Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
G
git-intro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Niphade, Ishwari (PG/T - Comp Sci & Elec Eng)
git-intro
Commits
766d0d4f
Commit
766d0d4f
authored
6 months ago
by
Niphade, Ishwari (PG/T - Comp Sci & Elec Eng)
Browse files
Options
Downloads
Patches
Plain Diff
Added new file
parent
ddb01429
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
PSOwithResnet.ipnyb
+216
-0
216 additions, 0 deletions
PSOwithResnet.ipnyb
with
216 additions
and
0 deletions
PSOwithResnet.ipnyb
0 → 100644
+
216
−
0
View file @
766d0d4f
import operator
import random
import math
from deap import base
from deap import benchmarks
from deap import creator
from deap import tools
import torch
import torch.nn.functional as F
import torch.nn as nn
from numpy import genfromtxt
import matplotlib.pyplot as plt
import numpy as np
# Load the CIFAR-10 dataset
import torchvision
import torchvision.transforms as transforms
# set up the network
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
# Initialize ResNet with Bottleneck blocks
net = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=10)
# Load the saved model parameters
net.load_state_dict(torch.load('net_params.pkl'))
net.linear.reset_parameters()
num_of_weights = sum(p.numel() for p in net.parameters()) # Number of parameters in the network
loss_values = []
# Load the CIFAR-10 dataset and preprocess it
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)
# Fitness function setup (minimize loss)
creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) # -1 is for minimise
creator.create("Particle", list, fitness=creator.FitnessMin, speed=list, smin=None, smax=None, best=None)
loss_func = torch.nn.MSELoss()
posMinInit = -2
posMaxInit = +2
VMaxInit = 1.5
VMinInit = 0.5
populationSize = 500
dimension = num_of_weights
interval = 25
iterations = 100
#Parameter setup
wmax = 0.9 #weighting
wmin = 0.4
c1 = 2.0
c2 = 2.0
def generate(size, smin, smax):
part = creator.Particle(random.uniform(posMinInit, posMaxInit) for _ in range(size))
part.speed = [random.uniform(VMinInit, VMaxInit) for _ in range(size)]
part.smin = smin #speed clamping values
part.smax = smax
return part
def updateParticle(part, best, weight):
r1 = (random.uniform(0, 1) for _ in range(len(part)))
r2 = (random.uniform(0, 1) for _ in range(len(part)))
v_r0 = [weight*x for x in part.speed]
v_r1 = [c1*x for x in map(operator.mul, r1, map(operator.sub, part.best, part))] # local best
v_r2 = [c2*x for x in map(operator.mul, r2, map(operator.sub, best, part))] # global best
part.speed = [0.7*x for x in map(operator.add, v_r0, map(operator.add, v_r1, v_r2))]
# update position with speed
part[:] = list(map(operator.add, part, part.speed))
def evaluate(part):
weights = np.asarray(part)
net.linear.weight = torch.nn.Parameter(torch.from_numpy(weights[0:512*84].reshape(84, 10).T)) # Update last layer weights
net.linear.bias = torch.nn.Parameter(torch.from_numpy(weights[512*84:512*84+10].reshape(10, 1).T)) # Update bias
# Evaluation (using a batch of data)
total_loss = 0.0
for data in trainloader:
inputs, labels = data
outputs = net(inputs)
loss = F.cross_entropy(outputs, labels)
total_loss += loss.item()
avg_loss = total_loss / len(trainloader)
loss_values.append(avg_loss)
return (avg_loss,)
toolbox = base.Toolbox()
toolbox.register("particle", generate, size=dimension, smin=-3, smax=3)
toolbox.register("population", tools.initRepeat, list, toolbox.particle)
toolbox.register("update", updateParticle)
toolbox.register("evaluate", evaluate)
def main():
pop = toolbox.population(n=populationSize)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = ["gen", "evals"] + stats.fields
best = None
#begin main loop
for g in range(iterations):
w = wmax - (wmax-wmin)*g/iterations #decaying inertia weight
for part in pop:
part.fitness.values = toolbox.evaluate(part) #actually only one fitness value
#update local best
if (not part.best) or (part.best.fitness < part.fitness): #lower fitness is better (minimising)
# best is None or current value is better #< is overloaded
part.best = creator.Particle(part)
part.best.fitness.values = part.fitness.values
#update global best
if (not best) or best.fitness < part.fitness:
best = creator.Particle(part)
best.fitness.values = part.fitness.values
for part in pop:
toolbox.update(part, best,w)
# Gather all the fitnesses in one list and print the stats
# print every interval
if g%interval==0: # interval
logbook.record(gen=g, evals=len(pop), **stats.compile(pop))
print(logbook.stream)
print('best ', best.fitness)
print('best particle position is ',best)
print('fitness of best is', best.fitness)
return pop, logbook, best
if __name__ == "__main__":
main()
#save the network
torch.save(Net50.state_dict(), 'resnet_pso.pkl')
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment