Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
L
Lens classification project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Fish, Edward (PG/R - Music & Media)
Lens classification project
Commits
db37ed33
Commit
db37ed33
authored
5 years ago
by
Fish, Edward (PG/R - Music & Media)
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
2ca89f7a
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
custom.py
+220
-0
220 additions, 0 deletions
custom.py
with
220 additions
and
0 deletions
custom.py
0 → 100644
+
220
−
0
View file @
db37ed33
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 22 13:33:55 2019
@author: ed
"""
import
torch
import
torchvision
import
torchvision.transforms
as
transforms
import
torch.nn
as
nn
import
torch.optim
as
optim
import
torch.nn.functional
as
F
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
torchvision.models
as
models
import
scipy
from
torch.utils.tensorboard
import
SummaryWriter
writer
=
SummaryWriter
()
#Hyper parameters
batch_size
=
16
transform
=
transforms
.
Compose
([
transforms
.
RandomResizedCrop
(
200
),
#transforms.RandomAffine(45),
transforms
.
ToTensor
(),
transforms
.
Normalize
(
mean
=
[
0.5
,
0.5
,
0.5
],
std
=
[
0.5
,
0.5
,
0.5
])
])
train_dataset
=
torchvision
.
datasets
.
ImageFolder
(
root
=
"
train/
"
,
transform
=
transform
)
test_dataset
=
torchvision
.
datasets
.
ImageFolder
(
root
=
"
test/
"
,
transform
=
transform
)
train_loader
=
torch
.
utils
.
data
.
DataLoader
(
train_dataset
,
batch_size
=
batch_size
,
shuffle
=
True
)
val_loader
=
torch
.
utils
.
data
.
DataLoader
(
test_dataset
,
batch_size
=
batch_size
,
shuffle
=
False
)
#Show images
classes
=
(
'
35mm
'
,
'
50mm
'
)
def
imshow
(
img
):
img
=
img
/
2
+
0.5
# unnormalize
npimg
=
img
.
numpy
()
plt
.
imshow
(
np
.
transpose
(
npimg
,
(
1
,
2
,
0
)))
plt
.
show
()
# get some random training images
dataiter
=
iter
(
train_loader
)
images
,
labels
=
dataiter
.
next
()
# show images
imshow
(
torchvision
.
utils
.
make_grid
(
images
))
class
Unit
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
,
out_channels
):
super
(
Unit
,
self
).
__init__
()
self
.
conv
=
nn
.
Conv2d
(
in_channels
=
in_channels
,
kernel_size
=
3
,
out_channels
=
out_channels
,
stride
=
1
,
padding
=
1
)
self
.
bn
=
nn
.
BatchNorm2d
(
num_features
=
out_channels
)
self
.
relu
=
nn
.
ReLU
()
def
forward
(
self
,
input
):
output
=
self
.
conv
(
input
)
output
=
self
.
bn
(
output
)
output
=
self
.
relu
(
output
)
return
output
class
SimpleNet
(
nn
.
Module
):
def
__init__
(
self
,
num_classes
=
2
):
super
(
SimpleNet
,
self
).
__init__
()
#Create 14 layers of the unit with max pooling in between
self
.
unit1
=
Unit
(
in_channels
=
3
,
out_channels
=
32
)
self
.
unit2
=
Unit
(
in_channels
=
32
,
out_channels
=
32
)
self
.
unit3
=
Unit
(
in_channels
=
32
,
out_channels
=
32
)
self
.
pool1
=
nn
.
MaxPool2d
(
kernel_size
=
2
)
self
.
unit4
=
Unit
(
in_channels
=
32
,
out_channels
=
64
)
self
.
unit5
=
Unit
(
in_channels
=
64
,
out_channels
=
128
)
self
.
unit6
=
Unit
(
in_channels
=
128
,
out_channels
=
128
)
self
.
unit7
=
Unit
(
in_channels
=
128
,
out_channels
=
192
)
self
.
pool2
=
nn
.
MaxPool2d
(
kernel_size
=
2
)
self
.
unit8
=
Unit
(
in_channels
=
192
,
out_channels
=
192
)
self
.
unit9
=
Unit
(
in_channels
=
192
,
out_channels
=
192
)
self
.
unit10
=
Unit
(
in_channels
=
192
,
out_channels
=
256
)
self
.
unit11
=
Unit
(
in_channels
=
256
,
out_channels
=
256
)
self
.
pool3
=
nn
.
MaxPool2d
(
kernel_size
=
2
)
self
.
unit12
=
Unit
(
in_channels
=
256
,
out_channels
=
128
)
self
.
unit13
=
Unit
(
in_channels
=
128
,
out_channels
=
128
)
self
.
unit14
=
Unit
(
in_channels
=
128
,
out_channels
=
128
)
self
.
avgpool
=
nn
.
