" probdist=\"three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 150, -1.3, -2.3, -2.3)*M_1\",\n",
" dphasevol=\"dlnm1\",\n",
" parameter_name=\"M_1\",\n",
" condition=\"\", # Impose a condition on this grid variable. Mostly for a check for yourself\n",
")\n",
"\n",
"# Mass ratio\n",
"population.add_grid_variable(\n",
" name=\"q\",\n",
" longname=\"Mass ratio\",\n",
" valuerange=[\"0.1/M_1\", 1],\n",
" samplerfunc=\"const({}/M_1, 1, {})\".format(massrange[0],resolution['q']),\n",

Izzard, Robert Dr (Maths & Physics)
committed
" probdist=\"flatsections(q, [{{'min': {}/M_1, 'max': 1.0, 'height': 1}}])\".format(massrange[0]),\n",
" dphasevol=\"dq\",\n",
" precode=\"M_2 = q * M_1\",\n",
" parameter_name=\"M_2\",\n",
" condition=\"\", # Impose a condition on this grid variable. Mostly for a check for yourself\n",
" )\n",
"\n",
"# Orbital period\n",
"population.add_grid_variable(\n",
" name=\"log10per\", # in days\n",
" longname=\"log10(Orbital_Period)\",\n",
" valuerange=[0.15, 5.5],\n",
" samplerfunc=\"const({}, {}, {})\".format(logperrange[0],logperrange[1],resolution[\"per\"]),\n",

Izzard, Robert Dr (Maths & Physics)
committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
" precode=\"\"\"orbital_period = 10.0 ** log10per\n",
"sep = calc_sep_from_period(M_1, M_2, orbital_period)\n",
"sep_min = calc_sep_from_period(M_1, M_2, 10**{})\n",
"sep_max = calc_sep_from_period(M_1, M_2, 10**{})\"\"\".format(logperrange[0],logperrange[1]),\n",
" probdist=\"sana12(M_1, M_2, sep, orbital_period, sep_min, sep_max, math.log10(10**{}), math.log10(10**{}), {})\".format(logperrange[0],logperrange[1],-0.55),\n",
" parameter_name=\"orbital_period\",\n",
" dphasevol=\"dlog10per\",\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "163f13ae-fec1-4ee8-b9d4-c1b75c19ff39",
"metadata": {},
"source": [
"## Setting logging and handling the output\n",
"By default, binary_c will not output anything (except for 'SINGLE STAR LIFETIME'). It is up to us to determine what will be printed. We can either do that by hardcoding the print statements into `binary_c` (see documentation binary_c) or we can use the custom logging functionality of binarycpython (see notebook `notebook_custom_logging.ipynb`), which is faster to set up and requires no recompilation of binary_c, but is somewhat more limited in its functionality. For our current purposes, it works perfectly well.\n",
"\n",
"After configuring what will be printed, we need to make a function to parse the output. This can be done by setting the parse_function parameter in the population object (see also notebook `notebook_individual_systems.ipynb`). \n",
"\n",
"In the code below we will set up both the custom logging and a parse function to handle that output."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0c986215-93b1-4e30-ad79-f7c397e9ff7d",
"metadata": {},
"outputs": [],
"source": [
"# Create custom logging statement\n",
"#\n",
"# we check that the model number is zero, i.e. we're on the first timestep (stars are born on the ZAMS)\n",
"# we make sure that the stellar type is <= MAIN_SEQUENCE, i.e. the star is a main-sequence star\n",
"# we also check that the time is 0.0 (this is not strictly required, but good to show how it is done)\n",
"#\n",
"# The \n",
"#\n",
"# The Printf statement does the outputting: note that the header string is ZERO_AGE_MAIN_SEQUENCE_STARn\n",
"#\n",
"# where:\n",
"#\n",
"# n = PRIMARY = 0 is star 0 (primary star)\n",
"# n = SECONDARY = 1 is star 1 (secondary star)\n",
"# n = UNRESOLVED = 2 is the unresolved system (both stars added)\n",
"\n",
"PRIMARY = 0\n",
"SECONDARY = 1\n",
"UNRESOLVED = 2\n",
"\n",
"custom_logging_statement = \"\"\"\n",
"// select ZAMS\n",
"if(stardata->model.model_number == 0 &&\n",
" stardata->model.time == 0)\n",
"{\n",
" // loop over the stars individually (equivalent to a resolved binary) \n",
" Foreach_star(star)\n",
" {\n",
" // select main-sequence stars\n",
" if(star->stellar_type <= MAIN_SEQUENCE)\n",
" {\n",
" /* Note that we use Printf - with a capital P! */\n",
" Printf(\"ZERO_AGE_MAIN_SEQUENCE_STAR%d %30.12e %g %g %g %g\\\\n\",\n",
" star->starnum,\n",
" stardata->model.time, // 1\n",
" stardata->common.zero_age.mass[0], // 2\n",
" star->mass, // 3\n",
" star->luminosity, // 4\n",
" stardata->model.probability // 5\n",
" );\n",
" }\n",
" }\n",
" \n",
" // unresolved MS-MS binary\n",
" if(stardata->star[0].stellar_type <= MAIN_SEQUENCE &&\n",
" stardata->star[1].stellar_type <= MAIN_SEQUENCE) \n",
" {\n",
" Printf(\"ZERO_AGE_MAIN_SEQUENCE_STAR%d %30.12e %g %g %g %g\\\\n\",\n",
" 2,\n",
" stardata->model.time, // 1\n",
" stardata->common.zero_age.mass[0] + stardata->common.zero_age.mass[1], // 2\n",
" stardata->star[0].mass + stardata->star[1].mass, // 3\n",
" stardata->star[0].luminosity + stardata->star[1].luminosity, // 4\n",
" stardata->model.probability // 5\n",
" );\n",
" }\n",
"}\n",
"\"\"\"\n",
"\n",
"population.set(\n",
" C_logging_code=custom_logging_statement\n",
")\n"
]
},
{
"cell_type": "markdown",
"id": "ae1f1f0c-1f8b-42d8-b051-cbf8c6b51514",
"metadata": {},
"source": [
"The parse function must now catch lines that start with \"ZERO_AGE_MAIN_SEQUENCE_STAR\" and process the associated data."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fd197154-a8ce-4865-8929-008d3483101a",
"metadata": {},
"outputs": [],
"source": [
"# import the bin_data function so we can construct finite-resolution probability distributions\n",
"# import the datalinedict to make a dictionary from each line of data from binary_c\n",
"from binarycpython.utils.functions import bin_data,datalinedict\n",
"import re\n",
"\n",
"def parse_function(self, output):\n",
" \"\"\"\n",
" Example parse function\n",
" \"\"\"\n",
" \n",
" # list of the data items\n",
" parameters = [\"header\", \"time\", \"zams_mass\", \"mass\", \"luminosity\", \"probability\"]\n",
" \n",
" # Loop over the output.\n",
" for line in output.splitlines():\n",
" \n",
" # check if we match a ZERO_AGE_MAIN_SEQUENCE_STAR\n",
" match = re.search('ZERO_AGE_MAIN_SEQUENCE_STAR(\\d)',line) \n",
" if match:\n",
" nstar = match.group(1) \n",
" #print(\"matched star\",nstar)\n",
"\n",
" # obtain the line of data in dictionary form \n",
" linedata = datalinedict(line,parameters)\n",
"\n",
" # bin the log10(luminosity) to the nearest 0.1dex\n",
" binned_log_luminosity = bin_data(math.log10(linedata['luminosity']),\n",
" binwidth['luminosity'])\n",
" \n",
" # append the data to the results_dictionary \n",
" self.grid_results['luminosity distribution'][int(nstar)][binned_log_luminosity] += linedata['probability'] \n",
" \n",
" #print (self.grid_results)\n",
" \n",
" # verbose reporting\n",
" #print(\"parse out results_dictionary=\",self.grid_results)\n",
" \n",
"# Add the parsing function\n",
"population.set(\n",
" parse_function=parse_function,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "91509ce5-ffe7-4937-aa87-6d7baac9ac04",
"metadata": {},
"source": [
"## Evolving the grid\n",
"Now that we configured all the main parts of the population object, we can actually run the population! Doing this is straightforward: `population.evolve()`\n",
"\n",

Izzard, Robert Dr (Maths & Physics)
committed
"This will start up the processing of all the systems. We can control how many cores are used by settings `num_cores`. By setting the `verbosity` of the population object to a higher value we can get a lot of verbose information about the run, but for now we will set it to 0.\n",

Izzard, Robert Dr (Maths & Physics)
committed
"\n",
"There are many grid_options that can lead to different behaviour of the evolution of the grid. Please do have a look at those: [grid options docs](https://ri0005.pages.surrey.ac.uk/binary_c-python/grid_options_descriptions.html), and try "
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8ea376c1-1e92-45af-8cab-9d7fdca564eb",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [

Izzard, Robert Dr (Maths & Physics)
committed
"adding: num_cores=4 to grid_options\n",

Izzard, Robert Dr (Maths & Physics)
committed
"Running the population now, this may take a little while...\n",
"Creating and loading custom logging functionality\n",
"Doing dry run to calculate total starcount and probability\n",

Izzard, Robert Dr (Maths & Physics)
committed
"Generating grid code\n",
"Generating grid code\n",
"Saving grid code to grid_options\n",
"Writing grid code to /tmp/binary_c_python-izzard/binary_c_grid_25014bc73b334765a1c09a4e4a97ed66.py [dry_run = True]\n",
"Symlinked grid code to /tmp/binary_c_python-izzard/binary_c_grid-latest0 \n",
"Loading grid code function from /tmp/binary_c_python-izzard/binary_c_grid_25014bc73b334765a1c09a4e4a97ed66.py\n",

Izzard, Robert Dr (Maths & Physics)
committed
"Grid code loaded\n",
"Dry run of the grid\n",
"Grid has handled 4000 stars with a total probability of 0.648566\n",
"****************************************\n",
"* Total starcount for this run is 4000 *\n",
"* Total probability is 0.648566 *\n",
"****************************************\n",
"\n"

Izzard, Robert Dr (Maths & Physics)
committed
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 09:56:53,685 DEBUG Process-2] --- Setting up processor: process-0\n",
"[2021-11-01 09:56:53,690 DEBUG Process-3] --- Setting up processor: process-1\n",
"[2021-11-01 09:56:53,694 DEBUG Process-4] --- Setting up processor: process-2\n",
"[2021-11-01 09:56:53,698 DEBUG MainProcess] --- setting up the system_queue_filler now\n"

Izzard, Robert Dr (Maths & Physics)
committed
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generating grid code\n",
"Generating grid code\n",
"Saving grid code to grid_options\n",
"Writing grid code to /tmp/binary_c_python-izzard/binary_c_grid_25014bc73b334765a1c09a4e4a97ed66.py [dry_run = False]\n",
"Symlinked grid code to /tmp/binary_c_python-izzard/binary_c_grid-latest1 \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 09:56:53,707 DEBUG Process-5] --- Setting up processor: process-3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading grid code function from /tmp/binary_c_python-izzard/binary_c_grid_25014bc73b334765a1c09a4e4a97ed66.py\n",

Izzard, Robert Dr (Maths & Physics)
committed
"Grid code loaded\n",
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
"1354/4000 33.9% complete 09:56:57 ETA= 9.8s tpr=1.48e-02 ETF=09:57:07 mem:856.4MB M1=0.81 M2=0.48 P=3.6e+2\n",
"1355/4000 33.9% complete 09:56:57 ETA= 7.3s tpr=1.11e-02 ETF=09:57:05 mem:856.4MB M1=0.81 M2=0.48 P=1.2e+3\n",
"1449/4000 36.2% complete 09:57:02 ETA= 7.1s tpr=1.11e-02 ETF=09:57:10 mem:596.3MB M1=0.97 M2=0.48 P=1.7e+5\n",
"1494/4000 37.4% complete 09:57:08 ETA= 2.3m tpr=2.20e-01 ETF=09:59:26 mem:603.7MB M1=0.97 M2=0.93 P=3.6e+2\n",
"1539/4000 38.5% complete 09:57:13 ETA= 3.0m tpr=2.97e-01 ETF=10:00:16 mem:606.6MB M1=1.2 M2=0.45 P=1.7e+5\n",
"1585/4000 39.6% complete 09:57:18 ETA= 3.4m tpr=3.36e-01 ETF=10:00:40 mem:607.6MB M1=1.2 M2=1 P=1.2e+3\n",
"1624/4000 40.6% complete 09:57:23 ETA= 3.5m tpr=3.56e-01 ETF=10:00:54 mem:608.5MB M1=1.4 M2=0.4 P=3.6e+2\n",
"1674/4000 41.9% complete 09:57:28 ETA= 3.7m tpr=3.79e-01 ETF=10:01:08 mem:611.5MB M1=1.4 M2=1.1 P=3.6e+2\n",
"1703/4000 42.6% complete 09:57:33 ETA= 3.7m tpr=3.83e-01 ETF=10:01:13 mem:612.4MB M1=1.7 M2=0.15 P=1.1e+2\n",
"1749/4000 43.7% complete 09:57:38 ETA= 3.9m tpr=4.11e-01 ETF=10:01:30 mem:613.0MB M1=1.7 M2=0.79 P=1.7e+5\n",
"1780/4000 44.5% complete 09:57:43 ETA= 3.8m tpr=4.14e-01 ETF=10:01:33 mem:613.0MB M1=1.7 M2=1.4 P=2.6\n",
"1814/4000 45.4% complete 09:57:48 ETA= 3.9m tpr=4.32e-01 ETF=10:01:44 mem:613.2MB M1=2 M2=0.36 P=3.6e+2\n",
"1851/4000 46.3% complete 09:57:53 ETA= 4.0m tpr=4.44e-01 ETF=10:01:52 mem:613.6MB M1=2 M2=1.1 P=9\n",
"1879/4000 47.0% complete 09:57:59 ETA= 4.0m tpr=4.52e-01 ETF=10:01:58 mem:614.8MB M1=2 M2=1.5 P=1.7e+5\n",
"1910/4000 47.8% complete 09:58:04 ETA= 4.1m tpr=4.67e-01 ETF=10:02:08 mem:614.8MB M1=2.4 M2=0.42 P=2.6\n",
"1947/4000 48.7% complete 09:58:09 ETA= 4.1m tpr=4.78e-01 ETF=10:02:14 mem:614.8MB M1=2.4 M2=1.1 P=1.5e+4\n",
"1968/4000 49.2% complete 09:58:14 ETA= 4.1m tpr=4.82e-01 ETF=10:02:19 mem:616.0MB M1=2.4 M2=1.6 P=5e+4\n",
"1989/4000 49.7% complete 09:58:19 ETA= 4.2m tpr=4.98e-01 ETF=10:02:30 mem:616.1MB M1=2.4 M2=2.1 P=1.7e+5\n",
"2017/4000 50.4% complete 09:58:24 ETA= 4.3m tpr=5.15e-01 ETF=10:02:40 mem:617.1MB M1=2.9 M2=0.49 P=1.5e+4\n",
"2048/4000 51.2% complete 09:58:29 ETA= 4.3m tpr=5.24e-01 ETF=10:02:45 mem:617.9MB M1=2.9 M2=1.3 P=5e+4\n",
"2071/4000 51.8% complete 09:58:34 ETA= 4.3m tpr=5.31e-01 ETF=10:02:51 mem:619.7MB M1=2.9 M2=2.2 P=9\n",
"2091/4000 52.3% complete 09:58:40 ETA= 4.3m tpr=5.42e-01 ETF=10:02:58 mem:620.5MB M1=2.9 M2=2.8 P=9\n",
"2122/4000 53.0% complete 09:58:45 ETA= 4.3m tpr=5.55e-01 ETF=10:03:05 mem:620.5MB M1=3.5 M2=0.92 P=31\n",
"2143/4000 53.6% complete 09:58:50 ETA= 4.3m tpr=5.59e-01 ETF=10:03:09 mem:623.3MB M1=3.5 M2=1.6 P=1.1e+2\n",
"2164/4000 54.1% complete 09:58:55 ETA= 4.4m tpr=5.70e-01 ETF=10:03:16 mem:623.9MB M1=3.5 M2=2.3 P=3.6e+2\n",
"2183/4000 54.6% complete 09:59:00 ETA= 4.4m tpr=5.80e-01 ETF=10:03:23 mem:624.0MB M1=3.5 M2=3 P=1.1e+2\n",
"2206/4000 55.1% complete 09:59:05 ETA= 4.4m tpr=5.91e-01 ETF=10:03:30 mem:624.0MB M1=4.2 M2=0.27 P=4.2e+3\n",
"2232/4000 55.8% complete 09:59:10 ETA= 4.4m tpr=5.99e-01 ETF=10:03:35 mem:624.0MB M1=4.2 M2=1.5 P=31\n",
"2245/4000 56.1% complete 09:59:16 ETA= 4.4m tpr=6.06e-01 ETF=10:03:41 mem:624.1MB M1=4.2 M2=1.9 P=1.2e+3\n",
"2258/4000 56.5% complete 09:59:21 ETA= 4.5m tpr=6.21e-01 ETF=10:03:51 mem:624.1MB M1=4.2 M2=2.3 P=5e+4\n",
"2269/4000 56.7% complete 09:59:26 ETA= 4.6m tpr=6.36e-01 ETF=10:04:01 mem:626.1MB M1=4.2 M2=2.7 P=1.7e+5\n",
"2282/4000 57.0% complete 09:59:31 ETA= 4.7m tpr=6.51e-01 ETF=10:04:11 mem:626.1MB M1=4.2 M2=3.6 P=31\n",
"2300/4000 57.5% complete 09:59:36 ETA= 4.7m tpr=6.63e-01 ETF=10:04:18 mem:626.1MB M1=5 M2=0.32 P=2.6\n",
"2329/4000 58.2% complete 09:59:41 ETA= 4.7m tpr=6.72e-01 ETF=10:04:22 mem:626.1MB M1=5 M2=1.3 P=1.7e+5\n",
"2348/4000 58.7% complete 09:59:46 ETA= 4.6m tpr=6.73e-01 ETF=10:04:25 mem:626.2MB M1=5 M2=2.3 P=5e+4\n",
"2365/4000 59.1% complete 09:59:52 ETA= 4.6m tpr=6.81e-01 ETF=10:04:30 mem:626.4MB M1=5 M2=3.3 P=1.2e+3\n",
"2383/4000 59.6% complete 09:59:57 ETA= 4.7m tpr=6.90e-01 ETF=10:04:36 mem:626.4MB M1=5 M2=4.3 P=1.1e+2\n",
"2400/4000 60.0% complete 10:00:02 ETA= 4.7m tpr=6.99e-01 ETF=10:04:42 mem:626.4MB M1=6 M2=0.37 P=2.6\n",
"2423/4000 60.6% complete 10:00:07 ETA= 4.6m tpr=7.07e-01 ETF=10:04:46 mem:626.4MB M1=6 M2=1.6 P=1.1e+2\n",
"2438/4000 61.0% complete 10:00:12 ETA= 4.6m tpr=7.10e-01 ETF=10:04:50 mem:628.5MB M1=6 M2=2.1 P=5e+4\n",
"2454/4000 61.4% complete 10:00:18 ETA= 4.6m tpr=7.20e-01 ETF=10:04:56 mem:629.6MB M1=6 M2=3.3 P=3.6e+2\n",
"2466/4000 61.6% complete 10:00:23 ETA= 4.7m tpr=7.29e-01 ETF=10:05:03 mem:629.6MB M1=6 M2=3.9 P=4.2e+3\n",
"2477/4000 61.9% complete 10:00:28 ETA= 4.7m tpr=7.40e-01 ETF=10:05:10 mem:629.6MB M1=6 M2=4.5 P=1.5e+4\n",
"2492/4000 62.3% complete 10:00:33 ETA= 4.7m tpr=7.51e-01 ETF=10:05:16 mem:630.7MB M1=6 M2=5.7 P=31\n",
"2516/4000 62.9% complete 10:00:38 ETA= 4.7m tpr=7.59e-01 ETF=10:05:20 mem:630.7MB M1=7.2 M2=1.1 P=4.2e+3\n",
"2537/4000 63.4% complete 10:00:44 ETA= 4.6m tpr=7.61e-01 ETF=10:05:22 mem:630.7MB M1=7.2 M2=2.6 P=1.5e+4\n",
"2554/4000 63.9% complete 10:00:49 ETA= 4.6m tpr=7.65e-01 ETF=10:05:25 mem:630.8MB M1=7.2 M2=4 P=3.6e+2\n",
"2570/4000 64.2% complete 10:00:54 ETA= 4.6m tpr=7.71e-01 ETF=10:05:29 mem:630.9MB M1=7.2 M2=5.4 P=2.6\n",
"2590/4000 64.8% complete 10:00:59 ETA= 4.6m tpr=7.78e-01 ETF=10:05:33 mem:630.9MB M1=7.2 M2=6.8 P=2.6\n",
"2622/4000 65.5% complete 10:01:04 ETA= 4.5m tpr=7.81e-01 ETF=10:05:33 mem:630.9MB M1=8.6 M2=2.2 P=31\n",
"2636/4000 65.9% complete 10:01:09 ETA= 4.4m tpr=7.78e-01 ETF=10:05:34 mem:632.1MB M1=8.6 M2=3.1 P=4.2e+3\n",
"2652/4000 66.3% complete 10:01:14 ETA= 4.4m tpr=7.87e-01 ETF=10:05:39 mem:632.1MB M1=8.6 M2=4.8 P=31\n",
"2666/4000 66.7% complete 10:01:19 ETA= 4.7m tpr=8.37e-01 ETF=10:05:59 mem:634.6MB M1=8.6 M2=5.6 P=4.2e+3\n",
"2691/4000 67.3% complete 10:01:25 ETA= 4.7m tpr=8.59e-01 ETF=10:06:06 mem:634.6MB M1=8.6 M2=8.2 P=9\n",
"2733/4000 68.3% complete 10:01:31 ETA= 4.6m tpr=8.75e-01 ETF=10:06:08 mem:634.6MB M1=10 M2=3.7 P=1.1e+2\n",
"2746/4000 68.7% complete 10:01:36 ETA= 4.6m tpr=8.83e-01 ETF=10:06:13 mem:634.6MB M1=10 M2=4.7 P=4.2e+3\n",
"2757/4000 68.9% complete 10:01:42 ETA= 4.7m tpr=9.04e-01 ETF=10:06:22 mem:634.6MB M1=10 M2=5.7 P=1.5e+4\n",
"2775/4000 69.4% complete 10:01:47 ETA= 4.8m tpr=9.37e-01 ETF=10:06:34 mem:634.8MB M1=10 M2=7.8 P=1.2e+3\n",
"2795/4000 69.9% complete 10:01:52 ETA= 4.8m tpr=9.48e-01 ETF=10:06:38 mem:635.1MB M1=10 M2=9.8 P=1.2e+3\n",
"2831/4000 70.8% complete 10:01:57 ETA= 4.7m tpr=9.71e-01 ETF=10:06:41 mem:636.3MB M1=12 M2=4.4 P=9\n",
"2845/4000 71.1% complete 10:02:04 ETA= 4.7m tpr=9.67e-01 ETF=10:06:43 mem:636.3MB M1=12 M2=5.6 P=1.2e+3\n",
"2861/4000 71.5% complete 10:02:09 ETA= 4.7m tpr=9.92e-01 ETF=10:06:52 mem:636.3MB M1=12 M2=8.1 P=9\n",
"2875/4000 71.9% complete 10:02:16 ETA= 4.7m tpr=1.01e+00 ETF=10:07:01 mem:636.5MB M1=12 M2=9.3 P=1.2e+3\n",
"2891/4000 72.3% complete 10:02:21 ETA= 4.8m tpr=1.03e+00 ETF=10:07:07 mem:636.5MB M1=12 M2=12 P=9\n",
"2930/4000 73.2% complete 10:02:26 ETA= 4.7m tpr=1.05e+00 ETF=10:07:07 mem:636.7MB M1=15 M2=5.2 P=2.6\n",
"2947/4000 73.7% complete 10:02:31 ETA= 4.6m tpr=1.05e+00 ETF=10:07:07 mem:636.7MB M1=15 M2=6.7 P=1.5e+4\n",
"2965/4000 74.1% complete 10:02:37 ETA= 4.5m tpr=1.05e+00 ETF=10:07:09 mem:636.8MB M1=15 M2=9.7 P=1.2e+3\n",
"2982/4000 74.5% complete 10:02:42 ETA= 4.5m tpr=1.06e+00 ETF=10:07:11 mem:637.3MB M1=15 M2=13 P=31\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:02:46,515 DEBUG MainProcess] --- Signaling stop to processes\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"3010/4000 75.2% complete 10:02:47 ETA= 4.4m tpr=1.07e+00 ETF=10:07:12 mem:637.8MB M1=18 M2=2.7 P=2.6\n",
"3035/4000 75.9% complete 10:02:52 ETA= 4.3m tpr=1.07e+00 ETF=10:07:11 mem:637.8MB M1=18 M2=6.3 P=1.2e+3\n",
"3059/4000 76.5% complete 10:02:57 ETA= 4.2m tpr=1.07e+00 ETF=10:07:09 mem:637.8MB M1=18 M2=9.8 P=1.7e+5\n",
"3078/4000 77.0% complete 10:03:02 ETA= 4.1m tpr=1.07e+00 ETF=10:07:08 mem:638.7MB M1=18 M2=13 P=5e+4\n",
"3100/4000 77.5% complete 10:03:08 ETA= 4.0m tpr=1.08e+00 ETF=10:07:10 mem:638.9MB M1=21 M2=1.1 P=2.6\n",
"3124/4000 78.1% complete 10:03:13 ETA= 3.9m tpr=1.08e+00 ETF=10:07:09 mem:639.1MB M1=21 M2=5.4 P=3.6e+2\n",
"3148/4000 78.7% complete 10:03:18 ETA= 3.8m tpr=1.08e+00 ETF=10:07:08 mem:639.7MB M1=21 M2=9.7 P=5e+4\n",
"3174/4000 79.3% complete 10:03:24 ETA= 3.7m tpr=1.07e+00 ETF=10:07:05 mem:640.1MB M1=21 M2=16 P=3.6e+2\n",
"3197/4000 79.9% complete 10:03:29 ETA= 3.6m tpr=1.07e+00 ETF=10:07:04 mem:640.4MB M1=21 M2=20 P=1.5e+4\n",
"3231/4000 80.8% complete 10:03:34 ETA= 3.4m tpr=1.07e+00 ETF=10:07:00 mem:640.9MB M1=26 M2=9 P=9\n",
"3256/4000 81.4% complete 10:03:39 ETA= 3.3m tpr=1.05e+00 ETF=10:06:55 mem:640.9MB M1=26 M2=14 P=4.2e+3\n",
"3273/4000 81.8% complete 10:03:44 ETA= 3.1m tpr=1.04e+00 ETF=10:06:53 mem:640.9MB M1=26 M2=19 P=1.1e+2\n",
"3294/4000 82.3% complete 10:03:50 ETA= 3.0m tpr=1.03e+00 ETF=10:06:51 mem:641.4MB M1=26 M2=24 P=3.6e+2\n",
"3321/4000 83.0% complete 10:03:55 ETA= 2.9m tpr=1.02e+00 ETF=10:06:48 mem:641.6MB M1=31 M2=7.7 P=9\n",
"3348/4000 83.7% complete 10:04:00 ETA= 2.7m tpr=1.01e+00 ETF=10:06:45 mem:641.9MB M1=31 M2=14 P=5e+4\n",
"3373/4000 84.3% complete 10:04:05 ETA= 2.6m tpr=1.01e+00 ETF=10:06:44 mem:641.9MB M1=31 M2=23 P=1.1e+2\n",
"3394/4000 84.8% complete 10:04:10 ETA= 2.5m tpr=1.01e+00 ETF=10:06:43 mem:642.2MB M1=31 M2=29 P=3.6e+2\n",
"3422/4000 85.5% complete 10:04:15 ETA= 2.4m tpr=1.00e+00 ETF=10:06:40 mem:642.5MB M1=37 M2=9.3 P=31\n",
"3445/4000 86.1% complete 10:04:21 ETA= 2.3m tpr=9.93e-01 ETF=10:06:38 mem:642.7MB M1=37 M2=17 P=1.2e+3\n",
"3464/4000 86.6% complete 10:04:26 ETA= 2.2m tpr=9.90e-01 ETF=10:06:39 mem:642.8MB M1=37 M2=24 P=3.6e+2\n",
"3483/4000 87.1% complete 10:04:31 ETA= 2.1m tpr=9.96e-01 ETF=10:06:40 mem:642.8MB M1=37 M2=31 P=1.1e+2\n",
"3509/4000 87.7% complete 10:04:37 ETA= 2.0m tpr=9.91e-01 ETF=10:06:38 mem:642.8MB M1=44 M2=2.3 P=1.7e+5\n",
"3533/4000 88.3% complete 10:04:42 ETA= 1.9m tpr=9.81e-01 ETF=10:06:36 mem:642.8MB M1=44 M2=16 P=1.1e+2\n",
"3550/4000 88.8% complete 10:04:47 ETA= 1.8m tpr=9.71e-01 ETF=10:06:36 mem:642.8MB M1=44 M2=24 P=2.6\n",
"3568/4000 89.2% complete 10:04:52 ETA= 1.7m tpr=9.65e-01 ETF=10:06:37 mem:642.8MB M1=44 M2=29 P=5e+4\n",
"3588/4000 89.7% complete 10:04:58 ETA= 1.7m tpr=9.64e-01 ETF=10:06:37 mem:643.1MB M1=44 M2=38 P=5e+4\n",
"3622/4000 90.5% complete 10:05:03 ETA= 1.5m tpr=9.68e-01 ETF=10:06:34 mem:643.2MB M1=53 M2=13 P=313623/4000 90.6% complete 10:05:03 ETA= 1.5m tpr=9.68e-01 ETF=10:06:34 mem:643.2MB M1=53 M2=13 P=1.1e+2\n",
"\n",
"3640/4000 91.0% complete 10:05:08 ETA= 1.4m tpr=9.52e-01 ETF=10:06:33 mem:643.6MB M1=53 M2=24 P=2.6\n",
"3657/4000 91.4% complete 10:05:13 ETA= 1.4m tpr=9.50e-01 ETF=10:06:34 mem:643.7MB M1=53 M2=29 P=1.5e+4\n",
"3676/4000 91.9% complete 10:05:18 ETA= 1.3m tpr=9.53e-01 ETF=10:06:35 mem:643.7MB M1=53 M2=40 P=4.2e+3\n",
"3706/4000 92.7% complete 10:05:23 ETA= 1.2m tpr=9.66e-01 ETF=10:06:34 mem:643.9MB M1=64 M2=3.2 P=4.2e+3\n",
"3726/4000 93.2% complete 10:05:29 ETA= 1.1m tpr=9.50e-01 ETF=10:06:34 mem:644.5MB M1=64 M2=16 P=4.2e+3\n",
"3746/4000 93.7% complete 10:05:34 ETA= 1.0m tpr=9.48e-01 ETF=10:06:34 mem:644.5MB M1=64 M2=29 P=4.2e+3\n",
"3763/4000 94.1% complete 10:05:39 ETA= 55.8s tpr=9.42e-01 ETF=10:06:35 mem:644.5MB M1=64 M2=41 P=1.1e+2\n",
"3786/4000 94.7% complete 10:05:45 ETA= 50.8s tpr=9.49e-01 ETF=10:06:35 mem:644.6MB M1=64 M2=54 P=4.2e+3\n",
"3811/4000 95.3% complete 10:05:50 ETA= 45.5s tpr=9.63e-01 ETF=10:06:35 mem:645.0MB M1=76 M2=11 P=9\n",
"3832/4000 95.8% complete 10:05:55 ETA= 39.9s tpr=9.51e-01 ETF=10:06:35 mem:645.0MB M1=76 M2=27 P=31\n",
"3849/4000 96.2% complete 10:06:00 ETA= 35.5s tpr=9.42e-01 ETF=10:06:35 mem:645.1MB M1=76 M2=34 P=1.7e+5\n",
"3875/4000 96.9% complete 10:06:05 ETA= 29.4s tpr=9.40e-01 ETF=10:06:34 mem:645.4MB M1=76 M2=57 P=1.2e+3\n",
"3905/4000 97.6% complete 10:06:10 ETA= 22.2s tpr=9.36e-01 ETF=10:06:32 mem:645.5MB M1=91 M2=4.6 P=1.2e+3\n",
"3930/4000 98.2% complete 10:06:15 ETA= 16.5s tpr=9.41e-01 ETF=10:06:32 mem:645.5MB M1=91 M2=32 P=2.6\n",
"3931/4000 98.3% complete 10:06:15 ETA= 16.2s tpr=9.41e-01 ETF=10:06:31 mem:645.5MB M1=91 M2=32 P=9\n",
"3954/4000 98.8% complete 10:06:20 ETA= 10.6s tpr=9.19e-01 ETF=10:06:31 mem:645.8MB M1=91 M2=50 P=3.6e+2\n",
"3977/4000 99.4% complete 10:06:25 ETA= 5.2s tpr=9.06e-01 ETF=10:06:30 mem:645.8MB M1=91 M2=69 P=1.5e+4\n"

Izzard, Robert Dr (Maths & Physics)
committed
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:06:29,167 DEBUG Process-3] --- Process-1 is finishing.\n"

Izzard, Robert Dr (Maths & Physics)
committed
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"process 1 free memory and return \n",
"****************************************************\n",
"* Process 1 finished: *\n",
"* generator started at 2021-11-01T09:56:53.690194 *\n",
"* generator finished at 2021-11-01T10:06:29.176751 *\n",
"* total: 9m 35.49s *\n",
"* of which 9m 34.96s with binary_c *\n",
"* Ran 1001 systems *\n",
"* with a total probability of 0.160675 *\n",
"* This thread had 0 failing systems *\n",
"* with a total failed probability of 0 *\n",
"* Skipped a total of 0 zero-probability systems *\n",
"* *\n",
"****************************************************\n",
"\n",
"process 1 queue put output_dict \n"

