Skip to content
Snippets Groups Projects
Commit 5413fe7d authored by Jaramillo, Valeria Dr (Psychology)'s avatar Jaramillo, Valeria Dr (Psychology)
Browse files

cleaned power spectra scripts

parent aa4561ca
No related branches found
No related tags found
No related merge requests found
clear all;
close all;
addpath(genpath('\\surrey.ac.uk\personal\hs301\m17462\matlab\eeglab')); % eeglab toolbox, see README on where to find this
addpath(genpath('\\surrey.ac.uk\personal\hs301\m17462\matlab\Henry\useful_functions')); % contains linspecer function, circular statistics toolbox functions, echt function, shadedErrorBar function, see README on where to find this
% Folderpath = '/vol/research/nemo/datasets/RSN/data/hdEEG/';
% sub_Folderpath = dir([Folderpath,'RSN*']);
% load('/vol/research/nemo/datasets/RSN/data/analysis/psd_allsub/psd_allsub_mICA_avref_26-Aug-2022.mat');
load('/vol/research/nemo/datasets/RSN/data/analysis/psd_allsub/psd_allsub_mICA_avref_12-Mar-2023.mat');
% load('/vol/research/nemo/datasets/RSN/data/analysis/psd_allsub/psd_allsub_mICA_avref_rejtrials_26-Feb-2023');
% load('/user/HS301/m17462/matlab/Scripts/RSN/analyses/psd/topo/Cluster_el_9_10_Hz.mat');
load('/user/HS301/m17462/matlab/Scripts/RSN/analyses/psd/topo/EEG_chanlocs.mat');
%%
load('/vol/research/nemo/datasets/RSN/data/analysis/psd_allsub/statsresult/statsresult_alpha_7-8 Hz.mat');
alpha_cluster_el1 = statsresult.WhichCh_1_max_condition;
clear statsresult
load('/vol/research/nemo/datasets/RSN/data/analysis/psd_allsub/statsresult/statsresult_alpha_10-11 Hz.mat');
alpha_cluster_el2 = statsresult.WhichCh_1_max_condition;
clear statsresult
alpha_cluster_combined = unique([alpha_cluster_el1,alpha_cluster_el2]);
load('/vol/research/nemo/datasets/RSN/data/analysis/psd_allsub/statsresult/statsresult_theta_7-8 Hz.mat');
theta_cluster_el = statsresult.WhichCh_1_max_condition;
clear statsresult
conditions = {'Peak'; 'Falling'; 'Trough'; 'Rising';
'Peak'; 'Falling'; 'Trough'; 'Rising';}
%% Average across on and off blocks and calculate change - alpha cluster
mpsd_con_ch_stage = mpsd_con_ch; % mpsd_con_ch: sub x ch x con x bins x ep
% mpsd_con_ch_stage = mpsd_con_ch_phasic;
% mpsd_con_ch_stage(3,:,7,:,:) = NaN; % should be NaN as this participant did not have this condition
on_block = 7:12;
off_block = 1:6;
ch = alpha_cluster_combined; %[2 34 65 94]; % Fz, AFz, AFF1h, AFF2h
% ch = theta_cluster_el;
% ch = 16:18; % O1, Oz, Oz
% ch = cluster_el
psd_ON_block = squeeze(nanmean(mpsd_con_ch_stage(:,:,:,:,on_block),5)); % average across on block
psd_OFF_block = squeeze(nanmean(mpsd_con_ch_stage(:,:,:,:,off_block),5));
psd_ON = squeeze(nanmean(psd_ON_block(:,ch,:,:),2)); % average across channels
psd_OFF = squeeze(nanmean(psd_OFF_block(:,ch,:,:),2));
psd_ON_block_phasic = squeeze(nanmean(mpsd_con_ch_phasic(:,:,:,:,on_block),5)); % psd_ON: sub x ch x con x bins
psd_OFF_block_phasic = squeeze(nanmean(mpsd_con_ch_phasic(:,:,:,:,off_block),5));
psd_ON_block_tonic = squeeze(nanmean(mpsd_con_ch_tonic(:,:,:,:,on_block),5)); % psd_ON: sub x ch x con x bins
psd_OFF_block_tonic = squeeze(nanmean(mpsd_con_ch_tonic(:,:,:,:,off_block),5));
psd_ON_phasic = squeeze(nanmean(psd_ON_block_phasic(:,ch,:,:),2));
psd_OFF_phasic = squeeze(nanmean(psd_OFF_block_phasic(:,ch,:,:),2));
psd_ON_tonic = squeeze(nanmean(psd_ON_block_tonic(:,ch,:,:),2));
psd_OFF_tonic = squeeze(nanmean(psd_OFF_block_tonic(:,ch,:,:),2));
psd_ONOFF_change = (psd_ON - psd_OFF)./psd_OFF *100;
log_psd_ONOFF_change = log10(psd_ON./psd_OFF);
log_npsd_ONOFF_change = log_psd_ONOFF_change-nanmean(log_psd_ONOFF_change(:,1:4,:),2);
psd_ONOFF_change_phasic = (psd_ON_phasic - psd_OFF_phasic)./psd_OFF_phasic *100;
log_psd_ONOFF_change_phasic = log10(psd_ON_phasic./psd_OFF_phasic);
log_npsd_ONOFF_change_phasic = log_psd_ONOFF_change_phasic-nanmean(log_psd_ONOFF_change_phasic(:,1:4,:),2);
psd_ONOFF_change_tonic = (psd_ON_tonic - psd_OFF_tonic)./psd_OFF_tonic *100;
log_psd_ONOFF_change_tonic = log10(psd_ON_tonic./psd_OFF_tonic);
log_npsd_ONOFF_change_tonic = log_psd_ONOFF_change_tonic-nanmean(log_psd_ONOFF_change_tonic(:,1:4,:),2);
npsd_ONOFF_change = psd_ONOFF_change-nanmean(psd_ONOFF_change(:,1:4,:),2);
incl_sub = setdiff(1:19,12);
mpsd_ONOFF_change = squeeze(nanmean(psd_ONOFF_change(incl_sub,:,:),1));
sem_psd_ONOFF_change = squeeze(nanstd(psd_ONOFF_change(incl_sub,:,:))./sqrt(size(psd_ONOFF_change(incl_sub,:,:),1)));
m_npsd_ONOFF_change = squeeze(nanmean(npsd_ONOFF_change(incl_sub,:,:),1));
