Code owners
Assign users and groups as approvers for specific file changes. Learn more.
val_sim.py 1.60 KiB
#!/usr/bin/python3
import math, random, sys, json
from statistics import mean, stdev
event = json.loads(sys.stdin.read())
dt = eval(event['key1'])
close = eval(event['key2'])
buy = eval(event['key3'])
sell = eval(event['key4'])
h = int(event['key5'])
d = int(event['key6'])
t = event['key7']
minhistory = h
shots = d
var95_list = []
var99_list = []
dates = []
for i in range(minhistory, len(close)):
if t == "buy":
if buy[i] == 1:
close_data = close[i-minhistory:i]
pct_change = [(close_data[i] - close_data[i-1]) / close_data[i-1] for i in range(1,len(close_data))]
mean_value = mean(pct_change)
std_value = stdev(pct_change)
simulated = [random.gauss(mean_value,std_value) for x in range(shots)]
simulated.sort(reverse=True)
var95 = simulated[int(len(simulated)*0.95)]
var99 = simulated[int(len(simulated)*0.99)]
var95_list.append(var95)
var99_list.append(var99)
dates.append(str(dt[i]))
elif t == "sell":
if sell[i] == 1:
close_data = close[i-minhistory:i]
pct_change = [(close_data[i] - close_data[i-1]) / close_data[i-1] for i in range(1,len(close_data))]
mean_value = mean(pct_change)
std_value = stdev(pct_change)
simulated = [random.gauss(mean_value,std_value) for x in range(shots)]
simulated.sort(reverse=True)
var95 = simulated[int(len(simulated)*0.95)]
var99 = simulated[int(len(simulated)*0.99)]
var95_list.append(var95)
var99_list.append(var99)
dates.append(str(dt[i]))
output = {"dates" : dates,
"var95" : var95_list,
"var99" : var99_list
}
output = json.dumps(output)
print("Content-Type: application/json")
print()
print(output)