Izzard, Robert Dr (Maths & Physics)
committed
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:06:29,186 DEBUG Process-3] --- Process-1 is finished.\n"

Izzard, Robert Dr (Maths & Physics)
committed
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"process 1 return \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:06:29,342 DEBUG Process-5] --- Process-3 is finishing.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"process 3 free memory and return \n",
"****************************************************\n",
"* Process 3 finished: *\n",
"* generator started at 2021-11-01T09:56:53.706780 *\n",
"* generator finished at 2021-11-01T10:06:29.345842 *\n",
"* total: 9m 35.64s *\n",
"* of which 9m 35.06s with binary_c *\n",
"* Ran 1001 systems *\n",
"* with a total probability of 0.155662 *\n",
"* This thread had 0 failing systems *\n",
"* with a total failed probability of 0 *\n",
"* Skipped a total of 0 zero-probability systems *\n",
"* *\n",
"****************************************************\n",
"\n",
"process 3 queue put output_dict \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:06:29,350 DEBUG Process-5] --- Process-3 is finished.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"process 3 return \n"

Izzard, Robert Dr (Maths & Physics)
committed
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:06:29,429 DEBUG Process-2] --- Process-0 is finishing.\n"

Izzard, Robert Dr (Maths & Physics)
committed
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
"process 0 free memory and return \n",
"****************************************************\n",
"* Process 0 finished: *\n",
"* generator started at 2021-11-01T09:56:53.684890 *\n",
"* generator finished at 2021-11-01T10:06:29.433207 *\n",
"* total: 9m 35.75s *\n",
"* of which 9m 35.15s with binary_c *\n",
"* Ran 1025 systems *\n",
"* with a total probability of 0.162454 *\n",
"* This thread had 0 failing systems *\n",
"* with a total failed probability of 0 *\n",
"* Skipped a total of 0 zero-probability systems *\n",
"* *\n",
"****************************************************\n",
"\n",
"process 0 queue put output_dict \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:06:29,437 DEBUG Process-2] --- Process-0 is finished.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"process 0 return \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:06:29,449 DEBUG Process-4] --- Process-2 is finishing.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"process 2 free memory and return \n",
"****************************************************\n",
"* Process 2 finished: *\n",
"* generator started at 2021-11-01T09:56:53.694517 *\n",
"* generator finished at 2021-11-01T10:06:29.453059 *\n",
"* total: 9m 35.76s *\n",
"* of which 9m 35.25s with binary_c *\n",
"* Ran 973 systems *\n",
"* with a total probability of 0.169775 *\n",
"* This thread had 0 failing systems *\n",
"* with a total failed probability of 0 *\n",
"* Skipped a total of 0 zero-probability systems *\n",
"* *\n",
"****************************************************\n",
"\n",
"process 2 queue put output_dict \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2021-11-01 10:06:29,456 DEBUG Process-4] --- Process-2 is finished.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"process 2 return \n",
"****************************************************************\n",
"* Population-25014bc73b334765a1c09a4e4a97ed66 finished! *\n",
"* The total probability is 0.648566. *\n",
"* It took a total of 9m 35.99s to run 4000 systems on 4 cores *\n",
"* = 38m 23.97s of CPU time. *\n",
"* Maximum memory use 856.406 MB *\n",
"****************************************************************\n",
"\n",

Izzard, Robert Dr (Maths & Physics)
committed
"There were no errors found in this run.\n",
"Done population run!\n"
]
}
],
"source": [
"# set number of threads\n",
"population.set(\n",
" # verbose output is not required \n",
" verbosity=1,\n",
" # set number of threads (i.e. number of CPU cores we use)\n",

Izzard, Robert Dr (Maths & Physics)
committed
" num_cores=4,\n",

Izzard, Robert Dr (Maths & Physics)
committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
" )\n",
"\n",
"# Evolve the population - this is the slow, number-crunching step\n",
"print(\"Running the population now, this may take a little while...\")\n",
"analytics = population.evolve() \n",
"print(\"Done population run!\")\n",
"\n",
"# Show the results (debugging)\n",
"# print (population.grid_results)"
]
},
{
"cell_type": "markdown",
"id": "91ab45c7-7d31-4543-aee4-127ab58e891f",
"metadata": {},
"source": [
"After the run is complete, some technical report on the run is returned. I stored that in `analytics`. As we can see below, this dictionary is like a status report of the evolution. Useful for e.g. debugging."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e1f0464b-0424-4022-b34b-5b744bc2c59d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'population_name': '25014bc73b334765a1c09a4e4a97ed66', 'evolution_type': 'grid', 'failed_count': 0, 'failed_prob': 0, 'failed_systems_error_codes': [], 'errors_exceeded': False, 'errors_found': False, 'total_probability': 0.6485656144116352, 'total_count': 4000, 'start_timestamp': 1635760613.6602514, 'end_timestamp': 1635761189.652638, 'total_mass_run': 82563.09295167374, 'total_probability_weighted_mass_run': 0.6438124832773024, 'zero_prob_stars_skipped': 0}\n"

Izzard, Robert Dr (Maths & Physics)
committed
]
}
],
"source": [
"print(analytics)"
]
},
{
"cell_type": "code",

Izzard, Robert Dr (Maths & Physics)
committed
"execution_count": 11,

Izzard, Robert Dr (Maths & Physics)
committed
"id": "05c6d132-abee-423e-b1a8-2039c8996fbc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[None]"
]
},

Izzard, Robert Dr (Maths & Physics)
committed
"execution_count": 11,

Izzard, Robert Dr (Maths & Physics)
committed
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKsAAAJgCAYAAABFgeDFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gUVRfA4d9sS7LpBBIgkEDovffQCR0poiIqgtJEitIUxUoREERABVSkKJ+KiPTee4fQOyS0JBCSkJ5t3x9rVpYkdNgknPd58sDO3Jk5Mzub7J6991zFYrFYEEIIIYQQQgghhBAiG1A5OgAhhBBCCCGEEEIIIdJJskoIIYQQQgghhBBCZBuSrBJCCCGEEEIIIYQQ2YYkq4QQQgghhBBCCCFEtiHJKiGEEEIIIYQQQgiRbUiySgghhBBCCCGEEEJkG5KsEkIIIYQQQgghhBDZhsbRAeQEMTGJmM0WR4fx3PDxcSM6OsHRYQiRJblHRXYn96jI7uQeFdmd3KMiu5N7VOQE97pPVSoFb2/XLLeVZNUDMJstkqx6xuR6i+xO7lGR3ck9KrI7uUdFdif3qMju5B4VOcGj3qcyDFAIIYQQQgghhBBCZBuSrBJCCCGEEEIIIYQQ2YYkq4QQQgghhBBCCCFEtiHJKiGEEEIIIYQQQgiRbUiySgghhBBCCCGEEEJkGzIboBBCCCGEECLXSE5OJCEhFpPJ+Mj7iIpSYTabn2BUQjxZco+K7EqlUqPR6HB393qs/UiySgghhBBCCJErJCcnEh8fg5dXPrRaHYqiPNJ+NBoVRqMkAkT2JfeoyI4sFgtms4nU1GRiYqLQ69WA+pH2JcMAhRBCCCGEELlCQkIsXl750OmcHjlRJYQQ4tEoioJarUGvd8fLKy83b9585H1JskoIIYQQQgiRK5hMRrRanaPDEEKI555W60Rqatojby/JKiGEEEIIIUSuIT2qhBDC8R73d7Ekq4QQQgghhBBCCCFEtiHJKiGEEEIIIYQQQjxRFovF0SFkydGxOfr4OYEkq4QQQgghhBAiG+vfvzfBwdXtfho3rsPLL7fnhx+mkJqaes/tDx7cT3BwdUJDDz+bgJ+A69evZTjnu39WrlyWYbuRI4cTHFydxYv/znS/6dfy3Xd7ZXnsfv16EhxcnVmzZtot3759C4MGvUPLlo1o0qQur7zSgSlTJhETc+ue5zJr1kwaNqz1AGf9+Dp3bse4caOeybHudPc5Hjt2hOHD33sqx+rfvzeDBvWzPQ4Ors6cOT8/8PYrVizlu+++ferHycrd1yb9Xl+zZuVj7zs30Tg6ACGEEEIIIYQQ91amTFkGDRpme5yWlsrhwweZM+dnIiMj+OKLr7LctlSp0syYMZugoKBnEeoT4eOTlxkzZmdYbrGY+eqrL4mIiKB06TJ26+LiYtmxYxvFihVn6dJFdOjwYqb7VhSFo0dDiY6+iY9PXrt1UVGRHD0ammGb5csXM378GDp27MzLL3fF2dmZCxfOM3/+XHbs2MrPP/+Kh4fHY5zxkzF27Ne4uro98+O2a9eB2rXr2R4vX76EixcvPJNjz5gxGz8/vwduP2/eL1SsWPm+7YYM+fCp1MC7+9qk3+uFChV+4sfKySRZJYQQQgghhBDZnF7vRvnyFeyWVa1anRs3oli+fAkDBgwhb968mW7r6ppx2+xOp9NlGvMPP0whPDyMDz4YSVBQcbt1a9euRqfT0bfvAIYNG8TJk8cpU6Zchn2ULl2G8+fPsWXLJjp1eslu3aZN6ylaNIiwsEt2y+fOnU2LFq0ZPPgD27Jq1WpQqVJl3nrrdZYvX0zXrt0e44yfjJIlSzvkuL6+fvj6PnjC6El6Wvd20aLPJrmb1b3+vJNhgEIIIYQQQgiRQ5UsWRqLxUJkZARgHQY2bdpkBgzoQ5Mm9Zg0aXyGYYCzZs3kjTdeZuPG9XTt+iJNmtSlT58ehIdfYseObbzxxss0bVqP3r27c/bsaduxTCYTv/46mzfeeJkmTerRrFkw77zzNgcP7re1mTVrJl27vsisWTNp2bIxHTu2ZurUSTRrFkxSUpJd7DNmfEf79i0wGo0PdK5bt27mf//7lVat2tKuXYcM61euXEqNGrWpVasOefPmY8mSRZnuR693o2bN2mzatD7Dug0b1tGkSUiG5TEx0Vgs5gzLS5YsTf/+71G6dNkHOgfIfKjeypXLCA6uTlRUJABjxnzO8OHv8fffC3jxxbY0bVqPwYP7Ex19k+XLl/Diiy8QElKfQYP6cf36tUz3nT68bMuWjXz00TBCQurTqlUTxo8fQ0pKim0bo9HIggX/4/XXrc/rSy+1Z+7cWZhMJlubq1ev8MEH79O6dVOaNq1Hnz492LVru239ncMAx4z5nOXLlxARcd02XLNnz26ZDr3s06cHI0d+kGF5uoiICD76aBgtWjTkhRda8Mcfv2Voc/fwvAULfrfd1x06tGLixHEkJibYrs/Vq1dYtWo5wcHVuX79GitXLqNJk7osXvw37do1p3Xrply9eiXDMECAhIQEPvtsBM2aBdO+fUtmzvze7v7NbKjg/a5NZsMAL126yIgRQ2jbNoSQkPoMGTKQc+fO2tanv6YPHtzPoEH9aNq0Hi+80ILp06fZPW85mSSrhBBCCCGEECKHunw5DAB//0K2ZQsX/kH58hX56quJtGrVJtPtIiKu8+OPP9Cz5zt88smXXLkSzrBh7zFt2jd06/YWX3wxlsjI64wa9altmx9+mMK8eb/QoUNnJk2ayvDhI4mLi+XTTz+0S35cvXqFvXt3M2rUVwwYMJh27TqSkpLCli0bbW3MZjNr166iefPWaDT3H/Bz/fo1xo79gmLFijN06IcZ1p89e5qzZ8/QsmVrVCoVLVq0ZsOGtbYkxd2aNAnhyJHDdvWmIiKuc/LkcZo1a5Ghfe3adVmzZhUffTSMDRvWcvPmTdu6Ll1ep2rV6vc9h4d1+PAhVq5cxuDBHzB48AccPnyQAQP6sHDhnwwc+D7Dh3/MiRNHmTz563vuZ9y40RQs6M9XX02ia9c3WL58Mb/+OvuO9aOYPn0aTZo0Y/z4SbRs2ZrZs39iwoQxgPW5Gj78PVJSUvjkky8ZN24Snp6efPjhEK5evZLheN279yQ4uAE+Pj7MmDGbOnWCad26HUeOHCYi4rqtXXh4GMePH6V163aZxp2cnEz//r24cOEcw4eP5P33h7F8+RKOHTuS5bmuW7ea6dOn0qnTS0yaNI3u3XuyZs1KpkyZBFiHSfr6+lGnTj1mzJhtGwZqMBhYuPAPPvroUwYMeN/u9XSnv/76HaPRyKhR4+nYsTP/+988vv124j2v//2uzd3Onz9Hr17duHnzJsOGjWDkyC+Ii4vlnXfezjC08vPPP6ZKlap8/fUUQkJaMH/+XFatyljLLSeSYYBCCCGEEEKIXO3Ctdss23GRlLQH63GgKPA0Juty1qlpV68oQQUfpbaRxa4HR1xcLLt372Tx4kU0btwMLy8v2zp//0L06fOu7fGdPZ/SJScnM3z4R7Yky+HDB/n77wVMmTKdatVqAHD58mW+//5bkpKS0Ov13Lx5gz593uXFF1+27cfJScfHHw/n4sXztiF3JpOJAQMG2w1tKlu2PGvWrKRVq7YAHDiwj6ioSNvjezEYDHz66YeYzWZGjRqPk5NzhjYrVizD2zuPrW5S69btmD9/LmvWrMow1A8gOLgBarWaLVs22Wpbbdy4jhIlSmVaO2j48JFYLBa2bt3M1q2bAChUqDD16jWgS5fXyJfP977n8bCSkhIZNWocBQv6A7BlyyZ27tzGn38uJjAwAKPRzLFjR1i/fs0991OvXn36938PgOrVa7Jv3x527txGr17vcOHCeVavXkG/foPo2vUNAGrUqI2zszPTp0/jlVe64unpRVjYJd58syd16livb5ky5Zk9+8dMi/v7+xfCy8sbrfa/4W0hIS357rtvWbNmJW+++TYAq1evwMfHh1q16mQa98qVy4iKimTevD8pUqQoYL2PunTpmOW5Hj58kAIFCtKp08uoVCqqVKmGXq/n9u04wNoTTqvV4uXlbXd/WiwWunfvmWny6E5FixZj9OgJKIpCnTr1SE5O5o8/fuPtt/vg7e19z22zujbXryfbtZk9+yecnV2YOnUGLi4ugPU5eeWVDsyaNZPRo8fb2rZv34nu3XsC1mHBW7duYceO7bRt2+G+sWR3kqwSQgghhBBC5Grr9l8m9Hy0o8MAwMVJQ+8XMtZRup8DB/bRqFFtu2VqtZr69Rtm6GlUokTJB9pnuXLlbf/39s4DWJMB6Tw9PQFISIhHr9fbirjHxMQQHh7GlSvh7NixDbAmlO4VQ5s2LzBp0jhu3rxB3rz5WL16OaVLlyUoqNh94/z++285efIEo0aNIyAgMMN6g8HAunWraNy4GcnJ1g/+efL4UKpUGZYsWZRpskqvd6VWrTps2rTBlqzasGEdzZo1zzQGDw8Pxoz5muvXr7Fr1w4OHtzHoUMH+PPP+SxbtpjJk7+3u55Pgrd3HluiynpOefDy8rLr9ePh4UlCQua9x9JVqFDJ7nG+fL5ERUUBEBp6CICQEPveZM2bt2L69GkcOnSQTp1eokiRICZMGM3evbuoWbMOtWvXZcCAwQ98Lu7u7jRo0Ii1a1fx5ptvY7FYWLNmJc2bt0atVme6zZEjhyhUqLAtUQXg55efcuWyru9UtWp1lixZxNtvv06DBo2pU6ceISEtH6hQeokSpe7bplGjJnb7ql+/IfPnz+XEiWPUq1f/vts/iNDQQwQHN7AlqgD0ej3BwQ3Ytm2zXdu7n1tfX19SUuyTXzmVJKuEEEIIIYQQuVpI9cKkpBqzRc+qkBqPNuNXmTLlGDIkvbaPgpOTEwUKFMTZOWMvIxcX/X33p1arM+2hdOcH5LudOnWCSZPGcfLkCZydnSlaNAg/v/yA/fWy7tvJbttmzZozdeok1q5dTYcOL7J162beeWfgfePcvHkDCxf+ycsvv0rjxs0ybbNjx1bi4uJYvPhvFi/+O8P6Y8eOZlrAunHjEMaM+YzY2FgSExM4c+YUY8bce0idtdfOS3Tq9BJms5lt2zYzduwXTJkykR9/nHPf83kYen3G59HZOevnJyt33yMqlcpWfyu9x1F6sjJd+uPExAQUReHbb79nzpxZbN26idWrV6DRaGjQoDFDh4544FkQ27Rpx/vvr+HUqRMkJSURGRmR5RBAa2y38fLK2FvJx8eH2Ni4TLdp2rQ5ZrOZf/5ZyJw5PzNr1kwKFChI374DaNo0Yy2yO93r3k+XJ4+P3eM7r9OTcvt2XIbjpB/r7sTk3a9hRVEwm5/CLy8HkGSVEMKhLKmJpJ7ZSfSR7aTovLFUaEPBIkXRO8uvJyGEEEI8GUEFPRj0UqX7N/yXRqPCaMxYTNuR9HrXhyri/aQlJiYwZMgAihcvxa+/LiAwsAgqlYpdu7azefPG+27v6upGo0ZN2LRpHX5+fphMpkxrQ93p6tUrfPXVl1SoUJF+/QZl2W7lymUUKhTA8OEf2S03mYx88MFgli5dlGmyKji4Pmq1hm3bNhMbG0O5chXInz9/hnabN29g4sSv+OGHWXY9u1QqFQ0bNuHw4UOsWLH03hfgDtaEgv39lZyclEXrp8vd3Zpoiom5ZTeUMTraWpPL09MLgLx58zF06IcMGfIB586dYdOmDcyfPxdvb2/ef3/4Ax2rWrWa+PnlZ+PGdSQlJVGmTNl7zrjn6enFqVMnMyyPi8s8UZUuJKQlISEtSUhIYO/e3cyfP5cvvxxJ5cpVbDWqHlV8/G27x+nX6c4hgBmf24fr6eTu7sGtWxl7gkZH37Q9H88DKbAuhHAYi8VM4t+fYtg1H4/EMHxjDuOz5Ss2/fg1o2ZuYMaSY6zaHcbxS7dISDbcf4dCCCGEEOKpCAu7RFxcHK+80pWiRYNQqawfJXfv3gmQ6Ux5d2vTpj2nTp3kn38WUq9eg3v2yElLS+OTTz5Eq9XyxRdfZVmE/ebNm+zZs4uQkBZUrVrd7qdGjdrUrVufDRvWEh8fn2Hb9KGAmzdvZNOmDTRtmvkQwKJFixEXF8eCBb9nuv7y5TCKFbv/cMY7jxsZGWm37MiRww+8/ZNUuXIVANats697lV4Hq2LFypw4cYx27Zpz8uRxFEWhRIlS9O7dj6CgYrbZC++Wfn/cvax163Zs2bKJHTu20apV1r2qAKpXr8HVq5ftZqSMjY3l+PFjWW7z+ecfM2LEUADc3Nxo0qQZ3bu/jclksiWAMovtQe3Zs8vu8aZNG3BycqJMGesQUFdX1wzX5OjRULvH9zt+5cpV2bFjm12SKzk5mR07tlGxYuVHjj2nka4LQohnxpwSjyXhFuq81m+kFEWFJqgGhiOriTO74KlKRqOYaeB8mlqW82y6VJalJ8uSig4AHw9nAvO7W3/8rP96uuoceUpCCCGEEM+FgIAiuLq6MmfOzygKqFRqNm/eYOtR9CC9R6pUqUb+/AU5fPggX3/97T3bzpz5HWfOnKJPn/5ERUXZaizdydvbm82bN9yzl1bLlm3YvHkDa9asoHPnLhnWN2nSjDFjPsdisWQ5zDAwsAivvvo6//vfr0RGXqd581b4+voRE3OLNWtWcvDgfr799of7nn+6unWD+e23Ofz66xzKlSvP9u1bOHAgYxH8ZyEoqDgtWrTip59+IDU1hfLlK3Ds2FHmzfuFFi1aUbRoEAaDARcXF0aN+pS33upNnjw+7N+/l7Nnz9Cly+uZ7tfNzZ1bt26xa9cOSpQoRd681h5NrVq1Zc6cn9FqtfftWdeiRRv++usPPvhgMH36vIter2fu3F8wm7Mezlu9eg3GjRvNd999S5069YiPv80vv/xIQEAgQUHFbbGdOXOaQ4cOULbsw9WPO378KBMnfkXjxs04eHA/f//9Jz169MLNzQ2AunXrs3btakqXLkuhQoVZtWoZV69evue1uVuPHr3o3ftNBg16h9de6wbA/PnzSE5OshVTfx5IskoI8VRZLGZM105hOLkZ46WDqLwKoH/xS1thQl25phxO9OWnfRYKqaPpG3AGt7hzOClGWrocIdjpNKuSK7E9tTTRt1OIvp3CwTM3bPv3ctPZElfp/3q7Oz1QEUUhhBBCCPFg3Nzc+OqrSfzww1RGjvwAvd6VEiVK8d13PzJ06CCOHDlsmykuK9YZ1OqyZcsmatbMfAa4dKdPnwKsSaustGrVlhMnjlG8eEkCA4tk2qZ27bp4eXmzZMmiTJNV9epZZwUsW7a8LaGSmX79BlGqVFmWL1/MlCkTSUhIwN3dg0qVqjBz5pwHLmoP0K3bW8TGxvK//83DaDRSt249PvzwEz788MELlj9JI0Z8hr9/YVasWMq8eb/g55eft97qTdeu1kSJVqvlm2++Y8aMaUyZMomEhHgKFSrM8OEf06JF60z32apVW3bs2MqIEUPo3bufbV8FC/pTpEhRihYtdt9aV1qtlilTZjB16iQmT/4aRVF44YWOFCzon+VQwLZtO5Camso///zNP//8hZOTM9Wr16Rfv0G2Qu5durzGt99OZMiQAUyZMv2hrlX37r04ceIow4a9h5eXF337DrDNoggwYMD7GI1Gvv9+Cmq1mmbNmtO3b3++/vqrLK/N3UnSYsWK8/33PzNz5neMHv0ZKpWKSpWqMGPGbIoVK/5Q8eZkisXyNEoH5i7R0Qm5pkhZTpAvnzs3bmTspityFnNSLIbT2zGc3orltv03YfqOn6POV8T2eM3ecP7ceA6A799vgPbGaVL3/oX55iUA4go34JBnE8Ij4gmLjOdmXMo9j+2u19olsALyu5PP0/mJJbDkHhXZndyjIruTe1Q8LRERYeTPn3G2uIeVHWtW5QZms5muXV+kceNm9OnzrqPDydFy6j16/fo1XnmlA5MmTaVGjdr330DkaFFRl/H1zXxSCZVKwcfHLcttpWeVEOKJsZjNmK4cw3BqC8aww2C5o4uuWoOmaA20pRuiypvxTaSiS8JisX7bofIvg1P7kVjCDpIWuoqCjV+ikLO7rW182Ekum30Ji0ogLCKesIh4ImP+63oen2Tg2MVbHLt4y7ZM76S5I3nlRqCfO3559KikB5YQQgghxFOVkJDAggX/49ixo9y4EUWnTi85OiTxjJ05c4rt27eyceN6goKKU716LUeHJLI5SVYJIZ6YlI0zMF7Ya7dM5e2PtkwjtMXroDhnnjmPNl3HufJWUs9WxmKxEJEYxZi936BT6+ge/CqVnN25lRLDwjNLcU5LpebxvRTxKkqh6i+QL9BIA20e8jn5ceuWhUsR8YRF3uZyZCLXohNt0ygnpRo5GRbDybAY23GddGoCfN3shhAW8NGjfoyii0IIIYQQwp6zszNLlvyNxQIfffSZ3axz4vmQlpbGH3/Mx8/Pj08/HSUlO8R9SbJKCPFILGYT5ltXbMXSATSBla3JKo0OTVAtdGUaovItdt8/RjEm64wZGr8wUkypJBmtvaTSTGloVdZfU7Gptwm9eRyAMmoVpsizXFk/hdmF8wDQt2J3KgSUxcU7kaUJ83Ap6cygUq+iNxbk+NXL7I3bSkqSQnyYP8YkN9CkYXC9xfnbGs5e9wCTDrCg1ago7OtuN4zQP58rGrUksIQQQgghHoVGo2HJkjX3byhyrfLlK7J27RZHhyFyEElWCSEeivl2FIZTWzGc2Y4lLQm316eg6FwA0BStjpMhFW3xWig6/UPvW+1h7fXk5eRJm6IhJBmTyefyX6HLAq5+JBmS8CxaGk7tIln9XxJMfWQd5hr5SDJYE13JxhRcdE4U9/PErL/B2kOXwB3e69oMvdGPfZdPsTl+IwDGMzUxxOZB5RaLuswerpm0XDpbBfOhPCjOCWgLncNNq6e4U2VK+RaiWDFXIpPC8XR2pbC7Py4aF8wWMwqKfEskhBBCCCGEEI9JklVCiPuymIwYLx3EcGoLpqvH7dYZzu1GV7YxAIpGZ/v/wyimrcyB7dYhgi71nHFxcqN10RC7NkGegYysNcT22FypAyUOLOL9i7tJVin4pt4g8cJRXEvXpVWh+iRjxsfF2xoXCvn1viQak/B0dsPfzYM4tSubj1r39WGXWmjSvNkZHsrW24DGgEalIQ1QnJJR54kgGdh33Je9h5NQed7AqdQBAEqmtKKsb3EU95ssufoneq0L71TqQRGPAK7EX2Nd+Gb0GheaBjQkr0se4lLjuXQ7DL3GhcLu/jhrnCXRJYQQQgghhBB3kGSVECJL5tjrpJ3agvHMDiwp9rM2qfyKoyvdEE1QTYfEpnLLg0fDnrhWak3a3r8xXjoAFiNeJ7bS6Gp+XF8ei6JYh+6V8C7GJ7WH2m1fyrs4H9ccTKIhiYLufjipdTRwLY4+silJhmSa12lMcqKGXeFH2RVzjlRzCs4qJ5IBRW207efI2duEHjmLyjsCpxJmEgyJLNkaTql8YHS7xv7IwwDULWgtInnpdhg/Hp0HwAfVBxLgUYjj0af46eiv6DUuDKjSC3+3AoTdvsymy9vRa/WEBDTE29mL2NQ4LsdfxUXjQoC7Pzq1DovFIkkuIYQQQgghRK4iySohRKbSjq0jded8+4VOrmhL1EVbuiHqPIWe2LFuma6j8T8LgMFcB5eH+NWk9iqIS/MBmKIukLr3L0zXTqKr0NyWqMqKs8aJgm757ZYVcPWjXVAL22NvF3gxb21exDqtrrmZhRuxyUTGJ3LgfHGu3oohAieSsGBJ0WO4FoSiNhB6NYHQY+dQeUWiDdCj0hr4e0M4JfzSSHa9Ydu/XmsdPplkSMZkMRFvSLDV6IpKusm+yEMANPSvA8C52IvMPv4/AEbWGkIBVz8O3TjKvBN/oNe4MKhqX/z0+bgQF8b2q7vJ4+xNff86eDr9N5OiEEIIIYQQQmR3kqwSQgBgjo1A5fVf8kZdsOx//y9QCm3phmiKVkfR6J74sWPMEWj9zwNgMpseaR9q3yBc2gzHdO0k6gIlbcstJiPJqyejLVkPTfHa901i3YtKUfDz1lO+pB8VA/JZ92+xcOt2KmGR8VyKiCc8Mp5LTvHcNqZhjvUjNdYPgCMkceTUBVAbUJzq4OEB82PCKep3GxdvHfULBGNW0nDXudmO5ePsTZIxGb3WWv8rvR4XgF6TnuhKwmA2EpcWj06lBSAiMZI9EdZhis4aJ5oFNHzkcxZCCCGEEEKIZ02SVUI8xyyGVIzn95B2agvmqPPoO36OOl8RANR5/HGq+xqaQuVReRVwbKAPSFEUNP5l7Zal19kyXT2O6sgqnGq8hLpwhSc2dE5RFHw8nfHxdKZqyXy25bEJqYRFxBMWGW/799btVDBpsSR5EpcEoRExhJ6N+XcLNzxddUQdPUOAnzuBfv4MLPcePh7Otlir+lUk0KMQiYYk3LSuABR0K0DTgAYkGZJx/XeZSlHhqtFTMk9xmhZuAFhnVtSpn3yiUQghhBBCCCGeNElWCfEcMt24hOHUZgzndoMhxbbccGoz6nzdbY915UMy2frJK6atwoHt1qFqzvWcn+i+FZ0LiosHluTbmKMvk7z6G9QFSuFU8yXUfsWf6LHu5OXmhFdxJyoV/282w9tJaYTbklcJhEfEExX7X2+puMQ0jpyP5sj5aNsyNxctgX5uBOR3J9DPncD8PhTOUwjVvwmsIM9AgjwD7Y5du0B1auWvZi3crigkGpKYuP87ahWoRovAJlLjSgghhBBC5FjZuWaro2Nz9PGfJElWCfGcsKQlYTi3G8PJLZijw+zWKXovtCWD0ZZu4KDonh5tibpoilQj7ega0kJXgSEZ0/XTJC0ZjaZIVXQ1OqP2LvhMYvHQ6yhf1IfyRX1sy5JSDIRFJhD27xDCsMh4IqKTsPy7PiHZwPFLMRy/FGPbxsVJTYCvO4H5//3xcyd/Hj0q1X9/mBRFQa2oAZh/8i+ikm+y7MIa/PS+VPGt8EzOVwghhBBPzvnz55g3bxaHDh3k9u04PD09qVSpKm+80YMSJUrefwfZyMqVyxg79gsWLVqBr6/fMz9+cHD1e67v0aMXb7/dx27Zd999yx9//Mbrr3enb9/+GbYZM+ZzVq1ajp9ffv7+e3mm+x016hPWrFlFq1Zt+fjjz23LQ0MPM3/+XI4fP0JSUhLe3nmoUaMW3bq9hb9/1nVin+V17N+/N2q1hilTfniqx7nb3ed46dJFxo8fxfTpvzzxY40Z8zlHjhzmzz8XA9C5czuqV6/Jhx9+8kDb79ixjY0b1/HJJ18+1eNkJbNrExxcnZ49+9K9e8/H2rcjSLJKiOeAMeIsySu/BmPafwsVBXXhitZaVAGVUFRqh8V3Z4F1k6UuT/pXk6J1wqnqC2jLNibt0HIMxzeA2Yjx0kGMYYfQlAjGud7rKFqnJ3rcB6F31lIm0Jsygd62ZSlpRi5HWRNY6UMIr91MwmyxprCSU02cvhzL6cuxtm10WpU1geXnTkB+NwL93CmY1xWNWkXboBZcSbhOEY/CVM5X/lmfohBCCCEe07lzZ3nnnbeoUKES778/DC8vb27ciOKvv36nT58eTJ06g/Ll5cuoBzVjxuxMl0+fPpUjRw5TsWIlu+VGo5G1a1dRrFhxVq5cRs+efdFoMr5fVRSFyMgITpw4Rtmy9u+5UlNT2bZta4Zt9u7dzbBhg2jUqCkffvgJrq5uXL16hf/9bx69e7/Jjz/OvWfC6lkZMuRDh/TYqVMnmBkzZuPtnQeAzZs3cPTokWdy7LFjv8bV1e2B2y9Y8Dsmk/G+7bp370lSUuLjhJapzK7NjBmz8fN79gnhJ0GSVULkQpaUBNBoUTTW5Is6bwD8m4xSXPOgLd0Aban6qNx87rWbZ+bOAuvGRyyw/iBUzu4413kVXYXmpO7/B+PZHWCxYI65Ak+hcPyjctZpKFHIixKFvGzL0gwmrtxItKuBdfVGAkaT5d/1Zs5djePc1TjbNk46NZ0aBNGsWiGGVx+ATq1FURSSDEn8fOw3OhZvS2H3Z9OrTAghhBCPbsGC/+HtnYevv56CWv3fF4zBwQ157bXOzJ37M19/PcWBEeYsmSX2Fi36i9DQQ3Tr9hY1atS2W7d79w5iYm4xatR43n23J1u3bqZJk2YZ9lGgQEHS0tLYvHlDhmTV7t07UavV+PnZz0b9229zqFChEl98Mda2rGrV6tSpU4+XX+7AH3/MZ8iQDx7ndJ+IokWDHHJcb29vvL2979/wKShZsvRT2e+zTD7m5CS2JKuEyCUsFgum66cxnNqC8eI+nOq9ga60dRY4ReOEU+0uqPTeqAuVR1E9+ox4uYHKzQeXRj0xVWxF2r6FaMuH2H1TZLx+GnXeIg7paZUVnVZNUEEPggp62JYZTWaupiewIuMJj4jnclQCaUYzAKlpJn5ff5aL127zZsvS6NRqTGYTPx/7jdMx5/jmwPcMrzGQAq4589sWIYQQ4nkRE3MLi8X6fu9Oer2egQMHk5KSYrd8y5ZNzJ07i0uXLuDu7kHz5q3o1esddLr/vpw7duwoP/88nRMnjqPT6ahVqw79+79n68ESFRXJzJnfc+DAPuLjb1O6dFl69uxLlSrVALh+/RovvfQCY8ZMYM2aVezbtxuNRkujRk0ZNGgIzs7WOqRms5l5835h6dJ/iIuLpWbN2lSqVCXDOS5e/DdLl/5DePglzGYLRYoUoVu3t2jUqClgHQ42ceJXDBw4hFmzZmIymXj77T5MnjyBP/9cbJcAWLz4b6ZOncTixavw8PC87/U9efI406Z9Q7VqNejZs2+G9StWLKNUqTJUqlSZsmXLs2TJokyTVYqi0KhRUzZt2ki/foPs1m3cuJaGDRtz6NABu+W3bt3Cw8ODu+XNm4/Bg4fh4eF13/jTZTZU7+DB/Qwc2Jfvv/+ZSpUqM2vWTDZv3kCPHr35+efpRERcp0SJUnz88WdcvnyZGTOmce3aVYoVK8GwYSMoUaJUpvsODq7O0KEjOHHiGFu3bsZkMlG7dl0GDx5uu4cAVq9ewYIF/yM8PAx3dw+aNm1Or159cXKy3h8xMTFMnTqJAwf2kZCQQEBAIK+80pVWrdoC9sMAly1bzOzZP9mO36NHLy5evMCpUyf466+ldu/nP/vsI65evcLPP8/L9Frdvn2b776bzLZtW7BYLLzwQkfMZrNdm7uH561bt5rffpvL5cvh6PV6atasTb9+A8mbNx/9+/fm8OGDttimTp0BwMCBfRk27CPmzp1FYmIC48dPZsWKpXbDAAEMhjQmTvyKdetWo9FoaNw4hH79BqDXu2Yay4Ncm7ff7pNhGOCTel0/C8/3J1YhcgFz8m3SQleSuGAEycvHYTy3C0xGDCe32LXTlW6IJqBitkxUBWkrk7y3Jcl7W+KseXYJInUef1xaDLKbQdCcfJvk1ZNJ/GMYacc3YDHfvyuvo2jUKgLzu9OgUkHeaF6Kj7tV5/vBDRj1dk16tC6Nt7v1Wu4+EcmYX/cTFZOESlFR1qcUCgrlfErjp893n6MIIYQQwtFq167L9etX6dv3LRYt+ouwsEu2dY0bN7N9sAdYu3Y1H388jKCgYowdO5Fu3XqwZMkivvjiY1ubM2dOMWBAb8xmM5988gXvvz+c0NBDDB/+PgA3b96kV69unDhxjH79BvHFF1/h5OTMe+/148CBfXaxjRs3moIF/fnqq0l07foGy5cv5tdf/xtm98MPU5k9+yfatevA2LET8fDwZMaM7+z28ddffzB58gQaNWrChAnf8tlno1CrNXz++cfcuBFla2cwGFi48A8++uhTBgx4n5CQluh0OtauXWW3v9WrV1C3bv0HSlTFx8fz6acj8PT04vPPx6C6671yTEwMu3Ztp0WL1gC0bt2Wgwf3ceXK5Uz316RJM65fv8qpUydty1JSUti5cztNmzbP0L527bocOXKYQYPeYeXKZVy7dtW2rm3bDjRo0Oi+5/CwIiKu8+OPP9Cz5zt88smXXLkSzrBh7zFt2jd06/YWX3wxlsjI64wa9ek99zNjxjQARo36in79BrJjxza++26ybf2sWTMZM+ZzKleuytixE3nlla4sWbKI4cMH2xKvo0Z9wqVLFxg6dAQTJ06hZMlSjBnzOQcP7s9wvHbtOtC+fad/jz2bdu060KZNOyIirhMaesjWLjExgW3btti9Lu5kNpsZMmQAu3btoH//9xg58nOOHg1lw4a1WZ7rkSOHGT36Mxo1asKkSVMZMOB9DhzYyxdfjASswyTLlClLyZKlmDFjNqVK/dcra86cnxk0aAjvvTcsQ4+7dOvXr+XSpYt8+uloevToxZo1K/n00xFZxvMg1+ZuT/J1/SxIzyohciCLxYzp6glrL6pLB+HOoXMqDZqi1dCWbpirZoN4VgyntoIhBYshhdQdv5J2dA1O1TuhKVYTRcl+ib67qVUq/PO54Z/PjUrF8jJjyTFOhcdy5UYiX87ZT+8XytKsWEMKu/lT1DMAlaIiyZDEuvAttC7SDK1a6+hTEEIIIZ4Kw+ltGM5sv287bclgNOUa2h6n7JyPOTr8vts51emKOu9/M/QmLfsq031rS9V/wIj/06nTy0RHR/PHH/P55pvxAHh5eVOrVm06d+5CmTLlAGvPqxkzplG3bn1GjvzCtr2vrx8jRgz9tx5TZebN+wVv7zxMnDjV1tvKw8ODr78ey5Url1myZBHx8Qn8+ONc27C1unWD6d79VaZPn2bXW6Vevfr07/8eANWr12Tfvj3s3LmNXr3eIT4+noUL/+DVV9+gR49eANSqVYebN2+yZ89O2z6uX79K167d6NbtLduy/PkL8vbbr3P06BFbLyaLxUL37j2pUyfY1q5+/YasWbPKtv/Ll8M5duwIEyZ8+0DXduzYz4mKimTq1Jl2PYLSrV27EoCQkJYANG3agqlTJ7N06aIMvacAKlSoRL58vmzevIHSpcsAsHPndpydXahaNWNh9969+5GYmMjKlUttCQNfXz/q1KnHK690JSCgyAOdx8NITk5m+PCPbPEcPnyQv/9ewJQp06lWrQYAly9f5vvvvyUpKQm9Xp/pfooXL8lHH30GQI0a1h5qW7duBuD27Tjmz59Lx46dGThwCAA1a9YmXz4/PvtsBLt27aBu3WAOHz5I9+49bUm5ypWr4unphVab8T2pr68f+fL5Av8Nb/PxyUu+fL6sWbOSypWrArBx43rAQkhIi0zj3r17JydPHmfSpGnUqlUHgGrVavLSS+2yvGahoYdxcnLmtdfevOM148mpUyewWCwULRqEXu+GyWTMMPSuU6eXadiwSZb7BvDy8mLSpKm2HmcajYaJE8dx9uxpW++2e8ns2tztzz/nP5HX9bOS/T95CSHsWFITSfzjA5JXTsR4YZ8tUaXyKoBT7S64vj4Zl6bvoPEvm2MSVekF1jX+ZzE6uCeTrnJrnBv3RnG39jiy3I4iZeMMkv75AuOVYxm632dnHq46hnSpTMtaAQAkpRqZ8tcRlmy/SAnvYujUOkxmE7OOzWdt2CamHPqRZGOyg6MWQgghng5z/E1M10/f98ccf9N+u+jwB9rOkpZkt92D7PtBKYpC7979WLx4FZ99Npq2bduj1+tZs2YVvXt35++/FwAQHh5GVFQkwcENMBqNtp+aNeug1WrZt28PAEeOhFK7dl27YYE1atRiwYIlFCpUmMOHD1KxYiW7+koqlYqmTZtz+vRJu+LQFSrYFyPPl8+X5GTrsMTjx49iNBoJDm5o1+buIXQDBw6hT593iY+P59ixo6xZs5JFi6znZDQa7Nre/cG9TZv2XLkSzvHjxwBrryofHx9bEuJe/vjjN7Zt20KfPv2pVKlypm1WrlxGjRq1UKvVxMfHA9beUCtXLsdgMGRonz4UcPPmDbZlGzeupVGjpnb1xtLpdDo++OBjFi1awYcffkLz5q0wm80sWbKIN998lW3bNt/3PB5FuXL/9fBJT9Ld2evH09PaKy0hIT7Lfdz93Pv6+pGSYn0vefz4MdLS0mjWzD5h1LhxU7RarW04ZJUq1Zk1ayYjR37A8uWLuXXrFu++OyjDvrOiVqtp2bINmzZtIC3NOpnUqlXL79mzLjT0EDqdk9094uLiQu3a9bI8TpUqVUlJSaZbt1eYMeM7QkMPUbNmbXr06HXfz1wPMltnnTrBtkQVQHBwI8Dao+tJeVKv62dFelYJkc1ZzGYwpqLoXABQnFxRnN2xxN8AtRZNUE20ZRqi9iuRY5JTd7uzwLrprrHiz5qiqNCWqIsmqCaGk5tIO7gUS0o85pthJK+ciLpgGVJadAdtzqjzpFapeLlxcYoW8OCXFSdJNZhYsv0iF6/fple7sihqA2lm6xstTyd3nNTZp06XEEII8SSp3POiLnD/Hgoq97z2j30CHmj/is6+90lmx7p73w/Lw8ODkJCWtl4+Z86cYtSoT/n++ymEhLQkLi4WgAkTxjBhwpgM29+8aU2WxcXFZtqLKF18/G0CAjKed548PlgsFpKS/kvM3V3DRqVSYbFY38/dvn0bIEOBbB8f++tw9eoVJkwYy4EDe9FqtQQEFKF48RJAxjpdLi4udo+rV6+Jr68fa9asoGzZcqxdu4oWLVpnmhi607FjR5kx4zsaNGhM165vZNrm1KmTnD9/jvPnz9GqVeMM67ds2ZghGQPWZNxff/3O2bOn8fcvzK5dO/jmm+8ytLuTj09e2rZtT9u27QFrrakvv/yEiRPHERzc8Im+z1er1XaJkXR3X9v7cXKyf9+oKIrt+YqPtz73dz/XKpUKLy9vEhISAPjii7HMm/cLGzeuY/PmDahUKqpXr8Xw4R+RP3+BB4qjdet2/PrrbHbs2ErJkqU5ejSUCRMmZ9n+9u3beHl5ZVh+d6x3Kl++Il9/PYU//5zPn3/O57ff5pAnjw/duvWgc+cu94zPxSXznml3uvv1mB5f+nV6Ep7U6/pZkWSVENmUOf6mtbv66W1oAivjHNzNtk5XpS2WxFtoi9dBcXJ1YJS5l6LWoCsfgrZkMGlH15B2ZDUYUjBdO8m1OSNw7TLhsd9wPks1SvtSMK8r3y06SuStJI6cj2bUnP2826kCA6v0Zu2ljTQLbIRKUZFsTOZS3GXK+Nz/WyAhhBAip9CWqv9IQ/Cc6772SMfTt3vwejP3EhUVSa9eb9KrV1/atu1gt65kydL06tWPjz4ayvXr13BzcwNg4MDBVKxYOcO+PD29AHBzcyM2NsZundlsZvfunZQpUxZ3d3eio6MzbB8dbU12eXh42v5/L+kfuG/dirYrgH779n+zF5vNZoYNG4RO58TPP8+jePGSaDQaLl68wJo1K+97DJVKRatWbVm2bDHNm7fi+vVrtGqV9XCu9ON/9tkI8ucvYBvGlpmVK5fi6urKV19NyrDuyy8/YcmSRZkmq8qXr4ivrx+bNm2gaNEgPDw8M30+jh8/xocfDubTT7/MMANh1arV6dr1DaZO/Yb4+NsPVH9LURTMd82snZzsmF7z7u7ugPWeufO5N5vNxMTcst0bbm5u9Os3kH79BhIefolt27YwZ87PfPPNhHsmnO5UuHAAFStWZuPG9Vy9eoU8eXyoWTPrnnVeXl7ExsZkKJly532ZmVq16lCrVh1SUlI4cGAff/31O99+O5Hy5SvZhnw+qvRee+liYm4B/yWxrM+tfbIoOdm+N+f9PKnX9bMiwwCFyEYsZiOGi/tJWjWJxN+HkXZwCZbEWxjO7cJiTLW10xapiq5cs1yTqCqmreKQAusPQtG54FStA65dJqAtHwIqDW7lgnNUoiqdf15XPulWnSolrLFHxSYzZt5+Dpy8SZug5jjdMSzw+9BZrAvbnKOGPQohhBC5kY9PXtRqNYsW/UVqamqG9eHhl3B2dsbfvxCBgUXx8vLm+vXrlC5d1vbj6enF9OnTuHTpIgAVK1Zmz55dGI3/lV84ejSU4cPfIzw8jMqVq3HkSChRUZG29WazmY0b11GmTFm74YP3Ur58RZycnNi0ab3d8h07ttr+HxcXS3h4GO3adaB06bJoNNb+FLt377Qd935at25HTMwtZsz4jjJlylK0aFCWbS0WC6NHf0ZMTAyjRo2zJfjulpaWxrp1a6hfvxFVq1bP8BMS0pJDhw4QHn4pw7bWoYBN2LJlI5s3b6BJk2aZ9owqXDiA5OQk/vrrj0zPMzw8jHz5fB8oUQXg6upq95zBkx1G9jDKlauATqdj/fo1dss3bdqA0WikYsVKREVF0qlTG9v9ERBQhNdee5Pq1WtlOI90WfWYa9PmBXbv3snGjetp0aLVPXvWVatWg7S0NLZv/29CKoPBwN69u7Pc5ocfptKrVzcsFgvOzs7Uq1efd999D8AWq1r96OmV/fv3YjL9l2hMvybpdbj0elciI+/93N6vN+GTel0/K9KzSohswBwXieHUFgxntmNJvm23TpWvKNrSDYGcOcTvgeSAfIjKxQPnuq+hq9CcPHk9ibnjvWLKll9QnN3QVW6T7ROIemcN73aqwMpdYfyz9QJpRjM/LjvBheu3eblxcSKSIjkfdwkLFi7GhWHBgpKb7z0hhBAim1Or1QwePJyPPx5Oz55v8OKLLxMYWJSUlBT27dvN338voE+f/rakS69e7/DNN+NRqRRq165LXFwcv/zyIwkJCZQsaR2a+OabPXnnnbcYPvx9XnzxZZKTk5g58weqVKlGhQqV8PcvzOrVKxg06B3eeqs3er0r//xjnYXw66+nPHDser2e7t178tNP03FycqZKlWrs3LmdHTu22dp4e+ehQIGCLFz4B3nz5sPV1ZW9e3exYMHvgHUmvfvx9y9EpUpVOHz4IIMHf3DPtgsX/snOndvp3LkLqalpHDt2NEMbV1dXLlw4T3z87Ux7TgG0bNmG33//lSVL/mHAgPczrG/SJIQFC37n6tUrfP/9z5nuw8PDg379BvHNN+N5992etGvXkYIF/UlISGDr1k2sXr2Czz8fe9/zT1e3bn22b9/KtGmTqVevPkeOHGb16hUPvP2T5OHhyauvvsG8eb+g0WioU6ceFy9eYNasmVSuXJVateqiUqnIn78A3347kcTERPz9C3Hq1El2797Bm2++nel+3dysPbbWrVtN+fIVKVCgIGCdFfPbbydy5swpPvnky3vGVr16TWrWrMPYsV/Sp080fn5+/PXXH8TGxpA3b+YzZdeoUZPff/+VMWM+p0WLVhgMRv73v3l4eXlRpUo1W2yhoYc4cGDfAxVFv9ONG5F89tkIOnTozNmzZ/jpp+m0bt2OgADrpA116wbz229z+PXXOZQrV57t27dw4ID9jIlZXZt0r7zy2hN5XT8rkqwSwsGS1061zuh3J50L2uJ10JZuaDerTG6VXmAdwGiuhxP3/lbAkVTu+dB4uMMNa1dd080wDKet3w6mndyMrnJrdOVDULJZD7E7qRSFtnWLUKSAOzOXHCcxxcj6/VcIj4jnnQ7lGVK1H8svrqVb2S62YYFGswl3XebfPAohhBDi6QoObsjMmXP4/fd5zJs3m5iYW+h0OkqWLM2XX46jYcP/6im1b98JV1dX/ve/efzzz0L0elcqV65Knz7v2mrylC5dhilTpvPjjz/wyScf4u7uRnBwQ/r06Y9KpSJv3rxMnz6L6dOnMnHiV5jNZkqXLsvkyd9nOqPdvbzxRg9cXFxYsOB3/vxzPuXLV6R///eYOHGcrc3YsROZMmUio0d/hk6npUiRIMaPn8zUqZMIDT1Ex46d73ucunXrc+LEsSyTS+nOnDkFwMKFf7Bw4R+ZtqlcuSpOTs54eXlRvXrNTNsUK1acEiVKsnr1cvr0eTfD+nLlKuDnlx+VSm1XzPxunTq9REBAIAsX/sHMmd8RFxeHXu9K2bLlmDJlui0R8iDatHmBq1evsGrVchYvXkjlytUYPXo877yTeeLnaevV6x3y5MnD338v4J9/FuLtnYf27Tvx1lt9UKmsvZDGjJnw70x0M4iLi8XX14+33urNa6+9mek+69dvxMqVSxkz5nNeeKGjLTmp1+upUqUqMTEx9+xZl27s2K+ZPn0qP/88ndTUNJo2DeGFFzqxc+e2TNvXqFGbzz8fw/z58/joo+EoikKlSpWZOnWGbchjx46dOX78KEOHDmTkyC/uWRfubh06dCY+/jYjRgzBycmZl17qYjfzXrdubxEbG8v//jcPo9FI3br1+PDDT/jww8H3vTbpnuTr+llQLDLG476ioxMwm+UyPSv58rlz40bWs07kdBZjql0iI2XbHAwnNwOg9iuBtkxDNEE1snWy40n7bttiThqsXb2/qvM5Hg9QhNCR7rxHTTfDSNnxK+bIc7b1it4LXbUOaEvVR1Fl38QbwM3YZL775yjhkdbijV5uOvp1rEBxf2t3c5PZxPQjs4lKukHfij0o6Jb/XrsT2URu/z0qcj65R8XTEhERRv78j/9Fn0ajwmh07KQv4uEMHNgXH5+8fPbZaEeH8kzIPWovKSmJjh1b8e677/HCCx0dHY74V1TUZXx9C2e6TqVS8PHJ+stw6VklxDNgMaZivLAPw8ktWLDg2n6kbZ22TGPQOKEt3QC1t78Do8wmctiIM3XeQPQvfIwp/DCpexdijrmKJSmW1G1zSDuyGqcaL6IpWj3bztSY18uFj16vxq9rT7PjaASxCWmMn3+Qrs1K0KiKPweiQjl56wwAa8I20qNcVwdHLIQQQgjxn9mzf+LSpQscOnSAn36a5+hwxDN2/fo1Vq9ewe7dO3F2dqZ581aODkk8IZKsEuIpMkWHYzi5BcO5nZD230wcpltXUeexJqbUeQOfi6F+91JMW4WDOzwAcKqf83qUKYqCJrAK6sKVMJ7bSer+f7AkRGOJiyBl/feo8hXFuVEv1N4F778zB9Bp1bzVugxBBT3537ozmMwWfl17hgvXbvN684q8EBTLgahQXi3VCQCD2YhGUWfbBJwQQgghnh/bt2/l6tUrDBgw+LFnZBM5j6Ko+OuvP3B1deWzz8bg7Ozs6JDEEyLJKiGeMEtaMobzezCc2oL5xkW7dYqLB9qSwShO2XuYm3g0ikqFtmQwmqCaGE5sIu3QMiypCZhjr6O4uDs6vHtSFIXGVfwp7OvGD/8cJTYhjR3HIrh8I4F3O9ahSUADtCoNZouZn47Ow1PnziulOqJRyZ8RIYQQQjjOrFm/OjoE4UD58+dn5coNjg5DPAXyKUOIJyj18ArSDi0Dw52zliioC5dHW7ohmsDKKPLhPoPoHFRg/UEoGh26ii3Qlm5A2pFVKDoXVM7/JatMN8NQtE6oPLNf/afi/p581r0G05cc58zlWMIjE/hyzj76tC9H+aI+rL60gePR1sKkHk4etAu6dxFTIYQQQgghhHhY8qlZiMdgMRvtkk+KTm9LVCmu3mhL1UdbqgEq97yOCjFHiDFfR+t/HgCTJfcUilR0LjhV72S3zGKxkLJtDuabYWhLN0BXrQMqvZdjAsyCp5sTQ7tU5q9N51m3/zKJKUYm/xlKhwZBBFetybHoUxhMBkICGjo6VCGEEEIIIUQuJMkqIR6BOfY6qYeXY7pyHNcuE1A0OgC0xWtjunocbclg1IUrZPuZ4MSzZ446bxseaji5GcOZnegqNEdXqRWKk6uDo/uPRq3i1WYlKFrQnTmrTpFmMPPP1gtcup6XPi17YtGk4axxxmwxM+/En9TIX5VyPqUcHbYQQgghhBAiF1A5OgAhcqKklRMxntmBJSkW48X9tuWKzgWXkP7/DveTRNWDKqatSvLeliTvbYmzWufocJ4qtV9x9J2+QF24gnWBKY20w8tJ+GM4aaGrsBjTHBvgXWqXzc/IN6rj6+UCwKGzNxk3P5TEeOt3HUvOr2Jf5CGmh/7CkRvHHRmqEEIIIYQQIpeQZJUQj8CSeAsAVb6i2bLukMje1HkD0bcagkvbD1D5BlkXpiaSuudPEv/8kLRTW7CYTY4N8g6FfN34tHt1KhXzASDyVhKj5+5n36koAj0Ko1Vpye/qSwnvYg6OVAghhBBCCJEbSLJKiMegKVQedXqyQTyyW/8WWNf4n8WUjZI0T5umYBn07T/BOWQAKq8CgDURmrp1NsZzux0cnT29s5YBnSvSIbgoCpBqMDF98THOHdMzqEof+lbsjsu/wwJXXFxHoiHJ0SELIYQQQgghcihJVgkhHO6WyVpgXet/HpPl+UlWASiKgrZoNfSdR+Pc4C0U1zwoHn5oiteytbFYLA6M8D8qReGF4KIMeqkieifrMMDVe8P5a8VNdGbrbIdLz69m5cV1fL1/GjeTox0ZrhBCCCGEECKHkmSVEI8ie+QORC6iqNRoSzfA9ZVxuLQcZDfLpOHkJpJWTcJ0M8yBEf6nYrG8fNq9OoXyuQFwKjyWL+bs49zVWKJTrENk1YoaV63ekWEKIYQQQojnRHb5cjczjo7N0cd/VJKsEkI4XDFtFVuBdV0uL7B+P4pGh9qroO2xxZBC2oHFmC4fJWnRZyRvmIH5dpQDI7Ty9dbzcbdq1C7nB0BMfCoT/neIYoZGtA9qRd+KPXDRuGC2mDl684SDoxVCCCFytv79ezNoUL8s1zdsWItZs2Y+w4ge35gxn/PKKx2eybE6d27HuHGj7hlLcHD1LH86d26XYZsLF84RHFydTp3aYDJlHBlw8OB+2/YHDuzL9Lj79++1tblTbGwsU6dO4uWX29O4cR1atWrCoEHvsGXLpvuea3BwdebM+fm+7R7XypXLCA6uTlRU5FM/1t3uPEeDwcC0aZNZt271Ez9O+nMYGnoYgFmzZtKwYa17b3SHGzeiGD78PSIirj/V42Qls2vzLF93j0tz/yZCiCwpiqMjyHXkkt7FbEJTtDqGk1vAYsJ4fjfGC/vQlmmErmo7VHovh4XmpFXTq21Zggp48OfGcxhNFuatOUP9igVoXMga17ILa1gbton6/nV4qcQLqGWWTCGEEEJkM92796R9+xczLD98+AAzZnxHpUqVM6xbsWIZRYsGcenSRXbt2k5wcMNM960oCps2baBatRoZ1m3YsC7DspSUFPr1exuAbt16ULBgIRISEtiwYS0ffzyMgQOH8PLLrz7kGT55deoEM2PGbLy98zzzY8+YMRs/v3+/MI25xZ9/zuejjz576sdt164DtWvXe+D2Bw/uZ+fO7bz//vB7titVqjQzZswmKOjJ1kLO7Np0796TpKTEJ3qcp0WSVUIIh0svsA5gMgejRRIa6RQnV5yDu6Gr0ILUfX9jvLAXLCYMJzZgOLMdXYXm6Cq1RtG5OCY+RaFZ9cIE+LkzffEx4hLT2HbkOpejEnirXXH2XN8PwJmY86SZ03BROSZOIYQQQois+PsXwt+/kN2yiIjr/PHHbwQGFmHIkBF264xGI2vXruLVV19n27YtLFmyKMtkVYUKldi2bRODBw9HpVLZ7WPr1o2UKFGSs2fP2JZv2rSe8PAwFixYQsGC/rblDRo0Ii0tlVmzZvDiiy+j0Th2kJS3tzfe3t4OOXb58hUcclxfXz98ff2e+H5dXd2e2TndfZ9nZzIMUIhHoC5QCnWBUqjc8jo6lFwhxnxngXWzo8PJllSefrg064e+4+eoC5W3LjSmknZoGYm/D8Nwfq9D4ytZ2ItPu9eguL8nAJci4pnw2zE65H+D0t4l/p0t0DosMCYl1qGxCiGEELldcHB1Fi/+m7Fjv6Bly8aEhDTgk08+JCbmlq1N//69GT36M0aMGErTpvUYPvx9AFJTU/j++yl07NiaJk3q0qNHV7Zv32K3/1OnTjJo0Du0aNGQkJAGDBrUj2PHjtq12bVrO337vkVISAPatg1h/PjRxMXFZhrv2LFf0KFDK8xm+/eB48aNonPndraaO4cPH+Tdd3vRtGk92rRpyvjxo4mPj7fb5ty5s7z3Xj9CQurz4ottWbt21UNfP6PRyCeffEhqaiqjRo1Hr7evw7lr13ZiYm5Ru3Y9WrRoxZ49u4iIiMh0X02aNCM6OprQ0EN2y/fv34vBYMzQUyf9OcqszlC3bm/x5ps9MRgMD3QeWQ3Vu3NY5PXr1wgOrs6WLRsZNmwQzZoF07Fja5YsWcTNmzf56KNhNGsWTKdObViw4H9Z7nvMmM8ZPHgAy5cvpkuXjjRuXIfu3buyZ88uu2NfunSRESOG0LZtCCEh9RkyZCDnzp21a7Ngwe907foiTZrUpUOHVkycOI7ExATb+vRhgNevX6NTpzaA9R7q3LkdO3duz3To5Z49uwgOrs6FC+ezvF6LF/9Nly6daNKkHv379yYy0v45vXt43tWrV/jgg/dp3bopTZvWo0+fHuzatd12fUaN+hSAl156gTFjPrdd+2nTJjNgQB+aNKnHpEnjMwwDTLdp03peeaWDLZ6TJ49nGcuDXBvIOAzQaDSyYMH/eP31l2nSpB4vvdSeuXNn2Q1t7d+/NxMmjGHevF/o1KkNTZrU5Z133uLUqadb6kOSVUI8An27D9G3G4G2dANHhyKeM+p8RdC3HopLm+Go8hUFwJKagOLs5uDIwNvdieFdq9C0qvUbm4RkAzP/vkDxtObkc/EBYMWFtYzZO5lTt87ea1dCCCGEeEwzZkwDYNSor+jXbyA7dmzju+8m27VZt241np6ejB8/mVde6YrFYuGjj4azdOkiXn31DcaOnUiJEqUYMWIo27ZtBiAxMYGhQwfg6enF6NET+OKLsaSkJDN06ABbQmHFiqUMG/Ye/v6FGDVqHL1792PHjm0MGNCHlJSUDLG2bNmGmzdv2CV0DAYDW7ZsIiSkJYqicPjwQd57rx96vZ5Ro8bTr98gdu7czuDB/TEajYC1RlD//r1ITEzg009H0bNnX6ZPn8aNGw9X7/P776dw8uRxhg4dQVBQsQzrV65cRsmSpQgKKkbTpi3QaLQsW/ZPpvsqUaI0hQoVZvPmDXbLN25cR3BwA5ycnOyW16hRG7VaTf/+vZkz52eOHz9mO78yZcrRtesbODs7P9T5PIhx40ZTrlwFxo37huLFS/DNN+MZOLAPQUHFGD9+MmXKlGXq1G/umaA4ceIof/wxn549+zJ27ETUajUjRw4nIcF6X5w/f45evbpx8+ZNhg0bwciRXxAXF8s777zNxYsXAOs9OX36VDp1eolJk6bRvXtP1qxZyZQpkzIcz8cnL+PGfQPAm2++zdixX1OrVh18fPKyZs1Ku7arVi2ndOmymT6fAH///ScTJ35F3br1GDduEmXLlmfChDFZnqvZbGb48PdISUnhk0++ZNy4SXh6evLhh0O4evUKdeoE89ZbvQEYM+Zrunfvadt24cI/KF++Il99NZFWrdpkun+TycTEiV/x6qtv8OWXY0lNTWXgwL5cvXoly5jud20yM27cKKZPn0aTJs0YP34SLVu2ZvbsnzKc+8aN6/4d0jiMzz4bQ3R0NCNHfpAhwfwkyTBAIYTDFdNW5fBOLwB0DbSODSaH0PiXRd3hU4wX92O6egKNf1nbOnPybUyR59AEVkF5xkXANGoVrzUvSdGC7sxdfRqD0cxfm85z8dptWjb0ZnXYRgAWnl3KRzXfR6XIdyZCCCGejV3X99uGp79Xte89l+2N2I/Fcv92j7rsWShevKStVk2NGnDy5HG2bt1s18bJyZkhQz5Eq7W+/9q3bzd79uxk9OjxNGrUFIDatesSHx/P999PpX79Rly8eJHY2FheeqkLFSpUAiAwsAhLliwiKSkJFxc9M2d+T926wXzyyZe2YxUrVoI+fbqzYsVSXnzxZbs4qlSphq+vHxs2rKVKlWqAtSdMfPxtWra0fpifOfM7ihQJYvz4ybbhdCVLluKtt15n48Z1NG/eigULfsdkMjNx4lQ8Pb0ACAgoQp8+3R/4um3ZspG//vqd9u070aJF6wzrY2JusXPndvr3t/ZEc3d3p379hixfvoQePXqh0WT8iN24cTNWrVrOe+8NQ1EUDAYDW7duZuTILzh37oxd2xIlSvL552OYPPlrfv55Bj//PANnZ2cqVapKmzYv0KRJswc+l4cRHNzAllBxc3Nn164dlClTjp49rfds8eIl2LJlE8ePH6V06bKZ7iMhIYFffplvG77o4uJC//69OXRoP/XrN2L27J9wdnZh6tQZuLhYS0PUqFGbV17pwKxZMxk9ejyHDx+kQIGCdOr0MiqViipVqqHX67l9Oy7D8XQ6HSVLlgKsw9tKliwNWJOfixcvZMiQD3ByciYxMYFt2zbTr9+gTOO2WCzMmTOLpk2bM3DgEABq1qxNUlIiixf/nek2MTG3CAu7xJtv9qROHWvvuDJlyjN79o+kpqbaDS0tWbIUBQr8N4GSv38h+vR51/b44MH9mR5j+PCRNGzYGLAOJ+3cuR0LF/7JoEFDMm3/INfmThcunGf16hX06zeIrl3fAKzPh7OzM9OnT+OVV7oSFFQcAJPJzDffTEOvdwUgKSmRMWM+5/z5c5QoUfK+8TwK+ZQghBA5lKIoaINq4Fz/TbvlaYeWkbJ2KklLx2COe/YztADULV+Aj16vRl5P6zd/+0/fYNbfV+gQ0AlPnTu9K3RDpagwW8yYzBln0BFCCCGetFvJtzgbe4GzsRfuu+xMzIO1e9RlD+tBvny6u016Iimdr68fKSnJdsuKFClqS1QB7N+/D7VaTe3a9TAajbaf4OAGXLkSzvXr1wgKKoaXlzfDh7/P11+PZcuWTeTJ40O/fgPJl8+X8PAwbt2KplmzFnbHKleuPIUKFebQoQOZxt68eSs2b95o60W0YcNaSpUqQ2BgEVJSUjh+/Bh16wZjNpttcRUtWoz8+Quwb98eAEJDD1GhQiVboir9uH5++e97/cA6rOurr76kVKkyDBo0NNM26T126tSpR3x8PPHx8TRq1ITo6Jvs2LEt022aNGnGzZs3OHIkFIC9e3ejKAq1atXJtH3jxs1YtGgFkyZNo0uX1wkMLMq+fbv59NMP+eyzEZkOEXxcZcuWt/0/T548GZalX9O7h13eyccnr12drXz5fAFITrb2pgsNPURwcANbogpAr9cTHNyAw4et90XVqtUJDw/j7bdfZ/bsnzh16gQhIS3p3LnLA59LmzbtSExMZPv2rYB1OJ3FYiEkpEWm7cPDw4iJuUX9+vZ1x5o0CcnyGHny+FCkSBATJoxm9OjPWLt2NWazmQEDBmfZeyvdgyR3NBqNXTyenl5UqFCJI0cO33fbB5Xek/Hu69K8eSsADh06aFtWrFhxW6IKsNXuuvt3ypMkPauEeASp+63dfNUFS6MpWMbB0eR89gXW60uB9cdgMaZhPG99w2aOPEfSigno249E5frsC2AG5nfn0+41+HHZcY5duMX16CT+WarmzdZv46vPB8DKi+u4dPsyb5V7Db1Wiq8LIYR4evK45KGEV9ADLSvpHcSd+YCH2fZBlj0sFxcX21Cqu5lMJkwmE87O9n9H7x5epihKhiSHi4t9Labbt+MwmUw0axac6bFu3rxBgQIF+eGHn5g7dxYbNqxjyZJFODk50bJlGwYNGmrrAZMnj0+G7b2989jVHrpTixat+e23ORw4sI9KlaqwfftWevV6B4D4+NuYzWbmzfuFefN+ybBtoUKF/43/NoULF86w3sfn/nVmDQYDn346AkVRMWrUOHQ6XabtVq5chslkokuXjhnWLVmyyNYT5k4lSpSicOEANm/eQKVKldm4cS0NGjSySxTeTaPRUKtWHVtC6+bNm3z77QQ2bFhHq1btCA7O/Dl6VHfX5QLskkoP4u7hiek94Cz/1qS9fTsuy/si/f5u2rQ5ZrOZf/5ZyJw5PzNr1kwKFChI374DaNo06+TRnQICilChQkXWrFlJ06bNWb16JfXqNcDDwzPT9un3rJeX/fvle903iqLw7bffM2fOLLZu3cTq1SvQaDQ0aNCYoUNH4OHhkeW2d7/uMuPl5W1XkB+sRe2vXbt6320fVPp53z2jY/rjO1+rTk72z216ctxsfvKJ03SSrBLiEaQdXAKADiRZ9QSkF1gHMCMF1h+HotHh+vJXpO77G8OJjVgSokle/Q36diNQdPf/w/ikubloea9zJZZsv8iynZdISTMxc/EprtRJpniZFFZdstZvmHfyT/pW7P7M4xNCCPH8qFOgOnUKVH+gZfUL18RoND/Stg+y7GHlyePDpUsXM11348YNAHx8MiYBHparqxtubm58++0Pma4PCAj8998ifPLJKEwmEydPHmf16pUsXryQQoUCqF27LgC3bkVn2D46+qZdb507FS0aRMmSpdm0aT2JiYmkpaXaeny4urqiKAqvvvp6pr1d0hMtXl5e3Lp1K8P6zIaQ3W3atG84c+YU48Z9Y9c76E6nTp3gwoXz9O7dj/LlK9qtW7NmJStXLuPatauZbt+4cTNWr15B37792b59K6NGjc/0GH369CAwsIhtCGe6vHnz8sEHn7B580YuXbrwQMmq/xIK9u+vk5OT7rvt0+Du7pHlfXFnb7iQkJaEhLQkISGBvXt3M3/+XL78ciSVK1d5oMQjQJs2LzBx4jguXbpIaOghJkyYnGXb9GPffe9kNSFAurx58zF06IcMGfIB586dYdOmDcyfPxdvb2/ef3/4A8WZlYSEeCwWi12PyejoaNsMjIqiZHhek5Ie7nl1d7cm1GJibtl6wVmPcxPA7jlxBBkGKIQQuYzi5IpTvTfQlmkEgDn6Mslrp2ExPdjMMU+aSqXQsUEQA16sgIuTtdfcil1hrN2USFnvMrhoXOhYPPPikkIIIYSw1nS6du1qpsWtt27diEqlolKlqo99nMqVq5KQkIBaraZ06bK2n+PHjzF37ixAYcuWTbRt24zo6Juo1WrKl6/I0KEf4ubmTlRUJIGBRciTx4f169fY7fvEiWNcu3aVihUrZ3n8li1bs2vXdjZuXEuNGrVsPTz0eldKlCjF5cvhdnEVLhzAjz/+wPHjxwCoVq0GR44ctn3YBrh48cJ9e6Ns3LieRYv+4rXX3qRevfpZtluxYhnOzs689NKrVK1a3e7nlVdew2KxsGzZ4ky3bdy4GVFRkcydOwutVke1ajUybZc/fwE2bVqfaSHt8PAwwDok60GkD9uKjPyvLERY2CXi4u6fvHsaKleuyo4d20hO/m/oWHJyMjt2bLPdF59//jEjRliHYLq5udGkSTO6d38bk8mUaaJLpcp8REaTJs3RarVMnPgVefL4ULNm5kMuAQoXDsDX149Nm9bbLc9qWCdY7+d27Zpz8uRxFEWhRIlS9O7dj6CgYrYZEu/uGfUwUlJS7CYcuHnzJkeOhFK5srWmm6urKxaLxW6mx7uHCGZ1bdJVrlwFgHXr7F+r6a/de71WnwVJVgkhHC5IU5XkvS1J3tsSrUoKrD8JiqLgVK8bmiLWN66maydJ2fSTrRu2I1QpkY9P3qyBf17rG6eTFxO4uKskrwX2wO/fYYGrL21gx9U9DotRCCGEyI6aNm1OyZKlGTp0EAsW/I+DB/ezdetmvv12Ij/8MJUuXV4jf/4Hq8t0L3XrBlOhQiU++GAwS5Ys4uDB/cydO4tp077Bzc0dvV5PxYqVMJstjBgxlK1bN3PgwD4mTBhDUlIiDRs2RqVS0bv3O+zcuZ1Roz5l9+6dLFu2mBEjhhAQEEirVm2zPH6zZi2IjY1l27YtNG9uX9y8V6932LFjG2PGfM7u3TvZtm0zgwcP4OjRUEqVshaPfvnlV3Fzc2fw4P5s2bKRDRvW8uGHg9Fosn5/GRUVyfjxoyhcOIC6dYM5duxopj9paWmsX7+GevXqZzo8LiioGCVLlmbFiqW2ult3KlGiJAEBgfzvf/No1KgJanXmiYTevfvh4qKnd+83mTPnZ/bt28PBg/uZP38uH3zwPnXr1qdGjdpZns+dqlatjpOTE1OnTmLXrh1s2LCWESOGZDkc7mnr0cM6U+OgQe+wZctGtmzZyKBB75CcnGQr7l69eg22bdvMd999y4ED+9i8eQM//TSdgIBAW7HvO6X3ujtwYK8taQnW3naNGjXl8OGDtGjRKsvrDdb3ze+8M4Bt2zYzYcIY9u7dzS+//MjixQuz3KZEiVK4uLgwatSnrF+/hoMH9/Pjjz9w9uwZ2+QEbm7ugLVof1jYpYe6VlqtljFjPmfDhnVs3bqZIUMG4ObmxssvvwpAnTrWnnXjxo1i//69rFixlIkTv7KrK5XVtUkXFFScFi1a8dNPPzB79k/s27eb2bN/4uefZ9CiRSuKFn284cuPS4YBCiFELqWoVDg36Uvyiq8xRZ7FeGEvqXpPnOp0feazBKbLn0fPx92qMXvlKfadiuLW7VSmL7hEtxZOuPhFsuyC9ZucRGMSzQMz1nwQQgghnkcajYbvvvuRuXNn8c8/C4mKikSr1VK4cCDDhn1EmzYvPJHjqFQqJk2ayk8/zWD27J+Ii4vF19ePbt3eolu3twBrPZtvvvmOH3/8gXHjRpGSkkJQUDFGj55A5crWL8natu2As7ML8+fPZcSIIbi7exAc3IA+fd69Zx2kPHl8qFGjFqGhh2nQoJHdujp16jFp0lR++eUnPv54GDqdE2XKlGPatJm2JIanpxc//PAzU6dOYvToz9HrXejatRsbNqzL8phXrlwmMTGRxMRE+vXrmWW7vn37Ex9/m6ZNMy/SDdZZ6KZOncS2bZszHULVuHEz5s61zjqXFX//Qvzyy3x++20Oa9eu4rff5mCxWChUKICuXbvZkhUPwt3dnTFjvmbGjO/46KOh5M9fgB49erN69YoH3seTVKxYcb7//mdmzvyO0aM/+7dHYBVmzJht6y3Wtm0HUlNT+eefv/nnn79wcnKmevWa9Os3KNOEk4uLC126vM7ixQvZtWsnS5eusc3IWLduMKtWLadVq3b3jS0kpCUqlYo5c35m9eoVBAUVZ9iwj/j8848zba/Vavnmm++YMWMaU6ZMIiEhnkKFCjN8+Me2WSSrVKlGjRq1mDnzew4ePHDPoYh38/LypmfPvvzwwxRiYmKoXLkKo0aNs/U2DAgIZOTIL5g7dxbDhg0iMLAoH3zwMZMnf33Pa3O3ESM+w9+/MCtWLGXevF/w88vPW2/1pmvXbg8c69OiWJ7GVAK5THR0wlMtHCbs5cvnzo0bWc8ykR3E/9gdAF3V9jhVz1hcUTycedt3sf3iEQCmdnkL53sUm8wOcsI9eidLSgJJS8dijr0GgEvbDxxea81isbB232X+2nQe879/hqpV1RDusgmTxcTQav3J7+p7n72IrOS0e1Q8f+QeFU9LREQY+fMHPvZ+NBqVXc0qIbIbuUfvb+zYL7h8OYzp0zMW5RfPRlTUZXx9M056ANZSIT4+blluK8MAhRAOl15gXet/HosUWH/iFGc3XFoPQXHNg1PtVx2eqAJrd+sWNQMY2qUy7nprcvLAQSP68EZ0Lf6aLVG17epubiRlrE8ghBBCCCFEZhYs+J0JE8awatVyunR5w9HhiEckySohhHgOqNx8cH15LLqKWXddd4TSgd581r0GRQtYZyMJu2xi3sIoTofHcDDqCH+cXsTXB6ZxPvaSYwMVQgghhBA5QmjoQdatW8Orr75Ow4ZSViKneq5qVqWlpdGnTx+6detG48Zy0wqRXRTTVCV0pxcA2obZewhgTqZone0eG6+dQtHoUPs6tnhiHg9nPnytKr+vP8Pmw9e4nWTg698PU7GudSYfk9mMqzbr+hZCCCGEEEKkGzPm6/s3Etnec9Oz6tSpU7z22mscPHjQ0aEIIe4iFeGePcOFfSSvnEjy6smY4yIcHQ5ajYpuLUvTo1VpNGoVZouFwzt8KJRcjzdKdyG/qx8Ap26dxezAGQ2FEEIIIYQQT99zk6z6/fff6devHxUrVnR0KCIX0FVtj65qe9QFSzs6lFzhlvkaGv+zaPzPYrKYHB3Oc8GSEg9mI5aUeJJWTsKcFOvokACoX6kgI16vio+HEwBnj7rz9/J4Im8lcSjqKNMO/8TMI3NINqY4OFIhhBBCCCHE05JrklWLFy+mbNmyGX7i460zzXzxxRcy9E88MU7VO+JUvWO2KFSdG9gVWJcJSp8JXdkm6Kpap7m2xN8gedVkLGnJDo7KqmgBDz7tXoOyRbwBuHojkS/n7mPpmfUAnIu9RFxqnCNDFEIIkY3JewkhhHC8x/1dnGuSVR06dODEiRMZftzd3R0dmhBCZEu6ah3RlmoAgDk6jOR132ExGR0clZW7XsfglyvTurZ1+vHkVBNhO8uRTylC93Kv2oYFxqXedmSYQgghshm1WoPBkOboMIQQ4rlnMKTi5KR75O1zTbJKCJFzFdNUI3lvS5L3tkSjeq7mfXAoRVFwqv8m6oBKAJiuHidly89YsklNKJVKoXOjYrzbsTxOOjWYNYTvKcX6jWkkJBs4fOMYn+0ax+7r+x0dqhBCiGzCzc2L2NgbpKWlSg8rIYR4xiwWCyaTkcTEeGJjb5I3b95H3pd8KhTiIVksZpKXjwdAW6o+2pLBDo5IiEenqNS4NOtH0vIJmKPOYzy3m1S9F861uzg6NJtqpXwp4OPK9/8c5Xp0EkcvRPPFvJ2YSm3AYDby15kllPUphYdOetIKIcTzzsXFFYC4uJuYHqO3sEqlwmzOHl/eCJEZuUdFdqVSqdFqdXh7++Ll5cWNG/GPtJ9sl6w6efIknTt3ZsOGDeTPn99u3fLly5k+fTqXL1/G39+fPn360KFDB8cEKp5rpuunAVAXLOvgSHKHW6araPzPAmC2NEA6fT5bisYJfcv3SVoyGnNcBIYjq1F55kdXppGjQ7MpmNeVkd2q88uKkxw4c4PoGBO6U5VwLXWUHuVesSWqzBYzKkXuHyGEeJ65uLjaklaPKl8+90f+gCXEsyD3qMjtstU7+vPnz9OnTx+MxozfgqxcuZKhQ4cSHBzM999/T82aNfnggw9YvXr1Qx3j119/lULrQmQzdxZYN2eTIWjPG8XZDZfWQ1H0XqjyFUVTpKqjQ8rAxUlDv47l6dyoGIoCabHexOyrS+ghNUaTmdAbxxm/byrRyTGODlUIIYQQQgjxGBRLNhjMbTQa+fPPP5k0aRJarZbY2Fi2bNli17MqJCSE8uXLM3nyZNuy9957j9OnT7Nq1SpHhC2eUxaLmYtjXwLAu8EreNd/2cER5XxfLP2V48k7AZjXaQrO2kcvxCceT1r0VTTueVDpXBwdyj0dPhPFhF8PEJ9kLaJbvJiGm75rSTWl4eeWj8mtPkOjUjs4SiGEEEIIIcSjyBbDAA8cOMDEiRN5++238fPzY+TIkXbrL1++THh4OIMHD7Zb3qJFC1atWsXly5cpXLjwU4svOjoBs9nhOb3nRnbv0npn8enExDSM2TjWnKKwuRL793oAENsoGbUq1cER3Vt2v0cfjwfEGQHr+VmMqZgTolF7FXRsWHfx93bhkzer8f0/xwiLiOfceQOuFAKfC3Qo2pqY6CRHh+hQufseFbmB3KMiu5N7VGR3co+KnOBe96lKpeDj45blttliGGCxYsVYv349/fv3R63O+E34hQsXAChatKjd8sBA65TmFy9efPpBCiHEc8acEk/S8gkkLxuH+XaUo8PJIK+nCx+9XpXgigUAhcTzJTEcr8eNcE8sFgtHb55g6fnVMrRUCCGEEEKIHCZb9Ky633SG8fHWTJybm33WzdXVWjgxISHh6QQmhHgmbpmv2RVYV2ePPPpzzxQeijnqPABJKyehb/8xKhcPB0dlT6tR06NVaYIKejB/7RmMie7MX3eG49cvccl9NammNGJSY3mzbPaZ3VAIIYQQQghxbzniE+H9ymqpVDniNIQQWbh1R4H1bFBGT/xLWzIYXeU2AFhuR5K8ejIWQ4qDo8pIURQaVfbnw9er4u3uBEDo2RiMyU6AQpV8FRwboBBCCCGEEOKh5Igsj7u7dUryxMREu+XpParS1wshhHiydDU6oylRDwDzjYskr/8eiznjjK3ZQbGCnnzWvQalA7ywpLqScLQmSlgVuG2drONE9GkuxoU5OEohhBBCCCHE/eSIZFV6rarw8HC75WFhYXbrhRA5UzFNNZL3tiR5b0vUMoNbtqIoCs4Ne6AubO2dZLp8lJQts7NtDzgPVx1DulSmRc3CYNKSFOnLlL9C+d+2/cw69hvfHprJ/sjDjg5TCCGEEEIIcQ85IlkVGBhIoUKFWL16td3ytWvXUqRIEQoWzF6zVIncTsGl7Qe4tP0Abcm6jg4m11FQHB2CuIui0uDS7F1U+axfDBjP7iBt30IHR5U1tUrFK01K0Ld9OZy0aizAplOnSDGmYTQb0aiyRblGIYQQQgghRBZyzDv2d999lxEjRuDp6UmjRo3YsGEDq1atYvLkyY4OTTxnFEVBU7CMo8PIVewLrDdEhfSuym4UrTMuLd8nackYLLcjSTu8AkXvha58iKNDy1LNMn7453Xlu0VHiYwuSKpBh4dPKnkpAkDY7cvkd/XDSa1zbKBCCCGEEEIIOzkmWdWpUyfS0tL45Zdf+OuvvyhcuDDjx4+ndevWjg5NCPGYYv4tsA73n1BBOI7KxQN96yEkLRmNJTURxTn71wv0z+fGJ2/W4OflJzh8DmJvw+h5++kYko+1MX+QT5+XPhXexNvZy9GhCiGEEEIIIf6V7ZJVnTp1olOnTpmu69KlC126yPTjQgjhKCoPX1xaDcGSkoCmUDlHh/NA9M4a+r9YgRW7wli89QJpBjOLTmxA45vK5firhMdfkWSVEEIIIYQQ2Ui2S1YJkd1ZzCYSfn4bAF31jjhVbe/giHK+YupqHN2VBwB1IxkCmN2p8wZmWGYxpKBonR0QzYNRKQrt6hahSH53flx6nMSwsmBR8NF7UURfEoD4tATcdW4OjlQIIYQQQgiRIwqsC5F9STFwIdKOrSdxwQjM8TccHcp9VQjy4dPuNQjI54EhrBwRJwvy5Zx97L1wni92T2DFxXUyFFUIIYQQQggHk2SVEMLh0gusa/zPYsbs6HDEQzBGnCV1529YEmNIWjkJc0q8o0O6r3xeLox4oxp1yuUHFGLiU5h9/HeSjSmsvLiOi7fDHB2iEEIIIYQQzzVJVgkhHC7Gcg2t/3lbkXWRc2jyl0BbsSUAlrgIkldPxmJIdXBU9+ekVdOzbRleCymJWqUi7XxFzCl6ChqqUEhfGACzRRKnQgghhBBCOIIkq4QQQjwWp1ovoyleGwBz1AWSN/yAxWxycFT3pygKTasVYnjXKnho8pB6rC7nD/ny1W8HORkZzti9kwm/fcXRYQohhBBCCPHckWSVEMLhiqmrk7y3Jcl7W6JS5NdSTqMoKpwb9kTtb50d0BQeSuq2OTmm9lOJQl583r0GJQr6AAphN2L47uBsridGMvngdGJT4xwdohBCCCGEEM8V+VQohHC4nJHSEPeiqDW4hPRH9e9MgYbT20jbv8jBUT04Tzcnhr1ahWbVCoFZTVpEYSwWCFBVwlPn4ejwhBBCCCGEeK5IskoI4XB2BdalTlCOpehccGk5GMU9HwBph5aRdnyDg6N6cBq1iq4hJenVrhzq6CBSj9fh6E4fvv/nGOGxEfx+6m/STAZHhymEEEIIIUSuJ8kqIYTD3VlgXXF0MOKxqPSe6FsPQXF2B8AYHoolhyUg65TLz8fdqpNX5wcoHDx/ja93/8j2a3uYeWSOo8MTQgghhBAi15NklRBCiCdK5Zkfl5bvoy3TCJcWA1FyYB2ywr5ufNq9BhWL+YBiwZCiBUBvyI/531pcZ2LOSU9AIYQQQgghngKNowMQIqdRVGrce89xdBi5SjF1dY7t8gFA1TjnJTZERmrfINS+QY4O47G4OmsZ2LkiS7e7s3SnBk3+i+yIdOLS0b1Uq6piXcxfFHTNT7eyXSjsXtDR4QohhBBCCJFryKdCIYQQT505/gZJKyZgToh2dCgPRaUodKgfxMAXK+MUUwrMGq7eSGT1+S0ARCTewFWtByDRkITJbHJkuEIIIYQQQuQK0rNKCOFw0aaraPzPAmCxNEJRpHJVbmJOvk3SkjFYkmJJXjkJ/QsfoTi7OTqsh1K5eF7G963L5sNXWbvvMrcvVESTGAaKhVGzjtG8RmEuu2zlWtI1WhVpRq0C1RwdshBCCCGEEDmW9KwS4iFZLGaM105ivHYSc/xNR4eTK9xZYN2CxdHhiCdMcXZHE1QDAHPsNZLWfIvFmObgqB6e3llD69qBTOhbhzealcUrqRzGa8WJS0xj4e5QQm8e5UZyNEdunLJtY7HI/SyEEEIIIcTDkmSVEA/LbCZ5+XiSl4/HcG6Xo6PJdaRXVe6jKApOdV5FE1QTAHPkOVI2TMeSQ4fM6bRqGlctxFd9atOrbVn887piSXUhLbw05lRnDmzxZP66M1y8EcWXe75m65VdGMxGR4cthBBCCCFEjiHDAIUQDldMXZ3ju/MCoGoiOfTcSFFUODfuRXJKPKZrJzGGHSJ1+6841X8zxyYo1SoVdcrnp1Y5P0LP3WTlLm/OhwYAKjYcuMK2m+tR+93kzzP/UMi9IEGegY4OWQghhBBCiBxBPhUKIYR4JhS1FpfmA1D5FAbAcGozaQeXODiqx6dSFKqUyMdHb1Rj+KvVKFc0DwCmBHfMKS6Y4vKwasNtLl6/zZYrO1kfvoUUY6qDoxZCCCGEECL7kp5VQgiHu2W+s8B64xzb00bcn6LT49JqCEmLR2FJiCbtwGIUvRe6Mo0cHdpjUxSF0oHelA705lLEbVbsysfBowWwaNI4YLjBgXPXca26FbMqjeM3TzGoah9HhyyEEEIIIUS2JD2rhHhoUjD5SYuxXLcVWBe5n0rvhb71UBQn64yAqXsWYElJcHBUT1aR/B6827ECo3vWIbh0UdQqBcUpGWOqFoCoc34cOnMDg8nI+vAtJBmSHRyxEEIIIYQQ2Yf0rBLisUgPICEehcqrAC6t3id5wwxcQvqjOLs5OqSnooCPK2+1KUOH+kVZvTecrYc9SHWL5HqsO9MuHMWn6A2S8h1g1cX1DKzSm0CPwo4OWQghhBBCCIeTZJUQwuHuLLCuNJEE4PNC7VsM11e+QlHl/j9FeTyc6dqsJG3rFmH9/itsPHCFpFQj8eorqIHUFBWnz5goUMnEzdQbuOvccNflzgSeEEIIIYQQ95P7PyEIIYTItu5MVFksFtJCV6EtUQeVq7cDo3p6PPQ6OjUIolWtADYfvsqavVoSblwFlZk/Dl1gxc5wXCvsIUmJpXlgI1oXDXF0yEIIIYQQQjxzUrNKCOFw6QXW04usi+ePxWwmZcss0vYuIHnlJCypiY4O6alycdLQqlYgX79Tl9dr18fHUgSARNUN4iw3MJgNHL94i7jENAAS0nL39RBCCCGEEOJO0rNKiIemoC5QCgCVWx4Hx5I7xFiuSXH1552ioGicADDHXCF57VRcWg1B0egcHNjTpdWoaVTFn/qVCrDvVBQrdl3i+skaaApc4uR5L4Yf3EnlihpOaldQp2ANWhdphqeTh6PDFkIIIYQQ4qmSZJUQD0lRa9C3G+HoMHIVi0yw+NxTFAWnuq9hSY7DeHE/puunSdn0I85N+6Gocn8nYLVKRe2y+alVxo/Q88VZuSuMc6Y4DJgJjd+F2tvEjit7qexWC09/DywWC4oi9d2EEEIIIUTuJMkqIYTDFVPX4MTOfNYHTRwbi3AcRaXCuXFvklPiMV0/jfHiflJ3zsep3uvPTWJGURQqF89LpWI+nLkcy4rdYRy/VgwUsKQ58fW+01QpEY2myDFcXdS0KNIEP30+R4cthBBCCCHEEyXJKiFEtvF8pCPEvSgaHS7NB5K09CvMMVcwnNiA4uqFU5V2jg7tmVIUhVIB3pQK8CYsohgrd5dk/6UIAA6HhePkFYoSZ+HG7XgG13r7uUnmCSGEEEKI50PuH1shxBNmMZtI3f8Pqfv/wXj9tKPDyRWkwLq4k+LkikvrISiu1ppwafv+xnB6m4OjcpzA/O6806E8Y3rXpX7FAqhUCuYYXywWOLE3L6Pm7mfHiUvMPv4/rsRfc3S4QgghhBBCPDZJVgnxsMwm0g4uIe3gEkyRklx5EtILrGukyLr4l8rVG5fWQ8HJFYCUrbMx3bzk2KAcLH8ePT1al2H8W01p5P0C5uONsSR5cCkinrkHV7M/8jBf7fuWS3FXHB2qEEIIIYQQj0WSVUIIIbIltXdB9C3eA7UWXcWWqHwCHB1StpDHw5kuTUswsVczXqhXBFdnDYraiMWiYE7wZNr8Syzddp4DEUe5GBfm6HCFEEIIIYR4aFKzSgjhcEH/FlhXQAqsCzvq/CVwfWkMKg9fR4eS7bi5aOlQP4iWtQLYcrgIqw+d5HZqMqlJafy0JBSXyltBm0ptvxq8Ue4lR4crhBBCCCHEA5NklRBCiGzt7kSVKfoyirMbKldvB0WUvTjrNLSoGUCTqoXYeew6q/aEc9N4BYs6DQXYtTcN56hzNKvuT7QpgmKeRaQguxBCCCGEyNYkWSWEcLj0AuvWj8/StUpkzXjtJMlrpqLyyIu+3QgUnd7RIWUbWo2KhpX9qV+xIGeuxfPbhnxEqU5jjPRjVWQ468/vRRN0mMKuAfSs2JW8LnkcHbIQQgghhBCZkppVQjwW6Z3wJKQXWFcXlALr4t6MF/eDIRlz9GWS107DYjI4OqRsR6VSqF/Fn1HdGtK/bmdKFrL2QFP5XgQgPDaChesucyUqgURDEhaLxZHhCiGEEEIIkYH0rBJCCJFjONXpiiXhFsawQ5iunSRl0084N+2Losh3L3dTFIWKxXyoWMyHM5djWbrHlTPXDmJJc2ZvVDR7T0STp8pB3N1UvFiqFeXzlnF0yEIIIYQQQgDSs0oIkQ0UU9cgeW9LUve3dHQoIptTVGqcm76D2q8EAMYLe0nd9bv0DrqPkoW9GNq5FiNDXqeaTw0UBVTut0jWRhGVGsFvO3dx7EI0FotFrqUQQgghhHA46VklhMgG5MOxeHCKRodLi0EkLRuLOeYahmPrUPTeOFVu7ejQsr0AP3f6ti9PxwZJLN9zln1XY1DlCyfqTAG+ORGKfyEz5oADtC8RQvX8lVFJjzUhhBBCCOEA8i5UiIelUqGr2h5d1fao85dwdDS5QnqBdXXBc44OReQQirMbLq2GoPw7I2Da3gUYzuxwcFQ5h5+3nrdbVuKrDt1ooHsdJ8VaqD7K6QixxmjmnviD1YdOYTSZHRypEEIIIYR4HknPKiEekqLS4FS9o6PDyFXSC6zL6CPxMFRuPri0GkrS0jGQlkTKll9Q9J5oCpV3dGg5hre7E12alKJtnSA27L/MuvBwzGm3MN3Oy8J9EWzYFUORSpFUCChAcKEaaFTytkEIIYQQQjx98q5TCCFEjqXO449Li0Ekr/waxc0HlYevo0PKkdxctLSvH0TLtEA2Hg5n3aWLxAIxKXEkp+zh1DkLOy4cZ1CtN3Fz0To6XCGEEEIIkctJskoI4XDF1DU4udMXlaJAU0dHI3IaTYFSuLR4H5VPYVQuHo4OJ0dz0qlpVbMoIdUC2XUsgqWhB0kwOKE4pXDxmDfDDu4kuHJe8gTcpGnRuujUkrgSQgghhBBPniSrhHhIFmMayasmAaAt0xht8doOjkgIoSlUzu6xxWyEtBQUZzcHRZSzadQq6lcqSL0KBdh7uhpLQvcQmeBBKia2XN6JlrOsCdvIO+V6Uyq/v6PDFUIIIYQQuYwkq4R4WBYLpuunAdAEVHJwMLlD9L8F1hUUoLGjwxE5nMWQSvL677EkxaFv9yGKzsXRIeVYKpVC7TIFqFW6Pccv3mL5rkuEuUcBkJqkYcLcU9QoHUO1SjrKFwrARePs4IiFEEIIIURuIMkqIYTDxUqBdfEEpR1fh+nyEQCS132HS8v3UdTy5+5xKIpC+SAfygf5cOZKEAsObuXSlVQsFoW9pyII1W1Fc85MQ7/GdK4gY3mFEEIIIcTjUTk6ACGEEOJJ0lVshfrfXo+mq8dJ2fIzFovZwVHlHiULeTPyhfZ83rk1tcv6oc4TicopBbMqjTV7LzPutwOEnrtJYlqio0MVQgghhBA5lHzVLIRwuCBVDU7u8kWtkgLr4vEpKjUuzfqRtHwC5qjzGM/tJlXvhXPtLo4OLVcp5OtG7xfK0T6mCL/vy8vphCOYbhbijCWOc+vX4Vz8KOXcq/BG5Ta4OekdHa4QQgghhMhBpGeVEEKIXEfROOHS8j1UnvkBMBxZTdqR1Q6OKnfy83blveYt+Kr5QFrVLIKzTmUd1qsycjTuEKPm7WfL4aukGUyODlUIIYQQQuQQkqwSQjjcLYu1wLqqwFlHhyJyEZWzOy6th6DovQBI3f0HhnO7HRtULubl5sRLjYsz4Z261PRqAIneGCOKcCPayNzVpxmyYgoTt/1GRHy0o0MVQgghhBDZnCSrhBAOF2O5itb/POqC5x0dishlVO75cGk1GLTWGQFTNv+E8cpxB0eVu7m56OhRvwGTWgzjxTItyOPhhOIai9kjgouGI4xa9SeLt10gIdng6FCFEEIIIUQ2JckqIYQQuZraJwCXFgNBpQGzGXNchKNDei446zS0qBHIuD516FCvOJokXyxmhZQrgSzdcYlhs9YxasMszkRdcXSoQgghhBAim5EC60IIhyumqsmpXX5SYF08NZqCZXBu0hssFrTFajk6nOeKRq2iXdWKtKlSgW0nzrHlSiyXIuIx5ztLhHKVb4+eoXLqy7SvXQa/PFKIXQghhBBCSLJKiIen1uLS9gMAVB6+Dg5GCPGgtEE1MyyzWMwoinQyfhZUikLDciVoUNbC8Uu3mHvyOEmAOSYfu8/FsefIbgIrRlG5aEFalqyDTq11dMhCCCGEEMJBJFklxENSVCo0Bcs4Ooxc5ZblChr/sygoQGNHhyOeE4bzezEcW2ctwq51dnQ4zw1FUShf1Ieviw5g38XzbIm7xgkMWNRpRGgPs+b6QXZcOspb5bpSsrAXiqI4OmQhhBBCCPGMSbJKCOFwMZZr1qnuzfKhVDwbxivHSNkwHbCQvO47XFq+h6KSP4nPWo2ixahRtBhXbyTw1979nDFpQZ1K9MV8jA89RFAhF9xLnKNjmcYEeBRydLhCCCGEEOIZkbEPQgjHszg6APG8URcsjbpweQBMV46RsuUXLBa5ER3FP58b77VpxGe1PqCUqRnqpHwAhBtPcCbxKOP3T2Xp4QOYzGYHRyqEEEIIIZ4F+RpZiIdkSUsmYc47ADjVegVdpVYOjijnC1LV5NTufwusN3N0NOJ5oKg0uDR7l6Tl4zHfuIjx7E7S9F441XrZ0aE91/y83RgY0py4umms33+ZjddPY7EoWFL0LF4dy47duylXJZkCfhqCC9XCRSPDN4UQQgghciPpWSXE45BRa0+UlKYRz5Kidcal5fsoHn4ApIWuJO3YOgdHJQA8XXW82LAYX3foRRPn19Feqwwo3IhNZlf0NhZfWMGX26eSnGp0dKhCCCGEEOIpkGSVEMLh0gusqwqcdXQo4jmjcvFA33oIiosHAKk7/4fh/F4HRyXS6Z01dK5XgYnd2/JaSEm88/w3VPPmxbwM+2Enf285z2/HF3E25oIM5RRCCCGEyCUkWSWEcLgYy1W0/udR5T/v6FDEc0jl4YtLqyGgdQYspGz6EeO1k44OS9xBp1XTtFohxr/dhNcL98Y1oi6mG4VISjWy6sR+dkXu5ttDM9hwcZejQxVCCCGEEE+AJKuEEEI899R5A3EJGQAqNZiNpB1aLr10siGNWkW9CgUZ92p7BnSoQtECHijOiVjMKiwmNX/+k8AvK06yJ+wkqy6uJz4twdEhCyGEEEKIRyAF1oUQDhekqsnp3fnRqKXAunAcTaFyODfqheHsTlya9UORImrZlkpRqFIyH5VL5OVUWBBL95zm7K1wzAYN249eZ2/KAdTeN1gftpVx9T9Bq9Y6OmQhhBBCCPEQJFklxGORD7NC5Cba4rXRFKsliaocQlEUyhTJQ5kidbh4vRwrd4Vx8GwEii4VgISIfExdeJw2tQO5aD5IYfeClPUphUqRjuVCCCGEENmZJKuEEA5nK7COCmjs6HDEc+7ORJU5JZ60fYtwqt0FRevkwKjE/RQt4MG7nSpw7WYQK/cUZO+pU5hSnTieeosTV6/gXGkbKBaaBTSiY/HWjg5XCCGEEELcgySrhBAOF2u5htb/PBaz9HYQ2Yc5MYak5eOxxEVgTryFS/OBKCq1o8MS91Ewrys925SjY1wxVu8NZ1voNYz6eCxmFYraxN6dGvKnRFAiSMf2a7tpWKgu3s5ejg5bCCGEEELcQZJVQgghRCYUZ3dUbj6Y4iIwhYeSum0OTg3ekiGCOYSPpzOvhZSkXb0irN9/mQ2HfElziSDyloafrp3Ao9h5DD5n2RC+lc/qDCevSx5HhyyEEEIIIf4lySohHpKic8G99xxHh5Gr/FdgXSUF1kW2oag1uIT0J2n5OMw3wzCc3gZaZ5yqtkdxdnN0eOIBeeh1dGpQjFa1Atl86Cpr9l3mdmIaKao41IAl0Ys9h2/TuIoHh28dwkmtpXK+CqilF50QQgghhMNIskoI4XgWRwcgROYUnQsuLQeTtGQ0lvgbGI6tw3ByE5oi1dCWqo/avyyKFOvOEVycNLSqHUiz6oXYfuQ6q/Y4E301EhQLfx+/wMo9F9FW3ISBFCrlLUfvim86OmQhhBBCiOeWvMMWQjicrcB6/rOODkWIDFR6T/Sth6LyKmhdYDJiPL+H5JUTSVr4KRaL2bEBioei1ahpXLUQX/WpTc+mdSio9wcgRRVLmsEEQHKkLzfjkjGYjSw6t5zIxChHhiyEEEII8dyRnlVCPCSL2YQp4gwAKg9fVG4+Do4o54tFCqyL7E3l6Yf+pdGYrp3CcHorxov7wWRE7Rdk17PKfPsGit4TRaNzYLTiQahVKuqUy0+tsn4cORfNit2XOH/YDbXPdUKjtRw7tJviFeIJd9rOhvCtDKjci9J5Sjg6bCGEEEKI54Ikq4R4WMZUkpePB8Cp9qvoKrZwcEBCiGdBUVRo/Mui8S+LJTURw/k9qP2K27VJ2fQjppiraIvXQVu6Puq8RRwTrHhgKkWhcom8VCruw5nLsazYFcaxm7cwWSycv3UFbQFQm51RJflAHjgefZq41Diq+1VBp9Y6OnwhhBBCiFxJklVCCIcLUmpyek9+tBopsC5yBsXJFV3ZJnbLzLHXMUVah7IaTmzAcGIDKp8AtKXqoy1eR4qyZ3OKolAqwJtSAd5cirjNyl1hHDgNphuFUJySGbf/MKUDvUgO2EJU6nU2XN7GyJqDZXZIIYQQQoinQMbcCCGEEE+A4p4X56b9UBcqD1gTGObocFJ3zifht/dIXv8DxivHpMZVDlAkvwf9OlZgdK9a1CtZAiXeF4BTVyOJjL8FQH5VkG1uiFUX1xMef8VB0QohhBBC5D7Ss0oI4XDpBdYVRQ00cnQ4QjwSRa1FW6wm2mI1MSdEYzizHcPp7Vjib4DZiPHCXowX9qIOqIy+5XuODlc8gAI+rrzVugwdgouyZu9ltoReJSW0IWrvSHbFO3Pp8B5qVXNiTexall9cyyslO9KgUB1Hhy2EEEIIkeNJskqIh2Wx3L+NeCgxXJUC6yJXUbn54FS1Pboq7TBdP43hVHpRdgOawhXs2ppuXELlXVCKsmdjeTycebVZCdrWDWT9/itsOKAjyWDkenQSyw6fRBeooChQyqsUANcSIjgVc5Y6BWrgonF2cPRCCCGEEDmPJKuEeBxSqkQIcQ+KokJTsAyagmWwpL6O4fwetMVq2dZbjGkkrfwaLBa0xWujLd0AlU+g1EHKptz1Ojo2CKJlrQC2HL7Gmn3hxEUFkhLry//Zu+/wrOr7/+PPc+6ZvROyyALC3nuDiiwXzqq1Wrt3v7W1tra142vHr62181s71Fq1jqqogBMQQfbeKyELSEII2bnn+f0RjaWuoCEn4/W4rl4XOeckvm64m9x535/z+pgxtdy9Zy8Xjc+mOmYDW6q3saL4FX409Q4NrERERETOkYZVImK7fGMShzam41bBuvRi71bKHizZAb4mAAL7VhLYtxIzKRtX4UyVsndjER4n8yf154JxWazbc4IXNpRSVRNBAwGeWnOEiBGHIQLyYvLbB1VrKzaQFpnKgPg8DSNFREREPoCGVSIiIjZx5o7Be+EXCBx8nVDZHsAiXFOG742H8W14DGfuWFyDZ+LIGIph6jbZ7sblNJk9OpMZI9PZcqCaZetLKK9upGX3VMy4anaEInmo6iAzxiXx5OFnCYSDzM2ewZUDL7E7uoiIiEi3pmGViNhOBevSVxkOF678ibjy3yplX0fg4OvvKGV3jbgY75SP2R1X3oPDNJk0NI2JQ1LZXVTDsvUlHC43CAOrtlfwevEO3APDYMCI5CEANAeaWVOxnmkZk4hxawWdiIiIyH/SsErkXJkOHOltJbpGVKLNYXqHMypYF3mzlP1S3GMWv6OU3ZU/4axrg2W7cKQPVil7N2MYBiMLkhlZkMyhsjMsW1/C7qIagmdSCG6fhSPxJCtON+GYUkdRcDvPFb3IimOv8u0JXyU9Ks3u+CIiIiLdhoZVIufIcHmJvOQOu2OISC/136XswZIdmKkF7efDZ07SsuLX4I5sK2UvnImZrFL27mZQdjyDsuMprWxg+YYSNh+oIlSVw86qGnYeqSFx5G7wQrI3kX6RqQDsrN6LwzAZmlSIaWh4LyIiIn2XhlUiYrt8JnFoUzpulwrWRf6T4YnCNWjaWccCR95o+4O/+e1S9sRsXINVyt4d9U+L4XOXDeeKmc2s2FDKG3tOEAxZnN41HDMmk5YkD1vjqxk9KImnDj/HqdbTDE8azOdHfdLu6CIiIiK20bBKRESkB3GPuQQzMZvAwTVvl7KfPruUvXniPKzofJWydyNpCZHcvGAwl03P46XNpazefhxfQyInG+CPx/aQ0i9Aa04DAEOTBgMQtsK8UvIaE/qNIcEbb2N6ERERka6lYZXIObKCfvw7lgHgzB6BI22AzYl6vtOoYF2ko9pK2Sfgyp/wnqXsJ4s24Zl5C+7Bs+yOK/8lIcbDtXMHsmhKLq9uLeeVLWU0tQapPumC6pnEZlXSHJ2GLzXE4fpDLC1awXPFL/KZETcxInmo3fFFREREuoSGVSLnKujHv20pAIY3WsOqTlBLuQrWRT6Ed5SyH3ydYNEWDCxceePbr7NCAYLFW3DmjlMpezcRHeHisul5XDwxmzU7jvPi5jJqG6C+JIsnSkpYsf442aNLAXCZTgbE5wFQXFfK6dbTjE4ZgcN02PkQRERERM4bDatERER6uLNK2afdSLT/JE2eqPbzwWPbaV35Z3BH4BowBVfhDMzkXJWydwNet5N5E/szZ2wW6/eeZMWGEiprW2hsCbB/fTqeuBjyCl34Wk0iomHFsVfYW3OAtMhU7pz0PypiFxERkV5JwyoRsV0+kzi8KUMF6yKdwHBHEpk5iqbqhvZjwaJNbX/wt5xdyl44A9fAqSpl7wZcTpOZozKYPiKdLQerWL6+hNKqRnx10WzfBLu3vsHkEYkUR7atthqUUNA+qHq9YgOD4vNJi0q18yGIiIiIdBoNq0Sk2zDQKg+R88E797MESyYROPg6ofLdYL1Zyr7+EXwbH8eZOwZX4UwcmcNUym4z0zSYOCSNCYNT2VN8mmXrSzhUdoZgyGLtjhoMcxoFwxsZEjkWgOrmGh47+DQWFlcNvJQ52dNtfgQiIiIiH52GVSJiu7cK1jEcgAqhRTrb2aXspwkcWvtfpeybCRZtJvKyO9XD100YhsGI/CRG5CdxpLyOZeuPsfNoDVbYwZFdcdy76ygjC86QPaQGCwuAwoS2f7vTrbUcOH2ECWmjcTlcdj4MERERkQ9FwyoRsd0ZKtoK1kMqCxY538zoxP8oZT9E4OAagkVbMGOSMFML2q8L11cRqjyCM2+8StltNiArjq9ePYqyqkaWbyhh0/5KLAt2Ha1h11HIy11AfqGP9Kg0AFaXrePVsjUsPbqcOyd9gxi3bvMUERGRnkXDKhERkT6orZR9MM6MwVjTbiTccOqswvXAgdfw71gG6x7CVTAZ1+CZKmW3WXZqNJ+9dBhXzMjjhY2lrN19gmDIoviYRfExN4d3bGbBpP7sqz8IQHpUWvugakf1HlIiksiMTrfzIYiIiIh0iIZVImK7PGsShzdn4HE54CK704j0PYY7EkdS//aPLcsiWLqr7QN/C4H9qwjsX4WZmIWrcCbOgVMwvTE2pZXUhEhumj+YS6fn8dLmMlZtr8DnD1Fa2cifn91HasJkJo/xMa5/NgD+kJ9H9j9JU7CZudkzuHLgJTY/AhEREZH3p2GViIiInMUwDCKv+AHBku3/Vcpe/mYp+2M4c8bgGjwTR+ZwlbLbJD7awzVzBrBoSg4rt5bz8pZyGlsCVNX6qFoJOzZXMW+Ch7ScRpqDLQDkxeUAEAgF2HhyKxP6jcXj0G2eIiIi0r1oWCVyrpxu3GMvA8CRmm9zmN6h9q2CdVMF6yLdheFwnl3KfnhdWyl7fRWEQwSLtxAs3UH0jfeCJ8ruuH1alNfFJdPymDehP2t2HueFTaXUNviobfDx2MojRHmdTBt3PZ7U44xKHgbAlsodPHrwKZYeXcFXxnyW7JgMmx+FiIiIyNs0rBI5R4bTjWf8FXbH6FVqKVfBukg3ZkYn4hlzCe7RiwmdOEjg4OsEizbjzB2L8R+DquDx/ViNp3Hmj8dwemxM3Dd53A4umpDNnLGZrN97khUbSjl5upmm1iAvr6vB44rEP7qIiyf2Z0f1HgBcppP0qFQAjpwpxmU6yYnNtvNhiIiIiGhYJSIiIh1jGMZ/lLLfgOVvPeu8f8cyQuV7YN0/cQ2YjKtwBmZKnkrZu5jTYTJjZAbThqez7VA1yzaUUHKyAV8gxEuby1i5rZwpwydydeEIoiIdOE0nlmXx78PPUtpQweiU4Xx6xE12PwwRERHpwzSsEhHb5TOZI5sy8bhVsC7SUxjuSAx3ZPvHVqCVcE1p2weB/y5ln4Fz4FSVsncx0zQYPziVcYUp7DtWy7L1xzhQeoZgyOL1nZWs3QUTBqeSNrkBT3QL5Y0nAMiI6tf+NTad3MaI5CFEOCPsehgiIiLSB2lYJXKOLH8zLS/eC4Br+EW48sbbnEhExH6Gy0vU9b8mWLqDwIE1/1XK/ii+jY+3lbIXzsSRPRzDUCl7VzEMg2F5iQzLS+RoRR3L1pew48gpLAs27a9i0/4qRuQncfP4L1Bu7WVG1hQAiutKeXDfv/A6PNwy7HqGJw+x+ZGIiIhIX6Fhlcg5ssIhQicOAuDMm2Bzmt6hvWDdcKKCdZGey3A4ceWNx5U3nnBTLYFDb5WyV7aXsodPlxOZ/VO7o/ZZBZlxfOWqkZRXN7JiQwkb91URtix2F9Wwu6iGAVmp5Fo+RhZEs7VqBwD+cICsNwvYK5urafA3UhCXq9s7RURE5LzRsEpEbKeCdZHex4xKwDNmMe7RiwidPETg4BqCRZtxDZ551pDDv381GAau/Aln3VYo51dWSjSfvmQYl8/I54VNpby+8wTBUJgj5XXc++QuslKiWTh5Ip8dMYDK5iriPXEAvHhsJRtPbiU3tj//M/bzOEx93xYREZHOp2GViIiInDeGYeBML8SZXog19cazzlnhEP4tT2O11OFb90+cueNwDZqKI3MYhoYgXSIlPoKPzyvk0qm5vLSljFXbKmj1hyivbuS+5/aRGh/B/MkDCWSGCRFg55u7CCZ449sHVXtO7ScvLocol4aNIiIi0jk0rBIR271VsO5VwbpIr2a4zy7pthqq4a1VVqEAwaMbCB7dgBEZj3PAZFyDpuNIzLIhad8TF+3h6tkDWDQ5h5XbKnh5SxkNzQGqzrTwjxcOsnRtMRdP6M/tY/+HzdWb2/urGvyN/GXPQxgYXDXwEqZnTrb5kYiIiEhvoGGVyLmyLLsTiIj0CmZcP6Ku/xWhin0EDq0jeGwrhAJYzWcI7HqBwK4XMJNycA2ZjXvoHLvj9gmRXheLp+Zy0YRs1u46wQsbS6ip91HX6OfxVUdYtt7J3LEDSOyXBsC2ql0Ew0EA0iJTAGgONFPSUM7ghIHqtRIREZEPRcMqkY9Cr8E7xWmrTAXrIn2UYTpwZo/AmT0Cy99CoGgTwcNvtG9kEa4pIXTyIGhY1aU8LgcXjMti1ugMNu6rZPmGEk7UNNPUGuS5N47x4uZSZo3KZN6EMaSNTmH3qX0MiM8HYO3xjSw9uoKMqH58afSnifPE2PxoREREpKfRsEpEbFdrVKhgXUQw3BG4B8/CPXgW4fpqAoffIHB4Ha5B08+6ruWVP2J4onANmoaZWqDVO+eR02EybUQ6U4b3Y/uhUyzfcIziEw34A2Fe3lLGym3lTBnej4WTL8IwDCzLYsOJLQBYWMS6owEoqishOSKRWLcGVyIiIvLBNKwSkW5Dv26KyFvM2BQ84y7DPfZS4O3br8ONNQSLNgMWgf2rMOLScA2chmvgVMyYZNvy9namYTCuMIWxg5LZX1LLsvUl7C+pJRS2WLvrBOt2nWBcYQqLpuTyjXFfZF3FRpIjkzAMg7AV5oG9j1Dnq+einDkszp9n98MRERGRbk7DKhGxXb41maObM4nwqGBdRM7Wtmrq7VG2FWjF0X8kobLdYIWx6irxb3kK/5ancKQPxjVoGs688e8oc5fOYRgGQ3MTGZqbSNHxepatP8b2w6ewgC0Hq9lysJpheYksnjKaQSnxABw8fYSa1lqA9pVVYSvM/ppDFCYOwDRMmx6NiIiIdFcaVomcI8MdScTi24G2cmAREek6joRMIud/nXDzGYJHNhI4vJZwTRkAoRMHCJ04AGsfwj3yYjwTrrQ5be+WnxHLl68cScWpJlZsKGHD3krClsXe4tPsLT5NQWYsiybnMqJgAF8f+3nWVmxkUvo4ALYd38Pvd/6V1MhkPjX842RGp9v8aERERKQ70bBK5BwZDifOjCF2x+hVanmzYN1UwbqIdIwZGY975MW4R15MqKa0bTfBI+uxWuoh5H/HyiqrtRHDG21T2t4tMzmKTy0eyuUz8nhxYxlrdh0nEAxztKKe3/57F5kpUSycnMPHh1yDw2xbRfVK0VoA6n0NJHoTADjZVIXH4SbBG2/XQxEREZFuQsMqEbFdrVGOK/MohPQtSUTOnSOpP44p/bEmXUOofC+BQ2txDpjSft4Kh2h64jsYUYlttwkWTMKMiLUxce+UHBfBDfMGccm03Pby9RZfiIrqJv7y3D6eXlPEgkn9mT4yna9MvoXndq0kZIWJcHoBePLwsxysPcKU9PFcP/gqmx+NiIiI2Em/GYqIiEivYJgOnP1H4uw/8qzjofK9WC31WC31+E4dw7f+X23XDZqGs/8oDIfLpsS9U2yUmytnFbBgUg6rtpfz8uYy6psDnKpr5aGXDvHsumNcMXsAUwZNJcLT9lL0VEsN+08fAsBhvP3y9OiZY+TGZuMwtVusiIhIX9Lrh1UPPPAATz75JIZh0L9/f37yk5+QkJBgdyzpwcIt9TQ99BUAPNNuxD3sQpsT9Xx51mSObs5q+6VFBesi0snMxEzcYy8jcHgdVsMpsEIES7YTLNkOnihcBZNwDZqGmZL/ZqG7dIZIr5NFU3K5aHw2a3ef4IWNpZyqa6Wuyc8Dy/bx+CtO5o7L5MLx2SRHJvGt8V9mZdnrzMmeBkBV8ynu2fYnEr3xXD/4KgYnDrT5EYmIiEhX6dXbr2zdupUnn3ySxx57jOeee478/Hx+9atf2R1LehX9UiMi0t2Z0Ul4xl9B1HW/IOKSO3AVzgRX261n+JoI7FtJ8zM/xrfxMXuD9lJul4O5Y7O4+zOT+fTioWQmRwHQ7Avy/BslfOuPb/Dwy4eItlK4Zdj1pEamAPB6xXosLGpaa4nztN22Wedr4FRLjW2PRURERLrGOa+samlpISKirbS0traW5cuXY5omCxYsID4+vrPzfSTx8fF8//vfJyqq7UXR0KFDefzxx21OJSL/ra1g/QiYLmCm3XFEpJcyDBNneiHO9EI8024geGw7gcPrCJXvAcvCmTXirOuDZbtw9BuE8dZgSz4Sp8NkyvB+TBqWxrGqJh558QBFx+vxB8O8urWc1dsrmDwsjYWTc0hPimJx/sWkRCRzvOkk6VFpALxSuppVZWsZmTKMW4Zdj8vs9TcJiIiI9Ekd/glfX1/P17/+derr63niiSdobGzkyiuv5MSJE1iWxR//+EceeeQRsrOzz2fed3jmmWf4zne+847jGzdupKCggIKCAgAaGxv54x//yPXXX9+l+UTkg9UaFSpYF5EuZTg9uAZMxjVgMuGmWoLFW3D8x06v4cYaWlbcA043zrzxuAZNw5ExGMPo1YvSu4RpGEwank5eahQHSs+wfP0x9h6rJRS2WLf7JG/sPsnYQSksnJLDzKy3i/L9oQBvHN+MhUVLoKV9UFXecJx+Uak4NbgSERHpNTr8U/03v/kNGzdu5DOf+QwATz75JMePH+db3/oWw4cP55vf/Ca/+c1vuvw2u8svv5zLL7/8fa+prKzk85//PGPHjuVjH/tY1wQTkY6z0B2VImIbMyoB9/CzC/OCRzcCFgR9BA+vI3h4XdtuggOntvVbxafbE7YXMQyDITkJDMlJoPhEPcs3lLDtYDUWsPVQNVsPVTM0N4FFk3MYnJOA2+Hif8Z9npVlrzMmpW0VnC/k597tf8ZlulgyYBHj+42x90GJiIhIp+jwsGrlypXceOONfOUrbcXSr7zyCklJSXzyk58E4IYbbuD+++8/Pyk/ggMHDvC5z32Oa665hi984Qt2x5HewLLsTtDr5FuTKdqkgnUR6T5cI+ZhxmcQOLSWYMkOCAexmk7j3/E8/h3PY6bk4xo0DVfBJAxvtN1xe7y89Fi+eMUITtQ0sWJDKev3niQUtth3rJZ9x2rJS49l8ZQcRg3sx8eHXNP+eZtPbqM52AK04HhzZVUgFKCmtZZ+Uak2PRoRERH5qDo8rKqpqWHgwLZdWBoaGtixYwcLFy5sP5+QkEBLS0vnJ/wIKioquPnmm/ne977HokWL7I4jvZF2jepU+tsUke7CMJ04c0bjzBmN5WsicHQjgcNvEK48AkC4ughfdRGE/LhHLrA5be+RnhTFJxcN4bLpeby4qZQ1O4/jD4YpPlHP757aTUZyFAsn92fikDScDpNJ/cbhMBzsqN7NqJRhAGyu3M7DB55kaFIhNw6+hjhPjM2PSkRERM5Vh4sX0tLSKCsrA9pWVYVCIWbPnt1+ftu2baSnf/gl8fv372fYsGGcPHnyHeeef/55Fi1axMiRI1mwYAHPPPNMh77mAw88QEtLC/fddx+XXXYZl112Gd/4xjc+dEYROT/aCtYPY6UesTuKiMg7GJ4o3EPnEnXZnURd8zPcYy7BiE4Cw8Q54O1OJSscpHXDY4Sqi7G0CvcjSYrzcv1Fg/jFF6ayeGoukZ6291ePn2rir8/v544/b+DVreVYYZMpGRP4/KhPYhomlmWxqmxt27WNJ4l2RQJQ3VxDIBSw7fGIiIjIuenwyqo5c+bw4IMP0tjYyLJly4iLi2Pu3LlUVlbyl7/8haVLl37o2+yOHj3KZz/7WYLB4DvOLV++nNtuu41PfOITTJ8+nVdeeYXbb78dr9fL/Pnz3/frfve73+W73/3uh8okIl2n1ihXwbqI9AhmfD88E67EPf4KwqcrMCPj28+FyvYQ2LWCwK4VmAkZOAdOwzVgCmZ0on2Be7jYSDdLZuazYFJ/Vu+o4KVNZdQ1+ampb+Xhlw/x3LpiLpqQzZwxWUR6nRiGwa3Db2R1+TrSIlNwmA4sy+Jvex7ijK+ei3PnMid7ut0PS0RERD5Ah38z/OY3v0lLSwtPPvkkaWlp3HXXXXi9Xg4dOsTDDz/MpZde2l6+3lHBYJDHHnuMX/3qV7hcrne95p577mHBggXccccdAMyYMYO6ujruvffeDxxWdZakJHVRdLWUlO67ZD/YGKLpzT/HRHuI7cZZewqnywGhtj9353/7/9RTckrfpedoF0iNO+vD2oOVtGAAFuHa4/g3PYF/05NE5I0kesQsogonYbq99mTths71OXpTVgLXXTyEVzeX8u9VR6g83Ux9c4B/v1bEio2lLJqWx6UzChiRUsCI3IL2z9tffZiyxuMAmB6r/b97vP4kGbH9Ou8BSa+j76PS3ek5Kj3Bh32eGlYH16kfPnyYAQMGYPxXR4/f7+fMmTOkpp57ieXGjRv53Oc+x6233kpaWhp33nknr732Gv36tb1wKCsr48ILL+Q3v/kNCxa83QexYsUKvva1r/HKK6+QnZ19zv/dc1VT00g4rOX8XSUlJYbq6ga7Y0gXevjlQ7y6tZxIj5Pff32m3XE+kJ6j0t3pOWqfcFMtgcPrCR5eS7j2+NknXV6ceeNxj5yPIzHLnoDdxEd9jobCYTbvr2L5hhLKq5vaj7ucJjNGpjN/Yn+S4yPevDbEtqpdrKlYz2dG3ESMO5qiuhJ+tfUPDEoYwLWDLqNfVNpHfkzSu+j7qHR3eo5KT/B+z1PTNN53YVCHV1bdfPPNXHHFFdx2221nHXe73R9qUAVQUFDQvqvgU0899Y7zRUVFAOTl5Z11PCcnB4Di4uIuGVaJiIiIdIQZlYBn9ELcoxYQPnWMwKF1BI9swPI1QqCV4KG1uAZOtTtmj+cwTSYP68ekoWnsPFrD8vUlHKmoIxAMs3JbBau3H2fS0DQWTskhMzmKCf3GMKHfmPbPX1X2OgBHzxQT4WwbatX5GvA6PXgcblsek4iIiLytw8Oq5uZmsrI6913A5OTk9z3f0NA2gYuOPnvaFhUVBUBjY2On5hERe7QVrB8B0wV0/5VVIiIfxDAMHCl5OFLysCZfR7BsF8FD6widLseRMbj9unBDNS0r/4xr4FRc+RMxvKoeOBeGYTB6QDKjCpI4VHaGZetL2FN8mrBlsX7vSdbvPcmYgcksnJJDQcbbt21eVrCQOE8soXCYOE8sAE8fWcbemv3MzJzC4vyL33E3gYiIiHSdDg+rPvGJT3D//fczbNgwRowYcT4ztfugOxRNs8ObGYp0GisUJFR5GAAzrh9mVILNiXq+M28WrFvBd++uExHpyQyHE1fuWFy5Y7HCQQzj7dcvgcPrCVcewVd5BN8bj+DMGY1r0DQc2SMwTG060VGGYVDYP4HC/gmUnGxg2YYSth6owgK2Hz7F9sOnGJKTwMIpOQzNSSA5IpGrBl7a/vlnfHVsq9pJyApR3VLTPqg63VpLolc/50VERLpah18F7dmzh6qqKq655hq8Xi/x8fHvGBYZhsErr7zSaeFiYtqKuJqams46/taKqrfOi3Qly9dIy/M/B8Az/SbcQ+fanEhERHqK/x5AGe4IjKhErKbTEA4SLN5CsHgLhjcG54DJuAZNw0zK0Sqfc5DTL4YvXD6ck6ebWbGhhDf2nCQUtthfUsv+klpy+8WwaEoOYwalYL759xrjiuaWYdezsux15mTPAKDB38gP1/+C7JgsrhiwiIL4XBsflYiISN/S4WGVz+dj+PDh5zPLO7zVVVVaWkphYWH78ZKSkrPOi0jPlmdNoWhTNlFeJ8yzO42ISNdxD78I17ALCB0/0NZvVbwFgj6s1gYCe14msOdlzIQsvLM/hSMl1+64PUq/xEhuWTiEy6bn8dLmMlbvqMAfCHPsZAN/eHoP6UmRLJiUw+RhaTgdDsakjmBM6tt3D6ypWE/QClFcX9J+rDnQQtAKEuvWG6YiIiLnU4eHVQ899ND5zPGucnJyyMrK4oUXXuCiiy5qP/7SSy+Rm5tLRkZGl2cSkfNAm22KSB9mGCbOzKE4M4diTf84weKtBA6vI1SxH7AInzmOEZ3Yfr0VDkE4iOH02Be6B0mM9XLdBQNZNCWHV7eW8+rWcppag5yoaebvy/ezdG0RF0/sz4xRGXhcjvbPm5o+gVA4RGlDOflxbZv7rKlYz/LilxmbOoqPDV6iMnYREZHzpFPLEPbt28fQoUM780vyxS9+kTvuuIO4uDhmz57Nq6++yooVK7jnnns69b8jIvapNdoK1i0VrItIH2e4vLgGTcM1aBrhxhoCh9djNZ/BjIhtvyZUuouWVffhyp+Ac9A0HP0GntWDJe8uJtLN5TPyuXhif17bcZwXN5dS1+inpt7HI68c5rk3jnHh+GwuGJtJpNdFgjeeSwvmt39+KBzi9Yr1hKwQx5tO4DbbehZPNFWSEpGEUx1jIiIinabDP1X9fj+//e1vef3112lubiYcDrefC4VCNDU10djYyP79+zs14JIlS/D7/fz973/niSeeIDs7m5///OcsXLiwU/87ImIfFayLiLyTGZ2EZ8zidxwPHFoLgRYCB9cQOLgGIyalbTfBgVMx49JsSNqzRHiczJ/UnwvGZfHGnhOs2FBK1ZkWGpoDPL2miBUbSpgzJpN5E7KJi3579ZppmHxy2A28Vr6OIUmFGIZBKBziDzv+RsgKsTh/HtMyJtn4yERERHqPDg+r7r33Xv72t7/Rr18/YmNjOXToEOPHj6e6upqKigq8Xi/f/e53P3SQJUuWsGTJknc9d91113Hdddd96K8tcv6o8FZERLqWq3A6WGGCpbvACmE1VOPfthT/tqU40gtxj1qII3ukStk/gMtpMmt0JjNGZrDlYBXL1pdQVtVIqz/Eio2lvLylnOkj05k7JpOs1GgMw6AgPvesovXdNfup9Z0B3t7FOmyFKW0oJycmW/8GIiIiH1KHh1UvvPACEydO5IEHHqC6uppZs2bx/e9/n0GDBvHaa6/xxS9+EZdLqyJE5NzlhadQtEUF6yIiHeHMGYMzZwzhlnqCRzcSOPwG4epiAEInDtJy4iBmUjYR876CGZNic9ruzzQNJg5JY8LgVHYX1bBsfQmHy+sIhsKs3l7B6u0VZCZHMWloGhOHppEaH9H+ucMSC7lpyLVsPLmVCf3GArD71D7u2/0P+sdkcfPQ60iLSrXroYmIiPRYHR5WVVZWcsstt2CaJmlpaSQlJbF9+3YGDRrErFmzuOKKK3j88ce59tprz2deEREREQHMiFjcwy/CPfwiQqcrCBx6ncD+1RBoxfK3YEQl2B2xRzEMg5EFyYwsSOZQ2RmWbyhh19EaACpONfHUmiKeWlNEfkZs2+BqcCpx0R4mpY9jUvq49q/zesUGAKpbThHniQPaeq0inF7i3/xYRERE3l+Hh1Ver/eslVP9+/fn0KFD7R+PHDmSF198sXPTiUifcNooxZl5VAXrIiIfkiMxE8fk6/CMuQT/3lcxo5Mw/qPwO3DwdSxfE64hszFcXhuT9gyDsuMZlB1P1ZkWNu2rZOP+SiqqmwAoOl5P0fF6/vXqYYbkJDBpSBrjClOI9La9Tr5xyNWsrdiI03TgfXPHxicPPcuhM0eZkj6e6wdfZdvjEhER6Sk6PKwaMmQIa9asaV85lZ+fz/bt29vPV1ZW6r586RMM04kjvRAAMzLe3jC9hArWRUQ6h+GJwjP20rOOWaEgvi1PYTXV4tv+XNtqrGEXYnijbUrZc6TGR7B4ai6Lp+ZSXtXIxv2VbNxXyam6ViwL9h2rZd+xWh566SAj8pOYNDSNUQOSWZz/9j3tp1pqOFB7GAC36W4/vq/mIAPj83E59LNPRETkv3V4WHX99dfz9a9/neuvv5777ruPRYsW8e9//5s77riD/Px8HnjgAUaPHn0eo4p0D4Y3mshL7rA7hoiISIdYjacwnB4sAF8T/q3P4N+5AteQ2bhHzsfU7YIdkpUaTVZqNEtm5nP0eD0b91WyeX8l9c0BgiGL7YdPsf3wKTxuB2MHJjNpaBpDcxNJjkjim+O/xOqydczMmgJAZVMVf9j5N6JdUdw45GpGJA+1+dGJiIh0Lx0eVi1YsIDGxkbuv/9+IiIimDp1KjfccAMPP/wwABkZGXz7298+b0FFpPfKC0+heEt/oiNcKlgXEelkZlw/Iq++m+Cxrfh3PE/4VAkEfQR2v0hg76u4Bk3DPWohZlya3VF7BMMwGJAZx4DMOK67YAAHSs6wcV8lWw9V0+IL4vOHWL+3kvV7K4mOcDF+cCqThqRy09DrMN+8C2H9iS0ANAaaSI1IBqCmpZZa3xkK4nJ1t4KIiPR5hvXWPrsf0vHjx6mrq6OgoAC32/3Bn9AD1dQ0Eg5/pL8mOQcpKTFUVzfYHUO60D9fOsjKbRVER7j47Vdn2B3nA+k5Kt2dnqPyXizLIlSxF//25wmdOPD2CcPAPeEqPKMXdUmO3vgcDQRD7Dp6mo37K9l55BSBYPis8wkxHiYNSWPS0DQyUrzsrN5DaWMFSwYsBuCJQ0tZXb6O7OgM/mfcF3A7eufr6p6iNz5HpXfRc1R6gvd7npqmQVLSe1cSdHhl1U033cTnP/95pkyZctbxjIwMMjIyWLlyJb/61a9YtmxZR7+kSI9k+Vvw73oBaNs+3JGSa2+gXqDWKMOZeZSw6Qa6/7BKRKSnMgwDZ9ZwnFnDCVUewbf9eUKlO8CycKTk2R2vR3M5HYwrTGFcYQotviDbD1ezcV8Ve4tPE7Ysaht8vLCplBc2ldIvMZJJQ9OYOrStAzMUDrGlcgcAUa6o9kHV7lP7yIxOJ9GrWzVFRKRvec9hVUtLC7W1te0fb9q0iYsuuoicnJx3XBsOh1mzZg3l5eXnJ6VIN2IFWvFvWwqAEZWgYVUnqFXBuohIl3OkDSBy/tcInS4jWLQZR8aQ9nPh5jO0rroP98j5OLJG6La0cxThcTJ1eDpTh6dT3+xn64EqNuyr5HB5HQAnTzezdG0xS9cWk9MvhklD0vji0C+yt34neXH9AWgN+nhg77/whXwsyruIBXkX2vmQREREutT7Dqsuv/xyGhralmwZhsHdd9/N3Xff/a7XW5bFtGnTzk9KERERETkvHInZOBKzzzrm3/UioYp9tFTsw0zKwT16Ec688RimaVPKnis20s2csVnMGZtFTV0rmw5UsnFvJaVVjQCUnGyg5GQDxioYlJ1AxNBIsiICHGo4SGuoFYCM6H4A+EJ+tlRuZ0LaGN0mKCIivdp7DqsSExP5f//v/7F7924sy+IPf/gDF110EYWFhe+41jRNEhMTWbSoa3oORKR3yQtP4ZgK1kVEug3D5QWXFwKthGtKaH31jxhxabhHLcQ1cBqGo8NNEvIfkuK8LJiUw4JJOZyoaWLjvko27KukqrYFCzhYdoaDZWd4+OVDDMtLZOHAG2n0FrfvFrjp5Db+dfApnjmynK+P/Xz7EEtERKS3ed9XGrNmzWLWrFlAW5H6ddddx6hRo7okmIiIiIjYwzPuMtzDL8S/9xUCu1/G8jVi1VXiW3M//q3P4B45H9fg2Rguj91Re6z0pCgun5HPZdPzOHaygY37Ktm0v5IzjX5CYYtdR2vYdRTczjhqD+5j0pA0djTtAcDj8JAWmQLAgdOHMTAYlFCg2zVFRKTX6PDbYj/96U/f9fjhw4cxTZOCgoJOCyUifYsK1kVEuh/DE4Vn7GW4R8wncOA1/LtewGo6jdVUi2/9o/h3LCPquv+ngdVHZBgGeemx5KXHcs2cARwqO8OGfZVsPVhFU2sQfzDMpv1VbNpfRYRnAPlDMhmQGoOBiWVZPHXkeSoaTzAkcRBfGv0pux+OiIhIpzinNdz33XcfxcXF/PSnPyUcDvO5z32O119/HYCpU6fy29/+lqioqPMSVER6rzNGmQrWRUS6KcPlwT1iHq6hcwkefgPfzuVYdSdxZA0/a1BlWZZW9nxEpmkwOCeBwTkJ3DhvEHuKT7NxXyXbD1fjD4Rp8YXZu8PD3h1+Vq9ex/DBHiod1QAMiM8H2v4dXil9jTGpI0iOSLLz4YiIiHxoHR5W/fWvf+XXv/41M2a0rXpYsWIFa9as4eKLL2bgwIH85S9/4Q9/+APf+ta3zltYEemlLLsDiIjIBzEcTlyDZ+IcNJ3gsS3vKGVvffWPGJ4o3KMWYsam2pSy93A6TEYPSGb0gGR8/hDbj1SzaV8Vu4tqCIUt6hr9rNviB+dM4rIrOeNIpSK6iRZnFc8cXc7Soyu4eeh1jO83xu6HIiIics46PKx6+umnueiii/jd734HwPLly4mIiODnP/85Xq+XpqYmXnjhBQ2rROSc5YWncmxrjgrWRUR6AMM0ceVPPOtY6HQ5waLNAAQOvIazYBLu0YveMdCSD8fjdjB5aD8mD+1HY0uArQer2LivkoOlZ7CCbuqKs3mpuIqX1leROLAUEsA0TAYlDgCgtKGcY3WlTOw3Dq9Tt22KiEj31+FhVVlZGTfffDMAgUCA9evXM3HiRLxeLwAFBQWcOnXqvIQUkb5Bd4+IiPRQhoGj/yhCpTvBsgge2UDwyAYc/UfjGbMYR9oAuxP2GtERLmaNzmTW6ExqG3xs3l/Jxv2VFJ9oAOD04f4YEQmYUXX8vvwQk4amcdS5mp01u1hW/DI/nvod3A7ddi8iIt1bh4dVsbGxNDY2ArBx40aam5uZOXNm+/nS0lKSk5M7P6FIN2O4vLjHXgaAIznX3jC9RK1RijOziLBDBesiIj2RIyGTyPlfJ1RTin/HMoJFm8CyCJXuoLl0B470wbjHLMaROUy9Vp0oIcbDvIn9mTexP5W1zWzcV8nGfZWcqIFQSwxHqOPI8Vo8w49iRkCSmU0oaIADVpauoV9UGoMTB2Iapt0PRURE5CwdHlaNGTOGf/7zn2RmZvJ///d/OJ1O5s2bRyAQYNWqVTz66KNceOGF5zOrSLdguCPwjL/C7hi9yhmjHFfmUcJBt91RRETkI3Ak9Sfigs8THr8E/84VBA6thXCQ0IkDtJw4gGf6J3APnWN3zF4pLSGSS6flccnUXMqqGtm4r5JN+yupqffh2z0dM76Kg75IvvrGWoYNiORI3HLChJmTPZ2rBl5qd3wREZGzdHhY9Z3vfIdbb72Vr3zlKxiGwbe+9S1SUlLYuHEjX/nKV8jPz+erX/3q+cwqIiIiIj2AGZeGd+bNuMddhn/3iwT2rQLDwFXwdteVZYUhHMZwnNPm1PIBDMOgf1oM/dNiuHJ2AUfK69i4v5LN+900tgQIEmb3ySLc0QaGA8oPx7LHUUNWhotXSlczM2sKqZEpdj8MERHp4wzLsjq8D1cwGGTfvn2kpaWRlpYGQF1dHevWrWPOnDlERESct6B2qqlpJBzWdmVdJSUlhurqBrtjSBf6x4sHWb29gphIF/d+pfvfBqjnqHR3eo5Kd2O1NhI6VYIzaxjQ9hw9vmkVvjcewT1qAa7BMzFU/H1eBUNh9pfUsnFfJVsPVeMLteJIqCR0KhMwiMopJpx2EIA7JnydrJh0ewPbTN9HpbvTc1R6gvd7npqmQVJS9Ht+7jm9leV0Ohk5cuRZx+Li4li4cOG5fBmRHi3cUk/rK38AwD1qAc7+o+0NJCIi0s0Z3uj2QRWAZVn4dyzDajqN742H8W97Ftfwi3APuwDDE2Vj0t7L6TAZkZ/EiPwkbgqE2HW0ho37KtlZW0MwFMbvaMAJhJti+M1DR5k0tAlvv+NERRpMyRhPhLN3viktIiLdk9Zdi5yrUIDQibZ3HsMDp9ocpndQwbqISB9jhXENmY3f14RVX4XV2oB/y1P4dy7HPXQurhHzMCPj7U7Za7ldDsYPTmX84FSaW4NsO1TNxv2J7N9dCo4Apxv9rNhwDM+oNZieVl49uomvjv48qQmRdkcXEZE+QsMqEbHdGaNMBesiIn2IYTpwD56Fa9AMgsWb8e94nnBNGQRa8e9cjn/PS7gKZ+IeuQAzVv1J51Ok18n0kelMH5lOXdNQthyoYuO+So6eOgFW2y6BVUXJfHvjBnLTo3Dl7WFO3gQmZg3XLoIiInLeaFglIiIiIrYwTBNXwSSc+RMJle3Cv2MZoZOHIBQksG8loRMHibzqJxiGYXfUPiEuys0F47K4YFwWp860sGHfMNYe20lVTdutmaWtR/EED/LQ4YOs2DKJC/KnMK4whSivy+bkIiLS27znsGr16tUMHz6c5OTkrswjIn1QXngaJVtziY10wTy704iISFczDANn/1E4+48ieOJg29CqbBfukfPPGlSFW+oxI2JtTNp3JMdHsHhqHoun5lFR3cjG/ZW8XnEcX8gBlkHZ4RgeOHiAf254nZTsBmZmTWX24EI8bofd0UVEpBd4z2HVbbfdxre//W2uuuoqAG666SY+//nPM2XKlC4LJyJ9RMc3JRURkV7OmV6IM72Q0KkSzITM9uNW0Efzk3diJmTiHr0YR+ZQrbjqIpkp0SxJieYKK5/95dWsOXiAAxEm9U1+zNRiznhPs/RkEc+8ciFjBqQxcWgaw/MScTp0m6CIiHw47zmssiyLrVu3smjRIiIiIti0aRPXXHNNV2YT6fYM9CK5M9QaZTgziwipYF1ERN7kSM456+PAgdexWuoJtdTTcnw/Zkoe7tGLceaOwVB3UpcwDIOh2akMzU4lPNdib0k1jx7ZQx2nCZ3KJOCHDfsq2dr8Kq4NMYxJHsu0If0Z1D8eU4NFERE5B+85rJo3bx5PP/00zzzzTPuxb37zm3zzm998zy9mGAb79u3r1IAi0vudMVWwLiIi78+ZO5ZwQzWB/asg6CdcXUzry7/DjM/APXohzgGTMUzVsXYV0zQYkZfKiLyvcLyhiqLyJnZHNrGz/BiO1HIsYNPJZtY9OoSEGA8TBqcyaWgauf1itCJOREQ+0Hv+RP/hD3/IsGHDOHToEH6/n6VLlzJu3Diys7O7Mp+IiIiICGZ0It4pH8M9ZjGBPa/g3/sK+JoInzlO6+q/Ymx5GvfIBbgGz8Rw6s2PrpQRk0rGEJg+BPZUeXh4/x7qQ6cJV7etjjsTqGF1/eu88mwOaY48lswoYOygZA2tRETkPb3nsMrtdnPjjTe2f/zMM89w7bXXcskll3RJMBHpO/JCU9sK1qPcKlgXEZH3ZXpj8Iy/AvfI+QQOrMa/60Ws5jNYjTX43vgnjuQcHP0G2h2zzxqeOpC7U26nrKGChMmpbDlYzQvly2mMOo0j7jQnd0Xxh6ebGZAVx7VzBlCQGWd3ZBER6YY6vFb6wIED7X8+deoUx48fx+VykZaWRmJi4nkJJ9IdGd4YIhbfDoAZn25zGhERkb7JcEe0raQaegGBw2/g37EMMzrxrEFVuKUeLAszUgORrmQYBv1jswCYMyaT5rgcVpaVEW2lcJp4mghS3LKPny4tYlzGEK6cXUBqfITNqUVEpDs5pxv79+zZw49+9CN279591vFRo0bx3e9+lxEjRnRqOJHuyHC6cWYMsTtGr3LaKMWZWUzI4QGm2x1HRER6EMPpxj1kNq7CGVitDWed829dSuDgGlyDZ+IeuQAzJtmmlH3bovx5XNB/Fk2BJryTY3jmjYOsC72C4Qiy42Ql2+6rZu7YLC6Zlkt0hMvuuCIi0g10eFh18OBBPv7xjwNwzTXXUFBQQDgcpqioiOeee46bbrqJxx9/nIEDtexaRM5NnVmugnUREflIDNOBERnf/rHV2kjg4BoIBQjsfZXAvtU4B0zGPXoRjoQM+4L2UV6nB6/TA8CYUS627DbxhyFUl0I4bPHy1hLWHijikglDuGBcJi6nw+bEIiJipw4Pq37zm98QFRXFY489RmZm5lnnvvCFL3DVVVfx+9//nnvvvbfTQ4qIiIiInBNPFBELb8O//TlC5XvAChE8vI7g4Tdw5o5tG1ql5tudsk8amlTIXVNuZ2vldnIHj+KJVUc54tuF1f8ATx0u4tXtw7hy5iAmDknDVAm7iEif1OFh1ZYtW7jlllveMagC6NevHx/72Md46KGHOjWcSHcUbjhF06O3AeCd+Ulcg2fanKjny32zYD1OBesiItJJDMPAmV6IM72Q0Klj+HcsI1i0BbAIHttK8NhWHJnDcI9ZrNv7bRDniWFu/7bXUF+/djjfWfssLeEwjqST1FQM5L5n9/HSpjKunTuAwv4JNqcVEZGuZnb0Qr/fT1RU1Huej46OprW1tVNCifQYerdPRESk23Mk5xJx4ReJuuZuXIUzwGi7xSxUsZfgkY02pxO3080XxtxMbmx/JifMJDbCA1gcj17DL19Yxr1P7uRETZPdMUVEpAt1eFg1ZMgQnn/+eYLB4DvOBQIBnnvuOQYNGtSp4USkb6g1SnFmHiaUdMTuKCIi0ouZ8el4Z91K1Md+gWv4ReDy4h698KxrgmW7scLvfL0r51d+XC63jfsiN02ay08/O4Xxk4M4EitxD9jFnvrtfO+vm3joxYPUNfntjioiIl2gw7cBfupTn+JLX/oSN954I7fccgu5ubkAFBUV8cADD7B3717uueee85VTRHqxM2YZrsyjhAIeu6OIiEgfYEYn4Z16A54JV2G43v7ZE6oupmXFrzBiknGPXICrcAaGU5t/dBXjzRXrER4nEwencuxQFL5AmNZTGViWxeoDB3jj6CEWjh7BvAnZeFwqYRcR6a06PKy68MIL+d73vscvf/lLvva1r7UftywLj8fD7bffzvz5889HRhERERGRTvefgyoA/96VAFgNp/Ctewj/tqW4Ry3ANfQCDa262Ph+YxiePITK5mqM4fE8vvoIRzwbMWJqeb70GKu2j+GKGflMG56OaaqWQUSkt+nwsArghhtuYNGiRaxfv57y8nIsyyIrK4upU6cSHx9/niKKdDeW3QF6ndzgNEq35hEX7YaL7U4jIiJ9lXf6xwmk5uHfuQKroRqrpR7fhsfw73oR99hLcRXOxHCc08tn+Qi8Ti85sdkQC9cvSufuTWfaXoWFTc40+Ll/+QFe2lzKtXMHMjwvye64IiLSic75p218fDwLFiw4H1lERERERGxjON24h87FNXgWwaMb8W9/jvCZE1jNZ/Ct/Qf+nSvwjLsM54CpGGaHq1+lE2RE9+POSd9gefEr9E+cxPLTJ6gLnqYmcyX3rs6ncNMorp1TSHZqtN1RRUSkE+inrIjY7oypgnUREek+DNOBa+BUIq/6Cd5Zt2LEJANgNVTT+sYjEGixOWHf1C8qlU8Ov54LRxfw089Oof/ocgy3H1f/A+w/Wc5df9/E35ftp7bBZ3dUERH5iDSsEhHbtResJx61O4qIiEg7w3TgKpxB1DU/wzP9JozIeNyjFmB4otqvCbfUY1mqCOhqHpeDS4fOIMmTRKo1EKM1FgtYf3Ijdzz8PE+tKaLFp10dRUR6Kt10LyLdgF7ki4hI92U4nG23Bw6aftZxywrTsuz/gcuDZ/wSnJlDbUrYN41JHcHI5KH4Qn7qxoR55LVdHI09gGGGeaG0mjU7hnHZjHxmjkrHods2RUR6lA4Pq8LhMKa+yYtgxqQQ85kH7I7Rq7QVrOerYF1ERLq1/94RMFi0hfDpMgBalv0CR8YQPBOuxJE2wI54fZLDdBBpRhCZBBfMiKF0j4OgFSZ8JoX65gAPvbyPl7Yf4poZwxk9IBnD0M6BIiI9QYenT5dddhkPPvjg+cwiIn2cXj6KiEhP4swcinv0YnhziBU6vp/mpT+h+YV7CNWU2pyu7xmdMpwfTv0W1wy6nE/NnUZSrBdn2jHqsl/kTxv/zc8f2ULxiXq7Y4qISAd0eGXVsWPHiIiIOJ9ZRKSPaitYP0bQ6QGmf+D1IiIi3YHhjcYz8Spcwy/Cv+N5AvtWQThIqHQnzaU7ceZPxDP+Csz4dLuj9hnxnjhmZU0FYGh+DN97YxlBwjjiqzm0p54fP7iFyUPTWDIzn+R4/W4jItJddXhl1fTp03nppZfw+/3nM49It2cF/QSP7yd4fD/h5jN2x+kVVLAuIiI9mRkZh3fqDURd93Ncg2eB0fYSO1i0iaYnvkPw5CGbE/ZNsd4ovjTmk2RFZTLCO62tt8oIsy24jO8+8TSPrTxMc2vA7pgiIvIuOryyavDgwTz44IPMmDGDESNGkJSU9I4OK8MwuPvuuzs9pEh3YjWfoeX5nwPgnf1pzEHTbE4kIiIi3YEZnYR35i24Ry3Et/UZgkc2YMam4UgtsDtanzUwoYBvT/wKANXjWvjzG8s5GXEK4k/xytEwa3ed4JJpecwdm4nToX5eEZHuosPDqj/96U/tf167du27XqNhlYh8GDmBtoL1eBWsi4hIL2DGpREx97OERi/C8jdjmI72c/69rxJuqMY9ehGmN8bGlH3HW6XqqQmRXDg2l38f2oPfZxA63Y8mK8hjG7bw8u59XDN1DOMLU1TCLiLSDXR4WHXgwIHzmUNEREREpFdxJGad9bHlb8G/9Rms1gYC+1fjHjEP98j5GO5ImxL2PVPSxzM6ZTinWmqoynHx+Ooj1Gesoymygb9uO8JLmydx7ZyBpKRokCgiYqcPtdY1HA5z6tQp9VeJSKdoK1g/TChJnVUiItJ7Wa2Nb5etB1rxb3uWxke/iW/H81gBn73h+pAIp5fsmEzGFabyqavTMaMaMQywgi6OVtRz9z+38pMH3qDydLPdUUVE+qxzGlaVlJTw5S9/mXHjxjFjxgy2bt3K+vXrufrqq9myZcv5yigivdxbBetBFayLiEgvZsamEHHJHUQsvA0zJa/toK8J/6YnafrXN/HvfgkrqDeDu9LAxDy+O/HrjE0ZwwXZM3E6TIyoM+x0Psb3lz7OQy8foKFZ/yYiIl2tw8OqY8eOcfXVV7Np0yZmzJjRftzhcFBUVMQnP/lJduzYcT4yioiIiIj0CoZh4MwaTuTl38c778uYCW23Clot9fjWP0LTY98mWLrD3pB9TEZ0P24d8TGunTOYuz89iaTBxRguP47s/azefYRv/3k9yzeU4A+E7I4qItJndHhY9etf/xqv18vy5cu56667sCwLgIkTJ7J8+XKSk5P5/e9/f96CikjvlRucRsum+XiPqF1dRET6BsMwcOWOI/LKH+Gd+1mM2DQArKbT4I6yOV3flRTn5ZqRF5DgSSCupRDLH0mLL8QzB17h9n8uY/2ek4Tf/D1IRETOnw4XrG/YsIFbbrmFpKQkamtrzzqXlpbG9ddfz1//+tdODygivZ9e8omISF9lmCauAVNw5k8gcGgd4aoinP0Gtp8PN9USqirCmTtWu9R1AcMwGJ82mguHTOZk5RkODW3k0bXbqcs6iN84yP1bq3hp8yiumVPAkNxEu+OKiPRaHR5W+f1+YmNj3/O8y+XC51MxpIicu7aC9WMEnV5gmt1xREREupxhOnEPngWDZ5113L/9OQL7VmKm5OEZvwRH1nANrbqAy+HC6/IyssBLc2Qij+x3ELJChGpTKWlt4P89sZmheXF8bPYIMpO1Ek5EpLN1eFg1ePBgVq5cyQ033PCOc8FgkGeffZbCwsJODSfSLTlcONLbnutGxHsPcKXj6t4qWA947Y4iIiLSbVhBH8Hitk2MwtXFtKz4FY5+g3BPuBJnul53d5XJ6eMoTChgd/VBTrtTeGFTKeF+RymKK+NHK3YyOWUGS6YXEBftsTuqiEiv0eFh1Wc/+1m+8IUvcNttt3HBBRcAUFFRwauvvsrf/vY39u3bx29+85vzlVOk2zCjEoi85A67Y4iIiEgvZzg9RF37M/y7XsS/+0UItBI6eYiW536KI2t420qr1Hy7Y/YJCd54ZmZPgmwYPzyOn217AcsIY8Sc5vUdJ9i0t5r5k/ozf2J/PG6H3XFFRHo8w7I63hD41FNPcffdd9PU1IRlWRiGgWVZeDwevv71r3PzzTefx6j2qalpJBxWq05XSUmJobq6we4Y0oX+vnw/a3edICHGw6++2P1vA9RzVLo7PUelu9Nz9NyFWxvw71hGYO+rEAq0H3fmjsU9fgmOxCwb0/U+H/QcPXD6ME8cfB7XyZEcOmiAGcQ9aBueugKWjJrKjJEZmKZu15TzR99HpSd4v+epaRokJUW/5+d2eGUVwJIlS5g3bx7r1q2jrKyMcDhMZmYmU6dOJSEh4dxSi4iIiIhIh5jeGLyTr8M94uK2HqsDr0E4RPDYNgxPNI5Zn7Q7Yp8yOHEgd07+GoZhsO/Yae7f+izNsacJxp7moQ0hXtmax9WzBzAiP1EdYyIiH8I5DasAoqOjmTdvHqdPn8Y0TQ2ppM+xWhvx73kZAGfeOBxJ/W1O1POdMVSwLiIi0hFmVALe6TfhHrUA39ZnCRZtxD3usrOuCbc2YHpjbErYd7w1hBqam8glzkKePnyUQIuH8JkUKmjitytWk5+azI2zxtI/Tf8eIiLn4pyGVUePHuXee+9l7dq1tLS0ABATE8MFF1zAV7/6Vfr163deQop0J5avCf+2pQCYcWkaVnWCM45SFayLiIicAzMmhYjZt2JNvhbD+/ZtFKGqozQ/91Ncg2fjHrMYMzLevpB9yMysKYxPG01N8xl2JfhYvrGYcP4uyj2t/O9LB5iQMIMlM/NJjNVrHRGRjujwsGr37t3cdNNNBAIBZs6cSf/+/bEsi+LiYp599lnWrFnDo48+Sv/++sVdRERERKQr/OegCsC3+SkIBQnsfYXAwTW4h12Ie9TCd1wnnS/SFUFkXATZUyAtp4n797eAAeGAmzf2nGTzgUouGJ/BJVMKiPCc8w0uIiJ9Soe/S/7yl78kOjqahx9++B0DqUOHDnHTTTfx85//nD/84Q+dHlJEerfcwHTKtxWQGKstn0VERD4Kz4Ql+IBQxV4I+vHvXI5/3yrcI+fjHjEPwx1hd8Q+YXzGMPrFfI0VR1+j9cwQtledJhRVxerWlax5rJDLhs5kzpgsnA7T7qgiIt1Sh7877ty5k5tuuuldV04NGjSIm266ifXr13dqOBERERER6ThHagGRi75JxOLbMdMGtB0MtODf+jRNj34T/84VWEG/vSH7iKyYDD49+mN8eclovnX9aKLyjmC4fYTT9/Lo6r1872+b2HaomnPYnF1EpM/o8LAqNjaWUCj0nuejoqLwenUPtvQFekHR2c6YJTgzDxNIOGJ3FBERkV7BmTGEyEu/S8T8r2Mm5QBg+RrxbXyM5qd/hGWFbU7YtwzKjuf6UfOJcsTiqR0EQQ+Vp5v5vw1P88PHX+Lo8Tq7I4qIdCsdvg3whhtu4P777+fCCy9kwIABZ52rrKzkoYce4pprrun0gCLS+51xlOHKPEpIBesiIiKdxjAMnP1H4cgeQbB4K/4tTxM+cxznwCkYhm4/60qmYTIpfRxjU0cSCIVZu6OSZ3dsx8o6QjVH+NkLxxmXNIElswpIjdetmiIi7zmsuuOOO95xzOfzcfnllzNjxgzy8vIwDIOKigrWrFmDx6OuGRERERGR7sYwTFz5E3DmjiN4dAPO3HHt56xwmNZX/oCzYCLO/AkaYp1nLocLlwPmTeyPI7WMp4schMMW4TOpbKqqYuvRcmaMymDJ1CFER7jsjisiYpv3HFY9/fTT7/lJq1atYtWqVWcda25u5s9//jNf+9rXOi2ciPQNOYFplG8rIEkF6yIiIueNYZq4Bk4961iwaCPBY1sJHtuKueN5POOX4Og/GsMwbErZd1yQO43RaUPZdeIIh5oj2bivEjPzIBvCr7HxqQEsLriQC8dn43JqgCgifc97DqsOHDjQlTlERERERKSrhcMY3his1gbCNWW0vHgvZmoBnglX4swcane6Xi8pIoE5+ROYkw8TR0Xz1yMvgmER8tbyxOqjrNpewZWzCpg4JFUDRBHpUzSmFzlHhica99jLcI+9DDMx2+44vcIZs/TNgvWjdkcRERHpU1yDphF13S9wj18C7raupHDVUVqW/YLm539OqFKbn3SVMTk5fHH0J0l2pRFXPxKAU0313H/4b9z5+LMcKDltc0IRka7T4YJ1gGeeeYZ169ZRXV1NOPzOHUQMw+DBBx/stHAi3ZHhjcYz/gq7Y/QqdY5SXJlHCQZUKCoiItLVDHcEnrGX4h52Af6dK/DveRmCPkLH99O89Cc4+o8iYvanMbzRdkft9YYmFXLX9EGEplq8vvM4/z7yPFbMGc7ErOOXzwUYlT6Iq2YXkJ4UZXdUEZHzqsPDqnvuuYc///nPuFwukpKSME0tyhIRERER6S0MTxSeiVfhGjEP//bnCexfCaEgVn01uCPtjtdnGIaB02EwZ2wW/oQhLC8uJ9AQTbgxge2HT7Gr6iATC3K5dtooYqPcdscVETkvOjysevrpp5k+fTq/+93viIjQ6gcR6Tw5/umUbxuggnUREZFuwIyIxTv1etwj5+Pf/iyOrBEY//FGdbBsF2ZcP8zYVBtT9g0X581iWtZ4Tp6pY42zjnV7y3Dl7WS7uYXtT+9iQf4FzJuQjcflsDuqiEin6vCwqrGxkYsvvliDKunzwo01tK66DwD3mEtxZg2zOVFvouJQERGR7sKMTsQ74+azjln+FlpX3oflb8E1eCbusZdiRiXYE7CPiHZFMSAligGLMsge1MAzZX4A/C0enl5TxPo9J/nspUPJ6Rdrc1IRkc7T4Xv5ZsyYwYYNG85nFpGeIRggdOIgoRMHsVrr7U7TK5xxlLxZsK4SVxERke4sWLYby9cIVojA/lU0/etbtK5/lHCLXhN1hYsGTuT28V9hWMwY+pkDAKgKHeNnG//A0k17sCzL5oQiIp2jwyurvve973HLLbfwjW98gwsvvJCkpKR33T51woQJnRpQRHq/M44yFayLiIj0AK6CiZhxqfg2P0WobBeEAgR2v0hg/2rcI+bhHjkfw6Py7/Opf2wWX5jwMcLjLJ5Zf5BXGlZhuH28ePoxSp6+klsXDiPK67I7pojIR9LhYdXx48dpaGhg2bJlLF++/B3nLcvCMAz279/fqQFFRERERKT7cCTnErngfwiePIx/85OEThyEoA//9ufw730V96gFuIdfhOHy2h21VzNNg0WT8zm1YwQ767YQKB/IjlOnuevkJj6xqIDhOf3sjigi8qF1eFj1ox/9iPr6em699VZyc3NxOjv8qSIi7yvHP52KbQNIitWLWhERkZ7C2W8gjsXfJlSxD9/mfxOuLgJ/M/7N/8aZMQRH2gC7I/Z6Hoebz4y7hoOnJvFi7Rl2nKqh1ijnj4eeZ3jJdD47bQEOh3ZxF5Gep8MTp8OHD/OlL32JT3/60+czj0gPoC4AEREREQDDMHBmDcOROZRQyQ58W57CiE48a1Bl+VvA6cIw9Wb3+VKYnMOgJf15eWsJz5xaheEIsce3ll88mcAXFo0jLlo7LotIz9Lhnxj9+vXDNDWVFzmbdq/rDG0F66UEXRHAVLvjiIiIyDkyDANn7hgcOaPA13zWOd/GxwhW7MMz7nKcBZMx9DvFeWEYBvPG5+I5eiVPHHkaf1kBh0+18oO/b2LRhbFcOGTku3YOi4h0Rx3+SfGpT32KBx98kCNHtFuXiHSuOkcprsyjBBKO2h1FREREPgLDMDG80e0fh+urCBx4Hau+itZV99H87+8RPK6O2/NpVsFofjLjW0zsNw6ARtdxnjn5MN9f9Qdqms/YG05EpIM6vLLqwIEDGIbBpZdeSnZ2NsnJyTgcjrOuMQyDBx98sNNDioiIiIhIz2NEJeCZ8jH825/DaqkjXFtBy/M/xzlgCp7J12JGxtsdsVeKj4zi04uHMaR/Ao+UbACgJlTB757eyRcXTSQlXjswi0j31uFh1apVq3A4HPTr149AIMCJEyfOZy4R6UNy/DOo2DaQ5DgVrIuIiPQmhsOFe/iFuAbPwL/7Zfzbn4Wgn+CR9QRLd+CZcCWuIXN1a+B5Mn1kBpn9PsPvNvyLhuoYSqtD3HX/ZqbN9LN4xCRi3TF2RxQReVcdHlatXLnyfOYQ6TGM6EQiFt8OgBmfYXOa3sFSZ72IiEivZjg9eMYsxjVwCr43HiF4bCv4W/Ct+yeBg6/jnf0ZHImZdsfslfJSk/n5ws/z2KojrKyuwOc5ybq6LWx8fQ2fGXkjw1IG2R1RROQd9BaGyDkynB6cGUNwZgzBjIyzO06v0FawfphAgjrxREREejMzOomIeV8mYv7XMGJSAAjXHsdwumxO1ru5nA5uvKiQLy8ZgSepBoBAOMDDy8upONVkczoRkXfq8Mqqm266qUPX/eMf//jQYUSkb2ovWA+oP0FERKQvcPYfTVTGUPw7ngenFzM2tf2c5WsCd6R2rjsPxgxK4Udpt3DPyyuorG3kZA38+IHNjJxWw7SCQkalDrc7oogIcA7DqvLy8nccC4fD1NbW4vP5yMzMZODAgZ0aTkREREREeifD6cYzfslZxyzLouWVP0IogGf6TTgSs2xK13slxXn54ZLLWLr2GMveOEYwspq9LZvZu2cji3Lms7Bgrt0RRUQ+emdVKBTi1Vdf5c477+TWW2/ttGAi3VXozHGaH/8OAN65n8M1YLLNiXq+HP8Mjm9XwbqIiEhfFyzeQqhiLwDN//4BrhHz8Iy7DMOl1widyWGaLJmZz5D+8fzf6lcJBJ1gWKxeHWZIZD05/aIxDTXGiIh9PvJ3IIfDwbx587j66qv55S9/2RmZRERERESkD3JmDcc1fB4YBlghArtW0PT4dwgUb8HSjiydbkhuIj+++jJy6xfjPzKaU9Umdz+0lV+vfZh/7n+clmCL3RFFpI/qtHF5bm4uBw4c6KwvJyJ9iArWRUREBMBwR+Cdej2RV9yFmTYAAKvpNK0v/56WF+4hXF9lc8LeJzbKzW1XTuGqsVNwmAZW1CmKA7tZf2IL/9j7pN3xRKSP6pRhld/v59lnnyUpKakzvpyI9DHtBevxRXZHERERkW7AkZxD5KXfwTPzFvBEARAq20XTE9/Bt3UpVtBvc8LexTQM5k/qzx03jiPenUCoLgkr5ODAhlQOlNTiD/lpDfrsjikifchH3g3Q7/dTXFxMfX09X/7ylzstmIj0Qdr0R0RERN5kGCbuwbNw5o7Fv/EJAgfXQChI4MBq3CMvtjter5SfEcuPPj6b+19IY9u+IlpbXPy/R7czcHI5ze7jfHzI1QxMKLA7poj0AR9pN0Bo66zKz89n8eLFXH/99Z0WTKTbUl1Cp8vxT+f49oGkxKs8VURERM5memPwzvokrsIZtK79B+6xl55VuG5ZYQyVgXeaSK+TL1w2nDU7E3nklcMEPbWUhfdAKzx9+AW+OeELGIbeYRSR8+sj7wYo0qfpB7WIiIhIl3D0G0jkkrvgPwZTVtBP89If4xo4HdfwCzFMh235ehPDMJg1OpOCzDj+tHQPVSWDcWUcpXRLHjsTahiaH0tF40ny4vrbHVVEeqkOD6tERM6XtoL1MvyuSGCq3XFERESkm/rvYZR/x/OEa8rw1TxK4NBaPNNvwtlvoE3pep+slGi+/4kJPPpKPGt2ZkHYyW//vYuCCeWcMPYyt/8MLs2fj9PUr5Ui0rne87vK73//+w/1Bb/0pS996DAi0je1FawXEfBH2h1FREREehBHv0KMuDSsukrCp8toefZ/cRXOwD3pGkxvjN3xegWPy8HNCwYzNDeBB184QEu4mYrwPgyHxcGaYswC3YIpIp3vIw+r/vt+ZQ2rRERERESkKzizhhF11U/w71yBf/tzEAoQOPg6gWPb8Ey8Gtfgmeqz6iQTh6SRmx7Ln5fu4djeqbhy91K6P59N0VWMHZzEmoo3mJU1DZdWWYlIJ3jP7ySvvvrqB35yY2Mj99xzD6tXr8bpdL7njoEivYkjIYOYzzxgd4xepb9/Bse3DyI1PsLuKCIiItLDGA4XnrGX4howmdZ1/yRUtgt8Tfhef4DAwTV4p38CR3KO3TF7hdT4CO64cRxPvVbEC5uiAbjvuX3kVJRR5dzLxhNb+eLoW4n3xNmcVER6uvccVmVmZr7vJy5fvpyf/exnVFVVMXbsWO666y4GDRrU6QFFREREREQ+iBmbSsT8rxM8tg3fGw9jNZ0mXFWEb/0jRF5yh93xeg2nw+SauQMYnJPAX5/fR2Orj5O+MkwnEHYQ69btlyLy0Z3zmtiysjI+9alP8Y1vfAO/389PfvITHnnkEQ2qRORDaytYP4w//ojdUURERKQHMwwDV944oq65G/eoheBw4Zl6o92xeqWRBUn88JMTGZydiG/fZALlAyjZXMBr24/jC/r5+56HqWg8YXdMEemhOnxDcSAQ4L777uMvf/kLPp+PK664gm9+85skJCScz3wi3Y4V8BGqLgLATMjEjIi1OVHPV+9sK1j3+6PsjiIiIiK9gOHy4pl0Da6R8896rRZurMG37p94Jl2DGZ9uY8LeISHGw23XjWHZ+mM8s9bEsuChlw6x8uQrnPbuY0f1Hr429nPkx+k2TBE5Nx0aVm3YsIEf/vCHFBcXM3DgQH7wgx8wfvz4851NpFsKN5yi5fmfA+C98AuY+RNtTiQiIiIi7+a/31T0rX+UYMl2gmW7cI9aiHvMYgynx6Z0vYNpGlwyLY/C/gn8+dm91Da0Ulnjw5UBKd40cmKyAAhbYUyV3YtIB73vsOr06dPcfffdLFu2DK/Xyze+8Q1uueUWnE7t8CAinad/6wyO71PBuoiIiJw/VjiEERELGBAO4d/+HIEj6/FOvRFnzmi74/V4g7Lj+eEnJ/L3ZfvZccQgdCaF0rCLF4wyLpyQwT3b/8T4tNHMzZ6hoZWIfKD3nDo9+uij/OY3v6G+vp65c+dy5513kp6upbIich4ZdgcQERGR3sowHXin34Rr0HRa1/6D8KljWA2naHnxNzhzx+KZegNmdJLdMXu06AgXX75yBK9uLefxVUcIhiz+/VoR606tpC6qgrKGCiKdkUzNmGB3VBHp5t5zWPXDH/6w/c8rV65k5cqVH/jFDMNg3759nZNMRPqMtoL1MvzuSGCK3XFERESkF3Ok5hN5+fcJ7F+Fb/OT4G8heGwbwfI9uMdehnvExXZH7NEMw+DC8dkMzIrn/5buobK2haqSODwFUaTGxDKp31gA6nwNxLijtMpKRN7Vew6rLr/8cgxDyxxE5PyrU8G6iIiIdCHDNHEPuwBn3nh8Gx8jePgNCPrxb3oCAq2w8Ga7I/Z4Of1i+P7NE/jnSwdZvxdadk+h1Bng6eAxFk/L5nc77iPaFcWNQ64hOSLR7rgi0s2857DqZz/7WVfmEBERERER6VJmZBwRcz5DsHAGvrUPYbXUa2VVJ4rwOPn0JcMYmpvIQy8dxO93snxDCVtq36AhrhKALZU7mJ871+akItLd9Pqm9HvvvZcXXngBwzCYOXMm3/rWtzBNLTUV6U5yfDM4sX0QqQkqWBcREZGu58wYguPKHxE+cwLDG91+PFR5hNCpY7iGzMXQ7xAf2rQR6eRnxPJ/S/dSVtVI1eE0InLrSE73cVH/WQCcaKrE6/CQ4I23N6yIdAu9+jvua6+9xrp163j22Wd57rnn2LFjB6+++qrdsUTkv1h2BxAREZE+z3A4cSRlt39shYO0vv4AvnX/pPmZHxGqKrIxXc+XnhTFnTeN44KxWRB20lI0lLI3RvLIy0do9vn4+56H+cnGX7PxxFa7o4pIN9CrV1bNmjWLqVOn4nK5OH36NA0NDcTFxdkdS0T+S91bBeuuKFSwLiIiIt2B1XgaK9AKQPjUMZqf+TGuoXPwTLgSw6OezQ/D5XRww7xBDMlN4P7l+2lqhVXbK9hzei+NaScBqGk9bXNKEekOevzKqmeeeYahQ4e+438NDQ0AuFwu/vKXv3DBBReQnJzM6NGj7Q0sPZ7hdONIL8SRXojhjbE7Tq9Q5yzBlXmUQPxRu6OIiIiIAGDGphJ19f/iHnMJmA7AIrBvJU2PfZvAoXVYltaGf1hjB6Vw1y0TGZDVtpCguiSe0NHxZLjymNd/DgBlDcfZdHKb/p5F+ijD6iP/7w8EAnz7298mMTGR7373u+f0uTU1jYTDfeKvqVtISYmhurrB7hjShb774p844yrG9Efxu/k/sDvOB9JzVLo7PUelu9NzVLq7/36Ohs+coHXdQ4Qq9rUfc6QX4pl2E47ETDsi9gqhcJila4tZ9kZJey3E5KFpfOyiAn67648cbzrJmNSR3DrsBu1U/1/0fVR6gvd7npqmQVJS9Lueg16wsur9HDp0iH372n6guFwuFi9ezIEDB2xOJSL/rb9vJi2b5hNdMs/uKCIiIiLvYManE7Hwm3jnfg4jom01UOjEQZr//X2CJw7anK7ncpgmS2YW8I3rRhMX5QZgw75KfvSv1zjT2vYLbr/IVA2qRPqgXj2sKioq4s4778Tv9xMKhVi+fDkTJkywO5aIiIiIiPQwhmHgGjCZqGt/imv4RWAYmAkZONIG2B2txxuam8hdn5zI8LxEAGoqXZzZOpkB7rFcnNN2W2B5w3Hu3/sIjf4mO6OKSBfpNsOq/fv3M2zYME6ePPmOc88//zyLFi1i5MiRLFiwgGeeeaZDX3P+/PnMmjWLyy+/nMsvv5zo6Gg+97nPdXJy6WvCzXX4tjyNb8vThGor7I7TK5xxHMOZeRhfnDqrREREpHsz3JF4p95A5BV34Z19K4bpaD8XLN9DuL7KxnQ9V1yUm69dM4qr5xTgMA1Cfhe716byx6f2UdvYzD/2P8aWyh3cvekefCG/3XFF5DzrFrsBHj16lM9+9rMEg8F3nFu+fDm33XYbn/jEJ5g+fTqvvPIKt99+O16vl/nz53/g1/7qV7/KV7/61fMRW/ooq7Ue/7alAJiJWTgS1FPwUdU5S3FlFhPwa2cdERER6RkcyTlnfRxubaDl1T9B0I97zGLcoxZiOFw2peuZTMNgwaQcBmXF8+dn93KqrpWdR2v40T9OkzWurdtmSsYEPI62WwZD4RCO/xgWikjvYeuwKhgM8thjj/GrX/0Kl+vdv5Hfc889LFiwgDvuuAOAGTNmUFdXx7333tuhYVVneL/SLzk/UlK67y57fiuK5jf/HBsXQXQ3ztpTOMw3F3ka3fvf/j/1lJzSd+k5Kt2dnqPS3Z3rc7Rh11aafG23qPm3PI1VtIGkiz9NZP6o8xGvV0tJiWF4YRq/f3wH63Ydp67eomF1PjNnDeKGcRfjcbooOVPOL9b+H7eOvY6xGcPtjmwLfR+VnuDDPk9tHVZt3bqVX/7yl9x6662kpaVx5513nnW+rKyM0tJS/ud//ues4xdffDErVqygrKyM7Ozs855TuwF2re6+s0Wo9u375OvrWmjpxll7iszmaVTsH0haYmS3/rd/S3d/joroOSrdnZ6j0t19qOdo+jgiLv0uvrUPEj5dTuD0CU4++iOc+RPxTPkYZlTC+Qnbi31yQSEF6TE8+uphAsEwq1eHOHH0DW5dPJi/HLyf6qYafrH2T9w1+VskRSTaHbdL6fuo9AQ9djfAgoICXnnlFb70pS/hcLxz+WZRUREAeXl5Zx3PyWlbcltcXHz+Q4qIiIiIiHSAs99AIpf8EM/kj4HLC0CwaBNNj9+Bf9eLWOGQzQl7FsMwmD0mk+/dNJ70pEgADpad4YcPbKHAPQqvw8u8/rPbB1W1rWdsTCsincnWYVVycjJJSUnveb6hoW0CFx199rQtKqqt16axsfH8hRN5L1pk1+nqnCU4Mw/jV8G6iIiI9HCG6cA98mKirvkpzvw3dyIPtOLb8CjNT92F5W+xN2APlJUazfc/MYGZo9IBaGoJ8sILFiODV3BR/7kAHG88yV0bfsGjB5+iNeizM66IdIJusxvgu7Gs958KmGa3ji99gWHYnaBXqHOW4Mo8qmGViIiI9BpmVAIRF36RiAXfwIhNazsWl4bhjrA5Wc/kcTu4ecEQPnvpMLzutrtyXttcy88f3kllbTOPH3qGYDjIuoqNVDZrR0aRnq5bT3tiYtqKuJqams46/taKqrfOi4iIiIiIdEfO7BFEXfVj3OOX4Jly/VnnQlVHsaywTcl6pklD07jrlgnk9mv7XbDkZAM/vH8zw5xzGBifz0U5s8mJbes1PnD6ML6Q3864IvIhdeth1VtdVaWlpWcdLykpOeu8iPRs/Vtn0rJpPjGl8+yOIiIiItLpDKcbz9hLMaPfLgEP1ZTRvPR/aV76v4ROldiYrudJTYjkOx8fx8UT24ZSrf4Qjy6vIObkTC7KvABouy3wTzv/zk833UNxXen7fTkR6Ya69bAqJyeHrKwsXnjhhbOOv/TSS+Tm5pKRkWFTMhERERERkQ/Pv20pWGHCVUdpfvouWt94WH1W58DpMLl27kC+dvVIoiNcAKzbdZL/fWgb5VWNvFbxBkErxKmW06h0VqTncdod4IN88Ytf5I477iAuLo7Zs2fz6quvsmLFCu655x67o0kfZUTE4h57GQBmvAamnaGtYL0cnzsamGx3HBEREZHzzjv7U/hiUgjsfgmsEIE9LxMs2oxnysdw5k/EUDdqh4wsSOaHn5zIX57by4HSM5yoaeZHD27hugsmcEVBEq0hH3lxbbvJbzixhX5RqeTG9rc5tYh8kG4/rFqyZAl+v5+///3vPPHEE2RnZ/Pzn/+chQsX2h1N+igzMg7P+CvsjtGrtBWsH8Pvj/7gi0VERER6AcPlxTv5WlyDpuFb+w9CJw9hNZ+h9dU/4TiwBu+0j2PG97M7Zo+QEOPhtuvG8Pz6YyxdW0wwFOafLx1mXGEKtywYDMCJpkoePfgUoXCIqwZeyuzsaTanFpH3022GVUuWLGHJkiXveu66667juuuu6+JEIiIiIiIi55cjMYuIS+4geHgdvg2PYbU2EKrYS9OTd+IeeymesZfaHbFHME2DS6flUZgdz33P7aO2wcfWg9UcO9HA5y4bximzvH23+f6xmTanFZEP0q07q0Skb8huaStYjy1TwbqIiIj0PYZh4Bo0nahrfopryBzAgHAQwiG7o/U4hf0T+OEnJzJ6QDIANfWt/PSf26gpSeZb47/MNYMuIz8uF4BVZWtZVvwyIf09i3Q73WZllUhPEa6vovW1vwHgHr8EZ3qhzYlEREREpDcwvNF4Z3wCV+EM/DuW4R69qP2cZVlYLfWYkXE2JuwZoiNcfPnKEbyypZzHVx0hFLZ4cvVR9pck8qnF4wE42VTFM0eXEwwHOdF4kk+N+LjNqUXkP2lllcg5sgKthE4cJHTiIFZro91xeoW2gvXD+GKP2h1FRERExHaO1Hwi5n0Zw+luPxYs3kLTv76Jb8dyrFDQxnQ9g2EYXDQhm+/eNI7UhAgA9haf5gd/38TeY6cJW2FSI5IxMJiTPQOAsBXWKiuRbkLDKhGxXb2rBFfmUXxxGlaJiIiI/DcrFMC3/lEI+vFvepzmp75P8PgBu2P1CLn9YvnBzROYPCwNgPomP7/+1w7Wb23iG2O/xOdH3UJBfC4Aq8vX8attf6TBrzekReymYZWIiIiIiEg3ZjhceOd8GjM+A4Bw7XFanv8ZLavuI9xSb3O67i/C4+TTi4dy66IhuF0mFrBsfQm//tdu0pw5AFQ1V/Ps0RWU1Jfx8IEn2svYRcQeGlaJiO2yVLAuIiIi8r6cGUOIvPJHuCdeDW/eHhg8/AbNT3yXwLFtNqfr/gzDYNqIdH5w8wSyUqIBOFJRx11/38zWg1UkeOIZnDiIKFckE/uNwzAMmxOL9G0qWBc5V3qXRURERERsYDiceEYvwlUwCd8bDxMs2Y7V2kDrS78lVDgTz9TrMVxeu2N2a+lJUXzvE+N4bOURVm6roNkX5A9P72HO2Eyum3ElpgNi3TF2xxTp87SySuSj0BsunaLOeUwF6yIiIiIdZMYkE3HxV/HO/Ry428rDAwfXECzeanOynsHldHDjvEK+eMVwIj1t6zdWbavg14/sp6mh7VfkbVW7+PuehwlbYTujivRZWlklIrZrK1gvwefXu1giIiIiHeUaMBlHv4G0rv4rhsuLc+BUuyP1KOMKU8npF8Ofn93L0Yp6yqsb+eEDm1m40ODFE8sAGBCfx8ws/b2KdDWtrBIREREREemhzOgkIhZ9E++cz5zVsxQo2kT4zEkbk/UMyXER3H79WBZNycEA/IEwu7Z5SPQmEOWKJEa3BIrYQiurRMR22S2z2LK9ivSkSLujiIiIiPQ4hmG23w4IEDpdQeuqv4Bh4Jn8MVxDZqsw/H04HSZXziogFLZ4YWMpRWXNXDtyMZMH5RLn0bBKxA5aWSVyjsy4NCIW307E4ttx9Btkd5zeQaX1IiIiIp0mdHwfhAIQ9ONb+yAtL/6GcHOd3bG6vcVTcoiOcAGw6o1GopxRQFt/1Zry9XZGE+lzNKwSOUeGy4szYwjOjCGYXr3T0hnqnCVtBetxKlgXERER+ajcwy8iYtG3MKISAQiV7qT5yTsJHttuc7LuLdLr4tJpuQBU1bawansFS4+u4G97/sm/Dz/L8UbdVinSVTSsEhHbtRWsH8UXW2R3FBEREZFewZk5lKirfoyzYDIAVmsDLS/dS+uav2MFWm1O133NHpNJWkLbLZXPri1mUOwgDAw8Dg+1Pq1OE+kqGlaJiIiIiIj0QoYniogLPod37mfbO60CB9bQ9O/vE6o8YnO67snpMLlq9gAAmlqD7N5jcdPQa/nupP9hWFKhzelE+g4Nq0TOUejUMRruu5mG+24mcGyb3XF6heyWmbRsmk9c+Ty7o4iIiIj0Oq4BU4i66ic40gcDYNVXETiiDqb3MnZQMgOz4gB4ZUsZ+d4hxHliAdhRtZvS+nI744n0CRpWiXwEBtpVRURERES6PzM6iYjF38Iz+VrMpGw8k66xO1K3ZRgG18xtW10VDFn8e00RlmXxz/1P8Jc9D/Hgvn8RCAVsTinSu2lYJSK2e6tgvTVWBesiIiIi54thmLhHLiDyirswnJ7248Hj+/HvX42lHZrbFWTEMXFIKgAb91VSfKKB5Ii2wvp6fwMnmirtjCfS6zntDiAi0lawXoLPr90VRURERM43w3S0/9nyNdG66i9YTacJlmzHO/OTmJFxNqbrPq6cVcC2Q9UEQxaPrzzMbR+bRXOwhbnZM4j36O9I5HzSyioREREREZE+KtxwCmhbURUq3Unzk3cSLNlub6huIiU+ggvHZQNwqLyOnUdqWTJgcfugas+p/bQGfXZGFOm1NKwSEdtlvVmwHq+CdREREZEu5UjOIeqqn+DMnwiA1dpAy4v30rrmfqxAq83p7Ldoag5R3rYbkp5YfYRgKIw/5OfBff/iT7vu55mjy21OKNI7aVglIiIiIiLShxmeKLwXfB7vnM+AOwKAwIHXaPr3DwhV9e1O0Sivi0un5QFQVdvC6u0VOE0nta1nANhauYMGf6ONCUV6Jw2rRMR2da5jKlgXERERsZFhGLgGTiXqqp/gSC8EwKqvpHnp/+Lb8jRWOGRzQvvMGZtJanzbEO/Zdcdo9YW4ccg1jEkZwXcn/Q8x7mibE4r0PhpWiYjt6p0luDKP4tOwSkRERMRWZnQSEYtuxzPpGjAdYIUJnTgAGHZHs43TYXLV7AIAGlsCLFtfQnJEIp8a8fH2/qrS+nI7I4r0OhpWiYiIiIiISDvDNHGPWkjkFT/ATBuAd/anMcy+/avjuMIUBmS2DaZe3lLOqTMtALQEW/jHvsf4+ZbfsqN6j50RRXqVvv0dR+RDcCTnEvOZB4j5zAM4c8fYHadXyG6eRcum+cRVqGBdREREpLtwJPUn8tLvYsYktx8LN5yi5dX/I9xcZ2OyrmcYBtfOHQBAMBTmqTVFAPhCfnaf2gfA0qPLCVth2zKK9CYaVomIiIiIiMi7Moy3b/+zwmFaV/+F4NENND95J8GS7TYm63oFmXFMGJwKwIZ9lRSfqCfeE8c1gy5nSOIgvjL6M5iGfsUW6Qz6f5KI2K69YD1GnVUiIiIi3VYogBHRdiuc1dpAy4v30rrmAaxAq83Bus6VswtwmG0DvMdWHsGyLManjeaLo24lwRsPQJ2vwcaEIr2DhlUi58jytxA8vp/g8f2EW/WDqDPUu94qWC+yO4qIiIiIvAfD5cF7wefxzvkMuNp2xwscWE3Tv39AqKpvvOmYGh/BBeOyADhUdoYdh09hGAaGYdASbOGhfY/z442/5Iyvb90mKdLZNKwSOUfhupO0PP9zWp7/OeHKvvFDWUREREQE2m4LdA2cStRVP8aRXgiAVV9J89L/xbflaaxwyOaE59/iqblEeZ0APL76KMFQW0/VkTPFbDi5hZZgC08efs7OiCI9noZVImK7rDcL1uMrLrI7ioiIiIh0gBmTTMSi2/FMugZMB1hh/NuW0rz0fwk31tgd77yKjnBxydRcACpPN/PajuMAjEgeyqR+4xiSOIgrByy2MaFIz6dhlYiIiIiIiJwzwzRxj1pI5OXfx0zIBMBqPoPh8tqc7PybMzaLlPi2x7l0bTHNrUEAritcclZ/VSAUsCuiSI+mYZWI2K5eBesiIiIiPZYjOYfIK36Aa/g8vHM+jeGJaj9nWZaNyc4fl9PkqtkDAGhsCbB8QwkAbofrzf6qVv65/wl+v/OvhK2wnVFFeiQNq0TOVS/9gWuntwrWW1WwLiIiItIjGU433qnX48wY0n7MCvpoef5nBEt22BfsPBpfmEJBRiwAL20uo6bu7V0RXy5ZzfoTmzlyppjXyt+wK6JIj6VhlchHYdgdQERERESke/JteJzQiYO0vPgbWl9/ACvgsztSpzIMg2vnDgQgGArz1Jq37xKYlzOH5IgkBicMZHTKcLsiivRYGlaJiO0ym2aqYF1ERESkl3GkFYArAoDA/tU0PfV9QlW9ayX9gKw4xhemALB+byXHTtYD4HV6+PrYz/HF0W/3V/XWWyJFzgcNq0SkG9FSNREREZHewjVwKlFX/RhHeiEAVl0lzUt/gm/rUqxwyOZ0neeq2QU4zLbXsY+vPNI+lIr3xGEaJi3BVh7e/yQvlqy0M6ZIj6JhlYjYTgXrIiIiIr2TGZNMxKLb8Uy6BkwHWGH8W5+m+dm7CddV2h2vU6QmRHLBuCwADpSeYeeRmrPO37/3Ed44sYnlxa9Q1nDcjogiPY6GVSLnyu3FkV6II70QwxNtd5peod6tgnURERGR3sowTdyjFhJ5+fcxEzIBCFcdpenf3ydQvNXmdJ1j8dRcIj1OAB5fdYRg6O0dABfnzcM0TAri84h687ZIEXl/TrsDiPQ0jvgMIi+5w+4YIiIiIiI9iiM5h8grfoBv0xME9rwMVggzrp/dsTpFdISLS6bl8tjKI5w83czrO48zZ2zbaqv+sVl8Y9wX6B+ThWlovYhIR+j/KSJiu6ymWSpYFxEREekDDKcb79QbiFh4G97pn8CRmNl+rqf3WM0dm0VynBeAZ9YW0+ILtp/Lje2PaZi0Blt59MC/KaorsSumSI+gYZWIiIiIiIh0KWfWcFyFM9o/tiyL1pd/T+vrD2AFfDYm+/BcTpOrZhcA0NAcYPmGswdSoXCIX2z5PWuPb+ShfY/hD/ntiCnSI2hYJXKOwk21+LY8jW/L04TPnLQ7Tq/QXrAeq4J1ERERkb4ocHANwZLtBPavpump7xOq6pldphMGp5KfEQvAS5vLOF3f2n7OYTqYkj4eaNspsCXYM4dyIl1BwyqRc2Q11eLfthT/tqWE63vHDiZ2ay9Yj+mZL0pERERE5KNxZg7F0W8QAFZdJc1Lf4Jv69Ied2ugYRhcO3cAAIFgmKfWnP369oL+M7ll2PV8ecynifPE2BFRpEfQsEpERERERERsZcakELH427gnXg2mA6ww/q1P0/zs3YTrq+yOd04GZsUzrjAFgPV7TlJysqH9nGmYjE8b/WZ/lY+lR1fQEmx9ry8l0mdpWCUitnurYD3huArWRURERPoqwzTxjF5E5OXfx0zIACBcdZSmJ7+H/8BrWJZlc8KOu2p2AQ7TwAIeW3n4HdnP+Oq4e9M9vFSyiqcOP2dPSJFuTMMqERERERER6TYcyTlEXnEXruFvvpEZ9OFbcz++NX+3N9g5SEuIZM7Ytp0OD5SeYdfRmrPOx7pjSIlIAqC6pYZAOPiOryHSl2lYJXLOes47Oj1F3ZsF6y0xKlgXERERETCcbrxTbyBi4W0YkfEAOPqPtjXTubp0Wh4RHicAj686Qigcbj9nGiY3DrmaqwdexlfGfAaX6bQrpki3pGGVyEdi2B2gV2hQwbqIiIiIvAtn1nCirvoJnumfwJU3rv24FQ5iBbr3bnrRES4umZoLwImaZl7feeKs8wneeGZnT2vvr3rj+GYbUop0TxpWiYiIiIiISLdleKNxD51z1jH/1qU0PfV9QlXd+83OC8ZlkhznBeCZ14to8b3zdr/yhuP8dNM9PHzgCbZW7uzqiCLdkoZVImK7zMa2gvVEFayLiIiIyAcInSrBv+N5rLpKmpf+BN/WpVjhkN2x3pXL6eDKWQUA1DcHWLGx9B3XxLhjaAm17Qi4tUrDKhHQsEpERERERER6EDMxG/eEK8F0gBXGv/Vpmp+9m3B9ld3R3tXEIankpccC8NKmUk7Xt551Ps4Tw/WFV3LlgMV8aviNdkQU6XY0rBI5R0ZkAu6xl+EeexlmXKrdcXqFercK1kVERESkYwzTxDN6MZGXfx8zPgOAcNVRmp78Hv4Dr2FZ3WtDJMMwuHbuAAD8wTBPr3nnrYujU0cwt/9MTMPEF/JTVHesi1OKdC8aVomcIzM6Ec/4K/CMvwIzrp/dcXqFBvcxXJlHaVHBuoiIiIh0kCM5h8gld+Ea/maVRNCHb839tL70W8It9bZm+2+DsuMZOygFgDf2nKTkZMO7XldUV8Ldm+7hDzv+Rk1LbVdGFOlWNKwSERERERGRHslwuvFOvYGIhbdhRMYDECzZTvNTP+h2uwVeNbsAh2lgAY+vOvKuK8CaA82caqmhNeTjtYp1XR9SpJvQsEpEbJfZOLutYP2ECtZFRERE5Nw5s4YTddVPcOaNB8BVOBPD5bE51dn6JUYye0wmAPtLatldVPOOa4YnD2FW1lSWDFjM5QULuzqiSLfhtDuASE8Tqq3At/YfAHgmXYMjtcDmRCIiIiIiYnij8V74RYIl23H2H3nWuXB9FWas/X2zl07L5Y09J2jxhXh81VGG5SXiMM9eQ3LNoMvb/+wL+WkJthDvievipCL20soqkXPlbyF04iChEwexfE12p+kV6t3FbQXr0SpYFxEREZEPzzAMXLljMcy312UEijbT9Ngd+LYtxQqHbEwHMZFuFk/JBeD4qSZe33XiPa8tqjvGTzfdw193/5OwFe6ihCLdg4ZVImK7BncJrsyjtMYU2x1FRERERHoRK+jHt+6fYIXwb3ma5ud+Sri+ytZMF47PIim27RbFZ14vpsUXfNfrtlXuorqlhuL6Ejad3NaVEUVsp2GViNiue20uLCIiIiK9heF0E7HgfzDjMwAIVx6h6d/fx3/gtXctOO8KLqeDK2e1VYnUN/l5YWPpu153acF8MqPTuWLAIib2G9uVEUVsp2GViNgus2GWCtZFRERE5LxwJOcQueQuXMMubDsQaMW35n5aX/4d4ZZ6WzJNHJpGbr8YAF7cVEptwzt3LnQ73Nw+/itc2H8WpmHiD/kJht99FZZIb6NhlYiIiIiIiPRqhtONd9qNRCz4BkZkPADBY9tofvJOgqU7uzyPaRhcO3cAAP5gmKfXFL3rdQ7TAUBxXQk/3fwbXjj2apdlFLGThlUiH4lhd4Beod59TAXrIiIiInLeObNHEHXVT3DmjQfAaqmn5YV7CJ083OVZCvsnMGZgMgDrdp+gtLLhXa+zLIvHDj1DVfMpXixZRUXje5eyi/QWGlaJiO0aPMdwZR6lJfrd31ESEREREekshjca74VfxDv70+Dy4swdi5k2wJYsV80uwDQMLODxVUfetUfLMAxuHHw1XoeHS/Pnkx6V1vVBRbqY84MvEREREREREek9DMPANWgajvRB4PRgGPbcMZGeFMXsMRms3FbBvmO17Ck+zYj8pHdclxWTwY+n3kGkKxKAcDjc1VFFupRWVomI7TIaZrcVrJ9UwbqIiIiIdB0zJgUzIhbLChNuqiXcVIsVaO3SDJdOz8PrbuumenzlEULvMYh6a1BVXFfKN178MYdrdVeC9F4aVomcIzMhg4jFtxOx+HYcKXl2x+ldVAEmIiIiInbwNdP08NdpevjrBA6+3qX/6dhIN4um5ABQcaqJdbtPvue1zYFmfrfjPirqT/LQ/sdpDb5zF0GR3kDDKpFzZLgjcWYMwZkxBMMbbXecXqHeXayCdRERERHpsy4an01irAeAp9cU0eoPvut1ka5ILsmfj9N0Mj1zEm6HqytjinQZDatExHaNnhIVrIuIiIhIn+V2ObhyZgEAdU1+XthY+p7Xzsqayi/n38m8nDmYhn6ll95Jz2wRERERERERm00alkZOWgwAL2wqpbbh3W/xMw2TjJi2HQFL6sv47fb7aA40d1lOka6gYZXIOQqePEzDfTfTcN/NBMv32B2nV1DBuoiIiIj0daZhcM3cAQD4A2Geef397zoobSjnl1v/wMHaIzx+6NmuiCjSZTSsEhEREREREekGhuQkMHpAMgBrd52grKrxPa/Njs5kSOIgHIaD9KhULMvqqpgi552GVSJiOxWsi4iIiIi0uWp2AaZhYAFPrDryntcZhsH1g6/k9glf4eLcuRiGttaW3kPDKhGxXYPnWFvBelSx3VFERERERGyVkRzFrNEZAOwpPs2eopr3vDbeE0dmdDrQ1l/11JHntcJKegUNq0RERERERES6kcum5+F1OwB4fNURwuH3H0Btq9rFL7f+gVdL17C5cntXRBQ5rzSsEhHbZTbMoWXTfJIqL7Q7ioiIiIj0RYaBERmPERkPTrfdaYiNcrNwcg4A5dVNrNt94n2vHxRfQJQzEofhoEk7A0ov4LQ7gIiIiIiIiIidDE8U0Tf+xu4YZ5k3IZtV2yuobfDx1OtFTByShufN1Vb/LdodxS3DrifKFUlWTEYXJxXpfFpZJSK2e6tgvTnq/bfnFRERERHpK9wuB1fOygegrtHPi5tK3/f6wsQB7YOq0vpytlXtOu8ZRc4XDatExHbtBesxGlaJiIiIiLxl8rB+9E+LBmDFxlLONPr+f3t3HldVnf9x/H0v+6IgiAqILFqM4q6Je64papmMpmYzTVpjjdP8nPJXav7KmnqoYzNW066tUzkOZjaaWy5ppVbi0ihgiaCAG7EJiGz3/v4gGO/gwlXgXOD1fDx4dDvnnsPb643gzfd8zjWP+SLtay2Nf1l/T/ynMi9ceTg74MgoqwAAAAAATZq1vEylx/ao9NgeleeeMjpOFbPJpMlDO0iSikvLtfbLa989u41XK1msFpVZypRy/kRdRwTqBDOrADs5t7lJzX77rtExGpWg80P17+NZCg9sZnQUAAAANEVlxbq4/Q1Jklu/u+Xk6zhznzqG+albe38dSs7Sl9+f0ojebRUQcOXvm3/hd5PubD9Gv/C7WSHMr0IDxcoqAAAAAAAc2KShHWQ2mWS1SnE7kq/5/JGhQ6qKqpP56TpTeK6uIwK1irIKgOHy3RiwDgAAAFxJUEsvDe5eUT79+3iWDhytWfm0KXWblu57We8l/EPllvK6jAjUKsoqwE7W4kKVnUpU2alEWYsLjY7TKFQOWL/gTVkFAAAAXM74geFyc3WSJL297ogsFus1jykquyiL1aL0glM6nsf8KjQclFWAncqz01W0fomK1i9R+U98wQcAAAAal2uXQEbw8XLVmL6hkqTU0+e1+/CZax4zLvw29WjVVf/b+/e6qUVEXUcEag1lFQDDBZ4foqJvR6vl2ZFGRwEAAAAc1m23hKhFMzdJ0ppdySouvfqlfS5OLrq/8z1q16ytJCmj4LRKLWV1nhO4UZRVAAAAAAA0AG4uToodXLFCKregRJu/PVmj48ot5dqYslWLv3tRnx3fUpcRgVpBWQXAcP8ZsH7tO5sAAAAATVm/qDaKCPKRJG3ce1J5BcU1Ou77n47IYrVoR/pXyi3Oq8uIwA2jrAJguIKfB6wXeaUYHQUAAABwaGazSdNvj5IkFZeWa+1X1/4e2snspF93mqJ2zYL1aM/fydfNp65jAjeEsgqA8RxzhiUAAACaCrOznNv3lXP7vjL7BBqd5pq63Rygru39JUm7Dp1SRmbBNY8J9Gqtx3r/Qe2aV8yvyis+X6cZgRtBWQXAcIHnh1YMWM8cYXQUAAAANEEmFzd5DH9QHsMflHO7rkbHqZFJQ9rLZJKsVinui5qN0zCZTCq3lGtT6jY9uXuRkrJ/rOOUwPWhrAIAAAAAoIEJDvDW4G5BkqTvk7N0JDW7RsflFudpc+p2lVnLtTLpY5Vbrn5HQcAIlFUADMeAdQAAAMB+dw4Ml5uLkyTpn9uPyWK59nwNfw8/TegwTm08W2l652lyMjvVdUzAbs5GBwAaGpOrh5wCIyseu3kanKZxyHdPlUvz07pQ4md0FAAAADRB1rJiFe/+SJLkHNFHzm2jDE5UMz7eborp205rv0xR2rkC7TlyRgO6XHvm1qDgvuoX2FsuTi6SpNLy0qrHgCNgZRVgJyf/dvK8fZ48b58np5ZhRscBAAAAcKMs5SpN2qnSpJ2yZKcbncYuo25pJ19vV0nSml3HVVx67cv6TCaTXJxcfp5ftV1P712qgpLCuo4K1BhlFQDDBeb9PGD9HAPWAQAAAHu4uTppwuAISVJOfrG2fJdW42OPZCVp3fFNyinO1T9/WFtHCQH7UVYBcBgmowMAAAAADdCAzoFqG+AtSdqw94TyCktqdFyXlp3UrWWUWnu20rB2g+oyImAXyirATpb8TBXv+0TF+z6R5Xym0XEahcoB64UMWAcAAADsZjabNHlYB0lScUm5Pv0qpUbHmUwm3dNxkube8j8Ka95OkmS1XntIO1DXKKsAO1nys1Sy/1OV7P9UloKfjI7TKBS4p8olOFkXPGv2P1UAAACg7jTMsiYq3E+dIypuWLTr4Cll/FSzGVSeLp5ydXKRxWrRltQdWnH47xRWMBxlFQAAAACgiWscAynuGtpBJpNksVq1escxu47dlLpNnx7fqIOZh7Xn9L46SgjUDGUVAMNVDlgPyGTAOgAAAHC92gZ4a1DXQEnSoeQsJaZm1/jYIW0HyMe1uVp7BijIu3VdRQRqhLIKgPFYZgwAAADUijsHRcjVpeJH/VU7jslSw++1PV089fvu92vuLbOr5lcBRqGsAuxGsVLb8t0rB6wfNzoKAAAA0KD5erspJjpUknTybIH2HjlT42ODvNtUza/6/MQX2pW+p65iAlflbHQAAChwS5VL8zO6UOJvdBQAAAA0RU4uchv0m4qHrdobm6UWjO7TTl8czFBeQYk+3nlcvSNbydXFqcbHv5fwD+07e1AuZhdF+nVQa8+AOkwLVMfKKgAAAABAk2ZycpZrxyFy7ThETv4hRse5YW6uTpowKEKSlJNfrM/3pdl1/MCgaElSC3cflZSX1Ho+4FpYWQXAcIF5Q3UkNUdBwc2NjgIAAAA0CgO7BOrzfWnKyCzUZ3tOaFDXIDX3cq3RsTe1aK8HuvxanfxulqtTzY4BahMrqwAAAAAAaGTMZpMmD+0gSbpYUq5Pv06x6/juAZ3l6uQqi9WirSd3KqPgdF3EBC6Lsgqwk7lZS7n2HC/XnuNlbtbS6DiNwvnKAeueDFgHAABA/bOWXlTBqsdVsOpxlSbtMjpOrekc4a+ocD9J0s4Dp3Q6q9Cu4y1Wi1468KY+OfaZ3kv4h8osZXURE6iGsgqwk7lZgNx6T5Bb7wkyN2PQYG0odEuVS3CyLnjZ99seAAAAoFZYrbLmna34KLGv0HF0dw3tIJMki9WquB3Jdh1rNpnV3jdcklRSXqLc4vN1kBCojplVAAAAAAA0UiGtvDWga6C++v60Dh77SUkncvSL0BY1Pj4mbLhczS4aEjJQbsyvQj1pMiur3n//fcXGxhodA8BltMkbqqJvR6tV5gijowAAAACNzoRBEXJ1qfjxf9WOY7JYrTU+1tnsrFFhw+T28/yqrzL2qqS8tK6iApKaSFmVkJCg5cuXGx0DjUT5T6m6sG6RLqxbpPKsk0bHAQAAAICratHMTaP7tJMknTiTr28SqK2EBwAAJa1JREFUztp9joKSQr2w/w2tPLpG645vqu2IgI1GX1YVFhbqySef1COPPGJ0FDQS1uILKj99VOWnj8paUmR0nEYhnwHrAAAAcBQ1X3TUoIyObqfmXhWX8a3ZmayS0nK7jvdwdpfFWnHM4axElZSX1HpGoFKDL6vWrl2rTp06VfvIz8+XJC1cuFDTp09XUFCQwUkBXElB5YB1yioAAAAYwWQyOkGdc3d11oRBFcPSs84Xa2t8ul3HO5md9KtOkzW07UDNvWW2XJlfhTrU4MuqO++8UwkJCdU+mjVrpjVr1sjFxUVjxowxOiaAmmj83yMAAAAAhhnYNVDBLb0kSZ/tSdX5C/atjmrtGaCJN99RNb8qMfuHuogJNPyy6mrWrVunQ4cOafz48VqwYIGSk5P1m9/8xuhYAP5Lm9yKAesBPzFgHQAAAKgrTmaz7hrWQZJUVFyudV+lXtd5sopy9OKBN/TywRU6kpVUiwmBCs5GB6hL77zzTtXjb775RkuWLNG7775rXCAAAAAAAAzUOdxPUWEtdCQ1R18czNCwXsEK9Pey+zzp+ackSZtTd6iTX6RMTeBSStQfh1lZlZiYqKioKJ05c6bavvXr12vs2LHq2rWrYmJitHbt2voPCKDOFDBgHQAAAEZydpXXXYvldddiuUQOMjpNnTKZTJo0tINMksotVq3+Itnuc/h7tNAvb7pDg4L76XfdplNUodY5RFmVnJysmTNnqqysrNq+DRs2aM6cORo4cKBeeeUV9enTR48//rg2bbLvVpnR0dFas2ZNbUUGUIsK3FMYsA4AAADDmExmmX3byOzbRiZ3b6Pj1Ll2rZtpQJdASdKBH3/S0ZM5dp+jf9AtmhI5Qe7ObrJYLTp3IbO2Y6IJM/QywLKyMq1atUp/+ctf5OLictnnLFu2TDExMZo3b54kadCgQcrLy9OLL76o0aNH10tOf//G/8XK0QQENDM6whUVFXqq6OfHvr4e8nDgrA2FyVzxmxiTTA79d3+phpITTRfvUTg63qNwdLxH4ehu9D16/4Qu+jbpnEpKy/Xxlyn6yx9CZDbbv0LqXMFPeu3b95V2/rT+Ovr/5OPe/IZyoXG53vepoWVVfHy8nn/+ec2YMUOtW7fWggULbPanpaXp5MmTeuSRR2y2jxo1Shs3blRaWppCQkLqPGdWVoEsFmudfx5UCAhopszMfKNjXFFZ7oWqx7m5RSrwcNysDUXr7KFKPJGjtm19HPrvvpKjv0cB3qNwdLxH4eh4jzY9VqtF1gt5kiSTq4dMLu4GJ7q62nqPjrolROt2p+pYWq4+23VMfaPa2H2O/WcTlZD5oyTp/X1rNSVywg3nQuNwtfep2Wy66sIgQ8uq9u3ba+vWrfL397/sJXrHj1dcEhQeHm6zPTQ0VJKUkpJSL2UVcCmnlqHyGPd4xWO/tganAQAAAHDDyktV+OEfJUmufe6SW/cxBgeqH6Oj22nnoVM6X1iij3cmq1dkgFycnew6R6/W3XUw87A8XTx1Z/um8bqh7hk6s6ply5by9/e/4v78/IoGztvbtm3z8qq4U0FBQUHdhQOuwOTmJeegjnIO6iiTm/13zUB1DFgHAAAA6p+Hm7PuHFSxOCTrfLG27ku/rvPcF3W3pkbGVs2vKioruvZBwFU4xID1K7Far37pndns0PEB1FDlgPVCjxSjowAAAABNyqCugQpqWfFL+PV7UpV/ocTuc5hNFT+bZxVl66UDb+qtwx9e8+d54Gocuu1p1qxiEFdhYaHN9soVVZX7AQAAAACA/ZzMZt01tL0kqai4XP/6OvW6z7Xl5Bf6Mfe4ErN/0N7T+2opIZoihy6rKmdVnTx50mb7iRMnbPYD9aks/Yjy3/yN8t/8jcpOHzU6TqPQOmeoir4drVZZw42OAgAAADQ5XSL81TG0hSTpiwMZOpN94RpHXN6d7WPUws1XA4Ki1aNVl9qMiCbGocuq0NBQtW3bVps2bbLZvmXLFoWFhSkoKMigZMDPTPbf2hVXxqsJAAAA1D+TyaTJwzrIJKncYtXqL5Kv6zwezh6a3+ePuvsXv5S7s7ssVossVkvthkWTYOjdAGti1qxZmjdvnnx8fDRkyBBt27ZNGzdu1LJly4yOBqCWVAxY/0kFHn6SehkdBwAAAGhy2rVupv6d2+jrw2e0/4dM/ZCWq5tDfO0+j6eLhyQpqyhHHyTFKco/UiPa3VrLadHYOXxZFRsbq5KSEr399tuKi4tTSEiIlixZojFjuCUm0FgUeqTIxfecCovzjI4CAAAANFkTBkfo26RzKi2zaNX2H/XEr3vLfB1Xk1itVr3x73eVUXBapwvPUFbBbg5TVsXGxio2Nvay+6ZMmaIpU6bUcyIAAAAAAJoOv+buGtUnROt3n1DK6Xx9l3hO0Z1a230ek8mk7gGdVVR2Uc5mpzpIisbOYcoqoOHgFqy1rXXOMCWdzFVIWx+jowAAAKBJMsnk6VvxyMXV2CgGi4kO1a6Dp3T+QqlWf5Gsnje3lIuz/YXTmPCRGhM+sg4Soilw6AHrgONjJDgAAADQ0JmcXeV9zwvyvucFuUaNMDqOoTzcnDV+UIQkKev8RW2LzzA4EZoiyioAhqsYsP6jCjxTjI4CAAAANHmDuwUq0N9TkrRud6oKikrtPsf+c9/r/YRV+jAxrrbjoQmgrAJguAKPFLkEJ+uCB2UVAAAAYDQns1mThnaQJBUVl+lfX9v/fXpafoa+OROvb8/sr+14aAIoqwAAAAAATZrVYlHpsT0qPbZH5dlc9iZJ3dr76xftfCVJO/Zn6Gz2BbuO93B2l597C/m5t6iDdGjsGLAO2Mm5bWc1++27RsdoVNpUDlgP8TU6CgAAAJoiS5kubn9DkuTaZ6Kc/IINDmQ8k8mkycNu0tPvfqdyi1WrdyZr1oQuNT7+ttChui10aB0mRGPGyioAAAAAAFBNaJtm6hfVRpIUfzRTP6bnGhsITQZlFQDD5VcOWPc4bnQUAAAAAJeIHRwhF+eK6mDV9mOyWq01Oq5ywPoHDFjHdaCsAuxkvVigslOJKjuVKGuJfddt4/IKGbAOAAAAOCR/H3fddkuIJOn4qfP6LulcjY5jwDpuBGUVYKfyn1JVtH6JitYvkYXhiwAAAEDjUrOFQ03KmL6haubpIkla/UWySsss1zzG09nj5wHrvnWcDo0RA9YBGK519jAdTctVOwasAwAAwAgmk9EJHJqHm7PGDwzXB1t+0E95F7V9f7pG9Wl31WNGhg7RyNAh9RMQjQ4rqwAAAAAAwFUN7hakNn6ekqR1X6eqoKjU4ERozCirABiuwOM4A9YBAAAAB+bsZNakoe0lSReKy7R+d+pVn8+AddwIyirAXjW8+wVqrtAjVS7BySpkwDoAAADgsLp3aKnIn0d3bItP17mcK99wigHruBGUVcCN4Nr22sXLCQAAACOYTHJu31fO7fvK3CLI6DQOy2Qy6a5hHSRJ5RarVu+88pURlQPWWzBgHdeBAesADNcqe5h+SMtVaDtfo6MAAACgCTKZneUx/EGjYzQI4YHN1TeqtfYeOat9Sed0LCNPHYJ9qj2PAeu4EaysAgAAAAAANRY7OELOThV1wqrtP8rKqBTUMsoqAIYrZMA6AAAA0GC09PHQyFvaSpKSM84r/mhmteccOPdvBqzjulFWAXYyuXnJKTBSToGRkouH0XEahUKPFLkEJ6uAAesAAAAwgNVSrou73tHFXe+o7OQho+M0CGP7hsnbw0WSFPfFMZWVW2z2Vw5Y/+ZMvBHx0MBRVgF2cmoVIc/b58nz9nly8gs2Og4AAACAG2W1qjRpp0qTdqo866TRaRoET3dnjR8YLknKzL2o7fszbPZ7OLvLz72F/Nx8DUiHho4B6wAM1yprmH5Iz2PAOgAAANCA3No9SFv3pelsTpHWfZ2iAV3ayMu9YrUVA9ZxI1hZBQAAAAAA7ObsZNakoR0kSYUXy7R+d6qxgdBoUFYBdrLknVHxvk9UvO8TWQqyjY7TKBQwYB0AAABokHrc1FI3t/WRJG2LT9e53CJJ/xmw/vfEfxoZDw0UZRVgJ0veOZXs/1Ql+z+V9UKO0XEahQueqRUD1t1TjY4CAACAps5qNTpBg2IymTR5+E2SpLJyqz7+IlmSlP7zgPVvz+w3Mh4aKMoqAAAAAEDTZjI6QMMWHthcfTu1liR9l3ROxzLy5OHiwYB1XDcGrAMwXEDWMP3IgHUAAACgwYodHKF9RzNVVm7RP7cf07x7BmtEu1uNjoUGipVVAByGycSvtAAAAICGqKWvh0b2bitJOpaRp/ijmQYnQkPGyioAhiv0OC7n4Gzlu7eU1MPoOAAAAACuw9h+ofry+9MqKCrVyn27dKS8TGaTWb/qdJfR0dDAsLIKgOEKfx6wXuiRYnQUAAAANEUms9wG/UZug34j53ZdjU7TYHm6u+iOAWGSpHxrlr49u1/fnIk3NhQaJFZWAQAAAACaNJPJLNeOQ4yO0SgM6RGsbfHpyip3lko81KKZu9GR0ABRVgEwXKufB6yHhbYwOgoAAACAG+DsZNbEIR30yidFKjsTrs59QoyOhAaIywABGM5qdAAAAAAAtabnzS3Voa2PJOmr708bnAYNESurADuZfVrJted4SZLJk5VAtaFywHoBA9YBAABgAKvFosK4eZIk184j5Ro1wuBEDZvJZJJvcLZcXI6ozGSSNNjoSGhgKKsAO5l92sit9wSjYzQqFzxT5NLiJxUUFxgdBQAAAE2UNe9sxT+LCw1O0jgUWLPkHHBKVi6jwHWgrAIAAAAAALXK2eQqy0V3mWQyOgoaIMoqAIYLyBquYwxYBwAAABqNEFNXHT7kK2cnsxRjdBo0NJRVgJ3Kzx5T8bdxkiS3gffKqUWQwYkAAAAAAGg8KKsAO1mLC1R++mjFv5ReNDZMI8GAdQAAAKBxybSmyCX8iMwmk6QhRsdBA0NZBcBwVQPWSxiwDgAAADQGhT8PWAeuB2UVAAAAAACoVU4mNwas47pRVgEwXMBPw3UsI0/hYQxYBwAAABqDdqauOnzIR85OJgasw25mowMAAAAAAAAAlVhZBcBwhZ4VA9bz3QPEgHUAAADUO5NJXnctrnjo7m1wmMahYsD64Z8HrA81Og4aGMoqAIZjwDoAAACMZDKZZPJtY3SMRqXA+hMD1nHdKKsAOAxGLwIAAACNgzMD1nEDKKsAGK7lT8OUnHFeEQxYBwAAgAGsVqusF3IlSSYXd5lcPYwN1Ai0M3fVvw/5yMnMgHXYj7IKsJNTqw7yGPe4JMnsG2hwGgAAAAC1ofDDP0qSXHvdKbdedxobBmjiKKsAO5ncveUc1NHoGI1KxYD1HAasAwAAAI1E5YB1EwPWcR0oqwAYrmLAehYD1gEAAIBGIt+axYB1XDfKKgAAAAAAUKtc5CpLccWAdavV+vMKK6BmKKsAO5WdOKCizS9KkjwnPCWngHCDEzV8AZnDlXzqvCLC/YyOAgAAgKbOajU6QaMQYu6q738esG6KoaiCfcxGBwAaNr7oAgAAAA0dq34Ax0JZBcBwFQPWf1S+23GjowAAAACoBRUD1r+XU9j3srJaDXbiMkAAhrvglSIXvywVlBQaHQUAAABALShgwDpuAGUVAAAAAACoVc6XDFgH7EVZVQNmM/9x1TdHfs2dXN3k7BNQ8djFxaGzNhSRxWN14mS+bg7xbTCvZ0PJiaaL9ygcHe9RODreo02PS5v2kiTnZn4N4u/f0TN28u6tMz+0kdlkkpMTE4iaqiu9T6/1/jVZuXgUAAAAAAAADoJ6EwAAAAAAAA6DsgoAAAAAAAAOg7IKAAAAAAAADoOyCgAAAAAAAA6DsgoAAAAAAAAOg7IKAAAAAAAADoOyCgAAAAAAAA6DsgoAAAAAAAAOg7IKAAAAAAAADoOyCg3C6dOn1atXL7366qtGRwGqZGZmasGCBRo6dKh69Oih2NhYbdy40ehYaMLWr1+vsWPHqmvXroqJidHatWuNjgRUsVgsWrlypW6//Xb16NFDI0aM0KJFi1RQUGB0NOCyfv/732vkyJFGxwCq+e677zR16lR169ZNAwcO1J/+9CcVFhYaHQuosnLlSsXExKh79+66/fbb9a9//cvuczjXQS6gVlmtVs2fP59vZuFQSkpKdP/99ys/P19/+MMf1KpVK23evFmzZ89WeXm5xo0bZ3RENDEbNmzQnDlzdO+992rgwIHaunWrHn/8cbm7u2v06NFGxwO0YsUKvfDCC5oxY4b69eunlJQUvfTSSzp27Jjeeusto+MBNj799FN9/vnnateundFRABsHDx7Ufffdp2HDhum1117TiRMn9Ne//lXZ2dlatmyZ0fEArVq1SgsXLtT06dM1aNAg7dy5U//7v/8rFxcXxcTE1Pg8lFVweB999JGOHz9udAzAxq5du5SUlKS4uDh17dpVkjRgwACdOnVKy5cvp6xCvVu2bJliYmI0b948SdKgQYOUl5enF198kbIKhrNarVqxYoUmT56sRx99VJLUv39/tWjRQn/84x+VmJiojh07GpwSqHD27Fk999xzatOmjdFRgGqef/55de/eXS+++KJMJpP69+8vi8Wid955R0VFRfLw8DA6Ipq4Tz75RNHR0Xr88cclVfz//vDhw/roo4/sKqu4DBAOLS0tTc8//7z+9Kc/GR0FsOHl5aXJkyerS5cuNtsjIiJ08uRJg1KhqUpLS9PJkyd122232WwfNWqUjh8/rrS0NIOSARUKCwt1xx13VCvyIyIiJImvm3AoCxYs0IABA9SvXz+jowA2srOztW/fPk2dOlUmk6lq+7Rp07R161aKKjiE4uJieXl52Wzz9fVVbm6uXeehrILDslgsmjt3rmJiYjR48GCj4wA2+vXrp2eeecbmG4XS0lLt3LlTN910k4HJ0BRVrj4NDw+32R4aGipJSklJqfdMwKW8vb21YMEC9erVy2b71q1bJUkdOnQwIhZQTVxcnI4cOaL/+7//MzoKUM0PP/wgq9UqHx8fzZ49W927d1evXr301FNP6eLFi0bHAyRJv/71r/Xll19q48aNKigo0KZNm/TFF19o/Pjxdp2HywBR78rKyhQXF3fF/a1atdLw4cP13nvvKT09Xa+//no9pgNq/h79b0uXLlVqaqpeeeWVuowHVJOfny+pohC4VOVvtZj5B0d06NAhvfnmmxoxYoTat29vdBxAGRkZWrRokRYtWiQ/Pz+j4wDVZGdnS5Lmzp2rkSNH6rXXXtPRo0f1wgsvqLi4WIsXLzY4ISCNHTtWe/fu1ezZs6u2TZgwQffff79d56GsQr0rLi7WwoULr7i/T58+CgsL0wsvvKCXXnpJzZo1q79wgGr2Hr20rLJarVq6dKnee+89zZgxQyNGjKiHlMB/WK3Wq+43m1lIDccSHx+vBx98UG3bttWzzz5rdByg6oY+t956q0aNGmV0HOCySktLJUk9e/bUU089Jalitb/VatWSJUs0a9YshYSEGBkR0EMPPaQDBw5o3rx56tSpkw4dOqRXX321apV1TVFWod55eXnp6NGjV9xfXl6uqVOnavTo0RowYIDKysqq9lksFpWVlcnZmbcu6s613qOXKikp0dy5c/XZZ59pxowZeuyxx+o4HVBdZan/37etrlxRRekPR7JhwwbNnTtXYWFhWrFihVq0aGF0JEAffvihjh49qnXr1lV971n5i4CysjI5OTnZXPoPGKFyxfR/j0gZOHCgFi9erKNHj1JWwVD79+/XV199pUWLFik2NlZSxS/6mzdvrieffFJ33XWXbr755hqdi1+1wuGcPn1ahw4d0tq1axUVFVX1IUl/+9vfqh4DRisoKNB9992njRs3av78+RRVMEzlrKr/HlJ94sQJm/2A0d555x098sgj6t69uz788EO1atXK6EiAJGnz5s3KycnRwIEDq773XLt2rU6ePKmoqCh98sknRkcEFBYWJqnil6WXqlxxRaEKo506dUpSxeq/S/Xu3VuSdOzYsRqfi+UpcDitWrXS6tWrq22fOHGipk6dql/+8pcGpAJslZeX66GHHtKhQ4e0bNkyjR492uhIaMJCQ0PVtm1bbdq0SSNHjqzavmXLFoWFhSkoKMjAdECFuLg4LV68WGPGjNGSJUvk6upqdCSgytNPP11tdeorr7yixMREvfzyy2rbtq1ByYD/aN++vYKDg7VhwwbdfffdVdt37NghZ2dn9ejRw8B0wH9+QRofH19VrkrSwYMHJUnBwcE1PhdlFRyOq6urunTpctl9rVq1uuI+oD794x//0LfffqvJkyerTZs2VV+ApYrfanXr1s24cGiSZs2apXnz5snHx0dDhgzRtm3btHHjRi1btszoaICysrL03HPPKTg4WNOmTVNCQoLN/nbt2jHQGoaKiIiots3X1/eq35cC9c1kMmnOnDl65JFHNGfOHMXGxurw4cN67bXXdM899/B1FIaLiorSiBEj9Nxzzyk/P18dO3bU4cOH9corr2jw4MF2/YxEWQUA12Hz5s2SpFWrVmnVqlU2+5ycnKr9IAbUtdjYWJWUlOjtt99WXFycQkJCtGTJEo0ZM8boaIC+/PJLFRUVKSMjQ9OmTau2/89//rPdt7QGgKZozJgxcnV11SuvvKKZM2fK399fs2bN0syZM42OBkiSli1bppdfflnvvvuusrKyFBwcrOnTp+u3v/2tXecxWa91CyEAAAAAAACgnjBgHQAAAAAAAA6DsgoAAAAAAAAOg7IKAAAAAAAADoOyCgAAAAAAAA6DsgoAAAAAAAAOg7IKAAAAAAAADoOyCgAAAAAAAA6DsgoAAAAAAAAOg7IKAAA0KN98840iIyO1Zs0ao6PcsLNnzyo6OlppaWlGR6kzq1at0vDhw6+4f+7cuYqMjFR6enqtft4nnnhCixYtqtVzAgCA+kFZBQAAYJDnnntOY8eOVUhISNW23NxcRUZG6v777zcwWe35+uuv1b9//3r/vLNmzdKqVauUlJRU758bAADcGMoqAAAAA3z33Xfatm2bHnjgAZvtCQkJkqSoqCgjYtUqi8Wib775Rv369av3zx0UFKSxY8eyugoAgAaIsgoAAMAA7777rnr16qXAwECb7UeOHJEkderUyYhYtSohIUF5eXmGlFWSNGnSJO3du5fVVQAANDCUVQAAoFHIzs7W008/rVtvvVWdO3fWrbfeqqefflo5OTnVnpuenq6HH35YPXv2VM+ePfXQQw8pLS1Nw4YN069+9as6z3r69Gnt2LFDI0aMqLavcmVVYyirdu/erY4dO6pFixaGfP7u3burTZs2+vDDDw35/AAA4Po4Gx0AAADgRuXn52vq1Kk6ceKEfvnLX6pTp05KTEzUypUrtXfvXsXFxcnb21uSlJOTo2nTpikrK0tTpkxRRESE4uPjde+99+rChQv1kvfLL79UeXm5hgwZUm1fQkKCfHx8bOZYNVS7d+82bFVVpVtuuUW7du0yNAMAALAPZRUAAGjwVqxYodTUVD355JOaNm1a1faOHTvqmWee0YoVKzR79mxJ0vLly3XmzBktXbpUd9xxhyTp7rvv1p///Ge99dZb9ZI3Pj5enp6e1QqpgoICnThxQtHR0fWSoy4VFxdr//79hg+Kv/nmm7Vu3TqlpaU1igIQAICmgMsAAQBAg/f555/Lz89PkydPttk+efJk+fn5aevWrVXbduzYoYCAAI0bN87muTNmzKiXrJKUlpam4OBgmUwmm+2JiYmyWq2N4hLA+Ph4Wa1W9e7du1bPm5mZqeXLl2vevHl6/vnndfjw4as+v7KgSk9Pr9UcAACg7lBWAQCABi89PV3h4eFydrZdNO7s7KywsDClpaXZPDc0NFRms+23Qf7+/mrevLnNtg0bNmjq1Knq0aOHhg0bVu3zlpWV6dlnn1WfPn3Uu3dvzZ8/X8XFxdfMm5ubW3VZ4qUqh6tf7U6A+/btU48ePap9dO7cWR07drR57sKFCxUZGakDBw5UO8+vfvUrRUZGaufOndX+zJGRkZo5c2bVtpSUFP3ud79T37591aNHD40cOfKad9n7+uuv1aNHD7m7u1/1efbYvHmzXn31VfXv319PPfWUpk6dqq+//lp/+ctfZLVaL3vMpZd/AgCAhoGyCgAA4Ap8fHx0zz33VF1C+N9ef/11ffPNN1q3bp22bNmi5ORkLV269JrnNZvNslgs1bbX5E6AvXv31oEDB2w+Nm3aJF9fX/3P//xP1fMuXryo9evXy9fXV3FxcZc9V0REhD7++GObbatXr1ZERITNtpkzZyo8PFzbtm1TfHy8li9frsjIyKv+Gffs2aP+/ftf9Tn2+OGHH5SRkaGnnnpKUVFRcnd3V3BwsGbOnKnhw4dr5cqVlz2u8nV2cnKqtSwAAKBuUVYBAIAGLyQkRCkpKSorK7PZXlZWptTUVJtZRcHBwTpx4kS1sigrK0vnz5+32TZgwACNHTtWwcHBl/28q1ev1oMPPqjWrVvLz89Pv//977VmzRqVl5dfNa+/v79yc3OrbU9ISJCnp6fCw8OvevylSkpK9PDDD6tXr1568MEHq7Zv2rRJZrNZ8+bN08aNG1VYWFjt2JiYGO3du1fZ2dmSpIyMDCUmJtrcpTA7O1snTpzQlClT5OXlJbPZrLCwMMXGxl4xU05OjhITE2u1rNqyZYvuu+++y+7r3r27cnJyqv39S6p6nf39/WstCwAAqFuUVQAAoMEbMWKEsrOzq60g+uc//6ns7Gyb8mXo0KHKzMzU+vXrbZ5r73D18+fP6/Tp0/rFL35RtS0qKkqFhYXKyMi46rFBQUE6d+6cTalVVFSklJQUdezYsdosq6t56qmnVFxcrMWLF9tsj4uL05gxYzRmzBi5uLhow4YN1Y718vLSiBEjtHbtWkkV5du4cePk6upa9Rw/Pz+1b99e8+fP12effaaTJ09eM9OePXvk7e2tzp071/jPcS0eHh5Vr8uBAwcUHR2tV199tWp/586dlZqaWu24s2fPSqp4zQEAQMPA3QABAECDd//992vTpk165plnlJCQoI4dOyoxMVGrV69WeHi4zR3pHnjgAa1fv17z58/X999/r4iICMXHx+vAgQNq0aJFjT9n5UqlS+dcNWvWzGbflfTt21dr1qzRjz/+WFV2JSUlqby8XMXFxXrzzTerHePp6al77rnHZtv777+vHTt2aPXq1fLw8KjanpKSon379umxxx6Tq6urxowZo9WrV2vSpEnVzjtx4kQtWLBA9957rz755BO98cYb2rJli81z/v73v+utt97S66+/ruTkZAUGBurRRx/VmDFjLvvn27Nnj6Kjo6vNBbuaZcuWycvLq9r2mJgY9evXz2ZbUlKScnNztX///qptXl5el33dDx48qNDQUMoqAAAaEMoqAADQ4DVr1kwrV67USy+9pO3bt2vNmjXy9/fXlClT9PDDD9sMM/fz89NHH32kJUuW6OOPP5bJZFJ0dLTee+89TZw4scYDwSuLlfz8fAUEBFQ9vnTflQwaNEhms1n79u2rKqsSEhIkSYcPH77sHe5uueUWm7Jq7969ev7557V8+XK1bdvW5rlxcXGKiIhQt27dJEmxsbGaNGmSfvzxR9100002z+3Zs6esVqv+9re/qWXLloqMjKxWVvn7++uxxx7TY489poKCAq1atUpz5sxRZGSk2rdvXy3r7t27NX369Ku+Bv/tv1e6VYqIiFC/fv108eLFqm2TJk1SQECAevToUbXt6NGjGjt2rM2xFotFBw8evGKpBgAAHBNlFQAAaFCio6N19OjRatv9/Py0cOFCLVy48JrnCAkJ0csvv2yzLScnR7m5uQoMDKxRjubNmyswMFBJSUlVA8kTEhLk5eV1xRlXl2YdNmyYPvvss6oCatq0aZo2bVqNPnd6erpmz56txx57TNHR0Tb7SktL9emnnyo/P18DBgyw2bd69WrNmzev2vkmTpyopUuX1ui18/b21owZM/Tmm2/q2LFjly2rtm3bVqM/hyQtXry42iWMlxMcHKz9+/erZ8+ecnZ2trm0Mz8/X+np6fL19bU5Zs+ePcrKytLEiRNrnAcAABiPsgoAADQ5Fy9erLaCqvLSu0sLnvLycpWVlam0tFRWq1XFxcUymUxVM50mTpyoN954Q7169ZKLi4tefvllxcbG1ujOc9OnT9fdd9+tkydPql27djXOXlRUpFmzZmnYsGHVLguUpB07digvL09r166Vj49P1fZ//etfWr58uR599FGbmVSSNHnyZHXs2NFmpVKlvLw8vfXWW7r99tsVFhYmq9WqNWvWqKioSFFRUTXOfaPGjx+v5557TkVFRTZ/R2lpaXrxxRcvW8KtXbtWAwYMsJkrBgAAHB9lFQAAaHIeeOABBQcHq1OnTrJYLNq7d6927NihHj162KzY+fTTT21KkK5duyo4OFjbt2+XJD344IPKzc3VuHHjZLFYNGrUKM2ZM6dGGXr16qWhQ4fqzTff1LPPPlvj7Js3b1ZSUpJSU1O1cePGavu7dOmicePGqUOHDjbbp0yZotdff11bt26tdlmct7f3Fe/c5+LioszMTD300EPKysqSq6urOnTooNdee63a5Yd1yWQyaf78+frggw8UFxcns9ksi8WigIAAPfHEE9XmjaWlpWnz5s364IMP6i0jAACoHSar1Wo1OgQAAEB9evvtt7V27VplZGSouLhYrVu31m233aZZs2bZzLeqa6dPn9b48eO1evVqu1ZX4drmzZsnb29vPfHEE0ZHAQAAdqKsAgAAAAAAgMOo+f2EAQAAAAAAgDpGWQUAAAAAAACHQVkFAAAAAAAAh0FZBQAAAAAAAIdBWQUAAAAAAACHQVkFAAAAAAAAh0FZBQAAAAAAAIdBWQUAAAAAAACH8f+Fdf6Tur+gtQAAAABJRU5ErkJggg==\n",

Izzard, Robert Dr (Maths & Physics)
committed
"text/plain": [
"<Figure size 1440x720 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# make a plot of the luminosity distribution using Seaborn and Pandas\n",
"import seaborn as sns\n",
"import pandas as pd\n",
"from binarycpython.utils.functions import pad_output_distribution\n",
"\n",
"# set up seaborn for use in the notebook\n",
"sns.set(rc={'figure.figsize':(20,10)})\n",
"sns.set_context(\"notebook\",\n",
" font_scale=1.5,\n",
" rc={\"lines.linewidth\":2.5})\n",
"\n",

Izzard, Robert Dr (Maths & Physics)
committed
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
"\n",
"titles = { 0 : \"Primary\",\n",
" 1 : \"Secondary\",\n",
" 2 : \"Unresolved\" }\n",
"\n",
"# choose to plot the \n",
"# PRIMARY, SECONDARY or UNRESOLVED\n",
"nstar = UNRESOLVED\n",
"\n",
"plots = {}\n",
"\n",
"# pad the distribution with zeros where data is missing\n",
"for n in range(0,3):\n",
" pad_output_distribution(population.grid_results['luminosity distribution'][n],\n",
" binwidth['luminosity'])\n",
" plots[titles[n] + ' ZAMS luminosity distribution'] = population.grid_results['luminosity distribution'][n]\n",
"\n",
"# make pandas dataframe from our sorted dictionary of data\n",
"plot_data = pd.DataFrame.from_dict(plots)\n",
"\n",
"# make the plot\n",
"p = sns.lineplot(data=plot_data)\n",
"p.set_xlabel(\"$\\log_{10}$ ($L_\\mathrm{ZAMS}$ / L$_{☉}$)\")\n",
"p.set_ylabel(\"Number of stars\")\n",
"p.set(yscale=\"log\")"
]
},
{
"cell_type": "markdown",
"id": "7d7b275e-be92-4d59-b44d-ef6f24023cc3",
"metadata": {},
"source": [
"You can see that the secondary stars are dimmer than the primaries - which you expect given they are lower in mass (by definition q=M2/M1<1). \n",
"\n",
"Weirdly, in some places the primary distribution may exceed the unresolved distribution. This is a bit unphysical, but in this case is usually caused by limited resolution. If you increase the number of stars in the grid, this problem should go away (at a cost of more CPU time). "
]

Izzard, Robert Dr (Maths & Physics)
committed
},
{
"cell_type": "markdown",
"id": "e0601000-a4c9-4073-a695-10a664e532f0",

Izzard, Robert Dr (Maths & Physics)
committed
"metadata": {},
"source": [
"Things to try:\n",
"\n",
" * Massive stars: can you see the effects of wind mass loss and rejuvenation in these stars?\n",
" * Alter the metallicity, does this make much of a difference?\n",
" * Change the binary fraction. Here we assume a 100% binary fraction, but a real population is a mixture of single and binary stars.\n",
" * How might you go about comparing these computed observations to real stars?\n",
" * What about evolved stars? Here we consider only the *zero-age* main sequnece. What about other main-sequence stars? What about stars in later phases of stellar evolution?"
},
{
"cell_type": "code",
"execution_count": null,
"id": "abb096b0-7c57-43d6-a9f7-56bdd21dc542",
"metadata": {},
"outputs": [],
"source": []

Izzard, Robert Dr (Maths & Physics)
committed
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",

Izzard, Robert Dr (Maths & Physics)
committed
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"

Izzard, Robert Dr (Maths & Physics)
committed
}
},
"nbformat": 4,
"nbformat_minor": 5
}