sem_npsd_ONOFF_change = squeeze(nanstd(npsd_ONOFF_change(incl_sub,:,:))./sqrt(size(npsd_ONOFF_change(incl_sub,:,:),1)));
%% Compare On to Off using a t-test
% two sample
% for con = 1:size(psd_ON,2)
%
% for b = 1:size(psd_ON,3)
%
% [h(con,b) p(con,b) ci stats] = ttest(psd_ON(incl_sub,con,b),psd_OFF(incl_sub,con,b));
% tvalue(con,b) = stats.tstat;
% cohens_d(con,b) = nanmean(psd_ON(incl_sub,con,b)-psd_OFF(incl_sub,con,b))/nanstd(psd_ON(incl_sub,con,b)-psd_OFF(incl_sub,con,b));
%
% end
%
% end
% one sample
for con = 1:size(psd_ON,2)
for b = 1:size(psd_ON,3)
% [h(con,b) p_abs(con,b) ci stats] = ttest(psd_ONOFF_change(incl_sub,con,b));
[h(con,b) p_abs(con,b) ci stats] = ttest(log_psd_ONOFF_change(incl_sub,con,b));
tvalue_abs(con,b) = stats.tstat;
cohens_d_abs(con,b) = nanmean(psd_ON(incl_sub,con,b)- psd_OFF(incl_sub,con,b))/nanstd(psd_ON(incl_sub,con,b)-psd_OFF(incl_sub,con,b));
% cohens_d_abs2(con,b) = (nanmean(psd_ON(incl_sub,con,b))- nanmean(psd_OFF(incl_sub,con,b)))/nanstd(psd_ON(incl_sub,con,b)-psd_OFF(incl_sub,con,b)); % gives the same results as line above
end
end
%% Compare normalized On to Off using a t-test
% one sample
for con = 1:size(psd_ON,2)
for b = 1:size(psd_ON,3)
[h(con,b) p_norm(con,b) ci stats] = ttest(npsd_ONOFF_change(incl_sub,con,b));
tvalue_norm(con,b) = stats.tstat;
cohens_d_norm(con,b) = nanmean(psd_ON(incl_sub,con,b)-psd_OFF(incl_sub,con,b))/nanstd(psd_ON(incl_sub,con,b)-psd_OFF(incl_sub,con,b));
end
end
%% Compare conditions using a lme - alpha
% clear sub
%
% for s = 1:size(sub_Folderpath,1)
%
% sub{s} = sub_Folderpath(s).name;
%
% end
%
%
% for b = 1:size(psd_ONOFF_change,3)
%
% psd_ON_bin = psd_ON(incl_sub,:,b);
% psd_OFF_bin = psd_OFF(incl_sub,:,b);
%
% table_allcon_alpha = [];
%
% for con = 1:4
%
% sub_table = vertcat(sub(incl_sub)',sub(incl_sub)');
% cond = repmat(con,length(incl_sub)*2,1);
% wind = vertcat(repmat(1,length(incl_sub),1),repmat(0,length(incl_sub),1));
% psd_bin_con = vertcat(psd_ON_bin(:,con),psd_OFF_bin(:,con));
% table_bin_con_alpha = table(sub_table,cond,wind,psd_bin_con,'VariableNames',{'sub','condition','window','power'});
% table_allcon_alpha = vertcat(table_allcon_alpha,table_bin_con_alpha);
%
% end
%
% lme = fitlme(table_allcon_alpha,'power ~ condition * window + (1|sub)','FitMethod','REML','DummyVarCoding','effects');
% % [pVal_alpha(b),F_alhpa(b),DF1_alpha(b),DF2_alpha(b)] = coefTest(lme);
% % [beta,betanames,stats] = fixedEffects(lme);
% % p_con_alpha(b) = stats.pValue(2);
% % p_win_alpha(b) = stats.pValue(3);
% % p_con_win_alpha(b) = stats.pValue(4);
%
% stats = anova(lme);
% p_con_alpha(b) = stats.pValue(2);
% p_win_alpha(b) = stats.pValue(3);
% p_con_win_alpha(b) = stats.pValue(4);
%
%
% end
clear sub
for s = 1:size(sub_Folderpath,1)
sub{s} = sub_Folderpath(s).name;
end
for b = 1:size(psd_ONOFF_change,3)
psd_change_phasic_bin = log_psd_ONOFF_change_phasic(incl_sub,:,b);
psd_change_tonic_bin = log_psd_ONOFF_change_tonic(incl_sub,:,b);
table_allcon_alpha = [];
for con = 1:4
sub_table = vertcat(sub(incl_sub)',sub(incl_sub)');
cond = repmat(con,length(incl_sub)*2,1);
substage = vertcat(repmat(1,length(incl_sub),1),repmat(2,length(incl_sub),1));
psd_change_bin_con = vertcat(psd_change_phasic_bin(:,con),psd_change_tonic_bin(:,con));
table_bin_con_alpha = table(sub_table,cond,substage,psd_change_bin_con,'VariableNames',{'sub','condition','substage','power_change'});
table_allcon_alpha = vertcat(table_allcon_alpha,table_bin_con_alpha);
end
table_allcon_alpha.substage = categorical(table_allcon_alpha.substage);
table_allcon_alpha.condition = categorical(table_allcon_alpha.condition);
table_allcon_alpha.sub = categorical(table_allcon_alpha.sub);
lme = fitlme(table_allcon_alpha,'power_change ~ substage * condition + (1|sub)','FitMethod','REML','DummyVarCoding','effects');
% [pVal_alpha(b),F_alhpa(b),DF1_alpha(b),DF2_alpha(b)] = coefTest(lme);
% [beta,betanames,stats] = fixedEffects(lme);
% p_con_alpha(b) = stats.pValue(2);
% p_win_alpha(b) = stats.pValue(3);
% p_con_win_alpha(b) = stats.pValue(4);
stats = anova(lme);
p_con_alpha(b) = stats.pValue(2);
p_substage_alpha(b) = stats.pValue(3);
p_con_substage_alpha(b) = stats.pValue(4);
end
%% Compare conditions using a lme - alpha normalized
clear sub
for s = 1:size(sub_Folderpath,1)
sub{s} = sub_Folderpath(s).name;
end
for b = 1:size(npsd_ONOFF_change,3)
npsd_change_phasic_bin = log_npsd_ONOFF_change_phasic(incl_sub,:,b);
npsd_change_tonic_bin = log_npsd_ONOFF_change_tonic(incl_sub,:,b);
table_allcon_alpha = [];
for con = 1:4
sub_table = vertcat(sub(incl_sub)',sub(incl_sub)');
cond = repmat(con,length(incl_sub)*2,1);
substage = vertcat(repmat(1,length(incl_sub),1),repmat(2,length(incl_sub),1));
npsd_change_bin_con = vertcat(npsd_change_phasic_bin(:,con),npsd_change_tonic_bin(:,con));
table_bin_con_alpha = table(sub_table,cond,substage,npsd_change_bin_con,'VariableNames',{'sub','condition','substage','power_change'});
table_allcon_alpha = vertcat(table_allcon_alpha,table_bin_con_alpha);
end
table_allcon_alpha.substage = categorical(table_allcon_alpha.substage);
table_allcon_alpha.condition = categorical(table_allcon_alpha.condition);
table_allcon_alpha.sub = categorical(table_allcon_alpha.sub);
lme = fitlme(table_allcon_alpha,'power_change ~ substage * condition + (1|sub)','FitMethod','REML','DummyVarCoding','effects');
% [pVal_alpha(b),F_alhpa(b),DF1_alpha(b),DF2_alpha(b)] = coefTest(lme);
% [beta,betanames,stats] = fixedEffects(lme);
% p_con_alpha(b) = stats.pValue(2);
% p_win_alpha(b) = stats.pValue(3);
% p_con_win_alpha(b) = stats.pValue(4);
stats = anova(lme);
p_con_alpha_norm(b) = stats.pValue(2);
p_substage_alpha_norm(b) = stats.pValue(3);
p_con_substage_alpha_norm(b) = stats.pValue(4);
end
%% Plot power spectrum ON-OFF change for Alpha stimulation
% incl_sub = 1:19;
colors = linspecer(4);
fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
for con = 1:4
% shadedErrorBar(f,mpsd_ONOFF_change(con,:),sem_psd_ONOFF_change(con,:),'lineProps',{'Color',colors(con,:),'LineWidth',1},'patchSaturation',.3);
plot(f,mpsd_ONOFF_change(con,:),'Color',colors(con,:),'LineWidth',7);
hold on
errorbar(15+con/2,0,nanmean(sem_psd_ONOFF_change(con,:),2),'Color',colors(con,:),'LineWidth',3);
end
% for con = 1:4
% sig_bins = find(p(con,:) <= 0.05);
% plot(f(sig_bins),ones(length(sig_bins),1)*-25-1*con,'*','Color',colors(con,:));
% hold on
% end
con = 1;
sig_bins_ttest = find(p_abs(con,:) <= 0.05);
plot(f(sig_bins_ttest),ones(length(sig_bins_ttest),1)*-18,'square','MarkerFaceColor',colors(con,:),'MarkerEdgeColor',colors(con,:),'MarkerSize',5);
con = 2;
sig_bins_ttest = find(p_abs(con,:) <= 0.05);
plot(f(sig_bins_ttest),ones(length(sig_bins_ttest),1)*-20,'square','MarkerFaceColor',colors(con,:),'MarkerEdgeColor',colors(con,:),'MarkerSize',5);
con = 3;
sig_bins_ttest = find(p_abs(con,:) <= 0.05);
plot(f(sig_bins_ttest),ones(length(sig_bins_ttest),1)*-22,'square','MarkerFaceColor',colors(con,:),'MarkerEdgeColor',colors(con,:),'MarkerSize',5);
con = 4;
sig_bins_ttest = find(p_abs(con,:) <= 0.05);
plot(f(sig_bins_ttest),ones(length(sig_bins_ttest),1)*-24,'square','MarkerFaceColor',colors(con,:),'MarkerEdgeColor',colors(con,:),'MarkerSize',5);
% sig_bins_lme = find(p_con_win_alpha <= 0.05);
% plot(f(sig_bins_lme),ones(length(sig_bins_lme),1)*-28,'*','Color','k');
sig_bins_lme = find(p_con_alpha <= 0.05);
plot(f(sig_bins_lme),ones(length(sig_bins_lme),1)*-28,'square','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',10);
% sig_bins_lme = find(p_substage_alpha <= 0.05);
% plot(f(sig_bins_lme),ones(length(sig_bins_lme),1)*-26,'*','Color',[0.3 0.3 0.3]);
%
% sig_bins_lme = find(p_con_substage_alpha <= 0.05);
% plot(f(sig_bins_lme),ones(length(sig_bins_lme),1)*-27,'*','Color',[0.5 0.5 0.5]);
ylim([-30 30])
hold on
% plot([0 40],[0 0],'Color',[0.5 0.5 0.5]);
% hold on
% plot([0 40],[-10 -10],'Color',[0.5 0.5 0.5]);
% hold on
% plot([0 40],[10 10],'Color',[0.5 0.5 0.5]);
xlabel('Frequency (Hz)');
ylabel('Power change (%)');
set(gca,'Fontsize',35,'TickDir','out','LineWidth',3);
xlim([0 18]);
xticks(0:2:18);
yline(0,'LineWidth',2);
yline(-26,'LineWidth',2);
% yline(-24);
area([7.5 12.5],[30 30],-130,'FaceColor',[0.5 0.5 0.5],'FaceAlpha',.1,'EdgeColor','none','LineStyle','none')
% xline(4.5,'LineWidth',1,'LineStyle','--')
xline(7.5,'LineWidth',1,'LineStyle','--')
xline(12.5,'LineWidth',1,'LineStyle','--')
% set(gca, 'XTickMode', 'manual', 'XTick', [0:2:40], 'xlim', [0,40])
% set(gca,'Fontsize',15);
box off
axis square
% [hleg, hobj, hout, mout] = legend({'''Peak''' '''Falling''' '''Trough''' '''Rising'''},'box','off');
% set(hobj,'LineWidth',5);
saveas(fig,[Savefolder,'Figure4_psd_change_alpha_ttest_statsresult_cluster.svg']);
%% 7-8 Hz
% bins = find(f >= 7 & f <= 8);
%
% fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
% violins = violinPlot([nanmean(psd_ONOFF_change(incl_sub,1,bins),3) nanmean(psd_ONOFF_change(incl_sub,2,bins),3) nanmean(psd_ONOFF_change(incl_sub,3,bins),3) nanmean(psd_ONOFF_change(incl_sub,4,bins),3)]);
% % ylabel('Frequency change (Hz)');
% ylabel('Power change (%)');
% set(gca,'Fontsize',35);
% xticklabels(conditions(1:4));
% xtickangle(45);
% box on
% axis square
% title('7-8 Hz');
% % ylim([-0.2 0.35])
% % yticks(-0.2:0.1:0.3);
% xlim([0 5])
%
%
% for cond = 1:4
% violins(cond).ViolinColor = colors(cond,:);
% violins(cond).ShowMean = 1;
% violins(cond).ShowData = 1;
% end
%
% saveas(fig,[Savefolder,'Figure4_violinplots_alphapower_ttest_statsresult_cluster.svg']);
%
% [h p_alpha_peak] = ttest(nanmean(psd_ONOFF_change(incl_sub,1,bins),3))
% [h p_alpha_falling] = ttest(nanmean(psd_ONOFF_change(incl_sub,2,bins),3))
% [h p_alpha_trough] = ttest(nanmean(psd_ONOFF_change(incl_sub,3,bins),3))
% [h p_alpha_rising] = ttest(nanmean(psd_ONOFF_change(incl_sub,4,bins),3))
%% 10-11 Hz
% bins = find(f >= 10 & f <= 11);
%
% fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
% violins = violinPlot([nanmean(psd_ONOFF_change(incl_sub,1,bins),3) nanmean(psd_ONOFF_change(incl_sub,2,bins),3) nanmean(psd_ONOFF_change(incl_sub,3,bins),3) nanmean(psd_ONOFF_change(incl_sub,4,bins),3)]);
% % ylabel('Frequency change (Hz)');
% ylabel('Power change (%)');
% set(gca,'Fontsize',35);
% xticklabels(conditions(1:4));
% xtickangle(45);
% box on
% axis square
% title('10-11 Hz');
% % ylim([-0.2 0.35])
% % yticks(-0.2:0.1:0.3);
% xlim([0 5])
%
%
% for cond = 1:4
% violins(cond).ViolinColor = colors(cond,:);
% violins(cond).ShowMean = 1;
% violins(cond).ShowData = 1;
% end
%
% saveas(fig,[Savefolder,'Figure4_violinplots_alphapower_10_11_ttest_statsresult_cluster.svg']);
%
% [h p_alpha_peak] = ttest(nanmean(psd_ONOFF_change(incl_sub,1,bins),3))
% [h p_alpha_falling] = ttest(nanmean(psd_ONOFF_change(incl_sub,2,bins),3))
% [h p_alpha_trough] = ttest(nanmean(psd_ONOFF_change(incl_sub,3,bins),3))
% [h p_alpha_rising] = ttest(nanmean(psd_ONOFF_change(incl_sub,4,bins),3))
%% Plot normalized power spectrum ON-OFF change for Alpha stimulation
% incl_sub = 1:19;
colors = linspecer(4);
fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
for con = 1:4
% shadedErrorBar(f,mpsd_ONOFF_change(con,:),sem_psd_ONOFF_change(con,:),'lineProps',{'Color',colors(con,:),'LineWidth',1},'patchSaturation',.3);
plot(f,m_npsd_ONOFF_change(con,:),'Color',colors(con,:),'LineWidth',7);
hold on
% errorbar(3.5+con/4,0,nanmean(sem_npsd_ONOFF_change(con,:),2),'Color',colors(con,:),'LineWidth',3);
end
% for con = 1:4
% sig_bins = find(p(con,:) <= 0.05);
% plot(f(sig_bins),ones(length(sig_bins),1)*-25-1*con,'*','Color',colors(con,:));
% hold on
% end
con = 1;
sig_bins_ttest = find(p_norm(con,:) <= 0.05);
plot(f(sig_bins_ttest),ones(length(sig_bins_ttest),1)*-15,'square','MarkerFaceColor',colors(con,:),'MarkerEdgeColor',colors(con,:),'MarkerSize',5);
con = 2;
sig_bins_ttest = find(p_norm(con,:) <= 0.05);
plot(f(sig_bins_ttest),ones(length(sig_bins_ttest),1)*-16,'square','MarkerFaceColor',colors(con,:),'MarkerEdgeColor',colors(con,:),'MarkerSize',5);
con = 3;
sig_bins_ttest = find(p_norm(con,:) <= 0.05);
plot(f(sig_bins_ttest),ones(length(sig_bins_ttest),1)*-17,'square','MarkerFaceColor',colors(con,:),'MarkerEdgeColor',colors(con,:),'MarkerSize',5);
con = 4;
sig_bins_ttest = find(p_norm(con,:) <= 0.05);
plot(f(sig_bins_ttest),ones(length(sig_bins_ttest),1)*-18,'square','MarkerFaceColor',colors(con,:),'MarkerEdgeColor',colors(con,:),'MarkerSize',5);
% sig_bins_lme = find(p_con_win_alpha <= 0.05);
% plot(f(sig_bins_lme),ones(length(sig_bins_lme),1)*-28,'*','Color','k');
sig_bins_lme = find(p_con_alpha_norm <= 0.05);
plot(f(sig_bins_lme),ones(length(sig_bins_lme),1)*-20,'square','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',10);
% sig_bins_lme = find(p_substage_alpha <= 0.05);
% plot(f(sig_bins_lme),ones(length(sig_bins_lme),1)*-26,'*','Color',[0.3 0.3 0.3]);
%
% sig_bins_lme = find(p_con_substage_alpha <= 0.05);
% plot(f(sig_bins_lme),ones(length(sig_bins_lme),1)*-27,'*','Color',[0.5 0.5 0.5]);
xlim([3.5 13]);
ylim([-21 13])
xticks(4:1:12);
% xline(10,'LineWidth',2);
% plot([0 40],[0 0],'Color',[0.5 0.5 0.5]);
% hold on
% plot([0 40],[-10 -10],'Color',[0.5 0.5 0.5]);
% hold on
% plot([0 40],[10 10],'Color',[0.5 0.5 0.5]);
xlabel('Frequency (Hz)');
ylabel('Normalized power change (%)');
set(gca,'Fontsize',35,'TickDir','out','LineWidth',3);
yline(0,'LineWidth',2);
yline(-19,'LineWidth',2);
% yline(-14,'LineWidth',2);
% yline(-24);
area([7.5 12.5],[13 13],-21,'FaceColor',[0.5 0.5 0.5],'FaceAlpha',.1,'EdgeColor','none','LineStyle','none')
% xline(4.5,'LineWidth',1,'LineStyle','--')
xline(7.5,'LineWidth',1,'LineStyle','--')
xline(12.5,'LineWidth',1,'LineStyle','--')
% set(gca, 'XTickMode', 'manual', 'XTick', [0:2:40], 'xlim', [0,40])
% set(gca,'Fontsize',15);
box off
axis square
% [hleg, hobj, hout, mout] = legend({'''Peak''' '''Falling''' '''Trough''' '''Rising'''},'box','off');
% set(hobj,'LineWidth',5);
saveas(fig,[Savefolder,'Figure4_npsd_change_alpha_ttest_statsresult_cluster.svg']);
%% 6.5-7.9 Hz
% f_sig_bins_lme = f(sig_bins_lme);
% freq_ndx = find(f >= 6.5 & f <= 7.9);
%
% psd_on_ch = squeeze(nanmean(mpsd_con_ch_stage(incl_sub,ch,:,:,1:12),2));
% m_psd_off_ch = nanmean(squeeze(nanmean(mpsd_con_ch_stage(incl_sub,ch,:,:,off_block),2)),4); % mean across cluster and off block
% perc_change = (psd_on_ch./m_psd_off_ch-1)*100;
% log_perc_change = log10(psd_on_ch./m_psd_off_ch);
%
% perc_change_freq = squeeze(nanmean(perc_change(:,:,freq_ndx,:),3));
% log_perc_change_freq = squeeze(nanmean(log_perc_change(:,:,freq_ndx,:),3));
%
% movmean_sec = 2;
%
% cond = 1;
% nperc_change_cond1 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond1 = movmean(nperc_change_cond1,[movmean_sec],2);
% m_nperc_change_cond1 = nanmean(nperc_change_cond1,1);
% sem_nperc_change_cond1 = nanstd(nperc_change_cond1,1)./sqrt(size(nperc_change_cond1,1));
% log_perc_change_freq_cond1 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 2;
% nperc_change_cond2 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond2 = movmean(nperc_change_cond2,[movmean_sec],2);
% m_nperc_change_cond2 = nanmean(nperc_change_cond2,1);
% sem_nperc_change_cond2 = nanstd(nperc_change_cond2,1)./sqrt(size(nperc_change_cond2,1));
% log_perc_change_freq_cond2 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 3;
% nperc_change_cond3 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond3= movmean(nperc_change_cond3,[movmean_sec],2);
% m_nperc_change_cond3 = nanmean(nperc_change_cond3,1);
% sem_nperc_change_cond3 = nanstd(nperc_change_cond3,1)./sqrt(size(nperc_change_cond3,1));
% log_perc_change_freq_cond3 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 4;
% nperc_change_cond4 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond4 = movmean(nperc_change_cond4,[movmean_sec],2);
% m_nperc_change_cond4 = nanmean(nperc_change_cond4,1);
% sem_nperc_change_cond4 = nanstd(nperc_change_cond4,1)./sqrt(size(nperc_change_cond4,1));
% log_perc_change_freq_cond4 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
%
% psd_tf_con1_minus_con3 = nperc_change_cond1 - nperc_change_cond3;
% mpsd_tf_con1_minus_con3 = nanmean(psd_tf_con1_minus_con3,1);
% sem_psd_tf_con1_minus_con3 = nanstd(psd_tf_con1_minus_con3)./sqrt(size(psd_tf_con1_minus_con3,1));
% log_psd_tf_con1_minus_con3 = log_perc_change_freq_cond1 - log_perc_change_freq_cond3;
%
% psd_tf_con2_minus_con4 = nperc_change_cond2 - nperc_change_cond4;
% mpsd_tf_con2_minus_con4 = nanmean(psd_tf_con2_minus_con4,1);
% sem_psd_tf_con2_minus_con4 = nanstd(psd_tf_con2_minus_con4)./sqrt(size(psd_tf_con2_minus_con4,1));
% log_psd_tf_con2_minus_con4 = log_perc_change_freq_cond2 - log_perc_change_freq_cond4;
%
%
% clear p_freq1_con1_con3 p_freq1_con2_con4
% for sec = 1:12
%
% [h p_freq1_con1_con3(sec)] = ttest(psd_tf_con1_minus_con3(:,sec))
% [h p_freq1_con2_con4(sec)] = ttest(psd_tf_con2_minus_con4(:,sec))
%
% end
%
% sig_times_con1_con3 = find(p_freq1_con1_con3 <= 0.05);
% trend_times_con1_con3 = find(p_freq1_con1_con3 <= 0.1 & p_freq1_con1_con3 > 0.05);
%
% sig_times_con2_con4 = find(p_freq1_con2_con4 <= 0.05);
% trend_times_con2_con4 = find(p_freq1_con2_con4 <= 0.1 & p_freq1_con2_con4 > 0.05);
%
% %%
% fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
%
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond1,sem_nperc_change_cond1,'lineProps',{'Color',colors(1,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond1,'Color',colors(1,:),'LineWidth',7);
% hold on
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond3,sem_nperc_change_cond3,'lineProps',{'Color',colors(3,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond3,'Color',colors(3,:),'LineWidth',7);
% hold on
% % shadedErrorBar([0.5:1:11.5],mpsd_tf_con1_minus_con3,sem_psd_tf_con1_minus_con3,'lineProps',{'Color','k','LineWidth',1},'patchSaturation',.3);
% plot(sig_times_con1_con3-0.5,ones(length(sig_times_con1_con3),1,1)*18,'*','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% hold on
% plot(trend_times_con1_con3-0.5,ones(length(trend_times_con1_con3),1,1)*18,'+','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--','LineWidth',2);
% ylim([-20 20]);
% xticks(0:2:12);
% xlabel('Time (s)');
% ylabel('Normalized power change (%)');
% title('6.5-7.9 Hz');
% set(gca,'Fontsize',35,'LineWidth',3);
% box off
% axis square
%
% % saveas(fig,[Savefolder,'Figure4_npsd_change_alpha_ttest_statsresult_cluster_time_freq1_peak_trough.svg']);
%
% %%
% fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
%
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond2,sem_nperc_change_cond2,'lineProps',{'Color',colors(2,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond2,'Color',colors(2,:),'LineWidth',7);
% hold on
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond4,sem_nperc_change_cond4,'lineProps',{'Color',colors(4,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond4,'Color',colors(4,:),'LineWidth',7);
% hold on
% % shadedErrorBar([0.5:1:11.5],mpsd_tf_con2_minus_con4,sem_psd_tf_con2_minus_con4,'lineProps',{'Color','k','LineWidth',1},'patchSaturation',.3);
% hold on
% plot(sig_times_con2_con4-0.5,ones(length(sig_times_con2_con4),1,1)*18,'*','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% hold on
% plot(trend_times_con2_con4-0.5,ones(length(trend_times_con2_con4),1,1)*18,'+','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--');
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--','LineWidth',2);
% ylim([-20 20]);
% xticks(0:2:12);
% xlabel('Time (s)');
% ylabel('Normalized power change (%)');
% title('6.5-7.9 Hz');
% set(gca,'Fontsize',35,'LineWidth',3);
% box off
% axis square
%
% % saveas(fig,[Savefolder,'Figure4_npsd_change_alpha_ttest_statsresult_cluster_time_freq1_falling_rising.svg']);
%
% %% 8.2-8.8 Hz
%
% f_sig_bins_lme = f(sig_bins_lme);
% freq_ndx = find(f >= 8.2 & f <= 8.8);
%
% psd_on_ch = squeeze(nanmean(mpsd_con_ch_stage(incl_sub,ch,:,:,1:12),2));
% m_psd_off_ch = nanmean(squeeze(nanmean(mpsd_con_ch_stage(incl_sub,ch,:,:,off_block),2)),4); % mean across cluster and off block
% perc_change = (psd_on_ch./m_psd_off_ch-1)*100;
% log_perc_change = log10(psd_on_ch./m_psd_off_ch);
%
% perc_change_freq = squeeze(nanmean(perc_change(:,:,freq_ndx,:),3));
% log_perc_change_freq = squeeze(nanmean(log_perc_change(:,:,freq_ndx,:),3));
%
% movmean_sec = 2;
%
% cond = 1;
% nperc_change_cond1 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond1 = movmean(nperc_change_cond1,[movmean_sec],2);
% m_nperc_change_cond1 = nanmean(nperc_change_cond1,1);
% sem_nperc_change_cond1 = nanstd(nperc_change_cond1,1)./sqrt(size(nperc_change_cond1,1));
% log_perc_change_freq_cond1 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 2;
% nperc_change_cond2 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond2 = movmean(nperc_change_cond2,[movmean_sec],2);
% m_nperc_change_cond2 = nanmean(nperc_change_cond2,1);
% sem_nperc_change_cond2 = nanstd(nperc_change_cond2,1)./sqrt(size(nperc_change_cond2,1));
% log_perc_change_freq_cond2 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 3;
% nperc_change_cond3 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond3= movmean(nperc_change_cond3,[movmean_sec],2);
% m_nperc_change_cond3 = nanmean(nperc_change_cond3,1);
% sem_nperc_change_cond3 = nanstd(nperc_change_cond3,1)./sqrt(size(nperc_change_cond3,1));
% log_perc_change_freq_cond3 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 4;
% nperc_change_cond4 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond4 = movmean(nperc_change_cond4,[movmean_sec],2);
% m_nperc_change_cond4 = nanmean(nperc_change_cond4,1);
% sem_nperc_change_cond4 = nanstd(nperc_change_cond4,1)./sqrt(size(nperc_change_cond4,1));
% log_perc_change_freq_cond4 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
%
% psd_tf_con1_minus_con3 = nperc_change_cond1 - nperc_change_cond3;
% mpsd_tf_con1_minus_con3 = nanmean(psd_tf_con1_minus_con3,1);
% sem_psd_tf_con1_minus_con3 = nanstd(psd_tf_con1_minus_con3)./sqrt(size(psd_tf_con1_minus_con3,1));
% log_psd_tf_con1_minus_con3 = log_perc_change_freq_cond1 - log_perc_change_freq_cond3;
%
% psd_tf_con2_minus_con4 = nperc_change_cond2 - nperc_change_cond4;
% mpsd_tf_con2_minus_con4 = nanmean(psd_tf_con2_minus_con4,1);
% sem_psd_tf_con2_minus_con4 = nanstd(psd_tf_con2_minus_con4)./sqrt(size(psd_tf_con2_minus_con4,1));
% log_psd_tf_con2_minus_con4 = log_perc_change_freq_cond2 - log_perc_change_freq_cond4;
%
%
% clear p_freq1_con1_con3 p_freq1_con2_con4
% for sec = 1:12
%
% [h p_freq1_con1_con3(sec)] = ttest(psd_tf_con1_minus_con3(:,sec))
% [h p_freq1_con2_con4(sec)] = ttest(psd_tf_con2_minus_con4(:,sec))
%
% end
%
% sig_times_con1_con3 = find(p_freq1_con1_con3 <= 0.05);
% trend_times_con1_con3 = find(p_freq1_con1_con3 <= 0.1 & p_freq1_con1_con3 > 0.05);
%
% sig_times_con2_con4 = find(p_freq1_con2_con4 <= 0.05);
% trend_times_con2_con4 = find(p_freq1_con2_con4 <= 0.1 & p_freq1_con2_con4 > 0.05);
%
%
% %%
% fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
%
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond1,sem_nperc_change_cond1,'lineProps',{'Color',colors(1,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond1,'Color',colors(1,:),'LineWidth',7);
% hold on
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond3,sem_nperc_change_cond3,'lineProps',{'Color',colors(3,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond3,'Color',colors(3,:),'LineWidth',7);
% hold on
% % shadedErrorBar([0.5:1:11.5],mpsd_tf_con1_minus_con3,sem_psd_tf_con1_minus_con3,'lineProps',{'Color','k','LineWidth',1},'patchSaturation',.3);
% plot(sig_times_con1_con3-0.5,ones(length(sig_times_con1_con3),1,1)*18,'*','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% hold on
% plot(trend_times_con1_con3-0.5,ones(length(trend_times_con1_con3),1,1)*18,'+','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--','LineWidth',2);
% ylim([-20 20]);
% xticks(0:2:12);
% xlabel('Time (s)');
% ylabel('Normalized power change (%)');
% title('8.2-8.8 Hz');
% set(gca,'Fontsize',35,'LineWidth',3);
% box off
% axis square
%
% % saveas(fig,[Savefolder,'Figure4_npsd_change_alpha_ttest_statsresult_cluster_time_freq2_peak_trough.svg']);
%
% %%
% fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
%
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond2,sem_nperc_change_cond2,'lineProps',{'Color',colors(2,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond2,'Color',colors(2,:),'LineWidth',7);
% hold on
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond4,sem_nperc_change_cond4,'lineProps',{'Color',colors(4,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond4,'Color',colors(4,:),'LineWidth',7);
% hold on
% % shadedErrorBar([0.5:1:11.5],mpsd_tf_con2_minus_con4,sem_psd_tf_con2_minus_con4,'lineProps',{'Color','k','LineWidth',1},'patchSaturation',.3);
% hold on
% plot(sig_times_con2_con4-0.5,ones(length(sig_times_con2_con4),1,1)*18,'*','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% hold on
% plot(trend_times_con2_con4-0.5,ones(length(trend_times_con2_con4),1,1)*18,'+','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--');
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--','LineWidth',2);
% ylim([-20 20]);
% xticks(0:2:12);
% xlabel('Time (s)');
% ylabel('Normalized power change (%)');
% title('8.2-8.8 Hz');
% set(gca,'Fontsize',35,'LineWidth',3);
% box off
% axis square
%
% % saveas(fig,[Savefolder,'Figure4_npsd_change_alpha_ttest_statsresult_cluster_time_freq2_falling_rising.svg']);
%
% %% 9.9-11.8 Hz
%
% f_sig_bins_lme = f(sig_bins_lme);
% freq_ndx = find(f >= 10.5 & f <= 11.5);
%
% psd_on_ch = squeeze(nanmean(mpsd_con_ch_stage(incl_sub,ch,:,:,1:12),2));
% m_psd_off_ch = nanmean(squeeze(nanmean(mpsd_con_ch_stage(incl_sub,ch,:,:,off_block),2)),4); % mean across cluster and off block
% perc_change = (psd_on_ch./m_psd_off_ch-1)*100;
% log_perc_change = log10(psd_on_ch./m_psd_off_ch);
%
% perc_change_freq = squeeze(nanmean(perc_change(:,:,freq_ndx,:),3));
% log_perc_change_freq = squeeze(nanmean(log_perc_change(:,:,freq_ndx,:),3));
%
% movmean_sec = 2;
%
% cond = 1;
% nperc_change_cond1 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond1 = movmean(nperc_change_cond1,[movmean_sec],2);
% m_nperc_change_cond1 = nanmean(nperc_change_cond1,1);
% sem_nperc_change_cond1 = nanstd(nperc_change_cond1,1)./sqrt(size(nperc_change_cond1,1));
% log_perc_change_freq_cond1 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 2;
% nperc_change_cond2 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond2 = movmean(nperc_change_cond2,[movmean_sec],2);
% m_nperc_change_cond2 = nanmean(nperc_change_cond2,1);
% sem_nperc_change_cond2 = nanstd(nperc_change_cond2,1)./sqrt(size(nperc_change_cond2,1));
% log_perc_change_freq_cond2 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 3;
% nperc_change_cond3 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond3= movmean(nperc_change_cond3,[movmean_sec],2);
% m_nperc_change_cond3 = nanmean(nperc_change_cond3,1);
% sem_nperc_change_cond3 = nanstd(nperc_change_cond3,1)./sqrt(size(nperc_change_cond3,1));
% log_perc_change_freq_cond3 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
% cond = 4;
% nperc_change_cond4 = squeeze(perc_change_freq(:,cond,:)-nanmean(perc_change_freq(:,1:4,:),2));
% nperc_change_cond4 = movmean(nperc_change_cond4,[movmean_sec],2);
% m_nperc_change_cond4 = nanmean(nperc_change_cond4,1);
% sem_nperc_change_cond4 = nanstd(nperc_change_cond4,1)./sqrt(size(nperc_change_cond4,1));
% log_perc_change_freq_cond4 = squeeze(log_perc_change_freq(:,cond,:));%-nanmean(log_perc_change_freq(:,1:4,:),2));
%
%
% psd_tf_con1_minus_con3 = nperc_change_cond1 - nperc_change_cond3;
% mpsd_tf_con1_minus_con3 = nanmean(psd_tf_con1_minus_con3,1);
% sem_psd_tf_con1_minus_con3 = nanstd(psd_tf_con1_minus_con3)./sqrt(size(psd_tf_con1_minus_con3,1));
% log_psd_tf_con1_minus_con3 = log_perc_change_freq_cond1 - log_perc_change_freq_cond3;
%
% psd_tf_con2_minus_con4 = nperc_change_cond2 - nperc_change_cond4;
% mpsd_tf_con2_minus_con4 = nanmean(psd_tf_con2_minus_con4,1);
% sem_psd_tf_con2_minus_con4 = nanstd(psd_tf_con2_minus_con4)./sqrt(size(psd_tf_con2_minus_con4,1));
% log_psd_tf_con2_minus_con4 = log_perc_change_freq_cond2 - log_perc_change_freq_cond4;
%
%
% clear p_freq1_con1_con3 p_freq1_con2_con4
% for sec = 1:12
%
% [h p_freq1_con1_con3(sec)] = ttest(psd_tf_con1_minus_con3(:,sec))
% [h p_freq1_con2_con4(sec)] = ttest(psd_tf_con2_minus_con4(:,sec))
%
% end
%
% %%
% fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
%
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond1,sem_nperc_change_cond1,'lineProps',{'Color',colors(1,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond1,'Color',colors(1,:),'LineWidth',7);
% hold on
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond3,sem_nperc_change_cond3,'lineProps',{'Color',colors(3,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond3,'Color',colors(3,:),'LineWidth',7);
% hold on
% % shadedErrorBar([0.5:1:11.5],mpsd_tf_con1_minus_con3,sem_psd_tf_con1_minus_con3,'lineProps',{'Color','k','LineWidth',1},'patchSaturation',.3);
% plot(sig_times_con1_con3-0.5,ones(length(sig_times_con1_con3),1,1)*18,'*','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% hold on
% plot(trend_times_con1_con3-0.5,ones(length(trend_times_con1_con3),1,1)*18,'+','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--','LineWidth',2);
% ylim([-20 20]);
% xticks(0:2:12);
% xlabel('Time (s)');
% ylabel('Normalized power change (%)');
% title('9.9-11.8 Hz');
% set(gca,'Fontsize',35,'LineWidth',3);
% box off
% axis square
%
% % saveas(fig,[Savefolder,'Figure4_npsd_change_alpha_ttest_statsresult_cluster_time_freq3_peak_trough.svg']);
%
% %%
% fig = figure('Renderer','painters','units','normalized','outerposition',[0 0 1 1])
%
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond2,sem_nperc_change_cond2,'lineProps',{'Color',colors(2,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond2,'Color',colors(2,:),'LineWidth',7);
% hold on
% shadedErrorBar([0.5:1:11.5],m_nperc_change_cond4,sem_nperc_change_cond4,'lineProps',{'Color',colors(4,:),'LineWidth',1},'patchSaturation',.3);
% % plot([0.5:1:11.5],m_nperc_change_cond4,'Color',colors(4,:),'LineWidth',7);
% hold on
% % shadedErrorBar([0.5:1:11.5],mpsd_tf_con2_minus_con4,sem_psd_tf_con2_minus_con4,'lineProps',{'Color','k','LineWidth',1},'patchSaturation',.3);
% hold on
% plot(sig_times_con2_con4-0.5,ones(length(sig_times_con2_con4),1,1)*18,'*','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% hold on
% plot(trend_times_con2_con4-0.5,ones(length(trend_times_con2_con4),1,1)*18,'+','MarkerFaceColor','k','MarkerEdgeColor','k','MarkerSize',20,'LineWidth',2);
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--');
% xlim([0.5 11.5]);
% xline(6,'LineStyle','--','LineWidth',2);
% ylim([-20 20]);
% xticks(0:2:12);
% xlabel('Time (s)');
% ylabel('Normalized power change (%)');
% title('9.9-11.8 Hz');
% set(gca,'Fontsize',35,'LineWidth',3);
% box off
% axis square
%
% % saveas(fig,[Savefolder,'Figure4_npsd_change_alpha_ttest_statsresult_cluster_time_freq3_falling_rising.svg']);
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment