diff --git a/Finalgroupwork_.ipynb b/Finalgroupwork_.ipynb deleted file mode 100644 index 831a2c0c7c2f59697b7dab176563cded501c13ff..0000000000000000000000000000000000000000 --- a/Finalgroupwork_.ipynb +++ /dev/null @@ -1,5987 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "tZsBBE7sYXF6" - }, - "outputs": [], - "source": [ - "!pip install shimmy>=2.0\n", - "!pip uninstall nltk\n", - "!pip install nltk" - ] - }, - { - "cell_type": "code", - "source": [ - "!pip install shimmy>=2.0" - ], - "metadata": { - "id": "7vGHuEoBD5cl" - }, - "execution_count": 4, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "!pip install imbalanced-learn\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "r-CiM6lLHHQe", - "outputId": "8e31c294-781b-4b4b-b1d2-e5a00ec693a9" - }, - "execution_count": 6, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.11/dist-packages (0.13.0)\n", - "Requirement already satisfied: numpy<3,>=1.24.3 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.26.4)\n", - "Requirement already satisfied: scipy<2,>=1.10.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.13.1)\n", - "Requirement already satisfied: scikit-learn<2,>=1.3.2 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.6.1)\n", - "Requirement already satisfied: sklearn-compat<1,>=0.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (0.1.3)\n", - "Requirement already satisfied: joblib<2,>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.4.2)\n", - "Requirement already satisfied: threadpoolctl<4,>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (3.5.0)\n" - ] - } - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "qUyctbL211NT" - }, - "outputs": [], - "source": [ - "import nltk\n", - "nltk.data.clear_cache()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "k2cPuQjI2ohj", - "outputId": "b891c428-1c49-4973-839b-a7839014c08e" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "[nltk_data] Downloading package stopwords to /root/nltk_data...\n", - "[nltk_data] Package stopwords is already up-to-date!\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 1000x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAGtCAYAAACREAK2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXecXFd9uP3cNr1t730l7ao3S7IkW7Il94bBHWx4CWAILYSWwC+EQEICoQYMxMQYY2zABtvg3mVZsoqt3ldabdP2Pn3mlvP+MauRVrsrrYotDPPw0Qfvueeec+6dmXvPt0tCCEGGDBkyZMiQIUOGDBkynEPk872ADBkyZMiQIUOGDBky/PWRETQyZMiQIUOGDBkyZMhwzskIGhkyZMiQIUOGDBkyZDjnZASNDBkyZMiQIUOGDBkynHMygkaGDBkyZMiQIUOGDBnOORlBI0OGDBkyZMiQIUOGDOecjKCRIUOGDBkyZMiQIUOGc05G0MiQIUOGDBkyZMiQIcM5JyNoZMiQIUOGDBkyZMiQ4ZyTETQyZMjwF8WaNWuQJIk1a9ac03ErKyv50Ic+dE7HnCwrV65k5cqVp+xnGAZf+tKXKCsrQ5Zl3vOe97zta8uQIUOGDBneLjKCRoYMf4M88sgjSJLE448/PubYnDlzkCSJV199dcyx8vJyli5d+k4scdI0NjZy9913U11djcPhwOfzsWzZMn70ox8Ri8XO9/JOi1/+8pf893//NzfddBMPPPAAn/vc597W+SzL4te//jWLFy8mOzsbr9fL1KlTueuuu9i4cWO631HhT5IkfvOb34w71rJly5AkiZkzZ45qTyaT/OhHP2LevHn4fD4CgQAzZszgYx/7GPv37z/lGnt7e/nsZz9LXV0dTqeT/Px8Fi1axJe//GXC4fDZ3YDzwNe//vX0vZQkCZfLRXl5Oddddx33338/iUTijMd+5pln+PrXv37uFnuWfOtb3+KJJ54438vIkCHDeUQ93wvIkCHDO8/y5csBWLduHTfeeGO6PRgMsnv3blRVZf369VxyySXpY21tbbS1tXHbbbe94+udiKeffpqbb74Zu93OXXfdxcyZM0kmk6xbt44vfvGL7Nmzh3vvvfd8L3PSvPLKK5SUlPCDH/zgHZnvM5/5DPfccw833HAD73//+1FVlQMHDvDss89SXV3NkiVLRvV3OBw8/PDDfOADHxjV3tzczBtvvIHD4Rgzx/ve9z6effZZbr/9dj760Y+i6zr79+/nqaeeYunSpdTV1U24voGBARYuXEgwGOTDH/4wdXV19Pf3s3PnTn72s5/xiU98Ao/Hc25uxjvMz372MzweD4lEgvb2dp5//nk+/OEP88Mf/pCnnnqKsrKy0x7zmWee4Z577vmLETa+9a1vcdNNN2Uscxky/A2TETQyZPgbpLi4mKqqKtatWzeqfcOGDQghuPnmm8ccO/r3USHlTBFCEI/HcTqdZzVOU1MTt912GxUVFbzyyisUFRWlj33yk5/k0KFDPP3002c1xztNT08PgUDgnI1nWRbJZHJcAaC7u5uf/vSnfPSjHx0jjP3whz+kt7d3zDlXX301f/7zn+nr6yM3Nzfd/vDDD1NQUMCUKVMYHBxMt7/55ps89dRT/Md//Adf+cpXRo31k5/8hKGhoZOu/7777qO1tZX169ePsaQFg0FsNttJz/9L5qabbhp1D7/2ta/x0EMPcdddd3HzzTePsihlyJAhw7uVjOtUhgx/oyxfvpxt27aNci9av349M2bM4KqrrmLjxo1YljXqmCRJLFu2DEjFE3zzm9+kpqYGu91OZWUlX/nKV8a4flRWVnLttdfy/PPPs3DhQpxOJ//7v/8LwJEjR3jPe96D2+0mPz+fz33uc5N2HfnOd75DOBzmvvvuGyVkHKW2tpbPfvazJx3j8OHD3HzzzWRnZ+NyuViyZMkY4eRXv/oVkiTR3Nw8qn2iWJJ7772XmpoanE4nixYt4vXXXz/ltTQ3N6fd1fbs2ZN2qzk6diQS4fOf/zxlZWXY7XamTZvGd7/7XYQQo8aRJIlPfepTPPTQQ8yYMQO73c5zzz037pxNTU0IIdKf54nj5Ofnj2m/4YYbsNvtPProo6PaH374YW655RYURRnV3tjYCDDuHIqikJOTM/FNGTlfUZQxlhUAn883SoBauXIlM2fOZMuWLSxduhSn00lVVRU///nPR52XTCb52te+xoIFC/D7/bjdbi666KIxroJHP5Pvfve73HPPPVRXV+Nyubj88stpa2tDCME3v/lNSktLcTqd3HDDDQwMDJz0ek7F+9//fj7ykY+wadMmXnzxxXT766+/zs0330x5eTl2u52ysjI+97nPjfrtfuhDH+Kee+4BGOWadZTvfve7LF26lJycHJxOJwsWLOAPf/jDmDW8+OKLLF++nEAggMfjYdq0aWOExEQiwb/+679SW1ubXs+XvvSlUb9dSZKIRCI88MAD6bWcrxipDBkynD8ygkaGDH+jLF++HF3X2bRpU7rtqOZ46dKlDA8Ps3v37lHH6urq0pvDj3zkI3zta19j/vz5/OAHP2DFihX853/+57iuVQcOHOD222/nsssu40c/+hFz584lFouxatUqnn/+eT71qU/x1a9+lddff50vfelLk1r/k08+SXV19RnHjHR3d7N06VKef/55/v7v/57/+I//IB6Pc/31148buzIZ7rvvPu6++24KCwv5zne+w7Jly7j++utpa2s76Xl5eXk8+OCD1NXVUVpayoMPPsiDDz5IfX09Qgiuv/56fvCDH3DllVfy/e9/n2nTpvHFL36Rf/zHfxwz1iuvvMLnPvc5br31Vn70ox9RWVk57pwVFRUAPProo0Sj0Uldn8vl4oYbbuC3v/1tum3Hjh3s2bOHO+64Y8I5HnroIQzDmNQcJ55vmiYPPvjgpPoPDg5y9dVXs2DBAr7zne9QWlrKJz7xCX75y1+m+wSDQf7v//6PlStX8u1vf5uvf/3r9Pb2csUVV7B9+/YxYz700EP89Kc/5dOf/jSf//znee2117jlllv4f//v//Hcc8/x5S9/mY997GM8+eSTfOELXzjtazyRO++8E4AXXngh3Xb0M/rEJz7Bj3/8Y6644gp+/OMfc9ddd6X73H333Vx22WUA6e/P8fftaJzMN77xDb71rW+hqio333zzKMF6z549XHvttSQSCb7xjW/wve99j+uvv57169en+1iWxfXXX893v/tdrrvuOn784x/znve8hx/84Afceuut6X4PPvggdrudiy66KL2Wu++++6zvT4YMGd5liAwZMvxNsmfPHgGIb37zm0IIIXRdF263WzzwwANCCCEKCgrEPffcI4QQIhgMCkVRxEc/+lEhhBDbt28XgPjIRz4yaswvfOELAhCvvPJKuq2iokIA4rnnnhvV94c//KEAxCOPPJJui0Qiora2VgDi1VdfnXDtw8PDAhA33HDDpK+3oqJCfPCDH0z//Q//8A8CEK+//nq6LRQKiaqqKlFZWSlM0xRCCHH//fcLQDQ1NY0a79VXXx21zmQyKfLz88XcuXNFIpFI97v33nsFIFasWHHKNa5YsULMmDFjVNsTTzwhAPHv//7vo9pvuukmIUmSOHToULoNELIsiz179pxyLiGEuOuuuwQgsrKyxI033ii++93vin379o3pd/RaH330UfHUU08JSZJEa2urEEKIL37xi6K6unrc9VuWJVasWCEAUVBQIG6//XZxzz33iJaWlkmtr6urS+Tl5QlA1NXViY9//OPi4YcfFkNDQ2P6Hp3ne9/7XrotkUiIuXPnivz8fJFMJoUQQhiGMerzEUKIwcFBUVBQID784Q+n25qamgQg8vLyRs33z//8zwIQc+bMEbqup9tvv/12YbPZRDweP+k1/eu//qsARG9v77jHBwcHBSBuvPHGdFs0Gh3T7z//8z+FJEmj7uUnP/lJMdFr/cQxksmkmDlzprj00kvTbT/4wQ9OujYhhHjwwQeFLMujfjdCCPHzn/9cAGL9+vXpNrfbPeo3lyFDhr89MhaNDBn+RqmvrycnJycde7Fjxw4ikUjaQrB06dK0JnPDhg2YppmOz3jmmWcAxmjUP//5zwOMcT+qqqriiiuuGNX2zDPPUFRUxE033ZRuc7lcfOxjHzvl2oPBIABer3dyFzsOzzzzDIsWLRoVc+LxePjYxz5Gc3Mze/fuPa3x3nrrLXp6evj4xz8+KnbgQx/6EH6//6zWqSgKn/nMZ0a1f/7zn0cIwbPPPjuqfcWKFUyfPn1SY99///385Cc/oaqqiscff5wvfOEL1NfXs2rVKtrb28c95/LLLyc7O5vf/e53CCH43e9+x+233z5uX0mSeP755/n3f/93srKy+O1vf8snP/lJKioquPXWW08Zo1FQUMCOHTv4+Mc/zuDgID//+c+54447yM/P55vf/OYY1zFVVUdpzW02G3fffTc9PT1s2bIFSLlsHf18LMtiYGAAwzBYuHAhW7duHbOGm2++edTnt3jxYgA+8IEPoKrqqPZkMjnhfZssR4PbQ6FQuu34eKZIJEJfXx9Lly5FCMG2bdsmNe7xYwwODjI8PMxFF1006pqPxgf96U9/GuU2eTyPPvoo9fX11NXV0dfXl/536aWXAoybrS5Dhgx/u2QEjQwZ/kaRJImlS5emYzHWr19Pfn4+tbW1wGhB4+j/H92Ut7S0IMtyuu9RCgsLCQQCtLS0jGqvqqoaM39LSwu1tbWj/MgBpk2bdsq1+3w+YPRm7HRpaWkZd676+vr08dMdD2DKlCmj2jVNo7q6+gxXmRq3uLh4jFA10TrHu9cTIcsyn/zkJ9myZQt9fX386U9/4qqrruKVV16ZMLuYpmncfPPNPPzww6xdu5a2trZx3aaOYrfb+epXv8q+ffvo6Ojgt7/9LUuWLOGRRx7hU5/61CnXWFRUxM9+9jM6Ozs5cOAA//M//0NeXh5f+9rXuO+++0b1LS4uxu12j2qbOnUqwKgYmwceeIDZs2fjcDjIyckhLy+Pp59+muHh4THzl5eXj/r7qNBxYlaoo+3HB8OfCUdT9h7/ebe2tvKhD32I7OxsPB4PeXl5rFixAmDcNY/HU089xZIlS3A4HGRnZ5OXl8fPfvazUeffeuutLFu2jI985CMUFBRw22238cgjj4wSOg4ePMiePXvIy8sb9e/ofe7p6Tmr68+QIcNfFxlBI0OGv2GWL1/O8PAwu3btGpPZZ+nSpbS0tNDe3s66desoLi4es2E+UUiYiLPNMHUiPp+P4uLiUTEkbxcTXaNpmm/73GfCmd7rnJwcrr/+ep555hlWrFjBunXrJhS27rjjDrZv387Xv/515syZM2kLSlFREbfddhtr165lypQpPPLII5OO3ZAkialTp/LpT3+atWvXIssyDz300KSv7yi/+c1v+NCHPkRNTQ333Xcfzz33HC+++CKXXnrpuFr8EwPcT9V+opXldDn6nT4qxJumyWWXXcbTTz/Nl7/8ZZ544glefPFFfvWrXwFMaHk4ntdff53rr78eh8PBT3/6U5555hlefPFF7rjjjlHrdTqdrF27lpdeeok777yTnTt3cuutt3LZZZelv++WZTFr1ixefPHFcf/9/d///Vldf4YMGf66yAgaGTL8DXN8PY3169ePyg60YMEC7HY7a9asYdOmTaOOVVRUYFkWBw8eHDVed3c3Q0ND6SDgk1FRUUFjY+OYjdmBAwcmtfZrr72WxsZGNmzYMKn+480/3lxHi8gdvYasrCyAMW4+J27Cj/Y/8Z7ouk5TU9MZrfHouB0dHWOsNyeu81yycOFCADo7O8c9vnz5csrLy1mzZs1JrRkToWkas2fPRtd1+vr6Tvv86upqsrKyxqyvo6ODSCQyqq2hoQEgHRT/hz/8gerqah577DHuvPNOrrjiClavXk08Hj/tdbwdHA3gPupquGvXLhoaGvje977Hl7/8ZW644QZWr15NcXHxmHMnEor/+Mc/4nA40rU6rrrqKlavXj1uX1mWWbVqFd///vfZu3cv//Ef/8Err7ySdomqqalhYGCAVatWsXr16jH/jrcSTlYRkSFDhr9eMoJGhgx/wyxcuBCHw8FDDz1Ee3v7KIuG3W5n/vz53HPPPUQikVGxDFdffTWQqrdwPN///vcBuOaaa04599VXX01HR8eoFJvRaHTSBfa+9KUv4Xa7+chHPkJ3d/eY442NjfzoRz866fybN28eJahEIhHuvfdeKisr01r6mpoaANauXZvuZ5rmmHUuXLiQvLw8fv7zn5NMJtPtv/rVr04Zi3Ayrr76akzT5Cc/+cmo9h/84AdIksRVV111RuN2dXWNG4eSTCZ5+eWXx3WNO4okSfzP//wP//qv/5rOkjQeBw8epLW1dUz70NAQGzZsICsri7y8vAnP37Rp0xjBAWDz5s309/ePcX0zDCOdOvnotfzv//4veXl5LFiwADhmiThewN20adMZC6znkocffpj/+7//48ILL2TVqlXA+OsVQoz73T7qNnbi901RFCRJGmWFa25uHlO1e7z0vHPnzgVIp6695ZZbaG9v5xe/+MWYvrFYbNTn5Xa7z+q7nyFDhnc/mYJ9GTL8DWOz2bjgggt4/fXXsdvt6c3YUZYuXcr3vvc9YHShvjlz5vDBD36Qe++9l6GhIVasWMHmzZt54IEHeM973jOqovhEfPSjH+UnP/kJd911F1u2bKGoqIgHH3wQl8s1qbXX1NTw8MMPc+utt1JfXz+qMvgbb7zBo48+etK8/f/0T//Eb3/7W6666io+85nPkJ2dzQMPPEBTUxN//OMfkeWUHmbGjBksWbKEf/7nf2ZgYCAdCH2iy4+mafz7v/87d999N5deeim33norTU1N3H///WcVo3HddddxySWX8NWvfpXm5mbmzJnDCy+8wJ/+9Cf+4R/+IS0InS5Hjhxh0aJFXHrppaxatYrCwkJ6enr47W9/y44dO/iHf/iHUQXlTuSGG27ghhtuOOkcO3bs4I477uCqq67ioosuIjs7m/b2dh544AE6Ojr44Q9/OKELEqS0+w899BA33ngjCxYswGazsW/fPn75y1/icDjG1HcoLi7m29/+Ns3NzUydOpXf//73bN++nXvvvRdN04CUJeyxxx7jxhtv5JprrqGpqYmf//znTJ8+PR0f8U7whz/8AY/Hkw4gf/7551m/fj1z5swZVaekrq6OmpoavvCFL9De3o7P5+OPf/zjuLEgR3+/n/nMZ7jiiitQFIXbbruNa665hu9///tceeWV3HHHHfT09HDPPfdQW1vLzp070+d/4xvfYO3atVxzzTVUVFTQ09PDT3/6U0pLS9O//zvvvJNHHnmEj3/847z66qssW7YM0zTZv38/jzzySLpeztH1vPTSS3z/+99PFwk9GkyfIUOGvxHOV7qrDBky/GVwNF3n0qVLxxx77LHHBCC8Xq8wDGPUMV3Xxb/927+JqqoqoWmaKCsrE//8z/88Jr1nRUWFuOaaa8adu6WlRVx//fXC5XKJ3Nxc8dnPflY899xzp0xvezwNDQ3iox/9qKisrBQ2m014vV6xbNky8eMf/3jUWk5MbyuEEI2NjeKmm24SgUBAOBwOsWjRIvHUU0+NmaOxsVGsXr1a2O12UVBQIL7yla+IF198cdx1/vSnPxVVVVXCbreLhQsXirVr14oVK1accXpbIVJpdz/3uc+J4uJioWmamDJlivjv//5vYVnWqH6A+OQnP3nKeYRIpSz+0Y9+JK644gpRWloqNE0TXq9XXHjhheIXv/jFqLGPT297Ouvv7u4W//Vf/yVWrFghioqKhKqqIisrS1x66aXiD3/4wynXuHPnTvHFL35RzJ8/X2RnZwtVVUVRUZG4+eabxdatW8ed+6233hIXXnihcDgcoqKiQvzkJz8Z1c+yLPGtb31LVFRUCLvdLubNmyeeeuop8cEPflBUVFSk+x1Nb/vf//3fo86f6F4cTYP85ptvnvSajqa3PfrP4XCI0tJSce2114pf/vKX46bH3bt3r1i9erXweDwiNzdXfPSjHxU7duwQgLj//vvT/QzDEJ/+9KdFXl6ekCRpVKrb++67T0yZMkXY7XZRV1cn7r///vRajvLyyy+LG264QRQXFwubzSaKi4vF7bffLhoaGkatJ5lMim9/+9tixowZwm63i6ysLLFgwQLxb//2b2J4eDjdb//+/eLiiy8WTqdTAJlUtxky/A0iCXGWkWsZMmTIkCHDeWblypX09fW9IwkCMmTIkCHD5MjEaGTIkCFDhgwZMmTIkOGckxE0MmTIkCFDhgwZMmTIcM7JCBoZMmTIkCFDhgwZMmQ452RiNDJkyJAhQ4YMGTJkyHDOyVg0MmTIkCFDhgwZMmTIcM7JCBoZMmTIkCFDhgwZMmQ452QEjQwZMmTIkCFDhgwZMpxzMpXB/8YxDBNFkZEkCQDTsjBNC01V0m0Z3h0IYTKU3E9Yb8GuZOG31WFXss54vNbIYf77wL+c0bkOxcmHKj/FDP/c0z5XCIFumQjArhx7RFlCIIRAkSenH7GEwDBMdDP1nRZCcDQiTZJAliRkWUZVZFRVnvS4o9cKlrDQDRPDsDCFQFgCRsZXZBlNldFUBZA405+UECCEhW5Y6KaJZQmskYtJzSOhqgqakvrd/rX/dHcNtfKzg8+ybbDprMcqcPj57NRruaRw1lmNI4TAEEkMoSOEBYAqaWiyY9SzVAiBKQx0kcAmO1Ckc/satoRJwoyiyjZUyXZGz/HtGxv5zT0v07S/k0RC59Lr5/H+T1xKQcmZP0/eKVoOdfOPd/ycuz57GdffceF5eY8JYWGKOKrsesfnfjdjGKnnvnrcnuR4Hn76LX7z5Jv84MvvZVpVwTs6d4Yz529W0LBMi+BQFD1pjDnm8jhweeyn/LIJIUjEdELD0THHNJuK2+tAs/1l3+I3dzRTXpJDlt+F06FxqKmHxtY+Fs4qJz/Xd76Xl+E0iJm9HBr6NR2R58myz2ZmzufPStA4X0RNnY29zRiWyRUl9en2nliIgWSU6YHCk54vhCCW0OkeCPHm3la2Nhyhsb2fgeEIkbiOLEu47Bp5WR7K8gPUVxUwt7aEyqJs3E4bNm1yv1nTtIgmdA4d6WPTnma2NRzhSM8ww5E4qizj9ziZWpbLBdMrWDqrkryAB5t2+gK8ZVnEEgat3YNs2tPClgNttHQOMhSOAeB3O6guzmFBXRkXzqqkND+A3aYiZ16W7ygJM8KG/ic4ENxExBxGlTTqfUu5pOADaJI93c/C5HB4G2t6HuaKoo9S4Z5xTtfRn+zgN03/wqKca1mccz2qZDvtMWYsqOSrP7idg3vaefyB9ed0fX8LJM1BDg3+mBl5Xz/fS3nXIIRg6742krrJgullOB2n/719N8490XqSpknMMNBNE1NYSEjYVRWPzYYiSUiShG6aDMRiZDmdDMXjSIDPbsewLMLJJJqi4LPbUWUZ3TQJJ5MosowqS0SSOpYQqLKM22bDrrx9yuW/7F3w20hwKMq3P/cwOzc1YpnWqGO3fvxSbv/UauwO7aRj6AmD15/dyY+++iiWmdK2HmXWoho++I9XMGNh1duy/nPFEy/sJJE0WDS3ghuvmMu9D69j3owy7vv9G/zzJ68838vLcBpE9BZiRsf5XsYoBhNR3KqNuGlgCBO/5mQgGSXb7iKYjJO0TAQCp6LhtzmxhIVhmcwMFOJSUw97Swjips7WgTb2DXWTa3fjVG141LHaWiEEfUMR/rxuN4+/tpPugfCYNZkWDBsmw5E4h4708erWQyiyRH1lIZ+8aTkL68pOeV1J3aSxvY/HX9vFK1saGA7HRx1PAJF4ko6+YdZsa6SsIMBdV13Aynm1+D2OST/QDdPiSM8QT6/fy9Nv7KV3aOz1xBI6XQMh3tjdzKOvbOd9l8zhiiV15Gd5zshKk+HM2BNcx86hV6n1LKDSPQtDJPHb8pAlZUxfTXbg03LPuTXjXKFpClm5XorKcvD4nOd7Oe8ahDBJmv30xtYSM1uJ6keQJBlN9qHKHoQQWCKJbg1jiSSypKLKXhTJhUDHtGKYIoHAQJGcCGEgMNHkALJkw7BCGCICQiDLDjTZj0Rqg2haMQwRQZbsGGYQgUCTfWiKb8TCEsUSSUDGsMJIkoIm+1Fl18jxGIYVQggDWbKjyl5kyY5uDSJLNhTJjW4NIoSJpgQQwsKwQtiULKRxvuOnSzxhsGlnC0IIZk0pxuk4+8/j3TD3eAghWN/WylMHDtDQ389QPIYqy9Tn5vGJRYuYnpePKkkcHhzklkd+x3evuIofbngD3TL5+0WL6QqHeXT3bkp8Pj6/dClzCos40NfHT9/cRI7TTXnAz9MNDfRHI5T4fNwycxaXVdfgtdtPvbgz4Lw+5RJxHQDNpiC/wy9EzaYybU4ZwrIIB+NEw3F6OgYxDevUJ48gKxK5RX7mLZ1COBgjEooz1B8mNDTWwvGXitfj4O7rF/KHZ7cRjetomsL7rp7Hf/zkufO9tAyngRCCcLKFmNF1vpcyinsb3uCa0hls7G2mOdzPp+ov5ju7XuJf5lzJH5q30RQaIGbplLj8fH7mKmKGztNte1jXc5jlBdXcUb0wJWT0t/F02x6ORIYI6QmW5FWMsnYcpX84yr1/2sALm/YTTehIgNOu4bRrqKqCLElYQmCaFgndIJbQMUwL0xL0ByO4nafWZCV1g20N7dz/9Ga27G8DQJElnHYbTruKosgIkRJGIvEESd2krXuI//r1y3T1B7n9svn43KcWNgzTpKGtj18/s5lXthxEiJSbVPp6FBkB6IZJNJ4kkTToGgjxs8fX0zUQ5ANXLKQ4148sZywb7wTd8WYciptFOdeR55hYWFUklSrPbKo8s9+xtYkRt8Oj7zo9aSIsgWpT8PiceHzOM/6eDPWH0ZMG/hwP0VCccCiGaViomkJeYQDNltqEWpZgeCBCNBzHMlNze31OPH5n+rcghEBPmkRCMWLRJIZuIklgc2j4Am4cTm3U78Y0LYYHI0RDcSxL4HDaMHRz1PqSCYOuIwP4slwEsj2jjsVjSQZ6QzicNrJyPWet0TWsKI1D/0t/fCO6OcDuvq8gSw5Kve+l0H0llojTH99ER/gJEmYfNtlPrnMlhe4riZuddEWeJZJsImH24bHVIoROzGinyv93uLQKOsJPMpTYiiWSuLUqyrx34LHVIqEyEN/MkdBjZDsW0hN9GUskKPG8l1LfzRgiQlf4GQbjW3FpZQzENqEpfkq9t5DnuhjdGqIn+go90VcwrBB2pYAi97XkOBdzeOh/8dimUui+ikODPyZmdFCX808kjD7aw48xNfvz2JXcM75n8YTOcCjG4fZ+Gtt6yfa5ae4YwOtKbXrzsr14XMeUSpKUUsD0DISIxpIA2G0aOQFX2uVbCIFlCULRBJFYAl03EQJsmoLX7cDrTnmsnO7cpmURDMcJRxMYhoUkpYRyr+vYmOcCWZZpHRrGbbNxy8yZ5LvdNA0O8ttdO/nJ5k3856rLyHGl3PJ0y+IPe3fz4fnz+c2OHfxwwxvMLijkrrlz+ePevfxh717mFBYBEEok2drZyQUlJdw+axaWEDx/6BC/eOst7IrClbVT3hbl1HkTNAzDZPv6g1iWxcxF1Xj976wvo9vr4EOfvwpIPdwa97bzzb//NT3tg5MeQ9VU5i2dwrylUxBCMNgX4g+/WMPjv3z97Vr2OSc/20MwnDK57T/UlXoZhFJ/Z3j3YIkEEaOVhNl/vpcyimybi4iRIJiMEdYT9MUjZNlcSJLEVaXTAYgaOv+w6TH+ccaluDU715bNRJFlzBE/d5dqY1l+NVEjyfaBdr40a/W4c1mW4MU3D7B+VxPRRMpFqiw/wOIZFcysLiI/y4NdU0noBgPBKK09g+w93E1bzyDRuM70ygKmleef9HpMy2Jvcze/fvbNtJDhcdqpLc1hYV050yrzyfI40Q2LI71DbN7bys6DHfQOhTEti18+uYksr4sbV8xGUyf2BbYsQWv3EA899xYvv3UQSAlMlUXZzJ9WyszqQnL8bixL0DUQYuv+I2xrOEJnfxDDtHjs1Z343A5uXz2fgNf5V+dzbJMVsmwecu1eTGFhWBamOP5fyt/67SZmhokaw+hWgiG9BwH0J9sxRAKAbFsxNtk5svmxGNZ7iZkhAGRJxa/l4VDco8ZMWnEixhCqpCFLKlFjGFOYqJKKS/XjUNxpK4klTCLGMDEzhCVMbLIT09LHvfZ4TOfJhzawe0szQ/0Rkgkdj9fBvKW1XHv7EnIL/Wd0D5787Uaa9ndyzW2L2b7pMDs3HyYcjOFy2fny926jpCIHyxI07uvgyd9u5PC+ThIxHW/AybwLa7n8fQspKA6kv6Mth7p54bEtHN7fSWg4hrAscgv9XHbjAhavrMPtTambhRA0H+jiid+8wYGdqd9iWXUeC5ZNxTLFSB/o7RziK3/3S1ZcPZuPfPGq9DyWJdi/o41ffOcZFq2cxl2fvuyMrv94NMXL9Nx/oTX4W/pirzO/4KfpY0IIokYbbcGHKfJcR75rFcOJHbSHnkCRHHjt00iagwQc81AkBz3RVynz3cJg/C0i+mF6Y68BUJf9VexKLk3Dv6At+Dtqsz6JXc0DIJjcTZZjPvMLfw7CwhCx9PymiBHWD5LvXkWV/6MIkUQgEMJiILaJgdhGKnx34rfPpivyLN3RF9EUL061BMMKEzc6kFCIG90YVpSI3oRLq0Dm7NyMWjoG+POru9jZ0M6R7mFURWZnQ3ta8P30+1eyfH51ur8kSew62Mn+w10cbOnFsiwCPhfvv3YhS+dVp/cuoUicR57fys6GDoaCMZK6gc/j5MI5Vdxw6SxyszynPXdLxyB/fmUnew93MRyOocoKPo+d1RfW8d7Vc87qPpzIh+bNG9PWE4nw4qFDxA0j7UEjIbGquoZrpk6jLxLl/u1buX3WbGqyszjY3097MJjua1gWlYEAfzdvAXOLUsJHRSDA999Yz5vt7SwsLqHA4xkz79ly3gSNvs5hHvvlWlRNobQm/x0XNI5HkiRsNu2sXsaSJKEoCqr6l2kKn4jqyjyeeXU3JYVZ7GnopKI0h9c3HyLL7z71yRn+YogY7UT0dgSTt8i9E1R7czgU7EOSJPIcHrb2t1HtzSWiJ7ivYSMBmxMLQdRIvfQ4hYh7VDM73m81Ek+yu7GTvhH3osJsL/94+0ouqC8fCcYeiyUEXf1BtjW0U5DtPWVcQ99QhBc3HWDL/iMAeF12rlxSz22XzaMsPzBqXQvry7h26XSeXL+HXz29mc7+IELAvU+8wYK6MmpKciacJxSNs3bbIV7ZckzIWD6nmjuvXEhdRf6Y679ycR1rth3iV09v5mBbL6YlePTl7cyqLmbJzIoJr//dSrEzm5vKLmRpbh1hI0ZIjxMyYoSMGGE9TtiIk7B0DCvl39wTHyZkxE498GnSET3IzuE19CeOMJDowBA6L3bdjzriEnVdyWcodk5BQsIUJtsGX6QhuDktbFxb8klqvQtHjdkbb2V93x9wKB78Wj6Hw9uJm2E02c4U70LmBC7Fr6UE4p54C2/2P82RWAMgyLIVUeWehSn0UWNKkoQE9HUHmbmwivKaPCRJYvuGRl57dhdun5Ob/+7iM74P/T1BnnjwDcpr8nnf/3cRiiJxcG8HufmpOL+eziF+/p9PIUsS192xBH+Wm4bdR1j34m6Cg1E+/Pkr03GR0XACWZa46IqZFBRnMTwUYc3TO3jqdxvJK/Iza8QdOTgY5Tc/fZm2w72sun4e5bX5NDd08cwjm0km9JHrhuw8L3OX1LB1/UGCH7kY/4hVIxZJcHh/J5IEsy+oftuFcYFOTG/DsCIUuC5Hke14bdNwaRUMJ3fitU/FJgdwKPlIkobXNgW7UoAm+9GtIMHEfsp978etVSBJCgXuK9nT96/oVgibOGpRkCn13oQspe6lwuh9lV3Jp8C9GgkZSGntDStMRG9CU7LJcixEljSyHYsYiL9JRG/BqZUSShxgKLETu5qPQy3AsIKE9AayHAuQzyAG6HiK8/2897K5zJpSzB9f2k5xvp/rV87CM2JVKMrzc/x7QZIk/vjiNi6aX8NHbrqQaCzJo89v4/sPvMqsqcX4PSnB3hKCgeEYC6aXU1GcjbAEG3c288L6ffg8Dm6+Yt5pzW0JwW+e3ExDcw/XrZxFeVGAcCzJweYebG9DLG7CMBiIxQgmEiRH4jQQgmAygW4de89LEpR4fciSRJbTiSrLlPp8KJKMS9NImsYoxUOhx0ttTnb675qsbCoDWbQND9Mbjfx1CRpN+zsY6g+fsRYlw2gsIRhOxjEti1zn5IWE1cvqWLlkKoqcCi4KhmJs23uElUumvI2rfbsRmFYS3QphWGEMEcUSOpYwAIEkKUgoKJITVXZhVwIokuucvmhMkSRpDqFbwxhW9Li5VRTJhip7sMkBNNmDJJ2dqVIIi4jeStRoPzeLP4dUe3N5oX0/c3JKyLG7ebxlJ3fWXEBXLMRAIsJ7K+cQM3SeP7IPgKRpcDjcR3cshCUs2iKDFDi8aLKCJqtEDZ29Q13kO73kOUY/EAdDUULRRDqz1MyaIioKs0+6yZYlieJcP8W5p34OmabFzkMdrNt5GNOyUGSZ5XOquWXVXMoLxg+6V1WFGy6exZGeIR59ZQexhE4wmuCxNTv54vsvGfccyxI0dw7w9Bv7MEwLWZKYXVPMB65YQH3l+JlWFEXm0gVT6B4I0TccoW8oQjiW5LmN+5heVUDOeVYc7DzYQXVJDm7nxFmQkrpB31AEu0095Xq9mpN52dWM1fkdI27qRIwYYSPBLw69wKvdu7HOsZ2jyFmDV8vBEgav9PyGoN7HJfnvx6+lNMzZtiKkkY2KIqksy7uJOYFL2RfcwJv9T004bsKMciR6gHL3dOYGVmFXXDSGt7Jz8FXcSoC5WatJWFHe6HuMrthhZgQupsBRyUCigz3Dr5Mwx7rvOt12PvuNG0e1ldfk09LYTeO+jgkF+MnQ2TbA3CW13PR3F6WVhssumwmAoZu88eIeOlsH+Po9dzJtdsqtrH5eOaZp8dbrDRzcc4Q5i2sAmLO4mjmLq0eNLwQ88eB6BnqC6XXu3HyY5oPdXHvbYq686QLcXgfLVs/ANCxaG3vS52p2lYuvmsX2TY28+XoDq2+YD8BAb4jdW5opqcpj6qzSM7ru0+FoHIQ8YqkCkFCRJQ3TSoxcl4IkqUhISJKGRCpbnSkSI5nsbBytSqBKLoTQERxLaGNTAqmYjXEUNhIqmuIfETKOcfTdKKfnA1myg0gdcyolDIkdBBO78dlnELDPIWZ0EE4epMRzA7J08ljWU5FyZXKQSOq4HTayfS5qy/Pwe8ePDTJNi6VzqvjgDYvTfRRF5r/+70Uamnu4YGYFANl+N//0kdFWquJ8P62dAzS29SGEOK25Lcuiuy9IWWGAC2amhBdZlrjswrqzuv7xiCSTbG5vZ01zEx2hEHFDx7As2oNBYrpO+iU3gn3kHSeP7OM05eg775hLYrqvouDSjgmHLk3DpWkcCQZJGKPdDs8V50XQsCxB0/7OjKBxDokZOus6mtEtk/fWzDytc1Xl2INnf2M3yxfWoCgn3/wKIUiY/QwnGwALkHCpRXi0ygk3zqaVYDh5AN0KptsUyU6WfTaKPH4QkiVMYkYXYT2VxlKW7LjVUlxa0Th9DZLmIDGjm4jRwnDiAKHkYSJGO0lzEENEEcJCkewosgunWoBbKyPHPgefvQ6frRZVck8q21jc7CWYbEhfg1srw6kWYgmDuNHDYGIP/fEtDCX2EDXa0a0QQoAqO7ErWXi0KrIdc8h2zMVvmzppQUcIE0PEMaxISoiyIiStIN3R9cSMznQ/3QoxEN+JboVOOaZLLRn53M69Rq/Y5SfP4aHeX0ixy8e67sNUeXPwaQ4qvTm83NGAX3NwRWkq3iJiJNnY08xgMook4K2+VlYWTiHL7qLKk80Bl49njuxlaX7VGEFDPiGt63AoRiyRxBLinGRgGgrH2H24i46+1Pc3P8vDhTMrqSg8eWYvWZK4ZukMnt90gNiIpvWVtxr41M3LcdnHagOjiSR7mrpo6RwAwO9xcMH08gmFjKNIksTFc2t4dcsh+oYiAGzY3Ux/MEqWz/W2Z6GyLIvO/hDZXueYrC1f+elT/McnrmFWbfGEqXcjsSQ7D3aQG3CfE8HIoWg4FI0cO/htI/734twKGi7Vh0tNae2dioe4GSbXXkaOvXhMX0mSsEkOfFoeXi17zPHjsbAIaAUszLqaSk8q7W7Als+w3ktfoo2YGaQjdpDueBMzAyu4IPtqnKo3fW5vom3MmEIIwsMxeruGU3Eaukl/TxDLFETDCYQlkJQz+47IiswFF0/D7RkbRWuaFts3NqIoMsODEd56/QAAetLESBpEQnE6WvvTgoaeNBgaiDDYFyIeTWIYFn1dwyRieiquc8Tw2Xq4h2Rcp252GS73sffH7EXVPPHrY5myFEVm6sxSCkqy2PjKPi6+cjaKKtPdPkh3+2BKSBln3WeDLNkxrRiWMEY27wJZ0rArBQgsInoLLq2cpNVP0hzAoRaeVOGkyh5UyUvc6MCwgiiyi5DegF3NO2slmSK5sCk5hPUDxM1u7EoeMeMISBI2JQuHVoKFTlg/RJ5rJQ6lkIH4JiwRSwWjn4NA8NPlglkVuI6LpysvykKSoH/kuQepfWYwHKdnMEQklsQwTDp6hjFMi2gsiRCcVhpwVVGYW1/Kms0HefzlnSyZXUlxgZ+iPB92TT2n788dXV38z6YNZDuc3FBXT11eLj67nd/s2MmDO7aP6X86M5tCYFoW8ogwYlgp11NNllHe7VmngoMRBnpDRIIxQsMxdr2Z8uMc7g+z/Y1DHDlOA3GUBRdPQ7ON/wEKSxCNJOg+MkBwMEIiYSABdqdGIMdLXqEf5yRS1L5THBjsxa3ZKHJ7OTjUT8zQmRLIxbQsWsND1PpzUCWZg8P99MbCSEiUeHxU+bKRJYmonmRLbztlngCtoSEEgkKXl0pfFkOJOG92t/Fq+2E8mo1sh4uAzUGlL4uAfXytQE9/CL/XSd9AmKR+TCPypxd2MHd66SkFDYDBxG629nw1lQUDqPTexIycf0SVxneDixrt7O7/bwYTu9JtNjnARSUP4pZKx/2sTBGjLfwkBwZ/DoBTLaIu6xOUa9eP6qebIYYSe+mOraM3tpGw3jKSYWMshjAwzAgJs5ehxG7aw8/i0Sqo9N1CifsKHOqpA9v6YpvZ2vv/UtegZDEt8DEqfO8jmGigJfQ4nZFXSFpj4310S0e3goT1Frqia/BoVVT776DEfdnIQ3vi76thRRlOHmAosY+ofoSIcYSo3k7U6MQUozWYYb2JPQPfO+V1ANT4PsCMnM9Pqu/pYldUvjBrVfrvb86/Jv3fn5sxVqOfZXfx8brl445V6c2Z8BhAls9Fjt+NqsgYpsWuw528uvUQAijPzzqj1LLH09EX5EDrsedUbVkuNSU5kxqzsjibHL+bnsFwKp4rHKO5Y4DpVWNT9Q6H42xraE/r3oty/cysKZzUPCV5fgqyPel7EIomaOkcoLIwa9Jpe8+UoVCMp17fw2WLp1F9Erewicjyubhy6dgA/3PBX8Zb4PTIshVS4KhM/+1W/DhkDwkrim4l6U90krDiFDlqRsV5lLnqUeXRgp4Qgt7OYdY8tYOGPUewrFRChHg0SUdrP1NmlJyVrcdmV3F57cjjvDeEEAz2hoiE4jx0z8tjjldMKcA1stFPxHUO7mln48t76WofxDQtLFMw0BskOBgBpLSDZTQUR9MUNLuKdFwgu9fvHPW3JEk4XDaWrprO07/bRMuhbgpKsti/sw2ny8bsRec+M6Rbq8IUUXqiL6HJflxqBU6tGJdWjt8+h47wn/DbZxEz2hBCJ8e59KTjKZKTPOdFRIzDdEVfQJN99EXXkedciaacnbJWke0jazlCZ/hp3Fo5w4k9ONUSvLapaLIHGQ3LiqPJPpxqKa2hh7Er+SnLx3kgy+ccpSBVlBHLz0gGUcuy6OgZ5sUNB2ho6Ul/3yOxBB29w5Tk+2ESrron8r7L5uKwa7y5q4Xt+9soyQ+wdF41F86tIjdwaiXlZNnV001/NMrdCy7gspoaFFlGtywG4zEM6+ysDsPxON3hMKX+1PemJxKhLxol1+XC53h70m29Y4LG9g2HeOnxLXS19tPXOUQsmtoENu7r4Kdff3zcc36z/l/IzveOaTd0k/bmPt5au58taw/QcrCb0HAUCQjkeqmuL2LB8mnMXz6VwrLscR9+7zRPNe8jz+nhhqrp/P7gDg4M9vG1RZfSH4/xdPN+Pj17KY3D/TzTcgDdMpEEODSVD0ybx9RAHj2xCF9Y9zS3TplDdzRM2Ejgtzm5bcpsBLC+s4W9A914NDu6ZVLly8Zvd0woaBxo7GL61GKee20PSBKamrpH7d3Dk3rhSJKETfHj0ooJJlN+5AlrkLjZh0cuH/ecYLKRpDU8qi1pDRHV23GpRUjjfB0tkSScPFaUS5M9eLSKMf3iZi/NoT/SEXlh3LllbMiyDQkZS+iYIg7HXWlYb2FP/w9ImsNMCXwQVZ68RlU3g0SNTgbjO2kc/g090fVYjPgIoyBLdmRJwRLGOPM2saf/+5hWnGr/bUhMbIaOGd00Dv+GzsjYl3UGcDtsLKgrY8fBDlq7UwHev37mTQ609LB8TjW1pbmU5vnxuc8sw85AMMKRnqH034XZPvKyxj6fxkOWJIpyvDS09mCYAgQ0tvePK2hEYgka2/vSf2d5nZTlT64eiiRJ5AY82G0qxkhGlpauQXTTwqZB/3CExiN9RGKpfOoFOV6mlOUhyxLBSJzdjZ0U5vg40j2EJKWEnIqiLEzTorVrEE1VqCzOTuVwN0wOtPTgcdpJ6gZb9rex82AHPreDtu5BinJ8VBbnYNOUkfsX5Y2dTeiGSZbPRX1lAXabimlZ9A6GOdTWhwSUF2ZRdpyV6Ej3EL1DYRw2jZ7BEJqqUFGUTWG2F0WRMUyTls5B+obCROM6pmnhdGjMqCnCP4nsXn+paLIdu3JMaSNJqeQBFhYCQdKKIiOjyrZR2nCH4h7jHmMYJq88uY0/3r+O99y5lPnLp5Cd62WoP8yvf/zSWa9VUeRx3XWOYh/J6nT3V65FPkFzr2oKOSPv+a62AZ58aAPdHUNc8b4FTJtVhi/g4q11DfzxhCQrqk1NFa40R8dtJRPGGMOVza4xf2ktLzy2hQ0v72XlNXPYv6OV6roiSqvyzvr6T8Rvn0WR+1p6o6+jyV4K3Vfh1IqxK3mUeW+hK/IcfbHXsSk5FHquJmCfRdzswWObgkMtAGS8Iokme3Fr1ciShs8+i+HEdgZib2KJOH77TArcl6FKKcuuXckjx7F0XAuDjDoS2zH+Z+Sz1yNJ0Bt9jb7YG7jUMvJcK3Gp5SPXMxtV9mJTcrCpOfjts7Aruaf1njw1k/+dqqeo+RBPGDy9dg9PrtnNTZfP44KZ5WQH3HT2DnPfHzec8dzZfjd3XreIlRdMZeveVt7a3cr/PrKOnv4Qf/e+Cye9/lPh1mzYVZWuSJjOUAgBHBzoZ19vz6j4jNNFkqB5eIgXDzeyvDy1j3ql6TDtwSA31NWT7357XGzfMUHDsgROl43KqYWUTyngwPZW+rqGycr1UjO9GKd7rGRsG6eOhWmYtBzs4tF71/DGi7txuuwUlmVTVpOPsARDIxaSvW8103Kwi+vvWk5pdd55f9mUuP0MJ+M0hwaxyQrBZJyIrtM43E+5JyVZ/mz3RlaX1XJL7WwMy+J729dy/94t/OfSVD0L3bKwKQpfW7SKtvAQ9+19i03dbXx0xiJcqsbvD+6k0pfFB6adzHM5RWVZLi6HDV03mVVXgm8kk8fu/R2T/rnbZB9uteyYoGEOEDd68WjjCxph/TC6GRzTPpzcS7ZjTtpv9XgskSSkH07/nXrwjk0d6VDz8dlq6I66MEUURXLiUPJwqvnYlGzsSjaq7EaWVAwrStzoJaw3EUweRowIBQKDw8MPEbDXU+Qe339+PAQmQ4ndhJKN9MXfwkLHruTg0SpxaSXY5SwUyY4pEsTMHsLJZkLJRixSG0FTxDg0dD/ZjtlkOybOXCFLGg4lD482VgOXtIZJmoMcFWJkyY5dyUGZhMbJrp6+9vlM0A2TfW09DISjRBM6pmXhczlYPLUMSZJ4bfdhltZX4HGkNq4tvUPEkzpTS/LS/z2rojBdqOhQRyrD1pTi3LR2a+msStp7h3lq/R66B0LEkwavbWtk4+4W6isLmD+tlGkV+VQUZlGaH8CmTs7KIYQgGInTP3zMNN/ZN8xr2w6N0qydjL6hSHoDJIDB0Njg5KPFBrv6j7m8DQSjrN95eNIB3a3dg5jmsZ3WcCSGZaX+bu8ZZt32JuJJHcMwiScNPnnzRZTk++noHebbD7zMFRfWEYokCEUTBDwO3rNyFnlZHl7fdpikYXDn1Rfgcdnp6g/x+Ks7mTOlBIddZdehTroHQuw53El77xCzaospLQikBY0Nu5pRFYVEUmcoHOf2y+excHo5liXoH46wbvthmjsHWHXB1FGCxqY9LTz7xj7mTCkmHEsyFIpRV5HPVcvqKczx0dwxwLNv7CNpmERiSd7Y0cSiGeWUFWThcznetVXSZUketwbHURRJAwQW5qiNtmEl4QR1kWlYbH3jEIEcD7d8dAXayCY9NBxlsC9EbsHb58IsyzK104tY9/wAHq+T8prRmd2O9x/v7Rqi9XAPC5dP5fIbF6CoCqZhEY8liUYSo87LLw4ggO72AarrCrHZU/uF5oNdY2pjybJETr6PmQsq2b6hkdLqPIb6w1xz2+JJWe9P+5ollQr/nWPaJUnGpZVRHfjomGNOtQineswl2G9PuUA7tZJ0W77rUvJdl447p88+HZ99+rjHFNlJruuik6xXw2+fjd8+fsrlAveqUX/XBD4+4VhniqJIKcWBYWGYZ5fUJKEbbN3bRmGulzuuWYBNS33fu/qCDAaj5JyQfGgycx/9mkoSlBUGKCsMcMmiqXztx0/x5JpdfPi9F56zZ828oiLe6jjCS42NHB4YQFNkeiIRarNzODw4+cyoJyJLMgjY2d3N/r5e4rpBW3CY+rw8lpWX47G9PYUK3zFBY+llM7hgRSpoRk8a/Oirf6Cva5iKKQXc9bkrKa4c665yYnVuIQTDgxGe+NU61j23k5LKPC65bh718yvwZblTPsIt/Wx6dR9vrtnHa0/vIJDr5bo7l+ILnN9gyFKPn+7eMDv6OshxuCj3BhhMxNg/2MvyogqCyTgtwUFWl9biUlMPzMvKpvDPG57HGknz6bXZWVFSjVuzEbA7KXZ5GYyfWSaVsqLUi3zlkqlUlubgGBHqVi2rm7QFSJP9uI7b9CfNQeJm77h9LZEkrLegW+H0uYYVHtmk70UIHRhtfRFCoFsRInoqw4+MhkPJxzZOtWtN9pDtmEeecz+GiOC3TcVvS8VduLSSkdiLY9elWyH649tpDT5Bd/T19KbfEDGago9Q4LpoXMFnIgbiO1JrRuCzTaXYvZoC13I8WhWqfOy6dCvMQHwHraEn6IquxRpJg5mwBmkK/p4s+6wJfXVtShYlnivJcYwVJLuia+mIvJh2F3MqhZR5r51Q6Dsej1Y56es8G/a0dvPkm3sJuBz0haI8v7WBm5fNYn51MYYl+PZja/jlp2/G47ATTeis3XOYnqEwnynMYWdTJ7taOinPDRDwOOkLRnl2y35yfG5qio4JSlleF+9bOZtsr5PXtjeyr6mbYDROQjfYfrCd7QfbyfG7mVNbzNypJcysLqS2NA+n/eQBjcZIde7jX0LrdjaxbmfTSc46GYJoPDGm1RKCWFJHPy4ob19zN/uau89wHojF9fRmrrQgwO1XzCc/y0PPYJhv/N/z7DjYTkm+H0GqdkeW18X/d91imjr6eeyVHew42MF7L5lDbXkum/e00tTRz6zaYvY1deF22phakUddZQFupx35jX3cdc0FTC0fqyUWQnD3ey9EVRR+/Pu1vLy5gYXTUxnBZlQXEfC4+O3zW8a9hkRSZ3p1IcvmVPHGjmbWbmukpXOQwhwfb+1twzAtblk9l2yfm56BEBfPr6Ugx/tXXUPEp+UiSQpDyW50VwKblFIW9SRaMcbJOhXI8dDbOUzj/k6ycj0M90fYvHb/GEFDCIGhmyQSOuFgDD1poMRlQsMxPD4nNruKehpuiKoqs/SymWxdf4jHfrWO1e+Zjz/LjWmaBAejCCGon1uOza5hc2i4PA6G+iO0Hu7F7tDoaOln79aWMYJG/Zxy8gr9vPbMLtxeJ/nFgZEYkAaMcYJanW47F6yYxptrD7DmqR1k5XqpnzvWOv7uQ9AdeQHdClLkvhZZcoxkXUrSG12DYQ3jUIvJcS4b6S2IG50MxDbgUsvJci4EUgX/4kYXMaMd3RoceTdJqLIbh1KEW6tGkUfXGumPbSButOPWavHZZ477zjStOMOJncSMNtxaFQHH/HGvwud24Pc6ae0aZG9jFxXF2ViWRW6WJ50FarIoskSWz0V7zxCHWvvI8jnpH4qwYdthBoejcIKucjJzhyJx9jZ24XRo+Nx2FEUmGI5jCoH3HMf41Ofl8aG589l4pI3uSAS7qnJDXT2VgQB5bne6sJ7f4eDmGTPJdbmRJYnqrCyun1aHS9NQJIl5RUUUeI536RLMKijglhkz2XCkjVAiwayCQi6qqKA2++RxY2fDOyZo2OxaWuOQTOgoI646siLjcNvSubFPhqGb7NvWwtpnduALuLj2Axdy9W1LUI7T9NVML6F8SgGJeJLXn9nJtvUHmb2omlkjgWbni1KPnw1drezs62JJYTnz8orpioY4PNzPzbUzUUbM4sf/iBUpVUvgqCStSBJeLfUFS2WlkM46i0pdbSHhaIKu3iBOh8bq5XWTfjlrshe3WkIqC4ZFwhwkYfSN2zdu9BI3ehCkqo5mO+YwEN+Bbg0znNiPKZKoJ2Q9EZjEjA7MkVzgiuzCY6uY0ETvt02j1n8XiuzAq1WhyBN/pzTZS6HrItxqCXGzbyRuxAIshhJ7iRlduLXJZyIRpF5sXlstNf47KXJfgiaPTROnyR4KXMtwqoXEjG6GErtHUtIKemObSJiDOCawMGiymxzH3HGPRY0uOiOvwojAZFP85DkXndRC8k7z6q5G/C4HH1y1EEmS2NrYzuq5U/E47QxF4hOe57LbmFKcy57WLva0drNseiVNXf0kDZP60jxsJ2j6c/xu3rNiNtOrCtm0p4VdjZ0cbOulZyic1p6/suUga7c3MndKCcvmVHHhjEpqSieOzTFNa1Qs07nAGscEblmCeOLcz3NU0BBC0Hikj52HOkjqBoosMRw+pqzwe5wsrC/DadcIeJxk+9yEIgkkCaaU5bGnsYuG1l6qSnJoPNJPQbaX4rwTteHjP5MunleDx2XHsgQ1pTls3tM66WsoK8iirrIAh02jIMeLpsrpwPqEbqCpCooso6oyNk1J3dvjlvFO1NQ4GUIIBALdipO0YsTNCBYWMTNC1AiiShqqbDupBeNEip1TyLYVsj+4EZfqJ9tWRMwI0RjeOmLVOIaqKlx81Sy6jgzw+/9dQ26hD103SSYM6udWjCpyFwnF2b2lmQM7jzDQG6StqRdVU3jm95sI5HiYNquMGQsqJl0xXJIl6maXce0dS3jjpT384ZdrU+97kYrJKK7IYcqMEmx2jeKyHOZfWMu2DYd45BdrcHudxGNJXB4HBSVZHP9JVtTms+r6ebz85208/sA6ArkeEFBckYPNro55S6iaQtXUQorKs2lq6OKaWxcRyP7rSOPeFnyYocRWAvZ5uLWalLBohWno/y8SZg9ZjgvIcixGllSEMBiKb+NA/7cp8b6PLOdCTCvGQHwTXeGnCScbSJg9WEInJWi4cGvV5LlWUeC5clRxvqH4W7QM/4osxwXMyvtvpBMEkZSLXz+Hh35KJHmQCv/fTShoZPvdLJhextOv7eHxl3akC/Bdf8ks6qrHupieDLtN45LFU3nkua088KdN5GV5SOoGhmFRXzN2rMnMHYkleHHDPobDcVwOGzZVIRpPousmt145/5xaTmVJYm5RUbrWxfF8cdmxOMVCj4d/XXnM+2J+UTHzi44lorhqyujsoZYQ2BWFJWVlLCmbuKjoueZdVfQhEdfZ+OJe9IRB/rRCLr567igh4yjFFblMm1POhhf30NbYTXtz33kXNApcHiwhOBwc4OrKaVT4sniu5QC6ZeGzOShweSlweXiz+wg5FVOxhGBjVwtzc4tGV2qc4MusjvQJJxMYlpXOMHOqTDMHm3rYdaCDZNJAIKirKWROfcmktFWybMOh5mGT/SStwVRRH7MPUyRRTsitHdKbSFhDADjVAnIdCwklD6Fbw0SNThJmH3Yle9QFWkInmGw87hpdeMdxGzqKTfGT4zy129jxeG3VlHmvJZg8MBI/AULoBJMHT0vQANBkHyXuyyl0XTyukHE8PlsNJZ4rCCUPYYwEcutWmGDyAA715IGB71YSukHAncpxrioymiJjnSwL0HGm6tJcH+V5AXY0dzKnuoiW3iGcNpUpReMLB6oiM72qkKnl+TR3DrD7cCf7mrs52NZLY3sf0XiqIvhb+9vY09TFvqZubrp0DvOmjv+Zy5I0ysVCkqCmJJeq4jPTAklI1JaO1fofvTfHU5zrY8ZpvmiPZ0Z1EZqqYJoWv39hG7phkZflRjdMYgl9lD+7osi4nFp6LalETakO+dleivN8dPaF2H6gnXhSZ2ZNYbqKbuq6Jsbrto8oCQSyJKfduSaDTVNwjASzp55pUnpdM6oLeXbDfp7fsB+Py47P7aCyKBtVPf+xecczkOxkx+DL6FaC3mQrCSvGnuG1dMYO4dVyqPUsOGlF8RPJsRczy7+S7UMv8Wb/U7iVALIkk6UVYjtBySIrEhdcPA1Zkmg62I2RNMjJ9zFtdhmJuE57c9+oQnZ6wkDXDbwBFxeuOuaOk0waqXfFcZ/djHkV2O0q/gk27ZIkYbOrXHXzIspr8mnc10E4GEPTVAI5HmqmF2MfySCUU+Bj1Q3zyCsO0H1kEFmRKK/Jp7wmn4bdR6ioKUhv6BRV4dLr55Jb6KNxXyeGblJUnsOiFdNwuR3UTC8Zsw67U6OitoDgYJQFy6dO+l7/ZSPhtdUxnNhBOHkQt1YFSMRH3qs2JYe40U3C6MGpFWNaUWLGETTZg0srJxVgbxHVW4kaLbhsVWQrS1FlDwKDSPLwSNHAJuxqAXmui9NB4PnuK+gMPzlyvBGffTbHPwWEMIjoTQQTu3Fp5eS4Jk7mYbepLJtXjc/j5FBbL4mkgcdpw+U89nypry7gfZfPJfsE16dsn4tbr5pPdVnqfWDTFJbPr0FTFZra+zENi4JcL3XVhYTCKRfY4/c4k5k7y+fi0sXTaDrSRyiaQELC67YzpSKfeXVnnh5ZmN2AQFKOe8YLC2F2guxDkicXB3iuESIKIgmSG+ksUxi/qwQNPWmwb1szAMGhKE8/PF5QT4qGXan0fqHhGMGhKJZlIb8NpdUni1PVcKqpooAezc5Ufw6/CA+T7/LgUDQ8mo07p81nc3cb7ZEgIGiPhLirbnzp/0Sy7Sl3rLd6jnDvns1U+7JZkF9MnvPkG95XNxzA63FSmOtlOBzn6Vd2M2NqEbZJ3CsJCZsSwKUVk0wMIjBJmP0kzSGc6mg/3FCyiaSZCgT3aJVk2WfQKqU0YgKT4eQBvLaaUUGMQhiEjhc0JPe48QlnS4FzGfuk/zkmaGARN8Z3ATsZfttUcp0XYJtkFpAC5zIapP+DoxmjhEVIbyafv05BY0ldOU9t3sdjb+xCkiRqi/Iozwukj8sjRZYglYIvljzm/hFwO6kuzGH9vma2NnYwEIpSkZ9NwHNyraqqyNSW5lJbmsvKebU0tPWyr7mLnYc62NbQTiiaIJbQeWXLQSLxJHkBD6X5gXHGUXDatFFrvKC+nFtWzT2j+C8JxnUHUGQJl8OGLEvpjfiUsjz+/r3Lzrjeisuh4bCpJHSTP6/dzT99aDUXz6uhpWuA17cfHtU3tYUf/3pURaausoDu/hAvbDxAZVEWVcXHsm7ZbSrxpE48oY+sXYyy0p4sWPhUSJI0oRRTlOvHNC2GI3HcThvXXzyT8sKs0Qqas2AgHmX3QBc5DhczsicW+KZ5lxA3QziViZ65KQHLrjgpdU6j1DktfST13Et93l4tm9mBS3Cf8ByxyS7qfBciIeFUPMiSQr3/QjxaFt3xJgwriV/Lp9ozF4+WRZGjOm0hkSQJu11j6eoZLF09Y8zKZi6oTP+3L+DioitncdGVsyZ1f+Yvm8L8ZSevu3RU2Jh3YS3zLqw9ab/C0mwKS8cK8BW1Y9M7O112Fq+sZ/HK0dnKbv/42Bg7IVJpfDvbBqidUTLueO9WvPZ65JBGOHmAfPdqAIYTO5ElG7mulfRFXyOsH8CpFWNYYWJ6C6riHxE0QJXd5LlW4NaqcWnlONRCZMmGEBZRvYVDgz+iL/Yqw4kdBBzzsCupZ5dHqyHgWEh3+Gk6I0/itc8Y9Q43rSh90bUILLy26SNC0MQEfC4uWlDDRQvGVwzPqy9jXv1YYTwv28PHbzkmxEiShNtp49LFkxcmTzW3w66xbF41y+ZVj3v8TLGS2wATxXnN6PbEy0jaPPY3ZFNcmkUyobNl82Hy8n3MmluBzf72bt+N+AtY+i40151IauVZjfWuETSO+o32dA4hhKCzpZ8Hf/j8pM7VkwaWYSHbzq+G66LiSqp8WZR7AvhsDq6rrB+Jt0hpn66smErA7uBwcAAJiVtqZ7OwIKWVCdgdfHj6BWTZUn09mo2lRRUYI+4XPpudlSXVuFSNoUQ8VVNgEi/2UCTBdatnU5jnQwh4a0fLafkZ2GQ/LrWEocQeIBUQnjD7RwkaQphEjBZ066igUYFLK8Oh5BHWmxGYDCb2UOy+fFTxHwv9uEBwCZviPW0rw2RwqgUokgudowG4AsOKnPScsUj4bNPwapN/CDm14lHB2gIxEtD910lZToBIPIlpCXwuOx9atYCsEQuHLEl4nXaaugYoyw3QPRRi/5FeSnJSNQoUWaaqIIuG9l6e3bKfwiwvM8oLTmuTH/A6WTS9nAXTSjk8q59Ne1t54rWdtHQNYpgWOw528PJbB/ng1ReMOVeWpbS2fCgcS+dgD3ideJznLsWjJEk47RrZPle6FoYQ4HU58J9CqDoVimwxr66EzXta0jU6sn3jp6KeiPLCLHweBxt3t7Bwehn52cc21WUFAXL8bp7bsJ8t+44ws6aI2VOKsZ+iam4kluCNnc0cautjf3M33QMhJEliakUes2vH1qM4kVA0TiiaQFVkhsIxdhzsQDcs5kwtxmE7O00cwEAiyqvth5gWyD+poDHdf0xBoJsm67uaWVJQgUNNpWjPtZdyScEHTjmfT8tlXtZlY9odiosZ/tEaYU12UO2ZS7Vn7qj2xTnXnXKevwWEECTiOkeaeknEDbasa2CgN8R77lz6tm/U3km8tnokSSOkpyrECyEYjm9Hk/3ku1bTE3mRUGIfea5LMESEqN6STrt7FJdWgeuEjI6SJOO2VeGzz2Ao8RYJoxvLSjBS1w9JUij23EBfdA09kZep8P0dDrUISUpZHJPWAH3RtdjkAHmulRMW9zvSNUhj6/hu16qqUF9TQPZ5Ljo6GYQQhKMJBoPjx87aNZUsv3N0qnGrC8SJ7rImlr4HWSljy6ZBHM46dm9vJRiMsX9PO7VTC0/7+5vv8XDLjFn4HZN7X5nxVzDjT6HaV8Nfg6Ax2a3CUZOuosqUVuUxZ8nk3KGmziodlVf7fDEvr5h5ecdenNdVjdbC2BWVFSXVrCgZu1kN2J2jskm5NRuLCo5J9pIkUe4NUO4NTGotb+5oZnA4Sigc55lXdlOQ5yMUjqfcQ07jVtmUAC71mIk6YfaTMPtH9Ymb/cSMrnSgskerRJM9eG1VDCR2YoooQ/E96TgHSP1gTREnkmwBUhVRnWoxqnx6G6PJIEkKmuwmPjK9gHR62smiym5cWjGa7Jv0OYpkQ5GdYEocle5OrIfx18RQJEYwmqB7KEw4nqAvGCGuG8yrLsamKayaU8uzW/azu7ULIVLpao+nIOClJMfH2j2HqS3KoSw3cEbrUBSZKWV5VBRlE/A4+NYDL424ESXZvLdlXEEDIMfnojQ/wNBITENXf4iegTCeknObS97ttFFbkpsWNAZDUVq7h5h1loKGTVP50LWL2dPYiQAKsrzMrytFHSnclJ/l4bbL5+Nzp5QZXredC2dVjXIZczlsOO02SvL8lBcERr0w87M8XHvRDA619WGYJg67mnZz+fD1iynK9SFJKavNrNoicgKp3/JR4aow18vqxSn3HpdDS8fezKotoijXh2vk+5Cf7WHVBVMozvMTisTZtv8IlUVZZPlcKLJMJJbgDy9vp6wgMDLnO//sbwkP8nTLfubmFuNQ/yJes3+zDPWH+f29rxGPJ9ETBpdeN5cZ8yvP97LOKS61DE32EUkeRAgTgcVwMuWu5Naq0GQfoeQBQGBaYeJGJwHHfGzqMfdNIUwSZg/h5EHiRie6FcQS8ZQLc2J3qgAh+khM4TH89jn47DMYiG2gL7qGUt/tAFgkGU7sIG50EHDMI+BYMOH6dzV08vCTb457zO2y8/d3XPSuEDRMS9DQ1MMfX9g+7vGS/ABXrZhOdVkuwmjGSm7FSm4BLIg+nO4nrCGENYgkuYjHwwwOhOloH+Sq6+fxu1+vT9cLOR3y3W7eUz/ZOkUWkADOrmbHUf4inoCTVaDLsoRmSxVmKanK49a/X3XKcyBlXv1LqKUxEVs3HCK/KEBRaXY6SP7tJhY3CEeTTK0uIJk0iMaSJJIGs6YVj8lzfjI02ZuugSEwRlLcjtZMRPQWEiOaelmy41JTmnyvrXYk7WuUkN6EboWOq8xtEdM70UUqS5UqOUesBW/PpkGS1JGxzyxs1C5nYVeyT3tTc6KGxxqj2fjrYCAc5fW9TSyfXkmWJ1XHYjgS5xcvbOInd78Hu6py45KZbGtsJ5bUyfa6WDWnlnjy2P2waypuu408n4faolwcp9CUnwpNkbl4bg0/f/wNugdCmJZgIBidsJJ4Ya6PqeV57D6cqsDe0NpLQ1svFUXnzk0HwO92MGdKMRv3pITsjr4g2w+2U19ZMOlUuhMxrSKfaRX54x7L8bu5etkxf3yP087caSklwtE4jv7hCO29w1SX5lB5QlE+SZKYWVPEzJqxAYzvvWTOqH5TK/KZOrIOl8PG8rkTWwKnlucz9bjkaTl+NzmzUpuO1q5Bdh/u4tKFU7h4fg2yLLHtQDuvbW0kqZ/ZS1K3TA4N97O24zBhI4lb1YgYx4Kre2NhNnW30TDci26ZlLj9rCqppdDlJWGaPNd2gNc7m9je286Pd63HoWgsKShneVHleU+z/reIy+NgwbIpWEKQW5CKS3G43p40nucLRXbh0qoYiG9Et4YwRYyE0U2eawWy5MBlqyJmtJMw+kia/ZgigVMrSVvUDSvMQGwjPdEXiSQPY4o4iuQcqT2lEDe6U8Hh47weFdlBked6BuNb6Ag/TrH3vSiSA8uK0R1+HkV2kuVYPG62yKMMh2ITWjS8bjvR2PjFd//iEIJILMmaTQfHPVxWlMXUqvyRWBINMBEiAiKKMI53YxUojsuQ1Bpy8w+zYW0DFdV5+P2uVHKPt/0ykqn4jHPEX4SgMRkkSULVFPKLs+hs7Sc4FMXtdWIfp9bGu42nH30TPaFTU1/MzHkV1M0pw+V+e6uaz51egm6MLxUryuTnlSUVh5qLXckmbvaQNIdImP0IYaYLB4X1FhJmylXDqRZgU/xIkoJvRNCAlCY/lDyM01kASFiYowLBFdmJ13Z6Af2GFSNu9BIzO4mb/RhWCMOKYVpxLJJYwkAIHQuDuJEKyDpTFNmFKp29xuV8Z8d5u+gdirCzuYvP3XAR08tSG8y1e5p4bMNuIKVEKM72UZw91iJ0dJM7HI3R1DNIYZaHmRVj/auPz3M+WSwh0qkwJQmcdm1CUTbH72Z2TRHrdhymZzBM50CQV7ccpLo4myllp1er52RrdTvtzJlSQmmenyO9wwyGoqzbcZjpI3VAztU8p8NQKMqGXc1sO3AEh11j+Zwq/O63p4rs6eD3OJlSlsebe1vZ3ZgSAJOGwaoLppLlc57RM/RIeJg/N+8hbhhMDeTSFBqkOTjI/NyU22bSMrGwKHB6sBC80dWMJstcXV6HXdEodHnxajacqkaVLxu3aiPbcfaW2KiRoDM2yJFoP72JIEN6hKiRIGnpWEKgygoOWcOnucmxeyhxZlPhycenntl9+GtAkiR8ARdX3jy+lfJcYwmL3kSQ1kgvnbEhBpNhgnqMpKVjCAtFkrHJKh7VQbbdQ4HDT6kzlwJnAJt8dtsxn72egfgbRPUWkmY/IPDbZyHLdrxaHZHkYYLJfcT0I6iyC9eIO4wQFkPx7TQN/4K43k62cwnZzguxKbkokgNZ0uiKPEtX+OkJ585xLsellRPWDzKU2EK240JixhGGEluxyVnkuyanFJ4sa1/dx67trSRHFFHX3DCf2qmFZ5XO+sC+Djasa2BwIGVJXnBBNfMXVeE5jdS1siyTnzNx8HYwHONIV0rpKilFyI7LEdYgiDiy48p0P0mygZyHJLtYdKFMa1EflTX5uD12rrhmLu5x6s6dU0QMOHdKz/MiaMiKnNYY6idksDgZmk1l+oJK2pv76OscYt+2FuaeJLDs3ULXkQEa93eyZ1srb77eQGlVLjPmVjB3cTWllblvy0vC5z07N4xjSNiULFxqMXGzB4skCbMP3QpjU/wIBGG9laQ5BIBbq0hXE/VqVSlXqBHF41BiN3nOxUjICGESTB5Kz6JIjknFP1jCIKw30xfbwnByP3Gjm6Q1jG6Fsaw4pkhiYSCEgcAaMTObnO0WX5Y0ZOmvS0t2LskPeJhRXsATG3fz9JsKAjBNk7suWXDKzGjhWIIN+1tYt68Ju6ZyyawasjxjN267Gjto6uinvDCLKWV5uB22k/52EkmDx1/bmXaFsmsqU0onFhhsqsKcKSVcOLOSp9/Yi2FavLmvFU1VeM/Fs5hZXYjjJPU4gpE4je39bG84wkVzqkfS6Y6dS1VkakpyuHxxHb957i2Shsm+5m4efPYtwtEEC+rLThoXEoklae4cYMehdmZUFVJfWTDaJ/gMsNlUygoC2DWV0nw/FcWnb717O/C5HVy+ZBrNnQPE4il3R4/LTk1pzmnn3oeUy2ZzaIBDw318YsZSZmYX8HpnM43Dx7StOQ43FxdVp2IvkOiNRWgKDhLSk3htDpYUlNMdDdEeHuaaijqy7GcuZCRMnZZIL9sGD3Mw1ElXPLV5DetxomaCpGVgCBMhUunPVVnBqdhxq3ayNDc5di+13mLmZ1cz01+OJk8+fe6pGEiEeOLIZo5Ex9dEK5LCZ6Zdg0d956qz9ydC3H/4FaLGeOmyJXLsXu6qWolXO1fvvxQDiTA7h5rZMdjMkVg/fYkgQT1KxEgQM5OYwsIUFjKpz8gua7hVOz7NRbbNQ6krh5n+cmZnVVLoCJzR/fLapiOhEtGbiOlHUtXEbbNRJDs++3Taw38gmNhJ0hxElX3peAzdGmYosYVQYg+5rhVU+P8Oj23KqJoYA/HNJ53bpmRR4L6Kw4P30BF6nIB9AX2xdVgijs8+C7ft3AZQ5+R4KCrO4sD+Dtat2c/8hVXUTEkpKc8Ut8dBYVGAUDDOmxsP4XLZmDG79LQEDUkCv9eBTVPGtaiGo0k6eoYxDAtVlZEkP7JjFQiBrI2/ly0uzab4uOQIcxdWjjouhIke+h7nVE0poljG4VP3myTnRdBQFBmn246iynS3DxIanlxWKIfTxvIrZ/P6szsZ6A3x9ENvkFvop7RqbJpIIF1syOt3op7li/adIBKOc2hfB40HOtmztYX1L+2heloRc5dUM2NuxaRqjZwP7HIWLq2YgcR2IBWTkTAHsCl+kuYQMaMzndHJq1WlNf/qSJXvsN6KwGAwvivt/ykwCOpHBQ0Zm5KFUz15lpCo3kFH9GV6ousJ680kjP7TjrU4UySUM84K9LdAwO3kpqWzONI3TNI0kQCv086U4olrVxzFpilUFmShqTL5AQ9VBdnjCietXYM8sXY3QgiKcn1UFGVRlhcgP8uL25XKe26YFqFIgvbeYbYfamfznhbMEUVHwOvkskXTxox7PIU5Xq5aOp3O/iCb97YSiiZ4fXsjrd2D1FXkU1OSS47fjcOmYloWsYTOQDBK90CIjr4gvYNhOvqGmVqef9K6HX6Pk9UXTKWtZ4iXNh8gltB5a38bXQMh6rblU1uSS36WF6ddRQiIJ3UGQzF6BlPz9AyE6OwP8rEbljK1fHxXqdPB7bAxaxKB2e80kgTFef5xanmc0G+S4xnCYjARQ0ai2peNTVEpdnspdB7TUob1BBu7WmkY7iVpmezu76LM48cUZ1fN+HiSlkFjqIs1PbvZNdTCkWg/g8kIhpjYHcwQAsO0iJs6g8kwR0jFym0bbOKN3v3U+0u4pGAW87KqTss9diIcio3mSA9runejj7MuCYlleXWsyB+b5ertYnP/QZ7r3EZkHEFDlRQuzJ121paD4xlORlnft4/1vftpCnfTGRskbk38zrEQJC2DpGUQMmJ0xYcAsA9qbOo/SJUnnyU501iWV0e+4/SqtXvt05EklajeQjh5EIdajF0tQELBqZYhoxFM7gUYJWiYIkrSHEBg4lIr8NhqRgkZuhkiqjdjjLgxT0SR+1ragr9hML6ZqNFKT+RFFMlDnmvVhEHgZ8q06SVU1xaQneth0xvjuymdLsXFAXLzvJSUZdPcdPpZJ2Eku5qq4Pc66R0Ye79M02IoGGM4HCNnpIi0pJQjzCOY8VeOZaAcQbYtZPPGEDVTCojFkrz07E5Ky3O56JI6HM6jik2BHn0QOHfPHxAgJq5tdbqcl923JEmU1xbgz3LT3z3Mnx5Yx/BAhKKyHASCWCRBNJxg3tIpqNoxDYyiykybU8bVty3hiV+9ztZ1DSRiOnOX1lJWW4DDqZFMGAwPROho7qPlYDfT51ew+n0L8fonvlTLslK5wUf8DHTdwNDNVNGfSWoWxIgLxlE3DMuyMHQTy7ROOz5EWILermF6u4Y5sPsIWzccpLg8l1kLKpm7uJrymvxRAZrnm6MWjaMkzH6S1iBQRVTvGAkOT91bn60GbSQvtCRJ+G3T6Iu9iSGMkQrhBgItZZlIpiRqRbLh0SpQ5Ik1lMHkIZqCj9AVeZW42c/xPzpVcuPSSnCpxdiVLFTZiyo5UWQ7smRHxsa+wZ+ks2JlOPdIElTkZ1GRP7Gf7kTYNZWpJXlMLRlfoXAUS6RiLDr6htnX3I3HZcfrsuN22NA0BUWWsCxI6gahaIK+oTD6SFCd12XnlkvnMvMU9SpURWFGVQF3XrkQRZZ5a18r0YTOvuZumjr68bkdOO0a6kiNEMOwiCd1IrFkqmbFyDin0j0pskxFUTZ3XD4fWZZ4dctBErpBY3sfbd2DbHS34HbYRmI2RjaYSYNIPEksrh9LEzxOUcAMEyMjockKFiKd0c8SAvO4+/l0yz6aggNckF9Gtt1FOJk4pVXudOhLBHm5axevdu+iKdJNUB8/g81kGdajDOtRDoe72Dt8hOV59VxfegG59sknrhgPl2pnflY12web6E0ExxwXCF7o2s7F+TPepsi60VhCsKZ7NwlzfN9yt2pnWV7Kve1sEUKwY6iZp9rfYsdgM53xwbMSNBOWTlu0j47YAA3BDnYONXNNyQLmBCrRJikY2ZV87EoeEb2RiH6IXNfKtMCgyl4cWgnhZAM2JQe3WoUmBwBQJCfqyDs5ZrQTM9rTaWjjRjed4T8zFN+CECdX2jnUIvJcK+kI/ZnO0BNE9MN4tFpynEvO8K5MjKrKqKoNp+vkVuvTQVZkHIqMy2U7qxo8siyT5Rtf0ICUxbl/MJIWNIS+Fyv2R4Q1BCIMqAgRRVLLkbR69u9pJ6/Ax+b1BykqyWLnthYWLqkZJWggQqn/R+PcxLGmUuKcK85Y0OgMhXho5w4+vXgJ9nGyalhCcKi/n3WtLQQTCWbmF7CwpISAI6WVX7xqOrvfamLL2v1sfnU/Tfs7cbntKZcK3URRFabPrxwlaEiShNfv4pr3X4gkSzz7u41sXd9A49523H4nqqJgWhbJuE4kFCcajpOV5x3jmjXQG+Tlx7fQ0tBFPJokHteJBGMM9aXSm657bheNezuwOzQcLhtuj4P5F01l+ZWz02Mk4jp7tzSx5sntqTFiSWLRBN1tKf+75oYu7vvO0/iz3NgcGg6njcpphVx09Zxxc4RPRCyapPlQD62H+9i/q43Xnt9F1ZQCFi6fysz5Ffizzn8mBk324FALkCU7lkiMpLhN3Yeo0Z7+b7ucjVMtGuVi5LfXpf4WURLWIFGjE69WRczsITmy8VckBz5t4viMmNFNW+gp2sPPoluhdLtHq6TQtZJsx1wcSh6q7EKR7MiShiSpyCggKUjIHBz+ZUbQeJeT43eT5XPS1R/EEoJgJE7wJBXHISUATSnN4+ZVc1kxr+akrk9Hcdg05k0txet2UFOSw8tvHaSzP0g8aRBPnlzrJ0kS9RX5FGSdvL4NpFy1ppXn8+FrFlNZmM0Lmw/Q3JGqiN4/HKF/eOIUzJIkUV2cTXGu/5wGqv+1I0sSuQ43siTzVu8RLi6uomGoj8PBfubmFmMIi8bhfuyKygX5ZQgEESOJ7QSXJJ/NQV88SkhPErA5MUf880+2KbKERXOkl0db32B97z76EiHEOXSHiFs6+4NH6IoN0hTu5v1VK6jzlZz6xJOwKHcKT7a/Na6gAbBloJHexDAFjsBZzTMZmiM9HAx1Ykyw4c+yeViad3KL5WTQLYMXOrfzZPtbHAi2n9SCcbqYwqIrPsSa7t20Rft4b9kSLs6bgUc7tTeDLKl4bNMYiG3AFDEC9rnpY4rswKNNYTi+A4A858p0DKUq+/DbZ+JSyxmMb2Z/3zdxaeVYQidudKBbIby2+jHZpk5EkmRKvDfTGf4TneE/IyGR47oIbZJ1pd4OLMuipyvIqy/tofFgN6ZpUVqew4UXTaV+evHb4tInyxKBk6QND48ouaaSsjQLYx8gobjej5V4CeR8ZKUEoW8HEUPXTXp7goRCcS66dDo7t7cixlMgSW7s/m+BnDP22GkirGGMyM+w9N1nPRachaARSiR4pqGBEq+PnkiEgMPBhWVlTM1NuQMc7O/nvq1b2NXVhSRJvHDoEHfMns176urx2O0UleVw52cuo6w6n63rDtDZ0k9HXE9VGM3xUDlBYI+syBSWZvPeD19M/bwKNr+6j4adbfR0DBKP6WiaQiDXy5RZZdTPLWfxpfW4TvCxiwTjbF13kD1vNWGaFtYJqcJ62gfpaR9EkkakXKcNj981StAwdJPWQz2seXJbeozjK+xGgjEO7joysuZUVeGB3iBzltSOETSuu20x61/ey+4tzcSi42tjLMtioDfEQG+IpoNdbN98mKLSbGYtrOSC5VOprC0YJZS9k0iSgkPJwaHkjggWA+mYjKjRnq4N4bZVYpP9o37cflvdcYKHYDi5H49WQTjZxFG9ryI58NnG918UwmIgvoP2yHOjhIw8x2Kq/LeR7ZiNJvtHmYIz/HUyu7aIL95xCXubu9nX3E1b9xA9gyFC0QTxZKoSuKaquOwa+dkeqopymF9XysyqIkrz/en0qZPBblOpK8+nIMvLstnV7GrsYPfhTpo7BxkKx4jGk0iShMOukuNzU5zjo7Ysj+lVBZQXZFFWMDnLjqYqVBRlcdMlc7igvpw9TV3sOtTB4Y5++oNRovEkQggcNo0sn5OibB81JbnUVxVQUZRFeX7K5exckDAMWvuH2NnezaGePnpDEcKJZCqVrU3D53BQlu2nrjCPuaVF+F2Oc6rpfyeQJIlpgTwuLqrikcYdPN60mwKnhyJXSvuvyTKL8st4umU//7zxWQqcHjyaHZc6WkCdm1tEtS+Hf9n0HE5V433Vs1hdOnFRO0tYNAQ7+OXhl9k6eJiIkXhbrk8Ag3qE13v3MqRHuKvqEi7IOfM4xwJHgOn+MpojPUTNsWsO63HW9ezjfeUXnsWqJ8f63v0EjfHTg9tklflZ1eTYzq7KctzUeaxtI39u38yRaP85dZcbNY+lsy/YzgOHXyVh6qwunDOpuBKffQY9kReQJQ2/41g6fEVy4rXVIdCRUHAfF+8oSyrZjiXUZH2WrvCTBJP7CCX3o8guPNoUyn034tSKOTTwg1PO79GmErAvZCC+AZucS4H7St6uTJGnQghBZ8cQ//uTl+jrCVI3vQRFkTm4v4OG/R3cePMilpyi0OSZIMsS/pPEwMbiOkPH1dkQVgTkfCTbAtB3ICklyI5LMZObwRqipCybV57bxcILa/H5nVjGRFmnNBT7JUjy2Qt2whrGjD1y1uMc5Yx3XwJoDwb56ZubsSkKsiSxuf0In1y0mOn5+Rzq76czFOL9c+YyIz+fx/buZV1LKzPzC5hbVISiylROK+K9+T5W3TifREzHNK2RFLYqTrd9woxSsiKTledl0SX1TJ1dRiQUJxkffb7DZcPjc+LyOlDV0Rvw/OIAd/+/64mFJ+eDJskSWbmjH1AOVypeZOqsyReQc3ocFJSM3WBcdPlMZl9QRW9XkJ1vHmbz6w007utIVwY+kURMp7NtgO6OIQ7t6+C153ZRPa2QxRfXMXth5Zi1vhPYlRycahFRox3dCpEwBzGsODGjKy0A+LRqNGW0ud6h5uNQ8ombfYDFUGIvxe7L0vUzABTZPmHGqYQ5wGBiNzGjO93m0Soo815PvnPpSd2tjiKwMK1z54+Y4fzgdTmoryyksiiHi+fWEE/oJHQDw7SwLIEYqVT9cs8adoV38LE5XyTX6z0tAeN4FEUmN+Am4HUytTyPyxdPIxrX0Q0T0xJIpF46Nk3FblNxO2x4XXZU5eSa7THzyDIBrxOv205NSQ4r59ccN48FYiT1t6qk5/E47dg05Zxo7JKGyd7OHv60fS/bWjsZisWIJJIkDRPDshAIFElGVWQcmppSJPm9rK6v5bo5dQSc71ww8EScjl0gYHdyTUU98/NKMSwTr2ZP1fZQbciSzIriGqZl5RMzdByKOtIukXNcZqmAzck/zFnOYCK1oTgqqIyHJQSNoW7ubXyRLQONJK1TZ3tRkAnY3OTavbhHgq0TI7EZPfHhcWMmjidhGWwfbMawXkZCYmHO6WX0S69Dkrkwdyob+vYTjY0VNKwR96kby5a8rUJnwtTZ0Lef2ARuU07FxiUFs84qNiVp6TxxZBOPtW2kMzbAZJKM+keCvd2qA5uiEjMShIw4g4kwkXEEs+OxhEVbtJ+HmtfiUGysLJiJUzn5s6rIcz0B+4JU9fjj6lvJkoN892UjQd4OnOroeCtV9pPnWonPPgvDCqazRqqyF5uSiyQp1Of+G5KkYFcmjvmSJQ27moeEgt8x55SVwN9OopEELz+/m9bmPv6/j61kxqxUxr7Dh3r40x/f5NUXd1NZnUdhUeCczitJEt6TJKJIJHXCx1naJdmDMCMggkiSC2G2IfQDCGsAhMHSi6dRP7OE7FwvLredD3z4Ynz+cSwmkgbSqS3lk7sIJyk3rHPDWal5XZrG1VOmcuP06XQEgzzVcIDXmpuZnp/PcCKBKsvMLixgZn4BQ/EYD+/cSXsoyNyiVJ51WZEJ5HoJnMHGWJJSAkVeUYC8sWnbT4rdaaNy6sl9sU+FosjkFPjIKTg7P1dIZTtwexwUFGdRPbWAS6+dS3tzHxvX7Gfz6wfo6x7fLG2ZFsGhKMGhKB2t/ezY3ERBcYDZF1Sx9NLpVNYWvGPVT+1KNi61aCT80CJpDo7Uz+hPF+Lz2KqxnVDQTpZU/PapBPUGLJFkKLEPISzCejOQCrJ2KPnYlfHdzRLmABG9leO3EgH7DLIcsyYlZKTGGEScw1RuGc4fsizhdtpwOyd+Ie9UFERPkIJsD/ZTvLgng6rI+NyOdKG7twtFlvG47GeUTelMCSeSvLj3IA9u3EZL/xDR5PhuIoawMCyLuG4wFI3TMRSksbefra3t/OPq5ZRm+9811g1ZkgjYnQTs42slvTY7XtvJPwNJkijzBCjzBE45X3d8iN80v3ZKIUOVFKZ6i1iaV8+sQDk5Ni82WUUZ2Tyn4kpMwkacQ+FONvY1sLGvgcQErj2GMNkz3Mpvmtfg15xM8Z1ZsP/crEpKnNl0xYfG1fAfDnfTEOygzn92blonY9dQKx2xgXRs0vHISJS5cpkZKB/nzMkhELzUtZM/H9l8SiGj1JnDpYWzmOEvo8SZgyorKJKMjIRJKvtUxEjQFO5hy8AhNvY1MKSP7wYpEHTEBvlN81qybB4uyK49qSukXcnFroxNMiFJqYQqE9WykCQJRXLhOklBXM8EXgXHY4oEg/HNyJKdAvdV5zwI/HSIRpO8tbmR0rJsliydklZcu9x2Wpv7eO7p7Rxq6DrngoYsSbhPUqclkUzVMDuKpM1GUlKZ2yTbAqzIfejRR5G1maAU4w+4iMWSdHUMUVaeQ36Rf5wYEglJ8qXd4c4WCQ0kG+fKGnVWu9Bsp5Nrp01jWm4uJV4vLcNDNPSlbpglLGRJwj5i7SjyeFEkmXDyXVJ45TygKDJevwuv30VBUYBpM0u58c6lHNh5hDde3cv2TYeJRsbXgiQTBv09QQb7QjQf6mbNMzupnlbEhZfWs+DCWrJyPW+rVtGuZONUjwlvSWuYoH4oHZ+hSm7cagmKNPblHbBPpz38PBZJQslDCAzCRhuQqgjutdVM+AMyRJSkNVoQc6gFEwom4zEY3/2uL5QnjfzvGH+tFTkyvFPEdJ2X9x3if17ZQE8wPO4mbiIsIRiIxHj1wGGGY3G+874ryfW4z7tl42wxDYvdGxp47fE3aW/s5rZ/vIbiqjzaD/dQO7scX/bpaRSHk1Ge6djK2p49JxUyqtwF3Fi2mMU5U8iyeXAqtgljPiwhqPEWsjyvnpZIL79uWsPm/vEz8+jCZPtgMw+1vM5npl5Dtv30NaJOxc7CnFoOhDoY1se6LsVNnVe6d76tgsa63n0TBs1rssqK/Bk4ziIIfPtgE0+1v0VrtG9CISPH5uX2yotYnldPls2NU7FNGMhtCUGNp5ALc6dyTfFC/ty+ecLsXQJBc6SbJ45sosDhp8pz8uyL55PuyHMkjF7cWhV5rhXndS26btLTNcyUqYWjvGMcDo2cPC/JpElfb+gkI5wZkgTOk1jJk7pJJH6coKHWAlWAhqR6UT3/gLAGkORsUPLZ8PoBNr9xiHAozofuvoTnntzG+25fQiAdn6vizH1hRDA4dxchSQ7g3AguZyxoKJKEz+FACJHe3hiWRSSpE04kSJqp3N5H3002NZX1JbP/mRyqpuDPduPLcpFfHGDhRVMY6Auz9Y1DvPHKPg7sPoJpjH0oWZYgGk5l7errCbJrSxM5BT7mL67l4itmUj2tENskAl5PF0Vy4VDzUSUXhoiim8OEkofTsRoerRybkjVuCtiAfXpK8yHAsKJEjQ4i+kh8i2SbMD7jGKO/VBIK0mn8QNrDz6Sqnr6LkSVb+h5Cqljhu/2a3k7e3dvdtx8hBHs7enhgw1a6hs/8ZZw0TN5qbueX67fw2VVLcWjv7gKrO9ft5+VHNuLP8WAZFuGhKJpNY+0Tb+LNcp+WoGFYJgdDHfyx7Y0JA4olJBbnTuHOypXU+0txyNophTVZknAqNpyKjYDm5l9m3szvWtbxUPPacfsnLJ03+w/yZPub3Fm18rQtT5IkcVHedJ5qf2tcQcMQJq/17OHvalafk4xPJzKYCLNjsIn4hG5TGqsKZ497bFLjJ8M817GdPcNtE8ZkTPUW85lp11DnK8GlnLrYrixJOBQNu6ziz3JR5MyiyJnFH9s2jpua1xKCDX0HmJtVSZ7dh+cc1wE5FwzGt9I09FMkSaHMdyeKfJ4T1QgwTTEm66ckSciyhBBiTHzuueBoituJMC0L/bgaG5KkccxNSQGlBEkpBiSQJPbvaWfF6hm89tIeAIYGIqPc6iVJQtLOfayJ6vkEivMmZK3+7Mc60xOdmkaO08kvtrzFzTNm0hEK8vSBAwzEYnzq6acYjMVQFYWBWErL0B+NYVoCx7ugnsVfEpIkYbdr2GwqvoCb4rJsVl03l47Wft54ZS+bXjvAkebxCyYZukloOEY4GKezdYCXn9pOTV0RF10+kyUr6whknzsNoyRJOJRcHGo+Yb2ZpDWUEjRGMjl5tEpsSmDcc71aDarsImkNIbAYjO9KZ4BSJBs+29QJ51UkG6o02tybNAfRrSCqfOqHcVfkNXpjb77rXadU2YUiu8AaAiBmdKRcwoT1F1nf48/tT3M40sT7Sm/kz+1P0RRpxanYqfNN46qiy8m2pUz83fFuHjvyJDZZ4++qP5g+P6iHeL7rRYaSw1xddAVu1c3j7U9S5CigJ9HLwVAjl+RfTJ4jlxe6XiZshLmx5Hqm++oAkCWFI7EOnup4lrboEdyamyXZF7C64BI0+dhmyBIWnfFuXu1+jX2hA+iWTrmrlBX5y5nuq0c5ztK2tncdh0KHWZG/nLZYO+v7NjKYHMSv+ri1/CZqPFWj+p8ue4fa+dXhtewYbOOqktncWbWMHPvbE4/VF47yWkMTDV3jP1tOB8OyePStXbx33gxq83Pe1VaNg9tbqKgr5vI7lnHf1/8ICPx5HkL9YRITJPKYiIFkmN+1rGMwOXH2sEU5tfxd9WrqfCWoZ1BsT5UVcmzelACBxIPNr43bbzAZZm3vXmZnVTAv6/SLq5W5c5nmK6ErPjSuZaY/EWLzwEEuypt+2mOfijcHDtGfDI2rw5SRmJ9VQ8Fp1qQ4nrU9e9ncf3BCi1OVO58vT7+Rqd7iU2YWOxFJklAlhSJnFu8ru5C4qfOH1jfGtZokLYNnOrYyJ1BFvT8VG9qwt4Nf//xlPvvV68nN9yFJEj1dw/y/z/yG7/7i/8Prc9LXE+T3D6xj3442PF4Hq66ew6VXz0ZVFQb6w7z2wm5ef2kPoeEYRaXZXHfTQhZcWEtbcx8b1x7AZldp2NvBwf0dzF9Uw013LSO/MHU/Dwx8m2B8J4YIkzB60a1hClyXU+S5/gQL+zuPosoEAi4G+kdnAjQMk0gkjixLeH1vj8CmnCQBh2Wm0p4fRVgRrMQ6rMQrYA1yfFpZxfNJTFPgGYk1FkKkLMunYV0+U2SlBpRqzoVV44x3/bkuF7fOnMU31qzhteZmFEnigtJSPjx/Pq82NZHldCEQ/GLLW2zv6mRbZyeGZVHqO/uYhqMIIdAtk2AyTsw00C0zXQsDUpkmsh0u3Nq7v2KzJElIUqpood2h4Qu4qKkr4r13LePgng5ee24n2zY2MjQw9qUlhCAR10nEdbZvPsze7S389hdrWLR8CpdeN48p9cVotrMXAB1KDk61YETQGEa3QujmiKBhq8I2QTaElHvUFGJGNwKL7tjrHJ9x6mQVwW1KNi6tGI6zmg8mdhFMHjplgb/e2Gb2DHx/pObHuxunWoBDySVmdAApl7Ke2DoC9nrc2uQTFrxTRM0YB8ON/OTQz6lyV3BZ4SV0x3t4o38Tg8lBPlH7URRJwRQWYSOMTR79GxZYRM0YYSOCKUwsLEJGiIO9B5kdmIVX8/Bi9ys4FQfTffXsDu7hqc7nKHeVjZwv+Hnj/zE3MItp3ikcDDfyZMczRIwIN5XdmO7TGm3j/2fvv8PkyO7zXvxzKnVO05MzJgAYDHIOm7CRG8ilSIoURZEURQVaoiRLtu9PvrZlW7YsXUvXlhVsBetKFIOYlsu05C43L4BFznEwOeeZzrHC748eDDCY7snYXcp8+fDZQVd19anuqlPn/Yb3/WrfN0kYCXYGtqMIheuRNv6x75t8oPIp9gX3zD5QU0aa0fQ4zw9+H5ukssmzAU3S6In34VU8SKyO8GUtg+lMgvF0hGg2taxSpuViMBTh9bauWf+I1SKeyfKdi9f5zUcOosrvjjreWsAwTFwuBy6fc3YxkUnpqDZ1wcXF3ciYOtcjA5yYvFlwnyZ3BR+s3keLr3q2D2MlEELgVRx8vP5+uuKjHBu/MW8fC+iKjvDayGU2++qW7SAuC4n7SzZxdqqTqTwSz2lT59WRS/eEaLw90ZY3kwI5ovV4xfYVN4EPJiY5PdnO6Iyx3t3wqA5+df2TNHkqlk0y7oQkBMU2L4+Vb6MnPlaw1K0zOsLFUA81rmLcip11zaUYhsXV830cfLgFTVN4+43r1NQX4/Y4iMdSfO3vjyJLEr/7xz/DQM8EP/jWWewOlQce24zNprB5ey1bd+YMgV/+3gXefvMGZVUBdN2k/foQQhI885E9fKb6UbIZHZ//jsCeZZHUB8mY09jkYqo8H6He91lk6d03F3Y4NLZsr+Xi+V66OsdoaMw1sY+OhLl4rpfSMh8NzfemDM0wCs+bpmVhmLczGmbmLczktxBKHaitcMe1KqRiWrc4ef5rJ2m7OkhP5xh7DzXd4aFx77BW/R6wCqKhyTIPrVtHa2kpHVNTaLLMptJSnKrKE025NE7H1BR/dfo0f3nqFBUeD/9s715aS5f3w94iDiYW8WyGk2N9nBsf4FpolN7oNFOp5B3pzLmq402+Yn5j8/0LygquNW6N984J507ysxbRPCEEsiyQZ0jHnvvXs/NAE9OTMc6f6OTNFy9x43I/qURmHvE1DZNU0iSVDPHD587yo++cp2FDBYef2soDT2zB53ciZmSFlztWm1w826cRz/bPvGohzRju3TLqy3c+AVsr48njWJbBaDyX4s/J8NWgLJCCtcvF+LQNyMKJMeOqGcm00xH+ArLQKLJvQ9x1mSf0YXqjz9MXfZ60MQVYc97/4wiP2oBbrWc6fWn2tf7oC1iWSZPvU7i1+rvKySxMyyBtTiALO5oUeMcjzUk9yZ7Abn627qeRkEmZSVRJ5czUOQaTQ7OkYDmoclRxX/FBxtJjfK3/OVq8G3m07DA+zcsPhl9Cnykn002dh0sf5NGywwgEB4J7+VLfVzk1dZb7ig9Q7ignmo1xduo8KTPNJ2o/RqM7R3hbvS18e/B7XJi+xDpXPWX22yoso6lR1rnq+WDV+6mw5+4FEwtlDSfte42MbtA3FaJzbHJNj/vq9U4+f/gAimQtywg1twwWBd+zlH3WCjXrKzj54kXe+vZp4uEE06MRvv2/XsYbdONboqiJZVlEs0m+M3CqYCmOU7ZxsGQDB4s3ropk3IIQAp/q5FcaH+fSdA/RPOU5KTPLlVAf56e72BtsBqy8gdNC3/HB4g18secNpjOxefF43TI4P9XNWCq8bMfrhdAdG6MzOlww21Bs87K/pHBGfCFYlsWZqU6uhPsL+pk8U7mbTb4aVLF6hTdJCDZ6q9gXbOZyqDevgpaJxdHx6+wPrsflsqEoMg8+1srJYzfZdaAJVZV56+WrfPTT9yEExKIpzh7v4D/8vx+nuNSLokjUNZZw6WwPDzy2GafLRsP68lu3Dw3ry4mEk0RCCRxOG7pucujhjWzeUZezG5jZ7xaai36bpsBv5BT9EAih5BqJ7yGyWYPQdJxYNMVA7ySGYdLfP0V35xgej51A0I2mKbg9dp56dieXL/TxX3/v2zz8xBY0Tebc6W56usf58Mf2sa4hZwJrGCaxaIpwKEFv9wTxWJqJiRjdXeOkkhl8ARdOp4a0BE8i07KI51FguwUh7lof6kMIdTOy65dyylFzILP3INQ3ldLXPUEg6KamLoi9gCLrWmIt160rJhpCCBRJosLjodTtzvVqzAzmlirC+mCQP3riCXTTRJYkNFleVjLNsEyyhsGJ0T6+1nmBYyPdJIzs7BewWKwtbejL1rm2LKug4Y8gd84LIZy5TtaIUOK87YZpYTKVOoddLsGt1S9rPIthlnTIEqUVPh7/4E4e/cB2hgemOPVmG2+/dp2ejlHSyQyGac0xLzQME8MwuXGpn7YrA/z9n73C/oc28tizO2jdXoeiyEjy0h/eNqUYh1xObia6/TkupSbXnL3AcQK2LTOEIDNrDCQJFa9t/YKfL5Apsm2j1HGQ4cSrM59rMZE8xXTqMh4ttwCXhR3djBPLdhPL9mFYKcBCIFPv+QhOtYprU3/6Y1tCZZOLKXHuYyp9kXg2Jw1sodMf+z4D8RdxKGXYJH/OENNM5jJORgQLgy3Bf0W992Pv+Jgt4MHSQ6giV3duw0a9s44Tk6eYykyviGgEND9uxUna9KIJlTJ7KQ7ZgVfxkDWzc7IAtzIUQghciovdgZ1cj7TREe+m3FFOOBvmZrSDIjVArbMGY6ZRM6D5KbEX0xPvZSI9OYdoWFjsDGyjwl6OskRH3/caoqk0neOTa95O1zs1TSiRpMy79D6GaPptUtl2il0/M9OcOB9pvYup+LfwO5/Gqa19xPxO7H18C5lUhm//5Sv0tw1z5rUrbLtvI5/4v95Pee18tZ98MLEYTk1zerKj4D4bvFU8WNq67MzCQhAIKp1Bnq3ex5cKlFD1JsY5M9nB7qImwCShTxHTJ2fFMnxaJS4lv9CGU7FxsHgjA4nJvIvkmJ7ijbErfLT20Jqcj2VZHJ+4wWQBk0yB4PGKbWgr9FAKZeJcC/cXzGYENQ8Pl23Br65dCbIsJFq81az3VHIx1JN3n8uhXsbTYWpdxUhC4v5HWvnO104xPhpmYixCJJRg94FGLMsiPJ1gZHCa/98/+8LsGIWA3QebsSyL0FScI69e5eSRmyQTGWKRFKUVvtk1lstjx+V2IEkz64C7TlMS2to2IS8BVy/38xf//SXGRsNYVq4v9etfeptvfOVtNE3hN/7Fk9x/uAUhYF1DCf/m9z7EN/7xON957gyGbtC4vpxf+fxj7DvYNEschgam+PIXjnL8aDuWlVsn9faMc+rtdhCCZz+8m5/66T0EltCDZZoW05HCQUtJykmBWzPrTCHsWKQAHbAx90sW9PdNEI0kcbpspJIZOtpG2NBSec8VRS1zGMsMI8m1IFbXb7NyHw3LImuajMViXBkbYzwRR8/jVri1rIxdlctTm7Asi5Shc3q8jz+9fJRzE4MrHeayMZ6M86X2s8T0uROlLAQN3iAfa9y+YLNcNNNOIjswh2gIJMYSR/DbWtecaNyJW+VVkiRTU19CTX0JP/XJgwz1TXL+eCdn3m6n/eoQ0XCCrG7MYWqWaZGMp3n9hYu8/sJF1jWX88zH9nLokRZcHgfKEjT5ZaFhV0pQJe8cl223Vo8mFy1Ys+m3tSAJlTszjpJQ8WkbFz1nr62Jeu+HSRljhNJXZ+V0DStJKH2VUPpqvnciCzt1ng+xsejXyBhT3Jj+Xxg/pupTQggqXY+QyA7RHfnHGbWvHOmyrCyJ7AAJBvK+dy3dh5eLEu324kwgUCUlR/bNhX0ACkGVFCQh5/pShECTVCRxmyybd5ytT/XOzumSkPCrPgzLIJLNqZhlzCxTmSluxG5y6fx8h9QaZxX6XSoxqqThVtw/tiQDIJ7J0DcZXnzHZcKyoG1kYklEw7IMLCuDS9uGS9uBmFnMWJaOaWUAMyf6MPu6gWmlMMzYzOu2Ob1Ja5XnUDWFwx/Zx4Mf2jvTCK5gd9nymssWQtrIcmTs2rxr5xZsksoGbyUbvFVrmqERM03ij5Vv45t9+RvQk0aG9ugwfYlxLKubq6EfIISMKnJyvi2+JwoSDSEED5Vu5gdDZ/MSjZSZ4c3Rq3y45sCaZGkyps7pqQ7CBaRhFUniifIdK/4O26JDtEeHC26/v7SFMvvayjYLIVjnLqXBXVaQaGRMnWvhATZ4q/GqDlweO/vuX8+pozeJR1McfmIL8kwzsr/ISWVNEb/3J5+gsib3u90KNpqmxbmTnRx/s42f/9VHaG6p5Oir1zh/sjPvuN4r2L6znr/54q8sut+tIGx9Qwn/6t98YMF9a+qK+Z3f/eCqx2ZZFtmswc2usYL7qIqEXY1gZc/nXpDcWOmzGLE/R9IOgeTi1owllEbOnOigu3MM07AYHpzG5bHxL//tB9BWoBC3HGSjf4ye/C72oi8i21ZnuLnip2Ha0Hmtq4vff/MtYpl0wUj/Z3buXBbRMEyTkWSUP79yjG91XyKbz2r9HqLI7uSN4S6uTo3MW4BVu3w8UN5AlXt+6te0suhmEt1MYFjpWbUlyC14c6Z17/yCTghBWWWAh9+/nfseb6Xzxgivv3CBE2+2EY8WNqnrbh/hz3//u3z1f7/JBz9xgMNPbcXjd6Iu0szvVCrxac1EZ3wwAHzaBmwF9LtvQZP9BGybiGQ6Zr93TfYv2Ah+x1lS4tyPKrnpCP8DE8nT6FYSy9JnsiMz5WxICKEgoWJXSmnyf4oq1/tQJAeq5CJg20Q024ssbPMazO+GLOxz9Mptsv8Oh/OlQ5MC2OViLCwkFFRp5ZOHLOw0+j6JTQ7SE/k68ewAJpmZ7+GO8pKclRySUBBCQRbvnC/D3VCXoKJzC3dmTU3LWrUrr4k1WwpgYWFgkrtKcnOZABRJYZO3hcfLHubu5apDtlPhmOvHIyO9602Qq0VWN4im7o0z9XQivwTp3cjoA0wlvkM8fQZVrqTC/9uoUpBo6jjTie+jm1NochVB90cQwoZuTjMe/TssK40ql1Pm/RVUuXLNF0jTYxH0rI7H78LtcyAt03zRsizSZpazk/MXc7dQ7vDT6qtdk8X43ZCEIGjzsKuokWMT83s1AIaT09yMDFHvSlLn2sNm/9NLPscNvkoa3GVMZWLz7k/TsuhLTHAtPMCWVXha3MKlUC/DyemCvUpbfHXUukpWdGzTyknKDiTyiyEIBJt9dUty614ufKqLUrsXVcgFjRc7osPE9RTemc9/+Mmt/M1MlP/f/OFHc2MUApfbwe6DzXznayf54M/sR5YFoak4dqdGVW0Q07Sw2VWEgP6eca5f6mdyYu0lX/9PgQWEogk6+sYL7mPTFFzKObLTfzxvm5H8/px/q74/4CM/e1sm2DBM/vJ//Ih7r5toYVlJWKMKjxUTjfF4gi9cuECFx8NndjxAfSCAnGcyCjoXXrDdiYxhcGV6hH9/+iWuh0bvabNjISiSxNO1G2kPj5M25n7JkUyaFwdu8Asb9837maOZDnoiXyecvoZuJYhlu2e3ZcwIdrl4jlPnvYRl5VQNUokMkXCC9muDnDnazuUz3UyMRjCWKOlmWTA+EuZv/+RHvPbCRT7+Sw+xfX8DLndhp99S50FKnQdXNO4DFf9rRe+D3MQfsG9hh/Z7TKcvM5Z4m3CmjZQxgWmlkVCwyUW41FqC9h2UOg/N60s4VPm3S/ssIah0P0ql+9EVj/f2Z/7Vqo9xJxTJTr33Q5Q772c8eYrJ1Dli2V4yM6aEsrCjSG5schC3Wo9Ha6TYsWtNx7CWkJBQJQXDMshaWbQZMhfX48T0/CUTS8V4any2PMu0TMZTEyhCJjCjeGWTbfg1P5pQ2OhZj0OZu6hY60xQbhGqE9fTZEwdy7KQJQm7pOJUbAgWrD6chWGZpA2dtJElY94uH72lcGOXFVyKrWCDrGGaJLP3Rho5ml4agbGpdVT4foNI8k3imVzkL2OMEM9cxOt4kIDzScajXySePo9d24BFmmLPz+G27aFv8l+TzLahyMUI1pZEv/LVtzn9o8tsu38jOx5qoaK+BKfXgWZXl1S/DRDJJrgZHSq4vcTmo9mzTBfaZcAha+woWleQaIynw3THRml0ezDRienjyDO145rkRFnACFUgeKR8K1fCfcT1+b91Qk/x1thVNvtqVkUCTcvi9GQ7U+nCi+InK3aueDkW05MMJKby9rIAFNnc1LtKsK+B4efdEEIQtHkJaG7G0vkzi32J8TlZo9p1JUiyREmZl/Kq2881l9vGx37+Pr77tVP81999jkxap6G5jKc+vAdFkWndVkN3+yh/9gcvEAi6aNpYwY69DWiagqrK+PxO7I4fb0nqdwqWZZFO67x45DqZbOGMvMOuUVT6UWxl/3lJx41FU7NyuJZpEQknMe9xAN6yDLAyrFVwfOUZDV1nOpnkc3v28vSGDaseSMYwOD7aw++dfZme6NS7arfxRM0G/ub6yXlEI66neW2wg08078Iuz/3qPFozzf5fpDf6TeLZfspdh2e3KcKJT9uIXVmdG/liyDV6Z4iEk/R2jHLyzTbOHGtnfCQ8p7HnbqiajNvjQAhBLJokk5573qZh0nljmD/5D8/z+E/t4kOfPEhRiXdZ5QLvFBTJQYljLyWOve/2UO4JDNMkmskQz2awsHCpGn6bnYSeJZJOY1gmqiTjtwWo8TyNS314phQp59xc7HCiyTKxbIZoJo1pQTyjYHv3RULyQpM1irQiumI9dMd6qXZWYlgGXfEeBhKDsw3Xy4WE4MTUafyqD0VSCWfDnJ0+j1f10uCuB8CreGnxbODE1GlOTZ1lR2ArslCwLJOMmUGVVFzK2tRnG5bJWCrCsfGb/GjoMu3REVJGlhK7h51F63iiYguSkBZtKo/pKfrjk5ye7ObcVA+d0VEmMzF008Cp2Kh0BNhZVM9TVdtpcpeiyfMfAaYFWWNlpWuLIZPH+2epMM0oQigokh8ARQqSNUYwzQSKFEASDkCgyqUYZiz3sFzjKeqZX3iI5m11nHjxIn/3n75FSVUROx7aRPP2OqoaStEWMOqC3O/cER0pGKmWEARtbiodC2eAVwNNUljvqUJC5JVRTRgZhlMhErqTvvg5+uLncMg+BIINvkepdi7sSXFfSQtf6Ho9L9FIGhnOTHUQ01OrygZMZ2JcDfcXJAI+1cmh0oXLbhfCaCrESKqwGmG1I4hDuXeZYJdix6XYoAAvH0mFSd/Rr5pMZshkdB5//3bkO3wjhBAUFXv4+V97BHhk3nEqa4L88m89UXAcC237CW7jluJs98AEP3gjX6n2bXicNkqCt4UjLCsFlgHCPqv0ZFlZsFIg7Lzyw0v0dOUyJIlEGr/ftWhlyaphJVirbAasxhlcgCrJOJTVn7BhmZwZ7+e/nHv1XScZAPWeIlr8Zbw92jMnamlYFv2xENenR9lRPDc7IQkFp1pFiWM/XrWZKvdT78hYb9UExsJJxoZDXD7TzbFXr9HZNkI2U/hCEQKcLjtev5OmTZXc/1grmqZw9JWrXL/Uz/RkjERs7iwXi6b4wTdOE5qM8clfe2RO5OQnuPewLIuReIzvdd6gY3oSIQT7Kqp5tqmFy+OjvNLbyXQqiSpJfGzjVraXVfDlqxdIGwamZTKRTPAr2/dQ7fHxnfbrXJ8cJ2MaBGx2/vnuQzjfg2ZqHsVDq6+Fq+HrfGvwOzS7G4kbCSbSS1REKkCwfaqX65EbJPQEPtVLX6KfgeQgj5Q+RIktVxLnVl3sKtpBf2KAl0dfpTPWRUDzkzLTjCRHafFu4KHSB7DLq1twmJbFcDLEX7e/xguDF5CEhFd1UGRzkzVN3hi9zoWpXnYHGxYMGACcnuziz9tepic2gV1Wcc6YtgkBWVOnIzrKjcgQLw9f5t9t+SCHSuaLLciSuGfGeh77yr8rRS5GQiOt96JmK8gYfShSCYrkRTdDZPQBZOEma4zgsR+aMcLKYa2eKU6Pgx0PbWLHQ5sIjUc4/+Z13vr2GZ7/ny/zz//002zYuW7B9+uWSVdstPDxFRvldn9BR+m1gCLJlNq9+FQn0wX6G0KZOIgS9gU/iW6lAIEibHi1xVUjA5qbvcFmvjd4Zl4figVMpKOcnuzg4fItKz6Hc9NdjKYK9xE9WNqKWymceV8MU+nYgtmSErsPu3Tv5kubpCx4DUSzSdJmlkQ8zeR4lEtne7Asi137m96TAcB/6jBNk76haf7si28yGSrsiwPg9TioLLlt82BlzmOZ00i2+0DMvG5OYaZeR2i72L57HZu31SLJEjZNpqjYg2EYGLqJJOd+a8voWtPzscxpLHPtSuhWPJu5NRutpaWcGRpkV2UlPrsdVZZX1BjVHZnif1w+Qld0aUonshA4ZBVVkpEliaxpEM4U7jdYCQ6U13FyrBf9rgd7XM9wfmJwHtG4hSL7jkUXA2sB0zCJx9NMT0Tp7Rzj5JttnD/RyeRYZMH3qaqM1++kuNzH9r0N3PdoK/Xry1HVHJPef7iFzrZhXn/hImff7mBsODSnlyOVzHD8jRs4nDY+/euP4vUvvTTunYRpmehmlqyVJWtm0a0supnFxMC0LCxMTMucleWThJSrzhcSspBRhIoqqaiShipUlHv4UFnyOWFxfWqcgWiY/3DoEdzarUZYi/VFQcpcbgTw1xfPMBALs700F+13axofXt9KiTOnHNEdnubVvi4+v2M/PpuN/3LiDW5OT7C99N6Va9yNoFZEg3vd3IZdIXApTupctbiU3HWlSgotng18uPpZTk2dpT3WSZEW4HDJA4T1CGOpcTRJQxEK5fYyirQiZCFjk2xUO6pwq24EArfiot5VhyoUirUi9gX3cqh4Py+Pvsb1SBtO2cH7K5/i/uLbZX8CQaWjgp+p/WlOTZ2hLdrOcGoEu2yn0l5Bo3vdnMWAT/VR46zGqSz9nrAsi4Se5rm+03x/8AI2SWGzv4bHKjZT7yombepcDw/y5ugNXh25smg5aZ2rmHpXMS7ZRouvko3eSiocfiQhGE2FeXXkGicnOplIR/mzth+xPVCHW52bzlJkCZft3lzvAefyUmcWJli5e1SVi3Hb9xFOvsJY5K/R1Frctt0gFJzadhKZy0STR7GrzTjU9UjzpCJXD8uyyKZ1YqE4oYkosiJRv7ESSRJoS/jOTMukv0DdP+SIRrFt7bymCkEVCuWOQEGiEcnGCWXSlNrshDK5Mq+gbR3yEvvQHi3fxssjF4nlyWBFs0nenrjBA6WbVmRCmDV1zk91MZnJvxBShMxjFdtW1eMynYkztYCRomlZdMfHmC6geLVaDCanCma9IFe2GdNT9A6O8a0vnsCyLD71uYdxeVZOrn6C5UM3TEKRBH1DU/zlPx7lSnth8QAAWZYoC3qoLLvd52vp13OLetvtKhgkL2b2HLJczvBgzrCvoipAIODi+pUB+vsmaFxfQWNzGZJkkpr6DHca/a0eBpaxdvLmKyYaLlVlU2kJ/3DhAmndYF9NNQGHA/WuOtVKj5caX2Hd7Ggmxd/eOMnV6ZEFzaE0SabU4SZodxK0u6hzByiyOXGqGj2RKb7Yfnalp5IX+0pzzXh3S90mslkuTQ5hWlZeUiWQyVoREpmBGXWU23AoFQXdsZeCW9mL0GSMkcFprl3o49SbbbRfG5xjaZ9nULhcNopKPNQ1lrH7UDO7719PUbE7b11x44YK1jWX8+SHd/ODb57m7deuMzIwfTtNG09z+uhNGjeW874P73lPRFBynhBpkkaCpJEgmo0wnZlgOjtFODNFKDtNJDtNykiSMbNkrQy6mUG3dGShoEkaqqShCQ2n4savFRFQi/BrQYq0Yoq0YhyyE4fswi475rhHv1MwzJzcs1PVsM9kEi0goWd5s6+ba5PjeG122qcn2F1eOUvaaz0+XHdEqKdTSaaSCb7VfhW7rNDgK1pTGc2l4LHyh3ms/OE5r8lCpsW7kUZ7E2PjEQyXiSxLOBUne4O72RvcveAxP1rzodm/XYqTX2n8hdl/b/K2sMnbAsATFbd7az6z7pMLHlMgCNqKeLLicZ6seHzBffcFd7NvkTHeDQuLgcQ0z/Wdzklb+ir5163vp8FzWzL3YEkzWwO1/Hnby1wLL6zAt85dwi82PUSJ3UuR5prXh/FYxRZ+6+yXOTnRwVAyxJXwAPuLm+bsoykKRcvorVsqhIBK/+KLaMvKkjWm0M1JsvoQQmgzZVHg1Fpxaq3z3lPq+fS81+4FxgemaDvfQ/flfnpvDKHZVbYcWs/7PnU/xVX51ZjuhGlZjKcLB4PskopfW52U5FKgSDIlNi/XC2yP6xk6Y5cRJLHLHizLYjLTQxP3U+FYXEJ4i7+OGmcxNyID84KHaTPLtcgAw8lpalxLkwS+E33xCTpjI6TyKFsBNLjL2LhKxa6YniSqFxYueG30Eq+NXiq4/Z1AxtBp2lTJv/1/PvqujgNyC+7pcGLFQdZYvHDvlmVBKJpkbPLdb1K3LAvDtNB1g0Qqw+R0grfPd/HaiTbCC4jr3ELA66S5vhTtjtInyxKAPMeo75ZFgIXF20faiIaTNG0o5+kP7uL7z5+leWMF3/76KX79Xz6J3SGwjD5yq4G1FJBYO+KyYqIRSqV4sb0d07J4rbuL17rzp24+tX07n9uTv17esizeHO7i7ZFeEnr+5kNJCBo8QTYXlfFQZRO7S2ood3rmLPJfG2xfc6KxKVCGV7MxnppbfpQ2dTojk4QzKQK2+TWmKX2M4cSrhNJXMK3snNKNet/HKXbsWfZYTNMiFk0yPhymv3ucM8fauXCyk4nRhbMXiiLhK3JRVhlg45Zq9j6wgfWbq3G6Fi9fkCRBVV0xn/71x2jZVstX/uoNutpus/WJsTCnj97kwOFNBIrvrcxaIZiWScpIEsmGmMqMM5waZCjZx1Cyn7H0CBlzaY2nupVFN7JgzESwMqP0Jm6rwggkvKqXKkcd1Y46Kh21lNrL8alFuBQ38jtkxqZKMkGHE900OD0ygFNRKXI4EQhG4jEq3V52lFXQHZ6aE827+4Fb5/WzuaSMpxrW41FtGDMZkfcKYvE0J8928/QTW+fUG98rWJZF1soymOwlZSxNFWkh2CQ75fZKHPLi/RtZ0+D4RDsxPYVfdfJoxZY5JANy2vqbfdU8VNbCzchwQZ8fyBGjFl9h0Qm7rPJs9U5OTXRgWCa98Yl5RMNj06gvXvsegaDLSX1w8eOaVopk5jLR9ElkyYnbdhB5FWpsa4lzb1zj5IuXaNhSzUd+4wnWtVZjdy69HMzEWjAKrkkKLuV21scwo2T0IcBEUyqRpbUxu5NnyvMKIWVkGEsNsquolS3+pwG4MP1tEnpoScdXJZlHy7fRHh3Ke72GMnGOT7Qtm2hYlsX56S5GkoXH8Vj5NjShrlj9zbQsEkamIJF5r0C3jHekemIpCEeTfOV7p0kvUK69EBZSaUpndF4+doNLN945m4NC0A2TVCpLNJFmYHiakYkIhrm030AAVWU+trfMnZ+FXIqZPY+VOQdKA2BhZa8DMkLy4vHovO+Z7Rw/0kYknEBWJA4/tpmOmyMzv/+t61xB0vYjxOqV0CzSmNkrYE6t+liwqtIpjWeW0AS+kBP4dCbF93uvM5LMv2C2yQp7Smr4zIY9PFDRMGsE+E7Aoais95UwnpqfPo3rGXqjUwRs8x/o0+nLTKXOUeI4gFOp5s5uRLdav+TPv6UcNTESZnhgirbLA5w51s7NqwNkMws3VDqcGiXlPmrWlbBl9zp2HWyioqYIRVn+gljTFPY9sAFFlfmL//xdxmfIjWlYDPVP0XZ1gP0PrrzpbiXQzSyh7DTj6VEGEz20x67TG+8ibtybiIeFSTgbIpwNcS1yEVVolDuq2ODZzDpXE6X2CgJqEJt8bzuqhRBsLComlEryVn8PkhBsLSnnUFUdzYFiLowNc3J4gFqvnzqfHwGs8wcodbrmEI+gw8mHmjdxZLAX3TARQrApWLK2wZAZTIfijI1HyWQN3C4b1ZUB0hmdoeFpTDOXoXM4NBrXlWKYJkPDIWKxFOsby2YL65OpDMMjYeKJDDZNobTEg6YqhMIJXC4bPq+D6VCcZCpLwO/EsUhD7p24RTKuhs/z3aGvMZEuXD+/FNglB62+7Txe/ix22bnoYke3TC5O9wHgUm3sLspf4+9W7dS6ggQ0F+ML1I4vBTXOGT19CxL6/MWUU9OoDwZwaiqJzNqpT+1vqEWVl+DHI3nwOR/F51y9qttaY9fDrex9fCuBUu+KIua3Sl4KQZFkHHcoGenGFJHki2SNMQKun8JlW17GrBBkIc0hNHcjY+rolp2MEWc81QlYZM0kirT0e+vB0k18sfsNQnnKs6LZJGemOnh/1e5lNVXH9TRXwv1MFSBrXsXBgeL1KyrJuoWsqZMyMu+K6uVy8G76H92NWDzN99+4Qjyx9uQsqxscP9+9+I7vcbicNjY1VdBQM5dcS+pWLP0mRvI5hFwFmFh6D0LdhpBrCQQzjI6EyWYN2q4NkUnrTIznUQ8VLuz+/46Q5waqVgLTnCId+k3M9FurPhasgmgEHA5+btv2VX346bE+2sPjeb0yZCHxcGUTv7PjYapdvnel7nCdL8ix0Z55r6cNncF4hO15+jR0K4FTqaHa8+yS61nvRjScZGRwir7OcS6c7OT8ErIXkizh8+fMeRpbKtmxv5FN22vxBVafhlc1hU3banngfVt57gtHZ1+PhBL0d4+/I0TDwsIwdaYyE/Qne7gRuUxb9ArTmbWrI1wqslaG/kQ3/YluXLKbRvcGNvm2s87VTFArxbbK5uCF4LXZeXxdM4+va57z+qP1jTxa3zhv/2ca8/82u8qr2FV+b+WWM1mD4+c6GZm5dmPxFB98ZgfJZJa/+/IxNm2sIJPWGRoJ8y8+/ziKItHZNUZH9xg3O0b5rV97jNJiD13dE7x5rA2bTcU0TNbVF9PcWMbZC72Ul3k5sKeR85f6iMXSHNrftGSiYVkWuqVzNXSe7w5/lYl0YZOlpcAhO9ni28WjZU9Tbq+a039SCIZlMpDIXcM2SaXaWbj8xqvkGsSXQjTieprJdIxINkHylsytaWJYJsPJ0MwSxcq7WFFkiZoiH5uryjnV3b/oZy0FTlXl/Vs3Ir8HyixXg5IC5VF9N4cJlvtxeReJJlq5kpdCkBBzlMVsah1ex8NEU8dnXzPNBBl9AEUuRpGLSGXbkYQbMDGtBJpSiyRspLIdCDQ0pXretXjLHLMQDMvEo1QiCZX26BHAwqUU4VeXPmdUOYNsD6zjjbH5Zpe6ZdAXn+BmdJhtgfolH/NmdIi++HhBs8PdwSZK7f5VmegZlrliw9Cf4CfIB0kSrKsJ8tDeZtS7Ar5CqUF2fBQz8zaW3g4IJPujSNpBhFxM0/oYF870UF7hJxZN0ri+nGuXBygt8yLdmfEXMkhr098lsCNWoRV1N+6ZtIVpWYRSSUwLivPU+2ZNgxOjvYwl80cmdhZX8S+2PfiukQyAdZ78D5Uc0QjN/tu0shhmLkqlCAcWBuH0NVxqDRIqt7IasmQv2KCo6wZjw2EGeydovzbIhZNdXL/Qt3DvBaDZFEor/NQ1lrJxaw3b9zVQ11i6pMbE5cDptrHzQBPf+fJx9JkGv0QszeQiBGgtYFgGocwUXfE2roUv0ha9QlS/95+7FMSNGJfCZ+mI3aDRvYFW3w6a3BsJaiXviQbydxOTk1EuXI6zuaWKygo/P3z5Mn39UwT8TpLJDM8+tQO3y8a//c/PMzoeoaG+hMMPbGTjhgq++NXcwioeT9PVO05JsYePPLubC5f7uHi5n6aGUooCLqamE0yHEoRCCSrK/QT8SyfWhmVwOXSW7w59jcnM6kiGU3az3b+Hw6VPUmZfulGcZVlEs7m5Q5MUnEphkqTJypxodz4kjQwd0VEuT/dzPTxEf2KS6Ux8xpsjpz62UOnVLVT4PDy0fh1XBkdWndUQwAPr17GrrmpNXZTfS3j1q8d58EN7aNhcs8ieCxtNCiEW/Y50Y4JQ4nu4HQ/glosIJ36ITWlAlgNEki9T4vkVVKWMiejf43U8jJbPv0lQ0EcFwMTEo1bS4ttFODOCEAKfWoFNXl4J2/sqd/DW2NW8MrrTmRgnJ26yxV+3pOvCsEwuhnoYTuaXnZWFxOGyzdjl1c27xhLvkZ/gJ1gqgn4Xh/etZ1NTfjl2oVQhKz+dd9uO3evYtqMOIQmEEGQzOteuDHDwgQ1omkJOhlYghBMh1qaqQggbsHbrl3tGNLKGwdv9/RimybMbW+Ztn0jG6QhPEM+TuncrGr+yaT+17ndXPrXeHZhpyZmLtGEwnLwdVYxn+xmO/wiAjBEmkrlJNNOJT9uALN3+4cudh/Ha5pebtV8bpPPGCFfP93L5TDejQ6EFay+FELi9dmoaSmhYX8HmnXW0bq+juHxl6fylQFFkgiUefEWuWWUrPWuQTNwbB2G4ZWCWoit2k4uh01wKnyX2HiEYdyNhxLkcPkdX7CYbvVvYEdhHo3sjLtn9f6wKSCZrkExl6R+cIpnK0NxYRjDoBsuitMQzq3TmdGgFCbVpWZimiU3LTVWKLCFJAl03aagr5lrbMCfOdOF226muDCxZmMAwdS6Fz6wJyXArHnb49/Fg6ROU2iqW/XubloWAvIand0Ji4UVo2shydKyNr/ee4kqoH6eiUe0M0ugpwynbsMkKqiQTzab44dDFBT/La7dxqKmOs32DvHGja0GhjsWwraaCXzi0C7uq/FjeC9NjEQzdoLgywGjfBBND8xe6XVf62fe+bUs4mlhQDcmCFZTsWICFQ20lHP8OWWMQiwxZYxSntp28NZFWrsetECQkkvokaSOOX6tkPN3FaOomJbZGHMrS+0R2BhoodwQYSs6v9Y7pKS6H+5jOxAjaPHnePReT6ShtkUHC2UTe7dXOIK2+2kW9ZpaCxS5Tv+qaMdF8965nh/zufv5PsDR4XDYe2reexw5tXHHP4Z2ZC1VT2LazfvbfliWhOD62JiVTsxAyCBuwNv2n94xopHSda2NjBW+DjsgEk+n8E8ae0lp2FFcv+uC91yh35p/8dNMklL7dNGpaGdLG7YnUo+VKWHQrgW7cPkfDyr8o//aXjvP2a9cXXbTLskRppZ91zWWsb61i8656GjdU4FhCc/daQFFlfAHnLNEwzVwfyb2AaZmMp0e4HD7Huenj9Cd67snnrDXiRoyz08cZTg6wI7CPrf7dlNrK/4/MbpQEPWza4MbjduD3OTBNi6oKPyOjkSVHtp0OjcpyPxcu93Pk7ZuMjkfwuO2UFntwODW6eye4cLmf/XsbKCtbWtpYnyEZ3x/6xqpJhkfxsTOwn/tLHqPUXr7sB78QAqeiMZnJ1cVnTb1gSYtuGWTNwmU3bZFhvtJznMvT/dS4gjxesYXdwXXUOIvwaU7skooQgqvhQV5chGgIIagPBvjZvduIJtNc6B8ms0wTP0WW2FlTyS/dv4eNFSXvaI/d3VjNk2SkZ5xUIk1xZYCzr1/l4pE2PHdlzoa6xjCWYkYocr2H0QI/o2mZGAvImuaOIWOhg2VgWSaGGcGydIRQcNsfIJ4+jWWZeOz3I0n5BQksrAWvJVlITGW6GE76casl9MbPkDHiyEKhSlnYsO9OuBQbD5W28pXeI/PPFYuR1DSXQj0cLlvcU+NauJ/++ETB3oQHSjbhUR2rJrPKEowx9xevZ6u/Hm0N/U7SZpqx9DiaUCmzz+1tncxMMZgcRJM06py1OGQHje6yd/WeuhN2m0JzXSm9g5NMR1YvqPFPBR6XjUcObuAjT2wnuIxs+3IghIzN/4drflxZ2wdCQUjLV4a7G0u+S0zLYiAcRpIE1V4faV2nP1zYMCeUSjEej1Pqyv/l9sVCRAp4XzxRswGnor7r0S+3mn8Bb2KS1G9P0j7bRrbY/u/cNksHTKQ8/RmWZWFZ1rzz6ukYXZBk2J0a9U2lNG6spGVrDRu31lBZW5RXmvZe405mLcliNiq9VrCwMC2TrthN3p54ncvhs6TNtfVIeScwlOpnemySoWQ/B4IP0eBef8+axROZm2SMcZzaelSpaNZd9N2G06lx34FarrUNMzkVwwIMwyTgd7J31zoURUIIwf7dDQTu8GPJCSEYyJKEzabS3FhGKq0zMRHF53WwcX053plaeEWR8XodFBe550gGFoJu6lwIneKHw99iPD2yqvPzqQF2Bw5ysORhSmxlK4ouSgjK7T76E1OkDZ2xVISqAn0acT1DOFv4IX5yopPeWG4h9oHqHXy4dm9eZaFYdmn3k6bI7Kyt4nMP7uP581c53TPAaCS2aAuqAKoCPvbWV/Phna1sqS5Hld8b1+RKUFThR59R0wmPR/EHPWx7YG7v00D78JKilQKBU7FDgT4b3TRJGblSNcsyyOj9xNKnSWfbABNZ8qNIRUjCQTx9Ft2cJmOM4FBzkrNu+0GGQ3+AboxREfh3iALlD6ZlklxAVUmRZGRhkjQi6FaGYlsDcX2KtLE83wiB4OHyLTzXf4K0Ob8EbzId5exUJ/eVtCzYM5I2slwN9zOSCuXd7pJt7C/esCYmeookoy4yh27wVPJ4xbYFG+qXi1AmxJnps7gVN/uDu+ZsG06OcGIqSdbMcH/Jesrsaxi9XgMEvE5+/qf20T0wSf/wNMPjEYYnIoxOREim1k5Q4scFkhCUl3p59MBGnnl4M9Vl/nd7SMuG4vggsv1JxBr0fSyZaGQNg78+ewaPZuP/d//9TCYS/Mnx4wX3Txs6nVNTPNncnHf7WDKat2zKLiu0FpW947r++VCoXtqwrNmHwd2IZjpJG5N4tWZAoMpeZKGRyA4xmTpN1owStO/BozUsaihVXOaleVMV61ur2Li1mqaWSjy+d88gz7Is9DtKXBRFxu5YWcN7IRimzsXQGY5OvEJH7MaaHvudRtJIcCF0inA2xMHiw2zx7cShLK5EtFyE0ycYjz2PW9uG27YZl9aKXalHllYvc7da1FQVUZOngfaRh25r8T/2cCumadI/OMX1tmFi8TQejx2PO0f0/T4n9x+YO4+Ewgk6Osfo6BqjtqqI8rLFyzl0U+f89AleGv3OqkmGXy1ib/A+DgQPU2xb+UNfkSQ2+as5PdVN3EhzMdSfl2hkDJ3RVJiJVOFG8LF0hISRRhYym301eAosgi6H+pesV2NXFfbUV1Pu87Cjq4/LAyP0TIUYi8SIpNKksllMC2yKjNduo8LnYV1JETtrqzjUWEuJx/WeibquFGU1t6Wfm7bV4XTbab3remw71419KbLhCIo0N33x/HKeWVMnpt8OOllkkIUbu7YJWbiwrAyS5MJtv5909iamFcfreAS72oIQGrLkxut4GMOMoMmFBQkMyySyAGm1yyoBzU8kO4JbKaHUvp6EPr0inaMGVxmbfNWcn56vHJQ0MrRHhxlITLHOXfg+GkpO0RkdIWHkD8ht9tdS7QyuSm3qFmQhY5c1FCEXbDqP6ek5DeOhTJjueHeOwJlJirViNnjWo1s6F0KX8Ks+pjPTqJLKVt8W0maarng34WwEh2yn2lGNJqnopk5/YgAAm2SjzlVHkRagwlFOs7uJ3kTvnHEMJ4cZSA6SMbMEND8bPOu5GW0nY2aJZMMU24qZzoRo8W4goK29ZPUtaJrC3m317NlaRyqtMzAyTf9IiIHhaQZHQwyNhRkcCzMxFUO/Wy3pnxAEuefV9o3VHNrVwH27GvG6760a5b2CkNwI1kZWfFl5P6eq4pwx/opmMhzp7eFATS1e+/wJVtIFygIPmFA6RSqP+kax3UWRzfmeaBp0KGreHg3LskgXUA6JZG7QH/0OXm1jroFO20SJ8wDjybcJpa9gWQZZI4IqeXCqlfPeLyvSbGP3xi3VrG+tpmZdMfIKpGnXGoZhkojdjoba7CqeNXQGz5hpjk+8wVvjLzOWXthh88cFFhZd8TYSRoyoHmZv0X14lLUVOFCEF90MMxb7OlPJl3Fpm3Brm3FpW3HbWlGl4Hsmy7EQLCtXjud22Th8/0aci/gTmJZFfW2Q9c3luBbZVzeznJ0+wSsj32UsPbwqaciAFmRf8EH2Fz1A0Fay4uNAzqF5f3EjX+s9QTSb4rWRq+wuqqfUfodzrGXRG5/g9GQXiQWi0JqkIAkJwzIIZ5PoloEq5k7xN8JDvDw8XwVoISiyxLriANUBLw9taKBvKsRoOEYklSKV1TEtC01R8DlsVPi8NBQHCLqd8wjG37Yf5ZnqrZTaPe96tnqlaN3XhMiTuTj41HaKKxdfyElCUGorTIpTZpbwjBysEDJ2dT12df28/Vy2HbhsO/Iew+d8ctFx6JbJ5ALqZU7ZRr17I1VOsMteAlo1hpXBtkw/EyFy6laPV2zPSzQARlMhzk93LUg0rocH6EvkJ2cCeKC0FY+yNoEVSQjcqh2XYivYDxLKxsjcUXoWyoZ4a/wIuwI7MTF5a/wIVY5KZKFwfPIEm7wtuBV3rmTNytKX6Odq5BqV9gpGU2OEMmE2eNeTNjMkjSSGZdIe6yBr6Wz3b0XLIyucNJKcnjqLW3WjCpWTk6cIakVcCV/FqTgZSY4wnp7AsAwUSWFv0dpIIy8EIQQOu0pzfSnN9aWYpkkokmRwNMzAaIjB0RCDIyEGRkMMjYYJRRO8x1WElwS300ZtRYCG2mI2NVawraWS+qrgj+08t9ZYMtFQZZlf2rV7DgEIOp18dtcuKj3zexnCqRRfvFi4DjihZ/NKyBXZHAs2y72TUFYwDtPKYFpZ7EoJAplQ5io2uYhYphu/bTMB+3a6wv9AyhibQzS8fifNrVW0bK2heVMlza1VBILvnUZia6Yp1zQsXJ4cQw+Weimt8K/J8TNmhqPjr/Lq2AtEsqE1OeZ7CSOpQd4Ye5GMkea+kkfxKGvXuO+176VW/EvimavEMpeIps8RSZ3ErtThtG3Co23BrW3HqTUhCRurq1i/N5AkidrqImqrF3dXhlzUaO+u/J4TdyNrZjk7fZxXR7/PaHpkVSSjSCvhQPAh9gXvJ6Ct3uRQEoL13gruL9nAyyNXODvZzd91vsV9pRsotXkxLJPB5DRvjbVxNTSAW7HNiXjfiXXuEvyqk5FUmB8OXUCVZBrcJaiSQiSb4GZ0hJeHrxDNplYUyFFlmQqfhwrf4o27+fD3HcfZV9xAqX1l718N1mot4ywgX7thV8OS3i8LidoFTOoSepqJBZzD1wIWFhlTL1iGBOBR7FQ5amhw1yDNBCnKHfNFXZYCWUjsLmqi2ObNe25TmRiXQ708UbEDVx5PjaSeoT02XNBRvcJRRKuvBtsq1abuhFdx4lWdBYnGWCpM6q5SMCEktvm34lbdXApdYTQ9RqW9ElnIVDuq2OjNCcHE9BgjqRECaoD7Sg7RFevicvgqk+lJFKFQ46zhYHA/RyeOEcpMkzSSeYnGRHqS9lgHGzzrcSsupjMhxtMTWJZFtaMKm2TDtExK7SUMJd+dwJ0kSRT5XRT5XWxeX0FWNxifijE0FmZ4LEc+uvsnaeseZWJ6vt8KgCwJqsr9uJdhjHmvIIRAliU0Rcbp0PC47BQHXJQUuaku91NbWURZ0LuomMD/aVgy0ZCEoOSOfgu7orCtvJymoiICjvmTr8dmo8jhoNAUr1tGXnUNt2pDeo8shLKmkXf0Qgi0AilaSdgIOvawzvcJBIKu8BdJGeOY6MjCgUdtAMvCtG5HJh96citur4PGDRXUNpZgs8/tT8lkdc5dH6BvZJqWhnK2NFUsOvZwLIkQAq9r8bTdN1+5wBMHNuJZZN9giZdPff7RWUUsp9tOU8viY1kMWTPD0fFXeH3sh/8kScYthLPTHJt4FQQ8UPIYLnltIrs2pRKbUoHffpCk3k0i0zZDOC4wGf8e4eQRHGozLq0Fj20HHtsOVKl4ST4PP+7ImlnOTL/Na6M/YCw1jMXK0/ZBrZT7ih9md9Eh/NrSCNFiEELgUex8vP4AU5kY56Z6+O7AeS6HBijSXBiWyXg6StrIsrOonlAmwdsT7XmPtTfYyNnJbkJjNzg23s5oKkK53YciycT1FL3xSSwsPtv0IH/X+SaT6eXV2/8Eq4csJBrc+SUuARJGmrFUeEFRgNXCtHLu5As5lPs0FzDOcDJClTPX/L3Skk8hBEHNzYHger43dGbe9qxp0BsfpzM2wlZ/3bztA8lJeuPjczIId2JvMEdi1rIKosjmJmjz0J+YyLu9PzFB4i7Cb1hGLohhgYGBNKP2JQkJn3pnFksgCWlW9cu0cn2JkpAwMbFuvT4rCpz/vG7JEztkB27FzX0lBym1l3I9cgNNypV+CaEgkTvuWqK3fYSjP7iEJEu8/1OHcC/mH8PMuklVqCrzU1XmxzQtEqkMXf0TfPPF87zydlve99k0hacf3ExLU2Hz53cKQghkSUKRJew2FZdTw+9xYLe9+z3Faw3TGAcrhpDLV+02vuKZrMTl4hd27sRjy88y7YrC3upqjDxmfJC7SYQQ82Rc30tunNMFVLHkGaWYfFAlN7oZYyJ5EoFMNNNNhA4S2UG8WjOGlZoXUX38gztxe+wFy6MkIbDbVIbGw9g0dUlE41rnCIois6e1dtF9Xz/Twf07GhckGkIIfAEXj39w56LHWw4MS+fI+Cu8MfYioeza2N3fDQkJp+LCo/hwK14csgNFUlGEikBgWDq6pZMxM8T0KDE9TFSPkDXX3uU0ooc5Nv4qAA+VvA+H7FyjCUqgyH488g7c2hb8xv0ks53EMzeIZS4QTV8glj5HKPkmTrUZt20rHtseXNomhFD+ScokZs0Mp6eO8cbYi4ylhlb1sC22lfJA8ePsKjqAV/Wv3SDJNZ9u8lXxK82P8MrwFc5OddMdG6fdGsGrOmj2lHN/6Qa2B+p4efhyQaJR7Qzws+sOUmzzcHqyi974BG3hYTRZptjmocVXySNlrdxXuoGTEx0cGcv/YL+X6IyO8erwdVKmToO7mCerWnGr9pyRYCLMG6M3GUmGKdJc7C1exyZ/BZIQnBjvYjwV4+HyDbhUG4Pxac5M9rHJX45D1rgaGsKt2rgZGWM0GWFzoJLD5RvyRsjfTchCYp2rFKes5S2DMyyTiXSE8VSEygXMG1eDjKnTER0p2H+gSjIlNi+KiBPOTM4SjdVAlRQeLt/KD4fP5fWoGE2FuDTdk5dodESHC/a02CSVfcH1ePKIHqwGpTYfZQuUuA0nQ4ynIjS6y2f7QnQzy/GJE+gYuGX3HOWoO6d4u2SjylHFmamzvDj8EmkzQ1ALEtSC9Cb6GEgO8vLoK0xkptjoWY9dsnE9coNLoUtMZCYwLZPdgV0EVD+tvk2kzCTZTBbLstji24yY+d+9xGj/FD/6xilkReGxj+xZEtG4G5IkcDttbFhXRkNNMUK05S2jkmWJ5voSdm+ef238OCJpJLkavsrVyFVavC3sCex5T5IUI/ldjMxJNM9vI9TVmTKvmGg4VZUtZYUjM6oksbuysmDK2ibJyELCvGuyi2bTa86+V4qBeH5VLVXIFNnz9yZ4tQ0k9CFG4q9iYeFUK1GFG4dSTiRzk8jUTcBCvaOTfzH3bkWRaaoppr1v7mQbjiY51zZA3/A0boeNLc0VVJf5udE9yg+OXQMEHf0T7N5UQ1NN8aIX88R0jB+daOPxAxuIJzMcv9SDQJDKZKkq9fHI3g1E4ilOXO5hZCKC22Fj6/oKLAsmw3Eqir1c7xqlqbaESCyFw66yqaHwNQJwdvoER8ZfXnOS4VY8VNhrqHBUU2arwKv6scsO7LIDVdKQkZGFDEJgWiamZaBbOmkjRcpMkDASTKRHGU0NMZTsZ3SV0fA7EdHDHB1/Fafs4mDxYTSxtoshIRRsShU2pQqPbRdp/SGi6XNMJn9EJHWSRPYm4dRJHOrLOLVWip1P4rHtfk9OdivFnSRjdJUko8RWxkOl72OHfz8edW2cV++GJivsCNRR7SzicHkLoUwCwzJxyBpldh81riIcsoYkBPXuEupcxXjUuYEBSUhs9lVTYvNyf9lGptNxsqaOIsl4FDsVTj91zmIkIfjkukM8WNbCes/C9+da48hYBwdLGsmaBm+NtuNQVJ6p3spkOs5zfefImgZNnlJGUxF+OHgFScAmfyU3I2N0Rsc5WNqICxuTmTinJ3oIaA78mpOXhq5SZHPT4ivHpzrwKPb3JHkWQuDXXDR7KrgY6s27z0Q6Qmds5J4RjZSR4VKop+D2gOam1lWCR3Uxle5lPNWJXfYiENhkF+oKRCZkIdHoLqfZU8n1yMC87eFsgrboIKFMHL92+3mY0NN0xkYYK1A2tcFbSb2rdFGVqOUiaPNQ5QyiSUreTErazHIl3Mdmf+3seD2qlzJ7GUIINns34ZQdGJbB4ZIH52Q0FEmhylGJKBLE9BiapFFqL8Etu9nu30YkG8GwDOpcdVTYy1ElFZ/qY7OvlayVxS7ZccgO7LKdPYHdjKZHMUwDRK6RfXdRjoT4NR8g0CTtnjaCrxaaKlPkd+F22ojG750v13sFGTNDR6yDN8bfQJVUdgd2vyfnKiN7HiP9MpbrM6s+1j3z0RBC4NIKKxJ5NTs2WSZ7V5/GZCqBYb43shptobG8REmTZcoc+euMHUo5Fa7H8Nk2gWXiUCpRJCeGlSGcvkos241X24BTrV7V2LK6QcfABDd7xtjZUkPv8BRnr/UT8DopCbjxuhyoisSGulL8noUfDLIkGJmMcP76AHUVRdg1ld7haV45eZPPfeQQ4WiC45d6aG2soH8kxM3eMfZtrmd0MsLJy70EfS5CsSSGYXHySi+KIhNPZijyLtwo3h69xptjLzGVKayNvhzIyJTZK9ng3Uyds5FiWxle1Ydb8eSyF8tYSFuWScJIENXDhDPTDKX6aY9eoyt2k/gyJR7zIaqHeWPsRYJaCZt823OkZ41hWhmS2S5CqWPEMpdIZ/uwsHBprcjCSTxzjVjmCrH0BUrdH6bM83FEPnOvHzNkzQynJ4/yxvhLqyYZpbZyHi57mu3+PbiUe9tbIEsS5Q4f5Y7CkdQN3go2eAtnNIUQix4DYEugli2BxbOdhZBOZGg714XT46CupQpVW9qjZIO3jKerN5M1TYYSIU5P9PBk5Wb6YpOcm+zj/976FI3uYnpik3yz9xzHxjrZ5J8vmnE3pjNJ9pU08HjlJhyyim6aaPI9e7ytCjZJYU+wuSDRGE2FuRbu52DJxjXvV7xVNnV+uqvgPuV2P43ucnRrgtFUG1OZXlTJDgga3Acpdyw/uilmGqwfLG3NSzQMy2QgMUlHdJjdwabZ1weTk/TExgp6fhwo3kiRbe17GW2ySp2rhDK7v2D51PGJNh4r34ZPzT3nNKHR7GnCpdwmSopQZnsz7oRdttPgnt9jVuWopMox/3qvdFRQ6Zh/3wdtRQRtcwlpvSsX+fdxew4oeg8TDSEEAa+DoN/1fwTR+LGAZYCVhjUKrq5qJrYsi0Q2S284RDiVyuseW+31Uu+ff5EX2104ZY1Ydm76eDIdZzQZpdTpftebwk+O9eV93S6r1Hvy37hCyDiUMhzK/HpCTfJSZN+OLDmR8/hsLAfJdJaO/gkutQ8hhGAqksDttJHO6lSV+qko9uKwq+xsWZzQGIbJ1146T2mRmw9vrsXl0BAIAh4HOzdWMxmOc/xSD2NTUQbHQpQVedjTWkt73xhvnesklsygyBJjU1EkSTAZjmPXVHyewqVYY6kRXh19gaFk36ozWAJBqb2cbf69bPRsptRWgVv1IIuVX95CSLgUNy7FTZmtknpXExs9WxhI9nIxdIq2yFVS5uqMiSYz4/xg+FsEtGKqHLVr9rDMGiGimXOEEm8Sz14lle3DtDJ4bNsp93wSl9aKJOykjUFCyTcYj3+XocjfoMllFDkfXZMxvFvImhlOTR7lzTUhGRU8Xv4Btvh24VTujdnSjytGesf50ReP0LCllop1pUsmGjuKamZMzgxK7R76E1NkLYOxVBRJCJo8JchCotTuIWhzMZAIYRRwsL4zOOGUNda5i3ErNoQQayJzeq+gySr7gs38Y88R4nnkWuN6irbIEL3xcRrca1uXnjGznJhoL6g4pQiZWlcJDe4yJOFB888NUnnUlUs52ySFvcFm/rH3SN4m65FkiGuR/jlEoys2Sm+Bsqlim4ct/to19bK4E+u9lTS6ywoSje74GOemuyh3+CmxlfBI2UPYpPdWqd6PCwJeJ8UBNz2D96Z8+idYHiwrDRQ29FwuVrwS002Da+Pj/O3Zc/SFQ6R1PW9M+qObN/OZHfMX5ZUuL25NY+wu76isaXJ5aoSN/lJk5d0jGhOpOOfG50deAJyKSrMvv3LIVOo8w7FX8m6rcj+J3755TcanyBJuh0Z50MOBbesAC5ddy2URRC5yZZhmXoPAebDgkb3NnL7Wz9XOYfZsqkWInKulJAmEAGXGcMuuKUxHcg+JTNYgndWpKPEyMBpiIhSlqbaE6XAC/0yEIh8yRpo3x16kM3YD3VrdxWyXHbR6t7MveD9Vjnrcime2SW6tIITAJtspd1RRbCulxlFPs/sKxyffYDCZn4wuFYPJXr479DU+Xf+rOOX8Lr5LgWWZpPUBQqkjhFNvk8i2k9aHUSQ3fsf9BBwP4VDXY1eqkUSuL8RlteDSWtGUavpDf8Jo7Bs/1kQjM5PJWD3JEJTaynmy4kO0+rbjkN8975r3KgbaR2i/0ENJTRCrQB9ePtjvUAbK9ejlvCVsskrWNNBNA1mW0C0T3TJRJRlpJs8msGZ7+hJ6dk5JiyrJyEL8WJT/SQgqHEXsCjbx1tjVedst4GZ0iOMTbdQ6i9eMNFmWxWQ6yveHThfMH5fYvGzx1eJW7AjhQBYqcX0Kh+zDLntYjWKdEIIyu4+dgQZeH5svsRzJJuiMjc6WTyX1DN2xMUYLqGNt96+jwh64ZwHJSkcRLd4azk11EdHnB5Wyps53B06x1V9Hs6eCOtc/jR6CdwMBX45o/AQrgYVlGVjmFJJcDGtQlWCRxHovEI2pZJJ/uHCBK2OjPNLQQJXHm9eYqbU0fwSk0RskoDmB+Qz2xf4bvL9uE3Zl7eTqlosXeq8znZ4/uchCUOr0UO/JXz8rCRuqfCtlaWGYScKZG2hyALGCCLtlWYSiSb7+owtc7x7JuSlj8eCuJlrWlTM4FubVUzcRwKbGcmorihBARbGXty918+dfO8Kj+9bTsm6BWmxJ0NpYQU15gK+/fAGv81aEaO5DxWFT2VBfSnv/BH/y5TcQApprS9jcWMHASIhYPM3h3c388Nh1MlmDoC8/0bgYPsPVyEVSq3T8DqjFHCx+iF2BAxRpxcj3SKXlFgQCVdIos1fiUwOU2itm3MvPYayQMFlY3Ixe5ej4Kzxe/uyKjhHPtDER/x7R9BlSeh9ZcxqHUkeF55P47Aewq+vQ5FIEc8vHhJCxK9WUuT/GcPivSWSvr+jz3wvImBlOTx3ljfEXGUsNr5hkCASltgqeqfxpWrxb75mb+48zTMNkoH2Y8f7JFbx7/kJVkWSqnX7cqp3XR9p4sGw9ndFx+uJT7A3W50ixaiOazTCQmMYmK1yaHmAwkb+H7r0OIQQe1cFTlTs5OXEzr2P2dCbGsfEbbPLVsCOwNBnnxZA2s3yr/wS98fwReglBo6ecvcFmhBBMpnvojB0jkh2h0X0Iw8ziVIqodLau6PMFApdi56GyzbwxdmUe2TGxGEpM0RUbZWdRA8OpKXrio2TzNK3LQmJvsJki271bnGqSwu5gI6enOjgz1ZF3n+74GF/peYvPr3+aYtu75w8z1DvBpROddF4dZHw4RDat43DbqKgNsuO+9Ww70JTXud6yLKbGIpw/1s71c71MjoQxTROnx05xhZ+mTVW07l5HsMyLlOf9+WDoBideucb3v/w2voCLD332AdZvW7hM0+91ElykV/UnyA/LMslEfh9Tv4JsewTN/bnZbWa2nUz0D1dw0Aymvjy/pYWw4pVZLJ3h2tg4H2xp4Wc2b8GhqnljHaqcPxpT6w5Q4fSiCGmeCsX5iUHOTQzyQEXDgqZ/9wqjyShf6civjuFUNHYWVxUkQR61AYfndrrbwiChDzEce4WMEVrReFwOG08c3MhDu5tymQanDadDw2HX+MBDm4klMgjuzEAI9m2uo6mmGNOyKF0kUvDbn3iIIp+T0iIPP/vkLkr8ucj6z39gLwA+t4NPPL2bYn/O5fcjj24jkcqgyDIBrwOvy84j+9aTyuiUBtx89PHtKLKMPU85xXhqhJOTbzGdWcki5TZKbGUcLn2KHYF9uOR31m9ECIFDcdLsbsGj+HDITs5Mv71ilSrD0nlr/GU2+bZR41z+oiKSOsVo7MuYVha3tpkq5y/jse3EplShSL5FCa4q+ZGk1UUr301kzQxnpo7OqEutkmTYK/lg1cdZ79mE9g6VQViWRTKW4vzr17h09AbD3aOkExk0u0agzMe61mq2P7SJda01c94XGotw7WQ7V0+0M9Q5SjySRFFlghUBWg80s/+pHfiK5y5+0qkM//6n/zvldSX8+p98mhtnunjruVMMdoyQzeoEy/1suX8jB57eib/4dk9KMpbi2skOzr12haHOUTou9ZGIpnj5S0c49+qVOdnnHYdbeeazDxNYgls75FT1alxFfKRuJy8NXeU7/RdxyBo7g7U8UJ4zq9sWqKYzOs7/uP4aLkWjwuGj1L70ReZ77cpWhcxGbxWHSjby2ujledtNLK6H+/n+4GmCM83Zq4FuGrwyconvD52dlVW9GyV2H/uDGyiZMYsMZQaRhYZfrSZjJkgZUaRVBnM0SWG9p5I6Vyk98bF520dSITpiw+wsaqA3PkFPLH/ZVIO7jAZPGTbp3gYjG93l7Ak20RkbySsHbFgmR8av41Ls/FLTY/jVlWelF4NhmcT1FA5ZmyN9PNw7wZ//2+fo7xwjFk2CBXanRjKWRtFkzr7VxiMf2sWHf/GhecfsbR/lub95g4vHO0jE0iiKhGVBJp1FliU8fief/K0nuO/JbWhLIBqmaXHkh5f4h//3RZKJNJ/+7SepqC/sG3MLDptK0O/CblNIpRcO2llYfKn3SwwkBvh0/acpt5fPygW/Of4mxyeP41JcfLru0/g1PwDRbJSjE0fpjndzX/F9bPXfVlJL6AnaY+1ciVxhLDWGbul4FS+N7ka2+7cT1PIb770y+grnps/x/sr3s8GzgYHEACenTjKYHCRjZnArbhpcDewN7qVoGXLoGTPDkfEjXAhdwCE7eKL8Cepd9Qv0cVroqe+AOYVlxecQDcsKY6RfX/Jn33nMterPgFUQDcOyyJoGG4PFc/w1lgq7rLCjpIrT432MJufewClD539ePcamQClljnc2SqCbBn96+Si90em86WWvZudwZVPBB5cs2ZGluVFQTQ4wFHuJjDm97PHktKdl6ivzX6jlQS/k8Q3zuu143UuLxjbW3J4IGqpuH+yWQY6qyNSU+WdfryyZv4AouYPMVJX6522HnM7425Nv0JfoxiS/tOJSUGIr54nyZ9nq341DdhLJRjg9dY5z0xcotgV5qPQB1r0DaWxFUqlwVPNo2TPIQuHk5FtkrZWRjYge4oWh5/hsw2+iLvPhKQkVn/0+gs734dI2ocolyMK5LJ8Mm1KNTX73dcqXi1vqUq+N/ZDx1MiqScZHqj9Jo3vjsn+DlcI0LUZ7x/m7//hNrp/sIBqKk01lEZLAMi1kRab9fDmeIvccojE9Fub5v3iJ179+gng4ga4b2Jw29IyOqZuceeUyF4/c4Bf+409TUnV77jANk2snOui6MsCOw6184feeIzIVQ7WpJGMpDN3g4pHrtJ/r5pP/5qcIlObu9XQiQ9+NQdrP95CKp8kkM1iWhZ41yCQzc6KdesaYJ1sO8DcHP0mdKzcWVZJ5oqqV+8py9fgOWeVQSSNNnlJSRhZNkimyufDNyJbWuIr4VMN+pjMJQOBRbZiWhU/LGbz+duujBG0/PhHRnLeEhw9W7+NyqDevGV3KzPLW2DVUSeHjdfdTt0KyYVoWLw2f5286XiZSwIBOkxS2+ut4qGzzbCmSaenYJCfSTKDCwly186EQgoDm4lDJxrxEYzoTozc2TjSbpC8+zlAq/zNzd1ETZXb/PV8b2GSVh8u20BYZ4M2xa3n7hZJGhpeGLzCdifOLTY+yzlW6puW7U+ko56e7ODp+g6DNw4dq9lPpuH1PF5V6CVb4qWkqY9uBJkoq/MiKRDyS5OXnzvDKc2d47dvn2Hu4hZrG23N8Mp7m0olO3n7pMk2bq3n/pw5RURtEIEjE0/S2jzDcM0FFbRBFzb/Ivfvrf+O75/j7P/4hhm7wud/9IHsPt+BwLR6wkSRB0O8k4HUxPL54pjJpJOmOdzOYHKTUlvu+LSwuhC7QHmvHJbvoS/TNEo2EkeBG9AZTmSmUO0jaWGqM18df5+z0WaLZ6KwXihCCa5FrXAxd5OmKp2lyN815H8B4epyOWAfDyWHSZppvDnyTqcwUaSONhYUsZCYzk+wq2rXo+dxCxszw1vhbvDz6MoZl8FT5U5TZy2Y9WfJDIKvbMNLHkJV82UYDsCPkEmCpZZgGljkO1uqqTm5hxUTDJstUuD10h5a/eIbchHN/+Tq+33ttHtEAuDQ5zB9eeJ0/2PsUdll5R8iGYZn8z6tv88O+G2TyuJarkszmQDmbiwqXIWWN6BxCYVkm0WwnSX2EoNizonFZloVlWmTS+j3zGbE7NCTp3n7HXbE22iKXSRr5H3ZLgU8NcF/xI2z3750ta3HKLnYX7cgZJMZ7SBnLvznSRpofjrzMs5VPL+tak4VMsa2MB0seI2nEOT99csWL3Y7YdU5PHeVg8eFlvS/oepKA4zCK7EegreBekWku/iME716p4kqQMTOcmTrGq6MvMJ4eXbH8sEBQZq/kY7W/QL1z/gPlTkynkhwZ7sat2ni4unHe9puhCW5Mj7GntJoK120p3LbpcdZ5A3OUkCzLIhlN8pe/8xXOv3YVb9DNx377GbYcWo/L5yIVTzHQPkJ0Ok7TtrnE2RNwUdFQxs5HNtO6r5n61mrsLhtG1uDsq5d5/n/+iGPfOcPeJ7Zy8Jld2BxzxScik1H+9ne/zsY9jXzglx/BV+wlGUtx6qWLPPenL3Lmlcs0bqvj6V/IXYueIhcPf+wg+5/aga4bfOO/v8BL/3CEB35qD0986gGcdyjbOdx2PHnKIDb6bs+bAgjaXLPkIJcl1Kh353dbVyWZUoeXUkd+eeFa5d5Iwd5LyEJio7eKj9Ye4i87Xsq7iI3pKV4evsh4KsyHaw6wq6hxWQ7YU+koX+59i5eGzjO5gEFfvauEZ6v3UnSHtKxXLac9+iajqZzfSrm9hWrHtmWcYX64FTv7g+v5Zt/xeWVjhmUykprm4nQPPfH8alNuxc5Wfx0B7Z0hlhWOAE9X7mYwMUVbdCjvPgkjzdsTN+iKjfBYxXaertxF+QqJUNbUGUpOczXcx+VQH22RQcZTYaJ6kgPFG+YpddocGp/5l08iKxJOt32WFFimha/IzdUz3YQmonReG5pDNNLJDJOjYQzDpHlLNfse3oSiygghME2TxtZKsmkdu7Pw2kDR5Fmy8fJzp/nif3sJC/jn/8/H2LqvEZt96ddqwOci6HcuSjQEgipHFReliwwlh9jq24qCgmmZ9MR7KLOVEcqG6E30zmYu0maa0dQoPtVHqS1Xzh/OhDk6cZQ3x9/Er/p5f+X72ejZiCZpjKXHeGv8Ldpj7Tw/9Dwfr/k4dc66vL/n9eh1+kb7qLRX8v6K91NsKyZtphlODZPUkwTUpSl+3UkyTMvkmYpn2FO0B+eiXlsSmu/3wYyClP+zJHUTmvffI6SlZZktM0Qm8p8xs/MNNleCFRONYpeLD7a08JVLl/Da7DxYX0/Q6UQrUCqVD/WeIg6V19MdmSKUmdsPoVsmL/W3oZsm/3H34wTt93ZSiWbT/NnlozzffZlwJr+akE+z89ON27AtIJs4mniTtuk/v+MVCUVyU+F6GL9t05LGYhgml053c/V8D+1Xh5iaiJKIZzCN/E7la4E/+v9+kZLypV2EK4FhGpyfPsVYepiVhsXskoMd/r0cKH5oTu28Isn4JB8BzY+aXNkl3RXvpjvWs6L3SkKi1F7BAyWPE9OjtEVXVtuYNlO8Of4SO/z7cChLb0BWJB8scQLJByEEdqVm8R3fQ8iaGc5Ovc0ro99nIj26CnlkQZm9ip+r+2WqnQulp3PQLZPpdKog4a/z+Cl3unHcVVr55ZsX+I2tByl23L4+TcPk9MuXOPvKZTxFbn7zT3+e1gPrsTttuYyGZdGwpRZDN9Dsc4mCoio89OF9HHpmJzanDdWmIs28p6y+hK4r/Rz99hnaz/ew65Et84gGQHFlgH/2Xz+BN+hBliVM08TtdzLSM84b3zhB25muWaIhKzK+Yg++Yg/ZTBbXjHS1y++irLYYdwHhh3cDFhZpQyehp0kYaRJ6mql0NG+WBSBjGvQnJ+mMjeCUbTgVG867ylPuBYTI9Sw8XL6FgcQE3xk8nXe/hJHm9GQHHdERtgbqeLC0lR2BdQQ0d97IecbU6YyOcGz8Oq+PXWE4OU0yjzngLZTZ/Xyo5gBb/HMXUsW2Bmyyh4p060wGZh1udfEymMUgCYkKRxHbA/WcnJxvPjmejnB6qoO+AmpPW/x1VDuDay76UQiykNhV1MhP1ezji91vMpjMr4yUMXX6EhN8tfcIPxg8yyZfNdsD62hyl1PuCODXXGiSOnN9ZkkZGRJGhlA2znBimqHkFAOJSXoT44ynwiSNDCkjJ3pwa34rNMsVlc4n4EIW+IvdVNYGab8yQDQ0N8DncNsoqfBjGlYus/GjK+x5cCNOjx1JknA4bTicC2cj7M6cytsP/vEEX/mzl1FkiX/5336WDdtqlqxEN3sOPidFS5xHqhxVaJLGUGoIY6aHZyQ1QtJIciB4gGOTx+hL5IRaLMsiaSSZzk5T7awmoAWwsOhOdHNi6gRuxc1jZY9xIHgATcopbpbby6mwV/DV/q9yPXKds9NnKdKK8ObxUboUvsSewB4+Uv0RXIoLWchYWDS6GjEsY8HA1S1zxVvlUj8a/REA7698P7uLduOQHIuSVSEEQq4AuYJCRaJCciOpG5bs8G2ZUYS0dv1PS74S4pkMT/zDF24PBMgaBrFMhj88MsmfHH8bWUjzUmk/t207n9uTP5KvSBIfqt/CseEeLkwOzruJ0obOKwM3GYyF+OVN+3msev2ayxaalsmxkR7++vpJLkwMEtfzT8iaJHOwrI5D5fULHq/cdZigI5cqs2YiVJJQkSUnilh88Xj6SBvf+uLbdN0cIZPKksnomIZV8CG5VjD0lZcyLQVd8TZ6Eh2kzZXpZAskqpx1HC57Cru8PMOogcQgb4wd4WasA93SaXDV82zVMxRrQZJGkn/s/yY3wm2EsxF+98p/QpVUHi59kEPFB5jITPKD4R/RGevCrbg4VHyA/UV7kO+6DiUhU+dqYFfgIJPpcSYyoys6z4n0GKemj/JgyeMrev9isDCwLGNeY/iPE3Ik4zg/Gvkuk5mxVXmwVNqr+dS6X6XCXoV0F8kYikf4Rsdl2kMT2BWFw1WN7C2rIa1neXGklzeHupGFxIcbN7O/vJYzYwN8p+sqTkXj5zbsoNbjZzAe5rmOK7zS38FkKo5DUfkPex7FpWrousHx758HC7Y/uIntD7XOeTgLIfIShFtwuO047iqPFELgdNupWFeK5tCIhRKYxvxIuaLKHP7Ifvwl3tnrQJIkfEEP61prePnLR4lOx9GzRsGyiXcaQ4kproT7mExHiBtp4nqORMT1FAk9Q9xIk9BTJI0MWcvAtHLzpoVFXE9hFrhOQpk4/9D9Bl/rPYoQIqdyJQSqpOCQbbhmyIdL0XDK9hwRUXKv+zQnu4uaKLWvjOhLQlBm9/OR2oNMZeIcGb+Wd7+sZTCWDvPm2FVOTbTjUGyU2LyU2X14VAeSkEgbWaYyUYaS00SzyZmFambBu8OnOnmmahdPVGyfkR2+DVlSsctuHIp/xqzPjSxWn/W8ZVp4qLglL9GYSEc4O9XJeCp/ZHtnoIEKR+AdNTmzySqPV+wgpqf5Wu/RvKVutxDXc9fmRDrCicl2VCGjSBIS0uy9ZlkW5oyKmomJYZozSms55bVC12ohpFNZzr3VxqWTnQx0jROejpNKZMikMkyPR7G7bJh3+ZNpNpXtB5t46P07OPKDi/zF736LqnXF7H5gIwce30xtU9mi977TpfHG987z/N++RXgyxh9+5XNs3FaLrCx/zijyOQsqVd6NKkcVqqQynByeJRqdsU6EEDS5m2iPtTOUGiIz0zc5kZ5AEcpsmVVCT9Ab72UiPcHuwG62+LZgvzN4KRTK7GW0elvpT/RzKXyJvUV78xINy7L4QOUH8Km+Oc9UeZGguyQkFKGQtbIcnTjKSyMvIYSYzWTYJNsyntEL7ScAO4JlCJsIB6xhhcOSiYYsSeyvvsOT4c4vYIFFcK1v4Qm41uPnZ5q2M5yMMJKYr+2dMQ0uT43wr0/+gP+v7TQfWreFg2X11BXwsVgqJpJxjo308J2eK1yeGiaUSeb1AbmFUqebz2++b8FsBoAsHET1Lroj/8hU6hwCQZF9J+u8H8+Z+BWAZVo898VjfOsLxwhNxzCN94Zp4UIIp28SydykxvPMgvsZlsHF0GlGU/nTzkuBXw1wuPR9BNTgsh8wTsXJnuAuHi07jInJV3q/zpmp8zxYeh8O2cHHaz7CW45jXJi+xK82/RICCZukEdVj/GDoJRRJ4debPsdAcpBjE8exSRq7i3bO+xxZKGzz72Yw2cOxidfRrflqMoshY2Y4Nv4qewKH7ol3w1jsGwyG/zetZV/AplSt+fFvIbdcW/uFQNbMcG76BC+OfJupzPiqSEaFvZrPNvwmxbayvNHR0USMrsgUv7plP1UuH5osE8tmiGUzbPSX8OmNu/h291U6QhNsKiplW7CCpJ7lwvgQ+ozka7nDw8+37OLYcA+/ue0Q5U4PTjVHHizDovtqP6pNYePuxmVHAPWMTvuFHs68fJnOS31MDk+TiCRJpzLEQglS8TSmaeadniVJomHb/FIAWZVxzPjfmKaJaRosva733uJ6ZJC/73qd4dQUlpXLXNwiEhbM+Xs5uEVE4nm2iZmrWAgx/28BXsVJ8WbviokG5CLm69xlfLbxESwsjo4XVn/LmgZZM0lETzKeCnMjMpAblRAws3gt5DtyNzyKgw9W7+Nn6x7ALs8ntCPJNq6Gf0DayGWDHIqfzf6nKbU35Tna8uCUNVr9NZTafYzdRShCmTjhTCLvYrvGWUyztxKn/M77VdhllY/UHMAuqXyx582Csru3kLUMsvc4gAfQ3TbM//r3z9N1Y5hsRqdqXTFlVUW4Zu7jSyc6SafnP4uEEFTWFfMLv/M0ew5v5KWvneT6+V66rg/zwpePs3V/I8/+/P2s31pdkDj0dY7RfnmAeCwFFrzx3Qts2lm/ovPwuh0U+XKCM8YiktlBLYhbcTOYHCRrZrEsi854JxISda46ap21XAzlSquKbcWMpcewy3bK7eUIBFE9ymh6FIEgaAvmbdaWhESVswq36mYoOURcj+e1C6hx1sz2giwHilCQhMSpqVO8OPwisiTPkgx1mQbDhaEi5BqEXD2/oWYBCCGDsLEWUrmwDKJhk2X+86OPLf8DFqn7l4TEs/WtXJse5bmuS8TyZBRMLCLZNOfHB7kyOYxNVqlx+2gJlFHnDjCZzl/znzEMBuNhzk8MMp1OMpKI0BWZ4ur0CB2RCWLZDFnTWLTvwaVo/KutD9HgzV8/fCfC6ev0Rb+FXS5mW8l/BMtkNHGE3uhz1AsFn22+q6plWbzwjdN88++OEJrK97h7B3DXRbiUDEramCSSmR+Ruht9iW76Et1kVpjNUIVGs6eFzb6dK7r5/Kofn+qdXfiuc9cTyUbQTR0hC5yKE5tkQxEKHsUzo+9vMZGZ5Ea0jV9v/mcEbUFkSaYj1kVb9GZeogHgkJ1s9++jP9FDV/zmCs7WYjozyempIzxQ8sSaZx2yxhRZc2LF/QxLhSrUNS1tsCwL3cpyfvokLwx/c9WqZVX2Wj7b+M8p1koLfsfN/iBP1W3gf18/Q0Bz8NGmLRTZnQTsDryaHb/Njs9mJ5bJkDUMfJodu6wg3aGUJ0sSTlVDliTcqg2PapsT1YyFEghJwlu0dFJpWRYTg9N8809/yOtfO04iliJY4aOyoYzq5nLsThsdF3vpvjowU2uR514W4Pblz7DO+TreQ/EOwzJIzZSTvFOYJS53zod3/KmKTEEVp+VAFhLNngo+v/4pApqLHwydW5QwmFi3n13L/J0CmpvPNDzMB6r3oBVQpYtkhwna6mn1vQ8LuBz6HtHs6JoQDSEExTYv+4Lr+d5dJWMWFKSL2wP1VDvyqwDda4gZv5cPVO+lwhHgLzteojM6suzsw1oik9L5q9/7DtfO9dC0uZrP/6cPUVlXnJOyFYJoKMH/+y+/SteN/EE+SZbwFbk4+Phmdj+0kaGeCY798DJv/eACR1+8RNf1IX7x/34/ux/cMGdeu4Xp8Sj3P7mNfY+08Ff/6Tu89PWTVNUX8+zP37fs30gIQXHARcDnYGI6Puf1eeMWEpX2SgYSA4ylx/BrfjpiHQS0AH7VT62zljPTZ+hL9OFVvYykRnDIDsrtuT6xrJklYSTQJA2HXLg8yS270YSGbukkjASmZc4rr/XOrC2We74SEtci1zgfOs94ZpwWbwtl9rI1JBkgqZtxFL8Ii5QEz4eYKbNam/LRJR8lV8c9t5FxZsOq45aqJPMvtj3IRCrOq4PtpIz88mYmFmnTIG0aXJ1OcW16LPdQLHCf98am+YPzryIQsxWOs5GwJY7NLiv88qZ9PF3XgrSEHz+a7UKVvDQHfhFF5BYPfttm2qb/J/Fsf16i0d81zre/9PaCJEPMGOcxs1y2LGtOKlSI3D4zp5n7j1WYMDicGs2bqti2t4Ed+xsJlnrmbDfJ0jb1v2CBxWI8248iLVwOZlkWHdHrTKRXVkoE4FV93Ff86KL184U+fzg5zFvjx+hJ9KJbBlPpKbb6N7PQ09nCIqpHGUqO8F+u/dGsuZgQgp2Bwg2RQgga3M00e1oYSvatyCskbaY4O31i5pzXtk7cMOOwBgujxaBK2op+r3ywLIusmeF86CTfG/o64ezKBCggd/fUu5r4+frPE9AKBw4sy8Iuq9xXUc/+slpe6rvJc51X+KXWvUhCmjWHu3P2000TwzIxzVwJhGGZM2ZzAt00SRs6WdNElWZKKMSMDGU8RSK29OvEyBq88pVjvPiFNwlWBPilP/gZDj6zE5vjthDAP/z+8wx1z1f1ufN7EKsQf3gP8Y9/MpCERK2zmH/W/D7Wucv4eu8xxlLhNV3IapLCRm8Vv9r8JJv9tUh3XcN3QpXs2Cw3QsgIC2ySC1moGFYWCXlZqnb5ENDcHCzewA+HzuaVkr8bNklhm7+eslVkj9YCqiSzv3gDDe4yvtTzJq+MXCKaTd5TwiGRc7sPah5sd5S4dVwbYKh3AkM3+dzvPsu6jZWzEveWZSErEtHphYOXQghkRcYuSzS0VFK/oYInfmYvX/4fP+KN717g5KtXqWsuo6x6ftS/vLqIX/idpymp8GFzaPzxv/gq//DfXqS43MfBJ7YsS2BGCNi/Yx1lxR7iidsBZ02Vaa6f78dW46zhXOgcw6lhirQipjPT7AnsQRYy61zryJpZ+hJ9rHevZyQ5glN2zhKNpeLulWK+lePCilCFkTJT9MR7KNKKCGpB2iJtvKm+iafSQ6mtcABsOchlJlZWGaH5/gua7/eA1WcPV7yKMS2LeCaDU9Pyel0YpknWNJCEtGiDeK4pTuP39z6JdFrw6mA7CX3xqJU1QxwWQq4camUTgE1W+ETzTj7fuhx2bs0sQFRu1c0Jocz8OX8ytSyLF58/y+T4/JpPSRLY7ColFX6aNlYQLPXgcNqRZcFQ/xQvPX92dr+GjRXs2JdTwTF0k3gsxfhImIGeCcLTcbIZfZaYuL12fuN3P8jeBzZgs+W/BCwrS0/0W1S5C2exdCuBYi3cLxHTI/TGO4nqhWtaF4IqNJrcm6h3rSyKZlgG3xv6AT7Vx+cafxGv6uUb/d+apwwlIWHmqmbByi3EvIqHKkcFv9n8a5TYixEITMxFS4IEEpt9u+iI3aAz1rbsMVtYTKbHuBm9Rovvtt63ZRmY1sqyQregm5F7ns0A0CRtXs/DSmBZFmkzzYXQKb47+FWi+spN2iQkmj0t/Fzd5/DNKIEsdF9fnx7jj8+/hSJJBGxOnqnfiCDXr6XO9OioUm5+s7D4VtcVXuprZzIVpy00wc+u386u0ipsksyjNU38+1OvUGRz8Pv7n8ClakiSRO3GSsYHpmg/34NpmEsyxRofnKL3+gCpeJrDHz3AfR/Yjd11O1NimhbRqTh6Zu2cXefijjvAWnwO/gmWDiEEftXFR2sPsTPQwNf73ub4+A2iempGenP5kMj1m5TafXyk9gAfqNqLTVqKkqOgLfIqbZHXsCwD3crgVALcjL7OFv8HqHC0rOQUZ6EIiWpnMZt8tVwK9Sy6f6uvhnpX6T1zAl8ObvXW/IuNz/JExU6+3neM05PtJPQ0umWuqqQTcneYLCRkIVGkudlXvJ4nK3awwVs1p5cmm9axTAsEePzOOSQjm9HpujZEd9swbv/8gKBpmhi6CSLXTyBE7vqTJCgu99O8uYbzR9sJT8VJJQuJCQhkWUKSJA4+vpnP/Ksn+d9/8H3+4nefw1fspnXXumWRjdIiN6VFS2tCrnZUowiF4eQwbsWda8B2NyIQ+FU/bsXNQHKAtJlmMjNJi7cFj5ILqGqShkt2kTEzJI1k3pIogLgeJ2NmkIWMU3auWfDsFrb6t/LT1T/NVGaKbw9+mxNTJ/CqXh4vezyXKVnCujNj5NRIdctEEgJFSGRMA0WSsMtqbptpkDFz0r0SAk1WUEQu4JU2bquZ6paJBGiygoRC2gRNEsgz61rTskjoGRyKmiuOXuK6eMVEo2Nqil/9/vf4H089xebS+fr7HVNTfOniRZqDRXxq+45FjyeEwKvZ+S97n+SPLzr5bu9VQunkuxY5cykav9Syj89vXl4K0KlUMJW6wFDsh5Q4D2BhMZ44imlmcCgV8/aPRlJcPN1NMjH3RtZsCtv3NvDRzz5A6475tdQXTnXx6vcvoGcNEIKNW6r57G89Me/48ViKi6e6eOEbp7l+oY9kIk0skuKv/+iHSLLEnkPNaLZ8Dx2JgLaJbcX/tuC5jiWOM5Y8seD30RW/OaM0tTI4FRd7ggcX/A10UydtpkkayZmUaJK4Hscm2WbIAzhkOxkzQ0+8l85YF5WOub9FkS3AVGaa0dQ4LsWJKim4FTct3o28MvY6j5U9jCQkItkodtk27/13QghBrbOeakcdffHuFXlrJI0k50On2ODdPFuCFE1foDf0/yz7WHcile3FXCNt7IWwFhmNHMlIcSF0etUkQxYyLd5tfLTmM/jUwJKUPLYEy/nCox+dt+3j629ntJ6pv73Y+mjTVj7atHXe/gC/3LqPX27dN3dMisy+J7dz8sWLnH35MjfOdNK0rT7XqzEzPEM3MXQDSZZmezgM3cSYafDW7CqKdvv+1XWDoc5R2i90k4qvjpQWgqxIMzKYEJ2Ok4qncPtvSzDeyqKudXmLJin4NVdeJ+13C27FjrrGWUchBDKCDd4q/vWmD9EeHeal4fOcmmxnIh0ha5kYpoGBOdOXMvM+cgvUWxk3RcgokswGTyWPVWzn4bKtOJXC4gJ3o9TezP7in8+7zadVrsl5lti83F/SwkABhak7sSvYRLXz3Smbyodb49jir2WLv5bu2Civj17h6Pg1hpLTZE0DwzIwLAtzhnzcuZ65lUuSxK3fLPd/VZKpsBexJVDHzkADW/y1+DVX3gBXZX0xTo8dRsK8+NWTPPvp+9AcKnrG4NyRNr78py+jFZCYHR2Y5u2XLqNoCptn3L+FJDAMk76OUU69cZ3IdJzKumI8Bcos7/4+nvm5g4z0T/H9L73N//idb/Dv/uenqG0uX3L2dDm/7a2G8LH0GNpMj1GjuxEhBIqkUOOsYSg5xGByEIAKe8Xs8T2KhzJ7WS6ol5lkKjNFsW2uopppmQylhojpMSrsFTiVxWRml48SW8mswlU0G+V7w9/j9fHX8ape7i++f8Gyrlt4rucCl6aHuBkexybLPFq5kW/1XORAaT2/s+0xopkULwxc4zu9l5jOJAnanDxbu5UP1ecUVP+67RgdkQmcisr5yQHcqo1PN+2j2uXnL64f4RfXH2BvSR0CGEqE+eyRr/BnBz5Ck7dkydVM90y/T5Nl0rrOVDK/VGwhuFQbv7v7cTYGSvmra8cZikfyelrcK2iSTLnTyz/fcj/vr9u0pHKpO+G3bSVthOgKf5Gbob8EwKlU0+j/ND7b/AjQjYt9RENzU5uyLPHYszv53P/1VMEGUUkSqJqMnjUwDZPsjEnW3Rely23n4MOb2L63gee/9DY//OYZJscjTIyG+cs/fAHbv3+W7XsbZvWzZ8cgNDYW/dqC52qTi/Bq870EbsG0THrjnUxm8ru7LgaBRNBWSpN7frnZneiMdfHK6OuMpMdIG2n6EgOctlfwaNlhmjwNPFBykFdG3+Bs+wUqHeVs829BErmillvY5G1hq6+VP23/C1yyi6cqn2CHfxtPVzzBj0Zf4y86/pqslaXeWcvDZQ8tOnZJyDS5W2iLXmUkNbjsc89aGbribYSz07MlProZJpo+i0BFEitLZ+ZIxjuT0VgN0bAsi5SZ4mLoNN8d/McVZ8QAFKGyxbeTn6r+BP4lkIx3CrIicfD9u3n5y0dpO9vNH/3SX/PhX38fW+7fiMNlJ53MMNI7Tv/NYWqaK9jzeI7E+Es8FFcFkBWZi29dp3lHPfUtVViWRc+1QZ7/i5cY65tcUnZkJZAkiZLqIP4SL+deu0Lzjnq2P7gJWZGxTAvVpuDxu5DXWK3qobLNPFS2eU2P+V6HIsm0+Kpp8VUTzSbpjI1wNdxPT2yM4dQU4UxiVrpWkxVcioMym49KRxHrvZVs9tWs2NjOpRThusf+JD7Nyc+te5CfW/fgPf2cdwLr3GWsc5fxmcaH6Y9Pcj0yQEdsmJHkNOOpCDE9RdrIYmKiSSoOWcMha3hUB+V2P1XOINXOIHWuUkpt3iUpbJZU+Dn87E5+8OXjfOfvj/DGd8/jLXIRmoih6wbbDzRRta6EF75yfN57Dd2g89oQb//oMqZhYndo2Bwa6VSWdCqLoshs3tfIgcc3Eyjx5Pn0+RCS4FO//QRTYxGOv3yFP/t33+Jf/befpbRq7c0V/Zofv+pnOjONiYldslNpzxFgRSjUOevoiHVwLXoNm2yj4o7goFNxUu+sp8xeRk+8hyvhK7Pytojc2mUiPcHV8FWiepT9wf341HtXsieEYHfRbiJ6hJdGXuJHoz/Cq3rZFdiV69lYYElvWdAemeAvD36MXz/xDXpjU/zXPc/y+xdfYiwZJaA5OVi6jgfKGim2u/h+/1WOjXbR4i9je7Aay4Kb4TF+teV+/s22J/hmzwXeHOngM837qHH5uTI9xAZfKQGbk9eGbrI9WEWZw7OstfGyiIZlWTPs3CJr5Ba2ummSMYx5+0XSaRLZzLIX6pCLzHyscTsHyur408tHOTbSTSidIp3HvGetoEkyPs3OwfJ6Pr/5EOs8wRWNXZZsVLofo9R5kJQ+jhASdrkEWcpfYjTQO0k6Nfe8mjZV8gu/+fiC0nKSJFAVmVs0ztANdN1AVfP/pE63nY999kGEEHz3qycITcaZGA3zhT97hZL//CFqG+fWBAohE7Av/FD32Tbgs20ouD2SDTOeHl1xE7gmaWzz7V60T2GDdz0bvOsLbm/1baLVt7CHiSwkfrbuY/NeL7IV8TO1H1nagO9Cg3s9JbZyRlNDK0qlJ/U4HbHr7Cm6745xOvHaD+C3H1rRmCYTLxBNX1zRe5cDdRWlUzmSkeRS6MyqSYYm2djm38MzlR/Frxa9Z0gG5B4unoCT3/jTz/CX/9eX6bzUy1/963+czWCYhomsyJTVFvOhz9/OVrr9LnY9vJnOi31cP9nOH/x8N/5iL5l0lmQsxbrWGp79Z4/x4hfevGdj3/bgJq6f6uTkixf489/6B5weO7KqkE6keewT9/HR33qaonL/Pfv8/xPhUR1sD6xje2Dduz2Un2ABCAS1rmJqXcU8wfZ7/nk//SuHqVtfxpvfu8BQ9wSGYbJhey0HHmvlgae2cf18L+eO3sTtnStvWlLh58mP78df7Kb35gihiRjZjI4/6KG0ys/W/U3sf3QTpVXzgzN2p0ZZTRBFkXKN57fOfUaS+1d+91lSiTSjg9O88JW3+fRvv29FkreLodpRzcXwRSJ6hDpX3Wz2XxEKtc5a0kaam9Gb2CX7vP6Mde51HAge4MWRF3l59GXSZpoWTwuarDGeHuf1sde5GbtJjbOGXYFdeJX8ZqFrBVVSub/4fiLZCG+Ov8kPR36Yq6rwtCzoxYGA9d4SnIpKk7eETf5yXKqGV7UTzaYpc3gosbuJZdNMpRO4Z6S6I9nblQ07g9XsDFbjVm20+Mq4Mj1EQs9wuKKZ7/VdYTwVw6XaODrWxU/VbcWxDNNQWCbRMC2LjslJesMhBiMREtksZwYHGY3NdRxN6zqnBwcZiER4aF3DsgZ0J2rdAf5o/zOcHu/nqx0XOD8xSDiTIq6nyS4if7YUyELgVDR8mp3NRRX8TOM29pXVLSphuxAsy0S34mSN6GyzXMoYBwNschBFmtuYM9w/SeYu6blnP74fu3Nhh2dJklDuyHYYM1mNQkQDctr5T390Lz0doxx//TrZjEHH9SFe+vY5PvErh3F57MtaiBlmCsNKo8n5mf5IanBV6kA2ycYGz49vBNOr+qlwVNERu74iN/SUmaIz1sbuwKHZ30WW3PjtB6nwfnpFY0obg8QzheUz1wqqpCGvQBb1TpLx7cF/JLYKkmGXHOwM7OeJig8S0IreUd39pUKSJOo2VvJv/uHXOPHCOS68dZ3h7jEyqSwOt53iqiJa9zez4+HWOe/b+chmAmU+3nr+NG1nukjGUpQGitm8fz2HP7ofIQk6L/ZSXF005wEvSYK6TVUIIVDz9GcJSeAJuKhvraastrhgyUPdxkp+7l8/S/2mKi4duUF4MoqiygTKfGzc3Yh9EaOvn+CdgzUTHIynsySzWdK6jm7kvBssmJXsVSQJVZaxqTJ2VcWuKnn7L99J6IZJMntr3Dm5WMPKSTbfGrck5cauyTKakhu7Y+Y5+G4EFkzLmh3bWiGpp1EkOa+JpCxLHHh0Mwcezf+s3H6wmT/5VvO8120OjS17G9iyd/lrtK37m/iv+/P3TQohCBR7+A//+7PLPu5yUe2s5tTUKVJmigddt7NispCpcFQgCYnx9DiNrkbKbHNL/D2Kh0PBQ2TMDCcmT/D84PM8Zz03u90m26hx1PBM5TPUOmvfkWvJqTh5uOxhonqUU1OneGnkJVyyizpXXcEKAUFOehlyAVO7fPvaNy2LiVScFwaucmlqCMM0mc4kkIU0J/jpVm2zZZWykGZEk2BPcR1f7z5PX2yahJEhpWfZVlQ126O4VCxrRa2bJqcGB/nG1StMJZNMJZP89Zkz8z5UCHCqKofXNXCgZnWOw0KI/z97/x0l131f+aKfEyunrs45oRuxEQmCYAQJZlKkREmUZAXbsn3t8R37ejwz9ps16c3Me+9O8B2Hsa2xbMu2rESJlCjmHAAG5JwbnXOoHE+d8P6oRgONrupQ3WCwvdfiIrrqpKo65/f77W/Ym52VjWyvqKcvFuKNkW4OTQwwmIiS1LOkdT3vnmnMDEBFjpNviJOwSTIOWcYpq1Q7PWwtr2Nv3RrWBapWRDCuIGtMM5Z6i+n0YQwrPUcWsdX/Ncodc+u0w9MJcrmrGSHFJrNpx+INVKIooFyT8dBzJjlNB9fCE7wv4OL2+zZy8cwwY0N59Z43njvOA5/djtNtX47UMjHtEuHsaVp9X573nmVZjGeGCedKIxoCAn41SLXjxnk9LAWWZaFpOolElmBw+U6ZDY4WvLK/JKKhmVmGUv1kzTR2yYkgSEiiD2kFLuCi4GK1tLEXgiosP6NhWRYZI82J6CGeHf7hikiGQ3Kyo+xW9lY9QkBdvvfKR4l8ZsPFvV+9nXu/evuS9hFFkbauJtq6mopu8+++98/nvWZz2PiTd/5j0X1sdpXbHruJ2x4rbLJ6Leraq3nydx/hyd9d2Efnn/DxIZnVmE6mGI3GOTYwwoXxSfqnI0zGk8QzWXKGiSyJ2GUZv9NBpcdFY9BPR1U5nVXl1Pg8BJwOXLa8RPNHAdM0SWo5wsk0Q5Eo50YnOT86SX8ozHgsQTyTRTOM/KJKkXGoCgGng1q/lzq/lzWVQTqrK/A77QScDty2hYN2q43B1Dj1zgpES1zxeS3LIq6neG/qJB2eBtrc9Yvv9DHCNC2mQwni8QyiKNDYECSTyWFaJm7XMgzjlogWVwstrhbSRppOz9XqCkEQcEpONvs3M52dpt3djlOe32cStAV5pOYROj2dHA8fZywzRs7K4VN8tLvb2RrYSrlaXlCqvUwto9nVTKW9clnziyRI+X2dzZQVCIAF1SD3Vt2LhcVQaoieZA9V9ipcJfhqmZbFueg4Lw2e5fc330tXoI53xi7x8tDSgo0OWeG2qjZOh0eIT2S5tap1jkT7UrGslbVNlvnq5s18Zm0nb/b08EcffsiXN3XR4L0mpSTk+zNq3B6aAwHc6tKbzxaCJIi0+cpp85Xzy507GU/FORsZpzceYjAeYSKTIKZlZjvoTa5GFSRBxC2rBO1Oal0+Wj1BOv0VtHqDOOTVcz8ECGWOM5l6n6BjBy65YY48rEtpnrd9NpPLq0bMoKrGj9O1+A8piMKc/o1cTieT1vAFFr8Zt9zcRmWNn/HhSL7MLZLi5OE+quvLsM00jlmWSVpfuIk7kesjmRss+F7OyjGRHSORK22xKAky7e61q67ysFwYhsnlyxMcOtTDN76xtEXgtah3NuFV/IxnSzMrTOhxBlJ9dHjWo0pVBJ3341SK98UsBkUMIEuBOf0pNwLLbQa/ksk4ETnEsyM/IKHPN+9cKlySm51lt7On6gECavniO3wKkMnpjEbjhJLLJ6yfBHjsKm0VwY9ssfpJw/HBEQxz6eWTgiBQ6XFRHygtqJDScoxEYhzsHeKVsxc50j9S1ARN0w003SCWyTIQinC4P99T5lAU1taUc2dHKzc119EcDOBz2G/Yb2haFolMlv5QhCP9w7xx7jJnRydIaYWb/w0MNCN/3eOxBOfHrvYCOlSFTbVV3NnZws7meqq8HoJuZ0nl0MvFn3U/zS+2PEynp3FFAY58n0CEV8cP8tLoB/xq62NLJhp5x/EcOTOFaWmYlo5lGbOKg6KgYJN8KOLqmsIODYf42bNH6e2fIhZP8+d//HUudo8xOhrhwfsLC2WsBO3udv712n89+7dlWURzSSYyEdrdtfxG229gzpC1nsQoTa5KEnqGsBanzlE+kyESCaq1PFzTTJnNw0h6GtPKS5VPZ9Kk9AmqbAHs0lzCen/1/dxfPV+AZzG4ZTf3Vd/HfdX3Fd2mwdnAN1tWJyMkC3kPp8l0giPGACdDI3PKphbDHdVt/OHpt7kQm+A/bH0ARwFzz0WvYbk7iIKA3+5gR20dXVVV3NnczLqKimWfeCWQRZE6t48699xBWDdNMkaOjKGjm3mpL0WUsEsyNkn+SAYZ3UrgUhpp8n4RSVj8B8mmc5jXTAAut31hN/kZyLKIw3n1+FpWn6dcVQwer4P6pnIunh6ela07e7yfPQ9vniUapqVxLvynqFKg6HFSuRFUqXDdYlQLEdFC82RklwpJkGh1zU/3FsLkZIxYNI2iSkQiKWRJorLKSyDgQpJETNNiairO9HScXM7A43FQW+tHVWUsy+LSpXH8fieVlV4sy2JgIARYVFX5uHhxjAMfdjM6GuHkyQFUVaG6yot/CYQOoEytwK8EkAQJw1q+qEHWTDOQ6qHDsx6XuhaXunBj/GJw2zZRZX0BSVh+dmY5UEXbkonGLMkIH+Jnwz8gaZROMjyyj5uDt3NHxX0L+mRce+60ESOsDWNh4FWq8CrzNds/bozF4nzrnQP8/MSNL3u7EbipuY4/+4XHcdvmjomWlUMzSlelWykEFNQCaoCrjV/5u2dIFnBnLgZJFPnyTV383gN3Ii+jqd+yLEaicT68PMBTR05xenh8UUPaYkjnchwbGOX4wChNQT/3b+hgT2cr7ZVBnOrqmYoBZHM6/aEI+7r7eOHkeS6MTZV83QBpLcfBviEO9Q1R7fNw3/p2HtjYSWt5AK9j9SPr1+JyYpg/vfQ0/3zN51njaSxp3ZEzdQZTEzw/sp93J48T15cWYDCtHEl9gow+RUofJ6L1kDFC5MzEDOnQAQunXEmr5xGqnNuXfW0L4fs//BCP28ZnH9vGt//qHSRJRBJF3t1/8YYQjethYnE5McK3up/nf2z5NbyKi6yp8eHUWd6bOsP/a92XORnp4cXRg/yLzs9TYfMxlg7x3MgHtLlreaj2Zn46tJ+pbBS/4mYyG0ESRB6o2cnWQDv2EhbZNxpVDi+6ZSGJIq2ecirsbuySwlpfJR7FRqXDzZ3V7bwwdAavYqfdW8GD9evxq/kMT4PbT8bIzZZJelU7a3wVeJX8c1Lr9KFKEg1OP7UOX0nllCXXCvnsdh7q6CDgWNhH4aOELIq4RRtu5aOtDzYtfdbfQBIcgEVCu4xDrkW8ppFZFGxz/oYChjBLHFwlWcJ5TZlUJq2RiC9d4aumsQy7Q5klGgM9kxj61YWwhcFU+ght/q8WPYZhZijmURLNhVdU+iIJMnXO4mUh1+LDD7p5882zdHbWMDkVJ53S2Ly5kXv2bqC83MPoaIQ33zzD0GAIwzCRFYn77+9iw4Y6BAFefukkoiTwi794O8mkxne+8w7r19dx553rePed85w+PUQ2m+P5549TFnBx+x1rl0w0REGk3F6FXXSQNBKL73AdsmaW8Uxp2ZBC8Ni24rEtLje9UizVR+OKhO2x8AF+PvyjFZEMn+LnluAedpfvWRLJgPzzF82NciryEuOZbjb47mVH8HMlX8M/YXnQzQhjkT/42M6vSjXUBH7/Yzt/MRimSSiZIpJKU+5Z2liTMwwujE3xw0MneenUBVK51ZEBtoC+6Qjf3neIg31DfH7bRm5f00zQ5VyWR0LBY1sWsUyWw33DPH30NO91988Tl1nR8YHRaJzvfnicfZf6+eKOTexZ20pDwHdDy6kuJQb51uWf8uttn1022UgbWS7GB3h2eB+HQufQzByyIBUs37kC0zKI5waJZLsZSr7DePooGaO4ZLBHaaDWuXvRa0nkRkjp45gzQTJRkPGrbSiSu2C25sy5Yf7sj7+OOSO/LYoCTmdeyeqjgCgIdHjqCaoeDoUucE/VNmK5FBfiQ2wNtOOQF18bWpZFLJfiiYbbaXXV8PTQPvZNnqLeWUGD86MNqi8Fd9deFcL5xpqds//+rQ13XfP6zXxjzdyy/Sv4bNNcA+IOXyUdvkquONBFsikSOY27azvwqqWR9BURjQfXFFf6+ceEtD7CePJdADQzTEy7RDL8Lfy2DTPEI/9AVjh341HnNl45HHnjriu6+IlYeklkQ5YlnO6rP3oyniE8tfSFrNttR5KvDlzTE7HZwQFAQKLKeRvtvq8VPcZk+hBT6YMF34vmIisqf3HLHsqWWPZiAfF4hjUd1fziL93OBx9c5sMPu1kzME0w6Oatt84SCaf48lduoarKx1M/OsDrr52isaGMYLmHL3/lFv7gf7zIe/svMjIaweW08dhj27DbVb7xi7fz82ePEo2m+M3/s7h54UKotFXjkJwlEQ3dzDGdnSRn5lDE1S3zu5FYaumUYekzZnwrIxkBJcgt5XdxS/Au/OrSJTlFQaTGsRa/Wsc7498u+fz/hNJgmgkiqWc+tvPblU5q+OQRDYBwKsN4PLEkopHJ6RzuG+J/75ANwicAAQAASURBVDvIicFRcsbqS1iblsWxgRFGIjGGIlEe37KeOr+35FIq07KYTqR45cxFfnDoJD2ToVW+4rnn6pkK8cdvvs/F8Um+fPMW1lZVLCtbtFR4FRdxPcW5WD9/0fMsv9r6GB1LJBvxXJKj4Yv8fGQfZ6O9mFg4JBvrvS1U2QpXF+TMJFPpU1yK/YzR1PsYKzR1vRbj6cNciPx4lrRIgp0dFf+SaudOJGH+fFQWcNPbO0llRb46IBbL0Nc3RfVHpEAnIGATFe6s7OK9yTPcVrGJUDbGWDrEZ+sKKzUWsnTu8NRT76jAKdvp8rdyNtpPQl+eVcOnHREtxcXoBKdCIyiiyLZgw7LVpq5gRd3PlmWhGQbjiQSRTAabLFPv9eJUVQwzX+OmiNJHUrL0cSJnxIhkz8z+rYr5ASGu9c7ZrpCPhstjR5SuEo1oOJl3+3QXdqqcPYdNxhe42twUi6aYHIsWdbi8Htf7ZiQTmTmpalFQFyQZAE65mqB927zX81Hi0jMaIiI19rplNRM3NgZZt64Wu12lpsaHqkikUhqaZnD58gROp8rFi2P0zcj/dXdPkJkpZais9PLFJ2/mz/70dSRJ5D/8x89ht69eijSoVmGXFjc8KgQLi5SRIJKbpsJWvfgO5MveDDOJZWUBEVF0IAn5ZvKPCoqgLurga1omZ2LHeW7kqRWRjDK1nFvL7+bm4B2zjt/Xoi9xBLdSTjw3Sc5M45KDVDnWILG4O/KV0qrpbD8ZI44iOShT6/HIFWhmmkhumHhuEtMysEkeKmzNOKR8tNSwdKayfcRzExiWjiLaqbavwSH5Zz6/zni2m2QuhCBI+NUagmrDrFrdP+FGQkQUXMjiJ7eHJ5xKMxFLsmERb7ysrrO/u48/f/sAF8Ynl9ULUgrGYwn+7oNjJLIaX9m5mYaAb9lkw7QsJmIJnj56hh8cPMH0R9R7lNJyPH/qAuPxJP/HHTvZ1li76j0nD9bcws+G3mVKi3A22sd3ep/nF1seZq1nvvHuFViWxbQWZf/USV4a+YC+VL6c0Ke42BFYx2N1t9Pumd+fkTHCDCbe4nzkB8RzgxSrMCgVPrUVRXQQ0a6SwNHUh5TZOnHI85+d++/dyPMvnqCu1k8ypfHiyycYHY1wx+0LB6V13SCnzyfHsiwiS8trqpcFic3+Nl4dO0J3fJi+5BjlNh/112QjBK5WjxiWgX6dV5soXHW9lgUpb7i4glK+TyOiWpoDE/3Ecxm+1LqdGufSnMoLoWSiYVkW0WyWt3t7+WBwkMFolCa/j1/eto32YDm94TCXQyE2VlVR772x+sMfN/z2jWyz//9K2reswoOiSnnFKCCZyDIxGsVX5l5QAcruUKms8c/+HY+kGBmYJpPOzendKIZ0SpuTwTANa84YJQgibrV5wWO4lAZcynxVMcPUiekR0kZpEQBBEKiwL21RfQWqTcY+018yS2wtC8MwMU2TkeEwoiDMan53dTXgcFz9npwzmSW3277qUS6/GkAVSy/ny5pZJjLjixANi5wxTSp3iXSuB80YwzCTgIQi+rDJdTiUNTjV9hmzvxtL/hcrnbKwuBQ/y/MjTxHLRUo+T7mtitvK7+GmslvxKv6C27w/9fdU2tuQBRXNTJM2Ymwre5x6xwYW+x4yRoyexAFG0meRBAXd0ihTG1jrvRMTk5H0eaaz/ZiWTlqP0uG9nTbPLlTByXS2j1ORlzEtY7bMwCNXYJd8CAgMpE5wIfYOimjHtAwkQaEr8CDltuaSv49PGwTBjtu2eAkHCAiCDMjkjEGyuV4s8oECUfAgS0Ek0YMg2BGQAAGLHJaZRjej6Mb4zPYCilSFx34HilSDbQXCCjcakVSaifjCWVDdMPmwZ5BvvXPwIyEZV5DMavzk8GkkQeBru7ZS7Vu6gZdpWUzFk/z4yCm+++Fx4pkb42BfDJpucKh3CCyLf7bnFrY01KxqMPTxujsREHhm6G2mtSinoz38Xd9LfL35wYJkw7AMRtJTvD5+iDfGDzOZjQBQaQtwR8UWHqjZRb2jct5+mpGgN/YCZyPfI2vcmGyQT23DozQynTmDSX6NMpY+SLv3MezSfJf2vXevx7IsTp8ZZuvmRiYm4+zc2cqObQt7v1zqn+TImfnCMmtbq1jfVo3TsfTAnyAI+BQX2wMdvD52FBOT3eXrZ69VESSwLMJagoDqZiwTZjIbYS1X1zIj6WmmszEckkpfchy34iypCXohWJaFljNIZTQ0TccwLQQBZEnCrso47CqSJC5LCXQ10ewO8lsbVsdIs2SikdZ13ujp4S+PHCbocGJaJuenpkjmcgjAQDTK02fPoBnGP3iicS2yRhjT0nDIVzWbLcska0wjiXYUca7DZn1TOTabQipxdbC9eGaI9nU1sIBWscOpUlWbd9u0LAtdNxnsnWKgZ4LOjQsrU1iWxdhwmMw1dZOqvXhzX16HPUtKH0Y301zLSFTJP49sZIw0KT05q3CxXAgIBNXl1UIWexbtdoWamgAtLRU88MBmKivzxmaZbA6PJ99fNDkR48c/PsjevRsYGYnws58d4etfvw3HjJeJrEgkk1l03UCS8hrTy6lNdsse7JJ95iqXvxDImRrhBdzVLSwyuT6mUy8wnXyFVK4bi7mTtyR48Ni2UeF+jDLHXkTRdUMlXxcrnepLdvPC6E8Yz5TaCCxQaavm9oq9bA/cgmcB11YLC9PS2R78EjbJxb6J73A68gq19rULZl0syyKkDdGTOMh63z00u7YzlDrN+dhbDKfO0urZSbv7FtZ570YSJA5M/4jxTDc1jnWoqpOpbD+J3DRbA5+h1rmOlB7BKQcQEDDROTj9FGs8t9Llf5CUHuGD6e9xLvo2t1f+YonfyacPslRGbeDfLrKVQF6SWSSr9xJK/JCsPoAsBnGqm3AoG1DlJhSpYua+zrv7WlYGw4yTM8bIaBdIaSdIaSeRRB9ex314HffMkJdPJiLpDBPxJKZlFVwIWxacGh7jr987zIWxj45kXEE6l+OZo2coczr4wo5N+J2L92talkU8neXZE2f53oETHznJuALNMDjSP8LfvH+E37p7N+2VS+vpWgoUUeKxutsRgJ8Ov8NkNsKpSDd/3/8yX2m8n/Xe5tm5VjNz9CRGeHH0fd6bOklCTyMi0Ois5r7qndxZuZVym3/eOSzLZDj5LheiTxUkGYroxilXYhP9SKId08oynj5Swmdx4FNbUCUfGSMvVZ/QhkjqY3jVJgTmltKoqsxDD3Rx/72byGQ0HA51jqFfMZw4P8yffe/dea8/evdGaiu8yyIaADZJZVvZGv7XxZ9Rafezwdc8+16F3U+53c8b40e4EKtgLBOel9EIaXEOTp/nZETlXKyfjb5mymwrX8fqukEommJoLMLEdJzpSJJIPE0qraEbBqIgoioSLqcNv9dBwOukssxNTaWPMr/rhpT6fRQoeZQNpdM8d+E8a4JBfnX7Di6HQvzt8WOz71e5XDhkhdF46SURn0ZEs+fIGlM0eD4z5/XJ9Ae4lEbK7FvmvN7QWonNMfdhPfZhDw98bseCdmeyIhGs9BIIugjN9Gb0d49z7IPLNLZU4FjATyM0Faf34hiZ9FWi4fMXb+wzrAxjqXeYTh8BwUIzIsiCCxOdGueeeUQjbabIlJjNABAQKVsm0SgGURS47dYOPvjwEm+8cQaX04auG1TX+Ni+vQVBEHjuuWPY7QoPPrSZSCTFn/3p67z77nnuvW8TqirT2Bjk5IkBnv3ZUcrL3XSurVlWzakiqrhlD7IgoVvLd7fXzdyC7tg5Y5rJ5E8Zj/8AQVDxOW5BlaqQBAcWJoYZJ6MPEMseIqP3I4k+/PZbEZagilYaBBRRQSxyBw+nBnh59Gf0Jy+X5JguIFBlr+X2ir1sC9yCW/Ysuk+dcyN2yYMi2mh0beG9yb/DxFzwGbMwiOtTTGX7Z0qgJkkZEWK5SWL6BJZlkdCniObyzZL5EigRw5opybO1MaH20Js8xJTWT5W9HbcSBAE0PcVo+jz1zo2ciryMbmlkjSQpPbLs7+PTDFGw4VA3LWnbTK6bWPo1ktkPUaQaAq7P4Xd+BpvcuChhMC2NZPYgU/G/JpZ+g/Ho/0QS3bjtheu2PwnI5HSmEklSWm6eWhfAUDjKDw6d5NTwOPoqGNiWglgmy1OHT9EYDHBnRwv2BQxjIf+Z3rrQw/cOnCCaXrrE5o1ARtc52DvEM8fO8Cu33USZa/WEbWRB4pG62xAFgWeG3mEiG+ZkpBsRkS833ss6bzMZM8upSA8vjr7P4fB5cqaOIsh0eBp4uPZWdpatx6MULrmNar10x35KWp/b8K2KPiodWwna1uFRGnDKlciii5Q+WhLRAPCpLTikslmiYaITzl6iwr4ZtUDNviAIyLKAe6aHNJ3W6O2bYv26RWoACyAUSZEqoZFcEkSCqhdVlFnjqZvzPdY5ytlbtY3j4W6mtTit7ho6vfVUXEPoWlzVOCSVkBZnk6+Fm4Pr8Bbw4VgqdMNkYirOyQvDnL40woXeCYZGw8QSmeLeb6KA3+OgoSZAW0M5na1VrG+vprG2DOUGuKzfSJSe0cjlGI7F+OzOm9lUVcVkMjnnfbssI4kCaf2jURv4pCBrTJLKDc15zcIklj2PWGBh19haQaDMzfhIZNZP48yxfuLRNIFyd9EswxX3zfb1dRx89wIAkVCSD946R31zOdtvXVOwhCqVyPDOy6fovzwxp3SqtjE4pzn8WuTMGIPxZymzb0MUFBK5QYLObcS1XnRrPqHIGBmyZumTiCAIy2robW+vwut1zPZVBMpc3LSzlbr6/DHWra9FUSXOnx8hEkmhqjJejwNJFDFME6/XwZ671+F223G5bDzxxE1Mh/LkTVUlNmyoIxpNMTkRw2aTZ/tplgO37EUWlNKIhqUv2Fif1M4QTr+NLPqocH+OgGMPNrkBSXBiYaKbEdLaJSaTP2M69RKTiWfwqJsRpaV/x8uBLMhIQuH+h4nMGK+NP8fF+OmSpI8FBKrtddxRcR9bAzfjkpco03ttWeASM0sWgJXPhqSNGLqVV2ird26gyt7OUPoUA8lj2CUvquggayZRRcfsscvtzWwWH2IkdZbJbB+j6fMICNQ41s58douMkZglW0Fb4ydSWveTAMNMEE+/STz9JiDidz5K0P0LKNLSAhKioOK23YokeklrZ8nkLjIZ+0vsylpkafWi2auNcDLNVCI5j2gksxovnDrPB5f7SRfxmfioMBSJ8cNDJ2irKKO1oqxoGZJumJwZHedv3j/CeGz5whg3AtF0hjfOddNRWc6jm9euWr+GIAioyDxYsxtBEPnp0NuMZUIcj1xCFEQerrmFSC7BS6Mfci7Wh4WFU7Kz2d/Ow7W76fK1YytSqmNZJv2J14hqfVhcjcR7lEZavY/Q4NqDR2m4bvwtnYi6lXrUmb6yK4hpfehWBpXFgzyRaJrX3jhTEtEIx1KkMkuT7YerKp6GaTKUmkQWJHaXb5izjV1S6fK30uUv7ogeUN3srd6GS145+UxnNE6cH+bNDy9y+FQ/Y1NLC76bpkUomiIUTXHi/DBlPiebOmrZva2VXVtaCPpdK1Z9+6hQMtEQAEkQig4qyVyOjK5jk1c3NX118s+b8n0cEAD5urKmtD5OOHOCUOY4mhFiMP7c7Hs5M07amKBcmH/Tev1O2tfX0ntpfFZqNhpOcuJQD3c9uLDudFm5m/VbGjm0/+IsSbl8foSn/3Y/46MR1nU1UF7lRbXJaFmdybEop4708cZzx4hMzx3o13U1IBeJRplWjpyZoM37FZL6IMncIE2eJxhP7SOqXZy3fcZIkzFWFq1aSpT6Ctavr2P9+qsO4hUVXioqrqY5JUmks7OGzs7Cevmf/8LOa/4SuGnn3AHI53Py4INzJeCWC4fkQiqxTCNPNIpnNDK5ATL6EJWuz1Lp/iKqdLVJT0BElcpRHeWociUJ7RSx7GFM68ZFE1VRKfhZw9o0b0+8xKnokZIIl4BIraOeOyvuZ7P/JpzLcEodTZ+nybUVsBhOnabc1ryoaaGIhFsJUmlvo8W1gwZXV76u1kwBAkdCz6AZabYFHscmuYnnpsiYVyeRRG4ah+Rhne8emvQwL478N8YyF6myr8Euuqm0t1NlX8Na752IgkTWTGKV4LXyjwGaPkAi+yG6OY1T3YLbfsuSScYVCIKAXenE67ib6cR3SWnHSGQ/wO+86mwey2bpi4aXfX0tvgAe2+rLqodSaSbjSZqDc0UOjvQP89rZS0wlPhkGjof7hnn9XDe/4N2Cxz7/e7Asi+lkiu9+cIwL48VlVz8ODEdivHr2IpsbqmkpX73giyDkFZDur74ZCZGnh95mNDPFsfBFJrNhNENnMD0OgE9xszu4kQdqbmGNp37BstOUPsFE+hjaNWONXSpjnf+rNHseQBJW1wndIQdRxbkBnaQ+OqtuderMEFq2+Hg+ORVneGT5zxTkMxrpZWQ0LMuiJzHKB1NnmdKibCtbQ6Nz+cGbQkpUyz6GBclUlrcOXOTnb57i3OUxzBWUN4aiKd451M25y+Nc7J3gkbs30d5U/qkwQS2ZBTgUhUafn339fWypqZllkpZlMZ5IsL+/n6Sm0eIvbvhWDKZlMZ1JMZKKMpVOEtZSxHNZUrkcmmmQM4080bBW43ZYPqqdXn557c7rXrXImXGyxjRZY4pI9vTM6wJgELRvw6sWVl7Ydks7771xdpZoALz27DHuuG8j0gIpMpfbTufGehqayxnoydfw67rJuZODjA2HaWyrJFjpQVVlNM1gajxK78Vx4tHUdcexseXmVlS18O0gICKJDnQrPaNcZJLUh9CtNJoxfwDJGOkVZTREQcQhra5j6ccNh+RAEiUoYR1pWDopPYlhGvljXAeTLAJglxtRFojOOpRWVKmcrD5Ucv/MUlCoPyORi7Fv8jWOhD9AM0uryxYFgWp7Peu8XcsiGQBZM8mp6CvoZpawNsLmwEOIgoRh6VyM7SOijTCZ7SFlRBAFiQpbCw2uLgJqPU2urfQkDzKSPpuPPMoBGhybCKh1xHITnIy8hE1ykTUTyNdkLSeylxlLX8TCwELAIfuotLUiChICAjcFn6AvcZRYbhwLE1lQqXNuxCkvf8z8hw5N7yeT6wZAlZtRpbpF9igMAQmXup1pvothpUhk3ptDNHrCIf7ngfeXdUxZFPm/bt7NpsqqxTdeJkLJFJPxudUCY9E4L52+SM9UaYu3GwHdNPnpsbPc2tbE+trKeYsfzTB46fQF3r7YW+QIHx8M0+L0yARvX+ilPuBDkVavLEUQBOyiyj1VOxAFgaeH3mY4PcnlxPDsNlX2Mu6p3MHdVdupd1Yu2js3nT1HWp/k2rVPo3svje67V51kAMiCE1XyIiLPNoSn9EnMmRLRZ352BLfLVrQXI5HIkE6XlnWLxFIk09qS1TQhP0/YJZWNvhZ2lHUs6D9SCLvK16OKMuoK5eRTGY03PrzA9587zODo6j2rE6E4z755krGpGF997CY2ddR94jMbJRONgMPBwx0d/M2xo/z3/fvRLZPxRIIfnDyFYVn0hsPcVFfHlpqlu66Op+KcDI1wLjzBQCLCRDpBKJsipmVI6hppPUfONDA+ZpmxjWXV84iGXaqkxrV3pml6hHr31clLFBTsUiWyWLjMY/2WRmobyoiEEnn1J/JZjXRKw+0tnroTJZGm9kpu2bOOkYFp9Gvk4cLTCcLTS0tP77itg8a2SkSp8M0qi04qHbeiW6m8gpFUwfnQnyEKCmX2+ZH+nJklZy493Xk9bKIdWfzkNmmWArvkWLJTdiHkrByalcXB/DpRWfAgCa48ebAsislUWJaBaeVQpAqElSlbL4i8tO3Vz5ox0rw//TYHQvtIGckF9lwYpmUylhnicuI8m/03IS9jIqh1rscmOtHMNHXOjTQ4u2YmdAFVdOJWgmzw7UVAxCa5kGdUwpySn3bPbjzpcuL6FBYWPqUKp+ynybUNm+QmqYewS25q7GsRBXmWKHiVKtJGjKyRRBQk6hzrqXGsnc2ktLh3YhM9RLRhDEvHIXlxF5CM/CeAbobQjXwwRRK9iEKpgQgBeSbjZ1ka2dzcha9LVekou0rWDcvi/PQkA9Eo7WVl1Hm82CSZjK7TH43QFw1za0MT3huQzQAIJdNziIZpWbx3uZ/D/cNkcsvPCt5IDIQivH6um5byAO5rshqmZXF5IsQPDp5A0z+ZGbvpRIoDvYPcvqZ5VRvDIU82HJKNuyq3IQkizwy9Q39qDACX7ODmsvU8UnsrQVtxQYtrEdV6yJlX53ZZcNDsuR9ZdN4QE0JBEFBEF6KgzjiL56s0rmRfJyZi3P7ZHbiL9IVOTsV5Z6a8e7nIaDqxRJqcbqAu0v8D+SBlq7uWVvfyy7SuYEfZyv3htJzO8bND/PCFI6tKMq5A103eO9pDVsvx61++g3VtVTfUgHKlKD2jIcvc1dKCYVm809fLQDiKLEqcGB+j2u1mb1sb97W3U+VafEKIaRneGrnMu6M9nAuPM5AIk/qU9XYIgogq+ahw7EY3U/hsa5e8ry/gYtdda+m9NE5ltY+tt7SzcVszsrL4wtQfcHHLnnV0nxvh6AfdLJeDNbVV8tDnb8Llthe9UWXRTb37ARTRjSio1Lr2Mi35kUUP5fbt87bXLQNjBSUgNtG+YkUkTTc4OjjM0YER4tksLpvKHe0trK0qR5Vlvr3/EHesaaG9ogxJFDk9MsaR/hG+vmsrhmVxdmSCvukwZS4HB/uHUCSJ29ub6aqrZiQSY9/lPkajcQJOBzc3N7C2umJBiURVtBdtjl4KTMskZ2o4CvhxOJU12JUW0rlLaMYYNrnwIBvPHkczxgg47kYSS29sWwzXZjRypsbB0D7en3qTeC66ouNaWIylh9k/9QYu2UOnZ8OSPSfcchmt7vkmUwISbZ7CjqmQn2RdcoDWItt4lOLEoNzWRLmtuLu9jEqjazONrpWV5f1jgGXlZnxhIJ8WLH18MWcV2UxMa24wpsnn5zd2XA0iXQpNk8rl2FxVw4Pta6hwulBEcdY/6tlL5/GoKvINKl9IZLNMJZJouoEqSwyGIuy/1MdY9JMpsvLi6Qt8ZvM6nDYVcUYRUdMNvn/wBAOhlT3/NxKmZXFxfIoj/cO0VQRXXVJUEAScsp07Kraiiio/H9nHuVgfhmmQM/VlRd2TuTH0a0pfPWoTLrl6Wb5Ty4Uk2PLHn1lf6FZ2Nit+913r2LWzFaezMNEYHYtw8dJ4yee+Uj51PdFIpTXGpmKMTESZCidJZzQy2RzZnIEsidgUGY/LRpnfRU2lj5oKL+4i17iaMC2LiekEP3jhCP3DN86EEuDw6UH++ukP+P1fu5fywBL7FT8GlN6jIQh47XYe7uigq7qK0VicVC6HLIkEHU4afD789sXtykeSUX7QfYyXBy/QHw+jWx+PesZqwaU0lKSkc9veDag2hbqmIK2dNfjLXEtiqKIk0tJRzaNf2kUmnePsiYHZfo3F0NReyRd/6Q46N9UvSGpEQZ4j1+tV18w6nIsFavFNDMwVEA25gOPocnFxYop93X147DY6KsuJZbQ8EZj5Tl85ezHfvFgeQAL6piO8fr6br+3aimlaXJqc4ifHzrC3s42WYL5uVxFFxmNxXjxzgUgqQ1tFkKFwhJfPXkSRRNZUFl90ysLKjCstzKJ9DU61gwrXY0wnX2Ak9tf4HXdil+tnVad0M0xSu8BU8ufYlWYCjj0YZgrz+vI2QZzT31Eq8kRDxrAMjoUPsG/ydULadEnPxfUwMOhP9rB/6nUckpMm11J9ED7dZksem42bmusxLYuUppHM5vL/13IksxopTSOt6R+b+tCNhoCCIKhYVg5NHyVnTqGw9Gz5FVgYpLWzs0cVruubUyWJMsdVEj6RHCCcSfNoRyddlXN9bGo9XibSSb5/6gR3NDZT51l9GXfDzPc2RNJpKtwuDvQOcnJo7BP7Ow+HY7x/eYC6gBe7kh/Hjw+O8trZSx/zlS2OyXiSE4Oj3LO2ragbe9bQ0EuY2wRBRBUknLKd3eUbccl2nhvZz5HQeY5FLtE+dYK7KrYtOOfbRBVZlMiZsdmyJQC3UnvDZZrzJObqtVmWPjue371n3ayHVSH4fU4eemDhftOFEIomyWRz+DwOdN2gZ2iaY2cHudQ3wVQ4STiaIp7Mks3p5HJGXiZWFFEkEbtdwe20EfA6qSr3sKapkq61dbQ3liPfIOWmbFbnrQMXOXl+aPGNVwEHT/Txg+eP8M9+4fZl92tYWKT0ENPZHlJ6CJ9SS9Dehio60Mw0IhKSoKzYRLbku1MzDM5PTfJqdzfjiQQ5wyy4kLi3rY1HOgtH90OZFH978TBP95wilP1kNLWtFIIglRSLr6wNcN/j27At4GdRDDa7QtdNLdjsCq8/d4yD714gHi0uL+ty29i6q517Ht3C5p2t2BYYJAB0M004ewqf2ok643psmjpJfQjLMvHZ5qYaTcsoSVHoCq5vtC8FyazGaDRBldfD7e3NKJKETZZQlvggGqZFIpvlzo4WWoIBTMvCME2ODY1yYmiMb+7ewaa6Ks6MjPPM8TOcHB5bkGhcP1AvF6ZlopuFiUZCO0M0/R7J3AXi2nFi2QPIYgBRUPIeEmYKzRgnq49gk+sYif31TK/N3OdVEtx0VPxhydd4BVfM+k5Hj/Hu5GtMZMZWtSckZ2lciJ3BJXtxSE4q7QsvOHeXf5WgrXHGyO3TCZ/Dzt1rW9neVIem62iGgabP/GcY+dd0g1QuTzyS2askpNDfiaxGUtM+UeU307EkZwcmuH3jfHMvSfIjS0E0PUk6d4a0dhK7vAZRXDyYdQWWZaEbU0RTLwAgCCqq3LjgPsmcRiKnFZ3AJUEknMmQ0W/c9zidSDGdSJHTDQ73DTMeX1r5oSKJ1Pi81Po9uFQVmyKTzemEU2kGQ1EmE6WXMRaDBbx0+gKPdK3FJisYpsnfHzhGbJl+GYIAXrudWr+HoMuJU1WRRGFW8ncgFCGWzq5q+EA3TbonprkwPlmUaDw/+h5nosvvMxEQkAURZab2XxAEcqaBIipMZsP8dOgdjoYvsNAc8bn6u9joa8W4ZpEPoAiuRYUtVgrDys5RuBIEebbqIOBfuGrF4VDp7FieAe+1mJ6RuL3QO84bH1zgbPcYAyMhQtHUos3V0USGcfLZP0kSOXCin8bD3WxeW8edO9fQ3lixqv0NlmUxHU3y/Fun0UtQpywFumHyyr6z7Oxq4ubNzUvez7RMxtKnOB99mansZTQzSbtnDx6lGlV0cCn2Ooal0+65C6e8MpGEkonGdCrFnx08yFgiQWsggEMpvFgt1lhlAS8PnuelgfP/YEjGUjDaO8Hw5XHauhoJVF6tyRRFAfsyTWmuhdNlY+P2ZiprfNx0WwcXTw8x0DtJNJwil9VRbTK+MhcNLeWsWVdH69oaahvKUIo0gF+LnBmjP/4MG4P/6ppXBRK5AeLa5XlEw1hh6dT15S2loKOqnDs7Wjg+OMIfvL6frrpq9q5rL6qCdn3JmSgIlDmdtJWXIQhXl6hTiRQnh8f4zgdHsCsyyWyO4WiUhoB/kc8kragczLIsjCIZjaR2mun0y5hWFrDQtUjR42T0PjJ6X8H3ZHF1mpAVUaUncYEzseMMp/sxV1DmUgwZM83JyGE8so/bK/biK+IKDtDi3rHq5/+oIUsiZS4nZa7iJW+WZaGbJrkZEpIzzFlCkjN0ND3/d0430Gb+zup6nnTMEI/8v7PE0xr9oQjnx4obRa42QvEUH5zrK0g0VLkBm9yGpg+gG5OEEk8hiQG89rsQl1gGmDNGGYv8dzK5fHRdFBy4bDctuE/A7iCZ1Xi95zLVLg8NXu+sLHZPOMwrly8hCQJu9UZ50sB0Ms1UIkXvVJjTI+MYi2Qz1lQGubm1gS31NQTdLrx2G4osIosSummS0XJMJ1OcG53k7Ys9nBoaW9UF+7nRSXomQ2xprOH40BgfXh5Y8r4+h52u+mp2NtfTWlGG32nHoaiosoiAgG6apDSNqUSKU8PjvH62m/5QeNXMCgfDUc6PTbG7bb6DN8CF2ADvTZ0s+fhXCIckSAiCgG7pGJbJUHqSofTCz9odFVuAfBWBgDBLNkxy3NiMrYVmJGb9gQBU0VOwzy+X09n/fjfnzo+QTmv4/U66NjawdUtjyRmE4fEIP3n5KENjUc5dHiORKk1MxDBMpsIJpiMJLvdPcrZ7jPtuXcvtO9qL9pcsFznd4PDJfobGIotuKwoCFWVu1rZWUVftx+u2o8gSWU1nOpKkZ3CKS30TJFKL97tGYml+8PxhujprcdiXNhaFtX7ORV8ilhul0bWT0fQpMkZ0hlAK6GaWwdQRah1dHx/RSOVy9IXDfH7DBva2tiEXIRSeIgPwSCLKm8PdjKY+mbWmNwreMjeCKOJwLz0St1QoikRdUzmVtX42bW8mHk2TzeYwDRNJElHtCh6fA6/PiaxIS86cmJZGKjeMck0zuygoYFmk9JEC21tYKyiBW0nT9BUEnA72dLTSWVlOz1SIty/2IAgCD27owOewI4oihmXNEoxoZm4ZkQCo8tzvSBQEVEmiyuvm/vVr8M40PAqCQGNg4UY+URBX1KxlYRUlb3777SjBlZc8rZaB32h6iKnsOBEtXJKM7VKR0GMcDL2LR/ayM3hbwf6VjxLvjnXz8vA5pjNzI8W/s2EPHb6KZaufLBeCIKBIEookUcBCZx4sK79UyRl5UpL/f56IpLQcr5+/vKpE45XDF1AWcLYdmY4xHi4sYGGTW3HZbiKZPYxpxUlrpxiP/AFJ+wHc9ltxqOtRpCqE64IUhhknq/eRzB4ilnqdlHaYfH+HiE1uwWvfs+A1b6qs4qa6el7v6ebkxBjlTid2SSat60wmk0ymkjy5YRNNPv8yv42lYzgS5afHzhBLZxkOF5e5rvC4+EzXOu7oaKYp6CfociGJQsFxx7QstjbUsrOlntfOXuKZo2eIZ0sX8LgWGV3n/Z4BNtZV8ePDJ0kuwefDochsbazlka61bKytosrrxm23FS03NUyTrQ217G5r5EeHTvHOxR5Sq+AnEstk6Z0KEUqlCS5A6kuFhUXOMsitIBCnim5EQcaY8fVJ69M3VBY7Y0TIGKE55VpOuaJgQPD5F09w+EgfbW2VeD124okML758klg8zT171pd0/sHRMGOTMdLZXEkeVtfDsvKZjiOnBxidiDI+HefhuzZSUbbyHodczuCtA5ewFmmW9bnt3LajjT03d1Bb5cPjsqMqUn5dYpikszmi8TQDIyHe/PAiB0/2k0oXfz5Ny+Js9xgfHO/j7l1La2afzvaQ1Kfo9N5Ls/tWsmZizn3kU+vojr9NbhWk8EsmGn67nb1tbfRFIkQyGSrd7oJlKcWa5E6GRuhLhDEWWZC2eYOs8ZXT4PITsDvxKXYcioIsiMiCuKK691LhVYuThHgkyan9F7h8coCcpiPJIrse3ErHtmYunxzg4CsnsTkU7vjcTuwzjUlD3WO88/QB0vEsOS3HL/z+Y7j9Tg68cpLT711AlETW7mjl1kfnN14XgqLIBCu9BCtXp2ZYQEISHWT0SVxKPZB3C8+ZceQC3iCiIKyopm8lZVdXMBaLY5gmLeUBav1eDvUPMx5LkJ0pcah0uzg3OsHNzfXEMhnevdi7aKRQFARqfB6ayvyYlsXO5nw/TiiZmq1HLgbLslYUdBKg6ELVobRhV+ZHgT8uRHPhVenHWArC2jT7p17HLXvo8u9AWaEk4UpwpRwioqUIZVOMpmNopsEvrbk5T2g/YaIggpDPsdlkGdt1M4Gm61QWKR8pFd976yibW2qKjtnhRLpouYEouvA67iWdO0M09QoWOTL6RbTkKPHM20iif0aNyo0o2LAwsawUuhnDNGPkzCl0Y4IrD6EsBqnw/hqytLDGfpXLzde7ttDqD/DB0ACDsSiaYWCXFZr8fr6yaTO31jfit6+eq/T1iKWz+fHJstCMwgvK9TUV/OLu7exqbaTM5Vi0VlsUBHxOO1saaqjxeShzufjOe4eJrJJb975LvWxvqmP/pf5Ftw04HTzS1ckT2zbSWObHoS7+DEuiSNDtxO+0U+314FRlXjx1kXRuZWTDtCwGQlH6pyMFiUa7u560UVpEfaUIqvn53ClXIgn2WaIR1S6jW5llScAuB1Gth5R+9dkB8KpNSAXKFl9+9RS/+st30txcjixJpNMaJ04N8u6+CyUTjaymk9VWP2ClGyaDo2GeefU4WU3nc/dtpqJs6f5d18OyLKLxDKcvzQ++Xgu308bdt3TylUd3UFXuRS4QfPG67VQFPTTXldHZUkVHcyVPv3KM6Ujx6p90RuP5t05xx4525CLmy9cia8SQBJVy+xqccgAJGf2a6gNpRmVsJUHjKyiZaNhlmXqvl5cvXeLQ0DA2WaZQqdsT6zfwtS1b5r1+MTpFKFP8S9tV2ciTbVto95XjUWw4ZTUfrRNFJCGfRs2f76OfvRc6o67p9J4ZRNd07nriZg6+eoKe0wM0dFRT3VRBXXsV/WeHyc6kw0zT5Kd/+iqbb19LXXs1COBw25kejbDvp4f4/G89QCqe5rXvv0/bpkaqm5dnUrUakEUXfnU950J/Qp37fmTBRVS7QDh7mhrXPfO2FwVpRQoYRpFehOVgIBTl+VPnGY7EEAUBj13l/vXt+B35wfEL2zfx1JFT/PZTL+B32llXU8GRgeEFjykIAm3lZTyyaS1vnO/mxTMXsCzorCrnkU1rF4yAGZaxoj4FQRCLGv7l+4I+Of0HHxXJuIKJzCjvTL6CS/bQ4Vl/wzMHxbClrJ5mdxlZQ6c7NsX/PPMWvYnpj+VaPonIGQZfvmsrapHyxZ7RKV4/VrhpWEDAprRS4fkVLCtHPP0WFjlMK05Wj1+zlQyIzOQAKaROJYsV1Ph/H4/9rkUXZpIoUu/x8pmOtdzW2EQql8MwTWRRxKWqlNkd2GX5hkpLmpa1YFZgY20Vv7lnFztbGnAoy7sWSRSp9nl4fOs6NEPnL/cdIrsKErQXx6f4Ly+8SThVvFcQoNzt5Mmbuvji9k2Ue1zLDhxKokhjmZ9fv/NmxmIJDvQMrrhRfjQaYyAUYVvjfPW+vdU3cWt56Y3NK0FAzS+CfWoLiuhGM/PZrYwRZiJ9lCb3fUirlJW+AtPKMZo6QDw3t7E5aFuPUqBkMZPNsbazBvdMxYbXa6clXs7+9+Yb+34SYAFT4STPvXUKh13h8b1deN2lBQ1M0+Ji3/iiBoNrmit4/N7N1Fb6Fn1WVUWmoSbA43s3o8gS33vuEJFY4WfKMC0u9U1yvmeMjR2Ly/uKggJY6EU8z+L6OJKgrEop+4p6NJ46fRqfzcYtjY34bIXlUddWFF4YT6QTpPTCqaD76zv5rU230eIJYpOWXuLzSYHDZae8toyWjfVcPjVAJpFBy+TwV3gJVvsZ7ZmY3TYRSRGejNG6qYG69urZzzp4cZSLR3t58TvvYOgGyViaWCjxsRANRXTT5HmcwcTz9Md+imFlccgVVDtvp8qxe972kiAhraA5bbH+jmgyw9unL/P68UuYWNy7eQ2P3bxh9rs7MzDG2d4x7mhpoqYsHwVy2VSqvO7ZnqGdzfU0BHyktFxeacbl4DNd6/Ku75LIns7WghONU1W4ubmB1vIykjOlBm6bSoV74eivibGiBbiIgLwEZRHT0sjqw2T1UQQsnOo6FGn13G4/iTAxGUj18s7EK7hkNw3O5o/lOjyKDY+Sz1LqpolN+oflBbNSfP2eHbRWBwtG8CDfnFhf4S+6vyioONQuavy/j0NZSzj5UzRjiKuRVguLhSZ5Ca9jDxWeX8OhdiGJS8vYCIKAS1Vx3cA+jFLRWObnV26/iV2tjdhkuSRZVlEQKHe7eHBDB/3TEZ4/eX7F15XVDXoXMRT0Oew8tmU9X9m5hTJX6RkhQYA6v5dfv+NmLo5PzTM4XC4m40lGIjFMy5pHfMpUL3zMt0HQvgm75Cc5W7ZscTH6E6oc23EK1au6XhpLHWYsdXCOb4dNDFBmW1ewmuHhBzbz/R9+yJ471+J02hifiPLBgcts3dLE2Hhe3timygQCnyxD3lAkxXNvnqI84ObeW9eilNBPkicaEwtu43LaWN9eQ0td2bJ+J7/XwaN3b2JoPMKr+86RzhYe55LpLO8d7VkS0fAptZiWQU9iP26l6mrPj2UykjrJpegb+NR6HJJ/yddZDCXPhLppopsWX+nq4v729qIlUmqR3o3UjPne9XDJKr+ybicdvopPhbV6IciqjKLmI0uiKIBA0Zo9u9OGntVJxTNYpoUg5bXHy6p8+Cs8fPY39iLMfA+BqqUZ+qw2BEHCpTTQ6vsFcmYMyzKRBBuq5EMuENVYcUZjkbr+3okQ75zp4d4tHXTUleO9Thu7ubKMKr8Hl10tmoZ3KAqt5XMX4OUzZEGAeY23hmnSNxHm/NAED+9YR1OZf5mfaWVEY6GMBuTN+KKZA4wnfkhKO4dpZVCkMpoD/3aWaEynXiWlnSXofBiH0jqjPPXxwyW58atlDKeX3jR6PQxL50L8NN5JH3urHqHCXrrKyT/hxuCurjakBRRe6oM+nrxjYU8RUVCxyW2Ue34Fr+MBktkDJLMHSWvnyBkjWMwNXkmiH5vcjkPdhNdxD3alfaaXY+lTn2lZTKaS9EXCxLLZgko322prqXB+tIsnVZZ48qYudrU2YJOlFXk/iIJAY9DPAxvWcGJwlMHwjfW8UCWJbY21fG3X1hWRjCsQBIGu+mr2dLbys+NnV2QMmNUNxqJxIqn0guILHxecciXl9i5iuX5yZp5UhbOXOBH6FtvL/wWq6F0VsjGZPsnF6I+IaN1cWzZV69qNU64uWB794ssnmZ5O8M7+C0iiiJbTSSayOJ0qP3/+GBawpauRf/Hb96/4+lYboxMxXn3vHI21ATauWb7hn2lZ9I8sTK7LfE46mitKaoz3uu185ZEdnL44Qs/gVEHPtKxmcPBkP7/0xK5FDQ4r7Wtpcd/KmejzDCWPkDGiiILEROY8mpnELvnp8O7FtYBX1FJRMtGodLv56ubNHBwewmu3UeVyo0rzpV3LnU6qPfPr3tSZEqjrfTPavEHqXf6PpfdiVXHd5Vumxds/OcB7zx1lcmia4cvj3P/1O+jY2sxD39zD83/1NqZuYJom3/zPX6C2tYrdj2zj+//teQRJwBd0841/97mP57OQJxs2KYBNWlyZSEJCWkH5SsYonm63LItYKkMqq7G9vY7aMi8WzBlYXXYV1xKVF5aKVFbjZN8oo6HizZgLQTM1zBXUOgoIC7ilW4TSrzMc/RZJ7dzsYsskN6NElUfOCDGZfBaQqPX+EpLw8Rv8bPJt54HqxwGB7/b/OWOZhcvXFkLO0jgS/gCfEuC2ir14lY+HmP8TCsNhW1i6W1Vkgktw/xUEEVkKIIk+bEoLftdnMK0MlqVhWilMM40gyIiiCxEbgmBDFBxIohtYXmlRQtN44dIF/v7UCaZSSQzLolCz1R/e9/BHTjTu7Gjh9vYmPHbbqiwsFUmiq76Ge9a18TfvH12FKyyOWr+HX7vjplXtA1Jlic9u3cCrZy6t2IF8Ip5kPJb4RBINUZBo8T7EWPogUa0HAAudwcRbZPUIW8p/E7+6puR7ImemGEq8w8Xojwlrl+Y0gdskP03uvTiKqBD95//4udl+RMPMi9BcD8cicvorgSQKqIpMRsst27zYtCxOnBviwIk+GmvL8LqWJ9hjWhZjkwuvD7xuO/XVpas71lX5uO+2dfzdTw+QLNAcblkW05EkvUPTdLZUFTjCVSiigw7vXnxqHX2JD5jMXkQzU6iiiwbXTbS6bydoay3olbZclHyE8USCP3j/PeLZLG/29CCLYsHehW9s3co/2znfVTdod+GQFeK5uY1VTkXJ92B8SomGN+hh75d3I8xE7nY/ug3LtLA5bey8v4uu29fmVaBkEafHgaLKbNuznrXbW2YjZb6gG1ESeeAbd5JJ5r8fSRKXJEX7SYAiqshi6Qv9jJHGtMw5tfaWZdEzHuIPfvYOw9MxJmNJ/q+//Dn15X4+u2sjd2xoIRRP8eyBM7x+4hJ1QR9f27OdTU1XI9un+8d490wvVQE3757uYXAqwr1bOvjG3dsxTJM/ef49TvSOYpgWa2rL+Y0Hb6Eu6KV7dIo/ef59Lo1Ooesm+8720lDu5wu3dnHTmoYlfaaskV6h5K+EKhaW4EvlLjOdfIF0rody14MEnQ8zlvg+yVljsjzctk2AQDTzHlWeLyHx8RENv1LGgzWfY5NvGy7Zg4XFF+q/wXf6/hcJvTQyB5A1M7wz+So+1c/2wG7s0o1r0l1taIbO6cgoPx84xenwKIlcFp/qYFOghgfrN7ClrK5glvelobN89/Ih7qpew+ebtxDPZXlu8BQHJvuYzCRwSirt3gq+2raDDf6aT2ymeGQ6xofn+/ncrZuWtH0+y+eevY8trBmd6isrDBEEViQrfWJ8jB+fO4PXbuML6zdQ5XIX/P46VkH1bTnw2m3cu66d5vLAqgblgi4n25vqeO1sN8OR0p/DheC2qdyztp2NtVWrPs9vqK1kTVU5R/qHMZe70rwGV7xLPqnwq220eB7hXPjvyJoRIO91MZY+zNsjv0ONcxf17ruosHdhkxYPuBimRlIfZSx1iKHkO4SzF9DMxBzvDBBo8z5GmW1tQWlbgOpqH8/89DBvvHWORCJDVZWP++7dwH33bEAqUt1SKprqytjcWUtHaxWtDeX4XA7s9rz0r2FaJNNZpkIJLvZNcObSCCfOjywqjZvVDN4/2suWtfVs37iwx871sCyLUHThe8blUKkMlt5wLooiD9y+nmdfP1mQaEC+T+b0pdFFiYYgCKiSk1rnFirtazEsDQsTARFZsCGL9pk12Mqf0ZJXrtVuN3/wwAOLKunU+wrf5B2+CspsznlEYzKd/FS7g0tSnkBcgeMaVuz0OOa8dwWqTUGtmM/ynW47zhsgg3uj4ZAc2JdhpHU9TEzSRgqXPHch3FTh5//z1Qd4/3w/T79/it97Yg+VPjdOW/6787nsfPG2zVT43BztGUa7zkRL0w0Odw/SXFnG/3H/LjxOO7puoMoy33vnKImMxh/96mMYpsnAZISg14koCLRWBfmdz9zOTw+cxjQtvrn3pvzvvAR1lCtIG6mSiYaAiE1yoBRpykpp54lrJwk476bO98+wy81Mp16at51drkMUbGT0QawbKDu7EAREbiq7lXurHiVoq0AW8lFuy7Jodq/hifqv8f2BvyBnlq4ekzISvDL6LF45wDpv1wKZoE8OErks3+85wl9ffJ+knsOwTCRRZCAZ5mxkjHfGunmydRtfbt2BS55L4pO6xlg6xlAqzAcTvfyo9ygnw8NkDR3DshAQuBib4AvNWz5xylfXIpbKcLpvbMlE43oICKyofqgARhNxVEnkl7q2cltjM1KR43/U5O2WtkbW1VQWLVkuFaIo0F4RZHtT3Q0jGpVeF1+6qauoJP5KoEgSt7Q1cnJodEVN7ZF0etFG9o8ToiCzxvdZ4loffYlXMWYkSC100sYUfYlXGEy+jSTYcUhBlOv6kTJGhMvx5xlJvU/GCJPUx8nqIQxLm2fOdwUNrrto9jyATfIXJYjP/PQwx47385Und+H12hkeCbN//yUskxW5g1+LrevqeezeLrasrcflUJFlCVkSrzHeE4C8dH1rfZBtGxrQclsYm4zx0rtneGX/uaIN1QAX+yY41zPG+vbqJXtSAGBBIrmwapvDpuAvsAZcDoIBF9s3NjC1L4GWm/87ZTWdC5fHl3g0AUmQkaQbG3QseQZ2Kgq31C8ezS12Q95a3czP+k4zkAjP4Sp9sRD98RDldteqD6I3EoO9kxzaX1gx5dOA+z+7DdcqkRq75MAmlX4sC4ukHp9DNARBQJYkAm4nHocNRZYIuB0ErlGIkEQRl13F7VCL3jtZ3eChHWvprK9AFAQsa8aF1mnn/PAkF4Yn2b2uiSq/Z1aDXpElvE4bDlXBNC2C3uWn+zMryGjIgoRLchd9ljRjAt0I4VLW4ZDbZmpn528rCT4EwYZuhgpOJDcaVfZaHq75PJ2ejbOeF1c+kyAIKChs8G3h4Zov8OzwD1bU0xLOTfP8yI/wKF4ana0fmxLVUpA1dF4dOc//OvsODlnhmx27+GzTZnyqg+lMkp8PnuKp3qN8t/sQDknhy607Ckaxz4bH+HCij0q7h3+/5UG2ltUjCgIDiTBHpwfp8FVSOO/80eBvXzu84Jg+EUkQin+yosi6aeCQFSpdbuxF1LI+akiiyM0tDTSULa5aUwrqAl421lbx4qkLK1Zwuh4ORWF3axO1gdWRXi+EXS0N/NX+wysiGuFU5hNNNABk0cHW8n+OicFA4rVZuVvIq0WZVo4cCTLG9LysXs6MM546RH6eMGfG2uLjbY1zF+sD38CnNC8oXf/a62f4T//hs1RW5vtENqyvo662jKd/enjFRMNuU/jyw9v5zD2bCPpdSNJClS8CggCiKCHLEjZVxu2s4Fe/eCs7Njbxlz9+jwu9hRu3DcPk1MVRbtnSQlvj0sV3LFhQhleWRJwOdcVO5KIgsGtzC299eKkg0dByBn0jodm1zYLXbJkk9AlCWj9ZI17QWqDRuePjM+yD/AeOZDK83dvL/oEBplNJnIrChqoq7mltpSNYXnRaK7e7+GzzRvrjYfoTVxtoDCz+8vwB1vgqCNjyi8hPQxnV5fOj/NX/fPnjvoySsfvudatHNEQndrF01m5ZFjE9SiU1q3I918LvtOO2qzNeH8Lsg/iZm9ZjV2W++9YR/ui5/Tx5+2aeuGUTsrTyey9PnOY6qy4HsqjgUYpPzJaVQxAkJNHJ4iFrC1agCFYKbKKd3cE97Kl6EJ8SQKCwiZggCNhFBzvLbiOSC/POxMsrIhsjmSGeG/4RX2j8RapstZ/IccSyLKK5DH92bj+KJPFk63b+z3V3zPY4+RQ7v9JxCx7Fxh+eeZs3Ri7SFahjU9n8ZsVT4VH21LTzOxv20O6tmCUVDS4/W4MeHJLElUjfSkuKSsFT+45z58biDeHhRHpZ5S7WbJmUiWmlyekj5MwpTDOOINjyPRxSA6Lkm5F/zn+ny7kPKpz5gFd/NMLGyqrZb+zjvJfaK8toKQ8UFVpZKWRRpCnop7k8QPfE6sozex02Hu5ae0N7MNfVVGBXJJIrsLtIZjVCyTSabqCW0LhrWObMOFfac3bFTPPK4r/QmCkgoIgedlb8HgF1DWcif0PWiDKfMFgFx9GlBJtEQabJfS/rA1/HuwjJAMhoOj6fc7Y3Q1FkXC4b2gILcNOyFn3ubarMb/7CHdx/2zpcTnXZz9+Vud5hV7hlazNOh8Kf/v27nL08VnD785fHGJmI0tpQvoxzWUV9gABkOU80VmPs2LqhAZtNLlgKlvfzSDMRilO1QJlW1ohzJvJzTkV+RtYobpz9SP1/+/iIhgX0hMP8p7ff4vDwMHZZxqko5AyTd/r7eebsWX51+3aeWL9hVlL0WgiCwCPN6xlIhPnupaNMXeOm+8ZwN//38Tf5V5v3ELA5kPjkkw3LsjD0T2/J12paHzhkx4pq4y0sprITtLvXrt5FzeCKSdm8+0mA+7d0cu/mDk72j/Jff/IWZR4n925ec2XHmRIfc46C2FLuS8uyiOqRksuBJEHGLRcfMK7IdOpGlLxvQOHHOqP3YZpJbHJd0Rrb1YQkSDS71vBQzRO0uNbk5XkXmXgFQcAte9lT+QBRLcTxyMEVkY2LibO8MvozHq17koAS/MSNI4ZlcjI0zEAyRJO7jCeaNiOLc8dLt2xjS1k9GwM1XIiNcyo8wsZAzbzPYpMkHm/sot1TMUeMQUDgwNhv45SrqPfcT5XjViTRjoi8ImPN5aK2zMe/efJubEUavs8NTvCjd44v6ViWpWOYceKZt4mkniOZOYxhzV9kCUjYlDY89rsIur+CItcDypIXf1urazg5Mcb3T58gqWncXN9AwG6fl5mxy8pHloFfV11JrX91lIUKQZgxJm1ZZaIhCgINAR9d9TdWEc4my7RXlBNKDi67IfhaxDIZ4tksQXl5DeGmZfIXl3/GTWXr2OBrwSaqy86oRnIJLsQGmNIi2ESVjb5Wqu3zJVEFQUBEpdP/JWqcuzg29cdMZI7N1NuXmtEREJFxK/V0+r9Io3svquhZ0v22bUsTf/N3+/nSF3dit6uMT0R54aUTbNpUX3SfWDzNdDhR9H1BEHjyoW3s2bWmJJJx/bEEQaCrs44vP7qDP/nuO0xMz19kT4YSjIxHyWo6dtvqNK+LooiirE5wwOe201AdIBxJFSRpWk5neCyyINEYTp2gO/42VY4NdHjuwSWXF5wP/OrS+lAXQsmrjVA6zd8eO8poLMb/uP9+9rS04lAUcobBuclJ/vLIEZ45e5Z6r4/bmpoKHkMSRH59w24UUeZ7l44wmo7Pfmk/6TnJiekRfqfrDnZVNqFKErIgIYtC0YjoP2ElWD2m4ZBcOCUXAkJJi0QLk+nswnrUhZDTDTI5nVQ2R1bXSWY04uksDlVetB74cPcQQY+ToMeF26bidzvmRN1UWcJtVzkzMMZYJI7LpmJT5KKLpmuRMpJkjXTJC2ZFUPAq/qLv2+QGbHIDce0oCe00LnUD1/6elmVgWlkmEk+hmVNUOB9FKqCBvpqQkLin8mHurHxg2epPgiAQUII8WPM5YnqUnsSFFZGNw+H3KVPL2VP5IC55aRPmRwXdMjkXGUMA/KqDRvf8yJEgCJTbXDS4AhybHmI0HcXE4nqNv3qXnwp74Wbl3TV/wmjqHfpiz3I+9G3q3Hupdd2NS6lHFFREFlaEWg381mO3ocrFfZE8Dhtr6hZuqs5HejXimXeZiP05qewxoHi01EInk7tAJneBqcTfUOH5FSq8vz5TRrj45z00MsyLly4ylkhwbGy06HZ/8cjj3NHYvOjxVgoBaKsoW9S3Z6Wo9LppCpaujlMIdkVmd1vTDVeUFASBtooyDvcNYaxg3Ehkc6SyOYLL/Kq7E8O8MPo+zw6/S5Orlt9b+1Va3cuTS9VNg3enjvHG+GEEBH6t7TEeqrkFuzRfEOTKfeyztXBX3f9kKnOGy7GfMZx8D8PKYFo6pmVQrERKQERAQhAkREHBqzTQ6N5Lo/seXMrySOEvfeM2/uAPX+aXf+2vUWck/u+6Yy2f/+xNRfeZjiQZmSgup7ymuYLbtrdR5lu9e16SRDZ11HLHjjaefvV4QUI6MBomEktTXaB/thSIgrBqwQhBEOhoruDMpVHMAiWCum4yGSpO3gBSxjROuYwu/+eodd5YE8qSiUYsk+HY6Bhf2tTFQx2ds68rkkRXdTVf27KFbx06yJnJiaJEA0ARJX59wy10+Cv41tn3uRCZJJHLYgGXolP8s33P0OIp49bqFjYHa2j3llPpcCOLIqIg5EtguFLnXeqnWR4kQcStFFYAWilEUSio077q55GEfBOVkv9PLGKitRCu1IFe76UhCRJeNYBDcpEyFr7ZC8GyrAWJhk2WCbgc8yas470jPP3BKXrHQ6SyOS4MT9JU7ufrd29nQ2M1qizhdzkKko6ByQh/9Nx+EmkNj0Plns1ruHND6+z7XoeN29Y1c2ZgnN/83z+js7aCr9y5hU1Ni5d3xXIRNLP0PL4q2QiqlUXfd6td+Oy7GI//gEHrj6hyfwHdjIBlkDNDxLNHmUz+jOnki4iCSrnr8RmpzxsHRVJpdXeWLDErCAJV9hoeqfkCTw1+h9HM0OI7LYDXx1/Arwa5qexWbGJhc9GPA5ZlEdUySIKIV7EXjbPbJAWXbMMC0nqOrKHjvK4p3CXbUMTChNohl9PqfYJW7xPEtB4G4s9zeOLf4ZArqHc9SKXzZmxS2apIGRbDppYaxAUm2oYKP1+9e/sCR7AwrSThxFNMxP+CnHGtFPKMK7ggcaUZFMvCQueKO7hlZWfIyQkagn+AItcsmtmodLnY29q26Ger99y4noNrEXA6qPF7ivoDXcm2lnJ/XylhkUURr91GtdeNKksrloq9Apsss6tteUo+paK5PJD/DlaQ0khmsyS1wso+C+FUpBtzpvQpqiXyJn/LRLndR72jEruokjE1LsUHmSpbT72z+Dxwdd8NBG3ryQWThLTzhDPnCWcvktYn0awEOTOJYWp5mWjBiUMuw63U4VfbqbB34VVbkYsoHC6GgN/Ff/r3n2NqOk40mqa83EPAv3BGKJbIMB0ubLIoCHDnTe001qwu6QWoKPOweV097xzqLrgoH5+KEU9mqK5YnWc73zOyevNOQ01Z0ePldIOpyOJrL0lQS/6tl4PSDfssk5Seo8nvL/i+327HrapLflDvrmtnW3kdP+k5yY+6j9MbD2HOMO/eeIjeeIi/n+m1tksyFXYXAZsTj2rDLimoooR0Dem4kWhw+/mXW+6a85rNrlBeucwbcuZSRVFAmEmryYrEwOWJgmRDViQUNd/cJEkioiiSz3TlP7VlWZhm/j9DN8jlDHKaPu9YgijQsqaadV0NtHbW0LymikBw+QvPaPYCkewZWnxPznvPrwTwKN7SiAYWY9lhLMssmMq7ubORmzvnT1g3rWlYUG52Y1M1/6WpcITmC7d28YVbi7N6QRBorQ7yX7/x0BI+wVxMa5NkzIXVKBaCTbRTbis+wShSgArXE+SMaUKpN4hk9gEmIHBp6l8AJgIyshigwf/buNS1nxizvoUgChJNrlYeqnmCZ4b+nnCu9DIOE4Pnhn+ET/GzzrsZeZl+CjcO+WCJRb6MaqZ9Yh4srFkfFqHIODdTFFjwLBYWhplFN5MYZhpFdOGS6xEFhZHUGwwmXqIz8E0qHAst9FcHlpXvE0llNQxz7meWpHzmsBBMSyOSeo7JxF/NkgxRcCKKHhSxElVuRpaCiKIz76lhxsnqfeT0EQwrjmFGAZNE9kOGw/+WhuAfIIsLL2C2VteytXr55l03CrV+L8EFvB1CqTReuy0vN7+M+1s3TYYjMSLpDJvr8u7SQZeTSo+LofDqqE957CrrqpfeXLsSNAZW7sWVyGoks8snGpcSQ1iWiYjAGk89fnX5c6uAQLU9SJnNx0h6kuH0JNFckuIFSNftLwiokptqxw6qHTvmvHdtVkNY5X49y7JIJPLmwz6fA7/PQTab97SwF/HPiCezhIuoQHncdtqbKvGuUKmpEAQBait9tDWUFyQak+FkUQnZFZx11Y5UX+0vSjR0wyQUKUzersAjVyMJCqFsL361AVmw5bNbN2BeLJloKKKEV1XpCYXINjVhu0aRQzdNxhMJkloOn21pDcZXJtk9dW0IAvzhyX0k9SI6wYbOYDLKYPLGupcWw8ayav4ld815rWtHC//pT7+2vAMJArIkYnMouDwODN3gjedP8Dd//CpaNl8OIMkiXp8Tj99JXVOQprZKqmoDBIIuXB47NruKJOUXGDlNJ5XMkohnmBqPMtI/Tf/lCSZGo8SiKTIpDcuyUBWJnbd3cN/j26ms9Rc01bEsi6wRWvDyU/owiVxhN2e/UoZH9jHOyPK+E/IDYSg7RVJP4F6gCfrTgsnMGGm9NDUdERG37MGzSGbApXbS6P9dnMoaQqnX0czJWQlbUVBxyM1UeX4Bn/1WpBU06n/UUESVTu9G9lY/youjT5PUizetLYa0meLpoe/yjWYvza42QPzIG6KvhygIVDu8mJZJREujGTo2af6wnNQ1ork0iijiUWwFt1kIydwgocwJJtKHSWi9VDlvZWPwt/GozehmmsHEy3RH/v4jIhowMBHmrZOXiSbTZDQdRZbRDYN1jZV8ZteGAvuYpLJHCSd/gqYPACKKVI3PcT9+12dxKOsQi0hqa8YY8dRrTCe+RyZ3AQudROY9puPfpdL7m4uSbsuyyJkmSU1DMwzssoxLVZFEEXNGlemKuMSNRo3Ps6CJ3P9690Me27SOjTVVSOLimQ3LssgZJufHJ/nuwWMIgsDmugcACLgclLtXh2jIokhHVTn2JZSargYqva4Vr+mS2Rxpbfl9dWOZaSwsJEFinbe55POXqV78iouR9CTTWoyUUXqw6losFJBYKcYnYjz9zGHOXRglk9H4sz/+OucujDI1FWfv3fOfa8j7PiTThTP+TbVlBHw3br4qD7iprfIXfC+WSJPJli6zfqNRHnAXJdOmYZJYRA2hzNaMQwpwNvI8aSNMpX0dNtEzL7jrVapRVrhmKPmp99psbKmp4bmLF6j3eeksr0AWRQzLYjwR57kL59FNg41Vi6f6ErksvfEQL/af4+f9ZxlLxVdUk/1xwO114PaW/mPEo2me+bv3+Nn3PpglGV6/k86Ndex5aDNbb2kvKeuQzeTovTTGuy+f5sj7lxgZDJHN6vzwL98lNJXgC790O7UNZfNKp0xL41z4T1DE4s1EKX246Ps+JYBHLp0kGJbBcHqATmVj8fNnNWLJDG6HDbfjxqf/SoFlWUxmx8iYpRENRVSpsFUvaUFsk2up8/06VZ6vktUHyRnTIIjYpBpsch2isLpu6R8VHJKTLf6biOWivDPxMhmzdNnJkDbFM0Pf46vNv0aVrfZj95WQBZFNgRpUUSaqpTkdGWV7cG5WzrRMRlMxeuMhquxe6p3LN2k7Pf1HmJZOrWsPm4O/i3xNc6cs2qlwbGci/eGqfa6FoOk6f/TsfnTTpLHCz8GLg+xYU8/ARITOhsIRb9NKksjsJ5U9DoBNbqbK99v4HA8iLjIJqlI1Qc/X8DjuYXD6d0hk38e00oRTPyXgegJVriu6r2VZRLIZjo2O8sHQAIOxKDvr6nl0zVrKXS4uh/OZ9yavH4dy4xyPr6DC48LnKB68OzY0wvmxSX7/vjvZUFO5oJCKZVmkczqHB4f59nuHONQ/xKObrgpweGw2/AucazmQRJFNdflssmnl0IwIiuRDukFjUqXHteIgQiank9GX7zcU1uJ5bT9BoM5RegbHozhxzsjEJ3IpssYnd9F7BX///Q/Asvjc49v5zt/uy1deCCJvvn2+KNHQcnrRBX1NhXfZDt3Lgc9jpzxQuPcjmdIKysd+UhDwOYo+23nDwoWzMeOZ84ymT5LSQxwL/ajodg/W/RdqHMXXYUtByUTDb7fzpU2b6I9E+L/37cOj2nCpKpqhE8tm8dsd/EJXF1trFk47h7IpXh28wF+eO0jfNeVS/5igaTqv/uwIz//oINlM/oHzl7l49Mu7+Pw3bsW2HNOY62CzK6zd1EDHhjp23tHBU3+9j9NH+9CyOq/89Ag2u8KT37yDsoq5TbIWOhOp/TR7v1j02JLgpJhUqlfx41fLkJAwSlC/MCyD/lQPnd7iN/iloSlePHiO2za2cPum1qLbfZxIGylC2hSaWVoKVhVtVNuLL4QKQRbdyOq6ks73SYVX8bOz7DZiuTBHwh+sqOelP9XN8yM/5vP1X8/L7X6MJVSSKNLurWBHeSPHpof4Se9x6hw+yu0uJEFEt0xGUlHen+ihNzHNnVXtbAwsX/Z5beBX8aqtiIJCIXZll8rp8H9jFT7R4jBMi8ujU/zdv/wyaS3HRCTB7z5xJwfPD3D08nDBfbK5HlLaSSw0RMFFmetJvI77FiUZ10KRaqgN/Gd6Jp5EN6fQjWnimX0E3V8quk9My/LM+bP86PQpTCwimQwem429LW0IwHOXLtATDvFbO2+h8yNwBw+6nXjtxYMqHpuNwwPD/LfX3+X3772D9dWViMwnG6ZlEUtneOdyL9/ad4i+UJgqj5u24FUxAo9dxedcnUWeLAqsqcp/Pxljiovhb1Pp3I1HacMmlaEUiKSuBH6Ho6iM8lKh6Tq5EvpTsrPqggIuufTgoyLIs2ajOUsv2Yfpo8SJkwP82Z98HdMw+c7f7kMUBVwuG+kFFr2GYaEXUex02m0oNzALpsgSdptCoXaerKZjLCBX+3HD47QXLZ0yl0A0vEoVa7x3L3oet7zycseSf0FJFOkIlvP/3XsvL1+6xMnxcSKZNOWygzubm7mrpZVNVVULdtnHtAxPXT7Bd84fZDKzcD3ZP2RcODXEcz88QDKRT40qqsRjv3ALT37zjgWbJ5cDURTZcnMbsiLxV//PK1w4PYRpWrz4k0O0r6vhzge6sF1TQykgUW6/mc7ArxU95mT6IJPpAwXfU0SFKlsNXsVfUm29Yel0J86z13rkE222thhG0gPEc6WX+DkkJ02uxZtR/zGgwl7FbRX3kNBjnIudRF+Bu/mJyCHK1Uruq34Mp7xyNZNELks4myJj6OiWSU98isxMBLI3EcKt2Gf6yET8qoMym3N28edWbPxKxy38v4+/yGsj5wGLe2o78Sp2Ilqad8e6eX3kAk2uMvbWraXNu7QFbUzrxbgmkxbNzjcUFQUFn60DWXQSsK1f8fewFAjk5w/5GsOtZEbDblMYmir8rGjGMFm9DwC7sg6nbeuyBQ0EQcCmNOF1PkAo8feYVppU9uiCROP0xDhv9vawvaaWL67fyNPnz5I1rt5364IVHB4ZJpJZnbKWhWCTZQJOx4LlRw9v6GQykeTo4Aj/9bV9/N69t7Ohpgq4Si8N02Q8nuClsxf5y/cPE8tkaS0P8MTmDXxh61VXdpdNxWNbnUyxJIo0z6hY6WaC/vgzDCZewK+upcp5O2X2LTjkGmxSELlICdyyzieJuGwqqRJKn65AMww0Y/mLe/ma+WolY9T1ClGfhI6yxeD1OhgZCRPwu7AsSCazDI+EqKwoXhlhWhZGEQEch01GkW/c/C8IAqoiocgyWm7ub6UbBsYqG1auJhRFQini8WJZ1oLeJQCV9rVU2teim1nSRhTNTGBaBpKgYJPc2CUfkrA6WdoVG/bVeDz80rZty97XtEzeGunmh93H/lGTDC2b48UfHyI0dbX2vGNjPZ/58q4bEmndsLWJm+9cy8hgiGg4iZ4zePYHH7JpRwvVdVeju6KgsibwywseyyFVUmYr3kBd7agnoJaXRDRMTEbTg8RyEfzq4mYxlmUxHUsxFUtS4XNR5nFiWTAZTTAWiqPpBl6njYZKPw41L+VpmCZDk1GmokkMy6Lc66S5qgzDNDnWPUx9hZ+RqWheASngpjboW7ZqxGC6j5heGtEQEPEpAartC2cFdSOKZkwgiS4UqfxTWyK1GAQE6h3N3FlxPyk9SW/yUkEn06Xi7cmXKbOVsyt4J+oKlTdOR0Z5tv8k/YkwaUMjqmWYyOSf6T8/vx+fascpKThklfvr1vGF5q3IM8+aIkpsL2/gdzbczd91H+Td8W5eGDoz2yTtUeys8VbwmaYu7qvtnOORsRAG4s+TyPUBYFgZMvo0dimIKNowrRxZYxqf2sH2yv+4os++XIiiyJbWWkZDcYJeJ5V+Nz94+zgWFuXewqTPMKPoRn4cUeVGFKk0M08BCZdtB6HE32NZOTRjcMHtR+JxREHg0Y61bK2p5ZWebrLpqxO432Ena+hoRukLyqXC57DhsdsWnBe+uG0ToijwnQ+OcmRwmP/++j5+7947WV9dATNj3uWpED85fpofHTmFaVlsrqvmS9u7eHB9xxzPK4ei4LKtzljiUBVq/fnFpiQ48Ns2kNEnCGdPE8qexC4FKXfspNxxMz51DQ65CkX0I65AtMJntzEZL31toel6SYpbHtnFZDYyo55YepApZWRIG/motF2yzWY3PsnYe/cGnv7pEda0V5FOa7z+5lm6L49z260dRfcRBApmFCAvXPNRZJwLnWIlHiwfFWy2wveEhbVoNsbCIq1HGEmdYDB1mIg2gG5lUQQn5bZWGlw7qXZsRBWdK/4NPrY7dyKd4Lm+swwvsaFbFkTciopNklElGUnIqz9/HGUP9S7/qh1roGeSi2eGZvsyAB7+/E3YV8lB8noIgsDNd3ay79XTRGck5S6fH+Xi6WHKK70oqjyznYhXXTiS7labcavNRd+vtNUQVMvpTV4sqecma2a4FD/LTcHbFt12Mprk9aMXGZ6Kcf+OTgIeJ6OhGK8euUjvWAjDMBFFgft3dLK9ox6HqnB5ZJpn3z9DLJXBMC1UWeKre7cR9Lr4V99+nq/v3U7/RISMlqM64OHJu7ZQV750udasmWU4NUCixAZmm2ijwdmMIi482cezxxhP/Ai3bROVridQ5aqSzvdpgCiItLk7ubPyftJjaUbTgyX3cxmWwUujz+CRfXT5dyCtYFEjAKoo41Pt+LBT7fDS6Svcn1boqbZLCvfWdtLhq+St0Yt0x6ZI6RpuxUabp5xbKlvo9FUWJBm1Th+3VrbiVex41avR4Dr3XnQz/4yPJN/AJpVR5diNTSpDM2NMpg7gVEpbsK8Eiizy5J1bCLgdeBw29mxu54dvHcPttPH4LYVLJS0ri2XlswaS6F5WydRcCMhicObfJqa58LNpzMi92uXCU2Uql4+Y32hvCACvw457kYW/KAh8fstGREHgrz84wsGBIf77G/v4/XvvoLW8jJPDY3z30DFePXsJu6qwu7mRr+/cyq6Wxnn3pU2WcSjKFbHgkiEI+Sb2K4IxDrmKLRX/ganUAaazx0nmBkjr4wwlXmIk+QZetZ0Kxy7KbF24lEYcchWSULwevRg8C5SYLQWabpArIaNRaffTmxzBxORCrJ+HanaXNJdPZiOEtXwjvkd2YltkHvgk4KEHNmGaJseOD9DWWsnpM8PcsquNW24uvpYQZ7Kbmjn/u05nciWVry0VpmWh5YyCvRiStHQFJsuysD6G5IdcxJbAsvKiTAshayS4FH+Ti7HXkAQFp1yGJKjoZobRzBnGMmfZEniSJvcuFGFlWcaSiYZmGIzORHsafPnFV0bXGYhE6ItEUCWJ9rIyar3egoPw4ckheuMhjAVoo0NSaHD7qXF6qHC4qXF68dsceJW8XrwsiEsuLbowOIEsiTRVBpBliVAsxeBkhNbqMjwuO7pucGl4iolIAsM0cdgUNjRV43XaAYtszuDS8CTTsRRBzUn/eIiGisCKdZFPHekjEbuadrfZFdZvaVxVveXrUddUjr/cjXhpxrPDgiPvX2LHrWtmicZSoBkxcmYUl1JYUtateKi01+KQnKSM5UeWNFPjdOw428p2IRXR9xcEmI6lePPYJcbDCR7cuZYNTfmF9lsnLjMWivGVu7fSVBXgqbeP89qRizRVBqir8PH9N48R9Dr5lYfuxKZI/D8/eZen3j7Bbzy6G8MwkUSRf/PlexicjPA3rxzirROX+eo9S8/ejaYHmciOYpSYPrdJdtrcnYtulzWGiGbeR5Ur4VNcZrZUyKLCOm8XCT3OG+MvMK0t39zxChJ6nOdHfoxLdrPGvX5JE0sinmZqIk4skiKbzVFW7sGVEnhcX0vruip8ARexaIrBvmmi4SQWFv6Ai/bOGlSbTCSU5Oj73ezYvQZRFPJeGpEU3edH2byjhV/p2L2sz7C7soXdlS3zXg/YrvbpnAt9i80Vv49XaUUQRCzLwq+u5cjEv6cz8M1lnW+lEBBw2BRcdhVFltjeXsfGpioiycxCnvH5e9sCMFcUbrTmGPwtTC6DDgcWFmenJllTFpx93bIsxpMJDg4P4bfbl6yuuBJ47Pk+yMUgCgKf27wBWRT59vuHOdA3yP94Yx+PblrH9w+f4MTQKH6ng3s62vj6zVvprCxciieKAraZ8oyVeGmICNT6rgqDiIKCT+3Aq6yh0XyccPYUU5mjRLPnSOqDxLXLRLJnsEnlBG1bCDq241U7cCkNy/J6sRfxGlkqdLN4Sc9C6PQ0cSh0DsMyOR3rZTwTotoRXHzHa5DUM1xODDGZjQBQYw/iVZbuUG5ZFoaVJWtE0K0MpqVhWjrWTAZYElScciU2yb+s61oMNpvC5x7fzmOPbiOVyuJy2QqqWl4LRZZQVbngYj+Zzi5aArQS5HI66Yw26z9zLVRFWvTar4VWgnDASrHQfFXIMfxaTGYuMpA4QJV9LRv9j+NX6xEFGcPKMZm5yLHQD7gUf5OgvY3ACt3BSyYa0UyGH5w6RaXLxS9v24Zhmlyanubbhw9xanwcp6pyT2srv9C1mSr3/FraS9EpQtniSjxrfOXsrmpmd3UzXWU1VDiKS3ktBac/HEV1yNyxqRWv087B8wMcuzTMZ1rXs66hinP94xzrG8Z1pVkyATdvaaSx0o9umHx4rp9kv4ZXtpOO5PhZ9AyP3bqB5qrFy3oWQn/3OJlrmnbKKjy4F1ATWA2oNpmycg+yKqPNNJ93nxtBX+Zkksj1Esocp71IE6mAQLOrjaCtklSqd9nXaVg6/cluJrLj1BRpiE5mNN491YMoCjy+eyMbmqoQBIFsTufyyDTprMa5gXF6RqdJZDS6R6dJZjQyms6p3lHu2tzGe6d7EUUBRRY5einfjGpTZHatb8KuylT63aypK+fS0OSSr920TLrj55kqweEc8t+dTwnQ5Fy8P8Mw05hWFlWqQhFXdj9+WmCXHGz230RCj7F/8g1ieqTkY01lx3lx9GmeqHfR4GxedPvxkShvvnySWCRNPJbG47Xj9joZ6p/i4Sd2cNMt7YSmEhw72MP0VBxDNwmHEnz5F2+nc0MdsWiav/ij12hur6Ky2kcuZ3DicC8vP3uMDZsbUZQb43GS0PqwS2XIggvdShPL9Xwshd85w+B7bx7lm/fvxGHLlzGKgsDQZITzgxN89Z75Erui4EISPOhWFt2YRjejKCzPtTgPEy3XA5D3lpEW7nfpDJbT6i/jlcuXiGtZLoWmSedyvNp7mfFEggPDgzy8ppNaT/Ea9NWC26YWNeq7HqIg8FjXeiRR5Fv7D7Lvcj9HB0dJ5TRqfV4+s2ktX96xmSrPwn0uqiShSisjGoIgUO2b//0IgoAieah07qbcsZOMMcF05jjhzAliWjfJ3BCjqbcZS7+LR2khaN9OwL4Jj9KKU6lDFlwLzpPFslBLxRUDw+ViS2ANPx58g5SRZSIT5ucj+/lS4168ytJ6wTQzx8lIN8fCF0kbWQQEWt11SzL+M8ws0Vw/idwwKX2MuDZI1oygm2l0M405Q7KdchXt3seodu5c9udb8PyGSW/fJOMTMXI5A4dDpabaR31doGhQ2K7KuOxqQTnWiekEiVTpwh+LIZbIMh0pvA51OVTUZYzFydRqe24sjoXWbIutl2O5ERCg1XMnZbbm2dclQaHasYE2z12cCP+ErBEFPiaikdQ0Dg4PcV9bOwDRbIa3enu4FArxufXriWayHB8dZX1FBQ+smV+fN5FOkCrik7HOX8mvb7iF++o6USXpIymPujCUz1b88gM76ayvYCKaoNKfH4TT2Rzff/MYe7et4ZFd6xkNxfi7Vw/z5rFufvmBlT2o05Nx9GuYvMvz0bgW253KHFWOydHonJo+yzKIZM8ueIxw9gwpfWGfjHpnM9X2OkbSAyWpZiT1BMfDB6muebygXGEirWGYFn67nclIgkRGw+OwYZgWpmkyEUlwrn9iNsW4vb0er8uOYZiYlsXARJhkRpt1mL+ja2ZhLzD7/Qjko3vLaQyL5sL0pbpLLptSRZV291p86uKOqKJom/EQ+IefzbgWXsXHjrJbSehxDofeKylrBvl+oP7kZV4b+zmP1j1JhW3x0rNMOsf6rgZMy+L4oR7ufrAdyzKZHI+SzeYor/Bw36Nb8Pmd6IbJH/6Xn3PyaB8tHVU0tlTQ0l7FB+9c4LEnd5LN5Dh+sJedt67B4bwx5RH17vsZSb5JJHseRfKim3GSuWHq3Q/ckPMtBN0w+eBcP7/12NWSSFnKO3ofvTxSkGjIUhBZqkQ3p8jkLqHpPdiV9mUZT1qWhWmliKXfBkAQVOxK8dpxgHqvj8+tXc/T58/y6uVuJlNJDMtk+NRxgg4ndza18FB7JwH7jfemcS2DaEB+3Hpk41pEQeAv3jvI+fEpbLLMXWta+NVbb1pSdkSRpDl9G6VAFASqfQsTGlGQccq1ON211Dj3kMj1Ec6cIKJdIJkbIJUbpjf2FMPJl/GrGyhzbMGnrsWndmKTAgXvg5V6dpRKNNa4G+j0NHEscpGcpfPq2AHcsoPd5Zuoc1SgFOm1MC2TaC7JmWgPL4y+T3diCIBym4+13iZ8SvHv0LR0QtkLTGdOM5o6wHTmLFkzXHR7jxKZWUAujEj2MrFcP+asJ5NMpWMrNslfcD4+cXKQ1988Sy6nY5gmkiTi97m4+661rFtbuNfQ6VDxuOyMT8+fKwdGw4QiKUzLuiHliVPhBCMTkYLvSWI+g2qa1pIqTCZCi8/1q2nbYFmQyRbOogjClTG1OExLR0QqWhaliq6ZMXPlNWElP4k50ySZ1WgNBLAsi6FojIPDw+yqb+Cb23fQEwrxvw8foi8SKbi/ZhoFy6ZsosQ3193MffWdyzalWgnWNVZyYXCCt453c35gnHVNVdSW5SMIsVSGM/3jbFtTx88/OENG04mns/SMlu5UfAWZlDZr+gR5o5WPAoZuzqk+SKXmpg9NK8eF8F/gVIpLq6b0EWyLOOu6ZQ/Nrna64+dKagrPmlnOxo6zs+w2grb5MmtlHic7OhpQZIkPz/XjczvYvb4ZuypTV+6jzOvk8d0bqa/woeUM0loOj8OWV0GpKmP7mnoeunkdHoeNZEYjO6M8kdMNTveN0VRVRiSZYXAySmPl4ot+yC9oLsbPMpwemE1VLxcOyUWXf8fiGwI2qRabVEPOmEA3IyjS8tL0n2ZU2Kq4JXgnCT3G6eixkmVvdUvnbOwEPiXAvdWP4lX8C27v9tjxBZwYukltfRm+gBOny4ZpmDNRJoHR4TDnTg1imRY5zSAeS2OZFoIA9z2yhae++x4PPLaV8HSCgf4pPv+15ZVMLQeNnoeRRSeR7Dky2jSy4KTSeQu1rsXlDVcbAvmyhGxOn/W/MS0LTdeLSpKqciN2pZ1M7iya3k8s/RZ2ZS2q3LyMwIxONPUySe0QAKLoxm27dcE9REFgQ2UV1W43ZyYnGIhGSes5nIpCq7+MDRWVeO32jyQx5FIVHMtcPAsw0+Qt8rcHjnF6ZBzNMPIls0uAJIoLKkcu6RoEqHAvXdlNFh34betwK814tQuMJ99FNxNkzRBZI8R4eh8T6Q/wqK1UOHZS6dhNmX3LvD6OlV53qURDEWU+W38nvckRIrkEcT3FU4NvcDkxzCZfK9WOcryKE5uoICCiWzopPcu0FqUnMcyR8AX6k6OYWKiiws1lG1jjbkAWCy8cs0aM0dQH9MReYDJzDMNavch6KHue85EfktLzmXlJVNlR/rvUOncjFegZeeonB9m4oY7t25qx2xRC4SSHjvTy0iunihINj8tGwFe4LCwcTXF5cIrNa+vwuFe3PNEwTIbHo/QNFzYmjsTTnOkeZW1bFWW+he9fy4K+oYXXN4ZpkVtFXw7dMIr2rwiCgG2RMniH5MewckxlLxOwNaGKV3+DjBFjPH0Om+RasVkfrIBoCFxxQ4W0rnNuapJ4NsutjY04FQWHoqCI0myz3PVwSgqKIJK9Lspd5/Kxq7IRtchDVfL1CgJYV0t7szOM+wo6Gyp58q4tHLs8zOWRaY73jPK1vdvobKjEnImOh+Pp2RRyS3WQpqqlLTwXva5rEJqMk9N0LMu6YZkNQzeJTCfQr5Fzu/5UFiaJXC/1nkeKHkfWnOSMxV1j293rOGE/VBLRsDCZyIxxNPwBe6senfedyJKI26Gypa2OWCrDgXP9eJ02trTVcdvGFt4+eZmXD53H7bBhmCa1QS871zbiddr5/O2b2H+ml5/uP40siRimSUd9BZ31lRimRe9oiGf2n2I6mkTXDW7d0Lyka47kpjkfP0VYm1r254W8G3i1vXZJZTwALnUDfvttJHPniWWPEHDcgbjC5q1PE+ocTdxWvpeknqQ7ca7knpismeFQ+D08ipc7Ku7DLhUfYEVJyGe5BJDkmV6xGeUU07TY/+ZZhgen8QdcqIpMKpmZs7jbuKWRH/7NPs6fHmZ8NEJNXYDahhtX9iYJdgK2DTjlGnQrjSzYAYG41kuZfWVmTMu+FklkU1M1P9l/ijs2teJQZcbDCQ6cH6CzvnADvSrV4lS3Es+8h2FOE0u/hijY8bsex6GsnWkOLzZeWmj6CPHMO0zE/hzLyiCg4FS34LRtXvR6BaDc6eLOpvl9MIZp0hsOUe504V0lKdhicCgKNlnmvZ5+zo8vpYxTQBIEVFlCEkVagwHOjE7w+vluAk5HQTO+tvIy7lpz1ZNIFAor8iwHAgIB59IWK5ZlkjVCxLRLRLXzRLJniWkXSemjSIIdv20DNtFPSh8lkesjpnUznTlGk/uz1HkeyJdTzdwHK+1ztGaIRilz8bZAJw/X3spPh96ZUY/Ksn/qBIdCZ6mylxFQvTgkFVEQyZk68VyKiWyYiJaYVdKTBYlNvjb2VG6j0l54rZHSJ+iJvcDl2LMk9TFW1rY/H35bO6rkJqJdzL9gwkjqA4L29TjF+c/q0EiYf/P7j+D15H/vpqYgTqfK33z3vaLn8HkcVBYxI7Ysiw+O9XDTpkbWtVWv6pooFE1x+tIIEwUyKZD30XjtvfM01AS4Y0c7TkfxDKBlWRw5s7CCnWGYZFax3yQSSxcNGEiiiGuR7HjQ1oZHqaI7/iYZI4JHqUESZHQzS1gbYDB5mBb3btzyyv2BSiYaNlmm0u1iX38/mZzOG5cv0+z3s7Umr2KS1XWyhl40qlDv9uFR7WSvk7YN2l0o4uqXS7nsKtFkhlgqgyKLXBiaJJa82oQ9EUlQ5nXy2C0bmYwm+NfffoGz/eOsbajE57KztqGSrtYa9mxpRxJFEunsqjzSbq8dSZJma+1i0RR9l8bpuqnlhhGNseEw0xOxOSY5Xp9jjl+FgESd+0Hq3fcXPc5UupzpzJFFz1dpq6bFtYbhVD9JI7Hs600bKU5EDrPeu4U6Z+Ps61UBN7duaKax0o/HaeOOTa34nPaZMimLzoYKZFnkbN84oXgKRZYIuJ2zpQC71jXhsClcGJokmdZw2VWC3jyrt8kSW9fUMTIVw+92cMv6JtY2Lu5yr5s6Z2Mn6U1cKtlgSRVtbA3sWrLkqiKVE3DeQyY+wkTix2j6CA6lDUlwFW0Od6nrEIVPppv6ciEIAq3uDu6o2EvaSDKY6is5k5TU47w39SZu2cvOstuQxeU3lOo5gw/fvUDX9mYefHwbhmFy8ljfnG1sDoU77t3AW6+cJJs12HP/xhtaMjmR/pCR5FsIyKT0IRxyFWl9ggrHTR850ZAlkcd2b+SZ907zzP5TCEK+nMrjsHH35sI9SaLowG2/jaR2hFjqFXRzilDyJ2T0y7hsO7DJLShSJaLgQhBkLEwsM4NuhsgZw6S1M8TSb6Gbk4CAIjcQdH8dSVxZb0VKz/H0+bPc39pOV1UpPSNLh12RsckSr57r5kdHTy5pH0kUUWUJmyyjiCIWFuF0hm+/d6jg9o9sXDuHaAiCsOIFuyCwqPGfYWZJ6UOEs2eIZM8Qzp4mrvViWBkcchVVjtsI2DcRsHVhkwIkc0OEsyeZSL1HLHuJi8Zfo8plVDlvm3UbX6oM9EKwLGtWZno5kAWJx+puR0DgjfHDjGbyQaesmWMgNc5AanzB/V2Snc2BNTxaextrPI0FP0vWiHIp+gyXos+gmaXL6C4Er9KEV2liKnMacyZTMp4+TIfxBA6p4v/P3n/H2XXd573wd+1+epveCwa9g0Rh750SVShZsuUix3bs2M7Nm/heX6fdm7w3efPGjmPHTnFVbMuiLFONlMTeQQIEAaL36b2eOb3sdv84gwEG0weDQkUPP8QHOLusfcreaz2/8jyznlm7djRy6FAnmzfVomkKiWSOc+cHWdNaQSKZA9dFUWV83stzTyTopbo8hCyJOZvvz3WO8N7hdqrKgkTD1+55BCUScfxcPx8e61owu9c3NMl3XjmGz6Nx25bSemHu/eIcO9O34JiWbZPNFZdcirUY+ocn5ycasljUUT2k1bA++Bhnky/TkXp3RiZMk3zU+XayJvgAhrx0pc35cE3O4A82t/DcyRMcHxrCo6h8buMmYt7SQm00myFdLBLzzJ0S21lWxw88Zxi7imikzPyK0pWLYWtzNa8ducA33vyYsM/DRCpbqsGbwunuYc71jZSyHpQWsWvrSqU6HkPjC/du4/CFPnpHJnFcF4+usmNNLRH/taWVKmsjaLoyTTQc2+Wl7xxm3Za66yJxa9sOB94+y8jQzAdTdX0M+QpjHEmoNAU/t+C5/GrDksyVFElha3gXF1Kn6chcYLlRFxeH4fwA74+/yVP6s3jk0m+qKhqkKnq5Qa4s5OPBnW0zjl1bW87a2rmdLWVZYmdbHTvb6ma8Hk/lkGWJtppy7t+2ZlnX2p/r4fjkRyvOZggEVZ5aNod2LPmYZP5DxrMvY9ojZIpnSBePo8s1yJKP+abItrL/hCZfu+PnrQJZyKwLbCFjpXlt+EVGCoMrPtdkcYJ3Rl/BrwTYHNq5bMNISRK0rquiv3uc733zQwxDRVUVpCsUTISA3Xe28dbLJ/D6DDZuu7Zmu8XQmXyeoNpKSF/P6fiHNASeZjx/7LotUBaCLElsbarGo6lc6B8jXzQJ+z2sqyunvnz+LLGuthD1PYtlj5IpfITjpkjn3yFT+BBVrkSRy6fItQKug+PmsZ0JitYgjns586rIlZQHfgm/se+a30umaHJsaJDba+YvMV0tGKqCpiiEvQa14cUbg+dCmbKwctHVmYdLvWvXBCHmzJ64rovppEgUzxLPn2CycIpE8Sw5awhJaPjVRiLGNiL65lI2Tq1DngqOBLQWYp6dRPVtnE/8BfH8CfpSLxIzdiDL2tSwN8/iTghBUPHxubr7qPWU8XH8PKeTnQzl4/Oa+AkEAcVLs7+GbeE17IluoslXPWfJlOPadKdeoSP5wpz3sC6F8Kt1eJQyFMmL7eTozby17PehSAYhrQldCpGzS1m0jDlI2hwgqDUjM3PhnUrl+eu/fZ+1bVVomkwymaend5yamgh//pfvANDSXM4zn7qs3ugxVGorQ0TDPkYnZgciC0WLl989Q1nEz8N3riewyAJ6MVi2zfmuYX741km6B+bvY7mEE+cH+JvvHyKezHHXzhbCQe8MohBPZnnuB4eJJ3MLnse2XVKZPMlMnnDg2suRegfjM8rur4Qiy/OWo12CJBQqPRvxKjHGChfJWKPYrokiDIJqNRXGWgw5vCr30YqJhk/TeKytDZ+mEc/naI1Gub22tGBzgYjHw/3NzdMZjquxIVLJvqpGejOTJIqXMwt96QT9mQRlhm8GEbhWbG2pRpEluofjKLLEbWvrSGYL0w3fNbEgiUyebKGILAm2tWxmw1QEW5Ul7t7SQshn0DuWwLIdYgHvvOZSy0Hr+moMr0b2CsWFQ++e560fneCRZ3Yiy6v3sHQcl5OHu3jv1VMk4zOVFtZtrkW5QmFBCAmPsnCEzlDKMZZoT19j1LM2sJHh/MCKshp5J8epxMc0elu4LXrn9XcLd6f/WDIS5iQfTx6gM3NxxUZyqqSxJ3bPoj0CVyJndTCZe2Pq+NJxpj2Kac9fXuG6K3fMvVWhyzpbw7eRtlK8M/oKk+bctbeLwcFhKD/A26Ov4FP8tPrXz9geKw9w2941RMr8OLZLtMxPJOZn155WNF3FFzB4+KntnDvZRzZbJBzxsX5L6dmoaqV7TAhBJOpDkiQ2bavHv8r1x1cjY/axOfqb+NQGLib+mlrfg4S0tRwf/93rOu58kGWJ9fUVrK9fPEt4CZLQ8Ot7cQMOkvhrMoWDOG4G181TtLopWt2LnsOjbSbm/wph7zNIc7jeZopFBtIp/KpGdSDAeC7LYGr+Js+hTJpE4fqp4lyCADRFQZUlHlq3hrXzSNJeK2rnUoe6xnMKIGhc/n07rkXOGmIif4x44QSThTOkzQ5MJ4UqhSjz7CFqbCeibyKorcWQY3M2e6uSnwrvnWSsPtJmNxOFY9huYca4NxNCCLyKwX0VO9kUauFCqpeh/AQjhTgpM0PBMbFdB1VS8Mo6ES1IlRGlwVtFo68KvzL/YjReOEdn6ofk7ZnPOEOOUeu7mzJjEz6lCkOOIksGGXNgRUQDIKS1YCjRaaLhYjNZuECFZyeyPPMe2rSxlnVrq656bWZvRjQ6c90khKC+OkpLfdmcRANgcDTJ8y8fJZ0t8uhdGyiP+leUFcgXTE6cG+D5V45y5HTfnLK2c+HEuQEmkzlOXxxkQ2sV1eUhVEUmnshw+FQvr71/bknnSabzDI4kVoVonGkfmtcrQ1EkKqKLZ2slIRPSaghpC5sCXytWTDQkIajw+/nsxo04rjuLFLRFYzSEQvjUuevE/KrGZ5u30Jue5O2BdnJTzqppq8i3Oo7RFIgS0VdP5tXv0dm9voHd6xvm3L62rnw6gzEXPLrKng2N7FmVq7mMzTuaiJb5iY+lpvtHMqk8f/+1dykWTB58ajv+4LX/KAv5Ih8f7ODF5w7SeX5whsKUqsnsuqMNbR6XyfmQNQfIWgOUeRZvWlYklW3h3ZxLnaIrc3FF6guT5gT7x94gpEZYF7x+5R4eXeUfffpOwsvIVuXsLMcnD3Fs8iNyK1Q/EgiqjTq2hZbWBH4JIWPfsmVtlSlC8uMGn+Ln9uidpKwEH46/uyJSCyVp5a7MRd4ZfRWP7KfGcznrFY76CF8xWdY1lprvQ+HLz5a6hhh1DXM35btTJPbiuSGKRYt7Hty4omtcDlQpiOlkABdF+IgXziIJhby1sszbzYIkeQl47kaVYyRzb5LKv0PePIPjzi+VDhK60kLAuJuA5wH8xh1IYu55qSsR50+OfMTOqhp+btsOjg4N8j+PfTzvmbOWSU9y8tre1BKgTsnMCiHYUlPJlppPjimnJMQMBaiCPcapid8nWbxI1uwH3FJ5lPdeosY2wtoG/Foj6hLK2oSQCOsbUISXvDXCTXFNWwSSkKg0olQYEWzXIWVmyVg5TMfCwUURMrqsEVA8eOXFVSdd16Y7/SpJc6bYSFhbw9rQF6j27sGrVM44j+3k5zrVkuBTa9ClmeUzSbMb280DMzNrdz7WylghSZkeosoTXvIY9dVh1jVXcuRU77wNzp194/z9S0fo6h9n95ZGdmysmyIciwcdi0WLjr5xDh7r4oOPOzndPjijdHwp6B2M0z88yYfHuomGfSiKRCqdp3cwjrVEEZ+JRJaL3aNsaL22Mst8weTkVeu4K6GpCtUVi2c9Xdeh4KTIWOOYTn7OdVlUa0KXry2ofs2yTkKUGs5mvEapcc2jLlzf3BYq55fW70GVZN7ov0hmSu72pd5zRHUfP9O2kypv4KamQK83KqpD3HbXWgZ6J8imL0dj+rvH+dZfvkv72UF23dHGhm31lFeFlvVZuK5LOpmj49wQRw60c3j/BXo6Rma4kANsvb2ZprWVyzKnAcha/YzmDi2JaABUG7VsC9/OWGGElLX8kg3btenNdvH26Ct4ZC8NvpbFD1oBDE3hmTuXTmSKTpEzyeO8P/bmin0zAFRJ5Z7yhwmoy6uJ9Kpr8KrLK/H6cUZYi3JX2YOkrSTHJz+isEIlqqJT4EzyBD4lwMOVTxPRVkfNq/PCMK+8+DGJyRz3PryZmobFSeKFVBfvjh0ipAbYHd1GvXd5jt41/gdwhYOLS7XvXs7E/ysSOmWe2VKytzokoePVt6MpjfiNOylYHRTMTkx7CMdN4bgFBCqS5EWRytHVJnSlCY+2EUWqXPAZ6lM12qIxqqf8JQZSKfrTSXbX1OGfQw42kS/Qn1xcEONaUZKZ/WTKV+uqMiP6bDopBjOvIwmdkL6eMuN2osYWAtoavErVvCRwPghkBAJF8l175/p1hECgCJmIFiCirbw3KG0OMpY/MRU4KMGjVLA5+lVqvXcjCXVV10weOYYqzWzWTluDs9StDk+0c3iiHV1SKToWO6Mt7Iou7gMF4PfqbF5bTWNtlIvd82fix+IZXtt/llMXBnn7wxj11RFqKkNUlQXxejQMXUVV5JIRX8EilckzMJKgdzBOV984Hb3jxJMLBSUgHPTg9+pMTGbJ5me+R8dxGRpLMjS2snt+PJ7m5IVBHty3bsHm8sVw4vwAIxMp5kvI6KpMY83C84rp5OnPfkxn+j3S5giWazJXFcddFb9Oudw2+wTLwI3Tj50DkhBsK6vh19Q7aAuV8d3Ok3Sn4ySKeZ67+DHtiTEeqFvDrvJ6Gv2Ra5aruxUhyRIPf2oHp450c/pozwyGOjac5PUXjnLmWC81DVGq66LUNsaIlgcJR314vDqqJqOocklC07Qp5E1SiSzjoymG++P094wz2DNBX/cYmdTsqEY45ufJZ/cQDHlnPJwc12Ik9z5V3nswnTSDmddnHZssXsRyFr5pr4QsKeyM7KUrc4FTiaOYKyjfMd0iF1KnUYTCAxWP0+S/thvgWlGw85xKHuWN4R8ykOvjWlQ/Nod2siX0yVv43YooN6q4r+JxUmaSi+kz89ZFL4acneHY5CECSpB7yx/Fq1x7uWQg5GHDljp0Q2PjlrolReSG82O8OXKAGk8Frf6GZRONOt/DSEJHIFHjewBZMnBdm5ix9F6gWwsCRY7il/fgc3dhOwlsJ4Hj5nFdCyEkhNCQRABFjiFY2uKrNhDkp7dsQ7tCg359rJyf27pjuv/wSgymUnRMrqxEbzlQZWlRXfxbFVcHHGXhpcp7H2We3YS19fi0RnQpuuLFsSwZxDy7EMgo4vr7mdxsTBTOkLPGuXKuaQk8QbV376qTDCgp1ulyEEmoOFNzdt4am/77Jbw6eIz7KjcR0fyMFhK8OXxiyURDCMHGNVXs3FhPz8DEnC7hl2DZDr2DcXoH4xi6SjjgIRQw0FQFVZGRZYFlO5imTb5oMZnMkkjl582UXI3t6+vYs72Jl989w7GzffMu5leComlzpn2Io2f6uGPnygKlpmXzwhsnyeXnXj9JkiAW8VMWXdi7ZrzQwenEi+SsScqNdRhyADGHF5cuX7sZ6U0lGlBKK64LV1Bm+Nkeq+W9oU5e7DnNYCbJq/3nOTM5Qp0/RLnHT603SIUnQNTwEFQN/KqOR1HR5ZKihiIkxGo0ry0CVZKIGaujfgClRuxnv3o3f/Iff0R/9/iMukHbdujtHKW3cxTdUAiGfXh9OoZXQ9UUZFlCkkRJVnNKw7+QN8lmCqQSuZKspj33nWJ4ND79pb1s2dU4oz8DSg3YqWJHiWjYKTqT3yKiz4zyZ61BdDm8rPca1qLcWfYgg/l+hvMLm/3Nh7yT43TyGJZrcq/zKGsCG5CXYdy1WshYaY5PHuadsVcYyPasuC8DIKRGeKjyaTyLNGv+uOD9M13c3lbyP4FS9i1vWlzoH2Nr8/IW0XNBIKjzNPJQ1dNk+tL057pX/P0kzUk+nHgPvxJkb+we1Dn045eD8sog9z58Y5WejCskCnU5Sr3/CcCZs0/hkwYhlClDv2vPOKmyTOQKWeMqv5/tldU0BEN458hoCMCjXP/PUJFX5mdRsCyS+QJFy15SCMSrqkR9q7tYv9o4z5BjbIj+Ol6lBkW69uedV6lhTehnEUJGkRZeXP04IFHsxHQul4Qqko96//0oYvVKza+EEAJV8iGh4lBa3BadDO5VqoqjhSTbI83oskqNGeEH/UeWNU446OWu21o52zHE8XNLWxvkCyZDBXPFGYarUR71s3d7M/fvbUNRZMYnM/QOLt4wPhckSRAKeFBkaUbvSe9gnFffP0tDTZS6qvCyz/ve4XaOnumblzjpmsL6lsrpuXU+TBZ7KNoZNoQep963G1XSmauzSVuFe/SmEw2AjFlkopAlb1vIQkIWEgKBg0tvZpLezCQSAp+q4VM0PIqKJstokowiZGRJlI4RlynG9aQaTYEY/9/dq+eoK0mC7btb+fnffJi/+qPX6O0cm7NJqZC3GB1afsnRXPAFDD79pb089Kkd+AKzH1ASCtXTZl4OstBnqVBN5I+RLLYva1yBoMW/jl2Rfbw18jLZFdbQF5w851InSVspdhfuYntkD37l2pn3UuC6LqOFYQ6Mv8XRyQ8ZK4yuWE71Eh6oeJxaz9z9Qz+O+OY7x9jaVD3jYZgtFPnmu8dWhWhAKYjR6lvHI1VP873+5xgrrrysbaIwygdjb+JXAmwL3379xQhWGY5rMZh5m7HcYWw3x/byf0Ha7MN0ksSMxb0k/lfFrupaNpVXYsxTBuzXdD6/YRNNofB1vQ5ZkpYljnKkd4A3L3RwcXScvGnN2zR6NfY1N/Brd69uJ6J2VSZGlgyC2uqVeiqSj4B2fcpob0VkrGEs93J1QkhtxiOXIa7jM0kSOpKQp5MotpufNee1+qv4etc71Hii9GXHaQ0sr49ImspqPHTHOkYm0gyNXv+SxCuhawr37m5jz7ZGAj6Du3e1MB5P8/xLRxmNL3+dEgp4+MxD2+jqH+eNA+enXy8ULQ4e7SLoN3j2sR3UVS3dj+3k+QGee/Ew8cT8lSSGrrJ9Q9282y/BdHJoko8yYw0BdemiHCvBTSUa3+s8yfvDXQxlUyTNAmmzQNosEi9kca6Kvzi4pMwCKfP6K3wshuR1uAZNV9h991qCIS8v/t1B9r9+BnuJqb7lYs2GGh7/3G3svW89kbK51RuEkPCrpYWvKodoDX2ZoDazTMl28jNUPpYKTdLYF7uP4fwAxycPY67QybToFOnOtDNpxunOdnBb5A6a/W1L9p9YLlxcMlaa04mjHI5/QHemfcXNxldiR3gPt0XvvO6ZuFsJg+PJWTLW6VyRzqHVLUNRJIUNwe2krBQ/HHyetLWyycvBYSDfx3tjr+NT/KwNbFrV67ze6Eu/zGDmHfxqI/2pVwAX28nRkfjWT4jGAoh6Fo7u67LMg80t6PL1nUoVSZrXNf1qfPvYKb55+AQd4xOk8svze6oIrF6m/hJ+HEuebyZMJ417RSmoT61CEtf391cKrFz+Hh3XntU4/Ez9bo5PdpMyczT5K9gSWn7gzGto3L93HcPjKV544yTJ9Mqb2JcDSRLs3tbE4/dspHyq5Cjo9/DkfZuxHZfvvHKUsfjSRV48hsrDd6zjqfs3s/9IxwyiASXX8VfeO8PEZIYn7t3Etg11eI35M+WmZfPOoYt8++WjnO0YnmE2fSWEgLKwj23rF5fbNuQgQkjkl2C6fK24qUTj7cEOXuo9S8G2VtnP8pMJTVfZtLOR8qoQu+5o44XnDnLxzMrKi+ZCeVWIex/bwh0PbKRpTSUe39J8OhThpdxzx6zXA1rLohK48yGkRXi06hnixXG6rkEO1sEhXhzjSPwA3Zl2Wv3r2BraRaNvzarU0wM4rkPaTHI6dZyTiSP0ZjtJmPEVG/JdiXpvE49WP0NAWV6j/ycV337/JN3DcUYTGf74hffRpkr2HMelfzxBW83qy3bqss6uyD4SZpy3Rl6isEIFFtu16Exf4L2xN/DKfuq8jat8pdcPvakf0hL6AmF9I92p7yCQMJQYieLSZBlvdThOAcsZw3YmcZwMCA1Z8qPKlUjCf93uLSEEfu36G1/KklgS0Tg9OMLXDx3j9NAIjutS7vfREAkRuZIwXTqNO/vfm6tXX83q6kCW4xbJmP0A+NSGUqT8fwG4rovpWkuWVL0aiqQgCwnHNWdkE1TJC3PU1q8mLCePy2VyIwt1Vj1/f3ac3dE2HBw8so5PWdl9EQ15+czD2ymaNi+/e+a6kw1JEuzZ1sSXn9pFa0PZjJ65WNjHpx/cSlnYxzd/cJiugYkFDf6gpFr56Qe38lNP7qIs4qetqZxYxMf4VUQlkcqz/3AHF7tHaW0sZ1NrNS0NZcTCPrweDdt2SKTzdPSOcfhkD2fahxgcTc6rNAUl4YXd25oILkEuvcLYwEj+HBeSbyAhU2a0oUm+63I/3lSikbGK5O3Vs2T/cYAsS1TXR4mU+Vm3pY6ejlE+eu88xz7sYGQwseyHVCDsYe2mOm6/s421m+uoqY8SCHuXpTAlhDRnk50i+UpKHyuAQFBp1PBUzbN8vftPGC/OrzSxFBSdAoP5PiaKY5xNnqTcqKTFt5Ym3xpqPY34FP+yyl0ct0RgerKddGYu0Jm+wKQ5QdpKrrix+GoElTBP13yRKqP2mmv9UoXTpIqnCOrb8Gtrl3RMuniO3uTXyFuDVPqeoCbwhWu7iCVgZ2stiiRQFRmfoaFP1W8LSdBYEeGOjddn8e5VfNxb/giTxQkOxz+YUthYPky3yJnEMQJKkAeVJ4lq18fPYLVRdJIEtBYM+dL1ujjYy1b4uZXguAWyhSOk8m+RK5zAciZwKIJrAxJCKEjCg6Y049NvI+x9AnmZTceZYhHTsQlo+qr6Oi0XkpCQlnDdr59vp3sijuO6/Mxt23l663qCuo66xEZyr7b6/SZXu1oX7SQdyb8lnj9BhfdONkT/0ZxNqJ90OK5DR3qA98dP0JUZIGFmMJ2Vzx0/1/QEu6Lrpxf5l8iG7RS4FhGSxeFiOmls50rn6OAsb5OLqSFeGzrOxlA991RsxMfKiIYQgqryIF966jb8Xp0X3jjJ2ApKl5YCQ1e5c2cLX3xiJ2ubK9DU2UviaMjLA/vW0dpQxhsHzvPWwQsMjSVnEQ5Vkdi+oZ6n7t/Mzo31xCKltVFVWZB925t58c2Ts86dL1p0D8QZHE3y8ek+fIaGqsrIsoTruliWQzZfJJHKLdggfwkBv8ET926a8xnXnz3KgdE/nf63i0PWimM6WYZyJ6dIxuz3f0/lP6bcWNqaYj7cEj0aP8FsGB6NxtYKahpibNrRSDqZIzmZpa9rjP7uMSYnMuSyBfK5IsWChSxLGB4Nw6MRCHmoqo1Q11RGrDJIIOghEPRieNUlKdzcKEhCotm3lk/VfJFv9f3VistarkTByVMo5pkojtGdaceQPRiyl7AaJarFiGgx/EoQXTJQJQ1ZyFiuRdEpUrRzTJpx4sUx4uY4CXOSgp0nb+fIO3lW82FuSAafqv0irb51SEjXXDblURvR5PJlET+PUk9D6JfojP8BeWvlTtrLQUN5mLKQl5ePnOezd27Gq2uldy4EqizhWyB9fK0IqCGeqPkck+YEF1KnV5xFyzs5Dk98QEAJcnf5w/iU5TWgpsw07459xOnkBeLFJC4uZVqETaE29kZ3EFpA+lJQEn64kOriwPjHdGb7yNl5vLKHFl89d5btos4z2004amyhPfFNmoOfBVwy5gAdyW9S4dm9ko/gmuC6LpmCyXffP8HhC/1EAl7+98/fS8fgOLbjsmUJPTrZ4nHG039DOn8Ayx6b8tGYeyLOmadJ599hIvMcMf9PE/V/EcHSFt4fDvTxwvmzPNW2ngeab14fgBBLc7o+OThCzrTY3VjHz+7ZQX0kNKN38Wbg6kyM5WYZyx2iYI9PPVJ//DK5lmPzd72v8erwIZJmhrxdxLrGDHjKKtXla1JJAepS2XLWHsNZhez6fMhZE+SsselGcACvUjHLFfyR6u2krTwDuQle7P8Ij6yxK9pKs3/5WTJJCCpjAZ59fCdNtTG+9dIRznYML9v7YiFUlwd5+sEtPHJnyQBwoeZpn0djfUslNRUhnrxvM72DcfqGJklnC8iyoCzip7kuRnnETzTsQ9cuL60jIS937WrhjQPnyebmLhMvmjbFRHbB3ovFoCoy9+9po7567p4PRWj4lJmBMf+l3owFljbyKgiG/IRo3MIQQqBpCrHyANEyP67j0raxBrNoYVkOruPiOM60/JokidL/soSqKWiagqxI17Ukp31onL9+5wgfdw5w94Zmfu6+nZQHl77wUiSFzeFdOLh8q/drZFdodnc1HGyydmb6fEO5/qnUszIlNlBa3AshcF2X0n8OlmtjOxa2a12TitRC0CWDT9d+mS2hXajS0srXFsNKskuy5MUntaBIixv7rBYkSeA3dP4/z9xNdSS4bO+Wa0VEjfH5uq/wF53/hcF834rPk7FTvD/+Jn4lyO7Y3WhLVKI6m+zgr7qfZyA3Qs4uTJffdYgeTiTOcWD8KM/WP8HG4NzNsgLBRxPHOZ/uZDA/SsEu4uIgCYlzqQ6OxE/xM43PsCW0FkW6/HhvC32FC4m/4uDwb1GwJ/lg+B9T7tlNW+hnV/wZrBSm7fD1Nw5ztneUNTUxDpzpQQjBRDrH+6e7FyQarmuTzL3CaPJPyZoncd3couO5bgHLLWAVxxma/F2yxZPUhP8lsrS4utJwJsNINotvDsWpGwlJiCVlNOLZLLbjcHtDLeV+35KOue646hJc1yJvjaDKQQJ6y49lb9oPB9/n+b63SFuL/z4Xg4xEpSdKYEqR0KtWIAtjmmhMFi5guTlc170uc/1k8SJZe2bFQUhrQpFmlufE9ABh1Ud/doLe7Dg+Wac3O8baQA1P1i7PhBZK659wwMPdt7WyvqWSdw5d5IfvnKJnIL5g+dBiCAc93L9nLY/evYGWujJ83qXNwZIkEQ56CQW81FWGKVo2zlSvhKLIs/xiLkGRJdqaKnhg79o5sxqrAQHUVIT40lO3ocwzp8b0Ndxd+ZvLPrchX/v64KYSDU2SMa5zE931gC7d+JpSIQRCFtNZi1sFRctmMJ6iY3iCdTXlS3bIvBKapLEtXHoQPdfz5yuuoV8IDjZFxwZurpiALhk8U/sldkb24pG9iz7gXNeeLnHKWf2Y9gSSZFDhe5y6wJdx3CLD6e8znP0RhlJNfeDnCF3hjZAsnGI89xaaXM5E7j1yZhdlvodoCP4CyhKcd68XQn4Pf/7qIdoHxjGvKJ8sC/r4nS8+eN3GFUJQYdTwU42/yJ+2//41ZdEmixO8M/oKASXIlvCuRUvz+rJD/GnHc/RkB2j01fJMzcM0+WpxgY5MD68Mvcep5AXM7u/zD1qepclXP+sc3dl+BvMjNPpq+cXmL9Dsq8d2LY5NnuW14f10Z/t5bfg9qo1yqjzl08d5lErWR36FluCXKDgT6FIUTQ6iXeX4eyNg2TZvHu/gP3z1CQqmxQenu9GmSukGJxZS1XNJ5d9iJPnfyBZPwBU145IIoSuNKHIMSfLiukVsJ0XR6sK0RwAHcLGcUSYz30VCoSb6rxfNbEgCPIqCsYhU5PXGUrMSuqIghKDsViEZc+BSUEdCQ5dWxwTzVkLCTPN3va/PIBl+xUOLr5ag6iNtZTk6eQFNUqn1lFOuhzEdm7iZZCQ/QdYuzVEh1c8jVbu5u3w7ETVASC0F8EJaK5rkp+iU7pWik2Qoe4CWwFPIYnX7hWzHZCDzAaliz4zXY8amWYGtb/ce4KOJi2wJNfIzzfcSUjyMFJJ8s/u9FRGNSzB0lbqqMJ95ZBsP7FvLqQuDfPBxJ0fO9DI6lp4lKjIXNFWmrbGcu29bw+1bG6mtDOPzaCsKdAkBqiqjqkt7JgghqIgGePSuDZy8MEBX3+r77hiGyq/+9N2Ux+af0xVJQ7lJ99tNXeX/29sf41/sfOimjX8+dYiIVklMr0VaYiodQL0JROPHHaqksS18Oy4uz/X8OcUVujnfyjAkD5+q/eKSSQZAwR5lKPM9vForzeHfZCT7MpP5D6n0Po4svMjCQ3Xg86hyjMn8hzjuTJLmuEUm84cwlFoaQl9FlSK4roUkFm8Wu574bz/4gLFEml1t9WhXLOICnuvfWCsJiUZvK1+s/wW+1vVHK27qd3EZyg/w5siP8CsBWgPrF9z/u/2v0J8bosKI8c/W/iIxPYoyVedcZZTR6K3lTzueoyPTw48G3+FXWr80i7wUnCLrA608W/84rf5GVKHg4lLrqcJyLX409DankhdImKkZREMICV0Oo0khfNSWMno3ayHqgmnalIf8jCdLGUfHdbFsB2OBHoFc8QwT6W+SLR4HbAQKfuNuor5n8WhbkSU/IIGQKKV5HVwsilYfiewPGE9/HcfN4LgpJrPfx6NvJer7/IKXWhcIEdR1epNJtlWujuzySiCu+HMhVAUDqLLESCqD416fjOy1QhIKuhzFxcFZgWrhrY4D4yeJF1MAKELmgcpdfLH+IYKqD4HgfKqHE4kOgoqXhytv55Gq3biUejomiineHT3Kq8MfMlZI0JHu566ybZTr4en7tczYii5HSFv902OeS3yTau9efKJmVe/rgex+hnOHsK7IHBpyjKi+flbfpkfW+M21TxFUPRiyijRlVbA3dm31/VBarHsNDY+uEgv72LOtmaJpMRZP090/wdBoktHJNLm8iWnaKLKE32cQCXpoqovRVBsjHDDQNRVNk294v5UsS2xoreLZx3by37/xHqnM6gVThRD8wmf3sm9b84qCC1krzkj+LPFCF6abR5cClBlrKJ9qDl8N3FSiEdZvnoun6RToG/2AoHYHZcaaKbOSn+BmQpVUdoR3E1RC/E33f2fSXJlRzq2ImFbOp2p+io2hbeiSseTJwHaz5K1Bop67MZRa/Gob6eJpHLcwrZuuCD+qFETMI3HouEUqfI8T0DZPRXBdbnZd9Mft/fynX/oUVZEAV34UN2rxKwuZzaEdPFXzLN/rf27F53Fx6Mxc4O3RV/AqPqo9s7MQAOOFeClb4Vo8VnUPZXps2vsHQBUq1UYFD1XeyR9d/Gs6Mr10Z/pp9s88nyHrbAq1sTbQPG1SKRAYss4afxNh9WN6sgNk7ByO60wTlY7Etyj37sav1N90lR9ZltjSXMUffX8/92xuxrIdTnYN8cNDZ9jRWjPnMY5bJJ1/j1T+XcBGlkKUB/4hUf+zKFIUUOb97ShSDI+6gbD3U3SN/TKmPYDlxBlPfY2g59EFM3s7qqoZSKd4p7uLoKazu7YOQ7l1s/B3NDewv6OL18+389O7t+NRV98p+lqhCB8xYxfD2fdImu1Uce/NvqRVxclEB47rIBBsCDbxD1s/g1e+/Mz3KgaqkHEpBT0C6uXFXFD1UeN5iDpvOc/1vMbRyQtEBt7D3/Awdd5SPb1HjlLh2UHS7Jo27ksWe/ho9PfYV/mv0KTVUTAczn7E2clvkCh2zHi9zncvHqVi1hgPVm1FvfRMmtrmUwzurVw9KXAhBJqqTDVt60SCXlrqy3AcF8cp5couTW9iqtxQlgSyfBMDK1PwGCoP7F1LNlfkL57/YF5n7+Xi5z+7h88/tmPJGZZLcFyb7vQHHJn4WyaK3bhTksUCgSRkqjyb2B37RcqNtmv2aFnVJ+YlRaSr9ZUv4VJN/OV9Ly94rjzmUpL4Uv08c5x1Kftcvd+lcUuRyC4S5lipFt91pqM/V+//E9xYyEJhTWADv7bmt/l695/Snb14sy/pmtHiX8enar5Ao3cNspCX9duSKMl05sweHP02is4ELi6qHF3yOVQpPEVE5Knf983/bfsMHQFoiszNutVkoXB32cOMFUbYP/bGis/j4HBs8hBBNcyDlU8QVmOzvuPOTB/5qZKIzcG2GSTjEjRJpdFbiyFppK0MPbnBWUQjpoWpMsqnScaVCKo+9KlekaJjziQayW9R4dnDrfDda4rMP3xyH3/4vff4Z3/2IgXT4p9/7SU+c+dmnt4z96KkaHaSKRzGcdOARNT3ZaL+L6EsQUVKCBkhPHi0zTTE/oiOkS9MZTr6SeffJex9Yt5jDw8N8KOL57kwMc4LF85iKAoeRZ0VOfzdhx5jb93cJPNG4vGNbbx27iLvtnfxH159m//z4XuJeD3L+tav99ynyWHqAk8xknufkex+6nyP41Gqfmzm3K7MIC4uilB4tGrPDJIBICFQJQXHdWapUElCQpdV7i7fzkg+zt/3vsk7o0dZF2igXA+jyxpCSLQGP8VQ9iDx4iV/BpfB7Ae80f+b3F7xW8T0TbCMtcyVayjTydKVeolziW+SMvvgil5FQy6j0f8QnjnmH02avZwUQqBeR4+P//jSO7x49Cx500IS8Ac//TR7W2f7d3SNxfl3L77F0e4BXFx2Ndbyzx6/hzWVN66USAhB0G/w9ANbMHSVr3//0DU5mvs8Gr/xlXt59O4Nc6plLYah3EmOxr+Fi8vesl+iyrMRRTLI2yn6s0c4m3iJwxNf547yXyGkLe7LsRBW7Rfgui5FJ8fF9MccnniJ0UIfBTuLjQUIvHKAhyp/lm2R+wE4OP4ivdkz7I49SX/2PMcTb5M0x/ErEZ6q/TXqPG3T9bM5O8X+sW9zNvkhWTtBSC1nc+gebo8+hiaXsiLx4hBHJ9+gI32MhFlyaq4wmrgt+hht/l2oUzKOZ1MHOBJ/lf7sBXJ2ih8M/g9eGvqz6ffxD1v/MxFtZd4QP8G1qzIJIZBciSqjll9p/ae8NPRtPhh/B/MTVkolEGiSzu3RO3mg8gnKtJLyxnInU12poML7MBcm/j1D6e/gURuoDfwUqrR0N9Err+lWwU/fv4N//3dv8Jk7N1MTDU0v3DRFpq32xkjGClH6jp6u+SKTxQlOJY+x0t+wg8P+sdfxq0HuKnsQnzzTuyFppafFBcLa3H0RQggUScGv+DEdi5Q5W9LRkHQ88nxlb1d+v1dJL0qB6c2XolY3E5VhP//2K4+SNy1S2QKRgAdVnp90Fqxu8uYFADzqBvzGHUsiGTMh4dU2E/Q+QSL7fRw3SyZ/YEGigQt+VWNHZdUs24krEdRvjYy4JCT+1WMP8K9++Dovn77Ah119PL5xLdvrqin3+xbNxoQ8BvWR69u3I5CJ6lvYFP0nnJn4I46P//9YH/lVAmrzkiKnAvm6umBfK5JmFpeSrO/aQMOs36gkJFShYLoWuTnmNUFpcb4jso6jkxc4OnmBE4l2tofbaPCV1iYBtZ620Oc4MfFn5KYatV0c4sVzvNr3K1R799IYeIgKz050KYx9lZy3OyVvXZKsdbHcAmmzj8HsAXrSr5ModuJepeImUFgf/iJhvY3r7duxVPza/Xt59vYtvHWmg//y2vvY83hc1EVC/D+fe4T2kXGe/+gko8nMiv1MrgVCCAI+nWce2sq65gr+9sWP+OhED7l8cSojs9CxU78dVeKuna189fP7qK+OIEliRSQ9Xuwuka7YV2jy7WX6yaZClbEBQw5yMv49snacELcK0cChM3OCN4f/libfZu6r+DJJa4xDEy8hIXFP+bM0+DZcsb9L2prkrZFv4FPC7Ig8hCrp9GcvEFbLp3W1TbfI872/x2ixj9uijxFSy+jPXuDA+AvEi0M8UfPLyEIhZU0wnO+k0beRMr2OnJ3mTPID3ht9HlXotAV2AlBjrCFQHqUrc5JDEz9iS+heWvxbUaaISECNrijo57ouluNgWg6240xlTi79OASyJKHKErK0eArPdV1M28G0bGy3pCp1KQWoyjLKPGlAy3bImyVDIF1VUGUJ23EpWvb0NQHT16Io8qI1fa7rYjsORcvGchxwpxZEsjRdW3/5FKuzeLn03gJqkM/U/jSbgjt4YeDvGMr3rZqHxfWEIhRqPY08XPUpNgS3XJNTue3kp0qn7qAl/I8BGSFk3Kkadce1cNwCtpvDdU1sN4flpJGEcZUm9uzvxnZyuFi4mDhuEctJIVCWpMZzrfjzlz9kNJnm339zZiahtizE13/ry9d9/EsQQuCVfXyh4Rf4844/oCfbsfhB88ByLV4ffpGgEmJXZB+apE//lqUrPv+FpxOm9fHnIgOXygEWx8x9moOfozPxPK3hL6POqLsVV/37xsBxXSRJ4NVVPLqKZZeem/MpptjOBJZTWlDpaiuaUr/sybW0v0LAuGuKaBTJW50LHnNXQyN3NXxyjBn/zY/eYH9nN0PJUpPscCrN1w4egYNLO/6pzev4vc8sQLxWAS4mOWsITY5Q5buPruS3GM99REhbh09rRBbGgkS4PvA0YX3DvNtvNi5lLgH8yuyggCQkPIpOrlgga+XnJP5CCOq8FVQapcxBR3qA8WJymmgIIWgNfYqU2Ut78vsUncuRcRebgex+BrL7AYFHjqHJM8lj3prgfOJbdKV+RN6Kk7GGppvL54JAoSX4BA3+h9BXQYVotRDw6AQ8Ot1j8QUFExRZonzK9b4i6Gc0uTrqliuBEAJZFmxeW8O/+c0nOdc5whsfnOPImT6GRpOYZqmEyXVLT/FL+9dVhrltSwOP3r2RxproNSs2Oq6NRw7hV8rnIO6CkFqLInTcVej1WjWikbezDOe78SpBdkUfodrTOk0mTky+Q8HJzdLjnSgO0uzfygMVP01YK9Uf7ow8PGOfc8kD9OTO8sWG32aNv6Sms9Z/G7rk4XTyA3ozZ2nyb6bRt4lG38y0e1CJ8e7o3zNRHMB1dyCEIKSVE9LKyVgJVEknpldT711/TT0atuMwnsry4cUeXjveztn+EcZSJZlBn6FRHQ6wvraCfWsb2NNWT9Q/fyOw7TjE0zl+cOQsb5xsp2N4gnS+QMhrsK6mnAe3rOHBLWsI+4xZDU3Hugf4gx/sZzCe4tcf38cDW9Zw8HwPPzxyjpM9Q0xksmiyQlNFhAe2tPLotrXURIPzNka5rksyW+D9891879ApTveNkM2blId83L6mnid3rsejKbM0+1cTiqSyIbiVGk8Db4++xEcT75O2Uis2XLueUIVKUA2zI7KXu8oeIKZXXNP5SmTVxHISjGXfZCL3HiDhVRupDXyZmOc+koWj9Ke+Qca8iO1kSBZP4FEaaQj+AiFjB5JQUaQQYo5bvSvxX0kUjlCwRkAIksVjRPR9NEf+0TVd91Lwrd/5ynUfY6kQQhBWo3yx4av8Zed/YawwvOJz5e0cLw19B78SZGNwK7JQEAgiWmi63Gm8MElYDc2aFEtZYZOUlSGsBgmqy/PnWAiJwjkGs+/Sl3kVQ45NL2x0Ocq+6v+8auMsBY7rcqJrkDU1ZXg1jeF4ijePtxP2ebhnSzP+OQQBHDc/5ZUBshRCFiv9bCRU+VLG2sZxJld4nlsTF8fGmcjmZggsLAfaEo39rgVps5s3+56d8ZrlZhgvHGG8cGTR4yPG1luaaGjS5XVO1i5wdXGOImR8ssGgPUa8mMJxXeQ51gM+xcCrGAhg0kyTt2d6MAgktsZ+BXDpTP2QvD3J7IysS84eI2ePzXjVcrOM55cmtSoLnTr/fWwI/wx+dXYPVSpfwHFdArpOplikYFq4gCpLBIzLRpeu62K7LrmCScG2cF1QJAmPpqIrl0uKLwVt86Y1FWx1p8tsvZqGvMII/mJwXJdMoVhat2naLF+NVL6AadkEPcZUwPjax1QUmU1t1Wxqq8ZxXCYSGUYn0iTTeQpFE0WWCQe91FSGCPr0VfVB86sVqJKHtDVC1G0qCSIJAa6L7ZrEiz0EtEp0+drnoVUsnnOnInEuplPEdks1wrZjoghlngZEwbrA7aUswjw4n/oITehE1CrixdICwHZNAmqMgpNlpNBNk38zjutguUWKTh7btXBdBwcbIQRF+/pZ2DuOS8fwBH/y6kFeOX4BWUh4NAWfXnrY2I5L9+gk5wfG+OHhs/zzzz/AU7vWo82RwrYdhxM9Q/ybb73GxaFxDFXFUBWCHgPLdviovY9DF3t59dgF/umn7mFtddmcus2JbI7O4Th/OfoRzx84Qd600BUFr6ZRtGxO9Q5zomeI98/28DufvY+Wytis87iuSzyT43+8cpBvvHe0FPnVVXyGSiZf5OWj5/jwQg93bViZ0sFyIIQgrEV4quYL3B69i/dGX+dU8mPSVgrTKS4aIb6u1zZVIhVSw2wMbmdv2b1UG3XLciGfD45bYDL/IcnCMXbXfB9FCmI5SfpT32As+yYxz72EjdsIG/NLBwb1zWws//dzbmuN/NNrvsaVwnVd0rki2WIRXKgI+0u65K6L5zq4Ey8GSUjUGHV8ru5n+Eb3n5G0FpJZXRjx4jgvDX4Hn+KnyVfqy2ny1uKVPSTMFCcSZ2n21U2VgFzuUSs4RTrSPRQdk4Dio867eipHVd67KffcPuv11ZbDXAqKps1//va7/PYXH6AyEuCvXz/M2b4RIgEvI4kUP//w7OsEmDYMQuLaZvkrs0szo3WmbZOzLAxFQZPlUiYYkMX1WdysNj69ZQN3NM+uUV8q1lZc/7JFgYIhL9/E7RLkm6yYtxhCqo/RQhwHl9H8JPXeme9VlWTCWgAHl4SZZrwwSYUxxxrIpWTmKiTydgFzjmy+LDS2x/4RIa2FM5N/Q9rsx3bnNoVbLgQymhykKfAo60JfnJNkAPz+y+8xmsrwmw/dwTcOHufAxW5ypkVzeYR/9/lHqQoFcN2Sf87J/iG+efA4J/qGKFg2tZEgT2xdz2Nb2gh5Sr0sLnCka4AXj57lzOAI8WwOWQjaqsr4+bt2sa2+esVEeiHkTYv//uZBjvcO8RsP7eP25rrpe952HP7/P3yHk31D/O5PPUlL+dJ6JF3XwXZzmE6KUvY4gCJ559xXkkrGf2WR1QswLYRyfS0D2WOcmfwhppMjpregCIOik2Eof4pziVdoDdyLQCJZvGzo61fL53QQXwirRjQM2U+tp41zyQ85En+FrJ0kayXpzJyk3GikXK+bdYwqVAzZj7zARSfMUXJ2mq91/s6sbT4lBAgc12ayOMK51CG6MydJWwlMJ0/eyZCxJimx/OujtDOZzfHKsQu8fPQ8AY/O7jX13Lm+iapIAEnAWCrL+YFRTvQM4zc01lTF5iQZAOcHRvmdv32JvvEEVaEAD29by86WGny6xmgyw/6zXbx3totD7X38pxfe5V89+yB1sdn1tLmixfcOnUZVJCrDAe7Z0MymukoQcHFonNeOX+DC4BiH2nv59sFT/PLDuwn7LpfLXCrd+s7Bk/zte0dRJIk11TEe37GOtTVlmJbDqd5h3jzZzo+OnJ2T7FwPyEKmxlPPZ+t/hn25+/hw/F0upE+TMCfJ29kbWFYlUIWKR/YS1qKsD25mZ2TfqhGMy3BxXQshVPL2ILIzQd4aomiP4lHrbuk65cUwmsjwd+8e48jFfkYSab77L3+e0z3D9IxO8um9q6dSshwokkqbfyNP1Hye7/c/d03mkb25Tl4bfoGnar5AtVFHSAtyW2QLrwy/yyvD77EzsoVqoxxNUnGBolOkO9vP6yPvo0saLf4GGlaRaJR7V65jv9pwXJfRZIaW6hgdg+Oc7Rvh3/zsYwxOJPnm20fnPEYSHiTJj+3EsZ0EjpMGeSUZQwfTHpj6uzxLV/5ifIIfXTzPIy1r2FxRyWA6xUQux5poDK964wnwcvGl27bd7EtYFD61nntq/3rFx2s30GB0JajzVtKe7sdxHS6m+9gZXTdjuyHr1HhKhG68kOBssodyPTKLyGbtAhnrknrc/AtrIWRagk9Rbmzn5MSfM5I/SsGexHJX5jItoaBKfkJaM2tCz1DruwtVWnjxO5RI8Xsvv0tDLMxvPHIHRdOmayxOzF9aVDuuw9mBUX73h++iawo/d9cuPKrKwY5e/nr/EdL5Al+5cwe6oiAJwcBkEiHB0zs2UBX00z+Z5DuHT/Gnbx/inz99P42x8Ire20Lwaipb66o42N7L+aExtjVUo0+t1frjSc4OjrCntYGI11hynMN2C4xk36cj8bdYboHW0JepDzy16te+EgznT9OXPULWGmMgd4zL6+NSQEdC4Xj87zk68dyMYO4Xmv6UgLq8QMGqEQ1JSNR42tgQ3Mvh+CsM57vxyH4afZvYHLprzgZraVoFZ6HzyvjUMM/U/gZXEwVZKITUclJWnIMTL3I+dYgtoXvY599BQInSnzvP/rHvLHzh1xgMH09lOd49iAvcvqae//Oz91MRmn1T5oom6XwBvzF3BDFfNPnjlz9gcCJFyGvwf3/xYfaundlIdu+mZp7bf4z//vIBTvcN852Dp/i1x/bOWfo0kc6ye009v/bYPrY3VU+f5/7NrdzWWse/e/4Nzg2M8vqJC3zxzq2EvDOVMUaTaf7yzcMIAU0VEf7NTz3ChtrLE/s9G5vZu7aB3/3+25zqHVnpx7ciKEKh3ttEnaeRpBnnbOokJxNHGcz3krdzFOw8Raewqs7eslDQJR1dMvApAeq8TWwO7aDVvw6/sgrGd66Li41rnQcUhNKILBlEPPvIWt20T/xHXGwUKUDE2EeF79FrH3MRqJJOrWeB6KhbwHVGcd0sQqpASOHpTbpkYMjz93r8z9c+IpHNTzWFv4kkBB5N5cWDp28a0QDQZYNt4dtJm0k+nlxiYfs8iBfH6UifJ6qV4ZG9PFVzP+2ZHs6nOvjDC1/jyer7afDW4OLSnenn9ZEP6Mr0sS7QwiOVd82pLLV03Lws32IQAry6Ss/IJB+c6WZtXTm1sSCjifS8hp+yFEaRothOnILVQcHqRVOalkW2XdedksndD4AkVHR1Zv/FaCbD/t5ubqsuNT++2dXJgf5e/o877qYhFF7ZG/4JZkASCh7l2spKb2WsDdTzzuhRHNfh2ORFPl9//4wAlFfWafRVISEYLkxwYPwkG0PNRLXA9H6WY3M+1UNvrjS3+hUPurQw0Q1odeyr+tfEC+fpSr3MYPZDTCeN7eaxnDwO1pSEaanypAQJSSjIQkUWBqrkJaA2Uue7ixrfXXiV8oWGnMbF4XEe3NDKP7j3dpQ5yu+SuQKvn7lI0bb5l48/wIaa0ve/tb6K//bGAQ519HFnW+P065/ZtYnP7Jo5D2QKRV44epZkLj+vC/qiT71FdthcV0VTWYTjvUPc0dY4nbk40N5DpmByZ1sDwWV4PSmShxr/w/i1FjoSX1/ycTcCPqWMFv9dyz5OmycjsxBWVXcsZY4xlO9iS+ge7qn44jU1wV5Chd7IYK6DMr2ekDozrXuJZfVnz9OTOU2DdyP3VHwRRai4rsNA7iLFeVymL5EcB3ve0hvXdbFch4I9M1IuC4FHKTWPO1PN0kBJr1mS5rwJPJq6YEnIse4hTnQPYzkOn9m9mdvW1M06R9Bj8PDWNl4+ep7zA2N83NXPWDJDZXj2Qjfi9/Do9rVsbZwtG7i9qYYN9RV0jcYZiKeIZ3LUx0JX1EjCu2c6SWTzeDWVx3esm0EySu9VYkNtBU/sXM/Z/tF51R6uJ0o9N1H2xO5hV+QO4uYYPdlOejIdDOR6SJoJim4RyzExnSKWa+G4Ng7uVGld6XuTpszLBNKUyZCCKlQUSUWVVHTJIKqVUedpot7bRK23gaAaXn3lHmeCwtiTIJWhx/4OoTSjyWU0h399dcdZIqo9tfz2hrnLrgAc6zxW6j/jFM+gBL6A4v3iks/90YU+fv+Xn6Y85Off/92bCAEhn0E6vzpp/0sYyvfjV4J4Zd+Ss01+JcCj1c/waPUzq3otZXqUf9DyBf6m63t0Zfv4s85vTstbqpKCX/GyNbSeZ2ofpsW/8vKXWx2yJLF7XQN/8fKHZPJFfvHR2zEtm1S2QFlo7sZ0TalHV1spWO3ki+fIFA7g1TYhS7OlhOeHQ654nGTudQAk4cOn3zFzj6k6cvkGZWl/gh8/bA+vRZMUcnaBC+keRgpxqozLmTNd1mj21VBuRBjOT3Bo4gw+xeD+il1Tnhouo4VJfjT4AedTJUfuWk85IXVpog0RfS1hrY1NkSwJs51E4SKJYhd5exzTyWI6WRy3CEJCER4MOYxXqSSkNRHVNxBQG5CnZLKXCkkInty+Yd5+z1S+wLHeQXRFoWDaHOstleJkCyaqLDOSSjM4mZomGkXLJpHNkcwXKFg2juNg2Q7ZQpGitTKD1aWgJhxkc10VPzx2ls7RCRpjYSzb4VBnP42xMA3R8CwiZdopcvYItptHIKFJITxK9aLPpYI9ge3k8SiVFOxJTCeJIZchCZWCHUcS6lTZVRpwUYQXj1KNJDQsN0vW7CegtSCEDC7Ybp6M2U1AW4NAxnbz5KxBbDfPpbItQ6lAnhI+qvJsospzY4J6q0o0TLdI3s6Qs9P0Zs8gCwUJCV32ElTLMCTfsutcN4T2cSb5AQfGvs9t0UfRJA8uLqaTx3ZtonoNkpBRJQPbtchYkyhCI21N0ps7R9qanPO8XjmIKumMFvqYLI7gVYK4roNPCc1IU55PjHJ4tG/GsVHdy1ONG4HS4r+5IsqHF/s41TvM8wdO8MDmVipCfvyGvuSyog/OdZMrlhqcH9yyZt4b1qdrbKit4PzAGJOZPO3DE3MSjTVVZaypjs15HiGgJhLE0BTypkUyW8B23WnBOheXj9pLrqO6qnDn+qa5r8XQaCqPEgv4GEnMluK8kVAkhXK9inK9il2RfcSLkwzmBrHcHDk7w6Q5TtJMkLdzmE6BomNiTtWyqkJFmSIW7el+toU3UmlUElajhLUoYTVGQF1Zut51LXDGQPhA+D7R5U6riZDPYGAiNd34my2YdAxNUB1d3bKIb/V+jX2x+9gWvh1JLG/yvB5o9NbyT9b+Ah+Mf8yZ5EUmzAQCQVQLsT7Qwq7IFsLa7M8gqPpZH2ilTA/jV+ZecHhknWZfPaqkEFT9t2xPgabI/OIju3n7RDs1sRBbW2rIFU0CHp2HtrfNc0w9Hm0L6fx7OG6WeOa7KFKUkPdxFLkCSajMXxrrYjtJ8sXzDMT/LY6bAWQ0tRm/vmfGnh611Lx/oK+XoG4wlEmRLBS4GJ8gXZyfBDeEQvi1W0PidiWwbIecaSJLEt6b0CP144QmXxUN3krOpXpwXJfjk+1UVV0mGgJBuR5mX2wzLwy8R9LK8MLAft4dO06VEcVxHYbyEySm5K0VIbMp1EK5vnRJcyEEmuyjXN5KubF1xjZ3upScaXXPa4VHUwka+rzPHNO2GUtlGUmm+ZffeWXW9vpoaLrvImeaHO8d4q0zHfRMTJIvWpiOzUgyTSp/fWXuhYAdDdW8dbadUwMj7GyspT+eoGc8zuNb1xH1z47mJ4sX6Eo9T9GOAwJdjrIx+o8xlIX7nUay75MonmNt+KsMZF5lMPMaraGv4FEq6Uv/CJ9aT9YaIFm8OFVCrbA2/IuE9U1krT6OjPwLbq/6T/iUOsAhXjjByfHf5a6aP0dCYzx/mO7U8ziuCQjC+iaaAp9HXuS6rgdWjWiUGsAtvIqfrsxJ+nLngFK02KME2BS8k42hO/Ess4O90buRnZFHOJN8n6Q5RlAtm1azUiWNRyp/Ab8SodG3iYupI7w7+vf4lQiJ4uiU58bcH2pMr6HWs5bOzHGKTg7flPzbHWWfwaOUrtHF5c3+i/yn4+/MOHZztGqaaJQHfdy3qYUjHf10jkzwp699yP5zXdy7sYXNDVXURoKUBX3oixiqXBwax7RthIDBeJL0PDdUKl+YjvrmiyYTqbnrMMuDPmL++SMgfkObJiFFy77cZ0kpo9E1UnLlVhWZxvLw/OfxaJQHV0Y0bNdhKDdGhRFFncPs51owVkgylE+zIdhMtWdpN5bl2Hz5wO/wyy0PUe+b20vFdV0yVo6cU1jSg9+1h7Czf4Ok70PS9gKf3MXIauLRXev4zvsn2dZSTcG0eOnwOY51DPDIzrU3+9KuO7yKhwcr7+DByjsW33kKW8Pr2Rpev+A+tZ4qfqX1S9d6edcdQgiiQS+fuXPL9GseTWXHmvm12mUpQMC4k0zhIOn8B5h2H8PJPyJvnifoeQBVqUUWAYTQABlwcF0Lx81iO5Nkix8znv4bilYpQqzI5cR8P41ylfFYjT/I1soqfnjxPG92d5Io5EkXivzeB+9N12vPhX9x133srJ67WfaTgOFUitfOtVMXCfHg2tabfTmfaEhC4vHqfZiOxZpAHTWe2aZwUS3IPeXbOZ3s5GKqDweXeDFJvDjTwK3kxVHP7dENROcIQKwE18O0VZbEgqeUhMBQFTbUlPMbD90xi5AYqkJNuPT+zg+O8SdvfYjtOHxq+wY21lYQ8nh48dgZ/nr/x6t63XNhbVUZ66vLOdE7RO+6ST7q6gcE2+qr8euzg1VetY51kV/Gq9SSswY5MvIvGMsdoi7w+ILjaHIEWWikzR5cbCwnR9FJ4FoOqhQgoLVS5tmNLsfAdTg29v8wmjuIX20mpK3FpzUykn2PpuCzuK7NUOZNqrz3oEoBCvYEY7lDGHIl68K/jBAKppOcJXN8o7AqqzvXdYkXBzk88TIAD1X9LN4preW8neZE4h1OJt4jptfS5NsMQESrpMm3ZXq/+SCExD0Vz1JpNNGZOc6kOYoiVEJqGQ3ejWiSgSF87Iw8jC55GM53UbCzVHlaaPA+TH/uPAElxtV3gSH72Bt7mqAaYyTfzbg9SECJzCijcoG0uXAphyJLbG+u4R89fgff+/AUZwdGOdE9zMcdA1RHgty+po59axvY1FBFdTgwL+GIZ3LYTkk7+bf++ocLjnkJlyTg5oJHU/BoK/96E9lSyZkmy/P2lVza7pvj5lsKJospXhh4h59qeJSwtgp9DlegLdBAW2D1y0+KjsnpZAdD+XE+VXvvovs71inswusIpR64finfTxqe3rMBXNh/uotNjZV8cKabuzc38+D2Nas+VtbK0JE+j+3aGLJBjacBXSop11iuyUCuj6ydRhYKUa2MmFZOzs4yUhik3tM09fchwloUvxJksjgx5ewtMV4YxXQKyJJCmVZJWIssKG7xE1zy5nEZTaTJF2c+vzyaSlV07meBR9tCxPsZTGuIgtWB7UwwkXmOyeyL6GozmtKALIWRhIbr2jhOhqI9QMG8gOWMcymKK0shIt5nCHufnDVGbTDIP9i+i7ZolK7JSY6PDDEiMrRFYwtmLPzazc+WXQs6x+P8/pv7eXBd63UnGq5rYzmZkgSq5P+xzPLeWbaVGk8Zm0OtyHO8P0lItPrr+FLDwzzf9xZdmSEyVvaKzglBQPXS7Kvh6Zq75zT++yTBUFUaYmGGE2nqoiGqQjPv8SsDnReGxxiIJ/n5u3bx6Z0bkSUJy3ZI5QsU7YXn0EU/oSV8hB5NZUdjDUd7BjnVP8yR7gE2VJdTFZo7SywLg7w1woR1FNstoMohCs74ouPochRJGMQLpwDwq404boGUOYoi+THkcmw3T7JwDhcHWTIwnRTulAl2Q+BpOhLfoD7wNLaTZyJ/jG3l/2rqmnQC2hpGsu/Rn3mFoLYGv9qIuElz0+oQDVwmikMM57u4p/wLbAjund7muA7x4hCnkvvJX6Hisj64h/XBPXOdbgYEAlkobAztY2No37z7RbRK7ir/3KzX673zRwFjeg13l39+wfFT5uKpOp+ucd+mFjbWVfD+uW4+vNBLx/A4A/Ek3//oNG+ebOeO9U08c/tGtjfV4DNmT0qWbYProkgSG+sr5i2duhJlAR/RwNyNObIkLekc8+HKvpOFIAmxbNUpy7HpygxwdPIc7eleDsfP4Fe8VBtl1HkrEUDBKdKZGSBpZlAlhWojRpVRhhCCiWKS3uwQIdXPSH4CSUhUTW23XZuB3CijhTge2aDRV03witpWy7HpyQ6RMFPk7SK26+BVdDYEmlElFdd1GSsmGCqM47gOES1Ik68WRcgkzTQnE+0cjp/GcmwOjp/Ep3io81TMTZRcB9c8i2tPPXSuj/DZJxKaovC5u7bwzL5NpPIFAh79mn6vC6Ejc57+XA9Ft0DGTHNn+YNsDm1HQuZM8hjHJg9PfS2CoBpmX+xeck6O14Zf5HN1X2Eo388PB59nV2Qfm4I7+Hjy4DSZ6Mt2IgmppGkf3oVfCSDLPyEaC8FxXY629/PuqU5MyyGZzeMzNPJFi9va6nh678Y5j5OEQcj7GI6bZzz9dQrmRVyKOG6aXPEEueKJRcdW5VpC3sepDP06kjSXmZqgPhTiZ7ZsB+Cbp05wcKCX/233HT+2zeCXVAYL17H2/UpYTpah7Fvk7XGixnaixvab7lS/2giqPraF5y4DvARD1rg9upEyPcL+seP0ZIbIOwVA4FMMmr017I5toslXjXodvapuBEJeg7vXNvG19w7zrUMneGRTGz5dw3IcJqd6QZvLI6iyPC3rP57JMjiZQpIEXWNxTvePzAhMOI5LwbKwHIdMoRQQThcKpPIFFElCV2SkqZ7ZknGxRTpfoGCWjkkVCqQLRTRZQpFnmhdvq6+mKhTgtdPtjCTTPLKpjYhv9lrLdW16Uy+QtrpQhAcHi7w1siTXcV2OIksGicJZQvp6IsYWbLdIsnCBCu8dTBZOES+cwHVdJKGQKnYQ1i77x5QZuzkf/zOSxYsU7TiaHCaklyoCFMlHje9BNCnEaP4gE/mjhPWN1AeeQpeXJs27mli1GbFkTCUxURxkvDCIKmlYrkmyOEp/7gKG5MevhFd0bsd1GcknKDgmjb7LKgimY5OziwTVmeo2WavARDGNV9aJ6tegSexCeglEA0oTVFU4wGf3bOahLWs40z/CoYu9HOse4lz/KC99fI6heJLfePxOdrbUznLA9RsakiRQFZl/8tTdBJagbKDK0rxE41rhM0qSukXLxrTsWeY1l2A7JQfz5cB2bTrSfZxKtDNeSHB88gK6rLI9vI5abwWO6/Lh+EkOx8+iChkXl6Dq56HKPdR6K2hP9fKXnd9nd2wzSTNDxspSbZTxcNVegqqf7uwQ74weRkLic/UPElSbp8fuygzw2vBBJCFImhkOjp/krvLtNHprCEkKtuvw4cRJTMcibxdwXIena+5lbbCRpJnhdLKdjnQ/spA4HD9NuR4lqHiniYbrFnDtflx7EJw4TvEDcJM4xaOAAlf0CUhyM0LdhBBz1UQ7uHY/jtUBTqLkHit8CLkWoTQi5tCSd90srj2Maw+BM4lLEYEMwouQqxFK09RxV0zqroWV/xFCBJD0e8AZwbEuTo1pT41Zg5CbEMt0DHftERzzJK6bQlLWI5TmqdIWSOUKeDQFWZIIeHQGxpNIQlAdC666L4vpmDxW/RliWgU/Gvw2H8cPsD6wGQeTlwa/y/0Vj7MjsodJc4JXh1/kwMQ77I7eRUiNMJTrp+DkkZBJmUlS1iSOayMhMVoYotW/np2RvVhuyS9IXWYTZen68pxJfjDrdQmFqFZFjXfhBcuV6MqcJGmOznpdl7y0+negrOD6VhumZfMXrxyivjxMRdjPx+39PLSjjYsDYxTmydBegiwFifg+jypXMJl9gWzxOKY1gMtCmWeBIpdjqOsIeR4l6vvinCRjLsS8XuqDYZT5mlzNUXTJhyZffg67rkPKGsWvxJatN38z4LguBdvCWcLiaDVgOim6Ut8mUThLnf8Josb2GzLurQhVUlgbqGeNv5acXSRj5RBC4Fc8GLL2Y0PAPKrKnW2NdI7FOdjeS+donKBHx7IdErk8OxtrqYuEUGWZ9dXlbJmSmR1NZjBUhbFUhrKAj6D38rpoKJHi3QtdJLJ5zg+NYtkOr51up2tskqBH5862RuqjYYq2zbnBMQ539TORyXK6f4SRVJofHDvHx92DNMbC7GyqIXoFkagMBthaV8U3Dh6jMuhnTWUMY45qFMctcmHyL9hS/tvUeB8s9VQULi7pM9GkMIrwkja7CeubiOgbGc0doGBPIAuDwcwbeNU6WsJfQhY6J8d/t9T4PQVF8lDrf4yBzGtYdoo6/5PTPTeOa2G7eco9eyj37GYw+xb96R8R1jegez6hREMSEjGthibfZroyp0ha46hCw3SLpM04tmuxMXQnZXN4aSwNLpNmhrSZn0E04sUMxye7eahqy4y9i47FeCGNrTnXRjRYWkbjagS9BnvaGtjVUkvH8ATPHzzJy0fPc7RrkAMXelhTFZtFEGqjIY51DVIwLSI+Dy2V0ZuWKhUCqsMBukbiFG27lO6cw68DSp4dk9nlGSLqssYj1fvQFY13R47wc81PT9efuq5Lwsrw932v82z9Q+yNbWUkP8F3+9/kjZFDfKWpVO5QdC2qjBg/1fAI51LdvDF8iAvpXu6r2MV9FbvQJIWj8fOzxv5w4iSqpPKZ2vvQZY3uzCD3lu8irAWmoxCqUPhKy5NkrTx/2/0SBydOsCHUTIOvik/X3ocmaXhknS82PDL7zTlJ7PxrOIW3ce0BXGcIsLHzL2EX3uLKRb7s+Syq0gZXEw3XxjXbsYrv4BQO4rrj4BZABJHU7SieTyMZ9yLEld4nWZzCu9j5l3DMM7j2MFBqAhNSEKGsRzaeRDYeRkhXZl+KmIn/AyFVoUX+K3b2OezC+6UxnRxIASR1K7LnU8j6g4glSts59iB29nns7HMgV6L6fgkhN0y//dePXmDnmlrqYmHO9Izwg4/O4NM17t/ayqbGuftjVop1wc2E1SiqpFLraaAn24GDw2RxgvHiGNsju1EklaAaYY1/HfvH3uSusgcJqxF6c114ZC+1nnokIRjOD+C4Ds3+NoQQDOX7+GhiP9VGHbXexhUtDHJ2hhf7/2jKB+byYk+TDLaHH14W0fho/IecTX6Ac1WZXlSroa5l3S1BNGzHpXd0kv/w1SdI54uc7R3hKw/u4qPzvew/3bXo8bLkJeR9FI+2mXT+ANniMUy7D8uZxHXzuK4JyEhCR5ICqHIlHnUDAc/96Errsp6r62NllHt9BPW5iUlH+n2qjA1Uei73FrnAmcmX2Rr5NB5l9WuiXdclb1kokoQiSdc8T1iOQ24RgreasN0CGbMHRfIT1Np+bBbT1wJJSPgUA59ya5sRzoUdjTUYqrKgq7wQUB7w8dW7d7GxpoLTAyOk8wWCHp11VWXsaqpFV0vHt1RE+dLebXxwsYeByVIA6qFNa2gpj9IQDVM21ZCdLhTpHJ0gUzDxaBqf3lnKhPZOJPCoClvqSvOI7biMpzN0jE4A0FoZo7UyRtEqeX0oklRSu/LNvN6W8igBXWd3Sz1VwfnWkYKgvoZUsZ0+x8R0kjPuR8vJMJE/TrJ4kYzZiyRUVCmAX23CrzVOmfc5yELHrzUxkHkdISQ0OYxXrcFyUgxl3kYICdNJocgz599q34N8PPIvcLDY6P3fpl+3nRwj2f3YTh4haeStYbxKHZo8u1/oRmDVwi1hrZK9ZZ+mK3Oc8cIglltAlzzEfDXUeNqoMprRZQ/nkgOEVC9522SimKbVX0lnZoRmXwUDuThjhSSmY1OmB9kYqkUWEu3pYQaycao9peZb23UYK6TYP3KW90bPYUgqMT3A+mANKStHZ3qEnG1SaZQe8lmrQHdmlHgxg+XayEJmQ7CWiO6jIzXCeCFF2spTcEw2BOuo98WQhbSkHo2FoMgya2vKeeb2TXQMTTCe6qFvPEEyX5hFNHa11PHGyXYK2Txvne6gsTyCIt8kogFsbqjig/M9FC2bjzsH5iQapl1SghieTK3q+KOFOBOFBHtiW1AlhZgeZm2gkbdGDk9H3cq0EBtDLRiyTkQL4lM8ZK3coufO20V0SUUSEqpQUCUFy7WZrt8WEnvLtuCVDVzXpdZTTm92aOkXL1QkpZnSrWVh576La51B0u9GUrcCV2Q01PWzSQaAm8XKPYdrDyPpuxFSGNdJ45qncQpvYjljqHIZQrvChM01ccxTOOZFhNyIpN2OEAFcCrjmRZzih7jWBYRci6Ttmlmr6bq4zgBW+r/hWOdK2+UYOBkc6yxO4V1cZxghxZD1xRuYHbsfO/st7NzzCKUBxffLSPqeGcTo2++fpK22HMux+fpbHxPylXxc/u7d4/zfq0w0PLJnWkmudF+XygJtbKQpWWNgqkVSwnFtdMkgrEU5mfiYaqOOJl8bSTNOX64Hr+yjwddCuV5Je+YcPZkOerOdbLSSbAhtwyMvL8uoSQa7Y09jOgVMt0DKHKcjfXRF73Vt8HYCahTTKWC5RS6mDpO1k4sfeAMhRKkO2rSd0ucvBMPx0jNkZHKpohICTakj6v88YfdTmPYQpj2E46Rx3QIIBUl4UaQydKUBIYwVLcjrgiHqgvOThbFCByF1prGi69p0Zz5iQ/hRPKw+0TgzPMqh7n5CHp07Wxopv0L049WzF4lncwhmWgZc+e+ZtlwlonGsf5AbBRcHy8miy2V4lE9uA/1PUMLT2zfw9PYNi+4nhCDs9fDYlrU8tmV+0Q9JCDbUVExL3V6JtqrLwi5rq8r47SfvW3Rcr6Zy/4ZW7t+w9N4j23Hon0zi0VS2NVQT8s5NAGXJYG34lxjJHSBltuNT6mkN/eyUCh44rknG6sN0EgS1tUhCJW32oMmltWxAbaE+8BRBvQ1F8hM1tuJT6/CrjehyhJHsB2TNPgylnHr/01OtBJezOl6lChCEtY3o8mVxGiEkJKGTtNpxsdGkMDW+BwmoTUv+DFYTq2rYF9EqiGgPLbjfxxOd1PvKGMpNcmqyjy807uXt4dOE6rwkzCyj+RQFx+T1oZP8zubP4JU1kmaOg+MXqfKE2RCqLUV07CITxTTxYpqxQgptSrXIdBx6s+OcTw0igCpPmKSZ4/Whk9iuQ603yrnkALKQ2KE08erQcUKqF9t1eH3oBL++7jHqvNHpp/FipVPZQpFkrkB5wIcsz51ed113uslcV+U50/B72uppKAtzqneY7314is31ldzeWoc0x76245DOFbAch1hgadray4EQgjvXN/FXbx8hVzR55dh59rTVzzAidF2XwXiKgxd6V+x9MF8ky3GdKV+LS5Xzpd+Xc4XRkCIpeKZ8Wi7tOZ8fypXYHGrl7dEjvDXyEaqkUKFHqfVUICFhUxrXP7VQFAgkIWaVFCy0XBFSGNl4GBlKhnbmUWzrDLJ+J7LnMwixlEWoiWv3owZ+C0m/EyE8uG4ep/A+ZuoPcKyL2IUPkK4gGkIKIRuPIak7EEpLqVRKaOA6ONZZzOS/xSl+hGMeRlI3griqp8Qt4phHUYK/jazfixBeXLeIU/wIK/V7ONYFnMLb8xANaep/cKxe7Nw3sXPfRyhtKL5/MEVsZpYCJrN5qiMBekYTdAyN88e/+hnypsn//uc/WMLnszyIeX5pEbXU3H0hfZq1gY1krDR9uS5qPY3oskFQCTNWGCWixWjwNXMumWGsMMzawCZs10KSZLaGbmNdYDOvDH2Prmw7Db6WZRMNQ/bxUNXPT/n2FOjOnKYrc3JF73Vr+H62hu/Hdk2KToGxQh/Z3OoGAq4VsiRxx6ZG4ukcZUEvDRVh/vzlD1FkicaKpUt4XoIkNHSlAV25cd4j44UuJov9JM1BBnInMN3LQY6cNYksVCSuT139a+fa+Z8HjxDQdaoC/hlE40/fP8TZodmlcwvBhRtWNgUlMi9Lnqnn661fWnYrImMOIYSEIUengig/yQpdK2zHYTydJZHLMzCZ4u1znWyoKWdNRXTB/sEyz22UeW6bc5smh2kOPjvvsSF9HSH9snN8te+B6b97qCSozZfNLt2vabMHy8lS539ixlZF8lHrf4Ra/xxVFzcBN/wuj2h+slaBlJnDcm2G8pMEVQ+KkNEkhZjuRxKCv+85UDKzkjW2hRsZzE0yWihF5hRJpsFbxt6ytXRnxnim/vbp88d0P9siTWSsmQTBxWVzuJ77KzfzVx1vEy+mKToWRdtC1WWiio8t4QZa/ZUoVzReLUY0escTPH/gBPVlYepiIcoCPvx6qd8ib1qMJNK8faqD9qFxPJpCW3XZnOy4KhLgp+7cxh/+cD+dI3H+60sf8Oj2tTRVRAl4dASQNy0S2TxDkynGklnW1ZTx2I51sy9qFbC+tpx7Njbz6rELfNTex9feOsy9G5opD/lxHJfhRIr9Z7v48EIvfkNbEdkwJI2sXaBoF6fJmEBQpkcIqn6OT15gW3gtk2aKjnQ/Lb7aJZuuzYcaTwV5u0DCTBPWAnyq9l7K9Ugp2jk11y70yJaFjCQkslYOy7GnM1+r2lcgdGT9IWTjwemrEcJAUjcj63uwMidLPSCuA1d8HpK6EdSrGmmFhKRuRFK34pincO1+cOf6rmQk/UEU47ErxtSQ1A1I+l045tGpY2242rFaqCBUHKsbO/sN7PxLpWv1fRVJ3Trdl3ElqiIBPjjTzfGuIfaubyAW9NIzOrmi+fJ0op+ziQFst5Sp2FO2hgbf4ilij+zjnrKHOTp5iP5sD0W3SMHOsztacuU2ZA/ylIFjTCtHkVTydo6IFiVeHOd86jRFp4AQgryTp8HbgrFMknElhBCowrimc1yCLFQ8sjrDE+hWgSrLfOaOLYR9HnyGxkPb23jtyHk8uso9Wz4Z0qqmkyde7CVnJRgtdJC3L2diHNdiXehBdHn1g0BQUvpTJAlZErOyNEXbpmDbBA29VFa1hBvKxaVg2VgL+ISsJmTJIKiuIW12k7eGb8iYtwJcXGzXIWVmydl5TKdkFqwIGUPW8C2xL8NxbTrTPyJrDuNXawioDQTUegJqHZLQlpy5KzoF+rI9dGc7MSSDVv9aKozVzSZ/klC0bPZf7Ob9C91MZHIEDZ1HNrdRMW/Z1M1DxuxjOLuftNlFzLOdkL6w9PnNxg0nGjXeCB/Hu7BcmwZfjHPJASqNECkrx3ujZ2n1V6JLCnm7uKQIte0689rRXwm/4sGnGEhCoEnq9KIyqHrIWkUCiodHq7fjU66MvLqLEo3xVJYXPjoDQHUkSHnQV2rsFiWiMTyZpmdsEsd1uW9TK3vaGuZUnQJ4ZFsbyVyev3v/OB93DnBhcJzGijABj3GZaGRyjCQzKLLEz9yzc9HPZyUQQuBRFX7+vl1MpLIc6ejnW+8f53jXIBUhP47rMjxZchTfUFdB0bJ590znssdp8FYRULz8YPA9QqqfTaEW1gWaCKl+nqy5m/fHjnEh3UPBLmK7Ng9U7l70nL3ZYc4luziZuEhfdgRFkujPjbA9vI4yPUzKypC1cuTtAllL5XSyA8d12BBqXvTcAD65pDL1/vhxvtX7KlWeMjYHWyk3lh+JnR86kr6XWatu4QGpDHCAAmBxZSkWro1rD+LYHaWGcDdVKiNxLRzzBLjmFMmY676SkfW7Zo+JhpDKKfkSFClJ9F69eNVx7RFs8zms3HeRtJ0ovl9BqBvnaXSHz+zbzMft/WQLJl+85zZsx2UsmWFjw/InuoNjF/l65/uYTqkvIar7p4nGnug91HgaphfcVUYde6L3oAgVgeD22F0EkicYL44SkANsDGyhwVda7Ea0GPeUP0JEi6FIKk2+NchCod7bgiIUAkqQuFlSFGvzr6fVvx7fMn2C/leEEFAZCXDkQh9dw3G8usovPraH4cnUvE3XtxoqjDb8ShmT5gAVehsVxuXIoyoZhNTqaQfe1cZ9bc34dQ2fptESm7ux89kdm6kPh5a06LQch+P9Q3zvxJnVvtQ5oUpBqn0PcG7yTxjPf0yN72FUeXXlzW8VuK5LwTHpygzQmRlkJB8nbqbI2QVMx5oiGgqGrBFUfZRrIeq8FTT7aohogTkDazlrlIHMfsbyJ0q1/WoNQbWRnWX/BK9SuYxrK5Gf0cIIE8UxfEpg2UTDcizOpU6zNrB+RUIYtxJkSaIqGGBdVTkeTWVLXSVtlWWoC/Se3CyUwrI2frWZKt89JdGXWxg3nmh4ovyw/2PqvDHWB2v4u54PWBesQZdUEsUMKTOHUL2ENR8CgYPLa0MnOBbvJm3leHv4NDuizQQUA88U+3++90Na/BXsiDTRn5vgvZGznE32M1ZIEVRLBGOux63lOOTskht32spzJtlHVPdRaYRKpTouZC1z4fcTCfL0rg2c7hthaDJF33iCgmWBW3LAjfg8bKqvZEdzDQ9uWUNLRXTe6LehqXxu7xYqQwH2n+vidO8IvWMJMoVRHMdFVxUiPg/rqsvYOFVadb0gSRIb6yr51Uf38oPD5zjWNcD5wTFO9Q4T8Og0lkd45vZN7F3XwAfnelZENCqMGE/W3E13dhDcUhM2lOro7yvfRUQNMFqIE9WCNPtqafWX3m+dt5JHqvbiU0o1/yHVz+7oJvyKF1lIaJJKq7+eRl81qqSiCRUJQcrMcGzyPGuDTQQVL5KQyFg5nu97nX/m/1k8ss6XGx8nNKUgpUoKm0Kt1HkuP7wNWWNreC1CSCTNNJqkLD3LslR5WyEjpNn1qSBgnlID10ngFPZjF94oqUa5+SmFKQWEhGP3U2oOn4e8CwkhzzHJCOmKMS87ys4Y283i5F8pZTycEYQIghSZl2QA3LellYqwH4+u0lwZxXFdKsJ+PnfHlnmPmQuO65Iy88SLmekru0Q4AHbH7p6xf5WnlirPZWM4Q/awPTI3gQ2qYW6LXi4Vq/U0UOu5XJ6zKzq/3PZPMD9sx+Xt4+28e7IDEPSNJnjstvUMjCe50D/Gzz08uwwhb7aTK55ClSsxtHUoUnhVrsV1bWwnjuVMIpCQpBCKFJ6h7jIXJCHjV8tYF7ifkFZNUL1xkeD1leWsqyyJosz3OHly0zo2VFUsKdNatGz8unbDiIYiPFR67yJROEu8cJze9IvU+h+9KbKb1xOO63Ax3cf+0eOcS/fQkxkmXkxNlQDPhqCkNlXjKaPVX8euyDq2htfMkGcHiBcvULAngVJjfaLYieMuX5pYl3Va/WtxXIdD8QPLPh5grDDCR/EDNPlaPvFEQ1Nk9q1pYN+aG1eCuVL41Qb8oZ++2ZexZNxwohFWvdxbuZGY5qfKE+ax6m2sC9YQ1fw8VLWVgmNiyBq/0Ho/Hrn0ww2pXm6LtmC7Dv6prIQQgkojxNO1O0lbhel9VSFT540S1XxosoIhq4Q0L7tja4hMKVDtijWjSyp92XG8ikZMD+CVNQ6NtxPTA8S0AJoskbetGYuWuVAXC/LVB2+nZ2yS8VSWTL5I0bJwKaW4Ax6dqkiA5vIIQe/iDYkeTeXhbW1sbqikYzjOaDJNvmjiTBGXgEenPOijNhaiPDjzAVQfC/PTd+/gkW1trK0psfL5cFtrHYaqkjdN1taUzemXocgSt7XWUR8Lc35glLFUFtO28eoaNdEgaypjBDw6mqIQ8Gg0lkcIepaumiEJwdZwG1vn0Bv3Kgb7yrbOeVy1p2yG23dQ9bEtcrmErMZTPtdhdGcGOZ3o4HP1D7I51IpA8HH8LG+NHMZ2HQSCZ2rvm96/JD3YOOMcQghieoj7KnYt+X0uH2KGDO6icO1S/0b6v+E6w8j6naVmcKkMhAGo2LnnsfMvLzLsCicKZwJXeBHaDrDasQvvlKR0Pc+WmsrngK4p7Gi9vOCXhaC+LLzsoS3HpujYC+Y+XVwOjr1AwhyhybeFVv9OFKl0b7iuw2ihlyPxVxAIIloVu2NPzTh+rNDPycm3USWN1sAuqoyZ2S/XdYmbQwzmLhIvDJFz0khIeJUQ5XoDdd516JL3E224tZowbZvvvn+KT+/bSMjn4Y+/vx9VkVBlmZPdcwsvZAtHGEn+MV59B2XSV1G08DVdg+ta5M0LJHOvUjDbsd00IJClIJrShN/Yi1fbjrTIPVHj3TwtJnAjsXB5p8Cva0uuQpQlgUedf664HlClADX+hyk4cToS3yBZvEhIW4smR5Gmso3zIaRvwKPMFYi5deC4Lh+Mn+SFgf2cTnRQcBYOWELpOZWyspxL9dCe7udMsov7c6PcX7GLiisy5sliF6YzUzShyrMbTQ6s6jPGdEy6sh10pC9QdApU6FVsCG4moAQxXZOjkx9xJnGSjsxFfjT0fTRJo82/nvWBTcu+ju6BCc53jsy5TVVltrRVE4vc+tli13VJZfJMTGbn3K7rKrGwF20e4+YfV9zwdytLEnvLLi8s76/aPP33feVzKxHM97pfNdh71bZKT5hKT3jWvhHt8qJ8XbCkdHEuOUDazCMJQVZSUSSZiOqbjgItyUNDQDhgUBWuX3zfZaA6EqQ6srBr+tWoCPl5dPv8ag5XYn1tBetrF39Yy5JETTRITXT+a9lYV8HGulv7wQ8Q1vw0+2vZP3aMjybOIHAp2CaPVu/DkJZe23qrwXXi2MUPcK0zyMZTKL5/iFBaZyhLOYU3WDydssL3LzRk4yFkz+dxzI+w0n+OnX0OIUWQjSeuktNdXRQdq9TLtQi6Mye5mP6IrJWk0bcZhSlVEBy60if4cPwFAKqMFraGH5juk3Bdl/FCHwfGv0e5Xk+NZ+b9VbBztKePcCb5PsP5TtJmnKKTQyChyz5Cajn13vXsij5OTK+5JXsmbjRcx2VkMs3dm1uYSJUmZEHJ+HO+X6DtTFKw2pGEB8seu7bxXYts8SjDiT8kWzyC7SSu2CqQpADp/HtEfJ8l7H0SeYHfr+PaDOZOMFHoxrqqLHFL+Cn0G1xKF9B1qkMBdEVZ8vNMEgJdkRc1Z10t5O1RTk/8FywnTc4aImP1kk0NosthVCk4lU2a/1o2Rn/zlicaRycv8DddL9GRGZh+7VLGokwPE1S9qJKKAEzHImvlGS8mmTTT2K6N5dp0ZgZIDWRxcHi0au+0BHzGGsJyZkrKV3pvW5QULxcX0+c4mThGQAkQUsO0Zy5QcPLsjOzGkAxCahhd1tEkjTKtAkM28Ckr+72fOj/IX3/vwzm3+b06v/6Vez4RRMN2XM52DPPNHx6Zc3tdZZinH9zCmoa5g6E/rvhfi1ZdhQZfGXdXbCBvl5rg1gSqWBusRp4qhUlbixONjswQPxg4xJZQE1vCjVTo4U/sgvXHHUHVz8OVe+nPDVNwTATgV7w0+2pRpetxK1wxYbo54Po477puCteZAGyEur6kOnUFyXCdRMn4z11c/nclEMJAKK1I6lqEXI7rpLCzf4WV+RpCiiDp98xpMLgaKDgWxUWIhkBQbtTTlTnOWKFvRpmB4zr0584BpQbqvJ1hojhAjWcNANaU3GzRyeGVQ4TVywsc0ylwNvk+B8dfYLTQQ0CJ0eTfSkCJYLs2o4VehnLtjBV6SVrjPFz1C4TVCsQ1Chp80iFJgoaKMC99dI41NTFsx6V7ZIKPzvfSVlu24LGWM4ntxClafeSKJyhYnVNEQUKWwhjqWnzaTiQpOOdz2HVdLGeS4cQfksq/xexSQBfHSZIpHMR2JhCoRHyfmrcMsCvzIV3pD1GFgSIZXDnkUnoMVxu/etce8pZFaBmZZSEEiiSjKzdmOWA6SfrSL854zcUkb4+StxdXzDKdW0tF7WqkzCzPdb86TTJkIbHGX8/u6AYafKW+RI+sI4uSB4rt2BQck7SVYzg/wYlEOycm20laGcYKk7wy9CF1ngr2xjajSgpFO4HtXs6QyEIjpDUhreJyrmAXOJ08gSZp7I3djU/xcyJxlI8mPqDZt4Z6byPrAhtJFCeZKI5zW3QPfmXlAaVkJk/3wMSc2wI+nVx+8YzQrQGXQtHig4/nLiWvrwqzqa36J0RjKXBcl0QxR2dygpRZQJMVqr0B6nyhGYpNtzo8ssbWyPz1eOni4kQjoHip1MMcn+zkw/Hz1Hii7Iy2ssZfg1dZ3N37J7hxEAjqvBXUeW9QNEzIIEUAHad4CEm/FyF8l5WiXBuQ4BqJqRDe0nkB1+7BdUYQcqksybX6sXLfxjFPUWoev74QUgTF8ww4cazc81jpP0GVIqBuX7BnY6UoLoFoAJTr9SiSxkRxAMstTgtIuDgM5C4gC406z1rGin2M5LumiUbBzjFpjiCQ8Ckh/OrlOvLe7BmOxF9hON9Ns38L28MPUjHlF+S6DmlrkjPJ/Xwcf40LqUPEtFruLn8WTV6ew/qPG1RF5ov3buOFg2d4+fA5+scT/NEL79NYHuFT+zYueKztTBDPfJtE9iUKVjuWPYHj5gBR8s2Qy/Fomyjz/wwebfMcvzmbdH4/6fx+wEWgYmjr8Wo7EcgUrM7pLEfebCeRfQGPtg6PtnmOq4H+7HEiWj1NvttRJYMrI/GadOO/5ztaVlZfvq6yjH/39CNU+K+PUtaVMORyNsf+9xUfH9YX92y4mTgSP8fZVBcAipC5r2InT1TfQb23goDqnbcsrNQ4XmRHZC0Hxk/xytBB+nOjDObG+Th+nrWBBiqNKJaTw70iaGXIMdRVLs3M2VlSVpIWXxtBtdSzWudp4E3rFbJ2ZkkCPDcLrmthmifIZb+Li4VhPIRh3H9DxpaEREVsfsKVSOfpHYrfkGu5lbBsopG3TH7Qc4Yf9Z5lLJeh4NgoQhDSPOwqr+OzzVtoDCxNgee7nSe5kFie5veNRH8muWhMqsII8WTN7QwXJhnMxRnIjfPm8AneGD5OW6CGnZFWKo3I6sqf/gQrRiaZo+/iMEPdY4z2jTM+kiSfKVDMFSkUTBRFQTdUNI9KMOonVhUiWhWmqiFGVWMZhnc55FEgaftwCh9gFw7gOv8XQq4DIeE6GWTjfmTjcQTXGO2XIkjqVuzCu9j513HtMYRcDxRwrV5cdxJJ24lTPHht4ywRQq5E9v40rjOJnX8ZM/1fUQO/DUrbqkfzi7ZFcZE+KoByowFFaGScSZLmGH4lCi6kzQkS5ihhrZIm3xYG8+2M5Lumjys4WSaLw+iSh6BaNt3bkbWStKc/ZjDXTkyvZnv4IdYF96BKl38fYa2SoBpjKNdBd+YUxybfYFv4AWJS7S07Sd8ISEKws7UWv6EzMJ4kWygSCXhprIjQUB5e8FjHzZHOHwBs3KuIs+OmsZwRCuZFilY31eF/jlfbMjO7h0Uy9xouRUDC0NZRG/6/UJU6QGA7EyTzbzGe+hqmPUSm+DGp/H4MdeOcv13HtQmp1UT0BuRPsCdEmc/LYxuW7kB/LVClII2Bz6z4+NUuEVptHBg/ielYCATrAg18ueERar2LR7CFEBiyTpOvmrAaoGAXeXFwP0kzw9lkNyP5OJVGdFZgSpMDq646JAsFgcB2renMnOWaSEJCurIn6ZZ8jEnIcjWadhvZ3N9jWR3AjSEaQkDI70FXFQrm7ABYJltgcCSJZdkoyicnKH+tWNaT0XRs3hnq5A9PvkdfenKW8+jZyRHSZoFf3XQHZcbikZG3B9t5c6B9mZd842A5c6tDXAlZSIQ0HyHNR723nDOJHrozo3RmhujLjnFo/AJ7Y+u4s3wjAbUU4cplCjz3+z+i81TfgufWPCq//T9+EeUGNw5990/e4Mhbp+cVKAKIVYd54Nk9bNm3upOT67qcOtjO3/3BS3PvIGDdzia+/E+fXPJiLZ8tcO5IF8f3n6f9eA/jwwmyqTy5dJ58toht2ti2jW07SJKELEtIioRmqBgeHcOn4Q14CJcFqGutpHVLPet2NVHVUIY0j0njJcj6neBmsHPfxzFPQ/EoSBpChEDfs8xPZ26IqR4JhMDO/QDHPAbFIwjJi1DWoni/ipDKMK0LqzLeUiApdSi+XwRnErt4ADP931ED/wwh11xzBudKLLVHI6pWo09FmMcKfVR71iCQGMy34+BSaTRR5WnBcgqMFHpwXAdJSBTsLJPmMB45QFirmI5Gjhf7GcxdxHKL1HnWU+tdN4NkXEJQLaPeu5GB3EXS1gQD+QtE9Crk/4WrVoUQaKrCpsZKNjRUYNsOqiIv8X52cbmcaRZoSFJprrGdFGDhUiBTOMRI8o+pj/4HFDnKpRWR6zrkiscBkISBX9+LV79tmkS4bhWKFMO244ym/gTbiZMvnsG0R9CU2cpS9d4dDOXPIAmZqN6IfEUGxa+UfWJ6cm4k8RVCQhE/vlm97uwQDi6qULi/YteSSMbVCGt+dkXXl8qoEu2MFuJkrFLpqyK8SMg4U0TbuYIMrBa8ipcqo4ah/CBDuQFiejmnkyeIaFH86uWyRI/sJWUlyds5fLIfBwcJ6aYGUoSQkOUqNH0vhcJbN3hsgapIhAIGIxPpWdttxyWRypFI5YlFrn/28FbBsma7gm3xrfZj9KYnZ21zgYlClrcH29lWVsOnGjcter6sZZIs5hfd71aG67okzSxHJzv4aOIiSTPLGn8191dsIaR56cmMcmyyk6geYHes1EhqmzbnDndy7L1zC57b49dxnBtf59t1pp9Dry7sTFzTUsH2u1ffJMZ1YWI4waHX5h/ftmxymQJe/8KZgFymwIn953nn+4e5eLyHiaEEmWQWx57/M3VsB8d2oAiFbJEUmeltkiQ48cEFAmEv0YogTRtrufczt7PtrvlNE0tO4Y8jqTtw3UlwLUBCCH2qvOmK6JwURov+DQhtHqlZT8n9W1k3JX97+fYVcgWy8RSSejuumyiNI1SEFEZIJfEDLfQfQfhAurKxX0eL/gUgEHL1HO9AQ9LvR4v+DUKKApcXUkKqQ/H/Jq6TRFIarzpOICmtKMHfQrZHEcKDkFbTa6SEUo/G4hkNVTIIa1WMFfsZzffiuDZCSPRnzyEhUW20ENVK3gdpK07KmiCklk1lNEYIaxWE1csyx5PFEeLFktlYVK8hoMwvzRnVqlGESgFKYwftT3T0e7UghEAWYtp1d2QyzbGOAR7eubighaY0EfI8gd+4HVkKlVTl7QTp/LvEs9/DdiZI5d8hU/iIgOf+K6LgDqY9MjW+jq7OzLIJIVDkcvzGnSRyr1K0OijavRStrjmJxnD+HOeSb9KZOoAm+2YoUD1Z+6/xq4sbR/4EP15IFEsLTElIbAw1rfg81UaMMj0EUDK2nQqoeJQyZMnAmVKeKjopXHfxoOjVGMoP8P7Yu/RmuxgrjDCUG+DC/8vef8fHld7n3fD3Pn36DGbQe2Pvddm2r1artqveLcuWmxLFieuTPE7s107iPEmcRE5sy02xJdnqbaXVStsruey9AiRB9A5ML6e9fwwIEkQhwAbuai99VsTMnDpzzn3u61euK3Wa9eHNNPlb2RDZzMHRffyk7wfY2HhkL5tLthHVrlzTjd4myvVKvt75FXRJY2t0J2tC62/4nOcLx0mTyXydQmE/rpNDlsvw+X8dRWm6LslxXRvLOkc28wMs+yKyXIlhvAdN2wC4FApvkMv+FNsZRFGW4PV+AFluQAiJ+Pi/R9U2UMjvw3EGUbV1+Hy/iBD+yf1KkkQ45J2RaACkMnmGx1ILIhqjoymefeYEp0/1IskSGzbU8/AjqzCMqaWhjuMyMBDnx08eprNrhIDfYOs9zezYuWRRMygLzGg4HB6eOwrfl05wcrR/XkTjrYCzyW6+fOFZfIrB6lADSwPVlHvChFQfqqRQ7y2b8PRILPahvmVQyJokR9NzEo2utn6e/upr7H/uBEPdo+SzN+966zgumUSWTCLLQNcI8dE0yzY1XXc9IQWur7wkBAKtmAGZdRG5mBGQq2b6FCEFEdLs6mBCWzfDmzKyPrsfRHGf5SBPN4ISkhchzUE2hYSkNINy+9yezXlmNIS43BB+lKFCF47rIAuX7uw5JCFTZjSgy15K9ErydprhXCd+OUTKGidrp6iUmwlrV3p7cnaKnF1sSj00+jPakvtn3XfGSpCdcI7OWPFFaRJ+M2AsleXAue7rEg1daaY0+KsEPe+Y8LwoPsZc18Krr0GRyyeyEaMksi/gN7ZPkW523GLwQEw0kF8LIWQ0pQaPupyCdQHLHsa0Z3awXhl6J03+me8f4y4wocuZJuPZPHnLxJ3HZefTNUrvQJ/GWxmGXMxsXhYbuVFokjrpLaVJyiQhD2kNqJJvUuI2Z41hOglct3RBpalhNcI90R1siGzCnsjgapJGWC0GhKJaKdtiu1hprsZyi0QjopWgXnUv+ZQA7656PymrOBaWaHeGWOdyz2EWTuD1fAQh+bGtTqQ5nn1Xw7Iuks18FyG8+HyfoVA4Qi77I4QwcJ0EudzTKOoSDOWd5LLPks18H6/348hKFQXzCLbdg9f7MRAa6dTfI0lBvN5Pcnk6LUmCSHD23z2dLTA8nmb28OR0/PjHR/jpT44yPJxCCDh5ooto1M/mLU1TCEQ2W+C739nPs88cJ5stoCgyPT1jBAIeNmxsWMAeby0WRDRcXJLm3BO2vG3PTxb2LYKw6uedlZtoCVQSUf34FH2KgZuhaOwoXU5QvfEB521MRSFvkhhLUV43fVCzLZuDL57iyb97kTMHLpJOZucsAbthuBAs8VFRN7dKzpsRY4U0/3D+lcU+jHmhPxunMz0yr2XLJ0pbhnNduDiYTp7BbAeSpFJhNCIJhTK9nvOpwwzmO6nytDI+kbXwKiECVzWCm04B0ymOhePmAOPmzBPRa2HfgYb8uxXff/34nC67/aMJhuIzRwGvRsC4l5DnHSjy1HtPCAVVLifq/xiJ7LNkCuNkCocmHO2vxuUBQUKaRQ1NliJoSlGy3HLGsZyZr7GIXkuEWyttfiuw+0InT508w9mBYfKWhTMflgHc19rI7z18720+uulwXQfLSZOzB7CdPJLQ0JUomhR+06m0lRsRerJDuEDKyjJ/r+6pyNr5Sf+NkOrHM0FgYsYadClMhuKY42Ixkj9DQK1fkBu9IXuo8sxu+isJiZAaJqSGZ11GCEGpXkapfqflhh0suwPHTWGo96Cqq+albOi6DpZ1Acu6SCD4eyhKC0L4yaS/hmkex7b7QegYxsNIUgWukyOT+Sa23YesFAN8qrYBTd+KED4s6wK57NN4vR/laqIRDMxeGpjNFYgnZvbZmAmmaXPiWBeDg0ncift4eDjFsWNdbNjYMIVo5PMW+/edJ5UqzsFt26K7Z5SzZ/vePERDQhDRPQxmZ38YaLKMX/35UVsqNULs0PxosjKrmsSqUP3bzeC3EIWcSWI0Pe19s2Dx+o8P872/fJaLp3uwCrdHTvYyymqiNCyvvv6CtxjJfJ6nz53jwugoH1+7lvpw+Lrr9CQS/KeXX2ZLTQ0fXLGCgD77PZoy83yv68AtPOLbB9tx5qU6BVA6QTQS5jAFJ0vCHMZ0C5SrVfiUMKZToNzTwJnEHoZyXRScHOPmILrsIayWIV1V7iQJCUlICCSWB7dT55tbLekyolr1z23Z1NdfOszm1lqkWfwaxlLZ65aKSlIQXW1GlmYvVZOlEgxtGVnzFKbdN0WhZzpmPhZZ+CaJjOtmcZyZJwaOa9OR3s/55KskzUHuK/8XyEIhbvZR5Vk9oUR1Z/GVfYf55wNH6Uskyc3QkDoXllXcWdlNy8kwkjtMT+pp4vlzWG4GcAAJWej41DoqfQ9S7t3xpnEO3xBZxpHxdhzX4UziEs3+G3tG9OdGGM6PA9DsryY64aMRUGso86wlZXVjOsXn4KXUM9T47kXm7m6Uv1UwjIfANcnlniKT/goez3vx+j4xD1Jq4jjD5PO7sca+gEDBdfO4bgpZrsJxhslln6aQfx2Qcd0MjpvG5UqJvyLXFiXdhYKiNJG2e7g6mimEIOCd/XfIFyySmfkH413XpVCwJ0nGZeSy07OUruuSu0YK2LFdCoXFDXAt6ImnSjL3lNfzZMfJWZcp9wRYEvr50QgWQH9ujKd6D3Am0cU90WU8VrWRjvQgUc1Pna8MXb55WU/HdekdTfDyqYt8cte6m97emxn5nEnimvrHQt7klR8c5Ftf/Ck9FwaLfRa3Ef6wl7rWCvzhO5+psl2XkWyWnmSSnDW/AcR0HC6NjdEUiVw3uunikp6Hh8ybDVG9Ck0ySDHKWKGfoXwXQkhUeVqRhIwiaZTrjZhugTGzj6ydYrwwiCH5CWvlUwIJqmSgSgY5O100+QvdP68mdwkZ6RYrxLxZoCkKv/aubejqzOd/rmeYH+89Ncvaxe9WFj4kyT/nhKLoCxFBoBTr2OcZzZ+6DRVpomHZdU1cd+b74UJqD23JlwmrVQzmzmE6OTSlhBPjTxHVmu440TjS3cc3Dh6jY2QMF6gI+mmKlhD1zW+cWl8zU5/W7UHOGuZ8/Gt0p35MwUnizPAdp8xORnNHGMzspjX8GUL6Uu5SqaNJ3Fu6lu92v8hYIckz/Xt5qHzjZDnVfJG3Cxwdb+diug9D1lgXbi0qTgGSUGgJvZ+h3HFG82cAl8HsEQYyB6nx3zslIPJWhSQFMTzvQTfuxTTPkUz+dyQ5gmG87zrDsIIQPlR1LcHQ7yNN9g0KhPCTSv4lhudd+LyfQEi+yc9k+UrGxnGTuK6NEBT7E4Wfq69JSQh8nrmJRmoBRENVZSqrwpw710c+f+V539xShnyNGI2qyDQ1lTE8fGV+5PVpVFff+v7IhWBBV6ShKHx26WYODnbTk4lP+9yrqGyvqOeB6pZbdoB3O7qzI3yvezdZq0C5EWa4EEcRMmcS3fgVgzrfrUkp5k2LI5d66Ric2dTm5wmFa4iGYzsceO4k3/2LZ+k+P4B7BxrooxVhGlfVzBqdvZ0I6jqfWrsW03EIaLcjgvXW7CGQhUpUq2K8MMBovpeB3EUkBFXeonKahERQjeJTguTsNEP5TpLmMB7ZT0Sd2ggcVEsIqjGydpKUNYrp5vHJ4UU4qzcPfvVdWymP+Cdrza9FRSZPXVl4xs+EUBHoE5P+65Nrx80BDi7SFc9M18V152v8JV/p/ZhBSvcyujNHqfduoimwjf5ccdLnU6IkzaFJVaA7iefOtjOQSOECv75zCx9avwqfqs76nV8L9ToqercKeXuU8/F/4mLim9huFlUKEdXX4VVrkCUPjpMnY/USL5wlbw/Tl34eF5ulkV8hqN0ZGd4bRUwP89mGd/M/zn2DC+le/qL9u3yu6X2E1Pk5W6esLM/07+XZ/n1k7TwPlW1iQ2QpunRlrA+o9ayMfJZDw/+DtNWP4xY4PPLn+NUaInrLm67cbKEwzZMIEUaWK1BVAyE0HHv6nHQ6JBSlDlkpwzRP4vF8ELBwnAHAQtVWk8+/hO0MoKs7cd0Utj2I61qTBCaXfRpd3w5EyGa/j6Zvg6uCR0KAx5j9uVwwbTIL6BkVQvDhD28hnzc5dLADSZLYtWvpRIP31N/Z69P55Kd2kM0VuHB+iFDIwyOPrOKebYs7J19w6dSKSDl/d/+H+fb5YxwY6mIkl0GTZVpCUR6uWcLD1UsIazcXxfm1FfewIVaDssg3y5nxQf7b0ZfmXGYoFydl5vh867vZPXyaC6l+fIqOi0PcnF7es1C4rkvn8Dj/+Xsvcq53iLxps/98F+WhAB/fuZb7VzYzMJ7ihRPnGUtlSOULvHb6Ii2VMX7x/o2EvB6+8tJBdixr4IFVRUWGsVSW//CNZ/jkvevZ1FyDcoceLrcKZt4kOXbluz25t53v/dVzXDrbuyCSYXg1DJ+ObqgU8hbpRJbCPB1IY1VhmlcvTm22JMScpU9vY2YIISgzGuhIH2fcHKQ/ewGBRLWxZPJzTfJQqteTMIcYyl8iaY1S5Wkhok0lGjG9jlK9joHcRTrSJ2gJbKLJH16Es3rzYPuKhjlLSOvKwvzCQ5tm/EwSHiTJh+WMYdkDOG5hDj8Fl7x5HsfNI4SG7WRRpOK4YDvXmGXNmu1wcCcd5GXELI9Kx7XQZB+adEVxynLyRZfwRYi8nxkYJmtZ7Gqu55Ob1hYbu8ViHMnscFyTsfwJLia+gUCmzv9+msOfwiOXIa6SA3axydtjdCWf5FLy+/SnXyKir8SjVKJK85u0LwYkIXF/2QZM1+avz3+fFwcOcTp+iR2lq1kdaqbaU0qJFkKTFXDBcm0SZpqe7BBnk5fYN3KKtlQ3BdvkvrL1fKj2ASo9sSlqSpKQqfZtx3bzHB75c7LWEGmrn9cH/l+2lP0/lBkb3tJePYXCcbKZf8a2BwEdXd+I4XkPUFSkisf/PZZ5EsvqQuReIp97FsN4DJ//M6jqCrzej5FJf4106u8A0PXteH2/gGE8AkA69Q/Ex/8QIXQ8nnfj9X0CKIo7KGor8fE/wLa7UNTV+HyfY4oC5IR892ywHQfTWlhZd31DjN/+nXdhmjYC0DQFw6NO+41lWbB8RRX/8T9+GMt2kIRA0xV0fXGzXAvauxACBYnWUCm/u+5+bNeZHKclIVAkCUXcvIbyplgtOysbF51ohHQDwdzxXdd1kYTArxiTx2s6NgKBLt38jyuEoKYkxB9/9BG+vecYA/E0v//4fQgB2kQTkOM6dI+Mc7p7kI/tWMcvPbCJgmXjMzT8hk7IZ3C2d4jV9RWUBn0cON+N36NRFvIhL0JE/maRz5kkRlJFEna2jx9/+WVO7z8/J8nwh72s3NrMqq0ttKyto7KhDF/IgyRLk7+x67oUcibd7QNcOt3D+RNdnNjdTs+FwSn1kZqhUtVYRmn17DXDmUKBp9vaePL0ac6PjiJJElWBAI+0tPDBFSsIe4plGbbj8HRbGz8+c4a2kRES+TyVgQCPtbbyixs24FGvlN2dGx7mz157jb3d3bjA1poafnP7dlaWXcmaua5LslDguydO8L3TpxnJZFhVVsb7li/HvoESkrcayieavi+XTumyj5hxhTAqkkaZUc9QvpP+7EUKTm6iEXyq8EBYLaXRv4auzCkGchfYO/wkhuSj0tPETKUdaWuc4Xw3Nd5lk6Z/V+Pq6+vaX+nqz+Yztl5by3sz27qVUOSiV8ZsxycJgaHNPGYqcimaXEnWGSWV24Pf2IlXK8poXj4PF7dowph7nbx5HrBwXYuB+J9RU/KnSMJDMvfa5DZdHGx35n5Dx81hu4mJ41IRYmZiX6q3cCG5BxkVy8mRtkZoT75KTL/zZVMA49kstuOwsbYav67flZPNgj1Od/JpXGwqvPeyKvZbKMI3YxReEX5aw7+Ei8vF+DcYzO4h5tmyaO7g/+vcN9k9fGyWTwUCgSop6JKKLCRkIZN3cnRlB/hO1zDf734ZIQTSxLJCSDiujUvxOe64LpZr4+KiSSopM8upRAeSkKj0RNGuGjskoVLnfxCPEmX/4H8lYV4iaXbxSu/v0hh8Ny3BDxDSGm7bd7GY15bX+wE8nvdS7OcRE9nHCbUv4SUc+k8TvVlXhB/EpMeNhqZtRVPXT/ZvFQmuBkh4PO/GMN4B2BPbVrla1l3TNhEI/GuKZVgyzGC4K8uzfzeO7WJZCyvtlmUJn+/6wUUhBLIs8Afu/NgzFxY8ExYT0RFdvn0MKaJ7UYQ073Tv7UJoHpmZEj2AIsl8vfNlAJJWlucGjtCdGebB8rW35DgkSeDRVDRFRpUlfDOk5WzHZVl1GQ+tbr6mnEewuaWG54610TU8TizgZW9bJ6vqKogGfHflg+h6KORMEmNpkmNpXvvRIV7/yZHpTaQCFEVmyfoG3vGJ7Wx+eBXBEj9CEsVreOK0rz5/13Xx+g3C0QArtzTjui6WadN/aZj9z59g91NHaD/WSawqQsvaulnLplzX5evHj/PN48fZWFXFu5cuJWfbHB8YYDybxbzKCFISgh+ePo1f0/jUunX4VJXdnZ38/cGDuMDnt14x9WuMRPiThx+mfXSUb504wUgmM63fwnQc/u7AAb514gRbqqv50MqVdIyN8aV9+7g0Pn5D33eFEeJTjTu4r3xxHu5z4dh4J1+7+Dqn473zWr7C04AsFM6njmA6ORp8q6eoxKmSQbnRyIGRn9CVOY0ueSnRKqbdJ0JIrAjuJF4YYt/Ij2lPHaAne4467woqPI1okgfLzRM3R+jPXmAof4la7wo+UPPbk0SjOOF2J913LdekYGeIFwZxcXFdl6ydZKzQhy57USUDyZUQQkJCnnbtOti4roPt2phOlryTxXTyE/swGcn3YmkWhuRFEgrCLZaTLcYYMJbK8s8vHmbP6UukcwWqo0Ee2bCEd25aiqFNJ2K62oihLSVrniSVf53+uERZ4Dfw6usQEw2wLjap3Gv0j/83CvZlGXaZ8cyT5M3zeLSVxLM/mdym6+bJmWdxXXfad2A7oxSsSwBIUghlFg+YZaGHsDF5behvSJj9PNP332jwb2Fb7LPoixB192kakhCEvZ67VoDEcjKM5o9iyDEqfQ+jXOVBcC2EEMh4KPPcw3B2P4lCGzl7+A4f8RVkrNwNVypYro3lzj+SXXBMDo6d4dDYWYQQ/P6yT3FfWZFcu64zKZMdM1bzQNUXOTz853SlX8J005yLf4f2xA8IaY3E9JUEtQY0KYAqeadkjW4UpcZaNHl+crK3A0JoiLkUtoRn1ixe8VqT51hGvYqUzAQJIbxz7t+ey6vLdbHnYQb9VsJd2TUU1o27YpAMzEM9q95XxnurtvCPF5/n2HgHLi69mRE+Vn8vayONd+Aoi/BoCoaqIE1MpK/GuoYqfnbkHB1DY4S8BkOJNO/ZuJyg586U31yOYM70MJnrs1m357gkx9LsfuoIP/nHV7HNqYO3rEjUtlby+K8+yI73rMcfuiI1N9d+Jj8TTJY9SLJE3dJK6pZW8r5ffoCLp3q4dLaXlVtn94awHYcLo6PUhUJ8Yu1aVpaVzTno/c3jj09576HmZv7Fj3/M652d/MaWLZPHpUgSpT4fkhBU+P2MZKYr4Rzr72dvdzcPNTXx61u2UBMsPgz+at8+vnzo0KzHPBd0WaXWV0KVJ3xD699ODOeT+JX5R29KtCp0ycuY2YdAUONdNrXJW6iU6jUgIO9kCKvlRLTKGctgNMlgW+z9eGQ/+0d/Qtwc4mxyL2eSb3A5klaMXUoTGvXGNQ3jLv25C/xTxx+St3PYXKMWgsXx+Escj78EFHtIVMlgQ8k72Fn6ETzylYlsxo7zs76/41xiH6ZbwGXqgyxuDvEPF/+fydeK0AiqUT7V8CdT/EHuBAqWzf/47suMZ3J86qEN+A2NjoExfnrwLOPpLL/4yOZp62hyPT59G8ncq1j2EKncK6Ryr6PKVWgTRpMFuwvTHoKJ3ghFriDifYLR9NfJmsfJmscntydh4LhZkrkXiAU+jSKVIYQ0kRVxyJntpHJ7AVClUlRl5ibpgp1haeABVoYepWBn0GQvitBZrIblmnCII919dI6OYzvOjCRqseFgkbdG8Kk1+NSa6x6fEAJDLkOTw4znT2M7i2fyK01kI+4s3GlZwP7MfuKFC6StATLWAFl7kJTZe9V97+C4BcbyZxnLz20MfCN4pPrvKPWsvuXbvdshCd9k79ZscByXZGb2a1QI7or57Z3EXUc0PLJalIq9yR/CdV1s18F0nGlRX11WUOaRLfEpOgIxp8GWhKA1UMUfrPwoKSuP7dr4FANZSNiOgzKHbvxCIZCwHXfO8oeZvjePprKhqZrO4XG6hsdprYxRFpo9inSrMTSewtBUPHoxeipPkKG8WVRfkCSB36MvqFfk5N7ztB/rmqY+pRkq9zy6ho/85qM0raqd9RxThQKKJCZkiWcnIFe/rxkqSzc0sHRDw5zHpsgydeEwe7u6+OHp08iSRE0wiEcpXnfToqeuS9Y0sSau1WQ+T5nXy7mRERyutJnN5/fqGB9nKJ3mgytXUhUITK6zpaaG75+aTdFn2llPeaUKGb9i3HUTFigaWWkLKFGUhEyNdwlWOo8L1HinGg4KIeGRg1R5ljBW6COslRPVZ5anFEKgyx62xt5HS2AT55L7uJg6xnihn4KbQxYqAaWEMqOeBt8qmvwb0KWp+urFiaCMoSzAJK1Y5zdtOyBQZQN1hlT+jMePtCjmgZbtcKyjn6/+7scJ+YrHum25Q0tVjO++NnNZihCCkOdh8mYbI6mv4bgZwMa0uzDtrmnLS8JPRfA3CfuewMVkLP29SSdlWQpR4v8EiezT5AptdI/+v5SHfmuSsOSsswwnv0zBugAINLUBXZ25mXLvyFcZK3TS4NtKvX8LsqQjCRuJm3+G3Qjua23gtQsdPHf2PB/ZuJp6LQx3IdkoHk+R1M0HLk7xPFhczalmfzUZe3EU+Uq0KxmEk+P/wGD2xgJHb+PGEY1947rLOK7LWHx2nwxJkmZ16bZth2y2QOEaaX6fT0PTbmxMsW2HTKaAeVVAVggwDBXPHOpYtxJ3HdEIawbyLRhKsrbJ0eE+Dg32MF4oskvHdVElmSeaVrAscv0onibLqLJM3p5dPSRj5zkw2saLA8eJm2mcqx7cj1Vu4p2VG276XAAUWSIa8LD/fCcdQ2P4DR2fruLV53ehbGmp5VTXAAcv9PArD28lGrhzsqzffv4okaCHqlgIn0ejqSpKOODh6d2n+eZzh3Fcl3/14XvZumr+fiP5bGGa27fh03nww1v50L94hMqGuSWW/3T3K9SHQjxY30TU68WnaqgzkIAbxYdWrqRgWfzo7Fl+2tbG+spK3r9iBRsqKwkaVzJ2ectib3c3PzpzhotjYyTyeXKWxWgmQ00oVJxQLuCYkvk8AqYpzYQ9ngWQ3qmTT0WS8S3UZ4vcAAEAAElEQVQga3AnocsKqrQwMv/+2t8GYGggjl94GB5M4Lqg6QqBgEFUr+IXG/6UXNYkmyngJB1GM0k8Xh3Do2JZDoW8iVmwsG0XXVeQ7RDLxMNsrHoPqiqTzRTIZQs4joumKfj8xrRsoxASVd5WfnvZV4BiJixtmhRsG6+q4r2qP8dyHAq2hSwkdGX6sO1XI3xg4rzudkhCEAv6yBZMPBMPz4Jl4zgukYAXy75cNy2mXMOKHKM08CsIoTCW/gG2M4bjFmDSJ0NCEjqyVEJ58F8R9j2OLPmoivwBXm0tiexzuLiEPI8S9DyEEDID8S+SyD5DMvcKmlwNCEy7b9I9XJFi+PQNaMrMxmbbS3+J7sxRzidf52ziRUr1Jhr991BmtOJXS5FuQZnKtbBnCJ5dxr3NDbzQWMczp9v4L8+8zG89uJOKgB9dkYu+L9cZSqRrvvPbAUmoGHIplpslZV4ipK+Yc9x1XZes1U/eGUWTI8jS7GZotxsfrn2ID9c+tGj7fxt3N1zXpWBanLswOOsyqiJj6DOXZg0OJPjLv3yO3a+3TXn/t37nMR58cMUNEYOenjG+9FfPs/eN85Pv+Xw6H/v4Nj7xyW0L3t6N4K4jGkHt1tSW7unv5CtnDhHSdEZyGRRJxnFdyrzzjxwKiuVTcxGNC6l+ftizl2WBGu4tWzUlrdrgv1FP0OkwVIXtS+s5eqmff/u1n1JXGuZjO9ayoakaWZII+zzos7BkgIpwAL+hU+L3Ul0SRJ9DFeFWYySe5qnXT1FdGiJvWmxcVssnHt3AM3vP8psfvZdEOs8PXj7GuiXVeGa5Aa8HTVfZ+Z4NfOA3Hr4uyQA4MtDHP508yv8+8Ab31zXyrpalrC4tI6gb+LRiI9/NIOr18oVt23jvsmU8d/48z7S38/s/+xmfWLuWX1y/nshEM/jLFy/ye888wz01Nfz6li3Uh0IAfHHPHtpHFy5lfPneKUp5XolkOo5zQ34CUCzZ8it3p8rVQjMaV+M3PvZXfOpX7+fV50+RzRSobYjy6V97gJr6GJl0gddeOMWLPz1OMp7F69PZ8cAyHntiIz1dI7z6/CkunR9kbCRF6/Iq0qkcQ4MJPvHL91HfVMqzPz7C4X0XyKYL1NRH+eCntlPfXDZnk2CqUOBbJ0+wv6eHdy1ZwhPLrvTEjGQyHOnvo9TrY0NV1Q2d790CRZbYubKB//KtF3h0w1I8ukrX4DiH2nvY0FrNvrNdgEss5GdJ9dR7WVUqqAj9NkHjIeLZZ8gWjmHaQ7jYqFIMr76JiO8JDLV1ss5aoBDxvZ+I7/2T23Fdh4j3CRKZn5E1z+C6OfLW+Sn7koSHgOcBgp5HJxWlroUhB2gJ7KQlsJOUNczF1BscH/8RaWuMJ2r/M3711ntKnR8apTeenPEzIcEjS1voGBnj1fMdHOvp58ElzaysLCPq8163t7Is4GNF5e0tpVOEl4ixht7Us/SlXyDm2Ywul8zYO+C6DgUnzmB2N6lCB1HPRgz5zpb6vY23MV+4LoyMp7nQPXsfka4pBObR2P1Wwl1HNMKafkuIRl86yYqSMv7l6u18q/0YJbqHeyrq+NrZw8Tz863xFPhVneHc7M1fGTtPUPHymcaHbokx36xHIgTl4QB/9JGHp31WFvLzmfs3zrje5bllzjTJmSZbW2upCAdu23HOBFWV+bX3b+Od25ZjWjb/9avPM5bIkCuYVESDbFoe4h9/sv+GG6QkWbBiazOP/cJOqpvm9xCq8PvpTSVI5PP8qP0sP2o/S0ukhHe1LOH+ukYq/QFCuoFHWXi68vJ0XgANkQif27SJD61cyR+/9BLfP3mSdy1ZMkk0fnzuHAD/+ZFHJt8byWQYy91YHXKJx4MsSYxmsxRsezL63bcAc79roQoZn3p3ZjRuhmjYtsPp49380Z99nELB4m/+50957qmj/OLnH0LTFdZsaGDd5kYiJX5ef/E0u186TeuKKjwejbGRFOu3NuE6Lvtfb+d9H93C/tfa6Okc4djBi4wNp/i133on5ZVh/uEvn+ep7+znM59/iOAcBo8hw+ADy1egXZN5KkwEOlaWlRM2rjygkvk8iXwey3HQZJkSjwddUUjkcyTyBRzHwaOqk9fE3QLLdvjZobM4Dnz5mf1TPuseuaKFv3NlwzSiAcVGUJ+xBZ+xBWBShraoWjS/e1UICU2ppSryh/SN/yl5q7NYjuW6CKEiS0H8xg5KA7+MrswlY+1iOSYFJ03BTqNLfkqNFshduG1eBl87cIRvHjp+/QWB0UyW7xw5wXeOzG/b71m1lD97/7tu/ODmAVUKUOl7iP7MKwxm3+D06P+mPvghDLkUSWjFXhnXwcUkb4/Sk/op3amfgBCUeXfgU2fOLv08wauUE1DrFm3/snRnSm7eTHBdl1ze5KevnKZgzt707zVUwoHFy8otBu46ohHSPTcdTYbi40aV5Mma+Jxt4VU0xvLZyVKq+SCgzn1DeWUdv2rQmx2hzAgjC2mycVQWEsoCyzpuNXKmyWA8xfHOAQbjae5b0UTEf2cv8kjAg6bIpDJ5bMelYNl0D8bJmxaW7Ux8XzdeKx6tCLPrvRtYtnH+zff/dtu9vHDpIq90XqQrEWckl6V9bJQ/3/8Gf3v4ADtq63ikoZm15ZVEPV7CuoE6z9Ij07YZSqdxXBePoiBLEnnbJjpD+ZKhKOiyzHg+jyLL5C2Lo/39tA0PU+K9Mil1Xbcofeg45CwLy7axHYe8ZZGzLBRJQhaClpISaoJB9nZ3s7y0lKaSEvKWxeudncTnTV6u6dGQFHzy3flg0SUF7QbvMSEJ3vn4BgIhD9lsgdblVVw41w8U5QT9QYP4eIb+nrFiTatHI5XI4fFohMJeorEgtu3QtKScaGmQQMhDPmdy7OAl1myoJ5PO09M5QlVtCc/9+Cj5/HzN4qZiKJ3hB2dOc2F0lHcvWcqDTU0AnBgc4KWODsZzWWQh8bHVq1kSjfGTtjZODQ5iOQ4Rj8EnVq+lMhC4axoQPbrKN//tp2/Z9m5URUcIFZ++lfrYXxHP/JSseRrXzaPIZfj0zfiNbShSeM5tJMxBBnNtDGTPMphrQ5d91Pk2sT7yIby3ycDRr2mUeG/PGO7Xbn+kVZZ0SvS11AUepzP5AzpTT9KfeYWQvhSvUoUkDBy3QNYaIFE4R84eQhE+agKPUebZhiLdubLfuxUbYr+J7c7f9O1Ww5Bnl3b/eYTrFkvz2zoG+dmrc/dC+n0GZdE7G+xdbNx9REO7NYpTFb4AGdskns9R4fVzaKiHb7UfI17IYSxAmvd6ylNhzYfjuvz1+Z+yqaQVn2JMTtNa/FW0BGZWK7lTGEqk+d7eE3QOjfPO9UtZXlN2xyccTVVRDp/roWtwnGzexHHg2X1nUWSZs5cGGEtkCHpvLJMlKxKr7mll08OrkBbQTN5SEqWlJMpnVq/jYH8vL3Rc4EBfDwOZNCPZDM9dvMALHRepCQR5oL6RXbUNNIYjxLxeAtfJuo1mMnzl8GG64nGqgkG8qspoNsvRvj7ubWigxHNlkvBAYyMHe3r4X7t3s6a8nPFsliP9/SwrLWUwfSWTZjkOXYkEpwYHGUqnaRsZYSid5pWODnoSCaqCQZZEo7TGYjzQ1MQ3jh3jS/v20RKLTUa+pXn2oEhCUKL5Jv6WKDMCi06YZ8PNZDQEgnDUN/F3kVw4E2IL46Npnv/JUTovDIGA+FgG07QmhRhkRUJWJBzXQVHlYkmUEBQKFpZl8/qLZzh1rAsxIYFcEvPP2gB4PVQHg7xnyVJevHhh8j3XdWktiVLm84Moqor1JVMokkT7yAifWruW1miM//LqKxwb6Cfq9WLM0Nvx8w4hZDSlhtLg525o/dPxZ+jLnqbCs5wdpb9Eid6AcpujvTub6ykNLEA8YAFoit6ZCaSulNAS+hQC6Eu/RN4eYSi7d9pysjDwKtVUeHfREPwI/kWM4t9NMOQI2bzJSDxNWSSApk4dW1zXJZHKYdo2sXBRnc60bIbHU2RyJiVBL5Hg24TtVsF2bNovDfOX//wqo3M0ggOE/AaVZaE7dGR3B+66J8+tIhqroxXU+cN4FJWNpTWcj4/wQnc7W8vraA3H5rUNAfivQzSSZpb+7Bgu8PrQ6anrV4pFJxp1sTD/5j27FvUY7l3fjKGpHDvfi9fQ+NUntmHbDgXL5nsvHWM0keGBjUumDZbzQawywuodrZTV3NgDUlcUttfUsb2mjqFMmpcuXeS1rku0jY0wmE7TnUzwj8eP8K3TJ1hbXsn9dQ2sK6+kOhAk5vFOMdS7jJBhsKGqirRp0jE+juu6hA2Dj65ezaOtrcSuylS8o6WFjGny6qVL7O7qotLv51c2bUKTZZ48c2aStOZtm+P9/Xzn5MnJdSsCAQ739XG4r4/V5eWUeDzF8psVKwgbBi93dHBhdJTmkhI+u349FX4/9eHwdRXXgqqHTzftBIqko947v/tlMXAzRANml1zuujTMK8+e5Dd+9zGWrqzm4J52Xnh6NqOuKzAMlZKon5UP1fHwu9cRCnsxLRuzYOPx3roJaNo0eamjg/axEYK6wcWxMUzbJpkv4NO0ySxPicdDMl/4udNtv1NYGnyQNZHHMeTAHXMC395Uz/am+juyr9sFgcCjVLA08uvEjM30Z14hZXZgO9kJEzUJRfLiV+so8+4iZmxEk3++JmfXQ/fAOD986Ti/8J7NlJVMjZA7rktH7yjj6Sz3bSgqpuXyJruPdnD0bA87NzTzjnuWLsZhv6VgWTbDY2kudA3z99/Zw+nz/XMur8gS5bEAlaWL50GyGFhUorEyUj6t0XpFpGLBKjIzIap7KdG9KJJEAJ1fX3kPv7x8c9G9fAHbD1wnlbwiVMf/2FCMht2IJ8TPAwxN5d71zdy7frr3RHnEz3gqR2NVCYosz+lqPBNqWitYuWVm6cmFotTr48PLV/H+pSs4PTzEa92XONDXQ3ciwWAmzb7ebvb1dlPm9bGtppbt1XUsjcao8geIGFfq4D2qyqOtrTza2nrdfcqSxAdXruSDK1dO+2xb3ZXonV/TeHz5ch5ffn3TPJ+m8d5ly3jvsqnSrX9w//3XXReKROMzTQsjpz3ZfnCh3IihLHDib7s2J+JnWRpoxpAXVrohSxKapBTlpOcplTkfqKpMIOSh59IIqUSOsyd7yOWuX/okJMG2+5fRdrqXN145Q0ksQC5bwOs3WL2hHn0WsYOiso7F2ZFhepNJkvk8F8fGqA4GyZgmbSMj9CaTuEB3IoHtOAykUlT6A6wuL+fM0CCKJKgLhdjdCaeGhhjJZulPJVlfWTWt7+Nt3BqE1CpydoJ4oRf3musvqFUiX0dz/+cdquSnwncf5d5dmE6SvD2C7eaRhIouR9Gk0G3rdbnbkEjnGB5LkStYyJLAdcFjqFREg6SyeYbGUpimjd+nUxUrki7TsrnQM0L/SJKgT6e2IoIkBAMjSRDQVB2d3H7AZ3D/xhYse+p1mskVGBhJksrk0TWF8pIAoQX2EFiWzdBYasHP78uIJ7Ozfua6LiPjaXoHx29o27cSjlPs7TMtm1Qmz/BYir1HL/HqgXYSqeuXJpeEvCxtLEe7g2I8dwMWfLYF2+bYQD/DmWJZh1/TWV1WTsiYvVk0Z1lcGBtFIGgIhyejwL+xcjvONYOzhMTF8bFi86ptoUoSNcEQS6ILi6qeT4zSmRyjIVhCpTeAV1ExlAU2awuuq7bjui4ZO09neojhfAIHh7Dqp9YbI6LdOa+Ka+E4GRxnCNfNcLn/QZarkaQ7HxUyLZuB0SQj8TSW7UwRP1rZVDElGrOQcUozVGpby6lqvrUqJIoksbqsnFWlZSRXruVgfw/Pd1zgta5LdCcT9KdTfP/saZ4+38aSkii7ahvYUlXD8miMmNd319TC30m8NPgGAO+reoTAAolGwTb54rkv8yerf4dqT8WC990SLOfB8hWYE03B5cb8okVb712Cd0L9Q5IlqmpLcN2iznltQ4x7H1nJicOX8Ph0ahui1DevoSQWwOc3qGssoyTmx7YcbMvB69epayrF49VYsaaWWFmQQ3vPc+zQJTwelc07llw33p3M5zk+MDAhc1vg1NAgUa+X4XSacyPD2K7LSCbL+dFRVpeXszQW48TQIIf7+lgSjVEXClPh93NvQz37e3o5PTzE2vJKVpSWzru/6G0sDONmLx2pvaSsIbJWHFUyKDgZ/EqMjdGPIss/X7XYNwohJDQ59HOdtejoHeG1wxdIZPLgFks5S8M+tq9r5GzHIJ19Y8iyhG07PHLPUhzHZTyZ4di5HiynWCr1Kx/YRiTg5Xz3MM++cZammii/+N6ts+7Tsh3au4bZc+wiIMgXTFa3VLF9bSO6Nv9xPJ7M8k9P7idfuDHBkQtdI7N+li/YPPv6GY6c7r6hbd9KWLZDLm+SzhToGRhnYCSJ48xv0iIEVJWHWbtsZl+mtzJuiGjs7u7kYG8PXYk4iiTz3x55J2uN2ScI8VyOb548jiQEv7x+IzVqcTApZi6mPgDPjYzw53v30JNMoEgyiiR4tLl1wUSjKznOjzrOUObx0RgsoSlYQkMwQtTwLihjcr0ejbSd5+BoG68NnSJhZgEXj6yzJtzIvWUriemLkyIzzROY5iG4qtFa1x9eFKLR1jXECwfaGBybMNe76r6sq4jcsKRtpDRI/dKqG659nwuu65IyC3QmxkkWCvhUjVKvj4F0qlhSp2kUbIdjgwOcGBzkJ+3neKy5lceal7CkJDqj18GdxnAuzcmxPgqOzaZYLRH9rVmT+1DFSh4sXzH5WppnBPT3/vgDk39rmsLWXVdKCYIhL489sZHHnphZza2iOjL59/I1RVWisorw5HsbtjazYQ73+GshhKDc7+fXNk13xQ7qOi3R6LT3H25u5uHm6fvYWFXNxqrZH2aXhQVM28GyHUzHLv5r21iOg2k7ZAsmveOJeR//9ZDJm5wbGCZgaEWRDllClSUUWUaVJv6VJWRJelMR9bbES4wWLhHTm+jLnqbKs5KCm8V0c9yMwMXb+PlESchHU02M0XiGkpCXZCbPqQsD9I8k2LWhmdUtVXz1qf20dQ5RWRpECMG7d62ksjTEv/+Lp7jUN0Yk4GXb6gbiqRzD46k595fJFjh9sZ9EOsf9G1s53t7Lpb5RVjZXTCvHmgupTIGfvXaadObWN6ibls2+Y5du+XbvNPxenVWtlTTWTB/L3+pY8GzIp6p8bv1G3t26lG+fPMELHReuu45HVVhfUYlATDGhmgk/aTvLwb4ePr9pK8tLy8hZJuW+hUeFdlQ2UO0PcWiom3PjQ5wbH6LSF6TaF6IhEKYhGMGnaHNmHASC5mCMrWVTG9Aag1f6AXoyI+wZPsuacCPrIk3IQtCW7OXAaDuRcR8PlK9Z8LHfCth2N44TR1VXTerJS5J/UY7l5cPnSedMHtzUSthvTKllDnpvXOUkFPNTNU852/mgaLjs0pdK0jY6womhQfb2dnF0oJ9EIY9XUWkMR1gWLaUpHCGRz3N2ZJj28VE6E3G+fOwQ7eOj/Oq6Tawrr1j0BurzyWH+x/GXGCtk+T/bP3jbiUbGznI62UbeLmBIOo3+Wkq0MJKQiBcSXMr0EDeL+v8lWoglgSaUidISB5eB3DCX0j04rkNMj9DkL9ahD+SG6M0OkHcKeGSDGk8lFUbp5L0rC2lx7YLvMBzHxXJsCraDZduYEyTBnPL33O8VLJucZZErWEXpa8siZ175L2ua9NxCotE1FucvXtyDT9MwVAVDVdBVBY+qoisyhqoW31MUVFlCnSAel/9VJsxTJ9+Tiv8q1yx7+bXgzpSwJsx+Gv3baAnsYrzQw9Lgg3iUEK8MfAnbvTGVsZtB+9AIWdOiIRrGr839fLuMgm0zksqQty1KvF6Cxt2j8X/Zuf5O9b8sNlRFwqOreHQVQ1NJZvIUzKKqoDIhdqJrCuaEwaWmKkii+O0YuoppWiyE4FqOQzZvMjia4uylAVRFpq4i8nNX2nO7IUuC5rpS7t/aelsCo3c7Fnw1CSHwqhplXh8Rz/y09YO6wRPLVlx/QaBtdISY18e7WpcS9d74xMhQFJZFSlkWKWUsn2V3Xwc/6jjNTy+dpSUUZUVJOdsr6mkMlsxavyyAHRUNU4gFgOeqEqyEmcFyLB6uWIdnQgI0pgfpzowwmBu/4eO/WQhh4Lp5bLsPIYoPDkW5MW+Gm0Uyk2dNSyU71zYuwJ36+vCHvJReFVm+GeQti/axUc6MDHGwv5d9vd2cHxsFBBGPwfbqWlaVlbO1qoZ1E5K3BduiMx5nb283L3d2sL+vhxc7LlDm9VHh81MTnDl7lLNNzsWHqPdHCKrGW6anpyvTO0kcRvJjDOSH2RXbTEgLMmYmOJe8QMrKYLk2A7khPlr7Xpr8RRJvORaHx06gSCo5O0fezvNIxb3UeavozvRzLnke23VJ2WkqjFIeKd9FRHvrlFnYjsNgMs1oOjNJCgrWBCmw7WJD+QRRKNg2edOaJAeX/85fRRbyV302+b41saxpYd9gLfWNIpHLs/t853WXE4Aqy+iqMkFAiuTDUIrE5PK/U/5W5Kv+VtBVGU1W0CZJSJGIaIp81WsZr6bSEIvcVAZFFsUx33UdZKGRtobxyCGS1iC2O7uW/u3C1/YfoXMszm89sIPlFaXI8zi3ZC7Ps2fbOT80wsPLWtjV3HBbj9F1XUwnSdrswq/Woc5QXpa3x4jnz5Kxeicbx0PaUjQ58pYZL+eLimgQx3Y5eb6fwdEUQ2NJ7lndiEcvEo4j53rQOwYxLZua8giuCwdOd9HeNUwinePw2W5aa0txHJfDZ7vp6B1hZDxNXXmY6vIQS+rKsG2X2vLis7S2PPJzZyh3uxEr8fPQtqUsbbp1Js63Go7jMjCU4FL3CPFkFlmSKI0GaG6I4fPqN3Xf3Vba2pNIcLCvh+FMUe6ruaSEdeWV0/o52kdHOD00xHguS9vIMHnb4usnjuFVVYQQPLF0ORGPp2iIYlkcG+inIz5G3rIJGQZLozFaS6JTTKlc1yVRyHMhMcq58SH6M0maQ1HWxqrQJJnz8RH6M0k+vXQDNf6ZJyxCCGIeHzHP7FKCmqyAEHRnhmnylYMQDOYSpKwsVZ7F05p23QwCgSxFYeJhKFgcL4SWmhgDo0nOXhqkPBosqh5NXLMBr37DZmIev0G49OZqoIcyac6ODHNyeJD9vT0c6O9hPJdDFoL6UJiVpWWsLatkS1U1y6KlUyRCNVmhpSRKU6SETZXV/M3h/Tx9vo29PV081NA0K9G4kBjhS6df59eWbWdVpHJek4E3AyQhsblkDUsCTbw2tI8T8XOsDC4hpAWJ6RHuL9tOSA1gOhZ/3vZlTibaaPDVTlwLgoDq531Vj5C00ny/+6ccGT9Fq7+BZcFmVoRa8coe9o8e5eDYcfqyg3eUaOQyeTpOdHHh+CW8AQ/LtrRSMQ8H+vkia5o8d7qd19s6yE9kG/LWVSTCtIuvLQvTfusqSLkUI+wF22Zm7+v5QZUldEVBUxQMRZ4gIEVScpmQVIeD/NvH7ke7iQhjubEEReg4rkW5ZwkXUnvoSO/HJ4cXpRH8SE8fp/uH+OzWDfPudyvYNueHRvnp6TZift9tJxqOW2Akd5COxLep8N5HXeBxZOnKnCBvj9CTepbO5A9Imhcojg0N1PjfRbX/MTzKW9MZPBb247rg9+hEgt5JY7eyEj81ZSFOXxxgcCzJ6pYqltSXki9YPLx1Kdm8ydBYike2LqWspFi1MJbIUBr2URL0MpbIYtkOtl3MXlSVhlBkiUQ6R70UYXlTOY7r0j9czGBGQ7dHOvnnFUG/wcPblvHgPUvuKuPUa9HZM8pLe87S0zeO6xZ7SgA2rK5j55YWAv4bN+29rSNhzrLoSSY4MTjI8YF+NlVVUxcMTyMaw5kMZ4aHGEinSBTyWLbDyaEBNLmYFnxncyvuxPaePHuan55vm4hCCQq2RanPx0dWrGJrde0k6zo1Nsjz3e2M5bLIkqDWH2ZDaTUtoSgeRaUrOc7/78BzDGRTsxKN+aDCiFDvLeX73XuoMIrRsZF8Eo+ssSw4l6Ps7YUkRRDCh+OmEG4xA+Ny51P5EzvmxYNtHGvvpSIaRFWu3Gy/8NjmGxrYJFnC4zPQPTcWeWkfG+HE4CBHB/s51F9snC04Nross668gjWl5ayvqGJDRRW1wdCcUU9JCJZGYzzc2MLxoQG6kwlGsrOraBwY7mLfUCcfa9owWRrwVkCdt5pqTwWapFJmxHDiZzAnykds16Ez00PCLConmY5F0kwBLrjFfq114ZUYso7lWpQZUQZzI7i4JK0UneleTNekNzuI6ZjknfwdPTfHdsimc5w7cIGxgTi+oHfBRMMsWBx/9TRrdi1HuabR0rQcTvUO8nJbxy086p9fFLM/BcjPXjNeGwlNKJXdONGo8xV7eGRJpd63mbydJmkOsDL8LvRFKlVdKFRJIqBrZAomI+m5PQBuBSw3xUDmNYay+5CFQW3gvZOfOa7JSO4QFxPfJG1eQpNLkJBJmhe5kPgGuhyl0vcwinTjk567FVWlIapKZ5+LNNVc06fqg4e2LJlx2cd2zFxB8t57V017z2No7FzXNP8DnQEeQ2VFcyUXuoYZHU+/hZ5qN4dQwODRXSt44pE1REJ3d4/kgaMdjI6luX/bEirLQ1i2w5n2fl7d28bSloq7l2g0hMN8es16zo+O8Bf7p5vxXMaK0jLqQiFsx6U3lSRdKPAvNt9DSDcQAmJeL47jcGJogH88eoTNVdU81roEr6pyZniI7505xTdPnqAxXEK5vzi4j+ezFGybzeU1rIlWUuENTPEPqAmE2VxaS+g6zd7XQ0wPcn/ZanaPnKE3O4rrupQaITZFWmj0LV6aTFGacJ0MtjMAWEhyBUIsju19ScjLzrVNM0bYJOnGovmKImP4tBte/2vHj/LsxXb60ikc1yViGGwvq2N9RSUbKipZXVpO2FjY91Xh81Pm9XF+bBTTnrlswnEdDo90k7UWifTdRuiSNlk6JU2krFyK5/zi4B4SZpKYHkERCqZjTiFZAoFX8Vz1SuDg0J8b4tn+1wiq/olsiInt2nf8QeYNeFj/wCpw4dXvzj6WzYW+iwM899VXWLalZRrReBtvTvjVK5M/n1LC2sjjOK6NLNQ3TYmPEAJZkor1+uaNqQYtBJaTI144iyr5CenLpzh9Z61+BjKvkzYvEdZXUu17FEXy0pt+nuHcfgaze4gYq/FLb24fkWvhuDbgIt3CLJjrumTtHOfTHawOXV8W/VrYrk1npoeA4iemz12dEQ56+Mz7t9LVN0Z3/xjdA+P0DMTpG4yTzi6eg/liQZIE1eVh3rlrBe+8dzmVcxDIuwXj8SzN9aVsWd+IOuFpVlMZYe/BCxO9PzeO2/q0kyUJv6ZRMoux2WUEdZ2gXpzwG4qCZdtUBYJTHJSzpsmz59vJWia/vGETdaHiD1cTDNGXSvLT9jZODw9OEo3V0UpWlpQT0j2ztpG9r3E5Yf3mJt+ykKjwRHiwbA2jhRQ2Dj7ZQJMUcnYBv7Q4k3tQcMnhujlc10GSosDipO3u39DC/RtujdfFZUiyQL2Jydr+vh56U0kawxHWl1eyvqKStWWVLI3GbthzQEyUAGmyMkXZLGXmOT7WR0dylMFskoPDXRQci+92HOWNwY7JbIksJO4pa2BbecOU7RZsi870OOfig/RlEiTNYjTfr2jU+sOsilRS6Z076zITTo8P8GzPWWzX4d21K1gSmlqSYDo23elxjoz00JdJUHBsvIpGnT/M6kglVd7QvCZTpmNxYPQYO2ObuL9sG1k7x56RQ9O/v2teu67LYG6EC+lOfrnxo1R7Knh95ACD+eEFneedgG3ZtB/p4My+djLxDOUNZWx4aBWh0iCFnMmeHx3g0HPHObO/nW//9x+hGSqrdy1n1c5l19/427hrYTp5hnJtjBe6sdypE6plwYfR5Ls7ignF/rSRTAYB3GDcZkFw3AJZqxdF8hHUrjwXXNchUWhnOHsAXY5R7X8n9YEPTpA2hbTZRTx/hpw1iF996xAN2zUZzh1jMHuEoFpHUGvAr1ahSl5uRuXCweFSppv9o4duiGjEzQRHxo+zxN98XaKhqQobVtayfkUN+YJF72B88r+e/nG6+sfo6htjcCSFad353qU7BQGUhH1sWl3Hzg3NbFlbT8D35si+NdbH6O0f5+z5fspLg1i2w9n2AcpKg7gujE04ngcDxoJLwN40YTXLcYrqP/k8Xzl6eLJ+zHQc2kdGSJsFBlLpyeWD1zHaE0Cl7+alZwdz47w0eJy+7FhR/eYqbI0uZXP0+qZttwOmeQLbHkRTV+NiUcjvR5arkeW7x+X51SMXWLekmsANKE8JSUKSb5w4rSuvZGdtPevKK1gZK6PmOuVR84FXVVlbXk65z0d96EoEY6yQ4cXeNo6P9TGSSzOUK6aW9w11YsgKlx8mqiQRM3xTiEbBtjk62sPfn93LxeQow/k0tmNPKI0Iyj0BtpTV8aGGdawqmb8L/fHRXr50Zjev9J3n8fpV0ySfs5bJ7sGLfK/jGKfHBhgvFEvBBFDmCbCptJbH61ezIVpz3e9NFhJLAo1cSHUyVohjyAYBxXfFiGvW1QUhNUiJFualwTcIqn7Sdga/cvfVELcdushr39+HZqj4wz6OvHiCfCbPzg9sQffoeAPFHjNZkQmU+NA8GppncXqm3satQ1fmEBdTbxT74YTG1Rezw+3PDtwMXNclXTA53NXLwc4ePJpK1Hf7iZGLjWkn0dQwxlX9FqaTIJ4/Q9bqo9S7jZhn82SJVEBtxFDKSBTOYjpzS7a+2VCwE/Smd3Mu/l18Sjl+tYo6/0PU+h9AlWYe6ywnN+GgXoQsdAQyQogJb68srwzt5nSyjYHcEN/uehKPbLAiuJQGXy39uUHOJNtZHmil0lNOf26Q9uRFqjwV1HmraUtd4MDYUc4l2+nN9nMqcY4abxWrgssIqLOXBAohMHSVptoYTbUxHMchnsrRP5SgbyhB72Ccrr4xOntH6eobYyyRvWGTv7sJAZ9OQ02U1voyVrZWsrKlgtrKN5dwQTqT5+U95zh47BIlER+27dDZM4ahKYzHs5NZjs9/5j7CCywDe9MQDQeXVKGAIglS5tT67JpQkFVl5dSHw3f8uHqzoxwaO8/O2Eq8ytQHzWJ5aAA4zjiyXIlu3AsUiUfRvO/uwfMHztFcHb0hogE3J1/5C6vXUebzEdKNW6bbX+0P8uFlq7Bch3LvlcE4pHp4sKqVTbE6TMfivx57gZ5MnI82rWdZqGzS90ESgqbA1MiRJMBxXeJmjvXRapqDMUKagQA6UmO82NvGDzpOENG81PrDhLTrZ9AOD3fzpTOvs2+ok482reczrZup8YUnPzcdmyOjPfyfU6/Sn0nwSPVSloXK0WSF0XyaNwY7+GnXaVJmHr+isSxczuaSooyzPqG8VmGU8UDZNsr1olP4w+U7uZjuomAXCKoBVoeW4uIiCQkVhU/Vv5+QWrxfdEllTWg5Lf4Gqr3lvLPiPgZzw2iSRlgLoksaIe3uMUJzHJd9Pz2CYzs89MmdlNXGeP6fXuXAs8dYuWMpdcuq2fLYeuJDCcb6x3nnZx/AG7z7I91v4/roSh/Gr5RS79uEJk39TVXp9v7GF4dHeeV8B8NXBdgGk8W/v3vkJG90dM45ttmuy3gmx9nBYTpGx2koCbOy8s6U+xbLJgXiqv6YjNXHaP4ostAJa8vwK1dk5VU5iCJ5sZwMziLIBt9O5O04SbMb282SMDtImB2EtCZqeXDWdc7Fv0Wi0DH5ujn4BFFjBWJiSicLibAWQhYyhqRTqkfRJA2PrE8Upgr6sv2MFca4t3QbR8ZP0J8doN5XU1QWlT14ZANFKITUIKV6lKASQBYLy/ZLkkQk6CUS9LKsqRzTchgZTzM4kmBgOEnPwDhtl4Y41dbH4OjMBFKWBHVVJXeFEpYkFcsMVVXB79UI+ovN+qUlfipLg1RXRIhF/Nx1/GIeXK6hNsq7H149pcR97YrpfcaXCcdC8KYhGhKCsGGQt21+feOWaakbRRQb2u40gqqXel8ZLg5+xTMlq6HLN2ZEdysgy1EKhSNkMt/GdU1cJ4WQ7hzxudAzjKYq1JSFOdrWQ/dgfNoy5zqHZu1luN1YukADyPnAp2n4tOnXYFAzuKesAYCcZfJXp18HYEO0hu3lDXP6bSiSzIpIJb+7+kFiho9yTwBdVnBdl7FCFq+i8vdn93I6PkBfJjEj0VAkaVKHfv9QJ186s5tjIz18umUzH29eT4UnOIW0JQo5vnH+EJ2pMT7SuJ5Pt26iwhNEEoKsZbI0VM7fntnNa/0XWBWppCUYY0lgajNhiR6mRA9Pvq7ylFPlmXkSIwmJB8t3TL5WJZVG/5UBbmVoCStDMzc93g3IZ/IMdAzSdbaX1FgKRVMY6Ruj60wv+cydbVp/G3cWtlugRKuj1Gi54ypTo5ksz589z/HegYmmdihMlKU8d679ugEU1y1mTAGChs6O5no2191+12KBjCoFcbAwneJzwXFNkoULjOdP41VrCOsrpyhRvZWNckwnScYamHytCC8eJYoiZi+56c3sYTB7pfy03LOZEn0ZiImsgmywMbKW4fwoqlC4v2zHlPVL9SjrI6t5fXgf3+/5CQLB5pL1VHkqkIVMva+WjJ1jND/KmtAK1oRX3vR5CiHQVJnK0iCVpUEc1yWbK9DRM8q3nz7EM6+dmXE9XVd5zwOrWNky/4z9QhEvtNOdfokSfQWV3u2zLidEkTwpsoSuK3gNjaDfQNeUuzZ74Tou1jzK1dYsr2HN8ppp7+89dIElzRU31cz+piEaqiyxqaqab508wUAqxdaaqUxrsZJvlmvTlR6iIzVAtSc2hWhsiS5ZNIlbVV0PCGyrC5DQjftRlMY7tv/h8TQeQ6OmLMzrxy7SNTBO5JoobjKdm7cE45sB7f0jFCyLpvIoxi00PAqoOhtiUwcAIQQlupeloTJKDR+JQm6yd+NaGLKCLAR7Bjr46zO7OZcY5HNL7+H9DWspNXxTBkjHdenLJnil/zylhp8n6ldT5b1SBuZRVNaUVLIuWs0bQ5doiw8xms9Q5lm8DMMbw+3sHT6P5RQH03dXr2NZqOqO7V9WimV8Vc0VrNq1HG3C6V5SJMrrr1KmujufQ29jgcjbKQpOsZSwRKujP3caVTKIaDVI4kpwyaeUIC0wArwQNMVK+LWdWzg7OMy5wWHODgzRPjRKwbbxKCrKhHHhjBDFbKlH1aiNhNjeWMdDS5uI+W9/WaIsdPxaHalCB6O540SNTaTNbvozr2A5KYLaDiL6VHUky0ljuzkkoSFu43e6GDCdDDl7bPK1LofQ5ciV0tLbAEVSaPDW0eXt4af9L7A9uoVlgZYFZyxuBpIQ+Dw6rXWlNNbEJsu+roUsCRproqxZdvtIcG+6g+xIG7WBRpZHbj/ZvpOwHYd84cbLOPccuEBpNHDniEbRaMchkc8xkskwks1i2jZ9ySRlXh9eVcWnaSiShDPheZEq5OlLJUkVCshC0JdK4tVU/JqGR1Emy0auB01WeLRlCa9c6uCLe3fzeHwFtcEgecumKxFHEoL3L1sxY0T5diJl5pCFxAdqt+NXDO6W0ilZLsV1l+O6JgINRVmGNM+Mhm3dvE5/S20p8kRnYcG0WLekmvVLpt7A57uHb1g16nbAdhyceTIfIcQUFTOAAxe6cV2X5vLoLT0ux3UZzWc4PNJNe2KY4VyKjGWSty36MgkGcykiunfWY/fIKkdGeni25ywHh7v4wspdfLBhLSW6d1oUxnJsLiZGJknLn514Ee2ajIvtulxKjgIQN3MkCrlFJRrHx7v4Xud+rAmDtLWRujtKNFRdpXFVHT1tfTSsqKFpbQO5VI7kWAr9qrJAf8jH+FCCbCqHJ+DBsR3kn0OX2Dc7ziZe5HyymJUsOGnS1ghd6cMYchBxleDGO6p+D59y+wJNEa+H7Y11rK2uZDSTYTCZ5j889Rznh0f5pW0bWVZeOmfTphDFvrCQx6AyGCDsvTPCJYrkp9TYyljuON2pH5O1+sjbo4zkDuJRKokZm9Hlqd9bzh7EtONoUhB5jkj/mxG2m8N0rrjGKJIHRdz+0sqUlWa0MI5X9pCyUiTMFIZ85bsVk/93e6GqMiUhLwGfTiK1OKbCb2XYtkMuN3O54YXOYdovDM65/pn2AR594OYqTxZENCzH4ZVLF/m/Rw6Rt20GUilGshn+9749BHWdlpIon1y9lmWxUsZzWX549gzPXmgnY5p0xeMIAQOvp/BpGrvq6nn/spVU+OenNS6EoCVSwu9s28n3z57iO6dOYNoOiiwR1HS21dbeslr7hcCn6MiSzJ6hM5QaoSkRgZWhukUjG6Z5jnz+eRwnDq6FbXdiGI8iK9dn6/ZNsN/LKLkqe7FrXTPlJQFqysJTllnRWIF+CyP/N4IjA3281NnB+dER0qaJM8/c2D1Vtfz6hs1T3svkCyiSdEtNeXK2yf6hTr7WfoCO1BgF2yKiewmoOpqkYDrWdZvphnJpvtK2n+7MOHnbYiSXRpXkGVO9tusyks9M7Nvi5Fj/rNst9wQIqPqiRuod1yFjFUhaVx5QlnvrDe0une7mxa+/Ttvhi/S2D9B3cYCTu8+y/fHNLNnYxPYnNrP7+/v40ZeeJZvOISsSa+5dwa4PbkWfaPpeuqWFysZy/vcXvow36OWhT+5k48Nrbvmxvo3bi2rvagLq9T1Uru3ZuB0QQuDXNfy6Rm04RFO0hM6xcVZVlrOtsQ7lJgQzbhcUyUe5dxcD2VcZz58mY/WB6yCEQqlnK2XeHdOyFqnCJbLWIH6tAe0OlgDfCTiujXWVL5As9EnH+ZuBQOCRDcbNOHm7gCapODjIQiZtZTgeP0XCTPJ49WOcTbazd/QgD5ffh2eCbOiSRsE2SVkZbNee7O241SVCQggiIS/RsG9xicZdWvoE3FTJTiFvMTaanvGzk2d6efmNc5THZr+nRuPpm27YX9AsT5YkVpaW8xubts74uV/TqPQXI5s+tUgmWktmju6Wen2E9OnNPb+9bSe24xC4JjMhKEZftlTXUBsKMZROk7dtZCHwqiplPj+6cucnrX7FQ4O3jIJjkXcspKuUICxn8VRHTPM0YODxPATYZLNPYdnd8yIa5i0gGldjZVPFtOg/wIceXEsksHhNsU+2neEfjx3mwvgYiXx+ss55PphJ1WxFTTmnewa5MDBKa2X0pgdkx3XpTI3xP0+8TEdylG3lDXygYQ2lhh9dVpCFxL6hS3z57Btzbmcol2JtpIqHqpfwo84T/ODSCWp8ET7cuBZDmdpHJGDyt6r3hfmPm94z5/gb0jxUeRfvwW86NoWbuM8c1+F0oosf9rxBwTF5oGwt95WtnrZctDLCjic2s+HhNdiWjaxIePwGZXXFCWdZbYz7P7aDld0j5FI5JEUiVh3F478SJY6Uh/j0H36IsYE4QhJUN1fc8HG/jcVDVG8gqjcs9mFMgxCCxliEPR13d0W0JGSCWgvLS/4V3ckfkyi0o0oBYp7NVPkewbhGGTFnDZMotGM6ccLaCgxl8fypbgdcnCkKUhLKLfHTkIXMskArB8eO8udtf0NUi7Cz9B6afPWcT13kVOIsO2JbWRVahipU9o0e4tj4STaXrEcSEuVGGXW+Gl4d3sPekQOsCq9ga8kGguqtz15Hgl5iET8Xu0du+bbnDwnTTnIx8WP6M3ux3RwhrYWGwDvxq7W3tZTtMmRl5kClado3NNl3HIdUKs/4+MxCQJZts7S5nId3zS5/PDSaRJZvbi6zoKtZEoLKQIDKwPUvNF1RaCmJ0jIL0ZgNK0vLZv1MCIEqy9SFwtSFwgva7u1CqR7kPdVbZvzMKy+eSoLrZpCkEKpalNfN5Z4F5meck07e2qiCoc3cFF+9iCY2HfFx/u/RQxwb7Md2XRRJojYQxKtonB0dRpUk6kNhCrbNcCZDxjLxqSqbKqvZWVvPpsrphC1XsNjb1smLJ85TGvRNydb84n0bWVK1MCfpvG1xfLSPk2P9LA2V8fnlO1kaKptC2s7FB7GuMwCFNIPPLt3Cplgd1b4QXzzxMn995nXKPH4erGqdIm0rSxI1vuLvIgmJKm+QKt/dazZUcCxM58bTugJBrbeUd1Zs5LvdrzOQG5txOX/YR+uG2d1zJUlQUhGmpCI8+76EoG5ZNXW3sdb4bfx8Y0lZjDK/H/UGvYDuFCRJJ2ZswK/UY7kpBAqaHEaTQtMmdKrkpyX8aWoD78ar1Ewrq3qzQyAhoeJMPJ8dbFxuPisrEFQYZXyy7kNk7CyapBLTSpCERIOvjogWplSPoUkay4KtVBilGLIxKRzikQ3ujW1jVXA5tmsTUgOT2Y5bjUjIQyyy+LLl3ekXCVtL8MhlmE6CnvRLpK1uVkY+R0C7/d4tmqagqNOJRjqTx7YXfk1kMwUuXRqedd1Vy6pxHJfGutnFcZrrSzH0mxM2urtDH28CaLJKbBHVpWaDLFeSz79EMtmN6xYmiMf8Bujk2MxpthvFkbYeysJ+qq4iFpbtcPRcD8say/EZd14t7KVLF+mIj2G7Lg/WN/LZNRso9fko2DYf+O7XKfF4+ct3vhfHdRnP5Xj24nm+d/YkADtr6mgtmX5jlgZ97FreSMEq+lxc3X/iM4qkU5GkyUxHysrP2RNiuQ6jhQy26xDSDFqDsSkkI20VJk0AK+bokdAkhUpviKjh4711KxnJp/n7M2/w3469QKnhZ120erLsUBESDf4oNb4wI/k0z/Sc5ReXzEyk7wbkbYuCfeMZDSEEQdVLS6CKgLJY5ppv423cGtzb3MDSshhVoeBkj9zdiGIJjoZXvb6SkCTpBNRmAmpzcc27ucTlBiAJBVnScJwi0TCd9C3xChFCoAiFGu/0frWgGpiSmfDIBh7P1AyrEIKwFiKs3f5AUzjgJbrIRMPFxqOU0RB4NxF9Ka5rczH5YzqSP2E4dxyPUj7p63K7YBgK2gxGxP194+RzFvOI8U9BPJHlxPGuWT+vr7n+nPAD71pPMHBzz8a3icZbFJq2GUkKYpltIFRUdcW8VafGhxK39Fh2H7vI2tbqKURDlgTfe/kYn4/tXBSicWywn4xpUR8M8zv37GRJSQxZCNKmiTah1tIcLkGSJBzHoS4YIqjr/OPxw3z7zEl+Z+vOaeVgLRVR6mLhGffnmcjqFJ3kA7TFh/hx50k2Rmso8wQmFTds15mUu1UlaZJADOfSHBrpnpTJHcml+XHXSX5w6fiCIvoB1eDTzZsZyqT43qVj/NGhn/J/tn+AWl/RXEgIQanh45PNG/mz4y/yz+cPIgvBozXLKPMEMB2b0XyGtvgQl1JjrIpUsDa6eBH6gmNdt3TqP5/6JmtDjRwaa2coH2dVqIFPNDyAT9avO2lJmBl2D5/mlcHjJKwMpXqIRyo2sDW6FFlIXEz189zAYU7Fu7Bciw2RFt5VtZlyI4LpWDzTf5jdwydJW3nWhpv4UO0O/Ipn2n4DHp0vPLiNz2zbcNPfyWLh2KU+fnLgDG19w7iuywOrW3jinpUEjIVldsfMHg6NfAdd9rOz9Jdv09GCqkh3rNz2nz/3MRynGFSw3BTd419iNPsShlpHc8l/QJfnLqPTVJnSeShChTwGIc+tmwzdu6SR5ZVlWDcQTb0M701GQ0VRs3XB633+gXv45NZ1WLbN/mOX+MYPD3DPhkY+/r7N1195AqUB321vQZOFhip8mBTJRc4eJmMN4brOHSnXuRtgGCrRsA+PrpLNL5JPiusS0ZcQNVahy8W5SpVvJ32Z1xnNn6bCu/W2Ew1NUwmHvei6Qj5/5bl25nQfqVSOWOn8mYZl2XR3jXLs2OxEQ5tHj2xp9OZL5d4mGm9RCKGiqstQlCUUo0DGvGQB0/EMqfitNfZLZwuY1+g4Z/MmA6PJeek73w70pZKYjs091bXUBkLIkoSg2KNgyAouRdU0n6YhSxIV/gAP1Dfy8qWL7Onu4o2aLh5smFpKo6vKdZvbhRC8t24Vx0f7eKX/PJ9++Z8o9wSwHZeMneezS+7h8fqitKMuKawIV7AxVsOx0V7+3YGnaPCXIEsS/Zk4OdumNRgjqnsX1CsW1j38q1X3MZxP81JfO39w4Cf8n+0fIqgVB1GPok1mPr7WfoAvnnyFf2jbhzbh35G3LfK2RYU3SNTwspZFJhru3ESjKzNEvJDmY/X3Ykg6X77wDE/17uODNTtQrnNPyEKizlvKh+t24VcMdg+f5tWh41QaEWQh8cOePRiyxueaHkWWigTVpxS/x5/2HeT4+EWeqN5GSPPzTx0v8GTPXj5Uu3Oax44iSVSFg1SFb+bbWDyc6hrgwJlu7l/exO8/fh+W46DIMk3lJQsWfBjOpejDwpBdllUurNzwbsWS8isZUMvWUFUTX3oErxphSVkIzzyayxcDt5q43ElUhgJUhgLk8ibPD5wiN5pj8NL4XXdNqZIfj1JKxi56aZhOhpHcSZLeLoJ3oFznboAkBCUhH5GQl+wMnlt3CpoUQpOuTKy9chmq8JGzhrDd2++JJEmCioowwZCXocErAd/OzmFOneqhvCKEx3P9wKzrwvBwih89eYjkPEvhbdvh8IlOnn/tDD194/zSx3dQGg3Q0zfGstZKgv4bHwcWlWgkzTyFGaKxfkVDm0UV5y2B+Z6WC84NRpJy2adA6Hg871rQev2dIzdUCzgTXj7czqtHL3L4bDdtXUM8t//c5GeDoykCHv2ma/9uFBnTxHFdaoPBSZIBgACvppK3LBKF/KRcsiQEZV4/q8sq+OG50xwd7J9GNGzH4dDFHn508DQXB8f43IObaamI0jE4xrLqUqKBYkTyHdXFaPi3Lh7mxFgf3ek4PkWl1h8hpF0lLygEdf4If7ThMb554TCv9J/n8EgPHkVhWaiM99atYlWkkq+27+dcfGhB5x/Vvfz79Y8ylEtzYLiLPz78M/5083tQJbl4rp4Av7psO5tidTx56ThHR3sZyI6hSjIxw8/KSCUPVrWwITrd4OdOYl49Gi5sLGlhSaAGj6xxb9kqnu0/zBPV21CYm2h4ZJ3WQDWCYs/KaCHJSD5R/LeQxHJttsdWsCxUi6AoAS6EhO06vDp0gvvKVrMy1IAhq+woXckPe97g8Zp70Ln7yi1vBnvPdRINerl3ZSMNZSW4uLgud3X5ztv4+YAsSTTXlRL0G6xovX2mbzcKXQ7iVysYyZ+YeMelN/M6mhxkafhjBNSayb6JtzJKJpSneheRaFzO6l95QwIx0bB/h0y/GptKKS0NTCEaluXwrW/upa4+xvLlVchzqMm5rsvoaIqv/uOr7N9/cd77PXD0Es++copoiZ9L3aOkMwVqKhWefeU00Yj/zUs0/vjAM7zUd37a+3+48R28o2YJmry4CZdnu8/y5TMHuFpbzKOoPFTdyidbb7zEQZKkeZENF8im8hjehTeVu9yY6uiFk924zq25oTYsrcFv6AyMJIiF/TRVF4UBBLBpWS2bltcSCy9OXaYyQS4sZyqpEgjCuofeQoL+VHJSRQ3AUGRiXi9p02QoM72P5cD5bn544BQRnwdDVUjlChiqwvMn2vEa2iTRMBSVR6qXsKOiEdOxcd1iZYAiJHzK1GiFIiSWhEr5ndUP8IUVu3Bcd0L/XsaQVRRJ4nfXPITl2NPWXV9Szf+97xM4rjuFwEBxQK3wBPibnR/BdGw0WUG5Kk0vCUFE83BfZTNbSuswHbvYTyJAFgJFyOiyMqWRfDGQd+bXoxHTQ6hS0ben0hNhOB/HnUceKGPleGPkDC8PHSdl5khaWYKqB8d1iRfSKEKmRAtcMeqcuOnGCxmSZpa/Pf9TvtLxPAJBwTFxXfeOPbDuJIbiaUJeg6DXmOhNeutPjN7GmwOKIvHIruVs39iEvkiBrbngUcqIaEu5xPNcnmuYTpoLiR/Rl9lDWGshoNahSj7ERGAkbU6VHe/JvE7a6p/8/HajMfgYXuXWZoZKwj5KwounQgnFbJLlZFEmpKkLThzbyePRSpHFnbl2liyppLmpjLZz/ZjmlSBad/cY//2/PsXHPrGN++9fjq6rUyoKXdclnzd5443zfOfb+2hvG5iy/vVwqq2Ppc0VvOP+Ffz5yAuASyTkZTyevSnDP1hkopEw84zkppfp5Gxr0Zy+r4brwoGhrikTElXIKEK6KaKhqHKRbMzjANKJDJGyhcuHynIVpnmSXO5VZLm8GJGVK5Gkuevtzh/rnKwlvln4PTrrllSztq2aFQ3lbFp+xc1dCIEsS4s2HYl6vCiSRGciPoVsSEJQEwhwKT7GqeEh1ldcaaSzXZeCbWE5Nllr+o13pneIprISPrJ9Df/76d2AS8TnJZUrkCtMrTvVZGVeRFoIgYzAr+r41ZkJZ2CW9zVZoWSOfQghiOizD+xCCFQho2p3r4KNaVuY85C3TZrZSfniuJkmoHquGyV0XJfj8Uv8uHcfn2x4gBXBOg6NtrN7+BQAHlkrGpPa01PqfsVAkxV+reVdbI0uRZ0s0RITxp5vLfgNnVzBpHDLSiEFppPlTPwFjo79mJQ1REApZUXoEVqDu9DlK/5LxeVe5Ez8ecbNXnQ5SGtgB+tKHp8w0Sv+zq8M/DVxs58t0U+we/gfGM5exKtEWB56mLWRdyNLRaLuug7D+UscHfshXemj2FiUGy2sCb+HWt/aWyI9+jbuHIQQ6JqCPkOT7d0ARXgI662EtAbihSsRaNvNkzJ7SJv9RSPIq2aVjjv1edKVepFu8fIdO+Zy74ZbTzRCXqKhxW0ITxQukDJ7COtFtc7h7HEy1iA1/gdR5TtjSqtpMjt3LeXMmV7a2gYm33ddl+7uUf78f/2Mf/7ablasrCYWC6DrCol4lsHBBGfOFHs58vmiv5YsC1pbK1i6rJIf/uDQnPt1bAfDUPB5tEkhm3zBQtOUOTMo88HdeectAK7rkhhNs+fZ4zz/vQP0XhzCBcqqIzz8wc088PhGfEEPruuSTeV55anDPP+9A/RcHMIbMNj60Ere95ldlFVFENek+St9QRx3qoVb3rXoTscZzWcomWOSNhdUTUFWrv/Due6NK0A5dh+F/OsU8nu4HF30+z+Hps+uIOS6LkdfO4vj3JrSqSKZEHz4obXoqjKl8agY2WXRAp+tJVH29HRyqL+Xgm3huhpCCCQhWFFaxrMXz/P0+XN8aNlKtAmpyPFcjrMjwyiShGeGJlLXBVWW0RUFSRK4LmQKBTRVRrnL5SavxnAuyf936seLfRjzwlg+zfnU3M6mAC8OHmF1uIGQ6uPp3oNsLlmCLCRc18VxHWzXxsXFcV0sx55szr9MIkr1EDm7QFuql74JCdzWQDWHx8/z2vApwpofXVIZM1OUaAF8ssE90WUcHG2j2VdBva+M0UKK8UKK1kD1dXtDrkbxGIvhDmniGr3bsKmlmn984SB7zlzi4bWtRTf7ZIaaWOiGTDkFgp7McXJ2gmrvarxymM7MEd4Y/iccHFaF34kkZCwnz+6hr3Au8TK1vnW0BncRNwc4Pv40w/mLPFTxm3jkEEIITCdHV/ooY4Uemvz30OjfQnf6OPtHvk7OTrKt9NMA9GVP8+rg3+HisDL8KJKQuZQ6yEsDX2Jr7BMsDd7/1i3rvQvhui6OU8wEzhYCE1AMXF31u9i2M03VT5oIcM0Ex3GLz74JxcDZ7rPJ5WbY52zHe/nZIgTTlhdCEDNWU+9/lBNjX8Zxp8rQu9hFn4054n8uFncyUXo7srJBv0E04kORpZsSH7hRyEJnOHec46NfoszYQMFJ0ZV6Do8SI+ZZd0fc2qF4PWzYWM8jl1YzPp5haOiKa7zrQj5v0dMzRl/f+AT3FJPzqat/FyEETc1l/IsvPMLgQIInf3hozmukqb6UPQcvYOgaqUyeodEUX//BfspifkKBmwuOvamJhuu6jAzE+c5fv8gL3z/Ays1NfOwL70BWZC6d7UPTVTy+YrQ3nzX5xl8+x4s/OMjabS088PhGhvvHefGHh+g428+/+JMPUlk31WStwjszg81aJhcTo5SU3uCFJ8Af8qKoMtYcqS3Hdrhwspvlm5sXvAvD8ziG533TdzwHLp7qYbB79KZcKGfCkXO91JSFaK6+0hBpOw4vHmxn68p6gr47H+HdUlXDd8+cpCM+ztmRYe6pri2WBEkS99U28MV9ezjY38cfvPw8n1q1Ftt1+OG5M7x46SIh3aA+OF3yr7m8hGeOtfHDA6cYTWXpjyf56iuHCBo6ZcHF1wifLzJ2gef7Ty72YdxSrAjV8b/bnqQvO8qGSDMfqbsXWUgUHIs/O/M92lI9jBWSHBxt5/XhU+wqXcmHa3exLFjLsfhF/u3Rf6BE87MsWMumklZkIbEkUM37a3bwZM8bfOHgl3Bch52lK/lQ7U78iocP1u7k6d79fPHcDxnIjRNUvXygdgctgelyk3OhY3ycfz5ylIFUio+sWc3O+ruvQXRTay2m5fCd3cf4u2f3IUmC921Zwcd3rbshouHi4FNKWFfyfpYE7gWgyruK3UP/wGCunbQ1RkCNcTG1j0upg6yNvI81kXejS8VMR6nRxKsDf8uF1F6WBR9AmXBattwCGyMfYEX4UQBa/Dt4ZfCvOZ/azbLQA2iSl/bkawghcX/55ynTWwCo9a5l99A/0pHaR4VnCWHt1goguK6Di4k7QXjBRSAhhIxAnZf6UHFiW9wGOLi4E9kcGUkoiBkyMa7r4Lh5wEUSGiAmJroOICEJFZABd2IyW4ykC6Fc97iKx2PhutY1xyMhhIrg+n2Ylu1w6lwvT714giMnuhgZT2NazkTW3S0GsySJpc3l/NG/eQ8VpVey/3/6Fz/lhd1ncSYm/ooscc/6Jv7z7z8+4752HzzPF7/8ItGwj899fAcbV9dPE7tyXZefvXKS//utPXgMjT/81++m6SoPAsuyaesY4rs/OcShE13Ek1k8HpVlTRU8et8Kdm1pQdeUaeetSj4aAu8kZ49yIfEjLDfHLX8Q3/UQlJYEKIsFGLnKyVrXlClS8ZfhunlALpaLCTF5nYkbcFUvmkg20hh8L3l7nAvJJ7GcNFFjNcvCnyaitc56rdqOM6XX2JioIsg71sTEvzivUCUZ23UwnaLLuuO6yFKxauDabUuSxONPbECWJb77nX3098enVZpceT39OtE0haVLK/n8v3yY1tZyzIJNLBaYQlquxc4tLRQKFt/84X66esc4cqKLjWvq+aWPb6dsDufw+eBNTTQc26H9RDev/OgwD75/E7/8b9+LOkt69OieNg6/epZ3fHgLj//iLoIlxQdS4/Jq/v4/P8m+50/y6EfvmSQmAGHNgyLJ05pN87ZFd3qcjaU31ggrhCAU9aPqytxEw3FoO9I50WC6sAhacfn5r+O6Li9/fz9m/ta7me87eQnXrZtCNGRJ4gevHGdpXdniEI3KamoCIbKWyYmhATZVViNLEpIQNEeiPNTQzLMX2/n2mRN8+8yJyfUE0BiOcE913bRt3rOkjrxl8bVXDnN+cJS9bZ1sbKzmVx7eQm307jW9m4633gNuWaCOzza+A1WaOj7ossq/W/nRWder9JTwm0ue4DeXzPz5qlA9q0IzT/w1SeHxmm08XrPtho8boDES4WNr1vByR8eUn8a0bfJ2sXdGEWJSqjVvWcXJFSABXq2YrcuZJrbjTpaQeVV10tjNcV1M20aWJORrGyLnAUkIdqxoYMeKhps616sR0qqo8ayePBafUoJPiZK3k5hOseR2INcOwqXCsxTjqtKGlsBO9g1/g47UPloCO1C4LOog0+DfMrlNXfbT4NtMX/Y0Q7nzhLVq+rPn8KtRAkopObvYkKlJXnxKhNFCN0lz+BYSDQE4pAtnGEh9h/HcbvJ2H67rYCjVhI3tlPrfi19bOUEEZobjmuStPoYzTzGSeZGs2YHjplCkIH59NaXe91HifQBZ+Kb8tjmrk/Mjf0zeHqAx8rtIwkNX/K9IFU7gURupCvwCUe/DFOxB+pL/xFD6KVzXpMT7ANXBX8Krts5INlzXxnLiDKaeZCT7MzKF81huAkUK41dXEPU9Ssz7DpQZDPomz8lxePmNc/zfb+1hcCRJa0MZ61bWMjSS5NzFQeLJLFXlYTavqWfN8uppzar3bm0lHPIyHs9w7uIgnb2jc/Zl1VWVsHppFa8fPM/p9n7Wr6ydlv2wbIdDJ7oYHk3xkfdsJBK6Emy0LJunXjjB//nHlwDweDRqKiMkUjmOnu7m6OluDh7r5AufvR/fNX2XQgj8aiWrS36ZoFpHe+KHpMweHKwJ4uhec+wzncedy7LdjoSeEHDPugaqykJksleyOooi01o/g5Fz8n+Ath30bYAGhTfA7gTvJxa87wrvPVR475l8vaLks/Naz3Vddg9e4OsXDyIQKJLgv2x8gqxt8henX6Y3G0dC4t6KFj7SuIGjoz18p+MwZUaAjtQIm2P1fLhxA9oMGW5FkXni/Rtpbi7je987wPFjXWQyBWzbnsiqXbkGJEkgSRKqKhEKeXnk0dV84AObCAaL/hfBkIfW1goKE70WPp+Ork99FqqqzKMPrOTh+5aTTOXQNAVDV29JBv1NTTTSyRxtx7oIxwLc8/CqWUkGQMfZPsyCRcvq2kmSAbD5geV8929e5OjuNna9e90UoiGAmO6lLzuVBeZti970zXlNRCvD6IZGNjW7ZJpjO5w91IFZsNBucxNbYjTF7qcOY5q3jmjk8ia5gkXetEhl84wlr/TjpDJ58gV70aa0HlXlC5u3EtY9rIiVTnHS9aoqv711B5cS43TG45h2kQwqskRdMMQHlq5gbfl03XvXhXuXN/HAymZSuQKKLOFRVUx78c7zbVzGW+sXsB2H3Z2d/KytnXg2R1UwwAdWrkSVJf7pyFES+QJ5y0QIwe/fu4uqYJC/fGMvY9kcPYkEvckEf/zww2ytLQZLRnNZvtd2ghXRMhqCETxKkYRoE5E46QbIx81CFQaGfCWSJgkZSUg4E/8DyNlxFGGgiKkTN03yYMh+0tbIxEStCIGEVw1ftU0FjxLGdi1yTgLLjZGyR+jPneFS6uC0Y4oZTfMSEZgvXNcknttHZ/wvKNhDSMJAoAA2WfMSGbOdsdxr1IW+QMz3zokMw1Q4bp6RzAtcGv+fZM0OJKFN/OfFdvOMZV5jNPMyJZ57aS75I3SletpvaTspRjMvkLO6SBaO4bomyfwRup0stpshXTjDUPpJwMV2sgykvotAoTb8eQxlKulyXZtU4QTnhv9fMuZZJKEjCR1Z+HHcPOO5PYzn9jCc/glNJf9uVrLSOxDn1X3t9A7E+dT7t/Dhd28g4DewHYfvP32Ef/rBPryGygceW0dDTXTaOd27tZV7t7aSL1h85yeH+duvvzrnb1FZHmLV0ipe3ttG28UB+gbj1FRGpizT3jHIpe4RFEVm05r6KSUlB4938jf/9CqaqvAvP3M/j9y7HEWWKJgWrx+4wF9+5SVe3d9OdWWYT71/y4z3ky6HWRL+MHX+hxjOn2Q4e4yk2UXeiWM5WVzXxsEiZfZiu1dkS71KBZoUQCAYzWaJeAyS+QKCoopiMl8goGsk8wVsx0EIgUdV0GWFnGWRt670xRYDEBJZ0yo+uyYCnX5NQ5FlMoUCiZyLsDOosoxf127JZNSyHTRNobYmglfX8MwwyXXdLLhZirMzk8vjuutkQFkO6trLC+JSAPfynMMFNITw4pKHqzNGwoMQRjEj4mYBC5BBeBFCxXVSE8s64FogBYv3qBBYrsOfnXyev7jno1R5Q5Mlt6ok8/nl9yILwcnxfr598RAfaVgPFIVcdpY3869XPjCv72X1mlpWra6hvX2AE8e7OX26l4H+OMlkjlyugKLKREv81NZFWb26hk2bm4lEplbbNDaW8if/6UNz7sdxXPIFk3zBwnUgnzPJ54oZzIDfQFFuvPz7TU00CnmLseEkhlej5DoN06l4FkWV8XinRoUMj4YvaDA+kpwhu1BUILqWaJiOzXDu5tyzKxtK8fh1xodnT2W5Lgx0jXDklTNseWT1Te1vLtiWzdNffY3h3vgtnY/tPdXJS4faOXKum7auYV442A4Uh4iReIaWmij+eWhC3y7cVzezgaEkBK0lUf7usSf4+unjnBoaxMVlSUmMR5ta2FAxc+nLwQvdqLLMpuYaQt7iA8h2HF49c5FlVWXUvKmyGm8dlBohDHnxrrPbgd5EkuP9AzzU3MSDzc38w8FDHO3vozUWYzCd5pc2bmB9VRV/8OyzdIyNE/V6OdY/wB899CC26/BfXn5lkmQADGfT/Kd9xWZSv6rREo6yIlrGipJSlpTEqPQGMJTixESXZVS5OOm/ndRDCAlZmvsRJYREMXczdeByXQfXtZGEztRIr3uNEZqL49oUu0LkYlQSlTrvBtZG3jft/DTZS0S7dZLOObuPrvhfgetQ5nsfYWM7ihQgZ3Uzln2F8dxesuYFBtPfw6PWE9DXXHOeNqOZF+kY++/krC50uZyo9x0EjU0oUgDTHmIk8zxjud2MZl/BHv49lpV9EU2e2shrOiOM5V7Dqy6hpeQ/kDbbGEx9n7R5jp7436LJpVQGPo5PW8Zg6knGcq8zln2ZMv/j6HLVlElzxjzHmaHfImd1osllxHzvJKRvQZH85O0BRrMvM5Z9hXhuLxdH/wstsT/BUKZ/pz3943T1jtFQG2XV0ioCExkLWZLYuaWF53ef5cTZHuKJ7KRy381AVWSa6ktZ0lhGe8cQ5y4MUl0Rnjw3x3U5dKKL/qEEG1fXUVEanBR1sW2Hb/34IKlsgd/41L2TJAOKpmj3rG9geHQjX/zyi7x+4DyPv2PtnHKhhlJCjbKLGt+uaZ/l7XFe7vsdhnPHJ99bW/Lr1PkfQpY0Pvet7/PnT7yb//rSa3hUlU9vXMufv/YG/2bXdv7v/kMMpFIIBNsbatne0sxPzpxjb2cXXlUla1q8Y2kLayor+P6JU1waG0cSgrxl84ub1rOuupLvHjvJ357rJZnvJObz8Ju7thP2eG56LLg0MMbf/WQvB8528dEH1vGhe9cQ9l/lSO1akP0+buEgCB/YHQhtR/Gzwsu4me8g1DUQ+E3AhMIe3Mw3QIqBm0TIreD7OORews2/BJIf3AxC2wWe94F5DHLP4jrDIAUQxhOgrobMV8DNg5vHdQYR/s+D3AQI4oUsXkWfFFVxJ/7rTo/x92178CkqI4UMGdvkcrdvWPNQ413YXECIYlN3a2sF77/J73k2DI+mePH1sxw/3UM2V5gSUPlXv/wgDbWxOdaeG29qoiFEsRmr2Hw1d/PQbMs5joNju8jyzPWiAW36YGC6DmP5mzO1q2mtwDsPW/dCzuS5b77Bmh1LMby3frLkui4XTvbws6+9Ti57aw1ptq9uoLYsRC5vUhENsnQi/SmAoFdnVUslfs/CpXvvBCQhqA2F+L17ds57ndM9gxiqyqbmKw9NgeDFkxcIGPqblmgoQiKs+fApd99vlbMLjBcy5OdQnvrj1Z++g0d0Z5As5FFlmYBe/E1iXi8jmQxZ06QqECSg60hCENB1Co6NJATLy0r58sFD6LLMJ9aumXXbKbPAkaE+jgz1AcV7IWp4WRKJsawkxrJIKc3hKCWGB4+iYCgqhqygyfIdb1QPKKX0OMfJ2gkc10aaKEFIWSNk7RQ13qbJ96BIQMYLfZToRQU82zFJmP0oQsOvRlElDz41iiypVHmXT1G3mtjCLT1+183jug514S9QHvhQUV1oAhHPfXTF/4qB1HdJ5k+QKpzCr62e8pzKWz30Jr5KzurEUGpoLvljwp6tU8qsSn3vozvx91wa+18kC8foif89DZHfnWLg6rg5FClITeiXCRmbyVm9WPY4/alvkrW6iHrfQU3wV1DkEJIwyFndZMxzFOxRXOyJLExxOx1j/5O81YMihVgS/f8Ie3ZMOeao5yF6k1+lc/wvSBaOM5D8DnXhL0wzlM0VLHIFk5Kgd5rfUsCno6kyrlvMjjuOg3QLpLbrq0tYtbSK7zx9mLMXB7hnQyPeiWBYMpnj5Lk+kqk8W9Y1UHKVNPvQSJILXcPYtkNVRZhL3SNTztlxHAyjuJ1UOk9339gNe3qoUmCCQM+MmM/HUCpDMpfHtG0SuTxRr4ewx+AXNq5DCMGB7h52d3TyYEsTmUKB5mgJ/3LHPTx1+hy9iST1kTDj2Rz3NTXwnhXL+Mvde+mKx1lSGuX+5kZ2NtbjAv/6h0+RKZiEDeOmmV57zzAnO/oZSWQ4dr6XHasaphAN1+7HNY8hfL+KUFtwxr7A5ftRGI8ViYh1lW+EawEuUvCPcK0LuJmvIewBIAtyFVLgd3HzL+FaZ8DuwC0cALka4f005H4I1ilcZaIsVnjB+ymkawh6RPPikRXOjPdT5gkiBJRoPtoSg0hC4pPNWzg+2stT3SemrHc3ikm8tOccJ870sG5VDWWxwJRjLLlJG4I3NdHQDZXS6ghH97TTc3GI+iUVs/6AJeVBHNslPpLGsuzJNNDoQILkWJqGZZWo19SsFV1+p0/uLcchXpif2+JsqG4qI1oZpuNUz5wGebZlc+Tl0+x79jg73rP+pmXGrobrugx0jfDVP32S4d6xW15doioyTdUxtq6sp6Umxqrmu88s6VYglcszls4yns6iqSaXhsaufJYvkM4XJq9L0x7EsoeLKiJ3AKpchiJFZ2wEnR1T76FSI8gvNd/H/eXLb+3B3QIcHevkHy68wonx7tu+L9c1Me1hLGf4tu8LQKCiyDHydpD+VJLxbJahdJrRTJao14sqSXSOx4l5vXTG49SGQgR1nZmUsx3XJZ7L8XBLC42RcNHXw7LQZlBPm2ndoWyaoWya13svAcX0f5UvwJJIjKUlMZZGYtQGwoQ0HY+q4lXUYvmVNF2V51aiyruSi6l9dKYPEVTL8ClRbNfkZPwZHGya/FtQpCtjuIPD2cSLrAq/C1moxM0+Lqb24VdilOrNKEKjxruG9uRrnEu+SqNvM7JQcbAxnRyqZOCRQ1PIy81AEjpBYxNl/vdPIRkAHrWWkLGF0eyLmPYwBWsA1y0grppkjmRfImt1AFAR+DhBY+20Xg4hJKoCn2Is8zLx/F6GM89QEfgkHrV2ynKaXIpPXQaALpdhqHUT70fxai0ocmjisyoUqfi35YziugWYGF8S+SMk80dxsSj3f5CQZ+u031+RQ8R872I4/TRp8yzx/AEK9hC6MrUc1e/VCXgN4qkciVR2gkwUv6OB4SSZbAFdU/B79fnJxc8DkZCXpc0VlIS8nLswwMWuYVYuKWawj53tobtvjOqKMEsayycJCBSzL5ZVfI7/4Z/9aNZ2CVUtBjSzucLMC8wDkpDRpSASCg7TAyyrKsvYfekSUZ8XARzp7ac1FuX8yCjfOHyMsMdDTyKB4xRN6AKGTkDXkSUJXVGQhcByHGI+LxGPB0kIfKqGOzGG/PDkGZK5PLqi0J9MYd8ilUpDV/DqxbKtgNeYLiLhJkAEQWiAVMxUzOUbIlSEXFu8NoWCEB6gAMKHkCsm3teLJNkZB2cQrA6wipUXyHVM/pBKPUKaPtmWJYl/veIBvtVxGIFAl2V+c8UDtIbKeGmgna+d348uK6yL1hTL2BSVMiOAssj+UzNhbDzNxrX1vOfh1TdVJjUT3tREw+s3WLqmjue/s59Xf3KU6sZSgpFis1s+W0DVFcJR//+fvf+OkyO9znvxb8XOuXtyzgMMcl5swCZsIncZljmTCpaVLF9fX/n+fG3L4dpXsixLsiQrUKIoSiIpZnIzNwILLHIGZjA5p57pnLuqfn/0YIDB9ACDmQEWS+7DD4hFxberq6vec85zngdJlmjdVMORVy9w5nA35bV+Sqo85LN5XvvBCdKpLFvva8VqW5wlUIvIkuqGQeZmbsQ3gaLKtG+vp/N4P9HZ+A23jUdT/OP/eJ7yOj/166qQldXfBPmcxsTANH//+89x9tDlGzalrxaP72lDWqMXwd2I3slZXjjdxYm+UQD6Jmfn18VSGWr8bkpdhczobOLbTEf/Ak0PFT3WWqPU9Vv47V9Elry3sNfCiNMkypSZXfhM12d33334TXasd4gWldfDBGN/xXTsL+7I+RSpFJ/9l5lOPc2bfQMEkwnC6TR2k8o9NTXsrK7i9d5+/mZ8nFq3my0V5YiCQKXTiUUuZIArnU5cJjOT8ThmWebN/n4O9AuMxaL8y3v30hYoZOgUUaTEaiOVy5HK58kbN5485HSNwViYwViYV4YKL2arrFDjdNPi9tHi8dPs8VFmdWBXVWyKik1RsMrqiprNl0KFZR0tzge4FPkp8fwMbrWCZD7MRKqTBvsuqmybFhhtiUiMJM+RyIcwSXaCmT7iuSCbPM/gUAKAQaPjHmYyQ5wLPcdEshOr7CZnpIlkJ6izbWed+9E1CzRk0YXHsrdo7wUIKKIHVfSR04JoRhLNSCNSeE8ZRp545iw5bRZZdOIy7UASiiklCgiCQsD2JJHMEfJ6lHD68HWBhoQkOpDnGuoFQUYSrAgoKKIXWXRfvYaiZd5LRNczc9S1AsKpg2hGCgC/9bElDeQkwYbNtJ5EroucFiKZ61kUaFSVe2iqC/DKgUscOTUw706cy2u8/NZFpmZibFlfjd9rL6pKtFI01PhpbyrnbOcIPQPTtDWWFTx1Lo0yGYzy1IMbKPEvvM7Z3JVeBtiztR7lBhM1r8eGaxlshhvBJLkRBQXdKBJolJbyB28d4rPbNhFJpXm9t59f3r2DgVAYRZL44Po2jg+PcGq0ULEUEIoGRgKLf6fj0ThT8QQPNzXgt9t4o7d/zRrD26pLeHR7C5cGp3h4axOV/oUMAEEsKQS1+b7CPadPwdy9Z+SHMfRp0EOQH0IQr7zvis07FgvlCKIH5BaQG0HZUVgoBRAE55WayZIuyBu8lWzwLuxTsism/svWDy7+jK4y2lyL+zvfLeTz2ryUsMNuJpnKMjUTw+20LvhNqUpx5a/l4j0daIiSSF1bOY99Yjevfv84f/GffkBtSxmyLDE7HaN5QxWPPLsTu9NCU0cVD3xwCy996wjf+pNXKK/1Ewsn6bs4ypZ7W9m8twVTkX6BYqZeBgWt/dVi64PrePMHJ24aaBi6wfDlCf7i336Hz/zrD9CyuWZZtKti0HWD2GycvoujfO9PX+HswctkM7mb77gKmBSZUCxFMBwnnc3TUOFDkkRSmRxOm3mey/pexfqqUnyOAkczr2nsab6qQmQzq7SU+/HYVvdieTchi9JdSZsCUEUF9Toef0bLMZqcwaPasd6l414uRFGko6yUjrLSRes6SkvpKF28/PNbtiz67xe7u/FZrTxQX48kCvz4Uiczyav0T7/Fxm9uuYeBaIjBSJjpdIJELkcil537k1ukvnc9kvkcnbPTdM5Ozy9zm8w0uLw0uX00uQt/+8xW7KqKXVFxqCYs8sKmT0U04zc3YrougygKMh61mpyeQhHM88s2eJ7EqZTSF3+H6XQfJsnKZs8ztDr3zcvdXoEsqjxY+qucmPwBbx19iY6tG9jp/xTNjitceAGfqZZ7S75Mb+xtxlMXmUoHUUQLfnMDpZbWNXUIFgULFrl4r1hhvQlRKDw7CvKdV7+DvB4hqwUxyGGWa5BFx5IBnICETS1UJHUjSzJ3eeF6QUYSLIuWiYIyF1iYrzmWyJUJXKEyezUxkch2FyaDiGS1aSLpo0XHk9ej6HPKYbqRIqctrhKW+Bw8sKeFobFZXnzzAmcvjVJW4iQSSxGcjVNW4uJjT22lxLe2RmpVZW7amsp451Q/l/ummN2WIJXO0TMwjSgIbFpXuUBtCsDpMM9XVX79Sw9SFnDe1kqeSXIVgtO5oO5aNPl9WFWFzRXlzCSTHBsZpSVQWHZyeIznLnYhiSJbKyuQJYkS+9XfmddqQTd07KpKpcuBy1z43sucdhwmE3VeNzVuF4cHh3GaTWyvrsSqrE2ip9Tj4CtP7Fp6A8mPYNqHkT2CkDuPILeB6Cusy/wU8oOFJu/0y2B+EkQ3zFOfzCDXgGAvVEKu3M+iC6RKEL2g7oHMm5D6bmGd+bFCc/mV9cuQmH6vYWBkhq7egilgOpPjfOcYI+MhmupKCgaXc7fwPdsbF93zt4L3dKAB4PLaeeyTu6io93PyrS4mR2YRRRFfqYuqxlJM5sJLQZIlHnxmG/4yN0dfu8jk8Cxmq8oTn7mHex/fhMtXnIOWyC8ucRaUwFd/0zV0VNOyuZbx/mkyqRuXUrW8xsVjPfzZv/kmH/jyA6zf1URJpRerw4x4k4m6YRhkUlkiwThTI7OcfquT175zhMnhGYwiLuAWu5lUfHXUsGsxGYrz2rHLnO0dp2twiv/wC4/htlt4+1w/T+xpx+O4PUY4I9EIM6nV9dIsBbfZQq3LDRTUqKq8Lva21qJIErubF0vfvpehCBJ25e50szZJ8iLJ2sl0mB+OHOeRsg20OG/Ns+JnFdsqKugOzvBaby+6ASV2O9sqr2bhXCYzn23fDBSooaF0isFYiIFImIFomKFYmOlknGg2SzyXIZbNEs9lC2aXNzhvOJPm5NQYJ6fGgMKzs9zuoNHpo9HtocHlpcbpwmWy4DdbqXG6canl3F/yi4uOZZGcbPd9bNFyWVBpdOyh0XFzGWHd0PCb69gqfZ5v/P8G+MpLv0yZa6F0poCAUylhi/fDbFlh66WW1xnrnaC8ofSGFWhBkJHFlWnU5/X43KS+QEe6MT1SQJnjlxto5LXQdWsL3hbF9xQX9U8swDUuYDl9Zq7CoXNp+leX9TkMI49uLH7fCAI01vhZ31JBJJrC5TSDYVDqd7Jrcx337myirsp3w+rBSqCqMi31JdRV++jqm2BgZIaZUIKxyTAdrZVUl3sWJceqyjw47WZCkQSnzg/z2APrkKTbF2iYJc8SVTCwm1T+7KMFD62A3cb/99ScZ4zfx799dN+i7R9sapj/7x3VV58JTX7f/H8/0XZV3/vLO7etauyrgWDeh2Det3i57UuLUsICFfMqVIJUAdbPFP5bbrq6jbIRlEK/miD6QP784mNbivuu/CxgaHSWNw51zf9bkgSmZ2JMzywUKeporfj5DjQAbA4Lux/pYPcjHTfcTlFltt7Xytb7Wpd1XAODyeRiVShJELHKq89qybLEwx/bxaXjfYx0T97UbVPXDIa6xvnqv/8uLVvr2P5wB9UtZbh9Dsw2E7IiFbh1QkEFI5fJk0lmSERTTA7NcPn0IGcPXmZyZAZ9ib4QT8DJPR/YzHNfe2vNejbeOtnL0GSIh7Y1MRtNoBsGboeFt8/0c++mhtsWaHyv6yLP916++YYrwIO19fxfe+5fsGxXUzXvmtX5muI6TrUoYb9LKwOqKKEW4bvmDY3BxDQpLYtNNlFt9WOSFEaTs8xkYhgYeFU7lVYfU+kweUOnyuojq+cZT4Wwy2Z8prXNlL6bCNhs/Pqe3TffEJBFkYDVRsBqY3tpQdhAN3TCmQzDsTBD0TCDsQjDsTCTyQSRTJpoNkNs7k8qn1vy0WEAY/EYY/EYB8YGADBJEtUOFw9U1fPvdj+0+g97K7hNP9fZiTA/+JOX+OLvfAyHZ2nKoTBHa1oJCo7RV4gdEjf7MPPBgmEU4fbfyHfpJhfpmsy9MdeAKyBjU9uX1RumSn4UyVd03YlzQ7x+uItN7VV8/tndVJS47kgjbUOtn9aGUl59u5Pu/ikmpqOEoyme3l9d1LzM5bSwe2s9E9MRfvDyaWoqvTTU+LBaTBiGQS6nkUxniURTmEzKAmPBlaBAnbq16ZuuG0STacZno0QTaTI57YYiOk6bmYZy30Llpzlous50OMF0JE48mSWnaYiigNWk4HfZqPA5kYvQzq9FKJbk8kiQVGZxkrXc56S21INZvflvY3gqTP/ELKossau9BsOAYCTORChGPJUlr+lIoojdolLithNw22/KosjmNIKRONORxNwxtBvOz8p9TlqqAndlk/eN8NDeNh7a23bbz/MzEWjcLsxmUgzFw4uWi4KAfY3Khet2NbF7/0aeG3+LZGx5VYRMOse5Q92cO9SN1WGmrNaPp8SFxW7CZFZBgFwmTyKaIjwdZXo0RCycKFq9uBaqWeHJL9zHM7/0EK/909E1q2oMTYbY3FLFQ9uaeeVoIXq2mlXymn7TMa0GE4k4nTM3btwVuLV4SpUk7KpKKr+YG6tIEpFUmtHZFLnrArlKrxOb6b0psaqIEjb57qxoFKNOAURzSTqjYwwkpgll43y85h48qo3nx05gGIXfcEbP86nae+mPT3Fito9fbXmccDbBT0aP81Dpxp+pQGO1EAURr9mC12xhU6Ag6mAYBtFshtF4lOFYhJF4hJFYlMlknEg2TSybIT5X+UjksiRzVyUer0VG0+gJz+Iy3Vl6oabpjPVO0X9+BEkSKW8oobK5DFEUMXSDcDDKcNc4iUgCq8NCVUs53lI3giiQz2uM9U4y0T9NNp1FNavUra/C5XfQf36YU6+dp+fMIEdfOIPFYaaqqYzqtoo1nYhIgm0+q63piZsITBhoesH7SRDEFVdRbjom0UbB+VulwfNvkKSb/4ZElCUDjXA0RTSWZiaU4OjpARw2E4IgIAoCqirjcVmpLvdgs5kW0O9mQnFmwgnyeZ1UOsfYZBjDgEg0xZmLI8iyiCxL2K0mygLORSIrPreNtsZSDp3o5cjpASKxFD6PjdaG0kVme1fwof2bGBqd5djZQf7k62/wwK5mSvxODMMglsgwPRNjdCLMhrZKPvrElqLHWC6u9GgsF7m8Rt/4DG+e6eNo5xCDkyGiifSi99QViKLAtpYq/vnT9ywKNKLJNOf6Jnj7fD9n+8YZDUZIpLOosoTfZWN9XRkPbGpga3MVftfSakXdo0F+91uv0z8+u2jdh+/t4Bee3EW57+af8Y3TPfzpjw5jt6j8+L98hYsDE7x6qpsTl0cYn4mSyuYxqwrlPgebGyt4cHMzmxrLsSzhTRZJpDjdM8ZbZ/s41z/OxGyMZDqHvkSgoUgiz+7bxL/62AM3HevPK94PNG6AN8Z6yWiL+xcUUcK9Ri9FWZF48kv3M3R5ghOvX7jlpuxkLE3f+RFgdao7siKx5/FNfOAr+7A4zFTUB+g9N7yqY16B224mGI4zGYqT13TSmTzne8fxuqyo1ytLrCE6AqU80dhcdJ0oiBiGzsmJcSYTcZwmEzVONx6zBbMsI4kCmm6QzueZTScZiUZJ5nO0+wI8WNfA9iJeGmOhKAcu9TM0EyaayiCJItmchsdu4RN7NmILvDcDDVWUsBZRX7sbYJJkVGnxPSQKAg+UrKPDXcP/7PwJQ8kgE+kwM5k4/7zlMRyKhf/3/Pfojo2z3l3Da5Pnmc5ECWcT5HSdFufPpkLaWkIQBFwmMy6TmXW+q/SjVD7HdCrJRCLGVDLOVDLBVDJBMJ0gls0QTCUZjUcZTyztIXQ7UGZp59rsfDqR4dhLZ8hl86TiaZw+Bx/4xYeobCojPB3l8HMnuXy8D0mWyGVzNG2u494P7cBb5maif5rX/vFtZsbCSIqEIIDZqmKxm+g/P8ylIz2Ep6KcO9iJalYQJZHqtrWl8cmia079SSKjjaPryXlztcXQSeUK0p8CCmZp7bxAroVZriYmnEY30iiSF4vSuOLgKpvL43Za8HvtvHOqn6NnBuaDCUEQsFlVaiq87N3RyOMPrMfrts6f6/DJfl4/3EUqlSOVyRGcjaNpOj2D0/zPr76GySRjNsm0N5XzmQ/txG5b7NTd1lhGU22AUxeG0XWDJx/soLLMtWTzc1W5h1/41F48LiuXeib42nfeIZMpJKQUpRDU1FZ5F5j8rRRWuRS/uQPLXIBmlj1LXmdN1xmcDPGXzx3hrTN92CwqjRU+XHN9g9PhOIOTIWKpDCZForkyQGOlj9bqEgLuhdW4SCLNi8c6+eZrpxmeCuOwmihx27GYFPKazkw0wYtHOzl0YYCPPbCRZ+/fSImneLAZcNt5eEszY9URMjmN6Uic/vFZYiuU2Q/HUxw818ffvnyc7pEgFT4ntWVedN0gFEvSOzpD39gsnUPT/NIHdnHP+rpF1yyVyfHmmT7+7pUTDE6GqPA52VBfjtWsks3lGZwMMTYTJa/p2C0mdrZV43Pa2NFavcSo3ge8H2gsidFEhG/1ni6a7TZLMjV2T5E1K0NZjZ9nf+1RErEUl471ouXXRi5uuZBkiZ37N/CZf/0BnF4bhgF16yrXLNDY3l7DGyd7+O5rZxidivDaiW4Mw2DnulocRZS+1gofbmnnqcaWousEQeCNwT66Z2fwWgI8Ut/E9rIKqpxOHKoJRZTI6RqxbIahSIRj46McGB7EZTazq6KKXRWLX9THekc42T9GW2WA8VCMgNOGVVXI5vJrJgF4JyALIjW2wgtMEkRqrH6ku7QRThVl1CIUAkUoyDQKgCLK5HUNwwCTpMwLPJglhbSWwywp7PY1c3DqEjbFzA5f4137ed8LsMgKNQ4XVXYn0WyGmVSScCbFbDpFfyREV2iaeC57xwON9e79rHfvn/+3IAqU1Pp58ssPMto9wXf/6AWOvHiaD//qY/SdG+LsW5d4+FN72Xh/OydfPc/bPzpOSbWf3U9tYbxvkomBaXY9sZkdj28mFUthdVqw2C088aV9mCwqb/7TO3z5P30c5xo3K1+BJJqxqa2E0++QzU+SzPViUZqQhOsnsgYGeUKpA3P7WXGaV5dRXwpO0w5mkq+gGxlmU69RodTNe2zcCjLZPOc6Rzl6ZgCv20pjTRsOu3m+8pDXdOLxDGc7R/i77x0h4HXwwK4mTHNZaptFpbzEhX6TirnLaVmyx7e6wsOj97UT8DkQgH17WvDdgAYH0FJfyq99YR+nLgzTOzhNOJYCA+w2Ez6Pnea6AA01Kzc+uwKbXMY692fJG4VJuUOpWlLhK5nO8fLxy7x2qgeXzcyTu9p5clcb5T4nGNA3PsOPD1/k1ZPdCILAfRvr+fTDW7GZFyaX8prOG6d7+LuXTzA+G6W9ppR7N9TTXlOCy2Ymk8szMBni4Ll+jlwa4h9ePYUoCHzhsR1Fqwf1ZV5+5ek95DWdZCbHkUuD/M2Lx+ganl607XKg6QZ/9uPDRBNpntm7ni1NlfhdNvKazvB0mLfO9HGkc4jO4SmeP9pJe20p3uto2z2jQZ575xK9YzO015bwkXs3sKO1GrfdQiKd5WT3KF9/5Ti9YzOYVZlffGoXzZWBNVU9K4bx1ASRXAS/yY9HdSOtkerdncL7gUYRDMRm+frl45ydGSu63iortLgCRdetFB17mvnEbz7O9/7sFc6+ffmOBRtWh5kdj3Twid98nIqGEkRRRNd16trXLvvW0ViOgcGxi0NsbK5AFkVaagPs29K46GG2lrAoChaleHm0e3aGr545SSid5v+5dx9PNLagSNIiNnLAaqPB7WVbeQXldjv/6/gRvnHuNFUOJ9XOhfJ7wViC1go/n7l3C3/75glaygNsqi3nz3/6DrFV6KbfCRiGjq4NkM+ewJSL8cVqA9X0IKIgUmZ2r+iYujZLPncaXRtHlKpR1G1FtchXA+UGPRoXIiNMpiPE8ynKLR48qo3ToX7enu5EFWVyukazsxxFkNjgqeVrfa9TanbzbM3yehnex1UYQDKXZSaVZDqVIJhKMpVKMB6PMhqPMpGMM5mIM5mMk8zfXpW75cJsNbHxvjZMFhVfhYeq5jKGLo2i5TWmhmcY7hqn//wwk4NBZifCTA0FCY4VaB6VTWVUt5TTebyX0GSEhg01tGxrWDOpz+XCbd7LbPJ1YtmzTCV+jFVtwaa0LGjeNgyIpk8wm3pjrneiDbu6fu0GcQ2lxG3ZgyVWSyx7nsn497CbNuEy7bjGif3a3TTyegwDDfU66tT4VISfvHqOSz0TfPSJLey/vx2XwzKfgTYMiMZT/OU/HOTlA5c41znKzs2184HGg/e08uA9y+vFXApmk8L++9ex//51t7Sfw27m/l3N3L+reDV9LSCLZtym5R0/kc7w2qlCEFFb6uEzj2ylwneVOudxWDEM6Buf5cLABAMTIWajyUXv5qGpEM+9c4mJUIzqgJsvPb6DezvqC+pEc9jZVsO25ip+71tvcKxrmB8fvsjmpkp2r6ulGARBQJElXLKE225Zlq/PjTAyHeGLj23nc49uW2AGvF2rpqHcRzCapGt4isGJED2jM+xsWxhoXBiYoGcsiCJL7N/WymM7WueP47SZedLrZGQ6zPhMjGAkQfdIkIZy35qYRd4Ix2aPcy5ynodK97HVvQXpJv0vdxveDzTmkMrnmEjGuBSe5LXRHl4Y6kQrwskTALfJQrNr9VmJ67H94fVY7CZ85W/zzguniUcWS9etJcrrA9zz5Gae+Ny9lNcF5tWrBATq29eutK7pOhsaK9jUVEk6m0ORJWSpYOSlGwYsWe6/fXipr5v+SIid5ZXsq6kv6pdyLRyqiZ0VVTR6ujk7PcnhkWGq1y0MNFRJIq/raLqOIkvMxpOksjlm4ynS2btjcrU0cqTiXwMjikWq5PHSSsy2zayuWzaPoYfIpl9AlKqQlRYE1jbQkAQRVZKRBXHe+8GpWFnvriSaSxHOJtgbaKPG5scmm3motIO++CSJfIZHyjZSbnYjCAJmSUUSRCot3ru2H+VugqbrhLNpJhNxJhIxJpNxxhIxxuJRRuMxxhMFalRGuzkVVABsikqZ9c77tCx47ggChm5gGAVJ8WwmR2gqQjJWeA537G2lvqNAkahoLOXRz93HpSM99J4Z5JW/P0gmlWXTvnWYl+Dw3w7Y1XX4rI+S1kYJpw4zJv4NXuvDWJQ6RMGEpidI5HqYjH2LrDaNWa6m3PGZuV6KtYdZrqDc8Wky4T8gmethMPSHlNg+gEWpQxIdgIBupMnrETL5CXLaNFa1hYDtyQXHGZsM0zcUpLLUTUdrBW7nwgmhIIDLYcHvs6PIEpqmcxMtlZ9LGIZBOptnaCqMIolU+F0LggwoXMsyr4O6Ms+cM3eCUDxJdYl7wXZHLg0xNBVC1w32b29le0vVgiCjcCyB+nIvn31kK6d6RpmNJXnhaCe72mvuyDu+OuDiEw9uXhBkQEEZsrbUw47WKrqGp4gm00yGogu20XWD6UiCSDyNx2GhptS96DiCABsby/n+wfPEUxn6xmfQdIO1E7wujqHUMH2JPh7hIcT3YLV9zQKNiWSMA+N9ZLTFTbJLYbhIozXA4ckB4rkM8h24oJqhk9E1wpkUo4kIZ2fGGU6El2z8scgKm32VBCy350G9flcTgUoPta3lHPvpeTpP9JFNL/+aLgduv4P1u5vYtX8DO/dvwOm1X/fCharmUiRZQsuv3i/kROcwHocVj9OCSZZRFRlBEOgdDXLk/CCCKPDg1iZKvHeu+fb05ASpXI51/hKUZfp42FUTdS43pybG6Zpd3GTeWOYjPKfm0Vzm540LvZwaGEM3DByWu1O1qQADjCy59EvYPf8TWd0F5FitJI8olWCyfhRdH0fXZtZkpMWwzVvwIbgSaGz11tPiLG6KtMFTywbP1eyabuh0Rce4GB7GLKls9tTdtnG+V2EAmXye6VSC8USUsXiM8USc8UShWjEWjzKWiBHNZpZ8bl4LEQGfxUqFzUG53UG5zUmFzUGrd+2TNzdCJpWl82gvVc3lhKYijPdNUdVchqxI+Cu9NG6qZc9TW1m3pxld00lG06iWwpQiMhNDtajsfWYHmx5Yx1/+m29y+WQ/LdsbMFtNmG0mEtEUmVQWwzAwdANBXDujwisQRRMl9g+hGXEm499jKvFDYtnzmJVaJMGMpseJZzvJahOY5VoqnV/AY7nv5gdeBfy2p8jpESZi3ySaOUYy14lFbph3Ftf1NDk9RCY/gSjIVDi/uOgYkigiSSKhSJLJYJSm2gDqNZPadCZH7+A05zrHyGTzNNT4F01630cBBoWAQxDFJdWWRFFAmqP/6AZcz/TVNJ3OoSlC8TSqIrO1uXLRJHz+WIJAR30ZZV4HI9MROoemCM9N3m8nBAG2NFctokNdgUVVKPMWgqxsXiO5yD/MKPxWMZAkcYG4wLWQJWn+1ajdRjGba5HRCsI8AVMA+RbVxu4GrNmIh+Ih/vfFw4Qyy8/CJ/LFm35eGu7itdGeomZ5a41CoJEnp2nLUh/ymqw8WdN+W6PKkiofH/rlh2nf0cD5w910nRyg78II06OhJWVpbwbFJFNa46d5Uy3t2+vZdG8rFfUB5CUezk6PDV+5i6nhxYoQt4pDZ/uZnI1T4rUjiSK71teypaWSnxy8QDqbJ5nOkctpfOKRLWuuib4UwpkUeV2fe5gs7z4rbCmQ0fJEM4vv3Y6qUjJ5DatJYUNNGbF0hv6pWdoqAlT53Gs6/rWDQTrxD+j6FLo+Qzb9U/K5c8jKRhTTbgxDx9CnyWUOoWtjCKIDWd2GJLcjCCKGoaHle8hnT2DoIUSpFFndgyiVF6VL3A5s99WzzXfV9Ey8xeeGAFgklfsD7fjNt0eN570E3TCIZTOMJWKMzlGfxueat6/8mU4liiqvFYNZkim12ql0OKmyO6m0Oym3OSm32Sm3OSi1OXCqdzYQF4SCAMbsRJjv/dELhKaiqCaZ7Y9tKmRlN1TT3t/E4Z+c5NzBTnTdwFfhYfO+dVgdFka6Jzh/sJNMKjsXPBjUd1TPVzPq1ldh99j4wZ+8jMNrZ9P97bTtbLwtn8Ukl1Hu+CwmuZxQ8gDxXCfh1EF0I4somDHL5bjNT+OxPojP8sgtqRWtBJJoodzxqcJ4Um8Rz14gle9HyyYw0BEFM4roxqa2YDd14DLvXHSMqnIP65rKeP3wZb7/4ml6B4N4XVZESSCT0ZgNJ+jqm6Srd4JN66rYuqEas+m9NwG73RAEAZMiU+pxMBmKMRWKEY6nFilJzUSTjM95J7jtZly2hVXdZCbLbDRJLq9R6nHgcVgWKXVde05Flqgt9TAyHSGZyTIxG739gQYCjRXeJddLkoB5br5jGMai/h1RFHHbLdgtJqKJNNNzBsPm6+ZIPSNBMtnCs6864Lrt/RkAFsmKKEjzctbvNazZLzOv60SyacLZ1dN9Chzeu49qYpFk7iuvZ6Pv9ivSyIrEup2NtGypY6R7gsHL44z3TzMxECQ4HiI0FSUWSZKKpcmmc2j5QqAkyxKKScZiM+P02fAEnJRUealoKKGioZT6dZUEKj0oN8j+CIKAYlL4/G8/TWg6WnQbh8tGQ8fy6FWpTA5JLJQuMzmNA6d7qSn1cKFvgl//+H0ossQffustPrJvI6oi0bC+iq/8h4/c8JiKKtOwfuX0LvOcG/Gl4DRZXcOCctPpaSyboS8cQhLFolQr1zXu3yZFZv/GZnTdQBKFedfYuxGCYEMQHCCAINoRBDsIhQmToYfIpJ5D1/oRpRr0/CgZbQyTRUZWWtHyPWTTz2MYaUTRTz57Cl2PoFo+gCQtdq2+HVhN0C8KIq3OSlqdlTff+GcYqXyOc8FJRuZkasfjsUJfxVxvRSiTKkolvR5XqKUVdifVDidVdheVdielVjulNjvlVgclVhvKu8wxtrmsfOHfP0vLtnoun+jHHXBSv6GGuvbCfeAr97D3mW10n+gnOBZCEKC0xo9tzrTKW+qitDZAZDqKIAo0ba5l/Z5WzHPiFmV1AT70z/cz3DUGApgsV/nuomgmYPsgNnUdsuhGEd1LjtOs1FLh/DxZ7XHs6vp5l/DrYZLLKLV/DIe6hVS+n5wWmgs0TJikUqxqExalbtF+iuihzPFxPNb7sSoLhTMcps3Uev4liujDIl81IX3zyCSSaS+N9XtwmXciiouphpJoJWB7Eoe6iWSum6w2iWakMAwdUTAhi05McilmuQZVKlm0f2nAyZMPdaAoMmcvjfDcq+cwAFEo9GdIkkip38FTD2/ggV3NVJV57upn7LsJm1nlvo0NfOv10/SPz/LDQxd4ZGszJW47hmEwPB3htVPddI9M47CaaK0uofS6pvdUJkdujgbpsKhIN7nWoiDMByt5zSCaXJmS1K3i2nfwDVEo8yxa3FZTQn2Zl7N947x+upeA286mxgocVhOpTI4LA5O8eqqbRDpLudfBxsZCz+n1SCQzvHKok0hs8Xy4vsrP/TuaFi2/ERps9VyKdjKWGqfaWoUq3J0qkEvh/RTAMiEJAuu9ZXyueTuWVZr1xdNvI4p2zHJr0Yf0FQiCgKLK1K+vom5dJblMnpnJaWYmB0hFnaTiadLJLLlsHl0rKNRLkoisSJgsKobpOG5vCZXV+3AHnKhL6EYXg6xIPPzxtWmKtZlVdq2v46Htzei6zn/52isk0hnymo7Daqam1E00kUaf69Woairl2ab9Nz/wKtDi8XFqYoxj46O82t/HB5tbUESpKLXBMAzCmTSvD/ZzITiJy2SmxuUqctSFkEQRSYQTfSPU+N0EnHeeg35zCJisH0LXY6Rif4DJ8iEkea46YBjo2ii5zJuY7V9GUfeg5S6RTv4j+ewRZLmZfPY4ujaB2fZ5JLmZbPoVsumXkJWOOxZovI/VI5hK8HvHDzCVjDOdSpDILS/Ro0oSJRYb1Q4X1Q43NQ4XZTYHpVYbJVY7JVYbbpNlSRrCuwWL3cwTX9oHQOPGxY2qoijgr/DiXyJDWl5fQnn94gny1f1FNu9bx+Z9ixuJRcGE1/ogXh686TjNcgVm+9M33a5wXBW7aR120/Kbl2XJhd/2eNF1drUdu9q+aPmxMzM01W5lb8dGrDfxBjIrlZiVWw/iZUmkrakMv9fOPdsamAnFSWVyGAYosojNYsLvtVNTWZCLfT/IWBo2s8qTu9roGQ1yumeUb71+mvP9E3gdFgwDJkMxOoenyGk6+zY1cv+GeqzXNYIL11T+l9sLc6VgILDA0/G24mZGfDdDe00Jj25vIRhJcLJ7lGgyQ32ZB5vFRDqbo29shssj03jsFj776DZqStxFKxrxZIbvvnSa8anIonUP7Wm95UBji2czl+OXOTp7jGprFdXWqveU8tSaBRqyKBYm4HcmcL2jEBFodZfwz9btodW9erWpVPY8shTAJNcDy2s8FQQB1azgrwTFewm/4ys33WcqehRZyuG1FTdDulPwumwMTsxysmuEdCbLdCjOC4c7CYYTJNNZMrn8HW8Gf6yhmVcGehmORvjfJ4/SEwqys6KKWpcbl8mMLIpkNY1QOkVfOMQ7I8O8PtRPNJNha5mPPRXL181+u2sQRZLu0kBjaRho6Po0+dw5sskfkku9gmEk0PI9iKIHgyy6NkY+e4o0OgImdH0GLd+NYSx+wL6PuxeJXI6jEzf24pEEAY/ZMhdUFAKLCluhQuE32/BbrfgtNiyS/J5zyH0fdx8kUaTU76S0iBP3+1g+ZEmkpSrAFx/bwd8YBie7R5kMxREFAVEUcFpN1JV52dFazb5NjdSXL54v2MwqJqUwsY0m0+RvQuHWDYNQNAkUkp/LrjS8y3BYzTy6rYV0Jsd3D5zjwsAEl4YmESjQwQIuK/dtbOC+DfXcv7ER0xI+YJpuMBtOkEwvTthcoV3dCtyqm3t89/DSxMv8YPRHtDtaKTGXoIhqUSaGSTLRZL89VM2VYM0CjUanj/9r84N0hafpCk9xOTLNeDJK7j3kH1AMoiBwT2ktv9i+m10lK1dOSGUvkMgcwSBHOncJm1Tw4UhkjpDMnsEw0piVFuzmB8lrk0RTPwUMdCOBIlXgtj5DJj9AJPlDYuk3CpKAcjUuy+PcrMcgr4eJp99ClaqQpRKSmWPk9Vl0I4Uo2PDYPowkuoil3ySdvYCBjkXdiE3dyWziH/DYPkE09RKS6MSirCeROYLb9uFlf/Y9HXW8dbqXl965BAjs3diAgcGju1r50YHziKJIXZln1dmIW8HG0lI+sa6Dvzh1nO7QDOPxGG8ODeCzWLHICpIokNd1krkcwWSCkViURC5HlcPJh1rbafEVGleHgmEujkzd8FznhibY1fReNPQREFAQBAeyurlArwIU0z4kuQEQAQlRKkNWtiBcoXUITyDJayif+T7eFZgkmRqHi0a3l1qHm2qHixKrfd4h3Gu24lBNRakDP4+IpzNMRuNMRuOEEimiqQzRVJpYOktW08jlNfK6Rl4zEATmJnoiiihiUiTMioxZUbCbVBwWE06zGa/dQsBhw2O1LDmpeTcwNhXhm8+dIBRNUlXm5uHdrfg8NgRB4I//7k0++GAHNRVeBAFOXRzhUu8En3hyKxd7JjjdOcpnn96BOOewfqFnnM6+SZ55eCPmW6i6rxY5TWMmniQYSzKbSDITTxJKpIhnsmTzGtl8vvC9aRqiIKLKEiZJQpUlrCYVr82C327D57AScNjw221IonjHJY6XA03XmY0lCMVStFQF+MCedXgdFgQELCYFv8tKpd+F224pOscxqwqlHgdmVSYUTzEdSdCkaYXG6OtgGAaZXJ7+iZmCopxZXaR0dTcjlckxFY5jGAZP7WpnS3MlJkVGlkQcFhNlXgdVAReKXJwBAQUFq2JBxkrxwviL9CcGCGZn6In30p8YwCHbkQS56P1WYiqhqelnMNDwmW08Xt3GPaV1TKcL5feRRJjLkWkuhabojgQJZZLvqVaWNncJT9a0sa+ikXWeshWX/zU9SjxzAAEVi7qRdPYihpEllx8jlnoVi7oBSfQQTb2AIlVhkCOc/AFlrt9GNxKEE9/HbroXSXSjynUIghmrugnpBtxeKEwTNS1MLPVTDCOPpPrQjSTR9KvYTfdgVloJJf4Jq7oZSXQRTb6E0/IogiATSf4EWfSTzJ7GadlPPH0QRSpFkcpJ5y7f0udvrPJjNStMhxNIokBNmQdDLzz8jlwcJBhO8OSedXf0RWqRFT7evgGrrPD358/QFw5xMbi0UZAiimwsKeMz6zfySH0j5jm974sjk/zg2AUqPEs/SCfCsTumTrFSFBNeEBARpBJkpQ1BsKNangAKfRugIKAgyQ3o+jiSXIes7gAjja6HEcWbU8vex8qQ1zRmokmmowk0Xafa715SaWU1MIyCCotdUal0uFjvK6XB7cWpmu4YFaowhkJF926awBmGwWwiRc/kDJcnpxkIhgnGEkTmAotUNkcmlyedz5PJ5dF0A93Q5/425ugkwlzAISJLArIooUhzE1pZxqzIWFUFm0nFoio35cXfbjzU3shD7Q0A9A3P8OAuLxUlLt45M4Akijx2XzsOm5m3jnVzz5Z6qss9gMDweIjj54b45Ae2IcsS75zu5/4djdRV+ojE05y+OEIsmbmtiSbDKPSRjsxG6JueoXdqloFgiGAsSSKbJZnJkszmCt9bXkObkynXdAPN0BEQkEQRWSz8rcoSlrnvxjb3d8Bho6HER1OJj+YyH+Uux11R2TMMg8lQnG+8cpJoMs0X9m/no/dtKGqitxREUWBDQzmHLgwwNhPlnYuDrK9bbHgHhWz+8a4RZqJJTIpMR10Zdst7o6dA03TeOtvHq6d6aCz38eF7O9jYUI58CyI1hmGQ1zSyubVTC51ITzKeGkcRZAKmQpIzq2eB4v5cafn2WiPcKtZ0ZieLIl6zFa/ZSovLIKtrhDIpZtIJptMJBqKzXAxPciE0wUB0ltQtSOHebggIOBSVWoeXFpefdd5SNnoraHT6cJtWV/bLazPoegKbaSM2024S6UMIKGTy/YCIVd2GIpeTyLxDOteFKtciiW5spp3oRopI8ofkjTBmuRWz0oYserGZdt30vAY68fQbmJVm3NZnUaVqsvl+RMGORd2IWVlPNPUymh4mp40hCmZspt0Igolo6lXS+cuocg3pXBeCIGAYGXLaGKp8a9l5WRKpLvVQXbrYTf2hbc1ksnmc9jvP4y6x2ni2bT0bAqWcmBjj7NQkA5EQsWyWnKZhkmXcJjP1bg8bS8rYUlZOk8eL4xqFnJymUeN386Ed6yloz1zFlX+HE+k7Wq1ZMwgCklSFyfIRspk3yGbeBDQkuQ7V/ASi5Ecx7cEwEmRSPyCd/MfCC1nZhGp5Ei11iFz2HfLZIxhGCkOfRVLWY7J+ClG8c1LGPyvQdYPu8SAvHO/k4vAUiXQGm1nliw9v5572OgBO9Y5yeSzI1qZK6ks8RTOOy0VO1xiOR4hkM5yaGsdpMuFSzZTZHNQ63NQ63dQ53VQ7XdiV2xN8nDg1yKXL4zy5fwM+72LqYU/fFMdPDrBrez31dWtroloMM/Ekp4fGONY/Sv/0LMFYgplEkkgqQzaXX3Yi7YrkKAZoaOQ0gLvnfVgMlR4X97XUAVBd7mbPlnpKfA6yOY0jZwbYvbkeh21pKrAoiJQHnDTV+jl8qp+6Sh8z4QRDEyEeuaftliZzy4VuGAwGQxzrH+Hk4BijoSihRIpwslBxyi+TcWFgoGtXvicKFPHEwsmcLIq4rWY8Ngsem5XGgIddjTVsr6vEa1/7RMByoRsGs9EkPWNB3HYLyWyOdC6Pqki3FLzuaq/h1ZPdTIXj/PTEZVqrAzy6rWVBwGIYBl0j0/ztS8fRdIOA28KTu9vvioBrOcjk8gxNhghFk2QDbpLZHFlNQ5rz/VoODAPS6dya+ro8Wf44yXxy2dubpLtLTv+2pZAFQcAkyZRZHZRZHeiGwfZAFeFMitlMiq7wFF/tPMLlyGI/gmcbNrLRV458B5pdZFHEKitYZRWTJOFQzLhUMx6TBZusrskPRBRMGEYOw8ggYKAbKUBDEh3oRhxj7gWT10OYxQ5AQBacFKgpIKCAcdXPwiAH6PPrbwSruhVRtJHOXZoPECTBhiAohYwaCgY6kuhC08MY6AgY5PUQsugFuYl4+i3Myjp0I0kycxKH5ZFVX5P58ZnVRY1ndxJOk5kdFVW0+Pw81pAils2Q03R0Q0cUxcI9oZrwWizYVdOivH9bRQmVXhfrqpZufG6t9GO7SdPkuw7BjMP754jSdf4Tgg3FdC+iXDNXyTAQRDeiVLiXBDGAan4cWdmAYcQAEVEqQRQ9oLQjSD5U80MFHXdBQRCdCMLd9RB8L8AwDM4NjvM3rx7nePcIsVShGc5rtyxQdJkIx/jR0QuE4yk+ft9GPMuc4MiiiNtkJpxJXz0nkNE0plMJplOJ+eUmScahqNhVEw5VxamaqbI7afb4aPX4afH48Vtsa0KpmpyO0tk1zkP3txVdn0xmOXFqgPpa/20LNDRdp29qltc7+zg5MMrQbITpWIJkJvueqtCvJcoDLpx2c0HGtMLDiwcuLpnBvXKNBAHsVhO7NtXx/ZfP8uQD6xmdDJPP63Q0V6zp+DK5PAcuD/BmZx/dUzNMRxME48l55aTbgbyuE4wnCcaTwAznhsc51DNEudvJltpy9rU2sL6q9I4n1ERBwG03U+l3MT4T4wcHz3Osc7hA/ZnbRhJFHFYTNSVudrXX0FZTglldWPHwu2x8/IFNjM1E6B2b5avPH+Fc3zibmirwOqxkcnkujwQ5cLaXyyPTWE0Kz96/kfW1xd+NhmGQ13XSmTypbI5gOEFm7h6KpzJMhGIoSqFyZFZkxDtAS1MVmTKvA4fVRPfINH/8/YO47ZYFzzJVlvA4rLTVBNi3qRG/277gOzWMtaVNAdRY34vU66u4Y1wVURCwKybsiokqu5t6h5cXhzuLBhpb/JU8WdOGKt7+4QmCgCwISMLyI9ZbhSz5MSlNRFMvk8i8Q04bw6S0YFKaUXOXCca+ChiIggWrupmcNkGxvgsBkEQHomBjLPTvsKpbcdtuJAMroCp12E33Ek58l3jmIKpcV3RLs7IOVT7OZOR3ATBJ1VjVLWTzg8zE/gKP7RNk8t2EEt/F7/xnq70kdx1cJjMu0607QtcGPOg3yYo9s309zrvasA8EQUYx3VtkuQCCDVlcrD5TWC8iSD5EaXEDoSRXI/HuPyC/Nfx97vXvotxctkgK1zAMMnqGwzPHGE9N4DV52OreTIn5zprH3QyT4TivnO7mRM8I62tKeXBDI+90DXGmf2zBdnUlXnQdjlwe4rFtrcsONCrtTv7y0Q8zEotwaXaaS7PTXA4FmUrGF02mM1qejJYnmL6aYTNLMg7VhEM14VRNlNsctHj8tHkDtHsDVDtcBf76ai9EEWSyebQV+gvdCJqu0z8d4oVzXRzqHmJ4Nkwklb7raZB3Atk5OhhAOptHkaX5yZYoiguMG6PXSHzKskhdpQ+Xw8zbJ/uYmomxrqkMu3VtEjGpbI63uvp5/mwXXRNBpqJx0mtIYbmlseTyDM6EGZoJc2lsijc7+9leX8kHNrezrqLkjgUcgiAQcNl5clc7X3vxGBOzMSZmYwu3ocA8sJpV3jzTx4f2rufxnW04r6lQiYLA1pZKfu2ZvfzV80e5NDTFC0c7OXRhAFWR0XWdWDJDOJHGZTPz+f3b+NDejqJGiuf7J/jrF44QTWYKFDXNIJZMMxmOA3Csc5iBiRAmVZ6jrIlUBVx86Ymd1FznWL6WkCWRnW01nLg8wrGuYbpHFs9PxTmfkLcv9PPqyR5+69n7aakOzH+fumGQSBWnNP284l3rLrMpKmVWB2ZJJn0dhUoRJcySgkm6e5rfVgNBUHFYHsGqbr6yBEl0I4ku3NZnyOshQEMU7MhiAFFwUOL6l4CAKFgJOH8TRSoBBGSpnFLnv8IgjSTcmAfvsX0UARlJ9OKxfRwECVGw4nN8CVksTAx9ji/NBS8OPPZPo+lhwEAS3YiCA5PcRKX39zApTShyJWalHUl47zR23W6osgTcuPJW5n6fJvRuoivWjSJIgEDe0GhxNNLhXIcsSmiGxsuTr/Ha1AEcsp1EOElXrIfP1X4Cr7qY6vduYXAqxLHLw7RVlvCVR3eyvqaUsdnookCj3OvEZlYYno6Qzi4/q2aRFXaUVrLRX8b9VXXEs1mi2QzjiRiXZqe5ODPFpdkpxhKxonSTtJYnncrPVz4uzExyeHwI+1zlw2e20urxs95fwjpfKU0ub1EvGoBcXiMWS5NO54hEkqTTOaamoosSQalUlkNHekinc5jW2KxtNp7kxfOX+fHpTgamQ8TSy3M9/3nB2c5R9myuR5ZEjpwZoKLUhXWOh1/qc3C2a4wNLRWEoykOnuzDNle1FgQBt9PK1vU1vHqoC4/Lymee3rHqJJ+u67zR2c93j5/n8mQhwMjdhuBzJTCASCpNNJVmaCbMsb4R7mmu5SPbOqgP3N5njG4YTMzG+OrzRzjWOYzFpLC1uRK/y4Y61xOpGwbpbI6JmRi94zN0jUzx7Tc1SjwOHtjUsOC7MasKu9prKfe7ePNML0cuDdI/Pst0JIFJkSjzOnlkWwuPbmumpbpkkfHfFYRiSY51jZBIF5+QhxNpwon0gmXBaIJE6vbJmmbzGgfO9vH9g+fpHJ6mpsRDXZkHp808TzHTNJ14Okvv2AzDUyFmokn++PsH+f1feRqTIs1RzA2S7wcaC/CuzeRFQaDK5sYmq4sCjZ9FyKIbuUjztiz5kK/LBkuCDUm84nQsYbrGaEkU1AX/vhGUa2gwinzVZFASr3KdVbnqmu1L5gKaqxAECxa1Y+7cpqKf4WcFmq4zEAkxnUySzuexqyqltoKj8d3mA/A+lo9CMPE6FsmCJEgcmjnCJ6o/wk7vNvKGxjszx9nm3sRDpfczlBzhx2MvcXz2NPvLbu5zcKcwG08yFoqyramKzfXlqIpcVL/dYVExKwqRZPqWJ1qCIGCWZcyyjN9iwzAM2rwBdpVXk8xlSeSyTCYTdM5Oc2FmkgszkwxGI0Wf3zldJ5xJz1OxREHgzPQ41n4Fm6ziMplo9QZY7yuhw1dKs8eHUy1MSmZnE/zgJ6c4fKSHaCxNKp3l9/7oJWR5YTVK1w0SiQz77mulsmJtJmw5TePi6BRfP3SSo30jhBKp9wOM66AoEjUVXp578wLD4yGcNjOfeHIrnjkzw09+YBv/9MIpfvM/fwePy8qODTVc7J6Y399iUmipC/CjV89SWeqiusy9qvEMz4T5+qFTHOjqZzwSu2sCjOthAPFMls7xaYZDEc4MjfOxHRt4tKMJs3J71LbiqQx/+sO3eeN0L2VeJ//5Uw9RX+ZZpJik6wWlqNdP9/APr51icHKWCwMTbGmuXBAsHJk5TW98iJlsmPHSWR5v3MI62328PXWSS7FeFDnCuvJaNtVWMJAc5nv9JwCDjJajwV7NfYEdXIz2cEY5yz0fhbwuscndzg7vRrpi/RydOU0sn8Cnetjr30a19eq8RZElKotIHT+1ex0722swDKi4gRSyKss8tKWJdbWlyJKI17mw2vvOxUG+/vJxesZm+MDudTx9zzp8TtuC/spCr45BMpPjD793gEMXBjh+eYS+8RnaawpzJ8OA1BIB1M8r3tWSQbXdjV0xMZNZfpPL7cLgZIjT3aNcGpxiLBglFE+RyeVQJAmnzUyl30l7bSlbWippKKIzfTugGwaj0xGOXBrk4sAk48EY0WQaTdexmlWcVhMVPhftdaVsbCinptR9W+hfumEQjqU43jXMxYFJhiYLkfwV/wuH1USpx05jhZ8tLZW0VAVuSdHi3cZUMsF3Oi/wcl83M6kUeV1DNwq+AaokUWF38lhjE082thCw2t7t4b7nkNPzDCaCjCRmCedSxPNpcnp+TZvlrsW+0nYaHAsD5gZ7Pc9UPIlLdvD69EHemDrIds9mDAyCmRmayhupMJdjlax02rvpifeyfxmGancK2byGrhs4rab5TGQxXJHXLDQar+4CC3P3vypJuE1mDMOg3uVlc0k56XyOVD7HTCpFVyjIueAE54KTdIeCJPKLKym6YRDPZYnnskACAeicDfLyQA8WWcaumrivopZ/t+chvB4bH/rAFjZtqOaV1y7Q1T3Blk01OOwLs6Mmk0JNtZd1reX4fauvGl6h3fz5G0fpn54lk799fP73Mn7hY/fMSdPqpLN5TKqMx2mZn5BtW19DfZWPbFZDlkUcNjPJayZeoiigKBJOu5ltHTUrbgLPaRrPn+nim0fO0j0ZJJXNvSd6Zgwgns5yamickVCUk4NjfHbPZhpL13Zeoek6vWOzvHaqB1WReWJXGzvbqlGWuN6GAVubq3jn4iBToTjTkQTxZGY+0NAMjXORLrZ5OvCZPPx9/gdsr2oCQSeVCvKbbc+iigrfHPoJY6lG4vkE/YkRfrXps0xnZjkwfYx2ZxPBTAgUjX+58xNcivYylQlSWWajtmITe7VmdMPglcmDWG15Wv2BooqI18LrtC4KGopBFAXcdgtu+2Jxn0gizbGuYS4NTbG+roxHtjXTVlOyZLO8YcADmxo5cblQlRmeCl8TaBhLVmpWi5HUKIOJQeL5BIaxdEBtl+3cG9h7W8awEtwVgca7BV03OHF5hO+/dY7z/ePEUlmyuTx5rSBtZxgF7qIoCpzpkXj1RDd2i4mO+jI+um8jW1uqVpTpDkYS/PdvvsHFgatZnk8/so1n7l0/P0EfmQ7z1eeOcuTiIMlMjmxOI68VJhsGVzTYBWRJ5MWjnbjtFna11/DMfR20VpesSdOUrhuMBiN8+/UzHDzbRzSZJpMr6MFfuT7MXR9ZFHlL6eMfX1VorPDxwb3r2dtRt4DjeTfi0MgQv3v4AL3hEPFsFqPIq2o4GuFicIpX+/v49e272VFx6063P4/ojU3y3OgZjgR7mMnGyel5NKMg71nsOq8Vam3+BYGGgMB2z2bqrNWoksr9gT0cmjkyl6kuyFeaJVNBwEI0UWIOcCZ87raNbyVQ5YJCTCKdQ9eNotUMgOlInEQ6i8duWXJCsVJc6Weziyp2pUCFqbA7afP6ebyumbSWJ5HL0h8J0TnX53FxZprBaIj8dS9Fgzm6lZYnlAESMTxzPVKKIlEScODz2ohGU0iSyNNPbqb8usy3KIAsS8iytOT1WC4iqTQ/PHmRv37rOMF48v0qxg3g99zYeNSkypQHFtJ6nXbz/Psimc5w4vwwoiiwfUPNisYQSab56lvH+MmZLqai8ffk96XpOhORGD88dZGBYIgv37+de5tr1yxZqOkG/eMzpLN5nDYzrdWBGz4TBAFMijTfU3GNGTgAIiIlZj9HZs8gAG2OJryqm/PRy3hVN6UmP4oo4zN5GEyN4ZLtlJn9lJh8GBgookxKS2MSVcpMheWTapCpzAwpLc1kOsjp8EUMAy7H+ykzB+akrdfkctwQoViSyVCMvKZT6XdS4rbfUJFLEMBhuaq0d+0Y9dtAndINnZ+MP8/bwcPE8zF0Q7/hG7TSUvF+oHEFVTb3/AvrTmM6HOfvXjrBqye7mYkmyOWLR4cGhR+sphf00KPJDNPhOOf6x3l0eyuf279tWdH0tdB1nWAkzmgwOr/sfP84j+9qxWJSeOtML7//rbeYCsXILpFV041CCS+vFbJK0USaidkY5wcm+Oz+bTy0pWlVE428pvGTQ5f46vNHmIkk59Ugin+egpRxNq8RT2UJxZJcGpzino46Pv/4NlqqAnelvN3x8VH+3Vuv0hcOoRsGVllhXaCEcpsdVZJJ5LIMRyP0hGYIZ9IcGh0io+X5N3vuZ3NZ+c1P8HOKZD7DtwaP8KORk0ymI2S0/G0NLK5Hzlj4m7FJhd+nwZy3jKGT1bOktKtNqlfGJwgCiqjc0fEuB36HjUqfk96JGS6PTdNWVVJ0uzfO9TI6E2F9TRmOOyBAIAkikixilhVcFLJ51XYXe8pryOkaOV0jns3SF5nlcmiGy+EgXbNB+iKzJK+rfOSvmSwKgoAsS1RVeEgmM7icFuy22/N5oqkM3z9xgT977R1i71MebhuyuTyvHu7i7354lJpyD599ZueKFAcHgiH+7LV3eKOzj3j6va/8lc7lOT4wymwiyXR0K09tbsMkr8HUzDCuzh+MuSrnTTA+E2Nsbl7isVuxX/MMEQSBnJ5js7udFkc9VsmCKqoEVA+HM6fQ0JCQGE9Nsc2znpyeRxGV+Xf/lb9FQUAW5avLEZjJhOhPDFNrrWSDu5VvDz9/R4NHTTfmBSWWe9azfWPz17cq4J5fbhgGqTVWnTofucDh4DtMpCcoM5dRZi7hQuQSTsVJhbmMaD7GcHIYk2jmyfLHaXcWV+l7t/CuBhoekwWfyYosiIsyXrcTPaNB/vQHhzhyceiWGiavIKfpjM/E+Kc3zjAyHebXPnwvtWWr4wj3jgbJ5TVeP9XDf/v7VwlGbo1OZlCQ9OscnOIvf/wOAPu3t6xogp/XdP7wOwf5/lvnSK3g+mi6QTSZ5qcnLjMxG+Wff+getjRXLco6HnzhLK/+4ATNG6r58Jfuw7KCicShV84z1DPFJ3/loVvaL5HN8vtH3qY/HMIkSfyzrTt5tm09DtWEJAggXDV5Go/H+ObFs3zz4jlOTYzzt+dO0+zzYXuXguS7GdFciq/2vMmPR04Syd0dBp3Vtiremj6MLMh4VTcvT76GgMD/6P5fuGQ3OjoT6UkA8nqe2WwIu3zjrO2dRmO5j12tNfzDm6f58xfe4dP7tpDMFH6bBgbjs1FePNnFdw+dJ5RI88jmZvzOO0/zEwQBRZJQJAkoVGdVSSaRz5GeCzgVQcQiyxybHL3p8Vqay2hsLEGRb48PTTyT5cenL/G/fnqY5Aqede9j+VAViYf3tLJ3awOSJGIxKbf8fjo9NM4f//QQx/tHb6tU7Z2Gpuv0TM3yRz89TDCe5JO7NuK0rI4NIIkiDeVeAKLJNK+d6mFXWy2qUtzNu3N4ih8cOk/v2Ax+l43GCh8O69V3clbPktfzvD71Dm9OHyWn53m2+nEabDU022r54+6voxs6rY4Gmuy1XIr2LnusDsWOSVQ5GDzOhVg3kWwMu+vOeY94HVZ8c8/Lc73jdI9MU+V3IRXxv9J1gxeOdvLC0U4yuTyNFT7qrpn/GTpr3rR+IXqRUC7MA4H7+UD5EzgUB//3uX9Hu7OdT1Z/DEEQGEwM8rWBv2M0Ncbj5fvX9PyrxbsaaIiCQI3Dg1VWiebSN99hlTCMQinxj797gHcuDpG/rmlMoCC/11jhp8Rjx2WzEE+lmQrH6RkOktW0BbTnVCbHgbN95PI6v/Wx+1fVIzEwEeLCwCS//603FgQZhXKmTHOVn4DLjtWskkhnGQ2G6R8Pkbuu4qEbBgPjs/zw4HnKvQ42NJTf0pgMw+APv/MW3379TNHrY1JlqgMeqkpcWM0K2ZzGZCjG4ESIaDK94PrkNZ0zveP8+Y/f4Tc+ei/r68oWjGX3o+vJZHJMj4XnJ6RXnIC5JsN8Rcmh2PJcNk8mlZ03v7oy0Jt95hf6uumenUE3DP7rvv081tA07/Z97b6GYeA0mfiNHXsotdn5vXcOciE4yaGRIR6tb1r2dV2Iu2H6vfbQDYPnRk/z0vhZwrk723clALIgUWv34zMtDBIeKXmAocQwXx/8JrqhYZbM/FrTL3E+conueC/PVj3NyxOvkcgnyepZToXPsb/07unPAPDYLTy5rY3hYIQ3zvXyducgmqajGTr/4R9fQUAgP/d8+uyDW9nZUj2niLb2uDYzOv+7xSCcTtMfDdETnpn7M0tPeIbZdKpAtcRAn8us3rjwfxWyLCIZwqLzFsOtPueyeY2Dlwf4Hy8eJJVb2yBDmPs/AQFJEvHbrdhNKqosIwoCmXzBO2A2niSVm6v4Ge/ek+Ha8SqSiNdupdrjotrnptrrosrjYn1l6bx61IrOIQiYVLmo3OnNYBgGp4fG+Z8vv82JgdH3JFXqZjAMg6lonL85cIK8rvPZPZtxmE0rnlOIokBTpZ+dbdUc7RzmpWNdjAWjPLy1meoSN4okkchkGJ+JcqZ3nFPdo8xEE0iSyKPbWtjZVr2AGn4u0o1dsfPFuo/iUV28MnmQ0eQEddYqnih/gP1l9wFzVU5BosPVyjpn4R1ZYvLz+doPIwkSjbaa+YrxelcL7c4mJEGk3FzCgyV75j6vgSRIN+nOWDu47WY2N1VwpHOIkekw//3bb3Lk0hDbWqrwuWzohkEknmJwMsShC4N0j0yTyuSwmBR+69n7MStXKzT6bfDRmEpPo+ka9wX24jf5EQURVVQwDB2LZEYSJFoczXyo8oN8c+jbHJk5xn3vU6euos7hwaYotz3QMAyYjSb56+ePceTSwiBDEAT8LhuffGgzj+1sxe+yLci+G4ZBOJ7mtZM9/P0rJxgLRucfdLm8zpGLg/zVc+/wWx97AI/DuiJOYTav8X//5fNksgWKkigIVPidfOXJndy3qRGn1bSAL6nrBqPTYb79+lmef+fSvIEXFF5WJy+PcPTSEC3VgUXGO0tBNwy++8ZZvvPG2QXXRxQFyrxOnn1gA0/sasPrtC38jEaBM3vwbD/feeMMnUNT8xrrhmFwomuE7791Ho/dSoXfOf+DvMKvvvZzaZrOt/7sVTpPDaOYZHbua2P/x3YwOxXjh397gIGuSZweK3sf38Duh9fPnd4gHIzzxk9OoagyDz69FZvjxtmgwyPDxLNZ7qmq4YGaOsyyXPSBXjA1BK/Zwr7ael7p76U/HOL89NQqAo27j0a2FrgQHuH1iYtMpaNF10uCiCgICNe192X0q7Q8ARb458zdRehGgad6/QTVIils9dbxUNl6tnvrKbW45qRsr8KnevkXzb/CSGqMaD5GvbUOh2JjnbMVA4O8riEKIj8cfR5JkNjl2859gXtWdzHWGIIg0Fzh5//40P00lfn48bFLTEfiCIaEphsIGFT73Xzygc08tqUFl9W8JnRFwyhMCfQrvTVGgSY5nojRFSrQoDpnp+kMTTOVTJDXtauu19x84iww128mCKhFONGGYZDP60xMRugfCBKJpdCLqArt3F6/qIfjRtANg66JIP/tuTfWLMiQRRFFlmgrC7CroYqOqjJayvwEHHakK++TK1+JcXUckVSa3qkZLoxOcWJglLMjE8RSafLX9MGtFgIgSSIiAoIAsiRR4rRR7XVT7XFR5XVR7XNR7XVR6nRgVZX5Z7xQiEDetaeWrhucHhrjD396iOP9I7c9GBPmAq4rwdc8jKuO7rdzDJFUmr89eBLDgM/s2YTLsrLfsiAIuG0WfvtTD/FfvvEqZ/vHOdk9wsnukWJbIwgFU74P3dvBR+7dgN+1sCJab63kXKSTbwz9EAEwSyY+UvkYqqggCuKiyaREwZ8MrvzGlSunurqNIF6zDcg3kYq/XRAEgYe3NpNM5/i7n55gfCbKD94+zw/ePl9sa0RRoLnKz7949n62t1QtSk6udY9GWk9jkc1YRMv829MsmUloCQyMAtUUmXXOdiRB4nT49PuBxrWosXuwKyYErhrI3I4Hmqbr/OjQBd65OLigH0MUBLa3VfN/fOIBGsq9iEs0APldNj62byN7N9TxR989wOsne+Yn09m8xqHzg9SVnuMLT+xYIId2K5gPMkSB+zY28DtfemxB6fJaSCLUlfv4tY/upanaz598/23C1xgj5fI6p7rH2L2+jo76sqLHuB79YzP8+Y8OL+gLkSWRzc2V/N+ffZja0qXpYV6Hlaf3rmdjQzl/9dwRfnr88gKZwZ8cvsi6ulKe3N1+Q0WqzpODDF6e5D9+9ctEQwn+8v/9MTVNJcxMRjEM+I9f/TKXzw7z1nNnqG0qRRQFwsE4r//oFFa7iYee2YpqvnlgNRaLktU1tpRWoF4n9VcMgiDgNplp8/k5Pz3JVCJxw+2vRSaXR5bEGzaXvdehGwYnQwP0xCcXrVNEiXKzm32l7Wzz1lFl9eJUC1KzmqHzxGu/R36ur6Lc4uZPdnyRQk4LMnqOUDbJaHKWU6FBzoaGmExHC6pVFKhtfpODLZ46Kq2eRYZ8cEU9SaXBXld07JIk8XjpIzxa8iCaoWOS7k5KnCAIVHid/MqTe/jcg1sZmg4zGY4jCFDhdVLtd69Y7e3agEIzCmIYmmGQyGUZjIbpnJ2mK1QIKnojswscxJc9fgp0DkkQkecUraodbjb4y+jwl7A5sLjvKRZL89xLZ/mn7x8nmcouKb4RCDiWHWgYhsFMPMnvPf8WU9Hl/46XgipLVHlcPL6hhae3tFPpcd7Sbz3gsBFw2NjdWMOX79vObDzJ6529/OjUJS6MTpHJ51edwa/xefjsPZup9bmp8roodzvWpg/gNkPXDc4Mj/PHrx7iWF+xCfLqIAoFQRV5zhTOblapcDvxO2zYTSoWVUEWRbKaRiqbI5HJMhlNMB6OkszmyOs6mqaT1/U1rbLE0hm+dvAEggCf2r0J9wqDDVEUqCvz8oe/9gwHL/Tz1pk+esdmmI0lyWs6ZkXG47BSW+phc1MFu9fVUuV3FT2X1+Tmi3UfXYuPd1fCpMg8+8BGtrdW8caZXk5cHmFkOkIslUEArCaVUo+dpko/u9fVsKOtZkEl4wpuR6ChiAppLYNmXE3K2WU7wcxMoTHcKAQbkiDhUBzMZENrev7V4l1/0tQ5PKzzlKKKVyNZt2q+qaTZreLCwARvnxsgdM1kHKCjoYx/+fH7aajw3VRBShAEKnxOfuOj95HNaRw40zef2QjHUxw818/m5kq2tlSuKpu4raWK3/nSY9gtN5/wWE0qD2xsYHgyxDdePrngYdc/PsvodIT1daU3HU9e0/mLH79DNHm1MiIIUF/u5T98cT/lvuWZ9NWVe/nkw1sIx1O8c3FwPiOX13ReO9nDpsYKGit9S45ncjREdWMpUKh4BCo8jPYHyWbylFUX5P8sNhM2p4XZ6SiaZnDp5CD5bJ4Hn9mKuEwud0rLYxgGNkVmuX7FoiBikmTyuk7mFrxf/unwWXY0VdNaEVj2Pu81zGbiXI6OE84upExZJRPP1uzgM/X34Dc5Fn3veV3DJMrk5/jWoiBSbnUvqGoU0MiHa7YzmYrwk9HT/HjkFGOpEDlD40cjp8jpOl9uvJ86u79osHEzFBSV5Hf/gbhM2C0m1tWUsq6mdE2Ol9N1BqNhusMzXA5NFxq3Q0GGY8V9Mm4GgbkMvyjN/x2wWlnnLWGDv4z1vhLavAFcphtXHjsvT/DGgS7Wt1fw+KMdBPzOogpTZaU3Ni+9AsMwyOQ1njvTxYnBm/eI3AiSKFDitPOhrev42I4NlDrtq64iCQL4HFae3bGB/R3NvHqxl28eOUPXRHBJYZDlYDqWoKXUz/b61b2b7iR0w2BgJsTfHTrF0b7VfVfXQhQETLKEw2yiPuBla10FW2oqaC0P4LVZlhUkarrOdCzJpfEpTg+OcWJgjMGZEIlMlkwuvyYVj0Qmy98fOo3bauZDW9djKTKpXS6sZpX921p5dGsLhkHR39CVKuR75f64Xagr8/LFMi9ffGzHivY3DNY80PCphV6bmewslZZKZEGmwlxOV/Qy4+kJaqzVYEBaSxPLxfGb7owFw3KxovdqPq8RCsbx+O0r1sC+gjKrkz+455lVHeNmyGs6Ry4O0T0yvWC5zazy+f3bqS31LlumVhAEyrwOPrd/GxcHJwmGr2bEukeDHDzXz4aG8qINV8uBzazyGx+9D5tFXfYP3ueysbW5ildP9DAajMwvn47EmQ7H0XQDWbrxsS4MTHCscxjtGtdfu9nEL31g97KDjCtYX1fK3g31dA1NMXtNYHfi8jA9o0FqSgv80HgsRSKeJp3IEJ2No6oytS2lHHujk9mpKPFoipnJCHsf62B2OsbpQz3MTkWZHg+TTmYIVHiYnY6x59H1dOxo4MKxfmwOC80dlUg3uS/dpoLb52QygbbMTFRGyzOTTmKSZRxqIQjM5POkszeeiF2eCNJWWVwl6GcFw6lZJq+jTMmCxKfq9vCput14TUs3V5skmYRWCHANwyCVz6EW4XELCJRZ3Hyx4T7anOX8Vc8bXIiMohk6L46dwS6b+ELDfZRZFmbkMlqGvKFhkczzQUhWzxLLxdHRMYtm7LLtrn7BprM50rk8VpO6rN6LK26/OU1HFATMiowsiUt+xv7ILI9972srniApoljw3BDled+NZrePdm+Adl8J7d4Symz2W5YDj0STWK0qz3xgC9u31K1wdFdhAGOhKH994PiqjqNKEptqyvnlfTvZXl91W/phnBYzH962ng1VZfzNgRP89GIPsfTKmkxT2Sz/3/Nv8tUvfwSXdbGPwN0GwzCYjSf59tGzvNHZtyzFpJtBEAQcZpVqj5uH1jXw8LpGmkr9K5Kol0SRMpedMpedB9saMAzoHJ/ipxd7ePVCL+OR6JooYoWSKf7+0GkCDhsPtDas+j5LZXNMxRJUup3ohjFfac/lNSKpNJlcHrvFhN2kLgi40pncop7N91Ec8WSGxBoHGnW2Wk6FTnMxeolmezMO0U6bs40Dwbf5+uA3+FT1J7BIZt6cPkg8H6fDtW5Nz79arCjQmBwN8+9/9ev8xz/9PBU1d1fkVAwj02E6h6aIX/fl37+pgdaawC0HBZIoUlfm5cldbXz9pRPzy1OZHJ1Dk/SOBWmvXVmm8bGdrdSXLz/wuYIyn4PmKv+CQEPXDWaiSeKpTFGTmiswDIMXjlxaoDB1pZpx/+aGW/4MgiDQUV9GY6Wf2c7h+eW5vM6Z3jG2tVbhsph45bvH6Tw9RCaV5Yd/e5CnP38v9W0VbNjVwF//7vPIqsS2+1tpWl9FZDbOUM8kf/27z+NwW9j54DrKqrwM907h9tnZsreZbDpH97lhAhVufCU3Do4aPR6OjY9weHSY2VQSm3JjBZS8rjMai3J2cgKXyUSN0w3A2cEJXj5zGfUGNIRzQxM8vrn11i7iewzBdJRQdiENZb27kkfK198wyAAwSVfpPjoGGT0LLH2/yqLE3kALeUPjzy6/SndsEh2D58fOUGcP8HTVFqzyVcrhifAZRpPj7C97EJfiRJtzA//h2HOktDTrne18tubjuNRbC6jvJN7pGuK1s718/N6NrK8pna9cinOiCNdC03WGp8O8daGP/skQVrPKrpZqNtaVL9m7YbD8RmRZFDFLMiap4CLuUFRqnG5avQHaPQHavAGqHS5UaQ0m30LB3O1GJoXLxZUG8L8/fJqZ+MrFClRZ4t7mOn7loV2sqyi57QFqU6mP33j0Hjw2C987cZ5w8tZpawbQNz3LPx07z5fv27YkRfhuQTKb47kznTx3pov0DaTVlwurqlDn9/DM1nV8cHMb7jUOtgQB2itKaK8o4Qt7t/Ld4+f5/okLjISiqx5/fzDE3x8+g9dmZVN1+Yqp2QADwTB/9uo7PLujg3QuT43fTZ3fQ8/kDF87eIKeyRkebG/k47s2UOG++jx882gP3YNTq/ocPy9Ip3OEblE19GZod7ZzzHpijjJcCPg2uNZTZ63hcryH/3zpv85vW2IqYYd3+5qef7V4rzAFVoXukSBDkws5a5IosqOt+pY9MK7AZTOzraWab79+doFE7tBkmEuDk7TV3PoLSBQE9q3Q/8JlM1PqWeyOm5oz+7sRkpkcxztHFmwnSyL7tjQir3CyUF3ipsy7eDw9I0FiyQwBt52PfPn+ovs+9ek9PPXpPQuWubx2nv2FfYu23fFAGzseKGhG37O/Y9nj21tVywu93XTNBPmHC2f59PqNlNrsqNLCfg3dMEjnc/SGQny38wJD0QhbyyrYMuejMRwM0zsxw9aGpU38ZHG55Kz3LmYyCSLZhbTEewLNlJlvTmlZ0PxtGKS0mzfnCoLAbn8zfbFpJlIHiOXTxPNpXh4/xzpXBRvc1fPf4/nIRRL5JNpcH8hEeopvDn2PalslddYaDs8c5fXpA3yo8qlb+ch3FKF4irMD42ysK8NqUggn0mi6jstmpsRlx2ExzWcgJ0Mx/tt33+Bk7ygmWUIzDL594AxfemQ7X3hoO9ZbkBWVBAGzrGCRZSyygk1RqbA5aPb4aZ37U+/yYFXU23KPlwYcOOxmunsnqav1YbWoSDeozNwMU9E4z53pXPF4ZFFkZ30Vv/TADtZXrg1tbTkoddn53N4tpHN5fnjqIonMrWdM07k83zl+nic3tlDhWR7V7HpMhGMokoTbZi5KMZqKxBEEAa99eRSkYshrOkf7RvjRqUurCgihQOErdTl4sK2BX3pwJ6XO2y9b7bSY+eK923h8Yyt/9mrB72Mmvjqp76N9w3z3uAO/3UaNr3gPxXKQyec51j/MbCKJzaRiVRU+uqODYDyJ12bl3z6ziTcu9XFmaHxBoPH2yV5+eqhrFZ/gfawGJaYAn6v9DB7VjSoW2BSqqPLZ2k/zD0PfYiozjWHoWGUb9/h20+Fa/lzoTmDFgYauGYRnEyQTGTDA6bbiK3EgyRK5bJ5IKEEklETTdEwmGW/Aid1ZyKaND88iigLZbJ50MovFZiJQ5kI1yQx0T+Ly2ojMJsjnNOwuC6UVHgQgFk0RCsaoaSxM4nXdIB5NEQklqKjxLal5PDwVZjIUW7C81GuntsyzbEWm6yFJIiVeO81Vfs71jc8vD0YSDE6EyOX1W66UeJ0WWqsDK3pAq4qMtUgTdCaXXySBez26hqaIJBZmySRRZFtr1S2P4wpcNjNehxVZEheUXPvGZ4mnMnfM8XMp7K2qYUd5JS/2dfMXp47RFw7xdHMbdW43qlgINjRDJ5nLcSk4zY+6Ozk6NoLXYuW+6lo2lhQa7H0OK09ubePZ3RuWPFcym8W8BhnZuxkpLUv6mgBBFiTqbAHsys204AVM0tVro2OQzC9vEmWWFLb76jk608vRmT4AzoWH6YqO0+IsxzxXKQllw9TZalBFFcMweGPqILIo8Qt1n8OtutANjbPh83d1oAEFKuS3Dpzhr145yvhs4XlW6rbz1I52Pry7gyqfE1EUefVsD92j0zSX+9jbXkcym+P1s7187dXj7G6tZXN9RdHfnoiAWZaxKSpWpRBUBMxWGt0+mj0+WuaCCo/JsiK6yXKQSGQYHJ6Z/3cup+F0mHnpp+eJRJK0t1Vgt5kWPeurKj04HTfOUhuGwY9OXSK6QvoRQEOJl0/t3kxH1fIENtYSpU47H9u5gclIjDe7+snrt05lCcYS/PDUJf7Zg7uWnKwahkEsnUXXddy2hdf0L396lDK3g0/u3VTUEPIbb51ElkS+8tDOFUnhGobBaDjKyxe66RyfvvkON4BAoRr0lft38NSmtqvKX3cAgiBQ7nLwb59+iM01FfzNgeP0B0Orahh/6Xw36ytLecbejt28MvNKURDYXFPB737yCcyKwqsXezg9NE6py45ZkdlWW8HZoXHCidTND/Y+7ihKzYvp11XWKv5Fy68zlBwmr+coMZfiVVfn6XY7sOLZTzKR4a0XzzE5GiKTzlFR4+OZz+6huj5ANJzk8KuXOHWkl2w6hyiJ3PvIeu57rAOLzcQ//O/XMQwDRZUJTkYwmRU+8IldrNtay3/7P7/F3kfXMzY4Qzyawu6y8PlffYSSSjdd50b4x//9Or/zp5/D4bKSSWV5+6cXOHW4l9/6Tx/GUkShKZXJMhWKL9I1rinxrNo5124xUVfmWRBo5DWdqXCcmWjilnsb6st9KJK4ogm4LIkoRQKbvKYv6LsohsvD04uqHrIkUlvqvfWBzEEQBGwWFbMqL6CsRRKpuZ6Ggk/zuwWTLPPr23czm05xbHyUl/t7eLm/B7fJjN9qQ5FEUrkc08kkiVy2IHFrsfBEYzOfWr8ReS4Y3FhTdtMmzU015fgcd9487U4iq+fnlaMAHIoJu2yaly5cCgKFhvEr0A2d6C14cDQ5SmlylHFith9tTjHpQmSUPYFmqqyF+1czNFRRQUAgno9zOnyWre6NeFQ3ACVmPydCZ5b/Yd8lxNNZBqfDBJw2OmrLECjISn/n7XMoksQn79uE12GlezRILJ3ltx/ZwQMdBV53XYmH//HDA7xwopMNtWWI4sJnhVVW2FtZQ53TQ5PbR5PbR6PbS4nVdtPvcC3R2z/F7/zXH12zpCAliQHPvXSW5146W3S/f/1bT7Br+41pnqlcflXVDLtZ5fENLWyvryzaTHsn0Frm5/GNLfRNz9IfvHVlmVQux08v9PDJXZvw2IoHZqlsjkNdg+TyGh/c3r7aId8Sktkcb3X182Zn36oqAIIA7eUl/PZTD7C9fuUJs9VClSU+uKWNcreDP3jpIJfGr0q/3ypS2RzfPX6ephIf2+oqV0ShMikyHruFaCpDKpsnkckWqi1z8tXanPrcz55Lyc8uVFGlyd74bg/jhlhxoKFpOmaLyr/6rx9jYmSW7/3t2xw/2E11fQCb3cyO+1u5d38HFqvKc986yqWzwzStr6ShtazgSzGT4PO/8QhVtX6++Zdv8OYL56is86PrBtPjEX75t59CVWX+6Hd+wE++dZRf/D8fp3ldBQ63ldPv9HHfYx2EQwn6L0+waWd90SADCpSDcHxxdF7mdWBdhfkQgEVVKCsSTIRjaWaiyVsONKoC7qJVmeWi2KtvOU10Q1PhedWfK5AkkfP940vssTyMBaOLdOANAxLpLJqur5iWtVZo8vr4f+59kD8/dZTTkxNMxuOEM+kF0p2SIOA1W6hyOtlXU89nOjZRartafvfYb06921hbjtO6OpfXux15XSOvX72HFFFe3gRVAKdydcKjGQaR3PKzaVbZRIXFjUOxzCteDSaCRLIpqua+Gr/Jx2R6mvH0BN2xXlJamt2+HYiCiG7opLTMu1pdWy4kUaCjtpRP37+FzQ0ViKLA+YEJvvHGSQ53DrKntQavw0o4mUbXDUpc9jmHbti/pYW/euUoZwfGi2ZVqxwu/nr/R9emr2IVKCt18emP777l/aorb54U6ZoIMjQTXsGoCthSU8He5locK8wmrxXuba7jSO8wY+EomVtUojIMmIzGead3iCc2Luwb0w2DUDzF6YExDnUOYDObKHXbcVpMVHpd84m5ZCZL19g0um5gUmRqA26cVvOiKpduGHSPBxEEgaaym6s66rrBhdFJXjx7eUV9KNeivbyEf/fMQ2x4FypP10ORJHbUV/LbTz3Af3/xAGeGx1fsj9I5Ps1zZzqp9rkody1W8bsZnGYTPpuVb7x9CptZZTISLyTUonHK3U4Odg0QTqQo+RlPjL2XoRkaaS1NTs8hCCJO+dbvgzuNFQcadoeZPQ+1YbObcHlslFW6Cc/EAeYkRg3GhmfQ8jqZTA5d10lfk9lu31xNWaUHq93E5t2NfPuv3iKVKJS0dz3Qht1pRlFkdj/Yzvf+9m0EQcBiM7F7XxvvvNHJrn2tzExGCU5GefrTS7+Y4sksifRiKobHYcW0SjqLSZXwOhZPNBPpDLEVPCjd9sUP6zuBqVBskaJEJJ7m1/7n92/L+ZLpLJpmcJuMi28JLV4f//n+Rzg4Msjh0WEGwiHS+TyaYaCIIs4574x7qmrYVFI2P3G7FTx3qot7WmpZV/Wzqzx1xXRt3shS19CM5VE7XNcEGnldW9Lwbyl4TXZcinU+0JhMRUhqV+kxG10dPD/xMj8cfZ7R1DjrXW3U2WoRBZG8kWc0NT4vH3g3w2k1s6+jkYc2Ns1n1O/vaGA4GObbb58lNEd3yGs6klSoBFx5nDitZsrcDvonQ0WTD+Kcr8W7jZKAk48+s23+39PBGIlEhprq4h5HhmEwMxtnZjZB5+VxAn4Hbpe1aMLm9Uu9K87U2k0q2+sraS71r/AIaweX1cw9zbWcHByjb3r2lvdPZLIcuDzAYxtaFrxvdF1nZCbC6+d7OT80idWkEEmmqC/x8OjG5vlAo3N0mlAiTTyVIZHJ8vjmFh7e0IR9niEgYBgGF4en+Lu3TrKuqoTGUu9NubKRVIp3eoY4O7K6BFeNz8VvPXYvHZU3l3W/U5AliY6qMn714T387vNv0j05c/OdlsCL5y6zu6kGb7v1lim5pS47z+7YwBudfcTSGR5c10hrmZ9QIsX50Ul+cOIidQEP7RU/u++q9yoMw2AqM81oapTR1BjxfBybZOXJ8ieQBRnd0JlIT6IbOqXmEhRx+W0B2Wye2akowakYqTmLA5NZxRuwU1LmQlFXLq0Mqwg0JFnEPtdILQggiCKGrmEYBsO9Uxx4+TzJRBZFkRgdDKIoMtcW5CRJnH9ZKoqEltfR50qKsiLO+2ioqkxuTj5UVWU6ttVy4OXz9HZOMNQ7hb/ESWXN0g//VDY3b4R3LcyqvKrqART6GMxFZDjT2TypzK27zVpuoUlzLRFJpOev/Z1ANq+tqbnRamFRFB6tb+KRukYymkY0kyGna1hkBYeq3jC4CCdSNzX96hydYmPNu59Zu50wiQqqKJPXCkF9Mp8lO/c8uNE9LQAe9Wr2LKdrDCaCt3Rus6QsaCiP5lNkrukX2eLeQDQX43Ksh43udewvfQhVVLji7ysJEts8m2/pnHcagiDgsJhw2yyLaDtumwURgVxemwsiitMSnRYzqezqJDcNIKvliWYzxLIZkrkcWS1Pfs41XBQEFFHCJMvYZAWnyYRDMRVVx1oOTp0d4sSpQT78wS1omo7NaqIk4MRqLVSjJ6aivPjKOS5cGiOf12hvreDJ/RuoKF9YHdYNg8M9gyv+3PUBL+srS++aXqstNRXU+z0MrID3n8lrXBydJJJML6BPyZLEprpy7GaV7x05T43fzSf2blq0fzqX56mtrWyoKefbh85w+PIQm+sr5gMNSRQ4PzzJj49fYmNtGZ/au/mmVDNd1+kaD/JmV/+KqUUALouZX3xgJzvrq+46ZS1VlthSW8GX79vOH7x8cMVmkfFMlufPdLK+spQa7601hkuiSF3AwxcD2xYsr/K6qA942N1YjcNswmd/v6JxN8HAYCA5yE8nX+NE6CQprZBUKjWV8Hj5YwDk9BwHg28znprgQ1VPU2utWdaxY9EUF08N8fZrF7l4eojwbAJd13G4rbR2VHHfI+vZsrsBm31lppGwStWpYufUNYOucyP0X57kS/9iP+XVXl787nEun1/o6jk6OENkNoHJrDDQPYXHb8c018zcc3Gcjm31qLrB5Quj1DYWomtBFHD7HHRsq+P1n5zBMAx2PtCKcIOHmLZEj4JJkVfdHCaJAqYigUZe11ekOW1S5HeFwpHJ5ucnXT/PEIRCM6z5Fhxzzw1P8PzJLlw3oEb1TARX1Lj5XoJFVjFJCsm5QCOj54jkkuQMDVW40fUUKLe45/+VM/IMxINktNwC2dsbQZj73xVktPyCaopJMrG/7EEeLrkfUbiqWGRgIAsyz1Q8iUO5/Wo0q4FZlREQmIrESefy8xPeXF5jKhInns4yG08xFUmQzevouo6hGwsCvZymrfhFkc7nGE/EGY5FGI5HGIqGGUtEmUkliWezZLQ8OgVVJoss41TNBCw2Ku1Oap1uKmwOapxuSq0FU7vljiKX0zh3YYRoNEkqlcPjsXH/3hZ2bKvHbjNx+EgvJ04NUFfjR5JFDh7qxm4z8fSTm3E4rv4mw4kUg6ugTTWV+mgquXuk3EucdprL/BwbGCWauvXqeTSd4dLYFPc0197yvpvqymko9WFWZRrLfJzqH1vQpzYeivG/Xz5Me2UpH9uzYVnvtHAyzbH+ES5P3FqS4VqIgsATG1vY39H8rtNyl4JVVdjbXEv35AzfOHxqxSaMh3uHOTs8TqnThllZfuZa1w1CyRSDwRDJbG5BdbPS46Kh5O6v7P48IpQN85Ox57kYvUipqQSv6uFc5MKCbQRBwCZZ6Yx1cj7SuKxAI5XMcuzAZb7z9bdJxDLUNZewaUc9hgEz0zHOnxik5+IYueyD3PNQO+ZlmEgXw9qnZwRwuK2YzDJnjvTRfWGUkf7gohdLcCLCsQOXUU0yF04OsGlnAw53oUIyOhjk7VfOk8tp9HWN84FP7Jrfz2JT2bijnq/+/ouUV3tp21R9w+Es1di0NhP6JV6YBiviYL5bVV5NNxZdJIsqF+0/WQs4ltDyfy9iJpYklc2xs2nphsOusal3hRJ3J+FRrTgV8wIvjdFkiEQ+U9R87woEoMl5tdqjGQYTqTD9iWnanBXLOncynyGtL6RHFvv5SaKEgXFdBlggYHr36TA3Q4nLjsdh4eDFfgIuG7UBD4IgMDoT4cDFATK5HAcv9DMajDA+GyWnaUxHE+Q0HVWWSKSzTEXieGyWW5JgSOfzDERDnJwa49jECKemxxmNRcnqy58gWSSZRo+P7SUV7CirZnOgjCrH8uVVY7E0ugEtzWVMTEZ482AXPq+djR1VDA7NUFXp5ZPP7qSkxMnXvvE2p88Nse++1gWBxqXxaXL5lQX7NpNCrc+Nbxn9WHcKggBt5QH8duuKAo1UNs+l8ZUFGjb1qmmkKAqLklQjMxFK3Q4iqTST4ThVvht/17ph0Dc9y+udfcs2Ty2G1jI/n9q9CZuq3tU9V167lSc3tXJuZIJj/SM336EIUtkcPz51ic3V5VTdQlUjnErxwtkuzo9MIgkLv7u9zXXvBxp3Kc6Ez9IT76XB1sBjZY9SZ6vl357/9wu2kQWZRnsDWT3HYGJ51duB7kle/tEp4rE0T350O498cDO+QKHnY3oiwg//8Qgv//AkP/jHd2haV0F1nX9Fc7cVBRo2h5kHn9qEzV54kJstKi0dlWg5DUkSWbe5hnQyw3B/kEzGwobtdZgtKh7/VV+FhraCD8HEaIiNO+rZ/VA7Nnuh9Lphez2hmQTxWIoHn9rEtr3NVwcsS/hKHKgmhfrWchzOG0saypI4rxB0LTK5/KrpQrquF/WokCRxVaY6dxqyLBZmfNdcjlKvg1/64K03ZS4H7TUlKO/y9blS5RIFAW4hw3o9qrwuntjSymObWpbcZjAYxrJCGeX3CgImJx7VzmDiKve4Pz5FNJdaQI0qhhqrD7OkzMvjRnMp3pjopMVRNu/kvRTyus5EOkIoczXAMYsK8jX7xfMJ+uIDzOZC5PRcUaqJWTLxQGDvsj7ru4G6Eg/3ravnH986zf/6ySGq/YXJxchMhGxe4+FNzczGkvzw6AWsJpXaEg9vnO/FalLwOaycHRhnIhRjV0vNshSTdMMgmEpwYHSQlwa6OToxTCizsgbdlJbnfHCS88FJnuu/zP7aJh6ra2ZXWRVm+ea/i/o6P5/9xG461lXRPzjNt757jJGxEBs7qshkclitKiaTgqrIbFhfxYlTA2QyC+myXePTK6ZrBhx2Kj3OFftC3C40lnhxr1BkIpPP0z9dXLXqyrsrmc2R1wvO8gJcnWDc5PZZV1XCp+/bwldfPcY33z7DLz2yC5dt6XEmMlnOjUzSPbnyaoYqS3xi10aqPa53TRFsuRAFgTq/h6e3tNM1MU00tTK55WP9o1wcn6LEZce0zCr8ZCTOW539PLmplVq/h2svVcCxsqquJAqU+p2rpqL/rEDTdCaD0VVRAK9HT7yXlJbiwZJ9tDvbUUQZgYXXW0DArboxMAjnIksc6SryOY1L54a5fGGUe/a18cBjHfivMToOlLl4+KlNnHynh+6LY4wMBCmv9KDcIHG4FFYUaLi9Nj7zKw/N/9vmMLPz/qsKFr4SJ49+aFuxXefhDTh47CPbsNgWK3iUV3t57CNbka7pFr5S4svndcaGZlHNyoJzLgWzKhelN6Wz+RXRm66FphsLzPquwCRLRc95t8JmVhEFYUE2SZEl9u+4+92s9Tlu+PUpbGGOE75U8P39yxcJJpM8Wt9Encu9rElEOJ3m+Pgo0UyGjSWlNHl9tFYEbnof3dtaS7l7sXnhzxLKLG581zmAd0bHmc0kqLH6lsyCCIKAXTHR4ijjbLjgIp/IZ3hr6hL3lbSw3n1jacqxVIiu6Djx/NVJsEOxYLqmEe747CkOzhxGNwwkQSpah3Qq9rs60PA6rOzf0oKu6xzvGWE6msAwoMrnYmtjJU/taCeeynCsexiHxYyBwT++eZrh6Qgeu5mLw1MIgsDjW1tveq/ndZ2BaIjvdV/gx31dDMXCa/Y5plMJ/qHzDKemxvhM+yaeqm/DY76BC7wk4vPa8XntCAJ43FZURSKRyJDN5dF0fQF11umwkJujjl2LwZnwshT4isFnt67I6C04G+f0+WEi0RRN9QE2rqta00pumcuB02K+Pke0LGTzGiOhCJquL7of3DYzFV4n54cm+ObBM9T4XayvLsNXRPikGMyqjMdm4SsP7+APnzvId985x2fu37Kk+MpEJM6R3uFVTcw2VpWxp6l2xQIvfbEglyNTeFQrfbEZVElinbuMJmcARZTQdJ3eWJDOyCTJfJZSi4MtvmpcipkXRi6xzV9NwGznpdFLWCSFe0sbGU9G6I5O81DF4iSUVVXYUlPBjvoqXr3Yu6IxZ/J5XrvYy7baSkyO5X3uvKZjUmQe29CyZskvp93Cpz+4Hdsq7QJ+VhBPZvjqPx0iHFs7L5JILoIkSJSaAyhi8e9aEARUsfAdZPWbe1HFoinGh2dJxjMEp2K89dJ5ZHUh5TCTyhGPpjF0g/GRWXI57c4FGmuFpR8ri9foukH/5QlOHOwmOBFh4456qutvTnmwW0xFjYMiiRTZ/OIm8VtBNpcnHF+c5bOa1VV7dNxJ+F02JFFEu4YOEY6ni76E7iZoms6loUkOXRjk+ntmU2MlmxorijbrA/zNmVNcCE5R5XRR7XSxHEZvOJ3i+10XOTs1yVc2b6XJ61vW97y98cb0vp8F+E0OqqxeTKJCRi8E3+OpMIOJIO2ucszS0txOWZC4v6RtPtDQMRhMBPm7/rf5XP29tDnLF92HBgbT6RgvjZ3lTGhwwbdfYXUvMAo8GT6DVbJyr38PHsWFUKRKIgt3J6f7WtQE3HzqgS3saatlIhTDoECpaijz4rCYEQToqC3Q0KLJNNFkhrfO99E9FsTnsPLBHe3saa+9IY0vr+v0hGf46/MneH7gMrHsys3tloIBXJyd5g9PHSaUTvOZ9k14zcUnsXa7mVwuz7kLI4V3wOA0o+MhYvE0ZrPM+EQESRLJzVWWk8kMqiItagQeD8dYaVrJZTHjXQFtStN04okMP33rEtMzMTauW1s/B6uq4rFZkCWJnHZrXH/dMIik0iQyWZyWhdUGp8XMvW11KJJEOJEilc3PB2n3ttVhN5vmqVOVXiePbGzGYy8EizubawqCALJIlc/FFx/czqn+0SWrSTlNYzAYWpXSlCyKPLN1HX67dcWB3MXQBH/RdYgHypuQBZGJVIz+2Awfrt1Eo9PP5egUL410ktXzmCWFM7NjxHIZHixv5vmRC9hkFYffxDf7TmIYBrsCdRwLDnEuNFY00AAodzt4qL2RY30jKzaRPNwzxHg4hse2PCd2p8VEhdvJga5+1leVYlGU+QqVWZaxmm6dg+9z23hodwtu591DLXw3MRtO8J2XTq1poFFIkF1NrBa7z3XDIJEvKL9apBszfQCS8QzxaGH+eunsML1dS/8GHS4Lhr48u4RieFcCjb2PrMPtsxc1mHvmM3soq/YWb/A2QJQE2jZVs21vM+IySnVuuwWXfXHZdnJ2sYnfrSKVzTExu1iK02kz476JS+3dhEq/C1kWFzSmJdIFo8Nb9QK5k4ilMrx5po+vvnB00bovPLaDtpqSJQONlUAWRayKwmw6yWgstmi9bhhMR+OMhWJkcguD2LaKwCKX3Z8lmCSZJkcpJWYnw8kCfUozdI7P9LHT10CFdekXmCSI3BNo5m/63iKRL7xwU1qOg1NdJPMZ7gk0U28vwaPakEWRVD7LWCrM6dkB3prqYvI6OdwWRxnea+hajfZ6ptNBHLIdv8k/V3Ze+HxZOXnuzsJhMbGhrpwNdeU33M5pNfOxvRvoqC1lNpbEaTWzsa4Mu1ldcjKmGwZj8Sh/c+EEP+q7RKpIIkYSBHxmK2U2BwGLFafJjFmSUSUJURDI6To5TSORzzKbThFMJRiORUnlFz9rp5IJvnbxJIoo8oX1W7EUoVHVVHkJ+B385MUzvHOsj9lQArvNhNmk8ObBy1itKrOzCY4c76O2xseBQ914PDbM5oXHmojGVvyStJnVFXlnlAacfOiJzfQNBm8LnUcQwG01Y1JuPdCAAjsglEgtCjQEQaA24KE2sNhh+MGOhcZgNX4PNf6r293bVrdg/frqUtZXly45hkgyzamhsVX5ZjSV+thcU75qRTABWO8uZ195E8eDQ/xk6AK9sSD1Dh9vjPeQ1LJ8on4rVTY33x04wxvj3XR4Kmh2BhhLRuiPzxAw2+iKTJHWcnRHp1nvXlpt0KIqtJUHWF9VyuGeoRWNORhPcqRviMYS77KChCv9MCf6R2gp92NWlPmq/67GGvZ3NN/4AEXgXIUa0VqgdyTIGyd7cNrMPPvQpne9/1MQC2bFa4kSk5/LscuMpEYot5ShCouPnzdynA6fRRZkqiyVNz2mMfc/BNi6p5Etuxpv2NvU2lF1w37LG+FdCTT2PLRuyXUf+OSuosslSaRpXQVN65bXIHoFNrNKqef/z95/h0eS3+e96Kdi54hu5JxngMl5dmdzJrm7XCaRohKpQNuyLR/7yn5sHx37Xvtc33OObMtJDrJoURSTSDHvctNsmt2dnAOAATDIsXNOVXX/aAxmMMAAjTBhV3qfZ8mZnuqq6uquX33D+31fO1azsiCxGJ2JLHCsXguS6RwjM5EFr4mCQJnLhs/10ZGHa6nxocoSKW5cn4KmcXlo+r5ONALRJP0Ta9cjXy2KiYY6J4G7+ME4MBXktfN9zMaSxNJZFEkklStQ5XZQ7XF8rBMNgE5nFfU273yiAXAidI3xdJgKi+u2Bn4CUGcr4+HyTl6euOHQndJyfDB7lcvRcWqtXlyqFVkQSWt5pjNRJlMRMvrCANatWuly1+K+KdHY5GjncqyXn068gktxIovKorTCKln5pfqX1n0N7ic4rWb2tZcmcQgQy2b40cAVfjbYuyjJcKomNpeVs91fRYvbS6XVjtdsxamaMEkyiiQhCsWOSF7TSRXyRLJpgpkUo7EovZEAp6YnGIgEF3SfgukU3+49T53TzSeaFlM1KytcPP1EN+6Tg8zOxqmscLJ3VxMul5Xx8TB2h5kLl8Z4/8N+Dr9zhUwmz6ee3Y7rptk9w4BIau3VRYsiYzMtToLeer8XRZGIxdLMBuNU+F3s29mI27VyZT1f0BgYmuX85TESySxWi8qmtiq2bKpmcDjAlatTeN1WBoZmURWZ7k01tLdUoN5SnHOYTWv2PynoOtE1DJJvJAKJFCfXOBB9HQ93NlG2jm7GdVRZnWxyV2CWFHwmO2ZJJl3IkdXyDCdCTKSj/GD4LKooMZGK0hudIV3I0eb00xOdRg/pdLjKSRZyDCfCXI3N8Km6rmWPWeNxsq+5juODa6eOvXFpgBd2dpWUaFhVlQOt9SzFGnGtkYXhtJvv6VzM4ESQP3v5BNV+J595bNs9LxkJgrBuM+hb0e3q5mzkAm/PvItJNNPhaJsf5DcwCGSDXIxe4sjs+9hlGztKkGu32kzYHWYwoKG5nCef335b4+v14p5Sp/qvThMKJejcVI1z7sEwPRXl/ff7CAQSbNpczcGDbesaMhJFgfpyDxUeB9cmb5gbTYVijM9G6Kj3r4nXqek6s9EkA+MLB9icNjO1fhfWJR5M9yu6GiuwmtUFNDBN0zly4RqP71p9heNuYTaaZGBi7QOEq4UBFIyiXHJ+Cbnas0MTzMaS7G2t44PeYao9TmxmlYlwjNwaFW8+Sqi1eul0VnM+PEq8kEEALKJCXi/Kzd420RAEzJLCZ+r3cCI4yGz2RrdIxyCUSxLKraw5LyCwv6yVLlcNJunGPX0p1kM8H8erFpWaDEPHuOVpZKyZWPPxQE7TOB+Y5ru9F0jkbxRgJEGk3VPGJ5o6OFBVT6vbi8u0ugqmputMpRJcDs5weHSAHw1cIZUvJogGMJ6I8e2e82zzLVajUhSJ9tZK6mu9JJJZTCYFh92EKIo0N/oBqKlyU1PlIRCMU1ZmZ+e2hnmfDSiaQObXKCMKoEoS6hLDth+eHCAWz7C9uw6LReXY6UE0TeORBzqwrfDANnSDVCqLpuk47WZmgnF+8dZFPG4rQ6NBvv/Tkzy4rw2Py8r4ZJhgOIHFrNAy95mvw6zIa6a3aoZBZgmPqbuFgqYzFY0zMLN608HrcFpM7GmqxW5af4CkiBLmuXVDmPvfoiNNcd7PIZvxm+wokoTPbGdnWT0VFieKKPHOVD/T6TifqOtCN+BieJLpdJwG+/KSyHaziU1V5dS4XYyEIms6796pABORGN4S6FMVLjtfeWj3mo5zOzjucUfjfoMoCFg3uKPRZm9lr3c3b8+8y08nf8bpcDVpLU1ez/O90e8Ty8e5lhwino/xRMXjtNiaV9ynw2mhqtaL1WZioGeSsaEgbass5JeKe5poWK0qmm4tqh7NQTXJVFS4OHZsAE3T2b+/lfVKYrfV+mio8CxINLJ5jdNXx9nZUUuFZ/WDuol0jguDk4tmNGr8Ltpr1yYBdq9Q7rGzqaGCmXBifrBZ0w1O9o4yMh2mvmJxC/1eI5svMBmMMR1O3LVjxnNZBsMhZFFa0msjmspQ73Pz5JY2xoJR2qt87G6p5Y9efp/4GpVFPkowSQq7y5o5HhwkreXYV9bCdm8DbY7K2yYZ1yEKAp3Oar7UeJA/GXh7nkK1GnS6qnmmeitVloW/12vJYWos1Txe/jBe1b2kktVK6lb3C2KpDCOzEYLx1IoiBLtba5dV+7kZ0WyGHw9cZixxQ61EFkW2+6v4avduDlbX4TatrSMniSI1dic1diebvH6qbU7++4UTxObmP/K6zuXgDK8O9/PV7sUiIqIoYLWasN4meC/3O3n0IQe6biBJi40Bs3ltXS5BkigiLbWeG8Xh8wf2thRVd0SRk+eG2bGlfsVEQ5ZF2poraG0qx2Y1caVvkr/6+WlGxordQFWV2dxexZ4djVy4Ms4b71xhbCK8KNFQ5ihra4FhGOTWQLnaKCRzOfqmAqSWEFQpFR2Vfqrdzg1UeVx8LU2STIvDx1Q6xoHyRlqd5aS1PPF8BodiwiarxPNZZjMJmuxlmCWZP+8/iUe1YlOWDzhFQaDa42BTtX/NiUa2UODs8CQdlb41J50D00Hi2Rzb65enZC4Fp938sZdvXw0EgQ1PNKyylUfKH8YkmjgWOs6HwWPo6OTI8cb0YQSgfM687yHfg5iklRNvRZXZvK2e9u4aei+O84u/Oomm7aCprRKTWSGXzROPpYvqsZk83Tsb5pVmV4t7mmhU1ywOYD0eGw882M7Zs8Mb1o6rKnOyqbGCM1fHiSZvJAbvXxzi0R2teB1WFLn0bEbXdcZmI7x58uqC12VJpLWmjPY6/23eeX9CEkWe2dvB8SsjxFM3ArzZSJJvv3mGf/D5h+eH/+4XRJMZBieDJVUqU/k88Vx2gWlefm7wPZJJM5mIIYu3/3yarjOZTPDaYD+XZmdwmlRqHIspZRZVIZ3PzxuqTUbiTEUShJKpdQsPbAT+7PhpemcC/Ma+XdR7XBwfGePs2CSzyaKCUZnVSndVOQebGrCuUZFks6uG32p9hJlggoneOI27K/CZnAgCxFMZvvnTE7zw6FYq/c4FDyeBYlfjEzXbSRay/OXIMaL50uguAtDlquWLTQfY4W1c0M0A2O/dw5V4H9F8DLNkwiSq3BpQrJQI3WsYhkHv+Cw/PnaZnrEZkpnckkakN+P//NVnS0o0NF1nJB7h8OjggtebnR6+0rWLx+qaV2ViuRxq7E5+edN2slqB/3j26PzrkWyGt8cG+WxbFy5T6Q+zgqYzeG0GX5kDr2dpumquUFiTrxEwJ+vKbQtHddUe3E4rqirT0ujnnQ/7yJbQJdB0g4npKKfPD5NK54jE0kTjaTLZPCDg89ppqvehKjIuhwVFkeb+bQNhcE+NWmPpLBfGpta1jx0N1TjvsPCKIAg8Xt3OGxO9fO/aGbS5Ydwtnmoer27HrVqwySpRScaumOhQK+iJTvFY1e0lz29GudNOR5Wf1y5eXfO3cXRwhBd3bV6Ved/NGJwNMRWNrz3RuM8lhe8mBGHjZzQA/CYfj5Y/TIu9mYnMBIFskKyeRREUvKqXGks1jbZGnErphfOmtgqefWkXP/jGB7x/+ArDA7OUV7lQVJl8vkA6mSMUiFPTUEZze+XdTTR03WB2NsYbr19iaiqCJIq0tFZw6KGOohLQ5XHGx8OEw0kaGnxkswVCwQSHHu6gra2SSDjJe+/10n91mupaL0880UVZ2crygYZhEIumeeutywwPBbBYVXbsbGTnzsZl6VWqIrNvUz3Hr4xwqvcGH3Q6FOeH712gxueirsJdUlZuGAbBeIqfvn+ZwcmFLd8an4vdHXW47B89Lv7uznq6myo5fmVkniuaL2gcPt1Pa42PFx7sWrfbqq4byz60V4NQLMXVsdJoU6emxvlxXw+zqRv0m4m5Ye5vXTrPq4P9y373umEQy2YZjUWJ5YrStnurFg9bbaopJ5JKo+k63fWV/PD4JQ5fHMBrt6xJtWaj8eHQKO8ODLGjtpqfX+7l3YEhRsMRErkcGEX+brXLwdmJSb52cO+a6AgOxcx+XxtxS4Z/++Zb9JRNU+13YTEpXOqfpOfaNM8/urQUvyAIeE02Ptewlyqrm5+NneFiZIy8cftk0m9yctDfxpNV3Wx11y1Qm7qOa8khzkcucjU+gE22IAkSt56BU7Hzu62/verPe7cwE0nwyqlefnzsEqIgUOVxEEtlSWZzVLjtCAhMR+IkMzl2t9WyvbkaT4kzQRmtwOmZCUKZG4mdSzXzSF0zD9c2bliSAcXv2GMy8/n2LRyZGObMTFHpRDN0xuJRLgdnOFBd+lxJJp3j1Tcu8eCB1tsmGoKwovXDbWFQvP91w1hyjSho2ryiUqGgIYm3l9Se36dhEAwl+IsfHKO7o5rujmomZ2KEQgnmuDrIkog6R+ldbr0saPqa/UEEQVjzfMd6YRgQS2e4ND695n3Iokh3TcWaBvVvxY6yWiqtTlxqcf2osrr4TOM2PKbiut1g9/Jc7WaGE2Hi+QyyKFJv8zIzE+dycIrP1G5HVARssooiSvz+lidodJTmJG8zqTT63JQ5rATiqTWd/7mRSeLpLE6zadHvJZnNcXZ4ggfaGwnEk7zTc23J9/tKlC++Ffd6GPx+w52gTl2HQ3HQ5dpMm6OVVCFFwSggChJWyYq5hC7GrTBbVXYfbMPutHDsnV4unhnm+JE+spkCqknG5bbS0FLO9r3NWJewoigVa3qCpNM5jhzpY2Ymxv79reRyBSRZQpZF4vEM58+PohV0LFaVI+/1snVbPZFIikuXxqmvL8NsVujorGJ0NMTw0CypVI6yEu7JTDrPK6+cZ3o6ws5djQRDSd59pwdFkdi+fXmH07ZaHw9uaWJkOsxs5EbAefTSME6rmV9/dg81vuXNfgzDIBhL8d03z/L6yb4FFUWzKrOzo4Z9m+s/km1Ep9XErzy1m96RWUI3LXahWIpvvn6KRDrL8we78KxSwi6bLzAwHuRk7ygVXgf7NzeUTOe4HYrfQ+nzGZIgEs1kOD01SSKXXVA1uhyYXdWxax1OPtPRRZe/fNG/ddb4yWs6VpNCZ3U5n94LU5E4dWXuFd1x7ya+deocM/EEu+pr+Oy2LjxWC6FkisNXr/He4BCRdIZmr5eXti0/yHg7yKKI226hs6mcofEgkXgai0nhgzPX2N5Zi2uZB5MoiPhMDp6p2kq7o5KBxAxXouNMpCPE8xk0Q8cqqZSZ7TTZymlzVNDsKKfC7LytvnizvQmP6mE5QW2ztL7f5J3G8GyE430jlLvsfHp/F9uaqvmrDy/QNxHgcw9spbnCy0Q4zl99cAFBEHhwUxPeEgOHdCHPqemJBa9V2R08XNuEXd34arEgCFTY7HyquXM+0QCI5bJcXGWikc7kGRsPkUjenmpnkuW1ZxoUg/mCpi05p3G5d5IDu6MoksjpCyNUlruwrDAIahgQT2S5OjjNFz+9h+YGP6kTA8QX0HBLO+FMPr9iZ+t2EEVhzb4T60VB15iJJZmNrTx7dTtUuuxUuOxLGvKuFjU2NzU29/zfnaqZLd4bfHVREBZtAxAR01gUhcoy5wJWxJM1nSUfWxQE/A47dR7XmhONSCrD4GyISrcD+Za1Na9pjIaKlMiZWJIfnrrEpuqFz6+JSGzN5o/XOxr/7ttvYzEr/PJTu/jum2cZngxRV+HhUw92YbOovHaslwsDE7jsFg5tb2Z3Z92C50AsmeHK0DSXr00zMRslkc4iSSJeh5XOxnL2dTXgda5u6D+VyfHe2UEOn7xKpc/BCw9tobl6YbCZTGe5NDjFqZ5RpkJxNE3H47SyuamSPZvrKVvlMe/EMPitUEUVVd2YY9gcZrbtbqK+yc8jz24hGc9QKOjIsojJrODy2Cgrdy7peVcq1tzRiMfSBIMJKipc1NV7KRR0LBaVcDiFLEtUVbupKHcRiaRoaa0AAZKJLOl0HrfbSnt7Ff1XZ+jrm6IUuyHDMEgks7zzzhV++7cfZeu2emZnY0xNRjh54tqKiYZZVXhydzsD4wHeOHV1fggulc3zxqk+psNxPnlgM/s21+OyWxYkC4ZhkMzkONM3zk8/vMzpvjEiiRvVP0GAzvpyPnlgc8kP9/sR29uq+dKTO/mvP/5gnv+tGwajM1G+9cYZzg9McrC7ka0tVdRXeBY9pHRdJ5HOMR1OMDYboX88wMB4kPFAlOlQnOf2b2Jn28qyayshlc0zMhNZ0sNkKXT7K/iH+x5gKhmnPxzi/Mw0bw0PEs/laPV4cZuXr8iIiNhVhSaXhwO1deyoqMK6BPf2ZtUPRZLY3liNrhuIonBfJZ9Xpmf53PZuvrx7G/UeNyZZJpMvsKW6kmAyxdXZAK/39a850YDiYrunq4Gv//gYwUgSVZYYHAvwm/sOYllBKKFg5JhMX2A6cxqfqYxP121FFlxE8yGmM4PYZScNtk24VCs2yXRbXnIwO0ooN84mRwuqtHTH1DAMAtkhxlIX1/xZ7wbCiRQToRiPbGnh+X2b8ditvH9liLFglMZyDztaaujKF7CoMn/y2nGO9Y3QUO6Z9zdYDjlNYyB6ozsrAFVWO1t9t5clXS8UUeJgdQOqJM3PCaTzeXqmZrisTOCwm6mr9RIMJubnFpZCMJggHFk+ODMp8roq9+l8gVQuv2SiYTbJvPLmRSLRFLph8Kknt+J2FZ8BP3n1HFcHpzlzYRRJEonFM7S3VPCpp7bidlnY0lnDn33vKG6HGZvNTGP9yr5QtyKWyS6QJV8NREEo+ijcA2TzBUaCkQUmsatFo9+L3XR7ueafv3eJZDrH+EyUtnofI5NhPvFQFx6HlbdOXmV0KoLDZmLXpjq6W6voHZrhXN84JlVmMhBjS2sVHQ3lnO4ZY2w6QjZfwKTIPLG/g7oKDxf7J/jw/BBel5WnD3SiyBJj0xHePN6Hrhsk0lkqyxx89okdJNNZXj/aSzCaIhxL4bSZePaBzdRXFenjXpuFGq+LMyNr9xPpmZxlX0vdosTLZlJ5qLMJKK53XpuFL+zbOp/KGsC7PYNk1/g7ctqKMxonroySzGSRRYkfvXuBaCKN1awyGYjR1VzJn79ygngqi6YbTAVjuO0W2uZo5rFkhp8eucTPjlwiFEuRyeWRJWneePPdsxbOXp3g15/bQ7W/tKJdOpvn9eO9fOOVE+i6wQPbmii7pVA6FYzxsyOXePPUVWbDCQzDwDCK1+nIuUGOXx7hl5/eSXONr+Rn+HpmNHJ6noKxfpq1iLCq4pmsSPgrXfgr70xBdE2JhtWq8vAjm9B1g2996wMcDguPPbaZLVuLxmQmk4zNZkJVZVwua/HPikwhn0Vfoxu3YUAkkmJ4KMA3v/kBpu8dp1DQCIUStLXfXqv6ZlR4HHzhsR2EE2mOXx4hP3cuiXSO41dGGJmO8P13ztNcVYbXacVuUUnn8oTjaa5NBJkOJ5gMxhYt7E1VZfzS4zvY1FDxkW4hmhSZFx/sJhRL8e03T8/zmg3DIBBNcuTCNa4MT+NxWHHaTNgtpvngOpMvkM7kSGXypHN5kpkc8VSWRDo7n7QUNH1DGMHRRJqrY7MlUwacJhNOk5/2Mh+7Kmt4qqmVa5EwF2en+cLmLRyoqUNZZkZDoFilt6smPGYzym2Clv6pAOlcgZaKMqwmBVEQCKdS9E8Faa0so8xxf0geu8xmvrBjC62+svkg3aoqtPnLONBUx+XpGcYisflZk7WiscaL02ZieCLE8ESIKr+LKv/yXUOArJZgNHWeaksnfnMTDsWHKloo6G7atHIkQcYiryy7bJe9KKIZq+RCFpde+HVDA/LEC+vjit9pZPIFCppOhds+L5OsyBKabsx7KKiKzP6Oen5y7DJHLl3jie1tJSUaBV1nOnVDVEGVJHwWG4470M24DgHwmi2Uma1MJos0xqyucXZgjP/2epSt3bV89VcPcalnnD/9xpHb7idf0AiGlq+KS6KIx2YlkFhbtTiVzRHPZHFbF1/LlqZydm9rQNcNbFaV6krPvATtju46Whr9PPZgJyCgqhJOR7Go4XHZ+NUvHCAYSiJJAnabGVWVMM/NRjXV+3A652g8FS4++8ld2GyLf8PhZJrsGue/FEmk7B5ROjP5AsPB8Lr20ez3YF+GNjUyFaLS50KRJaaDCfxeBycvjVBb6WFoIsRTBzqZmIly7MIQFWUOIvE018ZD7NvSQGdTBR6HhXxB4+LAJOVeBwe2NfHahz0MjgUp9zqorXBT7nUwORslP6cqmEhleftkP//gy4+AYfDNl0/y0M5WNF3n5OURfvWTe+kZmuZs7xhe141rX2a3UutZX5DXNxVYUiJXkSSq3cX1stLt4Av7t9FasbCqPx2Nr7mbcjN1ajac5NK1Kf75bzxFIJLgD7/9NodPXWV8NsKXn9mN22Hhx+9e5MrQNBcGJucTDbNJwWUz01xdxnMHN9FUXYbNoqJpOmf7JvjJexd57WgP21qr8TitSxarbvZCyuTyvPzBZf78lZMossTXPnOAg1saF7iXRxJpXjveyw/eOk+Vz8nXPn2QpuoyBEFgfDbKT49c5N0zA5hVmV99dg9VvtKk/kVBWNIkuhS8PfMOJ8In1/Tem1Fu8vNbzV9d9342CmuKIiRJpL6+jBde2Mn0dIzz50d45eVzWCwKFmuRIyjMEWNFkRuc1dvGhSsH54IAFrOCw2HmpZd24/ZY594p4HCWlrmJokB7nY/f+uR+MOBEz+h80qDpBuOBKOOBKD0jM6iyhCyJaLpBrlAgnc0vGigUhGKS8ZXn9nKwu/GetaE3Eh6HhV99eheqLPLN108vULYpaDrT4QTT4QQCxd/B9UBV03V03VgzX3g1CCfS9I6uXtZWFAQcJhMOk4lmj4e+UIAqu4N2r29DuMqnBsfJaRrNFd7512RJ4s2LA5gU+b5JNDrKfVQ6HYs6AZIgUOcuPuzymk62sL5EQ1VkdnTWMjgWZGAswGP72nHYFnOIr0M3NMK5cc6GX2E0dZ6UFiWtxdnifpJ4Pkhf/H0ShQDN9j3UyVtIFaIMJU8TyA5T0LNIgsIm1yOUm5sYT/XQnziKWbLT7XpiPtHoi73PePoyBT2PQ/Gxt+wzgEE8N8u7M18np2fwmRrZ7nmGdfFtNhgCArphUNBuuMJaFJlsrkDyJn8gq0ml3GXj4vAU6RKHh3UMUjdJ2qqihHuVErarhSAISIKI12yZTzQ0XcfiMvHc01up8Bcf6vFEkT5x6IF2nEsMIkaiKd56t2fF49V6nAzMBNe0PkVSGUKJNHVe96J/s5gUmhv8S1Yw62q8i167DlkWqa3yUFu1tKLfzfMmVotKfe3ifcXTWcLJ9HzBbDUQKFa6l0qe7gbS+QJDgfUlGvVl7hVEKwRq/C4MvTjyXuVzcrZ3HFEUqSxz0NlYgUmRuDYRZGK2SC1yO8y01fuoKXcDMBWIYTObaKjy0NlYzqnLo6SzOQoFDY/TSkWZg9nwQvPWMpeN9oZiAK0oMtFEGq/TikmROXy8D4D9Wxqx36RMZjOpVDjtCzp8q0XvVGBFGp3bamZLbQUT4RiJbG7exNKsyHRWr17ERpZErBZ1PsbTdZ1D25rZu7mecDxF97FKTveO4XPbee7gZnRDZzIQ49LgJJOBGwp3qixxaHszOztrcVhNWM0qkihiGAZtdX4mgzFeP95Lz/A0+7oblkw0rlPXsvkCP373It/8xUlsFpXf/dwhdnXULXrP1dFZXjvWi9dl5QtP7ODQ9mYsJgVBENjcWIHNrPA/fnyUN070cWh7M+Vee0mqXoIoYLGsrVM4m52lL3515Q2XgVk0YS3BGfxuYk1RRC5XYGQkSEWFk/aOSpKpLJcvTxCPZ+6Y4QeAw2Gmq7uW4eEAO3ftRpIkwqH4qqrksiSxqaGcv//Zh/ju4TO8drJvgdISFFtuKz2kVVliR1sNv/rMbrY2V91xTt7dhM9l45ef3EVjZRlf/8VxhqcWPxAMrnOXS3vIiWKRt7hePq2m6wSiSa5Nrc+or8XtXaROtF5cN+m7OTi3m1XCyTTpdUg4bjQqnXbkJbsKwk2dnY1JGnd3N/Du6QGmAjHa6vzzFdulICDiUMppdz5AqhCh0/kQPlMDoiBjkRxUWdoZSibJaHOBqVFgJnMNk2Sly/UYV6LvMpsZwq1WUWaqJ5qfJpgdpmDcuPaXo2/R7nyAcnMzslBcqwxDJ6Mn6HI9TqIQ4nL0LVrse3Aoq6ey3ClYTQpWk0oslSGZyWEzq7jtFjL5AlPhOLl8YX54OFvQyBXWI+kqsOJE8x2AAbhcFh5+oB1RunH8mmoPTz66GY97cfV9JhDn0pWJRa/fiia/h3f7rpXC0l2EYCLFdOzuyWiXiolIfM2Ge7IkUe6wbaAs7OqQyecZDkbW/H5BgAqHfcVCiCyLiKKAIIoIAoiiiN1q4upIrHgeuQKpTA6H1Uwmm0CRJUy3uB+rqoQiSwiCUOzGzlFrbgerudjN1g0DWRTRdQMEAZNJ4cC2Jiq8dhy3zClKoojTYsJlNTMbX9vcymgoTDKbW5ZONhWN8z/ePsFIMILNpC4opTy6qYWOqtUlGzarCUkS548nCAKbmyrm539q/C4uDU7RXO3FZlHJ5QuUuWzkC/oCA2UAl92ySEhHEARcdgv1lR4sJoVoIkPhNhQvq1mlUND4yzfP8q1XT+N1WfnfvvgI3c2V82vjdWRzBQbHgwyOBXhybwe7N9UtiOHMJoWtrdVUeB30jwUYHA+xtaV6QXJ4O6xHdeoh/4N0OBYalwoCSEhcTfTz9uy7+E1+up1dVJjLsUhm8nqBcC7EpdhlBpPX+FT1J9jtWSwTfi+xpkgrmy1w5L0+zpweoqDp2G0mduxspKOzmnB45Zvk/SN9vPdeL1f7ponHMwwPB2hs9PGlXz7IW29d5uKFMfr6phCA4aEAm7tr+PKXH8DuMPNLXzzAyz87yz//p39JLq9RV+vl2ee2UVnpLv1DSxJNVV6+9sJB9nTW88P3LnC2f5xsfuVKgiSKNFV5ef6BLh7Z3kK5x74qadyPAgRBwOOw8OTuNjY1lHP4zFVePdbL0PTqK1B+t41d7bU8vL2V7a3V6x4ET6ZzDEwE1200tdlXTovHg11RN6xubVEV4ukssVQGzxwlIRBLIgnCbelW9wImWV7QZr6T8Dqt/N0vPUw+r1HpcyxLmxIEAVUw45TLMUlWnEr5fLAvCipWyY1JXBhsmiUbbqUSr1qHTfZQMPJoRh6L5MQmu4nkFgahu7wvcC15muHkWTa7HsOp+BEEEY9ShVetQxbMiIJMVk+xenedOwevw0ptmYuxQIShmTBd9RXUlrnw2i28cqqHOp+LPW11XByeondsFrvFVLIktYiARVbJ54pBa17XSOTuvO+LbhhEsjcCZUkQsCkKZvONZLSy3MX2LXWUldkxL1HFdLs0VHXlx9imqnJEQWAt6ddUNM5oKIJhLMy/fvPLh4p0p3tkznp1OkA4uTbHc7Mi01JRmirSRsMwDLJ5bV2D4C6zGbvZtOrZN7Mqs7m5gp5r0/x//scvUGWJbe011Fa4mb2NJ9NSR9B1gx8dPs+HF4aYDSeIxDO8+OiWInVpkRkoZHN5wrEkP3zrPIokUu518Lknty8QV3GYTXhsljUnGrmCzmQkTrnTftvVPZxMMxNL8I8/8TCWW4o+a1HvctgWS9te7zwKgoBJlZEkEddNr0lSMQm7tftS0HSuTQQ5cWWE/rEAwUiSZCZHLq8RiCSIJtLo+u3p11azwk/eu8if/fwEiizyT371cTrry5GXWAfj6SyTgRh5TefIuUGuDE8v+i3pujHv0xWJp0qehRLXMaNRbamm0rxQYlgAxtLj9MWv0u3s4tmqp/GbfMhCMaE1AE0vsMu7kzem3+J46CRbXFvWdPw7hTUlGjabyouf3sXTT2/BMAwkWcRmM2GzqZhMMi9+etdcJUGkra0Ci0WlttZb5LHaTGzf0UB7eyX5goZhFKvdiiLhdlt5+uktPPxwJ9oc51GURMym4mmKokBLSzm/9huHyGTyGIaBqso4HKsPXkVRwOu08tD2Zna01TA4GeREzygXBycZmYkQjqfJFzQUWcRls1Djd9FZX87Ojlo211fgtJnm22yrhddp41//1nOL9NbdDsuizLtUWE0qX3h0O8/sXah2YTOrONcQ3BcXCYXmmjIqyxw8t28TAxNBTveNcXUswHggSjieJpPLF52dVRmbWcXnslPjd9FY6WFzYwX1FW6cVjM2szpfFVoPoskMPSMz69oHwAO19XT5y3GbzBuiWgLQVVfB9z44z39/8zi7W2opaDqHLw7gtJgod60s33z3cPeq1aIolMxtXdP+BRlRUG7QNWHZqnWlpZ0yUx1pLcYrE/+OLzb+34CALJrn9lHsrKyp9H0HUetzsbm+nON9o0yF43TVV9Be46ezrpwffXiRf/Ht17GaFDK5AuFkmhf2bS5Z3lYSRcotVmJziUZO05hNJ8kU8pjlOxNE64ZBNJdhNn0jqFIlmTLzQnph9+ZqOtsrF1WZr8NmNfG5T++hptq97PF2NFTPmTKunmaUzOYYCkQIJpL4bqI/lvvuXSpqGHBlYoZAYm1BqUVV6Kq+c8P+y0HTDaLpzAJfo9XC57BhUeVlnydffGYXZpNMe31RYUmSRLpaqrCZVX7lk3vI5QvznXZVkdjWXk1nUwX2m4JEn8fOS49tm5+7+dRDXYhiMSZ5bG87B7Y3oesGiiTOdyn+/hcfRpElDODvfekhZEnkrRNX2b+liYPbGpkNJ3j/7DWGJkILEg272YRnnVS2qVicrUblbTuS5U472+qr+fHpy7SUl6HcZJbc4i+77Zrx0J5WaioWz5D4PPYFcw/AggKHMFfSkpaZgQQIRVP8+L0L/OzIZSKJNHaLSqXPSZnTNn/vx5ZRlgMYGAtwvn+CaCKD1axy6soY3c1L+4Lk88VOFhTXott537jtZtz2YvxSauiyHtUpSZCQljjO6fAZpjLTvFDzKeqstXMS7TdBVDBJJh7yP8AHwQ94L/A+X6r/wprO4U5gTVGtKIq43VbcS7SyFUVCUW78WK9Xp26uOhWTkqWzZ5fLius2M1HXs2HPbfTS1wKTImNyy7gdFroaK8kVikOXum4U26OCgCQKSKKIqkiYFBlZktbFLJAlcU1u5MtBFIUlW4/rQTHoErBbTNjMKhVeB7s6askXtBvX6KZtRUFAFEVkSUSRRJS5OZeN5HpHkxl6RtefaFgUZcMVV7prK9D2dfOLs738r7dPIYkiW+or+NSuzVR77lyw/XGHYRjMZAY4FfoRodwEJtFGRktQaV7aEEtH53z4F/THjxIvBAnnJtnhfY5ycyuHp/87WS2BbmjUWrtvdHbun3GMJeFzWPniQzv45J7NNFcW+fpWk8Kn93UxFY7z7qVrBOeGObc1VvHi/u5FCiu3gypKNDg99M8pT+kYTKcSXAnOsqOieoV3rw0FXePY5OgCPrpVVqh3Llz8TSaF5excZFlkS3cN0goCAxUuO81+D1cmVydnDcWUs3dylt6pwIJE415iJBSmbzpAco0mflZVYXPNYonuu4GCrhNKrm3w+Do8NktRtngZuB1zz8KbYr7rPP35f7sJZpOyqDslS+KC2aCbKU9Ouxkni4t41wNjAeZoQho1FW6+9+oZLvRPoOsG9ZVuWusWUjNtJgXXGiVmr2MmmljWnDKSynCkdwhVlkhl8wu6EWZZpqt26eTz0O5WDuxoXvS6KBaLjCtimdtT03TeOzfId18/gyxL/Mozu3l8Txs2i2lesfE7r59hKhhb9hCz4QRP7+9kU1Ml//477/D9t85SWWbn6f2bljhvcd4X7Ml9Hfzm8weWjeksJgXrKjqXiiKhyOK8SMB6MZoaQxIk3IoLkaULowICDtmBSTRzLbHYK+Ve4qM/vbxBkCUR2aJi4+Mza7GREAQBRZbuKU0sX9CYCsWYCCy/4NwrKHJR0nZTTTl5TSteM0nEpMhz1dS/QSlwKD4eLv8qingjwvSZG3ms8msYhj43SKwiCTJutRKB4m+yy/U4APLcUHi78wEMw0AQRBTRjIjEI+VfmXNDNoqdEERqrZupNLcBYJd9PFz+GwuOfT9AFEVqy1wYGPMDiYIg0FxVxh984Ql6J2aZCsfxOW20VfnwOqwl00rMssxWfyVvjg7MvzYaj3J4dJBt5VUbLs1sGAbJQp7v9J5f8LpDNdFVtroq+/V1aSVIosihjqY1JRoAV6eDnBudZHdjzX0h+nG0f5Rrs6GVN1wCqiTRUemj3HlvuqwFTZtPitcKu1m9r+ioy0GWRLa319DZUD7faZAlcVGAbpLlRXSm1WI6llzW7T2vafidNv7ppx5ZNN+y3PU0qTJ3akUMRpP0DE0TjKX43OPbeeGhbtwOy4IC5fXi5nKoqXDzs5wqlAABAABJREFUD3/5UaBI7/9P33+XP/nJUXxuO7s66xZsa7eY8M8VrDPZYmfL59qYIkLx+SRgMavkS5TgXwl5I09GL/pI3f7Ac8IeWgqncT8Rf++TROPmwapoMkPf2Cx9Y7NcmwwxHU4wG02SSGXI5gvkCzqSJKDKMjazgsduwe9xUOd301pTxub6CirLFivqbATupnTtrcNmqWyenuFprozMMDobZTwYJRBJkMzkyeTyFDQdVZGxqDJOm5nqMid1fhetNT66m6qo8DgWVP3uVxne2w3ZZfIFekZmeevsQIlDysacJvadpcDceh1lSUSW/nomq7de67X+xkRBxCTdqMYLgoCEjHSLF4ZhGDcNdBvIwtx1F0ARzChLVRulxQ8TCQVJUpY89v2EYvVx4TWVRBGXzczu1tr5GQLxZhpZCbDKCger6vgPgjj/IItkMxweHWRfVR0PVNdv2HphGAZ5XecvLp/lUuBGZ1JEoMpmZ9ctHZRkMks2W8DlsiCtc3D5mS1t/I+3j6+JFJctFPjw6gh7GmvY3VR7z9ZPwzCYisZ5r2+IyUh85TcsAZtJ5ZHO5nvm7VPQdYLr7GjYTSqKJC5YczbyN7qR+yy1SGdWZKzr7LLPxJbvaDjMJiRR4B99+2UafO4Faot7W+p4srttXcdfC3IFjcycWIrbbl4gl2sYBqFYir6RWRLp5alTkihgNRUpTs8/1M1sJMF33zzDf/jee/wfX31qXroWivMcjVVeyj12rgxNc6Z3jCf2FDvkgiAsGTesyrRPLLqDxzYo0fCqHnRD50zkLD6Tb0lVqYJR4GT4FHk9T5l6b+avbod7mmjohoGm6UyG4rx7boB3zw9yZWSaTE7DoGicgrFcfg5DhIsiKczxq4WNH3O1mBT+0ecf4ZMHNm/wnpfG9esSiqd46+wAh0/3c3l4mmy+UKxWzKleLHddLg1NzV8TSRKp87t5oLuJp3a101jlxaxIC3nt9wjXkwF97jPpRtHoqH8swNXxuf/GAozMhMkVtCV1wpfCn792ir944/QdY8TU+N185Zk9a/xN3F/8/41CKJfkbHgYv8lBq6MCk6Qgsvrf2PXfwXUOtyyKSxYO0lqOZCG74MFqV0xYJPW+p0JtJK5X0NYKURCodbg4VNPA22M3Wu6XgtP8u9NHkMVD7KmoXXUCcysMwyCna/zZpdP829Pvc/NYp9di4ZnGNqy3zIScPjfM9390iuee2sLTT3Sv+dgAreVl7Gys4dTQ+Jref3Z0gtcvD9Do9+Kzr84teKOg6To/OXOFM8Pja15F3DYzD88ZuN0LaLpBbIWgcSXYzSYUWeK92Z9xJPAyv970j6m2NG7I+fUnLvD61PfodO7ksYqXNmSfpcAky6ui5yyFYGL5joZFVdjZWH2LsEHxD/fKU8VlN+Pz2BEEuDg4xeXBKToairS+ockQ33jlJBcHVlaWuw5BEHDaTPzaJ/YQiiU5fKqfP/zW2/zBV5+m3GOfj3u2tFTx1L4OvvP6Gf7nT48RTWR4aHszLruFdC7PbCjBuf5xwvE0z+7fRG2Fu+RzsFpUnjm0mUBoscBAV9vScyPLYbt7G1diPfxk4mfMZmc5ULafOmstFslCTs8xkZ7kaPAY78y+h1Wystv7MVCdWi90wyCf17g8Ms333znPexcGSaRzK79xCRhz/3M9AL8TQZxc0O+KP4Q+59kxMBHkL944zZtn+smv0a3TuOmaaLrGwESwuN83T7OtuZovPradXe1Fzer1BhCrRa6goWk6mq4zE0kwMBHk6niA/rmkYiIYXbYqUwp0w0DX7tx3Viho6/hN3Jso2KIoOEwmzLK8NB9VKLbPHSYVm7p6Na7L0XH+Z//b9Men6XbX8VzNNh70t+M3O5FWQR1LFwq8MTjAH58+hm7Ab+3YzWc3LXYpf33yIv+57w0C2RuV3S81HuRXmx+k3PzxmolZrspqGAa6bqAZOgJCUW5yrshQCgRBwGex8qXObXw4OUJ2bm7CAE5OT/CP33uVX+/aySeaOnDNiSeUmkAahoFmGOR1jfFEnD86/T4/HexZsEpLgkC728enW7sW7TOZzCFJItVV7tI+zDIQRZEv7tvG6eGJNXU6Nd3gZ2evUO918dLubizK8sPIGw1N1zl8ZZBXLvQRTq2tUmpVFT6xtROXZX2zAOuBYRhr9oq4DquqIIsiBjqaUVg2uF4tDIy5fW4Mv75UqLKEZZ20vEyhsGwI5LNb+fzereQKGnmt+AxTJKnoG3YHWCClwG4xsbuzjlNXRjlxeYRLg1P43DbyeY1QPEW138WLj2zl3TMDK+/s+sidUBT7+dufeZBIPM25/gn+6Lvv8PtffhzXXMekzGXjs49uJ5vTeOXoFf7wW2/xh996C0EQipLEGIiiyK7OWh7dtbpOj9Nm5rc+f3D1F+M22O7exnByhLdm3+GDwFGOBD6Y+7jC/G9fQMAiWdhXtoe93j0bduyNwF1PNPIFjbFAlO8cPsOrJ/qIrXHBvKu4w8+S63J/w9Mhvv6LE7x1tn/DhohuhabpnL46xpmrY+xsr+U3ntnDlqYq7Jbba29vNH7w7nneOTdA31iAaDK97qTib1Aa/t2nnwMgr+fI6TmyWgZVvGGgp0oSL27dxItbFw/PrQTDMOiLTTKeClMwdM6GhzkbHma7p55/1v0CLY7SufdWReH5jk62VFTw30+fuO12zfZyWuzlCxKN06EhHqvcjN/kuOfduo1EXtMJx1MYQJnDOk/DMAyDZCbH6YFxLo9O47ZZ2N/RQK3PhTTnHVAKVElmR3kVn2nr5ru959FuuimHYhH+1dG3+U7PBZ5qaOXh2ibqnUXahSQIi5Ka6x0pzTBIFXKcnp7k9ZF+3hgZIJlfWFASgDqHm7+1fR8u0+Lg97p87EYsEQLwcGcTHZU+etY4qxFJZfhfR05hNak8s6X9riUbeU3j5LVxvvH+afqmVm9Weh0+h43P7um+p/eGbhQLauuBLIn3jPp1p3BddGY9yK0g0a8bBlenA/z5kTMcHxwlr+m0VpTx0u5uHt3UvK4ZEZfNjNdpnR8wF4Sit4XHYZ2faxKEogCP12mdd88WBIE9m+vxOC38/MhlTveOEU9lcdrMPLyzhU8d6sasKlwbD2K3mBZ1b1VFwuOwLimEU2a38BtP7uKPEml6R2b5wVvn+LVP7EWWivQor83MV57exYGuet46M0DvyAzxZBaLWaHcY6e7pYpD21qou6mboRU0EtEUqlnFbF06btro+0sURF6sfZ56Wz1vTb/NSHqUvJ6nmFUKSIJEpbmSx8ofZn/ZvvtuJvSuJRqGYZDJFXj/0hBff+U4PaMzfxNgUuxiRJJpfvbhZb7x+ilCsfVxV0uFAZzqG+PS0BSff2Qbn3t4G5Vex13pbhy7MsKpvrGSaVB/g43FxehZPgy8Rb2tmacqX0AV1j9TkixkGUuFiRcWFg5aHBXY5cUB5FQijkM1kcgX3WktsoLTdHvX8KVQbyuj0e7nWPBGpetqfIqJVJit7nrkj1EgMhmK8T9eO8ZkKM7ffu4Au1prAUhmcvzPN07w/fcvkM7m0AyDrroK/slnH2VTXfmqOkl+i43f2LyTgUiQk9PjC5KNgqHTE56lJzzLfzz7IR6zhQanm2qbE4dqwioriKJAtlAgVcgTzqQZikUYi0fJ6UsHPwJQYbXzG107eaimccltaqo8+H12hoYCtLdWYFpB0nQ5CIKASZb56kO7+afff3VNjtpQNMr7j69/QCaX5+kt7bit5jsyEwjF52Y6X+DD/hH+5J3jnBudWvO+rKrCS7u6Sh4CL+h58kYeWVBQxLUFoFktS1bP4FRuqIkZBmvu1F+HLN6sZiigGxrJQoy8nkcAFFHFItlgrvNWpBob5PQseT2LbhTp2ZIgoYpmVNG88Hc1Z7iX0VJk9UxxBkyUMYtWJOHGb7BIB8yQ1TPoxpwAiGDCIlnnj10qRGFpiuhqkF3BqHMyEue7Ry/gspr5wy9+ElWRODM0zrs9gyiSuK4ZjT/+x59b8HerWeW3XzzAb794YP41WZJ4dFfbog6BKAi015XT/sXbK6H92997ccnXH97RysM7Whe9ns8VOP7aef77P/8ef+vf/BIHP7Fzwb8nwil++j/fYnxgml/6h5/gD7769EofEYCJa7P875/79zz15Qd56W8/iXkNJtWFXAFN01FMyrLeUjdDQGCXZwe7PDuI5CIEcgHSWhZVUPGby/Cq3lWfx93CXUk0DMMgkcnxsw8v8603TzN+n6oG3W3kCxqjMxH+y08+4P2L10oyDNxoZHIFvvHaKc4PTPB7n32Yjjo/6gb4XfwN7l/s8OylYOQJ525URg3DIF6IoRnFSqNJNGOVbRT0AiktgShIFPQ8sqhgk+yLfh8T6ciCzgIUHx47PA141MUD2C/95bf4yo5dHL42SCKfY4u/gn+w7yA+a+nKHy7VSo3FjU02kSwUOd+aoTOUDBDLp/Ca7ifvkvVhMhyndzxAhcuOw3JjAP79K0O8fWEAsyKzu7WW2WiCqxMBXj3TS5XXQdkq5FgFQaDZ7eX39zzE/3n8bS7MTi+ZJBhAKJMmlElzhsk1fR4BqLQ5+LXNO/iVzTtuu11drYeOtko+PDGIputs7a4tSpDesjx5PTYsJWjXy5LIwx1N7G+p472+4TWdO8B0LMG/ffUIV2eCfGZXF40+D1ZVLTloWAmGYZAtaMzGErx28SrfOX6e8fDan5uiILCpupwvH9he8numMhP0J3pptDXTaFscyJWCc9FTHAkc5n9r/+fzrxkY5NbZsZfEGx0NURAZSV7l3dmfMZYaQEej3trGUxWfx2e6IS6Q1hJ8EHiVgcRFYvkwBSOPQ3bT5drD3rInsMs36JYCAqHcDG/N/Ije+BnSWhKfqYqDZc/QZt+CKpkxMIgXIpwIHeZK7DSxfAhFVKm3tvJo+afxm2pW9ZnEOSn99SCTX75TFE6lCSVT/Ktnn5o36GvyeQDomwqsOtFI5fIEkskFRQkBcFssuO8hPa8UiJKA02sjGXMi3UU1TcMw6D8/wvjANPuf3YatRBnym+FW3bhV98af3B3CXUk0knNJxjdfP8VkaPVKGaosFReWOU1lzdDRtOKwqLbGqlQpEOY46zazWrLLbqnIFTTOD0zyn350hEtD04tcMu82zg5M8k//5GX+0ecfZv/mRkzK3yQbf52gGQXem32DSD5IwShQaa7hqcrnmc1O8/r0T6gwVxPNhagwV/OA7zFkYWGFcyYTJZhdOPhWaXZTbfGgSouXGQ2DS7Mz/NfnXiCdz/NP3nqNb1+6wN/ds39V511l8VBhdjGYuKFgNJwMEM2nP1aJRjyVIRBLsqOpmnq/G4BEJseJq2NMhxP8zrP7+MyBLYwHo/y/v/MGx3tHeXFf96oSDShWinf4q/g/9j/Gfzp7lGOTo8Ry2Q2dfFMliUaHm9/eupfPtncvy0zt6Zvi3ff7mJiKcPrMELIsoaoywi0B2T/6e0+zd1dpA84WVeFrj+7n8sQswcTaO8ipXJ7vHjvP0f4Rnt+xiUPtjVQ47djMJsyKvKo5GSgGIAVNJ5HNEU6lOT86xY9OXeLMyMSauy/X4XNY+XtPHMRqKr17WWttoNbasK7jLgVjbmZnPbiZFmgYOh8EXmGr+yBbXPsJZCf4IPgLfjT+p/xa0++jCsVOqW7oBHPTNNk3UW6qxUCnN3aWk+G3MUs2DvpuVLQNw+Bq/Bztjm086PsEOT3D2cj7vDH9fUyShWbbZvJ6jten/pKhVA/drn1UWxqJ5YN8EHiV743+F77a/M/muiqlQRCEddPB8prGckMa1xkLmVwBm6k4h5fTNPKavqYZjeOjY/z+y68SSt1wqFckkb938AB/6+DeNXyCuwe728anfvOxu37cXCbP5WP99J0ZYscjm9aUaHzUcMcTjWy+wDvnBvj+O+dLTjIEisM0TqsZh9VEnd+Fw2rCZjahyhLJbI54KksonmIqFCeZzhFNZUivwbxInJOeU5XiQJQqS6iKjCoXE4wKj50an5uWGt/KOysRuXyBs/0T/NFfHaF3dGbNQ8WCIMxzVQXm1Kp0fc2UpIlgjH/5jdf5g195koPdjfeFXvzf4M7jutfE3rIHEBAJ54K8MvkDnqr4FFB0K220ttJRuXgg+zoiuRSJW2hTbY4KXOrtF9Hn2zqxKQoWWeaJphZ+frV31YmGz+ygzGRfkGjMZmKkCutTtbnfkMkXyBU0HFYT5jkede/YLP2TAdprfGxvqsZuMdFa7aPcbedU//i8ZGQin8Uqq/NBTFYrkC7kcKjmJalVkiiy1VfJvzjwON/ru8DL1/qYTMSKNLd1fAZFlPBbrGwvr+LvbNtPt2/luR2rVaWx0Udj4/Lrr99XelIpiSIdVX5+5eAO/ttbx0ivUAVeCcPBCP/xjQ/5zrHz7GuuY09TLe2VPhxzCYciSyhSkRZzPfnQ59T2CppOXtPIFjSS2RyT0Tinh8b5sH+EvunAhtBLbSaVXzmwgz3NteiGTqIQJ6dnyepZFEFBFU0ktQR22YFLcaMZGolCnHg+NmcS5sEi37iPg9lZBEGkoOfJ6hlkQcGjejGJZnR0wrkgaS2NJEjk9cX3oYCAvM7KvX6T6qKOxm7voxzwPY35JmnqN6a/z1hqkGZ7cebMobj5pfrfXbAfv6man4x/ncnM0Nw6OEeJQqfB1sHD5S9QYa6de7+H16a+w3Cyl2pzI8OpPvoTF3i4/FPs9DyEKhYr+FbJyfdH/5ie2Bl2eB5cxacy1k0nX6kj4raaqXLb+e7xcxxsa0QWBfqmAoyGohxqb1zfwe8x8rkCs2MhUvE0gihgtpqWFITJpLLMjodJz0nP2hwWyqrdS1KgtIJGZDZOLJRAK2iYbWZymYXr4Ox4iEwyi7/WS2A8TCaVRZREbE4L3ko3ypxfSi6TIzQdZXxghisnBkjE0gxeGCMwEQHAV+XGU+H6WBZ472gkqRsGPSMz/PTDy1ybKs1cyGO3UOt389DWJna119JeV47lNrzcgqYTiCa4eG2ao5eHOd0/xnQoQTpXWsJR4bFTX+6m0uOk3GOn3G2n3GOnwuOg3G3DPSdhuJHfu6bpnBuc5D//+P1VJxmKJOKyW+adum1mFZetGHgIQnEQLJnJEUtlSWVyJDI5YskMqWy+ZJWVaDLDv/6LN+eTDXmd2vVLodLjoLHSO6fsUDo0XSeSSBNLrRxEumxmXLY7x52u8DrmKSwfB0RzYV6f+iketYx0IUVWz86rWZhEMz7T8i7CsUJ6UaJRY/Vil29/jSyKMi9HbVUUUvnVFwpcqhWnsnAIMJhNktbW5ph8v0I3jCL3XJIwDNB1nStjM4wGojy/dzN1PjdQDKJtJpVcoTAfpL4x0UuD3UuN1YXPbOfo7BBTqRg7ymppdy39vQqCQI3dyd/Ztp/H6pr56WAPJ6fGmUkniWUzpAr5BXSJ28EsyThUEx6TmWZ3GS+0dPJkfWvJZmud7VV0tq9eDnIlWBSZT+/qondqljcu9a+7YwAwG0/ys3M9/OxcD1ZVodbrot7rwuew4bFZsakKiiQhiQK5ueQils4QTKSYjMQYDkYIxFMbqnBokiWe2dLOrz1YlLvM6TmOhY4wmhoiq2fQDI0GazNDyQEabS08W/kiOSNLb/wSHwTeQUDg8Ypn6HbdoLe9PPVDdENHEiTC+RC6ofOg7zG6nduZykxweOYXxAtRrJIN8xJ6/0WmwPpCD03XFzzT6qxtqDeZbHY6d/Hm9F8xkuqbTzQMQyejpYgXouTmPnsoNw0IZLQ0BgY3i+OXqZV4VP/832vMzbjkMmYyY6S1BCPJPnJ6BhGZ8dRCJ2YDg7FU/6oSjeuFwvWg6JZ++4ClwuXgU9s38+fvn+b/+tnbRXUmu5VPbOtkX0vdbd93v0PXdc6/18N3//0rhKajWGwmGjfXUl67eG5hdjzED//4DS4f7Sc0E6V9eyO/8Qcv0bK1fsF2hm4wdGWcn//p21w5MYhhGFQ2+NhysJ185sbz5a/++HUuvNfLS7/7NIf/8kMC4xFESaCqwcfzv/M4Wx/oQBAEglNRXv5f73Dxgz5G+ibBgP/2T7+DpBTXwhd/5wme+vKDGxpv3i+4o4lGJJ7m8Jl+zvavrIEsCFDjc/HJA5t5/kAX5W77inxXWRKp9Dqp9Dp5cEsjF65N8cP3LnL0yhCREoxS9m1q4Lc/uY8qr/OuZJGGYTA4GeTPXj3BlZHSkwyzKlPrd9NU6WF7aw2d9eU0Vnhw2cyItwTShmGQzhWYDMboHw9wfnCSntEZRmcihOOpkipkoXiK//t7b/Ov7M+wtblqw6/NFx7dzrP7OlddvYkmM7x87DKvn7q64rYHuxt5bu+meWWLjYaqSFR67i/3zVKgGzqB7AzhXJBYPsJUZowKUw2z2WmyWoYtrp0Es7OMpAdvepew4AG8FFKFHJlbgvtys7PoaXEb9AZm2VFRRUHXGQiHaHC5V/15nLJ5UTITL6TJ6R+vRMOiKpgUmWgyTSafJxRPcWlkCkkU2FRXjmdOceW6nKxQNBcC4KejF3ErFtpcfn69bR9f7zvK07Wb+LOrx/nXuz+57HFVSWKbv4rusgomknFOT09wPjDFtViYSCZNVtPI69p80iFSTHZUScKmqNTYnGwuK2dXRTVdZRXkjQzB/ASVUmlBTVbLEM0H0QwNl+LFKhc7F6lCgmg+hCiIuBUfJml1fHBBECizWfjaI/sIJ9KcGBrfUPpqKpenbyqwLoWo9cKsyDzc0cTvPfXAgkp3wdDQDY3nqz/PD8b+AlmUeaz8GY6G3iNRiONWPez1PoBb8XAmcnzRfg0gmJvlU1WfpcHWzJvTv+BC5DSN1mYOz7yCXXbyudovY2Dw9aH/wq1UHkEQ1k1FLmgLJefNkhXhpu6cTXYiCJAsFOdadEMnkg9wIXKUkdRV8nqWglEgq6cJZqdwq4s7ZoqooojqTcewIIsKGS1FwSiQ1GLk9Rxvz/5oEZXUb6pe0F0pBZpulJS8L4eVWAiyKLK5ppx/+dKThBIp8pqG127FtgpK3f2I2fEw/+n3v4XDZeUL/+A57C4Ll472c/gvjy3atrq5gq/8wUuMD0zz0z95i8js0kybWCjBD//4dXpPDfHQi7tp3VbP5LVZ3v/ZaeLh5IJtxwen+dEfv8FDn95FfUcNk9dmePnP3uE7f/gyLVvqsbusePxOnvrSA2za08LP//RtAD77957B5S2uaZ5K18cyyYA7mGjousG5gQnevzhErgSFieYqH195Zg+PbG/BsgbTGrOqsLu9jkqPgzKXlZePXSEcTy/7nnfODbCvsw7vDus8HeFOYiaS4DuHz3K2f4JCCRU0QYA6v5vd7XU8u7eDrS3VK7qLCoKA1aTQUl1GS3UZT+1uZzwQ451zA7x3YZArwzPESzBLmgzG+I9/dYQ/+NWnqF+FUQ3c0Py/XYLSVLU2dYRANMnxnpGSti13O+huqsRlu78H0u42dENjINFDPB9FMzR6Y5dwlXmottThUX1ciJ7GJJrpdu0EBMySmSpLzYIH7lLI6wUKt/CuHYoZRbz97/X01CQ1ThfJXI6LM9N8sWsrUNSC7wsFGAiFmE4m6A8FOTk5TpXdQY1joT+GKsqo4sJlLKfl5x2uPy7wOW3UlLm4PDrNa2f6mAjFOD80yY7mGlqrbjjeZvIFoskM5jmfAQCvauV3Nz/Ef+t5n0Q+i0mSeaF+C8dnSx+GlkSROoeLOoeLF1o3kdc1wpkMgXSSeD5LTtMwjGIgY1UU3CYzFRb7nGfLjXVgPDnOB4FX+WLD7y5ztBtIaXEuRk8SzE2zw32QVkfRtC+aD3Eq/B6aUWBf2WMlJy43QxRFmvxe/v5TD/D//OI9zo1OlrQufxRgUxUe2dTC/+vZQ3htlgXfgSxI+EwVmEUz5aZKyk1VmCQzqqiS1UuTm2+1d1JprkEVTdRa6xlODZLR0oymh/h83a9hka1IgsQW13bORE4ueG9R/WudiYauc3PNrGDkudmF7jpl6/q6lddznAy9zdHga+wre5IOxzacipdwbpY3pr6/5DF0tPnOTfEYBXRDRxaVokKUIKOIJh4rfwmfqXLR++2ya9Fry2GjOhrLxarZfIFwKo3XZqHSXSyU5TWNUCKFJIq4rB/N5+UHPz1NcCLM7/4/v8yuR4sU3817WwnPxDj/fu+CbSVJxO624a/x4vDYbpto9JwcZOD8KIde2MXzv/UYLl/xehkGjPQuFMHI5zQe/8J+XvidxwFIxtMkYyne+M6HjPVP07mrCbPNRF17FQhgd1sxDGjorMK7yviqFGi6TiyTJZEryolbFYUy272bBbljiUYkmebswARDJVCmfC4bv/7M7jUnGdchCFBX7ubzj2wjmyvws6OXyeRuz7+NJjP85MPLbGqooKHCc0e7GplcntdO9vHB5SFSJcySiKLA9pZqPvPQVp7c2Ya8xoVZEARq/S6+9PhO9nTW8eP3L3H4zFVmIsll6VS6YXBhaIpvvH6S3/vsIezm0mlCE4k4oiBQZS/emMPRCE6TCY95cRv9b3B3IYsKB3yPLPlvL9Z+cdFrHrWMB3wrD8xpxuJqnCJIy+p5P1BXzwdjIyRyWZ5r7eCxpmYAUvk874+OMBqL4lBNBNJJDg8NcrC2flGiIQviojmDvKGtuzJ4v6He72Z/Rz3fefcs/+b7b2EYUOa0cqirkdo52hTA0HSYcCJNtdeBeY4bXGlx0BstzrAcmykmF+PJyLq8TRVRotxqo3wVKmFFGOSMHMPJqxSMPBbJRpWlHk0vEMrNkCgU5wJcShlutQyP6mezayd98fML9lJlqWeztoORVP+C18O5ANF8CM0oYJed+EyVSMLtH3OyVKzw/t5TD/DHh49xenh8ReWe+x1+h41HNzXztUf343fYlniuCchz10QUpFuuT2k/CotkQZ5L8CWKxnkFo4BhGKiCMt8BvZnOdB2iIKDK6ws9cvkC+k1BeSA7RY2lEUUoHm8yXZy58M+pTuWNHP2J83hUP4+Xv4QsKhiGTjQXJKnFsCuLk4J4PkKiEMWlFAtj4dwMaS1BnakVVTTjN9UUkybJTK2lBfkmCeC1GAgWNG3dRoYmZfk4YTqW4Bfn+/jMnm7K7MXvIJMvcPLaOILAuuRt7yX6zgyhmGS2HGyff81kVdm0p2VRolEqJq7NkIqnadlSh8N7Y53r3N28aJ5DFAT2P7tt/u+KIlPR4EcraMSXcAe/00jkcvzsSi8Xp6cRBYGuigq+vHPbym+8Q7hjica1yRDnBiZWpAdJosBz+zrZv6lhXUnGzaj1uXhmbwcDk0HOXB1fdtszV8e5Oh6gqsx5x4afDQOuDM9w+MxVpsMr/+gEAfZvauB3X3yAzvrlufGlQhCgvdbPb39iPz6XjR+8d57JYHzZZCNf0Hjz9FV2tdfyzJ6OkhOx4xNjmGSJKnsHhmHw6rWrbPVXsr/m/uWAFnSdS4EZtvorPpbDWHcawtx/N/+aMnqxs6Cw9MOv3evjs5u6FymteC0W/tau0hRLNIxFa8zHK8Uoosxh46kd7WRyeXrHZzEpMgc7G9jf0bCAhjIZjuGymeluqMA5V53c6avnVGCUbd5qAtkku30NfDAzRKtz4wQuSoVBsRsxlOwlpSVIFGJ8svqXSRRinA6/hywq5PWi7Oge7yOrokSltRTnI0dJa0lEQSKnZ9lf9gRe1b9swqtIElvrKvn7Tx3kG++f5oP+EcLJ5bvh9yNEQaCl3Muntm/is3u6cVnMd3Atu37H34BJNOFSPYylR6ix1CMIIuPp0SXPc71UnUQ2Nz9XIyJxKXocl+LBo/rJaClOhd/GoXhotHXObSNglRxEcgFmshNYJTvJQpSr8fPE8mEqzAufTQIiE+khemNnaLB1oBsaF6PHyGgpai0tWCU7LfYuLkaPcTr0LrKg4jNVIiCS0zPE8iGa7ZvnB8RLQbagkV6mMFoK7CZ1WfpNJJXm7MgEv3xw+/xrZkUmlEwxE0t+ZBONeDiB1W5GvinREkURu2vtxc10IoMoiahmdQFF3eayIN46uyqAp3xhsipJIoYB2h0yX74dDMMgks7w7bPn6QsEEQWBWCb78Us0CprG8HSYwcngittW+1w8tqMNj2Pjqt2CINBZX87BzQ30jsws20HIFTTeO3+N7S3V+N13Rg4zlszw+qk++sZK4+vuaK3h73/mEK3VZRt+Li67mS88sg0Dg+8ePstsNLns9vFUlu8ePsvW5ipqfMu3glP5PNciYS4FpjEodkV0w2A0FmWrf3Fr+X7CeDzG/7pwmj987Nk7bQT/sYQqyiiiRFa/8aBM5DPk9QJmaekCwkYkBGktR+aWeQxFkD92rsGCAK1VZfzOM/sJxpOosrzAIfw66v1uvvjQ9vkZLoBHqtrYUVY7TyfLagWGEiE6nBtTxFgtJEHiQf+zpLUkPxr/OqHcLKHcNFOZMfaXPU4wN8NMZpxYIYxfKn0QfDYzQTQf4oDvSXymSl6e+BYT6Wu4FO+KTrmKJNFVU8HffeIgdV4Xb14e4NpsmMI9lh0vFV67le11VbywYxMPtjeuy+E5lo8ynh5hMHmVmcw0JrEPEKix1OFRb/9MEgSRPZ4D9MWvAEXaUrwQXbSdLIl4bet73hcTjWL136l4EQSBU6F3kEWFWD5EOD/LA75ncCu+uXMx0e3ay/uBVzg8/QNcahk5LUNGT1FjWSyLbJFt6IbGYOISw8leMnqKcG6WVvsWGmztKKJKubmG/WVPcTJ0mA8Cv8Auu+aVtlJanFpry+oSjXyBVDa3ruvisxdNCm8HgaL7+M0ULV030HTjIz0fYLKYyGc1dM3gek5gGAbZzNpn9RSTgqEXE4WbFclymaXFdWT17nlxLAfNMJiKx7kWDt/rU5nHHUk0oskMQ1MhEumVb5oHuhqpmnOk3khYTSqbGytpqvRyaXh62W2P944QTuzE51qqzbw+GAacG5zgTP94SfK7NT4nv/PJ/bTcxLveaFjNKi89uIWZcIKfH71CMnP770k3DAangrx87ApffXbfsgP6eU1jJpVgNpUir2uYJBndMGj3+qhzro6vupHIaxpXgrMMRkNkCgWsssqOiiqq7Q4Khs6H46McGR+mJzjL93svoogim8sq6CjzoRsG4UyaczOThNJpbKpKh9dHo8vDYCTEUDSCQ1UZjRdpPl2+cqrtzo9doLsSrLIJi6QuSDRmMjHSWh6Hsjio+ExnFz6rdd1JXSyfJp5fWH22ySrqMnSZjzKuq83dDq1VPlqrFnYqzgTHuBqdmRsSLxZivtC045507gRBwKP4kAQJAQGTaCav58jrOVJakpnsJALQaGvHtIogDUCjgCTKCBQjjWJ3JEepKa0oCNSXufn1B3fRWVXOqxevcm5kgslofN2yo3cKdpNKe6WPQ+2NPLO1nVqPa1mlPUmQqLPUk9fzmCULLfZ2fKofk2Si3b4Zi2Qjq2eYyU6T1/NUmqsBg+nMJF7VhwfosG/GpbiR52YXPGoZXc7tWCQruzwHEAWJycw4FtHCId/jjKYWzgLJokiZY3188USmmGhUWxuxSDYabB0MJ68ykx3FItWyw3OIbteNrqgsKHS79iEJMpPpYTSjQIW5jgZbO6lCnFg+PL8WuZUytrkfwKv6yet5hlO9WHQbLfYtdDi2451TohIQ2OLeh0f1cS3ZQyQXQBDArfioMNdhFlf3GbOFAuk1KO/djHKnbdmEwWE24bFaeOV8H7saa5AlkaHZMKOhCJ1V/tu/8T5HfUcVJ9+8yHj/FA2bikaJuWye4Z6VhYhuB1+1B1mVmBoJkElmsdiL69FIzwS5ZWKmlSBKIrIik0llKeQ23qQ5Wyhwfmp6Q5T0Ngp35GkcjKUYm11cyVh0cElkW0s1bvud4e43VXppqi5bMdGYCSeYCsVpqvSuOGy9WsSSGY5dGWF4euXsUpZEPv/INra1VG+Yw+zt4LZb+NzDW7k6Nsv5wallh9BSmTxvnR3gyV3tNFbefpDbZTbzaEMzLpMZURDYMkdDuh7c3Cv0R0L8ZKCHgq5jkiQ0XafB5abSZkc3DKZTCYajYVKFPKOxKIooUutwAxDPZfl5fw9XQgHcJjMZrUBvKMDzrZ2cnp7gLy6d4+H6JnJagUAqxUgswvOtm6iwfXzM4kqBW7ViV8xE8jcM0Prj00RzKcrNzkXb//6BQxty3MlUhOnMQsdkr2q/bRflryN+MnyeGpsbj2pFEIo0knuJWxXMZFGh0lxPvbUVl+JBQMAuu7HJDkK5WQYTV5jKjJLX89gVF161nFBuhuHUVWYy46iSBVU04VXLUUUT/YkLjKWtpLUkleb6+WHeUuG0mHl8cwubqst5/+oQRwdGOTcyyXTs7nOtbweXxUx7pY+dDdU80NZAV01FSV0MRVTodHbP/32XZ9/8n/2m674mLh72397jZF/ZQsnWKkstVZba+b8fKHtowb+3OzYvPAdJxGdfX6IRS2fIFTS6HDfoILfSn26GIAiYJSs7PIfY4Vl+7Sk311JuvvF5Op23d64XEKiztlJnXZtz+s1I5wrE1xHAAvgd9mWftX6njYNtDbzdM8jAdBBBEEjlclS7nexqrL3t++537H1qC7/45nv84D+/zrO/dgiT1cRIzwSXji5UqDQMg0JeI5vOEQslyCSz5LN5YuEk8XAS1aygmGREUaRtWwM1LRUc+8U5PH4nde2VxMNJTr55kXRy7T5NVrsFb6WLc+/2cP79Ptp3NKDrBm6fA7d/8bNytUjn85weW3uCdSdwRxKNSCLNVAnmfD6XjXKPfcOD++vwOixUehzIkriimkj/RICdbTUbfi59YzNcGppadij9OrY0VfLU7o47dj1uRUu1j2f2dnJtKkwkcXtOsm4YTASiHD7dz1eeW5k73+opQxC4Yx4Wq8VoLMpEPMYnWjp4qK6RZD6HUzUhiyKKIPGFzi3ohkFe0/kHex6Y70Zcp339fLCPv7frAHuqarkaDvDtKxd4c3gAp2oGAXZVVLOvuo7DwwO8OTxIu2f2r12i4Tc78Ko2xlI3xB8GEjOMpUI02v3Lqk+tFXm9wLXELBOphUl8pcWNXfloqqfcCeR1jefrt1BuXj4IuRtwyh42OXcCRWpNh2M7TtmNWbKyybmD2ewEIGASLUV+s5GfS0TqUEUTeT035yydmx8klwWZgl7AZfKy2bmTyfQIqUKSTc6dlJurEVeZaMCcypbXxbNbO5AEkYHpIMuXq+48zLJMjddJe6WPTVXl7GyoprPKvyq37/sBkijisphRJHHNVddAIvmRH9q/FYlslmhqfbNBfqdt2TKCzaRyqKMRr81C/3SQvKZR6XbQXVtJtXv9Qe69QvvOJj7xG49w5CenCM9EsbutyIpE+45GTr5xcX67bDrHlRODnDp8kXg4Sd/pIRKRFL/4xruUVXlo2lzDzke7KKtyU9Xs57HP7eMXf36En3/9bdw+J5IiUlHvw+awrJlqZndb2XKwg8ELo7z2F0c4dfgiqknhoU/vZtdj3SvvYBkYhkEim+P81L1erRbijiQaiXSOUDy14nZ1fveq1IxWC1WR8bttOK0mQitI3Q5Ph8nlNdjA5kq+oHFpaLqkboYkCnz60BY8dstdDQYe3d7Kayd6OTswsazHRjKT4+iV4eI5rjBPcy0aQhZEupapit1NdJT52Bwu58TUOAOREFv9FeyuXLl6U9B1JhIxsprG3qpaFEmi1uGizuGkNxRgV2UN1TYHrZ4yzLJMi8fLWyPXmEkvP/fycUStxUuF2QXcGP4M55Icme1jk6uGSsvGU+dGkkHOhUeI5heuNU12H27l3kn53QnoukFe05b0INANg+lwnJloAouqUOtzY5kz8QQwSQp/NXSOWluRQy4KAk/XdN6TpMOj+vDMeRaooomt7hsV9Rb7ZlrsC6vfflP1vHLQzaiztlBnbVn0eo2laUnO/WqhGwYT4RiHrwzw2sWrjIVX7tBvNGRRxGOzUONxUl/mpt7rprWijM4qP1VuR8mmh3cCPdEJzoSHeNDfQZ1tdbOEgiBgURS8Nuuau0ShZJpkNoduGB8bmmo8k1u3CEGly7HifW0zqextqWPvR9ig71ZIssSLX3uC2tYKJocCyIpE46Ya6jurqW2rpLbtxqyXKAqYzCqmKhXfJzyL9nM9U5Mkif3PbsftdzJwYZRcOoe/1sv2hzfhr/XS0FmNrEjserQLxy20e0kWadxUPX9ON0NRZbr2t2KyKAxcGCWbymK2mXD71/+MLOg618JhZuL3T/cV7lCikc7miSZX1uP2Oq3zEox3CnaLCZtl5UQjHEtt+ODfdDhB39hsSdeiuaqMna0b31FZCT6XjUNbm+kdnSWxTNtW0w3GAlHO9o/z6I7l28T94RAmSbpvEo0Gp5vPtHdxYXaantAsP+y7jKYbPFDbgHlOZvF2S7MgCBg3iRUaBgv42gY3pAyvv/7xeOytDn6zgwa7D6tkIqXdaCu/N9PDVncdT1R1Y1vGJXy1iOZSvDfTy9nI8AIGvlVSaXVU4FQ/XlLK0VSGo73DRJMZHuxqoras+FDSdJ0TV8d4/UwfI4EIFlVhT1sdz+3qxOsoUqW6vVUMxUPMZBLIgrjA2KwUGIZBulAgkk2TKuTJFAoUdH1NEp7LwaaotHvuvhLWrcgVNHqnZvmrk5d4u2dwVcGwLIq0VZQhigKxdJZkNk+2UJh3ar/u8C6JIrIkIosiJkXGZlKwmUw4TCoemwWfw4Z/7r8qt4O6OYdx0zplYTcKPbEJvjX0PvU236oTDSgqHdWXudecaOQKGqFkmnxBu2NqkXcThgGJTJZwqjQfk6XgMJuKcsYbeF4fJdhdVh75zL5Fr7/w24/P/9lsNbHtUCfbDnWWtE+TRV1y+09+5ZH5P+9+vJvdjy/sREiyROPmWho3L13QtDktqzqPUpHTNE6NTdx3yosbfofqhkE2XyBbQlvTalKQb5UJ22CYFLkkF9JEOrdAl3sjMDQVYqiEbgbAQ1ubcdrupBzh7fHwtha++/bZZRMNmJs36RlZMdHwWazMJBMMhIM4VBMI4FTN80H93cZMKokiSTzW0MzOimr+4Mgb9IQC7K6qmT8nu6ISzqTJFApYZBkdA1kUqbY7scoKRydG2Vddy1g8ymg8SofXh4jAeCJGbyhAmdlKfziIbhhr8Bb46EMRZba466iz9dIbu2FmFMgm+O7wUeyKmYP+tmWdwktFIp/h3ZkeXp44RzC7MFDpcFbRZPcvMvH7qGMyFONnx6+Q0zQ21VXMJxqDUyG+//55PugZxmE2kcrm6B2bxeuw8NiWViwmhUcqWymU31jbwrmVq6bXRRDOB6boCwcYT8QJZ1JktAJZTUO7A4lGu8fHvzjw+Mob3kGkcnlOXhvj20fPceLaGKlc6cO5tR4nj25q4WBrPbIkksjkSOfzZAsa+YI2r8JXVP4pqv9IYtFTwqrKWFQVm6rgtJjx2iw4LKZ72rW4kzCrCo0+Dyeuja15H+PhGOl8/mORaGQLBYLJFMl1qE41+NxYFHnVMUQ6n2c0EmMgGGQyHieaKRpwigjY1KLRW73bRbvfh8diWdBBuhvdpFAqzXA4zEgkSiCZIp7Nki1oIIAqSbjMJsrtdho9Htp83ruejCeyOa4GglwLh+fPL69pyKKIRVGwqyqVDjsNHjd1bhc29c5QHQ3DIJrJcGJseUuHe4GNTzR0o2R3VbOqIN3hREOVpZISjWQ2h74MdWi10A2DkZkwE4HShuJ3d9TdFXfypVDrd9FS5WM2klz2u0vnCvSPB4gk0ssO8Oc1jbMzUwxGwliV4md6urmNdu+9qVZeDQf5cHyEVD6HgIAiSmzxV2CWbvz8t5ZX4jKb+TfH3sVjKg61by+vos7h4vm2Tbwy2Me7o0PkNQ2/1cbjDS2cmBxH0w1OTo5zbGKUQCpFl7+cTu9HV71jPeh217LFXcdwIrBAcrYnNsnXB95hIhXmmeqtlJnWpjKnGwYT6TCvT17kFxPnGYjPLPh3VZQ54G+jzrrxstD3GoF4kuHZCN0NFVTMyXAXNJ0PeoY5PTDOnrY6Ht/WykQwyg8/vMRb5wfY3lRNjcmF17Qw8X19vJd25+1/o7Fshvcnhjk8eo0roRlG41FiueyKnkjrRWadZmXrRSqX54Orw3z9vZOcH5talkp6MyRBYHdTLc/v2MQDbQ347LY7LubxUYdFkWnye1becBkMBcIksjnc1o9+9zKayjAZia/rHmur8K1qLjKdz3NpeoZ3Boa4PDPDeDRGKJUmmcuR1/UixU2WcZpNVNjtNHk97Kmr4eHmRnw2G6IgYJblOyIuoRsGQ6EwR0fGOD85xUgkykwiQTSTIZXLk58rCiuiiM2k4jabqXI4aPF52VNbw8HGelzmtc/pvdU/yNGRUTKF4pokiQK/snM7jR73fCIXy2R5d/AaR0fGGAyFmYrHi+eXL1DQNSRBxCRLWGQFr9VCpcNOS1kZBxvq2FFTjduy9vPTDYNwKs1UIsFkLF78L55gIhajZyawaNvLM7P8H68dXvVxPr+tm07/6n5XS+EOpH7GsiZwdxuGYZQkTWjoG2v0FU9lGZuNEk+vrE5Q53dTXeZEukcPJ0kU2dVey6mrY8smGoZhEIyl6B8PsLvj9vzONm/ZIudX9z10BW9wusjkq4jmMogIVNjsbPFXot5ULax1uPg7O/YxnohjkiS8c+drV1WeaWqj1u4klEljUxRaPWXUO92cmByn2u5gb1UtiXwOq6KwqcyP769hRwPArVh5pGITl6JjXIkuVL24HJ0gkE1wKTrGLm8TO72N1NvKkAVp2QqcgUFOKzCcDHI2PMTJ4DXOhUeYzS4Wm9jqrmNvWfOScrofdSQzeWLpDD6nDZ+zOH8yGYpxYWgSkyLzzM52Ht/WSiyV5VT/OJdHZ3hvbIBPOLs4FxwjUbixDr06foUvtuxaFB4YhsFsOsW3e87x82u9DERDHxkfifUincvzQf8w//3t41yamCn5GWaSZZ7e0sZLu7rYUlu5Lv+K1SCj5fjJ2Gk0Q+eJym78tyi7fW/4KNOZGL/Z+khRgc2ArF7gvZkeLkXHSRWyeE12dnga2OVtQp4TazAMg0A2zrnICAPxaSK5FAJQY/Wyz9dKk92PNE+9E4jl07w8fpae2ASaoVNpcfFoRRfVFvey3iVmRabR50EQWLN08LVAaFlp9o8SQskU4+HYyhsug/aKspJiCAMIJJO8fKWPl3v76JsNEF+qk2IYJHI5ErkcE7E45yanODE2zonRcX5p+xa6KyvmDAI3Nm4JpVK8PTjEG1cHuDA5zUwyeVtVzKymkU2lCaXSDIbCHB8d48PhUY4MjfBCVye7a2vWVNQ6PznFd89dJJErXhdBENhVU02N04Eqy1yZmeW75y7w4fAoQ6Ew2hI/4oKhU8jpJHN5AqkUfYEgJ0bHOTY6yiPNTbzYtYnmstureC6Fq4Eg710bYjgcJZRKEU5niKTTxf/PZMgWlmYSjUai/MWZc6u+Dvsbaunwr79AvOGJhiiKqIpU0gKSzuVL7n6sFdl8kR+7ElRF2tA2YCCaYDpcmv56R70fq1kp+YYNZ9IcmxzFZ7GWNNRcCrqbKlFlaUWvj0Q6u2Ki0eDyUO/yzCV5xQtwLwf2ah0uah3LD1qJgsC+6sWfSRQEPGYLh+oal3yfVVHYUl6Bz/LXM7m4GYIgsM1Tz1OVWwhmE8zcIjs7k4nxxuQlzodHeWPqEn6Tg2qLh0qLG5usYpIUFFEir2tktDzJQoapTHRewnYsFSKQjc8bz92MaouHZ2u20eqo+NgMh96M6xx/m1lFnkuQe8ZnGJwKsqWhko6a8jkTPwmvw8Kl0WmC6RSaofP6RC+1Nve85G+qsHRwFslm+F7vBf78yllm/xoJGuQ1jcsTM/zJOye5ND5dcsHJosg8v2MTX9y/jSa/967SnCRBYjoT5Vignw5nFT7TjSHgaC7FD0dP0GQvn19/84bGN68d4b2ZHupsZZglld7YBKdD15jNxvlE9fb59w8nA7w+eQFRELHLJpKFLBcnxxhOBvhi4wGa7EWjR1EQ+MnYKVyKFbtsIqcXOBEcpC82xT/a9Amcyu2FTSRRxOewUeG0MxVd25zGSDBCNJ35WAyEhxIpxkKRde2js8q/YuXZMAym4gm+eeYcP73cw0RsZXXQ69ANg9FIlJl4grFolL99YB+1ro0tkA6FwvzVxcu83NPHWDS26kJHXte5GggyHI4wGAzxmS1dPL+5syRWy3IwDIOhcIRUvsDlmVn+69ETvD80THqVymfpQoHL07NMxhIEUym+vHM7m8pLZ0BcnJrm22fOM7qGa3MvsfGJxpwqiipLZPPLt8JTmRyFO9wuz+QKJUnLOq2mDW13B2MpgrGVlbcAWqt9q+KZmmWZFrcXq7JxXL/W6rKSziGdza+ootUbnOX1oQGGImHyuobbZOGXNm9hk+/eOBH/De4ebLKJZ2q2Eswl+NnYmQW+GgA6BlOZKFOZ6JxfggmHYkYRZWRBRBREdEOnYOjk9AKJfIZkIYu+TPjnVW08X7uDQ+UdWDdw4Px+giSKiIKAphU7tJlcniujMwTiKT59oIoqrwNgTpVKRtcNujxV2GSVOpuHhypbsCnFa3M6MLJo/5lCgaOTo3yz569XkmEYBpOROH/63kkujU2VnGRIosDTW9r54v7tNJd7ke+ylLciSuwpa+FYoJ9L0XHaHJXznbzT4WLy8NttjxdnlQw4Hxnhx2On+FTNTh6v7MIsKYynwnxv5Cgvj59hi6uOBrsPQRBosPn4QsN+bLIZ21wC8dOx0xwL9DOYaJ1PNAzDIKcXeLKqmzZHJbph8JPx0/x07DT9iSm2exqRbkOrEQQBl8VMV3XFmhONRCZH/3SQrpoKbGuU+E2ksxzrHSWaTPPpg90IgkAmV+Ctc/0YwBPbWxFFkbOD43xweZhIIk1jhZcndrZR6SlSQNPZPK+c7OHS8BTZvEaZw8pnD22l1ucqqXiY1zQmInHG1tHRKHfaqCtzr5hwhVJpvnf+An95/iKhZaR0ZVHELMtohk4mX1hwX2Q1jZNjE/z7Ix/yDw4d3DAzy4FgiD8/fZZXevoILnNukiBgVRV03SCVzy95z+Y0jdPjE4TSRSrYF7dvXXeyMRgMcWV6hm+cPst7g0Nkl4hdJUHApqroRvHcbkeFC6fTvNJzFbuqUrZnF+WO0uTwk9k8kUzmI5VkwB1SnbKaVVx2CzPh5ReQ6XC8JLfstcIwDELxdEmqTz63fb5SuBEIxVIEo6U9sOvK3au6CSyyQtsGq7M4rGZ8Liuz0cSyC0cmV2A8ECVf0G6rkHU5MIuAQLnNjlmWSeRyJNfpeHo/4lBtA12+8qKfBoBRQMudRBAdiErXvT25e4hys5MvNOxHROCn42cI55a+DwwM4oUM8cLalVbKzU5erNvF87U7KVM/vt4lDosJp9XEZDjGbCzBWCDCuWuT1HhdtFf7MM8VCQzDIJXNI4oCZWYbiijxqfouyky2eXrMb3U+sCj8C2fSfK/vApPJxRVOASgzW+n0+qlzuHCZzJik5Slva0G17e7r+MczWV4538eH/SNL0h9uh92NtXx6VxdNfs+qkoyCpnNxZIpkJscDmxrnX09lc0SSGaq9pV+Dbnct9TYfp4KDHPJ3zCca70z3UGl2s8lZgySI6Bi8NXWJnF7gpbo9+MzFpNSj2hhKtvDNa+/TE5ugwV58pvjNzkVUrC53LR8GrhLNJee7JAYG+31t7PY241KLdL4H/O38dOw0w4kAW931N9GsFsNlMbG1vpI3rwyU/JlvxdnRSR7d1LzmRENVZAqazqmr4+zrqKfG52IiGOXS8BTNVWVIksiZ/nHeOj9Arc/FlsZKjvaM8NqpXj65bzM+p40PrgxxbnCCg5sbsagKM9HEqtQ0w8k0/TPBdfmCbKurWpHGlMkXOD46xnfOLp1keC0WdtfVsLeuhlqXC5MsYRiQzOW5FgpzenyCU+PjxOdkhc9PTvEf3v+QSGbt6/d1TMRifP/8JX52uXfJ/TV63OyurWFbdSV+mw2zLGNgkMkXGI/FOTcxyZGhEcLpG59LMwyuhcJ888w5TLLM57d1r6vzdX5yitlkivOTUwuSjHZfGfvqa9lSWYnHakERRQwgmcsxGAxxfHSM46Pj5G5JTGLZLK/1DdDh9/Ni96aSzq3K5WBffR3x7NKU/FyhmGDdupaVWa10lq8+ZvRZN0bF7I4kGi5b0ShvpURjeCpMLJnBMIw7oraUSGeZDsdJlaDkUOdfXbC/EmKpbEkJjigKVHjsyLLEPzvyGl/btpcau4t/+eGb1Nld/Hr3Ls7MTHB6ZoLf6NrJ6ZlJvtd7AQF4uqmNpxra5vf15sgAZ2cm8ZgtnJwax6GqPNfUwb6quhUVn0RRoLrMRe9oYElqynXohkE8nSWSSON3Lx3Y5XSNGocT3TDwW61cDQU3XKHmfkC1w0m148YDWdem0XMnEJVO+GucaAgIVFvcfKnpIDVWD98dPsZQYnbZrsRqISLQ4aris3V7OVTegdd0783o7iSqvU46avwc7RkmnEiTyGQZnArxmYNbaKv2zX/2YDxFJJnGbTWjzglt+M2OBQ+LTa6FstN5TeNKaJajk6PcinKLjeeaOnisvpkqmwOboqKK0hxdYmOv953qChyfHuUXI738k52PLpjL0nSdwdkw3z9xYVVBns9u5dkt7XTXVKyaLiWKAnU+96JO/mQozge9w/zKIztL3pdNNrHL28R3hz9kOBWgxuplNhvjcnSMRyu6cCpzKoa6QW9sklg+zf9+/i/nvzXdMAjlkmT1PKHcjWd1Ip/hQmSU0+FrTKWjJAtZZjIxxlNhNGPhXdxo8y2QrXbKRVWiVCG3YqXbZlLpqPRjVZVVqXvdjHMjk0RTWSpdrMlATZEkmio8nB80cf7aJDU+F9emQmi6TmddOQICJ/rGUCSJR7a24HfZ0XSdX5zsY39nAz6njWyuwHgghiJJ7G6rRdMNrObSZ3WmYwl6pmZXf/I3YW9z3aK5yJtRpEzF+eaZc8wmFxZ+BEFgc7mfL+3Yyt66Wvw2G1ZVmQ98NV0nns3xdEcrZ8Yn+cbpM/TOBtB0gzPjk+sWiUjmcrzZP8iPL19ZlGQ4TSae7Wzj2c52mjwevFYLJlleYKqbyuV5rLWJT3dv5i/OnOPN/sH59+uGwUg4wnfPXaDO7eKBxvo1n+doNMZYLD5/7zpNJn5pxxaeamul0mHHY7GgyjICxeutGwbx+joea23m3WtDfOPkWaYSC2PiiViMoyOj7Kuvpca1cpFhd001TR73bYsiwVSK3/nBj0nedD8JgkBnuY9//vgjq/7MVQ77htAS70ii4XVYqPa5OD84uex20VSGoekwXU2Vd8TddCIYY2w2UlJrr73Wt2GeHrpukMxkSZXQrXFazVhNKgIQSKcYiIRwmyycn5miNxjgy5t3cDEwTbZQQBYl2t1lPNvUzs8He5lMLKw+TibivDzYy0ttXXxp01ZOTI3x+kg/ZRYr3b6VPS0qyxyIosBKYzPZnEY4fvtEw2kqum6ncjneGbnGRCJOR9m918fPx/8doukhRGUbhcR/AEC2fRVDG6eQ/hmK4/fAyKKlvomWP4uACdH8KLL5UyDI6LkLFFLfQlS2oWXfAkFBMj+OZHoUPXeSQvr7GPketKyLQup7iMo2JMuLiPLGzNF8lCAIAuVmJ89Wb6PTVc2bU5d4beIC05nYupJOAYEaq4cnKrt4pGITzY5ybJLpY51kQLEQ8uT2dganQhztHUYSRfa21/HY1hbcthvD7z1jM4QSKZoqvVjNxTX161eP8pnG7bjnvEX+uOcIf6vzwfn3pLUCZ2YmSBUWrlf1Dhdf6d7Fc40dlFmsd50etFEIZlKcDywOiJLZHG9cuspEZHWUlZ2NNexorMGsKJzsH+ODK0PoFGnD+9vr8DqsHLk8xEsHunFazfzJa8d5qLuJ5govb5zr5/TAGDuaa3h2V2fRs2Nslr86eoHLozMEYkk6avw8u7ODiVCMdy9dY3g2TJnDysNdzbTX3OBzCwgc8LXyysQ5TgQG6XLVcizQT1rLcai8A9PcTI4BZLQCTsXCTm/jos9jlUx0u4trVCSX5OfjZ3l96gINNh9d7lpcioX++PQiY0wAi6Qu6Fpcvw9LucdFQaTcaae1oozzo1Or+AZuYCIS58rkTFHadQ2D+IIANT4XDRVeLg5PsbejnpHZCE6bhaZKL+lcnkA0wfG+US4PTyNJAvF0jnAiPS/hf2BzY/G3dOYqP/7wEo9tb+G5PZsQpZXXpIKuMxqM0jOx9kRDkUS211ctSKJvRSKX4/WrA5wZXxyTbSr387X9ezjU1Ih9iThMEkXcFjNuS1HZqcpp5//39hF6ZmY3RInu4tQ0P7nUw0xiYQLkMKn8yq7tfKZ7M1XOpQ0qRUHAblKxm1SqnU5qXE48Fgvfv3BpfhvNMOibDfCds+fp8Jfhs61tnvJmupLTZOIfPfwgT7Q1zytw3QxBEJAEAbfFjNNsotxe7C7/0ZEP5wfMr5/bpekZrszMlpRouCxmXMuoVTnjpsXnQlHUps1379QY70iiUe6x01rjQxSFZSVjDQOOXBxiX2c99RUbm2gYhkHPyCxXRmZW3La6zEmNz7Vhnh6ZfL7oy1HCTei0mpAkEUEQ2OT1cy0anqNGlXE1EiKayzAYDXGophFREPBarHR4fBwxDS39WewODtbUs9VXiSSI/LD/MtOpBN2snGh47FZKGVPJFQqEE7fnUB6sqUegyJN0mc0ICGwqu/eSr4aRxCgMg9yIURhE14aRrb+Mnr8M5ACdQvJPMbRxFNtvo2tBtMyPATOy5VkMI4aWfQtBdCHbvoJR6EXPvo8geBGVHUhGCg0JUdmOZDoAghNBuvcJ1r2EXTHT5aqhxuLh6aotnAkNczJ0jYuRMYLZeEkph4iA12Sn213LnrJmtrrrqLZ4cCqWdcvufVRgkmUObW6k0m1ncDqERVXorPVTU+ZaMFtmAAc6GtjZUoPXXqSzjCTCFPRiFU43DE7MjvC1zhv9iEwhz7nAwgDEqZp4sqGVl1q7cJnWLsN4v8IwDMLJNK9evLqqtFeVJLbVVVFf5iKaSvNhzzBt1T46a8v5b784ynTUg0mRGZmNkJ+r2AzPhkmkaxBFkW2NVUyGY0zPzSXIokhDuZu9bXVEUxk+vb8bm0khnctzYXiKfEHj8w9s5WjvCGevTVLhduCy3fg+KsxutnrqOBm8RjAb54PZq7Q7q6myeOZlRwUBfGY7s9kYL9XtQRYWBmyCIGCa850ZTgZ5c/oSVRYPX2l+BK/JhjI35/G2eHnR9RAEYc1JviCAz2FlT1PtmhMNTdd5p/caB1rr16z4ZTUpNFV6GZ4J8/b5fpKZHJvqKzDP0aoURebApgae3tUxfwxBEGgodwPgsVt4Zlcne9rrGJwM8e23z+CwmHl022Ln+lsRiCc5MzJBPLOyOuXt0FVTUTTqW+ZriKQz/LyndxF9p8Jh5/nNHTzc3IS1hOtnVRX21NbyO/t28/99612m1ulAHUyleH9ohEvTC+M0URB4oWsTn9vaRbXTWVJVXRZFmrwevrZ/D1PxOEeGbsyiZTWNsxNTvNbXz5d2bFvXOQP81r7dPNvRhtuysveZKAh4LBYeaWni4vQ0P77Us+Dfx6JRRiNRDD6+Zr93JNGwqArNVV7q/O4VB4dP9Y7SOzZLhdexocY744Eop6+OESphIHtPRx0u++0VMlaLbK5Q8uyJw2qarxR2lpVzdGKETCFPt68CHbgcmGEoGuG3t5Y2SF1msVJlcyCJIjZFRYT5IGMluEs0DMwVNGLLOJg61Rut9P3VdUXvivvAeEqUmzD0AHr+EoJUjaCNYegJ9EIPotwJaBRSf4nJ828RlB1IchSjcAU9+yZYngVAEMsQTYcQ1d0YohO9MIihjSKYH0aQ6hFED4Jch6h0L38yf40gCiJekx2PaqPe5uPxyi6ShSyBXJzRZFFJKppLkdHzaLqOJIiYJQWXasVnclBj9VBucmKTTdgVMxZJ/cirzKwWggB2i4ktjVV01pYjisV76lYBi53NNWyuLcdiUpnIRPhB3znemx7gWjyIKkrkdI1am3vBe/K6zkh8od9PvcPFc00dyyYZI/EwPxm6wrHpUbJagXa3j1/v3EWzswxREDgzO867E9docnr5+XAPM+kELzZ18asdOzGAyWSM/3nlBFfCM3hNVj7R2MnT9e2cmhnnx9cu8XvbHsRvsTOaiPDKcC/VNiefbNzE/7pyklA2TU7TOBOYwG+x8eX2Hez0V6NKMrFchj/rOcWHUyM4VBNtbh/aLelEXtO5NDHDZKR01R2ASreDWq8TVZIYixWvWb3fTWO5h0rP0lXX60awAlDmsOK1WwjP0WpFUcBhMVHusmM3m2gsL3pLzEQSXJ0IcPbaBEMzYWKpDJ215WTyeVzc+E4kUeQBXwfvz/ZxePoyvbEJvtr6KDb5Rpev2Plo41TwGmdCQzxRtWXB+d3cfchqOdKFHBVmF3W24veY1fKMpUNLSkqvFx6rhZ0NNfzAcpFIem1c/6MDI0xG4vgdtjUVHgRBoLHCQ5XHwWun++hqqKSrvgJBEJAlkc5aP2cHJzAMg7YaH8lsjnA8NR8V9k8EcFhM1PnduG0WvvX2GYLx0oRgxsIxjg0spiyuBk90tS47n5HTNPoCQXpv8VcQgE6/j6fb20pKMq5DlSUebWnmld6rHO4fXJS8rAb9gSBHhoYX7aO7soIn2lqocqzOc0kUBGrdLn5r3x5OjU2QvklxdCaR4PDANZ5sa8VvX7tK5N7aGp7paMNVQpJxHYIgUON0cqixkVd7+8ncdF6pXJ6JWJx4JoNzHd4f9zPuSKIhCAItVWV0N1WumGiksnn+7NWT1PndtNf6N0T5KZXJ8fbZAd49P7hiV0FVJB7e1ozbtnFfcEHTyZd481lMyvxn3uz184O+i0wm4/ztbfvQDTg3O0U8l6XK5ihpf5Igzreyr1/JUrubFpNSUkat6wa5ZTjNbw4NoEgSD9c3YZYVfth3mTZPGd3+lbsqdxKC1IReeBc9dwZBqkNU4ujaEEb+EqLl0xhaBPQpctF/DqiAjmEkEKXmG/sQ7AhSHYIgYQhmBEEF4+Oh5b4czvdP8G+//TYeh5VfenIH+7oaVr0PQRCwyaZ5TvePvnOZo5ev8cvP7uILu1oxKCoqCUIxOJIEEVkUUQQJSRQRPrb1ntIhS+KynVebWcU2R5mqkz38ets+4vkMn23cjmuOOuVQTAuupGboRLI3gjxREKiyOekqW764YZYUdvtrebCqEQH4k8sneH30Kl9oteI1W0nmcxwe62d3eS1/u/sAsigizT2YU4Ucf3j2PSosdv5gzxOMxMP8bKgHee47H4lH5k25cprGdCqBRS4GQzPpBIfHBviVjp18qnETPx26zM+Hr1ButdPs9PIXfWe5Gg3yu1sPYpZk/q/T7yxaj3MFjfOjU6umfnhtlvkAw2ZWSefypHNFVZ5IMkNB0zCpctEA1iia144Goiv6chgUZ2WuS7WaVRmf08qe1lpe2NeFAZgUGad1sapat7uWequPVyfOIYsSW9x18x0KKD4Hnqjs5u3pK/xR76v0J2ZodZST0zSGkrNktDy/2foITsWKW7VRYXZxNjzEz8f//+z9d3hc93nmjX9Ond4HwKD3QgJgL6IoiurdsqpbXGLHTt20fbOb3eyVvPvbzSabd9Oc3dS1E8c17lW9i6Ik9gqSqETvA8xgejnn/P4YACQEEB0Q7eTWxUuYmdPnzPd8n+e5n/s+g9dk41TwKicnri7a2L1aiIJImc/FrooiXr3ctfQKC2AqkeKFi21U5nlWbd7ndVgp8rlIZbL4HFby3LmJqCAI3Lm9BkGAb7xxls//4AiKLHPHtioe2b8Vq0nlSt8oz5y4TCiSRJFFKgq83LGtaok9Qiie5HT3AN3ji8+RFoPbauZAddmiZr/xdJo3uq7O/p5m4LNZ2VdaQpFzeXOL62FVFe6preJE3wDB+PKCqvcilc3SNhacZzAnAIcqytkeCKwqcJSme07urq3mJ5dbZ9/Xpk0Aj/f18/CW+lUdM8CjjQ0UrKJ3QZFEilwOSlxOOoITs+8bQCiRYCqZ+rdAY6Uo8jnZW1/K8Su9jIUWV19q7Rvl7378Dr/91O2U5i8t0bYYkukMr5/r5Dtvnl9WM/atWyuoLvavG20Kcly+5fqDyNI1X81iu5NoJkU4laLK7SVj6PzRsTcoc7hWxo9e5eVTFXlZHXW6YZDO3jiQiqTTmKYb63XDoDccwm+xru6g1hGiXIWW/DF6tgPZ+ikQzJBtx9DHEKRCEEwgWFFdfwRSITO1TIHraH2CCMKG/WxuWiTTGfpGQiRSGeLrYJKVyWq8fKyNYDjGyQsDfPDAtnU4ys3AT4+ogUmSKbA4+Gj1bmoc/pzU6TSuz8TphkEkfY26YZZkAjY7Zmnx+9xnseI2WXLBgwBNvgImkgni2QwzNlSxbIYnqptpcOchCAK6kcufD0SnOD7Sx3ce/Dj5FjsFFjvdUyGe723jkYqGRfdrAFu9+RwIlFHh9DKSiPKDrham0kk0Q+fIYBePVzWxw1+IKsrcXlTJS33tc7aR0TRaV9GAa5Ll2apFnsvGltJ8vvv2BX5y4jIjoQiiIFDkceJzWvmf330Vt9WC02qelk3N8Jc/Pkr74DhpLUsyneHxW5rJd9nw2C1gwO9+6VkObinn0f2N7Kou4fnTrfzlj9/KBQvba7mjeT4dR5VkDubV0RLu53BBHV7VNjfTKoBHtfP7TY/znb7jvDlyhR/0ncQkyQQsbm7Pa8Ak5iaqFfY8PlS+n2/2vMs/dLyKOh24PFW2j1dH5lOn1gpByCnp3FpTzmtXulYtlfrjM5d5ZHsDTrMJcTWTU1FEmm7UbywvmDPBdVpN3LernoONlWSzGoIgYDUpsz1Qd26vYV99GZquI5ALEp3LSFz2BCd57nzrmqRKD9ZW5GhTiyyTyGQ5u0BvRr7dRnNhwarppwfKyrCr6qoDjdFojEujo/OqGSVuF/X5/gX7RZYDQRCwmVTufU+gMbPPkwODqw40Ch12thcVYllCXOdGx+U0mSh6T6ABOX+N5DL83n5asWEzJkkS2VlTzL76Mp45dnnRZTXd4O2WboJTMX776cNsqyxc1cQ/FE3w43cu8bWXTzO2DGlZp9XEY7c1EvA41o02BaBrBtpyAw3xmkykJIr4LTZUUUIVJapdXvojIe4tyz1cRuMx/ur025wdG2IwGsEiy7zW28UDlXV8pGHtEzVVvpHq+VzoukEmO//8RmJRftx+he+2thDPZPi7MyfIahqlThd3lC+d4dlwiPlgZDC0AQSpAEEOkJn6YwQxQK6CYUIy30028WMUx++AaMbQhjAII7B0j4kgWMFIgTaGYaQRkMhFKv86+ghWAlkSaa4p5ERLD3u33Nj88aaCYWAsosi2WUhnNQaDYfrGw2i6Tn1JHoWeGzcS1jsL6I4GmUonafIUoaNjEuU5Y9711SJZFLErSzfYD8ci/Lj7MidG+0lpWYZiU+zMK56TvfeaLHhNOSUiQRByXiC6zkgiiiKJ5FtymUGLrOC32HhzqGue6p3B/ObiPIsN9/R2rbKCQU7lJZpOE8mkKbQ6UEUZWRQpsbvmJa/06R6NlSKWTs8qVEmiyH076ri9MTe2ffnVU8iShCyJ/OqDB8hq+uw1tKoKkiTyaw8dQNMNDAxUScpVkQWB8jwP//mpO9ENY1ZVpzrg4xfu3TubtDIr8oLmaALCrA/N7fkN2GXzvM/BoNDi5rPVd/CJitvQ0BHIGf+ZJHk2CFWEnD9Hk7uEzDTlVhVzn99RsBVFzD0jHijatuC+Kmx+vn7w32GRVBRxeXRZi6rQUJhHQyCPy0Ora4qejCf53skWSu93L9os+17M3KqjoQhnuwbxOa1sKZ1beRcEAYtJwWJauGpwfRVx2ccbS3C0rYf2keCK1rseogD3NlbjtNz4t2oYBslslq6J+VUTv822IrO49yLPbqPY5aQ/HF6RNPQMRqMx2sbmn3+Nz0u5x72mOZkiijQW5OO32Ri/TmUrnsnQMzHJaDRKvn3lcujNhQHc5uVTpt4LVZKwq/PvlVQ2u6Avx88KNjQ1W+x3cdeuGlr7x+gYGF902aymc6lnlN/6Pz/kUHMlTx/eRnNlIdISAYdhwFQ8yZHzXXz/rQtc6hlZ0ihwBk8d3kZTxeqCmkWPSYBllxXes9ifHLofg9wNqUoSLz/1GUzTmUW/xcrv7T9MdvpBBdMGidMZtqfrm3iidivmaYrBFl8+f3DgbpRlZiyMeY/zlSHPauPjTTvwWixIgsih0goEIWcutZS87mZAEEQE0YcgFoBgQpCKMbQhRPUACBIgoTj+E5nY35EKPoVhxBDlKmTbL4Bcs/T25SpE9Ra0+FfIxr6IZL4f2fpxBPnmnEh//ptvMhVL8rufuBtV2dweGkEQ+K+fvZ9sVsd8gwf4zQed97Oioek6pzsH+dLLJzjfPURG0/HYLfz7Dx6aDTRePd/BqY5+7tlRS2NZAFWW+G73Wd4a6SKlZflfez/Ifz3zHH+2//HZoUdEwKYohFLXGsYz+uLZtayu87W2M4RSSf7Dztsptrn40pWTTCTnTt5FQUBgbsOwIAj4zFbi2QyJbAabopLVdaLpFA7FjCxIs9UPgEQ2M0epJbdd8VrwIEwHIwbT8rsiU+kUmqEjk/v7vd+abhhMJVbegDsUijB2nTqOSZFnewsVWZotCNvNCxtHOq0LT4JlSZz3mSyJ2KWlDShTWoY3Ri9T7SigzOpbkOI0G/DIpkVNLQVBQBEkFHF+BXpGxQrALKmYpfkTJlmU8JlWNoETBIHqAh/3NtVyZWhs1b+w759u4fCWKm6tKVt2T+BEJMZ3j17gJ8cus7eulI/ftWvDx0JN17kyNMa3jp9fk2rT3soSGgrzFz3XrK7TGwrNy5bLoojPasG9BqqOKAhUet0534ZVZONDyST94fmKb4UOB3nWtTEgBEHAoipU+zxzAg2AyUSS3lB4VYFGldcz61m0GkiiOMv2uB4rYcH8NGJDZ3+iKHBrYwU9I5N86YWTTC1BZTIMg2gixQsnWnn5dDs+h4WmykIayvPx2C04rGZMikQ8mSEcSzIyGaGle5i2/nGiiRSari+r9CoA9+6p45FbtuJxrF8T+AxkcXEe9fXIZvU5GcDr3b4Nw8CumGY/FwVhUTdwkyTDdfewLIqzlCttOru2WA9MOrO8G10UhQXN+kRBwCzL3FZagQh4rhvEbhb5UdnxO+SmJbmMrsn/A0DMvQYMMR/F8XvgmAlWBWZ+JqJ6C6p3D0xTqQSpHNnxH5iJFgVBQrI8hmR5ZHofEnO+kJsI6UyW10934HNZ3zePE4tJhZ8iI+9cZv39eRjohsGRS1f5qx8fpXtkAshNxJPpDNp1yn6pTJYjl66S0XRKfC7yXHZOB/v4T9vu4U8uvIIkiiS0uUIViihRZHPO9mlkdI2pdHpRf6OsrhHNpHCoJjwmC+PJGOfGh66ZVy4CASi1u2j2Bvi/l47zmS17aA+Nc3Som3tKa7EruWb/U6P9WGWFE6N9XJgYptkfWHLbkiCwN7+Ul/rb2eLNxyIpPNfTSlqbOxESYMHqwFIIRuOcujrAnvJiCt1zK+GfvXfvbNVmo5HSMpwP9TKUCHFsvJOWUD+/s+Vh8szOm2asXQmcZhN7K0toKingQv/IqraRymr86XNv8g8//zgB1/JYCl6HlU/ft5dP3b0HUcw1f2/k9TMMg/6JMF95+wyjkeUZ+i4ESRR4am8zBc7F/YOyus7VBaoZVlUh4Fi791Chw7kq2WtN1wklEkwsQLvKt9vwrLLX5nqokkSlx8Ox3v4570+lUvSHp9hTUrzibZZ73GtKmubch+Zf8/VyV79ZseFpZlWW+OCtjUxGEnzvyAViy+B364aBntUYnowyPNnOy6dz/Nrrv57Vfi+SKHBgawWfeWAf5QWeDRlUpCUaNq9HVnuvHso16LrBhXO9vPbqJX77dx5a0zF94e9eZduOcg4crL3hMllNW9aFFQUBZZHz85pzg4SOMd2EKaBKIuJNQCESBOU9r+fOdHN3gzL9773rzg0cBEEkF6RcW/u9y9ysaOkaJhJL4nWufUD/1wN9+t/mo2d0kudPtTEyGeGRvVt56mAzPzl+iZfOzu09aCoL4LZZONs1SDieIs9lRxak3JEbOrFsep6EtSpJ1Hv9XJrISUymNI2h2BThdAr3DVSnTJLMQ+Vb+MfLJ/jwC1+n0uml0VuAWbpGyZJEEYuszGv7EgQBu2LiD/bew5+ffZMPPPPP+M1Wnqpu5vHqRhLZDA+U1fO3Le/y+fNH2VtQyqHCilkqjkmUMIRrz4OcSlmOViQIAr/UtJ/Pn3+bT7/ybdwmM49VNfJyX8ec45jhca8Gz5y7QrHXyYf2NuO0mGcDC3kTlfVSepYXhy5wZLSVPLOTX6+/j33+ahTh5h97FoIgCNQX5nFvUy2XB0fJLiKLvxg6Ryf4sxfe4g8evQuHeWn6nyBMKyJuwmWbkVT+welLvH5ldY3vM7i1ppzmksCSJsO6YRBeQDrXIiv4rKtXXpqBz2ZZVcCezGYJJZLzphtWRcFpNq+LZ48i5pqv34tEJsPkAs7oy4HLbP5XI6m+ntjwQEMQBDwOK5+8bw+arvPjty8RTcwvZS8Haw36VFnituZKfvGRA9QW+1flJLocKJK4YMZ/IcRT1zKS2axGKpWdrWBYzCoYuWpELJbCMAxkScRkVjEMnXRam21OU1UJRZHR9WvvA6iqjKJI09fOQNd1UskssiIhy3OzN7nvZRlGS6KAaZHy8svdnSiiSMDm4AvnT4IBv7RzLw03gZfGv1YYhkEqkyWb1dF0nXcudOdeazrhSAJFuT6AyjU0LqZkktX06e1ps0pRsiSiKvINs4LpjEYi9V5/mdy+bsR/nkEmqxFLplGmee26rpPKaLlAfZn7h9xvaea8dX1hsqBArmJns7x3IqphGO9Pw17vWIgL3UMcaCjnF+/fR4nfzavnO+Yt53VaMSsKfWMh0tN0hjsLa/mzC6/QFRnnd0/8kCcrts9J2lgVhf2BEn7QcWn2aozEY5wdHeJwScWC11IQBG4JlHFL4MZOuwcC5RwILKxOJgoCZQ43f3no0XmfKarER2q385HahfXuf2vHoTmv9+aXsDf/mimmx2Tlv+69B/beM/vezzfsmbOOJAoUuh20DS9O6V0I8XSGL7x+gologg/tbabI40CV5Jxa2iZVE5yKhf/S9Nim7GuzYDep7KkoZld5Mcev9i+9wg3w7LlWyrwuPnv7XiyqclNUeAzDIJpK82JLO1988+SatmWSJR7btXXJakZuvznVqfdCFoVVNTS/F3Z1dVLj6axGNDX/uHKU8fWpKuUYIPOfK6msxlRqdb4lFkWeVc77Nywfm0ac9zmtfPah/bjtFn54tIXhiQjaGtQWVgJJFHDZzDx8y1Y+cucOCn1LOzCuBWZVwWZeHu88Ek+haTn61JlT3bz0wgU0TSeb1fmPv/cIumEw2D/B3/6fl4lE4pSU+Pj5XzhMcDzCC8+eo6dnHLNZZd8t1Rw63MDwUIhXX26hq3MUwzC4655Gbr2tDshNsnp7gjz/7FluOVBLY3MJynV8w3AstSzOqCJLOBZR1ZhKJZFFib5ImLvLq+mYDBJMrC6D8NOErJ5ENzJIohlJuLn6DqKJNN965Synr/TRNRBkIhJH1w0uXR3hA7/zhTnLOmwmfuEDt/DR+3bN246AQCqd5d2L3fz4rRYudAwyFUtis5hoKM/n4YNb2d9YgdM2P5t49PxV/uJfXmc8FEPXdTTdQBDgM4/s55efOLjo8R+/1Mvv/8Oz7N1Sxq8/dYjOgXF+fPQSLZ1DROK5/W+tLOCRg43s3VqGwzp//6l0lpauYX545CJn2/qZjCRIZ7Q545AkiVhNCnfsquEPfuH+OesbhobB8vxx1htT8SST0TilfhclfvcNl7OZVEyKTDSZnuX83lNcT4O7gK7IOBV2H8U215x1zJLMvkApJQ4XfdN+Gv2RMC/2tLMvULwoXfOnFYokUVvg540rV1e1fjSV5stHT3OkrZsHmmq5a0s1BS47qpwLdCUxJ888E3zM3Ik3w6T3ZsbWogIe2bmF9tHgqpr1Z/APrx/HZbXw1J6mVVeu1gszQcbLLR38xQtH16QyJQoCD26rZ3tp4bJ8xwwM4pn5Y5YoiktWQ5aDnIDMyu9pzdBJL9AHpkjiunluCYKAZYFAQzf0VXt/mKeFGv4NK8Omdui67RY+ff9eaov9fOv1c1zpHWUqnpzDMV5PSKKAzWyirtTPhw5v59amSqyb0HhqUmRs5pzj91LqU1PxnPZ6Nqvz9a8c5Tf+/YOUV+Rc1WcCEMOA3/p/HmBsdIp//sc36e8L0t83wVQkya/8+n1cbumn9cogdfWFnD3dg6Eb/Mff+wCW6zKyoijQ1TnKxQt93HaogS1bi5HkuSXAUDS+LK6gSZZycow3gCJKDESnsMgKhTY7veHQvwoHhKH4UcYSZyhz3I/f3Lz0CpuIVDpL38gkyXSWojwXCBAMx7CYVKqLfXMmQDaLit+9cFk9q2m8cbqTlu5h0hkNkyLhc9lIprOcuNzHufZBPvfYAR491ITjPZr/Jfku7ttXz3AwQjiW4Gz7AKn0ygb80YkoX37uBO9c7CGT1TAp8uz+j7X0cKZtkF954lYePrgVu+Xa/nVd5+UTbfzlN98glc5S5HdRV5ZPIpWhZ2iS0VAESRSpL89nR20xO+vm83cNNAzj/Qk0DGNmciAv3juh6eiGjiJda5aeSifpj+UaQvPNDgbjYUqs7tl1BEEgz2LlYw3b+ItTb5PWNeLZDEcHe3jmaiuPVDXMelj8rECVJXaUFiIJwqoUc2ZwdWyCv33tGF948ySVfg9bi/Mp93kIuOzkO21YTSomWc4pSYnXpmQze1zs9XupwsLMv2k5YUkQEKe9SXL+KrlssCxJ15ZbAwzDIJ7KEImnyOo6opAzF7SZFURRRNcNIokU8VSun8esKris5tx5TquLhaIJkuksoiBgs6g4LCayms54OIbNohKdbsi3mlScVhOqLHFrTRmXBmr5zsmLq26Q1Q34X8+9STyV5iP7t+O2rl4paC0wDIOJWIIXLrbxZ8+/RSK9tvGjzOfm8d2NBBagBC28fxaUohcFYV3oSZIgrkpO3zBgoXhLEsV1m8jn1NgWMNA0WHUT/r95Oa0Omy4FJEkih7dXs62qkO8eucC3Xj/H+DKkaJcLURAwm2TsZhPlBR7u3V3H4R3V5LnWzkdcLgQB7BYVu1ld0stjKpYklkwTjSRRTTJOlxlBuNYcJIkiJaU+ZFlClESsVhOxaIqx0Skut/Tzz//4BgClpT7S6SxZTcPmMGMy5b7ame1ksxpnTg1QUxfAbFEWHByGJiLoywj6VEXGvUigUe3xcmFshAafjRqvj8vBsZtCdepfM/xuG//1sw/Mvv6zb7zO9187T02Jj7/5j08vKzsG0DcaIhRJsGdLKU/dtZ0tFQUYBpxrH+DrL57mdGs/L7x7hcaqADtq507Wa0vzqC29Rp/72B98hc4l1Ojei0vdw/SNTLK/sZwn7trGlvICdN3gdFs/X3/hFGfbB3nu7cs0VQVorCqcXW88HOfLz50gHE3wxB3b+ZUnD+K0mjAMaO8b4/f/4VmGgxG21xTxGx+6fWFapZHFeJ/MGa0mBbMiMxGNk0hnb5gw6R6ZIBRLEvA4Z7/Tb149TU90goF4mP155fzhmRf424MfnjMEOFQTj1Q2cHxogCOD3WR1ne6pEH9//gSiIHJnaSUudXP4yWlNI5HJYFfVDdufLEo0FOZR5vdwdWxi6RWWQEbTaBsZp21k5VSs5UIQcpUYVZJQZAm7ScVjteCxWfA7bJR4nJT73JR4XTgtZqyqgkVVZl2fVzrRnoqneOlUG6+ebSeWTGNSZB7ev4W7dtTisJoYnJjiR29f5MLVYTKaRkXAy0fu2EFlwIskCHQOBfnaK6fpHw2jyCLbqov4yB07mIjE+e2/+SGP3trI8St9ZDSNpopCPnbXTop8TorcTu6bVqA61ze06kZZXTf4m1eP0T8xxWdu30PJdb+JjYZhGGR1nYHJKb557Dxff/csmTWqClkUhQ/v20ZDYPnGxoKQ8355L3TdmGfgtxoYhrEqTrsoLtznmdH0NVV8roeBsaA3hbROQda/Yfl4X2Z/0USKjoEgl3pGF20Ot5oUNN2Y5lPr17I+Qi6gkKbVnRRZwqTkeN4+p5UtZfkc2FpBc1XhvKzqZsFtt+C2W5YMNAxgJBSlviQfm81EZ8cI8cI0ggD5Ba5pG4a5g4rJpFBemcfOXRU88PAOACwWFY/HRlfnKL09Y3R1jWI2KTicVhyOXDbnqQ/vJxyKc+J4F2azSmGRe1Y+WDcMBoNT6Ev4BAgCWM3qooHGtvwA2/KvKcR8rHH7onkA3cjp6hdY7BveMB7N9GOS3MiCjVh2ABCwygE0I0lKm8QmF2OgkciOkdFjCIiYJBcmyYsgCBiGgWYkSWhBND2BKKiYJQ+KODfDZBgGKW2SrJHALHmRhPcno7beMAxorC7kc48doLrYP/v+we1VhGNJhoJTdA0GGQ/FFs28r2X/2+uK+ewHb6GyyDf7/u07qglFEgwHI3QMjBMMx+fs/2LnEOFoElkS+bn7d+OcplYJAlQUenn4YCP/59tHOHmlD03XFxRz0EmjG+8PBTDgcVBd6ONy3yjvtvawr670uqRAzkAzHEvwzMnLDAbD3L29Ftc0vbE9PMrvNN/N/zj3IqK4MP9ZEASK7U5+e/dBEtkMZ8eGSGpZ2kNB/ufxN2gZH+HhqnqK7E4cigmznOMqb8Q93TU5wdt9vTyxpXFN8puLQRDAaTHxgR0N/PUr72xYVX09MZOdTmc1SOW8GPomwvOWk0WRyrxcdaW5JMD20iJ89pyjuWWRvqv3ontkgta+Ue7bXc99u+sIx3K/H6tJIavpfPuNc2Q1jd/76N247Ba+8Oy7fPO1s/zaBw9iM6v8+XfeZE9dCb/30buZmIrz+e8f4dtvnOPuXbVEk2kSqQx//iuP0j08wb+8dpajLd08fXvOD2pHWREf2LmFoVCEkanoqq+Zpuv88MwlLg2O8Mt37mdbaSE+u3VdaEOL7TMYjXNlaIy/e+0YZ3vnm+WtFIokcueWKg7VV+CwLH9OIyBgWyApoRk6qXUwiEtks6tSLZRFccHkY1rTVk1rei90wyCxAG1MusG+bzaktQzZG8zHzNLqemPeL2zq1TYMg8logldPd/CNV89wdXjhTJJJkSjxu9ldX0IimSEUSxBPZnKqSEJO3cOkSNjMJjwOC3luOyV+F5WFXgIeB8l4mslQnPGxCIIf7LbNDzZ8Tit+l42ekfnScu9F32gIzdD52Cdv48XnzqNlOzEw+PRn78BqM1FU5AZAUSQChW7sDhP5ASfjY1P84LsnQBBoaCjkznsa2bGznEQizTM/OoOAwP5ba9i1u5JAwI3TZWX/gRp+8sPT9PdP4PPbZ+lV0XhqenK4+LGaFJlC78oyQ0v9IIKpOH/dcpT/vONubBvMBz8f/D+UOx6mwLKXM+N/iWFo7C/4rwSTF+mJPMv+gv/GZKqNjvB3SGkTCAi4TXXUuJ7EIueTNeKMxE/QF3uFjDaFJJgJWPdTar97zn6S2jhdUz8ipU1Q5Xwclzrf0fenEXaLSmNlwZwgYwal+W7y3Hb6RkLEEmk0TUde5we6w2qisTIwJ8iYQVmBB6/TysBYmFgyjaYbyFLu3osmUui6jt1imtd4LooCXmdOtz2dzpJIZRZMUBhGBt1YPHGwUago8HB7YyVfeOkEX3zpBIMTU/QHw2Q1nZ6xEG+2dHGk5SpvXOzCqircvb1mlt7oVq30xiaJZdO0T43hVBYeDyVRpNGXz+/uvZ0/P/0Wbw/2ohkGo4kY/9hyip9cbWV/oITdBcVUujx4TBZUSUKclnRd62PPLCsU252MxmKcHR7m55oXbgZfL9hMKvc11fJSSweXB0c3dF+biayu0z4SpH0kyA9PX8ZpMXGgpoxDdZVsLw2Q57AtS5HJa7fislm41DuC02qistBHgd2BKAoEp+J0DIzz9OFtFPmdSKLI/Xsb+G9feZF4Kk0smaa1d5Q//oWHUGUJv8vGPbvq+NILx7lrZw1uu4W7d9bisJjIc9ko8juZuE7u1azI3NdYy0gowr8cP78qz5MZ6IZB6/A4//k7L3B7fSUf3LmF6nwfXpsFm0ldt2A5kc4wEUswMBnmh6cv8ez5VlIL0JZWClEQaCwu4MP7t1Hh86x4XdsCBnFZXV9wEr5SxNLL6+t8L8yyjHOBJEIqmyWZyaIbxpon0rpuMJWcP16bZAnnDXxubia0R4cYTebmhlldQxYlNENHEiQO5m3BsoCPzc2KTQs0DAPGwzG+d+QC33vrAmOhhelSLpuZ/VvK+Pn791Jb4l9x6Tw8leD0+V5eeKUFRRb58BN72b2jYh3OYGXwu2zLpmt1DIyTTGepqSmg5tfvnfOZo76QuvocBcTrtfOhj94y+9n9D27n/gfnPoy9PjsPf2DnvH08/tTe2b8fe3LvvM/bB8ZnVWoWg8WkUJbvBnLZh9FEhKyhU27PSQVndZ3+WAhJECmyOREQGE/GGElESGtZHKqZEpsbiySjGTrdkUneGrlKe3iM08F+rJJKkc1JoXVjGvYdSgXJ7Djx7AiKYCaU6UQ30oRT7bhN9WhGikuTX8RramR33n8knh3m0uQX6Ym8QL3740ylr9IXfYlC60FK7HcykjhBf/RVTJIXAAGRZHacsfgpMnqUatcTONWqnxlup8tupsjvWvAzs0mZNbvSNG1NZlQ3gtthodC/8L1hMV/b/4yq1IxsZcDrQFUkguE4A2MhPE7LrDBxMp2ls38cURBwOSyY1YWHRcNIY7xPFQ272cSd22oIRhI8d+oKf/nDI7NUjL997h0MI9d3UOR18vE7dtFYVjDbVHl3UR0vDlxB0zW+1XWah8sa592NqWyWzvAEU+kUQ9EIJXYXFlkhmslVnA1gJB7lR11X+FHXFSRBwG0y4zJZsMgyJkmeJ5u7UjR48vgft92HXVXxWS1MJBMEbGvX+r8RBEGgyO3gs7fv4U+efYPRqfWj8N5MmEqkeOFCOy9d7GBLYR4Pbqvn1tpyyrwurIs0Spfmu3nyUDNvXujixVNtyJLI/Xvq2VtfSiqTBSEnDDIzIbSalFlFt2QmiyyLqNOVwRl37UQ6i67n1BOdM4Ii05Wx99J2fXYrH9y1lbFIjOcvtK95YpzMZHnxYjtH27vZXV7MbXUVNBYX4LZacFpM2E1qrrl5GfebYRhkNJ1YKs1UMsVUIknb8DhvtXXzdkcvkQUkZVeLMp+bTx7cxbaSwLIpUzMQBQGPZT77IJnJElylxOv1CCdSq6oGqpKEx2LGLMtz6E1pTSOUSJLIZBYMkFaCjK7Rt4AhoFVR8K3REHAzMJYM0x0bpSs6hIBAocVDJJMknI2xy1v1b4HGQghFE/zg6EW+e+TCDXsyvA4rj97ayCfv3YXLvjojPZfTwgN3N+F12zh6bL7842bB57QR8DqRJXHJhrbW/rHphjrr+0avaekeJrOM7IvNrFJVmJtUJ7QML/a30hMN8Tvb78ChmAimYnyl/RSFVgefqN3DWDLGM72XaA2NktE1VFHmgxVN7M0rxTAMXh1s59XBDnpjIf6l8yyqKPFAScOGBRpOtYJopo9g8gIOtZykHiKZDTKZbqPS+ShZPcZo4hQltjsYT54lqyeQBSsTqUsY6MSzI0QyfRQJEuPJc6S1MFk9TjTTj00pJKPH6I48iyyaqXV9+GcqyIDcxMKyDEW1jSKiqLK0pBRu7gCMOUexpTJAbWkewXAPX372JE/etR2Pw4Km61wdnODF41fwOC3cuavmhtLUhpFCN+YbTG0WckHETioLPBxpucrQZCQ34QPMqkyp3819O+vYU1OCzXztIbTFHUARJba6A+SZ7RRY5jeSDsej/M6bz9EbCRNJLz1J0gyDYDJBMLl+gZcx/TvxWazYFIWvXzjPgZLSOVzuYoeTIsf6jQ1mReHWmnI+fmAnX12jidrNDt0waBkcpXV4nBcutvH03mb2VZVS4nEiLpDQS6WzOKwmnjy0jfv21PPPL57knUs9lBd48DltOK1mBseniCbTmBWZtv4xAl5HrincZsFqUmgbGGdbVSHJdIaOgTEqAp5Zuu5ynnWVeV6e3NPMRCzBu51960L3iaUyvNnWzVvtPfjtVhqK8qgP5FGZ58Vnt2JVFUwz6mHTQZCBgaYbaLpOOqvNVi+6g5O0DY1zeXCUoXBk3ZMr+U4bH9m/jQPVZavqL5ElkQqPe9778UyGkUgUTdfX1AfVPzW1qp4KQRBwW8wEHHa6J0NzPhuNxZiMJ9YcaKQ1je7J+YwSh9lEsWtjlUfXA3cUNHMHzXyx80UO5zdRbS/EAP6y9Ycb94DdIGxKoJHKZDlyoYtnj12+YZBhNSk8dlsjn7hnD06beVGPi0xWY3gkzMjoFJmshtWiUlLkwedd2lI+FksxMBwiFMrJezodZirK/VjMCpqmc7VnnIlQHF3TsZgVamsKsFlz7tyJRJqunnGi0WTuh+KyUl7qw7zAxGsm8+91WhmdXJxj2j8aYig4RZHPNUv12Exous7ptv4F1SneC7fdQl1pPgBO1UyDp4D2qXEuT46wL7+MtvAYumGwxV2AKkq81N9KfzTEZ+r3UeX08eW2kzzTe4lyu4dyh4df3HIAv9nGs72X+ZN9D2O/Aa1jveBQKhhPniepTZBn3oFuaITSnUTS3bjUSjQjhW6k6Y+9hiTkMm4CAm61FtDRjTSJ7Bh90ZcQhdxAKAkmbEqu6hTXRjAMDVm0kNYi6HoaSbz5y7TLxWY5H6/3/h1WEx9/YA+JVIajF67S0jVEwO8km9UZD0VxOyzc0lTBw7c13nAbupFE01fPF18PeB1WPrBvK/fsqGU0FGUymgABfA4r+S77gpORV4famEjF0AyDsWSUK+ERqh1zqW+JbIaW4M1BH0rrGmPxOP1TYS6MDmG5jk75gdr6dQ00AFxWM0/saQLguycv0jcR3pBq3M2CrK5zoX+ErrEJ7t5ak2swLsyb178xPBnhSt8osiQiigK6oVPgcUzLt6vc3lzFua5BXj3Tjs2s8nZLN3dur8VuVrGaVR490Mizx64QiiaIpdJc7h3jkf1bV3y8O8oK+bkDO0hlNc70DK5LsAG5wGs0EmO0Ncabrd1AjlbjtVvxWC1YVAVVkpAlEU03SGWzpDJZwokk49E4yXRmQ+d7eQ4bT+1p4r6mWlzW1fUqSYJAkdOJXVWJXuenkdV1xmNxgvEE+fbVCeXouk73RIiMvjp6mNdqpdLrmRdo9IfDjERjlLgXrpwv69gMg8l4gu6JudsWhFwio9S1+m1vNgRBoCM6REbXSOkZ4tr6Vcs2C5sSaFwdmuDlU+30jIRuuMzehlKeONQ8rb9/421lsxpdV8d4/pWLxBNpDN3A5bJw6EDdsgKN4GSM46eu0j84gZbVicbSPPHoTrY3ldLdE+T7PzmdM/IyDBRFIj/fic1qIpvVOXexn+dfuYjFrKIbOiWFHvw++4KBBkBFwENpnnvJQEPTDY5f6aOxIjBHknOzMBScon1gfMnKi0mRKMv3kD8tfSoAFXYvhVYnZ4IDNHkDdE4FsSkqda480rpGW3iMlJalfWqc/lh49r1odnU/luXOMXOywPMfA3a1mIweJZ4ZptLxAWTRznD8aO78RDeakcGhVFDjfJIC6z4EJLJGAgwDARmT5MNnbmKL51N4TA0AaHoSQZAYir+NXS6myHaIqXQPg/EjqJIDj6kBUbi5ms9mL+PP7nxqHrZWBtheW0znQJAtFQVYLTmqxIHmcpqrC9nXWHFD2hRMVzTe50BjBhZVoTzfQ3n+0pztU+N9NHsL8Zvs070UN3eFLd9q4yNNC8tDF9qXJ+u5UnhtFj68bxsFLjvfO9nClaFRwmvoC/hpQCyV4bnzrfQGQ3zy4C4O1pbjuI67LggwMhnl6nAQgBK/i0PNlbOU4Lt21mBSZU6395POZNleVcTdu2pmK44fvWsXz7x7ibcuXsWsyty/p47bm6sYC8e4tbFiNrAxKzI1RT5upJMqigK31pRjkBvXz/YOrkvvw0JIZTWGQhGGQpEN2f5yke+08eTuJp7c07xsKduFMOMlUeP3cnZweM5nY7EYl0dHybdXrmrbY7EYg1NTqxZSKLDbaMjz80ZX95zAvnN8gqsTk+woCqy62pLOapweGJxnzGdTVCp9HjzWG4vZ3GzY7anh+EQrPbFRklqanZ4qLPINqj0C8wR1DMN43xMnGz77SWc0Tlzp48LVGysvmFWZR27Zit9pW7KcGo+nefXNy6RSWT77iUO43VYSifSCpd+F4HVbueeOLTgdFjDg//zfV7nQMkBtVQGX24aYDMX59Mdvo7LMx8jYFHk++/R5ZLl4eQCTKvOZjx/EZjMRiSZxOW98w5YVeKgq9HKuc3DJSfyRC1d54lAzNvP6NactF2+c6yKyjIeqw2pmd13xnOPLt9ipcvg4Nd7P+eAgwWSMCrsHv9lGXMugGQY90UmUkZ5ZSbntviKcyvUZmuVK9QnLHngyWW1BDxNVdCCioBkZVMmNRc6nZeIfcKqVIAjIgoka1xMMxN4kpYVAEDAMHadaic/ciEMpw2duoj/6OpF0LwY6kqDOBh2ioKBKLsod99Me/jb9sddQRBsOpRxhgxW1VgJZyumfx6Y18DdCIepmw7n2AZ57+zJ1pXn87ifvpsDrWPY5G4aObsTfN+qUYRhEk2n6x0OMR+Kk0tnpB/yNHyD768pw2y14TVZGEpFZLwTxJg80XGYzOwNFm75fh8XEfU21FLodfPXoGd5q7yG+Rt+Dmx0ZTedc3zB//co7xFNp7t5aM5s9L8v38Ml7d99wXZMic9eOGu7aUbPg51aTwtOH5zf0B7wOfvuJ22dfu+0W7ttdv+hxiqLAwZoydF3nK28LnO4ZJJlZn8rGzYaAy87juxt5ck8The61B9YWRWZ3SfG8QGM0GuXswDAHystQV2GS905PH+E19KK4zWa2FOTjt1kZjV5jugTjcc4PD3OwooxC58rP3zAMwskkL7TNp84XOOzsKSm6yUfAuWhyl1Nuz2cyFcUiqfhNTuQF/EEARAQsikz4uh54g5z8dkbT1s0McaXY8EBjPByltX90UZnXIp+T8gIP6jI4iIlUho6rozz28C7y/LmbUHGsIDoVBIITMdo7R9F1nVQ6QzSWIqvp1NcU0NYxzBtvXaG90E1dTQHS9BejKBJb64t4fbyV51+5SEmxl7rqglm+6ULw2K1sKSvgiOsqwxOLZ0i6BoOc7Rggz2Vb1nVYL0xGExy50EUitfigLQiQ57Kxt750zvuyKFLr8tM5Nc6PelrwmW00egK5TIqkUGx1kWe28aGq7ZTY3TmNfC2D4zqKlEWSiWbTpLQsNlnFwFhQ5lYUWLYsYTKduSEVrNB6AI+pHlW0o0h2AtYDeEx1CEgIiFQ4HmJAfItQug1dT2OR85HF3D1mlfMps9/PcOJdQukOwMClViIJKjalGMPQMEteLLKfSsfDDMffIasnMWYZ6DcHCrwOJFFgOBjhQscQzTU5p9msppPOZHPKbotk938a8e7FHkKROAe3VWJS5dwUfZkBlmGk0PQpDN6fyc1ENMHrFzp55VwHPaOTRJK5MWsxmbi//3dP4bZbGE/GqHPl4VYtiMLCYYbbZOZjDds27gSWgXJHrjpjGAahZJLW4BijsRhlLjf1Pj+TyQRWRcFtXt9spGEYxNIZ+ifC9AZDdI9PohsGJln+mQ80IHf+XaMTfPHISQzggea6991NeyGIoshtdRWosozj+HmOdvQQXUQe/6cNoiBQ7vfw2K4tPLJ9y7oEGZBrfr6tooyvnzk/p6E+lEhycmCAruAEDfl5i2xhPsLJJK92dBFNrT7QEEWROr+PvSXFPHOlbfZ9Azja3cu+0hLus9asWIo4o+sc7e7lZP/gnPcVSaTG52Vn0eYnMdaCC6Fuym35VNoLllxWEATcZjPDkbmV91g6w2g09r71pmz4TGJ4MsJQcPFJtt9lW/7NZBhomrGgzv1S0HWdYye7uNI2hM1mQlVlQuEEdqsZDGioK8RkUjh7vpe2jhHOt/Tzsaf2U1HmR1Vk9u6qwG43caGln5Onu+m6OsYHHthOQf7CX54gQGNlgNpiPyMTkUVZKrph8L23LrCrroSAZ/mZ1rXAMODI+S7aB8bRlmjoMqsKzVWFFC+gOFRqd1NodfHGUBf3l3pnJwyiIHC4qIpXBtr5Se8lXKqFrKFTaHFwoKACRc1957UuPyZJ5ttd5/GZrWz3FlHnnj/wSZKI1by8B2B42ghxIZQ67pnzutn3y3Ney4KVcsd9lHPfvHUFQcSmBKhWHpv3mZUA3unKBoBDLcOhli3reDcbO+tKyPc46Bme4B9++A4HmiqwmhXSmZxa1L4tZWytCiy9oWViYipO58A4sUSaTFYjk9WYiiUxDIP2vjGee+cyiiyhyhJ2q4mtlQWYV6D5vxzkue3IksSJy704bWbcDkuu30PISbs6rCZKCtzUFPvnBVm6kSCrLy1VvVFo7R/lq6+fIRJPUl+Sh9duXXIMdE+r+pTYXRjkxBtEFva+CNgc/PFt92/Eoa8YoWSSV6928e5AH/1TU2wrKKDM5eLd/n58FguHK1ZH9XgvNF1nLBLjytAYlwdHaRkY4fLQGMPhyKpN4n5aYQDdY5N8/Z2zuCxmDtdX3lAU4f2EJIocqCnDbTXjs1t54WI7E9H4Tz0D1CRLbCnK56m9zdy1pQr3OlJ7FEmiyuulOVDA8b7+2fcNoHV0nGcut5Jns+GzLU+JKaNpvNLRxamBQVJr9Lwodbu4rbKcE/0Dc6oaPZMhfnK5lVKXk8aCfORlZuI1Xefc4BD/fOrMPD+OfJuNu2qq8C/zPG8WHAu2YpfNeNSlWwNkUaTY5eTK2Fzj0LFYjLODQz+7gUYkniISX1x7PppIL1u5QFVlios8nG/pp3FLETabiVQqJ5m3lF9GVtM5dqoLn9fOow/uQJZFevuDs7z/8WCUfL+Dxx7ZyehYhD/4ox9wpW2YijI/mqYTCieorwmwtb6IU2d7+N6PT9HbX3LDQAOgLN/N9uoiLl4dzjVuLoLznUO8cqqdD92xfVOqGn2jkzzz7mUi8aWzEn6nlXt31y04SbHKKi7VRJ7FRrXTh/U6/mCztxBFlDg7PsBYMoYqSjic5jnOnFVOPz9Xs4vLoVFGExFS+sJZY1WWZr0BlsJgcIrgVJya4qWX/deImhI/H7l3Fy8eu0LXYJALHYMY5OgQJfk5T5r1RNdAkC/95DhDwSnSmSyp9EygAe+29HCxaxiTIqEqMmUBD//pE3dj9q5foKFpOsX5Lpw2E73Dk/zjT47N+VyWRNwOC3Wledyzr5779tfPaazWjfj7GmhMRBOMhCLc3ljJL9y7j3y3HUVa2HxvBqbpieIuXynx7LWg+2bv0egJh3i7v5dDZRX0TYUIJZNYFZWxeJTJZGLNgYauGwyHI5zqHuBk9wBnewfpGpv4qTDt20gYQPtIkG8dv0C+08a20sIN3V8ik6F1bJxEJsOB8pUlZLYU5fOZ2/eQ57Dx7PlWro5Nrpuj9GbDZTFzS3Upj+9uZF9VKeYNePa7LWYe3drAxeER4tdVNSYSCZ5rbcdntfLQlvolG8Nj6TRHu3v46qmz6yKPa5Jl9pWWcEdVJT9ouTwnODhytRurovCR7c00FxZgURZ/HmQ0jXd7+/ni8ZO0jMwVtrAouf0crqpY8zFvNvLNbsZTU7gUG4ooAQIOxYK0AOtDlSSaAwFe6eia8/5IJMpL7Z00BfIp96zMi2U9sOGz2Zwk3OIDeN9oiPb+cYp8rkWbMQFsVhO331rLK69f5js/PIWqyljMCo1bimioLWR4JMz5ln5argzSeXUUURCYmIzTuKWIfL+DshIf/YOTPPPiecwmhUxGwzZtznW5bYju3pyevm5AQb6TirKcMVgmo3H8VBfByRiyLBKLpSkt9lKQv7h6gUmRObC1nJOtfRy73Lto5kXTDb71+jnqS/PYXVe6Ys3slWAqnuL7b13kSu/oMprAZXbVltBUOTfDPXMuU+kE/bEwZXYPTZ65DydJEGn0BGj03Dg7LgoC95XUc1/J4jxdRZbwOq3LkgweGA8zMBYiXVu8oS6wP60QRYFHDzVSWeSlo3+c8HQQbFZl8tx26sry5yxf5Hfx8Qd2YzWrVNwgCPE6rdx/SwONlQEaygvm9E35XFYONFUQXUYvkMtumVdRKM1384kH9mC3mCgLLDxQ+pw2Hrp1Kztqi6kty5vt58lkNV4+0cYbpzso8DnZVluM02aaPT7DMEils/SPhTlxuY/xUIyKgJfmmmv3sq7H0LTgkse+UfDYLRR7ndjMKnku24pUaPbnVWzcgW0Aouk0AnB/TQ3PtbcRSiaRRXF6XF79ZNIwDKKpNG+39/Bm61WOX+1nYHK+zv6/ZmR1nXN9gzx7vpUijxP/KhWJloN4JsM7vb0EY/EVBxoARW4nHzuwg4o8Ly9caONoe8+6+ldsNBRJoirfy71ba7hrazW1Bb41Sc0uBquicFtlGYcqK3ihrX3OZz2TIb5y+iwj0Ri3VZZR6/fjs1pmj0XTdYLxON0TIU72D/Jcaxsd40Gyuo7TZCKaTq+p2bjE5eQDWxvongxxoq9/dl6Rymq82NbBeCzGXTVVbAsEqPR6cJpNs8emGwaTiQRXJyY5OzjE81faOTs0txdFFkW25Ofzoe3N+G0bdz9vJI4H2+iMDqOKuefiQ0V7sMnznwGqLLG7pGieylgim+Wdnl4cJpWHGuppyPPjspjnKDgahkFa04hnMkRTaZLZLIVOB/Y1ygzDJgQaJkVaUv85kkjx7TfOIYoCB7aWL9oQrSgy25tKMakKV3vGSKWy2G0mHLPmPzmeWmmxh0C+E0WREaZda2VZ4s5D9Vy8PMjUVAK3y8rD929DFESsVpX8PAcTk1HiiTSqJPHwfduorc7x4kRJIBBwkUhmyGo6gQIntdUFlBQtHR1WF/m4ZWs5HYPBG8r7zqB/PMwXnj2O226hpti/IRSqRCrDc8ev8OLJ1iUnfgKQ77bz6MHGed9jNJPi9Fg/7472ENcyHApUkm9Zury3WkiiiNtuxue0MrKEklcknuJs5xB7G8oonTYY/DfMhSJL7KovYUddEd/sew4BkYP+nZRa5weFJfluPv3I/kW353PZeOTgwvKwlUW+Bd28l4uygGfJ/fvdNh491DTv/Ss9o3z9hVMEw3F+5cmD7KovwWUzzwbyhmGQymi0940xNhllLBTlYtfQnEBDM6JktPdP/rW+OI/HDjRxqqOfL796irqiPBwW02xT/0LYWlqA431QsVsrbIqCKAicGhwkmk6T1rK0jI4wkUiwNS9/6Q3cAO0jQX545hJvXrlK59jEOh7xzxYiyTRH2rppLgnw4Lb691XOeik4zCbua6yhKs9DfWEeL11sp3V47KauTgmAz2Hjttpy7m2sYXdFMU7L6uRrl71PQSDfZudD25toHx+na+JaddYAekJhvnH2PCf6+qn1+8iz27AqCjoGiXSGsVicnskQV8bGiKRyE1iLovCRHdv4YctlRqKrV+OTRJHtRQF+buc2Yuk0l0ZGZ4ONZDbL2z19tI8HqfZ5qfR6cFss2BQlRwfNZJiI5wKNS6Ojs8c2A1EQqPR6+OTuHewq3tgK3Uah0laAU55L97rRb1ISBGr9Xm6rLOf51rkBZTCe4EeXrtA6FqQ+z0+ezYpZURDImRumsxqJTJZ4JkNsOtnzuf17Vty/sxA2PNBw2y14ltGsfaZjgFgyzbmOQbaUF1Ca78bvtOK0mlFVOZfREgUEIedAvKO5lB3NpfO2E8h3EVikylBc6KG4cOHgoL4mQH3Nwpl3VZHZs6OCPatwGVcVmTu2V3Ope4TXz3Uu6VdxorWPv/vxu3zu4f00lK3+wboQookUz59o5ZuvnWVkMrokt9Wkyty7p47GivmNSCICZlmm2Oai0uFlm69owx9KdouJqkLfkoEGwInWXnbWFuF1WucYmP3rwtIPXN0w+F7/S0iCRKWteMFA46cZFzuHGJmIUJLv5kBTBX73/KyW1WxQEfBiMSmEo4l5V03XI2S1sc054AVgNSl47Rb6xkIca+3F77RhM6tIonhDyeff//A9P5WBRqnLzY5AIT9ovUT/1BThZJK0plPt8bKjYOWTBd0weOPKVb578iJvtXXP426vBiZZxmuz4LNbcUy7Ss+avIlrkxCekXHVp/9pmk5ay00Ekpks8XSGaCpFOJ4kkkzNOsSvJ/omwhxt72FXeRGF7mvUYE3XuTgywpnBISKpFKUuN7dVlOOz5gx2v3jiJNsLCzk3NEw4maTQ6eCRhnocJhO6YTAWi/Fyeyfj8Rh21bQm1aIZCIJAbYGfIreTrYV5HOvq4622HtpHxm+q3g1BAK/Nyr6qEg5Ul7GnsoRyn3vT1P5UWWJnUYBP7NrBF46fYmBqbjUvmk5zdmiYs0PDiIKASZLQyWW531uwUCWJxxq38PFd27gyOkYwHl8Tdc2qKByqLCejaXz59DlahkfQrtvpWCzOWCzOu739CIKAWZYwDEhlszf8jiVBoC7Pz2f27uKemqoNqxZtNHZ4qphIRRhLTWGTTQTMnhuqTgmCgNNs5sPbm+kYD9IRnJtQiaUznB4Y5PTAIIooosoSAgIZXSOj6XMqU16LhQ9tn5+4Ww02PNAo8jkpzXdz7HLvouU1w4DWvjG6BoMEfE4KPHZcNgs2c07rXhIXbmJcCMJ0c6csSVhMMjazCbfdjN9lo9DrJN+zsLHVRqIkz82D+xvoHpmkrX/pCcsb5zpJZ7M8drCJQ82Va+7ZMAzoHZ3kxZOtPPPuZfrHlzalEkWBreUFPH5bE6o8f/82RWV/fjn788vXdGwrgdtuYUt5Ae9c6lly2ZHJKD96uwW/y8be+rIlaXk/izAMDYOfTu7yekFVJQRBYGwyyrmOAfZvLcdmyVVNDcMgmc7SMzzBm2c66R8N4XFYaSi/FuAbhk5WD5PRxxfZy8aicyjIj45doj8Yxmu3kueyY1bkRemVqxHMeL+gGwYZTcMky7hMJm4rq8BrsdIbDqEZOkUOJ9sLAhQ7V9bMmNE0fnzmMt949xyXBkdXPfEUBQG/w0Z9wE91vo9ijxOfzYrLasKqqjlzt+nn1I2UvVYCAwPdyAUcmq6T1XQyuk4qkyWVzQUbsVSaqUSK8UiMwVCEnuAkV8cmiSZTa55gZzWds71DnOkZmhNonB8e5qX2DqyKitts4Xh/H8lshgfr63CZzXz3YguXR8doLCjAZ7XySkcnZkni8aZGEpkM3794iY5gkG2FAaaSKVpGRqj3+xc5kuXDZlI5VF9JU0mAfVWlHOvq4+32HjpGg+9rhUMUBAIuB7sri7mlqpRtpQHKfZ735ffpMJl4aEsdBgb/cvYCbeML00F1wyBxA2NEl9nEB7Y28MldOyiw29lSkMfxvv4198g4zWburq3GYTLx7QsXebenfw79ZwaGYZBYQtrYJEkcqqzg6W2NHKwow7xEf8fNjPbIIKcnOkjrWdJGljpHMfu8dZikhc9JlSR2FRfy2X27+cLxU/OCjRlkdJ1MenPmBhs+83LZLDRXBni7pZv+sfCSy2c0nb7REH2joTXtVxQFZFFEkSXMqozNrOK0mfHYLRR4HNQU+2mqDFBV6NuUCagoCuyuK+Hh/VsIxxJLZuR1w+Dtlm5GJiJcuDrEHdur2VpesOKAwzAMRkNRTlzp48iFq5xq62MyMj9juxAK3HZ+/oG9CypNvV9wWExsLS/AZTMvKpk8g5buEf7xuRNMTCW4fVsVbrv5ffWLENjcfhHDyMC/8kBjT0Mpr5a0c6ZtgC/95Divn+rAZbOgKCKZrE4knmJsMkLnQBCTKvPIbVupvy7Q0I0EWW0Ew1h78+Nq0R8Mc7FnmB2VRTxxazMFbjuKJLFYG1dgBfKYmq6T0LLYlc2v/GV1nfbJICdG+vnk1p20TwT57uUWdgQKubeqmoDdgVmWV/y7zWga3zlxka+8fYae4OSqJt+KJFKZ5+XWmjKaSwKU+dwUuhw4LeabIpDTdJ1YKs1ELMHYVIyB0BQtAyMcaeumf40O5wOTYS70D3NbXTlOixndMHjzajeGAR/Y0kCh08GPLl3mzavd7C0pxmXOqTf6rFY+uLUBp8nMZCLB611XeaxxK9FUiufb2vh3B27hcFUlHcEJroytf5XQY7Nwe30lTcUFHKwpp300yNmeQc72DjEytXmGm26LmW2lAbaVFlJfmAtQS72u9zWzLggCXouFDzZuocBu5/nWdo729DKxjMZuRRRpKizgofo67q2rptDhQBJF6vP8KJJIch2Uvx0mE4cqywk4HWwv7ObVji4uj46RXKYbvCKJbC8McFd1FbdVllOf5/+prWTM4MREO27FRpk1j7iW5M3RFppc5TcMNCBXIbq/vhabqvKTy60c6+0nlFx6vjQH6zhN2vAZtigK7Kkv5WL3CD96u4VEanN0yXXdID3NO4sl0wSnrhltyZKIz2ml2O9ia3kBh7ZV0VwZWHc5zffCbjHxwL56hicjPPPuJaaWUHsyDOgYDDIYnOJcxyA1xX4aKwNUF/ko8bvn8MyvXyedyTIWjtEzOklr7yiXe0dp6xtjeGJq2WV2q1nh0w/uY3/DzSXPqsgSFQEPO6qLeON815LLZzWd812DTEYSnGrrY099KQ1l+ZTmuTGrN568zGS6o4kU0USKqUSKqViScDRJKJrAZTdza2MFPufKmssEQQE2b+AzyMAaGmh/FlCa7+azj97C66c7ONs+wLsXe0hO+yNIooDZpFLgtXP7jir2bi1jV0PpHKqdpk+RzvbfaPObAouq4LKZqS70cbipat0FDsaTcb7X3sKnGndhlTcv+5fWNM6MDvJ354+T0TU+uXUnDtWE32rlxOAAR3q7KXa42FdUTGN+Pk7T8rjshgE/OXuFr7x9mp5geFVytYVuB/dureFQfSV1AT8+m2XZxrCbBUkUcVrMOC1mKvweduk6t1SXcnt9Jc+ea+W5C61LUnVvhIym0zYyTvd4iG2lARKZDAPhCB3BIOPxOIokMRaL0T0xOSfDvLO4ELsp1z9U6nJyejCnaDeVShFKJtlWGECRJPxWK1VeL/EFstbrAa/dyoGaMnZXFHOwpny24tMxEqRzNEhPMEQ0tX77tqoKZT43VXleqvK8VBd4KfO6KfY4N7wHYyUQBAGX2cwd1ZXU+H0crqrg/NAIV8bG6AtPEUokSWeziIKA3aRS4LBT7fWyoyhAUyBAQ74fu3qtj3Z/aQn//f57yExTEkVBWBOvX5VlthbkU+x0sK+0mMujY7SMjNE5HmQwEiGcTJLKarMUKrfFQqHDTrXPx/bCAmr8Pur8Puym1dNG76urpcrnnVelqfSuTbHJa7Py4e1NHCifS/vPt9spdS+c0A2lo+zx1lDryPl/vDB0Bm2JZ7ogCDhMJu6qqaLa56VlZJQLwyN0jAcZCE8RSqZIZDJkdR1JEDArMg6TCa/FQp7dRpHTSZ3fR8U6KVRtCpckz23ng7c2MhmJ8+b5LpLp99fRM6vpjExGGZmM0to3xun2AW7ZWs7jtzVR6HVuqNpTntvO04e3MRVL8trZDuLLCLziqQznuoa43DvKu5d78TmtuGwWHFYTDqsJsyIhirnsbDyVJhJPMhVPMRlNMBaKMhVLrqh0LEsin7h3Nw/srb8ptdQLvU4O76jmdMfAsqR5Z2hjQxNhznYOkue243VYcVpNWE0qJkXOcaF1PceDTmVIZDJkMhqpjJaTY81kSWayJFNZEukMjRUBmioLVx5ooG6qvKhhZP7VU6dEUWR7XTFFeS7u2lPHVCxJOpNFNwwkUcSkyNitKn63nQKPHfk997ymh0lpve/T0eewtbSAJw400zE0zgunW2ksK8BpNaNI0g17NGwmdVFD0esRTiX52pVzKKLEJ7buwCRt/KMhpWV5tbeLf7hwgvNjw2zPz/VfFDkcfLixmYGpKXqnwvSFw7zc1ckLne3cW1XDwbKlqZrHunr52jtn6Q2GMVYYZUiiwJaifD6yfxsHqsspcNo39JmwnpBEkYDLQYHTQZnXhddu4StHT5NdJXXo6tgkXWNBtpUGkMVc/0m1z8ttFeWYpr0NJFGkxHVtkmRVlNlUijCt4ChAjlduMJvsMjCW9G9aKwRBwKTI1BT4qMr3sr8qTTAaJxiNMxaJMRyOMDIVZXQqxlgkxkQsTiyVnqao5RKVBsYsO8Iky5hkCbvZhM9mxeewkme3kee0UeR24rNb8doseG1WnBbT+1o9n8HESJhvff45PvLvH8btv1blNMky1T4vpS4X+8tKOXv+KmdOtpNXm0dxbQBhehm7ScVntRJw2LEqyrxzKnDYeWTL4oqRK4GupwkljzGZPIrNHGJ7sZntRbeSzu4nlhaIpacYjr5IJH0OWTTIt+2l2ns3eTY3inwWzbjEcLQdJeHBrm5lIvEmLtNu8mwPkcz2Mx5/kUSmF0Xy4bUcwmnajiBI6HqKqdQZJpJHkeQwO0uq8VvuwSQXIQgCPaG/QaeG7tBlUtowZilAwPEhTFIBIKAZcUajPyKavowomHBb9uO13IEoXBtL7arK7pJidpcsX3e/0OzlyGgLnZFhQpkobtXGyGSU17q6eXTv1kXbAEyyTF2enwqvh8a8fN7t7CVj6FQUeGZ7MgRyCmgmWcKiKNhVFafZhNtsWTep5U0JNERBoKbYz2ce3IffaePFU62Mh+NLr7gJiCXTXOoZYWA8TMfAOJ9+cC+N5YENLYuXF3j49AN70XSdN853LbvKk85qOdnW8RwFTRQEVEWabQjVdYOMppPNaqvm6EqiwKfu28NTt2/DfpM2kppVmZ01xRxqruTZY1eWvV4mq9M/FqZ/LDytQiaiSLnrl+NEG+i6QVbTl5TPjSfTGKt4eAuCymZWNHQjAawsozmcDPJO8Cx9sUESWgqrbKHCVsQO95ZFG8Uzepb2aA8XQm0MJcfI6FnsspVqeym7PY14VOccx/dv9T1PV7SP7e4GHiw8tOA2NUOnNXKVHw68SrEln3sKDlBkWblAgigIFHgdFHhX7rar6ZOkM1dXvN56YjQc5Ur/CBd6RjjfPYTfaUOVZSRRuGGJ+z88fpiqwPKUvnTDYCA6xVcvn0WVJD7asG1as339YRgGSS3LN1sv8JXLZ+kMBeeMV5Io4rVY8Vqs1Pvz6JyY4MXOdo709lDh9iwZaIxNRfnK0TO0jwRXTB2SRJHtpQF+8Y597K4ovikdspcDQYByv4dPHtxFbzDEK5c6V7Wd8UiMgYkp0tksqiRRn+ena2KSSq+Hrfn5xNJpwokk5jk9fAvfkA6TSonLxWtdXTzd3MTg1BQXhkeo869ejW4lEAUBu9mE3Wyi3O9B1w0SmVyvSzydIZ7OkExnSGvatCy/jqbrGNPrStOBliSKqJKERVWwqArW6X8WVbkpFboS0SQnXrrAY798DzB//FNlKSdj2lhNU0EeTq8dl2/ucpl0lpOvXKSqqZSC0o39vmKZK0wm38Yk5eMy7SWrh7CpJdjUYkRBZXDqa1SnI7jMTyMIMuPxl/GaT5Nv/wCDU90EE68TsD/J4NRXyeoRLEoVY/EXsKo1jMdfRtcTeCy3kcheZSz+PKKg4jA1EU6dIBh/DbNcikNtJJw6zWj8GfJtj2KWA4SS7zKVOoPfeh92tYHR2E8Yif2IEsfPIwoKQ5FvEc+04bPcRVYPMxZ7HgEFn/Xwmq7HwbytXAr3EkxP4ZAt7PHWEp8wuNg7zMO7G5beALm+jXKvG6fJhCKJ+BybK/O7ad2xsiRSU+Tn0YONpLNZXj7dTii6Qs7YBiIcS/J2SzcTkTi/+cQhdlQXLTsbuFIIgkBloZfPPrwfs6rw0qm2G7pYLwZ9mt6zXrCoCp+4bzdP3r4Nr+Pmdc8UBIEin5OH9m+hZ3iSlp6RFW/DIBd4ZLKbm+0XUblhCnoDoOlT6Mby7i3DMBhOjvOToTfoiw8RzybQDB0BgdOKjUvhTh4puoNGV828dcOZKK+NHuOtsdOMJMdJ6RkMDEQETk22cHKihQ+VPkClvRhJyE1gbZKFExMXGUiMcmf+fszS/EldJBPj9MQlTkxcRPHtwKFsnHzyQjAMjaw2Tjo7sKn7fS+GJiO09I6SzuYmQdFkaMl1EumV0VR1w6A3EuLLl86gSBJP1zbNMdZcDxiGQTST5m/Ovcv3Oy4zFIvMXwaIpFJcGBnmnf4+esIh/FYrH2psYm9RyZL7+N6pFs70Ds5SOZYLAagt8PGLd+xjf3UppgUEMH7aUOC087nD+3ino5f4Cu8HyPXPDIamGI/GKXI7ua+2hhfbO/jqmbPE0mlkQeSWsjIerK9dNPs5Q+X4uV3b+cHFS7zT04vXaqXM7V7R8XRMjdAZHWebp4RCi4ujox1kdZ3dvnJOTfRwbqKXtK7R6C7i3sKtXI2O8/ZoJ5+quZVwOs5P+s9zR6AeEYHnBy/iVW30xScosXp5uKSZ8WSUo2Md9EQn8Jps3FZYQ61zvuLiYnj7wlUGxsJc6hnBYTWxr6GM549fYWddCU8e3oauGwyOh3nu2GW6hyfx2C0c3lnNrroSJFFkLBTlrfNXOds+QDKdoTjPxYO3bKG62M8/PXOMfLeD7uEJ+sZCFHgcPHXHNkry3Uv2Iiz12HF4bDg8C09Ah3vGOf9WK/5C94YHGrqRJqWNoIguHKYmJNGGKCgIKGS1MGPxFyi0fxif9U4EQUY3kgxFvkWe7UFAQJE8eCy3MhF/FZNUgNu8j1DiKJHUBSKpc5S7/x0OtZFoupWh6LeYSp3FqlQTSp5EFEzk2x5GltxIooPhyLdwmrZjlnMJNqtShddyO6rkJ62NMpk8iuH4OQwDhqLfpMb7e3jMB8noIRLZXoLxl9ccaBwLttITG8Gl2Clx+AmYPfQIIcLxJF9+/RRTyRRNpQEe2tVANJniG0fOUuxz0T06gcNi5sMHtxFJpHmjpYuh0BQH6srxOWyE40lOdPTRMRQknc0iSxJ3NlXTUJzPiY5eLvWPMj4VZyqR5M6mam6pK8OyyvaCTRlJk+kMl3pGeOvCVS73jtI3GiKW3JxejZUgq+m0dA/z599+g//+6QeoLPRuWOlTEAQqA14+9/B+Al4H//LqWUKx96/ZtMBt5xc/cAuHt1XjcVhuipLvYlBkiR3VRXz4zh384/PH6R5+/1ybVwJB2FzqlKaHMYzlSUim9QzPD7+FJEg8WXIf5dYiNEOjLdLNyyPvcGryEnbZRoWtGJt8TbI6paU5MnaSZwbfAATuCRyg0VmLWVIZTQZ5aeRtzodbyRhZfrXmI/hVD4IgcKt/J9/pf4mRZJBzoSvs922bd0yT6TDnwq24FQcNzkrs0vKc4dcLmj5FKnsVg/fXCGx3dTF/9MkHZ18LAnP6DhZ6XZG/cnd3zTDoCk/wzy2nUUWJx2u2rmuWdjwZ54+Ov8GrvZ2EUgsnmlpGR/ir4+8gCyKN+fk8sWUrZU43eTYrdnXxKmvr0BivXu5kahnGkO9FgcvO03ub2Vf1sxFkzKCh0M/t9ZU8f6FtVeuPR+NMTAcaAYeDRxoa2FdSQjyTQRJz/gy2aVOv//ng/ZS5r016D1VWsCU/V4FUJYnbKyood7lJZDPYFBWbqq7IhDHP7OD5wRbyzQ4CZifHxru4Lb+WkWSYt0bauLdoKw7FzNe7jlFlzyOaTdIRySWi0rpGZ2SMff5KREGgfWqU2wpquK+oCaukktY1zk/2E82keKikmZPj3Zyd6CPf7MSlLn/cGZ2M8uKJVj790D7+/kfvkMlq3Latkh8fvcRdu2pJZ7P86OhFNM3g0YONXB0K8srJdlRZZntNEZIoUuhz4ndZkUSRV0618ebZTtx2C1d6Rzl+qZdHDjayd0sZz757mWfeucwn7t+Dw3rj30YynuatH5/m8vEuTBaFWx7YwYGHdyDLEtFwnBMvXeDtZ87g9Nq55yO3smVvFQCpRJo3vn+Ct350ip4rg3Se78PutrL9UAN3Pb3/hoHJWmBTG8i3PsRk8i3aJ/4bTtM28m0fwCQXktYn0PQYFqUCUcjNU+xqI4nM1WnhEwFF9CIgI4lOFMk7LcAiktZGmUqd5erEnyIKKpqRJKMFUaU8NCNKVp/ELJeiSD4EQcSilKMZcbJaGGP6HrUptciiE0GQUCQ/mh4HDDL6JMlML72hv2NA+GcMNNLaOCZ57d4duzzV1NgLGUmGODXZwbf73uJRx+2E40lura9AEAW+8PJxdlcVoyoyrYNj5Lns3Lu9DkUSkUQRu1mlOuBldCpKMJJjE6WzWVoHcmIM926v4/WWTtoGxyjxuTjR0U9FvocdlUV86bWTOCwmFGn1Fe4NHU3jqTRnOwZ5/ngrLd3DjIdjxJJrc5HcaMzI7P7V947wx597eNGG4bVCEAQKfU6evmM7VYVe/umFE7T2jaFvohSfIAgcaqrko3fvoKmyEKtpPgfzZoXFpHJ4ezUAX3n5FO3975/86HKx2c3guUBjeRUNHYOEluQ3az9BvaMSi2TCwKDCVowsSny15yf0xgfpjw9T76ycXa8j2ss7wXMktBSPF9/DXQX7cSo2REGk1l5OwJLH33R8gwvhNk5NXuLOvH2YJBW34uAW7zaeH36LV0eOzQs0MnqWgcQoV2MD1NrLaHbVbfq9mdUnSGQubeo+F4LXYd20KqNmGLRPBvmnllOoksQjlfXrct27whP893df452h3nnSmRZZps6dy5S6zGYeqqmj3p9HntWKy2Re9kPu+Qtt9ARDK37GqLLEjrIiHmiuWzde8s0CWZJ4oLlu1YFGKJ4kPB24iYKA32bFb1v4XtxWOJdamWezkTftxiwIAjZVZWvB6r2hnIqFMpuXsWSUtqkR7LKZQouLq9Fx7LKZOmcAl2ohz+ygbWqEQuvcBtvr7wubbKLeGaDakTue0cQUbVOjnJvsYzAeZjIdo85ZQFLL4GJlCQ6Pw8L22mJK8lwEvE6aq4r4yduXmIzEiSXSXOga5jeePERdWR5+l43ekRDnOwfZXlOE02Zme00RsiQiCMI03Tc0249YU5rH3i2l5LntjExGOHKuk1Qmi4NFAo1YirH+ST74uTvpax/m6E9OY3db2Xl4C2arieaDdSTjKVqOdTJ1nSKmosrsPLyFdDKDrhscfnwv5Q1FOL12LPaNoVbLoh2P5VZsah2JTDejsZ8wxnMU2B9DEqwY6OhGilztU0DTo4iCBaZpucK1DiFAAgQEQUQQVCxKGSWuz6JI7tllVClvundSRjfSGGgIiOh6EgFx+pmdG/9y1Ofpv69LGEqCDVE0UeL6NKqUP+f9taItMkB7ZJC0nsWpWLm/cCfWpAmfw0pVwItZVbCZVPqCYaoDPlRZor4oj9rCa7LRkiiS77Ljss4VJbCaFPKcNhqK87jUP0Iqq5HVNDx2Kxd7R2gbGmNLcT6lftea2gk2ZEQ1DOgbDfHdI+d57WwH4+HY+94AvhLohsG7l3t59thlnjjUvOH789gtHGquorrYz4/fvsQPjl4kFN346kZlwMtTh7dxsKmCIp9zutdjcydyrcExvnD+FFdDk9xXWcNntu1a0IxmKpXixavtjMSj/NquW4Bc1tZuUblrZw0+p41/ee0s717uIbNKlZXNgChY2NxAI7Rs6pQkSDS5amly1aKIuaFBQMCtOKi2leGS7cS1JBOZa0ZPhmHQHumhK9pHvaOSbe463Ipj9j4ySSp19gpqbGWMJIOcnrjEAd8OTFJOteSewAFeGHmLK5Gr9MaGKLNdywBNZaKcD7ciIVJpK6Z4Fb0Za4WmT5BIv/+BxkZDEUV8FivBRC7blTV0Lk+M8cULJzFJMveW16ypDnd8uI8/Ov4GF8dHyLynAdiuqDxd18TnmvYCUGh3cH917YolbYdCEU52DxBZhQlcvsPOw9vrcVs3Rh1INwx+1H8SSRD5QMnuDdnHjSAAO8oKUSRxVeZ+4URyVdd0IyAIAvvzqnhp8BJtU8Ps8pXjM9kJZxJMpGNkjdzYP5QIs8dfgUmUmcokMQyDlJZhKBGa3ZYkiliuo2uaJQWvycp2TwmPlm7HMMAiq3jUlQf4LrsFSRSwmlXcjtzfsiSRSGWYiMS5dHWYP/7qy8iSRCarEYknuWdvrqF6KpbkrfNd09SpLIPBMMV57tnG+dJ8Nw6rGUkUcdvMpDPakoIHVoeZvfc0sfWWWvxFHvo7R7hwtI2dh7cgKxL+Qg9FVQV0XZyrridKInnFXgLlfpxeO2X1hdTtrFjx9VgJktkhdCONSS5AkbxMJN8iM/0cU6U8HGoj4/GXMcvFSIKZ4ej38FoOISwynRUQMUkFWOQKUtoQbvM+wCCtjSMgIYt2rGotkdQ5IqkL2NQ6JhJvIkseTFJgyXFIEi14LYeYSp2n3PXLiIKJlDaKbqyduRNKxxhNhpBEiWKLlxp7EZG0zkQ0ga4bGIbBeCSGx5YLhkVBwLrM3jJFllCmx1lRENHRZg1D64ry2FYewG2zzAtQVop1DzSyms6ptn7+6fnjtHSPLKv3QJFEivPc1Bb7Kc134bSasZpVLKq87IebbuT4pJmMRiKdIZpIMRFJMDIZoW80xPBEZEUyf+msxtdePs2D+7dgNW283KNJlako8PCp+/dw3546fvR2C88eu8JUfH37WASgusjPIwe2cGtjLsAwm9bWxJbVdU6PDBJNp7mrvGpF65a73Pzm7gP8xcm3GY/HbihDqRk644k4Q9G5nG5ByA3mu+tLKM138daFbn749kXaB8Y3tTK0XEiSB0HYvIxpVhtHN6IYho4gLB7gyIJEvaNyNsiYgSAImCUTDsVGVtfIaNcGz2g2zkgqSFxLUmTJx2ea73QrixIFFh+qqNAbHyKrX0s6lFoDbHXW0Bq5ylvjp/mY7WEgp0gTykQ4O3kFn8nNNnc9sri5mWbdSJHK9pHO9m3qft8PFNqc/Jd9d/CHx15jIplLcmR1nQvBEf7hwglUUeKO0soltrIwftBxmf995m2uTk3OcfsFcJvM/Mq2/XyovgmP6dqDciga4buXW7gwMsLh8goe27KVzokJ8qw2Km8guXiyu5+hUGTFUraSKFKZ5+GW6rKNq14Dhwu2biJpci7sJpUyn5vO0YXNuxZDMp0huYRB2mYiz2THIikMZlMUWlxYJIVaRwE1jnw+f+llsoZOwOJim7sEHQNZEPkvZ76PVVbwmW6cYbYrJnZ6y3hp6BL/t/0IAHcFtnB7Qd2Kj3HmPhKE3P3MtGbDTPBRVuDhtz98GI99OogRwGk1o+k6r55q5+LVIR68ZQsleS5ePN7K8OS1554iidf8cwRhWcIviipTUOpDkkSsDgtOj43hnoXN+t5vJLP9DEW+RSLTBYiY5EKKHT+HKvkRBZlS1y8yFPkGl8f/H0DHqtRS6vwFRGHxeZpFqaRQzmck+kNGoz/EQMeuNlFofxKTnI/feg+GodEb/luyehSzXEzA/gRWZTnjnkSF+7cZmPoqF0Z/Cd1IYJKKKXR8CKuyNkPjewLb2eurpSM6xMmJdn48eIJPeh/A77TxN8+/w0QswdbSfMr87lm55uvHGcMw6BqZ4GtvnuHq6AQ2s0o8naaxtGDesgCZrEY6m+Vs9yCnOnNGjE8f2Ma28sCqVUjX9cmd1TSOX+njb37wNm0DY0sq9xT7ndy5o4a7d9ZQ4HViUmQUWUQUBMQVOIHPwJh2UjUMY1qu1EDTdDKaxng4xun2AV440Up7/9iyMjv942HeutDFfXvWT7ptMQiCgMtmxmEx8cuPHuDDd+7gnUvdvHqmk4tXh2e1/1ez3YDXwd76Eg5vr6auJA+P3YJZVdZFtnE8EePMyOCS/OmFYJYVSpwunOrapABVWaLI7+KDBxs52FzBuc5BXj/TyemO/nURHRAFAbfdQl2Jn4ayfHbXlRBYhYKRLHoR2DyfAoMMGW0Yw0ghCIuX/wUEvMrCWt4CM6ViA/26R1tcSxLP5iamr40e4/jEecQFKjYxLUEsm0BAmMPJlgWZewsOcDHcxjvBszxecjcWyUxKS9MR7WE8HWKHu37BBvSNhqZNkkidAW6eSdZGwSLL3Fdeg24Y/I9jrzE53T+R1XXOjA7y9+ePY5IkDhQt31cnq2v83wsn+fKlMwzFIvMmRPkWG/9l/53cU149xyiwJxTiK+dzzcb5NjtD0QiyKHJ+ZBinyXTDQONszyCTyzAeey8cZpU9lcVYN9BHSRAEPOrmKr1cv29RFChyO1cVaGS0HJ3iZoEoiMSzaWqdAbyqLSdhK8k8XraLhJbGAMyijE02YQC/t+1hNMNAEgQEBBxKLjv7y3WHscumOdutdRZQZHWT0XPna5VVpHUMPgVBIM9to6LQy+XuUR6/PceYGA9FyWQ1NM1gIhJDlkQqAt5Z6lR8FWIx10PTDOLTz8FsViOdzKyI+rSZTAeH2ozFU5HrLRQEREFFFl2zFQuzXEKp65fQjFz1VRIsyKILEAg4Hscwssiig0rPbyIKKoKgUuP7A2Qx53BvVWrRjdy1EAUzsph7jiuilwL7Y7mAgyyiYMr1Y0w/rxv8f4os2hCF3HXzWm7Hado1S4+yyOVUuP8dmpEAdASU2X2uBd/vf5f++DiFFi873FU8UrSPUnMe2wpLMYycaadZkVFkCado4t8/ejvO9yiGlvpd/OoDB9B0HUEQsKgKJkWmwOWY7ae6b3stBgaX+kZQZZlP3bGbAred50630TM2SW2h7/0PNAzD4MLVYf76B0dp7V+8z0BVJB7at4UP3bGd0vyccZoorDywWAn8LhvVRT7u3V3LV146vSzDPE3Teelk+6YFGjMQRQGHxYTDYqLA08QDexuIJlK09o1xqWeEvtEQg8EpxsMx4qk0qXTOE8CkyFhMOWOvgNdBkc9FVZGXreUBAl4HFlXBrMqz3M+1Iq1pvD3Qy9+eOU5XaAJJEPjqxbM05xXwyaadNOUVEM+k+WH7ZX7c0cpUOsX+whJ+vnkXJQ7nosegGwbd4RB/euwIHaEJyp1uCu2LT+xFQcBiUijxuyhw27m9uYpIIkXn4DitfWNcHZpgaCLCeDjKVCxFKpMlo2lIYk7m1qRIWC0qXocVn9OG32ml0OeivMBNSZ4br8OKKovIsoQqS6viLMqid1MrGgDpbB+6EUdcgmcsCCxIW8t9uPDbxnWBR9bQiGdvHNRZJTMWaa4zuwDs8mwlz+RlIh3m5EQLh/J2E8nGOD15GbtsZauzBru0+SpoWX2cWPrUpu/3/YAgCNgVlfsratF0nT8+8cZss3ZW1zk+0s/fnj+GKknsLlhaAz6STvFnp97ih52XmUwm5gQZAlDmcPMnh+5nV0HRPM+OoWiEqVSK/3DrbbzefZX2iSAO1YSOwURi4UAiHE/SPR5asdIWgMNsYmdZ0arGxFMTXVyY7OV8qIeUnuXuQDOvDl/Aq9r591sewa3a6IwM8xdXnmUsGea+wu38Qs1ds+truk57ZIgvdb3B1egoiiRxq7+Op8sO4FIsvD3ezvf7jjOUmMQum3mkeBf3FDbjVFb2exAQVk0Ly2j6oom5yXAcu9WEomy859LFyQF+3H+OtJblo1X7Z4MGyFUk7MrcCZYA+EwLK9W5F6BEKaK04PvriWK/iw/duYPvvXGez/7PfyGr6zRVFfLk4W3ke+zsri/lX145w29+/vsEfE5K8lx4ne89ppXdq9FQjCM/OkVJdQF9bcN0tfRz+2N7lr2+zWkhGooTHo+iZTUwcrQqYQP8ZSTRjCTe+F4VBBFFcqPgnveZLFybIyjStYSEKvmv+3th1SxBEJEFG7K4cELAJM+l7kqiFUm8/nvJKV4prI/J3QyeKM0FCLIoIQsSiighIGBT5197SRTx2ufeK4IgoMoyfuf8ecf1xq8zJrVlfg/vtPXylTdOI0kiAvDR23Ysm461ENZtxtM/HuZ7Ry7kmpkXqV1bzSqfe2gfHzjQiNtuXtJpVTd03hh7ls5IK4IgUGKt4Fbf3bw59gKxbISoNoVXzSOlpbgj/0F0Q+P4xJuMJYcxSxZ2ew+yxbk9p4GtihR4ZH750QMkUhmeP3Fl0d4RAzjTOUA6k0Xd5AbBmYeeeTrydNnMFHgdHGyqQNNzfg/6dPVm5lgFcpPFHN/uOt1vSdyQQE4RRW4tLsNlMvHd1kuUOV083ZCTxLRMq7Z8r+0SZ0eG+JWd+yhzuvnH86f4ess5PrVtFwHbjaVK45kMnz/5Nn6rlf9y6x1cGh/lT4+/xd7CpSc5giCgKjKqIuOwmijwONjfUD6ti36t4gXTSj3CTMae6QzKtYqaJOb+loRccLbWSygIZiTRQa5PY3OkddPZfnQjDqxBlvAGP2lVVDCJuQHogcAhHik6jEVa5CEBcxSrZmhZh/P38b3+l3hz7CS3+XcxmZ7ifKiNgNnHTs+WTe8d0o00qWwPifTlTd3veqI/3kueKR/TIt/H9RAEAYei8lBVPRo6f3L8COH0tWDj6EAvqijzW7tupcl/Y8nPwegU/+P4G7zW10UsMz8T2+wP8BeHH6LC5VlQPtcwDERBwGO2oE43gWc0bdpAbOHJbO9EiHBidZVLq6pQG/AvveACSOtZzod6eLRkD6+PXObI6GV+sfYePn/lOXpjQRyKhXJbHn+4/SP8XfuLRN8TiE+ko7w8fIFKex7/YesHiGQSxLNpnIqFjugIpyY6uSvQyG15DYwlpzBLypy+gmVDALOyuoqNICyuk/f8qxe5/ZY6igvdq9r+StDgClDpyH1XZunm9K148MAW7ttXj0mR+a2nDyNJIook8t8/9yBmVUESBbZWFFBVfCfZaTq3LEmYpoVnttcUU1+Wj6bpiKKIJOUqMaos8f9++n4USUKdDupubapgd33JopNAQRRw5zvxFbj43Q/+KQYChx/fw4GHdgBw5VQXP/i7V+g410M4GOXUKxd57ktv8ugv3sWuO7YCUN1cRuMtNXzpD7/H//39b3Hvxw7y4CcPbYjq1L9hLuzy5iot5rvs/OI9+3M9QUIuSWFSpj2bVol1mT3HUxmOXe7lhROtiwYZiizxkTt38MiBxmVLqBoYnJk8xpOlP0/AVIwoiCS0WE4e1lZHKDOBIipYLXYGEz2IgkxGz/BoycdwKR5kYT7f3G5WefJQM619o1zuHV383JJp2gfGaay4sVHZRmPmOimStCaJsfWGIAiokoRdMWGWJayKgsd87UcRTiU5PTzIjoJC9hWWoEoSj9Vt5f97900eikUpsNoWvAcMwyCezXB8sI9/evhJiuwOJFHgYHEZaX2F2viCgCwJG2rAuBIIgjBNn5I2zbE7mWlH0yMYhrHuE3aXYsdvciMJEpFsFN3QccjWFe1HFiTuzNvHD/tf4WqsnyuRLq5MXSWrZymzFlJpW76L6npB0yaIJI9ws9CmcgkFYzbeE8gFwoZhXPfuXCWUo8HXuCPvPvLEgtz7wtzPF8JMsPFo1RYMA/6/E9cFG4bOq32dqJLIb+y8lXqPf873bBgGLcFR/vDYa5wcGZyln1w7NrijtIo/vf0BvGbrDSeJPqsVSRD4x7O5alIkleLZjja6QyEerKldcJ2BySliqZXTSyRRxO+w4TSvXkGnwOyi0OKhwuYnqTkptnjxmexMZeLoho4iyjgUM+oCPUayKCKLEpfCA/TFgmx15bwURATMokJSy9AS6qfRVUqVowBZEFcnj22wJJX5RlCknCv2qbM9tHYOz/v8+Jlu9uyoWNW2l4uZhJooXGvgNjDQZmiY7y2Zzf4pLPT2hiYuTIrMDDvWar4WAFxvgCtJArYbBIyyJM5ml+HaqRkYWMy5Des5njiiJGCRrr230DkGyv389eu/j6xIPPCJQyCALEtI08FK7Y4KfvuvPpVjoRhGLtkmCsjXVahkVeKJX72XD/7iXRgGyIo05/O14Ppk6exYdl0C8PpvceV0+htve2bLq932ZuD645997/rzmMF153Pdy1WdkyjmmCHriTUHGoZhMBQM8/KptiUHsv0Npdy9swbvCnwaREQ+VPoLHA2+TDwb44D/LorMJYhI2BUXGSODKqqISGT0LE2ubWhGlueHvodX9bPXe4gCc9GcbQqCwJbyAsoLPHQMjC9aFtZ1g56R0LIDjRl3aQRynNCb8OZdC4zp3hcwllSpiqRSpDUdp2pClSQEQcBvsRLPZEhoi1eSwskkmmHMBiOqKOOzWBc0+PppgyT5QZBhHRQploNkpo2sFgTluhF2nSAiUm0vo9xaxNlQK82uOrwmFwry7KBnTP+nGTqyIM1Okq+H1+TkgH87JydaeHPsFIOJUdyqg73epjlu4psBwzDIaKNEEq9t6n5vhJyR4iDHJt5iINGHU3Gyz3uQOvtWzoVPcmbyBNFsBL8pjzvy78ckmHln4g3Oh08zmhrGIln4UMmncCjL4wvP0Kgeq96KAfzZqbeYnG4Q1wyD57rbkUWJX99xgGq3F2H6/df6uvjTk0donRyfVwCTRZGPNWznP+89jGUJNakar4+nG5v56xPvcnJwAMMw6AxN8tmdu9lfXLrgOsFIbFUNy4okkudYOOGxXKiSgiSIuUmwbMpVRBGvTYIXgVux8eGyAzw3eJb/3fY8qijzobIDHMpvoNKez89VHOKZgdP8/y58h1Krj4+W38pWdynSCn/HBhBNrU45aibB1dE9ykQoTnnJXH8W0wpEW5aLXACde55qhk4sk6F7aoKLEyNcnZpgMB5hKDbFZCpBPJshqWXIajqqJGORFaxy7v8+s41Su4sSu4sSm5Nyp4cqpxeTJE9/T8KG07ZXes5ZXSetZ+mPhjk7PkTr5Bg9kRCD8SlCqSSJbIaUlkUWRayygks1U2J3Ue7wsNWTz76CEgLWHPdeEkREUcQ87bEhL8DMkCQRybJ4lUwQBBRVRlEXnjIahkFSyy5Y+BYRMMnz75GZ841n05wbH+L53jbOjA0yEJsio+vYFZVyh4vt/iLuK62lwZOHVVanmRuLf1+GkaP0RtNpToz281JfO+fGhxhJRElls1gVhQKrgy2efG4rLGdfQSl5FlsukH+f74XZHuPpa9oRHufM2CAd4SA9kRBDsSmimTTxbIasrmGWlZzQgdlK6fR9sM0fYJsvgN9iR55WlHo/q39rDjSymk7X4ASn2voXXc5iUri1sZKaYv+Kv0iP6uPRoo8xnhrm+/1f4ecrfwNBWHjKpIgqDY5t1DkaeXv8Fa5MnZsXaEAuamsoy+f4lT4mpg1MFoJhGIxMLn9y2z8R5uVL7XhtVu7ZWoN9DZmymxGheJIXW9qIJtM8sbsJj80ySye6nsoF4DSZMckS4VSSlJZFlWRGY1GsioJFvrFfhwC4zWZkQWQ4FsNttpDWtVk1nJ92qFIBIgoam3U+GRKZy1hN25GEVTan3eAnKwgCTa5a9vma+cng63y15yf0xYfZ79uG3+QmpWWYzITpivZzaqKFp0vvZ4uzGlmQ5mxDFRXuyr+Fd4LnOBu6zFQmSqm1kB3uhtUd7xqgGxGiqXfIaIObvu+FkNKTdMXasUhWPlP5a5wNnaA71knAXMRW5zYaHE0AfKf/awRT4zQ6t/Fg4IP0x3v4QNHTFFmWdtN+L3JGWCqPV29F1w0+f+ZtgsncOKkbBj/qvIwiSvzq9v0EbHa+297C358/Tn90at627IrCb+06yCe37pzXj7EQZFFkd2ERX/jA48QzabK6jkM1Lep8HEokSWVXHmhIorhukrbvNU1cLhyKhY9UHOSDpXt5aeg8zwyexmOysc1dTqnNx6/W3cdH0wf5WvcRnhk8g0O1UmHLW9E+DMMguErJdFWWUCSRyroi7HYTlWVzaWaxeBrLEhPV5cIwDLKGTlLL0hcJ89ZQN68PdHEhOERkARree5HSNSKZ6wOqsXnL2BSVRm8BO/1F7MoroslXgEe1oIhSrpq0yROymXOOptNcmhzl+d5WXh/oYiA6NUd4Yx40iGbSjCZitIfnKkjVunw8XLGFh8rqKLG7MEnyks7ha4GGwS3f+ZvZ6ucMBGCbv5DvPfiJOU31hmGQ0XXOB4f4+4vHeH3w6rwKaDSTYjge4dhIP1+8dIKDhRX8evOtNPsCmKYTlwvBMAwS2QzHR/v5s7NvciE4Mm+ZuJZhPBmnZWKE73ReoNjm4mN123msaisBi2NDr9WNMHNNIpkUp0cHeKbnCm8NdRNMxhdVFkulNcLpJEPxCBcnrp2rKkps8eTzcEU9dxZXU2J3oUoS0iYn7mAdAo2peJLzV4ems9w3RnWRj6oi74q71nU0vt7790jISILIft/hnCayaEYWFFRRRRFVREQEQ6Azepm3xl9CRMSleqnzNN1w2z6XDZO6+PEYsCyJXsjdKK0j43zj+Hn2V5ZyW23Fz1SgYRgGo5EoX3v3HC6Lmfub6/DYLNgUFVWS6J0KMxCdwqaoWBUFp8nEvsISTg0P8O5AP2UuFz/quMK2/AB51lzDUiSdIq1pJLJZNEMnmIxjU1QsssL+4hK+eeU8n9m2m/aJICeHB2jOuzE3/KcFqlyJIJhu2PewEUikz6HpDyGtgwrGe2GRTDxUeAjD0Hl19BjPDL3BDwdeRUefrV7IgoQiyGg3oItJgkSlvZgKWzFtkW5ssoVmVx12ZXM5wDPVjHD82U3d72JIakmC6VEuTV2gN34VgEpbDSktzeWpi1yNtSMJMj2xTppdO2bXmym6GxirdqO3qypP1G5FM3T++ty7jE/7bBjA9zsuIUxXbl/q7Zz14JiBiECe1cYf3HIn95XXoC4jyIBrD9xEJpNLXgDh6Wy8RZaxLNBrkMxkZ30GVgJBYNnHtVpEs0lSWi7rLgkik+koiiBjV8zEsikuTw3gNzmwSiYskopDNiMiMJoMM5SYxG9yIosSdjkXEIkrrWYYBlldp3N0dXKmdpMJm0mluX5hCuNjD25HWWMPY+471wgmE5wc7ec7nRc4PtJPQlv/qm8sk+b4SB/HR3Ky1W7VzP6CUu4ureGWgjKKbI4bi2KsI2YCjPFEnLeHe/h621nOjg8tqxK2FNrDQf7y3Fv87YV3uKe0lk817GKLJx+bom5qIGUAU6kkw/EIxbbcs2em+vFyXwd/dvYI3ZHJJbejGQZvDl7l0sQI/3HXYR4sq8euqPOCDcMwCKeTfL3tLJ8/f5TUMtXSBmJh/uzsEc6MD/JrTQdo9gUW7B/bCBiGQVrXGEvEeKW/g2+0naMtPL5mY+u0rnEuOMS54BB/e/EYD5TV8VR1M1s8eZjlze1vWvMIG02k6eifnzV4L0rz3KuSA5UEmc9V/c689+/If+iG6zQ4t93ws+thN6vLGlCWawCX0XQGJ8MMhX766T0LQTcMxiIxro5PsKP0WpWowGbncGkV/3T+FL/0/A/ZX1TKx7Zuo8bj49HaBiRR4J8uniacSrInUMTPNW6nwJprBP/yxTMcG+xnOBoFco7EewtL+K09t/Ibe27lz48f5Vde+BG1Hh+P1W75mahqmJWqXKCxiYilTpLVgihS8bzBWRAg3+RDFMTZxu73QhFkfCY3GT2LWZp/7C7FwYfLHmSnZwvvBs/TEe0llI6giBIuxUG5tYgd7gYaHJU3zBaZRBO3+nbQFunGreRoU5sNw0gST50hnj6z6fu+ESyShYC5GJNoYb/3NgBUyUQkM8V4apR6RyPl1iqmMqFrHF0hx/OPZCPYM1PYZceqKWgO1cSTtY1kDZ1/OH+C8UQMg5y3zbfbLi64jiyK1Lh9/L+33MnegpIV9ZZF02ne6uvhhY52JpMJrs9hPbllK481bJ23TkbTWY1tTi4QXvl6MzCJCi7FiiJK2GQzBgYiIh7VhlnKOQp/q+cdTk10EUxGQIDfP/cttnvK+VzN3aT1LKcnujg61kpW1wlY3DxUtJNGdylXo6O8OHSeC6FeDKDaXsCTZfsosXqXOqx5GJqcWnWzvNdmWbTqMz4Rw+e1Y1lFH9zMZDuYjPPOcC9fvnKac+NDi2fy1xmhdJIX+tp5oa+du0tq+L3dd1DtWoNwxjKgGTqRdIoTo7ls/fHR/jVPLBdCStd4pucKrw908YGKBj6zdS9ldhdmefMk1lNalqtTE7OBRlrXeH2gi/915g16o+EVbWs8GecPT76KLIo8WFaPWbpGwzQMg2gmzT9dPsVfnT+64jtINwxe7utA1w1+c/utNPkCG57913SdcDrJGwNX+acrJ7k4MbIh98FkKsE32s/xSn8HT9c081R1M8U216zYxkZjzYFGPJWme2TpiDTgdeBz3lwKBZIkLushoy6zCjMWidI5NrEhN8rNgGgqzcWBkXnVK1EQ2F9Uwv6i+RQNi6zwVH0TT9UvPGn8tV238Gu7Ft5fpcvD/773kTUf90qQe/BpxLJJHIp1QwYaVa5AFC2widL0GW2QROYCJqVmVvd7BpIg8de7f3/R9avspfy/jb+66DKSILHFWc0WZ/WqjtHAIKGnkAWJUkuAGvvyPRvWA7lqxjATsW+xqeWmJWCSzFTb6jmbOcGPBr8FQLNrJ1uczbhVDy1T5+iOdWKWrDimfVAEBJrdO3kn+AZm0cwHip7CJq880TMDl8nMh+qa0XSDf7x4krHpYGMhmCWZPQVF/Od9d7DFm7diGkJbcJxvtlxgW36A+6pr56id1HgXngCKSygj3Qi6YazJjG6Xt5Jd3koy6SxOmwW7w4yiyPxu4wdnl/lM9Z18pvrOBdf3muz8Uu29/FLtvfM+q3EE5mxntTAMeKO1e9Xre2wW3FYLiWSa9AIqjc+8fIEH726irHhlAdCM6Mf54DBfunKKV/s759FnNhMWSaba5aXM4d7Q/WR1je5IiG93nOcb7eeYSm+863osm+ZbnRc4NTbALzfdwj0lNWv2rloukprG1akJbiusQNN1LgZH+OLlEysOMmYwlU7xZ2eOUOnwss0XmKVkZQ2dZ3uu8L9XEWRcj9cGOim2OfFbbBRZF5fhXwvSmkZnOMjX2s7wo+7Lm3IfjCZi/N3FY5waHeSXmvazL78E6yI09vXCmgINwzDIZHXCsaUzJRZTTqb1ZkI8mV6y3C4wVzniemQ1nWgqRWLaOfXiwAiXh3LVnXAiScdokPHo/P6PIrcDh3nxH3kkmWIqkSKRyaDpOqIgoEgSdrOKy2JeMENoGAZTyRRjkRhZTcduVvHbbZhvcN2TmSyDoSnSWQ1JFCjz/v/Z++/wutL7uhf/7HbOPr0DB70QBEmAvQ7J4fQiaUa925JL3EtsJ76x4/ycX25unDjl2nFJ4iIXWbbsyJLVR2U0vXLYKwpBEL2X0+tu948DggTRGzmjzHpmHgIHu5+93/2ub1nLj02+VftoWhap/K3zG44nOd1T6sXJFjVujE+TXqCsLOR2EnavTnno7QILi570CN8ePsmPNz5JyLbxpUaS6MEmRSloN7ibbCOZexGP+jCi6FxzKc1mwbIsklqKNycv4JFdHAntuQdN4HkyhbfIFN66q/tdCUL2MI+Wv3fe5/eHH+H+8CMLrAFHQw9yNPTghh2D367yqW270C2DL7SdZyI7n2w4ZYXH65r4F/uPU+f1ryk9n9E0fHaVXzx0BFVe2TvDLktrkl/UDXNNJn93YmQ4xne+do6nP3KQ6rrNjYavFnld54X262taVwCCbid+p8rZC31cuzE+K616E22dIzxy/+p6qUzLYiqf5dmBLj539dSKymc2G/XeAAfLqlE2qWzqZknglelR/uzqWzzb33VXwxmmZdGVmOJ3z75IXyrGjzTvpczh3vQSmpsZDcuymMhn+FZvO2fGh9a1zaFMkr/uOMO/O/QoQXtprnEtNsnvnn153VqOFvBMXyf7IpU8Xb9jU6L+OV3j3MQQn2s7zStDPXc1g2dYFifH+pnIZ/jpHYd4X/02vMrmks51z/w13aCwhBcFgCQK2NdocLaZGIull/TRgBlHV8/COsYTqTRfOXuFq0Pj9E7GGE2kKM7UBD7f3s3z7d0Lrvd7n3wfT7ZuXfCL1Q2Tgek4L3Xe4JVrvVwfmyKZL2CXJcp9bg7UVfN4SxOtVWX4nXOPy6LkjvtHz79Bx8gEB+ur+cVH7uNAfdW8ekPDNHnrxgC/8+0XGIolaaks4/c++RQ1Qd/sFLSoG3z59GUuDozSNxVjMJaYjf61j4zz83/79QXP7xceOsIvPHIf8juQaBiWyRtTV3lj8jIfr31wU4gGgF1uIi2cwbLuXilYJv8WRX0ARSovqV7dY9wuHJDUM7wxeYHB7BjbvQ0cDLTe5WMxKRqDTKY+z9spm/F2Q0B18KPb94AFX+y4yFgmPecludUf4ud2H6be61/zi8tts+G12+lLxKl0e+aMXfKMueadUJW1NbtqhsFwPIlmGOuWDjcMk/GxRMlcSxYpr/AjSRLTUykyqTwI4PE48AdcZDIFMuk85RV+CgWNeCyDf8aTIDadoZDXkEQRr9+B1+cklyuSiGUpFDRsNplA0IW6wgbsc71DXBqcL0u7ErjsNqr8XjyqncnpNJIkzMtcdN0YR5JW/l0bpslwNsWXuy7xufbT5PS7o763FCRBYKsvzN5wxaZs/2Yd/pnxIf7f8y9zfnJkU/azEkzms/x1+1kmchl+Yed9VLt9m0o2SkQjTtE0uDI1xrd6N8ab6Pv9XXyqaS+Hyx0UdY0/vPQ68eLGvE+nC1leHr7B3nAFjRtcRpfTNV4Z7uFPrpzkwj28D7oTU/zJlTfJGzofbmzBZ3dsWvhxXbMN07Io6saKXsvmzPJvF4Md3TDpHYst2+gtCAI1Ef+Cf0vmC1wZHGMilcFpU4j63IzPyCz6HCoRj2vBhiKvQ2Whmi3DNDnfP8TvP/salwZHUWWFgEulSvVimCZT6SxfPnOJFzu6+czRfXz0QCtB1y0XSFEQONRYw0fiO/ncy6c41z/EMxc7qPB5SgTitn32TcX5q9fOMJpIU+Z18SuPHaPS75nz/eiGwYX+EYbjSWRRpMrvZSSRIlvUcCgKlX7Pgi/nsMf1NouXrww3y6YuxhYmiBsJVdmKiO0uKk+BYSWIZ59BVZqRpQAbLXW7WvRlh8jqBXTLoCvVy1eHniNo9/F4+TG8tsXNHDcaJTnBDPHsN8hpV+/aft+pCKpOPtuyF7ss88X2iwyk4hgzpPFGIkbn9AQN3gDONRrE+VUV3TT5vTde42hNLR6bbfZObYmUsSNSNn8dpwPbCrMft8O0LKbTWfqn4mwpW9+EIpnM8carnYiCwPRUmp/+pcfweB18+6tnSadLWf9AwMXTHzlIx9VBzp26wc//2pOMjyT4zjfO8b4P7adY1PnO189hmhYej8q+w43s2ltHx5VBzp3uoZAvTcrvf3gHLbuqkZcp603k8vzNa+fWpIYFUB30URsqvTtat1fhctqojPrnLJPJF3G7VqbcZVgmQ5kkn+84y992nkNbQwP/TUiCgE2SsYlSSapWEGblcA3TomDo6CtsrA6pTvaEKyhzbM64o5sm5yaG+W/nX17V5FIAVFnBo9hwyiXRlZsSrDf7WwqGTlbTSGoFCkvIxt+OlFbg270dAPzCzvuocfs2LaKtWyZjuRS9yRjf6++cVa+DkjJSUHXgUewoooRumSQKeaYLuWXL6AqGztduXGFXqJyTY/28NHRjzt8FwCnbCKoOXHKpCb5g6iQKeWKF3OyYtRhOjQ1yIzlNnTewYSXUOV3jjZE+/vTKW6u6D2RBxK3YcCk2VEnGJkmzGX9zhsQWdJ20ViClFZY9t5voTyf46/YzKKLIBxta8Ng2p3d0XURDEASUFWQpDNMikytS1HRU291rQloKw1MJbgxNLpvRsCsStWX+Bf9WF/LzW089hDaTxbg8OMpfv36O7vEpDjVU89mje+dlHQAqfJ4FS1c6Ryf4nW+9yPXxKSr8Xu7fWsf+ukqCzpL3ROfoBK9c66FjeIIvvnkemyTxqSO7sd/2gnXaFB7dsYX+qThfPXeVH7Rdpz4c4GMHd5YIDhDP5vi7N8/TPjyOqsh85r59HKirmkcaHDaFf/XeExRnmuHHkmn+xwtvcmlglIZIgH/x+HHKvPMH5qDLueqyFwuLy/EbaKbBvkDT7PpFQ6MrPUje0AjaPDS4SxEny7KYLqboy4wSUf1UOyMICBRNjUQxQ1xLk9Xz6JaBIAgzTZtuInY/NnGujn/BKDKaj5HWc0wXknSlB5EEkSuJHkbz07PL2UWFSkeYsN23qnNbCA7b7ruuPAWQyH6HgOvDSKIPQbg7jWCL4Z8Gf8CZ6TYKZgFJkAjbAhwL7+VEZJGmnU2DQbZwnsnUF+7yft+58NtLmQ2XrPCF9gt0x6dmpRn/rv0CTf4QraGyNWUZUoUCY+k0Fhav9PXM+ZssSQsSjXKfG+ca3y2JXIFTNwbXTTQ0TeeJp/aydVuU3/+P32J0OM7w4DRjw3F+7beexrQs/vi/PEN319zsgsWt7J5WNHA4bew71EikzEukzEMqmePqpUEcDhv3P7yDN17uoO/GOHUNEXx+5wJHMnM8usE3z7fz1o2BNZ9TbchPbcgPwNbG+dcd4MR9W1Hty08lTMtiIpfhi9cu8PmOs6vuZbSJEn67g4DdgddmJ2B3EFKdBOwOVFlGESU00yj5NOkak/kMU/ksGU0jrRWIFfMki/kF99vgDXK4fGGPlvXCME06E5P894uvrXhyaRMlIg4XVW4fW7xBtvnDVLt9hFQXLtmGLIpolkFGKzKRyzCQjtMRmyx5jGSSjGZTy75aUlqB7/R14pAVfq71yKxAy2YgXsjzTF8HLw+XnmdREIioLg6UVXEsWsf2QASPzU5GK3JlaowXh7o5NzE8Ty73Trwy3MNQJskXOs6i30ZaZVFkqy/MobJqjpTXUOvxY5ckpvJZLk2N8tzAda5MjS7p5zWSTdEZn+RweQ1e2/olsDXD4NLUCH/Rfprzk8tLpwuUeuMqnF5qPX6afWEafQHKHB4CdnVGbKJEMmKFHGPZDN2JSdrjEwyk4gxnUndIPS+M/nScf+i6QEh18nDVlhWXq64G69qiKAjYFBm7IlNYpqFuKpkhkcm/LYiGphu8dKGboan5mu93ojriI+xb+AFUFYX6cGD29+lMDvtMhMmr2mkIBwl7VtYAnytq/MUrp+mdiuFW7fzsg4f52IGdiLfVHT+8vZEjjTWzZOS7lzs5WF9Fa9Vcydeoz8PTe7YzOJ3gteu9fOtiO3XhAPdvrQPg2StdvNRxg7ym897dzXxgb8uCL2lJFKkL3To/VVFmo5QORaEuHKA6sP5J9038cddXGcxO8A9H///4be6S9nsxye+2fZHJQoKj4VZ+u/XHkISSGdapqXb+9Po3+WD1cX6y8b0UDY0riR5enbhMZ6qf0fw0RVNDQMSrONnmqeHh8n0cCDTjlG8NHOOFOF/qf4HezCij+WlyRgEB+NPr35wjJRlR/Xyq9hEeKV//RFhVtqFIEXRzgrvJNnRznHj2W9jlxhmyce+yGrt825AEmZyRw6t4aPU2cSy0B0W8e2OEZZkU9X7Gk/8Tw7z3deLrRSyfW3FUczUoSRSLM07WJSMwuyTzsa07cSo2/qbtHFcnxymaBufGh3mmpzSB8dhW7q+giBIhh5M90Qr+6oMfWdXxVfg8uNboZpvM5Xmtq5f37dmGz7H2CUU44sXhKDVWOp02dF0nmy3i8ZUMakXA7XWQSuZwOu3oulkyQNVNcrlSpqJ+SxmGYXLpXB+XzvWyZ389VbUh0qkc46OJ2WbsUMS7ZLmSbpic7O7nr189M2cCtho4bApbyoJU+JcWEejpm6SuOoTXs3jgotT4XeQbPVf5m1WSDK9ip9rtY6s/zO5QlNZgOVt8QYJ255JE1rIsksUCg5kE/ak47bFxrsUnGcummchlmMhnKBg6Dklhuz/CNv/qvElWAtOyGMul+ev2M7NyuktBFATKHG72hSt5sKqB+yvqqXB5VhxR70vFeGW4l2f7r3F1epzpwuIeYQCJYp7v9nVS7nDz6eY9GzKhXghj2RR/1X6GtFZERKDG7eNHmvfysS27CKlzyfL+SBXHK+r4XNtpnuntWHKyPJZL87ed5zg9PjhbwikLIkfKa/iF1vs4VlE3r4rmcFkNh8uq+cNLb/DqcM+S0f+r02NM5DLrvi6mZdKXivGlrku8Odq/7PJuxUaTL8TxinoeqdpCS7AMxwqUwm5KB1+YHOYHA9d5faSXG8npZTOHV6fH+cfrl6l0edkVim545dG6qYtdkYj43QxOxJdcrnt4ioHxOOWBtSufbARMy6Kjf5yXLnQznVz6IRQEuG9H3brkD1eKjtEJzvQNoRkmD22v4YN7W+ZNAhVJYns0wtN7tvMHP3idoXiSN7r75hENgJbKMj64v4WRRIrOsQm+eb6NSr+HVK7AV85eYTyVYXdNlB8/doCQe+VO7ZsFAYFmdzUDmXF6M6PstTVhUiIak8UEqmRnLB8joWUI2jxkjDxjhRhuxUFUDSIgkDc1LsSvcz7eRUBxs8ffhEtW0UydkdwUp6Y76E4P49vuotVbjzTT9CchUuUIU6YGyOkFvjL4MnbRxqPl+/He5uPglh3UOjfGx0MUVZz2veS161hsvtrE7Yhlvo5XfQS3eh9w74j/4eAefHIZeaNIrStMg7sUMc0bGj3pMXyKi0pnYJmtrB0ll/s4k6kvkC68sWn7uZt4tu86HdPLy42vFpIookoyDllGnXFdViUZuySjShLbAxF6E3GKhRwW8JWuK0zmsnhXkYqv8fj4ZzsPrOn4KgNeAi7nbPnMaqAZJh3DE7zc0cNTe7at2ayrpHw1dxxt2FLG2be6uXShrzQJyGs0NpWTzRRIp3JcOt/H+GiSfLYAFuSyBYoFnW2tlbRdGqC/d4Idu6pp3BqlPOqnsbkcy4LqmiDORcqVirrB2d5Bfu/7rzGWzKzpXADqwwF2V1egzgSXYvEMsiyRy2uzpWAAz73cxoef2o/Xs/hkTLdMTo4O8KdXTpFfIRF2SDIN3iBHo3U8VtPE7lAUl7Jy4ioIAj67is+u0hos5z21zRRMg57EFBcnRzk3OUR3YhpVkjkard3wpl/LsigaBt/u7eDrN5YvybSJEs3+MB9qbOWpuu1UuFY/V6rzBPhMs5/Ha5r4Utclvt3bPs/M706MZFN8vecqtZ7SepvhIWLMSM8CBFUHH23cyWea9y36fW7xhfjstn2MZlK8NtK7ZAncF69dmP1ZALYHIvzr/Q+xKxRdcHlJFNkVquBTW/fQm4wtKURwPTFFrLD+8uZ4Ic93+jr5Tl/nsstGnW4ertrCx5t20RosX5HJ6U0IgoBDVjgarWNvuJITFfX8bec5To4NkF2mF+rN0T62ByJUujxENriEcN1Ew2FXqC3zL0s0boxMc6VnlO21Zbgd98bEzrQsekam+N8vXuDa4MSyLyRVUXhwz9qkOleLk9395GaiVY+3NCFLC+u7u+w2dlSUJmSJXJ7u8WlM05qT+YDSw3S8qY7B6QTTb2R59VovYY+TgenETGmWh584foDGSPCeuGAuhGZPDS+Mn6c7PczeQBO6qdOVGkQV7ewLbOVGepi+zChBm4e0lmM0N4VfcRNVS82JXsXJ8fBOGl0VNLgrqHCEsIkKpmXSlRrkz7q/zZXEDS7He2h0VeIWS2Vtlc4wP1r/+Ew5VpKvDL6MQ7Lx4eoT1DgXLhfYCLjs9xHLfBPLurtEwzAnmUj9BXZlC4pUsS6SaVomY/kEkiBSpq4uu5XQspyZ7ua18Q4erdjFT7tL6kmJYpavDLzFHn8dH3AeXPOxLQfTyjKd+QpTmS9u2j7uNp7rv86zfWtTGFoLBATskoRNkuY09U7msnyla2GPjcVwoLxqzUTDo9rZUhbkXN/Qgkp4y2EileFrZ6+ytTzEjsrVP/Mul8rWHRU4XaWJU/OOSoJhD5XVQe5/aAfX2oaxsDjx8HaqakJk0nm2t1Zx9eIADqeNQ8e24nTZSSZyXL08gCgK+PxOdu6txeGwsWd/HZfO99F2uaT653bbCYbd3NlnlcoXePN6P3/+0imuj03NEVxYDWRRpLWyjJaqW9dicDiG261ypX2YkbE4TmfpPd47MIWmLV5Pb1oWg+kkf3Ll5IonbSHVyfGKOj7SuJNDZdUrJhi96QkKpkGTe37ZniAIqJLMjmA5O4LlfKixhXOTg5ybGqDKs/FlQxYWV6fH+Ov2M8vWzNslmf3hSn5yx0EerGpY1eTyTgiCQNTp4Rd33sdWX5g/vXqSS1NLiwFci0/yjZ42tvhCNPvDSy67HiiiyN5wJR/dsnPZ73RHoIwHqhroiE8wml2ZN5lLsfGzrYcXJRk3IYsie0JRHqhsoLdzcaIxmE4QK+TW1V9cNAwuTI7wTzeuLEuyq10+Prl1Nx9r2kWFc31BeYes8EBlA1GXhz+5fJIfDHQtWSqWN3S+29fJnnAFj1Zv2VD1tXUTDY/DzvbaMt642rvkculcgRcvXKepKszhHbUr9qbYKBQ1nWtDk3z5pYu8dqWHbGF5pYudDVF21N0dJ+ru8elZY8CusSlyxauLZlL6pxMIlNLjyVyBgq7jWKD0yWW38eTOZvqn4zxzqZOvnr2Kbpo4bTY+fnAXhxuqF5W+vRfY6qlBQKA7XZK+00yDzuQAAZubY+FW2pK99GZG2RfYSlrPMpKfxm9zE3Xcqq3e5q1lm3eu/4IoiGzz1tLiq6M7PcRofoqCqeFmYTWxuwWn/QCS6MI07r7BYyr/MvHsNwm7fxxQ10w2Ulqe1yc6idi9qyYada4IP7/1caYK6TXtez0wrQLx7DcYT/wRlrU2I7N3UZpM5Q19xVHqzcTemgqeu3p9TURDN02uDI3xN6+f42cfPExDJLiqTHYo4uHR99wyin30vbd+PnS0iUNHm+Ys7/aofOgTRxbcTl3D/BKe8go/j1f4F92/aVr0TMZ49VoP//utiwxMJ9dMMgCqAl4ONlQTdt/K6EbLfdgUGdM0qa0OUVNZyjYOj8RQ5MWDVbpp8rUbVzg7sTJJ0wqnhw82tPDxpt00+oKrkqwYyyfJ6kUa3RGWm2GoskLQoRIzYowW4uxiYefzteCmR8hftZ9mZJlJsiyI7ApF+ZnWwzxQ2bBhjtSKJPFYTROqLPNfzr1MZ3zxTKdhWZwaG+DZgS4qXR7cyuYEg4OqkxOVDVS5l39XiILAsWgdz/Z3rZho7A5FebK2eUXLRhzuklu6bCOjLzxmZHWNyVyGomGsqXfBsizGc2m+fqONvlR8yWXLHG4+tXU3n9y6e8MyCpIo0uwP87Oth0lpRV4a6l6yULs3FePloRu0Bsuocfs35BhgA4iG22Gnpa4ct8NGOrf0AN/WN8bXXruMapPZ2RC9K/0apmkyHs9w/voQ3z3VwblrgysiGapN5hMP7VmTNvtaEMvmMGbSg5975fSK19NNc1GiAaUXxmMtTVwZGqNteByAnVXlPLpjy7rqkTcDda4yVMlGT2ZkRg5Qozs9RKUjRKO7EkWQ6c2MYmGR0nNMFOLUOsvmSNCalkm8mGYkP02smCJnFNAsA8My6M+MYVgmRVPH2sC+iJymcXlkjGuTk3M+r/X72VMRXfQ62+Qq7PIWNGMc1q3+vVoYTKb+Ertch9fxBCz7Wr5jbdNkIDvJycku3pq6TrnqI6nlKFO9bPdW4bM5iRXTXEuOMJ5PYmERtnvYE6jHKdlWTGxKWaY0nckRwnYPTZ71149alkYi+13GEn+AYa3NNOpdvP2wu7aC6oCP4XhynqnoSpApFHmp4wayKPHp+3azLRpGvkvOuWuFZVmMJtJcGRzlB23Xebmjh1R+fRlSVZE51FjNkcbqOWQrEipFWPftqsXjVgnMNKKnMnl83oWb0i3Loic5zZevX17Rvssdbj7etItPb927ptKhI+G7U4GwElyYGOH5weUVDGs8Pj61dQ8nKuo3jGTchE2SOBqt5adbDvFfzr3EZH7xcvHpQo5Xhns4XFa9aY3xZQ43R6MrN2Jt9Aap9/g5NzFEcRkVKlEQ+EjjzhVng2RRJOp0U+nyLFleNp5Lk9O1NRGNgmlwcXKEF4eWvg8cssITNVv5QEPLhpctSYLIVn+YT23dzY3k1LKE55XhHh6uaqTC6d2w+3HdREORJRoqguzZUsnrV3qXXNYwLV693EOuoPGew9s5tK2GMr8baRP8NQqazshUks6BCc51DfFmWy/Dk8kV1++e2NXA0Za6DT+uxWBa1mxP8KGG6hXf1K1VSyu76IZJtqjNKmNBKZWXLhQxLOtt5XXhkh1UOcIM5ibJGHlixTRTxSRHQjtwSDaiapDh3CRJLUtcS1M0dcrUAHapRLKyeoH2ZC+npju4nhoipWcRERBmGummiwmK5sZrtqcKBb7d3snfX7g05/P3bNtKpdezKNEQEPE6HidTPHtPouqaMcpY4g9RpCgO295VZTUsLDJ6gdF8nFgxjU2UGcnFZtVQABLFHNdTY8SKaQzL5MWxq0iCyP5gA8oKfTymi2leGLtKf3qCh6OtlB6Std+zhpkhmf0eY8k/RDPW5i3wLt6eKPe6OdxYTcfIxJpN+JK5At+/co1YNssH9u7gQH3VigU97iY0veT/0T4ywZmeQV7r6mMollgTwboTjZEgj7U0Ue5beKJfWz3XR+PwvoZFsz8mFl/uvrxsVB/Aa7PzZG0zn2zaPY9knJ7qQTMNiobOeD5JyO5mb7CWoM2FIAjEi1lOT95gqpim2hnkSHhu6YduGnQmR+lKjZHXi7gVlZ3+6jn7sCyLoVyM68lxal1BGtyRNWd6NdPkbzrPLpvp8yp2Hq7awmPVW9bt47IYHLLCo9VbaJse4/Md55YMsrVPj/PmaD87AmUbLnUqCyKVLg/1q3Bet0kSDb4gPpvKRH7pfiOXbONEZf2qjimgOih3Lk00pvJZ8oYGa6iAmM5n+XZv+7LqT63Bcp6q307NCjI9a4FdktkbruSJmmb+qv30kqV8w5kk5yaG2Rep3DDSsyF1M+V+N4/sbeLyjRGS2aUvqG6YnGzvZ3AywcXuYfZsqWRLZYiaMj9uh31N0UrLmikjyuYYi6UZmUrSNxaja3CSq32jjEyllnUAvx1bq8J85rEDqLbNt2a/CY9qRxQFDMPiR47soSboX9F0ym234VhCr75zdIKvn7tK72Ss1AyeL3Cxf4SvnbtKmcdN1Oe+543gt6PZU8ON9AiD2QkGsuMICDR5qnFIdupd5VxO9NCdHmYsH8MlqVSopbIp0zJpS/bwd73PMZAdZ5u3ln2BrYTtPhxSSaP7lfGLvD759vJJ8DofZyL1Z2jGvTHuyWlXGU38ARX+38BhW7lJnixKtPprEAWRoqmzN1DPExV75iwTVj08UbEbr+LAtCz+a9s3uRwfoNVXgyIuPfQICKS0HC+MXWUoO8VjFbvZ7a9d172qGePEMl9jKvUFisYAP4zGfIei1djWUd99L7HFt/7G/0dbtvByZw+JgYVlTFeCTKHIq5299E/FeaC5gSNbathRWUbY7bynY6VmGEymMvROxukaneTK8BiX+kcYjqfWrCx1J8JuJ4+2bGF/XeWK17mzP/B2TOWys34NS0EWRPaEKvh4064Fy2peHG2nPzPFTn81hmVyfrqPtJ7n4egOvIoDwzJJ6wVeGuugXPWxP1g/SzQM0+RqYoh/6jtD0O7GJkqk9QI1riD22xTuBrMxnh25QkYvEHV41xXSuJ6Y4rWRviWXESg1PT9dtx2/fXPLeH02lQ82tvDKSC/dS0yqU1qB0+MDnKisZ39k40rJAJyyQoMnuOrxqc7tx2dfnmg0+UNEHG4sywBzBEGaIZKWjmXGwMohSJVzzGo9ip3gMtc+XsjPGjGvBpppcD0xxeujS98HXpudBysb2BUs39TxJaw6ua+8hu/1dzKQXjyTbwFvjvXznrrmtxfRcNhtHNhWw/27GvneqY4VDfCDEwmGJ5OcbOujPhqkLhogGvAQ8DgJuB24HDZssoQsSSiyiGWV6lAN06SoGxQ0nWy+SDpXJJnNE0vlmEpmGYulGJ5KMDqdWtYjYyFUhDz8xJMH2V5btuQAuhjWepvUh/y8IUloRumFsS0aXneT9kg8yTfOt3G2bxifw8FHD+xkJJHiB1ev873L16gPB/jogZ141HvTnL8Qmj01fHfkLfoyo9zIjGCXFJpniEaju5KTU+10JvsZy0/jVZxUzPRnpPUc52JdtCV7ORzcwY/WP8ZWd/UcBY32ZP/bxjDyJuxyDS71CPHMN7n75VMlpPIvIiQUyr3/HKd9z/IrrBCaaXAtNcJ4PoFpWcSK6RLpWMEEP28UOTXVjW4avLdq37pJRl7rYjr9JWKZr6CbS6uwvJPxoS07eKKuafkF34ZYTwPsTTRGgjze2kTfZHzNWQ0olaR2j08zFEty8sYAe2qitFSW0VQeojbkx+dQN11Eo6gbTGeyjMRTjMRTDE4n6J2K0TMxTc9EjOQ6S6TuhMuucKK5nqf2bMe9Qe+EV4Z7GFtBNiPq8vC+um20BBZvxFdEiYfKt1PvDvONgXOcmrzBTn81XsVByO7mw7UHGM8nGS/M3V/B1Pnu0GXsksJnG4/hV5zkDA1BgIHMNIIgMJZLMJCZIm9ovKdyF1s965v0PdPXsazjuUexc6ismtbQ5veBSqJInSfAU3Xb+KNLSyvstU2Pc3VqjF2h6IY2BDtkhdpVZDNuoszpxrkCadc9oWhp/mXlsTJ/DUoLKHtB8GLlvoYgOLCUbQi2w7PrOGXbspmbtFZctmxrwfWKRV4b7iVZXPo53eaPcLi8BvcmmeXdhCSKNHiD7ItULkk0ALrikwyk4rQGyjck07YhREMQoCLo4QPHWhieTHChe3kzEiiVC41MpxiZTvFmWx8u1YbXpeJ3qThVG4osIUsiijRDNKwS0dB0g4JmkCtoZPJF0rkC6Vxh3WnjipCXH3/iAA/u2YK8hnIuURBmXz5Fw6CwChZ8ZEstXzvXRrao8b0r1zjR3IBDEdY82GUKRZ5v7+aFjm4Kus7Te7bzgb0tZItFJlMZ3uju5x9PXaY+FOBoU+0c07/FIAjM1izrpkGuuPFlSNs8NVhAf3acvswoYZuPMrsfURCpdISxsOhKDZIzivgUFxUzilM3zfYMy2Srp5ot7qo5JCOr5xnJTVIwlu4jkmZM7CygYGz8+c2HQMD5ERKZ72Cx+ibWjYFFMvccWDph70/jth+bLTdbKwzL5Nnhi4zk41Q5gjPmQsKKcwimZaFKCmWuMD3pMSYKyVU3mwMYZpp0/nXi2W+RzD2Pad39xvO7ibJNNN3aCJimyT/8/ZsUCjoHDjSwZ+/K67VXAlEUee+ubZzuGeT1rv45JaNrQV7TaR8e59roBGG3i4ZIgOqgjyq/l6jPQ5nXRcDlxOdQ8ah2HDa5JHO7xLhdqpK1Zt5jJVfndL5IKl8glS8Qy+SYymSZTueYTGUYS6YZS6YZT6bJbsKYC6BIIrtrKvj44V2zBn0bgW/1ti/7zCuiyO5QlEeqm5Ykb/WuMFGHF1VS2Oat4JWxTjL6wpO426++bhm0J4b5bONxQvbS8+EWb03qksUcL6c7sUsyH609uG6SUTB0nh3oWna5SpeXE5X1G0KwVwKvYudYtI4vdV1iLLf4ODhdyHFleozxbHpFTdsrhSrLa+q7CdgdqCu4Rs2zPig6aBdBqoXCK2B/EPRrYD8BxbNwG9FQJRmnvLT6VVbXVuwwfxOWZREv5njxDrfyOyELIq3BcrZtotLX7Sh3umkJlPPtno4lA35ZXaMjNsnRaB1hx/pLRzfsDldkidb6KJ96ZC8FXae9b3zV28jki2TyRUZWYKS30dheW8bHHtjNkwebcdjXVjLlsCmz2YGhWILB6QRVfu8ya5WwuzrKnpoKXrnWwxvX+/jy6Ut89MDOBSNLhmkynckxlc5SG/TjvMOoyjBNTvUM8M0L7YwkUhzbUsf79+wg6nMjCgKfOLybwViS7vEpvvDGOaoCPrZEAojLROgUSSLoKqUZY5k818Ym2Vq+sQ9IuSOAR3bQmxllMDvB4dAO5JkyG5/iImBz05MZwSmpNLmr8M34XNhEBbtUGjCmigkSxTQR1V/6vZDklYmLdKQGZvsHFj1HUcanuCiaGudjXdS5ymfLfCzLwsJatev5cnDZD2FXGslry5cYbB4MkvmX0K0kQVc/fuf7kcTlXwo2UZrRSM+jm8ZMxkhANw3OTN+gxVfNExW70S2DV8bbV9yEr0oK271V7AnU8a3Bs3xn6DwfrT2CR1lZiYGFSa7YTiL7HZK55yhoXVjcDeL4LpaCaVp88+vnSKVyOJ22DScaAFG/h88c28fgdJIbE9NrLqG6HYZpzU746R7AZVcIupwEXA58DhW33YbTbkNVZFRFxiZJSKIwO6ZapoVhmRimhT6Tlb/5f0HXyBQ1sgWNTKFEOOLZPJlCcUOOfTkoksiu6gp+/Ph+dlYvLQu6GkzkMlxeRlYVSuo/xyvqliXJJhY3Y4mmZVIqsFzZe1oQhEXHHguLMtWDS1bpSo6xK1BN2L52adGb0eClIAkiNR4/u8MVa97PaiGJIlUuL/sjlXy3/9qSy3bEJuhNxTaUaNhFmTJ19YEQr82+IjJW771ZeimWSIb9Mcj+JZhJBNEHcjMYc83yFEnEvkzEvmDoc4LY53qGqAr6iHici86ZdMukJxmjJzm95LbDDifN/jC+TTJKvBNOWaHa5cVvV5leRmq6Mz5BvJh/exENAJdq42hLPQBfevECF7tH7spAuR447ArHWut5/9EWDm6rwWGT1xzNKPO42FIW5I3rfVwfn+JLpy8xkUpT7vUgCAJ5TSNb1NhTXUH5HW7jHtXOT9x/gKF4gmtjk3z+9XN0jU/TUhkh4nEjiyJFXSeezTOSSNE/FcfvVPm5Bw/PIxrXRif5+rk2OkcnaQgH+eC+HXNKsY401vDBvTv4/OvnONM7xN+fvMCvPHYMv3NpmVO33cbOqnK+dbGd8VSafzpzhVxRpyboQ5ZE8ppOrqhRHw7QVBZadDtLwSYq1LnK6UwNoJsG2zy3JiJOWaXKEeHViUtE7H4qHKFZ0z2v4qLJXUXI5uXMdCeaqVPpCKObBsP5KUZzU1Q7ImT1xZuuBUFAESUeiOzhmeE3eWb4JMO5SdyKE900UCUbR0MtNHs3VpFDEt34XR9mNP67G7rd1cMgWziLboxR0Hrwuz6I09bKUgWBEdVHrTPMmekb9GUm2e6t5Eh4K17FQauvhhvpMf6y+wU8igOXbJ+Tiv/u8Hn6MpN0JAcZzE6BBU2eKDu8VTOa9woN7jIeLm/l+yMXeW70Mu+r3Dfb/L8wLIr6AKncKyRyz5MtnH5XWer/QBxqqOazx/bxR8+9wVR6aWPWtSBT0MgUEgxMz7+3ZFFElkREQZgt1bQsMDFnyn+tDeupWC9uZjJ+9sHDHNlSs6GqR2fGB0lpy2dpq1xejkfrlqUM15KjDGWncUgKl+ODBO2uFcmwKoJEq6+SV8c72RuoJWh3kdWLaDPlMG5ZZX+onipHgO8NX+K5kTaertqDW1nb5O+N0f5lv1+PzU5LoOyuTTBvImB3cKiselmi0Zuapj8V576ouWJX8uWgSBIBdfW9KHZJWdF9We26SYpEEL1YuS8hWDoUXgKrAFo73BFolARx2fIw3TLnkNSvvHWZz57YT9izsNIaQE7XOD8xvGwmpNrlo9EbvGu9X4IgEFCdRJ2eZYlGbypGapmyr5Viw3N2Hqed4zsb8DpVvvHGVd642ktqmQbxewFRFNheU8bjB5s53lpPXXkAZZ3eHkGXg+NNdZzvH+Hy4Cgvd/bQMTKBz2EHBDTDwLLgN9/7wDyiAbCvtoJfe/x+/ub1s5zqGeTr567yepcLr8OOKIjohkG2qJHM5ckUNQ41VHNntdhoIsUzlzp568YADpvMe3c2c3RL3Rz5W4ei8P69O+gan+IHV7v47uVOmspDfPRA66wL7EJwKDKHGqo5tqWO16/3ca5vmIFYgtCMI69mmpimyacO71kz0RCArZ5qzsW68Ctutt/mieGU7NS7ojw3dhZREKly3sqm2ESZw6Ed5A2N1yYvcWb6GtCJTVSodIR4tPwA5WqQv7zxzJL7lwWJD1Ufx8TkfOw6z46dQRYkbKJCg7uCPf7NkU8MOD/AdPqLFPX+5RfeVJgU9X6m0l8kr7XhdTyK1/EkNnnhxkCPrPJweSu1rhA5o0hUDWCXZGRR4j2Ve7ieGiVnFPEqDk5Ets8SCKBUUiXaqHOFERBwSDbKVR9excEHqg4SsLmwiTItvmocsg3dXPylZ1kGBb2HVO5lMoW3yBYvz6hK3Xt/h3dx96FIEk/uaiaZL/AXL58ikbt77yDdNN82RGIp2GWJQw3V/MSJAxxqqF5xLXb/0DQuh42A37VkH+Op8YGZzMPicMoK2/zhFUfOnxtt45uD50kUczxS0UKZWqoYeGm0g7bEECcnu8noRf5H5/PUuoJ8ou4wNknmqeo9fKXvDH9y7QUAvIrK/WXNuGUVcWZMavFXktJzvDzWyauKg0crWrAtI1qxEE6PDywbYPXbVFqCm2cGuxgcikKTP4xbsc06dS+EZLFAXypOslggsEGN6ooorolYKaK4bG+lLIi3jlOwI6gfAnMCxFCJZFhJMCbANte7RhKEZYmUYVlzPGnGEullyyPzur4i35io00P1JilNLQaPYi9lKRb3KQRgKJMkpRWwLGvdRGhTigNdqo39zdWUBdy01pXz7NlrXBuYoKivr152I2CTJbbVRLh/VyP7mirZVlOG27FyXf+lIEsSe2sr+cWHj/Ds1euc7x9mLJlmYDqOTZLxOe3UBv3YFzHJk0SR+7fWEXI7ONUzyMnr/XRPTDMwnaCo66WIgMvB9ooytkXDHGuqw++69eBmi0VeudbD965cI1Mo8p5dzTy5q3m23Ol2lHndfOboPnomY7QNjfG3b5yjqSzIwfrqRetkRVGkLhTgFx4+QkMkwOmeQYZiSUYTKWRRwuuwU+X34lZX5uK6EAQEnowepsldhU1UZnswAJyynQciuylXA7hlB03uuZPfMrufJyoOstNXz7SWQjd1FFEmaPNS7YwgIvBzW96PU1bxyAsPnqIgUuss50dqH+OByB4yeskVVBFl/DY3tZvkFK5IlQRdn2Y08V82ZfurhWmlSOVfI69dI51/C7d6HI96PzalHoFb94cgCFQ6A1Q65ysGRR1+og7/ovvYHVhcPnrPbX9zyDZafNULLmeYCXLFDtKFk2QLZ8hrHWjGBHDvx5p3cW/hddj5yIFWTMvkcy+dJl24Vz1Qbz94VDtP7dnGRw60sr0isiq/kKHhGO1dI4SDHvburKYy6kdeIEh3dWpsRRPu1mD5ipqOt7jLOBJqJG9qeBUHWz1RnDPlstWuALIosdUbxbIs7JKMd6bMUhQEmj1RfqThPoayMYqGjku2U+MM4pBsfLj2AGG7B1VSOBCsJ2RzY5cUJFYfyddNk87Y5LKCF16bnSbf2oJx64EkiATtDmrdftpii5e3W5QmmlP57IYRDZso4ViDF4UiSssSDY/NjiyKM/M4CZSdYI6BpTFTHAdyK4I0t9RbEASW0/wxrbnf5ont9VweGKU66MO5QJm9ZZVMTJcySITSXCfkcG1IadJq4JRlvCtoPM/pGvFCDt00190QvmldSDZZoiEaJOx1sauxgvPXh3j9Si8d/eNk1uDcuh5IokBlyMvuLZXsa6pia1WY2nI/Hoe6JmWppeBR7dy3pZbGSJCxRJp0sYhhWkiCgF2R8ap26pZotpNEkZ1VUepCAY431RHL5MhrOoZpIooCqlLqAwm7nQRdzjkO64oksb+uit96XymlVxcOUBfyL0qidlRE+Nfve5DpdBYLqA0uvuxNqIrM7uoolX4v79m5jVS+gG6aiIKAXZZw221UBdbO0AVBoM5VTp1rvhKHJEhUOSNUOec7595c16e48PkWf3APhbYvewyiIBJ1BIk6gssuu3EQCLg+yHTmHynqPXdxv0vBRDNGSeSeJVu8QCL3PVy2/bjVY6jKDmRp/XKka4FhJskV28kUTpMrXqGo91M0hjDMOJup3CWLZThsu9CNSXLaFd4lM29/BFwOPnZwF17Vzp+8+BbjyaUlMn/YIQoCtSE/nz6yh4dbGqnye1cdZNvaWIbX4yCRynG5fYhL7UNsqYvQWB/BbitNKbK6Rl8qvmxHls+usj2w8Hh+J1yKnV2BGjwLlDQ1ecpp8iyu3iSL0qLL7LTdCmK4FZWdgYWDGivBcCZJvLh0SYoAeG0qVa67G8m+Cbdip84TWJJoQOlcpvNZ2ABCJAoCDllZU3+jKCzfi+OzqbNLWFYBMn+HZY4iCDP3ilSF4Pz0wiuvcgpomBbfPNvOm9f6Cbmds0TFpsj8y6dOYM64gceWKU1yyjJBuwP7Bip7rQQ2SV6RihfAVD5HwTTevkQDShM/r0tlV2MFDdEgx1rq6Rmdpq1vjKu9o1wfmiKVy7PRbRyyJBL2uagrD9BUFaa5OkJ12EfE7yLsc2FX1t6HsRLYZZmaoJ+aoH/N2/CodrZFVzYA34QiSTSVhVZctiSJIvtqV66XfhOyJBH1eYguYuj0LlYPQRCQpSgh92cYif+He304d0BHM4bRjFFyxcskcs9ikytRlR04bHtQlWZsciWisPH1xpalo5vTFLRu8tp1Cvp1ClofmjGCboyjm3HuRnmUKHjxO99HyP1ZkvkX0ZKDP9QyuT9MCLgcPL13BxGPm//5/Ju0jywdafxhhcuu8L7d23l67za2RcvwOtYmpxkOeQgF3XT3TtB+bYRMtsDA0DQd10d57IEdeNwqw5kE2WXkXaFEHuo89yZgsVq0dY/gVG1UlfsXLbPuTcWW9exSRImIw7UipcfNgENWVqT+NLaCyfJKIQnCmpy1V4rSxHlmTmdpWNoFBNdPgzAzoRYW76dYLSoDXo5trUU3TWyyPMtTbt4TNxvBl8vmuRQbftvSfbGbgZX0pdxEspif7WVaD+7KnS7OEA6vS6U+GuRAczXxdI5kNs/wVJKB8TijsTQT8TSxVJZUtkAmX6Sg6eiGiW6YCAJIooQsCSiShMOu4FJtuB0lSdyQ10XY56TM7yYa9M56cXicKl6nHZssva2M6d7Fu7gTAjJ+5/uIZ75BTru0/Ap3HSaGGccw4+S1a2QKZ5DEZ5BEL7IYxCbXYpNrUaQyZDGMLIWQxACi6EAUbAjYZmRzBSxLw7SKWFYBkyKWlUc34hjGJJo5gW5MopsTaPoomjGOaaUwzNL/ppXl7nqOiDhtewm6fwTVtpWiMYgsld0TonH+XC/f/aM8ZmkAAGa8SURBVM5FjhzZwpamcl58oY3e3klqa0M8/uQuKir8vPZqJ2++2UUhr7NzVzXvee8e3G511r35d//jN0nEszz+5C4efWy+SWM6nee1Vzp57rkr7NxVwyc/dRSHY34ELJst0t42xKVL/QwNxUin8siyhNutUlnpZ9v2CvbsrUNVF46eiaJAMpnj5Zc7aLs6SCKeRZZEohV+9h9oYO++xdddLVx2Gye21VPmdfGN8+189cxVctr/GSpkkihw/9Z6PnKglZ3VUcpn1AfXikttg5w634tNkdi5vYryiAcL+NLXT3Ps0BY8bpWRTGrZ/gxZEAnZnSuq2/9k3WEkUcSxpBDE5kHTDZ578xr1lQHKgp5FicZoJrXsBNMuyZQ53KsKpBe0HoraNVTbLhR58eBgQesmlf0OIe8vLzrfUWWZyArKdeKFHJkVNPOvBCIC9jX0u6wUqizPdacXXQjKzjnmfBuFY811HN4yXxDm5v5102Q4s7xyaryQ5286z/H9FUghbyQKhs5QZmUCKQVDX/Y5XgnuOqW2KRJhXymzYFkWrXVRskWNQlGnoOloujFLLkzLnPXPEChFfQWh9K8kirPqHrIsYpNlbIqEXZGxK/KafDDexbu4lxAEAUUqp9z3K/RN/QqWtfFqORsHA8NMYJg3BywRUXAgCg4EQS0RC8GGgAKCVOrrEEQEJMAqubeWBCsBEywTEw3LKmBZRUyrMPNzAeseN3Tb5XqC7o+hKk2AgCyGUKQy8lr7XT+WWCzD5UsDGIbJuXO9vP7aNbLZIhcu9FEs6gSDbl56qY2eGxOYpsXVK4PY7QpPPLlrdtLednWI8Ykku/YsLC2r6wbDI3HOn+vD5VIxjPkvmhs3xvn2N89z7lwv8ViGfF5D141SZk6WUFWFPXtq2dJUvihZyKQL/MHvf5erV4ZIJnMz64NdVThzpodHH23lIx89hMO59p6v26FIEi1V5US8bg7WV/GPpy9zqnsA422ujLhW2GWZE831PL13O9uiYSr83jmltmuFrpvsbqmistxPKOBCVUt16rtbalBnFBDHc5l5QiV3wiZJRBzOFRkf1rnvjs/AYhgeT3BjYIKQzzmnMfhOjOXSy/Zn2ESJwCqbohWpDFF0IglLl1uZVpqCdg2W8DW3idKK+i6ymkZGL2JY61eeEgQB2wYYvy0GWbh92wKYKczEv5pxBxdBqkRwfnIde7j1nfqcS393pmUxkVu+RLNoGtxITnNjGQnce4mCqW/I+HhvcnczEAQBu02eret8F+/inYiVarmvDDIu+xFC7s8wmfrzDdzuZsPEtDKY1g9XDbwkBvE5n8LreAxhJg0vSyFkafPdfBeDZVmcO9vL4SNb+LV/+R66r4/z7Pcv88ILbdjtMg8/0sI/++mHeP4HV3jt1U5efqmdEye2bVh2oK9vkn/68ileebkDQRDYt6+OffvrCUc8aJrBxHiStrYhdu6qWXSfmmbw3A+uYBgmjz+xkz0z2Yv+vimef+4Kly728/JL7dTVh7n/xLYNOW4oZdfLPC4e2tHItooIlwZG+drZq5zpHVy34evbBQ2RAMe31vHgtkbqwwEiHheKJG5YRn9LfQSbTUK9oxH2gaNNOGaEQCZzmWUn3Ioo4V9mwptI5fjqDy7gctrJ5TUudQ7x4OGt1FYE+P7r7UzG0nz0sb3sa6mZnUfohsH3X+vgtbPXmYxnCPpcHNvXwHtPtGC7TYjFtCxGJhJ8/9V2Ll0boqgZ1FUGefS+ZvbuqEaWJC5dG+b5Nzu4en2EnsFpeganePaNjtnezt/6mSfYWheZvQ5T+eyyBEsWRTz2uZPVbOEtNH0Qm7KVTP41nPaD6MYkouhFEr2kst9BEGz4XB/FJpaEMlK558jmX8ewsshShJDn50vnb00znvhPGGYCm9xA2PsL3E46FFHCswJZYBOLVLFAQddxKusj+wJsmEzuQpBuv7cFG4LjQyW1qZvlvKJ/w/alGyY/uHyNl9t7iWdy/N5nnmI4nmQimeFYcx2GZTKZ/+F4D+qmuSSxXineneFvEkzLYiiR5MzgEFfGxumPxYnl8hR1HVWW8ah2ytwutkci7KmsYEdZeFNrNsfTaS4Oj3JxZJTe6RiT2SzZooYgCDgVhYjbRWMwwK6KKEdqqnHZ1mZauFr0x+OcHRzm6ug4/fE407kcBU1HkiQ8dhsVHg9bwyH2VVawq6J8U69RQdd5o7efs0PDdE9NM5HOUDAM7LJE0OGgIRTkQFUlB6oqCblu1XyWMmwbc61K2/IScn+KbOE02eL5Ddnuu1g9BMGORz1O2PNjc8wLb2Y07iW8PgeHDjdy7HgzTU1RurpGOXP6BgcPNfLAA9tpaCxDEkUuXxqgp2cCTduYrJCmGbz15nVef+0aNpvMxz95hIcebsHrdaAoEpZloWkGjzzWiqoqOJ0LT2hM0yKdzvNTP/MQDz3cgstlRxAEtm4tJxx2k0hkGRqK0dY2tKFEA2YCXLJMXchP1Odhf10l18eneL6tm9eu9ZZM+d5BEASoDvg4WF/Ng9sbaCoP4XeqeFUVSVxahnMtePH1TpoaIuzcPlf1z32bAuJNWcylsBK5U90wGBpP0NU3wf6WGgzL4uvPX8LjtNNYEyaRyvOP3z9PbWWQyjIflgV/8eU3ef5kJwdaa9nWUM7gaJwvfOMUg6NxfuHTJxAFAcuC/uEYf/7l1xmbTLJnWxU2RaKjZ5w/+8fX+dT7DvDIkWaCPicHZkjMdCLLjsYo+28jNSH/3BKkUl/K0uctieK8ZlzTyqObMQR9hILWhiJVYlpZBEHBLu9Ht+8nX7yMZd3ygUrlvofDdgCn/dBsNrl0zcYI+H8H08oxkfzvaPoQinyrwf1mv4SIsCwZzBs62kZINd/mKbMpuJ1noJRcwG/C0sDcOBPob51r4+W2Hlqqy/iHN0qeKYoo8jevnOVYcx2mZZHcIP+JHxa8SzRWiZ7pGD/9la/P/h5wOPjorhY+vXc3UIo23piO8eVLV3ipu4epbI6CrlM0DAyz9FjfNHKSRZFn5euoskJLeYRP793N/Q11G5ZitICuySm+drmNV3t6mchkyevazLFYs7WkN4/FJkmoskzQ6eDplm18as9ugs6Nkba787jODQ7zpYuXOTc0TCJfuHWNZsrlhJvHJYnYJRmnTaHW7+NDrTt4z7ZmvAs4pq8VumnyTFsnXzh/gaFEkpymUdSNEptnJhojipzsH+TrV9qp8nl4/47tfKB1OyGnE5skYluBc+lKIQgiNrmOMu8v0z/1q5jWO2vi88MBEYdtF2XeX0IW55IKQVCRpQii4LpnGZxw2EM06sNmk4lW+PD5HFgWNDaWEQq7kWWRiko/NpvM+EQSc4Oi9SMjMTo6hkml8rz3fXt48MHtlJfPVS6y2WRcrqWfT0EQqKgK8PgTu3A4bkVLVdVGTW2IrVuj9PZMEpvOUCzq2DYh6y0IAqoiUxXwUu5zs6emgh87vp8rg2O8daOfc71DDMVTGxLR20gIQMjtpKWqnP11FeytraTC78Vtt+Gy2zY0e7EQNM3AMJa+JgVjeWIrCsKKHJ8BwgE3Dx/Zyu5YJZ//+ltUl/v54CO7qYj4+OoPzpOdUbK82DHId19t4xPv3cd772/BbpNJ54r8wzNnePGtazxwqIldWytJZ/O8fq6bkfEEP/mR+9i7vRpBgGu943zx22d47Vw32xvLqQh7iQTcyIrE6ct9NNdHePjIVpwzmZtShuTWtc4b+rLiNiLMa8aVxAACMpoxiCDY0Y1RRNGDJIZKJVNiAEGYm1UIuD5LKv8ck8k/xut4CpejJB5jk+tR5FpMK4soODHMJLfTGmHGO0ISRcxlGn0108TYgBr9m+/zuwJBAG7NWywzBoVnEeR/tiGbf+HKDT55bDe7aqJ89dRVAMr9Hm6MlUqgLFZ2//+fhHeJxipRNAz6YvHZ38dSadrHSyomRV3n5Ru9/NlbZ+icmCCv6QvGC0yrNMnXTZO8rpOgwFQ2y/nhET6+eye/fOw+nOtUxkrm83yzrYMvXbxCbyy26LHcPJ6iYVA0DNLFIlPZLH928gzf7ejiV+8/ymNbN86kbiqT4S9Pn+O7HV2MpdMUjYUHOouSUY6hGxR0g2ShwEQ6w7XJKX7QdYOfO3KQgzULm8itBpOZLP/5xVd4+UYviXx+wUY+i1smXFlNI5bL0Tsd58zgED973yG2R8Koi3ijrBUCCi77Ycq9/5yRxH/h7jY/vwu73EjU9+uoyraZBvZbEARhptk9TFG/N0TD6bTN9i5IkojNpiCKAj6/c3ZSrigygihgGhamaa3OeGmRwWJ8LMnoSAK7qtC0NUpZuW9N45Qsi+zYXjmHZNyE3a4QCJQixbpuouvGphCNmyj1RpU8inxOldqgj0daGskUigxOJ7g6NE778DjtI+MMTicp6HdvEmGXJSIeF7WhAFvLQ2wtD7GlPESZx4WqKNhlCZsiIy1jILaRqIz66e2fRJIEvO7ShK484sVuv/UdFQxjWWlbcea6rwThgItIwIMiSag2mepogEjQRVnIjaaXejoty+L18zfIFzUeu287AZ+zlL2yK9y3u4HvvHKVq10j7NpaSTyV41z7AJGgmyO762czFFtqItRXBbnUOczweIKqMn/p+ZoRk5GlUh/ozV6UO1FcwQRTEATkO8YUWQxjoaEbYzhseynq/cgCS2ZO7cp2bEodhhlnePr/wmHfX7quqNwkPyXPo/nfhEjpGLRlJLp109jAHqbNvj9NrOw/guP9kPnC7KeWGQdzYp17v7V2QdcJu114HPbZZy6v6bhm7wnrXaJxB94lGutEXtcZTaWJ5XK82TfA77/yOv3xxLLKE3dCN03iuTxfOHueeC7Pv3/ikTVnNkZTKf7q9Hm+evkqyUJh1cdiAZlikY7xCf7t958vZXGOHFz3MNE9Nc3/+/LrvNHbR1bTln0R3QnDsojn8rza08tIMsXP3XeQp1u2r/m4xtNpfuOZ73N6cIjCKswkTcsiWSjw/PUbJPIFfvn4EZyKgigIq77Wi6FUQuUj4PoIujnBROovNmS772J5KFIlUf+v47bfh7CIaokihZGlCEW97y4fXQmyLM4KXtwUySh9Ls3Wj98+79yoqHw2WySTLeBxq3i9KtIaRTcEQSAYci/yN27zN7I2XP58KYgzfkc3PY/KvW5211SUAg2GSa5YZDyZYWA6wVAswWgizXQmRyKbI57Lk8wVKGgammGiGSa6aWCaFpIookgisiQhS6WfVVnG41DxOuz4HHa8qorfpRLxuKjweajwewm6ndhlqRSBlkoCKJIoLOtMvJkYGYtz/nI/Zy/1zUapf+pH76em6pbvUCkKvvwXt9K7x6ZIKHLpGoiigGqXkURxtjbfmsnYDYzGyOWL/Pi/+dvbIugWmm5imhbxVEmutVDQGR5PMDSW4MP//M+5OZG0LIt8QaOq3E8uv3pVspV/J3OvjSSFAAHTTOO0H6WgdWFaGpIUIp75GsnsN9CNEfLFKwTcP4rDfpCJ5H+jqPVhYaHadiMIN7OIyx+DhYUlvL0ydeuHAFK4JG9bfBNBff/M5yJY8Q3by566Cv7+9fN8/L7dGKbJSDzJl968xAM7GgGwrJLE7bu4hXUTDQsLLNDMBBO51xjLvEBK60Iz4oCAIvlxKXX47Xsoc9yP27YFUZgfDbAsi6w+yET2Vabzp0hp1ykacUQkbFIIr30HUecTlDlPAHMH2VTxOtdif8xU7i3KXA+zI/h/YZcW95LI6SNcmfwdYvmzlDkfYlvwV3AsIRm3HOK5PN9q6+SfLl+lLzbXpEgAfKpKxO3EbbOjGQYjqRTxXH7BSEFBN/jalTb2VVbw8d2tq3qZWJbFeDrDX546yz9cuEx+kcibT7UTcbnwqSqaaRDL5hlJpdDvqMW0gIlMhr84dQZZEvmJA/vW9HKzLIue6Ti/+8IrvN7bt2jNZ9jpJOxy4lHtZIsak5ksY+n5ZUO6adI5McGfnjyNIkk82dy06uPKFjX+7x+8yKmBoQWzKgLgtClUeDx4VTuZmeOZzmZnv1/dNDk1MMhfnVYIOR04FJlMceMkM0sRtHJC7h9HM8aJZ7+5Ydt+FwtDFkOU+34Jn+M9i5IMAFmKoIir87nZWAhzmcRtH683cmhZLOoFYJkWlmkhrrP2XxBAUe6uUdVqUSoxEeaoIvkcdsq9HlqrymdqsfP82ZW3ONXTjxpU+NXdxzhR2TBTElQaKebq/wg3/5vdR0lRESbzWb7QcY7/0PHCjGOxsOBX/KHGVn5u52Fq3P41nVdGK/KV7iv8t3MvL7nc/RX1/Ore4+wIzI2qf/A9e3n68d1zPrPZ5n6XsliSsV4KlgX6Ckv6BGHu/T77+x27MAwTt8vOT3/sOOodWTBZlqivKHl2WFgICLQ0RfnAw7vm7c/jUmmuW/3zbVuBP4FlWfMmogI2Au4fA0wEbJT5/w0lmRHbjBjFk9y8k0olVBIR32/Cze0IEgI2VGUnFcH/CgiIgpto4D/NK7liZkvL+X1ASYJYukeEdvUQwPYAoCOo7wPHB0qfGkOQ/9Y6t33rPv2xE/v5y5dO86t/8y0mUxl+8k++wuO7t/LTDx8q7U8AZRMb39+JWH9Gw7JIaV10TP0eU/m3KD35t25MzUyS1fqYyL7CZO51mgO/QlDdN28zPcm/oSfxeYpGbN42imaClHad0cyzRF1PsjP020i3mYM55ChB9QBj2RdIFtqYzp0h6npiwRehZVlM5U6R0W6gWxmCjkMo4voMg9rGxumZniaWKzVqCUDE7eKxpkY+0LqDbZHwHLMaw7TonpriS5eu8N2OLmK5uaY4umnyB6++wft2NOO2rUztwQJShSJfuXyVL128ModkCEDI5eTJ5iae3rGN7WWReeY5U9kcr/X08fkz5+iampqjwDKVzfH50+fZGgpxvL52deQHmMxm+ePX3+SNvv45JEMUBKIeNx/f3coTzU3UBQJzBjXDshiMJ/he53W+fOkyI6n0bMbAAjonJvni+YtU+bzsLC9b8XGZlsXfnbvAqf7BeSRDFkVayiP81KEDPNBYP+c6FQ2D7qlpvt3eybfaOpnMZDAtixev30DYwGzG7RAEYaZf45+jm9Ok86+zkkjhu1g9ZDFM1P9/EXR9CkFYesIgSxHke9wQvn4sfB9pmkE6nV/wb6pDQXUoxGIZstnC6sqx7hJMy5qdSN6URd8o3MweiTPvp9cH+nhuqJuRfAqAv7t+gX3RuWIRK4VNkxCEkuxl6QwWRknbfq1nUIJmGjNZ5cX3kzO0Bcc0TTdQZGlJomgX5WXprmlZG2IGdjsqIj7Otg1wfG8D4aB7niLgzVvBpsgEfU7sdplHjzSjLFD6Ove2KRGb5S67XZrxc1hiQRPmBfVKhPPWu17g9iZ524JkQUBdgMtJCMKt/oTbf74Jy7IwLXNlREOUNlUtaqMhCDKWJYHjo7PfvSXVgOtn17vl2Z/cqo1//uQxfu7RI0yns/idDuyKPCsII7Cy3qNmf5jPNu9jT3jtQe7NRsjhJKiu3+xw3USjYEwxkPoKk/k3sIlBypwPEXEewyaGMNHJaYPECheJ5c8TUPfhVuoX3I7H1owielHEAGHHUXz2nTjkcgwzR7LYQX/qy+T0IcazLzKo7qbO84nZdSXBhc++E7fSREbrZbpwljLXQ0jMb0i00JnOnyWnj+JSGvDZdswhLWtBXtdnJ/aSIHCktppfPn4fB6sqZ19yt7/sZNGipbyMf//4I9xXW8N/felVBhNzVREms1m+3dbBp/bOjRwtBtM0eaWnl/998TLZ24yoJEHgcG01v3r/UfZVVsymk+98+Za7XXx0VwsfaN3O7zz3Ev946cqcwXAkleK/v/YGzZEwZe7lzX5uwjBNvnj+Iq/29M2Z1MuiyJPbtvIbD91PhcczJ8I3u4xlsSUU5BePHebpHc387ouv8GJ3z5yX3+mBIf7h/CV+46ET+B0r+x6vT07xT5evEs/PnUzJosgndu/ktx55YJZgzP3eRHZFy2kpL+PJ5q384WtvcLJ/sDSx2cT6jlLTajMVvt9ixPpPpAsnYZna2nexOshihAr/bxJwfWJFE1NJ8KFIZQgoWLyzjN9UVS4FXKbS84iCZZXUoAb6FzYjDIc9lJX56L4+XmrWjmUIBFxvK7LRGZugLxUnpDrZHY6uuOF4LZjKZcnqt0zNxrIptEX6zpaDKivsDJXzRG0T04U8sUKORCFHWiuSN/QNC2TIokizL8R76pqJFXLECjnihRypYoG8sbxu/le+dZaW5goO7q1f4lyWJxq6ZZLWNlad5/j+Rp57s5OvPX+Jz7z/UKn3YsaLyzBNVJuCIIDf42B/aw3PvdHJq+e6OXGgCVEUsCwLw7RK/SOKNHsOLocNuyITS2ZJ54qlniELJFmc0+TsVmzLyp0bpkl6g4zw1gLDssjq2oq6/uyyPJOdeofBymAZvXBTpUtwg9Kyng3O/qQbJrIkoioylQHvnM8VuXTPrEQd0yZKVLl97ArdO6n0u4V1j8CamSCWv4Ao2ChzPcSu0L+bGw10QC0fRzfTgIgsLsyOwuoR9pf9Pg65BkmcSxDCjmNEnCd4a+Qn0c0sE9lX5xANQRBwyjVEHMdJa9dJFjtJFNoWzJwkiu2ktRtYaJQ5T6DKK4+ELwdRELivroZ/ceIYeysrFl3u9v29b3szQ4kEf3ryDInbJr6mZfH9a9f55J5dyx6fZVl0T03zvc4uRpKpOfs5Wl/Lv7j/KHuWOJ7bj8kmSfy7xx8mns/xnY5bjpWmZTEQS/CttnZ+8tCBFSlIWJbFqf5BXununTOpFwWBD7Rs59cfPE65e+E67duPSQDqgwH+9cMnyBQ1TvYPzC6jmybnh0d4s7+f9zRvXfZamZbFF89dZCQ1vyTrREMd//axhxZtULy5bVkQ2F9dya/cf5Tiy69xdnB403MMgiDitO+iKvh/Mxr/fZK557G4dy+rHx4I2KRKKgK/jd/59MrXEoSZrEYIzRjdxOPbeFRWBenpmeTypQGSiRxujzo7ycpkinS2D9PeNrzgutU1QbY2l3PubA+vvdpJQ2OEEw9sR1WV2b4K0zTRZ2riHQ4F8S5OVEzL4o8vvcFzA9e5v7Ke/3b8fZtKNCpcHvw2lYlspiTP6w+jymvzK/Ha7Ly/oYX3N9yaEJmWxcvDPfz++Ve5PLUx95ldknmgqpEHqhpnP7MsiyvTY/znsy/x+sjSfUced6k3R9MMBLE0rb6zlM5vdyw7FuumQaK4cOZsrTi8q573nmjh689fZGgsTuuWKIZlMTQaZ2Qiyb/9xfcQ9Lnwuh08fLiZq10jfO7Lb3Cpc5iKiJdsvsj1vgm2NZTz8ffsw+UozUWqo35qK/y8cuY6hmFSE/VT1AweO7qdSPDWO6zMsTzp1kyT1AYTrNVAM40VEx2PYkPdxOdnU2BlsBK/DRgI4ozBoVS3TqJx6zv96ukrPL5rK0H3rblsUdf52umrfPLoHkRBJGBbXq1TMw2Khv62CtJsFtZ9BwkIMz0XApalo1tZZFzzlFpkcfEJJYAgSLhtTYv8TcQpV+G372Yi9xp5fWReJM4uhQmq+xlKf4t0sZtY/hwB++45pMeyTGL5c+T0QSTBSUg9hG2dZVO346b86lIkYyF8fPcuvtHWSTKfnzNhbRsfp2iY2Jdxc9VNk0sjo7zeO/cFUeX18IldreyqiK7qeERB4DceeoDXevtJ5m8NiLF8jh90dfPhna0rkr0tGgYvdvdwbXJudLQ5HOKfHdpPmWvlmRGAap+Pnzi4j8ujY2SKtwbKG9PTnOwf5P76Ojz2pWU1R5Mpzg+PzMn6ALhtNn770YdWHL0RgL0VUT62q5XuqVtlc5sLAVXZTtT/rxFFD4nstzCt3PKrvYtFIGNXtlAT/M+47AdXvbYiRZDF8DuOaBw/3sxbJ6/T3zfJf//97/LhjxwiHPaQTGY5+WY3z/3gMk6njWJxfo+X3a5w9OhWuq+Pc+qtbv7iz1+i7eoQBw41EA55KGo601MZrnWOkMsW+cmfeoBQ2LPAUWwOxnNp+lIxihtckrMYTlTUcyMxzff7r+G3O/j5nUcodyz9rlsNREFAuQt18jeVkO5UQ1oIZWEv7V2jZLKFWdWpLQ0RXLd5ppQ53MsGo4qmwVQ+u2T5nSiKeN0qTtWGJAooskTA58JhV0qRY0UmHHAhyzeFEeCXfvQBmusjPPt6B1997hKKLBKN+Lj/QCPuGeIgCFBfFeRf/dRjfOeVq7x1sZe3LvXicthorAnTsiWK/bZyKo9L5dNPHcTlsHOufYCTF3soC3o4trdxzvGWOZc/b800iBfuxvtifft3ygouxbYi5/a3F0wQTETf/1i4j22d+MHlLo401c4hGiDwhVfO8cmje5AEgTLn8mNARtdI3kPCeTexbqIhi1789t0kCm1M5F7neuxPqXQ/hSpHkUUXIrYVMzYLC9MsYlg5TKuIhY5lmViYGGYOcUZVwbQ0LPSSMcsMBEHApTQQchxiJPM9EsWr5PRhnErN7DKamSRRuEzBmCLiuB+HXLNsLfbKr4PI/upKHmlqXH7hO+B3qByqqaJ3OjantyJb1OiNxdgWCS+5/nAyxamBIVKFW5NvAbi/vo59VZWr1q8WBIGIy8mTzVv58qUrs59bFoylMpwdHObx5uUlb9vGJrg6NjbnnERB4KO7WqnyeVfN5BVJojEY4HBNFS9298x+bpgW3ZPTdE1Os79qaZL3am8/U9n5k/MPtm6n0utZ1THJksTOaDkHq6v4QVf3yk9knVCVRqK+X0MWfUxn/gnDjPOu/O3qIApOHLa91AR/F7uy+mcWQBbLkKUw77DKKR56eAcn37rO+bO9nHzzOq+92gmUmmXdbpV9++vYtr2CP/1fzy+4fvO2Cj716aOIksiVSwO88PxVvv+9S5hmacIoSQI2m8zOndWb0re0FC5NjtxVsyy3zc4v7T7KL+0+etf2ea+RSGYZGo4xNByb/exHgkfmEI2o073sWFowDMZyaYqmsWjWKeB18iufeWjO7//p194/+/vh3fUc3l0/Zx1REHjy/haevH/pCLYgCETDXn78w4f5xAd2kdWzALhkF07ZOVsCpZs6GSODM2Tw6U+08nPKUWziwiVSlU7vbP/O4uetM5adX7Z4t5DTdcZzy3sz+WwqLnl9juB3G5YxDlYWBBeW0QeCg1J/jYKwzqByIpsnr+kUdYPJVGaOpP10Ojv7XUqiSIVz+eBKRisSL+TvEIv44cS6iYZdClHpfj/J4jWSxXZ6kl9gOPMMIcdRyhwP4LVvxy6GkEXXkpN6wyqQ18eJFy4Ry58lXbxBwZxEN9OYloZpFTGs218g819gDqWSoHqQ8exLpAqdxAqXcMjVszdAvHCJjNaHgEjYcR+qvHHNnGVuF/sqK/Cpa+v32BYOY5OlOZNyy4KpbHbJ9SzLYjCR4MLwyJzPfarKzmg5Ue/aoomSKHK8vnYO0QBIFgq0jY8vSzQsy+Ly6Bi90/E5n0dcLvZVVeBeJvOwGAJOB7sqonOIBsBwMkl/PL4k0bAsi9ODg/N6M0RB4Knt29YUuan1+2gtL+P56zfu6qTKJtdQ5v0VbHIDU+m/o6DfmOMa+y4WQ8kDw+98mnLfryOJ3uVXWQSKNEM07iLcLpXa2hDl5T5stzXjhsMeGhrL8HkdsyVMkiRSXR1EFAXk25ZVbBK/8ZtP89yzVzh75gbjE6Vyy7IyL4eOlJzF+3on2ba9kvJy721Ss7fQ0lrFv/z193L+fC/nzvQyODRNNlPAZpPxeh00NEQ4eLgRn29uqawgCNTWhshkC/j9C5fRSpJIMOimoTFCpGzh/S8EC7g4OfquK+8m432P7eLxB1soFDVEUUS1y/PK46pc3hVlR9LFAsOZJA3e4LLLLgXTMklpKdyKG2mVwcPp4jQvjb9ER6oDm2jjWOgY90fun/17b6aXlyZeYiQ/glNy8qGqD9HoXjg4scUXRJFEWMJGoWgaTOQzSxKszURO1xjNppZdrszhxm9fX//qXYVlQvZ/lv61MljJf4cg1QAiyLXg+ul1bf65y9c52zNE30ScP3v+LZy3CfVMJNO8Z08zUFLqqvH4l91eqlhgMpfBMM13Zh/MKrD+0ilBxGfbwa7wv2cw9TUmcq+SN8YZSX+PkfR3cdsaqXC9h4jjBC6lbsEeDcMqMJl7k+74X5AoXEUWnSiiH0lUccg+ZNGJgEyq2EV+iTIFSbDjtW3HZ99JLH+eeOESZY4TKJIX09KIFy6S1QdxyFV4ba0o4sal9Cu9HnZG197UU+Z2zRuYLSxS+aVfmpphMphIzjERBKgL+Knxe9fMlEVBYHvZfHm/TLHItYlJTMtaMlOS03W6p6aZvIMo7YyW4VfVNR+Xy2ajzu+b9/l4OsNQIrlklCiraQzF5xtuRVwutkbCazomp81Glc9H0OlgMrM0KdxoyJKfkPvTqEozk6nPky68PpPdeFeVaiGIggu73EDY81P4XR9AXEDJZTWQpBCyGKbkBnB3MkqH79vC4fvmk/wf+4kT/NhPnJjzmd/v5P/5nY/NW1YQBFRV4ekP7OPpD8zvYwNo3VnN//yTn1jyWLxeBw8+uIMHH9yx4uOXJJH/9vs/suQyPp+Tj378MB/9+OEVbxdKRlptsbENbzB+F3ORzhTo7h1nYCiG3Sazramciqgf5bYS33KnB7/dsWwPRrJYoCs+uW6ikdbTfGf0OzxV8RReZeXBAwuL4dwwQ7khfrT2R6l11s4qlt38++XkZRySg5/f8vP4ZB+SIC3a8B1xuImormVLk1LFPIPpBFt8i8vwbxbSWoHeZGzZ5aIuDwH7+hWH7hoEAcH5o4C1wLezfKn30rB4ev92tldF6JuM8eCORsKe0rUREAi4HRxoKBkIy6JIgzeAXZIoLCEMoVsmE7kM0/nsikqtLMskZ0yTN5JYGNhEDy45goBI0UyR1acI2OsptTFYaGaGrDGFV6lGQES38mT1KXQrjyQoOKQgNtFN1pjCsErVMJqRQRRknHIYmzi/BWKt2BA6LQgiLqWG5sAvUe35MBO5V5nKnSSt3SCnDdMV+x+MZ1+i0ffPCDuOI4tzv/RE4Sqd039AWuvGqdRS5XqasPMYbqUBWSiVs+hmhsuT/46RzPeWPBaXUk9QPUgsf4FkoY1ksYOQ4zA5fZhksRPdTFPhei/OdfhmLISAw0mNb/4EeKVw2pR5E2TLYl4vwZ2I53PcmI7NUwopc7sIr0Fi8SYEQSDocCCL4hz1Kd00ieVKKUSnbfGmx+FkktFUal6Uvzbgx7VCyd6FoEgSXlVFEoQ555zXdRK5PEXDWFTxYSCeIF2c3wS3q6IcmySuOY0ddjkpd7vvOtGAkpyfWz2CTa4hlvkK8ewzFPVeTOvuH8vbFzKKFMXjeJCI52ewy/UbUjIpCgqKFEESvTME710shqJhEC/kSBYLZHUN3TJulVqJAnZRxiEruBUbHpt92Uhv0TDI6RpZvUhW18jqGj2JaXqTt8bCRCHHhYlhvLbFo7IOWWZHsGxZCU/dNBhKJxnPLe0EH1KdVLt9azZbfSfg9IVeOq6NEAq4GJ1I0tUzxkee2k+07Nb7TxQEtgfCDKTjS2Z648U8bbFxHq9ZXMjDtEySWpKElkCzNGRBJmAL4JE9WFhMFiZpT7YzkB2gN9OLS3bhV/wEbUEsLHoyPdQ4a7CJNgzLKG3H1PAqXsbz4wzmBskaWVJ6ipH8CAFbAFmUSRQTxLQYo/lRVFFlojCBZmqEbCEkFv9+d4aidCenlzzvVLHA9cTUXScapmURL+QZSCeWXbbS6SGorneCfjchgNyMZelg9CPINw30CmBOrrs8ya7ItFaX8+COBp7c3UzEu3CPqSAIeBQ79Z4AnfHJJbc5kk0xkE6siGiktBE6E98mrvVhWBpOKcjOwCfx2+qZLFzj5Pgf8f7aP8EmujCsIgPZt+hKfIdHKv8fsGA4e5ae9MsUzTSyYKPSeZAGz0N0Jr7JZP4aLqWMVHEYE50G9yM0eB5Cldae8b8dG5q3EwQJl1KDS/kRqt0fJFG4ymjmB4znXiFeuExv8ovYpTABde+c9UYy3yWnDyMKCs3+X6Lc9SiScGdpjYVhLt/4apP8+O27cCo1pLTrJApXCah7SRSukCn2Igsugup+7PLGmW0pokjQqeJT11YOBKV020IPgrmMYHqqUGT4DmlcgJym0TE+yWRm7c3C6UJhHtGA0ks3XSwuSTTG0xmmF+iFSBcKXBgemZN2XC06JyaRRBHjjmhBTtfJa/oSRCNJdgFDvTq/b13Nlj7VvqLm+M2ETa4k4v15XPZDxLJfI5M/TdEY/D+8nEpElspwKDsIuD6O1/Eo0iKqd2uFLJUji8F3icYiMCyTwXSC9ulxTo4NcHVqjP50nGQxT1E3kEURp2Ij7HBR7fKxLRChNVjGVn+YarcXt7KARLllcWV6lJOjA/QlY/Sl4/QlY0zkMnOM0M5ODPNTL/zTkse31Rfim0//OA55aaKRKhb5i7bT/G3n+SWX+3BjK//6wIOUr6BG+52KweEYh/Y1cGBPHQB/+Lnnyebmj6t7w5U8P9CNuUSGNVnMc3VqjJRWWJQQJrQEb0y9wY30DUxMZEHmWOgYLd5SD8aF+AXOx84zVhjjhYkXUASFvf693Be6j6JZ5A+6/oB/s/3fUOGoIG/kOTl1krH8GE9Gn+SFiRcYyY0wXhjnxfEXKVPLOBQ4RJOnid5sL2djZ+nL9iEhkdJT1DhruD98PxFp8fnDsWgd3+5tX55gTY/zxBIEazOQ1TW6k1PLql6pkkydJ0DQ/k4iGjOwcpD+U/D/V8ACYwRyXwLPb27I5p/Y3YzXMXdcMk2LqXR2lnyoksyecMWyRGMwHac7OcX+SOWS94FlWbQlvoZlGRyN/Cp20cNbk/+Lq/GvcKzsX1CmtqCILkazF6l1H6NophnLXaHCeQBFcDJRaOdG+gVqXceocz/AcPYsvemXcMgBLAsy+gTNvvdRFT7E9eT3GctdJKw2vz2JxpwNiy5CjsN47S3YkiF6E18oTfa1Xvzqnjmpx4zWj2HlcMiV+Oy75pEMy7IwrDxZfeDO3SwIt9JE0L6fgfRXSRbbSWu9JIrt5IwRAva9uJXGBd3J1wpVkQk4lpfz2wxkikXG0/OjbK/19vNab/+m7FM3zBnVp8VVo2LZ3By53pv48qWrfPnS1U05rsKMn8lieaVYPkfRmF88W+XzIq4jRehUFNy2tZPMjYIo2HCrR3HYdpMuvEEi820yxXNo+vD/YVK4IrIURlW24nU8id/5PmQxsmFp4NuhSOXIUoiCfmPDt/1Oh2GanJ8c5m87zvHsQBc5ff6zZ5gGhRkvh674JC8OdWOXZE5U1vNre46zMzRfMc/E4hs32vibjnN34zQAEIWSR0LQ7qBoGmimiWYad73Z/e0Ap0NhYipFT/8kmmYgicKs6tPtOBqtQxZfRzcWLys0LIu+dJzzE8M8WLVw38NIboTR3CgHgwfZ699LRs9gl+woooIoiDwZfRK/zc+pqVN8tu6z+G3+FZ1HpaOSn6z/Sc5Mn+G1ydf4iYafwK/cWnevfy97/Xv5+/6/xyk5eSL6BE5p+UDFkfIaVElBMxefzCdnMjlprYjnLr474oUcZ8aHll2uxu2nxu1DXoHT+dsJljkNWjuWOQGFNymZqIxhWfqGNVx//9I1PnKolYhyKwuhmwZfevMiv/zkMQCcso37ymv58vXLSxYyj2bTdMYmlr0PDKvAeO4Klc4DTBWuIwoSquSnN/0SlmUiCgr17gfoTb9CtesIOX2aRLGP7b6nsDDJ6OMki4PggtHcBfJGjKKZJVks3QthdRth+zYU0YHfVsdY7jK6uXFBynURDQsLy9IxrPyi/Q6y4MQhVyKLXvL6KOYCXVIz/q0z29Pm1NlbloWFNuPmvbS+90045Ch+dQ9juZdIFrsYz75MutiDZekE1QM45Ko1n/NCkEVxntP23UJB10neZak8w7LmOWrfiXSxSG6Zsq+Nhm6a87IvtyNX1OY4nt+ET1XXpYJnl2UcCzjL3itIoguf43FctkOk8i+RzL1AXuukqA9gWml+eHs4SiVSqtKEWz2Oz/EkNrkGQdi870aRypHFu19n/U5AR3yC/3z2Jc5PjGBYJqIgEHW4CahOVEmeKYktlUAliwVihRx5Q0czDXTTxLdIhFtAoDkQ4ZHqub0qyWKB9tg4mRmPgJDqZEegbMkypkqXd0XZTLuscLyiHoeskNIKpItF0nqR0UyKjtjEPfVFuNtoaa7k9IVeRsYSFIo6W+oj+L3zI987AhGiTg+9qaX7AUYyKV4e7uFweQ2OBTxIgvYgAVuAnkwPpmVS6ajEJbuWNca7V6jx+NkRKOPU+OKBUcOyGEjFuTQ1wvGK+rtyXIZlMppNcXZ8cNllt/pDK2pofnvBAmMUq/gqGGNY+e+UPhNsCLb7l117ady61053D5RKp277q2laPHO+Y5Zo2CWJlmA5EYd7SYUv3TK5Mj1Ge2ycw+U1iy5nWBomBqO5SyS1QUp9gVCmtiIIIiIS1a4j3Eg9T1obY7rYjSr58NsaSqqtVpGsMUlP+mWkmd5ERXTgUSqYLtxAERzIwk3pZwkLi42cJ6zvDWxBXh9jNPMsHlszdimMLHpmMxKGlSNvjDOdO03RmMIhV2KXQvMGCJdSTyx/noIxwWT+TUTBjk3yY2GhGTEShatcj38OSVDRraVrZKF0oby2HfhtO5nKn2Ii+wpFM44qR/HZW1HEtfdSLARJFLEt43WxWdBNc9k+jk3BMvdgXteXbITaLCx1WDldm1NacRMORV7XS0uRxEVN/u4lZMlPwPUhvI5HyRbOky68RrZ4hYJ2Y8b74YfDXVwUvdikalRlK277UTyOB1Ckyg2Trl4KshRBkkKUXkQ/rARu9dBNk7/tOM/V6XEMy8QmSjxY1cCJygaafCH8dhVJEMnpGlP5LIPpBF2JKfqSMVJagUNl1VS7Fx6nRUHgY1t28sGGufKlV6fH+Lcnn+XaTLnCzmA5/+G+Jwiqi0ehRUHAtgLlH1WSub+ynvsr62c/s4A3Rnr5j6dfpC02vvxF+SHBjuYKImEPo+NJHKpCdYUfu30+QbBLMo9Ub+Gv2s8sub2UVuD02ACXJkc5Ep0/2YqqUR6IPEBbso2udBftyXYOBw+zzbMNu7R8NkCYCWJCKTiqmZv7vhSADzW2cHp8YMkRYSSb4tXhXg6WVd8V9amMVuTU2ADDyyhOOSSFlkD5os/f2xcCgtICcgOIlQiuz9z2t/Vns7vHpphKZ0lkC1zsG2Esces6jifS+G4rnxYEgZDq5IHKer7SfWWhzc2iPTbOqfFBWoPluJSFS8ptoguvXEG5czdbPI9jF73oVgHDKiBSCtq4lXIC9gb6M6+RKA5Q6zqOKEhYlohTDlGmtrIr8CNE1G0A6GYeQZCZLtzMxm8ecV/n3W2R04fojP0RqlyGW9mCKkdRRPdM13uCtNZNqngdUbBT7noEj9I8bytlzgeZzp8jVezgRvyvSRe7cciVWJhktX4mcidR5TBlrkcYTn9rRUfmUurwq3uYyp8mWezAwiLqfAyXUr/hJU4CwrLNhJsF07IWjNK7bAoum21Tbp2Q04ksLX2+hmku2F/iU+3YZXlTjsun2peMThYNc8FSB0WS1/WMlUwr357RNQBJ9OBxPIDbcT8FrZt0/iTZ4nmK+gCaMYymj2C9w8wgRMGNIlVgU2pxKC247Adx2vYgScG7GumURBeKGEEUHO+YBnzLsmg71c34UIyHP3JoxesV8hp9HcPoRZ36HZU4PYvXb0/ls1yYHCanl+6r1mA5//bQo9S4fYuOv9pMw3VfKkaVa/HloDSJtd/BIx2SPOc5lEQRl2LDvcjLe70QAEkQ39bP/mZgYGgat1ulutJPZ9cY2VyRpoYyHOp8svGB+h38/bUL5BcoWb0dN5IxvtHTxhZfkLBjbkluzsjhkBwcDx9nr38vXxv6Gp3pTqqd1bNEQxEUCmYB3dJnqiBKylECAg7JwURhgqgaJaWlGM4No0qbK9v6SPUWIg7XkuIBiWKeU+MDdMQm2BNencnvamFYJv2pON/u7Vh22UZfkJ2hMpxrdLi/1xCwg/okljEFVhZB9MMGBJf7J+Oc7x0mls7yUtsN3OqtcSVbKPKJ+3bNWd5rs/NY9Va+09dJVl/8/ZosFnhlqIcDkSqOlNcsOJ4IgkiT90kGs6e4kXoeRXSgm0XcSjlVzkMISEiCjVrXcdoSX0cR7FQ4982sK+BVqomoLfSlXyFR7MPCQhbshGdIx2ZjnURDwCaFCDuOktUHiRcuY+Temi2PEgUbNtGH17adkOMQFa734VhA7SmoHqDO+wmG098nrXUxkPoqFiaSYC81j9v3UOP5CJLoYDj97ZWdmOjEb9+F27aFROEysuAioO5BlVbnkv32h7DgxGp3RZQHG+s3Rf0k5HQu2/wsICw4eX+kqZGWsjKkFWrjrwYNweCSzuCysPC1stZZZ/1OmWcIiKjKVlRlK4b5YQradXJaJ3mtg6LeR1EfQjNGMMwEbzcDQAEFSQqiSFFscjV2uRGH0oLDthNFrtrQnqvVHplLvQ+TAqZ5K0WeKhQ5PThIpdfLluCMtv4qkSrYeLPfRsjVx/H6ug07YtO0ePZLJzn5vYurIhq5dJ7Xvn2eVDzDx37p8SWJxmQuPccTaG+kkojDtSR5UESJem+Aeu/6jLXexebi9PlemhrLmIplaL82Si5fJBRw4Yj65y3bEixnb7iCk2NL91dm9CKvjvSwI1jGRxpb50R2x/PjpbIpzNnsRLm9HJt4a5kKtQJFVDg5dRK/4qfGWUONswZJkNjt283p2GlixRhZI0vRKqKyuUQj4nDx/vod/OUy2ZzuxDTP9HZQ7wng20TPilSxwPcHrtG+TOZNEUX2RyrZHtg4j7G7DQsTjFHQLgE6lugB5QCC3LCu7d6/rZ6GsiDtQ+M8tquJslnVKQGPw0ZzdK6nkl2SaQ2WcSBSzasjPfM3eBsuTY3w7d52qt1eatz+BZepdh1BElUmcldIakMogpOAvWF2TiMiE3XsZrJwDY8cxSnfKul1yRG2eB5jKHuaRLEfCwu/rR5JsBNRt2NYRaSZ58khhahyHsQpb5xH1LqIhiAIOJVatgd/nVTxGnljDM1IYVoFQEASVexSBI+tCY+yFWWRDnZRsFHl/hBupYlE4Qp5Y2KGaKg45WqC6kEcciWamaDB+2PYpCDCClJhqlSBQ64kUbiMx9aMx9aMJN77pt2NhCQKC5KJreEQH93VSsBxb1QjFElCWcCE5kB1FR9s2Y5DufsTQ1WRkRcgODlNXxfZ0E1ryd6QtyMk0Y3TvhenfS+WZVDU+8lrXRT0bjRjFN2YRDem0M2b/8ZZ0oVqQyEiiV5kMYQshZClCIpUiV2uxS43YFe2oEjRTe29WA086nE86vE5n/XF4jzf8xwPNTZwuH4n3jUYVHZOTPDVq68QcF5dFdHomY7hVe34VXVNJpSLwa4qtB7eQj5bxL0EyYBST8Ptkbme5DQZrTjbm/Eu3rnI5oskkjl6+yd54L4mnnu1g0Jx4bFBFkU+u20/5yeGKZhLl2oOphP8Y9clQqqTh6oaZyPqdsmOhcV0cRoBgQZXAzt9O3FJtzIfUTXKA+EH6M32MlGYIKKWKuglQeLR8kc5GzvLZHGSoC3IY2WPkdFvZRrK1XL2BfZhX2RusM2zDZtoQ17FeCMi8Imm3Xy7r4Ox7OI1+olinheGutkZKuc9tds2JTBYMHROjvXzletXli3urPX4ua+8ljLH8nKrb1tYBaz8txDkbSAGwOjHKjyHIP/MujaryBL1kQBP79/B8eY6/K7l51Yhh4sPNbZwcXKY5BJ9XHlD57mB61Q4vXxy6y4iC1x/UZCpch6gynlgwW0IgoBDDnIo/LML/E3ErZSzzff0vL+5lbmk0merwmfb4D7m9W5AEmwlImFrWtd2REEmoO6dJ317O2ySnx2hf7XibRbNaYrGFCDiV3fjUurXdYxvR9gkCbd9fmlAtqiR1/T1+9SsEU5FQV0g9ZrKF9AME8c9CEA7FGXBiVe6WFhXdX3R0OeZAL6TIAgSdqUBu9IwK/CgGxMzhGMUzRhDM8YxzCSmmcaw0phmZvZf08phUcSyDCx0sHQsjJKe+WxmRCoFBwQRERuCYEcQVUTBgSg4kEQvkuBFEj1Ioh9FiiBL5ShSOYpciSKVI86TvH77wqvaeWr7NhqCgbvqqaCbJl+72sah6ioO11RvKNFwuFWOPLFr+QWBqNND1OWhL1XytTg9NsgXOs7xeO1WdgTKfuidcH+Y4fc6udI+TDjkJhyamRAtMoAKwInKeo5Ea3lleOmorkWpXv0v2k5jmCYPVDbgs6tE1ShRdelKBEEQ2BfYx77AfAPKqBrlqYqnFl33ZvZjMRwILDyxW+54GrxBPr5lF//z8ptLvl96kzH+d9clwqqLw+U1G/ps6KbBhckR/rLtDCPL9GaokszR8jr2R6re4eWABhhjCN7/HwCWfgOyf7thW39yT/OKe3IdssLh8hpOVNbzTF/nksuO5dJ8pfsyiijywcYWyh3uuxqU0QyDwUwCuyQTcbhQNlBx7O0REtwEGGaeROEKqeJ1HHIFPttObOIPX0reoSgLljEl8nkS+QIV3nuj5+5T7QsSoPF0ZmZSfvcnjV67fcFBfCydWVdGI6/pd11haz34+nfOc2hfPRXlPsQ7roeAgCAo2ORKbLeVOVqWgWllS0TDTGFYKQwzjWmlMM2bREPHQp8hGPrM78bMViVARBAkBBREQUUQZ0iG4CoRDdE3878X4Z6VQm0MAg4Hn9i9skn5RmIkmeKtgUFq/b4VSa9ODMe48GoH02NJ7KpCdVM5LYca55RFjQ9Oc/7VDiaHSupBNc1Rdh9rxh9efGxxKzaert9OV3ySiVyGjF7kc22nuTw1yuHyanaHK9kRiCzZqP0u3p7Y3VqNokg01oUJ+F0c2luPz7dwREsQBFyyjZ/acZD26XEm8kuLueiWycXJYf7kisZINsnjNVup9fg3rQfStCzSWoEbyWmShQKNvuCGNUHLosjHtuzi9dE+zk8ML7qcbpmcnxjic22nMSyLw+Ub0xyumyZvjQ3y51ff4vQKlKa2+SM8XtNEdAXmcW9vSCAGsHLfKfVmGP0gblzJvCKJXBkYpXN4kmyhyKeO7SGezZHKFWi6o3xKAMocLj6yZSftsQluJKeX3HZvKsbfXTvPdCHHBxtaaPKFNjVQZVoWU/ksXfFJ2mJjXJoc5ZHqLTxes/VdorEcLMsipV1nMvcmmpkg4rgfn33Hpujo32t47LYFycRoKs1EJs12Nq7ObjWIuF0Llm3dmJ4mXSwSWcKDY7NQ4fUsWLLVF4sv2FC/UqQKBeILeIbcS+iGSce1EaJlXsKhuffH1585T2XUT3nEy0qDZzljisHMq2T1MQC8Sh2VrmOo0g8feb8dE5kMb/UP4LTZKHO7ODM4RDJfwKfa2V0RZUckgnrbPXVxZIS3+gdnJaeP1tWyv7Jy3n1nWRaxXI5Xe/sYSiTJard8TkRBZGs4RHM4BEIp0nRldIwzQ4vvu3Nigosjo1wcGaUvFuN717q4PjU1S6x/6tBB/Ko6GyETAK1o8NU/eY6J4RiiJJJJ5Hj9Oxd47BP38fin7psloZZloeU1xoemaT/TQ21zlLrmiiWJBsB7apsZy6b5x65LjGZT5HSNF4ducHKsnx2BMnYEymgNlbM7VMFWf+iuKO+8i/WjtipIbVVw9vdjhxb2v7gJURA4VF7Dp5r38L8uvznr3L4YDMuiLTbOVFuW9tgEJyrrOVRWQ6XTsyEZOt00mcpn6U/FuZ6Y5Fp8kq7EFC5Z4ce2H9gwoiEKAlVuLz/Tcph/+9azTOUXF4vIGTpvjvaR1Yt8NLuTBysbKVump2kxWJZFvJDj+wNdfLX76pIyuzcRcbh4sraZ/ZGqd35po2BHUN8H2hUwR0FwINgf2bDNn+0Z4vsXr2FaFi+13eBDh1pJZgt86eQlfvvD8/djl2T2R6r4RNMu/teVkySLS0thD6QT/O+ui3Qnpni0egv3RWupdvs2bOJfMHTGs2luJKe5npjiemKKa/FJriemSBTzbA9ENtwf6IdiZDesAgV9EtMqAhZZfYCRzPeJFS7glGuIOI8t2IT+wwC/6qAhEJgnrjmUTDKYSGKY5oaWT6wUlV4vZe75ZOLa5BSxXI46y3/X07O1fh+uBRzJOycm0K2Sf+1ajiiWyzOZeXspDk1OpTh55gbHDm+ZRzTWAgEREZGikWAif5m4fJ2w2rohRMO0DCbzlwjatyFvsHP3ejGdzfJMRyfTuRyNweCMUaXARCbNyf4BfuzAPu6rqZl9OUuCCEKJ6L/c04siSbSWlc8jGpph8LnTZ7g8OsaOSISCoXNxeJS+eJxHtjSyM1oOlO7H61NTfPHCxSX3ndN0Evk8U9ksRcMgr+mkCsVZorHQi0PXDKZG47zvx04QiHgZ7ZvkW3/9Mq988ywHH2klFC1NuCKVAR775H20HNmCVtApFlaWvQuqTj67bR81bh8/GOjijZF+UlqBnK5zbmKYCxMjRJwudgTK2Bkq51i0jj3hikUlHt/F2xPLTUwFQUCVZD6xZRfX4hN8v79rRdsdy6X5Vm87FyaH2RWK0hooZ3sgQp0nQLnTvWy/j2VZGJQm3dP5HBO5DIPpBAPpOEPpJMPZJP2pOOO5NIZlsSsUxVhA/nw9kAWRExX1fLZ5H3969a0l1bfyhs7p8UHGsmkuTY5wrKKOfeEqyhyuFb/Dx3Npzk8M8/LQDV4Z7mUwk1h2HZes8HBlI++ta76r5oGbBUGQwLYfS3CAFUcQQ6VejXXh1vj5zLkOmqIhDjVW83pnydst4nXx5rXFfd78NpX31m2jLxXnqzeuUlhGhS1RzPP84HU64xO8MtzDrlCUHcEyGrxBKpwebKK07HNnWRYFQydezDORyzCaTTGSSTKYTjKUSc4+C/FCHnOTpdl/KIhG0ZhmKP1NEoUrgEXemCCj9SMJNipd7yGk3oco/HC+vJw2hfqAn7DLxUTmVlo6nsvTPj7BRCZD1HP3y6cCDpWGYACv3U6ycIvBj6fTXB4ZY2s4tKRC1OYck4MytwtZFOc0b/dOxxlOJGmOhFcdzdEMg9FUivHU4g1/C6H92ghjE0n6BqaRRIF9u2t57a0u6mvDPPlwK6ZpMTWd5vVT3YxNJPC4VfburGH71gpEUeBqxzDXukfxeZ103RhHtcvs311LY32Eq+3DvPbWddo6hxkdT/Lqm9fZuqWMw/vrcbtKyiaDwzHar42QzhSIlvl48pFW3K7Fvw9VClLveS8hdSeGpVEw4qs638VQksFOczX2eQ5FfhP324xoQMkTZjiZ4kBVFZ/YtROHonBmaIivXL7Km30DtJSV4VNL13V7WYT6YICrY2NcHVtc4WUgkeSrV9r4kb17+MSunQgCnOwf4A9ee4MdZWU8sqWR7qkpoGR+GXA4ltx3UyhEpddD0Omka3KKR7Y08mjTFtSZWmKfqs6RR7MAWRF57BP3sf/BHQBEqgL0Xxvh5W+cZXxwapZoiJKI6rTj8buwO5QVEw2AsMPFhxpbaQ2W83DVCG+O9nNqbICRbAoTi7FsmrFsmlNjA7w50s+xilreW7edluA7V/XmXcyHKAhUuLz8bMsR4oU8by2jQnUTumnSk4zRm4zx2nAvVW4fUaeHiOoioDrw21WcsoIi/n/tnXdwXdd95z/n3PJ6AR7w0DvAAoK9S5RISbYsF8mRbMmO45LIE5dkU8be3ZnsTHaym5k4m01mM/HOtsSZbJxsLMuyenERRclqpFjE3gACJHpvr9+2f7wHEBApEiQBSlTuZwZ/4OHee859OO++86tfBYHAsC2ylknOtkgbBqPZFJO5DNO5LBPZ/IZrOJO86kZvsRBCENB0Hm5ew0A6wePtR64Y0bEdh67pcQZS0+wb6mFZtISmSIyGUBHl/hBRjw+fqqFKiWXbZCyD8WyGwdQ0XdPjs97psxMjV40cQb7L1KZ4NV9ctpb60EcjOu04OUg/jWP1IYSe30Ir5QjfQ4ty/f7xab5421qWVZTOGoBXMwSFEFQFInx5+XqmjSwvnj9zVaPWIR/d6E5M8tbABaqDESoCYUp9fmKeAFGPF5+qoUmJQGA5DqZjkzENkmaOhJFjKpth2siv/bFsmtFMkvFsGuMmN6/5SBgajmOSMQcYyx7EsjMo0ktIbybu30VF4BN4lNKrX+QWRQpBbTTKmooyXm4/N/u67Tjs7+7lWMMQ8WDwpkcPFClpKy+jtijCsYGLGy7LdnjpzFluq68lqOs3NUyrSMma8jL2d/cylk7Pvp4xTfac66Q5FkMq1zafkWSKsyOjJK+xRqOnb5yXXz3JbVub+dnLxxgZT9BQE+OZFw+zbWMjQsCzPztMMpWjqb6U8YkkL792EoDW5ZWc7x7l6RcPc8f2FqoqonSeH+G1N8/i8WgUFwUoivrx+XSqKqJUVxUTLwmhzsn1PHD4PJvW1RMrDvL6W2fxelQ+fe+a952vEBJVeNHnCHIuFuPZs4xmTmA5uasf/AHgOFAVCfPpFctYVZaPNHhUlX3dPfRNTTGRzswaGqqUBHWdiNd7Ra2Z/ulpUrkcG6oqqAiHcIDV5eVoisJ0LjsbiXAcqI5Erjp20KMT9OhEfflOU2Gvh3gwcMXubqqqsHzjxZaPqqYQjgUxTYt0cvGUrlUpWVkcpyVawuayatonRjk6NsC+wR6OjPSTsUxSpsGB4V7aJ0c5NzXOl5evZ3t57aLNweWDR5WStlgZv9O2DdOxOTDUu+BzHWAsm2Ysm+bo6AACgVdVCagauqKiFFqXW46NYduYtkXOtkgauQ9cRlMKQZk/yG+t2EjWMnm688RVU1MyljlrMAQ1DyU+P1HdR0DT0aWCIvMbS8OySJo5JrMZhtLJa1KoV4VkQ0kVX2/dzOpY+a2fMjWDk8PJvobwf57ZWlC5eM7W+ngRr5/qwu/RsB2b8WSaN053sbb2ylooqpS0REp4dOUmLNvm5Z4OclfpxDbDRC7DxFiGY2ODCPJF5gFVR1cUFCkRFDTVCmsia5tkTHPB119qbtjQyKZznNjXwd6fHUH3amz/5FpWbm5ajLktGF2JURv+AqX+O7AdAyk0PEoMv1aHrhTdVAGvD4LqaJittdW8db57nkp41/gEPz/TTmNxEY2x4itcYWlYXR6nNR7nzPAouTkq4Uf7B3nh1Gm+tnE90ZvcfndHQx1PHT85z9AA+OnREzzU1kppYOF5sY7jcGp4mP0971/odyUUVXLHtmaOHu9BVxXuvnMlz//iKCOjCSzbZu+BTr7zO/fS1FDCwOAUz7x0mDf2ddC6PJ8G6PfprGmtZt3qGg4f6+blV08xNDzNjm3NTEyl6B+cZNO6Ola3Vl8ydm11MXffsYJAwMPI6DT7DnZd0dBYKI5jM2WcZzh9mKnceXL2FIrwENEbqQnuwqvEZt/f7sQehjNHGM0cw7RTHBr5PrrMp9sFtErWFH8DISSO45AyB+lLvclErh3bMQiqVZT7t1LkWYacowDen3qbqVwXFf5tJIx+BtMHyFoT6EqIpvD9hLS6eccvlGKfj7roRY+fvyCIOZ3NkrsO72h1OIxX03ilo5P6oiIkgte7zmM7Di2x2LxjF3vsGYQUBCPzI0hSCnDAuYGapfdDlZKmSIzGcDFbymq4p7qZMxPDvNrbyWt9XSSMbL7dZ3d73gPuD7maGh8xPIrK1rJafh/4uxPv8Kv+ruu6joND2jRmBSE/7OTXfjG/3boZATzTeRJzAWlaDnnl9LwBMb5o89GkZH1JJd9evY2tZTWLWvj7oUD6EPoOWIIW6A9uXsVT+0/wV8/9irFEmr949lWKAz6+tGPdVc/VFYW24jK+uWorXlXjpfNnSFvXtoYdIGUaVxQB/LBx4+1tVYXyuhKqm8t491enGOwevemGhir9RDytRDytN3XcDwt+TWNjdRUbqit5vfNinmDOsnilo5Niv4+vbFhHVeTyOiYLwXYcMoaJ7dgEF5jyVOTzsaupgXf7+jkzMjr7esY0efzIcaJeH59b3brg610O07bJGiZSigVpczSXxFhWUsKFicl5xk/n2Dj/sP8Q373z9iuqi8+le3KK3e2ddI1f3xdAUcSPqioEgx5KS0KoisTrUUkX+tTbtkNzQymKIimK+omXhDh6sherEPYsiQWpqSpCUxXCIR+qKskZC9t4rlxWgd+voyqSstIwR44v3Lt4ZQSDqQMMpt9BlQE06SdtjjA0dYisPcGyyCN4Cno6ivDgU0ryERIhCWoV6EoUyIsG5XFIGD2cmvgXJnOdBPUqBJLB9H5GsydYFnmEMv/GWWfCVO4Cfam3mDK6sR0DIRSkUJnKdeE49nU7HXRFwT9nfc1IPzqOw/XUzVVFwnx72xb+8eAhzo2N4VVVBPBQWyu31c335C/22HNRrkNI8EYRQsymvbQWx1lfWsW28lr+78mDdEyNkrZMDgz18np/l2tofATxqirbymvxazqlvgAvnD99VeXwjwKqVGiJlvDNVVuJ6F4e7zhKwrj5UVyfqrGjop6vr9zE+tLKj2ATBgF2Gnv6zxBKBSBBliF8l2pIXNM1CyyrKOHzW9s4PzzBjhX1hLweakuirKhcWOaMrqisipXxrVVbKfUFeKbzBANX0Fr5KHDDK0zVFCrqS2nd0sS54wvLu3RZXIQQtJTE+NTyZXSMjNE/fbFf9ng6zVPHTjKVyfLw2lW0xuN41IX92x3HIWWYnBgcYu+Fbnqnpnh4dRsbqhdWWC+EYGttNTsbGxhMJJmc05lpYDrB379zkOFkkofXtFEdCS+44M228x17jg4M8vaFblQp+eyqlbSUxK56rldVebBtJe/299M3dfF9coCfHD1OPBDgS+vXXrFPtkO+jehjh4/y8zPtGNb15TtKOdMBSFzc8BWMHI9HxbRsTNNGUSS27WCaNpqqzKbBKYpEmztPMTO72V/eF6+uzR4hpLhhdfTZKQhBuX8Lxd6V6DKIIjwYToojo/+bnuSrNIQ+OWtolPrWUOxdgWEnGM2eoD50HyGtpjB7iRCCnJWgL/UmY9lTNIc/S9y/AYFkJHOM9smn6Em+Rlivw69efMgnjH4EKk3hB4h6GhGo5OwpglrVVd+XK92XXEQ1+5m17lc1Hl7dRsijE/J4qIlEiPnnRxmudexbJX4rhMCjqLREYpT7g0gE/+mdlzFsi+F0khNjV1Yxvtz1XG4NPIrKupIKYh4fLdESftx+lM6rtP78KKBJheZIjK+3bqLCH+JH7Ueu2vJ0MYl5/DzYtIqHm1fTFI59NPVshIbw3gNOGkQAECCji3Z5RUpayktoKothmBaaoiDEtT1/tILR+ejKTTSFi3ms/QhHRgYWFOVaaoQQLPajdMlNWcu0OLn/HG8+/y4j/eNUNcbZ9bkt1LSUI6Wkp32A157eT+fxXmzboXFVFfd//S4Gu0d59gd7+Df/9UtouorjOPR2DPHjv3mJb/3ZF/AFPAz3jPHLx97m/Ok+wsVBtn9yLevuXPmBeOk+aPyaxq7Ges6PT/DPhw6TyF30lIykUrxw6gzHBgbZVFPFxqpKVsRLKQn4Ceo6UkqypknGMBhLZeifznesOj08QvvIGKOpFEOJJEFd4xPLrk2YMeL18vCaVXRPTvJK+zmyc6IIvVNT/OjwUfZ197C9tpa1leUsLy0h4vMS0HUcxyFjGKQMg5Fkir6pabonJjk9MkLX2AQjySTDyRRt5XE+3rLweW2prWZXYz1PHT81L9VsLJXm7/Yd4OzoGL+2agVrKsrnGWWWbTOSTLH3QjcvnWnnQE8fo6kUqpRIIeZFSG4ERRFUxCMURf3sefM0u25fTnfvOOfOD9O6vGJei9L3w+/TSGcMphIZrIIhJKW4+DBcwj1ZWL80tz7mXcnIxFEsJ4uDg0CgyQCq40ORXkCgySAeZX5ryYw1xmD6AD61hJrg3ehKPtdWCp2h9CEmcu0kjb55hobppCnzrafMtxFdmekJf+X82ZuN4zi80XWeqkiYXY0Nl+2Gdj341LwoZSKXWxS1ett2yGZyJKfSDF4YJTGZJjWdYbBnDH/Ihz/sxef3IG/gmSuEIKR5WF1STszrZyA1jWFbJI0stuMsuL7Moyjzjk2ZxqK3aXRZPDSpUB8u5tdb1tJWXMaL58/ws+4zV2wDu1QI8oJ1vsuIzC42ipRUBiI80rKG5mgJP+04xu7ejiVNhdGlwobSKr68fD2b4lU3XQzuZiLQwPOx97y6eKlhhmXx+qku9rZ3MzqdIujV2dBQxSfWtqAv0IkL+dqdcn+IT9evYHlRnF90n+XZzpN0JyZuel2RFILGUDF3VTeyq7IRr7K4n4MlNzROH+ziV88epLw2xpaPr+bAKyfY88Q+Pv6l26isj6OoCg2t1azc1ISZM3nif/6C8vo463Ys58Q7HZw73sPy9fWYOYuDe06QS+fweHUmhqd58Z9ex8iafOprd9JzdoDXnzmI7tVYvX3ZUt/Wh5KSYICH16xiOpvlqeMn522iE7kcJ4aGuTAxye72c4Q8HnRFyVvjgOXYWLYz2xozbRpMZ7OkcsbsovcvIDXpctQVRfnG1k2kcjnevtAzb0M+kc5wsLefjtFxnjt5iqDHg6YoaEo+N9+yHSzbJluYV8owSOSypOekCF2rNz6g63x143qODQxxbHBo3mZkIJHgmROnONDTSzwYpCwYIOjRyZoW4+k0g9MJRlMphpOp2fvYUlNFeSjIL8+em9dh6/oRlJSE+PwDG9n92kl2/+oUHl1l5bIKdt62sLVdVxOjqb6UJ587xLM/O8ztW5rZeftywkHvIszvyqTNEQbS7zCaOUbKHMG00yTMXrLWJI5jcy19hA07xbTRTcYa49X+786+bjsWKXMQr1KEYc8POytCI6hVo93kDla24zCdzZLI5uiZmCRrmoymUlyYmCBrBgh7vfkUKZFPfVpTUc4/HXqX33r8CaSUqFJSGQpxV1Mj916D4TyXumiUIp+XF06dIaDrlIeCZAyT2+vrruvzm5hIsfuJfez+yV5yGYOxwUksy+Zv/+QJvH4P6+9cwSe/soOKuvl6PQuLq80/PmuZJAupJJqU+FX9muzhiO5Fn5Nr3jk5Rto0cBznI7uputWRQhD1+NhWXktLpISP1zSzp/ccu3s76E5cvTXrjeJV1EJHtEZur6inJXr1qPhiMHPfOyrqaIoUc3d1E890nmTvUPei1p2oQrKupIIHm1axtayW6kAE7zVshm9JhASxdJ02nzt4kldOnKO5LEZFURnprMHzh04xmkzxm3deu4p8UPOwOlZGTTDCnZUN/Kqvk5cunKFzanzR2y3PRSCI+4Nsjlexo6Ke1qI4FYEwUY930SNdS7ribNvm9MFOLMNi2yfWEq+JYds2P/9/bzB4foTK+jgllUUUxcNouobjOLzzy2P0dgyw/b61rL9zBXtfOsLy9fUYOYMDu49z98NbUVTJ2OAkx946wzf+9As0ra4hVh6lt2OQ43vb/9UaGlIIaqIRvr5lA15N5cljJxhPzxeSS+Ry86IdNwNFSlbGS/m3O3fwP97ay6vnuuYZCjCjZH7zRO8aiov47s7b+ZNf7KZrbL4HIW0YtI+OcW5sHE1RUKXAdhxMy76kLVxbeZyvblxPxjA43D+4YENjy4YG2lZW4ffpPPLgJnRNxeNR+e7v3Eu8NISuKWxcU0tNZRHpjIGmKhRF/UTC+eL527Y0sbatevb32qpivvS5rQT8ec+436fzwH1ruWNbM5btEI348XvzG83/+O/uJ14ano38bdvUyMqWxfH4Txs9nBj/IZPZdkq8q6kK7ECXQfpSb3HBevmar+dg4zg2AbWKSv/tl/zdqxYRek8ERaIihXbTBTp7Jif5X3vf4XBfP2nTYGA6wYunz7L3Qg+aInlkzWoeLrSofeVcJy+3n+PjLc1UhyMIka9d6hyb4Afv7MerqlReRojzapQFg3xt43p+dPgof//OfhCCeCDAusqKWUNDSsGv/8F93P+bd847V/dobL13DcvW1ROvzjeP8Ie83PbJtayc051qLsGon+L4pbVfP+04Rl9iqqACXnFFzQPbcbgwPc4PTx8iUeiaU+z10xK9tnbTMa+fUl8QVUhMx2Ykk+TJc8f57dbN+F1tjg81mlQoD4SIef20xcp4qKmN42ODvDVwgYPDvQykphfUrvVqSCEo8wVZVVzG6lg5bbEyGsLFFHt8hDTPTdec0hWV2mCUuC/IxngVpyaGea23kzf6z9OdmLjue64OhNlRWc/OqkZWREuJ+4KuPs0i8fKxDj6zYSUbGirxavkU581N1Xzv6T3XZWhAXn8p5vUT1b20RGJ8um4Fx8fz63/vYDf9yalFWf8hTaclUkJbrJx1pRU0R2LEvAGKdC9eVVuy7qRLamhk0wYTI9O8+fwhzhzsQiqSbDpHcjrFzgc3AzDcO86rT77DhdN9WJZN14keNty1CnC45+Ft/PV3fsivf/dT9HeNMNI/zsa7VmGZNhPDU7Qf7uZvvvNDVE3FNEySU2m2f2rdUt7Shx5FSmoiEb6xdRNNsWL++dARTg0N33AKgSDf7SbsuT6PuKYoLC8t4Y/u2snKeJwfvXuEgenEDYcIFSEIeTwE9Gvz1ipSsrm6mj+992P8lz2vcXzw0vfIdhyypsnlTAcpBOsqK/jWts1sr6vh1NAIZcEAHaMLy7eNhH2zRkJ5/GK6UF3NRY+ax6NRU3X5bmHRiJ/onI5BXq9GhffidYQQFBcFKC66VDSxsX5+0Vo07CcaXhzv/1D6IEPpgzSFP0t96F40GUSiMp47+76F2Fcq0FaEjq6E8CpFNEc+i3hPCFwIBeW9GjmL+LCsKyriP997T16Ibw7FPi+/d9t2LMemNJB/j8uCQb65ZfM8le+5xPx+PIqKadv8t9ffYENVJb9323Y8hbbDtuNwZmSU7+15lcP9/Wyvq13w2DOoiuSO+npa43FSOQMbB11RiHovfm6FEJS/JwIBeb2MaElonuK3qinEq4tnDY+F0pOY5PH2ozzWfoQSb4C2WJymSAm1wQgh3YMuFdKWyVBqmmNjg7zZf4FzU2Ozwa7mSIxdVZc3bt4PVSrcVlHHuyN9DKeTWI7DP5w8wIXpCe6uaqIimL+vtGkymUsznknjUVQ+37z6msaZwXYcDNuetwEwbQvTthctinL5MexFHQPyUWHTtjHnjGPZDoZlX1P62o2iKQqlviAxb4CWSIy7q5uYzmXpT03TPjlCx+QY/clphtIJRjMpUqYxq5shhcCjKHilhkdV8Skqpb4AFYEwFf4QlYEwtaEolYEw/kJ7UL+qoSkfbMclIQQ+VaM2GKXcH2JjSRW/tWIT3ckJjo8OcnZylJ7EJAOpREHw0sB2bDSp4FNVwpqX8kCISn+Y5miMtuIyqoIRIrqHsO69KcXeCoIff+JL7+uBl0IQ0a+/w+Qfb76bP1x7qaNphoCmX1fnLFVIHmlaw67K91e39ygqlYGLzhTDtKgriVISCsx+LuQiObUUKSn2+iny+KgPF3FnRQPTRpa+5BRnJvLrvy+ZXwtjmRRpyyBjWRi2hSIEulTwqTph3UPU46XUF6DcH6ImGKUhXERlIExI8+TXv6bjUdSb8tle0hWoeVQ8Pp1Nd6/iM1/fhT+YX2hCQnE8gmlYPPbXL1BUGuZzv3svwaiff/mr51G1/IJpWlOLP+jl+N52zr57nrV3rCAY9eM44A/5qKgv4dvf+yKRgvKxEBAI39x2qR9GpJTE/H7uX7mC9ZUV7G7v5NkTp+gYG7vmvG2fprG+soJ7mhvZ0VB3Q52rFCmpDIf46sZ13FFfx3OnzvDCydMMJq7N4BBAsd/HpupqPtbSyOaaKuLB4FXPey+6qrCxupK/fuBTPHb4GI+9e5TJBUQkSvx+PtO6nM+vbqOhOIpHVYkHA9c1h48a+TQmh6BWhU8pRQiBYacYz57BtNOXPUeXQcAmZ01d8jePEiXmaWUo8y4TuQ7KfO/1GC1tNqtXVamNRi95XVUUKt4TcfCoKnVFlx77XrKGSc/kFJ9esXyeoWDZNqqUTGfzOhrXMvZcfJpGdSTyvn+/GTiOw3Qu3662NzHJ6YlhPFJBVxSkKPR9J7+5zZgmKTM3a2QsLyrl0ZWbqL0OAbHP1K/gjf4uXuvtJGdbjGfTPN91ild7z81uRGzy6ZgO0FZcdlVD4/jYIC+dP0NfcoqEkRfCShpZkoZBwsjOqynY3XuOwyMDs1/kMz9BVafI6+MP1t5+Wc9y19QY/3j6EBPZDEkjR8LIkjBypE2DqVyWsTlj/KL7LPuHegioM9cvjKV6iPn8fGPVZmLeSx0MAFO5DN8/8ibjmcI4Zn6cVOG+5o5zYKiH3331KYKajl+dGcdDUNMp8vj4QssaWqKXGqyLgRQCv6bj13TKfEEawkVsLK0ia5mzOhmW42A7DjZO3uiiUMiKQIr8jyIkmpRoUkGTEl1RUD+krVxnmiN4fCoxr5+6cJRNpdWzhpRp540+23HydW5CIBEoQqAW7s+jqPhUFUXIm5ouKIRgedHS6ZXVBKNLcl0hBCW+ACW+y39eZhiZSjJqJEEItrXU8sS+Y9yzqpnySJCpTJZnD5zkN3asX9R5+VQNn6oRJ0hdqIgNs+vfKjgf8uvBcfLtnmfOm1kTipSoM+tfUdClmhf3+wDSSJfU0FAUScPKKvrODTHSO86mj1WRTeUYH5rENC2EFAz3jtO0upbKhlLGBifpOtnHik15T5amq+y4fyNvPHeQ7rMDPPrHDxXeJIeieJiG1mpO7OvgM4/uRAjB2MDkNanWXg+NxUXs+daj8+9TSIKeGwtLrq4o48mvzfcICARR3/VFEIQQ+HWN5pIYVZEwv9a2gtNDIxzs7eP44BAXJiYZSaXyNRiOg1fT8GkqMb+f2miE+uIoq8rKaCuLE/J48OvabH75jSAKEYhV5XEaYkV8beM6DvcNcLCvj1NDw/RMTjGWSpMxzcKXTV4zoDTopzYapTFWRFtZGS0lxQT1/Lx0RbnueWmKQm00yre3b+Hzq9vY3dHBvu5e2kdHGU4kyZkWuqoSC/hpiRWztbaa7XU11ESiBHRtNtReHgryH+7eyR/esX322j5NI3yT1c+XAsexMZ00WWuKhNFN1p7AsBNMGReQQkOTITQZQAqFoFaDInycn/45FIq+zydeJmn05z0MlyAo9rbiODbHxn9Ao/kAUkik0KgK7MCnFFMTvIuRzDEOjXyf2sBdBLRKcnaCsewpivQWGsKfuun1GDeCR1VZV1nB40eOEfP7qY9GSZsmZ0ZGeOF0vrZiV+P7e9huBRrDxUQ9XqZyGRzIax5w5WezT9XYWdnAb6/aTFus/LryhGNeP3+0cReqkLzS25Gv7bLMy7ZPlUIsqAD3wvQEL3Sdoic5Wdjo5Q0p+zJGbtLIzdaZyMKXvhACKfK52N9s23pZQ2MwleSJ9mNkLGN2M2nP2UDMZcbYudwYEd3LF1vWvK+hkTYNftJ+tFAoT2Gjcvl7SVsmvcm88Z8fg9kNfFDzcEdl/ZIZGnMRQqCKvIHwryX9RwiBJhQ0XSHErf8dcqvzl8+9xr6OfFfVrGmRM01+fvjMbEfIZDbHgc4eHty8aknGV6VElfotu/6Fc4N9Lfs7h/nhXzxL5/FuRgcmCIT91LdWcc/D29hx/wYyySz7dx9n90/eprd9EEVT2HbfWu77jR2UVhXz8uNv89IPXycxmaJ2WQWl1cVousIjv38f/pCP4b5x/v0Df0lJRZTvPfkd1EI7T9Ow6DrRwzM/2EP7kfOYhsWydfXc/+hOlm+8tb+kl4KZ0Lhh2Ri2hVUIx8/892e8QVIIVJm3hjVFWXIL2CmkBhiWhWHZWAWvzWwxqch/yUmZ906pSt5CV5dgXo7j5NU0rYL3yHZmvaxSCtSCR2xGjfNfCxlrnLOTP+XM5I8LRkcGHBtF+pBCodJ/O61FXyGiN2DaGboSL9E59TwJox9NBqkK7CDmbeXdkf/OnRV/QURvmv3fOY6D7Rh0Jl7kzMSPyVrjSOGh3L+FrfE/Ahwsx2Qie5aOqacZSh8iZyfQZICwVkdT+AEqAttRRD517vTEjzk79QTrY79PVeD9Q+0fNN2Tk/ztvnfY39PLRKGOqjQYZENlBQ+1rWJlvPSWbj2ZMU1GM0kODPWyf6iX9skRehJTjGfTZCwDy3HwqRpR3UtjuJg1JRXsrGpgRVEpflW/oXu3HYdpI8vb/Rf4efdZ3h3pZzCVIG3m8KkaYd1LuT/EimgJW8tr+WzjlfWXnu08yZ8f2DO76b5e/KrGaw9987Le07f6z/Obv3yc7A0q+YY0D09/+qs0Ri6f6jaQnGbXk//nhnUrAqrG93d+lrurb65mlovLB8FkKkPOvPJnRgpJLHTrOLxuJjdsaNiWTTadw7Iu5oxKKdE86mxbWsu0yGVN7EKbTU1X0TwqUkqMnImRNbBtB0WRs20Sda+GEALHdkhOp5FS4g9d9O47joNjO+QyBqaZfzgrqkT3aChX0EBwcXG5NhzHxnJyWM7law+kUFGEBymUgnfUxHZyOI4FCKTQkELFtDOo0jerkXHx+vlzLDsL2IVzVFSZT4N08lLVWI6B7Zizx8zUZwguRrQsOz9PVXqRS6AKu1jMGLVGIdceKBj58iNjyDqOg+nY81I+ZuqgZlocC1EI8xdC/It13w75VDRjTsrJxTGZTatRC2k1VyJnWbORhhtBIAjpnsvmRJu2RdIwLhvBuNYxgrp+SV3PDHYhpW0xxvFr2kdPUdrFxWXRuWFDw8XFxcXFxcXFxcXF5b3c+m4zFxcXFxcXFxcXF5cPHa6h4eLi4uLi4uLi4uKy6LiGhouLi4uLi4uLi4vLouMaGi4uLi4uLi4uLi4ui45raLi4uLi4uLi4uLi4LDquoeHi4uLi4uLi4uLisui4hoaLi4uLi4uLi4uLy6LjGhouLi4uLi4uLi4uLouOa2i4uLi4uLi4uLi4uCw6rqHh4uLi4uLi4uLi4rLo/H/dBlvxZSG7WAAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 600x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIQCAYAAAA7N+yKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMkJJREFUeJzt3X18zfX/x/Hn2cw2uzgYNhfDZC4WukAMRUwrCrWv6Of6q5RcfKPL5SpyEcpFLlNy8Y1ykUrleklhrqJcFUVshRG2udxmO78/+jm/TiM73jvOGY/77XZuN+f9+ZxzXmdLe/iczzmz2Gw2mwAAAK6Tl7sHAAAABRsxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEB4JZRsWJFde3a1eWPc+jQIVksFs2ePdu+1rVrVwUGBrr8sS+zWCx67bXXbtjj4dZGTOCmtWvXLv3rX/9ShQoV5Ofnp7Jly6p58+aaNGmSu0fzSBUrVtTDDz98xW1ff/21LBaLFi9efIOnuromTZrIYrHIYrHIy8tLwcHBqlq1qjp16qTVq1fn2+MsW7bMY38oe/JsuLUUcvcAgCts3LhR999/v8qXL6+nnnpKYWFhSk5O1qZNmzRx4kT16dPH3SMiH5QrV06jRo2SJJ07d06//PKLlixZog8++ECPP/64PvjgA/n4+Nj337dvn7y8nPs31LJlyzRlyhSnfmhXqFBBFy5ccHhsV/in2S5cuKBChfhfPG4M/kvDTWnEiBGyWq3aunWrihYt6rDt+PHj7hkK+c5qtapjx44Oa2+88Yb69u2rqVOnqmLFiho9erR9m6+vr0vnuXTpknJyclS4cGH5+fm59LGuxd2Pj1sLL3PgpnTgwAHdfvvtuUJCkkqVKuVw3WKxqHfv3po3b56qVq0qPz8/1a5dW998843DfocPH9azzz6rqlWryt/fXyEhIWrbtq0OHTrksN/s2bNlsVi0fv169e3bVyVLllTRokX19NNPKzMzU6mpqercubOKFSumYsWK6aWXXtK1fnnvww8/rEqVKl1xW3R0tOrUqWO/vnr1ajVq1EhFixZVYGCgqlatqldfffUf7/96uPPr8U+8vb319ttvKyoqSpMnT1ZaWpp929/PmcjKytLQoUMVGRkpPz8/hYSEqFGjRvaXSbp27aopU6ZIkv0lFYvFIun/z4t48803NWHCBN12223y9fXV3r17r3jOxGUHDx5UbGysAgICVKZMGQ0bNszh+V5+Senrr792uN3f7/OfZru89vcjFjt27NBDDz2k4OBgBQYGqlmzZtq0aZPDPpe/Xxs2bFD//v1VsmRJBQQE6NFHH9WJEyeu/Q3ALYkjE7gpVahQQYmJidq9e7dq1Khxzf3XrVunBQsWqG/fvvL19dXUqVP14IMPasuWLfbbb926VRs3blT79u1Vrlw5HTp0SNOmTVOTJk20d+9eFSlSxOE++/Tpo7CwMA0dOlSbNm3SjBkzVLRoUW3cuFHly5fXyJEjtWzZMo0dO1Y1atRQ586drzpfu3bt1LlzZ23dulV169a1rx8+fFibNm3S2LFjJUl79uzRww8/rFq1amnYsGHy9fXVL7/8og0bNuTp65aVlaU//vgj1/pffyBf5s6vx7V4e3vriSee0KBBg7R+/Xq1bNnyivu99tprGjVqlJ588kndc889Sk9P17Zt27R9+3Y1b95cTz/9tI4cOaLVq1frv//97xXvY9asWbp48aJ69OghX19fFS9eXDk5OVfcNzs7Ww8++KDq16+vMWPGaMWKFRoyZIguXbqkYcOGOfUc8zLbX+3Zs0f33nuvgoOD9dJLL8nHx0fvvPOOmjRponXr1qlevXoO+/fp00fFihXTkCFDdOjQIU2YMEG9e/fWggULnJoTtwgbcBNatWqVzdvb2+bt7W2Ljo62vfTSS7aVK1faMjMzc+0rySbJtm3bNvva4cOHbX5+frZHH33Uvnb+/Plct01MTLRJss2dO9e+NmvWLJskW2xsrC0nJ8e+Hh0dbbNYLLZnnnnGvnbp0iVbuXLlbI0bN/7H55OWlmbz9fW1Pf/88w7rY8aMsVksFtvhw4dtNpvNNn78eJsk24kTJ/7x/q6kQoUK9q/F1S6LFi2y7+/Or4fNZrM1btzYdvvtt191+yeffGKTZJs4caLDc+zSpYv9+h133GFr2bLlPz5Or169bFf6X+Wvv/5qk2QLDg62HT9+/IrbZs2aZV/r0qWLTZKtT58+9rWcnBxby5YtbYULF7Z/z9auXWuTZFu7du017/Nqs9lsf/53PWTIEPv1Nm3a2AoXLmw7cOCAfe3IkSO2oKAg23333Wdfu/z9iomJcfh+9evXz+bt7W1LTU294uPh1sbLHLgpNW/eXImJiWrVqpV++OEHjRkzRrGxsSpbtqyWLl2aa//o6GjVrl3bfr18+fJq3bq1Vq5cqezsbEmSv7+/fXtWVpZOnjypypUrq2jRotq+fXuu++zevbvDYed69erJZrOpe/fu9jVvb2/VqVNHBw8e/MfnExwcrIceekgLFy50OCS+YMEC1a9fX+XLl5ck+8s6n3322VX/dfxP6tWrp9WrV+e6vPnmm7n2defXIy8uvw3zzJkzV92naNGi2rNnj37++efrfpy4uDiVLFkyz/v37t3b/ufLL7FlZmZqzZo11z3DtWRnZ2vVqlVq06aNw8tlpUuX1v/8z/9o/fr1Sk9Pd7hNjx49HL5f9957r7Kzs3X48GGXzYmCi5jATatu3bpasmSJTp8+rS1btig+Pl5nzpzRv/71L+3du9dh38jIyFy3r1Klis6fP29/nfjChQsaPHiwwsPD5evrqxIlSqhkyZJKTU294ssAl3/AX2a1WiVJ4eHhudZPnz59zefTrl07JScnKzExUdKf54V89913ateuncM+DRs21JNPPqnQ0FC1b99eCxcuzHNYlChRQjExMbkufw2ty9z99biWs2fPSpKCgoKuus+wYcOUmpqqKlWqqGbNmnrxxRe1c+dOpx4nIiIiz/t6eXnlOvelSpUqkpTrXJP8dOLECZ0/f15Vq1bNta169erKyclRcnKyw/rfv1/FihWTpHz53uDmQ0zgple4cGHVrVtXI0eO1LRp05SVlaVFixY5fT99+vTRiBEj9Pjjj2vhwoVatWqVVq9erZCQkCv+sPb29r7i/Vxp3ZaHEw4feeQRFSlSRAsXLpQkLVy4UF5eXmrbtq19H39/f33zzTdas2aNOnXqpJ07d6pdu3Zq3ry5/QhLfnH31+Nadu/eLUmqXLnyVfe57777dODAAb3//vuqUaOG3nvvPd19991677338vw4fz1Ckx/+ejTgr/L7+3ctV/t+5cf3BjcfTsDELeXyux6OHj3qsH6lw9z79+9XkSJF7IewFy9erC5duuitt96y73Px4kWlpqa6buC/CAgI0MMPP6xFixZp3LhxWrBgge69916VKVPGYT8vLy81a9ZMzZo107hx4zRy5EgNGDBAa9euVUxMTL7N4+6vxz/Jzs7W/PnzVaRIETVq1Ogf9y1evLi6deumbt266ezZs7rvvvv02muv6cknn5R09R/u1yMnJ0cHDx60H42Q/vzvTPrznSbS/x8B+PvX8UovL+R1tpIlS6pIkSLat29frm0//fSTvLy8ch0hApzBkQnclNauXXvFf0EtW7ZMknId7k1MTHR4nT85OVmfffaZHnjgAfu/0Ly9vXPd56RJk27ovxjbtWunI0eO6L333tMPP/zg8BKHJJ06dSrXbe68805JUkZGRr7O4glfjyvJzs5W37599eOPP6pv374KDg6+6r4nT550uB4YGKjKlSs7fK0CAgIk5f7hfr0mT55s/7PNZtPkyZPl4+OjZs2aSfrznUje3t653po8derUXPeV19m8vb31wAMP6LPPPnN4OSUlJUXz589Xo0aN/vHrBFwLRyZwU+rTp4/Onz+vRx99VNWqVVNmZqY2btyoBQsWqGLFiurWrZvD/jVq1FBsbKzDW0MlaejQofZ9Hn74Yf33v/+V1WpVVFSUEhMTtWbNGoWEhNyw59WiRQsFBQXphRdekLe3t+Li4hy2Dxs2TN98841atmypChUq6Pjx45o6darKlSt3zX+hO8sTvh5paWn64IMPJEnnz5+3fwLmgQMH1L59e73++uv/ePuoqCg1adJEtWvXVvHixbVt2zYtXrzY4STJy+eL9O3bV7GxsfL29lb79u2va14/Pz+tWLFCXbp0Ub169bR8+XJ9+eWXevXVV+1HwKxWq9q2batJkybJYrHotttu0xdffHHFD1tzZrbhw4fbP4Pk2WefVaFChfTOO+8oIyNDY8aMua7nA1xGTOCm9Oabb2rRokVatmyZZsyYoczMTJUvX17PPvusBg4cmOvDrBo3bqzo6GgNHTpUSUlJioqK0uzZs1WrVi37PhMnTpS3t7fmzZunixcvqmHDhlqzZo1iY2Nv2PPy8/NTq1atNG/ePMXExOT6AK5WrVrp0KFDev/99/XHH3+oRIkSaty4sYYOHWo/4TG/eMLX47ffflOnTp0k/XlUoXTp0oqOjta0adPUvHnza96+b9++Wrp0qVatWqWMjAxVqFBBw4cP14svvmjf57HHHlOfPn300Ucf6YMPPpDNZrvumPD29taKFSvUs2dPvfjiiwoKCtKQIUM0ePBgh/0mTZqkrKwsTZ8+Xb6+vnr88cftn7/xV87Mdvvtt+vbb79VfHy8Ro0apZycHNWrV08ffPBBrs+YAJxlsXE2DW5xFotFvXr1cjj8DADIO86ZAAAARogJAABghJgAAABGOAETtzxOGwIAMxyZAAAARogJAABg5KZ/mSMnJ0dHjhxRUFBQvn4sLgAANzubzaYzZ86oTJky8vK6+vGHmz4mjhw5wmfOAwBgIDk5WeXKlbvq9ps+Ji7/+uHk5GQ+ex4AACekp6crPDzc/rP0am76mLj80kZwcDAxAQDAdbjWaQKcgAkAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwUcvcAAOBKD4341N0jAC63fEAbtz4+RyYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGHFrTGRnZ2vQoEGKiIiQv7+/brvtNr3++uuy2Wz2fWw2mwYPHqzSpUvL399fMTEx+vnnn904NQAA+Cu3xsTo0aM1bdo0TZ48WT/++KNGjx6tMWPGaNKkSfZ9xowZo7ffflvTp0/X5s2bFRAQoNjYWF28eNGNkwMAgMsKufPBN27cqNatW6tly5aSpIoVK+rDDz/Uli1bJP15VGLChAkaOHCgWrduLUmaO3euQkND9emnn6p9+/Zumx0AAPzJrUcmGjRooISEBO3fv1+S9MMPP2j9+vV66KGHJEm//vqrjh07ppiYGPttrFar6tWrp8TERLfMDAAAHLn1yMQrr7yi9PR0VatWTd7e3srOztaIESPUoUMHSdKxY8ckSaGhoQ63Cw0NtW/7u4yMDGVkZNivp6enu2h6AAAgufnIxMKFCzVv3jzNnz9f27dv15w5c/Tmm29qzpw5132fo0aNktVqtV/Cw8PzcWIAAPB3bo2JF198Ua+88orat2+vmjVrqlOnTurXr59GjRolSQoLC5MkpaSkONwuJSXFvu3v4uPjlZaWZr8kJye79kkAAHCLc2tMnD9/Xl5ejiN4e3srJydHkhQREaGwsDAlJCTYt6enp2vz5s2Kjo6+4n36+voqODjY4QIAAFzHredMPPLIIxoxYoTKly+v22+/XTt27NC4ceP073//W5JksVj03HPPafjw4YqMjFRERIQGDRqkMmXKqE2bNu4cHQAA/B+3xsSkSZM0aNAgPfvsszp+/LjKlCmjp59+WoMHD7bv89JLL+ncuXPq0aOHUlNT1ahRI61YsUJ+fn5unBwAAFxmsf314yZvQunp6bJarUpLS+MlD+AW9NCIT909AuByywe0ccn95vVnKL+bAwAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGHF7TPz+++/q2LGjQkJC5O/vr5o1a2rbtm327TabTYMHD1bp0qXl7++vmJgY/fzzz26cGAAA/JVbY+L06dNq2LChfHx8tHz5cu3du1dvvfWWihUrZt9nzJgxevvttzV9+nRt3rxZAQEBio2N1cWLF904OQAAuKyQOx989OjRCg8P16xZs+xrERER9j/bbDZNmDBBAwcOVOvWrSVJc+fOVWhoqD799FO1b9/+hs8MAAAcufXIxNKlS1WnTh21bdtWpUqV0l133aV3333Xvv3XX3/VsWPHFBMTY1+zWq2qV6+eEhMTr3ifGRkZSk9Pd7gAAADXcWtMHDx4UNOmTVNkZKRWrlypnj17qm/fvpozZ44k6dixY5Kk0NBQh9uFhobat/3dqFGjZLVa7Zfw8HDXPgkAAG5xbo2JnJwc3X333Ro5cqTuuusu9ejRQ0899ZSmT59+3fcZHx+vtLQ0+yU5OTkfJwYAAH/n1pgoXbq0oqKiHNaqV6+upKQkSVJYWJgkKSUlxWGflJQU+7a/8/X1VXBwsMMFAAC4jltjomHDhtq3b5/D2v79+1WhQgVJf56MGRYWpoSEBPv29PR0bd68WdHR0Td0VgAAcGVufTdHv3791KBBA40cOVKPP/64tmzZohkzZmjGjBmSJIvFoueee07Dhw9XZGSkIiIiNGjQIJUpU0Zt2rRx5+gAAOD/uDUm6tatq08++UTx8fEaNmyYIiIiNGHCBHXo0MG+z0svvaRz586pR48eSk1NVaNGjbRixQr5+fm5cXIAAHCZxWaz2dw9hCulp6fLarUqLS2N8yeAW9BDIz519wiAyy0f0MYl95vXn6Fu/zhtAABQsBETAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMBIIWdvkJGRoc2bN+vw4cM6f/68SpYsqbvuuksRERGumA8AAHi4PMfEhg0bNHHiRH3++efKysqS1WqVv7+/Tp06pYyMDFWqVEk9evTQM888o6CgIFfODAAAPEieXuZo1aqV2rVrp4oVK2rVqlU6c+aMTp48qd9++03nz5/Xzz//rIEDByohIUFVqlTR6tWrXT03AADwEHk6MtGyZUt9/PHH8vHxueL2SpUqqVKlSurSpYv27t2ro0eP5uuQAADAc+UpJp5++uk832FUVJSioqKueyAAAFCwOH0C5l/t3r1b69atU3Z2tho2bKjatWvn11wAAKCAuO63hk6ZMkXNmjXTunXrtHbtWjVt2lQjRozIz9kAAEABkOcjE8nJyQoPD7dfnzx5svbs2aMSJUpIkhITE9WqVSsNGDAg/6cEAAAeK89HJmJiYjRx4kTZbDZJUkhIiFasWKGMjAydOXNGa9asUcmSJV02KAAA8Ex5jomtW7dq3759qlevnr7//nvNmDFD48ePl7+/v4oWLaoFCxZozpw5rpwVAAB4oDy/zBEcHKypU6dq48aN6tq1q5o2bapvv/1W2dnZys7OVtGiRV04JgAA8FROn4DZoEEDbdu2TcWKFdNdd92lb775hpAAAOAWlucjE5cuXdKMGTP0448/6o477tCrr76qdu3a6ZlnntHs2bM1efJkhYaGunJWAADggfJ8ZKJ79+6aPHmyAgICNGvWLPXr109VqlTRV199pQcffFDR0dGaNm2aK2cFAAAeKM8x8dlnn+njjz/WG2+8odWrV+vLL7+0b+vevbs2bdqkb7/91iVDAgAAz5XnmAgNDdWqVauUmZmpr776SiEhIQ7bS5Uqpfnz5+f7gAAAwLPl+ZyJyZMnq0OHDurfv79Kly6thQsXunIuAABQQOQ5Jpo3b66UlBT98ccffDgVAACwc+qtoRaLhZAAAAAO8hQTDz74oDZt2nTN/c6cOaPRo0drypQpxoMBAICCIU8vc7Rt21ZxcXGyWq165JFHVKdOHZUpU0Z+fn46ffq09u7dq/Xr12vZsmVq2bKlxo4d6+q5AQCAh8hTTHTv3l0dO3bUokWLtGDBAs2YMUNpaWmS/nzpIyoqSrGxsdq6dauqV6/u0oEBAIBnyfMJmL6+vurYsaM6duwoSUpLS9OFCxcUEhIiHx8flw0IAAA8W55j4u+sVqusVmt+zgIAAAogp3/RFwAAwF8REwAAwAgxAQAAjBATAADAyHXFRGpqqt577z3Fx8fr1KlTkqTt27fr999/z9fhAACA53P63Rw7d+5UTEyMrFarDh06pKeeekrFixfXkiVLlJSUpLlz57piTgAA4KGcPjLRv39/de3aVT///LP8/Pzs6y1atNA333yTr8MBAADP53RMbN26VU8//XSu9bJly+rYsWP5MhQAACg4nI4JX19fpaen51rfv38/v1EUAIBbkNMx0apVKw0bNkxZWVmS/vzdHElJSXr55ZcVFxeX7wMCAADP5nRMvPXWWzp79qxKlSqlCxcuqHHjxqpcubKCgoI0YsQIV8wIAAA8mNPv5rBarVq9erXWr1+vnTt36uzZs7r77rsVExPjivkAAICHu+5f9NWoUSM1atQoP2cBAAAFkNMx8fbbb19x3WKxyM/PT5UrV9Z9990nb29v4+EAAIDnczomxo8frxMnTuj8+fMqVqyYJOn06dMqUqSIAgMDdfz4cVWqVElr165VeHh4vg8MAAA8i9MnYI4cOVJ169bVzz//rJMnT+rkyZPav3+/6tWrp4kTJyopKUlhYWHq16+fK+YFAAAexukjEwMHDtTHH3+s2267zb5WuXJlvfnmm4qLi9PBgwc1ZswY3iYKAMAtwukjE0ePHtWlS5dyrV+6dMn+CZhlypTRmTNnzKcDAAAez+mYuP/++/X0009rx44d9rUdO3aoZ8+eatq0qSRp165dioiIyL8pAQCAx3I6JmbOnKnixYurdu3a8vX1la+vr+rUqaPixYtr5syZkqTAwEC99dZb+T4sAADwPE6fMxEWFqbVq1frp59+0v79+yVJVatWVdWqVe373H///fk3IQAA8GjX/aFV1apVU7Vq1fJzFgAAUABdV0z89ttvWrp0qZKSkpSZmemwbdy4cfkyGAAAKBicjomEhAS1atVKlSpV0k8//aQaNWro0KFDstlsuvvuu10xIwAA8GBOn4AZHx+vF154Qbt27ZKfn58+/vhjJScnq3Hjxmrbtq0rZgQAAB7M6Zj48ccf1blzZ0lSoUKFdOHCBQUGBmrYsGEaPXp0vg8IAAA8m9MxERAQYD9PonTp0jpw4IB92x9//JF/kwEAgALB6XMm6tevr/Xr16t69epq0aKFnn/+ee3atUtLlixR/fr1XTEjAADwYE7HxLhx43T27FlJ0tChQ3X27FktWLBAkZGRvJMDAIBbkNMxUalSJfufAwICNH369HwdCAAAFCxOnzNRqVIlnTx5Mtd6amqqQ2gAAIBbg9MxcejQIWVnZ+daz8jI0O+//54vQwEAgIIjzy9zLF261P7nlStXymq12q9nZ2crISFBFStWzNfhAACA58tzTLRp00aSZLFY1KVLF4dtPj4+qlixIr8pFACAW1CeYyInJ0eSFBERoa1bt6pEiRIuGwoAABQcTr+b49dff3XFHAAAoIC6rt8ampCQoISEBB0/ftx+xOKy999/P18GAwAABYPTMTF06FANGzZMderUUenSpWWxWFwxFwAAKCCcjonp06dr9uzZ6tSpkyvmAQAABYzTnzORmZmpBg0auGIWAABQADkdE08++aTmz5/vilkAAEAB5PTLHBcvXtSMGTO0Zs0a1apVSz4+Pg7b+WVfAADcWpyOiZ07d+rOO++UJO3evdthGydjAgBw63E6JtauXeuKOQAAQAHl9DkTl/3yyy9auXKlLly4IEmy2Wz5NhQAACg4nI6JkydPqlmzZqpSpYpatGiho0ePSpK6d++u559/Pt8HBAAAns3pmOjXr598fHyUlJSkIkWK2NfbtWunFStW5OtwAADA8zl9zsSqVau0cuVKlStXzmE9MjJShw8fzrfBAABAweD0kYlz5845HJG47NSpU/L19c2XoQAAQMHhdEzce++9mjt3rv26xWJRTk6OxowZo/vvvz9fhwMAAJ7P6Zc5xowZo2bNmmnbtm3KzMzUSy+9pD179ujUqVPasGGDK2YEAAAezOkjEzVq1ND+/fvVqFEjtW7dWufOndNjjz2mHTt26LbbbrvuQd544w1ZLBY999xz9rWLFy+qV69eCgkJUWBgoOLi4pSSknLdjwEAAPKf00cmJMlqtWrAgAH5NsTWrVv1zjvvqFatWg7r/fr105dffqlFixbJarWqd+/eeuyxxzgCAgCAB3H6yMSsWbO0aNGiXOuLFi3SnDlznB7g7Nmz6tChg959910VK1bMvp6WlqaZM2dq3Lhxatq0qWrXrq1Zs2Zp48aN2rRpk9OPAwAAXMPpmBg1apRKlCiRa71UqVIaOXKk0wP06tVLLVu2VExMjMP6d999p6ysLIf1atWqqXz58kpMTLzq/WVkZCg9Pd3hAgAAXMfplzmSkpIUERGRa71ChQpKSkpy6r4++ugjbd++XVu3bs217dixYypcuLCKFi3qsB4aGqpjx45d9T5HjRqloUOHOjUHAAC4fk4fmShVqpR27tyZa/2HH35QSEhInu8nOTlZ//nPfzRv3jz5+fk5O8ZVxcfHKy0tzX5JTk7Ot/sGAAC5OR0TTzzxhPr27au1a9cqOztb2dnZ+uqrr/Sf//xH7du3z/P9fPfddzp+/LjuvvtuFSpUSIUKFdK6dev09ttvq1ChQgoNDVVmZqZSU1MdbpeSkqKwsLCr3q+vr6+Cg4MdLgAAwHWcfpnj9ddf16FDh9SsWTMVKvTnzXNyctS5c2enzplo1qyZdu3a5bDWrVs3VatWTS+//LLCw8Pl4+OjhIQExcXFSZL27dunpKQkRUdHOzs2AABwEadiwmaz6dixY5o9e7aGDx+u77//Xv7+/qpZs6YqVKjg1AMHBQWpRo0aDmsBAQEKCQmxr3fv3l39+/dX8eLFFRwcrD59+ig6Olr169d36rEAAIDrOB0TlStX1p49exQZGanIyEhXzSVJGj9+vLy8vBQXF6eMjAzFxsZq6tSpLn1MAADgHKdiwsvLS5GRkTp58qRLQuLrr792uO7n56cpU6ZoypQp+f5YAAAgfzh9AuYbb7yhF198Ubt373bFPAAAoIBx+gTMzp076/z587rjjjtUuHBh+fv7O2w/depUvg0HAAA8n9MxMWHCBBeMAQAACiqnY6JLly6umAMAABRQTp8zIUkHDhzQwIED9cQTT+j48eOSpOXLl2vPnj35OhwAAPB8TsfEunXrVLNmTW3evFlLlizR2bNnJf35cdpDhgzJ9wEBAIBnczomXnnlFQ0fPlyrV69W4cKF7etNmzblV4MDAHALcjomdu3apUcffTTXeqlSpfTHH3/ky1AAAKDgcDomihYtqqNHj+Za37Fjh8qWLZsvQwEAgILD6Zho3769Xn75ZR07dkwWi0U5OTnasGGDXnjhBXXu3NkVMwIAAA/mdEyMHDlS1apVU3h4uM6ePauoqCjdd999atCggQYOHOiKGQEAgAdz+nMmChcurHfffVeDBw/Wrl27dPbsWd11110u/6VfAADAM+U5JnJycjR27FgtXbpUmZmZatasmYYMGZLr47QBAMCtJc8vc4wYMUKvvvqqAgMDVbZsWU2cOFG9evVy5WwAAKAAyHNMzJ07V1OnTtXKlSv16aef6vPPP9e8efOUk5PjyvkAAICHy3NMJCUlqUWLFvbrMTExslgsOnLkiEsGAwAABUOeY+LSpUvy8/NzWPPx8VFWVla+DwUAAAqOPJ+AabPZ1LVrV/n6+trXLl68qGeeeUYBAQH2tSVLluTvhAAAwKPlOSau9KvHO3bsmK/DAACAgifPMTFr1ixXzgEAAAoopz8BEwAA4K+ICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABgxK0xMWrUKNWtW1dBQUEqVaqU2rRpo3379jnsc/HiRfXq1UshISEKDAxUXFycUlJS3DQxAAD4O7fGxLp169SrVy9t2rRJq1evVlZWlh544AGdO3fOvk+/fv30+eefa9GiRVq3bp2OHDmixx57zI1TAwCAvyrkzgdfsWKFw/XZs2erVKlS+u6773TfffcpLS1NM2fO1Pz589W0aVNJ0qxZs1S9enVt2rRJ9evXd8fYAADgLzzqnIm0tDRJUvHixSVJ3333nbKyshQTE2Pfp1q1aipfvrwSExPdMiMAAHDk1iMTf5WTk6PnnntODRs2VI0aNSRJx44dU+HChVW0aFGHfUNDQ3Xs2LEr3k9GRoYyMjLs19PT0102MwAA8KAjE7169dLu3bv10UcfGd3PqFGjZLVa7Zfw8PB8mhAAAFyJR8RE79699cUXX2jt2rUqV66cfT0sLEyZmZlKTU112D8lJUVhYWFXvK/4+HilpaXZL8nJya4cHQCAW55bY8Jms6l379765JNP9NVXXykiIsJhe+3ateXj46OEhAT72r59+5SUlKTo6Ogr3qevr6+Cg4MdLgAAwHXces5Er169NH/+fH322WcKCgqynwdhtVrl7+8vq9Wq7t27q3///ipevLiCg4PVp08fRUdH804OAAA8hFtjYtq0aZKkJk2aOKzPmjVLXbt2lSSNHz9eXl5eiouLU0ZGhmJjYzV16tQbPCkAALgat8aEzWa75j5+fn6aMmWKpkyZcgMmAgAAzvKIEzABAEDBRUwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBSyN0DFHRf7PjV3SMALvfwXRHuHgGAB+PIBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwUiBiYsqUKapYsaL8/PxUr149bdmyxd0jAQCA/+PxMbFgwQL1799fQ4YM0fbt23XHHXcoNjZWx48fd/doAABABSAmxo0bp6eeekrdunVTVFSUpk+friJFiuj9999392gAAEBSIXcP8E8yMzP13XffKT4+3r7m5eWlmJgYJSYmXvE2GRkZysjIsF9PS0uTJKWnp7tkxvNnz7jkfgFP4qq/PzfCpYvn3T0C4HKu+jt6+X5tNts/7ufRMfHHH38oOztboaGhDuuhoaH66aefrnibUaNGaejQobnWw8PDXTIjAADuZh3u2vs/c+aMrFbrVbd7dExcj/j4ePXv399+PScnR6dOnVJISIgsFosbJ0N+SE9PV3h4uJKTkxUcHOzucQD8DX9Hby42m01nzpxRmTJl/nE/j46JEiVKyNvbWykpKQ7rKSkpCgsLu+JtfH195evr67BWtGhRV40INwkODuZ/VIAH4+/ozeOfjkhc5tEnYBYuXFi1a9dWQkKCfS0nJ0cJCQmKjo5242QAAOAyjz4yIUn9+/dXly5dVKdOHd1zzz2aMGGCzp07p27durl7NAAAoAIQE+3atdOJEyc0ePBgHTt2THfeeadWrFiR66RM3Bp8fX01ZMiQXC9lAfAM/B29NVls13q/BwAAwD/w6HMmAACA5yMmAACAEWICAAAYISYAAIARYgI3zIkTJ9SzZ0+VL19evr6+CgsLU2xsrDZs2ODu0QD8TdeuXdWmTZtc619//bUsFotSU1Nv+EzwXB7/1lDcPOLi4pSZmak5c+aoUqVKSklJUUJCgk6ePOnu0QAABjgygRsiNTVV3377rUaPHq37779fFSpU0D333KP4+Hi1atVKkmSxWDRt2jQ99NBD8vf3V6VKlbR48WKH+3n55ZdVpUoVFSlSRJUqVdKgQYOUlZVl3/7aa6/pzjvv1Pvvv6/y5csrMDBQzz77rLKzszVmzBiFhYWpVKlSGjFixA19/sDN6OTJk3riiSdUtmxZFSlSRDVr1tSHH37osE+TJk3Up08fPffccypWrJhCQ0P17rvv2j98MCgoSJUrV9by5cvd9CyQH4gJ3BCBgYEKDAzUp59+6vAr4v9u0KBBiouL0w8//KAOHTqoffv2+vHHH+3bg4KCNHv2bO3du1cTJ07Uu+++q/Hjxzvcx4EDB7R8+XKtWLFCH374oWbOnKmWLVvqt99+07p16zR69GgNHDhQmzdvdtnzBW4FFy9eVO3atfXll19q9+7d6tGjhzp16qQtW7Y47DdnzhyVKFFCW7ZsUZ8+fdSzZ0+1bdtWDRo00Pbt2/XAAw+oU6dOOn+eXxdfYNmAG2Tx4sW2YsWK2fz8/GwNGjSwxcfH23744Qf7dkm2Z555xuE29erVs/Xs2fOq9zl27Fhb7dq17deHDBliK1KkiC09Pd2+Fhsba6tYsaItOzvbvla1alXbqFGj8uNpATelLl262Ly9vW0BAQEOFz8/P5sk2+nTp694u5YtW9qef/55+/XGjRvbGjVqZL9+6dIlW0BAgK1Tp072taNHj9ok2RITE132fOBaHJnADRMXF6cjR45o6dKlevDBB/X111/r7rvv1uzZs+37/P0XuEVHRzscmViwYIEaNmyosLAwBQYGauDAgUpKSnK4TcWKFRUUFGS/HhoaqqioKHl5eTmsHT9+PJ+fIXBzuf/++/X99987XN577z379uzsbL3++uuqWbOmihcvrsDAQK1cuTLX38latWrZ/+zt7a2QkBDVrFnTvnb51yPwd7LgIiZwQ/n5+al58+YaNGiQNm7cqK5du2rIkCF5um1iYqI6dOigFi1a6IsvvtCOHTs0YMAAZWZmOuzn4+PjcN1isVxxLScnx+zJADe5gIAAVa5c2eFStmxZ+/axY8dq4sSJevnll7V27Vp9//33io2NdfrvpMVikST+ThZgxATcKioqSufOnbNf37Rpk8P2TZs2qXr16pKkjRs3qkKFChowYIDq1KmjyMhIHT58+IbOC+D/bdiwQa1bt1bHjh11xx13qFKlStq/f7+7x4Ib8NZQ3BAnT55U27Zt9e9//1u1atVSUFCQtm3bpjFjxqh169b2/RYtWqQ6deqoUaNGmjdvnrZs2aKZM2dKkiIjI5WUlKSPPvpIdevW1ZdffqlPPvnEXU8JuOVFRkZq8eLF2rhxo4oVK6Zx48YpJSVFUVFR7h4NNxgxgRsiMDBQ9erV0/jx43XgwAFlZWUpPDxcTz31lF599VX7fkOHDtVHH32kZ599VqVLl9aHH35o/x9Tq1at1K9fP/Xu3VsZGRlq2bKlBg0apNdee81Nzwq4tQ0cOFAHDx5UbGysihQpoh49eqhNmzZKS0tz92i4wfgV5PAYFotFn3zyyRU/dQ8A4Lk4ZwIAABghJgAAgBHOmYDH4BU3ACiYODIBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIz8L9c+x5BXtbJAAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Spam messages: 747 (13.41%)\n", - "Ham messages: 4825 (86.59%)\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 1000x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIjCAYAAAD80aFnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlEZJREFUeJzs3Xd8VFXCxvHfTHoPSUgBgVAiXZAgASyIRkBQBBEQGyCi+7pgQV3FRUBdxcqCgiK7YtkFQSysoqKIWIkoBMRCLwlCKoGE9DL3/WOYgSEJJCGZSXm+73s/M7n33HPPnUQ2T065JsMwDERERERERKROmV3dABERERERkaZA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERq3ezZszGZTGRmZjrtmpdffjmXX365U65lMpmYPXu2/Wtn3290dDQTJkxwyrUq8txzz9GpUycsFovL2iB158Ybb2TMmDGuboZIo6TwJSJ17s0338RkMmEymfj+++/LHTcMg1atWmEymbjmmmtc0ML66cCBA5hMJl544QVXN6VSTz/9NKtWrar1eidMmGD/mTGZTPj7+9OuXTtuuOEG3n///Vr7pX/Dhg3Mnj2bY8eO1Up9tam+ti0nJ4dnn32Whx9+GLP55K8Rubm5zJo1i27duuHn50doaCg9e/bk3nvv5fDhwy5scf10tsAeHR3tsn8PH374Yd5//31++eUXl1xfpDFzd3UDRKTp8Pb2ZtmyZVxyySUO+7/55hv+/PNPvLy8XNQyqamnn36aG264gREjRtR63V5eXvz73/8GoKCggKSkJD7++GNuuOEGLr/8cv73v/8RGBhoL//FF19U+xobNmzg8ccfZ8KECQQHB1f5vIKCAtzd6/Z/Qs/Utp07dzoEH2dasmQJpaWljBs3zr6vpKSEyy67jB07djB+/HimTp1Kbm4uv//+O8uWLWPkyJG0aNHCJe2V6rvwwgvp3bs3L774Im+//barmyPSqCh8iYjTDB06lJUrV/LSSy85/OK6bNkyYmNjnTpETeo/d3d3brnlFod9//jHP3jmmWeYPn06kydPZsWKFfZjnp6eddoei8VCcXEx3t7eeHt71+m1zsaVf6h44403GD58uMNnsGrVKrZs2cLSpUu56aabHMoXFhZSXFzs7GbKORozZgyzZs3ilVdewd/f39XNEWk0NOxQRJxm3LhxHDlyhLVr19r3FRcX895775X7hc3GYrEwb948unbtire3NxEREdx1110cPXrUodymTZsYPHgwYWFh+Pj40LZtW26//XaHMsuXLyc2NpaAgAACAwPp3r078+fPtx/PysriwQcfpHv37vj7+xMYGMjVV19d4dCbpKQkhg8fjp+fH+Hh4dx///18/vnnmEwmvv76a4eyGzduZMiQIQQFBeHr68uAAQP44YcfqvvxVaqoqIhZs2bRoUMHvLy8aNWqFX/7298oKipyKGcymZgyZQqrVq2iW7dueHl50bVrV9asWVOuzq+//prevXvj7e1N+/btee211+zDpE6tLy8vj7feess+PPD0eUjHjh2z99wEBQUxceJE8vPzz+l+H3nkEQYNGsTKlSvZtWuXfX9Fc75efvllunbtiq+vL82aNaN3794sW7YMsA77euihhwBo27at/R4OHDjg8HktXbqUrl274uXlZf+sTp/zZZOZmcmYMWMIDAwkNDSUe++9l8LCQvtx21DSN998s9y5p9Z5trZVNOdr3759jB49mpCQEHx9fenbty+ffPKJQ5mvv/4ak8nEu+++y1NPPcV5552Ht7c3V155JXv27Kn0M7fZv38/27ZtIz4+3mH/3r17Abj44ovLnePt7e3QQzlhwgT8/f3Zt28fgwcPxs/PjxYtWvDEE09gGIbDuS+88AL9+/cnNDQUHx8fYmNjee+99yr87KZMmcLKlSvp0qULPj4+9OvXj19//RWA1157jQ4dOuDt7c3ll19u/xwr895772Eymfjmm2/KHXvttdcwmUz89ttvAKSmpjJx4kTOO+88vLy8iIqK4rrrrjvrNWrCmZ/HVVddRV5ensO/1yJy7tTzJSJOEx0dTb9+/XjnnXe4+uqrAfjss8/Izs7mxhtv5KWXXip3zl133cWbb77JxIkTueeee9i/fz8LFixgy5Yt/PDDD3h4eJCens6gQYNo3rw5jzzyCMHBwRw4cIAPPvjAXs/atWsZN24cV155Jc8++ywA27dv54cffuDee+8FrL+8rlq1itGjR9O2bVvS0tJ47bXXGDBgAH/88Yd92FReXh5XXHEFKSkp3HvvvURGRrJs2TLWr19frv1fffUVV199NbGxscyaNQuz2cwbb7zBFVdcwXfffUefPn3O6TO1WCwMHz6c77//njvvvJPOnTvz66+/8s9//pNdu3aVm4/1/fff88EHH3D33XcTEBDASy+9xKhRo0hOTiY0NBSALVu2MGTIEKKionj88ccpKyvjiSeeoHnz5g51/ec//+GOO+6gT58+3HnnnQC0b9/eocyYMWNo27Ytc+bMITExkX//+9+Eh4fbvwc1deutt/LFF1+wdu1azj///ArL/Otf/+Kee+7hhhtusIegbdu2sXHjRm666Sauv/56du3axTvvvMM///lPwsLCABzu86uvvuLdd99lypQphIWFER0dfcZ2jRkzhujoaObMmcOPP/7ISy+9xNGjR6s9dKsqbTtVWloa/fv3Jz8/n3vuuYfQ0FDeeusthg8fznvvvcfIkSMdyj/zzDOYzWYefPBBsrOzee6557j55pvZuHHjGdu1YcMGAHr16uWwv02bNgC8/fbbzJgxwyGkV6SsrIwhQ4bQt29fnnvuOdasWcOsWbMoLS3liSeesJebP38+w4cP5+abb6a4uJjly5czevRoVq9ezbBhwxzq/O677/joo4/461//CsCcOXO45ppr+Nvf/sYrr7zC3XffzdGjR3nuuee4/fbb+eqrrypt37Bhw/D39+fdd99lwIABDsdWrFhB165d6datGwCjRo3i999/Z+rUqURHR5Oens7atWtJTk4+688LWP/oU5GK5jU68/OwhbYffvih3M+PiJwDQ0Skjr3xxhsGYPz888/GggULjICAACM/P98wDMMYPXq0MXDgQMMwDKNNmzbGsGHD7Od99913BmAsXbrUob41a9Y47P/www/t9Vfm3nvvNQIDA43S0tJKyxQWFhplZWUO+/bv3294eXkZTzzxhH3fiy++aADGqlWr7PsKCgqMTp06GYCxfv16wzAMw2KxGDExMcbgwYMNi8ViL5ufn2+0bdvWuOqqqypti+3agPH8889XWuY///mPYTabje+++85h/6JFiwzA+OGHH+z7AMPT09PYs2ePfd8vv/xiAMbLL79s33fttdcavr6+xqFDh+z7du/ebbi7uxun/8+Gn5+fMX78+HLtmjVrlgEYt99+u8P+kSNHGqGhoWe8b8MwjPHjxxt+fn6VHt+yZYsBGPfff79934ABA4wBAwbYv77uuuuMrl27nvE6zz//vAEY+/fvL3cMMMxms/H7779XeGzWrFn2r233O3z4cIdyd999twEYv/zyi2EYJ7+nb7zxxlnrPFPb2rRp4/C533fffQbg8HNw/Phxo23btkZ0dLT953r9+vUGYHTu3NkoKiqyl50/f74BGL/++mu5a51qxowZBmAcP37cYX9+fr7RsWNHAzDatGljTJgwwXj99deNtLS0cnWMHz/eAIypU6fa91ksFmPYsGGGp6enkZGR4VDvqYqLi41u3boZV1xxhcN+wPDy8nL4rF577TUDMCIjI42cnBz7/unTp1f6uZ5q3LhxRnh4uMO/GSkpKYbZbLb/e3D06NGz/jdaGdvPzJm2U/89NAznfx7nn3++cfXVV1f73kSkchp2KCJONWbMGAoKCli9ejXHjx9n9erVlQ45XLlyJUFBQVx11VVkZmbat9jYWPz9/e09TbbFCFavXk1JSUmFdQUHB591CI2Xl5d9EYOysjKOHDmCv78/HTt2JDEx0V5uzZo1tGzZkuHDh9v3eXt7M3nyZIf6tm7dyu7du7nppps4cuSIvf15eXlceeWVfPvtt+e8at/KlSvp3LkznTp1cviMrrjiCoByvXHx8fEOvVMXXHABgYGB7Nu3z37fX375JSNGjHBYIKFDhw723srq+Mtf/uLw9aWXXsqRI0fIycmpdl2nss1BOX78eKVlgoOD+fPPP/n5559rfJ0BAwbQpUuXKpe39TLYTJ06FYBPP/20xm2oik8//ZQ+ffo4LGbj7+/PnXfeyYEDB/jjjz8cyk+cONFhjtyll14KYP85qMyRI0dwd3cvNwfIx8eHjRs32odKvvnmm0yaNImoqCimTp1abggswJQpU+zvbcPkiouL+fLLLx3qtTl69CjZ2dlceumlDv892lx55ZUOPU1xcXGAtWcqICCg3P6z3evYsWNJT093GEb83nvvYbFYGDt2rL19np6efP311+WGQlfV+++/z9q1a8ttERER5co6+/No1qyZ5uKK1DINOxQRp2revDnx8fEsW7aM/Px8ysrKuOGGGyosu3v3brKzswkPD6/weHp6OmD9BXnUqFE8/vjj/POf/+Tyyy9nxIgR3HTTTfaFCe6++27effddrr76alq2bMmgQYMYM2YMQ4YMsddnsViYP38+r7zyCvv376esrMx+zDYkD6zzvdq3b19uaFWHDh3KtR9g/PjxlX4e2dnZNGvWrNLjZ7N79262b99e6XA022dk07p163JlmjVrZv/FMT09nYKCgnL3AuXvrypOv57tXo8ePeowD6i6cnNzARx+iTzdww8/zJdffkmfPn3o0KEDgwYN4qabbqpwXlJl2rZtW612xcTEOHzdvn17zGZzncz/OVVSUpL9l+hTde7c2X7cNkwOzvx9qamgoCCee+45nnvuOZKSkli3bh0vvPACCxYsICgoiH/84x/2smazmXbt2jmcbxs+eupntXr1av7xj3+wdetWhwBX0bDG0+8pKCgIgFatWlW4/2z3apunuWLFCq688krAOuSwZ8+e9rZ6eXnx7LPP8sADDxAREUHfvn255ppruO2224iMjDxj/TaXXXaZfVjpqSpa1MXZn4dhGGcdQioi1aPwJSJOd9NNNzF58mRSU1O5+uqrK13i22KxEB4eztKlSys8bgscJpOJ9957jx9//JGPP/6Yzz//nNtvv50XX3yRH3/8EX9/f8LDw9m6dSuff/45n332GZ999hlvvPEGt912G2+99RZgXTb9scce4/bbb+fJJ58kJCQEs9nMfffdV6MeKts5zz//PD179qywzLmuImaxWOjevTtz586t8Pjpv2i5ublVWM44baGD2lJX17MtdnCmQNi5c2d27tzJ6tWrWbNmDe+//z6vvPIKM2fO5PHHH6/SdU7taaiJ039xrewX2VODvjPU9PsSGhpKaWkpx48fP2PwbdOmDbfffjsjR46kXbt2LF261CF8VcV3333H8OHDueyyy3jllVeIiorCw8ODN954w75oSlXuqab36uXlxYgRI/jwww955ZVXSEtL44cffuDpp592KHffffdx7bXXsmrVKj7//HMee+wx5syZw1dffcWFF15Yxbs9O1d8HkePHi33BwUROTcKXyLidCNHjuSuu+7ixx9/dFgq/HTt27fnyy+/5OKLL67SL8F9+/alb9++PPXUUyxbtoybb76Z5cuXc8cddwDWpcivvfZarr32WiwWC3fffTevvfYajz32GB06dOC9995j4MCBvP766w71Hjt2zOEv023atOGPP/4o91fh01eLsw3vCwwMLLc6XG1p3749v/zyC1deeWWt/IU6PDwcb2/vCle+q2ifq/4q/p///AeTycRVV111xnJ+fn6MHTuWsWPHUlxczPXXX89TTz3F9OnT8fb2rvX2796926G3bM+ePVgsFvvwL1sP0+kPTk5KSipXV3Xa1qZNG3bu3Flu/44dO+zHa0OnTp0A66qHF1xwwVnLN2vWjPbt29vDso3FYmHfvn0Oi6XYVq60fVbvv/8+3t7efP755w5L67/xxhvnehtVNnbsWN566y3WrVvH9u3bMQzDPuTwVO3bt+eBBx7ggQceYPfu3fTs2ZMXX3yR//73v7XWFmd/HqWlpRw8eNBheLWInDvN+RIRp/P39+fVV19l9uzZXHvttZWWGzNmDGVlZTz55JPljpWWltp/gT169Gi5v9raeppsQ3OOHDnicNxsNtt/ebSVcXNzK1fPypUrOXTokMO+wYMHc+jQIT766CP7vsLCQv71r385lIuNjaV9+/a88MIL9mFyp8rIyKjwvqtjzJgxHDp0qNy1wfog4Ly8vGrV5+bmRnx8PKtWreLw4cP2/Xv27OGzzz4rV97Pz69ckKhrzzzzDF988QVjx44941/lT/+ee3p60qVLFwzDsM8N9PPzA8qHoZpauHChw9cvv/wygH2+XGBgIGFhYXz77bcO5V555ZVydVWnbUOHDuWnn34iISHBvi8vL4/FixcTHR1drXlrZ9KvXz/A+miHU/3yyy8Vzg1KSkrijz/+oGPHjuWOLViwwP7eMAwWLFiAh4eHfYifm5sbJpPJoVfwwIED5VbwrEvx8fGEhISwYsUKVqxYQZ8+fRzCdX5+vsOjBMAaxAICAiqc53YunP15/PHHHxQWFtK/f/86qV+kqVLPl4i4xJnmQdkMGDCAu+66izlz5rB161YGDRqEh4cHu3fvZuXKlcyfP58bbriBt956i1deeYWRI0fSvn17jh8/zr/+9S8CAwMZOnQoAHfccQdZWVlcccUVnHfeeSQlJfHyyy/Ts2dP+7yYa665hieeeIKJEyfSv39/fv31V5YuXVpubspdd93FggULGDduHPfeey9RUVEsXbrUPkfD1mNhNpv597//zdVXX03Xrl2ZOHEiLVu25NChQ6xfv57AwEA+/vjjs34O69atK/cLHsCIESO49dZbeffdd/nLX/7C+vXrufjiiykrK2PHjh28++67fP755/Tu3fus1zjV7Nmz+eKLL7j44ov5v//7P8rKyliwYAHdunVj69atDmVjY2P58ssvmTt3Li1atKBt27YVzj2qidLSUnvPQWFhIUlJSXz00Uds27aNgQMHsnjx4jOeP2jQICIjI7n44ouJiIhg+/btLFiwgGHDhtmHzMXGxgLw97//nRtvvBEPDw+uvfZae/Cprv379zN8+HCGDBlCQkIC//3vf7npppvo0aOHvcwdd9zBM888wx133EHv3r359ttvHZ5XZlOdtj3yyCP2Rzjcc889hISE8NZbb7F//37ef/99+0Iy56pdu3Z069aNL7/80uE5emvXrmXWrFkMHz6cvn372p/jtWTJEoqKiso9E83b25s1a9Ywfvx44uLi+Oyzz/jkk0949NFH7cOJhw0bxty5cxkyZAg33XQT6enpLFy4kA4dOrBt27ZauZ+z8fDw4Prrr2f58uXk5eXxwgsvOBzftWsXV155JWPGjKFLly64u7vz4YcfkpaWxo033lirbXH257F27Vp8fX3P2rssItXkmkUWRaQpOXWp+TM5fal5m8WLFxuxsbGGj4+PERAQYHTv3t3429/+Zhw+fNgwDMNITEw0xo0bZ7Ru3drw8vIywsPDjWuuucbYtGmTvY733nvPGDRokBEeHm54enoarVu3Nu666y4jJSXFXqawsNB44IEHjKioKMPHx8e4+OKLjYSEhHJLmBuGYezbt88YNmyY4ePjYzRv3tx44IEHjPfff98AjB9//NGh7JYtW4zrr7/eCA0NNby8vIw2bdoYY8aMMdatW3fGz8O2LHll23/+8x/DMKzLTT/77LNG165dDS8vL6NZs2ZGbGys8fjjjxvZ2dn2+gDjr3/9a4Wf++nLxa9bt8648MILDU9PT6N9+/bGv//9b+OBBx4wvL29Hcrt2LHDuOyyywwfHx8DsNdjW0b71GXDDePkz8LZlvm2LUdu23x9fY3o6Ghj1KhRxnvvvVfukQCGUX6p+ddee8247LLL7J97+/btjYceesjhMzEMw3jyySeNli1bGmaz2aFtlX1etmMVLTX/xx9/GDfccIMREBBgNGvWzJgyZYpRUFDgcG5+fr4xadIkIygoyAgICDDGjBljpKenl6vzTG2r6Hu2d+9e44YbbjCCg4MNb29vo0+fPsbq1asdytiWml+5cqXD/jMtgX+6uXPnGv7+/g7Lnu/bt8+YOXOm0bdvXyM8PNxwd3c3mjdvbgwbNsz46quvHM63PUZg7969xqBBgwxfX18jIiLCmDVrVrnv6+uvv27ExMQYXl5eRqdOnYw33njD/lmfqqLvVWWPaqjsM6jM2rVrDcAwmUzGwYMHHY5lZmYaf/3rX41OnToZfn5+RlBQkBEXF2e8++67Z623sv9GbCr699CZn0dcXJxxyy23nPU+RKR6TIZRR7OsRUSamHnz5nH//ffz559/0rJlS1c3p9aNGDGC33//3b6KozRN2dnZtGvXjueee45JkyZV+/wJEybw3nvvVTgUV+qHrVu30qtXLxITEytdLEhEakZzvkREaqCgoMDh68LCQl577TViYmIaRfA6/f52797Np59+yuWXX+6aBkm9ERQUxN/+9jeef/75c35OndRPzzzzDDfccIOCl0gdUM+XiEgNXH311bRu3ZqePXuSnZ3Nf//7X37//XeWLl1a6UOjG5KoqCgmTJhAu3btSEpK4tVXX6WoqIgtW7Zo6Wk5J+r5EpGmTAtuiIjUwODBg/n3v//N0qVLKSsro0uXLixfvrzCZagboiFDhvDOO++QmpqKl5cX/fr14+mnn1bwEhEROQfq+RIREREREXECzfkSERERERFxAoUvERERERERJ9CcrxqyWCwcPnyYgIAA+wNVRURERESk6TEMg+PHj9OiRYszPthe4auGDh8+TKtWrVzdDBERERERqScOHjzIeeedV+lxha8aCggIAKwfcGBgoItbIyIiIiIirpKTk0OrVq3sGaEyCl81ZBtqGBgYqPAlIiIiIiJnnY6kBTdEREREREScQOFLRERERETECRS+REREREREnEBzvkREREREGgHDMCgtLaWsrMzVTWl03NzccHd3P+dHTCl8iYiIiIg0cMXFxaSkpJCfn+/qpjRavr6+REVF4enpWeM6FL5ERERERBowi8XC/v37cXNzo0WLFnh6ep5zD42cZBgGxcXFZGRksH//fmJiYs74IOUzUfgSEREREWnAiouLsVgstGrVCl9fX1c3p1Hy8fHBw8ODpKQkiouL8fb2rlE9WnBDRERERKQRqGlvjFRNbXy++g6JiIiIiIg4gYYdioiIiIg0UsnJyWRmZjrlWmFhYbRu3dop12qoFL5ERERERBqh5ORkOnfqRH5BgVOu5+vjw/YdOxTAzkDhS0RERESkEcrMzCS/oID/jhxJ5+bN6/Ra2zMyuOXDD8nMzKxW+MrIyGDmzJl88sknpKWl0axZM3r06MHMmTO5+OKL67DFrqHwJSIiIiLSiHVu3pxeUVGubkaFRo0aRXFxMW+99Rbt2rUjLS2NdevWceTIEVc3rU5owQ0REREREXG6Y8eO8d133/Hss88ycOBA2rRpQ58+fZg+fTrDhw8HwGQy8eqrr3L11Vfj4+NDu3bteO+99xzqefjhhzn//PPx9fWlXbt2PPbYY5SUlNiPz549m549e7JkyRJat26Nv78/d999N2VlZTz33HNERkYSHh7OU089Vef3rPAlIiIiIiJO5+/vj7+/P6tWraKoqKjSco899hijRo3il19+4eabb+bGG29k+/bt9uMBAQG8+eab/PHHH8yfP59//etf/POf/3SoY+/evXz22WesWbOGd955h9dff51hw4bx559/8s033/Dss88yY8YMNm7cWGf3CwpfIiIiIiLiAu7u7rz55pu89dZbBAcHc/HFF/Poo4+ybds2h3KjR4/mjjvu4Pzzz+fJJ5+kd+/evPzyy/bjM2bMoH///kRHR3Pttdfy4IMP8u677zrUYbFYWLJkCV26dOHaa69l4MCB7Ny5k3nz5tGxY0cmTpxIx44dWb9+fZ3es8KXiIiIiIi4xKhRozh8+DAfffQRQ4YM4euvv6ZXr168+eab9jL9+vVzOKdfv34OPV8rVqzg4osvJjIyEn9/f2bMmEFycrLDOdHR0QQEBNi/joiIoEuXLg4PTo6IiCA9Pb2W79CRwpeIiIiIiLiMt7c3V111FY899hgbNmxgwoQJzJo1q0rnJiQkcPPNNzN06FBWr17Nli1b+Pvf/05xcbFDOQ8PD4evTSZThfssFsu53cxZaLVDkXqqsoci6gGGIiIi0ph16dKFVatW2b/+8ccfue222xy+vvDCCwHYsGEDbdq04e9//7v9eFJSktPaWl0KXyL10JkeiqgHGIqIiEh1bM/IqJfXOHLkCKNHj+b222/nggsuICAggE2bNvHcc89x3XXX2cutXLmS3r17c8kll7B06VJ++uknXn/9dQBiYmJITk5m+fLlXHTRRXzyySd8+OGHtXZftU3hS6QequyhiDV9gKGIiIg0PWFhYfj6+HCLk8KIr48PYWFhVS7v7+9PXFwc//znP9m7dy8lJSW0atWKyZMn8+ijj9rLPf744yxfvpy7776bqKgo3nnnHbp06QLA8OHDuf/++5kyZQpFRUUMGzaMxx57jNmzZ9f27dUKk2EYhqsb0RDl5OQQFBREdnY2gYGBrm6ONDKJiYnExsay+c47HR6KmJiSQuzixWzevJlevXq5sIUiIiJSXxQWFrJ//37atm2Lt7e3w7HKpjHUhbqYGmEymfjwww8ZMWJErdZbE2f6nKuaDdTzJSIiIiLSSLVu3VqjZeoRrXYoIiIiIiLiBOr5EhERERGReqmxzZBSz5eIiIiIiIgTKHyJiIiIiIg4gcKXiIiIiIiIEyh8iYiIiIiIOIHCl4iIiIiIiBNotUMRERERkUaqoT9kubFR+BIRERERaYSSk5Pp1LkTBfkFTrmej68PO7bvUAA7A4UvEREREZFGKDMzk4L8AkY+OpLmbZrX6bUykjL48OkPyczMrFb4mjBhAseOHWPVqlUO+7/++msGDhzI0aNHCQ4Ort3GupDCl4iIiIhII9a8TXOizo9ydTMELbghIiIiIiL12JEjRxg3bhwtW7bE19eX7t2788477ziUufzyy5k6dSr33XcfzZo1IyIign/961/k5eUxceJEAgIC6NChA5999pmL7sJK4UtEREREROqtwsJCYmNj+eSTT/jtt9+48847ufXWW/npp58cyr311luEhYXx008/MXXqVP7v//6P0aNH079/fxITExk0aBC33nor+fn5LroThS8REREREXGh1atX4+/v77BdffXV9uMtW7bkwQcfpGfPnrRr146pU6cyZMgQ3n33XYd6evTowYwZM4iJiWH69Ol4e3sTFhbG5MmTiYmJYebMmRw5coRt27Y5+xbtNOdLRERERERcZuDAgbz66qsO+zZu3Mgtt9wCQFlZGU8//TTvvvsuhw4dori4mKKiInx9fR3OueCCC+zv3dzcCA0NpXv37vZ9ERERAKSnp9fVrZyVwpeIiIiIiLiMn58fHTp0cNj3559/2t8///zzzJ8/n3nz5tG9e3f8/Py47777KC4udjjHw8PD4WuTyeSwz2QyAWCxWGr7FqpM4UtEREREROqtH374geuuu87eE2axWNi1axddunRxccuqr17M+Vq4cCHR0dF4e3sTFxdXbvLc6VauXEmnTp3w9vame/fufPrpp5WW/ctf/oLJZGLevHkO+7Oysrj55psJDAwkODiYSZMmkZubWxu3IyIiIiJSb2QkZZCyK6VOt4ykjDprf0xMDGvXrmXDhg1s376du+66i7S0tDq7Xl1yec/XihUrmDZtGosWLSIuLo558+YxePBgdu7cSXh4eLnyGzZsYNy4ccyZM4drrrmGZcuWMWLECBITE+nWrZtD2Q8//JAff/yRFi1alKvn5ptvJiUlhbVr11JSUsLEiRO58847WbZsWZ3dq4iIiIiIs4SFheHj68OHT3/olOv5+PoQFhZW6/XOmDGDffv2MXjwYHx9fbnzzjsZMWIE2dnZtX6tumYyDMNwZQPi4uK46KKLWLBgAWDtRmzVqhVTp07lkUceKVd+7Nix5OXlsXr1avu+vn370rNnTxYtWmTfd+jQIeLi4vj8888ZNmwY9913H/fddx8A27dvp0uXLvz888/07t0bgDVr1jB06FD+/PPPCsPa6XJycggKCiI7O5vAwMBz+QhEyklMTCQ2NpbNd95Jr6iTD0VMTEkhdvFiNm/eTK9evVzYQhEREakvCgsL2b9/P23btsXb29vhWHJyMpmZmU5pR1hYGK1bt3bKtVzhTJ9zVbOBS3u+iouL2bx5M9OnT7fvM5vNxMfHk5CQUOE5CQkJTJs2zWHf4MGDWbVqlf1ri8XCrbfeykMPPUTXrl0rrCM4ONgevADi4+Mxm81s3LiRkSNHljunqKiIoqIi+9c5OTlVvk8REREREVdo3bp1ow5EDY1L53xlZmZSVlZmX/bRJiIigtTU1ArPSU1NPWv5Z599Fnd3d+65555K6zh9SKO7uzshISGVXnfOnDkEBQXZt1atWp31/kRERERERGzqxYIbtWnz5s3Mnz+fN998076cZG2YPn062dnZ9u3gwYO1VreIiIiIiDR+Lg1fYWFhuLm5lVutJC0tjcjIyArPiYyMPGP57777jvT0dFq3bo27uzvu7u4kJSXxwAMPEB0dba/j9IerlZaWkpWVVel1vby8CAwMdNhERERERESqyqXhy9PTk9jYWNatW2ffZ7FYWLduHf369avwnH79+jmUB1i7dq29/K233sq2bdvYunWrfWvRogUPPfQQn3/+ub2OY8eOsXnzZnsdX331FRaLhbi4uNq+TRERERGROufidfQavdr4fF2+1Py0adMYP348vXv3pk+fPsybN4+8vDwmTpwIwG233UbLli2ZM2cOAPfeey8DBgzgxRdfZNiwYSxfvpxNmzaxePFiAEJDQwkNDXW4hoeHB5GRkXTs2BGAzp07M2TIECZPnsyiRYsoKSlhypQp3HjjjVVa6VBEREREpL7w8PAAID8/Hx8fHxe3pvHKz88HTn7eNeHy8DV27FgyMjKYOXMmqamp9OzZkzVr1tgX1UhOTsZsPtlB179/f5YtW8aMGTN49NFHiYmJYdWqVeWe8XU2S5cuZcqUKVx55ZWYzWZGjRrFSy+9VKv3JiIiIiJS19zc3AgODrZPq/H19a3VtQ+aOsMwyM/PJz09neDgYNzc3Gpcl8uf89VQ6TlfUpf0nC8RERGpDsMwSE1N5dixY65uSqMVHBxMZGRkhcG2QTznS0REREREzp3JZCIqKorw8HBKSkpc3ZxGx8PD45x6vGwUvkREREREGgk3N7daCQlSNxrdc75ERERERETqI4UvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcYJ6Eb4WLlxIdHQ03t7exMXF8dNPP52x/MqVK+nUqRPe3t50796dTz/91OH47Nmz6dSpE35+fjRr1oz4+Hg2btzoUCY6OhqTyeSwPfPMM7V+byIiIiIiIlAPwteKFSuYNm0as2bNIjExkR49ejB48GDS09MrLL9hwwbGjRvHpEmT2LJlCyNGjGDEiBH89ttv9jLnn38+CxYs4Ndff+X7778nOjqaQYMGkZGR4VDXE088QUpKin2bOnVqnd6riIiIiIg0XS4PX3PnzmXy5MlMnDiRLl26sGjRInx9fVmyZEmF5efPn8+QIUN46KGH6Ny5M08++SS9evViwYIF9jI33XQT8fHxtGvXjq5duzJ37lxycnLYtm2bQ10BAQFERkbaNz8/vzq9VxERERERabpcGr6Ki4vZvHkz8fHx9n1ms5n4+HgSEhIqPCchIcGhPMDgwYMrLV9cXMzixYsJCgqiR48eDseeeeYZQkNDufDCC3n++ecpLS2ttK1FRUXk5OQ4bCIiIiIiIlXl7sqLZ2ZmUlZWRkREhMP+iIgIduzYUeE5qampFZZPTU112Ld69WpuvPFG8vPziYqKYu3atYSFhdmP33PPPfTq1YuQkBA2bNjA9OnTSUlJYe7cuRVed86cOTz++OM1uU0RERERERHXhq+6NHDgQLZu3UpmZib/+te/GDNmDBs3biQ8PByAadOm2ctecMEFeHp6ctdddzFnzhy8vLzK1Td9+nSHc3JycmjVqlXd34iIiIiIiDQKLh12GBYWhpubG2lpaQ7709LSiIyMrPCcyMjIKpX38/OjQ4cO9O3bl9dffx13d3def/31StsSFxdHaWkpBw4cqPC4l5cXgYGBDpuIiIiIiEhVuTR8eXp6Ehsby7p16+z7LBYL69ato1+/fhWe069fP4fyAGvXrq20/Kn1FhUVVXp869atmM1me8+YiIiIiIhIbXL5sMNp06Yxfvx4evfuTZ8+fZg3bx55eXlMnDgRgNtuu42WLVsyZ84cAO69914GDBjAiy++yLBhw1i+fDmbNm1i8eLFAOTl5fHUU08xfPhwoqKiyMzMZOHChRw6dIjRo0cD1kU7Nm7cyMCBAwkICCAhIYH777+fW265hWbNmrnmgxARERERkUbN5eFr7NixZGRkMHPmTFJTU+nZsydr1qyxL6qRnJyM2Xyyg65///4sW7aMGTNm8OijjxITE8OqVavo1q0bAG5ubuzYsYO33nqLzMxMQkNDueiii/juu+/o2rUrYB1CuHz5cmbPnk1RURFt27bl/vvvd5jTJSIiIiIiUptMhmEYrm5EQ5STk0NQUBDZ2dma/yW1LjExkdjYWDbfeSe9oqJO7k9JIXbxYjZv3kyvXr1c2EIRERERsalqNnD5Q5ZFRERERESaAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXGCehG+Fi5cSHR0NN7e3sTFxfHTTz+dsfzKlSvp1KkT3t7edO/enU8//dTh+OzZs+nUqRN+fn40a9aM+Ph4Nm7c6FAmKyuLm2++mcDAQIKDg5k0aRK5ubm1fm8iIiIiIiJQD8LXihUrmDZtGrNmzSIxMZEePXowePBg0tPTKyy/YcMGxo0bx6RJk9iyZQsjRoxgxIgR/Pbbb/Yy559/PgsWLODXX3/l+++/Jzo6mkGDBpGRkWEvc/PNN/P777+zdu1aVq9ezbfffsudd95Z5/crIiIiIiJNk8kwDMOVDYiLi+Oiiy5iwYIFAFgsFlq1asXUqVN55JFHypUfO3YseXl5rF692r6vb9++9OzZk0WLFlV4jZycHIKCgvjyyy+58sor2b59O126dOHnn3+md+/eAKxZs4ahQ4fy559/0qJFi7O221ZndnY2gYGBNbl1kUolJiYSGxvL5jvvpFdU1Mn9KSnELl7M5s2b6dWrlwtbKCIiIiI2Vc0GLu35Ki4uZvPmzcTHx9v3mc1m4uPjSUhIqPCchIQEh/IAgwcPrrR8cXExixcvJigoiB49etjrCA4OtgcvgPj4eMxmc7nhiTZFRUXk5OQ4bCIiIiIiIlXl0vCVmZlJWVkZERERDvsjIiJITU2t8JzU1NQqlV+9ejX+/v54e3vzz3/+k7Vr1xIWFmavIzw83KG8u7s7ISEhlV53zpw5BAUF2bdWrVpV615FRERERKRpc/mcr7oycOBAtm7dyoYNGxgyZAhjxoypdB5ZVUyfPp3s7Gz7dvDgwVpsrYiIiIiINHYuDV9hYWG4ubmRlpbmsD8tLY3IyMgKz4mMjKxSeT8/Pzp06EDfvn15/fXXcXd35/XXX7fXcXoQKy0tJSsrq9Lrenl5ERgY6LCJiIiIiIhUlUvDl6enJ7Gxsaxbt86+z2KxsG7dOvr161fhOf369XMoD7B27dpKy59ab1FRkb2OY8eOsXnzZvvxr776CovFQlxcXE1vR0REREREpFLurm7AtGnTGD9+PL1796ZPnz7MmzePvLw8Jk6cCMBtt91Gy5YtmTNnDgD33nsvAwYM4MUXX2TYsGEsX76cTZs2sXjxYgDy8vJ46qmnGD58OFFRUWRmZrJw4UIOHTrE6NGjAejcuTNDhgxh8uTJLFq0iJKSEqZMmcKNN95YpZUORUREREREqsvl4Wvs2LFkZGQwc+ZMUlNT6dmzJ2vWrLEvqpGcnIzZfLKDrn///ixbtowZM2bw6KOPEhMTw6pVq+jWrRsAbm5u7Nixg7feeovMzExCQ0O56KKL+O677+jatau9nqVLlzJlyhSuvPJKzGYzo0aN4qWXXnLuzYuIiIiISJPh8ud8NVR6zpfUJT3nS0RERKThaBDP+RIREREREWkqFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5E6jOLxdUtEBEREZFaovAlUk+9BfR46y04fNjVTRERERGRWqDwJVIPBX39NbcBbiUl8NFHYBiubpKIiIiInCOFL5F6KPTjj09+kZZm3URERESkQVP4EqlvDAO/X38FwGI+8Z9oSooLGyQiIiIitUHhS6S+OXAAjyNHKAEyO3Wy7tO8LxEREZEGT+FLpL758UcAtgB5kZHWfer5EhEREWnwFL5E6ps//gCs4Ss/LMy6Lz1di26IiIiINHAKXyL1zZ49AOwGiv39rftKSqCgwHVtEhEREZFzpvAlUt/s3g3AHsBwdwdbAMvOdl2bREREROSc1YvwtXDhQqKjo/H29iYuLo6ffvrpjOVXrlxJp06d8Pb2pnv37nz66af2YyUlJTz88MN0794dPz8/WrRowW233cbh0xYsiI6OxmQyOWzPPPNMndyfSJUZhr3na49tX1CQ9VXhS0RERKRBc3n4WrFiBdOmTWPWrFkkJibSo0cPBg8eTHp6eoXlN2zYwLhx45g0aRJbtmxhxIgRjBgxgt9++w2A/Px8EhMTeeyxx0hMTOSDDz5g586dDB8+vFxdTzzxBCkpKfZt6tSpdXqvImd15Ig9ZO217VP4EhEREWkUXB6+5s6dy+TJk5k4cSJdunRh0aJF+Pr6smTJkgrLz58/nyFDhvDQQw/RuXNnnnzySXr16sWCBQsACAoKYu3atYwZM4aOHTvSt29fFixYwObNm0lOTnaoKyAggMjISPvm5+dX5/crckYner2KIyIotO1T+BIRERFpFFwavoqLi9m8eTPx8fH2fWazmfj4eBISEio8JyEhwaE8wODBgystD5CdnY3JZCI4ONhh/zPPPENoaCgXXnghzz//PKWlpZXWUVRURE5OjsMmUusOHgSg2LbEPCh8iYiIiDQS7q68eGZmJmVlZURERDjsj4iIYMeOHRWek5qaWmH51NTUCssXFhby8MMPM27cOAIDA+3777nnHnr16kVISAgbNmxg+vTppKSkMHfu3ArrmTNnDo8//nh1bk+k+v78E7D2fNnZfm4V+EVEREQaNJeGr7pWUlLCmDFjMAyDV1991eHYtGnT7O8vuOACPD09ueuuu5gzZw5eXl7l6po+fbrDOTk5ObRq1aruGi9N04nwVRIefnKfbbXDvDwXNEhEREREaotLw1dYWBhubm6kpaU57E9LSyPy1GFXp4iMjKxSeVvwSkpK4quvvnLo9apIXFwcpaWlHDhwgI4dO5Y77uXlVWEoE6lVFfV8+fpaXxW+RERERBo0l8758vT0JDY2lnXr1tn3WSwW1q1bR79+/So8p1+/fg7lAdauXetQ3ha8du/ezZdffkloaOhZ27J161bMZjPhp/Y4iDhbRT1ftoVgiosxnWFeooiIiIjUby4fdjht2jTGjx9P79696dOnD/PmzSMvL4+JEycCcNttt9GyZUvmzJkDwL333suAAQN48cUXGTZsGMuXL2fTpk0sXrwYsAavG264gcTERFavXk1ZWZl9PlhISAienp4kJCSwceNGBg4cSEBAAAkJCdx///3ccsstNGvWzDUfhAhU3PPl5QVublBWhnthYSUnioiIiEh9V6PwtW/fPtq1a1crDRg7diwZGRnMnDmT1NRUevbsyZo1a+yLaiQnJ2M2n+yg69+/P8uWLWPGjBk8+uijxMTEsGrVKrp16wbAoUOH+OijjwDo2bOnw7XWr1/P5ZdfjpeXF8uXL2f27NkUFRXRtm1b7r//foc5XSJOV1YGJx4G7tDzZTJZe79ycvAoKHBR40RERETkXNUofHXo0IEBAwYwadIkbrjhBry9vc+pEVOmTGHKlCkVHvv666/L7Rs9ejSjR4+usHx0dDSGYZzxer169eLHH3+sdjtF6lRGBpSWgslEyelDZX19IScHd4UvERERkQarRnO+EhMTueCCC5g2bRqRkZHcdddd/PTTT7XdNpGmxbaQTPPm4H7a30VOzPtS+BIRERFpuGoUvnr27Mn8+fM5fPgwS5YsISUlhUsuuYRu3boxd+5cMjIyarudIo2f7Vl1Fa30aQtfmvMlIiIi0mCd02qH7u7uXH/99axcuZJnn32WPXv28OCDD9KqVStuu+02UlJSaqudIo1fFcKX5nyJiIiINFznFL42bdrE3XffTVRUFHPnzuXBBx9k7969rF27lsOHD3PdddfVVjtFGj9b+Dp1pUMbHx9APV8iIiIiDVmNFtyYO3cub7zxBjt37mTo0KG8/fbbDB061L4qYdu2bXnzzTeJjo6uzbaKNG62OV8V9XydCF9uRUVObJCIiIiI1KYaha9XX32V22+/nQkTJhAVFVVhmfDwcF5//fVzapxIk3KmYYe28FVc7MQGiYiIiEhtqlH4Wrt2La1bt3Z4/haAYRgcPHiQ1q1b4+npyfjx42ulkSJNwpmGHZ54nIO7er5EREREGqwazflq3749mZmZ5fZnZWXRtm3bc26USJNUlZ4vhS8RERGRBqtG4auyhxjn5uae8wOXRZos2yMawsPLH1P4EhEREWnwqjXscNq0aQCYTCZmzpyJr6+v/VhZWRkbN26kZ8+etdpAkSahrAyysqzvmzeHw4cdj5/4o4ZbaSkeTm6aiIiIiNSOaoWvLVu2ANaer19//RVPT0/7MU9PT3r06MGDDz5Yuy0UaQqOHQOLxfo+NLTS8AXQzHmtEhEREZFaVK3wtX79egAmTpzI/PnzCQwMrJNGiTQ5tjmUQUHgUUHflslkDWCFhQpfIiIiIg1UjVY7fOONN2q7HSJNmy18hYVVXsbHBwoLCXFOi0RERESkllU5fF1//fW8+eabBAYGcv3115+x7AcffHDODRNpUqoSvk4MPVTPl4iIiEjDVOXwFRQUhMlksr8XkVpU1Z4vFL5EREREGqoqh69Thxpq2KFILbMtM1+Fnq/gum+NiIiIiNSBGj3nq6CggPz8fPvXSUlJzJs3jy+++KLWGibSpFSl5+vE6qIBTmiOiIiIiNS+GoWv6667jrfffhuAY8eO0adPH1588UWuu+46Xn311VptoEiTUJXw5eUFgNYYFREREWmYahS+EhMTufTSSwF47733iIyMJCkpibfffpuXXnqpVhso0iQofImIiIg0ejUKX/n5+QQEWAc/ffHFF1x//fWYzWb69u1LUlJSrTZQpElQ+BIRERFp9GoUvjp06MCqVas4ePAgn3/+OYMGDQIgPT1dD14WqQmFLxEREZFGr0bha+bMmTz44INER0cTFxdHv379AGsv2IUXXlirDRRpEhS+RERERBq9Ki81f6obbriBSy65hJSUFHr06GHff+WVVzJy5Mhaa5xIk1BSAtnZ1vdVCF9a7VBERESkYapR+AKIjIwkMjLSYV+fPn3OuUEiTc6RI9ZXkwmaneERyqf0fOXWfatEREREpJbVKHzl5eXxzDPPsG7dOtLT07FYLA7H9+3bVyuNE2kSbEMOQ0LAza3ycgpfIiIiIg1ajcLXHXfcwTfffMOtt95KVFQUJpOpttsl0nTYwlfz5mcud0r4Oly3LRIRERGROlCj8PXZZ5/xySefcPHFF9d2e0SanqostgH28OUL1nliIiIiItKg1Gi1w2bNmhESElLbbRFpmqoavjw97W/d8vPrsEEiIiIiUhdqFL6efPJJZs6cSb5+ARQ5d1UNX25uWE7MCVP4EhEREWl4ajTs8MUXX2Tv3r1EREQQHR2Nh4eHw/HExMRaaZxIk1DV8AWUeXpiLijAnKslN0REREQamhqFrxEjRtRyM0SasOqELw8PPAoKcMvLq+NGiYiIiEhtq1H4mjVrVm23Q6TpOhG+DuTmknWi13j79u0VFrWcmPel8CUiIiLS8NT4IcvHjh3jvffeY+/evTz00EOEhISQmJhIREQELVu2rM02ijRqxYcO4Qn8dfZsPp092+HY8dOGF5adGOKr8CUiIiLS8NQofG3bto34+HiCgoI4cOAAkydPJiQkhA8++IDk5GTefvvt2m6nSKNlnOj5mjpgAE927AjAp7t389j69RQWFjqUtYUvzfkSERERaXhqtNrhtGnTmDBhArt378bb29u+f+jQoXz77be11jiRpsD92DEAzouKoteJrW2zZhWW1bBDERERkYarRuHr559/5q677iq3v2XLlqSmpp5zo0SajPx83E70bpWe8oeMypTZwpeWmhcRERFpcGoUvry8vMjJySm3f9euXTRv3vycGyXSZBw5AkAJYDntkQ0VsQ87VM+XiIiISINTo/A1fPhwnnjiCUpKSgAwmUwkJyfz8MMPM2rUqFptoEijdmK+VyaAyXTW4vaeL835EhEREWlwahS+XnzxRXJzc2nevDkFBQUMGDCADh06EBAQwFNPPVXbbRRpvE4NX1Vg0WqHIiIiIg1WjVY7DAoKYu3atfzwww/88ssv5Obm0qtXL+Lj42u7fSKN2ynhK6gKxW09Xxp2KCIiItLwVDt8WSwW3nzzTT744AMOHDiAyWSibdu2REZGYhgGpioMnRKRE6obvtTzJSIiItJgVWvYoWEYDB8+nDvuuINDhw7RvXt3unbtSlJSEhMmTGDkyJE1asTChQuJjo7G29ubuLg4fvrppzOWX7lyJZ06dcLb25vu3bvz6aef2o+VlJTw8MMP0717d/z8/GjRogW33XYbhw8fdqgjKyuLm2++mcDAQIKDg5k0aRK5mkcjznYifGVUsbiWmhcRERFpuKoVvt58802+/fZb1q1bx5YtW3jnnXdYvnw5v/zyC19++SVfffVVtR+wvGLFCqZNm8asWbNITEykR48eDB48mPT09ArLb9iwgXHjxjFp0iS2bNnCiBEjGDFiBL/99hsA+fn5JCYm8thjj5GYmMgHH3zAzp07GT58uEM9N998M7///jtr165l9erVfPvtt9x5553VarvIOavmnC+tdigiIiLScJkMwzCqWnjQoEFcccUVPPLIIxUef/rpp/nmm2/4/PPPq9yAuLg4LrroIhYsWABYhzW2atWKqVOnVnidsWPHkpeXx+rVq+37+vbtS8+ePVm0aFGF1/j555/p06cPSUlJtG7dmu3bt9OlSxd+/vlnevfuDcCaNWsYOnQof/75Jy1atChXR1FREUVFRfavc3JyaNWqFdnZ2QQGBlb5fkUcjB0L777LPcCEO++kV1QUAEt//ZVbPviANddfz+Du3e3Ff9++na7vvktpQADuFTzuQUREREScLycnh6CgoLNmg2r1fG3bto0hQ4ZUevzqq6/ml19+qXJ9xcXFbN682WGhDrPZTHx8PAkJCRWek5CQUG5hj8GDB1daHiA7OxuTyURwcLC9juDgYHvwAoiPj8dsNrNx48YK65gzZw5BQUH2rVWrVlW9TZHKVbfn69Rhh1X/u4mIiIiI1APVCl9ZWVlERERUejwiIoKjR49Wub7MzEzKysrK1RkREUFqamqF56SmplarfGFhIQ8//DDjxo2zp9DU1FTCw8Mdyrm7uxMSElJpPdOnTyc7O9u+HTx4sEr3KHJGNVxq3mSxQH5+HTVKREREROpCtVY7LCsrw9298lPc3NwoLS0950bVlpKSEsaMGYNhGLz66qvnVJeXlxdeXl611DKRE6obvk797y8vD/z8ar9NIiIiIlInqhW+DMNgwoQJlYaQU+dEVUVYWBhubm6kpaU57E9LSyMyMrLCcyIjI6tU3ha8kpKS+OqrrxzGXkZGRpZb0KO0tJSsrKxKrytS6wyj2uELk4lcwB8gNxdO68EVERERkfqrWsMOx48fT3h4uMPcp1O38PBwbrvttirX5+npSWxsLOvWrbPvs1gsrFu3jn79+lV4Tr9+/RzKA6xdu9ahvC147d69my+//JLQ0NBydRw7dozNmzfb93311VdYLBbi4uKq3H6Rc5KbC8XFQDXCF2Bf51CPRhARERFpUKrV8/XGG2/UegOmTZvG+PHj6d27N3369GHevHnk5eUxceJEAG677TZatmzJnDlzALj33nsZMGAAL774IsOGDWP58uVs2rSJxYsXA9bgdcMNN5CYmMjq1aspKyuzz+MKCQnB09OTzp07M2TIECZPnsyiRYsoKSlhypQp3HjjjRWudChSJ070elm8vCioRq9xLhABCl8iIiIiDUy1wlddGDt2LBkZGcycOZPU1FR69uzJmjVr7ItqJCcnYzaf7KDr378/y5YtY8aMGTz66KPExMSwatUqunXrBsChQ4f46KOPAOjZs6fDtdavX8/ll18OwNKlS5kyZQpXXnklZrOZUaNG8dJLL9X9DYvYZFgfrVwaHAynDaU9E3vk0rO+RERERBoUl4cvgClTpjBlypQKj3399dfl9o0ePZrRo0dXWD46OpqqPLosJCSEZcuWVaudIrXqRM9XjcOXer5EREREGpRqzfkSkVp0aviqBs35EhEREWmYFL5EXKWG4Us9XyIiIiINk8KXiKuca/jSnC8RERGRBkXhS8RV1PMlIiIi0qQofIm4iuZ8iYiIiDQpCl8irqJhhyIiIiJNisKXiKvYwlezZtU6TcMORURERBomhS8RV9GwQxEREZEmReFLxBUsFjhyBIAyLbghIiIi0iQofIm4QlaWNYChOV8iIiIiTYXCl4grZGRYX4ODMTw8qnWqer5EREREGiaFLxFXsIWv5s2rfarmfImIiIg0TApfIq6Qnm59rUH4Us+XiIiISMOk8CXiCufQ86U5XyIiIiINk8KXiCvYwld4eLVPtYev/HwoK6u1JomIiIhI3VL4EnGF2pjzBdYAJiIiIiINgsKXiCucw5yvAsAwmaxfaN6XiIiISIOh8CXiCufQ8wVg8fW1vtG8LxEREZEGQ+FLxBXOMXyV+fhY36jnS0RERKTBUPgScYVzWHADwKLwJSIiItLgKHyJOJvFApmZ1vcadigiIiLSZCh8iTjb0aMnl4gPC6tRFer5EhEREWl4FL5EnM025DAwELy8alSF5nyJiIiINDwKXyLOdo6LbcApww4VvkREREQaDIUvEWc7x8U24JRhh5rzJSIiItJgKHyJOFst9HyVqedLREREpMFR+BJxtvR06+u5DDvUnC8RERGRBkfhS8TZamPOl8KXiIiISIOj8CXibLW54IbmfImIiIg0GApfIs5WCwtuaKl5ERERkYZH4UvE2TTsUERERKRJUvgScbbaWHBDww5FREREGhyFLxFnMgzIzLS+P5el5tXzJSIiItLgKHyJONOxY1Baan1fGz1fCl8iIiIiDYbCl4gz2eZ7BQSAt3eNq9GcLxEREZGGR+FLxJlqYbEN0JwvERERkYZI4UvEmWphsQ04Zc5XYeHJYYwiIiIiUq8pfIk4U231fNnCF6j3S0RERKSBUPgScSZbz9c5PGAZwPD0BDc36xea9yUiIiLSICh8iThTaqr1NSrq3OoxmcDf3/pePV8iIiIiDYLLw9fChQuJjo7G29ubuLg4fvrppzOWX7lyJZ06dcLb25vu3bvz6aefOhz/4IMPGDRoEKGhoZhMJrZu3VqujssvvxyTyeSw/eUvf6nN2xKpmC18RUaee1228KWeLxEREZEGwaXha8WKFUybNo1Zs2aRmJhIjx49GDx4MOm2oVmn2bBhA+PGjWPSpEls2bKFESNGMGLECH777Td7mby8PC655BKeffbZM1578uTJpKSk2LfnnnuuVu9NpEK28BURce51+flZXxW+RERERBoEl4avuXPnMnnyZCZOnEiXLl1YtGgRvr6+LFmypMLy8+fPZ8iQITz00EN07tyZJ598kl69erFgwQJ7mVtvvZWZM2cSHx9/xmv7+voSGRlp3wIDA2v13kQqVEs9X9u3byffbP3Pd8/WrSQnJ59ry0RERESkjrksfBUXF7N582aHkGQ2m4mPjychIaHCcxISEsqFqsGDB1da/kyWLl1KWFgY3bp1Y/r06eTn55+xfFFRETk5OQ6bSLWdY/hKyc3FBNxyyy38vGMHANPvvZfOnTopgImIiIjUcy4LX5mZmZSVlRFx2vCriIgIUm2/oJ4mNTW1WuUrc9NNN/Hf//6X9evXM336dP7zn/9wyy23nPGcOXPmEBQUZN9atWpVrWuKkJt7cnGMGoavY4WFGMCCgQPpeeJncFqvXuQXFJCZmVlLDRURERGRuuDu6ga4wp133ml/3717d6KiorjyyivZu3cv7du3r/Cc6dOnM23aNPvXOTk5CmBSPWlp1ldf35OLZdRQh2bNCAoIAOA8b+9zbZmIiIiIOIHLwldYWBhubm6k2X4hPSEtLY3ISnoFIiMjq1W+quLi4gDYs2dPpeHLy8sLLy+vc7qONHGnDjk0mc69Pk9PAMwlJedel4iIiIjUOZcNO/T09CQ2NpZ169bZ91ksFtatW0e/fv0qPKdfv34O5QHWrl1bafmqsi1HH3Wuz14SOZPaXGYeToav0tLaqU9ERERE6pRLhx1OmzaN8ePH07t3b/r06cO8efPIy8tj4sSJANx22220bNmSOXPmAHDvvfcyYMAAXnzxRYYNG8by5cvZtGkTixcvtteZlZVFcnIyhw8fBmDnzp0A9lUN9+7dy7Jlyxg6dCihoaFs27aN+++/n8suu4wLLrjAyZ+ANCm1ucw82MOXm3q+RERERBoEl4avsWPHkpGRwcyZM0lNTaVnz56sWbPGvqhGcnIyZvPJzrn+/fuzbNkyZsyYwaOPPkpMTAyrVq2iW7du9jIfffSRPbwB3HjjjQDMmjWL2bNn4+npyZdffmkPeq1atWLUqFHMmDHDSXctTZZtyGxt93wpfImIiIg0CC5fcGPKlClMmTKlwmNff/11uX2jR49m9OjRldY3YcIEJkyYUOnxVq1a8c0331S3mSLn7kTP12GLhdTERPvu7du316w+9XyJiIiINCguD18iTUX+/v34ArNfe41/vfZauePHc3OrV6F6vkREREQaFIUvEScxUlIAuKlvX/5yyvzCT3fv5rH16yksLKxehVpwQ0RERKRBUfgScRKPEw9BjoyMpNMpK2tur+nDkTXsUERERKRBcdlS8yJNimHgnpUFQKmPT+3UqWGHIiIiIg2KwpeIMxw9ag9JJQpfIiIiIk2SwpeIM5x47twRwHCvpdG+GnYoIiIi0qAofIk4w4nwdbg26/TyAtTzJSIiItJQKHzJWRmGwYrfVpBwMMHVTWm4ToSvQ7VZ54meLxNQSwMZRURERKQOKXzJWS39dSk3vn8j/Zf058b3buRg9kFXN6nhqYueLw8P+1v/2qxXREREROqEwpecUUlZCbO/nm3/esXvK+i0sBNPf/c0FsPiuoY1NHURvkwmewALqM16RURERKROKHzJGb39y9vsPbqX5r7N+X7i91zS+hLyS/L5+1d/Z8mWJa5uXsNRF+EL7EMP1fMlIiIiUv8pfEmlisuKefLbJwF45JJHuLj1xXw74Vv+funfAXj5p5cxDMOVTazXkpOTSUxMJDExkbxduwCFLxEREZGmTOFLKrVkyxKSspOI9I/kL73/AoDJZOKBfg/g4+7DtrRtbDi4wcWtrJ+Sk5Pp3KkTsbGxxMbGkvX774B1wY3jubm1d6ETKx4qfImIiIjUfwpfUqHC0kL+8e0/AHj0kkfx9fC1H2vm04ybut8EwCubXnFJ++q7zMxM8gsK+O/IkWyePJnzTCbA2vNVWFhYexdSz5eIiIhIg6HwJRVavHkxh44f4rzA85gcO7nc8bsvuhuAlb+vJC03zdnNazA6N29Or8BATIaBAdT6J6XwJSIiItJgKHxJhf6d+G/A2uvl7e5d7nivqF7EtYyjxFLC61ted3bzGpbjxwEo9PKirLbrVvgSERERaTAUvqScnKIcfkv/DYCRnUdWWu6vF/0VgEWbFlFmqfVY0XicCF/5PnXwKOQT4UtLzYuIiIjUfwpfUs6mw5swMGgd1JpI/8hKy43uOppQn1AO5hxk9a7VTmxhA3MifBV4l+9BPGcnnvOlni8RERGR+k/hS8rZ+OdGAOJaxp2xnLe7N5MunARo4Y0zsoWvuuj50mqHIiIiIg2GwpeUs/FQ1cIXwF297wLgy31fklWQVaftarBsww7roudLc75EREREGgyFL3FgGMbJ8HXe2cNXu2bt6B7eHYthYc2eNXXdvIapLocdKnyJiIiINBgKX+LgYM5BUnNTcTO50SuqV5XOGRYzDEDzviqTnQ1Avq/vWQrWgMKXiIiISIOh8CUObPO9Loi4wOHBymdyzfnXALBmzxpKLaV11rYGKycH0GqHIiIiIk2dwpc4qM58L5u+5/UlxCeEo4VHSTiYUFdNa5DMJSVQWAhAXh2GL/V8iYiIiNR/Cl/ioDrzvWzczG4MjRkKaOjh6Tzy8qxvvLwoPbEsfK1S+BIRERFpMBS+xK6krITNhzcD1ev5Argmxjr0cPVuha9TeebmWt8EBtbRBRS+RERERBoKhS+x+y39NwpKCwjyCqJjWMdqnTu4w2DcTG78kfEH+47uq6MWNjz2ni+FLxEREZEmT+FL7GxDDvu07IPZVL0fjWDvYC5pfQkAn+z6pNbb1lA5tefLMOrmGiIiIiJSKxS+xK4mi22cyrbq4Se7Fb5sPG09X0FBdXQBa/hyA0wnFvYQERERkfpJ4UvsbMvMV2exjVPZwtf6A+vJLc6ttXY1ZHU+7PCURTzcCgrq5hoiIiIiUisUvgSA7MJsdmTuAGre89UxtCPtm7WnuKyYtXvX1mbzGqw6H3ZoNlPm7m59m59fN9cQERERkVqh8CUAbDq8CQODtsFtae7XvEZ1mEwm+5Lzn+/9vDab12DZw1ddDTsELCd6v9TzJSIiIlK/ubu6AVI//Jb+GwA9I3uWO5acnExmZmaV6mlPewA+/uNjJkdNxmQynfWcsLAwWrduXfXGNhABgFtJifWLwEBISamT65R5eOBRUKCeLxEREZF6TuFLANh1ZBdgHTp4quTkZDp17kRBfhV7VTyAR+BwwWF6D+4NR85+io+vDzu272h0Aew82xtvb/vCGHXB1vOl8CUiIiJSvyl8CQA7j+wEKPd8r8zMTAryCxj56Eiat6nacMTVR1ZzuPgw/f/en25+3c5YNiMpgw+f/pDMzMxGF75a2d7U1XyvEywn5ny5KXyJiIiI1GsKXwKc7Pk6P/T8Co83b9OcqPOjqlRX5+TOHN5/mEz3zCqf0xjZo2QdzvcC67BDUM+XiIiISH2nBTeEvOI8DuYcBMoPO6yJDiEdANh/bD9llrJzrq+hamN7U8fhyz7sUAtuiIiIiNRrCl/Cnqw9AIT4hBDqG3rO9UX4ReDn4UeJpcQe6pqiaNub4OA6vY59tUP1fImIiIjUawpfcnK+Vy30eoF1yfn2zayrHtqCXVNk7/mq4/ClYYciIiIiDYPCl5x1vldNtAtpB8C+o/tqrc6GRsMORURERORUCl9S6z1fgL3nKyU3hbzivFqrt8EoKaGl7X1dDzu0rXaY1wQ/ZxEREZEGxOXha+HChURHR+Pt7U1cXBw//fTTGcuvXLmSTp064e3tTffu3fn0008djn/wwQcMGjSI0NBQTCYTW7duLVdHYWEhf/3rXwkNDcXf359Ro0aRlpZWm7fVoOzMrHiZ+XPh7+lPhF8E0DR7vzzT03EDLG5u4OdXp9cqU8+XiIiISIPg0vC1YsUKpk2bxqxZs0hMTKRHjx4MHjyY9PT0Cstv2LCBcePGMWnSJLZs2cKIESMYMWIEv/32m71MXl4el1xyCc8++2yl173//vv5+OOPWblyJd988w2HDx/m+uuvr/X7awgMw6iTYYcA7UOsvV97j+6t1XobAs+UFACK/f3BZKrTa2nBDREREZGGwaXha+7cuUyePJmJEyfSpUsXFi1ahK+vL0uWLKmw/Pz58xkyZAgPPfQQnTt35sknn6RXr14sWLDAXubWW29l5syZxMfHV1hHdnY2r7/+OnPnzuWKK64gNjaWN954gw0bNvDjjz/WyX3WZ+l56WQXZWPCZF8ivrZ0aGatb+/RvRiGUat113eehw8DJ8JXHVPPl4iIiEjD4LLwVVxczObNmx1CktlsJj4+noSEhArPSUhIKBeqBg8eXGn5imzevJmSkhKHejp16kTr1q3PWE9RURE5OTkOW2Ng6/VqE9wGb3fvWq27VVArPMwe5BbnkpqbWqt113eeqdb7LQ4IqPNrWbTaoYiIiEiD4LLwlZmZSVlZGREREQ77IyIiSE2t+Bf11NTUapWvrA5PT0+CT1sE4Wz1zJkzh6CgIPvWqlWrKl+zPquLxTZs3M3utGtmXfVwV9auWq+/PvNyYs+Xhh2KiIiINAwuX3CjoZg+fTrZ2dn27eDBxvHw4Lqa72Vjq3f3kd11Un99ZZ/z5YSeLz3nS0RERKRhcHfVhcPCwnBzcyu3ymBaWhqRkZEVnhMZGVmt8pXVUVxczLFjxxx6v85Wj5eXF15eXlW+TkNRlz1fADEhMQAcOn6IvOI8/DzrduW/+sIWvoqc0fNlW2pe4UtERESkXnNZz5enpyexsbGsW7fOvs9isbBu3Tr69etX4Tn9+vVzKA+wdu3aSstXJDY2Fg8PD4d6du7cSXJycrXqaSzquucrwCuASH9rqN2d1UR6v8rK8DjxRwKn9Hx5egIner4sljq/noiIiIjUjMt6vgCmTZvG+PHj6d27N3369GHevHnk5eUxceJEAG677TZatmzJnDlzALj33nsZMGAAL774IsOGDWP58uVs2rSJxYsX2+vMysoiOTmZwyfm3Ozcae3ZiYyMJDIykqCgICZNmsS0adMICQkhMDCQqVOn0q9fP/r27evkT8C1Si2l7M2yLgNfm8/4Ol1MSAypuansztpNz8iedXadeuPgQcylpRQBJb6+dX45W/gyGQbk5kJgYJ1fU0RERESqz6Xha+zYsWRkZDBz5kxSU1Pp2bMna9assS+qkZycjNl8snOuf//+LFu2jBkzZvDoo48SExPDqlWr6Natm73MRx99ZA9vADfeeCMAs2bNYvbs2QD885//xGw2M2rUKIqKihg8eDCvvPKKE+64fjlw7AAllhJ83H04L/C8OrvO+aHn813yd+zN2kuZpQw3s1udXate2Gd9qPQBAHPddy4bbm6UAB4A2dkKXyIiIiL1lEvDF8CUKVOYMmVKhce+/vrrcvtGjx7N6NGjK61vwoQJTJgw4YzX9Pb2ZuHChSxcuLA6TW10dmZaewVjQmMwm+ouJLQIaIGvhy/5JfkkZyfTtlnbOrtWvbDX2pu4F6j6bMRzYDKRDYQBNJJHIIiIiIg0RlrtsAmr68U2bMwms33hjSYx7+tEz9deJ14y2/4m+0zFRERERMSFFL6asLpebONUTSp8nej52ufES9r7uxS+REREROotha8mzFk9XwDtQ9pjwkRmfiZZBVl1fj2XcmXPl4YdioiIiNRbCl9NmO3BxzGhMXV+LW93b1oHtQZO9rg1Wi7o+dKwQxEREZH6T+GriSooKeDQ8UPAySGBdc22nP32jO1OuZ5LHD0Kx44BGnYoIiIiIo4UvpqofUet0SDIK4gQnxCnXLNr864AJOckk13YSEPCiV6vktBQCpx4WQ07FBEREan/FL6aqL1HrSGhfUh7TCaTU64Z6BVoH3r4e8bvTrmm052Y71V0Xt09N60iGnYoIiIiUv8pfDVRe7L2ANC+WXunXrdbc+sDsRtt+DrR8+Xs8KVhhyIiIiL1n8JXE7U360TPl5PDV5fmXTBh4vDxw41z1UMXhS8NOxQRERGp/xS+mijbsMMOIR2cel0/Tz/aNmsLwO/pjbD3a6d1+f6iVq2celn1fImIiIjUfwpfTdSpc76czTb08LeM35x+7Tp3InwVRkc79bKa8yUiIiJS/yl8NUGlllIOHDsAOH/YIUCnsE6YTWbS89I5WnLU6devM0ePQkYGAEWtWzv10hp2KCIiIlL/KXw1QcnZyZRaSvFy86JlYEunX9/Hw8c+3HFv4V6nX7/O7Drx8OgWLbD4+Tn10hp2KCIiIlL/ubu6AVI7kpOTyczMrFLZHzN+BKCFTwu2btl6xrLbt9fNA5G7Ne/GriO72FvQiMLXiSGHdOzo9Etr2KGIiIhI/afw1QgkJyfTqXMnCvKr+Fjf3sA1sH/zfmIfjK3SKbm5uTVvYAU6hnXEw+xBdlk2OHeEXt2pD+GruBiKisDLy+ltEBEREZEzU/hqBDIzMynIL2DkoyNp3qb5Wcv/mPMj2/K20e3CbvS/vP8Zy+7euJv1S9ZTWFhYW80FwNPNk+4R3UlMSYQ+tVq167gwfB0/9YvsbAgPd3obREREROTMFL4akeZtmhN1ftRZyxX/Xgx5cF6L84hqeebymclVG8pYExe1uMgavjpDRmFGnV3HaVwYvixAma8vbvn5Cl8iIiIi9ZQW3GiCbA83DvEOcWk7Iv0jifSMBDf4IOkDl7blnJWVwe7d1vcuCF8AZf7+1jda8VBERESkXlL4amIMw+BogXV59xAf14YvgK6+XQF4P+l9isuKXdyac5CcbJ1r5ekJbdq4pAllthUWteiGiIiISL2k8NXE5JXkUWIpwYSJYO9gVzeHtt5t4TgcKTrC+3+87+rm1JxtVciYGHBzc0kT7D1fCl8iIiIi9ZLCVxNjG3IY6BWIm9k1IeFUZpMZNlnfL/h5gWsbcy5+/dX62r27y5qgYYciIiIi9ZvCVxNjn+9VD4Yc2m0Gd5M7Gw5usC7A0RDVg/Bl0bBDERERkXpN4auJsc33aubTzMUtOUUuXNniSgDmJsx1cWNqqB6ELw07FBEREanfFL6amKOFJxbbcPFKh6e7td2tACz7dRm/p//u4tZUU0nJyTlfF1zgsmZo2KGIiIhI/abw1cTYhh3Wq54voHNwZ67vfD0GBjO/nunq5lTPzp3WABYYCK1bu6wZ9vB19KjL2iAiIiIilVP4amLsPV/1ac7XCU9c/gQmTHyw/QM2H97s6uZU3bZt1tfu3cFkclkzSoOCrG+yslzWBhERERGpnMJXE1JYWkh+ST4AzbzrV88XQNfwrtx8wc0AzFg/w8WtqYZ6MN8LoEzhS0RERKReU/hqQmyLbfh6+OLl7uXi1lRs9oDZuJvdWbNnDd8nf+/q5lRNPQlf9p6vI0dc2g4RERERqZjCVxOSVVgPl5k/TfuQ9tze83YA/v7V3zEMw8UtqoJffrG+KnyJiIiIyBkofDUhWfknwlc9W+nwdDMum4GnmyffJn3L/3b+z9XNObPDh+HPP8FshgsvdGlTyoKDrW+ysqAhhFYRERGRJkbhqwk5UmDtEQn1DXVxS86sVVArHuj3AAD3rrmXvOI8F7foDDZutL527Qq21QZdpDQw0PqmqAjy813aFhEREREpT+GrCcnMzwQgzDfMxS05u79f+ndaB7UmOTuZp757ytXNqZwtfPXt69p2ABZfX/DwsH6hoYciIiIi9Y7CVxNhGIY9fIX61O+eLwA/Tz/mD5kPwAsbXmBn5k4Xt6gStvAVF+fadoB1mfvQE99brXgoIiIiUu8ofDUReSV5FJUVAfV7wY1TXdfxOobGDKXEUsKUz6bUv8U3yspg0ybr+/oQvgBCTnxv1fMlIiIiUu8ofDURR/Ktv4wHewfj4ebh4tZUjclk4qUhL+Hl5sWX+75k5R8rXd0kR3/8Abm51rlenTu7ujVWtp4vhS8RERGRekfhq4nILDgx38un/s/3OlX7kPY8cskjANzz2T1kFdSj4XS2IYcXXQRubq5ti43Cl4iIiEi9pfDVRNjne9XzlQ4r8sglj9AprBNpeWnc//n9rm7OSd9+a32tB4tt2GnOl4iIiEi9pfDVRNiGHTbE8OXt7s2S4UswYeLtX97m092furpJ1udorV1rfR8f79q2nEpzvkRERETqLXdXN0Ccw/aMr/o67HD79u1nPO6FFze1u4ml+5Zy+we3s+LyFQR4BJy13rCwMFq3bl1bzTzpt98gNRV8fODii2u//prSsEMRERGRekvhqwkotZRytOAoUP+e8ZWblQvALbfccvbCHsD/QVpIGpf/43JYffZTfHx92LF9R+0HMFuv14AB4OVVu3WfCw07FBEREam3FL6agKMFRzEw8HTzxN/T39XNcVCYWwjAwLsHEtMj5qzlDxcdZnXWaugNwwYNo6VXy0rLZiRl8OHTH5KZmVn74euLL6yvgwbVbr3nSj1fIiIiIvVWvZjztXDhQqKjo/H29iYuLo6ffvrpjOVXrlxJp06d8Pb2pnv37nz6qeMcIMMwmDlzJlFRUfj4+BAfH8/u3bsdykRHR2MymRy2Z555ptbvrT6wrXQY6hOKyWRycWsq1qxlM6LOjzrrFts9lt4tegPwQ/4PhLYPrbRs8zbN66axhYUnF9uob+FLc75ERERE6i2Xh68VK1Ywbdo0Zs2aRWJiIj169GDw4MGkp6dXWH7Dhg2MGzeOSZMmsWXLFkaMGMGIESP47bff7GWee+45XnrpJRYtWsTGjRvx8/Nj8ODBFBYWOtT1xBNPkJKSYt+mTp1ap/fqKrbFNurbkMOaim8bT5BXEMcKj/HV/q+c34B166CgAFq0gC5dnH/9M9GwQxEREZF6y+Xha+7cuUyePJmJEyfSpUsXFi1ahK+vL0uWLKmw/Pz58xkyZAgPPfQQnTt35sknn6RXr14sWLAAsPZ6zZs3jxkzZnDddddxwQUX8Pbbb3P48GFWrVrlUFdAQACRkZH2zc/Pr65v1yUa8kqHFfFy9+Ka868BYOOhjSRnJzu3AStPPOx51Ciobz2Jp4Yvi8W1bRERERERBy4NX8XFxWzevJn4U5bqNpvNxMfHk5CQUOE5CQkJDuUBBg8ebC+/f/9+UlNTHcoEBQURFxdXrs5nnnmG0NBQLrzwQp5//nlKS0srbWtRURE5OTkOW0Nhe8ZXfV3psCY6hHSgZ2RPAD7a+RElZSVOue7BXbsoff99AHb26EFiYiIJCQkkJiY6bGdbvbHO2IYdWiyQne2aNoiIiIhIhVy64EZmZiZlZWVEREQ47I+IiGDHjh0VnpOamlph+dTUVPtx277KygDcc8899OrVi5CQEDZs2MD06dNJSUlh7ty5FV53zpw5PP7449W7wXrAMIyTc74aSc+XzaB2g9iTtYcjBUf4Oulrrmp3VZ1eLzk5mZnduvFmSQlJQOc77sAATIBRyTnHc3PrtE3leHmBnx/k5Vl7v5o1c+71RURERKRSTXa1w2nTptnfX3DBBXh6enLXXXcxZ84cvCpYOnz69OkO5+Tk5NCqVSuntPVc5JfkU1hqnesW6tO4wpePhw/XxFzD8t+Xk3Awgc5hnTkv8Lw6u15mZia3lVh72Dx79WJT7958uns3j61fz4KBA+kXc3K1Rtv+0+cZOkVoqDV8ZWZC+/bOv76IiIiIVMilww7DwsJwc3MjLS3NYX9aWhqRkZEVnhMZGXnG8rbX6tQJEBcXR2lpKQcOHKjwuJeXF4GBgQ5bQ2B7uHKQVxAebh4ubk3t6xjWkQvCL8DAYNWOVXU6/NBn1y6uAAyTiajLLqNXVBRtT/QsdWjWjF5RUfatrSt7nMLDra+VLFojIiIiIq7h0vDl6elJbGws69ats++zWCysW7eOfv36VXhOv379HMoDrF271l6+bdu2REZGOpTJyclh48aNldYJsHXrVsxmM+G2X1wbCft8r0ay0mFFhnQYQoBnAEcKjrBu/7qzn1BDEW++CcDRtm0hKKjOrnPObH9kOGWYrYiIiIi4nsuHHU6bNo3x48fTu3dv+vTpw7x588jLy2PixIkA3HbbbbRs2ZI5c+YAcO+99zJgwABefPFFhg0bxvLly9m0aROLFy8GwGQycd999/GPf/yDmJgY2rZty2OPPUaLFi0YMWIEYF20Y+PGjQwcOJCAgAASEhK4//77ueWWW2jWyObI2MJXY5vvdSofDx+uPf9alv22jI2HNtIprBPRwdG1e5FffiHk888BSOvZk5Darb122cLXab2/IiIiIuJaLg9fY8eOJSMjg5kzZ5KamkrPnj1Zs2aNfcGM5ORkzOaTHXT9+/dn2bJlzJgxg0cffZSYmBhWrVpFt27d7GX+9re/kZeXx5133smxY8e45JJLWLNmDd7e3oB1COHy5cuZPXs2RUVFtG3blvvvv99hTldjYRt22Njme50uJjSGCyMvZEvqFv6383/8JfYvtVe5YcCJZ8CtAGLC6nkvom2xGfV8iYiIiNQrLg9fAFOmTGHKlCkVHvv666/L7Rs9ejSjR4+utD6TycQTTzzBE088UeHxXr168eOPP9aorQ1NY3vA8pkMbj+YfUf3cazwGJ/t+Yw4c1ztVDx3Lnz3HWXe3jxUWMiq2qm17mjYoYiIiEi9VC/Cl9SNkrISsgqygKYRvrzcvRjZaSRv/fIWv6T9QrOgqg0hTU5OJjMzs9z+sLAwWiclwcMPA3Dovvs4+MwztdrmOmHr+dKwQxEREZF6ReGrEUvNTcXAwM/DjwDPAFc3xynaBLdhQJsBfJ30Nd/nfM/ZJmclJyfTuVMn8gsKyh27xMuLr318cCsrg5tuIvOGG6AhhC/1fImIiIjUSwpfjVhKbgoALQJaYDKZXNwa57m0zaXsP7afpOwkuAGKy4orLZuZmUl+QQH/HTmSzs2b2/cf+eMP+n7/PW5FRdCnD7z2Guza5YzmnzvN+RIRERGpl1y61LzUrcPHDwMQFRDl4pY4l9lk5vrO1+Nl8oIWMG/7vLOe07l585PP6Tp+nCsTEggAjvfuDV9+Cf7+dd7uWmPr+crNtT5sWURERETqBYWvRsze8+XfwsUtcb5Ar0AuD74cgBX7V/DKz69U7cRff4UVKzCXlfE/YM9LL0FAAxuyGRBwMiweOuTatoiIiIiIncJXI1VcVkxGXgZgHXbYFLXxbgMnnrk89bOprN61+swnbN4MH3wAFgtHOnTgBsDw8qrzdtY6kwnOO8/6/s8/XdsWEREREbFT+Gqk0nLTMDDw9/QnwKuB9dzUpu/gutbXYTEsjH1vLJsPb66wWMiuXbD6RDi76CKSBg6k1InNrHUKXyIiIiL1jsJXI2Wb79UUhxyebnr36VzV7iryS/K55p1r2HXEceGMoUCbb76xftGnD1x9tbX3qCFT+BIRERGpdxS+GqnDuU1zsY2KeJg9eG/Me3QP705qbir9Xu/Hd0nfAeCVlMQywGQY0LMnDBnS8IMXKHyJiIiI1EMKX41UyvGTy8yLdQGOtbeupU/LPmQVZBH/n3iWJb5Ju4ceIgjIjYyEa65pHMELFL5ERERE6iGFr0aouKyYjPymvdhGRSL8I1g/fj3Xd76e4rJibv54Ik9G72WvB+yLjwc3t3LnbN++ncTERBITE9m+fbsLWl1DtvB18KBr2yEiIiIidnrIciOUmmt9uG6AZwD+ng3o+VRO4Ovhy8rRK3l4+SRe2PUmcy6FeRfA3y2H6U47TFh7vlJyczEBt9xyS7k6jufmOrnVNdC6tfU1Kcm17RARERERO4WvRsi+2EYD7vXKzs4mPz/fYZ+vry9BQUHnXLfZgOcX7KLPMZg23Is/g4qYwVd8bOzkr1zEcDpyrLAQA1gwcCD9YmIA+HT3bh5bv57CwsJzbkOda9vW+nr0KBw7BsHBrmyNiIiIiKDw1SjZ5ns11MU2srOzWbBgAaWljou9u7u7M2XKlGoHsNOHC4a9/z6tN2zgel9fyiIfZ9z7D+F1uRsb3Q6xkUN4GGbatwiBWEjyP04sZXhyckji7qNHaZ5i/YwzTwuI1ZFNIbs4wobgg3AZ/CvqV1Io40IiKcVS43oB60OWw8MhPR3274cLLzy3+kRERETknCl8NUK2lQ4b6jLz+fn5lJaWMrJTJ5r7+QKQkZfPhzt2kJ+fX+XwlZtlHR546tDBSMAWxabl5/PSfQ8BULSlDHoDXaGkuYUdYZlwLTzPJp4v2wSZQDgwBKZmr4fv10M2eBw3QxXW6MihiP0+R6EnzGuZyDS+4w+TdV4era3b++zmfXYD4N7NWm+OuahK91qhdu2s4WvfPoUvERERkXpA4auRKSotIjM/E2jYww4Bmvv5EuVf8wdEF+ZahwcOvHsgMT1iyM3NZcRT7xCcZfCzLyzohD04XdOhPS2CgjBKDI6mF7KJwxwwZePRzEyJuwUisG6nKcECpTCmbDXNS9cTaPHC23AnrVUuTIS7mq3luOUzstwKIAaIgTUcsJ8fWuaDf64nSfuyGdC8JbnNLez0OEKuuRi6w19K1hFIMIPpUP0PoF07+PFHa/gSEREREZdT+GpkbIttBHoF4ufp5+LW1A/NWjYj6vwowj75kdFZBmUmWDOqE3eE+7L7SBbrDxwgKMSDqHBr0GtBIGXpBgf+yGZ05xjCw4NJI48/jmfwy7E02oQHYPEycaQ0n3y3UnCHHPdicig+eVFvoBkkcfzkvlysPWh/Aget25H8Ao5QAMA3HDpZ9jzgOshqXsgQljLV6MPzXFW9G2/Xzvq6f3/1zhMRERGROqHw1cgcOm79Bb6hDjmsK54FxYx78wcA1sWGU9Yugigg4yxztkyYCMKbILwpLCjll31pXOLVkg7hEfy6PY0PVu2AC6F/5yiaBftRZC6j1GQhPTePP9Iy6dU8nDa+IQSVepF0JJv1+w9wddtoWrULsV9jd1bWyf0h1v2Je1PY9FoKAya05JvzDvGy6SeyjAKGVKcHrH176+uuXdX6rERERESkbih8NTJ7svYA0DqotYtbUr8MXPIVoZm5HPCCj/tHEVpbFZ9YF6NtQBAdQk+OS9xWnMYfuZl0bhVChzDr/mxzEWRCSHNvey8bQIZbfrn9AVlZUAo37D2faS0v5XpWsNT0K0XhZVVvW6dO1teG9HwyERERkUZMD1luRIotxSRlW5/rdH7o+S5uTf3RMekIfd/fCMD/nQ/FHuUfplyfDacjrzAMgPci/4CuVTyxc2fr6+HDkJ1dN40TERERkSpT+GpEDhYdxGJYCPMNI9S31vp2GjRv4K8fbMZkwIbLzmdNA/1Y7iSW+42+1i9GwE6frLOfFBQELU4MP92xo87aJiIiIiJVo/DViCQVqtfLgWGwAGiZmUtOWADv3trP1S06J89zFT1zIsEDHo/+kSNU4Rljtt6vP/6o28aJiIiIyFkpfDUWZmvPF0DH0I4ubkz9MHjzPiYBZSZY9cgICvy8XN2kc+KGmb8mXwQZkOVRyF2sxsA480ldT4xR/PXXum+giIiIiJyRwldj0QqKjCJ83H04L/A8V7fG5S744hcmfbENgKWDu7Evtp2LW1Q7fCwe8AG4GSbeN23nbX458wm2hytv3lz3jRMRERGRM1L4aixOdHadH3o+ZlMj+bYaBmEZeXT/NY3LtmZwUxq0OpCJucxS6SmmMguXLP2O6+esws0weB343yUxzmuzM6TAranW4YRT+YxDbjmVl42Ntb5u2QKWyj83EREREal7Wmq+sTglfDV4hsH1GfD3/+ygdUaBfffNAI9+QLH3xxw+vwWHOrfkUKcW5DXzx62klMg9qfRc8wvhSRkAfHJReyb/vJeRJpNr7qMOjc7oyO7I4/xgOsjM4K+hslvs3Bm8veH4cdizB85vBD8fIiIiIg2UwlcjcCD3AISCGTPtm7V3dXPOiWd+EZMWfEWf3wEKKHE3kxLlzxEvE9kZ2fQp8cQ3v5jobUlEb0uqsI4Cf2/+N/4SFltKMX7ey9GjR0lJSSEjI8Op91KX3DDxH0ZygbGIrV6pcEklBd3doWdP+PFH2LhR4UtERETEhRS+GoFvU78FoIVnC7zcG+6iEn5H87jtwbeJ2JdOKfBFXAS/XtaeAl8PUnKPs3hzInfdMZ7uxe603HGI87YfInJPKt65hRgmExltmpPUow3f9o3mhTf/TemhUgDWr1/P+k3r7dcpKi520R1W38Hjx0lMSbF/vf/oUQB2Hz1K85QwHvDpx+PNvoGB8L/E/1VYR8uYGCJ+/JHM998nuevJh4SFhYXRurUexi0iIiLiLApfjcC3adbw1ca7jYtbclJ2djb5+Y5Lofv6+hIUFFRh+aDcQsbf/xbhSRlkB/swtG0B3S5pSZSvh0O59COZbGvenG09I6FnZIX1ZqWkUFpaSu+oKDZtT2Fg22hi2oSw+0gW6w8coLS0tJbvtvYV5lvb+NymTTy3aVO541PXr4f1JwLl9cAF8MTvT/DEPU9AgWPZocAnwNH//Y/Y/50MaD6+PuzYvkMBTERERMRJFL4auCP5R/gly7riXWuv+vFLdHZ2NgsWLCgXctzd3ZkyZUq5ABYBPP7v7wjPOE5OWAAvTB/Kho9X0O2UMsdP9FZ9+OGH5a5XWb0BXtZewGbe3kT5B5CRX4XnYtUTJUVlAFxwaRh9O5/8vu7OymL9/gNc3TaaViEhAKQUHOfj3N0QDNEzo7mq2VWYTpnn5l1QjOX+t4gxDP72zE0ca+ZPRlIGHz79IZmZmQpfIiIiIk6i8NXAlRllTOgwgSWrlhBwVYCrmwNAfn4+paWljOzUieZ+vgBk5OXz4Y4d5OfnO4SkkJx81gOtMo6T3TyQt/45nnRzUbk6C08Euaujo2kVGmLfb6s3KSmJ5s2bW/c1orld/sEeREWd/L5muOVDJoQ09yYq/MT+XGAHmHqbOFB0gD8sf9A1uKtDj+ChLi1p9fufXJp6jE1xjWz1RxEREZEGQuGrgQv3C+evnf/KkluWwFWubo2j5n6+RPlXHghDDx7hr299Q3MgI8iHZf8cz9GWIXDKHKfThfh4O9R5ph6xhjC8sDYcLy6GXDD2GNABfkj9gR/W/oD78ZM9gjsu7kir3/+k0w872XTdRa5usoiIiEiTpPAl58Q2tyvoaB7tdqcTkF3AeTk5ZGRA1JECTH7+GKcv9W4Y9PhiG0Nf+hSv/GJ2AbPG9CTQXATVXJWwoh4x29yuMktZbd1mvWb7DIa4t2FXSTb7PI7h1t1E6dZSe0/jjos7cdXidbRN3I/vsTwXt1hERESkaVL4khrLTz9C8axXmPynhd65jsfuAPh9O4VeuzjUMpCdzT3xy4SB722i96+HidqdCsDvLYIZePgYGYkJsDvBoY7qrEp4ao9YQ5rbVZtCfXwY596a5cZv7DUfhe6QVZRFFFEcaR3GoU4taLnjMD2+2MbentGubq6IiIhIk6PwJdVmLi3jwk+3cMmb62l21AKAxQSHwnzIDPIkp6QE76x8ehSY8C4qo/2+o7TfZ111j72JAJR4ufPtLZcxx8NCxqKv6d0iil7nRwE0qFUJ6xt3zIyhK0vKtpDmkccnf35CRHgEYb5hbLn6QlruOEzvjzbx4QVaZENERETE2RS+pMpMFoOu63/jiiXrCTlsfd5Ukhds7HceBy5qTf6JZeG3pafx4fYd3NrxfPrjz3l/5hDw51EOpmQS3aUjxy7swB8DupAf5ItlpXWZ/AAvrybfc1VbPHFjSH573jJto8C/gMWbFzMsZhieV13AFa9/ReihLHpv2sdrrm6oiIiISBOj8CXlnPqMrqMnHurbdutebn/9e1rtSwcgt5kfq4f3YPz+DUyIDS/3PC4Ai9lEarg/qZH+pHQKYPHmTO68cwBRUVHOu5kmygt3+AWi4qNIKUhh1c5V7AvfxwU3xHLNku8Zsepnprq6kSIiIiJNjMKXODj9GV0XHYDPgUErrc8SK/TxZMON/flxdD+Sjh2hePEG1zVWzqwEhp03jL0le/n6wNdsS9/GLR0CmX6lF3/97jhPu7p9IiIiIk2Mwpc4yM/Pp7SklCd9z2P0r8fo+Kd1JY0SEyxsAQcfG0tAx3bWwsdc106pmiOZR4hpHkNAqwC+SvmK7OIcHrkUnukNf9kE2//1D4w7/k7z5s31sGURERGROqbwJXaB6dlc8NFW7v8JOhX8CVhD138NWDukJe8UHOLOQB/qx6Oc5UwqfP6ZGYgEzoNjvvDMpQAf4vvOhxQlmXnmL88ysPNAOjfvjK+HrwtaLSIiItK4KXw1IafO5QLwzi8mJjWXbrvSidm4hxa7DmMyrMcKPM0kxrbgzSAv/r1mLwP9PKAAh2dwVed5XOJcFT3/DE6sJPnTATqdF4zJOMaBaMgPALpZeOj7h+B7MGGifUh72jdrT5ugNrQOak2b4BOvQW1oGdgSd7P+6RARERGprnrxG9TChQt5/vnnSU1NpUePHrz88sv06dOn0vIrV67kscce48CBA8TExPDss88ydOhQ+3HDMJg1axb/+te/OHbsGBdffDGvvvoqMTEx9jJZWVlMnTqVjz/+GLPZzKhRo5g/fz7+/v51eq+uUpiawdYXXuPCY2XEHofY49CpoHy5nZ2jeNaSQsBV3WkWGkzWr2nW80/8Mu/Qk3JCdZ7HJc516vPP4ORKkm0Lg/nsvWP82K0Tx/N28GV72HieiV/P8+CIezF7svawJ2tPhXWaMRPiFUKYdxhhXmE0925ufx/mHUawZzCtw1vTtW1XgryD8HTzxM3khun0h22LiIiINDEuD18rVqxg2rRpLFq0iLi4OObNm8fgwYPZuXMn4eHh5cpv2LCBcePGMWfOHK655hqWLVvGiBEjSExMpFu3bgA899xzvPTSS7z11lu0bduWxx57jMGDB/PHH3/g7e0NwM0330xKSgpr166lpKSEiRMncuedd7Js2TKn3r8zxL+2lv4rNmA2yh9L8oI/u7Rkd58O/H5BK/aW5vHhhx9yp5ebQ7mSsjLAsSelJs/jOr237Pjx49W8G6kNBfnW71nf33bQG5i3H57BAIpJ94NNzeGbZrA1CJKDICMIjgdDcSBY3C1kFmWSWZRZrWuaMeNmcsPd5Ia72R03szuGYWD/P+PkqwWLwzEzZrzdvO2bv5c/wX7B+Hr44ufph7+nP34e1tdTNx93H3voM2FyeG8xLBSVFVFYWuiwpWelcyzvGMVlxRRZiiguK6bMKMNsMmM2ma33YjJjxgwmcDe542X2wsvNC083z5PvzZ4V7g9vFk6blm3wcPOgzFJGmVF2xleLYXHYZxgGPh4++Hr44uvhi4/7yfe+Hr74e/rj5e5VWz8qIiIiUotcHr7mzp3L5MmTmThxIgCLFi3ik08+YcmSJTzyyCPlys+fP58hQ4bw0EMPAfDkk0+ydu1aFixYwKJFizAMg3nz5jFjxgyuu+46AN5++20iIiJYtWoVN954I9u3b2fNmjX8/PPP9O7dG4CXX36ZoUOH8sILL9CiRQsn3b1zHA8LxGxAshccaRVEVqtmpLQI4DufEhbv2QEcgp2HYOfJcyrrzTq1J6U6z+OqcA4SgLVjTQ9UdrLiImuYHjg0mmYh3lzyxw4eu/BShvyRRo9fDjD0QDFDD5Q/z2KCFD/YE+7BgeaeHGzmRqqfQbqfQbpPGZleZWS7l5LtYSHXG4xTOrssWLAYFkqMErBUv81FliKyS7KtX+QBWdWvo6nwMHsQ4BVAgGcA/p7+BHhZXz3dPPEwe+Dh5oGH2QN3s7v9FcDA+heaU4Ow7f8AcnNzKSgscCxjOwcD6/+fPPfUOoET4dsdN7P11d3sbt8X6BdISHAIHm4emE3m8m04pb7Tj1XY5tOOZedkk1uQaw+xFsNCqVFqDba2ry2nfX3iuC0Al1pK7ffhZnbDjBl3sztenl74+/rb99vvy2y9V/v7U/bZvq6o/JmO2f4AcPofEwBMJtM5vT+1rtM/V9v704+d+j2p7WNVub7FsFT4fbe9WgxLhT8Tp36Gp3+Wp+47/bOq6rHK6jrX69QG2+dYK3VRO3XVVptqqz3g2KbT663qsTO1yfZ9hfL//VW079Tvf2X/3Va27/R2VNT+yu6pIZTt0rwLl7a5lIbCpeGruLiYzZs3M336dPs+s9lMfHw8CQkJFZ6TkJDAtGnTHPYNHjyYVatWAbB//35SU1OJj4+3Hw8KCiIuLo6EhARuvPFGEhISCA4OtgcvgPj4eMxmMxs3bmTkyJHlrltUVERRUZH96+xs6y+BOTk51b/xWpaba12R8PCuwxQXlA9N6S2a8d9pV7Hsq7Vc2jqIYG8PKCnkzyM5cAw6hzQj2M8PgIy8PPZkHWX77gyyAov485D1/jJS86EEdu8/Ss4R6y/uf+ZYzz91X2X7bftOvRbA3vSjpJPHoUPHSfQ8fNbzq3OtVIs1HO4/eJSS4rJaq9e2z/bZcLxm55+pbHqGte2pqfkkbj9c7XrPdi3bZ3Msr4BSdwtY4Gtf2BrfEfMV5xOVmUvUnkO4/7KbbmZPziu0EFZQRnCJQUAuXJhbwoX7SjgTC5DnAaVmKHU78Xpi+zQmjE/7d8L2b6v9f0go/z8uYP3H1mKyUEYZmamZ7P55t/VfLw/AE+t7zxObxynvT/0XrqLfW8qA0vJbZIdIAgIDrL11hhsmTCf/wTc5/gJosf2fyfpaZiqzvlJmb7PtWFFxEYX5heCGdbNg/QxsYdT2tXHasVNf4eS9u5/y3uNEnUAJJWTlZ5GlhCoiIo3c2I5j6XF9D1c3w54JzvrHBMOFDh06ZADGhg0bHPY/9NBDRp8+fSo8x8PDw1i2bJnDvoULFxrh4eGGYRjGDz/8YADG4cOHHcqMHj3aGDNmjGEYhvHUU08Z559/frm6mzdvbrzyyisVXnfWrFm2X4m0adOmTZs2bdq0adOmrdx28ODBM+Yflw87bCimT5/u0ONmsVjIysoiNDTUZQsJ5OTk0KpVKw4ePEhgYKBL2iBNh37exFn0sybOop81cRb9rDV+hmFw/Pjxs05fcmn4CgsLw83NjbS0NIf9aWlpREZGVnhOZGTkGcvbXtPS0oiKinIo07NnT3uZ9PR0hzpKS0vJysqq9LpeXl54eTlOYg8ODj7zDTpJ4P+3d+9BVdZpHMC/53A5HJQDXripILgySkrERVnEdCZQcI4OYhd0aD1eVleDQmylssRudtSUHFwXspnEDJe0NSsSdxGMlAwRF1NBNJNoC5ZKCW/I5Tz7h+O7vYKVrZ4j9f3MnBne3+/xPc/vzOPAM+97fq/BwP/IZDWsN7IW1hpZC2uNrIW19uvm6ur6kzFaK+RxQ46OjggLC0NxcbEyZrFYUFxcjMjIyG7/TWRkpCoeAIqKipR4f39/eHl5qWJaWlpQXl6uxERGRqK5uRmVlZVKTElJCSwWCyIiIm7Z+oiIiIiIiK6x+W2HixcvhslkQnh4OEaPHo1169bh4sWLyu6HM2fOxMCBA2E2mwEAqampGD9+PNauXQuj0Yj8/HwcOnQIGzduBHB1l5dFixbhxRdfREBAgLLV/IABAzB16lQAQGBgIOLi4jBv3jzk5OSgvb0dKSkpmD59+q9up0MiIiIiIroz2Lz5SkxMxDfffIOMjAw0Njbinnvuwe7du+Hp6QkAqK+vh1b7vwt0Y8aMwdatW/HMM89g6dKlCAgIwM6dO5VnfAFAeno6Ll68iPnz56O5uRljx47F7t27lWd8AUBeXh5SUlIQHR2tPGQ5KyvLegu/BXQ6HZYvX97ldkii24H1RtbCWiNrYa2RtbDW6BqNyC184AMRERERERF1y6bf+SIiIiIiIvqtYPNFRERERERkBWy+iIiIiIiIrIDNFxERERERkRWw+erBNmzYAD8/Pzg5OSEiIgIHDx60dUrUw5jNZowaNQouLi7w8PDA1KlTUVtbq4ppbW1FcnIy+vXrh969e+P+++/v8qDz+vp6GI1GODs7w8PDA0uWLEFHR4c1l0I9yMqVK5XHglzDOqNb6auvvsLDDz+Mfv36Qa/XIygoCIcOHVLmRQQZGRnw9vaGXq9HTEwMTp06pTrH2bNnkZSUBIPBADc3N8ydOxcXLlyw9lLoDtbZ2Ylly5bB398fer0ev/vd7/DCCy/gh3vZsdboemy+eqi33noLixcvxvLly3H48GEEBwcjNjYWTU1Ntk6NepDS0lIkJyfjk08+QVFREdrb2zFx4kRcvHhRiUlLS8P777+P7du3o7S0FF9//TWmTZumzHd2dsJoNKKtrQ0ff/wxNm/ejNzcXGRkZNhiSXSHq6iowKuvvoq7775bNc46o1vl3LlziIqKgoODAwoLC1FdXY21a9eiT58+Sszq1auRlZWFnJwclJeXo1evXoiNjUVra6sSk5SUhOPHj6OoqAgFBQX46KOPMH/+fFssie5Qq1atQnZ2Nv7yl7+gpqYGq1atwurVq7F+/XolhrVGXQj1SKNHj5bk5GTluLOzUwYMGCBms9mGWVFP19TUJACktLRURESam5vFwcFBtm/frsTU1NQIADlw4ICIiOzatUu0Wq00NjYqMdnZ2WIwGOTKlSvWXQDd0c6fPy8BAQFSVFQk48ePl9TUVBFhndGt9cQTT8jYsWNvOG+xWMTLy0tefvllZay5uVl0Op387W9/ExGR6upqASAVFRVKTGFhoWg0Gvnqq69uX/LUoxiNRpkzZ45qbNq0aZKUlCQirDXqHq989UBtbW2orKxETEyMMqbVahETE4MDBw7YMDPq6b7//nsAQN++fQEAlZWVaG9vV9Xa8OHD4evrq9TagQMHEBQUpDwYHQBiY2PR0tKC48ePWzF7utMlJyfDaDSq6glgndGt9d577yE8PBwPPvggPDw8EBISgtdee02ZP3PmDBobG1X15urqioiICFW9ubm5ITw8XImJiYmBVqtFeXm59RZDd7QxY8aguLgYJ0+eBAAcOXIE+/fvx6RJkwCw1qh79rZOgG7et99+i87OTtUfIQDg6emJEydO2Cgr6uksFgsWLVqEqKgojBw5EgDQ2NgIR0dHuLm5qWI9PT3R2NioxHRXi9fmiAAgPz8fhw8fRkVFRZc51hndSp9//jmys7OxePFiLF26FBUVFXjsscfg6OgIk8mk1Et39fTDevPw8FDN29vbo2/fvqw3Ujz55JNoaWnB8OHDYWdnh87OTqxYsQJJSUkAwFqjbrH5IiIAV69KHDt2DPv377d1KvQr8+WXXyI1NRVFRUVwcnKydTr0K2exWBAeHo6XXnoJABASEoJjx44hJycHJpPJxtnRr8m2bduQl5eHrVu3YsSIEaiqqsKiRYswYMAA1hrdEG877IH69+8POzu7LjuB/ec//4GXl5eNsqKeLCUlBQUFBdi7dy8GDRqkjHt5eaGtrQ3Nzc2q+B/WmpeXV7e1eG2OqLKyEk1NTQgNDYW9vT3s7e1RWlqKrKws2Nvbw9PTk3VGt4y3tzfuuusu1VhgYCDq6+sB/K9efux3qJeXV5cNrDo6OnD27FnWGymWLFmCJ598EtOnT0dQUBD+8Ic/IC0tDWazGQBrjbrH5qsHcnR0RFhYGIqLi5Uxi8WC4uJiREZG2jAz6mlEBCkpKXjnnXdQUlICf39/1XxYWBgcHBxUtVZbW4v6+nql1iIjI3H06FHVL4+ioiIYDIYufwDRb1N0dDSOHj2Kqqoq5RUeHo6kpCTlZ9YZ3SpRUVFdHplx8uRJDB48GADg7+8PLy8vVb21tLSgvLxcVW/Nzc2orKxUYkpKSmCxWBAREWGFVVBPcOnSJWi16j+l7ezsYLFYALDW6AZsveMH/TL5+fmi0+kkNzdXqqurZf78+eLm5qbaCYzopyxcuFBcXV3lww8/lIaGBuV16dIlJWbBggXi6+srJSUlcujQIYmMjJTIyEhlvqOjQ0aOHCkTJ06Uqqoq2b17t7i7u8tTTz1liyVRD/HD3Q5FWGd06xw8eFDs7e1lxYoVcurUKcnLyxNnZ2d58803lZiVK1eKm5ubvPvuu/Lpp59KfHy8+Pv7y+XLl5WYuLg4CQkJkfLyctm/f78EBATIjBkzbLEkukOZTCYZOHCgFBQUyJkzZ2THjh3Sv39/SU9PV2JYa3Q9Nl892Pr168XX11ccHR1l9OjR8sknn9g6JephAHT72rRpkxJz+fJleeSRR6RPnz7i7OwsCQkJ0tDQoDpPXV2dTJo0SfR6vfTv318ef/xxaW9vt/JqqCe5vvlindGt9P7778vIkSNFp9PJ8OHDZePGjap5i8Uiy5YtE09PT9HpdBIdHS21tbWqmO+++05mzJghvXv3FoPBILNnz5bz589bcxl0h2tpaZHU1FTx9fUVJycnGTJkiDz99NOqx1+w1uh6GpEfPIabiIiIiIiIbgt+54uIiIiIiMgK2HwRERERERFZAZsvIiIiIiIiK2DzRUREREREZAVsvoiIiIiIiKyAzRcREREREZEVsPkiIiIiIiKyAjZfREREREREVsDmi4iI6Dfu2WefxT333GPrNIiIfvXYfBER0W03a9YsaDQaLFiwoMtccnIyNBoNZs2aZf3ErOhOaXA0Gg127txp6zSIiH6T2HwREZFV+Pj4ID8/H5cvX1bGWltbsXXrVvj6+towMyIiIutg80VERFYRGhoKHx8f7NixQxnbsWMHfH19ERISooq1WCwwm83w9/eHXq9HcHAw3n77bWX+3LlzSEpKgru7O/R6PQICArBp0yYAQFtbG1JSUuDt7Q0nJycMHjwYZrNZ+beZmZkICgpCr1694OPjg0ceeQQXLlxQvf9rr70GHx8fODs7IyEhAZmZmXBzc1PFvPvuuwgNDYWTkxOGDBmC5557Dh0dHb/48/nyyy/x0EMPwc3NDX379kV8fDzq6uqU+VmzZmHq1KlYs2YNvL290a9fPyQnJ6O9vV2JaWhogNFohF6vh7+/P7Zu3Qo/Pz+sW7cOAODn5wcASEhIgEajUY6v2bJlC/z8/ODq6orp06fj/Pnzv3g9RETUFZsvIiKymjlz5ihNEgC8/vrrmD17dpc4s9mMN954Azk5OTh+/DjS0tLw8MMPo7S0FACwbNkyVFdXo7CwEDU1NcjOzkb//v0BAFlZWXjvvfewbds21NbWIi8vT9VkaLVaZGVl4fjx49i8eTNKSkqQnp6uzJeVlWHBggVITU1FVVUVJkyYgBUrVqjy27dvH2bOnInU1FRUV1fj1VdfRW5ubpe4n6u9vR2xsbFwcXHBvn37UFZWht69eyMuLg5tbW1K3N69e3H69Gns3bsXmzdvRm5uLnJzc5X5mTNn4uuvv8aHH36Iv//979i4cSOampqU+YqKCgDApk2b0NDQoBwDwOnTp7Fz504UFBSgoKAApaWlWLly5S9aDxER3YAQERHdZiaTSeLj46WpqUl0Op3U1dVJXV2dODk5yTfffCPx8fFiMplERKS1tVWcnZ3l448/Vp1j7ty5MmPGDBERmTJlisyePbvb93r00UflvvvuE4vF8rNy2759u/Tr1085TkxMFKPRqIpJSkoSV1dX5Tg6OlpeeuklVcyWLVvE29v7hu+zfPlyCQ4O7nZuy5YtMmzYMFXOV65cEb1eL//4xz9E5OpnOHjwYOno6FBiHnzwQUlMTBQRkZqaGgEgFRUVyvypU6cEgLzyyivKGAB55513uuTm7OwsLS0tytiSJUskIiLihushIqKbZ2/j3o+IiH5D3N3dYTQakZubCxGB0WhUrlhd89lnn+HSpUuYMGGCarytrU25PXHhwoW4//77cfjwYUycOBFTp07FmDFjAFy9PW/ChAkYNmwY4uLiMHnyZEycOFE5z549e2A2m3HixAm0tLSgo6MDra2tuHTpEpydnVFbW4uEhATVe48ePRoFBQXK8ZEjR1BWVqa60tXZ2ak6z804cuQIPvvsM7i4uKjGW1tbcfr0aeV4xIgRsLOzU469vb1x9OhRAEBtbS3s7e0RGhqqzA8dOhR9+vT5WTn4+fmp3t/b21t11YyIiP5/bL6IiMiq5syZg5SUFADAhg0busxf+/7VBx98gIEDB6rmdDodAGDSpEn44osvsGvXLhQVFSE6OhrJyclYs2YNQkNDcebMGRQWFmLPnj146KGHEBMTg7fffht1dXWYPHkyFi5ciBUrVqBv377Yv38/5s6di7a2tp/dNF24cAHPPfccpk2b1mXOycnppj6Pa+cLCwtDXl5elzl3d3flZwcHB9WcRqOBxWK56ffrzu08NxERXcXmi4iIrOra95g0Gg1iY2O7zN91113Q6XSor6/H+PHjb3ged3d3mEwmmEwm3HvvvViyZAnWrFkDADAYDEhMTERiYiIeeOABxMXF4ezZs6isrITFYsHatWuh1V792vO2bdtU5x02bJjqu1AAuhyHhoaitrYWQ4cO/UWfwfVCQ0Px1ltvwcPDAwaD4RedY9iwYejo6MC//vUvhIWFAbh6FfHcuXOqOAcHB3R2dv7fORMR0c1j80VERFZlZ2eHmpoa5efrubi44M9//jPS0tJgsVgwduxYfP/99ygrK4PBYIDJZEJGRgbCwsIwYsQIXLlyBQUFBQgMDARwdTdDb29vhISEQKvVYvv27fDy8oKbmxuGDh2K9vZ2rF+/HlOmTEFZWRlycnJU7//oo49i3LhxyMzMxJQpU1BSUoLCwkJoNBolJiMjA5MnT4avry8eeOABaLVaHDlyBMeOHcOLL754w7VfvnwZVVVVXdablJSEl19+GfHx8Xj++ecxaNAgfPHFF9ixYwfS09MxaNCgn/xchw8fjpiYGMyfPx/Z2dlwcHDA448/Dr1er8rdz88PxcXFiIqKgk6n+9m3JRIR0f+Pux0SEZHVGQyGH73C88ILL2DZsmUwm80IDAxEXFwcPvjgA/j7+wMAHB0d8dRTT+Huu+/GuHHjYGdnh/z8fABXm5nVq1cjPDwco0aNQl1dHXbt2gWtVovg4GBkZmZi1apVGDlyJPLy8lTb0ANAVFQUcnJykJmZieDgYOzevRtpaWmq2wljY2NRUFCAf/7znxg1ahR+//vf45VXXsHgwYN/dN0nT55ESEiI6vWnP/0Jzs7O+Oijj+Dr64tp06YhMDAQc+fORWtr601dCXvjjTfg6emJcePGISEhAfPmzYOLi4sq97Vr16KoqAg+Pj5dtvgnIqLbSyMiYuskiIiI7mTz5s3DiRMnsG/fPlunclP+/e9/w8fHB3v27EF0dLSt0yEi+s3jbYdERETXWbNmDSZMmIBevXqhsLAQmzdvxl//+ldbp/WTSkpKcOHCBQQFBaGhoQHp6enw8/PDuHHjbJ0aERGBzRcREVEXBw8exOrVq3H+/HkMGTIEWVlZ+OMf/2jrtH5Se3s7li5dis8//xwuLi4YM2YM8vLyuuxkSEREtsHbDomIiIiIiKyAG24QERERERFZAZsvIiIiIiIiK2DzRUREREREZAVsvoiIiIiIiKyAzRcREREREZEVsPkiIiIiIiKyAjZfREREREREVsDmi4iIiIiIyAr+CzKU+IKcA8dbAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Total words in Spam messages: 10688\n", - "Total words in Ham messages: 39246\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 600x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAIQCAYAAACmOuUCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATchJREFUeJzt3XtcFnXe//H3BQoIcuEpQBPPRww1URG1PESiUmlpq+WtqKiri94J5anMQ4fbVktl85TVpnVnnjbdTVIjj6mkiZKH1FazsFXQUrgMFRTm90c38/MSVDDxcur1fDzmsc73+7nm+swQ8N65ZgabYRiGAAAALMDN1Q0AAAAUF8EFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFf1ibN2+WzWbT5s2bXd0KXGjgwIGqVauWq9sAUEwEF5Sq5cuXy2azadWqVYXmmjVrJpvNpk2bNhWaq1Gjhtq2bXsnWiy2Y8eO6c9//rPq1KkjLy8v2e12tWvXTgkJCbp48aKr25MkzZs3T4sWLSrRay5duqRZs2YpLCxMfn5+8vLyUoMGDTRy5Eh9++23pdMofrNPPvlEHTp0kL+/v7y9vVWnTh396U9/0rp161zd2l3n+++/l81m0+uvv17k/JQpU2Sz2fTTTz/d4c5wK8q4ugH8vrVv316StG3bNj3++OPmuMPh0IEDB1SmTBlt375dnTp1MudOnDihEydOqG/fvne83+tJTEzUk08+KU9PTw0YMED33XefcnNztW3bNo0ZM0YHDx7UwoULXd2m5s2bpypVqmjgwIHFqv/pp5/UtWtXpaSk6JFHHtHTTz+t8uXL68iRI1q6dKkWLlyo3Nzc0m3axd5++23l5+e7uo0Sef311zVmzBh16NBBEyZMkLe3t44eParPP/9cS5cuVdeuXV3dIlBqCC4oVdWqVVPt2rW1bds2p/Hk5GQZhqEnn3yy0FzBekHouVWGYejSpUsqV67cb9rO8ePH1bdvX9WsWVMbN25U1apVzbnY2FgdPXpUiYmJv+k9XGXgwIHau3evVq5cqV69ejnNvfzyy3rhhRdc1Fnpy87Olo+Pj8qWLevqVkrkypUrevnll/Xwww/rs88+KzR/+vRpF3QF3Dl8VIRS1759e+3du9fp45Tt27erSZMm6tatm7788kun/8e7fft22Ww2tWvXTtL//0Fdt25deXp6qlatWnr++eeVk5Pj9D61atXSI488ovXr16tly5YqV66c3nrrLUnSjz/+qJ49e8rHx0f+/v6Ki4sr9PrrmT59un755Re9++67TqGlQL169fTMM8+Y68Xt12azacqUKYW2V6tWLaczJosWLZLNZtP27dsVHx+ve+65Rz4+Pnr88cd15swZp9cdPHhQW7Zskc1mk81mU8eOHa+7Xzt37lRiYqJiYmIKhRZJ8vT0LHRqfePGjXrggQfk4+OjChUqqEePHjp06JBTTcFp92+//Vb/9V//JT8/P91zzz168cUXZRiGTpw4oR49eshutyswMFBvvPGG0+sLrj1atmyZnn/+eQUGBsrHx0ePPfaYTpw44VT7xRdf6Mknn1SNGjXk6empoKAgxcXFFfrobuDAgSpfvryOHTum7t27y9fXV/369TPnrr3GZenSpQoNDZWvr6/sdrtCQkKUkJDgVPPdd9/pySefVKVKleTt7a02bdoUCrAF+7J8+XK9+uqrql69ury8vPTQQw/p6NGjTrUXLlzQ4cOHb/pxxU8//SSHw2F+f1zL39//jhzLtLQ0PfLIIypfvrzuvfdezZ07V5K0f/9+de7cWT4+PqpZs6aWLFlyw/25fPmyKlWqpEGDBhWaczgc8vLy0nPPPWeOvfnmm2rSpIm8vb1VsWJFtWzZ8qbvcStcdTxQDAZQyt566y1DkrFp0yZzrHPnzsawYcOMo0ePGpKMr7/+2pxr3ry50bhxY3M9OjrakGT07t3bmDt3rjFgwABDktGzZ0+n96lZs6ZRr149o2LFisb48eONBQsWGJs2bTIuXLhgNGjQwPDy8jLGjh1rzJ492wgNDTWaNm1aqK+i3HvvvUadOnWKvb/F7VeSMXny5EKvr1mzphEdHW2uv/fee4Yk4/777zc6d+5svPnmm8azzz5ruLu7G3/605/MulWrVhnVq1c3GjVqZHzwwQfGBx98YHz22WfX7fP55583JBlbt24t1n4lJSUZZcqUMRo0aGBMnz7dmDp1qlGlShWjYsWKxvHjx826yZMnG5KM5s2bG0899ZQxb948IyoqypBkzJw502jYsKExYsQIY968eUa7du0MScaWLVvM12/atMmQZISEhBhNmzY1Zs6caYwfP97w8vIyGjRoYFy4cMGsHTVqlNG9e3fjf/7nf4y33nrLiImJMdzd3Y3evXs79R4dHW14enoadevWNaKjo40FCxYY77//vjlXs2ZNs/azzz4zJBkPPfSQMXfuXGPu3LnGyJEjjSeffNKsSU9PNwICAgxfX1/jhRdeMGbOnGk0a9bMcHNzMz7++ONC+3L//fcboaGhxqxZs4wpU6YY3t7eRuvWrZ16LKgt6r+Jq+Xl5RnlypUzQkNDjZ9//vmGtaV1LL28vIzg4GBj+PDhxty5c422bdsakoz33nvPqFatmjFmzBjjzTffNJo0aWK4u7sb33333Q37HDx4sFGhQgUjJyfHaXzx4sWGJOOrr74yDMMwFi5caH5vvfXWW0ZCQoIRExNj/Pd///cNt3/8+HFDkjF16lTjzJkzhZYxY8YYkowzZ87cFccDN0ZwQak7ePCgIcl4+eWXDcMwjMuXLxs+Pj7G4sWLDcMwjICAAGPu3LmGYRiGw+Ew3N3djaFDhxqGYRipqamGJGPIkCFO23zuuecMScbGjRvNsZo1axqSjHXr1jnVzp4925BkLF++3BzLzs426tWrd9PgkpWVZUgyevToUax9LUm/JQ0uERERRn5+vjkeFxdnuLu7G5mZmeZYkyZNjA4dOhSr18cff9yQZJw7d65Y9c2bNzf8/f2dfll+/fXXhpubmzFgwABzrCC4DBs2zBy7cuWKUb16dcNmsxmvvfaaOX7u3DmjXLlyTvtb8Mv23nvvNRwOhzm+fPlyQ5KRkJBgjl39i7fAtGnTDJvNZvzwww/mWEGYHD9+fKH6a4PLM888Y9jtduPKlSvXPRajR482JBlffPGFOXb+/Hmjdu3aRq1atYy8vDynfWncuLHTL+WEhARDkrF///5C+32z4GIYhjFp0iRDkuHj42N069bNePXVV42UlJRCdaV5LP/nf/7HHCv4OtpsNmPp0qXm+OHDh4u1T+vXrzckGZ988onTePfu3Z3+T0OPHj2MJk2a3HBbRSkILjdbrg4urjweuDE+KkKpa9y4sSpXrmxeu/L1118rOzvbvGuobdu22r59u6Rfr33Jy8szr2/59NNPJUnx8fFO23z22WclqdCp+dq1aysyMtJp7NNPP1XVqlXVu3dvc8zb21vDhg27ae8Oh0OS5OvrW6x9LWm/JTFs2DDZbDZz/YEHHlBeXp5++OGHW9peSfbt1KlTSk1N1cCBA1WpUiVzvGnTpnr44YfN/b7akCFDzH+7u7urZcuWMgxDMTEx5niFChXUsGFDfffdd4VeP2DAAKfeevfurapVqzq919XXL2VnZ+unn35S27ZtZRiG9u7dW2ibI0aMuOm+VqhQQdnZ2UpKSrpuzaeffqrWrVs7XYdVvnx5DRs2TN9//72++eYbp/pBgwbJw8PDXH/ggQckyWm/O3bsKMMwivz48FpTp07VkiVLdP/992v9+vV64YUXFBoaqhYtWhT66E4qnWN59de34Ovo4+OjP/3pT+Z4w4YNVaFChSK/vlfr3LmzqlSpomXLlplj586dU1JSkvr06eP0Pj/++KO++uqrG27veoYNG6akpKRCS//+/QvVuvJ44MYILih1NptNbdu2Na9l2b59u/z9/VWvXj1JzsGl4H8LfiH88MMPcnNzM2sLBAYGqkKFCoV+adeuXbvQ+//www+qV6+e0y996dcfIjdjt9slSefPny/Orpa435KoUaOG03rFihUl/foD/laUZN8K+i7qmDVu3Fg//fSTsrOzb9hvwa3WVapUKTRe1D7Ur1/fad1ms6levXr6/vvvzbG0tDQzTJUvX1733HOPOnToIEnKyspyen2ZMmVUvXr1m+yp9Je//EUNGjRQt27dVL16dQ0ePLjQLcY//PDDdY9FwfzVbvfXTpKeeuopffHFFzp37pw+++wzPf3009q7d68effRRXbp0yan2dh9LLy8v3XPPPU5jfn5+ql69eqHvs+t9fa9WpkwZ9erVS//85z/Na8E+/vhjXb582Sm4jBs3TuXLl1fr1q1Vv359xcbGmj8ziqN+/fqKiIgotNSpU6dQrSuPB26M4II7on379srKytL+/fu1fft2p2e0tG3bVj/88IP+85//aNu2bapWrVqhHyTXfvNfz2+9g+hadrtd1apV04EDB0r0uuL2W5S8vLwix93d3YscNwzjlt6nUaNGkn69eLA0FNXv7dyHvLw8Pfzww0pMTNS4ceO0evVqJSUlmc+xufYWZ09PT7m53fxHnr+/v1JTU/Wvf/1Ljz32mDZt2qRu3bopOjq6xD0WuN1fu6vZ7XY9/PDD+vDDDxUdHa1jx45p586dJdpGSY/l9fbnt+xn3759df78ea1du1bSr8+AatSokZo1a2bWNG7c2LxVv3379vrHP/6h9u3ba/LkycXZzWK7G44Hro/ggjvi6ue5bN++3emOiNDQUHl6emrz5s3auXOn01zNmjWVn5+vf//7307by8jIUGZmpmrWrHnT965Zs6aOHTtW6IfFkSNHitX7I488omPHjik5OblY71XcfitWrKjMzEynutzcXJ06dapYfRWlJIHp0UcflST97//+701rC/ou6pgdPnxYVapUkY+PT7HfuziuPYaGYejo0aPmHUD79+/Xt99+qzfeeEPjxo1Tjx49FBERoWrVqv3m9/bw8NCjjz6qefPmmQ8efP/99807gWrWrHndY1Ew7wotW7aUpEL/DbnyWBbXgw8+qKpVq2rZsmX66aeftHHjRqezLQV8fHzUp08fvffee0pLS1NUVJReffXVQmeZfou74Xjg+gguuCNatmwpLy8vffjhh/rPf/7jdMbF09NTLVq00Ny5c5Wdne103UD37t0lSbNnz3ba3syZMyVJUVFRN33v7t276+TJk1q5cqU5duHChWI/MG7s2LHy8fHRkCFDlJGRUWj+2LFj5q2yJem3bt262rp1q1PdwoULr3vGpTh8fHwKhaHrCQ8PV9euXfXOO+9o9erVheZzc3PN21CrVq2q5s2ba/HixU7bP3DggD777DNzv2+n999/3+ljrJUrV+rUqVPq1q2bpP///2avDqSGYRS6bbmkfv75Z6d1Nzc3NW3aVJLMjzG6d++uXbt2OYXZ7OxsLVy4ULVq1VJwcHCJ37e4t0NfuHDhuiG64GzFtR9juepYloSbm5t69+6tTz75RB988IGuXLlSKLhc+7Xx8PBQcHCwDMPQ5cuXb1svd8PxwPXxADrcER4eHmrVqpW++OILeXp6KjQ01Gm+bdu25vM8rg4uzZo1U3R0tBYuXKjMzEx16NBBu3bt0uLFi9WzZ0+nJ+5ez9ChQzVnzhwNGDBAKSkpqlq1qj744AN5e3sXq/e6detqyZIl6tOnjxo3buz05NwdO3ZoxYoV5nNXStLvkCFDNHz4cPXq1UsPP/ywvv76a61fv77QNSAlERoaqvnz5+uVV15RvXr15O/vr86dO1+3/v3331eXLl30xBNP6NFHH9VDDz0kHx8f/fvf/9bSpUt16tQp81kuM2bMULdu3RQeHq6YmBhdvHhRb775pvz8/Ip1QWlJVapUSe3bt9egQYOUkZGh2bNnq169eho6dKikXz/qqlu3rp577jn95z//kd1u1z/+8Y/ffP3AkCFDdPbsWXXu3FnVq1fXDz/8oDfffFPNmzc3r2EZP368PvroI3Xr1k3//d//rUqVKmnx4sU6fvy4/vGPfxTrI6lr7dq1S506ddLkyZNveDwvXLigtm3bqk2bNuratauCgoKUmZmp1atX64svvlDPnj11//33O73GVceypPr06aM333xTkydPVkhIiHm8C3Tp0kWBgYFq166dAgICdOjQIc2ZM0dRUVHFvoC+OO6W44HruLM3MeGPbMKECYYko23btoXmPv74Y0OS4evrW+g21MuXLxtTp041ateubZQtW9YICgoyJkyYYFy6dMmprmbNmkZUVFSR7/3DDz8Yjz32mOHt7W1UqVLFeOaZZ4x169YV6zkuBb799ltj6NChRq1atQwPDw/D19fXaNeunfHmm2869VLcfvPy8oxx48YZVapUMby9vY3IyEjj6NGj170duuBZFgUKbnW9uv/09HQjKirK8PX1NSQV69boCxcuGK+//rrRqlUro3z58oaHh4dRv359Y9SoUcbRo0edaj///HOjXbt2Rrly5Qy73W48+uijxjfffONUU3A79NW3lhrGr7eN+vj4FHr/Dh06ON3iWrBfH330kTFhwgTD39/fKFeunBEVFeV0G6phGMY333xjREREGOXLlzeqVKliDB061Pj666/NZ2jc7L0L5q6+HXrlypVGly5dDH9/f8PDw8OoUaOG8ec//9k4deqU0+uOHTtm9O7d26hQoYLh5eVltG7d2lizZo1TTcG+rFixwmm84Pbcq3ss7u3Qly9fNt5++22jZ8+eRs2aNQ1PT0/D29vbuP/++40ZM2Y43XZ9J4/ltV/HAjf6vrxWfn6+ERQUZEgyXnnllULzb731lvHggw8alStXNp/LM2bMGCMrK+uG2y043jNmzChyvqj/Zu+G44Gi2QyDq4QA3D02b96sTp06acWKFU63sKPkOJb4PeIaFwAAYBkEFwAAYBkEFwAAYBlc4wIAACyDMy4AAMAyCC4AAMAyeADdbZKfn6+TJ0/K19f3N/2dGgAA/mgMw9D58+dVrVq1mz7AkeBym5w8eVJBQUGubgMAAMs6ceLETf+KO8HlNil43PSJEydkt9td3A0AANbhcDgUFBRUrD/dQHC5TQo+HrLb7QQXAABuQXEuteDiXAAAYBkEFwAAYBkEFwAAYBkEFwAAYBkEFwAAYBkEFwAAYBl3TXB57bXXZLPZNHr0aHPs0qVLio2NVeXKlVW+fHn16tVLGRkZTq9LS0tTVFSUvL295e/vrzFjxujKlStONZs3b1aLFi3k6empevXqadGiRYXef+7cuapVq5a8vLwUFhamXbt2lcZuAgCA3+CuCC5fffWV3nrrLTVt2tRpPC4uTp988olWrFihLVu26OTJk3riiSfM+by8PEVFRSk3N1c7duzQ4sWLtWjRIk2aNMmsOX78uKKiotSpUyelpqZq9OjRGjJkiNavX2/WLFu2TPHx8Zo8ebL27NmjZs2aKTIyUqdPny79nQcAAMVnuNj58+eN+vXrG0lJSUaHDh2MZ555xjAMw8jMzDTKli1rrFixwqw9dOiQIclITk42DMMwPv30U8PNzc1IT083a+bPn2/Y7XYjJyfHMAzDGDt2rNGkSROn9+zTp48RGRlprrdu3dqIjY011/Py8oxq1aoZ06ZNK/Z+ZGVlGZKMrKys4u88AAAo0e9Ql59xiY2NVVRUlCIiIpzGU1JSdPnyZafxRo0aqUaNGkpOTpYkJScnKyQkRAEBAWZNZGSkHA6HDh48aNZcu+3IyEhzG7m5uUpJSXGqcXNzU0REhFkDAADuDi595P/SpUu1Z88effXVV4Xm0tPT5eHhoQoVKjiNBwQEKD093ay5OrQUzBfM3ajG4XDo4sWLOnfunPLy8oqsOXz48HV7z8nJUU5OjrnucDhusrcAAOC3ctkZlxMnTuiZZ57Rhx9+KC8vL1e1ccumTZsmPz8/c+EvQwMAUPpcFlxSUlJ0+vRptWjRQmXKlFGZMmW0ZcsW/e1vf1OZMmUUEBCg3NxcZWZmOr0uIyNDgYGBkqTAwMBCdxkVrN+sxm63q1y5cqpSpYrc3d2LrCnYRlEmTJigrKwsczlx4sQtHQcAAFB8LgsuDz30kPbv36/U1FRzadmypfr162f+u2zZstqwYYP5miNHjigtLU3h4eGSpPDwcO3fv9/p7p+kpCTZ7XYFBwebNVdvo6CmYBseHh4KDQ11qsnPz9eGDRvMmqJ4enqafwmavwgNAMCd4bJrXHx9fXXfffc5jfn4+Khy5crmeExMjOLj41WpUiXZ7XaNGjVK4eHhatOmjSSpS5cuCg4OVv/+/TV9+nSlp6dr4sSJio2NlaenpyRp+PDhmjNnjsaOHavBgwdr48aNWr58uRITE833jY+PV3R0tFq2bKnWrVtr9uzZys7O1qBBg+7Q0QAAAMXh0otzb2bWrFlyc3NTr169lJOTo8jISM2bN8+cd3d315o1azRixAiFh4fLx8dH0dHReumll8ya2rVrKzExUXFxcUpISFD16tX1zjvvKDIy0qzp06ePzpw5o0mTJik9PV3NmzfXunXrCl2wCwAAXMtmGIbh6iZ+DxwOh/z8/JSVlcXHRgAAlEBJfoe6/DkuAAAAxUVwAQAAlnFXX+MCAFZxev5YV7cAlDr/EdNd3QJnXAAAgHUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGW4NLjMnz9fTZs2ld1ul91uV3h4uNauXWvOd+zYUTabzWkZPny40zbS0tIUFRUlb29v+fv7a8yYMbpy5YpTzebNm9WiRQt5enqqXr16WrRoUaFe5s6dq1q1asnLy0thYWHatWtXqewzAAC4dS4NLtWrV9drr72mlJQU7d69W507d1aPHj108OBBs2bo0KE6deqUuUyfPt2cy8vLU1RUlHJzc7Vjxw4tXrxYixYt0qRJk8ya48ePKyoqSp06dVJqaqpGjx6tIUOGaP369WbNsmXLFB8fr8mTJ2vPnj1q1qyZIiMjdfr06TtzIAAAQLHYDMMwXN3E1SpVqqQZM2YoJiZGHTt2VPPmzTV79uwia9euXatHHnlEJ0+eVEBAgCRpwYIFGjdunM6cOSMPDw+NGzdOiYmJOnDggPm6vn37KjMzU+vWrZMkhYWFqVWrVpozZ44kKT8/X0FBQRo1apTGjx9frL4dDof8/PyUlZUlu93+G44AACs6PX+sq1sASp3/iOk3L7oFJfkdetdc45KXl6elS5cqOztb4eHh5viHH36oKlWq6L777tOECRN04cIFcy45OVkhISFmaJGkyMhIORwO86xNcnKyIiIinN4rMjJSycnJkqTc3FylpKQ41bi5uSkiIsKsAQAAd4cyrm5g//79Cg8P16VLl1S+fHmtWrVKwcHBkqSnn35aNWvWVLVq1bRv3z6NGzdOR44c0ccffyxJSk9Pdwotksz19PT0G9Y4HA5dvHhR586dU15eXpE1hw8fvm7fOTk5ysnJMdcdDsctHgEAAFBcLg8uDRs2VGpqqrKysrRy5UpFR0dry5YtCg4O1rBhw8y6kJAQVa1aVQ899JCOHTumunXrurBradq0aZo6dapLewAA4I/G5R8VeXh4qF69egoNDdW0adPUrFkzJSQkFFkbFhYmSTp69KgkKTAwUBkZGU41BeuBgYE3rLHb7SpXrpyqVKkid3f3ImsKtlGUCRMmKCsry1xOnDhRgr0GAAC3wuXB5Vr5+flOH8FcLTU1VZJUtWpVSVJ4eLj279/vdPdPUlKS7Ha7+XFTeHi4NmzY4LSdpKQk8zoaDw8PhYaGOtXk5+drw4YNTtfaXMvT09O8jbtgAQAApculHxVNmDBB3bp1U40aNXT+/HktWbJEmzdv1vr163Xs2DEtWbJE3bt3V+XKlbVv3z7FxcXpwQcfVNOmTSVJXbp0UXBwsPr376/p06crPT1dEydOVGxsrDw9PSVJw4cP15w5czR27FgNHjxYGzdu1PLly5WYmGj2ER8fr+joaLVs2VKtW7fW7NmzlZ2drUGDBrnkuAAAgKK5NLicPn1aAwYM0KlTp+Tn56emTZtq/fr1evjhh3XixAl9/vnnZogICgpSr169NHHiRPP17u7uWrNmjUaMGKHw8HD5+PgoOjpaL730kllTu3ZtJSYmKi4uTgkJCapevbreeecdRUZGmjV9+vTRmTNnNGnSJKWnp6t58+Zat25doQt2AQCAa911z3GxKp7jAvyx8RwX/BHwHBcAAIASILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLcGlwmT9/vpo2bSq73S673a7w8HCtXbvWnL906ZJiY2NVuXJllS9fXr169VJGRobTNtLS0hQVFSVvb2/5+/trzJgxunLlilPN5s2b1aJFC3l6eqpevXpatGhRoV7mzp2rWrVqycvLS2FhYdq1a1ep7DMAALh1Lg0u1atX12uvvaaUlBTt3r1bnTt3Vo8ePXTw4EFJUlxcnD755BOtWLFCW7Zs0cmTJ/XEE0+Yr8/Ly1NUVJRyc3O1Y8cOLV68WIsWLdKkSZPMmuPHjysqKkqdOnVSamqqRo8erSFDhmj9+vVmzbJlyxQfH6/Jkydrz549atasmSIjI3X69Ok7dzAAAMBN2QzDMFzdxNUqVaqkGTNmqHfv3rrnnnu0ZMkS9e7dW5J0+PBhNW7cWMnJyWrTpo3Wrl2rRx55RCdPnlRAQIAkacGCBRo3bpzOnDkjDw8PjRs3TomJiTpw4ID5Hn379lVmZqbWrVsnSQoLC1OrVq00Z84cSVJ+fr6CgoI0atQojR8/vlh9OxwO+fn5KSsrS3a7/XYeEgAWcHr+WFe3AJQ6/xHTS2W7Jfkdetdc45KXl6elS5cqOztb4eHhSklJ0eXLlxUREWHWNGrUSDVq1FBycrIkKTk5WSEhIWZokaTIyEg5HA7zrE1ycrLTNgpqCraRm5urlJQUpxo3NzdFRESYNQAA4O5QxtUN7N+/X+Hh4bp06ZLKly+vVatWKTg4WKmpqfLw8FCFChWc6gMCApSeni5JSk9PdwotBfMFczeqcTgcunjxos6dO6e8vLwiaw4fPnzdvnNycpSTk2OuOxyOku04AAAoMZefcWnYsKFSU1O1c+dOjRgxQtHR0frmm29c3dZNTZs2TX5+fuYSFBTk6pYAAPjdc3lw8fDwUL169RQaGqpp06apWbNmSkhIUGBgoHJzc5WZmelUn5GRocDAQElSYGBgobuMCtZvVmO321WuXDlVqVJF7u7uRdYUbKMoEyZMUFZWlrmcOHHilvYfAAAUn8uDy7Xy8/OVk5Oj0NBQlS1bVhs2bDDnjhw5orS0NIWHh0uSwsPDtX//fqe7f5KSkmS32xUcHGzWXL2NgpqCbXh4eCg0NNSpJj8/Xxs2bDBriuLp6Wnexl2wAACA0uXSa1wmTJigbt26qUaNGjp//ryWLFmizZs3a/369fLz81NMTIzi4+NVqVIl2e12jRo1SuHh4WrTpo0kqUuXLgoODlb//v01ffp0paena+LEiYqNjZWnp6ckafjw4ZozZ47Gjh2rwYMHa+PGjVq+fLkSExPNPuLj4xUdHa2WLVuqdevWmj17trKzszVo0CCXHBcAAFA0lwaX06dPa8CAATp16pT8/PzUtGlTrV+/Xg8//LAkadasWXJzc1OvXr2Uk5OjyMhIzZs3z3y9u7u71qxZoxEjRig8PFw+Pj6Kjo7WSy+9ZNbUrl1biYmJiouLU0JCgqpXr6533nlHkZGRZk2fPn105swZTZo0Senp6WrevLnWrVtX6IJdAADgWnfdc1ysiue4AH9sPMcFfwQ8xwUAAKAECC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyXBpcpk2bplatWsnX11f+/v7q2bOnjhw54lTTsWNH2Ww2p2X48OFONWlpaYqKipK3t7f8/f01ZswYXblyxalm8+bNatGihTw9PVWvXj0tWrSoUD9z585VrVq15OXlpbCwMO3ateu27zMAALh1Lg0uW7ZsUWxsrL788kslJSXp8uXL6tKli7Kzs53qhg4dqlOnTpnL9OnTzbm8vDxFRUUpNzdXO3bs0OLFi7Vo0SJNmjTJrDl+/LiioqLUqVMnpaamavTo0RoyZIjWr19v1ixbtkzx8fGaPHmy9uzZo2bNmikyMlKnT58u/QMBAACKxWYYhuHqJgqcOXNG/v7+2rJlix588EFJv55xad68uWbPnl3ka9auXatHHnlEJ0+eVEBAgCRpwYIFGjdunM6cOSMPDw+NGzdOiYmJOnDggPm6vn37KjMzU+vWrZMkhYWFqVWrVpozZ44kKT8/X0FBQRo1apTGjx9/094dDof8/PyUlZUlu93+Ww4DAAs6PX+sq1sASp3/iOk3L7oFJfkdeldd45KVlSVJqlSpktP4hx9+qCpVqui+++7ThAkTdOHCBXMuOTlZISEhZmiRpMjISDkcDh08eNCsiYiIcNpmZGSkkpOTJUm5ublKSUlxqnFzc1NERIRZc62cnBw5HA6nBQAAlK4yrm6gQH5+vkaPHq127drpvvvuM8effvpp1axZU9WqVdO+ffs0btw4HTlyRB9//LEkKT093Sm0SDLX09PTb1jjcDh08eJFnTt3Tnl5eUXWHD58uMh+p02bpqlTp/62nQYAACVy1wSX2NhYHThwQNu2bXMaHzZsmPnvkJAQVa1aVQ899JCOHTumunXr3uk2TRMmTFB8fLy57nA4FBQU5LJ+AAD4I7grgsvIkSO1Zs0abd26VdWrV79hbVhYmCTp6NGjqlu3rgIDAwvd/ZORkSFJCgwMNP+3YOzqGrvdrnLlysnd3V3u7u5F1hRs41qenp7y9PQs/k4CAIDfzKXXuBiGoZEjR2rVqlXauHGjateufdPXpKamSpKqVq0qSQoPD9f+/fud7v5JSkqS3W5XcHCwWbNhwwan7SQlJSk8PFyS5OHhodDQUKea/Px8bdiwwawBAACu59IzLrGxsVqyZIn++c9/ytfX17wmxc/PT+XKldOxY8e0ZMkSde/eXZUrV9a+ffsUFxenBx98UE2bNpUkdenSRcHBwerfv7+mT5+u9PR0TZw4UbGxseYZkeHDh2vOnDkaO3asBg8erI0bN2r58uVKTEw0e4mPj1d0dLRatmyp1q1ba/bs2crOztagQYPu/IEBAABFcmlwmT9/vqRfb3m+2nvvvaeBAwfKw8NDn3/+uRkigoKC1KtXL02cONGsdXd315o1azRixAiFh4fLx8dH0dHReumll8ya2rVrKzExUXFxcUpISFD16tX1zjvvKDIy0qzp06ePzpw5o0mTJik9PV3NmzfXunXrCl2wCwAAXOeueo6LlfEcF+CPjee44I+A57gAAACUAMEFAABYRomDS1pamor6dMkwDKWlpd2WpgAAAIpS4uBSu3ZtnTlzptD42bNni3U7MwAAwK0qcXAxDEM2m63Q+C+//CIvL6/b0hQAAEBRin07dMHj7W02m1588UV5e3ubc3l5edq5c6eaN29+2xsEAAAoUOzgsnfvXkm/nnHZv3+/PDw8zDkPDw81a9ZMzz333O3vEAAA4P8UO7hs2rRJkjRo0CAlJCTwrBIAAHDHlfjJue+9915p9AEAAHBTJQ4u2dnZeu2117RhwwadPn1a+fn5TvPffffdbWsOAADgaiUOLkOGDNGWLVvUv39/Va1atcg7jAAAAEpDiYPL2rVrlZiYqHbt2pVGPwAAANdV4ue4VKxYUZUqVSqNXgAAAG6oxMHl5Zdf1qRJk3ThwoXS6AcAAOC6SvxR0RtvvKFjx44pICBAtWrVUtmyZZ3m9+zZc9uaAwAAuFqJg0vPnj1LoQ0AAICbK3FwmTx5cmn0AQAAcFMlvsYFAADAVUp8xsXNze2Gz27Jy8v7TQ0BAABcT4mDy6pVq5zWL1++rL1792rx4sWaOnXqbWsMAADgWiUOLj169Cg01rt3bzVp0kTLli1TTEzMbWkMAADgWrftGpc2bdpow4YNt2tzAAAAhdyW4HLx4kX97W9/07333ns7NgcAAFCkEn9UVLFiRaeLcw3D0Pnz5+Xt7a3//d//va3NAQAAXK3EwWX27NlO625ubrrnnnsUFhamihUr3q6+AAAACilxcImOji6NPgAAAG6qxMFFkjIzM/Xuu+/q0KFDkqQmTZpo8ODB8vPzu63NAQAAXK3EF+fu3r1bdevW1axZs3T27FmdPXtWM2fOVN26dfkDiwAAoFSV+IxLXFycHnvsMb399tsqU+bXl1+5ckVDhgzR6NGjtXXr1tveJAAAgHQLwWX37t1OoUWSypQpo7Fjx6ply5a3tTkAAICrlfijIrvdrrS0tELjJ06ckK+v721pCgAAoCglDi59+vRRTEyMli1bphMnTujEiRNaunSphgwZoqeeeqo0egQAAJB0Cx8Vvf7667LZbBowYICuXLkiSSpbtqxGjBih11577bY3CAAAUKDEwcXDw0MJCQmaNm2ajh07JkmqW7euvL29b3tzAAAAVyv2R0V5eXnat2+fLl68KEny9vZWSEiIQkJCZLPZtG/fPuXn55daowAAAMUOLh988IEGDx4sDw+PQnNly5bV4MGDtWTJktvaHAAAwNWKHVzeffddPffcc3J3dy80V3A79MKFC29rcwAAAFcrdnA5cuSI2rRpc935Vq1amX8CAAAAoDQUO7hkZ2fL4XBcd/78+fO6cOHCbWkKAACgKMUOLvXr19eOHTuuO79t2zbVr1//tjQFAABQlGIHl6effloTJ07Uvn37Cs19/fXXmjRpkp5++unb2hwAAMDViv0cl7i4OK1du1ahoaGKiIhQo0aNJEmHDx/W559/rnbt2ikuLq7UGgUAACh2cClbtqw+++wzzZo1S0uWLNHWrVtlGIYaNGigV199VaNHj1bZsmVLs1cAAPAHV6In55YtW1Zjx47V2LFjS6sfAACA6yrxH1kEAABwFZcGl2nTpqlVq1by9fWVv7+/evbsqSNHjjjVXLp0SbGxsapcubLKly+vXr16KSMjw6kmLS1NUVFR8vb2lr+/v8aMGWP+AcgCmzdvVosWLeTp6al69epp0aJFhfqZO3euatWqJS8vL4WFhWnXrl23fZ8BAMCtc2lw2bJli2JjY/Xll18qKSlJly9fVpcuXZSdnW3WxMXF6ZNPPtGKFSu0ZcsWnTx5Uk888YQ5n5eXp6ioKOXm5mrHjh1avHixFi1apEmTJpk1x48fV1RUlDp16qTU1FSNHj1aQ4YM0fr1682aZcuWKT4+XpMnT9aePXvUrFkzRUZG6vTp03fmYAAAgJuyGYZhuLqJAmfOnJG/v7+2bNmiBx98UFlZWbrnnnu0ZMkS9e7dW9KvdzE1btxYycnJatOmjdauXatHHnlEJ0+eVEBAgCRpwYIFGjdunM6cOSMPDw+NGzdOiYmJOnDggPleffv2VWZmptatWydJCgsLU6tWrTRnzhxJUn5+voKCgjRq1CiNHz/+pr07HA75+fkpKytLdrv9dh8aAHe50/O59g+/f/4jppfKdkvyO/SuusYlKytLklSpUiVJUkpKii5fvqyIiAizplGjRqpRo4aSk5MlScnJyQoJCTFDiyRFRkbK4XDo4MGDZs3V2yioKdhGbm6uUlJSnGrc3NwUERFh1lwrJydHDofDaQEAAKWrWHcVxcfHF3uDM2fOvKVG8vPzNXr0aLVr10733XefJCk9PV0eHh6qUKGCU21AQIDS09PNmqtDS8F8wdyNahwOhy5evKhz584pLy+vyJrDhw8X2e+0adM0derUW9pXAABwa4oVXPbu3eu0vmfPHl25ckUNGzaUJH377bdyd3dXaGjoLTcSGxurAwcOaNu2bbe8jTtpwoQJToHO4XAoKCjIhR0BAPD7V6zgsmnTJvPfM2fOlK+vrxYvXqyKFStKks6dO6dBgwbpgQceuKUmRo4cqTVr1mjr1q2qXr26OR4YGKjc3FxlZmY6nXXJyMhQYGCgWXPt3T8Fdx1dXXPtnUgZGRmy2+0qV66c3N3d5e7uXmRNwTau5enpKU9Pz1vaXwAAcGtKfI3LG2+8oWnTppmhRZIqVqyoV155RW+88UaJtmUYhkaOHKlVq1Zp48aNql27ttN8aGioypYtqw0bNphjR44cUVpamsLDwyVJ4eHh2r9/v9PdP0lJSbLb7QoODjZrrt5GQU3BNjw8PBQaGupUk5+frw0bNpg1AADA9Ur05Fzp149Ezpw5U2j8zJkzOn/+fIm2FRsbqyVLluif//ynfH19zWtS/Pz8VK5cOfn5+SkmJkbx8fGqVKmS7Ha7Ro0apfDwcLVp00aS1KVLFwUHB6t///6aPn260tPTNXHiRMXGxppnRIYPH645c+Zo7NixGjx4sDZu3Kjly5crMTHR7CU+Pl7R0dFq2bKlWrdurdmzZys7O1uDBg0q6SECAAClpMTB5fHHH9egQYP0xhtvqHXr1pKknTt3asyYMU7PVymO+fPnS5I6duzoNP7ee+9p4MCBkqRZs2bJzc1NvXr1Uk5OjiIjIzVv3jyz1t3dXWvWrNGIESMUHh4uHx8fRUdH66WXXjJrateurcTERMXFxSkhIUHVq1fXO++8o8jISLOmT58+OnPmjCZNmqT09HQ1b95c69atK3TBLgAAcJ0SP8flwoULeu655/T3v/9dly9fliSVKVNGMTExmjFjhnx8fEql0bsdz3EB/th4jgv+CO6G57iU6IxLXl6edu/erVdffVUzZszQsWPHJEl169b9wwYWAABw55QouLi7u6tLly46dOiQateuraZNm5ZWXwAAAIWU+K6i++67T999911p9AIAAHBDJQ4ur7zyip577jmtWbNGp06d4rH3AADgjinxXUXdu3eXJD322GOy2WzmuGEYstlsysvLu33dAQAAXKXEweXqp+gCAADcSSUOLh06dCiNPgAAAG6qxMFFkjIzM/Xuu+/q0KFDkqQmTZpo8ODB8vPzu63NAQAAXK3EF+fu3r1bdevW1axZs3T27FmdPXtWM2fOVN26dbVnz57S6BEAAEDSLZxxiYuL02OPPaa3335bZcr8+vIrV65oyJAhGj16tLZu3XrbmwQAAJBuIbjs3r3bKbRIvz7yf+zYsWrZsuVtbQ4AAOBqJf6oyG63Ky0trdD4iRMn5Ovre1uaAgAAKEqJg0ufPn0UExOjZcuW6cSJEzpx4oSWLl2qIUOG6KmnniqNHgEAACTdwkdFr7/+umw2mwYMGKArV65IksqWLasRI0botddeu+0NAgAAFCh2cDl+/Lhq164tDw8PJSQkaNq0aU5/Hdrb27vUmgQAAJBKEFzq1q2rmjVrqlOnTurcubM6deqkkJCQ0uwNAADASbGDy8aNG7V582Zt3rxZH330kXJzc1WnTh0zxHTq1EkBAQGl2SsAAPiDK3Zw6dixozp27ChJunTpknbs2GEGmcWLF+vy5ctq1KiRDh48WFq9AgCAP7hbeuS/l5eXOnfurPbt26tTp05au3at3nrrLR0+fPh29wcAAGAqUXDJzc3Vl19+qU2bNmnz5s3auXOngoKC9OCDD2rOnDn8AUYAAFCqih1cOnfurJ07d6p27drq0KGD/vznP2vJkiWqWrVqafYHAABgKnZw+eKLL1S1alV17txZHTt2VIcOHVS5cuXS7A0AAMBJsZ+cm5mZqYULF8rb21t//etfVa1aNYWEhGjkyJFauXKlzpw5U5p9AgAAFP+Mi4+Pj7p27aquXbtKks6fP69t27Zp06ZNmj59uvr166f69evrwIEDpdYsAAD4Yyvx3yoq4OPjo0qVKqlSpUqqWLGiypQpo0OHDt3O3gAAAJwU+4xLfn6+du/erc2bN2vTpk3avn27srOzde+996pTp06aO3euOnXqVJq9AgCAP7hiB5cKFSooOztbgYGB6tSpk2bNmqWOHTuqbt26pdkfAACAqdjBZcaMGerUqZMaNGhQmv0AAABcV7GDy5///OfS7AMAAOCmbvniXAAAgDuN4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACzDpcFl69atevTRR1WtWjXZbDatXr3aaX7gwIGy2WxOS9euXZ1qzp49q379+slut6tChQqKiYnRL7/84lSzb98+PfDAA/Ly8lJQUJCmT59eqJcVK1aoUaNG8vLyUkhIiD799NPbvr8AAOC3cWlwyc7OVrNmzTR37tzr1nTt2lWnTp0yl48++shpvl+/fjp48KCSkpK0Zs0abd26VcOGDTPnHQ6HunTpopo1ayolJUUzZszQlClTtHDhQrNmx44deuqppxQTE6O9e/eqZ8+e6tmzpw4cOHD7dxoAANwym2EYhqubkCSbzaZVq1apZ8+e5tjAgQOVmZlZ6ExMgUOHDik4OFhfffWVWrZsKUlat26dunfvrh9//FHVqlXT/Pnz9cILLyg9PV0eHh6SpPHjx2v16tU6fPiwJKlPnz7Kzs7WmjVrzG23adNGzZs314IFC4rVv8PhkJ+fn7KysmS322/hCACwstPzx7q6BaDU+Y8o/InF7VCS36F3/TUumzdvlr+/vxo2bKgRI0bo559/NueSk5NVoUIFM7RIUkREhNzc3LRz506z5sEHHzRDiyRFRkbqyJEjOnfunFkTERHh9L6RkZFKTk6+bl85OTlyOBxOCwAAKF13dXDp2rWr3n//fW3YsEF//etftWXLFnXr1k15eXmSpPT0dPn7+zu9pkyZMqpUqZLS09PNmoCAAKeagvWb1RTMF2XatGny8/Mzl6CgoN+2swAA4KbKuLqBG+nbt6/575CQEDVt2lR169bV5s2b9dBDD7mwM2nChAmKj4831x0OB+EFAIBSdlefcblWnTp1VKVKFR09elSSFBgYqNOnTzvVXLlyRWfPnlVgYKBZk5GR4VRTsH6zmoL5onh6esputzstAACgdFkquPz444/6+eefVbVqVUlSeHi4MjMzlZKSYtZs3LhR+fn5CgsLM2u2bt2qy5cvmzVJSUlq2LChKlasaNZs2LDB6b2SkpIUHh5e2rsEAABKwKXB5ZdfflFqaqpSU1MlScePH1dqaqrS0tL0yy+/aMyYMfryyy/1/fffa8OGDerRo4fq1aunyMhISVLjxo3VtWtXDR06VLt27dL27ds1cuRI9e3bV9WqVZMkPf300/Lw8FBMTIwOHjyoZcuWKSEhweljnmeeeUbr1q3TG2+8ocOHD2vKlCnavXu3Ro4cecePCQAAuD6XBpfdu3fr/vvv1/333y9Jio+P1/33369JkybJ3d1d+/bt02OPPaYGDRooJiZGoaGh+uKLL+Tp6Wlu48MPP1SjRo300EMPqXv37mrfvr3TM1r8/Pz02Wef6fjx4woNDdWzzz6rSZMmOT3rpW3btlqyZIkWLlyoZs2aaeXKlVq9erXuu+++O3cwAADATd01z3GxOp7jAvyx8RwX/BHwHBcAAIASILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLKOPqBlA8z65939UtAKXujW4DXN0CgLscZ1wAAIBlEFwAAIBlEFwAAIBluDS4bN26VY8++qiqVasmm82m1atXO80bhqFJkyapatWqKleunCIiIvTvf//bqebs2bPq16+f7Ha7KlSooJiYGP3yyy9ONfv27dMDDzwgLy8vBQUFafr06YV6WbFihRo1aiQvLy+FhITo008/ve37CwAAfhuXBpfs7Gw1a9ZMc+fOLXJ++vTp+tvf/qYFCxZo586d8vHxUWRkpC5dumTW9OvXTwcPHlRSUpLWrFmjrVu3atiwYea8w+FQly5dVLNmTaWkpGjGjBmaMmWKFi5caNbs2LFDTz31lGJiYrR371717NlTPXv21IEDB0pv5wEAQInZDMMwXN2EJNlsNq1atUo9e/aU9OvZlmrVqunZZ5/Vc889J0nKyspSQECAFi1apL59++rQoUMKDg7WV199pZYtW0qS1q1bp+7du+vHH39UtWrVNH/+fL3wwgtKT0+Xh4eHJGn8+PFavXq1Dh8+LEnq06ePsrOztWbNGrOfNm3aqHnz5lqwYEGx+nc4HPLz81NWVpbsdvvtOiwm7irCH4GV7yo6PX+sq1sASp3/iMKfWNwOJfkdetde43L8+HGlp6crIiLCHPPz81NYWJiSk5MlScnJyapQoYIZWiQpIiJCbm5u2rlzp1nz4IMPmqFFkiIjI3XkyBGdO3fOrLn6fQpqCt6nKDk5OXI4HE4LAAAoXXdtcElPT5ckBQQEOI0HBASYc+np6fL393eaL1OmjCpVquRUU9Q2rn6P69UUzBdl2rRp8vPzM5egoKCS7iIAACihuza43O0mTJigrKwsczlx4oSrWwIA4Hfvrg0ugYGBkqSMjAyn8YyMDHMuMDBQp0+fdpq/cuWKzp4961RT1Daufo/r1RTMF8XT01N2u91pAQAApeuuDS61a9dWYGCgNmzYYI45HA7t3LlT4eHhkqTw8HBlZmYqJSXFrNm4caPy8/MVFhZm1mzdulWXL182a5KSktSwYUNVrFjRrLn6fQpqCt4HAADcHVwaXH755RelpqYqNTVV0q8X5KampiotLU02m02jR4/WK6+8on/961/av3+/BgwYoGrVqpl3HjVu3Fhdu3bV0KFDtWvXLm3fvl0jR45U3759Va1aNUnS008/LQ8PD8XExOjgwYNatmyZEhISFB8fb/bxzDPPaN26dXrjjTd0+PBhTZkyRbt379bIkSPv9CEBAAA34NI/srh792516tTJXC8IE9HR0Vq0aJHGjh2r7OxsDRs2TJmZmWrfvr3WrVsnLy8v8zUffvihRo4cqYceekhubm7q1auX/va3v5nzfn5++uyzzxQbG6vQ0FBVqVJFkyZNcnrWS9u2bbVkyRJNnDhRzz//vOrXr6/Vq1frvvvuuwNHAQAAFNdd8xwXq+M5LsBvx3NcgLsbz3EBAAAoAYILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwjLs6uEyZMkU2m81padSokTl/6dIlxcbGqnLlyipfvrx69eqljIwMp22kpaUpKipK3t7e8vf315gxY3TlyhWnms2bN6tFixby9PRUvXr1tGjRojuxewAAoITu6uAiSU2aNNGpU6fMZdu2beZcXFycPvnkE61YsUJbtmzRyZMn9cQTT5jzeXl5ioqKUm5urnbs2KHFixdr0aJFmjRpkllz/PhxRUVFqVOnTkpNTdXo0aM1ZMgQrV+//o7uJwAAuLkyrm7gZsqUKaPAwMBC41lZWXr33Xe1ZMkSde7cWZL03nvvqXHjxvryyy/Vpk0bffbZZ/rmm2/0+eefKyAgQM2bN9fLL7+scePGacqUKfLw8NCCBQtUu3ZtvfHGG5Kkxo0ba9u2bZo1a5YiIyPv6L4CAIAbu+vPuPz73/9WtWrVVKdOHfXr109paWmSpJSUFF2+fFkRERFmbaNGjVSjRg0lJydLkpKTkxUSEqKAgACzJjIyUg6HQwcPHjRrrt5GQU3BNq4nJydHDofDaQEAAKXrrg4uYWFhWrRokdatW6f58+fr+PHjeuCBB3T+/Hmlp6fLw8NDFSpUcHpNQECA0tPTJUnp6elOoaVgvmDuRjUOh0MXL168bm/Tpk2Tn5+fuQQFBf3W3QUAADdxV39U1K1bN/PfTZs2VVhYmGrWrKnly5erXLlyLuxMmjBhguLj4811h8NBeAEAoJTd1WdcrlWhQgU1aNBAR48eVWBgoHJzc5WZmelUk5GRYV4TExgYWOguo4L1m9XY7fYbhiNPT0/Z7XanBQAAlC5LBZdffvlFx44dU9WqVRUaGqqyZctqw4YN5vyRI0eUlpam8PBwSVJ4eLj279+v06dPmzVJSUmy2+0KDg42a67eRkFNwTYAAMDd464OLs8995y2bNmi77//Xjt27NDjjz8ud3d3PfXUU/Lz81NMTIzi4+O1adMmpaSkaNCgQQoPD1ebNm0kSV26dFFwcLD69++vr7/+WuvXr9fEiRMVGxsrT09PSdLw4cP13XffaezYsTp8+LDmzZun5cuXKy4uzpW7DgAAinBXX+Py448/6qmnntLPP/+se+65R+3bt9eXX36pe+65R5I0a9Ysubm5qVevXsrJyVFkZKTmzZtnvt7d3V1r1qzRiBEjFB4eLh8fH0VHR+ull14ya2rXrq3ExETFxcUpISFB1atX1zvvvMOt0AAA3IVshmEYrm7i98DhcMjPz09ZWVmlcr3Ls2vfv+3bBO42b3Qb4OoWbtnp+WNd3QJQ6vxHTC+V7Zbkd+hd/VERAADA1QguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMggu15g7d65q1aolLy8vhYWFadeuXa5uCQAA/B+Cy1WWLVum+Ph4TZ48WXv27FGzZs0UGRmp06dPu7o1AAAggouTmTNnaujQoRo0aJCCg4O1YMECeXt76+9//7urWwMAAJLKuLqBu0Vubq5SUlI0YcIEc8zNzU0RERFKTk4uVJ+Tk6OcnBxzPSsrS5LkcDhKpb+cCxdLZbvA3aS0vn/uhPMXc25eBFicVyl9jxZ87xuGcdNagsv/+emnn5SXl6eAgACn8YCAAB0+fLhQ/bRp0zR16tRC40FBQaXWI/B7N1fDXd0CgBt59m+luvnz58/Lz8/vhjUEl1s0YcIExcfHm+v5+fk6e/asKleuLJvN5sLOcDs4HA4FBQXpxIkTstvtrm4HwDX4Hv19MQxD58+fV7Vq1W5aS3D5P1WqVJG7u7syMjKcxjMyMhQYGFio3tPTU56enk5jFSpUKM0W4QJ2u50fisBdjO/R34+bnWkpwMW5/8fDw0OhoaHasGGDOZafn68NGzYoPDzchZ0BAIACnHG5Snx8vKKjo9WyZUu1bt1as2fPVnZ2tgYNGuTq1gAAgAguTvr06aMzZ85o0qRJSk9PV/PmzbVu3bpCF+zi98/T01OTJ08u9HEggLsD36N/XDajOPceAQAA3AW4xgUAAFgGwQUAAFgGwQUAAFgGwQUAAFgGwQW/O2fOnNGIESNUo0YNeXp6KjAwUJGRkdq+fburWwNwjYEDB6pnz56Fxjdv3iybzabMzMw73hPubtwOjd+dXr16KTc3V4sXL1adOnWUkZGhDRs26Oeff3Z1awCA34gzLvhdyczM1BdffKG//vWv6tSpk2rWrKnWrVtrwoQJeuyxxyRJNptN8+fPV7du3VSuXDnVqVNHK1eudNrOuHHj1KBBA3l7e6tOnTp68cUXdfnyZXN+ypQpat68uf7+97+rRo0aKl++vP7yl78oLy9P06dPV2BgoPz9/fXqq6/e0f0Hfo9+/vlnPfXUU7r33nvl7e2tkJAQffTRR041HTt21KhRozR69GhVrFhRAQEBevvtt82HiPr6+qpevXpau3ati/YCtwvBBb8r5cuXV/ny5bV69Wrl5ORct+7FF19Ur1699PXXX6tfv37q27evDh06ZM77+vpq0aJF+uabb5SQkKC3335bs2bNctrGsWPHtHbtWq1bt04fffSR3n33XUVFRenHH3/Uli1b9Ne//lUTJ07Uzp07S21/gT+CS5cuKTQ0VImJiTpw4ICGDRum/v37a9euXU51ixcvVpUqVbRr1y6NGjVKI0aM0JNPPqm2bdtqz5496tKli/r3768LFy64aE9wWxjA78zKlSuNihUrGl5eXkbbtm2NCRMmGF9//bU5L8kYPny402vCwsKMESNGXHebM2bMMEJDQ831yZMnG97e3obD4TDHIiMjjVq1ahl5eXnmWMOGDY1p06bdjt0Cfpeio6MNd3d3w8fHx2nx8vIyJBnnzp0r8nVRUVHGs88+a6536NDBaN++vbl+5coVw8fHx+jfv785durUKUOSkZycXGr7g9LHGRf87vTq1UsnT57Uv/71L3Xt2lWbN29WixYttGjRIrPm2j+cGR4e7nTGZdmyZWrXrp0CAwNVvnx5TZw4UWlpaU6vqVWrlnx9fc31gIAABQcHy83NzWns9OnTt3kPgd+XTp06KTU11Wl55513zPm8vDy9/PLLCgkJUaVKlVS+fHmtX7++0Pdk06ZNzX+7u7urcuXKCgkJMccK/nwL35PWRnDB75KXl5cefvhhvfjii9qxY4cGDhyoyZMnF+u1ycnJ6tevn7p37641a9Zo7969euGFF5Sbm+tUV7ZsWad1m81W5Fh+fv5v2xngd87Hx0f16tVzWu69915zfsaMGUpISNC4ceO0adMmpaamKjIyssTfkzabTZL4nrQ4ggv+EIKDg5WdnW2uf/nll07zX375pRo3bixJ2rFjh2rWrKkXXnhBLVu2VP369fXDDz/c0X4B/H/bt29Xjx499F//9V9q1qyZ6tSpo2+//dbVbcFFuB0avys///yznnzySQ0ePFhNmzaVr6+vdu/erenTp6tHjx5m3YoVK9SyZUu1b99eH374oXbt2qV3331XklS/fn2lpaVp6dKlatWqlRITE7Vq1SpX7RLwh1e/fn2tXLlSO3bsUMWKFTVz5kxlZGQoODjY1a3BBQgu+F0pX768wsLCNGvWLB07dkyXL19WUFCQhg4dqueff96smzp1qpYuXaq//OUvqlq1qj766CPzh+Bjjz2muLg4jRw5Ujk5OYqKitKLL76oKVOmuGivgD+2iRMn6rvvvlNkZKS8vb01bNgw9ezZU1lZWa5uDS5gMwzDcHUTwJ1ks9m0atWqIp/WCQC4u3GNCwAAsAyCCwAAsAyuccEfDp+OAoB1ccYFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYxv8DlnsLAWOXHmIAAAAASUVORK5CYII=\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 