AvgPool2d
(
kernel_size
=
25
)
#Add all the units into the Sequential layer in exact order
self
.
net
=
nn
.
Sequential
(
self
.
unit1
,
self
.
unit2
,
self
.
unit3
,
self
.
pool1
,
self
.
unit4
,
self
.
unit5
,
self
.
unit6
,
self
.
unit7
,
self
.
pool2
,
self
.
unit8
,
self
.
unit9
,
self
.
unit10
,
self
.
unit11
,
self
.
pool3
,
self
.
unit12
,
self
.
unit13
,
self
.
unit14
,
self
.
avgpool
)
#self.fc = nn.Dropout()
self
.
f2
=
nn
.
Linear
(
in_features
=
128
,
out_features
=
num_classes
)
def
forward
(
self
,
input
):
output
=
self
.
net
(
input
)
output
=
output
.
view
(
-
1
,
128
)
#output = self.fc(output)
output
=
self
.
f2
(
output
)
return
output
def
adjust_learning_rate
(
epoch
):
lr
=
0.01
if
epoch
>
5
:
lr
=
lr
/
10
for
param_group
in
optimizer
.
param_groups
:
param_group
[
"
lr
"
]
=
lr
def
save_models
(
epoch
):
torch
.
save
(
model
.
state_dict
(),
"
cifar10model_{}.model
"
.
format
(
epoch
))
print
(
"
Chekcpoint saved
"
)
def
train
(
num_epochs
):
best_acc
=
0.0
for
epoch
in
range
(
num_epochs
):
model
.
train
()
train_acc
=
0.0
train_loss
=
0.0
for
i
,
(
images
,
labels
)
in
enumerate
(
train_loader
):
# Move images and labels to gpu if available
images
=
images
.
to
(
device
)
labels
=
labels
.
to
(
device
)
# Clear all accumulated gradients
optimizer
.
zero_grad
()
# Predict classes using images from the test set
outputs
=
model
(
images
)
# Compute the loss based on the predictions and actual labels
loss
=
loss_fn
(
outputs
,
labels
)
# Backpropagate the loss
loss
.
backward
()
# Adjust parameters according to the computed gradients
optimizer
.
step
()
train_loss
+=
loss
.
item
()
*
images
.
size
(
0
)
_
,
prediction
=
torch
.
max
(
outputs
.
data
,
1
)
train_acc
+=
torch
.
sum
(
prediction
==
labels
.
data
)
# Call the learning rate adjustment function
adjust_learning_rate
(
epoch
)
# Compute the average acc and loss over all 50000 training images
train_acc
=
train_acc
/
8400
train_loss
=
train_loss
/
8400
writer
.
add_scalar
(
'
loss-train
'
,
train_loss
,
epoch
)
writer
.
add_scalar
(
'
acc-train
'
,
train_acc
,
epoch
)
# Evaluate on the test set
test_acc
=
test
(
epoch
)
# Save the model if the test acc is greater than our current best
if
test_acc
>
best_acc
:
save_models
(
epoch
)
best_acc
=
test_acc
# Print the metrics
print
(
"
Epoch {}, Train Accuracy: {} , TrainLoss: {} , Test Accuracy: {}
"
.
format
(
epoch
,
train_acc
,
train_loss
,
test_acc
))
def
test
(
e
):
model
.
eval
()
test_acc
=
0.0
for
i
,
(
images
,
labels
)
in
enumerate
(
val_loader
):
images
=
images
.
to
(
device
)
labels
=
labels
.
to
(
device
)
#Predict classes using images from the test set
outputs
=
model
(
images
)
_
,
prediction
=
torch
.
max
(
outputs
.
data
,
1
)
#prediction = prediction.cpu().numpy()
test_acc
+=
torch
.
sum
(
prediction
==
labels
.
data
)
#Compute the average acc and loss over all 10000 test images
test_acc
=
test_acc
/
3600
writer
.
add_scalar
(
'
test_acc
'
,
test_acc
,
e
)
return
test_acc
device
=
torch
.
device
(
"
cuda
"
if
torch
.
cuda
.
is_available
()
else
"
cpu
"
)
model
=
SimpleNet
(
num_classes
=
2
)
writer
.
add_graph
(
model
,
images
)
model
.
to
(
device
)
optimizer
=
optim
.
Adam
(
model
.
parameters
(),
lr
=
0.001
,
weight_decay
=
0.0001
)
loss_fn
=
nn
.
CrossEntropyLoss
()
if
__name__
==
"
__main__
"
:
train
(
200
)
writer
.
close
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment