Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "a544d28c-c2e1-4c6a-b55b-8caec440743f",
"metadata": {},
"source": [
"# Notebook individual system\n",
"This notebook will show you how to run single systems and analyze their results.\n",
"\n",
"It can be useful to have some functions to quickly run a single system to e.g. inspect what evolutionary steps a specific system goes through, to plot the mass loss evolution of a single star, etc. "
]
},
{
"cell_type": "markdown",
"id": "dd5d9ec7-5791-45f1-afbd-225947e2a583",
"metadata": {},
"source": [
"## Single system with run_wrapper\n",
"The simplest method to run a single system is to use the run_system wrapper. This function deals with setting up the argument string, makes sure all the required parameters are included and handles setting and cleaning up the custom logging functionality (see notebook_custom_logging).\n",
"\n",
"As arguments to this function we can add any of the parameters that binary_c itself actually knows, as well as:\n",
"- custom_logging_code: string containing a print statement that binary_c can use to print information\n",
"- log_filename: path of the logfile that binary_c generates\n",
"- parse_function: function that handles parsing the output of binary-c"
]
},
{
"cell_type": "code",
"id": "425efed3-d8e3-432d-829e-41d8ebe05162",
"metadata": {},
"outputs": [],
"source": [
"from binarycpython.utils.run_system_wrapper import run_system\n",
"# help(run_system) # Uncomment to see the docstring"
]
},
{
"cell_type": "code",
"id": "b2abab48-433d-4936-8434-14804c52c9f6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SINGLE_STAR_LIFETIME 1 12462\n",
"\n"
]
}
],
"source": [
"output = run_system(M_1=1)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"id": "f127a5e4-dc01-4472-9130-8a943c92e8a7",
"metadata": {},
"source": [
"Lets try adding a log filename now:"
]
},
{
"cell_type": "code",
"id": "029fc3f2-f09a-49af-a32b-248505738f2e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" TIME M1 M2 K1 K2 SEP ECC R1/ROL1 R2/ROL2 TYPE RANDOM_SEED=67365 RANDOM_COUNT=0\n",
" 0.0000 1.000 0.000 1 15 -1 -1.00 0.000 0.000 \"INITIAL \"\n",
" 11003.1302 1.000 0.000 2 15 -1 -1.00 0.000 0.000 \"OFF_MS\"\n",
" 11003.1302 1.000 0.000 2 15 -1 -1.00 0.000 0.000 \"TYPE_CHNGE\"\n",
" 11582.2424 1.000 0.000 3 15 -1 -1.00 0.000 0.000 \"TYPE_CHNGE\"\n",
" 12325.1085 0.817 0.000 4 15 -1 -1.00 0.000 0.000 \"TYPE_CHNGE\"\n",
" 12457.1300 0.783 0.000 5 15 -1 -1.00 0.000 0.000 \"TYPE_CHNGE\"\n",
" 12460.8955 0.774 0.000 6 15 -1 -1.00 0.000 0.000 \"TYPE_CHNGE\"\n",
" 12460.8955 0.774 0.000 6 15 -1 -1.00 0.000 0.000 \"shrinkAGB\"\n",
" 12461.9514 0.523 0.000 11 15 -1 -1.00 0.000 0.000 \"TYPE_CHNGE\"\n",
" 15000.0000 0.523 0.000 11 15 -1 -1.00 0.000 0.000 \"MAX_TIME\"\n",
"\n"
]
}
],
"source": [
"output = run_system(M_1=1, log_filename='/tmp/test_logfile.txt')\n",
"with open('/tmp/test_logfile.txt', 'r') as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"id": "606670f2-3e0a-43c7-a885-006b92fac9d2",
"metadata": {},
"source": [
"To get more useful output we can include a custom_logging snippet (see notebook_custom_logging):"
]
},
{
"cell_type": "code",
"id": "e6a23b55-ca42-440d-83ac-e76a24a83a67",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['EXAMPLE_MASSLOSS 0.000000000000e+00 1 1 1', 'EXAMPLE_MASSLOSS 0.000000000000e+00 1 1 1', 'EXAMPLE_MASSLOSS 1.000000000000e-06 1 1 1', 'EXAMPLE_MASSLOSS 2.000000000000e-06 1 1 1']\n"
]
}
],
"source": [
"from binarycpython.utils.custom_logging_functions import binary_c_log_code\n",
"\n",
"# Create the print statement\n",
"custom_logging_print_statement = \"\"\"\n",
"Printf(\"EXAMPLE_MASSLOSS %30.12e %g %g %d\\\\n\",\n",
" // \n",
" stardata->model.time, // 1\n",
" stardata->star[0].mass, //2\n",
" stardata->common.zero_age.mass[0], //4\n",
"\n",
" stardata->star[0].stellar_type //5\n",
");\n",
"\"\"\"\n",
"\n",
"# Generate entire shared lib code around logging lines\n",
"custom_logging_code = binary_c_log_code(custom_logging_print_statement)\n",
"\n",
"output = run_system(M_1=1, custom_logging_code=custom_logging_code)\n",
]
},
{
"cell_type": "markdown",
"id": "4c885143-db79-4fed-b4c4-0bd846e24f7d",
"metadata": {},
"source": [
"Now we have some actual output, it is time to create a parse_function which parses the output. Adding a parse_function to the run_system will make run_system run the output of binary_c through the parse_function."
]
},
{
"cell_type": "code",
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"id": "3822721f-217a-495b-962e-d57137b9e290",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['time', 'mass', 'initial_mass', 'stellar_type'], [0.0, 1.0, 1.0, 1.0], [0.0, 1.0, 1.0, 1.0]]\n"
]
}
],
"source": [
"def parse_function(output):\n",
" \"\"\"\n",
" Example function to parse the output of binary_c\n",
" \"\"\"\n",
"\n",
" # \n",
" column_names = ['time', 'mass', 'initial_mass', 'stellar_type']\n",
" value_lines = [column_names]\n",
" \n",
" # Loop over output\n",
" for line in output.splitlines():\n",
" \n",
" # Select the lines starting with the header we chose\n",
" if line.startswith(\"EXAMPLE_MASSLOSS\"):\n",
" \n",
" # Split the output and fetch the data\n",
" split_line = line.split()\n",
" values = [float(el) for el in split_line[1:]]\n",
" value_lines.append(values)\n",
"\n",
" return value_lines\n",
"\n",
"# Catch output\n",
"output = run_system(M_1=1, custom_logging_code=custom_logging_code, parse_function=parse_function)\n",
"print(output[:3])"
]
},
{
"cell_type": "markdown",
"id": "a551f07f-2eff-4425-9375-267579a581b3",
"metadata": {},
"source": [
"This output can now be turned into e.g. an Numpy array or Pandas dataframe (my favorite: makes querying the data very easy)"
]
},
{
"cell_type": "code",
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"id": "654a07ed-2a88-46ff-9da0-b7759580f9f3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 time mass initial_mass stellar_type\n",
"1 0 1 1 1\n",
"2 0 1 1 1\n",
"3 1e-06 1 1 1\n",
"4 2e-06 1 1 1\n",
"5 3e-06 1 1 1\n",
"... ... ... ... ...\n",
"1612 12461.8 0.577754 1 6\n",
"1613 12462 0.522806 1 11\n",
"1614 13462 0.522806 1 11\n",
"1615 14462 0.522806 1 11\n",
"1616 15000 0.522806 1 11\n",
"\n",
"[1616 rows x 4 columns]\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"# Load data into dataframe\n",
"example_df = pd.DataFrame(output)\n",
"\n",
"# Fix column headers\n",
"example_df.columns = example_df.iloc[0]\n",
"example_df = example_df.drop(example_df.index[0])\n",
"\n",
"print(example_df)"
]
},
{
"cell_type": "markdown",
"id": "325c2ce6-f9a1-46b7-937f-84040e1252cf",
"metadata": {
"tags": []
},
"source": [
"## Single system via population object\n",
"When setting up your population object (see notebook_population), and configuring all the parameters, it is possible to run a single system using that same configuration. It will use the parse_function if set, and running a single system is a good method to test if everything works accordingly."
]
},
{
"cell_type": "code",
"id": "4a98ffca-1b72-4bb8-8df1-3bf3187d882f",
"metadata": {},
"outputs": [],
"source": [
"from binarycpython.utils.grid import Population\n",
"# help(Population) # Uncomment to see the docstring"
]
},
{
"cell_type": "markdown",
"id": "7e2c2ef0-3db2-46a6-8c85-9b6cf720eb6a",
"metadata": {},
"source": [
"First, let's try this without any custom logging or parsing functionality"
]
},
{
"cell_type": "code",
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"id": "bff1cc2e-6b32-4ba0-879f-879ffbabd223",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"adding: M_1=10 to BSE_options\n",
"Creating and loading custom logging functionality\n",
"Running binary_c M_1 10\n",
"Cleaning up the custom logging stuff. type: single\n",
"SINGLE_STAR_LIFETIME 10 27.7358\n",
"\n"
]
}
],
"source": [
"# Create the population object\n",
"example_pop = Population()\n",
"\n",
"# Set some parameters\n",
"example_pop.set(\n",
" verbosity=1\n",
")\n",
"example_pop.set(\n",
" M_1=10\n",
")\n",
"\n",
"# get output and print\n",
"output = example_pop.evolve_single()\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"id": "ae01fa35-f8b1-4a40-bfb2-b9e872cae0e7",
"metadata": {},
"source": [
"Now lets add some actual output with the custom logging"
]
},
{
"cell_type": "code",
"id": "dd748bab-b57e-4129-8350-9ea11fa179d0",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"adding: C_logging_code=\n",
"Printf(\"EXAMPLE_MASSLOSS %30.12e %g %g %g %d\\n\",\n",
" // \n",
" stardata->model.time, // 1\n",
" stardata->star[0].mass, //2\n",
" stardata->previous_stardata->star[0].mass, //3\n",
" stardata->common.zero_age.mass[0], //4\n",
"\n",
" stardata->star[0].stellar_type //5\n",
");\n",
" to grid_options\n",
"Creating and loading custom logging functionality\n",
"Running binary_c M_1 10\n",
"Cleaning up the custom logging stuff. type: single\n",
"Removed /tmp/binary_c_python/custom_logging/libcustom_logging_eac2dfc438a14e5a9f5be98b1b6b4294.so\n",
"['EXAMPLE_MASSLOSS 0.000000000000e+00 10 0 10 1', 'EXAMPLE_MASSLOSS 0.000000000000e+00 10 10 10 1', 'EXAMPLE_MASSLOSS 1.000000000000e-06 10 10 10 1', 'EXAMPLE_MASSLOSS 2.000000000000e-06 10 10 10 1']\n"
]
}
],
"source": [
"custom_logging_print_statement = \"\"\"\n",
"Printf(\"EXAMPLE_MASSLOSS %30.12e %g %g %g %d\\\\n\",\n",
" // \n",
" stardata->model.time, // 1\n",
" stardata->star[0].mass, //2\n",
" stardata->previous_stardata->star[0].mass, //3\n",
" stardata->common.zero_age.mass[0], //4\n",
"\n",
" stardata->star[0].stellar_type //5\n",
");\n",
"\"\"\" \n",
"\n",
"example_pop.set(C_logging_code=custom_logging_print_statement)\n",
"\n",
"# get output and print\n",
"output = example_pop.evolve_single()\n",
]
},
{
"cell_type": "markdown",
"id": "588a7d9e-9d64-4b3b-8907-656b905286e8",
"metadata": {},
"source": [
"Lastly we can add a parse_function to handle parsing the output again. \n",
"\n",
"Because the parse_function will now be part of the population object, it can access information of the object. We need to make a new parse function that is fit for an object: we the arguments now need to be (self, output). Returning the data is useful when running evolve_single(), but won't be used in a population evolution."
]
},
{
"cell_type": "code",
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
"id": "fec39154-cce6-438c-8c2c-509d76b00f34",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"import numpy as np\n",
"\n",
"def object_parse_function(self, output):\n",
" \"\"\"\n",
" Example parse function that can be added to the population object\n",
" \"\"\"\n",
"\n",
" # We can access object instance information now. \n",
" # In this way we can store the results in a file for example. \n",
" output_file = os.path.join(self.custom_options['output_dir'], 'example_output.json')\n",
" \n",
" # \n",
" column_names = ['time', 'mass', 'initial_mass', 'stellar_type']\n",
" value_lines = [column_names]\n",
" \n",
" # Loop over output\n",
" for line in output.splitlines():\n",
" \n",
" # Select the lines starting with the header we chose\n",
" if line.startswith(\"EXAMPLE_MASSLOSS\"):\n",
" \n",
" # Split the output and fetch the data\n",
" split_line = line.split()\n",
" values = [float(el) for el in split_line[1:]]\n",
" value_lines.append(values)\n",
"\n",
" # Turn into an array\n",
" values_array = np.array(value_lines[1:])\n",
" \n",
" # make dict and fill\n",
" output_dict = {}\n",
" for i in range(len(column_names)):\n",
" output_dict[column_names[i]] = list(values_array[:,i])\n",
"\n",
" # Write to file\n",
" with open(output_file, 'w') as f:\n",
" f.write(json.dumps(output_dict, indent=4))\n",
" \n",
" # Return something anyway\n",
" return value_lines"
]
},
{
"cell_type": "code",
"id": "57347512-fd4a-434b-b13c-5e6dbd3ac415",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"adding: parse_function=<function object_parse_function at 0x7f9265091598> to grid_options\n",
"<<<< Warning: Key does not match previously known parameter: adding: output_dir=/tmp/ to custom_options >>>>\n",
"Creating and loading custom logging functionality\n",
"Running binary_c M_1 10\n",
"Cleaning up the custom logging stuff. type: single\n",
"Removed /tmp/binary_c_python/custom_logging/libcustom_logging_e9c2bec7f15541eb847fc6013e48e7ed.so\n",
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"[['time', 'mass', 'initial_mass', 'stellar_type'], [0.0, 10.0, 0.0, 10.0, 1.0], [0.0, 10.0, 10.0, 10.0, 1.0], [1e-06, 10.0, 10.0, 10.0, 1.0]]\n",
"dict_keys(['time', 'mass', 'initial_mass', 'stellar_type'])\n"
]
}
],
"source": [
"example_pop.set(\n",
" parse_function=object_parse_function,\n",
" output_dir='/tmp/'\n",
")\n",
"output = example_pop.evolve_single()\n",
"print(output[:4])\n",
"\n",
"# Example of loading the data that was written\n",
"with open(os.path.join(example_pop.custom_options['output_dir'], 'example_output.json')) as f:\n",
" written_data = json.loads(f.read())\n",
"\n",
"print(written_data.keys())"
]
},
{
"cell_type": "markdown",
"id": "ddc06da3-fc68-4c6f-8067-14ea862b964d",
"metadata": {},
"source": [
"## Single system via API functionality\n",
"It is possible to construct your own functionality to run a single system by directly calling the API function to run a system. Under the hood all the other functions and wrappers actually use this API.\n",
"\n",
"There are less failsafes for this method, so this make sure the input is correct and binary_c knows all the arguments you pass in.\n",
"\n",
"for more details on this API function see `notebook_api_functions`"
]
},
{
"cell_type": "markdown",
"id": "56886792-d379-4eac-b0d4-54508edb39c7",
"metadata": {},
"source": [
"First we must construct the argument string that we pass to binary_c"
]
},
{
"cell_type": "code",
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
"id": "ec48125c-6bf5-48f4-9357-8261800b5d8b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SINGLE_STAR_LIFETIME 15 14.2383\n",
"\n"
]
}
],
"source": [
"# For a binary system we need to pass in these arguments\n",
"M_1 = 15.0 # Msun\n",
"M_2 = 14.0 # Msun\n",
"separation = 0 # 0 = ignored, use period\n",
"orbital_period = 4530.0 # days\n",
"eccentricity = 0.0\n",
"metallicity = 0.02\n",
"max_evolution_time = 15000 # Myr. You need to include this argument.\n",
"\n",
"# Here we set up the argument string that is passed to the bindings\n",
"argstring = \"\"\"\n",
"binary_c M_1 {M_1} M_2 {M_2} separation {separation} orbital_period {orbital_period} eccentricity {eccentricity} metallicity {metallicity} max_evolution_time {max_evolution_time}\n",
"\"\"\".format(\n",
" M_1=M_1,\n",
" M_2=M_2,\n",
" separation=separation,\n",
" orbital_period=orbital_period,\n",
" eccentricity=eccentricity,\n",
" metallicity=metallicity,\n",
" max_evolution_time=max_evolution_time,\n",
").strip()\n",
"\n",
"from binarycpython import _binary_c_bindings\n",
"\n",
"output = _binary_c_bindings.run_system(argstring)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"id": "55c8ea24-0fc0-452c-8121-1e7667433479",
"metadata": {},
"source": [
"As we can see above, the output is rather empty. But if SINGLE_STAR_LIFETIME is printed we know we caught the output correctly. To get actual output we should have timesteps printed in the `log_every_timestep.c` in binary_c, or add some custom_logging (see notebook_custom_logging). "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}