600x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAIjCAYAAABS7iKKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOSZJREFUeJzt3XmcjfX///HnmX3fbdUwwxSGsXwoZBkiVESKKBqSFknyEaaEUba+UZFsnyyNJULykZK1IilrRFOWiaQwwzCGGWau3x9+zscxg3lrOEce99vt3G7O+3pf1/W6jnNmnvO+3td1bJZlWQIAADDg5uwCAADAjYcAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAgZtCw4YN1bBhQ2eXgSKWmZmpp556SiVLlpTNZlOvXr2KfB9RUVHq3LlzkW/3RjV48GDZbDZnlwEXQICAy5g2bZpsNpt8fHx04MCBfMsbNmyoypUrO6Gyq9ewYUPZbDb7w8vLS9HR0Xr66ae1f/9+Z5dXJI4fP66kpCRVrVpVAQEB8vX1VeXKldWvXz/98ccf13Tfw4YN07Rp0/Tcc88pOTlZnTp1uqb7u57Ofx5sNpvWrFmTb7llWYqMjJTNZlOLFi2uah/Dhg3TwoUL/2aluFl5OLsA4GLZ2dkaMWKExo4dW2Tb/PLLL4tsW6Zuu+02DR8+XJKUk5OjHTt2aMKECVq6dKl27twpPz8/p9X2d+3Zs0dNmjTRvn371LZtWz399NPy8vLSjz/+qA8++ECffPKJfvnll2u2/5UrV6p27doaNGjQNdtHSkqK3Nyc97eWj4+PZs2apXr16jm0f/XVV/r999/l7e191dseNmyYHnnkEbVu3brQ6wwYMED9+/e/6n3in4MAAZdTrVo1TZ48WYmJibrllluKZJteXl5Fsp2rERwcrI4dOzq0RUdHq0ePHlq7dq3uvfdeJ1X295w9e1Zt2rTRX3/9pdWrV+f7BTd06FCNHDnymtZw6NAhxcbGXtN9/J1f0EXh/vvv18cff6wxY8bIw+N/P7JnzZqlGjVq6MiRI9eljpMnT8rf318eHh4OdeDmxSkMuJxXXnlFubm5GjFixBX7Tp06Vffcc4+KFy8ub29vxcbGavz48fn6XTgH4q+//pKHh4eSkpLy9UtJSZHNZtN7771nbzt27Jh69eqlyMhIeXt7KyYmRiNHjlReXt5VH2PJkiUlyeEH8W+//abu3burfPny8vX1VXh4uNq2bavU1FR7nz179shms+ntt9/Ot81vv/1WNptNs2fPtrcdOHBATz75pEqUKCFvb29VqlRJU6ZMybfu2LFjValSJfn5+Sk0NFQ1a9bUrFmzLnsM8+fP19atW/Xqq6/mCw+SFBQUpKFDhzq0ffzxx6pRo4Z8fX0VERGhjh075jtd1blzZwUEBOjAgQNq3bq1AgICVKxYMfXp00e5ubmSpNWrV8tms2nv3r367LPP7EP9qamp9qH/C1+3C9dZvXq1ve3XX3/Vww8/rJIlS8rHx0e33Xab2rdvr4yMDHufguZA7NmzR23btlVYWJj8/PxUu3ZtffbZZwXub+7cuRo6dKhuu+02+fj4qHHjxtq1a9dlX9sLdejQQWlpaVq2bJm9LScnR/PmzdNjjz1W4DpvvfWW7r77boWHh8vX11c1atTQvHnzHPrYbDadPHlS06dPt79+54/z/DyHHTt26LHHHlNoaKj9//jiORBTp06VzWbL974aNmyYbDablixZUuhjxY2FAAGXEx0drSeeeEKTJ0++4jn08ePHq0yZMnrllVc0atQoRUZGqnv37ho3btwl1ylRooTi4+M1d+7cfMvmzJkjd3d3tW3bVpKUlZWl+Ph4zZgxQ0888YTGjBmjunXrKjExUb179y7U8eTm5urIkSM6cuSIDh48qJUrV2rQoEGKiYlR3bp17f1++OEHffvtt2rfvr3GjBmjZ599VitWrFDDhg2VlZUlSSpbtqzq1q2rmTNn5tvPzJkzFRgYqFatWkk6F5Rq166t5cuXq0ePHnr33XcVExOjrl276p133rGvN3nyZPXs2VOxsbF65513lJSUpGrVqmn9+vWXPa5FixZJUqHnHUybNk3t2rWTu7u7hg8frm7dumnBggWqV6+ejh07lu81a9asmcLDw/XWW28pPj5eo0aN0qRJkyRJFStWVHJysiIiIlStWjUlJycrOTlZxYoVK1Qt0rlfws2aNdN3332nF154QePGjdPTTz+tPXv25KvnQn/99ZfuvvtuLV26VN27d9fQoUN1+vRpPfjgg/rkk0/y9R8xYoQ++eQT9enTR4mJifruu+/0+OOPF7rOqKgo1alTxyEYfv7558rIyFD79u0LXOfdd99V9erVNWTIEA0bNkweHh5q27atQ8hJTk6Wt7e36tevb3/9nnnmGYfttG3bVllZWRo2bJi6detW4L66dOmiFi1aqHfv3vZ5Pdu2bVNSUpK6du2q+++/v9DHihuMBbiIqVOnWpKsH374wdq9e7fl4eFh9ezZ0748Pj7eqlSpksM6WVlZ+bbTrFkzq2zZsg5t8fHxVnx8vP35xIkTLUnWtm3bHPrFxsZa99xzj/3566+/bvn7+1u//PKLQ7/+/ftb7u7u1r59+y57TPHx8ZakfI+KFStae/bsueKxrFu3zpJkffjhh/lq37lzp70tJyfHioiIsBISEuxtXbt2tUqVKmUdOXLEYZvt27e3goOD7ftr1apVvte1MKpXr24FBwcXqm9OTo5VvHhxq3LlytapU6fs7YsXL7YkWQMHDrS3JSQkWJKsIUOG5NtfjRo1HNrKlCljPfDAAw5t599He/fudWhftWqVJclatWqVZVmWtXnzZkuS9fHHH1+29jJlyji8rr169bIkWd9884297cSJE1Z0dLQVFRVl5ebmOuyvYsWKVnZ2tr3vu+++W+B772IXfh7ee+89KzAw0P5/1rZtW6tRo0aXfA0ufi/l5ORYlStXdnhvW5Zl+fv7OxzbeYMGDbIkWR06dLjksgsdPHjQCgsLs+69914rOzvbql69ulW6dGkrIyPjsseIGxsjEHBJZcuWVadOnTRp0iQdPHjwkv18fX3t/87IyNCRI0cUHx+vPXv2OAxDX6xNmzby8PDQnDlz7G3bt2/Xjh079Oijj9rbPv74Y9WvX1+hoaH2UYQjR46oSZMmys3N1ddff33FY4mKitKyZcu0bNkyff7553rnnXeUkZGh++67T4cPHy7wWM6cOaO0tDTFxMQoJCREmzZtsi9r166dfHx8HEYhli5dqiNHjtjnWliWpfnz56tly5ayLMuh9mbNmikjI8O+zZCQEP3+++/64YcfrngsFzp+/LgCAwML1XfDhg06dOiQunfvLh8fH3v7Aw88oAoVKuQb/pekZ5991uF5/fr1tWfPHqMaLyc4OFjSudfu/AhPYSxZskR33XWXw2mbgIAAPf3000pNTdWOHTsc+nfp0sVhDk79+vUlyehY2rVrp1OnTmnx4sU6ceKEFi9efMnTF5Lje+no0aPKyMhQ/fr1Hd5HhXHx/8GllCxZUuPGjdOyZctUv359bdmyRVOmTFFQUJDR/nBjIUDAZQ0YMEBnz5697FyItWvXqkmTJvL391dISIiKFSumV155RZIuGyAiIiLUuHFjh9MYc+bMkYeHh9q0aWNv+/XXX/XFF1+oWLFiDo8mTZpIOjeJ70r8/f3VpEkTNWnSRM2bN9eLL76oRYsWKSUlxeHYTp06pYEDB9rnWkRERKhYsWI6duyYw7GEhISoZcuWDnMUZs6cqVtvvVX33HOPJOnw4cM6duyYJk2alK/2Ll26ONTer18/BQQE6K677tLtt9+u559/XmvXrr3icQUFBenEiRNX7Cedm98hSeXLl8+3rEKFCvbl5/n4+OQ7HREaGqqjR48Wan+FER0drd69e+s///mPIiIi1KxZM40bN+6y7xvp3LEUdBwVK1a0L79Q6dKlHZ6HhoZKktGxnH/PzZo1SwsWLFBubq4eeeSRS/ZfvHixateuLR8fH4WFhalYsWIaP378FY/tYtHR0YXu2759ez3wwAP6/vvv1a1bNzVu3NhoX7jxMJUWLqts2bLq2LGjJk2aVOBlY7t371bjxo1VoUIFjR49WpGRkfLy8tKSJUv09ttvX3GSY/v27dWlSxdt2bJF1apV09y5c9W4cWNFRETY++Tl5enee+9V3759C9zGHXfccVXHVqNGDQUHBzuMYLzwwguaOnWqevXqpTp16ig4OFg2m03t27fPdyxPPPGEPv74Y3377beKi4vTokWL1L17d/vlhuf7d+zYUQkJCQXWUKVKFUnnfvGlpKRo8eLF+uKLLzR//ny9//77GjhwYIETTc+rUKGCNm/erP379ysyMvKqXodLcXd3v+p1L3WTo/MTMC80atQode7cWZ9++qm+/PJL9ezZU8OHD9d3332n22677apruNCljsWyLKPtPPbYY+rWrZv+/PNP3XfffQoJCSmw3zfffKMHH3xQDRo00Pvvv69SpUrJ09NTU6dOveLE2ItdOJJxJWlpadqwYYMkaceOHcrLy3Pq5a+49ggQcGkDBgzQjBkzCrwc8L///a+ys7O1aNEih7/yVq1aVahtt27dWs8884z9NMYvv/yixMREhz7lypVTZmamfcShKOXm5iozM9P+fN68eUpISNCoUaPsbadPny5wQl/z5s1VrFgxzZw5U7Vq1VJWVpbDZMZixYopMDBQubm5hard399fjz76qB599FHl5OSoTZs2Gjp0qBITEx1OOVyoZcuWmj17tmbMmJHvdbtYmTJlJJ27yuX8KMl5KSkp9uVF4fxf+Be/bhePDJwXFxenuLg4DRgwQN9++63q1q2rCRMm6I033iiwf5kyZZSSkpKv/eeff7YvvxYeeughPfPMM/ruu+8cTr1dbP78+fLx8dHSpUsdLkGdOnVqvr5FeUfJ559/XidOnNDw4cOVmJiod955p9ATjXFjIh7CpZUrV04dO3bUxIkT9eeffzosO/+X3YV/yWVkZBT4g7IgISEhatasmebOnauPPvpIXl5e+W6o065dO61bt05Lly7Nt/6xY8d09uxZwyM6Z9WqVcrMzFTVqlXtbe7u7vn+Kh07dmyBfzl7eHioQ4cOmjt3rqZNm6a4uDj7iML5bT388MOaP3++tm/fnm/9C+depKWlOSzz8vJSbGysLMvSmTNnLnkMjzzyiOLi4jR06FCtW7cu3/ITJ07o1VdflSTVrFlTxYsX14QJE5SdnW3v8/nnn2vnzp164IEHLrkfU+XKlZMkh9Gd3Nxc+xUc5x0/fjzf/19cXJzc3NwcarzY/fffr++//97hmE+ePKlJkyYpKirqmt2XIiAgQOPHj9fgwYPVsmXLS/Zzd3eXzWZzeN+kpqYWeMdJf3//y15xUljz5s3TnDlzNGLECPXv31/t27fXgAEDrulNxOB8jEDA5b366qtKTk5WSkqKKlWqZG9v2rSpvLy81LJlSz3zzDPKzMzU5MmTVbx48ctOvLzQo48+qo4dO+r9999Xs2bN8g0Lv/zyy1q0aJFatGihzp07q0aNGjp58qS2bdumefPmKTU11eGUR0EyMjI0Y8YMSeduvpSSkqLx48fL19fX4dRMixYtlJycrODgYMXGxmrdunVavny5wsPDC9zu+ctKV61aVeAIzYgRI7Rq1SrVqlVL3bp1U2xsrNLT07Vp0yYtX75c6enp9texZMmSqlu3rkqUKKGdO3fqvffe0wMPPHDZSZKenp5asGCBmjRpogYNGqhdu3aqW7euPD099dNPP2nWrFkKDQ3V0KFD5enpqZEjR6pLly6Kj49Xhw4d9Ndff+ndd99VVFSUXnrppcu+hiYqVaqk2rVrKzExUenp6QoLC9NHH32ULyysXLlSPXr0UNu2bXXHHXfo7NmzSk5OtoevS+nfv79mz56t++67Tz179lRYWJimT5+uvXv3av78+dd02P5Sp6Mu9MADD2j06NFq3ry5HnvsMR06dEjjxo1TTEyMfvzxR4e+NWrU0PLlyzV69Gjdcsstio6OVq1atYxqOnTokJ577jk1atRIPXr0kCS99957WrVqlTp37qw1a9ZwKuOfypmXgAAXuvCytYudv7Tv4ssNFy1aZFWpUsXy8fGxoqKirJEjR1pTpkzJdxnfxZdxnnf8+HHL19fXkmTNmDGjwLpOnDhhJSYmWjExMZaXl5cVERFh3X333dZbb71l5eTkXPaYLr6M02azWWFhYdaDDz5obdy40aHv0aNHrS5dulgRERFWQECA1axZM+vnn3/OdxnhhSpVqmS5ublZv//+e4HL//rrL+v555+3IiMjLU9PT6tkyZJW48aNrUmTJtn7TJw40WrQoIEVHh5ueXt7W+XKlbNefvnlQl+Cd/ToUWvgwIFWXFyc5efnZ/n4+FiVK1e2EhMTrYMHDzr0nTNnjlW9enXL29vbCgsLsx5//PF8tSckJFj+/v759lPQ5YMFXcJoWZa1e/duq0mTJpa3t7dVokQJ65VXXrGWLVvmcBnnnj17rCeffNIqV66c5ePjY4WFhVmNGjWyli9fnm8fF7/+u3fvth555BErJCTE8vHxse666y5r8eLFDn3OX8Z58WWie/futSRZU6dOzVf3hS73ebjSa/DBBx9Yt99+u+Xt7W1VqFDBmjp1aoGv388//2w1aNDA/hk4f5zn+x4+fDjf/i7eTps2bazAwEArNTXVod+nn35qSbJGjhx52fpx47JZluFMHgAuo3r16goLC9OKFSucXQqAmwzjSsANasOGDdqyZYueeOIJZ5cC4CbECARwg9m+fbs2btyoUaNG6ciRI9qzZ88lr5QAgGuFEQjgBjNv3jx16dJFZ86c0ezZswkPAJyCEQgAAGCMEQgAAGCMAAEAAIwRIAAAgLF/5J0ofav3cHYJAC7j6A/vObsEAJfgU8hkwAgEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjHk4uwBJsixL8+bN06pVq3To0CHl5eU5LF+wYIGTKgMAAAVxiQDRq1cvTZw4UY0aNVKJEiVks9mcXRIAALgMlwgQycnJWrBgge6//35nlwIAAArBJeZABAcHq2zZss4uAwAAFJJLBIjBgwcrKSlJp06dcnYpAACgEFziFEa7du00e/ZsFS9eXFFRUfL09HRYvmnTJidVBgAACuISASIhIUEbN25Ux44dmUR5kwjw89ag7i304D1VVSw0QFtTflefN+dp4459kqRTm98rcL1X3v5Eb3+4QpL082dJKnNLuMPy18Z8qremLru2xQOw+2jWTE2f+oGOHDmsO8pXUP9XXlNclSrOLgvXgUsEiM8++0xLly5VvXr1nF0KrpPxAx9TbMwtenLAdB08nKEO99+lzya8oH89/Ib+OJyhqCaJDv2b1q2kCYMe0ycrtji0J72/WFMXrLU/P3Ey+3qUD0DSF58v0VtvDteAQUmKi6uqmcnT9dwzXfXp4i8UHh5+5Q3ghuYScyAiIyMVFBTk7DJwnfh4e6p142p69Z2FWrtpt/bsP6KhE5do9/7D6ta2viTpr7QTDo+WDeP01Q+/KvVAmsO2Mk+eduiXdTrHGYcE3JSSp09Vm0faqfVDD6tcTIwGDEqSj4+PFi6Y7+zScB24RIAYNWqU+vbtq9TUVGeXguvAw91NHh7uOp1zxqH9dPYZ3V29XL7+xcMC1bxeZU1fuC7fsn93aarfV43Uutn99NITjeXu7hJvaeAf70xOjnbu+Em169xtb3Nzc1Pt2nfrx62bnVgZrheXOIXRsWNHZWVlqVy5cvLz88s3iTI9Pf2S62ZnZys723HY2srLlc3N/ZrUir8vMytb323do8Ru9yll71/6K+242jWvqVpVorV7/+F8/Tu2rKUTWae1cOUWh/b3Z3+lzTv36+jxk6pdtayGvPCgShYLVr9R3LkUuNaOHjuq3NzcfKcqwsPDtXfvHidVhevJJQLEO++8c9XrDh8+XElJSQ5t7iXulGepu/5mVbiWnhzwoSYOflx7vhyqs2dzteXn/Zr7xQZVr1g6X98nWtXWnM83KDvnrEP7mBkr7f/e/usfyjlzVu+92kGvjVmknDNnL94MAKAIuUSASEhIuOp1ExMT1bt3b4e24vX7/d2ScI3t/f2Imj71rvx8vBQU4KM/jxxX8ogu2nvgiEO/utXLqXx0SXXqP/WK2/xhW6o8Pd1V5pYw/frboWtVOgBJoSGhcnd3V1qa47yktLQ0RUREOKkqXE8ud8L49OnTOn78uMPjcry9vRUUFOTw4PTFjSPrdI7+PHJcIYG+anJ3RS1evc1heULrOtq4Y5+2/XLgituqWv425ebm6XD6iWtVLoD/z9PLSxVjK2n9d/+bm5SXl6f169epStXqTqwM14tLjECcPHlS/fr109y5c/OlWUnKzc11QlW4lprUqSibTfol9ZDKRRbTsJda65e9f+nDRf/7YRTo76M291ZX/9Gf5Fu/VpVo3Vm5jL7a8KtOnDyt2lWiNbLPw5q95AcdO8EdTYHroVNCF732Sj9VqlRZleOqaEbydJ06dUqtH2rj7NJwHbhEgOjbt69WrVql8ePHq1OnTho3bpwOHDigiRMnasSIEc4uD9dAcICPhrzwoG4tEaL0jCx9umKLBo37r86e/d9XubdtVkM22TT3iw351s/OOaO2zWro1Wfvl7enh1L/SNPYmas0Jnllvr4Aro3m992vo+npev+9MTpy5LDKV6io9yf+R+Gcwrgp2CzLspxdROnSpfXhhx+qYcOGCgoK0qZNmxQTE6Pk5GTNnj1bS5YsMdqeb/Ue16hSAEXh6A8F32kUgPP5FHJowSXmQKSnp9u/jTMoKMh+2Wa9evX09ddfO7M0AABQAJcIEGXLltXevXslSRUqVNDcuXMlSf/9738VEhLixMoAAEBBXCJAdOnSRVu3bpUk9e/fX+PGjZOPj49eeuklvfzyy06uDgAAXMwl5kBc7LffftPGjRsVExOjKlfxrW7MgQBcG3MgANdV2DkQLnEVhiStWLFCK1as0KFDh5SXl+ewbMqUKU6qCgAAFMQlAkRSUpKGDBmimjVrqlSpUrLZbM4uCQAAXIZLBIgJEyZo2rRp6tSpk7NLAQAAheASkyhzcnJ09913X7kjAABwCS4RIJ566inNmjXL2WUAAIBCctopjAu/QTMvL0+TJk3S8uXLVaVKFXl6ejr0HT169PUuDwAAXIbTAsTmzZsdnlerVk2StH37dod2JlQCAOB6nBYgVq1a5axdAwCAv8kl5kAAAIAbCwECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIxdVYD45ptv1LFjR9WpU0cHDhyQJCUnJ2vNmjVFWhwAAHBNxgFi/vz5atasmXx9fbV582ZlZ2dLkjIyMjRs2LAiLxAAALge4wDxxhtvaMKECZo8ebI8PT3t7XXr1tWmTZuKtDgAAOCajANESkqKGjRokK89ODhYx44dK4qaAACAizMOECVLltSuXbvyta9Zs0Zly5YtkqIAAIBrMw4Q3bp104svvqj169fLZrPpjz/+0MyZM9WnTx8999xz16JGAADgYjxMV+jfv7/y8vLUuHFjZWVlqUGDBvL29lafPn30wgsvXIsaAQCAi7FZlmVdzYo5OTnatWuXMjMzFRsbq4CAgKKu7ar5Vu/h7BIAXMbRH95zdgkALsGnkEMLxiMQ53l5eSk2NvZqVwcAADcw4wDRqFEj2Wy2Sy5fuXLl3yoIAAC4PuMAUa1aNYfnZ86c0ZYtW7R9+3YlJCQUVV0AAMCFGQeIt99+u8D2wYMHKzMz828XBAAAXF+RfZlWx44dNWXKlKLaHAAAcGFXPYnyYuvWrZOPj09Rbe5v+fPbMc4uAcBlHD6e7ewSAFxCZJh3ofoZB4g2bdo4PLcsSwcPHtSGDRv02muvmW4OAADcgIwDRHBwsMNzNzc3lS9fXkOGDFHTpk2LrDAAAOC6jG4klZubq7Vr1youLk6hoaHXsq6/JeNUnrNLAHAZx0+dcXYJAC6hsKcwjCZRuru7q2nTpnzrJgAANznjqzAqV66sPXv2XItaAADADcI4QLzxxhvq06ePFi9erIMHD+r48eMODwAA8M9X6DkQQ4YM0b///W8FBgb+b+ULbmltWZZsNptyc3OLvkpDzIEAXBtzIADXVdg5EIUOEO7u7jp48KB27tx52X7x8fGF2vG1RIAAXBsBAnBdRX4fiPM5wxUCAgAAcC6jORCX+xZOAABw8zC6kdQdd9xxxRCRnp7+twoCAACuzyhAJCUl5bsTJQAAuPkUehKlm5ub/vzzTxUvXvxa1/S3MYkScG1MogRcV5HfiZL5DwAA4LxCBwiDr8wAAAD/cIWeA5GXx2kBAABwjvGtrAEAAAgQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAYI0AAAABjBAgAAGCMAAEAAIwRIAAAgDECBAAAMEaAAAAAxggQAADAGAECAAAY83B2AWlpaRo4cKBWrVqlQ4cOKS8vz2F5enq6kyoDAACX4vQA0alTJ+3atUtdu3ZViRIlZLPZnF0SAAC4AptlWZYzCwgMDNSaNWtUtWrVIttmxqm8K3cC4DTHT51xdgkALiEyzLtQ/Zw+B6JChQo6deqUs8sAAAAGnB4g3n//fb366qv66quvlJaWpuPHjzs8AACA63H6HIiQkBAdP35c99xzj0O7ZVmy2WzKzc11UmUAAOBSnB4gHn/8cXl6emrWrFlMogQA4Abh9ACxfft2bd68WeXLl3d2KQAAoJCcPgeiZs2a2r9/v7PLAAAABpw+AvHCCy/oxRdf1Msvv6y4uDh5eno6LK9SpYqTKgMAAJfi9PtAuLnlHwSx2Wx/axIl94G48cybO1sLPv5IB/84IEmKLhejp57urrvrNdAfBw6o9QNNClxv2Jtvq0nT5tezVBQB7gPh2n7cvEFzZ07Tryk7lXbksJJGvKO68f+b6G5ZlqZPfl9LFs1X5okTqlSlml7sO0C3RZax93nt5Re069cUHTuarsDAIP3rztp6qnsvRRQr7oxDgoHC3gfC6QHit99+u+zyMmXKXHZ5QQgQN55vvlolNzc3RZYuI0uWPlv0qWZMn6Lkj+YrKrqsjh51vKX5wvlzNWP6FC1Z/rX8/PydVDWuFgHCtX2/7htt/3GL7igfq8GJL+ULEB8lT9HsDz9Q39feUKlbbtXUSe9p7+5fNWXWQnl5n/vlM292smLjqig8vJiOHD6kiWNHSZLGTE52yjGh8AobIJx+CuNqAgL+eerHN3J43v2FXlrw8Ufavm2rysXcroiIYg7LV69cocZNmxMegGvgrjr1dVed+gUusyxLC+bM0OOdu6lug3Of234Dh6rtA4209uuVanTvfZKkRzp0sq9TotQtav/EkxrUr5fOnj0jDw/PAreNG4vTA8R5O3bs0L59+5STk+PQ/uCDDzqpIjhLbm6uViz7QqdOZSmuSrV8y3fu+Em/pOxU38TXrn9xwE3u4B8HlJ52RP+6s7a9LSAgUBVj47Rj+1Z7gLjQ8YwMrVi6RLFx1QgP/yBODxB79uzRQw89pG3bttnnPkiy3w/iSnMgsrOzlZ2d7diW5ylv78INwcB17Pr1F3V9ooNycrLl6+unN0ePVdlyMfn6LfpknqLLllOVatWdUCVwczuadkSSFBoW7tAeEhau9LQ0h7bJ497Wp/Nm6/Tp06pYuYreeOu961Ynrj2nX8b54osvKjo6WocOHZKfn59++uknff3116pZs6ZWr159xfWHDx+u4OBgh8fo/xtx7QtHkSsTFaUZcxZoSvIcPdyuvZIGJmrP7l0OfU6fPq2ln3+mB1s/7KQqARRWu8c7a8L0uRr57kS5ublr5JBX5eRpdyhCTh+BWLdunVauXKmIiAi5ubnJzc1N9erV0/Dhw9WzZ09t3rz5susnJiaqd+/eDm2n8xgiuxF5enopsvS5OTEVYytpx0/bNGdWshJfS7L3Wbl8qU6fPq37W7RyVpnATS00PEKSdDQ9TeEXzE06lp6mcnc43hAwOCRUwSGhuq10lEpHRatDq6bauf1HxcYV3bcvw3mcPgKRm5urwMBASVJERIT++OMPSecmV6akpFxxfW9vbwUFBTk8OH3xz5CXZ+WbE7Pok/lq0LCRQsPCnFQVcHMrdcutCguP0OYN6+1tJ09maueObYqtfOlgkJd3buQh50zOJfvgxuL0EYjKlStr69atio6OVq1atfTmm2/Ky8tLkyZNUtmyZZ1dHq6TcWNGq07d+ipZ8hZlZZ3U0s8Xa9OG7zXm/cn2Pvv3/abNmzbonfcmOrFS4J/vVFaWDvy+z/784B8HtOuXnxUYFKwSJUupzaMdNXPaJN0aWVolS92qaZPHKTyimOo2OHep586fflTKjp9UuWp1BQYG6Y8D+zVt0jjdcmvkZUMGbixODxADBgzQyZMnJUlDhgxRixYtVL9+fYWHh2vOnDlOrg7XS3p6mpIG9NeRI4cVEBComDvu0Jj3J6tWnbr2Pv9duEDFS5R0aANQ9FJ+/kl9nu9qfz5hzP9Jkpre/6D6vvaGHu3YRadPndLbI4YoM/OEKleprhFvj7ffA8Lb20drvlqu6f95X6dPn1J4eIRq1q6r1zr/n7y8vJxyTCh6Tr+RVEHS09MVGhp61d/MyY2kANfGjaQA13XD3EjqQue/VCsyMtLJlQAAgMtx+iTKs2fP6rXXXlNwcLCioqIUFRWl4OBgDRgwQGfO8FcKAACuyOkjEC+88IIWLFigN998U3Xq1JF07tLOwYMHKy0tTePHj3dyhQAA4GJOnwMRHBysjz76SPfd53j70yVLlqhDhw7KyMgw3iZzIADXxhwIwHUVdg6E009heHt7KyoqKl97dHQ0s3UBAHBRTg8QPXr00Ouvv+7wfRbZ2dkaOnSoevTo4cTKAADApTj9FMZDDz2kFStWyNvbW1WrnrvByNatW5WTk6PGjRs79F2wYEGhtskpDMC1cQoDcF03zGWcISEhevhhxy9G4jJOAABcm9NHIE6dOqW8vDz5+/tLklJTU7Vw4UJVrFhRzZo1u6ptMgIBuDZGIADXdcNMomzVqpWSk5MlSceOHVPt2rU1atQotW7dmks4AQBwUU4PEJs2bVL9+vUlSfPmzVOJEiX022+/6cMPP9SYMWOcXB0AACiI0wNEVlaW/eu8v/zyS7Vp00Zubm6qXbu2fvvtNydXBwAACuL0ABETE6OFCxdq//79Wrp0qZo2bSpJOnTokIKCgpxcHQAAKIjTA8TAgQPVp08fRUVFqVatWvbbWX/55ZeqXr26k6sDAAAFcfpVGJL0559/6uDBg6patarc3M5lmu+//15BQUGqUKGC8fa4CgNwbVyFAbiuwl6F4RIBoqgRIADXRoAAXNcNcxknAAC48RAgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABizWZZlObsI4HKys7M1fPhwJSYmytvb29nlALgAn8+bFwECLu/48eMKDg5WRkaGgoKCnF0OgAvw+bx5cQoDAAAYI0AAAABjBAgAAGCMAAGX5+3trUGDBjFBC3BBfD5vXkyiBAAAxhiBAAAAxggQAADAGAECAAAYI0DgumnYsKF69erl7DIAAEWAAAEAAIwRIAAAgDECBK6rvLw89e3bV2FhYSpZsqQGDx5sXzZ69GjFxcXJ399fkZGR6t69uzIzM+3Lp02bppCQEC1evFjly5eXn5+fHnnkEWVlZWn69OmKiopSaGioevbsqdzcXCccHXDjmTdvnuLi4uTr66vw8HA1adJEJ0+eVOfOndW6dWslJSWpWLFiCgoK0rPPPqucnBz7ul988YXq1aunkJAQhYeHq0WLFtq9e7d9eWpqqmw2m+bOnav69evL19dXd955p3755Rf98MMPqlmzpgICAnTffffp8OHDzjh8/A0ECFxX06dPl7+/v9avX68333xTQ4YM0bJlyyRJbm5uGjNmjH766SdNnz5dK1euVN++fR3Wz8rK0pgxY/TRRx/piy++0OrVq/XQQw9pyZIlWrJkiZKTkzVx4kTNmzfPGYcH3FAOHjyoDh066Mknn9TOnTu1evVqtWnTRudvD7RixQp7++zZs7VgwQIlJSXZ1z958qR69+6tDRs2aMWKFXJzc9NDDz2kvLw8h/0MGjRIAwYM0KZNm+Th4aHHHntMffv21bvvvqtvvvlGu3bt0sCBA6/rsaMIWMB1Eh8fb9WrV8+h7c4777T69etXYP+PP/7YCg8Ptz+fOnWqJcnatWuXve2ZZ56x/Pz8rBMnTtjbmjVrZj3zzDNFXD3wz7Nx40ZLkpWamppvWUJCghUWFmadPHnS3jZ+/HgrICDAys3NLXB7hw8ftiRZ27ZtsyzLsvbu3WtJsv7zn//Y+8yePduSZK1YscLeNnz4cKt8+fJFdVi4ThiBwHVVpUoVh+elSpXSoUOHJEnLly9X48aNdeuttyowMFCdOnVSWlqasrKy7P39/PxUrlw5+/MSJUooKipKAQEBDm3ntwng0qpWrarGjRsrLi5Obdu21eTJk3X06FGH5X5+fvbnderUUWZmpvbv3y9J+vXXX9WhQweVLVtWQUFBioqKkiTt27fPYT8Xfu5LlCghSYqLi3No4zN74yFA4Lry9PR0eG6z2ZSXl6fU1FS1aNFCVapU0fz587Vx40aNGzdOkhzOuRa0/qW2CeDy3N3dtWzZMn3++eeKjY3V2LFjVb58ee3du7dQ67ds2VLp6emaPHmy1q9fr/Xr10ty/MxKjp9bm81WYBuf2RuPh7MLACRp48aNysvL06hRo+Tmdi7Xzp0718lVAf98NptNdevWVd26dTVw4ECVKVNGn3zyiSRp69atOnXqlHx9fSVJ3333nQICAhQZGam0tDSlpKRo8uTJql+/viRpzZo1TjsOXH8ECLiEmJgYnTlzRmPHjlXLli21du1aTZgwwdllAf9o69ev14oVK9S0aVMVL15c69ev1+HDh1WxYkX9+OOPysnJUdeuXTVgwAClpqZq0KBB6tGjh9zc3BQaGqrw8HBNmjRJpUqV0r59+9S/f39nHxKuI05hwCVUrVpVo0eP1siRI1W5cmXNnDlTw4cPd3ZZwD9aUFCQvv76a91///264447NGDAAI0aNUr33XefJKlx48a6/fbb1aBBAz366KN68MEH7Zdeu7m56aOPPtLGjRtVuXJlvfTSS/q///s/Jx4Nrje+zhsAkE/nzp117NgxLVy40NmlwEUxAgEAAIwRIAAAgDFOYQAAAGOMQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAcM107txZrVu3tj9v2LChevXqdd3rWL16tWw2m44dO3bd9w38UxEggJtQ586dZbPZZLPZ5OXlpZiYGA0ZMkRnz569pvtdsGCBXn/99UL15Zc+4Nr4Mi3gJtW8eXNNnTpV2dnZWrJkiZ5//nl5enoqMTHRoV9OTo68vLyKZJ9hYWFFsh0AzscIBHCT8vb2VsmSJVWmTBk999xzatKkiRYtWmQ/7TB06FDdcsstKl++vCRp//79ateunUJCQhQWFqZWrVopNTXVvr3c3Fz17t1bISEhCg8PV9++fXXxfeouPoWRnZ2tfv36KTIyUt7e3oqJidEHH3yg1NRUNWrUSJIUGhoqm82mzp07S5Ly8vI0fPhwRUdHy9fXV1WrVtW8efMc9rNkyRLdcccd8vX1VaNGjRzqBFA0CBAAJEm+vr7KycmRJK1YsUIpKSlatmyZFi9erDNnzqhZs2YKDAzUN998o7Vr1yogIEDNmze3rzNq1ChNmzZNU6ZM0Zo1a5Senq5PPvnksvt84oknNHv2bI0ZM0Y7d+7UxIkTFRAQoMjISM2fP1+SlJKSooMHD+rdd9+VJA0fPlwffvihJkyYoJ9++kkvvfSSOnbsqK+++krSuaDTpk0btWzZUlu2bNFTTz3F10wD14IF4KaTkJBgtWrVyrIsy8rLy7OWLVtmeXt7W3369LESEhKsEiVKWNnZ2fb+ycnJVvny5a28vDx7W3Z2tuXr62stXbrUsizLKlWqlPXmm2/al585c8a67bbb7PuxLMuKj4+3XnzxRcuyLCslJcWSZC1btqzAGletWmVJso4ePWpvO336tOXn52d9++23Dn27du1qdejQwbIsy0pMTLRiY2Mdlvfr1y/ftgD8PcyBAG5SixcvVkBAgM6cOaO8vDw99thjGjx4sJ5//nnFxcU5zHvYunWrdu3apcDAQIdtnD59Wrt371ZGRoYOHjyoWrVq2Zd5eHioZs2a+U5jnLdlyxa5u7srPj6+0DXv2rVLWVlZuvfeex3ac3JyVL16dUnSzp07HeqQpDp16hR6HwAKhwAB3KQaNWqk8ePHy8vLS7fccos8PP7348Df39+hb2ZmpmrUqKGZM2fm206xYsWuav++vr7G62RmZkqSPvvsM916660Oy7y9va+qDgBXhwAB3KT8/f0VExNTqL7/+te/NGfOHBUvXlxBQUEF9ilVqpTWr1+vBg0aSJLOnj2rjRs36l//+leB/ePi4pSXl6evvvpKTZo0ybf8/AhIbm6uvS02Nlbe3t7at2/fJUcuKlasqEWLFjm0fffdd1c+SABGmEQJ4Ioef/xxRUREqFWrVvrmm2+0d+9erV69Wj179tTvv/8uSXrxxRc1YsQILVy4UD///LO6d+9+2Xs4REVFKSEhQU8++aQWLlxo3+bcuXMlSWXKlJHNZtPixYt1+PBhZWZmKjAwUH369NFLL72k6dOna/fu3dq0aZPGjh2r6dOnS5KeffZZ/frrr3r55ZeVkpKiWbNmadq0adf6JQJuOgQIAFfk5+enr7/+WqVLl1abNm1UsWJFde3aVadPn7aPSPz73/9Wp06dlJCQoDp16igwMFAPPfTQZbc7fvx4PfLII+revbsqVKigbt266eTJk5KkW2+9VUlJSerfv79KlCihHj16SJJef/11vfbaaxo+fLgqVqyo5s2b67PPPlN0dLQkqXTp0po/f74WLlyoqlWrasKECRo2bNg1fHWAm5PNutQMJwAAgEtgBAIAABgjQAAAAGMECAAAYIwAAQAAjBEgAACAMQIEAAAwRoAAAADGCBAAAMAYAQIAABgjQAAAAGMECAAAYOz/AWyaUiALIio8AAAAAElFTkSuQmCC\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 800x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAg6lJREFUeJzs3XdYU2fDBvA7CSTsJbJRXLgnKs46AMEqioLaal0ddtjpa1vt0FpbbV9rq2212qFo1aoMlarFuletGxeIdeBAhoiyIZA83x9+5pUyJAgcAvfvurhqTs45uUOs3j485zkyIYQAEREREZEBkksdgIiIiIioslhmiYiIiMhgscwSERERkcFimSUiIiIig8UyS0REREQGi2WWiIiIiAwWyywRERERGSyWWSIiIiIyWCyzRERERGSwWGaJiGqJBQsWoGnTplAoFOjUqZPUcSpNJpPhk08+kToGEdUTLLNEBAAIDQ2FTCbTfRkZGcHV1RWTJk1CYmJiqccIIfDrr7/iqaeego2NDczMzNC+fXt8+umnyMnJKfO1Nm3ahMGDB8Pe3h5KpRIuLi4YPXo09uzZU6Gs+fn5+Oabb+Dt7Q1ra2uYmJjA09MTr7/+Oi5dulSp9y+1P//8E++99x569+6NlStXYt68edX6epMmTYJMJkOHDh1Q2l3NZTIZXn/99WrNUNUe/f0rk8lgbm6ONm3a4LPPPkNubq7U8YiomhhJHYCIapdPP/0UTZo0QX5+Pv7++2+Ehobi0KFDOH/+PExMTHT7aTQajB07Fhs3bkTfvn3xySefwMzMDAcPHsScOXMQFhaGXbt2wdHRUXeMEALPP/88QkND0blzZ0ybNg1OTk5ISkrCpk2b4OPjg8OHD6NXr15l5ktLS0NAQABOnjyJoUOHYuzYsbCwsEB8fDzWr1+PH3/8EWq1ulq/R9Vhz549kMvl+OWXX6BUKmvsdc+dO4fIyEgEBwdX2Tnz8vJgZCTNXy9+fn6YMGECACA7OxsHDx7Exx9/jDNnziAsLEySTERUzQQRkRBi5cqVAoA4fvx4se3vv/++ACA2bNhQbPu8efMEADF9+vQS54qKihJyuVwEBAQU275gwQIBQLz99ttCq9WWOG716tXi6NGj5eYcMmSIkMvlIjw8vMRz+fn54j//+U+5x1dUYWGhKCgoqJJzVcTkyZOFubl5lZ1Pq9WK3NzcMp+fOHGiMDU1FZ6enqJDhw4lPg8AYurUqVWWpyaUlTkkJETI5XKRl5cnQSoiqm6cZkBE5erbty8A4MqVK7pteXl5WLBgATw9PTF//vwSxwQGBmLixImIjo7G33//rTtm/vz5aNWqFb766ivIZLISx40fPx7du3cvM8vRo0exbds2vPDCC6WOJKpUKnz11Ve6x/3790f//v1L7Ddp0iR4eHjoHickJEAmk+Grr77CokWL0KxZM6hUKpw+fRpGRkaYM2dOiXPEx8dDJpPh+++/1227f/8+3n77bbi7u0OlUqF58+b48ssvodVqy3xPwIMfj69cuRI5OTm6H5GHhoYCAIqKijB37lxdJg8PD3zwwQcoKCgodg4PDw8MHToUO3bsQNeuXWFqaorly5eX+7pyuRwfffQRzp49i02bNpW7r1qtxqxZs+Dl5QVra2uYm5ujb9++2Lt3b6nv5+Gc2fDwcMhkMuzfv7/EfsuXL4dMJsP58+d12y5evIiQkBDY2dnBxMQEXbt2RVRUVLnZHsfJyUk3deahgwcPYtSoUWjUqBFUKhXc3d3xzjvvIC8vT7fPypUrIZPJcPr06RLnnDdvHhQKRbEpOEePHkVAQACsra1hZmaGfv364fDhw8WOy8rKwttvvw0PDw+oVCo4ODjAz88Pp06deqL3SFSfscwSUbkSEhIAALa2trpthw4dwr179zB27Ngyf5z88Ee9W7du1R2Tnp6OsWPHQqFQVCrLw1Izfvz4Sh3/OCtXrsR3332HKVOmYOHChXB2dka/fv2wcePGEvtu2LABCoUCo0aNAgDk5uaiX79+WLNmDSZMmIBvv/0WvXv3xsyZMzFt2rRyX/fXX39F3759oVKp8Ouvv+rmIQPAiy++iFmzZqFLly745ptv0K9fP8yfPx/PPPNMifPEx8fj2WefhZ+fHxYvXlyhi8jGjh2LFi1a4NNPPy117uxDmZmZ+Pnnn9G/f398+eWX+OSTT3Dnzh34+/sjJiamzOOGDBkCCwuLMr+Hbdu2Rbt27QAAFy5cQI8ePRAXF4cZM2Zg4cKFMDc3R1BQ0GPL9kP5+flIS0tDWloarl+/jnXr1mHVqlUlfq+GhYUhNzcXr776Kr777jv4+/vju+++0/2+BYCQkBCYmppi7dq1JV5n7dq16N+/P1xdXQE8mCby1FNPITMzE7Nnz8a8efNw//59DBw4EMeOHdMd98orr+CHH35AcHAwli5diunTp8PU1BRxcXEVen9EVAqph4aJqHZ4OM1g165d4s6dO+LmzZsiPDxcNGzYUKhUKnHz5k3dvosWLRIAxKZNm8o8X3p6ugAgRo4cKYQQYvHixY895nFGjBghAIh79+5VaP9+/fqJfv36ldg+ceJE0bhxY93ja9euCQDCyspKpKamFtt3+fLlAoA4d+5cse1t2rQRAwcO1D2eO3euMDc3F5cuXSq234wZM4RCoRA3btwoN+vEiRNLTDOIiYkRAMSLL75YbPv06dMFALFnzx7dtsaNGwsAIjo6utzXKe31Vq1aJQCIyMhI3fP414/si4qKSky7uHfvnnB0dBTPP/98se0AxOzZs3WPn332WeHg4CCKiop025KSkoRcLheffvqpbpuPj49o3769yM/P123TarWiV69eokWLFo99TwBK/QoKCip2TiFEqVMw5s+fL2Qymbh+/Xqx7C4uLkKj0ei2nTp1SgAQK1eu1GVs0aKF8Pf3LzZdIzc3VzRp0kT4+fnptllbWxvc9A2i2o4js0RUjK+vLxo2bAh3d3eEhITA3NwcUVFRcHNz0+2TlZUFALC0tCzzPA+fy8zMLPbf8o55nKo4R3mCg4PRsGHDYttGjhwJIyMjbNiwQbft/PnziI2NxZgxY3TbwsLC0LdvX9ja2upGBtPS0uDr6wuNRoMDBw7onWf79u0AUGJk9z//+Q8AYNu2bcW2N2nSBP7+/nq/zrhx4x47OqtQKHQXpmm1WqSnp6OoqAhdu3Z97I/Ix4wZg9TUVOzbt0+3LTw8HFqtVvc9TE9Px549ezB69GhkZWXpvn93796Fv78//vnnnzJX1XjU8OHDsXPnTuzcuRNbtmzBzJkzER0djbFjxxZ7b6amprpf5+TkIC0tDb169YIQoti0ggkTJuD27dvFplOsXbsWpqamuqkuMTEx+OeffzB27FjcvXtXlz0nJwc+Pj44cOCAbqqJjY0Njh49itu3bz/2vRBRxXA1AyIqZsmSJfD09ERGRgZWrFiBAwcOQKVSFdvnYZl8WGpL8+/Ca2Vl9dhjHufRc9jY2FT6PGVp0qRJiW329vbw8fHBxo0bMXfuXAAPfjxuZGSEkSNH6vb7559/cPbs2RJl+KHU1FS981y/fh1yuRzNmzcvtt3JyQk2Nja4fv36Y/NXhEKhwEcffYSJEydi8+bNGDFiRKn7rVq1CgsXLsTFixdRWFhY4dd9OI90w4YN8PHxAfDge9ipUyd4enoCAC5fvgwhBD7++GN8/PHHpZ4nNTVV92P9sri5ucHX11f3eNiwYWjQoAGmT5+OrVu3IjAwEABw48YNzJo1C1FRUbh3716xc2RkZOh+7efnB2dnZ6xduxY+Pj7QarX47bffMHz4cN3v7X/++QcAMHHixDJzZWRkwNbWFv/9738xceJEuLu7w8vLC08//TQmTJiApk2blvu+iKhsLLNEVEz37t3RtWtXAEBQUBD69OmDsWPHIj4+HhYWFgCA1q1bAwDOnj2LoKCgUs9z9uxZAECbNm0AAK1atQLwYCmoso55nEfP8fDCtPLIZLJSRxo1Gk2p+z86WveoZ555BpMnT0ZMTAw6deqEjRs3wsfHB/b29rp9tFot/Pz88N5775V6joelrTJKu1iuNGXlr4hx48Zh7ty5+PTTT0v9fNasWYNJkyYhKCgI7777LhwcHKBQKDB//vxiFweWRqVS6ea9Ll26FCkpKTh8+HCxtXQfjlxOnz69zNHlf5f6inpYoA8cOIDAwEBoNBr4+fkhPT0d77//Plq1agVzc3MkJiZi0qRJxS7YUygUGDt2LH766ScsXboUhw8fxu3bt/Hcc8+VyL5gwYIy5yk//H9n9OjR6Nu3LzZt2oQ///wTCxYswJdffonIyEgMHjy4Uu+PqL5jmSWiMj0sKwMGDMD333+PGTNmAAD69OkDGxsbrFu3Dh9++GGpF3StXr0aADB06FDdMba2tvjtt9/wwQcfVOoisMDAQMyfPx9r1qypUJm1tbXF1atXS2z/94jm4wQFBeHll1/WTTW4dOkSZs6cWWyfZs2aITs7u9io4JNq3LgxtFot/vnnH90/IAAgJSUF9+/fR+PGjavstR6Ozk6aNAlbtmwp8Xx4eDiaNm2KyMjIYuV69uzZFTr/mDFjsGrVKuzevRtxcXEQQhSbpvFwZNLY2LhKv4fAgxUhgAfrzgIP/jF06dIlrFq1qtgFXzt37iz1+AkTJmDhwoX4/fff8ccff6Bhw4bFCnezZs0APPjJQUWyOzs747XXXsNrr72G1NRUdOnSBZ9//jnLLFElcc4sEZWrf//+6N69OxYtWoT8/HwAgJmZGaZPn474+Hh8+OGHJY7Ztm0bQkND4e/vjx49euiOef/99xEXF4f333+/1BHTNWvWFLvy+9969uyJgIAA/Pzzz9i8eXOJ59VqNaZPn6573KxZM1y8eBF37tzRbTtz5kyJ5ZIex8bGBv7+/ti4cSPWr18PpVJZYvRy9OjROHLkCHbs2FHi+Pv37+sKlT6efvppAMCiRYuKbf/6668BPFgpoCo999xzaN68ealLkT38x8ejn9vRo0dx5MiRCp3b19cXdnZ22LBhAzZs2IDu3bsXm57g4OCA/v37Y/ny5UhKSipx/KOfob5+//13AEDHjh3LfC9CCCxevLjU4zt06IAOHTrg559/RkREBJ555pliKyN4eXmhWbNm+Oqrr3SFubTsGo2m2BQG4MH7dnFxKbHUGhFVHEdmieix3n33XYwaNQqhoaF45ZVXAAAzZszA6dOn8eWXX+LIkSMIDg6GqakpDh06hDVr1qB169ZYtWpVifNcuHABCxcuxN69exESEgInJyckJydj8+bNOHbsGP76669ys6xevRqDBg3CyJEjERgYCB8fH5ibm+Off/7B+vXrkZSUpFtr9vnnn8fXX38Nf39/vPDCC0hNTcWyZcvQtm1b3cVkFTVmzBg899xzWLp0Kfz9/UvM2X333XcRFRWFoUOHYtKkSfDy8kJOTg7OnTuH8PBwJCQkFJuWUBEdO3bExIkT8eOPP+L+/fvo168fjh07hlWrViEoKAgDBgzQ63yPo1Ao8OGHH2Ly5Mklnhs6dCgiIyMxYsQIDBkyBNeuXcOyZcvQpk2bUgvcvxkbG2PkyJFYv349cnJyiq0H/NCSJUvQp08ftG/fHi+99BKaNm2KlJQUHDlyBLdu3cKZM2ce+zqXLl3CmjVrADxYLu3vv//GqlWr0Lx5c92Sbq1atUKzZs0wffp0JCYmwsrKChERESXmzj5qwoQJun8oPTrFAHiwXu/PP/+MwYMHo23btpg8eTJcXV2RmJiIvXv3wsrKCr///juysrLg5uaGkJAQdOzYERYWFti1axeOHz+OhQsXPva9EVEZpFpGgYhql7LuACaEEBqNRjRr1kw0a9as2PJKGo1GrFy5UvTu3VtYWVkJExMT0bZtWzFnzhyRnZ1d5muFh4eLQYMGCTs7O2FkZCScnZ3FmDFjxL59+yqUNTc3V3z11VeiW7duwsLCQiiVStGiRQvxxhtviMuXLxfbd82aNaJp06ZCqVSKTp06iR07dpS5NNeCBQvKfM3MzExhamoqAIg1a9aUuk9WVpaYOXOmaN68uVAqlcLe3l706tVLfPXVV0KtVpf7nkpbmkuIB3cimzNnjmjSpIkwNjYW7u7uYubMmSWWmmrcuLEYMmRIua9R0ddr1qxZiaW5tFqtmDdvnmjcuLFQqVSic+fOYuvWrSW+l0KUXJrroZ07dwoAQiaTFVvq7VFXrlwREyZMEE5OTsLY2Fi4urqKoUOHlnrHt3/Dv5bkUigUws3NTUyZMkWkpKQU2zc2Nlb4+voKCwsLYW9vL1566SVx5syZYktuPSopKUkoFArh6elZ5uufPn1ajBw5UjRo0ECoVCrRuHFjMXr0aLF7924hhBAFBQXi3XffFR07dhSWlpbC3NxcdOzYUSxduvSx742IyiYTopxVsomIiAhpaWlwdnbGrFmzylxtgYikwTmzREREjxEaGgqNRlNtd58josrjnFkiIqIy7NmzB7Gxsfj8888RFBQEDw8PqSMR0b9wmgEREVEZ+vfvj7/++gu9e/fGmjVrHnvTBiKqeSyzRERERGSwOGeWiIiIiAwWyywRERERGax6dwGYVqvF7du3YWlpWeH7nRMRERFRzRFCICsrCy4uLpDLyx97rXdl9vbt23B3d5c6BhERERE9xs2bN+Hm5lbuPvWuzFpaWgJ48M2xsrKSOA0RERER/VtmZibc3d11va089a7MPpxaYGVlxTJLREREVItVZEooLwAjIiIiIoPFMktEREREBotlloiIiIgMFsssERERERksllkiIiIiMlgss0RERERksFhmiYiIiMhgscwSERERkcFimSUiIiIig8UyS0REREQGi2WWiIiIiAwWyywRERERGSyWWSIiIiIyWCyzRERERGSwJC2zBw4cQGBgIFxcXCCTybB58+bHHrNv3z506dIFKpUKzZs3R2hoaLXnJCIiIqLaSdIym5OTg44dO2LJkiUV2v/atWsYMmQIBgwYgJiYGLz99tt48cUXsWPHjmpOSkRERES1kZGULz548GAMHjy4wvsvW7YMTZo0wcKFCwEArVu3xqFDh/DNN9/A39+/umISERER1WtarRZyee2cnSppmdXXkSNH4OvrW2ybv78/3n777TKPKSgoQEFBge5xZmZmdcUjMihhYcCsWUBWltRJiIio9hJo2fI02rf/G1FRz8POzgQnTkidqTiDKrPJyclwdHQsts3R0RGZmZnIy8uDqalpiWPmz5+POXPm1FREIoMxaxZw8aLUKYiIqLZSKgsQGLgV7dufBwC4uh7HtWt9JU5VkkGV2cqYOXMmpk2bpnucmZkJd3d3CRMR1Q4PR2TlcsDZWdosRERUu9jZJcPXNwzW1unQamU4cWIgrl3rDScnqZOVZFBl1snJCSkpKcW2paSkwMrKqtRRWQBQqVRQqVQ1EY+o1iptSkFS0oP/OjsDt25Jk4uIiGoXIQROnDiBHTt2QKPRwMrKCiEhIZgzp/YOBBpUme3Zsye2b99ebNvOnTvRs2dPiRIRGYbyphRYWtZsFiIiqr3S09MRHR0NrVYLT09PDB8+HGZmZlLHKpekZTY7OxuXL1/WPb527RpiYmJgZ2eHRo0aYebMmUhMTMTq1asBAK+88gq+//57vPfee3j++eexZ88ebNy4Edu2bZPqLRAZhEdHZF1d//drS0tg7tyaz0NERLVTgwYN4O/vD41Ggx49ekAmk0kd6bEkLbMnTpzAgAEDdI8fzm2dOHEiQkNDkZSUhBs3buieb9KkCbZt24Z33nkHixcvhpubG37++Wcuy0X1SmVWIUhMfPBfV1dOKSAiov8RQuDYsWNo3LgxnP5/Qmz37t0lTqUfmRBCSB2iJmVmZsLa2hoZGRmwsrKSOg6R3lq3rvwqBK1aAXFxVZuHiIgMU15eHqKionDx4kXY2dnh5ZdfhlKplDoWAP36mkHNmSWiyq9CwCkFRET00K1btxAeHo6MjAwoFAp4e3vD2NhY6liVwjJLVIuVNqXg4ZQBrkJARET6EkLgyJEj2L17N7RaLWxtbRESEgIXFxepo1UayyxRLcZVCIiIqKqo1WpERETg0qVLAIC2bdsiMDDQ4JcwZZklqsXKmlLAKQNERKQvY2NjFBUVQaFQICAgAF5eXgaxWsHjsMwSVaHKrDRQHt7YgIiInoQQAhqNBkZGRpDJZBgxYgSys7N1KxfUBSyzRFWovGkBT4JTCoiISF85OTnYtGkTrK2tERgYCACwsLCAhYWFxMmqFsssURWq7EoD5eGUAiIi0ldCQgIiIiKQnZ0NIyMj9OnTB7a2tlLHqhYss0T/ryqmCHBaABERSUmr1eLgwYPYv38/hBCwt7fHqFGj6myRBVhmiXSqcooApwUQEVFNy87ORmRkJK5duwYA6NSpEwYPHlxrboRQXVhmif5fVU0R4LQAIiKqaUIIrF69Gnfu3IGxsTGGDBmCjh07Sh2rRrDMUp3AKQJERFSfyWQy+Pr6Ys+ePQgJCYG9vb3UkWoMyyzVCZwiQERE9U1WVhbS09PRuHFjAICnpyeaN28OuVwucbKaxTJLdcKjI7KurpU/D6cIEBGRIbh8+TI2bdoErVaLl19+GTY2NgBQ74oswDJLEqmumwu4unKKABER1V1arRZ79uzB4cOHAQBOTk7QarUSp5IWyyxJgjcXICIi0k9GRgYiIiJw8+ZNAEDXrl3h7+8PI6P6Xefq97snyfDmAkRERBV36dIlbN68GXl5eVCpVAgMDETbtm2ljlUrsMzSE6nsdAGuHEBERFRx//zzD/Ly8uDi4oKQkJA6fRMEfbHM0hN50ukCnBZARET0eP7+/rCxsYG3t3e9n1bwb/xu0BN5kukCnBZARERUuosXL+Ls2bMICQmBXC6HkZERevfuLXWsWolllorRd9oApwsQERFVnaKiIuzcuRPHjh0DAJw+fRpeXl4Sp6rdWGapmMpOG+B0ASIioieTnp6O8PBwJP3/SFHPnj3RqVMnaUMZAJZZKqYy0wY4XYCIiOjJXLhwAb///jsKCgpgamqKoKAgeHp6Sh3LILDM1mOlTSngtAEiIqKadfDgQezZswcA4O7ujuDgYFhbW0ucynCwzNZj5U0p4LQBIiKimuHp6YmDBw/C29sbAwYMqJe3pH0SLLP1WFlTCjhtgIiIqHrdvXsXDRo0AAA4OjrijTfegCVHkiqFZZY4pYCIiKiGFBYWIjo6GjExMZg8eTLc3NwAgEX2CbDMEhEREdWAO3fuIDw8HKmpqQCAxMREXZmlymOZJSIiIqpmMTEx2L59OwoLC2Fubo6RI0eiadOmUseqE1hm6wh9b3YA/G/lAiIiIqoearUa27dvx5kzZwAATZo0wciRI2FhYSFxsrqDZbaOqOzNDgCuXEBERFRdzp8/jzNnzkAmk6F///7o06cPVyuoYiyzdURlbnYAcOUCIiKi6tS5c2ckJiaiffv28PDwkDpOncQyW8dwZQIiIiLpFBQU4MCBA3jqqaegUqkgk8kQGBgodaw6jWWWiIiIqAokJycjPDwcd+/eRU5ODoKCgqSOVC+wzBIRERE9ASEETp48iejoaGg0GlhZWaFLly5Sx6o3WGYNxONWK+DKBERERDUvPz8fW7duxYULFwA8uDXt8OHDYWZmJnGy+oNl1kBUdLUCrkxARERUM1JTU7F+/Xrcu3cPcrkcvr6+6NGjB2QymdTR6hWWWQNRkdUKuDIBERFRzTEzM4NarYa1tTVCQkJ4Ny+JsMzWEhWdRsDVCoiIiKRTWFgIY2NjAICFhQXGjRsHGxsbmJqaSpys/mKZrSU4jYCIiKh2u3XrFsLDw+Hr64t27doBAJz1WdydqgXLbC3x6Iisq2vp+3AaARERUc0TQuDvv//Grl27oNVqcfjwYbRt25ZzY2sJltlaICwMSEx88GtXV04jICIiqi1yc3OxZcsWXLp0CQDQpk0bBAYGssjWIiyztcCsWf/7NacREBER1Q43b95EeHg4MjMzoVAoEBAQAC8vLxbZWoZlthZ4dIoBpxEQERFJ7969ewgNDYVWq4WdnR1GjRoFJycnqWNRKVhmaxFXVyAkROoUREREZGtrC29vb2RnZ2PIkCFQqVRSR6IysMwSERERAUhISICtrS2sra0BAL6+vpDJZJxWUMvJpQ5AREREJCWtVov9+/dj9erVCA8Ph0ajAQDI5XIWWQPAkVkiIiKqt7KzsxEZGYlr164BABo0aACtVguFQiFxMqoollkiIiKql65du4aIiAjk5OTA2NgYTz/9NDp16iR1LNITyywRERHVKw+nFRw4cAAA4ODggJCQEDRs2FDiZFQZLLNERERUr2i1WsTHxwMAOnfujMGDB8PY2FjiVFRZLLNERERUrxgZGSEkJARJSUlo37691HHoCbHMEhERUZ2m1WqxZ88eKJVKPPXUUwAAe3t72NvbS5yMqgLLrITCwh7cyjYpSeokREREdVNGRgYiIiJw8+ZNyGQytG3bFg0aNJA6FlUhllkJzZoFXLz4v8eWltJlISIiqmsuXbqEzZs3Iy8vDyqVCoGBgSyydRDLrISysh78Vy4HPD2BuXOlzUNERFQXaDQa7N69G0eOHAEAODs7IyQkBHZ2dhIno+rAMlsLODsDcXFSpyAiIjJ8QgisWbMGCQkJAIDu3bvDz88PRkasPHUVP1kiIiKqMx7Oi01OTsawYcPQunVrqSNRNWOZJSIiIoNWVFSEzMxM3TQCLy8vtGrVChYWFhIno5oglzoAERERUWXdu3cPK1aswOrVq5GXlwfgwegsi2z9wZFZIiIiMkixsbGIiopCQUEBTE1NcffuXbi5uUkdi2oYyywREREZlKKiIuzYsQMnTpwAALi7uyM4OBjW1tYSJyMpsMxKJCwMSEyUOgUREZFhuXv3LsLDw5GcnAwA6N27NwYMGACFQiFxMpIKy6xEZs363695swQiIqKK2bdvH5KTk2FmZoYRI0agefPmUkciibHMSuThDRMA3iyBiIioogYPHgwA8PPzg5WVlcRpqDbgagY1LCwMaN0aSEp68NjVFQgJkTYTERFRbXXnzh3s3bsXQggAgJmZGYKDg1lkSYcjszVs1izg4sX/PeYUAyIiotKdOXMG27ZtQ2FhIezs7NCxY0epI1EtxDJbwx5OL5DLAU9PTjEgIiL6N7VajT/++AMxMTEAgCZNmqBZs2bShqJai2W2Bj26goGzMxAXJ20eIiKi2iY1NRVhYWFIS0uDTCZDv3790LdvX8jlnBlJpWOZrUFcwYCIiKhs586dQ1RUFIqKimBhYYHg4GB4eHhIHYtqOZbZGsQVDIiIiMpmbm6OoqIiNGvWDCNGjIC5ubnUkcgAsMxKgCsYEBERPaBWq6FUKgEATZs2xaRJk9CoUSPIZDKJk5Gh4AQUIiIiqnFCCJw4cQKLFy9Genq6bnvjxo1ZZEkvLLNERERUowoKChAREYFt27YhNzcXJ06ckDoSGTDJy+ySJUvg4eEBExMTeHt749ixY+Xuv2jRIrRs2RKmpqZwd3fHO++8g/z8/BpKS0RERE/i9u3bWL58OS5cuAC5XA4/Pz/4+flJHYsMmKRzZjds2IBp06Zh2bJl8Pb2xqJFi+Dv74/4+Hg4ODiU2H/dunWYMWMGVqxYgV69euHSpUuYNGkSZDIZvv76awneAREREVWEEALHjh3Dzp07odFoYG1tjZCQELi5uUkdjQycpCOzX3/9NV566SVMnjwZbdq0wbJly2BmZoYVK1aUuv9ff/2F3r17Y+zYsfDw8MCgQYPw7LPPPnY0l4iIiKQVExOD6OhoaDQatGrVCi+//DKLLFUJycqsWq3GyZMn4evr+78wcjl8fX1x5MiRUo/p1asXTp48qSuvV69exfbt2/H000+X+ToFBQXIzMws9kVEREQ1q0OHDmjUqBECAgIwevRomJqaSh2J6gjJphmkpaVBo9HA0dGx2HZHR0dcvHix1GPGjh2LtLQ09OnTB0IIFBUV4ZVXXsEHH3xQ5uvMnz8fc+bMqdLsREREVD4hBM6dO4e2bdtCoVBAoVDopgYSVSXJLwDTx759+zBv3jwsXboUp06dQmRkJLZt24a55dyBYObMmcjIyNB93bx5swYTExER1T95eXlYv349Nm3ahL179+q2s8hSdZBsZNbe3h4KhQIpKSnFtqekpMDJyanUYz7++GOMHz8eL774IgCgffv2yMnJwZQpU/Dhhx+Wet9mlUoFlUpV9W9AT2FhQGKi1CmIiIiq182bNxEeHo7MzEwoFApYW1tLHYnqOMlGZpVKJby8vLB7927dNq1Wi927d6Nnz56lHpObm1uisCoUCgAPfpxRm82a9b9fW1pKl4OIiKg6CCFw6NAhrFy5EpmZmbCzs8OLL76Ibt26SR2N6jhJl+aaNm0aJk6ciK5du6J79+5YtGgRcnJyMHnyZADAhAkT4Orqivnz5wMAAgMD8fXXX6Nz587w9vbG5cuX8fHHHyMwMFBXamurrKz//bqcWRFEREQGJycnB5s3b8bly5cBAO3atcPQoUNrxU9Gqe6TtMyOGTMGd+7cwaxZs5CcnIxOnTohOjpad1HYjRs3io3EfvTRR5DJZPjoo4+QmJiIhg0bIjAwEJ9//rlUb0Fvrq5ASIjUKYiIiKpOXl4erl+/DiMjIwwePBidO3fm/FiqMTJR238+X8UyMzNhbW2NjIwMWFlZ1djrurk9mDPr6grculVjL0tERFQjLl68CFtb2xKrFBFVhj59zaBWMyAiIiLpZWdnY82aNbh+/bpuW6tWrVhkSRIss0RERFRhV69exbJly3DlyhVERUVBq9VKHYnqOUnnzBIREZFh0Gq12L9/Pw4cOAAAaNiwIUaNGlXqsphENYllloiIiMqVlZWFyMhIJCQkAAA6d+6MwYMHw9jYWNpgRGCZJSIionJkZGTgxx9/RG5uLoyNjTF06FB06NBB6lhEOiyzREREVCYrKys0adIEaWlpGDVqFBo0aCB1JKJiWGaJiIiomMzMTCiVSpiYmEAmkyEwMBByuZzTCqhW4qztGhAW9mCNWSIiotru0qVLWLZsGaKionS3ilepVCyyVGtxZLYGzJr1v19bWkqXg4iIqCwajQa7d+/GkSNHAAD3799HQUEBTExMJE5GVD6W2RqQlfW/X8+dK10OIiKi0ty/fx8RERG49f+3qOzevTv8/PxgZMSaQLUff5dWs0enGLi6AiEh0uYhIiJ61MWLF7Flyxbk5+dDpVJh+PDhaN26tdSxiCqMZbaacYoBERHVVoWFhfjjjz+Qn58PV1dXBAcHw9bWVupYRHphma1mnGJARES1lbGxMYKDg3Hx4kX4+PhAoVBIHYlIbyyzNYRTDIiIqDaIjY1FUVGR7sYHjRo1QqNGjSRORVR5LLNERET1QFFREXbs2IETJ07AyMgIrq6uvAEC1Qkss0RERHXc3bt3ER4ejuTkZACAt7c3bGxspA1FVEVYZomIiOqw8+fP4/fff4darYaZmRmCgoLQokULqWMRVRmWWSIiojpICIFt27bh5MmTAB7MjQ0ODoaVlZXEyYiqFsssERFRHSSTyWBmZgYA6Nu3L/r37w+5nHexp7qHZZaIiKgOUavVUCqVAID+/fujRYsWcHd3lzgVUfXhP9GIiIjqALVajS1btiA0NBRFRUUAALlcziJLdR5HZomIiAxcamoqwsPDcefOHchkMiQkJKB58+ZSxyKqESyzREREBkoIgZiYGGzfvh1FRUWwsLBAcHAwPDw8pI5GVGNYZomIiAxQQUEBtm3bhnPnzgEAmjVrhhEjRsDc3FziZEQ1i2WWiIjIAG3duhXnz5+HTCbDgAED0KdPH8hkMqljEdU4llkiIiIDNHDgQKSkpGDo0KFo1KiR1HGIJMPVDIiIiAxAQUEBLly4oHtsa2uLV199lUWW6j2OzBIREdVySUlJCAsLw71796BSqXQrFXBaARHLLBERUa0lhMDx48fx559/QqPRwNraGiYmJlLHIqpVWGaJiIhqofz8fERFRSEuLg4A0LJlSwwfPhympqYSJyOqXVhmiYiIapnExESEh4fj/v37kMvl8PPzg7e3N6cVEJWCZZaIiKiWSUtLw/3792FjY4OQkBC4urpKHYmo1mKZJSIiqgWEELqR144dO0KtVqN9+/acI0v0GFyai4iISGI3b97EihUrkJubq9vWrVs3FlmiCmCZJSIikogQAocPH8bKlStx69Yt7NmzR+pIRAaH0wyIiIgkkJOTg82bN+Py5csAgHbt2sHPz0/iVESGh2WWiIiohl2/fh0RERHIysqCkZERAgIC0KVLF65WQFQJLLNEREQ16OLFi9i4cSOEEGjQoAFGjRoFR0dHqWMRGSyWWSIiohrk4eEBGxsbuLu7Y8iQIVAqlVJHIjJoLLNERETVLCUlBQ4ODpDJZDAxMcGLL74IU1NTTisgqgJczYCIiKiaaLVa7Nu3D8uWLcOJEyd0283MzFhkiaoIR2aJiIiqQVZWFiIjI5GQkAAASE1NlTYQUR3FMktERFTFrly5gk2bNiEnJwfGxsYYOnQoOnToIHUsojqJZZaIiKiKPJxWcPDgQQCAo6MjQkJCYG9vL3EyorqLZZaIiKiKpKSk4NChQwAALy8v+Pv7w9jYWOJURHUbyywREVEVcXZ2hp+fHywtLdGuXTup4xDVCyyzRERElaTRaLBv3z506NABDRs2BAD07NlT4lRE9QuX5iIiIqqEjIwMhIaG4tChQwgPD4dGo5E6ElG9xJFZIiIiPcXHx2Pz5s3Iz8+HSqVCv379oFAopI5FVC+xzBIREVWQRqPBzp07cfToUQCAi4sLQkJCYGtrK3EyovqLZZaIiKgCcnJysG7dOty+fRsA0KNHD/j6+nJElkhiLLNEREQVYGpqCiMjI5iYmCAoKAgtW7aUOhIRgWWWiIioTEVFRZDJZFAoFJDL5QgODoZWq4WNjY3U0Yjo/3E1AyIiolKkp6fjl19+wc6dO3XbrKysWGSJahmOzBIREf3L+fPn8fvvv0OtViMzMxNPPfUUzMzMpI5FRKVgmSUiIvp/hYWFiI6OxqlTpwAAjRo1QnBwMIssUS3GMktERAQgLS0NYWFhSE1NBQD07dsX/fv3h1zOGXlEtRnLLBER1XtFRUVYvXo1srKyYG5ujhEjRqBZs2ZSxyKiCniiMpufnw8TE5OqykJERCQJIyMj+Pv748SJExg5ciQsLS2ljkREFaT3z060Wi3mzp0LV1dXWFhY4OrVqwCAjz/+GL/88kuVByQiIqoOqampuH79uu5x27ZtMWHCBBZZIgOjd5n97LPPEBoaiv/+979QKpW67e3atcPPP/9cpeGIiIiqmhACp0+fxk8//YSNGzciKytL95xMJpMwGRFVht5ldvXq1fjxxx8xbty4Yrfw69ixIy5evFil4YiIiKqSWq3G5s2bERUVhaKiIjg5OfECLyIDp/ec2cTERDRv3rzEdq1Wi8LCwioJRUREVNVSUlIQFhaGu3fvQiaTYcCAAejTpw9HY4kMnN5ltk2bNjh48CAaN25cbHt4eDg6d+5cZcGIiIiqghACp06dQnR0NIqKimBpaYng4OASf48RkWHSu8zOmjULEydORGJiIrRaLSIjIxEfH4/Vq1dj69at1ZGRiIio0mQyGW7evImioiI0b94cI0aM4E0QiOoQvcvs8OHD8fvvv+PTTz+Fubk5Zs2ahS5duuD333+Hn59fdWQkIiLSmxBCN4Xg6aefhpubG7y8vDitgKiOqdQ6s3379sXOnTurOgsREdETE0Lg+PHjSEhIwKhRoyCTyaBUKtG1a1epoxFRNdD7Es6mTZvi7t27Jbbfv38fTZs2rZJQRERElZGfn4/w8HD88ccfiIuLQ1xcnNSRiKia6T0ym5CQAI1GU2J7QUEBEhMTqyQUERGRvhITExEeHo779+9DLpfDz88PrVu3ljoWEVWzCpfZqKgo3a937NgBa2tr3WONRoPdu3fDw8OjSsMRERE9jhACR48exc6dO6HVamFjY4OQkBC4urpKHY2IakCFy2xQUBCAB1eFTpw4sdhzxsbG8PDwwMKFC6s0HBER0eP88ccfOH78OACgdevWGDZsGExMTCRORUQ1pcJlVqvVAgCaNGmC48ePw97evtpCERERVVTHjh1x5swZ+Pj4oFu3blytgKie0XvO7LVr16ojBxERUYUIIZCSkgInJycAgKurK95++22YmppKnIyIpFCpG1Ln5ORg+/btWLZsGb799ttiX/pasmQJPDw8YGJiAm9vbxw7dqzc/e/fv4+pU6fC2dkZKpUKnp6e2L59e2XeBhERGZjc3Fz89ttv+Pnnn5GcnKzbziJLVH/pPTJ7+vRpPP3008jNzUVOTg7s7OyQlpYGMzMzODg44M0336zwuTZs2IBp06Zh2bJl8Pb2xqJFi+Dv74/4+Hg4ODiU2F+tVsPPzw8ODg4IDw+Hq6srrl+/DhsbG33fBhERGZjr168jIiICWVlZUCgUSEtL043OElH9JRNCCH0O6N+/Pzw9PbFs2TJYW1vjzJkzMDY2xnPPPYe33noLI0eOrPC5vL290a1bN3z//fcAHszLdXd3xxtvvIEZM2aU2H/ZsmVYsGABLl68CGNjY31i62RmZsLa2hoZGRmwsrKq1Dn04eYGJCYCrq7ArVvV/nJERHWOEAKHDh3C3r17IYRAgwYNMGrUKDg6OkodjYiqiT59Te9pBjExMfjPf/4DuVwOhUKBgoICuLu747///S8++OCDCp9HrVbj5MmT8PX1/V8YuRy+vr44cuRIqcdERUWhZ8+emDp1KhwdHdGuXTvMmzev1HVvHyooKEBmZmaxLyIiMgw5OTlYu3Yt9uzZAyEEOnTogClTprDIEpGO3mXW2NgYcvmDwxwcHHDjxg0AgLW1NW7evFnh86SlpUGj0ZT4A8nR0bHYPKhHXb16FeHh4dBoNNi+fTs+/vhjLFy4EJ999lmZrzN//nxYW1vrvtzd3SuckYiIpHX27FlcuXIFRkZGGDZsGIKCgqBUKqWORUS1iN5zZjt37ozjx4+jRYsW6NevH2bNmoW0tDT8+uuvaNeuXXVk1NFqtXBwcMCPP/4IhUIBLy8vJCYmYsGCBZg9e3apx8ycORPTpk3TPc7MzGShJSIyED169EB6ejq6detW6rUURER6j8zOmzcPzs7OAIDPP/8ctra2ePXVV3Hnzh0sX768wuext7eHQqFASkpKse2PLrfyb87OzvD09IRCodBta926NZKTk6FWq0s9RqVSwcrKqtgXERHVTllZWdi6dSsKCwsBPLhRz5AhQ1hkiahMeo/Mdu3aVfdrBwcHREdHV+qFlUolvLy8sHv3bt3dxbRaLXbv3o3XX3+91GN69+6NdevWQavV6qY6XLp0Cc7OzvyxExGRgbty5Qo2bdqEnJwcyOVyPP3001JHIiIDUKl1Zktz6tQpDB06VK9jpk2bhp9++gmrVq1CXFwcXn31VeTk5GDy5MkAgAkTJmDmzJm6/V999VWkp6fjrbfewqVLl7Bt2zbMmzcPU6dOraq3QURENUyr1WLPnj1Ys2YNcnJy4ODggO7du0sdi4gMhF4jszt27MDOnTuhVCrx4osvomnTprh48SJmzJiB33//Hf7+/nq9+JgxY3Dnzh3MmjULycnJ6NSpE6Kjo3UXhd24cUM3AgsA7u7u2LFjB9555x106NABrq6ueOutt/D+++/r9bpERFQ7ZGZmIiIiQncxcZcuXRAQEFDp5ReJqP6p8Dqzv/zyC1566SXY2dnh3r17aNCgAb7++mu88cYbGDNmDN566y20bt26uvM+Ma4zS0RUO9y4cQMbNmxAbm4ulEolAgMDq/1CYiIyDPr0tQqPzC5evBhffvkl3n33XURERGDUqFFYunQpzp07Bzc3tycOTURE9Yu1tTWEEHByckJISAgaNGggdSQiMkAVHpk1NzfHhQsX4OHhASEEVCoV9u7di969e1d3xirFkVkiIunk5+fDxMRE9zg5ORn29vYwMtL7emQiqsOq5Q5geXl5MDMzA/BgqRSVSqVboouIiOhx4uPj8e233yI+Pl63zcnJiUWWiJ6IXn+C/Pzzz7CwsAAAFBUVITQ0FPb29sX2efPNN6suHRERGTyNRoNdu3bh77//BgAcP34cLVu2lDgVEdUVFZ5m4OHhAZlMVv7JZDJcvXq1SoJVF04zICKqOffu3UNERAQSExMBAN7e3vDz8yt28xsion+rlgvAEhISnjQXERHVI3FxcdiyZQsKCgpgYmKC4cOHo1WrVlLHIqI6hhOViIioyiUlJWHjxo0AADc3NwQHB8PGxkbaUERUJ7HMEhFRlXN2dkbXrl2hVCoxcOBATisgomrDMktERFUiNjYWjRo10l0o/PTTTz/2WgsioidV4aW5iIiISlNYWIitW7ciLCwMkZGR0Gq1AMAiS0Q1giOzRERUaWlpaQgPD0dKSgoAwNXVVeJERFTfVKrMXrlyBStXrsSVK1ewePFiODg44I8//kCjRo3Qtm3bqs5IRES10NmzZ7F161YUFhbCzMwMI0eORLNmzaSORUT1jN7TDPbv34/27dvj6NGjiIyMRHZ2NgDgzJkzmD17dpUHJCKi2qWwsBBRUVHYtGkTCgsL4eHhgVdeeYVFlogkoXeZnTFjBj777DPs3LkTSqVSt33gwIG6u7sQEVHdJYTAzZs3AQD9+vXD+PHjYWlpKXEqIqqv9J5mcO7cOaxbt67EdgcHB6SlpVVJKCIiqn2EEJDJZFAqlQgJCUFOTg6aNm0qdSwiquf0Hpm1sbFBUlJSie2nT5/mxH8iojpIrVZj8+bNxX765ujoyCJLRLWC3mX2mWeewfvvv4/k5GTIZDJotVocPnwY06dPx4QJE6ojIxERSSQlJQU//fQTzpw5gz179uiukyAiqi30nmYwb948TJ06Fe7u7tBoNGjTpg00Gg3Gjh2Ljz76qDoyEhFRDRNC4NSpU4iOjkZRUREsLS0RHBysuyECEVFtIRNCiMoceOPGDZw/fx7Z2dno3LkzWrRoUdXZqkVmZiasra2RkZEBKyuran89NzcgMRFwdQVu3ar2lyMiemIFBQXYunUrzp8/DwBo3rw5goKCYG5uLnEyIqov9Olreo/MHjp0CH369EGjRo3QqFGjSockIqLaR6PR4JdffsGdO3cgk8ng4+ODXr168W5eRFRr6T1nduDAgWjSpAk++OADxMbGVkcmIiKSiEKhQOfOnWFlZYXJkyejd+/eLLJEVKvpXWZv376N//znP9i/fz/atWuHTp06YcGCBbjFn6ETERmk/Px83L17V/e4R48eePXVV+Hu7i5hKiKiitG7zNrb2+P111/H4cOHceXKFYwaNQqrVq2Ch4cHBg4cWB0ZiYiomty+fRvLly/Hb7/9hoKCAgCATCaDiYmJxMmIiCpG7zmzj2rSpAlmzJiBjh074uOPP8b+/furKhcREVUjIQSOHj2KnTt3QqvVwsbGBllZWVCpVFJHIyLSS6XL7OHDh7F27VqEh4cjPz8fw4cPx/z586syGxERVYO8vDxERUXh4sWLAIBWrVph+PDhHI0lIoOkd5mdOXMm1q9fj9u3b8PPzw+LFy/G8OHDYWZmVh35iIioCt26dQvh4eHIyMiAQqHAoEGD0K1bN17kRUQGS+8ye+DAAbz77rsYPXo07O3tqyMTERFVk/379yMjIwO2trYICQmBi4uL1JGIiJ6I3mX28OHD1ZGDiIhqwPDhw7Fv3z74+flxfiwR1QkVKrNRUVEYPHgwjI2NERUVVe6+w4YNq5JgRET05G7cuIErV65gwIABAAALCwsMHTpU4lRERFWnQmU2KCgIycnJcHBwQFBQUJn7yWQyaDSaqspGRESVJITAoUOHsHfvXggh4OzsjFatWkkdi4ioylWozGq12lJ/TUREtU9OTg42bdqEK1euAAA6dOiApk2bSpyKiKh66H3ThNWrV+sW1n6UWq3G6tWrqyQUERFVTkJCApYtW4YrV67AyMgIw4YNQ1BQEJRKpdTRiIiqhUwIIfQ5QKFQICkpCQ4ODsW23717Fw4ODrV+mkFmZiasra2RkZEBKyuran89NzcgMRFwdQV4x18iqk5HjhzBzp07IYSAvb09Ro0aVeLPaiIiQ6BPX9N7NQMhRKnrEd66dQvW1tb6no6IiKqInZ0dhBDo1KkTBg8ezNFYIqoXKlxmO3fuDJlMBplMBh8fHxgZ/e9QjUaDa9euISAgoFpCEhFR6fLz83V37mrZsiVeeuklrh1LRPVKhcvsw1UMYmJi4O/vDwsLC91zSqUSHh4eCA4OrvKARERUklarxb59+3Dy5ElMmTJF95MxFlkiqm8qXGZnz54NAPDw8MCYMWN4D28iIolkZmYiMjIS169fBwDExsaiZ8+eEqciIpKG3nNmJ06cWB05iIioAi5fvoxNmzYhNzcXSqUSgYGBaNeundSxiIgkU6Eya2dnh0uXLsHe3h62tralXgD2UHp6epWFIyKiBzQaDfbu3au7pbiTkxNCQkLQoEEDiZMREUmrQmX2m2++gaWlpe7X5ZVZIiKqekePHtUV2W7dumHQoEHFLsQlIqqvKvQn4aNTCyZNmlRdWYiIqAzdunVDfHw8vL290aZNG6njEBHVGnrfAezUqVM4d+6c7vGWLVsQFBSEDz74AGq1ukrDERHVVxqNBidOnNDdQtzY2BiTJk1ikSUi+he9y+zLL7+MS5cuAQCuXr2KMWPGwMzMDGFhYXjvvfeqPCARUX1z//59rFy5Etu2bcPBgwd12znFi4ioJL3L7KVLl9CpUycAQFhYGPr164d169YhNDQUERERVZ2PiKheiYuLw/Lly5GYmAgTExM4OjpKHYmIqFar1O1sH/7Ya9euXRg6dCgAwN3dHWlpaVWbjoionigqKsLOnTtx7NgxAICbmxuCg4NhY2MjbTAiolpO7zLbtWtXfPbZZ/D19cX+/fvxww8/AACuXbvGEQQiokpIT09HeHg4kpKSAAA9e/aEj48PFAqFxMmIiGo/vcvsokWLMG7cOGzevBkffvghmjdvDgAIDw9Hr169qjwgEVFdp1arkZqaClNTUwQFBcHT01PqSEREBkMmhBBVcaL8/HwoFAoYGxtXxemqTWZmJqytrZGRkQErK6tqfz03NyAxEXB1BW7dqvaXIyIDIYQodkHXxYsX4ezsDGtrawlTERHVDvr0tUqvuH3y5EnExcUBANq0aYMuXbpU9lRERPXK3bt3ERkZiaeffhqurq4AgFatWkmciojIMOldZlNTUzFmzBjs379fd2HC/fv3MWDAAKxfvx4NGzas6oxERHXGuXPnsHXrVqjVavzxxx944YUXuOQWEdET0HtprjfeeAPZ2dm4cOEC0tPTkZ6ejvPnzyMzMxNvvvlmdWQkIjJ4hYWFiIqKQmRkJNRqNTw8PDBmzBgWWSKiJ6T3yGx0dDR27dqF1q1b67a1adMGS5YswaBBg6o0HBFRXXDnzh2Eh4cjNTUVANCvXz889dRTkMv1Hk8gIqJ/0bvMarXaUi/yMjY21q0/S0RED6SmpuLnn39GYWEhzM3NERwcjCZNmkgdi4ioztB7WGDgwIF46623cPv2bd22xMREvPPOO/Dx8anScEREhq5hw4Zo0qQJmjRpgldeeYVFloioiuk9Mvv9999j2LBh8PDwgLu7OwDg5s2baNeuHdasWVPlAYmIDE1qaipsbGygVCohk8kQHBwMIyMjTisgIqoGepdZd3d3nDp1Crt379YtzdW6dWv4+vpWeTgiIkMihMDp06fxxx9/oE2bNggKCoJMJoNSqZQ6GhFRnaVXmd2wYQOioqKgVqvh4+ODN954o7pyEREZlIKCAmzbtg3nzp0DAOTm5kKj0cDIqNLLeRMRUQVU+E/ZH374AVOnTkWLFi1gamqKyMhIXLlyBQsWLKjOfEREtV5ycjLCwsKQnp4OmUwGHx8f9OrVi8tuERHVgApP4Pr+++8xe/ZsxMfHIyYmBqtWrcLSpUurMxsRUa0mhMDx48fx888/Iz09HVZWVpg8eTJ69+7NIktEVEMqXGavXr2KiRMn6h6PHTsWRUVFSEpKqpZgRES1XX5+Pvbv3w+NRgNPT0+8/PLLugtjiYioZlR4mkFBQQHMzc11j+VyOZRKJfLy8qolGBFRbWdqaoqRI0ciJSUFPXr04GgsEZEE9Loy4eOPP4aZmZnusVqtxueffw5ra2vdtq+//rrq0hER1SJCCBw7dgyWlpZo06YNAKBp06Zo2rSpxMmIiOqvCpfZp556CvHx8cW29erVC1evXtU95qgEEdVVeXl5iIqKwsWLF6FUKuHm5gYrKyupYxER1XsVLrP79u2rxhhERLXXrVu3EB4ejoyMDCgUCvj4+MDS0lLqWEREhErcNIGIqL4QQuDIkSPYvXs3tFotbG1tERISAhcXF6mjERHR/2OZJSIqhVarxYYNG3Dp0iUAQNu2bREYGAiVSiVxMiIiehTLLBFRKeRyOezs7KBQKBAQEAAvLy9eF0BEVAuxzBIR/T8hBAoKCmBiYgIA8PX1RZcuXdCwYUOJkxERUVkqfNMEIqK6LCcnB+vWrcO6deug0WgAAAqFgkWWiKiWq1SZPXjwIJ577jn07NkTiYmJAIBff/0Vhw4dqtJwREQ1ISEhAcuXL8fly5eRlJSE5ORkqSMREVEF6V1mIyIi4O/vD1NTU5w+fRoFBQUAgIyMDMybN6/KAxIRVRetVov9+/dj9erVyMrKgr29PV566SW4urpKHY2IiCpI7zL72WefYdmyZfjpp59gbGys2967d2+cOnWqSsMREVWX7OxsrFmzBvv27YMQAp06dcJLL70EBwcHqaMREZEe9L4ALD4+Hk899VSJ7dbW1rh//35VZCIiqnabNm3CtWvXYGxsjCFDhqBjx45SRyIiokrQe2TWyckJly9fLrH90KFDlb4/+ZIlS+Dh4QETExN4e3vj2LFjFTpu/fr1kMlkCAoKqtTrElH9NXjwYLi5uWHKlCksskREBkzvMvvSSy/hrbfewtGjRyGTyXD79m2sXbsW06dPx6uvvqp3gA0bNmDatGmYPXs2Tp06hY4dO8Lf3x+pqanlHpeQkIDp06ejb9++er8mEdU/WVlZOHfunO6xvb09nn/+edjb20uYioiInpTe0wxmzJgBrVYLHx8f5Obm4qmnnoJKpcL06dPxxhtv6B3g66+/xksvvYTJkycDAJYtW4Zt27ZhxYoVmDFjRqnHaDQajBs3DnPmzMHBgwc5vYGIynX58mVs2rQJeXl5sLKyQuPGjQGAN0EgIqoD9C6zMpkMH374Id59911cvnwZ2dnZaNOmDSwsLPR+cbVajZMnT2LmzJm6bXK5HL6+vjhy5EiZx3366adwcHDACy+8gIMHD5b7GgUFBboVFwAgMzNT75xEZJi0Wi327NmDw4cPA3gwTaoyf1YREVHtVek7gCmVSrRp0+aJXjwtLQ0ajQaOjo7Ftjs6OuLixYulHnPo0CH88ssviImJqdBrzJ8/H3PmzHminERkeDIyMhAREYGbN28CALp27Qp/f38YGfHGh0REdYnef6oPGDCg3B/N7dmz54kClScrKwvjx4/HTz/9VOF5bjNnzsS0adN0jzMzM+Hu7l5dEYmoFrh06RI2b96MvLw8qFQqBAYGom3btlLHIiKiaqB3me3UqVOxx4WFhYiJicH58+cxceJEvc5lb28PhUKBlJSUYttTUlLg5ORUYv8rV64gISEBgYGBum1arRYAYGRkhPj4eDRr1qzYMSqVCiqVSq9cRGTYMjIykJeXB2dnZ4SEhMDOzk7qSEREVE30LrPffPNNqds/+eQTZGdn63UupVIJLy8v7N69W7e8llarxe7du/H666+X2L9Vq1bFrkYGgI8++ghZWVlYvHgxR1yJ6jEhhO6nRl27doWxsTHatWvHaQVERHVclf0p/9xzz6F79+746quv9Dpu2rRpmDhxIrp27Yru3btj0aJFyMnJ0a1uMGHCBLi6umL+/PkwMTFBu3btih1vY2MDACW2E1H9cfHiRRw4cAATJkyAiYkJZDJZiZ8iERFR3VRlZfbIkSMwMTHR+7gxY8bgzp07mDVrFpKTk9GpUydER0frLgq7ceMG5HK9l8MlonqgqKgIu3btwtGjRwEAf/31FwYOHChxKiIiqkkyIYTQ54CRI0cWeyyEQFJSEk6cOIGPP/4Ys2fPrtKAVS0zMxPW1tbIyMiAlZVVtb+emxuQmAi4ugK3blX7yxHVG+np6QgPD0dSUhIAoGfPnvDx8YFCoZA4GRERPSl9+preI7PW1tbFHsvlcrRs2RKffvopBg0apO/piIj0duHCBfz+++8oKCiAqakpgoKC4OnpKXUsIiKSgF5lVqPRYPLkyWjfvj1sbW2rKxMRUZlOnjyJrVu3AgDc3d0REhJSIz9lISKi2kmvyagKhQKDBg3i7WOJSDKtW7eGlZUV+vTpg0mTJrHIEhHVc3pfWdWuXTtcvXq1OrIQEZXq4V28AMDMzAyvvfYafHx8eHEoERHpX2Y/++wzTJ8+HVu3bkVSUhIyMzOLfRERVZXCwkJERUVhxYoVxW5hzRuhEBHRQxWeM/vpp5/iP//5D55++mkAwLBhw4rd1vbhguUajabqUxJRvXPnzh2Eh4cjNTUVwIPbWRMREf1bhcvsnDlz8Morr2Dv3r3VmYeICGfOnMG2bdtQWFgIc3NzjBw5Ek2bNpU6FhER1UIVLrMPl6Pt169ftYUhovpNrVbjjz/+0E0paNq0KUaMGAELCwtpgxERUa2l19Jcj04rICKqardv30ZMTAxkMhn69++PPn368CIvIiIql15l1tPT87GFNj09/YkCEVH95eHhgUGDBsHZ2RkeHh5SxyEiIgOgV5mdM2dOiTuAERFVVkFBAf7880/07t0bdnZ2AB7clpaIiKii9CqzzzzzDBwcHKorCxHVI8nJyQgPD8fdu3eRmpqK559/nlOZiIhIbxUus/xLhoiqghACJ0+eRHR0NDQaDaysrODn58c/Y4iIqFL0Xs2AiKiy8vPzsXXrVly4cAHAg3n4w4cPh5mZmcTJiIjIUFW4zGq12urMQUR13L179/Drr7/i3r17kMvl8PX1RY8ePTgiS0RET0SvObNERJVlZWUFU1NTaLVahISEwM3NTepIRERUB7DMElG1yc/Ph1KphFwuh0KhwOjRo6FUKmFqaip1NCIiqiO4GjkRVYvExEQsX7682C2wra2tWWSJiKhKscwSUZUSQuDIkSNYsWIF7t+/j9jYWKjVaqljERFRHcVpBkRUZfLy8rB582ZcunQJANCmTRsEBgZCqVRKnIyIiOoqllkiqhI3b95EeHg4MjMzoVAoEBAQAC8vL65WQERE1YplloieWH5+PtauXYuCggLY2dlh1KhRcHJykjoWERHVAyyzRPTETExMEBAQgKtXr2LIkCFQqVRSRyIionqCZZaIKuX69euQy+Vwd3cHAHTq1AkdO3bktAIiIqpRLLNEpBetVotDhw5h3759sLCwwCuvvKK7HS2LLBER1TSWWSKqsOzsbGzatAlXr14FADRt2hRGRvxjhIiIpMO/hYioQq5du4aIiAjk5OTA2NgYTz/9NDp16iR1LCIiqudYZomoXEII7Nu3DwcOHAAAODg4ICQkBA0bNpQ4GREREcssEVVAWloaAKBz584YPHgwjI2NJU5ERET0AMssEZVKCAGZTAaZTIbAwEC0bdsWbdq0kToWERFRMXKpAxBR7aLVarFr1y6Eh4dDCAHgwTqyLLJERFQbcWSWiHQyMjIQERGBmzdvAniwlqyHh4e0oYiIiMrBMktEAIBLly5h8+bNyMvLg0qlQmBgIIssERHVeiyzRPWcRqPB7t27ceTIEQCAs7MzQkJCYGdnJ3EyIiKix2OZJarnIiIiEBcXBwDo3r07/Pz8eCMEIiIyGPwbi6ie8/b2xvXr1xEYGIhWrVpJHYeIiEgvLLNE9UxRURGSk5Ph5uYGAGjcuDHeeustKJVKiZMRERHpj0tzEdUj9+7dw4oVK7B69WrcuXNHt51FloiIDBVHZonqidjYWERFRaGgoACmpqbIzs7mLWmJiMjgscwS1XFFRUXYsWMHTpw4AQBwd3dHcHAwrK2tJU5GRET05Fhmieqwu3fvIjw8HMnJyQCA3r17Y8CAAVAoFBInIyIiqhoss0R12NmzZ5GcnAwzMzOMGDECzZs3lzoSERFRlWKZJarD+vXrB7VajZ49e8LKykrqOERERFWOqxkQ1SFpaWnYvHkzioqKAAByuRz+/v4sskREVGdxZJaojjhz5gy2bduGwsJCWFlZYeDAgVJHIiIiqnYss0QGTq1W448//kBMTAwAoEmTJujevbu0oYiIiGoIyyyRAUtNTUV4eDju3LkDmUyGfv36oW/fvpDLOYOIiIjqB5ZZIgN18eJFREREoKioCBYWFggODoaHh4fUsYiIiGoUyyyRgXJwcIBCoUDjxo0xYsQImJubSx2JiIioxrHMEhmQnJwcXWm1s7PDCy+8AHt7e8hkMomTERERSYMT64gMgBACJ06cwKJFi3DlyhXd9oYNG7LIEhFRvcaRWaJaLj8/H1u3bsWFCxcAAOfPn0ezZs0kTkVERFQ7sMwS1WK3b99GeHg47t27B7lcDh8fH/Ts2VPqWERERLUGyyxRLSSEwLFjx7Bz505oNBpYW1sjJCQEbm5uUkcjIiKqVVhmiWqha9euITo6GgDQqlUrDBs2DKamphKnIiIiqn1YZolqoaZNm6JLly5wcHBA9+7deZEXERFRGVhmiWqBh6sVtG3bFmZmZgCAwMBAiVMRERHVflyai0hiubm5WL9+PbZv347NmzdDCCF1JCIiIoPBkVkiCd28eRPh4eHIzMyEQqFAixYtpI5ERERkUFhmiSQghMDhw4exZ88eCCFgZ2eHUaNGwcnJSepoREREBoVllqiG5ebmYtOmTbh8+TIAoF27dhg6dChUKpXEyYiIiAwPyyxRDZPL5UhLS4ORkREGDx6Mzp07c7UCIiKiSmKZJaoBDy/qkslkMDExwejRoyGXy+Ho6ChxMiIiIsPG1QyIqll2djbWrFmDEydO6LY5OzuzyBIREVUBjswSVaNr164hIiICOTk5SEpKQocOHTg3loiIqAqxzBJVA61Wi/379+PAgQMAgIYNG2LUqFEsskRERFWMZZaoimVlZSEyMhIJCQkAgM6dO2Pw4MEwNjaWNhgREVEdxDJLVIXUajV+/PFHZGdnw9jYGEOHDkWHDh2kjkVERFRnscwSVSGlUolu3bohNjYWo0aNQoMGDaSOREREVKexzBI9oczMTBQWFuqKa58+fdCrVy8YGfF/LyIiourGpbmInsClS5ewbNkybNy4EYWFhQAe3BSBRZaIiKhm8G9cokrQaDTYvXs3jhw5AgCwsbFBXl4eL/IiIiKqYSyzRHq6f/8+IiIicOvWLQBA9+7d4efnx9FYIiIiCdSKaQZLliyBh4cHTExM4O3tjWPHjpW5708//YS+ffvC1tYWtra28PX1LXd/oqp08eJFLF++HLdu3YJKpcLo0aMxePBgFlkiIiKJSF5mN2zYgGnTpmH27Nk4deoUOnbsCH9/f6Smppa6/759+/Dss89i7969OHLkCNzd3TFo0CAkJibWcHKqb4QQOHLkCPLz8+Hi4oKXX34ZrVu3ljoWERFRvSYTQggpA3h7e6Nbt274/vvvATy4c5K7uzveeOMNzJgx47HHazQa2Nra4vvvv8eECRMeu39mZiasra2RkZEBKyurJ87/OG5uQGIi4OoK/P9PpcmAZWRk4MSJE+jfvz8UCoXUcYiIiOokffqapCOzarUaJ0+ehK+vr26bXC6Hr6+v7sKax8nNzUVhYSHs7OxKfb6goACZmZnFvogqKjY2Fnv37tU9tra2ho+PD4ssERFRLSFpmU1LS4NGo4Gjo2Ox7Y6OjkhOTq7QOd5//324uLgUK8SPmj9/PqytrXVf7u7uT5yb6r6ioiJs27YNYWFhOHDgAK5duyZ1JCIiIiqF5HNmn8QXX3yB9evXY9OmTTAxMSl1n5kzZyIjI0P3dfPmzRpOSYbm7t27+OWXX3DixAkAQO/evdGoUSOJUxEREVFpJL0E297eHgqFAikpKcW2p6SkwMnJqdxjv/rqK3zxxRfYtWsXOnToUOZ+KpUKKpWqSvJS3Xfu3Dls3boVarUaZmZmGDFiBJo3by51LCIiIiqDpCOzSqUSXl5e2L17t26bVqvF7t270bNnzzKP++9//4u5c+ciOjoaXbt2rYmoVA/s2LEDkZGRUKvVaNy4MV5++WUWWSIiolpO8sUxp02bhokTJ6Jr167o3r07Fi1ahJycHEyePBkAMGHCBLi6umL+/PkAgC+//BKzZs3CunXr4OHhoZtba2FhAQsLC8neBxk+Nzc3AEDfvn3Rv39/yOUGPQuHiIioXpC8zI4ZMwZ37tzBrFmzkJycjE6dOiE6Olp3UdiNGzeKlYoffvgBarUaISEhxc4ze/ZsfPLJJzUZneqA7Oxs3T+C2rZtC0dHR9jb20ucioiIiCpK8nVmaxrXmSXgwbJwf/zxB/755x+88sorHNUnIiKqRfTpa5KPzBLVtNTUVISHh+POnTuQyWS4evVquRcREhERUe3FMkv1hhACMTEx2L59O4qKimBhYYHg4GB4eHhIHY2IiIgqiWWW6gW1Wo2tW7fi3LlzAIBmzZphxIgRMDc3lzgZERERPQmWWaoXDhw4gHPnzkEmk2HAgAHo06cPZDKZ1LGIiIjoCbHMUr3w1FNPISkpCf369ePdvIiIiOoQLqRJdVJBQQH++usvPFysQ6lUYvz48SyyREREdQxHZqnOSUpKQnh4ONLT0wEAvXr1kjgRERERVReWWaozhBA4fvw4/vzzT2g0GlhbW3MkloiIqI5jmaU6IT8/H1FRUYiLiwMAtGzZEsOHD4epqanEyYiIiKg6scySwbt9+zbCwsJw//59yOVy+Pn5wdvbm6sVEBER1QMss2TwhBDIzMyEjY0NQkJC4OrqKnUkIiIiqiEss2SQtFot5PIHi3G4urpizJgxaNSoEUxMTCRORkRERDWJS3ORwbl58yaWLl2K5ORk3TZPT08WWSIionqIZZYMhhAChw8fxsqVK3H37l3s2bNH6khEREQkMU4zIIOQk5ODzZs34/LlywCAdu3aYejQoRKnIiIiIqmxzFKtd/36dURERCArKwtGRkYICAhAly5duFoBERERscxS7Xbjxg2sWrUKQgg0aNAAo0aNgqOjo9SxiIiIqJZgmaVazc3NDR4eHrC0tMSQIUOgVCqljkRERES1CMss1To3btyAs7MzjI2NIZfL8eyzz8LY2FjqWERERFQLcTUDqjW0Wi327duHlStXYseOHbrtLLJERERUFo7MUq2QlZWFyMhIJCQkAAA0Gk2xGyMQERERlYZlliR35coVREZGIjc3F8bGxhg6dCg6dOggdSwiIiIyACyzJBmtVou9e/fi0KFDAABHR0eEhITA3t5e4mRERERkKFhmSTI5OTk4efIkAMDLywv+/v6cH0tERER6YZklyVhaWiIoKAhqtRrt2rWTOg4REREZIJZZqjEajQZ79uxBo0aN0LJlSwCAp6enxKmIiIjIkPFScaoRGRkZCA0NxV9//YUtW7YgPz9f6khERERUB3BklqpdfHw8Nm/ejPz8fKhUKgQGBsLExETqWERERFQHsMxStdFoNNi5cyeOHj0KAHBxcUFISAhsbW0lTkZERER1BcssVYvCwkKEhobi9u3bAIAePXrA19cXCoVC4mRERERUl7DMUrUwNjaGk5MT0tPTERQUpLvgi4iIiKgqscxSlSkqKkJhYSFMTU0BAAEBAXjqqadgbW0tcTIiIiKqq7iaAVWJ9PR0/PLLLwgLC4NWqwXwYHSWRZaIiIiqE0dm6YmdP38ev//+O9RqNUxNTXHv3j00aNBA6lhERERUD7DMUqUVFhYiOjoap06dAgA0atQIwcHBsLKykjgZERER1Rcss1QpaWlpCA8PR0pKCgCgb9++6N+/P+RyzlwhIiKimsMyS3oTQiAyMhIpKSkwMzPDyJEj0axZM6ljERERUT3EMkt6k8lkGDZsGHbv3o1hw4bB0tJS6khERERUT/FnwlQhqampOHv2rO6xk5MTxo0bxyJLREREkuLILJVLCIGYmBhs374dWq0WDRo0gKurq9SxiIiIiACwzFI51Go1tm3bphuRbdq0KWxsbKQNRURERPQIllkqVUpKCsLCwnD37l3IZDIMGDAAffr0gUwmkzoaERERkQ7LLJVw6tQpbN++HRqNBpaWlggODkbjxo2ljkVERERUAssslZCfnw+NRoPmzZtjxIgRMDMzkzoSERERUalYZgkAoNVqdTc86NmzJ6ytrdGmTRtOKyAiIqJajUtz1XNCCBw7dgw//vgj1Go1gAfryLZt25ZFloiIiGo9jszWY/n5+YiKikJcXByAB3Nle/ToIXEqIiIioopjma2nEhMTER4ejvv370Mul8PPzw/e3t5SxyIiIiLSC8tsPSOEwNGjR7Fz505otVrY2NggJCSEN0IgIiIig8QyW88cOHAA+/btAwC0bt0aw4YNg4mJibShiIiIiCqJZbae8fLywunTp9GrVy9069aNF3kRERGRQWOZreOEELh69SqaNWsGALCwsMDrr78OIyN+9ERERGT4uDRXHZabm4vffvsNa9aswYULF3TbWWSJiIiormCrqaOuX7+OiIgIZGVlQaFQoLCwUOpIRERERFWOZbaOEULg0KFD2Lt3L4QQaNCgAUaNGgVHR0epoxERERFVOZbZOiQnJweRkZG4evUqAKBDhw4YMmQIlEqlxMmIiIiIqgfLbB2SmJiIq1evwsjICE8//TQ6derE1QqIiIioTmOZrUM8PT0xaNAgNGvWDA4ODlLHISIiIqp2XM3AgGVlZWHjxo3IyMjQbevZsyeLLBEREdUbHJk1UFeuXMGmTZuQk5MDtVqN5557TupIRERERDWOZdbAaLVa7Nu3DwcPHgQAODg4ICAgQOJURERERNJgmTUgmZmZiIiIwI0bNwAAXbp0QUBAAIyNjSVORkRERCQNllkDkZycjNWrVyMvLw9KpRKBgYFo166d1LGIiIiIJMUyayAaNGgAS0tLWFtbIyQkBA0aNJA6EhEREZHkWGZrsaysLFhYWEAmk8HY2Bhjx46Fubk5jIz4sREREREBLLO1Vnx8PDZv3oyePXviqaeeAgBYW1tLnIqIpKTRaFBYWCh1DCKiKmFsbAyFQvHE52GZrWU0Gg127dqFv//+GwDwzz//oE+fPpDLuSQwUX2WnZ2NW7duQQghdRQioiohk8ng5uYGCwuLJzoPy2wtcu/ePURERCAxMREA4O3tDT8/PxZZonpOo9Hg1q1bMDMzQ8OGDXmbaiIyeEII3LlzB7du3UKLFi2eaISWZbaWiIuLw5YtW1BQUAATExMMHz4crVq1kjoWEdUChYWFEEKgYcOGMDU1lToOEVGVaNiwIRISElBYWMgya+iysrIQEREBjUYDNzc3BAcHw8bGRupYRFTLcESWiOqSqvozjWW2FrC0tERAQADS09Ph4+NTJZOhiYiIiOoDllmJXLhwATY2NnB1dQUAdO3aVeJERERERIaHVxbVsMLCQmzduhXh4eEIDw9Hfn6+1JGIiGq9/v374+2335Y6BtVB48ePx7x586SOUedER0ejU6dO0Gq11f5ataLMLlmyBB4eHjAxMYG3tzeOHTtW7v5hYWFo1aoVTExM0L59e2zfvr2Gkj6ZtLQ0/PLLLzh58iQAoF27dlAqlRKnIiKqHpMmTYJMJsMXX3xRbPvmzZv1nisXGRmJuXPnVmW8Eh7mffjVoEEDBAQE4OzZs9X6uk8qISGhWG47Ozv069cPBw8eLLFveno63n77bTRu3BhKpRIuLi54/vnncePGjRL7Jicn44033kDTpk2hUqng7u6OwMBA7N69uybeVo04c+YMtm/fjjfffFPqKNXmxo0bGDJkCMzMzODg4IB3330XRUVF5R5z6tQp+Pn5wcbGBg0aNMCUKVOQnZ1dbJ/jx4/Dx8cHNjY2sLW1hb+/P86cOaN7PiAgAMbGxli7dm21vK9HSV5mN2zYgGnTpmH27Nk4deoUOnbsCH9/f6Smppa6/19//YVnn30WL7zwAk6fPo2goCAEBQXh/PnzNZxcP82bn8WPP/6IlJQUmJmZ4bnnnoOPjw+X3SKiOs3ExARffvkl7t2790TnsbOzg6WlZRWlKltAQACSkpKQlJSE3bt3w8jICEOHDq32160Ku3btQlJSEg4cOAAXFxcMHToUKSkpuufT09PRo0cP7Nq1C8uWLcPly5exfv16XL58Gd26dcPVq1d1+yYkJMDLywt79uzBggULcO7cOURHR2PAgAGYOnVqjb0nIcRji9eT+O677zBq1KgnWue0ujM+CY1GgyFDhkCtVuOvv/7CqlWrEBoailmzZpV5zO3bt+Hr64vmzZvj6NGjiI6OxoULFzBp0iTdPtnZ2QgICECjRo1w9OhRHDp0CJaWlvD39y92Y5dJkybh22+/rc63+ICQWPfu3cXUqVN1jzUajXBxcRHz588vdf/Ro0eLIUOGFNvm7e0tXn755Qq9XkZGhgAgMjIyKh9aD+7uhWLYsM3ik08+EZ988okIDQ0VmZmZNfLaRFQ35OXlidjYWJGXlyd1FL1MnDhRDB06VLRq1Uq8++67uu2bNm0Sj/71k5aWJp555hnh4uIiTE1NRbt27cS6deuKnatfv37irbfeEkIIMXPmTNG9e/cSr9ehQwcxZ84c3eOffvpJtGrVSqhUKtGyZUuxZMmSx+YdPnx4sW0HDx4UAERqaqpu23vvvSdatGghTE1NRZMmTcRHH30k1Gq1EEKIa9euCZlMJo4fP17sPN98841o1KiR0Gg0Qgghzp07JwICAoS5ublwcHAQzz33nLhz545u/7CwMNGuXTthYmIi7OzshI+Pj8jOzi4197Vr1wQAcfr0ad22s2fPCgBiy5Ytum2vvPKKMDc3F0lJScWOz83NFa6uriIgIEC3bfDgwcLV1bXU17x3716pOR765ZdfRJs2bYRSqRROTk66v+NLy3nv3j0BQOzdu1cIIcTevXsFALF9+3bRpUsXYWxsLJYvXy4AiLi4uGKv8/XXX4umTZvqHj/ue/pvRUVFwtraWmzdurXY9tWrVwsvLy9hYWEhHB0dxbPPPitSUlJ0z5eWce/evUKj0Yh58+YJDw8PYWJiIjp06CDCwsKKvd7zzz+ve97T01MsWrSo3O/lk9q+fbuQy+UiOTlZt+2HH34QVlZWoqCgoNRjli9fLhwcHHS/V4X43++nf/75RwghxPHjxwUAcePGjTL3EUKI69evCwDi8uXLpb5WeX+26dPXJB0WVKvVOHnyJHx9fXXb5HI5fH19ceTIkVKPOXLkSLH9AcDf37/M/QsKCpCZmVnsqyZptQpYWORACKBfv34YP358jYwuEFHd1rUr4OZW81/6XquqUCgwb948fPfdd7h161ap++Tn58PLywvbtm3D+fPnMWXKFIwfP77MKWfjxo3DsWPHcOXKFd22Cxcu4OzZsxg7diwAYO3atZg1axY+//xzxMXFYd68efj444+xatWqCmfPzs7GmjVr0Lx5czRo0EC33dLSEqGhoYiNjcXixYvx008/4ZtvvgEAeHh4wNfXFytXrix2rpUrV2LSpEmQy+W4f/8+Bg4ciM6dO+PEiROIjo5GSkoKRo8eDQBISkrCs88+i+effx5xcXHYt28fRo4cWeG7v+Xl5WH16tUAoJvKptVqsX79eowbNw5OTk7F9jc1NcVrr72GHTt2ID09Henp6YiOjsbUqVNhbm5e4vzlLR35ww8/YOrUqZgyZQrOnTuHqKgoNG/evEK5HzVjxgx88cUXiIuLQ0hICLp27Vrix9Vr167Vfd6P+56W5uzZs8jIyChxAXZhYSHmzp2LM2fOYPPmzUhISCg2Kllaxg4dOmD+/PlYvXo1li1bhgsXLuCdd97Bc889h/379wN48Bm4ubkhLCwMsbGxmDVrFj744ANs3Lix3O+FhYVFuV+vvPJKmcceOXIE7du3h6Ojo26bv78/MjMzceHChVKPKSgogFKpLPaT44frWx86dAgA0LJlSzRo0AC//PIL1Go18vLy8Msvv6B169bw8PDQHdeoUSM4OjqWOuWlSj227lajxMREAUD89ddfxba/++67pf6rWwghjI2NS/yLfcmSJcLBwaHU/WfPni0AlPiqqZFZV1chzMxyRNeu12rk9Yio7ilt9MLVVQig5r9cXSue+9GRzh49eojnn39eCFFyZLY0Q4YMEf/5z390jx8dmRVCiI4dO4pPP/1U93jmzJnC29tb97hZs2Yl/q6YO3eu6NmzZ7l5FQqFMDc3F+bm5gKAcHZ2FidPniw364IFC4SXl5fu8YYNG4Stra3Iz88XQghx8uRJIZPJxLVr13Q5Bg0aVOwcN2/eFABEfHy8OHnypAAgEhISyn3dhx6OeJqamgpzc3Mhk8kEAOHl5aUbMU5OThYAxDfffFPqOSIjIwUAcfToUXH06FEBQERGRlbo9R/l4uIiPvzww3JzVmRkdvPmzcWO/eabb0SzZs10j+Pj44uN1j7ue1qaTZs2CYVCIbRabbnv6eEoZFZWVpkZ8/PzhZmZWYk+88ILL4hnn322zHNPnTpVBAcHl/v6//zzT7lfj44a/9tLL71U4vuSk5OjG1kuzfnz54WRkZH473//KwoKCkR6eroIDg4WAMS8efN0+507d040a9ZMyOVyIZfLRcuWLUv9Pdu5c2fxySeflPpaVTUyW+eX5po5cyamTZume5yZmQl3d/cae/0H/wA2gxAeNfaaRFT3/Wtwrda/7pdffomBAwdi+vTpJZ7TaDSYN28eNm7ciMTERKjVahQUFMDMzKzM840bNw4rVqzAxx9/DCEEfvvtN92f9Tk5Obhy5QpeeOEFvPTSS7pjioqKYG1tXW7OAQMG4IcffgDw4BbjS5cuxeDBg3Hs2DE0btwYwINrPb799ltcuXIF2dnZKCoqgpWVle4cQUFBmDp1KjZt2oRnnnkGoaGhGDBggG7E6syZM9i7d2+p8zSvXLmCQYMGwcfHB+3bt4e/vz8GDRqEkJAQ2Nralpt9w4YNaNWqFc6fP4/33nsPoaGhMDY2LraPqMDobkX2KU1qaipu374NHx+fSh3/qH+Plj7zzDOYPn06/v77b/To0QNr165Fly5ddHfKfNz31NPTs8T2vLw8qFSqEhcjnjx5Ep988gnOnDmDe/fu6a7Gv3HjBtq0aVNqxsuXLyM3Nxd+fn7FzqVWq9G5c2fd4yVLlmDFihW4ceMG8vLyoFar0alTp3K/F5UZ2X4Sbdu2xapVqzBt2jTMnDkTCoUCb775JhwdHXWjtXl5eXjhhRfQu3dv/Pbbb9BoNPjqq68wZMgQHD9+vNidCk1NTZGbm1utmSUts/b29lAoFMUmqANASkpKiR+DPOTk5KTX/iqVCiqVqmoCV8KJE5K9NBHVYYb2Z8tTTz0Ff39/zJw5s8SPbBcsWIDFixdj0aJFaN++PczNzfH2229DrVaXeb5nn30W77//Pk6dOoW8vDzcvHkTY8aMAQDdVdc//fQTvL29ix33uJvSmJubFysPP//8M6ytrfHTTz/hs88+w5EjRzBu3DjMmTMH/v7+sLa2xvr167Fw4ULdMUqlEhMmTMDKlSsxcuRIrFu3DosXL9Y9n52djcDAQHz55ZclXt/Z2RkKhQI7d+7EX3/9hT///BPfffcdPvzwQxw9ehRNmjQpM7u7uztatGiBFi1aoKioCCNGjMD58+ehUqnQsGFD2NjYIC4urtRj4+LiIJPJdO9dJpPh4sWL5X6v/u1xt1p+WIQeLcuPXiz0qH9Pb3BycsLAgQOxbt069OjRA+vWrcOrr76qe/5x39PS2NvbIzc3F2q1WjcdIycnB/7+/vD398fatWvRsGFD3LhxA/7+/iV+Pz6a8eHvuW3btunWj3/oYQdZv349pk+fjoULF6Jnz56wtLTEggULcPTo0VLzPfS4i9Oee+45LFu2rNTnnJycSkzXedihyupNADB27FiMHTsWKSkpMDc3h0wmw9dff42mTZsCANatW4eEhAQcOXJE97muW7cOtra22LJlC5555hndudLT09GwYcNy38OTkrTMKpVKeHl5Yffu3QgKCgLwYE7J7t278frrr5d6TM+ePbF79+5i6w3u3LkTPXv2rIHERERUWV988QU6deqEli1bFtt++PBhDB8+HM899xyAB38PXLp0qdgo2L+5ubmhX79+WLt2LfLy8uDn5wcHBwcAgKOjI1xcXHD16lWMGzfuiTLLZDLI5XLk5eUBeLCiTuPGjfHhhx/q9rl+/XqJ41588UW0a9cOS5cuRVFREUaOHKl7rkuXLoiIiICHhweMjEr/a1gmk6F3797o3bs3Zs2ahcaNG2PTpk3FftJYnpCQEMyaNQtLly7FO++8A7lcjtGjR2Pt2rX49NNPixWZvLw8LF26FP7+/rCzswPwYF7lkiVL8Oabb5Yolvfv3y913qylpSU8PDywe/duDBgwoMTzDwtNUlKSbrQyJiamQu8HeDAa/9577+HZZ5/F1atXixWminxP/+3hiGhsbKzu1xcvXsTdu3fxxRdf6H6Ke6IC/3Js06YNVCoVbty4gX79+pW6z+HDh9GrVy+89tprum2Pzvsuy+O+R4/+VODfevbsic8//xypqam6/z927twJKyurcv//eujhXNsVK1bAxMREN/Kcm5sLuVxebFT74eNH15XNz8/HlStXio1OV4vHTkSoZuvXrxcqlUqEhoaK2NhYMWXKFGFjY6O78m78+PFixowZuv0PHz4sjIyMxFdffSXi4uLE7NmzhbGxsTh37lyFXq+mVzMgInpShryawb9XBxg/frwwMTEpNmf2nXfeEe7u7uLw4cMiNjZWvPjii8LKyqrYsf+eMyvEg9UKXFxchL29vfj1119LPGdqaioWL14s4uPjxdmzZ8WKFSvEwoULy80bEBAgkpKSRFJSkoiNjRWvvfaakMlkujmdW7ZsEUZGRuK3334Tly9fFosXLxZ2dnbC2tq6xPl69eollEqleOWVV4ptT0xMFA0bNhQhISHi2LFj4vLlyyI6OlpMmjRJFBUVib///lt8/vnn4vjx4+L69eti48aNQqlUljnHsbS5qEIIsXTpUuHg4CBycnKEEA9WjWjWrJlo166d2L59u7hx44bYv3+/6Nu3r3BwcBBXrlzRHXvlyhXh5OQk2rRpI8LDw8WlS5dEbGysWLx4sWjVqlWZ38PQ0FBhYmIiFi9eLC5duiROnjwpvv32W93zPXr0EH379hWxsbFi3759onv37qXOmS1txYTMzExhamoqOnbsKHx8fPT6npalS5cu4rvvvtM9Tk1NFUqlUrz77rviypUrYsuWLcLT07PY97esjB9++KFo0KCBCA0NFZcvX9a999DQUCGEEIsXLxZWVlYiOjpaxMfHi48++khYWVmJjh07lpnvSRUVFYl27dqJQYMGiZiYGBEdHS0aNmwoZs6cqdvn6NGjomXLluLWrVu6bd999504efKkiI+PF99//73u/6WH4uLihEqlEq+++qqIjY0V58+fF88995ywtrYWt2/f1u23d+9eYWFhofs9+G9VNWdW8jIrxINvWqNGjYRSqRTdu3cXf//9t+65fv36iYkTJxbbf+PGjcLT01MolUrRtm1bsW3btgq/FsssERmaulRmr127JpRKZbEye/fuXTF8+HBhYWEhHBwcxEcffSQmTJjw2DJ77949oVKphJmZme7inEetXbtWdOrUSSiVSmFrayueeuqpci9qmjhxYrELhS0tLUW3bt1EeHh4sf3effdd0aBBA2FhYSHGjBkjvvnmm1LL7C+//CIAiGPHjpV47tKlS2LEiBHCxsZGmJqailatWom3335baLVaERsbK/z9/UXDhg2FSqUSnp6exQrXv5VVZnNycoStra348ssvddvu3Lkj3njjDeHu7i6MjY2Fo6OjmDRpkrh+/XqJ896+fVtMnTpVNG7cWCiVSuHq6iqGDRumK55lWbZsmWjZsqUwNjYWzs7O4o033tA9FxsbK3r27ClMTU1Fp06dxJ9//lnhMivEg+U5AYgVK1aUeK6872lZli5dKnr06FFs27p164SHh4dQqVSiZ8+eIioqqkJlVqvVikWLFunee8OGDYW/v7/Yv3+/EOLBRWKTJk0S1tbWwsbGRrz66qtixowZ1VpmhRAiISFBDB48WJiamgp7e3vxn//8RxQWFuqef/h+Hl6gKMSDf3Ta2dkJpVIpOnToIFavXl3ivH/++afo3bu3sLa2Fra2tmLgwIHiyJEjxfaZMmVKuUunVlWZlQlRyZneBiozMxPW1tbIyMgod2ieiKi2yM/Px7Vr19CkSROYmJhIHYcqaO7cuQgLC6v1dxCrz/Ly8tCyZUts2LCB0xWrWFpaGlq2bIkTJ06UOde7vD/b9OlrvP0UERFRFcrOzsb58+fx/fff44033pA6DpXD1NQUq1evRlpamtRR6pyEhAQsXbq03IsWq0qdX5qLiIioJr3++uv47bffEBQUhOeff17qOPQY/fv3lzpCndS1a9cSS6xVF5ZZIiKiKhQaGorQ0FCpYxDVG5xmQEREREQGi2WWiMhA1LPrdYmojquqP9NYZomIarmHd60q745YRESG5uGfaY+7M9/jcM4sEVEtZ2RkBDMzM9y5cwfGxsa620cSERkqrVaLO3fuwMzMrMJ3bSsLyywRUS0nk8ng7OyMa9eulXrrVCIiQySXy9GoUaNit8WtDJZZIiIDoFQq0aJFC041IKI6Q6lUVslPmlhmiYgMhFwu5x3AiIj+hROviIiIiMhgscwSERERkcFimSUiIiIig1Xv5sw+XKA3MzNT4iREREREVJqHPa0iN1aod2U2KysLAODu7i5xEiIiIiIqT1ZWFqytrcvdRybq2f0RtVotbt++DUtLyyde16wiMjMz4e7ujps3b8LKyqraX4+qHj9Dw8fP0PDxMzRs/PwMX01/hkIIZGVlwcXF5bHLd9W7kVm5XA43N7caf10rKyv+D2zg+BkaPn6Gho+foWHj52f4avIzfNyI7EO8AIyIiIiIDBbLLBEREREZLJbZaqZSqTB79myoVCqpo1Al8TM0fPwMDR8/Q8PGz8/w1ebPsN5dAEZEREREdQdHZomIiIjIYLHMEhEREZHBYpklIiIiIoPFMktEREREBotltgosWbIEHh4eMDExgbe3N44dO1bu/mFhYWjVqhVMTEzQvn17bN++vYaSUln0+Qx/+ukn9O3bF7a2trC1tYWvr+9jP3Oqfvr+f/jQ+vXrIZPJEBQUVL0B6bH0/Qzv37+PqVOnwtnZGSqVCp6envzzVEL6fn6LFi1Cy5YtYWpqCnd3d7zzzjvIz8+vobT0bwcOHEBgYCBcXFwgk8mwefPmxx6zb98+dOnSBSqVCs2bN0doaGi15yyVoCeyfv16oVQqxYoVK8SFCxfESy+9JGxsbERKSkqp+x8+fFgoFArx3//+V8TGxoqPPvpIGBsbi3PnztVwcnpI389w7NixYsmSJeL06dMiLi5OTJo0SVhbW4tbt27VcHJ6SN/P8KFr164JV1dX0bdvXzF8+PCaCUul0vczLCgoEF27dhVPP/20OHTokLh27ZrYt2+fiImJqeHkJIT+n9/atWuFSqUSa9euFdeuXRM7duwQzs7O4p133qnh5PTQ9u3bxYcffigiIyMFALFp06Zy97969aowMzMT06ZNE7GxseK7774TCoVCREdH10zgR7DMPqHu3buLqVOn6h5rNBrh4uIi5s+fX+r+o0ePFkOGDCm2zdvbW7z88svVmpPKpu9n+G9FRUXC0tJSrFq1qroi0mNU5jMsKioSvXr1Ej///LOYOHEiy6zE9P0Mf/jhB9G0aVOhVqtrKiKVQ9/Pb+rUqWLgwIHFtk2bNk307t27WnNSxVSkzL733nuibdu2xbaNGTNG+Pv7V2Oy0nGawRNQq9U4efIkfH19ddvkcjl8fX1x5MiRUo85cuRIsf0BwN/fv8z9qXpV5jP8t9zcXBQWFsLOzq66YlI5KvsZfvrpp3BwcMALL7xQEzGpHJX5DKOiotCzZ09MnToVjo6OaNeuHebNmweNRlNTsen/Vebz69WrF06ePKmbinD16lVs374dTz/9dI1kpidXm/qMUY2/Yh2SlpYGjUYDR0fHYtsdHR1x8eLFUo9JTk4udf/k5ORqy0llq8xn+G/vv/8+XFxcSvxPTTWjMp/hoUOH8MsvvyAmJqYGEtLjVOYzvHr1Kvbs2YNx48Zh+/btuHz5Ml577TUUFhZi9uzZNRGb/l9lPr+xY8ciLS0Nffr0gRACRUVFeOWVV/DBBx/URGSqAmX1mczMTOTl5cHU1LTGsnBklugJfPHFF1i/fj02bdoEExMTqeNQBWRlZWH8+PH46aefYG9vL3UcqiStVgsHBwf8+OOP8PLywpgxY/Dhhx9i2bJlUkejCti3bx/mzZuHpUuX4tSpU4iMjMS2bdswd+5cqaORAeLI7BOwt7eHQqFASkpKse0pKSlwcnIq9RgnJye99qfqVZnP8KGvvvoKX3zxBXbt2oUOHTpUZ0wqh76f4ZUrV5CQkIDAwEDdNq1WCwAwMjJCfHw8mjVrVr2hqZjK/H/o7OwMY2NjKBQK3bbWrVsjOTkZarUaSqWyWjPT/1Tm8/v4448xfvx4vPjiiwCA9u3bIycnB1OmTMGHH34IuZxjbbVdWX3GysqqRkdlAY7MPhGlUgkvLy/s3r1bt02r1WL37t3o2bNnqcf07Nmz2P4AsHPnzjL3p+pVmc8QAP773/9i7ty5iI6ORteuXWsiKpVB38+wVatWOHfuHGJiYnRfw4YNw4ABAxATEwN3d/eajE+o3P+HvXv3xuXLl3X/EAGAS5cuwdnZmUW2hlXm88vNzS1RWB/+w0QIUX1hqcrUqj5T45ec1THr168XKpVKhIaGitjYWDFlyhRhY2MjkpOThRBCjB8/XsyYMUO3/+HDh4WRkZH46quvRFxcnJg9ezaX5pKYvp/hF198IZRKpQgPDxdJSUm6r6ysLKneQr2n72f4b1zNQHr6foY3btwQlpaW4vXXXxfx8fFi69atwsHBQXz22WdSvYV6Td/Pb/bs2cLS0lL89ttv4urVq+LPP/8UzZo1E6NHj5bqLdR7WVlZ4vTp0+L06dMCgPj666/F6dOnxfXr14UQQsyYMUOMHz9et//DpbneffddERcXJ5YsWcKluQzZd999Jxo1aiSUSqXo3r27+Pvvv3XP9evXT0ycOLHY/hs3bhSenp5CqVSKtm3bim3bttVwYvo3fT7Dxo0bCwAlvmbPnl3zwUlH3/8PH8UyWzvo+xn+9ddfwtvbW6hUKtG0aVPx+eefi6KiohpOTQ/p8/kVFhaKTz75RDRr1kyYmJgId3d38dprr4l79+7VfHASQgixd+/eUv9ue/i5TZw4UfTr16/EMZ06dRJKpVI0bdpUrFy5ssZzCyGETAiO5xMRERGRYeKcWSIiIiIyWCyzRERERGSwWGaJiIiIyGCxzBIRERGRwWKZJSIiIiKDxTJLRERERAaLZZaIiIiIDBbLLBEREREZLJZZIiIAoaGhsLGxkTpGpclkMmzevLncfSZNmoSgoKAayUNEVFNYZomozpg0aRJkMlmJr8uXL0sdDaGhobo8crkcbm5umDx5MlJTU6vk/ElJSRg8eDAAICEhATKZDDExMcX2Wbx4MUJDQ6vk9cryySef6N6nQqGAu7s7pkyZgvT0dL3Ow+JNRBVlJHUAIqKqFBAQgJUrVxbb1rBhQ4nSFGdlZYX4+HhotVqcOXMGkydPxu3bt7Fjx44nPreTk9Nj97G2tn7i16mItm3bYteuXdBoNIiLi8Pzzz+PjIwMbNiwoUZen4jqF47MElGdolKp4OTkVOxLoVDg66+/Rvv27WFubg53d3e89tpryM7OLvM8Z86cwYABA2BpaQkrKyt4eXnhxIkTuucPHTqEvn37wtTUFO7u7njzzTeRk5NTbjaZTAYnJye4uLhg8ODBePPNN7Fr1y7k5eVBq9Xi008/hZubG1QqFTp16oTo6GjdsWq1Gq+//jqcnZ1hYmKCxo0bY/78+cXO/XCaQZMmTQAAnTt3hkwmQ//+/QEUH+388ccf4eLiAq1WWyzj8OHD8fzzz+seb9myBV26dIGJiQmaNm2KOXPmoKioqNz3aWRkBCcnJ7i6usLX1xejRo3Czp07dc9rNBq88MILaNKkCUxNTdGyZUssXrxY9/wnn3yCVatWYcuWLbpR3n379gEAbt68idGjR8PGxgZ2dnYYPnw4EhISys1DRHUbyywR1QtyuRzffvstLly4gFWrVmHPnj147733ytx/3LhxcHNzw/Hjx3Hy5EnMmDEDxsbGAIArV64gICAAwcHBOHv2LDZs2IBDhw7h9ddf1yuTqakptFotioqKsHjxYixcuBBfffUVzp49C39/fwwbNgz//PMPAODbb79FVFQUNm7ciPj4eKxduxYeHh6lnvfYsWMAgF27diEpKQmRkZEl9hk1ahTu3r2LvXv36ralp6cjOjoa48aNAwAcPHgQEyZMwFtvvYXY2FgsX74coaGh+Pzzzyv8HhMSErBjxw4olUrdNq1WCzc3N4SFhSE2NhazZs3CBx98gI0bNwIApk+fjtGjRyMgIABJSUlISkpCr169UFhYCH9/f1haWuLgwYM4fPgwLCwsEBAQALVaXeFMRFTHCCKiOmLixIlCoVAIc3Nz3VdISEip+4aFhYkGDRroHq9cuVJYW1vrHltaWorQ0NBSj33hhRfElClTim07ePCgkMvlIi8vr9Rj/n3+S5cuCU9PT9G1a1chhBAuLi7i888/L3ZMt27dxGuvvSaEEOKNN94QAwcOFFqtttTzAxCbNm0SQghx7do1AUCcPn262D4TJ04Uw4cP1z0ePny4eP7553WPly9fLlxcXIRGoxFCCOHj4yPmzZtX7By//vqrcHZ2LjWDEELMnj1byOVyYW5uLkxMTAQAAUB8/fXXZR4jhBBTp04VwcHBZWZ9+NotW7Ys9j0oKCgQpqamYseOHeWen4jqLs6ZJaI6ZcCAAfjhhx90j83NzQE8GKWcP38+Ll68iMzMTBQVFSE/Px+5ubkwMzMrcZ5p06bhxRdfxK+//qr7UXmzZs0APJiCcPbsWaxdu1a3vxACWq0W165dQ+vWrUvNlpGRAQsLC2i1WuTn56NPnz74+eefkZmZidu3b6N3797F9u/duzfOnDkD4MEUAT8/P7Rs2RIBAQEYOnQoBg0a9ETfq3HjxuGll17C0qVLoVKpsHbtWjzzzDOQy+W693n48OFiI7Eajabc7xsAtGzZElFRUcjPz8eaNWsQExODN954o9g+S5YswYoVK3Djxg3k5eVBrVajU6dO5eY9c+YMLl++DEtLy2Lb8/PzceXKlUp8B4ioLmCZJaI6xdzcHM2bNy+2LSEhAUOHDsWrr76Kzz//HHZ2djh06BBeeOEFqNXqUkvZJ598grFjx2Lbtm34448/MHv2bKxfvx4jRoxAdnY2Xn75Zbz55psljmvUqFGZ2SwtLXHq1CnI5XI4OzvD1NQUAJCZmfnY99WlSxdcu3YNf/zxB3bt2oXRo0fD19cX4eHhjz22LIGBgRBCYNu2bejWrRsOHjyIb775Rvd8dnY25syZg5EjR5Y41sTEpMzzKpVK3WfwxRdfYMiQIZgzZw7mzp0LAFi/fj2mT5+OhQsXomfPnrC0tMSCBQtw9OjRcvNmZ2fDy8ur2D8iHqotF/kRUc1jmSWiOu/kyZPQarVYuHChbtTx4fzM8nh6esLT0xPvvPMOnn32WaxcuRIjRoxAly5dEBsbW6I0P45cLi/1GCsrK7i4uODw4cPo16+fbvvhw4fRvXv3YvuNGTMGY8aMQUhICAICApCeng47O7ti53s4P1Wj0ZSbx8TEBCNHjsTatWtx+fJltGzZEl26dNE936VLF8THx+v9Pv/to48+wsCBA/Hqq6/q3mevXr3w2muv6fb598iqUqkskb9Lly7YsGEDHBwcYGVl9USZiKju4AVgRFTnNW/eHIWFhfjuu+9w9epV/Prrr1i2bFmZ++fl5eH111/Hvn37cP36dRw+fBjHjx/XTR94//338ddff+H1119HTEwM/vnnH2zZskXvC8Ae9e677+LLL7/Ehg0bEB8fjxkzZiAmJgZvvfUWAODrr7/+v/buHxT6OA7g+FssjEK6AcuR4qTuwmCxyHR1A+XKItmusHJ1i2KgbEoGJcomdEz+ZGJS4n4LxaLcYFOGe4anR889PQaWp5/n/Vp//fp+v9u7T78/bG1tcXt7SxAE7Ozs0NjY+NcfPTQ0NFBdXU0+n+fp6YmXl5cP102n0+zv77O+vv7+4tcv2WyWjY0Ncrkc19fX3NzcsL29zezs7KfO1tfXRywWY35+HoBoNMrl5SWHh4cEQcDc3BwXFxdl97S0tHB1dUWhUOD5+Zm3tzfS6TR1dXUkk0nOzs64u7vj+PiYTCbD4+Pjp/Yk6fswZiV9e11dXSwtLbGwsEBHRwebm5tln7X6U2VlJcVikbGxMVpbWxkeHmZoaIhcLgdALBbj5OSEIAjo7++nu7ubbDZLJBL58h4zmQzT09PMzMzQ2dlJPp9nd3eXaDQK/HxEYXFxkXg8TiKR4P7+noODg/dJ8++qqqpYWVlhdXWVSCRCMpn8cN2BgQFqa2spFAqMjo6WXRscHGRvb4+joyMSiQS9vb0sLy/T3Nz86fNNTU2xtrbGw8MDk5OTpFIpRkZG6OnpoVgslk1pASYmJmhrayMej1NfX8/5+Tk1NTWcnp7S1NREKpWivb2d8fFxXl9fndRK/7GKUqlU+tebkCRJkr7CyawkSZJCy5iVJElSaBmzkiRJCi1jVpIkSaFlzEqSJCm0jFlJkiSFljErSZKk0DJmJUmSFFrGrCRJkkLLmJUkSVJoGbOSJEkKrR/jv6ACgZ9FFwAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 600x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAIjCAYAAABS7iKKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOD1JREFUeJzt3XmcjXXj//H3mTEzZrfO2PdsYQhJWSNTIutdty1rSRQyxPe2jW2KCJW1hSZEtoRuyVIRkq0SQsYWBmMbw4yZc/3+6Dfn7jQzzIcZ58jr+Xh49DjX+jnHjF5znc91xmZZliUAAAADHq4eAAAAuPcQEAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQuG/FxMTIZrNpzpw5Rvs1aNBADRo0yJYx4c6cOXNGbdu2Vd68eWWz2TR58uQsP4fNZtPIkSOz/Lj3qi5duqhEiRKuHgZcgICAy8yZM0c2m83xJ2fOnCpUqJDCw8M1depUXblyxdVDdBslSpRweq0y+mMaQ9nhzJkzioiIUPny5eXn5yd/f39Vr15dY8aM0cWLF7P13P3799eaNWs0ZMgQRUdH68knn8zW891NI0eOlM1mk4eHh44fP55m/eXLl+Xr6yubzaY+ffoYHz8hIUEjR47Uxo0bs2C0uB/kcPUAgFGjRqlkyZK6ceOGTp8+rY0bN6pfv36aNGmSVqxYoSpVqmTLeYsXL65r167Jy8vLaL+vvvoqW8ZzM5MnT1Z8fLzj8erVq7VgwQK9/fbbypcvn2P5o48+etfH9lfbt29X06ZNFR8fr44dO6p69eqSpB9//FFvvPGGvv3222x9/davX68WLVooIiIi285x7do15cjhun86fXx8tGDBAg0aNMhp+dKlS+/ouAkJCYqMjJQkoytss2fPlt1uv6Nz495EQMDlnnrqKdWoUcPxeMiQIVq/fr2aNWumZ555Rvv27ZOvr2+Wnzf1qocpb2/vLB/LrbRs2dLp8enTp7VgwQK1bNnyppePr169Kn9//+wd3P938eJFtWrVSp6entq1a5fKly/vtH7s2LGaPXt2to4hNjZWuXLlytZz3M7XTFZq2rRpugExf/58Pf3001qyZMldGUfq15ZpgOOfg7cw4JYef/xxDRs2TEePHtUnn3zitG7//v1q27at8uTJo5w5c6pGjRpasWJFmmNcvHhR/fv3V4kSJeTj46MiRYro+eef17lz5ySlPwfi9OnT6tq1q4oUKSIfHx8VLFhQLVq0UExMjGOb9OZAxMbGqnv37goNDVXOnDkVFhamuXPnOm2Ter633npLs2bNUunSpeXj46OaNWtq+/btd/aC6c/3ogMCAnT48GE1bdpUgYGB6tChgyTJbrdr8uTJevDBB5UzZ06FhoaqZ8+eunDhQprjfPnll6pbt678/f0VGBiop59+Wnv37r3l+WfOnKmTJ09q0qRJaeJBkkJDQzV06FCnZdOmTdODDz4oHx8fFSpUSL17907zNkeDBg1UqVIl/frrr2rYsKH8/PxUuHBhjR8/3rFN6tthlmXpvffec7ylI/3v0v/fpe7z17/bH3/8UeHh4cqXL598fX1VsmRJdevWzWm/9OZA7Nq1S0899ZSCgoIUEBCgRo0aaevWremeb/PmzXrttdeUP39++fv7q1WrVjp79myGr+vftW/fXrt379b+/fsdy06fPq3169erffv2abZPSkrS8OHDVb16dQUHB8vf319169bVhg0bHNvExMQof/78kqTIyEjH65f6PG/2tfX3ORAjRoyQh4eH1q1b5zSOF198Ud7e3tqzZ0+mnyvcGwEBt9WpUydJzm8Z7N27V4888oj27dunwYMHa+LEifL391fLli21bNkyx3bx8fGqW7eu3nnnHTVp0kRTpkzRSy+9pP379+vEiRMZnrNNmzZatmyZunbtqmnTpunVV1/VlStXdOzYsQz3uXbtmho0aKDo6Gh16NBBEyZMUHBwsLp06aIpU6ak2X7+/PmaMGGCevbsqTFjxigmJkatW7fWjRs3budlcpKcnKzw8HCFhITorbfeUps2bSRJPXv21MCBA/XYY49pypQp6tq1q+bNm6fw8HCn80ZHR+vpp59WQECA3nzzTQ0bNky//vqr6tSp4/Q/2vSsWLFCvr6+atu2babGOnLkSPXu3VuFChXSxIkT1aZNG82cOVNNmjRJ81pcuHBBTz75pMLCwjRx4kSVL19er7/+ur788ktJUr169RQdHS1JeuKJJxQdHe14nFmxsbFq0qSJYmJiNHjwYL3zzjvq0KFDmhD4u71796pu3bras2ePBg0apGHDhunIkSNq0KCBtm3blmb7V155RXv27NGIESPUq1cvffHFF0ZzFurVq6ciRYpo/vz5jmULFy5UQECAnn766TTbX758We+//74aNGigN998UyNHjtTZs2cVHh6u3bt3S5Ly58+v6dOnS5JatWrleP1at27tOE5GX1t/N3ToUFWtWlXdu3d3zGNas2aNZs+ereHDhyssLCzTzxVuzgJc5KOPPrIkWdu3b89wm+DgYKtatWqOx40aNbIqV65sXb9+3bHMbrdbjz76qPXAAw84lg0fPtySZC1dujTNMe12u2VZlnXkyBFLkvXRRx9ZlmVZFy5csCRZEyZMuOm469evb9WvX9/xePLkyZYk65NPPnEsS0pKsmrXrm0FBARYly9fdjpf3rx5rbi4OMe2n3/+uSXJ+uKLL2563r+aMGGCJck6cuSIY1nnzp0tSdbgwYOdtv3uu+8sSda8efOclv/3v/91Wn7lyhUrV65c1gsvvOC03enTp63g4OA0y/8ud+7cVlhYWKbGHxsba3l7e1tNmjSxUlJSHMvfffddS5L14YcfOpbVr1/fkmR9/PHHjmWJiYlWgQIFrDZt2jgdV5LVu3dvp2UjRoyw0vunLvXrL/U1XLZs2S2/HlPPMWLECMfjli1bWt7e3tbhw4cdy/744w8rMDDQqlevXprzNW7c2PE1aFmW1b9/f8vT09O6ePHiTc+b+jzOnj1rRUREWGXKlHGsq1mzptW1a9d0X4Pk5GQrMTHR6VgXLlywQkNDrW7dujmWnT17Ns1zS5XR11bquuLFizst+/nnny1vb2+rR48e1oULF6zChQtbNWrUsG7cuHHT54h7C1cg4NYCAgIcP8XExcVp/fr1evbZZ3XlyhWdO3dO586d0/nz5xUeHq6DBw/q5MmTkqQlS5YoLCxMrVq1SnPM9C5nS5Kvr6+8vb21cePGdC/tZ2T16tUqUKCA2rVr51jm5eWlV199VfHx8frmm2+ctn/uueeUO3dux+O6detKkn7//fdMn/NmevXq5fT4s88+U3BwsJ544gnHa3bu3DlVr15dAQEBjkvZa9eu1cWLF9WuXTun7Tw9PVWrVi2nS97puXz5sgIDAzM1xq+//lpJSUnq16+fPDz+98/QCy+8oKCgIK1atcpp+4CAAHXs2NHx2NvbWw8//HCWvWaSHHMnVq5cmemrQSkpKfrqq6/UsmVLlSpVyrG8YMGCat++vTZt2qTLly877fPiiy86fQ3WrVtXKSkpOnr0aKbH2r59ex06dEjbt293/De9ty8kydPT0zFvx263Ky4uTsnJyapRo4Z27tyZ6XNKab+2MlKpUiVFRkbq/fffV3h4uM6dO6e5c+e6dPIpsh4BAbcWHx/v+J/SoUOHZFmWhg0bpvz58zv9GTFihKQ/L0NL0uHDh1WpUiWjc/n4+OjNN9/Ul19+qdDQUNWrV0/jx4/X6dOnb7rf0aNH9cADDzj9j1CSKlSo4Fj/V8WKFXN6nBoTJtGSkRw5cqhIkSJOyw4ePKhLly4pJCQkzesWHx/veM0OHjwo6c/5J3/f7quvvnJsl5GgoKBM33qb+pqUK1fOabm3t7dKlSqV5jUrUqRImvDLnTt3lrxmqerXr682bdooMjJS+fLlU4sWLfTRRx8pMTExw33Onj2rhISENM9D+vPv3263p7nlMiv+/qtVq6by5ctr/vz5mjdvngoUKKDHH388w+3nzp2rKlWqKGfOnMqbN6/y58+vVatW6dKlS5k+Z3pfWzczcOBAhYWF6YcfftCIESNUsWLFTO+LewM5CLd14sQJXbp0SWXKlJEkx61iERERCg8PT3ef1G1vV79+/dS8eXMtX75ca9as0bBhwxQVFaX169erWrVqd3TsVJ6enukutyzrjo/t4+OTJmTsdrtCQkI0b968dPdJnTyX+vpGR0erQIECaba71U+P5cuX1+7du5WUlJTld6rcyWuW0RWnlJSUNNstXrxYW7du1RdffKE1a9aoW7dumjhxorZu3aqAgADzgacjq/7+27dvr+nTpyswMFDPPfdcmr/3VJ988om6dOmili1bauDAgQoJCZGnp6eioqJ0+PDhTJ8vva+tm/n9998dUfrzzz9nej/cOwgIuK3USXCpsZB6idjLy0uNGze+6b6lS5fWL7/8clvnLV26tAYMGKABAwbo4MGDqlq1qiZOnJjmbpBUxYsX108//SS73e70D2zqLPnixYvf1jiySunSpfX111/rscceu+ntsKVLl5YkhYSE3PL1TU/z5s21ZcsWLVmyxOntnPSkviYHDhxwuvSflJSkI0eO3Nb5M5L6E/7FixedbvHM6C2DRx55RI888ojGjh2r+fPnq0OHDvr000/Vo0ePNNvmz59ffn5+OnDgQJp1+/fvl4eHh4oWLZo1T+Rv2rdvr+HDh+vUqVM3nTC6ePFilSpVSkuXLnWKqdSrdqkyCq3bYbfb1aVLFwUFBalfv34aN26c2rZt6zQpE/c+3sKAW1q/fr1Gjx6tkiVLOm4XCwkJUYMGDTRz5kydOnUqzT5/vRWuTZs22rNnj9OdGaky+kkvISFB169fd1pWunRpBQYG3vQydtOmTXX69GktXLjQsSw5OVnvvPOOAgICVL9+/Zs/2Wz27LPPKiUlRaNHj06zLjk52XHbZHh4uIKCgjRu3Lh05wDc6lbDl156SQULFtSAAQP022+/pVkfGxurMWPGSJIaN24sb29vTZ061env44MPPtClS5fSvZvgdqWG0bfffutYdvXq1TS32V64cCHN10bVqlUlKcO/f09PTzVp0kSff/65010qZ86c0fz581WnTh0FBQVlwbNIq3Tp0po8ebKioqL08MMPZ7hd6hWPvz63bdu2acuWLU7b+fn5SVKWfFropEmT9P3332vWrFkaPXq0Hn30UfXq1ctxCzX+GbgCAZf78ssvtX//fiUnJ+vMmTNav3691q5dq+LFi2vFihVOH9zz3nvvqU6dOqpcubJeeOEFlSpVSmfOnNGWLVt04sQJxz3mAwcO1OLFi/Wvf/1L3bp1U/Xq1RUXF6cVK1ZoxowZ6d5K9ttvv6lRo0Z69tlnVbFiReXIkUPLli3TmTNn9O9//zvD8b/44ouaOXOmunTpoh07dqhEiRJavHixNm/erMmTJ2d6YmF2qV+/vnr27KmoqCjt3r1bTZo0kZeXlw4ePKjPPvtMU6ZMUdu2bRUUFKTp06erU6dOeuihh/Tvf/9b+fPn17Fjx7Rq1So99thjevfddzM8T+7cubVs2TI1bdpUVatWdfokyp07d2rBggWqXbu2pD9/ch8yZIgiIyP15JNP6plnntGBAwc0bdo01axZ02nC5J1q0qSJihUrpu7du2vgwIHy9PTUhx9+6HhuqebOnatp06apVatWKl26tK5cuaLZs2crKChITZs2zfD4Y8aM0dq1a1WnTh29/PLLypEjh2bOnKnExESnz6rIDn379r3lNs2aNdPSpUvVqlUrPf300zpy5IhmzJihihUrOn26qa+vrypWrKiFCxeqbNmyypMnjypVqmQ8l2jfvn0aNmyYunTpoubNm0v68zMwqlatqpdfflmLFi0ye5JwX667AQT3u9Tb2lL/eHt7WwUKFLCeeOIJa8qUKY7bH//u8OHD1vPPP28VKFDA8vLysgoXLmw1a9bMWrx4sdN258+ft/r06WMVLlzY8vb2tooUKWJ17tzZOnfunGVZaW/jPHfunNW7d2+rfPnylr+/vxUcHGzVqlXLWrRokdNx/34bp2VZ1pkzZ6yuXbta+fLls7y9va3KlSs7jpsq9Xzp3SaqDG6fy0hGt3H6+/tnuM+sWbOs6tWrW76+vlZgYKBVuXJla9CgQdYff/zhtN2GDRus8PBwKzg42MqZM6dVunRpq0uXLtaPP/6YqbH98ccfVv/+/a2yZctaOXPmtPz8/Kzq1atbY8eOtS5duuS07bvvvmuVL1/e8vLyskJDQ61evXpZFy5ccNqmfv361oMPPpjmPOndPqh0buO0LMvasWOHVatWLcvb29sqVqyYNWnSpDS3ce7cudNq166dVaxYMcvHx8cKCQmxmjVrluZ5p/d3tXPnTis8PNwKCAiw/Pz8rIYNG1rff/+90zYZ3ba8YcMGS5K1YcOGNOP+q7/exnkzf38N7Ha7NW7cOKt48eKWj4+PVa1aNWvlypXpvn7ff/+9Vb16dcvb29vped7sa+uvx0lOTrZq1qxpFSlSJM1tqVOmTLEkWQsXLrzp+HHvsFlWFszcAgAA9xXmQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGP/yE+i9K3Wx9VDAHATcT9k/ImWAFzL1ytz23EFAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGMvh6gFIkmVZWrx4sTZs2KDY2FjZ7Xan9UuXLnXRyAAAQHrcIiD69eunmTNnqmHDhgoNDZXNZnP1kAAAwE24RUBER0dr6dKlatq0qauHAgAAMsEt5kAEBwerVKlSrh4GAADIJLcIiJEjRyoyMlLXrl1z9VAAAEAmuMVbGM8++6wWLFigkJAQlShRQl5eXk7rd+7c6aKRAQCA9LhFQHTu3Fk7duxQx44dmUR5nwjw89GIl5vpmcfDlD93gPYcOKGI8Yu149djkqRZkR3V6ZlHnPb5avOvatFnmuPxoO7heqrug6pStoiSkpNVsN6gu/ocgPvFB7Nnat3XXynmyO/yyZlTYVWrqV//CJUomfatZ8uy1KfXC9q86TtNmvKeHm/U2AUjxt3gFgGxatUqrVmzRnXq1HH1UHCXTB/eXhXLFFK3oXN16uwltWv6sFbNeEUPtRmjP85ekiSt2bxXPUd84tgnMSnZ6RjeXp5aunaXtv10RJ1b1r6r4wfuJzt+/EHPteugBytVVkpyit6ZMkm9XuyupZ+vkq+fn9O2n0TPlfgh8L7gFgFRtGhRBQUFuXoYuEty+nipZaOq+lf/Wdq887AkaezM1Wpar5Je+FddRU5bKUlKSkrWmfNXMjzOmBmrJUkdm9fK/kED97FpMz9wejxq7Bt6vF5t/frrXlWvUdOxfP/+fYqe+6HmL1yixg34gfCfzi0mUU6cOFGDBg1STEyMq4eCuyCHp4dy5PDU9aQbTsuvJ97Qo9VKOx7XrfGAjq6L0p5lwzTl/55TnmD/uz1UAOmIj/8z7IODgx3Lrl27pv8bNEBD/jNc+fLld9XQcBe5xRWIjh07KiEhQaVLl5afn1+aSZRxcXEZ7puYmKjExESnZZY9RTYPz2wZK+5cfEKitu75XUNeeEoHjpzRmfOX9eyTNVSrSkkdPn5WkrT2+336fP0exZw8r1JF8inyleb6/N1eqt95oux2y8XPALh/2e12TXhjnKpWe0hlHijrWP7W+CiFVa2mho8z5+F+4RYBMXny5NveNyoqSpGRkU7LPENryqvgw3c4KmSnbkM/1syRHfT7V2OVnJyi3fuPa9F/f1S1CsUkSZ+t2eHYdu+hP/TzwZPatzJS9Wo8oI0//OaqYQP3vagxkTp06KDmfDzfsWzjhnX6YdtWLVy8zIUjw93mFgHRuXPn2953yJAheu2115yWhdR9/U6HhGx25MQ5NekxRX45vRUUkFOnz11W9BtddeTkuXS3jzl5XmcvXFHpovkJCMBFosaO0rffbNSHcz9RaIECjuU/bNuqE8ePqW7tmk7bR/R/RdUeqqEP5kTf7aHiLnCLgPir69evKykpyWnZzSZY+vj4yMfHx2kZb1/cOxKuJynhepJyBfqq8aMV9J/Jn6e7XeGQXMob7K/T5y7f5RECsCxLb4wbrfXr1ur9j6JVuEhRp/Xderyo1m3+5bSsbavmihg0RPUbNLybQ8Vd5BYBcfXqVb3++utatGiRzp8/n2Z9SkqKC0aF7NS4dgXZbNJvMbEqXTS/xvVvqd+OnNHHK7bI39db/+nZVMvX7dbpc5dVqmg+je3bUoePn9Pa7/c5jlG0QG7lDvJT0YK55enhoSplC0uSDh8/q6vXkjI6NQBD48ZE6svVKzV56jT5+/vr3Lk/5yoFBAQqZ86cypcvf7oTJwsULJQmNvDP4RYBMWjQIG3YsEHTp09Xp06d9N577+nkyZOaOXOm3njjDVcPD9kgOCCnRr3yjAqH5lLcpQR9vm63Rrz3hZKT7crhaanSA4XVoXkt5Qr01amzl/T1lv0aNW2lkm7877MghvV62unDprYtHCJJatJjir7bcfCuPyfgn+qzhQskST26dnJaHjkmSi1atnbFkOAGbJZluXxKe7FixfTxxx+rQYMGCgoK0s6dO1WmTBlFR0drwYIFWr16tdHxfKv1yaaRAsgKcT+86+ohAMiAr9ett5Hc5HMg4uLiHL+NMygoyHHbZp06dfTtt9+6cmgAACAdbhEQpUqV0pEjRyRJ5cuX16JFiyRJX3zxhXLlyuXCkQEAgPS4RUB07dpVe/bskSQNHjxY7733nnLmzKn+/ftr4MCBLh4dAAD4O7eYA/F3R48e1Y4dO1SmTBlVqVLFeH/mQADujTkQgPvK7BwIt7gLQ5LWrVundevWKTY2Vna73Wndhx9+6KJRAQCA9LhFQERGRmrUqFGqUaOGChYsKBu/ChYAALfmFgExY8YMzZkzR506dbr1xgAAwOXcYhJlUlKSHn30UVcPAwAAZJJbBESPHj00f/78W28IAADcgsvewvjrb9C02+2aNWuWvv76a1WpUkVeXs5TQCdNmnS3hwcAAG7CZQGxa9cup8dVq1aVJP3yyy9Oy5lQCQCA+3FZQGzYsMFVpwYAAHfILeZAAACAewsBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwNhtBcR3332njh07qnbt2jp58qQkKTo6Wps2bcrSwQEAAPdkHBBLlixReHi4fH19tWvXLiUmJkqSLl26pHHjxmX5AAEAgPsxDogxY8ZoxowZmj17try8vBzLH3vsMe3cuTNLBwcAANyTcUAcOHBA9erVS7M8ODhYFy9ezIoxAQAAN2ccEAUKFNChQ4fSLN+0aZNKlSqVJYMCAADuzTggXnjhBfXt21fbtm2TzWbTH3/8oXnz5ikiIkK9evXKjjECAAA3k8N0h8GDB8tut6tRo0ZKSEhQvXr15OPjo4iICL3yyivZMUYAAOBmbJZlWbezY1JSkg4dOqT4+HhVrFhRAQEBWT222+ZbrY+rhwDgJuJ+eNfVQwCQAV+vW28j3cYViFTe3t6qWLHi7e4OAADuYcYB0bBhQ9lstgzXr1+//o4GBAAA3J9xQFStWtXp8Y0bN7R792798ssv6ty5c1aNCwAAuDHjgHj77bfTXT5y5EjFx8ff8YAAAID7y7JfptWxY0d9+OGHWXU4AADgxm57EuXfbdmyRTlz5syqw92RC9uZ4Q24s9jLia4eAoAMFMvjk6ntjAOidevWTo8ty9KpU6f0448/atiwYaaHAwAA9yDjgAgODnZ67OHhoXLlymnUqFFq0qRJlg0MAAC4L6MPkkpJSdHmzZtVuXJl5c6dOzvHdUeuJ7t6BABuhrcwAPeV2bcwjCZRenp6qkmTJvzWTQAA7nPGd2FUqlRJv//+e3aMBQAA3COMA2LMmDGKiIjQypUrderUKV2+fNnpDwAA+OfL9ByIUaNGacCAAQoMDPzfzn/5SGvLsmSz2ZSSkpL1ozTEHAjAvTEHAnBfmZ0DkemA8PT01KlTp7Rv376bble/fv1MnTg7ERCAeyMgAPeV5Z8DkdoZ7hAIAADAtYzmQNzst3ACAID7h9EHSZUtW/aWEREXF3dHAwIAAO7PKCAiIyPTfBIlAAC4/2R6EqWHh4dOnz6tkJCQ7B7THWMSJeDemEQJuK8s/yRK5j8AAIBUmQ4Ig1+ZAQAA/uEyPQfCbrdn5zgAAMA9xPijrAEAAAgIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMZyuHoA58+f1/Dhw7VhwwbFxsbKbrc7rY+Li3PRyAAAQEZcHhCdOnXSoUOH1L17d4WGhspms7l6SAAA4BZslmVZrhxAYGCgNm3apLCwsCw75vXkLDsUgGwQeznR1UMAkIFieXwytZ3L50CUL19e165dc/UwAACAAZcHxLRp0/Sf//xH33zzjc6fP6/Lly87/QEAAO7H5XMgcuXKpcuXL+vxxx93Wm5Zlmw2m1JSUlw0MgAAkBGXB0SHDh3k5eWl+fPnM4kSAIB7hMsD4pdfftGuXbtUrlw5Vw8FAABkksvnQNSoUUPHjx939TAAAIABl1+BeOWVV9S3b18NHDhQlStXlpeXl9P6KlWquGhkAAAgIy7/HAgPj7QXQWw22x1NouRzIO49O37crjkffqB9v/6is2fP6u2p7+nxRo0d6xOuXtXktydqw/qvdeniRRUuXETtOnbSs8+1c+Gocbv4HAj39tOuH/XZvDn67cA+xZ07q5FvTNZj9f+c6J6cfEMfzXxXP3z/nU7/cUJ+AYF6qEYtdX+5n/LlD5EknT51UvM+nKXdO7Yp7vx55c2fX43Cn1b7Li+m+SER7ieznwPh8isQR44ccfUQ4AauXUtQuXLl1LJ1G73Wt0+a9W+Nf0M/bNuqcW9MUKHChbVl82aNGxOpkPwhavB4IxeMGPjnun79mko9UE7hzVopckh/p3WJ16/r0IF96ti1p0o9UFZXrlzW9Lff1PBBr2raR59Kko7HHJHdsqvv68NVuEgxHfn9oN6OitT1a9fU89UIVzwlZAOXB0Tx4sVdPQS4gTp166tO3foZrt+9e5eat2ipmg/XkiS1ffY5Lf5soX75+ScCAshiD9euq4dr1013nX9AoN6cOstpWZ8B/6c+3dsr9vQphRQoqJq166hm7TqO9QULF9GJozH6YtkiAuIfxOUBkerXX3/VsWPHlJSU5LT8mWeecdGI4E6qVq2mbzasV8vWbRUSEqLtP2zT0ZgjGvj6EFcPDbjvXY2Pl81mk39gYMbbXI1XYFDwXRwVspvLA+L3339Xq1at9PPPPzvmPkhyfB7EreZAJCYmKjHR+f1Uy9NHPj6Zew8H94bB/xmmUSOGqcnj9ZQjRw7ZbDaNiByj6jVqunpowH0tKTFR7097Ww2feEr+/gHpbnPy+DEt/2yBer7y2l0eHbKTy2/j7Nu3r0qWLKnY2Fj5+flp7969+vbbb1WjRg1t3LjxlvtHRUUpODjY6c+EN6Oyf+C4qxbMi9ZPP+3WlHena8GiJRowcLDGjYnU1i3fu3powH0rOfmGRg+NkGVZenXQ0HS3ORd7Rv/Xv5fqPf6EmrZoe5dHiOzk8isQW7Zs0fr165UvXz55eHjIw8NDderUUVRUlF599VXt2rXrpvsPGTJEr73mXLWWJ1cf/kmuX7+uqZPf1ttT31W9+g0kSWXLldeBA/s096MP9EjtR107QOA+lJx8Q2P+M1Cxp09pwrvvp3v14dzZWEX06aGKlcPUf/AIF4wS2cnlAZGSkqLA//++Wb58+fTHH3+oXLlyKl68uA4cOHDL/X180r5dwW2c/yzJyclKTr4hDw/njzn38PCU3bV3IQP3pdR4OHniqCa8+4GCgnOl2eZc7BlF9OmhB8pXUMTQ0eneso97m8sDolKlStqzZ49KliypWrVqafz48fL29tasWbNUqlQpVw8Pd0nC1as6duyY4/HJEye0f98+BQcHq2ChQqpR82FNemuCfHxyqmChQtqxfbtWrliuiEGDXThq4J/pWkKCTp743/fj6T9O6tBv+xUUFKw8+fJp1P8N0KED+zT6rXdlt9sVd/6cJCkwKFheXl46F3tGA3p3V2iBgurZZ4AuXbzgOFaevPnu+vNB9nD5B0mtWbNGV69eVevWrXXo0CE1a9ZMv/32m/LmzauFCxem+S2dmcEViHvP9h+2qUfX59Msf6ZFK40e94bOnT2rKZMnacv3m3T50iUVLFRIbdo+p06du/AL2O5BfJCUe9uzc7siendPs/yJps/o+R691Kn1U+nu99Z7HyjsoZpas+pzvTVmWLrbrN3yU5aOFVkvsx8k5fKASE9cXJxy58592/9jICAA90ZAAO7rnvkkyr9K/aVaRYsWdfFIAADAzbh8VktycrKGDRum4OBglShRQiVKlFBwcLCGDh2qGzduuHp4AAAgHS6/AvHKK69o6dKlGj9+vGrXri3pz1s7R44cqfPnz2v69OkuHiEAAPg7l8+BCA4O1qeffqqnnnKelLN69Wq1a9dOly5dMj4mcyAA98YcCMB9ZXYOhMvfwvDx8VGJEiXSLC9ZsqS8vb3v/oAAAMAtuTwg+vTpo9GjRzv9PovExESNHTtWffqk/bXOAADA9Vz+FkarVq20bt06+fj4KCwsTJK0Z88eJSUlqVEj51/TvHTp0kwdk7cwAPfGWxiA+7pnbuPMlSuX2rRp47SM2zgBAHBvLr8Cce3aNdntdvn7+0uSYmJitHz5clWoUEHh4eG3dUyuQADujSsQgPu6ZyZRtmjRQtHR0ZKkixcv6pFHHtHEiRPVsmVLbuEEAMBNuTwgdu7cqbp160qSFi9erNDQUB09elQff/yxpk6d6uLRAQCA9Lg8IBISEhy/zvurr75S69at5eHhoUceeURHjx518egAAEB6XB4QZcqU0fLly3X8+HGtWbNGTZo0kSTFxsYqKCjIxaMDAADpcXlADB8+XBERESpRooRq1arl+Djrr776StWqVXPx6AAAQHpcfheGJJ0+fVqnTp1SWFiYPDz+bJoffvhBQUFBKl++vPHxuAsDcG/chQG4r8zeheEWAZHVCAjAvREQgPu6Z27jBAAA9x4CAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYs1mWZbl6EMDNJCYmKioqSkOGDJGPj4+rhwPgL/j+vH8REHB7ly9fVnBwsC5duqSgoCBXDwfAX/D9ef/iLQwAAGCMgAAAAMYICAAAYIyAgNvz8fHRiBEjmKAFuCG+P+9fTKIEAADGuAIBAACMERAAAMAYAQEAAIwRELhrGjRooH79+rl6GACALEBAAAAAYwQEAAAwRkDgrrLb7Ro0aJDy5MmjAgUKaOTIkY51kyZNUuXKleXv76+iRYvq5ZdfVnx8vGP9nDlzlCtXLq1cuVLlypWTn5+f2rZtq4SEBM2dO1clSpRQ7ty59eqrryolJcUFzw649yxevFiVK1eWr6+v8ubNq8aNG+vq1avq0qWLWrZsqcjISOXPn19BQUF66aWXlJSU5Nj3v//9r+rUqaNcuXIpb968atasmQ4fPuxYHxMTI5vNpkWLFqlu3bry9fVVzZo19dtvv2n79u2qUaOGAgIC9NRTT+ns2bOuePq4AwQE7qq5c+fK399f27Zt0/jx4zVq1CitXbtWkuTh4aGpU6dq7969mjt3rtavX69BgwY57Z+QkKCpU6fq008/1X//+19t3LhRrVq10urVq7V69WpFR0dr5syZWrx4sSueHnBPOXXqlNq1a6du3bpp37592rhxo1q3bq3Ujwdat26dY/mCBQu0dOlSRUZGOva/evWqXnvtNf34449at26dPDw81KpVK9ntdqfzjBgxQkOHDtXOnTuVI0cOtW/fXoMGDdKUKVP03Xff6dChQxo+fPhdfe7IAhZwl9SvX9+qU6eO07KaNWtar7/+errbf/bZZ1bevHkdjz/66CNLknXo0CHHsp49e1p+fn7WlStXHMvCw8Otnj17ZvHogX+eHTt2WJKsmJiYNOs6d+5s5cmTx7p69apj2fTp062AgAArJSUl3eOdPXvWkmT9/PPPlmVZ1pEjRyxJ1vvvv+/YZsGCBZYka926dY5lUVFRVrly5bLqaeEu4QoE7qoqVao4PS5YsKBiY2MlSV9//bUaNWqkwoULKzAwUJ06ddL58+eVkJDg2N7Pz0+lS5d2PA4NDVWJEiUUEBDgtCz1mAAyFhYWpkaNGqly5cr617/+pdmzZ+vChQtO6/38/ByPa9eurfj4eB0/flySdPDgQbVr106lSpVSUFCQSpQoIUk6duyY03n++n0fGhoqSapcubLTMr5n7z0EBO4qLy8vp8c2m012u10xMTFq1qyZqlSpoiVLlmjHjh167733JMnpPdf09s/omABuztPTU2vXrtWXX36pihUr6p133lG5cuV05MiRTO3fvHlzxcXFafbs2dq2bZu2bdsmyfl7VnL+vrXZbOku43v23pPD1QMAJGnHjh2y2+2aOHGiPDz+7NpFixa5eFTAP5/NZtNjjz2mxx57TMOHD1fx4sW1bNkySdKePXt07do1+fr6SpK2bt2qgIAAFS1aVOfPn9eBAwc0e/Zs1a1bV5K0adMmlz0P3H0EBNxCmTJldOPGDb3zzjtq3ry5Nm/erBkzZrh6WMA/2rZt27Ru3To1adJEISEh2rZtm86ePasKFSrop59+UlJSkrp3766hQ4cqJiZGI0aMUJ8+feTh4aHcuXMrb968mjVrlgoWLKhjx45p8ODBrn5KuIt4CwNuISwsTJMmTdKbb76pSpUqad68eYqKinL1sIB/tKCgIH377bdq2rSpypYtq6FDh2rixIl66qmnJEmNGjXSAw88oHr16um5557TM88847j12sPDQ59++ql27NihSpUqqX///powYYILnw3uNn6dNwAgjS5duujixYtavny5q4cCN8UVCAAAYIyAAAAAxngLAwAAGOMKBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQADINl26dFHLli0djxs0aKB+/frd9XFs3LhRNptNFy9evOvnBv6pCAjgPtSlSxfZbDbZbDZ5e3urTJkyGjVqlJKTk7P1vEuXLtXo0aMztS3/0wfcG79MC7hPPfnkk/roo4+UmJio1atXq3fv3vLy8tKQIUOctktKSpK3t3eWnDNPnjxZchwArscVCOA+5ePjowIFCqh48eLq1auXGjdurBUrVjjedhg7dqwKFSqkcuXKSZKOHz+uZ599Vrly5VKePHnUokULxcTEOI6XkpKi1157Tbly5VLevHk1aNAg/f1z6v7+FkZiYqJef/11FS1aVD4+PipTpow++OADxcTEqGHDhpKk3Llzy2azqUuXLpIku92uqKgolSxZUr6+vgoLC9PixYudzrN69WqVLVtWvr6+atiwodM4AWQNAgKAJMnX11dJSUmSpHXr1unAgQNau3atVq5cqRs3big8PFyBgYH67rvvtHnzZgUEBOjJJ5907DNx4kTNmTNHH374oTZt2qS4uDgtW7bspud8/vnntWDBAk2dOlX79u3TzJkzFRAQoKJFi2rJkiWSpAMHDujUqVOaMmWKJCkqKkoff/yxZsyYob1796p///7q2LGjvvnmG0l/hk7r1q3VvHlz7d69Wz169ODXTAPZwQJw3+ncubPVokULy7Isy263W2vXrrV8fHysiIgIq3PnzlZoaKiVmJjo2D46OtoqV66cZbfbHcsSExMtX19fa82aNZZlWVbBggWt8ePHO9bfuHHDKlKkiOM8lmVZ9evXt/r27WtZlmUdOHDAkmStXbs23TFu2LDBkmRduHDBsez69euWn5+f9f333ztt2717d6tdu3aWZVnWkCFDrIoVKzqtf/3119McC8CdYQ4EcJ9auXKlAgICdOPGDdntdrVv314jR45U7969VblyZad5D3v27NGhQ4cUGBjodIzr16/r8OHDunTpkk6dOqVatWo51uXIkUM1atRI8zZGqt27d8vT01P169fP9JgPHTqkhIQEPfHEE07Lk5KSVK1aNUnSvn37nMYhSbVr1870OQBkDgEB3KcaNmyo6dOny9vbW4UKFVKOHP/758Df399p2/j4eFWvXl3z5s1Lc5z8+fPf1vl9fX2N94mPj5ckrVq1SoULF3Za5+Pjc1vjAHB7CAjgPuXv768yZcpkatuHHnpICxcuVEhIiIKCgtLdpmDBgtq2bZvq1asnSUpOTtaOHTv00EMPpbt95cqVZbfb9c0336hx48Zp1qdeAUlJSXEsq1ixonx8fHTs2LEMr1xUqFBBK1ascFq2devWWz9JAEaYRAngljp06KB8+fKpRYsW+u6773TkyBFt3LhRr776qk6cOCFJ6tu3r9544w0tX75c+/fv18svv3zTz3AoUaKEOnfurG7dumn58uWOYy5atEiSVLx4cdlsNq1cuVJnz55VfHy8AgMDFRERof79+2vu3Lk6fPiwdu7cqXfeeUdz586VJL300ks6ePCgBg4cqAMHDmj+/PmaM2dOdr9EwH2HgABwS35+fvr2229VrFgxtW7dWhUqVFD37t11/fp1xxWJAQMGqFOnTurcubNq166twMBAtWrV6qbHnT59utq2bauXX35Z5cuX1wsvvKCrV69KkgoXLqzIyEgNHjxYoaGh6tOnjyRp9OjRGjZsmKKiolShQgU9+eSTWrVqlUqWLClJKlasmJYsWaLly5crLCxMM2bM0Lhx47Lx1QHuTzYroxlOAAAAGeAKBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADD2/wDNyM6JbSyrJQAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 800x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiLJJREFUeJzs3XdcU+f+B/BPEgh7I4IC4ijuPXBPFBwoCuhtvVbt0LZ23NqlXXZqp7X3dmiHUqteB6ilzroVa+vELS5wMlSUDYHk+f3Bj1wjM5jkJOTzfr3yqjk5J+ebhOLHJ9/zPDIhhAARERERkQWSS10AEREREVFdMcwSERERkcVimCUiIiIii8UwS0REREQWi2GWiIiIiCwWwywRERERWSyGWSIiIiKyWAyzRERERGSxGGaJiIiIyGIxzBIRSeTzzz9Hs2bNoFAo0KlTJ6nLMarY2FjIZDKkpqbqdZxMJsN7771nlJqIqH5gmCWyUuXhovxmY2ODxo0bY8qUKbhx40alxwgh8Ouvv6J///5wd3eHo6Mj2rdvjw8++AD5+flVnmvdunUYPnw4vL29oVQq0ahRI4wfPx47d+6sVa1FRUX46quvEBISAjc3N9jb2yM4OBjPP/88zp8/X6fXL7U//vgDr7/+Ovr06YMlS5Zg7ty5Rj3flClTdD5vZ2dnNGvWDNHR0YiPj4dGozHq+S1FamqqzvtU3U3fYE5ExiETQgipiyAi04uNjcXUqVPxwQcfoGnTpigqKsJff/2F2NhYBAUF4dSpU7C3t9fur1ar8dhjj2H16tXo168fxo0bB0dHR+zbtw8rVqxAmzZtsH37djRs2FB7jBACTzzxBGJjY9G5c2dER0fD19cXaWlpWLduHY4cOYL9+/ejd+/eVdZ5+/ZthIeH48iRIxg1ahRCQ0Ph7OyM5ORkrFy5Eunp6VCpVEZ9r4xh1qxZ+Pzzz1FYWAilUmn0802ZMgUrV67ETz/9BAAoLCzElStX8Pvvv+PEiRMYOHAgfvvtN7i6uhrl/Gq1GiUlJbCzs4NMJqv1cUVFRbCxsYGNjY1R6npQfn4+1q1bp7Ptyy+/xPXr1/HVV1/pbB87diycnJxMUhcRVUMQkVVasmSJACAOHTqks/2NN94QAMSqVat0ts+dO1cAEK+++mqF50pISBByuVyEh4frbP/8888FAPGvf/1LaDSaCsctXbpU/P3339XWOXLkSCGXy0VcXFyFx4qKisQrr7xS7fG1VVJSIoqLiw3yXLUxdepU4eTkZLDn02g0oqCgoMrHJ0+eXOX55s2bJwCI8ePHG6ye+mTkyJGiSZMm1e5T0/tPRMbDMEtkpaoKsxs2bBAAxNy5c7XbCgoKhIeHhwgODhYlJSWVPt/UqVMFAHHgwAHtMZ6enqJVq1aitLS0TjX+9ddfAoB4+umna7X/gAEDxIABAypsnzx5sk4YSUlJEQDE559/Lr766ivRrFkzIZfLxV9//SUUCoV47733KjzHuXPnBADxn//8R7vt7t274qWXXhL+/v5CqVSK5s2bi08++USo1epq6wRQ4bZkyRIhRFmo/uCDD0SzZs2EUqkUTZo0EbNnzxZFRUU6z9GkSRMxcuRIsWXLFtG1a1dhZ2cnvvrqqyrPWV2YFUKIYcOGCZlMJpKTk3W2b9q0SfTt21c4OjoKZ2dnMWLECHHq1KkKx589e1bExMQIb29vYW9vL4KDg8Wbb76pfbz85y0lJUW77dChQ2LYsGHCy8tL2Nvbi6CgIDF16tQK79WcOXN0th09elSEh4cLFxcX4eTkJAYPHqz9uXvwfImJieLll18W3t7ewtHRUURGRorMzMwq34fKVBZmq3v/a/tzoVarxVdffSXatGkj7OzshI+Pj5g2bZrIysrSqz4ia2ea722IyGKU9wF6eHhotyUmJuLu3bt46aWXqvy69/HHH8eSJUuwYcMG9OzZE4mJicjKysK//vUvKBSKOtWSkJAAAJg0aVKdjq/JkiVLUFRUhGnTpsHOzg5+fn4YMGAAVq9ejTlz5ujsu2rVKigUCsTExAAACgoKMGDAANy4cQPTp09HYGAg/vzzT8yePRtpaWlYsGBBlef99ddf8cMPP+DgwYPar/3LWy2eeuop/PLLL4iOjsYrr7yCv//+G/PmzcPZs2crfP2dnJyMRx99FNOnT8fTTz+Nli1b1vm9mDRpEv744w9s27YNwcHB2jonT56MsLAwfPrppygoKMD333+Pvn374tixYwgKCgIAnDhxAv369YOtrS2mTZuGoKAgXLp0Cb///js+/vjjSs+XmZmJYcOGoUGDBpg1axbc3d2RmpqKtWvXVlvn6dOn0a9fP7i6uuL111+Hra0tFi1ahIEDB2LPnj0ICQnR2f+FF16Ah4cH5syZg9TUVCxYsADPP/88Vq1aVef3qlxl778+PxfTp0/Xtvu8+OKLSElJwTfffINjx45h//79sLW1fegaiayC1GmaiKRRPnK1fft2cevWLXHt2jURFxcnGjRoIOzs7MS1a9e0+y5YsEAAEOvWravy+bKysgQAMW7cOCGEEF9//XWNx9Rk7NixAoC4e/durfbXd2TW1dW1wijdokWLBABx8uRJne1t2rQRgwcP1t7/8MMPhZOTkzh//rzOfrNmzRIKhUJcvXq12lorGylNSkoSAMRTTz2ls/3VV18VAMTOnTu125o0aSIAiC1btlR7nurOd79jx44JAOLll18WQgiRm5sr3N3dK4yKp6enCzc3N53t/fv3Fy4uLuLKlSs6+97fWvLgyOy6desq/WbgQXhgZDYyMlIolUpx6dIl7babN28KFxcX0b9//wrnCw0N1anj5ZdfFgqFQty7d6/a896vqpHZyt7/2v5c7Nu3TwAQy5cv19lvy5YtlW4noqpxNgMiKxcaGooGDRogICAA0dHRcHJyQkJCAvz9/bX75ObmAgBcXFyqfJ7yx3JycnT+W90xNTHEc1QnKioKDRo00Nk2btw42NjY6IzcnTp1CmfOnMGECRO029asWYN+/frBw8MDt2/f1t5CQ0OhVquxd+9evevZtGkTAGDmzJk621955RUAwMaNG3W2N23aFGFhYXqfpzLOzs4A/vdZb9u2Dffu3cOjjz6q8/oUCgVCQkKwa9cuAMCtW7ewd+9ePPHEEwgMDNR5zuou9HJ3dwcAbNiwASUlJbWqUa1W448//kBkZCSaNWum3e7n54fHHnsMiYmJ2p+ZctOmTdOpo1+/flCr1bhy5Uqtzlmdyt7/2v5crFmzBm5ubhg6dKjOfl27doWzs7P2/SWimrHNgMjKffvttwgODkZ2djYWL16MvXv3ws7OTmef8jBZHnQq82DgLb8qvrpjanL/c5SHH0Nq2rRphW3e3t4YMmQIVq9ejQ8//BBAWYuBjY0Nxo0bp93vwoULOHHiRIUwXC4zM1Pveq5cuQK5XI4WLVrobPf19YW7u3uFAFZZ/XWVl5cH4H+f34ULFwAAgwcPrnT/8s/m8uXLAIB27drpdb4BAwYgKioK77//Pr766isMHDgQkZGReOyxxyr8/JW7desWCgoKKm2naN26NTQaDa5du4a2bdtqtz8YsMvbZ+7evatXvZWp7P2v7c/FhQsXkJ2dDR8fn2r3I6KaMcwSWbkePXqgW7duAIDIyEj07dsXjz32GJKTk7Wjda1btwZQ1hsZGRlZ6fOcOHECANCmTRsAQKtWrQAAJ0+erPKYmtz/HP369atxf5lMBlHJbINqtbrS/R0cHCrd/o9//ANTp05FUlISOnXqhNWrV2PIkCHw9vbW7qPRaDB06FC8/vrrlT5Hed9pXdR26qqq6q+LU6dOAYA2SJfPO/vrr7/C19e3wv4PO1WWTCZDXFwc/vrrL/z+++/YunUrnnjiCXz55Zf466+/tD97D6uqfu3Kfk70Vdn7X9ufC41GAx8fHyxfvrzS/aoKw0RUEcMsEWkpFArMmzcPgwYNwjfffINZs2YBAPr27Qt3d3esWLECb731VqUBYenSpQCAUaNGaY/x8PDAf//7X7z55pt1uggsIiIC8+bNw7Jly2oVZj08PLQjhffT9yvlyMhITJ8+XdtqcP78ecyePVtnn+bNmyMvLw+hoaF6PXd1mjRpAo1GgwsXLmj/AQEAGRkZuHfvHpo0aWKwcz3o119/hUwmw9ChQwGUvT4A8PHxqfY1ln/dXx6G9dWzZ0/07NkTH3/8MVasWIGJEydi5cqVeOqppyrs26BBAzg6OiI5ObnCY+fOnYNcLkdAQECd6jCU2v5cNG/eHNu3b0efPn0M+o8SImvEnlki0jFw4ED06NEDCxYsQFFREQDA0dERr776KpKTk/HWW29VOGbjxo2IjY1FWFgYevbsqT3mjTfewNmzZ/HGG29UOhK2bNkyHDx4sMpaevXqhfDwcPz0009Yv359hcdVKhVeffVV7f3mzZvj3LlzuHXrlnbb8ePHsX///lq/fqCsnzMsLAyrV6/GypUroVQqK4wujx8/HgcOHMDWrVsrHH/v3j2UlpbqdU4AGDFiBABUmAlh/vz5AICRI0fq/Zy18cknn+CPP/7AhAkT8MgjjwAAwsLC4Orqirlz51ba01r+Hjdo0AD9+/fH4sWLcfXqVZ19qhv9vHv3boXHy5f0LS4urvQYhUKBYcOG4bffftNZfSsjIwMrVqxA3759jbboQ23V9udi/PjxUKvV2laW+5WWluLevXvGLpWo3uDILBFV8NprryEmJgaxsbF45plnAJStWHXs2DF8+umnOHDgAKKiouDg4IDExEQsW7YMrVu3xi+//FLheU6fPo0vv/wSu3bt0q4Alp6ejvXr1+PgwYP4888/q61l6dKlGDZsGMaNG4eIiAgMGTIETk5OuHDhAlauXIm0tDR88cUXAIAnnngC8+fPR1hYGJ588klkZmZi4cKFaNu2bYULg2oyYcIE/POf/8R3332HsLCwCj27r732GhISEjBq1ChMmTIFXbt2RX5+Pk6ePIm4uDikpqbqtCXURseOHTF58mT88MMPuHfvHgYMGICDBw/il19+QWRkJAYNGqTX8z2otLQUy5YtA1C2staVK1eQkJCAEydOYNCgQfjhhx+0+7q6uuL777/HpEmT0KVLF/zjH/9AgwYNcPXqVWzcuBF9+vTBN998AwD497//jb59+6JLly6YNm0amjZtitTUVGzcuBFJSUmV1vLLL7/gu+++w9ixY9G8eXPk5ubixx9/hKurqzbUV+ajjz7Ctm3b0LdvXzz33HOwsbHBokWLUFxcjM8+++yh3h9DqO3PxYABAzB9+nTMmzcPSUlJGDZsGGxtbXHhwgWsWbMGX3/9NaKjo6V+OUSWQdK5FIhIMlUtmiBE2WTuzZs3F82bN9dZ8ECtVoslS5aIPn36CFdXV2Fvby/atm0r3n//fZGXl1flueLi4sSwYcOEp6ensLGxEX5+fmLChAli9+7dtaq1oKBAfPHFF6J79+7C2dlZKJVK8cgjj4gXXnhBXLx4UWffZcuWaRcc6NSpk9i6dWu1iyZUJScnRzg4OAgAYtmyZZXuk5ubK2bPni1atGghlEql8Pb2Fr179xZffPGFUKlU1b6mqqbKKikpEe+//75o2rSpsLW1FQEBAdUumlBbkydP1lmkwdHRUQQFBYmoqCgRFxdX5UIPu3btEmFhYcLNzU3Y29uL5s2biylTpojDhw/r7Hfq1CkxduxY4e7uLuzt7UXLli3FO++8o338wam5jh49Kh599FERGBioXTBg1KhRFZ4XVSyaEBYWJpydnYWjo6MYNGiQ+PPPP3X2qerne9euXQKA2LVrV63fu+oWTaiMPj8XP/zwg+jatatwcHAQLi4uon379uL1118XN2/erHV9RNZOJoQBuuCJiIiIiCTAnlkiIiIislgMs0RERERksRhmiYiIiMhiMcwSERERkcVimCUiIiIii8UwS0REREQWy+oWTdBoNLh58yZcXFxqvf45EREREZmOEAK5ublo1KgR5PLqx16tLszevHlT8rW7iYiIiKhm165dg7+/f7X7WF2YdXFxAVD25ki9hjcRERERVZSTk4OAgABtbquO1YXZ8tYCV1dXhlkiIiIiM1abllBeAEZEREREFothloiIiIgsFsMsEREREVkshlkiIiIislgMs0RERERksRhmiYiIiMhiMcwSERERkcVimCUiIiIii8UwS0REREQWi2GWiIiIiCwWwywRERERWSyGWSIiIiKyWAyzRERERGSxGGaJiIiIyGJJGmb37t2LiIgINGrUCDKZDOvXr6/xmN27d6NLly6ws7NDixYtEBsba/Q6iYiIiMg8SRpm8/Pz0bFjR3z77be12j8lJQUjR47EoEGDkJSUhH/961946qmnsHXrViNXSkRERETmyEbKkw8fPhzDhw+v9f4LFy5E06ZN8eWXXwIAWrdujcTERHz11VcICwszVplEREREVqGoCEhLq3i7eVODtDQ5ZswAIiKkrlKXpGFWXwcOHEBoaKjOtrCwMPzrX/+q8pji4mIUFxdr7+fk5BirPCIiIiKzlJdXHkorD6vlj9279+CRAl26HEPPnn9hz54nMHCgPcPsw0hPT0fDhg11tjVs2BA5OTkoLCyEg4NDhWPmzZuH999/31QlEhEREZmEEGXhs7JQ+uC2vDz9n1+pLEZExAa0b38KANCt2yGkp/cz7IswAIsKs3Uxe/ZszJw5U3s/JycHAQEBElZEREREVDWNBrhzp+ZR1PT0srYAQ3BwAPz8/nfz90+Hh8caCJEFQIa2bQfjuef6wMvLMOczJIsKs76+vsjIyNDZlpGRAVdX10pHZQHAzs4OdnZ2piiPiIiIqEqlpUBmZs0jqenpZfsagosL0KiRblC9/1b+mKsrIJMBQggcPnwYW7duhVqthqurK6Kjo816INCiwmyvXr2wadMmnW3btm1Dr169JKqIiIiIrJ1KVRZAaxpJvXWrbNTVEDw9Kw+lD96cnPR73qysLGzZsgUajQbBwcEYM2YMHB0dDVO0kUgaZvPy8nDx4kXt/ZSUFCQlJcHT0xOBgYGYPXs2bty4gaVLlwIAnnnmGXzzzTd4/fXX8cQTT2Dnzp1YvXo1Nm7cKNVLICIionqqoKB2/ah37hjmfDIZ0KBBzSOpvr6Asb509vLyQlhYGNRqNXr27AmZTGacExmQpGH28OHDGDRokPZ+eW/r5MmTERsbi7S0NFy9elX7eNOmTbFx40a8/PLL+Prrr+Hv74+ffvqJ03IRERFRrQgB5ObWPIqalgYYagIkhaIsgNY0ktqwIWBj4mQmhMDBgwfRpEkT+Pr6AgB69Ohh2iIekkwIIaQuwpRycnLg5uaG7OxsuLq6Sl0OERERGYAQQFZW7UZSCwoMc06lsnb9qN7egFzSZaoqV1hYiISEBJw7dw6enp6YPn06lEql1GUB0C+vWVTPLBEREVkXjaas17Q2V/arVIY5p5NT7fpRPTzKWgMs0fXr1xEXF4fs7GwoFAqEhITA1tZW6rLqhGGWiIiITK6kBMjIqHkUNSMDUKsNc05395pHUf38ymYAqK+EEDhw4AB27NgBjUYDDw8PREdHo1GjRlKXVmcMs0RERGQwVS2H+mBgvX27rDXAELy9ax5F9fMrm0vVmqlUKsTHx+P8+fMAgLZt2yIiIsLipzBlmCUiIqIalS+HWt0oaloacPeuYc4nl5ddEFXTKGrDhmW9q1QzW1tblJaWQqFQIDw8HF27drWI2QpqwjBLRERkpYQAsrNrd2V/XZZDrYyt7f+u7K9uFNXHp2wWAHo4Qgio1WrY2NhAJpNh7NixyMvL085cUB8wzBIREdUz5cuh1mYk1VjLoVY1kurpaZ5X9tdH+fn5WLduHdzc3BAREQEAcHZ2hrOzs8SVGRbDLBERkYWoajnUBwOroZdDrU0/qpub5V7ZXx+lpqYiPj4eeXl5sLGxQd++feHh4SF1WUbBMEtERCSx8uVQaxpFzcw03nKoVQVWfZdDJWlpNBrs27cPe/bsgRAC3t7eiImJqbdBFmCYJSIiMprKlkOtLLAaejnUmkZRfX0Be3vDnJPMR15eHtauXYuUlBQAQKdOnTB8+HCzWQjBWBhmiYiI9FC+HGpNo6hpaWUXVxlCZcuhVhZYfXzKLrAi6yOEwNKlS3Hr1i3Y2tpi5MiR6Nixo9RlmQTDLBEREapeDrWy0GrI5VBrGkVt1Mh8l0Ml8yGTyRAaGoqdO3ciOjoa3t7eUpdkMgyzRERUr5Uvh1qbkVRjLYdaVWC15OVQSXq5ubnIyspCkyZNAADBwcFo0aIF5Fb2Lx+GWSIiskiVLYdaWWA15HKobm7Vj6KWh9b6vBwqmYeLFy9i3bp10Gg0mD59Otzd3QHA6oIswDBLRERmpqjof1f2VzeKeuuWcZZDrW4k1dqXQyXpaTQa7Ny5E/v37wcA+Pr6QmOoKS4sFMMsERGZxIPLoVb1tb8hl0P18am5H5XLoZKlyM7ORnx8PK5duwYA6NatG8LCwmBjY91xzrpfPRERPZTy5VBr04+am2uYc96/HGp1o6hcDpXqk/Pnz2P9+vUoLCyEnZ0dIiIi0LZtW6nLMgsMs0REVEFly6FWFVgNtRyqvX3No6hcDpWs1YULF1BYWIhGjRohOjq6Xi+CoC+GWSIiK6JW6y6HWtVIanp62QVWhnD/cqjVTUPF5VCJqhYWFgZ3d3eEhIRYfVvBg/huEBHVAw8uh1rVSKoplkN9MLByOVQi/Z07dw4nTpxAdHQ05HI5bGxs0KdPH6nLMksMs0REZqywsOZR1Js3jbMcanWjqFwOlcg4SktLsW3bNhw8eBAAcOzYMXTt2lXiqswbwywRkYk9uBxqdf2oxl4O9cHQyuVQiaSTlZWFuLg4pKWlAQB69eqFTp06SVuUBWCYJSIyECHKppWq6ar+mzcNvxxqTSOp3t68sp/InJ0+fRq///47iouL4eDggMjISAQHB0tdlkVgmCUiqsGDy6FWNYqang4UFxvmnI6OVQfT+7dzOVQiy7dv3z7s3LkTABAQEICoqCi4ublJXJXlYJglIqtVWvq/5VCr60c19HKoNY2i+vmVzQDAkEpkHYKDg7Fv3z6EhIRg0KBBVrkk7cOQCWGoxQAtQ05ODtzc3JCdnQ1XV1epyyEiIygurl0/qrGXQ30wsPr6lo24EhHduXMHXl5e2vu5ublwcXGRsCLzok9e48gsEVmM/Pza9aMaejnUmkZRfX25HCoR1U5JSQm2bNmCpKQkTJ06Ff7+/gDAIPsQGGaJSFIPLoda3TRUxlwOtbLAyuVQiciQbt26hbi4OGRmZgIAbty4oQ2zVHcMs0RkFEKUzX1a0yiqoZdDrWkUtVEjLodKRKaXlJSETZs2oaSkBE5OThg3bhyaNWsmdVn1AsMsEenlweVQq7uy31jLoVY1ksrlUInI3KhUKmzatAnHjx8HADRt2hTjxo2Ds7OzxJXVHwyzRASgbDnUjIyaR1INuRyqh0fNI6l+fgB/5xORpTp16hSOHz8OmUyGgQMHom/fvpytwMAYZonqufuXQ62uH/X2bcOc78HlUKsaReVyqERkDTp37owbN26gffv2CAoKkrqceolhlshC5ebWrh/VkMuhNmxYcz8ql0MlImtWXFyMvXv3on///rCzs4NMJkNERITUZdVrDLNEZuT+5VCrG0VNSyubpsoQHlwOtaqv/bkcKhFR9dLT0xEXF4c7d+4gPz8fkZGRUpdkFRhmiUxAoyn7Gr+mkVRTLYd6f2DlcqhERA9HCIEjR45gy5YtUKvVcHV1RZcuXaQuy2owzBI9hPuXQ61uJDUjo2xfQ7h/OdTqLp7icqhERMZXVFSEDRs24PTp0wDKlqYdM2YMHLncn8kwzBJVoqrlUB8MrKZYDvX+wMrlUImIzEdmZiZWrlyJu3fvQi6XIzQ0FD179oSMIwkmxTBLVqV8OdSa+lGzsgxzvvuXQ61uJJXLoRIRWR5HR0eoVCq4ubkhOjqaq3lJhGGWLJ4QQE5O1cH0/u2GWg7Vxqb6eVHLA2uDBmX7EhFR/VBSUgLb/5+yxdnZGRMnToS7uzscHBwkrsx68a9ZMlvly6HWZiS1sNAw5yxfDrWmflQvLy6HSkRkba5fv464uDiEhoaiXbt2AAA/Pz+JqyKGWTK5qpZDfTCwmmI51AcDK5dDJSKiBwkh8Ndff2H79u3QaDTYv38/2rZty95YM8EwSwZTUlIWQGsaRc3IMPxyqDUticrlUImIqC4KCgrw22+/4fz58wCANm3aICIigkHWjDDMUo0qWw61ssBq7OVQHwysXA6ViIiM6dq1a4iLi0NOTg4UCgXCw8PRtWtXBlkzwzBrxXJza9ePeu+eYc5XvhxqTSOpDRtyOVQiIpLW3bt3ERsbC41GA09PT8TExMDX11fqsqgSDLP1TGXLoVYVWI25HGplgZXLoRIRkaXw8PBASEgI8vLyMHLkSNjZ2UldElWBYdZClC+HWtMoalqaYZdDrWkUtVEjLodKRET1Q2pqKjw8PODm5gYACA0NhUwmY1uBmWOYNVNbtgCLFgHXrxt/OdSqAiuXQyUiImug0Wiwb98+7NmzB40bN8aUKVOgUCgg5xyMFoFh1gwVFwMTJpQtBKAPL6+ar+r38+NyqEREROXy8vKwdu1apKSkAAC8vLyg0WigYF+cxWCYNUP37v0vyMpkuhdNVTWKyuVQiYiI9JOSkoL4+Hjk5+fD1tYWI0aMQKdOnaQui/TEMGuG7l/Navx4YOVK6WohIiKqbzQaDfbs2YO9e/cCAHx8fBAdHY0GDRpIXBnVBcOsGSoo+N+f2RJARERkWBqNBsnJyQCAzp07Y/jw4bDlnJAWi2HWDDHMEhERGY+NjQ2io6ORlpaG9u3bS10OPSSGWTN0f5h1cJCuDiIiovpAo9Fg586dUCqV6N+/PwDA29sb3t7eEldGhsAwa4bu75nlyCwREVHdZWdnIz4+HteuXYNMJkPbtm3h5eUldVlkQAyzZohtBkRERA/v/PnzWL9+PQoLC2FnZ4eIiAgG2XqIYdYMMcwSERHVnVqtxo4dO3DgwAEAgJ+fH6Kjo+Hp6SlxZWQMDLNm6P42A/bMEhER1Z4QAsuWLUNqaioAoEePHhg6dChsbBh56it+smaII7NERER1U94Xm56ejtGjR6N169ZSl0RGxjBrhhhmiYiIaq+0tBQ5OTnaNoKuXbuiVatWcHZ2lrgyMgW51AVQRWwzICIiqp27d+9i8eLFWLp0KQr//y9QmUzGIGtFODJrhjgyS0REVLMzZ84gISEBxcXFcHBwwJ07d+Dv7y91WWRiDLNmiGGWiIioaqWlpdi6dSsOHz4MAAgICEBUVBTc3NwkroykwDBrhhhmiYiIKnfnzh3ExcUhPT0dANCnTx8MGjQICoVC4spIKgyzZog9s0RERJXbvXs30tPT4ejoiLFjx6JFixZSl0QSY5g1QxyZJSIiqtzw4cMBAEOHDoWrq6vE1ZA54GwGZohhloiIqMytW7ewa9cuCCEAAI6OjoiKimKQJS2OzJohthkQEREBx48fx8aNG1FSUgJPT0907NhR6pLIDDHMmqHykVmlEmA/OxERWRuVSoXNmzcjKSkJANC0aVM0b95c2qLIbDHMmqHyMMsWAyIisjaZmZlYs2YNbt++DZlMhgEDBqBfv36Qy9kZSZVjmDVD5W0GbDEgIiJrcvLkSSQkJKC0tBTOzs6IiopCUFCQ1GWRmWOYNUMcmSUiImvk5OSE0tJSNG/eHGPHjoWTk5PUJZEFYJg1QwyzRERkLVQqFZRKJQCgWbNmmDJlCgIDAyGTySSujCwFG1DMjBD/azNgmCUiovpKCIHDhw/j66+/RlZWlnZ7kyZNGGRJLwyzZqao6H9/Zs8sERHVR8XFxYiPj8fGjRtRUFCAw4cPS10SWTDJw+y3336LoKAg2NvbIyQkBAcPHqx2/wULFqBly5ZwcHBAQEAAXn75ZRTdnwAtHBdMICKi+uzmzZtYtGgRTp8+DblcjqFDh2Lo0KFSl0UWTNKe2VWrVmHmzJlYuHAhQkJCsGDBAoSFhSE5ORk+Pj4V9l+xYgVmzZqFxYsXo3fv3jh//jymTJkCmUyG+fPnS/AKDI9hloiI6iMhBA4ePIht27ZBrVbDzc0N0dHR8Pf3l7o0snCSjszOnz8fTz/9NKZOnYo2bdpg4cKFcHR0xOLFiyvd/88//0SfPn3w2GOPISgoCMOGDcOjjz5a42iuJeHqX0REVB8lJSVhy5YtUKvVaNWqFaZPn84gSwYhWZhVqVQ4cuQIQkND/1eMXI7Q0FAcOHCg0mN69+6NI0eOaMPr5cuXsWnTJowYMaLK8xQXFyMnJ0fnZs44MktERPVRhw4dEBgYiPDwcIwfPx4OHLEhA5GszeD27dtQq9Vo2LChzvaGDRvi3LlzlR7z2GOP4fbt2+jbty+EECgtLcUzzzyDN998s8rzzJs3D++//75BazcmhlkiIqoPhBA4efIk2rZtC4VCAYVCoW0NJDIkyS8A08fu3bsxd+5cfPfddzh69CjWrl2LjRs34sMPP6zymNmzZyM7O1t7u3btmgkr1h/DLBERWbrCwkKsXLkS69atw65du7TbGWTJGCQbmfX29oZCoUBGRobO9oyMDPj6+lZ6zDvvvINJkybhqaeeAgC0b98e+fn5mDZtGt56661K1222s7ODnZ2d4V+AkbBnloiILNm1a9cQFxeHnJwcKBQKuLm5SV0S1XOSjcwqlUp07doVO3bs0G7TaDTYsWMHevXqVekxBQUFFQKrQqEAUPZ1Rn3AkVkiIrJEQggkJiZiyZIlyMnJgaenJ5566il0795d6tKonpN0aq6ZM2di8uTJ6NatG3r06IEFCxYgPz8fU6dOBQA8/vjjaNy4MebNmwcAiIiIwPz589G5c2eEhITg4sWLeOeddxAREaENtZaOYZaIiCxNfn4+1q9fj4sXLwIA2rVrh1GjRlnUN6NkuSQNsxMmTMCtW7fw7rvvIj09HZ06dcKWLVu0F4VdvXpVZyT27bffhkwmw9tvv40bN26gQYMGiIiIwMcffyzVSzA4thkQEZGlKSwsxJUrV2BjY4Phw4ejc+fO7I8lk5GJ+vL9fC3l5OTAzc0N2dnZcHV1lbqcCr74AnjttbI/r1kDREdLWw8REVFtnDt3Dh4eHhVmKSKqC33ymkXNZmAN2GZARETmLi8vD8uWLcOVK1e021q1asUgS5JgmDUzbDMgIiJzdvnyZSxcuBCXLl1CQkICNBqN1CWRlZO0Z5Yq4sgsERGZI41Ggz179mDv3r0AgAYNGiAmJqbSaTGJTIlh1swwzBIRkbnJzc3F2rVrkZqaCgDo3Lkzhg8fDltbW2kLIwLDrNlhmCUiInOSnZ2NH374AQUFBbC1tcWoUaPQoUMHqcsi0mKYNTPsmSUiInPi6uqKpk2b4vbt24iJiYGXl5fUJRHpYJg1MxyZJSIiqeXk5ECpVMLe3h4ymQwRERGQy+VsKyCzxK5tM8MwS0REUjp//jwWLlyIhIQE7VLxdnZ2DLJktjgya2bK2wzkcoC/N4iIyFTUajV27NiBAwcOAADu3buH4uJi2NvbS1wZUfUYZs1M+cisoyPAlQCJiMgU7t27h/j4eFy/fh0A0KNHDwwdOhQ2NowJZP74U2pm7g+zRERExnbu3Dn89ttvKCoqgp2dHcaMGYPWrVtLXRZRrTHMmpnyNgOGWSIiMraSkhJs3rwZRUVFaNy4MaKiouDh4SF1WUR6YZg1M+Ujs5yWi4iIjM3W1hZRUVE4d+4chgwZAoVCIXVJRHpjmDUjQrDNgIiIjOvMmTMoLS3VLnwQGBiIwMBAiasiqjuGWTNSUgKo1WV/ZpglIiJDKi0txdatW3H48GHY2NigcePGXACB6gWGWTPC1b+IiMgY7ty5g7i4OKSnpwMAQkJC4O7uLm1RRAbCMGtGuGACEREZ2qlTp/D7779DpVLB0dERkZGReOSRR6Qui8hgGGbNCMMsEREZihACGzduxJEjRwCU9cZGRUXB1dVV4sqIDIth1oywzYCIiAxFJpPB8f9HRvr164eBAwdCLucq9lT/MMyaEY7MEhHRw1KpVFAqlQCAgQMH4pFHHkFAQIDEVREZD/+JZkYYZomIqK5UKhV+++03xMbGorS0FAAgl8sZZKne48isGWGYJSKiusjMzERcXBxu3boFmUyG1NRUtGjRQuqyiEyCYdaMsGeWiIj0IYRAUlISNm3ahNLSUjg7OyMqKgpBQUFSl0ZkMgyzZoQjs0REVFvFxcXYuHEjTp48CQBo3rw5xo4dCycnJ4krIzIthlkzwjBLRES1tWHDBpw6dQoymQyDBg1C3759IZPJpC6LyOQYZs0I2wyIiKi2Bg8ejIyMDIwaNQqBgYFSl0MkGc5mYEY4MktERFUpLi7G6dOntfc9PDzw7LPPMsiS1ePIrBlhmCUiosqkpaVhzZo1uHv3Luzs7LQzFbCtgIhh1qzc32bAMEtEREIIHDp0CH/88QfUajXc3Nxgb28vdVlEZoVh1ozcPzLLnlkiIutWVFSEhIQEnD17FgDQsmVLjBkzBg78C4JIB8OsGWGbARERAcCNGzcQFxeHe/fuQS6XY+jQoQgJCWFbAVElGGbNCMMsEREBwO3bt3Hv3j24u7sjOjoajRs3lrokIrPFMGtGODUXEZH1EkJoR147duwIlUqF9u3bs0eWqAacmsuMcGSWiMg6Xbt2DYsXL0bBfX8RdO/enUGWqBYYZs3I/WGWv7+IiOo/IQT279+PJUuW4Pr169i5c6fUJRFZHLYZmJHyNgN7e0DOf2YQEdVr+fn5WL9+PS5evAgAaNeuHYYOHSpxVUSWh2HWjJSPzLLFgIiofrty5Qri4+ORm5sLGxsbhIeHo0uXLpytgKgOGGbNCMMsEVH9d+7cOaxevRpCCHh5eSEmJgYNGzaUuiwii8Uwa0bK2wwYZomI6q+goCC4u7sjICAAI0eOhFKplLokIovGMGtGykdmOS0XEVH9kpGRAR8fH8hkMtjb2+Opp56Cg4MD2wqIDICXGZkJtRooLi77M0dmiYjqB41Gg927d2PhwoU4fPiwdrujoyODLJGBcGTWTNy/YALDLBGR5cvNzcXatWuRmpoKAMjMzJS2IKJ6imHWTHD1LyKi+uPSpUtYt24d8vPzYWtri1GjRqFDhw5Sl0VULzHMmgmu/kVEZPnK2wr27dsHAGjYsCGio6Ph7e0tcWVE9RfDrJlgmCUisnwZGRlITEwEAHTt2hVhYWGwtbWVuCqi+o1h1kywZ5aIyPL5+flh6NChcHFxQbt27aQuh8gqMMyaiftHZtkzS0RkGdRqNXbv3o0OHTqgQYMGAIBevXpJXBWRdeHUXGaCbQZERJYlOzsbsbGxSExMRFxcHNRqtdQlEVkljsyaCYZZIiLLkZycjPXr16OoqAh2dnYYMGAAFAqF1GURWSWGWTPBqbmIiMyfWq3Gtm3b8PfffwMAGjVqhOjoaHh4eEhcGZH1Ypg1ExyZJSIyb/n5+VixYgVu3rwJAOjZsydCQ0M5IkskMYZZM8EwS0Rk3hwcHGBjYwN7e3tERkaiZcuWUpdERGCYNRtsMyAiMj+lpaWQyWRQKBSQy+WIioqCRqOBu7u71KUR0f/jbAZmgiOzRETmJSsrCz///DO2bdum3ebq6sogS2RmODJrJhhmiYjMx6lTp/D7779DpVIhJycH/fv3hyN/OROZJYZZM8EVwIiIpFdSUoItW7bg6NGjAIDAwEBERUUxyBKZMYZZM8EVwIiIpHX79m2sWbMGmZmZAIB+/fph4MCBkMvZkUdkzhhmzQTbDIiIpFNaWoqlS5ciNzcXTk5OGDt2LJo3by51WURUCw8VZouKimBvb2+oWqwawywRkXRsbGwQFhaGw4cPY9y4cXBxcZG6JCKqJb2/O9FoNPjwww/RuHFjODs74/LlywCAd955Bz///LPBC7QWnJqLiMi0MjMzceXKFe39tm3b4vHHH2eQJbIweofZjz76CLGxsfjss8+gVCq129u1a4effvrJoMVZE/bMEhGZhhACx44dw48//ojVq1cjNzdX+5hMJpOwMiKqC73D7NKlS/HDDz9g4sSJOkv4dezYEefOnTNocdakPMza2pbdiIjI8FQqFdavX4+EhASUlpbC19eXF3gRWTi9e2Zv3LiBFi1aVNiu0WhQUlJikKKsUXmbAftliYiMIyMjA2vWrMGdO3cgk8kwaNAg9O3bl6OxRBZO7zDbpk0b7Nu3D02aNNHZHhcXh86dOxusMGtTPjLLFgMiIsMSQuDo0aPYsmULSktL4eLigqioqAp/jxGRZdI7zL777ruYPHkybty4AY1Gg7Vr1yI5ORlLly7Fhg0bjFGjVSgPsxyZJSIyLJlMhmvXrqG0tBQtWrTA2LFjuQgCUT2id5gdM2YMfv/9d3zwwQdwcnLCu+++iy5duuD333/H0KFDjVGjVWCbARGRYQkhtC0EI0aMgL+/P7p27cq2AqJ6RiaEEFIXYUo5OTlwc3NDdnY2XF1dpS4HACAEoFCU/bd7d+DgQakrIiKyXEIIHDp0CKmpqYiJiWF4JbJA+uQ1vS/hbNasGe7cuVNh+71799CsWTN9n44AFBeXBVmAI7NERA+jqKgIcXFx2Lx5M86ePYuzZ89KXRIRGZnebQapqalQq9UVthcXF+PGjRsGKcracPUvIqKHd+PGDcTFxeHevXuQy+UYOnQoWrduLXVZRGRktQ6zCQkJ2j9v3boVbm5u2vtqtRo7duxAUFCQQYuzFlz9i4io7oQQ+Pvvv7Ft2zZoNBq4u7sjOjoajRs3lro0IjKBWofZyMhIAGVXhU6ePFnnMVtbWwQFBeHLL780aHHWgiOzRER1t3nzZhw6dAgA0Lp1a4wePRr29vYSV0VEplLrMKvRaAAATZs2xaFDh+Dt7W20oqwNwywRUd117NgRx48fx5AhQ9C9e3de8EVkZfTumU1JSTFGHVbt/jYDhlkiouoJIZCRkQFfX18AQOPGjfGvf/0LDuzTIrJKdVqQOj8/H5s2bcLChQvx73//W+emr2+//RZBQUGwt7dHSEgIDtYwL9W9e/cwY8YM+Pn5wc7ODsHBwdi0aVNdXobZuH9klr+LiYiqVlBQgP/+97/46aefkJ6ert3OIEtkvfQemT127BhGjBiBgoIC5Ofnw9PTE7dv34ajoyN8fHzw4osv1vq5Vq1ahZkzZ2LhwoUICQnBggULEBYWhuTkZPj4+FTYX6VSYejQofDx8UFcXBwaN26MK1euwN3dXd+XYVbYZkBEVLMrV64gPj4eubm5UCgUuH37tnZ0loisl95h9uWXX0ZERAQWLlwINzc3/PXXX7C1tcU///lPvPTSS3o91/z58/H0009j6tSpAICFCxdi48aNWLx4MWbNmlVh/8WLFyMrKwt//vknbG1tAaBezKDAMEtEVDUhBBITE7Fr1y4IIeDl5YWYmBg0bNhQ6tKIyAzo3WaQlJSEV155BXK5HAqFAsXFxQgICMBnn32GN998s9bPo1KpcOTIEYSGhv6vGLkcoaGhOHDgQKXHJCQkoFevXpgxYwYaNmyIdu3aYe7cuZXOe1uuuLgYOTk5Ojdzw6m5iIgql5+fj+XLl2Pnzp0QQqBDhw6YNm0agywRaekdZm1tbSGXlx3m4+ODq1evAgDc3Nxw7dq1Wj/P7du3oVarK/xCatiwoU4f1P0uX76MuLg4qNVqbNq0Ce+88w6+/PJLfPTRR1WeZ968eXBzc9PeAgICal2jqXBkloiocidOnMClS5dgY2OD0aNHIzIyEkqlUuqyiMiM6N1m0LlzZxw6dAiPPPIIBgwYgHfffRe3b9/Gr7/+inbt2hmjRi2NRgMfHx/88MMPUCgU6Nq1K27cuIHPP/8cc+bMqfSY2bNnY+bMmdr7OTk5ZhdoGWaJiCrXs2dPZGVloXv37pVeS0FEpPfI7Ny5c+Hn5wcA+Pjjj+Hh4YFnn30Wt27dwqJFi2r9PN7e3lAoFMjIyNDZfv90Kw/y8/NDcHAwFAqFdlvr1q2Rnp4OlUpV6TF2dnZwdXXVuZkbTs1FRFQmNzcXGzZsQElJCYCyhXpGjhzJIEtEVdJ7ZLZbt27aP/v4+GDLli11OrFSqUTXrl2xY8cO7epiGo0GO3bswPPPP1/pMX369MGKFSug0Wi0rQ7nz5+Hn5+fRX/txKm5iIiAS5cuYd26dcjPz4dcLseIESOkLomILECd5pmtzNGjRzFq1Ci9jpk5cyZ+/PFH/PLLLzh79iyeffZZ5Ofna2c3ePzxxzF79mzt/s8++yyysrLw0ksv4fz589i4cSPmzp2LGTNmGOplSIJtBkRkzTQaDXbu3Illy5YhPz8fPj4+6NGjh9RlEZGF0GtkduvWrdi2bRuUSiWeeuopNGvWDOfOncOsWbPw+++/IywsTK+TT5gwAbdu3cK7776L9PR0dOrUCVu2bNFeFHb16lXtCCwABAQEYOvWrXj55ZfRoUMHNG7cGC+99BLeeOMNvc5rbthmQETWKicnB/Hx8dqLibt06YLw8HDt9ItERDWRCSFEbXb8+eef8fTTT8PT0xN3796Fl5cX5s+fjxdeeAETJkzASy+9hNatWxu73oeWk5MDNzc3ZGdnm03/7KRJwLJlZX8+fx545BFp6yEiMoWrV69i1apVKCgogFKpREREhNEvJCYiy6BPXqv1yOzXX3+NTz/9FK+99hri4+MRExOD7777DidPnoS/v/9DF23N2GZARNbIzc0NQgj4+voiOjoaXl5eUpdERBao1mH20qVLiImJAQCMGzcONjY2+PzzzxlkDYBhloisRVFREezt7QGUhdnHH38c3t7esLHR+3pkIiIAelwAVlhYCMf/T1oymQx2dnbaKbro4XAFMCKyBsnJyfj3v/+N5ORk7TZfX18GWSJ6KHr9Bvnpp5/g7OwMACgtLUVsbCy8vb119nnxxRcNV52VKB+ZlckAOztpayEiMjS1Wo3t27fjr7/+AgAcOnQILVu2lLgqIqovan0BWFBQEGQyWfVPJpPh8uXLBinMWMzxArB27YDTpwEnJyAvT+pqiIgM5+7du4iPj8eNGzcAACEhIRg6dKjO4jdERA8yygVgqampD1sXVaG8zYD9skRUn5w9exa//fYbiouLYW9vjzFjxqBVq1ZSl0VE9QwblcxAeZsB+2WJqL5IS0vD6tWrAQD+/v6IioqCu7u7tEURUb3EMGsGysMsR2aJqL7w8/NDt27doFQqMXjwYLYVEJHRMMyaAbYZEFF9cObMGQQGBmovFB4xYkSN11oQET2sWk/NRcZRUlJ2A9hmQESWqaSkBBs2bMCaNWuwdu1aaDQaAGCQJSKT4MisxO6fY5Yjs0RkaW7fvo24uDhkZGQAABo3bixxRURkbeoUZi9duoQlS5bg0qVL+Prrr+Hj44PNmzcjMDAQbdu2NXSN9RpX/yIiS3XixAls2LABJSUlcHR0xLhx49C8eXOpyyIiK6N3m8GePXvQvn17/P3331i7di3y/n9i1OPHj2POnDkGL7C+4+pfRGRpSkpKkJCQgHXr1qGkpARBQUF45plnGGSJSBJ6h9lZs2bho48+wrZt26BUKrXbBw8erF3dhWqPI7NEZGmEELh27RoAYMCAAZg0aRJcXFwkroqIrJXebQYnT57EihUrKmz38fHB7du3DVKUNWGYJSJLIYSATCaDUqlEdHQ08vPz0axZM6nLIiIrp/fIrLu7O9LS0ipsP3bsGBv/64AXgBGRuVOpVFi/fr3Ot28NGzZkkCUis6B3mP3HP/6BN954A+np6ZDJZNBoNNi/fz9effVVPP7448aosV67f2SWPbNEZG4yMjLw448/4vjx49i5c6f2OgkiInOhd5vB3LlzMWPGDAQEBECtVqNNmzZQq9V47LHH8PbbbxujxnqNbQZEZI6EEDh69Ci2bNmC0tJSuLi4ICoqSrsgAhGRudA7zCqVSvz444945513cOrUKeTl5aFz58545JFHjFFfvccwS0Tmpri4GBs2bMCpU6cAAC1atEBkZCScnJwkroyIqCK9w2xiYiL69u2LwMBABAYGGqMmq8KpuYjInKjVavz888+4desWZDIZhgwZgt69e3M1LyIyW3r3zA4ePBhNmzbFm2++iTNnzhijJqvCkVkiMicKhQKdO3eGq6srpk6dij59+jDIEpFZ0zvM3rx5E6+88gr27NmDdu3aoVOnTvj8889x/fp1Y9RX7zHMEpHUioqKcOfOHe39nj174tlnn0VAQICEVRER1Y7eYdbb2xvPP/889u/fj0uXLiEmJga//PILgoKCMHjwYGPUWK9xai4iktLNmzexaNEi/Pe//0VxcTEAQCaTwd7eXuLKiIhqR++e2fs1bdoUs2bNQseOHfHOO+9gz549hqrLanBqLiKSghACf//9N7Zt2waNRgN3d3fk5ubCzs5O6tKIiPRS5zC7f/9+LF++HHFxcSgqKsKYMWMwb948Q9ZmFdhmQESmVlhYiISEBJw7dw4A0KpVK4wZM4ajsURkkfQOs7Nnz8bKlStx8+ZNDB06FF9//TXGjBkDRyaxOmGbARGZ0vXr1xEXF4fs7GwoFAoMGzYM3bt350VeRGSx9A6ze/fuxWuvvYbx48fD29vbGDVZFbYZEJEp7dmzB9nZ2fDw8EB0dDQaNWokdUlERA9F7zC7f/9+Y9RhtdhmQESmNGbMGOzevRtDhw5lfywR1Qu1CrMJCQkYPnw4bG1tkZCQUO2+o0ePNkhh1oJhloiM6erVq7h06RIGDRoEAHB2dsaoUaMkroqIyHBqFWYjIyORnp4OHx8fREZGVrmfTCaDWq02VG1WgSuAEZExCCGQmJiIXbt2QQgBPz8/tGrVSuqyiIgMrlZhVqPRVPpnenjlI7N2doBc71l/iYgqys/Px7p163Dp0iUAQIcOHdCsWTOJqyIiMg6949PSpUu1E2vfT6VSYenSpQYpypqUh1m2GBCRIaSmpmLhwoW4dOkSbGxsMHr0aERGRkKpVEpdGhGRUciEEEKfAxQKBdLS0uDj46Oz/c6dO/Dx8TH7NoOcnBy4ubkhOzsbrq6uUpeDgADg+nWgceOy/xIR1dWBAwewbds2CCHg7e2NmJiYCr+riYgsgT55Te/ZDIQQlc5HeP36dbi5uen7dFavfGSW/bJE9LA8PT0hhECnTp0wfPhwjsYSkVWodZjt3LkzZDIZZDIZhgwZAhub/x2qVquRkpKC8PBwoxRZn7HNgIgeRlFRkXblrpYtW+Lpp5/m3LFEZFVqHWbLZzFISkpCWFgYnJ2dtY8plUoEBQUhKirK4AXWZxoNUFRU9meGWSLSh0ajwe7du3HkyBFMmzZN+80YgywRWZtah9k5c+YAAIKCgjBhwgSu4W0A5UEWYJsBEdVeTk4O1q5diytXrgAAzpw5g169eklcFRGRNPTumZ08ebIx6rBKXDCBiPR18eJFrFu3DgUFBVAqlYiIiEC7du2kLouISDK1CrOenp44f/48vL294eHhUekFYOWysrIMVlx9xzBLRLWlVquxa9cu7ZLivr6+iI6OhpeXl8SVERFJq1Zh9quvvoKLi4v2z9WFWaq9+1f/Ypglour8/fff2iDbvXt3DBs2TOdCXCIia1Wr34T3txZMmTLFWLVYnftHZtkzS0TV6d69O5KTkxESEoI2bdpIXQ4RkdnQewWwo0eP4uTJk9r7v/32GyIjI/Hmm29CpVIZtLj6jm0GRFQVtVqNw4cPa5cQt7W1xZQpUxhkiYgeoHeYnT59Os6fPw8AuHz5MiZMmABHR0esWbMGr7/+usELrM/YZkBElbl37x6WLFmCjRs3Yt++fdrtbPEiIqpI7zB7/vx5dOrUCQCwZs0aDBgwACtWrEBsbCzi4+MNXV+9xjYDInrQ2bNnsWjRIty4cQP29vZo2LCh1CUREZm1Oi1nW/611/bt2zFq1CgAQEBAAG7fvm3Y6uo5thkQUbnS0lJs27YNBw8eBAD4+/sjKioK7u7u0hZGRGTm9A6z3bp1w0cffYTQ0FDs2bMH33//PQAgJSWFIwh6YpglIqBsSsO4uDikpaUBAHr16oUhQ4ZAoVBIXBkRkfnTO8wuWLAAEydOxPr16/HWW2+hRYsWAIC4uDj07t3b4AXWZ/f3zLLNgMh6qVQqZGZmwsHBAZGRkQgODpa6JCIii6F3mO3QoYPObAblPv/8c44i6Ikjs0TWSwihvaCrfAEEPz8/uLm5SVwZEZFlqfOM20eOHMHZs2cBAG3atEGXLl0MVpS1YJglsk537tzB2rVrMWLECDRu3BgA0KpVK4mrIiKyTHqH2czMTEyYMAF79uzRXphw7949DBo0CCtXrkSDBg0MXWO9xam5iKzPyZMnsWHDBqhUKmzevBlPPvkkp9wiInoIek/N9cILLyAvLw+nT59GVlYWsrKycOrUKeTk5ODFF180Ro31FqfmIrIeJSUlSEhIwNq1a6FSqRAUFIQJEyYwyBIRPSS9R2a3bNmC7du3o3Xr1tptbdq0wbfffothw4YZtLj6jm0GRNbh1q1biIuLQ2ZmJgBgwIAB6N+/P+RyvccTiIjoAXqHWY1GA1tb2wrbbW1ttfPPUu2wzYCo/svMzMRPP/2EkpISODk5ISoqCk2bNpW6LCKiekPvYYHBgwfjpZdews2bN7Xbbty4gZdffhlDhgwxaHH1HdsMiOq/Bg0aoGnTpmjatCmeeeYZBlkiIgPTe2T2m2++wejRoxEUFISAgAAAwLVr19CuXTssW7bM4AXWZ2wzIKqfMjMz4e7uDqVSCZlMhqioKNjY2LCtgIjICPQOswEBATh69Ch27NihnZqrdevWCA0NNXhx9R3DLFH9IoTAsWPHsHnzZrRp0waRkZGQyWRQKpVSl0ZEVG/pFWZXrVqFhIQEqFQqDBkyBC+88IKx6rIK5T2zNjZAJW3IRGRBiouLsXHjRu2iMgUFBVCr1bCxqfN03kREVAu1/i37/fffY8aMGXjkkUfg4OCAtWvX4tKlS/j888+NWV+9Vj4yy35ZIsuWnp6ONWvWICsrCzKZDEOGDEHv3r057RYRkQnUuoHrm2++wZw5c5CcnIykpCT88ssv+O6774xZW71XHmbZYkBkmYQQOHToEH766SdkZWXB1dUVU6dORZ8+fRhkiYhMpNZh9vLly5g8ebL2/mOPPYbS0lKkpaUZpTBrUN5mwDBLZJmKioqwZ88eqNVqBAcHY/r06doLY4mIyDRq3WZQXFwMJycn7X25XA6lUonC+ydLJb2wzYDIsjk4OGDcuHHIyMhAz549ORpLRCQBva5MeOedd+B43zCiSqXCxx9/DDc3N+22+fPnG666ekwIthkQWRohBA4ePAgXFxe0adMGANCsWTM0a9ZM4sqIiKxXrcNs//79kZycrLOtd+/euHz5svY+RyVqr6QEKF8wjWGWyPwVFhYiISEB586dg1KphL+/P1xdXaUui4jI6tU6zO7evduIZVgfrv5FZDmuX7+OuLg4ZGdnQ6FQYMiQIXBxcZG6LCIiQh0WTSDD4IIJROZPCIEDBw5gx44d0Gg08PDwQHR0NBo1aiR1aURE9P8YZiXCMEtk3jQaDVatWoXz588DANq2bYuIiAjY2dlJXBkREd2PYVYi908CwTBLZH7kcjk8PT2hUCgQHh6Orl278roAIiIzxDArEfbMEpkfIQSKi4thb28PAAgNDUWXLl3QoEEDiSsjIqKq1HrRBDIsthkQmZf8/HysWLECK1asgFqtBgAoFAoGWSIiM1enMLtv3z7885//RK9evXDjxg0AwK+//orExESDFlefsc2AyHykpqZi0aJFuHjxItLS0pCeni51SUREVEt6h9n4+HiEhYXBwcEBx44dQ3FxMQAgOzsbc+fONXiB9RXbDIikp9FosGfPHixduhS5ubnw9vbG008/jcaNG0tdGhER1ZLeYfajjz7CwoUL8eOPP8LW1la7vU+fPjh69KhBi6vP2GZAJK28vDwsW7YMu3fvhhACnTp1wtNPPw0fHx+pSyMiIj3ofQFYcnIy+vfvX2G7m5sb7t27Z4iarALDLJG01q1bh5SUFNja2mLkyJHo2LGj1CUREVEd6D0y6+vri4sXL1bYnpiYWOf1yb/99lsEBQXB3t4eISEhOHjwYK2OW7lyJWQyGSIjI+t0XimxZ5ZIWsOHD4e/vz+mTZvGIEtEZMH0DrNPP/00XnrpJfz999+QyWS4efMmli9fjldffRXPPvus3gWsWrUKM2fOxJw5c3D06FF07NgRYWFhyMzMrPa41NRUvPrqq+jXr5/e5zQH7JklMq3c3FycPHlSe9/b2xtPPPEEvL29JayKiIgelt5tBrNmzYJGo8GQIUNQUFCA/v37w87ODq+++ipeeOEFvQuYP38+nn76aUydOhUAsHDhQmzcuBGLFy/GrFmzKj1GrVZj4sSJeP/997Fv3z6LbG9gmwGR6Vy8eBHr1q1DYWEhXF1d0aRJEwDgIghERPWA3mFWJpPhrbfewmuvvYaLFy8iLy8Pbdq0gbOzs94nV6lUOHLkCGbPnq3dJpfLERoaigMHDlR53AcffAAfHx88+eST2LdvX7XnKC4u1s64AAA5OTl612kMbDMgMj6NRoOdO3di//79AMrapOryu4qIiMxXnVcAUyqVaNOmzUOd/Pbt21Cr1WjYsKHO9oYNG+LcuXOVHpOYmIiff/4ZSUlJtTrHvHnz8P777z9UncbANgMi48rOzkZ8fDyuXbsGAOjWrRvCwsJgY8OFD4mI6hO9f6sPGjSo2q/mdu7c+VAFVSc3NxeTJk3Cjz/+WOs+t9mzZ2PmzJna+zk5OQgICDBWibXGNgMi4zl//jzWr1+PwsJC2NnZISIiAm3btpW6LCIiMgK9w2ynTp107peUlCApKQmnTp3C5MmT9Xoub29vKBQKZGRk6GzPyMiAr69vhf0vXbqE1NRUREREaLdpNBoAgI2NDZKTk9G8eXOdY+zs7GBnZ6dXXabANgMi48nOzkZhYSH8/PwQHR0NT09PqUsiIiIj0TvMfvXVV5Vuf++995CXl6fXcymVSnTt2hU7duzQTq+l0WiwY8cOPP/88xX2b9Wqlc7VyADw9ttvIzc3F19//bVZjLjWFtsMiAxLCKH91qhbt26wtbVFu3bt2FZARFTPGey3/D//+U/06NEDX3zxhV7HzZw5E5MnT0a3bt3Qo0cPLFiwAPn5+drZDR5//HE0btwY8+bNg729Pdq1a6dzvLu7OwBU2G7u2GZAZDjnzp3D3r178fjjj8Pe3h4ymazCt0hERFQ/GSzMHjhwAPb29nofN2HCBNy6dQvvvvsu0tPT0alTJ2zZskV7UdjVq1chl+s9Ha7Zuz/M1uFtIyIApaWl2L59O/7++28AwJ9//onBgwdLXBUREZmSTAgh9Dlg3LhxOveFEEhLS8Phw4fxzjvvYM6cOQYt0NBycnLg5uaG7OxsuLq6SlZHhw7AyZNlo7L5+ZKVQWSxsrKyEBcXh7S0NABAr169MGTIECgUCokrIyKih6VPXtN7ZNbNzU3nvlwuR8uWLfHBBx9g2LBh+j6d1SofmWW/LJH+Tp8+jd9//x3FxcVwcHBAZGQkgoODpS6LiIgkoFeYVavVmDp1Ktq3bw8PDw9j1WQVysMs+2WJ9HPkyBFs2LABABAQEIDo6GhJv2UhIiJp6dWMqlAoMGzYMItcPtbclE/NxTBLpJ/WrVvD1dUVffv2xZQpUxhkiYisnN5XVrVr1w6XL182Ri1WhW0GRLVXvooXADg6OuK5557DkCFD6uXFoUREpB+9/yb46KOP8Oqrr2LDhg1IS0tDTk6Ozo1qplYDKlXZnzkyS1S1kpISJCQkYPHixTpLWJvjQihERCSNWvfMfvDBB3jllVcwYsQIAMDo0aN1lrUtn7BcrVYbvsp6hqt/EdXs1q1biIuLQ2ZmJoCy5ayJiIgeVOsw+/777+OZZ57Brl27jFmPVeCCCUTVO378ODZu3IiSkhI4OTlh3LhxaNasmdRlERGRGap1mC2fjnbAgAFGK8ZacClbosqpVCps3rxZ21LQrFkzjB07Fs7OztIWRkREZkuvqbnubyuguuPILFHlbt68iaSkJMhkMgwcOBB9+/blRV5ERFQtvcJscHBwjYE2KyvroQqyBuyZJapcUFAQhg0bBj8/PwQFBUldDhERWQC9wuz7779fYQUw0h/bDIjKFBcX448//kCfPn3g6ekJoGxZWiIiotrSK8z+4x//gI+Pj7FqsRpsMyAC0tPTERcXhzt37iAzMxNPPPEEW5mIiEhvtQ6z/EvGcNhmQNZMCIEjR45gy5YtUKvVcHV1xdChQ/k7hoiI6kTv2Qzo4bHNgKxVUVERNmzYgNOnTwMo68MfM2YMHPmvOiIiqqNah1mNRmPMOqwK2wzIGt29exe//vor7t69C7lcjtDQUPTs2ZMjskRE9FD06pklw2CYJWvk6uoKBwcHaDQaREdHw9/fX+qSiIioHmCYlQB7ZslaFBUVQalUQi6XQ6FQYPz48VAqlXBgfw0RERkIZyOXAHtmyRrcuHEDixYt0lkC283NjUGWiIgMimFWAmwzoPpMCIEDBw5g8eLFuHfvHs6cOQOVSiV1WUREVE+xzUACbDOg+qqwsBDr16/H+fPnAQBt2rRBREQElEqlxJUREVF9xTArAbYZUH107do1xMXFIScnBwqFAuHh4ejatStnKyAiIqNimJUA2wyovikqKsLy5ctRXFwMT09PxMTEwNfXV+qyiIjICjDMSoBtBlTf2NvbIzw8HJcvX8bIkSNhZ2cndUlERGQlGGYlwJFZqg+uXLkCuVyOgIAAAECnTp3QsWNHthUQEZFJMcxKgD2zZMk0Gg0SExOxe/duODs745lnntEuR8sgS0REpsYwK4HyMKtUAgqFtLUQ6SMvLw/r1q3D5cuXAQDNmjWDjQ1/jRARkXT4t5AEyntm2WJAliQlJQXx8fHIz8+Hra0tRowYgU6dOkldFhERWTmGWQmUj8yyxYAsgRACu3fvxt69ewEAPj4+iI6ORoMGDSSujIiIiGFWEuVhliOzZClu374NAOjcuTOGDx8OW1tbiSsiIiIqwzArAbYZkCUQQkAmk0EmkyEiIgJt27ZFmzZtpC6LiIhIh1zqAqyNEGwzIPOm0Wiwfft2xMXFQQgBoGweWQZZIiIyRxyZNbGiov/9mSOzZG6ys7MRHx+Pa9euASibSzYoKEjaooiIiKrBMGtiXP2LzNX58+exfv16FBYWws7ODhEREQyyRERk9hhmTYyrf5G5UavV2LFjBw4cOAAA8PPzQ3R0NDw9PSWujIiIqGYMsybG1b/I3MTHx+Ps2bMAgB49emDo0KFcCIGIiCwG/8YyMY7MkrkJCQnBlStXEBERgVatWkldDhERkV4YZk2MPbMktdLSUqSnp8Pf3x8A0KRJE7z00ktQKpUSV0ZERKQ/Ts1lYmwzICndvXsXixcvxtKlS3Hr1i3tdgZZIiKyVByZNTG2GZBUzpw5g4SEBBQXF8PBwQF5eXlckpaIiCwew6yJsc2ATK20tBRbt27F4cOHAQABAQGIioqCm5ubxJURERE9PIZZE+PILJnSnTt3EBcXh/T0dABAnz59MGjQICgUCokrIyIiMgyGWRNjzyyZ0okTJ5Ceng5HR0eMHTsWLVq0kLokIiIig2KYNTGOzJIpDRgwACqVCr169YKrq6vU5RARERkcZzMwMfbMkjHdvn0b69evR2lpKQBALpcjLCyMQZaIiOotjsyaGNsMyFiOHz+OjRs3oqSkBK6urhg8eLDUJRERERkdw6yJsc2ADE2lUmHz5s1ISkoCADRt2hQ9evSQtigiIiITYZg1MbYZkCFlZmYiLi4Ot27dgkwmw4ABA9CvXz/I5ewgIiIi68Awa2JsMyBDOXfuHOLj41FaWgpnZ2dERUUhKChI6rKIiIhMimHWxNhmQIbi4+MDhUKBJk2aYOzYsXBycpK6JCIiIpNjmDUxthnQw8jPz9eGVk9PTzz55JPw9vaGTCaTuDIiIiJpsLHOxDgyS3UhhMDhw4exYMECXLp0Sbu9QYMGDLJERGTVODJrYuVhVi4HbG2lrYUsQ1FRETZs2IDTp08DAE6dOoXmzZtLXBUREZF5YJg1sfIw6+gIcECNanLz5k3ExcXh7t27kMvlGDJkCHr16iV1WURERGaDYdbEyntm2WJA1RFC4ODBg9i2bRvUajXc3NwQHR0Nf39/qUsjIiIyKwyzJlY+Mstpuag6KSkp2LJlCwCgVatWGD16NBz4Q0NERFQBw6yJ3d9mQFSVZs2aoUuXLvDx8UGPHj14kRcREVEVGGZNjG0GVJny2Qratm0Lx///4YiIiJC4KiIiIvPHqblMqKQEKC0t+zPDLJUrKCjAypUrsWnTJqxfvx5CCKlLIiIishgcmTUhLmVLD7p27Rri4uKQk5MDhUKBRx55ROqSiIiILArDrAlx9S8qJ4TA/v37sXPnTggh4OnpiZiYGPj6+kpdGhERkUVhmDUhrv5FQFlbwbp163Dx4kUAQLt27TBq1CjY2dlJXBkREZHlYZg1IbYZEADI5XLcvn0bNjY2GD58ODp37szZCoiIiOqIYdaEODJrvcov6pLJZLC3t8f48eMhl8vRsGFDiSsjIiKybJzNwITYM2ud8vLysGzZMhw+fFi7zc/Pj0GWiIjIADgya0JsM7A+KSkpiI+PR35+PtLS0tChQwf2xhIRERkQw6wJsc3Aemg0GuzZswd79+4FADRo0AAxMTEMskRERAbGMGtCbDOwDrm5uVi7di1SU1MBAJ07d8bw4cNha2srbWFERET1EMOsCXFktv5TqVT44YcfkJeXB1tbW4waNQodOnSQuiwiIqJ6i2HWhNgzW/8plUp0794dZ86cQUxMDLy8vKQuiYiIqF5jmDUhthnUTzk5OSgpKdEG1759+6J3796wseH/XkRERMbGqblMiG0G9c/58+excOFCrF69GiUlJQDKFkVgkCUiIjIN/o1rQmwzqD/UajV27NiBAwcOAADc3d1RWFjIi7yIiIhMjGHWhDgyWz/cu3cP8fHxuH79OgCgR48eGDp0KEdjiYiIJGAWbQbffvstgoKCYG9vj5CQEBw8eLDKfX/88Uf069cPHh4e8PDwQGhoaLX7mxP2zFq+c+fOYdGiRbh+/Trs7Owwfvx4DB8+nEGWiIhIIpKH2VWrVmHmzJmYM2cOjh49io4dOyIsLAyZmZmV7r979248+uij2LVrFw4cOICAgAAMGzYMN27cMHHl+uPIrGUTQuDAgQMoKipCo0aNMH36dLRu3VrqsoiIiKyaTAghpCwgJCQE3bt3xzfffAOgbOWkgIAAvPDCC5g1a1aNx6vVanh4eOCbb77B448/XuP+OTk5cHNzQ3Z2NlxdXR+6fn2MGgVs3Fj251u3AG9vk56eDCA7OxuHDx/GwIEDoVAopC6HiIioXtInr0k6MqtSqXDkyBGEhoZqt8nlcoSGhmovrKlJQUEBSkpK4OnpWenjxcXFyMnJ0blJhW0GlufMmTPYtWuX9r6bmxuGDBnCIEtERGQmJA2zt2/fhlqtRsOGDXW2N2zYEOnp6bV6jjfeeAONGjXSCcT3mzdvHtzc3LS3gICAh667ru5vM7C3l6wMqoXS0lJs3LgRa9aswd69e5GSkiJ1SURERFQJyXtmH8Ynn3yClStXYt26dbCvIh3Onj0b2dnZ2tu1a9dMXOX/lIdZe3tAbtHvfP12584d/Pzzzzh8+DAAoE+fPggMDJS4KiIiIqqMpJdge3t7Q6FQICMjQ2d7RkYGfH19qz32iy++wCeffILt27ejQ4cOVe5nZ2cHOzs7g9T7sMrDLFsMzNfJkyexYcMGqFQqODo6YuzYsWjRooXUZREREVEVJB0fVCqV6Nq1K3bs2KHdptFosGPHDvTq1avK4z777DN8+OGH2LJlC7p162aKUg2ivGeWYdY8bd26FWvXroVKpUKTJk0wffp0BlkiIiIzJ/nkmDNnzsTkyZPRrVs39OjRAwsWLEB+fj6mTp0KAHj88cfRuHFjzJs3DwDw6aef4t1338WKFSsQFBSk7a11dnaGs7OzZK+jNspHZrn6l3ny9/cHAPTr1w8DBw6EnL0gREREZk/yMDthwgTcunUL7777LtLT09GpUyds2bJFe1HY1atXdULF999/D5VKhejoaJ3nmTNnDt577z1Tlq43thmYn7y8PO0/gtq2bYuGDRvCm3OmERERWQzJ55k1NanmmdVogPLZnHr1Av7802SnpkqoVCps3rwZFy5cwDPPPGP2o/pERETWRJ+8JvnIrLXgHLPmIzMzE3Fxcbh16xZkMhkuX75c7UWEREREZL4YZk3k/jlm2TMrDSEEkpKSsGnTJpSWlsLZ2RlRUVEICgqSujQiIiKqI4ZZE+HIrLRUKhU2bNiAkydPAgCaN2+OsWPHwsnJSeLKiIiI6GEwzJrI/SOzDLOmt3fvXpw8eRIymQyDBg1C3759IZPJpC6LiIiIHhLDrImwzUBa/fv3R1paGgYMGMDVvIiIiOoRTqRpIhyZNa3i4mL8+eefKJ+sQ6lUYtKkSQyyRERE9QxHZk2EPbOmk5aWhri4OGRlZQEAevfuLXFFREREZCwMsybCkVnjE0Lg0KFD+OOPP6BWq+Hm5saRWCIionqOYdZE2DNrXEVFRUhISMDZs2cBAC1btsSYMWPgwDebiIioXmOYNRG2GRjPzZs3sWbNGty7dw9yuRxDhw5FSEgIZysgIiKyAgyzJsI2A+MRQiAnJwfu7u6Ijo5G48aNpS6JiIiITIRh1kTYZmBYGo0GcnnZZByNGzfGhAkTEBgYCHt7e4krIyIiIlPi1FwmwjYDw7l27Rq+++47pKena7cFBwczyBIREVkhhlkTYZvBwxNCYP/+/ViyZAnu3LmDnTt3Sl0SERERSYxtBibCNoOHk5+fj/Xr1+PixYsAgHbt2mHUqFESV0VERERSY5g1EY7M1t2VK1cQHx+P3Nxc2NjYIDw8HF26dOFsBURERMQwayrsma2bq1ev4pdffoEQAl5eXoiJiUHDhg2lLouIiIjMBMOsiXBktm78/f0RFBQEFxcXjBw5EkqlUuqSiIiIyIwwzJoIe2Zr7+rVq/Dz84OtrS3kcjkeffRR2NraSl0WERERmSHOZmAi97cZMMxWTqPRYPfu3ViyZAm2bt2q3c4gS0RERFXhyKyJlI/M2tqW3UhXbm4u1q5di9TUVACAWq3WWRiBiIiIqDIMsyZSHmY5KlvRpUuXsHbtWhQUFMDW1hajRo1Chw4dpC6LiIiILADDrImUh1le/PU/Go0Gu3btQmJiIgCgYcOGiI6Ohre3t8SVERERkaVgmDWR8p5Zhtn/yc/Px5EjRwAAXbt2RVhYGPtjiYiISC8MsybCkdmKXFxcEBkZCZVKhXbt2kldDhEREVkghlkTEII9s0DZRV07d+5EYGAgWrZsCQAIDg6WuCoiIiKyZLxU3ARUqrJAC1jvyGx2djZiY2Px559/4rfffkNRUZHUJREREVE9wJFZE7D21b+Sk5Oxfv16FBUVwc7ODhEREbC3t5e6LCIiIqoHGGZNwFpX/1Kr1di2bRv+/vtvAECjRo0QHR0NDw8PiSsjIiKi+oJh1gTuX/3LWkZmS0pKEBsbi5s3bwIAevbsidDQUCgUCokrIyIiovqEYdYErLHNwNbWFr6+vsjKykJkZKT2gi8iIiIiQ2KYNQFraTMoLS1FSUkJHP7/RYaHh6N///5wc3OTuDIiIiKqrzibgQlYw8hsVlYWfv75Z6xZswYajQZA2egsgywREREZE0dmTaC+98yeOnUKv//+O1QqFRwcHHD37l14eXlJXRYRERFZAYZZE6ivI7MlJSXYsmULjh49CgAIDAxEVFQUXF1dJa6MiIiIrAXDrAnUx57Z27dvIy4uDhkZGQCAfv36YeDAgZDL2blCREREpsMwawL1rc1ACIG1a9ciIyMDjo6OGDduHJo3by51WURERGSFGGZNoL61GchkMowePRo7duzA6NGj4eLiInVJREREZKX4nbAJ1Ic2g8zMTJw4cUJ739fXFxMnTmSQJSIiIklxZNYELLnNQAiBpKQkbNq0CRqNBl5eXmjcuLHUZREREREBYJg1CUttM1CpVNi4caN2RLZZs2Zwd3eXtigiIiKi+zDMmoAlhtmMjAysWbMGd+7cgUwmw6BBg9C3b1/IZDKpSyMiIiLSYpg1AUvrmT169Cg2bdoEtVoNFxcXREVFoUmTJlKXRURERFQBw6wJWFrPbFFREdRqNVq0aIGxY8fC0RKKJiIiIqvEMGsCltBmoNFotAse9OrVC25ubmjTpg3bCoiIiMiscWouEzDnNgMhBA4ePIgffvgBKpUKQNk8sm3btmWQJSIiIrPHkVkTKG8zkMkAOztpa7lfUVEREhIScPbsWQBlvbI9e/aUuCoiIiKi2mOYNYHykVlHx7JAaw5u3LiBuLg43Lt3D3K5HEOHDkVISIjUZRERERHphWHWBMrDrDm0GAgh8Pfff2Pbtm3QaDRwd3dHdHQ0F0IgIiIii8QwawL3j8xKbe/evdi9ezcAoHXr1hg9ejTs7e2lLYqIiIiojhhmTaC8Z9YcwmzXrl1x7Ngx9O7dG927d+dFXkRERGTRGGZNQMqRWSEELl++jObNmwMAnJ2d8fzzz8PGhh89ERERWT5OzWVkpaVASUnZn03dM1tQUID//ve/WLZsGU6fPq3dziBLRERE9QVTjZFJtfrXlStXEB8fj9zcXCgUCpSUJ2oiIiKieoRh1shMvfqXEAKJiYnYtWsXhBDw8vJCTEwMGjZsaPyTExEREZkYw6yRmXL1r/z8fKxduxaXL18GAHTo0AEjR46EUqk07omJiIiIJMIwa2SmbDO4ceMGLl++DBsbG4wYMQKdOnXibAVERERUrzHMGpkp2wyCg4MxbNgwNG/eHD4+PsY9GREREZEZ4GwGRmbMMJubm4vVq1cjOztbu61Xr14MskRERGQ1ODJrZMbqmb106RLWrVuH/Px8qFQq/POf/zTckxMRERFZCIZZIzN0z6xGo8Hu3buxb98+AICPjw/Cw8Mf/omJiIiILBDDrJEZss0gJycH8fHxuHr1KgCgS5cuCA8Ph62t7cM9MREREZGFYpg1MkO1GaSnp2Pp0qUoLCyEUqlEREQE2rVr9/AFEhEREVkwhlkjM1SbgZeXF1xcXODm5obo6Gh4eXk9fHFEREREFo5h1sgeps0gNzcXzs7OkMlksLW1xWOPPQYnJyfY2PBjIyIiIgIYZo2urm0GycnJWL9+PXr16oX+/fsDANzc3AxcHRGZGyEESktLoVarpS6FiMiobG1toVAoHvp5GGaNTN82A7Vaje3bt+Ovv/4CAFy4cAF9+/aFXM4pgYnqO5VKhbS0NBTc/69gIqJ6SiaTwd/fH87Ozg/1PAyzRqZPm8Hdu3cRHx+PGzduAABCQkIwdOhQBlkiK6DRaJCSkgKFQoFGjRpBqVRyOWoiqreEELh16xauX7+ORx555KFGaBlmjay2Yfbs2bP47bffUFxcDHt7e4wZMwatWrUyfoFEZBZUKhU0Gg0CAgLgaOy1r4mIzECDBg2QmpqKkpIShllzVpue2dzcXMTHx0OtVsPf3x9RUVFwd3c3SX1EZF74TQwRWQtDffvEMGtktemZdXFxQXh4OLKysjBkyBCDNEMTERERWQOGWSOrqs3g9OnTcHd3R+PGjQEA3bp1M3FlRERERJaP32cZ2YNtBiUlJdiwYQPi4uIQFxeHoqIi6YojIrIwQUFBWLBggcH3Jev1888/Y9iwYVKXUe+cOXMG/v7+yM/PN/q5zCLMfvvttwgKCoK9vT1CQkJw8ODBavdfs2YNWrVqBXt7e7Rv3x6bNm0yUaX6K28zsLMDsrJu4+eff8aRI0cAAO3atYNSqZSwOiKihzdlyhTIZDLtAi8NGzbE0KFDsXjxYmg0GoOe69ChQ5g2bZrB962L+193ZbegoCCjnftBQUFB2vM6Ojqiffv2+Omnnyrsp1ar8dVXX6F9+/awt7eHh4cHhg8fjv3791fYV6VS4bPPPkPHjh3h6OgIb29v9OnTB0uWLEFJSYkpXpbRFRUV4Z133sGcOXOkLsVoioqKMGPGDHh5ecHZ2RlRUVHIyMio9piMjAxMmTIFjRo1gqOjI8LDw3HhwgXt41lZWXjhhRfQsmVLODg4IDAwEC+++CKys7O1+7Rp0wY9e/bE/PnzjfbaykkeZletWoWZM2dizpw5OHr0KDp27IiwsDBkZmZWuv+ff/6JRx99FE8++SSOHTuGyMhIREZG4tSpUyauvHbKR2Y7dz6BH374ARkZGXB0dMQ///lPDBkyhBd7EFG9EB4ejrS0NKSmpmLz5s0YNGgQXnrpJYwaNQqlpaUGO0+DBg1qPduDPvvWxddff420tDTtDQCWLFmivX/o0CGd/VUqldFqAYAPPvgAaWlpOHXqFP75z3/i6aefxubNm7WPCyHwj3/8Ax988AFeeuklnD17Frt370ZAQAAGDhyI9evX69QaFhaGTz75BNOmTcOff/6JgwcPYsaMGfjPf/6D06dPG/W13M+YwTkuLg6urq7o06fPQz2POYf7l19+Gb///jvWrFmDPXv24ObNmxg3blyV+wshEBkZicuXL+O3337DsWPH0KRJE4SGhmpHWW/evImbN2/iiy++wKlTpxAbG4stW7bgySef1HmuqVOn4vvvvzfo74CqipZUjx49xIwZM7T31Wq1aNSokZg3b16l+48fP16MHDlSZ1tISIiYPn16rc6XnZ0tAIjs7Oy6F62HwMASMXr0evHee++J9957T8TGxoqcnByTnJuILEdhYaE4c+aMKCwslLoUvU2ePFmMGTOmwvYdO3YIAOLHH3/Ubrt796548sknhbe3t3BxcRGDBg0SSUlJOsclJCSIbt26CTs7O+Hl5SUiIyO1jzVp0kR89dVXQgghNBqNmDNnjggICBBKpVL4+fmJF154odJ9hRDiypUrYvTo0cLJyUm4uLiImJgYkZ6ern18zpw5omPHjmLp0qWiSZMmwtXVVUyYMKHWv7MBiHXr1umc/4MPPhCTJk0SLi4uYvLkyUIIIfbt2yf69u0r7O3thb+/v3jhhRdEXl6e9riioiLxyiuviEaNGglHR0fRo0cPsWvXrmrP/eBrFUIIT09P8fLLL2vvr1y5UgAQCQkJFY4fN26c8PLy0tbx6aefCrlcLo4ePVphX5VKpVPvgxITE8WAAQOEg4ODcHd3F8OGDRNZWVlV1tmxY0cxZ84c7X0A4rvvvhMRERHC0dFRvPPOO6Jx48biu+++0znu6NGjQiaTidTUVCFE7X62HjRy5Ejx6quv6mw7ePCgCA0NFV5eXsLV1VX0799fHDlyRGefB2ssr3/9+vWic+fOws7OTjRt2lS89957oqSkRHvcl19+Kdq1ayccHR2Fv7+/ePbZZ0Vubm61NT6Me/fuCVtbW7FmzRrttrNnzwoA4sCBA5Uek5ycLACIU6dOabep1WrRoEEDnf+XH7R69WqhVCp1Xm9xcbGws7MT27dvr/SY6n7v6ZPXJB0WVKlUOHLkCEJDQ7Xb5HI5QkNDceDAgUqPOXDggM7+ABAWFlbl/sXFxcjJydG5mVJengLOzvkQAhgwYAAmTZoEFxcXk9ZARJarWzfA39/0N0Nckzp48GB07NgRa9eu1W6LiYlBZmYmNm/ejCNHjqBLly4YMmQIsrKyAAAbN27E2LFjMWLECBw7dgw7duxAjx49Kn3++Ph4fPXVV1i0aBEuXLiA9evXo3379pXuq9FoMGbMGGRlZWHPnj3Ytm0bLl++jAkTJujsd+nSJaxfvx4bNmzAhg0bsGfPHnzyySd1fg+++OILdOzYEceOHcM777yDS5cuITw8HFFRUThx4gRWrVqFxMREPP/889pjnn/+eRw4cAArV67EiRMnEBMTU+Fr3upoNBrEx8fj7t27Oq1sK1asQHBwMCIiIioc88orr+DOnTvYtm0bAGD58uUIDQ1F586dK+xra2sLJyenSs+dlJSEIUOGoE2bNjhw4AASExMRERGh9/LM7733HsaOHYuTJ0/iqaeewqOPPooVK1bo7LN8+XL06dMHTZo0AVDzz1ZlEhMTK1yAnZubi8mTJyMxMRF//fUXHnnkEYwYMQK5ublV1vjEE09g3759ePzxx/HSSy/hzJkzWLRoEWJjY/Hxxx9rj5HL5fj3v/+N06dP45dffsHOnTvx+uuvV/teDB8+HM7OzlXe2rZtW+WxR44cQUlJiU5uatWqFQIDA6vNTQBgb2+vU7ednR0SExOrPFd2djZcXV1hY/O/uQWUSiU6deqEffv2VfsaH1qNcdeIbty4IQCIP//8U2f7a6+9Jnr06FHpMba2tmLFihU627799lvh4+NT6f5z5swRACrcTDUy6+AghKNjvhg8OMUk5yMiy1TVCEXjxkIApr81blz72qsamRVCiAkTJojWrVsLIcpGJF1dXUVRUZHOPs2bNxeLFi0SQgjRq1cvMXHixCrPdf/I3pdffimCg4OFSqWqcd8//vhDKBQKcfXqVe3jp0+fFgDEwYMHhRBlf184OjrqjMS+9tprIiQkpOoXfx9UMjJ7/6iyEEI8+eSTYtq0aTrb9u3bJ+RyuSgsLBRXrlwRCoVC3LhxQ2efIUOGiNmzZ1d57iZNmgilUimcnJyEjY2NACA8PT3FhQsXtPu0atWqys8pKytLABCffvqpEEIIBwcH8eKLL9bmZet49NFHRZ8+faqtszYjs//617909jl27JiQyWTiypUrQoiykcLGjRuL77//XghRu5+tB929e1cAEHv37q32NanVauHi4iJ+//33amscMmSImDt3rs62X3/9Vfj5+VX53GvWrBFeXl7Vnv/69eviwoULVd7KR6Yrs3z5cqFUKits7969u3j99dcrPUalUonAwEARExMjsrKyRHFxsfjkk08EADFs2LBKj7l165YIDAwUb775ZoXHxo4dK6ZMmVLpcYYama33U3PNnj0bM2fO1N7PyclBQECAyc5/9SpQWOgIjSbIZOckovrD19eyzyuE0E6Mfvz4ceTl5cHLy0tnn8LCQly6dAlA2cje008/XavnjomJwYIFC9CsWTOEh4djxIgRiIiI0BkZKnf27FkEBATo/P5v06YN3N3dcfbsWXTv3h1A2YVU93975ufnV+U1HLXx4Kjf8ePHceLECSxfvly7TQihXc748uXLUKvVCA4O1jmuuLi4wvv2oNdeew1TpkxBWloaXnvtNTz33HNo0aKFzj5CiFrVXdv9HpSUlISYmJg6HXu/B9+3Tp06oXXr1lixYgVmzZqFPXv2IDMzU3uu2vxsPajw/6/Qvn8EEii7+Ontt9/G7t27kZmZCbVajYKCAly9erXaGo8fP479+/frjMSq1WoUFRWhoKAAjo6O2L59O+bNm4dz584hJycHpaWlOo9XpnwKT1OxtbXF2rVr8eSTT8LT0xMKhQKhoaEYPnx4pT8XOTk5GDlyJNq0aYP33nuvwuMODg4ouH9qJyOQNMx6e3tDoVBUuKouIyMDvlX8JvX19dVrfzs7O9jZ2Rmm4Drw9pbs1ERUDxw+LHUFD+fs2bNo2rQpACAvLw9+fn7YvXt3hf3KVz10qGqpxEoEBAQgOTkZ27dvx7Zt2/Dcc8/h888/x549e2Bra1uneh88TiaTPdSMDA9+HZ+Xl4fp06fjxRdfrLBvYGAgTpw4AYVCgSNHjlRYQMfZ2bnac3l7e6NFixZo0aIF1qxZg/bt26Nbt25o06YNACA4OBhnz56t9Njy7eUhOjg4GOfOnavdi7xPTZ+fXC6vEIgqu3iqsjaGiRMnasPsihUrEB4erg2vtfnZepCXlxdkMhnu3r2rs33y5Mm4c+cOvv76azRp0gR2dnbo1atXhQv4Kvts33///UovrrK3t0dqaipGjRqFZ599Fh9//DE8PT2RmJiIJ598EiqVqsowO3z48Gq/pm/SpEmVF+T5+vpCpVLh3r17Ou9DdbkJALp27YqkpCRkZ2dDpVKhQYMGCAkJqbQlIzw8HC4uLli3bl2l/99lZWWhefPmVZ7LECTtmVUqlejatSt27Nih3abRaLBjxw706tWr0mN69eqlsz8AbNu2rcr9iYhIGjt37sTJkycRFRUFAOjSpQvS09NhY2OjDV3lN+///5d/hw4dKvyOr46DgwMiIiLw73//G7t378aBAwdw8uTJCvu1bt0a165dw7Vr17Tbzpw5g3v37mnDnil06dIFZ86cqfD6W7RoAaVSic6dO0OtViMzM7PC49WFjwcFBARgwoQJmD17tnbbP/7xD1y4cAG///57hf2//PJLeHl5YejQoQCAxx57DNu3b8exY8cq7FtSUlLl3KE1fX4NGjTQzvwAlI3qpaSk1Oo1PfbYYzh16hSOHDmCuLg4TJw4UftYbX62HqRUKtGmTRucOXNGZ/v+/fvx4osvYsSIEWjbti3s7Oxw+/btGuvr0qULkpOTK/1s5XI5jhw5Ao1Ggy+//BI9e/ZEcHAwbt68WePz/vTTT0hKSqryVt30pF27doWtra3OZ5KcnIyrV6/WKje5ubmhQYMGuHDhAg4fPowxY8ZoH8vJycGwYcOgVCqRkJBQYYS73KlTpyrtvTaoGhsRjGzlypXCzs5OxMbGijNnzohp06YJd3d37RWmkyZNErNmzdLuv3//fmFjYyO++OILcfbsWTFnzhxha2srTp48WavzmXo2AyKi2rD02QzCw8NFWlqauH79ujhy5Ij4+OOPhbOzsxg1apQoLS0VQpTNPtC3b1/RsWNHsXXrVpGSkiL2798v3nzzTXHo0CEhhBC7du0ScrlcvPvuu+LMmTPixIkT4pNPPtGe6/6eyyVLloiffvpJnDx5Uly6dEm8/fbbwsHBQdy+fbvCvhqNRnTq1En069dPHDlyRPz999+ia9euYsCAAdrnLp/N4H5fffWVaNKkSa3eB1TSM/tgf+jx48eFg4ODmDFjhjh27Jg4f/68WL9+vc6sPhMnThRBQUEiPj5eXL58Wfz9999i7ty5YsOGDVWeu7JznT59WshkMu17q9FoxNixY4WHh4f46aefREpKijh+/LiYNm2asLGx0am9qKhI9OvXT3h4eIhvvvlGJCUliUuXLolVq1aJLl26iGPHjlVaR3JyslAqleLZZ58Vx48fF2fPnhXfffeduHXrlhBCiFmzZglfX1+xd+9eceLECREZGSmcnZ0r9MzeX8v9+vTpIzp27ChcXFxEQUGBdnttfrYqM3PmTBEVFaWzrXPnzmLo0KHizJkz4q+//hL9+vUTDg4OOu9vZTVu2bJF2NjYiPfee0+cOnVKnDlzRvz3v/8Vb731lhBCiKSkJAFALFiwQFy6dEksXbpUNG7cWAAQd+/erbLGh/XMM8+IwMBAsXPnTnH48GHRq1cv0atXL519WrZsKdauXau9v3r1arFr1y5x6dIlsX79etGkSRMxbtw47ePZ2dkiJCREtG/fXly8eFGkpaVpb+X/vwshREpKis6MEw8yVM+s5GFWCCH+85//iMDAQKFUKkWPHj3EX3/9pX1swIAB2ulMyq1evVoEBwcLpVIp2rZtKzZu3FjrczHMEpE5svQwi/+/uNbGxkY0aNBAhIaGisWLFwu1Wq2zb05OjnjhhRdEo0aNhK2trQgICBATJ07UuTArPj5edOrUSSiVSuHt7a3zl+j9oW3dunUiJCREuLq6CicnJ9GzZ0+dKYDqOjXX/QwdZoUom/pp6NChwtnZWTg5OYkOHTqIjz/+WPu4SqUS7777rggKChK2trbCz89PjB07Vpw4caLKc1d1rrCwMDF8+HDt/ZKSEvH555+Ltm3bCqVSKVxdXUVYWJhITEyscGxRUZGYN2+eaN++vbC3txeenp6iT58+IjY2Vmf6pQft3r1b9O7dW9jZ2Ql3d3cRFhamDWvZ2dliwoQJwtXVVQQEBIjY2NhKLwCrKsx+9913AoB4/PHHKzxWm5+tB50+fVo4ODiIe/fuabcdPXpUdOvWTdjb24tHHnlErFmzpsL7W1WNW7ZsEb179xYODg7C1dVV9OjRQ/zwww/ax+fPny/8/PyEg4ODCAsLE0uXLjV6mC0sLBTPPfec8PDwEI6OjmLs2LEiLS1NZx8AYsmSJdr7X3/9tfD39xe2trYiMDBQvP3226K4uFj7+K5duyq9uB6ASElJ0e43d+5cERYWVm1thgizsv9/EVYjJycHbm5u2ikkiIjMQVFREVJSUtC0adMqv64jIsOLiYlBly5ddFoy6OGpVCo88sgjWLFiRZWLUlT3e0+fvMblp4iIiMhqff755zVeXEf6u3r1Kt58882HXl2tNur91FxEREREVQkKCsILL7wgdRn1TvnFb6bAkVkiIiIislgMs0RERERksRhmiYjMiJVdk0tEVsxQv+8YZomIzED5yjnGXvaRiMhclK+q9uBqd/riBWBERGZAoVDA3d0dmZmZAABHR0fIZDKJqyIiMg6NRoNbt27B0dERNjYPF0cZZomIzET5cqXlgZaIqD6Ty+UIDAx86H+4M8wSEZkJmUwGPz8/+Pj4oKSkROpyiIiMSqlUQi5/+I5XhlkiIjOjUCgeuoeMiMha8AIwIiIiIrJYDLNEREREZLEYZomIiIjIYlldz2z5BL05OTkSV0JERERElSnPabVZWMHqwmxubi4AICAgQOJKiIiIiKg6ubm5cHNzq3YfmbCytRM1Gg1u3rwJFxcXk0xInpOTg4CAAFy7dg2urq5GPx8ZHj9Dy8fP0PLxM7Rs/Pwsn6k/QyEEcnNz0ahRoxqn77K6kVm5XA5/f3+Tn9fV1ZX/A1s4foaWj5+h5eNnaNn4+Vk+U36GNY3IluMFYERERERksRhmiYiIiMhiMcwamZ2dHebMmQM7OzupS6E64mdo+fgZWj5+hpaNn5/lM+fP0OouACMiIiKi+oMjs0RERERksRhmiYiIiMhiMcwSERERkcVimCUiIiIii8UwawDffvstgoKCYG9vj5CQEBw8eLDa/desWYNWrVrB3t4e7du3x6ZNm0xUKVVFn8/wxx9/RL9+/eDh4QEPDw+EhobW+JmT8en7/2G5lStXQiaTITIy0rgFUo30/Qzv3buHGTNmwM/PD3Z2dggODubvUwnp+/ktWLAALVu2hIODAwICAvDyyy+jqKjIRNXSg/bu3YuIiAg0atQIMpkM69evr/GY3bt3o0uXLrCzs0OLFi0QGxtr9DorJeihrFy5UiiVSrF48WJx+vRp8fTTTwt3d3eRkZFR6f779+8XCoVCfPbZZ+LMmTPi7bffFra2tuLkyZMmrpzK6fsZPvbYY+Lbb78Vx44dE2fPnhVTpkwRbm5u4vr16yaunMrp+xmWS0lJEY0bNxb9+vUTY8aMMU2xVCl9P8Pi4mLRrVs3MWLECJGYmChSUlLE7t27RVJSkokrJyH0//yWL18u7OzsxPLly0VKSorYunWr8PPzEy+//LKJK6dymzZtEm+99ZZYu3atACDWrVtX7f6XL18Wjo6OYubMmeLMmTPiP//5j1AoFGLLli2mKfg+DLMPqUePHmLGjBna+2q1WjRq1EjMmzev0v3Hjx8vRo4cqbMtJCRETJ8+3ah1UtX0/QwfVFpaKlxcXMQvv/xirBKpBnX5DEtLS0Xv3r3FTz/9JCZPnswwKzF9P8Pvv/9eNGvWTKhUKlOVSNXQ9/ObMWOGGDx4sM62mTNnij59+hi1Tqqd2oTZ119/XbRt21Zn24QJE0RYWJgRK6sc2wwegkqlwpEjRxAaGqrdJpfLERoaigMHDlR6zIEDB3T2B4CwsLAq9yfjqstn+KCCggKUlJTA09PTWGVSNer6GX7wwQfw8fHBk08+aYoyqRp1+QwTEhLQq1cvzJgxAw0bNkS7du0wd+5cqNVqU5VN/68un1/v3r1x5MgRbSvC5cuXsWnTJowYMcIkNdPDM6c8Y2PyM9Yjt2/fhlqtRsOGDXW2N2zYEOfOnav0mPT09Er3T09PN1qdVLW6fIYPeuONN9CoUaMK/1OTadTlM0xMTMTPP/+MpKQkE1RINanLZ3j58mXs3LkTEydOxKZNm3Dx4kU899xzKCkpwZw5c0xRNv2/unx+jz32GG7fvo2+fftCCIHS0lI888wzePPNN01RMhlAVXkmJycHhYWFcHBwMFktHJklegiffPIJVq5ciXXr1sHe3l7qcqgWcnNzMWnSJPz444/w9vaWuhyqI41GAx8fH/zwww/o2rUrJkyYgLfeegsLFy6UujSqhd27d2Pu3Ln47rvvcPToUaxduxYbN27Ehx9+KHVpZIE4MvsQvL29oVAokJGRobM9IyMDvr6+lR7j6+ur1/5kXHX5DMt98cUX+OSTT7B9+3Z06NDBmGVSNfT9DC9duoTU1FRERERot2k0GgCAjY0NkpOT0bx5c+MWTTrq8v+hn58fbG1toVAotNtat26N9PR0qFQqKJVKo9ZM/1OXz++dd97BpEmT8NRTTwEA2rdvj/z8fEybNg1vvfUW5HKOtZm7qvKMq6urSUdlAY7MPhSlUomuXbtix44d2m0ajQY7duxAr169Kj2mV69eOvsDwLZt26rcn4yrLp8hAHz22Wf48MMPsWXLFnTr1s0UpVIV9P0MW7VqhZMnTyIpKUl7Gz16NAYNGoSkpCQEBASYsnxC3f4/7NOnDy5evKj9hwgAnD9/Hn5+fgyyJlaXz6+goKBCYC3/h4kQwnjFksGYVZ4x+SVn9czKlSuFnZ2diI2NFWfOnBHTpk0T7u7uIj09XQghxKRJk8SsWbO0++/fv1/Y2NiIL774Qpw9e1bMmTOHU3NJTN/P8JNPPhFKpVLExcWJtLQ07S03N1eql2D19P0MH8TZDKSn72d49epV4eLiIp5//nmRnJwsNmzYIHx8fMRHH30k1Uuwavp+fnPmzBEuLi7iv//9r7h8+bL4448/RPPmzcX48eOleglWLzc3Vxw7dkwcO3ZMABDz588Xx44dE1euXBFCCDFr1iwxadIk7f7lU3O99tpr4uzZs+Lbb7/l1FyW7D//+Y8IDAwUSqVS9OjRQ/z111/axwYMGCAmT56ss//q1atFcHCwUCqVom3btmLjxo0mrpgepM9n2KRJEwGgwm3OnDmmL5y09P3/8H4Ms+ZB38/wzz//FCEhIcLOzk40a9ZMfPzxx6K0tNTEVVM5fT6/kpIS8d5774nmzZsLe3t7ERAQIJ577jlx9+5d0xdOQgghdu3aVenfbeWf2+TJk8WAAQMqHNOpUyehVCpFs2bNxJIlS0xetxBCyITgeD4RERERWSb2zBIRERGRxWKYJSIiIiKLxTBLRERERBaLYZaIiIiILBbDLBERERFZLIZZIiIiIrJYDLNEREREZLEYZomIiIjIYjHMEhEBiI2Nhbu7u9Rl1JlMJsP69eur3WfKlCmIjIw0ST1ERKbCMEtE9caUKVMgk8kq3C5evCh1aYiNjdXWI5fL4e/vj6lTpyIzM9Mgz5+Wlobhw4cDAFJTUyGTyZCUlKSzz9dff43Y2FiDnK8q7733nvZ1KhQKBAQEYNq0acjKytLreRi8iai2bKQugIjIkMLDw7FkyRKdbQ0aNJCoGl2urq5ITk6GRqPB8ePHMXXqVNy8eRNbt2596Of29fWtcR83N7eHPk9ttG3bFtu3b4darcbZs2fxxBNPIDs7G6tWrTLJ+YnIunBklojqFTs7O/j6+urcFAoF5s+fj/bt28PJyQkBAQF47rnnkJeXV+XzHD9+HIMGDYKLiwtcXV3RtWtXHD58WPt4YmIi+vXrBwcHBwQEBODFF19Efn5+tbXJZDL4+vqiUaNGGD58OF588UVs374dhYWF0Gg0+OCDD+Dv7w87Ozt06tQJW7Zs0R6rUqnw/PPPw8/PD/b29mjSpAnmzZun89zlbQZNmzYFAHTu3BkymQwDBw4EoDva+cMPP6BRo0bQaDQ6NY4ZMwZPPPGE9v5vv/2GLl26wN7eHs2aNcP777+P0tLSal+njY0NfH190bhxY4SGhiImJgbbtm3TPq5Wq/Hkk0+iadOmcHBwQMuWLfH1119rH3/vvffwyy+/4LffftOO8u7evRsAcO3aNYwfPx7u7u7w9PTEmDFjkJqaWm09RFS/McwSkVWQy+X497//jdOnT+OXX37Bzp078frrr1e5/8SJE+Hv749Dhw7hyJEjmDVrFmxtbQEAly5dQnh4OKKionDixAmsWrUKiYmJeP755/WqycHBARqNBqWlpfj666/x5Zdf4osvvsCJEycQFhaG0aNH48KFCwCAf//730hISMDq1auRnJyM5cuXIygoqNLnPXjwIABg+/btSEtLw9q1ayvsExMTgzt37mDXrl3abVlZWdiyZQsmTpwIANi3bx8ef/xxvPTSSzhz5gwWLVqE2NhYfPzxx7V+jampqdi6dSuUSqV2m0ajgb+/P9asWYMzZ87g3XffxZtvvonVq1cDAF599VWMHz8e4eHhSEtLQ1paGnr37o2SkhKEhYXBxcUF+/btw/79++Hs7Izw8HCoVKpa10RE9YwgIqonJk+eLBQKhXByctLeoqOjK913zZo1wsvLS3t/yZIlws3NTXvfxcVFxMbGVnrsk08+KaZNm6azbd++fUIul4vCwsJKj3nw+c+fPy+Cg4NFt27dhBBCNGrUSHz88cc6x3Tv3l0899xzQgghXnjhBTF48GCh0WgqfX4AYt26dUIIIVJSUgQAcezYMZ19Jk+eLMaMGaO9P2bMGPHEE09o7y9atEg0atRIqNVqIYQQQ4YMEXPnztV5jl9//VX4+flVWoMQQsyZM0fI5XLh5OQk7O3tBQABQMyfP7/KY4QQYsaMGSIqKqrKWsvP3bJlS533oLi4WDg4OIitW7dW+/xEVH+xZ5aI6pVBgwbh+++/1953cnICUDZKOW/ePJw7dw45OTkoLS1FUVERCgoK4OjoWOF5Zs6ciaeeegq//vqr9qvy5s2bAyhrQThx4gSWL1+u3V8IAY1Gg5SUFLRu3brS2rKzs+Hs7AyNRoOioiL07dsXP/30E3JycnDz5k306dNHZ/8+ffrg+PHjAMpaBIYOHYqWLVsiPDwco0aNwrBhwx7qvZo4cSKefvppfPfdd7Czs8Py5cvxj3/8A3K5XPs69+/frzMSq1arq33fAKBly5ZISEhAUVERli1bhqSkJLzwwgs6+3z77bdYvHgxrl69isLCQqhUKnTq1Knaeo8fP46LFy/CxcVFZ3tRUREuXbpUh3eAiOoDhlkiqlecnJzQokULnW2pqakYNWoUnn32WXz88cfw9PREYmIinnzySahUqkpD2XvvvYfHHnsMGzduxObNmzFnzhysXLkSY8eORV5eHqZPn44XX3yxwnGBgYFV1ubi4oKjR49CLpfDz88PDg4OAICcnJwaX1eXLl2QkpKCzZs3Y/v27Rg/fjxCQ0MRFxdX47FViYiIgBACGzduRPfu3bFv3z589dVX2sfz8vLw/vvvY9y4cRWOtbe3r/J5lUql9jP45JNPMHLkSLz//vv48MMPAQArV67Eq6++ii+//BK9evWCi4sLPv/8c/z999/V1puXl4euXbvq/COinLlc5EdEpscwS0T13pEjR6DRaPDll19qRx3L+zOrExwcjODgYLz88st49NFHsWTJEowdOxZdunTBmTNnKoTmmsjl8kqPcXV1RaNGjbB//34MGDBAu33//v3o0aOHzn4TJkzAhAkTEB0djfDwcGRlZcHT01Pn+cr7U9VqdbX12NvbY9y4cVi+fDkuXryIli1bokuXLtrHu3TpguTkZL1f54PefvttDB48GM8++6z2dfbu3RvPPfecdp8HR1aVSmWF+rt06YJVq1bBx8cHrq6uD1UTEdUfvACMiOq9Fi1aoKSkBP/5z39w+fJl/Prrr1i4cGGV+xcWFuL555/H7t27ceXKFezfvx+HDh3Stg+88cYb+PPPP/H8888jKSkJFy5cwG+//ab3BWD3e+211/Dpp59i1apVSE5OxqxZs5CUlISXXnoJADB//nz897//xblz53D+/HmsWbMGvr6+lS704OPjAwcHB2zZsgUZGRnIzs6u8rwTJ07Exo0bsXjxYu2FX+XeffddLF26FO+//z5Onz6Ns2fPYuXKlXj77bf1em29evVChw4dMHfuXADAI488gsOHD2Pr1q04f/483nnnHRw6dEjnmKCgIJw4cQLJycm4ffs2SkpKMHHiRHh7e2PMmDHYt28fUlJSsHv3brz44ou4fv26XjURUf3BMEtE9V7Hjh0xf/58fPrpp2jXrh2WL1+uM63VgxT/164dsigQhHEY/x+ajIJlgyZXDArCLmuxWGSTsEHBYBHZJqhdsFoWbIKfQkTEpuCH0CSYt9v2wsGh4cJZjuGeX50w77SHl0mlFMex+v2+bNtWp9OR7/uaz+eSpGq1quPxqOv1qkajoVqtptlsJsuy3p5xNBppMploOp2qUqlov99rs9moWCxK+vqisFgs5DiOXNfV7XbTbrf73jQ/S6fTWi6XWq1WsixL7Xb7x3ubzaay2awul4t6vd7LWavV0na71eFwkOu6qtfriqJIhULh1+8bj8dar9e63+8Kw1BBEKjb7crzPMVx/LKllaThcKhSqSTHcZTL5XQ+n5XJZHQ6nZTP5xUEgcrlsgaDgR6PB5ta4B/7SJIk+eshAAAAgHewmQUAAICxiFkAAAAYi5gFAACAsYhZAAAAGIuYBQAAgLGIWQAAABiLmAUAAICxiFkAAAAYi5gFAACAsYhZAAAAGIuYBQAAgLE+AWpvA7vBfICAAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 600x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAIjCAYAAABS7iKKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMl5JREFUeJzt3Xt8zvXj//Hntdlm7GjOhWE1ZA5RkcOccgohfCKaom/ah0xEymk6KIUPKqfKYaGcQnMohkqfkubwqWifyFCtJnPc7GB7//7o5/p0teF6adt1yeN+u+12a+/j61LLY+/363pfNsuyLAEAABjwcPUAAADA9YeAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAJE2aNEk2m02//fabq4dy3dm9e7fuvvtulS5dWjabTfv27SvU4+/YsUM2m007duwo1ONez0JDQzVw4EBXDwM3OAICKAStWrWSzWZT165d861LTk6WzWbTq6++al926S9Fm82mxMTEfPsMHDhQfn5+Tp9/37596t+/v6pUqSIfHx+VKVNG7dq108KFC5Wbm3ttL8oJOTk56t27t9LS0jRjxgzFxcWpWrVqRXa+4nbp3+stt9xS4PotW7bY/z2uWrXK+PgHDhzQpEmTlJyc/BdHChS/Eq4eAPB3Eh8fr8TERDVq1MjpfSZNmqQPPvjgms/55ptvasiQIapQoYIGDBigW265RefOnVNCQoIGDRqklJQUPfPMM9d8/Cs5fPiwjh49qgULFmjw4MFFco6WLVvqwoUL8vb2LpLjX03JkiV16NAhffnll7rzzjsd1i1dulQlS5ZUZmbmNR37wIEDio2NVatWrRQaGur0fklJSfLw4Pc/uBYBARSSqlWr6ty5c4qNjdX69eud2qdBgwaKj4/Xnj17dPvttxuf84svvtCQIUPUtGlTbdy4Uf7+/vZ1MTEx+uqrr/TNN98YH9dZqampkqSgoKAiO4eHh4dKlixZZMe/mpo1a+rixYtavny5Q0BkZmbq/fff17333qvVq1cX+Tgsy1JmZqZ8fX3l4+NT5OcDroaEBS7j6NGjCgsLU926dfXrr79edXt/f3+NGDFCH3zwgfbs2ePUOYYNG6bg4GBNmjTpmsYYGxsrm82mpUuXOsTDJY0bN3a4V56enq6RI0fab3WEh4fr1Vdf1Z8/lNdms2no0KFau3at6tatKx8fH912223avHmzfZuBAwcqMjJSktS7d2/ZbDa1atVK0u+X/i/98x8NHDgw32/a7777rho1aiR/f38FBAQoIiJCM2fOtK+/3ByIlStXqlGjRvL19VXZsmXVv39//fTTT/nO5+fnp59++kndu3eXn5+fypUrp1GjRhnd2unbt6/ee+895eXl2Zd98MEHysjIUJ8+ffJtf/ToUUVHRys8PFy+vr4KCQlR7969HW5VLFq0SL1795YktW7d2n4r5NLrDA0NVZcuXfThhx+qcePG8vX11bx58+zrLv17tSxLrVu3Vrly5exBJ0nZ2dmKiIhQzZo1lZ6e7vRrBZxFQAAFOHz4sFq2bCl/f3/t2LFDFSpUcGq/4cOHGwVBQECAcXRckpGRoYSEBLVs2VJVq1a96vaWZalbt26aMWOGOnbsqOnTpys8PFxPPfWUnnzyyXzb79y5U9HR0XrggQc0depUZWZm6v7779fJkyclSY899pj91sgTTzyhuLg4Pfvss0avYcuWLerbt6+Cg4P18ssv66WXXlKrVq302WefXXG/RYsWqU+fPvL09NSUKVP06KOPas2aNWrevLlOnz7tsG1ubq46dOigkJAQvfrqq4qMjNS0adM0f/58p8fZr18/paSkOETMsmXL1LZtW5UvXz7f9rt379a///1vPfDAA5o1a5aGDBmihIQEtWrVShkZGZJ+vzXzxBNPSJKeeeYZxcXFKS4uTrVr17YfJykpSX379tU999yjmTNnqkGDBvnOZbPZ9PbbbyszM1NDhgyxL584caK+/fZbLVy4UKVLl3b6tQJOswBYEydOtCRZJ06csA4ePGhVrlzZuuOOO6y0tDSn9o+MjLRuu+02y7IsKzY21pJkJSYmWpZlWUeOHLEkWa+88op9++3bt1uSrJUrV1qnT5+2goODrW7dutnXR0VFWaVLl77iOffv329JsoYPH+7UGNeuXWtJsp5//nmH5b169bJsNpt16NAh+zJJlre3t8OyS+ebPXt2ga/jz38ekZGR+cYQFRVlVatWzf798OHDrYCAAOvixYuXHfelc2zfvt2yLMvKzs62ypcvb9WtW9e6cOGCfbv4+HhLkjVhwgSH80myJk+e7HDMhg0bWo0aNbrsOf/4Oi79e23cuLE1aNAgy7Is69SpU5a3t7e1ePHiAv8MMjIy8h3r888/tyRZS5YssS9buXKlw2v7o2rVqlmSrM2bNxe4LioqymHZvHnzLEnWO++8Y33xxReWp6enFRMTc9XXCFwrrkAAf/DNN98oMjJSoaGh2rp1q4KDg42PcekqRGxsrFPbBwYGKiYmRuvXr9fevXudPs/Zs2clqcBbFwXZuHGjPD097b/1XjJy5EhZlqVNmzY5LG/Xrp1q1qxp/75evXoKCAjQDz/84PQYryYoKEjp6enasmWL0/t89dVXSk1NVXR0tMPciHvvvVe1atXShg0b8u3zx9/MJalFixbGr6Nfv35as2aNsrOztWrVKnl6eqpHjx4Fbuvr62v/55ycHJ08eVJhYWEKCgoyutJUvXp1dejQwalt/+///k8dOnTQsGHDNGDAANWsWVMvvvii0+cCTBEQwB907dpV/v7++vDDDxUQEOCw7vz58/rll1/sXydOnCjwGNcSBMOHD1dQUJDRXIhL4zt37pxT2x89elSVK1fOFxyXLpkfPXrUYXlBt0WCg4N16tQpp8d4NdHR0br11lvVqVMn3XzzzXrkkUcc5lkU5NI4w8PD862rVatWvtdRsmRJlStXzmHZtbyOBx54QGfOnNGmTZu0dOlSdenS5bLxduHCBU2YMME+16Rs2bIqV66cTp8+rTNnzjh9zurVqxuN8a233lJGRoa+//57LVq0yCFkgMJGQAB/cP/99+vw4cNaunRpvnWvvvqqKlWqZP+64447LnucS0FQlFchwsLCVKJECX399ddObW/K09OzwOXWnyZcFsRmsxW4/M8TF8uXL699+/Zp/fr16tatm7Zv365OnTopKirKfMCXcbnXYapSpUpq1aqVpk2bpk8++UT9+vW77LbDhg3TCy+8oD59+mjFihX66KOPtGXLFoWEhDhMxLwa0wDYsWOHsrKyJKnI/rsALuFtnMAfvPLKKypRooSio6Pl7+/v8JfEQw89pObNm9u/v9L/3C8FwaRJk5z+yzAmJkb/+te/FBsb69TbIkuVKqU2bdpo27ZtOn78uKpUqXLF7atVq6atW7fq3LlzDr85f/fdd/b1hSU4OLjAWwR/vjogSd7e3uratau6du2qvLw8RUdHa968eRo/frzCwsIKfB3S7xMM27Rp47AuKSmpSB9k1a9fPw0ePFhBQUHq3LnzZbdbtWqVoqKiNG3aNPuyzMzMfBM8Lxda1yIlJUXDhg1T+/bt5e3trVGjRqlDhw5/qwd7wb1wBQL4A5vNpvnz56tXr16KiopyeJ5DjRo11K5dO/tXs2bNrnismJgYBQUFafLkyU6d+1J0rFu3zunHQU+cOFGWZWnAgAE6f/58vvWJiYlavHixJKlz587Kzc3Va6+95rDNjBkzZLPZ1KlTJ6fO6YyaNWvqu+++c7jNs3///nzvrrj0jo5LPDw8VK9ePUmy/yb9Z40bN1b58uU1d+5ch202bdqkgwcP6t577y2sl5FPr169NHHiRL3xxhtXfLCVp6dnvis1s2fPzncF5tK7I/4cFtfi0UcfVV5ent566y3Nnz9fJUqU0KBBg5y6YgRcC65AAH/i4eGhd955R927d1efPn20cePGfL/pOiMwMFDDhw93+jaG9PutjxkzZmj//v1OvfXu7rvv1uuvv67o6GjVqlXL4UmUO3bs0Pr16/X8889L+n1+R+vWrfXss88qOTlZ9evX10cffaR169YpJibGYcLkX/XII49o+vTp6tChgwYNGqTU1FTNnTtXt912m33ypyQNHjxYaWlpatOmjW6++WYdPXpUs2fPVoMGDRzezvhHXl5eevnll/Xwww8rMjJSffv21a+//qqZM2cqNDRUI0aMKLTX8WeBgYFOzVPp0qWL4uLiFBgYqDp16ujzzz/X1q1bFRIS4rBdgwYN5OnpqZdffllnzpyRj4+P2rRpU+BbQ69k4cKF2rBhgxYtWqSbb75Z0u/B0r9/f82ZM0fR0dFGxwOcwRUIoABeXl5atWqVmjRpovvuu0+7du26puPExMQoMDDQ6e2DgoIUExNjdI7HHntMu3fvVmRkpJYsWaIhQ4YoNjZW586d08KFCzVmzBhJv4fR+vXrFRMTo/j4eMXExOjAgQN65ZVXNH36dKNzXk3t2rW1ZMkSnTlzRk8++aTWr1+vuLi4fE/b7N+/v0qWLKk33nhD0dHRWrx4sf7xj39o06ZNV3xU88CBA/Xee+8pOztbY8aM0bx589SjRw/t3LmzSJ+K6ayZM2fqoYce0tKlSzVy5EilpKRo69at+T7fpGLFipo7d65SU1M1aNAg9e3bVwcOHDA6148//qgRI0aoa9euDrfLHnzwQfXo0UOjR4/WkSNHCuV1AX9ks7i+BQAADHEFAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGPtbPonSt+FQVw8BwBWc2v3a1TcC4BIlnSwDrkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjJVw9AEmyLEurVq3S9u3blZqaqry8PIf1a9ascdHIAABAQdwiIGJiYjRv3jy1bt1aFSpUkM1mc/WQAADAFbhFQMTFxWnNmjXq3Lmzq4cCAACc4BZzIAIDA1WjRg1XDwMAADjJLQJi0qRJio2N1YULF1w9FAAA4AS3uIXRp08fLV++XOXLl1doaKi8vLwc1u/Zs8dFIwMAAAVxi4CIiopSYmKi+vfvzyTKG4RfKR9NjO6ibm3qq1ywn/Yn/ahRU1cp8cAxSdKFva8VuN8zM97XjCUJkqTvNsSqWuUQh/XjZ63Tqwu3FO3gAdi9u2ypFi98S7/9dkK3htfS08+MV0S9eq4eFoqBWwTEhg0b9OGHH6p58+auHgqKyZwJ/VQnrLIeGbdYKSfOqG/nO7Vh7jDdfv/z+vnEGYW2G+uwfftmt2nuxH56P2Gfw/LYN+K1cM1n9u/PpWcVx/ABSNq8aaNenTpF4ybGKiKivpbGLdbjjw3SuvjNCgkJufoBcF1zizkQVapUUUBAgKuHgWJS0sdL3ds20LP/WqvP9hzWD8d/0wvzNurw8RN6tHcLSdKvJ885fHVtFaGPd3+v5J9OOhzrfHqmw3YZmdmueEnADSlu8UL17NVH3Xvcr5phYRo3MVYlS5bU2jWrXT00FAO3CIhp06Zp9OjRSk5OdvVQUAxKeHqoRAlPZWbnOCzPzMrR3Q1r5tu+fBl/dWxeV4vXfp5v3ciH2+vH7S/r8+VjNOKhtvL0dIv/pIG/vZzsbB088K2aNL3bvszDw0NNmtyt/+zf68KRobi4xS2M/v37KyMjQzVr1lSpUqXyTaJMS0u77L5ZWVnKynK8bG3l5crm4VkkY8Vfdz4jS1/s/0FjH+2kpCO/6teTZ9WnY2PdVa+6Dh8/kW/7/l3v0rmMTK3dts9h+RvLP9beg8d16my6mtSvocnDuqliuUCNmcaTS4Gidur0KeXm5ua7VRESEqIjR35w0ahQnNwiIP71r39d875TpkxRbGyswzLPCnfIq9Kdf3FUKEqPjFuieZMe1A8fvaCLF3O177vjWrH5KzWsXTXftg/d10TvbfpKWdkXHZbPemeb/Z+/+f5nZedc1GvP9tX4WeuVnXPxz4cBABQitwiIqKioa9537NixevLJJx2WlW8x5q8OCUXsyI+/qf3gmSpV0lsBfiX1y29nFffSwzry028O2zVrWFPh1StqwNMLr3rM3V8ny8vLU9Uql9H3R1OLaugAJAUHBcvT01MnTzrOSzp58qTKli3rolGhOLndDePMzEydPXvW4etKfHx8FBAQ4PDF7YvrR0Zmtn757ayC/H3V7u7ait/xtcP6qO5NlXjgmL7+709XPVb98JuVm5unE2nnimq4AP4/L29v1a5zm3Z98b+5SXl5edq163PVq9/QhSNDcXGLKxDp6ekaM2aMVqxYka9mJSk3N9cFo0JRate0tmw26b/JqapZpZxeHNFd/z3yq5as/9//jPxLl1TPexrq6env59v/rnrVdUfdavr4q+91Lj1TTepV18uj7tfyjbt1+hxPNAWKw4CohzX+mTG67ba6qhtRT+/ELdaFCxfUvUdPVw8NxcAtAmL06NHavn275syZowEDBuj111/XTz/9pHnz5umll15y9fBQBAL9SmrysG66qUKQ0s5kaF3CPk18/QNdvPi/j3Lv3aGRbLJpxeav8u2flZ2j3h0a6dkhneXjVULJP5/U7KXbNStuW75tARSNjp0661Ramt54bZZ+++2EwmvV1hvz3lQItzBuCDbLsixXD6Jq1apasmSJWrVqpYCAAO3Zs0dhYWGKi4vT8uXLtXHjRqPj+TYcWkQjBVAYTu0u+EmjAFyvpJOXFtxiDkRaWpr90zgDAgLsb9ts3ry5PvnkE1cODQAAFMAtAqJGjRo6cuSIJKlWrVpasWKFJOmDDz5QUFCQC0cGAAAK4hYB8fDDD2v//v2SpKefflqvv/66SpYsqREjRuipp55y8egAAMCfucUciD87evSoEhMTFRYWpnrX8KluzIEA3BtzIAD35ewcCLd4F4YkJSQkKCEhQampqcrLy3NY9/bbb7toVAAAoCBuERCxsbGaPHmyGjdurEqVKslms7l6SAAA4ArcIiDmzp2rRYsWacCAAa4eCgAAcIJbTKLMzs7W3XffffUNAQCAW3CLgBg8eLCWLVvm6mEAAAAnuewWxh8/QTMvL0/z58/X1q1bVa9ePXl5eTlsO3369OIeHgAAuAKXBcTevXsdvm/QoIEk6ZtvvnFYzoRKAADcj8sCYvv27a46NQAA+IvcYg4EAAC4vhAQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjF1TQHz66afq37+/mjZtqp9++kmSFBcXp507dxbq4AAAgHsyDojVq1erQ4cO8vX11d69e5WVlSVJOnPmjF588cVCHyAAAHA/xgHx/PPPa+7cuVqwYIG8vLzsy5s1a6Y9e/YU6uAAAIB7Mg6IpKQktWzZMt/ywMBAnT59ujDGBAAA3JxxQFSsWFGHDh3Kt3znzp2qUaNGoQwKAAC4N+OAePTRRzV8+HDt2rVLNptNP//8s5YuXapRo0bp8ccfL4oxAgAAN1PCdIenn35aeXl5atu2rTIyMtSyZUv5+Pho1KhRGjZsWFGMEQAAuBmbZVnWteyYnZ2tQ4cO6fz586pTp478/PwKe2zXzLfhUFcPAcAVnNr9mquHAOAySjp5acH4CsQl3t7eqlOnzrXuDgAArmPGAdG6dWvZbLbLrt+2bdtfGhAAAHB/xgHRoEEDh+9zcnK0b98+ffPNN4qKiiqscQEAADdmHBAzZswocPmkSZN0/vz5vzwgAADg/grtw7T69++vt99+u7AOBwAA3Ng1T6L8s88//1wlS5YsrMP9JUd2FHyVBIB7SM+66OohALiMkiWcSwPjgOjZs6fD95ZlKSUlRV999ZXGjx9vejgAAHAdMg6IwMBAh+89PDwUHh6uyZMnq3379oU2MAAA4L6MHiSVm5urzz77TBEREQoODi7Kcf0lv5zJcfUQAFyBV4nLvxUcgGuFlHbu2oLRJEpPT0+1b9+eT90EAOAGZ/wujLp16+qHH34oirEAAIDrhHFAPP/88xo1apTi4+OVkpKis2fPOnwBAIC/P6fnQEyePFkjR46Uv7///3b+wyOtLcuSzWZTbm5u4Y/SEHMgAPfGHAjAfTk7B8LpgPD09FRKSooOHjx4xe0iIyOdOnFRIiAA90ZAAO7L2YBw+m2clzrDHQIBAAC4ltEciCt9CicAALhxGD1I6tZbb71qRKSlpf2lAQEAAPdnFBCxsbH5nkQJAABuPE5PovTw8NAvv/yi8uXLF/WY/jImUQLujUmUgPsq9CdRMv8BAABc4nRAGHxkBgAA+Jtzeg5EXl5eUY4DAABcR4wfZQ0AAEBAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBWwtUDOHnypCZMmKDt27crNTVVeXl5DuvT0tJcNDIAAHA5Lg+IAQMG6NChQxo0aJAqVKggm83m6iEBAICrsFmWZblyAP7+/tq5c6fq169faMf85UxOoR0LQOHzKsEvCoC7Cint3LUFl8+BqFWrli5cuODqYQAAAAMuD4g33nhDzz77rD7++GOdPHlSZ8+edfgCAADux+VzIIKCgnT27Fm1adPGYbllWbLZbMrNzXXRyAAAwOW4PCAefPBBeXl5admyZUyiBADgOuHySZSlSpXS3r17FR4eXmjHZBIl4N6YRAm4r+tmEmXjxo11/PhxVw8DAAAYcPktjGHDhmn48OF66qmnFBERIS8vL4f19erVc9HIAADA5bj8FoaHR/6LIDab7S9NouQWxvUnNzdXixa8oY82xSst7TeVLVtOHbt010OPPGafF7Nw/uvatmWzUn/9RSW8vBReq44GP/6E6tQlMq833MK4vrw593W9Pf8Nh2VVQ6vr3TXxSvn5J93fpX2B+z3/8nS1uadDcQwRhcjZWxguvwJx5MgRVw8BbmDZkre0bvV7GjvxBYXWCFPSwW/10nPjVNrPT73+0V+SdHPVUA1/6hlVvulmZWVmaeXyJRo17P+0bM1GBQWXcfErAP7eqtcM06w5b9q/9/T8/a+P8hUq6oOPdjhsu27NSi1bslBNmjUvziGimLk8IKpVq+bqIcANfPuffWrWsrWaNo+UJFWqfJMSPtqo77792r7NPR3vddjnnzGjtWH9Gh3+/r9qdGeTYh0vcKMp4empkLLl8i33LGD5x9sT1OaejipVqnRxDQ8u4PKAuOTAgQM6duyYsrOzHZZ369bNRSNCcbqtXgPFr12l40eTVaVaqA799zt9vX+P/hkzusDtc3Jy9MHalfLz81fNWwvvHTwACnb82DF1a99K3j4+qluvvoYMjVHFSpXzbffdgW/1fdJ3GvX0OBeMEsXJ5QHxww8/qEePHvr666/tcx8k2e97X20ORFZWlrKysv60zEM+Pj5FM2AUiQejBisjPV0D+nSVh4en8vJyNfjxJ3RPxy4O2/370x2aPO4pZWZmKqRsOb362nwFBQW7ZtDADeK2iHoaF/uCqlYL1W+/ndDb8+fo8UEP6Z2V61S6tONVhg/WrVZo9RqKqN/QRaNFcXH52ziHDx+u6tWrKzU1VaVKldK3336rTz75RI0bN9aOHTuuuv+UKVMUGBjo8DV7+stFP3AUqu1bN2vL5niNf+5lLYhbobETX9B77yzS5vh1Dts1bHyn3nxntV5/8x3d2aSZJo0dpVNpJ100auDG0LRZC7W5p4PCbg1Xk7uba9rsOTp//py2bdnssF1WZqa2bNqoLt3vd9FIUZxc/i6MsmXLatu2bapXr54CAwP15ZdfKjw8XNu2bdPIkSO1d+/eK+5f0BWIU5lcgbje9OrSVg9GDVaP3n3ty5a8NU9bNscrbuUHl92v3/2d1blrD/Uf+GhxDBOFhHdhXP8e6d9Hd9zVVI8PG2Fftil+vaZMHq91H25XMBObr1vXzYOkcnNz5e/vL+n3mPj5558l/T65Mikp6ar7+/j4KCAgwOGLeLj+ZGVm5nuMuYenh/Ly8q64n5WXp5w/zZsBULQyMtL104/H802ejF+3Rs0jWxMPNwiXz4GoW7eu9u/fr+rVq+uuu+7S1KlT5e3trfnz56tGjRquHh6Kyd0tWumdRQtUoWIlhdYI0/dJB7Vi2RJ17tpDknThQobiFs5XsxatFVK2nM6cPqX3Vy3XbydS1aot7zMHitLsGa+oectWqlipsn47kao3574uTw9P3dOxs32bH48d1b49X2narDkuHCmKk8sDYty4cUpPT5ckTZ48WV26dFGLFi0UEhKi9957z8WjQ3EZPuoZvTVvtmZMfV6nTqWpbNly6tajt6IGPy5J8vDw1LHkI/pww3qdOX1KAYFBqlWnrmbNX6zqNcNcPHrg7y311181cexTOnPmtIKCy6heg9s1f/EyhysN8eveV/kKFXRn02YuHCmKk8vnQBQkLS1NwcHB1/zJnDyJEnBvzIEA3Nd18yTKP7r0oVpVqlRx8UgAAMCVuHwS5cWLFzV+/HgFBgYqNDRUoaGhCgwM1Lhx45STw5UEAADckcuvQAwbNkxr1qzR1KlT1bRpU0nS559/rkmTJunkyZOaM4cJOQAAuBuXz4EIDAzUu+++q06dOjks37hxo/r27aszZ84YH5M5EIB7Yw4E4L6um+dA+Pj4KDQ0NN/y6tWry9vbu/gHBAAArsrlATF06FA999xzDk+TzMrK0gsvvKChQ4e6cGQAAOByXH4Lo0ePHkpISJCPj4/q168vSdq/f7+ys7PVtm1bh23XrFnj1DG5hQG4N25hAO7runkbZ1BQkO6/3/GDV3gbJwAA7s3lVyAuXLigvLw8+0fCJicna+3atapdu7Y6dLi2RxRzBQJwb1yBANzXdTOJ8r777lNcXJwk6fTp02rSpImmTZum7t278xZOAADclMsDYs+ePWrRooUkadWqVapQoYKOHj2qJUuWaNasWS4eHQAAKIjLAyIjI8P+cd4fffSRevbsKQ8PDzVp0kRHjx518egAAEBBXB4QYWFhWrt2rY4fP64PP/xQ7du3lySlpqYqICDAxaMDAAAFcXlATJgwQaNGjVJoaKjuuusu++OsP/roIzVs2NDFowMAAAVx+bswJOmXX35RSkqK6tevLw+P35vmyy+/VEBAgGrVqmV+PN6FAbg13oUBuC9n34XhFgFR2AgIwL0REID7um7exgkAAK4/BAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMGazLMty9SCAK8nKytKUKVM0duxY+fj4uHo4AP6An88bFwEBt3f27FkFBgbqzJkzCggIcPVwAPwBP583Lm5hAAAAYwQEAAAwRkAAAABjBATcno+PjyZOnMgELcAN8fN542ISJQAAMMYVCAAAYIyAAAAAxggIAABgjIBAsWnVqpViYmJcPQwAQCEgIAAAgDECAgAAGCMgUKzy8vI0evRolSlTRhUrVtSkSZPs66ZPn66IiAiVLl1aVapUUXR0tM6fP29fv2jRIgUFBSk+Pl7h4eEqVaqUevXqpYyMDC1evFihoaEKDg7WE088odzcXBe8OuD6s2rVKkVERMjX11chISFq166d0tPTNXDgQHXv3l2xsbEqV66cAgICNGTIEGVnZ9v33bx5s5o3b66goCCFhISoS5cuOnz4sH19cnKybDabVqxYoRYtWsjX11d33HGH/vvf/2r37t1q3Lix/Pz81KlTJ504ccIVLx9/AQGBYrV48WKVLl1au3bt0tSpUzV58mRt2bJFkuTh4aFZs2bp22+/1eLFi7Vt2zaNHj3aYf+MjAzNmjVL7777rjZv3qwdO3aoR48e2rhxozZu3Ki4uDjNmzdPq1atcsXLA64rKSkp6tu3rx555BEdPHhQO3bsUM+ePXXp8UAJCQn25cuXL9eaNWsUGxtr3z89PV1PPvmkvvrqKyUkJMjDw0M9evRQXl6ew3kmTpyocePGac+ePSpRooT69eun0aNHa+bMmfr000916NAhTZgwoVhfOwqBBRSTyMhIq3nz5g7L7rjjDmvMmDEFbr9y5UorJCTE/v3ChQstSdahQ4fsyx577DGrVKlS1rlz5+zLOnToYD322GOFPHrg7ycxMdGSZCUnJ+dbFxUVZZUpU8ZKT0+3L5szZ47l5+dn5ebmFni8EydOWJKsr7/+2rIsyzpy5IglyXrzzTft2yxfvtySZCUkJNiXTZkyxQoPDy+sl4ViwhUIFKt69eo5fF+pUiWlpqZKkrZu3aq2bdvqpptukr+/vwYMGKCTJ08qIyPDvn2pUqVUs2ZN+/cVKlRQaGio/Pz8HJZdOiaAy6tfv77atm2riIgI9e7dWwsWLNCpU6cc1pcqVcr+fdOmTXX+/HkdP35ckvT999+rb9++qlGjhgICAhQaGipJOnbsmMN5/vhzX6FCBUlSRESEwzJ+Zq8/BASKlZeXl8P3NptNeXl5Sk5OVpcuXVSvXj2tXr1aiYmJev311yXJ4Z5rQftf7pgArszT01NbtmzRpk2bVKdOHc2ePVvh4eE6cuSIU/t37dpVaWlpWrBggXbt2qVdu3ZJcvyZlRx/bm02W4HL+Jm9/pRw9QAASUpMTFReXp6mTZsmD4/fu3bFihUuHhXw92ez2dSsWTM1a9ZMEyZMULVq1fT+++9Lkvbv368LFy7I19dXkvTFF1/Iz89PVapU0cmTJ5WUlKQFCxaoRYsWkqSdO3e67HWg+BEQcAthYWHKycnR7Nmz1bVrV3322WeaO3euq4cF/K3t2rVLCQkJat++vcqXL69du3bpxIkTql27tv7zn/8oOztbgwYN0rhx45ScnKyJEydq6NCh8vDwUHBwsEJCQjR//nxVqlRJx44d09NPP+3ql4RixC0MuIX69etr+vTpevnll1W3bl0tXbpUU6ZMcfWwgL+1gIAAffLJJ+rcubNuvfVWjRs3TtOmTVOnTp0kSW3bttUtt9yili1b6h//+Ie6detmf+u1h4eH3n33XSUmJqpu3boaMWKEXnnlFRe+GhQ3Ps4bAJDPwIEDdfr0aa1du9bVQ4Gb4goEAAAwRkAAAABj3MIAAADGuAIBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAIrMwIED1b17d/v3rVq1UkxMTLGPY8eOHbLZbDp9+nSxnxv4uyIggBvQwIEDZbPZZLPZ5O3trbCwME2ePFkXL14s0vOuWbNGzz33nFPb8pc+4N74MC3gBtWxY0ctXLhQWVlZ2rhxo/75z3/Ky8tLY8eOddguOztb3t7ehXLOMmXKFMpxALgeVyCAG5SPj48qVqyoatWq6fHHH1e7du20fv16+22HF154QZUrV1Z4eLgk6fjx4+rTp4+CgoJUpkwZ3XfffUpOTrYfLzc3V08++aSCgoIUEhKi0aNH68/PqfvzLYysrCyNGTNGVapUkY+Pj8LCwvTWW28pOTlZrVu3liQFBwfLZrNp4MCBkqS8vDxNmTJF1atXl6+vr+rXr69Vq1Y5nGfjxo269dZb5evrq9atWzuME0DhICAASJJ8fX2VnZ0tSUpISFBSUpK2bNmi+Ph45eTkqEOHDvL399enn36qzz77TH5+furYsaN9n2nTpmnRokV6++23tXPnTqWlpen999+/4jkfeughLV++XLNmzdLBgwc1b948+fn5qUqVKlq9erUkKSkpSSkpKZo5c6YkacqUKVqyZInmzp2rb7/9ViNGjFD//v318ccfS/o9dHr27KmuXbtq3759Gjx4MB8zDRQFC8ANJyoqyrrvvvssy7KsvLw8a8uWLZaPj481atQoKyoqyqpQoYKVlZVl3z4uLs4KDw+38vLy7MuysrIsX19f68MPP7Qsy7IqVapkTZ061b4+JyfHuvnmm+3nsSzLioyMtIYPH25ZlmUlJSVZkqwtW7YUOMbt27dbkqxTp07Zl2VmZlqlSpWy/v3vfztsO2jQIKtv376WZVnW2LFjrTp16jisHzNmTL5jAfhrmAMB3KDi4+Pl5+ennJwc5eXlqV+/fpo0aZL++c9/KiIiwmHew/79+3Xo0CH5+/s7HCMzM1OHDx/WmTNnlJKSorvuusu+rkSJEmrcuHG+2xiX7Nu3T56enoqMjHR6zIcOHVJGRobuueceh+XZ2dlq2LChJOngwYMO45Ckpk2bOn0OAM4hIIAbVOvWrTVnzhx5e3urcuXKKlHif/87KF26tMO258+fV6NGjbR06dJ8xylXrtw1nd/X19d4n/Pnz0uSNmzYoJtuuslhnY+PzzWNA8C1ISCAG1Tp0qUVFhbm1La333673nvvPZUvX14BAQEFblOpUiXt2rVLLVu2lCRdvHhRiYmJuv322wvcPiIiQnl5efr444/Vrl27fOsvXQHJzc21L6tTp458fHx07Nixy165qF27ttavX++w7Isvvrj6iwRghEmUAK7qwQcfVNmyZXXffffp008/1ZEjR7Rjxw498cQT+vHHHyVJw4cP10svvaS1a9fqu+++U3R09BWf4RAaGqqoqCg98sgjWrt2rf2YK1askCRVq1ZNNptN8fHxOnHihM6fPy9/f3+NGjVKI0aM0OLFi3X48GHt2bNHs2fP1uLFiyVJQ4YM0ffff6+nnnpKSUlJWrZsmRYtWlTUf0TADYeAAHBVpUqV0ieffKKqVauqZ8+eql27tgYNGqTMzEz7FYmRI0dqwIABioqKUtOmTeXv768ePXpc8bhz5sxRr169FB0drVq1aunRRx9Venq6JOmmm25SbGysnn76aVWoUEFDhw6VJD333HMaP368pkyZotq1a6tjx47asGGDqlevLkmqWrWqVq9erbVr16p+/fqaO3euXnzxxSL80wFuTDbrcjOcAAAALoMrEAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMDY/wOFQWBvfWZYzgAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 800x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhnFJREFUeJzs3Xdck9fiBvAnCSTsJbJRXDhw4ERcgKK4cIH1dqq1e9e2t9qldmiHdtzW1k6t1daBo9RZB6hQ3OJCsSpuhjjYEEjO7w9+JKUQJQh5CTzfz4fPvXk5b/LQtPh4ct7zyoQQAkREREREZkgudQAiIiIiotpimSUiIiIis8UyS0RERERmi2WWiIiIiMwWyywRERERmS2WWSIiIiIyWyyzRERERGS2WGaJiIiIyGyxzBIRERGR2WKZJSIifPLJJ2jdujUUCgUCAwPr9bVCQ0PRuXPnen0NImo6WGaJSHJLliyBTCbTfVlYWMDb2xtTpkzB1atXqz1HCIFffvkFgwYNgpOTE2xsbNClSxe8++67KCgoMPha69atw4gRI+Dq6gqlUgkvLy/cd9992LlzZ42yFhcX47PPPkNQUBAcHR1hZWUFf39/PPfcczhz5kytfn6p/fnnn/jvf/+L/v37Y/HixZg7d67Uke6o4t+TBQsWVPlexb9LBw8e1B2bPXs2ZDIZ3N3dUVhYWOUcPz8/jB49ul4zE1H9sZA6ABFRhXfffRetWrVCcXEx9u7diyVLliAhIQEnTpyAlZWVbpxGo8EDDzyAVatWYeDAgZg9ezZsbGywZ88ezJkzB6tXr8b27dvh7u6uO0cIgUcffRRLlixB9+7dMX36dHh4eCA9PR3r1q3DkCFDkJiYiH79+hnMl52djeHDh+PQoUMYPXo0HnjgAdjZ2SE1NRUrVqzAd999B7VaXa//jOrDzp07IZfL8eOPP0KpVEodp8Y++eQTPP3007CxsanR+KysLHzzzTd45ZVX6jkZEZmUICKS2OLFiwUAceDAgUrHX3/9dQFArFy5stLxuXPnCgDi1VdfrfJcsbGxQi6Xi+HDh1c6/sknnwgA4qWXXhJarbbKeUuXLhX79u27Y85Ro0YJuVwuYmJiqnyvuLhYvPLKK3c8v6ZKS0tFSUlJnTxXTUydOlXY2trW2fNptVpRWFho8PshISEiICCg1s8PQAQGBgoAYsGCBZW+V92/S7NmzdKd4+7uXiVby5YtxahRo2qdh4ikxWUGRNRgDRw4EABw7tw53bGioiJ88skn8Pf3x7x586qcExkZicmTJ2PLli3Yu3ev7px58+ahQ4cOmD9/PmQyWZXzHn74YfTp08dgln379mHjxo2YNm0aoqKiqnxfpVJh/vz5usehoaEIDQ2tMm7KlCnw8/PTPb5w4QJkMhnmz5+Pzz//HG3atIFKpcKRI0dgYWGBOXPmVHmO1NRUyGQyfPXVV7pjt2/fxksvvQRfX1+oVCq0bdsWH330EbRarcGfCSj/yH7x4sUoKCjQfXy/ZMkSAEBZWRnee+89XSY/Pz+88cYbKCkpqfQcFR/Tb926Fb169YK1tTW+/fbbO77uv/3555+wsbHB/fffj7KysruO79+/PwYPHoyPP/4YRUVFNXqNd955B5mZmfjmm2+MykZEDRvLLBE1WBcuXAAAODs7644lJCTg1q1beOCBB2BhUf1KqUceeQQAsGHDBt05N2/exAMPPACFQlGrLLGxsQDKS299WLx4Mb788ks88cQTWLBgATw9PRESEoJVq1ZVGbty5UooFApMnDgRAFBYWIiQkBAsW7YMjzzyCP73v/+hf//+mDlzJqZPn37H1/3ll18wcOBAqFQq/PLLL7p1yADw2GOP4Z133kGPHj3w2WefISQkBPPmzcN//vOfKs+TmpqK+++/H0OHDsUXX3xh1EVkGzZswJgxYzBx4kQsW7bM4Pv6b7NnzzaqnA4cONDoAkxEDR/XzBJRg5GTk4Ps7GwUFxdj3759mDNnDlQqVaWLc1JSUgAA3bp1M/g8Fd87depUpf/t0qVLrbPVxXPcyZUrV3D27Fk0b95cd2zSpEl48sknceLEiUpX/69cuRIhISG6NcGffvopzp07hyNHjqBdu3YAgCeffBJeXl745JNP8Morr8DX17fa133ooYewfft2HD58GA899JDu+NGjR/Hzzz/jsccew/fffw8AeOaZZ+Dm5ob58+cjLi4OYWFhuvFnz57Fli1bEBERYdTPvXbtWvznP//BlClTsGjRIsjlNZ9jGThwIMLCwnRrZ62tre96zqxZsxASEoJFixbh5ZdfNiorETVMnJklogYjPDwczZs3h6+vL6Kjo2Fra4vY2Fj4+PjoxuTl5QEA7O3tDT5Pxfdyc3Mr/e+dzrmbuniOO4mKiqpUZAFgwoQJsLCwwMqVK3XHTpw4gZSUFEyaNEl3bPXq1Rg4cCCcnZ2RnZ2t+woPD4dGo8Hu3buNzrNp0yYAqDKzW3Hx1MaNGysdb9WqldFF9rffftMV9m+//daoIlth9uzZyMjIwKJFi2o0ftCgQQgLC+PsLFEjwjJLRA3GwoULsW3bNsTExGDkyJHIzs6GSqWqNKaiTFaU2ur8u/A6ODjc9Zy7qYvnuJNWrVpVOebq6oohQ4ZUWmqwcuVKWFhYYMKECbpjf//9N7Zs2YLmzZtX+goPDwdQfhW/sS5evAi5XI62bdtWOu7h4QEnJydcvHjxrvnvJC0tDQ899BCioqLw5ZdfVlnHfPPmTWRkZOi+cnJyqn2e2pRTYwswETVsLLNE1GD06dMH4eHhiIqKQmxsLDp37owHHngA+fn5ujEdO3YEABw7dszg81R8r1OnTgCADh06AACOHz9e62zGPkd1F5kB5duKVcfQR+T/+c9/cObMGSQnJwMAVq1ahSFDhsDV1VU3RqvVYujQodi2bVu1X9VdsFZThn6OmuY3xNPTE/369cOmTZsq7QlbYcKECfD09NR9vfjiiwafa9asWcjIyKjxRWeDBg1CaGgoZ2eJGgmWWSJqkBQKBebNm4dr165Vump/wIABcHJywq+//mqwGC5duhQAdGttBwwYAGdnZ/z2228Gz7mbyMhIAMCyZctqNN7Z2Rm3b9+ucvzfM5p3M27cOCiVSqxcuRLJyck4c+ZMlQuw2rRpg/z8fISHh1f71aJFC6NeEwBatmwJrVaLv//+u9LxzMxM3L59Gy1btjT6Of/JysoKGzZsQLt27TB8+HCcPHmy0vcXLFhQqZD/97//NfhcISEhCA0NxUcffWT07Kyxuy4QUcPDMktEDVZoaCj69OmDzz//HMXFxQAAGxsbvPrqq0hNTcWbb75Z5ZyNGzdiyZIliIiIQN++fXXnvP766zh16hRef/11CCGqnLds2TLs37/fYJbg4GAMHz4cP/zwA9avX1/l+2q1Gq+++qrucZs2bXD69Glcv35dd+zo0aNITEys8c8PAE5OToiIiMCqVauwYsUKKJVKjBs3rtKY++67D0lJSdi6dWuV82/fvl2jra7+beTIkQCAzz//vNLxTz/9FAAwatQoo5/z3xwdHbF161a4ublh6NChlbZg69mzZ6VCXjHLbkhFOf3uu+9q9Nr/LMAV/24RkXnibgZE1KC99tprmDhxIpYsWYKnnnoKADBjxgwcOXIEH330EZKSkhAVFQVra2skJCRg2bJl6NixI37++ecqz3Py5EksWLAAcXFxiI6OhoeHBzIyMrB+/Xrs378ff/311x2zLF26FMOGDcOECRMQGRmJIUOGwNbWFn///TdWrFiB9PR03V6zjz76KD799FNERERg2rRpyMrKwqJFixAQEKC7mKymJk2ahIceeghff/01IiIi4OTkVOVni42NxejRozFlyhT07NkTBQUFOH78OGJiYnDhwoVKyxJqolu3bpg8eTK+++473L59GyEhIdi/fz9+/vlnjBs3rtJOBvfC1dUV27Ztw4ABAxAeHo6EhAR4e3sb/TwhISEICQnBrl27anzOrFmz6uznICIJSX3XBiIiQ3cAE0IIjUYj2rRpI9q0aSPKysoqHV+8eLHo37+/cHBwEFZWViIgIEDMmTNH5OfnG3ytmJgYMWzYMOHi4iIsLCyEp6enmDRpkoiPj69R1sLCQjF//nzRu3dvYWdnJ5RKpWjXrp14/vnnxdmzZyuNXbZsmWjdurVQKpUiMDBQbN26VUyePFm0bNlSNyYtLU0AEJ988onB18zNzRXW1tYCgFi2bFm1Y/Ly8sTMmTNF27ZthVKpFK6urqJfv35i/vz5Qq1W3/Fnmjx5crV3ACstLRVz5swRrVq1EpaWlsLX11fMnDlTFBcXVxpn7B20qrsD2NmzZ4Wnp6fo2LGjuH79+h3PByCeffbZKsfj4uIEAIN3AKvueUNCQgQA3gGMyIzJhKjm8zYiIiIiIjPANbNEREREZLZYZomIiIjIbLHMEhEREZHZYpklIiIiIrPFMktEREREZotlloiIiIjMVpO7aYJWq8W1a9dgb29f43uOExEREZHpCCGQl5cHLy8vyOV3nnttcmX22rVr8PX1lToGEREREd3F5cuX4ePjc8cxTa7M2tvbAyj/h+Pg4CBxGiIiIiL6t9zcXPj6+up62500uTJbsbTAwcGBZZaIiIioAavJklBeAEZEREREZotlloiIiIjMFsssEREREZktllkiIiIiMlsss0RERERktlhmiYiIiMhsscwSERERkdlimSUiIiIis8UyS0RERERmi2WWiIiIiMwWyywRERERmS2WWSIiIiIyWyyzRERERGS2WGaJiIiIyGxJWmZ3796NyMhIeHl5QSaTYf369Xc9Jz4+Hj169IBKpULbtm2xZMmSes9JRERERA2TpGW2oKAA3bp1w8KFC2s0Pi0tDaNGjUJYWBiSk5Px0ksv4bHHHsPWrVvrOSkRERERNUQWUr74iBEjMGLEiBqPX7RoEVq1aoUFCxYAADp27IiEhAR89tlniIiIqK+YRERERE3S7dvArl1AXJwWO3fK8f33QFCQ1KkqM6s1s0lJSQgPD690LCIiAklJSQbPKSkpQW5ubqUvIiIiIqoqLw/YvBl47TWgVy/AxUXg3XcPo7R0Ef7+uxg7d0qdsCpJZ2aNlZGRAXd390rH3N3dkZubi6KiIlhbW1c5Z968eZgzZ46pIhIRERGZjcJC4K+/gLg4YOdO4MABQKMp/55SWYIJEzagS5cTAIDevQ/g6tWBEqatnlmV2dqYOXMmpk+frnucm5sLX19fCRMRERERSaOkBNi3r7y4xsUBe/cCanXVcR4eGZg4cTWaNbsJIWTw9h6M33/vD2dn02e+G7Mqsx4eHsjMzKx0LDMzEw4ODtXOygKASqWCSqUyRTwiIiKiBqW0FDh0SF9eExOBoiLD4zt0EBg16iAcHLZCCA0cHBwQHR3doCcCzarMBgcHY9OmTZWObdu2DcHBwRIlIiIiImo4NBogOVm/bGDPHiA/3/D4Nm2AsDBg8GAgNBRQKm/i66+3QKvVwt/fH2PHjoWNjY2p4teKpGU2Pz8fZ8+e1T1OS0tDcnIyXFxc0KJFC8ycORNXr17F0qVLAQBPPfUUvvrqK/z3v//Fo48+ip07d2LVqlXYuHGjVD8CERERkWS0WuDkSf3M665d5TsQGOLrqy+vYWFAixb/HtEMERER0Gg06Nu3L2QyWT2mrxuSltmDBw8iLCxM97hibevkyZOxZMkSpKen49KlS7rvt2rVChs3bsTLL7+ML774Aj4+Pvjhhx+4LRcRERE1CUIAqanlxbXiKzvb8Hh3d31xHTwYaN0a+Gc/FUJg//79aNmyJTw8PAAAffr0qeefom7JhBBC6hCmlJubC0dHR+Tk5MDBwUHqOEREREQGCQGkpemXDcTFAenphsc3a1a+XKCiwHboULm8/lNRURFiY2Nx+vRpuLi44Mknn4RSqayXn8NYxvQ1s1ozS0RERNTYXb6sn3XduRP4x4fUVTg6AiEh5cU1LAzo0gWQ1+AuAleuXEFMTAxycnKgUCgQFBQES0vLuvshTIhlloiIiEhCmZmVZ17/cTlRFba2wMCB+mUD3bsDCkXNX0sIgaSkJOzYsQNarRbOzs6Ijo6Gl5fXvf8gEmGZJSIiIjKhGzeA+Hj97GtKiuGxVlZA//76mdfevYHaTqCq1WqsWbMGZ86cAQAEBAQgMjLS7LcwZZklIiIiqkc5OcDu3frZ12PHytfCVsfSEujbVz/zGhRUXmjrgqWlJcrKyqBQKDB8+HD07NnTLHYruBuWWSIiIqI6VFAAJCTolw0cOlS+hVZ1FAqgVy/9BVv9+wN1ua2rEAIajQYWFhaQyWQYP3488vPzdTsXNAYss0RERET3oKgISErSz7zu3w+UlVU/ViYrX+daMfM6YABQX5srFRQUYN26dXB0dERkZCQAwM7ODnZ2dvXzghJhmSUiIiIyglpdXlgrymtSElBSYnh85876mddBgwAXl/rPeOHCBaxZswb5+fmwsLDAgAED4OzsXP8vLAGWWSIiIqI7KCsDDh/WLxtISAAKCw2Pb99ef8FWaCjg5mayqNBqtdizZw927doFIQRcXV0xceLERltkAZZZIiIiokq0WuDoUf3M6+7dQF6e4fGtWumXDYSGAt7eJotaSX5+PtauXYu0tDQAQGBgIEaMGNFgboRQX1hmiYiIqEkTonx7rIqZ1/h44NYtw+O9vfXLBsLCAD8/UyU1TAiBpUuX4vr167C0tMSoUaPQrVs3qWOZBMssERERNSlCAH//rZ95jY8HsrIMj3dz0xfXwYOBtm0N3yJWKjKZDOHh4di5cyeio6Ph6uoqdSSTYZklIiKiRu/CBf3Ma1wccPWq4bHOzuXLBSpmXzt1anjlFQDy8vJw8+ZNtGzZEgDg7++Ptm3bQl6T+9k2IiyzRERE1Ohcvaovrjt3lpdZQ+ztgZAQ/cxr165AQ++DZ8+exbp166DVavHkk0/CyckJAJpckQVYZomIiKgRyMoqXy5QMfv6/3dsrZaNTfn+rhUzrz16ABZm0oi0Wi127tyJxMREAICHhwe0hu7I0ESYyVtHREREpHfzJrBrl37m9eRJw2NVKqBfP/261z59AHO8wD8nJwdr1qzB5cuXAQC9evVCREQELMylideTpv3TExERkVnIzQX27NHPvCYnl1/IVR0LCyAoSL9sIDgYsLIyadw6d+bMGaxfvx5FRUVQqVSIjIxEQECA1LEaBJZZIiIianAKCoDERP2614MHAY2m+rFyOdCzp37ZQP/+QCO7Yyv+/vtvFBUVwcvLC9HR0Y36JgjGYpklIiIiyRUXA3v36pcN7NsHlJYaHh8YqJ95HTgQcHQ0WVRJREREwMnJCUFBQU1+WcG/8Z8GERERmVxpKXDggH7ZwF9/lRdaQzp10s+8hoQAzZqZLqsUTp8+jWPHjiE6OhpyuRwWFhbo37+/1LEaJJZZIiIiqncaDXD4sH7ZwJ495UsJDGnXTn/BVmgo4OFhsqiSKisrw7Zt27B//34AwJEjR9CzZ0+JUzVsLLNERERU57Ra4Phx/bKB3buBnBzD41u0KJ95rZh99fExXdaG4ubNm4iJiUF6ejoAIDg4GIGBgdKGMgMss0RERHTPhABOn9YvG4iPB27cMDze01NfXMPCgFatGuZdtkzl5MmT+OOPP1BSUgJra2uMGzcO/v7+UscyCyyzREREZDQhgHPn9DOv8fFARobh8a6u+uI6eDDg79+0y+s/7dmzBzt37gQA+Pr6IioqCo6N/Yq2OsQyS0RERDVy6ZJ+5jUuDvj/vfur5eRUfqFWxexrQEDDv0WsVPz9/bFnzx4EBQUhLCysSd6S9l7IhDC05XDjlJubC0dHR+Tk5MDBwUHqOERERA1Werq+uO7cCZw/b3isnR0waJB+5rVbN0ChMF1Wc3Pjxg00+8eWDHl5ebC3t5cwUcNiTF/jzCwREREBALKzy5cLVMy+nj5teKy1dfnNCSpmXnv2BCwtTRbVbJWWlmLLli1ITk7G1KlT4fP/V7qxyNYeyywREVETdfs2sGuXfub1+HHDY5XK8tvCVqx7DQoCVCqTRW0Url+/jpiYGGRlZQEArl69qiuzVHsss0RERE1EXh6QkKCfeT1ypHwLreooFECfPvplA8HBgI2NafM2JsnJydi0aRNKS0tha2uLCRMmoHXr1lLHahRYZomIiBqpoqLyO2tVlNf9+8tvXlAdmQzo0UO/bGDAAICffN87tVqNTZs24ejRowCAVq1aYcKECbCzs5M4WePBMktERNRIlJQA+/bplw3s3Quo1YbHd+2qn3kdNKh8BwKqWydOnMDRo0chk8kQGhqKAQMGcLeCOsYyS0REZKbKyoCDB/Uzr4mJ5bOxhnTooC+vISFA8+amy9pUde/eHVevXkWXLl3g5+cndZxGiWWWiIjITGg0QHKyfrus3buB/HzD41u3rnyXLU9Pk0VtskpKSrB7924MGjQIKpUKMpkMkZGRUsdq1FhmiYiIGiitFjh5Ur9sYNeu8h0IDPH11c+8hoUBLVqYLCoByMjIQExMDG7cuIGCggKMGzdO6khNAsssERFRAyEEcOZM5btsZWcbHu/uXnnmtU0b3iJWCkIIHDp0CFu2bIFGo4GDgwN69Oghdawmg2WWiIhIIkIAaWn6mde4uPK7bhnSrBkQGqqffe3QgeVVasXFxdiwYQNOnjwJoPzWtGPHjoUN9zEzGZZZIiIiE7pypfLM68WLhsc6OJRfqFUx+9qlC8AL4RuOrKwsrFixArdu3YJcLkd4eDj69u0LGf+GYVIss0RERPUoM1NfXHfuBM6eNTzW1hYYOFA/89q9e/nNC6hhsrGxgVqthqOjI6Kjo3k3L4mwzBIREdWhGzfKL9SqmH1NSTE81soK6NdPP/PauzdgaWm6rGS80tJSWP7/m2RnZ4cHH3wQTk5OsLa2ljhZ08UyS0REdA9ycsq3yKqYfT16tHwtbHUsLYG+ffUXbPXtW15oyTxcuXIFMTExCA8PR+fOnQEAntzvTHIss0REREYoKAASEvTLBg4dKt9CqzoKBdCrl37ZQL9+5UsJyLwIIbB3715s374dWq0WiYmJCAgI4NrYBoJlloiI6A6Ki4GkJP2ygX37yu+8VR2ZDAgM1C8bGDiw/CIuMl+FhYX4/fffcebMGQBAp06dEBkZySLbgLDMEhER/YNaDezfr595TUoCSkoMj+/cWb9sICQEcHExXVaqX5cvX0ZMTAxyc3OhUCgwfPhw9OzZk0W2gWGZJSKiJq2sDDh8WD/zmpAAFBYaHu/vr182EBoKuLmZLCqZ0K1bt7BkyRJotVq4uLhg4sSJ8PDwkDoWVYNlloiImhSttvwirYoLtnbvBnJzDY/386t8ly1vb5NFJQk5OzsjKCgI+fn5GDVqFFQqldSRyACWWSIiatSEKN8eq2LZwK5dwM2bhsd7e+tnXsPCysssNQ0XLlyAs7MzHB0dAQDh4eGQyWRcVtDAscwSEVGjIkT5jQn+eZetrCzD45s3rzzz2q4dbxHb1Gi1WuzZswe7du2Ct7c3pkyZAoVCATlvt2YWWGaJiMjsXbign3mNiwOuXjU81tm5fK1rxexrp04sr01Zfn4+1q5di7S0NABAs2bNoNVqoeCt18wGyywREZmda9cql9f/7yHVsrcHBg3Sz7526wZwwo0AIC0tDWvWrEFBQQEsLS0xcuRIBAYGSh2LjMQyS0REDV5WFhAfry+w/7/lZ7Wsrcv3d62Yee3RA7Dgn3b0D1qtFrt27cLu3bsBAG5uboiOjkbz5s0lTka1wf+8iYiowbl1q/xCrYqZ1xMnDI9VqYDgYP3Ma58+gFJpuqxkfrRaLVJTUwEA3bt3x4gRI2BpaSlxKqotllkiIpJcbi6wZ4/+gq0jR8ov5KqOhUV5Ya0or8HB5bOxRDVlYWGB6OhopKeno0uXLlLHoXvEMktERCZXWAgkJuqXDRw8CGg01Y+Vy4GePfXLBvr3B+zsTJuXzJtWq8XOnTuhVCoxaNAgAICrqytcXV0lTkZ1gWWWiIjqXUkJsHevftnA3r1Aaanh8d266WdeBw0C/n/bTyKj5eTkYM2aNbh8+TJkMhkCAgLQrFkzqWNRHWKZJSKiOldaChw4oJ95/esvoLjY8PhOnfT7vIaEAJwwo7pw5swZrF+/HkVFRVCpVIiMjGSRbYRYZomI6J5pNOXrXCtmXvfsAQoKDI9v21a/bCA0FOAt76kuaTQa7NixA0lJSQAAT09PREdHw8XFReJkVB9YZomIyGhaLXD8uP6CrV27gJwcw+NbtKh8ly1fX9NlpaZFCIFly5bhwoULAIA+ffpg6NChsOD+bI0W31kiIrorIYDTp/XLBuLjgRs3DI/39NTPvIaFAa1a8S5bZBoV62IzMjIwZswYdOzYUepIVM9YZomIqAohgPPn9csG4uKAjAzD411d9bOuYWFA+/Ysr2Q6ZWVlyM3N1S0j6NmzJzp06AA7bnvRJLDMEhERAODSJX1x3bkTuHzZ8Fgnp/ILtSpmXwMCeItYksatW7ewevVqFBYW4sknn4S1tTVkMhmLbBPCMktE1ERlZOiLa1wccO6c4bF2duW3iK1YNhAYCCgUJotKVK2UlBTExsaipKQE1tbWuHHjBnx8fKSORSbGMktE1ERkZ5evda0osKdPGx5rZQUMGKBfNtCrF8C7fVJDUVZWhq1bt+LgwYMAAF9fX0RFRcGRGxI3SSyzRESN1O3bwO7d+pnXY8cMj1Uqgb599csGgoIAlcpkUYlq7MaNG4iJiUHG/y/i7t+/P8LCwqDgRwVNFsssEVEjkZ9fvr9rxbrXw4fLt9CqjkIB9O6tXzbQrx9gY2PavES1ER8fj4yMDNjY2GD8+PFo27at1JFIYiyzRERmqqio/M5aFcsGDhwAysqqHyuTAT166GdeBwwA7O1Nm5eoLowYMQIAMHToUDg4OEichhoCllkiIjNRUgLs26efeU1KAtRqw+O7dNHPvA4aBDg7my4rUV25fv06Tpw4gdDQUMhkMtjY2CAqKkrqWNSAsMwSETVQZWXAwYP6mdfExPLZWEM6dNBfsBUaCjRvbrKoRPXi6NGj2LhxI0pLS+Hi4oJu3bpJHYkaIJZZIqIGQqMBjh7VX7C1e3f5OlhDWrfWLxsIDQW8vEwWlaheqdVqbN68GcnJyQCAVq1aoU2bNtKGogaLZZaISCJaLXDypH7mddeu8h0IDPHx0S8bCAsDWrY0WVQik8nKysLq1auRnZ0NmUyGkJAQDBw4EHLelYMMYJklIjIRIYAzZ/Qzr/HxwPXrhse7u+tnXsPCgDZteItYatyOHz+O2NhYlJWVwc7ODlFRUfDz85M6FjVwLLNERPUoLU1fXnfuBNLTDY91cSlfLlBRXjt2ZHmlpsXW1hZlZWVo06YNxo8fD1tbW6kjkRlgmSUiqkNXrlS+RezFi4bHOjgAISH62dcuXQB+kkpNjVqthlKpBAC0bt0aU6ZMQYsWLSDj3+SohlhmiYjuQWamfqusuDjg778Nj7W1Ld/ftWLmtXt3wIK/hamJEkLg0KFDiIuLw7Rp0+Di4gIAaMnF4GQk/holIjLCjRvlF2pVzL6mpBgeq1IB/fvrL9jq3bv8trFETV1JSQn++OMPnDx5EgBw8OBBDBs2TOJUZK4kL7MLFy7EJ598goyMDHTr1g1ffvkl+vTpY3D8559/jm+++QaXLl2Cq6sroqOjMW/ePFhZWZkwNRE1FTk55beIrVg2cPRo+YVc1bG0BIKC9MsG+vYF+KuJqLJr164hJiYGt27dglwux5AhQxAcHCx1LDJjkpbZlStXYvr06Vi0aBGCgoLw+eefIyIiAqmpqXBzc6sy/tdff8WMGTPw008/oV+/fjhz5gymTJkCmUyGTz/9VIKfgIgam4ICICFBP/N66FD5FlrVkcuBXr30ywb69y9fSkBEVQkhsH//fmzbtg0ajQaOjo6Ijo6Gj4+P1NHIzMmEMDTHUP+CgoLQu3dvfPXVVwAArVYLX19fPP/885gxY0aV8c899xxOnTqFHTt26I698sor2LdvHxISEmr0mrm5uXB0dEROTg7v6UxEKC4uvy1sxczr/v1AaWn1Y2UyIDBQP/M6cGD5RVxEdHdHjhxBbGwsAKBDhw4YM2YMrK2tJU5FDZUxfU2ymVm1Wo1Dhw5h5syZumNyuRzh4eFISkqq9px+/fph2bJl2L9/P/r06YPz589j06ZNePjhhw2+TklJCUpKSnSPc3Nz6+6HICKzo1aXF9aKC7b++gv4x6+IKgIC9DOvISHl22cRkfG6du2K5ORkdOrUCX369OFuBVRnJCuz2dnZ0Gg0cHd3r3Tc3d0dp0+frvacBx54ANnZ2RgwYACEECgrK8NTTz2FN954w+DrzJs3D3PmzKnT7ERkPsrKgMOH9csGEhKAwkLD4/399RdshYaW37iAiIwnhMDx48cREBAAhUIBhUKhWxpIVJckvwDMGPHx8Zg7dy6+/vprBAUF4ezZs3jxxRfx3nvv4e233672nJkzZ2L69Om6x7m5ufD19TVVZCIyMa0WOHZMv2xg927gTh/I+PlVvsuWt7fJohI1WkVFRVi/fj3OnDmDrKwshIeHAwCLLNULycqsq6srFAoFMjMzKx3PzMyEh4dHtee8/fbbePjhh/HYY48BALp06YKCggI88cQTePPNN6u9b7NKpYJKpar7H4CIGgQhyrfHqph53bULuHnT8HgvL31xDQsDWrUyXVaipuDy5cuIiYlBbm4uFAoFHB0dpY5EjZxkZVapVKJnz57YsWMHxo0bB6D8ArAdO3bgueeeq/acwsLCKoVVoVAAKP84g4gaPyGAs2f15TU+vvzGBYY0b64vroMHA+3a8RaxRPVBCIHExETs3LkTQgi4uLhg4sSJBieoiOqKpMsMpk+fjsmTJ6NXr17o06cPPv/8cxQUFGDq1KkAgEceeQTe3t6YN28eACAyMhKffvopunfvrltm8PbbbyMyMlJXaomo8bl4Ub9sYOdO4OpVw2Odncsv1KqYfQ0IYHklqm8FBQVYv349zp49CwDo3LkzRo8ezU9GySQkLbOTJk3C9evX8c477yAjIwOBgYHYsmWL7qKwS5cuVZqJfeuttyCTyfDWW2/h6tWraN68OSIjI/HBBx9I9SMQUT24dk1fXOPigLQ0w2Pt7YFBg/Qzr127Avy7LZFpFRUV4eLFi7CwsMCIESPQvXt3ro8lk5F0n1kpcJ9ZooYnK6t8uUDFdlmpqYbHWlsDAwboZ1579gQszOpSVqLG6fTp03B2dq6ySxFRbZjFPrNE1HTdulV+oVbF7OuJE4bHKpVAv376da99+gD85JJIWvn5+Vi/fj0GDhyIli1bAii/EQKRFFhmiaje5eUBe/bolw0cOVJ+IVd1LCzKC2vFsoHg4PLZWCJqGM6fP4+1a9eioKAAt27dwrPPPlvtbkJEpsIyS0R1rrAQSEzUz7wePAhoNNWPlcvLlwpUzLwOGADY2Zk2LxHdnVarxa5du7B7924AQPPmzTFx4kQWWZIcyywR3bOSEmDvXv3M6969QGmp4fHduulnXgcOBJycTBaViGohLy8Pa9euxYULFwAA3bt3x4gRI2BpaSltMCKwzBJRLZSWAgcO6C/YSkwEiosNj+/YUX/BVkgI4OpquqxEdG9ycnLw3XffobCwEJaWlhg9ejS6du0qdSwiHZZZIrorjaZ8nWvFsoE9e4CCAsPj27bVz7yGhgLcM53IfDk4OKBVq1bIzs7GxIkT0axZM6kjEVXCMktEVWi15TsMVCwb2LULyMkxPL5Fi8q3iPX1NV1WIqp7ubm5UCqVsLKygkwmQ2RkJORyOZcVUIPEMktEEAI4fVq/bCAuDrhxw/B4Dw99eR08GGjVinfZImoszpw5g/Xr18PPzw8TJ06ETCbjnbyoQWOZJWqChADOn698l62MDMPjXV3LlwtUFNj27VleiRobjUaDHTt2ICkpCQBw+/ZtlJSUwMrKSuJkRHfGMkvURFy6pJ913bkTuHzZ8FhHx/LyWrFsoHPn8i20iKhxun37NtasWYMrV64AAPr06YOhQ4fCgrfXIzPAf0uJGqmMjMozr+fOGR5rZ1e+RVbFsoHAQEChMFlUIpLQ6dOn8fvvv6O4uBgqlQpjx45Fx44dpY5FVGMss0SNRHY2EB+vn309dcrwWCsroH9//bKBXr0AXtdB1PSUlpZi8+bNKC4uhre3N6KiouDs7Cx1LCKjsMwSmanbt4Hdu/Wzr8eOGR5raVl+W9iKmdegIIDXcxCRpaUloqKicPr0aQwZMgQKfiRDZohllshM5OcDCQn6ZQOHD5dvoVUdhQLo3Vs/89qvH2BjY9q8RNQwpaSkoKysTHfjgxYtWqBFixYSpyKqPZZZogaqqAj46y/9zOuBA0BZWfVjZTKgRw/9BVsDBwL29qbNS0QNW1lZGbZu3YqDBw/CwsIC3t7evAECNQoss0QNhFoN7NunL69JSeXHDOnSRb9sYNAggMvciMiQGzduICYmBhn/vwdfUFAQnJycpA1FVEdYZokkUlYGHDqkXzaQkFA+G2tI+/b6ZQOhoUDz5iaLSkRm7MSJE/jjjz+gVqthY2ODcePGoV27dlLHIqozLLNEJqLRAEeP6mde9+wB8vIMj2/dWj/zGhoKeHmZLCoRNQJCCGzcuBGHDh0CUL42NioqCg4ODhInI6pbLLNE9UQI4ORJ/czrrl3ArVuGx/v46MtrWBjQsqXpshJR4yOTyWDz/1d+Dhw4EKGhoZDz7ifUCLHMEtURIYAzZ/T7vMbFAdevGx7v5qYvroMHA23a8BaxRHTv1Go1lEolACA0NBTt2rWDr6+vxKmI6g/LLNE9SEurfJeta9cMj3VxKV8uUFFgO3ZkeSWiuqNWq7F582ZkZmbi0UcfhYWFBeRyOYssNXoss0RGuHJFP+u6cydw8aLhsQ4OQEiIfrusrl0BfsJHRPUhKysLMTExuH79OmQyGS5cuIC2bdtKHYvIJFhmie4gM7P8FrEVM69//214rI1N+f6uFcsGuncHLPhfGBHVIyEEkpOTsWnTJpSVlcHOzg5RUVHw8/OTOhqRyfCPWqJ/uHmzvLxWzL6ePGl4rEpVfmetimUDvXsD/79MjYio3pWUlGDjxo04fvw4AKBNmzYYP348bG1tJU5GZFoss9Sk5eYCu3frlw0cPVp+IVd1LCyAvn31M699+wJWVqbNS0RUYcOGDThx4gRkMhnCwsIwYMAAyLgQn5oglllqUgoKgMRE/bKBgwcBrbb6sXI50KuXfua1f3+AEx5E1FAMHjwYmZmZGD16NFq0aCF1HCLJyIQwNA/VOOXm5sLR0RE5OTncOLoJKC4uvy1sxbKBffuA0tLqx8pkQGCg/oKtgQMBR0eTxiUiMqikpARnz55FQECA7pgQgrOx1CgZ09c4M0uNiloNHDigXzbw119ASYnh8QEB+mUDISHl22cRETU06enpWL16NW7dugWVSqXbqYBFlohllsxcWRlw5Ih+2cCePUBhoeHx7drplw2EhgLu7iaLSkRkNCEEDhw4gD///BMajQaOjo6w4mJ9okpYZsmsaLXAsWP6mdfdu8sv4jKkZUt9eQ0LK79lLBGROSguLkZsbCxOnToFAGjfvj3Gjh0La2triZMRNSwss9SgCQGcOqWfeY2PL98+yxAvL/2ygbAwoFUrk0UlIqozV69eRUxMDG7fvg25XI6hQ4ciKCiIywqIqsEySw2KEMDZs/oLtuLiym9cYEjz5vpZ18GDy5cR8Hc9EZm77Oxs3L59G05OToiOjoa3t7fUkYgaLJZZktzFi/plA3Fx5beMNcTZufxCrYqZ14AAllciahz+uTNBt27doFar0aVLF66RJboLllkyuWvX9LOuO3cCaWmGx9rbA4MG6Wdfu3UDFArTZSUiMoXLly/jzz//xP333w8bGxsAQO/evSVORWQeWGap3l2/Xr7WtWLmNTXV8Fhra2DAAP2ygZ49y++8RUTUGAkh8Ndff2HHjh0QQmDnzp0YPXq01LGIzAprAtW5W7fKdxmoKK//f9vwaimVQHCwftlAnz6ASmW6rEREUikoKMD69etx9uxZAEDnzp0xdOhQiVMRmR+WWbpneXnl+7tWLBs4cqT8Qq7qWFiUF9aKmdfg4PLZWCKipuTixYtYs2YN8vLyYGFhgeHDh6NHjx7crYCoFlhmyWiFheV31qqYeT1wANBoqh8rlwM9eujL64ABgJ2dafMSETUkp0+fxqpVqyCEQLNmzTBx4kS48w4uRLXGMkt3VVIC7N2rn3nduxcoLTU8vmtX/bKBQYMAJyeTRSUiavD8/Pzg5OQEX19fjBo1CkqlUupIRGaNZZaqKC0FDh7Uz7wmJgLFxYbHd+yon3kNCQFcXU2XlYjIHGRmZsLNzQ0ymQxWVlZ47LHHYG1tzWUFRHWAZZag0ZSvc63YLmvPHiA/3/D4Nm30M6+hoYCnp8miEhGZFa1Wi927d2PXrl0YOXKkbrutiu23iOjescw2QVotcOKEftnArl1ATo7h8b6++vIaFga0aGG6rERE5iovLw9r167FhQsXAABZWVnSBiJqpFhmmwAhyvd2rVg2EB8PZGcbHu/hoV82EBYGtG7Nu2wRERnj3LlzWLduHQoKCmBpaYnRo0eja9euUsciapRYZhshIYDz5yvfIjYjw/D4Zs30s66DBwPt27O8EhHVhlarRXx8PPbs2QMAcHd3R3R0NFx5MQFRvWGZbSQuX9YX17g44NIlw2MdHcsv1KqYee3cuXwLLSIiujeZmZlISEgAAPTs2RMRERGwtLSUOBVR48Yya6YyMvTFdedO4Nw5w2Ntbcu3yKqYfe3eHVAoTJeViKip8PT0xNChQ2Fvb4/OnTtLHYeoSWCZNRPZ2eUXalXMvp46ZXislRXQv79+2UCvXgAnBoiI6p5Go0F8fDy6du2K5s2bAwCCg4MlTkXUtLDMNlC3bwO7d+tnXo8dMzzW0hLo21e/bKBvX0ClMllUIqImKScnBzExMbhy5QrOnDmDJ554Agp+7EVkciyzDUR+PpCQoC+vhw+Xb6FVHYUC6N1bv2ygf3+AWxYSEZlOamoq1q9fj+LiYqhUKoSEhLDIEkmEZVYiRUVAUpJ+2cD+/UBZWfVjZbLyda4VywYGDAAcHEybl4iIypcVbNu2Dfv27QMAeHl5ITo6Gs7OzhInI2q6WGZNRK0G9u3Tz7wmJZUfM6RzZ/2ygZAQgL8niYikVVBQgF9//RXXrl0DAPTt2xfh4eGckSWSGMtsPUtKAmbPLl9CUFhoeFz79vqZ15AQwM3NZBGJiKgGrK2tYWFhASsrK4wbNw7t27eXOhIRgWW23k2dWn73rX9r1aryLWK9vEyfjYiI7qysrAwymQwKhQJyuRxRUVHQarVwcnKSOhoR/T+W2XpWcStulQq47z59efXzkzQWERHdxc2bN7F69Wq0bNkSw4cPBwA48IIFogaHZdZEWrYEli6VOgUREdXEiRMn8Mcff0CtViM3NxeDBg2CDbeNIWqQWGaJiIj+X2lpKbZs2YLDhw8DAFq0aIGoqCgWWaIGjGWWiIgIQHZ2NlavXo2s/18fNnDgQISGhkIul0ucjIjuhGWWiIiavLKyMixduhR5eXmwtbXF+PHj0aZNG6ljEVEN3FOZLS4uhpWVVV1lISIikoSFhQUiIiJw8OBBTJgwAfb29lJHIqIaMvqzE61Wi/feew/e3t6ws7PD+fPnAQBvv/02fvzxxzoPSEREVB+ysrJw8eJF3eOAgAA88sgjLLJEZsboMvv+++9jyZIl+Pjjj6FUKnXHO3fujB9++KFOwxEREdU1IQSOHDmC77//HqtWrUJeXp7uezKZTMJkRFQbRpfZpUuX4rvvvsODDz5Y6RZ+3bp1w+nTp+s0HBERUV1Sq9VYv349YmNjUVZWBg8PD17gRWTmjF4ze/XqVbRt27bKca1Wi9LS0joJRUREVNcyMzOxevVq3LhxAzKZDGFhYRgwYABnY4nMnNFltlOnTtizZw9atmxZ6XhMTAy6d+9eZ8GIiIjqghAChw8fxpYtW1BWVgZ7e3tERUVV+XOMiMyT0WX2nXfeweTJk3H16lVotVqsXbsWqampWLp0KTZs2FAfGYmIiGpNJpPh8uXLKCsrQ9u2bTF+/HjeBIGoETG6zI4dOxZ//PEH3n33Xdja2uKdd95Bjx498Mcff2Do0KH1kZGIiMhoQgjdEoKRI0fCx8cHPXv25LICokamVvvMDhw4ENu2bavrLERERPdMCIEDBw7gwoULmDhxImQyGZRKJXr16iV1NCKqB0Zfwtm6dWvcuHGjyvHbt2+jdevWdRKKiIioNoqLixETE4PNmzfj1KlTOHXqlNSRiKieGT0ze+HCBWg0mirHS0pKcPXq1ToJRUREZKyrV68iJiYGt2/fhlwux9ChQ9GxY0epYxFRPatxmY2NjdX9/61bt8LR0VH3WKPRYMeOHfDz86vTcERERHcjhMC+ffuwbds2aLVaODk5ITo6Gt7e3lJHIyITqHGZHTduHIDyq0InT55c6XuWlpbw8/PDggUL6jQcERHR3WzevBkHDhwAAHTs2BFjxoyBlZWVxKmIyFRqXGa1Wi0AoFWrVjhw4ABcXV3rLRQREVFNdevWDUePHsWQIUPQu3dv7lZA1MQYvWY2LS2tPnIQERHViBACmZmZ8PDwAAB4e3vjpZdegrW1tcTJiEgKtbohdUFBATZt2oRFixbhf//7X6UvYy1cuBB+fn6wsrJCUFAQ9u/ff8fxt2/fxrPPPgtPT0+oVCr4+/tj06ZNtfkxiIjIzBQWFuK3337DDz/8gIyMDN1xFlmipsvomdkjR45g5MiRKCwsREFBAVxcXJCdnQ0bGxu4ubnhhRdeqPFzrVy5EtOnT8eiRYsQFBSEzz//HBEREUhNTYWbm1uV8Wq1GkOHDoWbmxtiYmLg7e2NixcvwsnJydgfg4iIzMzFixexZs0a5OXlQaFQIDs7Wzc7S0RNl0wIIYw5ITQ0FP7+/li0aBEcHR1x9OhRWFpa4qGHHsKLL76ICRMm1Pi5goKC0Lt3b3z11VcAytfl+vr64vnnn8eMGTOqjF+0aBE++eQTnD59GpaWlsbE1snNzYWjoyNycnLg4OBQq+cwhosLcOsW4O8PpKbW+8sRETU6QggkJCQgLi4OQgg0a9YMEydOhLu7u9TRiKieGNPXjF5mkJycjFdeeQVyuRwKhQIlJSXw9fXFxx9/jDfeeKPGz6NWq3Ho0CGEh4frw8jlCA8PR1JSUrXnxMbGIjg4GM8++yzc3d3RuXNnzJ07t9p9byuUlJQgNze30hcREZmHgoICLF++HDt37oQQAl27dsUTTzzBIktEOkaXWUtLS8jl5ae5ubnh0qVLAABHR0dcvny5xs+TnZ0NjUZT5ReSu7t7pXVQ/3T+/HnExMRAo9Fg06ZNePvtt7FgwQK8//77Bl9n3rx5cHR01H35+vrWOCMREUnr2LFjOHfuHCwsLDBmzBiMGzcOSqVS6lhE1IAYvWa2e/fuOHDgANq1a4eQkBC88847yM7Oxi+//ILOnTvXR0YdrVYLNzc3fPfdd1AoFOjZsyeuXr2KTz75BLNmzar2nJkzZ2L69Om6x7m5uSy0RERmom/fvrh58yZ69+5d7bUURERGz8zOnTsXnp6eAIAPPvgAzs7OePrpp3H9+nV8++23NX4eV1dXKBQKZGZmVjr+z+1W/s3T0xP+/v5QKBS6Yx07dkRGRgbUanW156hUKjg4OFT6IiKihikvLw8bNmxAaWkpgPIb9YwaNYpFlogMMnpmtlevXrr/7+bmhi1bttTqhZVKJXr27IkdO3bo7i6m1WqxY8cOPPfcc9We079/f/z666/QarW6pQ5nzpyBp6cnP3YiIjJz586dw7p161BQUAC5XI6RI0dKHYmIzECt9pmtzuHDhzF69Gijzpk+fTq+//57/Pzzzzh16hSefvppFBQUYOrUqQCARx55BDNnztSNf/rpp3Hz5k28+OKLOHPmDDZu3Ii5c+fi2Wefrasfg4iITEyr1WLnzp1YtmwZCgoK4Obmhj59+kgdi4jMhFEzs1u3bsW2bdugVCrx2GOPoXXr1jh9+jRmzJiBP/74AxEREUa9+KRJk3D9+nW88847yMjIQGBgILZs2aK7KOzSpUu6GVgA8PX1xdatW/Hyyy+ja9eu8Pb2xosvvojXX3/dqNclIqKGITc3F2vWrNFdTNyjRw8MHz681tsvElHTU+N9Zn/88Uc8/vjjcHFxwa1bt9CsWTN8+umneP755zFp0iS8+OKL6NixY33nvWfcZ5aIqGG4dOkSVq5cicLCQiiVSkRGRtb7hcREZB6M6Ws1npn94osv8NFHH+G1117DmjVrMHHiRHz99dc4fvw4fHx87jk0ERE1LY6OjhBCwMPDA9HR0WjWrJnUkYjIDNV4ZtbW1hYnT56En58fhBBQqVSIi4tD//796ztjneLMLBGRdIqLi2FlZaV7nJGRAVdXV1hYGH09MhE1YvVyB7CioiLY2NgAKN8qRaVS6bboIiIiupvU1FT873//Q+o//mbv4eHBIktE98So3yA//PAD7OzsAABlZWVYsmQJXF1dK4154YUX6i4dERGZPY1Gg+3bt2Pv3r0AgAMHDqB9+/YSpyKixqLGywz8/Pwgk8nu/GQyGc6fP18nweoLlxkQEZnOrVu3sGbNGly9ehUAEBQUhKFDh1a6+Q0R0b/VywVgFy5cuNdcRETUhJw6dQq///47SkpKYGVlhbFjx6JDhw5SxyKiRoYLlYiIqM6lp6dj1apVAAAfHx9ERUXByclJ2lBE1CixzBIRUZ3z9PREr169oFQqMXjwYC4rIKJ6wzJLRER1IiUlBS1atNBdKDxy5Mi7XmtBRHSvarw1FxERUXVKS0uxYcMGrF69GmvXroVWqwUAFlkiMgnOzBIRUa1lZ2cjJiYGmZmZAABvb2+JExFRU1OrMnvu3DksXrwY586dwxdffAE3Nzds3rwZLVq0QEBAQF1nJCKiBujYsWPYsGEDSktLYWNjgwkTJqBNmzZSxyKiJsboZQa7du1Cly5dsG/fPqxduxb5+fkAgKNHj2LWrFl1HpCIiBqW0tJSxMbGYt26dSgtLYWfnx+eeuopFlkikoTRZXbGjBl4//33sW3bNiiVSt3xwYMH6+7uQkREjZcQApcvXwYAhISE4OGHH4a9vb3EqYioqTJ6mcHx48fx66+/Vjnu5uaG7OzsOglFREQNjxACMpkMSqUS0dHRKCgoQOvWraWORURNnNEzs05OTkhPT69y/MiRI1z4T0TUCKnVaqxfv77Sp2/u7u4sskTUIBhdZv/zn//g9ddfR0ZGBmQyGbRaLRITE/Hqq6/ikUceqY+MREQkkczMTHz//fc4evQodu7cqbtOgoiooTB6mcHcuXPx7LPPwtfXFxqNBp06dYJGo8EDDzyAt956qz4yEhGRiQkhcPjwYWzZsgVlZWWwt7dHVFSU7oYIREQNhUwIIWpz4qVLl3DixAnk5+eje/fuaNeuXV1nqxe5ublwdHRETk4OHBwc6v31XFyAW7cAf38gNbXeX46I6J6VlJRgw4YNOHHiBACgbdu2GDduHGxtbSVORkRNhTF9zeiZ2YSEBAwYMAAtWrRAixYtah2SiIgaHo1Ggx9//BHXr1+HTCbDkCFD0K9fP97Ni4gaLKPXzA4ePBitWrXCG2+8gZSUlPrIREREElEoFOjevTscHBwwdepU9O/fn0WWiBo0o8vstWvX8Morr2DXrl3o3LkzAgMD8cknn+DKlSv1kY+IiOpZcXExbty4oXvct29fPP300/D19ZUwFRFRzRhdZl1dXfHcc88hMTER586dw8SJE/Hzzz/Dz88PgwcPro+MRERUT65du4Zvv/0Wv/32G0pKSgAAMpkMVlZWEicjIqoZo9fM/lOrVq0wY8YMdOvWDW+//TZ27dpVV7mIiKgeCSGwb98+bNu2DVqtFk5OTsjLy4NKpZI6GhGRUWpdZhMTE7F8+XLExMSguLgYY8eOxbx58+oyGxER1YOioiLExsbi9OnTAIAOHTpg7NixnI0lIrNkdJmdOXMmVqxYgWvXrmHo0KH44osvMHbsWNjY2NRHPiIiqkNXrlxBTEwMcnJyoFAoMGzYMPTu3ZsXeRGR2TK6zO7evRuvvfYa7rvvPri6utZHJiIiqie7du1CTk4OnJ2dER0dDS8vL6kjERHdE6PLbGJiYn3kICIiExg7dizi4+MxdOhQro8lokahRmU2NjYWI0aMgKWlJWJjY+84dsyYMXUSjIiI7t2lS5dw7tw5hIWFAQDs7OwwevRoiVMREdWdGpXZcePGISMjA25ubhg3bpzBcTKZDBqNpq6yERFRLQkhkJCQgLi4OAgh4OnpiQ4dOkgdi4ioztWozGq12mr/PxERNTwFBQVYt24dzp07BwDo2rUrWrduLXEqIqL6YfRNE5YuXarbWPuf1Go1li5dWiehiIiodi5cuIBFixbh3LlzsLCwwJgxYzBu3DgolUqpoxER1QuZEEIYc4JCoUB6ejrc3NwqHb9x4wbc3Nwa/DKD3NxcODo6IicnBw4ODvX+ei4uwK1bgL8/kJpa7y9HRE1YUlIStm3bBiEEXF1dMXHixCq/q4mIzIExfc3o3QyEENXuR3jlyhU4Ojoa+3RERFRHXFxcIIRAYGAgRowYwdlYImoSalxmu3fvDplMBplMhiFDhsDCQn+qRqNBWloahg8fXi8hiYioesXFxbo7d7Vv3x6PP/44944loialxmW2YheD5ORkREREwM7OTvc9pVIJPz8/REVF1XlAIiKqSqvVIj4+HocOHcITTzyh+2SMRZaImpoal9lZs2YBAPz8/DBp0iTew5uISCK5ublYu3YtLl68CABISUlBcHCwxKmIiKRh9JrZyZMn10cOIiKqgbNnz2LdunUoLCyEUqlEZGQkOnfuLHUsIiLJ1KjMuri44MyZM3B1dYWzs3O1F4BVuHnzZp2FIyKichqNBnFxcbpbint4eCA6OhrNmjWTOBkRkbRqVGY/++wz2Nvb6/7/ncosERHVvX379umKbO/evTFs2LBKF+ISETVVNfpN+M+lBVOmTKmvLEREZEDv3r2RmpqKoKAgdOrUSeo4REQNhtF3ADt8+DCOHz+ue/z7779j3LhxeOONN6BWq+s0HBFRU6XRaHDw4EHdLcQtLS0xZcoUFlkion8xusw++eSTOHPmDADg/PnzmDRpEmxsbLB69Wr897//rfOARERNze3bt7F48WJs3LgRe/bs0R3nEi8ioqqMLrNnzpxBYGAgAGD16tUICQnBr7/+iiVLlmDNmjV1nY+IqEk5deoUvv32W1y9ehVWVlZwd3eXOhIRUYNWq9vZVnzstX37dowePRoA4Ovri+zs7LpNR0TURJSVlWHbtm3Yv38/AMDHxwdRUVFwcnKSNhgRUQNndJnt1asX3n//fYSHh2PXrl345ptvAABpaWmcQSAiqoWbN28iJiYG6enpAIDg4GAMGTIECoVC4mRERA2f0WX2888/x4MPPoj169fjzTffRNu2bQEAMTEx6NevX50HJCJq7NRqNbKysmBtbY1x48bB399f6khERGZDJoQQdfFExcXFUCgUsLS0rIunqze5ublwdHRETk4OHBwc6v31XFyAW7cAf38gNbXeX46IzIQQotIFXadPn4anpyccHR0lTEVE1DAY09dqveP2oUOHcOrUKQBAp06d0KNHj9o+FRFRk3Ljxg2sXbsWI0eOhLe3NwCgQ4cOEqciIjJPRpfZrKwsTJo0Cbt27dJdmHD79m2EhYVhxYoVaN68eV1nJCJqNI4fP44NGzZArVZj8+bNmDZtGrfcIiK6B0ZvzfX8888jPz8fJ0+exM2bN3Hz5k2cOHECubm5eOGFF+ojIxGR2SstLUVsbCzWrl0LtVoNPz8/TJo0iUWWiOgeGT0zu2XLFmzfvh0dO3bUHevUqRMWLlyIYcOG1Wk4IqLG4Pr164iJiUFWVhYAICQkBIMGDYJcbvR8AhER/YvRZVar1VZ7kZelpaVu/1kiIiqXlZWFH374AaWlpbC1tUVUVBRatWoldSwiokbD6GmBwYMH48UXX8S1a9d0x65evYqXX34ZQ4YMqdNwRETmrnnz5mjVqhVatWqFp556ikWWiKiOGT0z+9VXX2HMmDHw8/ODr68vAODy5cvo3Lkzli1bVucBiYjMTVZWFpycnKBUKiGTyRAVFQULCwsuKyAiqgdGl1lfX18cPnwYO3bs0G3N1bFjR4SHh9d5OCIicyKEwJEjR7B582Z06tQJ48aNg0wmg1KplDoaEVGjZVSZXblyJWJjY6FWqzFkyBA8//zz9ZWLiMislJSUYOPGjTh+/DgAoLCwEBqNBhYWtd7Om4iIaqDGv2W/+eYbPPvss2jXrh2sra2xdu1anDt3Dp988kl95iMiavAyMjKwevVq3Lx5EzKZDEOGDEG/fv247RYRkQnUeAHXV199hVmzZiE1NRXJycn4+eef8fXXX9dnNiKiBk0IgQMHDuCHH37AzZs34eDggKlTp6J///4sskREJlLjMnv+/HlMnjxZ9/iBBx5AWVkZ0tPT6yUYEVFDV1xcjF27dkGj0cDf3x9PPvmk7sJYIiIyjRovMygpKYGtra3usVwuh1KpRFFRUb0EIyJq6KytrTFhwgRkZmaib9++nI0lIpKAUVcmvP3227CxsdE9VqvV+OCDD+Do6Kg79umnn9ZdOiKiBkQIgf3798Pe3h6dOnUCALRu3RqtW7eWOBkRUdNV4zI7aNAgpKamVjrWr18/nD9/XveYsxJE1FgVFRUhNjYWp0+fhlKphI+PDxwcHKSORUTU5NW4zMbHx9djDCKihuvKlSuIiYlBTk4OFAoFhgwZAnt7e6ljERERanHTBCKipkIIgaSkJOzYsQNarRbOzs6Ijo6Gl5eX1NGIiOj/scwSEVVDq9Vi5cqVOHPmDAAgICAAkZGRUKlUEicjIqJ/YpklIqqGXC6Hi4sLFAoFhg8fjp49e/K6ACKiBohllojo/wkhUFJSAisrKwBAeHg4evTogebNm0ucjIiIDKnxTROIiBqzgoIC/Prrr/j111+h0WgAAAqFgkWWiKiBq1WZ3bNnDx566CEEBwfj6tWrAIBffvkFCQkJdRqOiMgULly4gG+//RZnz55Feno6MjIypI5EREQ1ZHSZXbNmDSIiImBtbY0jR46gpKQEAJCTk4O5c+fWeUAiovqi1Wqxa9cuLF26FHl5eXB1dcXjjz8Ob29vqaMREVENGV1m33//fSxatAjff/89LC0tdcf79++Pw4cP12k4IqL6kp+fj2XLliE+Ph5CCAQGBuLxxx+Hm5ub1NGIiMgIRl8AlpqaikGDBlU57ujoiNu3b9dFJiKierdu3TqkpaXB0tISo0aNQrdu3aSOREREtWD0zKyHhwfOnj1b5XhCQkKt70++cOFC+Pn5wcrKCkFBQdi/f3+NzluxYgVkMhnGjRtXq9cloqZrxIgR8PHxwRNPPMEiS0Rkxowus48//jhefPFF7Nu3DzKZDNeuXcPy5cvx6quv4umnnzY6wMqVKzF9+nTMmjULhw8fRrdu3RAREYGsrKw7nnfhwgW8+uqrGDhwoNGvSURNT15eHo4fP6577OrqikcffRSurq4SpiIiontl9DKDGTNmQKvVYsiQISgsLMSgQYOgUqnw6quv4vnnnzc6wKefforHH38cU6dOBQAsWrQIGzduxE8//YQZM2ZUe45Go8GDDz6IOXPmYM+ePVzeQER3dPbsWaxbtw5FRUVwcHBAy5YtAYA3QSAiagSMLrMymQxvvvkmXnvtNZw9exb5+fno1KkT7OzsjH5xtVqNQ4cOYebMmbpjcrkc4eHhSEpKMnjeu+++Czc3N0ybNg179uy542uUlJTodlwAgNzcXKNzEpF50mq12LlzJxITEwGUL5Oqze8qIiJquGp9BzClUolOnTrd04tnZ2dDo9HA3d290nF3d3ecPn262nMSEhLw448/Ijk5uUavMW/ePMyZM+eechKR+cnJycGaNWtw+fJlAECvXr0QEREBCwve+JCIqDEx+rd6WFjYHT+a27lz5z0FupO8vDw8/PDD+P7772u8zm3mzJmYPn267nFubi58fX3rKyIRNQBnzpzB+vXrUVRUBJVKhcjISAQEBEgdi4iI6oHRZTYwMLDS49LSUiQnJ+PEiROYPHmyUc/l6uoKhUKBzMzMSsczMzPh4eFRZfy5c+dw4cIFREZG6o5ptVoAgIWFBVJTU9GmTZtK56hUKqhUKqNyEZF5y8nJQVFRETw9PREdHQ0XFxepIxERUT0xusx+9tln1R6fPXs28vPzjXoupVKJnj17YseOHbrttbRaLXbs2IHnnnuuyvgOHTpUuhoZAN566y3k5eXhiy++4IwrURMmhNB9atSrVy9YWlqic+fOXFZARNTI1dlv+Yceegh9+vTB/PnzjTpv+vTpmDx5Mnr16oU+ffrg888/R0FBgW53g0ceeQTe3t6YN28erKys0Llz50rnOzk5AUCV40TUdJw+fRq7d+/GI488AisrK8hksiqfIhERUeNUZ2U2KSkJVlZWRp83adIkXL9+He+88w4yMjIQGBiILVu26C4Ku3TpEuRyo7fDJaImoKysDNu3b8e+ffsAAH/99RcGDx4scSoiIjIlmRBCGHPChAkTKj0WQiA9PR0HDx7E22+/jVmzZtVpwLqWm5sLR0dH5OTkwMHBod5fz8UFuHUL8PcHUlPr/eWImoybN28iJiYG6enpAIDg4GAMGTIECoVC4mRERHSvjOlrRs/MOjo6Vnosl8vRvn17vPvuuxg2bJixT0dEZLSTJ0/ijz/+QElJCaytrTFu3Dj4+/tLHYuIiCRgVJnVaDSYOnUqunTpAmdn5/rKRERk0KFDh7BhwwYAgK+vL6Kjo03yKQsRETVMRi1GVSgUGDZsGG8fS0SS6dixIxwcHDBgwABMmTKFRZaIqIkz+sqqzp074/z58/WRhYioWhV38QIAGxsbPPPMMxgyZAgvDiUiIuPL7Pvvv49XX30VGzZsQHp6OnJzcyt9ERHVldLSUsTGxuKnn36qdAtr3giFiIgq1HjN7LvvvotXXnkFI0eOBACMGTOm0m1tKzYs12g0dZ+SiJqc69evIyYmBllZWQDKb2dNRET0bzUus3PmzMFTTz2FuLi4+sxDRISjR49i48aNKC0tha2tLSZMmIDWrVtLHYuIiBqgGpfZiu1oQ0JC6i0METVtarUamzdv1i0paN26NcaPHw87OztpgxERUYNl1NZc/1xWQERU165du4bk5GTIZDKEhoZiwIABvMiLiIjuyKgy6+/vf9dCe/PmzXsKRERNl5+fH4YNGwZPT0/4+flJHYeIiMyAUWV2zpw5Ve4ARkRUWyUlJfjzzz/Rv39/uLi4ACi/LS0REVFNGVVm//Of/8DNza2+shBRE5KRkYGYmBjcuHEDWVlZePTRR7mUiYiIjFbjMss/ZIioLgghcOjQIWzZsgUajQYODg4YOnQof8cQEVGtGL2bARFRbRUXF2PDhg04efIkgPJ1+GPHjoWNjY3EyYiIyFzVuMxqtdr6zEFEjdytW7fwyy+/4NatW5DL5QgPD0ffvn05I0tERPfEqDWzRES15eDgAGtra2i1WkRHR8PHx0fqSERE1AiwzBJRvSkuLoZSqYRcLodCocB9990HpVIJa2trqaMREVEjwd3IiaheXL16Fd9++22lW2A7OjqyyBIRUZ1imSWiOiWEQFJSEn766Sfcvn0bKSkpUKvVUsciIqJGissMiKjOFBUVYf369Thz5gwAoFOnToiMjIRSqZQ4GRERNVYss0RUJy5fvoyYmBjk5uZCoVBg+PDh6NmzJ3crICKiesUyS0T3rLi4GMuXL0dJSQlcXFwwceJEeHh4SB2LiIiaAJZZIrpnVlZWGD58OM6fP49Ro0ZBpVJJHYmIiJoIllkiqpWLFy9CLpfD19cXABAYGIhu3bpxWQEREZkUyywRGUWr1SIhIQHx8fGws7PDU089pbsdLYssERGZGsssEdVYfn4+1q1bh/PnzwMAWrduDQsL/hohIiLp8E8hIqqRtLQ0rFmzBgUFBbC0tMTIkSMRGBgodSwiImriWGaJ6I6EEIiPj8fu3bsBAG5uboiOjkbz5s0lTkZERMQyS0Q1kJ2dDQDo3r07RowYAUtLS4kTERERlWOZJaJqCSEgk8kgk8kQGRmJgIAAdOrUSepYRERElcilDkBEDYtWq8X27dsRExMDIQSA8n1kWWSJiKgh4swsEenk5ORgzZo1uHz5MoDyvWT9/PykDUVERHQHLLNEBAA4c+YM1q9fj6KiIqhUKkRGRrLIEhFRg8cyS9TEaTQa7NixA0lJSQAAT09PREdHw8XFReJkREREd8cyS9TErVmzBqdOnQIA9OnTB0OHDuWNEIiIyGzwTyyiJi4oKAgXL15EZGQkOnToIHUcIiIio7DMEjUxZWVlyMjIgI+PDwCgZcuWePHFF6FUKiVORkREZDxuzUXUhNy6dQs//fQTli5diuvXr+uOs8gSEZG54swsURORkpKC2NhYlJSUwNraGvn5+bwlLRERmT2WWaJGrqysDFu3bsXBgwcBAL6+voiKioKjo6PEyYiIiO4dyyxRI3bjxg3ExMQgIyMDANC/f3+EhYVBoVBInIyIiKhusMwSNWLHjh1DRkYGbGxsMH78eLRt21bqSERERHWKZZaoEQsJCYFarUZwcDAcHBykjkNERFTnuJsBUSOSnZ2N9evXo6ysDAAgl8sRERHBIktERI0WZ2aJGomjR49i48aNKC0thYODAwYPHix1JCIionrHMktk5tRqNTZv3ozk5GQAQKtWrdCnTx9pQxEREZkIyyyRGcvKykJMTAyuX78OmUyGkJAQDBw4EHI5VxAREVHTwDJLZKZOnz6NNWvWoKysDHZ2doiKioKfn5/UsYiIiEyKZZbITLm5uUGhUKBly5YYP348bG1tpY5ERERkciyzRGakoKBAV1pdXFwwbdo0uLq6QiaTSZyMiIhIGlxYR2QGhBA4ePAgPv/8c5w7d053vHnz5iyyRETUpHFmlqiBKy4uxoYNG3Dy5EkAwIkTJ9CmTRuJUxERETUMLLNEDdi1a9cQExODW7duQS6XY8iQIQgODpY6FhERUYPBMkvUAAkhsH//fmzbtg0ajQaOjo6Ijo6Gj4+P1NGIiIgaFJZZogYoLS0NW7ZsAQB06NABY8aMgbW1tcSpiIiIGh6WWaIGqHXr1ujRowfc3NzQp08fXuRFRERkAMssUQNQsVtBQEAAbGxsAACRkZESpyIiImr4uDUXkcQKCwuxYsUKbNq0CevXr4cQQupIREREZoMzs0QSunz5MmJiYpCbmwuFQoF27dpJHYmIiMissMwSSUAIgcTEROzcuRNCCLi4uGDixInw8PCQOhoREZFZYZklMrHCwkKsW7cOZ8+eBQB07twZo0ePhkqlkjgZERGR+WGZJTIxuVyO7OxsWFhYYMSIEejevTt3KyAiIqolllkiE6i4qEsmk8HKygr33Xcf5HI53N3dJU5GRERk3ribAVE9y8/Px7Jly3Dw4EHdMU9PTxZZIiKiOsCZWaJ6lJaWhjVr1qCgoADp6eno2rUr18YSERHVIZZZonqg1Wqxa9cu7N69GwDQvHlzTJw4kUWWiIiojrHMEtWxvLw8rF27FhcuXAAAdO/eHSNGjIClpaW0wYiIiBohllmiOqRWq/Hdd98hPz8flpaWGD16NLp27Sp1LCIiokaLZZaoDimVSvTu3RspKSmYOHEimjVrJnUkIiKiRo1lluge5ebmorS0VFdcBwwYgH79+sHCgv95ERER1TduzUV0D86cOYNFixZh1apVKC0tBVB+UwQWWSIiItPgn7hEtaDRaLBjxw4kJSUBAJycnFBUVMSLvIiIiEyMZZbISLdv38aaNWtw5coVAECfPn0wdOhQzsYSERFJoEEsM1i4cCH8/PxgZWWFoKAg7N+/3+DY77//HgMHDoSzszOcnZ0RHh5+x/FEden06dP49ttvceXKFahUKtx3330YMWIEiywREZFEJC+zK1euxPTp0zFr1iwcPnwY3bp1Q0REBLKysqodHx8fj/vvvx9xcXFISkqCr68vhg0bhqtXr5o4OTU1QggkJSWhuLgYXl5eePLJJ9GxY0epYxERETVpMiGEkDJAUFAQevfuja+++gpA+Z2TfH198fzzz2PGjBl3PV+j0cDZ2RlfffUVHnnkkbuOz83NhaOjI3JycuDg4HDP+e/GxQW4dQvw9wdSU+v95aie5eTk4ODBgwgNDYVCoZA6DhERUaNkTF+TdGZWrVbj0KFDCA8P1x2Ty+UIDw/XXVhzN4WFhSgtLYWLi0u13y8pKUFubm6lL6KaSklJQVxcnO6xo6MjhgwZwiJLRETUQEhaZrOzs6HRaODu7l7puLu7OzIyMmr0HK+//jq8vLwqFeJ/mjdvHhwdHXVfvr6+95ybGr+ysjJs3LgRq1evxu7du5GWliZ1JCIiIqqG5Gtm78WHH36IFStWYN26dbCysqp2zMyZM5GTk6P7unz5solTkrm5ceMGfvzxRxw8eBAA0L9/f7Ro0ULiVERERFQdSS/BdnV1hUKhQGZmZqXjmZmZ8PDwuOO58+fPx4cffojt27eja9euBsepVCqoVKo6yUuN3/Hjx7Fhwwao1WrY2Nhg/PjxaNu2rdSxiIiIyABJZ2aVSiV69uyJHTt26I5ptVrs2LEDwcHBBs/7+OOP8d5772HLli3o1auXKaJSE7B161asXbsWarUaLVu2xJNPPskiS0RE1MBJvjnm9OnTMXnyZPTq1Qt9+vTB559/joKCAkydOhUA8Mgjj8Db2xvz5s0DAHz00Ud455138Ouvv8LPz0+3ttbOzg52dnaS/Rxk/nx8fAAAAwcORGhoKORys16FQ0RE1CRIXmYnTZqE69ev45133kFGRgYCAwOxZcsW3UVhly5dqlQqvvnmG6jVakRHR1d6nlmzZmH27NmmjE6NQH5+vu4vQQEBAXB3d4erq6vEqYiIiKimJN9n1tS4zywB5dvCbd68GX///TeeeuopzuoTERE1IMb0NclnZolMLSsrCzExMbh+/TpkMhnOnz9/x4sIiYiIqOFimaUmQwiB5ORkbNq0CWVlZbCzs0NUVBT8/PykjkZERES1xDJLTYJarcaGDRtw/PhxAECbNm0wfvx42NraSpyMiIiI7gXLLDUJu3fvxvHjxyGTyRAWFoYBAwZAJpNJHYuIiIjuEcssNQmDBg1Ceno6QkJCeDcvIiKiRoQbaVKjVFJSgr/++gsVm3UolUo8/PDDLLJERESNDGdmqdFJT09HTEwMbt68CQDo16+fxImIiIiovrDMUqMhhMCBAwfw559/QqPRwNHRkTOxREREjRzLLDUKxcXFiI2NxalTpwAA7du3x9ixY2FtbS1xMiIiIqpPLLNk9q5du4bVq1fj9u3bkMvlGDp0KIKCgrhbARERURPAMktmTwiB3NxcODk5ITo6Gt7e3lJHIiIiIhNhmSWzpNVqIZeXb8bh7e2NSZMmoUWLFrCyspI4GREREZkSt+Yis3P58mV8/fXXyMjI0B3z9/dnkSUiImqCWGbJbAghkJiYiMWLF+PGjRvYuXOn1JGIiIhIYlxmQGahoKAA69evx9mzZwEAnTt3xujRoyVORURERFJjmaUG7+LFi1izZg3y8vJgYWGB4cOHo0ePHtytgIiIiFhmqWG7dOkSfv75Zwgh0KxZM0ycOBHu7u5SxyIiIqIGgmWWGjQfHx/4+fnB3t4eo0aNglKplDoSERERNSAss9TgXLp0CZ6enrC0tIRcLsf9998PS0tLqWMRERFRA8TdDKjB0Gq1iI+Px+LFi7F161bdcRZZIiIiMoQzs9Qg5OXlYe3atbhw4QIAQKPRVLoxAhEREVF1WGZJcufOncPatWtRWFgIS0tLjB49Gl27dpU6FhEREZkBllmSjFarRVxcHBISEgAA7u7uiI6Ohqurq8TJiIiIyFywzJJkCgoKcOjQIQBAz549ERERwfWxREREZBSWWZKMvb09xo0bB7Vajc6dO0sdh4iIiMwQyyyZjEajwc6dO9GiRQu0b98eAODv7y9xKiIiIjJnvFScTCInJwdLlizBX3/9hd9//x3FxcVSRyIiIqJGgDOzVO9SU1Oxfv16FBcXQ6VSITIyElZWVlLHIiIiokaAZZbqjUajwbZt27Bv3z4AgJeXF6Kjo+Hs7CxxMiIiImosWGapXpSWlmLJkiW4du0aAKBv374IDw+HQqGQOBkRERE1JiyzVC8sLS3h4eGBmzdvYty4cboLvoiIiIjqEsss1ZmysjKUlpbC2toaADB8+HAMGjQIjo6OEicjIiKixoq7GVCduHnzJn788UesXr0aWq0WQPnsLIssERER1SfOzNI9O3HiBP744w+o1WpYW1vj1q1baNasmdSxiIiIqAlgmaVaKy0txZYtW3D48GEAQIsWLRAVFQUHBweJkxEREVFTwTJLtZKdnY2YmBhkZmYCAAYOHIjQ0FDI5Vy5QkRERKbDMktGE0Jg7dq1yMzMhI2NDSZMmIA2bdpIHYuIiIiaIJZZMppMJsOYMWOwY8cOjBkzBvb29lJHIiIioiaKnwlTjWRlZeHYsWO6xx4eHnjwwQdZZImIiEhSnJmlOxJCIDk5GZs2bYJWq0WzZs3g7e0tdSwiIiIiACyzdAdqtRobN27Uzci2bt0aTk5O0oYiIiIi+geWWapWZmYmVq9ejRs3bkAmkyEsLAwDBgyATCaTOhoRERGRDsssVXH48GFs2rQJGo0G9vb2iIqKQsuWLaWORURERFQFyyxVUVxcDI1Gg7Zt22L8+PGwsbGROhIRERFRtVhmCQCg1Wp1NzwIDg6Go6MjOnXqxGUFRERE1KBxa64mTgiB/fv347vvvoNarQZQvo9sQEAAiywRERE1eJyZbcKKi4sRGxuLU6dOAShfK9u3b1+JUxERERHVHMtsE3X16lXExMTg9u3bkMvlGDp0KIKCgqSORURERGQUltkmRgiBffv2Ydu2bdBqtXByckJ0dDRvhEBERERmiWW2idm9ezfi4+MBAB07dsSYMWNgZWUlbSgiIiKiWmKZbWJ69uyJI0eOoF+/fujduzcv8iIiIiKzxjLbyAkhcP78ebRp0wYAYGdnh+eeew4WFnzriYiIyPxxa65GrLCwEL/99huWLVuGkydP6o6zyBIREVFjwVbTSF28eBFr1qxBXl4eFAoFSktLpY5EREREVOdYZhsZIQQSEhIQFxcHIQSaNWuGiRMnwt3dXepoRERERHWOZbYRKSgowNq1a3H+/HkAQNeuXTFq1CgolUqJkxERERHVD5bZRuTq1as4f/48LCwsMHLkSAQGBnK3AiIiImrUWGYbEX9/fwwbNgxt2rSBm5ub1HGIiIiI6h13MzBjeXl5WLVqFXJycnTHgoODWWSJiIioyeDMrJk6d+4c1q1bh4KCAqjVajz00ENSRyIiIiIyOZZZM6PVahEfH489e/YAANzc3DB8+HCJUxERERFJg2XWjOTm5mLNmjW4dOkSAKBHjx4YPnw4LC0tJU5GREREJA2WWTORkZGBpUuXoqioCEqlEpGRkejcubPUsYiIiIgkxTJrJpo1awZ7e3s4OjoiOjoazZo1kzoSERERkeRYZhuwvLw82NnZQSaTwdLSEg888ABsbW1hYcG3jYiIiAhgmW2wUlNTsX79egQHB2PQoEEAAEdHR4lTERHVHSEEysrKoNFopI5CRBKwtLSEQqG45+dhmW1gNBoNtm/fjr179wIA/v77bwwYMAByObcEJqLGQ61WIz09HYWFhVJHISKJyGQy+Pj4wM7O7p6eh2W2Abl16xbWrFmDq1evAgCCgoIwdOhQFlkialS0Wi3S0tKgUCjg5eUFpVLJW28TNTFCCFy/fh1XrlxBu3bt7mmGlmW2gTh16hR+//13lJSUwMrKCmPHjkWHDh2kjkVEVOfUajW0Wi18fX1hY2MjdRwikkjz5s1x4cIFlJaWssyau7y8PKxZswYajQY+Pj6IioqCk5OT1LGIiOoVP3Uiatrq6hMZltkGwN7eHsOHD8fNmzcxZMiQOlkMTURERNQUsMxK5OTJk3BycoK3tzcAoFevXhInIiIiIjI//IzHxEpLS7FhwwbExMQgJiYGxcXFUkciIqIaCg0NxUsvvSR1DKpDN27cgJubGy5cuCB1lEanb9++WLNmTb2/ToMoswsXLoSfnx+srKwQFBSE/fv333H86tWr0aFDB1hZWaFLly7YtGmTiZLem+zsbPz44484dOgQAKBz585QKpUSpyIiovo0ZcoUyGQyfPjhh5WOr1+/vtKawfj4eMhkMgQEBFTZe9fJyQlLliwx+BqzZ8+GTCaDTCaDQqGAr68vnnjiCdy8ebPK2L/++gsjR46Es7Oz7s/RTz/9tNr9fuPi4jBy5Eg0a9YMNjY26NSpE1555RXdrjuNwQcffICxY8fCz89P6ij1pja9afny5ejWrRtsbGzg6emJRx99FDdu3NB9f+3atejVqxecnJxga2uLwMBA/PLLL5We46233sKMGTOg1Wrr/Gf6J8nL7MqVKzF9+nTMmjULhw8fRrdu3RAREYGsrKxqx//111+4//77MW3aNBw5cgTjxo3DuHHjcOLECRMnN46f3zF89913yMzMhI2NDR566CEMGTKEF0AQETUBVlZW+Oijj3Dr1q27jj1//jyWLl1q9GsEBAQgPT0dly5dwuLFi7FlyxY8/fTTlcasW7cOISEh8PHxQVxcHE6fPo0XX3wR77//Pv7zn/9ACKEb++233yI8PBweHh5Ys2YNUlJSsGjRIuTk5GDBggVG56sttVpdb89dWFiIH3/8EdOmTbun56nPjPeqNr0pMTERjzzyCKZNm4aTJ09i9erV2L9/Px5//HHdGBcXF7z55ptISkrCsWPHMHXqVEydOhVbt27VjRkxYgTy8vKwefPmev0ZISTWp08f8eyzz+oeazQa4eXlJebNm1ft+Pvuu0+MGjWq0rGgoCDx5JNP1uj1cnJyBACRk5NT+9BGcHUtFWPGrBezZ88Ws2fPFkuWLBG5ubkmeW0iooaoqKhIpKSkiKKiIqmjGC0kJES8+OKLuscbNmwQDg4OYtmyZQbPmTx5shg9erTo0KGDeO2113TH161bJ/75x3BcXJwAIF577TXh6+sriouLdd9zdHQUixcvNvgas2bNEt26dat0bPr06cLZ2Vn3OD8/XzRr1kxMmDChyvmxsbECgFixYoUQQojLly8LpVIpXnrppWpf79atWwaz3Lp1SzzxxBPCzc1NqFQqERAQIP744w+DOT/77DPRsmVL3ePJkyeLsWPHivfff194enoKPz8/MXPmTNGnT58qr9W1a1cxZ84c3ePvv/9edOjQQahUKtG+fXuxcOFCgzmFEGL16tWiefPmlY6VlZWJRx99VPj5+QkrKyvh7+8vPv/880pjqssohBCXLl0SEydOFI6OjsLZ2VmMGTNGpKWl6c7bv3+/CA8PF82aNRMODg5i0KBB4tChQ3fMeK9q05s++eQT0bp160rH/ve//wlvb+87vlb37t3FW2+9VenY1KlTxUMPPVTt+Dv9LjCmr0k6LahWq3Ho0CGEh4frjsnlcoSHhyMpKanac5KSkiqNB4CIiAiD40tKSpCbm1vpy5Q0GgXs7AogBBASEoKHH34Y9vb2Js1ARGQOevUCfHxM+3Uv197++uuvuP/++7F8+XI8+OCDdxyrUCgwd+5cfPnll7hy5codx7700ksoKyvDl19+WetsFy5cwNatWystZfvzzz9x48YNvPrqq1XGR0ZGwt/fH7/99huA8o+l1Wo1/vvf/1b7/Ia2j9RqtRgxYgQSExOxbNkypKSk4MMPPzR6l54dO3YgNTUV27Ztw4YNG/Dggw9i//79OHfunG7MyZMncezYMTzwwAMAyj8Wf+edd/DBBx/g1KlTmDt3Lt5++238/PPPBl9nz5496NmzZ5WfwcfHB6tXr0ZKSgreeecdvPHGG1i1atUdM5aWliIiIgL29vbYs2cPEhMTYWdnh+HDh+tmbvPy8jB58mQkJCRg7969aNeuHUaOHIm8vDyDGZcvXw47O7s7fu3Zs8fg+cb2JgAIDg7G5cuXsWnTJgghkJmZiZiYGIwcObLa8UII3T+PQYMGVfpenz597pivLki6m0F2djY0Gg3c3d0rHXd3d8fp06erPScjI6Pa8RkZGdWOnzdvHubMmVM3gWtFhvXrx6FHjyzMnu0nYQ4iooYtIwMwl6WYCxcuxJtvvok//vgDISEhNTpn/PjxCAwMxKxZs/Djjz8aHGdjY4NZs2bhjTfewOOPPw5HR8caPf/x48dhZ2cHjUaju7j4008/1X3/zJkzAICOHTtWe36HDh10Y/7++284ODjA09OzRq9dYfv27di/fz9OnToFf39/AEDr1q2Neg4AsLW1xQ8//FCpjHfr1g2//vor3n77bQDlJS8oKAht27YFAMyaNQsLFizAhAkTAACtWrVCSkoKvv32W0yePLna17l48SK8vLwqHbO0tKzUG1q1aoWkpCSsWrUK9913n8GMy5Ytg1arxQ8//KBbC7148WI4OTkhPj4ew4YNw+DBgyu91nfffQcnJyfs2rULo0ePrjbjmDFjEBQUdMd/XhU7I1XH2N4EAP3798fy5csxadIkFBcXo6ysDJGRkVi4cGGlcTk5OfD29kZJSQkUCgW+/vprDB06tNIYLy8vXL58GVqttt6WVjb6rblmzpyJ6dOn6x7n5ubC19fXZK9//DgghA0sLPxM9ppERObIw8M8XjMmJgZZWVlITExE7969dcf37NmDESNG6B5/++23VWZsP/roIwwePLja2dF/mjZtGhYsWICPPvoIc+fOrVGu9u3bIzY2FsXFxVi2bBmSk5Px/PPPVxkn/rEu1hAhRK02tE9OToaPj4+uyNZWly5dqlwg/eCDD+Knn37C22+/DSEEfvvtN92f7wUFBTh37hymTZtWaV1nWVnZHf8yUFRUBCsrqyrHFy5ciJ9++gmXLl1CUVER1Go1AgMD75jx6NGjOHv2bJVPX4uLi3UzypmZmXjrrbcQHx+PrKwsaDQaFBYW4tKlSwYz2tvbm/wT3ZSUFLz44ot45513EBERgfT0dLz22mt46qmnKv1FzN7eHsnJycjPz8eOHTswffp0tG7dGqGhobox1tbW0Gq1KCkpgbW1db3klbTMurq6QqFQIDMzs9LxzMxMeBj4DePh4WHUeJVKBZVKVTeBa+EOf1kiIqJ/OHhQ6gQ10717dxw+fBg//fQTevXqpSt9vXr1QnJysm7cv2fDAGDQoEGIiIjAzJkzMWXKFIOvYWFhgQ8++ABTpkzBc889V6NcSqVSN0v54YcfYtSoUZgzZw7ee+89ANAVzFOnTqFfv35Vzj916hQ6deqkG5uTk4P09HSjZmfvVlbkcnmVMl1aWlplnK2tbZVj999/P15//XUcPnwYRUVFuHz5MiZNmgQAyM/PBwB8//33VWYx77TEwdXVtcpFeStWrMCrr76KBQsWIDg4GPb29vjkk0+wb9++O2bMz89Hz549sXz58iqv07x5cwDA5MmTcePGDXzxxRdo2bIlVCoVgoOD73gB2fLly/Hkk08a/D4AbN68GQMHDqz2e8b2JqD8U+3+/fvjtddeAwB07doVtra2GDhwIN5//33dvxNyuVz371xgYCBOnTqFefPmVSqzN2/ehK2tbb0VWUDi3QyUSiV69uyJHTt26I5ptVrs2LEDwcHB1Z4THBxcaTwAbNu2zeB4IiKiutSmTRvExcXh999/rzTzaW1tjbZt2+q+DM2mffjhh/jjjz/uuGYRACZOnIiAgIBaL5V76623MH/+fFy7dg0AMGzYMLi4uFS7E0FsbCz+/vtv3H///QCA6OhoKJVKfPzxx9U+9+3bt6s93rVrV1y5ckW3XOHfmjdvjoyMjEqF9p9/AbgTHx8fhISEYPny5Vi+fDmGDh0KNzc3AOV/cfDy8sL58+crvQdt27ZFq1atDD5n9+7dkZKSUulYYmIi+vXrh2eeeQbdu3dH27ZtK63VNaRHjx74+++/4ebmViVDxexwYmIiXnjhBYwcORIBAQFQqVTIzs6+4/OOGTMGycnJd/y6042XatObCgsLqywJqPhLwZ1m9itmYP/pxIkT6N69u8Fz6sRdLxGrZytWrBAqlUosWbJEpKSkiCeeeEI4OTmJjIwMIYQQDz/8sJgxY4ZufGJiorCwsBDz588Xp06dErNmzRKWlpbi+PHjNXo9U+9mQERElTWW3QxOnz4tPDw8Ku1uUJ2KK9//6eGHHxZWVlbV7mbwz50CduzYISwsLISFhYXRuxkIUXXHoNWrVwuFQiEef/xxcfToUZGWliZ++OEH4ezsLKKjo4VWq9WNXbhwoZDJZOLRRx8V8fHx4sKFCyIhIUE88cQTYvr06QazhIaGis6dO4s///xTnD9/XmzatEls3rxZCCFESkqKkMlk4sMPPxRnz54VX331lXB2dq52N4PqfP/998LLy0u4urqKX375pcr3rK2txRdffCFSU1PFsWPHxE8//SQWLFhgMOuxY8eEhYWFuHnzpu7YF198IRwcHMSWLVtEamqqeOutt4SDg0Olf77VZSwoKBDt2rUToaGhYvfu3eL8+fMiLi5OPP/88+Ly5ctCiPKr/YcOHSpSUlLE3r17xcCBA4W1tbX47LPPDGa8VzXpTTNmzBAPP/yw7vHixYuFhYWF+Prrr8W5c+dEQkKC6NWrV6UdJebOnSv+/PNPce7cOZGSkiLmz58vLCwsxPfff1/p9UNCQsS7775bbba62s1A8jIrhBBffvmlaNGihVAqlaJPnz5i7969uu+FhISIyZMnVxq/atUq4e/vL5RKpQgICBAbN26s8WuxzBIRSauxlFkhysuZm5vbHctddcUnLS1NKJXKu5ZZIYQYNmyYAFCrMvvbb78JlUolLl26pDu2e/duERERIRwcHHR/js6fP1+UlZVVOX/btm0iIiJCODs7CysrK9GhQwfx6quvimvXrhnMcuPGDTF16lTRrFkzYWVlJTp37iw2bNig+/4333wjfH19ha2trXjkkUfEBx98UOMye+vWLaFSqYSNjY3Iy8ur8v3ly5eLwMBAoVQqhbOzsxg0aJBYu3atwaxClBf+RYsW6R4XFxeLKVOmCEdHR+Hk5CSefvppMWPGjLuWWSGESE9PF4888ohwdXUVKpVKtG7dWjz++OO6znH48GHRq1cvYWVlJdq1aydWr14tWrZsWa9lVoi796bJkyeLkJCQSsf+97//iU6dOglra2vh6ekpHnzwQXHlyhXd9998803Rtm1bYWVlJZydnUVwcLBua7cKV65cEZaWlroy/291VWZlQtRgJXgjkpubC0dHR+Tk5MDBwUHqOERETU5xcTHS0tLQqlWrai++ITKljRs34rXXXsOJEyd4I6M69vrrr+PWrVv47rvvqv3+nX4XGNPXGv1uBkRERESGjBo1Cn///TeuXr1q0t2OmgI3N7dKO0rVF5ZZIiIiatJeeuklqSM0Sq+88opJXofz6URERERktlhmiYiIiMhsscwSEZEkmtj1x0T0L3X1O4BlloiITMrS0hJA+cbsRNR0Vdz57E53aasJXgBGREQmpVAo4OTkhKysLACAjY2N7pawRNQ0aLVaXL9+HTY2NrCwuLc6yjJLREQmV3Ff+IpCS0RNj1wuR4sWLe75L7Mss0REZHIymQyenp5wc3NDaWmp1HGISAJKpbJOblTBMktERJJRKBT3vF6OiJo2XgBGRERERGaLZZaIiIiIzBbLLBERERGZrSa3ZrZig97c3FyJkxARERFRdSp6Wk1urNDkymxeXh4AwNfXV+IkRERERHQneXl5cHR0vOMYmWhi9xPUarW4du0a7O3tTbJJd25uLnx9fXH58mU4ODjU++tR3eN7aP74Hpo/vofmje+f+TP1eyiEQF5eHry8vO66fVeTm5mVy+Xw8fEx+es6ODjwP2Azx/fQ/PE9NH98D80b3z/zZ8r38G4zshV4ARgRERERmS2WWSIiIiIyWyyz9UylUmHWrFlQqVRSR6Fa4nto/vgemj++h+aN75/5a8jvYZO7AIyIiIiIGg/OzBIRERGR2WKZJSIiIiKzxTJLRERERGaLZZaIiIiIzBbLbB1YuHAh/Pz8YGVlhaCgIOzfv/+O41evXo0OHTrAysoKXbp0waZNm0yUlAwx5j38/vvvMXDgQDg7O8PZ2Rnh4eF3fc+p/hn732GFFStWQCaTYdy4cfUbkO7K2Pfw9u3bePbZZ+Hp6QmVSgV/f3/+PpWQse/f559/jvbt28Pa2hq+vr54+eWXUVxcbKK09G+7d+9GZGQkvLy8IJPJsH79+rueEx8fjx49ekClUqFt27ZYsmRJveeslqB7smLFCqFUKsVPP/0kTp48KR5//HHh5OQkMjMzqx2fmJgoFAqF+Pjjj0VKSop46623hKWlpTh+/LiJk1MFY9/DBx54QCxcuFAcOXJEnDp1SkyZMkU4OjqKK1eumDg5VTD2PayQlpYmvL29xcCBA8XYsWNNE5aqZex7WFJSInr16iVGjhwpEhISRFpamoiPjxfJyckmTk5CGP/+LV++XKhUKrF8+XKRlpYmtm7dKjw9PcXLL79s4uRUYdOmTeLNN98Ua9euFQDEunXr7jj+/PnzwsbGRkyfPl2kpKSIL7/8UigUCrFlyxbTBP4Hltl71KdPH/Hss8/qHms0GuHl5SXmzZtX7fj77rtPjBo1qtKxoKAg8eSTT9ZrTjLM2Pfw38rKyoS9vb34+eef6ysi3UVt3sOysjLRr18/8cMPP4jJkyezzErM2Pfwm2++Ea1btxZqtdpUEekOjH3/nn32WTF48OBKx6ZPny769+9frzmpZmpSZv/73/+KgICASscmTZokIiIi6jFZ9bjM4B6o1WocOnQI4eHhumNyuRzh4eFISkqq9pykpKRK4wEgIiLC4HiqX7V5D/+tsLAQpaWlcHFxqa+YdAe1fQ/fffdduLm5Ydq0aaaISXdQm/cwNjYWwcHBePbZZ+Hu7o7OnTtj7ty50Gg0popN/68271+/fv1w6NAh3VKE8+fPY9OmTRg5cqRJMtO9a0h9xsLkr9iIZGdnQ6PRwN3dvdJxd3d3nD59utpzMjIyqh2fkZFRbznJsNq8h//2+uuvw8vLq8p/1GQatXkPExIS8OOPPyI5OdkECeluavMenj9/Hjt37sSDDz6ITZs24ezZs3jmmWdQWlqKWbNmmSI2/b/avH8PPPAAsrOzMWDAAAghUFZWhqeeegpvvPGGKSJTHTDUZ3Jzc1FUVARra2uTZeHMLNE9+PDDD7FixQqsW7cOVlZWUsehGsjLy8PDDz+M77//Hq6urlLHoVrSarVwc3PDd999h549e2LSpEl48803sWjRIqmjUQ3Ex8dj7ty5+Prrr3H48GGsXbsWGzduxHvvvSd1NDJDnJm9B66urlAoFMjMzKx0PDMzEx4eHtWe4+HhYdR4ql+1eQ8rzJ8/Hx9++CG2b9+Orl271mdMugNj38Nz587hwoULiIyM1B3TarUAAAsLC6SmpqJNmzb1G5oqqc1/h56enrC0tIRCodAd69ixIzIyMqBWq6FUKus1M+nV5v17++238fDDD+Oxxx4DAHTp0gUFBQV44okn8Oabb0Iu51xbQ2eozzg4OJh0VhbgzOw9USqV6NmzJ3bs2KE7ptVqsWPHDgQHB1d7TnBwcKXxALBt2zaD46l+1eY9BICPP/4Y7733HrZs2YJevXqZIioZYOx72KFDBxw/fhzJycm6rzFjxiAsLAzJycnw9fU1ZXxC7f477N+/P86ePav7iwgAnDlzBp6eniyyJlab96+wsLBKYa34i4kQov7CUp1pUH3G5JecNTIrVqwQKpVKLFmyRKSkpIgnnnhCODk5iYyMDCGEEA8//LCYMWOGbnxiYqKwsLAQ8+fPF6dOnRKzZs3i1lwSM/Y9/PDDD4VSqRQxMTEiPT1d95WXlyfVj9DkGfse/ht3M5Cese/hpUuXhL29vXjuuedEamqq2LBhg3BzcxPvv/++VD9Ck2bs+zdr1ixhb28vfvvtN3H+/Hnx559/ijZt2oj77rtPqh+hycvLyxNHjhwRR44cEQDEp59+Ko4cOSIuXrwohBBixowZ4uGHH9aNr9ia67XXXhOnTp0SCxcu5NZc5uzLL78ULVq0EEqlUvTp00fs3btX972QkBAxefLkSuNXrVol/P39hVKpFAEBAWLjxo0mTkz/Zsx72LJlSwGgytesWbNMH5x0jP3v8J9YZhsGY9/Dv/76SwQFBQmVSiVat24tPvjgA1FWVmbi1FTBmPevtLRUzJ49W7Rp00ZYWVkJX19f8cwzz4hbt26ZPjgJIYSIi4ur9s+2ivdt8uTJIiQkpMo5gYGBQqlUitatW4vFixebPLcQQsiE4Hw+EREREZknrpklIiIiIrPFMktEREREZotlloiIiIjMFsssEREREZktllkiIiIiMlsss0RERERktlhmiYiIiMhsscwSERERkdlimSUiArBkyRI4OTlJHaPWZDIZ1q9ff8cxU6ZMwbhx40ySh4jIVFhmiajRmDJlCmQyWZWvs2fPSh0NS5Ys0eWRy+Xw8fHB1KlTkZWVVSfPn56ejhEjRgAALly4AJlMhuTk5EpjvvjiCyxZsqROXs+Q2bNn635OhUIBX19fPPHEE7h586ZRz8PiTUQ1ZSF1ACKiujR8+HAsXry40rHmzZtLlKYyBwcHpKamQqvV4ujRo5g6dSquXbuGrVu33vNze3h43HWMo6PjPb9OTQQEBGD79u3QaDQ4deoUHn30UeTk5GDlypUmeX0ialo4M0tEjYpKpYKHh0elL4VCgU8//RRdunSBra0tfH198cwzzyA/P9/g8xw9ehRhYWGwt7eHg4MDevbsiYMHD+q+n5CQgIEDB8La2hq+vr544YUXUFBQcMdsMpkMHh4e8PLywogRI/DCCy9g+/btKCoqglarxbvvvgsfHx+oVCoEBgZiy5YtunPVajWee+45eHp6wsrKCi1btsS8efMqPXfFMoNWrVoBALp37w6ZTIbQ0FAAlWc7v/vuO3h5eUGr1VbKOHbsWDz66KO6x7///jt69OgBKysrtG7dGnPmzEFZWdkdf04LCwt4eHjA29sb4eHhmDhxIrZt26b7vkajwbRp09CqVStYW1ujffv2+OKLL3Tfnz17Nn7++Wf8/vvvulne+Ph4AMDly5dx3333wcnJCS4uLhg7diwuXLhwxzxE1LixzBJRkyCXy/G///0PJ0+exM8//4ydO3fiv//9r8HxDz74IHx8fHDgwAEcOnQIM2bMgKWlJQDg3LlzGD58OKKionDs2DGsXLkSCQkJeO6554zKZG1tDa1Wi7KyMnzxxRdYsGAB5s+fj2PHjiEiIgJjxozB33//DQD43//+h9jYWKxatQqpqalYvnw5/Pz8qn3e/fv3AwC2b9+O9PR0rF27tsqYiRMn4saNG4iLi9Mdu3nzJrZs2YIHH3wQALBnzx488sgjePHFF5GSkoJvv/0WS5YswQcffFDjn/HChQvYunUrlEql7phWq4WPjw9Wr16NlJQUvPPOO3jjjTewatUqAMCrr76K++67D8OHD0d6ejrS09PRr18/lJaWIiIiAvb29tizZw8SExNhZ2eH4cOHQ61W1zgTETUygoiokZg8ebJQKBTC1tZW9xUdHV3t2NWrV4tmzZrpHi9evFg4OjrqHtvb24slS5ZUe+60adPEE088UenYnj17hFwuF0VFRdWe8+/nP3PmjPD39xe9evUSQgjh5eUlPvjgg0rn9O7dWzzzzDNCCCGef/55MXjwYKHVaqt9fgBi3bp1Qggh0tLSBABx5MiRSmMmT54sxo4dq3s8duxY8eijj+oef/vtt8LLy0toNBohhBBDhgwRc+fOrfQcv/zyi/D09Kw2gxBCzJo1S8jlcmFrayusrKwEAAFAfPrppwbPEUKIZ599VkRFRRnMWvHa7du3r/TPoKSkRFhbW4utW7fe8fmJqPHimlkialTCwsLwzTff6B7b2toCKJ+lnDdvHk6fPo3c3FyUlZWhuLgYhYWFsLGxqfI806dPx2OPPYZffvlF91F5mzZtAJQvQTh27BiWL1+uGy+EgFarRVpaGjp27FhttpycHNjZ2UGr1aK4uBgDBgzADz/8gNzcXFy7dg39+/evNL5///44evQogPIlAkOHDkX79u0xfPhwjB49GsOGDbunf1YPPvggHn/8cXz99ddQqVRYvnw5/vOf/0Aul+t+zsTExEozsRqN5o7/3ACgffv2iI2NRXFxMZYtW4bk5GQ8//zzlcYsXLgQP/30Ey5duoSioiKo1WoEBgbeMe/Ro0dx9uxZ2NvbVzpeXFyMc+fO1eKfABE1BiyzRNSo2Nraom3btpWOXbhwAaNHj8bTTz+NDz74AC4uLkhISMC0adOgVqurLWWzZ8/GAw88gI0bN2Lz5s2YNWsWVqxYgfHjxyM/Px9PPvkkXnjhhSrntWjRwmA2e3t7HD58GHK5HJ6enrC2tgYA5Obm3vXn6tGjB9LS0rB582Zs374d9913H8LDwxETE3PXcw2JjIyEEAIbN25E7969sWfPHnz22We67+fn52POnDmYMGFClXOtrKwMPq9SqdS9Bx9++CFGjRqFOXPm4L333gMArFixAq+++ioWLFiA4OBg2Nvb45NPPsG+ffvumDc/Px89e/as9JeICg3lIj8iMj2WWSJq9A4dOgStVosFCxboZh0r1mfeib+/P/z9/fHyyy/j/vvvx+LFizF+/Hj06NEDKSkpVUrz3cjl8mrPcXBwgJeXFxITExESEqI7npiYiD59+lQaN2nSJEyaNAnR0dEYPnw4bt68CRcXl0rPV7E+VaPR3DGPlZUVJkyYgOXLl+Ps2bNo3749evTooft+jx49kJqaavTP+W9vvfUWBg8ejKefflr3c/br1w/P/F979xMKWxjGcfx7I8XCQkyaBRaGFCOaCQsbG1lNzYIyZSMpTSMkFkzNRo3FKDaULEhMVoSG1aCxGYtJiXOUP7FRZmFFzcJd3K6491pwF7fj/j7b857e5939enqfc/r6Xtb82lnNycn5rf76+nqi0Sg2m438/Py/qklEvg4NgInIl1deXk4mk2FmZoaLiwuWlpaYnZ19d/3j4yN+v594PM719TWJRIJkMvlyfWBkZITDw0P8fj+pVIrz83PW19c/PAD22vDwMOFwmGg0imEYjI6Okkql6O/vByASibCyssLZ2RmmabK2tkZxcfEff/Rgs9nIzc0lFotxd3fHw8PDu/v6fD62trZYWFh4Gfz6KRgMsri4SCgU4uTkhNPTU1ZXVxkbG/vQ2ZqamnA6nUxMTADgcDg4OjpiZ2cH0zQZHx8nmUy+eaesrIzj42MMw+D+/p5MJoPP56OwsBCPx8PBwQGXl5fE43ECgQC3t7cfqklEvg6FWRH58mpra4lEIoTDYaqrq1leXn7zWatfZWVlkU6n6erqoqKigvb2dtra2giFQgA4nU729vYwTZPm5mbq6uoIBoPY7fZP1xgIBBgcHGRoaIiamhpisRgbGxs4HA7gxxWFyclJXC4Xbrebq6srtre3XzrNr2VnZzM9Pc3c3Bx2ux2Px/Puvi0tLRQUFGAYBp2dnW+etba2srm5ye7uLm63m8bGRqampigtLf3w+QYGBpifn+fm5obe3l68Xi8dHR00NDSQTqffdGkBenp6qKysxOVyUVRURCKRIC8vj/39fUpKSvB6vVRVVdHd3c3T05M6tSL/sW/Pz8/P/7oIEREREZHPUGdWRERERCxLYVZERERELEthVkREREQsS2FWRERERCxLYVZERERELEthVkREREQsS2FWRERERCxLYVZERERELEthVkREREQsS2FWRERERCxLYVZERERELOs7RCqw665A6UgAAAAASUVORK5CYII=\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 600x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAIjCAYAAABS7iKKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM6hJREFUeJzt3Xd4VHX+t/H3JCQhPRCKgJBQ1oQaUVCQvnSki7o0Q/2pSJeq9BYFEQGl6ColS2iCoHSkiAiyCJgVRRQkgILSIYUkkJznDx9GhiSQLwRmkPt1XVwyZ86c+Uww5OaUGZtlWZYAAAAMuDl7AAAAcP8hIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgANyWSZMmqUSJEnJ3d9ejjz6a49vv1KmTQkNDc3y796utW7fKZrNp69atzh4FkERAABl89913atOmjUJCQpQ7d24VKVJE9evX1/Tp0yVJe/fulc1m07Bhw7Lcxs8//yybzab+/ftLkkaNGiWbzSY3NzcdP348w/qXLl2St7e3bDabevbsma0509LSNGfOHNWuXVt58+aVl5eXQkND1blzZ33zzTe38cqzb8OGDRo0aJCqVaumOXPmaMKECXf1+e6luLg42Ww22Ww2jRs3LtN12rdvL5vNJj8/v9t6jpiYGL3zzjt3MCXgfAQEcJ0dO3aoUqVKio2NVffu3fXuu++qW7ducnNz09SpUyVJjz32mMLDw7Vw4cIstxMTEyNJ6tChg8NyLy+vTB+3fPlyozkvX76spk2bqkuXLrIsS6+99ppmzpypF154QTt37tQTTzyhX3/91WibJjZv3iw3Nzd9+OGHeuGFF9SkSZMcf44PPvhABw8ezPHtZlfu3Lkz/bNKTEzUypUrlTt37tve9u0ERM2aNXX58mXVrFnztp8XyEm5nD0A4ErGjx+vwMBA7d69W0FBQQ73nTp1yv779u3ba/jw4fr6669VpUqVDNtZuHChwsPD9dhjjzksb9KkiRYuXKhBgwY5LI+JidHTTz+tZcuWZWvOgQMHat26dZoyZYr69u3rcN/IkSM1ZcqUbG3ndp06dUre3t7y9PS8a8/h4eFx17adHU2aNNHy5csVGxuriIgI+/KVK1cqNTVVjRo10ubNm+/6HMnJyfL09JSbm9sdRQuQ09gDAVzn8OHDKlu2bIZ4kKQCBQrYf9++fXtJf+1puN6ePXt08OBB+zrXa9eunb799lv9+OOP9mW///67Nm/erHbt2mVrxl9//VWzZ89W/fr1M8SDJLm7u2vAgAF6+OGH7cv27dunxo0bKyAgQH5+fqpbt66+/vprh8fNnTtXNptNX331lfr376/8+fPL19dXrVq10unTp+3r2Ww2zZkzR4mJifZd/XPnzrXv+p87d26GmWw2m0aNGmW/HR8fr759+yo0NFReXl4qUKCA6tevr71799rXyewciMTERL366qsqWrSovLy8FBYWprfeeks3fqjwtUNBK1asULly5eTl5aWyZctq3bp12fgK/6lq1aoqXrx4hj/jBQsWqFGjRsqbN2+Gx6xcuVJPP/20ChcuLC8vL5UsWVJjx45VWlqafZ3atWtr9erVOnr0qP3rd+11XjvPYdGiRRo2bJiKFCkiHx8fXbp0KcM5EAcOHJC3t7deeOEFhxm2b98ud3d3DR48ONuvFbgdBARwnZCQEO3Zs0f79++/6XrFixfXU089pSVLljj8cJD+iorMgqBmzZp6+OGHHX4oLV68WH5+fnr66aezNePatWt19epVdezYMVvrf//996pRo4ZiY2M1aNAgDR8+XEeOHFHt2rW1a9euDOv36tVLsbGxGjlypF5++WV99tlnDudlREdHq0aNGvLy8lJ0dLSio6ONd6u/9NJLmjlzpp555hnNmDFDAwYMkLe3tw4cOJDlYyzLUvPmzTVlyhQ1atRIb7/9tsLCwjRw4ED7uSbX2759u3r06KF//etfmjhxopKTk/XMM8/o7Nmz2Z6zbdu2WrRokT1Qzpw5ow0bNmQZe3PnzpWfn5/69++vqVOn6vHHH9eIESM0ZMgQ+zqvv/66Hn30UeXLl8/+9bvxcMbYsWO1evVqDRgwQBMmTMh0T0/p0qU1duxYRUdH69NPP5X0Z2B16tRJ4eHhGjNmTLZfJ3BbLAB2GzZssNzd3S13d3eratWq1qBBg6z169dbqampGdZ97733LEnW+vXr7cvS0tKsIkWKWFWrVnVYd+TIkZYk6/Tp09aAAQOsUqVK2e+rXLmy1blzZ8uyLEuS9corr9x0xn79+lmSrH379mXrNbVs2dLy9PS0Dh8+bF924sQJy9/f36pZs6Z92Zw5cyxJVr169az09HSH53N3d7cuXLhgXxYZGWn5+vo6PM+RI0csSdacOXMyzCDJGjlypP12YGDgLV9nZGSkFRISYr+9YsUKS5I1btw4h/XatGlj2Ww269ChQw7P5+np6bAsNjbWkmRNnz79ps977XVMmjTJ2r9/vyXJ+vLLLy3L+vPP3M/Pz0pMTMz0a5CUlJRhey+++KLl4+NjJScn25c9/fTTDq/tmi1btliSrBIlSmTY1rX7tmzZYl+WlpZmVa9e3SpYsKB15swZ65VXXrFy5cpl7d69+6avEcgJ7IEArlO/fn3t3LlTzZs3V2xsrCZOnKiGDRuqSJEi9n/lXfP888/Lw8PDYW/CF198od9++y3TwxfXtGvXTocOHdLu3bvt/83u4Qvpzys2JMnf3/+W66alpWnDhg1q2bKlSpQoYV9eqFAhtWvXTtu3b7dv75r/+7//k81ms9+uUaOG0tLSdPTo0WzPeCtBQUHatWuXTpw4ke3HrFmzRu7u7urdu7fD8ldffVWWZWnt2rUOy+vVq6eSJUvab1eoUEEBAQH65Zdfsv2cZcuWVYUKFewnU8bExKhFixby8fHJdH1vb2/77+Pj43XmzBnVqFFDSUlJDoetbiUyMtJhW1lxc3PT3LlzlZCQoMaNG2vGjBkaOnSoKlWqlO3nAm4XAQHcoHLlylq+fLnOnz+v//73vxo6dKji4+PVpk0b/fDDD/b1goOD1bBhQ33yySdKTk6W9OcPmFy5cum5557LcvsVK1ZUeHi4YmJitGDBAj300EP65z//me35AgICJP35A+pWTp8+raSkJIWFhWW4r3Tp0kpPT89wWWmxYsUcbufJk0eSdP78+WzPeCsTJ07U/v37VbRoUT3xxBMaNWrULX+wHz16VIULF84QTqVLl7bff70bX4f052sxfR3t2rXT0qVLdejQIe3YseOmsff999+rVatWCgwMVEBAgPLnz2+/EufixYvZfs7ixYtne92SJUtq1KhR2r17t8qWLavhw4dn+7HAnSAggCx4enqqcuXKmjBhgmbOnKkrV65o6dKlDut06NBBly5d0qpVq5Samqply5apQYMGyp8//0233a5dOy1evFgxMTF6/vnn5eaW/W/F8PBwSX++X8Xd4O7unuly64YTFW90/V6L6914jogkPffcc/rll180ffp0FS5cWJMmTVLZsmUz7EW4E7f7Om7Utm1bnTlzRt27d1dwcLAaNGiQ6XoXLlxQrVq1FBsbqzFjxuizzz7Txo0b9eabb0qS0tPTs/2c2dn7cL0NGzZIkk6cOGF0jgdwJwgIIBuu7RI+efKkw/LmzZvL399fMTExWrt2rc6fP3/TwxfXtGvXTidPntRPP/1kdPhCkho3bix3d3f95z//ueW6+fPnl4+PT6bvp/Djjz/Kzc1NRYsWNXr+rFzbU3HhwgWH5Vkd+ihUqJB69OihFStW6MiRIwoODtb48eOz3H5ISIhOnDiRYc/LtUMDISEhdzB91ooVK6Zq1app69atevbZZ5UrV+ZXv2/dulVnz57V3Llz1adPHzVt2lT16tWzf12ul1Vs3Y5Zs2Zp48aNGj9+vFJTU/Xiiy/m2LaBmyEggOts2bIl03+hrlmzRpIyHArw9vZWq1attGbNGs2cOVO+vr5q0aLFLZ+nZMmSeueddxQVFaUnnnjCaMaiRYuqe/fu2rBhg/3dMa+Xnp6uyZMn69dff5W7u7saNGiglStXKi4uzr7OH3/8oZiYGFWvXt1+SOROBQQEKF++fNq2bZvD8hkzZjjcTktLy7A7v0CBAipcuLBSUlKy3H6TJk2Ulpamd99912H5lClTZLPZ1Lhx4zt8BVkbN26cRo4cqV69emW5zrU9Htf//5Oamprh9UuSr6+v0SGNrBw5ckQDBw7UM888o9dee01vvfWWPv30U82fP/+Otw3cCm8kBVynV69eSkpKUqtWrRQeHq7U1FTt2LFDixcvtr9N9I06dOig+fPna/369Wrfvr18fX2z9Vx9+vS57TknT56sw4cPq3fv3lq+fLmaNm2qPHny6NixY1q6dKl+/PFH/etf/5L05w+/jRs3qnr16urRo4dy5cql2bNnKyUlRRMnTrztGTLTrVs3vfHGG+rWrZsqVaqkbdu26aeffnJYJz4+Xg8//LDatGmjiIgI+fn56fPPP9fu3bs1efLkLLfdrFkz1alTR6+//rri4uIUERGhDRs2aOXKlerbt6/DCZM5rVatWqpVq9ZN13nqqaeUJ08eRUZGqnfv3rLZbIqOjs40SB9//HEtXrxY/fv3V+XKleXn56dmzZoZzWRZlrp06SJvb2/NnDlTkvTiiy9q2bJl6tOnj+rVq6fChQsbbRMw4sQrQACXs3btWqtLly5WeHi45efnZ3l6elqlSpWyevXqZf3xxx+ZPubq1atWoUKFLEnWmjVrMl3n+ss4b0bZuIzz+uf997//bdWoUcMKDAy0PDw8rJCQEKtz584ZLvHcu3ev1bBhQ8vPz8/y8fGx6tSpY+3YscNhnWuXcd54CWBmlw9mdgmjZf15GWPXrl2twMBAy9/f33ruueesU6dOOVzGmZKSYg0cONCKiIiw/P39LV9fXysiIsKaMWOGw7ZuvIzTsiwrPj7e6tevn1W4cGHLw8PD+sc//mFNmjTJ4bJTy8r66xgSEmJFRkZm8tX8y/WXcd5MZl+Dr776yqpSpYrl7e1tFS5c2H4Z8I1fv4SEBKtdu3ZWUFCQJcn+Oq99rZcuXZrh+W78c5g6daolyVq2bJnDeseOHbMCAgKsJk2a3HR+4E7ZLMvwjCIAAPDA4xwIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABg7G/5TpTeFXs6ewQAN3F+97u3XgmAU+TOZhmwBwIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABjL5ewBJMmyLH388cfasmWLTp06pfT0dIf7ly9f7qTJAABAZlwiIPr27avZs2erTp06KliwoGw2m7NHAgAAN+ESAREdHa3ly5erSZMmzh4FAABkg0ucAxEYGKgSJUo4ewwAAJBNLhEQo0aN0ujRo3X58mVnjwIAALLBJQ5hPPfcc1q4cKEKFCig0NBQeXh4ONy/d+9eJ00GAAAy4xIBERkZqT179qhDhw6cRPmA8PPx0sgeTdX8nxHKn8dPsQd/1YCJH2vPD8ckSZf3vZvp416b8ommzN8kSfpx9WiFFA52uH/4tJV6a87Guzs8ALtFMQs0b86HOnPmtB4JC9eQ14arfIUKzh4L94BLBMTq1au1fv16Va9e3dmj4B6ZOaKdypQqrC7D5unk6Ytq2+QJrZ7VS489M04nTl9UaL2hDus3qFZWs0a20yebvnVYPnrGKs1Z/pX9dnxiyr0YH4CkdWvX6K2JURo2crTKl4/Qguh5evnFrlq5ap2Cg4NvvQHc11ziHIiiRYsqICDA2WPgHsnt5aGWdR/V6++s0Fd7D+uX42c0fvYaHT5+Wt2frSFJ+uNsvMOvZrXL64vdPyvut7MO20pITHZYLyk51RkvCXggRc+bo9ZtnlPLVs+oZKlSGjZytHLnzq0Vy5c5ezTcAy4REJMnT9agQYMUFxfn7FFwD+Ryd1OuXO5KTr3isDw55Yqeqlgyw/oF8vqrUfVymrdiZ4b7Xu3cQL9ueVM7Fw5Wvxfqyt3dJf6XBv72rqSm6sAP36tK1afsy9zc3FSlylP6X+w+J06Ge8UlDmF06NBBSUlJKlmypHx8fDKcRHnu3LksH5uSkqKUFMfd1lZ6mmxu7ndlVty5hKQUfR37i4Z2b6yDR/7QH2cv6blGlfRkheI6fPx0hvU7NHtS8UnJWrH5W4flMxZ+oX0Hjuv8pURViSihMb2a66H8gRo8mXcuBe628xfOKy0tLcOhiuDgYB058ouTpsK95BIB8c4779z2Y6OiojR69GiHZe4FK8uj0BN3OBXupi7D5mv2qPb6ZcN4Xb2apm9/PK4l675RxdLFMqz7QosqWrz2G6WkXnVYPu0/m+2/3//zCaVeuap3X2+r4dM+VeqVqzduBgCQg1wiICIjI2/7sUOHDlX//v0dlhWoMfhOR8JdduTXM2rQbap8cnsqwC+3fj9zSdFvdNaR3844rFetYkmFFX9IHYfMueU2d38XJw8Pd4UUzqufj566W6MDkJQnKI/c3d119qzjeUlnz55Vvnz5nDQV7iWXO2CcnJysS5cuOfy6GS8vLwUEBDj84vDF/SMpOVW/n7mkIH9v1XuqtFZt/c7h/siWVbXnh2P67qffbrmtiLCHlZaWrtPn4u/WuAD+Pw9PT5UuU1a7vv7r3KT09HTt2rVTFSIqOnEy3CsusQciMTFRgwcP1pIlSzLUrCSlpaU5YSrcTfWqlpbNJv0Ud0oli+bXhH4t9dORPzT/07/+MvL3za3W9StqyNufZHj8kxWKq3K5EH3xzc+KT0xWlQrF9eaAZ7RwzW5diOcdTYF7oWNkZw1/bbDKli2ncuUr6D/R83T58mW1bNXa2aPhHnCJgBg0aJC2bNmimTNnqmPHjnrvvff022+/afbs2XrjjTecPR7ugkC/3BrTq7mKFAzSuYtJWrnpW4187zNdvfrXR7k/2/Bx2WTTknXfZHh8SuoVPdvwcb3+UhN5eeRS3Imzmr5gi6ZFb86wLoC7o1HjJjp/7pxmvDtNZ86cVlh4ac2Y/W8FcwjjgWCzLMty9hDFihXT/PnzVbt2bQUEBGjv3r0qVaqUoqOjtXDhQq1Zs8Zoe94Ve96lSQHkhPO7M3+nUQDOlzubuxZc4hyIc+fO2T+NMyAgwH7ZZvXq1bVt2zZnjgYAADLhEgFRokQJHTlyRJIUHh6uJUuWSJI+++wzBQUFOXEyAACQGZcIiM6dOys2NlaSNGTIEL333nvKnTu3+vXrp4EDBzp5OgAAcCOXOAfiRkePHtWePXtUqlQpVbiNT3XjHAjAtXEOBOC6snsOhEtchSFJmzZt0qZNm3Tq1Cmlp6c73PfRRx85aSoAAJAZlwiI0aNHa8yYMapUqZIKFSokm83m7JEAAMBNuERAzJo1S3PnzlXHjh2dPQoAAMgGlziJMjU1VU899dStVwQAAC7BJQKiW7duiomJcfYYAAAgm5x2COP6T9BMT0/X+++/r88//1wVKlSQh4eHw7pvv/32vR4PAADchNMCYt++fQ63H330UUnS/v37HZZzQiUAAK7HaQGxZcsWZz01AAC4Qy5xDgQAALi/EBAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACM3VZAfPnll+rQoYOqVq2q3377TZIUHR2t7du35+hwAADANRkHxLJly9SwYUN5e3tr3759SklJkSRdvHhREyZMyPEBAQCA6zEOiHHjxmnWrFn64IMP5OHhYV9erVo17d27N0eHAwAArsk4IA4ePKiaNWtmWB4YGKgLFy7kxEwAAMDFGQfEQw89pEOHDmVYvn37dpUoUSJHhgIAAK7NOCC6d++uPn36aNeuXbLZbDpx4oQWLFigAQMG6OWXX74bMwIAABeTy/QBQ4YMUXp6uurWraukpCTVrFlTXl5eGjBggHr16nU3ZgQAAC7GZlmWdTsPTE1N1aFDh5SQkKAyZcrIz88vp2e7bd4Vezp7BAA3cX73u84eAUAWcmdz14LxHohrPD09VaZMmdt9OAAAuI8ZB0SdOnVks9myvH/z5s13NBAAAHB9xgHx6KOPOty+cuWKvv32W+3fv1+RkZE5NRcAAHBhxgExZcqUTJePGjVKCQkJdzwQAABwfTn2YVodOnTQRx99lFObAwAALuy2T6K80c6dO5U7d+6c2twdObVzmrNHAHATf1xMcfYIALIQEuyVrfWMA6J169YOty3L0smTJ/XNN99o+PDhppsDAAD3IeOACAwMdLjt5uamsLAwjRkzRg0aNMixwQAAgOsyCoi0tDR17txZ5cuXV548ee7WTAAAwMUZnUTp7u6uBg0a8KmbAAA84IyvwihXrpx++eWXuzELAAC4TxgHxLhx4zRgwACtWrVKJ0+e1KVLlxx+AQCAv79sf5jWmDFj9Oqrr8rf3/+vB1/3ltaWZclmsyktLS3npzQUn5zu7BEA3MS5xCvOHgFAFrJ7GWe2A8Ld3V0nT57UgQMHbrperVq1svXEdxMBAbg2AgJwXTn+PhDXOsMVAgEAADiX0TkQN/sUTgAA8OAweh+IRx555JYRce7cuTsaCAAAuD6jgBg9enSGd6IEAAAPnmyfROnm5qbff/9dBQoUuNsz3TFOogRcGydRAq4ruydRZvscCM5/AAAA12Q7ILK5owIAADwAsn0ORHo6hwUAAMCfjN/KGgAAgIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYCyXswc4e/asRowYoS1btujUqVNKT093uP/cuXNOmgwAAGTF6QHRsWNHHTp0SF27dlXBggVls9mcPRIAALgFm2VZljMH8Pf31/bt2xUREZFj24xPTr/1SgCc5lziFWePACALIcFe2VrP6edAhIeH6/Lly84eAwAAGHB6QMyYMUOvv/66vvjiC509e1aXLl1y+AUAAFyP08+BCAoK0qVLl/TPf/7TYbllWbLZbEpLS3PSZAAAICtOD4j27dvLw8NDMTExnEQJAMB9wukBsX//fu3bt09hYWHOHgUAAGST08+BqFSpko4fP+7sMQAAgAGn74Ho1auX+vTpo4EDB6p8+fLy8PBwuL9ChQpOmgwAAGTF6e8D4eaWcSeIzWa7o5MoeR+I+8+cD9/Xlk0bFXfkF3l55VaFRyuqV99XFRpa3L7OmTOnNfXtSfrv1zuVmJiokNBQden+kurWa+DEyXE7eB8I1/a/fd9oacxc/XzwgM6dOa2RUe+oWq2/TnTfvvVzrfpkqX4++IPiL13UzLlLVPKRcPv9ly5dVPS/Z2jPf3fo1O+/KzBPHj1V45/q9H+vyNfP3xkvCQay+z4QTt8DceTIEWePABew95vdevb5dipTtpzS0tL03vQp6vlSVy1dvkrePj6SpJGvD1F8fLwmT31PQXnyaN2aVRo6sJ/mxyxVeOkyTn4FwN9HcvJllSgVpoZNW2nM0H4Z7798WeUiKqpW3Qaa8sboDPefPX1KZ8+cUveeryoktKT++P2Epk0ap7NnTmnEhLfvxUvAPeD0PRB3A3sg7n/nz51T/TrV9P5H8/XY45UlSTWqPK4hr4/Q081a2NerW7OKevV9VS1bP+usUXEb2ANx/2jwVIUMeyCu+f3kb3rhmcYZ9kBkZtvmDXpz9FB9ummX3HM5/d+uuIn7Zg/ENT/88IOOHTum1NRUh+XNmzd30kRwpoSEeElSQECgfVmFiEe1cf1aVa9ZS/7+Adq4fq1SUlL1eKUnnDUmgGxKTIiXj68f8fA34vQ/yV9++UWtWrXSd999Zz/3QZL9/SBudQ5ESkqKUlJSHJalWh7y8speQcH1pKena/LEKEU8+phK/eMR+/I3Jk3R0EH9VbdmVbnnyqXcuXPrrSnTVbRYiBOnBXArFy+c14I576tJ82ecPQpykNMv4+zTp4+KFy+uU6dOycfHR99//722bdumSpUqaevWrbd8fFRUlAIDAx1+TZ70xt0fHHfNmxPG6PDhnzVh4mSH5TPfm6b4+HjNeP8jRccsVfuOnTRkUD8d+vknJ00K4FYSExM0bMArKla8hDp2e9nZ4yAHOX0PxM6dO7V582bly5dPbm5ucnNzU/Xq1RUVFaXevXtr3759N3380KFD1b9/f4dlqZZHFmvD1b05Yay2b/tC738UrYIFH7Iv//X4MS1ZtECLl32qkqX+IUl6JCxc3+79RksWxei14aOcNDGArCQlJur1fi/Lx8dXo6LeUa5c/N38d+L0gEhLS5O//5+X9eTLl08nTpxQWFiYQkJCdPDgwVs+3svLK8PhCk6ivP9YlqWJUeO0dfPnmv3hPBV5+GGH+5OTkyVlvOzXzc1dlsWfN+BqEhMT9Frfl+Th6anRE6fJk8PKfztOD4hy5copNjZWxYsX15NPPqmJEyfK09NT77//vkqUKOHs8XCPvDlhjNatXa3J77wrH19fnTlzWpLk5+ev3LlzKzS0uIoWK6YJY0eqT/9BCgoK0tbNm7Tr6x2aMn2mk6cH/l4uJyXpxK/H7Ld/P/mbDv/0o/wDAlXgoUK6dOmiTv9+Umf///fp8WNxkqQ8wfmUNzifEhMTNLTvi0pJTtbgkVFKSkxUUmKiJCkwKI/c3d3v+WtCznP6ZZzr169XYmKiWrdurUOHDqlp06b66aefFBwcrMWLF2f4lM7sYA/E/adSROlMl48cM0HNWrSSJB07GqfpU99W7L69SkpKUtFixdThhc4Ol3Xi/sBlnK4tdu9uDezZNcPy+k2aa+CwcdqweqXeGj88w/0durykF7r1yPLxkjR/2Vo9VKhIjs+MnJPdyzidHhCZOXfunPLkyXPbn8xJQACujYAAXNd99z4QkuwfqlW0aFEnTwIAAG7G6ZdxXr16VcOHD1dgYKBCQ0MVGhqqwMBADRs2TFeu8K8UAABckdP3QPTq1UvLly/XxIkTVbVqVUl/Xto5atQonT17VjNncoIcAACuxunnQAQGBmrRokVq3Lixw/I1a9aobdu2unjxovE2OQcCcG2cAwG4ruyeA+H0QxheXl4KDQ3NsLx48eLy9PS89wMBAIBbcnpA9OzZU2PHjnX4PIuUlBSNHz9ePXv2dOJkAAAgK04/hNGqVStt2rRJXl5eioiIkCTFxsYqNTVVdevWdVh3+fLl2domhzAA18YhDMB13TeXcQYFBemZZxw/oY3LOAEAcG1O3wNx+fJlpaeny9fXV5IUFxenFStWqHTp0mrYsOFtbZM9EIBrYw8E4Lrum5MoW7RooejoaEnShQsXVKVKFU2ePFktW7bkEk4AAFyU0wNi7969qlGjhiTp448/VsGCBXX06FHNnz9f06ZNc/J0AAAgM04PiKSkJPvHeW/YsEGtW7eWm5ubqlSpoqNHjzp5OgAAkBmnB0SpUqW0YsUKHT9+XOvXr1eDBg0kSadOnVJAQICTpwMAAJlxekCMGDFCAwYMUGhoqJ588kn721lv2LBBFStWdPJ0AAAgM06/CkOSfv/9d508eVIRERFyc/uzaf773/8qICBA4eHhxtvjKgzAtXEVBuC6snsVhksERE4jIADXRkAAruu+uYwTAADcfwgIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGDMZlmW5ewhgJtJSUlRVFSUhg4dKi8vL2ePA+A6fH8+uAgIuLxLly4pMDBQFy9eVEBAgLPHAXAdvj8fXBzCAAAAxggIAABgjIAAAADGCAi4PC8vL40cOZITtAAXxPfng4uTKAEAgDH2QAAAAGMEBAAAMEZAAAAAYwQE7pnatWurb9++zh4DAJADCAgAAGCMgAAAAMYICNxT6enpGjRokPLmzauHHnpIo0aNst/39ttvq3z58vL19VXRokXVo0cPJSQk2O+fO3eugoKCtGrVKoWFhcnHx0dt2rRRUlKS5s2bp9DQUOXJk0e9e/dWWlqaE14dcP/5+OOPVb58eXl7eys4OFj16tVTYmKiOnXqpJYtW2r06NHKnz+/AgIC9NJLLyk1NdX+2HXr1ql69eoKCgpScHCwmjZtqsOHD9vvj4uLk81m05IlS1SjRg15e3urcuXK+umnn7R7925VqlRJfn5+aty4sU6fPu2Ml487QEDgnpo3b558fX21a9cuTZw4UWPGjNHGjRslSW5ubpo2bZq+//57zZs3T5s3b9agQYMcHp+UlKRp06Zp0aJFWrdunbZu3apWrVppzZo1WrNmjaKjozV79mx9/PHHznh5wH3l5MmTatu2rbp06aIDBw5o69atat26ta69PdCmTZvsyxcuXKjly5dr9OjR9scnJiaqf//++uabb7Rp0ya5ubmpVatWSk9Pd3iekSNHatiwYdq7d69y5cqldu3aadCgQZo6daq+/PJLHTp0SCNGjLinrx05wALukVq1alnVq1d3WFa5cmVr8ODBma6/dOlSKzg42H57zpw5liTr0KFD9mUvvvii5ePjY8XHx9uXNWzY0HrxxRdzeHrg72fPnj2WJCsuLi7DfZGRkVbevHmtxMRE+7KZM2dafn5+VlpaWqbbO336tCXJ+u677yzLsqwjR45Ykqx///vf9nUWLlxoSbI2bdpkXxYVFWWFhYXl1MvCPcIeCNxTFSpUcLhdqFAhnTp1SpL0+eefq27duipSpIj8/f3VsWNHnT17VklJSfb1fXx8VLJkSfvtggULKjQ0VH5+fg7Lrm0TQNYiIiJUt25dlS9fXs8++6w++OADnT9/3uF+Hx8f++2qVasqISFBx48flyT9/PPPatu2rUqUKKGAgACFhoZKko4dO+bwPNd/3xcsWFCSVL58eYdlfM/efwgI3FMeHh4Ot202m9LT0xUXF6emTZuqQoUKWrZsmfbs2aP33ntPkhyOuWb2+Ky2CeDm3N3dtXHjRq1du1ZlypTR9OnTFRYWpiNHjmTr8c2aNdO5c+f0wQcfaNeuXdq1a5ckx+9ZyfH71mazZbqM79n7Ty5nDwBI0p49e5Senq7JkyfLze3Prl2yZImTpwL+/mw2m6pVq6Zq1appxIgRCgkJ0SeffCJJio2N1eXLl+Xt7S1J+vrrr+Xn56eiRYvq7NmzOnjwoD744APVqFFDkrR9+3anvQ7cewQEXEKpUqV05coVTZ8+Xc2aNdNXX32lWbNmOXss4G9t165d2rRpkxo0aKACBQpo165dOn36tEqXLq3//e9/Sk1NVdeuXTVs2DDFxcVp5MiR6tmzp9zc3JQnTx4FBwfr/fffV6FChXTs2DENGTLE2S8J9xCHMOASIiIi9Pbbb+vNN99UuXLltGDBAkVFRTl7LOBvLSAgQNu2bVOTJk30yCOPaNiwYZo8ebIaN24sSapbt67+8Y9/qGbNmnr++efVvHlz+6XXbm5uWrRokfbs2aNy5cqpX79+mjRpkhNfDe41Ps4bAJBBp06ddOHCBa1YscLZo8BFsQcCAAAYIyAAAIAxDmEAAABj7IEAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAHdNp06d1LJlS/vt2rVrq2/fvvd8jq1bt8pms+nChQv3/LmBvysCAngAderUSTabTTabTZ6enipVqpTGjBmjq1ev3tXnXb58ucaOHZutdfmhD7g2PkwLeEA1atRIc+bMUUpKitasWaNXXnlFHh4eGjp0qMN6qamp8vT0zJHnzJs3b45sB4DzsQcCeEB5eXnpoYceUkhIiF5++WXVq1dPn376qf2ww/jx41W4cGGFhYVJko4fP67nnntOQUFByps3r1q0aKG4uDj79tLS0tS/f38FBQUpODhYgwYN0o3vU3fjIYyUlBQNHjxYRYsWlZeXl0qVKqUPP/xQcXFxqlOnjiQpT548stls6tSpkyQpPT1dUVFRKl68uLy9vRUREaGPP/7Y4XnWrFmjRx55RN7e3qpTp47DnAByBgEBQJLk7e2t1NRUSdKmTZt08OBBbdy4UatWrdKVK1fUsGFD+fv768svv9RXX30lPz8/NWrUyP6YyZMna+7cufroo4+0fft2nTt3Tp988slNn/OFF17QwoULNW3aNB04cECzZ8+Wn5+fihYtqmXLlkmSDh48qJMnT2rq1KmSpKioKM2fP1+zZs3S999/r379+qlDhw764osvJP0ZOq1bt1azZs307bffqlu3bnzMNHA3WAAeOJGRkVaLFi0sy7Ks9PR0a+PGjZaXl5c1YMAAKzIy0ipYsKCVkpJiXz86OtoKCwuz0tPT7ctSUlIsb29va/369ZZlWVahQoWsiRMn2u+/cuWK9fDDD9ufx7Isq1atWlafPn0sy7KsgwcPWpKsjRs3Zjrjli1bLEnW+fPn7cuSk5MtHx8fa8eOHQ7rdu3a1Wrbtq1lWZY1dOhQq0yZMg73Dx48OMO2ANwZzoEAHlCrVq2Sn5+frly5ovT0dLVr106jRo3SK6+8ovLlyzuc9xAbG6tDhw7J39/fYRvJyck6fPiwLl68qJMnT+rJJ5+035crVy5VqlQpw2GMa7799lu5u7urVq1a2Z750KFDSkpKUv369R2Wp6amqmLFipKkAwcOOMwhSVWrVs32cwDIHgICeEDVqVNHM2fOlKenpwoXLqxcuf7668DX19dh3YSEBD3++ONasGBBhu3kz5//tp7f29vb+DEJCQmSpNWrV6tIkSIO93l5ed3WHABuDwEBPKB8fX1VqlSpbK372GOPafHixSpQoIACAgIyXadQoULatWuXatasKUm6evWq9uzZo8ceeyzT9cuXL6/09HR98cUXqlevXob7r+0BSUtLsy8rU6aMvLy8dOzYsSz3XJQuXVqffvqpw7Kvv/761i8SgBFOogRwS+3bt1e+fPnUokULffnllzpy5Ii2bt2q3r1769dff5Uk9enTR2+88YZWrFihH3/8UT169LjpeziEhoYqMjJSXbp00YoVK+zbXLJkiSQpJCRENptNq1at0unTp5WQkCB/f38NGDBA/fr107x583T48GHt3btX06dP17x58yRJL730kn7++WcNHDhQBw8eVExMjObOnXu3v0TAA4eAAHBLPj4+2rZtm4oVK6bWrVurdOnS6tq1q5KTk+17JF599VV17NhRkZGRqlq1qvz9/dWqVaubbnfmzJlq06aNevToofDwcHXv3l2JiYmSpCJFimj06NEaMmSIChYsqJ49e0qSxo4dq+HDhysqKkqlS5dWo0aNtHr1ahUvXlySVKxYMS1btkwrVqxQRESEZs2apQkTJtzFrw7wYLJZWZ3hBAAAkAX2QAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABj/w/maB6mvVARswAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 800x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAesZJREFUeJzt3XdcU+fiBvAnCSTsACIbxYV7D8Q9QHCgKKhVq9baPW/t0g6tHdrbqtV7a6+tVtGqVQG11IF1r3LduFBc4EBAEdkjkLy/P7zmV8qQIHAIPN/PJ5+akzOekKqPb95zjkwIIUBEREREZITkUgcgIiIiIqosllkiIiIiMloss0RERERktFhmiYiIiMhoscwSERERkdFimSUiIiIio8UyS0RERERGi2WWiIiIiIwWyywRERERGS2WWSIi0vv222/RtGlTKBQKdOrUSeo4RERPxDJLRLVGaGgoZDKZ/mFiYgI3Nzc899xzSExMLHUbIQR++eUX9OvXD7a2trCwsED79u3x+eefIycnp8xjbdmyBUOHDoWDgwOUSiVcXV0xbtw47Nu3r0JZ8/Pz8d1338Hb2xtqtRpmZmbw8vLCG2+8gStXrlTq/Uvtjz/+wAcffIDevXtj1apVmDdvXrUf8/fff0f//v3h6OgICwsLNG3aFOPGjUNUVBQAYNGiRZDJZNizZ0+Z+1i+fDlkMhkiIyMBAAMGDIBMJkOLFi1KXX/37t36/8fCw8Or/k0RUY0ykToAEdHfff7552jSpAny8/Px3//+F6GhoThy5AguXLgAMzMz/XparRYTJ07Epk2b0LdvX3z22WewsLDA4cOHMXfuXISFhWHPnj1wcnLSbyOEwPPPP4/Q0FB07twZM2bMgLOzM5KSkrBlyxYMHjwYR48eRa9evcrMl5qaioCAAJw6dQojRozAxIkTYWVlhbi4OGzYsAE//fQTNBpNtf6MqsO+ffsgl8vx888/Q6lUVvvxFixYgPfffx/9+/fHrFmzYGFhgWvXrmHPnj3YsGEDAgIC8Mwzz+D999/H+vXr4evrW+p+1q9fjwYNGmDo0KH6ZWZmZrh27RqOHz+OHj16FFt/3bp1MDMzQ35+frW+PyKqIYKIqJZYtWqVACBOnDhRbPmHH34oAIiNGzcWWz5v3jwBQLz33nsl9hUZGSnkcrkICAgotvzbb78VAMQ//vEPodPpSmy3Zs0acezYsXJzDh8+XMjlchEeHl7itfz8fPHuu++Wu31FFRYWioKCgirZV0VMmzZNWFpaVtn+dDqdyM3NLfW1wsJCYWNjI/z8/Ep9PSUlRf/rwYMHC7VaLfLz80usd+fOHSGXy8Urr7yiX9a/f3/Rtm1b0bJlS/GPf/yj2Pp5eXnCxsZGBAcHCwAiLCysMm+NiGoRTjMgolqvb9++AIDr16/rl+Xl5eHbb7+Fl5cX5s+fX2KbwMBATJ06FVFRUfjvf/+r32b+/Plo1aoVFixYAJlMVmK7yZMnlxjJ+6tjx45h+/btmD59OoKDg0u8rlKpsGDBAv3zAQMGYMCAASXWe+655+Dp6al/npCQAJlMhgULFmDx4sVo1qwZVCoVzpw5AxMTE8ydO7fEPuLi4iCTyfD999/rl6Wnp+Mf//gHPDw8oFKp0Lx5c/zzn/+ETqcr8z0BgEwmw6pVq5CTk6P/Cj40NBQAUFRUhC+++EKfydPTEx999BEKCgqK7cPT0xMjRozArl270K1bN5ibm+PHH38s9XipqanIzMxE7969S33d0dFR/+tnn30WGRkZ2L59e4n1NmzYAJ1Oh0mTJpV4bcKECdi4cWOx9/77778jNzcX48aNK/fnQUTGg2WWiGq9hIQEAICdnZ1+2ZEjR/Dw4UNMnDgRJialz5iaMmUKAGDbtm36bdLS0jBx4kQoFIpKZXk8L3Py5MmV2v5JVq1ahX//+9946aWXsHDhQri4uKB///7YtGlTiXU3btwIhUKBsWPHAgByc3PRv39/rF27FlOmTMG//vUv9O7dG7NmzcKMGTPKPe4vv/yCvn37QqVS4ZdfftHPQwaAF154AbNnz0aXLl3w3XffoX///pg/fz6eeeaZEvuJi4vDhAkT4OfnhyVLlpR5EpmjoyPMzc3x+++/Iy0trdxsY8aMgZmZGdavX1/itfXr16Nx48alluKJEyciKSkJBw4cKLb+4MGDi5VlIjJunDNLRLVORkYGUlNTkZ+fj2PHjmHu3LlQqVQYMWKEfp3Y2FgAQMeOHcvcz+PXLl26VOy/7du3r3S2qthHee7cuYNr166hYcOG+mXjx4/Hyy+/jAsXLqBdu3b65Rs3bkT//v31c4IXLVqE69ev48yZM/qTn15++WW4urri22+/xbvvvgsPD49Sj/vss89iz549OH36NJ599ln98rNnz2L16tV44YUXsHz5cgDAa6+9BkdHRyxYsAD79+/HwIED9etfu3YNUVFR8Pf3L/d9yuVyvP/++/j888/RqFEj9OvXD3369EFAQAC6dOlSbF0bGxsEBgbi999/R2ZmJmxsbAA8Ks6nT5/GrFmzSh1lb9GiBbp164b169dj0KBBSE9Px44dO/Tvg4jqBo7MElGt4+vri4YNG8LDwwMhISGwtLREZGQk3N3d9etkZWUBAKytrcvcz+PXMjMzi/23vG2epCr2UZ7g4OBiRRZ4NDJpYmKCjRs36pdduHABsbGxGD9+vH5ZWFgY+vbtCzs7O6Smpuofvr6+0Gq1OHTokMF5duzYAQAlRnbfffddACjx1X+TJk2eWGQfmzt3LtavX4/OnTtj165d+Pjjj9G1a1d06dJF/4+Gx5599lnk5+dj8+bN+mWPR2pLm2Lw2MSJE7F582ZoNBqEh4dDoVBg9OjRFcpHRMaBZZaIap2lS5di9+7dCA8Px7Bhw5CamgqVSlVsncdl8nGpLc3fC+/jEb3ytnmSqthHeZo0aVJimYODAwYPHlxsqsHGjRthYmKCMWPG6JddvXoVUVFRaNiwYbHH46sA3Lt3z+A8N2/ehFwuR/PmzYstd3Z2hq2tLW7evPnE/OWZMGECDh8+jIcPH+KPP/7AxIkTcebMGQQGBha72sDQoUNhb29fbKrBr7/+io4dO6Jt27Zl7v+ZZ55BRkYGdu7ciXXr1mHEiBHV9g8RIpIGpxkQUa3To0cPdOvWDQAQFBSEPn36YOLEiYiLi4OVlRUAoHXr1gCAc+fOISgoqNT9nDt3DgDQpk0bAECrVq0AAOfPny9zmyf56z4en5hWHplMBiFEieVarbbU9c3NzUtd/swzz2DatGmIiYlBp06dsGnTJgwePBgODg76dXQ6Hfz8/PDBBx+Uug8vL68n5i1LaV/jl6as/E9iY2MDPz8/+Pn5wdTUFKtXr8axY8fQv39/AICpqSnGjRuH5cuXIyUlBbdu3cLVq1fxzTfflLtfFxcXDBgwAAsXLsTRo0cRERFRqXxEVHtxZJaIajWFQoH58+fj7t27xc7a79OnD2xtbbF+/foyi+GaNWsAQD/Xtk+fPrCzs8Ovv/5a5jZPEhgYCABYu3Zthda3s7NDenp6ieV/H9F8kqCgICiVSmzcuBExMTG4cuVKiROwmjVrhuzsbPj6+pb6aNSokUHHBIDGjRtDp9Ph6tWrxZanpKQgPT0djRs3NnifT/L4HzJJSUnFlk+aNAlarRYbN27E+vXrIZPJMGHChCfub+LEiTh8+DBsbGwwbNiwKs9LRNJimSWiWm/AgAHo0aMHFi9erP/q2cLCAu+99x7i4uLw8ccfl9hm+/btCA0Nhb+/P3r27Knf5sMPP8SlS5fw4YcfljpiunbtWhw/frzMLD4+PggICMCKFSuwdevWEq9rNBq89957+ufNmjXD5cuXcf/+ff2ys2fP4ujRoxV+/wBga2sLf39/bNq0CRs2bIBSqSwxujxu3DhER0dj165dJbZPT09HUVGRQccEoC9/ixcvLrZ80aJFAIDhw4cbvE/g0ZUXoqOjS31t586dAICWLVsWW967d294enpi7dq1+pPf/jqPuiwhISGYM2cOfvjhhxq5GQQR1SxOMyAio/D+++9j7NixCA0NxSuvvAIAmDlzJs6cOYN//vOfiI6ORnBwMMzNzXHkyBGsXbsWrVu3xurVq0vs5+LFi1i4cCH279+PkJAQODs7Izk5GVu3bsXx48fx559/lptlzZo1GDJkCMaMGYPAwEAMHjwYlpaWuHr1KjZs2ICkpCT9tWaff/55LFq0CP7+/pg+fTru3buHZcuWoW3btvqTySpq/PjxePbZZ/HDDz/A398ftra2Jd5bZGQkRowYgeeeew5du3ZFTk4Ozp8/j/DwcCQkJBSbllARHTt2xNSpU/HTTz8hPT0d/fv3x/Hjx7F69WoEBQUVu5KBIXJzc9GrVy/07NkTAQEB8PDwQHp6OrZu3YrDhw8jKCgInTt3LraNTCbDxIkT9bfZ/fzzzyt0LLVajc8++6xSOYnICEh91wYiosfKugOYEEJotVrRrFkz0axZM1FUVFRs+apVq0Tv3r2FjY2NMDMzE23bthVz584V2dnZZR4rPDxcDBkyRNjb2wsTExPh4uIixo8fLw4cOFChrLm5uWLBggWie/fuwsrKSiiVStGiRQvx5ptvimvXrhVbd+3ataJp06ZCqVSKTp06iV27dompU6eKxo0b69eJj48XAMS3335b5jEzMzOFubm5ACDWrl1b6jpZWVli1qxZonnz5kKpVAoHBwfRq1cvsWDBAqHRaMp9T1OnTi31DmCFhYVi7ty5okmTJsLU1FR4eHiIWbNmlbgjV+PGjcXw4cPLPcZf97l8+XIRFBQkGjduLFQqlbCwsBCdO3cW3377bZl3Prt48aIAIFQqlXj48GGp6zy+A1h59u/fzzuAEdURMiFK+Z6NiIiIiMgIcM4sERERERktllkiIiIiMloss0RERERktFhmiYiIiMhoscwSERERkdFimSUiIiIio1Xvbpqg0+lw9+5dWFtbV/he40RERERUc4QQyMrKgqurK+Ty8sde612ZvXv3Ljw8PKSOQURERERPcPv27SfetrrelVlra2sAj344NjY2EqchIiIior/LzMyEh4eHvreVp96V2cdTC2xsbFhmiYiIiGqxikwJ5QlgRERERGS0WGaJiIiIyGixzBIRERGR0WKZJSIiIiKjxTJLREREREaLZZaIiIiIjBbLLBEREREZLZZZIiIiIjJaLLNEREREZLRYZomIiIjIaLHMEhEREZHRYpklIiIiIqPFMktERERERotlloiIiIiMlqRl9tChQwgMDISrqytkMhm2bt36xG0OHDiALl26QKVSoXnz5ggNDa32nERERERUO0laZnNyctCxY0csXbq0QuvHx8dj+PDhGDhwIGJiYvCPf/wDL7zwAnbt2lXNSYmIiIioNjKR8uBDhw7F0KFDK7z+smXL0KRJEyxcuBAA0Lp1axw5cgTfffcd/P39qysmERERUb2m0+kgl9fO2amSlllDRUdHw9fXt9gyf39//OMf/yhzm4KCAhQUFOifZ2ZmVlc8qsfCwoDZs4GsLKmTEBERVSWBli3PoH37/yIy8nnY25vh5EmpMxVnVGU2OTkZTk5OxZY5OTkhMzMTeXl5MDc3L7HN/PnzMXfu3JqKSPXU7NnA5ctSpyAiIqo6SmUBAgO3oX37CwAAN7cTiI/vK3GqkoyqzFbGrFmzMGPGDP3zzMxMeHh4SJiI6qLHI7JyOeDiIm0WIiKip2Vvnwxf3zCo1WnQ6WQ4eXIQ4uN7w9lZ6mQlGVWZdXZ2RkpKSrFlKSkpsLGxKXVUFgBUKhVUKlVNxKOnZMxf1SclPfqviwtw5460WYiIiCpLCIGTJ09i165d0Gq1sLGxQUhICObOrb0DgUZVZn18fLBjx45iy3bv3g0fHx+JElFVqgtf1VtbS52AiIio8tLS0hAVFQWdTgcvLy+MGjUKFhYWUscql6RlNjs7G9euXdM/j4+PR0xMDOzt7dGoUSPMmjULiYmJWLNmDQDglVdewffff48PPvgAzz//PPbt24dNmzZh+/btUr0FqkLG/lW9tTXwxRdSpyAiIqq8Bg0awN/fH1qtFj179oRMJpM60hNJWmZPnjyJgQMH6p8/nts6depUhIaGIikpCbdu3dK/3qRJE2zfvh3vvPMOlixZAnd3d6xYsYKX5aqFKjNlgF/VExER1SwhBI4fP47GjRvD+X8TYnv06CFxKsPIhBBC6hA1KTMzE2q1GhkZGbCxsZE6Tp3VunXlpwy0agVculS1eYiIiKi4vLw8REZG4vLly7C3t8fLL78MpVIpdSwAhvU1o5ozS8ajslMG+FU9ERFR9btz5w7Cw8ORkZEBhUIBb29vmJqaSh2rUlhm67nquoIApwwQERHVPkIIREdHY+/evdDpdLCzs0NISAhcXV2ljlZpLLP1XHVfQYBn9xMREdUOGo0GERERuHLlCgCgbdu2CAwMNPpLmLLM1nPVeQUBThkgIiKqPUxNTVFUVASFQoGAgAB07drVKK5W8CQss3VEZacLcDoAERFR3SWEgFarhYmJCWQyGUaPHo3s7Gz9lQvqApbZOuJppwtwOgAREVHdkpOTgy1btkCtViMwMBAAYGVlBSsrK4mTVS2W2TriaaYLcDoAERFR3ZKQkICIiAhkZ2fDxMQEffr0gZ2dndSxqgXLrBEpbyoBpwsQERGRTqfD4cOHcfDgQQgh4ODggLFjx9bZIguwzBqVikwl4HQBIiKi+ik7OxubN29GfHw8AKBTp04YOnRorbkRQnVhmTUiT5pKwOkCRERE9ZMQAmvWrMH9+/dhamqK4cOHo2PHjlLHqhEss7XIk65IwKkEREREVBqZTAZfX1/s27cPISEhcHBwkDpSjWGZrUUqekUCTiUgIiKirKwspKWloXHjxgAALy8vNG/eHHK5XOJkNYtlthapyBUJOJWAiIiIrl27hi1btkCn0+Hll1+Gra0tANS7IguwzNYaYWFAYuKjX3MaAREREZVGp9Nh3759OHr0KADA2dkZOp1O4lTSYpmtJWbP/v9fcxoBERER/V1GRgYiIiJw+/ZtAEC3bt3g7+8PE5P6Xefq97uvRf560henERAREdFfXblyBVu3bkVeXh5UKhUCAwPRtm1bqWPVCiyztYybGxASInUKIiIiqk2uXr2KvLw8uLq6IiQkpE7fBMFQLLNEREREtZy/vz9sbW3h7e1d76cV/F39O+WNiIiIqJa7fPkyNm3apD+5y8TEBL1792aRLQXLrMTCwoDWrf//hghERERUfxUVFWHnzp3YuHEjLl26hDNnzkgdqdZjvZfY32+UwCsZEBER1U9paWkIDw9H0v9GuHx8fNCpUydpQxkBllmJ/fVGCV5evJIBERFRfXTx4kX8/vvvKCgogLm5OYKCguDl5SV1LKPAMiuBsLBHI7JZWf8/vcDFBbh0SdpcREREVPMOHz6Mffv2AQA8PDwQHBwMtVotcSrjwTIrgb9PLQA4vYCIiKi+8vLywuHDh+Ht7Y2BAwfWy1vSPg2WWQn8dWqBi8ujIsvpBURERPXHgwcP0KBBAwCAk5MT3nzzTVhzZKtSWGYl5OIC3LkjdQoiIiKqKYWFhYiKikJMTAymTZsGd3d3AGCRfQoss0REREQ14P79+wgPD8e9e/cAAImJifoyS5XHMktERERUzWJiYrBjxw4UFhbC0tISY8aMQdOmTaWOVSewzBIRERFVE41Ggx07duDs2bMAgCZNmmDMmDGwsrKSOFndwTJLREREVE0uXLiAs2fPQiaTYcCAAejTpw+vVlDFWGaJiIiIqknnzp2RmJiI9u3bw9PTU+o4dRL/aVDDwsKAxESpUxAREVF1KCgowO7du1FQUAAAkMlkCAwMZJGtRhyZrWGzZ///r3kVDiIiorojOTkZ4eHhePDgAXJychAUFCR1pHqBZbaGPb5hAsAbJRAREdUFQgicOnUKUVFR0Gq1sLGxQZcuXaSOVW+wzNagv04xcHMDQkKkzUNERERPJz8/H9u2bcPFixcBPLo17ahRo2BhYSFxsvqDZbYGcYoBERFR3XHv3j1s2LABDx8+hFwuh6+vL3r27AmZTCZ1tHqFZbYGcYoBERFR3WFhYQGNRgO1Wo2QkBDezUsiLLMS4BQDIiIi41RYWAhTU1MAgJWVFSZNmgRbW1uYm5tLnKz+4qW5iIiIiCrgzp07WLp0KS5cuKBf5uLiwiIrMZZZIiIionIIIRAdHY1Vq1YhIyMDR48ehRBC6lj0P5xmQERERFSG3Nxc/Pbbb7hy5QoAoE2bNggMDORJXrUIyywRERFRKW7fvo3w8HBkZmZCoVAgICAAXbt2ZZGtZVhmiYiIiP7m4cOHCA0NhU6ng729PcaOHQtnZ2epY1EpWGaJiIiI/sbOzg7e3t7Izs7G8OHDoVKppI5EZWCZJSIiIgKQkJAAOzs7qNVqAICvry9kMhmnFdRyvJoBERER1Ws6nQ4HDx7EmjVrEB4eDq1WCwCQy+UsskaAI7NERERUb2VnZ2Pz5s2Ij48HADRo0AA6nQ4KhULiZFRRLLNERERUL8XHxyMiIgI5OTkwNTXFsGHD0KlTJ6ljkYFYZomIiKheeTyt4NChQwAAR0dHhISEoGHDhhIno8pgmSUiIqJ6RafTIS4uDgDQuXNnDB06FKamphKnospimSUiIqJ6xcTEBCEhIUhKSkL79u2ljkNPiWWWiIiI6jSdTod9+/ZBqVSiX79+AAAHBwc4ODhInIyqAsssERER1VkZGRmIiIjA7du3IZPJ0LZtWzRo0EDqWFSFWGaJiIioTrpy5Qq2bt2KvLw8qFQqBAYGssjWQSyzREREVKdotVrs3bsX0dHRAAAXFxeEhITA3t5e4mRUHVhma0hYGJCYKHUKIiKiuk0IgbVr1yIhIQEA0KNHD/j5+cHEhJWnruInW0Nmz/7/X1tbS5eDiIioLns8LzY5ORkjR45E69atpY5E1YxltoZkZf3/r7/4QrocREREdU1RUREyMzP10wi6du2KVq1awcrKSuJkVBPkUgeob9zcgJAQqVMQERHVDQ8fPsTKlSuxZs0a5OXlAXg0OssiW39wZJaIiIiMUmxsLCIjI1FQUABzc3M8ePAA7u7uUseiGsYyS0REREalqKgIu3btwsmTJwEAHh4eCA4OhlqtljgZSYFlloiIiIzGgwcPEB4ejuTkZABA7969MXDgQCgUComTkVRYZomIiMhoHDhwAMnJybCwsMDo0aPRvHlzqSORxFhmiYiIyGgMHToUAODn5wcbGxuJ01BtwKsZEBERUa11//597N+/H0IIAICFhQWCg4NZZEmPI7NERERUK509exbbt29HYWEh7O3t0bFjR6kjUS3EMktERES1ikajwc6dOxETEwMAaNKkCZo1ayZtKKq1WGaJiIio1rh37x7CwsKQmpoKmUyG/v37o2/fvpDLOTOSSscyS0RERLXC+fPnERkZiaKiIlhZWSE4OBienp5Sx6JajmWWiIiIagVLS0sUFRWhWbNmGD16NCwtLaWOREaAZZaIiIgko9FooFQqAQBNmzbFc889h0aNGkEmk0mcjIwFJ6AQERFRjRNC4OTJk1iyZAnS0tL0yxs3bswiSwZhmSUiIqIaVVBQgIiICGzfvh25ubk4efKk1JHIiEleZpcuXQpPT0+YmZnB29sbx48fL3f9xYsXo2XLljA3N4eHhwfeeecd5Ofn11Baw4WFAa1bA0lJUichIiKS3t27d/Hjjz/i4sWLkMvl8PPzg5+fn9SxyIhJOmd248aNmDFjBpYtWwZvb28sXrwY/v7+iIuLg6OjY4n1169fj5kzZ2LlypXo1asXrly5gueeew4ymQyLFi2S4B082ezZwOXL///c2lq6LERERFIRQuD48ePYvXs3tFot1Go1QkJC4O7uLnU0MnKSjswuWrQIL774IqZNm4Y2bdpg2bJlsLCwwMqVK0td/88//0Tv3r0xceJEeHp6YsiQIZgwYcITR3OllJX16L9yOdCqFfDFF9LmISIikkJMTAyioqKg1WrRqlUrvPzyyyyyVCUkK7MajQanTp2Cr6/v/4eRy+Hr64vo6OhSt+nVqxdOnTqlL683btzAjh07MGzYsDKPU1BQgMzMzGIPKbi4AJcuASEhkhyeiIhIUh06dECjRo0QEBCAcePGwdzcXOpIVEdINs0gNTUVWq0WTk5OxZY7OTnh8l+/l/+LiRMnIjU1FX369IEQAkVFRXjllVfw0UcflXmc+fPnY+7cuVWanYiIiMonhMD58+fRtm1bKBQKKBQK/dRAoqok+Qlghjhw4ADmzZuHH374AadPn8bmzZuxfft2fFHOd/ezZs1CRkaG/nH79u0aTExERFT/5OXlYcOGDdiyZQv279+vX84iS9VBspFZBwcHKBQKpKSkFFuekpICZ2fnUrf59NNPMXnyZLzwwgsAgPbt2yMnJwcvvfQSPv7441Lv26xSqaBSqar+DRAREVEJt2/fRnh4ODIzM6FQKKBWq6WORHWcZCOzSqUSXbt2xd69e/XLdDod9u7dCx8fn1K3yc3NLVFYFQoFgEdfZxAREZE0hBA4cuQIVq1ahczMTNjb2+OFF15A9+7dpY5GdZykl+aaMWMGpk6dim7duqFHjx5YvHgxcnJyMG3aNADAlClT4Obmhvnz5wMAAgMDsWjRInTu3Bne3t64du0aPv30UwQGBupLLREREdWsnJwcbN26FdeuXQMAtGvXDiNGjOA3o1QjJC2z48ePx/379zF79mwkJyejU6dOiIqK0p8UduvWrWIjsZ988glkMhk++eQTJCYmomHDhggMDMRXX30l1VsgIiKq9/Ly8nDz5k2YmJhg6NCh6Ny5M+fHUo2RiXr2/XxmZibUajUyMjJgY2NT7cdzdwcSEwE3N+DOnWo/HBERkSQuX74MOzu7ElcpIqoMQ/qaUV3NgIiIiKSXnZ2NtWvX4ubNm/plrVq1YpElSbDMEhERUYXduHEDy5Ytw/Xr1xEZGQmdTid1JKrnJJ0zS0RERMZBp9Ph4MGDOHToEACgYcOGGDt2bKmXxSSqSSyzREREVK6srCxs3rwZCQkJAIDOnTtj6NChMDU1lTYYEVhmiYiIqBwZGRn46aefkJubC1NTU4wYMQIdOnSQOhaRHsssERERlcnGxgZNmjRBamoqxo4diwYNGkgdiagYllkiIiIqJjMzE0qlEmZmZpDJZAgMDIRcLue0AqqVOGubiIiI9K5cuYJly5YhMjJSf6t4lUrFIku1FkdmiYiICFqtFnv37kV0dDQAID09HQUFBTAzM5M4GVH5WGaJiIjqufT0dERERODO/25V2aNHD/j5+cHEhDWBaj/+X0pERFSPXb58Gb/99hvy8/OhUqkwatQotG7dWupYRBXGMktERFRPFRYWYufOncjPz4ebmxuCg4NhZ2cndSwig7DMEhER1VOmpqYIDg7G5cuXMXjwYCgUCqkjERmMZZaIiKgeiY2NRVFRkf7GB40aNUKjRo0kTkVUeSyzRERE9UBRURF27dqFkydPwsTEBG5ubrwBAtUJLLNERER13IMHDxAeHo7k5GQAgLe3N2xtbaUNRVRFWGaJiIjqsAsXLuD333+HRqOBhYUFgoKC0KJFC6ljEVUZllkiIqI6SAiB7du349SpUwAezY0NDg6GjY2NxMmIqhbLLBERUR0kk8lgYWEBAOjbty8GDBgAuZx3sae6h2WWiIioDtFoNFAqlQCAAQMGoEWLFvDw8JA4FVH14T/RiIiI6gCNRoPffvsNoaGhKCoqAgDI5XIWWarzODJLRERk5O7du4fw8HDcv38fMpkMCQkJaN68udSxiGoEyywREZGREkIgJiYGO3bsQFFREaysrBAcHAxPT0+poxHVGJZZIiIiI1RQUIDt27fj/PnzAIBmzZph9OjRsLS0lDgZUc1imSUiIjJC27Ztw4ULFyCTyTBw4ED06dMHMplM6lhENY5lloiIyAgNGjQIKSkpGDFiBBo1aiR1HCLJ8GoGRERERqCgoAAXL17UP7ezs8Orr77KIkv1HkdmiYiIarmkpCSEhYXh4cOHUKlU+isVcFoBEcssERFRrSWEwIkTJ/DHH39Aq9VCrVbDzMxM6lhEtQrLLBERUS2Un5+PyMhIXLp0CQDQsmVLjBo1Cubm5hInI6pdWGaJiIhqmcTERISHhyM9PR1yuRx+fn7w9vbmtAKiUrDMEhER1TKpqalIT0+Hra0tQkJC4ObmJnUkolqLZZaIiKgWEELoR147duwIjUaD9u3bc44s0RPw0lxEREQSu337NlauXInc3Fz9su7du7PIElUAyywREZFEhBA4evQoVq1ahTt37mDfvn1SRyIyOpxmQEREJIGcnBxs3boV165dAwC0a9cOfn5+EqciMj4ss0RERDXs5s2biIiIQFZWFkxMTBAQEIAuXbrwagVElcAyS0REVIMuX76MTZs2QQiBBg0aYOzYsXBycpI6FpHRYpklIiKqQZ6enrC1tYWHhweGDx8OpVIpdSQio8YyS0REVM1SUlLg6OgImUwGMzMzvPDCCzA3N+e0AqIqwKsZEBERVROdTocDBw5g2bJlOHnypH65hYUFiyxRFeHILBERUTXIysrC5s2bkZCQAAC4d++etIGI6iiWWSIioip2/fp1bNmyBTk5OTA1NcWIESPQoUMHqWMR1Ukss0RERFXk8bSCw4cPAwCcnJwQEhICBwcHiZMR1V0ss0RERFUkJSUFR44cAQB07doV/v7+MDU1lTgVUd3GMktERFRFXFxc4OfnB2tra7Rr107qOET1AsssERFRJWm1Whw4cAAdOnRAw4YNAQA+Pj4SpyKqX3hpLiIiokrIyMhAaGgojhw5gvDwcGi1WqkjEdVLHJklIiIyUFxcHLZu3Yr8/HyoVCr0798fCoVC6lhE9RLLLBERUQVptVrs3r0bx44dAwC4uroiJCQEdnZ2Eicjqr9YZomIiCogJycH69evx927dwEAPXv2hK+vL0dkiSTGMktERFQB5ubmMDExgZmZGYKCgtCyZUupIxERWGaJiIjKVFRUBJlMBoVCAblcjuDgYOh0Otja2kodjYj+h1czICIiKkVaWhp+/vln7N69W7/MxsaGRZaoluHILBER0d9cuHABv//+OzQaDTIzM9GvXz9YWFhIHYuISsEyS0RE9D+FhYWIiorC6dOnAQCNGjVCcHAwiyxRLcYyS0REBCA1NRVhYWG4d+8eAKBv374YMGAA5HLOyCOqzVhmiYio3isqKsKaNWuQlZUFS0tLjB49Gs2aNZM6FhFVwFOV2fz8fJiZmVVVFiIiIkmYmJjA398fJ0+exJgxY2BtbS11JCKqIIO/O9HpdPjiiy/g5uYGKysr3LhxAwDw6aef4ueff67ygERERNXh3r17uHnzpv5527ZtMWXKFBZZIiNjcJn98ssvERoaim+++QZKpVK/vF27dlixYkWVhiMiIqpqQgicOXMGy5cvx6ZNm5CVlaV/TSaTSZiMiCrD4DK7Zs0a/PTTT5g0aVKxW/h17NgRly9frtJwREREVUmj0WDr1q2IjIxEUVERnJ2deYIXkZEzeM5sYmIimjdvXmK5TqdDYWFhlYQiIiKqaikpKQgLC8ODBw8gk8kwcOBA9OnTh6OxREbO4DLbpk0bHD58GI0bNy62PDw8HJ07d66yYERERFVBCIHTp08jKioKRUVFsLa2RnBwcIm/x4jIOBlcZmfPno2pU6ciMTEROp0OmzdvRlxcHNasWYNt27ZVR0YiIqJKk8lkuH37NoqKitC8eXOMHj2aN0EgqkMMLrOjRo3C77//js8//xyWlpaYPXs2unTpgt9//x1+fn7VkZGIiMhgQgj9FIJhw4bB3d0dXbt25bQCojqmUteZ7du3L3bv3l3VWYiIiJ6aEAInTpxAQkICxo4dC5lMBqVSiW7dukkdjYiqgcGncDZt2hQPHjwosTw9PR1NmzatklBERESVkZ+fj/DwcOzcuROXLl3CpUuXpI5ERNXM4JHZhIQEaLXaEssLCgqQmJhYJaGIiIgMlZiYiPDwcKSnp0Mul8PPzw+tW7eWOhYRVbMKl9nIyEj9r3ft2gW1Wq1/rtVqsXfvXnh6elZpOCIioicRQuDYsWPYvXs3dDodbG1tERISAjc3N6mjEVENqHCZDQoKAvDorNCpU6cWe83U1BSenp5YuHBhlYYjIiJ6kp07d+LEiRMAgNatW2PkyJEwMzOTOBUR1ZQKl1mdTgcAaNKkCU6cOAEHB4dqC0VERFRRHTt2xNmzZzF48GB0796dVysgqmcMnjMbHx9fHTmIiIgqRAiBlJQUODs7AwDc3Nzwj3/8A+bm5hInIyIpVOqG1Dk5OdixYweWLVuGf/3rX8Uehlq6dCk8PT1hZmYGb29vHD9+vNz109PT8frrr8PFxQUqlQpeXl7YsWNHZd4GEREZmdzcXPz6669YsWIFkpOT9ctZZInqL4NHZs+cOYNhw4YhNzcXOTk5sLe3R2pqKiwsLODo6Ii33nqrwvvauHEjZsyYgWXLlsHb2xuLFy+Gv78/4uLi4OjoWGJ9jUYDPz8/ODo6Ijw8HG5ubrh58yZsbW0NfRtERGRkbt68iYiICGRlZUGhUCA1NVU/OktE9ZdMCCEM2WDAgAHw8vLCsmXLoFarcfbsWZiamuLZZ5/F22+/jTFjxlR4X97e3ujevTu+//57AI/m5Xp4eODNN9/EzJkzS6y/bNkyfPvtt7h8+TJMTU0Nia2XmZkJtVqNjIwM2NjYVGofhnB3BxITATc34M6daj8cEVGdI4TAkSNHsH//fggh0KBBA4wdOxZOTk5SRyOiamJIXzN4mkFMTAzeffddyOVyKBQKFBQUwMPDA9988w0++uijCu9Ho9Hg1KlT8PX1/f8wcjl8fX0RHR1d6jaRkZHw8fHB66+/DicnJ7Rr1w7z5s0r9bq3jxUUFCAzM7PYg4iIjENOTg7WrVuHffv2QQiBDh064KWXXmKRJSI9g8usqakp5PJHmzk6OuLWrVsAALVajdu3b1d4P6mpqdBqtSX+QHJycio2D+qvbty4gfDwcGi1WuzYsQOffvopFi5ciC+//LLM48yfPx9qtVr/8PDwqHBGIiKS1rlz53D9+nWYmJhg5MiRCAoKglKplDoWEdUiBs+Z7dy5M06cOIEWLVqgf//+mD17NlJTU/HLL7+gXbt21ZFRT6fTwdHRET/99BMUCgW6du2KxMREfPvtt5gzZ06p28yaNQszZszQP8/MzGShJSIyEj179kRaWhq6d+9e6rkUREQGj8zOmzcPLi4uAICvvvoKdnZ2ePXVV3H//n38+OOPFd6Pg4MDFAoFUlJSii3/6+VW/s7FxQVeXl5QKBT6Za1bt0ZycjI0Gk2p26hUKtjY2BR7EBFR7ZSVlYVt27ahsLAQwKMb9QwfPpxFlojKZPDIbLdu3fS/dnR0RFRUVKUOrFQq0bVrV+zdu1d/dzGdToe9e/fijTfeKHWb3r17Y/369dDpdPqpDleuXIGLiwu/diIiMnLXr1/Hli1bkJOTA7lcjmHDhkkdiYiMQKWuM1ua06dPY8SIEQZtM2PGDCxfvhyrV6/GpUuX8OqrryInJwfTpk0DAEyZMgWzZs3Sr//qq68iLS0Nb7/9Nq5cuYLt27dj3rx5eP3116vqbRARUQ3T6XTYt28f1q5di5ycHDg6OqJHjx5SxyIiI2HQyOyuXbuwe/duKJVKvPDCC2jatCkuX76MmTNn4vfff4e/v79BBx8/fjzu37+P2bNnIzk5GZ06dUJUVJT+pLBbt27pR2ABwMPDA7t27cI777yDDh06wM3NDW+//TY+/PBDg45LRES1Q2ZmJiIiIvQnE3fp0gUBAQGVvvwiEdU/Fb7O7M8//4wXX3wR9vb2ePjwIRo0aIBFixbhzTffxPjx4/H222+jdevW1Z33qfE6s0REtcOtW7ewceNG5ObmQqlUIjAwsNpPJCYi42BIX6vwyOySJUvwz3/+E++//z4iIiIwduxY/PDDDzh//jzc3d2fOjQREdUvarUaQgg4OzsjJCQEDRo0kDoSERmhCo/MWlpa4uLFi/D09IQQAiqVCvv370fv3r2rO2OV4sgsEZF08vPzYWZmpn+enJwMBwcHmJgYfD4yEdVh1XIHsLy8PFhYWAB4dKkUlUqlv0QXERHRk8TFxeFf//oX4uLi9MucnZ1ZZInoqRj0J8iKFStgZWUFACgqKkJoaCgcHByKrfPWW29VXToiIjJ6Wq0We/bswX//+18AwIkTJ9CyZUuJUxFRXVHhaQaenp6QyWTl70wmw40bN6okWHXhNAMioprz8OFDREREIDExEQDg7e0NPz+/Yje/ISL6u2o5ASwhIeFpcxERUT1y6dIl/PbbbygoKICZmRlGjRqFVq1aSR2LiOoYTlQiIqIql5SUhE2bNgEA3N3dERwcDFtbW2lDEVGdxDJLRERVzsXFBd26dYNSqcSgQYM4rYCIqg3LLBERVYnY2Fg0atRIf6LwsGHDnniuBRHR06rwpbmIiIhKU1hYiG3btiEsLAybN2+GTqcDABZZIqoRHJklIqJKS01NRXh4OFJSUgAAbm5uEiciovqmUmX2+vXrWLVqFa5fv44lS5bA0dERO3fuRKNGjdC2bduqzkhERLXQuXPnsG3bNhQWFsLCwgJjxoxBs2bNpI5FRPWMwdMMDh48iPbt2+PYsWPYvHkzsrOzAQBnz57FnDlzqjwgERHVLoWFhYiMjMSWLVtQWFgIT09PvPLKKyyyRCQJg8vszJkz8eWXX2L37t1QKpX65YMGDdLf3YWIiOouIQRu374NAOjfvz8mT54Ma2triVMRUX1l8DSD8+fPY/369SWWOzo6IjU1tUpCERFR7SOEgEwmg1KpREhICHJyctC0aVOpYxFRPWfwyKytrS2SkpJKLD9z5gwn/hMR1UEajQZbt24t9u2bk5MTiywR1QoGl9lnnnkGH374IZKTkyGTyaDT6XD06FG89957mDJlSnVkJCIiiaSkpGD58uU4e/Ys9u3bpz9PgoiotjB4msG8efPw+uuvw8PDA1qtFm3atIFWq8XEiRPxySefVEdGIiKqYUIInD59GlFRUSgqKoK1tTWCg4P1N0QgIqotZEIIUZkNb926hQsXLiA7OxudO3dGixYtqjpbtcjMzIRarUZGRgZsbGyq/Xju7kBiIuDmBty5U+2HIyJ6agUFBdi2bRsuXLgAAGjevDmCgoJgaWkpcTIiqi8M6WsGj8weOXIEffr0QaNGjdCoUaNKhyQiotpHq9Xi559/xv379yGTyTB48GD06tWLd/MiolrL4DmzgwYNQpMmTfDRRx8hNja2OjIREZFEFAoFOnfuDBsbG0ybNg29e/dmkSWiWs3gMnv37l28++67OHjwINq1a4dOnTrh22+/xR1+h05EZJTy8/Px4MED/fOePXvi1VdfhYeHh4SpiIgqxuAy6+DggDfeeANHjx7F9evXMXbsWKxevRqenp4YNGhQdWQkIqJqcvfuXfz444/49ddfUVBQAACQyWQwMzOTOBkRUcUYPGf2r5o0aYKZM2eiY8eO+PTTT3Hw4MGqykVERNVICIFjx45h9+7d0Ol0sLW1RVZWFlQqldTRiIgMUukye/ToUaxbtw7h4eHIz8/HqFGjMH/+/KrMRkRE1SAvLw+RkZG4fPkyAKBVq1YYNWoUR2OJyCgZXGZnzZqFDRs24O7du/Dz88OSJUswatQoWFhYVEc+IiKqQnfu3EF4eDgyMjKgUCgwZMgQdO/enSd5EZHRMrjMHjp0CO+//z7GjRsHBweH6shERETV5ODBg8jIyICdnR1CQkLg6uoqdSQioqdicJk9evRodeQgIqIaMGrUKBw4cAB+fn6cH0tEdUKFymxkZCSGDh0KU1NTREZGlrvuyJEjqyQYERE9vVu3buH69esYOHAgAMDKygojRoyQOBURUdWpUJkNCgpCcnIyHB0dERQUVOZ6MpkMWq22qrIREVElCSFw5MgR7N+/H0IIuLi4oFWrVlLHIiKqchUqszqdrtRfExFR7ZOTk4MtW7bg+vXrAIAOHTqgadOmEqciIqoeBt80Yc2aNfoLa/+VRqPBmjVrqiQUERFVTkJCApYtW4br16/DxMQEI0eORFBQEJRKpdTRiIiqhUwIIQzZQKFQICkpCY6OjsWWP3jwAI6OjrV+mkFmZibUajUyMjJgY2NT7cdzdwcSEwE3N4B3/CWi6hQdHY3du3dDCAEHBweMHTu2xJ/VRETGwJC+ZvDVDIQQpV6P8M6dO1Cr1YbujoiIqoi9vT2EEOjUqROGDh3K0VgiqhcqXGY7d+4MmUwGmUyGwYMHw8Tk/zfVarWIj49HQEBAtYQkIqLS5efn6+/c1bJlS7z44ou8diwR1SsVLrOPr2IQExMDf39/WFlZ6V9TKpXw9PREcHBwlQckIqKSdDodDhw4gFOnTuGll17SfzPGIktE9U2Fy+ycOXMAAJ6enhg/fjzv4U1EJJHMzExs3rwZN2/eBADExsbCx8dH4lRERNIweM7s1KlTqyMHERFVwLVr17Blyxbk5uZCqVQiMDAQ7dq1kzoWEZFkKlRm7e3tceXKFTg4OMDOzq7UE8AeS0tLq7JwRET0iFarxf79+/W3FHd2dkZISAgaNGggcTIiImlVqMx+9913sLa21v+6vDJLRERV79ixY/oi2717dwwZMqTYibhERPVVhf4k/OvUgueee666shARURm6d++OuLg4eHt7o02bNlLHISKqNQy+A9jp06dx/vx5/fPffvsNQUFB+Oijj6DRaKo0HBFRfaXVanHy5En9LcRNTU3x3HPPscgSEf2NwWX25ZdfxpUrVwAAN27cwPjx42FhYYGwsDB88MEHVR6QiKi+SU9Px6pVq7B9+3YcPnxYv5xTvIiISjK4zF65cgWdOnUCAISFhaF///5Yv349QkNDERERUdX5iIjqlUuXLuHHH39EYmIizMzM4OTkJHUkIqJarVK3s338tdeePXswYsQIAICHhwdSU1OrNh0RUT1RVFSE3bt34/jx4wAAd3d3BAcHw9bWVtpgRES1nMFltlu3bvjyyy/h6+uLgwcP4j//+Q8AID4+niMIRESVkJaWhvDwcCQlJQEAfHx8MHjwYCgUComTERHVfgaX2cWLF2PSpEnYunUrPv74YzRv3hwAEB4ejl69elV5QCKiuk6j0eDevXswNzdHUFAQvLy8pI5ERGQ0ZEIIURU7ys/Ph0KhgKmpaVXsrtpkZmZCrVYjIyMDNjY21X48d3cgMRFwcwPu3Kn2wxGRkRBCFDuh6/Lly3BxcYFarZYwFRFR7WBIX6v0FbdPnTqFS5cuAQDatGmDLl26VHZXRET1yoMHD7B582YMGzYMbm5uAIBWrVpJnIqIyDgZXGbv3buH8ePH4+DBg/oTE9LT0zFw4EBs2LABDRs2rOqMRER1xvnz57Ft2zZoNBrs3LkT06dP5yW3iIiegsGX5nrzzTeRnZ2NixcvIi0tDWlpabhw4QIyMzPx1ltvVUdGIiKjV1hYiMjISGzevBkajQaenp4YP348iywR0VMyeGQ2KioKe/bsQevWrfXL2rRpg6VLl2LIkCFVGo6IqC64f/8+wsPDce/ePQBA//790a9fP8jlBo8nEBHR3xhcZnU6XakneZmamuqvP0tERI/cu3cPK1asQGFhISwtLREcHIwmTZpIHYuIqM4weFhg0KBBePvtt3H37l39ssTERLzzzjsYPHhwlYYjIjJ2DRs2RJMmTdCkSRO88sorLLJERFXM4JHZ77//HiNHjoSnpyc8PDwAALdv30a7du2wdu3aKg9IRGRs7t27B1tbWyiVSshkMgQHB8PExITTCoiIqoHBZdbDwwOnT5/G3r179Zfmat26NXx9fas8HBGRMRFC4MyZM9i5cyfatGmDoKAgyGQyKJVKqaMREdVZBpXZjRs3IjIyEhqNBoMHD8abb75ZXbmIiIxKQUEBtm/fjvPnzwMAcnNzodVqYWJS6ct5ExFRBVT4T9n//Oc/eP3119GiRQuYm5tj8+bNuH79Or799tvqzEdEVOslJycjLCwMaWlpkMlkGDx4MHr16sXLbhER1YAKT+D6/vvvMWfOHMTFxSEmJgarV6/GDz/8UJ3ZiIhqNSEETpw4gRUrViAtLQ02NjaYNm0aevfuzSJLRFRDKlxmb9y4galTp+qfT5w4EUVFRUhKSqqWYEREtV1+fj4OHjwIrVYLLy8vvPzyy/oTY4mIqGZUeJpBQUEBLC0t9c/lcjmUSiXy8vKqJRgRUW1nbm6OMWPGICUlBT179uRoLBGRBAw6M+HTTz+FhYWF/rlGo8FXX30FtVqtX7Zo0aKqS0dEVIsIIXD8+HFYW1ujTZs2AICmTZuiadOmEicjIqq/Klxm+/Xrh7i4uGLLevXqhRs3buifc1SCiOqqvLw8REZG4vLly1AqlXB3d4eNjY3UsYiI6r0Kl9kDBw5UYwwiotrrzp07CA8PR0ZGBhQKBQYPHgxra2upYxERESpx0wQiovpCCIHo6Gjs3bsXOp0OdnZ2CAkJgaurq9TRiIjof1hmiYhKodPpsHHjRly5cgUA0LZtWwQGBkKlUkmcjIiI/oplloioFHK5HPb29lAoFAgICEDXrl15XgARUS3EMktE9D9CCBQUFMDMzAwA4Ovriy5duqBhw4YSJyMiorJU+KYJRER1WU5ODtavX4/169dDq9UCABQKBYssEVEtV6kye/jwYTz77LPw8fFBYmIiAOCXX37BkSNHqjQcEVFNSEhIwI8//ohr164hKSkJycnJUkciIqIKMrjMRkREwN/fH+bm5jhz5gwKCgoAABkZGZg3b16VByQiqi46nQ4HDx7EmjVrkJWVBQcHB7z44otwc3OTOhoREVWQwWX2yy+/xLJly7B8+XKYmprql/fu3RunT5+u0nBERNUlOzsba9euxYEDByCEQKdOnfDiiy/C0dFR6mhERGQAg08Ai4uLQ79+/UosV6vVSE9Pr4pMRETVbsuWLYiPj4epqSmGDx+Ojh07Sh2JiIgqweCRWWdnZ1y7dq3E8iNHjlT6/uRLly6Fp6cnzMzM4O3tjePHj1douw0bNkAmkyEoKKhSxyWi+mvo0KFwd3fHSy+9xCJLRGTEDC6zL774It5++20cO3YMMpkMd+/exbp16/Dee+/h1VdfNTjAxo0bMWPGDMyZMwenT59Gx44d4e/vj3v37pW7XUJCAt577z307dvX4GMSUf2TlZWF8+fP6587ODjg+eefh4ODg4SpiIjoaRk8zWDmzJnQ6XQYPHgwcnNz0a9fP6hUKrz33nt48803DQ6waNEivPjii5g2bRoAYNmyZdi+fTtWrlyJmTNnlrqNVqvFpEmTMHfuXBw+fJjTG4ioXNeuXcOWLVuQl5cHGxsbNG7cGAB4EwQiojrA4DIrk8nw8ccf4/3338e1a9eQnZ2NNm3awMrKyuCDazQanDp1CrNmzdIvk8vl8PX1RXR0dJnbff7553B0dMT06dNx+PDhco9RUFCgv+ICAGRmZhqck4iMk06nw759+3D06FEAj6ZJVebPKiIiqr0qfQcwpVKJNm3aPNXBU1NTodVq4eTkVGy5k5MTLl++XOo2R44cwc8//4yYmJgKHWP+/PmYO3fuU+UkIuOTkZGBiIgI3L59GwDQrVs3+Pv7w8SENz4kIqpLDP5TfeDAgeV+Nbdv376nClSerKwsTJ48GcuXL6/wPLdZs2ZhxowZ+ueZmZnw8PCorohEVAtcuXIFW7duRV5eHlQqFQIDA9G2bVupYxERUTUwuMx26tSp2PPCwkLExMTgwoULmDp1qkH7cnBwgEKhQEpKSrHlKSkpcHZ2LrH+9evXkZCQgMDAQP0ynU4HADAxMUFcXByaNWtWbBuVSgWVSmVQLiIybhkZGcjLy4OLiwtCQkJgb28vdSQiIqomBpfZ7777rtTln332GbKzsw3al1KpRNeuXbF371795bV0Oh327t2LN954o8T6rVq1KnY2MgB88sknyMrKwpIlSzjiSlSPCSH03xp169YNpqamaNeuHacVEBHVcVX2p/yzzz6LHj16YMGCBQZtN2PGDEydOhXdunVDjx49sHjxYuTk5OivbjBlyhS4ublh/vz5MDMzQ7t27Yptb2trCwAllhNR/XH58mUcOnQIU6ZMgZmZGWQyWYlvkYiIqG6qsjIbHR0NMzMzg7cbP3487t+/j9mzZyM5ORmdOnVCVFSU/qSwW7duQS43+HK4RFQPFBUVYc+ePTh27BgA4M8//8SgQYMkTkVERDVJJoQQhmwwZsyYYs+FEEhKSsLJkyfx6aefYs6cOVUasKplZmZCrVYjIyMDNjY21X48d3cgMRFwcwPu3Kn2wxHVG2lpaQgPD0dSUhIAwMfHB4MHD4ZCoZA4GRERPS1D+prBI7NqtbrYc7lcjpYtW+Lzzz/HkCFDDN0dEZHBLl68iN9//x0FBQUwNzdHUFAQvLy8pI5FREQSMKjMarVaTJs2De3bt4ednV11ZSIiKtOpU6ewbds2AICHhwdCQkJq5FsWIiKqnQyajKpQKDBkyBDePpaIJNO6dWvY2NigT58+eO6551hkiYjqOYPPrGrXrh1u3LhRHVmIiEr1+C5eAGBhYYHXXnsNgwcP5smhRERkeJn98ssv8d5772Hbtm1ISkpCZmZmsQcRUVUpLCxEZGQkVq5cWewW1rwRChERPVbhObOff/453n33XQwbNgwAMHLkyGK3tX18wXKtVlv1KYmo3rl//z7Cw8Nx7949AI9uZ01ERPR3FS6zc+fOxSuvvIL9+/dXZx4iIpw9exbbt29HYWEhLC0tMWbMGDRt2lTqWEREVAtVuMw+vhxt//79qy0MEdVvGo0GO3fu1E8paNq0KUaPHg0rKytpgxERUa1l0KW5/jqtgIioqt29excxMTGQyWQYMGAA+vTpw5O8iIioXAaVWS8vrycW2rS0tKcKRET1l6enJ4YMGQIXFxd4enpKHYeIiIyAQWV27ty5Je4ARkRUWQUFBfjjjz/Qu3dv2NvbA3h0W1oiIqKKMqjMPvPMM3B0dKyuLERUjyQnJyM8PBwPHjzAvXv38Pzzz3MqExERGazCZZZ/yRBRVRBC4NSpU4iKioJWq4WNjQ38/Pz4ZwwREVWKwVczICKqrPz8fGzbtg0XL14E8Gge/qhRo2BhYSFxMiIiMlYVLrM6na46cxBRHffw4UP88ssvePjwIeRyOXx9fdGzZ0+OyBIR0VMxaM4sEVFl2djYwNzcHDqdDiEhIXB3d5c6EhER1QEss0RUbfLz86FUKiGXy6FQKDBu3DgolUqYm5tLHY2IiOoIXo2ciKpFYmIifvzxx2K3wFar1SyyRERUpVhmiahKCSEQHR2NlStXIj09HbGxsdBoNFLHIiKiOorTDIioyuTl5WHr1q24cuUKAKBNmzYIDAyEUqmUOBkREdVVLLNEVCVu376N8PBwZGZmQqFQICAgAF27duXVCoiIqFqxzBLRU8vPz8e6detQUFAAe3t7jB07Fs7OzlLHIiKieoBlloiempmZGQICAnDjxg0MHz4cKpVK6khERFRPsMwSUaXcvHkTcrkcHh4eAIBOnTqhY8eOnFZAREQ1imWWiAyi0+lw5MgRHDhwAFZWVnjllVf0t6NlkSUioprGMktEFZadnY0tW7bgxo0bAICmTZvCxIR/jBARkXT4txARVUh8fDwiIiKQk5MDU1NTDBs2DJ06dZI6FhER1XMss0RULiEEDhw4gEOHDgEAHB0dERISgoYNG0qcjIiIiGWWiCogNTUVANC5c2cMHToUpqamEiciIiJ6hGWWiEolhIBMJoNMJkNgYCDatm2LNm3aSB2LiIioGLnUAYiodtHpdNizZw/Cw8MhhADw6DqyLLJERFQbcWSWiPQyMjIQERGB27dvA3h0LVlPT09pQxEREZWDZZaIAABXrlzB1q1bkZeXB5VKhcDAQBZZIiKq9Vhmieo5rVaLvXv3Ijo6GgDg4uKCkJAQ2NvbS5yMiIjoyVhmieq5iIgIXLp0CQDQo0cP+Pn58UYIRERkNPg3FlE95+3tjZs3byIwMBCtWrWSOg4REZFBWGaJ6pmioiIkJyfD3d0dANC4cWO8/fbbUCqVEicjIiIyHC/NRVSPPHz4ECtXrsSaNWtw//59/XIWWSIiMlYcmSWqJ2JjYxEZGYmCggKYm5sjOzubt6QlIiKjxzJLVMcVFRVh165dOHnyJADAw8MDwcHBUKvVEicjIiJ6eiyzRHXYgwcPEB4ejuTkZABA7969MXDgQCgUComTERERVQ2WWaI67Ny5c0hOToaFhQVGjx6N5s2bSx2JiIioSrHMEtVh/fv3h0ajgY+PD2xsbKSOQ0REVOV4NQOiOiQ1NRVbt25FUVERAEAul8Pf359FloiI6iyOzBLVEWfPnsX27dtRWFgIGxsbDBo0SOpIRERE1Y5llsjIaTQa7Ny5EzExMQCAJk2aoEePHtKGIiIiqiEss0RG7N69ewgPD8f9+/chk8nQv39/9O3bF3I5ZxAREVH9wDJLZKQuX76MiIgIFBUVwcrKCsHBwfD09JQ6FhERUY1imSUyUo6OjlAoFGjcuDFGjx4NS0tLqSMRERHVOJZZIiOSk5OjL6329vaYPn06HBwcIJPJJE5GREQkDU6sIzICQgicPHkSixcvxvXr1/XLGzZsyCJLRET1GkdmiWq5/Px8bNu2DRcvXgQAXLhwAc2aNZM4FRERUe3AMktUi929exfh4eF4+PAh5HI5Bg8eDB8fH6ljERER1Ross0S1kBACx48fx+7du6HVaqFWqxESEgJ3d3epoxEREdUqLLNEtVB8fDyioqIAAK1atcLIkSNhbm4ucSoiIqLah2WWqBZq2rQpunTpAkdHR/To0YMneREREZWBZZaoFnh8tYK2bdvCwsICABAYGChxKiIiotqPl+Yiklhubi42bNiAHTt2YOvWrRBCSB2JiIjIaHBklkhCt2/fRnh4ODIzM6FQKNCiRQupIxERERkVllkiCQghcPToUezbtw9CCNjb22Ps2LFwdnaWOhoREZFRYZklqmG5ubnYsmULrl27BgBo164dRowYAZVKJXEyIiIi48MyS1TD5HI5UlNTYWJigqFDh6Jz5868WgEREVElscwS1YDHJ3XJZDKYmZlh3LhxkMvlcHJykjgZERGRcePVDIiqWXZ2NtauXYuTJ0/ql7m4uLDIEhERVQGOzBJVo/j4eERERCAnJwdJSUno0KED58YSERFVIZZZomqg0+lw8OBBHDp0CADQsGFDjB07lkWWiIioirHMElWxrKwsbN68GQkJCQCAzp07Y+jQoTA1NZU2GBERUR3EMktUhTQaDX766SdkZ2fD1NQUI0aMQIcOHaSORUREVGexzBJVIaVSie7duyM2NhZjx45FgwYNpI5ERERUp7HMEj2lzMxMFBYW6otrnz590KtXL5iY8LcXERFRdeOluYiewpUrV7Bs2TJs2rQJhYWFAB7dFIFFloiIqGbwb1yiStBqtdi7dy+io6MBALa2tsjLy+NJXkRERDWMZZbIQOnp6YiIiMCdO3cAAD169ICfnx9HY4mIiCRQK6YZLF26FJ6enjAzM4O3tzeOHz9e5rrLly9H3759YWdnBzs7O/j6+pa7PlFVunz5Mn788UfcuXMHKpUK48aNw9ChQ1lkiYiIJCJ5md24cSNmzJiBOXPm4PTp0+jYsSP8/f1x7969Utc/cOAAJkyYgP379yM6OhoeHh4YMmQIEhMTazg51TdCCERHRyM/Px+urq54+eWX0bp1a6ljERER1WsyIYSQMoC3tze6d++O77//HsCjOyd5eHjgzTffxMyZM5+4vVarhZ2dHb7//ntMmTLlietnZmZCrVYjIyMDNjY2T53/SdzdgcREwM0N+N+30mTEMjIycPLkSQwYMAAKhULqOERERHWSIX1N0pFZjUaDU6dOwdfXV79MLpfD19dXf2LNk+Tm5qKwsBD29valvl5QUIDMzMxiD6KKio2Nxf79+/XP1Wo1Bg8ezCJLRERUS0haZlNTU6HVauHk5FRsuZOTE5KTkyu0jw8//BCurq7FCvFfzZ8/H2q1Wv/w8PB46txU9xUVFWH79u0ICwvDoUOHEB8fL3UkIiIiKoXkc2afxtdff40NGzZgy5YtMDMzK3WdWbNmISMjQ/+4fft2DackY/PgwQP8/PPPOHnyJACgd+/eaNSokcSpiIiIqDSSnoLt4OAAhUKBlJSUYstTUlLg7Oxc7rYLFizA119/jT179qBDhw5lrqdSqaBSqaokL9V958+fx7Zt26DRaGBhYYHRo0ejefPmUsciIiKiMkg6MqtUKtG1a1fs3btXv0yn02Hv3r3w8fEpc7tvvvkGX3zxBaKiotCtW7eaiEr1wK5du7B582ZoNBo0btwYL7/8MossERFRLSf5xTFnzJiBqVOnolu3bujRowcWL16MnJwcTJs2DQAwZcoUuLm5Yf78+QCAf/7zn5g9ezbWr18PT09P/dxaKysrWFlZSfY+yPi5u7sDAPr27YsBAwZALjfqWThERET1guRldvz48bh//z5mz56N5ORkdOrUCVFRUfqTwm7dulWsVPznP/+BRqNBSEhIsf3MmTMHn332WU1GpzogOztb/4+gtm3bwsnJCQ4ODhKnIiIiooqS/DqzNY3XmSXg0WXhdu7ciatXr+KVV17hqD4REVEtYkhfk3xklqim3bt3D+Hh4bh//z5kMhlu3LhR7kmEREREVHuxzFK9IYRATEwMduzYgaKiIlhZWSE4OBienp5SRyMiIqJKYpmlekGj0WDbtm04f/48AKBZs2YYPXo0LC0tJU5GRERET4NlluqFQ4cO4fz585DJZBg4cCD69OkDmUwmdSwiIiJ6SiyzVC/069cPSUlJ6N+/P+/mRUREVIfwQppUJxUUFODPP//E44t1KJVKTJ48mUWWiIiojuHILNU5SUlJCA8PR1paGgCgV69eEiciIiKi6sIyS3WGEAInTpzAH3/8Aa1WC7VazZFYIiKiOo5lluqE/Px8REZG4tKlSwCAli1bYtSoUTA3N5c4GREREVUnllkyenfv3kVYWBjS09Mhl8vh5+cHb29vXq2AiIioHmCZJaMnhEBmZiZsbW0REhICNzc3qSMRERFRDWGZJaOk0+kglz+6GIebmxvGjx+PRo0awczMTOJkREREVJN4aS4yOrdv38YPP/yA5ORk/TIvLy8WWSIionqIZZaMhhACR48exapVq/DgwQPs27dP6khEREQkMU4zIKOQk5ODrVu34tq1awCAdu3aYcSIERKnIiIiIqmxzFKtd/PmTURERCArKwsmJiYICAhAly5deLUCIiIiYpml2u3WrVtYvXo1hBBo0KABxo4dCycnJ6ljERERUS3BMku1mru7Ozw9PWFtbY3hw4dDqVRKHYmIiIhqEZZZqnVu3boFFxcXmJqaQi6XY8KECTA1NZU6FhEREdVCvJoB1Ro6nQ4HDhzAqlWrsGvXLv1yFlkiIiIqC0dmqVbIysrC5s2bkZCQAADQarXFboxAREREVBqWWZLc9evXsXnzZuTm5sLU1BQjRoxAhw4dpI5FRERERoBlliSj0+mwf/9+HDlyBADg5OSEkJAQODg4SJyMiIiIjAXLLEkmJycHp06dAgB07doV/v7+nB9LREREBmGZJclYW1sjKCgIGo0G7dq1kzoOERERGSGWWaoxWq0W+/btQ6NGjdCyZUsAgJeXl8SpiIiIyJjxVHGqERkZGQgNDcWff/6J3377Dfn5+VJHIiIiojqAI7NU7eLi4rB161bk5+dDpVIhMDAQZmZmUsciIiKiOoBllqqNVqvF7t27cezYMQCAq6srQkJCYGdnJ3EyIiIiqitYZqlaFBYWIjQ0FHfv3gUA9OzZE76+vlAoFBInIyIiorqEZZaqhampKZydnZGWloagoCD9CV9EREREVYlllqpMUVERCgsLYW5uDgAICAhAv379oFarJU5GREREdRWvZkBVIi0tDT///DPCwsKg0+kAPBqdZZElIiKi6sSRWXpqFy5cwO+//w6NRgNzc3M8fPgQDRo0kDoWERER1QMss1RphYWFiIqKwunTpwEAjRo1QnBwMGxsbCRORkRERPUFyyxVSmpqKsLDw5GSkgIA6Nu3LwYMGAC5nDNXiIiIqOawzJLBhBDYvHkzUlJSYGFhgTFjxqBZs2ZSxyIiIqJ6iGWWDCaTyTBy5Ejs3bsXI0eOhLW1tdSRiIiIqJ7id8JUIffu3cO5c+f0z52dnTFp0iQWWSIiIpIUR2apXEIIxMTEYMeOHdDpdGjQoAHc3NykjkVEREQEgGWWyqHRaLB9+3b9iGzTpk1ha2srbSgiIiKiv2CZpVKlpKQgLCwMDx48gEwmw8CBA9GnTx/IZDKpoxERERHpscxSCadPn8aOHTug1WphbW2N4OBgNG7cWOpYRERERCWwzFIJ+fn50Gq1aN68OUaPHg0LCwupIxERERGVimWWAAA6nU5/wwMfHx+o1Wq0adOG0wqIiIioVuOlueo5IQSOHz+On376CRqNBsCj68i2bduWRZaIiIhqPY7M1mP5+fmIjIzEpUuXADyaK9uzZ0+JUxERERFVHMtsPZWYmIjw8HCkp6dDLpfDz88P3t7eUsciIiIiMgjLbD0jhMCxY8ewe/du6HQ62NraIiQkhDdCICIiIqPEMlvPHDp0CAcOHAAAtG7dGiNHjoSZmZm0oYiIiIgqiWW2nunatSvOnDmDXr16oXv37jzJi4iIiIway2wdJ4TAjRs30KxZMwCAlZUV3njjDZiY8KMnIiIi48dLc9Vhubm5+PXXX7F27VpcvHhRv5xFloiIiOoKtpo66ubNm4iIiEBWVhYUCgUKCwuljkRERERU5Vhm6xghBI4cOYL9+/dDCIEGDRpg7NixcHJykjoaERERUZVjma1DcnJysHnzZty4cQMA0KFDBwwfPhxKpVLiZERERETVg2W2DklMTMSNGzdgYmKCYcOGoVOnTrxaAREREdVpLLN1iJeXF4YMGYJmzZrB0dFR6jhERERE1Y5XMzBiWVlZ2LRpEzIyMvTLfHx8WGSJiIio3uDIrJG6fv06tmzZgpycHGg0Gjz77LNSRyIiIiKqcSyzRkan0+HAgQM4fPgwAMDR0REBAQESpyIiIiKSBsusEcnMzERERARu3boFAOjSpQsCAgJgamoqcTIiIiIiabDMGonk5GSsWbMGeXl5UCqVCAwMRLt27aSORURERCQpllkj0aBBA1hbW0OtViMkJAQNGjSQOhIRERGR5Fhma7GsrCxYWVlBJpPB1NQUEydOhKWlJUxM+LERERERASyztVZcXBy2bt0KHx8f9OvXDwCgVqslTkVEVD2EECgqKoJWq5U6ChHVEFNTUygUiqfeD8tsLaPVarFnzx7897//BQBcvXoVffr0gVzOSwITUd2k0WiQlJSE3NxcqaMQUQ2SyWRwd3eHlZXVU+2HZbYWefjwISIiIpCYmAgA8Pb2hp+fH4ssEdVZOp0O8fHxUCgUcHV1hVKp5G24ieoBIQTu37+PO3fuoEWLFk81QssyW0tcunQJv/32GwoKCmBmZoZRo0ahVatWUsciIqpWGo0GOp0OHh4esLCwkDoOEdWghg0bIiEhAYWFhSyzxi4rKwsRERHQarVwd3dHcHAwbG1tpY5FRFRj+A0UUf1TVd/CsMzWAtbW1ggICEBaWhoGDx5cJZOhiYiIiOoDllmJXLx4Eba2tnBzcwMAdOvWTeJERERERMaH3+vUsMLCQmzbtg3h4eEIDw9Hfn6+1JGIiIjqrU8//RQvvfSS1DHqnNjYWLi7uyMnJ6faj1UryuzSpUvh6ekJMzMzeHt74/jx4+WuHxYWhlatWsHMzAzt27fHjh07aijp00lNTcXPP/+MU6dOAQDatWsHpVIpcSoiIqqM+/fv49VXX0WjRo2gUqng7OwMf39/HD16FBqNBg4ODvj6669L3faLL76Ak5MTCgsLERoaCplMhtatW5dYLywsDDKZDJ6enuVmkclk+oeNjQ26d++O3377rcR6eXl5mDNnDry8vKBSqeDg4ICxY8fi4sWLJdbNzMzExx9/rP/71tnZGb6+vti8eTOEEBX7IdVyycnJWLJkCT7++GOpo1SbtLQ0TJo0CTY2NrC1tcX06dORnZ1d7jbXr1/H6NGj0bBhQ9jY2GDcuHFISUkpts7p06fh5+cHW1tbNGjQAC+99FKx/bZp0wY9e/bEokWLquV9/ZXkZXbjxo2YMWMG5syZg9OnT6Njx47w9/fHvXv3Sl3/zz//xIQJEzB9+nScOXMGQUFBCAoKwoULF2o4uWGaNz+Hn376CSkpKbCwsMCzzz6LwYMH86QHIiIjFRwcjDNnzmD16tW4cuUKIiMjMWDAADx48ABKpRLPPvssVq1aVWI7IQRCQ0MxZcoUmJqaAgAsLS1x7949REdHF1v3559/RqNGjSqUZ9WqVUhKSsLJkyfRu3dvhISE4Pz58/rXCwoK4Ovri5UrV+LLL7/ElStXsGPHDhQVFcHb21t/fXMASE9PR69evbBmzRrMmjULp0+fxqFDhzB+/Hh88MEHyMjIqMyPrFIKCwurbd8rVqxAr1690Lhx46faT3VmfFqTJk3CxYsXsXv3bmzbtg2HDh0qdyQ6JycHQ4YMgUwmw759+/T/OAsMDIROpwMA3L17F76+vmjevDmOHTuGqKgoXLx4Ec8991yxfU2bNg3/+c9/UFRUVJ1vERAS69Gjh3j99df1z7VarXB1dRXz588vdf1x48aJ4cOHF1vm7e0tXn755QodLyMjQwAQGRkZlQ9tAA+PQjFy5Fbx2Wefic8++0yEhoaKzMzMGjk2EVFtl5eXJ2JjY0VeXp7UUQzy8OFDAUAcOHCgzHXOnTsnAIjDhw8XW75//34BQFy6dEkIIcSqVauEWq0Wb7zxhnjhhRf0692+fVuoVCoxc+ZM0bhx43LzABBbtmzRP8/MzBQAxJIlS/TLvv76ayGTyURMTEyxbbVarejWrZto06aN0Ol0QgghXn31VWFpaSkSExNLHCsrK0sUFhaWmSUyMlJ069ZNqFQq0aBBAxEUFFRmTiGEUKvVYtWqVUIIIeLj4wUAsWHDBtGvXz+hUqnEkiVLhJmZmdixY0ex7TZv3iysrKxETk6OEEKIW7duibFjxwq1Wi3s7OzEyJEjRXx8fJk5hRCibdu24vvvvy+2bOfOnaJ3795CrVYLe3t7MXz4cHHt2jX966VlfJx/+fLlolWrVkKlUomWLVuKpUuXFtv3Bx98IFq0aCHMzc1FkyZNxCeffCI0Gk25GZ9GbGysACBOnDhR7P3JZLJSP1shhNi1a5eQy+XFelJ6erqQyWRi9+7dQgghfvzxR+Ho6Ci0Wq1+ncf/v1+9elW/rKCgQKhUKrFnz55Sj1Xe739D+pqkw4IajQanTp2Cr6+vfplcLoevr2+Jf50+Fh0dXWx9APD39y9z/YKCAmRmZhZ71CSdTgErqxwIAfTv3x+TJ0+GtbV1jWYgIjI23boB7u41/6joubhWVlawsrLC1q1bUVBQUOo67du3R/fu3bFy5cpiy1etWoVevXqVuJb4888/j02bNunvhBYaGoqAgAA4OTkZ9LMrKirCzz//DADFprKtX78efn5+6NixY7H15XI53nnnHcTGxuLs2bPQ6XTYsGEDJk2aBFdX11Lfu4lJ6eePb9++HaNHj8awYcNw5swZ7N27Fz169DAoPwDMnDkTb7/9Ni5duoSxY8dixIgRWL9+fbF11q1bh6CgIFhYWKCwsBD+/v6wtrbG4cOHcfToUVhZWSEgIAAajabUY6SlpSE2NrbECdg5OTmYMWMGTp48ib1790Iul2P06NH6UcnSMvr7+2PdunWYPXs2vvrqK1y6dAnz5s3Dp59+itWrV+u3sba2RmhoKGJjY7FkyRIsX74c3333Xbk/i7Zt2+r/fyvtMXTo0DK3jY6Ohq2tbbH36OvrC7lcjmPHjpW6TUFBAWQyGVQqlX6ZmZkZ5HI5jhw5ol9HqVQW+3bZ3NwcAPTrAI/+/+vUqRMOHz5c7nt8ak+su9UoMTFRABB//vlnseXvv/++6NGjR6nbmJqaivXr1xdbtnTpUuHo6Fjq+nPmzBEASjxqamTWzU0IC4sc0a1bfI0cj4jImJQ1MuPmJgRQ8w83t4pnDw8PF3Z2dsLMzEz06tVLzJo1S5w9e7bYOsuWLRNWVlYiKytLCPFoxNTCwkKsWLFCv87jkVkhhOjUqZNYvXq10Ol0olmzZuK3334T3333XYVGZs3MzISlpaWQy+UCgPD09BQPHjzQr2NmZibefvvtUrc/ffq0ACA2btwoUlJSBACxaNGiiv8w/sfHx0dMmjSp3JwVGZldvHhxsXW2bNlSbBQ2IyNDmJmZiZ07dwohhPjll19Ey5Yt9SPLQjwaFTQ3Nxe7du0qNcuZM2cEAHHr1q1y39P9+/cFAHH+/PlyMzZr1qxEP/niiy+Ej49Pmfv+9ttvRdeuXcs9fkJCgrh69WqZjzt37pS57VdffSW8vLxKLG/YsKH44YcfSt3m3r17wsbGRrz99tsiJydHZGdnizfeeEMAEC+99JIQQogLFy4IExMT8c0334iCggKRlpYmgoODBQAxb968YvsbPXq0eO6550o9Vp0Yma0Js2bNQkZGhv5x+/btGj2+szNgZ2cBITxr9LhERMbM2Rlwc6v5h7NzxTMGBwfj7t27iIyMREBAAA4cOIAuXbogNDRUv86ECROg1WqxadMmAI/OE5HL5Rg/fnyp+3z++eexatUqHDx4EDk5ORg2bFiF83z33XeIiYnBzp070aZNG6xYsQL29vbF1hEVOHGrIuuUJSYmBoMHD6709o/9fbR02LBhMDU1RWRkJAAgIiICNjY2+m9qz549i2vXrsHa2lo/Ymlvb4/8/Hxcv3691GPk5eUBeDTq+FdXr17FhAkT0LRpU9jY2OhPvrt161aZGXNycnD9+nVMnz692Kjpl19+Wez4GzduRO/eveHs7AwrKyt88sknJfb7d40bN0bz5s3LfDy+xGdVadiwIcLCwvD777/DysoKarUa6enp6NKli34ktm3btli9ejUWLlwICwsLODs7o0mTJnBycipxLpC5ubn+24bqIul1Zh0cHKBQKEqcIZeSkgLnMv5EcXZ2Nmh9lUpVbKi8pp08KdmhiYiMlrH82WlmZgY/Pz/4+fnh008/xQsvvIA5c+boT4SxsbFBSEgIVq1apS+q48aNg5WVVan7mzRpEj744AN89tlnmDx5cplf55fG2dlZX3BWrVqFYcOGITY2Fo6OjgAALy8vXLp0qdRtHy/38vJCw4YNYWtri8uXLxvwk3jk8VfNZZHJZCXKcmknT1laWhZ7rlQqERISgvXr1+OZZ57B+vXrMX78eP3PJzs7G127dsW6detK7Kthw4alZnFwcAAAPHz4sNg6gYGBaNy4MZYvXw5XV1fodDq0a9euxHSFv2Z8fBb/8uXL4e3tXWy9xzdCio6OxqRJkzB37lz4+/tDrVZjw4YNWLhwYan5Hmvbti1u3rxZ5ut9+/bFzp07S33N2dm5xAn1RUVFSEtLK7M3AcCQIUNw/fp1pKamwsTEBLa2tnB2dkbTpk3160ycOBETJ05ESkoKLC0tIZPJsGjRomLrAI+mczRr1qzc9/i0JB2ZVSqV6Nq1K/bu3atfptPpsHfvXvj4+JS6jY+PT7H1AWD37t1lrk9ERFRT2rRpU+K6mtOnT8eRI0ewbds2/Pnnn5g+fXqZ29vb22PkyJE4ePAgnn/++Urn6NGjB7p27YqvvvpKv+yZZ57Bnj17cPbs2WLr6nQ6fPfdd2jTpg06duwIuVyOZ555BuvWrcPdu3dL7Ds7O7vMs9M7dOhQ4u/ov2rYsCGSkpL0z69evVrhUbtJkybpz5rft28fJk2apH+tS5cuuHr1KhwdHUuMXKrV6lL316xZM9jY2CA2Nla/7MGDB4iLi8Mnn3yCwYMHo3Xr1nj48OETszk5OcHV1RU3btwocfwmTZoAeHQ1psaNG+Pjjz9Gt27d0KJFi3JL6mM7duxATExMmY8VK1aUua2Pjw/S09P1lwQFgH379kGn05Uo3aVxcHCAra0t9u3bh3v37mHkyJGlvncrKyts3LhR/4+7v7pw4QI6d+78xGM9lSdORKhmGzZsECqVSoSGhorY2Fjx0ksvCVtbW5GcnCyEEGLy5Mli5syZ+vWPHj0qTExMxIIFC8SlS5fEnDlzhKmpqX4uy5PU9NUMiIiobMZ6NYPU1FQxcOBA8csvv4izZ8+KGzduiE2bNgknJyfx/PPPF1tXp9OJ5s2bCzs7O9GqVasS+/rrnFkhhMjNzRWpqan65xWdM/v3uag7duwQKpVKP6cyLy9PeHt7Cw8PD7Fp0yZx8+ZNcfz4cREUFCQsLS1FdHS0ftsHDx6IVq1aCXd3d7F69Wpx8eJFceXKFfHzzz+L5s2bi4cPH5aaY//+/UIul4vZs2eL2NhYce7cOfH111/rX3/mmWdE69atxenTp8WJEyfEoEGDhKmpaYk5s2fOnCmxb51OJzw8PETHjh1Fs2bNir2Wk5MjWrRoIQYMGCAOHTokbty4Ifbv3y/efPNNcfv27TJ/bmPGjBHvvvuu/rlWqxUNGjQQzz77rLh69arYu3ev6N69e7Gfb1kZly9fLszNzcWSJUtEXFycOHfunFi5cqVYuHChEEKI3377TZiYmIhff/1VXLt2TSxZskTY29sX++yrQ0BAgOjcubM4duyYOHLkiGjRooWYMGGC/vU7d+6Ili1bimPHjumXrVy5UkRHR4tr166JX375Rdjb24sZM2YU2++///1vcerUKREXFye+//57/Xv/q/j4eCGTyURCQkKp2apqzqzkZVaIRz+QRo0aCaVSKXr06CH++9//6l/r37+/mDp1arH1N23aJLy8vIRSqRRt27YV27dvr/CxWGaJiGoPYy2z+fn5YubMmaJLly5CrVYLCwsL0bJlS/HJJ5+I3NzcEuvPmzdPABDffPNNidf+Xmb/rrJlVqfTiVatWolXX31VvywnJ0d8/PHHonnz5sLU1FTY29uL4ODgUgeE0tPTxcyZM0WLFi2EUqkUTk5OwtfXV2zZsqXYiVZ/FxERITp16iSUSqVwcHAQY8aM0b+WmJgohgwZIiwtLUWLFi3Ejh07Sj0BrLQyK8SjS1sBELNnzy7xWlJSkpgyZYpwcHAQKpVKNG3aVLz44ovl/n2/Y8cO4ebmVuwSU7t37xatW7cWKpVKdOjQQRw4cKBCZVYIIdatW6d/73Z2dqJfv35i8+bN+tfff/990aBBA2FlZSXGjx8vvvvuu2ovsw8ePBATJkwQVlZWwsbGRkybNk1/QuJf38/+/fv1yz788EPh5OQkTE1NRYsWLcTChQtLfOaTJ08W9vb2QqlUig4dOog1a9aUOPa8efOEv79/mdmqqszKhKgjt/GooMzMTKjVamRkZMDGxkbqOERE9Vp+fj7i4+PRpEmTEifiEFU3IQS8vb3xzjvvYMKECVLHqVM0Gg1atGiB9evXo3fv3qWuU97vf0P6Wp2/mgERERFRaWQyGX766afqv0NVPXTr1i189NFHZRbZqiTp1QyIiIiIpNSpUyd06tRJ6hh1zuMT4GoCR2aJiIiIyGixzBIRERGR0WKZJSIiydWzc5GJCFX3+55lloiIJGNqagoA1X67SyKqfR7fVe3xXdIqiyeAERGRZBQKBWxtbfW33LSwsIBMJpM4FRFVN51Oh/v378PCwsKg2zaXhmWWiIgk9fge8X+/hzwR1W1yuRyNGjV66n/AsswSEZGkZDIZXFxc4OjoiMLCQqnjEFENUSqVkMuffsYryywREdUKCoXiqefOEVH9wxPAiIiIiMhoscwSERERkdFimSUiIiIio1Xv5sw+vkBvZmamxEmIiIiIqDSPe1pFbqxQ78psVlYWAMDDw0PiJERERERUnqysLKjV6nLXkYl6dg9BnU6Hu3fvwtraukYuzJ2ZmQkPDw/cvn0bNjY21X48qnr8DI0fP0Pjx8/QuPHzM341/RkKIZCVlQVXV9cnXr6r3o3MyuVyuLu71/hxbWxs+BvYyPEzNH78DI0fP0Pjxs/P+NXkZ/ikEdnHeAIYERERERktllkiIiIiMloss9VMpVJhzpw5UKlUUkehSuJnaPz4GRo/fobGjZ+f8avNn2G9OwGMiIiIiOoOjswSERERkdFimSUiIiIio8UyS0RERERGi2WWiIiIiIwWy2wVWLp0KTw9PWFmZgZvb28cP3683PXDwsLQqlUrmJmZoX379tixY0cNJaWyGPIZLl++HH379oWdnR3s7Ozg6+v7xM+cqp+hvw8f27BhA2QyGYKCgqo3ID2RoZ9heno6Xn/9dbi4uEClUsHLy4t/nkrI0M9v8eLFaNmyJczNzeHh4YF33nkH+fn5NZSW/u7QoUMIDAyEq6srZDIZtm7d+sRtDhw4gC5dukClUqF58+YIDQ2t9pylEvRUNmzYIJRKpVi5cqW4ePGiePHFF4Wtra1ISUkpdf2jR48KhUIhvvnmGxEbGys++eQTYWpqKs6fP1/DyekxQz/DiRMniqVLl4ozZ86IS5cuieeee06o1Wpx586dGk5Ojxn6GT4WHx8v3NzcRN++fcWoUaNqJiyVytDPsKCgQHTr1k0MGzZMHDlyRMTHx4sDBw6ImJiYGk5OQhj++a1bt06oVCqxbt06ER8fL3bt2iVcXFzEO++8U8PJ6bEdO3aIjz/+WGzevFkAEFu2bCl3/Rs3bggLCwsxY8YMERsbK/79738LhUIhoqKiaibwX7DMPqUePXqI119/Xf9cq9UKV1dXMX/+/FLXHzdunBg+fHixZd7e3uLll1+u1pxUNkM/w78rKioS1tbWYvXq1dUVkZ6gMp9hUVGR6NWrl1ixYoWYOnUqy6zEDP0M//Of/4imTZsKjUZTUxGpHIZ+fq+//roYNGhQsWUzZswQvXv3rtacVDEVKbMffPCBaNu2bbFl48ePF/7+/tWYrHScZvAUNBoNTp06BV9fX/0yuVwOX19fREdHl7pNdHR0sfUBwN/fv8z1qXpV5jP8u9zcXBQWFsLe3r66YlI5KvsZfv7553B0dMT06dNrIiaVozKfYWRkJHx8fPD666/DyckJ7dq1w7x586DVamsqNv1PZT6/Xr164dSpU/qpCDdu3MCOHTswbNiwGslMT6829RmTGj9iHZKamgqtVgsnJ6diy52cnHD58uVSt0lOTi51/eTk5GrLSWWrzGf4dx9++CFcXV1L/KammlGZz/DIkSP4+eefERMTUwMJ6Ukq8xneuHED+/btw6RJk7Bjxw5cu3YNr732GgoLCzFnzpyaiE3/U5nPb+LEiUhNTUWfPn0ghEBRURFeeeUVfPTRRzURmapAWX0mMzMTeXl5MDc3r7EsHJklegpff/01NmzYgC1btsDMzEzqOFQBWVlZmDx5MpYvXw4HBwep41Al6XQ6ODo64qeffkLXrl0xfvx4fPzxx1i2bJnU0agCDhw4gHnz5uGHH37A6dOnsXnzZmzfvh1ffPGF1NHICHFk9ik4ODhAoVAgJSWl2PKUlBQ4OzuXuo2zs7NB61P1qsxn+NiCBQvw9ddfY8+ePejQoUN1xqRyGPoZXr9+HQkJCQgMDNQv0+l0AAATExPExcWhWbNm1RuaiqnM70MXFxeYmppCoVDol7Vu3RrJycnQaDRQKpXVmpn+X2U+v08//RSTJ0/GCy+8AABo3749cnJy8NJLL+Hjjz+GXM6xttqurD5jY2NTo6OyAEdmn4pSqUTXrl2xd+9e/TKdToe9e/fCx8en1G18fHyKrQ8Au3fvLnN9ql6V+QwB4JtvvsEXX3yBqKgodOvWrSaiUhkM/QxbtWqF8+fPIyYmRv8YOXIkBg4ciJiYGHh4eNRkfELlfh/27t0b165d0/9DBACuXLkCFxcXFtkaVpnPLzc3t0RhffwPEyFE9YWlKlOr+kyNn3JWx2zYsEGoVCoRGhoqYmNjxUsvvSRsbW1FcnKyEEKIyZMni5kzZ+rXP3r0qDAxMRELFiwQly5dEnPmzOGluSRm6Gf49ddfC6VSKcLDw0VSUpL+kZWVJdVbqPcM/Qz/jlczkJ6hn+GtW7eEtbW1eOONN0RcXJzYtm2bcHR0FF9++aVUb6FeM/TzmzNnjrC2tha//vqruHHjhvjjjz9Es2bNxLhx46R6C/VeVlaWOHPmjDhz5owAIBYtWiTOnDkjbt68KYQQYubMmWLy5Mn69R9fmuv9998Xly5dEkuXLuWluYzZv//9b9GoUSOhVCpFjx49xH//+1/9a/379xdTp04ttv6mTZuEl5eXUCqVom3btmL79u01nJj+zpDPsHHjxgJAicecOXNqPjjpGfr78K9YZmsHQz/DP//8U3h7ewuVSiWaNm0qvvrqK1FUVFTDqekxQz6/wsJC8dlnn4lmzZoJMzMz4eHhIV577TXx8OHDmg9OQggh9u/fX+rfbY8/t6lTp4r+/fuX2KZTp05CqVSKpk2bilWrVtV4biGEkAnB8XwiIiIiMk6cM0tERERERotlloiIiIiMFsssERERERktllkiIiIiMloss0RERERktFhmiYiIiMhoscwSERERkdFimSUiIiIio8UyS0QEIDQ0FLa2tlLHqDSZTIatW7eWu85zzz2HoKCgGslDRFRTWGaJqM547rnnIJPJSjyuXbsmdTSEhobq88jlcri7u2PatGm4d+9elew/KSkJQ4cOBQAkJCRAJpMhJiam2DpLlixBaGholRyvLJ999pn+fSoUCnh4eOCll15CWlqaQfth8SaiijKROgARUVUKCAjAqlWrii1r2LChRGmKs7GxQVxcHHQ6Hc6ePYtp06bh7t272LVr11Pv29nZ+YnrqNXqpz5ORbRt2xZ79uyBVqvFpUuX8PzzzyMjIwMbN26skeMTUf3CkVkiqlNUKhWcnZ2LPRQKBRYtWoT27dvD0tISHh4eeO2115CdnV3mfs6ePYuBAwfC2toaNjY26Nq1K06ePKl//ciRI+jbty/Mzc3h4eGBt956Czk5OeVmk8lkcHZ2hqurK4YOHYq33noLe/bsQV5eHnQ6HT7//HO4u7tDpVKhU6dOiIqK0m+r0WjwxhtvwMXFBWZmZmjcuDHmz59fbN+Ppxk0adIEANC5c2fIZDIMGDAAQPHRzp9++gmurq7Q6XTFMo4aNQrPP/+8/vlvv/2GLl26wMzMDE2bNsXcuXNRVFRU7vs0MTGBs7Mz3Nzc4Ovri7Fjx2L37t3617VaLaZPn44mTZrA3NwcLVu2xJIlS/Svf/bZZ1i9ejV+++03/SjvgQMHAAC3b9/GuHHjYGtrC3t7e4waNQoJCQnl5iGiuo1llojqBblcjn/961+4ePEiVq9ejX379uGDDz4oc/1JkybB3d0dJ06cwKlTpzBz5kyYmpoCAK5fv46AgAAEBwfj3Llz2LhxI44cOYI33njDoEzm5ubQ6XQoKirCkiVLsHDhQixYsADnzp2Dv78/Ro4ciatXrwIA/vWvfyEyMhKbNm1CXFwc1q1bB09Pz1L3e/z4cQDAnj17kJSUhM2bN5dYZ+zYsXjw4AH279+vX5aWloaoqChMmjQJAHD48GFMmTIFb7/9NmJjY/Hjjz8iNDQUX331VYXfY0JCAnbt2gWlUqlfptPp4O7ujrCwMMTGxmL27Nn46KOPsGnTJgDAe++9h3HjxiEgIABJSUlISkpCr169UFhYCH9/f1hbW+Pw4cM4evQorKysEBAQAI1GU+FMRFTHCCKiOmLq1KlCoVAIS0tL/SMkJKTUdcPCwkSDBg30z1etWiXUarX+ubW1tQgNDS112+nTp4uXXnqp2LLDhw8LuVwu8vLySt3m7/u/cuWK8PLyEt26dRNCCOHq6iq++uqrYtt0795dvPbaa0IIId58800xaNAgodPpSt0/ALFlyxYhhBDx8fECgDhz5kyxdaZOnSpGjRqlfz5q1Cjx/PPP65//+OOPwtXVVWi1WiGEEIMHDxbz5s0rto9ffvlFuLi4lJpBCCHmzJkj5HK5sLS0FGZmZgKAACAWLVpU5jZCCPH666+L4ODgMrM+PnbLli2L/QwKCgqEubm52LVrV7n7J6K6i3NmiahOGThwIP7zn//on1taWgJ4NEo5f/58XL58GZmZmSgqKkJ+fj5yc3NhYWFRYj8zZszACy+8gF9++UX/VXmzZs0APJqCcO7cOaxbt06/vhACOp0O8fHxaN26danZMjIyYGVlBZ1Oh/z8fPTp0wcrVqxAZmYm7t69i969exdbv3fv3jh79iyAR1ME/Pz80LJlSwQEBGDEiBEYMmTIU/2sJk2ahBdffBE//PADVCoV1q1bh2eeeQZyuVz/Po8ePVpsJFar1Zb7cwOAli1bIjIyEvn5+Vi7di1iYmLw5ptvFltn6dKlWLlyJW7duoW8vDxoNBp06tSp3Lxnz57FtWvXYG1tXWx5fn4+rl+/XomfABHVBSyzRFSnWFpaonnz5sWWJSQkYMSIEXj11Vfx1Vdfwd7eHkeOHMH06dOh0WhKLWWfffYZJk6ciO3bt2Pnzp2YM2cONmzYgNGjRyM7Oxsvv/wy3nrrrRLbNWrUqMxs1tbWOH36NORyOVxcXGBubg4AyMzMfOL76tKlC+Lj47Fz507s2bMH48aNg6+vL8LDw5+4bVkCAwMhhMD27dvRvXt3HD58GN99953+9ezsbMydOxdjxowpsa2ZmVmZ+1UqlfrP4Ouvv8bw4cMxd+5cfPHFFwCADRs24L333sPChQvh4+MDa2trfPvttzh27Fi5ebOzs9G1a9di/4h4rLac5EdENY9llojqvFOnTkGn02HhwoX6UcfH8zPL4+XlBS8vL7zzzjuYMGECVq1ahdGjR6NLly6IjY0tUZqfRC6Xl7qNjY0NXF1dcfToUfTv31+//OjRo+jRo0ex9caPH4/x48cjJCQEAQEBSEtLg729fbH9PZ6fqtVqy81jZmaGMWPGYN26dbh27RpatmyJLl266F/v0qUL4uLiDH6ff/fJJ59g0KBBePXVV/Xvs1evXnjttdf06/x9ZFWpVJbI36VLF2zcuBGOjo6wsbF5qkxEVHfwBDAiqvOaN2+OwsJC/Pvf/8aNGzfwyy+/YNmyZWWun5eXhzfeeAMHDhzAzZs3cfToUZw4cUI/feDDDz/En3/+iTfeeAMxMTG4evUqfvvtN4NPAPur999/H//85z+xceNGxMXFYebMmYiJicHbb78NAFi0aBF+/fVXXL58GVeuXEFYWBicnZ1LvdGDo6MjzM3NERUVhZSUFGRkZJR53EmTJmH79u1YuXKl/sSvx2bPno01a9Zg7ty5uHjxIi5duoQNGzbgk08+Mei9+fj4oEOHDpg3bx4AoEWLFjh58iR27dqFK1eu4NNPP8WJEyeKbePp6Ylz584hLi4OqampKCwsxKRJk+Dg4IBRo0bh8OHDiI+Px4EDB/DWW2/hzp07BmUiorqDZZaI6ryOHTti0aJF+Oc//4l27dph3bp1xS5r9XcKhQIPHjzAlClT4OXlhXHjxmHo0KGYO3cuAKBDhw44ePAgrly5gr59+6Jz586YPXs2XF1dK53xrbfewowZM/Duu++iffv2iIqKQmRkJFq0aAHg0RSFb775Bt26dUP37t2RkJCAHTt26Eea/8rExAT/+te/8OOPP8LV1RWjRo0q87iDBg2Cvb094uLiMHHixGKv+fv7Y9u2bfjjjz/QvXt39OzZE9999x0aN25s8Pt75513sGLFCty+fRsvv/wyxowZg/Hjx8Pb2xsPHjwoNkoLAC+++CJatmyJbt26oWHDhjh69CgsLCxw6NAhNGrUCGPGjEHr1q0xffp05Ofnc6SWqB6TCSGE1CGIiIiIiCqDI7NEREREZLRYZomIiIjIaLHMEhEREZHRYpklIiIiIqPFMktERERERotlloiIiIiMFsssERERERktllkiIiIiMloss0RERERktFhmiYiIiMhoscwSERERkdH6P8W5WbE/bk8HAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Confusion Matrix Comparison Table:\n", - " True Negative False Positive False Negative True Positive \\\n", - "Naive Bayes 975.0 0.0 37.0 103.0 \n", - "Decision Tree 951.0 24.0 18.0 122.0 \n", - "k-NN 975.0 0.0 83.0 57.0 \n", - "SVM 975.0 0.0 28.0 112.0 \n", - "\n", - " Accuracy Precision Recall F1-Score \n", - "Naive Bayes 0.966816 1.000000 0.735714 0.847737 \n", - "Decision Tree 0.962332 0.835616 0.871429 0.853147 \n", - "k-NN 0.925561 1.000000 0.407143 0.578680 \n", - "SVM 0.974888 1.000000 0.800000 0.888889 \n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 1000x800 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAKSCAYAAABV1K1TAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4VFX6wPHv9JJJ7z0hJEAITTqIgDQLtrWsvbu6q+uuvayufffnrqtb1LV31oYNEUQQUKSIdEICgQAJ6XUyvd77+2PIyJA2CaGo5/M8PJA798w599yb4b5zzzmvQpZlGUEQBEEQBEEQhH6kPN4NEARBEARBEATh50cEGoIgCIIgCIIg9DsRaAiCIAiCIAiC0O9EoCEIgiAIgiAIQr8TgYYgCIIgCIIgCP1OBBqCIAiCIAiCIPQ7EWgIgiAIgiAIgtDvRKAhCIIgCIIgCEK/E4GGIAiCIAiCIAj9TgQagvAzs3//fhQKBW+88Uavyk2bNo1p06YdlTb9khzvfnz44YdRKBQh23w+H3fffTeZmZkolUrOPfdcABQKBQ8//PCxb6QgCILwiyACDUHoZ2+88QYKhSL4R6/Xk5aWxpw5c/j3v/+N1Wo93k08YeTk5IT0VVd/ehs0HQ319fXceeedDB48GKPRSEREBKNHj+bxxx/HbDYf7+Z167XXXuPvf/87F1xwAW+++Sa33Xbb8W5St7q7Llwu11Gp8y9/+QuffvrpUXnvI5WTk8PcuXOPdzP6rKSkhIcffpj9+/cf76YIgnCMKWRZlo93IwTh5+SNN97gmmuu4dFHHyU3Nxev10tdXR0rV65k6dKlZGVlsWDBAoYPH35U6pdlGbfbjUajQaVShV3O4/EAoNVqj0q7OvPpp59is9mCPy9atIh3332XZ555hoSEhOD2SZMmMWDAgGPWrsP98MMPnHHGGdhsNi6//HJGjx4NwIYNG3jvvfeYNGkSX331FUDwacbKlSuPS1t9Ph8+nw+9Xh/cdvHFF/Pdd99RVVUVsq/L5UKtVqNWq491M7uVk5NDbGwsd9xxR4fXLr30UpTK/v+OzGQyccEFF5wQQe3hcnJyKCoqYuHChce7KX0yf/58LrzwQlasWCGemgrCL8yJ9b+LIPyMnH766YwZMyb483333cfy5cuZO3cuZ599NqWlpRgMhn6vt/0pSm8dywCjXfsQnnZ1dXW8++67nHvuueTk5HRZzm63ExERcXQbd5DZbOa8885DpVKxefNmBg8eHPL6E088wcsvv3xM2hKOzgKHhoYGYmJiOuzbl+ukKy6XC61W229BQHp6Opdffnm/vNfxIkkSHo+nX/v5p6T9mhAE4ZdLDJ0ShGPo1FNP5cEHH6SiooJ33nkn5LWdO3dywQUXEBcXh16vZ8yYMSxYsKDDe5jNZm677TZycnLQ6XRkZGRw5ZVX0tTUBHQ+R6Ouro5rrrmGjIwMdDodqampnHPOOSFDGTqbW9DQ0MB1111HcnIyer2eESNG8Oabb4bs017fU089xUsvvUReXh46nY6xY8fyww8/HFmHAVdffTUmk4ny8nLOOOMMIiMjueyyy4DAjdw///lPhg4dil6vJzk5mRtvvJHW1tYO77N48WKmTJlCREQEkZGRnHnmmezYsaPH+l988UWqq6t5+umnOwQZAMnJyTzwwANdlvd4PPz5z39m9OjRREdHExERwZQpU1ixYkWHfd977z1Gjx5NZGQkUVFRDBs2jH/961/B171eL4888gj5+fno9Xri4+M5+eSTWbp0aXCfQ+dotJ+bFStWsGPHjuDwo/anLZ3N0aiurubaa68lOTkZnU7H0KFDee2110L2WblyJQqFgvfee48HHniA9PR0jEYjFoulx/7sL2azmT/+8Y9kZmai0+kYOHAgTz75JJIkhez31FNPMWnSJOLj4zEYDIwePZr58+eH7KNQKLDb7bz55pvBPrr66quBwPXXWdDb2VwYhULBLbfcwrx58xg6dCg6nY4vv/wSCK9fw3Xo79xzzz3HgAEDMBqNzJ49mwMHDiDLMo899hgZGRkYDAbOOeccWlpaQt6jfTjWV199xciRI9Hr9RQWFvLxxx93qG/v3r1ceOGFxMXFYTQamTBhAl988UXIPl1dE//+97+58MILAZg+fXqHa/Czzz7jzDPPJC0tDZ1OR15eHo899hh+vz/k/adNm0ZRURElJSVMnz4do9FIeno6f/vb3zq01+Vy8fDDD1NQUIBeryc1NZVf/epXlJeXB/fpzWeHIAh9J55oCMIxdsUVV3D//ffz1VdfccMNNwCwY8cOJk+eTHp6Ovfeey8RERF88MEHnHvuuXz00Uecd955ANhsNqZMmUJpaSnXXnstJ510Ek1NTSxYsICqqqqQ4UaHOv/889mxYwe///3vycnJoaGhgaVLl1JZWdnlkwOn08m0adPYs2cPt9xyC7m5uXz44YdcffXVmM1m/vCHP4Ts/7///Q+r1cqNN96IQqHgb3/7G7/61a/Yu3cvGo3miPrM5/MxZ84cTj75ZJ566imMRiMAN954Y3Co2q233sq+fft49tln2bx5M6tXrw7W+/bbb3PVVVcxZ84cnnzySRwOB//97385+eST2bx5c7dPTxYsWIDBYOCCCy7oU9stFguvvPIKl1xyCTfccANWq5VXX32VOXPmsH79ekaOHAnA0qVLueSSS5gxYwZPPvkkAKWlpaxevTrY1w8//DB//etfuf766xk3bhwWi4UNGzawadMmZs2a1aHuxMRE3n77bZ544glsNht//etfARgyZEinba2vr2fChAnBG+bExEQWL17Mddddh8Vi4Y9//GPI/o899hharZY777wTt9vdr99ee73eYPDczmg0YjQacTgcTJ06lerqam688UaysrJYs2YN9913H7W1tfzzn/8MlvnXv/7F2WefzWWXXYbH4+G9997jwgsvZOHChZx55plA4Ppo79Pf/OY3AOTl5fWp3cuXL+eDDz7glltuISEhgZycnF73a7jmzZuHx+Ph97//PS0tLfztb3/joosu4tRTT2XlypXcc8897Nmzh//85z/ceeedHQKb3bt38+tf/5qbbrqJq666itdff50LL7yQL7/8Mng91dfXM2nSJBwOB7feeivx8fG8+eabnH322cyfPz/42dTu8Gti9uzZ3Hrrrfz73//m/vvvD1577X+/8cYbmEwmbr/9dkwmE8uXL+fPf/4zFouFv//97yHv3draymmnncavfvUrLrroIubPn88999zDsGHDOP300wHw+/3MnTuXr7/+mosvvpg//OEPWK1Wli5dSnFxcfC8hvvZIQjCEZIFQehXr7/+ugzIP/zwQ5f7REdHy6NGjQr+PGPGDHnYsGGyy+UKbpMkSZ40aZKcn58f3PbnP/9ZBuSPP/64w3tKkiTLsizv27dPBuTXX39dlmVZbm1tlQH573//e7ftnjp1qjx16tTgz//85z9lQH7nnXeC2zwejzxx4kTZZDLJFoslpL74+Hi5paUluO9nn30mA/Lnn3/ebb2H+vvf/y4D8r59+4LbrrrqKhmQ77333pB9V61aJQPyvHnzQrZ/+eWXIdutVqscExMj33DDDSH71dXVydHR0R22Hy42NlYeMWJE2MdweD/6fD7Z7XaH7NPa2ionJyfL1157bXDbH/7wBzkqKkr2+XxdvveIESPkM888s9v6H3roIfnwj/apU6fKQ4cO7bAvID/00EPBn6+77jo5NTVVbmpqCtnv4osvlqOjo2WHwyHLsiyvWLFCBuQBAwYEt/Wn7OxsGejwp72tjz32mBwRESGXlZWFlLv33ntllUolV1ZWBrcd3j6PxyMXFRXJp556asj2iIgI+aqrrurQlquuukrOzs7usL2zfgZkpVIp79ixI2R7uP3alezs7JDz3v47l5iYKJvN5uD2++67TwbkESNGyF6vN7j9kksukbVabcjnS3sff/TRR8FtbW1tcmpqashn0x//+EcZkFetWhXcZrVa5dzcXDknJ0f2+/2yLHd/TXz44YcyIK9YsaLDsXV27DfeeKNsNBpD2jt16lQZkN96663gNrfbLaekpMjnn39+cNtrr70mA/LTTz/d4X3bPyPD/ewQBOHIiaFTgnAcmEym4OpTLS0tLF++nIsuugir1UpTUxNNTU00NzczZ84cdu/eTXV1NQAfffQRI0aM6PAtItBhGEc7g8GAVqtl5cqVvRoWsGjRIlJSUrjkkkuC2zQaDbfeeis2m41vvvkmZP9f//rXxMbGBn+eMmUKEBh20R9++9vfhvz84YcfEh0dzaxZs4J91tTUxOjRozGZTMGhSUuXLsVsNnPJJZeE7KdSqRg/fnynQ5gOZbFYiIyM7HO7VSpV8Jt+SZJoaWnB5/MxZswYNm3aFNwvJiYGu90eMgzqcDExMezYsYPdu3f3uT1dkWWZjz76iLPOOgtZlkP6as6cObS1tYW0F+Cqq646KvOMAMaPH8/SpUtD/lx55ZVA4NxPmTKF2NjYkHbOnDkTv9/Pt99+G3yfQ9vX2tpKW1sbU6ZM6XAs/WXq1KkUFhYGf+5Lv4brwgsvJDo6Ovjz+PHjAbj88stD5umMHz8ej8cT/Bxpl5aWFvJZEhUVxZVXXsnmzZupq6sDAp8D48aN4+STTw7uZzKZ+M1vfsP+/fspKSkJec/eXhOH7tv++TdlyhQcDgc7d+4M2ddkMoXM29FqtYwbNy7kM+ajjz4iISGB3//+9x3qav+MDPezQxCEIyeGTgnCcWCz2UhKSgJgz549yLLMgw8+yIMPPtjp/g0NDaSnp1NeXs7555/fq7p0Oh1PPvkkd9xxB8nJyUyYMIG5c+dy5ZVXkpKS0mW5iooK8vPzO0zubR/yUFFREbI9Kysr5Of2oKM/xjyr1WoyMjJCtu3evZu2trZgPx6uoaEhuB8E5sd0Jioqqtu6o6KijnhJ4jfffJN//OMf7Ny5E6/XG9yem5sb/Pfvfvc7PvjgA04//XTS09OZPXs2F110Eaeddlpwn0cffZRzzjmHgoICioqKOO2007jiiiv6ZQWzxsZGzGYzL730Ei+99FKn+7T3aWft7+m9Dx1zbzKZMJlM3ZZJSEhg5syZnb62e/dutm3bRmJiYo/tXLhwIY8//jhbtmzB7XYHt3cVmB+pw/ukL/0arsN/59qDjszMzE63H/67OHDgwA79UFBQAATmgaSkpFBRUREMYA516OdAUVFRcHu410S7HTt28MADD7B8+fIOc3za2tpCfs7IyOjQ3tjYWLZt2xb8uby8nEGDBnW7klq4nx2CIBw5EWgIwjFWVVVFW1sbAwcOBAhOXr3zzjuZM2dOp2Xa9+2rP/7xj5x11ll8+umnLFmyhAcffJC//vWvLF++nFGjRh3Re7frailduR9W0NbpdB0CHkmSSEpKYt68eZ2Wab8Jbe/ft99+u9PAqqelXQcPHsyWLVvweDx9moPwzjvvcPXVV3Puuedy1113kZSUhEql4q9//WvI5NSkpCS2bNnCkiVLWLx4MYsXL+b111/nyiuvDE7AP+WUUygvL+ezzz7jq6++4pVXXuGZZ57hhRde4Prrr+912w7V3k+XX345V111Vaf7HB7QhPvN9dixY0MC04ceeuiIEgVKksSsWbO4++67O329/WZ51apVnH322Zxyyik8//zzpKamotFoeP311/nf//4XVl1dBSSHT1Zud3if9KVfw9XV79zR/F3sSW+eZpjNZqZOnUpUVBSPPvooeXl56PV6Nm3axD333NNhYn9/HVe4nx2CIBw5EWgIwjH29ttvAwSDivb8EBqNpstvcNvl5eVRXFzcp3rz8vK44447uOOOO9i9ezcjR47kH//4R4fVr9plZ2ezbds2JEkKuclvH86QnZ3dp3b0l7y8PJYtW8bkyZO7vblpn/yZlJTUY/925qyzzmLt2rV89NFHIcPIwjV//nwGDBjAxx9/HHLT+tBDD3XYV6vVctZZZ3HWWWchSRK/+93vePHFF3nwwQeDwWZcXBzXXHMN11xzDTabjVNOOYWHH374iAONxMREIiMj8fv9feqn7sybNw+n0xn8+UhzouTl5WGz2Xps50cffYRer2fJkiXodLrg9tdff73Dvl0FFLGxsZ0mZDz8iV5Xjma/Hqn2p6mHHntZWRlAcIGE7Oxsdu3a1aFsbz4HuurblStX0tzczMcff8wpp5wS3L5v376wj+FweXl5fP/993i93i4ndIf72SEIwpETczQE4Rhavnw5jz32GLm5ucElWpOSkpg2bRovvvgitbW1Hco0NjYG/33++eezdetWPvnkkw77dfWtnsPh6JBNOS8vj8jIyJChJIc744wzqKur4/333w9u8/l8/Oc//8FkMjF16tTuD/You+iii/D7/Tz22GMdXvP5fMGbwzlz5hAVFcVf/vKXkGFL7Q7t387cdNNNpKamcscddwRvwg7V0NDA448/3mX59m9hDz0/33//PWvXrg3Zr7m5OeRnpVIZ/Ka7/Twdvo/JZGLgwIHdnsdwqVQqzj//fD766KNOg9me+qk7kydPZubMmcE/RxpoXHTRRaxdu5YlS5Z0eM1sNuPz+YDAMSkUipCnD/v37+80A3hERESnAUVeXh5tbW0hw3Nqa2s7/R3szNHs1yNVU1MTchwWi4W33nqLkSNHBp/+nXHGGaxfvz7kerXb7bz00kvk5OSEzEfpSnvOm8P7t7PfDY/Hw/PPP9/nYzr//PNpamri2Wef7fBaez3hfnYIgnDkxBMNQThKFi9ezM6dO/H5fNTX17N8+XKWLl1KdnY2CxYsCEni9dxzz3HyySczbNgwbrjhBgYMGEB9fT1r166lqqqKrVu3AnDXXXcFs+xee+21jB49mpaWFhYsWMALL7zAiBEjOrSjrKyMGTNmcNFFF1FYWIhareaTTz6hvr6eiy++uMv2/+Y3v+HFF1/k6quvZuPGjeTk5DB//nxWr17NP//5zyOaIN0fpk6dyo033shf//pXtmzZwuzZs9FoNOzevZsPP/yQf/3rX1xwwQVERUXx3//+lyuuuIKTTjqJiy++mMTERCorK/niiy+YPHlypzcl7WJjY/nkk08444wzGDlyZEhm8E2bNvHuu+8yceLELsvPnTuXjz/+mPPOO48zzzyTffv28cILL1BYWBiSFf3666+npaWFU089lYyMDCoqKvjPf/7DyJEjg+PhCwsLmTZtGqNHjyYuLo4NGzYwf/58brnlln7p0//7v/9jxYoVjB8/nhtuuIHCwkJaWlrYtGkTy5Yt65CL4Xi56667WLBgAXPnzuXqq69m9OjR2O12tm/fzvz589m/fz8JCQmceeaZPP3005x22mlceumlNDQ08NxzzzFw4MCQwAFg9OjRLFu2jKeffpq0tDRyc3MZP348F198Mffccw/nnXcet956a3Bp5IKCgrAncZ+o/VpQUMB1113HDz/8QHJyMq+99hr19fUhT3zuvfde3n33XU4//XRuvfVW4uLiePPNN9m3bx8fffRRWAkaR44ciUql4sknn6StrQ2dTsepp57KpEmTiI2N5aqrruLWW29FoVDw9ttvH9EQryuvvJK33nqL22+/nfXr1zNlyhTsdjvLli3jd7/7Heecc07Ynx2CIPSD47HUlSD8nLUvb9v+R6vVyikpKfKsWbPkf/3rX8FlYQ9XXl4uX3nllXJKSoqs0Wjk9PR0ee7cufL8+fND9mtubpZvueUWOT09XdZqtXJGRoZ81VVXBZfOPHx526amJvnmm2+WBw8eLEdERMjR0dHy+PHj5Q8++CDkfQ9fllWWZbm+vl6+5ppr5ISEBFmr1crDhg0Lvm+79vo6Wz6Xw5ZP7UlXy9tGRER0Weall16SR48eLRsMBjkyMlIeNmyYfPfdd8s1NTUh+61YsUKeM2eOHB0dLev1ejkvL0+++uqr5Q0bNoTVtpqaGvm2226TCwoKZL1eLxuNRnn06NHyE088Ibe1tQX3O7wfJUmS//KXv8jZ2dmyTqeTR40aJS9cuLDDsqnz58+XZ8+eLSclJclarVbOysqSb7zxRrm2tja4z+OPPy6PGzdOjomJkQ0Ggzx48GD5iSeekD0eT3CfI1neVpYD5/zmm2+WMzMzZY1GI6ekpMgzZsyQX3rppZC+BOQPP/wwrL7rrcOXc+2M1WqV77vvPnngwIGyVquVExIS5EmTJslPPfVUSH+8+uqrcn5+vqzT6eTBgwfLr7/+eqd9tHPnTvmUU06RDQaDDIQsdfvVV1/JRUVFslarlQcNGiS/8847XS5ve/PNN3fa3nD6Ndz+6Op3rqvz0tmS2+3vuWTJEnn48OHB/unsnJaXl8sXXHCBHBMTI+v1enncuHHywoULw6q73csvvywPGDBAVqlUIUvdrl69Wp4wYYJsMBjktLQ0+e6775aXLFnSYTncrq7hzpYfdjgc8p/+9Cc5Nzc32NcXXHCBXF5eHrJfuJ8dgiD0nUKWj8HsMEEQBEEQThg5OTkUFRWxcOHC490UQRB+xsQcDUEQBEEQBEEQ+p0INARBEARBEARB6Hci0BAEQRAEQRAEod+JORqCIAiCIAiCIPQ78URDEARBEARBEIR+JwINQRAEQRAEQRD6nQg0BEEQBEEQBEHodyIzuCAIgiAIgkBNTQ0LFy7E6/X2uqxKpeKMM84gKyvrKLRM+KkSk8EFQRAEQRAEbrrpJl588UV0mt5/D+32+rj00kuZN2/eUWiZ8FMlnmgIgiAIgiAIWCwWJhek8PEfpgGwcV8zXr+f5CgDtW1OsuIj8EsyNpeXujYnHp9EvEnHuLxErnxhFRZL2/E9AOGEI+ZoCIIgCIIgCAAoFD/+e2+Dhe0HzEiyHBJkNNvcWF0+EqP0jMtL7FBOENqJJxqCIAiCIAhCiC+2HCAzPgKT3sP2KjMNFieF6TEUZcSSnWBi0/5m6sxO1u5uICFSf7ybK5ygRKAhCIIgCILwCyXLMrW1tRQXF7Nz504MkgTAmSMzuy13yuCUDtvKy/fy5ZdfUlRURHp6OgrxmOMXTwQagiAIgiAIvwDNzc0UFxdTXFzMjh07gv9ubW0FAitHDUqJ5OUVZRSkRGH3+JiUn4RaqaCqxcH6vY3o1CoSInVMyEvku90NaFVKTHoNAGVlZZx++ukAREdHU1RUxNChQykqKgr+SUxMPG7HLxx7YtUpQRAEQRCEnxGr1cqOHTtCgoni4mLq6uoA0Gg0DBo0KCQAKCoq4oEHHmDjysX89+oJAOysbaPZ6sIvyUQZtKTGGPD6JdxeP56Df4/MjqfZ5uYvC7aSMWwS//nPfzoEM6WlpXg8HgCSkpJC6hw6dChDhw4lOjr6uPWXcPSIQEMQBEEQBOEnyOl0snPnzg4BRUVFBQBKpZK8vLwOAUV+fj4ajabD+9199938/e9/73N7brrpJv773/922O7z+dizZ09IG3fs2EFZWRnSwaFamZmZHdo5ZMgQDAZDn9sjHH8i0BAEQRAEQTiBeb1edu/ezfz586murmbdunU4nU7Ky8uDN+pZWVkdbtQHDx7cqxt1v99PSUlJnxP2DR06FLU6/FH5LpeLXbt2dQhA9u3bB4BCoSAvL4+4uDgGDx5MbGwsY8eO5aKLLuo0UBJOPCLQEARBEARB6MFHH33Ec8/+B8kv9bqsVqflTw88yNSpU7vdT5Ik9u3b1+EJxc6dO4M3/8nJySHDjoYNG0ZhYSFRUVF9Oq4Tkc1mo6SkJKQPiouLqa2tBQJDvwoKCjoEVrm5uahUqm7fW5ZlHnvsMcrKynrdrtjYWB555BHi4uL6dFy/RCLQEARBEARB6MHsWbP4/ruVzB6aDIBfCtw+qZQ9r6z06eYarr72Ol5++eXgtpUrV7J27Vq0Wm3wRrqkpASHwwFATExMhxvpoUOHkpCQcBSO7qehpaWlQxBWXFxMS0sLAAaDgcLCwuAE9IEDB2K1Wrn88stRKgOp42pqakhPTyc1I5uUjOyw6/a4XezYvJ4PPviACy+88Kgc38+RWHVKEARBEAShB5LkZ/rgJJ69dBQA6/Y2o1EpSTBpUSuVGHUqNlWYyYg10GL3oFIqGJcb+OZ7X4srOMSp3cyZM/H7/RiNxuCTiYsvvjgYVKSlpYnlYQ8TFxfHlClTmDJlSnCbLMvU19d3CD4+/vhjbDYbAJs3b+aZZ54BCD4ZuuP/nmfMyadSsnk9Pq+HuKRUmupqSM3MRpIk7FYLTocNtVqD5PeTVzic04bE92lY2S+ZCDQEQRAEQRB66UCLkzanl+mDE1EpweL0kRKtp83ppc3pJTW6+yR2n376KY2NjVx11VXBb9uF3lMoFKSkpJCSksLMmTOD2yVJYt26dbz55pvcc889XZav2rcHa1sr4xKSQ4KMttZmmupqyMorYOjoCbicjmNxOD87ItAQBEEQBEHohS+21ZIZZyDSoWZ7lYVGq4shaVEUpUWhVirZXGmmts2Fw9NMgknX6XvMnTv3GLf6l0WpVDJp0iQmTZrU5T7ffvkpKRlZGE2R7N6xhZbGevIGD2Pg0OGkZeVSygbqqipQqdVk5Q06hq3/+RCBhiAIgiAIQjfsdjutra2YDv585vDUbvefUhA6j0KSJBoaGnC5XOj13T/pEI6uQ6cmn3Laud3uO3ry9OC/259oHD4ETuieCDQEQRAEQRAOkmWZyspK1qxZE/yzdetWZMmPIS+eV1btIz/JhMPjZ2JeHGqlkiqzkzaHlzqLC5NOzYQBcazf14LbJ5Fg0iH5JRYuXEh0dDSjR48OftM+ceJEUlO7D1qEI9fc3Mzy5ctZunQpixcvBqC8dDsVu0vJHjgYp8POyAlTUKnUlO/cjsFoorm+lmFjJ1G6dQMetwuXww4EcoUsWLCAWbNmMWvWLHJyco7jkZ34xKpTgiAIgiD8YrndbjZv3syaNWtYu3Yta9asoaamBoD8/PxgUPDaa69iqSzl3tMCQ2j2NtppdXiQZBmTTk1SpA6vX8bjl/D6JTw+iSGpUZgdHh5fXMbEabOZOXNmMHiprKwEIDc3N1jHpEmTKCoq6lUuCqEjt9vN6tWrWbp0KUuXLmXTpk3IssyQIUMYP348b7zxBnPOv5whI8dQV1WJzWJGliTiEpPx+TzojSas5lYcdhtKpZKE5FQ0Gi0v//0hzj33XOrq6li/fj2SJDFw4EBmzZrFzJkzOfXUU4mJiTneh39CEYGGIAiCIAi/GPX19cGAYs2aNWzYsAG3241er2fcuHHBJw0TJ04kMTExWO6Pf/wj//rXv/pc79NPP81tt90W/Lmqqoq1a9cG27Jp0ya8Xi8RERGMHz8+GHhMmDCB2NjYIzrmnztZltm+fXswsPj2229xOp0kJSUxc+bMYCCQkZGB1+tl5KhR7O5LHo24OFYsX05hYSFms5kVK1awbNkyli5dyu7du1EqlYwdOzb4tGPChAlotdqjcMQ/HSLQEARBEAThZ8nv91NcXBwyDGrv3r0ApKenM3ny5GBgMXLkyB5vCpubm/H7/b1uh0aj6TFYcDqdbNy4kdWrVweDj8bGRgAKCwuD7Zw0aRKDBg36xS99W11dHQwsli1bRkNDAwaDgVNOOSUYXAwbNuyYrei1f//+YNDx9ddf09zcTEREBNOmTQsGHkOGDPnFnTcRaAiCIAiCcFzccMMNLF/2VZ/KxsbG8f6H88nLywtuW7FiBbW1tezatYs1a9awbt06bDYbarWaUaNGhdysZ2Zm9tdhHBWyLFNeXh4ypGv79u3IskxcXFzwOCZNmsTYsWPR6XQhQ67cbjez55zG/orKsOs06PU89+y/mTFjRr8eyxVXXsWqVd/1qoxOr+OZfzzFGWecEdx24403UlZWRn19PaWlpSgUCk466aTgjfykSZNOiMn2kiSxefPmYCD03Xff4fF4SEtLY8SIEdjtdpYsWRJs6969e7nowgtoPZh4MFwpqaksWvwl0dHRR+Mw+oUINARBEARBOC40GjUj0kxMyovrVTmPT+LFVRW8+eabXHnllQAsWbKE0047DYCEhISQG/ExY8ZgNBr7vf3HmsVi4fvvvw8+nVm3bh0WiwWFQoEsyyH9UVxczLBhw0gaczrG1IFhvX/FF89z+21/5Kmnnuq3Nvv9ftRqNUlDxpNcOCHsciULXuA311/L888/DwSOvf2G+vrrr2fWrFmceuqpP4lM6Q6Hg++++46lS5fy4osvYrVaeeONN7jqqqsAmDdvHpdffjm/PWsiem1483Oqm9r44JttfPPNN5xyyilHs/lHRMw2EgRBEAThuLlwdBpXTchkQ4WZeqsbpUJBYYoJtUqJUatiU2Ug2/bWKgsgc9Ho9GCgcahTTjmFG264gdmzZ3P++ef/LIeoREVFBb+9h8BNfElJCa+88gqvvPIKERERHcrknHkLPqcFn8uGPj4DAF10IprIOFp3rkOhUiP7fciSn9bNXx61tufPvIz8GRfTWLYRn9uJPjoBQ0wSKo2W+pLv0RgisNbtR2eKJXPcHOq3LO9w7JWVlej1+pC5Mz8FRqOR2bNnM3v2bB599FEqKioYPHhwh/0evHwGxfvr8fr8JMeaqG22kp0cg1+SsTrc1JttuD0+EmMiiDUZ+OCbbcfhaHpHpKIUBEEQBOG4G5Mdg8Pjp9rsxCfJyLKM1eUlJSqQbTsjVs+QlMguyxsMBl566SUuuOCCn2WQ0RmVSsWwYcP417/+hd1u5/zzz+90P3dbI+6WOtSGSLRRCch+P47avaj1ESiUKrSRcSSOnNlp2f5mqS6ntaIUpUqDz+3AZWnGGJeM3+shOiMfXXR8l2UzMzN/ckHG4QwGQ6dBRrsxBRlUNphZunE3ybGmDq9r1ErGDjqxh/0dSjzREARBEAThuPqiuJ74CC2ROjValZLlu5ooTI1kaGokcRFafthvxu2T0KuVbK+2MCi54w2Y0LmW0tXEFIzFa4jEWlGMp60BU2YhkdlDUSjV2A6U4HPZMZetP+ptqVi7EFNSFhpbKy37tuNsbSA2p5C43CIiU3JoLNuE5PNSt2PtUW/LierztSVkJcUQadCxbV8dDa1WhuakMCw3heyUWHbsr2dDWRX1Ldbj3dSwiEBDEARBEIRjorW1la1bt7Jlyxa2bNmC3x/IsnxmUXK35aYPCh2H7/EFyj3zzDPs2bOHkSNHMnLkSHJzc38xTzPCFTdkMtEDT+ry9ZiCccesLdkT53b7etqIE3euwbFy1sTCbl+fMCQLgD3VTceiOUdMBBqCIAiCIPSr9uza7QHFli1b2Lx5MxUVgXkVer2eYcOGoVDA3iY7r6yuID/RhMPrZ2JuLGqVgupWF2anF61aidnhZVxODJsOtNHm9JEQEViG1u/38/LLL1NXVwcExvGPGDGCUaNGBYOPwsJCdDrdceuL482yfztt5ZuISMvH73YQO2QiCqUaa8V2DEnZuFvqkCUffq8bv9dz1NrRVr2bkoUvE5ORj9flIKVoEkqVmtaKUmS/H1NyFm3Ve5B8XhRKBT6P+6i15UTi8/nYuHEjAGtLKiiraqIgIxGH28PkoTmoVEp27K9HrVJSUd/K7DEFbNpdTavVAcCmTZuYMmXKCRtgi1WnBEEQBEHoM6/XS2lpaUhQsWXLFlpbWwGIj48P3vi3/11QUIBarUan05IZrWFkRmA1oRa7B6dXQpZltGolJp0avyTjl2QkWcYnySRF6rC6vHxV2sTbb7/N5ZdfTl1dXYf6y8rKkGUZjUZDYWFhMPAYOXIkI0aM+NknwSspKWHo0KHEFIxFpTcheZzIsozaGIVSpcbvcSJLEpLXjUKhQG2MpnHTEu666y7+9re/9Vs72ledis4oID5vOC5LS6BuWUZrjETy+1FpdPjcDvwH26IxRlG14Stu/t3vePbZZ/utLSeSqqoqXn31VV555RWqqqoAOGfSUHQaFS0WB06PF0mWiTLq8fkltGoVfkkK/D74JSRZ5tvt+wAoKCjgN7/5DVdffTXx8V3PcTkeRKAhCIIgCEJYLBZLyNCnLVu2UFxcjMcT+CY8Ly8v5IZ+1KhRpKWldflt68MPP8yKr5f1qS2xcfE89/zzpKend/q63W5n27ZtIW3dtm0bLpcLgJycnA5tzczMPGG/Ge4tn8/H1ddc0+s8Gk88/hjjxvXvcKr777+fVd+t7lUZvU7Hww8/xOTJk/u1LcdTdXU1Gzdu5LXXXuPzzz/HYDBwySWXcMEFF/Df55+ntbV3eTSSU1K57rrrePPNN/noo4+CeUUmTJjA008/fZSOondEoCEIgiAIPxEOh4OdO3f2qWxERAQFBQVh3UjLskxNTU1wyFP7jXp5eTkAWq2WoUOHMmrUqOBQpeHDh5/QicMgcPNdVlbG5s2b2bp1K5s3b2bz5s00NzcDEBsb2yH4GDx4MBqNJuw6ZFmmubkZSZLCLpOQkNDnDNZNTU1UVoYfTLQ/4VGpVH2qryuSJNHU1Lt5A2q1mri43uVQOV4aGhqCTx7CodPpGDJkSPC8bt68mZNOCsyVGTFiBDfeeCOXXXYZUVFR/dK+xsZG3njjDe6++24gEGi3547pyzXZLjY2tlfX/+FEoCEIgiAIPxGTJ05kzbp1fS7fPtSonc/nw+12U1FRETKXYsuWLcGbxpiYmJA5DyNHjmTw4MFotdojPp4TQThBVVFRUUjwMXz48C5vEG+44QZeeeWVXrVh/PgJrFvX+5WWnE4nCYmJOOz2XpW7//77uf/++3n77bcxm8097q/Vavn1r3/d5dMjgMknT2HN6t5l/wZ45JFHOO+881i0aBHh3JJmZmZy6aWXHtMnT21tbSQlJQWf3IXriSee4P777wfgwIEDnHXWWVx44YXcf//9R639dXV1NDY2MmzYsOC2m266iRdffLFP75eWmsL+iso+BxtiMrggCIIg/ERUVVVy9vAkfjc1m6WlTejUSpQKKEyNxOzwEhehYU+jg5x4AxanD5vHx6BkEzq1kjOe3RDyjWxra2uHb5PbhxPdcsstwRvrrKysn81wos4oFArS09NJT0/nzDPPDG7vbJjYO++8E7zZHDBgAHv37uV3v/sdzz33XLDc9uIdZA0ZRfaQUcQkp6PWaPF5Pag1OoxRMegjIqndW4osSeiMkexYvYTiHVv61Pa2tjYcdju5v7obZD8A0fljcTXXoI1KQPI4UWoNeCyNIMsotXr2f/IUVVVVfPHFF/z2t78lxqhDpez+/DbbXNTU1HSbMby4uJj0cacTkZiJLjoen9NOZFoeHocFbUQM9vr96KIS8HucSD4vEUmZFL/3fxQXF/PNyhUsX7GSeJO+23aYHW78ksy4cePIz8/vfYf1UVNTEx6Ph78/fB+mCCNGg4H6xiYG5majVqnR63Xs2FVGSlISbRYLTc2tPP/6OyG/b5mZmWzZsuWotzUlJYWUlJSQbTu2byMrzshl4zOxuX0gg0mvRqNSEG3Q0GTzkGjSIsng9PqxunzY3D4qmx0s3F5Ha2srSUlJfWqPCDQEQRAE4SdkQIKR4elRDE/v/Bv1U/I7nwwaExG68pLBYAh+M//YY4/9IiZI90ZUVBRTpkxhypQpwW0ej4edO3eyZcsWfvjhB5599lnWrFnToWzawKFcfO8zXb/5jHOD/1Sp1dSUbTmitkZmDyVh5Kyw9q1b8RYQGFoDsO2uUXyyvYk2p49pA2PQq5X4ZRmr20+91cOp+bGc/nIJNputx/dOGDSWwefcHHa7K775AACbzcolJyXx1Dl5zN/a2GVbEiI0nP7i9rDacjSMHFbI1EnjO31t2skTQn6ev/DoZVnviwkD4vjDzN4FZ0uK61i4ve6I6hWBhiAIgiD8RM3fVIvZ6WN6QTw6jRJJkrG6fNRb3ZgdPrLjDYzO6nzehF6vZ+vWrce4xT9tWq2W4cOHM3z4cK688kr+/e9/d/u05/tF7+GwmimcMBONTofk9+OyW7GZm3E77RgjY/qtbbWr5+Ozm4kfPh2lRocsSficVjyt9XiszUSkDiQqb1SHcotLW8iM0RGpU1FcZ6fR6mVIipGhKRFkx+pZtbet123Z/82HeGxmUkederAtfrxOGx5LM5LkJ3Xk9E7LLSpp7rYt722q73Vb+ts7H36Kuc3C7OlT0Ot0+CU/FquN5pZW6hqayMvJYvzokce7md36cEMVbU4v0wcnolOr8EsyNrcPu9uH2eklwaTlpKz++dJBBBqCIAiC8BO0qLiBzFg9Jp2P4horjVY3Q1JNDE2NJDvewIaKNsobHXh9EpF68d/90dBdkLFlxQLiU7PQR0RSVbYVS3MD6QOHklEwjIT0HGr37cLe1rtVhrrStnsD8cNPxWswHcz+3YgpcwimrKEYErOxHSjB73VhrdjeoezpQ+K6HTo1ZUA0fF0ddluq1n1BRGImGoOJ1n3bcZkbiM4uJDanCFNyNi27N1G9fjG6mMQOZc8o7H5p1nHZ/TNx+khEGA3kZKazc3c5Lreb+oYmhhUOYtSwoajVKr5c/i3KHoaiHU9fbKslM85ApEPN9ioLjVYXQ9KiKEqLQq1UsnZvM20Ob7/VJz55BEEQBOEn6Iyi7sdMTys4sdbT/6UZOf3sbl/PLRoDwPLKPUdcV3T+GGIGdT6kB7rP/r1uv4WdDQ7yEw04PBITcqJQKxXUWTzoNUqa7V7sbl/YbcmYcGa3rycP7zz7d4PVw6vraju0o9bixuuX8fpldtT1btL70XDemXO6ff3Cs884Ri3pmzOHp3b7+qzC5H6tTwQagiAIgnCCa2pq4sMPP6SpqZmqxFheWX2A/CQjDo/ExNyYQCZtswuz00eLzYPHLzNzcDw7am202AOTxH0+H/Pnz2fMmDFMnz6935c3FX5kaapnxfsvkJJTgMfpIP+kyShVasyNtVTu3MKwk0+jfMta1FodlpaGI67PVrUTZ0NFMPt3zOBA9m979U50sam4zfXIfh+S143f7Qwp+1lxE06vxKYDNuIj1Gw4YMUvyVicfrRqBV6/TI3Z2UXNh7Wjfj9lX7xMVEYBPredpMJJKFRqHE1Vgcnh6fm0lm9B8nlBqcTnchwsqaC82UVGjJMt1TYkCdbsa0OrVmJ1+dGoFPglmV2Njm7rP9q27ihle8kuBufnYXc4OGXiONRqFTt27mbz9h2cNWcmJbt24/P7cLlOzMzma8qbKamxkJ9kwuHxMzEvDrVSSWmtBUmGwrRIlu9spDC1f54eiUBDEARBEE5Adrudzz77jP/9738sWbIEWZYx6nV8VdpEtcXD4hIFNpePv/n3BTI+K5XoNUokGSRZ5rlvK5FkiDZo8Hj9WFw+9u/fz6xZs0hJSeHiiy/m0ksvZcyYMT/rVaWONaPBwPcrllJXvgO/34+MjEqlRqVS4/f78Pu8fPT0fahUKtQaLa2NNcTF9i2XRPuSozXL30QbGY/k84Ako9TpUajUSF4Pkt8Hkh+FQoFKb6Rt/3Y0M8Yxfvx48vMG8NV+8yHv2PnyrfGJycya1f1kc4PBwN5l8zDEpeD3elAqQIECpVqDLEsolSokvw+/34ckSShUatzmBgzjBnPOuefx73/uZ9HeQ4fsdNYWDSeNHMGgQYN61U9Hqr2fn3vlbWKiI3EfzNptNOhRq1S43R4UCnht3ofIskxMdBQ7d+9h9uknxtMNg9HIB2uqWF9pAcDt9eOTJGRJRqtRoVQo8Hi8KBQKlKrAZ4hGpaTZGkhuqdPpunv7bok8GoIgCIJwgigvL2fJkiWsXr2aTz/9FIfDwaRJk7jsssu48MILWb58OZ9//nmf3ttkMnHvvffS2NjIvHnzeO+996ivryc/P59LL72USy+9lIKCgn4+ol+eH374gU8++aRXydGmTJkSsrRub/zlL3+hpKQk7P01Gg233HILo0eP7lN9XVm8eDHffPMNkiQhy3K3T8zq6upQq9WkpKRw2WWXMWTIkH5tS3+TZZmHH344mFslHDqdjj/+8Y8h+SyOlw0bNvDxxx/3KWFfYWEhV155ZZ/rFoGGIAiCIPSR0+nk22+/xeVy9bqsQqFg4sSJJCYGJsXKsoxGo8Hv91NYWMhll13GJZdcQm5ubn83Gwgk61uxYgXz5s3j448/xmq1olQqueiii3j33XeD+1VVVbFx48aw31ehUDBu3LgOa/n/XJSWllJWVtansu1L5qrVvRtQsnv37l4FEyqVismTJ/dpueItW7ZQUVHR63Lp6emMGTOm1+UAamtr+eGHH8JK2JecnMz48eP7/SmcLMusX7+eurreLec6btw4UlO7n/dwrPj9fr777ruwkjC2O9rtF4GGIAiCIPTRE088wQMPPNDn8qefNodFi39cb/+RRx5BoVDw4IMPHtPhTE6nkwULFnDxxReTm5vL3r17g6+NHDmKrVu39Or9Tj55CqtWfdvPrTz+3G43sbGxOJ3hzVnozJVXXhn2jeDJJ5/MnXfeSWxcPG3m1l7Vc8UVV/Cf//yH22+/PZjlvTtqtZrLL7+c888/P6wb/s7s37+f7OzsXpc7edIkVq8NPzP6tm3b+v1JwY4dOygqKup1uYkTJrDg88+56667aGnpeRUxjUbD7bffzqRJk/rSzG598cUXzJ07t1dlJo4fx5p13/Pyyy+zcOHCsMqMHDmSRx55JKx9xRwNQRAEQeijpqYmMuMiWHTTSIprrNRbAxl2XV4/cRFaEiI0aFQKNlVZidCq0KgUVJvdnFaYwP2f76a2MXQi8EMPPXRcjsNgMPDrX/+aX//61x1ea2xq4szLbyK7YCjR8UmYomKQkbG1tZKYmokkSTjtVsxNDfh9Xr5b/BGN9ZXH4SiOPofDgdPp5Ozbn6Jo2jkAVO/agtftIiImnoiYBFRqDVWlG1Hr9CiVaqwt9RSeHBir/5ez83n33f+RZFRSmBLRbV2l9Q4WLfqC22+/nTZzK7kXPYDaFIfkdhCROQS1KQ6vtRltVAL2A6UY0/Jxt9Qg+31ULXmRxsYm1qxZw2uvvcaE7Mgelzj+Zo8Zp9OJLMsMnHsTqWNPx2NtQaXVo9RocbXUYUodgEKlRqUzYt67DbUhAqVSjaVqN8VvP0RTU1OfAo2mpgZmDU1l+pAU0mON6DRKEkx6YiO0bNjXjFEXGIZVVmflsc+2hRU49b4Ngff8002XoVIpSUtKwOf3k5oYh1qlIjEuhrjoSL7fVorkl5CB+Uu+YXd1IytWrOCNN94gunAKSk332c1bty0kOjr6qAQa7cfw9lUjaLa3fxZJxEVoSIjQBj6LDliIMqhpc/j4cHMt1Y2NADz40MO0OHyYckZ0W4ezdjcLFizgjjvuICqq5wnjItAQBEEQhCNg1KmJN2mZWhDP/M11lDc7mV4Qh059MIGe20+UXk2MUY3TI3HZuDQAovVqans/ZPq4MEXHMuvCa1j52bs0VFcw6uRZJKVlI0l+HDYrsiTh9/mIT0knLSefsp9poNHOFJuIKTYBAIe5CaetjZTcwah1OiS/RFJOAXZzCx6nncTMvOC+SpUKWZK4+eRMrhqX0m0W7No2D3d//uOTJU1kPClTfk396vnYD+wgdth0DElZyJKEMW0gHnMdsuRDF5+GJjIwudzv9wPwwkUFfFPe1m3278vf2RncP3X0HBIGB5bLrfz2Q7z2NpJGTEelDSTf8zlsGOPT8TotJI88FV1M90sth2NgciRRBg0HWuycWpgSTCSXnxxJs92NWqkkM9Z4xPX05KLTp7J++y7MFhuzJo9Gr9XglyQsNgd7KqtJjo9FoVBw8ugitpftZXd1c7DfBt38Ki2bFuNztBFTNA2lRo8s+fG7rHjM9cQOO5XSJ8/D5wt/ueC+OCU/js+21lPe5AxN5un2EWVQ02TzkhNvoDA1kuqqQBmfz0/K9KvIOOuPNK6Z3+UxSG4nZf/9TfCYeyICDUEQBEHoJxeM6nxewtBU0zFuydEx7ZxLetznhxWLj0FLThyjTru4T+V6yoL91PIDnZZLnnxB52+YNbTLur4uayU33tCn7N9Zp1zYq+M6EheO6/5pyP5G2zFpx6VzT+1TuZYtS9AlZKKyR2KvLMbb1ogxcwgRmUPRJ2TTunVZP7e0axec1Pm8i6GpkcF/f1Xa8clQ88ZF3R5DzZIXetUOEWgIgiAIQj9YVNxIfISGVqcXt0+i0ephSIqJoWkm1EoFGyraiDKoKWtwMCYr+ng3t9fWfvUZ0XEJWNta8bpdtDbVkzOoiNzBw1Gp1ez4YfUvbpnc4m8+JyImHqfFjM/jwtrSQEreUNLyh6FUqWjYtwt7WzODJ3VM8tZTFuz8REOHbU0bFqGJjMdrb0XyuvG2NRKROYSIrKGBvBlVgQnjXlsrJP44EXxGQSyJJm2XdU0ZEM2La2pDtlV//wW6qHg8NjOS14XL3Eh01hCic4pQqNS07tmMx9aCIT4dlbb74ULh+mJLFfEmHa0OD26vRIPVRWFaNEUZMaiVCpbtqO35TfrBZ1+vJiE2mtY2Ky6Pl/qmVooKchg+aABqlYqdeyuprGnsUC5u5BxU+q6HxMWOmEndl88dzaYDsHhHI8mRWlqdvoOfRe6Dn0WRqJUKlu9qxqDpfFWw+NHdL8lrzOjdCmEi0BAEQRCEI7R2bys1FjcROhUyMDU/DrUyMB9jV72dJpsHjUrJoKQIfJLM/mYHjTYPHP2RIP2ioboSU3QshohIkGVGTp6BSq2mub6GA+U7yS4YikqtJiIyGmtb7yYt/xTV79uJpamWxOwCnG2t5I6ajFKloq2xFltLIy67BXPdAaIS05BliYb9u2g6UB6YZK2Avc3OTrNg72xwEKFV4vHJ7GsOXcnMUbsHXWxy4EZWloktmopCqcbdUo2ntQ6/O5DMTvK6Uao1IWU3HLBS0+bpNvu32ekj8eD+5v3FKBQKNAYTIJM0fBoKlRpXSy2WyhJiBgTG8av1JvxuJ+62jjfdvVXT6qAm1ohJr0GWYdqQZNRKBdurzDjcPmrbnAxIPPpPBjcU76KlzYbJaESWYcbEUahVKkr2VPDBom+YO30CZqsdU4SBFrMlpKxl93pc9XsxpOYjuR1EDZoQOEetNah0EXjMdfic1qN+DLFGNdtrbOQnBY7hgpNSUSsVlNbZkGSYXhDPtmoLLQ4v8GOODFfTAWqXvdp1+9sacDdX96otItAQBEEQhCPgcPsoSIqgIOnHbzL9fhm/Xw5MrE0wMjAhEFG4vBJ58YF/v72+5ri0ty+MpkimnPnjEBr/wcRrfp+PtJyBeD1uBhQGbj697r6vyPRTERETH5wMDuD3BfpC8vlIygkkk0vMDvytMwaGqqQZTciShEKjZnFpC+nROty+wKTiV9apUCkVuL1+VEoFkgx7mpyo1T9+66wxxZI4/rzgz7LfH/gjyWijEzk0tJA8bsAUzGXxz5VVqJQKZCBCq+L19XVIsozLK6FWKvDLMsU1NmYOC+xviEshoXDij3VJPmTJh+T3EZlRgN/jJDo78M22LMs0Fq8+4j416tScNzor+LPPL+Pzy8QYtGjVKrLjTWy0Nh9xPT3JTkthxsT0H9vhk/D5JExGA7+aPQWAkYMHAvD+FysAgv184LOnQJZBllHpI6hb/jqyDH7nwYBEocB+oBS1eiJHU36SicKUH4dItX8eRWrVJEZq8fgkBieb8Hh//AxSq1U0bV6Co6q02/Z7zfUhx9wTEWgIgiAIQh8lJCRwoMXOsL/07Ubr9NP6lnfgWEpMSOCLd17gi3fCH5t98slTjmKLjh+j0YjBYGDB03ey4Ok7+/Qel1xyaVjL26YQSOSnVCqJjoll3wePs++Dx8OuJ3HCFUyaNIlrr702rFWassequeKKK/jyyy9Z/8wNYddzqISEhD6WS+LdtWt5d93+o1pPOO8585q7elVu4oQJTJ8+nauvvrqb5W1/zPyuGT2Q6667rq/N7Fb7MZz01+/CLjNx/DgAHnvk4W6Wtz00c302I0eODGvFKRB5NARBEAShz/ozYd+Jqrq6mg0bNoS9v0jY17Xo6GhOPvlkkbDvMHV1daxfv14k7DtCImGfIAiCIPzENDQ08OKLL2K32/tUfs6cOUyfPr2fW9W/Fi5cyPvvv9+rRG2nnXYal19++VFs1fG1efNm/vOf/+DxeMIuM3jw4D4ncHzjjTdYtiz8VYkUCgWXXHIJZ5zR/eTdzhQXF/Pee+/1epnVGTNmMGvWrF7Xdyw5HA6effbZsJLnHSopKYnf//73aDSannc+xAcffMCmTZt6VQYgPj6eW265BYOh46T/zkiSxH/+8x9qa/s+If54fBaJQEMQBEEQuvHMM89w++23k5MY2fPOh6loshITE4tCpYYw/7c9/fTTeOftt3pd15EYN3YsO3bs4KRhQ1AqlT3uv720DENEBK+99jrXXf+bsDNlxyfEs3TJl31K6nas/fa3v+WFF14ga1hgPL2ih34x11XQVl9FXV0djz76CB++/35Y9QwfMYKly74mISkZq8uHKWNw8DVZkrqst23vZsaedBJLvlzE1CknU1PT85wfpVLJnXffw4YNG3j//feJSs0Jq40A1vpKMjKzeOmF//Kb668L6yleZGQk7384nzFjxvDf//6XRx9+KKz8C0lJSXy9YiXJycnccccdvPHW22H9/gwaPIi777yD8847j7TEWHTa8IIGi81Bc5uN1atX9yqRntfrxWg0IqHElJgWdjmf24mjpZ7Fixdz2mmnhVVm8+bNnHTSScRGaIk26noucJiKJitxcXGgVCNLPXfmgLwBrF71LVpt16uVhUPM0RAEQRCEbjidThKjDKy5LTAs5KXvDnByXiyRehVVrS4y4wzBxHz1FjcxRjUalZJhaZH831d7eX51Hbq0QT0uGwnQun0F8+fPP+aBhtfr5YoLz2bsiCKMBgNKpYKJY0bR0NRMSlICm4tLKRqcT3VtYCLo8lXrePbN91ixYgU1NVVknnt3j3X4HG3s/vK/bNq06ScRaHi9XjIKxzD1xkdoriwjb9wsWqr3EpWQhsdlQ6OPoKZkA2qtjrjMgbTVV/HhfRfi9Xr55KP5pOncnD6k+yVsN1ZZWbp8BS0tLYH6zrgFU+5IrOWbMOUORxuZgNduRp+YBZIfn9OK3+3AZ21BufpDPN5GSktL2bq9mEtOSiI7tvtlZv+3qZ7PP/uUmLh4kk+axeCL7gNA8rmRfF6iModgr9uLLiYJd2s92qh4PNYWFCo1B775AMvGT1m+fDm1tbXcOT2z27pkZJ78uoLVq1czZswYFi1aBM42rhvX/ZC6BpuH177fydatW5k9ezYfffIZLkMiCWPP7racbf821q5eRO1llwLwpyvmkJsajyTJxEQaqKhr4eTheeyraSIpNor6Fgvx0RG0WOyU1zRx3f+9E3bA3M7v9+Pz+ciZfS2p4+diPVBK/JBJOBoq0EbGoYtJRqkOZFJv3bMJY3w6fo8LS2UJW1+6vVf1te/7lzMHkBKlo9XpJSUyEHAcMLtQKxXkJQRWFUs0aYiL0PD9/jaMWhVmp4/PtjXwxS4bqvgsEiec111V2A+UsGH9Avbv309BQUGv+uRwItAQBEEQhF6Ii9CwZp+Z6QVxnQYZamUgyAhSBNbPTz/z991m3I0ddipKnZHaA9uO27FdceE5zPvoc1rbLFhsNmKio7A7nKQmJbJrzz7sDicpSQkhTz0ikrLCOjavrYWaL/973I6tr9IGj6blwB5KVnzEgLEzAFBrDbhtbehM0fi9bly2jgnvZg2K5fenpHeb/Ts/0cDSXaHLAccMnoi7pRpHdRm6YWkhQYbHXI/s86KJTghk/7b9uKzs9RNSKa6zd5v9u6zRwaHTwqOzCzmw6sfM315HGxpTDB5rC36fB3dbIwqliujsodSbYoLlshNMPR7bqfmx/GfVocN8ZEakR/RY7leJCbz2fd0hpSBm2Kk9XmMR2cNo2bQoWO6sScOIitDz3tcbKN5Xw8zRg7HYXcREGmm22LHYndhdHtQqJWMGH1ngGzvwJBIKJ+FsrqapZDVJI6aj1OhA8uOxmfE3VeNpa0IbEUNs/miMSVlsfen2PtVVmGIiPymwct38zfWYXT6m58eiUweyf3v9MqX1dlxeiZQoHWOyApO2Nx2wgMJGdOHJPfZl5MCxNP+w4Ij6pJ0INARBEAQhTIuKG8mM0WPSeSmusYYk5cuO07Ohoo1og4b1FWZiDaHDNnrKuGvZ/QOO6l3H6cgCPl28jOyMNCIjTWwt3kldYxPDhhQwonAwuVkZrN24haYWc4dyPR1bW8kqvPaO5X4Kdq36nOiULHSWSOp3b8fe2kDigEKS84YRnZpNc8UupC6GA/WU/fulNR2HOzVtWIQ+IROfPhJ7RTGeQ5Ly6ROzsVeVIksSHksTHDKqalW5meHppi7r+qHS0qGumvVfYEzMxGOIpG3/dtzmRqKyhhCVXYRSpaa1fDOSx0Vz6dpeH9vKPeY+9cnqLrKU93SN1X87r0OZBau3kZUcR6TRwbbyKupbrQzNTWP4gDRyUuL4bls5SbG9HxLZFbXOiDExE1v1bvxeV0h/RmUVYqksoWXXekxpA4+4rkU7msiM1WNyeimutR3sxwiGpkaQHadneVkrHp/Uadke+3LV/464fe1EoCEIgiAIYTqjqPsVoqYVdD5Uxt10AHVEDCq9CWSZmKFTg4mw/C47nrZ6/I421JFxnZY/Vs49fWa3r8+eOhmA7SWhAZHaFIu9shhDaj7IMomTLghJ9KXUGZGPQQ6Eo2HQlLO6fT1tSGBI3d4flodsP9DqJkqvxqRTIcswNS8mmJSv1uLG45PRqDqunJQwpvshdtH5YwFoWP0h2H7s0yi9muJaO/mJhkCStpGJgSRt9XYGJRnRqpQ02b1wyKqkaePO7LauxKIflyluLl0X8lqssfP6qtvcyDLEGtT4D5sL0OLwUmvxdOiT4lo7Do+fRpsXXyfzB9zN1Wijk7r9/VHpOmbkPnvy8G6P7/QJQwGoqO/dxPGupPbQn3GDAkvJeqxHXt8ZQ7tf4vfsYZ1/Vnlaa/G01nbdl+Y61BG9X62sKyLQEARBEIQwrN3byo46O/mJRhxePxNzY4LZv81ObzD79+QBMeyos9Fi91LTFpgwq0vIJHVmx7Xz1e5otDHJ6OIDCcJslcXH9JgOVVPXwLOvzWPwwAHYnU5OGT8GtVpFdV0DLa1migbnU7xzN2q1isbm0Bul6EETiR7UMQnZocenT849VofSryq3rqZhbzHxWQV4XQ6yhk9GoVLRuLcErSGC6NRsqratpWFfaUi5zFgd103ouGxoZoyO5MjABNvSekfIa86GCqqXvooxLR+/20H0wczMHnMdSo0eT1sDsuRH8rrwOUK/+R+RbmJwcsdU81mxeqL0akakm4jQqmhfO81jbWHvl69gOlhX/JCJKFVqnC21uNsaic4pwrx3K5LPg1KtxX1YoDgxJ5qJOdEd6osxqIPHpzwsjoozajrtk9x4PcmRWtKidZ1O+tbFp/f4++NqCF2Sd92OfeytbWJQZhJ2l4eTh+WhUikprajDoNOSkxLHpl2VeHx+NOrwks91p6lkDZbKEiLT8vEd0p+WyhIiMwdjq9mDx9KMMTkbXdSR5wFZu8/84+eRx8/E3OhgYClJUJgSwZZqKylROvITf7wutLGpPfalx9xwxO0Lvm+/vZMgCIIg/Ew1WpxY3H4yY/WU1NkwO7xsrLSQFq3D45MwaFV4fBJev0xJnY0hKSYUCgUHWl0ogKoFT9Pw9avIkgTIKJQqFIpApmYkCVkODHHwOm3EJxyfvBpuj4fJY0dRUlZOY3MLe/buJyczHZfbgynCyJfLV+H2eHC7PVTXBW5EIiIisNXtZ+OthT0em+QPLKVqMpmOy/H1ha2lAUtDFZLPR/2e7USnZFFVsh5Zkmg5sDuwKpRKRWzaAA5N6xARYeKpFft4eV0DkiwjAyqF4mDuBzmQPBqwOD0olUp0usCkXtnvRW2Mxn6gFFnyI/u8qHRGvNZmJJ8Xn92MQqnCkJyLp60RIgPnAGD2C1sxajVd1oUsY3F5OeP0wCMNj7UVY0ImlsoSvNZWWndvRB+XiuT1oDFG0rLrB3wOCyiVGOIzsFbtOnhsEZQ3WCn8v43dHpssyzi9/uD5jogw8f7O1h7LOT2h10lkRAQ7Fj1L44o36el3Bwj2ZYvVTlZyLMX7amixOvhhZwXpCdG4vT6Mei3fbduD1+fH7fVxpOuvNpWsJmX0aUg+L007ViPLEq7mGpRaAx6bmaaStfgcFhRKJZYDu9BF9f3J5Ve7mtnbHJgY7vXLrNlrxi/L1La50WuUtDi86NQqNh6w4PHJpEa72dvkZEuVFQVQt+xVmld/QDh92X5tHQkRaAiCIAhCN4YMGYJCoeCat7f3qfzkSZOYe1b3w28ONWHChD7VcyQyMjNYuPALvloZfobzUaNGcuONNxIVFRX26jkJCQlMnTq1r808pjIyMjDXVfLFk78Lu4zBYCA2Npa33pnHN998E1aZoUOHYjKZyMjIoHTVe9Svei/s+rLPPY+ioiLefPPNsJe3nTt3LvPmzWPBggWs/8dVYdcFMP3UGfz2t78lJiYmrHMeGRnJhRdeCMDjjz/O6NGjw17edty4wDCj1197ha+//jqs9hUUFJCbm4tWq+Wmp94Nq0w7vV7PgAEDelVGq9UyIG8ge1e+y4GVvatPo9WSn58f9v65ubkYjQaeWLKvV/UcasrJkzlz7llh5csZMGAA6enpfa6rncijIQiCIAg9sFgsfcr+DZCYmNjvWYz7m9vtpqSkpFcJ+wYNGtQv33ieqCRJoqSkpFcJ+zIzM/uc6d1ms/Uq47hCoWDo0KF9znPQ3Nwc1k3/oRISEsLKs3K82e32XifYjIyMDDt53qF8Pl+vkwNC4ImN0dhxqFt3XC4XFkvHSf3hOh6fRSLQEARBEH723nrrLZ547BF83t5lQj5cVHQ08959j8LCwrDL/Otf/2L+Rx+Hvf/sWTN58MEH+9I8PvjgA/70wJ/xeL1hlxk5YjiffvJxn25AlixZwt+efBKfL7z6IiOjePqZZ454bf7+snLlSn578y04HeHnM8jKymTJl4vRarVUVFSEFZwlJSURGRnJ9TfcwNJly3vc/1CnTp/K66+9htVqpaGh57HzCoWC7OxsVq1axWOPP4G7F4GSApg+bSqPPvoodXV1Yd2sGwwG0tLCT1bXX1577TXeevPN4HCfcJxz7nncfvvt2O126urqei4AZGdno1arkWWZioqKsIOz9nMOUF9fj81m67GMXq/ntddeY9lXS8Kq43BKlYrrb/gNkyZNQpJ67pf4+HhiYmL6VFe4RKAhCIIg/Oydc845fLdsMZeOCUxE9Uky6sNnqvZARua5bw/w3//+l5tuuinschlZ2ZhdEilDO06WPlzjrg34LA3Yw7gp6cyll17K/M++IHP6ZShVPY+ONu/dQlPxKpqamoiP7z65XFf1ffLRh5w9fnCP+8rAh6uK+ec//8kf/vCHXtd1NNx77708+eSTjPzVzWH1V1vNXspXf86mTZt4/LFH+fiTT8Oqx2g0UFNTS0JiIrr0QmIKA6s5yX5fIGt8Fyy71mIt34jVaiU1JQVbmN/SnzX3TFJS03jltddJm3hOWGUAzOVbcDdV8t6773LBBReEXe7111/n6quvDnv//jBqxAhqKsuZNjy8RQbWlh7Ap9Kzd99+UlJSaWszh1Xu1Bkz+HrZMm677Tb++c9/ht0+g9FIXW0t3333HWee2f1qVIfSaTWkmlSclNn7ZXeXl7Wij4qnrr4+rP3VajX79u0jIyOj13WFS8zREARBEH4RTsqM4v45gTHYGyvb8EkyFS0u0mN0ZMToUSsVGLUqNh+wkBGrZ2u1lYEJRkZl/rge6AvfVfW6XskvUTDjErQRUaQNn4LGGImt8QCRydnIfj8epxW3pQWfx0Vi/ki2vPP4ER2nLjqRtPFzUWkNmPduIXH4VJzNNejjUvG77Kj0ETgaKlFp9Wgi42gqXtXnuiRJYmh2MlfMGAlAXJQRp9tLUoyJ+EgDa0oridBrsTrdKBUKFm/YHdY3rcdSXHouA08+C8nnpWHPVpLzRxGVmoPT3IgxLpnGPduITMrE47DSvL+E8tWfA7C7rIzJuVH8YWoG35absbn9jEw3oVUpkWQZh1ei1eHFL8Hflh+gtjaQvC56yCTiR81B8rlRag2otAa8thb0SbkoVGpcDfuQPK6DCdRsWMs3Br4Rt9u5c3oGLp/UZV2jMiJ5blU1e8rKSEpOIS5vBGkTz8VRv5+o7EJ0MSl4rM0Y4lLxueyodEba9m1FF5WI2mCidc9GSt64n/LycgA+uLqw22MblRHJlfN2Bfc/liTJzzkThzBxSBaJ0REkREcQodNQ0WAmOykGvyRhdXqobbECYNBq+HJbFS0tLbS1mUk/8/fIsozfZcOUOxKlWossSUgeB15bK5EDRlH71UuU7d4TON979mBIH0zupY9i3vFtt+Wsu3/gwKd/p66ujr1794bdl9e/vxunV2LmoATGZ0ejVMD+Vhcj0kxEG9RYXD7yE43sbXaSFqXD7vEToVWxpdpKUqQWu9vP2lo3ETkjyL7wT922U603sW/en6isrBSBhiAIgiD0p9FZgWU5D7TWUVpnJyVKh0qpwOrykRylo6rVRZRejdSPD/11UXHUFq8m46QZHYIMr9NOREIa1rr9R1yPIS6F2PzRHFj1IT63A7/HhT4uFSQ/kt+Ht7kGZ+MBTGkDiUjOOeL6TAYtk4dm8/432ymuaGDGyAEgyzSY7STHmKg324g1GY54ZZ+jKWXwGHZ+/QEKhRJ9dDySz4vWGImjpR4UCqyNVRhjEkjMGxZSriDRyOTcaCbndlzmtd36itAx9fqETCLzTqJhzXx89jZih01Dn5CF7PPgszbjd1hR6gygUBKRGTpEb3x2FJO6qQtg6a5WGg5ZiTZ51EyqVn2IpaKExJhkDHGpyJKE7PfhaqlFoVSj0huJyh5K656NwXIxEboejw0gMVLf7etH27mTCnn/m20U769nxqi8kCCj3mzDqNOgUilJT4gKKReZP47YYad2+95tJaugdU/wZ31iNtGDJxM9eHK35RSK0OVy9RpVWH2ZHKVnf7ODrFg9ZwwNPGGcv6WBkjo70/JjyYzRY/f4MWpU7GpwICMTY9Bw5sGcGvMM9YAHQ/KAHtvpqNndbVv6iwg0BEEQhF+cRTsaiY/QYNKp0aiUrChrOZhV10RchIZGm4dorQqfJLO9xsqwtCPPHqzRGYlMysR8oAy/14WjtYG4nKHE5w1HoVTTun8HtoYD/XB0UHsw47O3i4zPALLUu4nA3fn8+51kJUUTadOybV89DWYbQ7OTGJaTTHZyDJv21NBiDX8exLFWvnohUcmZuIwmmsq342htID63kIQBw4hKyaZ6+2rM1XuJTs3pUHZRSTPxERrMTh8unxSS6VqtVLC5quMwuGBmZkMktvbMzBlDMGUNRZeYjaOqFIUSnHV7Q8p9X2FBpVR0WVdpfcehVbXrv8CQmInaEIllfzEucwNRWYVEZQ9FqVJjLt+Mu60J896tvT+26r4N8etPn6/bSVZiDJEGJ9v21dFgtodce6t3VHSaJ8O65wdUugh8djOS1xWSHVuhVGPbt7nT+po3LkITGd9lOXtVaadle+rLzs4dgFGjIjNGx55GR6CczcuQZCMnZUaiVsLyMjNWl49p+aFJ9npsZ0XfVtHrLRFoCIIgCL84ZwztIcN3fv9n6M6ZNLfb15MLx9NU3vFmry/CzVBc+8PifqnvrB7maEwdFhhH/4cXFvVLff0tb3L35yZ3/GkANOzeErK9zuLpNNN1dZubOosHt09Cp+44Fyh+dPfZv6MOZv921ISuQmXSqXrM/l1nCZ383dO1kHBI9u+2faHXX1fZv+ssHvQaJVE6FW5v/wWsfXHWhO6vvdPGBBYe2LwndPlfld7UfTZ7vQmvtZlD1/Ty2lq6z6rdVo/f0YYmquPnS1d9eei5a88hcqj2JxtdOXtYx+R/XktTj+1U6Y9NPhsRaAiCIAi/CK0OL6+sqSI/qT2T7uGZvb1E6FSkReswalU0WD3YPX7cXomsOD0t9vBXcjqcteEAOz5/iZiMArxuB6lFkwLfKjZVIcsyPpcDn8uOs7V/MvKGm6XY2dxz7oVwrN5RQXFFAwXp8TjcXiYXZqFSKaltsdJotjMsJ5ndNc0n3PyMdtXbV9O0dwexmQX4XA7Shk1CqVLRvK8EhUpNXPYgaravwdoQOkdHoYDUKC37mp34Jdh4wBK8dgwaFR6/RFlj6JMcZ/1eag7L/o1SjaOqFGP6IJy1e4LZvz1toddDi91LSpSWPY1OsuN0lNbb8fpl6iwe6q0e3F4Jlze0j5tL12CpKMGUno/f5SDukGtBlnwYEjJx1O9H8nmw1ewJrqJlc3lpdfhQK+m0PqNWidsr4TyOgUZts5UXv1hPQUZCyHVXWtmIUachOzmGHRUNmG1OmiyhWdi91mZ0idk4a/egS8rGXlWKLEk4a8pAlkCpwt1SExJoIEtoY1NxNuwDvx9L+cZAQkVLc2Dom731YLnakLpcXn+3fdl+7pyHnbu1+9ooOST794TcaNTKQEZ5WYYhyUZ21juINaoZeEj2b5+jDVTqbo9Ncvdu+d++EoGGIAiC8ItQa3GjVirY1xS48Xv2m0osTh82j5/sOD06lRKfJOP1y/gkGY9fIi8h8J93ldlFm8uHX+rDRAMFNJdvQ4FMXfFaZFmi6oelKDUavE4HsuTD53aiUChoPRB+HoWuWKp20bB5GV6HBWtlCbroJKwHdoIsBQILWQalEn1sMm37i4+4vi3ltSzfupe6VitrSiqQZJmvNu1Bq1ZhdbrRqlXMW7EVr0/C4e57sHa0tNVX0VKxC1tTLS0VO5FliYY9W1BpdLjtFmS/D6/TjkKpxOv68WY1NS2NRUtLWFTacw4FpVJJQkLgm2dnTTkKpQZHzS5kScK2fytKjQ6fw0LThoX4XTYUCiXa2BQsZd8DgWVIVSoV/14VXmA4fVpgLklbZSmNW1fiaq2nuXQtyDL1m5ehVGvxuewg+fF7HKBQoo2Mp61iBwApKSn4/BI3vB/e9ZiSkhLWfv1tR2UD+enxbNtXi83p4b2VW4mLNOLz+9Fp1Pj8UvDPtn11gJLo6Gi0Oh21S14Mq46C8YEEmqkpKdgWLqTs+RvCKtd+zpOTkwHC7kutRs3HWxtpsAV+V+qtHtbttyDJMsvKWtGqFFjdfrQqBT4p8FkVa9AQoVOxeq8ZrSaKpopt2Cu2hVVfe/uOFrG8rSAIgvCz98wzz/DAn+7HF84a+O3/K3ay+m10VBSLFn/JmDFjwq77vvvu4933Pjjk7WUUnb35QWecPofnn38+7Pc/1Isvvsjtt9+BN8y8FgDDh49g/ffr+pSI7f333+ehBx/E6+08V4NMaDdGRkXxxptvMXLkyF7XdTQsWLCAK664Eqcr/PkjGRmZbN2yGVmW2bJlS1h5NDIzMxkwYABnnHkmy5Yt61Ubp06bxtIlS9i3bx+VlZU97q9QKBgxYgQrV67krrvv7SGPxuFnCGbNmM5LL73E5s2bw8r9YDAYGD16NCpVx3kQR9OTTz7Jyy++0G3/H350v7rgQv7+979TUVHB/v37w6pn+PDhxMbG4nQ62bhxY9h5NLKyssjNzUWSJLZu3RpWoj29Xs/rr73G0iVfdnIsoZ8bnX2OKFVKbvrdLYwbNy6sp4cpKSkMGjQojKPpOxFoCIIgCILQLavVitMZ3s240WjEZDo247/D1Zv2Q9+zRAuCEEoMnRIEQRB+NhobGxl90qiwE1YdLi93AA/8+c9hfUsNkJGRwbRp06isrGTVqlVhlyssLOSkk07iissv4/0PPgyrjEIBv/vdzTzzzDOsWbMmuD5/T1QqFaeeeirJycns3buXNWvWhFUuLy+PiRMnsmjRIs4666yw51eoVCq+/vprpk6dyrfffhv2t/CnnHIKmZmZYdXRG71tP4BOr2dHcTFGo5EVK1aE/e3wjBkzqKmp4ZtvvulVfSeddBKFhYVs3LiR0tLSsMqMHTuWnTt3cvkVV+LqxRMZgBEjRrL6u1UsXboUs9nc4/5arZbZs2cf9SzS7fbt28fkSRNpam7ueedO6HV6/vzQQ2EP6Wrv/2OttLSUjRs39rzjQePGjaOgoICmpiaWLVuGz9dx8vjhEhISmDVr1jF/4tROBBqCIAjCz8auXbs4UFXNjSdnkB3bu/X9Nx2wMn9LGZdffnmvypWXl3PtddfzzcoVYZcxGI20mc0sXbqUMQNT+NXknm9y3ly6meXLltLc3MzJJ58cdlADcPHFF/Puu+9yya8vYv2G8G5slEolTU1NlJaWIkkSr/zmFLRqFR6fH20ny4VCYPrHVf9dwa5du8jLy2Pq1Klht7E9A3N/a2//jPvfAsDv86BSa7vc39ZUzfcv3Ud5eTkvvfgiH338cdh1FRcXc+ddd/Pl4t6trpWWkcnePbuZPHkSbnd3Q51+VDAwj/POvwCHw8GQKx4Lu67m0jVs/P5zPvzwQ6644oqwy91777389a9/DXv/I7Fjxw5q6+q567zxJEYZey5wmAfmfcv9f/oT3m6Hjf0oLSOT6gM9B8T97fQ5s6k4EH4S0MEF+ZTuKuNPf/oTL730UtjlvvnmG0455ZS+NPGIiUBDEARB+Nm5bEwqu+rtWFw+ovRqnF6JsdlRIdm/TXo1aqWCFruXmYPjyYlvYf6WeqIGjmHIne/TuO4T/I42oodORanRBTM1e831xBRNw15RTPFfz6G1tZXmllYST76YAZc/0WO5xnWfsPeNO/F6A/MoCjISKMxKQpYhMzGamhYr6XGR2FweTHotFQ1mmq1OCtIT2GMBi8WCLMsMvvUNogun9Fhf2X9vpKWlFYCWlmauG5/C/bOy+WRbI20uP1PzotGplfglGZvHT73Vi1IB17y7KziuPCpCT25SNFanB61ahUmvJinKgFat4vs99UToNdSbncRG6FAoAuPG278pL7zrQ1yNFd22ce/b99HccvSyS+tNUWSNP439axdiiEkiLncolpq9GGKTcLbUo4+Ox2UJTOqOziwIljO3tnL6kDiePT+/2/7KiNEx54VtB6+FFuLHn8vAa/4B0OP5qf3qZZqWPIvL5cLt9vDMeXn4/XKXdU0bGMN/VlUxrzhwTk1JGWTPuhrz3i343Q689jZiB47G3daILiYZy/5tGBIy8DltaEyxaKMTqPv+8+D52f2ncXy2vanb+ua+WkJra+tROz9dSY0zkZcSS4vVyZDMBDbsrqUoOxGdRoXPL9Fic5GdGIVfkrE6PdjdXnx+icQYE9VNbQy44v9InHxht+fAWbObpiXPHvNjA2g1m7nr1ExumpTW7fU1bWAM//ymig92Bq7R1tZWogdNZPBt73R7bBHZw9h017jjcu7aiUBDEARB+Fk6syiwlv38zfWYnV58khyS/bve4sYvw6zBoevUKzVaWrctx5A8AJ/djLOmLCTZlTElH9v+7TgO7DisnC6scq76fSHl0uOjqGxow2x3kRQTQXpcJH5JxueX2FXdRHSEntS4SOKjjOyx/DhExrZ/GypDFBpTHCqdEUvp6h8TcsWkYvf5sOxah0KtBX6cwKpTK1m+u5UBCQbMTh9lTc6Q5GH5iUbe3dRx6NmwzDg+WFdOm8PDqUPTcHh8WF1ekqONtNjcaNVKdJpOEqPt3UTUwLFd9oll1zqUGl2vz29f+FwOWpq2Y4hJPJgB3INSrcZSuw+XpYWo1FxUmtCnHVqVosf+WlDcFFJGqQ5cC5rI+G7Pj3XvZrzW0LI76x3MGRzXZV3ba23oO3miZK/ejdfeRsKI6Ug+D2pDJG5zIF+Co/EAap2RiJRcLJWh1+3y3eZuj+2HA1Y0qt4vFNAfTjtpAEnREQB88F0pFqcbvVaNXqPCL8n4JZmymhZcXj/xkQbGF6QBYNBpAFBq9T3+Tpq3h/8k8mjQh/H7uGRXC/XW0Kcz4XxOtZWtO05H9SMRaAiCIAg/Sz9m/1ahUSk6zf5tUCtZu8+MSRd64xZOQjWVruNk4XDKeVqqO2w36jVkJUVTVt2Ey+MPZtYePTANlUrJpj0dlzWNyh9HVMH4busCqP92XofXzijsPgnYoKSOw1UWbqogK95Eq97N9soWGixOCjNiKcqIIycxkk37mrA4Ow5ViR48icgBJ3VZV0zRNFo2d1xl52hQ642YkrIwV5Xh97hxmhuIyy4kPm84SqWa2uLVtFaUdCjXU3+Ny47qsC3spHyVoUsMj8qIZHwn79dubFYU6/ZbQ7bV/RCa/dvd1kBUZiFROYEs0ObyzcjItOxa3+H9Th8Sh0rZ9SpoUwZEw9cdr9ljaeEPe8hMiMJk0LK9ooEGs4PCrASGZSeSnRTN6tIq7K7Oh0n1dB4MqQOxdrvH0dfT9XVOUQL7ml1QHZoLpKdjixww6ojbdqREoCEIgiD8LPU2+/fK3YFhCT57G7XLXsWQmo/kdhA1aEJIxmBPWz0+awuSL/TGxtNa12M5v8OCx1zXoS3hZNZetD50HX77gRIcNWU9ttPvtAE/BkXVbW5eXVdLfqIBh0diQk5USIbifc0udtY7ONzck7K7beMpQ1I73W6v2I5t7+Zu2tmAp62x2/fuLzkTu88AnjVuDrbG0DHzTXZvp/1V3eZGlsHtkyhvDp2M7Wlr6PFakP1+ZK8LjyX02MsaHLxq9XR7fg6YXSFlUsaGn/27dv3CkNfW7bews8HRob727N/Ndi92d8+Tjo+muWMHdvv6aScN6HS7s3ZPD+ehAVfTgaPR5LBVtLi6+H10IMsyQ5KNbDhgpfmwhKFeu7nna6wXy1wfLSLQEARBEH52tlRZWLm75WAWcImJudGHZAH30WTzEKFTMTYrmh11gVwBuxsCN9ceSxM+u5nWrctAlnDU7g4mVMPvw++ygkKJ12YOqdNjrgurnLN2T4f2dpVZu6opMB/D4fbSYg29mXU17EcTlRBGfWWQMQIABQpqLB7ynD6WlbUiybC7yYFOrcTs8LFmnwWvJLOhsuOa/2vK6thR1Up+SjQOj49J+cmoVUpqzQ4aLU6KMuPYVtncYZK6Zfd6NKZ4XPX70MQk42qqBFnG3XwgMHtcocRRUwZpsX0+3+GoK15Dy74dRGfm43M5SCmahFKppqViB0qlmuiMfOpLv8fjOOTYFVBv9WLuor90aiVeSabskMBMgQJvmNeCNi4N276tIe3c3+IiJ07f7fnZVGXl0OCxuXQN1ooSItID2cbjh0xEoQxk/1brIzAmZWMu34zk82CtDF3VavW+NmweP/taXCRHaqg0u/BJMq12HzqNEq9fotHqPirnJByrS6vYUdlIQVocDreXSUMyUCmV7KxqwqDVkJ0UTcmBJuwuD5kJUeSn/fgFgm3fVgxpBd1ee7b9W7up/eiranOTYNJ0eX19u7cNr19iR60dDslT7m1r7PEa81j6tmpXfxKBhiAIgvCzodEExmY/t6qaeJOWL3e2YnX5+Nuy/UiSjFatQq9R4vP5kVCAQoEky0QbNOxrCtws+iyNVC14Oqz64hMSGTBgAJMnjqf4xRexh3nTMmz4CAwGAxqNhucXrueL9WV4vD58kkSEXsu/PluH3y/h9HjRadT4JYny2hYKhxaRmppKRmYWVSvfCrtfJkz4DQATJ0/mrbff4YfKngeLZGdlkpKSglKpxGJ38faq3bTaXSzcVIEsy8z7bjcalRKH24tapcQvy/j8gSBDqVSSnZ1NUnIKDd9/GlYbJ5//u7CPpzeUSiUum4VdX72N29pKxdqFyLLM7mXzUKg0+NxOkCX8HndgDWFZCpYbP2EiXy9fwdMre14ZKC42hvz8fCZPmsD6Z57BURXeMrUAM2bOJDIykqFDBvPxtp1hlTl77gw0Gg2W2v3s/fgfeJ1WJK8HSZZQ6QyoVBr8Xg9+vw8kP0qFArXeiKO5FoCioiIijEb+9W3Pw6JUKlWvklQeqfbf40ueWkCkITB/5/3vduL2+vBLMia9Fr8kB06XHEhc55dljFoNWo2KPdVNJKWk0lC6irbSVT3WN2PmzKN6PF2ZMGECXy1dxvLd5rD2P/ecs4HAMrfz588P63MqMjKKIUOGHEkzj4hI2CcIgiD8bHg8Hu6//37q6joOTwrH4MGDueeee8LOgaDRaIIZtT0eT9hLzmq1WhQKBfPmzWPx4sVhlVEoFFx00UXBnBDtq1aFU06r/fGbULc7vG+n24+trKyM22+7jZqaakwmU5cZxH0+HzU1tRQUFPDiSy+RnZ0ddjsPb2N/Kisr47bbbscaRpbrdsnJSbz6yitERUWFfV77ei3Aj9eDLMt4wlySVafTsWvXLp566qleJSMEGDFiBHfddRd+vz+sXAxKpTJ4838s2Gw2HnjgAZqamnreuRN6vZ7bb7+dvLy8sPZv7/9jrTfnGwLnvJ3X6w3rc0qtVh+3HBogAg1BEAThJ6i+vp7q6r5NUE1NTSU1tfP5BD9nsiyzdu3asG/e9Ho9U6ZMOaIM2XV1ddTUdJzIfjiFQkFhYWHIjVRv2Ww2ysrKet7xoIKCghMug/nhXC4XpaWlvQpaDmUwGBg8ePBxuYkOl9/vZ8eOHWEFPO2ys7OJj+9+ArVwYhCBhiAIgvCT0tLSQnJycq9uTA6lVCp56KGHqA8je7hCoeCss85izpw5faoLAjfbzzzzDLYwvlE3GAzccsst5OTkUFJSwssvvxzWN56xsbHcddddREdHd7nP+vXrGT++61WqOvP444/zpz/9qVdl2jU2NpKamorf7+95Z+Css85mwYLP+lQXwNCiYZTsKO55x4NGjBzFls2b2Lp1K6+99lpY11N8fDz33HMPERERfW5nb8w57XS+WnJkK3Kdfvrp5Obm9rifWq3m6quvZtSoY7tS0Z133sk//vGPXpWJjoqiobGRBQsWsGJFeMvTjh49mmuvvbYvTRSOgJijIQiCIPykNDQ04PP5eGzuQMZlR7Gh0oJercSkU5EYqaXG7CbWqKbF4SXWqKHZ5kWlUpCfaGRbtY27Pi3joYceQhsVjyGu+ycblgO7WPnNqiMKNObPn8/f/vY3hqZF9fjNcnF1G5GRkTz00EM899xzPP/880TnFHVbRvJ5sFaVMWLECC688MIu92t/kvH4WQWkReuoaHFyWmEiFS1OEiK0NNk8xEZoaLJ5UCuV3PlpWZ+HrkDgqZPf72fCr28lJX84Ko0Gp6WVqKQMlEoVlsZq/B43Po+bHSs+5kAfn1C1q6qqIm/GpcTkDkOt1aNUa9BGxqGNiKZl7zaQJGRkNHoTjaXrOLD9awCefvpp3nrrLYrSuw7SABweH3sb7UyYMIEzzuh+WdH+UnngAImjZpN//p0A1Kz+CF1MciDxXmQcCqUKpVaPrWonuphkbNVlKDU64odOQaFQsP6xc1i8eDE5CRGYdN3f8hVXt9HU1MS8eR2XQz6aqqqqKEiL5dbTR1JntpMUbUSlVOD2+kmPN6FSKqhpsQeGGfkktu5v5J1VO7Hb7dz429/RZrVhSu1+iJS9oRL5xRe5/PLLj9oQPaFzItAQBEEQfpKKUk0MS4tkWFok8zfXU2/1UJhqIiNGjyTJJLn91FvcqJQKsmMNDEuL5NBn+ANveA6PuR6fo42YomkoNfqDWXWteMz1xA47lf3vP4pr38ojaqfb7SbKoOWrG4cyf2sjbU4f0wbGoFcHJlBb3X7qrR5OzY9l4r+3BedQuN1uYgaOZsh9C2hcM7/LdkYPnsz3Nw0Ie+7FmUVJJEf9OEQpO75jzgwAYw83puHS6PQ4zI0MGDsDtTbQdrfDiiT50JuiQZZpPrAbqXrbEdcVmTYQrSESj91M6qhTUR3MlJw0ZDxuSzMeuwVjfAqutgbMBwMNt9vNyXkxvH/lkG7Pz8h0E8Oe3BB2P/cXY1IWUTnDAIjKGUb1dx8Gsn8XjD2YCVpCExGD321HoVKjjYwjOnc4ABqDCZ/byafXDOab8rZur73L39l5zI+tXUpMBL+eXMAHa8ow293MGJaJ7mBSPqvTi18K/OImRBqIj9TzzqrAhHmP203GOXeSNuembn9HfLZW9rxya9hzr4T+IwINQRAE4SfvglHJnW4fmtr1GHzL7vVEDzkZlT0Se2VxSFZdfUJ2YNnIfrSopJnMGB2ROhXFdfaQ7L/ZsXpW7jF3Wq554yJ0CZldttO6Z0Ov2zJ/Uy1mp4/pBfHoNEokScbq9lFvcePxy6RF91+m7rzxM0kf0nHFouS8H5/UbFvyXr/Vlzut66c67eqLV3fY1tP5+bbc3G9tPBLpJ/d8fIf7uqyV3HhDl8e2am/bUWhp7100qaCLV36cj1HR2HHp5Z5+R6q++PdRarHQExFoCIIgCD9Z7dm/Wx0+3D6JRpsnmP1brVQEh1UBROpD/8vrKbN27IiZtO1c029t7Sn777SBMUBlh+09Zv8d2LtlR7/e1UReghGT3kdxrZVGq5shKSaGpkWSHWdg8wELLm//ffNbseU7/F4vTmsrfo8LW0sDSQOGkjxwGEqVipqdm/qtLoAD675AFxWPx9aK3+vG2dpAbHYhsblFKFRq6otXY6nZ26FcT+dnQk7X2bqPlbofvkAbGY/XbkbyunGbG4jMKiQqO5ABvK18MwqVCrUhMvgUBGBGQSyJpq6HDE0ZEM2La2qPxSF0aeHGvcRHGjDb3bi8PhranAzNiKMoKwG1UsGaslocbl+nWcx7+h0xpg86Ws0WeiACDUEQBOEnqbjWhizLROhUyMDU/NhgUr5d9Y5gUr5haZHsqLOxp9GB0/vjxOQeM2ub6/C01tH5wKLeW7u/jZK6jhmYD80w7fJ2nDjdtmstjgMlXbbT3dxzjodDzRiUEDJ06nBTBsZ1+Vpf6CKiqN+zjfisApBlhs2+GKVKRcPeHSTmFKI1mLC1NPRLP9vq96PSaFEbTMiyTOqIaShUahzNNdibqvFYW1EolWgjQoOGNqev0+zMh2bHbrSHvwxpf3K11LJ/ySuY0vJRKJREZg5GoVRjPVCC2hiFMSkb64FSjMm56GKT8Fhb0JhiaS37IfgeGw5YqWnrmG380OMzO33075kPn9nupqbFjkmvRZZlpg/NDGTHrm6hqtlGTmIk0UYd0UYdW/eHZlJ3NVR0nyHbXIen9fgGUb9kItAQBEEQfpKKUk2Mz+k4gTfG4GdQcuiqQOOyA/utKGsJbmta9wnqyHhat36NOiKa5o1fgCzjtbYABzNWH9hBbMqRLaOpUCiwOD28uq4Op9fP12WtRBvUfFHSjCTL2Nx+NColfkmmweIKThhXKBRYKopRLnsNv9vRZTvlg+POw13CdENlG7Vt7h+zpg+IQa1UUNvmpsnmITveQFWrC7cvvNWiepKSP7zToVMxqTnoTVGkDxmN1hgBvUsF0SlTcjaDzryhw3ZtRDSG2B+H1zWWfh/8t0KhoLzJybr9FpbvbkWW4bPiJtRKBXaPH41KgV+CZps3uP+xpI9NIWfO9R22GxKz0R88JkNCRmBjbErwdYVKAwfnJL25vh6Vkm6vvbIGO3nHaRnc6Agdv5k1rMP2zIRIUmICv8vj8wPHtqumNfi6QqHAXLwSV2Nlt7/HrqYDwf2FY0sEGoIgCMJPSmRkJADnvbwFnSaQiEqS5MA9VeC+AgUgSzKyAhQEbi6UB1eyATj99DOoqqkFDo5N9xwy7vuQvGSKAZlcfeXlR9Te2bNnM2XyJOqs1uB7B2tTAPof9500oYCzzjoLgAsuuIAt27bjdtf++L91F+2Mn34qU6ZM6bYd7fkw7v98D2qlAq/fjyTJ6LVqlAoFHq8PhUKBUqlEkmXq25xHlEOj/Ty9cfNslGp14KZXAQpFYCibLPkPbgDJ52PqtOl9rgsgKiqKLW8/xvZ3/w8ZOXAtKALZ32VZRpalwLVwsL6cAYGVii655BL27tlNrcfT8fy0jzZSAbEwc1ASEydOPKJ29kZ0dDQ7v3qVqhXvABwMKg9GDwoFHLy2ZdkfvM5RKIM31H6vm/yBediMPz4v6uraGzIsl0svvfSoHUtXoqKieL+kiowbXz34exw4PoUicESyLB+8dBSAjNcvodFo0Ov1/P6Wm/n8i8X09HtMShSTz7vpiPK0CH0j8mgIgiAIPzlffPEF+/fv71PZzMxMzj777P5t0E+A2+3mueeeo7GxseedCSTsu+aaa8jKyupznZ9//jmVlR3nnRxOoVAwc+ZMCgq6mgzcs40bN7Ju3bqw9580adIxzxnRW6WlpaxYseKIEvadd955xMbG9nPL+k9NTQ0LFy4MO9M9QGFhIdOnH1lgKhwbItAQBEEQTki1tbV8/vnnvboBgcBN67Rp0ygsLDxKLROOlx07drBy5cqw9x81ahSTJk06eg3qJ1arleeffx6z2dyrcqmpqdxyyy0olcqj07B+snHjRj7++ONeLS8bFxfHzTffjNHYX7OkhONBBBqCIAjCCenmm2/m+eefDw6PCpfb62f82DEMGzGS73/YGFaZ8845i0ceeaQvzTyhOJ1OLrrwAqoPHAhrf41Wy58ffoQzzzyTBx98kM8+/yKschPHj+XFF19ElmUuv+JKthfvCKvcpRdfxL333ovFYuHXF11IfW3Pk3RVajW333kXl1xyCaNGj2HLpo2otT0PgfF53ERGRWFpa2PlypXcd8/duF2uHstFx8by8iuvMnDgwLCOqT988MEH/PrXv8aUlIlSGbjeZVkKDjPrjNvehtvayurVq/nLE49TU9XzogBKlZJbbv0jV199dX81PSyzZ81k6bKvyU2OCW6TZBllF3MmXF4/tS1WFixYwM6dO3l73rth1TN0yGD+9795Yi7GCUQEGoIgCMIJ6YorrmDP6i+4fkIqla0u0mN05CUY2N/sYuDB1XMSTRriIjR8v78No1aF2enjg011lHti2LWnnIjckZiyh3dbj2XXGvQeMy1N4Q0pOpH98MMPjBs3jlPzY8iI6flm/MMtTVxw8aW89dZbRMfG4TUkEDWo+zkItopt2PdtweFwYLFYSElJIXLgGIwZ3T9BMpd8S4JOpqpyPytXrmT69OmcNjiWpMjuMzUvKG5mwikzWPzllwwYWIBm6CwSCidhSsnBY23FEJ+Kz2VHrY/A3lCJSmtAqVLTUr6FzS/dhSzL3HrrrTz/3LNcNjqp27pkGd7eUM9LL73EDTd0nFR+tLz55ptcffXVDPvd8+hiknHU7SUyuwh9XBqetka0MclYK7ZhyhiC323HY2lGoVKz/pG5vPTSS/zmN79hRkEM6T3kP1lU0sLQ0RNY+c23x+jIAqZMnoSqdT93zh2JX5KoMzvIT43B55dIijIQZ9Kxdnc9EToNbq8fs93F9S9/y/vvv8899/2JWouHmKJp3dbhqN6Fdff3VFVVkZ6efmwOTOiRmAwuCIIgnLAUCjhjaAIA8zfXs2ZfG9PzY9GplejVSsxOH7saHHj8EtEGNbMHx7Nmr5nyhkD5tNm/QfZ5u83+Xb3oOSwrXjyOR9l/2r87vG9mFoUpET1mIt/d5A6WkWWZxJN/Tfppv+02y3JUwXh2v3TzwQnWgbLpZ9yCz97WbT9XfvI35C2fhLTzwTk5bDhg7baNTXYv/pDvRBV4bK3Ub9lP8sjAOH2VVo/H1obs9+NqrUcTEf3j5OiD9Q1OieSvcwf02CfvbKzv85yII5U8di5KtQZXczXm3RtIGD4ddUQ0frcDXXQyzvbVk1Rq1IbI4LEB3D8zm+I6e7fHZnP7aTpO2bFTYoyMH5jEB+vKaXN4GKFVodNo8UkS5fUW1EolGpWC8QNTsTp/XEpYkmXix51N9vn3dXtdxo2aQ+kzlx23cyd0TgQagiAIwglt0Y4m4iM0mPQqNGoFK8paDybliyAuQkOjzUOMXo3bK7G70dGhvFJnJCIhE2ftHiSvK5g1OHLASfidNtwt1cfhqI6uVXvbsLr9ROpUaFQKVuw2BzNBxxk1tDh8fc5EXvNVx6DMumcDMcNO7bKMuXhlp3Wt3GNmSLKxy4zVP1R2zAINoNYZiUjMxFq9G7/XhcvcSHTWEGJyh6FQqWncsQZb3b4O5XrK/n2iZMhOCyP7t626LOTnVeVmhqebTvhju2hCXp/K9XRd1q14o38bKvQLEWgIgiAIJ7T2JxpdmZbffZqxnrIG6+LScfe6VSe2KQOiKUyJ6PZ1gGe/6zhHoqf+MqR0vFGMHDim2yzrMUXTsOxe32H7tIEx5MTpOykRMDYripfWdmxj+vgzu21j2pjZuM0NHbb3lP27vV+Op/ofvkAbFY/XdjD7d1sDkZmFRLZn/967GaVGh6s5NECekhfD4OSuJ05PGRDNB5s79smxtHBTBQmRelrtbtxePw0WJ4UZsRRlxKFWKVm7O/A0aWJ+coeyPV2XEVlFR6vZwhEQgYYgCIJwwmpzenllbTX5iUYcHj8Tc6OD2b/NTh9Ndg8RWhVjs6JZu9+MAgVWly9Y3lFT1m3WYJ+jDa+l6Tge4dGxtcbG2v2WTjNBN9o9ZMfq2dXgwOEJTcrnauwhy3JbPe6Wmg71Oap24mqs7KZcA+7WWg6fjbG5ysrXZa0d2llab2dQkpF9zS5aHF4Ovf13NFWzZ9ErRGbk43M5SCyciEKlxrxvOxHJ2dhq9+L3OHG21ndoZ1fZ2Q/NkH08R9607lyHq6UWtd4Eskz8sKnBLOD22r3BBH0+pxW/J3Ri+9ZqG6v3tXV7bE12L0R1VvOxEWfSsf1AC/kp0cgEnm6oVUpKq1sxaNVMzE9m3e56yutDn2S5m6t7zP7tbu55Mrxw7IlAQxAEQThhub0S4w9m9W60enh/Yz1+WSZKpyY1WodKocDs9LGopAmXT6IwJYI6a2B8t1KppG7py+gi4wEZpUZHjVIJMvg8zoMj+BU4zXUkJXT/1OSnoj0h2T9W1mDQqvD5A8nOdGolSoUCr19CqQwksJNk2N9kZ8zBMjqdjqbVH6CPSaa7/nJZmlAqlahUKrTaQOhQvfg5dKbYbss5WmoZkJMT0s5HvzqAXqM6pI01yMh4fBIqpSLYxrOH/TjJWfZ70ZpisFSWIvn9yH4fap0Rt7UZW205HpsZhVKF5cCPQ4t0Oh07aizcvbDisD45rD5JDmnfsRaRnk9k1pDgz7LfFzg+QyS66EQAIjMDr1urdgEEz8Ffvj6AUavusS9n5Xb9BOloanN4KEiNoSA1JrjNJ8n4JD8mvYbEKAMur5+ROQnsbfgx0NDrdBzYsBDn3o10d315bIGM4SIp34lFBBqCIAjCCSkjI4PyJgdznt/U67KzZp7Enffcy+bNm8Paf8aMGb2u40RUVFTEE088QXV1ePNONBoN119/PQAvPP8cy5cvD6vcSSedhE6nQ6fT8eyzz1JSUhJWuTPOCAx/GTNmDI888gj19R2fOhxOpVJx+eWB7OxZmRl8s/ILqr8PbxnetPQMAG688UYkScLt7nmQXHR0NHPnzg3r/ftLwsFA99tbe59AcPz48Tz++OPU1HR80nQ4pVLJxRdf3Os6jlRCYhKfrlnLl1vf7125hAT++fRTLFy4MKz9Bw0aRGJiYl+aKBwlYnlbQRAE4YTk9/spKSnpU8K+IUOGoNcfn29uhaPH6XRSWloa9v55eXlERx//eRc98fv9rF69uk8J+8aOHXt0GtWPmpubWbt2ba8T9k2aNOmET0YodE8EGoIgCMJx8/333/PQnx/E5XT2rqBCwVlnn8Ptt9+Ox+PpeX8CQ0xEIq8Tw3fffccrr7yCz+freWcgNzeXRx99tE/nb8OGDTz33HO9ClhNJhP3338/WVlZva6vK3a7nQceeIDGxt7la0lISOCxxx4jIiIi7GM4XsOHbr/9djZt3BDWvgqFgmuvu54rrrgCAI/HE9bStBqNRgQfPyEi0BAEQRCOmzvuuIOnn36a80cEEqn5JRmVsuebyR8qLbjVJgoKi1j1zcqw6hozbjzr160VwcYJ4IILLuDjTz4lYUjXK1W1czTVYK/fz549e8jL6/3SqNdeey2vv/46U0YNDrvMqs07efrpp7ntttt6XV9Xli5dyuzZs4nOKUJtDG9Gts9po23fNj7++GP+cOvvOVAV3pC4a665mtdee/1ImttrVquVqKgoBqVGMSwjtsf9V5TWMXDIMNat/4E//OEP/Pvf/w6rnoTEJHaX7SImJuYIWywcC2KOhiAIgnDcSJLEoJQofjslg9o2D812DwatCpNWFZzcrVYqMGpVbK6yYtKp8EsyCmDlAS/fr1tL7MjZxI8+E8vuH5A8DowZQ1Co1CDLSB4XPkcb7uYDbFi/6HgfrnCQ1+slccSpZEy5EF10PAqlmsjMIdjr9qKLScJtrkcXnYijoQJLRSk73nqg10PoDq1rREE2D1xzDgoF+PwSGo0atUpJclw08dEmVm8tw2TQYbY5UauUFJdX9bm+7toBMPz2t9HFJGOvLUcXk4Sjbh/a6EQ85ga0UfE4m6pQqFRooxJQG6L49pZh1NfXc+D/2bvz+LrqOv/jr3PO3bfkZk/TdE/30pbS0lKWshVEBAcrKiLOiDPjiOMyLuPoKP4UGR1XFDeWUUAWsYoglH2HttCW7vuSNk2zL3dfz/L7IyVtSJt7kyZN2n6ej4cP23vP536/35uk3E/OOd93/SH+cUE5ummRyJhMK/dg0xQsC1JZk3BKZ3qFl/vebmL1m28O6tzz8e5lUR86ZwylAReaovK+2aOobY1RFnDRHE5R4nfSHElhmhYZ3aDhcM2bq1bjqZ7OqKX/2ufPsaKqNDzzG2pra5k7t//3s4iTTxoNIYQQw256hY/pFV3p383RDNMPp3+bpkUoqbO9OY5uWoDGovGFrK2L8Gp91840BdMvpPS8ZZSet+y4r9/8+sN0rJNGY6QxsykiB7ZROvti9EQYhy9INtqBmc3QtvVN3MVVFIw78XwEv8fNorNqePi5VYSicS5bMBOXw45uGOw52IxN0wjHkxQFvCyYMbBAuf6K7FtPNh6ieNbFYBrY/UGyiTBGOkEm0oaZzeAb3fPMx/unF3Pe+L7vOdnSGOeN9qGced/Gl/pJ6wahRIbWSJpin5OMbmLXVPa1xuiMZxhV6KbA46DhqB16feNm5/w5ju3fRMMzvzkJqxCDRRoNIYQQwy6f9O8ijx2bqrCrJd6rvn3dCuz+YvR4qEf6t7e6K+QsfnDrMKxK5KI5PbhLq4kd2o2ZTZMKtRAYM53A2BkExkynfcdqOvZtHLTxvC4HYyuK2XWgkVQmS3NHhJkTRzN78hhsmsZbW/YM2lh9aVmzAldJNZrLR/TAFjLhVnzV0/CPnYG7dCyRfetRbXZCe3re7/DWgQia2rWlc0o3e6R/21SF9YdiJ2X+fXlnfztXnlWFz2Vnc30nLZEU06sKmTm6kLElXlbtaSWjH/um8Fw/x7Ha/HaREyOHNBpCCCGGXX/Tv5/dfuRXtqnmWrBMtMMhZ4UzLuoO8zJScdIdh9CcviGZtzgxlQv6Tvgun3sZdrefXX/58aCMd82F8/p8/rIFJyddumx+3ynXRTMuACAT6XlqwufU2NIYp6bUjWXBsjmlPUL5Ak6Npkh+myMMlbPHFbNw0vG3mL185igAHltX1+PxTKiFTGfjcX+OM6EmbL6iY72kGMGk0RBCCDHsVtWG2NoUzzsBfFdLAsPoSrV2FFVSftHHe72m6nBhDxRjDxQT3rn6ZC9J5JCJdlD7zD34qmowUgmKpi1C1WxED+7AVVxJvGk/ejKKnup9Bmug3tiwk817DzJlbCWJZIbFcyZj0zQaWztxOR00d4TxuYd2x6bQ7rWkOxvxjqrBSCcITl3U9dv6g9tQNBveyklEajdi6lmMTM/d2CaWuDlvXO9LpxyaQonXTonXjtOmwODeXtIvOxvD3P1KksnlAeIZg/Nqupqh7Q1hPA4bY0u87GqKEE5k4KjNo2zegpw/x5lI/3bsEsNPGg0hhBDDqiGUJJIyqC50sa0pTiiRZd3BCKMCTjKGiduukTEssobJhvoY0yq8hJM6iqJQWBik7s+3Uffn23KOEygoHPrFiLylOhpJdjQSrd+JZZmEajeh2p1kExEwdfRkHEVVSXXmDvXLZcf+Q9z9t5epa2onHEuwdd8hyosCbKs9hG4YdEbjOO12srpOWVEBnZGhuwQpdnAbRiZNrH4XWAaR2k2oNid6MoJl6BipOKgqzsIKDsde4/V6URSFT/xxR15jnLfw5NxnciwtkRRep403drdgmhYNnQncDo32WBqXXeOVHSYZ3WB/axxneVdNcVER6579K22r/5rXGMFg7l2txMggjYYQQohhM2PGDKKpLP/0YP/vobh4yYX88s5f553+fdZZZ8nWtiPEkiVLeO7556l79u68jp9UM5mxY8cOaKwLL7yQv/71L3z9V48e9ahF96f4Y/w9GCxkwYIFAxrveGbOnElF5SgOPnVnv+rKKypZvHgxr7/+OrW1tTmPVxSFxYsXD3SaA+bz+Rg7ppr739yXd80/XnYtAPfeczevvfZaXoF+o0ePZty4cQOdpjjJJEdDCCHEsAqFQnmH7h2tpKREgruEGEGy2SydnZ15HasoCiUlJdL8n+bkjIYQQogh9eKLL/LhZR8iHk/0r1CBJRddxMOP/InNmzfnVTJ+/PhBTXMWA/e73/2OH/zvj/P6LTVAUVGQv/z5UcaPH8+WLVvo6OjIWWO325k3bx5OpxPDMHjnnXdIJHJ/n3m9XubOnYumaaRSKdatW5dXSnlxcTEzZszo88PxHXfcwc9/cWfe6wb4wPvfx5133kl9fT179+7Nq2bmzJkUFxfnPcZgqKur47xFC2lta8u7pnr0aDZs3ISmaaxbt6773qq+lJWVMXXqVGlCTgPSaAghhBhSb731Fp2hMLd/YBIAWaNrT/13//94XtzZwXPPv8BlS69g/bq1xz3uaC63m472dtxu96DMXQzcnx79M42dMarO/3DOY41smg3P3MXKlSupr6/noosuynucr3zlK/zoRz/innvu4TOf+Uzedffeey+f+tSn+PrXv84dd9yRd93KlStZtGjRcZ9/6JE/0RhOUrHourxer2Pra/z+D/fx05/+lOnTphGN5Xd/yKwZ09m05eRu27xlyxYONTTyH0snU+p35vwZ3tEY5b6Vtezdu5c777yTe+65J++xNm7cyFlnnTUY0xbDSBoNIYQQQ6404GZOlR9F6boS/lA4TTSlc+mUIva1J6kMOElkDDx2jT1tCZw2ldZohhd3ddDY2ETp+R+l6qrP0bH+GYxkFP/kc1FtDizTxEzHyUbaMFIxDvzp/xGNRqXRGCG8lZNwFJbhLhmNp3w8ZjqJo7AUh7+Ijh2rsbm8ZOMRLCPLgWfuAqCpqQmAp/91Fm/uCxNNG5w71o/jcIBjPGPSFs+yaFyAm/+0u/v4pqYmPE4bz/3rTJ7Z3tFn3WW/2dyjzls9nZp/u6vP7y9P1RS23H5Nd91xWVA0/Xz8Y2fiKqlGsdkxM0k0lx9nYSmK5iC8621UpxsjFScbCxFq2UsymSQai/Ffl41BU+hz/r9b2cgztTnmMYSqCt3YNIVJpQW0xTLMHVNIazRNWcDF5vow0yr9dMQzdMSPXBLZ2NSEb+I8Jt18R5/vs6ukmm0/+ShNTU3SaJwG5OJWIYQQJ8Wc0X5mV/nZ1ZLgUDjNvDEBklmTcp+DcFKnrjPFhkNRfE4bi8YXMqrgyDajzqJRJOq3459wNr5xszHiIRJ1W1EUCNQsoGT+Nejx0PAtThyTI1CC3VtAsq0eVbPhKCjBMgzijfuwubzoqTjOwlJKZ1/Sq3Z3a4Kzq/3MrvIRShlsbUyAorBgbIBrZpbQFs9S5LH3qAm4HWxv7ruuPpzB5+pZZ/cX5fz+yvbz+6tswQeIN+4htGMVdl8Qm9uLnoyRbD0AQKqtHoe/GO+oST3qOhLZnPOvKhjaLXhzuWx6OaqisL4uxKQyHxnDxOey0RJJ4XNp7G9PkMoaXDK1rEed3V+S833ORPK/LEuMfHJGQwghxEmzYmsb1UEXvmSWLY2xw8nGXQngY4tcrK2LoCqw6VCUlmjPG8SL5/UdcuYbP2cIZy4GSnN6cJdUE2voSv9Oh1rwH07/VlQbHTtWY2ZSveqWTinC7zr+x5T5YwLAoV6PXzW97/sWLpjQO4cCcn9/+SfM7fP592pZuwJ3STVZd8/0b9+YI+nfRjZFqqOhR93c0X7OHRvoc/4b6oc/Adzj0Kgu8rC7JUoqa9IaTTOtMsDMqgA2VWXVvnbqO3vfL5PrfQ7UDO5uX2J4SaMhhBDipOlPAvjmhiMfptJtB2l84V7clTWY6QSBKQu7U4M1p5d0xyGSTfndRCtOror5fad/l829DDOb7vX423UR9nekqSl1k8iYLBwX6Ap+a44zpcxDbXuKSKr3Ddyr9ofZ1pToVfduenZ7PEtW73mjth4P9/n9lQk3Yxm5bxbvsa5z8kv/jh3Y0uPxXS0J7o1m+pz/wVDvxuxke/9Zo/p8/vLp5ayv67kDVTbW0ff7HGrCSPdz0wgxokmjIYQQ4qToT/r3i7s62Nd2JBU51VaPs2ws0T1rcBRXEdr6KpZpkmypRbFMUDSSjdJojEQd21cSqduG73ASdtG0riTsaP0ObC4vmWgH2WjvHaZ2tSRJ6SZr6qJUFTh4dU+IrGnSGsuytSlOWrfoTPSMwG6PptjVmiSS0o9Z57arpHWLSLLn2TI9GUXRbET3rQPTJJsIoTncZGOdWEYWIxEmG87/kp50qIWDz93Tnf5deDj9O93ZiHU48TsbD6HaHGTCPdOuIymDEp+ddQejmBaEklncdo22eAaXXSNrmGxvTgCO/L8Ig2zt/g4aQylqyn1dP8sTi7GpKjuaIrjtGmOLvaza104y07M5M/J4n9PtDccZVZyKpNEQQggx5FojSV7e3fXbzc0NUeJpgz+vbybosaMbJk67im5Y6KbFo+ubGV3oYvWBMAA1NZN4/dVXiO5alXOcYFExhYWFQ7kUkSdVVWnb9DJ6IoyRSdJsWdg8AQ698WewLLKxw7/tVhQ0h6e7Zvz48SiKwm3P1+U1zqRJXfc4TJw4kaxh8o0nc4favXv8u/WpP/2J2j9+I681jR8/vu9jNJVo7Qag6/IpLIuG1x5B0WwYmSSYZtcZHEXB5ikgfnAbNlXF6/VSXlbKPasb85r/onOH7xKjl7a3kDVMVu5tw7Lg+a1NOGwq0ZSOXVMxTAvdNIkkjzQaNZMm8dSTT+b1PmuaNuCARjGySGCfEEKIIfX222/z6U/9E/E8t+082kWXXMJdd93NgQMH8jq+oqICr9fb73HE4Fu+fDl3/urX6HnkJgAUB4P85je/ZtSoUbS3txMKhXLW2O12qquru/MWGhsb887RqKioAMCyLA4ePEg2m81RBYWFhTmzKx566CF+d9fdGHnmaCjA+668gm984xskEgkaG/NrNMaMGYPdbs994CBqbm7m2g9cTWtrS9411WPG8syzz+F0Ojlw4EBeORpFRUUEg8ETmaoYIaTREEIIMShisVheH/LeKxgMnvQPTGLwhMNh0une91gci8/nw+PxDPGMhp6u62zbti2vkL93jR8/fkR+eDZNk+3bt+f9NcyH3W5n+vTpaJo2aK8pTk3SaAghhDhhr776Kpdeemlev618r9FVo/jb40/wwgsvkM9/ksaNG8dHP/rRgUxTDLL777+fT37yk3kfb3c4eGfdOqZNm8b9999Pc3NzzhpN07j22muZPHnyiUx1UN1yyy38+te/7ldNcUkpLc1NvPLKK7z99tt51ZxzzjlcdtllA5li3m6//Xa++c1vDvrrXnTRRVx55ZXHfT4YDHLTTTdJ5s1pTu7REEIIccJ27tyJYRj838ens/ZABL9LI5Y2mFHppTmSocBtI5TUCbhstMUyuB0aTpvK9uY4973VwGf+7bOsXfM2rkDfl6WkY51YpsmiRYvkGu4RYNu2bWgON2Ou+gzpUDO+0VNRbXay8RCOQCmWZWJmkpiZNMm2gxx66QF2795NIpHgU5/6FE6b1ivT4r3aYyneems1y5f/5SStKrf6+np8Y2ZQdfnNpNrqCU5bTKqjAbsvSDbagc1bQDbShupwY3P7Ce1cxcEVvyaTyfCh6/6BUDhCsc/V5xjtsRQ+r4doLD7ka6kocHPz4jEUeuyEk1l8Ths2TUFVFBpCKcoDTnxOG7G0jqYqGKaFaVkUehwUeezYNIWth6Ks2NLEyr0d2DwBVq7dyFvrtxxzTEPPkE1Eqays5JprrhnS9YnhJY2GEEKIQaEocOW0Yq6c1nezcLSnt7Vx31uNxBMJyi/+JBNuvJ3WlcvRE2EKZy5BtbuwTAMjFSUTasbmDrDlf64lHh/aD18if56iciZ+6Ks5j8tEOzj00gMA3V+/l245i7UHo4STOksmFeKyqRiWRTRt0BzNcElNkH/+005i0eHPjXgvZ7CSygvyO7N2dNhfPJHg9veP55MLKli+sfW4a28MZ/ja3/cN0ex7Kg24+dwlE0/oNRZOKGbzoTAFE+cy/RtP9vlzHJiyiLf/bRKxAdy3JU4t0mgIIYQYdMvXNxNK6VxcE8RpUzFNiKZ1GiMZVAU8do2F43sHp7WvW4GzpBot7idet4VsuBVP9TS81TNwlYyl+dU/DsNqRD4a31hONh6i+KyL0exOLNNET0Yx0nGMVAKOcb3+K3tCTCv34HdqbGmKHw5w9DCjwsvYoIs1dZFhWEn/NL25HD0RomjWxaiH120ko6RDzWQjbbgrjv0BfsW2dqoLncdd+49fOniSV9Lbn9cdIpzIcvHUEpw2DdO0iKZ14mmdlmiaygIX88b2vu8k189xdO+6YViNGA7SaAghhBhUR9K/dbY0xmmNZt6T/h3FaVfZdChKY7jnDag505knnTOUUxcD1LJmBa7SarT3pGD7D6d/h3auJhvrnZWxZFIh44qOfwnR/DEB7lqV3y5Mw6F17QpcJdXocR+xw+v2Hk7/dpWOJVq7nmyklURT7zMTuRLMa0qH/94Fj0OjOuhmd3OctG7QEk0zvTLAjFEBplcGWL2vg7drO1gwvqhHXc6f44nzhnLaYgSRRkMIIcSgyp3+feQ3oIeOajQynU19pganWveTCeW+eVicfGXz+/5gWTLnMjLHCOVbXx/lxV2dfaZ/dySy9D73NTKU5kj/Dk7vSv/WUz0v9dvXnuTe1Y19pn/Xto+A9O9ZFX0+f9n0sl6P6clozpR1VNmN6kwhjYYQQohBkzv9O3s4/TvAC7s62NF05ANY4uBWNJeX2L53sPmLie5dC5ZFprMZsEBRyEbbh29x4rg6t68iWre1Owk7eDj9O9V+qOtrGG0n1dH7zMSKbR247CrvHIxR7LWx9mAUw7SIJA0cNoWsYbGvLcXckbPhVLdsrJP65+/BU9kz/TtWtwVX6RjSHY3o8RCq3UE61NSjdmtTgqxhseFQDNOElbXhw4F3Bnat62brdwMrh8vKve1sa4hSU+7t+lmeUIxNVdjRFMXt0Bhb5GFjfZhSv5PJ5b7uunRnM8nGvcRqN4BlEt65EtXmwEjGsUwdM51AT8m9GWcKaTSEEEKcMLfbjWXBfzxei6JAOmugmxaWaeGwq5imBViYpoWmaZiWhdtho7GzK3fj2g9czd33/h/m7tcByBxnHA04+5z53anOYni53W6iTfvZ/rvPYRpdmRKKZkNVta4GI51EVVQUVcGyzO6aWbNmMXP6NNY0NwPvBtsd+6uueQq5+gMfOAmryZ/dbu9K/zYymHoGLIuDDheKZsPMZrAMA9PIoqoqmstDsvUgqqqiqiof/tAynn/+OfZEjw4IPNbaPVz/4atPylo2H+zgut/23nI3lsqS0U1My8LjsKGpCqmsgYoFatfPtdthw2FTAWiLplH1FC2vPYjD6cDr8R5zZSowqWYK8+fPH9rFiWEnORpCCCFOWDgc5te//jXhcP9/Cztz5kxuvPHGIZiVGGqHDh3innvuIZlM5nV8SUkJt9xyyymfnfDmm29y99139yuwb/78+XzhC18YwlkNzObNm/n5z38+6IF9t9xyC+ecI/dUnemk0RBCCJEX0zRZuXIl7e39v3xp7NixzJkzZ/AnJYZcNpvltddey3sr0oKCAs4//3xstlP7oonm5maeeOIJMpnjnV/rraamhqVLlw7hrAZPc3Mzb731Vl4hmQDTpk0bUaGJ4tQgjYYQQoi8vP7661x44YUDqlUUhQcffJA///nPeaWHV1RUcMcdd+By9R1qJobefffdxz/+4z/2q+Yvf/kL1157LV/84hepq6vLebyiKNx4440sW7ZsgLMcfF/60pf4+c9/jmqzoygKlmWhKMpxjzeyGRRFob29nb/85S/8/e9/z2ucs846i+9973uDNe28XXrxxbz0yit5Hx/w++no7GTbtm3cdtttpFK5b1b3+/18//vfl3DNM9ip/esGIYQQJ01bWxsAr35+HusORoildSaWeAh6bDRFM4wNutBUhYOdKSwgkTGwqQqg8OmHt/OrX/+GVW+vpWDa+X2Ok422EXviCW666SYWL1489AsTfWpra0O1ORjzgS/gLBqF6nDhLhuLotlRHW5i+zehuX1Yhk4m3MLu+75OW1sbu3bt4s4772R6hYeqAmefY7x1IELjofoR1WhEo1GCk86mbMlN2Nx+bN5CVLsTFBVHQSl2fxHhnW+huTyY2TSRPe+w/68/JB6P8/9u/TbpSBtzqnx9jrGnLckTTzzBl7/8ZQoLC0/Owg5ra23hurmVXD2rnGTGIJk1mF7px64quB0amw5FqCp00R7P8uSmZv66oZFsNstDDz3Eo48+SnD25TlGsOjc+ASLFi3illtuOSlrEiOPNBpCCCH6pdhn56PzKli+vpm97UkuLgpS4nN0h/JZKNhUhXFFDs6q8vPW/q77NkzTIDj7MiZ/5rd9pga7ysax4RsX9Ov6dzG0bE4X4z74JZreXE420op/3MzucDpvVQ3pzmYcheWUzruS3ff/F0D3masffmAC+9pTfaZ/f/3v+9g2Er/eikLF+dfT/OZyUh2HjgrlM0g27cOyTJLN+3FXTMA/fnZ3mWHofHJ+OV9aUt1n+ndGt7j5kZ15neUbCoVuG7G0TjiZ5eLJJV3hmpZFNGVQVejqPubiKcX8dUPj4bUZ+EdNZOrn/9Dnz3Fw1iWs+WyN/Byf4aTREEIIMSDL5pYf8/EZlX3X5UoNbn9nxRDMVgyGisXHPuPgGzPjuDUra8PMHxM4pdO/y/NYd8fmV3o9nyv9+/dvDX8Y4YfPHpXzmOXvNPR6LNfPcWT3mqGYrjjFSKMhhBCi31ZsbaPYa6czqZPWzR7p3zZVYW1dlAK3DU2BQ6Ge13JL+vepqXXtCuz+YvR4J2Y23SMFW1FthHeuPmbdeeMLOHu0/7ivO39MgL9sbBuqaZ+wXOuO1q4nG+0g1VbfqzZ3+rdnqKadt6e2NFPsdRBKZEnr5uH0bz8zKv3YNIXV+zrZ3hjtVZfr5zhQI1vXCmk0hBBC9NOaAxEaImm8Tg3LsrhoUmF3KN/O5kR3KN/kUg87W+Lsaj2y9Wk20pYjNbhFQvlGKLsvSOzAZjyjarAsi/LFyw5/7RrRHG5UpxsjGYX37DGzuTHO+vpYn+nfLdEMjNAdb+2+ILG6zXgqa+CodadaD2DzFqI5PJiuTK91H+xMHzP9++h1725NDNOqujSGUzSGU/gcNizgoppibJrCjqYYh0Ipxha70VSFoNfRqza8cxWJg9v6TAC3TLP3oOKMIo2GEEKIfplQ7OacMUd+Q22YFoZpYWExqdTNpNKuT4wp3WBskYtp5V2/tVVVjVjtWizTwMymwbLQXrgHRdUws2ksy8TSs2TjIYBTfnvU04meTuEZNRnPqCPbm1qG0f0/1eHGWzW1R42maQDcvaqBgLPrg6zXofH7t5swLYtU1sSmKhiWxc6WBNNnjcCvt2VROHURhVMX9XrKHijBWViOq7gKAEVRu5/TNBsv7WmjtiNFWjexgHtWa2iqQjproKkKpgW1HanDx2snZTnv5XbY+ODsI9c66qaFblp4HRqlfieprMmsqgDr6o7k42iaRrRhLwcf+98jP8cuL00v/R7LAiN5+FI4BYxsSn6Oz3Dy1RdCCJGXkpISAC76xbp+1yqKwudu+SxlpY/mub3tlcybN6/f44jBV1JSgqlnWPnvs/pVM3nyZD73uc/ltb3t6MPb244kfr+fzj3v8PrNY7ofs6B7i1vLMsE6/HdFwdSzKIqC1+vl1v/33by2t62ga3vbk73jFEBJaRl/fWUbf12f330iAb8fu93ODTfcQG1tbR8hjUXdf/IvnsXVVw99urkYuSRHQwghRF5M02TVqlXd29z2hwT2nboksE8C+0AC+8TAnNr/CgghhBhUmUyGb3zjGzQ1NfW7tqKigttvvx2Ho/f13GLksiyL733ve+zatatfdZWVldx+++3Y7fYhmtnQ27lzJz/+8Y/7+O18b9XV1Xz/+99HVdXcBw+j3//+9+zcubPfdV6vl3/5l3+hvPzYu8oJ0R9yRkMIIUS3t956i4ULFzK53EvQbUdVj5+EfLT2eIZdzXG+/e1v87u77yGbyeasKS4p5rlnnmbcuHEnOGtxIhoaGqiqqsJVMhp3SXX345Zpohznw3Qm0ka8YTerV6/m61/7Klu3bs1rrBtuvJGf//yOQZn3YPjWt77FbbfdRnDqou4bl4+3ZoB0qJlE0z42b97Mn/70J+767W/yOiMwfvx4XnvjTZzOvoMLB0tbWxulpaV4HDbKCvp3l/3+1iif+9zneOLJp4hFc5/Fcnvc3Pf7/+PSSy8d6HTFaUzOaAghhOiWzXY1CPd8dCrhlE40ZRD02Jha7mVTQ4zKgINExsBj19jTlsRpUyjxOVCAC+9Yx8qVK2mPJBl1xb/2OY6ejLL76V+xbt06aTSG2btf8/ILPoZ39DScJaNRVA3L1NFcflTNhur0EN23Hs3tR1E1Yvs3s/eP36ClpYVXXnudK6YGmVt1/C1sAZ7c1s5jy5ePqEYjm83irxhH+ZKbMLNpPJWTsIws/glnE63dgLOoEiOVQHN5SHc0kGjcw+7ff4VsNssTj/2VAiXBh2aX9jnG9uY4j69dR21tLVOnTu3z2MGSSnXdZH7PDdOJZwziGYMpZV4URaHIY+dgZ5LqIjem2RUe2BpNE07plHgd3LJ8F7t27aJufy1jrvt6zrHq/voDXnnlFWk0xDFJoyGEEOKY5lUHWL6+mT1tCXxOjcpAV/p31rDYFUqQMSw8Dhs1pR72HLVNp2/MdKre/+99pgb7J86j4elfDePqxHv5J55NcMaFNK9cjh4PE5y1BEWzYZkG6Y6uwLZMRwPO4ioKp53Xo/ZjZ5cTTul9pn8nswaP7R2ZF1GUnXstzSuXE933DsFZF5MJdyWd6/Ew6c5GVJsdu68I35iZ3TUWcP74Av79wqo+07/PHevn8S3Dt2Xz+2eWsXx9E2vqIlw8uQgUqCp0EU7qNEfSFHps2DWVa8/qeamU01eY8+c4OOsS2l9/cJhWJk4F0mgIIYQ4phVb26gOuvAldbY0xnuE8o0tcrG2LkpHQmdVbYhEpud++blSg8M73himVYm+tK1dgaukGt3lJ35gS3c4nXfMDFylY4nsWo2p9745eu3BKJfUFJ6y6d/vrjvr8hE70PX9evS6o7XryUTaycY6etXmSv/+y8bWYVhRTx67RnWhi90t8aMCNn2cPaYr22P9wQgv7mzn0ik9AwYl/VucKGk0hBBCHNNVM0r6fH5JTbD7z0ef0dDjYTKdjWguX1cOwYyLuoO8jFScTLgFm7/v1xbDo+ScvtOei2ZfBkCiYXePx30OjS2NcWpK3VgWLJtT2iOczqGpHAqngZG5UUCudQenXwBAdP+mHo83RTI0RjL4nBqWBRdNLOxet6rA3rZk3rs6DaWrZvZ9edcFk4qO+bjNFyRetwX34bDC0vOW9QjlUzQNU899P5Y4c0mjIYQQopcN9VFe2dNJTamHRMZg0fiC7vTvUFLvTv+ePybAzpY425vi3bU2bwGVl93c6zVt6QIcheU4i6tINO45mcsReQrtWEX84DY8o2ow0gkKDqc9x+u3462aQuzAZoxkDOU9AXNTyz1cPiXY6/XGBF0EXDZmV/kodI3cjxxd69561LoXoag2Eod24AhWkgk1ocdCpNrre9RVBBzcvLCy1+sdve7GSPpkLaOX7U0x9rQlu36OswaLxnc1Qjua47jtGgUuG/WhFOOK3URTOgc7U+jGkbOTBVMWUTCld1jh0T/LKCN79y0xvEbuT70QQohho6oKC8YWsLM5Tns8y772JNVBF+msic+pkTVMWmIGf93UwuwqPzata3cql8tFaPsLrPv89MO7+FgoqoaiKFgApollmZhG129BfT7fsK1R9BQ7sAVHQRmWoRM7sAVXSTXRPeuwTJNk4x4iu95GUTXc5eNJtXaF8DmdThRF4R8f2kGB24FpWViApiiHg+0sLKvrfoZIMsP0qVOGc4nHlIp0oLm8aJ4CYge3dyXX61k0p4dstJ1Y/Q70eKgrwf6oy8Z8Ph+/f2sbf93ckXPd0LVt7MnWHM2waEKQbU0xQoks6+oijCpwktFN3A6NjG6SNSxW7w8xrcKHZVl0xFI4HA7SsVDOn2OAbDImP8fiuGR7WyGEEN327dvHxIkTB1z/6quvsmbNmu6djPpSXFzMTTfddNK2/BTHFovFKCktJX14p6L+qK2tZcOGDezYsSOv4y+55BIWLFjQ73GGyp133sm///u/96tGVVUOHTpEU1MTzz77bN7b237kIx8Z6DT7LZVKMXZMNS2t/Q/XVBSFP/zhD0QikbxCGj0eDzfccAMlJXI5pOhNGg0hhBA9HDp0iObm5n7XlZeXU1VVNQQzEkOttbWVgwcP9qvmdPh6W5bFjh07+hXYV1lZSWVl78ulRppMJkMoFOp3ncvlIhAIDP6ExBlJGg0hhDjDGIbBzTffTO3e/t8nUVxSyl13300qlSKdzn3tud/vp6ysbCDTFEOgo6ODzs7OvI51uVzdjUQqleLQoUN51VVXV4+YdPh77rmH+x/4I+YAPuo47Hb+82tfZfLkyZimmfP44uJiCgsLBzDLgQuHw9z8qU/R2pL/LwYUVeWmT/4jn/rUp2htbSUSyb0jmMPhYPTo0YcvCxMif9JoCCHEGWbXrl1MmTKFedV+xhXlnxocTes8t6ODT3/609xzzz151z377LMsXbp0IFMVg2jbtm3MmjUrrw/N77rzzjv57Gc/y4Tx49h/oC6vmlkzprNpS35J4UNtxqzZ7D7Y1L1rVH+0rX2SCWOr2bMnv4bcZrOxd+9exowZ0++xBuq5557jiiuu4JLJQYJue141r+3tpGrCFH7+iztZsmRJ3mP96Ec/4itf+coAZyrOVHIzuBBCnGHe/aD531eMpzmSYVSBE69Do7LAwfamONVBF6YF0ZROPGNQH0oztsjF+GI3M/9nNY2NjTh8QSb92+8IbX0NIxXDN34Oqs2BZZqYmQTZWCf+8XPY9uOPsG/fvmFesQDYv38/pmky6Z9/iaOwvO+v3YS57P71v7Bnzx5M02T/gTo+cU45H5hZzGt7Q8TSBnOqfDg0FdOySGRNOhNZdremeGrn3uFeajfTNChdcA0Tb/guh569C0/VZFAU4nVbqVjyCZLNtTgKSsmEWrD7i8nGOlBUFd+YmWRDTcQ79nDWKC//vXRsn+sOuGz815O11NXVndRG492f5aVTi6kpdRNK6lgWBD02nDaVMp+Dg6FU18+02fXLgmhap9Ewu38up/3Hw4R3vNnn98Leu27Ju+ES4mjSaAghxBnsmlmlLN/QTCipc3FNsEeT0RzNEE0blPsdzKsO0JE4coO3K1hOwdTFFExd3OfrK6rW5/Pi5CuYuhhHYXnOr50r2POSt7mjfSweX8Di8QXHrbl3dSNP7RyZ4XxVV/zL4dTzEEVzr0BPhLF7C8lGO8hG20m17MceKKFwWs/3ZXyRK+e697Tlf4/HULhsShEr94UIpbp+jp02FdOEcEonnjHZ05qkyGPjrCo/VYVOGqNHagumLaZwxoV9vr6raOTfkyJGJmk0hBDiDLZiaxvVhS58zsPp37EM08p7pn9H0wZvHwijmz2vtG1ftwK7vxg9HsLMpnqkBiuqjejetcO0KtGXzk0v4q6YeNyvW2TXahTt2B8PVmxrp9hrJ5TUSelmjxRsm6pwoLP/O1edLEdSz33HTD2P1q4nG2kjsmctgUnn9KjNte7NDbl3ZxpqHodGddDF7tbkUenfXs4Z4+9K/66P8sTm3inlHe88jT1Qetzvh3j99mFYjThdSKMhhBBnsP6kfx99RgNypwZrnoIRkYoserJ5C/v8uqlON0YyhpHN9Kjb05akwu/oMwWbEfzlzjf9+73a4tnc6d9DMeF+yvWzfMHErp/ltw6Eezxu8+ZO/zYyI7eBFCObNBpCCHEGSSaTPPvsswBsaYyxuSF27PTvlE5brGf6d0dSB6Curo5MPIwe6wTNRrJxD86yscTrt3eFuzXsAssEVev6fzGi6NGOnF83d8VEjFTP39I7NZXKgIPa9iSGCesORvA4NFqiGToTOhnDHJFnNNIdjRx6/p5jpn7bPAUkm/ZSMG0xiYbdqHYndn8RsdqN3R+uLci57h3NiWFd47qDEVZsy/T6Wd7RnMBtVxlb5GJbU5ygp/cN43o89/dDNhY+xqhC5CaNhhBCnOZ0Xefll1/moYce4i9/+QvRaNcF2m/sDTO5zMOWxhZiaYPlG1oIeuzohonTrpI1LAzT4s8bmhld6KLz8BmNzZs3A7Dr1/+c1/gVFRVDszDRL+9+HfY98J/9qlFVlZLiIn72an1eNePHnrybofORqN+Op2IC4XAr6VAzLSv/ApaFandh8xaAZdK65knMTAIUFbu/GJvLT7xhF8GyIlbWNrOyNr/7TsrLy4d4Ncf2yu5ODNNidW0Yy4IXd3bi0BSiaQO7pmCYFrppEXTbeXl3J4FRwe7vh12/+UxeY8jPsRgI2d5WCCFOQ+FwmEcffZStW7fyyCOP0NzcTE1NDTfccAMf/vCH+cK//zu1+/q/O1BJaSm/uPNXPPzwwzz99NPs2rULj8fDhRdeyGWXXcbcuXPRtCM3gAcCAWbPno2qqoO5PDEAlmWxfft2Wlt7X6d/LC6Xi3nz5mGz2WhsbGTXrl151U2fPp3S0tITmeqg+Z//+R9+d/e9OS/hs7BQ6JkRYbfb+fZ/f4Px48fntSVwRUUFU6ZMOaH59ldLSwvXfuBqWo4K2HzvWt77d0VV+Od//Te+9rWvsWnTprxC/ZxOJ/PmzcNuz28LXSHeJY2GEEKchqZMmcKuXbsoKyvjhhtu4OMf/zjz5s0b9MCtnTt38vDDD/Pggw+yZ88eKioq+MhHPkJVVRWf+9zncLvzz+kQQghxepFGQwghhlEoFGLunNkcamg4odc5/7zzePHlV7obiQcffJBXXnmFX/ziFyflw75lWaxdu5YHH3yQ+++/n87OTi6//HKee+45ABKJBHPmzGH//v15vZ7NZuP222/ni1/84tBNWpyy3nzzTa7+wDXEYtHcB+dgWRaWZeFyufnqV77MpEmTjntscXExS5cu7XHW7mQIh8M899xzpNPpvI4vKyvjsssuw7Isnn/+edra2nLW2Gw2Lr300hFzNkqcHqTREEKIYfT2229z7rnncvPCUUwoGVhD8MruTp7f2YGu6yf9A9CxdHR08N3vfpcbb7yRc87p2iZ027ZtzJgxg5s/voyzpuW+vOR/77yb+QvP47HHHhvq6YpT0B133MEXv/hFJnz8+5zoSbrWtx4nsvvtvI9/+eWX+5WoPRi+/e1v873vfa9fNW+//TbpdJoLLsg/Ff3Tn/40d999d3+nJ8Rxyc3gQggxAnx0XgXTK7y8uKuDlmiGs0b5OHQ4kbvU78ChKbx9IILbrhLPmJiWxdKpxQC47RrP7+wY5hUcUVRUxM9//vNjPje6soI5M6fi83ioqixn8/ZdjBszGsMwiMbitHV0Eo5Eqa6SgDDRN5vTgyNQjD1QQjbSBqoNd9lY0h0NaC4vmjtAJtREvG4rgZr5oGg4i0aRbj+Is2QMmAZ6Mkrbmic5Z0yAP900jcc2tRJOGVw0sQCnTcUwLWIZg+ZoltlVXs75yTt0dnae9LV2dnZSU+7nmX+e3uccl0wqpD6c5qJfbqCzs5NMpmuL4rk/XE14+xsYiTAFMy5CtTuxTAMjFSMbaqZw5hJ2/PwTw7I2cXqTRkMIIUaQSycXAbB8QzPhpM7EUjfJjEHMgnK/g+ZoBsO0KPGdmjdlXnL+uezdf5DOcISlSxb3ajLiiSSjKysoLAgM91TFKaBk/gd6PRY/uI1UywGCs5bgqZqKp7IGPRklE2omfnArdl8RruKq7uPtBaU4siov7e5kQombUFJnV1uyRyhfTamnV/7EyebQlJxzXHMwSjJj9KoNb38Td/kE9HiIZMOuHqF8nooaYvs3o9qcw7AqcbqTRkMIIUaQFVvbKPba8Ttt2DWVl3d3did1F3lstMayKIqFpihsaYgxc5RvuKfcL6+tWsN588/G7/OyccsOmlrbmDVtMrOnT2H8mNFs3r6LlvaRc3ZGnFra1q3AWVKN5vYTqzuc/j16Gr7D6d+x2vWkOxuI7F1HYOK8HrVXTS/u87XnjvYP5dTzkmuOF0wo4FCo930cwbMuxVFw/HsvAjXzObG7xIQ4Nmk0hBBiBOlPUvep6MJF81k4b85xnz9v/lwA7nrgTydpRuJ0UjKv7/TvwuOkf4eTOveubqSm1E0iY7JwXKA7/XtKmYfa9hSt8cwxa0+mVfvDbGtK9JrnjpbDwXxBF6v29z7zEt2zlkxnA+7KGsx0gsCUhT3SvzPhZoxUHCg6+YsSpzVpNIQQYgTYeCjKqtpQd7LvwqNSusMpHQVI6Sblfgdeh8ahcJr2eJZJJR4OhfPbiWYk2LBlO2s3bmXqpPHEE0kuXHgONpuN+sZmdL0rENBmOzUvCxPDL7xzFfG6bbhHdX2gLpiyEFQb6Y5DYFkY6Th6PIRqc+AIVuKp7Nphqj2eIZTUeWFXJ6YFu9sSOG0qoYTOytoIWdOifphTz+s6EqysjRBO6dR2pCj326kLpdBNi864fjhk08Tr6L0hRGTnKgBSzbXYC8tJtdWBZZFuPwiWBYpKsmUfUH2SVyVOd9JoCCHEMHo3AOu3bzZQ5nfw9I5ODMPgJy/XYViQNSwCLhuaqmBaXUndumFgWhD0OlGAnc1xNE0b9IyMwfTuOn9+1/34fV50wwDLwuN2o2kqqXQGm6ahGwapVJrdtQf40Ic+NMyzFiOV3W5HTyfY+r/LeO+2U3oyiqlnsEwTzelB1WwYmRSmYaBgAgqay4OiaKh2B6n2BpKRDD99JXfyecDvZ9q0aUO0quM755xz+O1vrbzmCFBYEGDKlClks1n8gQKaXrw3Z42iKCxYsOBEpypED7K9rRBCDCNd1/nmN7/JoUOHuh8zDKPPbWozmQyhUIiysrLuxxYuXMjnPve5IZ3ribAsi29+85usWLGCMWPGEAgc/2bvjo4OSkpK+MxnPsN55513EmcpThWHDh3itttuIxo98RwNANM08fv9fOMb36CiouK4x9lstmHbQjqbzeaVUA4952kYBrqu56xRFAWHw3FCcxTivaTREEKIQRQOh3nzzTfz+g/70RRF4dxzz+3RPOQrkUiwY8eOvI8PBoOMHz++3+O8yzRNtm/fnld4WCAQ6DMAbbDGOZqqqkyfPl0+NJ1mLMti1apVeYXPvcvv93P++ed3n1ETQpxc0mgIIcQg+sxnPsPvfve7AdVesfRynnn2uX7XLT7/Ala++Ua/al599VUuvPDCfo8F8KMf/Yivfe1reR//97//nauvvrrf4/zwhz/k61//er/rAD68bBmP/vnPA6oVI9O74Zb99cc//pEFCxbwm9/8Jq+mtaCggC9/+csUF/e9w5MQIje5R0MIIQZRW1sb54wJ8H83TGPjoSi6aVEfSnNJTZCDoTTFXjttsQxBj51QUkc3LQrdNu5eeYj6lpYBjXmwvp7qWQsZO+cCSsZOIdbRTKB0FO5AEarNTvOezdgcLjKJKKap89LvvkN9fX7Xeh9LfX09nmAZ06/9N5y+QtxF5STam/AUV2CZJnoqgZ5Okgq3se7+7w14rPr6eiqCPv7lspkU+V1YFvhcdppCcTxOO+UFHmyaistuY/uhdrxOO5qq8LvnNlF/sG7A6xMj07tnMuZ85znCu94CunaRSrXW4Sgsx0wnUJ0e0u1dlyHa/cVs/sEHaWtr43e/+x0/+9nPmFlV0OcYlmWxtSHClClT+OQnPzm0CxLiDCCNhhBCDDK/U6PYa+eSyT23ihxX7D78J2+vmoDLBtmBj1l91nkUVU0gEWpl0rmXY3O4sEyDdCJK0egJuHwFYFmUTZzJS7/7zsAHOsxTUIy7sJRMLEygYjzBMVOxTINsIkoq0oHd5UUvq0Y9wevZSwIePv/+swF49M2dtEaSXD57HC67hmFaRJMZWsIJpowq4sLpowF4c0cDtcO/E6kYIvZACaMu+1T33z2jano87xs7s/vPNkfXz1w6nWbGqADP/st0lm9sJZzUWTKpEJdNxbAsommD5miGS2qCjP7Oqn5frieEODZpNIQQYggt39DS9aGmJojLpmBYEE3pNEczZA2LAreNheP6/i1rvmYt/cgxHy+feOSDVzadHJSxACZdfP2gvVY+rl885aSOJ0aulpXL0eNhgrOWoNq7mmrjcPq36nSjqDYCNfN71a3Y1k51oRO/U2NLU7xHsvbYoIs1dZFhWI0Qpy9pNIQQYggcSfjWsGsKL+/uOJzw7euR8O2xa2xpjA3KmDte+zuewhKS0U6MTIpYRwtlE2ZQPmkWqqbRsOMdRs8YvO0r9696EleghHSsEyOTJhlqoWjsdIomzERVbTRueXPQxnpy7V6K/W4642nSWZ2WcILp1SXMGlOMpqpsq28nnspyyawxgzamGJk6Nr2Iu2Jid/p3NtyK53D6t/Nw+reeiBDdu65Xba5k7fljjr8bmhCi/6TREEKIITAcCd/ugiKa92yieMxksCxmLf0oqqbRsm8rpeOm43D7OLR97aCN5/IX0bFvMwXVNWBZTLr4elTVRseBrQTHTMPu8jJY+40EfS4217UxuTIIlsVHFk9BU1W217fjdzvQFIWqIt+gjCVGtqKzLsVRWH7c54+X/g3HT9Y+OgFctsgRYvBIoyGEEIOsM5Hl3lUNRz7MjC/ApnJUyrdCPGMwf0yAN2tDBN12Ymkd1BMY1LIYO3sxY2cv7vVUYeU4XL4AVdPm0dm4/wQG6TEgFTPPo2Jm75wLf/k4HN4AlWedf8KNxrvVi6dWsXhqVa/nx5QGqCjsuuelKRTvqpEPiqe1yJ51ZDob8YyqwTgq/TsTakK1u8iGm8keTv+2DudOKIrCjqYo/7e6iUTW4MVdnRS4bTy1rR3TsoilDeyaim5Y3ccLIU6cNBpCCDGI3G43Gw7FCB2+GTmdNdBNC8u00FQFu00lq+tYFmiahmlZuOwaB9rinH9eTd8vfhwFgQArH/oZbz16JxZdYymqgqJ0dS6maaCggAKmYQD0GZiXSyAQoG3/Du7/UBWWZWFZFqqqgqIc/rvZ9UHNAixrwGMFAgG2Hmih6p/vOrwOC4sjHwQVunYJsrBQUIGueaSzOlcsXTrg9YmRye3uurH7wEPfQNFsWIbe9b1nc6CoKoaexTJMVAVQQNXsGNkUbreb6667jjVvraYxlYLDkRrdd2MogOvwn+2w5KJZXHzxxSd3cUKcpiRHQwghBtG2bdt4+OGHBxTYd80117Bw4cJ+j7l582Zee+21vI8vKiriQx/60IAD7dra2nj88cdJpVI5jy0oKOBDH/pQ94fE/o7zt7/9bUCBfZdffvmAgwLFyJROp/nVr35Fa2tr3jV+v5/PfOYzFBUV5T5YCDHopNEQQoh+qq2t5Q9/+AOZTP/3UF26dKn8tvQ9TNPkscceo6mpKa/jHQ4H11577YBS1MXI9sADD7Bt27Z+1xUUFPDZz372hM7UCSEGn1w6JYQQ/fSLX/yCn//854wrPXLzsWlZqDmu6z7QFuOxvyxn6ZXv45XX8kvyvuLyS/nRj36Eruss+/D17Kvdn7NGURT+9Z9v5rOf/SyNjY184hM30pHHb4HtDgf//e1b+cAHPsA777zD5z7/BWKxeM46n8/Lnb+4g7PPPpu///3v3Pbd/0c2jyasqLSUP/7xQRobG1m2bBkATnvu/yylszo7d+7kxz/+MV/96ld59vkXc9YALLnwfH7xi1/kdaw4+cLhMDfddBOq3YWnuCLvOss0ibfUYRgGTz/1JIl47u9Zr8/HL3/1a+bMmXMCMxZC5CKNhhBC9FMymeSs0QXcfG45Z43yYZgW4ZROcyTDovEFtMYylPsdbG6MM7XcQ2M4Q9YweW5HB0/VxvnlL3+Jp3oG/onz+hwnumcNv7zzTn70ox+xe/duHv/bYxRMvwBX2fg+6zo3Ps9v77qHz372s6xatYoXX3yJ684qwefsOzxv+cY2HnnkET7wgQ/w9NNPs+rNNyhfclPO92PzK/fz9NNPc/bZZ/PII4+wZdMGls3ue9etWNrgry9uZuXKlRQXd205+uOPzCWlmyyeVELAbedAe5wxRV4MyyKWyhJPG3TE0/zPUzuIRLqusP/lnXeilYzHP6l3ZsLRonvXsfmXv+SOO+6QG31HqHcvkau+9sv4JpyNHu/EVToWU8+QaT+Ev2Y+2Ugr9oJy4gc24xk9FT3WQWz/Zvb+4cusWbOGN1et5qb5x9+R6l33r9zM008/LY2GEENMGg0hhBigZXO6Lt05OpQva5j4XTaaoxksy2LToRhlfgfnjivg1T0hoGsXnIpL/4nyCz5G68rl6IkwhTOPCh5LdQWPuUdNpuEv3wPo3r2p+tqvkGrZf9ya4KxL2KcoWO0be9TddtV4nt/V2Wci8t72dPfxlmXhDpYx4RP/0+ccg7MuIbLxmR51c0f7+Z+rJ/SZwDxvtJ+/bmrrsSvVeZNKWXeggzd3t3LxtPJeTUZtW4yqoAev68h/uizLouzCj1N56T/1OU/vuLPY94evDN03gxg07spJXTtJ0RXMZxz+mlp6Fs3lJxtuBizSbfUEaubjrZ7B3j98GcuyqCj05Pzeu6QmyIod4UHbelkIcXzSaAghxAl6t+F4rxmVfde1r1uBs6QaLe4n/m7wWPU0vNUzcJWMpXPTS71qwjtXEahZcNya0JZXjjnW8zs7qA66+p2InHOOG184Zt1AE5g9Do3qokJ2N0dJZU1aIymmVRUws6qA6aMCrNrbNqB51j8ll0ydisrOW3bMx73VM45bI+nfQowc0mgIIcQAvZv+HUrqpHST1limO/3bpsLauigZwyTothP09P7ntnjeVX2+vrtiIp3veaxgyiL8k845bk3hzCV0bHiu1+OXTymiwH38f/K7EpEP9XuOwdmXceCB3o/nSmA+e7T/mI+/f3bvrIyjXT6jkp89v7vX47nm6Srv+3IzMbK0r1uB3V+MHg9hZlNkwq14DzeOimojWrseM51A8xR0n/14l6R/CzFySKMhhBADFPTY2dIYp6bUjWXBsjnlPYL5vA4NMjC9wsuq/WFq25Poetf9AcmmvTS+cC/uyhrMdILAlIUoqo10ZwOa00sm1EQm3NJrzHjdFmL7Nx6/LtxyzLo1dREOdKb7TESOpHpvyRveuYrEwW3HHS/Vuh/T6FkXTurcu7qxz7Ha49leY60/0MFL25uoKfeTyBgsmlTSVdcYwee0kcwYeJy9/7OVaq7t+70MN5PpzG9HKzEy2HxB4nVbcFfWdF0ed94yFNVGvH47nqopaE4Plp7BMrIkGvf0qM0n/Turm8O0MiHOLNJoCCHEAMQzBpPLPEwu83Q/ZpgWhtmVUzex5MjjKd1k7mg/z+/oQFEtbHY7LS//AWegFLBQ7U4aVBUs0DNJuloRhVS4GY/TCYDz8P/X/+1H2D2BPusSbfVMnD+/R903VhxAU1UswGlTUZUGLCwyuommKpgW7G+LM++o8ZKdLRx44GtYut7neOlIR/c4TqeTLY0xErqFblhHjaeQNUxUtSvUL57K9pgfgKapFHocbG+MYJgWumnicdhoiaRwOzQyuklrNEVr5Eh+h8PhpPX1B3EWlOV4L1uwDzA3RJxc2Ugb/onz8Iya3P2YZRpYpoHm9mMZWVxl47qfy4S7dlSz2Ww0hRJ87ckD7/ne6/29Hk5menzvCSGGhjQaQgjRTyUlJextiXHWD97qd+3Zc2bzPz/8X956K7/aCy64AIAJEybwv//7v+zfvz9njaIoXHfddQAsWbKEb33rW7S3t+ess9vtfOpTnwLgYx/7GK2trcTz2SrU6+VjH/sYAF/60pcoKCggm+19xuK9iouLWbJkSXd+xmfueztnzbtGjx4NwN13/Y7XX389r5qFCxfKjlMjmM/nw+F0sve+r7L3vq/2u/5973sfEyZMIJFI5DzW6/Xy0Y9+dCDTFEL0gwT2CSFEP8Xjcd54441+J1YDnHPOOYwaNWoIZnVqq6+vp6Wl9yVfx+JwOJg+fTqqqg7xrMTJtm3bNvbs2ZP7wPcoKCjg/PPPR9P63sJZCHFySaMhhBDHsGfPHn74wx+STCb7XbtkyRJuvvnmvJPDHQ7HGfOb9kwmk9e2ojabrceHxnybujPpvTyVmaaZ11mvd6mqit1uB0DXdQzD6FeNEGJ4SKMhhBDH8N3vfpdbb72V8yYE+1W3ozmGrjpZfMGFPL1iRV4102fMZPOmjaf9b+i/9a1vcdttt+V1bFGwkC1bt1FZWcmyD1/PX5b/Oa+6iZNq2LF9GzabXBk8UqVSKWomT6H+YF3eNZqm8dvf/papU6ey9PLLSaZSOWtsNhu///3vufHGG09kukKIEyD/EgshxDFks1mqi738+Z+69utfsbWN6qALw7Qo9Tso8th4a38Er0MjmtYxLbhsShH3rmrgf146xKrVb1Ewcwml5/4Dkd1rMDMJPKOnoWg2sCzMTAo9ESYbaWXb6r+SSCTw+XzDvOqh9dbqVUwscfH5C0ezpi5CImMyrdyDTVOwLEhlTcIpHZ9D4yev1LNr1y4qKyt5c+UqAlPPo2zxR/p8L/V4iL1v/omOjg7Kyo6dbSKGX2NjI/UH6yhfchP+ifP6/Jp6q6cDcOCRW1m7di2ZTIZkKsXP/2ESaw8e/3toeoWX/3qylnXr1kmjIcQwkkZDCCHykMiavH0gwpKaIFgWrbEspT47zdEMqqJQ4u19iUbBlPMoPW8ZpccJHQNoe/tx2lb/dSinPqJML/eybHYpy2aXHveYfe1JfvJKfY/HApMX5nwvOzY8R+ubfxq0uYqhVTzvKgqmX9Dn1/RdrS/d2/1nh03jw3NK+fCc438PAfxqZfMJz1EIcWKk0RBCiD68G8rnd2rYNYWXd3d0h/IVeWy0xrJkDBNVgT2tvXe7eW/w2NGJ1YpqI1G/YxhWNbxWbGvvGXR4VHKzTVV4add7Ywq75HwvG3oH+YmRK7L7bRSb47hfz1jteox0AntB77NTub6Htjfn3i1NCDH0pNEQQog+XDWjpM/nl9T0vIfj1T2h7j+nWg+gOlxoLh9YFoUzLuoOkjNScTKhJjRvwVBMe8Rqi2dpjGTwOTUsCy6aWHj4g2GCpkiGtG5S4ut9dijddhCbt/D472W4Gc3pOcaIYqTSXL7uUD4si9LDoXzvBi2qTg+mnsFMxTAyPe/JCHps7wnLLO0RyufQVJKZ3gGUQoiTSxoNIYTow6raMNua4kdShscX9Ej/VlCIZwzmjwmwan+Y/R1JTLNrjw1HYTnlF32812uqDhf2QDH2QDHRve+c7CUNq4BL4+Pzyns9Xu6zU+bvCtQ7VkK5vaAs53sZP7Bl8Ccshoy7YgIF0y/o9fjRX9N3WdaRJO+sYTC3ys/cKn+v2nKfA4emMqVMmk4hRgJpNIQQ4jgOdSTY2ZJAUxVe2xsikjJ4YWcHpX4HWcPEZVPJml0J2C/t6mRCiZtdLQkUBQoLC9n/xE+pf+KnOcdxud04zoDU6mBREY++0MnE2/ILKwwGu84WFQWDbHv6VzQ8/aucNTa7Ha/Xe0LzFEMrEAigKAo7fvGP/aoLBpcRDAaxLPr9PSSEGB6yva0QQhzDU089xcdv+BiJXDkaFvCe2Ib3XXEl//vjH7NmzZq8xpo2bRrz5s0b2ERPIU1NTbz88st5ZSBUVFRw6aWXoigKe/bsYfXq1XmNMXnyZBYsWHCiUxVDbOXKlezbty/v451OJ5dffjlut5tnn32WSCSSs8blcrF06VICgcCJTFUIcQKk0RBCCCGEEEIMOrl0Sghxxtq4cSOf/MSNRPP47eh7LVi4kN/+7i42btyYV9L12LFjGTdu3ABmKYQQQpyapNEQQpyxXnnlFTZu3sLnLhjd6/Knvqyri/DInx6lrr6BlW++kVeNzWajra2NgoIza5cpIYQQZy5pNIQQZzSPw8Z/LR3H3rYkqayB32XjUCjNmKATw4JoSqcjodORyDK60Mm86gB/29TKqv0RGpuaKV5wLdUf/Cod65/BSEbxTz4X1ebAMk3MdJxspA1Mg30PfJ2Ojg5pNIQQQpwx1OGegBBCjAQTS9xsb07w/I6O7m1W35U1TApcNuZV976p1FFYQaJ+O/4JZ+MbNxsjHiJRtxVFgUDNAkrmX4OejJ6sZQghhBAjhpzREEIIuhLAqwud+J0aWxpjtMYy3QngY4tcrK2L8pcNLYwudHKws2d4WPG8q/p8bd/YWUM5dSGEEGJEkkZDCCHoXwJ4YyTT/ed0RwONL9yLu7IGM50gMGVhj3TjTKiJdHv9kM1bCCGEGKmk0RBCnPH6m/69pTHWXZvuOISenEJ0zxocxVWEtr6KZZokW2pRLBMUjXT7wWFcnRBCCDE8pNEQQpyxVFUlkdF5aG0TKPDS7g5SWZO7Vh7C79LQTROHpqKbYJoWv32znlKfgy0NXY3G5EkTqX32GeL73sk5ls/vp6ysbKiXJIQQQowYEtgnhDhj7dmzhy9+4QtEI+F+184/dyE//OEPOXDgQF45GuXl5fh8voFMUwghhDglSaMhhDjtdXZ2ks1m+13n9Xrxer1DMCMhhBDi9CeXTgkhTmt33HEHX/ziFwdUa7PZuO+++6ivr8c0zZzHV1VVceONN6Io/Uj/E0IIIU5T0mgIIU5rW7dupcTn4OZzKwinDApcGg6bSkM4TYnXjt9pI5rWKfc70FSF5mjXjlKRtMGdr9Vz+//8gK1bNuMKFPc5TjoexjJ05s2bx/Tp00/G0oQQQogRTRoNIcRpr7rIw+eXjOlXTdYwufO1etLpNKXnfZhJN/+c1pXL0RNhCmcuQbW7sEwDIxUlE2rGUVjBpu9cTiwWy/3iQgghxBlAGg0hxBll+YYWwkmdJTVBXDYFw4JoSqc5miGaNijx2lk8obBXXfu6FThLqtHifuJ1W8iGW/FUT8NbPQNXyVha3/7bSV+LEEIIMZJJoyGEOGPkk/7dFMmw5kAEr0PtUZsr/ds/4eyhnLoQQghxypFGQwhxxuhP+nfWOHLzdybcmjP9OxNqGbJ5CyGEEKciaTSEEGeE/qZ/p/UjjUbi0A7s/iJi+97B5i8munctWBaZzmbAAkUhm4wM3+KEEEKIEUgaDSHEac3tdrO+LsRX/q4DkM4a6KaFZVo4bCqmZQEWhmFis9kwLQu3w4Z+uNE4d8F8Qs+9gLn7dQAyxxlHA2bNnsO0adOGflFCCCHEKUAaDSHEae0LX/gCBQUFZDLHaxGOr7CwkFtuuQW/3z8EMxNCCCFOb5IMLoQ45VmWxerVq2lp6f99ElVVVZxzzjlDMCshhBDizCaNhhDilPfOO+8wb968Adc/9NBDLF++HF3Xcx5bWlrKz372MznLIYQQQuQgl04JIU55bW1tAKz4zGxGF7p4bkc79aE0188to64zTbHXTlssQ7HXTkssi2VZ+J02ElmDG+7byj333MPLr71B4YyL+hxHT0SIPvEE119/PUuXLj0ZSxNCCCFOWdJoCCFOGyVeO8VeO3ZNpchjRzdhQrELwwLLstMczaAqCqU+BzNH+djS2JXibZomhdPPZ+rn/9Bn+re3egbrvnx2Xmc+hBBCiDOdNBpCiNPOsjllx3x8RmXfdbnSvzs3vzQEsxVCCCFOT9JoCCFOKyu2tlHstRNK6qR0s0f6t02FtXVR2uNZxgRdNERSPWpzpX8HJp87lFMXQgghTivSaAghThvvHIzSEsvic2pYFlw0KdgdyrerJY6CAsCV04pZtT9MKnsklC8b68yZ/m1m+79FrhBCCHGmkkZDCHHaGFPk4rwJhd1/N0wLwwQLmFji6X48pZvMHe1nfX1XmreqqsTrtqJodsxsGiwL7YV7UFQNM5vGskwsPYuejAJgs8k/nUIIIUQu8l9LIcQpr6SkBICrfrtxQPWf/vSnKSwszHN720tYtGjRgMYRQgghziSSoyGEOOVJYJ8QQggx8sgZDSHEKcEwDP77v/+bgwcP9ru2tLSU73//+3g8ntwHCyGEEGJQSKMhhDglbN++nR/84AdMKPFQHnBimhaqquSsCyd1tjVG8fv93H3v/5FJ576huzBYyFN/f4KpU6cOxtSFEEKIM5I0GkKIU0I2mwXgV8smc1aVj/X1URrCaSaVuCn1O3BoCm8fiOC2a+imhWFaLKkJ0hBOM//Ha1izZg1tnWFGve9zfY5j6ln2PfET3nrrLWk0hBBCiBMgjYYQ4pS0ty1JOKkztdxLMmMQs6Dc76A5miGWNhhV4OxV4xtVQ9X7/73P9O+CaRdQ/8RPhmFFQgghxOlFGg0hxClnxdY2qgud+J0aWxpjPUL5xha5WFsX5UBHCsuCrGH2qM2V/h3e/uYwrUoIIYQ4vUijIYQ45Vw1o6TP55fUBLv/3BBO93jO5gsSr9uCu7IGLIvS85b1COZTne4hmbMQQghxppFGQwhxStnUEGNNXYSaUjeJjMnC8QXd6d/hlI6CQjxjMH9MgHfqozRFejYaBVMWUTCldw6GLV2Ao7Ace0HZyVqKEEIIcVqTRkMIcUpRFFgwNsDOlgTt8Qz72pNUB52ksyY+p420bpIxTB7b1MLsKj/hZNdN5C6Xi9De9az7/HQs0wQsFFVDURQsANPsSgA3uy618vl8w7ZGIYQQ4nQggX1CiFNCU1MTVVVVmKaZ++BjeO6559i8eTOZTB7b2xYWctNNN0nuhhBCCHECpNEQQpwyGhsbaWxs7HddaWkp1dXVQzAjIYQQQhyPNBpCiBHDsiz+5V/+hV07tve7NlhUzK9/8xsAkslkzuN9Ph/l5eX9HkcIIYQQ+ZF7NIQQI0ZjYyP33HMPZ43yMak0/92fMrrF42+0UVZezt1335133WOPPcYHP/jBAcxUCCGEELlIoyGEGDHevf/iPy8bS6HbRjJrYtMUatuT+BwaFhwzCTyZNXhyaxtNTU1oTjdTPn8foa2vYaRi+MbPQbU5sEwTM5MgG+vEP2Eu2350PXv37h3eBQshhBCnMWk0hBAj0pzRfpZvaCGc1FlSE8RlUzAsiKZ0NtRHSWZNKgIO5lUHSOtHbhB3FZRSMHUxBVMX9/n6Dm9gqJcghBBCnNGk0RBCjEj5pH/vb+9K//Y6tB617etWYPcXo8dDmNlUj/RvRbURq10/TKsSQgghzhzSaAghRqT+pH8ffUYD8kn/9mCZxpDMWwghhBBdpNEQQow425vi7G1L5p3+DUc2z8smouixTtBsJBv34CwbS7x+O5ZpkmzYBZYJqkY2GR++BQohhBBnAGk0hBAjzsraMNMrvWxujBFPG/x5QzNBjx3dsHDaFXTDQjct/ryhmdGFLhKZrrMTBQUFZGKd7Pr1P+c1TkVFxVAuQwghhDijSY6GEGLEME2Tq99/FTu3952jYWGhoPR4LFhUxEOP/IlQKJR3jsbcuXNRVfWE5iyEEEKIY5NGQwhx0um6TkdHR7/r3G43fr9/CGYkhBBCiMEmjYYQ4qQyTZMpk2vYs3dfv2tVVeWvf/0rANFoNOfxbrebK664Ap/P1++xhBBCCHFipNEQQpxUqVQKt9vNR88u44qpRWQNE7umdv9/X/7poR189KMf5ZFHHsl7vB/84Af853/+54lOWwghhBD9JDeDCyGGxXnjC1g6rZgtjTGiKQOHTcXn0Cj12w+nfkdx21XSukkkZXDNrBK8LjvJZBLN7uScX26jdfVjGIkwBTMuQrU7sUwDIxUjG2qmcOYSNv/3hXR2dg73UoUQQogzkjQaQohhtaM5cVT6t0osbRBNde0ilcgaFLrtPTIzAFSbjc5NL+Eun4AeD5Fs2NUjlM9TUUN09xpUm304liSEEEIIpNEQQgyjFVvb35P+nWVauedw+reTtXVR9rYl0Q2zV/p38byr+nztgukXDOXUhRBCCJGDNBpCiGFz1YziPp9/75mMo4V3riJxcBvuyhrMdILAlIU90r8zoSZMPTPYUxZCCCFEnqTREEKcNDt27OD+++8HYHdrgntXNVBT6iGRMY5K/84cTv+mR/p3WjfJ6jpr164lm4wT2bESPR4m1VyLvbCcVFsdWBbp9oNgWaCoJDpahnfBQgghxBlMdp0SQgypQ4cO8cgjj/DQQw/xzjvvEAgEiEQiTCnzMKPSS0ciSyprYlngd2nopolDU9FNME0Lw7Io9TkwDIvHt7QRDAbpDIW6mokcbHY7D/7xj1x//fVDv1AhhBBC9CCNhhBiUFmWRVNTE0899RQPPfQQr7zyCg6Hg6uvvpobbriBq666iltvvZW3Vq0C+vfPjz9QwE9/9jNisRgPPvggjz76KAcPHmT06NFcf/31fOxjH2PmzJkoSldquKqq2O1yQ7gQQggxHKTREELQ2dnJypUrMQyjX3WqqrJw4UJKSkqAriajqKiIUCiEoihccsklfPzjH+e6666joKBg0OdtmiYrV67sbjo6OjqYPn06LpeLn/zkJyxZsqT72J07d7Jz5868XldRFM4991zKysoGfc5CCCHEmUIaDSEEN910Ew888MCAaj947bU89re/df/9nHPOIRaL8fLLL1NZWTlIM8wtk8nw/PPPc9ddd/HEE08wceJE9uzZA4Cu6xQFg0Rjsbxf77JLL+H5F14cqukKIYQQpz1pNIQQXPW+9xHdtYpff3gKz25vp8zvQFUUqgoctCd0Srx2tjfHqSn10Bzt2slpUombW5+uJV40hdffXDnMKzjCsizWr1/P+PHjCQa7dq1KJBJ4vV5uWTqTBZPKcdhUPE47pX4Xdk1lXW0rBR4HoXgav9vBX9/ex76Ul/UbNw3zaoQQQohTl+w6JYQAwO/UKPbaueGcimM+P7nMA8D0Cm/3YwGXjfhJmV3+FEXh7LPPPuZzs8YU8745Y3o9PrbU3+PvL26ph9SQTE8IIYQ4Y0ijIYToZfmGFsIpnSWTutK6DcsimjZojmRw2BTOn1A43FMcsEdX7SGcyHDJzCqcNq1rbcksHbEUXqedZEYf7ikKIYQQpwVpNIQQ3VZsa6fYY8Pv1LBrCi/v7uxO6i7y2GiNZmiMZNjcEOPwxk6nHI/TxpgSH7saQ6SzBi2RJNOrijhrTDE2TWXVriYaO+NA4XBPVQghhDilSaMhhOh21fSBJ3WfKq4+e1yfz19+VjUvbKmnqePkzEcIIYQ4XUmjIYQAoD2e5d7VDdSUeEhkDRaOO5zUHc6wti5Cqc9OMmty2eQi1tRFyJoW8bQBnuGeef52NYa4+8Vt1FQWkEjrnDe5Apumsv1QJ1sOdrDs3Am8taeZUDwNSP6GEEIIcSKk0RBC4PZ4eLsuSkvCIpPNkNUt0DQAVMBuU7EssLC49en9mJaJ1+mgriPB5ZeN/E7DZrNhs9m489nNFLgdoKooKNhtGqqikDUMVEXhZ09vQs8atMVSLFp47nBPWwghhDilSaMhhODWW29l2rRpeQf2WZaFoiioqsp11103xLM7cQ6HgwcffJB169ahKEp3cvixGIaBpmlce+21J3GGQgghxOlHcjSEOI20t7fzt7/9jVSq/3uzLlq06LjbwvalqamJu+++m0QikdfxlZWVfO5zn0NV1X6PBXDgwAH+8Ic/5LVGm83Gxz/+caZOnTqgsSzL4oknnqC+vj6v4+12O1dffTWjRo0a0HhCCCHE6UTOaAhxGrnzzjv5zne+g9Ou9asunTUYP3YM+/Yf6PeY999/P9/+9repqJ6AZZkoyvEbiFgkRCzcwQUXXMDcuXP7PRbAb37zG374wx8yrnoUqqJgWhbqcc5Q7Ks7RH19Pb///e8HNNaePXv44Ac/CJDXe5rOGvzrv/4rv/3tbwc0nhBCCHE6kUZDiNNINBplUrmfL180inKfHdOCAreNg50pFo0vYH9HilKfnZZohhKfg7qOFE6bymt7Q/zf+siAxkwmkxSVVXLTrb/G5nCgZzJMmDWf/dveIVg2inQyjtPlYe/mNTTt380Tv7udZDI54DUmk0lmTJ7APbf/J5FYHKfDjs/robwkiMNuZ+U7mwkG/BiGyRdvu+OExopEut6T/75qCvPGFRL02LEs6EhkGFPkwTQtommdjniGeNrgZy/s664RQgghznQDu3ZBCDFiKcA1M0s4d1wBh8JpVu0PM6nUQzRlUOi20ZHQaY/r1HWksKkKZ1f7sWsnHoox+ezzaN6/m7qdG2lr2E+wbBSmaWDoWVoO7sPl9VE+dtKJL/Cw2dMmcbCxhbWbd2C3aSQSKdo7w1SWlhBPpmhoaaMkWDgoY100pYSDnUle392O3ab2aDLiaYNU1qQ84MTvlt/dCCGEEO+S/yoKcRrKJ3ivPpxmSpmHPW353VuRj0VXf6zP5xv27Ry0sQBuuObyPp//vz8/NSjjvL67nbljCvA7bWw5FKElmmZ6pZ8ZowLYVIU1BzrpiGcGZSwhhBDidCGNhhCnof4G7z3LiafTrXvxCfzBEuKRTrLpFJH2ZkbXzKR6yiw0zcaejW9RVFF9wuO862/Pv05pUQEd4SjpdIbmtg5mTp7AWVMnYbNpbNm5j7bOMGVjT3ysC2qKmVkVOO7zF08pBeA3r/X/HhchhBDidCWNhhCnoVW1YbY1x/sM3yvxOphS5mFNXYS9bcm8t7Y9Hl9hEXU7N1I5fgpYFouu/hiaZuPg7q1UTZyG2xeg5eC+QVohFBcG2Lh9D1MmjMGyLG64Zik2m8ahplayuo5lWdhtg/NP3Mb6MKv3dVBT7iORMVg0oQibqnAolCSUzFIddLOzOUYiow/KeEIIIcTpQBoNIU4z7bE0fpfGuWMD7GxJ0B7PUtuepDroIp01KfF2JXzva0+wrTnOnCofhmn1mS2RSzqVZNSEqYyacGQbWdMwMA0Dty+AoWcpq55AqLVpMJZILJFk6sSxTJ145HSFbhiH/2dSUVpMRWkx+gk2T+9SFSj02NjeGMEwLXTDxOPQaImmcTs0DrQnSOsmIbl8SgghhOgmjYYQp5Gqqio64hmu+M3GfteeNXPGgMYsKSkhHgnxpUsn9KtmoEpKSjhQ38jYCz6U1/EXXHrFgMeqrKxEURT+49EtedcsGz16wOMJIYQQpxMJ7BPiNGJZFtu3bx9QYN/kyZPx+Xz9rkun07z++uv9CuybP39+v8d5VyKR4I033sg7sO/8888nEDj+/RW5NDY20tjYmNexdrud6dOno2n9yzERQgghTkfSaAhxijlw4AC333478Xi837WLFi3illtuIZ1O53W8w+HovqTKsiwymfwuDTq6zjRNstlszhpFUXA4HABs2bKF//za14jHYznrVFXjs7fcwrJlywDQdT2v+000TcNms7Ft2zZ++tOf9qs5GzduHN/73vdQFCXv99Jutw84DV0IIYQ4FUmjIcQp5ic/+Qlf+cpXOG9CMPfBR9ndEqczZfAP132IPz/6aF41EyZOYsf2bdhsNmbPmcvmTfldknXFlVfyzNNP09nZyZTJNbS2tedV96UvfYmf/vSn3H777Xzzm99k2ZKz0TQVwzDRtGN/SH/mra0sWLiY555/nuXLl/OxG25Az6OxcbpcPPn3v/Pcc8/xox/9iPMm9r1T17sawylq2+Ls2rWL7932fR64/7686kZXj2H3rp24XK68jhdCCCFOdXKPhhCnmGw2S5HPxZ//cTrPbG9nf0eKBWMCGKZFmd+BTVPw2FXW18cYE3TSGstyMJTGMIv5yuN7eHPlagJTFlF2/keJ7F6DmUngGT0NRbOBZWFmUuiJMEYywr7XH6a9vZ1AIMDmTRspOfcfKJy5pM+6ZMMuVq5aDcC+fftobWvnlvNHEU7pJDIm08o92DQFy4JU1iSc0ple4eW3bzaweuWbQNdZkPLiQr5w/aVE4imcdhs+t5PyogB2m8bqrftwOx00d0Q42NKJaZoAvPPOO5gWTLr5jj7n6K2exp57v8jGjRvJZrNMqSzgk+eOoizgpMhjJ57WCbjttMczVBa4SKR1PE4bBzuS7GyO8Y3Hd5LNZlm5ajW+ifOoWHJTn+OZmST1r9xPY2Mj48ePH7bvHSGEEOJkkkZDiFPYldOKWb6hhfWHoiyZFMSmKhimRUOk6xKn1lgW07K4fm4ZD69r7q7z1yyg9LxllJ637Liv3bnxeVpef7jHY8HZl1Fy7gf7rDv0zG/oPLi+x2PXzCxhZqW3z7WsrA1zgJ4nWLfVNhKKJbjsnGk4HTYiiRTReAq7TaOlM0p1WZDK4gJCR9W4iypzrg2g7pFv9/j7B84qB2D5O42EklkunlxMZYEL07TIGhYNoRSLJgR7paj7J56Tc7zwttdpfuX+PucjhBBCnG6k0RDiFLZiWzvVhU78SY0tjTFaY9nuBPCxQSdr66K0xrNsaojREu15f0X7uhXY/cXo8RBmNkU23Iqnehre6hkoqo1Ew+5jjpmrLtVc26vmjX1h4hmDUFInpZu0RrNMq/Awo8KLTVXY3nzs+008LgdjyovYWddMKpOlpTPCjPFVzJ5UjU1T2VrbQFNHBFdJYb/mGKtd32usFVtaKPba8b2bpr6znWmVPmZU+iny2ll7IMwTm5oZVeDs93uSODS4iehCCCHEqUAaDSFOYf1JAN/aeOTDfLq9Hru/GM3lA8uicMZFKKqNdGcDRipOJtyM5vT0er1Ew27s/qLj14Wa0Ny9d64KuDS2NMapKXVjWbBsTml3gzGlzINDU2mNZaGoZ90158/uc30LZ0ygoijQ44wGgM0XJF63BXdlDVgWpect656n5vSiOj1YZs8bxq+aWdbnWEsmd73Xaw/0HC3d0YCzs7HP91I9xnsphBBCnO6k0RDiFNXf9O8tjUd2cLIHSim/6OO9XlN1uLAHirEHionXbe31vLNkNKUL/6HPuvZ1K3o9P7nMw8yK3pdOlfscODSVKWUenJrKezfIfWPTHrbsO8Tk6nIS6QyLZ03Cpqk0tIXI6gbpjE44loRAYXeNqWfxT5iLf8LcPudpGmaP51bt62RrY5SaMm9X+vf4IDZN4VAoRSipUx10sbc1QXus5y5T9kBxzvcy1bS31/NCCCHE6U4aDSFOQR2xFDtbE2iqwmv7OomkDF7Y2UGp30HWMHHZNOpCKXTD4m+bLSaUuDnQ0bV9a1GwkC3P/pbGZ3+bcxybzYbP58Nut+P2eNj3h6+w7w9fyVk3ZlzXDc/BYNcZlWvvyS/w7qr3Lej+c0tHmPW76uiIxGlsCzOqtJC/v7GRrGHQForhdtpJZ3UONncwOlDZPV6yo5G3PjMxr/GCwSD19fXUtcXY2RyjKZxiV3MMw4JN9RGcNpVQMovTpqIbFhnDojNxZEeroqIge1/6A80v/SHnWIqinFCehxBCCHGqkUZDiFPMggULCBYW8J1n6/o+0AJ63rfMpZdczO/uuptVq1blNVZNTU13iN8br7/Otm3b8qo755xzAJgwYQIvv/wy9fX1OWtUVeWiiy4CYNq0aQD8992P5zXeldd9FIB/+7d/Y8KECSSTyZw1Pp+PK6+8kieffJJ777mbW1f0cdbhPe9lzaSJjBs3jj89/BArV64kn13CJ0yYQHFxflvoCiGEEKcDydEQQoxIkUgkrxA9VVUpKSk5CTMSQgghRH/IGQ0hRphbb72V//3hD7uzIQbC6/Xwnf/3XWbP7vtmaoDRo0czcWJ+lxoNppaWFq655hpaW1tzHmuz2fjmN7/JTTfdhGmarF+/nlgsd2r4//3f//GnRx7J64zD8TidDr76tf/kwgsvzHnsqFGjqKmpGfBYQgghxOlEzmgIMcJcsPg8mnZt4J8Wdt13kDVM7MdJxT6ebz5VC3n+aCuKQmNjI+Xl5f2e64l45plneN/73sfNN99MWVnfOz7dfffdnHfeeTz++OM8/PDD3HDDDXmNYVMVJpS4+Mdzq475Pubz3v73U3sxzfz/mdy/fz9jx47N+3ghhBDidCVnNIQYgeaO9rNgTIDGSJr2uI7bruJzaqR1k0PhNOOKXERSBtMrvJT67Dg0hbcPRAFYNC7Arc/W459xMWOv/xYd65/BSEbxTz4X1ebAMk3MdJxspA3V7mTPPZ+ntbX1pDca7/rOd75DIpGgoqKC3bt3U1FRQWNjI2VlZezfvx+73c6aNWu6j29qagLgjc/P4ZntHUTTBueO9eOwqZimRTxj0hbPsmhcgEt/vYlJJR6mlHlQFQVFAU1VyOgmHYksJV4HigLlfgc2VcHj0FhfH6U66KIzkaUzoeO023HUnMf4G27r8720eQrY9Zt/obm5WRoNIYQQAmk0hBixpld4mX54S9jlG1poiWVYMinIrEofhmURTRscCqXpiHelf18yOdij3lFYRqJ+O/4JZ6PHQxjxEKnDQXKBmgUoqo3Wt/82DCvr7a233qKzs5Mrr7wSwzAoLi6ms7OTaDTK+9//flwuV4/jvS4725sTnF3tJ5TUCaUMWqMpplV4WDA2gE1VWH0ggqYqFHnsLBpf2F27fH0zoZTOxTVBnIebk2jaoDmawbQsfA6NmtKjcy924wiU5nwv29/pva2vEEIIcSaTRkOIES6f9O+0brKqNkzAbWPGUXkVxfOu6vO1vdXTh3r6OT399NNMnTqVQCDA+vXraWpq4qyzzmLOnDlMmDCBRx999Jh1ucIKL3tP4/Uuj0OjOuhid2uCdHdKuZezq/3YVIW1dRHW10eYO7rnVrQ538sxM/t8XgghhDjTSKMhxAjXn/Tvo2VCzTS+cC/uyhrMdILAlIU90rEz4WZSrQeGYsr98r73vY/Ro0cf9/nrr7+eBx54oNfjq/aH2daUoKbUTSJjsnBc15mMHS0JKgMO2mLZY94EftWMvneoWlJT1OuxTLg153uZ6WzKY7VCCCHEmUMaDSFGoNZYhntXN+RM/fY5NbwOjZZYhoZwmsllHjJG14frTEcjejJCdM8aHMVVhLa+imWaJFtqUSwTFI1suGWYVwqrVq2isbGRadOmEY/Hueiii7DZbGzZsgWfz0cymSQSiVBYWNhdE09l2dWaJJLSWVMXparAwat7QmRNk9ZYFrddJa1bGO+5iXtVbYitTXFqSj2H078LsKkKh0Lp7vTv+lCKoMfe4/KpTGfu91KPh07SOyaEEEKcGqTREGIE2tWaYGall5ZoBoBntrcTTxsksyYVAQcOTcGwQDcsdLPrf6MLnWxqiBHPGOjZLHrdZuJ1m3OO5XS5GDVq1FAvqRdV7drt6Wc/+xkOhwPTNCkoKOD+++/HMAxisRgOhwNd11mzZg1XXHEFQPdWvN94sjbnGJqq8OqeTm5/7sixzdE0q2tDmBa8sLMDh6YQTRs4NKX7vQy67XidGgCpTAarYSf1f9uZczy73U51dXW/3wshhBDidCTb2woxwtx5553c8dOfnFiOhs/H975/OzNn5r5voLS0lEAgkPO4wRYOh/n0pz9NS0vusyo2m40vfelLXH311QA0NzfnlaNx//338+AD92H1Y3va93K6XHz9G99k8eLFOY8tKSmhoKBgwGMJIYQQpxNpNIQYJh0dHei6PuB6p9M5Ij/UGobBtm3byGazJ/Q6FRUVw3KmRQghhBCDQxoNIYbBt771LW677bYTfp3rr7+euXPn5jyuvLycm266CU3TTnjMXP7rv/6LH/zgB4PyWl//+tdzNlMOh4Prr7+e0aNH88orr7B69eq8X3/JkiUsXLiQvXv38thjj+XV+JWWlnLTTTdht9vzHkcIIYQ4E0mjIcQw+Id/+Ac2vPYMt145jrcORIimdCoDTixAN0xKfQ4K3DY0FXa3JnFoKqZlkTUsZlf5APj0IzsxTAtXoO9dqbLJGEY2zdtvv838+fOHfG2f+MQneGLFs3zws9/C5nCgZzIoqoplmrQ3HmTM1LPIJBN4AkHCbU0UllZimgbpZIJsKkk01E7tlnW889Lj+F12HLa+m6P2WIrPf/7z3HHHHZSWFNPW3kGxz9Vnzbt1UyfXsH3nLm688UYefPDB3O9lKoGRSfLqq69y4YUX9ut9EUIIIc40cjO4EMNkQombpVOLWTq17w+3x+Ow23DPvJwpn72b1pXL0RNhCmcuQbW7sEwDIxUlE2rGXT6B9f+1OK97GgbLqPFTuPC6fxxw/VP3/ph3XnqcjV89m79vbSec1FkyqRCXTe0OK2yOZrikJsg1924nHo8DEI/H+e77xnHzwkqWb2zts+4nLx/k0Z3R7rrgWZcw9QsP9PleeqtnsO7LZ5/U91IIIYQ4VUmjIcQIsXxDC+GUzpJJwZ4fjCMZ3HYVv0tjZqWvV137uhU4S6rR4n7idVvIHk6s9lbPwFUyls7NLw3Danpa9eTDxKMhZp53GXaHC9M0SMWjxDrbyWbTeANBJp61oFfdM9s7usIKnRpbmuKHw/U8zKjwMjbo4vV94WOO1x1yeJy6V/aE2NeWBHpe/pTrvQzveHMo3h4hhBDitCSNhhAjQD7p35GQTjRl9Go4ciVW+8adNdTTz8nh9lI8aiyNtbvIplNE2psZXTOTMdNmo2k2dqx945h1V04rwmlTj/u6F0wo4EcvN/R6PGfI4aRC1h2Msra95z0ZOd/L8XP6fF4IIYQQR0ijIcQIMND072y0PWdi9UgIkpt36TV9Pj/novcd8/G3DkTY3Zrslf7dFMngsqu0x7PEUj2bhdr2FPeubuxVcyicJpzUGV3oZGdLgvZ4FlC667KxzpzvpZlJnfB7IYQQQpwppNEQYph0JrL9Tv/WDYtCj60r/duySLfWkWzcS6x2A1gm4Z0rUW0OjGQcy9Qx0wnSoebhXio7173BwV2bqRw/hUwyweR5i9E0G50tjTicLsIdLThdHqomTe9R98TmdtKGyTsHYxR7baw9GMUwLSJJA4dNIWtY1IeTPWq2NccxLYsNh2KYJqysDeOwqURTBnZNwTC7bqrf0BAF7ciOVum2+pzvZTbWfjLeLiGEEOK0II2GEMPA7Xazvj5GZ/rIY+nsga5kat3A7bChqgqGYaIbOjbNjomF29H1I6sbJsmMjscRJ7t5RfdrZI4xlh2YNmMms2bNGtpFvTue3c6OdW/w438+chlSMh5Fz2awLBOH08Mzf/gppgXJWBhFUVAVFc3uwOPrCg5sbzqIpsKztSk07d1/po61OigsKmXp0qUALFu2jGeefpp9saMzPI5dB24+ev2HAbjqqqtYueqtnO+lBkyZNp05c+bkfiOEEEKIM5xsbyvEMNi6dSsPP/zwCQX2ud1ubr75ZkaPHj2IMztxa9eu5Ve/+tUJB/ZVVVXx/e9/H5tNfh8ihBBCnIqk0RBiiL399ts0Njb2u66iooIFCxagKErug4fRK6+8wtatW/M+XlEULrvsMiZPnjyEsxJCCCHEcJNGQ4ghtGvXLqZMmTLg+vvvv5/HH388r7MDRUVF/PjHP6a4eGC5HAORSqUIBAJks1k0mz2vpkjPZrj4kkt54vG/8cUvfpHW1tacNTabjc9+9rNceumlgzFtIYQQQpwEck2CEEOora0NgOX/NJMDnSkM02JCiRsVsIBwUqeq0IlhQjzTFSZnmBaJjMF/PbmPBx98kOeef4HCWZf0OY6ZSRLe/gQf+MAHuO6664Z+YYel02my2Szn3PBVxi+8kkRnC+HG/Uxb+nFadq8nUD4WyzTIJKJkk3FSkXZ2vPAI4Ugrq1at4t5772X+GD+F7r7/KXptb1dehjQaQgghxKlDGg0hToISn51F4wtYvqGFbU3x7lC+UQVdoXzt8a5QvppSNzMrfexr79pJyTRNCiYvYOrn/9BnYrV/0nzWfG7qCd3zcSKKxk6ldNJsdr74KFgW8baGHk1GorMFVbMxftFVHFj7ArS2YhgGAL9eVsPK/ZE+U7w/+eCOYVubEEIIIQZGGg0hTqJlc8qO+fiMCm+fdbkSqyN71w3FdPttyqXX97vmpd2d1JR6jpvivaYuMgQzFUIIIcRQk0ZDiJNkxbZ2ij02QkmdlG72SP+2qbC2LkpaNwm4bKR0s0dtrsRq/8Szh3Lqedn75pO4C4pJRzvRM2kSnS2UjJ9O8YRZqJpGw5ZVjFuwtFfdJTVBRhU4j/u688cEgN7p30IIIYQY2aTREOIk2HAoSiRl4HNoWMBFk4Ld4XxPbW3rDuebUuZhTV2Eus4jCdR6IpwzsXokcAWCtO3dTLB6MpYFUy79CKqm0V67jaJx03AXlNC+f3uvunUHozy9vaNXkvf25jhTyjzUtqcIJXU8w7AmIYQQQgycNBpCnASjC1xMrjnyUdkwLQwTLMviymlHdolK6SazRvlwaF27N6mqSrx+J8raJzGzabAstBfuQVE1zGwayzKx9CxGOgEwfJkTlkXVrMVUzVrc66lA5Vic3gDlU84m3tEEhze60zQNgDteO4RDU7AAr0Pj9283YVoWqayJTVUwLIvNDXHGzJd/roQQQohTifyXW4ghVFJSAsCy328ZUP3HP/5xfD5fntvbns9FF100oHEGyul0Yrfbee4Hn+bFH30Gi67mSVEUFEU5/HcTxQIOP2boWS6+5FIWLVrEpz/9aVpaWnKOM3Z+1/a2QgghhDh1SI6GEENMAvt6UhSFyy+/nJqamiGclRBCCCGGmzQaQpwgy7K49dZb2bdvX79ri4uL+e53v0tBQcEQzEwIIYQQYvjIpVNCnKD9+/fzve99jzFFbqoKXN2Pm6aFqh7/bEQia7CxPkIgEOD//nAfqWTquMe+K1AQ4LG/LGfOnDmDMfW8WZbF+6++mrfeWpP7YAU+eO013HvPPcRiMS48fzH19fU5y1RV5Yv/8WW+/vWvD8KMhRBCCDHc5IyGECdo165dTJkyhb98aibN0QwAFX4HDpuKYVr4XTZKfXYcmsLbB6J4HCr1oTSXTQ4y4wdv8/73v5+nn32e0df8R5/jWFgc/OsP+dWvfnXS71dIJBJ4vV4KZ15MYPK5fR7bsfF5lLa9REKdrFu3jnPOOYfr55QyodjdZ90j65uprJnNytVvDebUhRBCCDFM5IyGEIPo2lmlLN/Qwpaj0r8Ny6IxkqE50pX+bVMVls0pI5w8knTtrRhH1fv/vc/07+CsS2j4+8+GcXVQet4ySs79YJ/zRLPR+dydPepuXljJjpZEn+nftR1JDiC/9xBCCCFOF9JoCDGIVmxrp7rQiT+psaUx1iOUb2zQydq6KJGUyZoDEVS1Z23O9O/deVy2dBLkmmfHO8/0qnljX5i5o32S/i2EEEKcQaTREGIQXTW9uM/nl9QEu/989BkNAJsvSLxuC+7KGrAsSs9b1iOYT9E0LMt870ueVImG3dj9RWguH1gWhTMu6p6jkYqTCbegury96gIujS2NcWpK3VgWLJtT2iOUz6GptMayUDQMixJCCCHEkJBGQ4hBsrUxztamODUlHhJZg4XjCrrTv9fWRXqkf79TH6Uz0bPRKJiyiIIpi3q9ri1dgKOwHGdxFTC8W916RtVQcu4Hez1+9Bw7Nz7f6/mzRvmYWdm7ARkTdBFw2Zhd5cPnVEkMxaSFEEIIMSyk0RBikFjAuWMC7GxJ0B7Psq8tSXXQRVo3KfbYSWZM9iYTbGuKM7vKR9boOjvhcrmI1u9i3eenY5kmYKGoWnfgHabZlQBugaln8fl8J31tNpsNu8PB7rtuYf8DXz/uHAGyyRiVVaMB8Hq7mov3/W4TXqcdC9AOB/eBhWV1vW9YFpFUlssvm3vS1yaEEEKIoSG7TglxgkKhEGVlZXmldx/LU089xa5du0il8tjeNhDgE5/4BH6/f0BjnYinn36ajRs35nXs4sWLueCCC7AsiwcffDDv7W3f//73M2PGjBOdqhBCCCFGAGk0hBgEzc3NHDp0qN91xcXFjB07dghmJIQQQggxvKTRECJPX/jCF9jwzrp+1wUKCvnFL3+J2+0mHo/nPN7j8VBZWTmQKQohhBBCjBjSaAiRh3A4TGFhIdPKPUyr6H1T83FZ8NdNrXz605/mnnvuybvsgQce4MYbbxzATIUQQgghRga5GVyIPJhm143OX1pSzftnlHDXykOMLnRhmBZnjfJh0xQ8dpX19TH8To14xqA1nuXDc8p4fEsbLS0tKKrKtC8/QmjraxipGL7xc1BtDizTxMwkyMY68U+Yy46ffZy9e/cO84qFEEIIIU6MNBpCDECRx05jJM2SSUFsqoJhWjREMt3P+122HpkZAE5/EQVTF1MwdXGfr+0K9J3FIYQQQghxKpBGQ4h+yif9O613pX8HPT1/xNrXrcDuL0aPhzCzqR6p2opqI16/fZhWJYQQQggxuKTREKKf+pP+/V75pH+b+sC2yRVCCCGEGEmk0RCiH3a2JGiKNuSd/t0UzfDufgvZZAw91gmajWTjHpxlY4nXb8cyTZINu8AyQdXIpGLDvEohhBBCiBMnjYYQ/bB6f4S5o/1sbmglnjb48/oWgh47umnhtCnohoVudv2v62ZxE9OCgoICjEyKXb/+57zGqaioGOKVCCGEEEIMLdneVog8WJbFsg9dx4Z33un7OCwUlB6PFRQWct8DfySdTuedo3H22WejadoJzVkIIYQQYjhJoyGEEEIIIYQYdHLplBBHuWLp5bz8yiv9rvN6PDz40MMYhkE4HM55vNPpZOnSpRQUFAxglkIIIYQQI5+c0RDiKDabjYsm+Ll0yvF3jjqWbz5Zy0c+8hH+9Kc/5V3zrW99i+9+97v9naIQQgghxClBzmgI8R5LpxZRGXBgmDA66KQlmmFCsbtH+veYoJNNDXFGFThYOK6AO15vIplMAnDub/fSuvoxjESYghkXodqdWKaBkYqRDTVTOHMJ2753JZ2dncO8UiGEEEKIoaMO9wSEGIkum1JENK2zen+EMUFXr/TvzoTO2CIXC8e959InRaFz00u4yyfgKhtPsmEXoU0vkQ234C4bT8HU84nt34xicwzDqoQQQgghTh45oyHEMXSlf7vwJ3W2NMZpjWWYVu5lRqWXsUEXa+sipHWLNQciuB09d4cqnndVn68dqJk/lFMXQgghhBgRpNEQ4hhOJP07vHMViYPbcFfWYKYTBKYs7JH+nQk3Y2RSgz1lIYQQQogRRRoNId5jX1uSe1c3UlPiPir9W+FQOM3auujh9G97d/q3XVMwTLOr2LKI7FiJHg+Taq7FXlhOqq0OLIt0+0GwLFBUku0Nw7tIIYQQQoghJo2GEEex22z8dXM7k8u8/DnVRsYwMc2DuO0qFgqaCrpuYCkKoFDgtmNaFu3RNFVVVbg9Huqf+GnOcTSbjXPOOWfoFySEEEIIMUxke1shjvLb3/6WN954o991Xq+Xr3/961RXV2MYRs7jVVXFbrcPZIpCCCGEEKcEaTTEGScej7Nz585+1zmdTqZNm4aqymZtQgghhBC5SKMhzjjnnD2Xdes3DKj2tttuI51O097envNYm83Gpz71KWbPnj2gsYQQQgghTmVyj4Y449TXH+RDs0uZWu6mOZJhQombtG4yvtiFpiq4bCo7mxN4HBqaqtCRyHLe+AJu/ONO3n77bZ544gm8FROwuTx9jhPev4VQKMR99913klYmhBBCCDFySKMhzkgTil189vzRACzf0IJuwoRiDy6bimFZFLjtNEcy+J0a44vdzKz0Uexzdt9/Me2/Hie06SX0RJjCmUtQ7a7D6d9RMqFmgrMuYftPPkI6nR7OZQohhBBCDBtpNMQZb9mcsmM+PqPCe9yazo0v4Codixb3E6/bQjbciqd6Gt7qGbhKxhLZvWaopiuEEEIIcUqQRkOcsVZsa6fYYyeU1EnpZo/0b5uqdKd/B1waPmfP9O/g7Muw+4qO+9qBmvkcGuoFCCGEEEKMYNJoiDPSwc4UfpcNn0PDwuKiSYXdoXxPbW3vFcrXFM2Q0c3u+uieNaTb6vtO/07Fh3GFQgghhBDDSxoNcUYaHXRx88LKXo8Xum18/JzyHo9dMLGQtG6iqkfOUTS9dD8AnRtfxOYtoH3dU2BZZKMdQFf6d+zgNpQFU4Z0HUIIIYQQI5U0GuKMEwgU8OOX9vHL1xswTQsLwAIUUJWuP1qmCYqCgoKqKgCkswZX19Rw6WWX0dJ61Pa2mciRPx+VweeYPZuPfexjJ2FFQgghhBAjj+RoiDPOhg0bePPNN/td53K5uPbaaykpKRmCWQkhhBBCnF7kjIY47bz44ou88MILA67XNI3rr7+es846axBnJYQQQghxZpEzGuK0M3nSRPbs28fYEh8A5uFvcVVR8qrf3xqjvKKCsvLe93C8l6qqfPlLX+ATn/jEwCcshBBCCHEakkZDnHaqR1UyI5DmH2aXYtcUJhS76UzoBNwakaTByv1hzhrlY1all9Z4lnKfnc2NcaaWe9jfnuK7z+5nU0Oc4JylOAor+hyrfe2TXHju2bz4wvMnaXVCCCGEEKcGuXRKnJZmVHr5wMwj91Is39BCuMlgyaRCrp9ThmFZtMazNEcyJNIGAZeNyoCTyoATt10FYOyHv0ls34Y+07/1RBjLig3XMoUQQgghRixpNMQZYSDp36Gtr+GtniHp30IIIYQQAyCNhjit5Zv+XeSxEfTYmFTq6a4tnHEh7opJx33tQM18ml76/clYhhBCCCHEKUcaDXHaWlUbpjGSyTv9e39HCqdN7a6P1W4gtOXVPtO/9UQEfGofsxBCCCGEODNJoyFOS6GkzuQyD5PLjpyhMEwLw7SwLIsrpxV1P57STaZXeMnoJsmsSSprAnDwz99Dc3gAC9XupEFVwQI9k6Rr/yqF/9/encfZVdfpvn/WWnusXXvXnKSSVOYKZCQBAoGgSTOpkVZAQAUH0Ka1W9E+59oebY92X/s4Xu3j7W49tq1N22iDmhZFiHCZZBCCSSBzQhIyVCU1T3se11r3j4KCMqSm1K7x83698jLZtb5r/X6QP3hce60n1d6gwDs2j+neAAAAJgOCBqac6poa/dsLe/VvL7SM+BwXXHCBNmzYMOhxlmXp1ltvHfF1AAAApipeb4sp5/Tp09q5c+eI5y3L0oYNG1ReXj56iwIAAJhmCBqYtB5//HH9+Mc/luM4w5qzLEt33HGH3vrWtyqfzw9pxu/3j2SJAAAA0xZBA5PWtddcraeefFIXzy8b1tyOk1FtuvIq7dm3Xy3NTUOaufPOO/WDH/xgJMsEAACYlnhGA5NWPpfTO1dU6raLZioS9Gh/c1JzyvyaW2szsuEAADhTSURBVO6XxzJU4jX10qmEwn5LBcdVwGtq7dywPv7zl9WZiKuluUmzrvqonHxWTi6lkrnLZFgeyXXl5DIqpKIK1S1X8xN36/fPbxvv7QIAAEwqBA1Mepct7L2jcbAlqUNtKc2K+OQxDcWztmZGfGqN5RT2W8oWzvyKVdW66xSpv2TA8yeO75LadhRj6QAAAFMWQQOT3mulfGG/R17L1JNHuvtK+SpLvGqP59SVKqiyxKOjHel+s7GXn5dcV4Vkj5x8pl/7t2F6lDx1cJx2BQAAMLkRNDDpbV5eNeDPN9VXnPVnVjCsZMM+BWvrJddVzeU39SvlMyxL+UT3aC8ZAABgyiNoYFLrSOT1o23Nqq8OKpW3tX5BWV/7946G+Bnt3wXHVSpn980HZy1RZOmZX50yfQF5I1XyRqokwxjLLQEAAEwJBA1MXoahU9GsLFM61pXWqZ6snjjSLceRgj5TVSGvmmNZ5R1HDx3oUN52Na8ioMNtaS2c2ftX/+A/vH9Il1r21o3F3AkAAMCUQ9DApPUnV16lrz6/TX/3SOPZD3rt5c1vuClhmZb+4h2b9ZWvfk0nTpwY9DqGYegtb3nLOa0VAABguqFHAwAAAMCo444GJrTvfve7+uxff0aFgj34wW9gGIY+eddd+vSnP61jx44NaWbVqlWqrKwcyTIBAADwR7ijgQntlltu0dMP/1qf2jhHkpS3HXktc9C5n2xvlbd6gY4cP6F0KjWka61es1a7X3rxnNYLAACAXtzRwIR3/syQbr+kVk8d7VFrPKerllboWGdasyN+JXO2Qj5LDd0ZlfotGYahlbUhHW5La2fcUTqV0vxbvijXdWWn4wovvVSmxyfXceRkk8rHOhQ57zI1/fZ7aj785HhvFQAAYMoY/P8aBiaIjUvKZRrSr/Z2qLLEK0kKeE31ZApK5x1l8o4S2cIZc/lYp8KLLlTpggtkJ3uUatgvw5Ai9Zeoet27lI91yFc5e6y3AwAAMKVxRwOTwrm0f4cXX6TI0kvPeu5I/TpFDz5b7C0AAABMKwQNTArn0v6dOv2ysl2nFaytl5NNKXLe+n7t37loq/KxjtFeMgAAwLRG0MCE15MeXvt3Ktf/K1SplqMKzlqk+NHt8lXNUc/+p+Q6jtJtx2W4jmRYSp0+pMA47hEAAGCqIWhgwjvZlVFbPKe2eE6t8Zz+a1e7HFcKeA2VBTyyXalguyo4vb9qIz69cCKmqnkzVVlVrc5tvxzSdVZdQSkfAADAaCFoYEK74YYbtPulndra8NodiuDrP0xLip05sycm+StrddsHP6xPfOITam5uHtK15s2bd87rBQAAQC96NDAucrmcDhw4IMdxRu2c8+fPV1XVwM9yAAAAYGwQNDAubrn5Zv1iy5ZRPaff59MXv/QlWZZ11mMuueQSXXnllaN6XQAAAJyJoIFxcdn6S5Rs2K93r6qRaUizIj41dGcVyxRUU+qVZRhqjuW0qCqgWNZWbdinmrBXxzszmhX2yXGlVM5WNFPQlx5uUL5gywpG5PF6ZMh402tmYp0qK69QT3fXGO8WAABg+uEZDYyb5bNK9RdXzBnWzOULz/zs8w8e16IPfVMzN96m9ue2qJCKqnzlJpnegFzHlp2JK9fTqmxHoxp/9rejtHoAAAAMhKCBCWfLrjZFM7Y2LSlXwGPKdl3Fs7ZaYzkFvaYCXlNr54bPmOvcuVX+6jpZybCSDfuUj7arpG6ZQnUrFKier8YDlPIBAACMFYIGJoyhtH839mRlGpLPY2rFrFC/+aqLNg94/sCM+cVcPgAAAN6AoIEJ41zav9Mtr6j5sR8N2P6d62kd7SUDAADgLAgamDCePx7VgdbUkBvAc7arpTW9vRqxl59TsLZeiWMvyhOuUvyVHZLrKtfdKsmVDEOp5sPju0EAAIBphKCBceHz+fXrnR1q6Mmd8bNfZNuVKziynQaF/B45jivDcOU4rmSYclxXZUGvHNeV7biqKvWr+9RBpRoPqry8XI7x5m+dCkh61003F3lnAAAAkHi9LcbJI488op/+9KejWti3evVqffaznx218wEAAGDkCBooulQqpWeeeUaZTGbE51i2bJmWLl06iqsCAABAMfHVKRTdt7/9bX3pS186p3ME/H5dc+21Ms7ytag3Wrt2rf7u7/7unK4HAACAc8MdDRTdpz/9af3qpz/UP7xroVxJp3qyCnpNFRxXJT5LXcm82hI5vXtVtRq7s6oKedWRyKuixKOmaFbPHIvq7u3t8oarVbpg9YDXSjcfUabthOLxuEpLS8dmgwAAADgDdzQwJkp8Hl22sKzvz6+V8q2eXarArFBfKV/edhVNFxQOWFo1u1SrZpcqkXP079s7VHvVHZrzzrsGbP92Mkkd/v7HZdv2OO4WAAAABA2Mi5vWzHjTz/+4hO+PDdb+3fzovxZjuQAAABgmggbG1Gvt3z3pgjIFR+2JXF/7t8c0tKMhprZEXnnb1QVzQlpZ2//rT4O1fwdrlxRz+QAAABgiggbGVEXQo30tSdVXB+XK1U1rZpxRyrekOthXyrf9ZEydybwkKdPeMGj7d7araZx3CAAAAImggTGSyhXUmcxr6YwSLZ1R0ve57fSW7rmuq7cvq+z7PFNwtHxWSLmCo+eOR+XKVeeLDyvZuF9yXVmBkFqeuFuuK9npWO+QYSjf0ypJsixrTPcHAACA/ggaKLrq6mo1dKa0+hvbR3yOgN+va67ccJbX21a+4ffztXbtWt44BQAAMM54vS2KjsI+AACA6Yc7Ghg1XV1d+v73v69YLDbs2QsuuEDvf//7i7AqAAAAjAeCBkbN/fffry984QuaX12qIRR492nuTqngGnrxxRd194//Q64z+E22JfVL9OzTT8nr9Z7DigEAAFAsBA2MmnQ6rYDX0nOfWq2tBzqVt13NDHtVHuz9a9adKmheRaCvnC+VtRXNFLTrdEL/+3endP+vf6OUr1I1l14/4HWSjfv1h22/UUNDgxYvXjwGOwMAAMBwETRQFJuXV2nLrjbtb0lp05JyBTymSnyWejIFtcZyCnpNhfyWrp5fqWTO6ZsrX/6WQdu/SxdfpM7tvxnH3QEAAGAwBA0UxdYDnaorDyicLmhfc7JfMd/8ioB2NMTU2JNVczSnlliu3+xg7d9tv//5OO0KAAAAQ0XQQFFsXl414M831Vf0/f7Xezv6fp/tapa/u1lWoFRyXZWv2NhXymdnkspFW2UGQkVbNwAAAEYHQQOj7vnjUR1oTam+OqhU3tb6BWVntH9Xh7x97d+7Tyf6Zv2Vtaq9+qNnnNOTLZOvfKb8VXOU7Woey+0AAABgBAgaGFWZvK1YxlZduV8HWpPqSRW0szGu2RG/crajoNdSQ3dGr3Sk9cyxHi2bGVI0XZAklYZK9Mqj/6qOZ++T5MowLRmGIVeSHEeu2/ssRz7dG0xCIe5sAAAATFQEDYya888/X5Zl6SP3Hhr27MIF8/XDf/2BHn/8cQ2lQ3Lx4sWaNWvWSJYJAACAMUAzOEZVPB5XOp0e9lxlZaU8HnIvAADAVEHQwJB9+ctf1uOP/n/ndA7DNPWem27W5s2bBz22urpaZWVl53Q9AAAAjA+CBoasJBjUrJC0dm54xOd4cF+HcvbQ/sp5vV4dP35cc+bMGfH1AAAAMD74rgqGzHEcXVlfqfddOFNN0axCPkshv6Vk1lZXqiDLlHrSBV21tEInujKaHfErmbMV8vU+AO4xDT1xNCbfjOWad9Pn1bP/admZhEoXrpHp8cl1HDm5lPKJbln+Ep34zy+qsbGRoAEAADAJETQwLAurglo+K6Tls3rf+LRlV5uiGbuv/dt2XbUl8opnbDXYGYX8lpbOKNGccr8kyTINeWYuVNn5G1R2/oazXid1avgPlAMAAGDiIGhgxIba/r2/OamL6sJaOqOkb7Zz51Z5w1UqJHvk5DP92r8N06Nkw75x3BkAAADOFUEDIzac9u83ysfalRuk/dsKlBZjyQAAABgjBA2MyHDavw+0JBXL2lpaE5QkFdJxyfIo3XxU/hnzlTx1UK7jKN10WHIdybRkp+PjvEMAAACcC946hSEL+P1aXuPThkWvv3K2NZ5TMmvLcaWKEo8Kjiu/x1TBdlVwen/NLffLdlzlbVc/2dmqTN4Z8jWPHTumhQsXFmM7AAAAKCKCBobsYx/7cz32yCNDOtaVK0PGm/7s3Te+R+9+97sHPUdtba2WLl06rDUCAABgYiBoAAAAABh1PKOBM9xx+4f10//8zxHNGoahD3zgg7rmmmtUKBQGPb66ulrXXHONLMsa0fUAAAAwMXFHA2eom12rWZ6kbrigetiz9+1sU0PSUjQWG/LMs88+qw0bzt6pAQAAgMmHOxp4U0uqA5pR6pNp9LZ9h/0eJXO26sr9MgxpxayQjndlVFPqVVs8r5pSrxq6M6qvCepEPKOy8y/X+X91j9q33S87FVXZio0yvX65ji07k1C+p1UldSv00v9Yr+7u7vHeLgAAAEYZQQNvanaZv19PxpZdbYpnbc0I+xTwmOpOF2SZhg62pBT2W5pd5tfsMr8ePtglKSPT41f3nicUnLlIhWSP0k2H+5XylcyqV/Tl58ZvgwAAACgqggYGtPVAp6pKvAr7PfJapp480t3X/l1Z4lV7PKfjXRkd7Uhr3bxwv9mqizYPeO7ShWuLuXQAAACMI4IGBjTi9u9kt5of+5GCtfVysilFzlvf1/5t+UPKRVvl5LPFWDIAAAAmAIIGzmq47d8nujOKZ3rfNJWPtauQ7FH37sck11Gq+YhMr1+FVEyyC7IzceWiHeO8QwAAABQLb53CGRYtmKeutmatqO39KlQ8U1DOdmTbjkJ+jxxXMg1XtuNIhinXlcqCXjmuqz2nYopUVqu1rV1D+asVjpTpxZ07tGTJkmJvCwAAAGOIoIEz3HfffXrwwQdHNGsYht7znvdo8+bNQwoaHo+HDg0AAIApiKAxjTU3N6u5uXnYc9XV1Zo3b14RVgQAAICpgqAxTbW2tmr27NlyHGdE8/fff7+eeuop5XK5QY8tLy/XZz7zGVVUvPmD4wAAAJh6eBh8mmppaZHjOLr1ohmaU+bXjLBXktSVKmhGqVeWaaiixKOygEd7m5KyTClnu2qJ5fS9Z5t0991364EHHlDZgpUDXsd1bMUaDmrFihW69dZbx2JrAAAAmAAIGtPcbRfP1Jo5YW3Z1aZoxtY7llUp4DFlu67iWVutsZxqI35Vlni0bn5ErfHeoJHP51W2cLWW/8/fqv25LSqkoipfuUmmN/Bq+3dcuZ5Wla/YqG13zlM2y6tsAQAAphOCBiRJN62Z8aafr5gVGnCuc+dW+avrZCXDSjbs69f+Haier/jR7cVYLgAAACY4ggb62r970gVlCo7aE7m+9m+PaWhHQ0xtibxCPkthf/83RA3W/h1esq6YSwcAAMAERdCY5vY2JZSzpVKfJVeuNi4p7yvle2h/Z18p37p5ER1oSao9me83H335eaUaD5y1ATzbPfy3WgEAAGDyI2hMc6tml2rNnPAZn5cHPbrt4pn9Pls3P6LG7oyk3r6MWMNBWY/9m+xsSt27H5cnVKbOnQ9Jrqt8vEvS6y80MwyjqPsAAADAxELQmKYikYgk6Z3/sld+ryXHcXtjgSsZRu8v15Vcx5FhmpIk0zSUzduSpGuuuUbtnV3KZJpf/1uUi71+Ae/rv63Y9CfauHFj8TcFAACACYMejWnsgQceUGNj47Dnampq9J73vIdGbwAAAJwVdzSmuB//+Mc6dOjQsOfKy8v1l3/5lwqHz/xaFQAAADAYgsYU1tXVpdtvv11Bn6WZZcG+zx3XlTnAMxO27aqxKynbtvXAgw8plUoPeq1wuFTf/953tWrVqlFZOwAAACY3gsYUlsn0Prj90Utnye8xNa/Cr6DXUk2pV8tmluh4V0Y1pV61xfOqCnnUlSooV3AV8pm6+nu79cILL+iF55/TzE0fGvRae3/3H3r44YcJGgAAAJBE0JgWLp0f0ZVLK7RlV5ta4jmdP7NEsYyt8mBvuOhM5tUSy/W1f+dtR5Lkuq5CNXVa9MGvDdj+XbHqSvXseEA87gMAAIDXEDSmkWK1f8eO0P4NAACA/gga08RQ27+DXlNzy/39Zgdr/47U0/4NAACA/gga08DB1qQCXmvI7d+t8Vy/+cHav3PRVjm2PU67AwAAwERE0JgGakp9umppRd+fbceV7bhyXVdvX1bZ93mm4GhRdVAzsz5JktfrVbK9USfv+azcQkGSK9PrV5NpSq5UyKXV++4qQ/l0XH5//zshAAAAmL4IGlNYJBKR1+vRf7v/6Ijmr7vuOi1atEipVGrQY0tLS3XLLbeM6DoAAACYemgGn+L27dunY8eODXuuvLxcGzZsoP0bAAAAI0LQmMROnjypT911l6I93SM+h2Gaev+tt+nDH/7woMeapimv1zviawEAAGD6IGhMYj/84Q9155136sbV1ZJhyHZcWebZG7/fzBMvdymac+U6zqDHerxe/eSee/Te9753pEsGAADANMEzGpOY4zgyDOmfbloqSdrTlFA65yiaKaiixKOQz1I0XdDCqqA8pnS8K6NM3lHAY8pjGVo7N6wbf7RPL5yMaclHv6PYkR1ycimVzF0mw/JIrisnl1EhFVWobrmO3/M/tHPnToIGAAAABkXQmEJWzy7Vll1timZsLa4OKuAxVeq31JnKqzWWUzxr977Gdn6k35zp9avm8ptVc/nNA56/9bf/WMzlAwAAYAohaEwhWw90qq48oHC6oH3NyX6lfPMrAtrRENPpaFa/3N2u1bNDWlJT0jfbuXOrvOEqFZI9cvKZfu3fhulR8tTBcdwZAAAAJhuCxhSyeXnVgD/fVF9x1p95SiuUbNinYG295LqqufymfqV8hmXJzufOOg8AAAC8EUFjCnj+eFQHWlOqrw4qlbe1fkFZX/P3joZ4X/N3qd9SyGepNZ5TVyqv+ZUBpXK2XNtWeNFahRetPePcpi8gb6RK3kiVXIf2bwAAAAwNQWOSc10plrFVV+5XpuDoRFdGu04lZLuuSv2WZpT61BLLqaE7o7ztKmc7WjYzJEk63plRLFOQ6xT0wscXD+l6FRVnvysCAAAAvIagMYmdd9558ng8+si9h87pPFdccYU+9rGPDXpcMBjUtddee07XAgAAwPRAj8Ykl0gklEqlRjxvGIaqq6tlGMPr3wAAAAAGwh2NSeKuu+7S1t88MOy5YEmJ/um731NVVZW6uwdvEPd6vbr44ovl8/lGskwAAABAEnc0Jo2ySFgLwq7eurh8WHPfffa03vve9+m+++4b8sznPvc5fe1rXxvmCgEAAIDXcUdjEnn3ymp9fMMcPXywU1UhrwqOqyXVQZ3oymh2xK9kzlbIZ+nF03FVlni1YWGZHjwYVTKZlCSt/rtH1bP/KdnpuMJLL5Xp8cl1HDnZpPKxDkXOu0xH/unDamlpGeedAgAAYLIjaExCiZyt09GcNi0pV67gambYp55MQa3x19u/NywsO2Mu1XRY4UUXqpDskZ3sUebVUr5I/SV9pXzeUt4qBQAAgHNH0Jhk+tq//QXta0mqPZ7TslkhrZj1avt3Y2/790MHOnXejJJ+s5Vr3ybLFzzruSP163S62BsAAADAtEDQmGQGbf9ecvY7ErHDLyjT8oqCtfVysilFzlvfr/07F22VnU2P9pIBAAAwDRE0JpGTXRn9aFuz6muCSuXO0gBe6tV5NSU60JpUImsrbzt98+mmw7KzScWPbpevao569j8l13GUbjsuw3Ukw1K2u3kcdwgAAICpgqAxSZimoaePRZXIOXriSLcyeUc/eK5Z4YClguPIZ5kqOJLjurIdVzWlPtmOq9PdKV1ZXi7DMHTyZ//3kK61ZMmSIu8GAAAAUx2vt50kvva1r+nhrQ8Ney5YUqKvfPVrmj9/vqLR6KDH+3w+zZ07lwI/AAAAnBOCxgSSTqd18ODBYc/5fD4tX75cpmkWYVUAAADA8BE0JpBNb32Lnnrm2RHNfvGLX9SCBQvU1tY26LGWZemGG27gK1IAAAAoGoLGBLJk4XydV5LQp94yV5J0tCOtllhOi6sD8piGAh5Th9pSCvkszQz7VBXySpLu/PkRXbDhKj344IOyfAF5A6EBr5OJdep973uf7r333qLvCQAAANMTD4NPMIsqg1o1u1SS+v73jS5fVH7GZzPCfuXzeUnSBf/racVefl6FVFTlKzfJ9AbkOrbsTFy5nlZVrLpSh/7pI4onEkXdBwAAAKY3gsYEtmV3m6JpW5uWlCvgMWW7ruJZW63xnExDqg55tbK2fxjp3vukSmbXy0qGlWzYp/yr7d+huhUKVM9X7Mj2cdoNAAAAphOCxgS09UCnqkJehf0eeS1TTx7p7mv/rizxqj2RU1sir9Z4TgGv1W+2YtWfyF8156znjtSvU9PD/6fYWwAAAMA0R9CYgM6l/Tv+yovqeunhgdu/0wlJZz8HAAAAcK4IGhPM6Wh2WO3fXamCsgW7b77rxYdkWF4ljr0oT7hK8Vd2SK6rXHerJFcyDKVOH5RRf/n4bRIAAABTHkFjAvH6fHrscJNaEgX99lC3EtmCsk80ynUlr2Uo4LVUKNhyDENye1vAwwGP9jXFdeHVM3X+8hVqO7ZNr71GLHeW61SU+PTOd75zrLYFAACAaYjX204gW7Zs0a9+9athz/l8Pt11111au3bt6C8KAAAAGAGCxhg7cuSIHn30UQ33H7vH49HmzZtVV1dXpJUBAAAAo4egMcauveZqPfrY4/JaZt9nhmEMOpcr2Lr11ltVUVGhxsbGQY83DEMf/vCHdcMNN5zTegEAAICRIGiMsUsvuViLCo1634UzZJmG8rartkROVSVezSnzy2MZKvGaeul0QvPK/WpP5tWRzOvnL7XJnn2BnnrqKZXUrZC/cvaA14kd3qZ1a1fr+d8/O0Y7AwAAAF7Hw+DjwDCkdfMikl4v5Vs+MySPach2XDXFeh/jPhXNqjrk1WULyrRlV7tee7fU4tu/pXTT4QHbv1/5988on3llnHYIAACA6Y6gMc5uumDGm36+YlborDPRg79XePGFtH8DAABgwiJojJPX2r970gVlCo7a47m+9m+PaWhHY0zZgqvyoEel/v7t32XLNqh0weqznjtSv07tv/9ZsbcAAAAAnBVBYxy0xXNqjuVU6rfkuq42Li7vK+V7aH/nGaV8LbGc0nm7719W4uQexY9uH7D9u5CMStaAywAAAACKhqAxDmpKffro+tozPi8PenTbxTP7fbZuXkTZgqMfbmvq+6z5kX+RFQxLrisrEFLLE3fLdSU7Hes9wDCUajqspRdfWNR9AAAAAGdD0BhjZWXluu+xnfrl3k5Jve3evVXermQYMqTXOzZebQA3TaP39baXztEnPvGJAV5vW9n3O3PNQn3oQx8q5lYAAACAs+L1tmPsyJEjeuyxx+Q4zrDmKOwDAADAZMIdjSJ45pln9MMf/lC2bQ9+8BuYpqnbbrtNb3vb24q0MgAAAGBscEejCG688UY98Otf6ZL5ZX2fOY4r0xy4AfylxpjWrb9MBdfQy4deHvxChnT7hz6ob3/72+e6ZAAAAGBUETSK4E//9Drljz6v91xQo4WVAcUyBRmGoZZYTpctiKg9mdfMUq/2Nid1/swSnY7mlLcd/XRHq05Yc/TSrt2qvHDzgK+wlaSO7Q+oxpPViWNHx2hnAAAAwNDw1akieufyKkmvt39vWlKuvO0q7LfUmsjLlfSHhrjmlPl12YIy/WJX+6sPhkszN96mfKxjwPbvQiYh9+Bvx2+DAAAAwFkQNIrotVK+sN8jr2XqySPdfaV8lSVetSdyCnhMeUxpX3Oi32zsyHaVr3gr7d8AAACYlAgaRbT51TsaZ7NpScVZf2YFS5Vs2Kdgbb3kuqq5/KZ+pXyGZSkf7+RfIAAAACYk/ju1SLpSef1oW7Pqa4JK5WytX1DW1/69oyF+Rvu3JCWztuTrnQ/NXabylZvOOK8nWyZf+Uz5q+ao/flfjuGOAAAAgKEjaBRJJu/oknlhSVJbPKefvdgq23UV8XtUG/Ep77hq7M7olfa0sgVHy2aVqDWRk1VjSpIO/u/b5A2GJbkyTEuGYfQ+vuE4ct3eDo58OqEVKwd+YBwAAAAYDwSNIpg7t04PPpjU2/9lz7Bnb75ksT7/N/9Thw8fHtLxV1111bCvAQAAABQbr7ctgkKhoP3794+osG/58uXy+XxFWhkAAAAwNggaI/Tkk0/qq1/5X8pls8MbNAy97/236vbbb1dTU9OQRurq6ggfAAAAmFQIGiP00Y9+VPf8+G796YrqYc09dyKqyIy5SqRzajp9akgzF6y9ULte3DmSZQIAAADjgmc0RshxHF0wt0yrakO6YlGZ/B5T2YKjTMFRtuBoYWVQHlM63pVRMmfLcaVE1tassFcPn7bVdPqUZl55u6ou2qye/U/LziRUunCNTI9PruPIyaWUT3QrfeqQXjnw+HhvFwAAABgWgsY5+vPLZ0vq3/4d8JjK2Y46U7bi2d5fc8r8urK+QnubXi/mCy+6UGXnb1DZ+RvOev6mR76vDEEDAAAAkwxB4xwNtf07bzs62p46Y75z51Z5w1UqJHvk5DP9GsAN06NMR+M47AoAAAA4NwSNc3Qu7d/p5iPyRmpkBUol11X5io197d92JqlctFWm1z/aSwYAAACKjqBxDuKZwrDav7tSBcUyBUleSVI+3iVvRa3SzUflnzFfyVMH5TqO0k2HJdeRTEvZjqE9MA4AAABMJASNc3CqJ622RE5tiZxa4zn91+52Oa4U8BoqC3hku1LBdlVwen/VRnz6/fGYrLISlZVXqO3pnw7pOovrlxZ5JwAAAMDoImiM0Lve9S5te+5ZbW3IvfpJ8PUfpiXFen/rypUhQ5K0JyYZkRn6wIdv15133qkjR44M6VrLly8fvYUDAAAAY4AeDQAAAACjjjsaAygUCrpo7RodfPnlYc2VBIP62c9/obq6Or344otDmlm5cqXWrFkzglUCAAAAEw9BYwBtbW3as2+/blxdrYvqwkOe+8JDx7Vt2zZ95M/uVNOpob2eNlRaqmhPjyzLGulyAQAAgAmDoDEEN6yuVmWJV3nbUYnP0qywT8c6M5od8SmZs1Xis/TiqbgWVAZ6f15eIknq6e7WvBs/p9pr71T7tvtlp6IqW7FRptcv17FlZxLK97QqH23XsXs+J9u2CRoAAACYEszxXsBksWZOqU52Z7XtREw96YJmR3yyXVd5x9Xh9pRcSXnb1ZLqYL850xdQ954nFJy5SIEZC5VuOqyePU8oH21TcMZClZ1/hbLdTeOzKQAAAKBIuKMxBNsb4gr5LIX9lryWoSeP9GjZrJI3tH/nFfCY8lqGDred2f5dddHmAc8fnLmoWEsHAAAAxgVBYwjWzQvr0vmRs/5805Lys/4s03ZCzY/9SMHaejnZlCLnre9r/7b8IeWircp2Nxdh1QAAAMD4IWgMwcHWlI53Zl5tAHe0fkHkrA3gz5+MqWA7fbOJhv2SYSnTelze8pnKdDRIrqtsZ6PkupJhKnV6eG+1AgAAACY6gsYAvF6vJOk/trdpXmVAv9jdoVzBke24CgU8chxXplzZrmQYhhzXVSTgUUc8I6/Xq/WXrdcTjz2mxNHtg17rgrUX9l0PAAAAmOwo7BvEV77yFR08eHBYMyUlJfrc5z6nhQsXKpfLDT4gyefzyTCMkSwRAAAAmHAIGpK6u7t1/PjxYc34/X4tW7ZMpsmLuwAAAIA/Nu2DhuM4qp01U23tHcOe/frXv66VK1dq69atQzp+2bJl+uQnPzns6wAAAACTzbQPGrlcTn6/X3+xYbbKgx4VHFe5gqOaUp/mlvtkmYYCHlMvt6VUU+rTgZak6sr9+n9+16SbP/Rn+u0jj+r4iRMKz6kf8DrpztPKxbvV3t6u6urqMdodAAAAMD54GPxV580o0c1rarRld7ui6YLeurhMAY8p23UVz9qaXxlQ3nZ11dIKXVQX1t07eu+AZLNZ1V7755p34+fU/twWFVJRla/cJNMbeLX9O65cT6sk6dB3PjjkZzYAAACAyYyg8UduuqDmTT9fMSs04Fznzq3yV9fJSoaVbNinfLRdJXXLFKpboUD1fLU8/ZNiLBcAAACYkAgab7D1QKeqQl71pAvKFBy1x/N9DeAe09COxriyBUe1EZ+yebvf7GDt3yWzlxZz6QAAAMCEQtB41dGOtGaUelXqt+S60sbF5X2lfA/t73xDKV9Yjx3plt7wJtps5+nB2787T43f5gAAAIAxRtB41eLqgG5ZM+OMz8uDHt128cx+n71rRZW+83SzpN6ivuih55SPd6l79+PyhMrUufMhyXWVj3dJ6m3/zkVb+44HAAAAprpp/9Yp27YVLi1VOpOR32vJcVy50mv5QIYk13Xluq4Mo7czwzQNZfO2/uZv/kZlZWX6yX/eN6RrrVi+TP/5058QNgAAADDlTfugIUnPPPOM9uzZM6wZv9+v66+/nlfVAgAAAG9i2nx16re//a2efvrpYc14PB7ddtttOv/884u0KgAAAGBqmjZ3NGbNqFFHZ6fqKkNyXFfmEL6+dKIjodtvv13r16/X//n+D+QM4R/V/Hl1+q8tv5DP5xuNZQMAAACT0rQJGmWRsD59WZUumR+WzzIVzxY0vyKgk90ZLawMymMaOt6VUabgqDuVV23Ep2/97rTmXPw2HX3lmPYcbVTlmmsHvEam/aSi+5/S7t27tXr16jHaGQAAADDxTJuvTr3mwrnhvvbvGaU+zSsPKGc76kzZimcLytuu5pT5dVFdWNJpSZLjuqq44Cot+uDXBmz/9pZWau/+pzRNshsAAABwVtMuaEjFa//u2P5AMZYLAAAATDrTLmgMp/07kS30mx2s/TtUt7yYSwcAAAAmjWkVNE52ZeS1jCG1f7/cnur3wHiup3Xw9u+OxnHcHQAAADBxTKugEQl6dP2q13svbMeV7fSW8b19WWXf55mCo3nlfuUKjiQpEAio57knlGs6LMmV6fWryTQlVyrk0uqNI4by6bik3o4NAAAAYDqbNkGjuqpK//zMSf3zM6eHNbexulof//jHtWXLliE95F1XV6fzzjtvpMsEAAAApoRp83rbkydPavfu3cOa8Xg8uuKKKxSJRIq0KgAAAGBqmjJB4/vf/76effbZEc9ff/31ete73jWkuxYej0eWZY34WgAAAMBUN2WCRjAQUKnX1dIZJcOe3Xs6IX9pRB2dXUM6vqy8Qnv37FZdXd2wrwUAAABMB1PmGY18oaBrVlTpjktn9f7ZduWzDB3pSKszkdf7L5yhXU0JzSsPyHZdxbO2Ujlb6byjX+3p0G9eTigwY4Hm/ul/U+zIdjm5lErmLpNheSTXlZPLqJCKyhMqU+P939Thw4cJGgAAAMBZTJmgIUkXzC7tK917rf1705JyBTym2pN5RQIevdyeUt52VRbwaP2C3mcvfn8sKkkqmbtMNZffpJrLbzrrNTIdjWq8/5vF3wwAAAAwiU2poPGarQc6VVfuV9hvaV9Lsl8p3/yKgHY0xhXNFLTrdEKW0X+2c+dWecNVKiR75OQz/dq/DdOjxInhPVAOAAAATEdTMmhsXl414M83LSnv9+cH93dKkvLxTuW6m2UFSiXXVfmKjX2lfHYmqVy0VVYgXKxlAwAAAFPGlAsaz5+I6kBLSvU1QaVyjtYviPS1f+9oiL+h/btEvz8R1aKqYN+sFSjVzI23nXFO0xeQN1Ilb6RK8WO7xnA3AAAAwOQ0Zd465fF4tHFRWFctrZAknerJKpYpyHGlmlKv8rajgNdS3nZUsF3lbVcLqwJK5hw9fLBLR3ocJZKpIV9v586duvDCC4u1HQAAAGBSmzJB423XXqMnf/e7wQ90JRlnfnzLLbfone+8TrZtD3qKmTNn6uqrr5ZhvMmJAAAAAEydoAEAAABg4ph0z2h85zvf0T//43fkOkPPR4Zh6M6P/4X+6q/+Sjt37lQ+nx90prKyUitXruSuBQAAADACk+6OxvpL1un0kb26flX1kGce3N+hyOzFevvm6/TNbw69A+PJJ5/Upk2bRrBKAAAAYHqbdHc0XLl6y6Iyff7qefrBc02aW+6XK2nlrJA8lqESr6mXTic0p8yvaLqgVbUhJbO2diSllpYWhWbXq/6Td6vrpYdlp+MKL71Upscn13HkZJPKxzpUOn+19nz5bWppaRnv7QIAAACT0qQLGm9UGfKqOZbTpiXl8piGbMdVUywnSTrRlVFZwKOgz+o34y2tUOrUQYUXXahCskd2skeZV0v5IvWXyDA9ih97cTy2AwAAAEwZkzZoDLX9e3tDTD3pQr/Zqos2D3ju8OKLirl0AAAAYMqbtEFjOO3fv97bKSV7f19IxdT82I8UrK2Xk00pct76vvZvyx9SLtoqySzewgEAAIBpYFIGjbZ4Tj/a1jyk9u/nT8YUfcMdjUI6LsPyKH5sp+Q4yqd6ZPmCyie65dp52amo8ome8dscAAAAMAVMuqBhmZZeOp1QWdCjJ450K5N39IPnmhQOWCo4rnyWqYLjynFd2Y6r6pBXT78SVd2SWVqyZIkynf+h4z/5m0GvYxiGFi5cOAY7AgAAAKaeSfd625/85Cf60Q//Vc4QGrxfY5imPvTh23XHHXeosbFxSD0aZWVlqq4e+it0AQAAALxuwgaNzs5O2cMIE5JUXV0t0+T5CgAAAGC8TcivTn3+85/X17/+9WHPXX3VVfrJT3+qe++9V5lMZtDjI5GIPvCBDygSiYxkmQAAAADOYkIGjX379mlxdUBvO69SPemC5lX45bUM+SxTiZytmaU+WabUGs8rbzuyXemJI93av2+Pvve97+nLX/6yApGB30rluq6y8S4Fg0HdcccdY7QzAAAAYHqYkEFDcrWkOqgvXDt/yBOmIf30QFbJZFLhOfVa+eXfqf25LSqkoipfuUmmNyDXsWVn4sr1tKpi1ZX6w18sVjKZLOI+AAAAgOlpggaN123Z3a5ouqBNS8oV8JiyXVfxrK3WeE5529WMUq/Wzg2fMde5c6v81XWykmElG/Yp/2r7d6huhQLV8xU7sn0cdgMAAABMDxM6aAyl/bstkdeepoS6Uv3fJDVY+3ekfl0xlw4AAABMaxM6aAyn/fvxw92Ssn1/jr78vFKNBwZsAHcdp0grBwAAAKa3CRs0ulL5Ibd/v3i6/x2NZMsJdf7hN7IzcSWOvShPuErxV3ZIrqtcd6skV65hyCnkxm+DAAAAwBQ2IYNGMFii7Q0JtaekbN5+tenbkc+y5MqVaRjK5/OyLI9cSQGvpYbOpBYumK8rr7xS9/7s58rs3dp3vrPFiQWLFuvyyy8fkz0BAAAA08mELOzbu3ev7rvvvmEX9l199dW6+uqri7QqAAAAAEM1bkEjkUjomWeeUS43vK8vrVq1SosWLSrSqgAAAACMhnELGn/913+tb33rW8Oeq501U08/86y+9KUvDakDo6SkRH/7t3+r888/fyTLBAAAADAC4/aMRkdHh+aUB/T3b5+v1kRO9dVB5WxX8yv9auzOqirkVUcir4oSj3rSBfk8prYe6NKPd7br/vvv17333quKC64Z9Drdux/Q8uXL9cUvfnEMdgUAAABAGueHwWvLAnrbskpt2d2uA60pbVpSLq9pan5lQPGsrYLrqimW6yvlO9SakiTZti1/uFLnf+rfB23/3v3ZdSoUCuO5TQAAAGDamRBvnbrpgpo3/XzFrNCAc7R/AwAAABPTuAeNrQc6VRXyqiddUKbg9Gv/9piGdjTGlS04mlPmV3ui/4PjtH8DAAAAE9O4Bo14pqDmWE6lfkuuK21cXN5XyvfQ/s43lPKFtb0xfsb8UNq/nUL+Ta4MAAAAoJjGNWiYhnT9quq+P9uOK9tx5bqu3r6ssu/zTMHRylklevZYVJJkWZay8S413v9NOfms5LqyAiG1PHG3XFey07HeQcNQJtouj2fcb9wAAAAA08q4/Rd4dXW1DrYktPqbO4Y1Vztrpm644Qbt2rVLiUTiLEe9HlJK1i/TzTfffA4rBQAAADBcFPYBAAAAGHVFvaNx6NAhfetb31ImkxnW3Jo1a/SZz3ymSKsCAAAAUGxFvaPxhS98QV/96ld12cLyvs8cx5VpGmedOd6ZVkssqz/84Q967/tvVbQnOuh1/H6/vvvP/6gbbrhhNJYNAAAA4BwV9Y5GPp/X4hlhbbl9mXadTshjGkpkbdVGfPJYhkq8pl46nVAk4FFDd0YLKwM6Fc3p4z8/rG3btun4K0dVd8NnZRjmgNc5/dD/q0cffZSgAQAAAEwQY/Yw+NGOtKLpgjYt6X2Fre30tn5LUiJra0l1UKtnl+pUtLPf3NzrPj1o+3f0xQfHahsAAAAAhmBMgsbWA52qK/cr7Le0ryXZr5RvfkVAOxrjOtSWUjrv6FRPtt8s7d8AAADA5DMmQWPz8qoBf75pSXnf79sS/Qv2PKUVSjbsU7C2XnJd1Vx+U79SPsOyZOeG97A5AAAAgOIak6Dx/ImoDrSkVF8TVCrnaP2CSF8D+I6G+BsawEt0qDXVb7bsvMtUdt5lZy48WyZf+Uz5q+bIMK2x2AYAAACAISp60OhKZFXqs1QWsHSwJSnblfK2oxKvqfZEXqV+U9F0QW3xnLymIcdxJEmhUEiStOOu8yVXklwZpiXDMHr/6Dhy3d5j8+mESkvfVeytAAAAABiiogaNuXPnqjuV09v/Ze+w5srLynTjjTcql8upp6dn0OP9fr/e+973jnCVAAAAAEZbUXs0XNfVwYMHh13Yt2DBAlVWVhZpVQAAAACK7ZyDxo4dO/TRO25XIh4f1tzipUu1detvFYvF1N3dPejxHo9H8+bNk2GcvewPAAAAwMRwzl+deuKJJ7Rn33598orZfZ8VHFeeAdq/D7al9Oijj+nhhx/Wu9/97r7nMgbz+c9/Xl/96lfPdckAAAAAimxUntEoD/n1+Wvma/fphJpiWdWVBxTPFrSwMiiPaeh4V0aWKdmOq1jG1sYl5Xr8cI9OnTolx3FU/7HvKdl4QHYmodKFa2R6fHIdR04upXyiW+FFa3X8ns/p6NGjo7FcAAAAAEU2qg+DXzCnVEc60nrhZEyblpTLdlzlbEclPlOt8ZxMw1BNqVeJrN1vrmzZFaq+5N0DnjtQXTeaSwUAAABQRKMWNLYe6FRVyKuw35LXMvTkkZ6+9u/KEq/aE3m1JXIKek0d70z3m+3e/ZgCMxaokOyRk8/0a/82TI+Spw6O1jIBAAAAjIFRCxrDaf+2nf7Pn3tC5YO3f2eSo7VUAAAAAEU2akHjXNq/8/FOyfIo3XxU/hnzlTx1UK7jKN10WHIdybSUi3dKWjhaywUAAABQRKMSNHqSWb3cllZzLKeX21JyXGl3U0J+j6medF5+j6ljnWnlbVeLqoPa25yQJNXU1EiSjv34r4d0nVmzrhuN5QIAAAAosnPu0fjd736n99x4gxKJ4X21acniRdr50i698sor6ujoGPR4j8ejiy66SIFAYKRLBQAAADBGitoMDgAAAGB6GtJXp/L5vB555BH19PQM6+SzZ8/Wtm3b9Pd///eybXvwAUmzZs3Sjh07NGPGjGFdCwAAAMDEMaSg8dBDD+mGG24Y0QU2bNigOXPm6L//9/8+6LHHjx/Xt771LR08eJCgAQAAAExiQwoa3d3dkqQjX7hEpmHo/j3timZsbVxcJr/HlO24SuRstcbzfa+xPdSW0jt/sFf5fF4zZsxQoVDQZZddpmAwqM7OTtXX18vj8ejo0aOKx+NyHEelpaVF2ygAAACAsWMO5+AnjvRod1NClSGvast8+v3xmJrjOdWEfaqvKVHAa+qB/R3a25xQSyzXN1dXV6dPfepTOnTokJ544gnV1taqUCgomUwqFAqpUCjoHe94hy677LJR3yAAAACAsTes19u+Y1mlLNM468/fWMr3x10Zv/zlL7VgwQJFIhG99NJLamlp0erVq7VmzRotWrRIjz/+uObNmze81QMAAACYkIYVNLadiOlQ28ClfDKkDQvK9MLJWL/ZG2+8ccBzX3XVVTpy5MjwdwAAAABgwhlW0Gjsyaos6NH2hriimYKePR7VzLBXuYKroM9URzKvvONqZ2Nc+qOX5j711FPavXu3li1bpmQyqY0bN8rj8WjPnj1auXKlDh06pM7OztHcGwAAAIBxMqSgsXLlSoVKSvR//fqVYZ28uqpSkUhEv/rVr3T06FFls1nZtq2SkhJ94xvfkG3bSqfT8nq9chxHmUxGkuT1eoe/EwAAAAATxpCCxrp16xSNxVQoFIZ1cq/Xq6efflqzZ88eco/Gddddp4svvnhY1wEAAAAwsdAMDgAAAGDUDesZjbNxXVf/8A//oGPHjg16rGEYuv7663X11VcrlUrpG9/4hjo6OgZfqMejO+64Q2vWrBmFFQMAAAAoplG5o3Hy5EktWLBA/rJqBSpmDXhsrPFlrV69Wrte3KGHH35Y73jHO7SwOqSQf+DMs+90VB/4wAd0zz33nOtyAQAAABTZqNzRyGazkqQlH/sXZTtPqZCKqnzlJpnegFzHlp2JK9fTqopVV+r4vV9Spmlbv7lff2SZnjzao2i6oE1LyhXwmLJdV/GsrdZ4TlfWV+jWew71HQ8AAABgYhuVoPGa2OFtipx3maxkWMmGfcpH21VSt0yhuhUKVM9X7Mj2N5177HC3FlQGFPZb2teSVHs8r2WzSrRiVkjzKwLa3hB70zkAAAAAE9OoBo3I0vWKLL307D+vX6fOHb854/Orl1aoKnT2V9qumxeR1DQaSwQAAAAwBkY1aCQb9ivZuF/B2no52ZQi562XYXqU7W6S5Q8pF21VPtF9xtyOhrhORbNnNI4fbE3qvBklOt6ZUTRd0IzRXCwAAACAohmVoGEYhiSp/flfyFNape7dj8sTKlPnzock11U+3iXJlQxTyYZ9mjGvtt/cj7e3yDCkxw93qyzo0UMHOuW4rhJZW17LlO24Otye1NJXjwcAAAAwsY1K0Fi0aJFuvPE9OvLKMUnR3g9zb3iu4g3fijIWz9OffeR2SdL69et19dVXqbOtre/nfVOGpMDrc8tXLdT73//+0VguAAAAgCKjsA8AAADAqDPHewEAAAAAph6CBgAAAIBRR9AAAAAAMOoIGgAAAABGHUEDAAAAwKgjaAAAAAAYdQQNAAAAAKOOoAEAAABg1BE0AAAAAIw6ggYAAACAUff/A6tH2LSA59DxAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 800x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAArVJJREFUeJzs3Xl8HmW9///XNXPnzr43W9Ok6b4v0FJApIC0FITyE+TIgeNhU85xQVEOqAiyiIAbyFFRjnhU9LApIF89BwEpIFtlL1Da0r3pmjRdkjT7PXP9/rju3EmaNE1K23Dj+/l4ROncs1xzzTXXfOaaa64x1lqLiIiIiEgS8oY6ASIiIiIiB0rBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIgMuRNPPJETTzxxqJNxQJ599lmMMTz77LNDnRQRkX9ICmZF3off/OY3GGN47bXXekyvr69nzpw5pKWl8fjjjwNwww03YIzB8zw2btzYa10NDQ2kp6djjOGyyy47LOk/1GpqarjyyiuZOHEiGRkZZGZmMmvWLL7zne+we/fuw5aOW265hUcfffSwbe+Dav369Vx88cWMGTOGtLQ0SktLmTt3Ltdff32P+U488USMMYwbN67P9fz1r3/FGIMxhoceeqjHb++88w7nnHMOI0eOJC0tjfLycubPn89PfvKTAaXxz3/+MyeccALFxcVkZGQwevRoPvWpTyXOo2TTmU/GGCKRCAUFBcyaNYvLL7+cZcuWHfB6m5ubueGGGz4wN1EvvfQSN9xww2E9r0U6KZgVOcgaGho45ZRTePvtt/njH//Iqaee2uP31NRU7r///l7LPfLII4criYfFq6++ytSpU7nzzjs5/vjjuf3227nttts44ogj+O53v8unPvWpw5aWQxnMzp07l5aWFubOnXtI1n+wrF69miOOOIInnniC8847j5/+9Kd88YtfpLCwkO9973u95k9LS2P16tW88sorvX679957SUtL6zX9pZdeYvbs2bz11ltceuml/PSnP+Wzn/0snufxn//5n/tN4w9/+EPOPPNMjDFcffXV/OhHP+KTn/wkq1at4oEHHjiwHf8AmD9/Pr/73e/49a9/zbe//W2OPPJI7rnnHmbMmMHtt99+QOtsbm7mxhtv/EAFszfeeKOCWRkSkaFOgMiHSWNjIwsWLGDJkiU88sgjnHbaab3m+fjHP87999/P1772tR7T77vvPk4//XQefvjhw5XcQ2b37t2cddZZ+L7Pm2++ycSJE3v8fvPNN3P33XcPUeoOjtbWVqLRKJ7n9RnYfdD86Ec/Ys+ePSxZsoSRI0f2+K22trbX/GPGjCEWi3H//fczZ86cxPTW1lb++Mc/9llWb775ZnJzc3n11VfJy8vb7za6i8Vi3HTTTcyfP58nn3yy1+/7W/6DbPz48Xz605/uMe273/0uCxcu5D/+4z+YOHEiH//4x4codSLJTy2zIgfJnj17OPXUU3njjTd4+OGHOf300/uc7/zzz2fJkiWsWLEiMW3btm08/fTTnH/++X0u09bWxvXXX8/YsWNJTU2loqKCr33ta7S1tfWY79e//jUf+9jHKC4uJjU1lcmTJ/Pzn/+81/qqqqo444wzeOGFFxLdIUaPHs1vf/vbHvN1dHRw4403Mm7cONLS0igsLOSjH/0of/3rX/vNi//6r/9i8+bN3H777b0CWYCSkhKuvfbafS7f2X1j/fr1Pab31T911apVfPKTn6S0tJS0tDRGjBjBP//zP1NfXw+4x7xNTU3cc889ice9F110UWL5zZs3c8kll1BSUkJqaipTpkzhV7/6VZ/bfeCBB7j22mspLy8nIyODhoaGPtN04oknMnXqVJYtW8ZJJ51ERkYG5eXlfP/73++1rxs2bODMM88kMzOT4uJivvrVr/LEE08c9H64a9asYcSIEb0CWYDi4uI+lznvvPN48MEHCcMwMe3Pf/4zzc3Nfbasr1mzhilTpvQKZPvbRqe6ujoaGho47rjj+vy9+/Kdef7ggw/yzW9+k9LSUjIzMznzzDN7deF5/vnn+ad/+icqKysT585Xv/pVWlpaesx30UUXkZWVRXV1NWeccQZZWVmUl5dz5513Aq77xMc+9jEyMzMZOXIk9913X7/7sz+FhYU88MADRCIRbr755sT09vZ2rrvuOmbNmkVubi6ZmZkcf/zxPPPMM4l51q9fT1FREQA33nhjolzfcMMNALz99ttcdNFFjB49OtGd5JJLLmHHjh090tDY2MhXvvIVqqqqSE1Npbi4mPnz5/PGG2/0mO/ll1/m1FNPJTc3l4yMDE444QRefPHFxO833HADV111FQCjRo1KpGfv81fkUFHLrMhB0NTUxGmnncarr77KQw89xBlnnLHPeefOncuIESO47777+Pa3vw3Agw8+SFZWVp8BcBiGnHnmmbzwwgv827/9G5MmTeKdd97hRz/6EStXruzx+PznP/85U6ZM4cwzzyQSifDnP/+ZL3zhC4RhyBe/+MUe6129ejXnnHMOn/nMZ7jwwgv51a9+xUUXXcSsWbOYMmUK4C5St956K5/97GeZM2cODQ0NvPbaa7zxxhvMnz9/n/v4pz/9ifT0dM4555zBZOOgtbe3s2DBAtra2vjSl75EaWkpmzdv5n//93/ZvXs3ubm5/O53v0uk/9/+7d8A1+oIrk/vMccck+inXFRUxF/+8hc+85nP0NDQwFe+8pUe27vpppuIRqNceeWVtLW1EY1G95m2Xbt2ceqpp3L22WfzqU99ioceeoivf/3rTJs2LdFi39TUxMc+9jG2bt3K5ZdfTmlpKffdd1+PwOVgGTlyJE899RRPP/00H/vYxwa0zPnnn5/ol9m5zH333cfJJ5/cZ3A6cuRIFi9ezNKlS5k6deqg0ldcXEx6ejp//vOf+dKXvkRBQcF+l7n55psxxvD1r3+d2tpa7rjjDubNm8eSJUtIT08H4A9/+APNzc18/vOfp7CwkFdeeYWf/OQnbNq0iT/84Q891hcEAaeddhpz587l+9//Pvfeey+XXXYZmZmZXHPNNfzLv/wLZ599NnfddRcXXHABxx57LKNGjRrUfnZXWVnJCSecwDPPPENDQwM5OTk0NDTwy1/+kvPOO49LL72UxsZG/vu//5sFCxbwyiuvMHPmTIqKivj5z3/O5z//ec466yzOPvtsAKZPnw64Ps1r167l4osvprS0lHfffZdf/OIXvPvuu/z973/HGAPA5z73OR566CEuu+wyJk+ezI4dO3jhhRdYvnw5Rx55JABPP/00p512GrNmzeL666/H87zETfPzzz/PnDlzOPvss1m5ciX3338/P/rRjxg2bBhAIuAWOeSsiBywX//61xawI0eOtCkpKfbRRx/d57zXX3+9Bez27dvtlVdeaceOHZv47aijjrIXX3yxtdZawH7xi19M/Pa73/3Oep5nn3/++R7ru+uuuyxgX3zxxcS05ubmXttdsGCBHT16dI9pI0eOtIB97rnnEtNqa2ttamqq/Y//+I/EtBkzZtjTTz99f9nQS35+vp0xY8aA5z/hhBPsCSeckPh3Z76uW7eux3zPPPOMBewzzzxjrbX2zTfftID9wx/+0O/6MzMz7YUXXthr+mc+8xlbVlZm6+rqekz/53/+Z5ubm5vIz87tjh49ulce752mzv0B7G9/+9vEtLa2NltaWmo/+clPJqbddtttFuhRblpaWuzEiRN7rfP9Wrp0qU1PT7eAnTlzpr388svto48+apuamnrNe8IJJ9gpU6ZYa62dPXu2/cxnPmOttXbXrl02Go3ae+65J7Hf3fP+ySeftL7vW9/37bHHHmu/9rWv2SeeeMK2t7cPKI3XXXedBWxmZqY97bTT7M0332xff/31XvN1bru8vNw2NDQkpv/+97+3gP3P//zPxLS+zolbb73VGmPshg0bEtMuvPBCC9hbbrklMW3Xrl02PT3dGmPsAw88kJi+YsUKC9jrr79+v/u09/m8t8svv9wC9q233rLWWhuLxWxbW1uPeXbt2mVLSkrsJZdckpi2ffv2faahr32+//77e53zubm5/aYtDEM7btw4u2DBAhuGYY/1jxo1ys6fPz8x7Qc/+EGf56zI4aBuBiIHQU1NDWlpaVRUVAxo/vPPP5/Vq1fz6quvJv5/X10M/vCHPzBp0iQmTpxIXV1d4q+zpax7K15naxS4ERXq6uo44YQTWLt2beKxe6fJkydz/PHHJ/5dVFTEhAkTWLt2bWJaXl4e7777LqtWrRrQfnVqaGggOzt7UMsciNzcXACeeOIJmpubB7WstZaHH36YhQsXYq3tkbcLFiygvr6+1+PWCy+8sEce9ycrK6tHP8loNMqcOXN65O/jjz9OeXk5Z555ZmJaWloal1566aD2ZSCmTJnCkiVL+PSnP8369ev5z//8Tz7xiU9QUlLSb//l888/n0ceeYT29nYeeughfN/nrLPO6nPe+fPns3jxYs4880zeeustvv/977NgwQLKy8v505/+tN803njjjdx3332JF9WuueYaZs2axZFHHsny5ct7zX/BBRf0KGfnnHMOZWVlPPbYY4lp3Y9XU1MTdXV1fOQjH8Fay5tvvtlrnZ/97GcT/52Xl8eECRPIzMzs0a1iwoQJ5OXl9TiWByorKwtwj/wBfN9PtPiHYcjOnTuJxWLMnj27V3ncl+773NraSl1dHccccwxAj3Xk5eXx8ssvs2XLlj7Xs2TJElatWsX555/Pjh07EudHU1MTJ598Ms8991yPLigiQ0XBrMhB8F//9V9Eo1FOPfVU3nvvvf3Of8QRRzBx4kTuu+8+7r33XkpLS/f56HfVqlW8++67FBUV9fgbP3480PPFmBdffJF58+aRmZlJXl4eRUVFfPOb3wToFcxWVlb22lZ+fj67du1K/Pvb3/42u3fvZvz48UybNo2rrrqKt99+e7/7l5OTk7g4H0qjRo3iiiuu4Je//CXDhg1jwYIF3Hnnnb32tS/bt29n9+7d/OIXv+iVtxdffDHQ+6WjwTxSHjFiROJxbqe983fDhg2MGTOm13xjx47d7/rb29vZtm1bj78gCPpdZvz48fzud7+jrq6Ot99+m1tuuYVIJMK//du/8dRTT/W5TGf/47/85S/ce++9nHHGGf3eqBx11FE88sgj7Nq1i1deeYWrr76axsZGzjnnnAENRXXeeefx/PPPs2vXLp588knOP/983nzzTRYuXEhra2uPefceOswYw9ixY3v01ayuruaiiy6ioKCArKwsioqKOOGEE4De50RaWlqvR+O5ubl9Hsvc3Nwex/JA7dmzB6BHnt5zzz1Mnz490U+9qKiI//u//xtQuQbYuXMnl19+OSUlJaSnp1NUVJQou93X8f3vf5+lS5dSUVHBnDlzuOGGG3oE6J03sRdeeGGvc+SXv/wlbW1tA06TyKGkPrMiB8HkyZN57LHHOPnkk5k/fz4vvvjifltpzz//fH7+85+TnZ3Nueeei+f1fW8ZhiHTpk3b5xA+ndtZs2YNJ598MhMnTuT222+noqKCaDTKY489xo9+9KNeLSi+7/e5Pmtt4r/nzp3LmjVr+H//7//x5JNP8stf/pIf/ehH3HXXXT1asPY2ceJElixZQnt7e7/9Svdl78ChU1/B2m233cZFF12USOOXv/xlbr31Vv7+978zYsSIfW6jMz8+/elPc+GFF/Y5T2cfxE4DbZWFgeXv+/HSSy9x0kkn9Zi2bt06qqqq9rus7/tMmzaNadOmceyxx3LSSSdx7733Mm/evF7zlpWVceKJJ3Lbbbfx4osvDni0jWg0ylFHHcVRRx3F+PHjufjii/nDH/7Qa0zbfcnJyWH+/PnMnz+flJQU7rnnHl5++eVEIDoQQRAwf/58du7cyde//nUmTpxIZmYmmzdv5qKLLhrwOXEoj+XSpUvxfT8RbP7P//wPF110EZ/4xCe46qqrKC4uxvd9br31VtasWTOgdX7qU5/ipZde4qqrrmLmzJlkZWURhiGnnnpqj33+1Kc+xfHHH88f//hHnnzySX7wgx/wve99LzESS+e8P/jBD5g5c2af2+psWRYZSgpmRQ6SOXPm8Oijj3L66aczf/58nn/++X5fgDj//PO57rrr2Lp1K7/73e/2Od+YMWN46623OPnkk/cZ5IF7y7ytrY0//elPPVpd3+/LRAUFBVx88cVcfPHF7Nmzh7lz53LDDTf0G8wuXLiQxYsX8/DDD3PeeecNepv5+fkAvcas3LBhQ5/zdwZm1157LS+99BLHHXccd911F9/5zneAvoPjoqIisrOzCYKgzyDucBg5ciTLli3DWtsjjatXr97vsjNmzOg1qkRpaemg0zB79mwAtm7dus95zj//fD772c+Sl5d3QENIDWQb+1v+nnvu6bX83t1frLWsXr06cRPyzjvvsHLlSu655x4uuOCCxHz7G43jcKmuruZvf/sbxx57bKJl9qGHHmL06NE88sgjPcrE3jcB+6oLdu3axaJFi7jxxhu57rrrEtP31VWorKyML3zhC3zhC1+gtraWI488kptvvpnTTjst8aJkTk7Ofs+R/uomkUNN3QxEDqKTTz6Z+++/n9WrV3PqqafS0NCwz3nHjBnDHXfcwa233tpjHM+9fepTn2Lz5s199mtsaWmhqakJ6Go96t5aVF9fz69//esD3Z1eQ/lkZWUxduzYXkOC7e1zn/scZWVl/Md//AcrV67s9XttbW0i0OxL50X0ueeeS0wLgoBf/OIXPeZraGggFov1mDZt2jQ8z+uRxszMzF6Bse/7fPKTn+Thhx9m6dKlvdKwffv2fe/gQbJgwQI2b97coz9pa2vrgMbgzc/PZ968eT3++hvv9vnnn6ejo6PX9M7+pRMmTNjnsueccw7XX389P/vZz/ptaX/mmWf6bK0cyDaam5tZvHhxn7/95S9/6XP53/72tz26szz00ENs3bo1MVpEX+eEtXZAH3A41Hbu3Ml5551HEARcc801iel9pfnll1/ulTcZGRlA7xu+vpYHuOOOO3r8OwiCXl0EiouLGT58eOLcmTVrFmPGjOGHP/xhojtEd93PkczMzD7TI3I4qGVW5CA766yzuPvuu7nkkks488wzefzxx/cZZFx++eX7Xd+//uu/8vvf/57Pfe5zPPPMMxx33HEEQcCKFSv4/e9/zxNPPMHs2bM55ZRTiEajLFy4kH//939nz5493H333RQXFx9wi9jkyZM58cQTmTVrFgUFBbz22muJoXz6k5+fzx//+Ec+/vGPM3PmTD796U8za9YswL2Acv/993Psscfuc/kpU6ZwzDHHcPXVV7Nz504KCgp44IEHegWuTz/9NJdddhn/9E//xPjx44nFYvzud79LBKqdZs2axVNPPcXtt9/O8OHDGTVqFEcffTTf/e53eeaZZzj66KO59NJLmTx5Mjt37uSNN97gqaeeYufOnQeUbwP17//+7/z0pz/lvPPO4/LLL6esrKzH17UOZmvX9773PV5//XXOPvvsRMvlG2+8wW9/+1sKCgp6DUPWXW5ubmIM0/586Utform5mbPOOouJEyfS3t7OSy+9xIMPPkhVVVWiL3Jfmpub+chHPsIxxxzDqaeeSkVFBbt37+bRRx/l+eef5xOf+ARHHHFEj2UKCgr46Ec/ysUXX0xNTQ133HEHY8eOTbxAN3HiRMaMGcOVV17J5s2bycnJ4eGHHz4ofV0HY+XKlfzP//wP1loaGhp46623+MMf/sCePXu4/fbbe3wl8IwzzuCRRx7hrLPO4vTTT2fdunXcddddTJ48uUdAmZ6ezuTJk3nwwQcZP348BQUFTJ06lalTpyaGFuvo6KC8vJwnn3ySdevW9UhTY2MjI0aM4JxzzmHGjBlkZWXx1FNP8eqrr3LbbbcB4Hkev/zlLznttNOYMmUKF198MeXl5WzevJlnnnmGnJwc/vznPwMkzu9rrrmGf/7nfyYlJYWFCxcmglyRQ2oIRlAQ+dDoHELq1Vdf7fXbD3/4QwvYM844w3Z0dPQYmqs/9DGUT3t7u/3e975np0yZYlNTU21+fr6dNWuWvfHGG219fX1ivj/96U92+vTpNi0tzVZVVdnvfe979le/+lWvIXNGjhzZ55Bbew+R9Z3vfMfOmTPH5uXl2fT0dDtx4kR78803D3iopS1bttivfvWrdvz48TYtLc1mZGTYWbNm2ZtvvrlHuvferrXWrlmzxs6bN8+mpqbakpIS+81vftP+9a9/7TFk1dq1a+0ll1xix4wZY9PS0mxBQYE96aST7FNPPdVjXStWrLBz585NDE3VfZiumpoa+8UvftFWVFTYlJQUW1paak8++WT7i1/8IjFPX8NQ7f3b3kNzdQ5t1d2FF15oR44c2WPa2rVr7emnn27T09NtUVGR/Y//+A/78MMPW8D+/e9/308OD9yLL75ov/jFL9qpU6fa3Nxcm5KSYisrK+1FF11k16xZ02PefaW/u77y5C9/+Yu95JJL7MSJE21WVpaNRqN27Nix9ktf+pKtqanpd30dHR327rvvtp/4xCfsyJEjbWpqqs3IyLBHHHGE/cEPftBjuKrObd9///326quvtsXFxTY9Pd2efvrpPYbbstbaZcuW2Xnz5tmsrCw7bNgwe+mll9q33nrLAvbXv/51Yr4LL7zQZmZm9krXvvJiX+fQ3oDEn+d5Ni8vzx5xxBH28ssvt++++26v+cMwtLfccksiD4444gj7v//7v32WnZdeesnOmjXLRqPRHsN0bdq0yZ511lk2Ly/P5ubm2n/6p3+yW7Zs6TFPW1ubveqqq+yMGTNsdna2zczMtDNmzLA/+9nPeqXpzTfftGeffbYtLCy0qampduTIkfZTn/qUXbRoUY/5brrpJlteXm49z9MwXXJYGWsP0tsIIiJyUNxxxx189atfZdOmTZSXlw91cj5wnn32WU466ST+8Ic/HPIPc4jIB5/6zIqIDKG9P6va2trKf/3XfzFu3DgFsiIiA6A+syIiQ+jss8+msrKSmTNnUl9fz//8z/+wYsUK7r333qFOmohIUlAwKyIyhBYsWMAvf/lL7r33XoIgYPLkyTzwwAOce+65Q500EZGkoD6zIiIiIpK01GdWRERERJKWglkRERERSVr/cH1mwzBky5YtZGdn6/N7IiIiIh9A1loaGxsZPnw4ntd/2+s/XDC7ZcsWKioqhjoZIiIiIrIfGzduZMSIEf3O8w8XzGZnZwMuc3JycoY4NSIiIiKyt4aGBioqKhJxW3/+4YLZzq4FOTk5CmZFREREPsAG0iVUL4CJiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSesf7nO2h5uNdQAGbAjGi/+/wXZOw2AM8X9brDEYz8MEsa51GA9jQ6zxCI2P70EYhhhrMVistYAhNB7WePhYsDEMgAU8D8IQ6/sYayEMwbjfrOdBaLGej8FCGGA9H88GLr1hiDWANVgvAtbimcCt1/0PFo/Q8zFh6JYDt8+ma7+tDcHzMWHQtV++jwncdgI8lwdYPLfG+HIBhu6/g2dsfD0WE89Lg8Uad28WWOO237Xrif01xmJt56fxrMsrD7c+G98j34fQJo4VxmDCsFu6I9B5fOLbtHTO15WuwPjxbbmUG1weWAseISae1wGeSxsWY9ymXf65NHsGPAKXns40eh4hvkuCDTE2wHQuk9iiBRvPNT+C8TxsrL3zsLlt267PBPoGsGFn7uN5BhPGOleI9XxCa7Dx7PSNBSwhHqF10zwTXzqeX9YY8HwIYxgLGENofCwGzwbxco1LeyLxrnyGuPKMBd+LJzoI3PpsAPFyj+e5/0ycW53LWXzPpSEMO/PVpduzAdYVCAi78sMjjC/rJobW68yuxCcVPSwmsX23nJvfI8BgTLd98zwC/ESe+yaM56krL9bzsaE7j0Nc2vc+B2LWSxxR34TxkmQSaQriO2Zw+WTjdUPX8e06b6yNLx2ve2z8eHTuV2fZM8alydjA1Rmd+Ww8grDr/IkYS2g8wjB+XtrA1VPW5UM8i+J7FmKNwVrP1SGYbuXP4MXLvmfCeJmO569x5741XuL89Wzg6iss1vSsV0LPJ4yfU74JE2W2s65NnCHWxvMhXo8YA2H8PPJc+emsW63njoi1nWXcEliXT1gSx8Mz8bq423nSOX9XfeK58ttZII3nZgxdWjC+KxuJ9LkybI0rZyZep4bGS9Rl8WrK1b9h2Cv9eJ6rbzrLazyNngkwoSt5GC9+rgY9rikYz5WFMH5NMe5YWGviZTa+beL1v+2cx3S7tsTTnag8Iu5cdieu22dsV93QuebO42oMeK4Oc9VAiMV0ZSGunrTYHnnSyaUrTKSdeB1n96q3Qty+2nj+gMUzXdsB6+o948XPO4PvubIUdB7z+Iat7Zq/s3x2nm/WVXqJ64IXhvG60sOGNn4OdZ6zJrGTXjxtWNuV7zZM1FfuGLpz1BiLFwaJarVzu8bE64AwxHgmHg90ndOJesFdHV1d1FnfxcsVfmRAn5g9nBTMHgK2s1KKtUMklbCpHi89C9vaBMZi0rKx29YS7trqLjxpmfjl4zFpGYDB1m8n2LoGG2vDRKJ4xVWYglJsUz1+WhYW3xXq9mZiG1dg25oxKWn4lZMx6VmEO7cQ1qzHBjFMSip+1VRMNN2FN3t2EWxZje1oxfgpeEWVeMNGQEcrJiXNFdaOVoimEe7YTFhbnViPN2IiXnqWO5G3rcUm0p+FXzkJE0kh2F5NWLfJ7dPwcZi0jPh+pBA27cZk5cXzJYpt3IXNzKM98FldY2lut3gGhmVB5TAfay2+8WgPDKtroDQ3oCDLI9i1jXDbOmzQgUmJ4pWNxeQMczcAnkdLO7y3BVKjMKbYkBaFIISIBzubDNV1lvYYpESgosBjWA4Ee3YTblrmKrZhI/CKR7qT3PcJt28k2L4xng9p+OXj3H5YSxALMb6H8Qxh405s404oriIgwtpt0NjqasH8TBhV5EEQ4vsQWA8v4rF1l2XrbksQQGoKVBUZstKgtgHaY5bKQleR2rYWgk0rsK1NGM/DKx2Dn1cMQGzTe9jGHQB4mXn4FRNdkFOznnDHFoznJ/bJtjQR2/SeuzANqyBSVEEsFhCJ+AQxFyjuaQ3JSfcIG3cQJspKBFNcRaRwOLv3hGzc5TG8wFCQ5YJBGwR0hJaMVJ+wZgPhji3YMMCkZuCPmIBJTScIQ0wkxVWGbU0Em93+eJm5eOUTMClRgi2rsLu3uwt5RjbeiElYP4WWDo+0SOguZh2trty37MEYg8krxh8+FoKA2Mbl4KfglU/A+hECawgDWFsLDS3uWORmwOjiiAvUdm3FKyjDtjZh29sgpyB+ofBpj1nW1EJTm7tQFmZZRhYZYqEh4kUIW/fgR9MIYzG8lChNrQHpKRba2whbGvHyimhsgXV1lrYOd480PM9QmhclaNyFaazDLxtNaHwCC2trbCKNeZmGUcURwhA21Fl27YFoBEYOM+RleonrSm29ZfNOiAUQTYGqYYbczAhhYNndDBvqXDkqyILRwwJ8A8HmlQQNdQCYjFy8ERMJTYTQ9zEGWjqgZjdUDvPwwgC7ZRU07sTkFuGXjyPWYVlb59Meg5FFHnkZLn/CIMDzfVo73Dm3aQfUNljCENKjMLrYIz21867SZ9vukC27iZd9y6giQ3Y6hE0NhBuWuvITrxu91HSstbh7Yp9wTwNeahSTmoHdtY1g2zpsrB0TScUrG42fW0yIoS3wWFNj48fQUphlGFkE1hrszs2EDbX4pWMgPYtw6xowHn5RBbatjWDze/Ey5kF+KZGyMYAlRvzGPx7kbNkJJbkhkYiP8Qw7GmHjDlfHRCNQUWgozDaEoYePCwqCrWuxu2tc/Zmehd9Z/us24WUXYjJysA3bCbauhbQM/LKxeClRgl212NxiYqFhzXbY0+pugAuzXNkIAovve9jmBoLNq7DtLRjPxxRV4BdVQhBz+xPGiHgewZY1hLtrMIXl+EWV2NY9BJ3XFM/HFA7HLxmFbW8hqF4G0XTM8PGEnseaGmhMlFcYVWSwsQC7ZSXEOlw9FE3DEGJb9xDb+F4iPa4+qsQ27iKoWYeXW4RXVIHX0QqRqAvWd2wlrN0Qr+dT3TmeXUhoLbHQY20NNMT3Pz/DUFXsboqDeFznG+uCtqCdYNNybPMevOwCKJ+I9TzW1lrqm928ORmG0cU+nnHBaGOLu2bkZxpqGmDLTuvOsQiMHOaRl+nKfOctS0OLZUcTlOYZPM+V/eKsgOwMj6B2I7ZuoyvP0XRM+QS8jGx2NEJmukfU9zC+IWhrw6REMZ5HUytkp8H2RsPmnV1lqbLQUJANre2GND/AALHNK6GhztWZWXlEKiYRiUQId9YQ1KxNnBembCyR3GFYG2Kb6jGZudjmBoikYFJSXXlp2BGve3PwRkzEeinsaPEozPIJ21rwWnbjFZRi25ohNR3CEON/MMJIY621+5/tw6OhoYHc3Fzq6+vJyck56Ou3QYBtb3Z3gLtqXWtddgGxtW+RMmEOwZZVxNa+BR1tvZb1CspImTqXYPtGYstf6vGbycghMuWjeNkF2FgHsXf+Rrhrm/sxmk50zunYxp10vPcytDZ1LkXKjJPwCodjmxvpePd5F2ztLS2LlIlzMNnDIIxBJEr7K49BS0PX9nOLiM46laB6GbH177iAdO/0DxtBytTjCbasIbbylW77dDxB405XSadECbauJQxDKJvAy2sN23b3TlLEhwllMKHU3bnHAvAaagiXv4htaew1v8nMI2XaXIhEMWkZtHQYnnjbtaqdPNUQC+DVNZbG1t7bykyF2VUh+ZE9BK/+GbwI0aPPwNbX0bHi79DW3Ht72YWkTD8Rm5ZF2NxIuPRZTH4J/rijeW2dYePORMNdV/4YmFgOE4e7CuqtDdDa0Ts9+Zlw1BjDnlZ4bY1lwnAYVxwQe+0xbEMdXskoUqYeT2zlqwSbV3a1XiQSZ/DKxpAy6Vhi771CsOk9Nz2aRmTskfjFI2l/9TEIAqJzTidsacTkFvPORsPwvJA8z+1P32UlE3/CsXTklrNomUc0ArPHGHLTgS0riK16ve+ynV9KZPpJ4EeILVlEuHOLm15QRsoR84mtfctdLIO9M8TgFVeSMv1ECEM63vkb4fbq3unyU/CrphIZNYOO5S/hTzgWfJ831lk21PV9LKqKYOZIQ7D8Bbz0LPxR07HWXQxfXgtbd/XeTMSH8aUwYbihqQ0yU0J27bHsaTdU5MUIl/4NUzGZ1sxSXl7rsaup9zrSUmBGZUh5bgh+hNfXQfWOvtM4qhimVxpeXWPZtNPd8HxsiqGhBd5cb2nundXkZsCcMa5c//Ud9+9jxlrClfGy0Fd5KR2NP/mjbN7lUV7o8uDpdy0FmTCryhK8t5hw03vgR/ArJ+ONOZIXVxpq6iEnHeaMMUQjLn+qd8CyTe4CvLdh2XD0WENdI7y8uvelJz8Tjh4dktZcQ/DmE4lM8QqGkzL1+ERZxYbYhu3E3n0B29yzPvDGHIkZOZ1X1hq29HUMPRhXaplU7lq1gg1Lia1/h8jomfjDx9Gx9DnCuk19LJiCXzUdv2oa1ni8t8VSWw8fneDycFcTvLbWsqePOiYrDWaPNuRnQrjy74TVy3rN4xVXkTJtLmFDXXy/GvBKqkiZOpfYqtewkSimaiavrjNs7uPU9D0YWwpTyy2xN/9KuGNzzxmi6UQmzMEvqSLYtJLY6tcg1uGuKwXDiS19ruua0l1KKpExR+ANH4f19l9eZ1Ragnf+hl9ShckppGPpc9jdtb3XG00jMnYWflEF7a8+hg1ipEw4Gm/YCNrfeKLPZUxWPilT51Lv5fHMci8RuHbu/5wxLqDctjukLDsgWPo3wu0bAYtXNgZ/yvEs2WBYv51ura0u7cdNMKSlwJL1liNHu4B2yYa+z7GcdJgz1pAZhRfes2SnwxFVhjfXW3Y0wkmTQrztawlWvQbtLb33I7cYf9qJ1LSks26Hx5wxBt+DVVstJXmG9g54Y/2+y9JRow15KS3E/v5o1/pTokSPOh3b2kRsxeJe5wXEr5NTj8dk5BBb8yaRcbOJrXmTYOPyrqeNiZkNXvFI/ClzWb7VwzOGCWUhsbefwS8ZiV84gnDPLrz8kkMW0A4mXlMwexDZ0N2BEsQI67djW5vwy8bQ/saTpB71cWLVywjWvd3/StIySZ1zBrENSwk2vNvzN2NIOeIU8H06Xn0sMTl6zJnYPbvpWPpcj9kj42bjlY+HlkbaX/tL78K6l5RpJ2Ayc8Fawj27ib37fHwD6aQedxaxNUtcwNEPk55N9OiFxFa/3hVEpWaQevRCrB8h3LSSsHk3TDiOp5a6gKA/Y4phRkWAZywdy14k3Lp23zN7PtGjTsPGOvDyS9nVZGju8EiJwAsrbI/Kq1e6DRw3NmQYO/BTIokLSr/8FKLHLMR2tBGsWYI/cz7PrjDs3LPvbZwyzVDb4AKR/qT4cNIUF+i/XW0ZX2qZOjxGbMkiokfOp+Otp/u+4HbfXl4x0Vmn0vHmXwl3bk1Mj4ybjVc6GsIYYeMuvKKRLF5jKM8LKU9rcAH9fsqKP/VEmnNH8uRSD8/AiZMs2U0bCd9etO+FUjNIPfoMYhtXEKx725WVYz9Bx4rFhFtW73Mxr2wMKROPpf2VP2Ob6vtPV/l4IpM/QojHc8stdb3r8x6Kc+H48dDx6v/iV0zElo5j0Tt93/R0N6oIZox0QaWHJSe1g9jf/x9m5FTaho1n0TKPjmDfyxflwPETDX9bZtmxj/LSqTQPjh1neOZdy5GjDHva4JU+AsHufA9OmgwZUYj4luCtp/u+CejG5A4jMvsM3t1imDLC0NYBj79lycuEEyZagjeeSJQjr2w0/uS5PLnU3XRFI/DxIwyrtsK7m/pPW1o8IF9ba1mxpffvER/mTQ5JrVtJuGJxtwUzXT3i+dj67XS8+ddeEZVXOhozeS6LlrlgpD9VRXBklSX2wkN4hcOJjJvtylgfQUCPbVRMwh9/NO2BR4rvHvnvaITn37O9ArzujIHjJxgKsyF49X+x9T2DtZQjTwGg482nXHeC7AKic86g4+1nwPPxpp7I08tMojVxXyoLYfaokNjiR/rcl8jEo/GGVdD+0h/xR07BHzGR9lf+t8+b9sQ+F5ThH3kqf1vOgMrrceOBtibaF//JPenrR2T8UXglVbS/+AiEAZHJH8HLK6F98aO9I2YAzydlzulsbc9n8Zqu135KcuHY8YYVmy2TywJiL/+/RH1hcotIOep0nl9pqO2jCpk1ypCXCc8us8ydZGhu6/tmqzvfc+dwLHDn8/MrLDv3wGnTQ1JqVhC893L/GZWSSuTo/4/1DRlUFnm8U20Znu8e3b+4cv9lae74kLxYDeEbj7vVzT4NYh10vLWo73zr5PmkHHkKXm4RHe++QLitn2sqYLILiMxZyN/XeKRFYGZlQMeLDxEZNR1vWDm2YSdeceUhCWgHE68N6Qtgzz33HAsXLmT48OEYY3j00Uf3u8yzzz7LkUceSWpqKmPHjuU3v/nNIU/nYAQblmEiUWLvvUxk5FQ6lj6HX1yJbWncfyAL0NpEx7IXiYyanuiPmWAtHW89jZdTiMkdBrjWUJOWScfegVckxXU7SInS8dYz+w1OADqWPo9JyyRWvRx/+BhIywTAr5hIWF+330AWwLY00rH8JSKjZ5DorNPWTMe7z2P8CLHVr+ONnsUb6/cfyAKsqXWPWoIdW4mMmtH/zGFA+5uL8ArKiG14l/yMkLJ8eHlV/4EsuHP/72s8TG4RJppObNmL+09c0EHHm0/h5RZjxh7Fu5v3HcgCjChwldD+AlmAjsBVpmNLXaCwcpthV7NHZMIcgs3v7TeQBbC7a4mtewt/r3yLrXrN/YcfwQYh6+tgVxNUFnmEbz01oLISvPscmSkBpXmuheOlVYZISSUmI3vfC7U107H0eSJVU8Hz8SsnE9Zt6jeQBYiMnknHe3/fbyAL7hF6WLeZXXv2H8gC1NbDqhrwRh2BzRvOm+v2H8gCrNsO2xtg5x7IywgJlr2AjbUTGTGRl1b3H8gCTBpuWL55/4EswLbdrpvEjJGGzFTXWr8/QQgvrYSUFENYs26/gSyAra8jXPM65bkBq7a5bgwVhbCjEZZvBkYdkZg33LqWoGY940tdWioKobFl/4EsuKcRr661jC9z/WT3FgvgxdUekRETISW124JNdLz7IsaP0PH2s31esM2Y2Syp3n8gC7B+O2zbZfEqJ+OPnkHHPlqz9hZuXE6wa5vrL4s7pxev6j/4AJfcxavcY3Fv3FE9051diJdfGt8v19wYqZrmyvP2jZgxs3irev+BLLhW0y07wauc2ufvsRUvu3cfSkcTqZrmGi36CWQBGD2LZZv3H8hCV3kNmhr3G8gCxFa+CkEMv3S0+/fyxa6rUPHIvhcIAzrefIryQo/MbsVjUrlh2SbL6GEB4YrFPeoLM2omq7bRZyCbHnU3Nn9f5brjZKe5p3j7E4RumZJct791je48SAla9h/IAnS0Ebz9NKNKPFeXNLmg+OXVAytLL6328AvKMNkFmNxivJxhdLzzt/4DWXD59/Yzrn9uvHtav9tq3Em48hWmDg9Yux1qGwx+5WRXjoBg+8bEOxJDaUiD2aamJmbMmMGdd945oPnXrVvH6aefzkknncSSJUv4yle+wmc/+1meeOKJQ5zSgbGNO/GKRhDbtAK/dDS2pRG7uxa/YhKxAQSCncK6TdgghlfSx8kcdBBsWU2kYhIAfsUk1wJqexYmf/g4bEebW1frAGogABsSbHoPv7SKsG4TkRETwBgiIyYQVC8fePprN4Dx8IpGdE3bsQXb1kxk3JGEkVQ29fGYbF9W1niQV4pJy8TklfQ/c3sLYW01JpKCNT6bdlra9h+bARALYX0dxNpa918hxNnmBsLGHfg5Bazb3v+8Y0oMa2oG/iCkvtkFS1VF7t9r63y87IJBHYtg03t4BaWYjL3uasOYO9Zlo1hVYxhVBLEdW/vswtEnG2I3LmN8sYvaWjtgy84Qb8TkfhcLd27Ftre5x9rl4/Z7XngFZZhoKuG2dQNLFxBsWEpuuu0zUOrL6hrwi0ZASjob91+3J6zcZl3/yyBGWLsBv3w8OxsDGvYTSGWlwbAcdwEcqDU17kK7bq/Ho/1pbo9fvAdwc9Ip2LyS/CyfmnpL1IdxpS4T1243RApKetys2I3vMnKYe2w/tsSwetvAy/b2BldmKgr7/r2xBXY2Bvjl43tMD+s2QUcrXuHwXsuY/FJIzaC6bsDJYGWNh1cxCeNHCGvWD3zB6qVEjGuV3bCd/d68dOoIoLoOvLySRGMBgF85iWDrmq7uW9E0vJIqgo3L3Q12ejYbBrNftZ57KreP1rJg43Iio2dg21t6PLXpi8nMJZJfxLpBlNdV28AvKIVo2oDmDzYux6901zSsJdi0Aj9+jetTWzPB9o2MKXZlLifddVFpbHEt/0H31sbUDCJFI1hd23eFMKrYsK3e9Y0fW2IGdY61dsC2+kSzDeNLAqh+Z2AL42IGrGV1jWVMiWFD3eDK0sa6EK9iMpHKSQRbVvXRTWsf2lsJt63rP4+7CbasJjvddZNZWevhjZgExhBsXEGkYiLBxmXYQdQzh8KQBrOnnXYa3/nOdzjrrLMGNP9dd93FqFGjuO2225g0aRKXXXYZ55xzDj/60Y8OcUr3z8Y6CDavxB82gmDLaryiSoItqzBZ+ZhoOmHNhkGtL9yyGn8fd6bBltXurtUYvKIRrhDvxSuuBCzBflq9+lx3UQXBljV4xSMxOcPA8wfUEphgLcHWNb3urIPNqzBFI1m/wxtorAhATb17EzPYuW2fedJzO+/hDasgtJb1g6iAwbXWeJmD635imxvZtps++wh2SvGhKMcM6oIEsGF716Onzhf4bHND/wt1195KWLcpXh7iIlG8rHxseytNLSENLVCZH8Dm9waVtnDLKorzI4kXYdfVeVAyar/LBVtW45ePx3a0YXfX9DuvVzySYNu63v08+0vXzq2YoIPCfhqJu2tug93NsKvFDPgiBi4gC627UcNabMkY1u7w97vc8Hz3glXbAK87AHta3WPN9dsH1ytsbY2F/PKBL9DRRqxuEwWZULfH9bdNS3Fp3b47wCvqOv9s/XZsWwsVhZCZxqBuBMC92Da8YN93HGt3+NiSMXtNtQSbV/VZD/jFI9m4Y+CBCLjWNGtxL1oNolIK6za5t8iBdYM8Juu3uzfR/WEViWl+UWWPutorLMc27nQv/RaPZNNOevQP3Z+de6Ct3eIVlPX5e7BlNSYtc0DXB6+oktrdwYAbBcCV14Y9Mfdy8QAEW9bg5RZBaob79+ZV+IXDwU/Z5zLh5veoKHCZMjwftu6G4hzci3zd6gu/qIJdjUGffV8ByvNdPdu5ng2DPcdqLaV5rj97XnYKwdaBX3NNXjFB4Ppelx/AttfVeZjiKrziygO41vd9HvU9cwdBzQaG57tuGjHrubRvWYWXX0JQu8GNhDGEkmqc2cWLFzNv3rwe0xYsWMDixYv3sQS0tbXR0NDQ4+9QccNwAW3NmJRU98ZfSiq2vbVXy+l+1xVfdl+/mZRU97KT8bCtfbyglJKK8SN9/ra/7RrjhnAyKanx/WghMbbQYNaTEu05sa0J40do6f3u2H61tYdutIJo33nSY9utzZhoKp5naBlEwADQ0g5+JNJzXJf9MAaa2vrPn2gEwrDvl2L6TU+HWxbc6Au2rY83ivYjUV7iTErUvUVtDC3tNr5u48rcYNdrDNF4HdbSDt7ex7wvnekZwPZMSuqgyzBA2NaSyLeBaG7bf1eUvrR14F6axKW1dQBlOxoZfLlM8d1b1gNZf3ctHfQ+D/fDtDYSjbhthaG7SAM0d3g9yhG4UTbSU92N3GDzr7Wdfo9Razu9tgfu/O6rbgxT0mnuGPxwQWEQHth51dGK7zHoY9La4bpw9KjLUlKhWxoS1w/ApqTR3D74S3Vrh93nNYSYO7gDOedNSuoBbb+lw/R5/PoUdGA72rvmb29xw4P1s7xtbSYl4tIVjRha2iEtEvbIRwBSUmlu33e5iEbceeJ7bjjCwV6fOstxNAJhLAaxgZ/cJiXVHadu6RiMlnbwU1Iwkejg6+99nEf7Ytr2kBpxcUxbR+iOVUe7a5GNX0+GUlIFs9u2baOkpOdj5pKSEhoaGmhp6fvZ3q233kpubm7ir6Kios/5DorOY+n52DBIjNln/AO4Y/F8N2ZNX5vx/HgBiv/e1/qDID5sxiC3Hb+7ckPEBm4bByv9XgRrQ/wDKHW+Fx+Ubx950nNmt20bWjd26qC2Ex9abTBNx9YS2U8WBWF83NbBJccNpRS/Dwos4A2+k70rL93G9w0CN8RV2HUswtBiBntnHZ8/MRSOFy8zA1gucX7sh30f589gWrIiXtd4rIPaTLdFbBjgDaBsB6Ed9DnQuS8DWX93Az4m3Xkp8fLq6oHuQx3ZcK+7Mc8nFnBA57Tn9d/a6O0r7b7fZ0u9CWOunhgkEx/DdNA6x4we5L53Du3Zoy4Lg55p6HZ+uP0a/J2Wb+i/i4lhQOe8DYP3sf1BlD3fT9wYYjx3XPYub3vNH8bvoELrymBgTe99CgMi/aQ/CF1aE+NQD/Z4xstxGJIYB3fAwiBxjepMx2B0jjlvw3Dw9Xf3/B7Q/BFi8TGm/e7HxvP5IIwjkFTB7IG4+uqrqa+vT/xt3Ljx0GzI8/Byi924mQVl2D273P8317sW1Mzcwa0uvo59/7bbjZrQ3IiX3/tRUrhnl+t3m1866O2GzQ14eSXYxl2ETfWur2pa1uDXs1f6vYIyaGmkNHtwrdTpUUhL8zEZufvMkx7byS8j3LMTay1FgxywoigHYvu4MdonP4WS/Rzethi0dRxIekyiD2Z7B+5R3KAqLYPJ36ssdbS6pwWeT16W+whHfYvB7OOR5L54BWW0tsaIxQ9ncTaEjQM4PgVl2IY6TFb+flsGbOOufT4q3adoOpHMrP32Xe1kDBRkQ0ZkcEFfaoob/oqMPDehcQcl2fuv1Bua3RBVgxULLMWDLD/FObi6YjAKhtPQYhmW7S7wnY9ni3Pc8UiIRIlk57K9wQVouRmDTZuhoZ/GpJJsC328oOIVDO+7Htizg9LswT36SI2An+IPvoylZeKlphMLGfwxcQPG9NiHzutFp3DPLry8Yhco7NlFWc7gymY0AtmZkX0eexO/Lgxkv+2eXRQPsrx6BvKzvV7XgH0xecUQxBJPYbzCMtfS2L7vt4S9/DLqm935Vt/s6tbdzYawsGfXBtu4i8Jss8+HbfUtrp611o2bO9g6ujjHvd/Q0g5BYPf/Xkc34Z7dpKf5pKXE0zG4MIGiHAj21MfLzyCv9fm9r9H9sQUjaIj3SU5P9wn31Lv4oqMNLyvvH7vP7GCVlpZSU9Ozj11NTQ05OTmkp6f3uUxqaio5OTk9/g4F4/nuhZbNK91LWRtXxN/ONIQ16wfc0RpwFWVRBbFNffdhdC99rQBwHeUre790E2xc4QYcr5jYe1SEfri0v4c/YgLBpuXQ1ky4fSN+xYQBr8Nk5OAVlBFs7taXNzUDr3gksZWvUZDtkT2w9wIANzxXsHs7JjN3AP2RDP7IKYS7avB9k3iBZaAmlFr8cADDLHTy3IUw1Qso7qcista98DOmZODp8T338lfnS2OFWdbdoJTuv19qInnDRmA8r+fb7Na6m65hIwibGxk5DFbVepiKSYMqK1ROZVVN1/zjSkLY+G4/CwDRdLySkQTr3ibcXYs/ov9yFWxZ5T6IkZU/4GT5IybQ0BTus4/c3kYUgNfRSla6GVRANroYtjeCnzvMDXK/8V1GFe2/ZWfLbjdPad7At1VRCB2BZcwgyrMxrrx5zQO/YHmFw7EpafGvBMG6WhfQluVBhBhhXVdjgF8+nt17QnY1uZeaBlO2U1OgvMD1N+yL77nhz+ze5SktM/6Sbe+6MdiyhtxM9xGHgRpVbIntqsPLKx5Ug4M/YiItbQERD8aXDa6OGVti8IK2HuPABht7vvBkd9fGh3YcTbB1DZlphoJBtCdUFUHQsAPbtLvP3yMVkwi2rsUrqYJo39fOTmHtBlK8YFDltXIY0Na83z7xPdKzZVWixT3xYvO+urcZgzdyCqtq3Y395p3uxqSpDfzsAkx2QVf6d27BxNoYUdD3qtbWWEYXuwB8TY1l7CDKsQHGlhp2N7luSuu2g1c5ZcDLE2sntDC6xLB2kNsGmFASQPXSePnp/+XbvfkjJxNsXDGgeU1eMSY9i4073PU4tmMbtO7Br5xMsHklkZFT1Wd2MI499lgWLeo5juVf//pXjj322CFKUW8mEnV3u9E0bP12ImOOIFa9zH01KmNglWXK2CPdC1d9jELglY7CpGe5N1+BYNNKvLziXm/32sYd8UHvTZ/Bbl+8wvJ4a4Dn3tCuc5VtUL0cv2LSgFtnI+NmuTeDuw0WHRl7pKuobEisZj3TKwb2WCIjCmNLLJ7vuUB2P/2R/BETMMbgF5YnHpWOKhrQpigvgMxU9/UTM8AWbb9qGoQBYfUypo8I+32Dfm2tpSyfAV+UJg53Y4ru3ONaAEcXQ7B1jRuiLLLvFyMSPJ/I2CPchb/bYyCTXYDJzMUbVg5165lcFroXRgIff2Tfw/n0WnVBGZH84sQIDmOKIULHfoeAiow90o1s0dLo3qiunNz/xTTW7vZ53CwG1A0gNYNI1TQiKf6AHhdGPJg6AuyGt4jVVjO9cmAXk/Soe9O/ocUSBCHeuKPiAUgjE/fT2GWtu4BOGdH30FS90ujDxHLDyq1QkMl+nwJ0GlsSD6yLqtxXlfbHeJixR7Fuu8fE4YYU313cPQNTy0MXWHaWo2gapmo6K+PBxJoaS1WRe6t8IKaMMGxvoM9B4QEmloFt3dNr4PyUsbMgCNwTir3F2gm2rGF6xcCe/KSlxD/KUv02Yc16ImNnDSzxaVl4lVNIjbpuUxmp+x6VYW8jh7k6LdzQc5jGYNtaTGo6XlnXC29B9XI3rJ7xCDevYvqIcEAdYVJTYGJpiN3HW/UmZ5h7YWj924Q7t7q6uT/WYjcuY1p5//VbpxQfJpeD1zaw91NMdmF85AYXWJm8Erxhfd+wdPIrJhIjJfFhkzDeWDBxuGFjncUbN4ce9UX1UqYM77uLW029GxlgXKl7ATgvc+A3mmNK3FZK89xHD1bXGvyS+IvTA+CNPoKWtoCxJe6F0rSUwZWltIglrFlHsHWNa0QqqRrQsv6ICe7F9J0DuNkwBm/cHNbVuhb/sSUhVC/F5BbhFVcS7tnlGhz+kfvM7tmzhyVLlrBkyRLADb21ZMkSqqvdBfHqq6/mggsuSMz/uc99jrVr1/K1r32NFStW8LOf/Yzf//73fPWrXx2K5Pdi/Ah+xUSC7dVEj5hHR/Vy/LLRboSD6uVEZ5+637v/yIQ5eIXldCzv/VKbV1RJyrQTCHds7eoL1dFKx7IXSZlxcq9HRh1LnwPfJzJuVq8hbnqtu6CMlJkfc8N+jZ7hxjuMC3duIdiympTZp2LS+3veZIhM+ggmp4iOFV3j7EXGH4VfVEHYuJPo7NOwm5dTnN7K7FH9hycZqXDixBDT1oSXle/eGu9vH8rGEJl4NGFTAya7kMWrDa+stsysMvutIMry4OgxluDtZ4gtX0z0iHn7fVzkV0wiMmYmsc0rCdYtISts4CPj990fsrkNlm60zJ24/1aW8WXuaz6vrLZkxvPBblpBsPIVbEsj0SNPgf5e7PEjpMw8GcKwx/jGJruA6KwFxNa8SWzFy0RGTCTSsoMTJ4a8tt7DG3Mk3n5aS738UvwjTuG1ta77ROUwmFllCFe+0m9f48i4o/BLRxNb5r5uF8Y/txudfWriLea+xFa9jpdXQmTa3P5fzEvLdF80a20iNQLHjTdE+qnhUnw4fpIhtXUH4faNRPKKGJZlmTM67Hcz6VE4YZJhd7P7XPLqWo9Y3gj8SR8lfOdZJpSFjCvp/2attsEFfh+d0H//2RTfDbTf1AartsLray3HjjP7fbRdVeS+HLZqq2V7ayr+rI/336XD8/FnzqM5kkd+tiEjCu9utDS3w0fHh2QGuwnWx4OjaDr+rNPZ1piSGMEgJwOwMHeS2W9AO7XCUJ4Pr6/rO4/GllgmlIWE7zzdY3pkwtF4hcMJ2ttImX4iXlHv9x+CVS9TGG3h6AEcw5Mmg0+IbdhBx3svY3IKiUw+rt8yZtKziMw+HWs8Vm61bKwDrOWoMYbh+3l4UF4As0YbbPNugvV7tTiHAR1LnyNlykcTo8AEm9/DNtUTPfIUgvVvk+c3ccyY/gPKtBQ4cUKIt3Njn8PZmZxhRGefSmzd29jmRmLvvohfXElk3Ox+0x7Wricr3fDRCf0/eUjxYe6EkGjzdrzsQvzRM/tdr8kuJDrrFGKr33CfWM0rJnrkfDfWbGvfL+V5w8fijz+Gl1Z7Pdptl2+2+D6kpXq0Z5bgT+2qL4LqZaS11jF3Qtjn+w0vr7ZMGuGuE6+ttRwzzuz3pnHkMJhWaVi80hIL4SPj3UuT71RbIrNOw+T0f9HxRs3AjJjES6s82jrcufPWBsvs0QMsS6MswTtPu0aioMOVn6lz+zwvemy3dDSRiccQ7q4lOmt+/40JxsOf/jFaUwtZW2vc9bhmLba9heiR8wk2riBl8nGD7yt8CAzpF8CeffZZTjrppF7TL7zwQn7zm99w0UUXsX79ep599tkey3z1q19l2bJljBgxgm9961tcdNFFA97mof6cLcQ/advWjEnNINy5BS+7ENvWhG1rxisYTrB1tfv+defnQv0IftkY/KppmGgaHStfJdy0ks5HLN6wcvyKSXidfYGCmPtW9vp3XAttGOAPH+e+fFS3iWDDu4nPEpqcQqKzT3PDazXUud9qN3T7TGSZW3dRJbZtDybVjX0Ybt9IsHF51xiExiMy82OuxXPzKoLqZV2PsPwU/OFj4y3Alo7Xn3Rv+paOdh9uSE3HtrvvToftbXhZuW4oj5wS2kw6721z35CPxbuFZae5C9qoYtfJvD3wWLHNY3oFhDs2Y6uXdgW2xuANq8Cvmupaa4IYeBH+vtZj624XaE0ud58prGuElVstW3d3HauSXBhf6voixt55lrBmvfsS0oRj8HKLCGs3ENvwbtfjMuPhlYwkUjUNk1VAYF1AHjbswG5ejhkxmSCjgJU1hvW1JIazyYjCmGLLmBL3xSjj+2ze5T5f2DkQuWdcJTW21JCV6j6uUJILI4sMducWYkviHzTwfFKOmI+XU0iwcQWxTSu6Kv5oGv6ICUQqJhE2N7ivCcXaMTnD8CsnuWByzRKCdW+5gbYnHkMkp5CgtQWbksaW3VCeB2HjDqh+p0dZMfmlmMqpRIoqeGO927dxpe6LRsZaDJbY1rWE1Uu7yrbnu7I9cor7hGKAe9u4uqvsRiYf5z6xuXkVwcblXUOPRaLuiUblNAI/lWiEeLl/1z2SjI/JaTJy3b6NmEC4YzMdyxcTmXYC5JYSC2B1jWVdbdeng9NSXIvK2BKDadqBadiOP3wMYWsTXloWAT5tMcvKbabHGKJZaa61c1Sxoa3Dkh41bl+iGexoDMlKg0isGVO7HjNiIvWthpU1Ppu6fdq4MMt1xygv8Ag2vIMpHUuQksHKrZZ127uG60qPukB5VIn7aMHLqy1h6IYOmlZhyUzz2LbbjXW7vSFxKjA8331utyDLsGWXZfEqV66OGRNSmhNiNy0ntnFF11OfaBp++XhMxVTaScGPuBbtVdvcJ6THlYT4e3YQLHkSk5KKVzEJb8RENu82vLrWozTPPWYvzAJrLbuaIC/TUL0D1myz7I73ifXjH2CYMNx9+GF7fcCyzV6i7BvjunuML4Xc1IDYG3/B1m/vqhsrJ7uWJOMTsx6RiMEzxt1or1/a7ZG9wRs+Bm/CR2i3EVZutazv6xgWga3biGnbgz98HMGWVQS160mZ+BEwbtzTYPPqxLidJjMXr2Iy/ojxgMHiPvm7psY9zSkv8DDG3aSs2mZ7fKK7NM+dJ8U5Lo/slpUEG97to/6cBH4KJppGuGubq6t3bnWBe14JwdY12IIRdKRksarWY11t135lprr9Gl1iMB1tBKtecV92ij+2N7lF7mtfJaPcC4jGEmxemfgQTsqRCyDWRlC9PHFeggs2/crJrrvDhnexeaUEmcNYVWP6KK8wpjjE7NpK8O5z+CMnE6ma6oLm9e+44DqRnmFEKibhlY4mtvoNwt018X+PwgJ2R/y47uxWzxdVJur5ddsN72zsGg4xIxVGFxtXvxroiIGxAZGgFVu91NUXNsSfMY8wt5Q1tYY1NT3rhCkjXF27uwl27nHXn2273VOH2s5zDCjLd40NhVkGay0NzZbVtYbKQkN2unsCZ7BMGm6IbVuH3fiuK8vx+tArGYWpnEaYnsO6HR7l+YaID1HfXfG3N1iKctyXItfU7LssGRsQq15OuHEZtsWdSN7wcaRM/gjhzm0EG/Y6L4q6XSetJayvddOzC1xZ2Liia5zxlFRX91ZMpTlMZUeTC/Rt3Sa8oB2vdJR7tyYz75AGsvqcbT8ORzDbycZi3V53Nl0jAwTxN1Vt/BXISMRNMwZrPIwN468Rx+fvPETxEQKsMfE3PeO/x2LxV489evQxCgI3aHYYYOPbM+DmC2LxdRMfwNQSGs9V09bGhzOw3dIRcQPlGy8+SoL7f2zoxgKMB1m99imxv/ECb3G/eyaR3iA0+L77LKAx8beYLXihWy4ISfzuGYuH7RrZoFu6THw/Q+s680d894aoMZ2jM1gs7tFuLOxqYTA2xHimWz665Q2hyxxj4unuys/OkSrwfMJ4Nrnj5kEYEJgIvue2Y4i/aRu6lqDQeLhdcAta3G8RP/5GbDyb4gMO4Jt4nvZxrG3oAuNES70fcf/dmZHd9gkbunTvtZ8x6xExriUrsAbfM4ShxSPsKiueDwYshljoWjxDXBDrYQniD3l8E8+zvctBfGdCE8F4uGHW9t6fzvLcrVzZIAZ+JJ4P8bLdeRyCDrec57m3eW28gPkRN3qD72NDl5e9j4XFj+c/YZAoJKHtfFxlCXCBXfdy2Xl8jLGYzuUAa/zE6UIYc592DAMCfHcYgr3Km40fz8CdC535vnd56WwkDELXJcKlL4xvs+sisvfvxhhC3OgZsfhvFncBNF7P8mIDN2JEEN92iJs/CCy+b+L5bOKjUIRY4/fcnnFfLPKwbpueSZzinad757noRkToenN/77LvGevqqF71iPv/0PgYQncBDWJddd5e9WWIwRiPwLp07n0MO/PIFZDOE9jrNoSidWnsLGPGc4Go8RKze4QE1kscK8+4yrSzSu2e71iL5xk3Ogc2Xn90qz/DGNh4R+XOfbJ77VcYJuqfwHo96kxXHbttdK2397luiO8DxpWFzn3uXo/vdV5a25lXNnFMgpA+y6tP6M6nSLdrQuc521nuEvVR57XAS1yDXM53G/Wlj3reWrOPc7or+zo/SOV7YIP4+ditvuhMfxCvHyKdx5AQG79ZSZzv+zgHrfHc9mxIgJcY1cB0S5tHvCW9W94RhIQmXi/ERzCwNsTzPNcQ5vmJy6+1JK5XEa8zi9xxDi2YMHDX4s5RI/yIqzM9P34dZ6/zwnP1h+e5awe2Z93bYz3d0hKErnx3jwuMO8cOJQWz/TicwayIiIiIDN5g4rWh7+ggIiIiInKAFMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkrSEPZu+8806qqqpIS0vj6KOP5pVXXul3/jvuuIMJEyaQnp5ORUUFX/3qV2ltbT1MqRURERGRD5IhDWYffPBBrrjiCq6//nreeOMNZsyYwYIFC6itre1z/vvuu49vfOMbXH/99Sxfvpz//u//5sEHH+Sb3/zmYU65iIiIiHwQDGkwe/vtt3PppZdy8cUXM3nyZO666y4yMjL41a9+1ef8L730Escddxznn38+VVVVnHLKKZx33nn7bc0VERERkQ+nIQtm29vbef3115k3b15XYjyPefPmsXjx4j6X+chHPsLrr7+eCF7Xrl3LY489xsc//vF9bqetrY2GhoYefyIiIiLy4RAZqg3X1dURBAElJSU9ppeUlLBixYo+lzn//POpq6vjox/9KNZaYrEYn/vc5/rtZnDrrbdy4403HtS0i4iIiMgHw5C/ADYYzz77LLfccgs/+9nPeOONN3jkkUf4v//7P2666aZ9LnP11VdTX1+f+Nu4ceNhTLGIiIiIHEpD1jI7bNgwfN+npqamx/SamhpKS0v7XOZb3/oW//qv/8pnP/tZAKZNm0ZTUxP/9m//xjXXXIPn9Y7NU1NTSU1NPfg7ICIiIiJDbshaZqPRKLNmzWLRokWJaWEYsmjRIo499tg+l2lubu4VsPq+D4C19tAlVkREREQ+kIasZRbgiiuu4MILL2T27NnMmTOHO+64g6amJi6++GIALrjgAsrLy7n11lsBWLhwIbfffjtHHHEERx99NKtXr+Zb3/oWCxcuTAS1IiIiIvKPY0iD2XPPPZft27dz3XXXsW3bNmbOnMnjjz+eeCmsurq6R0vstddeizGGa6+9ls2bN1NUVMTChQu5+eabh2oXRERERGQIGfsP9ny+oaGB3Nxc6uvrycnJGerkiIiIiMheBhOvJdVoBiIiIiIi3SmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaQ15MHvnnXdSVVVFWloaRx99NK+88kq/8+/evZsvfvGLlJWVkZqayvjx43nssccOU2pFRERE5IMkMpQbf/DBB7niiiu46667OProo7njjjtYsGAB7733HsXFxb3mb29vZ/78+RQXF/PQQw9RXl7Ohg0byMvLO/yJFxEREZEhZ6y1dqg2fvTRR3PUUUfx05/+FIAwDKmoqOBLX/oS3/jGN3rNf9ddd/GDH/yAFStWkJKSckDbbGhoIDc3l/r6enJyct5X+kVERETk4BtMvDZk3Qza29t5/fXXmTdvXldiPI958+axePHiPpf505/+xLHHHssXv/hFSkpKmDp1KrfccgtBEOxzO21tbTQ0NPT4ExEREZEPhyELZuvq6giCgJKSkh7TS0pK2LZtW5/LrF27loceeoggCHjsscf41re+xW233cZ3vvOdfW7n1ltvJTc3N/FXUVFxUPdDRERERIbOkL8ANhhhGFJcXMwvfvELZs2axbnnnss111zDXXfdtc9lrr76aurr6xN/GzduPIwpFhEREZFDacheABs2bBi+71NTU9Njek1NDaWlpX0uU1ZWRkpKCr7vJ6ZNmjSJbdu20d7eTjQa7bVMamoqqampBzfxIiIiIvKBMGQts9FolFmzZrFo0aLEtDAMWbRoEccee2yfyxx33HGsXr2aMAwT01auXElZWVmfgayIiIiIfLgNaTeDK664grvvvpt77rmH5cuX8/nPf56mpiYuvvhiAC644AKuvvrqxPyf//zn2blzJ5dffjkrV67k//7v/7jlllv44he/OFS7ICIiIiJDaEjHmT333HPZvn071113Hdu2bWPmzJk8/vjjiZfCqqur8byueLuiooInnniCr371q0yfPp3y8nIuv/xyvv71rw/VLoiIiIjIEBrScWaHgsaZFREREflgG0y8NqQtsyIiIiLJIAgCOjo6hjoZHyrRaLTHE/gDpWBWREREZB+stWzbto3du3cPdVI+dDzPY9SoUe/7JX4FsyIiIiL70BnIFhcXk5GRgTFmqJP0oRCGIVu2bGHr1q1UVla+r3xVMCsiIiLShyAIEoFsYWHhUCfnQ6eoqIgtW7YQi8VISUk54PUk1RfARERERA6Xzj6yGRkZQ5ySD6fO7gVBELyv9SiYFREREemHuhYcGgcrXxXMioiIiEjSUjArIiIi8gFy4okn8pWvfGVA8z777LMYY973aAtVVVXccccd72sdQ0XBrIiIiIgkLQWzIiIiIpK0FMyKiIiIfED97ne/Y/bs2WRnZ1NaWsr5559PbW1tr/lefPFFpk+fTlpaGscccwxLly7t8fsLL7zA8ccfT3p6OhUVFXz5y1+mqanpcO3GIaVgVkREROQDqqOjg5tuuom33nqLRx99lPXr13PRRRf1mu+qq67itttu49VXX6WoqIiFCxcmhhZbs2YNp556Kp/85Cd5++23efDBB3nhhRe47LLLDvPeHBqD/mhCEASJ6D8vL+8QJElEREREAC655JLEf48ePZof//jHHHXUUezZs4esrKzEb9dffz3z588H4J577mHEiBH88Y9/5FOf+hS33nor//Iv/5J4qWzcuHH8+Mc/5oQTTuDnP/85aWlph3WfDrZBt8z6vs8pp5zCrl27DkV6RERERCTu9ddfZ+HChVRWVpKdnc0JJ5wAQHV1dY/5jj322MR/FxQUMGHCBJYvXw7AW2+9xW9+8xuysrISfwsWLCAMQ9atW3f4duYQOaDP2U6dOpW1a9cyatSog50eEREREQGamppYsGABCxYs4N5776WoqIjq6moWLFhAe3v7gNezZ88e/v3f/50vf/nLvX6rrKw8mEkeEgcUzH7nO9/hyiuv5KabbmLWrFlkZmb2+D0nJ+egJE5ERETkH9WKFSvYsWMH3/3ud6moqADgtdde63Pev//974nAdNeuXaxcuZJJkyYBcOSRR7Js2TLGjh17eBJ+mB1QMPvxj38cgDPPPLPHp8istRhj3vc3dkVERET+0VVWVhKNRvnJT37C5z73OZYuXcpNN93U57zf/va3KSwspKSkhGuuuYZhw4bxiU98AoCvf/3rHHPMMVx22WV89rOfJTMzk2XLlvHXv/6Vn/70p4dxjw6NAwpmn3nmmYOdDhERERHppqioiN/85jd885vf5Mc//jFHHnkkP/zhDznzzDN7zfvd736Xyy+/nFWrVjFz5kz+/Oc/E41GAZg+fTp/+9vfuOaaazj++OOx1jJmzBjOPffcw71Lh4Sx1tqhTsTh1NDQQG5uLvX19eoOISIiIvvU2trKunXrGDVqVNK/8f9B1F/+DiZeO+BxZp9//nk+/elP85GPfITNmzcDbmDfF1544UBXKSIiIiIyKAcUzD788MMsWLCA9PR03njjDdra2gCor6/nlltuOagJFBERERHZlwMKZr/zne9w1113cffdd5OSkpKYftxxx/HGG28ctMSJiIiIiPTngILZ9957j7lz5/aanpuby+7du99vmkREREREBuSAgtnS0lJWr17da/oLL7zA6NGj33eiREREREQG4oCC2UsvvZTLL7+cl19+GWMMW7Zs4d577+XKK6/k85///MFOo4iIiIhInw5onNlvfOMbhGHIySefTHNzM3PnziU1NZUrr7ySL33pSwc7jSIiIiIifTqgYNYYwzXXXMNVV13F6tWr2bNnD5MnTyYrK+tgp09EREREZJ8OqJvBJZdcQmNjI9FolMmTJzNnzhyysrJoamrikksuOdhpFBEREUlqQWgJQ4u17v+D8B/qm1WH1AEFs/fccw8tLS29pre0tPDb3/72fSdKRERE5MMgCC3tMct7W2DRUstjSyyLlrp/t8cOXVB74okn8pWvfOWQrPuDZlDdDBoaGrDW3VU0Njb2+PRYEAQ89thjFBcXH/REioiIiCSbILSs3gbvbLTYbjFrM7C72bJsM0yrMIwttfieGbJ0JrtBBbN5eXkYYzDGMH78+F6/G2O48cYbD1riRERERJJRZyD7dvW+W16t7fxdAe37MahuBs888wyLFi3CWstDDz3E008/nfh74YUXqK6u5pprrjlUaRURERFJCkHoWmQH4p2NliA8+GkIw5Cvfe1rFBQUUFpayg033JD47fbbb2fatGlkZmZSUVHBF77wBfbs2ZP4/Te/+Q15eXn87//+LxMmTCAjI4NzzjmH5uZm7rnnHqqqqsjPz+fLX/4yQRAc/MQPwqBaZk844QQA1q1bR2VlJcboDkJERESku85WWTvA7rDWwpoaGF92cFtn77nnHq644gpefvllFi9ezEUXXcRxxx3H/Pnz8TyPH//4x4waNYq1a9fyhS98ga997Wv87Gc/Syzf3NzMj3/8Yx544AEaGxs5++yzOeuss8jLy+Oxxx5j7dq1fPKTn+S4447j3HPPPWjpHqwDegFs+fLlvPjii4l/33nnncycOZPzzz+fXbt2HbTEiYiIiCQbA2zeObgXuzbtOPgvgk2fPp3rr7+ecePGccEFFzB79mwWLVoEwFe+8hVOOukkqqqq+NjHPsZ3vvMdfv/73/dYvqOjg5///OccccQRzJ07l3POOYcXXniB//7v/2by5MmcccYZnHTSSTzzzDMHPe2DcUDB7FVXXUVDQwMA77zzDldccQUf//jHWbduHVdcccVBTaCIiIhIMjEG2gf55L0jgIPdZXb69Ok9/l1WVkZtbS0ATz31FCeffDLl5eVkZ2fzr//6r+zYsYPm5ubE/BkZGYwZMybx75KSEqqqqnp8V6CkpCSxzqFyQMHsunXrmDx5MgAPP/wwCxcu5JZbbuHOO+/kL3/5y0FNoIiIiEgysRai/uCWSfHhYI/SlZKS0uPfxhjCMGT9+vWcccYZTJ8+nYcffpjXX3+dO++8E4D29vZ+l9/XOofSAQWz0Wg0Ebk/9dRTnHLKKQAUFBQkWmxFRERE/hFZoLxgcM2sIwoP33tIr7/+OmEYctttt3HMMccwfvx4tmzZcti2f7Ad0OdsP/rRj3LFFVdw3HHH8corr/Dggw8CsHLlSkaMGHFQEygiIiKSTHzPDbW1bPPAXgIzBsaUcNiG5ho7diwdHR385Cc/YeHChbz44ovcddddh2Xbh8IBtcz+9Kc/JRKJ8NBDD/Hzn/+c8vJyAP7yl79w6qmnHtQEioiIiCQb33MfRBiIaRUG/4AisgMzY8YMbr/9dr73ve8xdepU7r33Xm699dbDl4CDzFg70IEjPhwaGhrIzc2lvr6enJycoU6OiIiIfEC1traybt06Ro0a1eOrpwO1ry+AdTKm8wtgh69V9oOkv/wdTLx2QN0Mqqur+/29srLyQFYrIiIi8qHR2d1gVLFhTY0bfqsjcC97jSg08a4F/5iB7MF0QMFsVVVVvx9MGOovQYiIiIh8EPie60Iwvswyvszgma5RCxTEHhwHFMy++eabPf7d0dHBm2++ye23387NN998UBImIiIi8mHRPXD1FcMeVAcUzM6YMaPXtNmzZzN8+HB+8IMfcPbZZ7/vhImIiIiI7M9BfXduwoQJvPrqqwdzlSIiIiIi+3RALbN7fxjBWsvWrVu54YYbGDdu3EFJmIiIiIjI/hxQMJuXl9frBTBrLRUVFTzwwAMHJWEiIiIiIvtzQMHsM8880+PfnudRVFTE2LFjiUQOaJUiIiIiIoN2QJHnCSeccLDTISIiIvKhZYOY+0qC8cCGYC3GVwPgwTDgXPzTn/404JWeeeaZB5QYERERkQ8TG8QgDAiqlxHUbIBYG0RS8UtG4ldOBs9XUPs+DTj3PvGJTwxoPmOMPpogIiIi//BsGBBULye26jXXGpuwh1jjDmJrlhAZNxt/5GSM5w9ZOpPdgIPZMAz3P5OIiIiIYIOYC2RXvtLPTKH73YBfMUkttAdoUOPMPv3000yePLnX0FwA9fX1TJkyheeff/6gJU5EREQkKYWBa5EdgNjK1yA8uE+1H3roIaZNm0Z6ejqFhYXMmzePpqYmLrroIj7xiU9w4403UlRURE5ODp/73Odob29PLPv444/z0Y9+lLy8PAoLCznjjDNYs2ZN4vf169djjOH3v/89xx9/POnp6Rx11FGsXLmSV199ldmzZ5OVlcVpp53G9u3bD+p+9WVQwewdd9zBpZdeSk5OTq/fcnNz+fd//3duv/32g5Y4ERERkWTjWmWX7dW1oL8FQoLq5a5/7UGwdetWzjvvPC655BKWL1/Os88+y9lnn421FoBFixYlpt9///088sgj3HjjjYnlm5qauOKKK3jttddYtGgRnudx1lln9XpKf/3113PttdfyxhtvEIlEOP/88/na177Gf/7nf/L888+zevVqrrvuuoOyT/0ZVHv2W2+9xfe+9719/n7KKafwwx/+8H0nSkRERCRpGeNe9hqEoGY9/qhpB2XzW7duJRaLcfbZZzNy5EgApk3rWnc0GuVXv/oVGRkZTJkyhW9/+9tcddVV3HTTTXiexyc/+cke6/vVr35FUVERy5YtY+rUqYnpV155JQsWLADg8ssv57zzzmPRokUcd9xxAHzmM5/hN7/5zUHZp/4MqmW2pqaGlJSUff4eiUQOS3OyiIiIyAeW8dyoBYMRa3fLHQQzZszg5JNPZtq0afzTP/0Td999N7t27erxe0ZGRuLfxx57LHv27GHjxo0ArFq1ivPOO4/Ro0eTk5NDVVUVANXV1T22M3369MR/l5SUAD2D5pKSEmpraw/KPvVnULlWXl7O0qVL9/n722+/TVlZ2ftOlIiIiEjSsiFEUge3TCQ68G4J++H7Pn/961/5y1/+wuTJk/nJT37ChAkTWLdu3YCWX7hwITt37uTuu+/m5Zdf5uWXXwbo0a8W6NHA2fll2L2nHY4BBAYVzH784x/nW9/6Fq2trb1+a2lp4frrr+eMM844aIkTERERSTrW4peMHNQifkkVxPu0HgzGGI477jhuvPFG3nzzTaLRKH/84x8B1220paUlMe/f//53srKyqKioYMeOHbz33ntce+21nHzyyUyaNKlHq+4H0aD6zF577bU88sgjjB8/nssuu4wJEyYAsGLFCu68806CIOCaa645JAkVERERSQbGj+BXTia2ZsnAWluNh1958Ibmevnll1m0aBGnnHIKxcXFvPzyy2zfvp1Jkybx9ttv097ezmc+8xmuvfZa1q9fz/XXX89ll12G53nk5+dTWFjIL37xC8rKyqiuruYb3/jGQUnXoTKoXCspKeGll17i85//PFdffXXirThjDAsWLODOO+9M9JkQERER+Yfl+UTGze5/nNm4yPjZcBA/mpCTk8Nzzz3HHXfcQUNDAyNHjuS2227jtNNO48EHH+Tkk09m3LhxzJ07l7a2Ns477zxuuOEGl2zP44EHHuDLX/4yU6dOZcKECfz4xz/mxBNPPGjpO9iMtQfWpr1r1y5Wr16NtZZx48aRn59/sNN2SDQ0NJCbm0t9fX2fQ4yJiIiIALS2trJu3TpGjRpFWlraoJe38c/Yxlbu/QWwOOMRGT8bv/LwfQHsoosuYvfu3Tz66KOHZXv96S9/BxOvHXB7dn5+PkcdddSBLi4iIiLyoWY8H79iEn75eILq5QQ1692oBZEofkkVfuUk8Hx9yvZ90nfTRERERA4R40fAj+BXTXXjyBrPtdJaq8/XHiTKRREREZFDrEfgaoauJfZwfMTgcDs4o/OKiIiIiAwBBbMiIiIi/TjAd+VlPw5WviqYFREREelD59esmpubhzglH06dXxTz/ffX7UJ9ZkVERET64Ps+eXl51NbWApCRkZH4bKu8P2EYsn37djIyMohE3l84qmBWREREZB9KS0sBEgGtHDye51FZWfm+bxAUzIqIiIjsgzGGsrIyiouL6ejoGOrkfKhEo1E87/33eFUwKyIiIrIfvu+/776dcmjoBTARERERSVoKZkVEREQkaX0ggtk777yTqqoq0tLSOProo3nllVcGtNwDDzyAMYZPfOIThzaBIiIiIvKBNOTB7IMPPsgVV1zB9ddfzxtvvMGMGTNYsGDBft8aXL9+PVdeeSXHH3/8YUqpiIiIiHzQDHkwe/vtt3PppZdy8cUXM3nyZO666y4yMjL41a9+tc9lgiDgX/7lX7jxxhsZPXr0YUytiIiIiHyQDGkw297ezuuvv868efMS0zzPY968eSxevHify33729+muLiYz3zmM/vdRltbGw0NDT3+REREROTDYUiD2bq6OoIgoKSkpMf0kpIStm3b1ucyL7zwAv/93//N3XffPaBt3HrrreTm5ib+Kioq3ne6RUREROSDYci7GQxGY2Mj//qv/8rdd9/NsGHDBrTM1VdfTX19feJv48aNhziVIiIiInK4DOlHE4YNG4bv+9TU1PSYXlNTk/h8XHdr1qxh/fr1LFy4MDEtDEMAIpEI7733HmPGjOmxTGpqKqmpqYcg9SIiIiIy1Ia0ZTYajTJr1iwWLVqUmBaGIYsWLeLYY4/tNf/EiRN55513WLJkSeLvzDPP5KSTTmLJkiXqQiAiIiLyD2bIP2d7xRVXcOGFFzJ79mzmzJnDHXfcQVNTExdffDEAF1xwAeXl5dx6662kpaUxderUHsvn5eUB9JouIiIiIh9+Qx7MnnvuuWzfvp3rrruObdu2MXPmTB5//PHES2HV1dV4XlJ17RURERGRw8RYa+1QJ+JwamhoIDc3l/r6enJycoY6OSIiIiKyl8HEa2ryFBEREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGkpWBWRERERJKWglkRERERSVoKZkVEREQkaSmYFREREZGk9YEIZu+8806qqqpIS0vj6KOP5pVXXtnnvHfffTfHH388+fn55OfnM2/evH7nFxEREZEPryEPZh988EGuuOIKrr/+et544w1mzJjBggULqK2t7XP+Z599lvPOO49nnnmGxYsXU1FRwSmnnMLmzZsPc8pFREREZKgZa60dygQcffTRHHXUUfz0pz8FIAxDKioq+NKXvsQ3vvGN/S4fBAH5+fn89Kc/5YILLtjv/A0NDeTm5lJfX09OTs77Tr+IiIiIHFyDideGtGW2vb2d119/nXnz5iWmeZ7HvHnzWLx48YDW0dzcTEdHBwUFBX3+3tbWRkNDQ48/EREREflwGNJgtq6ujiAIKCkp6TG9pKSEbdu2DWgdX//61xk+fHiPgLi7W2+9ldzc3MRfRUXF+063iIiIiHwwDHmf2ffju9/9Lg888AB//OMfSUtL63Oeq6++mvr6+sTfxo0bD3MqRURERORQiQzlxocNG4bv+9TU1PSYXlNTQ2lpab/L/vCHP+S73/0uTz31FNOnT9/nfKmpqaSmph6U9IqIiIjIB8uQtsxGo1FmzZrFokWLEtPCMGTRokUce+yx+1zu+9//PjfddBOPP/44s2fPPhxJFREREZEPoCFtmQW44ooruPDCC5k9ezZz5szhjjvuoKmpiYsvvhiACy64gPLycm699VYAvve973Hddddx3333UVVVlehbm5WVRVZW1pDth4iIiIgcfkMezJ577rls376d6667jm3btjFz5kwef/zxxEth1dXVeF5XA/LPf/5z2tvbOeecc3qs5/rrr+eGG244nEkXERERkSE25OPMHm4aZ1ZERETkgy1pxpkVEREREXk/FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0FMyKiIiISNJSMCsiIiIiSUvBrIiIiIgkLQWzIiIiIpK0IkOdgA8zay1BaDEYLGAtWMAAnnH/HVo3r2fAw4K1hMZgrUmsx5iuZT3TuW63ImPAhj1/61ynMeAb9+/Quu0a4/4/tG7+znmJT7fdlqXbvy1uXcYGboMYrPGweFjj7oosFs+GGBtivQix+D54xmKtywMA31jCxG9hfJ249Rkfz0DQbZ+655tLl42nza3T7ZPbRmde9dg3Ov9tMZ7plV/d97kzn7rnQecWu+dP97R1zyvPc2mPZyl+/N+d6cJ0raNz+wYwNubyFI8wXl5Mt3k6j6uHyy+DITQGPL/H9rrvt4mXMR8LYeBSbTwC47t0A77n8s0tYxPlsjNvO//tAUG3MmTj85v4McT42DDAWJvYTuccoVuqRx77xi0bYhLp9T0IQxLlJOJ1lYPO37E9j6vplr7QdpVTcGWs+3Gi23o6y1T38w/btS0vnhaz1zFO5G0ibzoPateyXYmLZ0X3MmxIlO9EXtJVZjvTvfdv3fPdxtPXmdWd68V2Te9epm23tHXWB92PhYmn1TM9898z4NkY8QNJ6PlA1znWWYd0ZsHe68Jad/xtz2PQPS/3rrO6n5PGWIxxy+99znTO032/XDJdee4s10G35RJlIF5fde5/r/rFQkhXPdW93uqszYNu9XPndGtt/Pzr+q2zPkicm3Qds73P7UT9HD8OfV0jOutut7w7hwJreuzf3uvuzKtOe9ftndP2rst61JHd5vf7unZ15lWvurpnPnvd9q97HRd2O0+674PtNt147tLjmRATBhjPEFg/XgvFa09D/Jj3rm+6H0svXrY6z5W909L9+Ll6wCauyZ15bzF4xi3cWR58YzFhAKarLo8nrs/ra/e8Np3b65bZnWULepblxPEzXXVf9/zrfky9btfb7vP0Ov8hsQ0XO1iC0OB5ljA0Pc41Yyye98FqC1UwewgEQegKoAETL7VNrbB+u6W13V1MS/MMw/OhsRWq6yxZaYaqYS6ga4/B2lpLU5sruMOyDZXDoLnN/RXldgVMWHey+b6bd9NOqK23BCGkRWF0sSEjFRqaLetqoTDLMLLIFeDaBti00xJayIjCqGJDNAJNrZbsdENLu0tHdipUFoZ4QQexjcuxzY1uv3KL8cvHgrUERPA9Q2A9/IjPjkaXnvws2LnHUF1naY9BSgRGDjMUpgfgGYKtawl3bcWGIV75BLz8UppaIWYhNwNq610agwCiKW7Z3AyXp7uaYF2tJTUFxpUa0qIuf9KjsGsPbNzhthnxobzAUJxj2NMKGalu/9tjsKHOUppnyE2HzbugZndX3o0qNmSmduVzW4fLj+b2nselszLyfajZDVt2WToCSI2nNy8jfnHyoLoO6hpdno8eZhmWA7a1mdBPhUiE9dthZ5PFWhieZyjLj1d8QQzfQLB5FTTUuQtnZg5exSQMETbs8GhshYphhvxM2Nno0pObAa0dkBbxCXZugfpavBGTCL0UtjV45GcZ0lKgvtmSmeYuiutqLQ0trurKyzSMKoZYCB2By9tNO6C2wRKG7t+jiw3pqbgAe0c1dvd2qJyKn5bBll2Wmt0QhJa0KFQVGbLSXLCMgY11Lp+Kc6C+2R2zklxDUY47vp3lJuLDiEJDUTY0NLs0Rvyu9cVCN0/nRW/nHkMQwrBst56N8fVUFEJxrvttTQ3sae3az6oi6IjBtnpLcY47b4LQ4sXP4XW1sKvZHZvsNMPoYoj4JnH3s77b7/kZhqpil6Zt8TIRxMtEZ5pr6mFPK1QVdV3I6hoNLR2W0lxDLNZ3eQsttLS53zrrk5I8Q3kBxGKwptbS0OzWV5xjGFHottNZz3SuY8sut6+luTA8P36+11ha2t2yJbkwoiBC0NQANWswBeX4eUWEYUiI78pj/CK6oVu5zUozjCmBiGdo67BEUwxNba4OKs41BAFsb7AU5Rh8z+VrZ3nLzXD5agHfGHY3w4bte53Hue48X7XN0t7RlafZ6UA8sMMYdu5xeZOXAVt3w9bdFt/ApHLwIi44CEK3/cb49vOzXDmIeL3rrYoCw7AcaG03rNxqae2AaAQqCw0F2RCGLr3dy2x5gSvLndeAtbWWtg5XL44c5tK6ttadfwA5GS7vTDxv19a6fAPISe/6rbUNWjoMhdlun5rb3DnR0g7DcqCisOsuoz3mfussR0XZhophrl5YW2Npi8GoIrfv7TFYU9N17SnMNowcBq3tsC5+/epcvqUNdjRYygoMKb7pUXdlJc6P+I0DLqjCmEQ92rmNzm13pmfvdAbxczvWHhCJGMLdtdisAgLrs7YWWjosI4cZ8rMMNbth8y5LEFiiKVA1zJCbAc3xY9YRg9xMGFVkiPiwoQ527nH1cVYqjC5xx2TTDsuuJijNd9fp9g7Dqm2W5jaXllHFhpx0d8w31MGwzBi5mT5B/XbCtGxMSprLj271xahilw91jZbCbFf2PWNp7TA0t7u6ak+rO1ZtHa7+Hp7r0hBaaG2LsabWJz3q1hWEsKPRnVMpPmzsrJf3up43t0NmGuzc4+q3opyuc3ZHfN8zU1097nuweaelvgXGlbr6vbXd9KiHinMMFYWGjsDiAX7nneQQM9Z2j+U//BoaGsjNzaW+vp6cnJyDvv7OQDYI3YW1I4RXV1t27Ok9b2oKTBnhTpYtu6A8H15da9m2u/e8ER8mlBnGlcIrqy3lhYaKQvdbGEL1Dnh3o6uY9laYDceMdZXFoqUuCBhXChOGG158z7K9oWve4lw4eqxhewP8fZVl8nDLpLKQ2NK/EdZW06v9yU/BHzkFf/RMQjx2NFoKstyFsSOAV9dYGlu7Zi/IghMmWmz1uwTr3oJYOxiDP2MebdnDebPa44gqQ30zvLneVc57y82Ao8a4IKytw114m1rdhcUCr6+1NLT0Xi4jFY4YachKd0HThDJ3nDbvhKWbXAXSK++y4OhxhqZW+Nvy3qdKTjp8bKqhtr7/9M4Z44Kjv77t5vnIuJCi1GbYtAx/3Bze2eSCq86blNHFMGOku7ikRUKCVa8RbFweb2Htxhi8klH4U47nnU2GVdtcJTt7tKsA36m2HDnK0B5AqheQ0bqd4I0n8IpG4E89gRVbPTzfML7M8Po6S3Vdz7t7cMHACZMN1XXw7iZ3od7bsGw4ZowlxQ8xxmNDHSzdZHqVx8IsOH6SYfVWeG+b5egxhvSoK/cNze4338Br/RzDmSNd4PLsMnfMCrJceUiNQFObO/4zRhp83/13fbNbdtYoGFlkeG2tZeOO3vvpGZfv0yoNr6y2ZKXB1ArD29WWtbXdbiA7sx4YUejyGizPLnOBc0YqnDTZUNvg8r+1j3KVn+nS3Hnz1RZzaR1d4m5qB1IPPL+iZ73SvT55dpllT/y8S/FhUrm7AP5tmWVPG0wcbhhbCtsbXFpeXt2zHugUjcCUcsuowoDYq/8LNsSbfDwd6YWkpvps2Wl5dW3feTN3kgva/77aBedjStx+pUbgiCrDm+stG/oob55xAf6MkV3Hap9l4N2uOq8gy51n6VEX6FYWGnbsgber3TmXmQrzp7kWVOMZ3ljXsxxEPJfm0Lpj0b3e6pSZCkeOcnXPs8vcTStAVhocNdqQEoGn37XEApcHx4x3N8ovr3bBEbgbqtmjDW9tsKzf3rMlcOQwt/4lGywb9vqtM29GDoMjRhligbuJe2W1pa7R/T5huDu22xtcfry2j3KU4sP4eDnatBPK8uG1NZatfcwb8WF8qZv/hffctlJ8d/0YX+YC0Hc29l0GygvcvnoexAJ4ZU3P9MwY6a5jr66x1NT3nc6Jww3jysBuXU24Zxf+mFm8ts6wcSekRuCkKYZdTfDWhr7r37wMmD3GBdErt1k+Ms6wfLNl1bbeaQZ3HZ49xvDeFsuKLe68mlZhKM2DZ961FGR1Hb/aejhxUkhkZzW2biORKR/lnY2GNfuoL8oLYdYot/2mVredWODm7V5GuktLgRmVluF5rqFl0TKP5nZ3UzZxuGHVNlixuassdleS69JaW+/qmcJsd26s2OKOx97K8l05bmx1AfGra90+9nVcJpW7OgQ6nzgd/KB2MPGagtmDKAjdXVjnxT4IXcXW18W/u2mVhrElLtDs6wLe3egSmDrC8PRSy8nT3GOStbWwdGP/hzE1AvOmuUrulTVu3lFFMH2k4cm3e1YCGVEXoG3bbanMD4i9/Cds0+5+1+8NH4s/6aOExqO13d31P7fc9qiMU1PgtOkWu+ZVwg3vdi07fg7txZN4apnHCZMMDa2ugu6P78GJk93FsrbB5XVGtPc2+3LMOHfBy0x1LYNvVfe/QDQCH5ti2LjDBXPdnX6Eoa7RVUT7S+9Jk13r8ca6kFE5TYTvPENkzhm8ssawaWfXvMU5cNwEQ2s7pEdDgneeJaxZ3+/6TU4hkaPO4KXVHtt2u+3NnehaxN5YbzlpsktnUVZA+q41hMtewGTmETnm/8Man+dXdF0Qu4v4sGC6Yd12WLap/31MS3FlrLHF8rflff9+ynTDu5ssa2pcQFOY7YKCWOCCu6xUeG6F7fMi093RY93NwTPvujRFI3DyVMOmHa5VPTvN3Xx0vzmYWWV4dpllZx83lt2V5bubP3Dnyuad/c+fl+mObWjhibcsJ0xygeyb6/vPrxTfnWcGeOJty8hhri54eqlrterPmBIXuD75du9geVqlYUQBPPl2z3ycMNw9wXjybVcnHTvOtbw99U7fAXd3k///9s48Nq7ruv/f+2Y4wxmSw+E6w1UbN9FaHMmxQi+KUPMXeUlrJQVqGEJru24KJTbiwKmTuE5rowvkOqmBLK5TpHCcNm2UuKjUorWFCJIty7YWW9a+UFxFSuK+DZfhNu/8/jjzZidnhgk1HPt8AILke/e9d98955537nZuGaG2aAZz778B+HwwbboXnowi5Gab8O6l6MZ6fblCZQHLx+Vk5/PtCzyKcnedmlffQnHlAnfUsMxifeQjdQDwl+ktfLzPA7zfxOc0BXxxEwBw79PhS9F60FDDPVzvXV7YhigFNFQrmDXW1dDjW+tYD45cJmyo5JGVQ+eDjkZeFtutD65EO2/52cDn13IHQ1+MhkUoRQ4uxw+uBJ1Dwwlr7iascSkcuhBfj6pc/A04fDF2h0soq4qBDZXh34tqN1BXxsdidQZYzMD9t/IQ9cHzwQYWwN+y+jLO52S8fLqBDWU+QGl457IKyK5xvcLIBDvtC2HWuEGek8n2sHNg4ec5bOwkn2yjgG3euEKhLI+/Yx9cYRltX6cjc7AVeuc5mD/3JZxoC7flsXDaWQeOtxLK89gGHjwf2xkNZdNKwoo8H6Z8Gt6+pOH/rVdo6iZc6V74OuN7fuk6j3plmLlROx/ZmVyuF7rY4V+ImhJu8BP5R6l+xyTjry2LSQ+vvPIKVq5ciczMTGzZsgUnTpxYMP0bb7yBuro6ZGZmYv369XjzzTdvUk4XxmgWZFp4WOpEa3xHFuDem4lpNmbxaOsFBseAjSu5Reedie/IAtzzc6yZUF7gn3sIoL2fh/Gr3OFKODnDPRMr8n3Qm47FdWQBQL/RAl9/F8YmdWRZubJHfhBWFwEY7Q9zZGG2wFxZjw9aNRTkcNl92Br/fXw6v4/ZBLR0E8rz+f94jizA93fY+B7xHFmAGyfHWwjVJWwUDSoK2NlLNL8fNPPHfI1LQT97EFr5WnQNRhu/tWU8L3F0Uofe3RrXkQUA8gxCb/kI60p9gecdayFUFHBD5lgzYVUx8GG7BnNZNWC1gyZGoHvHcfnG/I7FikLAOxvfkQW4AXO8hZBrV1Fz9gAewhsa5x5oawZ/HI81syNrt3J5HmuJ78gCXOY5mQgM4c7MAUevEKrcQGUBcLQ5/D51ZexEx3NkAaB7mIf7ugYR15EFgJEJroO6DmxcwSMF8RxZgEcujl4h2K3Bno5THfEdEIDLcHCcyzSSc51cpsbIjUHTjeC0Bk0BRQ7ugY7nyALAxesK47NmmEqrAdLhO3sQedncW19bGp4Hk8Y9eR+2cq9pfRn3Yo1NcU9SUzfiOrIAT8No6Y2+v0GkDgBcpsdaCEpF1NVC/thOTAOXrkfrgcMGlDgTsyFE3NjOzw632URs94ocQGE2NziONYc7KbWlCq29iNkLafSyxXNkAe5Rb7rBQ8MGa8sVznURVhYlrkctvXwvV278tO19nHZNiM4197D+ry6Ofc0q/5SRj9vDHVkAWFuqcKo9viMLAC09wNCkCX1jQUe2xMkN5JPt8evanP97YdIQs6cxEo+Xe/TXlgXf9cxV/t4Y8ivNA2zaDHyX34e2Yj26hiiuIwsAI5M8ElhfytMoPrgS35EFgI87FGZ0DZnaHDZUch7jObKA/3vezu9yopXgtHMP7XyMT7G8YtmWSK5082iUUrw+KJWk3Jn91a9+haeffhrPP/88Pv74Y2zcuBHbt29HX19fzPQffPABHn74YTz++OM4deoUduzYgR07duD8+fM3Oefh+HxsQMe8wNgk/07kw2nQ0kOoSkB5AKCll1Ds4CGolt7EFWhwnIdh60rD77WqKHrBwKx/mMzX3Zrw/anzPJx2dgAinXgFoNqlgzrPhR03lVVjZELH6CRQ5VJo64sedpyPiWk2TLdUKNwYRkIfZSA4Ty7WlIz5GJ5gmVYWBY+tLVNo6YkeCpyPyWmeU0tEIO84TKVrolq+2Zk8ZD8yzvOq9c4LMe8VC9/1ZuRmaci18//eGZ6+strFw0YDYzyNZGDUB1N5DZQ9B6YsB9piVzUALJPWnsR1rN/Dcoh0pJR/CN/Q11VFnNb4wK0pVugeRsxhwljoxDIMrTMjk6x3PSPh9ynIBmwZnD4RMkxAto2H4xKlo58bNm6nQmsSddLjtxPrK+Gfr5bwpWjtJawuDl9MEnoulj1p6eFeu/IC1v9EHCeDpl4TULme/5mdhq+7HSalo8TJvT8GlYXA+DTbm2IH9851DfJISHEuD0snSlsvoTSPnZZIdOIG+ZqI9xyd5PpamMP1CeC6Oj3LU35i6fsaF4+8JNL5ALBz1DEQ/exZH4/2rKvk+bPGFBeA36E0DzH1w2Zh5ywZ3Wnro0DZ52fznM9p/3zn68MJ3wbNPey4JDJK3NLDOhf6vWA9VIh1eY2be6ojnbySPP59I4l8NvXwnGrjOWvcXNeS+l542MFOhM4BbmQX+BssmRlsGwwZ1RT7QJ3nAZMZptIqNPck7k519AO5dm5UxRuNDaW5VwP55lCap9CShH3qHub64nLws+P5GtcGuROkaOHOUADAlW7/4rgUD/Kn3Jl9+eWX8ZWvfAWPPfYY6uvr8ZOf/AR2ux2vvfZazPQ/+MEPcO+99+KZZ57B2rVr8bd/+7fYtGkTfvzjH9/knIdjGAJrBk/cvzqQnGA7B3i40maJn7Z3FIFJ2/GGSyJp6yWU5QcVud8/RB/ZUivNA3w9bdFzNBeARnqB2WkMT0S/uzMLMGsEvb8r/JriNWgfMEEpwO3kxR7J0N5PyLUnf11HP7dQk+FqP6Esj8tOKe7NSVbO7f28QkkrLMfkNDtgoZTmsTM44iXok+OgsSS8m7kZ+Pq6UJYXPNQxwM5AaP7bBkyg4jXQiirRP+qLOTwIsCOQlYmoOYvxuDpAKM0PN5b5WVxmxpBoab4KK7vS/OTLMvTdDAj+Mg6h2g30jCbuqBTnAuPecEckHrM+XmRkMStc7U/8OoB10eVQMecrL0TPCDcS87Oiz12dx55cHw4uTEy2zlwbBEyZdig7d+NR9xW4cwn9Y0HnBODFZMa9S/PYSdSJ0/R5Em90AuyADI2zoxcL1unYx6dmuT5ZzOzwjU7ykHwsPSjNS96GXO2P1j+A9S8vi+UaSomT3yVWj2lJHtA/lnhjDuC0RtmX5ilcH+bG1KL0SPEUiHj0eViWod+LG8PckHNGXO+08/FY+SnL8+cz8Wyie9i/oC+LnWl3Lut5MnSE2PB4+HR2wg1bVuIEhiZYfmYTUOjMgO9GC7T8UkxO6VG2fCHmfMD0nIrSkXhcHQAysrKhVHINAYDlUJqv5tXbUHRiu59IWd3wf6JoCebMJkNKndmZmRmcPHkSjY2NgWOapqGxsRFHjx6Nec3Ro0fD0gPA9u3b500/PT0Nj8cT9rNUmDRjhWJyRgkIrha3JBhfYnaO0ycyJBvK1CxXxMhjkc/NNOvAVIyJavGY8cY0pBYzoM9MI8p8ZVjhnQEsJo78kGy5Gau5k75uNiivRPGGlFPGb5FfAFBWO6ZmowvKYlbB0DXTSVhHP2p6LEyWUzPcwg7Nv3cGUBlWqAwrJmfmLwCLmT/8yY4eTc1E65PFHHx3gOXtXeD/RJ+jaSpMn81atLNkyVAJDWWG5tWbhMNlMDvH4d+S6fEHDF1ETH1I5NpYNsM3jz0h4kWTi3lHnYDZOR2wcIgPmppERobG9TfkOaH3Zn0z5jWrMB1IFO8MRzKZ75ymqbApBcZxpfiZFrMRCmr++mrUi2Tgso/ukfTOY5MWeobFhMWXjTl479DyTobpefRo3mcm8A2xmPm7NhUjP6wji89nhnlx9nchXYpFqC0LlZ/FxCNsmPFCZVhjvmM81CL8hOk5fu7sXHINAYD1wqibZlPsqWCx0seDEBzJTeUSrJQ6swMDA/D5fHC5XGHHXS4Xenpizzzu6elJKv3u3buRm5sb+KmoqPjdZD4GRBSIW5eMk2RgxCRNBKVFTw1IBCNuXtgxFf3cOV0BWoTFSugBppiVTCf/w6NO+Pi9/RclW25GXL6kr/OXXWRZLIQppJyM34vJLwCQbzam/IxFhJw4+fInzQyfHrxxaNxbI/8mDYDuA+k+mNX8xieQNkm0GHocea9ImfkWI0MteO/Q+0aWq09HlLOzEPoi39tY0ZtsB4UR23Ix9XkhmzHfOeP4YtZraJoCfP7RGpMJuo+inqOH3JvlrvzHKaYJiEe8dwSC9iP0OBHXJ5+OQPi0+eS6GF3nuLwUZe9M89ikhXRcp9jmMR5G2Rj5X3SdjfENWPCZkeUd43qfzg5GrPdavP7xtfoi7W8y39jQ5wHh8uOQdApQGsj/DUuWxfgJHIdY/Va6YlLsq8TrpDBpKuGyCsRMT2HvbMqnGSw1zz77LEZHRwM/XV1d8S9aBARuhU77e7KKHMkJNT+bK2giPUg2S3AOWSJDQ6G4cxXGQ55hzQBybDwfNJRRr4IqTNLxz8iEsjsCPYGheLyAyZoJZYtY5TY2gGIHL1iZmKaE5uiEUuzg8FXJX8cxRpNpRxblqsDQs08HZuYWl18iAo0OIDdLi+ol90yy0cnMUDA78gBTEt0IAJBfjlFv8K2M+K0A6+SoFyh2EDA2CBobXjD/RhxIYw5uohQ7FDwRncoeL0+LMYa9Ryc5XeD85OJkOOYNnzM35+PjoQyNE4oTWOBiMDrJ9SpSNvEoyGbnqWiBxRWxKHZwD1NxkjbDiMgRK4TUfPYkJ5N7mEYmkrdRuXa/k+jl0S0trwQer47CnPApGaOTwXt7vME6MjoJFOUg5tzK+eBYp/NP+Shy8DMiO4SMGLaeyWBPvdU8f331eBenf6Mx5jsWObgHMVKeo5P8LrEaLaOTPMc3GV9AKQTK3jPJ7zbqpaTlarfw3NDIb0AsMjN4+lHoPM8sKy/cjdTDsSmuQ7H0enQy+Xwa9mNsinsCJxfxvShyqKSmDxU7gnF+Rye5jmuK5TszMwctvwQ0PgxHtjlpe2HEbE2GIgfgm51FhhnBGOgJX6sCepLIPF1Dn+KRnck95amOi5VSZ7awsBAmkwm9vb1hx3t7e+F2u2Ne43a7k0pvtVrhcDjCfpYCk8bd9maNPxiVBTwUnShVLhUVc3A+Vhdz3NOJ6ehIBAthMQPl+bzaOXgvnjcbOY+r3wNo2U4oR8RKngUwldfAO+XDiqLoPE3PAj3DOrSK+rDj1HURKwu53Np6CdVJvI+meMVwex8vaknGLFSXqITnUAIsy8oCXnRh0DVIqClJ/KnKn19NEWjSA318BCsKw9PcGOGGUUkeO2qm0qqE76/luQGrHdf8c1wVWFda+7j3bFWxv6yKAOq6AH2gC2blm3c+4pyP51lFLnJZCGsGx5YMLSeAHYrukeC9WnspsKre+H++RSTzscYVvtjKbOIPc+Rilss3WPcTWbEN8DzmqRlEyWYhihyAzcoL2tYkocMmjaMLXLzGG2gYC5YSYXWxQvdI7KHK+ezJGheHL2vuIZTlx15YNR9VxYS57jZgzu8dVq7D4ATvQBe6Or+tj1BZyGXe0c+OtcMWnC8dOr82HmX5PH0jVgxcwL9oNGLRFG+mwfXoxgh/ZLsGODC/WYutB629lJSeA8EFSJHUlCi09xFWFIWPCPR7+F3K86Pv1TvKDeRY83/nozQPgbLvHOQFYKMTrItJ6ZGL9SiRucyri3nRbWgjabWLF+BGzr2fmeN5nYU53GESSkc/z01PxiFb4+JIPsZz2voSXzQNBL8XiS5AzMvifBvrUgwdLPPLr7VPAyrXgcaGoI9F2/KFKMzhur+iKLne2ZpiHTQ9Cc9kcnbZbuU5xu397DPEW2iYa+f3T2T+f5VL+Xes+xQvALNYLNi8eTMOHjwYOKbrOg4ePIiGhoaY1zQ0NISlB4ADBw7Mm/5mosAtVAJ/YOrLE1M2p52DryeyktVm4Qp5pZuDulcUJN5zdks57zRitExtFlbEWBER6koVJqYIpurbkVBfisUGtWIDZmFGhpk/JpFc6dWglddB2YJdV+QZgD7hwdpSQns/91xE9qzNR3UJG6gR/9Te1a6F0xuUOPnjmmtHwovA1pZxPMPQVv35Ll58k2ivX7WbDdeEV4dp1UZQ5znUl4bPNSMKbp4wMWeGWnUrkJGAxVcaVNVn0dYXdGDWuFkXu4c5HuDkNFCQRVCzk9CHuv3DCdNYVzH//KnWXo5/6rDFPh/JugqF4XFEheEBOJLB6mI2rANj/PGs9UfW6B7h7KyJ3SaNwu2Ef5FN8NjaMoURL5ddVYguEPGHaP0C7xlKhokdorpSldCcMaW4bikAF6/zCvNEwuwZeZ6a5QVq1wY5j4lg99uBWDZjPnuSncn1ssW/w9PgGMsrERw2/vBSF0fXMJVWgzJsKHJEO5MeL0cyqC9TmPU3iNZXcKzR1l5CfXlic9XNGpfPfHbR7eTFQB0RH9y6Ul5B3z0c7C26fINDp3lnWFaRenB9iOUey27Fojw/9gJcw4m/fIN7OuvKws+39BLqylTMXrzWXg6flEjZmDR+D6PsfTqXQ02pwvWhxOVqt3JdSSRiic0S7cDzzlHzf7uu9BB8FK3XU7Ps6CaazywrsKYYsJn1gOza+thxT7R3tqaE62qs3vRIFDhvV/t5xBVge5Nh4u+6WQNa+wBzYSmUsxjUeQ5rS/TE7UUFR+6Z8G9gkggF2YArT4Nmz8HF62xLE20MrCvnBofhoMdbOLe+ghduxgsZlmXlTpIUr/0CsAymGTz99NP46U9/ip///Oe4dOkSvvrVr2JiYgKPPfYYAOBP/uRP8OyzzwbSP/XUU9i/fz/+8R//EZcvX8YLL7yAjz76CE8++WSqXiGA5t9M22xiI7GqiHfpWAinnYNfz/m4l28hnbBbOaj2tSHuPdKJoOuErXUqrkNbX86G+gN/EHGbhZ/bPcJGP5RbV/AWjO9dUZiyF8O8YRtP0p0Pqx2mzz6AGd0MIu7R27SKw/+E0u8B2gc0mG57IMyh1c8dQrVLx8pCwsl2wh21Kq6BWl3MH0uleBOEK90cpDxe69iVyzt6nb5KmJkjbF2r4jq0daVcdh9GBOaemWPn5c6a+PldVcwG4ko34WirCWrFOsBig2nkGrat5R5Ng8vXyT/sDEz6LDBtvh+wLNDVoplg2ngPJi35uHCdNWhFET/veAvHXq0tUbgxTKgvI/jOHgKUBtP6bZhSdvh03qQh1kd0ZBJo6mZdiefQri8nrCigQEMhkr5RXiG7tY6D2p9o4V3Y1vgdz+PNhPUVKq5DUZzLmxp81BaMz8gbAgDXBwnHWwjrIu5zrJlgs3IQ/oWcBYsZuKuOdxQaGucdoWJNmzHQFOfFaedej2uDHI/yrloV16GtdnMweJuFeyvPXCU4s7juxLMDW9fyxyYyXqlhTy5cC9/BKjuTr2nt4/eyW/lYeQEHwl8Ihw34fJ0OveMsyDMIzbUSpvo7MTmrYdaHmIHVT7Zx7+wt5byDWo5/V7rmHrYPd9REL9oKJcME3FnH0y9aeqPPu3K53ofqAADUlnC5zs5xD5qx6n5imjsAHHbucGiI0AOdOEbyZ1ZG261ISvJ4g48TreGxjI3droxYtR+2cs9hbUkwTWsvO9R31aqokbvmHrYpd9bGdnYNzCaWcZaVF6AZnL9GyMzwbyOegB5lWYObPFQWLjzX22bhtDeGENglLMvKwf+7BufvOR8e521vXbm881XoI053EApyePOUhTCeQ31tyJwbxR3VOkwa99B+3E64o0ahMM7UntUujjU94OH3WGhEQimWr80SjOGel8V24Wwnx8W9ey3HeT/VAZg33Qua9MA8ch3b6vQwWx6JYS8yTBzv2DsdtF0LkZ8N3F1LIJ+OM1e58dXRH9w4aCGM7/n1YcLnqjnmc6zdv4x3v201p4+3niQ7kzeWUABABG0xE3l/hyyLHcB+/OMf43vf+x56enpw66234oc//CG2bNkCANi2bRtWrlyJ119/PZD+jTfewHe/+110dHSguroaL730Eu6///6EnrXU29kCwZizBDaSY16Oz2eEqAG4cqxx8VZ+F68TBsfYOOs60NTN2zwaCpeTyUMDKwq5B0cnoCKfJ3HPzBmrMznUSWtvcLccTXGw8NoSNnzvXuKV1lUu3je+Z5gNOIF7QSoL+Tl2KzA5xa3qfg9wZ7WObNM09Kvn4LvezFvQAlB2B7SKtTCV18JHGmZ1DdYMNtYd/YS6Ug5wfaU7fJvEhioOp+O70Qzf1QugiRGonAKYNt+HsRkzhicVVhQp9IzwtUaAdaV4GK7KrQJzhY+3EMwa73wzMgE47MDQGPeAdA8HV3wWO/g6Vy7vC1/on9d5Y5h7Q64NsYzCyq6AhwyzM/kjc/lGhFxsvKPSyiJuyXeP8PCtYdiV4qHAGrdCXjYwOsFbf3q83KP0+VodmncURDqQXYi2PkJLL/egZpi44ZJj4y2SM5QPvq7L0K9dAnn9AYwzrDCV1UBVroNn1oL3rvDGE1Uufl5LD89Ly7UD3ikfsq065s4cgpbtBCrWwUuZaBvQsKKI9cOns/609QWH8mwWHs6uchNMGvdUtPZSIAyNSeNyqnUTsqyANjeFuZ52mCrq0TXEH+hIfdxQwbvQtPcB/WOETSsVPF6WGe9Mxc5kaw/hRogMi/wydOdyEPBrg+yMVbm4nMjfkBwYA/pGCbWl/vv08n2MXfAUWE6hsYZ5xIO3fB0cA7pHeMpLlhX+HkW+jzG8ajFzY7XKzb23Hi9v1GCcry0Jxj9u7g7urqQpdnqq3Lzb2YlWDnJfng/0eoDOfu65U+DyiGUHVhZxSKYPmijMnlS72RG7eI23qwS4UbHGxbajuYfDn1X7bcm1QdbprfX8Yb5yg9A5GFzw4rRzbOiKQg16+xmQpx+qch1MeS74SAvIpb2Py2YipGxWFnHdyTBx2VwdIKwqYgeS46NyvWrrYzlMRekbf0xPdfAObKH1uNqt4HLyrk+dA1ym5QV83GhwDYzxXMc1bu6pbO1lO7K+gtP5iN+zpYdHhAx9N7aTjWW3XLl8bZEjfGc4t5PftSgHaLpBuHAtmN9V/m2px6e4fK8NIdAAz8/mTXDa+oI7amVZ2dG1ZgR1ziibzAxuxFe5uRybu/n9pmb4m9E1yPp/Vy03wJTinrXWSD2ycZ1ZUQR09PG1W9dyb3VzD2+jG7pNb5WLda5zEDjVzg2TNf7rJ6d4es18OlDlZh0wFuRNzXK+O/z5MTpoiILPNnpCHTbuCV5VBMzOESwaYa6nFSqnED6rA1d6NXT0s439zCquay090d+LmhK2D+9dJgxNsFNdls/OYEtPMM9Gz/waF48ovNfENq3azenPd/FuWyaNG4Y5NqC1h+fJ31IG+Pqu8ihargttfUBLnwqzF8a9Z+aA60OEVcW8dbfZBECxn3Clm/XKqNcF2UC1i1BWwAV4ppPDha0q5nv5fNw46xzg8jPmwoZ+z80m3u69IIcbF7lZLPeW3vAtr1cUsax9Ou+S9rkq/vuK3x/xhcjFsEOs6ATTYlbAJYBsZ7sAN8OZBbjXlPyCBriyahovBNY0fxgLsMFWKhhlwFjZbNK4shvnfP5zCkFFN2lc8c0hEQoMJ9qncyUxVmaH3stIa/xtOAGhvQzGOeNakwYofQ4wmQHfrD+cAifywQRNA0gnaJp/gZO/DU5EUIo/znORK2113d+b7V+eas7w308LPN/oLQh9H6UICir4nlqgTvlnRHAQZ01FPJOCZWmUf1jZqKBMTKYY8vA/K7IslVHugecH86UT55dI+Veihpe5ToCmcwHrOvfu+3QEGhi6sRKbAA0+jnDg83tgJjPIN+ePYBB8HsBy4Pv53wM6FPl4QZlvDj5lDqxuNd6bIvRKIbgC1pCDTv7VsP5yMvTGBP/DfHN8oWaGrutQSgsr00g9Di1D8usd61tsGYbWG1OIfht5JIJfM/whzvxCibyPTn5ZRrxnqO4rZYSbAUgFV2wbsjH0KLTOhJ6f84Wv5A7X4eBqZiMPmhaUQZgsYtTdwPMi7QlF6KiKbWeMe0e+jykk33xPgubzBbwRUhp8pIK6RsF6FHmv0KF8YyW4HpEmUFYhcpgLXDtPPQ4hskwDOhJSF4mi7QjIL9f59B1sw+Z7tmHPArYHRlii2Dpr2OygfgfzFll2ATsT8hsh5zTjpiF58VG4zhnPnM9u+WIcC43EE6lzkceI2GwjIk1U/QjJpyGHWM8giqG7hu0KrY+k84p5IvhIwWRSwfqjgrKI/F4YBRZuJ0Py7LfHhtzC6pVfT6LkqiLsD/xTIAjQSUEzqQV13BTyXmHfnAgdUSAoUKABGVp3AvcAf5L1yHeJsO2a5g8dH1K+kennQspIUwSdVEydUEvoxBqIM7sAN8uZFQRBEARBEBZHMv7a0rrVgiAIgiAIgrCEiDMrCIIgCIIgpC3izAqCIAiCIAhpizizgiAIgiAIQtoizqwgCIIgCIKQtogzKwiCIAiCIKQt4swKgiAIgiAIaYs4s4IgCIIgCELaIs6sIAiCIAiCkLaIMysIgiAIgiCkLeLMCoIgCIIgCGmLOLOCIAiCIAhC2mJOdQZuNkQEAPB4PCnOiSAIgiAIghALw08z/LaF+NQ5s2NjYwCAioqKFOdEEARBEARBWIixsTHk5uYumEZRIi7vJwhd13Hjxg3k5ORAKbXkz/N4PKioqEBXVxccDseSP09IDJHL8kNksvwQmSw/RCbLD5HJ0kBEGBsbQ2lpKTRt4Vmxn7qeWU3TUF5eftOf63A4RMmXISKX5YfIZPkhMll+iEyWHyKT3z3xemQNZAGYIAiCIAiCkLaIMysIgiAIgiCkLeLMLjFWqxXPP/88rFZrqrMihCByWX6ITJYfIpPlh8hk+SEyST2fugVggiAIgiAIwicH6ZkVBEEQBEEQ0hZxZgVBEARBEIS0RZxZQRAEQRAEIW0RZ1YQBEEQBEFIW8SZXWJeeeUVrFy5EpmZmdiyZQtOnDiR6ix9Ynj33Xfx+7//+ygtLYVSCvv27Qs7T0T467/+a5SUlMBms6GxsRHNzc1haYaGhrBz5044HA44nU48/vjjGB8fD0tz9uxZ3H333cjMzERFRQVeeumlpX61tGT37t347Gc/i5ycHBQXF2PHjh1oamoKSzM1NYUnnngCBQUFyM7Oxh/+4R+it7c3LE1nZyceeOAB2O12FBcX45lnnsHc3FxYmnfeeQebNm2C1WpFVVUVXn/99aV+vbTl1VdfxYYNGwIB3RsaGvDWW28FzotMUsuLL74IpRS+8Y1vBI6JTG4+L7zwApRSYT91dXWB8yKTZQ4JS8aePXvIYrHQa6+9RhcuXKCvfOUr5HQ6qbe3N9VZ+0Tw5ptv0nPPPUf/9V//RQBo7969YedffPFFys3NpX379tGZM2foD/7gD2jVqlXk9XoDae69917auHEjHTt2jI4cOUJVVVX08MMPB86Pjo6Sy+WinTt30vnz5+mXv/wl2Ww2+ud//ueb9Zppw/bt2+lnP/sZnT9/nk6fPk33338/VVZW0vj4eCDNrl27qKKigg4ePEgfffQRfe5zn6M77rgjcH5ubo7WrVtHjY2NdOrUKXrzzTepsLCQnn322UCatrY2stvt9PTTT9PFixfpRz/6EZlMJtq/f/9Nfd904X/+53/o//7v/+jKlSvU1NREf/mXf0kZGRl0/vx5IhKZpJITJ07QypUracOGDfTUU08FjotMbj7PP/883XLLLdTd3R346e/vD5wXmSxvxJldQm6//XZ64oknAv/7fD4qLS2l3bt3pzBXn0winVld18ntdtP3vve9wLGRkRGyWq30y1/+koiILl68SADoww8/DKR56623SClF169fJyKif/qnf6K8vDyanp4OpPn2t79NtbW1S/xG6U9fXx8BoMOHDxMRl39GRga98cYbgTSXLl0iAHT06FEi4gaKpmnU09MTSPPqq6+Sw+EIyOBb3/oW3XLLLWHPeuihh2j79u1L/UqfGPLy8uhf/uVfRCYpZGxsjKqrq+nAgQP0+c9/PuDMikxSw/PPP08bN26MeU5ksvyRaQZLxMzMDE6ePInGxsbAMU3T0NjYiKNHj6YwZ58O2tvb0dPTE1b+ubm52LJlS6D8jx49CqfTidtuuy2QprGxEZqm4fjx44E0W7duhcViCaTZvn07mpqaMDw8fJPeJj0ZHR0FAOTn5wMATp48idnZ2TCZ1NXVobKyMkwm69evh8vlCqTZvn07PB4PLly4EEgTeg8jjdSr+Ph8PuzZswcTExNoaGgQmaSQJ554Ag888EBUuYlMUkdzczNKS0uxevVq7Ny5E52dnQBEJumAOLNLxMDAAHw+X5hiA4DL5UJPT0+KcvXpwSjjhcq/p6cHxcXFYefNZjPy8/PD0sS6R+gzhGh0Xcc3vvEN3HnnnVi3bh0ALi+LxQKn0xmWNlIm8cp7vjQejwder3cpXiftOXfuHLKzs2G1WrFr1y7s3bsX9fX1IpMUsWfPHnz88cfYvXt31DmRSWrYsmULXn/9dezfvx+vvvoq2tvbcffdd2NsbExkkgaYU50BQRA+eTzxxBM4f/483nvvvVRnRQBQW1uL06dPY3R0FP/5n/+JRx55BIcPH051tj6VdHV14amnnsKBAweQmZmZ6uwIfu67777A3xs2bMCWLVuwYsUK/PrXv4bNZkthzoREkJ7ZJaKwsBAmkylqtWNvby/cbneKcvXpwSjjhcrf7Xajr68v7Pzc3ByGhobC0sS6R+gzhHCefPJJ/O///i/efvttlJeXB4673W7MzMxgZGQkLH2kTOKV93xpHA6HfHTmwWKxoKqqCps3b8bu3buxceNG/OAHPxCZpICTJ0+ir68PmzZtgtlshtlsxuHDh/HDH/4QZrMZLpdLZLIMcDqdqKmpQUtLi9STNECc2SXCYrFg8+bNOHjwYOCYrus4ePAgGhoaUpizTwerVq2C2+0OK3+Px4Pjx48Hyr+hoQEjIyM4efJkIM2hQ4eg6zq2bNkSSPPuu+9idnY2kObAgQOora1FXl7eTXqb9ICI8OSTT2Lv3r04dOgQVq1aFXZ+8+bNyMjICJNJU1MTOjs7w2Ry7ty5sEbGgQMH4HA4UF9fH0gTeg8jjdSrxNF1HdPT0yKTFHDPPffg3LlzOH36dODntttuw86dOwN/i0xSz/j4OFpbW1FSUiL1JB1I9Qq0TzJ79uwhq9VKr7/+Ol28eJH+/M//nJxOZ9hqR2HxjI2N0alTp+jUqVMEgF5++WU6deoUXb16lYg4NJfT6aT//u//prNnz9KDDz4YMzTXZz7zGTp+/Di99957VF1dHRaaa2RkhFwuF/3xH/8xnT9/nvbs2UN2u11Cc8Xgq1/9KuXm5tI777wTFt5mcnIykGbXrl1UWVlJhw4doo8++ogaGhqooaEhcN4Ib/OFL3yBTp8+Tfv376eioqKY4W2eeeYZunTpEr3yyisS3mYBvvOd79Dhw4epvb2dzp49S9/5zndIKUW/+c1viEhkshwIjWZAJDJJBd/85jfpnXfeofb2dnr//fepsbGRCgsLqa+vj4hEJssdcWaXmB/96EdUWVlJFouFbr/9djp27Fiqs/SJ4e233yYAUT+PPPIIEXF4rr/6q78il8tFVquV7rnnHmpqagq7x+DgID388MOUnZ1NDoeDHnvsMRobGwtLc+bMGbrrrrvIarVSWVkZvfjiizfrFdOKWLIAQD/72c8CabxeL33ta1+jvLw8stvt9KUvfYm6u7vD7tPR0UH33Xcf2Ww2KiwspG9+85s0Ozsblubtt9+mW2+9lSwWC61evTrsGUI4f/qnf0orVqwgi8VCRUVFdM899wQcWSKRyXIg0pkVmdx8HnroISopKSGLxUJlZWX00EMPUUtLS+C8yGR5o4iIUtMnLAiCIAiCIAi/HTJnVhAEQRAEQUhbxJkVBEEQBEEQ0hZxZgVBEARBEIS0RZxZQRAEQRAEIW0RZ1YQBEEQBEFIW8SZFQRBEARBENIWcWYFQRAEQRCEtEWcWUEQBEEQBCFtEWdWEAThE4BSCvv27Ut1NgRBEG464swKgiCkmEcffRQ7duxIdTYEQRDSEnFmBUEQBEEQhLRFnFlBEIRlxLZt2/D1r38d3/rWt5Cfnw+3240XXnghLE1zczO2bt2KzMxM1NfX48CBA1H36erqwh/90R/B6XQiPz8fDz74IDo6OgAAly9fht1ux3/8x38E0v/617+GzWbDxYsXl/L1BEEQfueIMysIgrDM+PnPf46srCwcP34cL730Ev7mb/4m4LDquo4vf/nLsFgsOH78OH7yk5/g29/+dtj1s7Oz2L59O3JycnDkyBG8//77yM7Oxr333ouZmRnU1dXh+9//Pr72ta+hs7MT165dw65du/AP//APqK+vT8UrC4IgLBpFRJTqTAiCIHyaefTRRzEyMoJ9+/Zh27Zt8Pl8OHLkSOD87bffjt/7vd/Diy++iN/85jd44IEHcPXqVZSWlgIA9u/fj/vuuw979+7Fjh078Itf/AJ/93d/h0uXLkEpBQCYmZmB0+nEvn378IUvfAEA8MUvfhEejwcWiwUmkwn79+8PpBcEQUgXzKnOgCAIghDOhg0bwv4vKSlBX18fAODSpUuoqKgIOLIA0NDQEJb+zJkzaGlpQU5OTtjxqakptLa2Bv5/7bXXUFNTA03TcOHCBXFkBUFIS8SZFQRBWGZkZGSE/a+Ugq7rCV8/Pj6OzZs349///d+jzhUVFQX+PnPmDCYmJqBpGrq7u1FSUrL4TAuCIKQIcWYFQRDSiLVr16KrqyvM+Tx27FhYmk2bNuFXv/oViouL4XA4Yt5naGgIjz76KJ577jl0d3dj586d+Pjjj2Gz2Zb8HQRBEH6XyAIwQRCENKKxsRE1NTV45JFHcObMGRw5cgTPPfdcWJqdO3eisLAQDz74II4cOYL29na88847+PrXv45r164BAHbt2oWKigp897vfxcsvvwyfz4e/+Iu/SMUrCYIg/FaIMysIgpBGaJqGvXv3wuv14vbbb8ef/dmf4e///u/D0tjtdrz77ruorKzEl7/8ZaxduxaPP/44pqam4HA48K//+q9488038W//9m8wm83IysrCL37xC/z0pz/FW2+9laI3EwRBWBwSzUAQBEEQBEFIW6RnVhAEQRAEQUhbxJkVBEEQBEEQ0hZxZgVBEARBEIS0RZxZQRAEQRAEIW0RZ1YQBEEQBEFIW8SZFQRBEARBENIWcWYFQRAEQRCEtEWcWUEQBEEQBCFtEWdWEARBEARBSFvEmRUEQRAEQRDSFnFmBUEQBEEQhLTl/wPYwb6lAsvlKwAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } - ], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "import nltk\n", - "import string\n", - "import re\n", - "import torch\n", - "import torch.nn as nn\n", - "from nltk.corpus import stopwords\n", - "from nltk.tokenize import word_tokenize\n", - "from wordcloud import WordCloud\n", - "from sklearn.model_selection import train_test_split, cross_val_score\n", - "from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve, auc\n", - "from sklearn.feature_extraction.text import TfidfVectorizer\n", - "from sklearn.naive_bayes import MultinomialNB\n", - "from sklearn.tree import DecisionTreeClassifier, plot_tree\n", - "from sklearn.neighbors import KNeighborsClassifier\n", - "from sklearn.svm import SVC\n", - "from sklearn.cluster import KMeans\n", - "from sklearn.preprocessing import LabelEncoder\n", - "from sklearn.utils import shuffle\n", - "from imblearn.over_sampling import SMOTE\n", - "import warnings\n", - "\n", - "warnings.filterwarnings(\"ignore\")\n", - "nltk.download('stopwords')\n", - "\n", - "# ------------------------ 1. Load and Preprocess SMS Spam Dataset -------------------------\n", - "sms_df = pd.read_csv('SMSSpamCollection', sep='\\t', names=['label', 'message'])\n", - "sms_df = shuffle(sms_df)\n", - "\n", - "# Preprocessing function using regex for tokenization\n", - "def preprocess_simple(text):\n", - " text = text.lower()\n", - " text = re.sub(r\"\\d+\", \"\", text)\n", - " text = text.translate(str.maketrans(\"\", \"\", string.punctuation))\n", - " tokens = re.findall(r'\\b\\w+\\b', text) # Tokenize using regex\n", - " tokens = [w for w in tokens if w not in stopwords.words('english')]\n", - " return ' '.join(tokens)\n", - "\n", - "sms_df['clean_text'] = sms_df['message'].apply(preprocess_simple)\n", - "\n", - "# Encode labels to numerical values\n", - "le = LabelEncoder()\n", - "sms_df['label_num'] = le.fit_transform(sms_df['label'])\n", - "\n", - "# ------------------------ 2. Feature Extraction -------------------------\n", - "vectorizer = TfidfVectorizer()\n", - "X = vectorizer.fit_transform(sms_df['clean_text'])\n", - "y = sms_df['label_num']\n", - "\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "\n", - "# Apply SMOTE to training data\n", - "smote = SMOTE(random_state=42)\n", - "X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)\n", - "\n", - "# ------------------------ 3. Word Cloud Generation -------------------------\n", - "\n", - "def plot_word_cloud(sms_df):\n", - " all_text = ' '.join(sms_df['clean_text'])\n", - " wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_text)\n", - "\n", - " # Ensure the plot appears\n", - " plt.figure(figsize=(10, 6))\n", - " plt.imshow(wordcloud, interpolation='bilinear')\n", - " plt.axis('off')\n", - " plt.title('Word Cloud for SMS Spam Dataset')\n", - " plt.show()\n", - "\n", - "# Call the function to display the word cloud\n", - "plot_word_cloud(sms_df)\n", - "\n", - "\n", - "# ------------------------ 4. Spam Distribution Analysis -------------------------\n", - "def analyze_spam_distribution(sms_df):\n", - " # Count the number of spam and ham messages\n", - " spam_count = sms_df[sms_df['label'] == 'spam'].shape[0]\n", - " ham_count = sms_df[sms_df['label'] == 'ham'].shape[0]\n", - " total_count = sms_df.shape[0]\n", - "\n", - " # Calculate the percentage of spam and ham messages\n", - " spam_percentage = (spam_count / total_count) * 100\n", - " ham_percentage = (ham_count / total_count) * 100\n", - "\n", - " # Plot the distribution using a bar plot\n", - " plt.figure(figsize=(6, 6))\n", - " sns.barplot(x=['Spam', 'Ham'], y=[spam_percentage, ham_percentage], palette='Blues')\n", - " plt.title('Spam vs Ham Distribution')\n", - " plt.ylabel('Percentage (%)')\n", - " plt.show()\n", - "\n", - " # Print the spam and ham message counts and percentages\n", - " print(f\"Spam messages: {spam_count} ({spam_percentage:.2f}%)\")\n", - " print(f\"Ham messages: {ham_count} ({ham_percentage:.2f}%)\")\n", - "\n", - "# Call the function to display the spam distribution analysis\n", - "analyze_spam_distribution(sms_df)\n", - "\n", - "\n", - "# ------------------------ 5. Message Length Distribution -------------------------\n", - "def plot_message_length_distribution(sms_df):\n", - " # Calculate the length of each message\n", - " sms_df['message_length'] = sms_df['message'].apply(len)\n", - "\n", - " # Separate spam and ham messages for plotting\n", - " spam_messages = sms_df[sms_df['label'] == 'spam']['message_length']\n", - " ham_messages = sms_df[sms_df['label'] == 'ham']['message_length']\n", - "\n", - " # Plot the message length distribution using seaborn\n", - " plt.figure(figsize=(10, 6))\n", - " sns.histplot(spam_messages, bins=30, kde=True, color='red', label='Spam', stat='density')\n", - " sns.histplot(ham_messages, bins=30, kde=True, color='green', label='Ham', stat='density')\n", - "\n", - " # Add titles and labels\n", - " plt.title('Message Length Distribution (Spam vs Ham)')\n", - " plt.xlabel('Message Length')\n", - " plt.ylabel('Density')\n", - " plt.legend()\n", - " plt.show()\n", - "\n", - "# Call the function to display the message length distribution\n", - "plot_message_length_distribution(sms_df)\n", - "\n", - "\n", - "# ------------------------ 4. Word Count Analysis -------------------------\n", - "def word_count(sms_df):\n", - " # Join the messages and calculate word count\n", - " spam_words = ' '.join(sms_df[sms_df['label'] == 'spam']['clean_text'])\n", - " ham_words = ' '.join(sms_df[sms_df['label'] == 'ham']['clean_text'])\n", - "\n", - " spam_word_count = len(spam_words.split())\n", - " ham_word_count = len(ham_words.split())\n", - "\n", - " print(f\"Total words in Spam messages: {spam_word_count}\")\n", - " print(f\"Total words in Ham messages: {ham_word_count}\")\n", - "\n", - " # Ensure the plot displays correctly\n", - " plt.figure(figsize=(6, 6))\n", - " sns.barplot(x=['Spam', 'Ham'], y=[spam_word_count, ham_word_count], palette='Set2')\n", - " plt.title('Word Count Comparison: Spam vs Ham')\n", - " plt.ylabel('Word Count')\n", - " plt.show()\n", - "\n", - "# Call the function to show the word count analysis\n", - "word_count(sms_df)\n", - "\n", - "\n", - "# ------------------------ 7. Train and Evaluate Models -------------------------\n", - "from sklearn.metrics import confusion_matrix, roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score\n", - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "\n", - "# Models to evaluate\n", - "models = {\n", - " 'Naive Bayes': MultinomialNB(),\n", - " 'Decision Tree': DecisionTreeClassifier(),\n", - " 'k-NN': KNeighborsClassifier(),\n", - " 'SVM': SVC(probability=True)\n", - "}\n", - "\n", - "# Initialize an empty dictionary to store confusion matrix results\n", - "cm_data = {}\n", - "\n", - "# Iterate over each model\n", - "for name, model in models.items():\n", - " # Train the model\n", - " model.fit(X_train, y_train)\n", - "\n", - " # Predict on the test set\n", - " y_pred = model.predict(X_test)\n", - " y_prob = model.predict_proba(X_test)[:, 1] # Probability for ROC curve\n", - "\n", - " # Generate confusion matrix\n", - " cm = confusion_matrix(y_test, y_pred)\n", - "\n", - " # Plot confusion matrix heatmap\n", - " plt.figure(figsize=(6, 6))\n", - " sns.heatmap(cm, annot=True, fmt=\"d\", cmap=\"Blues\", cbar=False, xticklabels=le.classes_, yticklabels=le.classes_)\n", - " plt.title(f\"{name} Confusion Matrix\")\n", - " plt.xlabel(\"Predicted\")\n", - " plt.ylabel(\"True\")\n", - " plt.show()\n", - "\n", - " # Calculate performance metrics\n", - " accuracy = accuracy_score(y_test, y_pred)\n", - " precision = precision_score(y_test, y_pred)\n", - " recall = recall_score(y_test, y_pred)\n", - " f1 = f1_score(y_test, y_pred)\n", - "\n", - " # Store the results in the dictionary\n", - " cm_data[name] = {\n", - " 'True Negative': cm[0, 0],\n", - " 'False Positive': cm[0, 1],\n", - " 'False Negative': cm[1, 0],\n", - " 'True Positive': cm[1, 1],\n", - " 'Accuracy': accuracy,\n", - " 'Precision': precision,\n", - " 'Recall': recall,\n", - " 'F1-Score': f1\n", - " }\n", - "\n", - " # Calculate and plot ROC curve\n", - " fpr, tpr, thresholds = roc_curve(y_test, y_prob)\n", - " roc_auc = auc(fpr, tpr)\n", - "\n", - " plt.figure(figsize=(8, 6))\n", - " plt.plot(fpr, tpr, color='blue', lw=2, label=f'{name} ROC curve (area = {roc_auc:.2f})')\n", - " plt.plot([0, 1], [0, 1], color='gray', linestyle='--')\n", - " plt.title(f\"ROC Curve for {name}\")\n", - " plt.xlabel('False Positive Rate')\n", - " plt.ylabel('True Positive Rate')\n", - " plt.legend(loc=\"lower right\")\n", - " plt.show()\n", - "\n", - "# Convert the dictionary to a pandas DataFrame for comparison\n", - "cm_comparison_df = pd.DataFrame(cm_data).T\n", - "\n", - "# Display the confusion matrix comparison table\n", - "print(\"Confusion Matrix Comparison Table:\")\n", - "print(cm_comparison_df)\n", - "\n", - "\n", - "# ------------------------ 8. Decision Tree Feature Importance -------------------------\n", - "decision_tree = DecisionTreeClassifier()\n", - "decision_tree.fit(X_train, y_train)\n", - "plt.figure(figsize=(10, 8))\n", - "plot_tree(decision_tree, filled=True, feature_names=vectorizer.get_feature_names_out(), class_names=le.classes_, rounded=True)\n", - "plt.title(\"Decision Tree Classifier - Feature Importance\")\n", - "plt.show()\n", - "\n", - "# ------------------------ 9. KMeans Clustering -------------------------\n", - "kmeans = KMeans(n_clusters=2, random_state=42)\n", - "kmeans.fit(X)\n", - "sms_df['cluster'] = kmeans.labels_\n", - "\n", - "plt.figure(figsize=(8, 6))\n", - "sns.scatterplot(x=sms_df.index, y=sms_df['cluster'], hue=sms_df['label'], palette=\"coolwarm\", s=100)\n", - "plt.title(\"KMeans Clustering - SMS Spam Dataset\")\n", - "plt.xlabel(\"Index\")\n", - "plt.ylabel(\"Cluster\")\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "source": [ - "!pip install stable-baselines3[extra]\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "KNGiBkawCWYB", - "outputId": "7bcd508b-06fc-4f19-8ab6-e83e252b3c5f" - }, - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting stable-baselines3[extra]\n", - " Downloading stable_baselines3-2.6.0-py3-none-any.whl.metadata (4.8 kB)\n", - "Requirement already satisfied: gymnasium<1.2.0,>=0.29.1 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (1.1.0)\n", - "Requirement already satisfied: numpy<3.0,>=1.20 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (1.26.4)\n", - "Requirement already satisfied: torch<3.0,>=2.3 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.5.1+cu124)\n", - "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (3.1.1)\n", - "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.2.2)\n", - "Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (3.10.0)\n", - "Requirement already satisfied: opencv-python in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (4.11.0.86)\n", - "Requirement already satisfied: pygame in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.6.1)\n", - "Requirement already satisfied: tensorboard>=2.9.1 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.18.0)\n", - "Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (5.9.5)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (4.67.1)\n", - "Requirement already satisfied: rich in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (13.9.4)\n", - "Requirement already satisfied: ale-py>=0.9.0 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (0.10.2)\n", - "Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (11.1.0)\n", - "Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.11/dist-packages (from gymnasium<1.2.0,>=0.29.1->stable-baselines3[extra]) (4.12.2)\n", - "Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/lib/python3.11/dist-packages (from gymnasium<1.2.0,>=0.29.1->stable-baselines3[extra]) (0.0.4)\n", - "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.4.0)\n", - "Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.70.0)\n", - "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (3.7)\n", - "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (24.2)\n", - "Requirement already satisfied: protobuf!=4.24.0,>=3.19.6 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (4.25.6)\n", - "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (75.1.0)\n", - "Requirement already satisfied: six>1.9 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.17.0)\n", - "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (0.7.2)\n", - "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (3.1.3)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (3.17.0)\n", - "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (3.4.2)\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (3.1.5)\n", - "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (2024.10.0)\n", - "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", - "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", - "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-curand-cu12==10.3.5.147 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", - "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", - "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (2.21.5)\n", - "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (12.4.127)\n", - "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", - " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", - "Requirement already satisfied: triton==3.1.0 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (3.1.0)\n", - "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (1.13.1)\n", - "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch<3.0,>=2.3->stable-baselines3[extra]) (1.3.0)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (1.3.1)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (4.56.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (1.4.8)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (3.2.1)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->stable-baselines3[extra]) (2025.1)\n", - "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->stable-baselines3[extra]) (2025.1)\n", - "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich->stable-baselines3[extra]) (3.0.0)\n", - "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich->stable-baselines3[extra]) (2.18.0)\n", - "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich->stable-baselines3[extra]) (0.1.2)\n", - "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.11/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.9.1->stable-baselines3[extra]) (3.0.2)\n", - "Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m53.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m17.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m12.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m85.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading stable_baselines3-2.6.0-py3-none-any.whl (184 kB)\n", - "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m184.5/184.5 kB\u001b[0m \u001b[31m14.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hInstalling collected packages: nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, stable-baselines3\n", - " Attempting uninstall: nvidia-nvjitlink-cu12\n", - " Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n", - " Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n", - " Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n", - " Attempting uninstall: nvidia-curand-cu12\n", - " Found existing installation: nvidia-curand-cu12 10.3.6.82\n", - " Uninstalling nvidia-curand-cu12-10.3.6.82:\n", - " Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n", - " Attempting uninstall: nvidia-cufft-cu12\n", - " Found existing installation: nvidia-cufft-cu12 11.2.3.61\n", - " Uninstalling nvidia-cufft-cu12-11.2.3.61:\n", - " Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n", - " Attempting uninstall: nvidia-cuda-runtime-cu12\n", - " Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n", - " Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n", - " Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n", - " Attempting uninstall: nvidia-cuda-nvrtc-cu12\n", - " Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n", - " Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n", - " Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n", - " Attempting uninstall: nvidia-cuda-cupti-cu12\n", - " Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n", - " Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n", - " Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n", - " Attempting uninstall: nvidia-cublas-cu12\n", - " Found existing installation: nvidia-cublas-cu12 12.5.3.2\n", - " Uninstalling nvidia-cublas-cu12-12.5.3.2:\n", - " Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n", - " Attempting uninstall: nvidia-cusparse-cu12\n", - " Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n", - " Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n", - " Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n", - " Attempting uninstall: nvidia-cudnn-cu12\n", - " Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n", - " Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n", - " Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n", - " Attempting uninstall: nvidia-cusolver-cu12\n", - " Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n", - " Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n", - " Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n", - "Successfully installed nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127 stable-baselines3-2.6.0\n" - ] - } - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "f5wGpSyLxaNr", - "outputId": "91b0a13f-718f-4cad-f67b-d080e9ae513c" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Before SMOTE: Counter({0: 16643, 1: 16593})\n", - "After SMOTE: Counter({1: 16643, 0: 16643})\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 1200x500 with 2 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT3NJREFUeJzt3XlcVXX+x/H3RQTcAFEB+YVbi7iN+0IuZZKYWOJSmU6akaZJZTRu8yvUlmHScU2TrDHUcDSbNNNEGRy1n5ILRS6p6QyljV2wFG5oCsr5/eGP8/MGLiGcC/h6Ph738eie7+ee+zn0OPJ5vDn3XJthGIYAAAAAAAAAC7m5ugEAAAAAAADcegilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAFQYM2fOVJMmTVSlShW1adPG1e0AAACUS8uXL1dISIiqVq0qX19fV7cDAFdFKAWgVCUkJMhmszk9/P391bNnT23cuLHE+928ebMmTpyorl276r333tOf/vSnUuy65AoKCrRs2TJ17txZfn5+qlWrlu666y4NHz5cn3/+uVm3detW8+fx/vvvF7uvrl27ymazqWXLlkXW8vPzNX/+fHXs2FG1atVSzZo11bFjR82fP1/5+flm3bRp04r8/It73HvvvZKkJ5544qo1Xl5epfvDAgAAN+2tt96SzWZT586di10/fPiwnnjiCd1+++165513tHjxYp07d07Tpk3T1q1bLe311KlTev755xUSEqJq1arJ399fnTp10qRJk5Sbm2vWFc4j3t7e+uWXX4rs5+jRo+Z88pe//KXI+vHjxzVmzBg1atRInp6e8vf3V2RkpHbs2OFU16hRoxuakxISEiTpmjVjxowp3R8WcItyd3UDACqnV155RY0bN5ZhGMrMzFRCQoL69u2rTz75RP369fvN+9uyZYvc3Nz017/+VR4eHmXQcck899xzWrhwofr3769hw4bJ3d1dR44c0caNG9WkSRN16dLFqd7Ly0srVqzQ73//e6ft3377rXbu3FlsEHT27FlFRERo27Zt6tevn5544gm5ubkpKSlJzz//vD766CNt2LBBNWrU0MCBA3XHHXeYr83NzdXYsWM1YMAADRw40NweEBBg/renp6fefffdIu9bpUqVEv9cAABA2UhMTFSjRo20e/duHTt2zOn3vnT5D2EFBQWaN2+eufbjjz9q+vTpkmT+YaqsnT59Wh06dJDD4dCTTz6pkJAQ/fTTT9q3b58WLVqksWPHqmbNmma9u7u7zp07p08++USPPPKI074SExPl5eWl8+fPF3mfHTt2qG/fvpKkp556Ss2bN5fdbldCQoK6d++uefPm6dlnn5UkzZ071ykM+/TTT/W3v/1Nc+bMUd26dc3td999t/nf999/v4YPH17kfe+6664S/mQAODEAoBS99957hiRjz549TttPnz5tVK1a1Rg6dGiJ9jty5EijRo0apdGiYRiGUVBQYJw7d+6m9mG32w2bzWaMGjWq2P1nZmaaz//5z38akoyBAwca7u7uxqlTp5zqX3/9dSMgIMDo1q2b0aJFC6e10aNHG5KMN998s8j7LFiwwJBkjBkzptgeT506ZUgypk6dWuz6iBEjSvXnCgAAys6///1vQ5Lx0UcfGfXq1TOmTZtWpGb69OmGJKdZ43rzQEnl5uZedW3GjBmGJGPHjh1F1nJycoxffvnFfF44j/Tu3duIjIwsUn/nnXcagwYNMiQZM2fONLefPn3aCAwMNAICAoxjx445vebcuXNG9+7dDTc3t2J7MAzDmDlzpiHJyMjIKHZdkjFu3LirHiOAm8fH9wBYwtfXV9WqVZO7u/MFmgUFBZo7d65atGghLy8vBQQE6Omnn9aZM2fMGpvNpvfee09nz54tcln1xYsX9eqrr+r222+Xp6enGjVqpD/+8Y+6cOGC0/s0atRI/fr106ZNm9ShQwdVq1ZNb7/9tiQpOztb48ePV3BwsDw9PXXHHXfojTfeUEFBwTWPKSMjQ4ZhqGvXrkXWCj+2+Gv9+/eXp6enVq9e7bR9xYoVeuSRR4pcnfT999/rr3/9q+677z5FR0cX2d+4cePUs2dPvfvuu/r++++v2S8AAKjYEhMTVbt2bUVERGjw4MFKTEx0Wm/UqJGmTp0qSapXr55sNpueeOIJ1atXT5I0ffp0c5aaNm2a+brDhw9r8ODB8vPzk5eXlzp06KB169Y57bvwFg3btm3TM888I39/f912221X7fVf//qXqlSpUuSqcUny9vYu9urwoUOHauPGjcrOzja37dmzR0ePHtXQoUOL1L/99tuy2+2aOXOmbr/9dqe1atWqaenSpbLZbHrllVeu2icA1yKUAlAmcnJy9OOPP+rUqVM6ePCgxo4dq9zc3CIfW3v66ac1YcIEde3aVfPmzdPIkSOVmJio8PBw815Jy5cvV/fu3eXp6anly5dr+fLl6tGjh6TLl2nHxsaqXbt2mjNnju655x7FxcVpyJAhRXo6cuSIHnvsMd1///2aN2+e2rRpo3Pnzumee+7R+++/r+HDh2v+/Pnq2rWrpkyZopiYmGseY8OGDSVJq1ev1rlz527o51K9enX1799ff/vb38xtX331lQ4ePFjssLVx40ZdunSp2MvGCw0fPlwXL15UUlLSDfVQnB9//LHIw+FwlHh/AACg9CUmJmrgwIHy8PDQY489pqNHj2rPnj3m+ty5czVgwABJ0qJFi7R8+XK98MILWrRokSRpwIAB5ixV+LH+gwcPqkuXLjp06JAmT56sWbNmqUaNGoqMjNSaNWuK9PDMM8/o66+/VmxsrCZPnnzVXhs2bKhLly5p+fLlN3x8AwcOlM1m00cffWRuW7FihUJCQtSuXbsi9Z988om8vLyKfNyvUOPGjdWtWzdt2bKl2HtV3Yjz588XOyfl5eWVaH8AfsXVl2oBqFwKP77364enp6eRkJDgVPvZZ58ZkozExESn7UlJSUW2F/cxs/T0dEOS8dRTTzlt/8Mf/mBIMrZs2WJua9iwoSHJSEpKcqp99dVXjRo1ahjffPON0/bJkycbVapUMY4fP37N4x0+fLghyahdu7YxYMAA4y9/+Ytx6NChInWFH99bvXq1sX79esNms5n7njBhgtGkSRPDMAzjnnvucfr43vjx4w1JxpdffnnVHr744gtDkhETE1Nk7UY+vlfc/y9JRnh4+DWPHQAAWGfv3r2GJCM5OdkwjMu3CrjtttuM559/3qlu6tSpv+nje7169TJatWplnD9/3txWUFBg3H333cadd95pbiuc8bp162ZcvHjxuv3a7XajXr16hiQjJCTEGDNmjLFixQojOzu7SO2Vc97gwYONXr16GYZhGJcuXTICAwON6dOnGxkZGUU+vufr62u0bt36mn0899xzhiRj3759RdZu5ON7V3v87W9/u+7PAMD1caUUgDKxcOFCJScnKzk5We+//7569uypp556yukvX6tXr5aPj4/uv/9+p788tW/fXjVr1tQ///nPa77Hp59+KklFrmh68cUXJUkbNmxw2t64cWOFh4c7bVu9erW6d++u2rVrO/UQFhamS5cuafv27dfs4b333tOCBQvUuHFjrVmzRn/4wx/UrFkz9erVS//5z3+KfU3v3r3l5+enlStXyjAMrVy5Uo899lixtT///LMkqVatWlftoXCtpFc2eXl5mf+vrnz8+c9/LtH+AABA6UtMTFRAQIB69uwp6fKtAh599FGtXLlSly5dKtE+T58+rS1btuiRRx7Rzz//bM5BP/30k8LDw3X06NEi88yoUaNu6MtQAgIC9NVXX2nMmDE6c+aM4uPjNXToUPn7++vVV1+VYRjFvm7o0KHaunWr7Ha7tmzZIrvdXuzV5NLlOelaM5J083NS//79i52TCv8/ALg5fPsegDLRqVMndejQwXz+2GOPqW3btoqOjla/fv3k4eGho0ePKicnp9h7L0lSVlbWNd/ju+++k5ubW5FvnQkMDJSvr6++++47p+2NGzcuso+jR49q37595r0WfmsPbm5uGjdunMaNG6effvpJO3bsUHx8vDZu3KghQ4bos88+K/KaqlWr6uGHH9aKFSvUqVMnnThx4qrDVuEgVRhOFedGgqtrqVKlisLCwkr0WgAAUPYuXbqklStXqmfPnsrIyDC3d+7cWbNmzVJKSop69+79m/d77NgxGYahl19+WS+//HKxNVlZWfqv//ov83lx89TV1K9fX4sWLdJbb72lo0ePatOmTXrjjTcUGxur+vXr66mnnirymr59+6pWrVpatWqV0tPT1bFjR91xxx369ttvi9TWqlXrmjOSdPNz0m233cacBJQhQikAlnBzc1PPnj01b948HT16VC1atFBBQYH8/f2L3KSz0NWCol+z2Ww3VFetWrUi2woKCnT//fdr4sSJxb7mt3zdb506dfTQQw/poYce0r333qtt27bpu+++M+89daWhQ4cqPj5e06ZNU+vWrdW8efNi99msWTNJ0r59+9SmTZtia/bt2ydJV90HAACo2LZs2aIffvhBK1eu1MqVK4usJyYmliiUKvxSlz/84Q9FriYv9Os//hU3T12PzWbTXXfdpbvuuksRERG68847lZiYWGwo5enpqYEDB2rp0qX697//7XRD9l9r1qyZvvzyS124cEGenp7F1uzbt09Vq1bVnXfe+Zv7BlD2CKUAWObixYuSpNzcXEnS7bffrn/84x/q2rVriQachg0bqqCgQEePHjXDG0nKzMxUdnZ2sWHQr91+++3Kzc0t9b+AdejQQdu2bdMPP/xQbB/dunVTgwYNtHXrVr3xxhtX3c8DDzygKlWqaPny5Ve92fmyZcvk7u6uPn36lFr/AACg/EhMTJS/v78WLlxYZO2jjz7SmjVrFB8ff9V56mp/wGvSpImky1dxW3U1UJMmTVS7dm398MMPV60ZOnSolixZIjc3t2K/vKZQv379lJqaqtWrVxf5Mh1J+vbbb/XZZ58pLCysRLMmgLLHPaUAWCI/P1+bN2+Wh4eHGSA98sgjunTpkl599dUi9RcvXnT6OuDi9O3bV9Llb5q50uzZsyVJERER1+3rkUceUWpqqjZt2lRkLTs72wzSimO32/X1118X2Z6Xl6eUlJRiP1pYyGazaf78+Zo6daoef/zxq75HcHCwRo4cqX/84x/mN+dcKT4+Xlu2bFFUVNQ1v5YZAABUTL/88os++ugj9evXT4MHDy7yiI6O1s8//6x169ZddR/Vq1eXpCKzlb+/v+699169/fbbxYZEp06dKnHfu3bt0tmzZ4ts3717t3766Sc1bdr0qq/t2bOnXn31VS1YsECBgYFXrXv66afl7++vCRMm6N///rfT2vnz5zVy5EgZhqHY2NgSHweAssWVUgDKxMaNG3X48GFJl+9FsGLFCh09elSTJ0+Wt7e3JOmee+7R008/rbi4OKWnp6t3796qWrWqjh49qtWrV2vevHkaPHjwVd+jdevWGjFihBYvXqzs7Gzdc8892r17t5YuXarIyMgbugHlhAkTtG7dOvXr109PPPGE2rdvr7Nnz2r//v368MMP9e2336pu3brFvvb7779Xp06ddN9996lXr14KDAxUVlaW/va3v+mrr77S+PHjr/pa6fKNM/v373/dHufMmaPDhw/rmWeeUVJSknlF1KZNm/Txxx/rnnvu0axZs667n6u5ePGi3n///WLXBgwYoBo1apR43wAA4OasW7dOP//8sx566KFi17t06aJ69eopMTFRjz76aLE11apVU/PmzbVq1Srddddd8vPzU8uWLdWyZUstXLhQ3bp1U6tWrTRq1Cg1adJEmZmZSk1N1ffff6+vvvqqRH0vX75ciYmJGjBggNq3by8PDw8dOnRIS5YskZeXl/74xz9e9bVubm566aWXrvsederU0YcffqiIiAi1a9dOTz31lJo3by673a6EhAQdO3ZM8+bN0913312iY5Ckb775ptg5KSAgQPfff3+J9wvgMkIpAGXiyr9IeXl5KSQkRIsWLdLTTz/tVBcfH6/27dvr7bff1h//+Ee5u7urUaNG+v3vf6+uXbte933effddNWnSRAkJCVqzZo0CAwM1ZcoUTZ069Yb6rF69urZt26Y//elPWr16tZYtWyZvb2/dddddmj59unx8fK762qZNm2ru3Ln69NNP9dZbbykzM1NeXl5q2bKl3nnnHUVFRd1QD9dTs2ZNpaSk6K233tL777+vCRMmyDAMhYSEaO7cuXrmmWdUtWrVEu//woULV71aKyMjg1AKAAAXSkxMlJeX11UDEDc3N0VERCgxMVE//fTTVffz7rvv6tlnn9ULL7ygvLw8TZ06VS1btlTz5s21d+9eTZ8+XQkJCfrpp5/k7++vtm3b3tQVRk8//bSqV6+ulJQUffzxx3I4HKpXr5569+6tKVOmqG3btiXe95W6d++uffv2mbPcDz/8IB8fH919991asmSJunXrdlP7L/y2vV+75557CKWAUmAzrvZdnAAAAAAAAEAZ4Z5SAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACzn7uoGKouCggKdPHlStWrVks1mc3U7AACglBiGoZ9//llBQUFyc+PveaWNGQoAgMrnRucnQqlScvLkSQUHB7u6DQAAUEZOnDih2267zdVtVDrMUAAAVF7Xm58IpUpJrVq1JF3+gXt7e7u4GwAAUFocDoeCg4PN3/UoXcxQAABUPjc6PxFKlZLCy829vb0ZqAAAqIT4aFnZYIYCAKDyut78xI0RAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDl3VzeA36b9hGWubgEo99JmDnd1CwCAcoYZCri+yjJDcb4D11dezndCKQAoxxiqgGsrLwMVAAAAfjs+vgcAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACzn0lBq+/btevDBBxUUFCSbzaa1a9cWqTl06JAeeugh+fj4qEaNGurYsaOOHz9urp8/f17jxo1TnTp1VLNmTQ0aNEiZmZlO+zh+/LgiIiJUvXp1+fv7a8KECbp48aJTzdatW9WuXTt5enrqjjvuUEJCQlkcMgAAwE1jhgIAAJWBS0Ops2fPqnXr1lq4cGGx6//617/UrVs3hYSEaOvWrdq3b59efvlleXl5mTUvvPCCPvnkE61evVrbtm3TyZMnNXDgQHP90qVLioiIUF5ennbu3KmlS5cqISFBsbGxZk1GRoYiIiLUs2dPpaena/z48Xrqqae0adOmsjt4AACAEmKGAgAAlYHNMAzD1U1Iks1m05o1axQZGWluGzJkiKpWrarly5cX+5qcnBzVq1dPK1as0ODBgyVJhw8fVrNmzZSamqouXbpo48aN6tevn06ePKmAgABJUnx8vCZNmqRTp07Jw8NDkyZN0oYNG3TgwAGn987OzlZSUtIN9e9wOOTj46OcnBx5e3uX8Kdwfe0nLCuzfQOVRdrM4a5uodRwzgPXZsX5btXv+JJihrox/HsKXF9lmaE434HrK+vz/UZ/v5fbe0oVFBRow4YNuuuuuxQeHi5/f3917tzZ6fL0tLQ05efnKywszNwWEhKiBg0aKDU1VZKUmpqqVq1amcOUJIWHh8vhcOjgwYNmzZX7KKwp3EdxLly4IIfD4fQAAABwNWYoAABQUZTbUCorK0u5ubn685//rD59+mjz5s0aMGCABg4cqG3btkmS7Ha7PDw85Ovr6/TagIAA2e12s+bKYapwvXDtWjUOh0O//PJLsf3FxcXJx8fHfAQHB9/0MQMAANwsZigAAFBRlNtQqqCgQJLUv39/vfDCC2rTpo0mT56sfv36KT4+3sXdSVOmTFFOTo75OHHihKtbAgAAYIYCAAAVRrkNperWrSt3d3c1b97caXuzZs3Mb44JDAxUXl6esrOznWoyMzMVGBho1vz6m2QKn1+vxtvbW9WqVSu2P09PT3l7ezs9AAAAXI0ZCgAAVBTlNpTy8PBQx44ddeTIEaft33zzjRo2bChJat++vapWraqUlBRz/ciRIzp+/LhCQ0MlSaGhodq/f7+ysrLMmuTkZHl7e5vDWmhoqNM+CmsK9wEAAFBRMEMBAICKwt2Vb56bm6tjx46ZzzMyMpSeni4/Pz81aNBAEyZM0KOPPqoePXqoZ8+eSkpK0ieffKKtW7dKknx8fBQVFaWYmBj5+fnJ29tbzz77rEJDQ9WlSxdJUu/evdW8eXM9/vjjmjFjhux2u1566SWNGzdOnp6ekqQxY8ZowYIFmjhxop588klt2bJFH3zwgTZs2GD5zwQAAOB6mKEAAEBl4NJQau/everZs6f5PCYmRpI0YsQIJSQkaMCAAYqPj1dcXJyee+45NW3aVH//+9/VrVs38zVz5syRm5ubBg0apAsXLig8PFxvvfWWuV6lShWtX79eY8eOVWhoqGrUqKERI0bolVdeMWsaN26sDRs26IUXXtC8efN022236d1331V4eLgFPwUAAIDfhhkKAABUBjbDMAxXN1EZOBwO+fj4KCcnp0zvjdB+wrIy2zdQWaTNHO7qFkoN5zxwbVac71b9jr9VMUMB5UdlmaE434HrK+vz/UZ/v5fbe0oBAAAAAACg8iKUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5l4ZS27dv14MPPqigoCDZbDatXbv2qrVjxoyRzWbT3LlznbafPn1aw4YNk7e3t3x9fRUVFaXc3Fynmn379ql79+7y8vJScHCwZsyYUWT/q1evVkhIiLy8vNSqVSt9+umnpXGIAAAApY4ZCgAAVAYuDaXOnj2r1q1ba+HChdesW7NmjT7//HMFBQUVWRs2bJgOHjyo5ORkrV+/Xtu3b9fo0aPNdYfDod69e6thw4ZKS0vTzJkzNW3aNC1evNis2blzpx577DFFRUXpyy+/VGRkpCIjI3XgwIHSO1gAAIBSwgwFAAAqA3dXvvkDDzygBx544Jo1//nPf/Tss89q06ZNioiIcFo7dOiQkpKStGfPHnXo0EGS9Oabb6pv3776y1/+oqCgICUmJiovL09LliyRh4eHWrRoofT0dM2ePdscvObNm6c+ffpowoQJkqRXX31VycnJWrBggeLj48vgyAEAAEqOGQoAAFQG5fqeUgUFBXr88cc1YcIEtWjRosh6amqqfH19zWFKksLCwuTm5qZdu3aZNT169JCHh4dZEx4eriNHjujMmTNmTVhYmNO+w8PDlZqaWhaHBQAAUKaYoQAAQEXg0iulrueNN96Qu7u7nnvuuWLX7Xa7/P39nba5u7vLz89PdrvdrGncuLFTTUBAgLlWu3Zt2e12c9uVNYX7KM6FCxd04cIF87nD4bjxAwMAAChDzFAAAKAiKLdXSqWlpWnevHlKSEiQzWZzdTtFxMXFycfHx3wEBwe7uiUAAABmKAAAUGGU21Dqs88+U1ZWlho0aCB3d3e5u7vru+++04svvqhGjRpJkgIDA5WVleX0uosXL+r06dMKDAw0azIzM51qCp9fr6ZwvThTpkxRTk6O+Thx4sRNHS8AAEBpYIYCAAAVRbkNpR5//HHt27dP6enp5iMoKEgTJkzQpk2bJEmhoaHKzs5WWlqa+botW7aooKBAnTt3Nmu2b9+u/Px8syY5OVlNmzZV7dq1zZqUlBSn909OTlZoaOhV+/P09JS3t7fTAwAAwNWYoQAAQEXh0ntK5ebm6tixY+bzjIwMpaeny8/PTw0aNFCdOnWc6qtWrarAwEA1bdpUktSsWTP16dNHo0aNUnx8vPLz8xUdHa0hQ4aYX308dOhQTZ8+XVFRUZo0aZIOHDigefPmac6cOeZ+n3/+ed1zzz2aNWuWIiIitHLlSu3du9fpK48BAADKC2YoAABQGbj0Sqm9e/eqbdu2atu2rSQpJiZGbdu2VWxs7A3vIzExUSEhIerVq5f69u2rbt26OQ1CPj4+2rx5szIyMtS+fXu9+OKLio2NNb/KWJLuvvturVixQosXL1br1q314Ycfau3atWrZsmXpHSwAAEApYYYCAACVgc0wDMPVTVQGDodDPj4+ysnJKdPL0NtPWFZm+wYqi7SZw13dQqnhnAeuzYrz3arf8bcqZiig/KgsMxTnO3B9ZX2+3+jv93J7TykAAAAAAABUXoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLuTSU2r59ux588EEFBQXJZrNp7dq15lp+fr4mTZqkVq1aqUaNGgoKCtLw4cN18uRJp32cPn1aw4YNk7e3t3x9fRUVFaXc3Fynmn379ql79+7y8vJScHCwZsyYUaSX1atXKyQkRF5eXmrVqpU+/fTTMjlmAACAm8UMBQAAKgOXhlJnz55V69attXDhwiJr586d0xdffKGXX35ZX3zxhT766CMdOXJEDz30kFPdsGHDdPDgQSUnJ2v9+vXavn27Ro8eba47HA717t1bDRs2VFpammbOnKlp06Zp8eLFZs3OnTv12GOPKSoqSl9++aUiIyMVGRmpAwcOlN3BAwAAlBAzFAAAqAxshmEYrm5Ckmw2m9asWaPIyMir1uzZs0edOnXSd999pwYNGujQoUNq3ry59uzZow4dOkiSkpKS1LdvX33//fcKCgrSokWL9N///d+y2+3y8PCQJE2ePFlr167V4cOHJUmPPvqozp49q/Xr15vv1aVLF7Vp00bx8fE31L/D4ZCPj49ycnLk7e1dwp/C9bWfsKzM9g1UFmkzh7u6hVLDOQ9cmxXnu1W/40uKGerG8O8pcH2VZYbifAeur6zP9xv9/V6h7imVk5Mjm80mX19fSVJqaqp8fX3NYUqSwsLC5Obmpl27dpk1PXr0MIcpSQoPD9eRI0d05swZsyYsLMzpvcLDw5WamnrVXi5cuCCHw+H0AAAAKI+YoQAAQHlUYUKp8+fPa9KkSXrsscfMlM1ut8vf39+pzt3dXX5+frLb7WZNQECAU03h8+vVFK4XJy4uTj4+PuYjODj45g4QAACgDDBDAQCA8qpChFL5+fl65JFHZBiGFi1a5Op2JElTpkxRTk6O+Thx4oSrWwIAAHDCDAUAAMozd1c3cD2Fw9R3332nLVu2OH0WMTAwUFlZWU71Fy9e1OnTpxUYGGjWZGZmOtUUPr9eTeF6cTw9PeXp6VnyAwMAAChDzFAAAKC8K9dXShUOU0ePHtU//vEP1alTx2k9NDRU2dnZSktLM7dt2bJFBQUF6ty5s1mzfft25efnmzXJyclq2rSpateubdakpKQ47Ts5OVmhoaFldWgAAABlhhkKAABUBC4NpXJzc5Wenq709HRJUkZGhtLT03X8+HHl5+dr8ODB2rt3rxITE3Xp0iXZ7XbZ7Xbl5eVJkpo1a6Y+ffpo1KhR2r17t3bs2KHo6GgNGTJEQUFBkqShQ4fKw8NDUVFROnjwoFatWqV58+YpJibG7OP5559XUlKSZs2apcOHD2vatGnau3evoqOjLf+ZAAAAXA8zFAAAqAxcGkrt3btXbdu2Vdu2bSVJMTExatu2rWJjY/Wf//xH69at0/fff682bdqofv365mPnzp3mPhITExUSEqJevXqpb9++6tatmxYvXmyu+/j4aPPmzcrIyFD79u314osvKjY2VqNHjzZr7r77bq1YsUKLFy9W69at9eGHH2rt2rVq2bKldT8MAACAG8QMBQAAKgOX3lPq3nvvlWEYV12/1lohPz8/rVix4po1v/vd7/TZZ59ds+bhhx/Www8/fN33AwAAcDVmKAAAUBmU63tKAQAAAAAAoHIilAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOZeGUtu3b9eDDz6ooKAg2Ww2rV271mndMAzFxsaqfv36qlatmsLCwnT06FGnmtOnT2vYsGHy9vaWr6+voqKilJub61Szb98+de/eXV5eXgoODtaMGTOK9LJ69WqFhITIy8tLrVq10qefflrqxwsAAFAamKEAAEBl4NJQ6uzZs2rdurUWLlxY7PqMGTM0f/58xcfHa9euXapRo4bCw8N1/vx5s2bYsGE6ePCgkpOTtX79em3fvl2jR4821x0Oh3r37q2GDRsqLS1NM2fO1LRp07R48WKzZufOnXrssccUFRWlL7/8UpGRkYqMjNSBAwfK7uABAABKiBkKAABUBjbDMAxXNyFJNptNa9asUWRkpKTLf+ELCgrSiy++qD/84Q+SpJycHAUEBCghIUFDhgzRoUOH1Lx5c+3Zs0cdOnSQJCUlJalv3776/vvvFRQUpEWLFum///u/Zbfb5eHhIUmaPHmy1q5dq8OHD0uSHn30UZ09e1br1683++nSpYvatGmj+Pj4G+rf4XDIx8dHOTk58vb2Lq0fSxHtJywrs30DlUXazOGubqHUcM4D12bF+W7V7/iSYoa6Mfx7ClxfZZmhON+B6yvr8/1Gf7+X23tKZWRkyG63KywszNzm4+Ojzp07KzU1VZKUmpoqX19fc5iSpLCwMLm5uWnXrl1mTY8ePcxhSpLCw8N15MgRnTlzxqy58n0KawrfpzgXLlyQw+FwegAAALgaMxQAAKgoym0oZbfbJUkBAQFO2wMCAsw1u90uf39/p3V3d3f5+fk51RS3jyvf42o1hevFiYuLk4+Pj/kIDg7+rYcIAABQ6pihAABARVFuQ6nybsqUKcrJyTEfJ06ccHVLAAAA5R4zFAAAKFRuQ6nAwEBJUmZmptP2zMxMcy0wMFBZWVlO6xcvXtTp06edaorbx5XvcbWawvXieHp6ytvb2+kBAADgasxQAACgoii3oVTjxo0VGBiolJQUc5vD4dCuXbsUGhoqSQoNDVV2drbS0tLMmi1btqigoECdO3c2a7Zv3678/HyzJjk5WU2bNlXt2rXNmivfp7Cm8H0AAAAqCmYoAABQUbg0lMrNzVV6errS09MlXb4xZ3p6uo4fPy6bzabx48frtdde07p167R//34NHz5cQUFB5rfLNGvWTH369NGoUaO0e/du7dixQ9HR0RoyZIiCgoIkSUOHDpWHh4eioqJ08OBBrVq1SvPmzVNMTIzZx/PPP6+kpCTNmjVLhw8f1rRp07R3715FR0db/SMBAAC4LmYoAABQGbi78s337t2rnj17ms8Lh5wRI0YoISFBEydO1NmzZzV69GhlZ2erW7duSkpKkpeXl/maxMRERUdHq1evXnJzc9OgQYM0f/58c93Hx0ebN2/WuHHj1L59e9WtW1exsbEaPXq0WXP33XdrxYoVeumll/THP/5Rd955p9auXauWLVta8FMAAAD4bZihAABAZWAzDMNwdROVgcPhkI+Pj3Jycsr03gjtJywrs30DlUXazOGubqHUcM4D12bF+W7V7/hbFTMUUH5UlhmK8x24vrI+32/093u5vacUAAAAAAAAKi9CKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYLkShVL33XefsrOzi2x3OBy67777brYnAACASof5CQAAwFmJQqmtW7cqLy+vyPbz58/rs88+u+mmAAAAKhvmJwAAAGfuv6V437595n9//fXXstvt5vNLly4pKSlJ//Vf/1V63QEAAFRwzE8AAADF+02hVJs2bWSz2WSz2Yq9zLxatWp68803S605AACAio75CQAAoHi/KZTKyMiQYRhq0qSJdu/erXr16plrHh4e8vf3V5UqVUq9SQAAgIqK+QkAAKB4vymUatiwoSSpoKCgTJoBAACobJifAAAAivebQqkrHT16VP/85z+VlZVVZMiKjY296cYAAAAqG+YnAACA/1eiUOqdd97R2LFjVbduXQUGBspms5lrNpuNoQoAAOBXmJ8AAACclSiUeu211/T6669r0qRJpd0PAABApcT8BAAA4MytJC86c+aMHn744dLuBQAAoNJifgIAAHBWolDq4Ycf1ubNm0u7FwAAgEqL+QkAAMBZiT6+d8cdd+jll1/W559/rlatWqlq1apO688991ypNAcAAFBZMD8BAAA4K1EotXjxYtWsWVPbtm3Ttm3bnNZsNhtDFQAAwK8wPwEAADgrUSiVkZFR2n0AAABUasxPAAAAzkp0TykAAAAAAADgZpToSqknn3zymutLliwpUTMAAACVFfMTAACAsxKFUmfOnHF6np+frwMHDig7O1v33XdfqTQGAABQmTA/AQAAOCtRKLVmzZoi2woKCjR27FjdfvvtN90UAABAZcP8BAAA4KzU7inl5uammJgYzZkzp7R2CQAAUKkxPwEAgFtZqd7o/F//+pcuXrxYmrsEAACo1JifAADArapEH9+LiYlxem4Yhn744Qdt2LBBI0aMKJXGAAAAKhPmJwAAAGclCqW+/PJLp+dubm6qV6+eZs2add1vlgEAALgVMT8BAAA4K1Eo9c9//rO0+wAAAKjUmJ8AAACclSiUKnTq1CkdOXJEktS0aVPVq1evVJoCAACorJifAAAALivRjc7Pnj2rJ598UvXr11ePHj3Uo0cPBQUFKSoqSufOnSvtHgEAACo85icAAABnJQqlYmJitG3bNn3yySfKzs5Wdna2Pv74Y23btk0vvvhiafcIAABQ4TE/AQAAOCvRx/f+/ve/68MPP9S9995rbuvbt6+qVaumRx55RIsWLSqt/gAAACoF5icAAABnJbpS6ty5cwoICCiy3d/fn8vPAQAAisH8BAAA4KxEoVRoaKimTp2q8+fPm9t++eUXTZ8+XaGhoaXWHAAAQGXB/AQAAOCsRB/fmzt3rvr06aPbbrtNrVu3liR99dVX8vT01ObNm0u1QQAAgMqA+QkAAMBZia6UatWqlY4ePaq4uDi1adNGbdq00Z///GcdO3ZMLVq0KLXmLl26pJdfflmNGzdWtWrVdPvtt+vVV1+VYRhmjWEYio2NVf369VWtWjWFhYXp6NGjTvs5ffq0hg0bJm9vb/n6+ioqKkq5ublONfv27VP37t3l5eWl4OBgzZgxo9SOAwAAwKr5SWKGAgAAFUOJrpSKi4tTQECARo0a5bR9yZIlOnXqlCZNmlQqzb3xxhtatGiRli5dqhYtWmjv3r0aOXKkfHx89Nxzz0mSZsyYofnz52vp0qVq3LixXn75ZYWHh+vrr7+Wl5eXJGnYsGH64YcflJycrPz8fI0cOVKjR4/WihUrJEkOh0O9e/dWWFiY4uPjtX//fj355JPy9fXV6NGjS+VYAADArc2q+UlihgIAABVDia6UevvttxUSElJke4sWLRQfH3/TTRXauXOn+vfvr4iICDVq1EiDBw9W7969tXv3bkmX/8I3d+5cvfTSS+rfv79+97vfadmyZTp58qTWrl0rSTp06JCSkpL07rvvqnPnzurWrZvefPNNrVy5UidPnpQkJSYmKi8vT0uWLFGLFi00ZMgQPffcc5o9e3apHQsAALi1WTU/ScxQAACgYihRKGW321W/fv0i2+vVq6cffvjhppsqdPfddyslJUXffPONpMv3Xfif//kfPfDAA5KkjIwM2e12hYWFma/x8fFR586dlZqaKklKTU2Vr6+vOnToYNaEhYXJzc1Nu3btMmt69OghDw8PsyY8PFxHjhzRmTNnSu14AADArcuq+UlihgIAABVDiT6+FxwcrB07dqhx48ZO23fs2KGgoKBSaUySJk+eLIfDoZCQEFWpUkWXLl3S66+/rmHDhkm6PNxJKvL1ygEBAeaa3W6Xv7+/07q7u7v8/Pycan59LIX7tNvtql27dpHeLly4oAsXLpjPHQ7HzRwqAACo5KyanyRmKAAAUDGUKJQaNWqUxo8fr/z8fN13332SpJSUFE2cOFEvvvhiqTX3wQcfKDExUStWrFCLFi2Unp6u8ePHKygoSCNGjCi19ymJuLg4TZ8+3aU9AACAisOq+UlihgIAABVDiUKpCRMm6KefftIzzzyjvLw8SZKXl5cmTZqkKVOmlFpzEyZM0OTJkzVkyBBJl7+15rvvvlNcXJxGjBihwMBASVJmZqbT5fCZmZlq06aNJCkwMFBZWVlO+7148aJOnz5tvj4wMFCZmZlONYXPC2t+bcqUKYqJiTGfOxwOBQcH38TRAgCAysyq+anwvZihAABAeVeie0rZbDa98cYbOnXqlD7//HN99dVXOn36tGJjY0u1uXPnzsnNzbnFKlWqqKCgQJLUuHFjBQYGKiUlxVx3OBzatWuXQkNDJUmhoaHKzs5WWlqaWbNlyxYVFBSoc+fOZs327duVn59v1iQnJ6tp06bFXnYuSZ6envL29nZ6AAAAXI1V85PEDAUAACqGEoVShWrWrKmOHTuqZcuW8vT0LK2eTA8++KBef/11bdiwQd9++63WrFmj2bNna8CAAZIuD3fjx4/Xa6+9pnXr1mn//v0aPny4goKCFBkZKUlq1qyZ+vTpo1GjRmn37t3asWOHoqOjNWTIEPP+DUOHDpWHh4eioqJ08OBBrVq1SvPmzXP6Kx4AAEBpKOv5SWKGAgAAFUOJPr5nlTfffFMvv/yynnnmGWVlZSkoKEhPP/20018UJ06cqLNnz2r06NHKzs5Wt27dlJSUJC8vL7MmMTFR0dHR6tWrl9zc3DRo0CDNnz/fXPfx8dHmzZs1btw4tW/fXnXr1lVsbKxGjx5t6fECAACUBmYoAABQEdgMwzBc3URl4HA45OPjo5ycnDK9DL39hGVltm+gskibOdzVLZQaznng2qw43636HX+rYoYCyo/KMkNxvgPXV9bn+43+fr+pj+8BAAAAAAAAJUEoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMBy5T6U+s9//qPf//73qlOnjqpVq6ZWrVpp79695rphGIqNjVX9+vVVrVo1hYWF6ejRo077OH36tIYNGyZvb2/5+voqKipKubm5TjX79u1T9+7d5eXlpeDgYM2YMcOS4wMAACgLzFAAAKC8K9eh1JkzZ9S1a1dVrVpVGzdu1Ndff61Zs2apdu3aZs2MGTM0f/58xcfHa9euXapRo4bCw8N1/vx5s2bYsGE6ePCgkpOTtX79em3fvl2jR4821x0Oh3r37q2GDRsqLS1NM2fO1LRp07R48WJLjxcAAKA0MEMBAICKwN3VDVzLG2+8oeDgYL333nvmtsaNG5v/bRiG5s6dq5deekn9+/eXJC1btkwBAQFau3athgwZokOHDikpKUl79uxRhw4dJElvvvmm+vbtq7/85S8KCgpSYmKi8vLytGTJEnl4eKhFixZKT0/X7NmznQYvAACAioAZCgAAVATl+kqpdevWqUOHDnr44Yfl7++vtm3b6p133jHXMzIyZLfbFRYWZm7z8fFR586dlZqaKklKTU2Vr6+vOUxJUlhYmNzc3LRr1y6zpkePHvLw8DBrwsPDdeTIEZ05c6asDxMAAKBUMUMBAICKoFyHUv/+97+1aNEi3Xnnndq0aZPGjh2r5557TkuXLpUk2e12SVJAQIDT6wICAsw1u90uf39/p3V3d3f5+fk51RS3jyvf49cuXLggh8Ph9AAAACgPmKEAAEBFUK4/vldQUKAOHTroT3/6kySpbdu2OnDggOLj4zVixAiX9hYXF6fp06e7tAcAAIDiMEMBAICKoFxfKVW/fn01b97caVuzZs10/PhxSVJgYKAkKTMz06kmMzPTXAsMDFRWVpbT+sWLF3X69GmnmuL2ceV7/NqUKVOUk5NjPk6cOFGSQwQAACh1zFAAAKAiKNehVNeuXXXkyBGnbd98840aNmwo6fINOwMDA5WSkmKuOxwO7dq1S6GhoZKk0NBQZWdnKy0tzazZsmWLCgoK1LlzZ7Nm+/btys/PN2uSk5PVtGlTp2+puZKnp6e8vb2dHgAAAOUBMxQAAKgIynUo9cILL+jzzz/Xn/70Jx07dkwrVqzQ4sWLNW7cOEmSzWbT+PHj9dprr2ndunXav3+/hg8frqCgIEVGRkq6/FfBPn36aNSoUdq9e7d27Nih6OhoDRkyREFBQZKkoUOHysPDQ1FRUTp48KBWrVqlefPmKSYmxlWHDgAAUGLMUAAAoCIo1/eU6tixo9asWaMpU6bolVdeUePGjTV37lwNGzbMrJk4caLOnj2r0aNHKzs7W926dVNSUpK8vLzMmsTEREVHR6tXr15yc3PToEGDNH/+fHPdx8dHmzdv1rhx49S+fXvVrVtXsbGxfJUxAACokJihAABARWAzDMNwdROVgcPhkI+Pj3Jycsr0MvT2E5aV2b6ByiJt5nBXt1BqOOeBa7PifLfqd/ytihkKKD8qywzF+Q5cX1mf7zf6+71cf3wPAAAAAAAAlROhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAchUqlPrzn/8sm82m8ePHm9vOnz+vcePGqU6dOqpZs6YGDRqkzMxMp9cdP35cERERql69uvz9/TVhwgRdvHjRqWbr1q1q166dPD09dccddyghIcGCIwIAACh7zFAAAKA8qjCh1J49e/T222/rd7/7ndP2F154QZ988olWr16tbdu26eTJkxo4cKC5funSJUVERCgvL087d+7U0qVLlZCQoNjYWLMmIyNDERER6tmzp9LT0zV+/Hg99dRT2rRpk2XHBwAAUBaYoQAAQHlVIUKp3NxcDRs2TO+8845q165tbs/JydFf//pXzZ49W/fdd5/at2+v9957Tzt37tTnn38uSdq8ebO+/vprvf/++2rTpo0eeOABvfrqq1q4cKHy8vIkSfHx8WrcuLFmzZqlZs2aKTo6WoMHD9acOXNccrwAAAClgRkKAACUZxUilBo3bpwiIiIUFhbmtD0tLU35+flO20NCQtSgQQOlpqZKklJTU9WqVSsFBASYNeHh4XI4HDp48KBZ8+t9h4eHm/sozoULF+RwOJweAAAA5QkzFAAAKM/cXd3A9axcuVJffPGF9uzZU2TNbrfLw8NDvr6+TtsDAgJkt9vNmiuHqcL1wrVr1TgcDv3yyy+qVq1akfeOi4vT9OnTS3xcAAAAZYkZCgAAlHfl+kqpEydO6Pnnn1diYqK8vLxc3Y6TKVOmKCcnx3ycOHHC1S0BAABIYoYCAAAVQ7kOpdLS0pSVlaV27drJ3d1d7u7u2rZtm+bPny93d3cFBAQoLy9P2dnZTq/LzMxUYGCgJCkwMLDIN8kUPr9ejbe3d7F/4ZMkT09PeXt7Oz0AAADKA2YoAABQEZTrUKpXr17av3+/0tPTzUeHDh00bNgw87+rVq2qlJQU8zVHjhzR8ePHFRoaKkkKDQ3V/v37lZWVZdYkJyfL29tbzZs3N2uu3EdhTeE+AAAAKhJmKAAAUBGU63tK1apVSy1btnTaVqNGDdWpU8fcHhUVpZiYGPn5+cnb21vPPvusQkND1aVLF0lS79691bx5cz3++OOaMWOG7Ha7XnrpJY0bN06enp6SpDFjxmjBggWaOHGinnzySW3ZskUffPCBNmzYYO0BAwAAlAJmKAAAUBGU61DqRsyZM0dubm4aNGiQLly4oPDwcL311lvmepUqVbR+/XqNHTtWoaGhqlGjhkaMGKFXXnnFrGncuLE2bNigF154QfPmzdNtt92md999V+Hh4a44JAAAgDLHDAUAAFzNZhiG4eomKgOHwyEfHx/l5OSU6b0R2k9YVmb7BiqLtJnDXd1CqeGcB67NivPdqt/xtypmKKD8qCwzFOc7cH1lfb7f6O/3cn1PKQAAAAAAAFROhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALFfuQ6m4uDh17NhRtWrVkr+/vyIjI3XkyBGnmvPnz2vcuHGqU6eOatasqUGDBikzM9Op5vjx44qIiFD16tXl7++vCRMm6OLFi041W7duVbt27eTp6ak77rhDCQkJZX14AAAApY75CQAAVATlPpTatm2bxo0bp88//1zJycnKz89X7969dfbsWbPmhRde0CeffKLVq1dr27ZtOnnypAYOHGiuX7p0SREREcrLy9POnTu1dOlSJSQkKDY21qzJyMhQRESEevbsqfT0dI0fP15PPfWUNm3aZOnxAgAA3CzmJwAAUBHYDMMwXN3Eb3Hq1Cn5+/tr27Zt6tGjh3JyclSvXj2tWLFCgwcPliQdPnxYzZo1U2pqqrp06aKNGzeqX79+OnnypAICAiRJ8fHxmjRpkk6dOiUPDw9NmjRJGzZs0IEDB8z3GjJkiLKzs5WUlHTdvhwOh3x8fJSTkyNvb++yOXhJ7ScsK7N9A5VF2szhrm6h1HDOA9dmxflu1e/4slRe5yeJGQooTyrLDMX5DlxfWZ/vN/r7vdxfKfVrOTk5kiQ/Pz9JUlpamvLz8xUWFmbWhISEqEGDBkpNTZUkpaamqlWrVuZAJUnh4eFyOBw6ePCgWXPlPgprCvfxaxcuXJDD4XB6AAAAlEflZX6SmKEAAMD/q1ChVEFBgcaPH6+uXbuqZcuWkiS73S4PDw/5+vo61QYEBMhut5s1Vw5UheuFa9eqcTgc+uWXX4r0EhcXJx8fH/MRHBxcKscIAABQmsrT/CQxQwEAgP9XoUKpcePG6cCBA1q5cqWrW9GUKVOUk5NjPk6cOOHqlgAAAIooT/OTxAwFAAD+n7urG7hR0dHRWr9+vbZv367bbrvN3B4YGKi8vDxlZ2c7/bUvMzNTgYGBZs3u3bud9lf47TJX1vz6G2cyMzPl7e2tatWqFenH09NTnp6epXJsAAAAZaG8zU8SMxQAAPh/5f5KKcMwFB0drTVr1mjLli1q3Lix03r79u1VtWpVpaSkmNuOHDmi48ePKzQ0VJIUGhqq/fv3Kysry6xJTk6Wt7e3mjdvbtZcuY/CmsJ9AAAAVBTMTwAAoCIo91dKjRs3TitWrNDHH3+sWrVqmfcw8PHxUbVq1eTj46OoqCjFxMTIz89P3t7eevbZZxUaGqouXbpIknr37q3mzZvr8ccf14wZM2S32/XSSy9p3Lhx5l/qxowZowULFmjixIl68skntWXLFn3wwQfasGGDy44dAACgJJifAABARVDur5RatGiRcnJydO+996p+/frmY9WqVWbNnDlz1K9fPw0aNEg9evRQYGCgPvroI3O9SpUqWr9+vapUqaLQ0FD9/ve/1/Dhw/XKK6+YNY0bN9aGDRuUnJys1q1ba9asWXr33XcVHh5u6fECAADcLOYnAABQEZT7K6UMw7hujZeXlxYuXKiFCxdetaZhw4b69NNPr7mfe++9V19++eVv7hEAAKA8YX4CAAAVQbm/UgoAAAAAAACVD6EUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSv3KwoUL1ahRI3l5ealz587avXu3q1sCAAAo15ifAABASRBKXWHVqlWKiYnR1KlT9cUXX6h169YKDw9XVlaWq1sDAAAol5ifAABASRFKXWH27NkaNWqURo4cqebNmys+Pl7Vq1fXkiVLXN0aAABAucT8BAAASopQ6v/k5eUpLS1NYWFh5jY3NzeFhYUpNTXVhZ0BAACUT8xPAADgZri7uoHy4scff9SlS5cUEBDgtD0gIECHDx8uUn/hwgVduHDBfJ6TkyNJcjgcZdrnpQu/lOn+gcqgrM9DK3HOA9dmxfle+B6GYZT5e1U0v3V+kpihgPKsssxQnO/A9ZX1+X6j8xOhVAnFxcVp+vTpRbYHBwe7oBsAV/J5c4yrWwBgESvP959//lk+Pj6WvV9lxQwFlF/MUMCtw6rz/XrzE6HU/6lbt66qVKmizMxMp+2ZmZkKDAwsUj9lyhTFxMSYzwsKCnT69GnVqVNHNputzPtF+eBwOBQcHKwTJ07I29vb1e0AKEOc77cuwzD0888/KygoyNWtlDu/dX6SmKFwGf+mArcOzvdb043OT4RS/8fDw0Pt27dXSkqKIiMjJV0eklJSUhQdHV2k3tPTU56enk7bfH19LegU5ZG3tzf/wAK3CM73WxNXSBXvt85PEjMUnPFvKnDr4Hy/9dzI/EQodYWYmBiNGDFCHTp0UKdOnTR37lydPXtWI0eOdHVrAAAA5RLzEwAAKClCqSs8+uijOnXqlGJjY2W329WmTRslJSUVuXknAAAALmN+AgAAJUUo9SvR0dFXvdwc+DVPT09NnTq1yMcQAFQ+nO/A1TE/4bfi31Tg1sH5jmuxGXy/MQAAAAAAACzm5uoGAAAAAAAAcOshlAIAAAAAAIDlCKUAAAAAAABgOUIp4CYsXLhQjRo1kpeXlzp37qzdu3e7uiUAZWD79u168MEHFRQUJJvNprVr17q6JQCosJifgFsD8xNuBKEUUEKrVq1STEyMpk6dqi+++EKtW7dWeHi4srKyXN0agFJ29uxZtW7dWgsXLnR1KwBQoTE/AbcO5ifcCL59Dyihzp07q2PHjlqwYIEkqaCgQMHBwXr22Wc1efJkF3cHoKzYbDatWbNGkZGRrm4FACoc5ifg1sT8hKvhSimgBPLy8pSWlqawsDBzm5ubm8LCwpSamurCzgAAAMon5icAwK8RSgEl8OOPP+rSpUsKCAhw2h4QECC73e6irgAAAMov5icAwK8RSgEAAAAAAMByhFJACdStW1dVqlRRZmam0/bMzEwFBga6qCsAAIDyi/kJAPBrhFJACXh4eKh9+/ZKSUkxtxUUFCglJUWhoaEu7AwAAKB8Yn4CAPyau6sbACqqmJgYjRgxQh06dFCnTp00d+5cnT17ViNHjnR1awBKWW5uro4dO2Y+z8jIUHp6uvz8/NSgQQMXdgYAFQvzE3DrYH7CjbAZhmG4ugmgolqwYIFmzpwpu92uNm3aaP78+ercubOr2wJQyrZu3aqePXsW2T5ixAglJCRY3xAAVGDMT8CtgfkJN4JQCgAAAAAAAJbjnlIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIA8BskJCTI19f3pvdjs9m0du3am94PAABAecf8BOBqCKUA3HKeeOIJRUZGuroNAACACoP5CUBZIJQCAAAAAACA5QilAOAKs2fPVqtWrVSjRg0FBwfrmWeeUW5ubpG6tWvX6s4775SXl5fCw8N14sQJp/WPP/5Y7dq1k5eXl5o0aaLp06fr4sWLVh0GAACAZZifAJQUoRQAXMHNzU3z58/XwYMHtXTpUm3ZskUTJ050qjl37pxef/11LVu2TDt27FB2draGDBlirn/22WcaPny4nn/+eX399dd6++23lZCQoNdff93qwwEAAChzzE8ASspmGIbh6iYAwEpPPPGEsrOzb+hGmR9++KHGjBmjH3/8UdLlG3WOHDlSn3/+uTp37ixJOnz4sJo1a6Zdu3apU6dOCgsLU69evTRlyhRzP++//74mTpyokydPSrp8o841a9ZwbwYAAFAhMD8BKAvurm4AAMqTf/zjH4qLi9Phw4flcDh08eJFnT9/XufOnVP16tUlSe7u7urYsaP5mpCQEPn6+urQoUPq1KmTvvrqK+3YscPpL3uXLl0qsh8AAIDKgPkJQEkRSgHA//n222/Vr18/jR07Vq+//rr8/Pz0P//zP4qKilJeXt4ND0O5ubmaPn26Bg4cWGTNy8urtNsGAABwGeYnADeDUAoA/k9aWpoKCgo0a9YsubldvuXeBx98UKTu4sWL2rt3rzp16iRJOnLkiLKzs9WsWTNJUrt27XTkyBHdcccd1jUPAADgAsxPAG4GoRSAW1JOTo7S09OdttWtW1f5+fl688039eCDD2rHjh2Kj48v8tqqVavq2Wef1fz58+Xu7q7o6Gh16dLFHLJiY2PVr18/NWjQQIMHD5abm5u++uorHThwQK+99poVhwcAAFDqmJ8AlDa+fQ/ALWnr1q1q27at02P58uWaPXu23njjDbVs2VKJiYmKi4sr8trq1atr0qRJGjp0qLp27aqaNWtq1apV5np4eLjWr1+vzZs3q2PHjurSpYvmzJmjhg0bWnmIAAAApYr5CUBp49v3AAAAAAAAYDmulAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJb7XzxvjxU0c7OHAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - " precision recall f1-score support\n", - "\n", - " 0 0.60 0.02 0.03 4149\n", - " 1 0.50 0.99 0.67 4161\n", - "\n", - " accuracy 0.50 8310\n", - " macro avg 0.55 0.50 0.35 8310\n", - "weighted avg 0.55 0.50 0.35 8310\n", - "\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 600x400 with 2 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAGJCAYAAADxMfswAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUU5JREFUeJzt3XlcVGX7P/DPsMyAwIAoMJAbLikoamLpfHFfQMQtsXIH1yA0d40nd00KczelxcQUXEtLKRVFNBXNSHJLHheMShaXAEEYtvP7wx/ncTyg7IPM593rvGLuc5/7XGdmcC7u5YxMEAQBRERERAAMdB0AERER1RxMDIiIiEjExICIiIhETAyIiIhIxMSAiIiIREwMiIiISMTEgIiIiERMDIiIiEjExICIiIhETAyowm7cuAF3d3dYWlpCJpPhwIEDldr+nTt3IJPJEBoaWqntvsx69OiBHj16VFp7mZmZmDhxIlQqFWQyGaZPn15pbZNURV6/Jk2awNfXt1LjIXoaE4Na4tatW3j33XfRtGlTmJiYQKlUws3NDevWrUN2dnaVntvHxweXL1/GRx99hO3bt6Njx45Ver7q5OvrC5lMBqVSWezzeOPGDchkMshkMnz66adlbv/u3btYvHgx4uLiKiHa8luxYgVCQ0Ph7++P7du3Y8yYMVV6viZNmkAmk6FPnz7F7v/yyy/F5/XXX38VyxcvXgyZTIb79++LZb6+vjA3Ny9zDEUJp0wmw/Lly4utM2rUKMhksnK1T/SyMtJ1AFRxEREReOutt6BQKDB27Fi0adMGubm5OH36NObMmYOrV6/iiy++qJJzZ2dnIyYmBh9++CGmTJlSJedo3LgxsrOzYWxsXCXtv4iRkREeP36MgwcP4u2339baFxYWBhMTE+Tk5JSr7bt372LJkiVo0qQJ2rdvX+rjjh49Wq7zlSQqKgqdO3fGokWLKrXd5zExMcGJEyeQnJwMlUqlta+iz2tZ49i5cyfmz5+vVZ6VlYXvv/8eJiYmVR4DUU3CHoOXXEJCAoYPH47GjRvj2rVrWLduHSZNmoSAgADs3LkT165dQ+vWravs/Pfu3QMAWFlZVdk5ZDIZTExMYGhoWGXneB6FQoHevXtj586dkn3h4eHw8vKqtlgeP34MAJDL5ZDL5ZXWbmpqaqW+hvn5+cjNzX1uHTc3N5ibm2P37t1a5X///Td+/vnnante+/fvj2vXruH333/XKv/++++Rm5uLvn37VkscRDUFE4OXXHBwMDIzM7FlyxbY29tL9jdv3hzTpk0TH+fn52PZsmVo1qwZFAoFmjRpgv/85z/QaDRaxzVp0gQDBgzA6dOn8cYbb8DExARNmzbFN998I9ZZvHgxGjduDACYM2cOZDIZmjRpAuBJ927Rz08r6gp+WmRkJLp06QIrKyuYm5ujZcuW+M9//iPuL2mOQVRUFLp27QozMzNYWVlh8ODB+OOPP4o9382bN+Hr6wsrKytYWlpi3Lhx4odsaYwcORI//fQT0tLSxLILFy7gxo0bGDlypKT+w4cPMXv2bLi4uMDc3BxKpRKenp5aHz7R0dF4/fXXAQDjxo0Tu7WLrrNHjx5o06YNYmNj0a1bN9SpU0d8Xp4do/bx8YGJiYnk+j08PFC3bl3cvXu32OuKjo6GTCZDQkICIiIixBju3LkD4EnCMGHCBNjZ2cHExATt2rXDtm3btNooen0+/fRTrF27VnxvXbt27bnPqYmJCYYOHYrw8HCt8p07d6Ju3brw8PB47vGVRa1Ww9HRURJHWFgY+vXrB2tr62KP27RpE1q3bg2FQgEHBwcEBARovT+KfPHFF2jWrBlMTU3xxhtv4Oeffy62PY1Gg0WLFqF58+ZQKBRo2LAh5s6dK/ndJKpqTAxecgcPHkTTpk3xf//3f6WqP3HiRCxcuBAdOnTAmjVr0L17dwQFBWH48OGSujdv3sSwYcPQt29frFq1CnXr1oWvry+uXr0KABg6dCjWrFkDABgxYgS2b9+OtWvXlin+q1evYsCAAdBoNFi6dClWrVqFQYMG4cyZM8897tixY/Dw8EBqaioWL16MmTNn4uzZs3BzcxM/1J729ttv49GjRwgKCsLbb7+N0NBQLFmypNRxDh06FDKZDN99951YFh4ejlatWqFDhw6S+rdv38aBAwcwYMAArF69GnPmzMHly5fRvXt38UPayckJS5cuBQBMnjwZ27dvx/bt29GtWzexnQcPHsDT0xPt27fH2rVr0bNnz2LjW7duHWxsbODj44OCggIAwOeff46jR49iw4YNcHBwKPY4JycnbN++HfXr10f79u3FGGxsbJCdnY0ePXpg+/btGDVqFFauXAlLS0v4+vpi3bp1kra2bt2KDRs2YPLkyVi1alWJH6hPGzlyJH755RfcunVL63kdNmxYtQ4djRgxArt27ULRt9Dfv38fR48eLTbpA54knAEBAXBwcMCqVavg7e2Nzz//HO7u7sjLyxPrbdmyBe+++y5UKhWCg4Ph5uaGQYMG4a+//tJqr7CwEIMGDcKnn36KgQMHYsOGDRgyZAjWrFmDd955p+ounKg4Ar200tPTBQDC4MGDS1U/Li5OACBMnDhRq3z27NkCACEqKkosa9y4sQBAOHXqlFiWmpoqKBQKYdasWWJZQkKCAEBYuXKlVps+Pj5C48aNJTEsWrRIePptt2bNGgGAcO/evRLjLjrH1q1bxbL27dsLtra2woMHD8Sy33//XTAwMBDGjh0rOd/48eO12nzzzTeFevXqlXjOp6/DzMxMEARBGDZsmNC7d29BEAShoKBAUKlUwpIlS4p9DnJycoSCggLJdSgUCmHp0qVi2YULFyTXVqR79+4CACEkJKTYfd27d9cqO3LkiABAWL58uXD79m3B3NxcGDJkyAuvURCevN5eXl5aZWvXrhUACDt27BDLcnNzBbVaLZibmwsZGRnidQEQlEqlkJqaWqbz5efnCyqVSli2bJkgCIJw7do1AYBw8uRJYevWrQIA4cKFC+JxRa/n0++Xp1+jsnj6dbty5YoAQPj5558FQRCEzz77TDA3NxeysrIk7aempgpyuVxwd3fXeo03btwoABC+/vpr8bmytbUV2rdvL2g0GrHeF198IQDQev22b98uGBgYiOcvEhISIgAQzpw5o/Xc+fj4lPl6iUqLPQYvsYyMDACAhYVFqer/+OOPAICZM2dqlc+aNQvAk0mMT3N2dkbXrl3FxzY2NmjZsiVu375d7pifVTSu/f3336OwsLBUxyQlJSEuLg6+vr5af5W2bdsWffv2Fa/zaX5+flqPu3btigcPHojPYWmMHDkS0dHRSE5ORlRUFJKTk0v8i1KhUMDA4MmvV0FBAR48eCAOk/z222+lPqdCocC4ceNKVdfd3R3vvvsuli5diqFDh8LExASff/55qc/1rB9//BEqlQojRowQy4yNjfH+++8jMzMTJ0+e1Krv7e0NGxubMp3D0NAQb7/9tjh/IywsDA0bNtR631WH1q1bo23btmIc4eHhGDx4MOrUqSOpe+zYMeTm5mL69OniawwAkyZNglKpFH+Pfv31V6SmpsLPz09rPoivry8sLS212ty7dy+cnJzQqlUr3L9/X9x69eoFADhx4kSlXzNRSZgYvMSUSiUA4NGjR6Wq/+eff8LAwADNmzfXKlepVLCyssKff/6pVd6oUSNJG3Xr1sW///5bzoil3nnnHbi5uWHixImws7PD8OHDsWfPnucmCUVxtmzZUrLPyckJ9+/fR1ZWllb5s9dSt25dACjTtfTv3x8WFhbYvXs3wsLC8Prrr0ueyyKFhYVYs2YNWrRoAYVCgfr168PGxgaXLl1Cenp6qc/5yiuvlGmS4aeffgpra2vExcVh/fr1sLW1LfWxz/rzzz/RokULrQ8/4MlzXLT/aY6OjuU6z8iRI8XJf+Hh4Rg+fLhkHkp1GDlyJPbu3YubN2/i7NmzJSZ9Jb3/5HI5mjZtKu4v+n+LFi206hkbG6Np06ZaZTdu3MDVq1dhY2Ojtb366qsAnsz1IKouXK74ElMqlXBwcMCVK1fKdFxp/9EtaRWA8P/HYctzjqLx7yKmpqY4deoUTpw4gYiICBw+fBi7d+9Gr169cPTo0UpbiVCRaymiUCgwdOhQbNu2Dbdv38bixYtLrLtixQosWLAA48ePx7Jly2BtbQ0DAwNMnz691D0jwJPnpywuXrwofohcvnxZ66/9qlbWWIt06tQJzZo1w/Tp05GQkFDiB3JVGzFiBAIDAzFp0iTUq1cP7u7u1XbuwsJCuLi4YPXq1cXub9iwYbXFQsQeg5fcgAEDcOvWLcTExLywbuPGjVFYWIgbN25olaekpCAtLU1cYVAZ6tatW+wM7Wf/ygQAAwMD9O7dG6tXr8a1a9fw0UcfISoqqsTu06I44+PjJfuuX7+O+vXrw8zMrGIXUIKRI0fi4sWLePToUbETNovs27cPPXv2xJYtWzB8+HC4u7ujT58+kuekMv8yzsrKwrhx4+Ds7IzJkycjODgYFy5cKHd7jRs3xo0bNySJzPXr18X9lWXEiBGIjo6Gk5NTme7nUJkaNWoENzc3REdH46233oKRUfF/N5X0/svNzUVCQoK4v+j/z/6+5eXlISEhQausWbNmePjwIXr37o0+ffpItuJ6x4iqChODl9zcuXNhZmaGiRMnIiUlRbL/1q1b4gzy/v37A4Bk5UDRXymVuW68WbNmSE9Px6VLl8SypKQk7N+/X6vew4cPJccWfTCUtEzL3t4e7du3x7Zt27Q+aK9cuYKjR4+K11kVevbsiWXLlmHjxo2Sm/I8zdDQUNIbsXfvXvzzzz9aZUUJTHFJVFnNmzcPiYmJ2LZtG1avXo0mTZrAx8en3Mvd+vfvj+TkZK37DOTn52PDhg0wNzdH9+7dKxxzkYkTJ2LRokVYtWpVpbVZHsuXL8eiRYswderUEuv06dMHcrkc69ev13qNt2zZgvT0dPH3qGPHjrCxsUFISIjWPR1CQ0Mlr/fbb7+Nf/75B19++aXkfNnZ2ZKhMaKqxKGEl1yzZs0QHh6Od955B05OTlp3Pjx79iz27t0r3le9Xbt28PHxwRdffIG0tDR0794dv/zyC7Zt24YhQ4aUuBSuPIYPH4558+bhzTffxPvvv4/Hjx9j8+bNePXVV7Um3y1duhSnTp2Cl5cXGjdujNTUVGzatAkNGjRAly5dSmx/5cqV8PT0hFqtxoQJE5CdnY0NGzbA0tLyuV38FWVgYCC5Q15xBgwYgKVLl2LcuHH4v//7P1y+fBlhYWGSseVmzZrBysoKISEhsLCwgJmZGTp16lTm8fqoqChs2rQJixYtEpdPbt26FT169MCCBQsQHBxcpvaAJ0soP//8c/j6+iI2NhZNmjTBvn37cObMGaxdu7bUk15Lo3HjxhV63fLy8oq9rbG1tTXee++9UrfTvXv3FyY8NjY2CAwMxJIlS9CvXz8MGjQI8fHx2LRpE15//XWMHj0awJO5BMuXL8e7776LXr164Z133kFCQgK2bt0qeR+MGTMGe/bsgZ+fH06cOAE3NzcUFBTg+vXr2LNnD44cOVKrbjVONZxuF0VQZfnvf/8rTJo0SWjSpIkgl8sFCwsLwc3NTdiwYYOQk5Mj1svLyxOWLFkiODo6CsbGxkLDhg2FwMBArTqCUPzyNUGQLpMrabmiIAjC0aNHhTZt2ghyuVxo2bKlsGPHDslyxePHjwuDBw8WHBwcBLlcLjg4OAgjRowQ/vvf/0rO8eySvmPHjglubm6CqampoFQqhYEDBwrXrl3TqlPc8jZBEMSlcAkJCSU+p4JQuqVwJS1XnDVrlmBvby+YmpoKbm5uQkxMTLHLDL///nvB2dlZMDIy0rrO7t27C61bty72nE+3k5GRITRu3Fjo0KGDkJeXp1VvxowZgoGBgRATE/Pcayjp9U5JSRHGjRsn1K9fX5DL5YKLi4vkdXjee6Cs53taWZYrAih2a9asWYntlzbukt4DGzduFFq1aiUYGxsLdnZ2gr+/v/Dvv/9K6m3atElwdHQUFAqF0LFjR+HUqVPFvg9yc3OFTz75RGjdurWgUCiEunXrCq6ursKSJUuE9PR0sR6XK1JVkwlCGWZfERERUa3GOQZEREQkYmJAREREIiYGREREJGJiQERERCImBkRERCRiYkBEREQiJgZEREQkqpV3PszO03UERFXPuvM0XYdAVOWyY9dVafumr00p97HZFzdWYiQ1R61MDIiIiEpFxo7zZzExICIi/VWJ33BaWzAxICIi/cUeAwk+I0RERNXo448/hkwmw/Tp08WynJwcBAQEoF69ejA3N4e3tzdSUlK0jktMTISXlxfq1KkDW1tbzJkzB/n5+Vp1oqOj0aFDBygUCjRv3hyhoaFljo+JARER6S+ZrPxbOVy4cAGff/452rZtq1U+Y8YMHDx4EHv37sXJkydx9+5dDB06VNxfUFAALy8v5Obm4uzZs9i2bRtCQ0OxcOFCsU5CQgK8vLzQs2dPxMXFYfr06Zg4cSKOHDlSphiZGBARkf6SGZR/K6PMzEyMGjUKX375JerWrSuWp6enY8uWLVi9ejV69eoFV1dXbN26FWfPnsW5c+cAAEePHsW1a9ewY8cOtG/fHp6enli2bBk+++wz5ObmAgBCQkLg6OiIVatWwcnJCVOmTMGwYcOwZs2aMsXJxICIiPRXBXoMNBoNMjIytDaNRlPiqQICAuDl5YU+ffpolcfGxiIvL0+rvFWrVmjUqBFiYmIAADExMXBxcYGdnZ1Yx8PDAxkZGbh69apY59m2PTw8xDZKi4kBERHprwr0GAQFBcHS0lJrCwoKKvY0u3btwm+//Vbs/uTkZMjlclhZWWmV29nZITk5WazzdFJQtL9o3/PqZGRkIDs7u9RPCVclEBGR/qrAcsXAwEDMnDlTq0yhUEjq/fXXX5g2bRoiIyNhYmJS7vNVF/YYEBERlYNCoYBSqdTaiksMYmNjkZqaig4dOsDIyAhGRkY4efIk1q9fDyMjI9jZ2SE3NxdpaWlax6WkpEClUgEAVCqVZJVC0eMX1VEqlTA1NS31dTExICIi/VUNkw979+6Ny5cvIy4uTtw6duyIUaNGiT8bGxvj+PHj4jHx8fFITEyEWq0GAKjValy+fBmpqalincjISCiVSjg7O4t1nm6jqE5RG6XFoQQiItJf1XDnQwsLC7Rp00arzMzMDPXq1RPLJ0yYgJkzZ8La2hpKpRJTp06FWq1G586dAQDu7u5wdnbGmDFjEBwcjOTkZMyfPx8BAQFiL4Wfnx82btyIuXPnYvz48YiKisKePXsQERFRpniZGBARkf6qIXc+XLNmDQwMDODt7Q2NRgMPDw9s2rRJ3G9oaIhDhw7B398farUaZmZm8PHxwdKlS8U6jo6OiIiIwIwZM7Bu3To0aNAAX331FTw8PMoUi0wQBKHSrqyG4Lcrkj7gtyuSPqjyb1fsuvDFlUqQ/fPSF1d6CbHHgIiI9FcN6TGoSfiMEBERkYg9BkREpL/YYyDBxICIiPSXQdWvSnjZMDEgIiL9xR4DCSYGRESkv6rhPgYvGyYGRESkv9hjIMFnhIiIiETsMSAiIv3FoQQJJgZERKS/OJQgwcSAiIj0F3sMJJgYEBGR/mKPgQQTAyIi0l/sMZBgqkREREQi9hgQEZH+4lCCBBMDIiLSXxxKkGBiQERE+os9BhJMDIiISH8xMZBgYkBERPqLQwkSTJWIiIhIxB4DIiLSXxxKkGBiQERE+otDCRJMDIiISH+xx0CCiQEREekv9hhIMDEgIiK9JWNiIME+FCIiIhKxx4CIiPQWewyk2GNARET6S1aBrQw2b96Mtm3bQqlUQqlUQq1W46effhL39+jRAzKZTGvz8/PTaiMxMRFeXl6oU6cObG1tMWfOHOTn52vViY6ORocOHaBQKNC8eXOEhoaWLVCwx4CIiPRYdfUYNGjQAB9//DFatGgBQRCwbds2DB48GBcvXkTr1q0BAJMmTcLSpUvFY+rUqSP+XFBQAC8vL6hUKpw9exZJSUkYO3YsjI2NsWLFCgBAQkICvLy84Ofnh7CwMBw/fhwTJ06Evb09PDw8Sh2rTBAEoZKuu8bIztN1BERVz7rzNF2HQFTlsmPXVWn7Fu9sK/exj3b7VOjc1tbWWLlyJSZMmIAePXqgffv2WLt2bbF1f/rpJwwYMAB3796FnZ0dACAkJATz5s3DvXv3IJfLMW/ePERERODKlSviccOHD0daWhoOHz5c6rg4lEBERHrr2e77smwajQYZGRlam0ajeeE5CwoKsGvXLmRlZUGtVovlYWFhqF+/Ptq0aYPAwEA8fvxY3BcTEwMXFxcxKQAADw8PZGRk4OrVq2KdPn36aJ3Lw8MDMTExZXpOmBgQERGVQ1BQECwtLbW2oKCgEutfvnwZ5ubmUCgU8PPzw/79++Hs7AwAGDlyJHbs2IETJ04gMDAQ27dvx+jRo8Vjk5OTtZICAOLj5OTk59bJyMhAdnZ2qa+LcwyIiEhvVWSOQWBgIGbOnKlVplAoSqzfsmVLxMXFIT09Hfv27YOPjw9OnjwJZ2dnTJ48Wazn4uICe3t79O7dG7du3UKzZs3KHWN5MDEgIiL9VYG5hwqF4rmJwLPkcjmaN28OAHB1dcWFCxewbt06fP7555K6nTp1AgDcvHkTzZo1g0qlwi+//KJVJyUlBQCgUqnE/xeVPV1HqVTC1NS01HFyKIGIiPRWReYYVFRhYWGJcxLi4uIAAPb29gAAtVqNy5cvIzU1VawTGRkJpVIpDkeo1WocP35cq53IyEiteQylwR4DIiLSW9W1XDEwMBCenp5o1KgRHj16hPDwcERHR+PIkSO4desWwsPD0b9/f9SrVw+XLl3CjBkz0K1bN7Rt2xYA4O7uDmdnZ4wZMwbBwcFITk7G/PnzERAQIPZa+Pn5YePGjZg7dy7Gjx+PqKgo7NmzBxEREWWKlYkBERHprepKDFJTUzF27FgkJSXB0tISbdu2xZEjR9C3b1/89ddfOHbsGNauXYusrCw0bNgQ3t7emD9/vni8oaEhDh06BH9/f6jVapiZmcHHx0frvgeOjo6IiIjAjBkzsG7dOjRo0ABfffVVme5hAPA+BkQvLd7HgPRBVd/HwHpMeLmPfbh9ZCVGUnOwx4CIiPQWvytBiokBERHpL+YFEkwMiIhIb7HHQIqJARER6S0mBlJMDIiISG8xMZDiDY6IiIhIxB4DIiLSX+wwkGBiQEREeotDCVJMDIiISG8xMZBiYkBERHqLiYEUEwMiItJbTAykuCqBiIiIRDUmMfj5558xevRoqNVq/PPPPwCA7du34/Tp0zqOjIiIai1ZBbZaqkYkBt9++y08PDxgamqKixcvQqPRAADS09OxYsUKHUdHRES1lUwmK/dWW9WIxGD58uUICQnBl19+CWNjY7Hczc0Nv/32mw4jIyKi2oyJgVSNmHwYHx+Pbt26ScotLS2RlpZW/QEREZFeqM0f8OVVI3oMVCoVbt68KSk/ffo0mjZtqoOIiIiI9FONSAwmTZqEadOm4fz585DJZLh79y7CwsIwe/Zs+Pv76zo8IiKqrTj5UKJGDCV88MEHKCwsRO/evfH48WN069YNCoUCs2fPxtSpU3UdHv1/nu69kHT3H0n528NH4j/zF2Hf3t34KeIQrv9xFVlZWTh19gKUSqUOIiV6sdm+fbBs6kBsDI/GnFX7AQAKuRE+njEEb7l3gEJuhGMx1zHt471IffgIADB64Bv4cvGoYttr1OdD3Ps3EwAw3NMVM8b2RvNGNkjPzMbRM3/gP+u+x8P0x9VzcVRqHEqQqhGJQX5+Pj788EPMmTMHN2/eRGZmJpydnWFubo779++jfv36ug6RAITt2ofCwgLx8c0bN+A3aRz6uvcDAOTkZMOtS1e4demK9WtX6SpMohdydW6ECUP/D5f+q53oBs96E55dWmPUB1uR8Sgba+YNw66V49FrwjoAwL6jFxF59g+tY75YPAomciMxKVC3c8RXS0Zj7ur9iDh1Ba/YWmF94NvYNH84hs/5unoukEqNiYFUjRhKGD58OARBgFwuh7OzM9544w2Ym5sjJSUFPXr00HV49P9ZW1ujfn0bcTt18gQaNmyEjq+/AQAYPcYX4ydOhkvbdjqOlKhkZqZybF0+Bu8t34W0jP/9Ba80N4Hv4M6Yt3o/Tl64gYvX/8bkJeFQt2+KN9o0BgDkaPKQ8uCRuBUUFKLH6y0Q+v05sZ1ObZvgz6SH2LTrFP68+xBn425jy3dn0LF142q/VnoxrkqQqhGJQWJiIiZOnKhVlpSUhB49eqBVq1Y6ioqeJy8vFz8e+gGD3/Su1b8gVPus/eAtHD59DSd++a9W+WtODSE3NkLU+f+V//dOKhKTHqJTW8di2xo14A08zsnF/uO/i2XnL91BAzsreLg5AwBsrS3wZu/2OHzmWhVcDVUUEwOpGpEY/Pjjjzh79ixmzpwJALh79y569OgBFxcX7NmzR8fRUXGijh/Do0ePMGjIm7oOhajU3nJ/De1bNcCCjQcl+1T1lNDk5iM9M1urPPXBI9jVsyi2PZ/BnbH78G/I0eSJZTG/J2Dc/O3YHuSDjPOr8WfkcqRnZmP6J3sr92KIqkiNmGNgY2ODo0ePokuXLgCAQ4cOoUOHDggLC4OBwfNzF41GI94psUihgQIKhaLK4iXgwHffwq1LN9ja2uk6FKJSaWBnhZWzvTHgvU3Q5OZXuL1OLk3g1FSFCQu2a5W3crTDp7OHIujLI4iMuQ6VjRIrpg3GhsB34L9sZ4XPS5Ws9v7hX241oscAABo2bIjIyEiEhYXhjTfewM6dO2FoaPjC44KCgmBpaam1rfwkqBoi1l937/6D8+fO4k3vYboOhajUXnNqCLt6FogJm41H51fj0fnV6NaxBd4b3g2Pzq9GyoNHUMiNYGluqnWcbT0LpDx4JGnPd4gacdf/xsXrf2uVzxnXFzG/38aa7VG4cvMujsVcx/SP98J3SGeo6nOVTk3DoQQpnfUY1K1bt9gn9vHjxzh48CDq1asnlj18+LDEdgIDA8UhiCKFBuwtqErf7/8O1tb10LVbD12HQlRqJ375L1zf/lir7ItFIxF/JwWrth3H3yn/IjcvHz3feBUHop7MGWjR2BaN7K1x/lKC1nFmpnJ4922PhRsPSc5Tx0SO/IICrbKCgkIA/OO0JqrNH/DlpbPEYO3atZXSjkIhHTbIziuhMlVYYWEhfjjwHQYOHgIjI+23z/3793D//n38lZgIALh547+oY2YGe3t7WFpa6SBaov/JfKzBtVtJWmVZ2Ro8TM8Sy0O/P4dPZg7Bw4wsPMrMweq5w3Du9wT8cuVPreOGuXeAkaEBdv74q+Q8ET9fwab5wzFpmBsiY67Dvr4SK2cNxYUrd5B0P6PqLpDKhXmBlM4SAx8fH12dmirgXMxZJCXdxZA3vSX79u7ehc83bxQfj/d5ciOYJcuDMHjI0GqLkai85q7aj8JCATuDx2vd4OhZvoM74/sTlyQTFQFgx8FfYFFHAb+3u+LjGUOQ/igb0RduYP76H6rjEqiMqqvHYPPmzdi8eTPu3LkDAGjdujUWLlwIT09PAEBOTg5mzZqFXbt2QaPRwMPDA5s2bYKd3f/mcSUmJsLf3x8nTpyAubk5fHx8EBQUpPVHWnR0NGbOnImrV6+iYcOGmD9/Pnx9fcsUq0wQBKHCV1yJcnJykJubq1VW1rvnsceA9IF152m6DoGoymXHrqvS9lvMOVzuY2+s7FfqugcPHoShoSFatGgBQRCwbds2rFy5EhcvXkTr1q3h7++PiIgIhIaGwtLSElOmTIGBgQHOnDkDACgoKED79u2hUqmwcuVKJCUlYezYsZg0aRJWrFgBAEhISECbNm3g5+eHiRMn4vjx45g+fToiIiLg4eFR6lhrRGKQlZWFefPmYc+ePXjw4IFkf8Ez43UvwsSA9AETA9IHVZ0YvDq3/InBf4NLnxgUx9raGitXrsSwYcNgY2OD8PBwDBv2ZFL39evX4eTkhJiYGHTu3Bk//fQTBgwYgLt374q9CCEhIZg3bx7u3bsHuVyOefPmISIiAleuXBHPMXz4cKSlpeHw4dJfZ41YlTB37lxERUVh8+bNUCgU+Oqrr7BkyRI4ODjgm2++0XV4RERUS1VkVYJGo0FGRobW9uzy+eIUFBRg165dyMrKglqtRmxsLPLy8tCnTx+xTqtWrdCoUSPExMQAAGJiYuDi4qI1tODh4YGMjAxcvXpVrPN0G0V1itoorRqRGBw8eBCbNm2Ct7c3jIyM0LVrV8yfPx8rVqxAWFiYrsMjIqJaSiYr/1bccvmgoJKXy1++fBnm5uZQKBTw8/PD/v374ezsjOTkZMjlclhZWWnVt7OzQ3JyMgAgOTlZKyko2l+073l1MjIykJ0tnQ9Tkhpxg6OHDx+iadOmAJ7MJyhantilSxd+7TIREVUZA4PyTz4sbrn8826u17JlS8TFxSE9PR379u2Dj48PTp48We7zV5Ua0WPQtGlTJCQ8WSfcqlUr8TbIBw8elGRQRERElaUiPQYKhQJKpVJre15iIJfL0bx5c7i6uiIoKAjt2rXDunXroFKpkJubi7S0NK36KSkpUKlUAACVSoWUlBTJ/qJ9z6ujVCphaqp9467n0WlicPv2bRQWFmLcuHH4/fcnNxT54IMP8Nlnn8HExAQzZszAnDlzdBkiERFRlSgsLIRGo4GrqyuMjY1x/PhxcV98fDwSExOhVqsBAGq1GpcvX0ZqaqpYJzIyEkqlEs7OzmKdp9soqlPURmnpdCihRYsWSEpKwowZMwAA77zzDtavX4/r168jNjYWzZs3R9u2bXUZIhER1WLVdR+DwMBAeHp6olGjRnj06BHCw8MRHR2NI0eOwNLSEhMmTMDMmTNhbW0NpVKJqVOnQq1Wo3PnzgAAd3d3ODs7Y8yYMQgODkZycjLmz5+PgIAAsZfCz88PGzduxNy5czF+/HhERUVhz549iIiIKFOsOk0Mnl0p+eOPPyIoKAhNmzZF48b87nIiIqpa1XXnw9TUVIwdOxZJSUmwtLRE27ZtceTIEfTt2xcAsGbNGhgYGMDb21vrBkdFDA0NcejQIfj7+0OtVsPMzAw+Pj5YunSpWMfR0RERERGYMWMG1q1bhwYNGuCrr74q0z0MAB3fx8DAwADJycmwtbUFAFhYWOD3338XJyKWF+9jQPqA9zEgfVDV9zFou/BYuY+9tLTPiyu9hHTaY1DcN1TxCy2IiKi68DNHSudDCb6+vuL4SE5ODvz8/GBmZqZV77vvvtNFeEREVMsxL5DSaWLw7BcpjR49WkeREBEREaDjxGDr1q26PD0REek5DiVI1Yg7HxIREekC8wIpJgZERKS32GMgxcSAiIj0FvMCKSYGRESkt9hjIFUjvkSJiIiIagb2GBARkd5ih4EUEwMiItJbHEqQYmJARER6i3mBFBMDIiLSW+wxkGJiQEREeot5gRRXJRAREZGIPQZERKS3OJQgxcSAiIj0FvMCKSYGRESkt9hjIMXEgIiI9BYTAykmBkREpLeYF0hxVQIRERGJ2GNARER6i0MJUkwMiIhIbzEvkGJiQEREeos9BlJMDIiISG8xL5BiYkBERHrLgJmBBFclEBERkYiJARER6S2ZrPxbWQQFBeH111+HhYUFbG1tMWTIEMTHx2vV6dGjB2Qymdbm5+enVScxMRFeXl6oU6cObG1tMWfOHOTn52vViY6ORocOHaBQKNC8eXOEhoaWKVYmBkREpLee/SAuy1YWJ0+eREBAAM6dO4fIyEjk5eXB3d0dWVlZWvUmTZqEpKQkcQsODhb3FRQUwMvLC7m5uTh79iy2bduG0NBQLFy4UKyTkJAALy8v9OzZE3FxcZg+fTomTpyII0eOlDpWzjEgIiK9ZVBNUwwOHz6s9Tg0NBS2traIjY1Ft27dxPI6depApVIV28bRo0dx7do1HDt2DHZ2dmjfvj2WLVuGefPmYfHixZDL5QgJCYGjoyNWrVoFAHBycsLp06exZs0aeHh4lCpW9hgQEZHeqkiPgUajQUZGhtam0WhKdd709HQAgLW1tVZ5WFgY6tevjzZt2iAwMBCPHz8W98XExMDFxQV2dnZimYeHBzIyMnD16lWxTp8+fbTa9PDwQExMTKmfEyYGRESktyoyxyAoKAiWlpZaW1BQ0AvPWVhYiOnTp8PNzQ1t2rQRy0eOHIkdO3bgxIkTCAwMxPbt2zF69Ghxf3JyslZSAEB8nJyc/Nw6GRkZyM7OLtVzwqEEIiKicggMDMTMmTO1yhQKxQuPCwgIwJUrV3D69Gmt8smTJ4s/u7i4wN7eHr1798atW7fQrFmzygm6FJgYEBGR3pKh/JMMFApFqRKBp02ZMgWHDh3CqVOn0KBBg+fW7dSpEwDg5s2baNasGVQqFX755RetOikpKQAgzktQqVRi2dN1lEolTE1NSxUjhxKIiEhvGcjKv5WFIAiYMmUK9u/fj6ioKDg6Or7wmLi4OACAvb09AECtVuPy5ctITU0V60RGRkKpVMLZ2Vmsc/z4ca12IiMjoVarSx0rEwMiItJb1bVcMSAgADt27EB4eDgsLCyQnJyM5ORkcdz/1q1bWLZsGWJjY3Hnzh388MMPGDt2LLp164a2bdsCANzd3eHs7IwxY8bg999/x5EjRzB//nwEBASIPRd+fn64ffs25s6di+vXr2PTpk3Ys2cPZsyYUepYmRgQEZHeqq4bHG3evBnp6eno0aMH7O3txW337t0AALlcjmPHjsHd3R2tWrXCrFmz4O3tjYMHD4ptGBoa4tChQzA0NIRarcbo0aMxduxYLF26VKzj6OiIiIgIREZGol27dli1ahW++uqrUi9VBACZIAhC2S6v5svO03UERFXPuvM0XYdAVOWyY9dVaftDt8SW+9jvJrhWYiQ1B3sMiIiISMRVCUREpLf45YpSTAyIiEhvlXUSoT5gYkBERHqLeYEUEwMiItJbBswMJJgYEBGR3mJaIFWqxOCHH34odYODBg0qdzBERESkW6VKDIYMGVKqxmQyGQoKCioSDxERUbXh5EOpUiUGhYWFVR0HERFRtSvrdx7oA84xICIivcUeA6lyJQZZWVk4efIkEhMTkZubq7Xv/fffr5TAiIiIqhrzAqkyJwYXL15E//798fjxY2RlZcHa2hr3799HnTp1YGtry8SAiIheGuwxkCrzdyXMmDEDAwcOxL///gtTU1OcO3cOf/75J1xdXfHpp59WRYxERERUTcqcGMTFxWHWrFkwMDCAoaEhNBoNGjZsiODgYPznP/+pihiJiIiqhIGs/FttVebEwNjYGAYGTw6ztbVFYmIiAMDS0hJ//fVX5UZHRERUhWQyWbm32qrMcwxee+01XLhwAS1atED37t2xcOFC3L9/H9u3b0ebNm2qIkYiIqIqUXs/3suvzD0GK1asgL29PQDgo48+Qt26deHv74979+7hiy++qPQAiYiIqoqBTFburbYqc49Bx44dxZ9tbW1x+PDhSg2IiIiIdIc3OCIiIr1Vi//wL7cyJwaOjo7PnXRx+/btCgVERERUXWrzJMLyKnNiMH36dK3HeXl5uHjxIg4fPow5c+ZUVlxERERVjnmBVJkTg2nTphVb/tlnn+HXX3+tcEBERETVpTZPIiyvMq9KKImnpye+/fbbymqOiIioyslk5d9qq0pLDPbt2wdra+vKao6IiIh0oFw3OHp6soYgCEhOTsa9e/ewadOmSg2OiIioKnHyoVSZE4PBgwdrPZEGBgawsbFBjx490KpVq0oNrrz4OpNeKCzQdQREL71K6zavRcqcGCxevLgKwiAiIqp+7DGQKnOyZGhoiNTUVEn5gwcPYGhoWClBERERVYfq+nbFoKAgvP7667CwsICtrS2GDBmC+Ph4rTo5OTkICAhAvXr1YG5uDm9vb6SkpGjVSUxMhJeXF+rUqQNbW1vMmTMH+fn5WnWio6PRoUMHKBQKNG/eHKGhoWV7Tsp2aU/mFBRHo9FALpeXtTkiIiKdqa7E4OTJkwgICMC5c+cQGRmJvLw8uLu7IysrS6wzY8YMHDx4EHv37sXJkydx9+5dDB06VNxfUFAALy8v5Obm4uzZs9i2bRtCQ0OxcOFCsU5CQgK8vLzQs2dPxMXFYfr06Zg4cSKOHDlS6lhlQkmf9M9Yv369GPiyZctgbm6uFeypU6dw584dXLx4sdQnryo5+S+uQ/Syq/v6FF2HQFTlsi9urNL2Z/5wvdzHrh5U/nl19+7dg62tLU6ePIlu3bohPT0dNjY2CA8Px7BhwwAA169fh5OTE2JiYtC5c2f89NNPGDBgAO7evQs7OzsAQEhICObNm4d79+5BLpdj3rx5iIiIwJUrV8RzDR8+HGlpaaX+bqNSzzFYs2YNgCc9BiEhIVrDBnK5HE2aNEFISEhpmyMiItK5iswx0Gg00Gg0WmUKhQIKheKFx6anpwOAuMw/NjYWeXl56NOnj1inVatWaNSokZgYxMTEwMXFRUwKAMDDwwP+/v64evUqXnvtNcTExGi1UVTn2bsWP0+pE4OEhAQAQM+ePfHdd9+hbt26pT4JERFRTVTWIYGnBQUFYcmSJVplixYteuEk/cLCQkyfPh1ubm5o06YNACA5ORlyuRxWVlZade3s7JCcnCzWeTopKNpftO95dTIyMpCdnQ1TU9MXXleZVyWcOHGirIcQERHVSBVZlBAYGIiZM2dqlZWmtyAgIABXrlzB6dOny3/yKlTmyYfe3t745JNPJOXBwcF46623KiUoIiKi6mAgk5V7UygUUCqVWtuLEoMpU6bg0KFDOHHiBBo0aCCWq1Qq5ObmIi0tTat+SkoKVCqVWOfZVQpFj19UR6lUlqq3AChHYnDq1Cn0799fUu7p6YlTp06VtTkiIiKdMajAVhaCIGDKlCnYv38/oqKi4OjoqLXf1dUVxsbGOH78uFgWHx+PxMREqNVqAIBarcbly5e1bhkQGRkJpVIJZ2dnsc7TbRTVKWqjNMo8lJCZmVnsskRjY2NkZGSUtTkiIqJaLyAgAOHh4fj+++9hYWEhzgmwtLSEqakpLC0tMWHCBMycORPW1tZQKpWYOnUq1Go1OnfuDABwd3eHs7MzxowZg+DgYCQnJ2P+/PkICAgQeyr8/PywceNGzJ07F+PHj0dUVBT27NmDiIiIUsda5h4DFxcX7N69W1K+a9cuMWMhIiJ6GVTXtytu3rwZ6enp6NGjB+zt7cXt6c/TNWvWYMCAAfD29ka3bt2gUqnw3XffifsNDQ1x6NAhGBoaQq1WY/To0Rg7diyWLl0q1nF0dERERAQiIyPRrl07rFq1Cl999RU8PDxK/5yU9j4GRQ4ePIihQ4di5MiR6NWrFwDg+PHjCA8Px759+zBkyJCyNFcleB8D0ge8jwHpg6q+j8GCwzfKfeyyfi0qMZKao8xDCQMHDsSBAwewYsUK7Nu3D6ampmjXrh2ioqL4tctERPRS4VclSJU5MQAALy8veHl5AQAyMjKwc+dOzJ49G7GxsSgo4De+ERHRy6Ei9zGorcr9jZOnTp2Cj48PHBwcsGrVKvTq1Qvnzp2rzNiIiIiqVEWWK9ZWZeoxSE5ORmhoKLZs2YKMjAy8/fbb0Gg0OHDgACceEhER1QKl7jEYOHAgWrZsiUuXLmHt2rW4e/cuNmzYUJWxERERVanqWpXwMil1j8FPP/2E999/H/7+/mjRonbOxCQiIv3COQZSpe4xOH36NB49egRXV1d06tQJGzduxP3796syNiIioiolq8B/tVWpE4POnTvjyy+/RFJSEt59913s2rULDg4OKCwsRGRkJB49elSVcRIREVU6A1n5t9qqzKsSzMzMMH78eJw+fRqXL1/GrFmz8PHHH8PW1haDBg2qihiJiIiqBBMDqXIvVwSAli1bIjg4GH///Td27txZWTERERGRjpTrBkfPMjQ0xJAhQ2rE7ZCJiIhKS1ablxeUU6UkBkRERC+j2jwkUF5MDIiISG+xw0CKiQEREemt2nxr4/JiYkBERHqLQwlSFVqVQERERLULewyIiEhvcSRBiokBERHpLYNafGvj8mJiQEREeos9BlJMDIiISG9x8qEUEwMiItJbXK4oxVUJREREJGKPARER6S12GEgxMSAiIr3FoQQpJgZERKS3mBdIMTEgIiK9xYl2UkwMiIhIb8nYZSDBZImIiKiKnTp1CgMHDoSDgwNkMhkOHDigtd/X1xcymUxr69evn1adhw8fYtSoUVAqlbCyssKECROQmZmpVefSpUvo2rUrTExM0LBhQwQHB5c5ViYGRESkt2QV2MoiKysL7dq1w2effVZinX79+iEpKUncdu7cqbV/1KhRuHr1KiIjI3Ho0CGcOnUKkydPFvdnZGTA3d0djRs3RmxsLFauXInFixfjiy++KFOsHEogIiK9VV2rEjw9PeHp6fncOgqFAiqVqth9f/zxBw4fPowLFy6gY8eOAIANGzagf//++PTTT+Hg4ICwsDDk5ubi66+/hlwuR+vWrREXF4fVq1drJRAvwh4DIiLSWxXpMdBoNMjIyNDaNBpNuWOJjo6Gra0tWrZsCX9/fzx48EDcFxMTAysrKzEpAIA+ffrAwMAA58+fF+t069YNcrlcrOPh4YH4+Hj8+++/pY6DiQEREektmaz8W1BQECwtLbW2oKCgcsXRr18/fPPNNzh+/Dg++eQTnDx5Ep6enigoKAAAJCcnw9bWVusYIyMjWFtbIzk5WaxjZ2enVafocVGd0uBQAhER6a2KrEoIDAzEzJkztcoUCkW52ho+fLj4s4uLC9q2bYtmzZohOjoavXv3LneM5cEeAyIionJQKBRQKpVaW3kTg2c1bdoU9evXx82bNwEAKpUKqampWnXy8/Px8OFDcV6CSqVCSkqKVp2ixyXNXSgOEwMiItJbBhXYqtLff/+NBw8ewN7eHgCgVquRlpaG2NhYsU5UVBQKCwvRqVMnsc6pU6eQl5cn1omMjETLli1Rt27dUp+biQEREemtZ+8dUJatLDIzMxEXF4e4uDgAQEJCAuLi4pCYmIjMzEzMmTMH586dw507d3D8+HEMHjwYzZs3h4eHBwDAyckJ/fr1w6RJk/DLL7/gzJkzmDJlCoYPHw4HBwcAwMiRIyGXyzFhwgRcvXoVu3fvxrp16yTDHS/COQZERKS3quu+h7/++it69uwpPi76sPbx8cHmzZtx6dIlbNu2DWlpaXBwcIC7uzuWLVumNTQRFhaGKVOmoHfv3jAwMIC3tzfWr18v7re0tMTRo0cREBAAV1dX1K9fHwsXLizTUkUAkAmCIFTwemucnHxdR0BU9eq+PkXXIRBVueyLG6u0/X2/J5X72GHt7CsxkpqDPQZERKS3OJ4uxeeEiIiIROwxICIivcVvV5RiYkBERHqLaYEUEwMiItJb7DCQYmJARER6y4B9BhJMDIiISG+xx0CKqxKIiIhIxB4DIiLSWzIOJUgwMSAiIr3FoQQpJgZERKS3OPlQiokBERHpLfYYSDExICIivcXEQKpGrEr4+eefMXr0aKjVavzzzz8AgO3bt+P06dM6joyIiEi/6Dwx+Pbbb+Hh4QFTU1NcvHgRGo0GAJCeno4VK1boODoiIqrNZBX4r7bSeWKwfPlyhISE4Msvv4SxsbFY7ubmht9++02HkRERUW1nICv/VlvpfI5BfHw8unXrJim3tLREWlpa9QdERER6ozb/5V9eOu8xUKlUuHnzpqT89OnTaNq0qQ4iIiIifSGTlX+rrXSeGEyaNAnTpk3D+fPnIZPJcPfuXYSFhWH27Nnw9/fXdXhERER6RedDCR988AEKCwvRu3dvPH78GN26dYNCocDs2bMxdepUXYdHRES1GIcSpHTeYyCTyfDhhx/i4cOHuHLlCs6dO4d79+5h2bJlug6NnmPLl1+gXeuWCA76CADwzz9/o13rlsVuR4/8pONoiaRmj+uL7IsbsXK2t1g2fqgbjnw5DSk/r0T2xY2wNDeVHDd3ggdOhM7Eg7OrkXQq+LnnsLY0w83Dy0psi3SPkw+ldN5jUEQul8PZ2VnXYVApXLl8Cfv27sKrr7YUy1QqexyP1r7vxL69u7Ft6xZ06SKdXEqkS67OjTDB2w2X/vu3VnkdE2NEnr2GyLPXsOz9wcUeKzc2xHeRF3H+UgJ8hqife56QRSNx+cZdvGJXt9Jip8rFHgMpnScGPXv2hOw5sziioqKqMRp6kcdZWQicNweLlizHl59vFssNDQ1R38ZGq27U8WNw7+eJOmZm1R0mUYnMTOXYusIX7y3biQ8m9tPatzE8GgDQ1bVFiccvD/kRADB6YKfnnmfSW11gaVEHK774Cf26tK5Y0FRlavMkwvLS+VBC+/bt0a5dO3FzdnZGbm4ufvvtN7i4uOg6PHrGiuVL0a1bd3RW/99z6127egXx1//Am0OHVVNkRKWzNvAdHP75Ck6cj6+yc7RqqkLgJE9MXPANCguFKjsPVZysAlttpfMegzVr1hRbvnjxYmRmZlZzNPQ8P/0YgT/+uIbw3fteWHf/t/vQtGkztH+tQzVERlQ6b3m4on2rhugy+vlzAypCbmyEbUG++M/aA/gr+V80eaV+lZ2LqCrovMegJKNHj8bXX3/9wnoajQYZGRlaW9FtlanyJCclIfjjjxD0yUooFIrn1s3JycFPPx7CEG/2FlDN0cDOCivneGPch6HQ5OZX2XmWvT8I8Qkp2PXjhSo7B1UeA5ms3FttpfMeg5LExMTAxMTkhfWCgoKwZMkSrbIPFyzC/IWLqygy/XTt2lU8fPAAw98aKpYVFBQg9tcL2LUzDBcuXoahoSEAIPLoYWRn52DgoCE6ipZI6jWnRrCrp0RM+DyxzMjIEF06NIPfO91g2Wl6pXT7d3/9VbRp7oA3L7QHAHEO1d8nPsYnW46IcxSoZqi9H+/lp/PEYOjQoVqPBUFAUlISfv31VyxYsOCFxwcGBmLmzJnabRg+/y9aKrtOnTtj34GDWmWLPgxEk6ZNMW7CJDEpAIAD332LHj17wdraurrDJCrRiV/i4TrsI62yL5aMRnxCClaFRlbaXIARs7+CqeJ/3/vi2roxvlgyGn0mrMXtv+5VyjmoElVTZnDq1CmsXLkSsbGxSEpKwv79+zFkyBBxvyAIWLRoEb788kukpaXBzc0NmzdvRosW/5sI+/DhQ0ydOhUHDx6EgYEBvL29sW7dOpibm4t1Ll26hICAAFy4cAE2NjaYOnUq5s6dW6ZYdZ4YWFpaaj02MDBAy5YtsXTpUri7u7/weIVCIenazqm6XkK9ZWZmjhYtXtUqM61TB1aWVlrliX/+idhfL+CzzV9Ud4hEz5X5WINrt5K0yrKyc/EwPUsst6tnAbt6SjRr9GReQJsWDniUlYO/kv/FvxmPAQANVXVRV1kHDe3rwtDAAG1ffQUAcOuve8jKzkXC3/e1zlHP6sk/2tdvJyM9M7tKr5HKrrqWK2ZlZaFdu3YYP3685A9iAAgODsb69euxbds2ODo6YsGCBfDw8MC1a9fE3vNRo0YhKSkJkZGRyMvLw7hx4zB58mSEh4cDADIyMuDu7o4+ffogJCQEly9fxvjx42FlZYXJkyeXOladJgYFBQUYN24cXFxcULcu1/nWBgf2fws7OxXUbl10HQpRmU0c1hXz/fqLj499PQMAMGnhduw4eB4AsMDfC2MGdRbrnN8dCABwn7gOP8feqMZoqTJU11QBT09PeHp6FrtPEASsXbsW8+fPx+DBT+6f8c0338DOzg4HDhzA8OHD8ccff+Dw4cO4cOECOnbsCADYsGED+vfvj08//RQODg4ICwtDbm4uvv76a8jlcrRu3RpxcXFYvXp1mRIDmSAIOl1LY2Jigj/++AOOjo6V1iZ7DEgf1H19iq5DIKpy2Rc3Vmn7v9xOL/ex7V4xkUx2L64X+1kymUxrKOH27dto1qwZLl68iPbt24v1unfvjvbt22PdunX4+uuvMWvWLPz777/i/vz8fJiYmGDv3r148803MXbsWGRkZODAgQNinRMnTqBXr154+PBhqf8A1/mqhDZt2uD27du6DoOIiPRQRe5jEBQUBEtLS60tKCiozDEkJycDAOzs7LTK7ezsxH3JycmwtbXV2m9kZARra2utOsW18fQ5SkPncwyWL1+O2bNnY9myZXB1dYXZM3fJUyqVOoqMiIhqvQoMJRQ3+f1FvQUvA50lBkuXLsWsWbPQv/+T8bxBgwZp3RpZEATIZDIUFBToKkQiIqrlKjL5sDTDBqWhUqkAACkpKbC3txfLU1JSxKEFlUqF1NRUrePy8/Px8OFD8XiVSoWUlBStOkWPi+qUhs4SgyVLlsDPzw8nTpzQVQhERKTnasJ9ihwdHaFSqXD8+HExEcjIyMD58+fh7+8PAFCr1UhLS0NsbCxcXV0BPPkuocLCQnTq1Ems8+GHHyIvLw/Gxk+WzEZGRqJly5ZlmuCvs8SgaM5j9+7ddRUCERHpuerKCzIzM3Hz5k3xcUJCAuLi4mBtbY1GjRph+vTpWL58OVq0aCEuV3RwcBAnKDo5OaFfv36YNGkSQkJCkJeXhylTpmD48OFwcHAAAIwcORJLlizBhAkTMG/ePFy5cgXr1q0r8asHSqLTOQbP+1ZFIiKi2uLXX39Fz549xcdFcxN8fHwQGhqKuXPnIisrC5MnT0ZaWhq6dOmCw4cPa90BOCwsDFOmTEHv3r3FGxytX79e3G9paYmjR48iICAArq6uqF+/PhYuXFimpYqADpcrGhgYwNLS8oXJwcOHD8vcNpcrkj7gckXSB1W9XPG3PzPKfWyHxrVzcrxOewyWLFkiufMhERFRdamuOx++THSaGAwfPlyyLpOIiKi6cERbSmeJAecXEBGRrvGTSErnqxKIiIh0hpmBhM4Sg8LCQl2dmoiIiEqg81siExER6QonH0oxMSAiIr3F6W5STAyIiEhvMS+QYmJARET6i5mBBBMDIiLSW5xjIGWg6wCIiIio5mCPARER6S1OPpRiYkBERHqLeYEUEwMiItJfzAwkmBgQEZHe4uRDKSYGRESktzjHQIqrEoiIiEjEHgMiItJb7DCQYmJARET6i5mBBBMDIiLSW5x8KMXEgIiI9BYnH0oxMSAiIr3FvECKqxKIiIhIxB4DIiLSX+wykGBiQEREeouTD6WYGBARkd7i5EMpJgZERKS3mBdIcfIhERHpL1kFtjJYvHgxZDKZ1taqVStxf05ODgICAlCvXj2Ym5vD29sbKSkpWm0kJibCy8sLderUga2tLebMmYP8/PzyXfdzsMeAiIioGrRu3RrHjh0THxsZ/e8jeMaMGYiIiMDevXthaWmJKVOmYOjQoThz5gwAoKCgAF5eXlCpVDh79iySkpIwduxYGBsbY8WKFZUaJxMDIiLSWxWZfKjRaKDRaLTKFAoFFApFsfWNjIygUqkk5enp6diyZQvCw8PRq1cvAMDWrVvh5OSEc+fOoXPnzjh69CiuXbuGY8eOwc7ODu3bt8eyZcswb948LF68GHK5vNzX8SwOJRARkd6Sycq/BQUFwdLSUmsLCgoq8Vw3btyAg4MDmjZtilGjRiExMREAEBsbi7y8PPTp00es26pVKzRq1AgxMTEAgJiYGLi4uMDOzk6s4+HhgYyMDFy9erVSnxP2GBARkd6qyOTDwMBAzJw5U6uspN6CTp06ITQ0FC1btkRSUhKWLFmCrl274sqVK0hOToZcLoeVlZXWMXZ2dkhOTgYAJCcnayUFRfuL9lUmJgZERKS3KrJc8XnDBs/y9PQUf27bti06deqExo0bY8+ePTA1NS1/EFWAQwlERKTHqmlZwjOsrKzw6quv4ubNm1CpVMjNzUVaWppWnZSUFHFOgkqlkqxSKHpc3LyFimBiQEREVM0yMzNx69Yt2Nvbw9XVFcbGxjh+/Li4Pz4+HomJiVCr1QAAtVqNy5cvIzU1VawTGRkJpVIJZ2fnSo2NQwlERKS3quvOh7Nnz8bAgQPRuHFj3L17F4sWLYKhoSFGjBgBS0tLTJgwATNnzoS1tTWUSiWmTp0KtVqNzp07AwDc3d3h7OyMMWPGIDg4GMnJyZg/fz4CAgJKPZxRWkwMiIhIb1XXnQ///vtvjBgxAg8ePICNjQ26dOmCc+fOwcbGBgCwZs0aGBgYwNvbGxqNBh4eHti0aZN4vKGhIQ4dOgR/f3+o1WqYmZnBx8cHS5curfRYZYIgCJXeqo7lVP6NoIhqnLqvT9F1CERVLvvixiptPyk9t9zH2ltW3r0DahL2GBARkd7itytKMTEgIiL9xbxAgqsSiIiISMQeAyIi0lvsMJBiYkBERHqrupYrvkyYGBARkd7i5EMpJgZERKS/mBdIMDEgIiK9xbxAiqsSiIiISMQeAyIi0lucfCjFxICIiPQWJx9KMTEgIiK9xR4DKc4xICIiIhF7DIiISG+xx0CKPQZEREQkYo8BERHpLU4+lGJiQEREeotDCVJMDIiISG8xL5BiYkBERPqLmYEEJx8SERGRiD0GRESktzj5UIqJARER6S1OPpRiYkBERHqLeYEUEwMiItJfzAwkmBgQEZHe4hwDKa5KICIiIhF7DIiISG9x8qGUTBAEQddB0MtNo9EgKCgIgYGBUCgUug6HqErwfU76gokBVVhGRgYsLS2Rnp4OpVKp63CIqgTf56QvOMeAiIiIREwMiIiISMTEgIiIiERMDKjCFAoFFi1axAlZVKvxfU76gpMPiYiISMQeAyIiIhIxMSAiIiIREwMiIiISMTGgShEaGgorKytdh0FERBXExIC0+Pr6QiaTSbabN2/qOjSiSlPce/zpbfHixboOkUhn+CVKJNGvXz9s3bpVq8zGxkZH0RBVvqSkJPHn3bt3Y+HChYiPjxfLzM3NxZ8FQUBBQQGMjPjPJekH9hiQhEKhgEql0trWrVsHFxcXmJmZoWHDhnjvvfeQmZlZYhv37t1Dx44d8eabb0Kj0aCwsBBBQUFwdHSEqakp2rVrh3379lXjVRH9z9PvbUtLS8hkMvHx9evXYWFhgZ9++gmurq5QKBQ4ffo0fH19MWTIEK12pk+fjh49eoiP+T6n2oApMJWKgYEB1q9fD0dHR9y+fRvvvfce5s6di02bNknq/vXXX+jbty86d+6MLVu2wNDQEB999BF27NiBkJAQtGjRAqdOncLo0aNhY2OD7t276+CKiJ7vgw8+wKeffoqmTZuibt26pTomKCiI73N66TExIIlDhw5pdaV6enpi79694uMmTZpg+fLl8PPzkyQG8fHx6Nu3L958802sXbsWMpkMGo0GK1aswLFjx6BWqwEATZs2xenTp/H555/zH0yqkZYuXYq+ffuWuj7f51RbMDEgiZ49e2Lz5s3iYzMzMxw7dgxBQUG4fv06MjIykJ+fj5ycHDx+/Bh16tQBAGRnZ6Nr164YOXIk1q5dKx5/8+ZNPH78WPKPbG5uLl577bVquSaisurYsWOZ6vN9TrUFEwOSMDMzQ/PmzcXHd+7cwYABA+Dv74+PPvoI1tbWOH36NCZMmIDc3FwxMVAoFOjTpw8OHTqEOXPm4JVXXgEAcS5CRESEWFaE952nmsrMzEzrsYGBAZ69g3xeXp74M9/nVFswMaAXio2NRWFhIVatWgUDgyfzVffs2SOpZ2BggO3bt2PkyJHo2bMnoqOj4eDgAGdnZygUCiQmJrI7lV5aNjY2uHLlilZZXFwcjI2NAYDvc6o1mBjQCzVv3hx5eXnYsGEDBg4ciDNnziAkJKTYuoaGhggLC8OIESPQq1cvREdHQ6VSYfbs2ZgxYwYKCwvRpUsXpKen48yZM1AqlfDx8anmKyIqu169emHlypX45ptvoFarsWPHDly5ckUcJrCwsOD7nGoFLlekF2rXrh1Wr16NTz75BG3atEFYWBiCgoJKrG9kZISdO3eidevW6NWrF1JTU7Fs2TIsWLAAQUFBcHJyQr9+/RAREQFHR8dqvBKi8vPw8MCCBQswd+5cvP7663j06BHGjh2rVYfvc6oN+LXLREREJGKPAREREYmYGBAREZGIiQERERGJmBgQERGRiIkBERERiZgYEBERkYiJAREREYmYGBAREZGIiQHRS8DX1xdDhgwRH/fo0QPTp0+v9jiio6Mhk8mQlpZW7ecmourBxICoAnx9fSGTySCTySCXy9G8eXMsXboU+fn5VXre7777DsuWLStVXX6YE1FZ8EuUiCqoX79+2Lp1KzQaDX788UcEBATA2NgYgYGBWvVyc3Mhl8sr5ZzW1taV0g4R0bPYY0BUQQqFAiqVCo0bN4a/vz/69OmDH374Qez+/+ijj+Dg4ICWLVsCAP766y+8/fbbsLKygrW1NQYPHow7d+6I7RUUFGDmzJmwsrJCvXr1MHfuXDz7lSbPDiVoNBrMmzcPDRs2hEKhQPPmzbFlyxbcuXMHPXv2BADUrVsXMpkMvr6+AIDCwkIEBQXB0dERpqamaNeuHfbt26d1nh9//BGvvvoqTE1N0bNnT604iah2YmJAVMlMTU2Rm5sLADh+/Dji4+MRGRmJQ4cOIS8vDx4eHrCwsMDPP/+MM2fOwNzcHP369ROPWbVqFUJDQ/H111/j9OnTePjwIfbv3//cc44dOxY7d+7E+vXr8ccff+Dzzz+Hubk5GjZsiG+//RYAEB8fj6SkJKxbtw4AEBQUhG+++QYhISG4evUqZsyYgdGjR+PkyZMAniQwQ4cOxcCBAxEXF4eJEyfigw8+qKqnjYhqCoGIys3Hx0cYPHiwIAiCUFhYKERGRgoKhUKYPXu24OPjI9jZ2QkajUasv337dqFly5ZCYWGhWKbRaARTU1PhyJEjgiAIgr29vRAcHCzuz8vLExo0aCCeRxAEoXv37sK0adMEQRCE+Ph4AYAQGRlZbIwnTpwQAAj//vuvWJaTkyPUqVNHOHv2rFbdCRMmCCNGjBAEQRACAwMFZ2dnrf3z5s2TtEVEtQvnGBBV0KFDh2Bubo68vDwUFhZi5MiRWLx4MQICAuDi4qI1r+D333/HzZs3YWFhodVGTk4Obt26hfT0dCQlJaFTp07iPiMjI3Ts2FEynFAkLi4OhoaG6N69e6ljvnnzJh4/foy+fftqlefm5uK1114DAPzxxx9acQCAWq0u9TmI6OXExICognr27InNmzdDLpfDwcEBRkb/+7UyMzPTqpuZmQlXV1eEhYVJ2rGxsSnX+U1NTct8TGZmJgAgIiICr7zyitY+hUJRrjiIqHZgYkBUQWZmZmjevHmp6nbo0AG7d++Gra0tlEplsXXs7e1x/vx5dOvWDQCQn5+P2NhYdOjQodj6Li4uKCwsxMmTJ9GnTx/J/qIei4KCArHM2dkZCoUCiYmJJfY0ODk54YcfftAqO3fu3Isvkoheapx8SFSNRo0ahfr162Pw4MH4+eefkZCQgOjoaLz//vv4+++/AQDTpk3Dxx9/jAMHDuD69et47733nnsPgiZNmsDHxwfjx4/HgQMHxDb37NkDAGjcuDFkMhkOHTqEe/fuITMzExYWFpg9ezZmzJiBbdu24datW/jtt9+wYcMGbNu2DQDg5+eHGzduYM6cOYiPj0d4eDhCQ0Or+ikiIh1jYkBUjerUqYNTp06hUaNGGDp0KJycnDBhwgTk5OSIPQizZs3CmDFj4OPjA7VaDQsLC7z55pvPbXfz5s0YNmwY3nvvPbRq1QqTJk1CVlYWAOCVV17BkiVL8MEHH8DOzg5TpkwBACxbtgwLFixAUFAQnJyc0K9fP0RERMDR0REA0KhRI3z77bc4cOAA2rVrh5CQEKxYsaIKnx0iqglkQkkzmoiIiEjvsMeAiIiIREwMiIiISMTEgIiIiERMDIiIiEjExICIiIhETAyIiIhIxMSAiIiIREwMiIiISMTEgIiIiERMDIiIiEjExICIiIhE/w8fafSAsZ2F9wAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 800x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAIjCAYAAAA5hmzfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMkBJREFUeJzt3Xl4VdXd+O1vGJJAQgLIrAiIoJSiPkK1gApOVXG2FQdKgYpU66z4/LQWAUVqrVpHnCteFrVqrR0cOilapzoUrFUciVMVqYoIWmVa7x++nIdjABO6IEjv+7pymeyzz95rn3WCn2x2NiUppRQAAEAWjRp6AAAAsCER2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAbFAWLlwYo0ePjg4dOkRJSUmceOKJDT2kDdrgwYNj8ODBa/Tcrl27xsiRI7OOB9YHAhuol6lTp0ZJSclKP0477bS1ss9HHnkkJkyYEB988MFa2f5/Yvnr8eSTTzb0UNbYlClTYurUqQ09jGwmT54cU6dOjaOPPjpuvPHGGD58+FrdX9euXaOkpCR22223lT5+zTXXFL5HVnyfTJgwIUpKSuLdd98tLBs5cmRUVlbWewyvvvpqYR+TJk1a6TrDhg2LkpKSNdo+UD9NGnoAwJfTWWedFd26dSta9tWvfnWt7OuRRx6JiRMnxsiRI6Nly5ZrZR//zaZMmRJt2rTZYM4k3nffffH1r389xo8fv872WV5eHvfff3/MmTMnOnToUPTYtGnTory8PD755JN1Mo6bb745fvjDHxYt/+ijj+LXv/51lJeXr/UxAM5gA2tor732im9/+9tFH9tss01DD6tePvroo4YeQoP6+OOPG3oIa8XcuXOz/iC2ZMmSWLRo0WrXGThwYFRWVsYvfvGLouVvvvlm/OUvf4m9994723hWZ8iQIfHcc8/F008/XbT817/+dSxatCh23333dTIO+G8nsIG14p577okdd9wxKioqokWLFrH33nvHs88+W7TO3//+9xg5cmRsttlmUV5eHh06dIjvfve78d577xXWmTBhQpx66qkREdGtW7fCX4O/+uqrhb8WX9nlDSUlJTFhwoSi7ZSUlMRzzz0Xhx9+eLRq1Sp22GGHwuM///nPo2/fvtGsWbNo3bp1HHroofHGG2+s0bEv/2v+119/PfbZZ5+orKyMjTfeOC6//PKIiHjmmWdil112iYqKiujSpUvcdNNNRc9fftnJgw8+GN/73vdio402iqqqqvjOd74T8+bNq7W/KVOmRO/evaOsrCw6deoUxxxzTK3LaQYPHhxf/epX46mnnoqddtopmjdvHj/4wQ+ia9eu8eyzz8YDDzxQeG2XX0/7/vvvx9ixY6NPnz5RWVkZVVVVsddee9WKt+nTp0dJSUnceuutcc4558Qmm2wS5eXlseuuu8bLL79ca7x//etfY8iQIdGqVauoqKiIrbbaKi6++OKidZ5//vn41re+Fa1bt47y8vLo169f/OY3v1nt6758HDU1NXHXXXcVvVciPgvvI444Itq3bx/l5eWx9dZbxw033FC0jeXvqfPPPz8uuuii6N69e5SVlcVzzz232n2Xl5fHQQcdVGsub7755mjVqlXsscceq31+Lv37949u3brVGse0adNizz33jNatW6/0eXV5D0VEXH311dG9e/do1qxZbLfddvGXv/xlpdv79NNPY/z48bH55ptHWVlZdO7cOf73f/83Pv300//4GOHLwCUiwBqZP39+0bWjERFt2rSJiIgbb7wxRowYEXvssUf8+Mc/jo8//jiuuOKK2GGHHWLGjBnRtWvXiIj44x//GLNnz45Ro0ZFhw4d4tlnn42rr746nn322XjssceipKQkDjrooHjxxRfj5ptvjp/+9KeFfbRt2zb+9a9/1XvcBx98cPTo0SMmT54cKaWIiDjnnHNi3LhxMXTo0Bg9enT861//iksvvTR22mmnmDFjxhqdDV26dGnstddesdNOO8V5550X06ZNi2OPPTYqKirijDPOiGHDhsVBBx0UV155ZXznO98phNGKjj322GjZsmVMmDAhXnjhhbjiiivitddeK4RkxGc/OEycODF22223OProowvrPfHEE/Hwww9H06ZNC9t77733Yq+99opDDz00vv3tb0f79u1j8ODBcdxxx0VlZWWcccYZERHRvn37iIiYPXt23HnnnXHwwQdHt27d4p133omrrroqBg0aFM8991x06tSpaLznnntuNGrUKMaOHRvz58+P8847L4YNGxZ//etfC+v88Y9/jH322Sc6duwYJ5xwQnTo0CFmzZoVv/vd7+KEE06IiIhnn302Bg4cGBtvvHGcdtppUVFREbfeemsccMAB8ctf/jIOPPDAlb7mvXr1ihtvvDFOOumk2GSTTeKUU06JiM/eK//+979j8ODB8fLLL8exxx4b3bp1i9tuuy1GjhwZH3zwQWHfy11//fXxySefxJgxY6KsrGyVYbqiww8/PL7xjW/EK6+8Et27d4+IiJtuuim+9a1vFc3D2nbYYYfFz3/+8zj33HML13j/4Q9/iBtvvDHuvffeWuvX9T103XXXxfe+970YMGBAnHjiiTF79uzYb7/9onXr1tG5c+fC9pYtWxb77bdfPPTQQzFmzJjo1atXPPPMM/HTn/40XnzxxbjzzjvX1UsBDScB1MP111+fImKlHymltGDBgtSyZct05JFHFj1vzpw5qbq6umj5xx9/XGv7N998c4qI9OCDDxaW/eQnP0kRkWpqaorWrampSRGRrr/++lrbiYg0fvz4wtfjx49PEZEOO+ywovVeffXV1Lhx43TOOecULX/mmWdSkyZNai1f1evxxBNPFJaNGDEiRUSaPHlyYdm8efNSs2bNUklJSbrlllsKy59//vlaY12+zb59+6ZFixYVlp933nkpItKvf/3rlFJKc+fOTaWlpekb3/hGWrp0aWG9yy67LEVE+tnPflZYNmjQoBQR6corr6x1DL17906DBg2qtfyTTz4p2m5Kn73mZWVl6ayzziosu//++1NEpF69eqVPP/20sPziiy9OEZGeeeaZlFJKS5YsSd26dUtdunRJ8+bNK9rusmXLCp/vuuuuqU+fPumTTz4penzAgAGpR48etcb5eV26dEl777130bKLLrooRUT6+c9/Xli2aNGi1L9//1RZWZk+/PDDwvFFRKqqqkpz5879wn2tuL8lS5akDh06pLPPPjullNJzzz2XIiI98MADK32fLH9P/utf/yosGzFiRKqoqKjTfle0fNw/+clP0j/+8Y8UEekvf/lLSimlyy+/PFVWVqaPPvqo1vbr+h5atGhRateuXdpmm22K5vjqq69OEVH0/rnxxhtTo0aNCvtf7sorr0wRkR5++OGi127EiBH1Pl5Y37lEBFgjl19+efzxj38s+oj47AzlBx98EIcddli8++67hY/GjRvH9ttvH/fff39hG82aNSt8/sknn8S7774bX//61yMi4m9/+9taGfdRRx1V9PUdd9wRy5Yti6FDhxaNt0OHDtGjR4+i8dbX6NGjC5+3bNkytthii6ioqIihQ4cWlm+xxRbRsmXLmD17dq3njxkzpujM59FHHx1NmjSJu+++OyIi/vSnP8WiRYvixBNPjEaN/u+P8yOPPDKqqqrirrvuKtpeWVlZjBo1qs7jLysrK2x36dKl8d5770VlZWVsscUWK52fUaNGRWlpaeHrHXfcMSKicGwzZsyImpqaOPHEE2v9rcDyM/Lvv/9+3HfffTF06NBYsGBBYT7ee++92GOPPeKll16Kf/7zn3U+huXuvvvu6NChQxx22GGFZU2bNo3jjz8+Fi5cGA888EDR+t/85jejbdu29dpH48aNY+jQoXHzzTdHxGeXZXTu3LnwOqwrvXv3jq222qowjptuuin233//aN68ea116/oeevLJJ2Pu3Llx1FFHFc3xyJEjo7q6umibt912W/Tq1Su23HLLou+pXXbZJSLiP/qegi8Ll4gAa2S77baLfv361Vr+0ksvRUQU/mf6eVVVVYXP33///Zg4cWLccsstMXfu3KL15s+fn3G0/+fzl2G89NJLkVKKHj16rHT9Nf2r/fLy8lqBVl1dHZtsskkhJldcvrJrqz8/psrKyujYsWPhmuLXXnstIj6L9BWVlpbGZpttVnh8uY033rgojr7IsmXL4uKLL44pU6ZETU1NLF26tPDYRhttVGv9TTfdtOjrVq1aRUQUju2VV16JiNXfbebll1+OlFKMGzcuxo0bt9J15s6dGxtvvHGdjyPis9eqR48eRREZ8dllJcsfX9Hn3yd1dfjhh8cll1wSTz/9dNx0001x6KGH1prvdeHwww+PCy64IE466aR45JFH4gc/+MFK16vre2j5fz//nmzatGlsttlmRcteeumlmDVr1ip/QPn89zpsiAQ2kNWyZcsi4rPrsD9/u7KIiCZN/u+PnaFDh8YjjzwSp556amyzzTZRWVkZy5Ytiz333LOwndVZVbisGIKft+JZ8+XjLSkpiXvuuScaN25ca/01vWfwyra1uuXp/78efG36/LF/kcmTJ8e4cePiu9/9bpx99tnRunXraNSoUZx44okrnZ8cx7Z8u2PHjl3lLwZuvvnmdd7emqrva7Xc9ttvH927d48TTzwxampq4vDDD888sro57LDD4vTTT48jjzwyNtpoo/jGN76xzva9bNmy6NOnT1x44YUrfXzF67VhQyWwgayW/3JXu3btVvkPb0R8dlbzz3/+c0ycODHOPPPMwvLlZ8BXtKqQXn6G9PN3O/j82cgvGm9KKbp16xY9e/as8/PWhZdeeil23nnnwtcLFy6Mt99+O4YMGRIREV26dImIiBdeeKHoLOKiRYuipqZmta//ilb1+t5+++2x8847x3XXXVe0/IMPPij8sml9LH9v/OMf/1jl2JYfR9OmTes8/rro0qVL/P3vf49ly5YVncV+/vnnC4/ncthhh8WkSZOiV69eDXbryk033TQGDhwY06dPL1xatDJ1fQ8tX++ll14q+tupxYsXR01NTWy99daFZd27d4+nn346dt111wY5ew/rA9dgA1ntscceUVVVFZMnT47FixfXenz5nT+Wn+38/NnNiy66qNZzKioqIqJ2SFdVVUWbNm3iwQcfLFo+ZcqUOo/3oIMOisaNG8fEiRNrjSWlVHTLwHXt6quvLnoNr7jiiliyZEnstddeERGx2267RWlpaVxyySVFY7/uuuti/vz5db73ckVFxUpvyda4ceNar8ltt922RtdAR0Rsu+220a1bt7joootq7W/5ftq1axeDBw+Oq666Kt5+++1a21iTO8dEfHZ/6Dlz5hTdp3rJkiVx6aWXRmVlZQwaNGiNtrsyo0ePjvHjx8cFF1yQbZtrYtKkSTF+/Pg47rjjVrlOXd9D/fr1i7Zt28aVV15ZdE/wqVOn1prLoUOHxj//+c+45pprau3v3//+93/9/ef57+AMNpBVVVVVXHHFFTF8+PDYdttt49BDD422bdvG66+/HnfddVcMHDgwLrvssqiqqircwm7x4sWx8cYbxx/+8Ieoqamptc2+fftGRMQZZ5wRhx56aDRt2jT23XffqKioiNGjR8e5554bo0ePjn79+sWDDz4YL774Yp3H271795g0aVKcfvrp8eqrr8YBBxwQLVq0iJqamvjVr34VY8aMibFjx2Z7fepj0aJFseuuu8bQoUPjhRdeiClTpsQOO+wQ++23X0R8dvu5008/PSZOnBh77rln7LfffoX1vva1r8W3v/3tOu2nb9++ccUVV8SkSZNi8803j3bt2sUuu+wS++yzT5x11lkxatSoGDBgQDzzzDMxbdq0Wtfc1lWjRo3iiiuuiH333Te22WabGDVqVHTs2DGef/75ePbZZ+P3v/99RHz2C7Q77LBD9OnTJ4488sjYbLPN4p133olHH3003nzzzVr34a6LMWPGxFVXXRUjR46Mp556Krp27Rq33357PPzww3HRRRdFixYt1uiYVqZLly5F92Cvr8WLF6/0nztv3bp1fP/736/zdgYNGvSFPzjU9T3UtGnTmDRpUnzve9+LXXbZJQ455JCoqamJ66+/vtb7Yfjw4XHrrbfGUUcdFffff38MHDgwli5dGs8//3zceuut8fvf/36lv78BG5SGuXkJ8GW1stuNrcz999+f9thjj1RdXZ3Ky8tT9+7d08iRI9OTTz5ZWOfNN99MBx54YGrZsmWqrq5OBx98cHrrrbdq3bYupZTOPvvstPHGG6dGjRoV3bLv448/TkcccUSqrq5OLVq0SEOHDk1z585d5W36Vrwl2op++ctfph122CFVVFSkioqKtOWWW6ZjjjkmvfDCC/V+PVZ1q7VBgwal3r1711r++dvKLd/mAw88kMaMGZNatWqVKisr07Bhw9J7771X6/mXXXZZ2nLLLVPTpk1T+/bt09FHH13rNnir2ndKn91Cce+9904tWrQouuXaJ598kk455ZTUsWPH1KxZszRw4MD06KOPpkGDBhXdlm35bfpuu+22ou2u6jaKDz30UNp9991TixYtUkVFRdpqq63SpZdeWrTOK6+8kr7zne+kDh06pKZNm6aNN9447bPPPun2229f6TGsaGW36UsppXfeeSeNGjUqtWnTJpWWlqY+ffrUGtuKt7urq1Xtb0X1uU1frOI2mN27d1/l9us67lW9N+vyHkoppSlTpqRu3bqlsrKy1K9fv/Tggw/Wej+k9Nlt/X784x+n3r17p7KystSqVavUt2/fNHHixDR//vzCem7Tx4aqJKV18Js1ANTZ1KlTY9SoUfHEE0840wfwJeQabAAAyEhgAwBARgIbAAAycg02AABk5Aw2AABkJLABACAj/9DMemDZsmXx1ltvRYsWLfyzsgAA66GUUixYsCA6deoUjRqt/hy1wF4PvPXWW9G5c+eGHgYAAF/gjTfeiE022WS16wjs9cDyf6L3jTfeiKqqqgYeDQAAn/fhhx9G586dC922OgJ7PbD8spCqqiqBDQCwHqvL5bx+yREAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQUZOGHgD/p/pH1RHlDT0KAID1XxqfGnoIq+QMNgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADI6D8K7OnTp0dJSUl88MEHq12va9eucdFFF/0nuyqYMGFCbLPNNlm2lUNJSUnceeedDT0MAADWE/UK7MGDB8eJJ55Y+HrAgAHx9ttvR3V1dURETJ06NVq2bJlzfOuN9S3sAQBYPzX5T55cWloaHTp0yDUWAAD40qvzGeyRI0fGAw88EBdffHGUlJRESUlJTJ06tXCJyPTp02PUqFExf/78wuMTJkxY6bY++OCDGD16dLRt2zaqqqpil112iaeffnqND+Laa6+NXr16RXl5eWy55ZYxZcqUwmOvvvpqlJSUxB133BE777xzNG/ePLbeeut49NFHi7ZxzTXXROfOnaN58+Zx4IEHxoUXXlg4Gz916tSYOHFiPP3000XHvty7774bBx54YDRv3jx69OgRv/nNb9b4WAAA+HKrc2BffPHF0b9//zjyyCPj7bffjrfffjs6d+5ceHzAgAFx0UUXRVVVVeHxsWPHrnRbBx98cMydOzfuueeeeOqpp2LbbbeNXXfdNd5///16H8C0adPizDPPjHPOOSdmzZoVkydPjnHjxsUNN9xQtN4ZZ5wRY8eOjZkzZ0bPnj3jsMMOiyVLlkRExMMPPxxHHXVUnHDCCTFz5szYfffd45xzzik895BDDolTTjklevfuXTi2Qw45pPD4xIkTY+jQofH3v/89hgwZEsOGDVvtsXz66afx4YcfFn0AALBhqHNgV1dXR2lpaTRv3jw6dOgQHTp0iMaNGxceLy0tjerq6igpKSk8XllZWWs7Dz30UDz++ONx2223Rb9+/aJHjx5x/vnnR8uWLeP222+v9wGMHz8+LrjggjjooIOiW7ducdBBB8VJJ50UV111VdF6Y8eOjb333jt69uwZEydOjNdeey1efvnliIi49NJLY6+99oqxY8dGz5494/vf/37stddehec2a9YsKisro0mTJoVja9asWeHxkSNHxmGHHRabb755TJ48ORYuXBiPP/74Ksf8ox/9KKqrqwsfK/6gAgDAl9s6v03f008/HQsXLoyNNtooKisrCx81NTXxyiuv1GtbH330UbzyyitxxBFHFG1r0qRJtba11VZbFT7v2LFjRETMnTs3IiJeeOGF2G677YrW//zXq7PitisqKqKqqqqw7ZU5/fTTY/78+YWPN954o877AgBg/fYf/ZLjmli4cGF07Ngxpk+fXuux+t6BZOHChRHx2fXT22+/fdFjK55dj4ho2rRp4fOSkpKIiFi2bFm99rcqK257+fZXt+2ysrIoKyvLsm8AANYv9Qrs0tLSWLp06Ro/HhGx7bbbxpw5c6JJkybRtWvX+uy+lvbt20enTp1i9uzZMWzYsDXezhZbbBFPPPFE0bLPf12XYwMAgHoFdteuXeOvf/1rvPrqq1FZWVnrLG3Xrl1j4cKF8ec//zm23nrraN68eTRv3rxond122y369+8fBxxwQJx33nnRs2fPeOutt+Kuu+6KAw88MPr161evA5g4cWIcf/zxUV1dHXvuuWd8+umn8eSTT8a8efPi5JNPrtM2jjvuuNhpp53iwgsvjH333Tfuu+++uOeeewpnupcfW01NTcycOTM22WSTaNGihbPQAADUUq9rsMeOHRuNGzeOr3zlK9G2bdt4/fXXix4fMGBAHHXUUXHIIYdE27Zt47zzzqu1jZKSkrj77rtjp512ilGjRkXPnj3j0EMPjddeey3at29f7wMYPXp0XHvttXH99ddHnz59YtCgQTF16tTo1q1bnbcxcODAuPLKK+PCCy+MrbfeOu6999446aSTory8vLDON7/5zdhzzz1j5513jrZt28bNN99c77ECALDhK0kppYYexProyCOPjOeffz7+8pe/rPV9ffjhh5/9a5inRUT5F64OAPBfL41ftwm7vNfmz58fVVVVq113nf+S4/rq/PPPj9133z0qKirinnvuiRtuuKHoH6wBAIC6WOe36fsivXv3Lrrl3oof06ZNW2v7ffzxx2P33XePPn36xJVXXhmXXHJJjB49eq3tDwCADdN6dwb77rvvjsWLF6/0sTW5Rruubr311rW2bQAA/nusd4HdpUuXhh4CAACssfXuEhEAAPgyE9gAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMioSUMPgP8z//T5UVVV1dDDAADgP+AMNgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABk1aegBEJFSioiIDz/8sIFHAgDAyizvtOXdtjoCez3w3nvvRURE586dG3gkAACszoIFC6K6unq16wjs9UDr1q0jIuL111//wgnjy+PDDz+Mzp07xxtvvBFVVVUNPRwyMa8bLnO7YTKvG6aGmNeUUixYsCA6der0hesK7PVAo0afXQpfXV3tm38DVFVVZV43QOZ1w2VuN0zmdcO0rue1ridC/ZIjAABkJLABACAjgb0eKCsri/Hjx0dZWVlDD4WMzOuGybxuuMzthsm8bpjW93ktSXW51wgAAFAnzmADAEBGAhsAADIS2AAAkJHABgCAjAT2OnL55ZdH165do7y8PLbffvt4/PHHV7v+bbfdFltuuWWUl5dHnz594u67715HI6U+6jOv11xzTey4447RqlWraNWqVey2225f+D6gYdT3+3W5W265JUpKSuKAAw5YuwNkjdR3Xj/44IM45phjomPHjlFWVhY9e/b0Z/F6qL7zetFFF8UWW2wRzZo1i86dO8dJJ50Un3zyyToaLXXx4IMPxr777hudOnWKkpKSuPPOO7/wOdOnT49tt902ysrKYvPNN4+pU6eu9XGuVmKtu+WWW1JpaWn62c9+lp599tl05JFHppYtW6Z33nlnpes//PDDqXHjxum8885Lzz33XPrhD3+YmjZtmp555pl1PHJWp77zevjhh6fLL788zZgxI82aNSuNHDkyVVdXpzfffHMdj5zVqe+8LldTU5M23njjtOOOO6b9999/3QyWOqvvvH766aepX79+aciQIemhhx5KNTU1afr06WnmzJnreOSsTn3nddq0aamsrCxNmzYt1dTUpN///vepY8eO6aSTTlrHI2d17r777nTGGWekO+64I0VE+tWvfrXa9WfPnp2aN2+eTj755PTcc8+lSy+9NDVu3Djde++962bAKyGw14HtttsuHXPMMYWvly5dmjp16pR+9KMfrXT9oUOHpr333rto2fbbb5++973vrdVxUj/1ndfPW7JkSWrRokW64YYb1tYQWQNrMq9LlixJAwYMSNdee20aMWKEwF4P1Xder7jiirTZZpulRYsWrashsgbqO6/HHHNM2mWXXYqWnXzyyWngwIFrdZysuboE9v/+7/+m3r17Fy075JBD0h577LEWR7Z6LhFZyxYtWhRPPfVU7LbbboVljRo1it122y0effTRlT7n0UcfLVo/ImKPPfZY5fqse2syr5/38ccfx+LFi6N169Zra5jU05rO61lnnRXt2rWLI444Yl0Mk3pak3n9zW9+E/37949jjjkm2rdvH1/96ldj8uTJsXTp0nU1bL7AmszrgAED4qmnnipcRjJ79uy4++67Y8iQIetkzKwd62M3NWmwPf+XePfdd2Pp0qXRvn37ouXt27eP559/fqXPmTNnzkrXnzNnzlobJ/WzJvP6ef/v//2/6NSpU60/FGg4azKvDz30UFx33XUxc+bMdTBC1sSazOvs2bPjvvvui2HDhsXdd98dL7/8cnz/+9+PxYsXx/jx49fFsPkCazKvhx9+eLz77ruxww47REoplixZEkcddVT84Ac/WBdDZi1ZVTd9+OGH8e9//zuaNWu2zsfkDDY0gHPPPTduueWW+NWvfhXl5eUNPRzW0IIFC2L48OFxzTXXRJs2bRp6OGS0bNmyaNeuXVx99dXRt2/fOOSQQ+KMM86IK6+8sqGHxn9g+vTpMXny5JgyZUr87W9/izvuuCPuuuuuOPvssxt6aGxgnMFey9q0aRONGzeOd955p2j5O++8Ex06dFjpczp06FCv9Vn31mRelzv//PPj3HPPjT/96U+x1VZbrc1hUk/1nddXXnklXn311dh3330Ly5YtWxYREU2aNIkXXnghunfvvnYHzRdak+/Xjh07RtOmTaNx48aFZb169Yo5c+bEokWLorS0dK2OmS+2JvM6bty4GD58eIwePToiIvr06RMfffRRjBkzJs4444xo1Mh5xy+jVXVTVVVVg5y9jnAGe60rLS2Nvn37xp///OfCsmXLlsWf//zn6N+//0qf079//6L1IyL++Mc/rnJ91r01mdeIiPPOOy/OPvvsuPfee6Nfv37rYqjUQ33ndcstt4xnnnkmZs6cWfjYb7/9Yuedd46ZM2dG586d1+XwWYU1+X4dOHBgvPzyy4UfmCIiXnzxxejYsaO4Xk+sybx+/PHHtSJ6+Q9RKaW1N1jWqvWymxrs1yv/i9xyyy2prKwsTZ06NT333HNpzJgxqWXLlmnOnDkppZSGDx+eTjvttML6Dz/8cGrSpEk6//zz06xZs9L48ePdpm89VN95Pffcc1NpaWm6/fbb09tvv134WLBgQUMdAitR33n9PHcRWT/Vd15ff/311KJFi3TsscemF154If3ud79L7dq1S5MmTWqoQ2Al6juv48ePTy1atEg333xzmj17dvrDH/6QunfvnoYOHdpQh8BKLFiwIM2YMSPNmDEjRUS68MIL04wZM9Jrr72WUkrptNNOS8OHDy+sv/w2faeeemqaNWtWuvzyy92m77/FpZdemjbddNNUWlqatttuu/TYY48VHhs0aFAaMWJE0fq33npr6tmzZyotLU29e/dOd9111zoeMXVRn3nt0qVLiohaH+PHj1/3A2e16vv9uiKBvf6q77w+8sgjafvtt09lZWVps802S+ecc05asmTJOh41X6Q+87p48eI0YcKE1L1791ReXp46d+6cvv/976d58+at+4GzSvfff/9K/3+5fC5HjBiRBg0aVOs522yzTSotLU2bbbZZuv7669f5uFdUkpK/EwEAgFxcgw0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWyAL7mRI0fGAQcc0NDDWKlXX301SkpKYubMmQ09FIB1RmADsFYsWrSooYcA0CAENsAGZPDgwXHcccfFiSeeGK1atYr27dvHNddcEx999FGMGjUqWrRoEZtvvnncc889hedMnz49SkpK4q677oqtttoqysvL4+tf/3r84x//KNr2L3/5y+jdu3eUlZVF165d44ILLih6vGvXrnH22WfHd77znaiqqooxY8ZEt27dIiLif/7nf6KkpCQGDx4cERFPPPFE7L777tGmTZuorq6OQYMGxd/+9rei7ZWUlMS1114bBx54YDRv3jx69OgRv/nNb4rWefbZZ2OfffaJqqqqaNGiRey4447xyiuvFB6/9tpro1evXlFeXh5bbrllTJky5T9+jQG+iMAG2MDccMMN0aZNm3j88cfjuOOOi6OPPjoOPvjgGDBgQPztb3+Lb3zjGzF8+PD4+OOPi5536qmnxgUXXBBPPPFEtG3bNvbdd99YvHhxREQ89dRTMXTo0Dj00EPjmWeeiQkTJsS4ceNi6tSpRds4//zzY+utt44ZM2bEuHHj4vHHH4+IiD/96U/x9ttvxx133BEREQsWLIgRI0bEQw89FI899lj06NEjhgwZEgsWLCja3sSJE2Po0KHx97//PYYMGRLDhg2L999/PyIi/vnPf8ZOO+0UZWVlcd9998VTTz0V3/3ud2PJkiURETFt2rQ488wz45xzzolZs2bF5MmTY9y4cXHDDTdkf80BiiQAvtRGjBiR9t9//5RSSoMGDUo77LBD4bElS5akioqKNHz48MKyt99+O0VEevTRR1NKKd1///0pItItt9xSWOe9995LzZo1S7/4xS9SSikdfvjhaffddy/a76mnnpq+8pWvFL7u0qVLOuCAA4rWqampSRGRZsyYsdpjWLp0aWrRokX67W9/W1gWEemHP/xh4euFCxemiEj33HNPSiml008/PXXr1i0tWrRopdvs3r17uummm4qWnX322al///6rHQvAf8oZbIANzFZbbVX4vHHjxrHRRhtFnz59Csvat28fERFz584tel7//v0Ln7du3Tq22GKLmDVrVkREzJo1KwYOHFi0/sCBA+Oll16KpUuXFpb169evTmN855134sgjj4wePXpEdXV1VFVVxcKFC+P1119f5bFUVFREVVVVYdwzZ86MHXfcMZo2bVpr+x999FG88sorccQRR0RlZWXhY9KkSUWXkACsDU0aegAA5PX54CwpKSlaVlJSEhERy5Yty77vioqKOq03YsSIeO+99+Liiy+OLl26RFlZWfTv37/WL0au7FiWj7tZs2ar3P7ChQsjIuKaa66J7bffvuixxo0b12mMAGtKYAMQERGPPfZYbLrpphERMW/evHjxxRejV69eERHRq1evePjhh4vWf/jhh6Nnz56rDdbS0tKIiKKz3MufO2XKlBgyZEhERLzxxhvx7rvv1mu8W221Vdxwww2xePHiWiHevn376NSpU8yePTuGDRtWr+0C/KcENgAREXHWWWfFRhttFO3bt48zzjgj2rRpU7i/9imnnBJf+9rX4uyzz45DDjkkHn300bjsssu+8K4c7dq1i2bNmsW9994bm2yySZSXl0d1dXX06NEjbrzxxujXr198+OGHceqpp672jPTKHHvssXHppZfGoYceGqeffnpUV1fHY489Ftttt11sscUWMXHixDj++OOjuro69txzz/j000/jySefjHnz5sXJJ5+8pi8TwBdyDTYAERFx7rnnxgknnBB9+/aNOXPmxG9/+9vCGehtt902br311rjlllviq1/9apx55plx1llnxciRI1e7zSZNmsQll1wSV111VXTq1Cn233//iIi47rrrYt68ebHtttvG8OHD4/jjj4927drVa7wbbbRR3HfffbFw4cIYNGhQ9O3bN6655prC2ezRo0fHtddeG9dff3306dMnBg0aFFOnTi3cOhBgbSlJKaWGHgQADWf69Omx8847x7x586Jly5YNPRyALz1nsAEAICOBDQAAGblEBAAAMnIGGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBG/x9UUpn8ZvUyHQAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 1000x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAIjCAYAAADWYVDIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA53JJREFUeJzsvXV4XeeV9n0foS3bkkmyLVu2zMxsy8wQM0M4Tdv0nUk7nXmb6VtM2zTJpJ0vk0maNIkDZo6ZWWaIGWWMSSaBQZKls78/lh89W3xg816/69J1to+kcx4dn7P3s9a61708iqIoYBiGYRiGYRiGYQAAIWYvgGEYhmEYhmEYxkpwkMQwDMMwDMMwDKOCgySGYRiGYRiGYRgVHCQxDMMwDMMwDMOo4CCJYRiGYRiGYRhGBQdJDMMwDMMwDMMwKjhIYhiGYRiGYRiGUcFBEsMwDMMwDMMwjAoOkhiGYRiGYRiGYVRwkMQwDMOgb9++6Nu3r9nLYApx+fJleDwefPXVV4Y+L78fGIZxOxwkMQzDGMzJkycxY8YM1K5dG5GRkYiPj8eMGTNw6tSpMn936dKl8Hg8+Pzzz0v8mY0bN8Lj8eDDDz/UctmMD3g8nhK/fvzjH5u9PIZhGMZHwsxeAMMwjJtYunQppk6diqpVq+KVV15B/fr1cfnyZXzxxRdYvHgxFixYgNGjR5f4+yNGjEBMTAzmzp2LV199tdifmTt3LkJDQzFlyhS9/gymFAYNGoTnn3++yP1NmjTx+7Hq1auHJ0+eIDw8XIulMQzDMD7CQRLDMIxBpKSkYObMmWjQoAF27NiB2NjY/O/967/+K3r16oUZM2bg2LFjqF+/frGPERkZiQkTJmDWrFm4ceMG4uPjC3w/KysLy5Ytw6BBgxAXF6fr3+NGsrKyEBERgZCQkoUYTZo0wYwZMzR5Po/Hg3LlymnyWAzDMIzvsNyOYRjGIN5//308fvwYn332WYEACQCqV6+OTz/9FA8fPsT7779f6uPMmDEDXq8X8+fPL/K91atXIz09HdOnTwcAzJo1C/3790dcXBwiIyPRokULfPLJJ2Wu9auvvoLH48Hly5cL3L9t2zZ4PB5s27atwP379u3D0KFDERMTg6ioKPTp0wfJyckFfiYzMxNvvvkmEhMTERkZibi4OAwaNAiHDx8ucz1HjhzBsGHDEB0djYoVK2LAgAHYu3dv/vcPHjwIj8eDr7/+usjvrl+/Hh6PB6tWrcq/7/r163j55ZdRo0YNREZGomXLlvjyyy+L/Vvnz5+P//f//h9q166NqKgoZGRklLnesujbty9atWqFQ4cOoUePHihfvjzq16+Pf/zjHwV+rriepFu3buGll15CnTp1EBkZiVq1amH06NFF/q8+/vhjtGzZMl/S+cYbbyAtLa3IWj777DM0bNgQ5cuXR5cuXbBz585i15ydnY3f/e53aNSoESIjI5GQkID/+I//QHZ2doGf27hxI5KSklC5cmVUrFgRTZs2xX/+538G9DoxDMOYBVeSGIZhDGLlypVITExEr169iv1+7969kZiYiJUrV+Ljjz8u8XF69+6NOnXqYO7cufjFL35R4Htz585FVFQUxowZAwD45JNP0LJlS4waNQphYWFYuXIlfvrTn8Lr9eKNN97Q5O/asmULhg0bho4dO+J3v/sdQkJC8oOznTt3okuXLgCAH//4x1i8eDF+9rOfoUWLFrh37x527dqF06dPo0OHDiU+/smTJ9GrVy9ER0fjP/7jPxAeHo5PP/0Uffv2xfbt29G1a1d06tQJDRo0wMKFC/HCCy8U+P0FCxagSpUqGDJkCADg9u3b6NatGzweD372s58hNjYWa9euxSuvvIKMjAy8+eabBX7/7bffRkREBH75y18iOzsbERERpb4eWVlZuHv3bpH7o6OjC/zugwcPMHz4cEyaNAlTp07FwoUL8ZOf/AQRERF4+eWXS3z88ePH4+TJk/g//+f/IDExEampqdi4cSOuXr2KxMREAMDvf/97/OEPf8DAgQPxk5/8BGfPnsUnn3yCAwcOIDk5OV++98UXX+D1119Hjx498Oabb+LixYsYNWoUqlatioSEhPzn9Hq9GDVqFHbt2oUf/ehHaN68OY4fP46///3vOHfuHJYvX57/fzVy5Ei0adMGf/zjHxEZGYkLFy4UCZgZhmEsj8IwDMPoTlpamgJAGT16dKk/N2rUKAWAkpGRUerP/fu//7sCQDl79mz+fenp6Uq5cuWUqVOn5t/3+PHjIr87ZMgQpUGDBgXu69Onj9KnT5/8f8+aNUsBoFy6dKnAz23dulUBoGzdulVRFEXxer1K48aNlSFDhiher7fA89avX18ZNGhQ/n0xMTHKG2+8UerfVRxjxoxRIiIilJSUlPz7bty4oVSqVEnp3bt3/n1vvfWWEh4erty/fz//vuzsbKVy5crKyy+/nH/fK6+8otSqVUu5e/dugeeZMmWKEhMTk/+aib+1QYMGxb6OxQGgxK958+bl/1yfPn0UAMoHH3xQYK3t2rVT4uLilJycHEVRFOXSpUsKAGXWrFmKoijKgwcPFADK+++/X+IaUlNTlYiICGXw4MFKXl5e/v0fffSRAkD58ssvFUVRlJycHCUuLk5p166dkp2dnf9zn332mQKgwPvh22+/VUJCQpSdO3cWeK5//OMfCgAlOTlZURRF+fvf/64AUO7cuePT68UwDGNVWG7HMAxjAJmZmQCASpUqlfpz4vvi50tC9LzMnTs3/74lS5YgKysrX2oHAOXLl88/Tk9Px927d9GnTx9cvHgR6enp/v0RxfD999/j/PnzmDZtGu7du4e7d+/i7t27ePToEQYMGIAdO3bA6/UCACpXrox9+/bhxo0bPj9+Xl4eNmzYgDFjxqBBgwb599eqVQvTpk3Drl278uVvkydPxtOnT7F06dL8n9uwYQPS0tIwefJkAICiKFiyZAmee+45KIqSv967d+9iyJAhSE9PLyL/e+GFFwq8jmUxevRobNy4schXv379CvxcWFgYXn/99fx/R0RE4PXXX0dqaioOHTpU7GOXL18eERER2LZtGx48eFDsz2zatAk5OTl48803C/ROvfbaa4iOjsbq1asBkEQxNTUVP/7xjwtUuF588UXExMQUeMxFixahefPmaNasWYHXrH///gCArVu3AqD/YwD47rvv8v/fGYZh7AjL7RiGYQzA1+AnMzMTHo8H1atXBwDcv38fOTk5+d8vX748YmJi0KZNG7Rq1Qrz5s3D73//ewAUMFWvXj1fVgYAycnJ+N3vfoc9e/bg8ePHBZ4rPT29yGbYX86fPw8ARSRuhZ+nSpUqeO+99/DCCy8gISEBHTt2xPDhw/H8888XCH4Kc+fOHTx+/BhNmzYt8r3mzZvD6/Xi2rVraNmyJdq2bYtmzZphwYIFeOWVVwCQ1K569er5m/k7d+4gLS0Nn332GT777LNinzM1NbXAv0sy0SiJOnXqYODAgWX+XHx8PCpUqFDgPuGAd/nyZXTr1q3I70RGRuLdd9/Fv/3bv6FGjRro1q0bRo4cieeffx41a9YEAFy5cgUAirxmERERaNCgQf73xW3jxo0L/Fx4eHiR/5Pz58/j9OnTRXrpBOI1mzx5Mj7//HO8+uqr+NWvfoUBAwZg3LhxmDBhQqlmFwzDMFaDgySGYRgDiImJQXx8PI4dO1bqzx07dgx16tTJz+yPGzcO27dvz//+Cy+8kN/EP2PGDPzqV7/CwYMHUadOHWzduhWvv/46wsLo1J6SkoIBAwagWbNm+Nvf/oaEhARERERgzZo1+Pvf/15qpt/j8RR7f15eXoF/i8d4//330a5du2J/p2LFigCASZMmoVevXli2bBk2bNiA999/H++++y6WLl2KYcOGlfq6+MrkyZPx5z//GXfv3kWlSpWwYsUKTJ06Nf81EeudMWNGiYFdmzZtCvzbnyqSEbz55pt47rnnsHz5cqxfvx6/+c1v8M4772DLli1o3769Ls/p9XrRunVr/O1vfyv2+6J/qXz58tixYwe2bt2K1atXY926dViwYAH69++PDRs2IDQ0VJf1MQzDaA0HSQzDMAbx3HPP4dNPP8WuXbuQlJRU5Ps7d+7E5cuXC5gxfPDBBwVkVWrL76lTp+Ktt97C3LlzUa9ePeTl5RWQ2q1cuRLZ2dlYsWIF6tatm3+/kEaVRpUqVQCgiBuaqD4IGjZsCIBMCXypntSqVQs//elP8dOf/hSpqano0KED/vznP5cYJMXGxiIqKgpnz54t8r0zZ84gJCSkgMHA5MmT8Yc//AFLlixBjRo1kJGRUWBeVGxsLCpVqoS8vDyf1qsnN27cwKNHjwpUk86dOwcA+QYMJdGwYUP827/9G/7t3/4N58+fR7t27fDBBx9g9uzZqFevHgDg7NmzBSpCOTk5uHTpUv7fLX7u/Pnz+ZU2AHj69CkuXbqEtm3bFni+o0ePYsCAASUG0IKQkBAMGDAAAwYMwN/+9jf85S9/wa9//Wts3brV9NecYRjGV7j2zTAMYxC//OUvERUVhddffx337t0r8L379+/jxz/+MaKjo/Gzn/0s//6OHTti4MCB+V8tWrTI/17dunXRq1cvLFiwALNnz0b9+vXRo0eP/O+LrL2iKPn3paenY9asWWWuVQQ/O3bsyL8vLy+viEStY8eOaNiwIf7rv/4LDx8+LPI4d+7cyf/dwj1QcXFxiI+PL2IhrSY0NBSDBw/Gd999V8Di+vbt25g7dy6SkpIQHR2df3/z5s3RunVrLFiwAAsWLECtWrXQu3fvAo83fvx4LFmyBCdOnChxvUaQm5uLTz/9NP/fOTk5+PTTTxEbG4uOHTsW+zuPHz9GVlZWgfsaNmyISpUq5b+OAwcOREREBD788MMC//dffPEF0tPTMWLECABAp06dEBsbi3/84x8FJJ1fffVVkeB40qRJuH79Ov75z38WWdOTJ0/w6NEjAPQ+LoyoMJb2/8wwDGM1uJLEMAxjEI0aNcI333yDqVOnonXr1njllVdQv359XL58GV988QUePHiA+fPn+9UDM2PGDPzoRz/CjRs38Otf/7rA9wYPHoyIiAg899xzeP311/Hw4UP885//RFxcHG7evFnq47Zs2RLdunXDW2+9hfv376Nq1aqYP38+cnNzC/xcSEgIPv/8cwwbNgwtW7bESy+9hNq1a+P69evYunUroqOjsXLlSmRmZqJOnTqYMGEC2rZti4oVK2LTpk04cOAAPvjgg1LX8qc//Sl/9s5Pf/pThIWF4dNPP0V2djbee++9Ij8/efJk/Pa3v0W5cuXwyiuvFOmF+etf/4qtW7eia9eueO2119CiRQvcv38fhw8fxqZNm4rd6PvDuXPnMHv27CL316hRA4MGDcr/d3x8PN59911cvnwZTZo0wYIFC/D999/js88+y7foLu6xBwwYgEmTJqFFixYICwvDsmXLcPv27fyKWWxsLN566y384Q9/wNChQzFq1CicPXsWH3/8MTp37pxv+hEeHo4//elPeP3119G/f39MnjwZly5dwqxZs4r0JM2cORMLFy7Ej3/8Y2zduhU9e/ZEXl4ezpw5g4ULF2L9+vXo1KkT/vjHP2LHjh0YMWIE6tWrh9TUVHz88ceoU6dOsdVThmEYy2KuuR7DMIz7OH78uDJt2jSlZs2aSkhIiAJAKVeunHLy5Em/H+v+/ftKZGSkAkA5depUke+vWLFCadOmjVKuXDklMTFReffdd5Uvv/yyiL13YQtwRVGUlJQUZeDAgUpkZKRSo0YN5T//8z+VjRs3FrAAFxw5ckQZN26cUq1aNSUyMlKpV6+eMmnSJGXz5s2KopC99b//+78rbdu2VSpVqqRUqFBBadu2rfLxxx/79HcePnxYGTJkiFKxYkUlKipK6devn7J79+5if/b8+fP5ttu7du0q9mdu376tvPHGG0pCQoISHh6u1KxZUxkwYIDy2Wef5f+MsABftGiRT2tUlNItwNWvb58+fZSWLVsqBw8eVLp3766UK1dOqVevnvLRRx8VeLzCFuB3795V3njjDaVZs2ZKhQoVlJiYGKVr167KwoULi6zlo48+Upo1a6aEh4crNWrUUH7yk58oDx48KPJzH3/8sVK/fn0lMjJS6dSpk7Jjx45i3w85OTnKu+++q7Rs2VKJjIxUqlSponTs2FH5wx/+oKSnpyuKoiibN29WRo8ercTHxysRERFKfHy8MnXqVOXcuXM+v4YMwzBWwKMoqlo8wzAMYzjffPMNXnzxRcyYMQPffPON2cthDKBv3764e/dusZI/hmEYxnxYbscwDGMyzz//PG7evIlf/epXqFOnDv7yl7+YvSSGYRiGcTVcSWIYhmEYg+FKEsMwjLVhdzuGYRiGYRiGYRgVXEliGIZhGIZhGIZRwZUkhmEYhmEYhmEYFRwkMQzDMAzDMAzDqDDV3W7Hjh14//33cejQIdy8eRPLli3DmDFj8r+vKAp+97vf4Z///CfS0tLQs2dPfPLJJ2jcuLHPz+H1enHjxg1UqlQJHo9Hh7+CYRiGYRiGYRg7oCgKMjMzER8fX2TYuBpTg6RHjx6hbdu2ePnllzFu3Lgi33/vvffw4Ycf4uuvv0b9+vXxm9/8BkOGDMGpU6dQrlw5n57jxo0bSEhI0HrpDMMwDMMwDMPYlGvXrqFOnTolft8yxg0ej6dAJUlRFMTHx+Pf/u3f8Mtf/hIAkJ6ejho1auCrr77ClClTin2c7OxsZGdn5/87PT0ddevWxbVr1xAdHa3738EwDMMwDMMwjDXJyMhAQkIC0tLSEBMTU+LPWXaY7KVLl3Dr1i0MHDgw/76YmBh07doVe/bsKTFIeuedd/CHP/yhyP3R0dEcJDEMwzAMwzAMU2YbjmWNG27dugUAqFGjRoH7a9Sokf+94njrrbeQnp6e/3Xt2jVd18kwDMMwDMMwjLOwbCUpUCIjIxEZGWn2MhiGYRiGYRiGsSmWrSTVrFkTAHD79u0C99++fTv/ewzDMAzDMAzDMFpj2SCpfv36qFmzJjZv3px/X0ZGBvbt24fu3bubuDKGYRiGYRiGYZyMqXK7hw8f4sKFC/n/vnTpEr7//ntUrVoVdevWxZtvvok//elPaNy4cb4FeHx8fIFZSgzDMAzDMAzDMFpiapB08OBB9OvXL//fv/jFLwAAL7zwAr766iv8x3/8Bx49eoQf/ehHSEtLQ1JSEtatW+fzjCSGYRiGYRiGYRh/scycJL3IyMhATEwM0tPT2QKcYRiGYRiGYVyMr7GBZXuSGIZhGIZhGIZhzICDJIZhGIZhGIZhGBUcJDEMwzAMwzAMw6jgIIlhGIZhGIZhGEYFB0kMwzAMwzAMwzAqOEhiGIZhGIZhGIZRwUESwzAMwzAMwzCMCg6SGIZhGIZhGIZhVHCQxDAMwzAMwzAMo4KDJIZxMN9/D2Rmmr0KG3L7NnDnjtmrYBiGYRjGJDhIYhiHsmkT0L498MorZq/EZqSnA61bA+3aAY8fm70aWzFrFjBiBPDggdkrsSFPnpi9AoZhGEYFB0mM9Tl/HvjP/wTS0sxeia1YuZJuV6wAHj0ydy22YulSqiLduAF8953Zq7ENXi/wf/8vsGYNMGeO2auxGYsXA1FRwMcfm70ShmEY5hkcJDHW57e/Bd55B3j7bbNXYit27KDb7Gxg82Zz12Ir5s6Vx998Y946bMaBA1KhuHGjuWuxHe+/T7fvvgvk5Zm7FhuRmQkMGAD87ndmr4RhGCfCQRJjfQ4dott583gD4SNpacDRo/Lfq1ebthR7cfMmsGWL/PeGDVRRYspE/R7buhV4+tS8tdiKM2eA/fvp+OpV0skyPvHdd/Rx/fOfqY2Q8YPUVODiRbNXwTCWhoMkxtpkZgIXLtDxzZvAtm2mLscuJCcDigKEhtK/V6+mfzNlsHAh6ca6dQN69KBjdWWJKZFVq+RxZiZVlhgfENVKj4duv/jCvLXYDFGxzMsD5s83dy22IjeXzm+tWgGXL5u9GoaxLBwkMdbm+PGCu3vesPqEkNpNmUKtDtevF6wsMSUg3l/TpgHPP0/HX3/NEWYZXL8OHDlC+/y+fek+ltz5QF4e8O23dPzrX9Pt8uXsrOgDilLwPSZeRsYHVq8GUlLILIQbCP0iLY3aVlnU4g44SGKszfff022NGnS7eDGQlWXacuyCCJKGDAEGDqRjltyVwYULJHsKCQEmTaKviAjgxAmOMMtgzRq67dKF4kuAgySf2LYN+OEHoHJlCpI6dSKdIu/4y+TUKRIXlCsHhIWRKvv0abNXZRM++0wez57NSSA/eP11YPx44H//1+yV2AxFseXejYMkxtqIIOnll4E6dYCMDN7tl8GjR8DBg3TcuzdZMgP8spXJvHl0O3AgBeVVqgCjRtF9bOBQKuK9NXIkMGgQHe/dSx9XphS+/ppuJ0+m3f6rr9K/v/iCN65lsGED3fbuDQwbRsccW/rAtWvAunV0HB5OPXFHjpi7Jptw7x6wbBkdcwHOT44dA+LigJ/8xFbnNg6SDMLrpWT0P/5hq/eH+YggqUMHYOpUOmbJXans3UuS87p1gXr1gOHD5f2s4ikBRZFXPVEKAYAXXqDbOXPoRWWKkJUlq0YjRgCJiUCjRiRH4RbCUsjMBJYsoWPxPpsyBShfnsoke/eatzYbIN5zgwYBM2fS8Zw5dK1lSuHLL+lF6tMHGDOG7uMdv0/Mny8NafbvB65cMXc9tuLbb+mcd/eu7L+0ARwkGUR2NklRfvIT6UPAlEFuLvUkATTYc/p0Ol61imcmlYKQ2vXuTbd16tDLpygygcgU4vvvgbNnKZs/dqy8f8gQIDaWnKBE6popwPbtNHM3Pp7eZ4CsJrHkrhSWLqUXrnFjMgoBgJgYknkCbOBQCtnZ9L4DgMGDgeeeo5fu6lV5/mOKIS9Pvq9ee01eU9k51idE4TcsjG4XLzZvLbYiL08mt2fMMHctfsJBkkGULy+vg5xd9ZFz5yhNXbEi0KAB0KYN0LIlkJMjM7BMEcTmQQRJAEvuykScwJ97DoiOlveHh8vKkrhCMgUQrnYjRsgEoQiS2M26FMT76fnnC2ZWheRu/nzKvDJF2L2b4ssaNYDWrSm3MXEifY8ld6WwYQPJ7apUocaaYcPomJ1jy+T0aXLsDAuTHiuLFpm7JtuwZQu9x6pWldpYm8BBkoEI1yc+F/mIkNq1bUvN9B6P3LCy5K5YsrOlSqe4IGndOp5fUwSvV/YjqaV2AuFy9913XMEshKIU7EcS9OtHH9kzZ8iXgCnElSs0TAqQWjFBz55A06bUXLhggfFrswGiQjlwoIwvxcu4eDGZtjHF8M9/0u3zz1NkGREho0uW3JWKaEsdNgz48Y/pfbdvH1UvmTKYPZtuJ0+m95yN4CDJQPr0odtt27gvySeEo5jQ8AByE7t1K/kOMwU4cIACpbg4oEkTeX+XLkD16kB6OmVhGRU7d9J7KSam+CxX+/ZUwczO5tRhIc6cAS5dAiIjgQED5P2VKwOdO9MxS+6KQWwa+vWjxkE1Hg/wyit0zJK7YlH3IwmSkuilzMgAVqwwZ12W5tYtYOVKOn7tNXm/kNwtWWJL9zEjyMuTH9nnnwdq1gR69aJ/s+SuDB49ksqfwgkhG8BBkoF060ZB9I0b3JfkE+pKkiAxkTKtisLTA4tB3Y+kVvCEhsr9P0vuCiGqkhMm0G6/MB6PrCaxy10BhNSuXz+gQoWC3+O+pBJQlIJSu+J4/nnS9ezdSxb0TD737pHdN1AwSAoJke0OLLkrhq++oj7f7t0p6SNISgISEii6VE+EZvLZulU69T/3HN0nCnALF5q2LHuwfDkFSg0byp4TG8FBkoFERQFdu9Kx6BthSkBRpC2pupIEsOSuFAqbNqgRkju+DqrIyZHVoeKkdoLp02kXtmsXDWFkAMiAW7y31Kj7kthxTMXevcD583RBGD+++J+pUUPuxriaVIDNm+ny0LIlmYWoEYnqdevIa4V5htcLfP45HaurSACd18S5T5RLmAKI3NiUKTKPNn48S+58QrynZsywlaudgIMkg+G+JB+5dYv8qkNCgFatCn5v0iTKsh4+THofBgAlCZOT6bi4IGnIEKoonT5NEikGwPr1wIMHQK1aUg9bHLVry6m8vJEAQC/brl10XFyQ1K0bVZfu3KERGcwzxI5r/HigUqWSf04YOHz7LUk9GQDFS+0ETZuSzDMvj4UGBdi2jZI70dHSPVGNKMGtWQPcv2/o0qxOcU79AF0ykpLomCV3JXDrlnSFtZmrnYCDJINRB0ncl1QKQmrXrBlZA6qpXp12/AA3m6r4/nvg4UOSBBSOKwG6X5zUWXL3DFGNnDKFIsjSUEvu+MOLDRtoM9qiBVC/ftHvR0TI8x273D0jK0vu3kuS2gmGDKHg/N49Mg1hoCgySBo8uPifEdUkltypEIYN06YV1cUCdMFo04ZcfXjHXwC1U79QAgmE5I5bVUtg/nyqYnbrRsPzbAgHSQYj+pKuX2fVTqmIIKmw1E6gltzxhhWAlNolJZW832fJnYqHD+XmszSpnWDMGLKjv3hRluxcjNr6uyS4L6kQK1eSQ2KdOtTIVRqhocBLL9GxkEq5nPPnyRgwIqL4ajlA+Y6wMODgQRYaAKDhnUuX0nFhqZ0aYeDAiccCiPbBF14oqhYTkru9e8lZnSmEyFTY0LBBwEGSwURFkdMYwJK7UikrSBo9mjJiFy+SKJgptR9JIDa027ZRL6Wr+e478gpu3Bjo2LHsn69QgcwdANcbOOTlAWvX0rHa+rswQqG4YwcbZwGQ75uZM8uuXALAyy/T7aZNwOXLui3LLohgu0eP4gsiAM1+HjqUjrmaBHoRcnKADh3oqySmTqUd/44d3GTzDLVTf3Fqsfh4ltyVyKlT1BIRFla8xNMmcJBkAtyX5ANlBUkVKlBmH+DMF6iivXMnHZcWJDVvTtKo7GxqgHY1Qmo3bZrvDaVCIrVwoauHsezbRyqwypVpw1oSLVrQRiIri4tvuH1bRpZlSe0E9euTt7qiALNm6bc2m1BaP5IakbiePdvlpiGKIqV2pVWRAHK4ExcPMTfO5ZTm1C9gyV0JiBdv+HBqkbApHCSZgAiStm9npVixPHxIugqgoP13YYREasECci1wMadOUb9tVFTpyUKPhyV3AMhNYP16Op461fff69OHNhPp6XLmiAsRPW1Dh1KisCQ8HllNcr3kbt48KsF16UK9lr4iDBxmzaLfdylPn8qsfkn9SILnniOPgqtXZfLIlezeTU49UVG+SYpZcpePosjCb2k5DSG527OHJXf5eL3yPWRjqR3AQZIpdO8OhIeT7/7Fi2avxoIcP05nqPh4mopaEoMGUYbizh3Xd4YLqV2PHvTeKg0RJK1Z4+IgffFi2nB27EiWWL4SEiJP+i6W3PnSjyTgvqRnqJsb/GHMGKBqVdqBufhF3L+fRvlUrUrznUujfHmZ4Xe15E5UkSZPpqixLCZMoIav48ddb0m5bx9w7lzpTv0AbVN69qRj4YLnenbupAxFTEzpemwbwEGSCajnJbHkrhjKktoJwsPp5A+4PvPlSz+SoG9feg9evw4cParrsqyLWmrnLyKtuG4dSahcxrVrtH8KCZG9H6UhKklHjlAPuSs5dozOa+pzlq+UKycbIlxs4CDiwwEDfGvnErmMRYtcqoxNS5OTTsuS2gmqVCF5FOD6a6rIgY0bV7pTP8CSuyKIzMTEiXT+sjEcJJkE9yWVgti5lxUkAXKTu2wZ+XS6EEWRQVJpo34E5crJjasrJXdXrtCAH4/H/w0rQJWnrl2pEuVC7f6aNXTbrZtvUvOaNYHWrel9umWLvmuzLGLH9dxzQLVq/v/+K6/Q7YoVrp2SWpb1d2F69QLq1qXqkyuVsXPmUHTYsiV9WH1FBOTz5rm2oSs7Wzr1+1L4FZWm3btJIeRqsrJktGjT2UhqOEgyCbGZ5XlJxSAqSaX1Iwm6d6fm5kePaAPhQlJSgJs3SSUhnBPLQsikXDkvSVz9+valOTSBIKpJQkLlIkRg7Y+KwtV9Sbm5sonZV8OGwrRpQx/up09dqR9LT5cmpmWZNghCQmSLjetessKGDb4a0wB0cYiJoZKxSxu6Vq2iYdm1a5ft1A/QzwnJnetd7laupMxE3bqUqbA5HCSZBPcllUBentRC+1JJ8nhkNcml8gBRRera1ffKtgiS9u2jli5XEYzUTjB5Mn2Av//eVdr9J0+kK6Iv/UgCdV+S65JCGzaQLLN6dWDYsMAfR1STPv/cdS/i1q10aWjcuGSXseIQkrt161x2njt4kBQZkZH+N86XKydLIy69porcl69O/QBL7vIRGYkZMyhTYXPs/xfYlAoVZNZ/+3Zz12Ipzp+nnViFCkDDhr79jtjsrltHvsQuw59+JEHt2hSDKop0JXYFJ05QUBMeXno3bllUqyZLKS5KU2/dSh/POnVIQucrvXtTpfPKFeDCBf3WZ0mE1G7aNHoRAmXKFGomPHOGrLRchL9SO0Hz5uTNkpsrC8iuQFSRxo8npwt/ESW4RYtIe+YiUlP9d+oHWHIHgJpOxYvnAKkdwEGSqXBfUjEIqV2bNr6ncFq0oB1/bq4r0zgiyPYnSAJcKrkTPUTDh1OTcjCIK+js2a6xoBfvlZEj/VPwVKgg5ym5SnKXlgYsX07HgUrtBNHRciijywwcfJ2PVByikOKaXMbDh/I856thQ2H69CHbtrQ0l2XR6KXLzQU6d6Yg21fq1JHnONe63IlxLB07+vfiWRgOkkxEHSS5TD1RMr462xVGZL6ElMolXL0KXL5M8WT37v79riiErF9PrQ6OR1G0kdoJhg+nitKtW66YzKso/ll/F0ZscF3l1r9wIWXiW7YsfYCZr4iZSQsWkO7fBVy+TAKD0FB5zfSHqVPpdw8cAM6e1Xp1FmT+fAqUGjf2zcmnOEJD5fw4l0nufJmNVBIih+HCXC0hei8dUkUCOEgyFdGXdO0acOmS2auxCIEGSVOmUGp7507S9LgE0VfboUPZNqWF6dyZ2iTS04HkZO3XZjn27qUdV8WK2sxuiIiQGwkXzEw6eZKC8nLlgP79/f99ESRt2eKawpt8X7zwgn+lt5Lo0YMG0T5+TIGSCxBVpK5dyU/AX+LigCFD6NgV1aRADRsKIxKPK1fSRcIFnDgBHD5M+7IpU/z/fSG5S06mERuu4vx5usaqA2wHYPkgKTMzE2+++Sbq1auH8uXLo0ePHjhw4IDZy9KEChVoowqw5C6fQIOkOnVk1sxFtsyB9CMJQkNlH7krJHeiijR2LPV2aIFINy5b5vjMvqgi9e8f2MvXoQMpHNPTqa/c8Vy4QLsltc1asHg8BQ0cXECg/UhqhORu9myHu1ofO0ZTd8PD/R9aXJh27UjKnp3tGv2YyGmMGOHbeIPCuFpyJyqOgwYBNWqYuxYNsXyQ9Oqrr2Ljxo349ttvcfz4cQwePBgDBw7EdYeE6dyXpOLWLXKBCgkBWrXy//ddKLkLJkgCZEHF8UFSbq7MvGshtRN06kSZ/SdPHO/9qu5HCoTQUFmBckVfkthxDRpE/R1a8fzzQFgYbYaPH9fucS1IXp6UZwbSjyQYPZoq7WJEmmMRVaTRo6mEFgwej7ymukByp3bqDya+dKXLnaLIF89fN0WLY+kg6cmTJ1iyZAnee+899O7dG40aNcLvf/97NGrUCJ988onZy9MEESRt3859SflVpKZNA0tVjx9PEqjjxx2/eQDIhefMGTpOSgrsMQYPps3r6dMOt6LfvJk8gGNjgQEDtHtcj0dWkxwsubt3j1ybgMD6kQRqK3BH4/VKbVewGf3CxMXRJhgAvvhC28e2GIcP07ya6GjfZ8AVR/nywIQJdOxYyd2TJ3KjGqhhQ2FEQmnrVsfrxzZvpnmD1apRu2mgiPdZcjJw44Y2a7M8e/bQwMaKFYExY8xejaZYOkjKzc1FXl4eyhUa/lK+fHnsKiEdlJ2djYyMjAJfVqZHD0oKigZ8VxOo1E5QpYo8u7kg8yX6kVq3DszlFQAqV5YBlqOrSaK6OGkSSVG0ZPp0Cpa2b3fsh3j9etr3t25NMwIDRQRJe/YAmZnarM2S7NxJ74VKlWRAoyVCcvftt462aBbBdP/+dJ0MBpHgXrQIyMoK7rEsyeLF5EaXmCinNwdLYiJNSVUUx3uoi9lIU6cG59Rfpw71myuKiyR3IjgfN047KbtFsHSQVKlSJXTv3h1vv/02bty4gby8PMyePRt79uzBzZs3i/2dd955BzExMflfCQkJBq/aP9TzklwvuTt6lG4DDZIAKQ+YN8/h4vPgpXYCx0vunjwBli6lYy2ldoK6deVYdnGxcBjivRFMFQkAGjSgr9xc+f51JKKqOGmSPpuGwYNpN3b/vrQYdyAbNtBtMFI7QZ8+QEIC9cStXBn841kOIbV75RVth3i6QHKXkUFtpUDwTv2AyyR3OTlSyu4wqR1g8SAJAL799lsoioLatWsjMjISH374IaZOnYqQEk4Cb731FtLT0/O/rl27ZvCK/Yf7kp4hKklt2wb+GCNGUPb26lXHW7ZpFSSJje/WreQc6zhWraI/LDHRf590X1FL7hymm83NlaNStDAFdLzk7vFjuTvSWmonCA0FXn6Zjh1q4PDwoZR4ahEkqf0zHCe5O3OGqpchIcBLL2n72BMnUhnvyBHg1CltH9siiOpi8+bUZhosQnK3a5cLJHdr11KyJj5eJgsdhOWDpIYNG2L79u14+PAhrl27hv379+Pp06do0KBBsT8fGRmJ6OjoAl9WR5iyuXpe0qNHcohFMJWk8uWlD6eDM19pabLw1qtXcI/VrBlQvz4lhBw57kdI7aZO1caGuTjGj6eKwfnzwL59+jyHSezdS30hVasC3boF/3hCCeTYIGnZMtIS1q9PUiW9eOklej9v2uTIGRI7dtD8tnr1gEaNtHlMkeheu5ZaFB2DCJRHjABq19b2satXB4YOpWOHXlOF1O7557W5RCQk0LnSFZI7kXGYNo2SNw7D8kGSoEKFCqhVqxYePHiA9evXY7QeOm+T4L4k0IACRQFq1gzePlKkCxctop2/A0lOppercWOgVq3gHsvjcbDk7sEDYM0aOtZDaieoWFEG5w4zcBDW38OGaXMN7N+f3nOnTjm0F1w9jVJL2VNh1L0ns2bp9zwmobb+1iq30aIFWdGrzS5tT3a23OVrZdhQGLVzrMMyuRcvUhHO49F2BqorJHcPHkjtqoMGyKqxfJC0fv16rFu3DpcuXcLGjRvRr18/NGvWDC9pXVI2kYoV5byk7dvNXYtpBGvaoKZfPwq27t+njnMHopXUTiAkd6tXO+wauHQpBcqtWwdmK+8PQnI3f76jmum16kcSVK0qJS3C3tkxXL8u/ygtmhvKQhg4fPkl+WU7CC37kdSIapJjJHfffQfcvUtyJzH4TmtGjaKNyuXLUgPpEMT7YOBAavPTCrXkroQWevuzeLG8vgbTJmFhLB8kpaen44033kCzZs3w/PPPIykpCevXr0e41g5VJuP6viQtg6TQUDku26HyAK2DpD59SC1244b8r3AEQmqnZxVJ0K8fSV0ePJDlF5tz5QoVeUNCgCFDtHtcx/YliWmlSUnkUKE3Y8ZQ1Hn9uqMSQtevU6XR45GztbRi6lS6ROzfLxXetuazz+j25ZeDtwAsiagoci4DHHVNVZSChV8tqVvXBZI7EWE60LBBYPkgadKkSUhJSUF2djZu3ryJjz76CDExMWYvS3M4SPqebrUIkgApD1ixwnFew48eAQcP0rFWQVK5cnLj6hjJ3Y0b5EYByKBZT0JDpeTAIZI78V7o2TNwm/niEO+1TZscVLlU77j0MmwoTGSk3N05aGaSKMZ16kRza7SkRg2S8AEO2O+npFAjqccjq4p6Ia6pCxdSs5gDSE4muV3FisDYsdo/vqMld5cvS53i1Klmr0Y3LB8kuQXRl3Tligv7kvLygGPH6FirIKljR2rYefLEcRa5e/eSpr5uXWpL0Aq15M4RLFhAG9eePbV9oUpDZNTWrHFEZ7goiGkltRN0707J6du3qVLlCA4dovJHuXJyd2QEYnO8YgW9oA5AL6mdQHxMZ8+2eZAuAuNBg/Q/x/XvTxHmvXuOqVqKnMaECTSORWuE5G7nTgdK7kSGoX9/bXWKFoODJIug7ktyXTXpwgWyzY2K0s7GyONx7HwHraV2AjGHd98+R+zvjZXaCVq2pAA9N9f2wxcfPQK2bKFjLay/1URGyvevYyR3onl+zBjASLVDq1ZA1670nnNAo43XKytJegVJo0fTpIhLl2w8KeLpU2nYoZdhg5qwMEfJ2J88keYdehV+69alj6aiyFF9jkBR5ExAhxo2CDhIshBqK3BXIaR2bdpoayEpNsebNjkmwwroFyTVrg20b0/nPzEXx7acO0eaxNBQY7P6gLzi2lxyt2UL+U/Uq0euYFrjqL6knBwaYA0YJ7VT8+qrdPv55zYvjQDHjwOpqZQz02usWVSUNKO0bVy5ejVw6xYQG0vGCkYgEo/ffWd7GfuKFTREtl497a+lahwpuTt0iGZzqUeuOBQOkiyE6EtyncOd1v1IgsaNqTyXl0c6ageQnU1yO0CfE7tjJHdiwzp4MG0ijGTKFMq6Hjxo6+GL4j0wcqQ+46VEkLR9uwPMANesIRlSzZrSlttIJk8mvdDZszYujRAiaO7blyqOeiEkdwsX0iBR2/HPf9Ltiy8CERHGPGenTlLGvmyZMc+pE6LwO3Omvk79QnK3YwfFtI5AZBbGjKGSrIPhIMlC9OxJie/Ll13WlySmomodJAGOk9wdOEAX9Lg4oEkT7R9fBEnr1tm4N1dRzJHaCWJjpXbRptUkRdHe+rswrVpRTPHkCbBnjz7PYRhixzVjhn4OY6VRqRIFSoDtDRz07kcS9O1LrRRpaTZMCl27RidpQFYRjUA9TMjG19Rbt2Rbld7GbPXqAV26OEhy9/SpTEI6XGoHcJBkKVw7L0lUkvTw2Z88mdJE+/aRE5DNUUvt9Mjud+5Me/yMDBsnpA8fJrld+fLUfGAGwnFs9mxbzq85dgz44QeSJfXrp89zeDyy6GJryd3du3KXbYbUTiA2ywsXAunp5q0jCLKyqMkd0D9ICgmROTTbSe6+/JKat/r21SdbVhpqGbtNSyNz5tDL1727MS+foyR3GzdS03JsrLSJdDAcJFkM11mB375Nti8eDw0k05qaNYEBA+hYVBdsjF79SILQUDmP0HbZVYH4fx41yjwpwMiRQOXKNPBF2JDbCPF/P2AAmbXphSOCpPnzKbvavr3+A4tLo1s3oHlzMsGxqWnIrl0UKMXH69MHVxi1GeW9e/o/nybk5clqoRGGDYVp1IjcCLxe6XxgM/SajVQSQnK3fbtt40qJMGyYOtWcqrnBcJBkMVwXJAmpXZMm+nhwAgUldzZuas7NldUdPRtNhbzKlvNQ8/LkBtEMqZ0gMlI6QdlQcif+77V2tSuMCJIOHgTu39f3uXTD6NlIJeHxyGqSTSV3aqmdHpXywrRsSbHt06c22u9v2EByu6pV5YBXo7GxjP3776lSHhEhFap6k5hIKg3bS+4yM+VIFQcPkFXDQZLF6NFD9iVduWL2agxAL9MGNWPHUjr87FngyBH9nkdnvv8eePiQChR6JqwHD6YE0ZkzNGjPVuzYQUNkq1QBhg41dy0iTblkCf3H2YS7d6U5iGit0ovatalioCjSbtxWnD5NjYJhYdYYqDhzJhAeTmsSs+dshKgo6i21UyP2eraR3AnDhpkz9S3zlsbkybRROXAAOH/enDUEiMhpjBpFlwmjcITkbulSaiJt2pRGXbgADpIsRqVKZCADuKQvyYggKToaeO45OrZh5ksgpHZJSdo6pRemcmV6DsCGkjshtZswwTjHp5Lo1o2coB4/tlX6cO1aClratjVmRqCtrcCFYcOwYeSmYjaxsbIPz2bVpNRUeTkw0iBw6lTqT9q71wb7/Vu3gJUr6dgMqZ0gLk5+cG10TX36VC7X6MKvCJJ27LDxRBKRSZg505hSrwXgIMmCuEpyZ0SQBEh5wLx5tmykB/TvR1JjS8lddjaweDEdmym1E3g8sppkI8md2vrbCMReSwwQtQ15eVKfb7bUTo2Q3H37ra28rTdvptu2bYEaNYx73po1Zf+5+O+0LF99Rbrr7t1JK2gm4po6e7ZtZOwbNlAwHhsLDBli7HMLyZ3Xa6ucmeSHH2S5X/zfuwAOkiyIa4Kkx49JAgfoHyQNG0a19Zs3bVmi83ql65MRQZLYIG/bZiOl2Lp15OdbuzbQq5fZqyGEReqWLdRHYHGePpXOwnpZfxemTx9Sq128aDN555YtZMxRpYpxEaUvDBwIJCQADx7YapaNUdbfxSEkd5be73u9NCwYMLeKJBgzhuwvU1KA/fvNXo1PiMLv9OmkSjUaW0vu5s2jD0evXhTxuQQOkiyImJd06ZLD+5JOnKATf40alM7Tk4gIaTFjI3mA4NQpamyPigI6dND/+Zo2BRo0AHJyZIbX8gip3ZQp+uoR/SExkaIARbFBmhrYvZvco6tXp9keRlCxIiXGAZtJ7sSOa8oUfaee+ktoKPDyy3RsE8mdopjTjyQYM4behxcv0mfAkmzbRgFJdDQwaZLZq6EXbMwYOrbBNfXBA2DFCjo2ytWuMGqXu9RUc9YQMGqpnYvgIMmCuKYvySipnUCUiBcvtpUMBZBSux49jMmAeTw2k9xlZsoroBWkdmrUkjvLpqkJ8X89bJixcabt+pIyM6VmxkpSO8FLL9GHePNmW5TnzpyholxkpDlF4KgoYPx4OrasgYMwbJg2TT8nWH8R19QFC0gGaGEWLiRFduvWxm05ClO/Pu3tbCe5O3YMOH68YLLZJXCQZFH69KFbR0vujA6SevWiTvSMDBqMYSOM7EcSCAXRmjWW39uTLWlWFpXA2rc3ezUFmTCBBtueOUNe1xbG6H4kgQiStmyxScvg4sXS5cmokps/1KsnX9QvvzR3LT4gpHa9etFHxQxEglxspi3F3btyV20FqZ1g0CAqO6emWr6pUD0byUzPAVtK7kTm4LnnjLUEtAAcJFkU0Zfk6EqSmJHUtq0xzxcSIm16bSAPECiKOUFSnz6UsLxxQ8azlkVI7aZNs57rTnQ02dADljZwuHiRHK1DQ40fpN6pExATQ5KYQ4eMfe6AEFI7s3dcpSEMHESzv4UxU2on6NuX2hkfPLCgq+c335D2uUMHY/TWvhIeLocNWfiaev48yShDQsz3HBBB0rZtNpHc5eXJ66vLpHYAB0mWRfQlXbwIXL1q9mp0wOuVQZKRtW9xhly1ipr8bUBKCvlNREQYm7SOjJRWvJaW3KWmyl2WFWbVFIeQ3M2bR5sdCyI2hr16kQ28kYSFAf3707HFE9I0xG77dgqOhDGHFRk1CqhWjXRs69ebvZoSycmRigkzg6TQUHl5sJTkTlGk1M5KVSSBeNGWLQMePTJ3LSUg/j8HDwZq1TJ3LfXr04ghr9cmvipbt1KmtGpV0mG7DA6SLEp0tJzV5chqUkoKnVDLlweaNDHuedu0IevUnBzbiIJFFalLF+OlKKIvyXKZVTWLFlG2q3NnmktkRQYMoKvzvXs0iMiCiP9jo1ztCmObviSx4+rXD6hb19y1lEZkpAzOhSuaBdm7ly4FsbHGiQpKQiTKV6+mj6olSE4mqW5UlPX6LQGaB9egAf0nir5QC+H1ygK+VdoHRTVp4UJz1+ET4nw3ebL5swdNgIMkC+NoK3Ch32rd2tgOcY9HZr4sLA9QI4Ik0admJMOH0+3+/RaWBqildlYlLEy+74RUy0I8fEgJQ8A8N2tRtUxOtmxCmrL6VttxlcYrr9DtqlU0iNSCiH6kgQNJDmUmrVqRsOHpUwttYEUVafJkyp5aDY9Hnnst6OC5cye5BEdHyznLZmMbyd2jRzKZbOWquY5wkGRhXBEkmWEzIyRZW7eSFMXimNGPJKhdm3wQFMWiBZBLl0hs7vFIbbxVEVn9VasslKYmNm+m4mqDBuRFYAaNGpHfwNOn8j1vOfbsAS5coGa9cePMXk3ZtGxJmf7cXMv2w1mhH0mNqCZZQnKXliY7/K0otROIBND69cCdO+aupRAiJzVpknmmIIVp0IBayywvufvuO8qgNWgg5zS4DA6SLEzPnpRZc2RfkplBUmIivbiKQtalFubaNYoDQkPNO0dZWnI3fz7d9u9vvti8LIT37NOnlnvfiZ6zESPM8yHweGwguRM7rvHjaU6MHRAGDl98YTmbyvv3peGjVYKkqVPpuiviYVOZM4dcFEWwa1WaNaP+gLw8C5XgaF69iDHNmo1UEmLUlaVd7kRlcMYM6xrU6AwHSRbG0X1JZgZJgG0kdyKj3qEDzc8yAyG/Wr+e9veWwg5SOzXqmUkWQVHMs/4ujKWDpKwsGdzaQWonmDyZArpz54Bdu8xeTQG2bKFsevPmNJ3BCtSqJd+HpqrHChs2WH2TasFr6rJlVAipXx9ISjJ7NQURkrutWy1XfCNu35ZaWJdK7QAOkiyPI63AU1PJLcXjoey6GUycSH0ihw9TU6xFMVNqJ+jcmZqqMzIstsc6fhw4cYKaSe0gfQIomAsNBfbtA86eNXs1AIAjR8g9sUIFc/re1AwYQKeFEycs2EKzYgWQng4kJMgTsx2oWFFKUS1m4GA1qZ1ASO5mzzax+HbwIDnARkbaw3p5yhRZgrPIAGOrzEYqDstL7ubNo8pgt27WNUQyAA6SLI4j+5KE9XfjxuZJVqpXB4YMoWNRjbAgVgiSQkKk86elJHfi/23ECOM9qwOlRg1g6FA6tkTTg/w/HTSI9mNmUq2aHANjOStwIbWbOdN8hwF/EZK7RYso0LMIIkgyei5XWYwZQ0mDlBTa85uCqCJNmED2y1anVi3p42+Ba+r16/IcYjWpncDSg2XVUjsXY7MzvftISqLrcUoK9ac4ArOldgK1PMBiWn2ACm6iyGW2VEDIsCwTJHm9lOkC7CO1E4gr9rff0t9hMup+JCsgXO4sJbm7dUvOGrLqjqs0unalvpYnT+TnxmRSUqjfMjzc/ApmYSpUoLYzwKRcxsOH8v/JyoYNhbHQNXX2bDq9JiVR1caKqCV3d++au5YCnD5NU73DwqxviKQzHCRZHEf2JVklSBo1iq6GFy+S/Mli7NxJt61bm59IHDyYzpdnztDmxnT27CFf10qVrLO795XnngNiYsiNxeQP9e3bwIEDdCzs3s1G3ZdkmdzF3LlSemKW/V8weDzSDtwikjvR7tC9uzU9MITCbcECIDvb4CefP58CpSZNzJUR+Mu4cUC5cnShOHzYtGXYxam/YUNyj83Ls5jkTlSRhg0j1Y2L4SDJBogsm2Mkd0JuZ/bkwAoVSFcBWEIeUBgrSO0EMTGymmWJapL4/xo3zjq+rr5Svry0NjLZwGHtWtpQdOgAxMebupR8evakfdbNm8CpU2av5hlCamfHKpJg5kwq2xw6JBNVJmLVfiRBv370mXjwAFizxuAnF1K7V1+1XjNNaURHUxIIMNXA4dAhOneUKyerNVbFcpI7r1cGSXbohdMZDpJsgKP6kp48kRoysytJgJQHLFhAs0QshJWCJMBCkjv1pEe7Se0EYrO9eLGpk1Ot4mqnplw5+Z63hOTu6FHg2DEyCLGz9KR6dZkU+uILU5eSm0vOdoD1+pEEoaHy8mCo5O7YMZreHR5u7TJISYgelvnzqURiAiL3NGYMJfisjAiStmyxiORu1y5SOagDXhfDQZINUPcl/fCD2asJkpMn6cQZG2uNuTYDB9LmITXVUp3iaWmy4Narl6lLyUeo2rZtIyWIaWzaRFeTuDjZKGw3evYkofzDh8Dy5aYsISdHSp6splgU1QVLfCRFFWnUKPN1r8EiDBxmz6aElUkcOED+EVWqSDm5FRGJ9FWraKaTIYgq0ujRdI6zG0OH0ufk5k1qtjGYnBwpNLBDjNmoEeWLLSO5ExmBiRMpY+VyOEiyATEx0vHJ9n1J6n4kK8gIwsNldthCkrvkZJJBNW5sjVgSoFaMBg3oImTq5lX8P02eTI1SdsTjMX1m0q5dZOseFwd06mTKEkpEBEnbttH7zTSePpWyITtL7QQDBwL16lEWxsQdmagQ9u9PFRur0ro1qcLVxWtdefJESp3sZNigJiJClkdMkNytXQvcuwfUrClNYKyOZSR3WVlyESy1A8BBkm1wjOTOKqYNaoSmYtkyGtFtAawmtQNoX2+65O7xY7m5s6vUTiAuQps2kV+twYj/w+HDredo3bo1FZsfPQL27jVxIRs2UJU5NlZat9uZkBDgpZfo2EQDB6tafxeH+JgaIrlbvJgC2MRE++zwi0NcU5csMbxiKQq/M2bYJ4dmGcndqlVU4q1b1zoSFpOx2KWRKQkOknSkWzcayf3wIQ2MtABWDJIAKctavdok57GVK2nnXL8+2RrbmQYNSEvr9ZpSxRTW31bqRxKEhFjEClzsuKZNo6qzE3jpJcp4bN1qilVlRoacPWRV0wY106bR+3H3bgNers8+o9tXXrFe5sIfevakjXZmpjzRGMC9e/Lp7FT4bdxYSu5MUl8TIhMwfbq9338awq+CTRB9SRcu2LgvyeuVjTZWCpI8HlmVsIDk7tEjGrYOWC9I6tOHTAFv3gSOHDFhAeL/Z9o0a8g1g0Vcyb/+2tCo8/x54Nw52vdbdaOqtgI3hQcPZNLEDs0NvlK3rhyk/eWXhj/9tm20GWzYkHIdVqdWLRmwCyWcLpw+TRpYdbXProSEyGuqri9aQebPJ2lk+/ZUjbYTpkvu7t6VNo4uHyCrhoMkmxATQx98wMZ9SRcvUrWmXDma/2AlhDxACJpNZO9ecn9KSKD2ASsRGSk3r4ZL7u7fp/8fwP5SO8HEifSinjxpaNQp/u969SITIysi3mcHDlC8YjgLF9KAnNatrZXU0QIxM2nWLMNdPa1u/V0casmdbrkMIX8cMQKoXVunJzEQ9TXVINcL0d5ppyqSQARJmzebtAVZuJDOBR06AC1amLAAa8JBko0QkjvbBklCate6tfXEws2b00YoN9f07km11M6KxRIhuTNQRUEsWUJpwrZtnXMSr1yZXKwAQw0crGj9XZg6dYBmzagAbYrMWD0byYofxGAYNYpcPW/eBNatM/Sp7dSPJBg7liroKSk69chlZ8v3m10NGwrTqhXQpg2dsw24pp45Q87poaH2zKE1bkyXNtMkd0Jqx4YNBeAgyUbYvi/Jiv1IakTmy2TJnQiSxBBhqzF8ON0eOEA97Yahlto5CZH2nDuXNhQ6k5kpEy1Ws/4ujGmSu/PnqXEmJESeF5xERIR83xlo4HD1KnD2LL2s/foZ9rRBU6ECza0GdDJwWL6cygfx8cCwYTo8gUkI2ZYBLncixzRsmD2d0wETJXcXLlD0HxICTJli8JNbGw6SbIToSzp/3hQzrOCxepA0ZQpljHfuBK5cMWUJ2dkyU2m1fiRBfDxV5BVFqt9054cf5M7eaSfxIUPoqn7nDrB+ve5Pt3EjxWKNG1tP9VoY08wbxI5ryBDrePBrjZDcrVpFFSUDEP+PXbpQEdVOiAT7ggU62NKL2Ugvv2w9lUUwTJ1qyDU1L08Gr3ZuH1RL7gybywXIvrHBg8k7ncmHgyQbUbmyzfuShGlD27bmrqMk6tSR5Zt580xZwsGDNKogLs7aG1jDJXcLFlBU1qsXNZ47ibAwWa0wQHIn/s+sXkUCqHoeGkqJzsuXDXpSr9fezQ2+0qIF0KMH7TANknraUWon6N+fEkT378v+dk1ISaFdsccjA1enYNA1dds2yqNVrmxtCXFZNGlCCsXcXAMld4oigyQ2bCgCB0k2w7aSu7t3pS1fmzbmrqU0TJbcWb0fSSA22Bs2GKIQc67UTiA24ytW6OpS4PXKDZ4dNhPR0eTQDxhYTdqxg3RhMTGyX8ypiE3555/r7q7o9coh1HYybRCoe100ldx98QXdDhpE85Gchrim6ii5E+1cU6aQL5SdMVxyt3cvBeoVKgBjxhj0pPaBgySbIZIytguSRBWpUSOgUiVz11Ia48eTXv/4cfoyGFEhtKrUTtC5M83XzMgg11pdOXMGOHyYKi4TJuj8ZCbRti0ZmmRnk8uQThw+DNy+TR9Bu8wKNLwvSey4Jk0Cypc36ElNYtIkoGJFKtWJDI1OHDlCbTeVKtl3xJmQ3K1apVEu4+lTchgEnGPYUJgJE+iaeuIEcOyY5g//8CF5+gDOKPyKIGnTJoMkd6KKNG4cBUpMASwdJOXl5eE3v/kN6tevj/Lly6Nhw4Z4++23oZgyxdIa9OpFFYbz54EbN8xejR9YvR9JUKWKdCYwoNlUTW4ukJxMx1YPkkJC5MukuxW4kGkMGUKOXE7E45FXeB2lT0JqN3gw7VvsgAiSNm+maoSuPHoELF5Mx07YcZVFxYrUNwLIioZOiCC3b1/7zuVt04a+cnI0ymWsXg3cukUZp1GjNHhAC1K5spQe6DAzackS4PFj6rEUVWc707Qp5csMkdzl5NBwKYBd7UrA0kHSu+++i08++QQfffQRTp8+jXfffRfvvfce/ud//sfspZmGbfuS7BIkAVIeMG+eAbsyyfffU1ascmVyT7U6hvQlKYoMVp0qtRNMm0bR5+7dlNnXARHQ2qEfSdClC1Uf7t83YJTUsmX0IWzYEOjZU+cnswhCcrdoEZCWptvT2LkfSY16ZlLQCMOGl16yT9YiEHS8pqrbB60sUfeHSZPoVnfJnZhhVasWNd0xRbB0kLR7926MHj0aI0aMQGJiIiZMmIDBgwdj//79Zi/NVGzZl2SnIGnECGqGuHpVlnYMQKhdkpJI/251Bg8mBdzZsyRp1oUDB+jBo6Kcm2kVxMfLsokOPsM3b5IxCCCrgHYgLEzaResuuXPybKSS6NKFsjJZWbo11z9+LGW5duxHUiNyGcnJNB89YK5dkzOqXn1Vk7VZlhEjqMfvhx80lXVevQps3UrHTiqEGCa5E5W9adPssekwAUsHST169MDmzZtx7tw5AMDRo0exa9cuDCtljkB2djYyMjIKfDkN2wVJWVnA6dN0bIcgqXx5ORTDQMmd2rTBDsTEyL4W3SR3wrBh9GiSBjkd4V/7zTeaZ1yFXXvnzkCNGpo+tO4Y0pd07Rpp+gBn7bjKwuORm3SdZibt2EHKnoQEa7t2+kJ8PDBgAB0HpR778kv6jPftS1oxJ1OunOwn1fCaOns2iQ369gXq1dPsYU1HLbn77judniQtDVi5ko7ddL7zE0sHSb/61a8wZcoUNGvWDOHh4Wjfvj3efPNNTC9luN8777yDmJiY/K+EhAQDV2wMoi/p3Dmb9CWdPEk2s9Wr0xXGDoj32KJFOgzFKIrXS6MkAPsESYDOkru8PKmXdrrUTjB6NGnLLl/WvIppJ+vvwoggadcuqkrowpw5tOPq3RuoX1+nJ7EoM2aQ3OvwYV00jWqpnRMKdGrJXUAt0nl5sgfMqYYNhRHX1MWLyaAmSBRFFn7tPBupJHR3uRP/D61aWdtx2GQsHSQtXLgQc+bMwdy5c3H48GF8/fXX+K//+i98LT4ZxfDWW28hPT09/+vatWsGrtgYKleWBRlb9CWppXZ2uUL260dD1e7fN2TA56lT9FRRUTSo1S4IG+nt26mVQ1O2biUrtqpV7d/I4CtRUfLqqKGBQ3a23Kjawfq7ME2aUBUiJ0cmEzTF6TuusqhWDRg7lo51MHDYsIFu7S61E4wdSx/VCxeAffsCeIANG6hyWbWqVC04nT59gNq1qYKhwaCp/fspURwVRaa0TkMtudNlKoSQdM+caZ99mQlYOkj693//9/xqUuvWrTFz5kz8/Oc/xzvvvFPi70RGRiI6OrrAlxMRkjvbBUl2ITSUhi4AhkjuhNSuRw97OT81aUI97jk5cgaKZgip3cSJzm5qLoxwVVu4EHjyRJOH3LGDgtiaNaXxi53weOQGW/P3GUDNWmfOkNTWqTbzZSEMHGbP1ux9B1Av3IkT9H8oZGp2p2JFGdsE1D4oDBtmzrT/YB9fCQmRTooaXFNFTmPcOGtPFQmUZs2oyPP0qQ6Su8uX6aLg8bhHpREglg6SHj9+jJCQgksMDQ2F10DHMatiq74kMSOpbVtz1+EvQh6wYgWQmanrU9mtH0ng8egkucvKksMv3HYS79WLBPYZGZpdHdWudiGWPuuXzMCBdKtLX5LYcY0dS6YtbmTAAHrfpafLz54GiKC2fXtnOfgLyd38+X4qsm/epGsK4B6pnUBcU1euDMpJMTtbKrGd7NSvm+ROJCD79QPq1NH4wZ2FpS+Xzz33HP785z9j9erVuHz5MpYtW4a//e1vGCtkAS5G9CWdPUvnXMvi9dqzkgQAHTtSqeTJE10HFiiKfYMkQMq31qwJUJ9fHGvWUJBQpw7Z/bmJkBC5A9NAcqco9u5HEogqxNGjpMLUjOxs6erm5B1XWYSEyGqShpI7p1h/F2bAAHJOvn9fmqL4xFdfUU9S9+5Ay5Z6Lc+atG0LtGhBUWUQgbgY5lu7trOdq0WQtHGjhu78ilJQaseUiqWDpP/5n//BhAkT8NOf/hTNmzfHL3/5S7z++ut4++23zV6a6VSpYpO+pMuXqQoTGUmWLXZCXYrWUXKXkkKBbkQEufHajd69aVD3zZsa9nyLTNfUqfYtfQSDuHitX0/DJoPg3Dl6j0VEyGqMHYmLk+c8YUKnCWvW0E43Pt7eL5AWvPginfe2bdNkVpeiyCDJKf1IgtBQeXnwWXLn9UoHQbdVkQB6b4lqUhDXVJE7mjHD2c7VzZtTHK2p5O7wYZIWlyvnnn64ILD07qNSpUr47//+b1y5cgVPnjxBSkoK/vSnPyHCTf0JpWALyZ2oIrVqZa9mG4E4oW/apHH6WiKqSF26UEuE3YiMlBsgTSR36enygdwmtRM0aUKZZq9XBowBIqR2ffrYX7uvixW4kNo5fcflCwkJwNChdPzll0E/3IkTFOOXL+/M2bwil7FypY/N9Vu30nCl6Gg5MdRtiHP6tm3A9et+//qdO9L3wQ2FX1FNWrhQowcUEf2YMe6VFvuBpYMkpnT69KFbWwRJdpPaCRo1ouglL0/Ds1RB7Cy1EwjJnSbzkpYtIwlU8+b262PTErEDCFJyJ+JNO7raFUZt3qCJtPPOHfmmdcOOyxfEzKRZs2hQSxCIYLZPH0qmOI22bWmeTU6Oj30jwrBh2jQqv7uRxESSUCtKQMOL582jt2WnTqTcczqaSu5yc+VrPmNGkA/mDjhIsjHqvqQgFTn6YfcgCdBdcueEIGn4cLo9cECDgpuonEyb5m5r0kmTSCN39Kg0P/GT9HRpmW3nfiRBUhJttn/4gc57QTN/Pm0cOnZ0X39ISYwcCcTG0kUlSKtmp1l/F4d6ZlKp3L1LCSDAnVI7NUFI7tzm1N+ihYaSu40bgdRU+nw7rUlQJzhIsjFVq8pEu2X7kpwQJE2eTH0x+/ZRc4eGXLsGXLpEKp8ePTR9aEOpVYvmOymKn03Mhbl1SzacCLtYt1K1KvDcc3QcYDVpwwaKAZo1I6t2u1O+vPTx0ERy57Ydly9ERMjXIwgDh6wsmQBycpAkcjm7dtG5vES++YZKTh062GsYnh5MnAiEhdH+4NQpn3/txAlqqQkPlxM63IBmLncikp861Z7tDybAQZLNsXRf0r17FAUA9p7oXLOmbOgOsj+kMCLL36GD/ftFNJHcLVxIfThduzpjVx8sQgI2Z05A0ie19bdT0Kwv6eRJ4NAh2qy5acflC8LlbvVq4MaNgB5i924yBq1Zk1pSnUrt2tJ5cfbsEn5IUaTUzu1VJICGFw8bRsd+VJNErmjECGfZyZeFCJI2bAhCcpeZKV16WWrnMxwk2RxLB0lCItSwof0bBNWSO818rp0htROIjfiGDX7ODVGjltox1ERfvTppGP2MCrxeqZZyYpC0bRtJUAJGveOKjQ12Wc6iWTNyWsjLk9U2P1G72jldNauW3BV7eUhOJkexqCg+twnUkjsfZl/m5sog1G2F3xYt6OvpUzliy2+WLqWsRdOm1NDF+AQHSTZH9CWdOWPBviQnSO0EY8eSZebZsxr6XEuZpBOCpE6dyKY5I4OkJ36TkkKSxpAQ9zo/FSYiQsoO/ZTcHThAvgTR0c4aNdWuHcWNmZn0dgmIvDz37rh8RRg4fPFFQIkhN/QjCcaNo/jn/Hlg//5ifkBUkSZPtn/CUCueew6oWBG4coXKjmWweTONmahWTfbAuomgJXfifDdjhvOzFhrCQZLNqVpVKtks15fkpCApOhoYNYqONTJwSE2l4BZwxiY2JERevAKS3AnXnQEDSKPDEGITv3w5OTH4iHC1GzLEWfLzkBApb9q0KcAH2bSJZGRVq7pzx+ULEyeSBjglxe+Ly927MpfkhtFTFSuSozJQjIFDWprc2bLUThIVBYwfT8c+XFNFQXPqVModuQ215M6PywBx/brs9WWpnV9wkOQAhOTOckGSkNs5xcZZyCTmzaNMdJCIfqTWrWmv5gSErMvvIElR5IWS5SgF6dCBtBZZWcDixT7/mvg/cIL1d2GC7ksSVbmpU53pTa0FFSrIKqYYgOojmzfTR7p1azJ1cQNCcjd/fiG58Zw5JHNq2RLo1s2UtVkWIblbuLBUjXZGhjQGdKtTf8uWNBUjJycAyd28efSB7NWLLNgZn+EgyQFYsi8pO1u61jihkgRQo2mVKlTz1yAidVI/kmDQIOqDP3sWuHDBj188epTKapGRJG1kJB6P3zOTrl+nTL7HI/ujnYSoTuzbF0BWVb3jYqld6QjJ3ZIlPk5LJdwktRMMHAjUqEF+RevWPbtTbdjwox+xzKkw/fuTauD+fWD9+hJ/bNEiyhE1b+7udpqAJXeivMlVJL/hIMkB9O5N597TpzWYUaMVp05Rp2XVqkCdOmavRhsiIuRZSgPJnRODpJgYSlYBflaThGHDyJH0IExBpk+nD/mOHWX4DBPCsKFrV2d6EtSrBzRuTAVdv5NDixdTZr9ZM3fvuHyhUycqB2Vl+ezsqSgFTRvcQliYLILnS+4OHqQEUGQkb1CLIzRUOkuWck0VuaHnn3d3nCm2H+vX+5EcOnaMvtT7F8ZnOEhyAJbsS1L3IznprCaugosX08YhQNLSpBpRBBVOwW8rcK9X9iOx1K546tSRjThlTq10pvV3YQKW3KlnIznp3KQHHk9BAwcfOHeOJj9ERDgrAeQLQnK3cuUzq2ZRRZowwTmaaq0RkrvvvqMqbyEuXaLckMfDcWbLlpTbycmh95hPCMOGkSNJCcP4BQdJDsFykjsnmTao6dULSEigk3kQ0+iTkynj2rix8zT7YmO+bRs5kJXJrl3ADz+QOQY30ZeMWnJXittYVpYMHJzYjyQIKEjiHZf/zJhBlZAjR2iSZxkIqV1SEvXmu4l27Wgjm50NLP82UyZ/2LChZDp2BJo0oROXkMGqEDmhAQOcI0oJFI9HFoMWLvThF/LyZIVORPCMX3CQ5BA4SDKIkBDZzByE5M6JUjtBkyY0GuvpUx/dx4SMZ/x4sllnimfsWGqmT0kB9uwp8ce2bwceP6Yhl07xTCmOfv1IrXPuHHD1qo+/xDsu/6laVfYJ+mDg4EapncDjkXvR1A/nAw8f0gnRiSd6rfB4Cs5MUqEoUmrH7YOEmI7hk+Ru2zZy8axSxZnNqQbAQZJDEJKt06fJWtpUFMW5QRIgJWGrVgU8/trJQZLH44fkLidHdqGy1K50KlYk2Q5QqoGDsP4eMcLZarKYGKBLFzr2KRjnHVfgCMnd3LkUgZfA06cyUefGIAmQ7YN9LzyT2r36qrM/iFogzv2bNxcY+Lh7N+WEKlZkPx+BX5I7kRSaPJldPAOEgySHUK2ahfqSLl8mOVpEBH2anUabNnSmysmhKdZ+8ugR9fMCzgySgIJW4KUOU9+wgZyNatSg0gBTOkJyt2BBsT1xiuKOfiSBcLnzSXKXnMw7rkDp1w+oX59S10uWlPhj+/aRxLZaNaB9ewPXZyHq1AFe6XQUXXAAeaHhHJD7QqNGZI/u9ZKH+jNE++CECVREZwpK7kp1uXv8WH5WWWoXMBwkOQjLSO5EFalVK2dNsRSUIg/whb17yfgvIYFcupxI7950Ubt1Sw6VLBYhtZsyhbRTTOn07UtvnLQ0WTJScfo0td1ERkqfBycjqhWbNpURjAOyisQ7Lv8JCQFefpmOS5HciX6kgQPpV9zKLypRFWlj+dFQYuNMXo1NKHRNffJE9t24dTZSSahd7orxuiC++47kng0aAN27G7Y2p+Hi05jzsFyQ5ESpnUD0JW3dSkNp/EAttXOqCiMyEhg8mI5LlNw9fEgncoCldr4SEiINB0SaVYV4rfv1c0cc0K0bFYbu3pVukcXy5AlV3wDO7AfKiy/S+2/HDmoEKwY39yPl8/gxmh0iR7G/PXwNBw6YvB67MGkSJcoOHgTOncOKFVS4rFsX6NPH7MVZi1atgKZNySCkRMmdejaSUzcaBsBBkoMQ0q1Tp0zuS3JDkJSYCPTsSfomsfnyESf3I6kRcq9iCh7EihUkCWjYEOjc2bB12R4hnVi7tsgHXd2P5AbCw2VyqFTJnbAXrlfP+R88vahTBxg6lI6//LLIt9PSgP376djVQdLixfCkpyO1QiI2YaAvjv0MAMTFyczanDn5hd+ZM91dlSyOMiV3t2/Lsi67eAYFv/UchGX6kkRK18nWWkBAkrvsbJLbAc7fqwk37wMHShhyLKR206ZxpssfmjenoDIvT1oMA3jwgNpuAPcESUBByV2J8I5LG4SBw1dfkUuDii1bSPLYtCll/13Ls9lIaeNegYIQzJ9f5KViSuLZNTX369lYv47GHLDUrnhEkLRuXTGSu/nz6frQtSvNGWEChq8WDkOUpU2T3D14AFy5QsdOD5ImTqQx64cPA2fO+PQrBw9Sv31cHG0mnEytWjQCA6CiRwHu3iVBNSCli4zvqGcmPWP9eroutmhBPfZuQQRJO3eWMN/55k35XuMdV3CMHEknr9u3i8yJY6kdqClw1y4gJAQN3n4JNWrQqW7dOrMXZhNGjwaiohB25SI6efehWzdyUGeK0ro1vTbZ2cWoNcQAWTZsCBoOkhyGkJ6YVkkSVaT69cmj18lUrw4MGULHoipSBm7oR1JTouRu8WJyr2jfniojjH9MmUJas8OHgRMnAMh+JCcPkC2OZs2A+HgKkHbtKuYH5syhEkf37pxVDZZwlVtbIQMHDpIgX5MRIxBWr3Z+/ocldz5SsSIwZgwAYDrmcPtgKZQouTtzhrKxYWFk/c0EBQdJDkNIuE6eNKkvyQ39SGrUkjtFKfPH3dKPJBBB0oYN5Jiej1pqx/hP9eryxf32W+TlyWqdm6R2AG0WxMa8SF+SokiDC95xacMrr9DtmjX5pjUXL5K7eliYTNS5juxs+V577TUAMpG/YkXAI/Vcx8XudE2djAWYNJZ1iqUhgqS1a8l6H4CMyIcNo+sEExQcJDmM6tWpDAvIDbmhuC1IGjWKbMQuXqQhIaWQmyt7RtwSJHXqROqczExVlv/qVdJGeTxUEWECQ0jHZs/Gvt15uHcPqFwZ6NHD1FWZQolB0vffU6UtMlKOqmeCo2lTml7u9eYHBeJ179YNiI42cW1msnw5cO8elTWHDQNAhfIWLSh+WrzY3OXZhY/PD0IqYhGHO6h62Jcp0e6lTRsqjue73Hm9skeaDRs0gYMkB2KqFbjbgqQKFfLlAWVJ7r7/noKFypXJwtMNhIRIA4d8yZ0YFti7NzlmMYExfDhQtSpw4wbOfrwZAJmPhYWZvC4TEENljxwB7txRfUP0bI0aBVSpYvi6HIuoJn3xBeD1stQOyDdswMsv538IPR5ZTWLJXdnk5gLfzg/HAjyTiQUwh9BNeDwy97NoESgTeeUKZSqee87UtTkFDpIciGlBUk4O+Y8D7gmSACm5W7CAzvIlICp7SUnumpsq5F/585JYaqcNkZH5lbi4dRQMuK0fSVCjhnT23LLl2Z1Pn8pNFkvttGXCBNqIXbyIvC3bsZli9HwHZ9eRkgJs3ky7VhFAPmP6dLp7xw7g8mVzlmcX1q+nNoE1lZ9dU5cvBx49MnVNVkctucuZ9cywYcIEoHx58xblIDhIciDqvqQCWVW9OXWKNiZVqgAJCQY+sckMHEg6x9TUUn2I3daPJBg8mBKr584BV9acJHOP8HBg/Hizl2Z/nknu+qUtRbQnM3+MjRspIrlbt45OgHFx0mCF0YYKFfJdKR+8/znS0sinp1Mnc5dlGl98QbeDB9MMPRUJCTJxyYWR0hGF36bPd6X5eY8eyYHjTLEIyR2ys4CFC+lOdrXTDA6SHEj16lLOZWhfklpq5wbrNkF4uHSRKUFy5/VSGw7gviApOlr+zbf++9lcn6FDabAXExxduiAtrgmi8AT/0XCJq19SIbnbuPGZh4rYcU2f7k4Not48m5lUecsSVMYD9O/v0pf56VNg1iw6fmbYUBi15M4Hfx9X8uCBjIdeeNEjlQbCzpopFuFyNxKrEPE4naJyt20ydISDJIdiiuTObf1IaoTkbtky4PHjIt8+dQq4fx+IigI6dDB4bRaAJHcK6u5iqZ2meDxYUYWkZNO935Txw86md28gIoJ8QVIO3CdLMYCldnrRsSPQti3CcrMxHXPc24+0ejVw6xZVLEvoAxk/HihXDjh7ltyZmaIsWkQGBK1aPdtCiGvqhg0mWfXah4kTgRmgYDJn4nQemK0h/Eo6FA6SDKZbN5oN9fCh3JypEBW9Hj2o8OQ2Ro4EumIfaj25BKVCBW4q1YgnT4A/XSYXo8SLW+UgZxcSFQX07EnHP/xtAfVItm3r/KHWZuHxIGs69d+8hn9i8CCXlkiEYcOLL1KUXgzR0dLfhw0cikft1O/xgFwUO3akCdlCRsYUS9s69zAcNNx5Uy2W2mkJB0kORVRbT5wwqC9JUeQgWTduSjwqeUAxkju39iMJmjQBfhpDr8u1jmOop4EJmq1bgfPZdZEc2Y/ucHnTg6hm1NzwrKombNIZXdheZzqyEIm2OIaGaYfMXo7xXL0qB5Q9kx+WhJDczZ9PCj1GcuECsHs3FUBEAQmAtLF2+XmtLDyLFiICT3EY7fHFnhZmL8dRcJDkUGJjDe5LunqVpuWFhwPNmxvwhBZEnN3XrqV5Gc9QFA6SkJuLsTkLAABLI1lqpxXCVv1C92fBwNdfu7rpYdAgoAnOotmDvVBCQ1nWqTNr9lbFEjwzYBHmBW7iyy/p89a377Pu+ZIZPJgUeXfukIsbIxHtg4MHA7Vqqb4xZQpFTnv3koMgUzzPypPfYibWrCFBC6MNHCQ5mD596NYQyZ2Q2rVsWaLkwPE0b05Sw9zcZ0MLiJQU4OZNelm6dDFveaayZQsqPUnFXVTDB8cGwes1e0H2R1GkrXqNn44ny9dz54D9+81dmIm0bw+8Xo52XGldhgA1a5q8ImezcSPwBZ5ZXs+dW2w/pmPJy6MgCSjRsEFNWFi+ISBL7lR4vfL1KFL4rVkTGDCAjsuYQ+haUlKAPXughIRgb70pyMpSjdtggoaDJAcj+pK2bzfgydzcj6RGVJNUJ3RRRerSxcWjC569HsvCJuGH2+E4csTk9TiAkyepgFuuHNB7RCVg3Dj6xjfuNXAI9XjxvId2XJvrsGGDnvzwA3D6NLDD0xd5iQ2AjAxg8WKzl2Uc69cD167RQGfx2SsDIbn77jsgPV3HtdmInTtpfpS6b6sA4po6Z46rq+Ql8sz9zzNoEPpOpTKcKkfLBAkHSQ5GSLuOHwfu3tX5yThIIqZMof6knTvzm+hdL7V78gRYuhQAcKk7yZ+ETIwJHPEaDhhApgX5adj588kmyo1s24bqT64hDTH45Poos1fjaMQ8qo6dQxD62rNq0uefm7cgoxGGDTNnUqbCBzp0IMFBdra74snSEIYNkyaVkEQcO1ZaAx5yYd9baSiKLMPNnJk/WHb1apbcaQUHSQ4mLo7Ub4ABfUkcJBF16kid4zyaCeT6IGn1aiAzE6hbF42e75F/FxMc4jUke3VQtBQfT17za9aYti5TeVZFW4DJ2LG/HDIzTV6PgxFB0qBBIEuykBBKDp09a+q6DOHmTWDlSjr2QWon8HhkNYnH/5A6U1Q9SvRYiY4GRj1LeLCBQ0H27SO5XYUKwJgxaN+eZvCy5E47OEhyOIZYgaelUb0ccKezXWFUkrtr14BLl2j/0KOHucsyDSE9nDoVw0fSKefAAeD2bRPXZHPu3SM3KEAVJIWGSjcoN0ruHj7MT89vqv0CcnMNHoHgIrxeYNMmOh48GEDt2sDw4XSH6NNxMl99RT1J3bvLTKSPiMvDtm0kl3Uzy5bRx7Z+fSApqZQfFC/a/Pn0ujOEqCKNGwdUqJA/WBZgyZ1WcJDkcAwJkoT1d2IiULmyjk9kE8aPJ5eG48dxbM5xACSzqFTJ5HWZQVqaTGlNm4aaNWn0BeDeYocWrF9PG9XWrYG6dVXfEGnq1asN0NhajKVLgUePgEaNUH1kdwByI89oy9Gj5NJWoQKNiAMAvPJMcvfVV872uPZ6pazQjyqSoG5deV12e2FE5HKef/7ZbKSSGDqUer9u3QK2bDFkbZYnJwdYQI6x+ckxyCBpzRo6HTLBwUGSwzGkL4mldgWpUiU/qxq6gK6CQoHnOpYupZN5y5a0owcNlgVYDhAMoh9JvJb5tGpFEfnTp5R1dROqHdegwbTjEpIwRlvE69q3r8rMdMQIoEYNIDXV2U2HW7cCFy+SDGzSpIAeQuQyvv3WvV4E16/LJEaZ48wiIuRr7fbIUrBuHUkKatWSDoAgh88GDagVmK+xwcNBksOJiwNaPJsttnOnTk/CQVJRnskD2pyYBw+87u1HElK7adPyU4VCHrZhA8VPjH/k5tL1EVBJ7dSIHYebJHfXrskM88yZ6NePJK6nT5MLG6MtIkgaPFh1Z3g48OKLdOzkmUnCsGHatICHYk+YQF4Ep08Dhw9ruDYbMWcOFeWSkmhTXyZCcrd0KUUAbkc0tU2bRlLrZ7DkTls4SHIBukvuRJDE/UiSESPgrRSN+Nyr6Ink0vXWTuXmTblxFQNCQHK7GjXIy0G3wN3B7NkDPHhA6pN8qZOaqVPponngAO3C3IBIyfftCyQmokoVoFMn+hZL7rTlyRP5uR00qNA3X36ZbteudWZ0evcuNdIAAUntBNHRwOjRdOzGmUmKIl3tXvDVqb9HD6BePbpwCNMMt5KWBqxYQccqqZ1A7XLHkrvg4CDJBegaJOXkAKdO0TFXkiTly+NaJ5qd8X+qzkHVqiavxwwWLKCrYffu1Jn7jJAQ2ePNcgD/Ea/ZsGEFEoiSuDj6JuCOHZiiFGxueIbYwLPkTlt27iQL69q1gWbNCn2zSRPSeHu91JvkNL75hq55HTrQVxAIyd28eVQddhOHD9O2oVw5uaEvk5AQqpoALLlbvJg+hK1aFZuc7tCBLrlPnnDvb7BYPkhKTEyEx+Mp8vXGG2+YvTTbIPphjh0jCaumnDlDF42YGMryMPmsiiF5wIhHi9ypK1NL7QohZGIcJPmPaPcoVmonEOnZb7+lDauT2b+fbKejokjH9AwRJG3a5PyXwEjU1t/FNtu/+irdfvmls154RZFSuyCqSILBg4HYWGrh2rAh6IezFaKKNGYMbR18Rkju1qzRYTNjI4TUbsaMYj+ELLnTDssHSQcOHMDNmzfzvzY+O0NP9Dn9wKj7kjSfl6TuRyrVnsZ9fHmpH26iJipk3yc7Mjdx/jzJvUJDi00VDhpELQznztGPMr5x5Qpw8iS9rEOGlPKDI0eS0+QPPzjfB1vsuMaNK2Ah2b07xU2pqcCJEyatzYEU24+kZvx40pNdukQmB04hOZmSglFRxSZ+/CU8XKqQ3VDwFeTk5I8QLNuwoTAtW1LlJDfXvbv/K1eA7dtpv1XK+1AtuXv82KC1ORDLB0mxsbGoWbNm/teqVavQsGFD9HGtXVhg6Ca5Y9OGYklLA44cC8V8TKE73CYPEFfBgQOpAakQ0dHSeZGrSb4jXqsePVC6hLNcOWDyZDoWQYQTyc6WLn6FdlwREbKKzpI7bbh9W058UBlqFSQqSmb8nWTgIKpIU6bQCUwDhORu+XIgI0OTh7Q8a9dSa1fNmsX0tPmCeG+57ZoqEAqNvn2BhIQSf6xjR5rK8vgxS+6CwfJBkpqcnBzMnj0bL7/8MjwlVC2ys7ORkZFR4IuRm4Xt2zV+YA6SiiU5mdQZOxOendBXrKCGUzegKKVK7QQsufOfEq2/i0MEDUuW0MRGJ7JqFblY1K4N9O9f5Nvcl6QtwgSjXTtSKJSImJm0ZIkzZFEPHgALF9KxBlI7QceO1NeVlUUvlRsQ7YPTpwNhYQE8wNSpVEXZtYuqKm5CUWTZUUTYJaCW3Im3LuM/tgqSli9fjrS0NLwobEaL4Z133kFMTEz+V0IpkbabUPcl3b+v0YMqCgdJJSBkjVUHdaRm5idPKF3oBo4coR6RcuWAsWNL/DERJG3f7p74MRgePZJmgaX2Iwm6dwcaNqRfFI5cTkNUyWbOLNbFQgRJO3bQRpQJjjKldoIOHeiakJPjjIz/nDn0BmrVCujaVbOH9XgKzkxyOvfuSWM6n13tClOnjpTGiGScWzh8mBxLy5UjWWsZiNFSLLkLHFsFSV988QWGDRuG+Pj4En/mrbfeQnp6ev7XtWvXDFyhdalRA2jenOIazfqSrl2jDFt4uGx6YgDI17h3H4/7HHnEhWvUqAI9IoVp0gRo3JjmnnKmv2y2bCF1WWKijx83j8fZM5NSU0m7A5TY3NCyJc1afPIE2L3bwLU5EEWRBgNlyqQ8Hmng8Pnn9p6YWtiwQePeW6Ee27aNLqlOZsECOt+3a5c/Wzww1JI7O7+3/EUYNowe7ZPkkyV3wWObIOnKlSvYtGkTXhUn3hKIjIxEdHR0gS+G0LwvSVSRWrRQjV1nHj0CDh6k4969IU/omzaRqN/J5OXJfiQfmptZcuc74jUaMcKPfZpIU2/e7Ly5NcI7uXNnygAVg8dDbXEAz0sKllOnaPRZuXLwbe7btGlAZCRw/Lg8IdqRAwdIghEZWexMmmCpV4+UHori/Dya37ORSmL8eNpznDxJ/zduIDdXXlvLkNoJ2OUueGwTJM2aNQtxcXEY4ZPOhCkO3YIkltoVYO9eOp8lJDxzRW/UCOjShQIIp4uDd+4EbtwgZ7WhQ8v8cXWQ5CS3YK1RFBkk+dSPJKhfnyJ1J+7AipmNVBzcl6QN4vXr3ZsCpTKpUkVasn/+uW7r0h1RRZowoQy3lMBRS+6cWhg5c4bc+kNDC8wWD4zKleWJUFRXnI5IssbG+qB3lYggadUqltwFgi2CJK/Xi1mzZuGFF15AWECdfgygQ18SB0nFki+1663K+LtFciekdhMmUOa1DHr3BipWpHP/4cM6r83GHDtGhaCoKJns8Bm15M4pO7ATJ+gNo/ZRLgHhwnbokDM8BMzCZ6mdGqH8mDePSux2IzNTZu81NGwozIQJFHieOkUtnU5E5DSGDSvW8NR/hEJj3jxKQDod0bQ2ZQqd93ykUycpuRPqZMZ3bBEkbdq0CVevXsXLL79s9lJsTY0a5KSjKJTwDxoRJBUz8dnNqIOkfCZPponh+/YBKSmmrEt3srNpEjjg8xyRiAiZFGPJXckIV7uBA33M4qtR78AOHdJ8baYgdDsjRwLVqpX6o/Hx1JukKNL4gvGP7GzpjOpXkNSnD5mHZGbaU+8zfz4Fd02aFDqha0tMDLVwAs40cPB65d/l92ykkhg+nF6469d1GABpMTIzpfmOj1I7gccjC7p2/AiajS2CpMGDB0NRFDRp0sTspdgezSR36ek0LBDgIElFdjbJ7YBC19SaNWVzhFMdedavJyOP+Hi/NhRCcicCAaYo6n4kv4mJodH2gDMMHHJzpcTGxx0XS+6CY88eykTHxfnZcO/xSDtwO85MElK7V1/VfVi62PuKVjsnsXUrVcIrVwaee06jBy1XTu7+na7QWLaM3GeaNKHSkJ+oJXdPnmi8NodjiyCJ0Q7NgiTRLFm3rm46bTty8CA5xcbGAk2bFvqmWnLnFNmTGhH8TZlSrB1zSQwfTrcHDwK3bumwLptz544MvMVr5TcimJg3j2yZ7cymTfRGqVbN5xdEHSQ58aOnNyK4HDSICuJ+8cILdD7YtYsaU+zC0aNk2hAeroHTQNkMGULXjdu3nRfMi9zM5MkBVMJLQxhpLF7sbI9/9WykAIL1zp2pP/rRI5bc+QsHSS5D9CUdPRpkXxL3IxVLsf1IgrFj6Qpx9qzzhOeZmTQwF/BZaieoWVMmx/gEXpR162hj364djQgJiEGDSG979y49oJ0RUrtp03x21ezTh/a6ly8DFy/qtzSnElA/kiA+XgazdqomiSrS6NFlTM7VhvBwyi8BzpLcPXwoB+VqHmv27k0nxfR053pc37hB7qSA7MPyE5bcBQ4HSS6jZk2N+pI4SCqWYvuRBNHRUnjuNHnAd99JOUCHDn7/OkvuSiYoqZ0gLExeYO0suUtPl0OZ/WhuqFAB6NGDjp2Wpdebe/dkK5tQDPuNMHD45ht7VDIfP5aSTh0NGwojJHfLlztnwPbSpVTBaNwY6NZN4wcPCZHGLU67pgrmzqUNW1ISuZUGiJDcrVzJkjt/4CDJhWgiueMgqQi5uUByMh2Lil0RRJXFaY48Qmo3bVpAcgARAGzcaI89lFE8fSoLP35ZfxeHSOOuXKmRvaUJLFpEspoWLWhSoh+IDT4HSf6xZQvt0Vq2BGrXDvBBhg+nDF1qqj0yIYsXU0CemBhEZOg/nTqRTPvJE1l9sTui8Pv88zq1dYnkz6pV1BPrNESwHuSMri5dqDuCJXf+wUGSCxEbeOFW5DdPn5IFL8BBkoqjRyn7V7ky0KpVCT80bBjND7l5M4j/AItx547U4wQ4AKNjR1KDZWZq5LzoEHbvpr1a9eqkKw+KNm3IZCUnx77zutTTKP3ccQmp2JYtzspP6E1QUjtBWBjw4ot0bIeZSUJq98orATRhBY7HU3Bmkt25epVMGwBd5vASbdpQBJ+T45zIUnD8OG0sIiKASZOCeigeLBsYHCS5EBEkff99gImXM2fohBQdTZk2BoCU2iUlleJbEBEhz1ROkQcsWkS7zk6dSG4XACEhsm3BDolmoxCvxfDhfnlhlIyQqIlgw06kpFDzf0hIQNr8Tp0ogZGWRiYhTNkoSkHThqAQIzzWrweuXQvywXTk9Gn5PnvpJcOfXry1hSOcnZk9m95DffvquFXweOSL5pRrqkBUkUaOpORqkLDkzn84SHIhtWpRST/gviS11E5nW1Q7IQpDZbpfC8mdUxx51FK7IBCSO56XJNGkH0nNtGm0+du7Fzh3TqMHNQiRWh84MCDdV2go0L8/HbPkzjcuXACuXCFTgRIlxL7SuDE9iNcLfPWVFsvTB1HpGjEiCH1h4CQm0jVEUey951cU2f6o2WykkhDXnu3b7R9ZCvLy5BtAozKcWnJnd/8eo+AgyaUE1ZfE/UhF8HplwFlmkNSrF5CQAGRk2N+R5/JlasTyeMjfNQgGDaLN2Pnz9tu/68HFi5TUDguTA3eDpmZN8hoG7KXn8XrljisIiyxRDdm0SYM1uQARTPbsSeYXQSMMHL78kv5PrUZ2tqyyGmjYUBi15M6ulvX795ORa/ny0llNN+rVo+uqolC/rxPYto0G5VapEsTsh4Kwy53/cJDkUjhI0pZTp6gXPirKB3M3JznyzJ9Pt/36kdVvEERHywCTq0nyNUhKIpmYZoi07rffWnOjWhzJyTS8ulIlORg3AESQtHs3WRMzpaNJP5Ka8eNpuPHly9QcZjWWLyc7v/h46h81iQkTgMhI4ORJebm1GyKnMW4cfWx1x2mSOyG1mzSJ3gwawZI7/+AgyaUE3JekKPKs3batxquyL6IfqUcPqoaUiZAHrFpFTRJ2RSOpnYAldxLRjxS0q11hRo+miPTKFfu4ZIjs/sSJlIkIkAYNSM709Kn8zDLFk5srm+41C5LKl5ebWSsaOKgNG8LCTFtG5cpyWoSdCr6C7GxZ0DFgDi8xcSJdfI8epejSzjx+THJ8QJYVNaJrVxKyPHxI7YFM6XCQ5FJq1aIee0WhHlWfuX6dSiZhYWTDywAoYz5ScagdeZYu1W1dunL8OH1FRFC6UANEQLBjB6kR3crDh7LKq1k/kqB8eemUZIeZSU+eSDe+IJsbPB654ee+pNLZv58+g1WrBjT6rGSE5G7ZMqraWIWUFBra6fFQkGQyYm88dy4FrHZCuHHXri37AHWnalVZ/bN7NWnFCroI1K8vB7xpBEvu/IODJBcTkOROVJGaNwfKldN2QTZFUQIIkpzgyCNShcOHa+K8A1Bvd+PGlOl38yZ20yaKnxs0IJMVzRHBxqJFlLW0MmKyZmIi9R0ECQdJviGkdgMGaOSsKGjfnqKunBwpKbICorI1eDD1uJjM0KFk/X/7tv166ETuZcYMjd87ZaG+ptpFSlwconw4Y4Yu5lhqyZ0TvKP0hIMkFxNUkMT9SPmkpNDYo4gIco/xGdGXtHUrVejshKJoLrUTsORO/u0jR+pkINmzJ2UpMzMpCLEy6mmUGsys6d+fXtOTJ4EbN4J+OMeimfV3cYhKzeefW8OZ4OlTYNYsOjbRsEFNeDgwZQod20lyd+eO9CPS3dWuMM89Rw1QV6/Kye524/ZtqYPTabhU165AnTp0+mfJXelwkORiRF/SkSN+tMVwkFQEUUXq0oWUTD6TmEibVUUBFizQY2n6sWcP9bRUrKh504x4uDVr7J0MDBRF0cH6uzAhIVLPY2XJ3Y0bcreukTa/WjUaXgyQuoopSno6sG8fHesSJE2bRkqEEyeAAwd0eAI/WbWKNqdxcbTRtgjiLb9sGW1o7cC8eSQP7NTJBEV++fJS+m1XhcaCBWT/3aVLwHMHyyIkhCV3vsJBkouJj5d9ST73b3OQVAS/pXZq7Cq5E1WkceP8jAzLplcvSgbevg0cOqTpQ9uCI0eoMlmhggazaUpD7MA2brRuSUXIZnr2BBo10uxhWXJXOtu20T6tcWOdhoBWrix3aVYwcBCGDS++SJIAi9C5M12jnzyxT+uqKPwaZthQGHFNXbSIJJ12Q5QNNTZsKIxoS12xgiV3pcFBksvxS3KXkUHaMoCd7VQEFSRNnEgmGIcPA2fOaLou3Xj6VDbSayy1A2iPIjaxbpTcib950CBNnV+L0qgRNQV7vTLotRKKotuOa+BAut20yRpqL6uhufV3cQgDh3nzzPVjv3pVTtYUa7IIHk/BmUlW58QJupSppYKG078/zYO7f99+E1PPnAEOHqQ9QZBzB8uCJXe+wUGSy/ErSDp2jG4TEkizwuDaNRrfEhISoAlN9epyuKcVN6rFsXkzCc9jY6mrWweE5M6NQZJu1t/FIYKPr7+2XrRw5Ag1DkVGyk5jjejZkwqgN2/a3y1YD3TtRxL07k2B+sOH5mp+vvyS3vt9+1LpzGKItpQtW4AffjB3LWUhlLsjRtClzRRCQ+07h1AYmQwdStdXHWHJnW9wkORy1POSyuxLYqldEYRMsUOHIAbmqSV3VtuoFocI5iZP1m2WiHByPXiQNrJu4fZt2aKh0ZD10pk4kYKQEydovoiVEFWkMWM0nqZLf7Ko/LLkriCXLwPnz9Nes18/HZ9IbbVtluQuL4+CJMAyhg2FEaaOaq8cK5KXJ/f4hhs2FEZcU1essM8sCa9XBnU6S+0EIvfEkruS4SDJ5cTHU/LM6/VhXhIHSUUISmonGDWKGlAuXpTd0lbl8WPqIgZ0kdoJatakxl8AWLtWt6exHGvX0maoY0eaZaY7VarIqZVWMnDIyZE7Qp2aG7gvqXjE69G1KxATo/OTvfACRWO7dwOnT+v8ZMWwfj3JAapW1WzWmx6oJXdWzaNt2kQJrapVdTSc8ZUOHWh2QlaWfZq5kpMpQxEdbZh5SLduNMsqM1NKbJmCcJDE+C654yCpCJoESRUqULYcsHaqECAt2MOHlN7s1k3Xp3Kj5E53V7viEGnfOXOo38wKrFsH3L1L0bJOmi/xsNu327O/Wy8MkdoJatWSH/QvvjDgCQshDBtmzrT03D8rF3wFIscydaoFvC/sOIdQNJ1NmKC5GVJJsOSubDhIYnwLknJz6QwNsGnDM1JTZfIz6BmX4oS+YIG1x6urZyPpMsBHIgKFDRuA7Gxdn8oS5OTIBlpD+pEEQ4aQ/j011TrpRCG1mz5dN0ln69bk+Pz4MTnaMySZErbohgRJgJTcff21sdHqzZs0TROwrNROULmyLC5Y0cAhI0MKDExztSuMUDps2WJ9zXZWljRD0mk2UkmoJXduuM76CwdJjG/zks6epU9QpUo0hJLJlye2bk0Sg6AYOJA6XVNTrTte/cEDOSVQR6mdoEMHoEYNKlz5bFFvY3btItlDjRpyjo8hhIfL/08rSO7u3ZObVx13XB6PdLljyR1x5AiZgkVH+zkYOxiGDaOK0t278v/dCL76iqLC7t2Bli2Ne94AEZK7uXOtl0dbvJhsyps1kzJp02nYkNQOXi8wf77Zqymd1atpOFmdOjrPfShK9+4kucvIsE6OzEpwkMSgdm0f+pKE1K5tW02m3jsBTaR2gvBwaflpVcndkiUkx2rTxpBNRUiIrCa5QXInXO2GDTPhIyYkd99958dkaZ1YsIDeZ+3aUQZCR7gvqSBik9SvH52SDCEsjOYTAcYZOHi98rksXkUSDB1KprK3bllvCLLaqV9ngYF/2EVyJxwvpk83/OQfEgKMH0/HLLkrCu92GQAyebF9ewk/wP1IRdA0SALkCX3ZMtIAWQ211M4g3BQkib/RUKmdoH17oFUrqhabfaU0cBqlCJIOHqRCqdsxtB9Jzcsv0+369TS3SG+2biWjnOhoOVXT4kREyNlDVpLcXbpE10KPx3ClWNlMnkzGIIcOkRrGity7J0/+BrnaFUZI7r77jiV3heEgiQHgQ18SB0kFSEuTL0nQ/UiCbt1IyvjwIQmErcT16/LNYeCUwEGDKKN9/jxw7pxhT2s44u8LDzdhgwrQDkdUk8yU3J05A+zfTxsbA4Lx2rWB5s2psLBli+5PZ2kePSKDLQAYPNjgJ2/UiMpXikIyOL0Rhg3TppFxjk0Qe+hly8ydv6tGBGwDBpBazFLExso5hFatJi1cSJXz9u1Nk3326EFOxxkZXFUvDAdJDABZSTp8mKSxBVAUDpIKkZxML0vjxhpaNXs8cmNoNcndggX0ByclAfXqGfa0lSrJ96aTq0nib+vdm5LbpiCkHrt2ASkp5qxBBGjDhpGrggGIoNSqrYBGsX077dXq1aOYxXCEgcMXX1CvkF7cuSNdBmwitRN06ULXnMePreFsrSjyI2v6bKSSsPocQiG1M7EMxy53JcNBEgOAMkCNGpXQl3TjBjXVhobaosHVCDSX2gnECX3tWirDWwUTpHYCN0juTLH+Lkx8vHQyMEPPk5cnn9dAiyzuSyLUUjtT+krGjSMbt6tX9W26+eYbctHr0IG+bITHU3Bmktns3k35lAoVLDxmavRoOYdw716zV1OQlBR6EUNCyDvdRITkbvlyltyp4SCJyadEyZ2oIjVvbulZEkaiW5DUvDlV63JzrZPSOXuWNN1hYfJMaiAicNi+3T7D0/0hM1P2AprSj6RGLbkzOuu6bRvwww+0UTbwhejTh97aKSnUX+FWTOtHEpQvL7Ppes1MUhQptfvRj/R5Dp0RebTNm0kFbSaiijRhgoVVi+o5hFaT3In1DBxo0PTwkmHJXfFwkMTkU2aQxFI7AKTdP3iQjjUPkgB5FbSK5G7ePLodPJhsyg2mcWOgSROKG5148t64kWROjRvTl6mMGQNUrEjRgmhQMQph2DBliqHJmEqV5FxkJ76/fOH6deDkSapUDBhg4kKE5G7ZMlIvaM2uXZT0iYoyPXMfKA0aAD17Urxn5iXiyRNSYQMWmo1UEuo5hFYZmK0oshxokmGDGna5Kx4Okph81H1JBTL2HCQVYO9e2rAnJOjUnjN1Ku1Wdu4ErlzR4Qn8QH0lNkFqJ3Cy5E5Yf5teRQIo6yrE6UYaOGRmksU8YMqOy+2SO9GP1bEj2UybRrt2tIinT/XRk4kq0pQpJjb/BY8VJHcrV1L/ct26ho/28Z9Bg8jE4e5d63zI9+8HLlygc+7YsWavBgC73BUHB0lMPnXq0Py1In1J6hlJTAGpnS7a/dq1ZVlPVHHM4tAhsl4rX5603SahDpK8XtOWoTler5zPa2o/khoRpCxcSOliI1i6lLrRGzcGunY15jlViCBp82Z9PQOsiulSOzWvvkq3X3yhreTzwQOZIreZYUNhJk0iS/Djx4GjR81Zgyj8zpxpg9GJYWHSldUqkjsR4Y4daxmtYs+epPpLT2cjG4HV39qMwRSR3GVmUrYD4CDpGbr1I6mxisudeP7Ro0mGZRK9epEsKjWV4jancOgQcPs2/W2aWckHS+/elB5OT6d0sRGYPI2yc2cgJob20UeOGP70puL1yg2R4dbfxTF1KiVlTp4E9u3T7nHnzAGysmgemAmBuJZUqSIrz2ZUk27dopFWgCWUYr4hJHfLl5vvn56TA8yfT8cWegFZclcUDpKYAhQJko4fp9vatalc7XKys6VBjq5B0oQJMlUo/g+MJi9PnshNlNoB9FKIDZyTJHfibxk8mP5GSxASIi/cRkjurlyh4Z6AaRuGsDAa0wNYR41jFMePU6AeFQV07272akDRqtD9aGXgoDZseO01k+z7tEV8VObONb76KZ6zWzegaVNjnztgunQhqczjx6QnM5P168m9tmZNoH9/c9dSCLXkLifH3LVYAQ6SmAIIbfGhQ8/6krgfqQAHD1IyMjZW54tD5cpSf2WWPGD7duDmTUpbioF8JiJeDtHD4wQs1Y+kRuzA1q2jHbSeiDkh/fpRBcskhPu524Ik8ff26QNERpq7lnyEgcO8eaRmCJYDB4Bjx+gPNHEejZYMHw5UrUqnaD0d04vD8rORisPjkdUkcc4xC1H+mzaNMjQWomdPit3S0lhyB3CQxBQiIaFQXxIHSQXQvR9JjajezJtnTiOOkNpNnGiJMsfw4XR76BBtDOzOzZtSOjhsmLlrKULTpiRJysvTV/KpKAWldiYi+nGSkynZ7BYs1Y8k6NWL+tMePaLeuGARVaQJEyiycAAREcDkyXRspOTu6FH6Uj+/bRBB0saNpN02g/R0YMUKOrZgwB4aypI7NRwkMUUQ1aTt28FBUiEM6UcSjBxJDkxXrxpvx5ydDSxeTMcmS+0ENWpQ7whAs3btjvgbOnemv81yqGcm6cXevWQMEhUlr8wm0bgxFbJycuTn3OlkZcm/1RL9SAKPp6CBQzBkZkoDHJsbNhRGFHyXLjWuzUacDp57zobxZpMmQKdOlPwR/uVGs3gxXV9btrTsvko9WNbtkjsOkpgiiL6knVtzZT+MRT/MRpKbK2MVQ4KkcuXkxtFoyd3atZTxql3bQo4CzpLcWVZqJ5g8GQgPp0TJsWP6PIfYcY0fb6oxCED7crdZge/aRYFSfDzQooXZqynE889TWnvPHjJxCJT586ki1aSJQSdu4+jWDWjUiCqfy5bp/3y5ufJSZPnZSCUhqklmydiF1G/mTMv2xiUlScmd0VJOq8FBElMEUUnKPHSOrqAVK9IEO5dz9CglJWNigNatDXpSUcVZtMjYlI6QWE2dail/VxFQbNxo7zkO2dlyI24Z6+/CVKtG6WJAHz1PVpY0BrHIjksESW7R4ov34MCBFtyv1awp33/BVJOE1O7VVy34RwaHxyMVW0ZI7jZsoBbF2Fhg6FD9n08Xpkyha9q+fdK51yiuXiVXLI/HMgqN4lBL7rRQu9oZ6+x+GMtQty7FRK2939MdbdtaaqNsFkKW0qsXnUQMoV8/Glxw/770XNWbjAxp/WyxE3n79rR3eviQZu3alR076G+oVYv+JssiJHezZ1MaWUtWraJUZUKCtJYzGWE0deyY/n4VVkAESZaS2qkRkrtvvw0sK3L0KJk2hIdbJhDXGhEkbd4M3Lih73OJ9sFp0+gltSU1a0qXFqNHbIjqVd++dN6zMCy5I3jnyxRL375AO3xP/2CpHQCD+5EEoaHGD8Fbvpyy/M2aWe7/PiREGjjYWXInrL+HD7d4/mHYMKoo3bqlve5C7LhmzLDMixAbK4NWp1eTUlPlTCixZ7QcQ4aQFvDuXdns7g+iijR6NBAXp+3aLELDhkCPHuTto+ee/8ED6Zxt+3hTLbnTcmBxaSiKLPdZ0LChMElJ1CvrdsmdNa5MpXD9+nXMmDED1apVQ/ny5dG6dWscPHjQ7GU5Hg6SCuL1ysqF4bJ2Uc1ZsUIbO9yyEFfaadMsKU8Rkju7zktSFBv0IwkiIkhyCcigRgtu35bOFRbbcbmlL0lsfNq0sahxCED2yC+9RMeff+7f7z5+LPs/HGbYUBhh4KCn5G7RIirmtWrlgC3B2LE0sPjcOZrrYQRHjgCnT1Ov8YQJxjxnELDLHWHpIOnBgwfo2bMnwsPDsXbtWpw6dQoffPABqlSpYvbSHE+f3kp+kPSoUVtzF2MBTp2i2W9RUUCHDgY/eceO1HT85AlVefTk9m2ZQhebY4sxcCBJPS5coGuc3Th3DkhJofjDshl8NUJyt2zZs+FpGjBvHjlMde1quWmU6iDJqCSzGVheaid4+WW63biRBg/7yuLFZD6TmGiTD1rgTJpE55Njx/TzWFE79Vswd+YflSoBo0bRsVEKDRGwjx5NrrU2QC25e/rU1KWYRtBBUlZWlhbrKJZ3330XCQkJmDVrFrp06YL69etj8ODBaNiwoW7PyRB1w28iDneQhxAkp7cyezmmI6R2PXqYoMVWD8HT+4S+aBFtXrt0IdskC1KpkjQXsaPkTqy5b1/TDd18o1Mnkl5mZUlb+GAROy4LTqNMSqJk740bwJkzZq9GHxSFmvABi81HKo4GDahZTFGAWbN8/73PPqPbV16xjJxTL6pWlQYwelSTLlwAdu+ml1FcimyP+EPmz9e+37IwublSoWEDqZ2gVy+qMj944F7JXUBnDq/Xi7fffhu1a9dGxYoVcfHiRQDAb37zG3wR7EwDFStWrECnTp0wceJExMXFoX379vin0BiXQHZ2NjIyMgp8MQFw9CgA4AyaYcue8iYvxnxM6UdSIyR3mzbp21GultpZGLEhsKPkTqzZsq52hfF4tJ2ZdOwY2YqHh8t+OwtRrpx0vXeq5O7MGeD6dSAy0lIO/yUjDBxmzaIkTlmcOkXzGkJCpFzP4QjJ3dy5vr1E/iA+9oMHk9mMIxgyhKLL27eBLVv0fS5x3a5enZ7XJoSGAuPG0bFbJXcBBUl/+tOf8NVXX+G9995DRERE/v2tWrXC5/7qhkvh4sWL+OSTT9C4cWOsX78eP/nJT/Av//Iv+LoUbfw777yDmJiY/K8EizuIWJZnQ2S/Rzts22bqSkxHUSwQJDVqRNWdvDz9PDkvXqSZJCEhpN+wMKKXZ8cO7RRgRpCeLnvbbBMkAZT99HhowvTly8E9lg2mUQp1llODJPF3JSVRa4blGTsWqFKFLJR9cdQQ+5CRI2nWmwsYPpxeohs3tN3ze72yOmXBwm/gRETI65zeCg0htZsyxXa2gG6X3AUUJH3zzTf47LPPMH36dISqvJDbtm2LMxrqE7xeLzp06IC//OUvaN++PX70ox/htddewz/+8Y8Sf+ett95Cenp6/te1a9c0W4+rUAVJBw8a4xdgVVJSgJs36ZzapYuJC9Fbcidm1vTvb/l0YaNG1KaVmytlQ3ZgwwZac7Nm5EplGxISpD+2uOAHQm6u/H2LGTaoERK0bducuTGwTT+SoFw5KVMqKxGbnS0DcYcbNqiJjKT5z4C2krudOykvEh0NjBmj3eNaAvGeWrqUjD704OFDOelXlPtsRO/eZAx5/77+BTcrElCQdP36dTQqpl/B6/XiqYZXlFq1aqFFoTHgzZs3x9WrV0v8ncjISERHRxf4YgLgWZB0u2Y75OWRcsGtiCpSly4mZ10nTZJD8FJStH1sRZHBl8WldgI7Su5sJ7VTo5bcBepoIKZRVq9O9uIWpW1bsgN/+BDYu9fs1WhLTg6wdSsdW74fSY2Q3H33HXDnTsk/t2wZuezUrm3jiaeBIfbgS5cCjx5p85gi3pw40SZVR3/o0YOMPR4+lLMBtWbZMgrAGjcGOnfW5zl0xO2Su4CCpBYtWmBnMZMcFy9ejPYaTkbs2bMnzp49W+C+c+fOoV69epo9B1MMDx8C588DAKr0JWe77dvNXJC5mC61E+g5BO/4cdLxR0bKM6LFEZK7NWtIEmJ1vF5aK2AD6+/iGDeO7B3Pnw88chA7LotPowwJAQYMoGOnSe727qUNdGwsBYO2oU0bMhF5+rT0UonoW375ZbIQdxHdu1OF+tEjWbwIhseP5cbYwoXfwPF4ZFJQL4WGeK/OnGlbW0ChSly2zJmV9dIIKEj67W9/i5/97Gd499134fV6sXTpUrz22mv485//jN/+9reaLe7nP/859u7di7/85S+4cOEC5s6di88++wxvvPGGZs/BFMPx45Qpjo9Hh6E0gM/NfUmWCZIA/YbgiaBrxAggJka7x9WRpCRyuktNNW7URTAcOEAJ8JgYoGdPs1cTABUrysEZgRg4pKVJC3sb7LhElcVpQ2VF0DdwoA1N30Q16fPPiz//paSQJsjjIVc7l+HxSAWZFpK75ctJal+/vk3PWb4grqlr19LQYi25cUPawtnYFtDNkruATpGjR4/GypUrsWnTJlSoUAG//e1vcfr0aaxcuRKDNKzfd+7cGcuWLcO8efPQqlUrvP322/jv//5vTLfxm80WPJPaoV27fKvlAweowOQ2rl0DLl2izUSPHmavBiQKL1cOOHuWhtNpgddLc2sA20jtAOoREz0VdpDcCevvIUMsXUQpHSG5mz+fej/8QT2NUkPFgV6Iou3+/WS44RRsY/1dHFOnUjXz9Oniq5miX2nwYMClihMRJG3aRL20waB26rddQO0rLVrQdNzcXO31ZPPm0fW1Z0+ysrcpbpbcBfy279WrFzZu3IjU1FQ8fvwYu3btwmAdukBHjhyJ48ePIysrC6dPn8ZrLmrENA1VkJSYSJJdt/YlCVVphw5UtTCd6Gjth+AlJ5NrVHQ0WSTZCCFbs0OQZOt+JEG/ftTrkZbm/5Aq9Y7LBrKTunXJHCQvT/bw2J0HD2TV1ZZBUnS0tNsqbODw9Kmco+TifUKjRiS783qDU2Vfvy6rqDb0G/APvUyR1FI7myM+dm6T3Dk1N8AEgypIAmjoJeBOyZ2lpHYCcUKfN0+bgRjiSjpunO06c0Xv/6FDwWdN9eT6dSr8eTyW9isom9BQecH3R3J34YKcW2OjYYoikHBKX9KWLbR5btYMqFPH7NUEiJDcLVhQ0HZ11SoyBYmLI3t5FyM+osFI7ubMofdKUpLNnDgDYepUOjknJwc/4kBw/DjNm4yIkBGGjendm/oY7993TtLIFwIKkkJCQhAaGlriF2Nj8vLoww3kd/VykGSxIGnoUBqIcfNm8I4aOTly7pKNpHaCGjWkYZAwRbAiYm1du9KFxtaIHdiaNaW7jKkRuzWbTaN0WpBkO+vv4ujZE2jalNwJFiyQ9wvDhhdfpI2pi5k0iSS9R4/Ky7k/KErBwq/jqV1bbnS0MkUSow5GjLDsPDh/CAtzp+QuoCBp2bJlWLp0af7XggUL8Ktf/Qq1atXCZ599pvUaGSM5fx548gSoUCE/fST6kg4edFdfUmoqSd8ByqZZBnVmKlh5wMaNlBqqUYOkVDbEDpI7oUyzpatdYVq0IJex3Fw5W6s0vF5ZdbLZjqtvXyqenT8PXLli9mqCx9b9SAK1KYOQ3F29CqxbR8ei0uRiqlWTst5AqkmHD0uzU4vPFdcOUeHWwhTJ65XXZgdI7QRulNwFbNyg/powYQL+/Oc/47333sOKFSu0XiNjJEJq16YN7Q5APUn16tGeaPdu01ZmOLt20W2rVnTRsRRCcrd4MZCVFfjjiKzZ5Mm2tcsVm4ENG/z3EjCCrCyp7bd1P5IaEeyIdHNp2HgaZUwMVf8A+7vcpaSQCU1YmEx82Zbnn6c/ZN8+4MQJ4MsvaWPbty/No2Hy9+Zz5vivyhY5jTFjbGN2Gjzjx1NUeOoUleCCYds20lhXqWK7Pt/S6NOHRtzdu+ceZZGmPUndunXDZmF3yNiTQv1IAjdK7iwptRMkJQEJCUBGRuA6s0ePpCWzDaV2gvbtaYTUo0fy/8xKbNtG80Zq17bZXJrSmDKFNqmHDgEnT5b+s2LHNWmS7XreAOdI7sT6e/SwiAlNMNSoIfuOPvuMgiTA1YYNhRkxgvboN27410OSkyNzZzZw6teOmBhZ6hdSuUAR5btJkyjwcghulNxpFiQ9efIEH374IWrXrq3VQzJmwEFSPmLDbcmsa0gINZsCgUvuVqyg3XuDBkCXLtqtzWBCQmSFxoqSO7WrnQ1M3XwjNlZmSEvT86inUdpMaicQVuCbN9tjaHFJOEJqp0bI6v73f2lWQ9WqthmEbQRqqZw/krt162hcUM2aDnqv+IoWpkiPHwNLltCxjUxqfEUtucvNNXctRhBQkFSlShVUrVo1/6tKlSqoVKkSvvzyS7z//vtar5ExkjKCJLfMS0pPly9Fr16mLqVkxAl91SqyZPYXkS6cNs32u3cRJK1ape2M3WBRFIdYfxeHCHpmzy55Q7FsGTmQNWhgscY+3+nalSovd+/Kc4LdyM2VQyAds/EdMoTKsyJynTmTZsgx+QjJ3ZIlVGn3BaGgnT7dtgrswBk+HKhcmcpvgZoirVhB57zEREdO4O3blyR3d++6I2keUJD097//vcDXhx9+iFWrVuHKlSsYJWa4MPbj1i2yUA0JoUYcFW7rS0pOpg1u48YWNuNq3Rpo2ZL0EUuX+ve79+7JRmcbS+0EAweSm1NKCnDunNmrkZw+TX0gkZHAgAFmr0ZjRo4kPc/16yXredSGDTYNxMPDZZLIrpK7gwcp8VO5MnluOILQUOCll+S/WWpXhB49KD+hVlaXxv37wMqVdGzTwm9wREYCEybQcaAKDSHVmzHDtue80nCb5C6gIOnFF1/ECy+8kP81c+ZMDB06FFWqVNF6fYyRiDRp06Y01bwQYqMQrOu0HRB/oyX7kQQeT+BD8BYvpoi3XTugeXPNl2Y0lSrJ96eVJHdiLf36kWGko4iMpN4koPiZSQ6aRmn3viSx7gED8v14nMGPfkTSz7FjKWHEFMDjkYovXyR38+eTa1m7duTd5EqCMUVKTZXJR5uf80pDSO6WLnW+5M7nIOnYsWM+fzE2pQSpnUD05rihxGpp0wY1oi9p61balPqKWmrnENSSO6vgKOvv4hDp5iVLiupwZ88mKVSvXpTOtjEiSNq1iyYk2A3H9SMJEhJIASF6QJgiiCBp48ayB27b1KlfW3r3pknLGRn+Z9wWLCDpcZcuQJMm+qzPArhJcudzkNSuXTu0b98e7dq1K/Wrffv2eq6X0ZMygiSRqd+/33d9sx159IjkKYANgiShe1aUgoMVS+PaNRkFikqAAxBB0s6dJC0ymwcPSLYJOLAfSdC1K2lS1c3KAL0fHbTjatqU9k3Z2XI0gF3IzAT27qVjxwVJAMnDHShr0orGjYFu3ShfMW9eyT939iw5qoeGOip35j8hIfIF8FehIcp1DjRsUBMWRsVbwPmSO5+DpEuXLuHixYu4dOlSqV8XL17Uc72MnpQRJCUmAnXrOr8vae9e+hsTEqgPy/L4K7kTA0B796Y/0iE0akSb2dxca8ii1q+npGLLlvTZcSQejwyC1JK7Q4do3ki5clKbYWM8HulyZ4X3lj9s20afiYYNbV/QYwJEKL9Kk9yJj+/QoeSw7mrENXX1asp2+cLZs+RsFRrqqORjSbhFcudzkFSvXj2fvxgb8uiR7HgvYZiLx+MOK3C11M4WCcqJEym1c/gwcOZM2T/vQKmdwEqSO8e62hVGZE23bgWuXqVjseMaO9Yx0yjt2pfkWKkd4zOTJ5MByfff0+zdwni9MoBy1WykkmjThsyrcnKoN8kXhGHD0KHUJ+dw+vUDqlUjyZ2T+9SDmpN06tQprFu3DitWrCjwxdiQEydIIlOzZqlpJLcFSbagenWywwVkAFQSp07RlTIsTLr4OAgRkKxda+5Mm7w8WgPg4H4kQWIiNSwqClUz1dMoHSC1E4hK0vffU3+2XRBBHQdJ7qVatdLHmm3bRirsypXljF7X449Cw+uVQZKDDRvUuEVyF1CQdPHiRbRt2xatWrXCiBEjMGbMGIwZMwZjx47FWPGqMfaiDKmdwOl9SdnZUr9vmyAJKHhCL21QkBClDx1KV06HkZQEREfTJlb0lZnBvn3ksl6lCtC9u3nrMAyRfv7mG2DNGvrja9Vy1M48Lk4W2TdvNnctvnL1KqmAQkKA/v3NXg1jJmLvPmdO0bFmYjbS5Mk8aiofYYq0fTtFkKWxezdw+TLZrLpoDI4bJHcBBUn/+q//ivr16yM1NRVRUVE4efIkduzYgU6dOmGbk0sMTsbHICkxkdpYcnOBPXv0XpTxHDxIrp+xsdTfYhtGjSKP6YsXaYdeHIriaKkdAEREAIMH07GZVuBC7jd0qEsGMo4fD5QvT3LPX/2K7psxw2F+0zLmE87mVkdUkbp0oSoB415GjqT3wPXrBZUgDx9KzxUHFX6Dp149OUm+NMcLQJbnJkyg86BL6NcPqFoVuHNHKnCcRkBB0p49e/DHP/4R1atXR0hICEJCQpCUlIR33nkH//Iv/6L1Ghkj8DFIcnpfku36kQQVKgBjxtBxSZK7/fspiIqKcnS2ywp9Sa7pRxJER0vtxdmzdOvAHZe6L6m0gq1VYKkdI4iMBCZNomO15G7pUlKFNG7skqq3P/giucvOBhYupGOXSO0E4eHOl9wFFCTl5eWhUqVKAIDq1avjxo0bAMjc4ay4QDL2IS8PEPOtygiSAPcESbZDnNAXLCi+9i2CpzFjHDjZVDJsGAW4hw+XPRdED65epY9TSAhVklyDOijq0IEanx1GUhJVK69dkz43VsXrlbJADpIYQO7hlywh135ASu2ef95miUEjmDiRIoFjx4p3vAAoI5aWRjMCxDBJFyEC76VLi8o4nUBAQVKrVq1w9OhRAEDXrl3x3nvvITk5GX/84x/RgD1G7ceFC3TGjIoiH+UycGpfUm6unGtjyyBp4EDSCaamFtUD5ebKOUoOldoJatQAOnem4zVrjH9+8Zzduzuy7atkBgygPiTAsRZZUVEUKAHWd7n7/ntynqpYkebkMEzPnkD9+iSx++47Suhs3Urfc/hon8CoWlU6XpRUTRJluenTKTPmMoTkLjXVmZK7gP5H/9//+3/wPrOO+uMf/4hLly6hV69eWLNmDT788ENNF8gYgJDatWnjUw9B/frUl/T0qbP6ko4epcGLMTFA69ZmryYAwsNlWqew5G7rVuD2bdq1i6YdB2Om5M51UjtBWBgwaxbwL/8CvPqq2avRDbtYgQvr73796NTAMB6PDIa+/ZYM2RSFEp+OneUWLGrJXWHL1Pv35QnfpVGmWnInVIdOIqAgaciQIRg3bhwAoFGjRjhz5gzu3r2L1NRU9GcLHfvhYz+SwKl9SSILkpRk435zcUJftkzqKQAZNAn5gMMRttsbN5Jk3CiePJESJ8dbfxfHkCHA//f/UcnFoYggaetWShRZFe5HYopDSO42bAA+/ZSOHdg+qB0jR5Jr3bVrwK5dBb+3cCGdBNq1c6S82FfULndOk9wFFCTNnj0bjwrprKpWrQoPC1rtiZ9BEiClt04aImbrfiRBt25STyFmlj15Iu2LHC61E7RvT8qvR4+MlQBs3Uovd0KCq6+ZjqZ9eyrIZmYCBw6YvZriefxY7uc4SGLUNG4MdO1Km9mrV8mMzYEj87SjfHly7wSKSu5cNhupJPr3d67kLqAg6ec//zlq1KiBadOmYc2aNchzWujoNkSQJIaA+ICoJO3bV7BgYVe8XmDnTjq2de+lxyMDIVE9WrOGdnQJCSRKdwEej5SSGym5E881ciQ3QTuVkBBqvwKsK7nbsYNm+iYk2GyUAWMI6j39uHFUKGFKQSg0Fi2iDxZATrHJyXRCEDOVXEp4uDTXdZrLXUBB0s2bNzF//nx4PB5MmjQJtWrVwhtvvIHdu3drvT5Gb27fBm7doh2dH404DRqQmYtT+pJOn6b5l1FRZMxla8QJfe1a+qNEsDR1qqsaS4XcbfVqY+yaFcXF/UguY+BAurVqkKSW2nGwzhRm8mQ5v82hHiva0q8fSRMePKDrKiCrSAMHSsMaF+NUyV1AO6awsDCMHDkSc+bMQWpqKv7+97/j8uXL6NevHxo2bKj1Ghk9eeZSiCZN/LKFdlpfkigR9+jhgJad5s1JE5SbC3z+udy5u0RqJxg4kOyaU1KMsWs+cULKV7g109kICdvevUBGhrlrKQ7uR2JKo3p1sv7+059kVZQphdBQYMoUOp4zhzJiIkhyqWFDYQYMAKpUoby7UOU4gaDTylFRURgyZAiGDRuGxo0b4/LlyxosizGMAPqRBE4KkkRvla37kdSIgOh3vyPnghYtyL3QRVSsKKWTRkjuRCzav7+rhq67ksREmpaQl2e989/Nm8Dx45TIEhUvhinMtGnAr3/tKnFBcIhgaOVKGrFx/jxJT4S1m8txquQu4I/H48ePMWfOHAwfPhy1a9fGf//3f2Ps2LE4efKklutj9EaDIMnufUmK4hDTBjVTp9IuSVi7TZvmSt2NWnKnN+p+JMb5WNUKXIxIa9+eKgYMw2hA+/ZAs2ZAVhbw8st039ixlI1jAEjJ3ZIlzpHcBRQkTZkyBXFxcfj5z3+OBg0aYNu2bbhw4QLefvttNGvWTOs1MnoSRJCk7kvau1fTVRlKSgplXyMigC5dzF6NRtSuLaNYwLWNpaI3aOdOID1dv+e5d0/25gnDCMbZiCCp8Nxms2GpHcPogMcj+31/+IFuXe5qV5gBA4DKlUlyV9gt3a4EFCSFhoZi4cKFuHnzJj766CN0795d63UxRvD4MXD2LB0HECR5PFLOZDXJiT+IKlKXLg6TSYnhFz17UkTrQho2JHev3Fw5XFMP1q0jh8Q2bYC6dfV7HsY69OtHUqUzZ+SeyWwURQZJLpgZzTDGou7rrVmTG7oKEREh1YdOkdwFFCQJmV1oaCj++te/Ii0tTeNlMYZw4gTt7GrUoA98ADihL8lxUjvBCy9Qk6lwt3MpRkju2NXOfVSuDHTuTMdWkdydOEFmpeXLu8btn2GMo0EDQBQFpk6VFoFMPk6T3AXdsveXv/wF9+/f12ItjNEEIbUTOKEvybFBkpiZ5PLShghc1qyhnIDW5OZSJUn9XIw7sFpfklhH795AZKS5a2EYR/K//wv8+MfAf/6n2SuxJEJyd+uWMyR3QQdJihEDSBh90CBIatiQ2l9ycuzZl3TtGnDpEslmevQwezWMHiQlAdHRwJ07wIED2j/+nj00PqNqVaBbN+0fn7Eu6r4kPQJwf+F+JIbRmfbtgU8+YVeUEoiIcJbLHZs/uhkNgiS7z0sSfv4dOvDUcacSHg4MGULHekjuxGMOG0bjNBj30K0bjZe7cwc4dszctWRny1EG3I/EMIxZOElyF1SQdPfuXZw+fRqJiYkaLYcxjLw8eVVv2zaohxJBkrhA2wnHSu2YAggZnB5BElt/u5eICHn+M9vlLjkZePKE2ktbtTJ3LQzDuJeBA6XkLjnZ7NUEh99BUlpaGt544w1Ur14dNWrUQL169RAfH4+33noLj+3alOJGUlKAR4+ow7dJk6AeSjjc7d1LF2k7wUGSOxg2jKqehw8DN25o97iXLwMnT1IFSVSrGHchBraa3Zcknn/gQFeORGMYxiJERACjR9Ox3SV3fgVJ9+/fR9euXfH1119j/Pjx+OCDD/DBBx9g1KhR+J//+R/07t0bWVlZ2L9/Pz788EO91sxowdGjdNu6ddAaoUaNgPh4+/UlpaYCp0/TcVKSuWth9CUuTjqRrVmj3eOKylTPnkCVKto9LmMfRP/Pjh00Z9Is2PqbYRiroJbcWaFfM1D8CpL++Mc/IiIiAikpKfj000/x5ptv4s0338Rnn32GCxcuICcnBzNnzsSgQYMQExOj15oZLdCgH0lg174k4bzSqhVQrZq5a2H0Rw8rcLb+Zlq0oCRRVpZ50pK7d6lKCsjKFsMwjFkMGgTExAA3b9pbcudXkLR8+XL813/9F2rUqFHkezVr1sR7772HJUuW4Be/+AVeeOEFzRbJ6ICGQRJgzyCJpXbuQgQyGzdSk3uwPHoEbNlCx9yP5F48HvMld5s30yDZVq2AWrXMWQPDMIzAKZI7v4KkmzdvomXLliV+v1WrVggJCcHvfve7oBfG6IxOQZKd+pI4SHIX7dvTBvLRI21MRrZsoWArMRFo3jz4x2Psi9oK3AzY+pthGKvhBMmdX0FS9erVcfny5RK/f+nSJcTFxQW7JkZvUlOpe93joZ4kDVD3Je3bp8lD6kp6uowTOUhyBx6Pti53alc7bpR3N6KSdPgwcO+esc+tKNyPxDCM9RCSuxs3gN27zV5NYPgVJA0ZMgS//vWvkZOTU+R72dnZ+M1vfoOhQ4dqtjhGJ4RpQ+PGQMWKmjykxyNd7uwguUtOps1F48YsT3ETIkhatYr+/wNFUaQBBPcjMcJ2W1FI+mYk584BV6+SvIUTPgzDWIXISPtL7vw2bjh79iwaN26M9957DytWrMB3332Hv/71r2jcuDFOnz6N3//+95ot7ve//z08Hk+Br2bNmmn2+K5FY6mdwE59SSy1cycDB9Jm8uJF4OzZwB/n2DHghx+AqCj5vmfcjZC6Gd2XJJ6vZ096PzIMw1gFIblbvNiekrswf364Tp062LNnD37605/irbfegvIsFevxeDBo0CB89NFHqFu3rqYLbNmyJTaphN5hYX4tmSkOnYOkvXvJ6alcOU0fXlM4SHInFSvS+3TDBpLcBZpzEVK7gQOt/T5njGPQIODvf6egRVGMk2Cy1I5hGKsyaBAQHS0ld3Ybt+L3MNn69etj7dq1uHv3Lvbu3Yu9e/fizp07WLduHRo1aqT5AsPCwlCzZs38r+rVq2v+HK5DpyBJSNeys609L+nRI+DAATrmIMl9qCV3gcLW30xhevemKuWVK8CFC8Y859OnwNatdMymDQzDWA27S+78DpIEVapUQZcuXdClSxdUrVpVyzUV4Pz584iPj0eDBg0wffp0XL16tdSfz87ORkZGRoEvRsWTJ8CZM3Tctq2mD22XeUl79wK5uUBCAlCvntmrYYxGBDa7dpGBh7/cuSOTABwkMYIKFYAePejYKJe7ffuAzEya89a+vTHPyTAM4w92ltwFHCQZQdeuXfHVV19h3bp1+OSTT3Dp0iX06tULmZmZJf7OO++8g5iYmPyvhIQEA1dsA06coHdpbKwujgUiSNLCYlkv1FI7diVzHw0bkswuN5dkd/6ybh3Jqdq1A2rX1nx5jI0xui9JPM+AAUCIpa/mDMO4lcGDpeRuzx6zV+Mflj6tDhs2DBMnTkSbNm0wZMgQrFmzBmlpaVi4cGGJv/PWW28hPT09/+vatWsGrtgGCGe7du10iRCEw92ePdSXZEW4H4kJRnKntv5mGDXCCnzLFgrC9UYE+dyPxDCMVYmMBEaNomO7Se4sHSQVpnLlymjSpAkulCL4joyMRHR0dIEvRoVO/UiCJk3IDjc725rzktT9UhwkuRcRJK1d61/5/+lTYP36go/BMIKOHYEqVUjGefCgvs+Vlgbs30/H3I/EMIyVEZI7o0ckBIutgqSHDx8iJSUFtXiwTeDoHCRZvS/p4EGqcMXGAk2bmr0axiySkqj8f+eONPHwheRk2gDHxgKdO+u3PsaehIYC/fvTsd6Su61bKcBv0gTQ2FSWYRhGUwYPJsOjQ4fMXol/WDpI+uUvf4nt27fj8uXL2L17N8aOHYvQ0FBMnTrV7KXZE6+3oNxOJ6wcJHE/EgMA4eHAkCF07I/kTrjaDRtGG2KGKYxRfUls/c0wjF0oVw4YPpwcQO2EpYOkH374AVOnTkXTpk0xadIkVKtWDXv37kVsbKzZS7MnFy8CDx/Su7VJE92eRgRJVuxL4n4kRiDkciLw8QXuR2LKQgRJe/bQ6VYvRD8SS+0YhmH0wdKTWefPn2/2EpyFkNq1bg3oOJRX9CXdukWaeasEJLm5JJcCrLMmxjyGDaNq4pEjwPXrZTvVXbxI7vlhYZy9Z0qmQQP6uniRXD716F27dAlISaFqpkhKMQzDMNpi6UoSozE69yMJPB7pcmclyd3RozRTJCaG4kTG3cTFAV260PGaNWX/vKg49epF7yGGKQnhcqeX5E48brdu1FvHMAzDaA8HSW7CoCAJsGZfkpDaJSVxPwlD+CO5E1I7drVjykLvviS2/mYYhtEfDpLchAlBkpX6krgfiSmM6C3atKn09+nDhzLg5yCJKYv+/amifuoUSTm1JC+P5jAB3I/EMAyjJxwkuYU7d+TV2gCtWdOmQI0atPEUszzMxOsFdu6kYw6SGEG7dkB8PPDoEfWPlMSmTUBODtCwIVvHM2VTtSrQqRMdb9qk7WMfOgQ8eECST7ahZxiG0Q8OktyCsP5u1AioVEn3p7PavKTTp4F794CoKKBDB7NXw1gFj4dsSYHSJXfieyNGsHU84xuiyqN1kCQkfP376+q/wzAM43o4SHILBsxHKowIkkrL0BuFkNp1724/n35GX4TkbvVqQFGKfl9RZJDE1t+Mr6iDpOLeV4HC1t8MwzDGwEGSWzCwH0kggqTdu4HsbMOetlhEkCRc9xhGMGAABc4XLwJnzxb9/pEjwM2bQIUKLNVkfKd7d6pc37oFnDihzWM+fEh9ngAHSQzDMHrDQZJbMCFIskpfkqKwaQNTMhUryoBeONipEfcNHgxERhq2LMbmREbK841WLnfbtwNPnwKJidQfxzAMw+gHB0luICuLmnIAQ4Mkq8xLungRuHGDqgViLg7DqFFL7gqj7kdiGH/Q2gpcbf3NvXEMwzD6wkGSGzh5knxjq1cnKy8DsYJ5g+iJ6tIFKF/evHUw1kUEQLt2AWlp8v7bt2UVVBg8MIyviCBp+3ZtJMci2GKpHcMwjP5wkOQG1FI7g9OPVuhLYqkdUxYNGgDNmgG5uTJbDwBr19Jtx45ArVrmrI2xL61aATVrAk+eyF6iQPnhBxIEeDzkbMcwDMPoCwdJbsCEfiRBs2ZAXJy5fUkcJDG+UJzkjl3tmGDweICBA+k4WMmdsBLv3JnmMDEMwzD6wkGSGzAxSFLPSzLDCvzaNeDSJSAkBOjRw/jnZ+yDkNytXUvq1JwcYP36gt9jGH/RKkhi62+GYRhj4SDJ6Xi9ckZS27amLMFM84adO+m2QwdDZugyNqZnTyAmBrhzBzhwgPqTMjPJobFjR7NXx9gVESQdPAjcvx/YY3i9spLEQRLDMIwxcJDkdC5dop1eZCR5cpuAmX1JLLVjfCU8HBgyhI5Xr5bW38OHUyWSYQKhdm2gRQsaRbBlS2CPcewYBe8VKtD8JYZhGEZ/+NLvdITUrlUr2gWaQPPmQGwsNS8fOGDsc3OQxPiDkNWtXs3W34x2BGsFLqR2ffvSKAOGYRhGfzhIcjpCamdCP5JA3ZdkpOQuNVWOh0pKMu55GfsybBi9X48cAc6do7wCy5uYYBHvISGZ8xe2/mYYhjEeDpKcjommDWrMCJJ27aLbVq2AatWMe17GvsTGAl27yn/37g1ER5u3HsYZ9OkDhIXRYOuLF/373SdPZG8lB0kMwzDGwUGS07FYkLR7N7mGGQFL7ZhAUMvr2Pqb0YKKFWUvkb+Su127qJezdm2SLjMMwzDGwEGSk7l3jzywAaBNG1OXYkZfEgdJTCCogyTuR2K0ItC+JLX1t8GzwBmGYVwNB0lORvQjNWxoumbI4zHWCjw9XRbRevXS//kY59CuHfCLXwBvvQU0bmz2ahinIIKkLVtoDpevcD8SwzCMOXCQ5GQsIrUTGNmXlJxMlruNGgHx8fo/H+McPB7ggw+Av/zF7JUwTqJTJ5rD9eABcOiQb79z+7bMdYl5SwzDMIwxcJDkZCwaJCUn69+XxFI7hmGsRFgY0L8/Hfvqcid+rl07IC5Ol2UxDMMwJcBBkpOxWJDUogVQvboxfUkiSBISP4ZhGLMR1SBf+5JYascwDGMeHCQ5lawsOSSobVtz1/IM9byk7dv1e57Hj2UQxpUkhmGsggh2kpOBR49K/1lF4SCJYRjGTDhIciqnTgG5uUDVqkCdOmavJh8jzBv27qU/PSEBqFdPv+dhGIbxh0aN6Jz09KmsdpfEqVPAjRtAuXI8DJthGMYMOEhyKmqpnYV8Y43oSxJVqt69LfWnMwzjcjwe363Axfd79QLKl9d3XQzDMExROEhyKsISySL9SALRl/T4MXDwoD7PwaYNDMNYFX+DJJbaMQzDmAMHSU7FYqYNgpAQfSV32dkktwM4SGIYxnr0708VpRMngFu3iv+Z7Gx5fhw82LClMQzDMCo4SHIiimLZIAnQd17SwYPkWREbCzRtqv3jMwzDBEP16kD79nRckhX4nj1UbY+LA1q3Nm5tDMMwjISDJCdy+TKQkQFERADNmpm9miKo+5KePtX2sdVSO+5HYhjGipQluRP3DxxI1XeGYRjGePj060REFalVKyA83NSlFEeLFkC1avr0JXE/EsMwVkcdJClK0e9zPxLDMIz5cJDkRCwstQP060vKzaXqFMBBEsMw1qVnT7L2vnmTrL7V3Lsnk0ccJDEMw5gHB0lOxOJBEqBPX9LRo0BmJhATwzp+hmGsS7lyMpFTuC9pyxaqLrVoAdSubfzaGIZhGIKDJCdioyBp1y7t+pKE1C4pCQgN1eYxGYZh9KCkviSW2jEMw1gDDpKcxv37wNWrdNymjblrKYWWLbXvS+J+JIZh7MLAgXS7bZscrK0owIYNdMzW3wzDMObCQZLTEENk69cn3ZlFUfclbd8e/ON5vcDOnXTMQRLDMFanTRsaVfDokZztduECcOUK+e2I8yPDMAxjDhwkOQ0bSO0EWvYlnT5NDc9RUUCHDsE/HsMwjJ6EhMhqkpDYidsePYAKFcxZF8MwDENwkOQ0RCXJBkGSyJRq0ZckpHbdu9N4KIZhGKtTuC+J+5EYhmGsAwdJTsNGlaRWrYCqVUlucuhQcI/F/UgMw9gNEQwdOADcvUvOdgD3IzEMw1gBWwVJf/3rX+HxePDmm2+avRRrkpMjh27YIEjSal6SonCQxDCM/ahTB2jWjHoq33sPyMgAqlRhyTDDMIwVsE2QdODAAXz66adoY2HHNtM5dYp0a1WqAAkJZq/GJ7ToS7p4Ebhxg2R2XbtqsSqGYRhjEH1JH35ItwMG8AgDhmEYK2CLIOnhw4eYPn06/vnPf6JKlSpmL8e6qKV2Ho+ZK/EZESQlJwfelySqSF26AOXLa7IshmEYQxCSu+xsumWpHcMwjDWwRZD0xhtvYMSIERgoUm6lkJ2djYyMjAJfrsFG/UgC0Zf08CFw+HBgj8FSO4Zh7ErfvgUrR2zawDAMYw0sHyTNnz8fhw8fxjvvvOPTz7/zzjuIiYnJ/0qwiexME2wYJIWEyOAmUMmdmLPEQRLDMHYjOhro1o2OGzUCEhNNXQ7DMAzzDEsHSdeuXcO//uu/Ys6cOShXrpxPv/PWW28hPT09/+vatWs6r9IiKIotgyQguL6ka9eAS5co2OrRQ8tVMQzDGMPo0QVvGYZhGPMJM3sBpXHo0CGkpqaig8rqJy8vDzt27MBHH32E7OxshBbqcI2MjERkZKTRSzWfK1eA9HQa1d6smdmr8QsRJIl5SeHhvv/uzp1026EDUKmS5ktjGIbRnZ//HGjRAujf3+yVMAzDMAJLB0kDBgzA8ePHC9z30ksvoVmzZvi///f/FgmQXI2oIrVsabtpqq1bkyHfgwfUl+SPQx33IzEMY3fCwoARI8xeBcMwDKPG0kFSpUqV0KpVqwL3VahQAdWqVStyv+s5epRubSa1A+S8pOXLqb+IgySGYRiGYRjGTCzdk8T4gU37kQSB9CWlpgKnT9NxUpLWK2IYhmEYhmHciqUrScWxLZipo07G5kFSnz50u3MnkJtL8pOy2LWLblu1AqpV029tDMMwDMMwjLvgSpITSEsDLl+m47ZtzVxJwLRpQ31J/sxLYqkdwzAMwzAMowccJDkB0Y+UmAhUrmzmSgImkHlJHCQxDMMwDMMwesBBkhOwudRO4E9fUnq6/LN79dJpQQzDMAzDMIwr4SDJCTgsSNq1i/qSSiM5mebnNmoExMfrvjSGYRiGYRjGRXCQ5AQcEiSJvqTMTODIkdJ/lqV2DMMwDMMwjF5wkGR3cnKAkyfp2KamDYKQECmdK0tyx0ESwzAMwzAMoxccJNmd06eBp0+BmBigXj2zVxM0vvQlPX4MHDhAxxwkMQzDMAzDMFrDQZLdUUvtPB4zV6IJIkgS85KKY+9e+l6dOmToxzAMwzAMwzBawkGS3RH23zbvRxK0aUMu5qX1JQmpXZ8+jogLGYZhGIZhGIvBQZLdcYhpgyA0tOx5SdyPxDAMwzAMw+gJB0l2RlEcFyQBUnK3fXvR72VnA3v20DEHSQzDMAzDMIwecJBkZ65dAx48AMLDgRYtzF6NZvTpQ7fF9SUdPAhkZQGxsUDTpsavjWEYhmEYhnE+HCTZGVFFatECiIgwdSla0rYtmfVlZMg/UaCW2nE/EsMwDMMwDKMHHCTZGQdK7YDS+5K4H4lhGIZhGIbRGw6S7IxDgySg+HlJublAcjIdc5DEMAzDMAzD6AUHSXbGBUHSzp1AXh4dHz1K1uAxMUDr1qYtjWEYhmEYhnE4HCTZlbQ04NIlOm7b1tSl6EFxfUlCapeURJI8hmEYhmEYhtEDDpLsyrFjdFu3LlClirlr0YHi+pK4H4lhGIZhGIYxAg6S7IqDpXYCYQW+bRvg9ZL0DuAgiWEYhmEYhtEXDpLsytGjdOvgIEn0Je3YAZw4Ady7B0RFAR06mLoshmEYhmEYxuFwkGRXXFBJatcOiI6mvqQPP6T7und31EgohmEYhmEYxoJwkGRHnj6l0grg6CBJ3Zf09dd0y1I7hmEYhmEYRm84SLIjZ84AOTlUZklMNHs1uiIkd7m5dMtBEsMwDMMwDKM3HCTZEbXUzuMxcyW6I4IkAAgPB7p2NW0pDMMwDMMwjEvgIMmOuKAfSSD6kgCgSxegfHlTl8MwDMMwDMO4AA6S7IiLgqTQUKBXLzoWluAMwzAMwzAMoydhZi+A8RNFcVWQBADvvkszc3/xC7NXwjAMwzAMw7gBDpLsxg8/APfvA2FhQIsWZq/GEFq2BD7+2OxVMAzDMAzDMG6B5XZ2Q1SRmjcHIiNNXQrDMAzDMAzDOBEOkuyGy6R2DMMwDMMwDGM0HCTZjaNH6ZaDJIZhGIZhGIbRBQ6S7AZXkhiGYRiGYRhGVzhIshMZGUBKCh23bWvuWhiGYf7/9u48LKozTRv4XSAFxa6IFnwWIBIUF4wEFyCKbURMIlHjGBemA9qhu0eIGsY9KqjtkhiXGCJKxhFRiXZHESeTaBCDC2pcIrghIuLSBMQlAVkCCO/3B00NJasKdQq4f9d1LqlTZ3mqOJXUzbscIiKiNoohqTW5dKnqX5UKsLKSthYiIiIiojaKIak1YVc7IiIiIqIWx5DUmjAkERERERG1OIak1oQhiYiIiIioxTEktRbl5cCVK1U/MyQREREREbUYhqTWIj0dKC0FzMwABwepqyEiIiIiarMYklqL6q52/fsDevy1ERERERG1FH7bbi04HomIiIiISCt0OiRFRkbC1dUV5ubmMDc3h4eHB77//nupy5JGamrVvwxJREREREQtSqdDUrdu3bBmzRpcuHAB58+fx4gRIzB27FhcvXpV6tK0Swi2JBERERERaYlMCCGkLuJ5dOrUCWvXrsWf/vSnOp8vLS1FaWmp+nFBQQFUKhXy8/Nhbm6urTKbV3Y20K0boK8PFBYCRkZSV0RERERE1OoUFBTAwsKi0Wyg0y1JNVVUVGDPnj0oKiqCh4dHvdutXr0aFhYW6kWlUmmxyhZS3Yrk4sKARERERETUwnQ+JF2+fBmmpqYwNDTEX//6V8TFxaF37971br9w4ULk5+erl3v37mmx2hbCrnZERERERFrTQeoCGtOzZ0+kpKQgPz8f33zzDQICAnDs2LF6g5KhoSEMDQ21XGULY0giIiIiItIanQ9JcrkcTk5OAIDXXnsN586dw+eff46tW7dKXJkWMSQREREREWmNzne3e1ZlZaXGxAxt3pMnwM2bVT/37y9tLURERERE7YBOtyQtXLgQb775Juzs7PDkyRPExsYiKSkJhw8flro07bl0qerf//f/gM6dpa2FiIiIiKgd0OmQlJeXh/fffx85OTmwsLCAq6srDh8+DB8fH6lL0x52tSMiIiIi0iqdDknbtm2TugTpMSQREREREWlVqxuT1O6kplb9y5BERERERKQVDEm67OlT4PLlqp8ZkoiIiIiItIIhSZfduAH8/jtgago4OkpdDRERERFRu8CQpMuqxyP17w/o8VdFRERERKQN/OatyzhpAxERERGR1jEk6TKGJCIiIiIirWNI0lVCMCQREREREUmAIUlX5eQADx5UjUXq00fqaoiIiIiI2g2GJF1V3YrUqxegUEhaChERERFRe8KQpKvY1Y6IiIiISBIMSbqKIYmIiIiISBIMSboqNbXqX4YkIiIiIiKtYkjSRYWFQEZG1c/9+0tbCxERERFRO8OQpIsuX66aAtzWFujSRepqiIiIiIjaFYYkXcTxSEREREREkmFI0kUMSUREREREkmFI0kUMSUREREREkmFI0jVPnwKXLlX9zJBERERERKR1DEm6JiMD+P13wMQE6NFD6mqIiIiIiNodhiRdU93VztUV0OOvh4iIiIhI2/gtXNdwPBIRERERkaQYknQNQxIRERERkaQYknRNamrVvwxJRERERESSYEjSJbm5wP37VWOR+vaVuhoiIiIionaJIUmXVHe169kTMDaWtBQiIiIiovaKIUmXcDwSEREREZHkGJJ0CUMSEREREZHkGJJ0CUMSEREREZHkGJJ0RVERcONG1c/9+0tbCxERERFRO8aQpCsuXwaEAJRKoGtXqashIiIiImq3GJJ0BbvaERERERHpBIYkXcGQRERERESkExiSdAVDEhERERGRTmBI0gUVFVVjkgCGJCIiIiIiiTEk6YKbN4HiYsDYGHBykroaIiIiIqJ2jSFJF1R3tXN1BfT1JS2FiIiIiKi9Y0jSBRyPRERERESkMxiSdAFDEhERERGRzuggdQEEhiQiIiIdUVFRgfLycqnLIKIXZGBgAP1mGL7CkCS13NyqRSYD+vaVuhoiIqJ2SQiB3Nxc/Pbbb1KXQkQvydLSEkqlEjKZ7IWPodMhafXq1di/fz+uX78OhUIBT09PfPLJJ+jZs6fUpTWf1NSqf52dARMTaWshIiJqp6oDUpcuXWBsbPxSX66ISBpCCBQXFyMvLw8AYGNj88LH0umQdOzYMQQHB2PgwIF4+vQpFi1ahFGjRuHatWswaSuBgl3tiIiIJFVRUaEOSFZWVlKXQ0QvQaFQAADy8vLQpUuXF+56p9Mh6dChQxqPo6Oj0aVLF1y4cAHDhg2TqKpmxpBEREQkqeoxSMbGxhJXQkTNofqzXF5e3jZD0rPy8/MBAJ06dap3m9LSUpSWlqofFxQUtHhdL6W6ux1DEhERkaTYxY6obWiOz3KrmQK8srISs2fPhpeXF/o2MMHB6tWrYWFhoV5UKpUWq3xOxcVAenrVzwxJREREREQ6odWEpODgYFy5cgV79uxpcLuFCxciPz9fvdy7d09LFb6AK1eAykqga1dAqZS6GiIiIqImu337NmQyGVKqhw5IJCoqCiqVCnp6eti4caOktTSFrrxvDRk2bBhiY2MlrWHLli3w8/OT7PytIiSFhITg22+/xY8//ohu3bo1uK2hoSHMzc01Fp3F8UhERET0Eu7du4fp06fD1tYWcrkc9vb2mDVrFh49eiR1aVpRUFCAkJAQzJ8/H9nZ2fjzn/8sdUkaAgMDMW7cOI11KpUKOTk5DfaMai7/+Mc/0KtXLxgZGaFfv3747rvvGt3n4MGDuH//PiZPnoykpCTIZLIGl6SkpBapffr06fj5559x4sSJFjl+Y3Q6JAkhEBISgri4OBw9ehTdu3eXuqTmxZBEREREL+jWrVtwd3dHRkYGvv76a9y8eRNbtmxBYmIiPDw88PjxY6lLbHF3795FeXk53n77bdjY2Lzw5BvavIGwvr4+lEolOnRo2akBTp06hSlTpuBPf/oTLl68iHHjxmHcuHG4cuVKg/tt2rQJ06ZNg56eHjw9PZGTk6Ne3nvvPYwePVpjnaenp3rfsrKyZqtfLpdj6tSp2LRpU7Md83nodEgKDg7Grl27EBsbCzMzM+Tm5iI3NxclJSVSl9Y8GJKIiIh0jhBAUZE0ixBNrzM4OBhyuRw//PADvL29YWdnhzfffBNHjhxBdnY2Pv7443r3nTp1KiZNmqSxrry8HJ07d0ZMTAyAqlmGX3/9dVhaWsLKygpjxoxBZmZmvceMjo6GpaWlxroDBw7UGkQfHx8PNzc3GBkZwdHREcuWLcPTp0//9d4LhIeHw87ODoaGhrC1tcXMmTPrPV+/fv0AAI6OjpDJZLh9+zYAIDIyEj169IBcLkfPnj2xc+dOjX1lMhkiIyPxzjvvwMTEBCtXrqzzHDt37oS7uzvMzMygVCoxdepU9T14ql29ehVjxoyBubk5zMzMMHToUGRmZiI8PBw7duxAfHy8RqtLXd3tjh07hkGDBsHQ0BA2NjZYsGCB+j0BgOHDh2PmzJmYN28eOnXqBKVSifDw8Dprrvb5559j9OjRmDt3LlxcXLBixQq4ubkhIiKi3n0ePHiAo0ePqru5yeVyKJVK9aJQKGBoaKh+vGXLFgwaNAj/9V//he7du8PIyAgA4ODgUKvr46uvvqpR82+//YYPPvgA1tbWMDc3x4gRI5BaPaHZv/j5+eHgwYOSfPfX6ZAUGRmJ/Px8DB8+HDY2Nupl7969Upf28ioqgEuXqn5mSCIiItIZxcWAqak0S3Fx02p8/PgxDh8+jBkzZqjvC1NNqVTC398fe/fuhagndfn7++N//ud/UFhYqF53+PBhFBcXY/z48QCAoqIihIaG4vz580hMTISenh7Gjx+PysrKF3tjAZw4cQLvv/8+Zs2ahWvXrmHr1q2Ijo5Wh5R9+/Zhw4YN2Lp1KzIyMnDgwAF1EHrWpEmTcOTIEQDA2bNnkZOTA5VKhbi4OMyaNQv/+Z//iStXruAvf/kLpk2bhh9//FFj//DwcIwfPx6XL1/G9OnT6zxHeXk5VqxYgdTUVBw4cAC3b99GYGCg+vns7GwMGzYMhoaGOHr0KC5cuIDp06fj6dOnmDNnTq2Wl5qtLjWP8dZbb2HgwIFITU1FZGQktm3bhr/97W8a2+3YsQMmJib46aef8Omnn2L58uVISEio970+ffo0Ro4cqbHO19cXp0+frnefkydPwtjYGC4uLvVu86ybN29i37592L9//3ONs5o4cSLy8vLw/fff48KFC3Bzc8Mbb7yh0QLq7u6Op0+f4qeffmrycZuLTk8BXt8Hu03IzKz6k5FCAbzyitTVEBERUSuSkZEBIUS9X2ZdXFzw66+/4sGDB+jSpUut5319fWFiYoK4uDj88Y9/BADExsbinXfegZmZGQBgwoQJGvv893//N6ytrXHt2rUXHk+zbNkyLFiwAAEBAQCqWoBWrFiBefPmISwsDHfv3oVSqcTIkSNhYGAAOzs7DBo0qM5jKRQK9c1/ra2tofzXJFifffYZAgMDMWPGDABAaGgozpw5g88++wx/+MMf1PtPnToV06ZNa7DemuHJ0dERmzZtwsCBA1FYWAhTU1N8+eWXsLCwwJ49e2BgYAAAcHZ21qixtLRUXVtdNm/eDJVKhYiICMhkMvTq1Qu//PIL5s+fj6VLl0JPr6pNw9XVFWFhYQCAV155BREREUhMTISPj0+dx83NzUXXrl011nXt2hW5ubn11nLnzh107dpVfc6mKCsrQ0xMDKytrZu8z8mTJ3H27Fnk5eXB0NAQQNXv7cCBA/jmm2/UY8uMjY1hYWGBO3fuNPnYzUWnW5LatOqk3a8f8II3uSIiIqLmZ2wMFBZKszzvkJrG/qAsl8tx9+5dmJqaqpdVq1ahQ4cOeO+997B7924AVa1G8fHx8Pf3V++bkZGBKVOmwNHREebm5nBwcABQNQ7oRaWmpmL58uUa9QQFBSEnJwfFxcWYOHEiSkpK4OjoiKCgIMTFxWl0O2uKtLQ0eHl5aazz8vJCWlqaxjp3d/dGj3XhwgX4+fnBzs4OZmZm8Pb2BvB/70FKSgqGDh2qDkgvIi0tDR4eHhrdEr28vFBYWIh//vOf6nWurq4a+9nY2NTq+veySkpK1F3mmsre3v65AhJQdR0UFhbCyspK41rIysqq1aVToVCguKlNrM1Ip1uS2jSORyIiItJJMhlgYiJ1FQ1zcnKCTCZDWlqauntcTWlpabC2toalpSVMTU01ukF16tQJQFWXO29vb+Tl5SEhIQEKhQKjR49Wb+fn5wd7e3t89dVXsLW1RWVlJfr27Vvv4Hw9Pb1aoe3ZCREKCwuxbNkyvPvuu7X2NzIygkqlQnp6Oo4cOYKEhATMmDEDa9euxbFjx14qiNTFpJFfclFREXx9feHr64vdu3fD2toad+/eha+vr/o9eLarY0t69vXLZLIGuz4qlUrcv39fY939+/cbbNXq3Lkzfv311+eqq673sbFrobCwEDY2NnXOjPfsuLbHjx8/dwhrDmxJkgpDEhEREb0gKysr+Pj4YPPmzbUGtefm5mL37t3qsTMdOnSAk5OTeqkOSZ6enlCpVNi7dy92796NiRMnqr+IP3r0COnp6Vi8eDHeeOMNdfe9hlhbW+PJkycoKipSr3t2jIqbmxvS09M16qleqrt4KRQK+Pn5YdOmTUhKSsLp06dx+fLlJr83Li4uSE5O1liXnJyM3r17N/kYAHD9+nU8evQIa9aswdChQ9GrV69aLTeurq44ceJEvbPjyeVyVFRUNFrv6dOnNUJFcnIyzMzMGr31TUM8PDyQmJiosS4hIQEeHh717jNgwADk5uY+d1B6lrW1NXJyctSPCwoKkJWVpX7s5uaG3NzcWtemk5MTOnfurN4uMzMTv//+OwYMGPBS9bwIhiSpVM/ewZBERERELyAiIgKlpaXw9fXF8ePHce/ePRw6dAg+Pj5wdnbG0qVLGz3G1KlTsWXLFiQkJGh0tevYsSOsrKwQFRWFmzdv4ujRowgNDW3wWIMHD4axsTEWLVqEzMxMxMbGIjo6WmObpUuXIiYmBsuWLcPVq1eRlpaGPXv2YPHixQCqZqzbtm0brly5glu3bmHXrl1QKBSwt7dv8vsyd+5cREdHIzIyEhkZGVi/fj3279+POXPmNPkYAGBnZwe5XI4vvvgCt27dwsGDB7FixQqNbUJCQlBQUIDJkyfj/PnzyMjIwM6dO5Geng6gapa3S5cuIT09HQ8fPqwzTM2YMQP37t3Dhx9+iOvXryM+Ph5hYWEIDQ19rrFBz5o1axYOHTqEdevW4fr16wgPD8f58+cREhJS7z4DBgxA586da4XM5zVixAjs3LkTJ06cwOXLlxEQEAD9GsNLRo4cCQ8PD4wbNw4//PADbt++jVOnTuHjjz/G+fPn1dudOHECjo6O6NGjx0vV80JEG5efny8AiPz8fKlL+T/37wsBCCGTCfHkidTVEBERtWslJSXi2rVroqSkROpSnltWVpYICAgQXbt2FTKZTAAQ7777rigqKmrS/teuXRMAhL29vaisrNR4LiEhQbi4uAhDQ0Ph6uoqkpKSBAARFxenPjcAcfHiRfU+cXFxwsnJSSgUCjFmzBgRFRUlnv26eejQIeHp6SkUCoUwNzcXgwYNElFRUer9Bw8eLMzNzYWJiYkYMmSIOHLkSL31X7x4UQAQWVlZGus3b94sHB0dhYGBgXB2dhYxMTEaz9d8HQ2JjY0VDg4OwtDQUHh4eIiDBw/Wes2pqali1KhRwtjYWJiZmYmhQ4eKzMxMIYQQeXl5wsfHR5iamgoA4scff6zzfUtKShIDBw4UcrlcKJVKMX/+fFFeXq5+3tvbW8yaNUujtrFjx4qAgIAG6//73/8unJ2dhVwuF3369BH/+7//2+hrnjdvnpg8eXKdzwUEBIixY8eqH4eFhYn+/fvX2i4/P19MmjRJmJubC5VKJaKjo0X//v1FWFiYepuCggLx4YcfCltbW2FgYCBUKpXw9/cXd+/eVW8zatQosXr16kZrflZDn+mmZgOZEG15Crmq5j0LCwvk5+fD3Nxc6nKqJCQAo0YBzs7Av/7SQERERNL4/fffkZWVpXGfl9YqLCwM69evR0JCAoYMGSJ1OdQK5ebmok+fPvj555+fqwWvuV29ehUjRozAjRs3YGFh8Vz7NvSZbmo2YHc7KXA8EhEREbWAZcuWYdOmTThz5sxL3c+I2i+lUolt27a91CyGzSEnJwcxMTHPHZCaC2e3kwJDEhEREbWQxu79Q9SYcePGSV1CrRvhahtbkqTAkEREREREpLMYkrStpAS4fr3qZ4YkIiIiIiKdw5CkbVeuAJWVgLU10MDNvIiIiIiISBoMSdpWs6udTCZlJUREREREVAeGJG3jeCQiIiIiIp3GkKRtDElERERERDqNIUmbKiuBS5eqfmZIIiIiIiLSSQxJ2nTrFlBYCBgZAc7OUldDRERE9MJu374NmUyGlOpeMhKJioqCSqWCnp4eNm7cKGktTaEr71tD/vjHP2LVqlXNcqzw8HC82kyNA2VlZXBwcMD58+eb5XgNYUjSpuoPQ79+QAfex5eIiIhezr179zB9+nTY2tpCLpfD3t4es2bNwqNHj6QuTSsKCgoQEhKC+fPnIzs7G3/+85+lLklDYGBgrRuzqlQq5OTkoG/fvi167qtXr2LChAlwcHCATCZrcoBMTU3Fd999h5kzZ6rXDR8+HDKZrNby9OnTFqq+bnK5HHPmzMH8+fNb/FwMSdrE8UhERETUTG7dugV3d3dkZGTg66+/xs2bN7FlyxYkJibCw8MDjx8/lrrEFnf37l2Ul5fj7bffho2NDYyNjV/oOOXl5c1cWf309fWhVCrRoYX/YF5cXAxHR0esWbMGyue47cwXX3yBiRMnwtTUVGN9UFAQcnJyNJaWfg118ff3x8mTJ3H16tUWPQ9DkjYxJBEREek+IYCiImkWIZpcZnBwMORyOX744Qd4e3vDzs4Ob775Jo4cOYLs7Gx8/PHH9e47depUTJo0SWNdeXk5OnfujJiYGADAoUOH8Prrr8PS0hJWVlYYM2YMMjMz6z1mdHQ0LC0tNdYdOHAAsmdueRIfHw83NzcYGRnB0dERy5YtU7dICCEQHh4OOzs7GBoawtbWVqNF49nz9evXDwDg6OgImUyG27dvAwAiIyPRo0cPyOVy9OzZEzt37tTYVyaTITIyEu+88w5MTEywcuXKOs+xc+dOuLu7w8zMDEqlElOnTkVeXp7GNlevXsWYMWNgbm4OMzMzDB06FJmZmQgPD8eOHTsQHx+vbnlJSkqqs7vdsWPHMGjQIBgaGsLGxgYLFizQaKUZPnw4Zs6ciXnz5qFTp05QKpUIDw+vs+ZqAwcOxNq1azF58mQYGho2uG21iooKfPPNN/Dz86v1nLGxMZRKpcYCAPPnz4ezszOMjY3h6OiIJUuWNBg6k5KSMGjQIJiYmMDS0hJeXl64c+eO+vmGrg8A6NixI7y8vLBnz54mvaYXxT5f2sSQREREpPuKi4Fn/oquNYWFgIlJo5s9fvwYhw8fxsqVK6FQKDSeUyqV8Pf3x969e7F58+ZaIQWo+mv8xIkTUVhYqG4xOHz4MIqLizF+/HgAQFFREUJDQ+Hq6orCwkIsXboU48ePR0pKCvT0Xuzv7CdOnMD777+PTZs2qcNEdRe5sLAw7Nu3Dxs2bMCePXvQp08f5ObmIjU1tc5jTZo0CSqVCiNHjsTZs2ehUqlgbW2NuLg4zJo1Cxs3bsTIkSPx7bffYtq0aejWrRv+8Ic/qPcPDw/HmjVrsHHjxnpbRMrLy7FixQr07NkTeXl5CA0NRWBgIL777jsAQHZ2NoYNG4bhw4fj6NGjMDc3R3JyMp4+fYo5c+YgLS0NBQUF2L59OwCgU6dO+OWXXzTOkZ2djbfeeguBgYGIiYnB9evXERQUBCMjI40gtGPHDoSGhuKnn37C6dOnERgYCC8vL/j4+LzQ76Iuly5dQn5+Ptzd3Zu8j5mZGaKjo2Fra4vLly8jKCgIZmZmmDdvXq1tnz59inHjxiEoKAhff/01ysrKcPbsWfU12tj1UW3QoEE4ceLES77aRog2Lj8/XwAQ+fn50hZSWirExIlCODsLUVAgbS1ERESkVlJSIq5duyZKSkqqVhQWClHVpqP9pbCwSTWfOXNGABBxcXF1Pr9+/XoBQNy/f7/O58vLy0Xnzp1FTEyMet2UKVPEpEmT6j3ngwcPBABx+fJlIYQQWVlZAoC4ePGiEEKI7du3CwsLC4194uLiRM2vm2+88YZYtWqVxjY7d+4UNjY2Qggh1q1bJ5ydnUVZWVm9ddR08eJFAUBkZWWp13l6eoqgoCCN7SZOnCjeeust9WMAYvbs2U06R03nzp0TAMSTJ0+EEEIsXLhQdO/evd56AwICxNixYzXWPfu+LVq0SPTs2VNUVlaqt/nyyy+FqampqKioEEII4e3tLV5//XWN4wwcOFDMnz+/SXXb29uLDRs2NLpdXFyc0NfX16il+vwGBgbCxMREvYSGhtZ5jLVr14rXXntN/TgsLEz0799fCCHEo0ePBACRlJRU576NXR/VPv/8c+Hg4FDv66j1ma6hqdmA3e20RS4H/v53ID0dMDOTuhoiIiKqj7FxVYuOFMtzjqkRjXTPk8vluHv3LkxNTdXLqlWr0KFDB7z33nvYvXs3gKpWo/j4ePj7+6v3zcjIwJQpU+Do6Ahzc3M4ODgAqBoH9KJSU1OxfPlyjXqqx7oUFxdj4sSJKCkpgaOjI4KCghAXF/fckwOkpaXBy8tLY52XlxfS0tI01jWlteTChQvw8/ODnZ0dzMzM4O3tDeD/3oOUlBQMHToUBgYGz1Xjs/V6eHhotPh5eXmhsLAQ//znP9XrXF1dNfazsbGp1fXvZZWUlMDQ0LDe1seUlBT1snDhQgDA3r174eXlBaVSCVNTUyxevLjea6RTp04IDAyEr68v/Pz88PnnnyMnJ0f9fGPXRzWFQqHxuCWwux0RERFRTTJZk7q8ScnJyQkymQxpaWnq7nE1paWlwdraGpaWljA1NdUY/9KpUycAVV96vb29kZeXh4SEBCgUCowePVq9nZ+fH+zt7fHVV1/B1tYWlZWV6Nu3L8rKyuqsSU9Pr1Zoe3ZsSmFhIZYtW4Z333231v5GRkZQqVRIT0/HkSNHkJCQgBkzZmDt2rU4duzYSwWRupg08jsuKiqCr68vfH19sXv3blhbW+Pu3bvw9fVVvwfPdnVsSc++fplMhsrKymY9R+fOnVFcXIyysjLI5XKN5ywsLODk5KSx7vTp0/D398eyZcvg6+sLCwsL7NmzB+vWrav3HNu3b8fMmTNx6NAh7N27F4sXL0ZCQgKGDBnS6PVR7fHjx7C2tn7JV9swhiQiIiKiVsbKygo+Pj7YvHkzPvroI40v67m5udi9ezeCg4MBAB06dKj15RYAPD09oVKpsHfvXnz//feYOHGi+ov4o0ePkJ6ejq+++gpDhw4FAJw8ebLBmqytrfHkyRMUFRWpA8iz9wJyc3NDenp6nfVUUygU8PPzg5+fH4KDg9GrVy9cvnwZbm5ujb8xAFxcXJCcnIyAgAD1uuTkZPTu3btJ+1e7fv06Hj16hDVr1kClUgFArfvzuLq6YseOHSgvL68zxMnlclRUVDRa7759+yCEULfgJCcnw8zMDN26dXuuml9W9f2Mrl271qR7G506dQr29vYak4TUnIShPgMGDMCAAQOwcOFCeHh4IDY2FkOGDGnS9QEAV65cwYABAxo9z8tgdzsiIiKiVigiIgKlpaXw9fXF8ePHce/ePRw6dAg+Pj5wdnbG0qVLGz3G1KlTsWXLFiQkJGh0tevYsSOsrKwQFRWFmzdv4ujRowgNDW3wWIMHD4axsTEWLVqEzMxMxMbGIjo6WmObpUuXIiYmBsuWLcPVq1eRlpaGPXv2YPHixQCqZqzbtm0brly5glu3bmHXrl1QKBSwt7dv8vsyd+5cREdHIzIyEhkZGVi/fj3279+POXPmNPkYAGBnZwe5XI4vvvgCt27dwsGDB7FixQqNbUJCQlBQUIDJkyfj/PnzyMjIwM6dO5Geng4AcHBwwKVLl5Ceno6HDx/WOevbjBkzcO/ePXz44Ye4fv064uPjERYWhtDQ0BeeIAOouvFqdde4srIyZGdnIyUlBTdv3qx3H2tra7i5uTUaiKu98soruHv3Lvbs2YPMzExs2rQJcXFx9W6flZWFhQsX4vTp07hz5w5++OEHZGRkwMXFBUDj10e1EydOYNSoUU2q8YU1OGKpDdCZiRuIiIhIJzU0yFvXZWVliYCAANG1a1chk8kEAPHuu++KoqKiJu1/7do1AUDY29vXGqyfkJAgXFxchKGhoXB1dRVJSUkak0U8OwGBEFUD/52cnIRCoRBjxowRUVFR4tmvm4cOHRKenp5CoVAIc3NzMWjQIBEVFaXef/DgwcLc3FyYmJiIIUOGiCNHjtRbf10TNwghxObNm4Wjo6MwMDAQzs7OGhNUCCEanPSiptjYWOHg4CAMDQ2Fh4eHOHjwYK3XnJqaKkaNGiWMjY2FmZmZGDp0qMjMzBRCCJGXlyd8fHyEqampACB+/PHHOt+3pKQkMXDgQCGXy4VSqRTz588X5eXl6ue9vb3FrFmzNGobO3asCAgIqLf26vM8u3h7ezf4mjdv3iyGDBmisa6u81ebO3eusLKyEqampmLSpEliw4YNGhN41Jy4ITc3V4wbN07Y2NgIuVwu7O3txdKlS9UTVAjR8PUhhBCnTp0SlpaWori4uN7X0BwTN8iEeI4J+VuhgoICWFhYID8/H+bm5lKXQ0RERDrm999/R1ZWFrp3764x7qE1CgsLw/r169VjPIieV0lJCXr27Im9e/fCw8ND6nJqmTRpEvr3749FixbVu01Dn+mmZgOOSSIiIiJqI5YtWwYHBwecOXMGgwYNeqnuWtQ+KRQKxMTE4OHDh1KXUktZWRn69euHjz76qMXPxZYkIiIiatfaUksSETVPSxL/vEBERERERFQDQxIREREREVENDElEREREQK0boRJR69Qcn2WGJCIiImrXqm8CWlxcLHElRNQcqj/Ldd3gt6k4ux0RERG1a/r6+rC0tEReXh4AwNjYGDKZTOKqiOh5CSFQXFyMvLw8WFpaQl9f/4WPxZBERERE7Z5SqQQAdVAiotbL0tJS/Zl+UQxJRERE1O7JZDLY2NigS5cuKC8vl7ocInpBBgYGL9WCVI0hiYiIiOhf9PX1m+ULFhG1bpy4gYiIiIiIqAaGJCIiIiIiohoYkoiIiIiIiGpo82OSqm8mVVBQIHElREREREQkpepM0NgNZ9t8SHry5AkAQKVSSVwJERERERHpgidPnsDCwqLe52WisRjVylVWVuKXX36BmZmZ5DeGKygogEqlwr1792Bubi5pLdQ+8JojbeL1RtrGa460iddb2yCEwJMnT2Braws9vfpHHrX5liQ9PT1069ZN6jI0mJub88NFWsVrjrSJ1xtpG6850iZeb61fQy1I1ThxAxERERERUQ0MSURERERERDUwJGmRoaEhwsLCYGhoKHUp1E7wmiNt4vVG2sZrjrSJ11v70uYnbiAiIiIiInoebEkiIiIiIiKqgSGJiIiIiIioBoYkIiIiIiKiGhiSiIiIiIiIamBI0qIvv/wSDg4OMDIywuDBg3H27FmpS6I2aPXq1Rg4cCDMzMzQpUsXjBs3Dunp6VKXRe3ImjVrIJPJMHv2bKlLoTYqOzsb//7v/w4rKysoFAr069cP58+fl7osaqMqKiqwZMkSdO/eHQqFAj169MCKFSvAuc/aNoYkLdm7dy9CQ0MRFhaGn3/+Gf3794evry/y8vKkLo3amGPHjiE4OBhnzpxBQkICysvLMWrUKBQVFUldGrUD586dw9atW+Hq6ip1KdRG/frrr/Dy8oKBgQG+//57XLt2DevWrUPHjh2lLo3aqE8++QSRkZGIiIhAWloaPvnkE3z66af44osvpC6NWhCnANeSwYMHY+DAgYiIiAAAVFZWQqVS4cMPP8SCBQskro7asgcPHqBLly44duwYhg0bJnU51IYVFhbCzc0Nmzdvxt/+9je8+uqr2Lhxo9RlURuzYMECJCcn48SJE1KXQu3EmDFj0LVrV2zbtk29bsKECVAoFNi1a5eElVFLYkuSFpSVleHChQsYOXKkep2enh5GjhyJ06dPS1gZtQf5+fkAgE6dOklcCbV1wcHBePvttzX+W0fU3A4ePAh3d3dMnDgRXbp0wYABA/DVV19JXRa1YZ6enkhMTMSNGzcAAKmpqTh58iTefPNNiSujltRB6gLag4cPH6KiogJdu3bVWN+1a1dcv35doqqoPaisrMTs2bPh5eWFvn37Sl0OtWF79uzBzz//jHPnzkldCrVxt27dQmRkJEJDQ7Fo0SKcO3cOM2fOhFwuR0BAgNTlURu0YMECFBQUoFevXtDX10dFRQVWrlwJf39/qUujFsSQRNSGBQcH48qVKzh58qTUpVAbdu/ePcyaNQsJCQkwMjKSuhxq4yorK+Hu7o5Vq1YBAAYMGIArV65gy5YtDEnUIv7+979j9+7diI2NRZ8+fZCSkoLZs2fD1taW11wbxpCkBZ07d4a+vj7u37+vsf7+/ftQKpUSVUVtXUhICL799lscP34c3bp1k7ocasMuXLiAvLw8uLm5qddVVFTg+PHjiIiIQGlpKfT19SWskNoSGxsb9O7dW2Odi4sL9u3bJ1FF1NbNnTsXCxYswOTJkwEA/fr1w507d7B69WqGpDaMY5K0QC6X47XXXkNiYqJ6XWVlJRITE+Hh4SFhZdQWCSEQEhKCuLg4HD16FN27d5e6JGrj3njjDVy+fBkpKSnqxd3dHf7+/khJSWFAombl5eVV67YGN27cgL29vUQVUVtXXFwMPT3Nr8z6+vqorKyUqCLSBrYkaUloaCgCAgLg7u6OQYMGYePGjSgqKsK0adOkLo3amODgYMTGxiI+Ph5mZmbIzc0FAFhYWEChUEhcHbVFZmZmtca8mZiYwMrKimPhqNl99NFH8PT0xKpVq/Dee+/h7NmziIqKQlRUlNSlURvl5+eHlStXws7ODn369MHFixexfv16TJ8+XerSqAVxCnAtioiIwNq1a5Gbm4tXX30VmzZtwuDBg6Uui9oYmUxW5/rt27cjMDBQu8VQuzV8+HBOAU4t5ttvv8XChQuRkZGB7t27IzQ0FEFBQVKXRW3UkydPsGTJEsTFxSEvLw+2traYMmUKli5dCrlcLnV51EIYkoiIiIiIiGrgmCQiIiIiIqIaGJKIiIiIiIhqYEgiIiIiIiKqgSGJiIiIiIioBoYkIiIiIiKiGhiSiIiIiIiIamBIIiIiIiIiqoEhiYiIiIiIqAaGJCIiIiIiohoYkoiIqFV48OAB/uM//gN2dnYwNDSEUqmEr68vkpOTAQAymQwHDhx47uM6ODhg48aNzVssERG1ah2kLoCIiKgpJkyYgLKyMuzYsQOOjo64f/8+EhMT8ejRI6lLIyKiNkYmhBBSF0FERNSQ3377DR07dkRSUhK8vb1rPe/g4IA7d+6oH9vb2+P27dvIzMxEaGgozpw5g6KiIri4uGD16tUYOXIkAGD48OE4duyYxrGq/7d48uRJLFy4EOfPn0fnzp0xfvx4rF69GiYmJi34SomISBewux0REek8U1NTmJqa4sCBAygtLa31/Llz5wAA27dvR05OjvpxYWEh3nrrLSQmJuLixYsYPXo0/Pz8cPfuXQDA/v370a1bNyxfvhw5OTnIyckBAGRmZmL06NGYMGECLl26hL179+LkyZMICQnR0ismIiIpsSWJiIhahX379iEoKAglJSVwc3ODt7c3Jk+eDFdXVwBVY5Li4uIwbty4Bo/Tt29f/PWvf1UHHgcHB8yePRuzZ89Wb/PBBx9AX18fW7duVa87efIkvL29UVRUBCMjo2Z/fUREpDvYkkRERK3ChAkT8Msvv+DgwYMYPXo0kpKS4Obmhujo6Hr3KSwsxJw5c+Di4gJLS0uYmpoiLS1N3ZJUn9TUVERHR6tbsExNTeHr64vKykpkZWU18ysjIiJdw4kbiIio1TAyMoKPjw98fHywZMkSfPDBBwgLC0NgYGCd28+ZMwcJCQn47LPP4OTkBIVCgX/7t39DWVlZg+cpLCzEX/7yF8ycObPWc3Z2ds3xUoiISIcxJBERUavVu3dv9bTfBgYGqKio0Hg+OTkZgYGBGD9+PICq8HP79m2NbeRyea393NzccO3aNTg5ObVY7UREpLvY3Y6IiHTeo0ePMGLECOzatQuXLl1CVlYW/vGPf+DTTz/F2LFjAVSNLUpMTERubi5+/fVXAMArr7yC/fv3IyUlBampqZg6dSoqKys1ju3g4IDjx48jOzsbDx8+BADMnz8fp06dQkhICFJSUpCRkYH4+HhO3EBE1E4wJBERkc4zNTXF4MGDsWHDBgwbNgx9+/bFkiVLEBQUhIiICADAunXrkJCQAJVKhQEDBgAA1q9fj44dO8LT0xN+fn7w9fWFm5ubxrGXL1+O27dvo0ePHrC2tgYAuLq64tixY7hx4waGDh2KAQMGYOnSpbC1tdXuCyciIklwdjsiIiIiIqIa2JJERERERERUA0MSERERERFRDQxJRERERERENTAkERERERER1cCQREREREREVANDEhERERERUQ0MSURERERERDUwJBEREREREdXAkERERERERFQDQxIREREREVENDElEREREREQ1/H/jXnCOqTobxAAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 1000x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAIjCAYAAAAwSJuMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfXe8HUX5/rPn3jQCCS1ICxBC7xBE6R2UDoJSVEDEAorYfravYEGKImKlWBBUVKxgQQTpvSR0SAghvSc3N/W2c+b3x7m7Z8r7Ttndc0uY5/NJ7p7daTs75e2TCCEEIiIiIiIiIiIiIiIiIgxU+rsBERERERERERERERERAxWRYYqIiIiIiIiIiIiIiGAQGaaIiIiIiIiIiIiIiAgGkWGKiIiIiIiIiIiIiIhgEBmmiIiIiIiIiIiIiIgIBpFhioiIiIiIiIiIiIiIYBAZpoiIiIiIiIiIiIiICAaRYYqIiIiIiIiIiIiIiGAQGaaIiIiIiIiIiIiIiAgGkWGKiIgYdHjwwQeRJAkefPDB/m7KgECSJPjGN77R383oF/z6179GkiSYPn16n9bbV33erHrWljFz2GGH4bDDDuvvZjhx3nnnYZtttunvZkREROREZJgiIiK8kCSJ1z8fJubKK6/E3//+96a3OSWm03+tra3YYostcN5552HOnDlNrz9CRcrocv/+8Ic/9HcTI/oIS5YswRe/+EXsuOOOGD58ODbccEMce+yx+Ne//tXfTYuIiIgw0NrfDYiIiBgc+M1vfqP8vu2223Dvvfca93feeWdnWVdeeSVOP/10nHLKKWU2kcW3vvUtjBs3Dh0dHXjyySfx61//Go8++ihefvllDB8+vE/aENHAJZdcgne+853G/f333z+4rA996EM488wzMWzYsDKa9rbBmjVr0NraPyTA5MmTceSRR2LRokU4//zzse+++2LZsmX43e9+hxNOOAFf+tKXcPXVV/dL25qFn//856jVav3djIiIiJyIDFNERIQXPvjBDyq/n3zySdx7773G/YGI9773vdh3330BAB/96Eex8cYb45prrsFdd92F97///f3cOjdWrVqFkSNH9nczvODT1oMPPhinn356KfW1tLSgpaWllLLWdtRqNXR1dWH48OH9Jijo7u7G6aefjra2Njz88MN417velT377Gc/i3POOQfXXHMNJkyYgDPOOKNf2uiCEAIdHR0YMWKEd54hQ4Y0sUURERHNRjTJi4iIKA2rVq3C5z//eYwdOxbDhg3DjjvuiGuvvRZCiCxNkiRYtWoVbr311swU67zzzgMAzJgxAxdddBF23HFHjBgxAhtttBHOOOOM0v1TDj74YADAm2++qdx//fXXcfrpp2PDDTfE8OHDse++++Kuu+7Kni9btgwtLS340Y9+lN1bvHgxKpUKNtpoI+U9P/nJT2LTTTfNfj/yyCM444wzsNVWW2HYsGEYO3YsPvvZz2LNmjVKG8477zysu+66ePPNN3HcccdhvfXWwznnnAMA6OzsxGc/+1mMGTMG6623Hk466STMnj3b651Tc7g//vGP+OpXv4pNN90UI0eOxEknnYRZs2YZ6Z966im85z3vwejRo7HOOuvg0EMPxWOPPaak+cY3voEkSfDqq6/i7LPPxgYbbICDDjrIqz0uJEmCT33qU/jd736XmW1NmDABDz/8sJKO8mF69tlnceyxx2LjjTfGiBEjMG7cOHzkIx9R8vmMVSCsz+fMmYOPfOQjeMc73oFhw4Zh1113xa9+9Suv9/Wth/OFSb+FDLkPd911VwwbNgz/+c9/smeyD1Oaf+rUqTjvvPOw/vrrY/To0Tj//POxevVqpdw1a9bgkksuwcYbb5y1dc6cOV5+UX/5y1/w8ssv48tf/rLCLAF15vemm27C+uuvj8svv9xajg2dnZ24/PLLsd1222Vz7f/9v/+Hzs5OJd0tt9yCI444AptssgmGDRuGXXbZBTfccINR3jbbbIMTTjgB99xzD/bdd1+MGDECN910Uzan7rjjDnznO9/BlltuieHDh+PII4/E1KlTlTL07zZ9+nQkSYJrr70WN998M8aPH49hw4bhne98J5555hmjDX/605+wyy67YPjw4dhtt93wt7/9LfpFRUT0IaKGKSIiohQIIXDSSSfhgQcewAUXXIC99toL99xzD774xS9izpw5+MEPfgCgbtr30Y9+FPvttx8+9rGPAQDGjx8PAHjmmWfw+OOP48wzz8SWW26J6dOn44YbbsBhhx2GV199Feuss04pbU2J6w022CC798orr+DAAw/EFltsgS9/+csYOXIk7rjjDpxyyin4y1/+glNPPRXrr78+dtttNzz88MO45JJLAACPPvookiTB0qVL8eqrr2LXXXcFUGeQUsYMqBM8q1evxic/+UlstNFGePrpp/HjH/8Ys2fPxp/+9CelfT09PTj22GNx0EEH4dprr83e+6Mf/Sh++9vf4uyzz8YBBxyA+++/H8cff3zQu3/nO99BkiT40pe+hIULF+L666/HUUcdheeffz6TmN9///1473vfiwkTJuDyyy9HpVLJiMtHHnkE++23n1LmGWecge233x5XXnmlwXBQWLFiBRYvXmzc32ijjRSi/6GHHsIf//hHXHLJJRg2bBh+9rOf4T3veQ+efvpp7LbbbmTZCxcuxDHHHIMxY8bgy1/+MtZff31Mnz4df/3rX7M0vmMV8O/zBQsW4N3vfnfGpIwZMwZ33303LrjgAixfvhyXXnqptU/K+LYU7r//ftxxxx341Kc+hY033thJYL///e/HuHHjcNVVV2HixIn4xS9+gU022QTXXHNNlua8887DHXfcgQ996EN497vfjYceesi7rf/4xz8AAB/+8IfJ56NHj8bJJ5+MW2+9FW+++Wa2NviiVqvhpJNOwqOPPoqPfexj2HnnnfHSSy/hBz/4AaZMmaL4Tt5www3YddddcdJJJ6G1tRX/+Mc/cNFFF6FWq+Hiiy9Wyp08eTLOOussfPzjH8eFF16IHXfcMXt29dVXo1Kp4Atf+ALa29vx3e9+F+eccw6eeuopZ3tvv/12rFixAh//+MeRJAm++93v4rTTTsO0adMyrdS//vUvfOADH8Duu++Oq666Cm1tbbjggguwxRZbBPVNREREAYiIiIiIHLj44ouFvIT8/e9/FwDEFVdcoaQ7/fTTRZIkYurUqdm9kSNHinPPPdcoc/Xq1ca9J554QgAQt912W3bvgQceEADEAw88YG3jLbfcIgCI++67TyxatEjMmjVL/PnPfxZjxowRw4YNE7NmzcrSHnnkkWL33XcXHR0d2b1arSYOOOAAsf322yvv/Y53vCP7/bnPfU4ccsghYpNNNhE33HCDEEKIJUuWiCRJxA9/+EPru1111VUiSRIxY8aM7N65554rAIgvf/nLStrnn39eABAXXXSRcv/ss88WAMTll19u7Yu0z7bYYguxfPny7P4dd9whAGRtrdVqYvvttxfHHnusqNVqSvvHjRsnjj766Oze5ZdfLgCIs846y1q33gbu37x587K06b1nn302uzdjxgwxfPhwceqpp2b30m/81ltvCSGE+Nvf/iYAiGeeeYZth+9YDenzCy64QGy22WZi8eLFStozzzxTjB49mvz+KULqOffcc8XWW29tlJF+CxkARKVSEa+88oqRXi83zf+Rj3xESXfqqaeKjTbaKPv93HPPCQDi0ksvVdKdd955XuNwr732EqNHj7amue666wQAcdddd1nTCSHEoYceKg499NDs929+8xtRqVTEI488oqS78cYbBQDx2GOPZfeob3LssceKbbfdVrm39dZbCwDiP//5j3I/Hc8777yz6OzszO7/8Ic/FADESy+9lN3Tv9tbb70lAIiNNtpILF26NLt/5513CgDiH//4R3Zv9913F1tuuaVYsWJFdu/BBx8UAMixEBERUT6iSV5EREQp+Pe//42WlpZM85Li85//PIQQuPvuu51lyD4B3d3dWLJkCbbbbjusv/76mDhxYu62HXXUURgzZgzGjh2L008/HSNHjsRdd92FLbfcEgCwdOlS3H///Xj/+9+faT8WL16MJUuW4Nhjj8Ubb7yRRdU7+OCDsWDBAkyePBlAXZN0yCGH4OCDD8YjjzwCoK51EkIoGib53VatWoXFixfjgAMOgBACkyZNMtr8yU9+Uvn973//GwCM/nVpLnR8+MMfxnrrrZf9Pv3007HZZptl5T///PN44403cPbZZ2PJkiVZX6xatQpHHnkkHn74YcN5/ROf+ERQGy677DLce++9xr8NN9xQSbf//vtjwoQJ2e+tttoKJ598Mu655x5Uq1Wy7PXXXx8A8M9//hPd3d1kGt+x6tvnQgj85S9/wYknngghRNZnixcvxrHHHov29nbr+C3r21I49NBDscsuu3in17/lwQcfjCVLlmD58uUAkJn0XXTRRUq6T3/6017lr1ixQhl/FNLnK1as8CpTxp/+9CfsvPPO2GmnnZTvcMQRRwAAHnjggSytPCfb29uxePFiHHrooZg2bRra29uVcseNG4djjz2WrPP888/H0KFDs9/pvJ82bZqzvR/4wAcUTbeed+7cuXjppZfw4Q9/GOuuu26W7tBDD8Xuu+/uLD8iIqIcRJO8iIiIUjBjxgxsvvnmBjGURs2bMWOGs4w1a9bgqquuwi233II5c+Yo5l06AROCn/70p9hhhx3Q3t6OX/3qV3j44YeVqGpTp06FEAJf//rX8fWvf50sY+HChdhiiy0yguaRRx7BlltuiUmTJuGKK67AmDFjcO2112bPRo0ahT333DPLP3PmTFx22WW466670NbWppStv1tra2vGzKWYMWMGKpWKYaIkmwb5YPvtt1d+J0mC7bbbLjNTfOONNwAA5557LltGe3u7QuSNGzcuqA277747jjrqqOC2AsAOO+yA1atXY9GiRYqPWIpDDz0U73vf+/DNb34TP/jBD3DYYYfhlFNOwdlnn519c9+x6tvnixYtwrJly3DzzTfj5ptvJt9l4cKF7HuW9W0phH6brbbaSvmdfue2tjaMGjUqa6te7nbbbedV/nrrrUeaY8pIGaVNNtkEALBy5UqsXLkye97S0oIxY8aQed944w289tpr7HP5Ozz22GO4/PLL8cQTTxh+Wu3t7Rg9enT229aPtj5zwZU3HYtU/2633XaFBEkRERH+iAxTRETEgMGnP/1p3HLLLbj00kux//77Y/To0UiSBGeeeWahkLz77bdfFiXvlFNOwUEHHYSzzz4bkydPxrrrrpuV/YUvfIGVIqcEy+abb45x48bh4YcfxjbbbAMhBPbff3+MGTMGn/nMZzBjxgw88sgjOOCAA1Cp1JX41WoVRx99NJYuXYovfelL2GmnnTBy5EjMmTMH5513nvFuw4YNy/L2NdK2fO9738Nee+1FppEl3QCCooU1G0mS4M9//jOefPJJ/OMf/8A999yDj3zkI/j+97+PJ5980mh7GUj77IMf/CDLaO6xxx6l1KUHdkjBadxCvw0XcVB4+Kb5YJdddsHzzz+PmTNnGsxCihdffBEAsO222wIArr32Wnzzm9/Mnm+99dZsIJharYbdd98d1113Hfl87NixAOoBX4488kjstNNOuO666zB27FgMHToU//73v/GDH/zAmJO2fizSZ83u74iIiHIQGaaIiIhSsPXWW+O+++4zTG5ef/317HkKjuj785//jHPPPRff//73s3sdHR1YtmxZae1saWnBVVddhcMPPxw/+clP8OUvfzkjzIYMGeKl+Tj44IPx8MMPY9y4cdhrr72w3nrrYc8998To0aPxn//8BxMnTlQIvJdeeglTpkzBrbfeqji733vvvd7t3nrrrVGr1fDmm28qmofUNNAXqQYphRACU6dOzQj6VMsxatQor75oJvS2AsCUKVOwzjrrsBqEFO9+97vx7ne/G9/5zndw++2345xzzsEf/vAHfPSjH/Ueq759nka2q1arufos5NtusMEG5Hzw0eCWgbStb731lqIB1KPCcTjxxBNx++2347bbbsP//d//Gc+XL1+OO++8E/vss082Lz/84Q8r0RdtzMv48ePxwgsv4Mgjj2TXGaAefKKzsxN33XWXwrjJJnsDAelYpPrXt88jIiKKI/owRURElILjjjsO1WoVP/nJT5T7P/jBD5AkCd773vdm90aOHEkSfS0tLYZk9cc//jErPc+Lww47DPvttx+uv/56dHR0YJNNNsFhhx2Gm266CfPmzTPSL1q0SPl98MEHY/r06fjjH/+YmehVKhUccMABuO6669Dd3a34L6VSZPndhBD44Q9/6N3mtP/kkOYAcP3113uXAdQPHJZ9Q/785z9j3rx5WfkTJkzA+PHjce211ypmUCn0vmgmnnjiCcXkaNasWbjzzjtxzDHHsJL5trY2YwylmrI0rLTvWPXt85aWFrzvfe/LQmbrcPVZyLcdP3482tvbMy0MAMybNw9/+9vfrHWUhVQD+7Of/Uy5/+Mf/9gr//ve9z7suuuuuPrqq/Hss88qz2q1Gj75yU+ira0NX/va17L72267LY466qjs34EHHsiW//73vx9z5szBz3/+c+PZmjVrsGrVKgD0nGxvb8ctt9zi9R59hc033xy77bYbbrvtNmU+PvTQQ3jppZf6sWUREW8vRA1TREREKTjxxBNx+OGH42tf+xqmT5+OPffcE//9739x55134tJLL1X8MyZMmID77rsP1113XWbi9q53vQsnnHACfvOb32D06NHYZZdd8MQTT+C+++7DRhttVHp7v/jFL+KMM87Ar3/9a3ziE5/AT3/6Uxx00EHYfffdceGFF2LbbbfFggUL8MQTT2D27Nl44YUXsrwpMzR58mRceeWV2f1DDjkEd999d3aeSoqddtoJ48ePxxe+8AXMmTMHo0aNwl/+8hcvH4cUe+21F8466yz87Gc/Q3t7Ow444AD873//C5Yyb7jhhjjooINw/vnnY8GCBbj++uux3Xbb4cILLwRQZ/x+8Ytf4L3vfS923XVXnH/++dhiiy0wZ84cPPDAAxg1alQWGjovHnnkEXR0dBj399hjD8V0bbfddsOxxx6rhBUHoGjvdNx666342c9+hlNPPRXjx4/HihUr8POf/xyjRo3CcccdB8B/rIb0+dVXX40HHngA73rXu3DhhRdil112wdKlSzFx4kTcd999WLp0KdvmkHrOPPNMfOlLX8Kpp56KSy65BKtXr8YNN9yAHXbYoU/8WSZMmID3ve99uP7667FkyZIsrPiUKVMA8NrjFEOGDMFf/vIXHHHEEdk43HfffbFs2TLcfvvtmDhxIr761a/itNNOy9W+D33oQ7jjjjvwiU98Ag888AAOPPBAVKtVvP7667jjjjuys5SOOeYYDB06FCeeeCI+/vGPY+XKlfj5z3+OTTbZhBSa9CeuvPJKnHzyyTjwwANx/vnno62tDT/5yU+w2267kUKNiIiIJqCvw/JFRESsHdDDigshxIoVK8RnP/tZsfnmm4shQ4aI7bffXnzve99TwlMLIcTrr78uDjnkEDFixAgBIAsx3tbWJs4//3yx8cYbi3XXXVcce+yx4vXXXxdbb721EoY8NKw4FWK6Wq2K8ePHi/Hjx4uenh4hhBBvvvmm+PCHPyw23XRTMWTIELHFFluIE044Qfz5z3828m+yySYCgFiwYEF279FHHxUAxMEHH2ykf/XVV8VRRx0l1l13XbHxxhuLCy+8ULzwwgsCgLjllluydOeee64YOXIk+T5r1qwRl1xyidhoo43EyJEjxYknnihmzZoVFFb897//vfjKV74iNtlkEzFixAhx/PHHK2HNU0yaNEmcdtppYqONNhLDhg0TW2+9tXj/+98v/ve//2Vp0lDUixYtstatt4H7J78DAHHxxReL3/72t2L77bcXw4YNE3vvvbfxzfWw4hMnThRnnXWW2GqrrcSwYcPEJptsIk444QQlPLkQ/mM1pM8XLFggLr74YjF27FgxZMgQsemmm4ojjzxS3Hzzzc6+Cannv//9r9htt93E0KFDxY477ih++9vfsmHFL774YrI+vVzuW+r9K4QQq1atEhdffLHYcMMNxbrrritOOeUUMXnyZAFAXH311c53FUKIRYsWic9//vNiu+22E0OHDs3GwC9/+Uuv/Cn0sOJCCNHV1SWuueYaseuuu4phw4aJDTbYQEyYMEF885vfFO3t7Vm6u+66S+yxxx5i+PDhYpttthHXXHON+NWvfmW879Zbby2OP/54o+50PP/pT39S7qchw/V5TYUV/973vmeUS33zP/zhD2KnnXYSw4YNE7vttpu46667xPve9z6x0047uTspIiKiMBIhomdhRERExNqOBx98EIcffjj+9Kc/4fTTT+/v5jiRJAkuvvhiw2wuYmDi+eefx957743f/va3OOecc4Lzv/TSSzj44IMxduxYPProo0qEuggae+21F8aMGRPkCxkREZEP0YcpIiIiIiIiwhtr1qwx7l1//fWoVCo45JBDcpW5++67484778Qbb7yBU045BV1dXUWbudagu7sbPT09yr0HH3wQL7zwAg477LD+aVRExNsM0YcpIiIiIiIiwhvf/e538dxzz+Hwww9Ha2sr7r77btx999342Mc+loXtzoNDDz2U9G17u2POnDk46qij8MEPfhCbb745Xn/9ddx4443YdNNNgw+NjoiIyIfIMEVERERERER444ADDsC9996Lb3/721i5ciW22morfOMb31Ai20WUhw022AATJkzAL37xCyxatAgjR47E8ccfj6uvvropAXEiIiJMRB+miIiIiIiIiIiIiIgIBtGHKSIiIiIiIiIiIiIigkFkmCIiIiIiIiIiIiIiIhi8rXyYarUa5s6di/XWW895uF5ERERERERERERExNoLIQRWrFiBzTffHJUKr0d6WzFMc+fOLRTBJyIiIiIiIiIiIiJi7cKsWbOw5ZZbss/fVgzTeuutB6DeKaNGjern1kRERERERERERERE9BeWL1+OsWPHZjwCh7cVw5Sa4Y0aNSoyTBERERERERERERERTledGPQhIiIiIiIiIiIiIiKCQWSYIiIiIiIiIiIiIiIiGESGKSIiIiIiIiIiIiIigkFkmCIiIiIiIiIiIiIiIhhEhikiIiIiIiIiIiIiIoJBZJgiIiIiIiIiIiIiIiIYRIYpIiIiIiIiIiIiIiKCQWSYIiIiIiIiIiIiIiIiGESGKSIiIiIiIiIiIiIigkFkmCIiIiIiIiIiIiIiIhhEhikiIiIiIiIiIiIiIoJBZJgiIiIiIiIiIiIiIiIYRIYpIiIiIiIiIiIiIiKCQWSYIiIiIiIiIiIiIiIiGAwYhunhhx/GiSeeiM033xxJkuDvf/+78lwIgcsuuwybbbYZRowYgaOOOgpvvPFG/zQ2IiIiIiIiIiIiIuJtgQHDMK1atQp77rknfvrTn5LPv/vd7+JHP/oRbrzxRjz11FMYOXIkjj32WHR0dPRxSyMiIiIiIiIiIiIi3i4YMAzTe9/7XlxxxRU49dRTjWdCCFx//fX4v//7P5x88snYY489cNttt2Hu3LmGJioiIiIiBDOXrMacZWtKL7daE3hs6mK8OHtZ4bLeWLACi1Z0GvfbV3fjlbnthctP0ay+eH3+cixd1VV6uT6YsmAFFq80+47CkpWdmLJgRfa7o7uKSTPbUKuJ0tslhMDzs5ZhTVcV3dUaJs5sQ0+1ZqR7bZ7ad/Pa12D64lVBdXX11MuvNuE9Zretxswlq437Hd1VPD9rGYTwq3NNl5p+6sIVWLiiLhDt7An/DguXd+CeV+ajLce4e3PRSixcXq+b67sFveW3r+5my1ne0Y2X59Tn5/z2DkxbtDK4LUtXdeH1+cuN+6/PX26828tz2rG8Q20PN4bnLluDGUvCxpENr85dnvXFqs4evDBrGV6a3Y4Vve1Z3tGN/74yH9MWrSTHhRACL85ehpWdPUbZ89rX4C2PMT9t0UrMb1eF6NWawMSZbejsqeK5GW14ctqSwvNZCIGX56jvln5noP4dHnljETmfm4FZS1dj1tLVWLiiA1MXrjCeN3P+y0j7uqun8d7y2raqswcvzvZfEwYaWvu7AT546623MH/+fBx11FHZvdGjR+Nd73oXnnjiCZx55plkvs7OTnR2NjbK5cvNRSciIuLti1WdPTjkew8AAKZdeRwqlaS0sv/4zCx89W8vAQDu/szB2HmzUbnKmbV0NY7+wcMAgOlXH688O+i792NFRw/+/In9se82GxZqb7P64vX5y/Ge6x8BYLa/2Xhr8Socw/QdhQlX3AcAuP/zh2LbMeviI79+Bo+/uQSXn7gLzj9wXKlt++Mzs/Dlv76EvbdaH+PHrIs/PzcbFx48Dl87fpcszatzl+O4Hz2CoS0VTPnOewEA+191PwDghcuPwegRQ7zq+sKfXsBdL8zFxYePxxeP3am0d+ip1nDQNfUx89q33oMRQ1uyZx/+1dN4+q2l+PbJu+JD+2/jLOtDv3wKz85ow5Wn7o5DdtgYR13X+G4X/XYi/vf6QnzpPTvhk4eN92rb+258HLOWrsE+W62Pv150oPc7LVzRgSO//1BW92fveB7/enEeLjlye3zu6B2ydCf/5DHMX96Bd43bEH/8+P5kWUd+/yEsWtGJ317wLnzwl08BACZ+/WhsOHKod3v2+fa9ANQ15JW57Tj+R4+ikgDTrqqP68emLsY5v3gK7xg1DE99tUErffw3z+GhKYvwteN2xoWHbAugTvAfcHV9HL30jWOw3nC/ccThuRlteN8Nj2PdYa14+ZvH4n03PI7X59cJ9602XAcP/7/D8ZnfT8IDkxdleb59ym740Lu3zn7/99UF+PhvnsO4jUfigS8cppSfjvnnLzsa669D993SVV04QvpuKX5y/1T84L4pWH+dIVjWy9D99Ox9cPwem+V+3wenLML5tzyDLdYfgce+fASOvu4hLFjeids+sh82X38ETvjxowDQlHVDR0d3FQd/9wHl3hNfOQKbjR6R/f7SX17E3ybNwScPG48vvae8+a/junsn46cPvImT9twcPzprbwDAZXe+jN8/PQvnHbANnpy2BK/PX1G4//sLA0bDZMP8+fMBAO94xzuU++94xzuyZxSuuuoqjB49Ovs3duzYprYzIiJicGGhpLWpliz1mt/e0NTMa8+vtZk0axn7bEVHXRr7v9cX5i4/xYLlDclsrcS+eHzqktLKCsUz05fmyjdx5jIAwONv1tv+mydnlNWkDL9/ZhYAYNLMZfjzc7MBAD9/5C0lzWNTFwMAughJ9aylplaHw10vzAUA3PzwtFxt5bC6u5pdt61WtR1Pv1Xv+989NdOrrGdntAEA/vjMTEVaDzTG968ff8vIx2HW0vqcS7+lL95YoGqB/vXiPADAz7W+m987X/S2yki1wne/PC+7Nz2nVueJNxvzKJ1TssLg3y/V61iwXNWmPjSlzqTc+sT07J6cT573efFA7/dJtUMpswQAM3vH6eT5qubjd9qc+kfvGLVpkmYQmswUXL5fPFL/bsskTWCR9RhojIlUG5/2+X9ema9ouOa0la+t19G+xtRwvq719d8mzQEA3PjQm01ty40P1fs6XW8A4PdP19e5Xz8+PWtX2p7BhkHBMOXFV77yFbS3t2f/Zs2a1d9NioiIeJtAZjl6qvkZkL4yX2hWLWUyX6Ho7iOTmP5Anm5NUJ4GFYBi2tRSkkayUklQSeiy+tOSRxSYIfIc4N6tKFxrTDP7Lk/f6O3xGT82oRbbrc3pbhItSaL0RV+sP1SXDKnQpH1Lk8Zeoy1+46BlkHIeg6LZm266KQBgwYIFyv0FCxZkzygMGzYMo0aNUv5FREREUCiboJDLazbTUEbxchlltrY/GaYijKqCJrxCHtJFJkjy9GvZ9JKsqSir7EqSsMRzX4yk0NfwaZM8DvN2k6ue7po/cV62EManOD2JPn59GElbu7n81P1mLUlJopZNaYbLBsWsDmmh+6LJ/JL3/GxlGLqBjkHR6nHjxmHTTTfF//73v+ze8uXL8dRTT2H//Wnb4YiIiIgQFJEgu8orsm/6EMbltL05VEST/YytGMgapjzES1EmvHyGya05SQIrrSR8WX3Bezejip6au58K1xEgHBgILvf6+PXpFttaImcXyrgMbFgB6N+2q6d/erqVUeGEzsVQ+M7PMn2F+xIDJujDypUrMXXq1Oz3W2+9heeffx4bbrghttpqK1x66aW44oorsP3222PcuHH4+te/js033xynnHJK/zU6IiJirUEzibEi/lF9paBRNEwl1tm/Jnnl1N2MN/AhGXRGWP6Vp1/LJtZrHoxAaI2VJGm6JDwPipgzypqGMt6NKqPHoWGS85SuTc+RR2d+fMamLcqbnL0mgFTJQjEJZQvH5DbIJfeJhokyyWM0TAOFT2GaN+AxYBimZ599Focffnj2+3Of+xwA4Nxzz8Wvf/1r/L//9/+watUqfOxjH8OyZctw0EEH4T//+Q+GDx/eX02OiIiIYCFvZNUAcxlbOXyi3MWTRZRJUDQjJLcvytIwDYQwuNWa0Ezywssom04pO1AKUPdlkU3yBkLf2+DTvO6e4gyTqx/CNEzl9qmXFlxLYprkcfmkMW9jmKTRXRMCLb2/qWKbNaQqSaK0V/7uzQLV95zJW7O0m6GIGqaCOOyww6wLQpIk+Na3voVvfetbfdiqiIiItwuaKXUtQrf3FbnYLCKiP63i+uoclGZBJgK7qzWFkcjDiJZtkiM3gdu/Q6usJGrQB/U1+495KsJk9IlJnmM8DDS+Uyf0Wb81xQyVL0/VMAnyflamVwvDUekHDRMFbogNFIap2cEnmoVB4cMUERER0Ww0y0wDKKZl6bsoeY161hqTvJK0W00xyQskGrqqNW/ika8zPI8NzdAeJpoPU7MP2zTqb0KZ3SWb5LnqcKH0KZmjPF3p7jMffDWaarK+C/pQ0Wzy+itKHvd+A4VPaR2kNnmRYYqIiIhAc6PkFfJhKqEtXvU0qaL+NKnqC5OYZkIJUdxT05jaHBqmUlrVgMwMl/WV6xompo4BpiXxhcIwNSnOdWkRIXMgj1DECPrApPP125OZAZnJpjVMxfqKZ0jUsOKdfbD+kAwT834DRcM0UNoRisgwRURERKB8xkTetFzmMo6CykjiLqNZJnn9GVa8P0P0OeBDMshBK8rQMJXtOyATpmV95kqitlOpw7OMZjPpoeWXFXzEBlfQBxkDgfH0DSue14epUS5Vpm8rw1DRwor3V5RO7v0GiutQWWe29TUiwxQRERGBJpiOycRtEZO8PtIxNc8kr7yyQlFe0IdSilHgI2SV29/dI4qHFQ/OYYfKzJTjw9SiHVybh+ltNkMQ2iT5OzbLRDWEKSv9CIUcxel52KAP0rW/D5N0vwkaPZuPkHIOU19omIhvyTNMA4NRGSjtCEVkmCIiIiLQ5LDihXyYSmxIP9TTn1Hy+tNMqQzIBFdXtaoQRwMhrHgztIeJbpKnaLH86tP7pgyNkxp2P7+GqVkMU4iGqWzkeSMjrLiH1sE3rLj8fUiTvCZ9Az3oQ7/5MLHCi4HBqLRGDVNERETEIEbzFEyFiCSfnGUTAKWGFe/Xc5hK0jA1QcvnI/mW29+laZjydGvZ9JJCwJZpkicHfcjxonqOIJ6dIby58n3GhvwdmzUdgsKKN9Ffk02jnynmbZLH55GhmuTJ9+1llgo9rHgfCGyoGgZ60IdokhcRERExiFG+mUqjvMGmYVprTPIGsA+TD2SCq7taK4EJL/vg2sY115pQkyidcK7l8GHS+ybv/OO6OLTre/qCYQp4x7KbkGft1Blh3iRP1s75la2GFacOrm0OjLDifRL0gTDJY9IOFD5loGi6QhEZpoiIiAg0lzEpEnygP3yYykRfh4WWUdY5TE0ZGx40Q6diklcrzISXTTA1wwysUknUM8zyaJi0LHm1nFyu0LnSJyZ5QWHF+9+HSTfV9TEXtY2FEHPVZq31LboPU1+Y5FH3mBccKOcfDfTDqDlEhikiIiICTZC6SgUWO4ephMYE1lNmlf0aVnwgM0weUIM+6Bqm8PJKP4fJI+R3noNr5TEjm5r5fgc9XdnREkO1sTLh3KyhFBb0of9hBH3wObjW8h3VdHK5eVpnBxtUQXuHvtEwEfeYtANFs9OfQrQiiAxTREREBJrhB9RAs89hKt8nobwC+zOseF/4EOSFD+kiE1ydWljxPN+o9KAPikke3Z7QGvUzLVWmzO+dyzPJK2f89JQQJc+VrT+DPvjApfXz0X7a+o6LIEmN+eZq7VUz2v7AQPdh6s89oQgiwxQREfG2hUwQDVwNkztvGW1v1ha2NoQVbwbCw4rX1FD1eTRM4VmsaM45TJpJXp6w4trvvPOPNckLLK47h5bMBkpT0L9BH8rwYfLQMFmq4UzymhH0QQlhLjWqP8KKM0Z5ZMqBEs67PyOnFkFkmCIiIt62kJftAevD1Ed7S61JzGN/muStXWHFawpRmEdKW7ZJTjP8cSqVhNUW+NZmaJhK1uqEaigUk7ymncMUQJyXzTC5nhPvrC+JPmPT1yRPvm520Ad5bW+pqGX31ETTmQOqeG6IDZTodFHDFBERETHIoPrtlG2SV4y4zcrx0TCVLjEur6z+tFcvy+m6GUSuT/Q4uf3dJZjklS1g7skRwc6FOk0n+TDl0TBpnz23SR7zVqH+furBtbma4lyfwqLklbzWOYqr1swazbDi9LM866hLw1TmAqfWlRhFNzvwAyW04N5uYLBL0YcpIiIiYhAikPIJKbkskzylzOZtNM0quj/3xrL8OvrrFVSTPJXozKPdKT3og8+hsoGV6mZN+UzyNA1T2WHFC5TTrDkcxDCVrmGyF0gxOnpz5QhunKmnvw+T9IA6uJYtJRxyW5PE7ItmmwWTQR/KmYpNQ2SYIiIiIgYZmhUZTkeRPbNZ5yOZ9TSnM/rTXj2vSd5ACXtrBn2Q/DRyjKnQM5FcaAbho5tQKe/pWZ3erDLaWZbgolnTwRVWvK+ELdR8r9XMtUv/JvJn5zRJVpM8WRMlMzGO9uaBwtBrASYMDVOT/ZhIDRPzggPFh2kAu5ZaERmmiIiIty3k/bdZ56MAQHUQaDqaVXYz+9WFwR/0odF33T01ZbzmMfMs24VBbkN5QR/4CJO+VehjLmQMykxlWRomNW9z5kMII1Z2C7jvpd6z1yozytyByNagD4wWr9lR8qpVuS7zLZsdqTMkrPhAYZj6c08ogsgwRUREvG0hb5zNjBxVVlhxTnJYBgHQLH+u/oy70ONjMkZA13I0Y3/3oV1sQR/yaO7KDyvubkNwWPFKCSZ5JWmYfHyYgsscALRiMw+upfq6WhPO95bHpsqI05ojow3StZyMGvKl+mjKPkzaGWJA8zVMg9Ekr+xz0foKkWGKiIh426KZJnmK1LWQSZ5EJPfRPlMmQdGvGqae4s72/QlbWPFcREfZGqaSworrGgGOSPYl9PV0pfswFTLJKz4Qi37G5pof0wyT671l7aestVEZIb6MmrJOyiZ55UfJ48KKU+OiX4I+DHCTvBhWPCIiImKQoS+csYGi5zBJ100kdZr1/v3pD9SdU8Okoxn97uNP1GlomBrIQ3iXTTCVxQzrGgFV2JBDw6T9zh1WnLs/6DVM9HWBErMr0iSPiJKnQw55zfoweQd9kLU+9rRFoZuM6mU3PeiD5z0AqAwQij8GfYiIWIvRXa1h4sw2p2NtxOCCvI0/P2tZqZIvzjFYTSMwcWYbnnhzCVu3j9mgjQDo6K5i0sy2rPxpi1ZiwfIOI51cvd4Xqzp78MKsZbmYDl/3LSEEXpy9DNMXr8I9r8xH26ou5fnLc9rRvqY7qG6ZWBEw++JNpi8mzWyzmtIIIfDS7Has6OhGtVb/hi7Tm86eKib21t2+phuvzG0Pan9XTw2TZi7LfldrIqu7s6dq5K3VBCbNbENHd+OZTjsuXN6BNxetdLYjxYLlHZjWm37qwpWY197ouwenLMSUBSsAANMXr1Laya2dPb3rqtx+nakLPYdJCIHnZy1T7skE2stz2rG8w28ccYFQlHYETon0fVZ29uDF2f5zqnCggsD06Z7nQ/DLc5xaxybPXxHU/snzV6B9TTdentPufXAtPNbJRko+wZQFK7B4Zadxf9nqLrwyt92YU7qWVS972epuvDBrGTq66/OfYxbaVnXhnlfmY+EKcz2ql10f12u61LlOMZHc+vLmwlVYtMJ8NxeEEHhh1jKs7upplLVoJRYSa6cPBus5TK393YCIiMGAXz82Hd/592v4xom74LwDx/V3cyJKgrxuf+r2SbjshE585KByvi8XtUnGczPacPqNTwAAfnjmXjh5ry2sbcyDC297Fo+8sRj/d/zOOHmvLXDE9x8CAEy/+ng2z/m/fgaXn7gLzu8d6++74XG8Pn8F20YbfDfHe16Zj0/8dmL2e8+x6+POiw8EADw+dTHO/sVT2HjdoXj2/472rluOkicE8PHfPIeHpizK+uJIpi9+99RMhTnTX+H+1xfiglufxZYbjMCJe26OGx58E6fstTmuP3Nvti2fvn0S/vvqAnzhmB1wy2PT0bbaTbTLxOqvH5+Omx6elv2u1gR++sBUXHfvFLx3t01xwwcnKHl/+9QMXHbnK3jXuA2ze7q0fb8r/wcAeOqrR+Ido4Y72/Ou3vT/uuQgHP+jR5Vnl935CgDg/s8fmo0xAHhpTjtO+9nj+MiB43DZibsoeb53z2Tc9PA0nLDHZtm9oj5M/3ppHj51+yTlXkrQPzxlET78q6fxjlHD8NRXjyLz+yjhimkr6zjlp49h6sKV+OnZ++B46f37AooQhknzrX+8it88OQMfevfW+PYpu3mXTX2vD/7yKXebpGxn/fzJ7PpGaVzn0TCFaFXfWrwKx/zgYQDmmvDuq/6Hjm6K6adNAVOk7zJu45F4a/EqXPf+PXHaPlsa6T5y6zOYNHMZttpwHTz8/w43nv/+6Vn46t9ewoStN8BfPnlAdp8aixf9rr6O/ukT++Od2zTm/5ruKt75nfusaz+Fvz8/B5/94wvYZbNR+PdnDsaC5R3s2umDaJIXEbEWY277GgDAvJwSlYjBgduemN6Ucjmib64koZ/fzkgW5esc+8wjbywGANz2xAy8sXAFm06XjP7myRnZ9evz6/n+NmlOcP2+m+Odz89Vfr8gaQnueWU+AGDxSlXr5IJ+AOZDUxYBAG59YnqmKeHwzxfnSXnpZ7Pb1uCGB98EAPxda7+O/766AADwq8emY8kqv/eQ/ZQ6NQ1WTQjc9FC97rtfnm/k/d2TMwEAT721NLvHmQGm39cXct/okLVgMn712FvGvZQBlMurJAl7WKnP+P/bRHOMpmWk/bRguZ+UnTXJ88rN5O1ty9SF9fF35/Phc6owPEzy0vkvrwN8cXaTPL8m0fnu7Z03gCuseAPyekuaoTHFTJzRxpZPMUuAedYb9/pv9Wpd5zHrfDpvZi5dTT7/wzP1+fyc1kZbd9/32gL+YQD+/NxsAMCr85Yrf31A8asx6ENExFqMdFEapJrkCAamvXnfm+Rl1x7lFPGlcQla9SZSTW7J4QPj6+dikwSX8VUUCXQNaG2pSM/CaugrvyybdqWnJoIJD66LywzMUdRno5JA+eBqAIB87UzD+vtpj+hrNk1gm3QT1f7ww1eEMCVH2Cw7wIYM29DiTPdCgj605Ii739WjmeQ53oM7G25oi50c58q1dXfZ566lCDnfjmpBDCseEfE2wGB1Voyg0cxT2eWSOcmoT5QxPx8m97h0maaYDJNZZh7iznvK9CHhWK0JhThyRbIqc38PeU3belPr9WEKATcGQhlA2zt0F1wj6xqmBkI1FtQr5p7WctWJfFs2w8pfZL1YvxGhNEXL4vP95CxlB33gtDt5y1Dv203esnSKJrJxTQd9oMup5GCYZA2T8GA/ufE8pEU+/8u/D/sjqE6IL7d+RAMweOmoyDBFRHggXZQGq2Qkgob+Ocs0FZDL5sr1qY7xOw+Gi9kxD/ukyug7DVPZh6zq36NVqqDZh0vmha3vqrXw8cp9vlCGwjYMugueO6OXXfMQKmglGHdKOYdJVctIbQrUMGnpbX1ZZkCIZo5wXXtbtAz1gZzGzyRP1TD515VnzZGFbDXh/mac8EzWeIesR1YNU5OEUCFCEaoJkWGKiFiLkU7vyC+tXdA/Z7NCwHKbpBoBzMNsr8AAdO2dOiFHtScPQeHPMOm/i+/2MoOnS6oVDZOTyO+fiW8jLPL4inB9WiYBU3QO6WZNZWiYQgRdcn5e60tf+0Cfw3aGybNMRx1m+lAm1FV/o5CyfZh8tY1c0Aeqg7lS8qw53VpgmTI0TCFnN9m+deJ47l+H+jtMw2TeiwxTRMRajHTBiBqmtQv6ZhJim+1Renbl5cPEmttRJXI18XBph/QyKElxHoLCd3PUSy77zCDdz0Iuvrtas0uv+2HaCyGs0uNqDlE+16VlmvUUZpg0w6YyiKtUExc6otj5VsCkTU9vM8lTGDNLPfr3c7WpLL9IqZAMecYl4GdubPVhYkz3wjRMOUzydB87R3dy47lVik4RoqW1VZckzTmwO0SzTY3vwRpWPDJMEREeSBfjyDCtXdC/ph7xqFDZGoFOIdj/ocDwc5ECZfhBUfB9R71sH0l/CBSTnZpQGMKunlpQHX2xCrgYhTx8Cff1yiSqipo3Ghom2SQvZ5l5wxhzc0JnMkIYzpCm+JRLpXHtU76MmC8ULVATjyq09oesYZLaQPowMSOpqEleXcPkmrf0c5dPJVeu7VsnSJqizQkSLFIa36hhiohYe9HQMPVvOyLKhb4BN8uXhWeYZA2T2ySlCKXu9GHS9uiygj54E5PNMMlj2tFTE0rfd1VrfWZ05/taLilsLuENU3mZgqCiQgcBSxABj2aW6TPho2GiftvLNFRMXvXzEQ4JkzxXG0oW/KlaoHxl+xDRtrIVgYjUHmod4V4/V5Q8hWESzrHAvYPch24T4QZc3VYGw2T6+qrvbAPVpVHDFBGxFiOd3v0RkSaieWjm5wzVMPmZ5OVvsCsal14y1eS+1DCVHvRBuq4KjWEqGKigGXDxHXkIIa5PfRgm37WvDA2TDB8/PxdSAi10+HJzL5RBkaF/NluTvII5EEQ69T2butY56g4tg7ufx4cp5JPLa5CvFkQ/HNuVi+sf+W5pPkxJc5gT3W/LBtIkb+Att16IDFNEhAfSRWGwOitG0Gjm1/QJh1vzMDfyCyvubk94lDyz0DxMjO+c0cvmAjbkhc7Ays1y+jBZymoWXJqafAxTfg2T4kdvIUOLMp8CwttvhQIZ9CGgr3wEFPpYCWESzKAPNh8mj7kPs51BPkwlj+Wyz2FSGCGrhonuq5Cw4nJaXz8dNay4uz95DVPjmvIDzLv2N8ckT31nG+igD4OTY4oMU0SEBxphxfu5IRGlov81TG6CSM5axHRKJ8xcjuJUTfk0TH5t1onwskPi6mZDuobJ1spyNct+L9YMDRPrw+RBv/h+x8KRJjUpfShxRTFzIU7qbChxOY0+VwI+hRn0wT8tlUf3+QpuT8nCiLxHM/hEybOVza2TeQ+u9R/vqmAsrw+TnC9E6GCrL0E5/kJ6HfJ3yLMnDVbBc2SYIiI80PBhGpwTPYJGX5lYclZKqnuGmzor0lqdbDCJLLeUuqnnMGm7kUy8lOKYbnnfruoADPrgaFCZYcW9NEyedZQSaZIRNuQdB+n7eR0S61GHKVzwb1jYOUwebSHqdgZ9KFnDJBeR2yTPI5vvwbXKOUwBS5Y8P3yJej3ogws+5YZomKzyhCRpiklej8Yk2kB1/yDllyLDFBHhg3RTivzS2oVmfk4fKblXWHElPZfG/SY64aDn0DexsoI+yK9uZ1CbdMpiWrf2W37fuobJZu5THryDPjioilySYzasuDury8wpRfGw4up4DuW/ip77IphrNY1buMCWH6JhUvymGM0EcdvVHJs/Vh6UEfTBJ1eeoA+0SR5dhsIweX5U3TzNaSLH+TAp61F+BtyorxkmeTU7kyj3OSVkixqmiIi1GFHDtHai70zy6DSqQ7tPmvwNNhgmXaOkE4FEGX15cG3ZoWcNvxOp/GZFRyyCZhBCXNRAH+LQ20Sp4Hezfae8JZfhV2PTyoSsI2H+TvnSkUEfmigeUpiVvN+fZSRkZsyvEXIbyCh5TF/Ia5Dve6gBENy9zJUr3w0K+mB5lqA5zIkr6IPc53L3D22psxyRYYqIWIuRTu9BOs8jGDSTiJDBbZLKbYZgUNPQ5XsFfdBk2Xk0TEV9mGzt1Msu+8vY3rfbYZLXH3ISly+IzOT4MrLc2VZlCoK6eqqF8us+OVVl/ORrZ2aS52ORJzNGHn41tnSu8utt8ju41lZesaAPJXx75nvlLIKF1SRPCbLTuB+kYZImkq8vlmGS53h/rlw5W9DBtZb6kqRJYcWld3YFB5K7f2hrZJgiItZ6RA3TWopmapgUsyKOGQrVMOWHTlS7fJjIsOI5VEy+B48ahE25dJxVCu9ysu6P4wRcEm65X1t1BzAGvA+TO69vF3QWjpKna2fD+p56xbxBHzgzRB9/P5/yAVfQB7pgPYKkay7X65HzgLzOC/mdcgd94IRB0rWtbE4AEBL0QSnDO0qevL55aJjYwSKtR0FhxflnCZKm0Cw9jjVd7nN5rA5pqV/Hc5giItZipMvgYD2hOoJGU7+mB9HnM54UkyQPooKDESXPIZWmNto8Xka+0mydmC+LUWyUoTOEKoES5ofS/HXAxSjIz30P3KwkNNHsNQ4935ljPn2Vk3WNSQO+DHdWDzFK84cVZ9Lo5QeMB6MpngfXsnOfuO96XR/fyRDkYTSMMlj1uV/ZLMMUoGGS4UvUy+Nd146S5eYN+sCktRWXJPkZWBtkHyZy7Cs+TI3rIb0meYOVjmrt7wZERAwKRA3TWomm+jBJ10UOrvWKpOcB04dJr0cXU5tlFDbJs6RzBaXIA2Ghfvst6INnOhfBJvdrqyfDxGlJQqPk2dKzDJOzhrQe/RymwN4vM+iDh4O+nsdZvpbYFrnPZ32ikrgYemH5VRSln8MEv7Hgw1zSqeV84eNOZR7cfc8pj+RsIVpa19wtJ6y4Cv2wXh0Jc52Z5A1SOioyTBERHkin9yAVjEQw6CsfJq9zmJi2+PoAueAiWH2IwHxBH/zSGT5MZUi+mWtA7dfCZwc1AUEaphZfhonWMPkQh1zYZh2cOZFvSHobI593TKT0Xejw5QM9CDadCyFhxX2WJ4pAp75P3rUu1O8rd1hxjzQ2QpsTAFDjzkdT780wycxDAZM8+W7IemQVQqE5zIke6MKol4mSlzFMAzDIjg+iSV5EhAfSRaE/fBkimoemapg8JPg+GiYvEyGP9zAPrtXbIqy/qTJ84HuOjunCVIJk1NK/yjlMPWEmeX2BEIbJ14dJP/CUuubgq2Hq7PYj9ny1BWWYFIUcfuuzxvv4DPmW7xtWnE9jrguufCHf3mfGy+Mh5Ht5mRvLzJjnmJHHFiXk8alLXbf4ehUBgXD3Jx/0QV2PfNEXQR906Fo1HbLwS+7/LEreQFtsPREZpogID0QN09qJZppY+hB9ii8BU44qYc/fXhdDYhKBZhnFTfLsm7uaL7gqA7ZzbGQaurtas5OY/TDvwximHCZ5SlQxD8JcOU+LT8dqmLTfnBRdCOFNJPvUAzjCUev1K21xp7Gl88lrTevDyNb85i7XClfSUCFJCIHe48GUyLd9gz7I11Tr+eiH9JywvVK3FjHOqWHyCCseomHqk3OYtCJc3y1hfg2JYcUjItZ+pGtC9GFau9BXX5MPK+6WsHJpQpknlw8TFxRBrqfoOUy2JhvMWKAGhIJNki5LOesapgAtQb7mBMG11shmMa2ESR5FunEaJq8oeTIxacngG/SBY6yE9D9QDnHVCCvuY18mX7qJeC2Luy3a+9ia5FOugDASusZO2RomuYiwABj+jJu7bJrZCTHJkyEPT1u9uj+P24fJPaaoOeTrTycjSZLmnMPUY9cwyX2uBn1IevMMTjoqMkwRER5Ip/dglYxEMCA+Z1lml4p5h49JHuvD5C7fBzrhYJrg0eUr5i05OCbfKeOK4pcHgrkG1Pfqqtpr649Z7zJtWtPdOO/IV8PEhxX30DB5Mlicw7oe3IA7a6ZOdDZ+l2G+Exb0wc3g2yIuuqA3xR70Iey72O4pzwPqCPVhCtHm+Zq9UeltbVDOYaLSsoU0Lp2R4Hqh+POwqRrwGc9dAT4+rqHdDOZEOXvKIZihgj40I3JfXyAyTBERHmj4MPVzQyJKBbXYd5fkkCqX4hVWnNMwMXb+anJ3m13HHHEaJ3lzy2GR5+WnQJWtdlleFZN0qVXeKR2w6vJhMoi5AkPEtw9dpmhruhrtp8KKU4S4EvRBJjADw4rbo+QxB9d6a5jUWRlskkd0cBDD5J6SOUzg+DKLa5jCGTifd0zhZ5InjY2AvlYPJeZKbjzw9XvLG1ZcHXf0tQ6ZsdKZfQq8hkkS4JTkw1Svz7sovg5tlHTph/XqYMKKD21tyfIMRn/wQcMwVatVfP3rX8e4ceMwYsQIjB8/Ht/+9rcHZadHDD5Ek7y1E9TnLCtimk+I2tCDa4uMv9Cw4tSYL+rDZIN5sG4ZGiaeIJODE/RllDybRkGGi8jvkDRMvt+F92Fy5/XVSvAaJhXdPX7fN1QaTfswlTGWGjDmSgAHbQR9sHw6Ze4zggvd56t+j6rXu4lq+zzS+PoZ6ah6aGdU7RVfNufrGeKDxWk27RomP01UVm7JPkwuIVRzTPLsfcP1+FDJdHgwWusMmrDi11xzDW644Qbceuut2HXXXfHss8/i/PPPx+jRo3HJJZf0d/Mi1nJkB9dGhmmtAvU5u3pqGDms3Hr8zmHySCPdD/Zh0rcxg8iidVauiFMuqAeP8m3W21fGTNN9NVoqDZt+mbDv6qlZK+yPWe8y3ZEZJt/2VRRCu3EdapJnaxunOTLT0ZooXUofuuZS9HGIWZ/wmJPG7RANk5HWT8Wkzn31vtEcR3t8zA6z1oW5fQX1tY+GiUtvtEEZM43rvEEf5HXL1yTPVrazLOn2QAv6YAibHBomxYeJCPoA1L/loGFAejFoNEyPP/44Tj75ZBx//PHYZpttcPrpp+OYY47B008/3d9Ni3gboCFtN59Nnr8CS1d1KfdemduO9jXd2e9ZS1dj1tLVzWyigVpNYNLMNoWwktHRXcWkmW1WE4rJ81dgycrOZjWRxMtz1L4Lxcwlq3HfqwuwqrMHr85djmWru9i01Jsv0t63s6eKByYvxOT5K7C8oxsvz2n3aocukZ7f3oG3Fq9S0ujheCfObDM2SznNrKWrcW/vu70+f0WjLu1Fqr1lTV24MrtnxlSgGSS53mWru/DK3OWNMizEXXe1hokz29CjtV9nWnRMXbgCi1Z0EhomtiorVnf14IVZy+qSd+n+zKWrFeJBnhdPTFtiJTxWd1XRvrrba07d//oCTFu0Em2ruvDq3OVG+vnLO5zvMGvpasxcYl8v5rY3ypm5pLG+vDZvOdpWdZGEmxDAxJlt6Oypssy3EALPz1qGx6cuZpldX18SGUkCrOrswYuz69+mi9EwdVdrmDSzLfv93Iw25Xnbqi5MW7QS/3ttgWKWmI55ypwpXeNCiX+9hSuY+Z92hxD18fGfl+dhyoIVRrp6Wn8Nk84kpfuI0BgNnbGrCYGVnT14aTa9VqkMl32ipXNeCIGXZrdjRYe5Nsv1vzrXb30ENHNdD65TNe8VeHH2Mqzs7KmPeWmdn7NsDab3rrWk9tVjbfGNktejMA+mtk+Hj4ZJHsOvz19u0BfyPmKr7sVZ7VjV1UM+89n/KXRXa3hh1rLs9+y2NcZaVUkaa6G83qU+TIDdzHGgYtAweAcccABuvvlmTJkyBTvssANeeOEFPProo7juuuvYPJ2dnejsbBA/y5cvZ9NGRNggpA1RxpQFK3Ds9Q8DAKZffTwA4Om3luL9Nz2B9dcZgucvOwadPVUc/N0HAACvf/s9GD6kpU/afNsT0/GNf7yKd2+7If7wsf2N5xfc+gwem7oEl52wCz5y0Djj+dSFK413azaeeHMJzvr5k9ho5FA89/Wjg/N39dRw1HUPoataw/abrIs3Fq7EOkNb8Oq33kOmpyTIn7vjefzz0wdnv3/6wJv40f/eANDQUPzmgv1w8PZj7I2RJfI1gXdf9T8AwKSvH40NRg7trb+R5pbHpuOWx6bj9Alb4toz9pTa2Ejz4V/VBUTpu1FpAODH97+B6+97Q7nnOhhW3ziFAN591f/QIZmu2TRMl935Mn7/9Cycf+A2uPzEXRvlWswO5yxbg6Ouq4+xTx+xnVGmEAJJkgQxT2fe/CRenN2O752+h/J9P/jLp5R08nvNXLoaj7252Frugdfcj88dvQO+9c9X2TRX3/06fv34dOP+4Ts6xooEeb3wRVe1hoO/+wD+fvGBOOWnj2HEkBaM3XCEke6/ry7Af19dgON23xTfPb0xxmTJ/ctzluOUnz4GAPju6Xvg/fuOBeBvGsUhQYKTf/oYpi5ciZ+dsw+2WN9sHwDc8exs5feUBSuV33t/+97s+tz9t8Y3T94NAHDDg1Nx7X+nkGWGmInpzIiMY37wMOa1d+CLx+6o5ukd2S/MbsepP3scAO1XBoSFy5fr75DGxdeO21mr29TOHv+jRzCDYbqV9/LUMD04ZRHOv+UZbLH+CDz25SPY9L9/epa9QAl+Pkx0+rtfno+LfjeRzHPzw9Nw88PT8MLlx9A+TEx7FNNCx+GsKWQNU024eTGfuZMyTK/NW473/vARtFYSjB+zbvb88GsfxPOXHY311xlqFfT855X5+M8r88lnF972LB55YzG+dtzOuPCQbZ1tSnGrtr69/6YnAACvfuvY7F4lSXDNf17HLY+paYdKGqa671ff0EJlYdBomL785S/jzDPPxE477YQhQ4Zg7733xqWXXopzzjmHzXPVVVdh9OjR2b+xY8f2YYsj1iY0TPLU+09NW2KkvffV+gK1bHVdEreyoyHhWdFBS3uagd88OQMA8OS0peTzx6bW2/7b3nQ6nplO52sm/vfaAgDAklW8VsiGNV3VzCQoZShWdzFO6KA3tw7t4M25y9Zk1+lmd/fL9CbEQR4305esku6bLfjzcyrBSKWRmSUKNz88zbhnidpN/gbMvrCJw1NCSd8kOU0GALw0e1l2Tb1nHi3Ti71S9T89N9tKvOiHmcrfmcLKzh52rqSY106X8cDkRdZ8MopoV9O1Z0131aoN/PdL85VvIY/PudI7zJe0WCrDFN62JEGm8bzz+TmlRMqaJ7Xvl4++xabTtZ42cHrXRKrv7pfnqal6k80j1goACnOoa1J8D65dLo2LFZ09ciJSO6wzS5z/musrpNn+/WL9necQ84Qr49Ad7IKC0CEgT9k7n5/jTD932RrGn8ut5fHVMMnBYwQKaJgIn6nHptaFONRcmbV0TW8+e30cHnmjXvZtT053ppWrmN1Gr3GLVzT27CQB5i0zNemtLYNbwzRoGKY77rgDv/vd73D77bdj4sSJuPXWW3Httdfi1ltvZfN85StfQXt7e/Zv1ix/yUdEhIx0UdIXuzxhlvsKoQcODgTIC2oehIai9tlM89qA+4QJ9/HPyFM96YhraJh0Mx6Pgkv24VP7gqiuQNmu0a8TIT4EPHXekYz+dnFsCXFwl651U6fsvqIdpO/7Qm6Z7EtWBHIJtrUjDdPsG3AjK1+qQO0vNV12ZhlTzp8/uT8+QGjqAIdJHlO/fuC1XibFEOQdm6lmmtOYAfTcPXXvLXDrR/bDxy3aC27cyeD6wNYeOS9pmsqmbzzx9WGSfSG5+mRwflgqs2a2gUOe4DhynpA1A7AcOK28QUL2g3z8QRnHBfQ1Bo1J3he/+MVMywQAu+++O2bMmIGrrroK5557Lpln2LBhGDasZO/tiLcl0qltRDgiNmDbOlDG2TK+KMou9cd6NtRBkLoQ3mb3ZkptWj71sCYmyqbsLsfHxtxnXCX1hFIevl18PeHgCB7AfahtTQi0FBjJtlfSN2yffm6t2Bn6UqZMH8071Ume/g41hWhs3C/K7CQoiWGSirCdRRUWplm6ZtJwESVZ/y0kSIdO3c9FKM/YtnDt0q5FQreHLZcpi0JKT4cK4NLkdkZLZfwo6P51jfI9GCZG4xNq/mdbG/TgK67+5MpSNLi9P6xBLhirFx/IxYZGPuXmklxmktD9UEkazwZjlLxBo2FavXo1Ktpm1dLSgtpg1OtFDDqkk1+f49ReoC8D/aXpKVptXzJ3KYpqmEIl3z6baV5JGJfNJzKemj6PBNG8lyQ8AcblKaUtlohcwtEXzWTadcLFR8M0pNXBMPWz1FT5vq75qzBAjWtO6+cTJt8GJXJWUlbEUUlSbiHMw8LG25l4233bO6XvXxMmccm2hCnP0PwJ/TlfplGHK+hDbwNtCh2qnSkj6KuZCh0OPoS+MLumft+j/Krmm8RB1TC5S+Y1TCZjWLWcCdhg0gsKLwLpBG4uKWdfge7jJEkyjdZgZJgGjYbpxBNPxHe+8x1stdVW2HXXXTFp0iRcd911+MhHPtLfTYt4WyCV5qiTnFq0B4qmOdT8ZCDAZfLkQmjXk5upl+Yh/0f2NfUISaOD3KygS8+19/TRMBUd2wZhZ5cwp21sxpzS9/0ejwOLXRrQMtrZV8sHZ2LH3lcYrBwMk3RdScrRMMnw0TB5RcmzzJEUrIaJKTNJGu9fE8IgLn3aotavpXFEwLSV66th8jGBk5EmtzE23LjjoGpG/NpBC8XcKibfc5gUDZNwMzA2Jiirr2a2gYtqmkvDJF0Ha5g8GKaKJVBPpZIANRFN8pqJH//4x/j617+Oiy66CAsXLsTmm2+Oj3/847jsssv6u2kRbwNwGiY6Ao9lIejDNaKwhqkf1rOhRX2YAttMBhrQflOaBy+TPOZjc872HLwOFTU0N4TEN9HsynNIpfMMCRsBypl/Uc+D63U817+9l4bJMT5L0ZkUeecQzQKjPeI1TI3rXMSOtB5VSjpQU25GWRomuVW+mqTMh4nJkKBBmAqRj8hVNV8qMS80jslleJMn6IONsKbNr9waJmrc9dLTZPvkdvsT+u41niq/5inYkgPj1Bkme2tYDZMy74TRBjO9cLbNlRfw9QVrpOeOA5CnWKLbf0v3Uw1TaDjzgYBBwzCtt956uP7663H99df3d1Mi3oZIp7a+Ifos2oNPz9N/sEmJfRBqnkAlN4ihvEEfPKTDflqdPBuiec/UMGl5PMj9sg9uVrUZxPMi1bkIF61CPWoeBZfJaH8fbC33p0tjJj/lTO/U4AKN64GiYZJLsDGzlFQ8DVlvLZ/rF6Yd7OdPGgIsoWuYPBkRiqBO7+v1+giCfNEwybP5WtHEMRBuktfaUlH8ZLgw794medSLM53BCQVs01rWMNWZVzs43p2aj83SwsilhroMcMIHeT7re03jfpKNh8FokjdofJgiIvoTnDSH8gEfhJrmAQPZRyQXo1BCer1aatMq8o1dgQ7M9OF1UFnqGia6Hb5tyUN12ST2Mo9CR7Nq3mTSNUo+Soi+McnLX4hcP2c600hLS9BthHmKwkEfkqR0YtBGmJOH2XoQzbyWWP8trOkTJA0NE/wZa87/z6g/cMxwjCCFhobJr7wsn1d0PWV1AGAXmsmpfWRrgukZn++aK0oe3GsAWxbxTWxa7/RJUR9Xv35sgAv6oAsBqFZVksZ4GIwmeZFhiojwQDq1jbDiXpF6+geDMaz4EIkD7faw9dYRugb7BBrIH1achq9tfEgao27SJI+X1nJ5jHKDW6Jm0vO7mMdiJnn2zGbQBw8NU19EyTPqzBcq3BUZjmOeufNnbMy2D4ygD6WY5DXKsIcV7/VhYvIqZXp8RX1NSH/auiV9/boPk3mfbAvDvOqaGR8Nk1Iuc00hbZ/tCA2aYar/tYWtVgQmvWX4mvD5apjyQmWY/PL41MeewyRrcL1M8vzrtCHUh8lHwwTwe1DUMEVErOXgFieZCODPkeifhaFwWPFSWhEGOehDWGSrOpqhkchrZsUKEqUHPpuG11kcjt+AGbnIZF6c1RQey3p+l6S7cb5N+cxzc85hKn/8hTjbywe0uuYPL03n7oeNWx0yXVZJ/PrbBbkEG2NJ9YWXholJY64Jwpq+HvShESVPDfrgp1HhAgCQmllH1yrj1JE23eOsjB1RSMWD0aIEJvp3VNYsT0ZTzhsSfVPp71r4eBesTosul0OaRJ4j/Fj0apoC1RcsLC+nuZbbqkdkbdxvaFojwxQRsZYic8LUTfKkxSZdAGwHgvblEjEIFUyKlDjk7JQUoWswtQkZwQAITZcfAc8x0Pb6bel9wUl8Of8UwFfbFd4WpV3Gb7sUN73VDJmD/r4+0atcQUlKMcnTyggJhCLPGZeGVvVJkuunx0hRkzzdh6kMfy+5iFCTPNYsK7Be+Tf3TvWgD420wnCQp+FzPpYQds0tBVVwYk+bNi/0gNMs6IPv+6Umedp453g7r3OYBGOS5yHMqlnWSr4+9xrAapgI4ZE98ARNk/i2M4VfPzau/Uzy+L0i/byRYYqIWMthnsPUWGz8zldoSrNIDEaGSaZ5cmmYAjvYRzpbtiN/aNCHsurXQ71yRJ8NuZg3C0HGmRwVqa9Rrx36hl2KhqkEkYjeDyGh9mV/ihCBA+/DJKcKl7jLkAmzSqVvw4qnzKO8JoaOdzm54f9HpJGRJEmmaTGCPnjWbzOVtAnpqLJCkJnkBUbJyxgtC8NPBn3wNMnzkSMIpm0+zDJ3Npm1PoZBk8HTCXJ9wkjbLP6iLA2TPJ/re43Z4CRpmDX3d4CcPIgMU0SEBzgJorzWpPbYxjKgbG59t0gUPoepHxY0RZKVi2Eqnl7/RhRhV4S54PxFOJR1PhJ3+nqjDI96CprGmcwofR3SJr5ee16dcPHpZ2dY8RKmjF5Gi8NvSobMJDnnj1SPPMa5c5gUU72CL5qgHAmzXILVh4kM+sBJ+um+sOXNfjOvlIA/h8kOmknVtR9mcfbyQ7Tc6T5iDfpA5cs0TJ4meb1/dU2hYK59fW+otvEapsa1HDXTP0iHpfC0LFbDJH3f9BwmadiaPkL28myQm9gMHyauzARJFiirDJPcvkZkmCIiPMAdoJl4aZgaGIRrRJ9C7p48JnllMEz6N8oRe6JeNnNfNbNwl+N3PpI7kR65yNAwuavJxRDYDqdU/WKo0M/h9Xm3S+tYH42mi2Eq28ysXmeAhinneUOcDxN3DlMeIq05JnmNMijNRGrOSIcV9ym/cZ0w9+XftndK9wohdH8kv/o5zR+Vn/o8Kg0rM1yWBkj5rKZbRBmNc5gs2QjNpl3DZJZvQ91EjhB4OXOGHzBeT+cum2MUVDpB9LahMW4NhonIlwfBDBN7DlPjPhtWPBnc5zBFhikiwgPp5NcXLVka1vBhovPWr/tukRiMJnly/+SKkhe4ffhIH8kDVYNq0coLHA9ljZlEK8vGvJTZFsH+UMujaP2yiAIKZlhxdy0u5qUUDZP2tkEmed0BDJMiTee1F1S78miYmhH0QQZFaKd9lzLDMtHPa5ika6YuvekOBVM96EMWJc9fw0MR0YDpw2Tkc3StzzumSAnqvOcw2fKpjF/9h6FhYsag3/7m/sZc+qrnN1LLpbR9JlzMQoMBb9zj1qdcPkxy0AdP08YUrEmeYaZKjAk0goBEH6aIiLUUnASRDPoAfuHoSys3bzKLSdjfy1nfaJhIlkn5RRF2ftJp9wZXlobJBy4Nk58mKxw24owjCBt587+8K6cZVtxdl+vg2jI+ld6MISEmeUEaJpoBUjUZ9P0c1rKQF5okSUqXMFOM5dDec93ooA801PXaj0jNojkyhdbPYWqUb9O6Km1hvoVKnJpEelDQB885ZtcUmffS97Ux/LWauTjYtLhyPT5BKITgvombkbIHXGDqg5/QznW2HxVWXF+fKKbKF4VM8ph9WQ6aI8CNiST7bvEcpoiItRTpImhbnHw0TH0K34WQaV9/tFuuM48PU6i0jUqtf+O8hB0vnZYIn5LCivtQ6rqZhMG8eDGB7jRqej9JKkC/ZxGa2tVWfcP20zC5fJiKT5oiQR+6eqreaTnikNP6ucwnXVA1TOUEfVAIaIKxTB3Mu6lzmDxeQTDX3DrDrj9JgzAVgjd1NOunhSs6I+ujLc47NNNutZ7DRNxLPDRTlGmiqWGir23tkcsMCbsu35YZFO+xyjJoKlzlpd+vx8K0ZfO0oNY/lGFKzX716J092hrCmuRVUpO8oGoHBCLDFBHhgcbaREt5AEnKqOeFmaYvMAgt8pTNLZeGqYQM+jcmpYEeNXGfOjToQ1kHytb3RV567lNPMEPqEB7wUvPe9E3Uc+aJkuei0UoxydPKyBv0wVmPdM351JQZVlxGJcnvGyhDHh+0D1NqkicMwYeXSZ6nMMnLJE+ql2NQ7W2R1o2a+r2MIhx9G2KS1wj64Be9LsvXm9x+EK1ZhnkOE91Cr3OYGAaGe2dOo+c73GvCb8VimR+tvh4PH6Z8GqZGJi9+SUqfCh+Gtarrkh7Ag+uJdDz4HBQ+0BAZpogIDzQWJ3rRAmznK9BER7MxOH2YGtf5wopz9/0lwvqdsk2HqNPtrek90vgwOy4Nkxfz5m6KNb0pCW9ck+cgNXG+GOcweWzgri4qo7n6twwK+hDCMDGaTh9TpDxTQgn6UElyaams5RPdNEQi6rq1+nyIZi4VHyWPIe6hBn3wZVhUAp67NklT1/cJ2ZMavkhS+QzxLqNxDpNflLy0SJvZq9xuH81IjdF0+KyXVU+mVi3Xb03nzOv0+rqkAAtslLyCREXIwdhyvcOGtCj39UN2SQ2TVF8MKx4RsbYiW5y02wTRYZOq9+USUZRf6ssAFY06G9d5NExcD/uYYHBpSc2DDxPD3G9KWHF3c+pnY8h5LOOUrSdwSNg0svpzSsNUyCTP8dzQMHmoPFwpypgzegm2qGE6gjRMMrPqESUv1JTUhiTJ6welQuluoklDLAdhsxomrnzLfaH9pdAI+iC083X4XOrhwvRcqROnOgNj/z5udqeBdPTJDIqL4Jfz2QhyKtqfVSMlXftMizoz6RaKNe4zQgTP4S5A12e0y8FwpmNCNktnBbJ+TWPzhJrkpdA1TLIAhOuFJEmy+sqY/32NyDBFRHig4cOkSxYb140FjV/CBqNUpS8h904eDRO3sfmY33BpyXOYPNrCEc+c2QeH0gJDaOcw+Rx2qSOUITAEDEZ5Ulqyn2khhBccmfTv6sMEuN6/DGWk6cPkv02HaJhkqOcw0W0papKn+zCVHYKdKk9mNrurwktYkSdyZfqb00bLhKIA369mPY3rkCh5bg0TfU2B8kXy+XaNsOKe5zD1XusaVa6tvkEfQsALEfwK8p0WTh+m3mksB1jgotDlipInZfFhPKkahg3RfJiq2pikmOikMSdjlLyIiLUUmfrbmOS01I/Kq183G9ZzMwYoZEKkzINr+TOyiPvarbKZ3NDT28sKPZ4gUd7XHMk+9TiTBJUp923eaIR83XakG3bDpt5dmWuTL2Ok6JZqISZ5eTVMbChxQgMA5CN25CyVpHyCiSqukiTZ9+3qqTk1UjqU5DIxbRCv9iITNAjTukM8Pw/ZtnDfi5hl9JqVr78bGqbGPc6fRsmXmvJZfZjMfrD57ClvWsgkjyu/AV8toFGuR1Jj/BjCq/pvq4bJNehsULoxnE5IEjN6p2GSRzSsfnBtZJgiItZqpFObO38DaDBTprlG4C5dEgJNkw30x3Im15kv6IObaXXd12+VT9jRxKlPeg4+LUwMDZNWhhcBGdYXNhM8gDf5st3LW7eO9LuGSDydoXBLMclTywgJ+tAZEiVPqoeLxsVd5wkJrDiaIynlHCafs6HSaF7d1ZqmPePKlK6ZNJxpNpe+fg5TIzqYGiWP7weOSapqfpBGEa5hahGcGCAYHxfBDzTe1+rDJC/xvUUYQR+UPmhc++xv1Rq9YnHvzAbW8B6qfiuki+FMv3W3h0le4XOYctAJQ1sqBr+qz2equfLBtTGseETEWorM5MJmksdsmv2mYRqMcfKk/skVVpzJ4uOvwKXNez6QD7HVl2HF9WT5Dq71q4dLbxMmkKaPwkxXFtL5mhLUPgS8KwBIGby13kdD+sCHiSMOq8z9PIFQ5LIqSTnBVNS1lS4v1dB1ahomdkx5lMn55nFzKEGSEZjGOUyWbuB9auwcknMuB+xJqWmdrIkgA7QY+ep/bSZ5anRGQabnzjH08b3hND6hQR98hWZ15jV8TdezpI9t81loaUOQqx8lDG2pGPl6pP1a16KmUII+RA1TRMTaiXRu2wg+zmk8T3jStyvkvuIOyLOBI4LYfieZIfV3Xkk4r+0KGw8+TIq/yQhPqPnV41VNo0wHo8MR52XAVXe6v6eR1HyitrnGQhmMXZFzmHL7MDFjUn1daa0ryDAlSVKKhFkugfp8Ao3Da7urNa+12Ef74vLNo5AKsGoC3pEyVU2UfF+dxxzBzcEmONFBmuQxDKOaz+3DRK1HdhPURnqf6G5c0Acf5DHJ40wAjXTaWOWEVz5Cw6LTKE/QhyGtpoZJ94OkmpUkiCZ5ERFrOxrSHH6jaJzDpKVRrvtwkRjcCiZ05ziohdfqMMwLeU+9mzfoA4fQcLVlaX50wsoksjzqKWySp9XpcKzObjVh2qR1twb4MLmkomVokPUyQoI+hDAyckrFxAv0+CyqYZLzt1SS8sP1O0zyjCh5XNQxyxzh6uLMsVMkiezDZPogcVCFKzSzRx/M6j9OXWM2Scx0ZpQ3sxAfDRPFEFp9mKT0PnR+jWAm9XK4+5x21QaOUdDhEhakj60apt40+UzyGsjj6kxqmHwiJyZJDPoQEeGLtxavwrz2Nf3dDAWrOnvwwqxl2SZTrQlMnNmmLlaMSZ5KdPhtwD3VGibObMsVBS4Eoevgm4tWYuHyjuw3teAtWN6BaYtWBpXb3fu+k+evwMIVjfIXrujA1IUrlLRynXlM8jgIpiifzdRF2LWt6sJr85Yr9xat6MQbC+h+Cg1X62eR50702rzlaFvdxebx2b5emt2OFR3dyr2O7iomzWxT7qXfWS9TQOD5WcuwuqsHgEo4UMR+VdTTr+lu+Oa8Onc5Js5sQ4d077V5y7FMejfATeSkdaehp8vwYZq7rPjapq8xISZ5IdD9NWo1gaemLcEzby3N7r8+fwWWrOyE6P0OKfJohxTtcbWGZ2e0WVJ7QhFYEY+FyDSIUxasUN7Br3j3mi43wzYPsyh5Qo/W10jTvqYb/31lPt5avArPz1qmPHtOmmPyt6vvqY11VS8zBDOXrMZ9ry7Aqs4e5f4kbb75aJhSTYJNg/HcjLbMlCvtO5sPk1yNj2ZkycpOTJ6/wrj/2rzlmL54FV6Z257de3mOurbliZJHafso6GvNK3PV/WPm0tV4c9FKzG7j1xMBgTcWrMCilZ1ebVPb2ag/7cdpi1ZiwfIOLouCIa2J4fv07PTGuiEEv59UBrEPU2t/NyDi7YNlq7tw+LUPAgCmX318/zZGwjfuegV/em42br/wXThg/Mb4wb1T8JMHpuKkPTfHj87aGwBvL0xJAM11QE1zzX9ex88feQsf2Hcsrjl9j5LfJgcSYOHyDhz5/YcANL4NtZy968r/AQCe+7+jsNG6w7yK/+pfX8Kfnpud/U7L3+879bIe/dLh2HKDdXrrbNSax7yIP2iTI3wsWo1eUAu7fGu/K+9Dd1XgH586CLtvORoA8M7v3Me2MXQjLiv0+KvzluOb/3g1+21qf9yFvLFwJd77w0fw6JeOyO6dd8vTeHLaUiXdft/5H6ZffbzR9j89Oxs/eWAq9t5qffztogPZA1NT3P7UDPz8kbeUe8f96BEAwDG7vAM3f3hfvDynHSf8+FEMbalgynfe63yHFFnQh14TIJ9zmFw8fNvqbnsCD+itsEncx48ZiTcXrSpcT0+thv++ugCf+O1zSpo5y9ZgwhX34br374kr/vVadr9olLwf3z81OD8FThsmI9VwfPHPL2rtYdYE9oelHZm0n35eD/rQqJcztfv07yfh4SmLst9nTNiSTCf3/2f+8DzVInt7CbPDzp4qjrzuQXRXBU7bZ4vs+ZQFK3Hqzx5X8rt8cGTYNEy/fLQ+t79+wi6Shkn3YZLrCRt3X/7rS+T9Jau6cFgvLfLXiw7Ayo4efPhXTytp8pjSu0wAh7ZU0FWtKf339FtL8f6bnlDSVWsi2485zFq6Bh/65dPWNBzkFrZUEixe2YkjtP1fTa8JcVoqhmrqvtcWqumJb7XxukORKsyjhikiwoJpi/Nt7M1GKp2bt6z+98aH3gQA3PXC3CwNZ46gbmK997TydQ1TSgD+8dlZBVtuR4iq/XVCCmfDWwHfUmaWKLw8pyFdU/sqfEHlsvBhxal76l3ONyJFajr48BuLzISOtpTlw1SGsM7DhQcADKmnzizJ0NuVjvlJM5cB4A/jTHH7UzPZsv/76gIAwCNvLAYQrpFM6w7RMPWFo7I+7qmDa9dfZwiO330z/OLcdxaop3FdE7Bq/u/Q1qo8ZkDNlihzbfrAvmPJ+z5mWb4tdp0XVg/6wJzDJNWia6q5tdN5jo+j4dQ6u3xNT7aWuTSlPmHFU02C6+DllGlKyzCi6jHfI89w2vEd6xn3Hpy8CP96cZ5xX14PQ8Y7l/SSI7bDqBFDAKj9d++r873LlvH8rLZc+fT6kwSsNQSHlsTUMMmgNEx7bDkap+2zZSPowyDUMEWGKaLPkMeJvy/Q8D2qg2I05E2N2+x6eldYzlyjr+HtzEksboCdYSnzjCe5KLnGorbZMkIOrtXv9XhyEr4Mnspwu/P4lVucuWyKf51WpE4MyUR0yu989317YNTwuvFDEf6E6raT99o8I5r0sOJePkx9sMnrzaDOsdl181H46Tn7YNzGIwvUJPe9sPa1/ixP0IeizObG6w7N/JFSKAIrZi6fuOfmdHtYIQotELMhTWc3yUvrVed0iD+RbzrXOKWeyibiriXP1DCZJWbnMHnuFWkRtij6KjMbNp5u/tAEfOqI7Yz7LUwAEpv28mvH7Yyz9tvK2j4ZYzccgc8ds2O21vhGSbShyHSS52+eoA9JYjf5FzDf63un74khLZVMYx41TBERFpRx7kYzkE7cdFGkwnHr0tjsumZeG74hOTbEMhCyDoZqc4q4Veh1JepD6tIbIYwRQBMO+jlJnG+Emc+nhapZl8+m4cUu5egrMzJTeBku6N9DN7dRgj70XsuRlIqAep2WJFFMo4BGFDUfxrgv7O71KqiYD3mIHFs91RodBtgnry+KMpuJ9O2ydihtosvnuoqNkpeDKM8YJia5TGCaJnnKW3jV5xs0gH9urrOyz66rfJ9v6RP0QWtVbz5bWPH8+wM1furto5l5ynqkURa9BwrQ8yh9pxYi4EHeWVFEAFFTGCb3ONdfqZIk1jWormFSM2XjofdvZJgiIiwo04m/TDSkg72gFkKFYaIXO97sSyIKB6ga2o8ob6QqomHSo9/JZclPip4vISPIhylnG3y/rRy+uqwIeLm0cVqWZoxNvURdeiwLUVKGJUkaIouytV7K4ZuahsnnbJlmbPI64WUwmSVqc2Uoa1fNEQ65hNcu2nUJCGJa2NdWAWE5j66cuZfWo7dHRgJp7AlNy5yjPtdctUacZCBrmFzCTZ+tvMEkuNMCjfFh+DApDGx+JKCFoS2VCvm+anh98zk1LWs1XlADNNY/7qDoEBQRQMt5/RlaFXahjbmeZBrHGCUvIsKNgW6Sl6501DLAbWrkyeDaOlDWgh+KoINrPSSS8nsUIeF0xlkuq4jJRZqLgo80mbrHRj6k6vDcAJTDGj2y+PRDKT3VhMFp+uOoW44aVrz+t5I0mOgiPBxFvLZWGr4k6bxPw3b7aI+awzDxBCJACyfKMIlVzdnszup9ehwCg4rDb4L0NRQ5NEzhTWPP6UshCwFqQgSvAUZ9Bcehsp/1/pKD7LjK17WxtnewBS1Ry6A1TGoiM70v5MAbMloqTGAfi6AzYTQs3DxJk7Zoaw9QxCSvAMMk7cFJkgQP+sRhkycE9V69DPQgjpIXGaaIPkOec3X6Avr5SaQPEyPJlN8oldrob8kxWM1GmYJpIdT3LlK2zjgrPkyFTfKY+yzjY9c8sQQycTuPSV6ZZyyFwjhLpgljU+8TXZqp+jA1CCZJGF8qKpUG4ZrO19Qvpr98mHTzQ5+gD2VMbYUgDPRh6g9UEspcqwHu23B9xX5LZn23If1mbJQ8qEIAzmLBF4VN5pQ9qf43RMPkOngVkDRMvj5MvX+tZpfydTCRT9+vJMyZYEQfZWWBZuxoRsFukpcXhRgmwyTPDtMkz26WL2CWmTGNqR/XQFhUAhEZpog+gyyV6kvGwQWXdNBMLxP1JsGnQ5VUhbevL+C0YYba9iI+FLbzpxQCKEdnhZvk2csJkYKFnAbfuHan9ym1DJO8ZgxNfVwZQR8If656kuIcE9Ulsg+TGVbcw4epCRNY7xMXkwmUIwzRNUy2MTQQ1mvSh8lC1AK9w4fpK3buK2n83ltkf/n0FUm7wAndfHvZ5W7nek4FtpAFmlVHAT7nMDVMsOxt0cuwMViC6TcfJIzNRUslIee1uk6rz7kmCuFgHglmIe/cKrIWKVHycohf6gom+3fifJXTPhioPu02RIYpos9gO7W6P5FO7EzC5Qr6YJ5nW7+flmPdTBo/9IhP/QmnQNJBUIVAP19J1TBJ1znK5jafUPOb9H7IpuSbVD7vpywNUz6oBTdl/3IQ/zJh1mCYGoRx2aZgLRWCYeql6HzevxlumOa5Mzpx1iQNk8wwVe0+TAOBtHEFA+E1THQeHyGK73tnewiTQT2HSRtrOTo3TxQ85TnxjkrQB6cPk7bHEWl0JsGFtAz7N5avAzuOMclrZRgmRXinPWY1TITvDmBGDKwWYPy4NoVADTrh8F8kkCCxRzMEoZWzMI2DBQOHYotY6yFLsAaAwDKDrmEKCyvegFfEMylJKtluFkK0QC5fHn0BLGSSV62pASQkgkbdpHJoTZj74Rqm+oOQRd07rHiw2WFzmCo9T18EfTAZJum6t/4EckQxnzqYb0vcb6k05MyNc5j8B3NTTPKMoA/q776Qq1QJibCMgUDbJImpfVDWX8oPRQirNsAJz/dOy+KSJ4r/lWC1F3nWEN/nrpKVsOKOxD7mvI2oaJ4MUzr/DS2iStw37nsVmyGR/pdRqTBhxS3MGRdxr65hMqEzjz21/O+RtamkoA956k8I81gZlKYtTU0xjYMFkWGK6DPIC/JAmipZWPHUh4lIwy2e1LX+bpzEMm90Gl8EhRV3PRfqAlfEJK+rWlMX6VJ9mDjGyJ+orpdT/+sT+dBVtw7lsFYvvxl3mXk0MUaOgCJ8zNcAs0906bEyfxQfptTfI/9KQZrkVcyw4kMCOJKmBH1w+DBRBGcZrZDHjCtKnstEqy9QSRJT2+Zh3sqtVS5hCeA/rzKGydKJKaNuPYfJqzb3OHTNG9WUsf6jM0DD1KP7I1PJAzVMKWx+akUsEDgmp5J4mOQRz+mw4vS4SrUxrZRJXs7ZXFbQB5NecTPbrqAzepCoep7634Yfl09LBxYiwxTRZ1AYpgEkXUgXnnQNoxYDzu9Efo10E7FJ7uWFcsCY5CX6Bk4tmKpUtFjQB60suR5iIw8CkyUkSl69mPoD1i+NuO0d9IFhuDn49EMeeraIhskngAu1aeoBDBTmUaQMEySTPDdCbPBloruhYepfhsnQmmhVlHEmFQVdCGR7NYNA7gdQUfJUYppuY2jQB45AtyFNZjPHysa0EKpZdx5hhyOLixgVxLW8P7vGeZCGydckr7cI23wQ3AMPyJprHcEmeYyGpd4PVF/U01IhtfOSQkWmpFq/GiGTtjZRb3ImiUoe7Xe6TlOH9w4WDBCKLeLtgIEaJU9oux2pYVLSC/I+r42gr5ttkqcyIg6Jo5I2vacuokLahItpmKrKBqSew+SWGNvAZQldnNPkYT5MfmmpUNrWtniUmY/oEtpv/7w+/og1QZjkyd9aCJVh6l0f5Ii1RfZUKmtLxTT3CzHJawbDpAto+uocJhnVmt1HcSCcmeIi0jgzNNYkjylHFdr4tU2PtEqhEfSBP1ogtD4O1F7E7ge9l83yYfJl+NO+sybnmCdPUMLQak3Q76sJFJRysv+0LKLxDeWq9IiBnFl/CJplkuclpEo8ouQZZoz1v+l4GAhCmFBEhimizzBQTfIMUzoHx6Q67ErELxtWnF6cQiTbeaAwIgEdzklLOa1QKLp8NUw5RglHSHAaGNZUz8Ew0VI4Z/MA6JuVO5NPuWUo40KYSp9DqOuSdI341w6OpTRMCWV6VRJaKhWDgA4RXDTD7l5fBnw0TGU0Q2hrmm0sDgiGiSDSlHeghqTIEfSBubYhLYrqprR22RRUPabCsxIJzrDiLpM95br+K+jgWg8NU/reLoa/oXlLf1t8Y4r4MCX0vqVHLaTr0p6z5zDRmrKKziyU4cNUYBHQGfZQyw7SPFYGISxLQTGNgwWRYYroMyh2swNorjSi2/Fp5EdVZrPz0jBJaZrNMMlwRlWySNPS56WZ5Ok+THI90nUuDROTJzjoQ29LQhb1fBomH4YpjKnyDoVsMMRe2QDYQ8PbypOZk+6qIM9hSlDuGWIyWhKTfNYP07WhGZGdzLDiPJNZJnSBhI1I7h4APkwUI207XLT+HMFhxdU03iwTW2baZpnAVrs6h2DI8TlcJmYUVJM8R1hxTTtAJfeNktfwVwSZnvf3Cuu3BLQPE6dhkt+JjpJnliWbt1UUhknVMKn15VtTCoUVlwNwafX7lMq9v1KGyWMCoM0SBwsiwxTRZ+gaoCrYzATNZpJHaJK4+zZTJ/lJiClQHsilWyWS2urGMx1wpvFBV0+NZb7ymKfI4LL4SJOV+70PfM7WSuG7AXAMNwefUvOYMprv4N/hPiZ5VLhamRjq6qmRzGOFcc4m67AMEupZS8WUYA9tDWCYmiDpMZkAFc2KDaO/io1hGgjmM5XETnyzYcVZhokTosjEpB+ySKtEDkrDxEXKbGaUPBnUOhsS9MFL0+rpw5SZ33qY5KnCR3cTlHoSeixUa4L0B7Ix49w5RC6TvFRgFB4plWhfgSmpnokZ3q8JZ5OYlWHOhERnGgeS1NwTkWGK6DOoJnkDZ7LoJnmUqplbUOT7PRnDxOeWn4VItvMgxCSPktypMjCRi5Cg0F2tKYulGlacZkZ9EXwOE3e/929Tgj4Eaph8OlsupsdXG6CVW7aGqb4R84V2aeMg7ZdKxT+QQ7Um2Dqou5UKpWEKMcnzTuoNm0S9/rw564T+KrZvOhAOmSSDPkjN4prIfV0vYYWv8CFNR6RvBH3oJZZrat15/FmcUeycL2fW2a2cD2fPrWta6aAPKoHMQTfJM6JGytcF9qAE9LpSrZmmw3J7AErDZI7Fepsaq5E8r41zmJizHMl2M91XhOFQTAKh96u73ISYizL0MoEGI5wyjbqWcjAgMkwRfYbuAWqSly48lGQoBWeyppjkeRDX8mLUdA2TVHzIQYdUUiHKkwh1VWtKAAlOw5TrHCYmC+vb5Lgf8s6Nwysd0lmZYfI5u8unbuk6J78U1N/64cMUqMhr8rt3VWsa81j/yxEjFHx8qWS0ENqrENPYppjkGaHWtedN0zCpFdm0SAPlkEkj5LRjvaifw0R3oMt/sfeXV7tsJrwpkZ5+ZpvwyXcKuj6HO+y4eS1rjV1CFx8fJt1vh0PaP5lJntWHSbrOxzEZqApBMpgKU6s9Txi7YVnDRJrkZeZo/sJjbn0qZJJnC/rA7P8y6iZ5Ng2TOXMa8yBqmCIinBioUfLStSttHWmSx6jnVeddYaSVy62naVz3rQ+T/bnLFE5oZZRqkufRJl+w2obSTfJM+PjC6WX6SbndieT+9N2IfDZKDt4aJgth1d1TI/u3bjrjxyV09whVQ8mpf3shH1ybIkRw0QxNi+VoIQBNDCuu/bYRyT7fu9mgTDWdgh6Ea5iKhPm2zSH5HCaOYPX2g3SZ5BUM+hDqI0U1x9sPUWIkATtTzAkf/aqh9dY1RsMEZs+vl0WbDqrRXxvXqZKY0jC5lpQhzPwvFPRB0TC5e9I4hJYxb1TK1JmszESz/negCGFCEBmmiD7DQNh0KeiaAdIkT9nU6HK41+Ns1PsyrLhbwySMa73dZRy2B9S1Akp7FA1TGDOhg9cwBWbovR3i617VGG8O3MHHHHy6QS7GV/Loc5YKB7+w4uYokftT1zClSIjADBw6q1WtzsY19TYtlcSgoFv7W8PkCPpQJIS/DfrntmmYBoJJHnf2TQouWE2oD5Oe3wfcoeUAsvGW0b2CN8kri2GihCau9+2qBmiYDJM8M43vuM26pbcM7+EeOCS5cntqgnxfq0keMxbloA+y5jjzYUo1TIrQ1d5ubn0qomFS5rqH4Iw2SXRpmEwmE4gapogILwxUkzwqAo4OjulRCdWacU9PLy9yzQ8rLrUhgPDnJLUuLZQvuntqWmh2utw8Pkw8M0s/4GpICRJvfyDwJnm6yVXooYVeaZjyffOEwuvgWph9IW+SuqYxRcUhvbS1w/XuLYQPU9DBtU1YuAwfJsdzKk0e6H1vDfowABimChHKmdLw6+DYbx8ZSuhb28JrZz5Mgj/zKo8fJFlOQZO8cJM/WvDhg8yHqfe38Y11iw0bc2qrh2lTrUYf2izfMjVMFqFOb1KbSV6I8LEZJnm6D5OyBxPtMYQ4FVjPFtHpBaCRPmMaB8CaEorIMEX0GQZ80AffzYrZpDMNg84wSdey78dgDiteiGGq8ueQMHyUN/igDwzDxFSS3g7Jl6bV9wGd3pU3Kz8Nk0cahin3zePblhReJnk1s59kQqG7WiMJcecZH3I7NE2XfoI9XbZ6L8QkrxkaJhsTADTv4Fr9XWzfdCAQN5XEbp7IyTa47vM6h8nztW0meY2gD4162VDZvhqmgkEfVIuCOkIsQEzttJnG3yIv9WGqF2IGQdHr7v0bOCY5zXVVMGHFhWUtYcairFWXH+v+XFVu0yPArU9F9mDFh0qoRnlkucbr2zVMEGY5ae+3RIYpIsKNrp6BOUH0kLB00AeJyJUj3Ehp2HOYpNuyFC8kOlceyNuDSzJOMSpCFTtp0Zzyf0s9Ohq3WOcK+sDdZxkj7pvV74dYkXKhhU2n/kCGyaMb8vSbnirE/NA36INeh6Fhokzy4E9sdVVrSn8r4XKJ9K2ED1NItMq+0DCZ0tzmrBP6u9hM8gYEceOIzOU6fNR4xq0JDmm7b90pdGd3AV1IFC7scGqAAgRk6Q8fM9usfC2pLUqeC6aGyZ4+t4aJ0VxXa8y5Vcqa6leHEI32JZSGKUnrNBlWDpzpfplR8mRQpVJh1e1R8oTBZMZzmCIiAjBwTfJ6F+CsTXYTGE7Tkp3DZAR9aPzu7Gn4XDTbh0mGlYhOeDPD7B5os4U86NJM8jgCJc8YKUvDlLaPX9R5iaRepq4hCA/64JEmB9Fl2K4HkCBeGiaY/S63TT+4NkUScA6TTuS5zB0rFbPskHnYjE3eFiobaDhJlw2dQQ4xP+0PVAi/ER9BQbiGKXwNStPZGac0jSY0CQgAkMJFLIcFfagjRMOkH2xr06y5oB9ca5xLZqxTfJ021AUxZqOqNdqXktvz07JIHyYpn7zuZ2cQ9QpnQpidIYxAp7SgD1ox7AHQElx+pkIQeXr/pv3SjDPtmo3IMEX0GVzS3/6CeQ6TmYay+ZbzAmZ48kaGxqUsmW/2epGX+aCYjjJN8rqq9IGlernlhhVn0nPl9D4JYbS4unUNQToNbERN6LkYct3+PkxquhBewDvog1amGla8SmrwKMKYbUeVZ5goUGHFh/Zz0AdjfGhVcM7lNviYGepE20CNYpqCPIcJ8jrC56Pgp2Hyg42Ib0jWG4koDVOIz2ZhkzxizQ0J0W8GfTDr81WMSrEwALg1rpn5YyAVYdUwkXuezNRqDJM2FtM2C2nNUw+uTdOldcr9L4x0MjjT/SJ7sHkOk71cX4bR1r6UaYwapj7CnDlz8MEPfhAbbbQRRowYgd133x3PPvtsfzcrwhPdPfQi0d9IF8N0UaCWAR8zKlqtr26Ond19xzBxkZgoUAumTjiUJRHq7qmxRIlL0+UClyVUw5QWFOLs3vBhUvPoG0uVSaeW5dFGJr2/D5N+wysbAD9pNMUwyU3r6hGGpBrwdxYH6mNJMT31CPqgf48QX8JmBD/Q26OPCyrogwvDWlucafS+H+gaJsppX123aEEP13uhvoE+6agyzaAPmtN/72XI0CoaVpxCiMm8wVuTjGLguO19J5fGlYri6gtub6fWM5tJXn0sNn63SFqyNKlv0Ae5bGquD2ml+7HIfLUenk4xTFpVicNuWsCcC2ny1BVhIASSCUVrfzfAF21tbTjwwANx+OGH4+6778aYMWPwxhtvYIMNNujvpkV4onuAbsg6g0BqmKRrzhk0XYRUBkBdOLr6MPCFbcE30hJOwGpZQvXdKtB0I6w4xzzl6B9easwwTPqinqibHkd4UHdZkzxtE+zJGHS6rWlZLakzNJ+s0R5C0+nOY9bpCy9ptDD7V+5PLqx4PUpePg2TKjklyiYIkhCTvGaYkRhBHbQq8oQVH9ZawcpOexr9Ew5EDVMlacyTuobJT8iQQgh+LJW5HVFCphRp/Q2TPAFKqx4ytor6MMlI144QDZO+LtqiAzqh+TDp34vTMIUjoQ+urQkjeEy9PTxToYcVr1QAVFNtjWjc60W6B6R5OB+i+rurdXE+lkXGrx5WXN2O3R3s0jDJmrYsT6ZliyZ5Tcc111yDsWPH4pZbbsF+++2HcePG4ZhjjsH48eP7u2lrBao1gYkz2xQfGw6LV3bijQUrrGlWdfbgxdnLFEJOjZJnQgiBF2cvw/TFq3DPK/PRtqoL0xatxPz2DgDAy3Pasbyj2++FAkCFDDXbJqen71PE32vzlytpOrsb/Svf7+qpYeLMNvRIfdTRXcUDry/E1IX2vq6XVe+7VZ098t1Gm4PCzBKSWphBH6YuXImFyzucbdPR1VPDC7OXZb/b13Tj5TntWNNVxfOzGvdtG4I+LmYsWYXX5i3HxJltZHqWFtCZG82+OsRsoCbS79Cu3Dc0CLX6mVZcWwFg7rI1jSYGbCwvz2nH9MWrvNLKpVZrAs/O4Nujw88kzyRuJkvrhhFevhcuh2IZ+ru6vldrxYzAFxIlrylmJFr1ZZzDNKzVvbXr7zIQTWSUdydMNee1d2RjgA8rToN72zxa7oYJL1+/7KtDmeS9Nm+5X2UesPE+8toJAEtXdeGeV+ZjfvsaPpOG1+Ytx5Jejryju4pVXSbdEDJuJ81sy6wvzLDiJlb20hchSBJ6b39uRhvZ/hlLVuO+VxdgVWePqWHShDrpviHvYfJ7pJepduW5GW3ZGiqPN6rHuPWpmA8TL7j1McmjzGOVMmB+Nz34yUBcb1wYNBqmu+66C8ceeyzOOOMMPPTQQ9hiiy1w0UUX4cILL2TzdHZ2orOzIWZbvry8BWltww/vm4If3T8VJ+25OX501t7WtPtecR8A4OEvHo6tNlqHTHPSTx7Fm4tW4YZz9sF7d98MgG6SZ+a5++X5uOh3E7Pf4zYeibd6N8PfffRdOOcXT2HMesPwzNeOCno3F7LoZtYFiJY2UWZvcjHH/+hRfOk9O2W/FR8mqfSv/PUl/GXibHz8kG3xleN2BgD84L4puOmhaQCA5y87GuuvM5Rt3V0vzMVn/vA8dnzHerjns4cYbXO9GsUQ6v0h/5zX3oGP/+Y5AMD0q4+3FG7iny/Owx+emZX9vvSPzzPNohu9ZGUnjvj+QwCA31ywHz70y6eddfqEEAbSxbwhHeMjHxJMpRC477WFuPA21UxY31iqNYGbHp6Ga/7zOtveQ7/3YNavPttKTQg8+sZifPCXT3mkbrQ3xV8mzvbOB/hJo6nT3vUy2INrPWmtr9/5Cr547I7Zb2fQB8JZOcQkrw/4JcLBuqH59MVQD4bJOIdpAB4sXpEk7glMDeHKzh4cdu2DeOHyY0ih0FYbrhMe9CFQ2q7m4dPbwopPnr8CJ/3kMa+6fECZugJ1YWe6dqb40f1Tg8v/66Q5+OukOZh+9fHsOuY7h1d09ODUnz2e/danI7UPffWvL2HizGUhTTbM6FK8yjCqs9vW4KO3PYvTJ2yJjUaqe68eazMdl/MlAaLKMKn+O49OXYwv//VFXPf+vTQNk9kOVsNUhGHSxp9cEi3MVn9zzKdSpskxAZDNEv3bO1AwaDRM06ZNww033IDtt98e99xzDz75yU/ikksuwa233srmueqqqzB69Ojs39ixY/uwxYMLNz5cJ8zvemGud57nLRKeNxfVGZ07n2+U55rgf5s0R/n9liQ9vvvleQCARSscdiY5oDM6rqAP3KFzjXLU93xs6uLsuoch6FKC9abe7wDUF+wUi1d2Wd/hrxPrfSdL8EPMtKgw36rWSf1+r87NL3xYqWjBeHDE6fQl8riY71UWa5JHmFoAjU2D89WhSqvWBDl/9PDxNSHwq8fesrZXbaNfmnSOeJcrXc9bFqYp9GlTTdgJzmqN9h2oMzX+0mlZa8vNrxQtRJS8IS0V7LPV+l51lR304avH7WS0J9TB+pfn7mvc8/F70pnVvCZ56w3PL3cds94w6/EK8mu3tvBS7dltq431YpuN1sF1H9iTNcnjzXTlNGzTFDSETMTD3urlb6hq64En3lyMMsHxvtMW+WmfQ8CtHXk0o1Q+yodpXoA2LIUrshuHWUtXO8NqU/NNGbu9z2Xz23TPlgcc1UI2rHgRkzxtnVQZeHMQm7RbAvdpDLpWSv0bTfKaiFqthn322QdXXnkl9t57b3zsYx/DhRdeiBtvvJHN85WvfAXt7e3Zv1mzZrFp3+4Y0uQzgQBt+hBzxabhaab61oiSR6SRa+c0Nz5NVN/DnkG1q7anDfG7oqD0vUjzyLd0u/vmL3ZcHfKG6n3QI5OMMrUAGoRx2GGO9H3Kb6bs7hPgJbo+Bx+Gbl4+jEOtZg9FzzFMnCSYg7z5u4M+mPM7AXDx4dtZ803YeoN6+SV/uI8dMt4gkqgoebbuOHLnd2DcxiONPC4YGqYcIt8rTtkN+/b2TR5cccpu1nOmZEK0bgbEj2X9fX5y9j7YbPQItuwyP6UtqmbaYlnDFBKQJw8oDVOzVuzQcO4uuEzyhMgXMKC+roQ3qodZxyiTPBnyPT3ogwyXFpMb80XGja5FdVEl5prk7ktTK5XNBLaegY5BwzBtttlm2GWXXZR7O++8M2bOnMnmGTZsGEaNGqX8i6DR2qTDPuQ55QqVbFsDfQ7KzAtdOkgtBJwEhgo9alsIXCZDMroCzq0imTyFsbMXoG7gvXm0aAy6VLTZ4JqcKAyTX1m+UfJ00pTz1fGx805Bn1zvbrjQTHdcaTnw5Hb+7+mb3iUEoeZ1JTH9jGyQmRgX0d9SqRhlV4jIeWabeutqguDGqJqUZtvbpz/1YZj0d7EdXMsh9FtR+W2yOpnopCIcyrD5flHZ2KMGGIGYDWk6Kn0j6EOS1ZunjhD0ZQQyrqa848IZVhz5NL15h2l3tUYS/3IzKaa/ooxdPp1cNm2Sx2mY8n9jnQ5xj0dzTXJ1J6UpBxpr6UCKlOyLQcMwHXjggZg8ebJyb8qUKdh66637qUVrF0Icn0PALVLUXLFNoOYyTCmjw9fPapiIcsy8MkHnT6SGaDeozYnztaKgB3QAdClUeKjrouD6U94/fDcNljgiNgKg8X5dAUQk1ydU2Ghvk7ZAgi0E6vcM1DB5pK8Ju+yUC+frsxnLqErfSI3kaNbeQmhrkuw/Hun86guGidR6ujpEe27T2qTQiepcUvuC20b91fxM8qgztFLoWhs9L5XN6+BatmVaHs1KgWqHTCg2W/jUlw71vCVAvvL0fGaUPPrAaxcS+PtGyqgftG4S/y4NkzJ2e1+KYn7ksqnmcea1RcyD9fEXKsxO4BYycfNRDq8/2DBoGKbPfvazePLJJ3HllVdi6tSpuP3223HzzTfj4osv7u+mrRXgHAttCCWyXKltE8gnKlceyOEvGxomKl3jmj9otVEmm1eR7Nh7pIsJEEEhVNpjPm9cZ/0B9R7nu9UscDXIC7UvkceGB9duZ5GsemsPGXcckWIetukHF8PhW6aP0CKU/vBJr0sudVRrguzfNMiBLzgNE/U5KhWz7MRi6pXlSzVMTZAUmD4bOhNv18IAlIbJXa9eT56gD5VA5laHKyKizPjZNExphEq1bbKGiTKFohGimdfLsiVP26CnEQHz3Bd9yzDR9/P6MNnO2gLqfZ3HfydUEJOCCnCjr1EUU9OijV2AO4RaLtdejowia5G+9isleQizqXVUh3HYL1JNK1vNgMegYZje+c534m9/+xt+//vfY7fddsO3v/1tXH/99TjnnHP6u2lrBfIcjhgKXWOhw0bUN0vD5GpTI13jqbxQUQfa2spRgyvYIWs3nCZ5LibP0X2Ceg9N6tT3Gib6vvyuvlo4X3vvtOi07pCgD/4meZ5MXqBJHiepZxkmJvKjb30uuNrfxYQVt/mqkPUwPkzUO7UQ6pqKg2gHGt+wP8Z9ArcjvGFm6GWSp/7uzqVhyie1T+Ey6dNN8rh9Sj8gvN426ZrJQ5bFXNvQELqZOXRTpJoQ5MG1ZaIvGabQcO4u6Noag2Gq8VEAXcgzVrv1cwN74TL5VEzyrD5MUvuI+lkNU4GBo/tSuzSe+TRMuuCn/jeTzQ9Ck7xBE1YcAE444QSccMIJ/d2MtRJNM8ljls1Q7VSXx/lQeaAeoFq/dgVQEMzi4vNKQT5MioYpfHGhmDkSCd0uQwrVZDMSHT5BHwqb5BmUp3o/RMPkK2k1JHqW8oTntLR1Az8H/fKH1iensSXrYOZ0qCRY1jL2KAyTmZaKklePnuXSMDVPoOQ6qNMnulceDZMuoc6jYSrcKw5totw3dV8zOp0A5cMkl0Pk8ZqEHmngMslLlL/1tspViOL9qIHSvDeLPuUFW/neSjd2MSw2IHIxhPXmhLepu0eYc1JbMSimhvJxyiOY5hmm4KKkvOp+7xKGGvSDhxUAOy4kX77BhkHFMEU0D80K+iCvKu7AA3ZpdDNA+SOR5AmjraFM9UyTi8a1SwIuozsg6AO1EXBmhBSoxUu35e9rDZMPA+JtkuchTZbLTu+zGiZGC0fB0DA52pqiJgQSX4LNUiqvYfLLH1qfksqSrKOb7ttKoNZCnlNODVPFnN0+GqYigQ1c8GGGnEEf9Mce7dVNZvIGfSjCNrneTd6WWizaKNm0Oitb1gAggT7z2DXRY07rsJ3ll7YibU7d1FYap03Y2voyZDNXU94pYwoQtPpEPmI7tw8TGfSB1iCpaTw1TA4VE1V2PV/+b2zzYSLHDiFXdIlxOA1TJpQchEZ5g8YkL6K5sJ2FwSF0vnLBErLnlo3D56DMPKD8kVwaJipAAsBrO5Q0AZ2maJgc2eg226XtSlqiH/SgAH0dVtwn6IOvVJw/h0n93Qj64Kdh8tHSUCZ5fiZt/nNMCJ5A4WY29c194athshFua7oZDRPcm7GMYIZJ1zDBrdJqpsWyGfRB15S42yf3l6+GzoiSl1NqX4SXdJn0qZHGeA0TtQwk7I86+EAw0rW3wIIvsxH0IcnK1PfCsldTjvkte922rWWlncOk9Y5APpNDfV740jzdhOlwAnXc01HyGtfpHkAzP43CqadcAJciZpd6cByhjUcjPbEmubrPVEr1alqZ54MBkWGKAMAfjlYmuGAJ1HMdzdMwmcwPuaQpEhj5vnmtv4WiYQrwS1I0TI4tlW5z49qtYTIJTf3dmuHwboNPdf4aJqYOPUqeVreLUZdz80EfTA2TT6tDNkSrxaUH4dKMKHnCwfB1dHEmeYEaJqkShWEi+o86FFeXFlNoqkme9tslzQaIcSubn8GPwSvjHCbXGVHu/Pa+NRkmf+JRTkv1h48QxXdW2Ezy9DYIoVbSDOET1R/NGMLVGq9FzitkcPowiXwmeYC6FvrSPJ3VmvGN6oICu4ZJH7uAyvykDJtcNLVWc4xdaSZ50KxJiA+q3/ERlHBrlCw4GGyIDFMEgHxR8nwgzyl1I3JPShl9YZKXXtMhuhvX7DlMhJkWoL6XGlbcvmIU1jAxbaZAaf8MyZ62yDYbHFEut9Xfh8lNHAGqnwHgPofJR+vmCpPLgTIzsqUNhY92jM/sTqKbHungNEyVQK2FPAb0E+x1tFTME+p9gkw0V8NkN0HyZYBS+J6NpAsbunOY5BUlwl3eYxXNJC+EYVKZSIcplHwf9jFE5kmFZWSGVLJe/0uFQC8bHPNbtmlpVZj+PY268pVprpfq77I0TEM8aR466EPoOUyphgnGPSWsOGWS14TFRw1cxbsZNNKYgsXgsOLp34QuczAgMkwRAJoX9EGGk6izPO4TDVPKMBHpOPO2EC0OVx+HEDNEkiAIMMkjCX/tPeVFtcgZEL7wIWgKhxXXfitSYLij8OUzyfMjxOpBEzyZK/BmWKxJXoEoed5j3aZh4kzyPIIwyAgxyWut0BomF3HXlz5MZNAHpw9TcZO8PCgaJU+X1OtQtESEOWUKSvvtimLmM7f85x+vYUrrTqS1Rdfolz26qG/bDPq0VrNEycs5MMyw4rrgLp+1g+7D5KthEsI0cTR8mAhKWubH0rQtUsIhvdeuN2kGw6QLU0N9nH2EMtQ6BoSZWw80RIYpAkATNUzSpFKmj4cUQ0azfJiELFmxLF2KWR1jnudDf4REyQsJ+uDSMFkZHEET/vr34EKPNsufifseyrcoHCVPv6NK/Tipe4NAcjMdrpDQHHwPuHWWyexPlDmpL3zS1wlD/rlNwxSyHMn9rjJMRNnEwUE+9vic43UZcDNrxFlejPS2fu0Xlr0MoUe9O/P3DfVuMlo0ojTkEE/dTNHI47EmlKFhoiTr6vrpV0cI+sp8umpZo/KOCleQHAGRa+wm2lgNCXSlH2uSQB1fviZ5crqUYVNM8oi6m6Jh0vrPOR5NBZvbJI9Zo3Sh5GBCZJgiAOTzYfKRvsmlumP98+U16xwmNax4719SGildK+9hamaM12AI/CCTvBxGcAoh6Vid9HMZANOEktesBTfNC1y58nv5Bn3gx5YpOQQa71dG0AfqYFLvc4ycqRppObAaJk3KGAKfb15XMPEJuSh5idNQS4Us/VUPrjXrbiF8bioOLQcQxsCFQzPJMw58NNM4i/NIXgZRXVRa7IpcpmgEKpVAk7yEvE7hEznTt4fSdFSRhu8GzL2w7CW0r4I+2H2Y8o0Npwlzbg2TPp7829epHYGga329TfKkdSQVUstvQh5c2wRhjW7p4or2SoVVD+XjsteIJnkRgx1DmhVWXILbLIx/1iyTPOogWXIdUAhjWkuUhZY1ovrQEnDbelGthR0US5uc+Oen3knP72IUy4aPU7av3wXLfGnDKpN+9b4fp9kk7byZSnRhhDcRJvz7VoAn+tlQzDnalMJld18v0xVW3HIOU8BmHB4ljzDJc9TRVJM8XXtE1K0TJ3oeXZvi09rSNEwFTfLsYcUlotRi/keZ5la0PtHBmvzmUP9wR0rU605625NqFAS7n5SFviJGqzXeTzE3w0SYMCu/oQZP8oXenBAhMalhkn6TGibpPbKgD1K6IS3SeJDK1dF0kzxtnaaGjrkmhQtLdJO8wccuRYYpoheytMWbSAsc8aGTUkZfaJjS96aII59zM1JizcoIObRsKUIZRLLNAZsyFfRBl4Ky0QED2hmCUBNHG1jmS9cwpYu5pmHSffwoAinEJM+n1SEaJtvnZRkaxbQ0/1fkJKB5w4pzYXQ5yHPKdXBthTiHKfEK+tBEhkn7TR3AGnIOky/DWYqGqagPE0Ki5PFpqXFW0blIDT5rQuj8s2p6M8m6adlQ9ujiNEylB32o8QEs8lalZyvLh0kv2TfoAwB0atpwndGnxqUSVrz3ucykUQxbnwV90AS3ziNfyDUpX90NK47BxzJFhikCgDp5y3AGTiEvAM5DPvthAlFMnEsaSYXg1q85VF0rUy90zYarZLLN0nXIOUx0WHHBblLN+mw+GibfjdM/Sp56P/UjG6ppYCltIleHaZPvxzHZzF1MWAg1Locypn3rSdM3MtiIWFuxrIbJUiYFLpQ4G/RB187ATdz17TlM5nNDC6Wnkc9h8vRhKsMtNI+kWYaLOdbNnrjklIYpYa5TeJ0lFjgxqNQNk7zeNEIYBGrZSyjVH80gUOsR/zjmLF+ZZtAH9blAvrDi+jwK0zDpJnn0OUsy9IAl+r3MJM/xKnnOyHRBtyhxRXul1pu8zHcMKx4x6CEHfbAFWAhddOUpJeckTZr6YQJRflUh5m3UtbHAS799w4rrGqZ8YaM9mbnEHb1PaOWVpZ2wgSs1jw8Tl0yvo+FnUH+SfodhQ1rIjC6tab1M9bfvOBcBlJStTN4kz/7NbZDT8xosWNu/hjmHyWZ6RSEkrDh1bpBfWPHmcUxG2UbD3e3Lo2EqY94W7ZcEdv8w1efDFlbcnOAuHyZ2Tc0hSEgZq0zoRiq3kqxMXRhV9t5XptDTVQ+/7uUbGy6Nq07gh5SrBH0I0TAZJnnqGkUzTI3rlOmR06X3XO8SqnH3gX7+pELfaGnJQCaeawyFTCiZL3u/IjJMEQBUaUt3Dz+UfQhEDiGHp/YVKDMz+swOmkHw0TAomh5PHyY9nLVTw+QwyQs6h0mk93gpVF/sxz796e/D5KdhaqRPy+c0TMJoC6ftKmaS5/d+tu/ro2EqcnAtRxi5wtWyQR+SMBMlzoeJAuXD5MOgNdUkz8FQ+9BLujbFR+tTBlEthChkT+bSUClR8pKEJR4pgYjOROrgD7OW03jOv/Rvb/oWgllTNUzqWkoxfEXAfdvmBH0oW8Ok/tZLr4m8GqZ8YcUBWhuuh/LXQWmY1Ch5fhqm5gR9aFwLoQtD+bQpfMyYOaS5oklexKCFPCk7q7TkFygmFVCYBep5f2iYPDU+HGGshhVPiWi+nKqjD1KYGiZLYnAmeVI7HfsxZcqk1inUw+0KaCd8wbVZXmhL92HS7Ks7Mw0TwzB5aNpM6aMvk+fft7ZkfFAG6TpY+NG45gh64SiX02S7AgHo4DRMFKgoeT5mZU01ydPqNsekediuqYRSCXQvH6YSFtxqrdgZQlRAC/15CptJHmU6p5zDROTh3t5GPHLIrAuIuvX20CZmfvX4gjWfLrea3qAPNPIT1A6TPJGPVkigroUhga4MH2ptjXKZ5KX0lTyefc++bGnCGZlGlEZtr+fSptBNEkOgHw4/mBAZpggA/lL7UC0Qdw4TbSfb91OI0phRflecvwd13ziZnCHwbX1pHpga3jcyw+Hy9aHaojNFfHTA5nw3rlS5f70PrmWpI/Wnbi7AaZiE9hewmORpO4u3mY9DQ6OktRbKaYDUusLg1jDVLMSUDaEmefIYcEnqW1pM9VWSuMOGN1PDpLfH8GHyqN/QMHm0t4x521MThQIJuN5Nd5xnTfKId1Gi5AWY5Cl7grdwQxWgUM1sBH0Qxlpa9hrKa5hKrQZVyxqVd1SYGle1/LyMvi4YCfEN0gWYCdT3o6PkSc+z60bb0/pdY6wZGibdl9pmPUJ9Xt81hoI8DwYbIsMUAUAdvLYIbepmEgbX/OiP+eNiJKjH6kYra3FMrYOtPlvVukTLqWEi1i4XgyqDYgL1b819+2Z9Nr7Nskah2DlM+l1dCpxqQUwNE5R0+rUMfcPzPYdJiIAoeeA1SbyGid8kXZC7nSu/riELHx2J9L9XWxSBhD1tXcOklp0Q93Q08xwmvWbjzBMPE0XlG3iaNJahYfKdfxwSx8vpZk0cw0QHfbBrmHwINm9/Q+2vot1K1HsCpvCpbJ8jyrezvoaXW0+tJlhLgLIi8ulN9hWS6dD9joqY5OlaX8pUVNGO9l7Ln4UyyaM+TzOi5OluBbYjTDgNU26TS6aewYDW/m5AxMCAPHhN7YaUrgB57Aos0D8+THKbzPprQiDRFxDGD8l2FkcKX5O8UB8mipBQzcXs+alof/oiyn2/5p3D5L7vex4H66+gE6fa/dSfT9cwGTY4CImS58dkhpjk2Qrk9rU8kvQUig8Ts6HrG7EvigR9cGmYKhVzo/cJkdvcc5i0srU+8wlKYWqY3PWWsd52Vwua5MGhYdKc5FnmnGKYpClLCpS4NUEuN9AmL22GPOfTumXJur5+5mUCOHAMWNlm7z1Wk7x8ZZrTQa2hCJOuaIUKBX1QGXJSw6T4K9Wv5bY3NEx2NIVhks3rNcGWz15Q8RAy2fKm9Q42RA1TBAB1wvhqmHwgTymnhims6FKgLhR1yAtdVZhRgCi/Jfm+EdVHuq7aRDkSyvBhkuHa+GntkbqIqto4P8avCDPloxXyNsnjTFS037p9daZhalWj5FFhxTkihQr64APboZA68vSy8jUDC5CT80Ef9JR+qDj8WnSE+jDpZdcZNIeGqe8s8shx5CIi9YhwfmHFS9AwVUWhc5ioqIUylKAP1ih5lIZJuiby8UIU+tqGNBllkpe+YdqG+jlMat4yDhGWwYVZLyLwpGAP+pDTZEsbEfqrcGdMOctN9O/iD70/9bJcUfIq2bdvlJPlJ/feBpoRVlw/D9I25kkNE96e5zBFDVMEAHVRsocVDyxYmlTO0NX9omGSr83NjrIvd2la9AVe/u2vYdKYrhx9ExLVjtK06Yuo0leyhMoi8CtCB3AMk0xc+BJ9uc9hcgR9UMcPXbcZVtzvfKWaEN78Rk0IVuLH0i2EVtEXapQ8Pk2uKZ2YRJMN3DlMFFoqhEke3BqZ/oySVyfO/DVMFU+TvDK0GsVN8lwaJunawkhT64Ar6AMvkPEfT1xZlIapIhHIerCYMg4RltFXGiabn2VZGqayfJh6S8+uipWijkVKy04FhZBJq3Tq9EdYcX382Wiz8qPk+WnWBiKihikCgDp4u20aJiUQQNiQd6XuD4EDtVDI6wB1+CatjZG1DnwG/YRtDqEmefRJ9vK1pQSNKUyvzPMv5DT0tY4iZj9cTvm+vw+TXx1pN6bt7uKCPqTf2mHSCRDSR1+ptT+/ZB1LHPMhZwn+TFJ69pwnkY9AqwTax8vEposJoCLI+Wz+TQ36oEGfMz4aN0Vy7mnSWIZWo6hJHmD/1jrRyYYVp6TgCX3tAre+++RJvx1lopXOQ9Mkr3wNE3/IePmMGVdkXpMtQ5uqlZ/bh0lbV4r0haFhIl6VipJHReV1taJPwopLz/T9vGnnMA1CjikyTIMUC5d3YOrClWhf3Y1X5raz6YQQeGHWMqzu6rGWpwR9KFPD1IvX5y9XzMwoIruoTX376m68Onc5+3zmktWY3bYaQN0p9pE3FuGl2Y2+o2qn/EjqZnoCL81ux4qObqX9a7qqeGHWMrYNqiqcf19b0Ie5y9Zg+uJV2e8VHd14ZY753iozZ+9b+ZPPbluDqQtXYOLMZUr93KY+u20NZi5Zbdzv6K5iklRGKLgmy/e9nbKJwqo1gYkz2pR7mUlerxS4EfRBN8kzN7slq7rQSZzXoRN5An6mMSEaGgHeNIoN+tBb9pKVnZg8f4VfRVLb9HKoNC/OWRZULhAuvZy2qDEXfKTPeXyY+pJhMvzqAjVudY2ZO/2stjWhTTPQU60V8u9ymUMmOsMUYJKnlEP0X7qeyfuCjnCTvN76CO1WOsZ6agKvzV+u5C076ANpwcHcLwKbhinvsHDNtfxR8nRTvwIME+hzlmQoER57f8jM3luLV2HaopV4XqIXqH2qGRom3dJF7ou5yzowY8mqbF8gNUxwmzFzyBimQahjiiZ5gxT7Xfk/5fdfPnkAJmy9gZHuzufn4tI/Po+dNxuFuz9zMFuerw9TcFhxJHh9/nK85/pHtPqosoOKNvCp30/EI28sxn2fOxTbbbKu8mxVZw8O+d4DAIA3rzwOtz4xA9/+56tkm+TNlTo8tCYE7nttIS687Vmj/efd8rS1jXk1TDIOuPp+AMCL3zgGo4YPwXE/egSzlprET0j0MPn7X/L7SeZzSySdE378KADg9W+/B8MlxuLcXz2Np95aaq/Ys00+922gNtkf/e8NzFmm9lvDakYo0lMj6EPWFvX3f19dYKTRJYTeocKF/6ZimzvvGDUc89o7jPtpP0644j6vOvj66Mr/++oC3P7UzOCyk+y/cPhJnzWTPA8H5iGtTTTJ037r2oEEibN+JSKcp0nec5qwIA9GjxhS8BwmO7PaohGdXFpqvdT7REdNmPuCrg32n6u9ApTe5FRIc5nAfFEW1IlyzCOdEOUHVuqpWoI+SJ2w7ZiRimDDBtd4oiIA+pYrl73O0ALkbwIlGBS1P1AmeaNHDMnuLVjeiSO+/5BPVaVD2UM1wZxO1/z1ogPMNnmuMRQamtacBfQjooZpLcGDkxeS9//83GwAwGvzeM0L4C+1F8w1hyQBHp+6xCNlcYnDnF6J6YLlJnG4cEVndt1Tq2HeMkq6Wq9fUdvXTKJYCOCfL841ctdqgmQQ5Oy+DJNO4GfqeynT/F4imGKW9IpdG6VPUAiXT9Sy1d3K7yLMElcHkM/2mSrrF49MM+5VGuIvhYjRDxn0OaQ4hRElj9BaUgjyASLS3fjBCThlr83x6SO2881C4n37bIkPvXtrNi/Xxr9NnONV/t5bra/8rvsZ5UNeDZNLWPq+fbbM2aJw6PRgJQE+eeh2OG3vLfhMifqjDIXYafvw9R218yY4fcKWOM3SLzttup6zjiRphFemIM8d6zlMvd99zHrDcMkR2+FzR++AEUMbwhsqV00IzJf2itS818fMVkdmots7Myj/KV7T63/eWhE0Q8NEBUVKIb/ur859J47ffTMMl3xBD9lhDJ3PMXaLmeQ1Ct9t89E4cLuN8pWlaVjWX2coLjpsvJJGZhjT6/fstinWX2cIbLjl/Hdq7S6HZdp5s1HZtRn0ge/Tp4l9nNLKH7XzJjhrv62c7YgmeRH9Dm5K+c41V3jtxrOARllAFVO07NR8yo/496ufKoszTfPZ9HyDPhibQrohB/SRStRaMiZ+0h5vn6iS4BuowQdUuGmKUGuE/lW/lX5mR/bIoy1GlDxP0UDIOUxUXx29yztw/Zl7Y+QwWpLqS3d88+Rdce4B27D1ccX4MC/v3GYDjB+jaoNbKvnNPbwYJuO3m8HY4R3rYXtNa90sUCZ5x++xGa77wF5sHrn5oSZ8HM7abyv83/E7G/ffve2G+MW578S1Z+yJoa0VcvMZNbwVPzprb2cdCRIMszBMylk2FkY6XS8rCfC5Y3bEJUduz5aToloTSsS1BtPTgO8cScuhwoqnjWajSaJ8kzyyniYwZrUav07L77vNxiPx03P2wa6bj87uXc+O5yaZ5GmzoqUCXH7irvnK0hiGSgL8v/fshG+dvKtyL6urty9aKgmuPm0Pa9mH77gJjtt9U7KcIjhjwpaZEEMPK27rUvocJtWfcL9t6mvCVaft7mxHY1wMPo4pMkwRAAIcXctimIhJWJhh6kklhOYzec2pOzny9ctpXWHF1ftuAl/VMPEvrDNlAfQ5WX5IlDy6LFUq1ScSUVbDFF435QSta430OuQ8rRU96EOqYXKDO8LJhWrNnzGl3i/dz7i39C2b9PHxYJ67PQJyDGmpGGVTob994SN9NoI+VPx8lPrKj8kkCM169S7XwyWXcdBuJUGdIXLVTbTPxtzoddjMDeVx0GphpFMzrZBvVBWCNOVT90K/OZKth+keQjTDNg/7TMNUcpk2DZPbL5C+7/qENnN1G4yw4gXWmTS/XLZ+TzmHSdY2BdZZ1rKjB7NKIWC3ZCDPOIOh1A5ux2A0yYs+TGsLCs4qz+OB1IXdY8Czm4Sr7BzotmiYjMh3lIaJiFrD+TCR+T2a7ysd0wng9GdIH3HnRVFwFVv3YfJnwMoAR4jnqZvaY4dY7M6FUDcKyqxO/mtD3nOYgoI+CEJzQvhO5AHlmO+jYfJp+5CWikFw+xLbFFwH1wImge9zMCxQHuFilstoLwPqNX2YymhsQs4RnyGZwLPdCe8fCKjzrmI5uLahYaITkD5MNfXAWNKawFu4ke4dZjvSK65tNZH/bKEQ1E2By62nWqvxe4vj+3PrkmvY5DbJgzlP8ofGps9ZogI9AJp5nqXO9M2UdpbkxVSfk/Wy9KA9NvqA7O6EDmzi2456vYOPY4oaprUERaeUOnj5gdzMIV6UYco0TMQzI5CDRcOlmp6ZhB97PpCPSZ62ULHpWB8mZxWS9sOfwXExcno/UBqNsqWkPCEeXg8lJdPN7ABZ+iVUkzwi0l39r7stZpS8QKm1J+RX9Amp7Fs85eDrEyXPB0NbK4o2JO3nvExeLg0TcY/O1xyOyda3gB9Rp2qYiA+WAxWOmfFg6Op95dMImilTy6nDx4cpJFJk3SRPityaKYnCNenpekiZ5GWCC+Y1hSj/HCayHi1wTxmoEj6+Kdyh+un7rnmWO0CGpmHyFZSQRWlCpCRjmEytE0Cfy2WDPAbL0zA1qCBbWHEd3BlnPnsM3Y7eev2zDBhEhmkth+8mr7BLlpHMncXD18+V43cvBOlhry6CuiYYH6bsubph6kl5homuTy6h6pBoUukAejPnkJ0HJWuYHJuMUwOllUGVV7YdPn+wZDioTZYi1OTFXCbCOA2Lz5jVo+SFaI3CNIrSJivd57W8fmW3JKZkXxlbBSbu0JaK4acC+G3AOhML5PNh0jd/Dk2I7ktCfweqWv0tdeKlDPPBJEkwhDLJg7t9vkxo3STPomGSGaYK/w3StZ/VMBGt7GE0TLrAzIa0Pel6mO49uomk/FeHvrY2C5TwryjqkUTpQl2f3zifzjOfjxaZLjfRfhfQMCX0N6a0TrZrv7pK0jBJbVbPg7LTTOQ5TCjSd0lvubmy9ysiw7SWgJWseeb3MbGpp2tc+wx4Xp1MaSjc5XGQz8xxraeczTilYaqfw6Sm5drJEWu8Lw4PU8NkL0sGtfEXNskTqnSSKq98holvS3hZBMNEOHrIUfJSqS/FMFDnMHHQNUyUmSfX5jI2laIaJkoSq3ybghomueSUQPYxQ6HOJ/GLkqcRTolffX3kwmSM1WCTPJSiYOI1THrdpIbJU7+U2IM+6AQoRzymRHSIX0xNqEEfMkGTnMYxnlLfxpTxSlNTmgaWwBRAH1jk1RmzkqnUmuC1VnkPg3aN97zmizqT4ysoIcsCzQSpPkyN9FQQkJC6yoAsxNCDfIWa5NWFMnLZ/q1saLkGH8cUGaa1BEXtXH0ZoRAzr1AUsWntlqMdEc9VHyY6DenDVPPXMPHnBpG37UEfDB8mf41Gg2Hy/1ZeGiZHeWWblfD9Fl4WRUhTzubyYp7moXxqGsy1uzGGhgm+3zGMF+G/Ib02+JZNERWqpjk/hrSozFhKWHiFaycalodp1zd/Dn0V9KGwSV4BQlCvdygxR/zmn1+kwwS0pjdrg/RhWls8fJgCtBbVmlADkzACMxvS8ZoyVplJnuLfYdea1teafFqTUJR+DlONF/64xi0v5LXnyx8lT/O7SfIfCqsLBCimmA/6EKphytVEa0FGEF5Ll9IBhdSYg2EmeQ2h5GBDZJjWcvgOZG9TO5mx8hzxJHNC3Cwyf7okW3SfM4dIQpcggikzBq740HU8l4bJo5ca5nvyPXefuMp0nU9StllJKANqA7Xo65HvAGQTRoiGptJmkuZlkkdEyfN5BXacWtJTsGmYfL4ZRYCHjC0bhrZWNKlv/a+PFJky6cnjw+Qd9MGZohyUQTu72mqLECljaEuLcU/vYYrA9d13koSOxJdCJ0A5YjoTbrBaC/O+qWEyx45rvU0J4aq2IFDN6Iuw4pyZW1ZRyajVLH5RjjGQV8PUXaCvVCanSJS8RBub9b/yWs9FzLN+IuLVyhLU1DXPveNVOw/S1qWd3dSh0KYZsC/S9x+E/FJkmNYWFJ1TvnbbivbFY8RbrBAMFJF+dfeYzrtKfbLUsMZFyTPTVgnqltI6ATnaHyLVCSDQs4hNiqTUxTC5SlUdk6kNvuzT6rnS8tRCMQYU0ZjeEWh8g9aKSVCHMAmUFNMnPzfO2PTBw8/f2dw0yStLw1RRJbEtqYmTm2ugiEMfBlB/F33z59CsoA86Yal/E7Ja7TUNybmjrT5O6JUkIecIdU6UjgR+DGa9Dj+TvJYKT+D2ZD5M9HOqjT1VLegDdeXSMLWoBGianDLJswkuckbKNttj+e56pNMyUGX2UsAnrHi++VTNHVY8MYQzpfkw9f7gGCNlvllmBucvVAZkE0RdQG7baTp6quZNTcgUZpLXq5WNJnkR/YWik8o3MlDNl7PqBWfL7mJqQtGtRDsitB+aORkdQjbd9NS+0NPy5zBx9xlNCZ0cAFDVJOxpm3wWmTSNzYRO6SNPTYOchFIA9FXQhzwLLcXMURqmirShZH4RhEleWpxPW6hNWSjP6Xx1/zln8Y0ypcQ+IV/rhJpfBZyGTb8ORT3oQ+N32lfdzdQwab9tvjFqOmeSUmAyJGHar4qHA5Hsv8f5KSUJHZDB53PrBKUNNg2T/I1tUfJ6avZzmKi7VSEUbUUe3890DdGFVNTY5IhKao/JC9v5W5S1RFFULVpwatyq45Qu0+nDVFZYcRQLK05pWJSojvLYlb6LzzqS19zNWqa0LFQ12sA2Ljq6TYapiIapwbT55xkoiAzTWg7fcexrBhJi3x2KIptGZ49skmcvm3NUpcyshCjuw8TBlp6T/PvUQDova+XpxfuY5OmOoma9JTNMgUE0Qsuiw4qn0q+G1LelYlJ/RaLk6fk4M5p6Hf4vq4/bFDaC25thAv3+gL9pLoV60AeTsPA5nJLqN7+gD+ZvLyKmz3yY1N95Drp0SXzlsT+MYVgqSUIyUz5jPgFvPqekS4ChFvNAnQDlPkEjoiXDMFEmeTWhWCbkiZKXmeRlPky9mi4irDj3HQXK087bNUxN2LNrPLNHva+ckvtWLiYmtw+TVmzForF0l6Wb5JnfWB27FfI+BzWseDnrTlIvDIDusy6sAlOZtkpRJCR7Vu8gNMqLDNNagqJzyvdcFRsRHgJqspSmYaLKlq75g2sbzxtpTeagLM2HLbW+gIX4zFABIozy9Poc5Qq9PKIhZWuY+NLC66EYUIoYbEwjofhF6NNLaH9tsPoVwNwQs8AHzDjlwPowMelDzn9ploapbpLX+J0SfD4+TFRYcR9TPjNK3sDSMJlhxf0Yj0Z6d1tlAm5oq+mnhN4yKO2P/mVIkzxPDZPLJK/FYJjoQrtdJnnEvarQGPNM0GRqnTikjKfObFFB0WxR8sry/7QeilqiJitFj8Vs2IegJjVxTdMwJcQ8KUnD1PuXNckjTDRD6ioDcr160B5bj5I+TNr8DmHqKtn+5p1lwCAyTIMQpJ1rgGSNLFO55keyEr/fa8DT9dMmeflnkBr0wV62IJggOY3BXGnpuE0nlGGwva5OyDYYJncdNSKt1SQv8dQwKecwUfWWzDAxxeXZL6lvQ2mY0g1P1qi1EpLtBlPqboyLYdIfp5treJQ8+r7Nd8KXUDPen/T4CIce9CH1CfHRMFHETug5TGnfh5rJNBP5worL6e1R8pJENRHiNEx17Y+bRKCmgG9PJUnDb42CElacMI1NkX539mwf4natJpRxRu4bbMvq0DVMaXpqbPL8kigv6INFWyey/8pDzaGdcIH6XK55ljesOBJznhTxYXJpmJTnFfq+X11laZgaPauMN2HfuzsJH6ZEa1dIC9O0kWGK6BOEDDTfgawzFD4o/0yH/Hm7e+T227VXFBMESHuJopmhzNfoNnDdwd637F46vZhpNDz6iDojyDDJ82xj47lqxkhpJnJvZJY66fvhZZHnMFGEWpKmV4kwfRPPGFiPukOdn9PNNfQcJi4t7ztRwCRPHp+FNUySFiHVMHm0K69Jnvwq6abfn+cw2cwdfevViRfb+1SSRPHf4xkm+uBaP99Vv9DmCejAEnI5Keo+THS6VLMYQlz21GqKuVF2rISiPXVpmHp9mDQhFaVR4NpWE+UdyWA1yXMQxnlQLahhIv2cHNlyH1xbnxgZKkmCpAAFrJrfNcpMofow+WmYqL4sbdmRtEIav2Sd0pSGSTdnzOXDFE3yIvoCzRhmviY2oettktDtpU3iimiYGlIQqmx5geCCPqTV6/5OervqplJm/mCTPJuGSdsUKO0Xr4ExtR+ucxeCz2EiCNOyz2FiGdMc44Ri5iiGKZN+QUhnu5gbgm6CYyP6XGd96ESOqmHyf1f5++hR0yiESLbtGqb8372uYZIlsb0MUzN9mCQSJC3C13ysL5DLJE/7YWtqJVEl3lzQBdaHydma1GTHjwm1aWB1opObSw3zWY/GZXnU4CKk76djGDY0TPWE6RRUzZXo6xQuH5IQuNaasmmHIlHyuDSubHnDiuuCBF1LFFaWyn1RUfIUzblyDlNYXbZAHiGQW6xaCtmPryCj5EHry4B2yFYcgw2RYRqECDFd810PfMMEh9h320ARWUX2jK4ee7vke1Xm7Ajy4FohjA7hNtFQAt/OMOllpHncnZS2T2WudA2T+js06APZxyWfvcgH1yinLMoHJpN+Se/bQvgwNb51/cJmumST+gImkZP+5sLfc3AF5dAhAiTbZlhxtZy8GKodRpr2VVOj5BEaptDDYcuEyYy769Xnr+5PYWNWEiTKmGQ1TKDHtc/3ThI/IsplkqczTFyZDR8m/49UEwJdctCHHMcxtGQMU7p3mO1wEZYCfRP0ASjfz7RqCfrg5xcYzjHlD/pAhRXPVZQRKCYz7ZXPYZKD2SiMVFilZZkCy76aOr1n61IySp72/iHvlDFtg5BjigzTIASpti04p/SoKT7pfK1fyE2CYlhK8mGiy1brsZntCe0d9ZShQR94Ez5bP+taLbMsjhHLwooTIXPZ+hzMjn6GBxlWvGwfJuZ+noWW2mQpc6NM+gXNJE/XsOgaJs/DN+nn6u+UkSvNJI/VMIWY5Ol1+QlYXDCCPqQaJp9zmErwYUqvm61hophzDrq2wa9elSBz+TDJTPowNuhDgiGtZkE+GkXdwd6Wboilb3QpPUeYuTRM1Nyoaj5MWVpFKMg2DYA0V1MhVW96hXB2EJZlmsq5hlmRPZZC1bJG+WmYCKGVg0Hw8W+koNMiCYpFeqN8mLjxqZ7DFIiSBDVyMbrAy3oOE2WSp60xQU1MhZIheQYIIsM0CEEtUPwi4zeUBXNt1i1Lsb2K9kaR8qjwsDLMyHd8/YZJnpaWDfnNtD/XOUzGTq1KMH3qUzVlWmm61szV+cLNVOe1LWerLHGAUQweRag1NEwNMxmKUNN9mCpJwps2uUzytOctGcMURkhx45JdG4Tw1gqaDGPjugixZ4YV99cwUbRJqIap4azdXA2TawzIMHyYPPIYGiZHWpnZ5MZtkhTVMPn1qT3og0qUct8g/e4hku5qTWjBggghmoOsa/gwCaUMbjxxa1pZmh/XOCv9rLzCGiYqnz1PkbDiiTZRyju4tv5XLk8eO/J3Ca2zLFNgWesr7xV1YSifzyfoQ1A7elsxCBVMkWEajAjxGfAd0/pBpnzdDZQf9KEkDZNHPXTocVVrUL+mfJjoclkNC6th4tuoE35ZWkHc48qViVrHJuPjw6T6RFEMk/q7TK2n0pYcw4Ri5uiDFRuLeebDRKTTfZgS8GZ5Lu2C3o60vtD5wH1jm4bJR5NTL0MtxPcYAhc4DZOPFJk7W8eZj/BhavY5TLby9Uc6r0j7vfBluHwzKkmiMOm+B8eGIIG/1s7q/yc9aq1YDq6t1oz0LlRrqkleyBqbwjTJQ287wjQKZQXMcX0vn2pChnm1VkxTQDF4ruoLhRXX6885pXXtFHXWljx2Wn0ZJlIYXg5kJk+Pdmwb55SGSV9jQsaM2keDi2uKDNMgBKlhKkycqhIHvm5BXnNgiTUia6EoeYpJnkvDREvWuTb5amNC7/uGb6+nbbTHtz6bz5H5TmxTsvRyn1H0rC75G1LQW5UbX/lM8vzSZRomNM4oIk3y0EiX5sutYdIKz3sOEyd5tc1B3750+dnkRUuiau/STdiHgKReK68PU7PPYQryrSl8DpPdHE5nmGxhxTkTMtvvel4/z4sEjqAPUv0tloNGXWHFyTxCDyuuMj3yPQ56WPE0s9IMRetAo7sk7bzr/b2OQQjS0tUKEb10+HUH05eTuTS0Qkz9vmUpv3v/cn2Xl7nIk54tR2IZdYGX7RvSGiZ9fvs3Uv6+g4xfigzT2gJuuPoOY1WrUjxdo/6kT2xVFeddBzPGEYoZESwzGkTYVO58HN5Ejr5v6z/2HCaP3iSjPelEDhH5zwbdh8knSmBe6XSjPKYtOQYUpXmwnWdWq0E1yWNCPzeK4CXl7kNEOQ1TmDaZZZiYVaAeJU+953vwJzVX8qBFD/oQ4MNEERLBPkwBQ7TIaA4NRqDU67FL69G/bLXpTAolEAAsGmx3c7z7KkmghDjXoZgyEfMwhU0bzKGmaZh8zq/ToWuYskAxgT4rpZ3D5Hh/HwFJSB9Whd2cy12Xec9VexHm0iDz82qYEtrMTmYG5D3HN6w4WVdpQR+Qda7+zWzjgtUwMX56znZI14OMX4oM02BEM7hyPS4/WzeTJxRlx+B3B31QtS02hkcPbKEThbbFhdoA8vgwmRomnUD38GGyaKNyaZikNNQGr0v3qYNhQ0EG58hRDmUuSb1z2mIBV9AH9a9Nw+QiYvTHDR+mMA1TqKmKEEQIa6atpg+XOcbyoH62jkq8A6oAhENehknOGDJCi/gShGQ1ouTlKN8aJc8wp0noM8kY6HOSrEoizqzttAgaAN2Hie/H9LuHncOkB30wNUzOc5ikuSrn9Qnrr7SlJJM81xj1WiICxmq1Vkxoku8cpgJ9JZVd0bTbYcWo2k7KtFdupRIlL5ABKih3dCLUkgGAEnEPyL+ORpO8iKaDIve5eZ/Hh8lbw8SGy3ZPAtOso9jEcQd9aFzXz44gWabe/zXmKqCtpL8Ls8Dn0zBJ5XImazXzPYx30Ovz2ITcYcXVeyFEGAcX8+sLUsNkmUf1g3p7GabENAXSNX4J+PfNHfSB0G7aEH4Ok3+AAf79i0EPFR1ycC011/zySdcB1EgRH6YQbathkkeZxWm/E4MQ5MtPNJO8BMCwAnOVNMkDTRjqwoOk4gr6IJfJ+zB15/Bhqgk96EP9r7rH2ZEFfdBCkodE6wP8fQldKCPoQ2gflq9hsjcgtw+TIVTIVUyWV9fqAmr/y99a1ZTy5ZJvVhLDVGHMZOv7QFhZujwkqC+ltCXHIGk6Bi3DdPXVVyNJElx66aX93ZQ+By0ZLzarbNoItW6ZaObSSO1K6PmuZy06cbocPky6mYXNbE/vC0MbY9nb6AABXGr+pblNQXHWZPKmSWz+TiFas7Qul6O/vhmHhFLmQJpO5hgrVH9S5chhxRsH17pN8pKED/rgkvrqRGTabZR20wa5/+V8XO1CmP3CEVz8+xebuJVEPYw0M8nL6cPkE6lRDfoQwjB5JzVQxCQvdBrpxJzZFtNEiAqLz5rkeSnxaKZNH18J6GiVcjlZXg8NE9fPnDbSdX6fr4ZJP4cp1CSvvKAP9uehQVFcKNpu0ofJ8Q65fZgcvn1hZdHnEKkaJrqdtrWANBMv0SSPqrpO44T1aUXXUgf5MDWuy7Y0ajYGJcP0zDPP4KabbsIee+zR303pFzRDjel9cK0sfeNMzXTi3KP+ojbcchhiXnfUe80sEOk9wyRPK9F23hAlPcpzcC0X9EHNzzBVhPjfYJgC2pLWpWjpiAz6vVI0TOS98LFCjS+qlHQtF0I0TPII4k9k6dJ8fFhxVzdYTfLsWRUEB32AME3yPOui/OTyQDd3TAlqLz+FnBom3fHbF8WCPvDP9NfQ5xFFjOh3DB8mS32VJNFMhOwHL+vwO4eJ7ltDw5QkVg2TnpaNkpcxTF5FATDDipNafMcwNMKK96anIqjZ0FcH1wZarDpRVDNGn8PkqjO/him3VoQoC8Q64hPQILTaskzy5KAPMoQIX8d1gUhIX1Y8+migYtAxTCtXrsQ555yDn//859hggw36uzmloKO7ikkz21jpz9JVXfjPy/PxwOSF6Oyp0oSeNGCXrOzE5Pkr6vct03N222rMXLIagDZhLKPY5xwg+XYCD41PTeC5GW1snT7oJE5s7+qpYeLMtvpp5FLfchomiuUKNcmj+psNXtD7d177GuX+xJltWKOdrk35jEycuSwLp6vWp0o7gUaUuGpNYOLMNkxduJLMw0HXMFHpn5velvV5V0+tcNAHAFjR0YMXZy+DEAILV3Rg6sIVuRbZak1g0sw25dRy0pSot8lvLlqF+e0dAGhfrJoQmN/egWmLV2b5OAaxxREtUCca0t9zl63B9MWrrHll8EIHlmMyTfI8P5kQAss7uvHfVxZ4t4+CHlAjldj7fGNqeK3o6HHmU4mmAMloAUlvSD3TFqnfnMpqdI9CvPHR5NLyVA1T/gNqbXVQ72wGOLH7OsprrU3DlK6DIf1cE8Iw5X517nIsW92l3LNB1jCt6uzBnGVretsaqmHqG5O8pas63WUE+oEVAbU0ur5hXiYt8Sg7BNTBtX7nuYW1oaw2c4KUhSs6sXRVl/nAUVbeyH9y0sHGMLX2dwNCcfHFF+P444/HUUcdhSuuuMKatrOzE52djQVi+fLlzW5eLnzyt8/hgcmL8KX37IRPHjbeeP7RW5/BxJnLAACXHLEdLjh4W2t5E664DwBw3+cOtZowHHTNAwCAV755bC4Nk08Y7SRJaD8U6fqGh97E9+6ZbKnVjW7iHKYv/OkF3PXCXHz6iO1w4HYbK+2jNTbqX4CPksd1UohZR3p//6vuV+6f9rPH6cK18r/9z1exeKW5AaZJ1MiA9R8/vG8KfnT/VK92q4XqTK6Z5I/PzsIfn50FADht7y1KMX846SePYnbbGvz8w/viwtueBVCfA6GYv7wDp/7scRy43Ub43Uff3XuXMH/obfTND0/L7lHOwUIA777qf4184KX0LqmvvsmmROXPH3nLmk8He3AtU31NmBomX5MmIYBL//A87n99YVAbdaw3vFVznq7/2HqjdTCjV5jDIe/wyi0ZLSBeLNtxe4v1Ryi/dcm5nchSzSC5sctpTMdusI6zfVw8O70fEiQYNXwIW46sfRrSWmHfq0fSBvtCD/rw/Kxl+NrfXlbS+EbJq9UEzrjxiex+JXCMdTsqGtZaUYSCbHscld36xAxnGSFDNZTR23KDEYpwNI+GKf/BteqYLGbqpp/DVP8r9/96w2ny2mc8bDqqMb/LNCPk8NCURc78w4dUsoh5idaut4tJnhfD9LnPfc67wOuuuy53Y1z4wx/+gIkTJ+KZZ57xSn/VVVfhm9/8ZtPaUxYemFwfrL9+/C2SYZrXK+kGgLntHd7606feWsI+kzeKxSs7lTJttLOPQ6ye32bCBgC/eGSa9bkPqPCwd70wFwBw00PTsP/4jaTnjEme9jctK8Tfh1rMXRomH3BO9jc8+CZRX6qNMjVCPyPSA6pJI1k/3Pb+Mv46aQ622tBNWLkwu60usU2/JQC8NKc9d3mPTW3MCfkVjtp5E5x7wDb4DUFQ6IEJKNRNi+hULmJZlwpTmrkhLQkO3WEMhg1pwb9enEeWI489nwhGQhABBqTrE/fcHEfv8g4AwPAhLfjCMTvgwcmL8OyMNgjUpfEyJmy9gZem+Cvv3QmVJMGilZ3Y4R3r4ZE3FmfPUvr4V+e9E0d+/yG2jO+cuhv+OnFO9ruS8PNsp03Xw/hN1sXHegVNul+MC7+5YD8jn44bPzgBn/jtc+Szb528KzlPfSETZrd/9F34/TOzcNmJuyhp9O9te62WiuZfqGlHz9pvK2w4cgg2G10n2m760ATc/dI8nLrPlvjTs7Pw9RN20Ys0wEmz9bGdJMB2m6yLjx+yLZDU12oZo0cMwWeO3B5JAowaPsR5DpMPU7vPVutj4sxlqNWEsjfd/xrF/NvXuTTCX1UIvDqvMR9CgokAjf1r181H4Y0FKxVTwSQBfn3+fjjr508a+TYaORTfPX0PXHDrs7nqJeEoYr9tNsTT05cC4DVM3zxpV/L+ZSfsgpoAznrnWAC0n6sruip3qPWeY9fH+I1H4q+T5pDPDSK/QFfp5n2yL2uKfbbeAOcdsA3GbTxSyeujhbr06O2xZFUnTt5r82BhyxkTtsTKzh7c/fJ8s80F3vmg7TbGfb1zpM58qmsIh9P22QKH77iJlLSReK3UME2aNEn5PXHiRPT09GDHHXcEAEyZMgUtLS2YMGFC+S3sxaxZs/CZz3wG9957L4YPH+6V5ytf+YrC7C1fvhxjx45tVhObBtVviObKqc28u6fG+y9oRbjO2MmewZ9otqVTNVVexVjhOrhW70ObJkh+Vq3VggJUUBsIG1acYMY4NMKKu9NT/iXpPW6D4zahrH4B8pBHezvqaT52yLaKxgaob26H7zgG19/3hrMcs63lrLLpK3zx2B1x8eF1rdVvnzQZJlfUMTkded8ZJc9dzpYbrINfnPtOAMC/XvwXWY7sgK0EfWDaJUAEfZDSfv+MPRUtw6eO2B77brMhzrz5SdSEmff6D+yFg7/7AFmXjI8fqgqF5DpSgnr8mHXxvn22xF8mzibLOOddW+NvEsP024++C1f88zWFaE2x5Qbr4Kdn70OW4yJeTt5rcxy8/RgAdjryPbttij22HI0XZ6vM/E6brocP77+NwQjIoNjx0/bZImMI5SYesN3GOEDSljfKkH8k1sZWNF+gBIlyeO3Fh4/HlpIW6dhdN8Wxu24KADh0hzF8wUoTaB0TZ6b7leN2xtJVXUY/JQA+e/QOSlsppGPRx3zpq8ftjNNvfMI4Q4heu+1lpWdI2TS1IdL3mz+8Ly767XN4QRpHN5yzD7YdM5JM/5Oz98FWGzW+VYiGjYOrhDP3G4tDdxyD790zmdX2nHvANuT9jdYdhh+ftXf2e2hri5HG5U/H1XnC7pvhwkO25RmmpKhWSSoL9Nqhm2J+g2AcbdtB+majhg/BD8+s91Oou8L3ztgT/31lvsEw8XpfNz707q2xsrNh7lw3yZNL5nHd+/dSW6FomAYXvBimBx5obILXXXcd1ltvPdx6662ZD1FbWxvOP/98HHzwwc1pJYDnnnsOCxcuxD77NDa+arWKhx9+GD/5yU/Q2dmJlhZ18g0bNgzDhg1rWpv6CorfEPxj5tvsi+UyEyT+5zB5aKJMnx+6BXkhhDA2xm7nOUyN63pYcVv5clrqfcLaziUPCcnKaZgo6CFu07pscJ17I4SaxscSg5K6peA2HL6sRvtdzJ13mURvUm1q9dAwVSo8Mejy5eJM8mT49BT3jW0aJiPAgEMCm96qm/Op3yEvrTZUkijL/l5OzZzmQ8BpF/R2JZ4bvf68Wecw6c9aK4ky0X1q1d/J1tZKkihMuu5/V+Q95TZQDef89ZjkRt+EjAkZ8jBvmNGpGlbKN8a1bg5p4Rgm6UdAdw5pMdUAXMTB+jO1rjL8Rn20VGl7ivowDSW0SS6mlxOYuYatrR9DkSSJEs0vLVc9zJWuLJRpydNm7nyrvO/fUjGFLLnPsJKy+QrdBwqCfZi+//3v47///a8ScGGDDTbAFVdcgWOOOQaf//znS21giiOPPBIvvfSScu/888/HTjvthC996UsGs7Q2QRlTwh7dS0ZXtcZOTj30t08wh3o+tyZK9WFizsBRGK9wBkSfq53Oc5hUzZhN6yW3p05QqmlDbajZRYHRdJFJibbxaU2TQ1e2LpeGCW4tHtUOgJZ6OoTgVpTGMBEMHWdG5NocbGfEuAhQ/SlJ9Hh0Vp4oeT5n/sjIiClCw5SX0FY0TI5voUBjEjjpun5XjSjn3+YixFYIIaubJHk5ksvXjrmlM/cJ1G9QBlEZYpJnq1ffv1xt8+nmVCvUU6sp6y9FiLuW+jRYhj73QsOKp6C0KxVGW5eWrYTJb/Ypp6h/g3Su5Q3xnSJPJNWiEXVTFAmmkID+rj7BPkKrzdNKUviQo5wUupClojHqeYPnDDJ+KZxhWr58ORYtMh3EFi1ahBUrVpTSKArrrbcedtttN+XeyJEjsdFGGxn31zZo/BIdq58Yrz1Vwc4SnVCXhWtWDZNShjuNLZ1Pfb7pw8KKM1qozOytca9GaKNCpSIWfsmfYXKUJaNGvJ9rk9E1TLpPiBBqCF6XX1rajnpZBMOE/IRZWSF401IUApqYMJWKWzKZJHz48FAahmQwPfKxQR+Y3ELYJeM0QVD/WxPCOIMlL8OkaDfkAx4DGM2Kham1aZhCAjnkeb/G+Sz+eYdojfLJavgwWfIYJnlJEzRMDNOml60welQO49s5GHqPtqfMTLWmrnFUAAOXYCj9VvqS5HNwNAUq0IYtOqCuNXG4/3jBtbTLwiGffcAGLrCIDdz670O0l6dh4kzy3HWFMrX51h3qXv6Xb23RDrtOzDXHF8rrDzKGKXi0nnrqqTj//PPx17/+FbNnz8bs2bPxl7/8BRdccAFOO+20ZrTxbQ9dG+M7xmySeKE9kjcGqw+Th5mXT5AEnYEJAdW+rp5GuGgfDZPNbE9+1MNFyQuArZ983z0LK+5Zn9lmS05hjhVd8iegBdbw6IS0FdQGUd/o8y3gLvNBX5Amg5RU3CGxT7O1MtQ3dz/L62OS59FXoRomKo9K6PFyypqD2QqBPNZanPXL9cnMFV+/oaWwPLPByTRb7oUM9SGtFfVohmANE6/tBOr91qpoQBLlG5SiYWJMdvSpoLSTqlcb0k4m2kfD1JKOYVUTH+J/qpdlFzwEMMstFWNDrFhMgnVNXhkmea53lussqu3Jp2Gi13+fN1eFY/mhH4KbdpmP71povflM8uh68+65dQ2T+m4u7TDftkbitd4k78Ybb8QXvvAFnH322eju7q4X0tqKCy64AN/73vdKb6ANDz74YJ/W139QtSfUGKPGa3dVsJPTdZAp2xKFseLKltuVOIM+BJvkEfcUDRPJDMkMkz0QhX5GFOXDFBIOk2WYLM+otLay9PqM72vJ1lMzfamGtKhhbIUAecijvR31v5yFWV7CLMQkL0lsGj6RtSUFKTW0iXizehJWcujSYuhFkwymvQgA4cSLEMKQEPtqmASE4fORdzOmgj7Uy7PnU5/zTIJVwxSy0ecgsdK6gjRMedQE2nezlZAk6hhLEihBH0Lfkw5CRKc1D65151HSO577BD3ItCM1dZ2kTPJc6xzvw5RvrFBR46hjDbI80EzyyuB2PZaRtJ7CPkylapjcefMS+VQ5rqAPHEK/Ua51h8jjMtW1oaWiza1EZw5D2tbA4GKXAhmmarWKZ599Ft/5znfwve99D2++WQ+VOn78eIwcSUdxiSgOPdCCb5Q82xkJhp+RByME6Johi60ZU5dHcieo4rp67P41umaMqjO9K6/HVYI5Ct0j2G4S7rIygj9j5vzqCzEjpDQ2JtGmnlniY4qRfgfSJC/JtxEAYVHyWisJm570YWLKcLU0AW8OE+zDRDGYHl0V7sNE5XEzhkCvw7wh/Xe3kYLst9GimOTZ8+mMjzfDlNOHKc/7NRgmd5oUeaTu6jsRhUqoJImmyVPne1mRqUmG2/BhCqvMJXwIM8nTouSRJnn2suSw4lw7fF9xSEvvOVNahoqD0C1bw+Ra2+sazPq1j6WBDa6IeBR0U+AUoW9eNGIexXz5fHfbeCCF4XmayewheZnEFk0gWPerk8v2L1jVzA0ulimIYWppacExxxyD1157DePGjcMee+zRrHZFSBD6tecY667W2IGs+qdoTJmlAjUdk0aOwJfQTIGPpoptA1FzlxLy2kyv++NYNUxS+VREvfJ8mOh2yNAJfj/NDsXkWRgmglBoJTayLkdgDR0NMwXzma7S9y0LCDssscXKMKUaJvsm1+Lhw4TEJAbl/NasPiZ5Hpt7qLRXEJpWlwQ2bRrFnJUS9EEz+7BBZ3xYAsUSOCDMlCQ8QVp3mIYpB8OkMP32nqsk5hhrVUzyyuCY6O9h0wD51OoaEz4+aVnAgprQouSZY9q9PnuEFffszmHMd7cda6BrDcr4dE6TPDTWOiqyYAjyaJh4wZD75cvqK07gF6rl8q2rDOQPKl7/3oqQBQU0TFK+wcUu5fBh2m233TBtWvGDRiP8ofsXUYOMmlS208ONoA8aA+XTFtv5Qra6AJ0JLM6AdPXYzcWUyHdEqHC5TfIzmmEKaCx4iZ0QbgldSthkASk8+iq0zaSGSSOohFA1Oz77ZPrdyY0sCZNky5tkV4CGyUagpaWomgozve4kTyEBbU7DlWkti9HIucCNJf4cJmGEh3dFPkrfpUPyGcye5ZRucwEHytIw2QIHhHybIs7XoSZ5RSSvnLlQikqim48mhTRMJOHI3LdpEMtw2vcpI2WqqkI3ycuhYWIIfiVsuyc5yZVl18brATyKU9c+Vg9pPUV9mPQ102fsFWHSShEGQNWyydBNXSnY5iZpPZTLJI+4V+DVWysJWlrUd0vUJSQIad7B5sMUzDBdccUV+MIXvoB//vOfmDdvHpYvX678iygfOjNDDTJqvPqa5OnOr7Y1UH7GpVPM/cAxMPR1XtgOVdXPmdLft9GOlClpQLdzB8LNEOw+TPa8qQSz4V/lro8yybMRYJ0E8atv3gI5NEy9fymNScVKBJiQ6wvZMG1EfMMkzy4pa/ExyUsSVpPk1DBpvynGyyvoA/NNuJxCmA7UvoR9Z7f5DfKaA3Emec5Q7hrj41t/3n0+D7GV5giJxucKEmKrB3Cb3hhBHxK1ztD35HyYaA0l/32pWvWyXeOTDfwh3U/ftWaY5IVrmHTBUtYOT188ecxmTCtl3md5L5fAJxguhgkNbUNRHybdksFn7OcJbpOlYa5DkUDTlBDWFP0b9IHeQ3IHfdA0TLrWM/hsqfRicPFL4UEfjjvuOADASSedpA2Y+mGi1apJfEUUg6JhCjm41hr0Qb321fj4nNcktGsXgxE6Z/L5MKkMIm0mSKfVwUXZC2lv/YF/FCZK+8WBMsmzSQIpkzWdaNeDPngFn+itkw6THWaSJze/OyBKHqf1ASQNk9owAz4meQl4YsXliK4/LjvoA1e9gHkAsaue9B0pJju3D1NrI6NOyNugP/ZUMOUmMEPbI2cK0jDlMFMKMsmrmOY0rS3+/e7VHkvdXJoyzJm8nO5729CjCcMo4t+1ynHmk77fe1hrBau76nOJM0+zmuRBJVbL8D9z+zCZprn6MRS+0NdnH6EHe3CtR31lmbcBdF/7mGKGMrW5NNvMvbyv35KYYcXzmJ2mqCQJ60s+kBHMMD3wwAPNaEeEBQoDIphFnBixXdUauwDJTIzu02NdLxXNEG9qptRFmr/JBVnq84RyqCrVJvla0EwhxZSUYZLHwceHKSW2Kf8qDtQ5TKFtNsOKC02L5y6DCqogI0TaJY81m6mpDsoXSy/TJSlrSdzW30nCb/bOKHla2dxBvy6wDBPTdipKnlurU/9LVZXbh0k6dDzkHCa5u21mkzZNRkiTcwV9YNpAp6pjSCUJXhJ1PzybZtUIEZw04xwmmshXTS717+LB7DjHhLsMeX7Jc4bSXPsKtMx2OJsBQGWYsm+gvYMt6EOSJEiUA0WLfzsvHybNJC9JklymIoYvnUfHscI/L5POcgQDslmiXNZACfpA5XFpnm1oqZjra14fprQtwOAzyQtmmA499NBmtCPCBs18jTy4lsjWUxUsEScXQRHYHHx8nfSADuSkUPilsElDpVf8axitkHxNWXWRJnmEtqasyC6U6ZwO3YfJh1egwoqHLkw6w9RTDdOqAY1+5KPk+UPWboWEFffyYZLuUdOlxRWmCr1mKjlN8vSy6XOY7EUAOTRMwtT+liHBD8UQScOkOxbboBMs/DlMtnwuBlFuTw5Jb0ZI+ecpHPTBNdx0hgn6uUzFwZnc2s5dotqtrzmutoVEyQPUfYM2ybOX5aNhso2xYa0tAOrHs9gixtnDipcL1zovE96yhimPbZEejZVjQGVw63+O2Rmco5HTzSizJnmBa2ieVtJ+hflHS0sl0fwP85/D1GhLOE3R3whmmFKsXr0aM2fORFdXl3I/Rs4rH7q5nLdJXq2G4YybmkpA6xomP5M8m2+OnN5FrJcRpls/M8iWRzdBzNJkzxtPqwSjUJZURHiUlRIylLkgWy6h6g5tsr6RUSZYLqTvxpkuhCyyss9MyLtYCdVMA2aXCtoOjpTzccxZGSYYPsQ6r2GiUfdhUvPk9REB8ksvhyraDamuAN8vu4aJ/x3CyBQxd7L1q/6otSWcNTNM8mzfCeZ5V61la5iYNrjO+XKWW2B8ppDfXdYqURom13rrE+jF1qThQxr9zpnk2YRLuqZDCJHbPC4EpIYph6lIi6Z+139TKOLDVBZ8zO04QXBwUJU8JnlEliL9ozNMNgGVF3rzDjJ+KZxhWrRoEc4//3zcfffd5PPow1Q+fEJwU5PBFk1M1bj4B2HQGQ9XGk7DpJrIhWqYTNjMxXSmjQ/6oP4FUg2TirI2I86XSkZKyKTJfKqmTfLCGq2bslGR9FxIq+Q0JiHrLRWVzQepNJ3aZLODax1SwdaK21nWFvQhlAmhBM0+mx3rgM1pmCCMfnFrJyzPckovZZ8d5dDrgLZUEp6wMDRMTBku+JorUnWFEBd5zqaR3yphtDvyc12TF+I75tscqhibyRKpYTLy26vlmGx5+VM0TNK6livog5eGic9f1zDVYfvurDCA+NKpf0jzkDQiDaYMU86SdMGcz6HN7MG1oYEHCoxzLqvCMLG0WvPbSWVJcpYFEGa8mrYqtO/TogbbOUzBK/Oll16KZcuW4amnnsKIESPwn//8B7feeiu233573HXXXc1o49seQrv2D/qgnsPEBTPQGQhb8br2iE6jm4MRaQrME2qSBR1cS0S+A+j3rtVM5qo0DRNhEqWjtbGyyH+sqBIqtHCTPF3DFM4wWcOKIywMdUd3fkEMp/nJfKyUNpnp9EP6KCTg38cdJU99Tp/DlB+8D5P9wE2yrABNiS9kQlFuj9tvTCVKOXrTaLP0u8ygD7a6Q+ppbcnhw6QVbxtyeljxJEmaEvTBFpZev67ncVech2m1tUExyaOEKo4PUakw4aU9+3CYpGGymWJy71WX9KsPm2E2y9XZk5nk5atTX+uKHLwbbhZWANz3kD4hN3bCw/bnAMMx5X3nFv0cJk3DlM8krxgd2B8I1jDdf//9uPPOO7HvvvuiUqlg6623xtFHH41Ro0bhqquuwvHHH9+Mdr6toWtsfGP1d1dryl0hGgPbDFVO16fDJziEfkgsycDI0fb46ki4NEz68wSJZkrItJ1oK6lhKtHewRn0IfNhqsNHIkP7MIW1Sw/vmodhSptA+zCFyaQ6iDDWvqhUQBrYZ12ktM9slVeUvIQ3z3FFyaPqIyvICS6rgGne4qrGaloW2K4UMqEotyfE9SuxmeQ58vmiSLSqkH6zBSrxKcN2iG+9LeaYHFLJb5LHOaqTNJtMZFmecXBqmDwKUTRMjiMKXOtmGj2spmmnFIbUkn+YpF3loyP6M4kChZYKLyQwTfLy8jn6mukT9MHWrr4C78MkCahZkzy+pVSOfOsOJXQLM4OX0VJJtIA8xaLkpekHG8MUvDKvWrUKm2yyCQBggw02wKJFiwAAu+++OyZOnFhu6yIA6BOP9mGiBqweflPXKsnXCiNkY2EUkzxGw6QT6w5aNziYgK49qQlFOkgxNHIbKIYCSH2K1Hs9TYySB7gP/ssYptRc0KNMYSqYgpm8MjRM6Thi6b+AVTaPD1UKVsOUmuQ5muTLMLEEuytKnpaNDsOeH1xeMuhDzrKAcFOTFDIBK8+HEJM8mYgzE9rzWevgi3FVo9QVcrRSHpM8/Z2sJnlI1INVEy2seHDtdB3U5wg9h8ko18kwucuQ55dr73EJqHTCsXGff08ZPiZ5SWLXMMkQopiWxgeycCL1+8o/93UfpvIFQ3z68usKGVtF6wrN4zLVtaElSaCSBPr8Dis3HT+DLbB48Mq84447YvLkyQCAPffcEzfddBPmzJmDG2+8EZtttlnpDYygNEx+6K7WlHEs55MZCL1Mqw+TzzlMcntBn+tQaDHR8nZpUXNI5ZFSNz1NhaCYPWGUGHoOkw3e5zAFmORRPlpFo+Tl8WFKaV/aNCdMKllMw8QwTFn71HYZ+ROPsOLgfZgSptzsufaMPIepAA3EEQYCwjBDKhK2uQwyTdUw+bfFflaNTpirklJfhJiQ6nUFncPUkgSvL3pYcWt1iUqoJkgKBX3giDMKOc7k1cq1t81Hm1vxEICkcH2HJElIrYhvcAtZwySfR6bUATuh2+cmeWi8X7r15q3S1DDlHyC5D0/NVRdzX3rA7bnB8ytHS0nhTXApDbRUErRIa4QuIMxrDtns4CRlI9gk7zOf+QzmzZsHALj88svxnve8B7/73e8wdOhQ/PrXvy67fRGgfJgokzwT9YNrG084DZPOKNjGsK6pIdtrmPvR2py80NkdnWFyhxWnN0IzgHh9Q9DTujdRf4bQFSFb30C8DowV5kJUI7QJ1npbdJO8IlHyaI1JyEZQRMPEmXlkDJ3DebXVU8PEMky9ElnfDbSvNEwg5maIVifkmS/k9oT4q+SNkhciZc71fqmGKYhhqgQLCAwNk6W+SgJTw1Qg6ANrkufQvJh5zGd62UV87GS0JAl6PM2bbagkNCOtRxTjIPsw2cOKM/cJTV7TTfKkb1tNNUw5y9LDiPuEFecbFpi8CUIov6APoXWFpa/noYRu+U3yKpoPk+l/GIjeDIMt6EMww/TBD34wu54wYQJmzJiB119/HVtttRU23njjUhsX0QuFAaG1I6RJnmYLpzMyKQyNiWUQ68wbnUY17yt7Tujldffw79loA2+CKOejzi8yzNucm2jiPC09hcskLwsrLrXRhXqb1YRCCIOxtEGnAYpFyTOfhS7eeTVMNkYm7VWVgDZT+WgW6lJXlxTYb0zQUQXLp4IEwsOK2xmm4m1UTPIcaY3DWlmikv/t+rRy74QEodDravo5TFo77Aomk7lUGabi3zHPGTQ+tbrS+DKmFc/Y264UlQqtWfbtQ9kkzxr0gbufqM8E+iroQ/06C/qQ05SuP32YCjFMzH25+dzYKUODmwdOzbMFdV89qSxofnqB5TZM8gYXglfmadOmKb/XWWcd7LPPPpFZaiL0AAm+DEhPVagOoRqTJJep/2bbomimCmiYCnBRek7DJM9hAshqmIj7PbVacIjukDXfO+hDbzIfm19B2G3WhNlPNuiLeh6GiSsLSDVMfQNug8pM8qR7VMoWRlqugDHNScsM2VBshHcecHULIbwZ+xTNJsZCTPLkTtFNRJRkJWmY8tByafEh5zD5hFa21kmUqdenhgjOx6RZ28DUX/QcryLnhMnwDcTis9ZTZant4OtSTfI4Hyb+WANKk9dkFyaF4a5lQR9yMkzauMsT8KQ/wI9vWcPEWRRYCia1teF9S5rJIp95H9Ab9EEzwfM5pNfVvrVew7Tddtthyy23xKGHHorDDjsMhx56KLbbbrtmtC2iF6ZmyG+Q9VhM1WRCST8PyO7DJJXH0NCmRsadJgT6JOvu0bVCZh75XkhY8bpJnjDu2RByiJ9Tw5T6MNkaaZRJfQNhaOJs0BfcEGZLBx0lr/nEdwpOw5T2kctBu4UJHSxDl7gpzxzvqtdJ0QxF+ooNKw7TTLOIhqkMhETJ032YfKXcSjhyV1qmPlfaxr3EqNOF1pZKjrDi6hh2aTvNg2v7aC4GmuSZaezPfceAb3ABHx+mQiZ5cpS8dOJ7mtzX75trU9PXVYnh7i54DlO5YcUDiXaPVieJn4Ca8oflstnaSUdADge5FunqyAC0VMyjB3QNf572DTJ+KVzDNGvWLFx11VUYMWIEvvvd72KHHXbAlltuiXPOOQe/+MUvmtHGtz3MiHZmGmrg6QfXqn5LvKbIJlVTfZ3odDbtlfIgJ1waJsMvA4nRh7SGiYiIVzP7WxAmbzJCwkizh42mZfX6MKX97uOGxIUVL6Jh6iwSdIHsj/yLdyhYholQMVFNbalUPMyxAI7mpIga9blZnzNRCFgNkzn+XD7XTdcwKT5M9rTyY7tJXqL9bqD55zCl9fjnKartcZneGBqmJCnkbE/XwQkPio0fD0Wv131fwtxpAcBolhUhjCX/sCFSlDxOwwT7e+lnLTbDfJdrT3ZwbV4N0wAPK25jVMn7yrcopw25wopTGqYCW25LxRQs+gY2oZD20yDjl8IZpi222ALnnHMObr75ZkyePBmTJ0/GUUcdhTvuuAMf//jHm9HGtz30QeXLf/TUtHOYpGuZTtLpaLtJHl0Gl0YPKNEM6OZiVG36u3Nme/oGWSWYo740ydM3EF+TPIrx0zVxNhg+TIU0TOa9Iot3CHTiUEbaGwrhTbSqpeJHvNuIsBCTrNKDPjCZa0IQYcXDtShlQm5P84I+5JOMFjGNCQr6kCcan0a82EpIEu0QShQ3AzTqYO6Hvpq+3hWJ4iijLIbJNu5S+GqYsqAPWgbK7C57pv0WsBzjUBJkDWaDYcpXVn8eXOuzmOU5qiBFWXRPvr4tdw8xtNJagaFrY1rUYNMwBZvkrV69Go8++igefPBBPPjgg5g0aRJ22mknfOpTn8Jhhx3WhCZGyINq5tLVmN222pK2kdgIhiBHuJMIE90sTAhgwfIOrOrswbZj1s3uz25bjXtfXaCkE0Lghdn/v70zD7OjqPr/t+/s2SZ7JvtCQvY9EJKwEwiLIIjKEnkTQBAMimET8AXkVQj6Q1R4EcFXwIVFUUFFFiMom+wQJBCWACEQSCCQZEL2zPTvj5t7b1V3VXdVL3eZ+X6eZ565t7u66nTf6u46dU6dswG79+mEd9ZuwoBuHSCqJy+vWo+uDbV+OeFi6aoNGNi9g/Zc9OeY/b/yk83IZOSktQCwedtOvPTees8x4Va67S2teGHlOrmu7Tvx4spsXVUZBy2tLtZt3uHLSySuIbYZHNnkYXr748/w4YatoXXev3Q1duvdSdr2+pqNWLtpm7FcSa5h0q3JKZpLnqKdTz7bhjdWb8zKIrl2+Y/PhhUPxnEctWUIu6wfAQMBv4VJXUdUdIc+/+46HDiqt1U7ac9e75QUpuCy3ln8oHUe0ndNHWHEGnAEDGK9vUufwNSsjqABdraspz86ya8d0XX3uElxww43te6byrFq3ZbA/boJGdM0DkqXPAtUp1GM56o/lHm0eryWzVgWJstDTYrrgvWYtJWULhDliqgtTPq1cGFUZzLyJIvBREEw2WNt052UGmuFqWvXrujWrRvmzp2LCy+8EPvssw+6deuWhmxEwbufbMapv3rOtz0fFEDofztaPUEfICoNED57FCa4mH7lQwCA5/57Nnp2qkNLq4s5P34Um7YXwju7rou7nnsfF/zxP/ltjQ01uOuMGfnvS1c1K8/jybc+wS8eewc9OvqVqTBcuNiyvQX7/r9/AgDuOG0vaf89Sz7APUs+kI+RrF5ql7p31m7CSb98Rtp238urcd/LqwFkX26bd53/v17/WConZnu3eY6EhfrOzfx+smk7DvzRI0Z1/vutT/Dvtz7xbf/Cz/5tLJd3gB8nrLfqHdiva0Pq62EAYHD3jljT7Fcyp37/H/nPkoVJIZNR4loEz+zGzfcTdbEuoB88f7hhKx5fvtaobF62lH+zpi71Qlvm1i6vi4i+pMcaY/O7hBQe0K0Bz70rT7jkfrd+jQ3a47zV9upUZy6Uog5d0tgcGccTFQ8OujbUWLeZQ/UE04ZdFu6RKDPwSa2xMx2Yh7lA6+SRlXl9Wx1qC0OwhtrsxRnQrUGa8OtQW+U9TMBfdzHzMMVts1tHud9FmUDNYfuM7FwvD38HdGvA+x4F2dDAhC71/vunoSbod1OjvCUiXFrVIU60qgBk71vxveRN2Gx7L+cOrTB9yd4l7/DDD0dLSwvuvPNO3HnnnbjrrrvwxhtvpCEbgXlHzCkAYmn/2iT1Pt86GuHrO2s3AchaGERlKVufi9ueWSlt27Blh9FN8PddlqpPNm0PL+zFBT4RrCUbt+4IKe561jBFS5g2tGdH7QNUzKFhE2I1aA3Twtm7o35X2Nm3Pv7MuE6Rbh2iDYQyDrDoC+Pz33e0RH+yiTOwvTvX4fOT+uGcQ3aPrTCN7dcFR07sh9+cuqe0fd/de+FXp+yJz03oi6u/NDF09lxy7VL8dtmZ38L2SQO74tCxTVKZMNccm32qfCy6w48Y3xejmjpr6wbkl+SRE/thnxGFiKbvfiJbq0ODW0T40Y6YEJ7Q/Jb5e+Dzk/rhGweNMJZFPDHvC1wq5rUwSQqTgSaskOfYKQN8RS/53Bjf9c1Vf/bsEZg1vEdwWwC+PG0APj+pX2i5ADF9C7J9ZR05Ua3jABMGNOLkWUNw6efGWLcdJM9/HzEa/zVjcH672LdtIzQCdoFARLxNJRXkIpMBvjhV7gvHThmAnp0KE4FBXWzf3XviiPF9cdCo3jh8fPY++e6RY3HkxH44cFRvfG3fYRjeW39/+1wp3fQDeKgsmFFbnDGsB/5rxmAcNKo3jprYD+ceMjKWXABw+1en48iJ8j105TGFd9nlR43F/JlDMGVQdqL/t6dmy//3Ef6+r3+mZLdf9YXxOHH6IMlSf8nnxuCUWUMxtl+XyOdiIkMQ6jxMdhNE4nPMu1YvKJX7jSdNDa0775JXYauYrBWme+65B2vXrsUDDzyAGTNm4O9//zv22Wef/Nomkiy27xSvkqRPXFso47VyiN9yR+9UhMRzUUhcJ28PFzrMFS2IsKAPKrwWtSizm7XVGe2AQly8a+WSp5HjjtP2wtmzR+R/AFNxz9x/N+n7V/cZZiyLSMZxcMKegzB7dJ+snCG/1/yZQ/R1CQ/aA0b2xk+Pn4wu9TWxrCYAsPfwnrjuhMnYZ0Qv/OS4Sfnt1x4/Cfvt3gv/e+IUNDXWaxdT5xB/LpVLT211RirTo2Mtfn7SVOy7ey+hkqDEtSEuUp5ddQp5VYd3rq/G9XOnYEzf4BezeOyRE/riN6dOx2HjmtRlA2uSB6zDAiYQcgzs3oDrT5yCxhALxgGjsv1CLBfaP4Qu6TjqfDjZerzf5ZlSU8Rz/caB/siwPTrV4boTJmPWcH+Kjc71NfjJcZND2/jhF8MV/DDZwgZGDmTFxUH2+l125FicsvdQ67aD5PnqPsPwnSNG57eLbqvRJmGSsYCGPRNMyTgOvjClv7TtgkNHQpQz6LfoUl+D6+dOwS/n77HLnR3o1Tnbj26evwcuOny0/mD4z8OFq02AOyiG9UbEgf9ei+rq5TgO/ufz4/DL+Xvg2hMmhz4nTJi5672Qo2enWpw4fVD++7yZQ/Ddo8bmZd57RLa8qOTmCMvtdvyeg3DlMeOld9ypew/FpUeOScx9OUotaguT+Rv3p8dPwhxhUrAq4/jyLkkWJuHYOWObMLC73qKekwWoPAuTtUtejvHjx2Pnzp3Yvn07tm7digcffBC/+93vcNtttyUpX7vHtD8V8vTI26QcTmKgBzHEuG8Nk38dgSqEeKubzfWkk8VE3ih4jzVJaiqtYWqNlky3piqjVYbEQa5V0AeNIpKbJSw84swE9rYddRFt7jxzpxsWzS9oAOLN36D6HAXTSFy1ITOu4mtEdb1qqzLSOrlc9d4oQfoBe3hYchExmaVKRrHNrDzm55dDt14i3OVJvlZhSZrzCQoj3HB27nIB7jMBFia7KHlmg2DZ2mN2jBd7Fxd59jc435GD2upocinrs9gqEmXSLNTCZHij6ZQKWzKKiRKvwhpm7YuD6j7W3dtx1geJZAfL8raEgyxGIo0IjKZW6zRJTPGyqMabd6kq4wkU4wCO5F4rH2/qOltpCpN1N7/mmmtw1FFHoUePHpg+fTruuOMO7L777vjjH/+Ijz/+OLwCYoXti9Nb3Lt2J4cuJxOgzjOkGhS5rqt86Zks5ItnYZKP3bojeH2NA8cX3S/KYsPaqoz2oSMrTOZPJp0i4lVYTMX1WkhsXpIqZSa3SWVJFAkagGhn6QKuk0nULtMBcthi6rABdNbCJA2DAcD3AgmyMAX3CY+CZ2hhyskUNvZTuaDpk2Sa11VdlTGwSO1SmELKqduy6LsIiJIXNGC1ksewTo8iHaUtWxzPlyD5Mg5QW1UlFI8nmXoNkyhOdOXMW3d45ESzBpJK1JtxHN8z1xckJlB5jde+z8Lk6oOG2LiKB+FA5ZJXRA1Cg04C03ensu/o3jFFPN8k142a3h9VjjzpUpXxRskLvgJhreT2V5pLnrWF6Y477sB+++2H008/Hfvssw8aGxvTkIvswtjClP/vSttcRRnAb3EREd3vcjeYSsFR5XHJbQ8jTnSUbHS+wvcwhQnwBryIdpv6B87yvhw2CpPOwpR7ONk+K70vRRtZaqsy+eh/PgtTiPtM0ABEa2EKkWVHS5giHN4eYOd+o1J6aqoycFCQJa9Memb1gyJ0BVn6vIfZugtF8XHX/V7hQR8K+2uqzIJhAIikMYUNFCTX4UyQYu797ig/h8tjNvDXKQimoaEj4b2vQgbpNVVm55KAOInWH76GyayeJF3yvPd2xjGPRhY3QINqoqpO2JaL7ArY5QcMxFEFfUim6jjoTs90rKH6LcrCwpSQcuY45s+ajMfC5F2j63fJ8ywFMZzYqDQLk7XC9Oyzz6YhB9Fg3KF2FfRFg/Os3cl/FgwGXqVHCu2767/OkqRa22RCDAOTLxnulu3hCpO8hik8Op2Kmiq9q4voRmXz8tC5M+VebnkLk2F93ge8zQLguuqCwlRQ2LL/w1zyaqr17cgyOZrtHllqqnxBRoLrVbWwS7ZQC1PhCLXC5CgVPcklz9HP4DoIfsF6D1OvYfJXoFLclO0rduvcFE1nBoGs9TLbP/R9I87AwmYwGZiHKeC7jXym93USFibbp5OspAUHIHHgSFaINMZ+umsQd2Ad1idMlYKk8k6pFSbz3z2uFEqXPOFZLCpMyVmY/P0r7XQDJugUC9N7SXV0nLxQUVDKGkEEpdUX5hpTlSOvWarKONJYIuydFvoe2VWg0sKKR5pmeeyxx/CVr3wFM2bMwKpVqwAAv/nNb/D4448nKhyJb7I0CSXuS9YqWBPyFiZNoleV5cHkJohnYZJdAbeGhLz2RslTJXY1oba6SvtQFmcsbV4eOtfEnE94YXGkmcCq2U5TxMAVhcF4sJw5ornkRasv7HhbC5NYWrmGyRP0IffZO+OmG6zZ5qxQuuQFlLcKXBDQRrau4MrE/dVVmdA3Y5yM7jZjMAf6+87nPiR8DY0KKCoiEVzLijWQ9CoogYN0J7k1PNo2PAqcansamN5ntYp1glFQTZRk893I33XEtTB5n1euK/+21dKgN1ZTebzWhdy2UhNXBrWFKZ22bEhKZ8tamMwqy65h8n4XJjs9333Dk9D3wq7jjKQpH6xvoT/+8Y+YM2cOGhoa8OKLL2Lbtmx45w0bNuDKK69MXMD2junAPlfMp4ho1zAVtnsHwyoLk8oik7UwlcYlT7YwmQR9kNuO0nqwhUkMKx5cj/hC012HXEK/uBYmmxkyKTS61yUvbA1TUNAHT3Sd/OeA+upqDBQm3XbPjrDBoVheGSWvKqMcOIu/swMHVQFWG5uXnmlY8dym8HxF/uuvDfpgsR4qa2EKppDRPUrQB/OLlrUwGdZraOUE5Akn00GwrCCI283ki4K3nWCLpiPfrykIFrXKMMtPmJXEtN2wQDCmZDKqNUzmzzknYb3VhSvd21WSwpRMYyrrQrGSkAehk8B8DZNNrcWjbII+ZOTnmlifpb4kBAMyl6kcsL6Dvv/97+PnP/85fvGLX6CmphACctasWXjhhRcSFY6Yo0pc61vDpFGe/AqTPyKYdg2TIkKEyT0QxSVORGw2zMIE+JXFKApbXXUyQR/EwYouInrunZdXmAzF9UXJs7Iw+SP95QaXcSxMju5zgGhGM+CG/uWhCpM4gNZYmKQ1IrlrY2hhAoL7hFftMLUw5doPz53k36YN+hDyqpMUpoAgKDliBX0I2e+N5mk6OaCyFpodZz9wkQfOxRl8qQa03gLesOKJy6BRGMIuYbV3UO9LkxGMuYUpvSh5VXlX1SxxXJeiIJ6bZGGK0ZiUg0fhhlh6tUKP6WSN6nfShxUv3hkn1VJYQmsRb7L2KkcRJS9AsvDIrVmiTKSVEuunxuuvv459993Xt72xsRHr169PQiYiYJ2HyXe86IpW2N4iKRAehanFf4zSJQ86C5OJS15oES2uKw/gtxqsYZLOPUZYcd2DQF7DZK4w6RTHQh3Z/1EXrtpYmJTnsOtf6BombZhq/QA16KFqYmHSnZr3GgStr/LWo4oq6A0nr3LJA8LyMAWKIKEKKx6ocBm+nET0QR8Cq5KDPmTMXQ2j3G92Ib+DXPK89Yr7zNvwhpHXyqL7pht8qWSwvF6ym2F4EmVpDVMKY7+okfHC1lyGuowajmgSjZKnDPpgfnzS1EoWJrW1yQRpwByQgwcoEwtTTBHKIeiDauwUpS1VPd61dUF4nyE+C5PHou8PKx5cfxxX7VJi/dRoamrC8uXLfdsff/xxDBsWLUkm0WM6UM7dIF4FSb9uqbDdH/ShYPbI7VEHfdBvDyPuYj+x3S27ouTpQmg7cCSZXNeN1H5gHiaFdUaHuF+niOSDLuQUFsMkj14LiW3Qhxy5B1ru6JawKHkR18ToZQlfY6Cb4fJutQorrlvDpGhXvLRB65QSWcMUcHjYQEiVC0gVWMJbVrlf+FxdZeKSF31kYTO+C3LJ80vpKD6ZtZE/LshqoJ0gsGjMEsdAMcuRDSsuWpjiCaZ8lGqU0rD+FXavhj9bzQa4yeVh8rvkeZX3QOU64T7huvI1FF0cbe9Fab2ixx3L+zuUgb4E3ZU2DvqgOFz/TEkHlaxJKaM2E3eqNUt+lzyxMq8l2Ow9UmEGJnuF6bTTTsPZZ5+Np59+Go7j4IMPPsBtt92G8847D2eeeWYaMrZrTPuT6/mvOt4b+CC/3TNoF5WR3DFqlzy1hclE6lhrmOBKFq+cwqQbBHrba3Wj3ajegbNI1DxM2ih5nie1ad4qr34UdaDufVGEJq4NtFiID9rC5yBLZNBvKdftxz6suDCTpqi0psog6AOClVM7S59K3ugvTdWRUWfYvUEfQsOQ72omyqrBsK4r1ujAfLDstcYEyqCxlCSV2ykpvLIFrrGCfL+G5ViLQtBvEXQreNcw+XpNRIXJ106CLnmqVA7SBEuItS9JXOhTXNhMnmWPLXz2J+cN/l4KdCKYu7P7KzANJFMZhGVPKuAN+lCdcaSgIWEWprDLk9tfaS551mHFL7zwQrS2tuKggw7C5s2bse+++6Kurg7nnXcevvGNb6QhY7smfuJaQUkStkuJawOCPrgBClOrbg2TkYUpvIwOn0teTmEKCEXtPfcoA7iaqozW5cM2D5Pj7LIAGuZhMg3f7rMwRRyoF8KaZ/+HKWxBFgvdLHtQlSZrDEwjGFkFfVAUrav2BH3wXJtcHXHc5rztBcmY37brf9hvozo26hoOx/MSDTurQpTHKG2ZX7NgC5P+u1WEQWMLk9q6kOYQSx6gB5+X48hBH7YbWq/19QXL46VGyPfmxbeGyYNNFMcgkrQwqbbJCqyeNMbd4mRIdWwLU7Zv+F3yvGXt5UwanQjGa5gU23TdsZinm1QfsamnKiOHFfflYYL8nLN9vueOjbmUvehYK0yO4+A73/kOzj//fCxfvhyfffYZxowZg06dOmHLli1oaGhIQ852i7GFSWNikoM+iFalwnbv+1J0/8p1aJVFKOva5pfFyCUvxp3ieuTZsiN7MrpBuwtXEfTBvt266gCXvGp/SO4gMo6DFq2Fzp+HKczCI9YrfY+6hsmjsO0IUdi0a2ICjgl6yJpYQExn/8KDPhRQ/b4+C1O+rHxckBXJZkChckdUHV7oG8G/jeo6RbUwiXVVZ8LDiuej5EVpy6asE9QfvN/9yq+tPKaDYPlzisMs72AmxAImWnJUk14JiqNoW68weRV538x1SLu6+8xbT5KJa1UymLpIJh08wHXlc5Oj5Nm1JU8kiddLlYfJqupUiHt/qY4vh8S1ibnkwcIlz1PQu4Yprky5o+OmzSk2kZ8atbW1GDNmDPbcc0/U1NTgmmuuwdChQ5OUjcA+rLivA0prdwqf5SS2+jVMuX1KlzydLAZC61zRTPDlYdoe7pLnT+gbxcKkf0jYuuTlSmiDPngTxxrOAvsiNtlYNoR1WLnDCqbz4GN118bnniJ8DuoDSeaJCXO/kZQAxXlUZbwuNtn/3hm3qFHyvNiuYTJ11wQK/SmJAaNR8s98B7KvPzTkt1CnKnKXuE/6rhDPWp7AQbD42VFul8onMB7ynlOYBaxauL9MJ2N0qG7joFMKcg0Ls4iHulCauuQlFFZcFRbca1UPIg3LjHhucpQ8u8a0a5icePn+0kIngWnvVv0W+nu2eOebVEtW/TIj39dVjjfog1zeO+4MddWO8V4oJcZvzW3btuGiiy7CtGnTMHPmTNxzzz0AgFtuuQVDhw7Fj3/8YyxcuDAtOdsvlh3Kn4bJby3ylvO+MMUBWG5Qq3bJUwtnInIc11UX6qAPQYECvIl6o4wRaoOCPkjWmfC6ctXolIbcCypfztjCJH+3WjujysNkeKw+6IN+Rj9IaTUZ0Jg+/ONamLyFch+lPEyKQYSIVR4mZVhxVQXZbTsiuFQlkYfGLOhD9n+UmUTbtDHGLnnCBpuBnhwlL1AjUbZVJANT6EoFrxzbU7Ew6SdQgtzuwoM+hA3EwmUDgNqqZBLXai0Q0udkJlJMkRWd6FHyvFHScqgsFeWwpkcngnkeJoWFqci+hsrJhwQtTKZv9KqMI72fq6qCPSjUbQXs31WgzbrkXXrppbjxxhsxe/Zs/Pvf/8aXvvQlnHzyyXjqqadwzTXX4Etf+hKqEnoIkQKmA418lDzf9sJnad1SUFhxaQ3TrvIqhUnznk16HZ/jeC1EujVMQUEfCp+jjg9qAvIwWa9hggPA1SpCXpc44zVMClO6Kco8TDHXBDiOfrgQFPjDxGUsygJv5SyisE1rpQhZwwQEv1Cihq9WyejdZmNhypGEhak6kwkdUMQZENq6K5kou4BXuQiRQaPwBFpwNMfbYKtgeoNTBAcakL+n4pKn2+4ET4aETpSE7DZ/JiQzCNV2f9O+kvh43NUqOnFc8kSroCrqZ+nVpfjXUnV5ytlyZl2PY36NqjOO9ATy5mHyXhdfWHHD10ulueQZK0x33XUXfv3rX+Ooo47C0qVLMWHCBOzcuRMvvfRSWcwutFWs8zB5DmhRKD9ASNCHFr8ypc7DZCZDXKocBzulOuUoeVtDouQ5cKQbM2pUqMCw4rZR8kIGu7ZBF3Rt2wV98OdhMj1aH/RBf0xQN6k2WcMUWiJLrWfhs7d/SgqTgc+6oyibtTDpZYgaXEDVvhcrl6pd9SSRh8Ys6EOWaEEfgvd7q9SuYfJIKSUqtnh3mbjXZeXQHZPee9KrzAWdlveco1gowwXS7wp0yYsbVtywW6cZ9AGw6SvJ9gnXla+vtO4kQQuTPw+TpaApoLu/TAflyih5sSRKhqS6iM3zx78WWu4/fpc8u7byeZgqS18yd8l7//33MXXqVADAuHHjUFdXh4ULF1JZShnb/uQt73VFK3wulAmKkpcP+qDQMXSKUdL3gPdB740utzUf9EFv4QxyQTQlG/RBs88iDxNQeBBrFSZPJaYy+3zLLd5kSiuZ4eFBQR90M/OBUfISdMkTFyw7jr9daQCttTD5v3gTmQYNvm1nd/3t61/mUSYAElGYTMKK516MEeq3fbeYRk00nf33VyQepz9Qt+A/VZc8vQT+sp6dqbjkaSRwANQEuuR5n/UR10aEkGbQB6B4rpgqdGuP7NcwFT571zD58zCVwThQI0Ict6+ysDBFkEF1yo5jrgBmXfKE7x4LU5iiEyZynGBApcT4qdHS0oLa2tr89+rqanTq1CkVoUgBU2tNrpi3uO5h4WoUKUAegOX2qVzCdKIlPWvgfdC7kBWI3AvfPEpeNAGzg0z1k6BWsf4niIIPb7DCZOt25W06aljxvEue4SNWu4YpI6+oED8XyyXPmz/C165mYCAVcfzn4A0znZRLnroC/S4bC0GumqSCPoSeVe7FGOGes9UxTfuDWCrq72JuYTKpy1/KPkyv+rOuRZEdmoh1cQiSIcjClFbiWi/JWZjU20s5zBZPTXwm2bwLAK+FSU507L1vysPCFA/VZFkZ6EuJYno+Gc97sirjoEq4b73vUNtolmHjn3LF2CXPdV3Mnz8fdXV1AICtW7fijDPOQMeOHaVyf/rTn5KVsJ1jbWEKcMnTRcbzWi9UeZhUHVvX2ZO+CbwDUV3+ItM1TKYR57zUVmW051ZX43dnCyI3SAp1ydtVrhgWJklh8ihsObzryXLoBiC+nCTC58CgDwnNAOdkyFHlOIEPd62FSXEOGY8SlVTQB2X7ATJZRcnbdVASA8bqjH5NX444M4nWeWNMrIOQlSSb30X6vQOO0ylkqVqYpL4YYgHz7IobJU/ZhrbttIM+GE7wpO2Sp5hgSRpV33U9Mkl5mKzXMKmVrXK1MGllMA36oNhWDhampMhamMzOp7pKXsPkhFiYfG6PIdctL0dl6UvmCtO8efOk71/5ylcSF4b4MQ8rrg76oHPDkz4HrGHKeWuovDbiRMmzwe8v6yrXVJlGyYuySB7IDuK3a2ZjRWXDaAlTbrCruYZehcVUZl/+BNNZd0deP5APbOApV51xlBYNrWUmoM2gU/KuD4oTPaja55Knd/PRrmFSfJZc8kIsTLHzVij967PbdkRwqUok6EOVg7C5xHhBH4LxKtzi5a/KOPl7xqf0i58txItyJqUYboW53ni7aZT+YyKDbnvQZIitFcSLcZS8hCZkgs4zrExcVM8b13Wla+idLLLBez8FtV3OakWcNUy2kTrLGZuw4tmJRfm6ib952KR4WDNxoqeWEmOF6ZZbbklTDqLBPEqe/D+H2LF1bmnewbjKKpV0HiYbvC9Rb5S8HPUBFiZRpKg5oGqrMtqIUknnYfKWMx3UeAfWpmtnaqsysqXFydUnl6vSKEx6y4z+xWpqiayrzuTXqenqCkKcTM6EWJj0uXz8n72LYJPKw6RsP2BflAkA3Qy7zb1bUxX+As7tjxb0Ibhyb5XiNa6pEhQm7wofR32MlWwBv4husJxm0Aep/bAF116XvCKuYQKAmoBnUphlObk8TNFHwrIybjDBUkSFKWh7nKAPXguT3yWv9CqTTgLTZ0+5RslLCpszUfUV8Vr43t12BqZ8gYjxt0pGG9Kf2yiWAw2vgiUrPxA+613yxBdokEuedg2TsbRmKF3yFI0HuRmJA8GoLnkZR/8AlQImhNxVrlt44YS5w1hbmEJmAnV4c0zpzlPnTqN9STv6AaTpOL++Rm05NH3/e12pvPeILhqUiHoNE6RtNm5QtgSdaxSXqiRm2Ksy+iAoOeIMOOzXMBU+11TpLb7ehMOmSPUEHKgNeGDRWJw1TOG/ifw96vPQVB5pO5zgNUzeZ71nv+256aiNEVbcxFLjTTmQBjo55Ikc8dlmV7/Up7yu3o6+bKmI6ZGn/JkqVWFSPT+8SeSDULmuyxYmT3uKtoLI7a0s+1IFKUyLFi3CHnvsgc6dO6N37+hbEngAAFyCSURBVN44+uij8frrr5darNQxHQvlivksTIIGL1uYxDbClSzVoEyXGyhpC5NqIKp6yddpBtYOHHkNU5xpDc1zQBWS26SaMAtTDtNBsfdFZuriUuvJMaUL+qCd1dT68uvbNO0n2gh8hi8zKbSu4/juKbEafR6mAjmdsUrWmAIHa2m45OWwWsO0679JYuAwskEfkpnxT+JYsbykMHnLRWzD2M3KUX4MWNdjLEJAk/IgOahO7znHtTCpvCC0lhcn2LrjDSvuswaHXCyTNYhAvMS1NonJ00R1ri487szCvqC1Y8r6dRYm+PMwlYNioQ0rbvieUYYVL/1pJYbKMqgjk3EUE4uFz95r6otmGVa/oz6u3KkYhemRRx7BggUL8NRTT2Hx4sXYsWMHDjnkEGzatKnUoqWKtUueZ7vofibuC8zDpHDJUw3sVW5SoixJ4X0vuHCVFiZdlLzcMTni6EtJ52EKtzBlCxrnYYoY9ME7iMnnYTJUwPQWJsc3mMsRpCyKv1cUZUySQZDNdd3Ah7vJIu7cEV5LRbphxVUyZf9HSTxal0CScZOgD3HOOk6UPKmfBixiiu6SZ7ZPDvoQrowXylrKY1HeWzaNPEx6C1PwJE6YIp+URTPOhIHNhBhQfJc83TPfPoiKui3H8ddVDopFXAuT6vByUASTwuZMqjMK13XJJU/eZ/sEydWVQryZVDFew1RqHnjgAen7rbfeit69e+P555/HvvvuWyKp0sdG+Vi1fgveXSsrkOJA+9UPmjGidyd07VCrTWILyAOwdZu249UPmpUD9rWfbVPK8eArq82FNsD70HpzzWf4qNnfdlBYcVH8DzZsMWhTfTPrXtj1lnmYMvkHhtkaprQT19ZWq13yvO8LW795x1OHWCrolMTLos+vY3Zu4jVo3roTK9Zu9gu5CxMLU65ZsWjG8c+6isQOu6s4PrcpikteTQyXpBzVBmHF45y37VhF65LnrVdS4ENk0B6nP9AbsS4K1i55UvvB51WcNUya7U5wctqwtUXheZjU273XM45Lqq1LXlpDbtWz3XX9641yWLvkCZL71zB5yrYBxUIZ9KHyT6tAyHNBxJuHyUvouMX4uVpZGlPFWJi8bNiwAQDQvXt3bZlt27ahublZ+qs0TLtTq+ti1lUP48T/e1o+XujYl/3lFcxY9HC2vDDICrIwXfLnV3D4tY/hpffX+2XTCPf75943lNoM7733rd8twY8Wv+ErZ5q49v114QqTqq6OddVas7+4ziYsW/2wXh3N1yZZPrC9L3ObGVdx1rWwzsBMAQtSanTu/N061mjlaWqsl+pQ1i18bmzQ19WlXt535P8+7qmnUJNuMCSuu8its/CGjI6aX0Y8Vx2qfjeoRwcAwIBuDb59w3qpc+R1qs/OkSURVrxHx9rQMrlrNLRnNv2ETRS00EFYgI+92Je91aj7uR1BRzmaL95jcnL06lznq8OkT0jNSO0Eu0p6r4eq/1i1rWgr6Kcb2K2Ddl/fRlmWoGeEUhbj5130/q9qIsgSL7bVqS65OephPf33uAugm3Bf9utauJ62SuLgHoXfqXdn4XkMfwqFpPUKse2o5EQc1rNjcMF8ef9Z9Olidx+WCx3r/OMXG5fMjOMEvlM71Mr1e8eCQfc4ULhfKswjz8zC9Je//MW4wqOOOiqyMKa0trbiW9/6FmbNmoVx48Zpyy1atAiXX3556vKkiamPpy7ctTci3JYdLQA8eYkCouTleGjZR0Zy6Jg1vAe6NtTi+XfXYXXzVm25/l0bMGlQV/ztPx/mt5lOoAcNfmx9Zbt3rMVRk/rhxZXr0KG2GkN7dsTYfl3w5FufKMv36lyHr+07DP95fwNOnjkEi19d4yvzq1P2xO+few8XHTYKR16XHbR7J3f3HNIdR03ql/9uG1nL+0ysrnJw/pyRePqdT3e5owGPL1/rO66mKoODxzTh0TfXojrjYL/de2Xb91qYNNfYcRxcccw4/PnFD9Diunj+3XWhsh45oR+efOsTTB/aA+fe9VJ++9f2HYaT9hqMN9ZsxKimLvj5I29p2ix83m/3Xpg7fRDG9mv0lZswoBGzR/fBP5b5fxNvPd6BwB/OmAEAGNXUBcdNG4gPNmzBl6YNBOB3yetYV41zDt4dz7+7Do+88bFUz7yZQ1CVcfDuJ5vx8qrsZM85B++Otz7+DAsP3h23/nuFVP7206bjxF8UJj9EGf945kzc/MQ7+M7howEA3zt6HB58pXBu/Rrr8X//NU2q77tHjsGKTzZj8sCuALJK/flzRuKRNz7GKbOG4pE3PsbEAY3428sfIowrjxmPpR9swAEje/sGqD8+biJufORtvLZ6465rlN1+8/w9cPWDr2PBAcND688hXt+9hnXHU29/GlheyhsjDFK9g+OJA7viC1P645PPtuPYKQPy2/961t644ZHlaN6yU3mPmK5h8iovumPuWTALQLZvvL56I2aP6ZPft/Dg3bFu83YcPbm/viGxTQurWe43+cMZM3Drv1fgv48YY9SGDpXbuG5w5jgOFh48HJ9s2oajJvbz7T951hC8uWYjmrfuQPeOtThygr9MEKaudjpvhM711ZgyqBtqqhz8Q3jnDevVEW9/nPXeUFmhHcj6++i+hefFF6cW+tgfzpyB6x5ajuatO3CI8HvbMKh7B4wf0Ji//73sNyL7LBzTrws+N74fPtu6E1+Y0h8DujVg6apm7GxtRU1VJh9ttrY6g1NmDcUdz67E1/Ydhm07W3Hrv1fgkiPG4Ol3PsGjb6zFidMH4XfPvZc9Vye6J4Mpt8zfA1/91XN4W/CYOXJiP7S0tqJ5y04cOq4JH2/chuatO3DLEyuUdfz1G3vjZ/98C+fNGWnWqHAKx+8xEFt3tODM/Yfj3l1jkVFNnTFjtx4Y1D2+Mvfzr0zBGb99IfLx1RkHc8Y2aZ/Xo5q64Kt7D8Xbazdhy/YWTBzYFd071krPiUkDu+KYyf1x2V9e8R1flXFw4KjeOHH6IEzoX3inXnbkGKz8dDPG9/e/Z0X++3NjsKPVxXG73pVecs/qCtOXzBSmo48+2qgyx3HQ0tISRx4jFixYgKVLl+Lxxx8PLHfRRRfhnHPOyX9vbm7GwIHqH7AciJPxXedWoVuvI4cbl/epXHziuG2csOdALPrCBADAybc8E6gwTRrUFdefOAVPLP871m/esUses7aDHtq2yXQdB/j2oaMUOzTl4eAizQsMAI6dMgD77d5LUEQcpVy/3zVAF+WwwedbDgcLDhiOBQdkv69avwWzrnrYd1xddQZNjfX4hWeg7W0+aJZq7vTBmDt9MDZt24mxlz0IINtvpMEc5EHtD784EQAkhSl3Hb9/9HgAwI2PahQmoa5MxsEVx4xXl3McXHbkGL3CJHwWB0MXHjYK04Z0z2//wRcnSMfJy2SyX7550AgAwE2PvoUr73stv3+vYT2w17AeOOXWZ/PbDhnbB6OaRihlmrlbT3zzoBG49qE3fTJOHdwNUwd3y3/v3bke1584BQtuz76A/3fuFAzxzKrOnzXU10a2X2QVmEPHNQGAkcJ04vRB2n3HTB6AEb0743O7JgREC9P1c6eE1i0invN1J0zBHlf8Q9oftChZfBZ4rWk1VRlc8+VJvvbGD2jEz+ZOBQAMufBvIbKZWXAcRR8BgGtPmJxX7utrqnDNcbI8jQ01+OnxkwNl0LYZWjZbYtqQ7vn+nTQ6hcQB0Llef26qa5FEu150FqbRTV3wq1P2xGfbdmLcrmfYPiN6Ylz/Rtzwr+xzSKkwOY70IlU9L4DsQNb2PvAyeVDXwL7hfRZee0Kh7K9O2VN73N4jeuY/77GrX3x+Un98flJ/LPuw4J3jwO9RYBuyPIxhvTrhf0+cgsOvfSy/bXTfzvj6/vKEy4bNeoVpbL9Gq2stnsJBo/vg4DF98P66gvt2XXUGlx051ri+IA4d1xdTBnXFCyvXRzp+dN9sP3ruyn9gjWJ5ApBVWryIz4lzDt4d++7eC1fd/1p+Ij1HNrqtgys979STFe8RwK/4dO9Yi+tO0PfRnBi247JSY6QwtZZRsPSzzjoL9957Lx599FEMGDAgsGxdXR3q6vzuDuVKnCReOguTrkPaJnLdHsvPXZz9NHuwimKbLkqu0gzmXdfe9KtzZdMHBQirz1N+1//QoA/B1frwvsx17XrRR6ILrj+srp2trtHMvGe8IaH/LUJFMUIXejd0gbkUOcoMsU5xIK9aMxcUt8CLNxJgsVDdclHDdnsxteio2hXdj5KICOjFdI1Q8X4Jof2QRovRPeK4vBWjXZ17mioCpnddkG6tS/pTxeGkFXXMm5rBl+8vhU7lj9WiUFSFnzHuqWek39z1bUu6Tyex7ivOWsfc+dhEudTLYT8hnT3O6rCSUzFrmFzXxVlnnYW7774bDz/8MIYOVWu6bQ3TDrVN55KnGZCLCpOJlr9DU78JVrOfim2mUcB0FqZW17WOxhIU9c1mew7/ItldshnmYTLFJ4d3JlBToW4A4X1JmbheiANUU8tkcMCEaEqqaVlxn0kuKuV+Y1nUL2DVujdZ8QhuoCqC8pYEKrkyktIZXRpbxUMX9KE2YG2jlTyG52Kr6CWBLxpfQLvFUKi1g8uUmzYd1OrK5e4j70RAWK62YiUlLhVyl9l1jYRtcaOAhrepWTuWUnuuYlupJgGSRDyf3Du/FJHqcvdThelL0aLkbdq0CY888ghWrlyJ7du3S/u++c1vJiKYlwULFuD222/Hn//8Z3Tu3BmrV2cjsTU2NqKhId6i1XLG1Opkb2EKLyPVH8PCZDNTrpJkR8SkrTla3egzIMbbQ+rzD1Ky38Ose9ZrmEJm5XTvtSQtTOLgbWeL64k0piZohlZ3jM21CRokinvk8LlhCpO9LKoXFpANJLHdU9bOwmReNklUbUlKZ0JjDNVvERT2Vl50H0Nps3wO+Mpp+kXSP5H3Hguqvxjdw3QCpljt+sppnne5vuu1mIRacNu2vqR8FmVz2u2yxJQonFyS0flkC5N/WxLJvpMiidNOIvBPDvuw4ruOqzATk7XC9OKLL+Lwww/H5s2bsWnTJnTv3h1r165Fhw4d0Lt379QUphtuuAEAsP/++0vbb7nlFsyfPz+VNssB0/6kU2h043Fbl7w4uTqivCTFG8nUwhQ0mPcGvwjD1g0s3A3G8Xw3k8v2wRjmkqf7KfQDHBnbxb0txi55DnSP3biD1rCy4j7x+oWNs71uKlKdmgst/tziC6umOgNs9/iRa8IDh8lSTJc8VUtRFEll3ZYGPHGQK1uYog8MdOHtg9cwmf9uSSG1E/osSlUUAHolNe2247rk5Z5v3ueoNw9RKSnNGNPxfcoIfsRJB33ItuN5ZwZKFW9Jg1aGFC1McZQFXd7NMKTk3rnUEklcNmvXwF0WpsrSl+xd8hYuXIgjjzwS69atQ0NDA5566im8++67mDp1Kq6++uo0ZARQSDjp/WvLyhJg3g+1UfI0ypCch8lSKEtU5nwbTOULUphsc9Xoq9INBILPS+cpF+qSF7jXjz+hoFeBUteom23yHh8WMt3LjtZWyC9bO0VUJUPYdmVZwzl3aSY5ZBAQxSNPDGBSI62zCXbJC2shDZcYE1S/QVIKg3T2BvWI1iwxYmZSM6lRlD+d3Gk+ch04gfdGMdzHgoI+lKJdLzqFLncfBT03dVHyyoG0BqCqADfePHRJY+KSp7IKRUU+h2xl4r1i2rfKGfEMawPWMNliW0fewlRhTnnWPWDJkiU499xzkclkUFVVhW3btmHgwIH44Q9/iIsvvjgNGds1prMQujVMWpc8YaAeNmiPi+3AJyqBUfKsFSb7gX1wffJ3UwuT7QXzR8lD4PccprPwtot7TV9iUZK+2kgSrJAVPldJg/3gFoIsTDp2CpZacSCvGtRHDfpQVJc8xbaMxTU0b8dfT5BLnqiAprH2INBimXhr4dg8YxPXrRX3eLkHfdBN/OieQ9WS5dlfpphW3VKgDnQhKpHJt+l/d6kmZ5JrT7wvCi55hW1Rc7bpKEmyX4XFLInhn3XwidwapsrSl+wVppqaGmR2TeX17t0bK1euBJBdS/Tee+8lK107QzkoMDxW65KnDfogfk5ZYYrwYIgiUZBFwNbCpJM56ovR716Q/R6+hskO75oRr7g6+U3XeUSxZJi45KUd9CHoQoq7bCLfBblo6WQT79OwBKo20eYkRa+YQ3ZFU6IssQbn5ga2XW2JCpNgYUpoZtjUohjXoh4Fx6KvFEOj1rr4ptx0XEurNthPiOW5XPSltGbsVX0/zOqWZJvFQLyHXMU2m8Sv5YrKYlaKdUQ5KUoRcCIO1muYJk+ejGeffRYjRozAfvvth0svvRRr167Fb37zm8AksiQc1cPOeA3TTvWSeZ0FQ1rDVESXPONnYASZkrUwqbdHfYhrLUwJPzG8s5/GLnmGA5wos2wm494ol9VGeQ1SIjLSS9G8Tps1RjnE31tnEVHtDztX2ZXQTJYkUMklbkpq5t3kZ9FFyYtj7Qhec6fZh/B+kfRY0HvNg+pPfGyrqE8bRKZsnNfU6CbdqqTr699fzLMKemOk55Ln79O6tZ9pEeqSF7P+MAtTGukJopJ3abM8aXHcVwgrHh97C1PuuMrSmKzfJFdeeSX69u0LALjiiivQrVs3nHnmmfj4449x4403Ji5ge8e0Q+nXMKnLy0Ef0s2zZZOFPs4jKeihbRppL6yuyBYmjatcaB4my+a8L3zf8Zr6TAc4ab0Yg86zqGHFhfMLu/eiueSp7zWVombjkidbxor3Yle1FCU/lbpu8fqG1yQrvskEfZDlUX/2lYsyQRQTSTYn2v0UGQuXvFJZYkzb1U2YhEXJK4l7VYnI3ZeShSmV8w+vM8lmw9ZjJu2SVwplQUzzUZu3MMWv19ay2W7Cik+bNi3/uXfv3njggQcSFYjImHYo6zVMYh6mlPMS20TNinMDBZnMbZVCfaABq2q0x+XqDw/6YNdg2Bomnb6jD/ogf4/iliBdS80FDFLEkrCYBIcVj/bij7JWZ7vGnKsa1Nu45FVHsHYlgXrWV9yfjDCqWrwvabGp2urCl8SCPhgqsF7lpShY9JViiFSqoA86TAeFuvtfTIpezkEf0kJlTZeCPpTIJS+t6557togytAWXvB2SS3jpzid3Wdu8henAAw/E+vXrfdubm5tx4IEHJiETETDtT7oEoSZ5mGxDbtsSZdAQRaLAsOJJueRFfET7o9dl/yceVjzEBU83gDUNKx7lGWsyM2+q0JgeEySDb5+wU+xDYT1Gngjw1qlu0crCZJUTSpwBDyyaOlEsb2GY1CP2/TQsTLI8+nOULUzF+TGkVkIuVjGUuEpN8qkb+IdGhGvjGpPqssgpGFJQmLzfQyxASQ6+VXmYkg6dXgqrpBh0KEkXw+gueYmJUBSsn2r/+te/fMlqAWDr1q147LHHEhGKFIibuFalKLS2utLDJW0tv1h5SZJVmDQvzojjAN0apqTDigcN3lRy5DB1oYlmYdLXF7YdSGY9mWlZmzC1kVzyNL+3Oqy4WZ2At+8X70UcFrkqzhjDVvEQB7ui+0xyAwN1PUH2hmKNibxugKZ5otJCq6SWueuabuCvc9vN709LIEvSepWr3OrFfpRO0AfPZJ+iTFqTQ/mgD8I225Qa5YgYdKi0bqTZtitMXzJ3yfvPf/6T//zqq69i9erV+e8tLS144IEH0L9//2SlI8YPQJ1Lnur4na2u5IaXdOABL8VyUSlnC5P/4Z/9nnbiWq+89kEf5PLprWEKqFc3iLH4LQIX6UtuF+YzllEsCTpLcFgeprB+ULKw4qqZZ8k9LBlhVO34wooLn5NKXGsivy4ptVcmXZkk8A5oI9xOiaJNXJt+07GoMlCulUEfykQRTCtKXlgeplIFfUjruuee/brIm6UmqiQ7UorwZVtrrrtUmoXJWGGaNGkSHCebEE/letfQ0IDrrrsuUeHaGya5RnRYWZhct8hR8orzoAkymdsqTPqw4lbVCPWpv+uCcoTJoUPn+heGPuiDTLQoeeED6CCXjrQtTKJM4uxxWJcJUmh0zekVJv8RNmv/JIUpsGT6JBVUIKyWoJ+nJo3EtdpJFP33Yj37bJT3YrgJliqseFxMXMvCArS0RVRh61MPK554jfa0tTVMOpfwuER1yUs7pU3SGCtM77zzDlzXxbBhw/DMM8+gV69e+X21tbXo3bs3qqqqUhGyLSO5xqnCisd1yVN0yJZWV9qevkue8NnwMRhFpqCHtm0eJv0gPaKFyXPeuW9JRyiMmodJ70IjfzX143acwkM0vktefOU1qKiu7dA1TMIlMxVlp2Z2QuXuYePKKuc+Kt5QIyyhZRxsXXnFKyvKkEaUPGm7bzKk+EM9WUkLLluMwb02iExZDIP1mAz8yzlKXmoueYpneCblZ47pJFSONE5dUpjKyMJUwO6sdRN2xSb3HKgsdclCYRo8eDAAoDXtkGrtjLBxvLFLnuZGUCkeLa4r1VtMl7y03pdhbii256h7cUZ9L/jXMGU3hCautWzPl4fJ55KnPq5W60IjbzedSazJZLTJlFUEB32w32NVf+TfVBzQm1ViZ2EytxqVk0uek8JErO1AW3y+FTsAgY3yklib0qRUtAmCJKnYoA8GF0epMKUhTBkRlm8tHQuT511WxAdbMYI+lIK0XPJsVZ/8ZGNbtTCJvPXWW/jJT36CZcuWAQDGjBmDs88+G7vttluiwrUHRIUmzuybjUteS4vskpd2tmWbgV9Uqhwn8PrZW5h0Vo1oZ6AL9x0mVuyw4oaz36YuNKYvxuoqB9sVuZRNZ+lFUs/DpJHKJg+TKTZBH8RNoVaDUuVhUjQlJ5OM/nAxsUxK5YXPYrtJDd61qQZ8Azv9vrSwyXVXDAtkxbrkGXSVUntmBT2X0nqVS/fWrkakKHlFCCse2ncSPPl8WHFhW1sI+pCWhcnaJW/XlU177Jk01j3gwQcfxJgxY/DMM89gwoQJmDBhAp5++mmMHTsWixcvTkPGNo0rfVa45MXsUKoO2eK60vawSG1xifKStF9E6AS+yGzPMe01TLkncdIWJm8EJ+/gyDZKnhdTP25dXiDd+QQO4qIc46sibQuTWZ06l7zwoA/BQpYsD5Piuop9LKkJRNtTki1MyVwQbS1lpgQ4jlNymUzXRJYbVQbPN3VkyDI5s5Re5fIkiH9bMYI+hJFkwAuVhamcgj7ksH2+pqYw2R6w61JWWh4mawvThRdeiIULF+Kqq67ybf/2t7+Ngw8+ODHh2gNhi97SiHrT2uoN+lDMKHnpPHQcJ3gAndgapsSi5GUJVZis2wk+XmthMg36YOqSJ9TnGAz8g6rV/xbmRNDHQu9Nm6AMOXZoXJpVA0zVQmu9LMkoTFEX7+pkifNkCXtuBMkq7kosea5hP7S1jCWC774PmiCghUlHVCNCuZ9XXEQ329wgV3LJK8IFKOYlVq2/bQtBH3SJ0+Niq/jkLmtlqUsRLEzLli3Dqaee6tt+yimn4NVXX01EqPZEWD9LQ5fJrmESXfJSD5NX+Gh4iK1IGSd4yJpUHqao7wWd4hJ27W3bCxq8BVFj6pJnOMtmu0A2SNlN3SVPsy+sD0bJL6arMyxKXtiNU6oZXlWryQV9CG4niDQeaVqFKUBZKYW+VOygD6pLrZ2AKXPNwmTgr5rELO+zik/Yfa5L+Burzagvs0RlKLRZnkEf7EgrSp4tub5TYQYme4WpV69eWLJkiW/7kiVL0Lt37yRkarcow4qn0M7OFjkPU9ouecUYy2Wc4JdxYnmYEnDfAgovIFvLVxj+nDBmAptGtTKdSRRn40yOiKLQWClMwcvglVtDo+QFDOhtu0moS15YWHHRqlPMl5DiR0jjflf/1gFrOUr5Ji6Bhcmx6CvFECmpyITFJurAv8z1wNioEnpLeZhSuedLd1FVT49ydMmzpVxc8nI/bZsNK/4///M/OO+883Daaafh9NNPx9tvv42ZM2cCAJ544gn84Ac/wDnnnJOaoG0Vsb+o1zCl4JLnymHF03fJizATbxt1xXEC695pGd1R7zoW7aHpj5KX/R/ukmdrqbEqnsfUhcbUJU+cjTNxUQp6OeotTOYnGxxUQr097LZIyg0OUM9einKFXXbRW6SYLyGVXKrBVTTE62sy86/+nBS6e1GXMgAo3qBPbCU7eaQvm4Y1wEvSUUaLhWpCyIUbbm0uoo0pSJS0EteGud5WpRAQwXYSKu3Hnsn6NhuSGNvZ1qBbQxtbDuugD5WJscJ0+eWX44wzzsAll1yCzp0740c/+hEuuugiAEC/fv3w3e9+F9/85jdTE7StEja4ScP409LqcclL2Uobx7XGpo0k1zDpLClRFSbvYbl6kg76EPXFbbpI2/SlYRuCNai4PjqZTf360rr6wwYf4qAwrhuaysJn4/InWvSKGXlIJVY5DIqTsppL52Lqkmfggpz0ANs7KWFvTy0OZZ+HycCKoHpll0OfB1LMwxQS6KIoa5iKeI1VykxNGQS2yBPxYtik+kiTSnXJM1aYCgv9HCxcuBALFy7Exo0bAQCdO3dOR7p2gLQ4WfkyyZbIOMkNhFo9UfLSzsMkuS6l9NSryjiBg25rlzxdHteI4uvOO2l3yKgzjDqXPO8Jm/pxS0EfpDUd9oqodtBpY2GKsC98DZO+Ett+rlpQXOWEX7ccpbIwqRDPPa0Zb8D/+4hXKG2rua5d3/eiueSJTYa45JXL6L4MUQ38HcjeC0qFKUWZygHV+YuvjDQibgetDUwb1W+cdFjxJO5D2xrKxSUvJ3ip31W2WEXJ8/7AVJSisXHrDjyxfC227WxFr051+e0uXGzYvAPvrduMcf0b8cH6LXhn7WYA2QFlUp2rpRWePExphxW3fzBEC/qgb2fj1p1W9WmtGhGfcf78SNnvuoTDYXIkTW21mRWnNC55dtvV9UfbF0TQGiPbOmsU119UgsLqk9cwFVFZCBMshihxun4ak0CmiruN8pIUNm7PpdSXyklXq844Ps8Dk+ApyqAPZXJixRx+SkEfUjj/OMmq06Acgz7YnnJ6iWvtyP225SGNOVYK0+677x76YPj0009jCdQe+HDDVpzx2xeU+w780b/wyabt+P3XZuDLNz6Z3559ICXTvXa2tsp5mEo4G+ulqUt9tHodRznojIp23YzhQ7xDbRU2C5lbvdXlFpDqEg4X2rMj6ourvqZKuV1c6JpxzKOxDenREUtXNQPwrOnQlB/cvQOWfdis3GeaMDSIoOeWrp5uHWoD6xStaN4FwV01x3aqq8Zn23aif9cGaXvvzv5+L9YfFtJW/F3qqtW/ZRoM7NaA599dl0rdHWvl11NugDu0Z0cAQD/PNewglBcnouLQu3Ohns71NcoyOXkKcur7RaGuSDnjtYiDueqMg04B9Yf1a1v6WDyzuyfctoj3dxAZ1L0D3vzoM2nb7n0641XPM0e1lrNf13o0NhTk7t+1AwB5nDOkZwesWr8lgtT2BL0jvc+VpBDfK7lrJLnkZRx0qa9G89ad0j0TB6+CEqawBPV5W7o0+O/1RsW2OAwQnp258YLp7zdgV7khPTrg003bjdscrCjfp0sd1jRvM65DRb9Gu3Fb7nVVYQYmO4Xp8ssvR2NjY1qytBuCbvtPdnXm+5d+KB+T4ORGa6vsCmYyGzttcDf07lKH4/cYhN889S4Wv7omsHx9TQZbd2SVgYw85ark5vnT8OclH+Ds2SN8+27/6nTc8ex7eHHlOry/Tv1SyjjZF8kps4bi5ifeCT0fAPjp8ZOw5L31GNS9AzZt24l/vf4xntv1AItr1fjjmTNx2E8f0x53xn674dYnVqDVddGxrhougBP2GOirx+Z3P/fg3bWKj44DR/XG4B4dtA/qIyf2wwsr16N5yw4cNLqP9JI8dsoAbN3ZglNmDfUdd/lRY+E4jvKcVHzv6HGornIwd/pg3z7dNU9qxs97jX96/CQ8+sZafHHqgMDjpgzuiqMn9cP6LTvw+Un9pX1HjO+LJ95ci2lDuknb7zpjBv734eU455Ddpe1HT+qHZ975BNOH9shv22NIdxw1sR82bt2Boyb1CzkHB98+dBQ2bNmBgd07BJZNkks+NwYtLnC85neO8z4c2dQZp+87LK/8/PmsWfjZP9/CeXNGAgDOO2QkNmzZgS9MyV770X0749S9h6JvYz1OnD4Ib338GQ4d1zdS2zedNBX3vfwhvrbfbvltUwZ1xfyZQzCkR/b6/nnBLNz02Nu48NBR0rFB/eKKY8Zh2YfN2GdEz0hy6dhneC8cPr4J23e6mDOuCU1d6nHq3kPxztpN2LK9BZMGdcXQnh3xwrvrMGdsU6Jtn3XgcKzesAWHj++Lh1/7CFMGd/OV+fFxE/Hv5Z/kf6s4XH/iFDy0bA3+9OKq/LYjxvfN9wsVi74wHv9z76s4aa/C8+XGk6biqvtfw3F7DMQdz6zEjhYXh4wpXJvfnLon7nrufVx02Gh0aajBCXsOxKSBXXHwmCZsb2nFcdMKff7qL03E9/+2DCfPHBL7/HTcMn8P3LNkVeA78tIjx6TSdm11BufPGYnN23eiadfgWFzTU5VxcNcZM3HtQ29i4cF++aLQs1MdvrbvMDz/7jr06FSLA0aqozB/7+hxeHPNRkwf2j12mz88dgJefG8dDhnTJ7/tsiPHYOWnmzF5YNfY9Ytc+rkxaHWz7/3unWpx3cPLcc7BuyvL/mzuFCx+dQ2OmtQPf3phFS7b9Ttfe8JkLLr/NRw3bSD++ML7OHpy8P117fGTcdUDr+H0fYblt9321en48eI3cfyeA/G7Z9/Df80YYnwOvz5lT/zh+fdx4WGjwgsLDOnZEXsM6YamxmSU62LhuIb+G5lMBqtXr67o0OHNzc1obGzEhg0b0KVLl5LJsfyjzzD7mkd825u61GN181YA2QHInc++l9/XUFOFLTtafMdE4Z4Fs3DV/cvw1NvZWbLGhhps2LJDW35Q9w549IID8t93tLRixHfuD2zjl/Om4dRfPQcAuPCwUThj18DjnN8vwZ9eWOUrv+KqI6TvI//7fmzbZX3J7fv89U/gpffWK9tr6lKPpy4+CADw5yWrcPadS3xlpgzqihdWZo+vzjhYfuXh0v6n3/4Ex930FADgmMn98ePjJvnqWLdpOyZ/b3Go/ADwmydX4JI/vwIA+M7ho3HavsN8ZcK49Yl38N2/huc3mzt9EK44ZjwAYMiFfwuUK7f/y9MG4IdfnGglz82Pv4P/uTcrzzcPGqF9wIt8tHEr9rziIQDAxYePwun77hZyhMxpv35OqaD/6eszMWWQf3CmQ7wuIo9dcEBRlYxy5iv/9zQeX74WgLrvmJK71rr7iJC45PrY6L5dcP/Z+5RYmvbHib94Cv9+6xMAwP+eOBmfmxA8qUNIuWKqGxivYisXH922gO5Sir7RojsXkGxiypZWuzxM3nUrXknCRJNdsszOQyVR0JEmgSVEVyWV65pJVLLoQR+iHmd2YLESl4rimEZGMgn6EHy8Gm2gCtv6+WgjhBArRJfhYkTJI6TUGI84SpoIsI1h8mjxWpOSHA+3tMp5mMLWMHnzdniVDdX6Ct1C/zjP1eCF+/JaGxWSf7qiTMZAGbCaOEhgUazpYWksulUhtmKqr8T9/XXnllRyTE4GpQffG4S0TUSFqRi5vQgpNcZrmFrTTtbTjjAZ3G7xWJiSfCC1tLrSuqWwELxe5cErflXGATzegqIlQY4mFp2gY01y4tRVi6GuFfUbKDhWkdmkus2P09URRPEsTMI1KlKbungHutxRtvBVnx5Ulwhpm4jvU1qYSHsghej5JAytS54wuti8XQ6DnaQFodWVFaYwXdg7MPbOyCtDTccVV5kcUF+p5JKnKVNXE+aSJ9SnTUtkE5lNlC9dXz7bRLFREcUxbTOuZDo3Pl0EMuv6+a5PDRqYSNrw9i0N4vPXJOEvIZUOFaYSoBsAtkoKU8ouea3mLnlhE/kqS4NsXQlfG2RC8BomsQ2NC5eYTFXpkhdeh52FKf55mx5WCpcIUyUwrsub7vDEXPI45MqTZqJZQkjboZYWJtLOoMJUAvTPlsJgxbuGKcl1Fi2trqQkhbrkheSAUVkadGuKzIM+qJID6subrJOpqwlxyRM+6/QPu9w/4ud01zAV64Ulr2EqvhugCIM+EEJIaZCCPnANE2kHUGEqAWYuecWzMIW5zYRZ28OsG0mJHqSsmGQdl9YwKcqY1BF1cJ32+6RoFiZPskKjQ2I2aRTEIwZ81acH7VWEtE3E52+xgg4RUkqoMJUA3Yy5OLjY6lOYErQwedYwhRE2MFZamMTPEVzylEpcwLEZjUVLRAwrrpLDZM2Rze8gXYOIw3LT44q2hkn4bO6SF69NXTuJBX3gy54QQqwQLfxJJREnpJyhwlQCdI8W0U1usy+seIJBHzxhxcMIa1ulUKURVjwIkzZqQ6PkFT4nYWGS6zM/Lkp7pcjDZB70IeYaJs32pJRE6kvpwbDihLRNpLDifIiSdgAVphKge7iIYwuvBSjJ59HOVrWFSTf+DJs9UluYdAEUop9I0JGiwqBPXGvjkqdux87CFO7iF16HGaV4YRXLDVD3eyZlGeKrPj2oLhHSNpGCPnANE2kHUGEqAfo1TPrhRdJhxVuVClM0N7RQC5OdeADUA60gMUxyPdVJPtfB9euUAatzSUBPNLcwRavfFlEJNA40EbPrpq0L0iWPkMqFt29pkII+8Ecg7QAqTCVA92gJ8l5JPOiDojGdYhQ2exS2PymXvOCgD+JnjYWpRlzDFGxh0skZPehDumuYimVhEpsxDvoQew1TvOPD4Ks+RWhiIqRNIgV94EiStAPYzUuASdAHL4kGfdC55Gl6Q9jskSrsuC44QJyzCA4rHu7+VlcVvIbJROlyHMdYAUjEEdHwwFIEfSiWG0bayiAnRwkhxI5awVW/mhoTaQewl5eASC55CQ5OWzVR8qJamJSD9ZgueSqCXfLCy0l5mJRlwtcwyaWCkZS4iHeaaVulCPpQrLDiqbvk0cZESMXCCY/SIK9hKqEghBQJdvMSoHXJCzgmSR9hfdCHaAqTSpmTgz5A+TkIlfJomodJqzCFBn1Q1xfUVhA6K5sNputripaHSWzTOKx4PNlSX2PEAVdqqBJQE0IqH0bJI+0NKkwlQDcAbA2wMCX5PGptdaFKw6RrI2wwroySJylJokte9BMxDfqge3iHhRU3qSNsn0gSv5mxhalYa5jEoA8lTlybFHzXF0g6CjijihPSNpGCPjBKHmkHUGEqAbpnS3DQh2TXMO1sbTVuI3QNU8h+aS1PSs9V0eVNbEK0KiWRuNbXgKl8kS1MhvUX64UlueQVq8mU1zClWnv7hgoTIW0TKegDZ51IO4AKUwnQDQADgz4k+Eu1uIBCX9LnYbKIgpffJu23f5iqw4qbWX1E5aFeiIxXF/KAN8nDFLZPxFgBM6wjiNIEfTDrlGUfJY8v+zy8FKTS4BrE0lArzJiF5WokpC1AhakURAn6kKiFqVUZVlxnVg+zXqhkk93woPwchOpSBB2ri8SntTCFtB90zqYvaN06LhtM2ype0AfBJc94LVd5r2Hiq74ALUKk0uA6udIgBX3gTAtpB1BhKgFRXPKSHDS2tEIZ9EHXRtjDUGVokJPAWomnxTict1BQtLzUhgV9yJgpONEsTGbHmNbnpRQuEcWKJJt+4tp062/PcDBLSNtEfLeWIugQIcWGClMJ0CkmKqtPjiSfRztbFP54AW1EsjBJnwvf4gyfgqQQB2ZStDvhi2htUpF0lDyZ+C55QYpr0SxMYptFCn6Reh4m2pgIqVh4/5YG0Q2PFibSHqDCVAJ0j5ZiBX3YrlWYNBamkF4SZv0Sd6fl8iPWq7MwiXmYlFYxwzxM0YI+2B/jqyOgknLOwxS7zbTr57s+NejiR0jbRLdumJC2SsUpTNdffz2GDBmC+vp6TJ8+Hc8880ypRbImygAtyeeRrcIUlsVbmbfWET+LFqboI6ggxUwcmOksTPI6J1XQByjL+suZWlbUbdtgumaoaGHFIyhMsS1MKb+MqTClB/UlQtom4vO/WEGHCCklFaUw/e53v8M555yDyy67DC+88AImTpyIOXPm4KOPPiq1aFZEGTwnuYZpx071MEabhylSWHF1EIY4M86mLnlSriBNQtsQkQPP2XgtVYRjguoIeikVz9ojXNu2YmGiSw8hhFghviOZh4m0BypKYbrmmmtw2mmn4eSTT8aYMWPw85//HB06dMDNN99catFSJ8nn0WurmzVtJOeSp1NOYq1hCrgGskte4bP4IJdd7lQWJjOXvCiJa5MIKx5kaSmFS4TxdSj3KHl816cGXfJI2vD+LQ3iGibmYSLtgYpRmLZv347nn38es2fPzm/LZDKYPXs2nnzySeUx27ZtQ3Nzs/RXDkRzyUvugfTvtz5RbheVi3phvU+tRbCEHLqgD/EIcMmT5CmU69GptnC0qMQp6pBc9gJd8gKFFNoIadCyjqBZvCgueb0719vLUwqXPOH4XOCOTnXV8SoV4Ku+QP+uDYnW17fRvo8RQsqfjrWFZzAtTKQ9kNyoI2XWrl2LlpYW9OnTR9rep08fvPbaa8pjFi1ahMsvv7wY4lkRRfkpxgyO2MT0oT3QvWMtPt20HcdM7h94XE2ICUp8lsZyyfNcgj8vmIXPX//ErorV5WaP7oNB3TtiwoDG0GtofoWL9/t5rVS3fXU6bnliBba3tKJzXTX+9vKHAOxeWDedNBX3vfwhztx/t0gy5SiF3/pvTp2OX/17Bb5x0PDE6mTi2gIXHz4a23a24kvTBsSq59aT98CfXliF8+aMTEgyQkg5MbB7B3x9/93Qsa6aChNpF1SMwhSFiy66COecc07+e3NzMwYOHFhCibJEebSkMabLOMBxewzCHc+s3PW90Einumr8+LhJRvWoLFBS4lpJYYoR9EH4fPq+wzBxYNdCvVJYcWExalUGi74wHgCwbtP2wPozGpn95QzllZQds2N8dQifqzMOZg3viVnDewIA/vLSB5EUpkPGNuGQsU3R5IkQGSlu1xVThu3epxOunzslZo0yfNUX6NaxFteeMDl2PfuP7I39R/ZOQCJCguH9WzouOHRUqUUgpGhUjMLUs2dPVFVVYc2aNdL2NWvWoKlJPfirq6tDXV1dMcSzolxmtFtdb2S4wucwNzyRmir/+TgB36IS5FKni5InWkHCLrtjeMrma3fEz/EtTF6lKCPti1S9vTzCZ/M8TPF+f1EZTmMms0xuR0IIIYSUKRWzhqm2thZTp07FQw89lN/W2tqKhx56CDNmzCihZPZEszClM6rTBSZQKUE61BYmsd7C53hR8vRrjMRqdclew9YUOZrPvnJFtDCJkniju4cFsUiDSGuY4jYq/LjpKEzUmAghhBCip2IsTABwzjnnYN68eZg2bRr23HNP/OQnP8GmTZtw8sknl1o0K6KMz9Ia0ukCHYStSxJRldUpN/HyMBU+e8fNoqufzm1MsiApxJCUjgTyMCFAwTNFp/xl5RD2lSJKXpHabHXV7paEEEIIIcWgohSm4447Dh9//DEuvfRSrF69GpMmTcIDDzzgCwRR7kQZPKc1TpRzKRS227jk1aoUJo0xJ6mgD97rIVmYhM+iaGGXMOlrbKh/BdchfPYqKFJS2xLkYTIN+hD3urambGEihBBCCAmiohQmADjrrLNw1llnlVqM2DiOnfJQjGGiqDyplCAdoWHHhd2x8jAFuKC1SmuY1OUcnRanKhsgh9c1zoQkLCNeBSWKe1xcouSWiuvyJlqYooRPJ4QQQgiJQ8WsYWpr2A6g01pnoVMo7II+BJcVFZ2kEln6robGbata0G4knUIhh+kljhT0IaqFSaP8eb+XQpEolpImBfSghYkQQgghRYYKU4mwHfalNUzUrQuyWcMUFvRBFD7OGiYpZoNp0AfJJS/4KppGsjNewSQpO4YHBbTlVVCC3PXSoqWV1h5CSBnB5xAhpAhQYSoRts/49NYwiZ+TszBJQR/EHcnoS4FWHp3bWNg1zEgKWVC5KBamBII+eMOKC5e9WElkpQAMRXp6tCZlliSEEEIIiQAVphJhP4BO3yUvLQtTUpHNdMlwAdltyygYgmKzVH/Q9TY8nZAlU9Z1+CxMAe56aSEqL9VF0pioMBFCCCGklFBhKhHW6lJqPnliG9EsTLUhOZtE2eMFfSjg1YPk0NOF7aKSkQkRJGkLU9xjAFlx87rABbnrpUVra+Fz8SxMxWmHEEIIIUQFFaYSYe2Sl44Y2sABYUqQSJiFSQ76kEweJt8aJk2UPFGRCLvmplY/U90kibDi4g/vXaekO880KUXEOhqYCCE6uIKJEFIMqDCVCNMAAzlMLBQ2ocAL9QqfhcOTTFwrtpGUhck4D5MuVHiMt6x5cIj4LnO6cwHScXsMQ1KYihaxjhoTIYQQQkoHFaYSYTvWNBkP11hYhfL1agb1SSaulaLkxUpcq1dARMuVVM7CJU9qK1CO4O+qSpIIK+5VUMRrWaygDy2CS15aoe69iG6AhBBCCCHFhgpTibAdbBopTBZKTg553U7hi5WFSeWSJ30WXPKspAuqU0Z2ySt8tnHJMyVSlLyIJq2gdUritSxWWPFSBGBg0AdCiA5GFSeEFAMqTCUijWd8FJc8SFYboS4L5asuLHGtZGFKJq54cFhxtVXJRkkNKhrlBR01QEJQlLxSuMfF+v2itln0FgkhhBBCClBhKhG2g24TtyQbJSeHNg9TXAuTpt54Fia9tUhMiGsa7c60LS9eZU3rkZdA2O+gdVBuCQIwlCJiHS1MhBBCCCklVJhKhIm1o05QRFoMBo3Rgj7EX8Okdt/TKDex1jCJn/XreZIItmAqR2A5zeeobXkvs+SGWKQ7uaUEGhP1JUIIIYSUEipMJcJk0N1QW5X/bOIKZbPuKC+H8Dly4tqQoA+yvpTM6NfrgSZFycvoyxkT6JJnuIYpQMGLgjdRbKur35cWXMNECCGEkPYGFaYSYTJ8rq8uKEwmE/uRXPI0UeRsrFW11f6zkUOAJ2PlCbLYyIlrxVDimrZjiORVwnTnF+RCaIqk0AasYSpWhO9SKC/UlwghhBBSSqgwlQgTJaK+pvDzmAxUoyhMIqKRQqUEadutqgrcLwd9sJVKXY8vKpzkkqc+RlfeWo6Q7yoiuwaKLnneUxbPuQ2vYaK+RAghhJBSQoWpjKmvsbMwRcnDpIsiZxdWXGFh0iSMjWOhkC02ASG2nWQtO1GRA19ElUOwAPryMLUP9zi65BFCdDCqOCGkGFBhKmPqRIXJQGOKsoZJGyUvbuJa8XNSLnmadVGAN3FtYXvk6HSGYcsD65A+R5Wj8NkbCa8UaoRJP0yaUiiGhBBCCCE5qDCVMbWCxchklr06ghlDp4TETlyrsa4k5pIXoDwkojBFlEtXSRKWrmqPBbEUlpcWg/D2SWMSUp8QQgghJC2oMJUxopXHZHAcJXmpqFCIocvjW5jUgRfiDfED8jCJIbYTcMlLgkSCPgTkcmovOZGSiqxICCGEEBIFKkxljGjlMRkcR7GmiAPylhZBYYoZVlxuo/A5OQuTvE8cVOtCpSdFlCqjuwYWPnsV4lK4qpWmzaI3SQipEIoV8IYQ0r6hwlTGNAhrmEwm2aNYmCQ3PMGqZOOS5w1G0L9rgycHkbjXr5QN6t7BV2f/rg0AgA5CLqqgdVGDu3csyCPsEwNnSIRcqsaGGu0+U+tbEq6BopulVzHtUq+XMS26d6wtept9G+uL3iYhpDLIvSsIISRNqkstAAFmj+6Dfyxbk//er7EeUwZ3w1f2Goz7l64GILvL6fCF2ha49HNj8N66zZg0sCv+8Pz76FBbha/uMwyvrNpQaLdrPb6+/27oVF9trXz99xGj8cgbH6NLfQ3OOWR3aZ/kkiecxj0LZuH6fy7HuZ7yAPCrU/bEj//xBr5x4PD8NlGJy9X4xzNn4OYnVuC/jxid35fJOLjg0JH4bOtODOjmV8aygqg3L/rCeLy8agMOHNVbc6bA6fsOQ6vr4qm3P/Wdn4hRePMQxvdvxLFTBuDjz7bhi9MGSPv2270X5k4fhLH9GqNVHoETpg/Cf1ZtwAEj9dcnac45eCTWbd6BY6b0j1XPb0+djt899x6+PG0A7nhmJZq37MTnJvRNSEpCSDG5/avTccez7+HSI8eUWhRCSDuAClMZcO0Jk7D3D/6JTzdtBwD07lKP/z1xilRGXDtyxIS+OHxcXyy4/QWpjDb2gAOcsvfQ/PfPTyoMPF/9oFk43sEFh46KdA5f3WcYvrrPsPz399dtltrPIeopY/p1wfVz5fPMMbx3J1zvuQaiZSdnsZk6uDumDu7uO/7r+w/3bTPhhD0H4YSQMvuP7I39R/bGkAv/FljOSWAtVXVVBj/68kTlvkzGwRXHjI9WcUTqqqtwzZcnFbXNxg41uPaEybHr2XtET+w9oicAYJ8RvWLXRwgpHTOH98TM4T1LLQYhpJ1Al7wyIOM4nvDe/jLeNUyqAbjO7csbjlo+JrjdqOiCFcRZAyPmmcpUQM9NwiWPEEIIIYSUlgoYdrYPMgHR0ABPniGorUm6MXmQq14SVhBlvVIbydRZWyWuZyojBcRAlDKSlhBCCCGEWECFqQxwnHCFqcVjYkrKwiTnYUpnWC/WGifgWU11eYQLN0UX6pwQQgghhFQOVJjKAJ9LnuJX8YcV9w/AdWPyoIS2aeUs0kXJixMiWowSVwmhZCWrYPmLSwghhBBCFFBhKgMcBCcoBczW/ugsRIEueZrPcZGTtiaTuFYO+hCjooQxEaUSFDxCCCGEEOKHClMZ4DiOZFVSKUytkrXC0bjkqesPChGe0ZmCYiK7+hWIF/TBHyWvHNCJIp5pOSl4hBBCCCHEHCpMZYCDcNc4X5Q8VT26oA/Ga5iSIyjJbFRqFXmYyhlRN6SFiRBCCCGkMqHCVAaYBH1o9WhMKjuNTjEKWsOUVpQ8EbH5OGuYaqorbA2T8CvRwkQIIYQQUplQYSoDHKM8TB6FSaF56JSIYJc84fgk7TYp1CsHfUikykTQnp9rUIYQQgghhJQ1VJjKhFALkxv8HQjKw2TWbrJ5mNT1ujHCPtRWB1+jcqbCxCWEEEIIIbugwlQmSAqTwiLkVTS8FqdsHeq6zfMwJYeuydbW6HWKiWsrwcVNDvpQAQITQgghhBAfVJjKBCfMJc+jaCgtTFHCiqdmYTJr34aaqvJMXKuNkueGlyGEEEIIIeUNFaYyIdwlTwgrDn8QiOxx6roDgz6In1Ma1UthxWO55FVy0Ifyl5cQQgghhPihwlQm2ORhUn0H9EpE0GA9tTVMmspUljFTyjUPkw7xJ6oEF0JCCCGEEOKHClOZYJuHySboQymi5KWhH9RVV1YeJpFKsIgRQgghhBA/VJjKhDCXPDGMuOPogj7YhxWXgj4kamHS1NsGLUw6SWKcKiGEEEIIKROoMJUJok6jUnBaPCYl1Rom3cA9SLmQgj4Ei2iFzloVZw2TnLg2cjVFQ5UrixBCCCGEVBZUmMoEW5e8FpWFSWNJCgr6kNYaJhFReYqjQ0iJa+MIlDA6dzuqS4QQQgghlQ8VpjLBOkqeVeJawyh5SaohGpe8OEqEqDDFCR6RNNqrVkYyEkIIIYSQaFBhKhPC8jB5LTMqdy+dwhOUuFaMzlcMN7c4bmpiWPEdcTLgEkIIIYQQYggVpjLBxsIE2OVhCgz6UGTntjhGFzFx7c6W8jffxFmvRQghhBBCygMqTGWCbOkJD/qg0hfiR8lLUHkS5Euq1mrBJW9nS/lbmBjzgRBCCCGk8qkIhWnFihU49dRTMXToUDQ0NGC33XbDZZddhu3bt5datMSQLUz+/UYueZHyMKUTJc/VaExJKRE7KmARExUmQgghhJDKp7rUApjw2muvobW1FTfeeCOGDx+OpUuX4rTTTsOmTZtw9dVXl1q8RBAVF5WC43XvUuVh0lmIgsOKqz+nRVI6REVYmEotACGEEEIIiU1FKEyHHnooDj300Pz3YcOG4fXXX8cNN9zQhhQm8bNqDVPwd0BvIaoKsCOmZmHSaQsJmV0qYQ0TIYQQQgipfCrCJU/Fhg0b0L1798Ay27ZtQ3Nzs/RXruisQLnNQ3t2zG/r01iPbh1qAuvoWFuV/xwc9EFsy1xlGtar46421furhQANYjjwAd06GLcRROf68tH1hwm/jUipZOzVuQ4A0Njg7yOlpluH2lKLQAghhBBiRfmMOi1Yvnw5rrvuulDr0qJFi3D55ZcXSap4iMqKmGj2r2ftjRv+9RbOnzMSyz/6DH/9zwf4xoEjUFedwXMr1mH9lh1Y/OoaAFnl5d5v7I0bHnkLc6cPwom/eBoAUJXR68VOyNopHb+ctweufvB1nLn/bsr9netrsHD27mh1XXQVBsnfPWosHAc4cfog88YEfvjFCXjh3XU4ZGxTpOOT5M8LZuGmx97GhYeOUu6fPrQ7/mvGYIzo07moct1x2nT8ePGbOHv2iKK2G8Q1X56Ip97+BJ+f1K/UohBCCCGEWOG4cRLjxOTCCy/ED37wg8Ayy5Ytw6hRhQHpqlWrsN9++2H//ffH//3f/wUeu23bNmzbti3/vbm5GQMHDsSGDRvQpUuXeMLHZMr3FuPTTdmgFSuuOgKn//o5/H2X4vO1fYfhosNHG9Xzt/98iAW3vwAAOO+Q3XHWgdlB8uoNW7HXoocAAEdP6oefHD9ZefzTb3+C4256CgDwvaPH4aS9Bkc/qQpgyIV/A5C1Cj183v6lFYYQQgghhJSM5uZmNDY2huoGJbUwnXvuuZg/f35gmWHDhuU/f/DBBzjggAMwc+ZM3HTTTaH119XVoa6uLq6YRUGKkmdh6tGFBReNSkH1OSmtYSKEEEIIIaQtUFKFqVevXujVq5dR2VWrVuGAAw7A1KlTccsttyAT4GZWiYjrjKos1hLJa5CE+kIS4Rb2qY8nhBBCCCGEVMgaplWrVmH//ffH4MGDcfXVV+Pjjz/O72tqKv1aliQQlRUbC5NIWGhydbuihYkaEyGEEEIIISIVoTAtXrwYy5cvx/LlyzFgwABpXwmXYCVKRhP0IQxJ0RItTMYKk/ozIYQQQgghpELCis+fPx+u6yr/2gpRlJ0saguRaR1p5WEihBBCCCGkLVARClN7IGO45igI2dpkaGHSHE8IIYQQQgihwlQ2ONL6I5vjdHVEsTBRYyKEEEIIIUSEClOZkIlgHQqqwzTSnlSM+hIhhBBCCCESVJjKBNEiZBX0Qfisy+UUVJtkoTJulRBCCCGEkPYBFaYyIYo7nfc4nVEpKDSG5JLHRUyEEEIIIYRIUGEqEySXvIh5mKIoPLQwEUIIIYQQoocKU5kgJZ21UHziLkGS3fgiVEAIIYQQQkgbhkPkMiFqHqYoocR17TJKHiGEEEIIITJUmMqEqGuYRKIdFr4GihBCCCGEkPYKFaYyIRM56IP6s3m79scQQgghhBDSXqDCVCaIyWptXOscxItyxyh5hBBCCCGE6KHCVCZEtTCJRDmKUfIIIYQQQgjRQ4WpTIi8hil20AeuYSKEEEIIIUQHFaYyQYqSFzGseNyw4IySRwghhBBCiAwVpjIhGZe8CBamDC1MhBBCCCGE6KDCVCaIOlLGKkpePIUnwzVMhBBCCCGEaKHCVCZIa5gimnp0a5hcN6Bd5mEihBBCCCFECxWmMkF0w7PKwyR+jp2HiRoTIYQQQgghIlSYygQp6EPExLU6C1OgIhUz8S0hhBBCCCFtGSpMZYIcVjxiHRGOEZWsKGHJCSGEEEIIactQYSoToiou8hok9XF9utQZtdueGNi9Q6lFIIQQQgghFQAVpjJB9MKrtkioJLvkyft+8V/TcPSkfvj6/sP1xwuf3aDoEG2Eu86Ygc9N6IsffnFCqUUhhBBCCCEVQHWpBSBZJAtTVJc8j7Xo4DF9cPCYPsbttgf2GNIdewzpXmoxCCGEEEJIhUALU5ngRA36IHyOku/WEXpA27cvEUIIIYQQYgcVpjJBCituY/WJGeWufdmXCCGEEEIIsYMKU5kgu+RFU2N0QR9M220HS5gIIYQQQgixggpTmSAHfYgWJS/KeiT5EGpMhBBCCCGEiFBhKhOcqGHFRZe8CO22t6APhBBCCCGE2ECFqUzISIlroykxcS1MdMkjhBBCCCFEhgpTmZBJIEpetKAPtDARQgghhBCigwpTmZCJ6JInEuUwUTejgYkQQgghhBAZKkxliFXQh5iKlsMoeYQQQgghhGihwlQmuIJ9xyasePygDxEOIoQQQgghpJ1AhalMaBWsO5GDPkQ4LkruJkIIIYQQQtoLVJjKBNEdrsomrLjmMyGEEEIIISQ+VJjKBNElzypKnuiSF9Na5DLsAyGEEEIIIRJUmMoENwmXvJgmJgZ9IIQQQgghRIYKU5kg6ip2ik+hMNcjEUIIIYQQkixUmMoFwbxjo/iIRWNbmOIdTgghhBBCSJuDClOZkISy4jDsAyGEEEIIIYlChalMiLp+SIqSF3sNE21MhBBCCCGEiFBhKhNaIyorovtehmuYCCGEEEIISRQqTGVCEsYd6kuEEEIIIYQkCxWmMiGqviTqSHEtTPTII4QQQgghRIYKU5mQxPqh+FHyqDERQgghhBAiUnEK07Zt2zBp0iQ4joMlS5aUWpySIxqV6JJHCCGEEEJIslScwnTBBRegX79+pRYjcaJHyWPiWkIIIYQQQtKiohSm+++/H3//+99x9dVXl1qUxEnCHY7qEiGEEEIIIclSXWoBTFmzZg1OO+003HPPPejQoYPRMdu2bcO2bdvy35ubm9MSz5ohPTrg003b89+7daiNVI9oVIob9KFLfU2s4wkhhBBCCGlrVISFyXVdzJ8/H2eccQamTZtmfNyiRYvQ2NiY/xs4cGCKUtpx7QmTccSEvrj76zMBAMdM7o8vTR2Aa748MXKdURWmq74wHifsOQgHjOwduW1CCCGEEELaIo6bRHi2iFx44YX4wQ9+EFhm2bJl+Pvf/47f//73eOSRR1BVVYUVK1Zg6NChePHFFzFp0iTtsSoL08CBA7FhwwZ06dIlqdMoKUtXbcDnrnscAPDYBQdgYHcz6xshhBBCCCHtmebmZjQ2NobqBiV1yTv33HMxf/78wDLDhg3Dww8/jCeffBJ1dXXSvmnTpmHu3Ln41a9+pTy2rq7Od0xbg1HyCCGEEEIISY+SKky9evVCr169Qstde+21+P73v5///sEHH2DOnDn43e9+h+nTp6cpYtnDKHmEEEIIIYSkR0UEfRg0aJD0vVOnTgCA3XbbDQMGDCiFSGVJ3MS1hBBCCCGEEJmKCPpA9CQZJY8QQgghhBAiUxEWJi9DhgxBCWNVlBXSGqbSiUEIIYQQQkibhBamNgTXMBFCCCGEEJIsVJjaENSXCCGEEEIISRYqTBWO6JnINUyEEEIIIYQkCxWmNgSj5BFCCCGEEJIsVJgqHNHC5DDsAyGEEEIIIYlChanCaRU0Joe/JiGEEEIIIYnCIXYbgvYlQgghhBBCkoUKUxuCQR8IIYQQQghJFipMFY7okkeFiRBCCCGEkGShwtSGoL5ECCGEEEJIslBhqnCkKHlUmAghhBBCCEkUKkwVjqAvMaw4IYQQQgghCUOFqcJxpTVMJRSEEEIIIYSQNggVpgpHtDAx6AMhhBBCCCHJQoWpwuEaJkIIIYQQQtKDClPFU9CYHGpMhBBCCCGEJAoVpgpHtDARQgghhBBCkoUKU4VDfYkQQgghhJD0oMJU4dDCRAghhBBCSHpQYapwXGpMhBBCCCGEpAYVpgqnY111qUUghBBCCCGkzcLRdoUztl8XnDJrKPp3ayi1KIQQQgghhLQ5qDBVOI7j4NIjx5RaDEIIIYQQQtokdMkjhBBCCCGEEA1UmAghhBBCCCFEAxUmQgghhBBCCNFAhYkQQgghhBBCNFBhIoQQQgghhBANVJgIIYQQQgghRAMVJkIIIYQQQgjRQIWJEEIIIYQQQjRQYSKEEEIIIYQQDVSYCCGEEEIIIUQDFSZCCCGEEEII0UCFiRBCCCGEEEI0UGEihBBCCCGEEA1UmAghhBBCCCFEAxUmQgghhBBCCNFAhYkQQgghhBBCNFBhIoQQQgghhBANVJgIIYQQQgghREN1qQUoJq7rAgCam5tLLAkhhBBCCCGklOR0gpyOoKNdKUwbN24EAAwcOLDEkhBCCCGEEELKgY0bN6KxsVG733HDVKo2RGtrKz744AN07twZjuOUVJbm5mYMHDgQ7733Hrp06VJSWUhlwD5DbGGfIbawzxBb2GeILeXUZ1zXxcaNG9GvXz9kMvqVSu3KwpTJZDBgwIBSiyHRpUuXkncWUlmwzxBb2GeILewzxBb2GWJLufSZIMtSDgZ9IIQQQgghhBANVJgIIYQQQgghRAMVphJRV1eHyy67DHV1daUWhVQI7DPEFvYZYgv7DLGFfYbYUol9pl0FfSCEEEIIIYQQG2hhIoQQQgghhBANVJgIIYQQQgghRAMVJkIIIYQQQgjRQIWJEEIIIYQQQjRQYSoB119/PYYMGYL6+npMnz4dzzzzTKlFIiVi0aJF2GOPPdC5c2f07t0bRx99NF5//XWpzNatW7FgwQL06NEDnTp1wrHHHos1a9ZIZVauXIkjjjgCHTp0QO/evXH++edj586dxTwVUiKuuuoqOI6Db33rW/lt7DPEy6pVq/CVr3wFPXr0QENDA8aPH4/nnnsuv991XVx66aXo27cvGhoaMHv2bLz55ptSHZ9++inmzp2LLl26oGvXrjj11FPx2WefFftUSBFoaWnBJZdcgqFDh6KhoQG77bYbvve970GME8Y+07559NFHceSRR6Jfv35wHAf33HOPtD+p/vGf//wH++yzD+rr6zFw4ED88Ic/TPvU1LikqNx5551ubW2te/PNN7uvvPKKe9ppp7ldu3Z116xZU2rRSAmYM2eOe8stt7hLly51lyxZ4h5++OHuoEGD3M8++yxf5owzznAHDhzoPvTQQ+5zzz3n7rXXXu7MmTPz+3fu3OmOGzfOnT17tvviiy+69913n9uzZ0/3oosuKsUpkSLyzDPPuEOGDHEnTJjgnn322fnt7DNE5NNPP3UHDx7szp8/33366afdt99+233wwQfd5cuX58tcddVVbmNjo3vPPfe4L730knvUUUe5Q4cOdbds2ZIvc+ihh7oTJ050n3rqKfexxx5zhw8f7p5wwgmlOCWSMldccYXbo0cP995773Xfeecd96677nI7derk/vSnP82XYZ9p39x3333ud77zHfdPf/qTC8C9++67pf1J9I8NGza4ffr0cefOnesuXbrUveOOO9yGhgb3xhtvLNZp5qHCVGT23HNPd8GCBfnvLS0tbr9+/dxFixaVUCpSLnz00UcuAPeRRx5xXdd1169f79bU1Lh33XVXvsyyZctcAO6TTz7pum72oZXJZNzVq1fny9xwww1uly5d3G3bthX3BEjR2LhxoztixAh38eLF7n777ZdXmNhniJdvf/vb7t57763d39ra6jY1Nbn/7//9v/y29evXu3V1de4dd9zhuq7rvvrqqy4A99lnn82Xuf/++13HcdxVq1alJzwpCUcccYR7yimnSNu+8IUvuHPnznVdl32GyHgVpqT6x89+9jO3W7du0nvp29/+tjty5MiUz8gPXfKKyPbt2/H8889j9uzZ+W2ZTAazZ8/Gk08+WULJSLmwYcMGAED37t0BAM8//zx27Ngh9ZlRo0Zh0KBB+T7z5JNPYvz48ejTp0++zJw5c9Dc3IxXXnmliNKTYrJgwQIcccQRUt8A2GeIn7/85S+YNm0avvSlL6F3796YPHkyfvGLX+T3v/POO1i9erXUZxobGzF9+nSpz3Tt2hXTpk3Ll5k9ezYymQyefvrp4p0MKQozZ87EQw89hDfeeAMA8NJLL+Hxxx/HYYcdBoB9hgSTVP948sknse+++6K2tjZfZs6cOXj99dexbt26Ip1NluqittbOWbt2LVpaWqRBCgD06dMHr732WomkIuVCa2srvvWtb2HWrFkYN24cAGD16tWora1F165dpbJ9+vTB6tWr82VUfSq3j7Q97rzzTrzwwgt49tlnffvYZ4iXt99+GzfccAPOOeccXHzxxXj22WfxzW9+E7W1tZg3b17+N1f1CbHP9O7dW9pfXV2N7t27s8+0QS688EI0Nzdj1KhRqKqqQktLC6644grMnTsXANhnSCBJ9Y/Vq1dj6NChvjpy+7p165aK/CqoMBFSJixYsABLly7F448/XmpRSBnz3nvv4eyzz8bixYtRX19fanFIBdDa2opp06bhyiuvBABMnjwZS5cuxc9//nPMmzevxNKRcuT3v/89brvtNtx+++0YO3YslixZgm9961vo168f+wxpl9Alr4j07NkTVVVVvmhVa9asQVNTU4mkIuXAWWedhXvvvRf//Oc/MWDAgPz2pqYmbN++HevXr5fKi32mqalJ2ady+0jb4vnnn8dHH32EKVOmoLq6GtXV1XjkkUdw7bXXorq6Gn369GGfIRJ9+/bFmDFjpG2jR4/GypUrARR+86B3U1NTEz766CNp/86dO/Hpp5+yz7RBzj//fFx44YU4/vjjMX78eJx00klYuHAhFi1aBIB9hgSTVP8op3cVFaYiUltbi6lTp+Khhx7Kb2ttbcVDDz2EGTNmlFAyUipc18VZZ52Fu+++Gw8//LDP9Dx16lTU1NRIfeb111/HypUr831mxowZePnll6UHz+LFi9GlSxffIIlUPgcddBBefvllLFmyJP83bdo0zJ07N/+ZfYaIzJo1y5eu4I033sDgwYMBAEOHDkVTU5PUZ5qbm/H0009LfWb9+vV4/vnn82UefvhhtLa2Yvr06UU4C1JMNm/ejExGHiJWVVWhtbUVAPsMCSap/jFjxgw8+uij2LFjR77M4sWLMXLkyKK64wFgWPFic+edd7p1dXXurbfe6r766qvu6aef7nbt2lWKVkXaD2eeeabb2Njo/utf/3I//PDD/N/mzZvzZc444wx30KBB7sMPP+w+99xz7owZM9wZM2bk9+dCRB9yyCHukiVL3AceeMDt1asXQ0S3I8Qoea7LPkNknnnmGbe6utq94oor3DfffNO97bbb3A4dOri//e1v82Wuuuoqt2vXru6f//xn9z//+Y/7+c9/XhkCePLkye7TTz/tPv744+6IESMYIrqNMm/ePLd///75sOJ/+tOf3J49e7oXXHBBvgz7TPtm48aN7osvvui++OKLLgD3mmuucV988UX33XffdV03mf6xfv16t0+fPu5JJ53kLl261L3zzjvdDh06MKx4e+G6665zBw0a5NbW1rp77rmn+9RTT5VaJFIiACj/brnllnyZLVu2uF//+tfdbt26uR06dHCPOeYY98MPP5TqWbFihXvYYYe5DQ0Nbs+ePd1zzz3X3bFjR5HPhpQKr8LEPkO8/PWvf3XHjRvn1tXVuaNGjXJvuukmaX9ra6t7ySWXuH369HHr6urcgw46yH399delMp988ol7wgknuJ06dXK7dOninnzyye7GjRuLeRqkSDQ3N7tnn322O2jQILe+vt4dNmyY+53vfEcK78w+07755z//qRy/zJs3z3Xd5PrHSy+95O69995uXV2d279/f/eqq64q1ilKOK4rpG0mhBBCCCGEEJKHa5gIIYQQQgghRAMVJkIIIYQQQgjRQIWJEEIIIYQQQjRQYSKEEEIIIYQQDVSYCCGEEEIIIUQDFSZCCCGEEEII0UCFiRBCCCGEEEI0UGEihBBCCCGEEA1UmAghhLQZVqxYAcdxsGTJktTamD9/Po4++ujU6ieEEFJeUGEihBBSNsyfPx+O4/j+Dj30UKPjBw4ciA8//BDjxo1LWVJCCCHthepSC0AIIYSIHHroobjlllukbXV1dUbHVlVVoampKQ2xCCGEtFNoYSKEEFJW1NXVoampSfrr1q0bAMBxHNxwww047LDD0NDQgGHDhuEPf/hD/livS966deswd+5c9OrVCw0NDRgxYoSkjL388ss48MAD0dDQgB49euD000/HZ599lt/f0tKCc845B127dkWPHj1wwQUXwHVdSd7W1lYsWrQIQ4cORUNDAyZOnCjJRAghpLKhwkQIIaSiuOSSS3DsscfipZdewty5c3H88cdj2bJl2rKvvvoq7r//fixbtgw33HADevbsCQDYtGkT5syZg27duuHZZ5/FXXfdhX/84x8466yz8sf/6Ec/wq233oqbb74Zjz/+OD799FPcfffdUhuLFi3Cr3/9a/z85z/HK6+8goULF+IrX/kKHnnkkfQuAiGEkKLhuN6pMkIIIaREzJ8/H7/97W9RX18vbb/44otx8cUXw3EcnHHGGbjhhhvy+/baay9MmTIFP/vZz7BixQoMHToUL774IiZNmoSjjjoKPXv2xM033+xr6xe/+AW+/e1v47333kPHjh0BAPfddx+OPPJIfPDBB+jTpw/69euHhQsX4vzzzwcA7Ny5E0OHDsXUqVNxzz33YNu2bejevTv+8Y9/YMaMGfm6v/rVr2Lz5s24/fbb07hMhBBCigjXMBFCCCkrDjjgAEkhAoDu3bvnP4uKSe67LiremWeeiWOPPRYvvPACDjnkEBx99NGYOXMmAGDZsmWYOHFiXlkCgFmzZqG1tRWvv/466uvr8eGHH2L69On5/dXV1Zg2bVreLW/58uXYvHkzDj74YKnd7du3Y/LkyfYnTwghpOygwkQIIaSs6NixI4YPH55IXYcddhjeffdd3HfffVi8eDEOOuggLFiwAFdffXUi9efWO/3tb39D//79pX2mgSoIIYSUN1zDRAghpKJ46qmnfN9Hjx6tLd+rVy/MmzcPv/3tb/GTn/wEN910EwBg9OjReOmll7Bp06Z82SeeeAKZTAYjR45EY2Mj+vbti6effjq/f+fOnXj++efz38eMGYO6ujqsXLkSw4cPl/4GDhyY1CkTQggpIbQwEUIIKSu2bduG1atXS9uqq6vzwRruuusuTJs2DXvvvTduu+02PPPMM/jlL3+prOvSSy/F1KlTMXbsWGzbtg333ntvXrmaO3cuLrvsMsybNw/f/e538fHHH+Mb3/gGTjrpJPTp0wcAcPbZZ+Oqq67CiBEjMGrUKFxzzTVYv359vv7OnTvjvPPOw8KFC9Ha2oq9994bGzZswBNPPIEuXbpg3rx5KVwhQgghxYQKEyGEkLLigQceQN++faVtI0eOxGuvvQYAuPzyy3HnnXfi61//Ovr27Ys77rgDY8aMUdZVW1uLiy66CCtWrEBDQwP22Wcf3HnnnQCADh064MEHH8TZZ5+NPfbYAx06dMCxxx6La665Jn/8ueeeiw8//BDz5s1DJpPBKaecgmOOOQYbNmzIl/ne976HXr16YdGiRXj77bfRtWtXTJkyBRdffHHSl4YQQkgJYJQ8QgghFYPjOLj77rtx9NFHl1oUQggh7QSuYSKEEEIIIYQQDVSYCCGEEEIIIUQD1zARQgipGOhFTgghpNjQwkQIIYQQQgghGqgwEUIIIYQQQogGKkyEEEIIIYQQooEKEyGEEEIIIYRooMJECCGEEEIIIRqoMBFCCCGEEEKIBipMhBBCCCGEEKKBChMhhBBCCCGEaPj/T6kPZmTBxqEAAAAASUVORK5CYII=\n" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Using cpu device\n", - "Wrapping the env with a `Monitor` wrapper\n", - "Wrapping the env in a DummyVecEnv.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.11/dist-packages/stable_baselines3/common/vec_env/patch_gym.py:49: UserWarning: You provided an OpenAI Gym environment. We strongly recommend transitioning to Gymnasium environments. Stable-Baselines3 is automatically wrapping your environments in a compatibility layer, which could potentially cause issues.\n", - " warnings.warn(\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.68e-05 |\n", - "| n_updates | 2141 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8672 |\n", - "| fps | 259 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8672 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00021 |\n", - "| n_updates | 2142 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8676 |\n", - "| fps | 259 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8676 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.4e-05 |\n", - "| n_updates | 2143 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8680 |\n", - "| fps | 259 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8680 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000747 |\n", - "| n_updates | 2144 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8684 |\n", - "| fps | 258 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8684 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00011 |\n", - "| n_updates | 2145 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8688 |\n", - "| fps | 258 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8688 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.61e-05 |\n", - "| n_updates | 2146 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8692 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8692 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000189 |\n", - "| n_updates | 2147 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8696 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8696 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000353 |\n", - "| n_updates | 2148 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8700 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8700 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.0002 |\n", - "| n_updates | 2149 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8704 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8704 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000405 |\n", - "| n_updates | 2150 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8708 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8708 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000168 |\n", - "| n_updates | 2151 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8712 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8712 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.04e-05 |\n", - "| n_updates | 2152 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8716 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8716 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000114 |\n", - "| n_updates | 2153 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8720 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8720 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7e-05 |\n", - "| n_updates | 2154 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8724 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8724 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000116 |\n", - "| n_updates | 2155 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8728 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8728 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000296 |\n", - "| n_updates | 2156 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8732 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8732 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000115 |\n", - "| n_updates | 2157 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8736 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8736 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00028 |\n", - "| n_updates | 2158 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8740 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8740 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000218 |\n", - "| n_updates | 2159 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8744 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8744 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.77e-05 |\n", - "| n_updates | 2160 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8748 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8748 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000108 |\n", - "| n_updates | 2161 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8752 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8752 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.33e-05 |\n", - "| n_updates | 2162 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8756 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8756 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000323 |\n", - "| n_updates | 2163 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8760 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8760 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.001 |\n", - "| n_updates | 2164 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8764 |\n", - "| fps | 257 |\n", - "| time_elapsed | 33 |\n", - "| total_timesteps | 8764 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000379 |\n", - "| n_updates | 2165 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8768 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8768 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000126 |\n", - "| n_updates | 2166 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8772 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8772 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.94e-05 |\n", - "| n_updates | 2167 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8776 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8776 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000183 |\n", - "| n_updates | 2168 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8780 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8780 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000149 |\n", - "| n_updates | 2169 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8784 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8784 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00024 |\n", - "| n_updates | 2170 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8788 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8788 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000188 |\n", - "| n_updates | 2171 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8792 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8792 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000202 |\n", - "| n_updates | 2172 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8796 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8796 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00103 |\n", - "| n_updates | 2173 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8800 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8800 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000122 |\n", - "| n_updates | 2174 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8804 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8804 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000264 |\n", - "| n_updates | 2175 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8808 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8808 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000112 |\n", - "| n_updates | 2176 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8812 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8812 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00021 |\n", - "| n_updates | 2177 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8816 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8816 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00124 |\n", - "| n_updates | 2178 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8820 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8820 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.89e-05 |\n", - "| n_updates | 2179 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8824 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8824 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.75e-05 |\n", - "| n_updates | 2180 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8828 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8828 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.85e-05 |\n", - "| n_updates | 2181 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8832 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8832 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00016 |\n", - "| n_updates | 2182 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8836 |\n", - "| fps | 257 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8836 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.72e-05 |\n", - "| n_updates | 2183 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8840 |\n", - "| fps | 256 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8840 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000124 |\n", - "| n_updates | 2184 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8844 |\n", - "| fps | 256 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8844 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000241 |\n", - "| n_updates | 2185 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8848 |\n", - "| fps | 256 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8848 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000683 |\n", - "| n_updates | 2186 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8852 |\n", - "| fps | 256 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8852 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000102 |\n", - "| n_updates | 2187 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8856 |\n", - "| fps | 256 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8856 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000247 |\n", - "| n_updates | 2188 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8860 |\n", - "| fps | 255 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8860 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000293 |\n", - "| n_updates | 2189 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8864 |\n", - "| fps | 255 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8864 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000582 |\n", - "| n_updates | 2190 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8868 |\n", - "| fps | 255 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8868 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000204 |\n", - "| n_updates | 2191 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8872 |\n", - "| fps | 255 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8872 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000177 |\n", - "| n_updates | 2192 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8876 |\n", - "| fps | 255 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8876 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000224 |\n", - "| n_updates | 2193 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8880 |\n", - "| fps | 255 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8880 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000618 |\n", - "| n_updates | 2194 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8884 |\n", - "| fps | 255 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8884 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00157 |\n", - "| n_updates | 2195 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8888 |\n", - "| fps | 255 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8888 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000277 |\n", - "| n_updates | 2196 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8892 |\n", - "| fps | 254 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8892 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000233 |\n", - "| n_updates | 2197 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8896 |\n", - "| fps | 254 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8896 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000249 |\n", - "| n_updates | 2198 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8900 |\n", - "| fps | 254 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8900 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000435 |\n", - "| n_updates | 2199 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8904 |\n", - "| fps | 254 |\n", - "| time_elapsed | 34 |\n", - "| total_timesteps | 8904 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.74e-05 |\n", - "| n_updates | 2200 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8908 |\n", - "| fps | 254 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8908 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000272 |\n", - "| n_updates | 2201 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8912 |\n", - "| fps | 254 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8912 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000497 |\n", - "| n_updates | 2202 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8916 |\n", - "| fps | 254 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8916 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000428 |\n", - "| n_updates | 2203 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8920 |\n", - "| fps | 254 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8920 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000118 |\n", - "| n_updates | 2204 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8924 |\n", - "| fps | 254 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8924 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000265 |\n", - "| n_updates | 2205 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8928 |\n", - "| fps | 254 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8928 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.9e-05 |\n", - "| n_updates | 2206 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8932 |\n", - "| fps | 254 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8932 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000283 |\n", - "| n_updates | 2207 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8936 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8936 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00121 |\n", - "| n_updates | 2208 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8940 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8940 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.33e-05 |\n", - "| n_updates | 2209 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8944 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8944 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.8e-05 |\n", - "| n_updates | 2210 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8948 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8948 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000147 |\n", - "| n_updates | 2211 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8952 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8952 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000705 |\n", - "| n_updates | 2212 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8956 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8956 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000144 |\n", - "| n_updates | 2213 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8960 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8960 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.48e-05 |\n", - "| n_updates | 2214 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8964 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8964 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.87e-05 |\n", - "| n_updates | 2215 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8968 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8968 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000141 |\n", - "| n_updates | 2216 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8972 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8972 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00028 |\n", - "| n_updates | 2217 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8976 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8976 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000273 |\n", - "| n_updates | 2218 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8980 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8980 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000503 |\n", - "| n_updates | 2219 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8984 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8984 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.13e-05 |\n", - "| n_updates | 2220 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8988 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8988 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00133 |\n", - "| n_updates | 2221 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8992 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8992 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000176 |\n", - "| n_updates | 2222 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 8996 |\n", - "| fps | 253 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 8996 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000197 |\n", - "| n_updates | 2223 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9000 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9000 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00012 |\n", - "| n_updates | 2224 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9004 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9004 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000156 |\n", - "| n_updates | 2225 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9008 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9008 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.75e-05 |\n", - "| n_updates | 2226 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9012 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9012 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00013 |\n", - "| n_updates | 2227 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9016 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9016 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000104 |\n", - "| n_updates | 2228 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9020 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9020 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000349 |\n", - "| n_updates | 2229 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9024 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9024 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.38e-05 |\n", - "| n_updates | 2230 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9028 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9028 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.73e-05 |\n", - "| n_updates | 2231 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9032 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9032 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000531 |\n", - "| n_updates | 2232 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9036 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9036 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000122 |\n", - "| n_updates | 2233 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9040 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9040 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00023 |\n", - "| n_updates | 2234 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9044 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9044 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000272 |\n", - "| n_updates | 2235 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9048 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9048 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00083 |\n", - "| n_updates | 2236 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9052 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9052 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000303 |\n", - "| n_updates | 2237 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9056 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9056 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000216 |\n", - "| n_updates | 2238 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9060 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9060 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000231 |\n", - "| n_updates | 2239 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9064 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9064 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000195 |\n", - "| n_updates | 2240 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9068 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9068 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.99e-05 |\n", - "| n_updates | 2241 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9072 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9072 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000184 |\n", - "| n_updates | 2242 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9076 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9076 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.76e-05 |\n", - "| n_updates | 2243 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9080 |\n", - "| fps | 252 |\n", - "| time_elapsed | 35 |\n", - "| total_timesteps | 9080 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.35e-05 |\n", - "| n_updates | 2244 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9084 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9084 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.4e-05 |\n", - "| n_updates | 2245 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9088 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9088 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.65e-05 |\n", - "| n_updates | 2246 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9092 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9092 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000303 |\n", - "| n_updates | 2247 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9096 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9096 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000184 |\n", - "| n_updates | 2248 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9100 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9100 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000202 |\n", - "| n_updates | 2249 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9104 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9104 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000612 |\n", - "| n_updates | 2250 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9108 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9108 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000187 |\n", - "| n_updates | 2251 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9112 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9112 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00015 |\n", - "| n_updates | 2252 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9116 |\n", - "| fps | 252 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9116 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000141 |\n", - "| n_updates | 2253 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9120 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9120 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000267 |\n", - "| n_updates | 2254 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9124 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9124 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000158 |\n", - "| n_updates | 2255 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9128 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9128 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.32e-05 |\n", - "| n_updates | 2256 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9132 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9132 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.54e-05 |\n", - "| n_updates | 2257 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9136 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9136 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.78e-05 |\n", - "| n_updates | 2258 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9140 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9140 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000309 |\n", - "| n_updates | 2259 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9144 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9144 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00015 |\n", - "| n_updates | 2260 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9148 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9148 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000206 |\n", - "| n_updates | 2261 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9152 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9152 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.5e-05 |\n", - "| n_updates | 2262 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9156 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9156 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000462 |\n", - "| n_updates | 2263 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9160 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9160 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000307 |\n", - "| n_updates | 2264 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9164 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9164 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00021 |\n", - "| n_updates | 2265 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9168 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9168 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000555 |\n", - "| n_updates | 2266 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9172 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9172 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000212 |\n", - "| n_updates | 2267 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9176 |\n", - "| fps | 251 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9176 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 2.71e-05 |\n", - "| n_updates | 2268 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9180 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9180 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.88e-05 |\n", - "| n_updates | 2269 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9184 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9184 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000321 |\n", - "| n_updates | 2270 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9188 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9188 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00014 |\n", - "| n_updates | 2271 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9192 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9192 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000246 |\n", - "| n_updates | 2272 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9196 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9196 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.47e-05 |\n", - "| n_updates | 2273 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9200 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9200 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000154 |\n", - "| n_updates | 2274 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9204 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9204 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.82e-05 |\n", - "| n_updates | 2275 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9208 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9208 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000113 |\n", - "| n_updates | 2276 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9212 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9212 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000474 |\n", - "| n_updates | 2277 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9216 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9216 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000623 |\n", - "| n_updates | 2278 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9220 |\n", - "| fps | 250 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9220 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.33e-05 |\n", - "| n_updates | 2279 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9224 |\n", - "| fps | 249 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9224 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000115 |\n", - "| n_updates | 2280 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9228 |\n", - "| fps | 249 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9228 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.83e-05 |\n", - "| n_updates | 2281 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9232 |\n", - "| fps | 249 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9232 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000151 |\n", - "| n_updates | 2282 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9236 |\n", - "| fps | 249 |\n", - "| time_elapsed | 36 |\n", - "| total_timesteps | 9236 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000289 |\n", - "| n_updates | 2283 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9240 |\n", - "| fps | 249 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9240 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000168 |\n", - "| n_updates | 2284 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9244 |\n", - "| fps | 249 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9244 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00014 |\n", - "| n_updates | 2285 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9248 |\n", - "| fps | 249 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9248 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000139 |\n", - "| n_updates | 2286 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9252 |\n", - "| fps | 249 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9252 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000522 |\n", - "| n_updates | 2287 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9256 |\n", - "| fps | 249 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9256 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.84e-05 |\n", - "| n_updates | 2288 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9260 |\n", - "| fps | 249 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9260 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.76e-05 |\n", - "| n_updates | 2289 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9264 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9264 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000213 |\n", - "| n_updates | 2290 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9268 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9268 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000542 |\n", - "| n_updates | 2291 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9272 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9272 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000133 |\n", - "| n_updates | 2292 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9276 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9276 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000278 |\n", - "| n_updates | 2293 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9280 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9280 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000135 |\n", - "| n_updates | 2294 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9284 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9284 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000169 |\n", - "| n_updates | 2295 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9288 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9288 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000217 |\n", - "| n_updates | 2296 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9292 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9292 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.0002 |\n", - "| n_updates | 2297 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9296 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9296 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000368 |\n", - "| n_updates | 2298 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9300 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9300 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000615 |\n", - "| n_updates | 2299 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9304 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9304 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000134 |\n", - "| n_updates | 2300 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9308 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9308 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000165 |\n", - "| n_updates | 2301 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9312 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9312 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000534 |\n", - "| n_updates | 2302 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9316 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9316 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000102 |\n", - "| n_updates | 2303 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9320 |\n", - "| fps | 248 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9320 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.84e-05 |\n", - "| n_updates | 2304 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9324 |\n", - "| fps | 247 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9324 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000662 |\n", - "| n_updates | 2305 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9328 |\n", - "| fps | 247 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9328 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000102 |\n", - "| n_updates | 2306 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9332 |\n", - "| fps | 247 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9332 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000244 |\n", - "| n_updates | 2307 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9336 |\n", - "| fps | 247 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9336 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000201 |\n", - "| n_updates | 2308 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9340 |\n", - "| fps | 247 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9340 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000281 |\n", - "| n_updates | 2309 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9344 |\n", - "| fps | 247 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9344 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000117 |\n", - "| n_updates | 2310 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9348 |\n", - "| fps | 247 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9348 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.64e-05 |\n", - "| n_updates | 2311 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9352 |\n", - "| fps | 247 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9352 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.66e-05 |\n", - "| n_updates | 2312 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9356 |\n", - "| fps | 246 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9356 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000151 |\n", - "| n_updates | 2313 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9360 |\n", - "| fps | 246 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9360 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.3e-05 |\n", - "| n_updates | 2314 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9364 |\n", - "| fps | 246 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9364 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000543 |\n", - "| n_updates | 2315 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9368 |\n", - "| fps | 246 |\n", - "| time_elapsed | 37 |\n", - "| total_timesteps | 9368 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000298 |\n", - "| n_updates | 2316 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9372 |\n", - "| fps | 246 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9372 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000235 |\n", - "| n_updates | 2317 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9376 |\n", - "| fps | 246 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9376 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.51e-05 |\n", - "| n_updates | 2318 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9380 |\n", - "| fps | 246 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9380 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.05e-05 |\n", - "| n_updates | 2319 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9384 |\n", - "| fps | 245 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9384 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.71e-05 |\n", - "| n_updates | 2320 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9388 |\n", - "| fps | 245 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9388 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.08e-05 |\n", - "| n_updates | 2321 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9392 |\n", - "| fps | 245 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9392 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.82e-05 |\n", - "| n_updates | 2322 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9396 |\n", - "| fps | 245 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9396 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000326 |\n", - "| n_updates | 2323 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 1 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9400 |\n", - "| fps | 245 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9400 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000452 |\n", - "| n_updates | 2324 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 1 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9404 |\n", - "| fps | 245 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9404 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000117 |\n", - "| n_updates | 2325 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9408 |\n", - "| fps | 245 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9408 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000324 |\n", - "| n_updates | 2326 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9412 |\n", - "| fps | 244 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9412 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000117 |\n", - "| n_updates | 2327 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9416 |\n", - "| fps | 244 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9416 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000266 |\n", - "| n_updates | 2328 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9420 |\n", - "| fps | 244 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9420 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000113 |\n", - "| n_updates | 2329 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9424 |\n", - "| fps | 244 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9424 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000264 |\n", - "| n_updates | 2330 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9428 |\n", - "| fps | 244 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9428 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.37e-05 |\n", - "| n_updates | 2331 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9432 |\n", - "| fps | 244 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9432 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000308 |\n", - "| n_updates | 2332 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9436 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9436 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000142 |\n", - "| n_updates | 2333 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9440 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9440 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000104 |\n", - "| n_updates | 2334 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9444 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9444 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000146 |\n", - "| n_updates | 2335 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9448 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9448 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000137 |\n", - "| n_updates | 2336 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9452 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9452 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.97e-05 |\n", - "| n_updates | 2337 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9456 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9456 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00031 |\n", - "| n_updates | 2338 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9460 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9460 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00033 |\n", - "| n_updates | 2339 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9464 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9464 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000261 |\n", - "| n_updates | 2340 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9468 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9468 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.67e-05 |\n", - "| n_updates | 2341 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9472 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9472 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 4.4e-05 |\n", - "| n_updates | 2342 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9476 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9476 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000126 |\n", - "| n_updates | 2343 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9480 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9480 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000223 |\n", - "| n_updates | 2344 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9484 |\n", - "| fps | 243 |\n", - "| time_elapsed | 38 |\n", - "| total_timesteps | 9484 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00041 |\n", - "| n_updates | 2345 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9488 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9488 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000112 |\n", - "| n_updates | 2346 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9492 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9492 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000217 |\n", - "| n_updates | 2347 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9496 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9496 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000868 |\n", - "| n_updates | 2348 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9500 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9500 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.86e-05 |\n", - "| n_updates | 2349 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9504 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9504 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00031 |\n", - "| n_updates | 2350 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9508 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9508 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000297 |\n", - "| n_updates | 2351 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9512 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9512 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.0001 |\n", - "| n_updates | 2352 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9516 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9516 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000201 |\n", - "| n_updates | 2353 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9520 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9520 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000621 |\n", - "| n_updates | 2354 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9524 |\n", - "| fps | 243 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9524 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000155 |\n", - "| n_updates | 2355 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9528 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9528 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.38e-05 |\n", - "| n_updates | 2356 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9532 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9532 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000182 |\n", - "| n_updates | 2357 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9536 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9536 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000566 |\n", - "| n_updates | 2358 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9540 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9540 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.78e-05 |\n", - "| n_updates | 2359 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9544 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9544 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000107 |\n", - "| n_updates | 2360 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9548 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9548 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000104 |\n", - "| n_updates | 2361 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9552 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9552 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00135 |\n", - "| n_updates | 2362 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9556 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9556 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.6e-05 |\n", - "| n_updates | 2363 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9560 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9560 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00021 |\n", - "| n_updates | 2364 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9564 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9564 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000136 |\n", - "| n_updates | 2365 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9568 |\n", - "| fps | 242 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9568 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.6e-05 |\n", - "| n_updates | 2366 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9572 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9572 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000352 |\n", - "| n_updates | 2367 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9576 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9576 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00012 |\n", - "| n_updates | 2368 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9580 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9580 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000142 |\n", - "| n_updates | 2369 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9584 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9584 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000101 |\n", - "| n_updates | 2370 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9588 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9588 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000177 |\n", - "| n_updates | 2371 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9592 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9592 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000249 |\n", - "| n_updates | 2372 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9596 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9596 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000378 |\n", - "| n_updates | 2373 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9600 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9600 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.85e-05 |\n", - "| n_updates | 2374 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9604 |\n", - "| fps | 241 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9604 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.74e-05 |\n", - "| n_updates | 2375 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9608 |\n", - "| fps | 240 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9608 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000129 |\n", - "| n_updates | 2376 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9612 |\n", - "| fps | 240 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9612 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000165 |\n", - "| n_updates | 2377 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9616 |\n", - "| fps | 240 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9616 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000219 |\n", - "| n_updates | 2378 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9620 |\n", - "| fps | 240 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9620 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.86e-05 |\n", - "| n_updates | 2379 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9624 |\n", - "| fps | 240 |\n", - "| time_elapsed | 39 |\n", - "| total_timesteps | 9624 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000138 |\n", - "| n_updates | 2380 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9628 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9628 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.16e-05 |\n", - "| n_updates | 2381 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9632 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9632 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.75e-05 |\n", - "| n_updates | 2382 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9636 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9636 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000156 |\n", - "| n_updates | 2383 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9640 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9640 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.5e-05 |\n", - "| n_updates | 2384 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9644 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9644 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.06e-05 |\n", - "| n_updates | 2385 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9648 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9648 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000588 |\n", - "| n_updates | 2386 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9652 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9652 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00041 |\n", - "| n_updates | 2387 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9656 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9656 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.92e-05 |\n", - "| n_updates | 2388 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9660 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9660 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.25e-05 |\n", - "| n_updates | 2389 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9664 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9664 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000412 |\n", - "| n_updates | 2390 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9668 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9668 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000429 |\n", - "| n_updates | 2391 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9672 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9672 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000228 |\n", - "| n_updates | 2392 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9676 |\n", - "| fps | 240 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9676 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.6e-05 |\n", - "| n_updates | 2393 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9680 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9680 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000152 |\n", - "| n_updates | 2394 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9684 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9684 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.34e-05 |\n", - "| n_updates | 2395 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9688 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9688 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000705 |\n", - "| n_updates | 2396 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9692 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9692 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000682 |\n", - "| n_updates | 2397 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9696 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9696 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.35e-05 |\n", - "| n_updates | 2398 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9700 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9700 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000243 |\n", - "| n_updates | 2399 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9704 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9704 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000137 |\n", - "| n_updates | 2400 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9708 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9708 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.93e-05 |\n", - "| n_updates | 2401 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9712 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9712 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 4.78e-05 |\n", - "| n_updates | 2402 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9716 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9716 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000227 |\n", - "| n_updates | 2403 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9720 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9720 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000102 |\n", - "| n_updates | 2404 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9724 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9724 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.22e-05 |\n", - "| n_updates | 2405 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9728 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9728 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.57e-05 |\n", - "| n_updates | 2406 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9732 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9732 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.0001 |\n", - "| n_updates | 2407 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9736 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9736 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000137 |\n", - "| n_updates | 2408 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9740 |\n", - "| fps | 239 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9740 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.09e-05 |\n", - "| n_updates | 2409 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.84 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9744 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9744 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000406 |\n", - "| n_updates | 2410 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9748 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9748 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.6e-05 |\n", - "| n_updates | 2411 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9752 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9752 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000111 |\n", - "| n_updates | 2412 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9756 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9756 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.7e-05 |\n", - "| n_updates | 2413 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9760 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9760 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.24e-05 |\n", - "| n_updates | 2414 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9764 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9764 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.0001 |\n", - "| n_updates | 2415 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9768 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9768 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000144 |\n", - "| n_updates | 2416 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9772 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9772 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.81e-05 |\n", - "| n_updates | 2417 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9776 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9776 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000118 |\n", - "| n_updates | 2418 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9780 |\n", - "| fps | 238 |\n", - "| time_elapsed | 40 |\n", - "| total_timesteps | 9780 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000178 |\n", - "| n_updates | 2419 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.84 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9784 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9784 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.54e-05 |\n", - "| n_updates | 2420 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9788 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9788 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000234 |\n", - "| n_updates | 2421 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9792 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9792 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00011 |\n", - "| n_updates | 2422 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9796 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9796 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000213 |\n", - "| n_updates | 2423 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9800 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9800 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000111 |\n", - "| n_updates | 2424 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9804 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9804 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000194 |\n", - "| n_updates | 2425 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9808 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9808 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000446 |\n", - "| n_updates | 2426 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9812 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9812 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.86e-05 |\n", - "| n_updates | 2427 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9816 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9816 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000127 |\n", - "| n_updates | 2428 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9820 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9820 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000284 |\n", - "| n_updates | 2429 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9824 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9824 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.13e-05 |\n", - "| n_updates | 2430 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9828 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9828 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000147 |\n", - "| n_updates | 2431 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9832 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9832 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00045 |\n", - "| n_updates | 2432 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9836 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9836 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.78e-05 |\n", - "| n_updates | 2433 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9840 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9840 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000327 |\n", - "| n_updates | 2434 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9844 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9844 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00049 |\n", - "| n_updates | 2435 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9848 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9848 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.67e-05 |\n", - "| n_updates | 2436 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9852 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9852 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000119 |\n", - "| n_updates | 2437 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9856 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9856 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000129 |\n", - "| n_updates | 2438 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9860 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9860 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.3e-05 |\n", - "| n_updates | 2439 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.86 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9864 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9864 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000154 |\n", - "| n_updates | 2440 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9868 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9868 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.63e-05 |\n", - "| n_updates | 2441 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9872 |\n", - "| fps | 238 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9872 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000978 |\n", - "| n_updates | 2442 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.88 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9876 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9876 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000137 |\n", - "| n_updates | 2443 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9880 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9880 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000206 |\n", - "| n_updates | 2444 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9884 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9884 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000141 |\n", - "| n_updates | 2445 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9888 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9888 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000279 |\n", - "| n_updates | 2446 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9892 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9892 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.8e-05 |\n", - "| n_updates | 2447 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9896 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9896 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.43e-05 |\n", - "| n_updates | 2448 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9900 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9900 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000133 |\n", - "| n_updates | 2449 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9904 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9904 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000272 |\n", - "| n_updates | 2450 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9908 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9908 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000217 |\n", - "| n_updates | 2451 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.9 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9912 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9912 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.15e-05 |\n", - "| n_updates | 2452 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.92 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9916 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9916 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000248 |\n", - "| n_updates | 2453 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9920 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9920 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.22e-05 |\n", - "| n_updates | 2454 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9924 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9924 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.82e-05 |\n", - "| n_updates | 2455 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9928 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9928 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000101 |\n", - "| n_updates | 2456 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9932 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9932 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000223 |\n", - "| n_updates | 2457 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9936 |\n", - "| fps | 237 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9936 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 6.77e-05 |\n", - "| n_updates | 2458 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.94 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9940 |\n", - "| fps | 236 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9940 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 7.61e-05 |\n", - "| n_updates | 2459 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9944 |\n", - "| fps | 236 |\n", - "| time_elapsed | 41 |\n", - "| total_timesteps | 9944 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.0004 |\n", - "| n_updates | 2460 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9948 |\n", - "| fps | 236 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9948 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000121 |\n", - "| n_updates | 2461 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9952 |\n", - "| fps | 236 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9952 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000324 |\n", - "| n_updates | 2462 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9956 |\n", - "| fps | 236 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9956 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00013 |\n", - "| n_updates | 2463 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.96 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9960 |\n", - "| fps | 236 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9960 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000539 |\n", - "| n_updates | 2464 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9964 |\n", - "| fps | 236 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9964 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000212 |\n", - "| n_updates | 2465 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9968 |\n", - "| fps | 236 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9968 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000151 |\n", - "| n_updates | 2466 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9972 |\n", - "| fps | 235 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9972 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000108 |\n", - "| n_updates | 2467 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9976 |\n", - "| fps | 235 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9976 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 9.5e-05 |\n", - "| n_updates | 2468 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9980 |\n", - "| fps | 235 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9980 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 5.58e-05 |\n", - "| n_updates | 2469 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 1 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9984 |\n", - "| fps | 235 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9984 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000313 |\n", - "| n_updates | 2470 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9988 |\n", - "| fps | 235 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9988 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000126 |\n", - "| n_updates | 2471 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9992 |\n", - "| fps | 235 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9992 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.00023 |\n", - "| n_updates | 2472 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 9996 |\n", - "| fps | 235 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 9996 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 0.000431 |\n", - "| n_updates | 2473 |\n", - "----------------------------------\n", - "----------------------------------\n", - "| rollout/ | |\n", - "| ep_len_mean | 1 |\n", - "| ep_rew_mean | 0.98 |\n", - "| exploration_rate | 0.05 |\n", - "| time/ | |\n", - "| episodes | 10000 |\n", - "| fps | 235 |\n", - "| time_elapsed | 42 |\n", - "| total_timesteps | 10000 |\n", - "| train/ | |\n", - "| learning_rate | 0.0001 |\n", - "| loss | 8.13e-05 |\n", - "| n_updates | 2474 |\n", - "----------------------------------\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 1000x600 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAIjCAYAAABh3KjvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiO5JREFUeJzt3Xd8FHX+x/H3JiENSKElhA5BinTQGIqNaFBO5fRUPJTyU7BxongWPEUFFSvn6anYsKLYO4IcxYqoNAURRaQIhCIkoQaSzO8PzJJNZndndyez2eT19JGH7My3z3e+s58tsy7DMAwBAAAAABwTFe4GAAAAAEBtQyAGAAAAAA4jEAMAAAAAhxGIAQAAAIDDCMQAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiAGIKKMHDlSrVu3DirvHXfcIZfLZW+D4LZw4UK5XC4tXLjQ9rKdPHYnn3yyTj75ZPfjsn69+eabjtQfyhyvClV1XKtyvtQE999/vzp27KjS0tJwN8WvoUOH6oILLgh3M4CIQyAGwBYul8vSX2190jVy5EiPcYiLi9MxxxyjiRMn6uDBg+FunqOef/55j7GIj49XRkaGcnNz9cgjj2jPnj221LNlyxbdcccdWr58uS3l2ak6t602CGYOlr0YUPZXp04dtW7dWtdcc43y8/MrpW/durX+8pe/BNW+wsJC3XfffbrpppsUFXX0qVr5+mNiYtSgQQP17t1b48aN048//ui1vD/++EM33HCDOnTooPj4eDVo0EC5ubn66KOPKqVdv369u4633nrL6zjs3LnTve2mm27SW2+9pRUrVgTVX6C2igl3AwDUDC+99JLH4xdffFFz586ttL1Tp04h1fP0008H/Qrxrbfeqptvvjmk+kMRFxenZ555RpJUUFCg9957T5MnT9avv/6qGTNmhK1d4TJp0iS1adNGhw8fVl5enhYuXKhrr71WU6dO1fvvv69u3bq50wZz7LZs2aI777xTrVu3Vo8ePSzn++STTwKqJxi+2hbKHI8kJ554og4cOKDY2NiwtSGQOVjmiSeeUL169bRv3z7NmzdPjz76qJYuXaovvvjCtnZNnz5dxcXFuuiiiyrtO+200zR8+HAZhqGCggKtWLFCL7zwgh5//HHdd999Gj9+vEf6NWvWaODAgdqxY4dGjRqlPn36KD8/XzNmzNBf/vIX3XTTTbr33ntN2zFp0iSde+65ft+N7tmzp/r06aOHHnpIL774YvAdB2obAwCqwNVXX21YWWL27dvnQGvCb8SIEUbdunU9tpWWlhonnHCC4XK5jLy8vDC1zLrS0lJj//79XvcvWLDAkGQsWLDAZznPPfecIcn49ttvK+2bN2+ekZCQYLRq1cpnXVZ8++23hiTjueees5Te21ws69cbb7wRUntCaVs4WT2uVh04cMAoKSmxpaxgBTMHb7/9dkOSsWPHDo/0F154oSHJWLx4scf2Vq1aGYMHDw6qfd26dTMuvvjiStslGVdffXWl7Tt37jSys7MNScZHH33k3n7o0CGjS5cuRmJiovH111975CkuLna3/fXXX3dv/+233wxJRo8ePQxJxltvveWRz9s4PPjgg0bdunWNPXv2BNVnoDbio4kAHHPyySerS5cuWrJkiU488UQlJibqlltukSS99957Gjx4sDIyMhQXF6d27dpp8uTJKikp8Sij4vdnyj5G8+CDD+qpp55Su3btFBcXp+OOO07ffvutR16z7xm5XC6NHTtW7777rrp06aK4uDgde+yxmj17dqX2L1y4UH369FF8fLzatWunJ598MqTvLrlcLvXv31+GYWjdunUe+z7++GMNGDBAdevWVf369TV48GCtWrXKvf/999+Xy+XS999/79721ltvyeVy6dxzz/Uoq1OnTrrwwgvdj5977jmdeuqpatKkieLi4tS5c2c98cQTldpX9tGqOXPmqE+fPkpISNCTTz4pSfr99981ZMgQ1a1bV02aNNF1112noqKioMahvFNPPVW33XabNmzYoJdfftm93Wyc586dq/79+yslJUX16tVThw4d3PNp4cKFOu644yRJo0aNcn/U6vnnn5fkey5W/I5YmZKSEt1yyy1KT09X3bp1dfbZZ2vTpk2VxmzkyJGV8pYv01/bzL4jtm/fPl1//fVq0aKF4uLi1KFDBz344IMyDMMjXSDz2YzV42qln2V9dblcmjlzpm699VY1a9ZMiYmJKiwsNP2OWNlx+fHHH3XKKacoMTFRzZo10/3331+prg0bNujss8/2aOucOXNC/gi0tznozYABAyRJv/76a9B1lvfbb7/p+++/V05OjuU8DRs21MyZMxUTE6O7777bvf2tt97SypUrdfPNNysrK8sjT3R0tJ588kmlpKTo9ttvr1Tm0KFDdcwxx2jSpEmV5pmZ0047Tfv27dPcuXMttxuo7fhoIgBH/fHHHzrjjDM0dOhQXXzxxUpLS5N05Dsb9erV0/jx41WvXj3Nnz9fEydOVGFhoR544AG/5b7yyivas2ePLr/8crlcLt1///0699xztW7dOtWpU8dn3i+++EJvv/22rrrqKtWvX1+PPPKIzjvvPG3cuFENGzaUJC1btkyDBg1S06ZNdeedd6qkpESTJk1S48aNQxqP9evXS5JSU1Pd21566SWNGDFCubm5uu+++7R//3498cQT6t+/v5YtW6bWrVurf//+crlc+uyzz9wfn/r8888VFRXl8RGpHTt26KefftLYsWPd25544gkde+yxOvvssxUTE6MPPvhAV111lUpLS3X11Vd7tG/NmjW66KKLdPnll2v06NHq0KGDDhw4oIEDB2rjxo265pprlJGRoZdeeknz588PaSzKXHLJJbrlllv0ySefaPTo0aZpVq1apb/85S/q1q2bJk2apLi4OK1du1ZffvmlpCPB56RJkzRx4kSNGTPG/WS5b9++7jK8zUVv7r77brlcLt10003avn27Hn74YeXk5Gj58uVKSEiw3D8rbSvPMAydffbZWrBggS699FL16NFDc+bM0Q033KDNmzfr3//+t0d6K/PZTFUe18mTJys2Nlb//Oc/VVRU5PPjiLt379agQYN07rnn6oILLtCbb76pm266SV27dtUZZ5wh6Uhgeuqpp2rr1q0aN26c0tPT9corr2jBggUht1WyNgfLmJ3Dofjqq68kSb169QooX8uWLXXSSSdpwYIFKiwsVFJSkj744ANJ0vDhw03zJCcn65xzztELL7ygX3/9Ve3atXPvi46O1q233qrhw4frnXfeqfQCT0WdO3dWQkKCvvzyS/31r38NqO1ArRXeN+QA1FRmH0086aSTDEnGtGnTKqU3+xja5ZdfbiQmJhoHDx50bxsxYoTRqlUr9+Oyj9E0bNjQ2LVrl3v7e++9Z0gyPvjgA/e2so/UlCfJiI2NNdauXevetmLFCkOS8eijj7q3nXXWWUZiYqKxefNm97ZffvnFiImJsfQRzLKPJu7YscPYsWOHsXbtWuPBBx80XC6X0aVLF6O0tNQwDMPYs2ePkZKSYowePdojf15enpGcnOyx/dhjjzUuuOAC9+NevXoZ559/viHJWL16tWEYhvH2228bkowVK1a405mNdW5urtG2bVuPba1atTIkGbNnz/bY/vDDD1f6ONO+ffuMzMzMkD+aWCY5Odno2bOn+3HFY/fvf//b9ONR5fn6+J+vuXjSSScZJ510kvtx2UfzmjVrZhQWFrq3v/7664Yk4z//+Y97W6tWrYwRI0b4LdNX2yrO8XfffdeQZNx1110e6f72t78ZLpfLY+5anc9mAjmuVvtZNnZt27atNO/MPvJYdlxefPFF97aioiIjPT3dOO+889zbHnroIUOS8e6777q3HThwwOjYsWOVz8E1a9YYO3bsMNavX29Mnz7dSEhIMBo3blzpo63BfjTx1ltvNSSZfsRPXj6aWGbcuHEe53uPHj2M5ORkn/VNnTrVkGS8//77hmEcXVMfeOABo7i42Gjfvr3RvXt39xrl7aOJhmEYxxxzjHHGGWdY7SpQ6/HRRACOiouL06hRoyptL/+Owp49e7Rz504NGDBA+/fv108//eS33AsvvNDjFemydxkqfuTPTE5Ojscrwd26dVNSUpI7b0lJif73v/9pyJAhysjIcKfLzMx0v0Jvxb59+9S4cWM1btxYmZmZ+uc//6l+/frpvffec3/sbu7cucrPz9dFF12knTt3uv+io6OVlZXl8Yr/gAED9Pnnn0s6MmYrVqzQmDFj1KhRI/f2zz//XCkpKerSpYs7X/mxLigo0M6dO3XSSSdp3bp1Kigo8GhzmzZtlJub67Ft1qxZatq0qf72t7+5tyUmJmrMmDGWx8KfevXq+bx7YkpKiqQjH2kN9sYW3uaiN8OHD1f9+vXdj//2t7+padOmmjVrVlD1WzVr1ixFR0frmmuu8dh+/fXXyzAMffzxxx7b/c1nX/VU1XEdMWKE5XcN69Wrp4svvtj9ODY2Vscff7xH+2fPnq1mzZrp7LPPdm+Lj4/3++5VILzNwQ4dOqhx48Zq3bq1/u///k+ZmZn6+OOPlZiYaEu9f/zxh2JiYlSvXr2A85blKWv3nj17POasmbL9Zn0te1dsxYoVevfdd/3Wn5qa6nE3RQC+EYgBcFSzZs1MP5a0atUq/fWvf1VycrKSkpLUuHFj95OxisGBmZYtW3o8LgvKdu/eHXDesvxlebdv364DBw4oMzOzUjqzbd7Ex8dr7ty5mjt3rp577jl16tRJ27dv93iC+ssvv0g68j2VsqCt7O+TTz7R9u3b3WkHDBigrVu3au3atfrqq6/kcrmUnZ3tEaB9/vnn6tevn8ctsL/88kvl5OSobt26SklJUePGjd3fjzILxCrasGGDMjMzK31nq0OHDpbHwp+9e/f6fAJ54YUXql+/frrsssuUlpamoUOH6vXXXw8oKPM2F71p3769x2OXy6XMzEz3R9OqyoYNG5SRkVFpPMruQLphwwaP7f7ms696quq4ms0jb5o3b16pDRXbv2HDBrVr165SukDOR3+8zcG33npLc+fO1SuvvKITTjih0jkcTnv37pV0NLiqX7++35+DKNvfpEkT0/3Dhg1TZmampe+KGYbBbzUCAeA7YgAcZfaEJT8/XyeddJKSkpI0adIktWvXTvHx8Vq6dKluuukmS0+uo6OjTbf7e+IQat5AREdHe3wBPzc3Vx07dtTll1+u999/X5LcfX3ppZeUnp5eqYyYmKPLdv/+/SVJn332mdatW6devXqpbt26GjBggB555BHt3btXy5Yt8/jy/q+//qqBAweqY8eOmjp1qlq0aKHY2FjNmjVL//73vyuNdTieYP7+++8qKCjw+aQ6ISFBn332mRYsWKCPPvpIs2fP1muvvaZTTz1Vn3zyiddjWrEMu3l7ElpSUmKpTXZwYj4H2s9Axtqp89EXX3PwxBNPVKNGjSRJZ511lrp27aphw4ZpyZIlHi94BKthw4YqLi629G5WRStXrlR0dLQ78O3cubOWL1+ujRs3mgboktw3/Gnbtq3p/rJ3xUaOHKn33nvPZ/27d++u9IIFAO94RwxA2C1cuFB//PGHnn/+eY0bN05/+ctflJOTY9uX30PVpEkTxcfHa+3atZX2mW2zqmnTprruuuv0wQcf6Ouvv5Yk90fKmjRpopycnEp/5e9I17JlS7Vs2VKff/65Pv/8c/fHMU888UStX79eb7zxhkpKSnTiiSe683zwwQcqKirS+++/r8svv1xnnnmmcnJyAnqi3KpVK/3666+VnhivWbMm2KHwUPbbcxU/EllRVFSUBg4cqKlTp+rHH3/U3Xffrfnz57s/vmn3K/Nl71aWMQxDa9eu9bjDYWpqqumP+1Z81yqQtrVq1Upbtmyp9M5G2Ud2W7VqZbksf/VYPa5W+1lVvLU1lPOxPKtzsF69err99tu1fPlyvf7667bU3bFjR0lH7p4YiI0bN+rTTz9Vdna2O4A766yzJMnrb3sVFhbqvffeU69evbwGYpJ08cUXKzMzU3feeafXgLi4uFibNm0K+bcigdqEQAxA2JW9Al7+An/o0CE9/vjj4WqSh7J3st59911t2bLFvX3t2rWVvp8TqH/84x9KTEx0/6Bqbm6ukpKSdM899+jw4cOV0u/YscPj8YABAzR//nx988037kCsR48eql+/vu69914lJCSod+/eHn2RPMe6oKBAzz33nOU2n3nmmdqyZYvefPNN97b9+/frqaeeslyGN/Pnz9fkyZPVpk0bDRs2zGu6Xbt2VdpW9sPIZbdbr1u3riSZBgzBePHFFz2CoTfffFNbt271+J5gu3bt9PXXX+vQoUPubR9++GGl29wH0rYzzzxTJSUl+u9//+ux/d///rdcLldA31P0V4/V42q1n1UlNzdXmzdvdr+TLEkHDx7U008/HXLZVudgmWHDhql58+a67777Qq5bkrKzsyVJ3333neU8u3bt0kUXXaSSkhL961//cm8/77zzdOyxx+ree++tVF5paamuvPJK7d692yOPmbJ3xZYvX+4x5uX9+OOPOnjwoNe7fwKojI8mAgi7vn37KjU1VSNGjNA111wjl8ull156ydGPIvlzxx136JNPPlG/fv105ZVXup8Yd+nSRcuXLw+63IYNG2rUqFF6/PHHtXr1anXq1ElPPPGELrnkEvXq1UtDhw5V48aNtXHjRn300Ufq16+fxxPyAQMGaMaMGe7fJJOOPGnq27ev5syZo5NPPtnje1Cnn366YmNjddZZZ+nyyy/X3r179fTTT6tJkybaunWrpTaPHj1a//3vfzV8+HAtWbJETZs21UsvvRTwzQo+/vhj/fTTTyouLta2bds0f/58zZ07V61atdL777+v+Ph4r3knTZqkzz77TIMHD1arVq20fft2Pf7442revLl7HNq1a6eUlBRNmzZN9evXV926dZWVlRXQ95XKa9Cggfr3769Ro0Zp27Ztevjhh5WZmelxg4jLLrtMb775pgYNGqQLLrhAv/76q15++WWPm2cE2razzjpLp5xyiv71r39p/fr16t69uz755BO99957uvbaayuVHaxAjqvVflaVyy+/XP/973910UUXady4cWratKlmzJjhnjNW33EMZQ6WqVOnjsaNG6cbbrhBs2fP1qBBg9z71q5dq7vuuqtSnp49e2rw4MGm5bVt21ZdunTR//73P/3f//1fpf0///yzXn75ZRmGocLCQq1YsUJvvPGG9u7dq6lTp3rUX6dOHb311ls69dRT3XO3T58+ys/P1yuvvKKlS5fqlltu8XtreulIwDl58mSv693cuXOVmJio0047zW9ZAP7k/I0aAdQG3m5ff+yxx5qm//LLL40TTjjBSEhIMDIyMowbb7zRmDNnTqVbUXu7ff0DDzxQqUxJxu233+5+7O329Wa3gza7Pfe8efOMnj17GrGxsUa7du2MZ555xrj++uuN+Ph4L6NwVNnt6838+uuvRnR0tEd9CxYsMHJzc43k5GQjPj7eaNeunTFy5Ejju+++88i7atUqQ5LRqVMnj+133XWXIcm47bbbKtX3/vvvG926dTPi4+ON1q1bG/fdd58xffp0Q5Lx22+/eYyBt9tvb9iwwTj77LONxMREo1GjRsa4ceOM2bNnB3Tr8LK/2NhYIz093TjttNOM//znPx63iC9T8djNmzfPOOecc4yMjAwjNjbWyMjIMC666CLj559/9sj33nvvGZ07d3b/zEDZ7eJ9zUVvt2B/9dVXjQkTJhhNmjQxEhISjMGDBxsbNmyolP+hhx4ymjVrZsTFxRn9+vUzvvvuu0pl+mpbxTluGEd+1uC6664zMjIyjDp16hjt27c3HnjgAfctxcsEMp/NBHJcrfSzbOzeeOONSnV5u3292XExG5N169YZgwcPdt8+/vrrrzfeeustQ5Lx9ddf++xnKHPQ7LbtBQUFRnJyskffy37+wezv0ksv9dm+qVOnGvXq1at0y//yZURFRRkpKSlGz549jXHjxhmrVq3yWt6OHTuM66+/3sjMzDRiY2PdZTz77LOV0vpaU8uPW8VxyMrKMi6++GKf/QLgyWUY1eglZwCIMEOGDNGqVasqfX8IgPMefvhhXXfddfr999/VrFmzcDcnaAUFBWrbtq3uv/9+XXrppbaX/8MPP2jAgAFq0aKFvvjiCyUnJ4dU3vLly9WrVy8tXbrU/RFhAP4RiAGARQcOHKh0q/ljjz1WI0aMsOW7KQCsq3g+Hjx4UD179lRJSYl+/vnnMLbMHvfdd5+ee+45/fjjj7bcjbGiTz/9VLm5ucrOztacOXMC+imHioYOHarS0lLbblgC1BYEYgBgUdOmTTVy5Ei1bdtWGzZs0BNPPKGioiItW7aMWzYDDjvjjDPUsmVL9ejRQwUFBXr55Ze1atUqzZgxQ3//+9/D3TwA8IubdQCARYMGDdKrr76qvLw8xcXFKTs7W/fccw9BGBAGubm5euaZZzRjxgyVlJSoc+fOmjlzpi688MJwNw0ALOEdMQAAAABwGL8jBgAAAAAOIxADAAAAAIfxHTEblJaWasuWLapfv77lH5EEAAAAUPMYhqE9e/YoIyPD511PCcRssGXLFrVo0SLczQAAAABQTWzatEnNmzf3up9AzAb169eXdGSwk5KSwtwaAAAAAOFSWFioFi1auGMEbwjEbFD2ccSkpCQCMQAAAAB+v7LEzToAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiAGAAAAAA4jEAMAAAAAhxGIAQAAAIDDCMQAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiAGAAAAAA6LqEDss88+01lnnaWMjAy5XC69++67fvMsXLhQvXr1UlxcnDIzM/X8889XSvPYY4+pdevWio+PV1ZWlr755hv7Gw8AAAAAf4qoQGzfvn3q3r27HnvsMUvpf/vtNw0ePFinnHKKli9frmuvvVaXXXaZ5syZ407z2muvafz48br99tu1dOlSde/eXbm5udq+fXtVdQMAAABALecyDMMIdyOC4XK59M4772jIkCFe09x000366KOPtHLlSve2oUOHKj8/X7Nnz5YkZWVl6bjjjtN///tfSVJpaalatGihf/zjH7r55psttaWwsFDJyckqKChQUlJS8J2ywcrNBfrLo194bEtNrKPd+w9Lkto0qqt6cTGKjYlSenK8Pvp+q07vnKbYmCh9+P1W1Y2NVlSUS3sOFnuUMebEtnpp0QZJUlydKBmGVHDgsHt/o3qxio5yaefeQyopPTqlMpvUkySd0LaBYqKi9OaS33V2jwx1TK+vL9fu1JxV2/S33s2VGButPQeLdVzrBnr9u02KiXIpJTFWp3Vuol37DivKJaUmxurjlVvVpH689hQdVsf0JB0qLtXeomK1apiopsnxkqSf8vZoz8FiRUe5dPBwibLbNtTB4hLlFRSpTaNEn+O352Cxdu8/pJYNEmUY0twft6lvZiPVi4t2pzl4uFRbCg6ocb045e8/rEMlR9rQvXmyJGnH3kOSYahx/TgVFZdq0679KjWkto3rKibK5VFf4cFiFR44rOapCT7blVdwULEx0WpQt47XNAcOl2jRr3+ob7tGiq9j/hrLbzv3Kz05Tgl1ot31f/bzDjWqF6fMJvXUqF6s17QV27Nx1wH1aJmiPQcPq7jEUFpS3JEyDxSr8OBhHS4x3Pl/331AW/IP6vg2qe4yDpUY2vjHPvccKW9z/kHVjY1WQuyRvO0a13Xv23+oRNv3FKl1w8rH0jCklVsKFBcTrWPSKpdrZnP+QdWLi1ZywpGxXbdzn3buOeTR1vLW7dynggOH1bNFiiSp1JB+27lP6Unx2rm3SK3+bFfhwWIV7D+suDpR+mPvIe3YW6QBmY3kch1p58/b9iqzST1FR/kfD6vK5lugZRSXGlq3Y59aNEgwPU/Wbt+rFg0SFRfj/bW7A4dLtLXgoPu8aNHgyJw2DOmX7XsVFxOl1MRYJSXESJK2FRYpJtqlhnVjvZYpSZt2HdDWAs+5c7jE0PqdR8aqxDjS9rpxMSouKVWd6ChlpMSbllV+3LcWHFBSfB13e7ylKzs+v2zbq9aN6qrUMPT77gNKSqijQ8WlOnCo2D3e63buU0Zygsf5V1ZWiWGoQ1p9d3m/7z5af9m66XJJP2/bo77tGqlsqdjwx341qhenunGVz8NNuw4oObGO9hws9pjD3vq+Om+PJKlTen2tztsjl6ROTeubpv9xS6Hi6kR7nHtl1m7fq5YN67rP/X2HipWRnKD9h0p0qLhE6clHx3/XvsMqKi5R0+R4/b77gOrHx7jb+euOfWqemqCYqCit3b5XsTFR2r3/kBrVi1W9uDravf+QWjVM1K/b90mSx/GoqKys8nO0/FpUJ9ql2JgoxdeJdq+563buU9PkeCXUiVbhgWJ9sXanzuiSLtefY7+vqMTjnJaOnivtm9Qzva4UFZdWWrOkI2tmcakhl8ulRvViPc7T738vUEKdaLU3WbMKDhzW3qISNTOZ07v3H9aBQyUe8/1wiaEfNheo8MBh9ctspIIDh7Ul/4CapSa4z7WyOdmofqyKDpd6PV/+2HfIY23/dcc+GYahtKR41Y8/et4cOFyiz3/eqVM6NlGd6KPXuM35B7V+5z739eXb9bvc1+qy9bFZaoKWb8pX4YHDKjhwWAPaN9Yfe4tkSGpQN1YlpUfrLzhwWKu37lGXZske1+SS0iNz8pi0eu5jZ2ZvUYm+/W2X+mY2VFxMlPv8iYuJ8jhmBQcOa8/BYo/rctl1v22juu4xXLv9yJpQvs9l6dZu26vj2jRQamIdr2krtrtsrWzXuJ6KS0v1wYotalw/Tg3rxql9Wj3FxURp9/7D2n+oRHsPFqt9Wj1FuY6sJdv3FKl5aoJKSw2P86/8sagXF6368XX0y7a97rxlthYcVHydaKUmmq8hP249ul6s/2O/JKleXIzqx8d4jN3OvYe0add+tW1ct9J69Mu2vSoqLlVxqaFNu/arfVo9tW1c78i5H+1Sat1YLduYr1YNEtWyYaI+XbND2e0aasfeIsVGRykmyqWDxaWm1/7y5+Ux6fXVrnHw11G7WI0NanQgduKJJ6pXr156+OGH3duee+45XXvttSooKNChQ4eUmJioN99806OcESNGKD8/X++9955puUVFRSoqKnI/LiwsVIsWLcIeiJWWGmp7y6yw1Q8AAACEy42DOuiqkzPD3QzLgVjllwJrkLy8PKWlpXlsS0tLU2FhoQ4cOKDdu3erpKTENM1PP/3ktdwpU6bozjvvrJI2h6K4NCJjatu0b1JP6//Yp8MlvsehTyvzdzok6bsNuyUdeaVnb9HRdwXL5ylLY6ZLsySt3FwoSTo2I0mrthR6rduQtOTPshrUjXW/0lbR3qJi/fTnK9ndmyerjpeXhMu3y6yPZvsr9qVz0yQlxkb7LKt8e8rr9GfeJRXKrDgOZnWXr2P7niJt3LW/Uvn+8pn1x9exlo68Crg5/4AkqVfLFBWXGvr+9wKv+Sv2vU+rVNP54G272T4r/bIq2DK89SGQMiuWUT8+Rh3S6lfa3rtVqvYfKtHqrUfmhK85va9cOm9tMtOmUV3Td9rM8vVqmaKoCi+jV+yzv/oq8rVe9GmVqt927tMf+w5Jkro2S9YPmwtUUZ9WqVq6cbfKlvWKY//ztj0qrPDJBbO+eGtHmcb149SqQaLXtPXjYtQhvb7pPm86ptdXvbgYHS41tGJT/pFy4mPcn7To1TJFSzfm+y3HjNW1rfz6aqVMX+dklEvq1dL33PN1vnhbMysqG7cyJYahZX+OU/PUBKUnHX2no7jU0PI/x7Zd47pKTYz12T7p6LlWMU1mk3pKqfDuxaGSUvda2Klpksd5WL5vFess217x3C3PrDxfOjdNUnydKI85469+M+XTJcXHVDp/JM+5mZEcr4yUBNM6vNVpdr5bSWtlnenRIsV9zMs0qR+n7XuKPLZVnEflr3MV2yYdeQfwl+17JUndW6SoTpT39dCXbs2TPa6f5dejQNdQf3xd+5uavCNYndXoQKyqTJgwQePHj3c/LntHDOE15dyu+nb9bt0323sQfVn/Nrr1L5297m9980eSjryiMvG9Ve7tb17Zt1Kais7t2UzjctrrpAcWSpL+M7SncqZ+6pGmfDmGYajNhCPvYN5yZif9rXdz03JXbMrXOY99KUmaPvI4NawX57PtFespM+mDHzX9y9889lfsy0MXdFenpkm6/b2VeuHPj6JWLOv73/N19n+/rFT+g+d3U4e0+sr818ce2x+5qKcGPnRkHPq0Sq1Ud8+WKR51LFizXaOe+9ajjEHHpmvaJb098l1+UltNOKOTR7rTpn7qvqAMPa6F7j2vW6V2lvfJqjyNeWmJJOmV0Seo4MBhZd0zT5I0sm9r3XH2sR7pl23crb8+/pUk6aLjW2jKud0qjeG1Oe11bc4xXufJm1f2VeYts9wvnFQcj97lxihQZWX0z2ykly/LCjhfmRHZrXTnOV0kSX9/+mt99esfHm21UsbNZ3TUsKxWyp4yT1sLDrq3v355tlZvLXR/hPrp4X3UJMn8wrlqS4EGP3IkXeemSZXGqm2julq3c1+lfHcN6aJ+mY0qbW874SNVfL3q9cuzFVMhEKx4fM78z+f60ccTx54tU9SmUV29vXSzO0+ZbnfM8XjC9+aVffX20t81/vUVkqQnLu6l/vctqFTmm1f21SPzftHUuT9XKlOSXlm8Ube884PnttEnKN7ko8SSdOL9C0xf4Lh1cCed06OZx7arZizRrB/yJEk3ntFRl5zQyr3vnMe+dAdX3tz/t27q1jxFf+wtUu+7/idJGpbVStM+/VWS9OqYEzTmxSX69OcdPssxYzYHr35lqT76fqvHfn+fEEmMjdb+QyXuPGbrZ9m2a3OO0TUD23tsa1QvVjv3Hgmmy19XyvYP7NhEz448TpL3NbNvu4bql9lID8xZI0m677xu6v7nR54l6cChEnWaeORrFJPOOVandjz6onHBgcPqfucnkqS7/9pVJ7Rt6FG/madH9FGT+vGV0tzz1646vk0Dj215BQd1wpQja+FD53fXI/N+0exVeZXGqGKdZdt/3FKoMx/53LQdD/ytW6WvUPgy9cLuat2wrjreNtty/WbKp5twZidNeNvz/DmlQ2M9cXFvdz0TzzpWg7qke+Qtu67k/vszrdm2x2dbyvYNfGihft2xz2+7j/nXxzpUUuq1/S/83/HuY17mtr901j9eXeaxrez8K/O/H7fpshe/q1ReWVu+Xb9L509bdKSOUccpJdHzRayLn1msL9bu9NouSTq9c5ruOPtY9b13vnvbzDHZiv3zo8LnPfGV5RdG/PnHqZm6/vQOHtvKxrJpcrz+2tP8uVR1VaMDsfT0dG3bts1j27Zt25SUlKSEhARFR0crOjraNE16errXcuPi4hQXZ/5kGAAAAAD8iai7JgYqOztb8+bN89g2d+5cZWdnS5JiY2PVu3dvjzSlpaWaN2+eOw0AAAAA2C2iArG9e/dq+fLlWr58uaQjt6dfvny5Nm7cKOnIRwaHDx/uTn/FFVdo3bp1uvHGG/XTTz/p8ccf1+uvv67rrrvOnWb8+PF6+umn9cILL2j16tW68sortW/fPo0aNcrRvgEAAACoPSLqo4nfffedTjnlFPfjsu9pjRgxQs8//7y2bt3qDsokqU2bNvroo4903XXX6T//+Y+aN2+uZ555Rrm5ue40F154oXbs2KGJEycqLy9PPXr00OzZsyvdwAMAAAAA7BJRgdjJJ58sX3fbf/75503zLFu2rHLicsaOHauxY8eG2jwAAAAAsCSiPpoIAAAAADUBgRgAAAAAOIxADAAAAAAcRiAGAAAAAA4jEKtBDHm/kUltURPHwK4eBTI2YR3FECoPNGtVp6/qcpzg4/5IjuS3k9WmVExnKZ+XRGabrY6Jr3SBrnUBnf++kgZ5QCvWb+u0CKKw6jQvI0FNu7aGvK5VwfU0mDG2ksNfGn9jYcex93WjvdqOQAyAY1yucLfATjWqM9VezZo7AAC7ReJlgkAMNYaVJ2pWn8wFdTJXyBTIE0erSV1V/Gw0lOJdFnphlsZKlWbt8ldfoH2pmN5ffm/7rYyDz3JDyv1nGSEWYsc88zYOlbZaPSfN0nk9BtbZ09cQ8tp4TgdTlFn95TcF0zrz89zlc7/TQl+fy/XHbH0K4nrkK4+vMbN8/fDWkyDXOqdYnS92r3vBHtdwC+X8Cjavk2MVAYcgIARiAAAAAOAwAjEAAAAAcBiBGAAAAAA4jEAMAAAAABxGIAYAAAAADiMQAwAAAACHEYgBAAAAgMMIxAC78MPxAAAAsIhADACACGPwwg8AGxgsJmFFIFaD1PZzyTD8j4HVMXJ6KH3VZ9ciGUgxvtLaPc8qFmeYjIZZnebpjHL/tlB3gH2xVKaF2ePrmNoxvKEeI49xDLJFZfmCzW+xkkA2Wz//KyT0dw4aPuo022F1ROwcO29dMOtb+U2Vz88g61dgYxpK2ZbyBLIe+tlquj4Fsf74XHd99DHUkayKtTIcAjumvq8f3sor2xbQeFhedwIo050ntOuNtTpCT2Pn9ImAqRgQAjEAAMLEFe4GAADChkAMNYbLdeTPXxpLZQXVAMlVLqe/Mlwua2mtpvPHSt/L2u8rrbd9R8a/8k6X1wfmm1wmiczqNE9Xbqys9LdcGleFEv21w1vxZvkql+M9jR1PzK3Oc+/5y8+54Apzz6UK+Suep77K9zyfLEwe35u9zCOzdBXb7HsMXD7q9Ndsn+ear7GxeE74q8f0nPUxz63MhrL83uaRt7UiWFbXjED2e5bve6vpsbAwxyvm8/XY7Dzy3T7/9fna7lG+hWur1br87fOWPtD13G9aL9ePiv32VkdAfbD6vCOIOevv/PWWxut+P3PBV9sq1evl36GqaS9eEYgBAAAAgMMIxAAAAADAYQRiAAAAAOAwAjEAAAAAcBiBGAAAAAA4jEAMAAAAABxGIAYAAAAADiMQAwAgwhhGuFsAqwxxsFB9GSwmYUUghhqlJq4ndi2SgRTjK21Vj3EoT1oCHatA+2JX3yPpwhfqk8jq9CTU6rBXPD5WjpfXFCY7rI6InWNn2/kfbP0KfEyDLdtSnuozLSNCTRuvkNe1QLJbXneCaYeFtSnEg2fHsa9h08dWBGIAHOMKdwNs5KpJnYkAjDcAwBdXBF4oCMRQg/g/AS2fpEGczK4K9QeyIFRhswISSvlW8pqlsTJO5vn85vLfIB/l+Su/4vG2mi/QdkQqb/2oeLwtz32L23zvMGuP9bTey6geBy2YZpiOq8v836Eof75Uh9EKpF/+1h/z429hXat4zfCVx9cui53xlspfbp/tCkKg5VlNHWorK+b3ssKHWEv1Fuz5bnZMq2xdrCbrrV0IxAAAAADAYQRiAAAAAOAwAjEAAAAAcBiBGAAAAAA4jEAMAAAAABxGIAYAAAAADiMQA2xSnX64FgAAANUbgRgAAAAAOIxADACACMP775HD4GChGmN6hheBWA3CYu9/AAyrg+TwYPqqLhyH1dfHLO1uT8VjYjYWlrf5eOSldgtpAktvZer4SlLdzuNg21OWryr747XoEOsMeFYYhte1xWyr1XXIzrHzVpZ5+7znC3o+VOFKFkybAsnjb/0xP54W1opKK1ZwFwLL17XAiw4oTbgF0kb/1w9v5RmB12VzukCFWq61a5rvRLZeB6rbRTJEBGIAAAAA4LCIC8Qee+wxtW7dWvHx8crKytI333zjNe3JJ58sl8tV6W/w4MHuNCNHjqy0f9CgQU50BbZz+U/h8p/mz4RB1O7yyBZICb6qc3n8O/B2BcLl/r/3erztcXnJVX7MzVJUPCZmY2F5m49H5lye//J7/Mql91K8lanjK0kQU69KBduesnzmx6nCuFup26Qgr3kDaLPZmhBol8uuHVab4u+cOJrOR50Wt/kry7x93vMFMh+8rV2W12Gr9ZiuD77rCKgfftYf87osrBWVVizrB9zz1LDWmYDmqEe+YM6J4PZ5S2/l2hfqNdclK2uTK/C6bEoX7FkTSLn+1gPvZVR+BuBn+Q5edbtIhigm3A0IxGuvvabx48dr2rRpysrK0sMPP6zc3FytWbNGTZo0qZT+7bff1qFDh9yP//jjD3Xv3l3nn3++R7pBgwbpueeecz+Oi4uruk4AAAAAqPUi6h2xqVOnavTo0Ro1apQ6d+6sadOmKTExUdOnTzdN36BBA6Wnp7v/5s6dq8TExEqBWFxcnEe61NRUJ7oDAAAAoJaKmEDs0KFDWrJkiXJyctzboqKilJOTo0WLFlkq49lnn9XQoUNVt25dj+0LFy5UkyZN1KFDB1155ZX6448/fJZTVFSkwsJCjz8AAAAAsCpiArGdO3eqpKREaWlpHtvT0tKUl5fnN/8333yjlStX6rLLLvPYPmjQIL344ouaN2+e7rvvPn366ac644wzVFJS4rWsKVOmKDk52f3XokWL4DoFAAAAoFaKqO+IheLZZ59V165ddfzxx3tsHzp0qPvfXbt2Vbdu3dSuXTstXLhQAwcONC1rwoQJGj9+vPtxYWEhwRgAAAAAyyLmHbFGjRopOjpa27Zt89i+bds2paen+8y7b98+zZw5U5deeqnfetq2batGjRpp7dq1XtPExcUpKSnJ4w8AAAAArIqYQCw2Nla9e/fWvHnz3NtKS0s1b948ZWdn+8z7xhtvqKioSBdffLHfen7//Xf98ccfatq0achtBgAAAAAzEROISdL48eP19NNP64UXXtDq1at15ZVXat++fRo1apQkafjw4ZowYUKlfM8++6yGDBmihg0bemzfu3evbrjhBn399ddav3695s2bp3POOUeZmZnKzc11pE8AAATKCHcDYJnBwUI1xvQMr4j6jtiFF16oHTt2aOLEicrLy1OPHj00e/Zs9w08Nm7cqKgoz9hyzZo1+uKLL/TJJ59UKi86Olrff/+9XnjhBeXn5ysjI0Onn366Jk+ezG+JAQAAAKgyERWISdLYsWM1duxY030LFy6stK1Dhw4yvLwclZCQoDlz5tjZvLAyeF2jRgrHUfU1l0Jpj8tloe4QKgg8a6A5jqa30BXbag2nUF/NN8sfzFoVyngHKpgue7vOmG31lrZyuiAaUsVlVcd3d6pjm2qamjbEIa9rVZC2qsY41HLtOL84R72LqI8mAr5YeZJv9clcME/6KtZvpT0Bp63iZ6OBtDmYvGZprFTpMknlL1+gfXFVyOAvf8X07u2BVWuSP/SD7K1t1vOH3ATr55rFykznjtdj4GTY5myQ6Eswx93vPA+id/7LjCxm4+ry8u+jeayUaz2Pr+KsHnZvyZw+XoFPU6trhL3rnulxj4DJG9p1PLjM5utz8O3wWVfVFBs2BGIAAAAA4DACMQAAAABwGIEYAAAAADiMQAwAAAAAHEYgBgAAAAAOIxADAAAAAIcRiAE24XcyAAAAYBWBGAAAkYZXfiIGRwrVGUtJeBGIAQAAAIDDCMRqkNr+qoZhSIafQbA6RE4Ppa9m23Vc/Y2N1ToDKcdSXRbqNkyOiGkrym200sxAu2KpzBDLMetroEI9RuWzB1uSUeH/3sq32g7z/eYJQh3DisX6bYe8j5NZG6vTOmR6vnkcf88EVsbWyjls5zISTFmB5PF3DIOd44HMM1/FhTqWVbFWhkNA1zjT/P7LK9sU2PXUWtpg1m1/56+3NAHVEeQ571mGfSJgKgaEQAwAAAAAHEYghhrD5ZJcLpfvNFbLCrJ+zzKsl+Kr2eX3+emenzqsZHZZaI/5TpeXfC6Pf1dOUHGLeRn+81XcaKW7HmNboR6zfloq038S3+Mb1OyrWH5oZVQcl6DK8JHfavn+0nmfi/b13+xx5fq898N0Hlks22e1fsq1yvR88xh3zwRWxrYsv7dyjqzVATXTUn1VlcfvMfRTvve5Yf1x5XXSZZrOF2/pTLdXWEsDHWNf8yTQ89Nq/YGse96Omef11vs1IKC6LKb1+/zF4jUp4PXL3zpr8ZyvXG+5Oeq3BOvsLKs6IBADAAAAAIcRiAEAAACAwwjEAAAAAMBhBGIAAAAA4DACMQAAAABwGIEYAAAAADiMQAwAAAAAHEYgBgBApDGMcLcAFnGkUJ2xlIQXgRgAAAAAOIxArAbhRQ3JqIEv7djVpUDGxlfSqh7jkIoPMG+gddl3LOwpxwmhNtUsv9X+h2ucKtZrpR3ekpidL1a7Fa5p4vP8D7JVFfPZeWyDKSuSzsHqoKaNV8jrWkDXU2tpg7m2WlqbQuxssOe8ZxnwhkAMgGNcrnC3wD41qS+RwMWAAwB8iMTLBIEYagxL55/FkzSYk7lilkDKcFlsWFWvMaEsYsHmtZTPJI2/fIE2p2J5/vJ7O2YhXwhsOMihNyH0RlgdB8vpLG4LpEy7VJeLf3DrVuVM5cuxrcxy26pDUB1qEzzym61PoRVvUp/3Eq3W5f289r/a2SnQsbfev1C5fDyyq46qF8r6XaXXcZtUg+XDVgRiAAAAAOAwAjEAAAAAcBiBGAAAAAA4jEAMAAAAABxGIAbYhNuzAgAAwCoCMQAAAABwGIEYAAARhnfgI0cwP9Qb6ez4EWA4g2MVXgRiAAAAAOAwAjEAAAAAcBiBWA1SGz/+AAAAAEQiAjHAJi5JLlcV11HFFYRWusu0feU3VXX7Q+FyuTyPn5+mVuOuRBSXxVlXU8c72G6Z5atu55fVY1vTBXtcfI1fUCUGkKl83cE0385j73I5N5Oq84ytqrZ5HOsQaqnOY1edEYgBAAAAgMMIxAAAAADAYQRiAAAAAOAwAjEAAAAAcBiBGAAAAAA4jEAMAAAAABwWcYHYY489ptatWys+Pl5ZWVn65ptvvKZ9/vnn/7wl9dG/+Ph4jzSGYWjixIlq2rSpEhISlJOTo19++aWquwEAQND41cjIURt/49NghkYMjlV4RVQg9tprr2n8+PG6/fbbtXTpUnXv3l25ubnavn271zxJSUnaunWr+2/Dhg0e+++//3498sgjmjZtmhYvXqy6desqNzdXBw8erOruAAAAAKilIioQmzp1qkaPHq1Ro0apc+fOmjZtmhITEzV9+nSveVwul9LT091/aWlp7n2GYejhhx/WrbfeqnPOOUfdunXTiy++qC1btujdd991oEcAAAAAaqOICcQOHTqkJUuWKCcnx70tKipKOTk5WrRokdd8e/fuVatWrdSiRQudc845WrVqlXvfb7/9pry8PI8yk5OTlZWV5bPMoqIiFRYWevxVB7y5LNXMT4DY06lASvGVtqqHOJTyA81b1elrhBA7Hco5WV0+MmOlHd76abrZardsXNAC+Xicr6TBNqniGNp5bIMpq2ZeK6pSDRuwECeAXdfTYMs8msdKrhD7aseh54TzKmICsZ07d6qkpMTjHS1JSktLU15enmmeDh06aPr06Xrvvff08ssvq7S0VH379tXvv/8uSe58gZQpSVOmTFFycrL7r0WLFqF0Dag1XOFugI1qUl8igYsRBwD44IrAy0TEBGLByM7O1vDhw9WjRw+ddNJJevvtt9W4cWM9+eSTIZU7YcIEFRQUuP82bdpkU4sRCpeFM9Dqk7lgnvRVrD6QBcFq2qpeY6yMofe8waWxMtZmKfzlC3VBDrb8UMbwSL2hC7nvNjTC8jlktS6zuePtGFgs0i6RHCSanpPltgXTs2DPcyeFuj6X749Z36yth64Kj32k9VmO/7p8pfOX3+4jF2h5lpcIm9c9f+dGdRVKG4PN6+T5Xd3WklBFTCDWqFEjRUdHa9u2bR7bt23bpvT0dEtl1KlTRz179tTatWslyZ0v0DLj4uKUlJTk8QcAAAAAVkVMIBYbG6vevXtr3rx57m2lpaWaN2+esrOzLZVRUlKiH374QU2bNpUktWnTRunp6R5lFhYWavHixZbLBAAAAIBAxYS7AYEYP368RowYoT59+uj444/Xww8/rH379mnUqFGSpOHDh6tZs2aaMmWKJGnSpEk64YQTlJmZqfz8fD3wwAPasGGDLrvsMklHPhZw7bXX6q677lL79u3Vpk0b3XbbbcrIyNCQIUPC1U0AAAAANVxEBWIXXnihduzYoYkTJyovL089evTQ7Nmz3Tfb2Lhxo6Kijr7Jt3v3bo0ePVp5eXlKTU1V79699dVXX6lz587uNDfeeKP27dunMWPGKD8/X/3799fs2bMr/fAz4A83BQIAAIBVERWISdLYsWM1duxY030LFy70ePzvf/9b//73v32W53K5NGnSJE2aNMmuJgIAAACATxHzHTEAAAAAqCkIxAAAiDB8FDpy1MZDxfyMIByrsCIQAwAAAACHEYgBAAAAgMMIxGqQ2v5RAMMw/L7D7j9FYOns4uvY2XVcAynHifa4y6sw1oZJBWZVmh2j8nmttDPQvlgrM7QBsmN4Qz1G5fMHey4czWd2nAJvRyD77T57/bbDxyiZ5bW+DtknoPZ5HH//6S2VWek891+OVcGUFep6WL4/5muRlXKtj4mv4uw836uqDo+y7CvKs9xAjqmF/D7PDZuup8Gk85fHSj8CqsNSGt+p7F3LataTXQIxAAAAAHAYgRhqDJfLJZe/NH5TBJbOs/4jbSjfnkDyWtkXQJEB1eFOE2B7zPJW3u7ymabiWJuNm5V8FfNa6m+FNC4f+ypu83Z8AznupvlDyl3WBvvyB3MueOYzO07m//bdDt/7Peu2l7/xdPkYJdN5JD8d878r4GMcUPt8NC+g88rHPAp1joZaViB5/B1D87WofFpv5foeE6vHwWpfgp4DLlfg8y3Iee2tLCvrakDH1EI9PsclxPkTTDp/x8nbNr/1+13f/HPJFfRaFqhgr0nVFYEYAAAAADiMQAwAAAAAHEYgBgAAAAAOIxADAAAAAIcRiAEAAACAwwjEAACIMLX9dyMjSW08VMzPCMKxCisCMQAAAABwGIEYAAAAADiMQAwAAAAAHEYgVpPwOd8aOQR2fdY+kHJ8pQ2lPS6Xy0LdwVcQaN5Aqyqf3n9PagYj5LOqcn6r4+4x3mEccCvt9ZbELK/VMbVzPbOrrHCsR06WBXM1bYxD7o5N19Ng0gWaJ9RjZ8ehr2HTx1YEYqgxrDxPs/pkLpgnfa4KLaiK540V67C9/BCKtxJkmaawUKdZ2f6qC3Ws/OauokNhR8ARahG2dM3quWa5OJM54CW3lbloqwiOyv01Pai1MILHw4zp3HOZ/9tXnspprOfxPabWBtzbeeF3Dlgq3bpA54fVtdzuNT/Y4xpuoV3Hg80YfJ0BV+Wjrkg4PhURiAEAAACAwwjEAAAAAMBhBGKATUL/Lg0AAABqCwIxAAAAAHAYgRgAAAAAOIxADACACBPKzzzAWbXxUNXGPkcqDlV4EYgBAAAAgMMIxAAAAADAYQRiAAAAAOAwAjHUGIb8fy7d6ufWq9Pn2+1qSmC31/eV1nxf0N9ZMXw+9Fq2WXWGx7/9t8dXGqvtsJsdVYRahMc4BluY4T2/XT/14K0cu4+T39IM73WatTEc65C3ssznufd8Vppk5Zjb2rdg8gSQyd8xDHaOV0zhcz3yWVxog2npmIZUQ4WyqmgZDWRd8Xf98J7GME1rV7sCZdrGIM5Z35WEnsaJtSxSEYjVIPyOFQAAABAZCMRQY7gkuVx+0vjZH2g6z/pdKp8tmDLMy7WnTM/W+UvjK635PpeXxpXfbJrE5fOh17LNyvIYq4D6W7kef+2wUn4w7Jg3oRZhy5xzec9ffuy8zZtKefyU45nW3mPjtzSXj/lvktvjnPBRuq9uBNpHb8nN57n3fFZqdZkc+8rnmoWCLAqmqEDq93sM/c5xb+X6rsfXeVjhamNegZ/6fG2vWHegY+x77gZelqV5F0ArvV0//K19ZXUE0gW7rhX+5qG3bf5q93vdtDb4Qa9lgbJ5eQ87AjEAAAAAcBiBGAAAAAA4jEAMAAAAABxGIAYAAAAADiMQAwAAAACHEYgBABBhnPhNO9ijNh6q2tjnSMWhCi8CMQAAAABwGIEYAAAAADiMQAwAAAAAHEYgVoPwmeyaOQZ2dckIqCRfaat2kEMpPdC8gY1J7fxeTqhdNssf6LiHm5XWepsbZn21OqZ2TrdAyvKVNtgmVRwHW/sWTJ7ImoJhV9OGK+R1LaC0VTd6VvoRcu02NJ/zzTsCMQAOcoW7AbZx1ZyuRATGGwDgSyReJyIuEHvsscfUunVrxcfHKysrS998843XtE8//bQGDBig1NRUpaamKicnp1L6kSNHyuVyefwNGjSoqruBKmDlBLR6jgZzLles3xVAKa5qsnqE0gwrWc3Kt5QviPpCHVJ/+b3tDrleG4LVUOeTHdPR7nPNbFy8tdPp06l6nL3BMT0ny20LZj6aHqtqNkqBzBF/65bp+mTlelTxmuEjj6/xs9oX7+eL7wLsP3ZVNBdsXvMDWXPsrDfk8kIYiGDb4uTZXb1WktBFVCD22muvafz48br99tu1dOlSde/eXbm5udq+fbtp+oULF+qiiy7SggULtGjRIrVo0UKnn366Nm/e7JFu0KBB2rp1q/vv1VdfdaI7qGF46x0AAABWRVQgNnXqVI0ePVqjRo1S586dNW3aNCUmJmr69Omm6WfMmKGrrrpKPXr0UMeOHfXMM8+otLRU8+bN80gXFxen9PR0919qaqoT3QEAAABQS0VMIHbo0CEtWbJEOTk57m1RUVHKycnRokWLLJWxf/9+HT58WA0aNPDYvnDhQjVp0kQdOnTQlVdeqT/++MNnOUVFRSosLPT4AwAAAACrIiYQ27lzp0pKSpSWluaxPS0tTXl5eZbKuOmmm5SRkeERzA0aNEgvvvii5s2bp/vuu0+ffvqpzjjjDJWUlHgtZ8qUKUpOTnb/tWjRIrhOAQAAAKiVYsLdAKfce++9mjlzphYuXKj4+Hj39qFDh7r/3bVrV3Xr1k3t2rXTwoULNXDgQNOyJkyYoPHjx7sfFxYWEowBABzDV1IjSe07WpH2ExW1Gd9vD6+IeUesUaNGio6O1rZt2zy2b9u2Tenp6T7zPvjgg7r33nv1ySefqFu3bj7Ttm3bVo0aNdLatWu9pomLi1NSUpLHHwAAAABYFTGBWGxsrHr37u1xo42yG29kZ2d7zXf//fdr8uTJmj17tvr06eO3nt9//11//PGHmjZtaku7AQAAAKCiiAnEJGn8+PF6+umn9cILL2j16tW68sortW/fPo0aNUqSNHz4cE2YMMGd/r777tNtt92m6dOnq3Xr1srLy1NeXp727t0rSdq7d69uuOEGff3111q/fr3mzZunc845R5mZmcrNzQ1LHwEAAADUfBH1HbELL7xQO3bs0MSJE5WXl6cePXpo9uzZ7ht4bNy4UVFRR2PLJ554QocOHdLf/vY3j3Juv/123XHHHYqOjtb333+vF154Qfn5+crIyNDpp5+uyZMnKy4uztG+AQAAAKg9IioQk6SxY8dq7NixpvsWLlzo8Xj9+vU+y0pISNCcOXNsaln48X1LAAAAIDJE1EcTgerM5TryV/5xVdQRyap78wNpX6Qfi+rC6jjW1PEOtl+RMByR0EZnBDcSLh+TI5h54wqgHb7qtrsuv2W5nDv/q/M6U1Vt83jeYlM5sI5ADAAAAAAcRiAGAAAAAA4jEAMAAAAAhxGIAQAAAIDDCMQAAIgw3CU3ktS+o2XUwj5HKoNDFVYEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiCGGqUmfkHYri/SBlKOr7RV/cXeUMoPNG/A6QNLXiOE2mez/FbHvbp8idyw0BBvKcyyWu2WnetZIGX5Pv+Da1PF+m3tWxBFVZe5FSmCPe7VVaj9CSR/VQ6dlaJDrd+Oc7UmPjezC4FYDVLTFkrUPC5XuFtgH5dqUGcAAIhwkXhVJhBDjWHlibHVQMCOgCGQIqymreon/6H020pes/ZbymeWxk/GUEfK31h7qz7UY+T03DNvQ+iNsFqG1fEKpE1OX4wj+wUGP+dkEH0zG4/q9sJFIMfMfPlxlft3cOVXTOIrj899/qvyWYa//HbP70DLs76WhKbSHDWdx/azu8zQruPBZbbjmmG9LseqcgSBGAAAAAA4jEAMAAAAABxGIAYAAAAADiMQAwAAAACHEYgBABBhuElu5KiNx6o29jlScWv58CIQAwAAAACHEYgBAAAAgMMIxAAAAADAYQRiAAAAAOAwArEahK9bAgAAAJGBQAywicslueQqt6Fq6qhKriquoKrbH6pA2lfNuxIxrI55TR3vYPtV3c8lqerXk0gR7DCEc/RCrdvOQ++Sc3OpNs7Z8s9bQul97Rs5e8RYTTh+/HjLhU6dOjWoxgAAAABAbWA5EFu2bJnH46VLl6q4uFgdOnSQJP3888+Kjo5W79697W0hAAAAANQwlgOxBQsWuP89depU1a9fXy+88IJSU1MlSbt379aoUaM0YMAA+1sJAAAAADVIUN8Re+ihhzRlyhR3ECZJqampuuuuu/TQQw/Z1jgAAAAAqImCCsQKCwu1Y8eOStt37NihPXv2hNwoAADgncFtciNGbTxWtbHPkcrgntthFVQg9te//lWjRo3S22+/rd9//12///673nrrLV166aU699xz7W4jAAAAANQolr8jVt60adP0z3/+U3//+991+PDhIwXFxOjSSy/VAw88YGsDAQAAAKCmCTgQKykp0Xfffae7775bDzzwgH799VdJUrt27VS3bl3bGwgAAAAANU3AgVh0dLROP/10rV69Wm3atFG3bt2qol0AAAAAUGMF9R2xLl26aN26dXa3BQAAAABqhaACsbvuukv//Oc/9eGHH2rr1q0qLCz0+EN4cJeimjkGhk2dCqQUX1UG2pryZblclnIEWEP5nIHlDaUvFjsT8UKdf2b5rZZY/niGc7gttddLIrPNVofUzvWsuq2N9ranmnWuBqppIxxqf+y6nobKyvoc6l0R7Wh/dVt/qpOgbtZx5plnSpLOPvtsucpdHQ3DkMvlUklJiT2tAwJg5YmaS9aezVlNZ1cZVp9kVvVz0VDKt9JfszTW8lnb5rE/xGfu/rJ72x1qwGBHwBFyG0Jvgu1z1XQOeOmo00GbHetFuAQ7z+3OU535H6Mg17UKBfvK46s0q2udt2TOny8Bprd6fbR57Q1kzQmtXnvLDOk6HmRmJ6eQr/GqiuNT1YIKxBYsWGB3OwAAAACg1ggqEDvppJPsbgcAAAAA1BpBBWJl9u/fr40bN+rQoUMe27mTIgAAAAB4F1QgtmPHDo0aNUoff/yx6X6+IwYAAAAA3gV118Rrr71W+fn5Wrx4sRISEjR79my98MILat++vd5//3272wgAAMrhJmSRg2OF6ow7GoZXUO+IzZ8/X++995769OmjqKgotWrVSqeddpqSkpI0ZcoUDR482O52AgAAAECNEdQ7Yvv27VOTJk0kSampqdqxY4ckqWvXrlq6dKl9rTPx2GOPqXXr1oqPj1dWVpa++eYbn+nfeOMNdezYUfHx8eratatmzZrlsd8wDE2cOFFNmzZVQkKCcnJy9Msvv1RlFwAAAADUckEFYh06dNCaNWskSd27d9eTTz6pzZs3a9q0aWratKmtDSzvtdde0/jx43X77bdr6dKl6t69u3Jzc7V9+3bT9F999ZUuuugiXXrppVq2bJmGDBmiIUOGaOXKle40999/vx555BFNmzZNixcvVt26dZWbm6uDBw9WWT8AAAAA1G5BBWLjxo3T1q1bJUm33367Pv74Y7Vs2VKPPPKI7rnnHlsbWN7UqVM1evRojRo1Sp07d9a0adOUmJio6dOnm6b/z3/+o0GDBumGG25Qp06dNHnyZPXq1Uv//e9/JR15N+zhhx/WrbfeqnPOOUfdunXTiy++qC1btujdd9+tsn4AAAAAqN2CCsQuvvhijRw5UpLUu3dvbdiwQd9++602bdqkCy+80M72uR06dEhLlixRTk6Oe1tUVJRycnK0aNEi0zyLFi3ySC9Jubm57vS//fab8vLyPNIkJycrKyvLa5mSVFRUpMLCQo8/hJ9h+P9StGHxa9NW09nF15dl7WpJIF/I9dV/b+V4y+NvLCvuNyvfrATTbUb5f/vvsK805u2wUqbfJFWa35Y2ePl3MGWYHyeL56GfZN7Ksf3L5/7a8ed/VvNaX4fs460s03le/jyykN5KXZXOc//FWBbM8Q5oPbRw/K1sq1xuxTHxsR4FUE6gLB1TGw9YVV1dQz2mFbf5WrtsHY8QCrNybbTzehBsmuoyXtVRUIHYunXrPB4nJiaqV69eatSokS2NMrNz506VlJQoLS3NY3taWpry8vJM8+Tl5flMX/b/QMqUpClTpig5Odn916JFi4D7UxWcDh4AAAAABCeoQCwzM1MtW7bUJZdcomeffVZr1661u13V2oQJE1RQUOD+27RpU7ibBEkul+Tyl8ZvisDSVcpVLpsrgCJ8pS2/yxVIoQHUUTGNr/57K8dbHo/tJkkq5jMr36xk020e4++/wxXTlG+LeTt87/e13apQ89vSBi//DqYM8+Pkfxwr7jM7nt6OsR1j6Fmgv90u7+eM33nk41wLvkmW05vOcx+nrKV1xCRvpfPcfzGWBXO87VqfJfO1z+MYey3X+/pTsV5fx8HqdcHrGu1nDnhLE6zA567F/oV4TCv12TSfK+C6/Lcl+P5ZuTb6nb/+1lm/LTuSxudaFobxihRBBWKbNm3SlClTlJCQoPvvv1/HHHOMmjdvrmHDhumZZ56xu42SpEaNGik6Olrbtm3z2L5t2zalp6eb5klPT/eZvuz/gZQpSXFxcUpKSvL4AwAAAACrggrEmjVrpmHDhumpp57SmjVrtGbNGuXk5Oj111/X5ZdfbncbJUmxsbHq3bu35s2b595WWlqqefPmKTs72zRPdna2R3pJmjt3rjt9mzZtlJ6e7pGmsLBQixcv9lomAAAAAIQqqB903r9/v7744gstXLhQCxcu1LJly9SxY0eNHTtWJ598ss1NPGr8+PEaMWKE+vTpo+OPP14PP/yw9u3bp1GjRkmShg8frmbNmmnKlCmSjtzd8aSTTtJDDz2kwYMHa+bMmfruu+/01FNPSTry9ua1116ru+66S+3bt1ebNm102223KSMjQ0OGDKmyfgAAAACo3YIKxFJSUpSamqphw4bp5ptv1oABA5Sammp32yq58MILtWPHDk2cOFF5eXnq0aOHZs+e7b7ZxsaNGxUVdfRNvr59++qVV17RrbfeqltuuUXt27fXu+++qy5durjT3Hjjjdq3b5/GjBmj/Px89e/fX7Nnz1Z8fHyV9wcAgGBwa6bIwbFCdVbDbkIYcYIKxM4880x98cUXmjlzpvLy8pSXl6eTTz5ZxxxzjN3tq2Ts2LEaO3as6b6FCxdW2nb++efr/PPP91qey+XSpEmTNGnSJLuaCAAAAAA+BfUdsXfffVc7d+7U7NmzlZ2drU8++UQDBgxwf3cMAAAAAOBdUO+IlenatauKi4t16NAhHTx4UHPmzNFrr72mGTNm2NU+AAAAAKhxgnpHbOrUqTr77LPVsGFDZWVl6dVXX9Uxxxyjt956Szt27LC7jQAAAABQowT1jtirr76qk046SWPGjNGAAQOUnJxsd7uACMQ3XgEAsJPBtRU1WFCB2Lfffmt3O2AH1qqwD0FV3H3IriIDaZuvC1+gfSxflstK+hA6HHDbAszg2RcrvYl8oc4/s/xWx718srCOtoXmej1nTDZbfWJp53ISjnXEZzn2FHOkrHAv/LVATRvjUPtTXcbDSjNC7mto2W1pQ00W1EcTJenzzz/XxRdfrOzsbG3evFmS9NJLL+mLL76wrXGA3VxWn80F9azP5eORv5zWUlf1k9FQggsrY+sySVSV+ULhr3hv9YfaLHsCvBDLsKEJVo+P5blvksx7TmfDtqqei1XJ/zwPvHORPB5mzOZo+T6a9tfKuuajzEDKs3xZ87pm+S7B7uMZ6Jyyfn0MraEVmxXM3A+qXrvLC8P5V13O+WrSjIAEFYi99dZbys3NVUJCgpYtW6aioiJJUkFBge655x5bGwgAAAAANU1Qgdhdd92ladOm6emnn1adOnXc2/v166elS5fa1jgAAAAAqImCCsTWrFmjE088sdL25ORk5efnh9omAAAAAKjRggrE0tPTtXbt2krbv/jiC7Vt2zbkRgEAAO8CvdEMwqc2Hqra2OdIxaEKr6ACsdGjR2vcuHFavHixXC6XtmzZohkzZuj666/XlVdeaXcbAQAAAKBGCer29TfffLNKS0s1cOBA7d+/XyeeeKLi4uJ0ww036LLLLrO7jQAAAABQowT1jpjL5dK//vUv7dq1SytXrtTXX3+tHTt2KDk5WW3atLG7jQAAAABQowQUiBUVFWnChAnq06eP+vXrp1mzZqlz585atWqVOnTooP/85z+67rrrqqqtAAAAAFAjBPTRxIkTJ+rJJ59UTk6OvvrqK51//vkaNWqUvv76az300EM6//zzFR0dXVVtBQAAAIAaIaBA7I033tCLL76os88+WytXrlS3bt1UXFysFStWOPYL5AAAAAAQ6QL6aOLvv/+u3r17S5K6dOmiuLg4XXfddQRh1QS3IAUAAAAiQ0CBWElJiWJjY92PY2JiVK9ePdsbBUSiiq9HVMULFFX9mkeVl1+1xTuqJvUlnKzPuZo54sH2KhJeAI2AJjoi2HHwdYxdQcycQHIEU75HfhuPPfPoiFCPifdyq1c5tU1AH000DEMjR45UXFycJOngwYO64oorVLduXY90b7/9tn0tBAAAAIAaJqBAbMSIER6PL774YlsbAwAAAAC1QUCB2HPPPVdV7QAAAACAWiOoH3QGAADhYxjcnilS1MZDVRv7HKk4VOFFIAYAAAAADiMQAwAAAACHEYgBAAAAgMMIxACb8Jl4AADsxbUVNRmBGAAAAAA4jEAMNUuYXzozquD+Q/Z1yXpBvuoM9G5tgbY/lO5W+eGvha/MhjqmZvmtFlldhttKO7yNk9maYHVM7ZzPgZTl8/wP8qhUymdn34LJU10mV4SoacMVan8COQ+q9A6nFooOua82tL+mzR87EYjVIFxYUN25XOFugX1qUl8iAeMNAPApAq8TBGKoMaw8UbN6jgZzLlesP5AyrD7JdFXxs9GqXsPMyg/2uLn8tDbkofJTgLdjEWq9dhzikNtgw0ywPKetlhdAHU4HbZEcJJrN4/KbguuaSZnV7BlSIMfMLK2/MbJSfCDXDF/jF+r1w19+u687gZZmvX8BN8Uzf4WWBXu9Crhe28t0/lxzssZIXm/NEIgBAAAAgMMIxAAAAADAYQRiAAAAVaRKb9ZQTVXFjatQNWrj/KxOCMQAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiAGAAAAAA4jEAMAAAAAhxGI1SD8bkd4uSo+rrghElRxm10ROSioSlbnRE2dOjW1X5LkquoFJUJUxboXTJEBZQmxyXYee2bREVW1Vtg1P2vyWlaVIiYQ27Vrl4YNG6akpCSlpKTo0ksv1d69e32m/8c//qEOHTooISFBLVu21DXXXKOCggKPdC6Xq9LfzJkzq7o7AAAAAGqxmHA3wKphw4Zp69atmjt3rg4fPqxRo0ZpzJgxeuWVV0zTb9myRVu2bNGDDz6ozp07a8OGDbriiiu0ZcsWvfnmmx5pn3vuOQ0aNMj9OCUlpSq7AgAAAKCWi4hAbPXq1Zo9e7a+/fZb9enTR5L06KOP6swzz9SDDz6ojIyMSnm6dOmit956y/24Xbt2uvvuu3XxxReruLhYMTFHu56SkqL09PSq7wgAAKhVDKP2fW2Ar0pEjto4P6uTiPho4qJFi5SSkuIOwiQpJydHUVFRWrx4seVyCgoKlJSU5BGESdLVV1+tRo0a6fjjj9f06dP9TsqioiIVFhZ6/AEAAACAVRHxjlheXp6aNGnisS0mJkYNGjRQXl6epTJ27typyZMna8yYMR7bJ02apFNPPVWJiYn65JNPdNVVV2nv3r265pprvJY1ZcoU3XnnnYF3BAAAAAAU5nfEbr75ZtObZZT/++mnn0Kup7CwUIMHD1bnzp11xx13eOy77bbb1K9fP/Xs2VM33XSTbrzxRj3wwAM+y5swYYIKCgrcf5s2bQq5jQAAAABqj7C+I3b99ddr5MiRPtO0bdtW6enp2r59u8f24uJi7dq1y+93u/bs2aNBgwapfv36euedd1SnTh2f6bOysjR58mQVFRUpLi7ONE1cXJzXfai9+JQ1AAD24tqKmiysgVjjxo3VuHFjv+mys7OVn5+vJUuWqHfv3pKk+fPnq7S0VFlZWV7zFRYWKjc3V3FxcXr//fcVHx/vt67ly5crNTWVQAsAAABAlYmI74h16tRJgwYN0ujRozVt2jQdPnxYY8eO1dChQ913TNy8ebMGDhyoF198Uccff7wKCwt1+umna//+/Xr55Zc9bqrRuHFjRUdH64MPPtC2bdt0wgknKD4+XnPnztU999yjf/7zn+HsLgAAAIAaLiICMUmaMWOGxo4dq4EDByoqKkrnnXeeHnnkEff+w4cPa82aNdq/f78kaenSpe47KmZmZnqU9dtvv6l169aqU6eOHnvsMV133XUyDEOZmZmaOnWqRo8e7VzHAAAAANQ6EROINWjQwOuPN0tS69atPW47f/LJJ/u9Df2gQYM8fsg50vFTEOH/LHlVHAO7fo8lkLb5Shpoa8qnd1lJ7+BBDLSucM+vcAi1z2brsNVxL5/XZWn2VA0rv7PjLYnZdqtjau9vMTm/jvgsx8a+8TtIVa+mjXGo/bHrehoqK+dRyH0NKbc9bajJIuJ3xAArLD1Rc1l7MueymM6z/iDa4yVvuITyZNfSkJmksXbcAq8v1CfuweYOZ8BwtA0h5rehC1bHwWpVZm3y1k6nj0B1OObB8tfyYOaCHfOnuvM45iYdtnYN8UzjK4vPfVbPtSCPi92HM9B2WF4jAm6J7wJM15wqONftLjMc518wz5mCrsvHeEXi0kMgBgAAAAAOIxADAAAAAIcRiAEAEGH4ykXkqI2HivkZOThU4UUgBgAAAAAOIxADAAAAAIcRiAEAAACAwwjEAAAAAMBhBGIAAAAA4DACMQAAAABwGIEYagxDhv9b5lq8p64R5L13g70NrM98Nt1bNpAu+UrrbZ/37b4rNip0sOLjPzdaqq98XablBFC3WW4rY2il3qoWags8+hn0uWD4aIvF89Dffm9zzlLp1vltx5//Wc5rdUxt7EggY1U+bcV8Vppkem5WPNfs7FsweUKs36M/JoVZu4ZYHxOf+6p4zbH9fKqi5oZcbMW57mMe23U9LV9mMMyvg0EXZ7mOymmcu+5Vh2usnQjEapCaNTUBAACAmotADDWGSy65XP4S+UtQlsxauopFe+QKoAifSQNvinkxFsopS+Mrrbd93rcf3eEy6UzFbWZpTDeZbvNdVyB1m+W2NIZ2HbAQhNoCj34GcS4caYPLR1vKjbOvueanGV7nnL/GBcjvsvLnf5bzWp2nQZyHgab3N88r5rNSrdk6Uulcs/EgBVNUqPV79MekMM+1yHspVtvk6zhYXXMCua55HrvABXMN8Z7B1mSWCzBdc8rWtUCu737SWj5+FssOeG3wt9/Scwfva6DdqsM11k4EYgAAAADgMAIxAAAijINfyUCIauOhYn5GDg5VeBGIAQAAAIDDCMQAAAAAwGEEYgAAAADgMAIxwCZ8Jh4AAJtxbUUNRiAGAAAAAA4jEAMAAAAAhxGIAQAAAIDDCMRQo4T7e1pVUr1NhQYyNr7SBjrGRrkMLpeF9CF02AiwcYHWFe75FRYhdto8t7Uyy6dyycLkqSJWWuttLpluLTemPuegjfPNrrlrV5PsPJdq42mJ8LLreupkO6q6jlCu3bUZgVgNEuiT0JrGypN8q0/lgnnKV7F+K+0JJm1VCqUZLgudMEth7bhVTuQvW6hj6i+/t/2h1xv6ZAi5DSG3wHobLPfXJJm34MyOMQxEdTl/gxHsPPeZJ7imVFtm86n8JtN1zVK51nP5Ki9ca13Q9QU6Q+xeSyxWY3rdqYrJbfv4Os/JOn0dA6fXfjsQiAEAAACAwwjEAACIMHwMKHLUxg+r1MIuRy4OVlgRiAEAAACAwwjEAAAAAMBhBGIAAAAA4DACMQAAAABwGIEYAAAAADiMQAwAAAAAHEYgBgAAAAAOIxADAAAAAIcRiNUgtfFHIwEAAIBIRCAG2MQlV4XHqMjFoCBITB1PFdcbVF9Vse65qngxDbV0O1vHXD+iyo45wxtWBGIAAAAA4DACMQAAIowhPoseKWrj1wZqYZcjFwcrrAjEAAAAAMBhBGIAAAAA4DACMcAmfFQIAAB7cW1FTUYgBgAAAAAOi5hAbNeuXRo2bJiSkpKUkpKiSy+9VHv37vWZ5+STT5bL5fL4u+KKKzzSbNy4UYMHD1ZiYqKaNGmiG264QcXFxVXZFQAAAAC1XEy4G2DVsGHDtHXrVs2dO1eHDx/WqFGjNGbMGL3yyis+840ePVqTJk1yP05MTHT/u6SkRIMHD1Z6erq++uorbd26VcOHD1edOnV0zz33VFlfAAAAANRuERGIrV69WrNnz9a3336rPn36SJIeffRRnXnmmXrwwQeVkZHhNW9iYqLS09NN933yySf68ccf9b///U9paWnq0aOHJk+erJtuukl33HGHYmNjq6Q/AAAAAGq3iPho4qJFi5SSkuIOwiQpJydHUVFRWrx4sc+8M2bMUKNGjdSlSxdNmDBB+/fv9yi3a9euSktLc2/Lzc1VYWGhVq1a5bXMoqIiFRYWevyhegj3l3qNKvjBGLtKDGRsfKUNdIzLp3bJ5T99CB0ONGugdYV7foVDyD02KcDquFeX31+y0g5vaczWBMNjv48y/VdrmW3riE0Hxda+VZN5UpNUHNKaNsZO9qcqrxtWSg61r1az+1zLatj8sVNEvCOWl5enJk2aeGyLiYlRgwYNlJeX5zXf3//+d7Vq1UoZGRn6/vvvddNNN2nNmjV6++233eWWD8IkuR/7KnfKlCm68847g+0OqojL/3N8S2kCSeeRp0KQ4QqokCAqrGas9CCYcfWWz19ZoY6ov6DRSlAZXL12lBFaKcEep6pkdj55a2c1bH615f88Cnw0A1v7qj+z3pTfFsz6ZFaurzxVOaZOr3WBdsVq/SGv+a6K13D76zCt1+7ywnH+OVilr6oiceUJayB2880367777vOZZvXq1UGXP2bMGPe/u3btqqZNm2rgwIH69ddf1a5du6DLnTBhgsaPH+9+XFhYqBYtWgRdHgAAAIDaJayB2PXXX6+RI0f6TNO2bVulp6dr+/btHtuLi4u1a9cur9//MpOVlSVJWrt2rdq1a6f09HR98803Hmm2bdsmST7LjYuLU1xcnOV6AQCwEx/1iRy18iPNTNCIURvnZ3US1kCscePGaty4sd902dnZys/P15IlS9S7d29J0vz581VaWuoOrqxYvny5JKlp06bucu+++25t377d/dHHuXPnKikpSZ07dw6wNwAAAABgTUTcrKNTp04aNGiQRo8erW+++UZffvmlxo4dq6FDh7rvmLh582Z17NjR/Q7Xr7/+qsmTJ2vJkiVav3693n//fQ0fPlwnnniiunXrJkk6/fTT1blzZ11yySVasWKF5syZo1tvvVVXX30173gBAAAAqDIREYhJR+5+2LFjRw0cOFBnnnmm+vfvr6eeesq9//Dhw1qzZo37roixsbH63//+p9NPP10dO3bU9ddfr/POO08ffPCBO090dLQ+/PBDRUdHKzs7WxdffLGGDx/u8btjAAAAAGC3iLhroiQ1aNDA5483t27d2uMzyS1atNCnn37qt9xWrVpp1qxZtrQRAAAAAKyImHfEAAAAAKCmIBADAAAAAIcRiAEAAACAwwjEAAAAAMBhBGIAAAAA4DACsRqEH7IPL5cr3C2o/hgjwB6RcC5FQhud4JL9A1Hdh9Zl48FnHh1RVcNQFfMT1hGIAQAQYXjhLXIYqn0Hy2CCRozaOD+rEwIxAAAAAHAYgRgAAAAAOIxADLAJn8QAAMBeXFtRkxGIAQAAAIDDCMQAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiBWg/Dr6OG/zW1V1G9XmQGV4yttgO3xrNcVUtWB1RX+9DVBqH02y269yOox4FbWVm8pTPtv+N5/NJ19/berLLtaZGvfbCsJZSoenpr2/CLU/gQyf6vyumGl7JCPncUO+H7aULPmj50IxFBjuCw8ybeSRpJc1pL5zBNIEcHUV91Y6YNZGpeFjGYp/OULdUz95fe230p/QqnXiTKsnie+22DvpDadA17rtrVqv+zuq5P8Heug1sIg21Jd+Vu3zMbQyhgEcs3wdRzCtdY5xXL9Ia97/ourirGwu8xwHC47rhmW66rCcyEcCMQAAIgwvL4cQWrhwaqFXY5YtfGTHtUJgRgAAAAAOIxADAAAAAAcRiAGAAAAAA4jEAMAAAAAhxGIAQAAAIDDCMQAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxArAbh19HDyxXuBkQAxgiwRyScS66IaKUDqmAYXNV8aO1sXjXvqmOq6phX97lU0xGIAQAQYXjdLYLUwoNVC7scsXgRP7wIxAAAAADAYQRigE14UQkAAHtxbUVNRiAGAAAAAA4jEAMAAAAAhxGIAQAAAIDDCMQAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADDVKTfy9EcOmXgVSiq+0gbfmaA6Xy0JqI/j+BjpWgdZUE+eXP6HOP7PjafUQhzAVbGWlHd7SmG0vPya+5rud/betKJsKsvPQhrJmwIsKQ1rThjjU/th1PQ2VlfXZqb46tZbVNARiNUhtn+dWnuRbSSNJLllM6JEnuLrM8kYiK2NmlsZK3wMZy6N5QhtVf7m97Q/1WNoxF0Lsesj5JfvntGmbvDQ0mPM3FOE4f217YlMFjbdj/lQnplOv/L9NEpRff7wdqorz1Nea5WtIQ53v/o5XMKX7mp+Bzg+ryUNeeytdxM3S2D+57V6vAm2iHWuJk+e8r/Fyeu23Q8QEYrt27dKwYcOUlJSklJQUXXrppdq7d6/X9OvXr5fL5TL9e+ONN9zpzPbPnDnTiS4BAAAAqKViwt0Aq4YNG6atW7dq7ty5Onz4sEaNGqUxY8bolVdeMU3fokULbd261WPbU089pQceeEBnnHGGx/bnnntOgwYNcj9OSUmxvf0AAAAAUCYiArHVq1dr9uzZ+vbbb9WnTx9J0qOPPqozzzxTDz74oDIyMirliY6OVnp6use2d955RxdccIHq1avnsT0lJaVSWgAAAACoKhHx0cRFixYpJSXFHYRJUk5OjqKiorR48WJLZSxZskTLly/XpZdeWmnf1VdfrUaNGun444/X9OnT/X7xt6ioSIWFhR5/AAAAAGBVRLwjlpeXpyZNmnhsi4mJUYMGDZSXl2epjGeffVadOnVS3759PbZPmjRJp556qhITE/XJJ5/oqquu0t69e3XNNdd4LWvKlCm68847A+8IAAAAACjM74jdfPPNXm+oUfb3008/hVzPgQMH9Morr5i+G3bbbbepX79+6tmzp2666SbdeOONeuCBB3yWN2HCBBUUFLj/Nm3aFHIbAQAAANQeYX1H7Prrr9fIkSN9pmnbtq3S09O1fft2j+3FxcXatWuXpe92vfnmm9q/f7+GDx/uN21WVpYmT56soqIixcXFmaaJi4vzug8AAAAA/AlrINa4cWM1btzYb7rs7Gzl5+dryZIl6t27tyRp/vz5Ki0tVVZWlt/8zz77rM4++2xLdS1fvlypqakEWgAAAACqTER8R6xTp04aNGiQRo8erWnTpunw4cMaO3ashg4d6r5j4ubNmzVw4EC9+OKLOv744915165dq88++0yzZs2qVO4HH3ygbdu26YQTTlB8fLzmzp2re+65R//85z8d6xsAAACA2iciAjFJmjFjhsaOHauBAwcqKipK5513nh555BH3/sOHD2vNmjXav3+/R77p06erefPmOv300yuVWadOHT322GO67rrrZBiGMjMzNXXqVI0ePbrK+wMAAACg9oqYQKxBgwZef7xZklq3bm162/l77rlH99xzj2meQYMGefyQc6Tzd9t9AAAAANVDRPyOGBAJXC5XuJtQ7TFEQO3B+V51atP1pjb11RfGoWYiEANswjuSAADYi2srajICMQAAAABwGIEYAAAAADiMQAwAAAAAHEYgBgAAAAAOIxADAAAAAIcRiAEAAACAwwjEAAAAAMBhBGIAAAAA4DACMdQo4f7dx6qo364yAynH1w9oBtqe8uldgWUNWOBtCyxDbfxh0VC7bJbd6jhWl9G21lzrrTW8/Dv4Ei3Uadc6YlOdtfBUMlVd1xSjwpGups0MWqjdCex6GmJlIZYd8hpuMb9Ta1lNQyBWg9T2iW7lSb7VQMAVRMTgqpDJFUDYUTFvJLLSBbN+WspnMpb+8oU6on7L97I/1ENpx1wIZO6Z5w+d3VParDhvVTh9OoXj9K34RDlY/poezHwMdf5VN6Zj4DL9p+k2b09kXS7rL1T5Ogwhrzn+jldQ5Xufn4HOKavpQ107K+Y2ve6EVIOXem1fKwMr0I6VxMkzvirPhXAgEAMAAAAAhxGIAQAAAIDDCMQAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiAGAAAAAA4jEAMAAAAAhxGIAQAAAIDDCMQAAAAAwGEEYjWIYYS7BQAAAACsIBADAAAAAIcRiAEAAACAwwjEAAAAAMBhBGIAAAAA4DACMQAAAABwGIEYAAAAADiMQAwAAAAAHEYgBgAAAAAOIxADAAAAAIcRiAEAAACAwwjEUKMYMmpc/XaVGEjbfKUMtI/lU7tcFtKH0OFAs1Z1+poglOPhLb/VIkOt20mBtLV8Wl/5gt1nnt6ewQykHF9rhZ2HtrrPE6fGwU4VxzTgdb+6duxPIa9rAY1H1Q2GlZL9pfF3Tlvtq+/1qppPiDAiEKtRavdEt/Ik30oauwRSl4PNqjJW+uAySWUpn0kis7ICLthnnb4L8FZ/qMfSlrkQciNCb4Xf4xNoeSZtcvJ89qWaNCMo/ud5MGUG15bqynz98b3fysC5XJ5PXn2Pm/edoY63v/y2n8tVlD70cXBVeBxCYwKp1+7ywnD+1bRz3kkEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiAGAAAAAA4jEAMAAAAAh0VMIHb33Xerb9++SkxMVEpKiqU8hmFo4sSJatq0qRISEpSTk6NffvnFI82uXbs0bNgwJSUlKSUlRZdeeqn27t1bBT0AAAAAgCMiJhA7dOiQzj//fF155ZWW89x///165JFHNG3aNC1evFh169ZVbm6uDh486E4zbNgwrVq1SnPnztWHH36ozz77TGPGjKmKLgAAAACAJCkm3A2w6s4775QkPf/885bSG4ahhx9+WLfeeqvOOeccSdKLL76otLQ0vfvuuxo6dKhWr16t2bNn69tvv1WfPn0kSY8++qjOPPNMPfjgg8rIyKiSvgAAAACo3SLmHbFA/fbbb8rLy1NOTo57W3JysrKysrRo0SJJ0qJFi5SSkuIOwiQpJydHUVFRWrx4sdeyi4qKVFhY6PGH8IuLiVbjenGVtteLO/p6Q2rdWEtlJSXUCbj+xvXjFBcT7X4cyC/N14v3/ppI+faHIi0p3m+amKgjS0K6j7Te2hMTbb6cJNQ5OiaN6lce//TkBI/HySZj36R+5ePaoG7ldK0bJh6tq27lPBVVrCs6+uhBa2gyV+qX63tK4pG8dWOjPdKkJHqfY81SjvS1bHzNxjI92f9x8sfX8bOifN9bNEjwkdK7+n/O6TaN6lbaZ3VOJ5Yb2yZJlY9n2XhWlFDhmJRJMynDTMXj07JBoq/kSk9OUNMU8zFvW67/cTFHzpHUcnM31uS8KetXY5N5X8ZsfvpidhwkqV5c5bFKTzo6rvUrrE0t/IyFJMX+2c+ocotgxbFvnhr4vCo75yrK8DL2vrRvUs9yWrM1qfw4mF1XmtQ/2iZv8z0tKd5jTSwbNzOJXua0JMXHeN9npmJ/zPLHlFsL60S71CzF/3EvLzHW+zlex8u1wpvy67IvrRqaz3EzZudPxTWmrkkfyq4rgdTlL23rP8/NjD/Xfl/Hury2jesq1eScqDiPyh/v6CjXn206ejzrx/t+vtPcwrFvUj/edC0r428NDUSqj2ts81T76nFKxLwjFqi8vDxJUlpamsf2tLQ09768vDw1adLEY39MTIwaNGjgTmNmypQp7nfoqpO4ABfjcOrVMkVLN+b7TXdZ/zaa99N2dWuerCiXS+8s2+ze16BurHbtOyRJGtIjQy0aJOriE1rp3o9/UnGp4U734T/6a8Xv+fr8l526oE8Ln/VNOberVm4u0EntG+v9sf109n+/1A25HTzSPPb3Xpr30zZ1bZasn7ft0Yffb9Weg8W6tH8bxdeJ1thTMpUQG624mGhNH9lHj85fq6T4OpXKkaTJ5xyrtdv3KqtNA59jNbJva69PpNxlDemi295dqWeG9zHdf/Upmdqaf0CDux19p/fS/m307Be/SZLO69VcyX8u6mNPzdS2woM6q3vld4V7tEjRmV3TNeuHPL15Rba++vUPFZcaavDnhe3Os4/Vys0FOlRSqnP+PC5tG9XVup379H/92rjLeeH/jtdbS37XTYM8x+WkYxprWFZLdWmWrIZ1YzXrh6264uR27v0PX9hDX67dqXN7Na/UtoeH9tSA++ardaO6uiS7lc/xkqTTOqXpouNbqkeLZElHnjA1T03Q77sPmM6V3q1SlZxQRwUHDuuvPZtJkt66qq8enb9WrRsmaueeQ+4xu2tIF63J26PEuGg9+ek6SdLMMSdIkl6+LEv//t/P+sepme6ynx91nN5eulk35nb0225vnht5nN5dvlnjctoHlO+NK7L1wlfr1aNFilZv3aOLjm/p3jd5SBfFxkRrWFZLHyVI//17T83/abu6NkvWuh37NKB9I0nSk5f01j2zVmvjrv0a2be1JOnYjCRd2r+N10CqzLEZSWrTqK5+27lP/zj1aJ9eGZ2lV7/ZpNvP6qwRfVvr+a/Wq+hwqX7buVc5ndLUrrH5k+wZl52gf//vZ409JVMvfLVevVulmqareHymXthdd3+0WqP6tVb+/sP6YMUWpSTGavXWQqUlxeumQR3kkkt7Dha750WZZ0cep6tnLNXBwyV6bFgvSdJZ3TL09a+7dHybBkpOrKNrc9rLJZdW/J6v+T9t18uXZUmSRvVrrV+27dFpnT2vY5J0Xu/mWrJht7LbNdS363e757A3//17L/318S9VNy5Gr1+erax75ik5oY56taw8Btee1l7Tv/xNzVISdNIxjT32PfC37rrrox81sm9rffXrH9q9/5B27TukIT2b6ccthTpwqMT9ok+d6CjdkNtBBw6VaHh2a/28bY96tjhS351nH6sol0sXHd9CcTHRevqzdVr483YdPFyqAe0bqUHdWLkkDenZTPd+/JOS4uvorr92Me3bhDM66eDhUp3fx3NNmHTOsfr+9wIVl5Rq7Y69Or1zulIS62jdjn0af/oxuu3dlTqnR4Z7rJ/7cr0+v/GUcn3tpiUbdusv5dbMsnPltr901tfr/qh0XXlmeB99+P0WjS13bvdokaJR/VpryYbd6pheX6d3TtcH32/Rdacdo8Q60frXOyvVLCVBTZMrnw+3Du6kvIKD6tQ0yaTfHbV7/2H3E3lJmnFZloY9c+SF5LeuzNbnv+zUw//7Rbef1dmjD/+Z94sS6kSrcf04tWxY+clr/fg6ui7nGJUahlISY/WvwZ20/1CxVmzK101neK5RE87oqCkf/6Q3rsh2b+uckaSuzZL1w+YCZbdtqP/r30ajX/xO5/TIUOP6cZo8pIt+ztujC/q00Fn//cKdb0D7Rvpt5z51TE9S4/pxSk+KV9KfgUJZPY9e1NOj/veu7qenPl+nmwf5XjtvyO2gB+as0Sujs3Rc6wb6dv0u9ctspHpxMfrw+y3uNWbiXzrr990H1KXZ0TEvu+6XXVcevrCH7p61Wpf2b+NRx+PDeunFRev19bpduuSEI2kfuainppikfX9sPz352dF2v3RZlqbOPbLurNpcqOvfWCHpyAs400ce5x6DL3/9Q/XjY3TD6R3UokGiTunwuxas2aFTOjTWsRnJlV50Hdixif6e1VLdmiWrW/MUPbZwrf55+tHr7gltG2hEditlenlxYvKQLvrslx1KTqij98b205RZP2n5pnz9/fiWatUwUbN+2KorT26nunExumZgez0y7xfdf143jzLuPa+bhj2zWGu3H70HQ8f0+hrZt7Xum/2TujRLVquGiXr5641qlpKgywa00Z0f/Ki/Z7XUgUMlcrmkvIKDap6a4D5ny3ttzAl66esNmlhunkcKl2EYhv9kVePmm2/Wfffd5zPN6tWr1bHj0ZPr+eef17XXXqv8/Hyf+b766iv169dPW7ZsUdOmTd3bL7jgArlcLr322mu655579MILL2jNmjUeeZs0aaI777zT6/fRioqKVFRU5H5cWFioFi1aqKCgQElJlRdLAAAAALVDYWGhkpOT/cYGYX1H7Prrr9fIkSN9pmnbtm1QZaenp0uStm3b5hGIbdu2TT169HCn2b59u0e+4uJi7dq1y53fTFxcnOLirH3EBQAAAAAqCmsg1rhxYzVu3Nh/wiC0adNG6enpmjdvnjvwKiws1OLFi93vdGVnZys/P19LlixR7969JUnz589XaWmpsrKyqqRdAAAAABAxN+vYuHGjli9fro0bN6qkpETLly/X8uXLPX7zq2PHjnrnnXckSS6XS9dee63uuusuvf/++/rhhx80fPhwZWRkaMiQIZKkTp06adCgQRo9erS++eYbffnllxo7dqyGDh3KHRMBAAAAVJmIuVnHxIkT9cILL7gf9+x55MuaCxYs0MknnyxJWrNmjQoKCtxpbrzxRu3bt09jxoxRfn6++vfvr9mzZys+/ugXGWfMmKGxY8dq4MCBioqK0nnnnadHHnnEmU4BAAAAqJXCerOOmsLqF/IAAAAA1GxWY4OI+WgiAAAAANQUBGIAAAAA4DACMQAAAABwGIEYAAAAADiMQAwAAAAAHEYgBgAAAAAOIxADAAAAAIcRiAEAAACAwwjEAAAAAMBhBGIAAAAA4DACMQAAAABwGIEYAAAAADiMQAwAAAAAHBYT7gbUBIZhSJIKCwvD3BIAAAAA4VQWE5TFCN4QiNlgz549kqQWLVqEuSUAAAAAqoM9e/YoOTnZ636X4S9Ug1+lpaXasmWL6tevL5fLFda2FBYWqkWLFtq0aZOSkpLC2hZEBuYMAsWcQaCYMwgUcwaBqG7zxTAM7dmzRxkZGYqK8v5NMN4Rs0FUVJSaN28e7mZ4SEpKqhYTEZGDOYNAMWcQKOYMAsWcQSCq03zx9U5YGW7WAQAAAAAOIxADAAAAAIcRiNUwcXFxuv322xUXFxfupiBCMGcQKOYMAsWcQaCYMwhEpM4XbtYBAAAAAA7jHTEAAAAAcBiBGAAAAAA4jEAMAAAAABxGIAYAAAAADiMQq0Eee+wxtW7dWvHx8crKytI333wT7ibBAVOmTNFxxx2n+vXrq0mTJhoyZIjWrFnjkebgwYO6+uqr1bBhQ9WrV0/nnXeetm3b5pFm48aNGjx4sBITE9WkSRPdcMMNKi4u9kizcOFC9erVS3FxccrMzNTzzz9f1d2DA+699165XC5de+217m3MGVS0efNmXXzxxWrYsKESEhLUtWtXfffdd+79hmFo4sSJatq0qRISEpSTk6NffvnFo4xdu3Zp2LBhSkpKUkpKii699FLt3bvXI83333+vAQMGKD4+Xi1atND999/vSP9gr5KSEt12221q06aNEhIS1K5dO02ePFnl7xHHnKndPvvsM5111lnKyMiQy+XSu+++67HfyfnxxhtvqGPHjoqPj1fXrl01a9Ys2/trykCNMHPmTCM2NtaYPn26sWrVKmP06NFGSkqKsW3btnA3DVUsNzfXeO6554yVK1cay5cvN84880yjZcuWxt69e91prrjiCqNFixbGvHnzjO+++8444YQTjL59+7r3FxcXG126dDFycnKMZcuWGbNmzTIaNWpkTJgwwZ1m3bp1RmJiojF+/Hjjxx9/NB599FEjOjramD17tqP9hb2++eYbo3Xr1ka3bt2McePGubczZ1Derl27jFatWhkjR440Fi9ebKxbt86YM2eOsXbtWneae++910hOTjbeffddY8WKFcbZZ59ttGnTxjhw4IA7zaBBg4zu3bsbX3/9tfH5558bmZmZxkUXXeTeX1BQYKSlpRnDhg0zVq5cabz66qtGQkKC8eSTTzraX4Tu7rvvNho2bGh8+OGHxm+//Wa88cYbRr169Yz//Oc/7jTMmdpt1qxZxr/+9S/j7bffNiQZ77zzjsd+p+bHl19+aURHRxv333+/8eOPPxq33nqrUadOHeOHH36o8jEgEKshjj/+eOPqq692Py4pKTEyMjKMKVOmhLFVCIft27cbkoxPP/3UMAzDyM/PN+rUqWO88cYb7jSrV682JBmLFi0yDOPIYhgVFWXk5eW50zzxxBNGUlKSUVRUZBiGYdx4443Gscce61HXhRdeaOTm5lZ1l1BF9uzZY7Rv396YO3eucdJJJ7kDMeYMKrrpppuM/v37e91fWlpqpKenGw888IB7W35+vhEXF2e8+uqrhmEYxo8//mhIMr799lt3mo8//thwuVzG5s2bDcMwjMcff9xITU11z6Gyujt06GB3l1DFBg8ebPzf//2fx7Zzzz3XGDZsmGEYzBl4qhiIOTk/LrjgAmPw4MEe7cnKyjIuv/xyW/toho8m1gCHDh3SkiVLlJOT494WFRWlnJwcLVq0KIwtQzgUFBRIkho0aCBJWrJkiQ4fPuwxPzp27KiWLVu658eiRYvUtWtXpaWludPk5uaqsLBQq1atcqcpX0ZZGuZY5Lr66qs1ePDgSseVOYOK3n//ffXp00fnn3++mjRpop49e+rpp5927//tt9+Ul5fncbyTk5OVlZXlMWdSUlLUp08fd5qcnBxFRUVp8eLF7jQnnniiYmNj3Wlyc3O1Zs0a7d69u6q7CRv17dtX8+bN088//yxJWrFihb744gudccYZkpgz8M3J+RHOaxWBWA2wc+dOlZSUeDwhkqS0tDTl5eWFqVUIh9LSUl177bXq16+funTpIknKy8tTbGysUlJSPNKWnx95eXmm86dsn680hYWFOnDgQFV0B1Vo5syZWrp0qaZMmVJpH3MGFa1bt05PPPGE2rdvrzlz5ujKK6/UNddcoxdeeEHS0WPu6zqUl5enJk2aeOyPiYlRgwYNAppXiAw333yzhg4dqo4dO6pOnTrq2bOnrr32Wg0bNkwScwa+OTk/vKVxYv7EVHkNABxz9dVXa+XKlfriiy/C3RRUY5s2bdK4ceM0d+5cxcfHh7s5iAClpaXq06eP7rnnHklSz549tXLlSk2bNk0jRowIc+tQHb3++uuaMWOGXnnlFR177LFavny5rr32WmVkZDBngD/xjlgN0KhRI0VHR1e6o9m2bduUnp4eplbBaWPHjtWHH36oBQsWqHnz5u7t6enpOnTokPLz8z3Sl58f6enppvOnbJ+vNElJSUpISLC7O6hCS5Ys0fbt29WrVy/FxMQoJiZGn376qR555BHFxMQoLS2NOQMPTZs2VefOnT22derUSRs3bpR09Jj7ug6lp6dr+/btHvuLi4u1a9eugOYVIsMNN9zgflesa9euuuSSS3Tddde534VnzsAXJ+eHtzROzB8CsRogNjZWvXv31rx589zbSktLNW/ePGVnZ4exZXCCYRgaO3as3nnnHc2fP19t2rTx2N+7d2/VqVPHY36sWbNGGzdudM+P7Oxs/fDDDx4L2ty5c5WUlOR+8pWdne1RRlka5ljkGThwoH744QctX77c/denTx8NGzbM/W/mDMrr169fpZ/F+Pnnn9WqVStJUps2bZSenu5xvAsLC7V48WKPOZOfn68lS5a408yfP1+lpaXKyspyp/nss890+PBhd5q5c+eqQ4cOSk1NrbL+wX779+9XVJTn08zo6GiVlpZKYs7ANyfnR1ivVVV+OxA4YubMmUZcXJzx/PPPGz/++KMxZswYIyUlxeOOZqiZrrzySiM5OdlYuHChsXXrVvff/v373WmuuOIKo2XLlsb8+fON7777zsjOzjays7Pd+8tuRX766acby5cvN2bPnm00btzY9FbkN9xwg7F69Wrjscce41bkNUj5uyYaBnMGnr755hsjJibGuPvuu41ffvnFmDFjhpGYmGi8/PLL7jT33nuvkZKSYrz33nvG999/b5xzzjmmt5ru2bOnsXjxYuOLL74w2rdv73Gr6fz8fCMtLc245JJLjJUrVxozZ840EhMTuRV5BBoxYoTRrFkz9+3r3377baNRo0bGjTfe6E7DnKnd9uzZYyxbtsxYtmyZIcmYOnWqsWzZMmPDhg2GYTg3P7788ksjJibGePDBB43Vq1cbt99+O7evR+AeffRRo2XLlkZsbKxx/PHHG19//XW4mwQHSDL9e+6559xpDhw4YFx11VVGamqqkZiYaPz1r381tm7d6lHO+vXrjTPOOMNISEgwGjVqZFx//fXG4cOHPdIsWLDA6NGjhxEbG2u0bdvWow5EtoqBGHMGFX3wwQdGly5djLi4OKNjx47GU0895bG/tLTUuO2224y0tDQjLi7OGDhwoLFmzRqPNH/88Ydx0UUXGfXq1TOSkpKMUaNGGXv27PFIs2LFCqN///5GXFyc0axZM+Pee++t8r7BfoWFhca4ceOMli1bGvHx8Ubbtm2Nf/3rXx63EWfO1G4LFiwwff4yYsQIwzCcnR+vv/66ccwxxxixsbHGsccea3z00UdV1u/yXIZR7ifOAQAAAABVju+IAQAAAIDDCMQAAAAAwGEEYgAAAADgMAIxAAAAAHAYgRgAAAAAOIxADAAAAAAcRiAGAAAAAA4jEAMAAAAAhxGIAQBgYv369XK5XFq+fHmV1TFy5EgNGTKkysoHAFRfBGIAgBpp5MiRcrlclf4GDRpkKX+LFi20detWdenSpYpbCgCojWLC3QAAAKrKoEGD9Nxzz3lsi4uLs5Q3Ojpa6enpVdEsAAB4RwwAUHPFxcUpPT3d4y81NVWS5HK59MQTT+iMM85QQkKC2rZtqzfffNOdt+JHE3fv3q1hw4apcePGSkhIUPv27T2CvB9++EGnnnqqEhIS1LBhQ40ZM0Z79+517y8pKdH48eOVkpKihg0b6sYbb5RhGB7tLS0t1ZQpU9SmTRslJCSoe/fuHm3y1wYAQOQgEAMA1Fq33XabzjvvPK1YsULDhg3T0KFDtXr1aq9pf/zxR3388cdavXq1nnjiCTVq1EiStG/fPuXm5io1NVXffvut3njjDf3vf//T2LFj3fkfeughPf/885o+fbq++OIL7dq1S++8845HHVOmTNGLL76oadOmadWqVbruuut08cUX69NPP/XbBgBAZHEZFV+OAwCgBhg5cqRefvllxcfHe2y/5ZZbdMstt8jlcumKK67QE0884d53wgknqFevXnr88ce1fv16tWnTRsuWLVOPHj109tlnq1GjRpo+fXqlup5++mnddNNN2rRpk+rWrStJmjVrls466yxt2bJFaWlpysjI0HXXXacbbrhBklRcXKw2bdqod+/eevfdd1VUVKQGDRrof//7n7Kzs91lX3bZZdq/f79eeeUVn20AAEQWviMGAKixTjnlFI9AS5IaNGjg/nf5gKfssbe7JF555ZU677zztHTpUp1++ukaMmSI+vbtK0lavXq1unfv7g7CJKlfv34qLS3VmjVrFB8fr61btyorK8u9PyYmRn369HF/PHHt2rXav3+/TjvtNI96Dx06pJ49e/ptAwAgshCIAQBqrLp16yozM9OWss444wxt2LBBs2bN0ty5czVw4EBdffXVevDBB20pv+z7ZB999JGaNWvmsa/sBiNV3QYAgHP4jhgAoNb6+uuvKz3u1KmT1/SNGzfWiBEj9PLLL+vhhx/WU089JUnq1KmTVqxYoX379rnTfvnll4qKilKHDh2UnJyspk2bavHixe79xcXFWrJkiftx586dFRcXp40bNyozM9Pjr0WLFn7bAACILLwjBgCosYqKipSXl+exLSYmxn2DizfeeEN9+vRR//79NWPGDH3zzTd69tlnTcuaOHGievfurWOPPVZFRUX68MMP3UHbsGHDdPvtt2vEiBG64447tGPHDv3jH//QJZdcorS0NEnSuHHjdO+996p9+/bq2LGjpk6dqvz8fHf59evX1z//+U9dd911Ki0tVf/+/VVQUKAvv/xSSUlJGjFihM82AAAiC4EYAKDGmj17tpo2beqxrUOHDvrpp58kSXfeeadmzpypq666Sk2bNtWrr76qzp07m5YVGxurCRMmaP369UpISNCAAQM0c+ZMSVJiYqLmzJmjcePG6bjjjlNiYqLOO+88TZ061Z3/+uuv19atWzVixAhFRUXp//7v//TXv/5VBQUF7jSTJ09W48aNNWXKFK1bt04pKSnq1auXbrnlFr9tAABEFu6aCAColVwul9555x0NGTIk3E0BANRCfEcMAAAAABxGIAYAAAAADuM7YgCAWolP5gMAwol3xAAAAADAYQRiAAAAAOAwAjEAAAAAcBiBGAAAAAA4jEAMAAAAABxGIAYAAAAADiMQAwAAAACHEYgBAAAAgMP+H9cV3F2gjFCFAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "from sklearn.ensemble import RandomForestClassifier\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.metrics import classification_report, confusion_matrix\n", - "from imblearn.over_sampling import SMOTE # <-- Added for SMOTE\n", - "from collections import Counter\n", - "import gym\n", - "from stable_baselines3 import DQN\n", - "from stable_baselines3.common.callbacks import BaseCallback\n", - "\n", - "\n", - "# Load datasets\n", - "import csv\n", - "true_news_df = pd.read_csv('True.csv', quoting=csv.QUOTE_NONE, on_bad_lines='skip')\n", - "false_news_df = pd.read_csv('Fake.csv', quoting=csv.QUOTE_NONE, on_bad_lines='skip')\n", - "\n", - "# Label the datasets\n", - "true_news_df['label'] = 'True'\n", - "false_news_df['label'] = 'False'\n", - "\n", - "# Combine the datasets\n", - "df = pd.concat([true_news_df[['title', 'label']], false_news_df[['title', 'label']]], ignore_index=True)\n", - "\n", - "# Convert text to features (title length)\n", - "df['title_length'] = df['title'].apply(lambda x: len(str(x).split()))\n", - "\n", - "# Create feature and label arrays\n", - "X = df[['title_length']] # Feature\n", - "y = df['label'].apply(lambda x: 1 if x == 'True' else 0) # Label\n", - "\n", - "# Split the data\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "\n", - "# =============================== #\n", - "# Apply SMOTE to balance classes\n", - "# =============================== #\n", - "smote = SMOTE(random_state=42)\n", - "X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)\n", - "\n", - "# Print class distribution before and after SMOTE\n", - "print(f\"Before SMOTE: {Counter(y_train)}\")\n", - "print(f\"After SMOTE: {Counter(y_train_resampled)}\")\n", - "\n", - "# Visualize class distribution\n", - "fig, ax = plt.subplots(1, 2, figsize=(12, 5))\n", - "sns.countplot(x=y_train, ax=ax[0])\n", - "ax[0].set_title(\"Before SMOTE\")\n", - "ax[0].set_xlabel(\"Label\")\n", - "sns.countplot(x=y_train_resampled, ax=ax[1])\n", - "ax[1].set_title(\"After SMOTE\")\n", - "ax[1].set_xlabel(\"Label\")\n", - "plt.tight_layout()\n", - "plt.show()\n", - "\n", - "# Initialize and train RandomForestClassifier on resampled data\n", - "clf = RandomForestClassifier(n_estimators=100, random_state=42)\n", - "clf.fit(X_train_resampled, y_train_resampled)\n", - "\n", - "# Predict the labels\n", - "y_pred = clf.predict(X_test)\n", - "\n", - "# Print classification report\n", - "print(classification_report(y_test, y_pred))\n", - "\n", - "# Confusion Matrix Visualization\n", - "cm = confusion_matrix(y_test, y_pred)\n", - "plt.figure(figsize=(6, 4))\n", - "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Fake', 'True'], yticklabels=['Fake', 'True'])\n", - "plt.title('Confusion Matrix for MIL Model')\n", - "plt.xlabel('Predicted')\n", - "plt.ylabel('Actual')\n", - "plt.show()\n", - "\n", - "# Feature Importance Visualization\n", - "plt.figure(figsize=(8, 6))\n", - "feature_importance = clf.feature_importances_\n", - "plt.barh(X.columns, feature_importance, color='green')\n", - "plt.title('Feature Importance for MIL Model')\n", - "plt.xlabel('Importance')\n", - "plt.show()\n", - "\n", - "# Q-learning Parameters\n", - "n_actions = 2 # Two actions: True or False\n", - "n_states = 10 # Simplified state space\n", - "Q = np.zeros((n_states, n_actions)) # Initialize Q-table\n", - "learning_rate = 0.1\n", - "discount_factor = 0.9\n", - "exploration_rate = 1.0\n", - "exploration_decay = 0.995\n", - "episodes = 1000\n", - "rewards_per_episode = []\n", - "\n", - "# Define reward function\n", - "def reward_function(action, state):\n", - " return 1 if (state % 2 == action) else -1\n", - "\n", - "# Q-learning algorithm\n", - "for episode in range(episodes):\n", - " state = np.random.choice(n_states)\n", - " done = False\n", - " episode_reward = 0\n", - " while not done:\n", - " if np.random.rand() < exploration_rate:\n", - " action = np.random.choice(n_actions)\n", - " else:\n", - " action = np.argmax(Q[state])\n", - " reward = reward_function(action, state)\n", - " episode_reward += reward\n", - " next_state = (state + 1) % n_states\n", - " Q[state, action] = Q[state, action] + learning_rate * (reward + discount_factor * np.max(Q[next_state]) - Q[state, action])\n", - " state = next_state\n", - " if state == 0:\n", - " done = True\n", - " exploration_rate *= exploration_decay\n", - " rewards_per_episode.append(episode_reward)\n", - "\n", - "# Plot Q-values over episodes\n", - "plt.figure(figsize=(10, 6))\n", - "plt.plot(Q[:, 0], label='Q-values for action 0 (True)', color='blue')\n", - "plt.plot(Q[:, 1], label='Q-values for action 1 (False)', color='red')\n", - "plt.title('Q-Values over Episodes')\n", - "plt.xlabel('State')\n", - "plt.ylabel('Q-value')\n", - "plt.legend()\n", - "plt.show()\n", - "\n", - "# Plot rewards per episode\n", - "plt.figure(figsize=(10, 6))\n", - "plt.plot(rewards_per_episode)\n", - "plt.title('Total Reward per Episode during Q-learning')\n", - "plt.xlabel('Episode')\n", - "plt.ylabel('Total Reward')\n", - "plt.show()\n", - "\n", - "# Custom environment for news classification\n", - "class NewsEnv(gym.Env):\n", - " def __init__(self):\n", - " super(NewsEnv, self).__init__()\n", - " self.action_space = gym.spaces.Discrete(2)\n", - " self.observation_space = gym.spaces.Box(low=0, high=1, shape=(5,), dtype=np.float32)\n", - " self.state = np.random.rand(5)\n", - "\n", - " def reset(self):\n", - " self.state = np.random.rand(5)\n", - " return self.state\n", - "\n", - " def step(self, action):\n", - " reward = 1 if action == 0 else -1\n", - " done = True\n", - " next_state = np.random.rand(5)\n", - " return next_state, reward, done, {}\n", - "\n", - "# Callback for reward logging\n", - "class RewardLoggerCallback(BaseCallback):\n", - " def __init__(self, verbose=0):\n", - " super(RewardLoggerCallback, self).__init__(verbose)\n", - " self.reward_history = []\n", - "\n", - " def _on_step(self) -> bool:\n", - " rewards = self.locals.get('rewards', [])\n", - " if rewards:\n", - " self.reward_history.append(sum(rewards))\n", - " return True\n", - "\n", - " def get_reward_history(self):\n", - " return self.reward_history\n", - "\n", - "# Train DQN on custom environment\n", - "env = NewsEnv()\n", - "model = DQN('MlpPolicy', env, verbose=1)\n", - "reward_logger = RewardLoggerCallback(verbose=1)\n", - "model.learn(total_timesteps=10000, callback=reward_logger)\n", - "model.save(\"news_dqn_model\")\n", - "\n", - "# Plot training rewards\n", - "reward_history = reward_logger.get_reward_history()\n", - "plt.figure(figsize=(10, 6))\n", - "plt.plot(reward_history)\n", - "plt.title('Training Reward Distribution during DRL (DQN)')\n", - "plt.xlabel('Episodes')\n", - "plt.ylabel('Reward')\n", - "plt.show()\n" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file