Skip to content
Snippets Groups Projects
Commit 69a96a28 authored by Naman Saxena's avatar Naman Saxena
Browse files

Upload New File

parent 8bf5001b
No related branches found
No related tags found
No related merge requests found
# Simulation parameters
NUM_EPISODES = 1000
NUM_EPISODES_DQN = 500
NUM_EPISODES_SARSA=2000
MAX_STEPS = 500
# Control algorithm parameters
'''CONTROL_PARAMS = {
'learning_rate': 0.1,
'discount_factor': 0.99,
'epsilon': 0.1,
'patience': 10, # Number of episodes to wait before reducing learning rate if no improvement
'min_delta': 0.01, # Minimum change in reward to be considered an improvement
'decay_factor': 0.9 # Factor by which to multiply the learning rate when performance plateaus
}'''
CONTROL_PARAMS = {
'learning_rate': 0.001,
'discount_factor': 0.99,
'epsilon': 1.0,
'min_epsilon': 0.01,
'decay_rate': 0.995,
'buffer_size': 10000, # For DQN
'batch_size': 64, # For DQN
'update_target_steps': 1000, # For DQN
'patience': 50,
'min_delta': 0.01,
'decay_factor': 0.9
}
# Logging parameters
LOG_PARAMS = {
'log_frequency': 10,
'save_path': './Results/'
}
# Hardware interface parameters (when using real hardware)
HARDWARE_PARAMS = {
'motor_pins': [18, 23], # Example GPIO pins
'encoder_pins': [24, 25],
'update_frequency': 50 # Hz
}
EARLY_STOPPING = {
'patience': 10, # Number of episodes with no improvement after which training will be stopped
'min_delta': 1e-5 # Minimum change to consider as an improvement
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment