diff --git a/Finalgroupwork___1_.ipynb b/Finalgroupwork___1_.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f8679d01746deb726eb925a42db83d02d56f52f2 --- /dev/null +++ b/Finalgroupwork___1_.ipynb @@ -0,0 +1,6182 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "tZsBBE7sYXF6", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a1eca689-dcc2-4612-99d1-ab2be18b1d39" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Found existing installation: nltk 3.9.1\n", + "Uninstalling nltk-3.9.1:\n", + " Would remove:\n", + " /usr/local/bin/nltk\n", + " /usr/local/lib/python3.11/dist-packages/nltk-3.9.1.dist-info/*\n", + " /usr/local/lib/python3.11/dist-packages/nltk/*\n", + "Proceed (Y/n)? y\n", + " Successfully uninstalled nltk-3.9.1\n", + "Collecting nltk\n", + " Downloading nltk-3.9.1-py3-none-any.whl.metadata (2.9 kB)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.11/dist-packages (from nltk) (8.2.0)\n", + "Requirement already satisfied: joblib in /usr/local/lib/python3.11/dist-packages (from nltk) (1.5.0)\n", + "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.11/dist-packages (from nltk) (2024.11.6)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from nltk) (4.67.1)\n", + "Downloading nltk-3.9.1-py3-none-any.whl (1.5 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m64.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: nltk\n", + "Successfully installed nltk-3.9.1\n" + ] + } + ], + "source": [ + "!pip install shimmy>=2.0\n", + "!pip uninstall nltk\n", + "!pip install nltk" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install shimmy>=2.0" + ], + "metadata": { + "id": "7vGHuEoBD5cl" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!pip install imbalanced-learn\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "r-CiM6lLHHQe", + "outputId": "65ded664-fa42-4ccf-b3c2-e25d6de56e59" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.11/dist-packages (0.13.0)\n", + "Requirement already satisfied: numpy<3,>=1.24.3 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (2.0.2)\n", + "Requirement already satisfied: scipy<2,>=1.10.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.15.3)\n", + "Requirement already satisfied: scikit-learn<2,>=1.3.2 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.6.1)\n", + "Requirement already satisfied: sklearn-compat<1,>=0.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (0.1.3)\n", + "Requirement already satisfied: joblib<2,>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.5.0)\n", + "Requirement already satisfied: threadpoolctl<4,>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (3.6.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "qUyctbL211NT" + }, + "outputs": [], + "source": [ + "import nltk\n", + "nltk.data.clear_cache()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "k2cPuQjI2ohj", + "outputId": "86691ede-adfe-4dc2-94a0-0fbb363e97cf" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package stopwords to /root/nltk_data...\n", + "[nltk_data] Package stopwords is already up-to-date!\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 1000x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAGtCAYAAACREAK2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXWYHNeV9/+pqmYeZgaNGC2LbJkZEzuOvYnj3Q1uNvSG3uzuLwvZzb7hZBMHHHQc21nbie0YYgaBJVnMGmbumemeZqi6vz961FJrekYzo5Eh6c/z6JFUcOtWdcE995zzPZIQQpAhQ4YMGTJkyJAhQ4YM84j8dncgQ4YMGTJkyJAhQ4YMf3lkDI0MGTJkyJAhQ4YMGTLMOxlDI0OGDBkyZMiQIUOGDPNOxtDIkCFDhgwZMmTIkCHDvJMxNDJkyJAhQ4YMGTJkyDDvZAyNDBkyZMiQIUOGDBkyzDsZQyNDhgwZMmTIkCFDhgzzTsbQyJAhQ4YMGTJkyJAhw7yTMTQyZMiQIUOGDBkyZMgw72QMjQwZMryjeO2115Akiddee21e262srOSee+6Z1zZnyiWXXMIll1xy1u3i8Thf+tKXKCsrQ5ZlbrnllvPetwwZMmTIkOF8kTE0MmT4K+SRRx5BkiQef/zxSeuWL1+OJEm8+uqrk9aVl5ezYcOGt6KLM6a1tZWPfexjVFdXYzKZcDgcbNy4kR/84AeEQqG3u3uz4le/+hXf+ta3uO2227j//vv53Oc+d16Pp2kav/3tb7nwwgvJzs7GbrdTX1/P3Xffzc6dO5PbnTT+JEnid7/7Xdq2Nm7ciCRJLFmyJGV5NBrlBz/4AStXrsThcOByuVi8eDEf/ehHOXHixFn7ODw8zGc+8xkaGhowm83k5+ezdu1avvzlL+P3+8/tArwN/Nu//VvyWkqShMVioby8nBtvvJFf//rXRCKRObf97LPP8m//9m/z19lz5Otf/zpPPPHE292NDBkyvI3o3u4OZMiQ4a1n06ZNAGzbto1bb701uXx8fJwjR46g0+nYvn07l156aXJdd3c33d3dvP/973/L+zsVzzzzDLfffjtGo5G7776bJUuWEI1G2bZtG1/84hc5evQo991339vdzRnzyiuvUFJSwve+97235Hif/vSnuffee7n55pv5m7/5G3Q6HY2Njfz5z3+murqadevWpWxvMpl46KGH+MAHPpCyvKOjgzfeeAOTyTTpGO9973v585//zJ133slHPvIRYrEYJ06c4Omnn2bDhg00NDRM2b/R0VHWrFnD+Pg4f/d3f0dDQwMjIyMcOnSIn/zkJ3ziE5/AZrPNz8V4i/nJT36CzWYjEonQ29vL888/z9/93d/x/e9/n6effpqysrJZt/nss89y7733vmOMja9//evcdtttGc9chgx/xWQMjQwZ/gopLi6mqqqKbdu2pSzfsWMHQghuv/32SetO/v+kkTJXhBCEw2HMZvM5tdPe3s773/9+KioqeOWVVygqKkqu++QnP0lLSwvPPPPMOR3jrWZoaAiXyzVv7WmaRjQaTWsADA4O8uMf/5iPfOQjk4yx73//+wwPD0/a57rrruNPf/oTbreb3Nzc5PKHHnqIgoIC6urqGBsbSy7fvXs3Tz/9NP/1X//FP/3TP6W09aMf/QiPxzNt/3/5y1/S1dXF9u3bJ3nSxsfHMRgM0+7/Tua2225LuYZf/epXefDBB7n77ru5/fbbUzxKGTJkyPBuJRM6lSHDXymbNm1i//79KeFF27dvZ/HixVx77bXs3LkTTdNS1kmSxMaNG4FEPsHXvvY1ampqMBqNVFZW8k//9E+TQj8qKyu54YYbeP7551mzZg1ms5mf/exnAPT09HDLLbdgtVrJz8/nc5/73IxDR775zW/i9/v55S9/mWJknKS2tpbPfOYz07bR1tbG7bffTnZ2NhaLhXXr1k0yTn7zm98gSRIdHR0py6fKJbnvvvuoqanBbDazdu1atm7detZz6ejoSIarHT16NBlWc7LtQCDA5z//ecrKyjAajSxYsIBvf/vbCCFS2pEkiX/8x3/kwQcfZPHixRiNRp577rm0x2xvb0cIkfw9z2wnPz9/0vKbb74Zo9HIo48+mrL8oYce4n3vex+KoqQsb21tBUh7DEVRyMnJmfqiTOyvKMokzwqAw+FIMaAuueQSlixZwt69e9mwYQNms5mqqip++tOfpuwXjUb56le/yurVq3E6nVitVi666KJJoYInf5Nvf/vb3HvvvVRXV2OxWLjqqqvo7u5GCMHXvvY1SktLMZvN3HzzzYyOjk57Pmfjb/7mb/jwhz/Mrl27ePHFF5PLt27dyu233055eTlGo5GysjI+97nPpTy799xzD/feey9ASmjWSb797W+zYcMGcnJyMJvNrF69mscee2xSH1588UU2bdqEy+XCZrOxYMGCSUZiJBLhX//1X6mtrU3250tf+lLKsytJEoFAgPvvvz/Zl7crRypDhgxvHxlDI0OGv1I2bdpELBZj165dyWUnZ443bNiA1+vlyJEjKesaGhqSg8MPf/jDfPWrX2XVqlV873vfY/Pmzfz3f/932tCqxsZG7rzzTq688kp+8IMfsGLFCkKhEJdffjnPP/88//iP/8g///M/s3XrVr70pS/NqP9PPfUU1dXVc84ZGRwcZMOGDTz//PP8wz/8A//1X/9FOBzmpptuSpu7MhN++ctf8rGPfYzCwkK++c1vsnHjRm666Sa6u7un3S8vL48HHniAhoYGSktLeeCBB3jggQdYuHAhQghuuukmvve973HNNdfw3e9+lwULFvDFL36R//N//s+ktl555RU+97nPcccdd/CDH/yAysrKtMesqKgA4NFHHyUYDM7o/CwWCzfffDMPP/xwctnBgwc5evQod91115THePDBB4nH4zM6xpn7q6rKAw88MKPtx8bGuO6661i9ejXf/OY3KS0t5ROf+AS/+tWvktuMj4/zi1/8gksuuYRvfOMb/Nu//RvDw8NcffXVHDhwYFKbDz74ID/+8Y/51Kc+xec//3lef/113ve+9/Ev//IvPPfcc3z5y1/mox/9KE899RRf+MIXZn2OZ/LBD34QgBdeeCG57ORv9IlPfIIf/vCHXH311fzwhz/k7rvvTm7zsY99jCuvvBIgef+cft1O5sn8x3/8B1//+tfR6XTcfvvtKYb10aNHueGGG4hEIvzHf/wH3/nOd7jpppvYvn17chtN07jpppv49re/zY033sgPf/hDbrnlFr73ve9xxx13JLd74IEHMBqNXHTRRcm+fOxjHzvn65MhQ4Z3GSJDhgx/lRw9elQA4mtf+5oQQohYLCasVqu4//77hRBCFBQUiHvvvVcIIcT4+LhQFEV85CMfEUIIceDAAQGID3/4wyltfuELXxCAeOWVV5LLKioqBCCee+65lG2///3vC0A88sgjyWWBQEDU1tYKQLz66qtT9t3r9QpA3HzzzTM+34qKCvGhD30o+f/PfvazAhBbt25NLvP5fKKqqkpUVlYKVVWFEEL8+te/FoBob29Pae/VV19N6Wc0GhX5+flixYoVIhKJJLe77777BCA2b9581j5u3rxZLF68OGXZE088IQDxn//5nynLb7vtNiFJkmhpaUkuA4Qsy+Lo0aNnPZYQQtx9990CEFlZWeLWW28V3/72t8Xx48cnbXfyXB999FHx9NNPC0mSRFdXlxBCiC9+8Yuiuro6bf81TRObN28WgCgoKBB33nmnuPfee0VnZ+eM+jcwMCDy8vIEIBoaGsTHP/5x8dBDDwmPxzNp25PH+c53vpNcFolExIoVK0R+fr6IRqNCCCHi8XjK7yOEEGNjY6KgoED83d/9XXJZe3u7AEReXl7K8b7yla8IQCxfvlzEYrHk8jvvvFMYDAYRDoenPad//dd/FYAYHh5Ou35sbEwA4tZbb00uCwaDk7b77//+byFJUsq1/OQnPymm+qyf2UY0GhVLliwRl112WXLZ9773vWn7JoQQDzzwgJBlOeW5EUKIn/70pwIQ27dvTy6zWq0pz1yGDBn++sh4NDJk+Ctl4cKF5OTkJHMvDh48SCAQSHoINmzYkJzJ3LFjB6qqJvMznn32WYBJM+qf//znASaFH1VVVXH11VenLHv22WcpKiritttuSy6zWCx89KMfPWvfx8fHAbDb7TM72TQ8++yzrF27NiXnxGaz8dGPfpSOjg6OHTs2q/b27NnD0NAQH//4x1NyB+655x6cTuc59VNRFD796U+nLP/85z+PEII///nPKcs3b97MokWLZtT2r3/9a370ox9RVVXF448/zhe+8AUWLlzI5ZdfTm9vb9p9rrrqKrKzs/n973+PEILf//733HnnnWm3lSSJ559/nv/8z/8kKyuLhx9+mE9+8pNUVFRwxx13nDVHo6CggIMHD/Lxj3+csbExfvrTn3LXXXeRn5/P1772tUmhYzqdLmXW3GAw8LGPfYyhoSH27t0LJEK2Tv4+mqYxOjpKPB5nzZo17Nu3b1Ifbr/99pTf78ILLwTgAx/4ADqdLmV5NBqd8rrNlJPJ7T6fL7ns9HymQCCA2+1mw4YNCCHYv3//jNo9vY2xsTG8Xi8XXXRRyjmfzA968sknU8ImT+fRRx9l4cKFNDQ04Ha7k38uu+wygLRqdRkyZPjrJWNoZMjwV4okSWzYsCGZi7F9+3by8/Opra0FUg2Nk3+fHJR3dnYiy3Jy25MUFhbicrno7OxMWV5VVTXp+J2dndTW1qbEkQMsWLDgrH13OBxA6mBstnR2dqY91sKFC5PrZ9seQF1dXcpyvV5PdXX1HHuZaLe4uHiSUTVVP9Nd66mQZZlPfvKT7N27F7fbzZNPPsm1117LK6+8MqW6mF6v5/bbb+ehhx5iy5YtdHd3pw2bOonRaOSf//mfOX78OH19fTz88MOsW7eORx55hH/8x388ax+Lior4yU9+Qn9/P42NjfzP//wPeXl5fPWrX+WXv/xlyrbFxcVYrdaUZfX19QApOTb3338/y5Ytw2QykZOTQ15eHs888wxer3fS8cvLy1P+f9LoOFMV6uTy05Ph58JJyd7Tf++uri7uuecesrOzsdls5OXlsXnzZoC0fU7H008/zbp16zCZTGRnZ5OXl8dPfvKTlP3vuOMONm7cyIc//GEKCgp4//vfzyOPPJJidDQ3N3P06FHy8vJS/py8zkNDQ+d0/hkyZPjLImNoZMjwV8ymTZvwer0cPnx4krLPhg0b6OzspLe3l23btlFcXDxpwHymkTAV56owdSYOh4Pi4uKUHJLzxVTnqKrqeT/2XJjrtc7JyeGmm27i2WefZfPmzWzbtm1KY+uuu+7iwIED/Nu//RvLly+fsQelqKiI97///WzZsoW6ujoeeeSRGeduSJJEfX09n/rUp9iyZQuyLPPggw/O+PxO8rvf/Y577rmHmpoafvnLX/Lcc8/x4osvctlll6WdxT8zwf1sy8/0ssyWk/f0SSNeVVWuvPJKnnnmGb785S/zxBNP8OKLL/Kb3/wGYErPw+ls3bqVm266CZPJxI9//GOeffZZXnzxRe66666U/prNZrZs2cJLL73EBz/4QQ4dOsQdd9zBlVdembzfNU1j6dKlvPjii2n//MM//MM5nX+GDBn+ssgYGhky/BVzej2N7du3p6gDrV69GqPRyGuvvcauXbtS1lVUVKBpGs3NzSntDQ4O4vF4kknA01FRUUFra+ukgVljY+OM+n7DDTfQ2trKjh07ZrR9uuOnO9bJInInzyErKwtgUpjPmYPwk9ufeU1isRjt7e1z6uPJdvv6+iZ5b87s53yyZs0aAPr7+9Ou37RpE+Xl5bz22mvTejOmQq/Xs2zZMmKxGG63e9b7V1dXk5WVNal/fX19BAKBlGVNTU0AyaT4xx57jOrqav74xz/ywQ9+kKuvvporrriCcDg8636cD04mcJ8MNTx8+DBNTU185zvf4ctf/jI333wzV1xxBcXFxZP2ncoo/sMf/oDJZErW6rj22mu54oor0m4ryzKXX3453/3udzl27Bj/9V//xSuvvJIMiaqpqWF0dJTLL7+cK664YtKf072EM52IyJAhw18uGUMjQ4a/YtasWYPJZOLBBx+kt7c3xaNhNBpZtWoV9957L4FAICWX4brrrgMS9RZO57vf/S4A119//VmPfd1119HX15cisRkMBmdcYO9LX/oSVquVD3/4wwwODk5a39rayg9+8INpj//mm2+mGCqBQID77ruPysrK5Cx9TU0NAFu2bElup6rqpH6uWbOGvLw8fvrTnxKNRpPLf/Ob35w1F2E6rrvuOlRV5Uc/+lHK8u9973tIksS11147p3YHBgbS5qFEo1FefvnltKFxJ5Ekif/5n//hX//1X5MqSelobm6mq6tr0nKPx8OOHTvIysoiLy9vyv137do1yXAAePPNNxkZGZkU+haPx5PSySfP5Wc/+xl5eXmsXr0aOOWJON3A3bVr15wN1vnkoYce4he/+AXr16/n8ssvB9L3VwiR9t4+GTZ25v2mKAqSJKV44To6OiZV7U4nz7tixQqApHTt+973Pnp7e/n5z38+adtQKJTye1mt1nO69zNkyPDuJ1OwL0OGv2IMBgMXXHABW7duxWg0JgdjJ9mwYQPf+c53gNRCfcuXL+dDH/oQ9913Hx6Ph82bN/Pmm29y//33c8stt6RUFJ+Kj3zkI/zoRz/i7rvvZu/evRQVFfHAAw9gsVhm1Peamhoeeugh7rjjDhYuXJhSGfyNN97g0UcfnVa3///+3//Lww8/zLXXXsunP/1psrOzuf/++2lvb+cPf/gDspyYh1m8eDHr1q3jK1/5CqOjo8lE6DNDfvR6Pf/5n//Jxz72MS677DLuuOMO2tvb+fWvf31OORo33ngjl156Kf/8z/9MR0cHy5cv54UXXuDJJ5/ks5/9bNIQmi09PT2sXbuWyy67jMsvv5zCwkKGhoZ4+OGHOXjwIJ/97GdTCsqdyc0338zNN9887TEOHjzIXXfdxbXXXstFF11EdnY2vb293H///fT19fH9739/yhAkSMzuP/jgg9x6662sXr0ag8HA8ePH+dWvfoXJZJpU36G4uJhvfOMbdHR0UF9fz//+7/9y4MAB7rvvPvR6PZDwhP3xj3/k1ltv5frrr6e9vZ2f/vSnLFq0KJkf8Vbw2GOPYbPZkgnkzz//PNu3b2f58uUpdUoaGhqoqanhC1/4Ar29vTgcDv7whz+kzQU5+fx++tOf5uqrr0ZRFN7//vdz/fXX893vfpdrrrmGu+66i6GhIe69915qa2s5dOhQcv//+I//YMuWLVx//fVUVFQwNDTEj3/8Y0pLS5PP/wc/+EEeeeQRPv7xj/Pqq6+yceNGVFXlxIkTPPLII8l6OSf789JLL/Hd7343WST0ZDJ9hgwZ/kp4u+SuMmTI8M7gpFznhg0bJq374x//KABht9tFPB5PWReLxcS///u/i6qqKqHX60VZWZn4yle+Mknes6KiQlx//fVpj93Z2SluuukmYbFYRG5urvjMZz4jnnvuubPK255OU1OT+MhHPiIqKyuFwWAQdrtdbNy4Ufzwhz9M6cuZ8rZCCNHa2ipuu+024XK5hMlkEmvXrhVPP/30pGO0traKK664QhiNRlFQUCD+6Z/+Sbz44otp+/njH/9YVFVVCaPRKNasWSO2bNkiNm/ePGd5WyESsruf+9znRHFxsdDr9aKurk5861vfEpqmpWwHiE9+8pNnPY4QCcniH/zgB+Lqq68WpaWlQq/XC7vdLtavXy9+/vOfp7R9urztbPo/ODgo/t//+39i8+bNoqioSOh0OpGVlSUuu+wy8dhjj521j4cOHRJf/OIXxapVq0R2drbQ6XSiqKhI3H777WLfvn1pj71nzx6xfv16YTKZREVFhfjRj36Usp2maeLrX/+6qKioEEajUaxcuVI8/fTT4kMf+pCoqKhIbndS3vZb3/pWyv5TXYuTMsi7d++e9pxOytue/GMymURpaam44YYbxK9+9au08rjHjh0TV1xxhbDZbCI3N1d85CMfEQcPHhSA+PWvf53cLh6Pi0996lMiLy9PSJKUInX7y1/+UtTV1Qmj0SgaGhrEr3/962RfTvLyyy+Lm2++WRQXFwuDwSCKi4vFnXfeKZqamlL6E41GxTe+8Q2xePFiYTQaRVZWlli9erX493//d+H1epPbnThxQlx88cXCbDYLICN1myHDXyGSEOeYuZYhQ4YMGTK8zVxyySW43e63RCAgQ4YMGTLMjEyORoYMGTJkyJAhQ4YMGeadjKGRIUOGDBkyZMiQIUOGeSdjaGTIkCFDhgwZMmTIkGHeyeRoZMiQIUOGDBkyZMiQYd7JeDQyZMiQIUOGDBkyZMgw72QMjQwZMmTIkCFDhgwZMsw7GUMjQ4YMGTJkyJAhQ4YM8855qQweVzX+97UDfOfR18+5rctW1PLNj92ALEnz0LO/HIQQxFWNcDSOqmkAGPQ6TAZdyrWKqyrhaByDTkGvU5Dm8Tomjh9DkWXMRv28tftWc+2//IJ7rlzDUzuP4QmEqSvJ5Qvv3UxJrpO4qtHS5+Y3L+2huceNw2rk2jUN3HDhInyhMP/7+kH0isJHr7sQRZbx+EP88MltVBfncM2aBl7c18SL+5oY84doKMvnnivXUFOUgyLLbDvazp93n2BZVRFP7jjKeCjM+zev4AOXrT57pzNkyJBhAlWoDIQH2ebeyWHvUQbCQ0S1GFadBZfeSbW1ipVZy1jhXIJOTv3sa0IQUoM0+lrZ6n6DVn87vrgfg6ynzFzC+pwLWJm1DKfehSJNnpt8bXgbj/U8yZqsFdxacgMhNczLg1vY7znISHQUvawn35jHupwLuKHo6kn794UGeLTncQbCQ9xeejN1tloOeY+y1b2DjkAnUS2GQ2+j3l7HdYVXUmktB+CJ3md4buAlHHo7n677OCWmoknfNyEEYS3CL9p/y+7RfSx1LOILDZ9C4u0ZT2hCEI7H0YTAqtfP+HscjseJqHHMOj0GRTnPvXxnMBo+TKv395Tbr6fAsmHO7fR4vHz9hdcxKgrfe+/1Kesah9z8eudeKrNdfHj9GnQzuLb/8/obPHOkkd984L0UOR2z7o8QAk0IhBAzOt5fAufF0Mhw/gmGo2w51M5jrx1iaMwHksQ1axfwoWsuwGY2JLc71NrPAy/s5Zq1C7hiTT3KPBoaTd3D3PvEdmqLc/nc+y6et3bfajQErx1q5bsfuwmjXsfXHnqRR7Yc5LO3XoTb6+e3L++ltiiXr951BUc7B3ls6yFsZgPXrmmgujCHfS099Li9VORncbx7CFmWqSnK4eX9zRzrHOQzt1xEdWE2P3t2J49tPcSHr7mQfJcNgEPt/ZTmOvn5Z25HkiUC4cjbfDUyZMjwbkIgOD7exAOdDzMQHsakmDDKRkyyCQ2N0egYg+Ehjo4fY8GSf8Eu207tKwSj0VGeH3iZl4ZeQ0LCpJiwKhYEgs5gN83+Ng56j3Jz8XVUWstRpPSDo7Gol2ZfG3/o+RMj0VEUScGsmNGExnDEzVB4eNrziKgRekL9NPvbeW1oKxoCRZIxygaC8RCD4SFCaii5/aqs5ewZ2097oJNWfxt5hlyMimFSu+OxcfaPHcKimLkwZ83bZmQAjIaC/OLgXvp843z78mtnbDQ83niMB48e4IvrLmJzedV57uVfDzpZwmEyYTUYeKtUkVQhaBx04wtHWFdV9hYd9e0lY2i8CxFC0DEwxu9e2EtxroO/vfYCALId5hQjA8Co15HntGIyGnjLnqR3IbduXEqOw4KmCVbXlbK7qQeAUX+I452DvHfjUkbHgxh0Clk2M8e7hrjugoVUFWZxomeQE91DlOY6aeodxmk1UZrr4uldxynMsmM26PD4Q9SX5vH49iP4QpGkoQFw5yUrsZgSs1uWd7FnKEOGDKmMhyJoQsNpNs1o9lrVNAKRKL5QBEWWcVpMmA3TvxOEELw4+Cr94SEa7HXcXHIdVdZKjLIBb2yc/tAAh7zHMCsm7Dpbyr5BNcgbI2/y/MArZBlcbMpdx0W568k15hBUQxzyHOHlodc54DmMUTZya8kNFJkK0p5LX7ifh7ofxaV3cVfh7dTbazDJJkZjHlr97ZRZSqY9D388wHb3TiRJZn3OWi7IXkmuMYeYFqMr2ItAo8BUkNy+zFJCtbWS/tAAO0Z2s8SxCIOcldI3VajsGdtPRIuQb8xlpWvZWX+D84kiy2SZTERVlXeq4KcmBJ5gCH84mrLcajRM3MdR4iKEhI64CCBEHJ1sxSA7AQnQiKheVBFCQkYnW9HLdiRJQgiVmBYkrvkRqEiSDr1sRydZAEFcBImpPgSCmJb4G0AVUaKqF4PsQJYNSEhoQiUcH8Soy0Vm5t6h06nJzeGfrtp87hdtFowGgrzU2IImRMbQyPDORQDeQJhwNMaVa+rZtGzqGY7FVYUsrio8b335Swloy3NYEzNdkkCnyKiqiqYJAqEoA2M+vvXoayhKImxAkWU2LUlc84r8LLKsZtr6R+gty2fI46e2OBeH2Ug0pvLsm8d541hH8iVo1OvQKafCD7JsZhRFnteQtgwZMrwzeO14G75whDsuXIZOOfsz7g9HefloC4+9eQS9ovC3m1dzycLqafeJalH8cT+qUFnuWkKVpQKznDBssg1ZZBuyWOxcOGk/IQSD4WFeG9qKWTGxMXcd7ym5EUVOzLI7ZDub8tZj0Vl4rOdJ9nsO0mCvJ9+Yi06aPHToCw2wwFbLx6v/ljxjbvKdlm3MotZ29ln4gBrEGDdwXdFVXFlwaUqIV7G5aNL2EhJrs1dzbPwEx8eb6A8P4DI4UVCS5xfRorzh3o1BNrDCtQy73japnbeSLJOZj61c+7b24WyEojF+/NJOHt55MGX5bRcs4WOXXoje1EyX70/Y9JWMhg8Rig9SbLuMOucHkSUDvmgnzd7f4o91I6OQY1pOtfP9mHQ5xDQ/vYGX6fW/RFzzocgWii2XUOG4mbgWpMv/DAOBrUiSjFlXQFT1ABCI9XBk5PvUuO4iz3QBkqQQiPWwc/DzrCv4JjZ9JSAhhCAUi+H2B4mqKnpFIRiNIp8xUglGYwz5/cTiKgBZFjO5NuukaxGNq4yFQgQiCaPLbjKSiFRPbW9g3JeYKNTrGQkGiasaekXBaTImJxki8TgjgSDHBoY53DdIkdNO85AbALNeT47VctZJhfFoLybFhV62IEkSUdVPRBvHpks8HxpxgnE3qogAEjrJhFmXjSLpEUKgighh1UNcRFAkPUbFiV6ynPfxx3kzNFw2M9VFOaiahqpqxCf+VjWNuCaS/1ZVjbiqvSMm2/2eAJ7hcQor89Hp33mxc7G4yrDHj8cfpql7mFhcxe0NcLxzEL1OIddhxWU3A+Dxh3B7A8kHqTjHgdNmTmlvaMxPXFWxmgx4/OFkvoXDaiLXZU3J9dA0gT8USbZpMujxhyJvqxt6XknzoMmyRJbdTH1pHl95/2XUFeciIRFT1eRZ28xGqgqzOdjWxysHWzDqddQW5WAzG8m2m7ntomXcsmEJWTYzcS1xrxt1Gfv+JEIk5qyCsRiheIywGieqqsQ1FXUilhVAliRkSUKRJPSygkFJ/DEpekw6HTr5rdW1UIVGOB4nEIsRjseITPRZmzifRF9ljIqCUafDqjdg1emRJeltMyqFEPiiEcYiIYKxGKpIhKaYdAp2gxGX0YROnv69pwlBIBbFEw4TjEeJaxryxG9i1etxGE2YJ87zfBPTVIKxGMHYyfsmnrxnJEj2y6AomHV6rHoDZp3uLb3+N62aPMCfDqfFxHsuWEJ5jotnDzbOaB+jYiTflEdboJM3R/dSbCqk1FKCXWfDKBunPN+oFqMn1MtgZJgqawWrspYljYzTqbPVUGOrojPYTXugg2WuReQZc9O2eVXhZWQZXHO+xlW2CtZkr5yURzIVC+y1lJqLGY6MsGt0L5XWCqw6S/K71B3spTPYhUvv5MKc2eW+xTUVTzjMWDhMTEu88006PTlmCzaDAVmSErP/4TDeSCiZe2FQdORaLLiMp7xYMVWla9xLMB4DwKY3UOXKSnvcmKoyGg4xFg4hhMBmMBLV1HfUZJQ32opRyWVl3j+jk23EtQCypEegcmzsx9j0FSzP/TJhdZijIz+iy/cU9Vn3oEgm8swXUGBej0HJotf/AoOhN3BFFxGI9eKJHGdB1t+TZVxMi/dBxqNtADgMVdj05XjCx3AZ6jEq2fQHXyfHtByjkockyYl8nHicPx0+waP7DxOMximwW2kozCOiquhPm+BrGR7hZ9vfpHHQjTsQ4INrV/L5yzalnKOqaezv6eP3ew/RNOTGpNezrKSQYDQ2yRv1rZe3EVdVlpUU8kpTG2PBEFaDgQ3V5dy9diU5Vgu9nnF+s2sf+3v66R7zYNTp2NPZC8DS4gLuXruSJcUFTMer/V9lRfY9lNrWoaCnO7iDRs+TXFv6PwgE7nAjh0d/R1QLAIJsYy1Lsu7Epi8gLkL0BfbQ5nuZsObBIFspt26i3HYxRuX8GuDnZcSjU2QuX1nHmvpSxoMRfMEI/lAYXyjxb18wMrE8jC8U5WBrL6O+0NkbPs8c3nqcP/zgWf7l4c/iyptZko+qacTjWtLFJ0sSOkVBluf/peALRfjD64fY39LH0JiPEW+Qh1/az5+2HyXPZeOWTUu4fHVd4lza+vnD64dp7x9h2BPgKx+4nBs3LEpp75FXD9DeP8rCygKOtA0wOOpDkqC2NJdP3LyBopzENRBC4PGHeHL7EV7a04ymaRTkOCjKcRCdMGTeCcQnjNaTMWKKLKMo8pwHPZIkkW23cGFDOc/sOs4ly2qQJIlwNEZhlp3qohwAaopzae51s+1IB5uWVFFRkIUsS6xfVMkbR9vZdrSdivwsgpEYiiyxpKIQi2lyLPFfE0IIxqMRRkNBhkMBTowO0zI2Svv4GEMBP6PhEIFYNBFigMCo6DBNDNhzzBYKLTYKrXYqnVnUuLLJNVtxGIy4TOdvoCuEIKzGGQkFGQj4aBob4ah7kDbvGH3+cTzhEMF4DE2AQVFwGowUWO1UOlwszs1naW4hRTY7BRYbpnka8IbjcXp8XrzRcHKZjERtVg42vSF5jKiq0uEd4+WuVl7paqVx1E0gFsVmMFJmd3BBYSmXV9SyMDuPbLMl7fRBKB6ja9zD1p5OXu9up3FsGG8kjFHRkWO2sCgnn40lFawpLKHC4cIgz6/4BCQMHX80gjsUpGvcw9GRIY6PDNM17mEw6MMXjRJR4wkjT6cjx2Sm0GqnNiuHJbkFLM4tIM9sIddsPSfjVNU03L4g3mCYaDyOqgkMOoXSHCc2o4FwLE7PqJdwLI7TbKI0x5m8JzVtIjQlEsWgU3D7giiyRIHDRrbNMuu+SEhsztvEWDQRovSjll+w2LmA5c6lVFkryTI4ceodyGckcke1CP3hQQCsioUiU/pBjl1vI1ufhV7SMxwZwRfzpzU0jLKBMnNJWm/HTFAkmSx9FrmGnBnvo5f1rMleRYu/nb1jB7iq4DIsihlJktAQbHPvQEKiwlqWTCKfCUIIWsZGebzxGAeHBvBFI0iSRK7Zwt1LV7KhpByTTkdUVXm86Sjbe7oYDgaIqiqyJHFFZS2fWHUBFn3iPT8ejfDT/bs4NDTIQMDHkrwCHrzpfZOOqwqNxlE3Dx07xP6BPnSyTH12LoosEZ8QfXknICFRarsaoy4HCQmdbAIgpgYZCu2g1HY149EWVBHGrMtnJJzwjiRCpaxE1DFisURolCwZiaoegrFejEoWLuNCDIqDHNNKxqOtySMWWi6m0/cE4fgIOsnCcHA3Vc73JI8NcKx/iG+9vI2rF9Zy/eIF+CNRnj3axJG+AdZVngpTWlKUzzdvvobdXT38bPvutOc4MO7n1zv34Y9E+bv1ayh02NjZ3s221k7CsVjKtkIIdnX0MB6JcPfalThMRt5o6+LpIycosNu4a81yip12PrLhAo70DfLA7v3U5+dyz4WrADDpdbjM5nTdmDGaiNEd2I5RcbKp4P8iS3qCqhuzkp3IxYq00u5/lXLbRsptF9ET2EV3YBsmXRZl1vXndOyzcd6mVk0GHSaDnYIs+1m3/eyPn2T7kXZU7Z3g15g5mqbRP+LjQGtv0sLNcVhpKM8n2z77D8bZcFhM3HHZCm7YsJjdJ7p56KW93H31GtY0lKNTZBwWY3LbDUsqWVlXwusHWvnNc3umbPN45xCjviDvuWgp5QVZNPcM85Mnd1CQZeeTt24EEu7DPY3d/P6VA1yztoFNSytxe4O8uLuJtr4RGsrz5/1cZ0tc1WjpddPS604afSW5TupL87CZjdPuu7yqCLvZQCJySiLPaaOuJPEhzbKZuf2iZTz75nF+//oB4qpGTVEOV69ekNy/OMdBZWE2XcNe6opzcVgSL76Niyox6BS2HG7jlQMtmAx6Ni+tTnrvnFYTC8sLUM6DUTpbhBBEYnGGfQEKnXb0uvPj0RNCMBIO0ePzsrOvmy09bewb7CesxqfdLxiPEYzHGA2H6PZ5U9YZFIUSm4OluQVcUFjKopx86rNzsRum/91nQyQepy/g4+BQPy91trKrv5vhUGDK7UNxjVA8xkDQz8Hhfp5sPY5Zp2dtYSnXVS9gVUExlQ4X+nNUHenzj/P1Xa/xSldbcplelvnl1e9hY0kFiiQRVVV29nXx3T3bOeQeSHqJALyRMN5ImCPuIZ5qbeQDi5Zzx4JlFNlS39v+aJSd/V38+sg+dvV1ExenBj0RVWU8GqHdO8azbY1sKq3kbxevYn1x+bwZVEII/LEoHV4PO/u7eLGjhSPuweQM8ZmoQiUaVfFFI3SMe9jZ3w1AgcXGpeXVXFNVT0N2LvkW25yM0gGPnyf2HqVrxIM3GOZIzyALi/P4zDUbaSjKZ8Qf5LE3j7CzuZNl5UX8f7dejmHimYqqcV493sbWxg4WleRzpHsAk17HDSsXcnHD3BJ9G+x1/E35+9jm3sEJXzNt/k4OeI7g1DtZ5VrK2uw1VFrLsOpOhYdoQiOkJgxURVIwKaapmsegGDDIeiJahLhI/6yaFBPKORiXiqTDqEztgZmK5c7FvGLaQrOvlYOew+QbczEqRgJxP/s8BzHIBjblrJuV9z2maTzb2sSu/m7eu2Axi3Ly8UUjHB8ZJs9iQT9hpOplmbimcWlFFTWuHBRJ4qmWE/z8wG42lpazriQxuM02mfnaxVfQ7hnjB3t24IumF/0YDYX4Q+NRDg8NcPvCJTRk53HUPchTzSdwB6d+37zVGGQHsqSbdE3jIoiqRWkffwRZSrx/JSTs+uqJiZphun3P4I91IyETVt0IVDQRRyOGjAFZSoQPKZIx+W+AHNMyOsb/gD/WSVQbBzRcxkVIE4atJgRPHDqG02zkS1dcjMtsQhOCUpeTw30DKf2UZRmr0UCWxYJpigiDNzt76POO89GNF3D1wjr0isLailKaht2cGJgsbBDTVL58xcU0FOQBUOpysqerl6P9CWPepNdTluVkJBDApNfjNJuozEnv1Zoxpw2ZJUkhy1CFJ9JGh/9Vso112PRFyLIOITT8sQH88QEU2chIuBFVhIlpIXzRPpgcNTavvKtjOIQQBH1h+loGCHgDGEwG8ityySnMQpIl+tsGCY6HkBQZ7/A4eoOOopoCsvKdyIpMPBqnr3WQ0QEPik5mfMSHmIWxE4zEeP1gK9957JSM76q6Ej51y6bzYmjoFJn8LDtxVaWtfwSdopDrtFGe75q0rSLL2MxGnFZz8gOXjnA0xgevWs1Fy6rR6xSW1xbz6oFWDrT0JrcJhKK8tr+V0lwXH77hQuxmI5omsJkNNPdMryTyVuH1h3hi+xEeef1UXOk1Fyzgo9evO6uh8c2/vyH5b1mRuGRZDZcsqwESXo08p40PXXnBlPvrFYWrVy9IMT4g8XutX1jB+oUVafdbWlnE0srJscdvB5oQHO8d5tE3DvLZGy4i3zn/rtRgLEqzZ4QXO1p4suU4PT7vvIRMRlWVdu8Y7d4x/tR6glX5xfzrhstYnn/u1zYRGhFi90Avj7ccZVtPJ/5Y9Ow7piEUj/F6TztbetrZWFLB3YtXsbqgmBzz/L4rYppGj3+csBrHIunZM9DDf+x4lVbPaNIIT4c7FODXR/YRjMX4xIoLyTKZk/3e3tfJj/fv5ODwwJT7Q+K7t7Wngz7/OP/f+kvZUFyOQTm3z0xc0+j3+3itp40/NB3lqHuQ2BxndweDfn5/4hDPtjVyS+0i3lO/iIbs/CkHG1Oxq7UbTzDM3168hpJsB1/5/XNctayemvwcdIpMabaTr9x0CT964Q1G/JO99dG4StvQKDesbOBDF60iPhFKfC6UWUq4s/w2+kIDHPUe55ivkYHQIFvcO9g9up+bSq7lsvzNGOTE4E2S5KT3QSBQhTqlopQqVFShoUgK0hTlt841jFZibjl/dr2dla5l9AR7eWPkTdbnXohBNnDAc4TxmI9icyHLXEtm1WZsInTTYTCRY7ZQ4nCSYzJzSUVqvowiy5NyLupycnii+ThHhgeThoYkSZh0erJMZqx6w5SGRtOom2PuIS6vrOHORcsSkxPFpQwFAjzTOrNQurcTo+zEqi9jgevvyTWvQUJGFREEiUiD8Wgr/YEtLM39PFnGhfQHXqc38DKKZMAguxiPtxKOu1H0BkLxQWKaL9m2IpsosGxkLHKcmOYl33IhetmavO8E0DYyRlV2Fi5zwmiWJQm70UBFtmvW5zLg82HW68m325ITQnpFoSonizb36KTtnSZT0sgA0MkyWRYTvvDcvhfpOPMZU0U0+U5XJD2VtkswyHa6AzvoCewmz9RAvetGDLIVVUTxRfto8j6VNOBkFCz69GGQ88m72tAI+cPse/EQO5/ZhzoRwlOzvIJL37+R3JJstjy2k/2vHKFicRljAx6C40FWX7mMS+7YQFaBi7ZDnfz5V6/gdfuwOsxomiAWST9Dlg5vIMyJ7qHzdXpvCVaTgZri3JQZ7FynlROdp84rFlcZGPVRVuDCPjFol2UJl81MYfbZPVZvBX2j43QNjb3d3XjXomqCLcfaeKOxi49dOfNnYKYMBvxs6+3gN0f3ccw9hHoeFVcqHC6cxqlnZ2dKXNPo84/zVOsJfn/i0CRPylwRwLbeTo66h7hnySpurVtEucM1L22fpN07RigeYywc4kf7d9LhHZvWyDiJNxLmmbZGql3Z3F6fGJwdcw/xu2MHzmpknE6rZ5T7Du6mzO6kypk951C2cDzOidFh/vfEIf7c3oQnEj77TjNgPBrhweMHOTDcz8eXr+Wi0spZecACkQimibpFJr0Om8lANB5Hm+FElQRkW81ctrAGWZYwzuOXuNhcSLG5kEvzL6LJ18Lrw9t5Y+RN/tT3Zxrs9ckQIp2kI9uQmFENqxHGoh4KTJO901Ethj8eIKpFsetsmJX58xTOFxdkr2S7eyddwR7aAx3YnUvYMfImiiRzQdYqrLrZGfMWvYF1xWW0e0b53+OHOTg0wPL8Qhbm5FFscyTz7AQwHPDT7/cxHo0QUxMGigQE5jAhMRoOEVNVimx2zLrEYFAny5TYHTjm0UN7vpAlPdWO2+gJvEBMBJBRiGtRrPpisowLUSQjetmOL9pGRB3FEzmOJqKAhMvYgC/WQW/gJez6SjyR48S1YEr7+ZZ1DI/sZjzWQoX9ZhQpNdwoHIvjNKW++yVJmlOYZCyuJnMDT0cny5MG/JIEjjMnNKXE/TGT9+5M0csWQtoomogjhMpopAUmvqVCaMREiGLLaoqta+gP7uXw2MPkmOopsVyIWZdNgXkZy7M/QJaxloTKVwT5LTAD3rWGhhCCwY5hXv39djbccgEXvedCTrzZwgv3v8b+V45w5QcvTiQ/jvlZdvFCVl+xjC2P7WD/y0eov6AGV76TF3+3BZ1Bz0e+8QGsTgs/+8JvUdWZzSoJIfAGQpzoevcbGmfmk0iQEl4hEMQmFBxStpMSLsi3GyEE/SPjdA15ZrVfT+sg46N+TBYjFQ3FyLJEx/E+CityMVunf6n7PEH8ngA5RS4MU0jS+r1BPG4/2fl2LPZzi788nySKP6rsbuk+L+13jnt4tPEwD584xEgoePYdzgGLTs/aojIKrOfmkYlrGh3jY/zu6AEeazoyZy/GdIxFQty7fyf9AR8fXrqG2qyZx6afjQ7vGL5olMebj3HYPZgS6nQ2+gM+nm49wcYJb8Sf25vY0ds16z7s6OtiS3cHRVYHFv3sZZvD8Tj7h/r45eE9vN7dPmcvxlSoQuPw8AD/vet1xqMRrquqxzFDA7WmIIe2oVHeaOok125FAOU5LowzFBGRZQm7yTgvuXwnBzJnDn50so5FzgZKLSXs9RwkrIZpC3QkDQ2jYqDMUoJVseCJeWn2t5JnzE3J5RAI+kMD9IX6kSSJEksRTr3znPs83xSaCljoWMBgZJgdI7vJM+TR4m/DrFhYlzO1N3oqJGBjaTklNjtbezrY09/HvoE+Kp1Z3LloGUvyCjAoCh2eMf7YeJRunxdVE2iIZFLyXFC1hDCO7ozBrSK/fSISZ2JUssg1r0Ivp3vHSlQ6bqXX/xLDwTdRRQSzrgC7oRxJUnAYaiixXc5o+Ah62YrNUIHLuBCTLhe7oQpVRBgMvsFwfDdZxoWYdQWYlFMz7mZdPrJswKavwKwrQD7NAycBRQ4b/eN+IvE4Rp0u+VsM+wPYjLPLi8yymImocXyRCKqmocgyqqYx5AukzZeZqUdPkiQkiTnJGxdZVjEUOowiGQAJf3ww+fxrIk5fYDcaMRTJRCg+gk1XiElJSD67DBVkG2vp8L+ON9YDQkOW9GSb6nHIxbPuy2x41xoamiYYHfDQfqSLpRcvZNvju/C6ffjGAvS2nJp5q1paQe3KKkxWI8W1hex/9SiRQJRYJEb3iT6u/ODFZBe6MJoNrLh0Cf3tMzMcVE1jcMxP97DnPJ3hW8QM7ASdopDtsOD2+onG4hj0iQc4GI4x5j+/A8eZEImp9LrHGfL4Z7XfS4/sxOa0kF+aTVldIZKk0NM6SFa+46yGRtAXYrjPgzPHNqWhMdg9yuGdzazevHBKQ0MIeOlQM5F4nGtXLkCZMNxC0Rg7m7oIRKIUZzlYVV0ysb2gd3Scgx19VORlsbisEElKbD/o8TPo8eENhonEVWRZwmrQU+CyU5HnwmxI1RoPRKK0Doww5g8x6PXR1O9GkWVePtxCjuNU0KbFoGdBSR7lua7ZXF4AOr1j/OrIXh5vPsb4FOECpyNLEnaDEafBiEmnRy8npH/jmkZUTag8jUcjhOOxtPNEC3PyacjOTc4GzgVNCHp949x/ZD+PNB4iok4teGDR6cm3WCeUaIwYFAWJhKESiCU8CgMBH75oJG1/o5rK481HiahxPr1yPVWu7Dn3+3Q6vGMcdQ/yQkcz/mgEWZIoszspsTmw6g2E4jHavWP0+sfTnn+bd5RXutsostp5obMlaahY9QbK7E7yLVb0sjKRmzHKaCjEmdqBAvhT63Guq14wa7WnqKpyeHiAnx/azWvd7SkTH6ejSIm6BPkWG06DEePEPaMKjehE7shQ0M9wMJDWiyaAHp+XH+/fhSLJ3FizANMM7p2a/BxepJmDXf0UuexcsbiOhcX5b0ul3/GYj75QP2bFjEvvxKqzoJN0aGiE1BC9oT4gMRCyKKdm9hVJochUwArXMvaM7UsM0I25lJpLMCsm4iKOOzLCjpE3afN3UGwqpM5Wg013ngO658iGnLXsHTvAMe8J8o15RLUYy10LKLWkH0SFIzH8gQi52eknJWRJojorm+qsbG6qW8gbPV38eN8uXmxvoczhJM9i5fGmozzd2sjfL1vNhtJyss0WwrE4r3e1z+kc7AYjOklmLBwmrqnoZAVNCNyhEKEp8pHeahyGahyG9JLLkiShk8xUOG6kghsnrTcqWVQ6bqXScWva/Qss6ymwpEtMTjy7obibmDpOsfUy9HJqNIUkSWysruD7r73By42tLCspJKaq7OroZsgfoGoiH+JkZe6YqhGOxRLflrhKMBpFpyjo5ISAzMLCPJ49qrCzvYt8mxWX2Uy3x0ure5TYNN+Es2HS6bHo9fR5fbS6R7Ea9OhkGbvJeFZFyjrHdbT5XmI4dASD4mSh8xbc4RMkEkwlJEnGHTqBKmIYZQdV9kvIMSYEgmy6QmocV9Ad2MlQ6DAnVamUjEdjGjRBPKYS8odpO9SJcSIRuqgqn9oVlcnNTGYDxgmFn8TsUWLGQVU1hBAo+lMKUXrDzBPZ/KEoTT3D7yjVpZMIIVC1hBciFI2hahrhaIxgOIpep6CbZd0Gs0HH8ppi/rT9KFsOtrGgPJ9gJMq+ph487wC1MLc3QOfg2ITi1NkJ+sP0tA5ybHc7N/7tZioaClEUmc7GvsSLcmJWMh5XGewaYahnNHGv6BSqFhWjKArDfWPIioR8mmTeUM8oA11uYlGV3CIX0UiMwHiIpgOd9He6KarMpbA8F70h9bH7xcu7aRlwc2FdGXkOG0II3L4AX//jq7h9AS5eWMWyiiJ0ikxM1djV3MV3n9rKXRetZHFZIaFojB2NnbxwqJmmPjfDXj8xVUOSwGYyUFuYy5XL67hiaW0yUR1g0OPn4W0H6RweY9DjJxSNI0kSv3ltb7JmCECh08aHLlk9a0NjMODngWMHeLLl+LRGhkQiSbcmKyc5GC6w2HAYjZgU3YReeJxAPMZYKMRg0M9gwM9AMBGyMBj0E4rHkCWJdcVllJ1DGJIQgrFwiEebjvBo4+EpjQyHwciC7FyW5xWxMCePCkcWuWYLFr0eCYmIGscTDtPj93Ji1M1R9yAHhvpxhwKTDI6IqvJ8ezNWnYFPr95AvuXcB3K9/nEePHaAXv84elnh4rJKrqqoY1leIVlmM+ORMDv7unn4xCGOjUyeXHGHgjzf3kyp3UnXuAeAEpuDS8ur2VxaRY0rG5NOx1AwwOvd7fyx+Shd455J53bEPUSP30uu2YIyw3eOKjTavKP89th+Xp/CyNDLMmV2F8vyClmUk0etK4dCqx2bwYBJpyc2YZQOhQK0jo1wdGSI/YN9tHhGJvVRAD1+L785spc8i4XNpVVnfT96gwlt/Vy7lbJsJ8FolLahUeqLcjEb9BzpGaRv1EvTgBt/OMrzh5rId9q4sGb6Al2j/iBHegY51NVPx/AYFoMeCagrzKU4K70S4kB4kCf6nkFBodhcRLbBhVE2Ehcq3piXI97jRNQwDY4F1NlTB4guvZNL8jfhjo7Q5Gvhke7HWeRowKGzE9GidAQ7OT7ehEHRc3HeRqqtle+YmfUzqbJWUG2tZJ/nILtG9gCCi/M2gIBAcPL7Z2h4nLZON5dvnixB7I9G6PB6iGsaWSYzOlmm2GbHYTQSUeOoE4a3OxjEqOiozcrGbjAyGgryeldHyuz2SQnvmKoSjMeIqnHimoYvGsEgJwa2JyeYyh0uCm129gz0sig3nxK7g4GAn2PDQwRj7wxD4+0gHB9lNHIIT+QEetlBtmkpinRGiBRwRUMt29s7+c2ufSwszEcvy3hCYWpyT03gBKMxjvQPcqR/kK5RD33ecVRN47dv7sdmNLC2ooz6/FwWFxVw+YIaXmlqY8gXINdmJRiNkm+34g3NPYQz325lVVkxLzW2ct/2N3GZzVTlZHFxTSXFrunVTq36fJZm35WyrMSayBFS0FNlv4wq+2Vp95UkGbu+hEWu986573PlXWtoyDqZrAIntSuruPSOjSy7OPGyCPrDKYMkJtxUZ2I0G8gtzaHrRB/LLg5gcZhpPdQ14xwNXyjCsc7B+TiVeccbCLO/uZfWvhHaekcYHQ/yxpEOxnxBbGYjl66sTUrXzgSz0cAlK2o41jHA7185QGVhFooiEwhFKUuTiP5WMzjmo2NwcnLWVKgxFY/bRzQcY2zIS06hIxEKN+Lnzw9up3xBETanhXg0zom9HRza0cSClZV4hscJ+cM0rK6i5VA3o0NeiipyMVmMCCE4truV1iM9FFbkYjTrAQnfaABFp+Ae8NDdPMCl77mA7IJToQeSBItK82nud9PcP0Kew4YmBAMeH6P+IE6LiQGvjxF/kAKnDX84Qu/oOE6LiZJsB5KUUNxq6h+hfXCU8lwna2pKsJmMxOIqrYOjHOjoo21olKIsO2tqSpMhcGaDnhWVRSwuKyAQjvKj597AbNBx+/qlKTKbVpOB+uLZJYyF4jGebj3B020npo2rzzKa2FBSwYVFZawqKKbWlXPWxNyT0ridXg8tnhGaxtw0jSXkWlcXFJNtmnuYWigeZ0tPO78/cTCtEpYElDlcXFVRyzVVdSzKKZgyLKjU7mRJXgFXV9bRMe7h5c4Wnm5tnKT8BAlVrWfaTlDmcHLPklUYzzGBOhiPsWNCaenSsmo+v+Yi6rNykgOaAouNSkcWWSYz/7r9ZUbCqZ7JqKqyb6iP46PDE9tbeW/9Yu5auJxC66mZxGKbg2pnFsF4jP89cWjSbx3TVA4ODbAoJx/zDMMsR0JBnmo5wUudrWm9EHaDkXVFZVxXXc+G4gryLNYpc0DqyWVTSQW+aITXutt5vPkor3e3T2pXE4JmzwgPHz9EpSOLSufUajDBSJTGfjd2swlVE7QOjRKNq2xv6uQTl19IZV4Wo/4gXSNeKnJcqELQM3ZK+ECRZeoKctP2ORyL0zs2jiYEC4vz0CsKvWPjUxoZAA6dnWx9Fk3+Vlr8bYS1CKpQkZExKUZcehfrctZySd4mcgypHjOdrKPGWsWtJTew1b2Ddn8Hz/a/SFSLokgKdr2NMksJq13LWZO9Cof+nZGTlw6drGNT7jqOjZ9gMDJEsamARfYFRKNxnnnhEC5n6nvBPRLAH4hMYWhE2drdwdHhIewGA3pFwRsJY9Mb2FhajmsixG5TWSWtnlH+9/gR8iwWBIl7qcLpSralCo1j7mG29XQyEgrSNDpCIBbl5wf2YNHrWZybz0VllQBUOJ1cXVXL748f5hcH91Bks6MJgV6Rk+IMf42oIkwg1ouERJXjPZh1k6vTS5JEjtXC5y7dyCuNbYwEg2RbLFy+oIZwLMZYMPFuimsao8EQfV4fOkXhkrqE8T3sD+IJhVlYmDBKzXo9tyxfRIHdTtOQG0mCNeUlZFvM7O/px2I4FYq1qbqShQWp+U1Wg55L66on9dNlMXP1wnrsRiMdo2NoQmDW62flDdU0jUA0RiAaJRSLE1c1NJHqUzbqdJRlOd/yGlPpeNcaGpIkUVCey9prV7Lr2X20H+lCCIHFbmbR+nqszumTv2RZZtMta3njyd08/bMXsWVZGR/xTbvPSRL5GYmieW8HkiRRkZ/FzRsXU5o/OV5WVTX8oQj+UIT8bBvXrZ8wwiIx4qqWLOK3sq6ULLsFuyU1TGjDkkpqSk4NLGVZoizfxUduXMebx7vxBcLkuqzUluTiDYTf1htZ0wQDYz66Z5GfYc+ysvbyJbz4+51svH4FOYUuAJaur2PLk/tStpUVmaLyXC6//UIOvdFE6+Fu1l29jAUrKzm2uzVlW5vTgjPXjjPHRk6BE/94CHuWlQsuW4Qr184ff/YKQV84xdAAWFRWwJ/2HKOpb5gNCyqIxlWOdQ9hMepZX1/Boc5+WgdGKHDa8IUi9I6Mk2WzUJKdGHzYzUYuX1rD4rJ8KvKyKHTZMegUNE2jZWCU7z69hTebuznQ3s+i0gKclsQLrSjLzh0blyc8KOPBhKGh13PTmkVU5J+b7N7egV6eaDnOYGDqcLYaVzbvrV/MjdULKXPMPO5bkiScRhPL8gtZll9IOB6ny+dhJBSkxjX3xGNVaHSOj/Hbo/txp8klkYBqVzYfWLSCG6obyJuh50GSJKqcWfzt0tXUZuXyswO72NXfMynUyBMJ82jjYRbnFLCpNL1S2WzJN1v52yWrqHVlJ42Mk+gUhYtKK7mkvIo/NB2dtG84Hiccj2NQFNYVl/Pe+iUpRsZJHEYTV1XWsqOvC0+ahPHjI0MzrgEQjsfZM9DLEy3H0oaKuIwmrqqs44OLV7IwO2/G7x67wcgN1QuodWVj1ul5pm2ygk9UVdk72MczbY18dNkFU0oPjwVCvNnWzarKEq5bvgC9TuFI9wDfePp1fOHEIOXihqoppWr1isLKymJWVk4O6SnOcnDn+uUzOqeT5BlzubbwCpaGFjEa9RBSg8SFiiwpWBQzecZc6mzV5BjTh+UZFQOLHA0UmQpo8bcxGB4mokXQSQoug4tKSzkl5iKMUySBl5lLuCL/EgQCqzJ7b5xNZ2V11gqKTIXU2Wtmvf/pVNsq0ct6UGFdzlrMiplgNMqJpgHWr0315kiyNGWOjNNoYnVhCTpZxhMOI0kJb8PS/EQtlpPhdZeUV6GTZRpHhgnH4+RZrFxWWc3SvEJyJ9TkhEgY/p5wGEWS2VyeuC/C8TgxVcUfPZX/ZVB0XFxehd1o5NDQIHFNpSYrmyKrnRbPKKX2d15+zFuBVV9CnesDZ91OliRqcnOoyZ06381pNnHtonquXVR/1vZyrVZuXNowafkFFaUp/791+aJJ2zhMJt63aumk5RJQ7LRz28qZK6FpQjASCNI95qXPO86QL8BoMMh4OEIgGkuIEEzk95z8rBS77Hzq4vU4zecujHKuvGsNDQBHjp2L3nshR7Yep69tCKFpWBzmpJGxeMMCguOhZFhVbmkOG266gKLqhOW56vIlKDqZjqPdSJLE5Xdtoq91EJNl+qShaFylZ8jDsPft0bVWZJna0lxqS9PPMuc4rdy4YfFZ29m4tJKNSysnLb/qggWTlul1CgvK8llQ9vbXzDidQDhKz5AHT+D8hHApOhlHthVZltDpFNR4+gGTJEksXFON0Wyg6UAnkWAUR44dq8OM3qhHZ9AhNJE2AWxxaT6yJNHY5wYSahdHuwfJtVu5ZHE1b7Z00TLgZsOCCsaDEXpGvWTbzJRkn/ro1BXlUleUej/Iskx9cS6LSgs43DnAgGf8LQn1GwkFear1BC0e95R6Gwuy8/jE8rVcW12PYYpq1OPhCG3uUerycrBOkcg3FgzR6x0n12pJ63UJRKIY9TOrHB6MxXi+o4WDQ+nVlYpsdt63YCm31i7GZZr9y1uRZC4pq8Kk6Pjq9pdoGnOnrE/kC4zzv42HWJybPy8zmBtKylmYk5920CyRyDG5rmoBjzcfmzIPoshqZ1NJJeXTDHIWZOVRbLNzxD04qZ027+iMDY2BgI+nWk+kzR0xKgoXl1byt0tW05CdO+sQHkmSWJCdxz+uXE/nuIcj7ske6ZFQkK09HVxWXs3CnPTvOrPBQFm2i6Z+N55gYhA65g+xurKEXLv1LQ8t0sk6yq1llFvTh2VpQvDSviayHUGC4SgluU4Ks+zsa+khElOxmQ0srSwix5iDphiJjOYQi6vku2xYJD2D3QF64qdqRdWX5lGUfcrDUmOrosY2t/ofAA69nU2581MwrCfYR1zEsShm1mYnKoEbDTpuu3k1ixpSDbvRsQA9fek94WZ9QlZ2bXFp2vUnsej1XFVVy1VVtSnLT1eR0ysK64rLWFc8fdjcSRxGI5vLq5IGyUkuOEtfMvzlEY2rtLpHONw3yPHBYVqHR+j2jDPs859VHKM+L4ePbVg77TZvFe9qQ0OSJbLynVz03nVp1y+9KNUlml+WS37ZqcGI0WJk7bUrWXvtyuSyZRdPtkzPJBCOcrRz8gc1w1vPsNdP28Ao5/pTREJRDmxvYrB7hEPbm4hH4xRXTWhinzZwUFWNwe4Rju5upfNEP0d3tbJwTRVZ+U5624Zw93tQ4xrhYBSrU03kaJ3l2JX5WViNBpr73YnCeXGVpj435XkuqvKzMOn1tPSPIASMh8IMeX3UF+eS6zjltVM1jSGvn7bBUQY8fvzhCJEJl+qhzn6iqko0rs1J6WK27OzvYu9gL6EplFcKrXb+YcWFXFdVf9aCdWcbtHlCIQ73DbCwIJ9CR+psezgWY293L0uKCsi2Tu/h1ISgx+flieajkzwNkBiQX1RSyY01DXMyMk7nwuIyPrJsDf+89UWiWqrhF1bj7BvsY1tvJzfWTJ5Jmy0biiuwGaaeONHJMrVZOeRbbAwE0nt0K51ZrCoomva3sBkMlNgcmHX6SbKefX7fjGpEhONxDg0PsL23M+36hux83lO/mPqsnDkP5mVJosaVzd8tXc2XX39u0sdaIGj1jLClp4OG7Ly0x8mymrlySS2HewbxThgatQU5LCsvJN/xzkuUFprg0a2HuOvSlegUmbiq0tTr5kjHIDXFOXQPe4hEVVbXlXK8a4j2wVEKXDZOdA8xMh7EZNDhD0Uw6HUEw1EsJkOKofFOIaxGeH14G2E1zJqslRSa8kECnU6ZZGQA6PUKdtv5CUcKxEfpCx7GGxsgroVQZCN2XR75pnqyjGXnXHNkJmhC4PYFaRl00zs2jicYIhJTkSQw63Vk2SyUZjmpyssix2ZJ3usJVaT57Z8mBMFIlN6xcYbG/Qz7AvhCkQmvjoYsSRgUBbNBh9NsItdupTTbSb7DimGWNW7+EhBC0DYyxvbWTnZ0dHG4b5CRQPC8jjmHfH62tXbSNeZJXSFJXLeonurc7DlHr/z1/YLzgD8U5UjHzDXlM5w/hsb8tPfPPD/jdC6/bW1SDUqSJExmA5tvXo0z147OoEOn11G9qIRoJIasyBRX56M36lB0CqXV+WTnO3Hm2pEVJfFBMyiYLAZKawsorsrD6jCTU5jYxmjSc+FVS3HmTg49sRgNVOZn0TIwgjcYZsjrZ8QX5IpltViMBkpznPSOjjPqDzLiDxJXNYqzHMkXsC8UYWdzF68dbaNtcIRILCHtp9cpyJJEv8dHfApPzHzji0bY3ttFj2/yjDSAIknc1bCMKypq0MkymhC83NiaiIEOhTAb9BgUhQvKS9nb3Ys3GKZyotiSEIJuj5fDfYN4QmGEEBTYbXhDEXZ1dtM87KYyO4tFhfnENY1dHd28cKKFzlEPy0uLWJCfO6WqR0SNs723i86JxOczqXC4uKaqnmLbuQ+wJOCaqnr+1HKCrb0dk9a7QwFe6Gjm0vJqbPrZSTKejlFRqMnKnjbfQ5IkzDodNa7stIaGTpYpsTkotZ09ZCPfYsOSxtAYDQeJi4SRO90AZiQc5NWutrTCAVa9gU2lFawuKJkUAjZb9LLMxuIKFubkcyhNqNdoOMTBoX7coWDa8DhJgqr8bKry50ch7HwjSMyMrqkvw2424g9FeG5vE9WF2Vy+opYDrX1sPdpObUkOQ14/C8vyWVlbwvN7GmnuG+ay5XWYDHqybCYGx/zvmAm2mBYDJGQkvHEfb47u4ej4CUyKmcsKLp4oLiihaQJfGtGSweFx2jrcVFXMb8GywVAThz1P0R86RiDuRpJkNKFiVlwUmOqpd1xKlW1dijTrfCKEwO0P8urxVvZ39NHhHmPA62c8FCYaTxgaJp0Op8VEoctObX4Oa6pKWVtdRp7Dil6R0SvnHg4thCAYjXGif5im/mFah0bpGxvH7Q8wGgjhD0eJxhOTYZIkodcpmHQ67GYj2VYzhU47tQU5rKosYXFJPjbTzOqIqJrG0d4hnj/clLI812bhskU1VOSeYzXuCfo84/xxz1FC0VMhnnpFYXNDFSsr5i4XG4zG2NHexbPHmtjZ3sVIIDiPlTimJ3HcRtQz6gHpJIkPrl055zCsjKExC4QQRGJxugbHaOl1n32HdziaEAx7EhK9g6N+Rn1B/KEI4YmZcINOwWTQYTUZyHFYqSzIojTPid3y9sf8CSEIhKO09o/Q655bIbV1Vy9L/ttg0rN8Yz1sTN2mtLYg+e+C0mwKShODi9wi16T2qheVUr0o1b2dV3zqpbZ849QxoYvK8jnWM0TH0BjtQ6PIssTCknwsRj21hTnsau7meO8QfaPj2MxGSnMSAz9V09jT2sMvX97NgMfHurpyVteUkGOzYDbo0SkyT+89wYsHm6Y89nzSNOqmcdSdNpEaYHl+ETfWLsSsS0jtaprGzvZuVpQVsaW1g43VFRwfGObCyrKEN6ZvgAsqSnGaTcRUjZbhEVrdI9gMRvq841gMesKxGFZjImHzQE8/LouZIoctYfwpMg6TEYteP2XuhiARNvXntsa0L3SjomNpXiGrC+ZPa9yqN/A3i5azrbcjrQpV46ibI+5B1hXNLNwiHfkWKw6D6aw5KwljIn2Sr11voNhmP6vsIiTi2g1pPFQRVT1rXQFVJIojvtGX3ptR48pmbWHprIrqTYUkSdgNBq6qrE1raKhC0OXz0jjqnnEezjsdvaIki60igU5OSEYLkfgOnCxMJktSItZbCASJ5YoiodfJiYmLeaj7MV8c8h7lxHgzUS1KIB6gyd9KRItyTeEV1Firk16DSCTGQ4/tIjcn9R4f8wTmfQLGG+1j18hv6Qrso9a+iaWmG9DLZqJagMFwIx3+N/HHRzAqNkots8vFmSnHeod4aMcBdrV10+9J46UUTCQSx+jz+DjUPcDu9h6O9A5y44oGFhTlYdTpUCRpToVVhRDJPKa9HX009g/TPeph2BeYOvJACOJRjVA0xlgwRNeIB+jH3mxgW1MHFzdUccOKBopcjhnl4MU1jUd3HSJwmhGQ77Bh1OvmzdDY3tTJb7ftIxA5NbHiMBu5ZIrcrJkwFgzx/PFmHtt/hMYhN9FzkNGdLbk2K4uK8nmjvQt3IDVH8ZWmNq5f0oDDZJyTtytjaExDMBJjcHSc/lEfg2M+BkZ9DE0MzANTlJXvGvTwm+d3k+2YXSXSM1ldX8q1FzScl3hfXzDC4fZ+9rf00jk4xpDHz5g/hD8YIRSNE4uraJqGosgY9ApGvR6HxUi+y0au04rJMLfbpsBl5/p1CynJnV1Cm6YJ/KEIAxO/wcCYj8GJ36K5150yo3A6RzoG+MlTO7CZ5z4rbDbq2bCokg2LK+fcxkxYXFbAI28cpnVwhOZ+Nya9joWl+VgMeuqLc3n5cAtHugboH/PhspgpncjP8AbD7G7t4UTvEFcsq+NvL1tDTUEOutNmpN5o7EwJ/zqfHHYP0DNNBe331i+m0GpL+VjIkkR9Xi67OrpZVJjP4b4BzHo9dXk5HB8YStlOkiQCkRgGRUdNbjZlWU48oTCLC/Opy8vlf/cdwhsKU5eXSAhsHhphVVkJZVlT33Oa0OjxezmaRuYVEgP21QXFMy7mNhMk4ILCUqqcWbR5J1e0Hw4G2NnXfU6GRqHVnnbgfyY6SSbHlH5AbTcYKbDMrPihTW9AP4W3IRhL1D2Z6i4MxWIccQ8yFEyf91brymHRFDkTc8Gg6FhTOHXM+3AwQPOYe96S8t92TrvwJr2e+tI8Xt7fzB+3HyYaV1nXUI7LZqYo287hjn46h8YSeWflBVO3+TYzFHazd2w/7ugoOkmhwJTHRXkbuCzvIoyyIfntFAJCoRjVlameiyG3keHhmQnAzJSj3j/TFdhHtW09a3M+QJahNOnRGIm0I4RGm38HJ7wvUWRehCLNvd5POvZ39vHjl3ewq7V70qz0VMRVjfbhMdy+IENePx/YuBKzQYdRryM4xbd1OjQhaB50c+9LO+ka9cxYdj4dvnCUA139dI96GfUH+dBFqyly2qcdF8mSRFVuFqurStjS2JFcPhYIsruthxtWNOA4xwTpuKrxyrFWIrFTEyiyJFFfmEdD8dzeU2PBEE8cOsbv9x6ia8z7lnsOZUliRWkR5dmuSYZG8/AIjYNuip0zm3Q6k4yhMUE0FqdjcIxet5f+0XH6R3wMe/14A2G8gTDjE38C4ei0biz3eIDXD7Wdc38URebaC849Rvt0YnGVfc29vLy/maMdA3QNeQhOcz5xVSOuaonCfL4gnYOTB0Szoa4klw1LKqc1NIQQhKNxmnuH6R/10T8yzsCoj5HxIN5giPFAGG8gwngwTOgsUsQ9w156hufm7TiJw2oi12E9/4ZGaSEgaB8ao3VglOIsO/lOG7IsJb0Xx3uHiMTiuKwmSiaW+cNRxvxBVE1QW5BDdX52ipExHozQMTQ2pTF2kpP7aIg5fVwgMVhsGRudJJV6knK7kzUFpWlDefSKgiLL0+ZsKEpivdmgY2VZEfk2G3FNw6zTJWbgZAnBqYqrp8/OTkdc09g32DelF6bAamNFftG0bcwWSZKwGQxsLKlIa2iMR8McHxkiEItinWP4VLbJMuXA/8y+TCXRa9EbyDbNbNLEoCgpVaVPJ6LGJyrYph8g+KJR9g32pX0X2Q1GqpxZ5yRbfCaKJFFosZFjtqStVj8WCdHl86AJbcpzercgyxJ/d9Wp6tiKLFNdmE18WQ2xuIrZqKeqMBuTXs+i8gKsJgMxVSXLZsGo1yULUBp0ClUF2Sm1eN5OVriWUmDKI6SGkSUZh85OmaUEu86WMhA1GnW89+bVVJSlKhGN+0IMDqUP8ZwLYdVPq287qoix1HUDWYayZD9kSSHLUEaVbR1NvtcYiXTgiw3hMpTM2/Hbh0e596WEkZFukGo26CjJciRCkAR4QxHcPj++iUlTXzjClsZ2FDkRxjRXQ0OSJHLtVnyRyJRGhkmvI9duxWk2YdIrifzDcIRBrz+p3HY6I/4gTx84QYHDznsvWIJzmntQkiSsRj3XLW9ga1NH0osSUzXah0c51D3ApvrKWZ/X6bQOjdA86E4RudDJMlcvrcOkn/2wOhiN8tyxZh7ee4iu0cn1iN4q6vJyKHU5OdjTn+LNiqoqe7p6ubCyNGNonAuDYz7ue2YnnYNj+IJhxoMRwtHp3f3vJsZ8QZ598wQv7GmiuddNeI6DybeC9v4RvvPo6/iCEcaDCZned2JhxPmk0GUjy2qmZcBN5/AYly+rTQ7+nRYzuQ4rLf0jOCxGFpcV4JxQUrMY9ElFpp5RL4Nef9IwGfD4eGr3cY50D551VsmgU8i1WwhGYmw53k51QTbGiRfmyUqqZ4uNHwj66A/4plQYWlNYSo7ZfFbXtyag3+vjhRPNHOkfwmVu5cLKUqpzswlFY4z4QxztH6LD4CHLYppymjzHaiEcV3ny8HEurCxjeUlh2pdkXNPYP9iXtg1Fkiiw2Kg4hyKAU6FIMhcUlfLAsQOT1qlCMBj00zXumVL96Gw4jcYZJe/JkjRlHodJp8NunFm40smKuumIaxrTuTT8sWhaFSiAXLOFMrvznHMzTkeaOOdimz2toRFVVUZCQXzRKM559GS9HciSxIZFlcn/SxKYDHqWVU02nl02M67zlCA93xSZCygyn93joijyJCMDwGY1Ya6Yu7f7TLzRXoKqBxDsG32Mw55nzthCIxBPTCrERJhgfHTeDI2YqnL/tn3sbe+dZGQ4zSauXVbPqqoS8uzW5DswHIsnC0RuaWynbXiUYDTG1sYODHpdSkjQbJAliWKXg6uX1PO7N/YDiYms8mwni0sLWVCYS5HLgcNsxKTXTdSPEIRjccYCIY72DPLK8TY63GMpk0SeYJjH9x7lgppSFpsKpg3j0ysKy8oKqcnPoWVwJLm83+NjR3Mn62vLz+l98vqJdsZDqQaR02Li8kWzl2fWhGBHezePHjhM12n1dqZCAnJsFnIsFiwGPSadjh0d3bM+bjqsBgNVOVk4zCbGgql5TQd6+whGY2RZZv9+yBgaEwTDMY53DtE/On8zHO8U3F4/j7x+kKd3HmfoHZTMNxXjwTCH2/+6ku31OoWawhyOdA0AEkvKC5PrrEYDlXlZHO8ZAgRlOa7kS9JpMbG4rICiLDvbTnTgCYQozXESjav0jo7jDYZZUl5AbJpYz0Qinsz1qxfywOv7+MPOwzT2DuO0mIiqcawGA9etamBF1fQ5Cn1+35TeDIBVBcVYdKkz57IkcdvKJRTYrbx/9TIK7Tbev2oZdpOBjdUVLC8pSqiQ2KwMjPvwhsJcXFtJvt3Kvu4+ZEnioppK7EYjFoOeaxfV4TInXoQ2o4Fbli0kFIuRZ7NO+WGJaxonRtPnXFn0BkptjqRu/nyiSBKLcwqQJSntMzkeCdPhHZuzoWEzGFFmOBuvm+KjbZAVrDM8d2WK4qhAWiWv5Doh8EZCUwoIuIym85IrocgSLuPUH01/LIonEp6ToRGKxmjsHKK5e5het5fR8WBy4sps1JPntFJemEVDeT7VJTmzKtY1F4QQRKJxDrf109Q9RJ97HI8/TCyuoldkrGYj2Q4zlUXZ1JflU1bgOqsi3FyIxVU6BsY40TFI1+AYI+MBguEYmqZhNOjJspspznWyoDyP2tLc85oP6PeHGRwep65mfsLDguoYYqJi+HC4ZUqj2qrLwazMr2rXlsZ2XjvelhLTLwGFLjufumIDa2tKyXPYJk08xFWNNVWlrKku4bE3j7ClsZ3xcATSeBVmg0GncOPKBrY2trOgOI/1NeXUFOSQZ7eSbTVjMRjSGgqqprG6soTl5UU8sH0/eztSDadO9xj7Onqpys2aNjlckiSybRauWFSbYmgEIlGO9Q3T4R6jJn/qWhvTEYrG2N7ckRIlIAEb6srJd8wszPR02tyjPHu0kaYh95Ted4OisKgwnwsrS6nNyyHHasGiT+RgSpLEbb94aF68IJIkUZeXQ67VMsnQaBkeYSQYpMhpn3Wtqoyh8ReOPxThie1HeXL70WnrfkhAQbadysKEa9xs0BGOxfEFInQNjdE3Mj5nA0UCbBYTxTlOzHPM7/hLRwIWlRaw/UQnOXYLS8pOffxsJgO1hTlE4yp6nY7yXFdynV6ncNGiKgSC5/Y3caxniENdA1gMemqLcvjAxSvJc9jocnumPb5OUXj/xuXIksTrx1rZfqIjoUhk1LOwJG9G8b5DQT+ecPoq4LIkUeuarIAkSRILChKx0wsLEnLCCwsTfy8uSh0AqFrCs3K4bxCbUY8QUFeacPWepCrnlBKQLEnU50+vKCOEIKKqdI2nDwu06vUUTpEoPR9kmUxkm8xpCwT6Y1G6pxh8zwSzMnUC/JlMJbepk+VZVCmfWx5QVFXp8Y0T09Ibw3aDcV7Dpk4iS9K0YWnheBx/GgWs6fD6w2w50MrWQ22J+j7+EIFwlEg0npT41ckyJqMem9lItsNCbWkuV6ypZ/WCUgxzCLto7xvh4Zf20T9y6l75wp2XUZbvQpYl4qrKq/taeH7XCbqHvHgn+hSNxZOJ4DolIfxhtxjJcVpZUl3EVWsX0FCRPy+epLiqsudENy/saqSl143HF8IXihCJJuRNEWIiJzAhPuKymSgvzOLi5TWsX1J5TjmPmibweIM47CbcI6cKiA4MeWnvdCcNjb6RcVr73FTkZ1Ga5+KNYx0YdAo6ReFIxwCRaIzV9WUsrixIentPR5IUEs+AxJXFX0QnTT0Q1stGnPr5EZcIx+I8tOMgo2fE1VtNBj55+XquWlqH2ZB+skCnyOQ5rGywVGA1GIjG47zR0nXOfZIlibrCXL7+vmvIspjId9im7MPpKLJMrt3KpvpKoqrKWDCUYiioQnCwq5+rl9afVYXKYtCzaUElv991EM9EVXABdI962N3WM2dD42B3Pz2jqeMhSZK4aeWiWefURuMqOzu6eaO9K/EcpGFVWTHvWb6YRYX5FDpsOEwJT/XJY003iTgXqnOzybFaaB4eSVkeisVpc49Oq944FZlR3wSyLGEy6DAb9CmWoUSy0GLy35qmTRnKI0sSOp2MLMkp+57Z1tn+P5c4uDMRQvD6oTaeffM47imMDJ0is25hBVdfUE95fhZ2sxG9TkGRJVRNEIuriaJ4bi8v72tm25H2KUPKdIpMYbad8vws8l225J88lxW7xYTDYqQ45+wzObIsY5p4KZ18bE//DU79X6Cq2pQPqCInPqCnP/yz+Q0kwGzQo9ed39lGSLyobl+/jPX15eh1CsWn6dRbjHquW9XA4rKCpNzt6eTYLFy1vJ6VVSWMB8PENYFekXFYTBQ4bUhI/McdV2E26HFZ0w/YZEmiONvBhy5ZxbUr6wlG4wgh0CkydpORQtfZB9uecHiStOlJskxmXKazh01NR7bFzKV11YlKvSTCenJs5ya6IEjIr4aneFmbdXryzOdHeUiSJHSSTJHVntbQCMVjuENzLwpq0CnnLCahSNK8SF1OR0xT6Z+ihgfAoeEB/u+W5zHPs1cppqm0p8mPObVeIzKLj/j+pl4effUAh1v7Gfb4pwxXjKkasWAEXzBC/8g4rb1ujrYNsGlZFe+5ZBnFsxTL8AUjHGzpo7X31MCgqWuI4lwHoYjKz558g9cPtDIwMp52wkAVAlWLE4nF8QbC9Lq9tPaOcLxzkPdsXsYlK2uS7+PZIoTA4w/xm2d3s+1QGwMjvpQE2tNJ5ARGCYajDHv8dAyMcax9gD0nurnt0uUsrJg+XGYqYrE423Y2s/HCWn72m9cpLUqoDnnGQ+h1p+5tu9lAMBKjsWcYs1HPqC8IQiIaj1Oa5yTbZuZgWz92i5G6kskTGE594UQ+j8CiZJFrrH5Lijce7OqnZdCd8tsqssTFC6qmNTJOx6jTsby8iMsX19IyNMrQuP+s+0yHJEkYdTpWlM8tt82o17GxrpIdzV10jXhSxluN/e4Z5Y7IkkxJloP1teX8+dAp1cVhX4D9nX1ct3zBnJLCt5xoZzyUOqFWnZ/NsrLZn2v7yBg7O7oneQ8g4WV+z/LFvGfFYhbk52HW696S++mkMZOOjpExYqqaMTTmSmm+i//+8HVnzQWIx1X2t/Txwye2pV1fV5rL+zavoG6Kqt0zJdt+bgMogPb+UV470Er3UPq4P7vZyIeuWsMlK2ooyXFi0KcfmAghqCvJZWF5PqvqSvjN87sZ8kweAEmSxNoF5dxx6QocFiNGfUK5wjAhizjTh2RRRQH3/Z/bzrpdKBLjxb1NPLblUNr1axvKuXXjEgpnYNxMhSLL5DnPv8SlJEkUZdkpypo8oFdkmXynjXxneresJEnYTMZpZ3gWl509PECWJHLsVnLsczvf8WiEYDy9oZFntmKQz23gq1Nk8uxW8ubYv3QIIRieQukIEqFDjnmQVJ0KSZLImWK2PhyPMxaee8V7vSxzriaCJEnnvbhYTNPS5kmcxBMJ40kjQ3u+UYU2pZfldDQheHlPE79/aT8nOgeJxGY3wxiOxmntczPk8dM/6uPua9awoPzcFLaaetysWVjOTx7fxou7m/AFZ+6ZESLhCT/U0ocvEEGWJC5fXYcyB4NzcNTHNx58hf1NPfhDs4v5j8VV+kd8vLSnicExH/dcu5bVC0pn3Q+9XmHdBTUoikxtVT6bNy0AoH/AQ1vHcHI7q9mI02piaMxPa98IJr0eg07BPR6nqiCbsnwnWw634w2kfyYd+kKyDOWEQ0c56nmOzQX/MKt+zpVXj7dOUsE06BQ+sGFlMn9vJhj1Oi6oLmVnSxcvHm2Z727OGrvJQENxHtubOxjwnjJ83L4AsRnkbEpSIrT4iiV1PH+4OemBiKsarUOjHO4ZZGPd7FTlRv1B9nX0EoqlGjrXLK2fdbSGABqH3BzqHZg0PpOAG5Y08IG1K6jJzZlzoby5YNbrybaaMSjKJHndbs/4lBO705ExNCYwGxKSf2cjGoszMj71wMRqMlBdlM2SysIpt3krEEKwp6mHg219aavyKrLEPVev4cb1i8l2WKadaZYkCYNeR1mei2vXLkSWZP7n8a0Ez1B9isdVmnqHcXsDaWd8ZoIkSdjMxhldP38owsHW9Em8AE6ridqSXCoL3x2FtWBCAWmkmx8d3UaRxcFnl2ymyPLOq8KbjmA8NuUMsGuGiclvNQLSFog7iU6WsZxD0byzIUsS9ilyAOKaNqWHaEZtT4RxnCvnexZN1TS8kfQhd28nQoizKpYBvLq3md8+t4em7mHUMz7CsizRUJ7IeciyWYhrKqPjITr6R2nvH0kq4ggB44Ewr+9vQVVV/v7GddTN4Hs0FY2dgzzw/B5e2pNqZBj1Ohoq8ynNdWKzGNG0RA5fc88wvcPjKecbVzXa+tw8te0Ihdl2ltXOLtTH6w/xX799iT0nuoidUa9Cr5MpL8iipiQXp9WELEt4/GE6B0bp6B9N8ZqHIjH2N/UisRuLSc+S6tnNHMuyTH6uHVXVuPGa5TgcCcM+J8tKWWlqqGVZnotAKEpjzxBVhTkUZNkZ9PgIR2MEw7GJYnbpPdyKpGdV9nt5ob+NE+MvYVJsLHRejdNQiBAaYdWHJ9bHcLgFuz6PKtu6WZ1HOsKxOHs7egmf4SWqzs9h0RxkVsuyXdQV5vJ6Y/vbLsAiSRKlWU6cZnOKoRGIRomrZy8AConchvqCXJaUFnCo+9RkRfeIhz1tPayvKZ+Vl2x3ew9D46n1QAw6hWuWTV0jayq8oTDNw26G/ZPHk4uK8rlp6UJqcuZejXuuyJJEns2GxaAnGkq9B3o83inFXqYjY2j8hTLkCXCsc5DR8fQzhZuX1XDpytqzGhmnI0kSDouRTUsraeod5o9bD6esF0Bj9xD7mntYVl2E1XT+Bmh/qcQ0lS0Drewa7qDA7ODKsfp3jaER19S0Ri2ASTfzfIG3mumKycmSPCOJ2HNhqhwIAcSFRlzT5vSxkSRpPuyM844mxJTSwu90mnuGeXzL4UlGhiLLXH3hAm6+aAlFOQ6Meh2KIiOEQFUFoWiM9r5R/vj6QbYfbk8OXMLRONsPd2C3mPjozevJc80+uRRgX1MPB1v7CEx4EcxGPbdevJTr1i3EZTej1yfkpBGJ/AlvIMzu4108+upBOgdOhZOpmmB/cy97G7upK8vDbJx5CNV9T+5gb2N3ipFh0CtsWFLFezYvpaIwG5NBl+iHBKqqEYnFae8f5cmtR3jj8Kkw3VhcZX9TD8+8cYxsh2XW4WWQUJ86aWQAmEx6jMbUZ68gy05Ln5tQNE5xjoPy/CzaB0Z4ZtdxYnGNpdWFVBRMXfCtwnoBG/P+nu3Dv2D/2B85Mf4yOtk4IREcRRUxFMnAEtd182JodI948AbDqeG/EqyvLZ9TyK9ekanIdVHotNE1cm7S8POBzWTEqE89DyES7+yZGBoJqd1ERfDTDY1AJMrxviHa3aOzytXY0tiO94ywqXU15RTNILT4TIZ9fjpHPZNyX2VJ4sqGWpYWF5x3kYipyLaYMev1eM4419FAcMpv/HRkDI23kedbmun1+bh5QQM5lnMPlTqdjoER2gdG0yZwK7LEFavqKMqeWZXN05EkiQKXnYuWVPPS3mbGg6k3Yiyucbi9n5Y+N8ur56+S8l8LOllmobMQh95MkcVBrePcQvDeKjQhUDUxpfKF/hzDps4fgtg0L05ZYl5lVc9EgmmNiMR1nZuhcbL9dzoCMaMQpXcagVCUP7x2iIMtfSlGhtmg43Pvv4SLl1eTZbekDRsVQlCYbaemJIclO4/zy6d2JkMSQpEYWw62Ul6QxV1XrZrT/Xe6R8BhNfGfH76WpbVFWE3GtDO42U4rRbkOCrLt/OyJHbT0ulPaOtDcy7rFlSysnJlC0yt7m3n+zUaip4WRmY16/uaq1dxx+QpsE7mAZyKEIM9lo7Iwm5I8J3987VAyLCgaV/nzzhM0VBRw9YVzLxx7Ekma/LvIskQsrpLrsFA+obx18bIa1jaUI4TAbNRPm6+ik40sdF5FrrGGY94/0xs8jDfaDwgsuiyyDGVU2C6g2rbhnPp+kvbhUSJnTJRISCwrnVtExckaGNlWyzvC0NDr5LT3f6Jy/cywmYxcUFVKnsPK8EQ0igDahkfZ39k3Y0Oj0z1GY797kvfoxpUL0Suz/765A0F6PZOvcanLwcKCPGwzlBU/H5gnFK3OJBCNTV3dfRoyhsbbyMUVlahCm/ckR0goaAyMpU+wrCrKobIwG8Mck5xlWaI4x87C8nx2nZisUNE56KFn2JsxNOaATpK5vKSeC/LK0ckyTv27W8P/JJoQzPjLAIxFWtjn/hHrCr6CVTd5cDMQ3EN/cA+l1o3kmZeeQ8+kaT0WAs6rHLSAaWeIZElCmUMC7LuN850Hcj7YfridvSe6UwqHSsDHb93IFWvqsVuMUw4+EpLSCkW5Dm7atJhQJMr9f96TXD86HmTboTaW1hSxom7utRYk4F/uuZILFk0/wy1LEmaDngsXVdDvHufeP25PSdpu708Us52JoREMR/nl07tSchn0OpmrL2zg7mvWYJnG0336dXnPxUsZHvPz3K4TyfX+UIStB1tZWlNEdfHcVIOmom9knBf3NjEeDHPlqvqJwWNCjMMyC0+OXjZRaG4gx1iBKmJoQp04NwVZUtBJBhRpfrz9HW5PijGXOA5U5E7tdTkbLot52oJ47zZkSaLQZWdTXSWP7z2aXD7g8XFoQsHKfhYFK4CdLV24falhToVOGxfWlM3JWz8ejjCSJt+nJjeHQsfsJWTnE6NOSSuNHorF5vQ9/IswNIQQDAx4efbPh3jzzVY8niBms4Eli0u48caVLFiQiOl0u3288OIRtmxpxOMJUlTk5MYbVrJuXQ0Wy1tvPZqnqMZ7rggBbm+QMV/6sKnqwuxpP4JnQ5IkHFYTlYXZaQ0Nt9fP4FhCdSWdVZxhaiRJwqToMJnnFjLxdiGR8JSdqeJ1kqimkm4OKqoGODz2K1bnfipluSbihNUxhEg/062KKDHNjyrOvfCkcRr3tCYE8fM8235mwt3pKJI841oY71ZkSUIvT/0bXFFRy8eXr8X0FocRWPQGCqzpn8NwNMauY510D3lSlq9bUsnFK2pm/H6VJYlcl43L19Sz+0Q3x9oTRQuFgOMdg+w62snS6qI5JWIDXHVhA+sXV87oPXxSznpRVSGLKgvY39ybXDc05mPY40fVtLN6WF4/0Eqf25sy85nrtPGJWzZMa2ScjixJlOS52LisimMdA3QNepLr3jzWxdXr3JQXuOY1tKQgy8b7Ni9HkBhonYsHVpYUjMr5f4ePBYKTYuZP5jbMFYd5emGRcyGuaYz4AjQNjtA+PMrweABvMIw3FCYQiRKOJdTPIvE4kbhKIBLFFzq3mh6QUGbc3FDF0weOJz2HqhA0DY5wuHuADWdJClc1jR0tXXjOUIe6amkdVqN+TvdKMBpN1Cw5g0KHDafp7TX0jDpdWi96JBZP+x0/G+96Q0MIQVvbMPf9/FUGB71ctGkBFRW5+Hxh4nEVw4R7dWTEz69+vYXGxn42bqynrDSbo8d6ue/nr+H1Brnq6qVY3yJjo8vr4Udv7mRHdw9riov50saLKLInYvx29nTzX1tf539vuwOzTocmBEeHh/inl1/kd++5HbvBQOvYKD/d/SaHBgfJs1q5Y/FSrq+vTyaphaMxfKHIlPKKhdn2c3Y7m4168lzp1X9UTeD1hwiGozis7+yZkVMu2LM/PhJS2lmGqdo4Xa9nuheREGLKgmYy06t1ndz39GPNtS8nE0Hncj0kScKg6NDJStowGF8kkvJBTBxLMBTez3i0a8KgSCQvn94/gThtHZPWn97v00tPz/TFLwGOaQqyxTSVQOzcjZmpEEJMmYyuk2XMurdG0vDtREbCPI1cokWno9LhIts8v+GlM2GqK3+wpZ/m7uGUd6wkwa0XL6Ug2z6r30yWJCoKs7l+/aKkoQEQjMQ43jlIW//InBLDJQk+cNVqjIaZ30OSJFGQbaeqOCfF0IirGqPjQYLh6LRF9DRN8PT2YwRPU0HSKTI3bFw861oYsiyxqLKAutK8FEMjGIlxvH2QVXWl5MxCETCR3E+yqOSZ10SRZczGd5dRH4xMnmE26pQ5RytAIoHaMA8G3Mn3ciQe51jvEC8eaWFbUwf9nkQNCm3i90i84yf2IeH5nm8fsk6WqczLYmVFCW+2naqi3TY4woHOftadJSn8aO8gnSOeFMUlRZa4blnDnK9VTNWIpskPtBkNk/JS3h4m/wpz/Ra96w2NYDDKvn0dDA6Oc889F3HxRQs4/fNw8rrs3NlKU9MAd7xvHZdeuhBFkbnsskUossxTTx1g5coKLBW5b8lHvczh5L8vv4oHDh6gdWw0ZUi3priEWFxlb18vm8oriKoqr7a3s7KwCKfRSK9vnJ/v3UNVVjb/esll7O3v4/Hjx7Do9VxVWwskrM7INIMji8lwzp4GnSJjmUY6LxSNTamX/k5BCMF4LMKfuo7wXM9xmj3D+GLhtC85vaywuaiGH224LWV/TQg6/KM813OC1/qb6fAl8mIKLXbW51dxa+Uy6px56JGnvLd6gx5ufOEXhNXU+MdSq4sfbngvC11Thyu80NvIdw6/SqU9m39cdBEOvYlnuo/xUm8jnf4xBIJSq4tLimq4vWolJVYnspj8wjhpsAyGfDzadoDX+lvo8o8RjEfTSu8ZFB1/W7+Wzy65JLncrjdg1umIRScbGmOREHFNS5oCMc3HzqFvMBQ6SFQL8GTnHegkCwuz7qDGcT0AUdVHo+dRegM7kCSJctulNLjuwKS4UtrWRIw237MMhvZT57iFfPNyZpqdIEkSBdNUnY6pKr5ZFm2bDZoQU0rYGhUdrvNQqO6dhk6WyZ2mVklYjROMx8h9hxhcQggaOwdTCuRBQtq8ojBrTnVHLEY9daV5FOc46Dut3fb+UZq6hqktmf23aXFVIWUFrlkHpTmtJgqyJs/GhyPxSWE6Z9LWP0JbX2pNB71O4fLVtXP6tpbkOinOdSBJpLwbW3rceP3hWRka7lE///PTl9lwYQ3r1lRjs5kSXtg0uRrvFoLRyYaGWa8/p+QsvSKf8/hACEE4Fmd/Zx8/e3UX+zv60E4zKGbCmTW0zgVJkih02rlkYTW727qTbQaiMY71DdI+PEpNQfpQPCEEO5q7GD4jbGpNVSllOc453zuqpqVVcDLr9fNi6J0LgWg0bSFAk043pzDXd72hMT4eorllkMICJytXVCBPkTjU3TOC1WqiuNiFPmktSixbVsYbO1ro6/NQUpJ92rrzhyRJKJI0UdwnFZ0sc+OCBp5raWZjeQXheJztXZ18bn0ieWw4EOS4e5i/X7UagBK7gwKrjUNDA0lDQ9W0STKLp2PQKecc/ydLckqxozOJxdU56S2/lQyEfHxu5xPsH+lBL8tYdAbKbFmMRAKE4jGimooiSRSYE0nZa/LKU/aPaiov9Tbxw2NbaBsfQa8o6CYKNXb5PbSM7+aprqN8evHF3Fi+GLs+fTiFSdGzOqeUwZCfsWgITzRIWI2jCu2sfgWBIC40BoM+XuptZJ+7h30jPehkGRkJDUGTd5jjnkFe7Wvlm2tvosGVP+lVIYBGzxCffOMxegIezDoDVp0Bl9HMaCRIKB4jLjSMso5iq4NaRx4LnKkGkMNowqo3pJ2hH/D7EspCE1OKBsXBxUX/RZPnD/QEd3JZ8bcm7RPVEpKG15T9nLFoC02eP9Ab2J40REBCE1HafH9mKHSIOsfN5FtWzOpFKAG5EzU+omk8MaF4PG0xvflACIEqBL2B9NW/TYruvFTEfqehlxXypzH2QvE4/nOQ+Z1v4qpGz7AXrz9VCGN5bSlOq2lOAw9Jksh1WllcXZhiaAyO+ugaHEMTAmWW7a6sL0WnTD3BMRV6nYIpTU5COBo7q+TpiY7JdUSyHRZqSuYm1avTKeS6bNgtJsYDp653W//IJCGSs5GbbePLn7mW/Ye7eOixNzEZdaxaXsGC2gKMRv204Wma0AipsTlJe0qAUdFPqS53LkTV+CQJZsM5FvvVKco5SaoKIfAGw9z32ps8sH0faWpETuSeyShywisuTxh7OlnGpE8UTjYb9MTiKr2ecQKRc3/+7SYjS0sLKc/NotN9Slmtsd/Nwe5+qvOz0z4r/kiUfR19eM7Ip7hu2QLM+rmFTUFCBU2nKJMG9OF4/G0fO/kjUaJp+mA3G+eUM/iuNzTiqkYoFEVvULBOEaajaYJYVEWvV9CdYUhYrAYURSIQiKBpGvD2u6xuqF/Ahx7/A/5olMYRNxFN5YLiEuITevMto6N89Kknk8aCTpa5ob4hub9OUdBN4zoNRWNpK8TOhriqEYpM7bHQzcOsyPlEExr/c/R1Do/1YdHp+ecVV3FT+RL0sow3GuZnJ7bz66Y3cRnNfG7JZm6tXJayv6ppbB1o5QdHX6fLP8aS7CJuKl/C6twy9LJM8/gwj3ccYs9wN986/DJmnY5rSxelTfzPNdn4xcV3AhBR4zzSdoB/3//crM6n3T9CZ8sYFkXP+6pXcmXJAnKMVgZC4zzWfoCtA22c8A7yu9Y9fH7JJeSYTg3shBCE4jH+88AL9AQ8VNmz+ZeVV7OxoBoJQbtvlJ8e386fuo5Q7cjhC0svZXNR7aQ+5Jgt2A3GtFWeI5pKj89LfVYOhhl+cC26XCrtV2JUHNh0hdj1JYTi7tO2EHT6X0EVEWocN5BvWTnr2ZaTH7caVzbHR4cnrQ/EovQHfKcFZc0v/mgU9xQFA20GAyW2ucdav1swKAplDueU+T2joSADfh+Lcs6tiN18MTjmY8QbmDSTXF7gSjtAnylWs4HivNTfO65qDHsCeHyhWc3eA1QX58xJsUpR0k8iadrZ64o0dg0TPc2TLQHVRTmcy7yWxajHbNBxevkqjy+ciBefgcTp6eh0MksXlVCY72DfgU7+/NJhtu5o4pJNDSxbXDrlfv3Bcb528FleH2yeff91Bv6h4WL+vm7jrPc9GwZlcljcdDlf5xshBL5wlP/3zOs8tf/4pPUGnYLdZKQ8x8WqymLqCnIpy3aRa7fgspiwGAwpIUy723r49p+3cKRncFJbc6Eky85F9RUphka/Z5wjPYNctqgWV5qwwH0dffR5x1PeTbl2C+tqy88tRE1WMOkmGxqBaHSSkthbiRCCYX8gbfX1ArttTu+Ud72hodcp2G0mht0+PJ4AublpKisrMlarkWg0RjgUTXk5jY0F0DSB02mec8LdfFPhclGTnc3rHe0cGRrkutp6dIqCEIIcs4WlBQV844qrqHQllCVUTUt52RgnZgSmYjwQmVFlzemIxuOMT1EhFRLhWeeaB3I+GQ4HeHO4i4ga587qlVxftijprnQZzXykYT173D0cGe3j+Z4T3FKxNOUadwXGeKb7GO2+EdbmVfD/s/ff4XGk15k3/KvcuRsdgEbOkTmnyVETpFHOkpVs2fLnvN7gfd/1eh13be+u95VsOciWZStYcTTSBI0mkTPDnDMJgsgZaHSOFb4/GgQJAiAJEORwtLqvS+Kgq7vqqerqp55zzn3u+zdX3sumKyoebb4yNodq+dOjP+XFwXP88/kDtHhLWeELX1/7ewnnk9YLlKgOPt++nQ/Ur8Uhq9PjKGV9sIrf3vs0b4xcZOdwJ7/YuhW/5pg1joF0lP3jfThllY80buCecOPMaBo9QT7WtJHT0VF6kxH2j/dxT7hxznmUO93XzMCfGB9hW0XNDQcaIgqa6JsZB4hYXM6yRPPdZPRxSrRmRGQsy0AQFn/PyaJIW6B03kAjWcjTnyiaFC23n4ZpWZyeHFuwZuVSVardP/uBhiJJlDvdeDUb0XmM+8YzKfqTsUUvKm8VJmPpWdn1SwgHPDc15zlsKuGSuc+vaDLD1BICjaqQd1FmZMuB7uHJOeZ8LofG4PjSpVJT2cKc7z13A9WVq5HO5Pnpq6e52DNOedjLXVub+eB7N3HyzCBnzg1fM9C4U+HQ5voTZfIFbiYzUmQjLG19YFoWPzpyZk6QIQrCTEP2B7espr08NC/75FYj6HayqaGaZw6fmWnEtoAzQ2OcGRpja2P1rHvNME0OXOxnPJ6ctZ8HO5rw2JcuqAPg1FS8djuJq6o1E8k0yWWo4CwVGV2ne3KKeHbuHFfl8y6p2nXnrgRvEG63jZaWMOfODbN3bxd3392CokiYpoVhmGiags2m0NhYysFD3Vy4MEpNTQBNU8jldA4d6sHnc1Be7rtmFWA5EctmSeRzRDJpEvk8g/EEAgIhp3PmS3x3WzsvdF1gLJnkzx95B1DMvpY6nawPl/Pd06d4sqUVAYF4PkfI4aShpBh42FQZv9uBQ1PmuHcD9I5OkcrmWbrvLCTSOXqvUly5BFkSKXHZ72jDvv5kdCbzs8pfMefHo4gSbb5SjkwOMJpJoFsmilC8P0zLois+wd6xHtyKjbvDDWwIVs85RpndzePVHZyJjXEqOsLJyDAN7sBMELDc2FpWy46y+jn79yg2toZqOREZYjSTJJ7PznoOWUB3PAIUsywrSuZqsHsUjTq3n3OxMSazKQzLQr5qkq1wuQk5nAtmpvcND/CR9jV41MsTtCDImFYByzJnRjQzeQvXbj5zK5W0eN9DvNBHb/JlVMmNT61HEBb3O1ZEkY1lFfyg89ScbaZlMZ5O0heP0uhbXod5wzI5ODo47zYBCNgcNPiWLlP5doJTUWkPlLJnaK6KXSSboS9e/L1qN0kLWQ5kc3MXuaIg4HFqN6WCpCrSvOIZqUx+xktiMXDe5EJosbAsSKRymNYVog/A83vP8PzeudntmzoWkM0Wih4zi7jm/hInjz6wArv98hxZEfahXSMxdyfDoapzAo1Lik32JQa9WV1fsit4NJ3lr1/eM+s1ASjzuvjsPRv54JbVi8qIW4vs67geJFGkLljChvoqXj3TNfP6hdFJTg2MsqGuclaVYiye4vTQGIkrfn+KJPJAR+M1k7k3Aq9dI+hyMHCVl8bFiQhjiRSNwfmpXLcaF8YmGYkn5n2Gt5eF0JawTl5ySGmaJtFUhoHJ2Ew51TQtppIZhqfiGKZJXjcYjyfpGp2kc3iCvokoqWz+uuXXxcDp1Fi7tpbqmgA/+vER/vXru3n++eP88JnD/ODpQ1y4UCy5rVtXy/p1dbz62lm+/o09PPvcUf7+H16jq2uMJ55YQyCweGfHpeKNvj7+157d7B3spy8W5a8P7OPvDh0kmb98M99bV08yl6OxxE+dzzfzesjp5BNr1iGLIn/6+i7+285Xeamri/xVzrphv5uyebJjAJ2DE0zEUktyeITi9zwRS9E5ODcDDBDyuSgrcd9So7ObRbEJsPjf8+lCWxbTVLoirrxWOUNnIBVjPJui0uml2RtasOdllb+CUluxsfJ4ZIh4fnG84huFADS5g1Q5ffNuD9ldqGLxwZPQZy8GYLZp3LzXg+nKGZe8JebeOyG7kxq3D8cCvjDHx0fojUcxrti/S6kga0SYyJ0iXuglZ9545lMSVGySn0bPk4iCQm/yJVL62HTQcuOQRYmN4UpsC1RaRlMpToyPzLttqbAsq9h/Ndgz73aHotLg8+O33X6lpbcCblVjY9n8fhG6aXI+Msm5qYl5t99uZPOFWfQgAO2Sw/VNQBJFVGVu/1y+oJPLL55KYdeU2+pOYpommdzSDL2WgoJhYC6CAmyzKaxfXTMryAAI+F20NN2YEeGdhhKnfQ5F2bIshqPz933dCDL5QrEqsgS8cb6H2FW9Mw5N5eEVzXxoy5pF/0ZyBX1JfTHXQoXPzdbG6lmiDenppvCBSHTWew/3DDISnU0F7qgso6HUP6PyuVQEnU4qvZ45r/dNRemJTJG7SdbJUlAwDPb29NM/Nfc5LIsi7eHQDTMSZn12qQPK6QZvnu3l+SPn+O8ffwynTSWZy/PMwdP0TUT5d++6h2gqw0+OnudAVz/ZvI6myDy1qYN7Oxqu6a65WNTWBvj85+/ntVfPcPLUIOfPj+BwaKzoqMTrLT6oPR47H/jAJsrLvew/cJGLF8cIBt186hfuZv36OhyO5c8yG8YQWCaiFJ5F6XiipYUnWlqu+VmPpvHP73nfnNdFQaDK4+G3t12b79lQHqAuXEL3SGTOtsl4it2ne6gvD+B32xcdNScyOY51DdE7MjXv9oawn9qyOzsTW+X04VXtDKfjHJjo4+5wAwHNCYKAZRXVl05OjaCJErUuP7YrFs9JPcdopjj5eFUbIW1hSkPI5sKlFGWT+1NRMsatkUq1SQolmgObNP/vShXlmQWMebXuOlDv9uOUVXKmzsGJflb7K3DIKhbFyac/NcXFxCRuxUalwzPvZCMIAh3BEOUuNxeic++7vGnw9IXTtPlD+G3F+67MtpYqxw6OTvwdmuSh2ftuyh2bkEUbPrURUSiejySoOOVSRFGdPh83TqUcRXTilEtp8jzJxcQLRPMXsctBpEXkUERBoNThYmO4kjcGe+dsH00nODg6yDvqm2fdBzeLM5PjnJmcP1gP2h0LLrx/FuFWVTaUVeBUlHnlhM9Gxjk0Okh7IHRNz43bgVxhrtCFsgwCGwCiKCLL4ix1J9My5w3sr4driXXcCmTyS2uWvl1Ip/O8ufcC73ho5Vs9lGVDXdA3p0/AsoqO4Q2lS6vATqUyxDJLS4jt7uydkwkPOO28e0PHkmh8iWx+TlB/s3BoKm0VIRpLA5wdvjz/nhka59zIBHUhP6IgkNcNjvQOMXYFbUpgmja1DD4jpW4n9YESJFGcncjUDXZd6GFtVTntZaHbVtWwLIuLE1PsvtjLRGquAEp9oIRav29JvbdLDjRsikJHVSkvn+jkcPcgd7fXMzIVZ2gqztq6cuyqgmlaPLiqiXdt6sCmyPzza4c4dHGI1ooQdYv4EZiGydmTgzS0lWOzzX3QC4JAedjHRz6y7Zr78XodPPHEWp54Yu1iT3dJyKa+jmVlcLh/HUHwLeu+i5rgSSwrhSTNpbpUh7y0Vpex/2z/vGX35/adpb2mjLtW1mO7QZ11yyr2ZhzrGuLZfWfmLa3ZVJkVdeE7PtAI2Vw8XNnKcDrOj/tOUeMsYVOoBlWUSeo5ftR3kjPRURo9AZ6sWTHrs7ppkp0OGBRRQl1gcQ/FLIAmykiCQFrPz8rmLydUSVryAkwQBKqcPt5R1c6P+k7ynYtHCdmctHrLEAWB4XScH/Qepz81xaZgDdvL6hfc1+pQOfVePxdjU/NWRp67eJ7H6lu4u7IORZIQRYW1wc/PeZ9XrWNH+L/M/G2XA7T43jvzd8i+apYjuE9rZL32q0s6/+L+FR6vb2XPUN+c7yij65wYH+XY+Aibw1XLMvHnDJ2vnzk2729IFASq3V42h99+nPGlQhYl6rwlbApX8Vp/95zt45kUe4b62FFZS7MvcEf0alwJ07y+Qtz1YFnT8/pVWfqiOs+dWx2+hKLS4dxr4HPZcd8CjyqHTV3UfaDrBkOjUfJ5fcZf6+2O+pB/Dp3QwuLkwAgPrpgr2HEjGE+kmEguTWlvcGp2JUUQilWXpgWkY68Fy4KRWGJeU7ubRU3Ax+bGas6PTMw8pwYjMc4Oj3NXSx1um0b/ZJSusUkyVwQ6fpeDzY1V15T2v1G4NI3mUIAKj5v+q+hT+3r7eaOrgnKPG599aUp2i8VkOsMPT5zh9Oj8ya/7mxtwa0v7HS/51yYI4Hc7WFdfyZ5zvWxuqmYwEieVzbO2vqK4c0lEFAUGI0UqlWWBbhizvrgbQS5b4Pd/4xv8z69+jur64FKH/DOGHHr+ILreicP1S3O2qorM5rZqDp3v5+D5/jnl7LFokn98YT+WZbG+uQq/23HNjINpWsTTWY51DfP1lw/NWykRgPaaMja2Vt/R/RmX8ImmjYxmEvy47xR/ceJVApoTl6ISy2eRBIHVgQqeqlnJ/VcpLImCMOPWXDQeWjiLZ1pWUabWKro836rpQkTgZvauiBK/2nEXE9kkb452818OvUBAc6BKEslCHk2U2Vpaxwfq17IuuPACuMrlYV1ZBYfHhpicRxY2Vcjz5aP7KXe6afUvTDm73dAkie2VNTT4/HROTc7Z3hWd5PmL52kuCd605KwFHBgZ5MWe+RVsfJqNbRU1lC7gSv2zipDdycO1TewbHiCjz61q7B3q55kLZ/j0yg0E3gLzvktQFWmOV0auYGCYsw3hFgsLC10351RLVEVGexssjFVlbsJKEOCu1fXcv6F52Y/XVlO6qABMEARMw2TfoW78Pgcg4HJp1FYvfhF8p6DK76XEYWcoGr9semfBnq5+fkXXFy11WzAMBiKxWVn8xSB+VSVEEkQ8DtuSAuV0Lk/X6OQcKtZyIOhysKamnOePnZvxxzAsi3ND4/RNRFlRVcbxgRGGr6JNbW+upczjWrbnVktpkDWVYQZj8VmJuXS+wLcOHafEYeORtmY8tlvXb2VZFpF0hu8fPcVzp87NW83yO+zc21yPa4kB1k3NXm6bysqaMo50D3FuaJz+iRhlPjdVfi+WZdE5PMHLJy6QyOaQRYnusQheh235bR/vYFhWEr1wEiwdQXQjyY0IQtHkxbIMTKNvmmKlI0pBJLkZuJQhz6EXzmCZUQAE0Te9vUAhf5B89mUsK0U++xqC6EKS6hCly4FYe00pd6+qp2ckwnhsroTmuf5x/tf3dvHY5jY2tVYT8rpwOzRURUYWBQzToqAbJDI5JmMpjnYN8cKBc/MGGQBBn4sH1zWxsu7twXf1qDbeUdXG6yNdVDg8NLiDmJaJU9FocAfYXlbPmkDlnOW7TZIp0YqLzbReIF5YeCJM6XnSeh4TC7/mQH2LaR8LQQBK7S7eUdXOscgQVU4fVQ4vFhZe1U6rt5RtZXU0e+d6cMzajyBwf3UDewb72D3UO28FZ//IAH97bD+/snYLzSXBOyLYEASBkMPJB1tX8RcHXid3lepKspBn50A3bf4Q72xqw6ksPZDujkX4q0NvFn1FroIkCDT6AjxWf21q5c8inKrKlvJqNoUr2TXQM2d7PJ/juYvnCNmdPNnYNkO/Wy5YlkXW0Mnp+jWNEh02dU7zcEE3yOUXL7d6JXTDnFe8Q1NlNOXODzQ0RcamKnPEIEpLXNy7tnGhj902iKKAIIgcPNIzTSsTqKsJvK0DDbuqsL6uYk7mvWt0kpODo6yvXRz9cjSW5PzIBMkliA8AcxrzLS7JIi8uALcsi+MDw3SOTt4SOp4oijSVBlhXV8GLJy4nfDpHJ+iZmKIpHODM0Ngskz5VkrirpQ6PfX4bhaWgpsTHlrpq9vcNMHaVIeBgLM4/7DlEOl/ggZZGyj3uZbcMyOsG/VNRnj99nh8cP81wfK40vSjAI21N1Pp9S66s3tTsJYoi5SUemsoDPHv4LLIock97PYIgoBsGB7sG6J+M8avv2Ea5z8033zxG9+j8i9TrwTItxkdjDA9EME0Lf8hFfVMZiipjmiaxqTT9PRNkUjkcTo3KmgAlQRcDPRNYQGVNgMHeSeKxNDX1IURJZHggQmnYy+R4gonROLpuYLMpNLSV4/U5luUhZugXyGWfxzITWFYezfYoqu1BBMGDoXeSy3wf05yYaWC1OT6Goq4DJAr5I2RT/4QgOLAwEKUwdscvYFlZ8tmdFApHEIBc5seIcgWazT4r0NAUmQfXNTMwHuO5/WdJZuaWIEenknz1Jwd5bt9ZmiqD1JT68DhsaIpMXjdIZnIMTsToGpqkfzy64Hl6nTYe3djC/eualrX/5lZiOB3n/5x6nWQhz++teZiHq1pnKhXXglPWqHIWm57Hs0n6k1G2hOZfYFyMTzCVL8oAN3tDOJXlpxAsByzgfGycL55+nRLNwf+77pF5lbRuBK3+IPfXNNA5NcFIev7M2NMXzlAwTT7ZsY5VoTAO5ebuGcM0ieayjKQSeDQbYYdr0c16Dlnh4domXu27yO551I96YlN84+wxXKrK3VV1eLXFPXBMy+LC1CRfOrqXw2PD876nxObgsfoWGpZZ4ertgkqXh/c2r+BcZILRee6di7Ep/unkITKGzmP1LVQ43TfVlGlNVxwnMmn6EzEuTE2iiCLvb1214Gd8CyjqTURT5HV9yfNfNldgMj43IeS0qbjsd36FWBQFQj4nXYMi+hVVmbHo0rLjyw2HXeVdj60hNI8E/tsZ97c38tyx87MCjZyu8/XdR2kuDeK239gzJ68bHO4Z4kT/0oUvgi4H56742zRNIqkMqVwO1yL6GsbiKX568gLd40tbL94IKks8rK+t4I1zPTOeEaPxFN3jU1wcj9A3GSV7xTVtLPXTFg4tq/KdLIlsrq1ie30tz506N8cDpWdyii/u2kvn+CT3NdXTXBqgzO1Ck2+M7j4fLMsiU9AZisU5PzbBT8508sbF3gUldWv9JbxzVTsljqVX8m/6ipU47ayoKuPvXtrHiqoyOqovZbMFfE47sihyqGsQu6rQNz4/b/tGoOsG+3aeo1AwyE4vmN/1oS20ra4mGknx5sun6TwzhCSJWBY0tITZ8WAHB3dfIJPO88T7N7Lrpyc5tr+bT/zKA0iSwOsvnaJ9VTUnj/SRn84kCaKAL+DC412ubJmAZnsCWVlDNv0tCrldyEozotBBNv1NEGQc7t9GFPykEn9JNv2vKEoHCDYKuT1YGDjdv4so+jHNMUSpFEFQcbi/QDb1LyDION2/s+DRywMe3nPXKjK5AjuPdxFPz893HIsmGYsm2T1X4fPaZycIhLxOHt7QwnvvWkW5f66Kwp2KI5MDdCcmcSkqLd7SIkea62ckZVGkzuVnha+cY5FBDk8OcHe4gbBj9rmn9TxvjnYzlI7hVW2s8VfgukXStjcLwzLZO9bDSCbO+kA1dS4/hmXeUOB1NURB4PGGFk5PjvHcxXOk56HBADx78RzdsQgfbF3F6lA5NW4vfrvjhiocpmWRKuSZzKSZyKQZSSU4Gxnn6NgwD9c28VRTOz5pcROjIAiUO918euV6+uJRBpKz+cYWRS+Qvz66j/F0inuq66hyea/74LGAyUyaUxOjfOPMMV7u65p3HrRJMjsqa3h3c/uixv2zBLuisLWimqea2vn6mWOk5nEE74lH+crxg3RNTfJATQNt/hBhpxvbDTx8L7mxJ/I5JjIpxtIphpMJTk+OsX9kgM6pCR6sabxmoBHyOfG5595bA+NRsrmlBxqpbJ7hidn3XHHx7qLE8/ZQH6sNl3DwbP9MoGFZcHFwEtO0brunx9VIZ/LsPdDFOx9b+5aOY7mxqjpMW3mQPV2ZmaZiw7R441wPzx47y7vWdeC4jpFkwTA4MzTGiyfP0zcZXfJYWsJB3uy8LKhhAZPJNPsvDnB/e+N1qxqWZTEWT/GDQ6fYebZ7XtO45YJdVWgrL6UlHORo3/DM8XsmIuw+LzMamx0g39NWT8DtuCnzyflQ6/fxWEcLFycinBwenfNsiGdzfOfISXZd6GZrXQ2rKsqoLvHidzhwaeqCzx+LYsAZz2bJ6QaZfIFoJksknaZvKsaB3gEO9w/N2/h9CV6bxgfXraI5FLgpt/ibDjQ0RSbgduDUVBrDgZnoWZZENjdVkyvodI9F8DntbG6uxqYo+BZw8L4WLAtsDoVPfeZB4rEM3/yHnex/o5PmFZVcPDfCoT1dvOdj22hbVcWpo73sfOEkHq+dYMhNf88EA72TiKJILlsgncySiGfwB9yMDE4xOR7nXR/eQtuqKqYmk5QEXMtWkpfkFiS5EVF0oqjrKOT3YJoRLCuLXjiBJLeSz+5CEGQsCuj5o1joCAgo6kYMvYts5jvIUj2SuhJBWPxDrLU6xMcfWo/HaWPn8S6GJxNLlra9Epoi01QZ4NGNrTy0voWw/+2VKfIoNlRRYjKb5p8799PsDc2iNqmSTInqoN7tp9rpm3VP1Ln9PFTZQldigj2j3ZTb3TxU2Uqp3Y0kCEzlMxye6OeFgTPEchmerFlBm6/shqThZjWV3iaaoQD4VDsCAt3JSf7x/D4qHZfNeQRBwCbJBDUX9e4AZfZr/0bCTjcfblvFaCrBvpGBBd1qT0+O80d7X2NdaTnryypp9gWmHcZVbLKCLIhYWBRME900yOg6yXyOWD7HaCpJT2yKi7EI3bEpYrmiP8jGcOWSL5smy2wqr+ZjHWv5u+MHmMrONqW0gNOTY3zx6F4Ojw2xvaKGBq+foMOJR9XQJKlY0TVNUoU8kWyGoWScY+MjvNB9nt54dN4gQxZFVpeG+fTKDf/XSNouhFKHi/e1rGAoGeenvV3k5qGYjWdSfOf8SfYO97GxrIqOQClVbi9emw2bJKNJRRUowzSn7x2TlF4gnssSzWUZSye5GI3QOTVJXyI6hyp3LXicNsoDbuyaQuYKqlNn/zipbG7eIORGEE9l6R6a3R/kdmiE/e5laT69HeioDfNj5TTZK+R4+8aijE0lCAfe2iSUYVhEomkymfwcidu3M+yqwke2reH86ARjV1TEUrk8f//aAUzLYkdzLRUlnjnVP2O64nBqYIQfHj4zr2rUYrCtuZZ/efPILLpTNJ3hu/tPUO5z0xIOLki/SeXyXByL8NKpCzx37CwjscSCnkzLhYZSP+tqKzg5MDoz5oGpOMlcnokrqEwlTjsb6itxL4Pa1NUQBIHNtZWMrF1BPJul5yqJ3UsYTaT44YkzPHPiDOUeN1UlXoIuB367Y95rFM1k+f7x04gCJHN5YpksA9E4fVMxJpKp61LS7IrCo+3NvKOj+abpYksONC49K3O6zvBUAp+rGEhciQq/hw/tWHNTA7wERZXYek8bdqeGrpuUV/sZHZwin9cZHY4iySIr1tYgKxJ1TWUccl+gv2eC9dua6O+Z4PzJQWw2hcraAOlUjp4LY9Q1lVJe5ScaSXHwjU76uydoaisnWLacE2KRC3r5v63pi2dgWRamMYQhyICEgIhqexQBFUEQUbQdCKKTQm4P+dzrCIWj2J2fQpJrp/d348FQc1WITz26kabKIM/sPsmp3tFZEoqLgUNTqC/3s6I2zF2r6tjYUv22oUtdiSZPiHp3gIMT/Xy969Cc7XZZocLhZVOwhnfVrmBTsGZmce1V7TxY0cJQOsaP+07z9a7DnIyOUO8OIAsiw+k4hyb6mcyl2Vxay4cb11NmnxuIJQpZ9o71ktEL5E2DjJ5n/0Tf9LYcz/Wf5kRkGGVaVarM5mKlv3zZTf9EQaTDF6bK6aUnOcXfnt09ezsCTkWlxlXCXWUNPFnTQZu37JrBxoaySn5hxXoyhs7xsRHy5vz3m26aHBgZ5MDIIDZZpsLpIWC341Y05OkKZd4wyBk6iUKOyUyaqWxmUYvDxcCrary7uYPxdIrvdZ4iNo9b9WQmzY+6zrKzv5sGn59aj4+Q3YldURARyBs60VyWwWSc81MTjKVTC1ZzJUGgzR/is6s2sra0/Jac09sJ4nSfymdWbSRr6Lw52EtGn19ApD8Rpz9xmh92nSFkd1LqKAo6OJSikVnBNMgZBnnDIJbLMp5JEZ8OSJcKSRRprgpRWuKaJfF9umeEsakU4YBn0Vxm3TAYmohxYXC2V0i530N1me8mRnt7saqpHI/TRuwK5/RcXmfn0S4+9OC6t3BkRSQSWX7y8im83mIwGPC73paO4Fdje3MdD3Y08d0DJ2bEBCyKqk3/3093c6J/hNU1YcIe90wfTaZQYCqVoXN0gv1dA3SOTGBYFmVeFy5NZTiaWHRFYXVVmLbyECcHR2dey+sG+7sH+NJLe3hoRRM1AR8euw1ZFNFNg1SuwGQyzcXxCPu6+jjeP0Iym0cAVlaFSWRz9EeiGIvwTLlR+J12VlaFCfvcDESKyk9DU3GGp+LEr6Car6utoHqJ0q43Aoeq8khbE6l8nm8dOk7/VGzBOcoChuIJhubpp7gS48kUX9q1d0njscky9zfX87FNaylzu25axGbJgUbBMDg/PMGBzn6GownW1VVQG/Td5HAWhiAIuNzTUZVQfBhZZnHRbplWkW4hXH4vQrGvIxhyI4oiF84M0bGuhvbV1STiGfoujrFmUz3tq6vwBVycOtJLd+coZ4718eSHNtO6sgpJWoYeDaMX0xhAFD0Y+jkEwYkgehAEJ5LcgCTXYXd8EEEMYVlpLCsNgjYdhIwiy+3Iyhr0/BFSiT9D189MBxoSCNJ070cBARmw4BpUF4/TRm1ZCT6XfQ49RRIFXHaNbL5AQTexLAtZltBkCU2Rcdo1Qj4npT4X1aU+1jRU0FFbhncJ1ak7Ab3JCC8MnCVv6rR4Q5TaXLMW74ZlEi9kuRif5Ps9xxjLJih3eKh2XpbtrXWV8Immjfg1J2+OXuREZJjXRy6CZeFUNCocHu4ON/KeulWsLCmfV352LJPkL0+8SiSXJmfo5AwdfbpfJ5rP8OWzu1FFCU2S0SSZzaFa/oPzwWUNNCzL4mx0lB/1n8Iuq6wsKafU7kITL08PBdMgkkvTnZjk6xcOkdbz/Er7DkrnCZ4uQRAE7qtpwAK+duoI+0cG5s1OX4msrnMxFuHijfv2LTsEQaDM4eJTK9djYfGjrrNMzKOgBcUG5aNjwxxdoOfiehAFgVXBMJ9bvZGHa5cmR/mzCFkUWRUq41fWbsEuK+zq7yaWX1jm0rQsRtPJefs6bgU66sqoKS2hbzQ6Y0A7EUtz4EwfDZWBRc+LkXjxs4krqK2SKNBYFaSpKrSsY7+VKA94WNVYzkgkQWHacEw3DJ7fe4b71zdRuoCJ7O2AqkjUVPlJpnPT3gwC8hJcju9EqLLEx3esY3Aqxhvne2clNeKZHM8cOcOLJzsJe904NAUBgVQuTySVnrWg9jlsPLaqlRKnnacPnaJ7Yn6vrIXgtKl86u4N/PGPXmUqdbkanMkXeO1sN0f7hmkI+Qm4HCiSRMEwiGeyDEcTjMSS5KYTCoIg0FFRyqfv2cCpgVG+d/AU0XRmocMuGYIg0FoeZHV1eCbQmLxK2leWRLY11RBw3dpKs9/p4N2rO1AkiW8fPkH35NRb4kvj1jTua67nU1vX0xQMLIu09k1UNCzyBZ2CYbCmtpztrTWIt1rre57sqaoqhMJedN2g69wwDc1hBvsmSSVz1DaUUhJ0Ickig32TbNjRRGVNgN2vnCGTzuN024hF03h9Dh5+51oik0n+4v/5PudODtLUXoF0s9GrIAE6+fxuCvk96IVOFGUdklQNgojN8X7y2Z+STX8LBBXL0pGVFlTtAYrN4G9gGMMIgoplppHkeiSpDgBRcCHJDeQyz5JJ/R2iVIWibESS51eZyOV19pzp4Ts7j3P0wtCs0nbI6+Se1Y3UhUvI5grkdQPTslBlCU2VsSkKHqdGuMRNecBDwOO8ZZH97UCqkOPrFw7xne6jrPZX8AvNm2n0BHDK2kzkrpsmU/kMe8a6+fKZ3ZyeGmH/WB/V9ZcDDUEQqHMH+GTTRraEajkfG2Myl8bCwq1o1LpKWFlSQdDmXLDvwK3YeKK6Y8Fs/9W41IR+CQ3uAB9t3EDe0GkvWVjtq8ET4ONNG4kXslS7SmZVImL5DF88/To7Ry7wcGUb76ldTYXDM+OUbVEMNMYyCV4YOMt3u49xZHKAM9HRawYaUFwwPljbiEfT+N75U7zU28VUNn3HC8+JgkCV28tnV23EZ7PzzIUzXIxGlnXcmiRxd1UdH21fw73V9XeE+tadBEWUWBMq5wtrt1DudPNiTyd98RjmLbx7bvQbKA96WdNcwameESLxywuTF/adZV1LJWubK1FucBGby+uc6Bpm59GLs14P+lysbiyn1Pf2kTkWBIEnd6xg/+k+JqaVDi2rSCv77mvH+dRjm3C8RdLnTqfGux5f+5Yc+3agLljCLz+wFVEUef1czxx6dLag03ONwCHgcvDIymbes3EFsUyW1893LzrQEIB72xu4OBHhW3uOEbki2LAsi6lUhkOpwWvuQ5EkVlWH+ejWNWxvrkWVJV47231LAg2AihIPq6rCvHm+d15p19qAj/aKUhy3gbURcDp493Tj9dPHT3Okf4jULexTuRpVPg8PtTbxvrUraAz6l82/Z8mBhqbIrG+oZH3DW+teK8ki9S1hOtbU8MqPj3Oo5AKJeIZwRQkr19eiago2h4ooCdjsKlV1QWJTKVxuG06XxsWzI3SeGcKcLst5fA7qm8uW5QKr6g5kZRVgYei9qNo9KOpWBLGoKKOomxEEO3rhJJYZRxSciGIYpl2NRakK05wCq4AolqBqdyHLRdlLQXSgqNvBMjDNcYrVjPkfk7ph8OapHr7204Oc7h2dpQhSU+rj/fes5h2b2vB7bqwR9+2O8/FxXhnqJKXn+YXmzdwdbpi32lBnWZRodn7Ye5LJXIq+1PyTrizGKLefoc5VQom2GUm8No+zYCSRRTuCIFFqd/FrK+6Ztd2yLPJmlEj2KOXO+6+5rxZvKS3e0uucMbR6S2ld4H1HI0O8PNSJW1H5QvuOBffX4A6QMw1eHe5kKpdhLHNj2WNRENhSXk3Y6abdH+Llvi4Ojw4t2CR+M3CrGl7VdlONa5cgCgKVbi+f6FhLtdvLcxfPcXBkkOg8VKrFosHr5x31zTze0MrK4NtDDvqtgCyKtAVK+azNQYs/yEs9XRwcHViwwrRUiIJA0O5gZbCM+2sarj8uSeTuNQ0c7Rxk76nemTm1b3SKb718BLfDRnNV8LrJqrxucKp7hO++dpzRyGUqhCKJrGosZ0Nb9VveRL1YrGmq4O41DfzozVMz1yVXMPjhrhO47CqPb+sg6HUuer/JdI6e4QiSLFJbVrLogMUwTcbHExw72U8urxMu9bCivRLnLTATfKuwpqacX31oGxU+D7vOXmTgKgO9+aDKEo2lAR5e2cwjK5upC/oYisaXlMEXBAG7IvPRrWtxaSrPHTvH2aHxG8rMC0Cp18W2xhoeX9vGuppyHJpKSzhE0O2ga2yuv9FyQJNlVlSW0VwW4GDP3CBoS2MNFT73bTMJ9dhtvKO9mSqfh5fPdbGzs5vuyNQcf53lhFvTWF0Z5pG2Ju5rrqfUvXxeIbAMzeC3A4oq87HP34fXX7zxNU1h1YY66puLD+hgyM29j67k9LF+4tE0FTV+mjsqKa8qLuhXrqvBV1IMIBxOje0PdGCaJoHSYi9GZDJJMpFBkkQeeuda2ldXIy4DbUrRtlxzuyBIKOpaFHXtvNtVbTuqtn2hTyNJZUiO9193HGd6x/je68fnBBl+t52PPLCOJ7a041yky+rbGV3xCVJ6HlWUaPYGkRegmwmCgDj9PwFhQQUmAZGU3k/WGMWjtiKx8IPLMDNMZA8QtG1EkRaqBljkjSlG07uuG2gsB05HRzAtE4es0uRZmKZx6XoIQtEccLH3S63Hx8c61rKmtJxDI4McHB3k1MQYg8mF+ag3AqeiUOX20uYPsTJYxvbKmplqzM1CAPw2B0/Ut9JaEuSNwV72DvVzYmKEycziKjOKKNJUEmBjWSXbKmq4q7IWzyIlcv9vhACUOV28q7GdlYEyDowMcHB0kOPjIwwm4jdcDbwaoiAQdrqo85TQXBJgRbCMjkAp9d6S638YqAv7eWRzK32jUfpGLych3jjejYDA49va2dRejcs+12zLtCyiiQx7Tvbw/N4zHDrXP3vfFQEe2dRKdci3pHN7K6EpMh9+aB2d/ROc6hme6eecjKf5158cYnA8xpaOWlbUhwn6nPMm9SwL8gWdSCLN0ESM/tEo3cOTdPZPsK6lisDdzkUHGul0njf3XUDTZCRJZHg0Tj5vcNe25TcTfCvRXh6i9P7NrKkp51jfEOdHJhicihNLZ8kWdASh2EAecDqoDvhoqwixoa6S1VVhfM5i70rQ5eTd61fQUXk5CdJWHsJzA1K5giDgc9j40JbVNJYGONI7xOnBMQYiMSaTKTIFHd0wkEQRu6LgddgIe93Ul/pZVRVmfV0FVSXeGdZEmcfJR7auYUdz7cx8W1niXdaFcFNZgJXVYY73j8wSLvHYNdbXVlDinB105fLHAVCVdkAkkfo33M73k86+hGVlEQQVm3Y3gqBRKHQBBqrSQUG/iGFOIotl5AqnEAQbgiCjKu3IUph8oZOCfh7TTNNR2k61byXrqirY3zvAof5BOscmyS7Qr7YU+Ow2OsKl0xK7NTSXBm9J5eZtEWjIisS7P7p15m9Vk2lbdbmBS5RESst9lJb75v18fXOY+ubwzN+b775shuX22KlrWmxG8Ro3uHVn+RGmsjleOXqBExeHZwUZAPetaeKBtU1v6yBjKaO+5NBtWCZjmSQVdi/SPOefNQocnRxkOB3Hq9qoc83vbWCTQ7iVBnLGZc3vWK6TRKELw8zg1dpxqw3oZorxzF6GU6+QNcYo0VbiUVsRhYV/hgUzxVT2BKIgIwgyqUIflmWgSB4CtrUUjCTR/GkMK4dbqcerthLNn0GT/CTzPSiiG1ksTpJOpRZZnKuIcynQukSPulqm9xKmcmlORoaZzKZo9ZZSfh3a1HxQJYn1ZRWsCpZxd3UdXVMRLsYi9MajDCbjM826yXyegmmgmyaiIKBIEqooYZcVfJqNEpudoN1BhctDtdtLpdtDvbeECqdnWXXOL0GTZVYEy6jzlrC9opYzkTHOT03QHZ1iMBlnMpMmWciTn+5BkUUJp6JQotkpdTqp8fho8gVo9gXoCJQScjiX5TcXsDv4SNsa7qqsm7NtU7gS7QYCLlWU2FxexX/Z9sCcbZUuD74bDIYafX5+Zc2WeSs+tR7fTZ+vKkm0BUI0+ErYUVnLhegkF6IRemJTDCRijKdTTOWypAp58oaBaZkz940qSbgUlYDdQdDuJORwUu32UOX2UenyUOX2ELIv7juRJJEdqxsYnozz7VeOMTlNFTIMk51HLzA4HmX3ye7pxnE3TpuKhUUynWMkkuB8/zgnLw7PaigHCPlcPLq5lU3tNTdP332L0FgZ5HPv3ML/+vbOWecXiad55o2THO0cpKkySNjvxu91YlcVJEksGh8WdJKZHNFkhqlEholokuHJBJF4moJuUBsuWZJMfj6vMzQc5XOfvBtVlTnbOcLhY70/c4GGIAgE3U4eX9PK1sZqeiejjMdTJLI58nqxN8WmyDML/Cq/B6/dPosQoSky97TVc09b/ZLHYFMUdjTXsra2gr6JKUbjSaLpLLmCjm6aSKKIJku4bRoBl4PKEi8Bl2MOLVuWJB5eeWu/I7ddI+hyoMjSrEBjRWUZ9SE/6hwapEA6+xMUuR7dGKVQOEO+cIZs/gh2dTOGOUE68wIO+2MU9E4sK4+itFDQeyjoFzDlJrK53ThsDyEKLgRkDDNKLn8Eizyi4CCb243X9hAPtjaypjLMveP1nB+d4OzYOBcnIvRFokQzixO2EAUBn91Gnb+EltIAbeEQ7WWlNAb9t0RR6xLeFoHGnQRBEFCVhbm3hmVh3MIS12LRPTzFqZ6ROU6fiixx7+oGfK7ldde9nZBE8ZrNfLphzvtA6vCF8al2xrNJ/vH8Pj5Qv5YOXxkexYZFUe1pIBXlwEQfz/WfJm/qNHlCbArdmIFdzogSzZ1EECRk0clE5gCK6ESVShCREQUNTQogiy4WDpUEDCvHZOYgGX0Er9ZGLH+OdGEQv20NqcIguplGFGQKRhybHCKaO4uATDzfhVPOEs2fQUBEFuy41SacSs28R9oQrEYVZWL5LH9z5k2eql1JvTuAXVYwTItoPkNvMsLu0W5+MngOAYGV/nLafEun/CiSRJs/RGtJkKyuM5ZJMZlJE8tlSRfyZPRiU7xpWQgUKTSyKKJJMk5FxaWqeFQbAbsDj6rdFFXKNC0mhqbY/ePDjA1EMHSD6uYwD35oG3bX7EW2U1FZFSqjPRAimssymkowmU0Tz+WKYzYNes4McnznWe55YhUtrVWU2OyUOoqKSIooLevvzavZeLhubhP5wZdPcuy5/VR88h4CCyRgLkGRJFYEy1ixBApXJHeRZGGYgK2FKneIKrcXgGRhhJ7k6yQLI4RsbQTt6kwG0rJMpvIX6U68hmEVqHRuotKx8YaPqUoyDT4/DT4/dxUKTGbTTKRTRKeDjKyuUzBNLCwkQUARJWRRxCbLmAwzkd+NU4E1gXtp8LTN7Fc3s4xlTjOYPogs2Kh2biVou7ZDu9dp48ntK8gVDJ7eeYJIIj19jtA5MMGFwQkCnqLvhk2VsSzI5ApEk5lZvR2XEPA6eHJHB49uacP9Nqf0bFtZR7ag8/fP7KFr8DLtpaCbdA1O0jU4iSJLuOwqqiIjiQK6YVLQTbL5Atl8gSXEEwvikkjMsZP9OB0avQOT2N+ifpGlwLIKTCa/QbZwlhLn+7CrqxGFhccvTgccQffiaWrLAdPKk8zuIZ75KWXeDjoqP/qWjONGMJVKMxSNzzSjQ/H6bW6opmIeAQNVaSWR/g6mlSSb24XD/hi5/HEUuR677UEK+kWiib/CYX/sqk9O39CWjij6sdl2IArFZ0y+cJZ84SyCoCBJIXRjBNMqzhFBl5Ogy8nG6kpGEglGYgnGkikmU2lG4kmimQzxbI5MoUDBMDFME1EQUSSxGFTabZTY7ZS6nZS6XJR5XFR4PQRdDtSbMDy9Ufw80FgkJFGY1xX2EvIFncxtbN65HnpGI4xOzeXSOzWFgNeJfBtuslsFRRaxqwvfwplcYV4J33q3n/c3rOXvz+7mtaELDKSilDs82KViyTCj60zlU/Qlo8TyGTaFavlMyxbC9huTPc7qo8TzF5BEDVUqIWuMYVh5FNGFS63HkT+PX1uLTQ4uuA8Lg0T+IsPCq9S5349DqSRR6MGl1BGyb8WwdhLJHi9WMbR2fFob3fHvkNYHUUQXGWMUTQqQLgyRNccI2jchCfMvXNp9ZXykcT1f7zrED3tPcDY2StDmQhUlTMsioxcYzyYZSEXRLZOHK1t5X90a/NrNq3AUOb0KtYqPWo/vpve3FOSzeZ7+8kuc3NNJ+6YGREkkm84jXSOIlUWRoN1B0D73GuzrE5i6eIrtjjCrquoR34KsdNfxPnb94CB3vXPDdQONm4EmurDkUmRhdkAmi3Z8ai3D6aOARbVzO8xQCgVU0Y1HreZC/EUccmBRgcaVcCgKDsVL9XSAcy1YlkVa9zGSyXE+/jxJvRvYNrNdECQckh9NdDOWPYVPrbluoAFQ5nfz3ntX43FofH/ncQbGYjMJDsuCiVhqpjF6IYiCQHWZj3ffvYqHNrVQ/hZ7TiwHJEnkvnVN2DWFp3ed4I1jF+fwzAu6wVRicU2+siwtiTbjdGrctbWZgcEpRswYHredVR03ljy6E2BhkMi+SjzzMg51LXZlxdJK+rcLlk6mcIpI8pt4HA8TcN25gca5kQlODIzMYn1U+b20V5Ti0uY+N4vUqM3k8icp6D04He9DNwcxjQRFWksBhKK6F4hYVh7LymGa0ekdiIiCbSbIKEJGEFQkKYSqtKMp65Hl2fenKkvUlPioKfEBRfXXWCZHOp8nU9DJGzqmaRUTdIKAJBbZAHZFwakquG3aLan4Xw8/DzQWCUEQsKkKsiTOoSIBxFJZJuPXfqjcTiQzuXkDn1xBJ53NYy7R/flOgCSKaGoxEzafxvZ4LEUiM1cSU5VknqpZSVBz8spQJ6ejI+wZ7SGj5xEFEbusUmpzscZfwfpgFVtL62j3Xdsz4kqIgoIk2nDI5bjVJiSbil0uUvcERCxL5/oEOwFVKsGntTOVO4FNLkVERhBlmJ68BAQQREyrgGkZUOwkwSYHGU29gUdrQRFd5I0IoqAhCPMvnO2SwmdatlDjKmHXSBed8XFOTY2QN3QkUcIla5TZ3ewoa2BjqJotoVrq3f63bSXsSliWRS6T580fHWLLO9bw3i88jCiJxcqlbWlc1abV1Xz03z1JTWs5wtuskXexcCqlOJW54gE2yUuVczPD6SOYzOYUC4KASymjRtzGcPrI7RoqgiDgVEJUSzsYTB+cs10SFHxaHQUrS7xwbWWcqxH2u3nnjhXUhv28dOA8b5y4SCx5fdEAASjxONi+qp4HNjSxuqFiyYZ/dyIkUWTbijrKSlysb6nitSNdnOgaIq8vrq/GYVNorAyyobWKe9c2LklWXRIFSoNuwqUeRsbixBMZfN639lqbVp5coQvdjOBU1yPOQ22dHz/b88rtRCZf4NTAKF2jkVmvr5+2bFhIjMGu7SAa/xKKXI8oOLCpm4knv0os+RUsK4vL/k4EwYYklZHJvY6VzqIbo0jTYkBXf4WyVIGqtFPQe8jnTyHLVShW7dwDXwFFkgi6HMCdbfL680BjkbhEnQp4nIxOzTVMicTT9I5OkSvoaMpbf3kVWZ5XijaT13lu/xkqg17C/tunqLCcEAQBp03D67TPUBauxOBEjJFInIJuzJGaDNicPFrVxip/OePZFKlCDt0yEBCK/HpZxafaKbO78agLP9RMK08sf57xzB4KZhJR0KZ7L5pIFfopZI/hlKtwyBUA2KQgupWmJ/F9QvZNlGirEOdxexcQsMullDnuYST1KsOpl1DE2Vlbm1yGXQoyntnLZPYwqujFozUjCQp5M44kqGhSgLwZvWYfiCAIlDs8vL9+DVtCtUTyaTJ6HsMyiyaSooRTUSlR7cgJC8YNZO/iKmGFgsHRMwMcPT3AyHjxO/H7nNy9qZH1K6oxTYtz3aP89PWzbF5bx6t7zlFfFWDTmjpe23ueWDLLjg0NbFlTx/nuMY6c6icc8hBLZjl5bghBEFjTXsm2dfX4fYujCqRiaZKxNPUdlZTVLFxlulEEyksIlN9YQ/Etwy3+PWeNGL3J1xnNnMClhGl0P4xXvT3GZ7H8AP2pPURyXZiWTqm9gzrXPTjkILF8Hz3J14nme7Gw8KsNtHnfiSIuT0/MteB12dm2so66cAkPbGjm+MUhzvWO0T8WZSqeJpvXEcVioirodVBdVkJrTSkr6sPUlfspD7iXVGGuDZfwOx++j9RV9Fifa2mLaAHYvqqeP//V2bK65QEPJe7FLWgEoTi/NFYGqQh6WdtSSc9whNM9o1wcnGR4Is5UMk0mW8C0LBRZwqbKuJ02Ql4n4YCbunI/tWE/5QEP5QEPXqdtSb0ryVSO1/de4JH7OzjfNYplWqQzF3jsoVWL3tdywTCniKWfQzcnsSmtiPzsBJlvF/RMTHG0d3iWOaHHprGhrpIy78LS0qLowTCGcTs/DEjIUhUux/uKvmaChCI3A8VGb7fjQwiCCoiIohNBcExvv3J/DmzadhS5AcsqIIoeBOHODiBuFG/9SvhtCLuq0FgRmDfQyBZ0zvSO0Tkwwcr68Dyfvr0ocdlx2TRg7lhfOXKBSCLDXSvraa8pJez34Lar04ty4VavVZYFJS47FUHPvIFGOpvn4PkB1jZWUl3qm7Ndk2Tq3QHq3YElH19AwiGXU+1+F5ZloopebHIIVXLjVpqw0FFEF5JQfIDIoos6z/sxrQKaFEJgvoWFgF0O0+j5ODYpRLnzIQpmAkV0T6tfqQRt6zGtArLowC5XYKGjiiXY5BBg0eD9EKrox8LAb65Fk65t+iUIAg5ZpdW3sFRuKpFh9+4TxKeS1DQt8t4WYO/RbpKpHGXBYmB78GQfJ84O8t9+60nKgm7GI0lefOMMoiigKjLPvHyCzp5xHHaVyWiKn+w6Q31VkEgszRsHL2JZFnXVAUqDboZGYzz94jGyuQKP3N2O+wYyns//8y6Ov3GWiaEo2VSOZ/7+VXY/exS7U2Pzo6t56MNFxbeuE/3sff4oK7Y2kU3l2PvCMZLRNNXNYe557ybqO4oL7Nd/eJDdzx4hGS3ei5/5/fdRv4DrcGwywYv/+gYXjvWh6wa1rRXc+75N1LYV5cJHeifY9YMDlJR5kRWZQ6+cJJ/NU9lYxrbH1tK0pnaGkhUZjbH72SOc2tuJZcGKLU2koqklL6z7zg7yrf/+Q+KTSWwuG9veuYEHP7Jj1ntkwUapbQUpfYxEYYi8eXuM8hL5Ic7Hn8Ow8lQ5tyAioojOK7jqAm6lHJ9ai2HlORN9GrdSTq3rrmlT0+XB3mcPs+t7+4hPJLC5ND7yH99N4+paZEmkuqyEipCXlQ1hphIZkpkc2byOYZgIQpFSZFcVXA6NErcdj9O2ZDn1nJFg1HidvP84hhlHFR2sKvkYXrUGcYEK5vUgCAJVIR9V8yheXYy/RO/kLgpWBklQWOv/FIEboJcJgoDDptJWU0pTZZANrdXEU1lS2Ty5fAHdKLqjiIKALIkosoRdU3DYVDwODaddu2nvJsMwGZ+IE5lKMTGZZMuGes52Ls1oc7lQMMZJ5Q4iiS5gMVWeO0ly5u2LXEHnSO8QR/tm3werqsO0locWpBll80fIZF9DVVchy5UgCAiIaOrKOe+VBA+SNg81VJrbEydLIeTrPKvfjvh5oLEEOG0qbdWl7D7VM+/2kz0j/OTgWUpLXG+52VJLVZDKkIcLQxNztsXTOXaf6uFc/xhepx27Kl+X/yoIxXK4Q1NwaCpel53qkJe6sJ+Gcj9+t/O2BihBr5Pa0hJOdo/M2WYBr5/oprUqxJPbOvA4ll9KVBAkNCmAJs0OVmQcc14rvl/Eo15bQUMQBGTBgUcrvs8ul2JndgBQDCiKUCXfnH1c7xhLQXQiyZlD3TiXQO2QJZF3PrAKSRJx2osqZ6vbKvi9v3iGE+eGKAu2glVcaKzpqCLgc3Khd5xoPMNnPrCNI6cHeGHXaUYnirrwiVSW6nIfT9y/gnDQQyqT519+sI83DnbR1hhmRXP5dcdU1RxGkiUmBiOcO9xN4+oaOjY3IqsyNS2XPx+PJDn82ml6Tg/gcNsJVfnxl3lRbQrWFZS9xtU1KJrMgRdP8MaPDhOfpzcKIJPM8tf//huM9E6w7t4ORFmk80g3F0708dn/+n5q2yrIJLMce/0sU+NxyutKqW0rJ5ctcGrPBcYHIrzv1x6lvqOKbDrHC//yOnufO0r9yipKq/ycO3SRnrNDpJNLM7hKTqU48uopJoemcPoc1LTN9UqSRY0SrZ6pfDcZPbqk4ywFE7lzZPUo9e77KHesQ0DAtIyZip1LLsMu+5EFGxYmg6n9TOW7qba2XbOqt1iM9U1w9NVTTAxGcHodPPGLD83aLokiAa+TwBL8IhaD7sQrXIg/T4nWSFBrxbByqKITgVtDhw3YWpFEjf7kmwylD5I1Yov6vCAIKLJUfDaW3N5noygKZLMFfvyTY+zY0ozP63hLhVssy0Q3xsgWzuKcbyH6c9xynB4a46cnL8wyA3SoCtuba6kLLlyVVqRaBNujSFIQAW26F+PnWAg/DzSWAJddZW1TBQ5NJZ3Lz9meyuZ5fv9ZCrrJ++5ZRUP54m3cL6nt3Gy5P+x3s6WtlrN94/NWYHTDZHQqOW/D+EK4FGxIojjdkF3MPAW9TtY2VnDfmkaaq0LzSMItP8pKXLTVlPLy4U6yhbn60tFkhn99+TCJTI53bV9BWYl7UY2ElmXNZNreSmRSOQ6+epqzR3qpqA9xeOdZ1t/TSrgmyOs/PoIgCjz8gS20b6hDEATSySz7XzrFgVdOExmPUxL0cM8717L2rhZsV6jZxCMpnvv6m5w+2E0hr1PbUs7DH9xM4xWZ+NGBCM/9y5ucOdxD3/kRZFXi9KFuAOpay3nso9toWnXtpkpBEKirmh14rVtRjarIjE1cNpVSFImmmhCiKBAOeVBkicqwj77hKURBIJsrlrdlSaSuKkBLXSmyLFHidbCypYLv/+QokeiN9Ui1rq+naXUNQxfH+O6XXqR9UwP3f2Br8f6+6t6NjsXxlDh55ON3UdFQiiCAZVo4rgi6ymtDlFb5iU+mOPTKqQUfPruePsjh107zO1/6DK3r6xFEgZ5TA/z1f/gmP/3mm3zuDz4AQDadQ5JEHv7INlo3NGBZFq9+dx9v/PAQvWeGqO+o4vyRHg6/eoo197Txjo/fhcvnZGo8zt/8h28wORy9oevwdkJan0QSFdxKGGmacnhlAJHSJ+hOvkYs34+FwUT2HJWii5/FDLCFyWj2GDbJS7PncTxqFZZloEmeW0YT8yiVuJQwGT3CWPbkLTnGrYLbZePD79uMrpuEy7wYhsF9d7Vd/4PLCNPKky2cI5Z+gbzeTbZwHt2MkMzto3v8s7NUpOzKCvyuj2JX2+fZk0hO7yaefYVM7jiGGUUU3djVFfidH0CRqubxbsmSyZ8imX1z+riTYFnIUgk2pQOP/QFsSjvCFT2blpVnNP4lsvnTlHp+DUnyEks/Tzp3FMOcQhSd2JQOSpzvQZPrZ332eijoI0RS3yWRfQ2Htp6A86NoSt1iL+mS0T0e4XsHTnK8f3Y1Y11tBRvqKq/pJyFJfiRpfrn7n2Muli3QsCyLdK7AVCJNOlcgkyuQzuZJ5wqkc5f+LZDJXv7vS9tP9Y7M28wLcKRrkN/80tPYNRWHphTLqZqKw6bM/ltTsGvq9N8KHqcNj127JTrkkihSV+Zn24paXj7cOe97IokMz+47w7GLQ3TUlrGitoyyEg9Om4IgFGX8MrkCqVyeRDpHNJUhlswwEU8zGUvxqUc3sa3j2o1ANwJZknh0YwujUwl+uPsU0SVmOa+EZRUDFN0wyRUgmclDLEX/WJTzA+PsOn6RB9c1885tHbdcPUVTZFbUlrGiLsyhzoF53zMSSfCtV4+y+1QPqxvKaa0uJehxYtcULCx0wySdLZDK5omnskylMkSTGSZjRfrJJx/ZyMq6t5YGZ+gGowMR9r54gm2PrsLu1Hjmn16nrq0cf6mHnnPD7PnJccprgzjcNn701dfZ8+IJGldUsr6jjd5zw/zLXz5PNpNn2yOr0Owq6WSW//Of/o2Rvkm2PboKRZU5ua+LL//+9/jlP3g/jSuKmWyHy8bq7c04PTaSsTShihLue2o9AN6Ai0D4RhR/4OjpfvYc6aZ3MEIilaOgG6Sz+VmusaIgoKkSumGiKjKaKiMIwnTQDZemCVWVcTq0GXljQRDwuOyYplXke5vWdR2VVZuCZclodhUBUDQZu3N+ZS5Fk6luKad1fT3yAvLWgiggizKycm0J230vHCMQLmH9fe2oNhXLsqhpq6CiPsTpfV3o0wGzIAiU1QZZd18Hmr24AKlsLEOSRRKRYmJgsGuUQk6nZV0d5Q2liKKIx++ifkUVY/2RBcfwdoUkqMVMsDVX4MK0dI5GvoZDDtDmfRJFdHAk8rVFLX7eTtCNLDkjgUMK4JCD2KTr/w5vFoIgIiEWfX1uUdXkVkGWJaoqiotDQQDLkm+7vK1l6eQLfaRzhzCtDKaZBkywDCwrOy3qUYRp5Yvb5kG2cJZI6rtkC+cQBRnDymKZaVK5/SSyO6kJfBHtCsUi08qRyO5iaOoPMcwYppVFQEEQJMx8lkT2TZLZNwh5fhGP/XJ1zsIiV7hIPPsqNrWNTP40qdxhBEGcVlHKTB/zFar9f4lNab2h31teH2Yy+TUiyW9hU1pw2+5GmYdKdCuQLRQ41jfMt/YeZ3dn76wEZdDl4MGOJprDwbdl3+qdimULNNK5Ai8ePMdXf3IQ07KmJbbMGaktw5z72sy2a5QvpxIZ9p7pKzo0i8JV/4qz/paueH1bRy2ffHgDFcHln3wFQaDU5+TRja0cPNdPLDW/ukgqm+f8wDi9o1O8dqwLdYaWJGAx+/wN05xZvOuGyXvuWr4GNZ/Lzicf3khtWQlfe/EQPaO3ZgFiWhaJdI5kJsfIVIKu4Uk+9chG2mtv3QQiCALNVSF2rKzjbP/YnIbIS4ilspzqGaVreBK7qiBLl76LYsXCnL4/ddPEMEx000Q3DIIe14L7vN2wLPCUONn+jtXEp9L0XxilJOThg194iB/+005G+iPEI0l6zw2z7+VTbLi3jYc/sAV3iYNsKscXf+87/OSbe+nY2EBppcrOZw5zfHcnv/tXn6BtfR2iKLDurhb+4jf/lee/sZv/3x8XM+tOj41VWxuxO1WO7e6ksiHEjsfWAMXFtSRf/8Hy0ptn+eaPDtLeWMZDO9rw+xxoqsJv/rfvzH3zFRP8QnO9YZjoVynX5HW9SDuTpWWn72l2DV/QvWCQsRiMD0YY7h7j1x7445mah2EYTA7HCNcGyKaL95uiyXj97pkgA4r8fkEQZubM5FQaURJxuG2I01VTQRTw+N3I15B+frvCp9UxnDnKUOogLjmEJChkjVgxi49IvDBA0NZGiVZPWp8klu/H8TOWeRxI7eVC/AWi+V7i+UFEQWI0cxxRkAnZOtgQ/CXscvGcs/oUp6LfZThzBNPM49eaaPO9m6DtcibfsApMZs9zPv5jpnIXkQSVCsdGGt0P41Yr3qrTvCW4cl4QBAFJur2LSVGw4bbfjV1dBRjEsy8zNPUHOLR1lHl/G1m8LEYhihqS6Jt3P5HUt7Ep7VSV/BE2pRkEkUz+NMPRPyadO85E4itUlvzXmfcLKKhSLXZ1FXZ1JS5tQ1H9yLLIFjqZTP4Lqdx+1Ew9dnXVnEW/ZeWYSPwzNqWFSt//i03tQBAksvlzDMf+O5n8acYT/0CV/08RmC94u3yd8/oQE4l/JJL6Lg51FWXe38CurkJcQH59KYimMvzBD1/G77TjttlQJAnLMomkMvSMT9E3GSWSyszyzZBEgQdXNHFPWz3abWBjLBamZZEtFEgXij1NxvT68XYi7HGhLEGwYtmeRKZpEU/n6B+PLtcuZzCfjOz10BQLzNHsXk4ossSG5io+/tB6/u7ZvRT0+Y9lWZDN62Tzy2cbv1gMTsR442QPrx69wGh0Ln1quWFZkEjn2Hm8C4BffHwLTZU3r+azEByawiMbWhgYj/HM7lOzMuRXwrQs0tkC6eyN+5xYt/mHfD043DbCNUEEYZJA2Iu/1IMv5MbldWD1TlIo6Fw8PUghV6BlTQ2lVX5EUcDhstGypoYff+0NkvE0oQofh147QyDsZcXmhplMfrgmQHVzmHOHeygUdBRFRhRFVE1EVmUEUUSSpEVLv+4/1oMoCjz18BpqK/1Ikkj/UGTJhJZsrsDYZIJ4MovHZcOyLPqHppAlEbdTW/ZslCiybH4YmkOjvL6UD/z6o3PG6fI60KavrSBcP4hT7QpYFsZV808uk8e8hfPfQGo/F+IvMpk7T9aIMZE9g0+rZ3XJRynR6jg59R2G0geZzHXNUJhCtnY2BD8HlsW+ib9mKtdFNN/LcOYIw5kjVDm20u576prHDWlt5D0PczH+Es8PvoRlmVQ6N9PufQqXXEqT+2G6Ei/TGX8er1pNuWMN0rR/h2kZ7Bv/EpHcBaL5HoYzRxjJHKfKuZkO33uJ5fs5HvkGkfwFkoUxRjPH6UnuotHzMDXObdcc1+2ET62n1ftOskaM45GvY5O81LsfxCZ5sUleFLHYF5I3Uuwc/SPShQmaPI8gCRoD6f3sHv0Ltpf9LkFbK6ZlMJY5ycGJv0GTvDS4HyBnxBlI7SNZGGVN4BO4lev3O/0cNwZBEIvNwaIHy9KRxSKdVBTsqHLlDWf1JcFN2PvrOLRNCBR73lS5hoI+xEjsz4lnXp4daAgiNqWBypL/Nu3fYEcQJCzLQlVqMa0U2UIneb2XvD447zhEwUHI/Uu4bfcgCNrlYxqjjMT+nETmFbCMucq7goA4HXzk9WHG43/LVPppnNoGwt7fwaa0IMyjvHgzyOkGb5zrwbQsJFGkmFIEwzQpGMa8DJq7W+t538aVlHpuvULdtWCYJgPRGCeGRukcn6QvEmUkkSSazlAwp02IrUsp0tuLf/r4+6jzL15R8Wcv5XWbIAgCXpeNxze3E0tl+fbO4+Tn6RF4K9E3NsUPd5/itaNdjMeSZPP6koK2pSJfMNh5rIuaUh8lbjsBz61pjBQEgbDfzQfvW0Myk+OVoxdu63neToiiOEPNUVQZRZOnJ8VLrsuQiKYZ7p3kf/27b6JqlyfwdDJLOpklk8xhmhaTo3EGu8f5/AN/OjOxWqZJIpamtNJPNp1H8S7PFOH3OTl8sp/TF4YxDZPhiTg/euk46hIrBJIksvdID4oss25FFT2DEV7Zc45Nq2uprVxEBvsWztULPQhWbm3mpW/tZu297bivkuIVROGKqolwXbn8YLkPPW8w1j9JPltAtSnoeZ2BCyNk03M9ZJYLYftqAlozpqVjUTSHEpFRpWKDb4vnMRrcD8xQQYoLLAURGQRY7/8UBjqWZU7T4qQ5pn/zQRIVKu0bKLW1Y5gFwEIWbSiiA0EQafI8So3rLizLRBRkJEHBghmzynWBT2JYVx+3uM2llLMx+EuY6FiWhYCAKEgo4p0lMemUQzjkAHkzzfnYszjlEOWOdTjkEMK0lw7AhfhPGM+c4sGKPyVoa0NAoMKxgVeG/wtnYz/gLtt/JKNHuJj4KZKgsjn4BZxKGAsTp1LG2egPGU4fwu198i0+45/jarjt96IpTdM9HcVJQhQ0HNpGQEQ3JrGs/LSkahGCoKBIsxN+RVqqhiKVoUhBTDODac1Pr3bZtmFX2xBF7apjrkMQVHRzEsvKYVm2WQt1AQlBdFDQhxmL/39E0z/GpW2n3PfvUeXaBf2dbg4WBcO4oWSzKAhsbarhM/dspLU8tGQFuJtFJJVh54Vunj11js7xSTL5PAXDpGAWGS+3u3oxH5a6rvp5oHETEAWBshI3n350E1VBL1/9yQFGFtFUfaug6wY7j1/kaz89yPmBcfIFY94ljyZL1JSVEPQ6cdm16zZvG6ZJvmCQzuWZSmYYm0oSTWauuVbL6wbP7z/L2sYKtq2ou2VN1aIo0lgR4DffdzeVIS9Pv3GSqWXoR7njcMXac6FLqdpkSitLuOvxtdS1zc1GVjeVTVc5NKoaQnz41x6dQwmyOzVs9uXjL7/30bUkklm++cxBsrkC1eUlfOypTfzolRNLUuxwO2201JeSzub5q6++BpbFtvUNPPXQaoK3Wc0Gio3huWyedCJDdCKOXtCZHIoSGYni8NjQbNqMed87P3c/bz57mP/+i3/POz55NyWlXqbGYgx0jlDRUMZDH77x7PnK7S3UPneUH/3Dq6QTWapbyzm68ww9ZwZZjufSpd6YqyGLNmRx4cBAlVyoLPw92GTfkkckiSoSKvMpQ19vXLZ5FNouQRJk7PJb7H9yAxAEEeFSn4QgIAgiIvJMc/wlDKUP4JTLCNrakAUbggB2OYBPrWMiexbDKpAz40RyFwhorXjV2ml+vYVHqUIUFOL5gWlVr1tHJYlls/z49DmODA5R7fPxcmcXT7S3UuX18G/HTqBKEp/bspEtNcUG55F4ku+dOMVrXd2MJ1M4VYW2shCf3rSettIQ8vRC8fToGF96cx9nx8dJXSHaUun18HsP3MeG6rcvLUyTGxEFJ1dnImTJO/2SiYU+i8ZkWSYFY4R45kVSucMUjP7pfo0MhpnCMOM41DUslH3R5DpEwT3nmJLoBYr3jcV8yVYRy8ownvgKkdR3cGrrqSj5zyhS5VveP+Vz2Hh8TRsf2bqGmoDvpiWUlwLLstjXO8Df7z7Akf5hsnphwZ7ltyt+ZgON2yU3JooCPped99y1ivXNVTy//yw/OXiOocn49T+8ACoCniXLIuYLOs/vP8tXXtjP4ER8DvVHEgU2tdXwrm0drG+uwmVTEcTpZtvrXDNr+v+t6bKdbpiMTSXZfbqHFw6c5Wzf+LyfG56Mc/B8f7EJ+xbKPUqiSFmJm196fCv3rGrgR3tO8dqxLiKJpQUcsiRSGfQsyYX2rURNcxjVphCs8LH+3jaUq4KISxSglVsa+fHX3qR1XS3BOQ3dAuJV/GVJEpEkgUK+MOe+ul6puTTg4jc+fX8xI2JZM14Z61ZUI4oCkiSyY0MDm1bXYrMpYMHvfO4BLj3UNq2pY21HNYoiceB4L6ZpUV8d5D2PrJnJslzS379eE/hVp3npBLh2+eDa+7xwrJev/vEPOLO/C71gUMjr/NVvfg1REnF5HfzZM79DZUORjuAPe/mjf/sNvvmXz/K1P36aZCyFx++mdUM9Gx64rMM+7yW9apgev4sP/MY7+OHfvswz//AqArDp0dU8/gv3svMHB27gAlwbgiDMBEg3SiNcDO1gKdTEpdIaFnus5aRPXOvYt4qmkTEiRPM9fOviu68cCYaZx61WopsZTKtAsjDKZLaTrsSLV4zXwLAKhGxtGFYeUbh1RnKWVQw2Dg0MUepysaYizNcPH6O1NMj6ygoODw7xUmcXDYES/A4Hf7NnH6dHx3iktZlKj4fxZJJDA0Oo0mVp9mgmy288/SwdZaX8r3c9zlgyxV/t2o1NUfjie58k4LizqlSLhSS6FvRguozpJ7ZlYVlZYpmfMBz9E3Qjgig60JRGNKUVUXChGxOk84euecyi0dz85rLXgmllSWRexzCjWOTJFXpJZHfhd370eqd5w7j692VXFd67cQUXxyMMTSVIZHNkCzqyKFLisFMbKmFLQzU7WmppCPmLz41b+Htf6DduWhYvnu3kizv30jURuSOqFrcCyxZouOwqH39oPR95YN1y7fKmcKk5/HZAmDYZaqwI8IWntvPxh9bTOTjBie5hzvSOMRyJE09nSWbyFHQDWRKxqQpep42Ax0HY76G21Edd2E9rdSl+t31GTWcxMC2LN0728LWfHmJgfK6+eVmJm196YgsPrm/GZdNmFjI38+B22zXqy/3cvbKerzy/n+f3n52TD7GAUz2jTMRStzTQgMvO7asbyllRF+aXntjK2f4xTnSPcLZvjPFYkkQmRzKTLyobyRI2VaHEZSPodVIZ9FJbWkJ9eYDmqiAeh/aWlVKXivX3tHFy/0We/ofXGOwao3lNDXpBp/fcCLIi8uQv3I3X7+KJT9zFvp+e4o9/6Ss89rEd+Ms8RCcS9HWOUtVQymMf2z5rv54SJ2XVAU7svcDTX9lJeW0Qm0OltiVMSeja6mKCIKCpMle3+12pCifL0uX7XgDtCnlBWRJnZZuKdB3m3ediUdlUxrfO/88FFerW3N3Knz/7uwjXuA8a19TyB9/8tVm+GjMQhFkVI0EQKK0J8Gv/8+OYZpFvy7SD8qUgsK69kj/41q/PCTY2PLCCdfe2z4xFEARqWiv41T//GL8yfWxRFEAQeOrzDyAtoXFv1tAlEUmWME2T2HicI6+e4o2nD3DxeC+JSBLVplLRWMba+1dw7/u3UtFYhiRfW3ULLi1+LPSCQXQsxuGXT3Li9bP0nupnfDBSlPaVJTx+F+H6Ujq2NrP5sXXUr6xG1ZSZ4OdGYFkWRsFgsGuEvT8+wqk3zzFwYZhkNEU2lUO1KXgCbioay2hcU8uqu9po29yE0+tYtiDANEz2PXeE//GZvyGfLSBJInUrq/nNv/4cjWtuXl1wPqiiixK1ng3BzyNetUBURBuKaJ82HA0Qtq+jZR6KlEspRRJujzJTtc/L+1Z1MJxIcm58gpXhMr6wfQtffHMv/dEYsUwOWZQYTSTpKCvl0ZYmKjweBAE+tn7trOf9wYFBRpMp/v4D26kt8ZHVdUbiCb568AjpXIEy19trTp+L6yVGroRFVr/A4NTvAzoB90cp9fwasuib2Uciu5PhaP8NHHMpKFY5Qp7PIwoORuN/xUTin5BFPx77ozdd1bAsi+HuMcJ1pVimyf4XjzPSM87v/fJDxQW/dblGM9A5zIk3z7P98XX4S72IgnBLAv3RVJL/+vqrPFzfyH019XhttuKxuLzesiyLIwNDfPPgcTrHJ5d9DHcSli3QEAQBSRB4CypPdwQu3TySUKxwbGqtZlPrtb0FbmR/NwrLgu7hSV44cJbukbmqUn63nV99ajsPrW9Bu4785mLHKAkCdWE/j21up2t4knP9cysb5wcniCTSRe7zLW60urR/WRLwex1s8dSwY2X9DWcsLCCt53DIKuIdIo15qSfDZleLzXWSiGZXUaaVhRRNQrMrSKKAzaHyyd95nF0tYV75wUFe+t5+FFWmqr6Uhz+4ZabZ2O1z8Idf+2W+/Tcv8YOvvEY8ksTjd9G2tpb69rm0gmC5j8c+up1MKscP/3EXRsFgw31tvOdz91030LhTceleUa6h0CSK4oyi08LvERDFG59Oi43e0rw5SbgklTt363xjWXBfyzAZX6pinXrzPF//kx9w5NWTVwVTKSaHpjjx+lme/fuX+ci/f4r7P7wdt991zd+5aZic3tvJ9//qOQ68cIx8bn6BhuRUiqGuUQ6/dILv/9XzPPDh7bz3Nx6noil8Q5UrQzcYvDDCN/7kaXZ9fx/6PKIc2VSO+GSSgfPD7H/+KN+Wf8S9H9jGb3zps9hdN1/NNHSD/c8f5U8/8UVymTyiJFK/sprf+vIvUr9y6c+I66HSsYmT0W/hUStwKRUI02qHlmVOc/NlNMlDQGsma8bwaw2okrv4PsvEwkIUpBkZW2tmxWZN/zX9r2VyaRF6M3O7Q1EocdiZymQJOZ347DZkUcA27c6sWyYldhvrqir49tETjCaTvLOjjc3VVXjtNiQuLxqzhWL/jigIM4tMUbisWnmnoXhZb00227KyZPJHMcwIdnU1ZZ7fQBL9sxa8ppXFMJOI0vInAgVUnNomwt7fRTcnMa0s4/G/YSz+ZSQpgFPdOCvYMA0TvWBgmiZYIMkisiKjF/QZtT1FlRElEcu0mBia4sd//wof/Y9PoagypmGh53X0adEXRVWQZBHTNKmsK6WiNjQjZlLI60XRDKtY6ZdVCVMvKhqaZvH+UWzKom0Sypwu/scDj7BnsJ8vH9mPTVbYUVXDqlAZNllGEkUSuRy7OrvZ13O9AK+4xhIu/Y8rq923915e6u/7Z5Y69VbirVAsMC2L071jHDg396YVgEc3trGptRrbLZK8FASBhvJiRWa+QCORzpLJz7+YsCyLtJ7HIavLfu32TVzkfHyUB8Lt1LrmOnXPh2guxft2/g3/tP3TC37GsiwKloFpWdik5VXMmA9Oj513f/Ze3v3ZewFw+2poWXO59PzUp++d9X67S+PRj2zj0Y8szPcXBAF3iYPP/t67+Ozvveu6YxAEgfr2Cn7nf35siWexPFBkCY/Lhk279df9/3aIokjn4R72PneU07vPodlUFJuMKElAUe0ql8mj5wpEhqP83X/6Bvm8zjs+dS8u38LqLXrB4Oirp3jzmYMziwlFVZBVCfFSRWRaTSufzZPPFUgnMjz3j69iGCYf+Y/vpqz22lr3RsHgwE+O8aXf+iqjfRMzaU3FphTV1CRx2k+hKC9sTFPevCEPzevrlyXIKOR1DrxwjD//zF+Ty+SRZInm9XX87ld+herWW9sj0OJ9kv7UHl4b/gMaPY/ikPxkjRjxwgAlagOtvnfhkIM0uB/hwMRf8+bo/6DKuRVZ0Ejq4xTMJFXOrZQ7ip45plUgo0+RM+LEC0PoZpZovgebXIImurHLASSW/psUBGGmeiyJArIozv5+reJ7Prd5A6vCZXzv+Cn++6uv41QUPrBmJe9Z2YHPXmxE3lpbTcjp5Itv7uUzWzYQTWd5/ux5VpSVUuW9Q5IigjjdrC1iWil0cwrZKpsVAMBC64lFVPSwsMz89KdkBMF+xTFMdHOCTP44BWP41nlZTFdsFSlIwPVhdHOSqdR3GIt9iXLff5zlvzFwYYTXvruPiYEImXSOjs1N7HhqA3uePUzvmSHymTz3fWArq+9qZXxgiqf/5kVO77+A/ocGGx5ahaEbHHv9LENdY+SyeR7/9H2s3N7C5HCUZ/72JaLjCT75n9+DhcWu7x+g+2Q/pmFS0VjG/R/cyrkDXZzcfZ7ec8N4A24+/ntP0biqZlGnawGKKLG5oooqj5c3+3v59pmTvHCxkyeaWtlUXklvJMrJ4bEFe1xVScKmyJQ4HDQEfJR73QScDjw2DVWSUSTxtidCQ66lBaI/DzR+RhCJpzjbPzavp4fXaWd9cyWlPvctHUOJ20FoAWqUZUEqU1RRuLrpPFbI8KWzr/JbHQ/jkJe3TL+jtJkdpc3Luk+AvGmwd7yLqXyad9fcGXTB/1uwcVUNGxc58f8cS0NsIs7e5w5j6CYNa+q49wNb2fTIakprQ1imSf/5YV795pvsfuYgE0NTFLIFvvVnT1PbVsn6B1cu6OWhagoPfGQHL3z1NSzTora9knUPrqRtUyMVjWGcHgeFvE7/uSFe/8E+dn1vH5ODU5iGyZ4fH2bF9hYe+tjdCAv4IFiWxak95/k/v/5PTAwUaQmKKhOs9LP58XV0bG2mtDqAzWkjk8gw3D1G5+FuTu/rxBfysObejpu+dvlcgf3PHeF/f+EfSMUzSIpE68YG/v0/foGKxptf0AkI2KQSNNEzr3KPKrl4oOKPOBX9Nt3xl8iaMTTRS9DWSkArzomiIBF2rGFH2e9yLvZDzsaexrDyOKQQlY5NuOTLRqWT2U5ORL7ORO7czGsnp/6Nk1P/hl3yc2/5f8Gr3roKzSVIosj2uhq219XQF43y7aMn+Zvd+/HYbDzZ3opNkQk6nfy7++7m9557kYMDQ3htGtvqavjUxnV3DBVWQEQSS1DlarL5s0TTz+J3OhAFbZoaKiMJboR51dhuvPohCiqa0oggaBSMEaLpp/HYHwQEdGOMqdTTRNM/QlhGH4trQZWrCLk+hW5MkszuYjz+ZcK+fzfLzVwQBO774FZqWiv4yb/s4s1nDmEaJh/6rSdQ7Qr/8idPU9NWQWVTGY9+4m5kTeEz//X9iKLA7mePUFYb5Jf/7KOc3nuB/T85xsrtLYQq/dz/ga3se+HYzFgEUWDd/R1seng1O7+/n7MHu0hMpdjw0CpW391GIa8vqVqfLuT5wbmznJkco9rj5dH6Jj63diOHRoY4NjrMpvJKhmIJLk7OZZ8IQInDziNtTTy1uoOOcAib8vZOqv080JiGbpokcjnSeoGCYUxLIhazKpok41AVbJI8J7tgWRYF0yCVL5DRCzM6xyICiiTiUBScijrH5GQqkyGezyELIqVO54ImKKZlMZlOkyzksckyYef8lISJeIq+sal591EXLipL3epCiyoXI/CFkNeny6HTJA/DMonkUuwdv0h3coL+VASHrOJV7HhU+0zVIJpLkzN1JEHEo9hwykUN75SeI1nIoYgSKT2HKAi4FTsuWcO0TGKFDGk9jyrKlKgOVOny2AzLJJpPkzN0dMvAsooZiFJbcVKxLIuknmMgNYWFhUNW8akORAQyRoELiTEOTPZik2T6UxE0Ucaj2pe9umFZFpZpUcgVKOT1YknZMDF0A8Mwsczi9ktc1CubmwWhmJEWxKKJpSSLiNOce1mRkFV5pnfg5y6oywPLtNB1o1i6LxjFcn/hiu/KuuL7gpnv5tK/xe9FQlbkme/nrfxuihQGizX3dvALv/9+Ora1zNresaWZ1g0N1LRV8u2//BGjvRMkplI8+w8vU7uiitLqwLzjF0SBYKWfX/s/nyZY6adxTe2c99mBFdtbaFpXR2VTOf/6R99jajRGdCzGxRP9xCcT+ErnN2SNTyT4yn/+FpGh4oNc0WS2v3MDn/+LTxKsmKsstfKuNh7+xD1kklmSsTT+sO/GL9I8KsS5TJ59zx3mi7/xVeKTSSRFYsW2Vv79P/4ypTXL4ymkiHbuCf/na75Hk9ysD3yW9YHPLvgeUZAJ2tpmmfjNh1L7Ch6s/JMljXW5kNcNkvniXK9IEkGHg09sWMtrXd30TUXRTYNLy5rnz57noZZG/uzxR+6Y4OJq2ORGfI6nmEz+C+OJLzOZ/CqCYMeycri0bZR5fx27uuKmjiEICja1A5/jXcQzP2Vo6r8xFv8SAiqGGUOWAngdj5HXh9CN0WU6s2tDU1so9fwyhhklnn0FKeGn1POFGcPCS95Qml3FNCyi43HCtSEUm4LH7yIdz1z2DhKEWXROURQprytFFAU0u0r+Gr5ZLq8Db9CNosmIgoCqqdidBodfPY2iyex4cj1u/+JVDC0g5LDz3rZ7cSqXk6e1Hu8MFTCdLxDPzpUg9zns/Nq923hqVTtO7fY6198q/DzQADKFAifHRnmm8yz7BwcYSMTJ6TpezUbQ6aAjWMrdNXU80dSCJl++ZJZlEctl2Tc4wGu9PRwbGWYgESejF7BJMpUeD1sqq3iiqZVVpWXYr4hKv3vmJH935CBuReNLj7+T1kBwTg+BZVmk8nn+82s/ZWdPDw/UN/Klx56ct2iazOSJxNPznl+J24HTdutvWMM0FzTLA9AUadaEnzEKfP3iXl4f62Q0E+dPTjyHLIq8u3ot76xei26ZHJ7s5Xu9hxjPJXHKKltDjbyzag0+1cHO0fN8q3s/q0uqODk1iAXcF27hXdVrMS2LH/Qd4cWhU5Q7vPxq6/20eS9LvQ6mo3z1wptM5JKMZOJcSIxyV2kTv7/mKUQgZ+q8MHSS09EhcoZOozvEZ5vvotzu43RsiK9eeJPz8VEUUeLwZC9NnjLeW7Nu1jGWAmuaLpJJZskks2RTWeKRJIOdIwxeGGVyeIroeJzoWIzEVLGZNZ8rzCxsLzUUX6Ki2JwaNqeGw23HE3DhDbrxhbyEqv2Ea0OEKv2IsnjLg9CFIVDTXrloDuydAtM0KWQLZFM5MqkcqVia0b4JRvsmGO+fZHwgwvhghMRUklw6Ry6dJ5fNk88UkBUJza6hOVRsDg2n10Goyk9ZbZDSmiDhuhBlNUGcXgd2pw2bU7vCN+X2IVBewl3v2TQnyLgESZZ4+BP3cO5gF699ew/5bIEjr5xktHecYEUJ0gLCFppdZesT6697fM2usva+Do7vOs3O7+wFYKxvguh4fMFAY+d39zJ4YbjYbA+sf2gVv/13n8fmvHbW1u6yLZoyJcvSrOb0bCrH3mcP8+Xf/ReiY3FkRWLljlZ+95++QGgxHi8/xxz0RaN87/gpDMuk0utBEkTOjI1jWRYbqipmPZ/7ozHaSoOcHZ9AFgREQcSmyAQcdhzqnbGAU+Qygu5PocqVJDKvUDBGsBCQRT9ObTOSeCV1V0SRqrEpbUXH8PkCeEEr0pCQgCuENqQQFSX/Dw51LYnsTnRjHEHQcNnuwud4HJvSSiT1HTL5U9OyudP7Q0CVK7Apbciif6ZfZ/YxVWxKM4YZgisra4KILAawqa2oUuXszyDgUNdQ6vlVxhN/R7ZwjlRuH177Y9P7nH1u4doQqXiG0d5xJgYjlNUEZ3oNbU6NTDLL+MAk7hLXdIJt9hgtyyKfLRAdT5COZ4hNJIpmp1cdqyhQodO+sYFVd7WiaPKSlPFciso9NfVMZtKMp1LF/iObnVKni1JnMXDJ6zrZebzXdtTXsLWu+mcmyIBbHGgkCxkm8wk8ioMS9fZr298ILGBnXw9/+uZOJtJpypwu6rwliIJAwTTI6AV29nZzdnKCB+saZk1kpmVxbHSE39/5CgXTwKNqVHk8xc8aBhPpNF8/cYwjw8P8zrYd3FVdO7PQvr+ugecudHJsdJhDw4PUer04FHXO2EZSCd7o68WtqTzR3LJgQ3NBNxbsgdAU6bboQ8dSWSKJ+YMdWRJx2rRZC0qXrPGbHQ/T4A7xwuAp/seG9+NSigsBy7KI5FL83fldPF61iicrV9OZGOPr3ftQBIkP128GC8azCSodJfxKy33sHu/i5ZEznIwOcW9ZC7/Ucg+VDh9HIn1zxvOj/qNooswfrn0Kw7L48M6/5Vda78evOojm0+imSVYv8L83fpiJXIIvn9/JS8Nn+EzTXWwM1BHUXHyv9xBlNi8fb9x609fO0E0SU0liEwnGByY5s/8CZ/d30X2ij8hI7IYnOwur2EyXh1w6TzKauumx3UpIssi/9f/1HOO6OxmWaZHL5ElMJYmMxOg7N8iFwz10Humh58wAqVj6hpgNhZxOIafP+o7OH7p4+Q0CuEtcNK6uoWVDA83r66luKccX8uDyOYpO7bch6KhsDtOx9dr0Q5tTY/1DqzjxxjmGL46STeU4vec8jWtqcXpuXko0WOknXFc683c2mSWXmX++0ws6e350qPg9AHa3jU/91w9gcyy/YzyA5lBngqlMMsueHx/mK7/3TSLDURRNZvU97fzWl39x3krK7YJlFVu3c0aBnGmQN3Xyhk7BNNCtYhXetCxMitW2mcZpigt0RRRRRRlNkmf+lQVxWa6nJAqEXE5qS3xIgohTVajx+fA7ipK6IZeTrK5jU2R8NhuVXg+7e/o4NjSCLEpUeNz89r072FxTNcMMGIzFWV1exhvdvRwaGAJAkURCTidPrWjnXSva7pgqhyKFCLg+SsB1bblXUVCp8v/hNd+jyTW0hJ+d87owHbwE3Z8k6P7kvJ8t9Xx+7ucElXLff6Lc958WPKYqV9FU9p15xmsj4PoQAdeH5v2cIEh47Pfisc/uL1RtKt6gG5tDQ5REAuU+Wjc2MHBhhP0vnij2aLx/M55AcU0Zrg3h9jl54Z93senRNTi9jukEhIDNqRGq8mMaJiO94xx//SyR0RhHd56mtqMSb8CF02NHFEW8IQ+FXB5DN+g62Ufv+SH0vMGjH79r0aINWV3n9f4edvX1kC7o1Pl8PFLfSHvw8hymyBKaLKHnZydnK32emXv/ZwU3FWhYloVuGWSNAm5l7oU5Fu3mG707ebBsDe+t3j7PHm7uuBkjj0e5uYeYYZp869RxBuNxHqhr5Fc2bKIlEESTZSbTaXpiUxwcHsKjaXhtszNdkihS5y3hIytXY5NlNlVU0uArwa4ojKVSPNd5nm+eOs6J8VF2D/SxMlQ2o9/d6A+wvrycC1OTPNt5nvtq67HLyqyJWzdNXujqJKcbNJUEuLtmYRnEolzk/Nuyef2GHDJvBpZlMTARm1fxCpg2BVRvWPnJxGIwPcVYNsGTVWuwSQp1riArfZUcmuzlQ3WbAKhzBdkSrMepaFQ7S3DLGon89X0zJnJJqh1+JEHCIRdpT7H85SDJLqs8XrUKt2pDtwwa3SHGMkv3RlkIuUyeiaEpRnvGOfjT4xz8yTF6zw3dUsfqn2Np0AsGiUiS8cEI3Sf6OPzKKU68cZbJ4alb831ZkIgkOfraaY6+dhpJFilvKGP9gytZe18H1a0VBMI+HG77ouReFwt/2Ed5w/V7ChrX1OENuhm+WKRf9JweIJ8p4FyG3lvVrsyqRhQKOoZuzPvesf5JxvonZ6gVq+9up6IhfMuukWbXkGSRbDrHnh8d4p9+/9uMD0yi2lU2PLiKX/3fv0Coan4K2a2EaVkz9NJEIUu0kKEvOcVIJsZoNsFYJs54NkmikCNnFsgZ+jSV1EQRRTRRxiYr2CWVEtVB2O4mbPcStnupdvoI2dx4VTtuRcMla0hLDDzcmsYHVl/2j2kvK6W97PKC7P2rZ1OHPr5hLR/fsHbB/RUMgz97ZRd5Q+cP3/EQXrsNLIik0/zg5Bn+8cBh7mmoI+B8e3tp/KwiXBskXHuZXvj4p+8DoGFlNfe8e9Oc98uKxOf+6IPz7quuo5K6jmI1pbatkk/9/vsWPO7d797I6b2d5LMF7n5qI64SF288fWBBRTzLsphKZ/A57HPWNfF8jjf6+/idLTtwqRqHhgd5qefirEDD77BT5nZxcXI25d2YDvp/lnBTgYaBSW96nHPxQZ6o2LhcY7ouTCwG0pOciPXwrsotN7WvvGGQyOUwLIt15eU0+QM4lOKCv8zloszlYkvlwtFsjc/Hr2/eNofOVO3x8uEVqxhMxPj6yRh9sRiTmfRMoCEAjzY2s6u3h8PDQ5yfnKTM6ZrJyFiWRaqQ57nO89gUmQfrG/Bq13DiVWTsC6jwjE4liKeyt1RaNpXNc7RrcF7FKYC6Mj8+141H6ZYFab2AIkoo0+VYSRBRRYmsUcCcXtnZJAWXXFyAXPqxWzew6lvhq+BIpJ9jU/1YWDhllVrn5TK1iIBPnf6upqWbzWVcTeYyecb6Jjh/qJvXvruXo6+euiaX9Od466AXdKLjcXpPD3L45ZPsfe4IQ12jRVnE2whDNxk4P8zA+WFe/NoumtfVcddTm1h5VyvlDaU4XMsfcEiKhMvnvCE6UajKj911ORgY6R6nsMBD+kpYlkUhp5OYSpJJZsml8zO9LaZhYpoWhm4w0j12xYcW3l//uSFymcvc57bNTUjKrcteaw4N07A4/NIJ/vVPfsBo7ziCILD5HWv55T//+G0NMi71lk1ki5TQc/FRzsVGORsb5WJinLw5f3B2NQzDJGvoxApFcZEeZuv8iwhUOLy0ecO0+8K0ecNUOXyU2j14FNuymp8tFql8ngP9A3x68wbaSoMokoRhmmiyRJnbRU9kioJxY9fh/zZYlsVELsVAaoqMcXPPI0kQKLW5qXPd/iB7qahqLme0b4Ljb5zDsixq2ioov6KSeiXi2RzfPXqKT2xeO4sWD8W1iCpLpAoF8oaBbprYpNnL7eoSHx3hUronp2ZNZ0PROFOZLP6foUD4pgKNjJ7nwGQn529zoJE18hyMdHJ06uJNBxp2RaElEOTMxATPdZ4n7HTRHgxR7nLj0a5far/WVq/NRrnLg11WyOjFG+5KrC0rpyNYSn88xo87z7KuvByfZJ/Z58mxUc5NTlDucvNo07WpC267tqAZXs/oFJ2D47TXluK4Bby/dC7P3jO9vHSok0R6bnOTKAisrA8vOD5VlMkZhemm7GKYIAoCYbsHSRDoSozR6C4llk8znIlR7SxBulLWbQmT2NZgA88PnuS5weM4JI3PNt9Fqd1zhepF8WG6EIqycgI5s4BhmTPvvd79YpomY32TnNx9jte+vYejr52mkJvL0/w53noYRtGk7sLRHg6+eJy9zx1htHfirR4WUOwDOPHGOc7s76J1YwP3vHczK3e0UdUcRnMsn0y0oinYXbYb2p/DbUe1F+dMy7JIxdLXDMZM0yI5lWSgc5jBzhG6jvcy3D1OZHiKVCxNJpmlkC2KIBTyxcDjRhCfTKJf8d5wfel1fVBuBrIicWZfJ6/+226GLowUNfllgbvevYmSMu8trTZdgm6ajGbjDKainI4Os3+ih0OTvcQLc+fj5UAx2RdlIB3lpeGz2CSZVSWVbAs1sLqkkmpnCRUO34z+/+2ER9PYXlfLG929mKaJXVHI6TpD8QTnxyd5oLmBUvedSeV+K2FZFmPZBN/uPsx3eg8znk0seV8CAnUuP7/QuJUapx/pbRJoeAIu7v/gwpLwV+L44Ag/OnmWD29YNSfQ0CSZGreXn1zsnFn/Nfln92fVlHjZ0VDLof4hhuOXr/WxwRFODY9S6fVcU1zn7YQlnUXe1LmQGKIvPc7+yXPkTZ3Xxk4A4JRs1LtKCWrFJj0BgYyRozMxxHguBhb4VCfVjhAuufgAMyyT8WyM0WyUpJ7FtExskkKVI0jYVjIzURVMgwuJIfrT4+yZOEtKz84c1yFp1DnLKLV5p9+rM5aNMZKdImPkERBwyhqV9gB+zT2zUBWAD3WsIprNsn9ogP/3tZfZUF7O1soaVpSWUuv1UeX2XJPPmdN1JjJpJtNpUoU8uekI1rQsuqNTCMAlA+AroUoS72hq5sDwIDv7evhMPI5HK5agTcvi+2dPI4kia8rKafFfW6kk4HVQU+pDYO5xMrkCLx++QG1ZCeubq9CW6eY1TZOpZIb9Z/v57q7jnO6dX7Ei7Hezqr4cn3P+ikatM4CJxasjZwloLupdQaqdfsJ2D3eXtfB0/1HW+asZzyaJ5tM8VrnqumMbycQZSEc4Hx9hOBPlaKSfjF6g2VOGS9EYycSLDYT+2unKhcBgeopqx401a7pljaDNRWd8lFdGzlKqualzBfGqC1dtUvEMXcd6eOWbu9n1/f0zHPKfYy4sy8SwDGRxbpXu2vryy3Fsi1w6z8UTfex99jCvfWfvHRNgXA09r3Nq93nOH+pm5Y5WHvzIDtbe14E/7F2wCXsxEEUBSbnx/chKsTHaMizy2fyCFADDMOk/O8gbTx/gje/vp+dU/0zjtqzK2Jwaqk3B5tJwSg4EUSAZTRGfTF53DLl0Fsu4fFy7U1tSMuJGERuP8/SXXiAyHJ0JrAzd5AdffIHyhjJaNjbcMrGDgmkwkolzPjbKrtFOXh/tYjQTX9bq640ga+gcmOjlwEQvQc3J9tJGHihvpd0bpsrpu2m9/6l0hol0mql0hoJpEHa7mUylEQToKCvFqapE0hkuRiLEszk2Vlewv2+QnkiUtF7Asiy6I1O8e2UHVT4Puy72UOZ2Ue31MpZMktV12ktDCIKAbprTdBaLhoAf+Q7p5biVsCyL0WyC7/Uc5rs3HWRAgzvAp5u3856atUuqbmULBfqjcUbiCbIFfVaPYlMoQHWJF0WSONw/hMemEXQ5uTA+STSTRRFFavxe6gPFZ7lpWcQyWS5ORohlsoiCQHC6J8htu1yBNS2LSCrNYCxBLJMhbxSrYOUeN1U+78yiv2siwnAswbOnzhHLZHnl/MUZFkxj0E9D0I9LVXmovpHnLpxnMBFnTVmYrVcxYxRJYntDDT2RKb5z5CSRdJHyPRiL88yJM/jsdjbUVMzs++2MJa04c0aBA5FOTsf6uJAcRkTkx4P7AQjbSrBJ62cCDROTU7E+BtKTjOdiZI0CqijzaPl6doQ6cMk2DMvk1bHjnIz1kTFy6KZBSs/S6qnic42PUKIUJV0Lps6ByHlOx/vpTA4hwMxxQzYv7whvoNTmxbIsupIjvDB8iMHMJKZlYlgWqijzRMVGtgTaZk38a8Pl/Lttd/HChfMcHB6iOzrF/5+99wyQ67zPe3+nTe8z23vHYtE7QIAo7EUiRXXKqrZsy1bs2E4cJ/G9N+XGsZ3YjuMaWbbVRYlib2In0XsHFtt739npfc4598MACyy3YHcWYNH184XEzGlz9pz3fZ9/eZ4jg4fwmi3cUVHFvppatpSW4bPMjMirmsZ4PMaxoQFODg/RMeVnKpnIkQwt55waTqWIZdLz3svt5ZXUut0cGxzkzZ4uat1uLIqBiXiM/X29mGSZR5uab/qyum1mmsoLcNstczZkn+ka4om3FRKpDGvrynDZTHk1w+k6ZFUVfzhO39gUJ9oGeON0B/3jwTm3V2SJO9fUUl/mndeRtclZxCMV6zgXGEQWRayygQqrB4ts5PGarbw8dIGjE904DGbuL13FRm+uV6XU4mKDt2o6JWlXTLS4yiizuBlLhDjl7yOSSeE2WOmOTBDLpii1uBAE6IiMU2BycMrfjyDkJmyjpPCf1n4MgySzr7gZ61VPD0WUqLUX4jNe9yFxGSzcUVhPLJvm8HgXDfZCfFdrlueCfyTA0ZfO8NI/vEnv5aF568v/BTnE1Ti9sS5qrA2oehaTZEIRDSTUOEOJAUKZIIXGIopNZShzkJF8oaoa/uEAp9+8wJs/PsTFQ+3ve4lUPsikckpPfZcHuPOT29j56CYaNtRgNC8vu6HrOvoif7+u62hZbXpRIMlzS/Nqms5w1yjf/3+f5uDTx9F1HcUoU1FXRHF1Id5SN+4iF1anBZPFgGJUEEWBIy+e5uAzx296HaIkzUg13+53baRnHAQoqvRR1lBC17k+wpNh2k508eM/fpav//HjlDeU3NLMhqbrjCZCXAgMs3+sg/2jnfhT0Q9Fa9dkKsbzA+d5Z7SdfSVN3FXSxBp3OYXm/H2cOv1+Xr7SQSKbYTQcpdqTC6r1TAX43TvvYFVRIUOhMG90dBFMJlFVjVgmzb/etZtqj5vRSIRHvvNDouk0B3v6iaXTWBSFR1pW0OUPcGF0jH+3dxcuk4nJWIynL17CY7FQ5Xb9whMNXdcZTYR5qu8MT/aeZnwZJAOgwVHIrzTewcMVa/Lyrc5qGicHhnn56kJe1TS6JqeYiMZYU1rMF7esp8RhR5Ek/u7gMcqcDmq8bi6OjOGPJtAFnXua6qnxetB1HX80znMXWznS3Y+qaeg6OMwm7mqq5a7GummyoWoapwaGef1KJ8FEMrcOTWeocDr58rb1tBQXIUsiF4dHOdY3yKmBIcLJJM+db0USRWRR5OOrV1Dr8xDPpDkw0Ec8m0EWRfpDIc6OjrC9fKb/U7HDzmNrW8hqGi9famc0HEEHDnb1kchkeTi0grVlxZQ5HdiMhg+NgMFSkRfRsMhGHirZxAZ3Hf/c8wZGUeFfN+achWVRwiZfX2wl1TSjaobVrhoeKttMNJvkZ/2HeHPsHLW2YhrspciCiNtgY2/hakrMHiRB5MhkKz/ofYdt3iZ2FeSawYySwoOlm9nkaeAfu19HAP7tiscAkEQJm5yrI87oKqemOrkc6ufhsi00OypIqCkG435KzR4UcXaErs7t4Tc3b6MvGOTUyBCnR4dp80/ySmc77/b18JW16/nauo0zUmT+RE5V6qeXL+bKgwoLafYV4DabscgGDJLEkaF+3u3rnfdeukwm7q6p4/LEOC91tvPJ5hbMssJbPd0EU0mafQVsL7+54oEsSTRXFbGxsYw3T3fOiiRqms6BCz0M+8PsWl1DS1UxpV4HbrsZm9mI2ZCbzG90JdV0PadmlcoST6UJx5MEIglGAxHaByY40zlE94gfVZt7ehMEaKku4u4NDRQtYBYoCiKPVq6fZXwnCgIFJjtfrptbSGCdp4J1nuv3psTsmnGMtZ6571tnZJzXhi/xOyvvocVVigCcnOzl3595Bk3XscpG/nDNQ9PbW2Uje4tnaswLgkC9vZD6prnrN69B13WGOkZ588eHePW77+IfCS64/b8gh2BmipdGnmadaxMqGgWGAhrsK5lIjXFw8i1SapICYxFbPDspt9wa875sJkvPhQFe/8EB3nnyKKHJ5U24HwSmRkM8//ev0XWul/u/soctD6zD7p7foftmyKZVkvHUovq70skMqWR6WtM+p+Yye59sJstL33qTA08dA3KKVZvvX8eez2yneWs93mL3rEV5OplhuGuMg8/c/JqtDsuMbE5gLIx+g3/PrYYoCjRva2Tv57az4a7V/Pyf3+GVf3yLSCDG0ZdO4yl186X/65O5MqpbEJmMZlK0hkZ4baiVN0ZaGUtEPhQE470IZ5I823+OA2OdfKxiNfeUNrPKVTrDz2gpiKRSPNDUQOv4BJ3+Kb6+ZSN/f/QEw6EIjQU+ypwOfmnDWopsNhKZLN94+nkO9w1Q7cmpfWVVDVkU+Q/77mQ0EuXbx09ydniUTRVlXBgd4+LIGDtrquj0T5HKqrQUFcxQmfxFxK0mGU2OIn59xZ3cX5a/4WUgnuCli23E0mm+um0jZU47L19u56enL/BLm9exu75mhunvqf5hVE3jY6tWUGi3EYgncgIAQCKT5UBXL0+ducTDq5rYUVtJMpPl560d/OzMRbwWC7vqq4GcuI/TbGJ7TQUVbhcWReHc0CjfP36Gg119VHlcuMxm7qyvYUtVBX938BgHu/v49/fuxmY0IgD2qzYCsUyGc2Mj/Pbm7VgNBs6MjnB8ZGgW0QCo9rr50pb1FNntvNraQdv4BNFUmpP9Q3SM+1lTVsyasmIq3U48FjN2kxGrwYBRljFIOUVR8WqJ4u3OezhMxrzITl5vkSSI+ExOMrqKUVQwiQaKzHNL96m6zkZ3LQ+VbppWiOqKjPDO+AXCmVzkXRRE7i/ZOGO/MrOXnw0cpjs2Nk00JEHEZ3TkSquuRjHnOq+u68iiiCRKpNUsiihTYfGxxlVz099W5XJR5XLxscYVnBsf5bkrrfz40gV+cPEcd1RUsa4455OgahpX/JM8cekCggCfaGrh86tWU3ZDmZWu60TTaQ709y14zrtr6vhZ6yWuTE5wenQYr9nCix1tyILIg/WN2I2Lc+ysLHSzb30DnUP+edWfuob9dI/4KXLbqS3xUupx4HVasZsNKPJ1GVxVy5GMZDpDOJ4iGEswGYwx7A8zMhUmmV64r0AQoKGsgM/uWUdzZdG82YwPAmZJoczi5tRkL92RCXR0+qJ+7i5pntn7sUzouk5f6xDP/93r7H/qGJHAh1tq9sMEVVcJZPxMpScxSxY6o21kdRVREDCKJu4pepjTgeP0x3uWTTSuNSOfffcyL//jWxx7+exHIosxHzRV58LBNiYGp5gcDrDvczvwlbnz6lPIprNEg3HSyQxG88L9XVOjQZKx6z0B3lL3LGdwXdcJT0Z484cHARBlkbq1VXzlP32aiqbSBa8jc5Mx5xp85R4U4/Xz9lzsR1U1bpe3rsFk4JHfuIc7HtmMYlT4xL+6n8hUlLd+fIhUIs2r33kHX7GLT/3uwzf18VgImq4zEAtwYKyDlwYv0hocJaV9+Pu7/KkY3+86zoXAMI9WruOOwlpKLHP7nywEj8WMw2TCY7FQo+s4TCYcJhMpNTtddtcXCHJhZCxnuCuJTMWvZ/etBgO7a6uxGgw4TUZKHQ4CiQSVTifVbhdnhoZZX1pCz1QAsyLTVHBrjBU/rLhGMn7We5qf9ee5sPEAAQAASURBVJ1ZNslY6Szm15p2cU9p87KOMxGNMR6JsrmqnJXFBVgMBrZWledKlZJJspqG4YagQTCR4GvbNlLtdc8i8uFkkjfbuyhz2fnSlvXYTcZpUv7nI2Oc6B/kjrqqaTnnbdUVwPUAZY3PzYGuXgaDYeLpDC6zGfdV6Vmr0YAsihQ7bDiuKpJmNY1zY6OEUkl0oDsYwCBJjMdjmBYoZS122PnshtWsLC7gnY4eDnb30T05RSiZ5EBXLwe6erEaFArtNnxWCy6zGZvRgEmRMcgSsii+LwIMX922MS+1tttO142iTKHJNUOG1iqbcsZkem4y19EZTkzRFxsnkI6SUnMNtllNJaXOX3Y0HwySzHp3HSOJAMf8bbRHhqi1FbPKWUWtrRiLfH2wn6/eW5EkNhaXUm538mx7K7F0mnb/5DTRSKsqo9EI/kSc1YVF7K2uodLpmnGMqUSC4WjO/G8hlDuc7KyooicQ4MX2NiodLi5OjOE0mXigfm6TrDl/tyyxpamCiWCUn7x9liH/3HKsug6jUxFGp2YOLIIg5IiGruck1ubJVCzmOlZUFvKZ3WvZsbJ6XjWsDwqlFhefqFzPuakBhuIBQKDc6mFX4cIN90tF/5Vhnv2bVznw9IkPvZ/Fhw0iEmXmSh4t+zyKqHApdI7OWBslpjJkQabUVE6bfImEurw+F13PeWIcePo4L/yfN2g72X3znT4iGO2d4Mm/eInAWIiHfmUvZQ0lS+4V0HWd4HiI8f7JBYkAwMCVIaI3kOmq5nIMptnv/kj3GCF/buwxmg2s2rnipscOT0UJjocWdc0VTaXYPTZGe3JGbuf3txINxJZdRjYfJEXCWeBEuTrOeUvcfOp3HiIwHuLkq+fIZlSe/quf4yv3cs8Xd+XVO5PRVFqDIzzTf443hq8wmbp5r8qHCaqucdrfT2/UT0d4jEcr17HCWbSkv8e1xZQg3PD/5NYPqq7x5PmL+OM5ZUdJFIikUjMyPaIg3BC0ExCFHHnzWMzUeT0c6Onj9PAI/licKrdrWiHyFxHTJKPvWuP38p6nNe4yfrVxJ3tKGpf9jlkNBqxGA8OhMGORGIU26J0Kouk6LrN5VilbudtJgX3urG0yk6XbP4XNYOSpc5emPx8JRQgmkvhjcdKqikmW0QF/NEbn5BRj4SjxdJqMpjEajmA1GBa1HsoRjRGyuobDYOTkyBBmWSGSTlHjWthHR5FESp12mosLuDI2Qe9UAG6o+oylM/T4A/S8Rw73/cSja1Z+OImGIsoo4uzT6FyXIe2IDPPS8AlimSRW2TStx53V84vWCAg02Ep5vGo3l0L9tIYHODXVyflgLw+VbmKjpx6TlIvODUcjXBwfw202U2534jGbMUoSWU0jkExyamQIVdMwSPKMgUcUBEyygiQIRNIp+sPBaffvtKoyFAnzencXJ0eGF5XWfrihiZc62zgxMsSLHVdIZrPsqaqh+iYP53vhtlu4d1MTAM8fvkzP6BTqAm7dN0K/Wiq1HBQ4rWxuquCBLStY31B2W1SulgsBgY3equlej9uBsb4JXv7Htzj07MnbQjJEScRsNWK2mVBMSq4enlyPQSaVIRFLkYgmF63Uc7shKRJWhxmb24rdZcXmsmJzW3F6bRjmIKKyKGMWLfTHuzFJZsZSw4wnR0mqCQQEMlo6FyRYxpx2zS32rR8f4if/80VGe+eWZv4oIxqI8dI/vEkkEOWzv/cwFU2liEskGyPd47Sf6qa8sWTeRUQmleHCwStMjQWBnFpV48ZaTJb3RPD1nKndNYiieFOzRk3T6b8yRPf52cabc8HhsdG0qY7+1iGSsRSD7SO8++QRHvnN++btG7nVqGgq5XP/9uOE/VGuHO8kGozxxJ88h9NnZ9vDG5Z0DbFsipOTffyk5xTHJnqJ5xF8+zBAJ5fdeLL3NGPJCJ+t3sRmXyXyHKXMS0VaVXnuUitf27yBj61cQTiV4o2O2UGDuYpLJFGkzuvhyvgEL7ReodBqZU1J8Ue+AXc+XGv8/lnfaZ7sXT7J2Oit5OuNO7mjsPaWVAQUO2zsqqvi5UvtfPvwCYoddnr9ATZWlNJU5EN5z/hlNSgsNBGoWq5X9vzQ6IzPV5cWs6q0eFo9ZygQ4qVLbXRO+LEac6XvgiAQT2fQFyWaD4oozmr6vn6d86+FJqNxTvYPcai7lzODI/QHgqR+gfo4l0U0BHLOoaq+8A252ev6ztgFTk918XjVbta5a3EoFiKZBC8Pn5z/vFedu+c9pyBQaHJRaHKxxdtIW3iI7/a8wVF/G3W2EoqvlgEMhkP849lTCAhUOV14zWaMskxW05hKJDg5MkRG09hdVcHaopLp4xskiRqXm5bCItomJ/jRxfP0BALYDAbi2Sx9wQDj8Rhes4WwNTnfZU5jhc/HxuJSXu7s4OddnYDAp5pb8lpHFbpsPLxtJUVuO2+c7uB0xyBT4fhtq+MVBQGvw0JLdTFbVlSwrbmKikLXR7ZxabmIBGO8/dMjHHjmBOGpWxN5VIwyhZU+SmuLKCj34C50YnNbsdhNGEwGZDnXAKtmVTKpLPFokmgwTmgixORwgJHucUZ6xmeUttxqyAYZm9OC3W3F7rFid9uwe2xX/339vw6Pbfo7h8c6Z9TbJtupsdVzKnAMURARECgzVxBXY+jAW+M/J5gJUGdbfMbvvchmVN780SGe+B8vfGhVpW4FMuks7/zkCJqm8fi/e4SKxtIlNSaPD0xy7OUzNGyopXLF7MyDpmlcOHiFM29dIhbMZZhq11ZS1VI+q3QKAZy+6w5+2XSWwY4RshkVeQ51K03TGGwb4cDTx+m/MrToa9772R2cev08w91j6LrOs3/zKg6vnV2PbV2wfEnXdBKxJOlkBlfB8pwGV25v5PO//3G+9Qc/ZKB9hJHecX70x8/i9NlZuX1xz20oneDd0XZ+3HOSi4FhsvpHt6TvGhJqhrdH2vAnYzxet5m9xY2YpOVlvSVBYE1JMRdHx5lKJJFFEYdp8UGuEruNcpeTt7t7qHG7qXa7lnU9H1ZcIxk/6TnFU7cgk7HVV83XG3eypaD6lhBGAKMsU+Z0YlYUVE1HkUS211SysbKMUod9SQTQIEtUe9wIwDd3b8MgzbxGi8Ew3e9xZmiEN9q62FFbycdXrcBns5LKZumc8M9x5FxW7Vpz+TVIokijd/EldzowMBXkhYtXeOlSG73+AOovmFkfLJNoKKKMx2inLTzImUA3XqM9Z3SmWLHN4RQ+H5JXIzTX9hlK+Dk0cXn+ixYlvEYH54I9nA504TM6EBFwKlbsiploJkFndISEmqLA6EIRJVRdRbiaKbnxQS222mny+jg5PMQbPV1E0ymymoYkiNiNRiqdTr60Zj2PNK7Ad0NGQxAEqp0ufm3DZp5tu8zF8XG+e/4MOmA3GKhze3mgvhGf2cIPLpy76T2QRYlPrGjh3f5ehiJhmn0FbCwpW/Q9fC9cNjN719VRW+LhdEc557pGaB0YY2gyRPoWRLklUcTjMFNV6Kau1EdTRQEt1UVUFrpvmXzuRxHZjMqp1y/w9k+O4B9eZopTAJvLysqt9TRtqqOquYzimkJ8pW7sHtucC7Mboaka0VCcqZEgo70TDLaP0H66m0uH2/GPBqebdvOFrEhUt1TQsL46Rx48tlzGwp3LWNjduayFzWXFbDUuKZJukaxscm+jN95NWk3hNRTgMxaSUOOMpUbojLZRai6n1ppfuZuu6bz540M88T+ev60kQzHK2Fw2HF4bVocZxaggG2QkSUTNqmTTWdKpDNFgnPBUhGgwfluyUKqq8e7PjoEOX/zDxyitW1zZiiAKqFmVs29fwmA2sOsTW6hZXYHTmxN3CIyHuHKsk1e/t5++1kF0XcdsNXL347vwFLnmPEdhlY+CCi8TA37SqQwXD7Vx4OljbLhrFQ5vbiGRzagEx0O0n+rm4LMnOPX6+VzdvSwtSkWqaVMtdz2+k6f+8mXi4QRjfZP88I+eoffyEM1b6ymuLsDmtCApEplUllg4TmA0xGjvOOMDfqqay7jni3cu+T6/F5vvX0fIH+Hb/+HHBMfDdJ7p5cd/8hxf/+PHqVyx8PgeTid4c+QK3+s8Rnt47EPZ8J0v0prKmakBYtkUGU3lvtKVGBdoEi93Ormzppoypx2zIpPIZHGYjNzTWE+J3YbVYOArm9ZzZniEdFalyG7jV7ded5G2GYx8fesm3FebhC0GhW2VFdNRY5OiYDcaKLRaafB5Z/ki/CLgmk/GEz0near3zLLK7wTgjsI6frnxDjZ4K+cU2FkO2scnEQT41PpVbKgozbv/wGkysbehlifPXuR47yBryooxSjKhZJJoKkW5K9dgDZDO5mwJLIqCLEmMR6Ic7xtkLBKd7su4EaVOO4lMhkPdfTQXF6BpOk6zCZ9t4QztjRgLR3jm/GWePHOBiegvrtz9slaENtnEdu8KBuIT/KD3bWyyiXKzl7uK1i2JaOwoaGYw4efFoRPYZBNGSabQ6KTaWjhnqtMqm9juW0FvbIwf9r6NTTZTYvZwd9Fa7IqZtK7SER3mpL8DScg1ymQ1DbfBxg5vMy7l+oNQZrfzlbUb2Ftdiz8eJ55Jk9V0JEHAajBQYrezwlswg2Rcg91oZF91LTUuFx1TfkLJFOrV2rxql5t6jxdV01BEEVXXKbEtbBK0wufDcPWF/XjjCizLHOxkSaKu1EdFoZutzZV0j0zRPx5gaCLESCCCPxwnHE0QS6ZJpDNkVQ1V03NmdYKILIkYFRmzUcZiMuC0mHDZzBQ4rRS57RR77JR6nZQXOPHYzbfVFOujgv4rQ7z75BEG2kaWdRzFqLB6ZxPbHlrPyq0NVDSVLrmRVJREHFczCNUt5WTvWc1w9xjtp3o48do5jr1ylkTk5tm2+aDrUFpXyANf20vlilKMZsO8ZKL1/AAFhQ48BfZFEQ5REHEoLtY4N8z43K44cBk8VJirMYgGzHJ+ddQnXjvHT//ni7ecZChGhZKaAsobSiitL8JX6pkmXmabCdkgIysS4lWioWZUMuks8UiCaDBGZCrG+MAkw11jDHaMMtY3gZq9NVFsLaux/6ljyIrMr/7x53F4by43WljhpWZ1Jb2XBtn/s6N0n++jvLH0armTTtgfpftiP6Pd42TSWWRFYtcnt7L1gXWY7bPdxAVBwOa0cN+Xd/Oj//4smqox0jPOD//oGU6/eQF3Ya7XIRlP4R8O0Hd5kKGOUSpWlLJ61wpaj3YwMTi30MWNUIwKD3xtL2F/hNe/f4B4JMFw1xjP/NUrnHi1hIIyD2a7GVkWyaSzJKJJQpMRJocDpOMp7vvKHu75Yj53eSZESWT3p7cTGAvx/f/6FOlkTob4Z3/xEl/+T5/GWzJ3aWw4k+St0Ta+3/WLRzKuQdU1OsLjfLfjKAJw7wJko8Rhp8SRe16L7def29211dP/v6KwgBWFBXPubzMa+MKGtdP/tigKG8vLrpZwQyiRpC8QpMRhZ01J0XJ/2ocOuq4zmYzy4+4T/KzvDP5U/uW8IgK7ixv4asMO1rrLptcstxJmg0IgnuBHJ8/x+pVOJFHEYTKyoaKU1aVFiyaCZoPCnoYapuJx9nf2crinH4HcOFTisHNv8/U5dVVJIWvKijnWN0D7xCQmWcFntVDhdmI1GGatRHfUVHG4u5+fnr6A02zCrCg8sqZ50UQjnVU52jvA8xdaf6FJBiyTaBgkmbXuGoySwmgiQFZX8RkdOA25G11rK+azlbsos3hn7LfGVY1DsVBtzb3Qa5zVGKoVhuJ+0loGh2JhlbOKFmc1Vnn24koRJda4qlEEmZHEFFldxWu04zLkFvI22YTUpyD1GVmzpQKz2YBVNlJu8VFlKcB4Q5pWliTq3B7q3DON2oaHA7z9disXw2MoG7L4ttYBkMlk6egY4/jxLkRBZNPmGlauLKPZN7/M6b11i4u6nhsbJaVmcZlM3LfIfRYDgyxRWeimstBNOqsSjCaYCscJxZPEEmmS6QypTBZVy0naXnsRJUnEIEkYFAmTQcZqMmAzG3HZzDitpo9M5qI3MsXPB1tJqBk+U7OOMqvrtpwnHklw7OUzXDrSsSztfofHxj1f3MWdj22hdm3VnD0M+UA2yFSuKKO8oYTGjTXUr6vhxX94I9ebkMdKRs2qdJ3rZ6B9mNo1lQsSiNeeOcV9j23CXbA4LX1N15hK++mMthLNRtG5vtguN1fR7Li5aeN86Drfz4//5HmGu+Y2mMwHvlI3TZvrWLGljqoVZRRUePGVebA5LUvK5KhZlbA/yuTwFOP9fvpah2g91kn76W6C43OLOywFajaX2Sgo9/D4v38U5b2lTe9BcU0hn/jm/fRc6Oflf3qbrrO9dJ7pnXNbm8vCHY9s4pHfvB9fuWfejImsyNz7xTsZH/Dzzk8Ok05m6G8dor91CEmRUBSZTCbnBK4YZZo21fHxb9yLyWokMBpaFNEA8JV5+OS/fhBvqZu3f3KY3ouDZNNZei8O0HtxYN79LA7z7JKvZcBoNvDA1/biHw7w3N+9RjqZ4eAzx3EXOvnsv/04FsfMoFwsm2L/aAff7TxKW+jWkwyBnGR3scWBx2DFY7RgU0wYRAlFlBDJlSWntSxxNUMwFWcqFWc8GSaQTkyLuNwKZHWN9vAY3+08ioDAvWUrb8vCdT5EUymO9g9ysCenDLm7thqfdfER6Y8CdF3PKX91H+PpvrPLIhmSIHBXyQq+XL9tWVLFC+HSyBhdk36KHXac5pxwUCqb5cJwgFMDQ/z2nh00FxUgiSKPb8yRR+M8AguiIFDksPH5jWu4NDrOWCRKVtWwGgyUuhzUeq+v+2p9Hr6waS0dE36iqTRWg8KKogKiqTSqpuGyzAycVHpcfGPnVjon/cTSacyyQqlz8eWWI+EwR3r6GQouPK6LgoDPaqHYYcdlNmE3GVEkEVmU3nc1z2vqWkvFsns0rLKJjZ76Ob8vMXsoMc92Wq61FVNrK57+t0FSWOOqZo2resZ2Baa5JfAEBMySkQ2eOqBu1vcGUUYfFfCOurjPtwG3e+kDh8mkUFHh4bnnTmO1Gdl6lWgIgoDDYcbptHDyZA+FRQ5Wrsy/xOkaoukUP718gVgmw6NNzZTZHbfFzdYgSxS6bBS6Fs6u/CJhLBnhlYFWAukEd5U23jai0X66hxOvnV+W/4Kr0MFn/83H2P3JrXhLlyYEsFiIkkjlijJ8ZR6Kqrx8/78+Tf+V4byONdIzzpEXTlO7poraVfP7vUyOhacJ7GIQyYY4MPkmoUwAp+KakdlMa/n3mfhHAjzxp8/RdrJ7httsvnAXOVm/t4VN96ymdm0VxVUFmKzGvBtJJVnCXeTEXeSkfm016/a2sOX+tXSe7ePEa+c4v791Ue7YCyGdTPPKP79DQbmXB762Z95rFSUBT7GLFVvrqVldSWFVAWfevEDr8U7G+iZJxpJIsoyn2El1SwXr97Ww8e41FNcUIC8QhBBEgcJKH5/7/Y9T3VLB2bcu0tc6RHA8RDaTRRAFvCVuyuqLad5Wz8a7VlO/vobgRJiC8tnzyUIori7k4V+9m8aNtTkH9dPdDHWMEpoIk4inpsmM1WHBU+yitLaIuvXVbLpnzZLOczPYPTY+8VsPEBgP8e6TR4mF4rz+gwM4fA4e+cY908Qmo6mc9Q/y/a5jt5RkCEC51c0adxl19gLKre4cwZCNWGUjJklBFkVkQUQAsrpOVldJq1ni2TTRbIpQOsFwIkRvxM/l4AidkQkSambZ15bVNdpCY/yo+wR2xcSdRfW3rBFb13WmwnHOtw2xd8vsvhhZFCm2WdlYXkqpw05zYcH7IhP6fkHXdabScb7TeYSn+84SSOcfOZcEkftKm/lS/TaaXcUY5hD5WS5SmSzvdvYwGo7y2NoWVhT5kK72QpwaGOYv3zlM/1SQhgIvkiiyt7H2pscUBQGP1cKuuuoFt1MkicZCH42Fi+uxEICVJYWsLFnYS2s+9E+FuDw6Me877rNa2FhRxvqKEsqcDlwWM1aDgklRrto3CHNW/NxOuC0fANH4oKHpOhktV1dnkuVb6oHg8di4445Gjh7tmvG5LEuUX53survH8z5+MpuZbmofi8V46solTg4P4zKZeLxlDbIovs+P0L9gOYhHEpx/t3XRyjhzwWwz8fgfPMJdj+/E5rz90ooWu5kdH9uIYlD4q9/+Tl49JZqaawQ+985lSmsLZ6sMXcWG7fV0t41QVuXFajfddCERzUbpj/fwYPEncCkza/1NUn73Rs2qPPs3r3HitfPLdouWDRIrtzWy77PbWb1rBYWVvluWeboGQRSwOszUr6umoqmU5q31nHu3lbd+cpi2k11oyyipCo6HeOavf05pXSHr9rTM+K6svpjf/F9fIZPMUFxTgMlixGw1sfXB9TRuqGGsb4LwVIxMOoMoilgcZrwlboqrF0+yREmkuLqQmh1NHG0bRRIk9n26jHVrK5EVCQ2BvtEg/eMRtM4JTCUeKsvcPPrN+9l8/zrcRU7K6ucvcRkZCfDW262MjIRYvbqcfXtX0rChhokBP8GJMIlIkkwmi6ZqSLKEwaRgdVhw+ux4il3YbhKc2nDXarwlbpLxFLJBpuomwSZBECiq8vFLf/hJtj20YfoeFJR7Ea6WnGq6Tmd4gh92H+dycOSWkAxRENjkrWJXUR0rnMWUWVz4TDZs8tLJsE5u3gqkY4wkwnSFJzjl7+fQeBdTqdiyrjera1wOjvBk7yk8Riur3QvLHS8FJoNMWaFrzu/MisLqkmJWlxTP+f1HGbquE0wn+MeOQzzbd5ZAOpH3sRRR5IGyFr5Yt40mZ9Et78m4BlEQSGay+KMxgokE8XQGQRCYjMY4OziCJIq4LZZfCKGZqXicsfDcQcm1ZcU8traFjZVllLscmGT5I62C9pEkGslsllPjQ7ze18FwLEyVw81XVm4ABDqDfhpdOUYaDMR55ZVzDA8HsVoM3HFHI80rS1EUmWxW5eTJHs6c6SMeS1FbV8i+fStxOMzL+oNmMirt7SMcPdJJMBSnrMzNjh0NVFR4Zxz3te5O3untJZ5JE82kafNPklKz/PrG7azwFfwLyfiIoe/yEJePdsyQ7lwKBEHgoa/v467H73hfSMY1yIrMpnvW8MX/+An++ne+R3aRpmg3IjQZ4dy7l1lz5wrq1swtGayj89bL5zh7rAuX1zbdzyOKAr/ye/fPeud0XUcRFCosVZikxfd7LYSTr53n3Z8dy/tvdA0Or40dH9/EvV/cRe3qSsy2/KI8S4HRbKCqOZeFqmwu5bXvHeDYy6eJBvOLUOo6DHWO8uSfv0R1S8UMhSVngYOdj26etY9iyCmfFVbeGiMzURKoqCng/k9t5e13WqnbUsvej+UW4el0ltqxEIePdtLRPsrkZISG+iJWbKlnxZa5M+g3wmYzsWpVOe0do3R3j7P7zhU5pTP34jK5qqrR2ztBNJpk7drZhpDljSWUN5bMsecCv1cUqWouo6p5blIykgjxZN9pjk703BJ1qVWuUh6qWM0mbyVVNg92ZXnPqQCYZQWz7KLU4qLFVcLWgmr2ljTxxnAr+0c7iGTzzzamtCzHJnrxGW24DWbKrXNndM+1DdHZP0E8mWZjSyWKLHGxY5hURiUSS3LHuhqaqnNiB28fb2cqHCedUWmoKiQcS/LWsTYSqQwuu4Wd62tIZ1U6+ycpLXBSXuzifPsQqXSWraur8/4tHzR0XSeSSfGt9oM823+W4DJIhkGUeKh8Fb9Ut5UGR+FtIxkAsiSyt6GWSCrFS5faeOHilWkDZpMs88XN63JZjvdh0X3pZA9Gs4HK+sJbHkSC3Do2lp6dEaxyu/jchjXc29yA1Ti7N+SjiI8c0UipWQ4O9/K/zx5Bv9pPMB6P8+mGVaRVjbcHuwmmci/V4OAUDY3FbNtWx6WLQxw82I7Daaa6uoDjx7s5cbyLhsZiHA4zhw52IAgC9923GvNNHHAXQnv7KG+/3UqBz07TihLarozw9lut3HV3y3QmBHJmfmfHRhgMhzBIEvUeL480NvNwY9NHnr3+/w1qRqX9VDcd89SuLwb166t59Dfuw+Z8/+uDZYPEzkc3c+lIB6//4EBex7h8rJOOUz1UNZfPqYblK3Kybksd2ayKYpCnqwLnExCwyXbKLVXsn3iDlY41mCUL14SyTZIJq7y00r+p0SDP/d3rTA5P5dWPcg2eYhf3/NIu7v/qbooqfXmZry0HVoeZVTua8Ja4cRXYefNHhwhO5Ne7oWY1Lh/t5KV/eJPH//2j7/uYI4oihQUO1q6p4Oy5mZlAg0GmosJLcyDOyEhwyce2282sXVPJkaOdeU3UkUiSi5cGAeYkGrca0UySA2Od/Hzw0rLLkcySwmNV63iwfBWNjiKs8u0xKjRJClU2L6UWF83OIjb5qvh+5zF6o360PF+yaDbFmyNXKLW4+ELdFqzyzLl4MhClvW+cQo8doyJx/HwvJYVOrvSMsW9rI9F4indPdVFb7sNokKmvKmDCH+WpN8+SzmRp7R4lHEuyobmCobEgB053sXtTA4lkmstdI9itRsYmI9iX4eD+QUPXdWLZNH9z5R2e7T9HOJN/YMUoyny8cg1fqN1Crd13W0kG5AJuK0sK8VotjEaiJDIZ0HMl3y6ziXKXM7f4fh/GqqIKD7IsIUm35zdLgjgtVHQjNlSUsqmyDNuH0IMsX3zkiEYoleRnHRepcbj4assm2gMT/OjKeQCsikJGU+kMTVGNgcJCB5s21dDYWILRqPDWW5fx+6NUVvo4fKiD8nI3O7Y3YLObiESSHNjfxq5dTXkTjVQqS9uVYVKpDPvuWonbbcXlsvLii2fo7h6fQTTuq2tgbVExiUwWURBwGI1UOJzYDO/PS3SrkM5muTIyQTiRYmN1GWbDL54s4M3gHwnQfaGfaCjPJjsBPvO7D+Eruz09GTc9vSBgdVl49Dfv5cSr5/JauIYnI1w52c36fS0UVc1Wflm/tY7VG6sXfbyEGuds8ARJNcGZ4HEkQeYa0Vjn2sTdRQ8u+li6rvPyt9+m7WTXsqRjfaVuHvjaXu7/6h68JXNLt74fkBWJ8vpiHv3N+zCYFF797n6mRoN5HSsRTfLWT46waucK1t7ZnNcxurrHOXSonZ7eSTRNY8O6KvbsXYnTYaa7e5w33rrM4OAUoiCwormUTz22Kef78gEhm1W5eHGQt95pJRCIYbUa2bSxhr17mtF1aO8Y5fkXztDROYooCpw9109FhYe9e5qpKPdy/sIAh490MDUVparSy113tVBa4kYUBTo7xzh3vp/CQgcnTvTgn4qyfXs9D9y3Zl5Xdk3X6IpM8pOeU8uqoQcoMTv4euNO9hQ3UmS2I97CcuL5oIgSVTYvXqONensB32o7yJGJ7ryzMpOpGD8fukS9o4B9JU0zvhv1R+jom2BgNIDVbCSeTFPkc+B1WamvLCCb1ThwugtN0xEEgcpi97RpbDqjMjAWoKrEQ0tdCZqm886JDh7Y1YLHaaFzYJK+kSl0dBqr8qu7/zAgpWX5y9a3eK7/PJFlkAyzpPBI5Vq+ULuFapvnlvlk3AxGWabS46LS47rt5wpMRjh/rJvhvknSyQzltQVs2tXE+EiQw69dZMW6StZur0e6Snjbzg9w9nAHmXSW2uZSNt3ZxMGfX2B8KICmatz9yU0ULrK3MieFa2HwPc3gxQ4bTvPtz5K/n/jIEY1ENktH0M/vb9zF2oISounrqVqzrGAUZSLpFGDA67NRWOhAlkVsViOikJtk4vEUfn+Ey5eHOHmyB1EUiESShEJxVDX/lHUymSYYimOzmfB67YiiQHGxE12DUDCOpunTKgElNjsltsUp8HyY4Y/G+fmFdhLpLM2lhYsiGkOxEMfG+zgfGGYwFiSRzWCSZMosTnYU13B3aRPyHJFuHQimEhwc7eL4RD/D8RAZTcWmGCky22l2FbOloIJyq3vO/efDobEevt12hKym8c2Vu9hauDTH8KGuMXovDeYdKV+1vZH1+1blt/MtgiAIlDUUs/ez23nmr19d8v66rtNxupuhrrE5iYbdubTyJ7fBy+OVvzznd07FtaRjdZ7p5dDzJ4mF8y8fsLut3PnprTz4y3txFzk/8GCAIAoUlHt4+Ot3EY8keeOHB4mFlr5I1XWd0d4Jnv2bV2ncWIPZurQJrq9vkudfOIPLZeGhB9fmfDRMBgxXs1qyLNHUWMyWzbUkE2m++4ND1NUUsHnzzZs4bxcEQcBsNrBhfTUul4WBAT9vv9NKWZmbpsYSysvc7NrZgKZquFwW9uxZgcVsoKDAwYWLAxw81E5VpZcd2+s5crSTN9+6zAP3r6GwwEEkkuDAwTYaG4q5c1cjgihiNisL6npMJGM813+OznD+PX8AVVYPv7VyL7uK6vPqwVgubIqR9d4K/mDNvfxV6zu8MXwlb7LRGZng1aHL1Np9VNuuq1ZaTAouu5mVdcVUl3pQZInhyTCTgSiiICBJAro+t4uzJArYTAYisSSqppHOZDEZFURBoNjnwB+Kc6VnDJ/Lhvt9LF+9lUirWf780ps813duWWVsFtnAJ66SjAqrZ0nz6WKh6zraMr2clgNBEEgns4wNTmGxGlm9pZa2c/30dY5Ru6IUs8VAIpaaXhMm4ykOvnKO9Tsa8RU7sTpMjPT76b0ywt5HNzAxHOTlHx/lK7/3wKLOX+l20lxUMItoJLNZMuovjis4fASJBgB6zuDuvcNoWlPJaOq0/4QkidejSNcGXR0MBgVZlrhzdxObNtWiXJ0URVHA7c5/gFGuSjPGrz6coiiRTmWvficvONl8VDEejnF+YJQihw1tESo+Q7Egf3zuTc74B4lkUmi6jlU2EMumEQSBd0e7OO8f5vfX3jVr35F4iL9rPcQ7w51EsykkQcw1j6m5xnq70saXG7bwS/WbFj0wvjPSyZ+df4veaIDfWbWbJufSIlm6pjPcNUZ/W36qTQB3Pb4TyyIapG8nBEHAaDKw5zPbefEf3iSTWnqvRn/bCMNdY6zZ1TyrfCqbVTnydivH97cTnIryb//bpwhORZkYDbFh+2yVGZNkot42M5qZD3Q9Z8w30juet0GhwaSw8d41PPLr934oSMY1CIKAt9TNo79xL8GJMIefP0UmtfSym2w6S9vJbo6+eJq9n92xpH0vXBxEALZuqaOpMddQq2nadLlBcbGTggI7RqOCpmm8/uYlunsmPlCiIYoC1dUFVFX5MBhkPG4rFy4OMjQcoHlFKQ6HmcpKHx7vIAU+Byuv9lRoms6Fi4MYFInt2+rweu2kUllefe0CkxMRCq/2uURjabZvb2BVSzmSJKCq2rzPTErNcnZqgJeHLi2rL6PS6uZ3W+5iZ1E9Zkn5wJ5RSRCpsfn4N6vuAV3gteHLeZVRZTSVg2OdrHQVU1yzado5vKzQRU25l8tdo1zuGqW23IttHgGK98JklFlZV8Izb57j/zx5CLNRYe/mnIy812XFajYQDCdY21j2kWw2TqlZ/vzSGzzXvzySYZWNfLJqHV+o20KZxXVLRXZuxIlTvfzT9/Mr1b0V2LGtnvt2NWO1mygsdVPdWEzXpSHi0SQ2pxm72zqjNHZqIgq6QFmNj8IyN4Ig0HZugI5LQyDmTEaNpsUvqas8bnbUVnF6cAR/7HqQqGtiivFIbEnGfx923BaiEc/6aQ+9RHf07WUdR0DgYxV/hyxeH0hMskylw8UL3a2sLbiuFJHRNPoCkwxEQzxU3QTMH71UFJGWljKGR4KYTAo1NQVEwgmCoTgso/XGZDJQWenlUL+fc+f6WbmyjLNn+xAlgdKyD67U4nZB03XGw1G6JqYociyuZt5nslFhc+E1WdlaUEWlzYVBlElrWV7sv8w/tx/j6d7zfKyqhWbX9b9vSs1yzj/EC30XqbC5+ffr7qbO4UNEIKFm6A776QhP0OgsmNf06b13//WhNv7i4juMxMP8h3V381BFC3ZlabW50VCcsb4J4pH8ouV2t5VN96xBlET8iQS/9MJPcZvM/One+ym3L16T+73oDQX4x/OnSGaz/Pq6zdS5vTfdRxAFiqsKWLmtgXPvti75nOlEmsGOUcL+CJ5i14zv3n3lPEffaaO6oZCzx7rIZlRkRebp7x1m/bb6RZPw3lgXwcwU61yzm5XnQvvpHs7tbyUZzX/irVlVwcd/7W4KK70fundYEASKqwt4+Ot3MdozTtvJ7ryOE5wI8/oPD7LlgXVYHYsPtkxORrDajHi91umgzo0lQqOjQV57/SIjoyHQddo7x6i6Rc3k+ULTdDo6R3njzUuEQwlS6QyBQJwN6xbOZCaTGYKBGAcPt3PufD+iJJJMZojFUqRuEFGw24wUFuQy6YIgLGhkOpmM8nTfWULLaNZ1KmZ+tXEXOwrrPlCScQ2CIFBqcfFvVt3NSDLEuanBvI4TSMd5a6SdFlcpm3y5v43RILNzfS0bmsvRNB2TUUGRJVbWlWC3mgCdb3xmF2bj9TkgnVExyDKCIFJW6OTzD25C0zRkWcJtz2VaJVFEVTXsViM1ZTcfKz9sSKlZ/uwqyVhOT4ZdMfGpqvV8oW4LJWbHbS29C0cSXGkfvW3Hvxlqq3OZd0mWkBUp994IOaGMuWCxGYlFEmRvKL91eq34ih3c9+nNyIqMwbj4JbVRltjXWEvfVJCfnrlA/Gpj+JnBEU4ODFHpcWIzfnR7hW7EbSEamp4llp1gKtW5zCMJvDcJ6jKa+HzTGv7z0bf44s+fxKIo9EUC/NdjbxNIJdhUVMae8lr2n780/1EFgfvuX8Nbb13mn//pXQKBOEajwr59zRQVOVEUiX/+p/1caRuhq3MMg0Gm7coI69ZXsXfvSn7w/UN0dY8zPBzg4oVBTp7oZueuJvbsaWb9+iqSyTTPPH2S7333AAUFdu66u4XGRSqUqJrGka5+3r7cTfvYJJFkCqMk4bFZaCz2saOhiq21M/0KwokkZ/qGOdzZT8eYn0AsgShAgcPKuspS7m1poLrAPUMfPJXN8gc//TnhZIr/97F7CSWSPHv6EhcHx4gkU7itZjZVl/HJTaspcdln7HdpaJxXzrfRPTFFz0SAcDzJ/vZeLv2fn8yIBK2tLOFLd2xgRcn1UhqjJPP1pu1ALj1rEHMvuK7rlFtdHBnvpT00zln/8AyikdFUxhIR0ppKg6OAu0obMUgyAjnC0+gsYK9aj1GU59VBv2ZGBfDKQCt/eeldppJx/vOGB9hX2pBX02RwPJRzl84zA7xyW8O0lGZW02j1T+AzW0irS88o3Igr/gmODw8yEAnxSEPz4oiGIGC0GFizqzkvogEw2D7C1FhoFtE4ur+NfQ+vpWV9Je+8cgGAgmIH/UuUiA6mpxhJDi2KaOi6zls/PsRoz0TenhneUje7P72Nxo21Cy4YP0iIkkjzljp2f2ork8OBvGSK1YxK76VBDj13inu/uGvR+xlNColAmswcvS+ZjMrf/p+3WLO6gi9/cScGg8Tf/v1bS762Wwld1wmF4vz137zBo49uZO2aCsbHwzz73Ok5XuGZY4HBIGMwKtyxo5EH7l8z3csnCOC7wWVdkkQE4eaeMSk1y/nAEMcmevL+PaIg8OX6bewtabxtTd/5QABKLU7+n7UP8SuHfsBUeun9azpwbmqQ45N9NLtKphvD7VbTVVIxN4p9uQDNhfZh3jjWRjia5K5tjQhCrpSvyDuzZHkyEOXdk52M+iPs2lCL8RaaNb4fSKoZ/uziGzw/cH5ZJMOhmPh09Ua+WLeFApP9F8pP5Ka44aemkxkOv36RY29dRlEkQv4oO+5bhctjY/W2Op773iEEAepbyth2dwulVT5e+P5hRFFk7fY6tu5bubhTCgKFNhtf2rIeRRJ56uwlpuIJIqkU3zl6Ck3XeWR1M27LrVFd/CDx0XqjyEmt7Syr5n/e+QA/67jIRf8YNsWIJAh8tnE1D1Q34TVbuP+BtWSzKrar0pN1dYX86q/tw2TKpWBdLgsPPLCWPXuayWZVRFHAYjFivCpj9tgnN5FOq2hXFQEkScRoVLBYDHzpyzvJZtXphjNJEqcnHbvdxO7dzWzaVIuqaiiKhNVqnC7PWgiheJI/feVdDrT3EU2myGRVJFFE0zVA4PLwOCZFnkE0IokUz5y+zLfePk4ik0HTdcyKAuh0TUxxqneYo539/Na9O9hQdV1WUddhOBihfXSSNy538uSJCwwHwthMBhLpLN0TU1waGudwZz//47MPUObOmSdmVY3hQJjOMT/prIosiejkjI+sxpxj5TVYDMqcKWi3cXbEVBAEnAYztXYv7aFxAqmZ9eZGSZ6WOzw/Ncwzvee5v6IZl8GMKAiYJGU6vT4fTLKMJIo833eRv758gHg2zR9tfogdRTV5RwIDY1eJRp5YvXPFnCpNy0W53UmBxYrDaMRtXHzdvcGk0LI9f1f6sf5JwnMYFqaTGdxeG7Yb5KPTySzmG8oerjV+b/fuJpieYv/EG7OOM5Icwmuc3QMyF3ovD3L5SAfxaH7RYkmWaNxQw92P77ypg/YHDcWocNfjO7lwqJ1jY2fQ8ug1C46HeOenR9j56CYs9sVNbk2NxTz77GnOnO3H5bIiCgKBYAyf14aqaoyOBrn/vjWUlLgYHJyiq3uc+roPttE2mcwwMRmmptqHx22jvX2UwcEpttxQzmW4qozmn4qQSmdRZBFRhIb6Ik6e6iEYjFNTXUA8nmIqkF9v31QqxtP9Z0hp+QcVdhc1cFdJEy6D5UNDMq5BEAQaHIV8s3k3/+Xcy3kdI6VlOTTWyWZfFZt9S+uda6wupLzYhabr2MzzR4bdDgv37liBputYTB8esrYY3CqS4TKY+Uz1Rr5UtxW30fq+kAxFkXA4Fh5nJFHAZFJwOMwkEmlGR0Ok5whqyJKI0SgjyRKpVIbUHKW/JqNMXW0hTQ3FlJe5WbmiFF+xg90PrUWURBSDzD2PbUIQBdBhxbpKBAQUo4zZYkSURHbc3cKGOxrQ9Zzct8Vq5ONfuoNMOndNRvPSxHBEUaDEaefrOzbTUlLE94+f5dzQCMOhCH/97hH2d/Zwd1M926orqHA7UW6TAtbtxod79pwDgiBglmQ2F5WzyltEWlNBzz2QRknGJOWkYa3vkaczGGQMNywWBEHAYjFgscytMOVcoBlsIadxQci9GNcIzWKh6Tp/8vK7vHaxAx342q5N3N1Sj9dmIZ3N0u8P0TY6wZaa8hn7WU0GmksKuLulnvWVJaytLMFuMqLpOmf6hvmnAyc51TfE4Y5+anwe3NaZL3Yqm+V/v36IDVVl/KdH76bCkyMUJ3sG+S/Pv0Xb6CRPHD3H7z1wJwBmg8LdLXXsbKxC1XReOd/GH734DptqyvjX996B13b9vsmiiEmZfR9SapZjE30cHuuhIzSBPxUnlk2TUrPTxk/v7feQBZE1nhK+2LCZH3ae4o/PvcH3O0+yq7iWe8tXsMpVjGGekqlrMEsG3hru4IX+iwzGgvyvbZ9gZ1EtRil/OeFIIMbUWDCvfQHq1lQhybc+Ur7CW8Bf3/MwOmA3LF5FTZRECit9WOwm4pGlT1yTQ1NEg7OjlytWV/DK0yfRNR01qzIxGuLNF86wYXvdje1TpNQ0ANFshLPBk6xwzGySz+iZeVPb78WZNy8yMZS/nG1BuYddj23B4V2alO4HBafPzs5HN9FzsZ/Rnokl769mNYa7xzi3v5XtV03lbobVqyqIx9O88cYlnnr6BIIAd+5cwSOPbMDtsvDIxzbwxBNH+cEPD1FbU8juO1dMv2uRSJK//9ZbdHWNMToa5tSpHg4f7eTOnU00NhTzxE+O0t0zwVQgxukzfbz2+kUeenAtmzbW3PS6fvjjI5w+3UNvnx9dz/VWtLSU8+u/uhe328o9d6/iv//Ji1gtBmprC9m6ZWbPiNdjY93aSp746TF+/Rv/zJrVFTzyyAa2b8t5eDz3/Gn+7u/fRDHI7NrVxIP3rZk15yyEtJrlYnCYo+P5ZzMKTDY+WbWeWrvvQxt9lgSBh8pX8c5oO/vH8qtwuBAc5uRkL83OYmxLKG01GuRFZSckSVwwQ7JcCIDIrR/jU7eIZLgNFj5bs4kv12/Dqbx/vYLbttTxnb//2oLbCACCwODQFN/+zn6GhnLZ2uoqH9s217JqZRkV5R6sFuO00I6u66RSWYZHg1xpH+HIsS4utw6jajoOu5mPPbCW0hI3spzr4TXf0IdhucETyTzH+2w0GzC+R5XUusigzHwQBQGHychdjXVsrCjlYHc//3TkJB0Tfo72DnJ2cASDLOM0myh3OSh1OPDZLLjMJuxGI2aDglGWkEUJcRGZ1OVgfXkpljyURW8T0RBYTq/DTY8uCMiCgN2wvPq1p/75AMP9flZtrObQ65dovziI2Wpk295mPvv13ZivutxqmsZwr58nvvU2l071oQOrNlXz6Bd3UL+yjJMH23npx0f59C/vZuWGKvb//AI//Ns32ffwOj75tV1EgnH++S9epX5lGfc+thHTHPK5x7oGONTRRzKT5c8+/yB3NtZgVOTpu1jstLOxunRWhkAUBDZUlbG6vBhZyukyXytFumtlPf1TQQamQvRMTBGIJWYRDYAih40/eHgPlR7n9IS1Z0UtXeNT/N3bRzneMzjjfCZFwaQoZDVt+qEzSBIOswnXTdJ8XeFJ/vT8W5yY6CelZSm3OKm0uakz+DBLMkfHexmKz5ZXFQQBn8nGN1fuYldRLU90n+bwWC/f7TjBk91nWect4ysNW9hWVD2v1ndfdIpvXzlCLJtGQ+eVwVY2F1RikvOX5I1HEkSm8pO1lWSR0voixHlkL5cDWRRxmZY+AAqCgMFkoLSumM6zvUvePx5OEPZHyKSzM7IAH/vcVp763iH++7/7KZNjIf7jr3+HrXtW8Cu/e9/0NibRxB2+PQCIgkSpuYJHyz474/hngycZT968rjcZT3FufyuhObIri4EkS1S3lLPj4Y23ZOA+fbqXpqZiLJbbpwYkCAI7Ht7IoWdPMjEwlZf7eWA0xPFXzi6aaMiyxLatdWzYUD2dRZEVCYOSI+8PP7SOe+5ZDbqOJInTiwEAm83IN3/jblRVy5FHITe+KIqEJIn87u88gKblvhOEXPTPsMjM0qce28SjH98wrWojiCBfjQaaTApf/fIufunxHSDk6vNFUZhxbZIksHFDNatX5XoBJEnEYJARRYE7dzWxfVvd9LGviYAArF5dwX9pKrlpoCmSTfHK4PIawB8oa2GVu/S2NeveCgiCgE0x8o2m3Rwez0/yNqOpHJnoYVtBLeu9FTff4UMGAQHzMuaYuZBUM/zZpeWTDI/RyuO1m/ly3bb3vfRusURweDTIj588xqUrw8iyxFc+t4377l6N02FGkkWkq+/ttWu/ViZbVOhgTUs5D927hoNHOvj2dw9w6kwv3zHI/Oav7aPQ98Grfuq6TiiZontyivbxSa6MTXBpZJyhUG4NpGoasbRGLJ0hEE/QPxVEFAREQciVZyJcDdQJ11fct/FP+NQvP06tz3PzDd+D20I0rHIB2wq+yQbvV0mpIZJqiKQaJqXl/j919d9JLUQkPUQ4M4Sqpxd17IymMhqL4DKasRuM6LpOMJXkxNggoVSSzcXlVNkX13idTmU5f6ybkwfa2fvwOu58YA2dl4d46YljKAaZz/3qHiRZZHQwwH/65vdwuKx87ht70TSdg69e5K//y/P85v/1ccxmA6IkMjoUoHF1GeNDASZHw/jHI0xNRAj6o4SDcRwuC8Z5JqCDHb1EU2k21ZSzo74KkzIzyi4JwrxKGJIoIIkymq6jajo61wdzr9WC3WQkns7MK5l2b0sjBTbL1Yc3d06DLLG6vBhdz5V0pbNZDPLyHpeUmuWvLh3gwGgXDc4C/sO6e1jlLkERRBByL8rvHnt2TqIBuUWITTawo6iGzQWVjCbCvDHUzgv9lzg83kNHeIJvrtzFJ6vXznmvgukE+0oauKesiW+3HeWVgVaKzQ5+Y+VObHkMsqqqEQ8n8m4E9xS7ZkVHboSm62i6fr2/QAARYcbf6b3bq9rsiVwSxSVFPGVFwlvqzotoAEQCcdKJ9AyiYbWb+MKv7+XTX91FcCqK3WnBZFJmlI0JgoAi5N4Pr8HHAyWPYhBnBhO8hoIbh9R5ceHgFUa6x/MqIQJwFzrY9tAGTLa5gxlZTeVcsJufj5ygMzKMJIq0OKp4qGwbdbaSWYu/v/3WWwQCcXbe0ch996yiob4IScr9HW/l5G62m9j6wDo6zvQwMTi15P2T8RSdZ3vpax2a18H6Rlyre5/PF0NR5OlF+Ox9hQU9i+bLNi8GRqPCQn2Uue/nX/wJgjDv78oRi7l/70L34ho0XWcqFWX/WMeC2y2EcouLXUX1FJrsS35+puVfdX1W35Gu69PE7tpxr41DAsw79iwEAYEGRwEPlrfw/MCFJe17DRemhmgPj7HaXbooP4evPfMMd9fV8VBjAzaDMa/rvlUQBAGrdGvM13RdJ65m+POLb/DCwPllqUsVmGz8Uu0WvlS/HePVXskPGzIZlWeeP83ZCwNksxpf++pOHrp/LY4FVBqvfS5JubJ2RZG4a08zmq7zl3/7BqfO9PLM86f45S/t+kD9fACeOHWe//HmQTKqOmO+ny8Jf22bDwr5nvu2EA1BEBBRMEkuTJIL57xb6vRFD3Bs8u+IZIYWdexAMsF/O/4OpVY7//e2u5hKJvjO5VN868IJZFFkc1EZv79pNyu9i6sDjoQTfOE39nHXxzdgthrYdd8qetpHOX24g8/8yp1oGZ3nf3iEdCrLH/zZ5ygozv2ahpWl/MUfPsWbz5/mgU9vweGyMD4SZGoiSjSSoK65BNCZHA0RmIxiNhtweazzvhw9EwEyWZU1FcUo0uJfel3XSWaydIxO8taVbi4MjjIWihJNpkhmsiQzWdKqSk2BZ96Ht6bQjSLPPKdAriwLcpUn6i14uDvDE/RGp0hrKt9cuYsN3nJkQZwxoU0mF84OCFcJiUGUqLS6+VrjVh6tWs13Oo7zz+3HeHekk3XeMhrnkKktNtv5RvMdrPGUUmJx8IcnX+If245QZLbz2dr102V3i0UqliISyNOkD3AXOhGl6xmoG5HIZnmu4zI/vnyB9qlJMppKpcPFvTX1fKppFWV2xyzy8ELnFf761FF6Q0F0cgNSic3O/7rrQTaXzCy5WwiiLOIqyF/xKhqMkUqksd5QfqhmNSRZxGwxYLZ4Zn3+XhhEI6Wm2ddca22g1rpwD4mu65x9+zKTQ0tfaF+Dt9TD1vvXzfs8nJhq44WhY5SbvXy19j5UXeWY/wo/7HmTL1Tvo9Ex89qNRoVoLMVLr5zlhZfO0FBfzAP3rWbXzkbsNtNMKe5lQBAENt+/lle/tz8vogEwMTjFydfOUbmi9EO5+LgRaS2LuoyswHKgCFJeJmZJNcPbI+3EsosLrs2Fu0ubaXQW5fX3SWSyvNXZTTSV4nPr18z47sr4JK1jE+ypr8FzNTt9ZmiE7544w9rSYj6zbhX2JSrhCEIuov/Fum28MniZjL70TFtSy3LK38/WgpoZvhrz4dL4OPv7evnTgwd4sKGRR1euZFVhIYp4Pev/fkFEwLpENcO5oOs6kWySv7j0Fi8MnM/7+RGAYrOTL9Vt5ZfqtiJ9gCTsZrjSPsql1mHi8TRNDcVs3Vy7IMmYC9cCGqtXltPSXMaFS4OcvzhIW+cYLStKb+PV3xzJbJZYOv9x4KOC29ajsbgHIVditZRHPKVm6QsHeKimCV3X6Q5NsX+ol9/ZsJONhaX846WTHBzuXTTRMJoUGleVY7khcllS7ubUoU50HXRV49KpXsqqvBiNCuFArklZU3VcXjtDvX5MZgN2l4WJkSCTYyGSiQxNq8tJxNP4x8JMTUYwW404FujtiKfT6LqO3WRYtNSnrutMRuP8+Og5fnD4DKqmU+y0UVPgodBhxWJQ6J4IcLp3YRJnMSjTaky3ExlNm46MWWXDjChTRlPpCE9wcWpkzn01XSetZQEBRRQREaYX6C6DmRXOIorMdiKZFNF5B+DrEeQdRTX861V7+ONzb/Cn59+k0GznnrJGZBY/CWUzWdJ5+BZcg91tnVGucQ3JbJaftl7gp60XsBuNFFltRNNp+kJB/ubUMS5PTvB/37GXCsdMCr/C4+MzK1bRFw7SGwpwYWIsL7UlURSxuvKvO03GU2TTM5vx3njhDFt2NeEpuJ6uzmZUXn3mFA9+eraClI6OqqvTGQ64FonNqfJLzL/Ai4Xj9LUO5W3QZ7GbadnRiKfENe82Q/FJGu1lfK5qD6ar0cqt3hX8r7ZnmErPLtf60z/6DMdPdPPmO61cvDRIX/8kf/W3b/Dtf9rPrp2N3LWvmabGEgwGGUWW5nwuFgtviZuV2xty9yAPE7/QZITLxzp5JJuTIP4w4zvdb3Jw4vIHcu5frb+PnQWLU5i5Bl3XiWfTvDqUn6obgMdgYb2nnALjzN6hZCaDpufGSuGqTKfVoFwVCcltY1ZkIBc1zaga0VQaQcgJZUDORKzS7bwqKJLDxvJShkNhsjdkS9PZ7PR4bpRllJss3kVBpNzqYkdhDe/m2atx2j9Ab8RPldVz0zH665s28WxrK/2hIE9dvsTPLl+iuaCAx5qb2Vdbh8dsxnhVHOR2z3yCwLRiVr7QdZ1gJsFftb7DiwMXlkUyyiwuvlK/nc/Xbv7Q9vZcQ2v7CGPjuQqHpsZiHHZzXqRIEATsdhP1tYVcuDTI6HiY1raRD5xo/P8Ft30WuZaKhZnp2Hyh6joJNUuxxU40k+bcxAhmWeHhmiYkUaTc5mA8Hl308ewO8xyqP8K0uZeOTjgYp69zjF/72F/M2n/15loMJoXCUhfnj/fQ2zFGOplhzeYaTh/pZGIsRGAigsVqxLkA0bAZjQiiQCieWnSza1bTONEzyPcOncZlMfHlOzbw2KZVWI3XB7WfnbhAx+jCqkgCwm2t67uGMqsTj9GMgMAL/Zfwmqx4jVY0XeOMf4i/urQfgySRzc6OUAZScZ7rv0BaVdlcUEmZxYko5BS5BmJBXh9uYywRYUtBFYWmxTXvfrxqFWOJCN+6cpg/PPkShSYrG3zli6a+alabtaBeCgwmA3OxymgmzQudV/jGhq18efV6nEYTkXSKFzqv8BfHD3N+fITXezv52pqNM/Zr8hbQ5M0pMh0dHuCPjrzLZHzpGRdBEFDmaOJfLLLp7CwVnsNvXqZpdfkMoiFKIk9//xAPfGrzrNsQzgS5GD7LTt++6c90dIaTg0SzUVbYW+Y9f/f5AQJjobyv3+a2sm5384LbmCUjaS1LWstOl0kl1Qx2xYwiymS1XNRWupqxs1qN7N3TzN49zYyOhnj3wBXe2X+F4ZEQb7/TyhtvXaKq0sdde5vZtrUOn9eeKy2T84u+rr2zmUPPnsyLaGiqxuTQFANtI9SsytXEx9NpMqqG3WhYUOY3kcnkereUuRXnbjXGk0G6oh+MFn84s3Qiq6EzFA9yOTR3QGUxWO+tpNo+29Pl+6fOEc9k6J0KUGSzMR6N8h/v2cvfHz5OOptF03Ue37CWKreTZDbLoZ4+OiYnMcoyn1+/BkWS+P6ps2RUlV/fvoUi+9zjaFbTeOVKB+eHx4ikU+ytq2FXbTU248KLabNk4P7yFvaPdc2SrV8MhuJBroRH2eirxK4s3Lz9Kxs38tX16zk80M+LbW0c6u+nJxDgv+3fz18ePcrdtXU82NjIqqIirIqCUZ5fFn25EBCwyPlnNHRdZyod42+v7OeF/vNE8yyXEhEot7r5WsMOPl294UNPMiDn0xOL5X6v22nBsAyFRoMi4XDknptYLMVknv17/4Kl47YRjWxWJR5NEQ0niMdSWO0mfIUOVFVD03SMJiWvUgHpanNZIJWgPxLk1PgQa3zFlNudjMYiqLq+pFS6cJPIoSAI+IocFJa6+Orv3Dcr0mi1m3C4LHivlpr0to+BINC4uoLO1hGGeicJTcVZub4C+wJR4poCN0e6+jk/MEIincEo37x8KpxI0TE6STydYc+KWh7d2DKDZKiaRiiemjaCudW4pggBzKkU9V4UmGzcX9HMeDLKC/0XeWekE4/RQjiTJJHNsMlXwWM1a/mf52dr7Wu6zkA0yNO95/nfl/ZjlGQssoG0qpJUM8iiyFpPGQ+UN1NmdS36N3ytaRuTqRhPdJ3m3x1/gf+z67PUzTGJzwVV1WaY9ywVkiLNmb0yiBK7K2r45sZt05OB3WBkd0UNlybHeeLyBXqCAXRdvy0pb0FgWZK7alabJurRcIJUKkM6nSU0FWNy/Hr/TSQYn1cRKpqNciF0ZgbREBAYTgwynBi4CdHoIzCeJ9EQwOGx0bS5bsHNam0lvDJygif63qbZUUlW1zg51Y4sSIQyMc4EclHbZkclNmXme19c7OQzn9rKJx/bzKVLQ+w/2Mbp0734p6J874eHeeKnx9i4oZo7dzXR3FSCzWbCZF7awr1pUx3OAjsjveN5qW4Fx8O0n+6ZJhrPnm/l/NAov3/3LjzW+RX5jvQMMBAI8sDKRgrfs1DVdJ1gPIHbkl9U8hcBWU3l+ERv3vuLgsBaTxnlFves73R0tlaVMxGJ8bGWJv7x+CkOdPfiMZv51e2b6J0K8PdHTvCf79uHJIqsKCrgV7dv5nBPP2+0d/Gr2zfzwIoGTg8uTIL6poIMBsPc01SHy2Ti6QuXWVFYcFOiYRAlNnirKDTbGUvM3Yd3M7QGxxhLRG5KNCDXm7arqpo7KquYjMd5taOD17o66fD7eaWjnRfb22jwenmosZFdVVUU2ezYDArKLe5XuNZbmA9y5cRRvtV+kBcGLiyLZFTZPPxK4x18omr9+xFXvCWIx1OkM7lg3nKLt3WuN4qn01ni8Q++ZMliMFD4EXIAl/MMHt0WopHNqvS2j/LqM6c4eagD/3iYuz62nsd/bS+drcP4x0JsvrOJotLZg+XNYJYVGpxefnjlHBV2J6OxKF9ZmYvsRjNpIukUhZZbJ0cpSSKbdjXx1gtnMZkNFJa6ECURNauSSasYTDKSJOJwWZAkkf6ucVaur8RbYKeg2En3lRFikSSeAgeGBZoPd9RX8dK5K5zuG+bdth52N9XgMBunF5oZVSOZySIIYDddj45cW9yLgjAjEp/JqvRNBTk/OEownr/r7EIQBQGjJCGJAuFEiqlonAL7dQ3uay/1jYP2Z2rWUWlz88pAKx2hCVJalpXWInYW1fJYzVpG4mGe672A5z1eGy6jmU/VrMWumGgPjTORjJJSsxgkmWKznQ3ecvaVNlLj8M4aRM2SQqXNjStjxvQeCVxJEPjdVXsIphJcDIzw3Y7j/D/r70MWbr7Q1jU972bja/vPBbMic29N/ayIk81goNzuQNU14tkMWV1DWcR1Lvm69Nw7nC9E8XpJ3OG3Wjl3ooe+rnF+/A/vTpcoCgj4J8Js37dyBtlSdZVwJkQoEyCtpfGnrsu0ZvQMgbQfYQGpSDWbM56by8tjMTCYFKpaym/ao9IdG+FCsAcdncOTM0t3zgW7pv//D1u+QL0yO8AgCDnt97VrKlizupxoNMnho10cONjOhYuDvP3uFQ4caqei3MPuO1ewdUst5aVurNbFqVY5fXaqV5bTc3GAVB4TanAiTNfZXrQv7FySKtq+xtp5vwvE4/zFW4f5Lw/f/ZFZ6MwFRZAwSgoGcWnTp06ufPT4ZG/e5y4y2am2ebHMs3C1KgaMsozNYERAYDIao/DqmOwymwkkcnOBLIq4zCYUUcRmMBBJLf4ZCSWT9AYCDARDuMwmvFYL1gXmtmsQri64t3ireGEwv6bw9vAo48kIdXbfosmAKAgUWq18cd06PrNqFZcnJnitq5N3e3ro9Pv54wMH+PapU+yqqube+jpWFxXhMVumy8mWi5zq1NKJhqbrjCcj/FPH4Vzjd57qUiICNXYfv9a4k49Vrrn5Dh8iKEpufaVpKuMTYZKp7AI9vwsjmcwwPp6bFyRRXJS32Y3IqirDoQipbJZytxOTnL8s/jXsbaihsdC3rGO8nyh25Le2vi1EY3QwwAs/OUbHpWE272ykr+u6+6+u6Zw51kVZtS8vouE0mPhM02r+7NQBLk2O8WBNE5uKcuookXQKSRBpcN28WWyxkBWJex7dwKXTvXzrT15m3dZazDYj0VCCaDhBy6Zqdt6zCrvLgigJhAJRisrcCKJAYYmTRCyFrum4bqLFv6WmnDsba3jlQjv/7YW36Z6YYmdDFXaTkYyqMRGO0jk+hc9u4ZObct4CVqNCpc+F2aDQNjrBzy+0sa6qFHQYDIR4+VwbrcNjmPLQPV5MLZUgCHhsFio9LtpGJ3j5fBuqpmGQ5avGgTIFDiuWG3wcREFkR2ENOwrn1sKvd/h47t5fmfW5Ikq0uEtocS/OYf1GrPGU8lc7Pjnv90ZJ5k+2fGzJxxUlAWkZqhXpVGbOHgpZFKl0umZ9Lgni9OJG13Xm4SnLhq7rZJL5Z8EUozLd4L3ngdXUNhUzPhxgy65GfEW5aUIQwOG00LKxesa+CTXOOxOvMZToZyQxxFNDP5r+Lq2lUQSF7d75naunRoNMDE6RybOkzWw10bRx/sXyNTxUupWHSrfmdY5r0HUdVdUIhRP4/VHi8TQCYDIraJqG1WYiHE7yoyeO8trrF3nwgTXcvW8lBT7Hono4GjfWcuzls3kRjWQsxVDXGJFADOdVGci0qjISjjARjWGQZXw2CzZDTq0tnVUZj0aJptJYDArFdjuGq++GqmkMhcIc6uqjZypA+9gkoijgs1rmzI7ouk5CTRNIR0lrWWRBxKFYsCtmxPeoedkVCwXG/IULrkU5NXQ0XZsuh5srK26RDBSb3VRaCqixFVNvK17iyXSi2RTnAoM333Ye1DsKKbXMXGpNpcJEswlS6ux3tqnQx8mBIfqDIQaDIZoLc72LWVVjJByhdyrISCRCpdtJLJ3GH4sTSibxx+LYjUZMskwknSKQSKBqOv5YHI/FTFOBj6ZCH9UeN2ZFXrSUtlkysLkgf6IxEAsyFA+S0dSb+ia9F9cywKV2Ow/UN+A1W3j+Sivtfj9ZTeO1zg5e7exgU2kpn1+zhm3lFTiMy5ejFgVhyT0amq4zlgjznc4jPNd/Lm8JWxGBekcB32i6k/vL588Cf1jhcpoxmxQyGZWLl4cYHgni9dqQl1gNk1U1hkaCXLyc61c1mxWcNzELfC8mYwl+62cv0jo6wY+/+lnWlhUjLfPZKLTbZmV+fxFxW4hGb8cY48NBHv+1Pdxxdwvf/5s3CfhzfRO+YifpVJZ4NL8UoCJJbCuu4Pv3f4Z4NoPHZJleElc5XHylZQMl1sXpI/uKHFQ3Fs/ytSgq81DXXIpwNTLrLXTwO//1MV59+hStZ/tJxNM4XBYaVpVRXV8EgNNjpX5lGZIkUVmfG8yLKzzUt+QW/r6ihSdDSRL57XvvQBQFjnb185Nj5/nOgVOIooCm6ciSSIHdyiPrr9eOmxSFdRUl3NNSz+HOPv7s5wdwmE1XJ/4s1T43n9jYwpHO/kXe3RuxuFVsfaGXB9eu4KmTF/jR0XM8eeICJkUmo2rc0VDF13dvpqHoo8PYlwJZkVCM+b9C8XB8zqyGgDAr8/J+QtM0YuGl1/Zfg8GoTBMwg1GhvrmUTTsb2XXvKgoXaLAGsEo27il6mIuhMyTVJJvc26e/U0SFAmMRRcb5F3hjfZNE5jAMXCyMZgPVK28u66rrOrFskql0hKSaptDkwiIZSWoZzJIB5SbR7ng8hX8qxtBQgENHOjh6vItgMI7LaaGoyMnafS2sXV2OPxDj6NFOWq+M8JMnjxMMxvn8Z7fhWaDf6xqqmsswWvNvQo0GYoz2jE8TjYFAiCdOnWckHEGRJO5f2chdjbXYjEYC8QTPnrvMm+1dVLnd/N5dO6lw5xbEiUyGJ09f5GB3L6PhKH/+9kEMkszHV6/g3ubZCmLRbJIDE5d4cegEY8kgTsXK7sJV3F+6gSKTa8a2dxWtodmxeEW19yKXZciSVDPE1SQTyTAjySkmUmGC6RihTJzMVefuCksBj1fdyfaCFVjlpRu8abrOldAokUz+kqR1dh/F5plE45XRYxyaOE+dtBaLQaHc5cAoS1R5XGysKKPbP8XT5y8hCiK/tHEtoiDisZgxyQovtrbhMBp4eOUKBoIhzo2M4o/FOTEwiCyJVLpcXB4dpy8QRNN0Tg0McUdNFauKCzk9NMLxgUEafT7urKvGKd38nhglmZWuUiyyQjy79GCGqmu0h8aYKopTbF4cwdR1nXgmw1gsStfUFK93dXGgt49IOkWB1cru6mpWFRYxEY9xdmSE82Nj9Lz7Lr+8cSOfaF65ZJWt90IUBMxLkLfVdJ2RRIjvdx3j2WWSjAZnIb/VvJd9JU15HeODRnW1D4/bSjiSZHAowM/fuIDVaqC6yjdLKXMu6LpONqvR0zfJq29cZHA4Z/jncVuprvzFXJd8GHFbVjOJeAqDUaG0cnatuyyLaJqONofe/2JxTS7vvSY4HpMFj2n++uH34p5PbOSeT2yc9fknv7pz5vlEAW+Rk8e/sW/WttfgdFv5xJfumPFZWZWPr//bBxd9PW6rmX//8B6OdQ9wrHOAXn+AeDqDSZbx2Cw0lxSwvb5yxj61BR5++54drCkv5mz/COFEErNBYUVJAXub6/DaLKiaTkZVZzg6ioJAS1khZoOMy2qe3QAtCNhNRrbUllNot83bOFbgsPLZLaspdzs41j3AZCSGIAi4LCa21lXgXqCe+6MOg8mAxZ6/o2xgLIymzk3oPsgSdjWrEhjLr4Yacl4O7yVgu+5tmSWGoGs6wakoLq9tepzIlVfYaLQ3E81G2ODesqRzjw/4iS5DcthkNVK5CCWScCbOEf9ljvvb6I6O8LnKPaxz13E60MEqZw2V1tmqd6qqEQzGmfRHuNw6zMFD7Zy/OISiiBT4HDQ1lrBtSx1bNtdQeEPp1s7tDbx7oI2fPnWcY8e7aV5Ryr49CzerA5Q3lmBZhmttNBhntG9iul8lrarsrKtmZ10VL15s40h3P+UuBxsryihy2Pjm7u14bVbaxma6ktuMxmni8XpbJ3//uUcXbETti43zo9799MTGABhNBgmko7gNNj5ePvN5WOWqYpWrKu/fOBeymspoMsipqU6O+tu4FOxnKh2hLTLEj/r2owM78iAbKhoXA8N5X5dBlCizuHAZ5v6bPtKygjq7hzpvTj76t3bmSPqXN882X9xTX8Oe+plZ5SK7jRWFBbO23V5dyfbqmfNOscPOtvd8thiIgoBTMVFj83EpmF9DfFdkkmDq5kRD03X88TgjkQjnxkZ5raODUyMjmGSZcoeDfbU13Ftfz6bSMqwGA6qm0RsM8uSlizx/5QrPtrZS6/aws2p5z5dJUhZd267pOsPxID/oOs4z/WeXRTKaXcX89sp97Cqqz+sYS4WWPgd6AkEqR5DzJ/83YkVjCdVVPgaHA2SzGq+9eYlIJMX996yissKDw57LeCiKhCiKCAKoqk4mmyWZzBAOJ+kf9PPqGxc5dDTXNyfLItVVPpoal5iR/BfkjdtCNMwWA5qmMTYcpLL2+oSraTojA1PIsoTZmv8CTdU1IukU4XRqToMyu8GIz/zRabC5EYoksbOhmp0N1YvaXhAESlwOHt++jse3r5tzm2/evX3WZwZZ4v9+5K55jysKAk3FPr7zK5++6TX47FYe2bCSRzYsTerxow6DScHqtCJKYl69GoHxEOlkOi8J2tsJNaMyMeTPb2cBnAV2TNaZUcBDb1xm9/2rZ2Q0NE3nxZ8e55fmIPA22c4a58wFkq7rpLQUmq5iked+v8f6J4nmmdEQJRF3kRNX4c2rgM8Hezgf6GG9O7cIV9GwyWYuhfrwGV2ziMbA4BQDA1OcPtvHkWOdjI6GcDktNDYU0dRQzPZt9axeVT6no7TdbmL3rkbGx8P89KkTDF+Nyt0MrgIHnmIXfZeH8nIJjwZjjPZcJw01XjerSoqwGgysLi3i9MAQo+HFK/wtFjE1xWhy5m8MZGL40/mT36VAFiXKLV7KLV52+Fbw85HTvDB0guGEn7bIED/u249JMrDV17ikPg1N1+kIj998w3lQYLLhM9o+1E7gi4FJUmhwFOZNNAbjAcLZhRfg/cEg/aEQB/v7eLOrm95QkCKrlfUlJWwuK+Ou2jpWFhTMEFiQRJE6j4df3rCRVDbLM62t9AQCyyIaAosvm7pGMn7YfWJZJEMAVrlL+d2Wu9haMHeJ8u1ANvTv0LOdSLbfQrb/1i05ZlGBg907G+kfnKK3bxJN0zl8rJOzF/pZ0VhCY30RxUVOnA5zzmVcyDV6hyNJRsdCtHeMcaV9hOhV5SpRFKgo97DrjkaKCvMvufwXLA23hWiUVnpxuCy8/fI5shmVseEgsUiSc8e7OHusi4ISJ8VlS+/PgJy0XlfIzxt9nXSHAySz2WmpPAEBi6Kwp7yGh2pW3Mqf9C/4F8yCJEvY3VbsbiuhPJqPE9Ek44NT+Mo8N1U/e7+g6zqJaIrR3ombbzwHDCYDDo8N5T3NoRdO9rBp58wyGV3Xeeulc3zh1/fNyuBEshHOhk5wr2lm78xwcoBQJsh612zvDU3VmBycyts/QzbIFFcVLKomezwVpNTi5b6SzQzFc6TMJBty7uxz1Pf/6Imj7D/YRiajUlhgZ9PGGtavrWTrllpqqmdHkd8Lm82Mz2dH03QyS1A6K64qQDHIeRGNWDjO2MDkNImWRAHp6nMqiyK6zpyBnnmxyEfcLBrwGu0Mxq+TXbtswqm8/8GjApOTj5fnenF+2n+QqXSUtsgQr4+eocLio9q2OL+ma6p87csgGsVmJ74FpLsj2TiXQ72EszFkQcJrcFBhKZqWWM4ZvsXpj48TzcYREXEZbJSZC6azM6FMjNGEH4tsQtVVJlJBALwGJyUmL+b3yLRmtCwjCT8TqSAZLYtJMlBmKcBrcMzqp7kGoyRTb1/cfZsL44kIwVQcVdfmJV1/e/w4r3d1kshmKXc4uae2jp1VVeyurqbMsfACs8BqpcrlRifn27UcCDBv4/6N0HWd8USEn/ae5pm+5ZGMNe4y/s2qe9nkW3rG6cOIbVvqmfTHeOHlswyNBFBVnXg8zemzfZw+27fo40iiQGmJm/vvXs2OLQurCv4Lbi1uC9GoqClg9wNrePEnx/jxt94mGk6CAJPjIYpK3dz3iVUUl+dHNCLpFN+7fIZ3Brtp8RYRy6RpD06y1lfCRCKGSZIx3ub6dl3XyGgJEmqAlBomo8XJ6kk0PUd6BAREQUEWTRhEKybJiUlyIwvLbyz7F+Sg6VlSaoSEGiCtRsjoCVQ9jXbVdVZERBINyIIZo2THJDkxSk4kQeZWmoY4vXa8Je68iAZA55kemjbWIBuW98xG0ynG4zGi6TQZTeOKf4JYOk1KVbk8OYEoCMiiiCJKVDlcWBRlzmdRzaoMd42RiOQ30XmKnVhd1uljD/ROEPTHCIcStF8cIhy83vsR9EexzpPZTGTjdEXboej6Zzo648lRRpKDcxKNZCxFeCqat7eJrEgUVixOSMIiGZlKhxlLTJHRs2S0LD3RURRRxirNrukeHJqiotxDTXUBG9dXsWlTDU7HUmRedYxGmaJCO07n4ssRCyo8yAYJ8mi5yaSyBMfDJK9GAyejcYZDETxWC0PBcK5E0rz4zLRJlomnM2RVFUWS0GHOEqoSs5sHSjayf/wScTWFUZRZ46pm9S0ukVosnIqFXQUraQsP8c74BXTgxFQHW71NlFo8i8tq6DrRTIqhWDDv6/CZbLgMc//tNV3jwMR5otk4wUyMtJbGLlv4QtW9NNorQIdgJsorI0c5G+xE07WrxqkWtnia2VWwBrtioS82ypMDb+FQbJglA8MJP7FsAo/BwX3FW1jvbsB4td8gq6mcD3bx5tgpJtMhNF1DR6feVs7Hy3ZSYvLO+fc1SgrV9vwFW1JalpFEmEQ2g20ex+2jgwNUuly0FBayu6qabRUVS+q1MMsyxTbbsvszBEHAuggPjalUjOcHzvNs/1lCefizQK5cap23nN9ruZv1noq8jvFhhNmk8PADazGbFd7ef4WOzjEi0eSi/cYEAWxWEw31Rey7cwV37WnGbJ6b/Om6TiCeoD8Qwh+Lo2oaFoOBCrcTRVrY3FHXdUKJJD3+AFPxBJmr45zbYqbC5cRns8w53iczWcajUcYjMcKJJGlVRRByQfMCu3XaQHOufY/3DuCPJ9jXWIskivRNBRkOholnMoiCgN1ooNztpNyVr1bXrcFtWZErBpkN2+spLHFx6XQv4yMh0KGw1MnqTTWUVnqR81TriWbSHB8b5JMNq/j6qs2cnxzl2xdP8Mc77+PU2BBHRwawG5Y3OMyFnMpPlnBmiHBmgEC6j1C6l3B6mLjqJ6WGyeopdF1FECQUwYRRcmKVC3AaynEZanAZqnEZqrDIHkRh+bc+rcbwpzqIZOZOQXuMtXiMdbfkXAshpUaYSnUSycxtnOU11uMyVCGJy3dHzWgxgul+Qpl+gqleguk+otkxEtkAaS2KqucaDCVBQREtmGU3NrkIh6ECj6EWp6ESl6EKg2hFuAUlCO4iJ0VVProv5NNwD+f2t3Lfl3cvm2h0BqZ4qv0SHVN+EtkswWSCsViUrK7xT+dP4TKZMMkyZlnh97fuosnjm1MxI53McPHQlbyvo7S2aIY07HD/FBdP9TI1GeHoO1ew3aD0kYglue+xjTOyGWktTX+8m5HEENFsmMvh6+o0GS3NUKIfszR3ZDsSjJGM599oKysSBYtsEGywlzEUn+SFoaN0RobxpyL0xcYpM3spNntmbX/fPauoKPewoqkUgyE/nf7qKh+feGQjLYtoVr+Gwgrvsp6tZDxH3kRBIJpKc3pgmL6pIBdGRil3Oai52g/Q6w/QFwjSOjrOYDDEga5earxu1pWVYL7aG1bv86LpOs9daMVpMtFU5KPKMzvg5DM5eKxiO6ucVUylI9hkE3X2Ygrf0wj+fqLCWkCLs5ITUx1Es0nCmQSXQv1s8NRRYl5c0GwgFiCj5y8b7TZYcMzjHxHOxhlKTHBf8VbKLQWMJPx8u/tFXh45Sp2tDAGBAxPneH74EJ8o28VqZx0ZLcvxqcu8NHIYk2RgX1GuVDGQjjKVjnBP0WbuKtrEZCrIKyNHeWPsJIUmN7W2XA/TUGKCJwfexiwZ+XjpHRQY3fTGhvlB3+sYRYUvVN2LUZpdCqgIIj6jFUWQ8r4fg/EAsWxqXqLx+TVr2FhSyrqSkry0/xt9Xj63ajWrCotuvvECEOCmHhqhdIJXh1v5Wd9pJpL5lSKKCGwtqOa3mveyxlP+CxfQNJsUHrpvDQ31RRw91kVbxxhj4yGCoQTRWJJMWp2W+hcEMCgyNpsRp8NCUaGDxvoitm+to6mheN57o+s6/YEQr7a282ZbN73+XPmmy2xifXkpe5tqSc9TIq3rOl2TU7xyqZ0DXb30TQXJahqyKFLhdrKjtor7mutpLi6cQb6TmSzH+wZ55XI7raPjjIaiOaJBzsagscjH/c0N3NVUh3OOoM7fHzzO8b5BXv7Gl+n2B3jm3CXODo4SiidAgCqPi89tXMvnN32wssa3bQUqyxLV9UXTqky3CqqukVFVthZXYDcYkQQBEQFN11ldUMy5yVGODPeztfjWMXpNVwmlBxhLnGcofpLx5GVi2bF5t9d1jZSeIaVFCGcGGUmcQRRknEoFJeb1lFjWU2RejVlyL2uxm9ET9EUPcjH4kzm/b3I8zHrvV7Apt/Zv8F4E032c8v8To4mzs76TBCObfb+Ow1BOvkKwOjqqlmIy1c5o/CxD8ZP4Ux2ktfkH5ayuklWTJNQpplJdEANFtOAx1lNm2USJeT0FphVIy8wyeUtclNYVIQgsOsJyIy4f7SAwFqKkthCzLPP5lWuwKwYcc5BlRRRZ4fXx+ZVr2FBUOoMoGCWZQrOVrOvmpSwGae6/hK7rJCJJzrx9aek/5CrK6otx39DjsHF7PeVVXno7xtixr/l6j8ZVt+zqxpnPpqpnGYz30xPrJJgOcipwNLc5uXffKllpss/dCxQLxkktg2hIsoS32LWobWtsxWi6xlF/K8VmDyICxWY3O32r8BlnR48efnBd3tcFuchoU2PxkhsYPcVuZCX/YT4VTxMJRGko8PKZ9auwm4xcHp2gzOngzrpqylw5UumPxWkfn8SsKNR43YyEI2i6zsriQszkFpsrinx8ev0qroxOYDEolDjmVgcUEHAoFjZ5358m1sVAEkTKLB4KTS6iV53Iu6Ij+FPhRRENHRhOBJd1DS6DGfs8C2tVV3mgZBs7fKswiAqN9goOTJyjIzKIpuvoqPx89Bi11hI+Wb4HWcyNAV6jg57YKIcnL3CHb9XVa9Wpt5Vxb/FmLLIJXa8kmM5lQwbi49NE43SgnclUiK/XfYyN7iZkUaLRUc6ZYAfvjJ/hkxV7MIizvQYEQcAiG/CarIzmadw3kYySmEPO9xp+bdPsjOdSsL6klPUlNxeFuBlultGIZlLsH+vgiZ6TDMQW13v1XsiCyI7CWr7ZvIeVrpKPhON3PhAEgab6YhrrihgdC9HdO8nIaAi/P0IimZk29jMoEiaTAa/HRkmxk5oqH6UlrpvO8/5YgmfOXeYnp87jMBm5s76GQruVZCZL54Sfn56+wHhk7jXHWCTK3x44xptXOllXXsoDLY1YDQbCySSdE1M8ceo8/VNBvrl7G/UF17N5GVWldXScyyPjFDlsrCopumppoNLrD3BmYJjOcT8FNivbaipQ5pi7dR1ebe3g9SudWA0G7qitxChLRFMZMqqKw3TrA+9LxS0hGqqqkc2qGBdh2rNcSIKAVTEQTuVKO4ySjCJJDEZDlNucqLpOOJ1f2cd7oes6WT3BYOw43dG3GYodX3BxuxA0PUsg3UMg3cNQ/ARVtl3U2PbgMdblHek3SS4KzS0Yww5S2uwBezLVRjDde1uJhqpnCKb7cov5OeA0VOAx1qKI+anf6LpGLDtBf+wQPZG3GUteQtPz83jIaHHGEucZT1xiyHyKOvteqqy7scievAmfzWOjvLEEm9tKZGrpTcjB8TAnXjvPw1/fh8No5L/vvnfebY2yzB3lVdxRPruEpNlXQLPv5rX+C0HNanSe7aPn4kBe+xstBsobS3D6rteRy4pEWZWPPQ+uYcP2etw38ZMxiWa2enfhNniIqVG2ea57ZkiChMvgwa3MvbCLBmN5eUZMH18ScXgWp2kuIOA0WKm3l2KXLaxyVVNs8hDJxkmqaSzzLC40TWdoOMDQcIBwOEEmo2Kzmdi9Kyc/qaoa8XgaSRIwmw3LjkzaPVakJWrO34hUPEU0EGPj+ho2VuYyKQ+2zJbK3FhZNv39fBBFkcfWtsDavC/nA4XLYMOpXC9dGk0GiWQXW+aiM57Iv3HeIEo4FTOmOTIEABbJRKnJi0G8/r3TYKUjOgjoZDWNofgEG8uapkkGgEU2UW4poDMyRCgTu3ouGZfBjuVq34YgCPiMTgRBIJqNT/tRDCf8pLQ054KdDCcmp48ZTEeZSAVJZFM45LlLvQyiRJHJnjfRCKTiy+6fgNwcf02MQ8zT9XghCIBFmXt+T2QznJjs5YfdJ/IWCZAFkd3FDXyj6U5WOIs/8kIBi4EgCJQUuyh5T1DomslsvtUyZwdHeKutC0WS+PSG1Xxi7Uo8FjOqrnN5ZJz//c5hkpm5n7lnz7Xy6uUO7qit5F/t2U5LSRGiIJDKZjnRN8TfHzjGkZ5+qr1uvrl723SWzW4ysrexlvoCL7U+N6VOB0ZZRtM0Oib8/NmbBznc08/pwWFWlRbhtsxeR2m6zk9OnWdPYy2fXNdCnc+LIonE0mnGIjGceRKNzgk/gfeYPa8qLcKsLH2df0uIxuRYiHPHu1m7uZaiMjfjw0GCU1GqG4oWdMPOB0ZJps7l4UpgggdqmnAYTdgNRp5sv0idy0tnYJJ1hUs3dZsLSS1ER+hlroReIJzJ32TpvQhlBrgU/BmBVA9Nro9RZtmU10JcEmSchgoKTCsYjB+ffZ70AFOpborNa5HF/FW+FkIiO8Vk8gppbe4ehSLTKhzK4ks9boSmqwTTvVwJPk939C2SanAZV3odOipjiXOE0r2E0kM0ux7FqZTnRTYkSaS8oYTKFWVcOtye1/W89v397PrEZtxFzg8s5a3rOslYkle/+y5qNj/p6bL6YiqaSjCYZk+su+5pQV6EE6sgCJglMzXWBjJalgb74kUdoqE4yUT+REOURKzuxfU/jCWn2D9+gZ7YKD3RUUySAadi5eDERTa4G6i3z46GxuMpDh/p5NiJbrq6x/FPxchkVKoqvdNEIxxO8OrrF1EUiX17m3G7ltcAbXNZEeX8Fx/JeJrIMuSCf5FgFBWMNyzkI5n4nCZ5c0EHJpL59XFBzujOIs9PPE2SYVbzdU6yXL96fv2Gz5hzuxu3mb2dMP079Kv/0tDI6io90eHppnHImSjuLFgzg9C8F7Io4TbmL30eTN8aohFMJjk2OIgkCtxTd+szaAICtjmCDmk1y4XAEN/vOsb5qfzWFgZRYl9JE19v3Emjo2iGgtZyoOtpdHUQPdOOrk2CnkYQDCAVISorQSxCmLccWwAEdD2FnjmHnu1F16IgiAiiG0GuQ5Abc8e7xciXYACks1mujI3TOxVkX2Mtexpq8F6V5pcFgTVlxdzb3EDb+CTjkZnjYSyd5ulzl5BFkS9v28Dq0utZZ6Mss668mLtX1HOif4gLwzmfmqIbTPoaC32z3MFFUaSpqIA1ZcWcGxplJBSZl+RAjrB8Y9fW6WuGnKy4Lc8eI1XTeO5CK6f6h2Y4qv2PR+/Pq9/jlhCNseEgrz97mtIKL0VlbtovD3H5TB+fLrnzlhMNu8HIo3UrSas59lpktrKtuIIfXDnL+clRap0ethUvX20hmQ1yMfgTWoPP5p3FWAiqnmYgfoSEGiCrJaiy7cqLbNjkIootaxmKn0Rn5gIxqyeZTLURzYzhMt6ORkqdSGaYseTFOb81SU58phWY5aU3/mm6SiDdzTn/D+iNHkAjf6fq+ZBUQ7QGnyGlRljn/SJOpSKvhX5FYwkN66tpPdaZl8xt19k+3vnpET7xr+5f8r63CpqqcebtS5x6Mz/HXsg5UZfXz13aI8sSna0j9LSPEo8muf+Tm4nHkkRCCarqCmfdd5tsZ61rtv7/QkjGkstyNBclEfsiF/aXQ/2MJgPsLlwDCGho2BUzvdExqqxF1DOTaGSyKq+8doGnnj7J2HgYr8eG12Olt2+SVOr6BJJKZTl7foDh4QClpS62b13e4sfmWl5GI5PKEM9TGGC5yJX86Agwr4LR+wn9hsU45Moz51IYmw/jyWV408jKvNkMmJtA3AhFlCgx++iLjaJqKtJVEpBQ04wkJnEqVhyylTECpLUMoUyUpJrGJBnQdZ2pq9LCNtk8XZpTZHTjVGzcV7KVRnvFrGtwKfNnByVBxD5Pv8liEEjFSWnLJxqT8Tg/u3QJm8Fwe4jGHKVTWU2lPTzO97qOcmyyd5HWuLOxq6h+mmTk04cyF3QtiJY6hJZ8HS1zEbQx0FMgGBGkUjRlHaL5YUTDJgRhvvWKhhr/IVryNfRsJ2hhQATRi6i05PY33Ysg3J7gZz4IJ1OMhaOksllqfW6K5yjrbC4uwG40ziIafVNBRq+Wih7u7ufs4MyeWU3T6ZzMKehFkinGI9EZREPVNCajMbr9AcbCUaKpNKlslqymcW5olIyqklHVGWPPjRAE2FJdPoNkLBepbJa2sUlODcz0/VmI7CyEW0I0dF1H03TEqxNaNJxgYjSUd2R0IZgkmV2l1dPs3WowsreiFrvBSCiVpN7lZaU3f+k8gLQW42Lgp1wOPU1Gm1+uRRIM2JUS7EopZsmNIpoRkNDIktFixLNThNODxLKT8y6UJ1NXODf1Q0RBptJ6B7K4NAZqEK14jY3YlGIimdlmUBPJVoKZfpyGylseLc9oSQLpHkLpuUttPMYG3Maaq0pPi4eua4QzQ5z1f4/e6P5ZBOoahP+Pvf+Oj+vKr3zR7z6xckTOIEAwZ5GUKCq3cuqcu8d2ux1nbE98M8/vznzenfH19cz1JM943OPU7U7ubnWS1GpliZQo5pxBAETOqXI46f5RYEQBBAqgpLa9Ph+KYtUJu6rO2Wf/wloLCV0OElBr8arlaJIXWRS+P9POkrPiJM1h4sYghl08K2tj0pl4DSEEO8p+A5ccXvT3FCz3s2rbCirqoyXJwjqOwwtfe501O1eyZokLy1LgOA6DXSP84L+8dFVhaLEIVwZZvb2FSFXxtqZzJ3rZ+8oZDMPk8Lvt3PfYRlKJLC/+7UF++/efnrW9QJC3c5yLn2I8N0pUL2eNfyMxYwpV0ghrswnXRs4sScb16jklgdu3sIdfzEhRpgfYFmnj5FQXAIooLN6K+aJcuDDIT54/Rjpj8OzTW2hbWYWuK/z7/+v5G7bzenXWrqnhwoVB2i+NLDnQcHt1pDk4OQuBZVoYueUP8udD3jbpTo5wZLKDmJHGI+usDdazLtgwZ0va+4GEkSF5nX+DIuSFt6o4MJ4rvTLkllVcS1BTVITMRyrv4CcDe3ll+BCrAg2YtsWxqXbGctM8UXPXVelaG4eOxAB7Ro+z0l/PdD7BkckLlOlBatzXMq9bwis5NtXOmVgXAdVLmRbEdCwm8jFkIVOuz90XrwgJfwnu6lcQMzLkLfNqdaVUmLZdUK/Slj/DDswoe107tu3Y9Kam+JvOA+wd6bhKYC4FblklpLmLinqUAsdOYWffxEr9BY41jFDXIbkeAuEFJ4FtnMbO/hzH7EL4fwe0HQhx8/3oYOcP4li9SMoqJPenQeg49hhO/ih27i0cewIhlSP02f5eHxTSeYNUvjDP+XX9BnPjKwi73UU5EkOxBLZTuJZ+eLx40rWwvwuPpmLZ137zZC7P4Z5+3mzv5NLoBOm8gSrLBYUrIRhJJMmZ1rzBqEDMyXcrFRnDxLRLf5bejGUJNFwuFSEJ9r91jlwmz0DPBLGpNBdP9zHUXzxDWN9cTiiy+LYAIcQNP7ag4Aj+SOPKuXdaBBzHoj32EudjP50zyJCFTrlrDbWebYT1FnxKBbocRJVcCCRsx8JwMmTNaZLmEBO5DgZSR5jKd2E5s1s7pvJdnJz8Dh4lSoVr3aJUooSQCKi1VLrWFw00UsYIk7kOqt2b0eXlvRjT5gQjmbNYzuzFqUCm3LWGgLo4h1DHccjbSU5Pfpfu5DtFgwyBjE+totazjXLXWvxqNR4lgio8yELDASwnR95OkjJGmTZ6GUofZzhzsmh1ysGiM/EGPqWSrdFfZrGPLkmSWLW9hTU7WhnpGS/JgG/w8ijf/sOf8Ot/9HnqVy2dhLgYxMYTfO8/vcjFI8V5NgvB2jtXsnp7yyxH8Ct4++VTVNVG2LS9mZOHLwMQrQhw7EAnjjPbCT1jpTk+fZjOZDtZK0NfppdV/nX0pC9jOSZ3Ru+ZdQ7TsEqqKF2BkMSCidNB1ctQZpL2eD9ZO0/GynN8qhNFkgmoszNLe965yPhYgqef2sJnP7WDcNhLukibl6YpVFcFyWQNRseWblAnydKCWtbmgmXZmCVmsUrFSGaK7/fuY+/YWVJmFl1S2RRq4gtN939gBHHbsRnMTDKanb76mlvWUedpD7oeDpAyShcqcMlqUQWnhUIWMvdXbGYyH2fP2AkOT56fmSdt7infxK7o+mvnkjRkIXE23s2RyYtXfTkeqryDeve1JF6Tt5qnanbx3vhpXhzcd7XlSiDYGGphfXDFPOOR5iS2LwR52yJvW1f5IqXCtG0yxu0LpAXianDsOA4jmQTf6jzI64MXMJa4kHtnpIMV/jK+sGIHfs29ZNF2x7yAnfkhjtWH5Hoc2fOZmTYnD46TQjIuYqX/Cjv3Dlbqb1CUZpBrufF56eDkTyB5nkV2fwGhrAChgT2JnXsbM/knOGYndm4v0hICDcdxGBtPMDg0zchonFQ6RzZrggCXruL1aFRUBKipClJeFkBaBp+qua4zMfPHJSv884d2z3s9hj3uqwIalu1wvG+Qr717iN6pae5oqGN7Yy3lPi9uVUWVZX5+rp2Xz926JbtYALQUZA0TcwnP0puxLIFGWVWQTTtWcPDt85w52kN8KkUinuH7f7UXdY4H9xd+80G23Lk005SC3KmF5Tjosrws5fXBzPFCO80cnAOXHGJl4DEaffcQ1VtRpeLlKjdhAmoN5ayhZkblqCvxJr2pfUW5BhO5i5yc/A53V/xzvMrCTMOuwKuUU+FeR3fyHUznRvKOjcVY9hxJY2hZAw3HsUkaQ4xmirfa+NRKovpKdGlh5Nrrjsyl+Ct0Jt7AYfZELAudKvcm2oJPUOFah0+pmIdbUUlEb6Ha3ka1ewu9qX1cjP2MlDkKN+UIbCfPhdjzVHs2U+PZtsgxQ2VjGRvvW8PZA+2M9pbgqu3AsTfP8K0/+DGf+ZdPs2LD+2O2NDE0zff/+EX2PHfg5q9kwYhUBdl8/zpqWuYWHRgbivHQU1toWVN9tZd2vpaehBnjfPwMOyJ3kzTjXEycQ5U08naO0VxxGWXTsLCWMDnKirxg48Q1wQZGc9M8P7Cf9kQ/HYlBaj1RNoVabsj6XkFH5yiW7fDwQ+sIXeczcjMURSLgd2OaFqlk6QvT6yGr8lXDtsXCNu2SfUlKxUguxv7xC6Rmqgc52+BMrJeLif4PLNAYykxxerqbyfy1REVE9+Eu4pkyF7JLaPVRJRl1jvaYO8KrqHFHKdNDN7x+T/kmVvkbUKTC7x/Rgnyy7n7Ox7uZyieQhES5K0Srr46wdu3ZoAiZlf56dkbXMpAZAwdq3GWs8NXcYNinSgo7o2updIXpS4+SNDPIohBot/hqUeZ5HktCzNsKthAYjsXLHZcYT5VeKRqIJxhOJmkIhpY0lrkgREHe1nEcpvJp/vbyEX7Wf2ZexayFImZk+f7lY5S7/DxZtwG3Uvr36ThZ7PwJbOMUQmlDdj+DpG6Bmd9QiABC3w5OGsdoL7RXGWeQpPLZVQ0pjOz9dSSl6dprcgWStgtJfRc7+xKO1QeOAWJxY7Zth86uUY6d7KG9Y4SR0TiTUymyWYNc3kRQSNa4XCqRsJeKcj+tKyrZurmB1pYKlDkW5B5NxTvT5h/P5UjnDXz6jVWueCaLac1ek1QF/QhRcB2/p7WZqsDC1jyJbJZDPf2cHhzhvpXN/Nrd21ldWXbDGI/0DXwgKmIZw8BcjBnrLbAsgUYo4uORZ7fS1FrB9ESKU0cuM9AzwR13t+GdoxWhrLJ0+/ecZXJqbJi9A5cZSiWo8wX5zKoNCASX41OsCEao9Cx2gQtZM8aZqR/M+FLMfii75CAbw5+jJfAwXmVhCj8CgUsOUuu5A79ajS776Yi/QsaaLWU3kD7EpfjP2RD+HMoiyFKK5CKsNRPWmhjLnZ/1/lj2AjGjj7DegiSWJ/LN2wUPj+QcMr9l+irCWvOiCdbT+W7OTj83K2ACUISLOu9ONoQ/S7lr9YIrP4qkUeZqw6uUo0t+Tk5+h7Q1u8UpY01yavK7VLjWLZo8r6gKW+5fy5l3L/L24P6S2gYtw2Lf80fIJLM88ZUHuOPhjUv215gPFw538LM/f5N3fnyYfIncBkmW2Hz/OrY8uA59DhMkgNrGKCcOdeEPuLBtm/h0mv1vnadtXW3RTJxhm+TtPKsD6+lIFHw9BAIJac5+dGspFQ1R8P9ZKKpcYe6r2Ei1O8JKfy2SEFS7I6z2N9ygTHQF6XQeIQTh8NxBxvVjueHvJUJRZa7jBS8KtmVj5JevhL4QFNT+bjyn7diYi+BDLCdGs9P8fOgohyc7buBk1LnLCGkLrco7SyIvy0LM2aa1KtDAqsDsxMSm0I1BmSQEET3A3eXza+rbOLhlnY2hFjaG5k8GqpLCSn89K/2Lk5MXQsxLFl8IDNvip+cvcnp4bqn5Wx/DJp5bnoC+GAQCr6KRMvP8qOc4P+w5XrLrdzEMZ+P89aX9lLv87KpYseAK2yzYkzhWFzgphLIKoay8GmRcD6FtA7kKrG6c/AnQ7oQbAg1R4GFcH2RcfcuNkOsBG5wsjpNHLCLQSKZy7H33Inv3tXOhfZhYPF1cUn6m/XdwaBoh4MjxHo6f7GH3rpXcf89qgoHZ3JKAy0Wl34euyHSNTzIcT9wgQwtwfmSMZH52FboxEqI6GGBwOs7L59r5pTsXxi1M5vJMpNKYts3K8ihtFTcGGYlsjp6JadL597d1FWYqGh+2QEOWJSprw1TUhLAtG01XUFWFjzy7hWh58YBCKVEJJW+ZHBjq409PHiBl5LEdh47pSZ5obiNv27ze28HWihqebF64Ws0VdCf3Mpo5i83sB4IiXLQFnqQt+CQuefGseyEkglo9a0MfJ2cluJx8a1Zrlu2YXIg9T4P3biL6ikUt0oNaPRXu9UUDjawVYyx7kSr3ZjwlELOLIW2OM5Q+UbS1SRFuylyr8KuLV/86O/2joi1gApmovpJN4c9T5lpTUrncrYRpDTxCzOjjUvzloq1xI9nT9KcO0eS/d9HHr2go466nttJ5qpfus6VJxBo5kyOvnWJ8cIoLhzu5+5k7aNncuKzSiyO947z3/FHee+Eo5w9ewsiVvgBqWlvH7o9up7p5fl7Ug09v5o0XTvDXf/Iak2MJ/uq/voI/5OHpz+4suqDWJA2P7OHU9FEcHEzHoDd9meHcIBV6ccK5ZVk4dmllGYFAXkT5WRISNe4o1a4IhlMwWFLE3EZ8gYAbx3GYmEwSmSfYyOVNhoen0XWFaHhpilNXICtyqXEGtm0vifdSCsr0ABtDTbw3fs04ssFbQatvedQEFwLDNhnLxrgQH+DAxEUOT1xiPHetlU1C0OavoUxfeMIsv4SKhiSkv1P+CIX7ZWlzWt4yGU+nyZgmGysr55SRnQ/T2SznxkqTll0IhABZknip/wzf6TrMxBJ4OnOhKznO/7qwh6juZU2oNIlbx06APQmAkCIgFefaCcmHkCI4qDhWPxRpBRdKc/GTCKnQRgUz64aFzyvxRIafvHicV984y9BwbMGVa8cpKPkdPdFD/+AU4xNJPvb0ViI3za2aIrO2qoLmaJijvYO8frGToNtFmdeD7ThcGBnj5XPts+ReAbyaxue2beQ/vf4O3zt2moBL557WJsp9XizbJpnLMxRP0Ds5TVXAx8bawjzmUhW8M9ygoXiCkUSS+nBhbTkST/Kzsxc52T90Vfjo/UTW/BAGGlcghEBWZCqqQzStrMDt0dHm6NkuFbF8jh9eOkPY5eafbL6Ly7EpfthRMBjzKCoZ06R9apwn57jW50LWitGZeK1oD79AokxvY23o4yUFGdfDr1axJvQs0/luRrPnuPnxnzJHaY//jB3lv4XMwicMlxyizNWGW46QsSZvetdhJHOaZt99yxJo2I5FwhiaGf9shLQGonrroontk7kuepLvFH3PrURYHXqWqGvVknpydTnAmuBHGUqfZCrfxc3fv2lnaY//jEb/bsQivn8oLOg23b+WSye6mRicLFkW1DJtuk71MNI7zpl97ay6YwWb7l1D69YmwhWlSeBmklm6z/Zzcu95zu1vp+NkD5PD0yUvzAFCFQHu+dh2Ntyz+pY8gOaVVTz6sW30XR5jy84WPD6dmvoorWuK81GCaojNoe0cnz7EWG6UaWOS10Z+RpNnBav964vuIyRpSVUAu4SJVQiBdl1l7ehkOzXuMqpvcgdfvaqKc+cH+PnPT1L3lfvxeGYvihzHYWIiwbv7LhHwu1k5h4LXYuHYdsnKNkKI2+IvMB+q3WG+1PQAawP1TOQT+BQ360ONbAjNVs57Zeg452KlBfXF4OBg2CZpM0fMSDGaizOSnSZr3bigavJWsiZYj28RhOb8EisaHwblreWCxPJUNGwcGoJBvrJtG9W+xbcGt0+M8ycHDy5pHPPBtG32jXTyfN9phkr0DFkITk0N8Cfn3+LfbXqSak8pzwgLrlQRhYKYz15XaBQm2jxF0xdzqlGVhmzO4KVXT/Ozl08xOha/WsWoKPPT2lJJdVWQYMBd8HFzHLJ5g+lYhqHhaTo6RxmfSGLbDkPDMX7+6mk0VeYTz94xaw7eXF/DQ6tb+dsjp/j+sdOcHhim3OclZ5r0TcWoDPgIu92MFDHte2r9anqnYjx3/Az/652DvHz+En5dw3EKbUjxbA4Hh2c2rLkaaATdLtZVV1AT9PNeVy+pXJ7GSAjDsuifjjOeTLOyIkrOfH9bV2GmderDxtG4Ga1ra6hpjOL1L798WcYwOD85yu9uuZu7a5tueK8gAagQyy++FDqUPs50vndOXsCa0EeXyfhOENFbafDuIm4MFOVrdCbeYH34M/iUygVPGJJQCGvNlOlt9KUPzHp/MtfJdL6HqL6yZIPAK8hZcUazZ8nZsaLvR11thPW5iYBzoTP+Gllr9jElVMr0Nhq8dy9L61dIa6Tas5mEMTirRcvBZix7gelcL2G9adHHDkR8PPS5uxm4NMSBnx3HNErLRjgOJKdSnNl3gc5TPRx59RRltWGqmiqoXVlFZUMZ4Yog/rAXl1dH0QoOvJZpkcvmScUyxMYTjPVPMNg1Qn/7EOMDk4z2ThCbSCwpwABweXXuemorD3x2F/4FZN5lWaKptZKGFRUYhok6wxuY6/rWJJ3VgfUE1RCT+QlMxyCghqhyVRNWZytOQaFFqFQpV8dxloX0fHKqC0XIswKNB+9fy9697by99yJ5w2b3rpWUlxcWRpZtF5xuu8Z4461zXGgfYt3aWrZubVryeAAMwyqZfyPJEvISyOSlwCVrrA3W0+itIGvlUSUFn+pCk2Y/rk5MdfHq0PFlO7fDtTatueQkvbLOA5XrWRWoXdTif2l33PtTzWj0VvFLzY8TnEea9sMCBwccKPN4aY1EqQ0svh3bsG2Crtsns5qzTJ7rOV6yMeFC4QD7Ry/zJxfe5vc3PoZX0RcVbAihwxW5WSeL4+QQojj/1LGTgAXCB0UDkuUNiI+f6OHNt88zNpbAcaCi3M/DD65j04Z6ysv8+Lw6uq7MVKQdLMsmmzVJpbKMjiU4ebqP1946x9h4gonJJG+9c5GmhjLuubvthvOE3S4+sWkdAV3n1fMdHOkdwHYcyrwe7mpu4NlNa8gYJpMds6saUa+bX921jbaKKG+1d3FhZIypdBYhIOhyURMMsKOpjo3XeWyosszdLY0YlsVLZ9s5NTjMsb5BPJpKczTMp7eupyYU4D+/sW9Zv8+F4EPZOnUz/EEP/uDyafpej8KDADyqOmvqNW0L07ZKIEU59CTfmcN0ThDSGqj3Lp8UmyxUGn33cjm5p2igkbWm6E3uY23o44s6bkCro9y9hv704VkBk+lkGM2epdqzFb+0tExp2ppgMH206HtuOUJUL1RWFoO8naY79U7RQE+X/TT57kOXl+fhJ4REg3cX3ck9mEWcfQ07zWDmaEmBBkDdyiqe/OpDTAxNc+FQR/E+0gXCcSAdz9B9rp+e8wNobhVv0IPb50J3a2i6WmiNkQtqL45tF5SC8ib5rEEmlSUVz5BJZLCtpS11rkDVFLY9tIGnvvoQlY1lC3qgmabFsf0dnDzYxeREAo/XxZqN9dzzyHo0XZl1DBsbcGj2ttLoXYHjOMjiGqnZcexZrYWKKi9NytWYf2LtS41xOnZ53m3OxLpZG5ydeW+oj/KlL+7iz/9yD2/tOc/Zc/143IWM1+honD/4wxeIJzKMjyepq4vwyY/fQdktXNQXCssw51w03wqSLKFq72+gAQVDt6DmIcj8zxHDNsna718Psy6pPFS1iYeqNhNUF9faVnL/PIXgpxQy/2IRVL0E51GLWi5cUbxaChRJpjYQoMYXQC/xvlckCY9y+3hwNs5tDzKuwHAsXh04R4XLz++sfQB5McGpFEHIhUy7Yw3j2KMIqWnWZo41AvYEYF5TlLqNiMcz7N3XTnfvBLbjUFcT5suf38UdW5sIBd1zVlsDfqDcT2NDlJUtFTQ2RPnm3+6nf2CK/v5J3j1wiY3r6wkGr1VfhBDUBP18dNNa7myqZzqTxXZs3KpKVcBPuc/D7z2wiy9s30RrWeSGVkYhChKzz2xYw/aGWqYyWXKmiUCgKTJeTSXq9cxy9i7zenhsbRub6qqZTmcxbQtFlgm7XVQHA8iS4N8+/gC6qhDxzJ4L/+mDdxPLZFlRtrj11q3woVSdWgws0+Kn39lP27o61m9rWvT+uixT6w/wcvclNpdd69k1bJv+6QkGknEeXqTUbdIYY3IO6VkJmQbfLrRlWuReQVCro0xfRSzfi+nMJod1J/ewNvQxFpPJUoWHiNZKQK0lZvTOen8oc5xW4xH8aumBhmUbxPJ9TOQ6ir4f1psp01cuuvIwmjlD2izuQaFJPmq9dyx6rPOhTF+FOkfGxnZMRjKnWBf6REnHlhWZdXe18fHfeYxv/+FP6T6zPK0djuOQS+fJpUt3v14qVE1h28Mb+My/fIqmdXULbqvZ8/Jp9r95jpqGKK2ra8hm87z98ikmxxJ86ldmS9VO5SfZP7GHu6L3krNzhNUIHsXLRG6Mg5Pv0p3qZENwC9sid+KRCwu+QqBRejbNtm1sy57zGJ3JQV4dOkKdZ24hiIl8HLvIAkpRJHbvWkko6OGll09x8HAXmRl522zW4My5AYJBN/fdu4rHHtnA6lXVyyLJCGAa9i9URePDigo9yBM123isZhvVrvCiORP6EnwwLMe55cJ8OP4/SGQP4Dh5JOGiKfrfUOTivfYfNAq8q6UtZFQh8zt33oVXUUuuSng1lTXlFWjLLA/6QSFtGfyg+xj13jCfbFqE4akIIJRVIFVhGyeRjFMg18MNz3EHO/sGjjUIwo+k3gFzPEOXC52Xx+jqHiefN1EVmY89s5VdO1vwehdWsZEkiXDYy913tpJIZvnaX+0hb1h0907Q1T3Glk03iigIIQi5XYTcxa+nYi7e1+/r0VRayhfeni6EwO/S8bvmbjPfVDc3N+16F/LlxIdSdWoxyOdM2s8OEK0oTXUqpLv51MoN/Keje/mNN3+CLiv0J2P88dF3mcylWROu4N6bWqpuhfHcRXJW8ayDJORlrWZcO65CpXsd/ekDmObsQGM8e5GsFcOtLPxBIYQoLPRdq4oGGon8EBP5DqKulXPK8t4KOTvGUOZEUe8MCZmI3kpYXyRBhkLrmuXMzkxKQiGsNy26QnIr6LIfr1pB3BiYVUWxsZjMdWE75qI8TW44vltj+yObMA2L7/7R8/SeH1iOYX+g0Fwq2z6ygc//62dZsbFhwZ4TAAfePs9dD65l4x3NuNwalmWxeUcL/+MPXuCTv3xPER+NFO+Ov0l74hyqpBLWotxX/ghT+Qkm8mOsCaxnNDfM5WQH64KbgILyl1yiyAQUpBOz6Rwef/EeYwdo8dfw8brdcx7D7LZQi7T4ALjdGls2N1BfH+FTn9hOf/8k8UShohYKeamtCRONeomEfSWLZdyMfCaPvQQyd8GH431/THxooEsq9Z4ydkRXsjO6ihZ/FUHVUwJfQqDPcV0sBLZj39LcLeh+BLeyhonUD0nm9uPMYRK7UDiOTc7sBgQudfFz+vzHdpZsCKZJMi3h8JK4HhVeH/9oy+ZbOqv/ImEqn+ZrF9+h2h3k7sqFWQgIISNp25H0+7AzP8FKfQOcPJJ+H0IK49gT2NnXsdLfAXsM2fMFhNIyP5djGdDRNcr4ZIET0dpSwcb1dQsOMq5ACIHXq7NxXR0rWyo5d2GQ8YkknZdnBxr/gAI+lK1Ttu1gGhZiARKRuaxBPmeW3E6iyzL31zXjUhSe7zxP+9Q4uqyQMQ0eaVjJ402rqPQurvowmevAtGe30ABosp+ItjS/j7kQ0VeiSl5gdibfdLKM5S7QoCwuyPGpVZS5VtGb3Ifh3KRqhclw+gR1nh0EtdICjYw1xUDq0BznrqZMX4VSAhlsJHsaxynOj4ksoyzvFQgh4VMqkYSMNeu8DjkrQcacxKuW7jLv9rm468mt6C6Nb//hj+k63bdkbsQHBV/Iw70f38nHf+cxqldULtoEzshb1DZEiVb4r1ZBVHV2y9QVOEBQDfN0zadwy266Uh2cjZ8krEbQJZ2dkXt4d/wtxnLXpC11j7YkOWDbsklNp+cMNFb6a6l0haj1FM9oATR7q/DOQxBWFJmqyiCVFQFaVpRfLU8rsoymza1aVSqS8cySvEUUVUYvQly/nbBsm/ahcfrHYzy8af7q9D3la6l0hZbt3EIINEnBI7sIaV4qXSFCqge/6sGnuJa0qF1KRcNcgLyvS2lFV5pJGSdJ5Q+XfK6r57QnmU6/hCKXLXugYeOQX2KgoUpLv180WaaqBBL57UBY8/BIzRp8qs7P+s8sqeVqID3NH599nQq3n5WBBT7D5Gpk7+dxnDhObi9m4v9BpP6cwjLRxLGnwI4huZ9C8nwBpMhsp9VlxsRkknS6kNRsa60kFPSU9JsLIQiFvLS2VHDuwiDpVI7Jqdmk7n9AAZkPo+pU14Uh/uI/v8z6rY188bce4t3XzvCN//F60W1ty2ZyLMG9j24o6VxCCHyqxn21TWwqqyJrmtg4qJKMX9PxqdqiS9rT+V7MIhl6gJDWtGTy9FwIafVoUvE+XweHiexFGhZZTZGFSkRrIaw3FVWFGsqcJGWOElDrFn3DGnaW8eylovKzUGibKi9BFSpvpUkYQ0WlcmWhlCSTuxBokm9OZSkHi7Q5saRAAwrBxh2PbCRcFeJbf/AjTu29gJF7/3Wxl4Ly+igf/c2HeegLuwmW+RfcLjU1kSCbMRBCsOGOZt548QTJZJbK6hCpRJa3XjrJU5/eXvRZpQiZCr2SFl8bEhJxI86FxBmCSgiBhFv2oEoqlnONwO0LenEtYVFsWzaJ6RTl9cVL31Wu8C0XtY/X7ECXbs0RE0Kg6yqleyMvDKnp1JLc0nW3hu828e3mQjyT42T3EKnsrVsEd5atYmtkaSZ+44kU75zr5r61zUT8hYWMhEAREoq0PEawAB659GszZ5m3VK0SQmJm5CWf53rkzX7Sxll80vZlOd71sByHlFm6f4WgEGhIfwcqEbKQ2BCu4YstO7mrvBnbcVAkme92HS7Zc8MBLsVH+cNTL/NHd3yMctetgykhFFBWo/j/NbZ2J3b2ZRzjIjgpkHwIZQ2y6wkkfTfIVYhlTv4VQzKVIz8jvx4OedGWkEjSNZlwqDCX5fMmqdTS/VN6J6f50clznBocIpkziHhc7Gis42Ob1s3iYxTDUDxB79T0ksex3OiamCS7jGpXyzIj+QIuNm5vpr6p0LucTGSxTIt1W5pwuW986GYzeU4d6V7S+YQQaLJCRQmmfDfDdkxSxkhRfgYIgurijIgWA1m4cMsRJJSi3h1T+e6SjhvRW4noK4sGGllrmtHMuYJrt7y49rWcFWcgdahoQKBKHqL6SvxqcbnS+ZAw+ou2YgEIFLzKcqh9zYYqeeYONBybrD29LOfR3RqrtjXzT//0V3n562/zwv9+ndhYcef5DxM0t8bWB9fz6X/2JCs2NuBaZMn663/yOkf3XQIKLZP5nMk7r55BVmQc2yGdyhKpCPDYJ2YHG4pQcYDXR14ipIZpT56jL91LZ/IiNe560lYKyzFvqHT5Il5cntKX7rZlk5ye7a1ydUwLyGYHipj1fZBITqeXVNHQPTq+0Ox59utvHWEymSZnWJzoHqLM7+FL921l64paNEUmZ5j86OAZ3jzdSSqX5862Bn75gTvwuTRi6Sy//91X+NjOdXxkw0rG4ym+8fZRAh4X21vr+NqrB+kYnsBxHF4/fYkVFRE+tWsjm5tmzy0uWcO1xPWOO6jzsW1+PJpasmrZrSCAqF66L0rGMsgu0U3acRwse5KJ1HMksvswrCFAxqNtosz3abz6NgBSuVOMJf+aVO44hjVEIruP0fhfAuB33UWF/9dwa9cUe0x7monk94llXsOwJtCVesp9XybgvndOQzbLtknkSzeu86k6mjx3RfR62I7DYCLBUCJB3rIIaBo1gQDRIuTa9xtR3ctHGzbxicat1HiCaLICjsNnmrYxnUvzk96T5Er0XzEdm+MTffzH06/xf259CvcCAl0hVJBrkd2fQHY9NuOTYc+Y9+kgeQG9qMeXGvnrgtu3NIcFgAgge38J2f2xggSuuPX6TRLMVE2cghjCEgQRHLjWUSAES1Vyuzwxyb/88ct0TUyRNQ1spyBDfaxviMO9g/zhM4/MyfW4gj2XLvMne/YvaRy3A6m8QdZYvoTosgQa5dUhPvalXTdM0ivX1vKl335olsRtIpYm8X//bDlOOwuWY/N6Twc9iWl+bcOOBe2Ts+JzVjOAZZK0LQ4hBB4liiRUbOfmycQhaZTmeOqSA0T1NjxKGWlzfNZxB9JHaPTds6hAw3EcstYUg5kjRd8PqnWLcuu+HklzrCiBFgoKXG8O/VukRTiILhSGlcYo4kAOV/T0l8/BVVZkymrDfPL3nmD7Ixv50Z+8zP4Xj5XsyH07ISsSTWvreOa3HmHXU9vwBt3IyuJXc1/5vUf50m8+NO82QipefS9wMh7mwMReupLtNHlbuDNyD1PGBH3pXv6k448IqxHuKb92fH/Ii+4tPdCwLJvpsYW1K8TySQzHIqT6kISgPTFAf3qMNcEGql3ROauqY+MJTp7sZXgkTi5vzPvcbKiL8MjDxT1DForYeHxJhnu6W8Mfnr0gm05n2XPuMl++byuf272Z54+c45UT7VQGfTRXRnjuwGnO9I7wjx/fRcCj899+to/v7jvBr8wEG5+8cwN/9upBWiqjnLg8SOfIBP/uUx8h7HPzTx7fxU+PnMOtqnzh3i0oskT7wBj/6+X9ZPMmpmUhhODBDa2Mx1McvzxIJm/w2JY2tqyoRVcV/udL76GrCtOpDCury6gIennzdCdCCOLpHF+6fwvrGqqIpbL84L1T9IxN8duP70JXFd4518Wp7mEM06I6EuCp7WvoG59m79nL9I1P49ZUvnj/VjY1LaLSKqDSXRovESBrGWSXYPh3BY5jksgewK1tIKQ8jmmNMZl+ESM2Sn3kP6ArtehKHWXeL+BSWplKP49X30bI/SgAihRFU64FfJadYmDqD0jlTxByP4Km1JHMHqR38t/QEP0DAq4Hi2a+LccmsQSH7JDmuSXnxbRtfnj2LH975jQD8TjWjJ+MJARuVWVTVRWf27CRu+rr33czRFWS2Ryp41fbdrMtUo9bua4TQwgq3QG+2LKTiVyKN4cuUqoTTtY22Ttyif95fi//dN1DyAv4nEJIMyTvxQViV1Sr5j6uDCI4dyBSBB63jqbKZCyb6ViGfIly8VCoYkzFCokkVZWLehktBt85copLYxM3ZP5NxyGWzXK0b4AfHD/DV3fNL2KTMQzGU3Mnt/6uYNmcwd3XZRLDZX5a1tQQLvOj3tTLLcsSumv5F40ApmUzkIzTlyju71AMWSuGXYSEDAW3YJccWqbRFYcu+wtZ2SLzSGoOFaZbQQiJMlcbYW1FkUADRrNnSBrDBLX6BXMfDCfNcOZkUZ8LKLSYlbvWljTejDlRVNYWCr4Wc53z9sKZ87ooFUII3D4XbdtW8Ht/+hWe+a1H+PZ/+BEn9pxfUnvLckGSJVo2NfL0r3+Eu57cgtvnuurPUQoCodIzhopQaPG10eBpwqEgbSsLBcdxaPWtYU1gPX4lQLWr7uo+vvDSKhqWYTLWN7GgbQ9NXmQoM8njNTsYTI/z4/59jGSnaZ6s5FMN99Hsm60G8tMXjvOd7x0gEc9g284tJWd3bF+x5EBjfGASM1/6AtXl1vCFimfiNzZWsb21nvpokG0rann+8HmS2RyWZfPGqQ4+cdcGVtWUoakKD29q5dt7T/Dl+7ahKzI7Wus53z/K//G3ryILwe89dQ8VQR9CCIJeFx5Nxa1plAcK53YciPo9ZPImbk0hkclxqmcIRZJ5YusqQj43Pz14joqgjxVVUbpGJvn4XevZ0FCFpioc7egnnsnx+598kIsD47x09CLrGqrwe3Qe3NjK84fOYtkOtmOTzhnURYM8unUV+y/2cOBiL7IkWFtXwc62egYm44S8i1M5EkCFu3QuQMbMkzWXPh8pcjnNZf+90F4lZBwniyKVM5r8S7JGO7pSiyyF8OqbsZw48ewedGUFftfd132SawnFWOZ1krlDVAX+CUHPw0jCTdjzNJ1jv8Rw/M/wu+4tShg2HZt4ERGUhSKkuedVirIch//jjTd44eKFQnv1zRF9JsNIMsm50VH+0ZYtfGnT5vct2IjqXr6wYgefbNpKWHMXrZRKQtDsj/JLrXcxnU9zZGK2uMtCETeyPN93khpPgM+vWFgC9nbCsm3O9o7QPTrFMzvmXzOURX14vTqZrMGFS0PEExnKy0q7j2LxDBfbhwHweXXKy5bWEXO0b5DcHK7dyVyOfV09tww0/r7gtsiJ3HH3Srbe1VpUOUXXVZ789E7KqxYe1VoLJKXkLJOUmb+lOsf1MOzMjGZ/cWjy7SWKqZJ3TuWGvJ3EcZySFnoRbQVRvZWh9LFZbVmWk2cwc7TgJK7cWs3JcRzyVpKe1HtF3/fIZZS5VqNLpWXscnbifdGIXzxuz+JfSAJVV+k62UPnqd4PLMgQM2XpYJmfez+xkwc+fRcrNjagagqSLC07MXlxYxPIyMjyTX2uAsJqhJAavrrdFXj8bnxBD5IslfSdmobF6AIDjalcEoEgqHp5fnI/K3zVfLXlCb7Z/QajuelZgcbho1186zvvMT6RRNNkaqrDhItUCq5H4xxckcVgtG8SM7+EioZXxx8p/kAOez0E3IV2Ol2VcSgoI8XSWZK5PH/4o7f4f366FyEKSSBVlmFmPvPoKk9sXc0PD57mrrYmNjZW3fJ6c6kqiiTj0dVCUmkiTnNlhIjfQ3UkQDydIZMvLMZVWaKhLIR/ZnxCQFNFGK9LI+r3EEsXFrmSEOiKfAPvyKOrhH1ugh4XuiKTyZv4XDp7znYBcPeaJiqDi12kCCpdpVc00pZB3JjR2S+RkC4EOI5AElcCRwchvGhKHTgOlh2f2U6i4N0tA6LA/ZijUp3Kn0ASHtzaKuSZVhgh3Hi0zYwlv4ltZxCSNuu3zdsmo5nS20cLFY25E5Y/OX+On144jxCCr2zbxmMtrTSEw2iSRCyX48zICD8+f563Lnfxo3PnWBmJsqvh9ioQ6ZLC9rJGfmftA6wOVqGI+edYWUhsjtbx5dY7iRtZ2uOjJZ97LJvk6x0HqHYHub+qbd7zXlk/FRqWCv+5srnDtYajwnuFdIkQN+p22Y6DJMS1Y133/lQyw8nuIbJ5E8u2ERTuz2JjWrGinGjEx/hEkvZLI5w41UdVRRCPZ/Y1NRccxyGVynHsRA+XOgvfYfmMq/hSkMrl5ly3WLbDdLp4t8TfR9yWQEOWJeZMNgjYcEfTgo9l2TY7vvc/r16M88FxIGMafLx13cKP7xgwj5qHchtadq6HxDwZY8fBxkRm8WOQhEq5aw0BrZ7p/GyTsf7UQVYGHsMlh295wzrYJI1hhtMni74f1OqpdG8oeWFq2TmW6pv7iwLbsum7OMSf//53Ofn2uUW1Tl3xdyj0qjJ/cCa4ds/MOHALSSBJhapK8/p6Nt67hs33r2XllmYUVUZIczt1f5hQeGjNHqcQBeK6L+QhPrF4RZFCoDG+oOBemlkkdCWHSJhp7oi0UeOO4uAUTYy88eZ54okM69fW8i/+6WPU1t76vlvqT+E4DqN94yVXNHSPRrQ6hDZHBVqa43cIeAoViX/7qYfYvboJTZGZuWRRZanw4M/m+dbe46yuqWBgIsa+Cz3cs6Zp5jsp/HGu9GXP4ObvqyzgIWsYxNJZZEnC59bRVfXqtjc7z8szviSFlwrHdigEQbZtY1oWti0hCYEkXaMZCwoeK9taanl480pUWUZdJJdDANWehSfXimE6nyZh5AjrpVUKHQcsJ8ZE8vvEM2+Ttwaw7AS2k0WVyyhlDrbsGDmzi/aRT3J9pcPBKgQvTgqZGz+34zjkLJORJQQaYc0zr4rXD8+exbRt/uiRR3hm1eobqhU+TaPG72dTVRV1AT8/PHeO9/p6b1ugIYBKl59fX30vH2vYjLYItSxZSDxUvZqJXIq/aN/HQHq65HH0p6b4b+feIurysSFUM+cY/ubNo1i2zefu3cK39xzjVPcwX31kB5oi86P9Z/jU3RupiQT49p7jvHGqg3Quz862en7r8V2EfW7SOYMn//1f8dtP7OK7e0+QM0x2tjXwa4/tZGAixp+8uI/Lw5M4wPMHz9JaHeUL92/ljta6WWNZvbKahvoInV2jmJbN17+1D69XZ/ddrXjc2qx7/HoUjF0dUqk8e969yN985z0cx0HTZFpXVLBq5dI8KKJeD71TsaKJbVkSRLyLV9/8u4oPRCA9nzOQZXlBEpkODsl8no+vXEdAm79cbdgWZ8aHFzUWB+sWLQy3hxx49ejzKpo42I6JXEKwI4Sg3LWaiN5cNNCYyl9mMtdFQK1DEfO3mxh2mt7UezhFCOuSUAnrzUT10pVfLEz+PgQaRs7gyGun+Yv/73cZ6BhZcBVHkiUilUHW715NqDzASO840yMxktMpMukcRs7AsRyEJFA0BU1X0Vwq3pCHSGWQcFWIspowta1VNK6to7q5HGUeadlfVAghqGoqxx/2lRZo5E2Gu8cwcuaci+srqHZHeHPkBEcmLrIqUE+Lr5qEmUYWUlEH6J7eCQzD5qtfuY+6ushtIx1fD9uyC5+nxEDDF/RS1Vi+6OtEkSUe2tDKm6c7qQ75qYuGmEimSGbzbGyowrQdXjt9iYuDo/yXX36a412D/NWbh2muDFMXCeJSFdyawsBkjLF4Co+uYjsOqlxY/KuKjKYoNFdEiKWz/OjAGdI5gye2raaurLCodWvqDYtLRZLQVQWBKPToa4Vj9o3H+PaeY3QMTWCYFhsaq1GVmUBCFM4Vz+RI5w0OXerjaOcAHl3lqTvWsHExHA1ghb8MWUglO2JP5dPEjWzJgYbtpBmY+kPimTepCv5jfPpdKHKEVO4YA9N/MM+ec89TihRAV1ZQ4f8KmjJ7oa5Ks6WgbcchZmRJW6Ubj1a5A/OqeHVPT+PTNJ5atRq5iEqeAKp8Pu5tauIHZ88ykrx9UqduReMLLTv4bHNpbTSSEHyicQuTuRTf6TrMRC5V0nEcoCMxyn8+8zr//y1P0+AtnuyIBjwMTcYZnopjWjZDk3FiqQw5wyLic+PRVb751jH6xqf5T7/0JGGfi//zb1/nr984zO88VfAYSmXzHL7Ux1/9k08xncry33/2Li8ducCvfGQ7f/DFx/jh/tN4NI1ffWT+Vi6PR+OBe1YXjPsuj5FIZvmP/+XnHDy8iicf3UhrSwWaphTu9etKLbbjkMuZXLg4xM9ePcV7BzqwbQchoGVFBR95YC36EhSsAO5paeLiyDjJ/Ozr2K/r7Gr+B4+OK3jfAw3TtPmr//oqW+5s4c771yxoH4+q8s+23E2ld/42prSR52/OH18UR0MS6pzKQ8Cc3IHlQsHDYa6JXCCXaBgHBSJ7RF9Jf+oweXt29qg/dYBqz2YUaW6nY8dxyNtJ+uZom/IrVVS6NpRsbAfMfP/FFzMCCV32z/n+7YIm+ZBvEYAtBtl0jpf+4k2+/59/xtTIwq9Pl1dnzY5WPvf/eYZN95XGgfn7hMqGMnzh0tV90oks/ZeGWLFh/ofEHZE2VElhIDPO1nAr1e4ofakxNgabqXHPbnkyTAtVlaipDi+b4/etMNQ1SmIqVXJboi/kobKp+Nzg1QuLvCsLFVWW8bt1lJlS9mfv3sRPD5/lv760j5HpBEGPm8/t3sT6+ipGYwl+sP80/+qZ+ynze7mjpY5LQ+N8792T/NOn7yHic7N7TRP/+7VDfPXPfsiGhio+f89mdq1uLDqWx7aumvXav/3MR2749462Bna0FX7Txoowv/+pgohA03X/XwyPbG7jTO8w7QNj/PJDd1AZ9PH8oXNMpxbXFiGEwC2rNHjDXE4urD3vZkzmUsSMucUrCsoCDldaPh3HmvEmmqmEYpLOH8fn2k7U9xlAmqlIzE5EFcasIZCw7BS2nZlRHhIIlKuqQx5tK4nsfiTJg1tbjST0mXYao7CtKN42NZCaKuk7uII6bxivOneg4VYUdFm+pZ2cKsn4NK3Q1ncbsdSkjirJfLnlTiZyKZ7vPUWyRGlgy3E4MdnPn5x/i3+94VGiunfW2CqCPoYm45zpHcGjq1SFfWTyJt2jU5QFvGiKwnsXuvnYnetRZYmcYbFrTRPf2XOc336iMNfomsIn795AyOdGCMG6+koGJ0vzBdm5fQWdl0eJxdJMTKawbYe39l7grb0XiEa8NDaUEY348Hg0HMchnckzPp6gp3eCqetUBIWA2uowTz6ykY3rl64m+oXtmzg9OMzRvkGyholDoRLuVlXuaq7nM1s3lnRcSQh8+u2/JudDekZ1arnSv++/M3jWYHKsoK+/EAghuKu6kaB+a/KdIskENBcedeEsflmo804Cll161mUhsJ38nAsBIeQlqi0JKlxrCWkNjGbPznp3IH2E9eYUHrlsHuM0i6lc1xxSu4KAVkeFe2mEVVnM/cDwKGU8Wvuf0KTl5cpYtj3TSnH953ZIJHN43BqKLKPLS5dPBkgnMrzwtdf58f94ZcFBhhCCUEWA+z91J5/7188SjH44TKWuIGsZJI0sLlnFpy6OGHs7UdlYRiBSeqCRz+ToOdd/y0BDl1V2RFcB1xa59d5y6r3FF+ZlUR+9vRNks3mg9PEtBj3nB8ilS9eK9wY9VDYWNyf86kduzERuaqph03Xys6oi88m7NvLJu2Y/bOuiIb7zu5+7+u+wz81vPXajX9Daukr+6y8/XfLYlxN10SCdQxP88L0zV7kebTVzJ2fmgiQEq4KVJQcaw5k4E9nimXfbTpG3hrCsaXJGH46TJ5U7iqbUIUshdKURgYJbW086f5zJ1A+RpQCZfDvx7B7kIkpAmlyNptSRyO5BCBlFKkeVK/BqG1HkArcv6P4IydxBRuL/i3T+FLrSjO1kyBldqHI5lYHfgJtaf7OWSWe8NKETAK+sUeHyo8tzPxu31NTwWkcH09kskTlkbA3bZiyVQhKClvCtuYofNHyqzq+17WYyl+KtofaSZW9ztsk7Ix2Uu3z81ur78N80f1eGCqIMZ3uHaa6MsKGxmlg6y8WBUZ7avqagyGhZfO2VA/zNW0ev7ufW1avtnpIQlPmvcHZAksSCubY3Q5YlPvWx7eRyJq++eZbxiST2jEztxGSKiclbV3hkWaKuJsxHn9rC449sWBafwYDLxX/5xJO809HNycFhkrk8QZfOxtpqdrc0zitWMB/qggH++UO7uesDrIj8+b7DfP/4aWLZpXuNwDIFGtlMnvGRhUWr8ek0yfjCs0GykPizh55d0LaqJHFndT1rIgt/CGiSF2meryFnl+7OuRDk7dScVZPlWOhG9TZCWhNj2QuzzpOxJhnNniao1aGKuSbjLJeTe4u+p0k+onobfnVpvY6a7ClkyIrEWwKBInR86uIf7HPBsmx6ByepqQqh69d+e9u2eento9y/exXB8tKJm9cjm87x0l++xU//9LVFBRnl9RE++tuP8tHffgT5A8xszIWjk5f5Rtce7q9Yy+eb7771Du8TIlUhotVhFE0uiQSdTefpPNXLA5/Ztazj2raliXPnBtl/sJMnH9+E2z1/gmM5cPlsH5kSTamEEASiPiob5nZB//uCkNfNszvX8ezOhXP/ikEWEqsCVbw8MNvfaCEYySQYzyavEm2vRyp3lJH4n5G3Cq3DshRhMPbHAOhKPS3lX0cSbqoDv8tw4k8ZT34XgYJP30lN8F+QyL2HLG5MZuhqI2W+LzCR/B7T6ZfJWGm8+n3UKs1XAw1Z8lAb+jdMpZ5nOvM68czbCOHCpTYT1B+hWOtx1jK4tARic403hF/V561xf3HjJg739/ONEyf4wsaNeDUNZYZ3YzkOOcuiY2KCVzo7aIuWcXdDA/kiCkKyEEVbrz4oVLoD/Oaqe4nlMxwe77mlW/xciBtZft5/lnKXn88234FHuZbsKw/4UCSJjqEJ1jVU0Vge5kzvMBOJNH63i6jfQ8jr5ov3b+WBDS24NRXLtjFtB02RMWeEOOaa365wu0zLwnaca1yoeeZDl0vll764m4b6KD/92XH6B6ZIpXJXzzUXVFUm4HPRsqKCT39iO3dsaVrU93Qr6IrCR1a38pHVSzMNvR5el0bY4yZ4Cw+O24mgx7WsFZVlCTQunu7n3//ed3B7tVu2BVi2Q2I6zaMfXx7ZryvVgCukoBXBxWUmXHJozqqBg0PGXFqJ91bIWQlsp/iCyKMs/SGvyz7KXWsYSB8hZc725ehJvkej9x4U4Z51ozuOQ86O0586WPTYfrWKas/mJY/RLUfmbF+zscnacQLUAgUt7NhMoGrZNpIQuFwqqiqTSBakNT0uFZ/PhSxLJJNZ0pk8lmXj97tQFYWhkWlefv00D967hpqqEF6vjiQJ4oksd25vIRT0YNsOqXTumnuogPCMQ/J0LDNDHHUIBTz4/cUnBCNvcujnJ3j563uYGFrgdSQgUh3i0//8KZ766kN/53gUtxuyItO8oYFQeYDxgcXfu9lUjkvHLpPPGWj64quJmayBWcS3Ytedrbyzr50f/PAw0YiXNatrcLu1Aldjjp9YkSXc7tK03o28SfvRy2SSpUmIuv0u6lZWzylt6zjOVSNA+QNWKFsKrhBGLctBlqXb2tYmCcHaUNU1NZ9FImnmGM7GyVh5vMqNbZ0B930E3Pfd8hi62khj5I9mvR5w31tka4FX34xX3wzAgYl36Uh34/aA97pbQ5Z8lPk/T5n/87c8v+M4pMw8HcnSKxp1nvCsLPzNCLvdfGztWv7s0CEujo+zs76OCq8PWQiS+Tydk5Ps7e4mlsvy6fUbGEwk6I3NTgStjEZpDodLHuvtQFuwkl9t203cyHIhNoxVYmvkSDbBj3qOU+ny85GaNVfJ9V6XhqYqJLM5PLpKW205r528hEtV8bk0ZEnikc1tHGrvI+BxURHwEUtnkCTBlhW1tzyvS1MJely0D45xvm+EgMdFxOfB65p/rlMUiUceWse2LY28+94l9h/qZHgkRiZrYFk2luVcrZ4oSsEno7E+yj27VrJz+wq8S5A+fz/h0TS0EnyrlhNuVUVZxgB7WQIN27bxh9zc/8RGvL75J4B0Kse+12e38SwGlmMTy2UZy6TIGCamY+NWFIKaizK3B5ey8AWCJnvRZB8CqajjdcIYWtJY54Pj2KTN8YLy1SwIfMvkiF3pXkdQqysaaIxkTpE0R3Er0VkyuzYmo9lzZKzZpX6BTECtp1xfGM9mPniVinkcuk2y1wV7QyMxXnz1FJoiMzWdxuvVqK0OU1cb5tiJHkzToqoyxK4dLUTCXvYf7qK7d5xszqCtpZLWFRXsP9TJxUsjgGDrpga2bmpAkhSOHO/hxy8e41/97mNUVQY5cKSLg4e7KC/3k80Z7N7Zitut8dKrp7Esm/HJJE89upH77p7dI+44Dt1n+3jha6/T3z644O/C7XPx+C/fz1O/+g9BRqlo3dRIuCJYUqBhWzZjA5P0nBtgZQnZryNHLtPdM9u7RkiCNauq6bo8yv/1H3/GhnW1tLRUFALiOSb02towDy6Qx3YzBjuHGekZwyrR4CpUHqB1c3FOBBQCqo7LY2iaTGNdFPdt8ka63bBsh+GRGH1DU6xprSIUvH1u0RKC1cEqgpqb6Xxp0pfdyUlGMglW+H8xFk03w3RsBtLTS5K2bQ2UEdbm/51+7+cvcXF8nLxt82pnB692dsy57X/dX5x/CPCvdu/mN7Z/8N4TN2NXxQrGszv5XxffoTc5WbKhX2dinG93HSKie7mjrPGqkEVdNMgdrXWUBbxEfG4qQz7KZioZAE9tX4NbU3jpyAXG4yn8Hp2ntxfmKkkSrK2vQJ8R+5ElifKA72q7U8jrYteaRvrGp/nvL77HqtoyntmxltbqhSVWoxEfzz61hWef2sLoeIK+vgniiSzpdB4hwOvRCYU8NDZEb+v9fLvgUdWCQ/wHCLeioCyjYMmyfBpJkqhvLufjX7ob/y1+2EQsQ29n6WVTy7bpSUzz446zvNV/mVgui+3YeBSNVeEynm1Zw13VDfi0hU3EAomAWsuoOIPp3Jz9c4jle7lRPXr5kLdTZK3pOVunQlrzspwnpDUR0VYwmjk76zOaTpaB9GHC+gq0m9qnbMegN7mv6DHdSphK93o0een95gG1FlnSitpWWI7BVP4yDVxrZQkFPNRWh+jtn6S2OkTn5TEsy6aiPEBbSyXHTvXS0zdBLm8yMDRFW2sl4ZCXfQc6WLWyirt3tpLLW3z0yc1Er/MIeOCeVZw4fc0YSQhBRXmAf/T5XZw608fxU71s2tBAMOhmw5o6+gYnaZqjtSSdyPDGd/bRcbJnXvfn6yFJgnV3tfHJf/okYoGZ1el8mql8EreskbdNpvNpHBz8qptKVxCPXCBjDqaniBlpmnzluK9Ta+lJjZMwsqwL1hI3MvSnJ6lwBRjMTONTdCpcQYYzU+RskwpXkHLdfzUAEghytklPapzpfAqBIKJ7KdcDN/RPG7bFaDbGVD6FYVvoskqVK0hI815tATFti47ECBHdiy6pDGamyFoGuqxQ6QoS1RfOUWlcW0e0NlL47u3FP4BT02nO7LtQUqDx9t4LvLXn/C23O3m6j5On++bd5s4dLSUHGmffu0RiAb3LcyFUHqB1U9Oc73f3jfOX332X2uoQX/7knbhdS5Nu/aCQTud46c0z7Nnfzr/8rUfYfBsXJkIIPIrGlkgDbw1fLOkYHfFRBtPTrPAXn3f60r2U6WW4JDcDmT5kIVPpqiZjpYkbMapcNZiOyXhujIyVQhIyITVMUA0hhMBxHDJWmqn8JDk7iybphLUInpvmecdxmDImyVpZoloUTdIXlBjJmAZHJnpKJpm6ZIVWfwUhbX7p0KDuYm350tttq3zLw9O7HXiqfgPj2RTf6DzAWDZR8nd6amqQv+k8QEBzszpYiSwk7lu/gvvWr7i6za8/eucN+6iKzGPbVvPYttWzjufWJP7sNz9x9d9el8ZT26/NY0IIWqvL+P1Pzy3CsFBUlPmpKNHA78MKr6aif8AVDZf2IaxoRMr93HH3StzeWy/udZdCRXUIzwK2LYaEkeOb54/zRm8n99Q20RYuQ5VkRtJJDo/08+dnjqBIEg/Utyz4mGGtCUVyYVqz2wxiRh+GnUaVlp/AGTN6yTvFFwMCQZm+clnOIwmFSvdG+tOHmS5C6u5PHWBV4CnU69qnClrnCYbSx4oe06dUUePZsizjcythvEoFaXOCm5sKLCfHRK6joOgwE+zJcqFdStcVdE3BMEwmJpNMTKZIJrO43RoV5QEyWYOx8QSxeIZo2EtNVRC/z0UiWQhObwVFligv8yEJgarKOI7A59WZnEzR2T1KbXWYqoriXI4z+y5ycu950ovgI3mCHj73r55e0H10Baeme/lp3xHKdD+WY9OTHidnmYQ0D8/W3cFdZa14FJ3nB46yd+QC/2Hzp1nhq7i6/7cuv8uRiS5+cM/vcnq6jz889zyfbtjJmyPn0CWFx6o3sX+8ndFsnB3RVn6p5d6rbRsODhfigwxkJulOjpOx8jR7y/l4w3bWh+rRJAXLsTk13cuL/cfpTY9j2BaqJHNHZAWfaNhOuR5ACEHayvOHZ3/KjrIWopqfgxOdTOaTBFU3T9Vu5ZHqDQv+TvxhL01r6zjz7kWS04tfbCdjaU69c4HHf/l+XLdwgM4ksySmkngDHrxBD62tlaQzyyMgsaqtNO5TLpPn1N7zJKZKk+xUNIXKxjKqV1TMuU3f4BQjY3Fqq0MlnePDgnTW4MzFgQVvb1rTIGSU68QpHMfBtKeQJW9BdWkeqJLMneXNJQcavakp+lLTV++jm/HTwR/wkYrHaPGt5Ln+b6MKja+2/BPOx89wLn6azzf8Mp3Jdg5O7iNn5xAIql217Cq7l4gWJW2lOBM7ybn4aQzHQBYyq/3r2BTaesN5xvNj7Bt/G9uxuaf8Qcq0Wy/qHcchbeU4Mt5T0mcHaPRGqfYEbmla+D+efHJZFHP0DyE/7gokIfH5lu2M55I813OchFFam6Tl2BwY6yasHeLXV+2mwRv5h2r6B4gPR+uUclVBcDmwLIFGfXM59c0Lyx6omsIDT24mHC0tU5DI53hnoJvPrtrIb2zceTUj6jgOJ8eH+e/H3+PwyMCiAo0y12pUyUvWmp71nmFnGMtepMazdfaOS8R49hKGVXwhpEguoq62ZTtXhXstQbWOWL53VovYeLadhDGIW4lcbZ9ysGfapiZnj024COsrCGlNyza+Std6JnKXsG9qI7Mck+l8NzkrhksOFd03EHBTXRWisjLHqtYq3C6V8qifTC7PiqZyImEv1VUh/F4dv8+FZdnkciadl8ewHYdo2IttO/T0TRCPZ+gfmLqubHhtwnUcB9O08Hp1Nm9oQFNlUuk8+k29/Nl0jpN7zjPYObtVbU4IaN3cxNq7Fv+bj2Rj9Kcn+Uj1eh6v3UzMSPODnoP8bOAYDd4oK/0LW7A6OMTzaXKWwRea7uZP21/j+f6jfLJxBwPpKQ5NdPJgai1rgoU+3KSZI23mebx2M0/UbGEgPcmP+g7z4sBxyvUA9d4oA+lJ/qLjLXRJ4TONd1LpCnE+1s83Lr+DLit8ufkeFFG45vK2xaGJLtYEavhkww78iouEmaWqhGz5ht2r2f/i0ZICDTNv0nthkEvHu9mwe3bG7nqM9U1w4u2zrNrewqo7Wvjcp3fyuU/vXPQ5lxPdZ/u5fLZvUWaQ1yMY9bFmRyvKHDrzhmHRNzjF+OTt8x54P2DbDtOxNB2Xx67yr26FeG4/ihQg4LpeAMFmKv0KAdcuXOrc7WZQECzZGq3HJStkrcWrBmUtgwuxYcayCWo8oVnv17hqmMyPE85HcMseRrLDmLbBYLafek8jGSvNm6OvsDqwjt1lDzCaHea1kZ9zYvoID5Q/Ql+6h7Pxk2wN72BtYANnYic5HTtBUC2cSyAxnhujL92DEBL3lN1PmbYwrxXbcehPTXMhtoh58Sa0BSsod906g+3TfzFbyxYLl6zy1bbdTORSvDJwrmQlqqxl8NbwRaK6ly+17KTC/XerSvCLBI+moisfbOuU68PI0VgMhBCsXFtz6w3ngO0UjrGxrOoG5Q0hBOVuLw3+IPlFTuARbQVepYykMTRrEe44Fr2p95Y90LCcPKPZs+Ts4g/riN6KW14+EppXKSfqWsVw9jQ560bSm41Jf/oAUddKpJn2Kdsx6U2+W/RYbiVCrWfbkrwzbkatdzsXYy9ic/PiyCFjTtKfOkxr4GE8bo362kghOLBswmEvmqZQXRnk5Nl+Tp7uoyzqw+1SqSgPsHZVDRc7hhkdS1BbHSIQcBON+Gisi9LVPYbLrRIOejAMi/bOEcrK/AyNTON2q5SX+fG4CwIHoYCHynI/E5MpdE3hzLl+EsksTQ1lfOT+G/0t+tuH6TrdS3YRij9CCO56aitSCTe34VhsizbzyYadhLVC5a0nOc7bI+eI5Rcu9QwF2dYHKtcS0Dys9FdiOjZP1mzhwEQHByc6mL7ueI7jsC26go/XbcetaGwJNzKeS/D68Bn60hPUe6O8O9bOSDbGv1zzFNujK1AkmY3heo5OdfNC/zE+27gLeUaT33IK7sy/1vogEX1pLQurt6+gbmU1A5eGMUvgKUyNxDj48xOs2dmKos5/nWdTWfouDJDP5olUhSivL2Osb4LEZBLLtKhdWUUg6ic2niAxkaR2ZRVG3uTyqV7a7lhB1+lezJyJpEjUrazGG/SQSWYZ7Bgml8nj8bupbqlEXwAx3DItDr1ygsnh6UV/ZgAElNdF2XTdNe04BdnnkbE4iVSWsYkEZy4MkMubDI3E2H+068ZeaAeqygOsaCovaorlOA7JVI6B4WmmY2nyhoUQAq9bo7zMR2VZAK3IflfU4voGpgqSpE3lVJYHihK4+wen6O6fwDAsWprKqasutAbZtkPvwCTJVI5YIsPp8wMkkll0TeHEmb6C7v51xl9+n05TfRllMy2WWaNjxkX7+kDDIZ57F7e2EhfzBxqSkKjxBFkTqub4xPytc3PhxGQf3ckJqt3BWQv8alcd4/kxRKqDWnc9WSvDVH6SocwAays3kLKSXE51sT64iXOxU2TsDA42A5k+bGwm8uOM58ZJmynOxU4zbUwRN2JM5ifQJI2UlWTf+Nv4FD8fqXqCMr28qDt8MRQWs+1krdICYFWSWR2somwRc4PjOBi2TSybxbAsNEWhbA65219UhHUPv736PqbzafaNdpVsCDmdz/BS/xmiLi8fbdh8y/a0f8DtgVfTPvBKmltVfrEDjaXCrShsiFZycWqcrRW1eNRCNtmwLQaTcXKWxapFyNsCqLKHKvdmJnIdGPaNGVAbi/7UQTLhL+BWlm/hP53vYTLXgeUUX4w2++5jeXkhgmr3FnqS784KNAD6UgdZG/oUiihMLnk7yWBmdtuUQMKvVlPpKs2MZi5UuNbhVSuKtnbl7STdyb00+u6mvMxP+UxP5sqWG8ny9XWzFcfWrKpmzarZDr5PP77phn8riszjH9nA4x+ZtSkATY1l+Hw6+w930dRQRmVFgN6+iaIeKL3n+xntXZxWvhCClVtL4+TokkK1O3w1yADwqy5sx8Gwb7XIvnH8EoKg5kEg8CnuqyZEEgJFSDMGkwW4ZY2I7sOtXDNvq/WEsRybpJnFcRx6kmNYts35+ABT+Wv3lmGbDGamyVh53DN8DkVI1HujSw4yAHwhLxvvWc35gx0lLbrT8TSn3jlP74XBW3pqxCeSxMcTDHaO4Pa52HjfWs7uu4hpWFiGycClYe7+6Ha6z/Rx7kA7n/y9J4mNx3nuv/yMf/bnv8Zzf/wirVua8AY9RCpD6B6N3gsDHHjhKN6gB8dxWHf3Ktbeeetq12DXCCf3nCcxVRo/w+XRWbGxgfq2a8kgx4Gz7YP84IWjDI/GGJtIks0VFotHTvZw5OTsVphH7lvLb3z5Pspvqlw7jkNXzzj7Dndw6Hg3Pf0TpNJ5ZFkQjfhYu7Kau3e0sGV9A5GbFK9s2+bCpWG++dwBxiaSfOLJrXzqqa038KwAEsks33/hCC+/dRaPW+Of/cbD1FQGkWVBNmfw599+l+GxGCNjceKJQrvJ+GSSv/zubD7ayuYKfvXzuwkEkuTMHnJmD6Y9TSx7LQljWTFsJ4NgYYR4t6LxWO3akgONrsQ456dH2Biuw6femLmvcdfSkbxIwoixOrAe27HpyVxmPD9GlauG6fwUhp2jPXEBXSrsq0ka9Z4mbMfGcizixjQXEudQZ9QYI1qUMr2cuBFjOj+FIik4OCSMGKZehSrd+nM7jsNkPs1bQ6W1jAHUe8OsClbiVRdWrbBsm9OjI5wfHaN7epqsadISifDlzZsBSOXzXJ6eRpMkGkOhDzyLvBQ0+CL849X3M53PcHpqoOS2scFMjB/3nCCieXmoZjVepTTVu9sNx3GIJ7JMTaWIxTPkcsZMwgJURUHXFYIBN6GQh4Df/b6ZpC4HvJqK9kFXNBT1w0cGfz+hywq1vgDPd53HcmwqPX5kIUjkcxwe6WcgGaclFOXn3dcmtFXh8lvK3jZ6d9OVeGNWoAEOSWOYy8m3WBP62IKzN/PBsvN0J/aQMoqT4nUpSL13eXX8AaKulYS0BqZyXbMqB1O5y8SNAVxyCIFgLHuBtDlbPUeVvFS41uJVl1dfX5f9NPvu48Rk3yxyvOXkGcueoy91kGbffVddad9vBPxuVq6o4MKlYXr7JvB6ddaunl2dG+4ZY2p04e7fVxCpLI1Qq0kKunTjrVyQ0Lz14yZr3eT+KQpZV8cpBBjydd/1Fd/hq5sKZt0PkpBwcLCdwtlNxyZj5dk/dgnPTZKcd5bdqD0uELNkO5eCrQ+t563v7WdqJLZod2zHgcHOUfb+8CD1bdWo80jdegJu1u1qo35VLT/7369z/I0z6B6N+z9zFx6/m6/9i2/eUCEonKDwHyEEwTIfNS2VlNVGCFcGySSzdJ7sIZvOsebOlfReGKD3XP8tAw3TMHn3J0fouzhYEgkeCiTwOx7ZiKzceI8pskRZxEdZxEcmm+di5whDIzHqa8K0NJXjvkmacv3qGlz67MdLd/8Ef/W3+9h3uJNo2EtLUwVul4phWoxPJtmzv53TFwb45JNbefzB9QT817Kqqqpw59Zm+gYn+ekrJ3lr3wWaG6Lce2fbVdUry7J55+Al3jnYgW07PP3wRrZvakRR5MI1Dfi8Oq3eClbUlzE4GuP0+QG8Ho31q2tnBTdV5QEqyvwY9hiJ3CEyRidCyFj2NdUk28ni07ahKQtrUdQlhZ1lzVS4fIzOYcA3H0zH5r3RTu4sb2JtqPqGqkaFq4q0lSJpJnig4lFUSeX41BFUoeKVfZiKSa2ngZ3Ru1njX48QgpxVSHYpQiGohmj2reSBikdo8DThODY5O4cqqRybOky5q5JtoR30pLs4OX0Uj+ylztOALObPwBq2xXujXXSXaFYIsDVaT6M3sqAnsOM47Onu5i+OHuHQwAC246BIEvc2Nl4NNCbSab5/+jR5y+JXt22jNRoteWwfBmyI1PKbq+/lj06/QndydsvzQtEeH+X73UcJ6x52lDVdlb39MMC2HUZGY3ReHqP90gg9feMMDsVIprJksgYCcLs1vF6dmqog9XVRVrZU0rKinOrKYEFO/EMEIcSNnTnMcDQ+BBUN9e9zRSNvWVyaniBtGnzrwgl8qo4qSaQMA8M28ak6r/S0Y133oP3Sms23DDSirlaq3BtJmaNYzo1kTsvJ0R57iWr3FsL6UpWgHMay5+lLHSBnF5f4a/Ldg0+tXHZCliZ5qHJvZDhzkpR5Y5BjYzKYPkqZ3oYkFHpTc6hNyWHqvLdH7q8l8DCX4i+TLCLDmzEnOT/9Y4JqHVHX8pDkFwtNU1jdVs3qttkVkiuwLJvYeIJMYvHylVYRw6iF4dbXiS6pGLaFaVtXgwjDtuhPT90QkCzmistaJjGjwOnQZRXHcRjPJlCEhFfRkYSg0h0kovv4TNNdrPRXzgpMgurtK8/Xrqxm3a42+toHScUW/3skp5Ice/0M2x/dxLp5uDO+oAeX14WiKYVWjbyBJ+BCkiQUVcYyC9+5rEhYhoUDV7kjLo/Ok7/2MMffOE33mT4UTaG8LkounSM2FmdyaJpwRZDGdfW3HG/X6T6OvHqK2Hhp0qGKKlO/qmbWZ5UkwbaNjWxZXxjD0Gicv/jOuwyNxNi0ro4vfnwnlTcZXAohZmURM1mD7/zoEO8e6mBlcwVPfmQD61fXEvC6yOYNevoneX3ved45eIkXXjtFeVmAB3a13TAPhkNeHty9mr7BKfYd7uTVt89RXxNhdWslkiRxsWuE5185xdR0ml3bW3jq4Y24ZoJEIQRut8a/+q1HAMjlTd7cd5HT5weIhLx8/mPb2bimbo7PEUGVolh2AiE0gq7d174f4UFXm5ClhfW1S0JQ4fJzd0UrP+49saB9bsbJqX6OT/bR6IveUNVwyx5koWA5Fj7Fj0fx8KP+v6XVt6rw+WUPOyN3cyZ2kqn8BA4gC5kGTyMNnmZq3XUMZwc5MX2EvnTPjKKjhxXeQlJAFQoexcvO6G7eHH2VY1OHcMtuyvQKpDkSQI7jMJFL8YPLR0vOtAdUFxtCtQvmDlyemuKP971LXzzO7oYGvJrGa52dN2yjz0h47u3pZntd7S98oAFwX1Ubo5kE/+38m0zmFtc2ez1OTPbxt5ePEFBdrA/VfChMC7NZgzPnBti7r51DR7sYHUtclcy9HlPThc99qWMESSpUSrdva+KeXW1sWl+Hp0Q/DTP3HrZ5GTABFdX9DEJaWvV9TWU5X7jjWneFEIJ11RXLEhA5dhIzfxiBjOIq5pMzN1x/31unXIrCg/UtPLgIsveayNzqKVcgCYW24JMMZ04SNwa5Pnfr4DCVv8yZ6e+zNfIreJfgUj2d7+V87KdMX5XNvRFuOcKq4NNI3J6IttqzhY74q6TMsVnnH0gfZn3oUzhYDKaOzNpXQiGkNRDVZ/tGLAdCWiOtgUc5MfnNWWOzMRnPXeT01PdZH/40UVfrslSXbjiHY5Iwhghqt17UzQUja5DPGAuWtL0e/e3D1LXOHcQsBfWeKIZjcXC8A0VICCFxLtbPcHa6qHrNQmA7NudiA+wba2eFr4LJfJIjk13UuCNUzhC4d0RbODTeycXYIBV6gIjuw7QtJnJJFEmiznP7FE5kWeL+T9/FyT3n6DzZW1JVo7d9kNe++Q7VzRVEqkLFN7xp/PWrapgYnOLE22fBdmjd0ozH76asLkpsLM6RV0/OBAOCTDJLf/sgkeowsfEE8YkE9atqadnURCqWJlQRwOV1EbqFU31sPMEb39nH5TN9JVczAlEfdz+zrei5JEkgzVwniixdzcIJIZBlCWUBKilnLgywZ387Ll3ly5+6k3tvqtDU14QJBz30DU7S0z/J/iOdbN/ciP8m5a8VDeU8ev86BkdinDzXz5vvXqAs4kOWBT/5+Qm6esdorIvw6We2EQ17b7i+hBBXx2pa9tVgqBBQzPc5FDSlipD7ISTJg1dbuApaMXgVjYdqVvPa4HmS5uLd21NmntcHL7ApUse6UM0NWdGt4e2krTSapKHJGtvCO2nxFZIzmqSxPXwnXsXHcGYA07GIaBFcUoG3ENXK2BbeyaXE+QLXA4Ff9aNKGtWuWtyyG78SIKiG2BW9l4uJs9jFdMmvg+nYvD50gXOx0j2p1oaqWRWsRJMWtmT5yYXzdExO8om16/jS5s0okjQr0AjoOiujUX507hyXp26vMe/7BQE827CJ0WyCv7r0HpkS+TCW47BvtJOQ5sa/0kWzL/qBKlGlM3n27mvnpy8e51LnaFFT1GKwbYex8QSvvn6WSx0jPPPkZu6/ZzX+W/i9FYNjjWKZF7Dyx3CsPhT93iUHGjub6tnZVPp6Yz449hRG+tsg9EUHGm7173nrlF/T+XTb0ib5uVDhWssK/0Ocmfr+LL8Jy8lzOfE2uhRgVfBpglpd8YPMAcexmcpf5vz0T+hPHcJ0imVYJdoCTxDRW25be1BgpiIwmevAuGkMk9lLZK1pMtZk0aqCJvup8WxDlW5fFnpV8CkGUocZy832IjDsND2pvVhOntXBpyh3rV2yj4czQzafzHUxkbtELN/DvVX/puTjWZaFbS+ejOfYDvtfPMaORzch3Yby7sZwPTvLWtg7eoGL8SF0WcVybNYH6+lIDJd0zHJXAE1SeHfsIntHLzCZT2I5Ns/WbqPOU6ggrg3W8mzdNvaNXeR7PfvRJAWHQivF5nAD64J13M722ZaNDWx5aD1Dl0dLqmpkElmOvXmGlk2NPPLle2cRsgNlflZubSZaHUJ3qWzYvZqaldVMDk4x2juOkTe56+lteIMF+duN967ByJmU1UTY/bHt2JZNOp5BVhVWbGqkdUszmkulaX092WSWZKxQ+bDmebAaOYODPz/B4VdOkoqVlsVUVJnm9Q3sfGJ5JKuL4c19F8gbJi2NFey6Y3aiSJIkKsv9rFtVQ0f3GEMjMYaGY/hbXDdtJ9i6oYHegUmee/Eob+67SF1NmHgiw+ET3Wiqwsef3MqqFZULCoAWA6++ZVkSHKoksy5UzZ0Vzbw+eKGkY5yc6uetoYtUu4OUua4teLaGb6w4P1Xzsav/L4TArXjYFt4BRSiHQkiU6eWU6bOTaUE1RCPXKvqVrioqXfO3izmOw6X4KN/pOlxyNcOjaOwsa6LZt/CKw7s9PSiSxK/dcQdN4TBDidlVPk2WCbvd5EyTqUxp0rAfRmiSzBdW7GAil+K57mOYJZLDc5bJ64MXiOpePr9iO1XuD8YrJ5832bf/En/7g4P09E1eTRgFg25qq8NEwl68Xg1VUQCHvGGRSuWYnEoxMDRNPJ7BtGw6ukb53g8PIwmJhx5Yc7XSuVAo7qdQXA+RS34NI/P92/BJPzz4e1/RuJ2QhMLq4NNM5C7Rnzo0iyuQt5NciD1Pxpqi2f8Ala716PKtSrkOGXOakewZuhJvMJA6TM6OF92y2r2ZtuCTyOL2uexKQqbGfQf9qYMYxo368YaTYTx3kclcZ1GXdI8cofY2tU1dgU+pZFP0S7w38p9JW7M5Ioadpje1j6Q5TJ1nJ9WeTYS1ZnQ5NGfp/nrYjkXeTpIyRogbgySMAWL5ASZzHUzmu5CFyr2UHmgoqoJcwuLGcRwOvXyCQ6+c5M5FLPYavWU8W7ftBm8MgLXBOiQhUe8tLPgrXEE+17iLU9O9TOaSaLLK6kANqiRzPjaAJASN3jK+1HwPnhlDv/sr11xdUtV5Ijxbt41Gb4Gb0+CJ8on6HUR0H9P5FN3JMVpFJa3+StYG667yMTRJ4dHqjdR7onQkh4kbGRQhE9G9rA/WX/3NdEnhEw07KFuAdOViICsyD35mF8deP0PX6d6Ssv1j/ZO8+q13KK+LsP3RTTf8vqHywA0VgC0PFZIglQ1lrLlzdovffZ+ezb16+Mv3zXotEPGxYwHXgW3ZnH73Iq98Yw/D3WML+jzF4At7ue+TO+eu2iwRjuNw5uIgtu2Qyeb5xvf3F90ukzXonHFWT2XyTM4hT+xxazxw9yp6ByZ5c98FfvrKCWLxDPFEhqcf2cTuHS24boNbuUAhZ3aTzJ/EtMYJuh9AkSKY1gSaUoO8QL8lIQRhzcMz9Rs5NNZNvAQPhKxl8mL/GVYHq7i3aiUu+fY9N0pFyszz9Y79S+JmrAlWcUdZI4FFqCANJ5P4NI2GUGjObWRJQpcVbAot2X9XIIQgqLn5lZW7mM6neXngXMnHihtZnu89RUT38mz9JsL6+6/YdfHSMC/8/CR9A4UgIxT0sG1LI+vW1NJYHyES8eHz6jNeVw6GYZFM5ZiYTNLbN8nZ8wMcO9HDdCzD4NA0P3vlFDXVQbZsml8h7mYIoYDwI4QH+OBbyW4nNFnm6Q1rWFd9o+BOxFNaknlZAw3HsbExMe08lpPDcvKFP3Ye8/p/O3ksOzcj8Xqe/BwSr+BwMfYCmuRFFlrhj1T4WxEaktBRrnvt2h+15IqAT61iU+SLpM1xJnId3NzCk7eTdCZeZzLXSZV7E1G9lYBWi1uOoEpeJCFhOxaGnSZtThAz+pjIXmIke4pYvm8W/+MKQlojGyOfn+Fm3N6LuNK9Hr9aTaKInO9o9hwj6VOz9lGETplrNQG19raODQR1nh1sCH+W45PfIF+Ex2I5Ocay55jO9xRczbUm/Go1XqUCVfKiSC5koWBjYzt5LMfAsNNkrRhZa5qsFSNtjpEwhkkawzdUr5Ya5KmagtvnQlbkebPQxTA1EuM7//dPMXIGOx7bvCA500Zv2dXF//VYE6y96ndxBU2+cpp8szOVG0KF0m2Dt4wvNl/rPb+34pqHRK0nQq3nGs+p3hul3nstw3hPxdx+E5qssDnSyOZIYWKfyg2QMMeo9YSvtnzossrHG7YX3T9tTjGdH6JMb0KTF/+ga1xbx72f2MlIz3hJvhq2ZXP5dC8vfO11vAEP63a13Zaq02Lh2A7tRy/zwtde59Kxy4u+3q5A0RRWb29lx+Obl3eA1yGXN5mcSuE4BbO/r88RaFwPy7Ix5vlM1RVBHn9wPX0Dk5y5MIjtOGzd0MDjD64nFPAsrNVjkXFn1uhgMv0SeWuIdP4MmlKPV9vAZPolIt6ncEsLb+nVZIX1oRrurmjh5wNnFzeQGfSlpvje5aNUeYKsDVbd0sju/YTl2DzXc6zkig0UWsx2VaygLVh5642vgy7LxC0L23FuaCu7HnnLIp7NogiBT/vwBWlLgSQENZ4gX1l5N5O5NIfGu0s+1kg2wQ8uHyOqe3mwetWyCnbcCql0jrffuUhn1yiW5VBe5uOZJzbzwL2rqa4KzcllqCiHFU3lbNnYyI5tzTQ1lPHCz08wNp6ku2ecvfvaaWutwuNRcKxBLOMkttmL46QRwo2srkbWtiKkxSmNOk4WI/19JHUtQoQwc+/g2BMIKYSi7UDWNl63bR7b7MDKH8G2xhDChaxtQFY3IaTgzDYGttmOlT+DYw/jOHmEFETWtiGrGxEz6xXHsXGsHozcWzjWJJIUQcjVXFniO46BZZzBzp9Ecd2HpFyrTNr2NFZ2DwgVRb8bIRVks59Y2zZreiy1lrtsgUbOSjCYPsJg+hiWY2A5xswiz7y62Cu8duPfhp0iP0vp6RpOTn4LWejIQkESKvLMH+nq39rM38rV96KuNpp8985p8HYrVLo3sCX6Sxwe+xoxo3fW+7ZjMJFrZyrXhUcpw6dWostBVOFCzAQappMla06TNEfImJPYzO3tEVBr2Rj+PNXuTbe1mnEFbiVEpXsD49n2WdWVvtQBUkaRtinJT4N3F9It1EWWCiEEMhptwScwnSxnpn5Azi6u4GTYKUazZxjNnkEVHlxyCFVyI0s6EjIO9sz1Z2A6WfJWkrydmlWpWk5IskS4Iog36CY+sThFGcd2uHS0i2/9hx/TcbyHTfevoW1rM77Q8rvSf5CIG8MMZy9S7V6DvAAvFknIqJJecgAuyxIPfe5uzu1v5+gbpzHzi//9jZzJmffaee6//RzLstlw9ypk9YNb1FmWzYVDHfzkf77KiT3nyJXqRi4gWh3m6V9/iHDF7WuNyBvWVeLmmtYqtm9puuU+4aCH+pr5H/QVZX68Hv2qoEEo6CHod902dZlE7jC2k6HM+3FG7BRgo0hhMsZFTHv3Lfe/HgKI6l6eqt/AsYleRrKlkfgPjXfzzc6D/Pbq+2jwRuZcWL+fcIBXB87xzY6DJfMEANaFathZ3kxAXVxPfVtZGXu6uzk5PMS2muLJsfFUioP9/QRdLhpDyydd/2GBLCRWBSv51ba7ieUzXIyXbpTYlRznW52HiGhetpc1or1PSlQ9vRNcbB8mlc6jyBKPPrSeJx/bRDi0sESCokjU1YZ56rFN5PIG3/vhYdKZPO0dI/T0TbBmVSWWeREj+3qhYoGCZQ1i5vageb+M4noIIRaRxXdyVwMNhAewwDFw7Clspekq89ZxTKz8MYz0d3HsJEKOYttJrPwRFPcTqK5HEVKhUm5m92KbF0AU7gErfwAztwdX4N8iKSsBAfYkufgfY1t9SGoblj2Jkz+CbfXOBBUCx57AyL4AQka7PtAw2slnnkPRtoF+z9XXhVg+FuyyXS2GnWEoc4LzsZ8s1yEBijpT3woN5m5q3FtLDjQEggbvLhzH5tjEXzOV7yq6nY1J0hwmaZbW4w4Q1ppZH/40Tb77kMX7lSkQ1HvuoivxJrn8jYFGLD9bE7/gnVFFlWfTrPduy+iEQJN8rAk+iyJ0zk3/mIQ5OO8+hpPGMEtX2VhOVK8oJ1IVWnSgAQXyWve5fkZ6xzn+1hkaVtdS21pJzYqC/Gkg6sMX8qJ7NBRNQVHkD0V2fbGIGyNciL2BaedoC9yHLns5G3sNnxIhb2eJ6g1UuFrJWHF6U8cw7Rx+tQLLMhjJXiJuDGM5JgGlnGr3OlyKn6H0eabyfSTNcXTJR6v/bnwzMszldRE++tuPcvlsP6N944vOZANkUzmOv3WGfDZPOpFhy4PrcHsXTypcKnKZPKffvcALX3udk3vOk0mW3l/ucus88Jm72HjPmmUc4WzoqoIkBEJAfW2Ez3301i2YkiSKGvddQS5v8u7BDjp7xlBVBdO0OHWun5Pn+gkGPFclb5cTpj2FplTj1bcgp34CgBDyLEGAhUKTFTaFa3mqfgNf7zhQktma6di8OXgRXVL41ba7afCGF9RGertgOw6vDJzjaxffZSizeJnvK6hw+XmwehWrA4urZgA8u3o17/T08CcHDvAb23cQuc6kL2eadE1N8VL7Rd7uvkxjMMSO2ttdqf9goEoy28sa+UrbLv7r2TcZXMLvcWZqkK937ieku1kdqHpflKgudY4wNlEIwOvrIuy6s5VQcIHVyhkIIQiF3Oza0cr+g110dY8xPpGko2uUtauqkZVWhOdTCKkMhBvbukw+8T8xcweQ1S0IZXHXhuPksYyTaJ5fQta2IYQLx8lerVIAONYgRuYFbHsKzftlZKUVx46TT30DI/MiktKCom1FICPrO5D1OxBSFFCwjOPkYv8OK39oJohQMLKvY+b24gr+OyRtGzhZzNxerOR+UJoRQkFSWpHkFZj5oyiux5DkchzHwjLOgJNHUtctmdw+F/6BozEHJKHQ6NuNKrk4O/Uj+tMHi/IWSoVApsazldXBZ6j1bEeVFnfzLBVhvZmwtoKEMYjlzJ9xUiQX1Z6tuOT3jwwmhECXg7QFn8SjlNMe/xmD6WO3tRqxXGhe30BVUzndZ/tLPkYmmeXikS7aj13GF/QQqgjiD3tx+1zoHg1VU5AUGVmWlnzdCEmgqDKyIhdav/wuPAE3vqCXQNRHWU2YaE2YYNSPMs/CbzEw7BwBtZKYMczFxNusDT5CR/wd7oh+GrcawjXDfZKFikBiMtdLg3crDg5j2U4sxyCqNzKV70eXfVRIKxnJXkQWGpZjkrZiWM6NVcT1u1fxyJfu4bn/8hLZ9OKVfgBy6cIiPz6ZZLBzhHs/sZOK+vdPFnNieJr3fnqEN767j65TvaVXMihU31q3NvHEVx5Auw2L8uuhaTJlER+JVJbBkWm8Hr3UtflVHD/Ty+t7zzMVS/PYA+sYG09w4mw/z714jIbaCG0rKpe9sqHJlaSNi6RyJ7CdDJadYDrzOooUQFmgvO3NCOkeHq1dy6mpAQ6Pz070LARpK8/LA2fJWQZfbdtNi7/8A5EkzVsmL/Sd5pudB7kUHy2ZAK4IiTvLm7m/qm3BBn3XY3djE8+uXs2Pz58nnssRcXuwHYcL4+P8m9deYySVpGNiApeq8szq1bRE5pe//0WGLincX9XGVC7Nn17YS8xYvCgGgI3DobFuvtFxgH+8+n7qveHbvmYZHY2TmEmkrG6rIhrxlWS+J0kS0aiPVSur6OoeI5HMMjqWACGQlCYkpenatnIVpvJzHHscx1l8shBAiMCM/G3xbgTb6sE2LiDru1D0exBCBxxkcztW8i9xzB5QN4OQCpWG6z+LXH61egE24GDm3kbItSiuJxCSuyCZiMDI/OiGzyXrd2Ckn8PKn0ByP4xjDWMbZ5HkBmRlNctrEn0N/xBozANJyNR6tuOSw5QlV9GReJWEMX9mfSHwqzWs8D1Ao+8eInorivT+9TxegSK5qPVuZzhz8pZVI03y0eRbnDzacqAQbPho8t1DQK2m332IrsRbTOUvU1JKeh5okpcq9ybqvDuXfKzy+ihtW1dwbv8l4pOlTVRX4NgOialUyU7PC4IoTMSSLCHLEqquoLlUNJeGy6vjDXjwBt2EygPUrqymcW0tTWvrqKiPlkR8B/ApUWo864hYDbw98qesDT4MQI1nHap0rUqgSW7CWi1T+WtBmyq5Cck11Hs2kTImSZuxmZY+QdIcx7Rz1HjW41ZuDIw1XeXxX76f3gsD7Pvp0ZI5DUbOpPNEN9OjcTpP9rD7o9vZeO9q/OHbkw0CSMXTnN1/iXd/fIgTe84z2jtesoztFUSrw3z2Xz5DZcPizDeFJLiSMDdN+wbPojn3EYJN6+rp6Z+gb2CSzp4xWptKlwnv6Z/glbfP0dkzxsa1dTzx0AZM02I6lqaje5TnfnaM3/zyfbPkbW8e05VAxLYLJNJbwe+6E9OeZCTx16Typ8iZXehKM2HPo2jybPPOhUAWEi3+cj7WsJmuxDgTudLu9ZSZ5/WhC0zm03y2+Q7uq1z5vrW4AAxlYjx3+Rgv9Z+hNzWFvYQ5ui1QyaO1a6nzhEraP6Dr/Pr27YTdbl64cJETw4Wug8FEgp9cOI8my6yvrORT69bxcEvrL7Qr+K0ghMCn6Dxet47JfJqvX9pPzp67lXs+5G2LN4cuEtG9/GrbbqK69zYtTQtIpHLkc4WxlpcF0IuYgC4ULl2lrKwwR+dzJqlUFnCwrSGs3AEssx3HngYnh5k/jqy2QAnJZSFkJLl2ziADwLET2NYATvZ1bOvytdetQWxrEMdJ4GAiULGM81j5w9hmD46dwMHAscfByXPFRte2BpDk6kKQURgEQrgR0jWRGCFcyMoaTBHEyh9C0XdjmRewraFCq5a8MMPRUvB39+5aFgiEkInqbXjVSird6+lPH2YgdYjpfM+iKhwSCkGtgTrvDqo9WynT23DJodvOeZgPtZ4dnFN+NG+gISET0VsIa0s1KiwVAlnSKHOtxq/VUuneyGj2LAOpw0zkLs0jJHBruOUoEX0FUb2NSvc6/GotfnXpPhaqprDjsU2c2HOOU3tny/R+6OAUCM+2VWASzZUll1UZf8hLsMxPpCpEw5pa1u9qY91dbUSqQ4vKbhUI+A6GnZkJLASSUG4IMuaCLFQUSUPMKH842MhCQSDwKWWUu1YQVKtQi7QiltVG+Py//igjvRO0H+latLfGFTgOjA9M8u5PD9Nxops1O1vZ+tAGNuxeRbgyiLQM2WTHdohNJDi7v52jr5/m7P5LDHeNllyNuR4ur87n/vUzbL5v8S1Tbpd6VRpydDxBIpGBBahVPfbAOl7dc5ZkKse3njvA7371IcLB2eR+x4G8YWIYJr4irWmJVJY33r3AkRPdhIMeHn9gHa2N5ciyxFOPbOLr33uPfYc6aGuu5JlHN85yLb8CSRJXncezOYOB4WmKyxFcgybXEvY8jVtdS8j6CEIoaHINbq0NSZTOpXLLKrsqWuhKjPHNzoPk7NKC4KxlcmD0MiOZBKemBvho/Saa/WW3lbeRNvO8N9rFC32nODzezXQ+s6Q0ULnu45HaNWwva1xSVaYxGOJXtmzl7oZGuqemGEzEyVkWPlWjPhikNRplRTiMX3//E33vN4QQRHUvH2vYzOSM7G2pv1HKzPN87ykqXH4+1bQV/yL5M4uBY1+zk5UkllZBEVyVUnccB9t2sMwujNS3sc1eZG09kroJIVzYVul8FhBwyzb4QiAgyVVI8nXqhPJKZO0+ZHUjIGHm9pNPfQMhvEjqKiRlNQgNK7eX65OtBVL4zcGjPes1SWlC1jZj5Q9hGaexjfMIoSNp664Sy28Hli3QcMlB1gQ/Sp3nzuU6ZMlwK2HcyuKydPOh4KgaosZzB2G9hWbffUzne5nItTOd7yFpjJC1Yph2BgcbSaiokhu3HMarVhLSGohorQS1evxq1UyA8cHHeF6ljLsr/hl5Ozm3wZwDyRGZn3/nCE99cRdTYwnOH+th/c4VBELvn9SdEBIuOUi1ezNRvZV6710kjWGm891M53qIm4OkzQlyVhzTyeI4VqG/UdJQhI4qefEoEbxKBV6lgqBWh0+txi2HcMlh3HKokAVYpvxM49o67v34DkZ6xhjpmS3T+4sIy7CYHoszPRan58IAFw53cuTVU9S1VbHlgfXsfHwzVU3lC+KMGHaWE5M/JWlOsirwYNFtbMciZgzRHt/LWK4TVXIRvupfc+PvZNg5LMdg2hggY8Vwy0FW+HZe5Whcj6a1dfzKv/80/+krX2N8YPEcsOuRzxj0XhhkpHec0+9epKqpnJVbmmnd0siK9Q1UNpWjLqLdzDQsxgcm6TrdS8fxbi4du8zg5VEmBqeWxMW4HkISPPMbH+H+T96JukgteQCvR6e6IojXo3Oxc5hX9pzDMG3KIj4s2yGZyuLz6lSWB1Cvq3itbK7g409s5VvPHeC9o13kTYvd21toqI2gaQrZrMH4ZJKe/knGp5Js29jAg3ffqGZmWTYHjl7mzX0XyWQNnnp4I3dsarwqZXv/rjYudAzzxjvnee5nR1m5ooKNa+uKmk8pcsG3ozzqZzqW4o13zhMNe2luKEOWJNLZQsBdEfVfNfhynDyqHEWTq3EwZoJdeenti0JQ5vLyTMMmhjMJftZ/uuSFoI1DZ2KMsWyCI+M9PFDVxkM1q2nxl15BKoa4keXERB+vDp7jxOQAvalJjBIDpCvwKBoPVLfxdP2GJS9ghRCUeb1EPR62VleTyuexHAdVkvBq2t/pKkYxSEKi1hPk003bmMyleGPoYsnHmsqn+WbnQSrdAT5SvQr9Nkkru10aqiJjWTbxRHZBVce5YBgW8URhDlVUGZdLwzY6sPJHUVz3o3o+hxB+HCeByL4OlNZithAIKYqk1CApzWjezwLaTe+7EciYuXexrX503+8g69sRwjMTBF3/fQskpQUzdwDHjhW4II6DYydnAqjrhA6ED1ndgJU/jJF9AceOIakrkZUbzVOXG8t2pymSXuj71z+ozPfthyRkvEoZHjlKVG+jzrODvJ3EdLJYdh4bC3AQSAihoAgNRXKhST40yYcstA/UXfNmSEKm0j2/+aFt2XQbw/S0HwDA43fRuqEWt+fW0qu3A0JI6HIAXQ4Q1pqpcm8ibycx7Aymk8O28zNOtTYFWr+MJKQZVTIdRXKhChfqjGTy7fo9NJfKPR/fwfDlUV755jsklthC9aGDU+CRDHQMM9w9xqVj3Rx46Tj3fnwHu57ZNq+CUaV75UwA4GA5JmGtDlko7K74lRu2E0h45DCrgg/QYu9Ck7zosgfHcWaqGjor/HchC4WxbBe67KfS3YYueTkfe5OUOVk00BCSYP2uNr7yHz7D//jdr5OKL/2BkkvnGewcYejyKO1HL+OPePGHvATK/ESrQpTVhAlVBNG9OrpLRdFUTNMknzHIpXPExhOMD0wyMTRNbDxOcjpFfDJFKpbGtpaPGwaw+9ntfPS3H8VbpJqwECiyxPbNTZw618+hE928tuc8x073omsqjuNgWhYP7V7DM49sRPVfU2xRVZlPPLkFy7J57sVj7D/SSXvnCF6PhixJWJZNNm+QSuVxu1Wa6mZzXy50DPPq22fpH5zizq3N3L9rFeHgtUpC0O/mU09tpbN7lIudI3z9e/v5//3eE5RHfbPudSEEFVE/Tz+ykb/5wX7OtQ/xp1/fg8+rI4TAsmyaG8r4xFNbWdNaaCsYT/+IVO4kQdc9+F13osjRZUtOyEKiyRflU01bGM3GOVQiX+MK4kaWE5P99CaneG3wAquDldxVsYK1oWrqPeGSqgWxfIbOxDjHJno5OtFDT3KSoUyc7BKUpa5AERI7ypr43DKbwwkhcKsqbvXvloRtKVAkmbZABV9YsYOpfJpjE30lH2s4E+dPL+yh0uVnc6TutkgrRyIePB6NbM6g8/IoyVSWsmhpLaqJRJaOroLXkNejE414QViAhW2NFfgKTh9m/h1s8wKScr1UtY1jZ3GcNI4TB8fCsUdwbB8IDwJ1UYIQsroSWbsLM/cGRvo5ZG0rCBnHHMRxMij6LoTSWOBuOOnCuawRbHsCI/MikOdask1CdX8MM/MSufh/RHE/ieNkMDMvwU2mzEJIM5WRFozsK0jKCmTXwwixvP5VN+PvV0i/TBBCoAgdRSrHy/JmiT4sMPImP/rLPRg582q1IzGd5u0XjjM5GufpL+8mUu4nNpnkxHsd9F4awcibVNVHWLG2lt5Lw4wOTJFJ52nbWM/W3W34Qx4Ov3WeznODZFI5dj26npa1tfzoL/bgD3mITSZpWlXNzofWLigAkISMLvtvaZo4nfgz0tk3kPWd/y977x1e13md+f52O70X9A4QAAvYu0iR6l2yJNtyk2sS25Nyc3OTzGQmM5lJmcxMJmUmxU5ckrjJlotk9c5Oir0TJArRezm973L/OCBICAAJggRNO3798LFwzu5n7/19a613vS82+7PI0q1p/HMHnDzx6w+Qy2q89/19C9tn8TOEpmqMD+YnyD0X+jm5u5knvnwfDWtqZmwet0guLJJr2udBy1QPgnyPjh3zVdzfnROBREaLk1YjdGX78gGK7J7Wo3ElZEVm06OryaVzfOX3vnPTqgWGbhAPJ4iHEwyQD2pMZgWTRUExK0iyiCiKCKKQL99PUNZyWZVMKkcuk7vpgcWV2PToaj773z58w8Z8NZUBPvvMZspKfBw+0Un/YBhV1bFaFIIBJw6beUb6mM9j55nH17KssZRdB1pobh1gYChCJqvmOdQ+ByuXlbOmqYKNa2umrDsyFuedPec5ea6X0iIP9925hOpy/7Tm0MoyP888sZa//cYOzpzv4/mXjvArn9wyoxOw3WbikXuacNjN7Nh3gc7uUQaGI5gUCY87r1xlueIedprWYOgZwukdjCZfxK4sxWO7B6tSjyjcOIVEESWW+8r4ePU6wtkULdHhG97meDbBeDZBW2yEAyMXcSlWghYH1c4AxVY3hRYnXrMNq6RgkmQkQSSna2Q0lbiaYTQdZyAVoScRojcRZjybIJxNEc2m5u06/UEIwBJPMc/WbqDOGbwtJHp/UWGSZFb6y3m2diOhTJKOGzBT7IiN8pdn3+G/r36CSof/pv9uVRUBvB4b46EEF1qHOH9hgMIC93UryqVSWc6d76e1LU+J8vscVFcFkJRKZMujqOm3SEX+04RHxXpk02YMLgfPauYw2cQ/o2u9GNoQhj5OKvwf8n0QUjFW7/9F4DooeIIbxfokgmBDzewml34dMBAEN7J5M0wI4SqWR9C1AbLJH0Hyh4hiENlyD4Y2BsLlZK+krMTs/B2yqZ+gZg8jSIVIylJk890YTFXjFMQAktJELv0GguhFVJrmrZo3V/wy0PglpsEwDDrODzA+HOPRT22m+Vgn0VACq91M7ZJShvpC5LJ57l8uqzE2FMHmMNO0YQnNx7toPt5FIpKkqNxPSVWA04cuMtgzTjKepqt1kKXrqhBFkQNvnyFY7OHM4Ys88dmtrNxch81x8/meqtpJJnMYSfJjGDfOb58rBEEgWObjmd97lECZj59+5S1Ge2+MqnM7Q1N1xvpDHHjlGL0tAzz1mw+w6dE1886cXw9cpkIa3fegTjTIKaJ1UrlqNljsZrY+tR4Dg6/+3ndvWrBxJQzdIJPK3pA61M3CpkdX8YU/fYbS2qIbruSZFJmG2kKKC9088cAKslkVAwNRFPOTdJcNm3X6ZEAQBLweGxtXV1NbGWDPjmb2vneOf/f7D+cV1IDmkz20n+jlgW1LOLDrAhfO9vLkJzbhdlnY2FRJqGOMppWVbFxTzfP/shezVWFkKEpPxwjViwp5/KPr2bSmlqoyPzlVx2E3Y5rF80QURQI+Bw/fvYxNa2pIpfOBniAKyLKEw2bG47pclbEodShyEW7tLjJaL8nsOYai3wRBwmXehNt6N7J4Y2o8Fklha1EdGV3jay17aY/N3/H9SqS1HH3JCH1EaIkKHBvrwSTJmEQJRZQQEfISxAjoGOiGgWbo+aBDV8loOTKahnFDHRjTIQCN7iK+1LCV1f7ym5IZ/8nZs/REozxSX0+d/9apwv28wCIpbCmoIZxN8vfNuxjNzK/ibgCnQ/38rzNv8WerP4TXZL2pLIH6RUWUFHvp6Bolnc7x3I8O4fHYWL2i8qrS11cik1E5eqKLH/z4EOlMDlkWqazw0bCoCEE0o9ifQbbcnW+uFuQJGVkdDBVhIikpKY2Ynb8NM80fBBOTVCbBgcXzN9f03hAEEaRiFNvTSJbtoCcntyWInkmjQEGuwuz8bQw9BIYKghlRKkI23wmCDOSrrwZWFNtHkcxb88comBFED3kfj+wH9i2D6EAUA0hyI6K08NLOCxJoZPQs+0cP0hpv5/7Cu6myV0x+N5IZ5aX+1ymyFHJnYBNOxUlCTbJ39AAnwqeJqXECJj93F2xlqXsx0kSztG7odCV7eHd4F/2pAVRdxWPysNTVyGb/epzKwpZ+rgc97cO888IRymsKuOuJ1fOSWNQ1na/9j5eJjCX4/b/6xAIc5ewwDBjoGqWw1EtJpZ9ENEXr6V5kRcLts09TfrA5LLg8NspqgrSf62N8OIrTa6e4wk9ZbQEnD7SRSWUZTmZoO9tHX+coZqsJgYnmLgEq64vwF7puK2rZzYAgCPiKPDz8hbuoW1HBS195m2Pvnb0tJp4LhWwqS8fpbr75X35IdCzOvZ/aisu3cIpMkG8QdyjXN6EQBAGr08LWp9aDIPD1P/g+sdAvGMVtAnc8sZbP/fFHKK0rQpiHPORMkGUJn8eO7zoNJQVBQFEkigrcbFhfw6H3mlE0g7pFhYwMRQkPxfD7HVgsCtFwkoHeEJqqYVJk/G4bXrsVv9uG3WZmoC/EUH+Yx59Zz10PLOOVHx3h3ddO8ejTa6mtKrj2wZBvCrfbzNht185ICoKELLiRRTey5EPToyQyx8iqw+TUYcYSL1Lo/AIu62bEG/BFsslm7i1uQDd0vta6l47Y/LPOM0EzDOJqBtRbl3iZDYtcBfzG4u1sKqjBcpO4/i9dOM+Z4WHWlBT/MtCYAQJgl83cX7KY8UyCb7buJ6HOb0zSDJ39wxf5m7Pv8J9WPIxJvPGepUvwuG1s3lBL28UhBgYj9PSM8zd//zZ3b1vMPdsXU1kRmLH/CkBVNdo7Rnh3ZzM791xgZDTvx1Fa4uXOOxpwOCx5UzrBC9dwABdEN5J4bTqfIEhIytz6HQRBBOHq2xUEOa8G9QFFqEtmfpeXE0BwIs1BYtvQ4+i51vzypjUL2gR+CQsSaCiCjFN2MJQeoTXWPiXQaIt10JnoptFZj1WykdYy/KDnJ7TG21nhXobf7KMl1s43O77LZ6s+wXLPUgQEYrk4X7v4LQJmP1sCG9ENg6H0MGPZcWTx9uJeZtM5RgciuDx2DF2HeQQaBjDSH2ZsKHrNZSEvzzjQPUomlaNm8fxkFi9BAJweO21n+9B1g2j46kZ4oiQiKdLEQ5unhMiyiCiLk6VUwzBwem0UlHjYcM9Siiv8SLKIw21DFEQU5ea9nG43CIKAzWHBW+ShccMiOs7mDfluVJ70doauG4z1h/je//wpuazKQ5+/a8GDjflAEARsTivbnt6AO+Dka//hOfra5m/AebtBlEWe+PL9PPHl+yisCNwUNaybBUEAn9/J0hXlHNjdQl1jCaGxGP094zzy9No5G1HWLylhyfJyfH4Hw1uivPf6KWL3pXF7568CNRsMdNK5TiKpd4mkdyEJTtzWu3GYVyMKNuKZQ4wkvofVtAizXHbtDc4CgXxj9P2lSzCAr7fsvSGKy+0IAahzBfntJXezuaAW802U4r0YChHNZFgcnFuw+W8RgiDgMdl4onwFoUyS73ccmTcVLqtrvNx7hlK7j1+rv+OmHaMoCmzdvIiWtiHeevcMiWSWwaEoL758nLffO0dRoYuKcj9+rwOrNd8jlkznGBuL0d0zztBwlEQyQyqVp0F5PTbuuXMx69dU/5ui5xmGiqGPoKsX0bKnyaXfRDbfOaFutfBYkEBDFEQq7GUUWQpoT3SwOrMCv9mHaqi0JS7iVlyUWIuQBJGjodOci57nkeIHWONdiVk0s9G/jr+88Pe8OvAWS92NSIJEKBdmNDPGw8X3ss63BgzQDBUDsPwMfCiuhor6Qr74h49PmqDdCkRDCfa9eQZRFGYNNI7tOEtJdQFFV+jXazmNozvO0nRHA1b7xHUUoGFFOTtfOc7X/vvLWO1mDCNfqXnpW3u5eLaPXFZj/d1LKCqfrd9h+kNcVl1AWW0hu145gabq1C8vZ8tDt+ZGv4xbN7k3DIPe1kEOv3WKg68eo7d1kHQiTSqe/oUOMq5EbDzB83/5Ci6/k+0f2Yh1AahxNwpBELDYzay5twnP11388395npM/D7LE14DDY+PZ//L0RBDlmpfR1UJCEATsDjNrNtbx3a/vJjQWp69nHEGEhqVXS5ZMfXY8fjtWmwlREgkWuohFU+Ry8/MJuBaGY99mNPFjbMoSCp2/gk1pRBLdiIIZQRBRpAcZjn8H/SZQNAVBwCYpPFy2FI/Jytda9nJifP4moLcTJEGkyVvC7y27j2Wekpvu96EbBmZJwmO5/d43txNEQaDY5uIj1asZyyR4ve/svLeV1nJ8o3Uftc4A95Y0XnuFOcJuN/PJZzaQSGbYvbeFdCZHMpUlmcoyNh7nQusQkihMJip1w0DXdVRVR79inHU5LTx4XxNPPrEa8zzU9n6uYWRRM/vIxv4GBBuy5T5M9o8h3IS+srlgwXo0AiY/dY4a9o2+T0eiC7/ZR0+yj95kH0tcDRSagwiCQFv8IibRRLW9EqecVwYxoVDnqGbH8G6yehabZMNv9lJoCfKT3pcZz4ZY511NsXXhDEZuBIoio3hvbfvL2FCEi839VNQVzrrMwTdOsv6BFVMCDVEW+ek/vUv10rLJQCOf5bXwpT98AoN8VsEwDMwWhc/+7sPomo4kiygmGUkS2fboSsQJd+m7nliNoesIYt78TZREnvz8nciKhKxIbH9sJXc80AQYyLKEyazwu3/18QXpzfhZIZvOcWb/Bd78112c3d9CbDxBdoGbfG9nxMNJ/vW//ohgmY8V25Zcl9zrrYIgCCgmmfq1Nfz2P3yBF/7uTd74l51k0zeupvOzQN2qKj79n59i+dbFWCZUlG5HiJJIcZmXknIfu98+SyScYPnqqsl7RBDz1MpLE4ZUMks6NfU3SSWyqBOyl/FYGotFuemO4JfgNG/AYV6LRa6YaP6Wp1xbUTBT5PwiinRzREIEQcj3bBTWEbA4+Or53ewZartpTdg/C5hFmW1Fi/jdZfdRYnUviIN5mdvNaDJJKpfD8W/AJ+NGIE4YRn6iZh3j2QQHRzrnva1YLs2fnXqdYpuLpZ4bY1ZcgiAI+H0OfuOLd1NR5uPHPz1KaIJloesG2ezVkwqCACXFHj798c3cuaUBi1le6N7n2w+CFcX6KLL5LhDEfOO6YFnwJvBLWLARXxREquwVHAufpD3ewTL3YtriF9HQqLRXYJXyzTJxNcFAeog/Ofe/8py1CeT0HKqhktTS2CQbDsnB79T/OjuG97B39H1eG3iHpa5GHim+n2p75YINpJl0jr/9zz/C5bFTu7SUF/9lL+PDUUqrAtz39FrufmL1ZNXi2L4W/uV/v05f5ygYBs98+R4++sW7pmzPMAwGe8Z5+Tv7ObL7AuHRGJqat5FHEPjSf36c7Y+tmqQ4GMCuV0/w46/vYmwoSnGFn3ufWsO9T61FliUuNvfz/b9/l3PHOwmPxRFFkR9/YxcATeuq+fiv30v98vL8Nc2q6Jo+xaQsFU8THYtPifzhcrDxQUMzm2P6S9t0Rc/Gpf/O/xz538Q80RRqGAaKScb0gWyCw2XFMIwp+5rp95yrudq17oVrbWc+95JhGKhZlVO7z/PiP7zJ2QOtpBPpid/2lwgNR/j2n/yE8vpiCioCt+XEN+8ULVBcXcBn/9uHWXnXEr77Zy/Qfqr7Z31oc4bNZeWRX7mbR3/1HoJlPkRJvC2v9SUIgoDLY2PNhhpeeO4gBcVuHnxi9eQx2x1mMqkcF1sGMZsVTh7tpKt9mA1bL/Ogj77fzsr11VTXFrLvvWbKKgPYnQuTuLBO8K/zxzfzdfVY7+KSaszNgiJKLPMU859WPMS/tr3PS92niOQWTud/oeCUzTxbu4HPLtqMQ144efFH6xs4OTjIrq5OHl5Uf1s/A7cDJEFklb+cT9VsIJRJ3pDa2VAqyn88+lO+uvmTFFmcN+XaC4KA02HhmafXs3XzIt585yzv7T7P8Eh02tzlEiRJpKrCzwP3LOOubY14PTbkG2CY5FSN1w418/rhCwyFYnz1/3macCJF93CYu1fUzSu5cbW5yAev247BZs6E+zgyfhEBgacq1vIv7XtY7CrhT1Y+jWbo7Bo6z3c69jOQiuAx2XiwpIlnqzcTUzO83HuckXSU/3fxAwiCSELN8J2L+zEw+EzNFqzyZRWr6zmuuWBBU4tl1hLq7DVciLXRHG2hI95FgTlIseWy6olFslBsKeT+wrsImqdr3ruvaPL2KG6eKH2EB4vupTl6gdcH3+ZfO5/j12o+Q6nt5kTPMyERTXNsbyunDrXz0DMbsTksHHzvHM9/dQcWm5mtE/Sf5etr+eOvf4GTB9r48Td2TSozXYlkPMO//tUbRMbjfOH3H8YbcPL8P+3g/LEu/ugfP0f14mIkSUTX8xPvga5RfvCV93jk45uwuywc3nme57+6A6vVzLbHVlJU7uPjv3kv50908+YPDlK7tJQHP7oeyDdp+wpd7PzxIQ68dpzmwxdpO9XNS19/b/J4RnrHKasrwmyd2RdD18cYGH0WQRAp9H+daOwbxFI/QRJ9uByfwWF7mnTmEOHo35JTWzApy3A7v4TVvHXyNx6P/DGxxPewWu/G5/o9FLlm2n5Smd0Mj38Zw0hTUfQ+kjSVW5sPRJJkcqeIJ39COnsMTR0ANETRiyJXYjFvxG59GJPSMOO5CEgYRppY4nvEUy+Qy7WgG2lkqQir5U7cji8iS9fHq77kMNp5poef/O0bHHjlGMloat6O07/IOH+kndf/eScf+Z1HsDlvrjrJzYQg5vs2Nj26mtoVlbzyT+/y9rf3EB2P35ZVKUEQkE0STVsa+djvP8bi9XUoZmXy+l5KMOSXZcp31wtN1dBUDcPIT7Olm0APNZsVKmsLAANfwEGw6HJz5JIV5fT3jvO1//M2YLBibTWNTWVTaGCVNUF++v1DdLYNUdtQxFOf3IjXd/P7M4ApybBZlsiruiwAREGkxOrm95bdx4ZgFf90YS/nwgM/F9UNkyixwlfG7y27jyXu4ry61QI+/88sW8bB3h7+Yu9earw+6ny+q+5PgAWprPw8QRJEthfVE84m+cqF3fQnI/PajgG0x0b5j0df5G82fASXbLlpwYaiSFSU+/nCZ7byuWe30D8Ypv3iMKFwkng8jSAKuBwW/D4Hi+oK8fsdiKJwU+63n+w9zYHmLrYtr+b7O06i6QZum4VvvX2Erctq5hVoHOzs4a3zbVM+c1stPLSknvqCqfNh1dA5HuriD5Y+xj+0vMvbA2f4yvrP8IX3v0F/Kkyx1U2Ns4B/v/QRyu0+Tod6+XrbLha7itkQqKXWGeRspJfW2BANrmI64iOEcglWeSuniTCcHRymazyMpl9+t3isFtZWlGEzXT/tbEEDDVmQqXVUcSHWyt7RA8TVBBv96wiYL6tA1DqqaY5dwKU4qXXUIAsy+Za7vOGaMvHS1gwdzVCRBAmzZGK5ZymyKPPtru8zkB5a0EDjkt79b/y3p2hYkW9sr1xUyP/9wx9x4WT3ZKAhySJun51AsQfrLAom3W1D9HeN8ugnN7Fy8yJMZpnHn72DCye6CY3FqDaKJx4IA8PIS4b+5h8/ReOqSgBqFpfwV//+B5w73sm2x1ZitZupqi8iHklhdVrwF7qpWzZ1snzHo6spqyvk23/+U0pqCqhoyF8rQRBw+eys2LoYu3t2OTaDLJo6Qjj2D8QS3wMENG2YSOyfyOVaSWePk82dBzRSmd2AiCR6MJtWTGxBxSCbb0iarUfC0DGM7MS/qcsYhoGmDRCO/S3RxHfI602bgPyDrekjaJlBVG0ARa6dNdAwDI3R0H8kmzuLgTrh6mugqt1E498gmXqd4uBPUOTKWa/F1EM2SMZS7P3pEX74l6/Q0zIwp/WuBlEU8lloUUQUBQTxAy/IG31fX3FpL13nfBC7kNM+AAEAAElEQVSXPx/DMDD0PLf1pveRGPDyP77Dtg9vpHJJ6W0baACTwgaFFQE+98cf5b5PbuGlf3yH/S8dJToWQ1W1W9nuMyNEScRsNbF00yIe/9J9LL8zT5O6dPyX8Je/+o8ceesUqXgKk8XEc11/j2UOCkszYccP9vOdP3uBsb5xBFHg1//mszzwmW3z2taVz7mm6bg8dtbfMTX77PHa+fCnNvPhT22edTtVdQU89KE1PzMT0VsJQRCQEbm7qIEmTynfbj/IK72nGU3Hb8uAwyRK+Mw2Plu3mU/UrEMWbk2FbSge5xNNy/mT8Z18+PvPcWdVNfV+/6xu4Iv8fu6rrZ3xu9sdhqGhG2kMdASUiX6hmRkB+XHYQBJnrvhJgsCj5U2Eskn+ufUAoezVhWBmg2boHBvr5s9PvckfrXgEq3zzeiIuVZ4lCSrKfFSUze6LdTPvtcMXevjk3atYXVfGK+/ne/gKPE7GIknmOxg0D43y3SMnp3xW7HayvKRoWqABUGn34zXbqXIEcMpWPCYbQbOTUCZOqdVDhc1HVs9LUActTspsXoYzURCgwuanzOrj2Fgni5xFXIyNICCwxF0y7Tq9c76N7x05SSR9udfMa7Py3Gc/SpXv+uW7FzTQEASBKnsFRZYC9o0dot5ZS5m1BOmKrNBa70qaoxf4ce/LtHs6KbYWkdWy9Kb7cUoOHit5EEEQOBk+zb6xgyxy1uKSnSTUBCfCp/GbfJTbFlYHWBAEXF47jSsvT0BNFgW3107sCkWmuVx8bWKComv5hiVDN9A0HVEU8hHxlXNKAZweG4tXV13er1nG43cQD6em7VOYXG/qcZgsCotWVrF8SyNLNy1i8drpFYVrHrc+RjpziKLAc4iClVDkf5DM7CKWHMVmuZ8C39+SzZ0nFP3fZNVmsmrLFYHG/JGvGIwTif8j0cS/IAouLObNOOxPY1IWIyCjaoNksycAAbNp5azbSqReRxRtOB2fwmn7KIpchaaNE0/9mHD0/6JqA4Rjf0PQ+9fXPC5dy3tGvPL193jpK2+TjM2fxiCbZEwWBbPVREVjCVVLyymrKyRQ5scdcGF3W1HMCrIi3bBShjZhEKdrOtl0llQiQzqeIToeJzoeY3wwwnD3KINdIwx2jpBN5VCzKrls7qbQwOLhJG99ezfP/uFTWB03J9O1kLg0qFUuKePf/eWzPPyFu3jr27s58tZpxgZCZNM5tIn+gFsBURIxWRQcHjuL19fywGe2sWxLA1b77FSh3/nHXyUWSvDdP3uB3T85eEP73/7RTax/aCV7XzjMy199G26wcpdJ5xgfjXNg1wUsVoWmVRVTvp/T/WFcx7K/ALh0ngVWJ//fsnt5rLyJ5zqOsGuwhbFMkqy+MI3wcz4+BMySjNdk46nKlXyiZj0+88J76VyJp77/HOH0ZV+cdy+28+7F9lmXf6yh4WcaaOSDgBwYBuJ1itvEs+fpDv8fYpmTBB2PUe3993mn6g9A1SMMxp4nrfayKPDHM27rUk/QR6pWM55J8MPOY/OWvc3qGu/2n6fU5uHX6rfcVFWxS7iVz7wiS6iagarrGICu6wyH4/hcNuafAZzh/XmVV6pZlBEBCRGrpJCvoApohkHO0Ngx2Mwb/aeJq2lyukZSy7LKV4WAQJHVQ7UjyLHxTroTo/SnQhRYXJTZpgdqXpsVi6JMCTRCyRQDkRjlXg/y7RRoADhkB5X2Co6FT1FmLZ3WwG2RLHyq8hn2jh7g8Phx3h8/jEk0UWIpYmVBE+JEUFJgCQACu4b3ktGzOGQ7dY4atgXvoNCysBJ2giDMKJVoCMJ1x7HVDcVU1BWw541TuLx2fAUu3vnJEYIlXsrrCqaU3wRBwD2NApDnBuvziKAf+fx2lFmMq64FUXBis96H1bwe3Uhhsz1MMvMeklSM3foIilyFIJgwm1YSS/wITQvPaz/ToZHNtRBNfBtBcOKwP4PP9QeI4uUKjCJXYjVvmMO2VNyOL+JyfAZpQjdblovwOH+drNpOPPE8qfRuDEO/KkVC13QGOkd44W/f4PV/3ol6jWa02WCxm3H6HKzctoTNj6+haWsjzuv0JFgoGIZBKpGh82wvZ/ad5+SuZtpP5o0Yb7RB+r3n9vOhX3/gtlSguhokWaJ2eSVf/otnGf/dMMfeO8PeF45w8WQXyViKbHrC2fsmVoJEUUAx513FLTYT5Q0lbHh4FesfWklxVXBOErAmiwl/sQmn137DA7OsyLh8TjxBF8oNKrfksip73zvHD799gNr6Qj71q9uum4blclux2s1z8gbRDYNoNk1aUyflYx2KCQNIqlmymobXYkOYWDapZsnpOm6TBQFIayqJXBbV0FFECadiQhElQpkUsiiS1TVymoYsirhNVhTx1mTv692F/NHKRzgXXs0L3SfYO9TOeCZBUs3esiqHAJhEGZtsosjq4r6SxXy4ajUB843fc/PBHRWVJLJznyD/rGVwDSNLKLUbzUhR4Hj8utZ1mpeytPCfaB//0xkDjPnAY7LxyZr1jGeSvNl3jsw8g9e4muEHHUcotbl5rHw5ynWaMWqajm4YiIKQr/D/DJMJ6xrKef1QM7FkmlQmx/nuYfae7eDOphok6Wed5DAIZRP85bk3+MOmx9laUE9HfJR/bN0xuYQiStQ4g7TFh3it7ySaYbDGXzXjNfXarDNW/1pHxlhZVoJsuj6a2IIHGrqho+oqfpOXalsFDnn6RMoqWbiv8C7uK7xrhi3kUW4r47cW/dpCHupVcU1q7hxhd1l56GMb+cb/epWv/fnLOFxWqhqK+dJ/fgJ/cLph3VwfrEuLXa03QDHl1RYuLZNOZtFVDYvDcs2HWBBMKFIVAKJgQRKDgIAkelHk8oll7IiCE8hMOGga3CjXRzeSpDK7MYwUJqUJl+OzU4KM64EkFWO1bJsMMq6E1bSReOJHaHoEw4gjCK4ZtpBXuRjuHeOlr7zFa9/cMa9stmJWCJR4uftjm7j/M9soKPffVv4GcNn7Y8mGOpZsqOPJX3+Ai6d7eO2bOzj42nEiV2nCuxbCI1FO7W7mro9uQr4NFajmAl+hh3s/voW7P7qZ4Z4xzh9pp/n9NlqOXWR8IEw2k68EqTkNNaflRRgmKpi6YUxoP0xQ40RhkjInK/KkQptiUfAVeqhbVUXD2loa1tRQXB1ckGuWdzDPTCqkiaKAxWHB4bEvmEqYyaxw7yMrufeRlfPexhd/58E5L9sbj/APZ/fTGh5FEgXWBSv4/OJ1mCWJlzrPsW+gk7+64zHMkkw8l+G7rcfpT0T5g9V3oeo6b/e28kb3ecbSSYpsTp6pXcmGwnL+06E3KLQ6GEkl6I6HcMhm/l3TZjYUVGCSbo28OcASTzFLPMWMpxPsGmrlrf5m2qLDJNQsaS1HWsvdVLafIkpYJBmLpOBWrKwNVHBPcSNr/ZUT2WudrDaCZqQBA1EwY5J8iIIpX6k2suT0EIaRRRAUZNGFJNgwyKHpSXQjg46KJFgnaLcqiuhFFCyoRgxNj2MYKqJgRZE8CBMKYIah8T/vX4empwABWXQgi24EQUA3smS0YWTBiarnPaok0Y4yYZqWP64UOT2KYeQQBAVFdCOLIgVWJ5X22Wk6s8Emm3ArM49Z+f0lSWRbiGQOI4suUrluRMGMIroRRQuGoaPpMVQjjmFoSKIVWbx8vrPhUpUkp42hG9kJetXcA4Yyu5dP124gp2ucC8+fFiwIAm/0naPJW8Yi1/WpsbV3jDA8EiUYcFJR7sNquTn0SE3TSWdypFK5PA0WEEURk0nCZjXN6Ov16IbFqJrOd987jqrp/P3L+7mzqYaP3bUS+TYYvzXdwCorCAJ0JEY5HuqkNzU+ZZnyCfrUCz1H2Ryso8FVPOO2XBYz5hmSPt3jEVRdg+sMaBdkBDEMA9VQUXWV8WyI1vhFCsxBKu3lC7G72wLGxORB13U0VctrOWs6uZyKJIpTuPanDl3EF3TxW3/yYSrrC29KlK6YZGRFJhZOEg0l8jQbMS/ZeSlL2HmuF4vDTGF5gHQiw/5XjxMeibH+/iYqGoqvkU2UESfdKC81PCoImBEE58SnIpf6JkDHwEC4wUDDMDIT/R8KslSKaYZG8rnCJNdNBELTIYp+LgVFhjFzJswwDGLjcXZ8fz+vfWN+QYbDY2PV3cv4+O8/TtXSslvms3KjUMwKDWtrKK8vZunGRTz/V6/S2zow7z6OA68eY8uH1t3SQCOraowlkyRzOTRdRxJFbIpCwG5DkSRUTWcwHkNAoNR9OdBM5XKMJpKYZZkCRz5REk6lSeZyOM0mpKCN8rvqKd2+iEcEEcIZxnvGGOoey9PQukfpGhhlZDxKKpFGz2p4zRZ8Ljtmqyn/z27G5XNQUOYnWOYjWO6nqDKIv8S74PeIoRtExmLse/EwO58/wPhgGNkkU7eykns/uZWlm+sx3aQBfq7QDYNYLM3o+FSndpvVhM9ju24dfMMw+MuTuyiwOvjOvR9jLJ3kz469xw/aTvDlpZtY5ivivd42mkPDrAyU0BuPMJyMs9JfglVSeLP/AgcGu/jEolWsL6jg+faTvNrdjN9iA8Pg7PgQf7D6bho9Qf7v6X28ePEMS7yF+KVbSxkC8FnsPFm5kicrV9IVH+fkeC8nxns4Fx4gnE2R1VWyukZWV8npOpqhT0x4jclKucjlBlpJEJAFCUWUMIn5/7fLJiodfpZ4imnylrDUU4JTsUyhdiazPVwM/w0ZbRgDDatcTo3nt7AqFehGmlD6AAPxF8np48iiC79lGwX2h8hogwwnXiORu0hWG8Wu1GGgklb7qHB9AYepgcHEy4TTh9D0JBa5mDLXszhMixFQSGTb6Il9m5TaiYCEy7SCctenMckBkrlOTg1/mWLHU4TSB9GNLC7Tcsrdn8Yql6EZcUaTuxhJvkVOG0eRvBTaH8Vv3cIfr3rspv9WBiqxzEl6o98kmb2AKJgJpw/gMC2m0PFh7KZGMuogw4mfEs0cRjfSWOQKihwfw2Feeo0KhkY0fYTe6NdR9QRmKYgoWBCFud+TS70l/NX6D9/4ic4TP37xCG++e5bNG2r54ue3U1lxYy7vhpGXw+3sHuPQkQ6On+pmaCiCYRi4XFZqqoKsW1PNksYS/D77FJWqVFbl8U1LeGpLE9FkGofFjCLfOlU/h2wmaHEhCRIBiwO3YkMQoMzmwyqZ8JsdfKJqE/96cR8WUabRXcyTZWtwKZeZA07FQtDixC6bKbV5cc0SADtnCTR6IxHUeQiiLMgorxoqXcke2uIX6Up0M5oZ575ZVKVuB4SGIqQS6SnVgOKqgjk70wLkshoj/SEGe8ZpO9dHdDxB78URju6+gN1hoby2AE8gP8mNjMVRcxo9HcNkJrKHiknCG3Di9NjnZazlK3BRsaiAc0c6+ck3duMrcOIvdLN4VSW+gvykacePDlFaV8i2D7nY8aODHN95DpNFoeNsD1/684/hCc6cxQdAEGa2qhdEhBmkHK9/+jnbGhq6HkEQFCTpxl4youia+RzmeCzZdI7jO87y06+8PS/6kMvv4OHP38WTv/Eg7uBU2T/DMMjoaUYzgwTMRVik+VVtFho2l5VtH96AYRh8589eYLhnfm7Fze+3kUllb5nHg2EYvN/Tw49Pn6M3EiGZzWGRZap9Xn5/2xaKXE7GUyn+29s7MMkSf/+hy5OK1tEx/mrPPhYXFPDvt28F4O3WNnZ3dLK+vIyBaIwjvX3Es1lWlhTzK+vWsLJ2KQCarnN6cIjvnzxN78gI2ZyKy2zm7sZ6Pty0FOdtoPGfSWXZ99MjfO9/vMi2pzew+t7lxMIJ9v7kIN/97y/w6f/yYZbfufiWHpOa09ix5zx//dV3pny+cW0Nn//kHTTUXZ+HUkZT2dHXzv/c9DDtkXEyukqlw8OR4V6EZQJBq51GbwHvD3XR5CuiJx4moWZZGShBMwxaw2NkNQ2zJNMRHcdtsjCcjDOcygdCd5XWUuPyYVNMrAqU8P32kxOZv+nQDZ3RTJyRdAyzKFNh9990w7pLqHT4qHT4eKy8Cc3Q6UmE6EtGGEiF6U9GGE7HiOcyZDSVlJab7O8wifJktcImm/Cb7RRZ3RRZXRTbXJTZvNMCiw9iJPkWBipNwb9FEu2k1C5McmGelql20xv9HkWOxwna7iWSOclg/AUk0YrD1EhWG8dtWYUkWBlNvkeJ8xnC6SMk1U4imRNktWFqPP8vNqWCjvA/0B//EdWe30QRPbSF/jdu8wrqfX+AqsdpDf0PemLfotb7OwBoehzdSNNU8Hckcx30Rr/NeGoPJY6PEUkfYzy1myL7Y/isdzCUeI3R1A5MUgCPZc1N/31EQcFj3YwiFTAUex6LUkmJ65OT3xuGynDiRbLqANXe38Msl9EX/ReG4j9EkfxYlZmTt4ZhoOlJeiL/iNuygVLX50hkz3Ix9OfYlaU3/TwWGqPjcdKZ/JirqjrZrIqqaXnfNUXCZLp6decSslmVI8e7+Nb39nOhdXDKd/2DEc63DPLurma2bl7E00+soa6mcJJu/tP9Z1hVV0pjeQE+561PIGwK1rEpWAfAJ6svi2P88YqnJv/7maoNPFM1nUZ+SYQnp2sk1Azldh9NntkT/w6TCWWGauxILIGq3yaBhmboDKaHOBk+g1N28EDR3TS5l072W9xueOVr73J634UpXPs/eeF3sbusiKJAeV0BqcRUp1ezRaGirhCna8IPJJJk31tnOPjeOQAcbiujQxF++E87MZtlnvz8nazbvpjx4Si+AhcXTnbz3f/zFsIE91A2y6y+YxFPfWEbDpcVASivLcD1gR4NxSxTUVc46U1xCYEiN/c9tRZZkmg/10fbGYOmjbVTFKhioTieQB2apnNi1zke+NQWlm5axH/+6P+Z48R54SaEBvny+oz7FCRAxzBusMlREJnvOei6Tm/LAG/8805CQ9cv+2d323jsi/fy+JfumzWg60m2882Ov+QL1b9HnXPJvI7zVsBsM7PugRV0Nffx0lffJpe5/t9lfDDMUPcoLr/zlngGpVSVv9qzjyKHk9+6YyNOs5mBWIzm4RFc1vn1inSHI0TSGdaXl/L/bNlETtcRyMsTXkJvNMr/2LEHiyLzK+vWUuCwc7inj7/ffxCHycRHli+7SWc4f8RCcd7+1i7qV1fzuT/92CRVqrDCz9f/4Dn2v3SEJZsWISs/PzQ33TDI6SqSICIJIvGJ3opvNh/GIl32+qlx5ZMXPrONJd5C3ug+T18iSlc8TNBqp8rlJaNppDWVY6O9jKTjyBPjmCJJOEz5So/bZME0wT+XBAH9Kr0RaU3lJ91H+YcLO6hxBPm7DZ+izDadznkzIUxUJaqdAaqdtybhZzfVE0ofZCjxGi7zMixy6QRtKkcq141mJAjaHkASzThMDViVSqKZkzhMDSiSB7NUiIiCXanHLBWiiG50I0MkcxSHaTE5PUw8m8YkBQklDubpVnqGeK6ZxsCfIAo2TJKFIvujtIf+mhrPbwOgiD6CtvtQRBdmKYhVLiOrjWKgkVQ7yelhBEEhnr2AgEROC5FWb1xRcD5Q9SjJXCsey0ZsyiIEQSZgu4+2sf+Kqo9jGGWzTrA1I0ky20qd/4+RRCsWpQq3eSOqHrvFZ3HjGB9PEA4n6e4ZY2AwQt9AmGg0haJIBPwOKsp9FBW68bhts14PXddpuzjMcz98f0qQIcsioijmpbt1g0xG5Z0dzWSzGp/++GZqqgOIosiRlh6WVhb9XMogq7rGcDpGS3SQ0+Feqh1BqhyzvwcsioI8Q6Axnkzlqb/XiXmPHMlsltahMRqKglg+MABZJDNbApvYEtg0383fUrSd6OTMvgtTqDDaBG9PMcl87ncfnrZOsNjDr/z7Ryb/9hW4+OgX75pm0HclVFXjjecPceFkNw9/fCNV9cVIskg2q3J4RzMvfWsfm+5bRt3SUkRJ5DO/89C0bfgLXHz+96cfjyAIVC4q4rO/O32dS7A5rYRHoux75TgOj4OyRUVYbGZ0Vb9R8Zhr4NIEX51VpUbVBoHpg7OAjCwVkjZyaNoQupFCFG59tj8ZTXPsvTOc3HXuuteVFIktH1rHg5/ZdvWq0c8RfEUeVm5fwrH3ztBxumde22g/2UXdikq4zgbB+SCdU8GAIqeDgN1OudvNqpJiHmmcWQp5Lgin0txTV8Nn16zGYZ6ZWvRWSxuD8Rh/8cgDrC4pQRJF1pWXcbC7h+8cO8HTTUtvWEnsRmAYBplUloGOYdY9uHJKP4anwE1JTSHDPWNEx+P4Cj0/s+O8XoSyCY6MdbLIWUilw4/XbKXU5uK3mrawqagCURDJaOrkoGmWZKpdXhyKmbd6WhhJxdlcVIUkiFikfMXjntJFfG7xWiocHjTDIKOpmCWZf+YwV/iT/hITCNi2I4k2RhJvMp7eg8PUSJnrWWTBiWZkEAQFUbgU9MkIgoxmZPJiHEgTlXIBUZAnq+a6kZdJH0/tI5ltm0hCgUUuRhTMqHoMARnxisq1KNjQjBQG+uS+ZNEz8W1eXMUw8oks3cgQz7bQG/3WZPVbEGRM0sIGgpOH8gHoE72OV8q5i4IFA/WaiTfNSIEA0gRVSkBEFC0wh0BjaDDC4GAYs1mhtMyHc4EMMOeKSCTF7n0X6BsIc+78wDQ3cL/PzgP3LuOh+5soK/HNmLyKJzIcO9nNmXP9AFitCmUlXkpLvFjMCpFoir6BEEPDUTIZlb0HWqmuDBAIOPC4bZQHvcTTWbKqhnmGHo7bGUk1y6Gxi+wbbmWlr4IHS5qmqL9+EGZZnlFZKpbJoN3KQKMvFOW//PRt/u4TT1Duc197hVsI3TAYTyQxDAg6r63ik45nbokRVy6j0nlhAJfXRnVDMYXlPjAglczgDTqx2Ezoqr5g+vxLN9Rxcu8FRnrH2PqhdfgK3YwPhgmW+pDnqUY1FwiCDQEFTRvCMBIYhjHlIdWNDJnM4RlfnIJgwWxaRTz5Ajmtm3Tm0IQZ4K3LKui6wWDXCDuff39eDdBVS0p58DN3EriK3vfPI6qWlFG/umbegcZAx/AtMzb02qw8uqSRt1va+MqBQ6woLmJ5cSF1AT9+2xzK4DMcps9mpcLjmTXIALgwMoosinSMh4lnspObMSsyXYNh0rkcNtPP1v8h36huYLJMrZJKkohsktE1DS176yR8bwaOjHXyP8+8xq/Vb6PE5sEiKXyqfg0vd50jreeQBIm0mqXY7mJVIC+PXmB10uAJ8lZPC7VuP8v9+UZJURBYFShlMBnjzZ4WFrkDEzQqiWW+66Nw/SKhKxZiOBWn3hPEbZo+Ec1pYVzm5XjMa4llz3Fh7I9wmhYTtN2PWSoAQyeZ68CmVJHVRslpISxyCYIw+1gkClZMcgE+01aKHU9hEgPo5DCMDJJgRxKsyKKdePYCHss6dCNLLHsOu1I3GdQAM/YOioIJk1SAz7qZCtfnsSnVeUcvI4MoLOwzemk8040MhqFxKaiQRTey6CWjDpLTw8iik2SuFUX0IolXV/TKr+sikbuAIvlQ9RiZXC+CcG265q6dzXz3O/spLffxpS/fw/LlP9v+2pyq8eqbp2f9fmw8wXM/PEhff4gv/8rdFBVOT+iNhxKcPJUfq0RRYEljCZ9/dguLG4oRRZFUOsvJ07288NJRTpzuIZNR2bO/hTWrKnG7rCyrKmLXyXaS6SxB99Rrv7Ku5LaudLhNNp4sX8OT5XOj/0mziANlVXVeY/bPTy38OpDMZNnX2oUsiTyyvPGqy2qaTiadvfnmZDPAbDXRuLKCo3taeOeFo/gLXHnJxVCCtjN9rN5ST2l1cE5SjfPB+geW4/DYyKSzLN2wCJvTSmg4yr0f34zdtXBVAlkuRRTd5HLtpDNHkKQiJDFPWdD0EJnsIVKZ9wEVPtDvIQhWLKZNKHLdpLGeICgocvVEY7eAYWTQjSi6HkeSgshS4VWO5vp/52wqQ+uxi7Sf7LrudRWzzPaPbqK8sfS6laUMwyChxehLdWKTHJRYK5AEGd3QiKlRRjODpLQEkiDhUfz4TAWYpcsDfl6MYZhQbpSsnsUkmgiainGbfEhXDOZdiTYkQcIuOxlK95MzstgkGwXmEpyKZ9bj8xV7KVtUhGKW50WfGu4evSXPHeSThZ9bs4qmwkJ2d3Syt7OLt1pb2VpdxadXr8JzFfqUZhjkZuClWmR5xoa5K5HVNCLpNN8/cXrasqtKSubFd72ZEAQBk9WEK+BkqHMEXdMne9MS0RTjQ2FcPgd2963nJN8ITo73kPyA/v/HFq3g5U6FHX3tpNQcRTYn5Q7P5Pcek4WVgRJaI6OsDpbmG70nsMxfiCQK7Ohr57Wu88iiyPqCckRBYGWglHKHZzJDWGB1sDZYtiC+AbcTXu+6wKtdzfzJhgdYGZhumBvOHEHTE0iCHdWIY5FLMElBBEHCplTitqxiMPEiTtMyUmofhqHis8xuzAj5ACFgvYtY9jQjiXcwy0E0PY0iuvFY1qJIboocTzGceANVj6AZWWLZ0xQ7nr7m+QiCiNO0hFSuk+HkW5NN6KJgxmVailleuKBSFt0okp9Uro2x5DuY5UKscjWy5MZr3UI4tZ/RxGsokpdI+iAey2ZMUl6SN5G9QFYbJZPrBUEmnNqHSSrAqlTjt93HSOIVVD2OqofI6iOYpbJrHM3tDavVhNtlxWyW0XWDRCJDKJzEMAz2HWijIOjii5/fNqWRGyCZzNLTl1dhcjgsrFxewZLG0snqh9ViYuO6GkRRIBJNcb5lkM7uMTq6RqmvKyKWyhCKp3hx/xkcFjPSFfO0puqfT0rVbNANY0ZzZW2e4/UNvQlzmk7nWIgLgyMgQKnHRW3Qj0mWSGZz9IyH6QtHyWkaTrOZugI/QaedaDpD69AoFT4PQacDQYBMTuVgRw/LSgtxWSy0Do/SH46hGwZlXhcNhUFEUSCRyXKwo4dKv5eO0XEwoMTjoq7AjyQKDEXjHLzYw57WTjw2K4os4bfZqC3w4bFNn0xnkplJmtRCQxQF7n1qLf4iN62ne+luHwYMnG4bd39oNevvWpzvz1igklxkNEb10jKcPsekX0dpbSGltVebmN84LMoaTMpikumdRBPfQNX6UOR8U1NO6yCZegNFqUfLjPLBQEAQRBS5ArfjVwnH/p5keheq1o/VvBlJKgZEDD1KTutF16M4bR9Btk2nlt0IomNxDr1xcl6RfNmiYpZurMfhub6JmmEYxNQIR0N7ORM5yirPJgotpQiIjGaGOBraS1eyDcPQ0TFwK15WejaxyLEUs2RBMzQ6Euc5GtpHODc68eLQKbKUs9l/L4WWEsSJYGPHyCvk9Ayl1iqG0n0k1BgGBo3OFWwO3Idddsx4jLIi4Sv24Am6GOkdn3GZqyEyEltgyt5USKLIhooyNlSU0ReJ8ur5C/zd/vdZXlzE9ppqBAEUSSStqpOqVLphEMtkGE3OzyG32OmkwO7gNzdvoMzjnpJHFQUB+wJXMwzDQJuQ2M1l8tmoVCyd7wtTZERJxOa0svqeJs7sv8DJXecoqS0km1E5sfMsoaEI6+5fgc1lzSsTaTpqTiOTyqFpGpl0jnQig2ySkW6hAsvVkFSzNEcHSOtT+87MksyHa5fz4drlM64niSIrAiWsmGHSLAkiy3xFM1Ywvrh045S/lwdKWD7DNv6tQUAmkjmFrieRRDsFtodwm1cBYJKClDg/ynDiDcbT72OS/BTYH8ZlXk5GG8JhasAiT7zfUVEkN3alDkFQcJtXYpGLGE+9Tzx7DlG04LNs4RL3qMz5CYYSrxBKH0QQFAptD+O33QOALDrxW7chifn3sSRYcZgu0yftSi2F9kcYS+1mPL0PARGXaTkfTIDdbCiiD591G6P6m4RSe7CbGlGkAmTygYYoKITT75PMtWJTGgjY7kOekGlPZC+QyDUjSx7AIJzej12px25qpNj5SYbiPyKc3otZKqXI8VFUPX7VY7ldIQgCNdVBViwro6Y6iNtlRdV0hoainD7by9ETXaTTOd557xwP3d9ETdVUKd1sViUcyb/H3U4LxUXuGSlWy5eVsWJZOV3dY6TSOVrbhti4roa19eUsrph5rjRTP8PPM+KZLNkZDHrNsjwvJdEbCjRi6Qy7LnRgYBBLZ7GbFD66ronFxQXEMxnO9A1xrn8YVdcJp9JsrqngoaZ6Epkszx06xd2Ntdy3pA6TLNE+Ms7X9xzmDx7eTsdoiFdPXUCcaKrLqBqf2LCCpSWFjMYT/NeX3uWp1UuJpTPEM1nMsswza5toKAoyGk9ypn+IzrEwnlQaWRKp8nsocjtmDDTSiVtDm7oEl9fOtkdWsu0GtOPniz0/PUrl4hJWbGmYYgy40FCUBpz2ZwDI5M4QjX8TgxyCYEaSCrEoa3A5f5XB0U+i69MbrUXRgd32OAgiieQr5NSLRBPPYRh5nXRBMCOKLsxKE6I486R4vtB1nfBIlOaDbfNav2lLIwUVgeuagAmCQEyNcHh8N+djJ1jr28Ja750ookJcjXIycpDm2EnWeO6gyr6IhBrj4PhODo7twCV7qLDXMpYZYvfoGwBs9N+N31TIULqPd4d+iizI3F/0FFbpEq3QoCvRSqG5lO0FjwIGZyPHOBzajd9cyGrv7FlGp8eO0+uYV6CRF1i4NZHGaCJJZyiEy2LGaTIjAEsKC4B88gLAJEmUe9zsvNjJkb5+ylwuQqkUB7t7CKfSV93+bNhSVcnB7l7ax0MUu5y4LRZyukYomcIsywueBetvH+L0nmai4wlajl4km8ryytfeweG2ESzzs+XJ9dhdVu7/9J2MD4T40V+/SnFNAdl0jrH+ECu2LWHDw/nJYXQszvlDbfS2DNB+spPQYIQTO86QSWZw+ZysvncZwbIbU4abDwzDoC8ZYigdJZJL0ZMI0RUfQzcMTo73ICEiX9EHJAkiDe4iGlwzZ6jTWo7+ZIi+ZJhoLo1u6FgkhYDFSaXdj9c0e8PplcfUnRinOzFGJJfCwMApW6iw+ym0uK46WBsYpLUcQ6lo/pyySdJavmJokWQ8JhvlNh8Bi3NGA7QzoT464iMYGNxbvASrZJr1eGO5NCdD3Yym4xRbPazxV900T4CAbTsB2/YZvxMEEatcTqX7V6d9Z5GLJ4KMPFzmZROfXw7ePNJ6PJb1M25bEq2UOD8CfGTGbdf5fnfyb0XyUGC/7MUiCBJ20yLspkVXPbebDUEQsJsasZumMzBEwYzXeide650zrps3+JvZ5M8sF1Hh+Y2beagAtA2MEk6kUTWd6kIvw5EEoiCQSGcwKzKGYbCyppRMTqW5d5hsTsOkSNQW+XDOU3yjstzHp57ZyMb1tVg/QPO8Z/ti/vGbO3lnRzPJVJb977dPCzQ03Zjs7TCZZOy2mSlkFrNCfV0hAb+Tnr5xevtDxBMZaqt/tqaOtxKD0diMhpcOs2lePYU3XNst9bh4Zv1yusZCfO/gSY509rG4uACXxcyWRVXcs7gOiyLx/UOnuDA0yqrKEuoK/FQHvFwcGWc8kaTI7WRvaydLSgoJOOz82as7qC8M8OymVYiCwP96czfPHz7Nf3siH01quo7dZOLX7lxHXyjKtw4c51BHL0tLC1leVoRFyQ/g9QUBPrz26qou6UQGbYbI7RcR3S39FFb6Ea9Dl18QLDisj2MYSWTp8otelkpx2Z9FUWoRxEvZegWLaQ2G/TOYTU1XbEPEZnkAWSonnT2KqvZgkEEU7ChyLVbLdiQxgMv+aXQ9MqMhnyS6cNo+gsW0nkz2KDm1G8OITWzfgSQVYFYWoyjTX9QW80YQZEzK0ll9NBS5FJfjWUBEuKLZXM2o9LUNzUtpSlYkapZX4A7MvM/ZkNUzHBzfSWvsNOt921nl3Yw8wS8ez47QFjtHubWGjf67MUsWDAziWozdI6/Tn+6i3FZDe7yZ8cwI9xQ+wTLXOmRRpsxWTUeihTPRo2wNPIhFvDxhEhC5u/AxHLJ7YlLkoT1+jnPR41cNNCx2Mxb7/CRas6nsLatojCQSPH/qDIZhYDeZkASR/liUO6urWFWav6+tisKd1dWcHhjiH98/TKXXjarphNNpKr3z60NbV17K40saeb+7h7axMayKgqYbpHI51pWX0FhwfQZW14t4KEFv6yDJWIqKJaVULCklNBQhPBydVJqTZImqpeV8+o8+zOE3TjLcO4rbYWHFtiWs2LaEQGm+tyiTyjLUPUpf+yAWh4WNj64G8r02kdEYizfWLei5zAYdg1f7TrFnuIXBVJTxTHzSEfvVvlO82ndqyvJmUeaL9dunBRqGYTCWibN3uJV9I600RwYYScdQdR2nYqHSEWC9v4q7ihdT5yzAJM48fKq6xsHRi7zRf4bj410MpaIYGATMTpZ7y9le2IB8lT6E4VSUXUMtHB/voj02zGA6SjyXD3Ttspliq4fl3jLuL1lKk6cMqzy1KtYc7ef/NL9NQs1SaHGxLlA9Y2BjGAY9iXH+4uwbDKaiPFG2ktX+CgYScdoiY3jMVtJajq5YGAOocnpo8ARxXdGPIQgCo6kE7/W1M5yMo4gi5U4PK/zFmERpwkDPYDSd4OToAKPpJKIAxTYXS32F+K6gpw0n41wIj+A2WVANnY7oOJphELTaWeItoMDqmHxfZTSVC+EROqLjJNUcDsXEEm8hlU7vbWGe9osMw4BXD5/HYTXhsJoJuuy8faKFyqCXAxe6WL+onDPdg6yoLiWaTPPDvadoqizC7bBQ5nfjnCdL++7ti1mzqnJakAEQDDj55Ec3svdAG7mcRvOF/hkP/NJ4I0kiylXmQSXFHjweGz1944yOxkmnc/lezVCMcDw1jUK0tLJwXrYEtyM0Xefc4DCj8cS079xWy7zO84YCDZfVzMbacmwmBY/NQsBpIzKR+dMNGIsn6R4Pk9M0esNR0rkcmZyKKAisry7jhePnGIrGcZhNnOob5ImVi5FEgTN9QxS6HPz0xDlAIJ1TaRu+rNfvMJvYXFeBzWTCZbVQ4HIQTqXmdQ6pOVY0VF3jYqKH5mjHlM8VQabKXsISd+289n8rUbW4lEQkSSKcxOm7eiPZJYiiA6/r/5n2uUlpIOD90w8sa8Fuexj7DNQlQZAwm5qmBCAfhM/9+1c9FkFQMCl1mJTrm9A4bB/CYfvQVZcxKY0EPH867fN0KkvH2fk1O3sL3QRKfdOabK8GzVA5EznC2egx6p3LWOXZNBlkAKS0JKHcKKIg8v7Ye5OfD6R7iatREmoMzdAYz42Q1lNcTJwnlgtPLhfKjRLJjpPWr3xeBByKC4fsnvhLQBFN+EwFRHJj6IY+qzS1pEhI8xUSuIXv5WKnkzsqK+gMhUlms5hkiU2V5dxRWUmJKx8ImiSJ1aXFfHnTek72D5JScxT7nCwK+BlLpqb0WCwK+HmoYRFV3qur0VhkmU+sbKLW7+Ps0BCRdAazWaIxGGBd2cJzpRvW1dKw7trvJlmRqGgspaKxdNZlCsr9PP6l+27m4d00+MwOlrpLWeouZTybYN9wK3E1w1p/FTWO4BSFFVmUWOKZTm0azyZ4secYP+w6QiSbotoRpKGgGEWUiGSTXIyP8J2OA7THR/hM7R0sdZfOOKk9Ot7JP1zYwblIPwGzg43BWpyyhaSWpTU2xLlI36yOvABD6Siv9p2iLTpEqc3Dck8ZDsWMPhEItcdG+HH3UXqSIX6r8R4Wu0umZBm3FtTzXMdB2mPDvNp3ilX+SkwzPL8ZXaUtNkR3Ypwym5c1gSoUUaY9OsY3mg/jVMx4zBZCmTTjmSRWSebDtU1sK63BNhHcqLrOK13nEQWBlJYjlsmgY/DlpRvZVFSJBAynEnyz+TBnxgexK6YJx2pYEyzlw7XLCVrzldXOWIh/Pn8EkyThMVmJ5TIk1RwZTeXu0lo+VL2UgNVOTtPY2XeRV7qaSao5ZEEkqWYpsjn5XONaGjzBBa8UappOf1+Inp4xQqEk2UwOBAGzWcbltlJY4Kas3IfVOjs1Mp3O0ds7Tm/PONFoEl03sFpNFBS4qKwK4PXOPEYfP9ZJV9coy5aVUVkVZHQkRkfHMKHxBNmsisksEwi4WFRfiM83c4Vf13XGxxO0tw0xOhojl9Ow2cyUlnqprApMGAzPfv4+pw2bWaHA7aBgojG6qbKII229bGqs5OjFPiBPRyxwO/A6rBR5Xbht86tmWMwy9XVFOOyzr19R7qe40E1n9yiDw1dPDApw1Qmzx2PDbsv/dtFYimxW42zXIDtPtpPK5hgOx/HYrYxFk9SV+mksDyLeAvXEW4GOsRCHunoJJafPqcs8LpR5PFs3FGhIojjJMRYm/qdPOIye7R/ineY2XBYLTouZeDozRbFncXEBLx4/R28oQiydwSRJ1Ab9yKKEAcQyWUbjSQRBoNTjYnFRcMp+HRNGV4KQ//dBbd+5zmHSyQzaHAINzdBoi/XwYt97ZLQcGT1LTs9hk6w8VLzl5yLQ8Bd52P/qcQY6Rigo8yPKl2+YO59ch80x+0Oc0zUimTRes/UXqunpWsimc/R9wNhnrgiW+6+7N0NHJ5wbo9a+mJHMAG3xZhpcTZczkoYx0QweoSs5lc5VY28kaC4GjAmnX42R9ABJ9TIn1yJaWeZei0k0k6ct5bcrMvU3FchnK69VcDB0Y97KURab+ZZ4aAB4rBaeWHpt0zmrorC1uoqt1VVXXW5lSTErS2afLF4Ji6KwraaKbTVX3+YvMT9IgshTFasn78Pm6ADnwv3E1Qz3Fi/hifJVmD9Qffhg4JxSsxwcvcgPOg+T1nLcW7yEB0ubqLIHMEkS45m8XO7LvSfYM9SCS7Hiq7NTbp+qJBfKJHiu4xAXogMUWFx8umYTG4O1uBUbCTXNmXA/P+w6xO6hC7OeT4nVw5PlqxjJxFjkLKTU5sVtsqIbBoOpCO8MnOP1/tMcHu3gZKiHKkcAu3y5qlhkdbMhUENPYpw9w62MpGOUWD3TJq2RbJIDI+0YhkGZzcsq72VlodF0kqSa466yWho9BYyk4ny75RgvdTZT5fKx2FswsY008VyGj9Qup8rlZTAR48+OvcePL55hTbAUi6zwSmczL3ac5TeX38GqQF4AYf9gJ690nsdlsvDJ+lWT+x3PJMlqGutqy9hQUEFaU/l+6wne62tnmb+IgNVOa2SM77QcJ2Cx8Wz9KoptLjpiIf765B6ebzvF7666E4e4cEaY6XSWQwcvsm9vC60tg4yMREmncwiCgMWq4PPaKSvz8eDDK9iydbp8tmEYjI8n2Le3hcOH2rnYPkwolEDTdGz2/GR/5cpK7tzWSE1twbSm5t27zvPWm6f52Mc3MjIS4/0DbZw61c3IcIxMJofFolBc7GHVmioeeWQlFZVT/RJUVaOjY4S33jzNieNdDAyEyWVVHA4L1dVB7thaTziUnLbfSxAEeGh1Ayc6+jndNYggQE7TMCsKsihiVi771LhsFh5dt5hjF/voG+/FYpJpKJ17FfeSMI7dbsZqUa6ZTff57HR0jZJMTqf9XA9sNhOmCanvdEZF03TePnQeA4MlFUWc6RhkXX05ihwikcpcY2s/HzCAnlCY54+d5kz/0Iwyto1FQUzXwYi5hBsKNC5NRj4IXdc5PzDCYCTOx9YtJ+iwk8rmaL+iKuG0mGkqLaRzLMRAJM7y8mJ8disOs4mGogD1hX6eWr0Mh9lELJ0hk5uqanO1200RRQwD4pkMqqZP3pwzccvm2qMhixJL3XUookxGzzGcHmP3yFHS2o3d0LcSoiRid9sY6QsRHU9McT7f/Miqq6wJY6kkf3fsfYrsTgrtDorsDorsTgpsdpwm88/UC2AhoWZVRvuuv/8AwBNwYb1OWpEkKKzybKbMWs1bQz9h58ir2GQ7FbZ8IGuRbPhMBQTMhWwPPjpFPQrAJtuRBBmP4sMhu1jl3UydY8k06oRb8XL5KTKIqVESahy77MAwDLJ6llB2FI/iv6rRZi6rkstcv0s6gNVh5paWNX6JX1hIgjh5K0mCOBnAioKAJEzt0ZgJo5k4r/edZjQTZ32gms/U3sEi1+XGzwKLi3K7D90w+NbF/eweusBafxWFFtcUV+/joW7OhfvJ6hpPlK/iyYrVWGVTXi0JB6U2LzZZ4T8c+9Gsx+Iz23modDmCwDR6VpHVjdtkpTU2xIF0OxdjI8Ry6SmBBsBDpU280X9mkgr20cp1U77XDZ3hdIzDY504FQvLvGUELVdKghos9RXyYEUDNlnBMIJ0xUM833aa7lh4MtDQDIMnqpewvbQGsyTT4AnyUuc5mkMjqIaObhj8qP00i70FfKxuxWQFyG+xcWJ0gPd62/lQ9VLsimniuGCxt4CnaprwmvMcm/boGD9oPclYOt/Ie2i4m5FUnE83rGZLcRWyKFHvDbK7/yLv9LbxpWUbscuz96XcKE6d7OYHzx2go3OU+voiljWVYbWayGZV4vE0/f1hTp/pYeu2mRUvI5EUr792kldePk4mk6O+vph162uRJIGxsThtrUP89KfHGBqK8NGPbaSurnDGczlxvIv3328nFk1Rt6iItetq0FSN/r4wJ0500d0zRiqV4zd+877JSbNhGAwORvjh8wfZs+sCTqeFtWurCRa4UFWN3p5x3nj9FBiQy82sJJjNqVzoH0E3DDRdI56emQJrGAbRZJqW/hFMskQmp5K6zrHCpEhIkoiq6XNKaOUmvNA+eL103UC9jl5cSZIm542qqqEbBv1jET55z2pWLypj16l27lpZhygI/Kd/fn1eJna3CzKqykg8wfmhUXa2XmRHy0XGZ6hmSKLAsuJCTPL1hw0Lor8nCAIlHidyj8hPjp3DZTEzFI1hNU2lkGyoqeCbe4/QPDDCY8sbcZjNiKLApzauYsf5dr61/xiGkY+MV1WUUOCaW6Ov32GjwufmRM8AX911kNqgj7VVZTN6aqQT6TlVNCRBotJeTKU9n8XsTgxwOtLGQGpkTsd0O2DxuloqG2dWQ7Fdw5AnnEnznXMnMYkSfquNQruDQpudAruDIpuDYoeTYruTYoeTApsDq6L8QkwhNVUjMjo/J1Wby4pinjttCkBEwKP4CVqK2Bp8gHeHXmLX8Gs8UPw0BeYSvKYANY4GOuIX6Eq2UmKtRBIkEmqUrJ6lSCjDKtmpcTTSEj9NV6IFt+LFawqgGxrRXBhBEHApUzOcOT3LnpHXWepeg4DA+ehJYmqEDf7ZDSgBUrE0qdj8GqWtTustq2j8Er/EbNAMnaFUhGNjXbgUC6t8ldQ6pzd+2mUz6wJV7B9pY/9IG2fDfazzV1NovTxBPzrWRUxN45TN3FO0GItkmhLkS4LIcm85NY4Czkb6ZjweURAxX0Wso9TmxWfKj2WRbIqMNn1C2OgqZom7hP0jbbzae5InK1ZjmkLBzHE63MdwOsoiZyGbArVT3gcWScFntmKTL5nWCRRanRiGQTyXmZxYORQTJXbXFClft8lCSs1hkKdWdcdD3FlaPYVmZpMVqlxeDg71EMqkJgMNsyhRYHVMBhkAVkkBBHJafhLZl4gSyaZ5res8x0cvX8PWyChDqRjxXIZC680VBbkS77/fTmfnKIvqi3jm4xtpaCi+ItDIMDgQprd3nPUbprMcshmVM6d7eOWlY+i6wSOPrGTLnQ0UFbmRJJHx8QSHD13ktVdP8P6BNsrK/ASDLjwzVMbPnu0jWODi6afXsWZtNT6/Ix9o9If54Q8OsnNnMwf2t/LIIytpaMzPW1LJLEePdLB/bysul5WHHl7BXfcsIRBwoqoafb35QGPvngskErMkUYWJAF4UaSgtYEV1MV6HFY/Dwr0rF+GwmHhwVb6SIwgTDBSLzIqqYuqKr08swm63YDbJJBIZxkIJcjkNZRaqbiarMjBwmTIViSRxT8hyq6pG9IpxyoCrBi5XVupFMf8E28wmsjktT3EzK3QMjlMR9DAUik0um1FVXj59fsZG6plwpHv6OyCRzfJuSzvdofCctjFf6IZBVtWIpjMMxmK0Do/RNR4mrc4cYC4K+qkN+G4tdSrgsPO5O9bimeDcOS1mti6qAvI31sryvIHJYCTfg7G8rAiTLFHkvtwYW+Fzc++SOtZUlrKo0I888XJdX12G3aTQPjJGMpvDYTZT4sm/zL02K7+ydd2kgpTDbGJLbSXqFbQsp8XMtoYaPDYrsUwGh8U8ue0PIp3I5E3y/g3AX+zBX+y5oW1kdY2BRIyBxEQjNmCVFQI2GwVWB0GbnQK7nSK7k1K7kxKnixKHk4DVjunnUAJO13RS8flNpBWzjDSPMiOAJMiUWavZHLiHncOvsm/0be4ueByn7GaFeyOqnuNU5BBnI0dByFMXLwUiAIWWUjb67+ZU+DDvj707aQglIFBjb6TKdqWqSj7wiGtRdo68SkZLk9KSNLnXsdi58qrHGRmLER6ZXyDmL/ZyI5FGOpNjYChCV88YI6MxYvE02ayKIIpYzDI2q4mCgJPSYi/lpT5MpoVxc1U1nZGRKF294wyPRAlHU6TSOXRNR5JF7DYTXred4iI3NZVBXE7LgsrAqqpG32CYnt5xRkZjRGJp0pkchm4gyyIOuwW/z05piZfqigC2q/DIbwYi0RQXO0fo7Q8xFk6QTucwDAOzScHjtlJc6KaqIkBRgevydRFYMD+hDyKra/QmQ8TUNFWOAHXOglkrtOU2H0UTgUVnfJRQNjEl0OiKj5LWcixyFuAz26dtRxAETKLMIlfhrIEG5CcB4WySjvgI/ckw4WySlJYlq2vkdI0L0TydUzW0GfXuTZLMQ6VNHBnr4HxkgPORAZZfQY2K5dLsGbqAIkpUOQI0uK/tEWFgTL5rLp2VRZJndBi+dEx5arMwzS/n0kRPYOorQBZFzB8YJ2b6JSRBJK2pRLOXaSsNniANniAOZWHv52Qig6pqeD02qquCk30QVqsJt9tGaamX1WuqZ1w3Ek2xZ/cFwuEkGzbW8cSTawgGL98/TqcVt9vG4ECYl186xskTXaxdVz1joJHLadx731LuuW8ZDodl8jo6XVae/sh6du5qJp3OceHCwGSgEQonOfh+G9msyqrVlTz86EoKCi7v3+WyousGvb3jnDzRPeM5mGSZTY2VUz4r9OTndduW1QBwV1M+yPI6bNy/qv6a13Q2FASd2O1mkqNZDh6+yJLGkqnviStw8PBFxkN5mnAkkuSFl4/zxKMr8XrsRGNpzp67/LzlVI30Vbyf4skMmYnvrRYTkiyyvrECkyKj6QbrGyp4Ye9pREGgsfzy+yKTU/nXg8cZjs9NQjgzw6Q+lsny2tkWlAVWBtUNg5ymk1XVObl9P7i4noB9br29H8S8Aw2v3cqHVi2Z/NtuNrGq4nK23O+wsb2h5uo7l6QZl5FFkRXlxawon86BdlktPLV66eTfNpOJlRVTs/SCIFDuc8/JsTxPnfr5cr292djz0lHW3L30qj0as8EAkmqO7miE7mg+myAKAk7FhN9qI2CzE7DaKLDZKbG7KHO5KHW4KXO68Jgtt32/h2EY5LLXb0Y3HwTNxTxe+ixBc37QV0QTtfYlSIUyaS2JLMiIgkihpZQ7AvfTn+ompoYxMLCIVvzmQjxKPmMkCTL1juV4lADD6T6SWgJRELFJDoqs5cji1MHYJtnZEniA3mQHWT2DQ3ZRbqvBqcz+DKUTGUZ7x0lEpqtTzAUltdOVOjRNp7NnjJdePzH5WcDv4M7N9VROSKdmMjla2oc5ePQirReHGByOEo4kSaZyqDkNQRRQFAmLWcHrthHwO6ipCrJ2VSUrlpZjUuSbUknJZlXaO0c4cqKL1vYhBoYihCJJ4okM2ayKPuHFYbEoOBxmAl4HJcUeljaWsnl9LUG/46YGHOl0jnMtAxw71U17xzBDI1HC4SSJZJZsLu+hIUkiVosJt9NCIOCkotTH8qVlrFtVhecmm/JFYykOHu3g6MkuuieCnuhEMGgYeVqEw27Oc9pLvCxbXMqmdTWUFnuRRBHTfEUGrhM5XWU0k58YWEQFn3l65fsSbLIZh2xBRCCUTUwxBVR1jUguhWbo+M1OpFl+W1EQ8Jpnv9axXIpDo53sHr5AZ2yU0UycpJYBI5/EkwSJcPbavi6bg3UUWz10xkd5pffUZKCh6Tr9yTCnQr24FSvr/FXTqFdpLcdoOkkil51s4O5PxBAR8vLQk2p1V4ckiNS5A5wJDZHTNJSJICKpZmmLjOG32PBNuxZX32qZ3Y3bZOGB8nrWF5ZPC+auNFpcCFRWBXA4LTSf6+fVV06weUs9tbUFKFe8V2b66Q3DIBZNceJEF3a7mcbG4ilBxiW43VZKy3zY7GZ6escZnSWR43BYWLuuBrvdNG1/lZV+bDYTuqYTCiUm9g/xWJrWlkHsDjN1i4qm7V8QBKqrC6isDMwaaNxK1NUUEPA7GBmNcfDIRTxuG3dta6S6MoDZJCMIApFIiuMnu3juhwcn1aBS6Rw/ffU4A0MRKsp8jI7H2X+FRH08nmF4ODrrfgcHI0QiefqQx2PDbFLY2lSNJIoossiWZVUYGEQSaVbVlU76aOhAJJ2etxw6TBj1zrEicquwsrSYbYuqsZmuj6FxCXMONLLpHF/7g+fmtZPbGRfPdBOPzM+Maz7QDJ3uxADnYx0MpkdJqmlMokKBxccSVy3V9tJZ+cRpLcPx0HlORVpZ4alng7+JWC7B2Ug7FxO9xHJJREHAY3LR4KykzlGBXb62ltzenx5lybraqwYadtnExuJy+uJRhpNxMlcJznTDIJLNEMlmuBgJAfng0W0y47Pa8FmsefqVzUGZ002Fy025y02Zw41dUW4L06/LEKb0slwPchl1zmaQgiDgMfnZ5L97yudmyUKDc6rBmCiIeE2ByerFbJBFmRJrBSXWimvuX0enyFJGkWXuSkjDPWP0tAzMWx66rK5oRi7t4FCEF187MflZabGH4kIPlWV+QuEke95v5Z2d52jrHCGRmKERTzPQNJ10Okc4kqSje5TT53o5cbqb7Xc08OgDy3E6bqyqMDQSZc+BVvYdbKO9Y4RoPDUjT1nVdOKJDPFEhsGhKGfO93PidA/HTnbx0L3L2LC25qb0N3X3jrNj73kOHu2go3v2ZkhV1YnF08TiaXoHwpw+28vx0z0cP93D/dsXs2JZ+U15/jq6RnnlrVMcPNpB30BoihDIJWSyKpmsylgoQXvHCKfO9dHcMsADdy9lzYpKTCYZWRZRF7jibBj5IAHyQYB8lZ6kSz0foiCQ03V0Lh9bXggl/3fe32Lm6yjAtOb0S4jnMuwcusC/tu+nJzFGmc3HloJFVDr8OGULpokKwnMdBzk81jHjNi7BZ7ZzV1Ej/9q+jz3DLYymtxGwOEhpWQ6PdRBT05TZi9kUnFnI5NhIHz9qP82KQDGDyRg7+tqodnmpdF5dae1KiILAJxat5H+f2M3Xmw+zsagcVdfZ1d9BfyLK5xrXYpWvb/KyuaiSfQOd7Oy/iEWWqXB4yOkafYkosiByZ2kNygJWw+7Y0kB39xh7d1/g1VeOc+ZMLzU1BSxZWkrT8nICAeeMTcu6bhCJJBkfi2MyyRw40EZfX2jGffT0jJFJq6T0LMnUzM9ysMCJy2VF/ECyThDyY5bVaiIRz1dfYGICm8wQDicpLHRTNIthnc1uwuOxzUpRupWoqQpSX1dIZ9cokUiKN94+zYXWQYoK3TjsZjRNJxJJcbFrhO6eMQSgsNDFqhWVvP7Wad5+7ywOu5lsTpto2AdRFIlEUzRfGGDLaIzgB+TnszmVM+f6GBgKA3mpW7vdhN91OQHhddp4ZMNidN1Alm4Po9KFQrHLybPrV1Lt9847MTznQEPNqbz6jfeuveDPGQxNn3EQXAgk1BR7Ro5xYPQkPalBorkEOT2HJEg4FRv7LSfZ6G/ioeItmMXpzWw5XaU93sN7QwcRBZEKWzGvD+zhWOg8o5kwGT2b5xLKFu4t3Ei5rYjB0yPYnFaKq4Kc3Huewc7RacfVcbbnmhPioM3Of9h4J5FMmvF0isF4jJ5YhN5YlJ5YhKFEnKQ6e6OXquuMpVOMpS83GZklCbfZgtdizf8zWyhxuqhyeah0ealweShxOH+mlCtRFDBbTcyHHBQLxcnMMkj8vMMwDLqae2k70Tmv9WVFoqS2cE70mHgiQ99AiFA4wVs7zvHi6ycYGAxflwdHOqNyoW2IkbE40Xiaz3x8M5aJjNj1wDAMOrpHefnNU+w90MrI2PW7mw+PxhgZi9M/FGZoNMZj9y+ft4GmYRicOd/PS6+f4NCxTiLR5HUdj6Yb9PSNMzQSpW8gxOMPrmD7loYbqjS2tA/x3E8OcfDIRRJzVH/RDYOx8Ti7D7QyMhYnlcqiyBI2q2kKt3ohIAoClgm5Vs3QZ+x5uATN0MnqGpphYJbkKWIM8kS1ASCr52akNEG+CpzTZ37fdifGeLH7OG3RIVb7q3i2ZhNL3MV4TXaUCV8KVdd4d+DcnM7t0bLlPN91iJF0jD3DLTxZsZqEmmXn0AWsksJSdymltumBg102YVdMNIeG2dHXTiyXIWi186HqZVQ45u4pIwD3lS9iLJ1k32AnewY6Jum2z9Qt597y6zfGq3b5+NzitbzWfYHn206R0/JVTJuksK2kZt4qeHNFWZmPZ57ZyKK6It5/v41zZ3s539zPkSMXKS3zsXJFBffcuwyffyrNRNd14vE0um6QTuc4e6aXs2d6r7ovQWDWHlKH3XLV98alBMal66HrOulU3g9ClsVZKZOCIGC2KCimBWnhvS7Y7Wbuu2sJFztHOdvcRzSW5uTpHk6d6UGWJXTdmHJ9rBaFZ55ax6qVlaTTWXbuaZny/igMumhsKObs+X6Onezixy8e4b57llFR5kNRJKKxFAcOtbNnfwuRaH69xkVFeNw2Tl0cwOeyUeR1IksikigyFonRMRhibUNZvtohiqyrLOVIVx9DsfgtsqNdOFT7vTy7fhVbaquwzKMJ/BLmvqYBWu7fNsXoRpDTVXYOH+aV/l2MZMIscdewzFWHW3GQ1DJciHVyZPwsQ+lRNEPnQ6V3z2rqlNNVOuN9vDGwj8Pj56i0FbHZvwJFlInk4vSlhvGbPNhlKxeHe9BUneKqIIfePMVofwi3f2oEn4imrvlytsgyKwvyVDZN10mqOSKZNNFMhkg2TTidZjCRDz66oxF6YhH64lES2eysD1tG0xhOJhhOXqbe2GQFj8WCx2zFY7bgs1opd7pZFijkkdrpUoELDVESr1s56hJG+0IkovPzd7ndMT4Q5uz+FoZ7pgeuc0HF4lJc/rk1bCaSGS52jnLwaAcvvnac/sGpGukup4WA34nDnlc/iyczDA5HSCQy0ybd46EEr751ispyH/dvX4okXV+g0dkzxo9eOsru/a3EZujdsdvMBAMOXE4rkiiQzuQYHo0TCiemJDQMw6CtfZjnXziMIok8cv/yaduaC86c7+cHLxzmyIlOUqnpgb7LaSEYcOYrOEAylWVoON9HciWy2XwWL53OocgSd26eH696YDDC8y8e5sChdlLp6ccjSSLlJV6czvwkKR5PMzoWnzyebFbl3Pm82daimgIsZmXBAw2zJFNszU+ek2qW4fTsaYVoNkV0wuk7YHZgv8IsTxREfGY7siAxlI6hGTNPEHXDmKRqffDzwVSEM+Fe3CYrm4I13BGsm6JqBZDUsmT1udE5K+0BVvuq2DPUwut9p3ikbDmd8VHaokN4zXbuKFg0YwVdFAWa/EXcV76IwUQMBCixuah0erFMVCDuK19Ek7+Iqg9UOD5c28SdJTXYZGWiUmvh44tWsCZYSiiTQhQE/BYbNS4fniuavuvcfn57xZZpVKo1BWX4rXYqnR4gH9CtLSijyOakLxEhkcsiCiJOxUSl07vgiSlRFKiqDhIscLF8RTldXaOcPtXD0SMdHD7YTmvLIOfO9fHvfv1eCgqvDMqEyUqH12tn+12LWVR/9d4YQYAlS2b2tpEk8aoO8zNsbXL/BtMtAaYvfXtMk+vri/jEMxv4/g8Pce58P7mchmFcVpi6BKfTwrMf28Q925dgt5v59Mc3U1dTyMkzPSQSGQqCLjasraG0xIMkiby7s5k33jnDuQsD+H0OTCaJRDxDZ88Yg0NRDMOguMjN4sZinA4Lr79xkLtW1lLouTxuCaLA9947xsq6fE+yRZH50pb1DC6P0xeOcn5ohPNDI7SNjBPL/PzI4JplibUVpXxkVRObqytwWcw3VLX52Yes/0ZwPtrB7pGjDKbHuKdwI/cVbqTEWoBZUlB1jfW+ZRRbArzcv4uX+3ey1F1Lo7N6xh9XNTTa4t1ohsaHSu9imbsOp2JHQiSjZ4mrSRyyDZOoULeicrIEmsuorNq2hMZ1U/ti2k53Tyu/Xg2SKOI0mXGazDARs+iGQUrNEctmiGWzxLIZopkMg4kYXdHwRPARpicaIZLNzPqSS6o5kvEc/fH8YC8KAg7FxJqikp9JoCEpEp4CFz0tA9e97kDHMOODYXRNnzf96lbgnoLHyelzr7xoqkbzoTYOv3kKNTu/5MPyrYtR5lhRUFWdE2d66OwZnQwyZFmioa6QLRvqqKkK4nRY8px+IT8AxWJpTjf38e7uZgaHolPut2gszfd/cphN62pxO61zfoEOjUR5490z7NrXQvwKypYoCtRWBdmyoY5FdYW4XVbMSv7cVE0nlcrSNxBi94FWjp3qIpfLT0ANoH8wwo9eOkpFmZ+mWSYUs6GzZ4yX3zjJkeOdUyb1kiSypKGYLRsWUV3px+mw5Pnj5JsgE8ksHd2j7NhznrPnLzvoqppOW8cwP339JEWFbuprC2fY6+zQNJ033zvDoWOd04IMRZbYvrWBTWtrKAy6ME389rmcSiyeob1zmD3vt9F8vp+cqnG+ZYCevvGZqXHXgCxcnoBdrToxeWyCRKnVQ7HVTSiboDnSz4Oly2Zscr4YH6Uvmae71DiD+M1Tg+UaZ5DDox30JUMMpWL4zY5p28npKucj098nuqGT1LKktBx+s4OA2TktyIB8E/pMgcpMkEWJD5WvYvfQBVqiQ5wL9/P+aDs5XaPE6matv3LG9QwjX3VY5itimW/myXCt20+te7qK0BJfIUuu+FsQBDxmK+sLy6cteyV8FhsbLNNpniV2FyX2qb0EiihR7fJR7fJNW/5WwW7P9zlUVgVpairn7nuWceTIRV748WEO7G+jsMjNl//dvZPLS5KQT0BIIooiUV1TwD33Lr3KHvK4nrH5apBEAas139icy6rEZgngDcMgk86Rnee7/WbDpMisWVGJ32vn8LFOTp3uobt3fCIBYeD3OljcWMKWTYtYtbwcxwQFvLIiQMDvZNOG2rwhodWE3+9AlkQ2b6jj9Nm+vHhHpDevLCUI6Lo+mZwym2Tu3raYRbWFSJJI/2hkspJxCR67lbaBsclErSSKLAoGqAv4yagaoWSK8WSS4ViCi2PjnBscoXlwmJ5QhOxt1hssCAIBu42mkkLurKtmZWkxVX4PVmV+fRlX4peBxi2AbuicDF+gI9FPma2QLYFV1DnLJ8vsJlHBJlt4rHQbR0Pn6Ez08/bgARqdMytXGBjIgsRSdy13Btdgky/3Vjiw4Td7Jv/2XME/3PL4GooqAxSUTx0cGlZVoZhv7FYQBQG7ki+3F01QGQ3DIK2pJLJZ4rksiVyWRC7HaCrJQDxGbzzCQDyW/5eIM5ZKTFM/0A2DaDbDSPLW9dFcCcUkU1gZ4PTe2Q22ZkMylqLteCfLtzTiLZw73eBWo9x2ddGGD6LrXB/vfX8/Ax1D897nym1LkJS533PhSJJINH8PuF1W7t7ayIP3LKO02IPdZpo2GOu6QX1dEUsaSvjm9/bR3jE8paLQ1TPOgUMXefCeaw/0kFe4OnK8k7d3npsSZFjMCtu31PPgPcuoqQzisJtnpDMsbiimaUkZO/dd4LkfH5qciBuGQXfvON/94fv8x995BNc1ZKYvIZHIsHPvBQ4cnlo5sNtMPPrACu66o4HyMh82q2kaX9wwDBbXF9G0uJQ33jvDT187MXltVFXn7IU+Xn7jJF/63DbstrlX806c6WH/4fZpFQibzcwXPnkHm9blgwzpA5xmXTdY0lDM8iVlvLXzHK++eWqyf2M+cCvWyT6LtugwOV3DIs0+WOalW93cWdjA852HOT7exdGxTtYHpj4XkWySfcOttMaGKLa6Weouxa1M7YHbEKjh9d5T9KXCvNB9lCrH/TgU82Tgk9M1Do520BGfXgkUBRGLJKMIEgk1QyibyCszXXGtorkUOwbP0x6bu6z6On81FXY/Q+kou4daeH+0HbtsZq2/GpcyWw/f7ZHN/nmAokgUFLoJFripqPARDid447VT7Nvbype+fO8VDeICLreV0jIvIyMxLl4cRhTFa5rQ3TQIYLfnnccj4SS9PeOT9gFXIhZNMz6emFYx+FnCZJJZVFtIUaGbLRsXkUhmyOY0wMBiUnB7bAT9jinvXlEUcDotOGd4p65eWclTj6/mxy8dZWQkNvH+u3zPO+xm7r9nKQ/cs3RSJMNhNRGOp/LmhBM9VkPhGHbLdAqaIAhYFJlit5Nit5PGQp21FaWEU2lCqRSDkRin+gfZ1dpBy8jYlHUtssySogKCjtlFKW4YAkiCgFWRsZvNuK0Wyr1uStxOAnYbBU4HtpvYL/vLQOMWIJSN0ZcaIaWlqXdWUmwNTDNaA/CaXDS5F9GTHORoqBnV0FCEmX8ir8nFKu/iKUHGtdC4tnpGudUnv3wfDs/Nv6kFQcAqK3n5Wy5vP6drpFWVlJojraqT/6K5DCeGBjg40Mv+vu5ZqQe3EiaLQnHN9WV2J2HAkbdOsfGRVXhmkeT7ecNQ1yhvfms3x949M+8m8OKaQmpXVCDJ15epM4z8AHD3nY187Ml1FARcsw7Soijg9dhYu6qSZCrLV/55J6Nj8Su2ZbDnQCsP3LN0TuSDzu4x3tnVzNj4ZZqfJIlsv6OBjz25jvJS76xOupAPSCrL/Xzo4VUkkhl+9NJRNG1icq/pNLcOsO9QKw/d0zSna3HqXC/7DrZNmdTLksgTD6/i8QdXUBBwzsrfFgQBu81MfW0hToeZWDzNOzubJ79PpXKcOtvL8dPdbNkwNw59NqexY895OnvGptAwRVHgUx/ZwH3bl8wq6yuKAk6HhcX1xfnGzazK6++cmdN+Z4LP7KDc7qM7Mc6uoQvUOIPcEazDoVhIaVniuTSFVjdF1svBv9dk44GSZZwK9dASHeIrF3bQlRhjubcci6jQnwqxY/ACOwabSWs5nixfzQpf+TTaUZOnjDX+Ksb6z/Jm/xlkUeTB0iYKLS6iuRSHRjv4cfdRLJIyjf4kCBAwO6l1BmmNDbF7qIUKu5/VvkoEQaAjNsKb/WfYM9yCbuhXbVq/Eg7FzAMlTXyjbTe7hi/QHR8jYHawvajxF+KddCuRFyYwpgXLkP/9PF47Llc+eMt+wJxOEAQ8Xjt33FHP9587wOlT3Rw+1M6GjXUz7kub6B+VJOGmVDUEQcDlsrJsWRnvvH2WlpYBLrYPUVs3dXxraRmkrW3+SaSFgiDkK0Iu57UFbq4Fj9vKQ/c1UVHm49DRDtouDpNIZLBaFSrLA6xdXUXT0lL8vsvBy8bFVbz6/nlGI0mqi3xEkxleO3iOzUuqrtnTJokiTosZp8VMmcfF4sIgy0uL0HRjWqDhsph5auVSNlZdvQJ4oxAEJsxMRRRJxGpSMEkLIwE/90Djl++jeSOSixFX89nYoNmHTZo5OBAQKLcVIQki0VycaC4+pTpxJayShSLL1VWH4HIjmCAImGaIvIFpFY6FhiJK5ASd0VSSlvFRLobH6YxG6I1FGE8niaTTt0WQAWC2maldUZm//+eR5Ou+0M+h109QUlN4W1c15oLRvnFe+8Z7vPu9vfP2FgHY9vR6nL75SbsubijmsQdWUBicW+BmUmQ2r6/lnd3NhCPJKQpGZ1v60VQd8RrqKslkhjPn+qbQjACWNpRw/11LqCjzzbmZ2+2y8syT69h/sJ2e/suKM7F4hrd3NrN9cwPWa/haRKIpjp7soqN7alZ849oa7t7aSGHQOaeJiSgKFBW6efrR1Rw/2c1Y6HIQNTAUYf/BdtaurMIyB9PJ9o5h2jtHJrXnL2HlsnLu2tIwJ+8QSRIpK/Vxz52LOdPcT0/f+DX3OxMUUeKZqvW0xobpS4b41/Z9vNhzHFkQ0Y285PCv1G3jwdLLz6MsSiz1lPCl+u38U+suToV66U6M41AsSIJAWssRzibRDYMnylfxVOWaabQpAJts4gt1WxlORzky1snLvSfZP9KOWZRQDZ14LkOpzctHKtfyF2ffmLKugEC1I8jDZSv4p5adnAn38Rdn38ClTPTXaDliuTR3FTUgCxLvDTZP2/9MEBB4pLSJb1/cT0csf8/UuQqpd86cQFnhL+FPNzyAS7l+ufNfdIyNxfjJjw4jSgJLl5ZRUeHH7bFhGHnvhpMnunnvvXPousHKVZXTqgUOh4UtdzZw8mQ3rS2DfPMbu2htGaRpRQUejw1dNwiHEvR0j3HuXD9Ll5Vy191LJulANwqP187mO+p5//02Wi4M8u1v7eWxx1dTXRNEVXWaz/Xx+msn6e0ZQ77ORNDPEy4FXWtXV9FQX0QymUXTdCQpL0fuclom6Z2XsH1FLZquc/hCD+8eb8VsUmgoC/DkHU2z+rTNtm9FkihwOij3urEqMqkrXNglUSRgt1Huvb75Qjqn8tMTzdzdWDNpTp1VNeKZDD771L6nC4MjDETirKkswWmZXw/q9eC6msE/CJvTysZHVrHmvrll4W5HHHvnNO+/enxBm3azeo7cRPbKLJpmla8FJioUArphEFdTswYaoiBiFq89AXj7e/txeu2su3cZh989Q0V9MaXXyb2+Uai6zkA8xvnxEc6Pj3BhfJTOSJhYNjNZ1choKllNu+0K9rIiUVgRoLAiwFDX9Tc+q1mVt7+zh+qmCjY9uhrzApujLQQMw6C/fYgf/vWr7HnhMPHQ/HwzAGwOC1s+tG5e16Eg4GTT2loqy3zXFaTYrCZWN5VPqpZcQjyWZmgkSlnJ1eU6B4ejHDnZOYXKYzbLrF5RwZLG4utWjPJ57Ny1tYFv/eD9yc80TaevP8T5tkFWNV1djri9c4RzFwamUBtsVhN3bKyjssx3XdlPURAoLfawcV0Nr751evLzTFals2eMzu4xGhdd28zt1LlehmbQpX/k/uUEriOolCWRmsoAd2yo5fs/mV+gAbDGX8UfLX+CF3uOcWysi57kOAICbsVCjTOI1zQ9K2oRFTYF6yiwuNg5dJ49Q610J8bI6Rpes531gRruKVrM+kDNjL0Xl1Dp8POHyx/j1d5T7Bg8T3diDB2DUpuXD1Ws4vGylaR1dcb1nYqFR0tX4FasvNZ7kvPRQcYyMeyymVpnAZ+o3si2wnrORwY4Pj53n4Miq5s7gnW8M3gOt2JlW2H9jP0fwOX+u19iGnI5jba2IVpaBtnx7jnMZiVfmTVA1TQSiQyRcJLa2kI++ewd09aXJJGamgI++/k7+e6393HmdA9DgxFef+1knm1gGKiqTiaTI5XKEgg6bqoqpqJINC0v5+mn1/GD77/PoYPttFwYwGIx5fssk1lKy7zcsaWe06evroh1u0NV+whF/hCv+0+R5en9b4KQp2T5fQ78c2j1cdrM3LemnvUN5QzG47x88TxPrFxGkdfJBzPxKTXHoYEekrkcD9XM3FsqCgJ+u42gw053KDLjMtcDkyRxd2MNHms+KFV1na6xEM2Dwzy+YsmUZct9HopcTqzz9MW4XtwQdcpsM7F0cz1bn1x/s47nliMVS3N857kFDTRkQZocVDRDu6raQ+6KcrppFq31S5iL4kRf+yAlNQVIisTJPecxW5QFDzTi2QwdkRBnRoc4OzpM89goI6kEqVyOjKaS1lRycwgqBMBttrA0UMDWsqoFPeZZj0EQcPocLNm4aF6BBsDYYJjv/vmLODw2Vty5GGUOGeLbBZlUllO7m3n+r16l5ehF0vNozr0SWz+8gcKq4Lxcn4uL3CxfWnZVitJsqK0qwPwBuUbdMAhFklcNNAzDYHA4ypnmqdWMsmIv9bWFc8r2fxCCILBxbS3ffv79KapYyVSW8y1XDzR03eBi5wgdH7gXF9UUUF0euG7te0EQsFpMrG6qmBJoAITCCTq7R68ZaGSzKi1tQ4Q+4EdUUuyhvrbwuo/J47axuL4Yi1m+qnvv1WCRFNb4K1nkKiClZlEnKqSSIGISJdym6aZugiBgkRQa3cVU2H08Vb6GrK5N9MSJWCQFh2LBLF5dxEAURMptPj5Vs4kPla+apEgpooxDMeOULaiGxgvbfwNZlCi0uK5YV8BvtvNgyTI2B+vI6Dl0w0AUBMyijFOxYpEUfCY7je5iZEGawfBu+nmJgoh7Yjm3ycadhbdeWOMXAcGAk8efWM2+fa20tw4yOhonmcogIOBwmKmoCPD0U+vYfvcSiopnzkgrisTy5eUEf+chjh3tYP/eVjo6R4iNxUEAj8dO3aJCli+v4I6t9djnqXo4EwRBwO228djjqykt9fHWm6dpaRkgHE7iDzi5Y0s999y3lEQ8Q29vCHUWad3bCYaRJBr7Ki7nbyIIl9/HBlnUXCswu+z+9cJuMWG3mCjwOaks9OKxWGb0QdINg0gmQzx3dZEVn81KgcMxY6Dxk2NnWFJSyHvN7dQV+DErMqIAp3oHiaUzRNIZPrd5DXUFfjRd58dHz3Cos5f/7/6tBB02TvYO8uOjZxiJJRiNJdlcW0ljcZDO0RAvnDiLw2zmw2uWkchk2dXSQe94hEQ2y8ryErY31LCntYPW4TFahkap8Hn4ta3rKHDNTSnyg7ihQENWJNx+53VnJ7viI3yvay/3Fy1nta8GQci7rP7J6R/yq3X3Uu8qIadrPNe5h30jF0CA7QVL+VjlZmRRJqVm2TvSzCt9RxnNRPGbndxftIKHSlYzmo2xb+Q8sVyKSDb5/7P33nFyndd5//fW6X1774veC0EA7GIRiyiJElUsyZJbHMctiR0ncRzb+aU6sWPHRW5ylWRJVmcRewVIdKJjge29zez0cueW3x+zWOxy+2KXACk8/FDUztzy3ju3vOec5zwPxyPtNHnKeLJ2P63e2VGt2+9c0cRlOfAorqleiqiWIGto8xrpjeUimJiookxAvX6qjWpX6b4wSNuJLiZG44wNTDDYNbuRsKQqiLwCgx7DLFCgLoRHOTs2wrnxETqiEeK53FSVQjMXDq6uQgBqvQG2FJeyubiUTUWl1Pj82CQZ+zzZt/cCvpCb2x7ezqvfehtrJdklC/raBvmzf/OPfOG3n2Dvg1uxLaPJ9kbA0A0GOkb44Zdf5I3vHiUeTi7ZfHA+hMr9PPxT9+D2OZdNm5IkkYqyAHU1K6P5BfzOOSsPc0nUTkcylaO7d3zWclUVAWqWWVmZjobaIlRVnkE1ymTztLUPL7jeRCxN30BklolXc2MJRUUro6MpikRNdQhFlshP+42jsQzdveEF1ixgLJxkIpaelXndvK4St3v5soiiKFAcclNbHaLtOrjiiigV6E3LvNUkQcSjOPDM2yi9OARBwKPY8cxDP1IEmTr33NTXQm+bikOe/73qkFUqF/h+OizLQjN1Do1eQRVldgXrKLJ5Fl/xFmZBtcns29fM9h115DW90EcxedmLooAiS9jtCnbHwuIDiiJTVRWkpMTLnXetR88bU/ePKBW2o9oUbDZ51nPri1+6k099Zh+KIuH1zh1k2mwK/+9PvoBpWTidM68TURTw+Z0cuKOVHTvr0PIGllXoO7HbCmM3TYumplIsmLOZ+mZCTnuHfP4M8N4ERd9vv0hbZIyBZJzf2X8fPpudPzxxiEi2IN38s1t247PZyRo6r/d3cyk8htdm43MbtlPqmjlRD7qcUzSndyOR1YhnsmiGweWRcSwsDjbX8eTuLYiCwNudfbzV0UtDUQBZFLl7XSMXhkbJGwaKJNFcEuJAUy2DsQQf37kJx6T4SmXAy9aqcvoiMQzTJG8YTKQybK4qo7E4xKuXO7kwOEJvJMrB5jpKvW4USUS9jnnydfVoSLKE279wNmUuVDiDKKLEpfgAjZ4y/KqLE5F2nJKKX3UhIvCPXa/Rkx7jP21+gryp88dtz+KQVD5ecxuSIFLrKuZLjfdQbPNyItLJ66MXqHWXELJ56EmN0ZUc4SNVe3ii5jZ0y8SvzD1Ou8u+5tKjIdVPsS2ALEh0pQaI5hOEbLODCAuLs9F2DNOg2Vu7aEVjKdhz/xa+9+UX+a9f/DKx8QTHXjiLMofaz/975TeX1KuRM3R6YlHOjI1wZmyIs2Mj9Cfj5HSdvGmSNw0M01wSBcqlKLQGitlSUsaW4jK2FJcSsDtQRAlFElFECUkUb3h7kGJTqNtYzbpdDVw82rGibVimxUD7MH/0i3/D/Z87yMd+8SFC5f4VZfbXEoZu0H2uj+f/4Q3e+P4xEuEk2hx+CCvBY//iQ1Q1l63omF1OlfISL/IKNfKdcyhTAWQXObZEMktP/+zJdjDoIhhcWXYHCpN7v9fJyNg1ulE+bzAyFp9TCeYqwuEEw3NQlMpKfXiug8dtt8l4PHYi02hxmaxGeCK54HgARkZjJOcI2Brqi2dVkZYCQRBwueyUFnuvK9C4hQIs4M3RK4xkYvgUBw9WbloVN/ofRwiCgGqTUa9TpREKE367XcFuX15V1Otz4PUtHASLokBxiXfe7wVBQFVl1AXuz+ASfY4WgmkmSGe+Qz5/GS1/FkVuQJYbyWRfxOX8BG7XT2BZWbLZ10mm/hHDGERRN+JxfQFV3QaITET/A6JUhJ6/gpY/jyzV4PP+W2S5hmj8v5PLHcIwRhkZfRBBUHG5voDb9ZnC/q00qfQ/k8m8AFg4HA/gcf80orjyJO79dU3sq6jmPx96CdMyOTzQg2lZ/OrO/XTFJviL08f4tT0HERGo9fr54qYdHB0e4EddV/jCpu0zthVyOiiZJ9AIup10jEWoCflpHxknksrgUBS+eewsOUNnNJ6ixOvGovB7um0qyuT7URAEVFnCaVNxqgo+x7V3gyJJOFVlRgN7wOWgzOem1OfGtCwUSUKVZZ49d5l0TuPJ3Vtw2VZO+76uu0WSJVy+5asVyaLI7mAjb423MZqN4VddvDV+hW3Bgtyegcmzg6f4Dxs/RpUzhGmZ7C9ex6uj5/l4zW0ookSjp1DOFxFo9pRzPtY7Vd0wTINmTzkHS9ajCFLhh5hnLA63bdnqN8uFJIhs8jVzOnqZC/EOzsWuUGYPzapqvDl2is5UPyYW95ftW6YZz9xo2FzNv/o/P4Gu6fzVb32LXfdtYtsd62ct5/Iu/OAaTCb4nUMvcSE8ykQ2i26ZGKaJYVosJawQgAq3h43FpWwvKWdrcTlNgRBOWUEWBSRBnAoqbjYlFEEQKKkOcfenbufisY4VKz9alkUikuT7f/YCbz11kg9/6W4+9LmD+Io8N/SYLctirD/MsefO8Pq3j9B2opN8TkdfobzoXNh29wYOfmwPTu/SfSumw+WyUVLsWXDCuxBEQZhz3cX4z6l0jqGRmWVtWRbxeRw4lzlBmI7CZNoG7youappBNqfhmEe4YSKWJhyZ6aGgTgYtK5nUXx2LKBacgqcHGpZVoEVpWh7bAhSxkbE4ieRsSl1ZqXfZtKmrcNgVgoHrn+jcAiT1LH955XUEQaDVV87OUN2i62SyrzMR/99o+ctrP0DAYb+DosD/QhL978n+oKD2NhJP0DY6zngiRTSTJZnTMMxCZry1tJj9TbWEXMtPpi6ElJ7l5ZGzfLPnME5Z5dO1B7irdPX6XC3LYCzyy6SzL67aNhdDedE3UNXNCLP6jkwMYxzdGMTn+TVi8f+FKJXjdn2ObPZ1HPYPo+XfIZ35Pk7n49jUPaQz3yOZ+gZuVFR1E6YZJZc7itf7b/H5/hOJxB+TTH8Nn+ff4Pf+NunMN8lkfkQw8McIgg1BuFbCtKwEhtFPKPQXGHovyfTfk8k8g8v16RUfq0NWsCbpjADt0TD1vgB+m516X4COWKG3TJFEyl0eihwuShwuLozPTpp4HXaKXS5kUUQ3Z1ZkqvxefnD6Ine01ON12IlnNc4MjCCKIp/dtY3X2roYis1vLiogIAoCuSUwESSxQK8UAKxCoGqaJg9ubGFTRQl2VUG6UYZ9kiyuqKIhILAr1MgLw2cYSEewSQpj2RhP1tyOU7IR1hJkDI3fPP31QtRlgYlFmSNQ8GYw87w9fplnBk4Sy6fJmnkUQWJXqCATZ5dVfLITRShIdS10egoVjYVfhpZlYWFN/rcAwzK5+pdpmejmtR9TEAREhKkJlSAI7Apu4Eqihx8Nv8nXep5hKDPOweIdlNiDJPNpjkTO8MOB10npGXYGNrK/aPu7h7EiSJPO1pZTJVjux1fkwRNYfnCY0HK80NOxIAXqapAgIuCx2WjyB9lSXMqWkjI2F5VR6nKjiBKiULgBBIBFfp+bBQ63nW13bWTnvZs58eLZxVdYALqmM9gxwt/852/xzT94mt33b+HgR/ew5eA6bE4bgliYFAsIUxHycifn0yVGLcsCi8l+gMJ1HB2Lc+VkF5eOdfLOq+fpPNNboAHo5qIu8ctFRVMpX/itJyirL1lxQGVTZTyrIGu4XGSz+RmStlCQuPyHb77N17999Lq2reVnB3KGYRZkFucJNJKpHLF3u3rnDf7HHz7L7/2/51Y8FsuyZtCmpm87k1k40EimcmhzBKUlIS/KCsvtdpuCf5Gs7WIYSHfwwvDXGMp2sc1/J/eXfxZpHrnwuVC4DwpPeXGJUrI3A/pSEaJaGlWUGMhE+bv2Q3QkRvEqdv5l693ISxALsNAxrQSmdf1NqkuBaaVYS++Oq880zTDoHIvwzyfPc7izh8Fowcxz8hE5Ywz3r29mY0XpgoGGaRaoU1fnAgJMZYrne9Y5JRsPle+gwV3GD/qPkreWT0nN6Brf6H2TB8t3UObwzx6XlXrPfjsAi4KnxVwQBBuK3IwkVaIoG1Dk9UhiAEFQMc1h8vlzCKIXh+NBBBw47A8QT/wRef0SirIRC7Db78Gm7kAUi7HZDpBOfxPL0pAkF4LgAGRE0TsjyAAQxSBO5yeRpRoEFGSpCV3vWdVjr/MGODU6SN40GU4lqHAVaIl5w2Q0nSSt54nmshQ5Zs+7BKDI7SLkcjKSmJlAqgn6SGt5XKpKscdNTjdYX1bE3711ij955S1UWcZjKxzvWCLFX715jFN9g+imyR0t9dzd2kCp1823Tpwj9sKbPLSphcbiEO/0DfLN42eJpNJEUilayoon52STwYkokMjm0AyTb588x3dOCpR6XXx+3455aV6L4borGu4VTFqhcLNtD9TTkRzhcmKQjb5qgpNygX7VhV1S+O3Nn2SDrxpRECYfBIULuTc1zl9ceYFfWfcwu0NNXIwN8O2+t2buQFja5Mw+j8HWdOiWweHx0zw79AYZI0vKyJLWM6T0DCYWTw29zqtjx3HKdpyinTpXBR8q28c67zXDPUWQeaL6QwC8NHKEHw0f4tmhN6ZuTVEQkASJPaHN/KvmT2ETV88sBQrn4nP/7rEVb9PCmhVkCBSqUy5FpcbrY1NRGZuLS9lSXEadz49DVmYFEaudubcsEwsDAQFhGZOImduwsKwsgjC/BKcgCFQ2lvLwT9/DlVNdxMPJOZdbDgzdID6e4KWvHeLlrx9CsSu07GigeXsddRurqGopp7gyhDvgmnIunQo8ro59xoFce6GapkUqliYyHCU8OMH4QISBjhH6rwzR1zZEeHACwzDW3JfLE3TzU7/7JE3b6q7LmEqWxBVn7K8HWt6Ys4/DMEyMNWiUNC1rwQboTCZPKj27wVDXTfQ14CgbhklujoBoOnI5Hf1dLreKLBWc2lcISRIXpHVYloWhF36DdwfGqk1GFEUqHA18of43eWbwK1OZuuVkNQxLpz15mpyRYWvg4IqO40bgRwPn+NvON0nmC1UmUQC3bOMX1t3LtkDNqlTK30+wLAvdMOkYD/PHr77Na5e7yC/h3jWtmSZuc+E771zgWyfOEssUnhE2WebPP/s4pQs0zQqCgCxIqJNJt7nGa1gm+qRwjCgIKKLMVRJx3tQ5F+ulIzFMojiDV3cgi9JUYvXmg1gIBgQBQbAhigVlzYK6ZgrTTCEKbgQck9VVH2Bhmkmunn9JKkYQCr19gqAuGNhMh4CCJJZNriciCDKWtXJp9rn2cLCqjreH+vgPrz+HJIr8q+37puZGo+kkv3v4Zfw2Oz+9ZdfstQWBYndBeerdgUbQ5eS/f+wBBGB33bX+4v/58Qcn93wNRW4nv/HgnVNn5Op368qK+X+ffnTGsrvrqthVVzVrG1fxswd38+LFdppKgjy5ezMem43//fwbpDUNWOtAY47fVFakRSk380EQBPYVt/B3Ha9yId7Hzzc/gFcpXEgyEg9VbOdbvW/x001OPIqTsWwcwzJY560kbxlIgoRTtjGajXE22kNvapzbi+cZ6AJwuOyIi1CnLCwiWozu1NCMl5pdLExMJUFAN3XiWpI4SRRJnvLNmH68LtnB5+oeYUdgPW+Mn+BSvJt4PolDslHnquJg8XZ2BTeiziNbKwgCNknFK7sKtKtlPlNWuxclaHfyUEMzH2leT7O/qECBEkXk95AGlTeGiWffRJVK8TruXNE2TCtJd/hXqS/6E4QFOkdlVWbzgXV87Jce4qv/7bvkV6iIMxcsC7RMnnOH2jh3aJoLuVBo6PcG3bj9ThwuO7IqFaQQBTB1E103MPIGWjZPOpElnciQTmQwbrCzq7/Yyxd/95Ps/NBm1OugGUFh4nkjAg3DMGd5Q6w5FniE6boxZ+XhRiKn6TP8SaAg/yuIworvf0kSFgxUohNpXn/pPKeOdZFK5mY8l//Vrz1EXcP06tnckzkLE83MYVrG5ORPRZ5UrTEsnfHcIL3pNhySm7SeQBQkFFFdVlXkRqDS5aPFW8pAKoooCLR4S/lU3V5uL5nbGO6DDMuySGt5XrzYzv96/g3CqfTiKy0DG8tL+OtMju5wdOqz5y5c4bN7tiFLi1z789znWTPPG6MXeGbwBCPZGDXOIj5ZcztbAnVopsE/dL3KKyPnCGtxLsb7UUSJ+8u286naAwsKCNyMEAQnouhF13uxrCTgwjTDgIAoeqZRsRY6lyJgYGFeLdvPeO7MpnOtHLppkjN0Ipk0bkVFpJAk/nd77pi17OPNG3i8ecPsjbwLRW4XlX4vXeEC5epq/8R8bJyFzsRSl1/sqbypsozvnDzPsa4B8obB7rqqWV4cy8GKn5iiKODwOOZ0ml4qKhxBHLKNgOqmwhGc0fz8hfq7+XbfW/zXc98hpqUocwR4snb/pHRgiHvKNvF7F76PS7az3lvJfWVbsIsKkiDilu04paVJjSyloiELMgcDe6lhHYlcbkZmP+RysrV8cZ35qxAFkc3+Zjb7l+a4Ox1u2cknqu/nE9X3L3vdtUA4m+YfL5zmny6dpcTpYl2wmHWhYtYHi2kOhAjaHYWmIlFCkSRkUbzuJkTLMjCtDJalgSBhWhpgYFgpdCOCICiIghNBkDDNLKaVBUxEwYEg2LDIY5oZwEIQVERheqBsYZiFrIIkzp2R8obc3PnxvQx1jPDyNw6varAx9wGDltEYH4gwvkIDs/cagigQKvPz+d/6OAc/vhfHqphN3ZhMnWVZc1YuFFlak96uwgR9/u9N08J813gEoTCetRC1UJWFpVyhUE15d6+LLIsr7qcBEEVxQTXA1148x6nj3WzcXE1JmW+GwMBSmlhNTAbS7bw59gPC2hBOyc1G3z62B+5CFmQ6k2d5fey7jOb6kQSZ0xOvU+Fs5LbQg1Q4GlZ+YHMgnzdIpnN43fZle7JAIfhMpTU03cCmyjxYvpkPV25d1TG+H3E1yPjq0Xf4vy8dYhXtKKawrqyEhuIg/dHYVJXk6bNtPLlrM9IKAm3LsjgWvsJb45f5WPU+dgYb+X7/UZ4fPo1HcdLireBfND/Aem8lzw+d5l80P0C1a3Hj3psVguBAVTaT16+QyTyDqu4kk30BUXSjyEuTYJbESgxjBD3fMVn5cCAI8zfCXw/aImM809lGdzzKR5s34FSuX6q+JuDjZ/bt4pGNheN1KArryoqve7vXg3Kfh1+4+7ZV296yVKemS3IqqrRip+OrFCjN0NHMPPuKWgmoM18OqiTz6bqDfLpudsnapzj5UuM9fKnxnjm3/5MNdy95LA6XbdEXdErT+LWnniORzVHkminNuamsdFmBxvsVsiAStDumzPWMacGWbpoMJhMMJhO83Ns5tXyZy01LsIh1oWI2FZXQ5A/htdmwSzI2WcYmSZOUp6U9jC3LIm8MEUl9D83oR5FKsSvr0I0wiexh4plXUOVKAs6PYJOriGVfIpU7gWGmcNv34LPfTTJ3lETuLSxLx6luJeB8ZGr7hhknkvo2shgg5P7UvOOoaCzlY7/0IJlUlrefPrVqqkwfBMiqTGVTGZ/6t4+w79GdqxRk3DgUSvkzr0+HXWHrpuolGdktF36fE497/iqxIAqFSfW0oobLaeO2XQ2LGg+uBFUVAVyLyJcrioj4ruytnjdZ5VafGQiPJ9l9WyMPPrZ92fLklmWR0mO8OPJ11nv38ETglxjOdnN4/CkkQWZ36EO0eHfgV4s5HnmRkK2cvaEHVzTObF6fFYQJTFZs5MLr92LHMH/yD6/xO7/8MGUly3+nDgxH+cbTJzl6uptdm2v42c8cILgCkZYPGgzT4pnzl+cMMkRBwKEU3kOKJCGKAhktTzSzPFqNIMCO6gqO9/QTyxSoaueHRphIZylbgeeAiUlHchgRgRKbl6iWpMIR4OREB2O5GC1ULHubNxYioujDsjQEZEQxWKBAYUcSQwgo2Gy3YWGQSn+dZOofUJR1uFyfRVEK1QBJLEYUvBQqF4XgRBJLYLKyaLfvxa49wET03yAILjyen8VhfxABGUmu4to0V0YU/VjWyr2gNhaVsrFodX3InKrK5soyNld+cOeRSw40ZEXmgS9cKw/JqkTTltoV7TRn5IloSc5F+4jkkjxSuRPvdWiWXw8Uu4K8CCXDtCxyus7/fvRBvHY70+cdC7l8f5BQ5nLz2/vv4dzYCBfCowwkE2T0POl8wdlbM2fSOXTLpD8Zpz8Znwo+XIpCoz805ZGxLlhEwO7AqSg45MK/kjB/4GGRJ6t3YlhJaoL/DRDR9EE0fQCv42589ruIpH9INn8ZAcjle3Dbb0eVyphIP4UilRLPvkGx5/M4lBauZskNM4FlmYwm/h5VKlkwyLiKuo3VfOrXCz0vR587TSaxmrzP9yEEcHocbN7fyif+9cOs39u8Il+Wmw2iWOgVmO4KLisSO7fV8smPzObcrjVkWSz4XUyjxamqzN0HWjlw2/KrpKsBm02eJTucm5xgW5a1IvqUYZhzNphfhT/gQtN0opEUbq+jUCmd3I0sSwv2A1lYTGijRLUxdgXuRZFslNirqHG20pk8y67gfatC+TRNi5fPthNNZrGm8WREUaC2yM/t6+quex8AtVUhfv3nPsTf/PNbc8oM/7iiOzzB/3n+jRlBhigIBJwOakJ+9tRWsb68mKqAD5/dzouX2vmfz72+7P1sqSrDoShTgYZhWpzsHeTDm1qWvS3N0Mkaed4Ot9GRHJoSIVBECds8lOqbGaLowe367NTfPu+vTP1/m+3a89NhvxuHfe4EccD/OzP+ttv2Y7dNd12X8Xt/A7y/MWM5Wa6mpOifpv6WpCI87p9awVFcH0zLJG2kyRhZVFElradxSA5UUSGpFxgUHsWDXbIjIKCbBikjRcZIY1gmsiDjll04JMfU9TChRbGwsIt2EnoC3dKRBAmX5MQtz/RTsiyLnJkjoSfJmxoCAnbJgVt2oYgKpmUSzxdaE7yKF2XadZY380S0CZySA5fsWrEoxpIDDdWu8Au///llbdwyJzCNYbD0QiOQWI4ohRjKTPCt3rcYzkZ5rHIX9a6Vq9FcLwRBmKpqvJuScBU2SebOxnr+x8uvs6m8FHXaS7Um4OfB1hvzgn8v4VZtPNa0nsea1qObJmPpFBfCo5wfH+VCeJTeeIyEliOd10hNOoC/O6GZyuc5MzbMmbGCKZksiNT5/GwoKmFDqPBvqcuNW1FxKgpORUGV5GuNz5aOaWaRxSDTqTSS6EERgwiCioCAhY5hJsjpPWT1DhSxGFnyIyAiiV4EZmdo88YQaAZe77/AsgwEYfFJcuOWWj7/Wx/HV+Th9W8fJTaeWHXFpvcDVLtCUWWQ/Y/t4qGfunvNneffS9hUCa/HPqMhXMvpZLPaiifR1wOHXcXltM0w7MtkNHKafkPGA2BTFZR30cjyeQNN0xf14JgPum4s6HFS31jC0987wdDABM3ryrHZrglPbNtdj9c3P5/YwiJrppAFBWnypSoiIYsqmpnFwkTg+oPkiVSa3//h64zGZqqWKZLEh7Y2zwg0DMMkEkuTymgIAng9DgLegsmkZVkk0zkmYmnyeQObTSbkd2G3LS4Y0t49SlHQQzha8EPxuu0UBd0feB8NwzT5yzePzahQyKJIa1kRn9q1lQ9vapnlC+Cxr8xEtaWkCIc6Mwg4NzC8eKAxx09gkxQCqpt7S7fwmbqDlNj9BVVLy0CZ9k6SRKkgMW/NFEO4OZvBf7yRM3K8HT7K2+EjrPO0cir6DnWuOupdtZycOEXWzHF38V3cFtqDgEBPupdD42/RmeokZ2i4ZCdb/Ju5LbSXIjWEKIj8YPCHxPJxWtxNnI6dZUKLYpNUWtzNPFzxEH7FDxSCjKSe5FT0HY6EjzGRjyIiUuuq5vaifbS4mzEsg+dGXmAwM8RHKh6hwX2NGtqV6ubvu/+Ru0vvYn9oH3ZpZQyFNe1qM7R30FJfwdC7wIph8/w6qutz1LtL+fUNj6/lrpeFQKkff7F3hm/A9Bs2Z+g8e/EyG0pLEAVhBm1oKY7XHzTIoki520O528O9tY2YlsVENsPlyDgXwqNcCI/RE48ykc2QzGskNY2Mnp91rnTLpD0aoT0a4Qftl4CC18b6UAkbQsWsDxVT5fHhVlR8NjtBu4osBkiZJ8jmOybl8TJcVbCYDkUqxaGuR5XKsCstiIITUbARz76GpvcAJpLoRhYL/FZVrqDK/1sMxf8YSQzgVFtnbXMuVDWX85nfeJySmmJe/OobDHaOomVmqwJ9ECErEr5iLxv2NvPAF+6Ykuf9IMFuUwgGXAwMRac+0/I6iURB0nUh2de1gNtlw+uxMxa+pp+ezeVJJLPourli34rrgcdtn1MhaiycoNkoWZHxaD5vkErPT3Ho7R4jMp4kMp7gyqUh4FpAU1NfvGCgISLglQvmpBFtmKBaRtZMEc9H8KnFiMJV0ysREDBMHdMyp9SaljqZO909RGaJXjSxRIYfvX6BgeEo+bzO+qZyHr9/K+UlPmKJDK8fbefYmR7SGQ2308Z9+1vZubkW5yK0tl/6nW/x2cf3cOZiP9lcnsoyP1/4+G2UFq0Nh/1mwVA8yUuXrpmrioJAa1kxv/nhu9hevbr0I5/TTsDpoEeITr3jusPReUXOckaeocwE3akxolqKwfQEnclhAqqHgOpio6+a4cwEr49eoNVbSd7UMbFo8pQTnKSYl9h96JbBhVgfaSNHUPVQbPci/Zgpil2FNUcT+M0EwzKY0CawSzZuC+3lldHXSOgJ9gb3cDFxiQvxi7R6msmbeZ4efJaMmeGu4jspsRXTk+7l9bE3yBk5Hiy7H49SkM9tT7YTy8e4r/QegkqQtuRlXhh+Cb/q5+HyhwDQTI0zsbM8M/QjNvk28mDZ/aSMFG+Fj/Dc0PM4Kh00uOtpcjXSkeykL91PjbMGWZQxLZNzsfMookyjqxGbuPJ3+5oGGpLtDuzqTvTsC2ipr6zlrq4L+x7ZQWVzGcY05ZTpKjkC4LPb+NjmDfgdMyVQXavQDPR+hygIhBxO9lXWsK+yBoB4LktndIJLkTEuRcbojE4QzqRJ5DWSWo5UXiNnzFbPudrr8VJPBwLgt9lpDRWzv6KGX9y5D7vSiGb0EU59B0Uqwi43oUjFSKIfAQlFKkMSvShyKU51M6nccdL5C9jlBjz2g/gdDxDPHiaZO4FDbcVnvxeQcCjrUORyit0/QTz7ymSgsTQESn08/i8/ROOWGn70d69x/lAbE6NxjJtMHWi1oNgUgmU+atdXcvtjO7ntwztW3K91s8PlslFR5ufshYGpzyyrMIkeCyfXpC9iIQT8TopCbjq6rzn9WRYMDEWJJTIUXYdb+UpRUuyZ05V8aDhGPm+gKst/zaQzGuOR+SWkP/KJPdx9/2bGRmIkE1lEScTvd1Ja7p9ybQ7nhkgbSRL6BCIi/ZkruGQfRbYK/GoxjZ6tHI+8SJN7K7H8GLH8OFv81ygZdtGJQ3IxlhugK3UOt+zHpxRhl5amvnKicwBtic8ATdMpCrj5uU8f4Er3KD948SynzvdRVuzlxLlezrYN8ti9m9nUWsmzr53njWMdFAU9rG9amNdtWRbDozF+51cfIZ7I8AdfeZlnXjnHFz9x+5LG9X7F65e7yE6TZfY57PzU7TtXPci4igqfl3MDI2iT77T+6PweFtF8imcHTzKQiZA181yI9RHREuwvXs+eUDMbfNUICLw2ep4T3R3IosSuYCON7mu/dZO7jLtLN3F4vI03xi5wb9kW7lA3rEhM4IOA/lSMiVwav81BQHXiVtSbLugIqAF2BXeS1FNciF+k0l7BHcUHyZhZriSukDYyXE5cYUwb59GKh9kV2IEoiGzwrSetpzg6cYJdwZ245cIzPmvkeKLqY7R6WiZFkqo4Gz1HR6IDygv7jOVjnJg4Rbm9jMcrH8Mtu7GwkAWZHww+RVviMvWuOhrc9RRHi+hIdbLeu44SewkJPUlHqoMmdxN+xXtd53NNAw1BkBAEL4LoRxBuXtm1/R/Zxf4FvpdFidbiIr781lGqfL4ZNIGmUIgnt62eq+cHBV6bnW2l5WwrLVzxGT1PXzxGRzRCRzRCV2yC4VSCWC5HUssVKh95jax+7eVgARO5LG8P9pHUNH5x5z5kKUjQ9bF59+t3XlPkctt24rbtnPG9IoVw2XbMWq/C/2sAuGxbcdmWr9ii2BR23LuJ2vWVvPXUSd5++iRd5/o+MAGHIAq4vA5CFUHqNlax98FtbL9nI8Ey/40e2prC47ZTVxNCEJjR3Dw4HGVwKPqeBxpFIQ8VZX4EZqpjdnaPEYmkbkigUVbiwz1HoNHeNUoup+NaQZUrmcoxNBKf9/voRIpDr17i5LEu4tE0oihQXOrlngc2s2lrDTa7QmfqPAPpdgxLxwBOTrxCub2eIlsFdtHJgeLHOBF5iRMTL+GUPGz23U6je8vUPtyynxbPDk5HX+NY+HkqnI1s8t6+pEAjrxuc6RlashRxKOhm3456XE4bRUE3oYCLaDyDbpj0DERIprIk0xpn2wYwDZPhsTiRaGrxDQN372vBpsr4fU52b63lzWMdi6/0PsepvsGp6oIoCNSF/Ny7vnHN9hdw2gt9QZM/90Q6M++ypXY/P98yv7iAJIhs8tewyV8z7zKiIPJI5S4eqXzv+8SWi4yh0ZEcpszup8i2tEqaYZlEtRTxfBoBAb/qwqM4kObpEfjbtmO8OHCFLcFythdV0uovocjuJGR34VftN0UvrSzIOCUnGSOLW3bjlJ2T9ggSgiBiWAZhLYxDshNQ/DP6IercdbwVOUI4F6bKUfDUcEgOapzVU8sJgoBP8ZLQryVoMkaW4ewIpbZiOpNdU5+P5kbJm3mi+RiGZRBQAzS6GzkSOcpAZpAiWxFticsk8inWl6ybCm5WfOzLXcGyNIz8hUlzMyem3o1FHkEMIMr1iOLyXryWZWCZI5jGIJiJgvma4ECUahCkyndpIFsFnr7Ri2UMFUzWEEH0Iko1iFLJ5DZ1LHMcU+/BspIIKAhSBaJcOekiuTzIksi+uhr21c2+8RdyDV0NWJaFZVpEJ1LEJlIk41m0nI6uF8zWZEVCtcm4PXZ8QRcen/OG0CcWg0NWaAkW0RK8JsUXzWbojcfoTUTpjcdoj4bpik4wnEoynEos2RFlLDtBd2qQIpufKmcpKT3DaDZCQk9PcVs9iosyexEu2bGm/ORQRYBHfvZedt2/hSPPnOKdVy/Qd2WIsb4w2XRuzQ3yVhOCIODw2AmV+ymtLaZhSw1b79jAul0NKzbqfL/B5bRRX1OE3+dkInpNg79vYIK2jmG2bKrC/h7SpwI+B7VVIdzumX0jbe0jdPeNU1cbWlEF4XoQCrgoCriQJRF9Wp/b+UuDxBNZAn7nsrJhhmEyHk4yMDQx7zInj3bR2T7K3R/aSENzGfm8zrG3O3jl+XOUVfiprA6xO3gfu4P3zbl+4aUc4p7ST867D0EQqHQ2Uumce4JqWjoxbRCH7McuzZxA9UdiDEXiS6bWKpKEezIgu6qfb05KK+u6QXd/mOffuIg8meQqCrrxe5f27rnmzi6gKjKa9v5PfCyGrvHIFJ1GlkR21FRgk9fuvnCoyoz3Ska7pUR4FaPZKP/rwrf5WNU+PlK9d8qQUBLEOZuLdcugPTHEayPnuJIYRBRE1nmrOFCygXpXCcq7qJhpXePQcDf9ySh9yShP917Ep9rZFCxna6icDYFSyp1eShxuiuwubNKN8cEp3NeF4y0YNE879kmzXdMyEec4L7IgFxrFrWuJWKfsnGW++W53ewuLnJGlO93DDwafmrGsS3YRVAOYk0avLe4m3omepjvVQ52rjkvxNkJqkDJ7GfIK6K8zxr/cFSwrSS7x/xAEGVGuw8y3Y1lREGwo9gdQHB9DED3L2KJOPvMshnYUy0wCOlhJRGUzNs+vgnitUdyy8hjaYbT0d7CMkcn1RUSpBMXxOKJUUvBZ0DvJZ76HkT9TaETHRJSqUJyPI6m7lx1sKKLI7XU1dIQjjCZTOBWFHZUVRLPZNWVEmqbFyGCUrrYhzp/po+fKCAN9EZLxDLlMoefB4VTxeB2UVwepby6jdVMlTevLKS713ZSqP5phkMxrJLQcCS1HRs/jlFWqJ3sxiuxOTo0OMZpOzuiFWQhnYpf5cvu3ub1oK/eW7uFcrJ1jkfMMZsbIGhoOyU61s5TbQpu5o3gHIZtvxeoJS0VZXTEf+Zf3c/Dje7h4pJ3Tr1+k9+IA4/0RwkNRMsnMmsp/rhQ2h4q/xEug1EeoLEBlcxmtuxpo3d1IUUXgpitHrzVEUaCizM+WjVW8dujy1OfpjMapM31s21zDxtaK63I9X954RJoaSmisK+adc31TnyeSWd461klrUxk1VcH39HdSVZmWplJOnO5hLHwtmzY8GuP8pUHKS73L6mWJJzJcah8mFp8/K9zfG6ahqZS9B1qm+kNKynz8j//8XVLJlctXLgd5M8uVxCvUuHZR5tg447tTnQMzqDuLQpibz6+qMkVBD7s21/Lxh7ZTXREomEhqOjZ1aef0YscI65rKyOY0uvrCVL/HVbgbgXAyMzXdkgSR+lBwTfcnizPfJ7q5uPP4jwt002QoM8HFeD91E6WM5qLkDB2v4qDGWUyVMzQjeBjORPlm75u8OnIOu1S4xo9FrtCVGuFnGu+n2lk04/l2PjLCQCo2I4cX07IcGu7i0HAXdkmmyVvEgfJ6nmzcRq3n5rz+BUHAo3jQkhppPT1D3GMsN44F+BTvtQrGErapiArF9iJ8so+Hyz+M9C6RG5fsQp6UCS63l1PnrKUn3cv5+AUGMoNs9W/Gp1w/LXqFYUoWQ+tElFuwef4llpUhn3mafPqfEaQalHlkyuaCgIIgBlDsDyLI1YCCnnsFLfnnyLYDyPaHAAnLMjH1PnKJ/wvYUZyfRpLrsSwNy4ojyAWpXcuMFIKM3Fsojo8gqVsxjVHy6a+jpb6BTSxBUtYt62gN0+R43wBPXWxjLJlCMwy+/PGPcGFklNFkkie2bFrW9pYC0zQ5/04fL/7gFEdebyMambtMnohlSMQyDPZFOHG4nVCJlz0HmrnroS20bqrEvkiz4FrBME1Sep5YNks0lyGWyxLL5YhkM4ykk4xMVi1G0ynCmTTRbBbdur6Hc3dqkG/2Pc94LkqR6mdnYAMmJmPZCbpSA3SlBhAEuL9sH255bStRVxEs9bP/sV3sfWg7Q12jdJ7poeNML4Ptw0RGYsTDCWLjCRITKay1cJSaB6IoYHPZcPtceEMuvEEPnqCbUEWA2nUV1G6oorqlHM8NoOLcbCgp9rJ7ex0nT/fOqCKcvzTIS69dJBRwUV7qu67JvWVZWBZLCljqa0Js2VjF5Y6RGepTbx/vpL62iEfu37LsKsL1jAdg68ZqXn6jbUagYVnwzAtn2LS+gurK4JK2pRsmXb3jvL0IvcfhUEkmCs++QMiNZVoMD0ZRZGkq6z8XTMtgOHOBEnsLg+mzhGz16FYOC5OMHsMkjyq6CKg1yKKNZH6MRH4EUZARBQmPUoZmJEnqYxhWnpwxdx/Jqe5BcssJNOaBKAhsbqkgPJHi1bcvU1bswzAM3C47m1oqCAVcdPSOMTwap7svTDqr8dbJLirL/GxsLtBWO3vGeOWty8STGQaGJ/jog9uve1w3O7Rp/X+CUHBbXktk8vkZ6k9rWT15PyJn5jkRaact3k9nagTDMvEoDvaGWni8ai9b/PVTGf7zsR7ORXsptfs5ULwBl2zj0NhF3h5vY3ewmWKbF4d8jY55aLgL3Zy/Spc1dM5PDGOTZD7RcHMbWTa46jkfu8j5+AU8ige37CKWj3MmepYKezlFtqJZwcJC8MhuWj0ttMUvM5GfoNxejiSIZM0cmqnhwjkVuEiixDpvK+3JDo6EjwAWDa56nNL1W0+s7G6wQBB92NxfQhADkx/YycXOY2hvLyvQQBBRnTM596JcRz71Ncz8JbA/AEiAjqEdwdR7sft/D8V+75ybM/VODO0EkroLxflJBNGJhIVljqClvoqptyPJrcvSXMzoOl87dYadVRXsr6vhH0+eRpVEDNPkaG//mgQaZ4538/d/+jIX3uld1nrh0TjP/+AUg30RPv75/WzdU7+myjiWZZE3TeK5LBPZLBO5DBPZDJFshtFUksFUgqFkgqFUgpFUkmReWzKdQABcikrI4aQlGFp0+c5kP+WOIu4u2c2B4m2U2kLolkFnqp9/7nuJ09HLvDJ6gp2BDe9ZoHEVsiJR3VJOdUs5dz5xG9HROMPdYwz3jDHcPcZY3ziJiTSpeJp0PEM6kUHL5tGyGlo2Tz6nY+gGplFwYbbMgiGaIBYM5URRLPx/SUSSJRSbjGJTUK/+167icNlweOw4PA7cXkchsCgPUFIToqS6iKKqIO4F1Hp+XOGwK2zZUMXu7XW8eqhtyoAtm8vz2uHL2FSZB+7dSHVFcFm0RcuyyOZ0+gcjjI0nqa8porxs8eyR221nz456zl8a5OSZ3qkJTjqj8fTzZ5BEkXvuaKWkyLus5lDTtEilc/QPTpBM5airDlFctLTqdE1VkHXNZXT1jJFKXwt+Llwe4unnz/DJx3cTCroWDH4Mw6R/YIIXXr0wo9l9LqzfXMXh1y7xw+8cp7jUi66b9HaN0bK+HP8CwbFp6ZyPPo23uJwzE9+hxXsvWSOOKMgk9VFcchGGpZM3M1Q4tzCabaMvdYJSx3pU0YUkqAxnLpDSwyiiA82cnQBKZnJcHhyfMdldCCG/i4O7m3BMJoVcDpUNzeU47IW/G2uLECWBk+f6uNI9iiQJrG8qnwqoxiNJ2nvGCPpd+E0H/UMTmKbFuoaCzPSuLTV090fIaToP3LGBnZuqlzSu9zOmT/Qtixm9f2uB8WQaY1qiKOi8Mb5gNysMy2Q4GyWgutjsr0UVZSK5JEfGLyMgUGLzU+ksvOOHM1HCuTgPV+7mkzX7KbJ5Cdm8/G3nSxyPXGFPqHkq0LAsi1PjA4smKZ2yysZg2U1bzbiKRncDe4K7OB09w7PDz+GUnMTzMcDirpK7ll1dcMtudgV2MaHFeHX0NQJqAFEQyZt5nLKTnYEd+FX/1PJ1zlqKbUWcjL7DrsBOimyhVamOryzQEEQEMTQZZAAICIIHQSzCMkbBMmHJ1BQLU+/H1DuwzDCWlQHLwCKHxbTSuaVj5NtAcCKr8zdAWWYEyxjGFL3k09+Y+tzQz2OZ41hmFAsdgaVPvg3TpC8a438+/ABD8YKspCiKqLJEfg1KpIN9Ef7hz5YfZFyFoZucOd6NalPw+Z00b6xcFWqHaVlkdZ1INsNENk04kyGSTTOeSU9WKApViuFUkvFMak5VqYVgkySKHC6KnS6KHE6KnS7KXG4q3V4a/YuXvkVBZEdgPQ+U7yOoFm5IFYVNvib606N0pwbpSw+T1DM3zHPgKvwlXvwlXtbtKfC/TcMkHkkSG0sQC8eJR5JkElmyqRyZVI5cOoeu6Ri6iWEYmIYFWAiiiCSJiJP/SpKIbJOxOVTsTht2p4rNacPhtuP2O/EE3XiDbpxeB6L446lQshJUlPm576719A5EaO8cnfo8MpHi6RfOMjIeZ9/uRhpriykt8eJy2mbdc4Zhkk5rxFNZIpEkI6NxBodjXLwyxOh4gp/67IElBRoALU2l3HPHOoZHYzOkd4dH43zrB8cZHImye3sdddUhSou92O0zPResSf5/MpUjnsgSjiQZGYvTPzjBxcsFudjPPblvyYGGqsrcfbCVi5eHuHh5aCoYM02LH/zoNIIocNf+VhrrilEUacZYTNMimcrS1j7Cq2+28fIbbYvSCtdtqEDTdE683c65072IgkB1XRF33LsRf2DhYFkVncTzgwRstYzl2jEtHa9STpGtiXrP7fSlTjCQPk2FcwuGlcch+2n0HEQRHUxoveStDNWuHTjlEGkjMmv7l4fGmUiml0yNrCzz8xOP75n62+91ctdt1zwYRFGksaaYxpriOdffu62evdvq591+bVWIe/ev+7GiPRa5nQzF4lgUDNMGFlCBul5ktDy9kdgMulRNyL9m+3u/IqR6eLx6L3tCzdhFlb70OM8OneByYoBzsZ6pQCNjaOTMPEHVjUsuqHzuDDTytO0YnckR0sY1amRUy9IZjyxKsw7ZnRwsq78h/jGSKFPjrEYSRFRRwSt72ezbREApzJ9rnNXYRBWf4sMhOdgXuo0iW4iuVDcZI0O9q45WTyu1rhpUsZB8WOddR1ANzuidkAWZrf7NZKedH1EQqXRU8Ej5h7kYv8hobhTDMvDZvFQ5qiixzXymOGUnJfZi7KKdRncDXmV1ZLBXWN8TYFb55qqXwfLoH0b+Evn0N7HMCRDcCIIMiGDN5UVwdeK6UNbQAnRMYxBdOz7jG0m9DVGqWtb4oPBjlbhdHOsbwGtXMUyLgVictrFxagP+ZW9vIViWxdPfOsqlM/3XvZ2zJ7p5+/U2SisD+IPX17wbzWb4QfslxjMphtMpRlNJRtJJRlNJornskvsprkIRRYJ2JyXOQmBR6nRT4nJR4fZS6fYWfDpcHpzLkA/2qx6a3NVTQcZ0VDgKjeBjuQmyRg4T66bSHBclEX+xF3+xF6i80cO5hXdBUSS2rK/iIw9u5ZvfP07fwLVG5UQyyytvtHGhbYimumJqqoIE/C7sdgVZlqYaerPZPLF4holYmpHRGH0DE4QnChnxgH95lSSbKnP77kbCkSQ//NHpGZSliWiap547w+lzfTTWFVNdGcTndWCzKZMN2wb5vEE6oxGNZZiIphgaiTE4FCU62RfRVF+ybOGCdc1l3HF7C0MjMSIT1zL9mWyeb33/BF0942xaX0lluR+HQ0USRbK5PPFEhr6BCGcvDNLWPoxhmPg8DkpLvIyMxoklZvdqKKrMzj0NbNxcRSKRRVEk3B47srxwRUkQRLxqOb2pE1Q4N9OVOIQkqEiCiiiICJP/XHXyFhBRRCeKWMhQW5Y1eV4ERMSp5s7pON09SDp38zQD34y9YGuNxuIg5wZHsCwL3TB5p2+YvGGgSKvft3hhaJSReGJGpX5jeelN9Ha58ZAEkQZ3KU9U78ejFO6lWlcJOVPnrzqeZyB9LWA3MbEoqH1eDQyK7T48ioPe9Biaca061R4bJ6Uv7FslIFDq8LC9aOXv1TeGurgSHafY4eLOiga86tKN61RRYb13Heu9Bcq+TbJxYJqzeaunhVbPtcSCU3aw1b+Frf4ts7Z1FXuDu2d9pogKdxQfnPW5KIiU2Ispsc+dqJiOnJEjqsWocJRT5aicCmyuFysMNIxCZcCMI4heCi3zCSwzgqjUL6OaAfnsc+i5N1FdX0K27UcQ/VhWknzm+zMXFCREuQ6yWYz8eWTb3jm3J4g+BKkSSdmE4vwJEGYeoigGEJZ52HZZ5tGN63j20mVMy2QonuBvjp1ElSQ+vH4R989lYqg/whvPn8eYx6V8OchmNE693cH2vQ34g/NnvJaCsUya/3n0DVL55ZvRSYKA3+ag1FUIKEpdbspcnsn/uil3eShzefDZbNeVdfMpbnzq3BlYVVSnOKCGZRQmDLfeBLewDHg8dg7sa0Y3TH7w7Gm6+8ZnTOJGRuOMjMY5dLQDWRanHLN105zhlL1aCAZcPHDPRiwLnn3xLCNj8Rnb7xuYmAqIFFnCZpeRJYm8bpDP66uuPiRLEvccXMfQcJQXXr04w3DPMEyOnOji2KluSoq8uJwqkiSSyWrEE9kZjd9Oh8renfVs21LDU8+fIXZpdqBhWRYDfREunu1nbDSOLItU1RaxaWs1Hq9j3ueIgEjQVsc7kX9mve8B+sVT2CUvAVs1g+nT6KZGzkxSZl8/bZ1rcMrBSfrUeeySj5wRn7GEaZqc6R1eslHfWuPTj+0iuMwg9oOA7TUVPHX2EqZhYVgWV0bHOdM/zM7a1U3i5HSdp8+2Ec9eu9YFAW5r+ODT05YKQQBVlAnZvFNBBhQCiYDqwiHZyExm4a8F8lNrA6CIEg5JJWfkMbg2N+qIh9GthZ9jDlmm2VdEwL7y++C53st8p/McW0LlbA1VLCvQuNlhWAZJPUVaT9OV6qYn3ct2/zaKbUWLr7xErLBHw8Iyx9DSX0O2HQArTz77HBZ5JOUqrakgRYuVAysJlo5lpbDMOAi2AnVJEMEqSEYWAhYB0+gjn32Za9WLa0OVbbeRT38TLfU3YGURpHIKQU8MQQwgKa2IUj2SshVTv4Khn0OSWwARywyDpWEp9mWqYoEiidzX3Ihdlrk8FqbU46HI5WR7ZTkbS0tWdArnw/E3rxCbWJo++lLQ3TFKT8cY67dUo8zh3rtUGJa5pCBDALw2G6VOD+UuN2XuQhBRNlmxuBpoBOyOWUod1wtFkFfkQnwLt7BUBP0u7r1jPR63nedePs/5S4MzGrKvQtdNdH3p6keyJGJbwf1ZVuLj4fs34/c6eOHVC1zuHEWbY5Kb1w3yyaUHFrIsoq5Ata6kyMNHH9mBIAi89PpF4onsjO9Ns2AgNx9cTpXb9zTxsUd24HLZOPFODxcuDc5arr8nzGsvX2BsJI6qSliWRU/XGMl4htvvbMXtmZsjLyBSbGuk2Xs3LjlEvXs/qujAq1aQN7PoZo6gWkuJo2DYGbTV4VauPePtkody50Zi2gCSoFLj2oNbvvb9aDxF31iU/DJpo2uFz3/sths9hBuCffU1eOw2IqlCkDqRzvL3b5+i3Oehwr86dBDDNHnpYgevt3fPkLNtKgmxvmxm9tiyLHQrTdYYwzQ1FNGNU1kb88CbDSICdlEhY2jopjn13rcsC83QyRg5cqZOziicw7ypT30/U6oVTKwZTff9qeiM3pi54FFs7CiqvJVXnAeaqXE6eoYL8Ysk8nGqHJVs8W3CuURj0qVghT0aMoIQxNR70PIXsMw4lpVFsT+IpBa4pqYxip59GSN/FtPoxTT60TPPYerdBZUpx0eRlBZk212Y+U7y6W+TF18o+HNIpYhyE9MpUoIgIcpNqO6fIZ95mlzqrydlaiUE0Yds/xCS0ooglaI4HiOf+R565ofoyFyNiiWlBXFSnWpZhysIuFSV+1uauLe5EU03sCvymvD9zp7sQddXr+8jm9YY7AuTiGcILpFvvRw4ZaVQlXB7qXB7qHB7CjQop4viyf8G7Q5USVpzjvCPEwf5Fm4cfF4HB/c1U1Hm58iJLk6c7qGje5RMZnl0GVEQKCn20NJUxtaNVdRUrUyCszjk4f57NlJdFeTIiS5Onu6hpy+Mll/eZFeRJcrLfLQ2lbFza82S+0XejbrqEJ/4yE5Kij28+mYb7V1ji1ZoJUmkstzPnbe3cNeBQi9HLJ6hrHTuSeHpk93ksnnuf3gr5ZUBDN2g7eIgb75ykdaNlfMHGoKAUw6ywVcwTKtybbs2bvfsKnnQNvt9EbLVE7LNXSG+0DdKPPPeyOvewvyoDHi5q6WB75w6D0DeMDjU0cNfHzrOk7u20FJ6fdnaVE7jtStd/M1bJxiOXfN8EoAntm/CqRacqQueERmG068TyZ4ia4xhWRYh+w6a/J8DIKuPE82dR5G8+NX1SOIHJ1sOBepQmSNAd2qEE5Er7Ag2IgsSY7k4p6PdhHMJLsb6eH74FC7ZRmeqYF2QNfLkTQO7VAg+soaGKsoz/Cf6U7FFG8Fdio2NwfI1Pcb3MyRBosgWotFdj0Ny0OBqoMRWvKrzqRWmf0VEqQLV9VmM/EWwcghSGZKyCVGafFkKCoJUgmQ1I8nNYJumEiXYp7wsJHUnqlvFNDoL2xF9SOpOTGUXiA6YxoEVBBuK41FEuR5T756shsiF/UxK1gqChKisRxV9GPmLWOY4YCEIHkS5AUFcnKc2HwRBQBYEZLUwprFkiq7IBHtqlt/3MRd03aCnYxRjlRvMRwejxKPp6wo0BAp9FaUuN1UeH5VuDxVuL+UuD0VXm7cdLoIOB05ZuTXpX2VYwGgyySvtnfRFY1T4vOyvq6EusHIVjeFEkr87forcAoosdkVmV1Ul9zQ1rHg/46k0/3z2HKOJ+St1kiiwqayUR9e3Ul9bxC/97D0zvg/4XVRchwu5223n85/aRyo1neIg0NpUuqLt2W0KG1orqKoIsGNLDe1do3T2jNE/OMF4OEksniGby2MYJpJUqA7Y7Sp+r4NAwEVpkYeaqhDlZT5qqoJUVQSuy2jP6VDZsaWWuuoQu7bV0tE1RmfPGINDUcYjSeLJLLmcjmmayLKEqkg4HCoBn5Ng0EVZsY/qygAVZX5qqoKUlfqmGb0tH5XlAR57cBvNjaWcuzjA5Ssj9A1NEImkyGQLFSCbKhPwO6koC9DcUMKmDZVsaCknOGkG6XbZuPP2FkLTzCHLSnyUFHl5eyxBWbmflvUVU0pfHq+D558+TS574/ojzvYOkcoun156C6sLURD4ib3bONzRy/CkgEsyp/H90xcZiSe5s6We3bVVVAV8yMtQZktpGm3DY7xxpYeX2jroHIvMaALfVl3OvesakcRCn49hZemK/RO9yR+SzHcDFqJgQ5nGqtDMCQZSzyMgofg9eNWm1ToNNwXcip19Rev4Wvdr/HXni7wVbsMuqoxkJzgT7aHI5kUSRf6p5w1kQWI4O4FNVBjIhBnLxfEoDrpTo0S0JCGbZwZrIZxNYS4QaAgUKhrVbv/aH+j7FKqossG7ng3e9YsvvEKs8M1mARKSsglJmVvaVRSDiPNI0E6HINiQbbuAmUpSojQXl1JAEOyY4jbORSt4uaMTSRS4o76enRXXypCCICPINYjybCfv1cRIMslrnV2rFmikkzkS8cyqu0fHomky6et7+ZU43fzO/nspdroIOpyE7A6CDiduRb0hSg4/bshoeQ739PKnbx1lPJUm5HSQzGn85K7tK9Zsn8hk+Po7Z0hq818bPrsNWRSvK9CI57L88EIbbWPj8y6jiCKPbmjlIxvXU1Hm5+OP7lzx/uaC06Hy4D2rK0MtCIXqxrbN1WxoLSc8kSIcSRJPZEhnNDTNwDQtRFFAlkUURcbtVHG57QS8DkIh96q6eAsChIJuQkE3WzZWMR5OEp5IkUhkSGfy5HUdy7QKymSyhKrKuF02PG47fp+DgN91XcHFu+F22di9rY71zeUMjcQIR5IkktlCrwqFBnu300Yo4KK0xIff55yhOi7LEq1NZbQ2lc3ati/gYmQ4xvDABBXVQUzT4vyZPuyTks43Arm8zqWBUdIL3E+3sHSks4dIZl9e1johzy8iSX4AWkuL+NL+nfz+C29OydsmcxqvXO7k4vAYL5V0UBv0Ux30U+x20T4anrGtRDbH5ZFxwsk0E+kMA9E43eEoHWNhroyGSWRzM17VJR4XP31gF2Ve92Q1wyCcPUFn/OuAQJ33E4hIdCe+M2M/iuhBFp2MZ44S16584AINl2znzpJNXE4M8tb4JS7F+5EEEd00KHcEebzqNupcxbw2ep4ryUG2BxoIqG56U2N8o+cNGtxlXIj1MpAOs794Pe5pfR6pvLZg35siSpQ7vTjktfVRuYWFcR1P5BsnZSGKIiGnk3KPh9e6u6j2+2cEGsvFsefPMNg5jDmNsvTwT9/DKz096Avw/7oiEYbicxs2rQSpRHZStnR1kU1r5K+zOdFvs/Pkus1ItyRRbwhSmsal0XEGJ7NzQ4kkl8bGSOa0FQcaDlmmMRRkLJUimdNI5/Nr4mhrk2RqAz5SmkZS00hp+ZuGw75aUFWZ8lIf5aXX76K6GrDbFKoqAlTdBC7QbpeN5oYSmhtWr59t++56XvrRWf7uL1/F7lAw9ELD/e59TRQVrw4Hf7noHY8yEk0uyhm/haVBN8fJ5S9M/S0gkdf7McwIslSCKAawLA3dGMSy8rjsB2Bao7AoCDy6ZR3hZJq/fesEOb3wzDFMi4FonIFoHJss4Xc48NhtswLESyNj/NWbx5FEkbSmMZHOEstk53xG+p12fubgbm6rr5l6R5qWTl/iKXQzTWvg56hw308mPzRHoOHDKVeSMybI6COrdfpuGkiCSI2rmC813McWfx1dyWFypk6xzccWfy2b/XUFl3BXcaGCITtQRImvdb/Om+MXeGv8Ekk9i1dxcKB4A37lWoUzreenFOLmgipKVLq8q9afIQoCggAXIiO8NdJLXyJKStdwySqNvhB3VNQv6NVhWhajmSRHRvq4HB1jIlfoISpxuNkSKmNbUQXBOZrWv991gSMjvXxx/S5EBJ7uucRwOkGdJ8ATjZvxqXZOjg3wXN9lMnqedYESPlzbSsg+W210Ipfh1PggZ8NDjKSTmFgEbA7W+UvYU1JFmdOz6oyU92XnrCyK1Pr9mLUW50ev/8Y89P3jnHzpLPo0TvOHfuIgf3XkOOtK5qdajaVSq9rQnM1oa6JFqGn6dfd9CIKAdKtyMQMpTaMrMkEknaE24F91qePpEEUBmzS9Z0lAlSSUZZT9340Sj5t/f88dZPJ5crqBZhjEszne7u3lqYuXV2PYAIScDn7+tj3Esjk0o7CfTD7P6aFhvn7qzLKlkVcTlmWRzesMhGMMTiQYjiaIpjLE01lSuTx53UA3DSwLJFFEkSQcNhm3XcXvdBDyuij3e6gK+Qi4HT8WgXgml2dwIk5/OMZ4IkU4kSaWzpLV8mi6QV43Cj5DioRNlvE6bRR5XBR5XVSFfNSXBFGvs3JSVR3ivgc3c6VtmEg4gSxLVFQFWbexEpfLtvgGVhG6YRJOpHjjQhfR1GyFrFtYGZy2vSjSVfUmgVz+IsnMj/Coj+Cw7UYUXFgYGEaEWOrrKHLtDJVJQRDwO+x8Zs9WHIrM146dnkXfzOkGI4kkI4nZCcNIKjPVTL4QyrxuvnT7Th7dvA6neo02bGEQyb6DInqp9jyKTQqgzeG7Ik1SqQwrR95MLOMMvX+gijLNngqqnCEmtCS6ZeKS7PhVJ8okFarKWUSVs9A7Y1oWH62+Da/ioD05jEuycVtRKzsCDTOoU5ppLJjylkQRv7p65ok2UeLZnjbeHO6mbWKMaC6DZhqokkzI5uS1wU7+5aZ97CiezcjJGTqnxgf56uVTnI+MMJZJkdELNE+3olLm9HJbWQ1PNm2h1V88gylyNjzMD7svsj5YwpHhPg4Nd5PQcgRsDiZyGR6uXcd/O/kKl6Jj5A2DcpeHsUyKX96yf1rga3ElNs7Xr7zDkZE+htIJkloOCwuHrFBsd7OtqJzPtGxjW1EFirh61e1lBxqC4Mbm+WVAoCca5W9OnGB3ZRVv9HTjVFTuqq9nf20hqtdNk/MjI7zU0clwMkm1z8cDzU00hUKIgkAmn+flzk6O9PWTM3S2lpXxcGsrXpuN//D8C3y4tYXnr7ST1XV2V1Xy0Q0blqSDbZgmF8fGeKG9g6FEgkqvlweam2gpKpqT5jPeH2asP4I5rWHRNC1SWp4nt22eNxq+NDrO0d7r87uYDlES10RyVZLFVTHsu4WZ6I5M8DfHT9IRjvDk1s1rGmh4bTb2VFfxRlcPXZEJmotD3N3YgEtduc61U1HYVXXtgWhZFmktT07XVzXQsCsKm8tn0l8M08Stqnzj9DmMG1DdiKWznOjo51zvMO3DYaKpLMlsjlRWI5vXyek6ed3EtCad2Clks0RRQJZEVEnCpsg4bQoumw2vw4ZNXRuBiLriAB/Zs4GG0tCqb3spMC2LSCLN2d5hzvYO0T06QTiRJp7JkcnlyWh5cnkd3TQxzML5EgQBSRSQRBGbIuNQFZw2BY+jEHQ0lgXZUlvB9vpyPI7lN79KskhNfTHlVUG0XB5RFLHZ5TU3ocxoeUaiSQYiMQbCMfojMYYmCsFpfzhGNJVddBu6aXCio59f/soP1nSsV/EfPnY3JT73+65vTpbKkKVrz41M7giKXIXH+Qiq3HptQm+ZmFaCRPr7BcNfrlW0BEGgxOPiyd1baCgK8o0TZznc2TtDuWilEAWBPXVVfHLXZvY31uK1z5Rnt7DQzChupRabNH+WWxBEREGeXGP1K8o3C0RBwCXbccmL3++iINDsqSCkeojl0yiiRLHNh0NSZ5xjVZQWdG8TBQGXsjpeEAAd8QhXYmHcispHGzZS5wmimTrnI6N8r+s8rw50YgF/dOCxGfs1TJNzkWH+4PSbnA0PUeX28dmWbdR6AgX55eg4rw128p3OsyS1HD+3cS/N/tmCBV+//A4NvhC/uvUAJ8cGebrnIt9oP01HLELI7uQ/7ribd8aH+E7nWV4aaOejDRup9xb6prviEf7ywlGe77uMX3XwcO06WnxFCIJAVzzCa4Od/KjvMjEty69uPcimYOmqPTNWEGioyOoOAOKREX50+Qo+u4MHmltoD4d59vJlPDaV7RUVXBwb45nLlwk6nDzU0syxgQGebrvMxzZsoDbg5+m2Ns4Mj7CjohyXauPFjnYM0+JjGzfwWncXhmXxUEszKS3Pt8+fx2e380Bz86JjbBsf5+m2Nrw2Gw+1NHNycJCn29pQJYmG4Gxll0wqhzlHOfQLu7azsbRkfk12QWAgHl/mGZwfTtf1+UjMB7tdvS5p2+XAtCziuSx9iRiDyQThbLpAlTENxMksvFe1EXI4qfb4qPL4sF2nItU2fyv/ccNPYZdsVDrmrkBVO0v5+aZPkNazNLqrZihXrBT9sTiHu3uJZ3OE0+nr3t5CUCSJ7ZXl/JcH7iWRy+Gz26n2+1Y1g16YHIrLao5cKQr7ee8tEzuHw7xw9gonOwYYmkgQSaZJZHJLIoKaloVpFAzAsujwHqkLbakt465NK++RWSk0Xad9KMwr5zo40ztUOF+JNKmctig9yJo8V3nDJJvXiaWvTcAFAY532HnxdDuVIS87G6q4a1MjDaVLV92KR9MgCLjcNpwuGx1XRpgIJ2leV47P77zu56hpWiSzOQYiMfrCMfrHY/SFC9SoeCZLKquRzGmkshoZLb8supRlwUgsyUhs9Wi3C+GXHz7wnuxnrZE3BhGQEIWZQZMgiMhiCZrejTWH0e/VysZdrQ3UhPyc6Bng5bZOTvUOks4vXzhAFkU2VJTw4IZm9tbX0FgcxCbPfocJCEiiA93KYFoG4iyT4wJ0M0POmCg0iQvXZ6z7QYIkiBTbfRTb56ejumR1hsHmuyEiYJdWb+4zkIrR6i/m32y7gy2hcjyqDdM0ubsyjVtR+euLx3hnfJDT4SFuL7umWDeSSfLdzvOcHBtgY7CUX9x8e2F9RcUCorksm4KlfOXScZ7ru0yTL0Sxw4XfNrMaE86m+c1d97ItVM7B8noOD/cwmklyITrCV+56gmqPn02hMg4NdzORy3AlNk69N0hMy/LqYCfP9V6m0uXlp9bvZn95HT7VjiBAXMuxMVjKX188yuHhHraEyqlweeakXq0E1/0LuFSVPVWV7K2uptLrYSAe58TgIFvLyzk7PEI8l+NTmzdT7fejSBLfOX+B7ugEQaeDVzu72F9Xy32NTdhkCd00+Oo7p7m/qQnLgm3lZeyvrUU3DK6EwzzTdnnRQMO0LC6MjjGeTvPExo3UBgLYFYVvnztPZyQyK9DQcnl0TZ8zJH5o3cJmfHWBAE9s2bjsczYf3F4H0hpM8lxuG7Y1bJC0LIvRdIojQ328PdhHRzRCLJclo+vkDL2Q5bQKEwxREJBFCZsk4VQUAjYHG4pKuL2imr0V1dgledmThJDNT8jmX3AZl+xgvff6TAunI6Vp9ERjhNMZlPeILuNSVTaVrUwl6ccdQxNxvnvkPIcudU9mnjM3sMvs5oamG1wZGueZE5c42tHH8ESCRCY3w/n4emBZhYpSLJ2le2yC830jvHq+g/3r6nho+zpqiv2LbuPI4XZM02TfwRZ6u8f50Q9OEZ1I07yunEc+tpPQMhX2dMOgPxznVNcAveNR+sajjMVTpHIa6Vx+8l+NnL66pou3sHRIop907jC5/CVkqQRBKGSMDTNOMvs8ouBkvimNIAioskRLaRHVAR+3NdTQE57g3OAIV0bHaR+LMBRLkM3P7mWURIGg00ltyM/68mK2V1VQXxyk0u/BbbPNW8UUEPGr64nmLhDOHKfYObfJcCrfSzhzHLtUhFP54Bv9GZZJzsijWwvTnhySuqgvllNRCgIS82zIglWl5hqWxaebt3FbaQ1ORS0kyiRwyAqfad7GVy4eI2foXJoYnQo0LMuiPxnj+b4r+FQ791U1caC8Dtu0AMghKzxY08rl2DhfvXyKlwY6uK2shm3vCjQafCHqPQGcikqdHKDBG2A8m6LFV0Szv1CdKHN6qHT76IlPMJ4pUAUHU3Fe7m/HtCxuL6vlodpW3Mo1iqlTVnmguoUTYwO0x8IcHu7h3qqmmyfQcCgKVT4fsijis9vx2m2Mp9LkdJ3xVIrXurrpikwgiyLpfJ6JTIb7GhuZyGRI5jUqPB5ck7zGlqIihpKJKd5aUyiELIqIgkBDMMDr3d2Ljien64ynU7zZ3UNvNIYybb8HamerUGVTuXk13r32hbm+TlXBqa6emoHNrlBS7iMSTmKtYkNhaYUf7xq4w1rAaCrJ051tvNDdTm88ykQ2S0bPL3kSJyJwemyY57quUOvz8/GWjTzc0LrqZn6rjXAqTft4eNUmX7ewNjBMk1fOdfDNw2e42D9KPJ29FWDMA8uyiCQz/OD4eZ450cZAJEZyjaVazcl9RlNZukcnONrex+N7NvKhLc3YF3i29veOEyr2YrMpvPX6ZcqrAtz30Ba+962jRCOpZQcaGU3n0KVu/uaV42S0PFktT34R749beG/hst9DVjvJWPT/I6Y0IUvFWFaevN6Nlm8n4PkXSOLCQgCiIOCyqTQUBagJ+theU0Eqp5HSNHJ5g5yuk9I0Mppe4K4rCh6bilNVcagy7kma5FJ8oQRBpsbzOOOZo1yc+FN0K4MsXKMN6WaKiewZehLfI5x9h1LnfoL2Latyrm426KZBb3qMZwZPcDk+QNrIYS7yJP583d3cVbp5wWVK7G4kQcSYxx3cwiJnXJ8QznSEbE62F1XgkJVZ1fhSpxufakczDaLatQpuxtDpiIcZyyTZECxlR3HljCDjKtyqjY3BUkqdHi5OjDCUirMlVD4jkC11uJEneycEQSBkdyEiUOsJTF2PBYqagmlZZHUdy7IYyyQ5GxkmaHeyLlAyI8iY2r+iUuny4pJVOuMRornV6ze77kDDME3Sk66YummiGwY2WUKRpIIGf2UFn9u2Dfckl1wQBMo9ninVmZyuY1oWkiCQ1DTskjw1yUzkclhWwQkyqWm4lzCpVyQJu6ywrbycL+7Ygcd2bb9lbves5bPp3Ay1qblgWRbxbI7vnbvIsf4BMvk8FV4P9zQ1cLC+FnkJfSNLgSgKNKwr58rFIXRzdXjrgiBQURPCH5x97NeDnKFzfHiAvz5zgtOjQ0Rz2RVlDkwsElqOhJajPxHjcmScl3s6+de79lPr86/qmFcTo6kUV8bDiy94CzcM6ZzG1954hx8ev0DfeGxNFLU+KNANg4v9o/z580c40ztM7D2u+JiWRTSd5WTnIP3hGGe6h/nsHdupK5mb225ZFooiMdgfIR5LsX13PZu21fCtrx4mv0yjQii8x+KZHKPvEZ3pFpYPm7qBIt+/J5l5lqz2DlntnQKVW6ygOPB5nLb9U/5ci0EQBBRJIuB0EHAW1rGsyS4J08K0zKm+LGky2blcCEgUO/ZQ5/0k3fFvcTb8PxCQMS2NkfTrvDF4Cd1MkjMm8KhNVHs+gkNaPWW2mwWGZdKeGOL3275Hd3KUjKEtGmQARPPz+y5dRa0nOEmDnvue102TSG71aM3lLg+uOST9BUFAQMAuKeQMY4YXWlbPM5iKY1Hw9Khwzp0EESgEEgHVQVc8wng2jWYY2KepSroUdYYoz9W5sntaP4gAiII45aSeNw3C2TQJLUdW1/mjM4f4u0sn5hzDeDZFIp9DFERy5uoFaNcdaIyn07zS1Um138eVcJieaIyHW1uQBIGmUIgr4TCRTIYtZWVkdZ3xdBoLCDgcbCwp5XBvH82hIkJOBz+4eJHt5eVTDa7fv3iJnZWV5HSd56+0c1v14mVFabL6cX5khLF0ii3lZWiGwXgqNeelXahoLPxiyuo6X377KO3jEfbV1uBQZAZicb7xzlli2SyPb9qwgjM3N3bd3sxLPzw9QwHrelDTUExNQzGKunoKAklN47muK/zJqSP0JWLkVykoMiyL4VSSH3VdoSs2wW/uu4s95avjUbKayBsG/dEYHeHZCiK3cHMgkcnxFy8c4emTlwgn0qvS/PlBRS6v88bFLv7kR4fpHYve0Ey+YZoMTST44fELDE3E+dK9u9nRMFvBpbjUx/nTvbz1+iWq64qoqgmSzeQRROGW8MUHFKKgYlPWochVmGYKizwCIoJgQxR9CKjX1ZsjCIW+ClESmG4UvPLtCSiil2b/F3HK5XTFv0lK7wNAM6NoWhRZcFHqPEC990kCts0I8/RxvJ8Rz6d5ZugEF+P9uCQ7B0s20uKpwL1IU/hmX92i227wBguT7XmmIHnTYCyzeMCyVLhkdeH+zsnLb/rbxrAs0pMsHVkUF/T0cEgK6mTiOq1rBWf0adN0+V37Fib/5929mtPvAt00SeULLBPNNOhPxehPxeY/BsCyjFVla6wKdSqR0/ip73wXAbi/qYmDdXUIgsDeqio0w+CpS2386dtHkESRg3W1PLFpE367nc9t28o3z57j3z//PDnDYF1xEV/asQOvrVDWaQwG+eWnnmYik2FrWRmf2lIoK44mk/zh4be4ND5OXyzKkb5+Xuno5KGWZh5Zt46dFRXkdIOnLl3iL44eQxQF9tfW8olNmwg4ZmY8sqncDLWpuZDTDQ519fIHj314yownm8/zWkc3h7v7VjXQ2H5bA+VVAbraR1bFqmTHvkaa1lesWpN5StN4prON/33sTcbScwdv14ucoXNufIT/+MYL/H8H7mNvxdJ4q5ph0BEO81ZPP+dHRhmIxYlls+iGiSpLeG02yr0e6oMBtlaUsbW8DK9t4Qb8vGHQG43RPh6mPRyhfTxMV2SCgXhiqpEwZxh85dhJvn3m/ILju6uxgZ+7bRdlnvlpHZZlMZJM8umvfnPBbdkUhY9v3sDP7Nm14HI/jkjnNP76pWP88PgFIslbcqMLIavl+f6xC/zZ828xkczcNP0HaS3PW5d7iKaz/OTdO7l3c9OM+/TAneuQZZHx0QT7DrZQXOqjt3ucTVtr8K0BTfQWbg4IgoQk+JDEm8OvZjEIgohNKqLW+3HKXPeQzveR1PuxLA1V8uNW6nDI5SiiG1H4YJrKpfQsx8JX8Ckunqw5wCOVu1FFZdEqkbKEoGtDoHRBGVbNNOhLTmBa1qooAq5kHiUK16TpTctaMDGbt0yMSadzRZSQ3pU0mW/vC41KFIQpGfxGb4gvrt/FjqJFfOcEqHb5F15mGbjuQMNrs/HExo18aecOBAScqoJjstTjVBTurq9nb1VVgSolCNhlGadSuKFK3G6+tGsnn9m6BROwSRJu9VpZal91NZ/ZugXLsrArCp7JSkfI6eTfHjyAbpqYloVAIaJzTG7XqSjcUVfLrsqKOfc7HQv1aEyHJAqUed1T1RabJFHidl23Hvy7YbMpfOInD/L7v/3d665qbNhazd47WvEFVqehRzMMjg718/vHDjGanp0lEIAKt5cdpeW0Boup9wUocjpxKSp2WcYwLTL5PMl8jv5knM7oBGfHhjk1MkT2XTxK07LoiEb4r2+/yh/e+wj1vvnlAa1JAYC/O36SQz19JHM58oaJbpoF6t3k2ARBQB4SkSf9ELx2Gwfra/mVA/sIOBxzPkT6ojF+8hvfIaVp6KZJ3ry23emIZ3PEswurEIXT6QUNIK/CME36YgurmdkVmVhmcSnNHzeYlsV3jpzjmZOXlh1kCIDPZWdzTRnrq0oo8rjwOG04VZW8YRBPZ6d6Cc70DjEQjq1q9l+RRUp9HiqDXiqCPiqDXiqDPupKAstSZFoqNN3gqROX+KOnD5FY5Nq9EcgbJuf7hvmrF48CzAg2/EEX99y/GdM0UW0KkiRSXROirHzPDXMGv4W1hWUZpLNvksg8g6a3Y1mzn3+VRX89QxL3ZoAgCMiCE0lw4JBLCVrbAQsEEREZYRUUEG9m5E2DkWyUGlcx95VtJaCuHo271h2g3hMkmsvMSccyLYtILsNQKk6l+8YEpzZJpsRRSC6m9Tzj2TRVbv+cy05k0yS1HJIgErQ55uzlWC5USSJgcyALIiYWHkVlXWBxit5q1oWv+ygEQcChyBS7Zk9mBUHAJsvzOheLgoBbVaf6N94NRZYIOZ2zIlFJFGdVJpaz3+nIpubv0eiZiGJZBYnGgw11/N6rb/LYxnU4FYWOcIQT/YM8sr510X0sB4IgcPBDG3jnaAfPf//UirdTVVfEo5/ay6bttatCJbAsi/5EjD88+RbD6Zk8ZlWU2FlWwU9s2MbOsgo8ig1JFJEEYdJJU5ixHYvCA8CwCpP28XSa57qv8FdnTkypJDC5TFtknD84fpjfv/vBqSao6TAti0PdvfzfNw5zYWSU/Dw8fGty31cN48jniWWznOwfXLAqY1gWkXSa3Hvo9WCTZXZVVTKRyRDLZolns2i3GlOXhMNtPTx14hIj0aUbX0miwI6GSj57cDvb6itQZakgQiEWeLeCcPX6KVxDhmmS1016xyd46sQlXjh9mfHE8njAW2rLaakoojrkpyroozLkpcTnRpELWayCZ8fkPTT592pCN0yee6eN//OD10jlli/xeRVOm0pV0Et1sZ9ijwuXXUWRJfK6QUbLMxpNMTARo3MkQm4ORZ/FYJgWlwbG+KsXjyKJIndvagQmn/H2mYkjWZGQlZUlfq6qErlsK9fc13R9yYGnJArY50h8rQXWwtvlRiCVfYVw/A8wzBiqXI8ozvYZuJk9iAs8fnmGqeCPDyxsokyJbXUn+5IocrC8nnORIXLzVAoS+SxnIoM3LNBwygpNvhAuWWE8k+LixCjb5qgoWEB7PMxgOkGNx0+xw424CtN9AYEiu4sGX5D+ZIwLE2M8UmetisT/UnFdV/xVudK1gCgI74nGfjaVnbei8eQ/fIOsfrXRvdCU/t2zF0BgKqMdy2a5rXZ1JekUVebn/92HAYEXfnByeXQGAVo3VvKZn72LnfuakOTVuZgSWo6nO9s4PTo84/MKl4ef3LyDT67bjHuyUWnB8uKM7wqTArei8lObd/LR5vX87uFXeaazbWrynzMMjg718Xx3Bw81tMy4JizL4vLYOF8/dZozQ8NT61T6vOyprqS1uGgqII3ncvRORDk/Msql0XEyk5zFB1ubCwoS84y5xu/jO1/4zIwKRt4webG9gz85fAQoZAw+uXUTn9q6sEKG12aj2L14dSnkdPK3n/zo1OTWtExi2SxPXbzM77325qLr/7hiIpXh6eMXuTwwtmRKX4nPzX964l72ttSgSOKswHg+WKrFxuoyWitL+OjejfzVi8d47XwnOX1pk+mKoIdff/yuqaBCmHzevRemapZlcbZniP/+nVeWHWQIQLHXzf51tdy9qZEN1aV4HLYZxzC1n8l9mZZFLq9zoW+El8528MLpy8SWof5lWhYXB0b52hunCLgcbK0rX/Xz5HXY+PydO/j0ga0r3sbfvXqCr7/5zqKmfYokcs/mJn7nyQ+teF/LwXsV0Kw1stpJZKmUEv9vY1PnftYKLN0Vfvozfa5r8eoVttJrzTCznBj9DWq9n6DEcfvMbb9rm5ZlYaIRy11kPHMCC5OAfRMB2yZk4f1ntjgd8qTZnm6ZxPUsAXV1vUIeqlnHVy4dnTfQiGs5joz28mD1uhtyHgWg2u3jrspGnu1p48W+dvaX1VH9rsDnnfFBDg11E9eyPFa3njpvYFXGKwgCNW4/91U18Wfn3ua1gQ62F5Vzf3XLrDm2BZNMIRNFklYtGLmuQGNjSQnf/synZ3TBrxZe+5mfXpPtvhsL9Wi8+Qs/PeMBlDdNdKPgfqtI0iQFZ22iQrtD5V/9x0fYvLOWb//dIQZ6wwU1jMmAZwoCU9nPQMjNHQ9s4sMf30lFdQiE1Zm4WJbFWDrF1y+emWGMU+Xx8vPb9vKpdZuXPEGbC1cVQEqcbn7/7oewyzLfuXx+ak/jmTT/fPkcD9Q3z7gmLODS2DiHe/qmFEIe29DKL9y+lxq/f86HuQVEMxne6unjhcsdPLZhHXZl/ttAlSRaimY6MmuGwbmRkWvjB4qcTlqL58qwLQ9Xxzx9cmBZFookUTRH1fAWCrAsixdPX+Fk1+CS1aXWVRbze59/mOoi/7ITJoJQqHSookRrRTH/8eP3UBH08L0j54mmF6e0vXi6nUd3beDAunre63ffSCzJv//qs8uSrhUFgcqgl4/s2ciju9ZPOU0vNTiyKzL7WmvZ21LDLz+8n39+6yxfe/MdxuOpJTUdWhYcbe8jdOg0fpeD2uLZ9/f1QBAEFFlCmUaFNScVD6c3Wl4NnARhdpVJlSWWlh4rKBk5r6N6UqisWVNu9T8OMMwYilSLIlUhCst3k4dr7wDdMNEMneFYgksj44wnUsQyWRI5bUoxaGN5CXe1NlC0hOTQXDAxGM28jUdtoci+C8PKkjcTKKIbWXQiTKNNGVaW3sT3aZv4M/JmoaovCBJV7odo9n8Rl1zzvg023LKdPaEWDo9f4mj4MveVbV3VbHqTt4j7qlr4Xve5OZ8lKV3j5Fg/A6nYvJSltYQgCFS5fXy6eRvnwsO8MdTFrx1+ms+2bGdTsBTdMjkxNsA/XTnNucgwG4NlfLh2HRXOhaWal4OQ3cmHa9ZxZnyYt0Z6+O1jL/LGUDcHy+sptjvRTIPhdILzkREODXfzyaatPNG4Gc8cMrgrwZIDDcuySMXW1v34RiA2npi3F+KqbK1lWYwlU/z528d48UoHKS1PbcDHx7ds4qMb1+NQVz/YEAQBVZW579Ft3Hn/Jt453sXZ491cuTDIRDhBKlHgVPsCLqpqQ2zdW8/2vY2UV60+lztr6BwfGWQweY2O4lIU7q1p5JOtm1bNnVqYdA7/zX138c7oEB3RgqqTbpp0RSc4Pz7CluJr/NtsXmc0mSKpFSZMFV4PB+vrqJ/D/X1yBwAUuVw8umEdj25Yt6QxLeWz1QrqFhrD+/M1894gnEhzrL2PoYmFe1uuotTn4ve/8CiVIe91/26CIBBwO/jZD91GMqvx1ImLZLWFKxu6afLHzx7mtuaaGZPbtUbeMPhf332VwYmlU8ucqsKB9XX81L17WF+1MvnNq+dYEgS8TjtfvGcXD+1o5fd/+AavnOtA0xenJloWvHD6CpVBL1+4ayde58omm0vFxdExRlNJ7m645spuWhbHBwYIOBy0FF1/YmGlyOTz/PPxc+ysrWRj5Y+HiacslaPrAxhmDMkqXVZvw9UAMaXluTIyzrdPneetzl6GYvPfBw9saGZ7TcWCgYam62iGMcU6ECjQCa8+UUxLYzj9KuOZo0RypwELWXBR7r6XZt9P4lbqEASRuHaZwdQLWECJcz82MchE7jT9iWdwK7XUe59EFt6fIgc+xcmjVbs5NdHJP3a/iku2sT3QgCiIBWrqPOvJ4tIy6oIg8NPr9vJ8fxvJ/NzJk6F0gmf6LvHT6/beECqhJIjsKanit3bfx++deo13woMcO9Q/FRhJk0bGW0Ll/PKW/ewuqV71RMqGYCm/seMu/ujMId4c7uYbV07ztcunphK6IgKSWBgHFktMmiwNSw40MsksP9Hyq6u245sFupYnv8ikIJPX+fO3jxHP5fg/jz2E12bj4ugYL13pRAQ+tX3tTHYEQUC1K+w50MKeAws7la8VMvk8x4b6Z3zW4AvyePMGlFXyELkKQRDwqDZ+Yfte/vUrz059ntBynBwZmhFomJN8+el/5yc1rFcr+LmFmx+WBSc6B7g8NL6k5RVJ5Nc/ehflQc+qPszddpWfuGM7veNRjrf3sVjff+dwmNcvdnLv5uZVG8NCsCyLl86089qFziWv43fa+ciejXzpnt0E3EvzKFgKBEGgPODlP3/yPloqivjKS8dJ5RavsOQNg+feuUxLRRH3bWle0/u8IxLm4ujYjEBDFAQO9fRSFwisWaBhWRaabpDW8himiSAI2BUZx6QLclrLc3ZgmEtDY1QH/ZQmU9hkGaeqIIliYUKd06aCN5si41IVLAsi6TROVSUz6X1lVwrrvR+y5S77QcKxPyCe/jZe5xNIUmjWMpIYmCURa00al10eHuPPXj/KG+09M94b14Mfnm3jn46dJjopzGGTJP78sx+lwl9o/rUwiWuXkQQ7qliowpmWwWDyBXJ6hK3Fv4lTLiOrj5LUuihz3sHG0K9ik4KMpA9xKfInhDMnKHHsw2dbPDF2M0IzdZL5LLcXreObvW/yn858lRpnMY3uMtyKHXEeKeF7yrawxV+3pH2sC5TwZOM2/rbt2Jx+XuFcmuf6LnFfZTP13tCyp9AexUax3UXA5pilBHUVglDohVBFaYavxVWoksw9lY00+4r4Yc8FDg31MJCKTRnu3VHZwAPVzVS6ZveSuBWVIrsLtzLTid6r2imxu3HJ1/YnCiI+1U6xwzlDSlcUBDaFyvi9/Q/z1nAPz/ddoW1ijJiWQRJEip0uWv0lHCyvY29pzZzHsFIsizqVSfx4SkVqhs7x/gH+7lNP4HcUsmj1wQBem41nL11e00DjepDRc6SNLE7ZjkNaeQksZxhcioxN/S0JAhUeLxuK1sZcSBIE9lUWLvSrGYq0nqcjOtMg76oIgV2Wyeo6Q/EEh7p72VBaQn0wgE2WPzCNkLcwPwzT5NLAKAORpVUz9q+rY39r3ZpMUhtKQ9y1sYGukQhj8YX12/OGyfeOnueujY3vSWAcTqT5kx+9teSGZZ/TzuN7NvKzH9qL27E6JfR3w2238ekD27ArCn/6o8NL6hnpHY/y/DtXaCgN0VQWWvVJsmYYJHIFFblMPs9Y8trvmNbzRLPZNa0uprU8r7Z18u3j55hIZ7DJMg9tbuGxbRuwqzLff+cC3zt5gf6JOKf7h3CpKne01PGpPVsp8rjoi8T4+8MnOTcwgmVZ7Kqr4mfu2AUIPPZHf8/P3LGH589dwcJif3Mtn799Bz7H2laHVgO5fBu6OUo6dYRo8quTQYXK9FpvVfFXUeTyqb+vmu3+6PwV/vDlQ0RSqzuH2VReQiqXpy9yzZfgRxcu84XbdkwNSxbd1Hs+SY3nI6iSn0S+i+74NwlnTzGUfIlG/2fRrQx5M4EqBbBJBYXFkH0bftsGxrJHyBrjvD8EfWdjMBPhl0/85bUPLOhMDtOZHJ5/JaDeXbrkQAPglzYd5OhIL2cn5t5ueyzMP145yb/deidOeXmT6H+34y7+3Y67FlzGKSs89fBPLriMIAjUePz8wqbb+YVNty+47HT8ytYD/MrWA7M+/9099/O7e+6f8VnI7uQPDjw677Z8qp0Ha1p5sGZ1hYwWwo+j/MEKICCLIlk9j2nZEChMbjTDuKkz54fGz/KDgcN8tOogd5duX/F28qbxLtqUSoMvMKUNvdoQBAGXrNIaLOLEyCBQePkPp2aqXUmiSGMoyLaKco70Fvo0nr50mb5ojI9v2cjuqkqKXC7ck5m+90PW7haWj8GJON2jE0tSNZJEgY/s3oi6BEW6leLA+npePNPOeHxhnxnTsjjdPcRoLEl5YPX4uPPt65/fPrtkapldkblzQwOfv2vnmgUZV+G223h45zrG4ym++sapJdGoDrV1s6upiuoi/4I9VitB98QEX33nNGeHR4hlswwlCs8dAYhrGkVOJ3UB/6ruczr6J2Kc6hnk7nWNfHznRhJZDcMy8dhtyJLIZ/Zuoy4U4IenL/GJXZvYUXvN0FA3TP7oxcNU+D18+XOPIwjwX374Ml958zhfPLCbbF4nkkrz11/6OJ1jEb78yhGeO3eFT+5eWMjiZoCAHYe6E4e6c95lpvduWJZFIpvjH94+xZ++9vaiFcaVoKW0mMbiIH0T14wunz3Xxmd2b0WWQUDEb9vAuuAvIE5WWkLSNiRBIaF1kci3T47VwMJCFGSuRiiy6MIul2CYWXRz9Uzn3mvYRZWt/vplrxdS5/ebmgtuReU3d36IXzn8fYbSs59ziXyOl/ov0+Ir4iN1mxY0zruF1cXSn9A3iZHTjYAqSeysquQrR0/y0LoWbLJEXzTGoa5edlXNdq39oMG0rKk+CCicD59tbTNgoiAQdFzjpBqmOWMMV7G+pIiPblrPUCLOQCyBbpq8MzTM6aFhGkNB7m5s4EB9DTV+P36HHZei/tg0T/64oD8cYySWXHxBoCrkY1t9xZomCOqKA7RWFHFpYJT0Ihn6XN7gRMcAj+xa20BjLJbiqeMXlzSJFwWB9VUlPLl/K0Xe90aAIOBy8tG9m7g0OMZbbT2LLp/O5XnjQhdb68pZX1myqkmExmCQn9uzm2+ePceV8TAPtl6jtrkUldaiIiq8y5sELQdeuw2/08HFoVHe6vDQVBqi2OOel7IxHeOJFBcGR/j5u/fid9oRBIFP7NrMb373Bb64fxcOVeGBTS04VYWqgJct1WWc6R9+XwQaXtdjeF2PLXl53TT54dm2OYMMSRRwqSpOVUGVZSRRIJnVZlSvlgJBgB01FRzt7p/yNbo4PEYklaHEJyEICm6ldirImNq/4MQuFZE3U1PiLnP9ulf7Mkxr5RLUNxoVziB/vPvn1nw/giCwvaiS/7TzPn77+POMZma/E/pSMf627Rg+1c6dFY3Lrmzcwspwq6KxBNgVmS/s2s6fHDrCbz//EqIg4lQUHmxt4sPrb0zfxHuNq26VUJiIqGtUzbgKAWZUTKx3jeEq7IrCg63N2GSZf3rnLG1j48SzWQzLKjh5hyP8w8l32Fpexj1NDeyqqqDK58PvsN/U1ahbWDqGownCiaVNELbUlhfUgdY41mwuL8Zjty0aaOimydneYR7ZtX5Nx/PD4xcWpXJdRcjj5L4tzWyufe+MzwQBKoNePr1/K20Do0syWzzROcDZnmEaSoLY1dXLTkqiSIXXy4HaWuoDAR5d995y48v9Xj6xezOvXOrgB6cvIgkiD21uZX9zLc5FjjOpaciiiG2awIDHbiOtFaoiIgXfK5h8jssSWe39MYnN64MYZmTBZWxKyySdCjrGwvzRS4dnBBmSKFDsdtFQHGRndSWtZUVUBnx4bSovXGznfzz3+rLHtaWyDIeiTAUahmlxsm+QB33VqKKXrD6OYeaQxEJl0LJMdDONZk5gE2TyZgzDmpR7nlQ6uxo4W5P/3MLSIIsi91Q0Ed+S5f+efYPh9Oxm/8uxcf7o7CGyhsFdFY34VfsttsMa41agsQSIgkClz8t/efBexlNpUppGkcuF1744pcAwDQazYUzLpNQexC5di6AzRo7e1AhB1UvQ5kUSRPKmznA2QjyfxrRMHJKNMnsQt1JoxLQsC83MM56Lk9DT5E0dURDwyE6KbD6c8uxKQ9bQ6E2NktBTgIBHcVJq86OKS2sCFAUBp6yQmOyXyJsm8dzaOgmbWExkr002REHAPo9LpktVeXhdC5vKSvlR2xXe7OqhZyI6ZbSX1XWO9PVzpK+fap+P+1ua+FBzI60lRbhV9dZD5n0My7IYj6cW9S64ivVVJWsmST0d9SVBXHYVYgsvZxgmHSNLa2JfKVJZjVfOdSyZWtZcXsT9296bBvXpUGSJ1soS7tncxLffPruof1BGy3OsvY/djVU0lM1uDL5ebC0vY1PZe6/olNcN3DaVJ3Zu5qHNrfzTkdO8frmTmpCP1rJioKCIqJsmecOcIXde4nHhUBW6xico9RYkiC8OjVJfFEQSJfKmQedYhNqiAKlcntF4ijLf2lVnVhPx9DdIpJ+a9omFhYE5SSuSpRIqi/4GWSpFN03+8s3jxLLXnguKJLK5soxP7tzM/RuacL7LKNi9hPf5XGguCc0KAM8NDvPQpjr8tg1EcqcZSr+CT21FFBR0M8lo5hBxrQO3otMV/xbJfBcWOnkziWFlkAUnpqWjmTEEBEThVuZ9qVAlmcfqNiEJIl++8BZd8cgs1/C22Ch/cOZ1BlIxHqxupcrlw36LSrVmuK5AQ5IlQhUBAqXv1zYlmBiJEh6KYswjcQsF2s5gPEGJ20Wpx72s7WumztODb9OfHuNzdffT6r1m7nch1sOfXPkun6q5hztLtmIJEicnLvPs4FEiWhzdMnFJNm4r2sD9ZbvxKE4sLIazE3yn/3UGMuNkDQ3DMgioXu4v28ntRZtQxWkeDFicjXVyNtbJYCaMZuYJql4erzzAZn8DNmnxm0sSREIO51SgkdXzjGaSa6budNXBeyB5jWepiCLBRdzg6wJ+fm7vLh5d38pbPX0c7umlPRxmOJEklilUOfpiMf762Ale6ejk8zu38dC6FoIOx61g430KwzRJZHJTKjqLoaEkOCVbvZaoDHoXzT5DgZY4FEmsqVLaya4B+iOxJflVBFwODm6op/QGTT6LvS7u3NDAy2fbl1TVeKd7iK6xCWpLAqt+/kRBIJ7L0RmJoBnGDPpwlc9HkWtt5EbHkynO9o8UfD0kkbxhUuxx45jmrVPicaGKImf6hjBNk1Kfh6qAF6/DzkObW3n5YieabiAKAm9c6ebJPQXBEk03ONrZj11VGJyIMxxL8MSuTWtyHKsNu7IdnNPvKQvTSpHPd5HLX8JlvwtBKLwjBqJxXrvcNbWkJAhsqijl3z94J5srV7dS53XYCbocdIeFqXusezyKgEy1+zEmcuc5PfZfCNg3o4gesvooca0dt1KLS6mlM/Y1TCuHXSomow8zljmCT20lo48Qy11CFf2okn9Vx3wzQzcNdMtAFqSC1OoKYJdkHqndQNDm5I/PH+LCxAg5Y2aipT8V5csXDvPO+ACP1W1kU7CMUocH5wIGvrewMiw90JjjvLt8Dj70Ewe4+8l9y9ppSsvTE4kSTqUJOh00FAWnyrnvNV75xls89RcvERufX087k9f5qyPH+aUD+7Ats4nUIdvY5KvnUryXztQg9e5yVFHGtEyORS7hkh20emtQRYWu5BBfbv8BDa4KPld3Pw7ZxolIG9/qew237OCB8j0ICCiiTLHNz65gK0HVw3B2gmcH3+bFkZM0uiupdl5Tg0obOTqSg9xbuoMHy/cS0eJ8q/dVfjR8hCpnMWWOxX03FEmi1uenOx4tnA9dpys6wWg6Rbl79SckJhad0Qi98WvpYLusUOv1L7quMFl9emLLRh5e38Kl0XEO9/RyamCIK+EwI4kkumnSGZng9159E920eHLrJuyyfOvh8j5EOpcnvQRZ1KvwuxzviRKZ26EuOaDJ5nVSOQ3vGij/WBa8er5zUQoXFB7xpX4P+1vrVn0cS4UsidQW+9nZUMULZ64suvxoLMnF/hG211cQdK/uxH8kmeS5K+2cHR5GNy2mRxqf3LyZA67aVd3fVVgUJsoXh0YxLYtKv5f7NjRRFbyW0KsJ+fnQxmZeu9xF+1iE/U21FHtcqLLMp/Zs4akzl3jlUgeWBXe1NvDhzS3Esxo2WWZDZQkvXWjHtCwe2NTMnvqqNTmO1YbLcRcux12zPjfNLOPx38MwImAVEoZvXOkiO62C53PY+eLtu1Y9yLiKcp8HWRQLASmF308QJEqd+2nQP8NQ6iWS+R4sS0cS7IQc26lyP4LftpGB5DPkjAgO+f9n7y/j5ErQ8274f7AYu6uZSa1Wi2EkjYYZltlejOlxTEmcxPHvzfsEXj9x4vgX+3Ec05qXvLszC7M7zKMRM6uZmaqLqw69H6rVUqupWt0tadZzfZhRVx2qU6fOua8brquYydRZWqb+Cp/aQFzvJ5Jpo8T1GE65ZF2O+27EYHKSK5E+6j0l1Lhv/fuySTIHiqsJ2Bz87dXjHB3tZTw1t300oWu8NdjOmfEBdheUc19xDfW+fEJ2NwGbA5eiIgsfCsmsFqsaBldsCqV1RZQ3rOxHMByJciIxyStdvZT7/TRtqaJ8HVU8lkJRVQGKbenMo2YaHOvtn1dqzRUbvRUU2oNcme5hq7+WEkc+E+kIVyLZv/1qtsT95uhpEkaar9Y8SZkjBAJUuQo5M9XO68OneKxoF6IgUuLI44tVj81uv95TxnQmxtujZxlLhecQDd00uK9wC08V34NHyT6I26L9nJ1qJ2Hk1m5il2S2hIp4t6979rW+aIT3+rv5dMOmNc0kWpZFUtN5vvXSnAysW1HneGjkAoeisL20mO2lxQxHo7zX2c2rre2c7B8gntGIaxpfP3aSfZXl1OevXFv7Q9x5ZHQjpwFnuMFM6zZ80XZVyblFy7QsYqn1IRrxdIaLvcNk9OXbpmyKTENJiMqQf82PYyUI+dzsqi3jrYsdOfkdXOgZZmxLfM2JxqWRUU70D/BAdRXlPt8cglodDKzpvm5Eid/L1w4srqwE2WrLg401PNhYM+89h6rwmV2b+cyu+QPesiSyq6qMT+zYtGbHe6chinZc9vsYC/8eppVAIsDZvqHZ54coCFTnB3mwYeXKR7ki4JzxV5i5FYWT2WqcJNqp832JkH0P05mr6GYSuxzEb9uEW6kEBDYEsoPSupnAJuXRHfkeo8kjCIJEwLaFUtdjOG+Q7P1Zx+XpXv628w1+ruqBVRENAEWU2JJXwu/ueITnOs/zk+7LtEfmt6pOZZK81t/K24MdlLl8bAoWUe/Lp8zlw686cMgKNklGEkQkQbhriMcGX+gDMWu66tYpl2/lN/cir4cv7dmORVbK707C4bYhyUt/UbIo0lgQomtyio0F+Su+yPJsPjb5Knln5Cy98VEK7UHOhNtJGmm2BepwSdkAoyM2iCxInAt3cDXSC4Bm6phYjKQmSZs6dkkhY+gMJscZT0+TNNLolkFPYgTTMtCsuQGFXVIotufNkgwAj+wkY2oLDlcvBIcss6uwFIcsk5wJWIZiUX7SfpVN+QU05RWsWZZYt0ze7u3khfars69JgkCJ28PWFRKNG1Hk8fDZrZvZXlLCH7x7kEPdvWQMg5FYjFP9A1QHA6sbcP9wXu+OQDfNnM23JElEkW9PdkoWRWRJRCC3S0M3ciNLK0XL4ChTscSy8w4AHoeNHTWld/wh6lQVqguDFPhcDOXgYN42NM5oJEZ9cf6aKsolNI1ij5uPNW3Evo5yyLcbP2vDxZZloBsTmFaKa7+2rvGp2dkVWRLZUVGCKq9fy6RdmVsRT9zQyikKCgF7MwH70i1qsuikxPUwTrmESKY1u55tCx61ep4J4c8yMqaOZt7a/dCyLAzLIqlrJA0t+/+Zfzf6C+jNm6IjMr7oL0AzDbqik3RFs6IDkiDgVe0EVAce1Y5NlFFEEVFYS9/sW8ef3vdJ3OLq5cejsRSSKOB0Lr4tTTNIpzUcjqxy50qeE6skGiLuRYhGJJWifWySwekIhmlS4HHTWBgi4FzeXXY0GuPK8BhTyeTsIPb2smIEQSCSSnNuYIipRBJBECj0uGkuLsRlUzFMk+FIjKsjY0TTaRRJojovQE1ecFGtdbvLhrhM5lEWRSoDPv7m+Enuq66cMzQUcrvYWbZ8RWeLv5Yj45doifZR4y7h7FQ75c4CShx5s32IumWQNDIcHDuPJFw/Jrdsp9wZwrJMUkaG01NtvD92AQsTEQmwGEiOYSzw81FFFUVc+LPn+rhRJIm6QB7bC0o4PJglQIZlcnZ0iL8+d5Kvbt7BxmBoxW1lNyOaSfNefzd/fPIwCf36jdqj2nioooZ85+qlNutDeTxaX8uF4RHG4wkAesPTmKYFOd7LxRlflWvIOpTPVQv5ELcTuZ1zy8p+V7fjezJMM3tN5Lj8jb/3tcT5nuE5Qc9S8DhsbLmNSlOLQRAE8j1ONpSEciIa49EEveNhdtRouGyrG5rVDIOElj1fWSdugXNDQ9QEgiiyNHul2WV51fe72w2bLPHslkbcqzxHdwqpzHk0fb70sWnGiSR+iCrXIsz4aEzEE7O/PUkQqcrzr+ux3ZxVvlXncVl0ke/YSb5j6YrWzzLSKyQa5yYGiWRSJHSNhJ4hpmWYziQJp1NMZ1JMZ5Kz/59IJVZEsw3LYiqdZCp9d5pV62vkcH/2XC92u0JTYwmGYWK3KyiKNPucnJiMcfxkF6OjEUpLAuzdU4PLZcv5ObqqGQ1JlnD55xONaCrNoY5ejvX0IUsiWFDmT1Hi8y5ING7mhqPROKf7B0lpGhnD5MVLLfzOo/dT6vdytLuPV6+0UeBxYZgW4944taEgLpvKZCLJ260dXBoexWu3z5ZOy/2+RYmGw2VHWoZoWGRdfFOazhttHbhuaKHaWBDKiWiUOUI0eMppj/Zzyu6nPzHKo0U78SvXh8tLHHlMpKf5ctXj+BQXN550WRCxSyrDqUl+MnAI07L4YtVjlDpCyKLIK0MneHv0zLz9CuQahi2NgN3BpzZs4uL4CJFMVnEqpmV4vaedqXSKZ2o2sL2wmDK3d87QYi6YTCXoDE9xdLCP77VcpHdmFgSyJK8pL8SztfNdLE3LAstCXGHpUBElxBvOiipJKzpJkihgl2VkUUQ3TXTTJJxKEstk8NjW19zsQ8yFKksoOWYqDdMkldGxWJvfxFJIazpajlUKAWFN5VlvRNvgOOnM8m1ToiCQ53bOmQO4k/C7HVQXBnnnUmdOy3cOTxJJpFdNNPqmp/nR5SsARFJpWsfHaRkbozEUmpkjzF45j9bWsqX4zpOylcBlU/mdpx+404dxy0ikDhJNvjL/DUtHkoL4XF9AFLMzg9fM8yArnWxf4TNppUhmtDnqXx80EroW6ImPMZgKU+7Mp9yZP/t6ysjQHh3KeTt9iXHSZu6Sy3926TA90akZMpEiZXww5JrvJly+OsjA0BRXW4dIpTTy8zzs3F5JSUkAWRJ5/3Abr7x+AZfLxlvvXkGWRQ7sr0fO8dm76tYpt39+lrl7corDXb3UhoJ8YksTdkUmpek5l5/L/F4+v3MLIZeLWCbDb37/J5zo6afA08iV4VEE4Od3bSPochBLZ/DPqBGFkyk6JqYo9nr4wq6ts1nnpdRfshWNpU+WKkl8tGlhLfVcH2yyKLEjUM+lSDdvj5xBEWUaPOU4pOuB6X35m7kQ7uDydA/bA/W4ZDtpUyOcieGS7RQJeRiWSUxPUWgPkm/zoVs6HZFRrkZ6kVi/Xj2HLLO/pILHq+v4YetljJmbalzTeK+vi5aJMXYWlbApv5BKr598hxO/3Y5TVlEkEVkUsaxsaTJjGEQyaaZSSUYTcdqmxjk3OszpkUG0Gxi6AJS6vfx80zYqFhgEn0gkuDQ8iiKJ1ASD5LucKEt8lxbQFw5zqLuH6A3mfw2hfKQVZLgFQcBjsxFyORmKxrCAyyNjnB8a4Z6KsjnVjg+xvrArMnYl97aC6UQqGxCsc0UjmkzPCXaWgiKLqw6QF0JG1+mfmCaTw3HYFJmqgmDOpG294bHbKAtm5yJyUcvqmwgTS6WB1YlTmJZFeqY91CZLbL5B3jZ9wyxQrm2nH2Lt4LDtRRJDc18UQBScKHI1NqV+1kPjxsSiZUFKW9/gczwWx7jBsCPvBkUyyzJI6CNkjIlljffscgEu5YMxnH8z/qnnPS5O97PFX8W/b/rk7OuTmRh/2f5qztsZTk2RMnIX+Dg3MbigOd+HWBnOne8jHE7g9Tq4cKmfyakYH31mO6F8DydOdbFxQwmPPtzECy+d5a13r7Bnd83tIhoLt06NRGKkDZ3tZSX4ZgYcV8LwNcPk0uAI4WQK07IwLYtwMoUqS+yqLGM8nuD7Zy5Q5vexvbyEkDtLdvJdTraUFHFuYIh/OnWemvwgO8pK8C8xZGl35TijURhacplcUOcpo9iex+HxizxWtJOQzTen9LTVX8czJfs5O9VGR2wQSRSzbR7ArmAj9Z4yvLKTPXkbOTnZwrd73sQuKkiChCrKBNX1k6QUBIGQ08UXm7YxEo9xaKB3NgCwgOFEjBc7W3mjp4MCp5tCl5s8hxO3oqJKEoooYs4QjZSuM51OMZ6MMxiLMpVKLljOvLa/RytrFzym0Vic5y5cYnA6QmNBiOpggGKvh3ynE4/NljVmgyyxSaUZiEQ40TfAu53dJGcePA35eWwpLloxOSjxemguKmQomr3BXRkd41tnzjKRSFAV8ONS1VmZ3qSmEctoFHncVAX8K/otWGT7TtN69rzd+Ea2yqahSNKqB8KsmZailKHPCagsi9nPoK7BfiAbzGUMg5Smz37v16qGiZn95Pp92BQZj8M2KwO6HPomwmyuKFr3AbqhqWhOkruCAAG3E7u69hnQsen4dWK1DGyyRMUdHgK/Eaosk+dx4naoRBLLe/b0j08TS+UenCyGurw8fvfBbNZfMwxMy1rw92rdpha8D3EdDttOHLbcWory3U4GwxEswLTMdZ0Fjacz9E5Oz2ljqZxp1dLNFIPx1xlPniBljM4QjcV/jyWux6nxfX7djnU90RUfoTs+iv0myfyknuH0VAeSIGIXl0+oZCx9nu/Fh1h/NNQV8omP7qSsLEB7+yhvvnuZkdFpQvkepiNJdu2sproyn/v3N/CXf/MORo6JNFgN0RBAtavYnPMvHGvmP7dyDzZMk2+cOINhZmX9REHImhKRrSzsqSjDZ7dxYXCE1tFxuiam+PzOLVQG/QScDh5uqKHY6+bS8ChHu/qYiCd4qqlhlozcDLvLvuyMxjUlpNMDg3RNTpHRDfxOO00FoWw2PMegxSXbKbQHcMsOmrxVeJW5x6RKCh8p2U+1q4ie+AgJI41dUsm3+djozUopehQnTxbtpsgeYDIdQRYlKp1FBFQPY+lwVq1qBjXuEp4u2Uu1e65iRbO/GpdsJ0/15nTc1yCLIo3BEL+yNSuze3iwd16PYNow6ItO0xe99Ru7AJS4PXx50w4+17h5ycA8lslwfniE88MjOBSZkMuVNVO02bDNEI20YTCdSjEwHWU8Hp+txhR7PXxt9w4K3K4VBwylPi/3V1dxbmiY0VichKbxdnsXrWMTlPt9c4hGQtOIpzM81djAZ7Y0L/p5DNPkeF8/veFp0rpO2sgqKqV1naSm0zY+MbusZpqc6Ovnjw8eQZUlVElClSVskowqSxR7PGwpLiK4yEzUe53dDEdjpHQ9uy/dIGPoJDSNq6PXVTlSus7xvn7++P0j2KRr+5Gz/5YlSn1emgsLF93Pqf4BuibDJHWN9Mxnycx8rq7JqdleZtOyuDw6xh8fPIxNlrP7kaTZf4dcTrYUF83zsZFEkZDXjc/lYDwH5+vLfSM8tqUe2zrLaXeMTMxk2JeGJIpUhdZHwWhwKpKT2hRkzfJKAitPVMS1blL6CG61Dpu0vGmeZZmMJN5ClYIE7TsWXU4QwGVXyXM7cyIao5EY8VR6TYP/jslJBiIRmgsLsSwIOOzYZJmB6WkO9fQylUyyr6KCxlA+6j/DVpk7CdOMY1oxBGRE0YcgzD3/daE8LgyMYFkWumFytn8YTTfWpWJ3cXCE0WhsTuVtU0khYDKZOk3L1J+T1EewSyFEQSGhD6JKAWTRhWZMkzGnsUshgvat2Jf4DXUPTeL3OPC7r99rDdOkZ2iKskL/ug6754Kfq3yAjtgI1QsoRUmCSK27iKeKlyeKp6Y6OD7Ruh6H+CEWgSSJNNQX0dxUitfrwO918ua7V0gmNUzTwjBMZCk7AJ6f5yaeSOeUwLqGW5a3lSQRl8+xYH98yO1CkSTODwxTHQxgV2TimWymcqE2phtHJjO6wcuXW/nNB/bzZFN9Nmt99iKQHXwZjcaoyQ+yoSDE0e4+vnHiDH1TYSqDfuLpDElNY1tZCc0lRXz39HlaR8fZU1m2KNFwuGzLzmhohsErV1t5v7sXr82GIEDn5CSXhkZ5amM9u8tzK3XG9RSj6Smq3cVUuAoXHNK2SQo7gxvYGZw/kwAgCiIF9gCPF+2e916dp3TO3zXuEmrc8+dHmn3VNPtuTerPLsvsKirNBn9OF2/3djKZWrtBKQHYWVTKZxubeaq6AY+6+MyDQ5bJdzpRJWkm667TG56mN7w0yVFEkS3FRXxsUyNPNNRjuwW1KZeqcl9NFcOxGD+8eJnBSBTNNOmeCtM9FV5wnd3lZUu2XOimyU8ut/BuZ9csycgYxoIDX4ZpzhIsyKpjzBIOSWJHaQkFbteiBOD75y9ydnCYpK4tuZ+MYXB+aITzQzP7EYWZfWQJwN7KMvKdzkX381prB6+1thPLZGYIhj6nPe4aTMuiY2KSjoms2ocoCLOfRZUlGkMhvHb7goaZRQEP+R5nTkTjXNcQac3AZVu/bLRhmrQMjhFNLh8gy6LIprL1cZ+eiCZyb9+SJAp8KzMjBRCQEASF3KdeLIYTb+FR6pYkGpBteQ26nXSNTi271YxuEEmk0Q1zzYLJ1vFxvnHmLE0FBQiCwKaCAh6oruZQbx9nh4YBiGsdeO02qgJrQxbH0pOcC18mZAuy1d+0Jtv8WYJujJJIHSKVOYdhhhEEGVkqwWW/H5u6GVHIPi92VJbwwvkrmEZWhah9dILTfYPcU12+zB5WhpSm8+KFFqaT16XiBQH21ZRjWTr9sRdJGeMUux6hyPkAGXOK1qm/psj5ACHHXjLGJOOpE8S1PvIduwk5F/cke/dsB9sbSucQDQH40cELfPXpPQS962MgmSvuL9jEgYLmOfOP1yALEvWeEj5beWDZ7VhYXAh3r8MRfojF4PU66O4Zp29gkkoxj7aOEcYnopw83UUimSEaS5FK65iWhaYZObdMXUPOREOQBKo2XQ+oZVWmqmnhALs6L8CeqjJO9Q7wp+8dRRIFin1e7q+tojLo51TfAOcHhjnc1ct0MoVwUmBDQT6PNNTiUBXuqSrnSFcv7eMTOBSFkhmX2oxu8F5HNz2TYSRRIKMb1OXnUTmjaT4RT/B6SztjsTiiIBBNpdlQEFqUZADYnCriMq1TKV3nBxcv8+ktzTQXFaJKIhOJBO919vB6a8eSREM3DcKZKBE9wcXpbrpiwzxetIsCm3/Jfd7NsMsyOwpLCDlcNOUX8GZ3B+fHholpq2tdqPEFeLCihser6thZVIKyjCtogcfNZ7c0Ux0M0DY+wcB0hPFEnEgqTUrLBrQC2SDKY1PJd7moDPjZVFjAjtJithQXrcqor8Tr4XNbN1Pu83G0t4+rY+OMRGPEMmlM00KVZRyKTMDhoNDjpqkwtOSckmVZjMcTjMSWD5hvhjFTdUvOmFSNxxOz5lELYTQWZyQWy6n/fc5+TIukeX0/E8vsZzKRZCQWW3KZhWBaFildz7aLpWHMGSelL9yKVB0KUBr0cXVgbNntdo1OcalvmP0bqpCl9SEa3WNTtA6O59Q6pcgSO2pLl13uVjAVS+YsmytLIoFbcLp2KuU4lbUN3q7Brmbb4nLFVDxJZg2z1hkjq+NXFQigiCJt4xPkOZ30TE3RGMrn3qpK/vbkKYaisTUjGlOZMIfGT7LBU/Mh0bgJujHOdPyfiCffQhAcSFIA04yR1q6QzJwkz/ObOGw7EQSFvdUVeB12JmJZZcFwMsk/Hj1Dqd9LWWBtBA8M0+TVS62839Ezez8E2FAYoqEwhIXBROosiuilwf8L+GwbCKevIInfxqPWUOp+DNPS8Nka6Zj+BpOpM+Tbd6OoCxP+gbEwdWX5c17TDJPzHUOktdwql+uNxdTzZEHELS+vOAqgisqiSpkfYn2wsaGYqy1DfOM7Rwj4nQyPTFNS5Gd8IsZPXjpLXtBNS+sQNVUhTp/poSDkWVH7cc7fpmpT+KXf/8Ls36IoECj0L7is12Hngboqir0ehqaj6KZJsc+D1559aPjsdkr9Xp5qasAwLWyyRJ7LiSyJqJLE1+7ZwZWRMXTTJN/l5L7ayqwjtiSysSiEQ1EwTBOnqlAbyqPU753d78aiAgKRKJYFfoedxqLQotlWyA602+wqgiAsWgoyLYtoOs2j9bWz0oAlPi/RVIaXri5d4ksZGQ6OXeD0VBsJI8UWfw07gw1zhsA/iJBFkSp/gM85N7OjoITzY8OcGx3i0sQovZFpkosEhTdCAApdbhoC+WwrKGJLqJitBUXkO5w5Bf9uVWV3eSlNhQWMxGJMxBNMp1MkMhoZw8Aws/MtkijiVOTZjHip1zMrXbkaiIJAidfDR5o2sKuslP7paaaSSZKajoWFLIrYZBm3qhJwOCj1eXEuoX4iSxI/v2MrD9au3lgq5HJS5lv8gfqLe3Yxnojn5K+wFIo87iX388nNTewqL5kzKHkr8Dvs1Ocv3FZQFPBQW5TH0dZe4su4hKd1nR8cu8iOmlJcorrmVQ3TtDh4uYvesallz60gZElSbWFwTY/hGqbiSfQcKxqSKMwJ6qOZNkYT7+JSqginzyOLHvIde/GpTQiChGZEGE8eJpy5hF0qpND5ME5lbvU0kr7KeOooaX0UBIE8+z3kO65nbC3LQjcjDMVfRZWCFDofRrghUFFkGecKhuTDM0Rj9SLYWdhlmV2lpfz81q0IAnzjzFnG4nF008SuyFQHAgiCQMa4O4K8n3Uk0kdJpo/jcjyE03YAUfQBOro+yFTsb4kknsOmbECSAhT7PDzaWMd3T54HsgH5kc5e/uK94/z8nq1sLC5YemfLIJbO8MaVdv7hyGlGItcHkQUBPrtzM05VwUInbUzgUirwqvXZ9xERBRnDzFZAREHBp24gaN9Bd+Q5ptLn8ahz7/8XOga52jNKe/84lgU9w9crfOPTcZw2JavueZfCrdh5pGgrm/0VOS1vk2SUf0a+IXcD6moLeOrxzZw+18PkVJzmplL27qkFC0bGIgT8Tl5/6xLf/t5RRscifOyZ7SgrEGHJmWhIssSux7bktKwA+B0O9lQunOmvC+VRF1q8F7E2lEftIu9vLyth+yJysn6Hnf3VuV3Ms8cqCNjd2TkNYxGHYVWSubeqkp9cvsreynJsksRgJMr5oWEaC/IZi8WxsLDLyiyZml1XlNngLcerOHHIdmpcxYTsvp+JIUKBbLC/vbCYxrx87i+vYiAaYSQRYyQeYywRZzqdImno6IaJIGTPpUdRCTocFLncFLo8FLvcVHj9eNXcdZlnj0EQcNtU3LYgtXnrE7AtB5ssUxX0UxX0r2o7sijyQE3VmhzTcnisYeEB+7XGvspy9lWuT8b7GlRZprm8kLI8Hy2Dy1c1jrX18eqZVj62Z9OaVzXOdg/y7qVOpuLLtxPKosSjW+vXTdo2kc7kTPBEUcRtvx7UJ/VB+qI/oNT9UdxKDTGtk6H4K0iCA49ahyAoOORSwukLTKcvErBvw8n1+3I000Z35Ns4lBI8tg0YVhpRmEsadDNGb/Q5kvogZZ5PzDsmVZJwrODcJDLaLfsXLAS3aiOWyfBudxeKKNEyPk5C0xiLxyn2ekho2oxYx9rfy+8OO7C7C+nMeSQphNvxNDalfvZ1m9KIbk4wGf2LWWdwURD4+T1bOdjezWA4AmSvj5cutjAcifJAfTX7ayqozAusKEiPpTNcGhzhnZZO3m3rondyes41t6uylIc21CAJAvrMT8+yzFkCLQgSIioZY3J2HUm045AKMa0McW1w3j7dThuKLGGaFpF4ivFw7LpEtyDwhce243UuLnhzpxFQ3fx81QN4cqxoVDhDPFy4ZY5E7odYXzgcKtu3VlBXU0AimcHttuGesX7YRLbi7nbZudwyiMOusHN71foQjQ8aTMtiZDSCIEBRwdKl0prNFSQiSfQb9OZvVKLSZwZvX77ayitX25CkbFvWeDxBgdvFoe6sid2Bqgq+sntu37EqKTT5qmjyVa3dh7sL4ZAVqn0Bqn0BDNMkoWvEtQxJPWu+Y5rZnnhJELBJMk5FwaPaUMTb49T8IX62saWymE3lhXSNTpJZJGFwDfFUhr97+yRl+T721JWv2fXXMzbFc0cucKV/NKcAvyjg5ontDWuy74WQ0Y2cXaAlQUC+aVZJFp0E7FsJ2ncRTl9gIPpjptOX8Kh1yKIDv30zSX2AidTJedsbSbyNgECx8zGcShUWOpZlANfc0g16o98lpY9S7vk0XlvjvOBaEgXUZdpa535efVboYS2wIT+f/ulp3uroxLAsyn1efHYHk4kEXZNT/P4775I2jCVVDW8FIgIxPc57Y8doiXRiYlHnrmSbv4k8W7ZF62z4Mlcj7ezP20mF63rr3eHxU7THuvlE6RMICHyz90fsDm5hh7959jrXTJ3WaCcnJs/xWOF9lDo/GH4gppVEFFyIwvyAVZJCWGYKuB7014aC/Mp9e/j9V94hNdNalMhoHOnopW10gjevdlAe9FEVDFDgddMyPDdJEUmluDI0xnAkxmQ8Qd/kNF0TU3SPT9E1MUU8nZnz6yr0uvmlA7sJzYiLCJaATcpDM6NkjAiq5EUUVBTJQ0zvQzcTyOK1dkUL09KwrPkV2YrCAEGPk7b+MTZVF9Ncc/37UmSJfJ/rrq5oqKJM2QpIQ427iHybF7eSGzH5asMuYvry83A/i7BJaxfCy7JEIOAiEFi4JlxfV0hlRR6ynI3Zbpsz+N2MaDTFoePt+DyOZYnGE1++n/0f2Yl1w6Cu/QYrdrss88t7dy/bClHqWz952bVC2kgiiwqSMP+rNy0TgZVdQAtBEkU8qm3JQe5/DohOJ+ntGqO3Y5TRoTDhyTjJRAZdN5EkEdUm4/ba8QdcFJYGKK/Kp6ImhLIOUqe5wjRMxkcjdLYOM9g7ycRohMh0gnRKx7IsFEVCtSk4XCqBPDf5BV4KS/yUVeXj9efW8rYeCLgdHNhYxfmeIdqHJ5Zdvnc8zB/99CBffmAnT27bgCje+nFblsWlvhH+6dBZDl7pysmJWxQEPrNvM0XreM/IzMiz5gJJEuepBCqiF6dcgSgo2KUQkmgnbSx/bgFimXZ8tiZscgGiIAFZU0zLMjAtg7HEe+hWnHL3pxYkGZA9RyvpA87oBtYqW/RuRIHbxRMN9TQXFWKaFkUeNy5VJa0bXBkbpX1ikob8fGrWaD7jGjRT52q0g7SZwa94mcyEeXv0MFE9xsMF9+JV3AwlRzgXvkyTt54KrhONnkQ/p6cu8HTxQ3gVN2OpcV4bfo8d/ubZZVJGiiMTp+mO9/OJsifX9NjXE7JURDJ9As0YQJZKZqsEpqWRTB1GlgtmhAmyEAWBJzfVMxGL81cHT8zKgxuWxUgkxkgkxuneQbwOGy5VnSUj13B5aIzx2HEkQSCp6URSKaKpzIKiGQGng197cC+7KsuQZu4lAiI+20bGkyeYSp+n0HkAWXDiUWoZTR6iP/Yipa6n0MwYk+mzmFYGWZo/nyGJIj63g48caCbkc5HnW6vmwLsTTtmGU849dvhc3bYVzxr+rGAtiUYuUG8xNvmZJRojYxGutA6xsaF42WWLawpYailVlnisoW7tDu4O4kz4HQrtlTglNzbRiUfxIwky7dHznJx8HUVUebDgMwTVwg8rDbcAXTPo6RjlxPutXL3Qz9hIhOh0gmQ8QzqtoWvZ6o4oCoiSiKJK2GwKTrcNj9dBXoGXxs1l7NhXS01D0Ypdz28FlmWRiKc5faSD00fb6esaJzKVIBZLkUpkyGT0rGb2jAu7KInIioTdrmB3ZI/dH3BTVpXHpu2VNO+oIpC3csng1UAQBHbXlrOnrp+hqeiysxoAl/tG+fNXj3B1YIzHtzbQVF6AuMJjHg5Hef9KF6+dbeNC7xDxdG7GYNuqSvjIrqZ1PUfZ72z55QSBBX1LLAzMmQyraRlYloW4QIJiIYiCimFpLJSdEQQBh1xCwLaVsdQh8hx78Kj185cTV0Y0dMNc04BDEkVCLhch1/zAzmsvZ2tRMQ5FXnNp24yl4ZHdPBjaR5EjRMpI8+rwu5ydukytq5LN/oXNY2+GKqo8ULCXf+h6jp7EAFWuMizLIqrHuRJpZ3dwC1555Upjdwou+32k0ieYmP5DHLbdyFIxlpUmpV0mmT5O0P2LiMJ1yXZBEPDabXx2V3Zm4u+PnGb4hnkKyJLx8ViCcRLz9jedTM1Rk1oMJX4Pv3LfHp5sqsehXBcXEQSZIucDjCYOMZW+RKHzAIrkocB5D4PxV2kL/x2D8TcxLY241oNDLpyd5VhwP3leTl7to7VvjGR6rhP5Lzx7Dz53bhWAnzUEbLdPbcuyLP7m/32d/u5xfv13nyGvwIsgCJiGydf/6FUG+iapaSjiq7/2yOzyvV1j/MP/eYsNm0r57NcOIAgC8WiK9qtDXDnfx0DvJLFoElEU8QWc1DUWs3N/HQVFc1vsf/jtI1w41cP2e2p49NltOBawlkglM7z2wlnOHOugeXsln/rS/pw+l2matHeMcupsD0PDYTKZ+XNnX/3iAYoKb01IYV2Ixsmz3Zw+38tjDzZRXZHPoePtvPr2JR68dwMP7GsgGkvx3R+dZHNTKbu2VRKJJHn7UAsXrwySTGUoLvTx+IObaKwvQpJEMprOt547jttlo6I0yJsHrzAdSVIQ8rB/dy17tlfPStR29ozx6tuXudwySHffBFfahnn/WDuQnax/5tHNlJWsj279BwE98aucnHgDjxLAtAy2+u9nk28vxyZepsbdTESb5PjEqzxZ/OU7fagfKFiWRW/nKG+/dIEzxzoYHpgiGklhLjKMa5oWpmmgawbJeIbwZFZpShQHuXy2l4OvX6JxSzkPP72Fxs1l6xaQaprOoTeu8OZPz9LfO8HkWJR0avFg2TBMDMNEy+gk49fL1YIAl8/1cvxgK8XleWy/p4b7HttEQbF/VdWClcDrtPHxPZvoGJnkRHtfTkFnz1iY549c4FhrLxvLCthWVUJdcR5VBQHc9vlZNc0wGJuO0TY0+osXvAABAABJREFUwaW+Yc73DNM5MrEiKdl8j5Nff3o/Qff6PiBzJqkWC56rpD7CZOokdrmAqNaGZk7jVBaX37wRAfsuhuKvELBtI2DfhmllyBhT2OUiQMStVFLsfgrNitMR/jqNwX+LXZ47oGstclyLQRLnV2VWg9ODg7xw+eqC7z3bmBWAWA/IgkSJo5AGTzWyKGNh0eCpoTXayWg6t4rSNewMbOb5vpc5OHacKlcZmqVzJdJGxsywJ7jtA5VMUpUN+D2/SCTxHNHES5hWAgERWSoi4P4qbufTCMLcNjZBEMhzOfnk9k3U5Af51olzvNfWvSIPgMUgCgL7ayv5ud1b2FNVhss2V1xCQKLQeS+b8/4deY5d2XVQCdi2UuH5BN2R75PQszMZNilEsesRgrZti+7v3TMdHL3cQ77Phcdpm3Ot36577FrAsEzShoZuGUvmQRySinoXqk9NjkU5fbSDvu5xAnluJFkioxm88eI5IuEkA72T/Nwv3o9qU9A1g97OMc6e6KKwxA9APJbinVcv8OPvHCM8lSCd1pBlCcuyMA2T4wdbOX+qm89+9QA1Ddfb5NweB1cu9NPfPcE99zdgd8wVtLEsi2Q8w4vPnSA8GWf3vYuT1pvR0jbM954/QU/fBH6fE1WdP3+xEoO+m7Eu32I6o9M7MMngcJjykgBtM0ypvCTIjs0VDI9FaOkYZmNDEdORJH/zrffpG5hi04ZiPG47bZ2j/NFfvsGvfu0BtjeXY5kWbZ0j9A1MkZ/vZlNDCSVFfq62DfOdH5zApsrs2JI1tPO6HWxpKgUspsIJGmoL2bUt+14oz4PXs7J+Wi2j8+2/eofzJ7vX+CzdHnz0C/dw/+PX+3NNy6DRt5t69zYyZoozU+9S425mIjPEU56vIAky3+z573B93OwDiXRa4wffOMzJ99tyX0kQaN5ewdd+87EV7SsRT3P8vRZe/sEpOluGiUVzc2NeCKZpEZ6ME56M0989ztVzfex/eCNPfnIngby1zT52t4/w/b9/n4unexgbmcY0bv3ha1mQTGRIJjKMDE3T2TLEqcPtPPbRbdzzQCPuFf7ubgWCIFBbnMdn9m1mLBKjc2Ry+ZWAaCrNlYFRukYnOdzSg8uu4rIp2BUFl13FrsiYlkU8lSGR0UimNWKpNJFkmlgqs6IBZKeq8FvPHmBL5fr3xauSlFOFxoIF1akkQSWudXNu7HexLIN8x34Ctu0ATCZPMpx4nXD6ImljnITWg0etp8L7OVxKJYXOB9HMMD2R79AR/isEQaLQ9Sil7o8CIAgKiuijxPU0PcZ3aA9/ncbgv0IWr1cPTMta0bmVJXHFFaml4JAVCt3XfnMWCU3n8ugoXrttSRPR1UIWZJySHXkmyBIQcMlOBESSRgpzCS+em287LtnJ/vydHBw7zidKn8DC4tTkRSqdpZQ7FxZVuVshCjYctt2ochWGOY5pJrPD1aIXWSpBFNxzVMuuQRAEPHYb+2orKAv4eHxjHa9dbudET39ObY43Q5FEmksKeXZzI3uqy6kI+lAlaR5pEwQBVQxQ6n5ydhZDEATsUh61vi+Sb99BVOtCFBQ8Sg1edQOKuHgr5cWuIbbWlXBgS3XWcPSG3Tntuauz3QnopkFvYoxXBk/TGh0kYaRYrsvxS9UP8kBB89IL3WYIgkBVXSHH3m+lp3OMpq0VSLJEb+co8ViamoZCJsdj9HdPULOhiHRKY6BnAqdTpawyH0EQsNkVAvkequoKqdtYTE1DEW6PHcMwabk4wMs/PMXhd65S31RCQbF/9tm550A9Lz1/krYrQ1w83cN9j26a02ZtGCZXL/XT3zNBeWU+ew7kPv935eoQsViKT398F02NJUgLiKSE8m+9zXdd7pZ+nxOHXWV8IsZUOEE8maa0JEAqrTEZjjM8Oo3ToeLzOjl4pI1LVwf58uf2sWNLBYosE4un+B//+xX+8btH2dyYzRqZpkU4kuDLn9vLrm1VSKLAldYhvv6N9zl3qX+WaAT8TnZtrcSy4HLLEPW1BTx8X7bULIrzBx6Xg2la9HWPc+ls79qepNuEex9pwrrBpd0hualyNlHhbMDE4vjEa2iWhmmZyKKKRw6QMdbOgO9OwTIsBnomVvy9xSKJFRGNidEIr/74DK/96DRjI9MY+tqp3iQTGdqvDjE6HKa7fYTPfPUAdRtXHxxYpsW7r13k+X88RE/HKJn02spzmoZJeDLOhVPd9HWP03JpkE99aT8FxeuvtqZIEgc2VhFLZfj6G8cYmIzkvG5K0xkOR2f/viaNLIoClpXVzV9Na47LpvBvPnI/j2yuQ1kgMFlrqHLu+zBMc7alb3Z9KZ8S9zMIgoSAjE3KQxGzpXOP2oAq5VHmTmNhIiAhiTbsUsHMuj7K3B+nwHE/hpVGQECV8hCRafD/SyTBjiCIOOQiqn1fwbASSDdlo03TzFmeN7vP3IhVrqgJBiiaIRoW2Rm2oWiMl1paGIuv3OsmV5iWiW7NFTQwTAOwkAVpZp5FwFogEZQwEvOIyAOhvbw6/B7HJ89R7SqnO9HP58o/8oH0KhAFG6JchkLZbDInl2tcEAQUSaI6Pyt9u6e6nP7Jac4NDNMyPEbr6DiD4cgcP4xrkMRsVaQ6P0hzSQE7K0qpyg9Q6HHjUJUlrzlBEJAF502vSdilEDbnveSZO0EQkAQborC0wpooCAQ9TkJ+97o4nK8XDMukIzbE/7r6Y7rjoyT0NGYOPZ1Tmdiyy9wJVNUVYLMp9HSMoesGNhSunOtHkkQeeXor3/7rd2m7MkjNhiJSKY2+7nGcbjvlVVklVVmW2La7mvrGYhwuGw6niiSJWJZFVV0BkxMxXnruBF1tI0SnE7NEw+t3cs/9DfR2jvHWS+fZfW/DHKKhZXQOvn4ZWRbZsruaYCj3xGR4OkEo5GVLczllpWvf8bM+RMPrxGFXGJuIMTIWQddNNtYXkc7oTE7FGR6N4PU48LhtXLg6QH7QQ0NtIUF/tq/b67Gzb3ct//BPhxkdj5Cfl2VSbpeN++6px27P/iCLCn34fA7GJ69fkJIkIkkiiiIhigKKLGG3rY985AcRXiVIS/QkCWOamB4hrI3y+vC3iOpTJI0YqmibGd7854nxkSjT4QQ+//JtLSODYV74zjFee+EM0Ugip374lcKyLKanEhx55yrTU3E+9wv3s/2eW5emNXST579xmJeeP8HIYHhNh2fn7cswmRiN8PqPTzPcN8nX/tVjVFaHENdZIcVpU3liWwOmZfHXbx5ncAVk40ZYZBXnWAPuWOBz8VvPHODBTbXzWizWC3ZVzrmlwjQtEukM7hu8NERBwiblz2tpAlAkL4rknff6dQiokh9V8s97x6lclz0XBAm7HFpwC5phktJyzzjbFHlNZ5pssjyvcuF3OHixpYXJ5Pye/rVCxtKYzISJaDG8ihvLshhNj2NYJl7FnZ1xkexopkbKSGNaJqIgkjIy9CeG0cy5wXK+LcAW/0beGTtKRIthF21sD2xat+NfL8RT72OYEzhte5GlW5shFAQBh6pQpngp9npoLi0kqWmkNJ2MbpDWDeLpNAktK37hVBU8NhWHqmCTZZyqglNVUaTVqSUKgoCAgijlHpsc2FrDofNdZHSdhvIQqiLPUs3ifO+Kk6i3CxEtwUuDp7gc6ccl2TgQaqLBU4JLXrrKvdlXeZuOcGWoqi9Atcn0dIzMJhYvnevF7XWw7+FGvv0379F2ZZAnPr6DdFKjr2scl9tGWdV15S2ny4bTNbc1VxAEXG47xWUBXB478WiKTMaY8/4Djzfz2gtnOX+qh77ucRqbSxFnSMr0VILj77fidNu579GNK7oXOp0q4pSAvoxi461inSoaDoIBF2MTUbr6xrEsi6YNJZw618tkOMHIWASfx4HTYSMaS+Px2LI/mht+uIX5XgzTYjKcID/PgygK+H3OWZIBWYYvS+Kqesf+uWFn4CHOhg9yIXwYRVR5pPDzZMwk9e5tvDj4txiWTo17MytpmzIti0g6xXA8RiSTJq5p6ObS/ZcrhVe1sbdkff0YAHRNp6d9hC27ljbNGxue5oV/OsbLPzhJIr7+0nqZtM7F0z3o+juAwPZ7ala8DV03+PZfvcsrPzzF1Hh01WZ9uSKZyHD6WAep/57hN//jRympyFv3nmKXXeXpHY0UBzz82atHuNw3smrTwFvFzppSfvWJfWyuLMKu3LoT/Urhc9oXHPJeCIZlEk2l5xCNO63joukGiRyH6yE7o6OsIYmNptOM31C5MIH28Qn6wtM0Fxau2X5uhiRItEW7+V7fT9nmb2IsPcm7Y8cocxZT7cr6RJU7S3BKDl4bOUjazOCUHJycPMd4en67oCRIPFKwn9+/+mdopsa2QBMe+YOnXJRIvY9pTWNXtsAqY2pBEJAlAY9kwzMzi5W9H1qYljVbubwmyX43zLK8f66TV45d5Y2TraiKNENWsvj673yOwuDdqXoZ11OcmGzDpzj5TPm9fKR0NzZJmRG6Xhy5Vtza2ob5xjcOMTw0zRNPNvOpT+1Zi8NeFHkhL8F8D/3d42haVumu5cIAVbUFeH1Oikv9tF0ZwrIsUqkMw4NTbN5Zhf8G2VjDMBnoneDUkQ46rg4xPhohEUuTTmtMhxNEphLUNBTNa8EuLPaz455aXnvhDG+9dJ6aDUXYJRFDNzn6XguJWJrmHUU0Ni/sYbcYtm2poKNzlENH2/D7nPhzSLSuBOtCNJwOlVCem8HhMB1dY4iiyKbGEi61DNLbP8HQyDR7tlfh9zqwqRLptI55Uy9uLJ7GsixcN8jM3s1a0R8UeJU89uY9iRZ8BAEBm+iY0dq3yLeXENWmqHUvb8yomwYd4Ule6mjl+HA/vZFp0kY2C2TCmgzb3YimvILbQjRM06KzdXhJojEdTvDmT8/x0nMnSSZun363rptcOd/Hc//wPh6vg7qNyyuqXYNpmjz39+/zyg9OMTkRve1RpK4ZXDrTy5//j5f41//l4+SFPOv+8HbaFPbUlVOR7+d7h8/xo+OXmU4sryKzVgh5XXzhwDae3L6BIr8HSby9AUvQ48z5nmkYFtOJNMUzVfM8+z34bM2oon/9DnAZZHSD+BLCBDfD73KsaUvJO51d/Pd33539WxBEPDYbT9bXsaMk99/eSlFgy2Ozr5GEkeQbPT9AN3WavPU8XnQ/BfZsVrTSWcKzJQ/zxsj7fKf3x9hEG1v9G3mgYC/HJs7M22aNu5IKZwnj6Un25++8KwLnlcK0YgiCA0Fcn3mv7CnJEou1uIosy8K00hhWGlXyzXsvZYwynjyJhU7A1oxHrWGpBN+vfHw/X3lq94Lv3c2St5ppMJwMU+EK8VjRNoK2tSVElZX5/Kt/9QR/8RdvEY2u//1dkkQqa0O0Xx1iYjRCPJpiOhznwaeakWWJ6oYizp/sZrBvkvGRCKZpUV6VP1vJj0xn44cXvnuc6ak4DpeN4tIAoSIfdofKUP8kqcTCqomiJPLIM1t4/83LvPfaRT73Lw5gs3nRdYO3XjqPza5w4JGmFUvkj41HGRqe5sTpbn768rnsQLhNnnM1/tvfepKy0lszRV4XoiEIAgG/C9O06O2fZNvmcooLfBTme2nvGiUaS5Ef9GCzydRVF/LmwStMhhMUF15XqDlxppug30VxoW/2w67k1ph9wAroa9gz/7MAQRCxSU4WUqmudDZiWmbWY2ORk21ZFv3RCF8/f5KXO1uJZtJoprGmRlkLIZK5PQF9lmiMLPp+OqVx8v1WfvDNw7eVZFyDoZucP9nNC989xtd+49GcB8Rf//EZXr5DJOMaDMPk7PFOvv937/OVX39kXul4PaDIEqV5Pv7lE/v56O5N/O+XD3HoSnfOClG3gpKAl6d3NPLMzkZKg15st7GKcSPy3E6UHNsprqlpNZZm25gk0Y7EnXUbTqQzOTmsX4Pf6UBdQ6LxWH0d+yuyFQRjZu5BliTssox9nYbBa1yV/FLNF5AEEROLT5c9DVgoooIqKkgzw86yKLMzsJlm3wYMywAEFFFGROTJogdx3eDCnJ0TkHBI9pmqyPonbNYDslSMYYximclVVzRuBywMBuOv0xr+axr8v0S559ns65bJVPoCFyb+gFimCwtwK+XU+b9CmfspFnv4+t0O+MBK2FrYRJlC+63Joy4FVZUJBt1zul3WG9X1RcjKJQb6JrOS9YbJpq0VyLLIhqYyTrzfxtWL/YQn4tgdKuUzbVOGkX1+f/fvDiIIAh/7ub088bHtuN12hJlE1Ks/Ps3IUHjRfTc0lVLfVMzpIx28/8ZlPvK5PXS3j9J+ZYhgyMOBRzau+POkUhp+vxPPzDzIQoZ8q2lLXbdpsIDPSTqjE44kKMjPtj4VF/o4fKIDQQCf144gCDzxcBNnLvTyp3/9Fk8+3Ex+npujp7o4caaLX/uFh7Cp8i31jeUFXPi8Dg4d78DrsZMXdOFy2Kgsz8PjvrMP0DuJhB7jbPgdumKXSJtJbow6P1fx27jkhfuurw1DXh4f4z8depPzY8MLGhd90GGaJl2tw1iWNe+HZlkWHVeH+P7fv08kvH492stBy+gce/cqpRVBPv2VA7PSzgvBsiwunu7hR985xuhQ+I73wxiGyYvPnWDT9gr2P7xxxihufYNwAVAViTNdg1zoGV5zkiEABT43O2pKeXhzHTuqS/C57MiSlB3bvUPZ46KAF1XJnWgMT0eXX/A2wbIs4mmNyVhuvzO3XcVtV9d0GFyVJFqjEf7u1GmO9vYBsLuslK/u2M7W4uLrChtrCFmUkMXrwaRjia9PFuVZZaobYZOyCkQ3VpUHksN0xfr4Ws1nkT6gM3gexzNMRv8PyfQxZKkAQVg4i3+3VGssy2A48R5pYwpJuNaeZZE0RuiKfJ9IuhW7HEIRvUQzXfRFX8Kj1OKzbVhwe7ph8Napdl46cpn+sWl+75efRpEleoYm2dtcidN2dypPyYJEvs2HbplE9RR+dWXVlz/8ny8SCLjo6Zmgs3OMpk0lfPWr91Fc7F/2u04kMrz/fgsv/Pg0ExMx8vLcPP7EZp55Zhtvv32Z9w+2UFQc4PDhVtwuOx/92A4eeKARh2Ppc1nTUIiqSgz2TjA9lQBRYOOWMiRZZMPmErSMTsvFAQzDxOlUqajOJnCi0wnaLg8yNRHnwSc387HP7cEXuO45ZVkWumagLeBjcQ2SLPLYR7Zz6Wwfr/74DE9+cifvvnYRQRTYua/ultQpH7q/kfv2L61SdatmfbCORCPodxHwOYlGUxQVZNVmSor8OBwKHrcdnzfbA1Zc4ON3fvNJnv/JKb73wkniiTQVJUF+5zefZP+e2tkKhyxLyDc9NAVBQFakBdsDKsry+MTT23juJ6f462++D8BDBzbwqWd3/LMmGkfGX2Qg2UGlqxG3PFcFSBGXyDBbFj2RaX7vyDucGRm80/HqusGyYGRging0hdvruOF1i5GBKV567gTd7aN38AizmJ5KcOTtq9Q3lbL9npoFb7iWZTExGuW7f3uQno7R2zaTsRx0zeCv/+hVmrdXEshfX8Mwy7KYjCX4Xz85yJsX2pfs+XfZVDaVF6KbBuORBJFkmvTMUKgoCtgUCaeqEnQ7KfC5KM3zUVeUR2NpAWV5PuxKVoFGEBYOdizLwjDM20KuAMrzfLhtuVWNMrpB//j0Oh9R7rCAaDLNZDQ3olGa58PlWNsh+0sjo/zTufMUedz8yUeeAQTe7eriuxcuIgoi29axfWotkDLTXI10ENMT/GTwNapcZezP23mnD+uWoeldWFaKicgfMRn7C2SpDEGYGxAWBf4AWVpYXOB2w8IgkmlFFGyzPhpgEs/0MBR/i4B9C9vy/78IgkJ7+O8ZSb7PVPriokTjlaMtvHu2nW31pYyF4+i6QZ7XyfPvnGdTddFdSzTcip178uo5PN7C8YlWHi3airiADPFiSKU0zp3v5Zd+6SFKSwN8/a/e5oUXzvD5z+9ddpZAlkUaGor4N7/9FAUFXk4c7+T11y9SXRVC0wyuXh2iqamMP/mTL3H4cDunT3VTWOhl+/aqJbdbXV+IalMY7JtkoHeCyuoQLo8DQcjOcHgDTtouD+J027OKU9XZioaum7M+VU6XitvjmEMyJsdjtF8dXjaRue/BDXz3bwN0tg7TdnmQd1+7iM0m8+gzW27pHijLEvIi1WDLslbdGbQuREM3TYJ5Lv71//XonNc31BXyP//Tp+e8JggCJYU+fuMXH+Y3fvHhedsSBAFVlfkv//4j894rLfbze//hYwsegyAIbGsuZ1vzB7NMvF6YyAyyJ/gYDd4dCOT2Y7csi3A6xXevXuDYUN+Cy8iCiCyKs4HWWntwOOXbVxbVDZOuthE276yafS2T1jl/qod3Xrl4245jObReHuTQm5dpaCqZQ4quwdBNfvStI1w517eoceCdwujQND/9/nG+8EsPIsvrE3iblkXP2BT/z/NvcbpzYFGpVEkUqAoF+TcfvY8DjVW3vL/lPkM8meEvnzvMr3723tuiey+JAhUhP61DY2SWqQqnMjrtwxMLVvLuBGLJNAOT0zlXTcvz/DmTqlzRHZ7Cqar82t69uJTs/aepIMT/PnKU7nD4ricaUS3GN3t+QFxPsNFbzxcrP4H8Aa1mAKS1q2T0XiQpe95NcyH507vpPmeR0iexy/mzs04Zc5qR5GFk0UGh8wAupRKw8Ns2MRB7mZS+eNvuhc5BnrinkQe21XKqpR+APK+LaDyFeYeELm5ExtRZ6Pw7JBtPl+zi9FQn3+x+F5dsZ3ugBlFYehxcFqXZVsE9u2uprMzH47Fz/wON/OD5EyQS6WWJhqJIlJUFs0PbFhQUeMnLdzM5lb12amsLuOeeWnw+J7W1BbS0DDI9vXy7ptNlo6QsyEDPBF1tIzz5iR2zCSZVlamuz85pFBb7qKorxDbT1uVy2ygsyY4IdLaOcOZ4J5u2ZdszB/sn+fF3jnH6WAfCMmIpsizx+Ee38zd/8jrPf+MIk+MxGppK2LR97ZW6NN3gd//T8/zLX3qI2ur5CoS5YF2IxqnBQfqnp/nUprkSeos9wJZ7sN3KeusR7P4swCn70KwMGTONIqrceI7ERYiHBQzFY/yw9dK891RRotjtYU9xGXtLyqn0+vHb7KjSai4tC8tMzAz9ZR+MqiRiWQbCbXhQGrpJd/t1omFZFoO9E7z4/RPrJv92KzANk4unezh7vJN7H2ma5xJ68lAbJw61Eo/dvgHoleDH3z7Gk5/YSaho7ft2rRmS8d+emyEZiwSsiiSyq66M//zZxykOrI9qi2lZJJIZTlzsoW94iqlIknRGx25TcNgULMsioxlouoEkCqQyelaG06agyBKpjIZlgdOedYI1LYtkSkMQwGFTlrw/1hXn8f6VrmWJhm6aDIejhONJAuvsWJ4LphMp+sbDOS9fnufDfVtNy+58YLcQLEvDsuJYlk6+auMPt/5HBEHAsiwsK4plJRGEO//93gqC3l8l6P3VO30YOcMCTNIoohtByN6TMkaYseRR7FIBBY79M79dAUl0IAgShrX4vVqWJAzTQjfM7KC5aTExHcfrtt0VzuB/3/kmKXPh+4wkiGzwlvLWyAX+4/lvUuEsoM5dhFuxL1rdeLhwM5v9VQA4nCryjC+Q220nmdSWJVeWZc22Tr1/sJVkMkMylUEQBHbuzIq9OBwqbo8NQRCy59DKTchGEARqNhTx0++fIJ3SaNp6PaEtKxJ1jcUcfusKkijwwBPXDZMdThtN2yrYtqeGS2d7+P3/8H2C+Z6scudUglCRl8ee3caF0z3L7v+hpzbz/X98n2PvtSArIo8+uy3n6+DGz7hc/J1MakSjSYxVGPquOBo0LYtYeukh2P7pafqmV1+Gtywr5y9+rSHcZoWY24V691ZOTr7BeHqIYkcV8g0mQVWupjl/X0NS1zg22MtoYq5JlVe18UR1Pb+ydTd1gbw1O0bTyjAV/TZe58dR5JKZh2QCTe9BVVYu67pSGIZJd9v1zFIinub00Q5aLvav+75Xit6uMc6d6Gbrnho8N1Q1pqfivPniOfq7J+7g0S2NeCzFmy+e4/O/cP+ab3syluTPXjnCme7BRUmGKAjsqi3nD770FD7n+g1ZJpIZ/ur5wxw9183kdJz/8McvIEkin3h4Cx97aDNpTef1Iy2cvNxHVXGQd0624bKrfPrxbexoLONH71xgcjrBr3/+flRFIhJL8fc/PobP7eDnnt6JbYne2a2VxThsCpHk8sIF8VSGi70j3Ne0tLTzeuNau1vb0HhOy4uiQG1RHl7n2rbElnq8HO/r54UrV7i3ohILiyO9fSQ0jTLf2pPja8g+79JYlokorowU6Hor0ej/JpM+ht3xNF7vf0QQHECa6en/iCJvwu35lXU57rsNSU1DEcU75i8hIKCKfjLmNIaVAQumM63EtV6KXY/gVesBZlQfwUJYkr5uqS3m6MVuMppONJGmfWCcl49eZVNNyV3hDP7CwHEiWm5Jrc7YEJ2xoSWXqXIVzBKNyYkYqWQGu11mbCyK1+tAlpfvyBgYmOSfvnOU3/iNx9i2vYorVwb48Y9P37TUrcV5G5pLOXmojUQiQ+OW60RDUSUam0sJFfnIC3moaSias15DUwm/9h+e5q2XznP2eBeR6QRut4M999bzyLNb8QddRCNJBIElP6PX72TPfRt4+QencLnt3PdoU87HnkhmCIcTuF02fD4n0ViKxCJKV+MTUdKrNPVdMdGIptP84fvv41AWb2XpnJykyu9f0XYtyyKT0kgn0mRSGlpGx9AMMimNTEa77WSjYXs10gfIfTNXtEXPMJbuZyzdz7nwu3Pe+8Xa38Mtzn+ApnSdc6NzS7oOWebx6nr+wz33k+dY/mFomBEsKwWIgJF9+FkmougBLAxzEknMBwQsM4HX+VFkKX9GIjBGKnOGVPokPvdXEEUXomDHtNKYZhTQEQQ7ouBGEFZfpDMNk672USwz+wgYGQzz2gvzJSPvBlimRcvFflovDrBjXy2CIGAYJofevELrpYG73mPmzZ+e5RM/vw/7MsN3K4GmGzx/5AIn2vuWzOSXBr38p889uq4kA8DttPFvvvQQL1Zd5q1jLfzXX3sal2Num086o3O1c5g9zRX85f/9eXTdwDBMvG4HGyoLeP1oC+19YzTVFNHZP45umDRUhpYkGQCbygvxuxyMhmPL5uCjqTRnugY4sLHqjiZZTNNieCpGx/B8T4iFUBb0URL0rqniFEBzYSFTySR/f/oMf33iVHZfPi9f2bGDLUVFy6y9GqRJp9/DNKZwuj63ojUVZRPB4F8Qmf6vd2nNZXWwLA3TSoGls1BVSRR9CIKEaVn86Oxlyvw+avIDOGaM9myyvB4z/AtCQMRva2IidZrh+Ds45CJ6Ij/AJuVR6LwfYSaTb1kmuhnDsjRkYXGy/NDOejTD4IWDlwjHknzz1VPs3VTJJ+/fjHsN75+3io3echJG7nLUyyGoXp/fu3Cxn6ZNpYRCHg4fbqNxYwnOGeuDqak46bROIpFGUSSGh6ex2xW8XgeWZWG3KximRU/POJcu9jM2emsGrjfjgcebeeDx5nmvy7LEzn11fPPlf7PgeoIgUFaZz5d/9WG+vEiB7rf/88eX3b9lWmgZHUGAPfc1rGgI/PjJLr793SM89cQWPvnRnXz7u0d5/senUFVp3r3fNC2SyYVJSK5YcVSW0nXe7eriYxsXl9BSpPkHuxgs0yIeSTA5Mk3b6S4uHW6l80Ivw91jhMcjWKso16wG3x/4c7zBrAtrIM9NYYkfwzAxDRPDMDEM64Z/Z1+/G/okl8Ozpb+44nXShk7L1Nic12p8QT67oTknkmFaGSLx58nonUiij4zehdN2L4Y5hc/1ecBgNPxfKQz8d0TBSTT5IpH49ykM/iGqXElGu0ok8Ry6MYKQcOK03YdNaSSduUQs+RKmlUaRS3Dbn0RVVp+NNU2LkcEp4vE0oihw7kQXPTkOgMuKhN2uoKgykpydWTFnlCRSKY10cu1Jc0/HKG2XB9iyqwpFlRkbnub4+61ZlakVQJJFbHYFm03JDizPlGEN3SCd1kklM7NOqGuFwd5JLpzuYfe99Wu2zZbBMd693MlkbPFeW1EQ+KVH91DsvztMrgQBAl4nT93blC1/30AgKooCFAY9XGgbpL4iRNfABHZVprYif4ktZuG0qWypKKJ7dIq0tnRWKp7KcK5niGgqg9ex/tLDi2EyluBC7xBpPbcsWmNpAXmetW8HUmWJR+pq2VdRwVg8DgKEXC6ciyTZBIQck6MWxgJVtmzlNoamXSGdPoSAHU1rRRAciGIeoujEstKY5uTMfIKFINiRpALAlvsz17IADcMYRRBURDH0gajem2aSdOYCicwxdGMIy7oe1AqICIKDPO9vIUkBJmIJ/vD190mkM5T4vdxTXcYD9TU83rR295nlIAgype6nGE+d5PTY/40sONGtBEXO+yl03ju7nGZOE9f6kUUnqrS4T4EqSzy7fxNP7d1INJHGoSqzxn13A/7n9q+uW2tzfX0hx4520D8wSV1dIU88sXlWivWlF89ytWWIyYk4w8PT/Nn/eYPNW8r4zGfuoaQkyMMPN/Gdbx/B5VKprSvi4Yc34XLZkGWRgkLvrGqjTZXJD3lw3wbZ9bXA5ESMk4fbkSSRR5/ZuqJ162sL+Nyn76Gq4nonypbmMnZur5qXvIrGUvzkpbOrOtYVEw1FFNlfUcFvHziw6DKvtbfTPrF8y4aW1hjuHuPgD4/z5ncOM9gxctcNrcqKxGe+eh8PPbWFaDRFPJIkFk0Rj6aIRZPEIqnZvxOJNHrGmCUfxkxW0tDNG16b+/870Ra2EMKZMbxKEHGBG4VhWkwkr6sgyIJItT/AjsLchiE1vRvTiuNzfQFBkJmK/d1NS1hcy04JgojX9SnS2oWZvxVsSjMex0fJaB0EZ8r+ujFOWruKLBXisN1LIn2YlHZuTYgGgJ4x6O0YxRdw8c7L55dcVhQFXB47wXwPpZV5VNcXUlwWxOtzoNoUMhmdidEIna0jtF4aYHhgish0AmuNiGk6pdHeMsxQ/ySllfmceL+NzpbhnFWmXB47gTw3xWUBqusLKa3Mx+d3YnMomKZFJJygt3OMtsuD9HWNMTURI7PKUuo1WJbFoTcurxnRMEyTdy930rtMf3+R380jW+rWZJ+5YqlwQBQFvG77gj22hXkeyov8XO4cobNvnLHJGCUhX85OwPc31fDmhY5liYZpWQxORjjR3scjm2/vubnxGAYmIxxrW1h04mbIokhzRSH5nrU3LLvWJjyVSqGbJhYWg5FsNjTkcuGzz80+y7K4rNtxdrtZj5D50NG0y8Rjf4WmXUQQVDLaeRR5A07nZxHVJnS9n2TyB2Qyp8HKIAgu3O5fRrXtAXLNamfIZE6TiH8TVd2D0/VFPgjGFMn0cSYi/wvdGEWSgmS0TiQpDwEF0wrjtN3HtefI8e4+MrqOBQyEI/zk/FWSGZ0nNt0+oiEKEkXO+5j2fprheLZ7IE/ZQZ3/qyji9exzxpgiZYziUevwqIs/vzK6gSiAJIr4XHZiyQyJdAaP037bzUBvN8rLgzzxxJYFZWd//ov3LrBGFh6Pnc989h4+89l7Fnz/wIHrCl8Vlfl86UuLx7V3ExLxNC8+d5LodJKGphKad1SsaP2y0uAc8z1FkdixrZJPfGTHPD+SqXCcQ0faVnW8KyYaHpuNX9i1a8llSr1elGXMPdLJDJcOt/BP//MnXDrShr6EbvCdhCgKFBT7KChevifX0A0SiQzxGeIRj6aIxa7/Ox67Tkqyf2ct53XNwNBNdCP7/6mJGInY7TWDe3PkuzxV/BWc8vzgxbQsojfM5bhUlSpfAFnM7eFkWnEEwYYgqEiiB0FQyLZQmYCVLYUvW+gXuFHRwrIy6MYwae0qhhlGEJwo0sp+bEshk9E5fbQDf56b1kuDiy7ndNmoqAmx+0AD9z6ykbLK/HkyzDdicizK26+c552XL9DVNoKurc1weXfbCL2dY9gdKudOdDE+svyMlGqXKS4NsveBDdz7aBN1jcVLmvIkE2kunu7h1R+d5vzJ7jXxErEsOHeii1RSw+5YvbLYVCzJlf7RZR3Ad9eXY1MWH6ReD8iySEYzZhMMFuTk+yDLEtWlefQOTfHK4avYFIkNVQU5H/ue+jJKg17C8STmMuxzIpbg3Uud7G+oxGG7fUpv15BIZ7jYN0z7cG7zGWV5PjaWFeBZhwrMeDzOG+0dHO8fIK3rs730AD+3dSv3V1fNWd4myzkNY1qWRSSZnqfwJQgKNts9SFI+8fi3kKQS3O65FWhJysPp/BRu9y8BIpHp/0Y6fRBZqUOScmnnMrMkI/EdVNt+XK4vQI7qg3caycwxBEGlIPB7OO0HGBz/ZfzuL6HK9UxG/wS7uh1hpvXoXP/wnGvdoSg80lg7Z3uZtM74aNa5uajEP3vfjsdSaBkDt9e+qORnbhCQRScbA79OhftjmFYap1KOIs4lxbLoptB5P6rowa8u3mff0juK06ZSXuAnmkjx1ul2wtEE+zdXs6E8tMpjvctxd+Rj7yiG+ieJRVIYhknLpQF++v3jOBwKn/3agVWZ6QFsaCjGYZdR1fnXkMOuUlzkz9mTaSGsvKIhSdTnLT34u6mggE0Fi8tg6ZrO+feu8I//v+dpO9O9ZpndOw1JlvB4HXOGcpdDOqURj6VJxLLEIx5L8cNvHubk4fY1Oy8JI4JiqdgkB9PaBBljfkvJSKp3xmF2PiwstBvUJFRJwm/LffBSFguxLI2M1o4oqJhmHEnyo+ldZLR2DHMSCx2BbA+upnVimGE0vRdJ9CGKXkTBgWGOk9E6kKQCRNGDTdmIJPpw2vbPtBAs30qSK1LJDD/61hEEUViw6iQI4M9zs++BRp7+9C5qNhTl9GMPhjx86kv3smlbJd/6y3c4e7wDLbN6sjEyMEVX6wjhiTidrctXM3wBJzv21fGpL+2nZkNxTgGSw2lj94EGKmsLeOm5k7z649NMjS8kMbkyTI5Hab8ySPOO1Uvz9YxPLdkydQ2V+QFut1BLWaGftGZw/GIv+X4XRfleivIXNsi8GeVFAQrzPLzw7kUe2FlHVeniLRY3w6GqPLKljvbhCZKZpXuoUxmdc92DnOoc4N7GyttKxEzTont0ilfPtmLkcO8TgF11ZZTl5TaYbVkWPYkBdMugzr38tXZ+eIT3urvZV1FBld8/hxTWLfAMdNlUpBzuAaZlEY6niKUyKyZI2UBaRNe7ARNBtGNZCSwrlx5qC13vIpV+D5vt3g8UyYDsnJ+qbsSmbEScSVxZVgpZLsLj/AgTkf+Dy/4IouikfXRiDtFwqgq7KkvnbC8WS/H2axcZH43w5V9+cLbHfWRomvBUnMZNpWsSvIuCvGSlwiEXUuZ+YtntvHGiheriPAqDbl45dpULnUM4bSrffPUk/+7nHibovTvVxDRTZyQ1jUNSyLMtfb8zLJOolsSwTNyyHZukUFUdIhTyrjqY/qDjhe8e5+h7LUTDSTIZHX/QxcNPb2HXvrpV36fv3bt4BVu1yXzhs/dQELr1NuN1kbcNp1KkNI0iz8IH1tcyxI/+z6t0nO25a0iGKIm4/S58+R58+Z7bNghusyvY7ArBG4zLjrx1OSuHt0b76E20EFBDFDuqOTP1NhPpYRRxbrYyrI1hLaJBLgoCDkUlmslWNQRWptOgyCXYlA1ktBZAxrIyqFIVujRCKnMSUQxgVzYBEqaVIpk+gST4yOitiKILh7oHRa5AEOwk0odx2vajKrXY1WbiqQliqTeQpRAO9R4kcW167i0LYtFFsuIC5BV4efITO3n607sI5q98n42by/jl336CP/sfL3HuRCfmKmeRNM3g5OE2DMNkZGBqyWUDeW6e+uROPvHFfbi9jhXfpAqK/Tzz2d0YhslLz58kvth5yhGGYXL2eOeaEI3xSJx4KtfBtdvLNBqrCnhyfyPvnepAlkSeOtBEUb4XURApyvOysbpw0XXdTht+rxOf20FZoX/eMPlyeHxrAz85cZnOkcll7ytDU1F+euoKG0pDhLxr35K0ECwLIskUB690caFnOKd1gh4nu2rLKPDlNgRpYvFPvT8hqsf5fzb/22WXj2UylHi9fH7LZmzy8o/KoMeJkuNzI5HO0D48wfbqkpyWh+zQcCZzinTqbSwrDkho2kVkuXbZdbPr6+j6BUSpCMtKYZrTiGIg5/3faWQFQFJYZLsfJNGPboxgWanZfzPz3nAkNptsEQWBYp+HIt/c+3Qwz82ee+s59n7r7GvxWLbSlF/gRZnJ4FoWjI9OMx1OoOsmoQIv/qCL0eFp4rE0pmlSXBrAtUjr41ohkkjj9zjIaDpnWvv5+P2b2VpXym/80fPLtkXeSUyko/xV+6ts8Jby81UPLLlsyshwaOwKg6lJHincQo27iC8u0Rr1zwl1jSXEoilikSQer5Mtuyq577FNSDmob60GoiDQ2LA6z6B1IRqXRkboCYf5ua3zB1RSiTTvfP8ILSc7c1bEkRVpNvC/pk41BwJz2K5lWTkTGE/QTWldIYUV+VQ0llKzpYKazRU43DYsyyIaT+Nx2choOuNTcYJ+1x1pKVgNvHIQu5QNGMZTg7iVACHb3Adce/R8dphxAUiCSMjhnCUaGcNgehmJ45vhdjwCjkcwjDB6dAgEiYDnKwsu61/gdUUuI9/37256rRy/+4srOo61gM/v5OFntvLsZ/fgD956IFZeHeKLv/oQo0NhBnpWL0PbcnFg2WU8PgfPfGY3n/jiPpyu3AdIb0ao0MeDT21hoHeCo+9cXZUQgmmYtFxYG+ngVEZHN5avELUNjWNaJpZ1+3qbRVHkk49u5ZOPzr0vqorEvq3V7Ns6P+t5LVhKpTXCkSTlRQEalyAki6Esz8dTOxr5+hvHSC/TrpfSdE519PPy6at8at9mXLfBcTij65zqGOBHxy8t294FWYp4T30FTWUFKGsoX6qbJkkt+3xxyDKiIHB1bIxynx9Fuv6MscvyvP0W+tzYciQayYzGqc7+RYiGhICAZSWxLIPrVQeDVPJVLHQ87l9HEP3Eon80QzqWhyDI2OyP4LA/TTT6xyQTL+B0fgZhhRK6dwqyXEYqfQbDnAIqUJU6UpnTyFIBGb0LUXBwbdbkRgl+SRCoDPpz2kc0kuS9Ny+jKBLPfnIX/mA2RBrom6SjdYTx0QjV9YU0NZdx9GArmm6gawalFUH2379hTdXzbobHYWN0KsbrJ1oJeBxUFgawKdJdL0IT19O8O3pxxtBveVyN9HFw7DJ17mJq3Oup7vbBwiPPbOGRZ7asy7Yty2IqnGBkNEI8ns6KVdx0WTU3leK6xUH5FRMNzTBoW2bQ+9LoKJFFAtGeS/1cPNRCdGrxm6PL56S4uoBAoRe334XdaUOd+QHHpxO8+e1Ds+0sgihQWJnPlvsaZ9c3DYtMWkNLaSSiScKjESaGw8QXGMANFHj52P/1GPue3YndPTfwMk2LQ6c7eXT/Bk5f7qNvOExZoZ/929ffy2EtUeKonc20lDrrqHZtosgxN3vcGj2z4CA4gE2SqAvk0TmdzZSndJ3heBTNNFBynNO4hmvD3eIaVR5uN2x2hR17a3n6U7tWRTKuYdPWCp759C7+7n+/ibbOc0qyIvHAk5t59rN7VkUyrqGqroB9DzbSfmWQ0aFb980xTYuezlGSiQwO5+oe1JKYm8v48fY+rvSPsaXy7n6QpTMaPUNTXOoYorN/go01hZSEcmu3uhkf3d3EG+fbaBkYW7aqMTod44UTlykOeLm/qRqbsi45KSArR3yxb5hvHTzN0FQ0p3VCPjf3NlZSGly5n8ViCRWAwUiEV1qzg4/hVIq28Qn+5PBRNhcV4lDk2XUPVFXSdFN7cFHAg8dhy7aALnMMyYzGoavdfOqe5nkGiaLgRZQK0bRLJJMvIEklyHI9ouhBlEIYei/p9CEQZAxjEOGGe6mWuYRhDqPrXVhAOv0mklSComwEBETBg6zU4XR9iUT8HxHFPOyOJ2bm5u5uONSdWJaOSDbYcdnuI5k6xmTkzzBJ4rI/ijgz/3Dj+RcEAX+OEtZFJX42b6tg6IaqsGmahAp92B0qA70TjAxPc+5UN6Ik8tgTzdhsMn/+v15l287qOUQjO4dlYGEiCXPva5ZlYVgpUsYYWCaqFESVPCxVZd2xoYyTV/oYmYry6K4Ggj4XY+E4pSHfHBL8QYZdUrBJChEtQUK/vXOq/5wxPhHjjbcvc/J0N/FEeiZOnnsX+//8+4/cPqIRy2T406NHKXQvXq7umpqiNji/h9gyLS4ebmWgfWSBtbKBUMPOGrbev5HN9zVS0VhCXnFgjnneYMcI7z53DC2dzTqJosCGnTX89l/+8vX9zMiJJmMpJofD9LcO0Xm+l5ZTnbSf7WF6PDJLOAY7Rjj+6nlK64up3VKBfIO0l2VZHD3fzd5tVbx1rI17t9dw9Fz3B45o3IjNvv2IgkRcj2BZ1ytKNa7mBc36AByywq6iUl7rbgcgZeh0TU8xGI1Q6VtZ6V0UXfhcn7r1D3AHIQhQVpnHYx/dTlHp2rUcPPbR7bz9ykXaLi1fkVgNGjeX8exnduP1r7xdaiFIkkjTtgqatlUwNnwhZ5WrhRCPpunrHqOhqXT5hZeA12nDnkNQPBFN8BevHeVfPLyLpvLC25K1vxVoukHf8BQ9g1Nsqi1i39bqW+5VLvJ7+OJ92/nvP3qH2DLtZRbQMTLBN949hSKL7KmrwLkOlVxNN7jQO8w33jnNyY7crn9Vlri/qZptVaU5tyrdCAGBgeQwPfFBMqaGV3FT5SolqPpJaBpdk9eDzJKZ9t+R6NxZpK3F8wmqy6ZSnufncv/osq0shmnROTLJq+fa+NTe5jnVEVEKYLM9iGWl0DKnsZQoklSKIASx258knXoTTbuEJBVgdzwFyAhCNsDWjW407TKiVASWhZY5hyXHUZRmVHUvklSCIKio6k4gha73km03uvuJhk1pxKY0cq1qYVM3EvD8IsnMCUTBjdvxBKKQ/b48Nhtj0evJTHMVjcjhqTinjnag60ZWwCWl4XCoyIqEKAooioyuGQvM8lnEtE4mU+fJs+/Co1ZlX7Us0sYEQ4l3mEydxcLAr26kyHU/bqWSxcjGvuYqfC47ac1gU3UhLrtKOJrkIweacd9BOeq1hJn1aEa3zEVnRj/E2uPs+V6OHGunuMjHvntqsanz/WZ8K5g9vhkrJhoZw6BzcpJHaxfvCzUtC3WBcnY8kqT7cj/T4/OzVpIscc/T2/n4rz3OxnvqURYxohJEAdUuzxIN0zDJpLQ5Ch6CIKCoMkrQjTfopqqpjH3P7qD36iBHXzrDweeP03OlH13Llj3f+d4RMmmNL/zOR6lpLr8+nyFktZXfPd5GdWkezfXFnL1697lDrwQRfZK+RBtpI0GuUyB2WWZXUSkFTtesO3h/NMJbvV18aZMP+Z/JkJbTbWfbPTU076xa0+16fE6e/uRO/uTywKqC9aXg9th5+tO7KC4LrulQXWGJn/qNJZw61E40svwQ9mIwDIPuttFVE43igDdnh+hDV7sJx5M8srmOhpJ8CnxuAi4HTpuKTZGRRCGn4d71hMdl59G9G3h074blF84Bj2/fwJHWXl48fXXZZQ3T4kLvMF9//TjT8RT7N1SS73WvieGZZVkk0hpHW3t47uhFDl3tznndDSUhHttST2nerVV2YkacV4cPMpWJkDCSZEyNZl89TxU9SGMoxO8/+fgtbRdgS1URh1q6c+qZn46neP7oBSrz/eypL7/hWhNQlAYUpWHeOopSj6IsLtHqcDyDw/HMgu+5XD83+29RdGK3P7bsMd5NmF91EXDa9+O075+3bInfQ9fE1Izhq0X4JhU60zSZnkrQ0TLM8NA07S3DVNcVZAUJOsYYG4vQ0TZC3YYikokMiUQan9+FapOZGItRXpVPV/sIF870YJoW9RtLsN0kC2qhMxB7na7I92jO+7ezREO34gwl3qJl6i8xzBSioDKWOEbGnKLW92Vs0sJJLJsis72hbM5rpSEfpaH1c6m/nbAsi6HkJMPJMDZRQRFzC0+PjHSTzqFd9mcR9xZVrbirZCEMDoXJz3PzmU/uoa5mcSGnW8WKiYZdlnl6wwY+uWnTosv4HQ46J+e7uo70jDHeP7mgV0bzvQ184Xc+Rs3m8iUHsQVBQLEpQDaosSzQMzqGbi4pKyrJEtXN5RRXF1BSW8iP/+w1Wk91oqV1LMvi8AsnsTtUvvqfP02oLC9bRUFg79YqRieiPLK3AZsq01iz8v7ouwnnwwdJGHHy1EIkQWZu9mSRGQ1RpMrr59naDfz9xTOYlsVIIsZLnS1syi9gZ2HJHQ/IbgeKSgPc99gm1GXcmG8F9zywgby/8jI+sjaupTdj2z01NG2tmPcwXC1kWaKqrpCSimBOMyKLwTQsBntXP6dSGvRSGvRyvkda0hX8Gi71jXB1YJSKUIDKfD8FPjc+px2HTUEWxRVd14KQHZyTRBFVlrArCk6bgtdpw+9yEPK6cNnUO6p3b1dkvvbwLjqGJ7g6OLbs8oZpcbF3mOlEis7RKe7fWE1DSf4ty8laloVumrQOjnO0tZcXT12hfTj3773Q5+apHRtorijKSRp43v6xmMxM45ad3J+/BxOT01OXODx+mhJ7IfeFds8uO5lIktQ1Sr3XCY1pWYzF49gkGb9jPqHdWVNGwOVgIrq89LNpWXSNTPI3b54grevsqSvHeZdW1j5o2FxSxJHOPowZojEwNY1hmrO/Z8vKSphLskhVTYiMppNKaZimhcttQ1L8aBkdTdPJL/BSU1/E1EQMp8tBXr6HuoYiVFVmdGQaXTM48FDjvLZP0zKYSJ1CQMStVM3s1yKhDdIbfQERhTLvM8iik+H4O4wljpFn3zXHzO+DCN00OD7RRsrMVk1HUmFMy2Q8Pc1bI4t7UmUMnUvTvVya7qXI4Seg5iby8KcXDzGRWr3U+gcR33vsSygLSNKuFKIg4HLZsdvWp0V2xVt1qSqfXoJkANQFg+Q75w+YjfVPMD0+P5By+Zw884sPU9FYsqzakyCAelMJ3zBMtLS2JNG4BrvLxoGP7UKWJb75335I18U+LDM7PP7e88corSviU7/1FHaXDVEUeGhPw+x+TcviwT3zs0wfJLhkPx45SLGjGpto58b0pLxEBsFrs/OJ+iYujo1yfLgf07K4ND7KX507wVebt7O9sASX8rP7kLTZFWobi6ndsDr1hcXgC7jYvreW1398Zs23bXeoHHi0iUB+bjfulaK0Io+istURDcM0GVgDouG0qeyuK+dU5wD9E7nNjRhmNuDrGpmfHFkprlVBbIqM06bgttsIuh3keZyUBLyUBLxUFgSoLcwjz+O8I6SjrjifX3r0Hv7nC+8yHF5+JsICesfDfPfQWc53D7KnvpxNZYVUFwYJ+dzY5Pll9pthmCYT0QRdo5Nc6R/lRHsfJzsGlpXbvREeh43Httbz0KbaVflm2EUbzxQ/hEt2YmHhkp1cmL7K+emrc4jG1bExeqfDfH7L3AHMI729FLo97Kson7ftypCfprIC+iamc6pqZHSD010DTCdTdGybZHt1CbVFeXgdK5+hMk2TpKYTT2WIpTLEUmkkQWRjWcG6qiHdjbi/vop/OHqaRMbEtCz6pyIMTkcpD2Sz/5IkUljs57Fn/PPWraiaL5O+Z/98+c/lZ/Qs4toAkujAq2bXN6wU4fQlYlo3xc6HaPD/C7LD/gLdke8SzXR+4ImGYZm8OHiSjugQBiaaqWNi0RUb4c/bXl5wHQuLtKET1RIoosTDhZupcuWWWe+ITDCaXL3M+gcR14QzLMsimkhzvnuISDw1R1Aj3+ti78alFR2rq0IMDodp6xglL+he0BhxNVgx0ZBFkRLv0iXrCr+fhazTpkaniS1g8tW4u4a67VXYcvhwgiCg3JSVvdY+5XDn1jIhyRK7n9jCUNcoz/3xS0zNmJtpGZ0X//ottj3YROM9dYiiwPhUnPyAi3giQ+/QFGVFfuzrkNG+XbCLTq5EjjOWHsApe+YMRuarxUjSwp9NFkXqAnn88rbdGGdMTo8MktA13h/oIZxO8lhlHbuLy6j1B/Ha7LdZOHT94fU72bqretGWPgDTmAAERGlxjwPLSmGZMQTRh3BDRUkUBPY/2LguRKNuYzHV9UXrUomBrDdIQZEPSRYx9NyU5G6GaVgM9U/OMzG7FexrqOBkRz+T0QSJFQSyawHDtDBMg4xuEE2mGSFGxw3vex02qgqCNJTks7WyhO3VJVSE/Lf1GAXggeYahqejfP2NY4TjuckTJ9IapzoHuNQ3QkXIT11RPmV5Pgp9bvwuBy67ik2WkCQR07TQdIN4OsN0IsVYJM7gZGS2krJSOU67IrN/QyUf3d1EyS0MgF+DgIBX8eCSnbN/20SVPDXAZGYa0zIRhWzWezwRp2cqPGd90zRpGZtY1OdDliSe2tHIiY7+nAfbdcOkZWCMgYlpNpSG2FhaQGnQR8jrwm23oSoSsijODBBb6IZJRtdJazppzSCZ0UikNRKZDPF0hlgyQzSZJppKUxr08ruffBh1DdorPkjYWFzAzopSDrZ3AxBNp3n1Uhu/eGBps+G1RNZ/KoJLqUAWs/3tGXOa0eRhVNFPgfNeVMmPZVm45FJMSydjLi1N/kGAJIg8VLiZSleI/sQEPfERxtIRJFHELi0e43lkBzXuQjZ4S3m0cCsF9p+NlrDbAd0w+cmxy1zqGcbjsHNjW3xVYXAe0ejsHuPc+d7Zv6cjSQYGp3jhxTO0tY8QCDiRJHFOHPfQAxvx+25NoW5VkYdlWcQyGTomJ4llMnOGoYo9nnmmRrGpOInY/Ifapv0b8ARyy7YKorBgRWOe5O0yUO0qD3xmL2feusSZdy5hzEg+TgxN8do3D1K7rRLVrvDGkRY+9fhW3jnZRiyWpmtggqfvX7qiczdjONVNkb2SUmfdvOHvbCvV4nDICvtLKpAFgW9cPsfbvZ2kdJ2Tw4N0hqd4t6+bhmAe5V4/BQ4XfrsdhyyjSlmZyNWEj3ZZodafu0nZWsPnd9K0bX4G80Zo6fdBEFFsB7CsDKLgQRAcs1UjQ+8jnfwxptGLJFVgc34WQQxlA2sBGppLcXvsi/t33CJ27KsjmO9et+y5apPJL/Ti8ToIT+YmtXkzLMtieipBKpnB4VzdYGPI5+YTe5oZnY5xsqM/pxaq24VIMs35niHO9wzx/pVutleXcN/Gag5srMLvuvVhu5VAEAQUSeRje5pIZTS+8d4ZwvHc52tSmk7r4Ditg+PIkojXYcPvdOC0q6hyNig2LBNdN4mnM0SSaaZiCbQc5cxvhl2R2dtQwRcObKO+OH8NZkTmD+2CNXt/Go5GOd4/wNHefoaiUb53/sLskpF0mv7INNtKFlcr215dyj31Fbx8+irpFVx7sVSGUx0DnO4cxG1Xyfc4cdlUVEVGmiEa5g1EI6MbpDWdZEYnkc6Q1vR5n2xbVfGChqM/67ArMv/i3p1cHR5jLBYnpem8fLGF++uraChcO2PXpSAAgnCt9dLCskyS+giTqXO4lSry7DuyywkCoqAgIGJad68fRq6QRYlHCrfwQMEmhlNhzk118UctP6bKVcCXqh9ecB2BLEHxyA5KnXn4FdcdbTH9oEEzDH5y9DJfe3w3VYWBORVMxwLtmAODU7z9Xsvs34IAhmERT6Q4drITm01GlrKVtmvYtbP6zhCN6VSKH1+9yvnhYURBYDqVwqkoWMDHN26cRzQSsTSZ5Hy1k/KGYhw5ymYJgoB6U0XD0AzSyZVLoeWXBNj52GY6zvUwNXq9zeLoi6f5/L/9CKHKfFq7R4jEUpy9MsCTBzZy8GTHPKKhaTrplI7drsy2b8WiKYYHJhFFkaLSAM5blAVba7hlP0kjRkKPYpMccyoaSz2OkrrGhbERBmMReiPTJHVtzgqTqSSHB3s5NtSHR7WR53DiUW3YJQlFkmb6qW/9xlHt8/Of733kltdfDWRForA0QEHR0hkWQ29DyxxFSx/CshKIYiGq42lkZROCoJJJvYSWfhtRLCad+RGC6MPm/AxgRxAEXB471Q2FXDjVs2bH7vY6qNtQhDPHat+tIi/kwRdw3TLRANA1g/BkfNVEA2BzZRFfeXAniixxvK2X5DpLB98KhsNRXjnbkp0TGRzjY7ubqC++TUGQIOCx2/jM/i1YwLcPnmUytvI+Z90wmYwlc3JjvxVcIxlfeXAnWyqLVz0LZmExrcWIaDG8intGASjDeCZMmaMIURARBQHNMAinUkwlk7SMj19f34I9ZWU0Fyw+q+e0KXzu3i1cHRildXA8J1+QOcdoWdmKxC080z7EdeyqLOUX7t3Jn717jEgqTcf4JH976CT/8sG9VOToq7E6iDjlUjJGmIQ2iCy6GUkcxLDSBO1bsUshIHtNmpaOiYHIz0blSRAEFEGm3Jm9nxXY/ARVL/eFmu7wkf2Mwsq2Ye7fVJVTW2l9bSGf+/SeFe0i4L91Of9VEY3xRIJ3u7p4sr6eWCbDqcFBHqyu5sr4OLHMfEKhpTT0m8yiREnEm+eZIyu7FLKqU3MZWlbKduU3ZUEQ2P7QJl75+3fmEI3waITW053klwexqTI/eP0sWzeUUlkS5D2rfd52RoenOfZeK5U1IXbuqyMSTvDeG5c49PYVRFHgvkc3ce9DG/GsQh5srZBvK6EncYWJzCCKqHJj8N9g7Vh0vbFEnD84fpCJZILJZIJIJr0gMTEsi3A6RTi9tln5ieSdG8J3OFRqGgpzcos39DYEwYUolWLoLWSSaUTRjyRXo2dOICtbsTk/TTr5AzKpN1AdzyIIWRIgiSIbmsvWlGhU1xWSX+hDWmeddX/Qjce3uuvbMEymJuIUl62+ciVLInvqy/E4bNQV5fHCicuMR+KrELlcH1hWdv7huSPnGZ6K8vP3bWN7zcLKW8OTEY5d7cPvsrOnsWLVxqGCIOBz2vnMvs04VYXvHT5P99jd07rhddh4YFMNn9m3heaKwpkM2+qRMTO8MPgGe4JbsYBTk+eJ6wm2+jcCkO9y8Xh9HRnDoGNykk83ZxNLAtlKUL7Tice29MN8Y2kBX35gJ//vi+8zMv3Ps3/8TkMWRT65YxOGZfGPR08zEonz+tUOLOCT2zexvbwE9RbkkXOFIEiEHPvoivwTlyf/BJsUZDjxHk65iGLXQ7MZe8NMkTYmEBCQxfWZo7uTsIkyla7QnT6Mn2lIksj+pip+dPgi+5uqZv18ABRZwu+e+2wuKvRRVHj7WtNWRTQyhoFumny0sZHzIyMMx2I81dCABfRNzx/ENAxjnuKUYpORFSnnMpkgCNhvqg5oGY349K2pDpTUFhIsCtDXMjTn2C4fbWf/R3by9APNTEeSbG4oRlVl7t05X9Z3bHia08c6yCvIani3XR3k6HstFBT5EAWBU0faKavMo3nb0gM5twMVzg0U2rMTNCYm2S687LmXxcX7JxO6xsnh9fV5uFthd6pU1eVGdGRlBw73LyLK1Zh6O6n4tzCMASS5GsuMIqpliFIFiu0BtNSbYF1v+RNFgeqGtTWQq9lQhDew/s6/Xr8Tt2d1VRPTtAhPrk1QZhgm/ZPTDExGmIhm23buNpJxIxJpjXcvdZDSNH5ZFNlSNV90wK4qJFIZwrEk2+pKV000YMbMzOXgY3s2kedx8f0j5znV2b9uMsu5osjv4ZmdjTy7cyNVBYE1U7UTBZFmXwOaqfOjgddJGCkMy+BA/i62+DbMLCPgsdk4UFnJ5qJCGkMrD5JEUeThzbXEUhn+/LUjTK1TxedDLA5h5nv8zI5mgk4H3z15gbP9Q7xyqZWeyTA7K0rZWVFCbSiPQq87J/+dlUBEptz9FOOpEwzG30AUFBTRS5nnmdnhcIC0MUFU60QV/Tjkuc+ZrquDCIJASVUIdZ0UgdYbbtnBR0r3kDKW9u75ELcOy7Jo6RvlzbNtHL3Sg11VZltM60tC/Moze5dcv6s7q0BYVhpEuUlUaSocZ3QsSkV5EIf91obEV3XlyqKIU1UJp9MookjaMGidmCCcSi1Y0RBFEUEUsIzrTzFTN1fUQypKIs6bKgOZRIbw2K3JgtocKqHyIIoqk76hravnSvZhm+93caVjGATY3VyxoPxXMqGh6yaFJX7isRRXL/Rjsyt85DN7SKcy/OBbR7LOydtu6RDXFF4lSE+ihdboaaYz4yiiSoVzA02+vYj87EvU3grsDoXy6hyCDUFGUmqRlI2IYnDGROvbYCXAMrAwYIbaiWIelpnkxv4zQRSprF1bDeuKmtCqCUAucHvtq24PNE1zVa1XkHVcvtw3yqGrXVwZGGNoKsJIOEYiffc/5NK6wfG2Phyqwm957qUszz/nfb/bQVnIz9Bk9l5nWXCxe5iWvqxB3JaaYhrKQoyGY5xtHyCZ1ogmM+zeUE5jRQGvn2ohkdLoHJpgY2UhH903k6kXBNx2Gw8111Lod/PauVZePduak0TrWsOuyGyrKuYjuzexp66MQr9n+ZVyQDz5BpaV4iPFj+CUHaiiSPv0q0zFXsAjO2j01+NR5maTS7weirn1/TttKs/uasSmSPzl68cYnFwf6eoPsTAsy0IzskpctaEg+2srGInGGJqOcrZviLaRCQ62dxNyO/E5HLhsCg5FWRNfqH/96L0okohHrWVT8F8zmTqDaWl41Dry7TsRb3AKNy0dVQxQ4noUv21ua9Hp91rw5bkpqVop2b170ioOSWVXsG7FLYQfInfIksgnD2xe8L087/KJxpOnu7Esi1C+Zx7RGB2N8qOfnuGLn99LackdIBoBh4OHqqvRDINCjwe/3c5/e/ddfDYbTzXMl4FV7QqyKs+Z09A0nUxKwzTNnIzEREnEG5z7QEgm0kwOhW/5c/iCHiRFumbNAcBozziGYfKTdy5QXZbH2St9NNcXc+ZyP1sa5rY2CAJIsogsSwz1T9HXPU51XSHl1fmMDk4DAukVDquvF7rjV7gwfQib6KDYUYVmarTFzqFbGtsDD6IId8csyd0Eh9NGQfHyZUZRzEPLtKNrF5DlzejaSQyjl0zyZUxjFNMcAyuOhYllJUCY27omCBDMd2OzK2tyvXj9TkJFvnniCesBl9uO3bk6STzLtIjdoumfbpic7xnitXOtnO8Zpndsimgqfccz8ytFStM52tpLRb6fX3l875KtHSNTUVr7x3A7VEryvJzrGMRlV0mkMlzqHuaexkr8bpPDl7sJuB2cbOnn2b1NXOkdIXNTC6sggF2V2VpVTEnAS1NZIa+da+Vke/9tUe6SRZGqggCPb23g/qZqagqD2NW1u24VuRrQ2eioQxAELMugQHmCpNdLPPECTmG+tPJaVFHcdhtPbd9AntfJ9w6d5+CV7n+Ww9l3Av/lp28yHkuQ1HRSmkY8nSGaut5iHc9kaB0Zp3Uk+7csisiSeEv+LDfjNx7aNzObqJBv34lP3YCFjiJ6EG8SYXHIBVR6Po4oqNjkmwR0IkmcHjuStNJjunuuMUEQsEl3v/P83Q63olLs9FLm8lHm8lPm9mGXs+dVliSe2t0IZAm2aVorapeenIpnVe2M+deNaZq0dwyTTN16sm7VROOxujqcioIkCHx840aaQiHcNhsb8+cPNdocKspNRAML4tMJDM1AtC1/YiRZJFAwV143EUky3LO8+dRicHjs876U6ckYlmUxPB7h049v59zVAQzDZDo6PxByumyIApw81EYmYxCLpmhsLsVmU0ilMhiGcdfomLdGT5NvK6XRsxOn7MWwdEZSPbw3+kM2+fahiAsTjSKnm9878OhtPtrrCDrWv/1nIciKRF7Ik5PRnazuRMucJhH5AwTBg2VOISubQBBJJ3+IJFWga2eR0tVomaNIUgk3/gSvOdrnhbwM9q3eU6Kg2I/H57gt156qytidKqIkYC5ws8oFlmWRiK981mosEuO1s228eraVtqFx4rdYvRAFAUWWViRZYM4oARlr2JoVSaZ473IXu+vK2duwkFB4FqPhKKZp0lAWoizk51RrP1PRJDZFIuh1sqEihCxJHL/am5WctSwu94xgWbDrJofha5BEkUK/m8e31rOxrIALPUO8dbGDs12DRNZhOFmWRDaUhHhwUy331JdTEfITcDnXxH38RqjK3JZXQZCQ5RIc7COVOry2O7sJdlXh3g1VFPu93LuhipfPtHCuZ+hDwrHOePFi6xxisRx000Q3b00ZbSkIgogqLW4JIItO3OrCbdUbtlYw2D3GUO8EpdWhnFvMs9XzD/FBRoMvxEZ/AeVuP+VuPyGHG69iw63Y8Mz83zYjW21ZFmlN55WTLRxv6SWR0igMeLh/cw17GytWNaM5OBTGNFcnO78qohHPZLg4MsKWwkL8DgdVfj95Tiedk5OMxGIEbzLts7vt2BwK8ZvGN0Z6x0knMzOO38scsCITKp/L+tOJDKO948Sm4rgDK5+Mt8z5QUJ6JuAJeF28eugKvYNTvHzwMvkLbL+0PEjdhmJefeEMqk3h3oca2dCcfZCPDIYxDAv3XTAIDhDTw1S6NuJXQ4hC9iItc9QTNyKY1uI3J6/Nzicbcpf1HU+30xE9SMhWR4V7N7Kwuvadtcgy3QoURaKgxJ/Tj0ySa3G4fwEtfRzLGEKUy5DVfQiCjGlOIQhu0olvk4j9KZYZxuH+TQRx7m9EFAXyCzxrQzSKfLjcCxPHb3S/TI2rlO2BBhzSys3BboYgCtjtKooikzZuLQNumhbJxMpIQvfoJN89dJ7Xz7cxHonnVJ63KRJNZYVUFwSpKghQ4HPjUBXsioK0YlJm8f9n77/D5LjuK2/8cyt2DtOTc8Ig50QCzEGkSEokFSjKoizbcg5ah117195d//za63V61157rddeW5KtYMlKVGSmSIAZOWOQBhhMjp1jpd8fPRhgMDkgUOLRg0ec7q6qW9XVt+75hnMcpyiCUDBN0jmDZDbHaCpLfzTJxZEYZ/tGSGZzcyYilxrEXzx8hk3NNdNmNVyqiu04FAyLfMFElqXxB4pbU5FE0dncdhx0Rca2HdY1V7F9ZT01pdNn6IQQuDSV1soINSVBNjbX0DkU5eD5Xvad7aZjYHTBZA6K5KKxPMyGxmq2ttbRVB6mMuQn6HFNug8dp0CucIB05ruYVj+S8OJx34vHdS+G2UXBOELBOIltZ3DrO8kV9iGEi6D/F1HkCgyzk3jqnzHNLtz6DgK+X5jTve44FgXjJOns9zDMiyhyNV73I+jaeoSYfwOxLEm0VkaoDgfY2FzNmb5h3jp1kUPne+mJJpaMdHh1ldpIiOaKCM0VJWxoqlqyJvp3Gwzr3b/YNgom+187xZ5XTxIpD6JeUbr9sV+5l6qGqVTqHJjhWf7jhj/YdF9RBfMGwnJsTNvCsG3SZoFkIU+8kGUwm2Igm6Q7HSdlzG/OXBEq56m2zTT6w/hUHU2avpfZtGy+//ZJ9p6+yLqmalyawnAizfP7T2E7DrevaZq0Tf9AnF2vneLMuQHOnCum9fr64xNKp0zTovPiCHW1JfgWURq9KKIxlE7z7RMnWFNerCsXQqDJMuejUQbTaVaWT6w3D5cH8AW9jPZPZBo9Z/rJpfP45iCfpagylY0T9+s4DiO9US6c6GHNzvk7d6diGeyr9M5tx0ESgg/fv57TFwbZtraBlrpS2hon19CHIj4e+tAWVm+oByFobCkfr4svrwrxvg9sYNnKa+MoPV+EtQouptsp06sJa5VYjsGR+OuEtfIZfTQkIfCoc09/Vkh1jBRCKLKBS5bQ3qWpU0WVKauY2aDyEoTQkZWVSHIDOLkxDw0PQlwWLRS+X0Q17kIIN7K6AtCv2oeYg+Ps3FBWGcTjnZrgvTZ0mJcG9lHuCrM5tJwdpWup9y6uEd3lVou9Tgss+3IcyKbnPhmf7RvmS7sO8PLRs3OKtleGfNyztpXbVjRRFfbjdWl4dQ1dVZAlgSSkBUfSL3kcWLaNYdlFj4OCSaZQIJHJc/RiP88cOEl7z9C0Zm9XIlswaO8Z5EzfMKvrKigYFu1dg7x6+CyxVBYhYGNLDQGPixf2n8K2obmqhLqyEH2XHNGvOJdkNo9tO+w+eh5JQF1ZmA/umFlqUgiBR1dpKi+hNhJkbX0VH9iyipFkmguDUToGRukdTdAfSxJNZ8nmDXKGiWXbqIqErii4NJUSn5vygI+KkI/G8jBtVWWEfG5CHhdhnxtNmX7eMcwLZHOvoMhVeN2PYtsxZLkMITRsO0YmtxuXvoVC4Qjp3A/xuh8mmf4ahnEOWYogS2X4PU8ST/0ThtlBsaRk9i/ZMM+SynwbSQoQ8D5FrrCfdPZ7CKGjawvzURJC4HVpLK8uo6m8hM0ttUTHCOm5/hEuDsfojSYYTWWIZ3Jk8gUMy8aybWRJQpVlNEXCrWkEPEXvkrDPTWnAW3SdL/FT4vPg1XV8Y/e216XesCDNe7gMx7Ep2AnSRiemk8UlRQjoy2bdrqQiyOY7VmDkTWRFmpCdvlrmf8LxfoIyGvfXLrvhJbLOWMDJZuwZMEY68pY55nieozed4Hh0gAPD3ZyKDZE2Z37WvTlwAVWS+bkVWwlp7hkDJKZl89zedn7jsdtoroqgyIJUtsDbJzvZffTclEQjEHCzYnkV2VyB851D5HImubyBdQVBl2WJrZubuPuOFZTM0etuKixadWo0k5kg9afJMpbjMJye3NRZWlNCoNQPpya+3nW6j+wcSyYkWSJU5qekMsRof2z89cGuEY69eWreRMNxHPo6BslnJy6OPD4XQkB1eZBQwMPGVRa6pkyp9CLLEqUVAUrK/DhOsTbu0k3R2FJGXWPpTaMYsT50B2+PPMM3uv4OGQnDMfApQW4r+yC6vHRZF1324ZKDSOO3mMPpxCuM5M9TsDK0Be+m3LUcWajsHf4yLjlA1ooR0Ztp9u28acx6iqVTcyMaUCzJEMIP0zSRynINklQBXLpHJp6nJAmCS0Q0IuV+3N6p+ya2lqxk19BBjsU6uJDu45XBA7T4athZuo4N4Ta8yvwzULquomkLl4t0HIdsZm7zQH80ydN7jvPC4TOzRtclIbh7TQsfv20DzRUlhLxuZEks6T0mhEAWAlmS0BTw6sDY1+g4Dq2VEXYsb+DzP9rLswdPYc7BvG4gnuLQ+V5W1xWlXZsqS/jp+7dg2TZel0bQ66Is5GNtUyW27RD0ufC5ddy6QmVJgKC3OId9+v3b2He6ix1rGlnVUIFtO/zD99+clWhcCVWWifg9RPwemsrDrKmvJJs3iu7Upolh2di2gz2WHS6akAkkSYwtkGV0Rcatq3g0bR7lfA6WHcUWSTxy2VhGQQKK97Us+dHUVThOHsvqR9c2ksm+iGWP4mAiSR50bTWKXIFtT1ZCnPKIjk3BOI1p9RD2PomqtCCEm2T6KxSMkwsmGpcghEBXFarDAapCftqqStnSWkuuYJAuGJwZGeFQXy+OAy3hElaUlhUFJETxnpUlgSJLKLKMKktj11ZB1xQUSbpp5s4bjU/v3DKn39m1wKUskuMU3cE7El9jILMbw04hkKn03M5q/bcASBtd9Gd245LLqPDsRJEuz/8tq2uon0bx0DNNtrp43Jtf/GKp4HoXBDFtx2FtxGRnVROJQo7OZJRX+87xSs9Zuq8u8RnDcC7Ns10n6U7H+J11d7K+tBpVmvr56jgO0VSW5bVl42tUl6pQUxrktWPnp9zG7VJZuaKKhvoIuZyBYVi87741+K/w3BICXLqK3+9Clhf+bF+06pRLUehLJqkPhYBiOVUqn8erTV7glNaUEIxMXoB1HOkkPpSgprVi1obworyti8bVtROIRmIkyfE3T9Fzdis1rXOPzF5s72WwawTrqoyGL+zFduCv//WVcbYsBJSFfXzy0YlGJ/Fomlg0TV1j2aRauOvRiDsfhLVybi97jJF8H0kziia5iWgVhLWKa24WVOfZRKV7FYPZUwznzhJSa3ErIfqzx9gQ/ggNvm2o0s1RYnYJiiITjsxx4e9YmMYR8rkXsMxz4EzRzxP47yjq9JGsS8Z9S4FQ2Dttb8lH6+7hfVXbORbr4I3hIxyOnaE3N8zh+FnK9RBbS1Zxa2QNjb4q5urprqjyoiYjx3EozMFYL1swePV4B88caJ+VZAgheOrOTXx4+xrqSoPIN2AhJoTA59bxujR+8+HbGElmeOv0xVnLZWLpLKf7ioZvkiTwe3T8V5kZujSV4FVZK4+u4bnCDbamNMhoMsMP3j5JZ3+UbKHAbVNEuOYKWZKK0fIpHGeXGorSiN/zUdLZHzIS+2+oagt+75PoatHzQggvQugI4SoqvaEjhAaYxRTZAr5qhwKWPUI29xqGeQEhVBwnh20n0bSplV0WCjHWFxRUZIIeF0PpNCfPD/Ht8ydRZZlPBNextn5pJa9/UvDJ7Ru5UU3RiiTh4GA6aY6N/CX9md0YdlF1TBI6eeuyX43pZBnNHcS0c7iVSkpc68bfe+O5I+zf1T7lMT7xHx6gZlo1xKX1sXoPi4MkBC5ZxSWrRHQPdb4QayNVPFK/ku9eOM6zF9uJFiavFzKmwf6hbv7kwEv85433sLmsdkqyIUmCxsowT795lA/tXIumKPSMJHj9+AWaK6f2pRJCoKkKWlChtbkCwzCprgzhvwYqlYtuBm+JRPifu3fzcFsbHlXlUH8/HaOjfGT15KhPpDJEaU0YRZUnGPdlkjnOHDxP89r6SdK1U8Htc7FyeysHXj42/pptO5zcc44Xv/I6H/udR3DPwQnZsR12feMthron18OX15UiyYL331GM+pmmTVd/lOHoZJ3/Uyd6+Mf/9znaVtVw+72rWLu58aYw55sKkpAIqCX4lCCWYxWdcJm7j8lCYdoFzqfeImkMkrWiaJIHezy9KwjrjXiVyE0XjVMUiVDJ3FKGRuEA2dTfY5kdyHLtpP4LADGLhLAQ4HIvfgHncqt4fPq0TWAhzU9Q81Ghl7A9sprB/CivDx3hrZGjnEx00pke4MWBPbT4armzbAMbQ2341Jkb8hVVQlIW8f05TCL8U+F41wDPHmxndA7yq49vW80Tt66jNhKcV1P8UCrN86fOUBXwc++yyd45c8H+7l6+e+wkv3DLFupCQYQQlAV9/OqDt3Kgo4ecMTOpKpgWg/EU0VSWiH9xYgjL68qpDPtBCBzHwbdAPfTrDUno6Np6VKUJ0+ohlXmaVPqbSN6fHvuEGP83V0I8GwQqkvDg0jYRCvwWkhQae10gyYs3k5wJw9kMh/r7GMykUSVpSpn49zA3hDwubMdhIJ2iyrdwmeJ4LociSVMGT2eC7Zj0pV+mN/0yLrmMleFfQwiFoyN/MeFzLimCR6mhJ/0CycLZCUSjrCrEsrXFfk/HgXQiy+G3zrJsbe2MzwnHuXmJhmH2Ek19iWxhP0HvRwh5P8psEYFMfi/Dif9DwZwYndeVVqoj/wt57Dc6HUxrlFj634ilvz7hdVkKE/Y9NTaG64Oia7pMqctLSHPTHIiwLlLN59v3cDo+WdTIdGyOR/v5s4M/4s+2P0RbqHxSOaSmyPzsA9v4+++9wTd2H0FXFSzbYUtbLU/ct3nWMe24pRXHcXC7r01gfFFEo8Tt5uNr1/L0iRN87ehRcqZJUzjM46tXc0v9ZLUUWZVpXFNHpCrMwMXhCe8dff0Utz22dc5EY82OtkmEJRlN8dJXXsfjd/PIL9yDxz/9vhzHYde33mbXN/eQik1esCzf0owsSbQ1FHsyHKA07OPplw5P+mxTawUPPraZd147xf/58x9SWh5g223LuO3eVdQ1li4qyrvUOJM8hEfxU6HXjTmDw0ihn+70GVYGt6FNozq1WIzkz5OzEjT5byVW6CKa7x4PNgkhIQtlWpLhOA6WY6NMkza8lpBlieAcDe9M4xhg4An8Hqq2DaYgFUKapQxLCNyLlIkFCAQ9uNzajMRNIHDJGrqkEtb8NHgqebTmdtoTnbw+fJiD0dO8NXyUw7EzlOthtkVWcXvpehq9VUhi8rkpirxoB/Kp5PWuRDpf4MiFPo5dHJg1VtlUHubRbauoiQTmrbwV9rj54OqVKItQ7MoaBv2J5KSm1FW1FbRWlXLsYv+s+0jnCgwn04smGpoiUxZ697kOm9YQlj2MKtehKm3IchWGeQGbpVfAugwJRWlEksMY5hl8nkdxHBPLGphgsHktMJxJc3Jk4QqK7+EyHMdhMJ3i2+0n+LUt2xe0j4xR4I3ui9T4/ayvmF+fpeOYdCWfQRIqayK/Tal7O8nCuUmfUyQfLrkMw0qSt0YnvLdyUyPL1taN/23bNjsfXMe3P7eLZDxDpHJqUQd7imz6zQLD6iOZfYG8eQZVqSPg/iCSNHNgWBIuZCmIQMFyYlhWFIcCQug4c2h8F0JGEn4k4cWyY1h2DNtJIUtxLDu2RGc2fyiSRInu4QMNqwjrbv7++BscGemb9DnLcTge7eevj7zGH219gAqPfwI1E0Kwsq6cP/rk++gZjpPM5SkP+aku8eN3zx5091yx5jBNi1zOQFFkNF1Zkh6vRRENWZKoDQb5+S1b+OTGjTiOgypJuFQVdYrFtRCC1vUNlNdHJhGNQ7tOMNIXI1IdnrV8SlYkKhrKWLm9laOvX9Hw4cBw9yhf/6vvc+7QBR7+hXto29yM64pyA8dx6L8wxAtf3M2PvvYmgxeHpyxhWL2jDSTBvz97YLzRJ57MkplCSzhS5ueDT2zjvofX03lukDdeOcmuF47z7NMHWL66hrseXMuGrU0EgjdGovVKHI+/Rat/AxX6ZSLolr3sGXmOFt/aaYmG5djkTROPOvsi2LBzXEzv42xiFwAZK0qVezUZc4Rj0e+hSi7kK/w6ZrqNLdvmTHSEb50+zh/cetecznEpISvSnBXDHCeOJFWgqKuR5Pm7CUPxWixFP48v4J6TJC+M9Rcg8CpuPLKLktIA60KtHI6d4fu9r3Ms3kHSyNCVGeDF/j1sCi/ng9W30eqvm7AfWZbm5IUzHRzHwZ6lpvr8wCjvnLk4J0WZD2xZRXNFZEF+CIokEXBdG9KtyBLbl9XNiWjkDINY+uZdNFxrWNYQ8dQ/ky/sBRwUpYGA9yk0pZmcNYUy21WTSSzxt2TyuzCMsziYFIx2NG0D4cBvMRr7I/LGcUyzi2x+N+ncC3jdDxPw/hS6tg6cj5JIf5V46h/BEbhdt+H3PoW8wN/2bMiaBl2JOENT9De+h9nx+UMHOB8bJWuYPLl6LT5N43OH9nNqZJhkPs9dDU1sr62jN5ngHw/sJWeYlHu9fHLtBnqSCX5w5hQBXUeVJe5uaKbC6+O5c2d47twZArrO7fUN3N1YfH0ucLBIFNpRpQDlnp1IQh3rL5oISWgosg+bAoY98btXNQVVm/g8aGirJD6SmmAwfDVse3Llxc0CWSrBpa3CdlLo6grEHLy7dHUFleE/wXEMwGEw9qfEs9+b8zEl4SfkfYKA5wOATSa/h8H4n2HNsW/rWkIIgVtRubOqhYxZ4O+PvcnZxPCkz1mOw6t9Z/nOhRo+uWwz3ivWYkIIFFlQHvJRGvQWfTQkaV4Btu6eUZ55/ghvvnOWeCLLT330Fh5831r27T+Py6Wyfl09ngVWWyx6RSMJgVfTmGv7asOqWioayjj+5mnsK9RX0rEMe58/TO2yylnVp4QQhCuC3PHh7ROJBsXFSjKa5rWn97LnuUOUVIaoaCzDH/JimhYDF4YY7Bohk8xiFMwpSzirWspZua0FSZKorQyNC5X4WirHMxwTroEkobskNF0hEGpk5bo6ErEMJw5fZNeLx/n//vIZ/AE3t927ivse2UBldfiG+WrkrRya5JqgMOWSvGSsFM4MMeLeZJJ/PLyH/7rjblzyzLeNInQafdup82wCQBIyklAo0Zu4dDEFAnnMuOj+6j9AnUL+1rRtDgz08vu7X5h32nopUCxj0lHUuWVShBQEIRXN+BZ8UBadFYBio+DVD6jZ4DgOMSPFywN7eWXwAD3ZIQzbJKIFWBNsIWYkOZG4wMsD+ziT7OKJunu5s3zTeMRDCLFo/wNzltKp3tEE7T2Ds+4n4vewrqGKgHviQ+wHJ07RPjjEWxcu4lZVntiwlr97/W3ubG7kv95/FznD5LXznfyf199CCMHHN67nYxvWjG//rSPHeb2jkzK/l1fOnifkcvHJLRu4v60F07L56sEj/OBEO7IksaG6mtw051N3lev3dDAtm/wsJVY/ztDU5ZSG/hiH4jUQyGMLEwWXvh1d24QQKrq6CgcHgUYk9KcIoQAqAd8vEPD9zNjc5oyVLioI4SIS+uMxdR6bscKoMRNNEOi49B3o2uYrjq3OaVG0UESzWU4MDd1EVmvvHjjAnp4ufnnzNlrCJbjHFBIfbVvJq53n+cy2W1HHAg6VPh//ecftjGazvNndxeGBfhRJwnJsnli1hrDbjSrJSEKws66BrGmwIlLG1uqaKQOoM43JdLJ45NpJJn1XQojLZX9Xz5/RoQTJKyoubNvh+L7zFHLGDPO7g3MTEw1Nqacq/Oc4mGP9VbM/NIRQx9cLAEJyMZ8GLCEkhHAjUQwaXsqO3EzQZJkH61bQkRjli6f3ES9MLn8zbJvPt+/hnupWWoOl489e27a5MBClujSAriik8gVeP36egMfFjpUNs64punuifOFLr3P8ZC/NTWXk8ybZnIFjO0RjGQ4f66KhPnLjiMZ8oblU1uxczrE3TtF/YWKK+PWn93D/U7fjDXpmvfncPhfr7ljJ8q3NnNrbMel9y7TIJC0yyX56zg0gKP7wHceZuT9MwCO/cB9uvxsHh7cPX2D72gbWLKtGkgT/8p23GY6lefTutWxcVTd5cwGGYXH+7ABvvHKSE4cv4gu4iZQHePmZI7z6/DF++pfv5tY7V8w54ryU8KkB4oVhcnYafayHYDDfhUfxTxltuYSMWeB7Z9tRZZnf23Y7ujx9qVMxQq4iX6UGIU2jP69d1cvgOA4Fy+KFzrP899deIprPsaZ0auWNawlJkvD65+4xoWq3YhUOkc98G+ENIMlTjXn661aEWBKi4fboaLMQDcdxcCjKsnake/hh35u8MXSErJVHEhJ17nIerLqF20rX41c9WI5NZ6aPp7t38cbwUX7Q9wYRPci6UGtx5ItUcnJgQvDhamTyBj2jcaLp2euPV9SUEfFPnkcKlsWb5y/yt48/zH/8/nP86Mw5/vmJR/nVb36fvkSSSr+Pe1qbaC4J88X9hyhYExf5edPkYE8vn9q6iX/7xEd54fRZdndcoDrg5+TAECcGBvmD+++iJhjgL370GvHc1NmIsM81PifNBNtxbphyzs2AoorbdIEnZYxQjP33+DaX5xMh3MDUGcnp98vYfXPl/q8tHMdhJJvlxPDsJPo9TI1f2bKNrx47Cjj8h+23UuH1oysKqiSNS7Nbts3Z6Aj/evgQmiKTLRTYWd9AQHZR4vJQ5fNPmDNUWUKViopp+gwyzFNBINCkEHlrFMs2kKWpn/eGlSRr9iMLN+pVvQbf+fxufviVy4aSsiyIVAT50C/cRWV9hKlgOxkcbqyvxEwo/qZvfHXHzQhNkvlw81qOjfbxSu/kMjsoqlH9y6m9/JeN9+JTi+XRecPiz//9FT7z+O3UlQb54ov7eO34ecqDPnqH43zsrg0zHnfvgfMkU3l+89fuZ9PGRv70L38w/l5dbQkv/ug4udzCA17XnWgIIdhy/1re/O6+ItEQRRO+YKmfzfevwzXH+nQhBNXN5Tz+aw/yN7/2OXIzyOM69kyx+olYvrmFuz92K6pWbKZ55/AFysM+3jx0nl/46A4M0+ZnH7+FZ3YfHycatu1gGhZDA3HefLWdXS8co783yrKV1fzy77yfTbe04Au4iY6k+Ornd/ODb+2lqraE5atr5jiqpcOKwDZ2Dz7NYL6bancjWSvDoeguVgdvnbE/wwEShTzfPnUcTZL5zS07cM1ANhYKx3FIGwb/cuwAf7P/zWvi1DpXSJLAOwdRgUuwzPNYZieW+Tz5zJcRUhghJkZefOG/K7qFTwNBsVxrsfB4NdQZpGYN2yRvF9g7epIf9r7JsXgHspBwyRpbS1byUPUONobaUMbIoRACxXFo89Xz6eYP4le8/GhwH6eTFy8TDbEEkrEzKDFF0xk6h2Nz2k1LRYTANLWpraUlhD1ulpWV0lwSIuR2E/Z4iGayVAX8yEKgKTLyNOeyurKcO1oaKfV6WF1Zzon+QUbSGY729bO6spxVFeX4NI372lr49pGTU+5DU+c29cpSUcb0xwWXylRtx8FyHGzHxnYukd4iBMWAjaAojysLCXkp7q05jM12HExnTKp30piKkr3y2JiWyp/i0rkPptO0D7/Xn7EgOA7LI2X84R13873T7Tx79gyfXLsBTZZIGwVypokqSaQNgyMDA6wpL2dHbQMvdpwFxu43waR77FKmI2uYFCwLRZr79y6QKXVvpT+zm570c9T6HpxQNVD83i1ihZP0Z3bjUarxa80T9vEzv/swn/pPD03a80xDmKuM8/VC8TdvYDtXr9EEQqhI1zBLeKNwaZ4zLBvTsoqPNVGsAFJleVoTTSEEdd4Qt1U2cSI6wEB26szU9ztP8OmV2/GqJQiK82n3SJy2mlK6hmLsO9PNX/z8wwzGUnzjtSOzEo2RkRTlZX4a6iOoijzhHvd5dXL5oj/SQnFDckdltRHW7FxOZ3sPulvj7o/t4P6nbptTf8aV0FwaG+5axWO/9gDf+t/PYOQXzriEgJLKML/2158kVBYYWzQ5bF1bzyN3r+HL399HPJUrGntJAtcVsrU9F4f55pfe5MA7HQgBm7a38Kv/6f0sW1WNesWCIlLm596H1vO5v32BdPLGqEK0+NaiCIWD0Vd5Z+QFdMnNpvDdbAzfhTqHRvB4Ic83Th1Dl2V+ecN23Kq6RFovY1rQ+Rx/9vYuvn7q2OwbXGMISeD2zGcSFMhKM7LSPP0nZoiiLiVcHm3Gkq9vdb3KM31vMpSPokoKES3A7WUbeLDqFhq9Uzc9XnoIl+khlvlreWlgL2nz+t3HuYJJco4+G363C20awuZS1bHSPTH23yAJsJjbROrVNAJ6MdOljGUB00aBvGXh03U0uajiFtRdqNM8UFJzMBiEItFwzUBKHMchYxjkr8i8KJKMV1Vn7E1xxhb6ifzE708IgUtWxktPpoPtOGSvOq4uK7gUZdrjGrZFwbTIGAYHB/o4OtBP+8gw52NRYrkcqUIeB/CqKgHdRY3fz/JIGZuqqthQUUXE7UFXFtacmDdN0kaxvhtAFhIB11hW6Ypr0T48zCsXOjg00MfFRJx4rnh9/JpOmcdLW2kp22tq2V5dS7XfjybPbzyXSIVl22NuwkWDr+Fshnd6usial6+nA2RNk9Hs3EsxNVnBo/7kmfSlCgX+Zs+bpApFUvHLm7chSxJNoRKGM1n+9PVdfKBtBRsqKmkKhfncoX2ci47iVlTqggFUScatTL7nS90ePKrG06dO0J1McH9TC2Xeuc3hklBpCjxBf/pVToz+DYYdxyWXAg62UyBjdjOUfYfOxLdIGB00+B8nom+YtB/LtMnnDIy8WfSl0RV09/ReNJY1ub7/RsJ20sQz36Q/+oeM5a0BByFchH2fojL032/wCJcejgO90QRff+sIr7efZziZQVdklleX8bEd67l95fTy4kIIdlY28WLPmWmJRtos8MzFk/ziyluK1SUUBT+iqSx7TnXRVFVCQ3mYeCo3J8l4XVcwDIts9vIcCUUjwsHhJF6PhqLcIB+NxeC2x7bSuqmR5rX14wv7hSBcEeShT99NOpHlpS+/Rjadm7d09qXm8l/6i0/QvLZ+QumKS1f57FdfQ5Flvvy9PXjdOifO9mNfwe76umN0nO7nkY9s4fZ7V1NdN70EotutEo745l0/v5Ro8K6kwbtywduP5rJ89eRRdFnhZ9dunpdj+HSwbJvedJI/2P0iu7svTHhPAPoNiOpKksDtmfu56e4H0d0PXsMRzR2ars44Mbww8A5pK0uDt4p7K7bwvoqtBLW5S0AqQsanuNGnKQe4FiiYFplZfDMuwevSrmEmYPJc5VFVfJpGLJslYxioksRwJkNhmqb1ruH4nKYpTZHxziBFazkOf/7ma/zbscNYY1G0bTW1/Mld97GsZOrSCihOkYcH+vnIN7864fWQy8Wn1m3kN7fvmHFcsVyO//H6q3y7/cT4a59cu4Ff2byNKv/E+yhnmqQLBfb39fLDs6fY1XmeeH56olWwLKK5HJ3xGG92d/GFw1Dl8/PY8hU8tmIVjcEw2jy/22fOnub3Xn4eY2zebg6Fef4TP4MsBGnD4EBfL/94YC9v93RhT5FVy2czDGcznBwZ4runTlLt9/PRlWt4dPlK6gJBlDkEyGzHYSiTJp7LcWZ0hNMjI5weHebM6Ahdifike8W0bb5w+ABfOHxgzuf5wWUr+K+33zXnxfC7CZeixFOtFfy6zn+7/e5Jrwd0nc8+9IEJr22prmFL9eRqgh11UyhlShJPrl7Lk6vn758ihERQX8nKks9wKvr/cXzkr8cdu3vSz9OTfr54DOGmwnM7DYEPo8oTfzv5rMHbLx3jxW/soevsAIoqs2prM4/97B00rqiaco637JuLaAihosnN+N0PYNsxTGuQgtXNjfI4udZwHIeBeJI/+dbLdA7HeHTLKlbVlpMrmIyms5T4Zi8bawlEaPSFOTDUTcGe+hnyUvcZPtW2BU0qqj2ua6rir761i2giyy8+vB3DsklkcwS8s1dlNDWUceDQRV5/6wy6rlAomORyBn19MX706kmaGkrxz2AQORtu2Gq3ZlklNcuWxoioor6Un/q9DxKpDPLcv+4i2h8nnyvMeh/Lqow34KF1fQOf+sMP07qxaUIUWBKC33jqTmKJDCVBH7Zj0zMY50h7Dw/dcbn8Zf3WRlau++k5eWdU10X4pd9+8Kb12ZgOEgJVksYf1EPZNF8+cRhdVvj4qnUTFBDmi7xlcnJ4iD94/cVJNcqSENT4AjzQNL3J3bWCEAJtifpoHMfBsQcRUuiaNpRegqrOLDW7IbSMtcEWbi1diy6p8yb6YS3A5pIVNPmqFzvUOcO07Fm9Jy5BlcWCBBdM2yaWyTKQTJEqFIhnc/QlksUsxgwqVJIQbKip4p2L3ezr6qEmGOCdi10kc5MX1I7jcHQOilMAHl2lLDD9olGRJKr9fgK6i+hYP0hXPE66UMBxnGm/V8u2OTwwWUYxXShwLjpSNAmc4Z4YSKcYzU7sP2kIhvDrk6/Rqxc6+Oz+PRwfGpxyET8X9KWS/MP+vezp7eVXt2zjtrp6tFlEKWZCIp+nMx6jxO3me6fa+et33piR/FyN3mSSv93zFieHh/j1rdtZWVo+K9nIGgaP/ftX6E/fvI26Nyss2yaazmLYNh5Nxa2qqPLN74IuC43GwON41Wo64l8jaZzDdkwuCRNocphKzx3U+x/Hq04mP/t3tbN/Vzu3PbSOFRsbyecMXn/mED/8yht87Ffum7JP42bLaEhCx+e+A5/7DgByhRP0x/6IbGHfDR7ZtYFhWezv6KG9d4jffuR2Prhl1bz3IUsSy0PllOge+rPJKT9zIjrAaD6DX9XRFJlff3Qnz+07RUN5mK1tdWTyBVRZ5t4Ns6+dNm1soLNrmGeeP8KLPzpOIpHl/IUhdr1+ioDfxRMf3kp4FpGmmXBztd0vAiWVIT7ymw+x7s5VvPDF3Zx85wypaIZCvoBl2DiOgyQLJFlG1RRcXp3aZVXc9cQt3PLQRrxTSM8KUSyviIzpz8tCor4yTH1leMLn9LHocSadxyiYUza0erw6uktF0xVKy2fxUrgJ4VU1tlXVsqeve5xs9KWT/Ovxg+iKzOPLVuNbgDJUqlDgjZ5O/uStV+lOTozyykLQEorwqxu38eiy+f9YFwshxJJIzRaRJxX7j7j9v4OqbViifU4PVZOR5Okfwp9pe2JR+98YbmNjuG1R+5gvhGDO5CGdNzAtC5hIFAMunXKfF0lAuc9L0OVCEkWZbpeiEM/m+Pye/ZwcHCaey9E5GuXM8Aj3tDbz6JqVhFwuKv2+8UWlrsiU+7z4dJ2djQ3kTZN/O3AEWZK4s7kRlzJZ6ns0leFAR8+s5yAJQdDjosQ3c1Cixh+gxO0eJxoD6RSJfB7bcabtM7Ech4P9k4mGYdv0pVKMZjOUeqZ/sAykU4xcUdKjyTK1gcCU2c1YPs+FWHQSyRBj2+mKgibJSFJRfceybXKWSdYwxrM0UIwb7e/r4Z8O7MWrqmypqlmQdDFAwbbY39cznhHKmsb4mHRZwa0qqFKxBO6StHfGMLGcy5lsB3ih4ywuReEz226lKRSekZw5OO+RjAUimsnyVy++xunBYbY01LK1oZatjTUE3a4ZyfSVkK5Dn89UkIRGhed2yty3kjMHSJs92E4BTQ7iVerQ5NC023a097B8YwP3fmgr2li5dl1LBX/1218hGc9QyWSiYVr9/LhmC94NKJgWRy/243fr3LaiccH7afCHCWquaYmG5djsH+qmzhtCEgJFkvj4XRvGM/keXeOWlQ1zOpbHrfGRx7ayrKWCt/eco68/jixLtDSXce9dq6ipDi9KpObHhmgAqLrK6luWsWJrCyO9o5w71En32X7iw0ksw0L3aPhCXsrrIrRubKS8LoIyx6bMmWAYFj0XRzi0t4OeiyMU8uaENK/uUrnrgbWsWjdZperdgkqfj/9269388VuvsLevZzyd15WM84WjB9AkhYdbls+ZbDhANJvhBx2n+N/735qwaAFQJZm1ZRX8x623saNmckr7ekBIAl2fPqNR/I4vfc8z/wgdJ4NjJ4DZ/R+WAqqqLIlR5JUeMzc6eqjKMq45lun1RROk88Yks6L7lrVw35jT96/uvGzi9acP3z/+3797zx3T7vehVct5aNXy8b+XlZXyH8pKx/9+avMGntq8YdrtLdvmO3uOk57Cj+dq+N06DWXhWUvAagMBwq7L52k7Dl3JODnLxCtN/j06joNhWxwZmDqrksznORcdnZlopCYSjRp/gLDLPeVC+6HWNr545CDtw0Xp1oCuE9B0StxumsIlNIfCVPsD+DQNRZKI5bKci45yqL+fM6MjjGYzE5ZN7/R089y5MzSFwpTP0dPgauRNkx+eOcWZ0VGypoGg2HtTFwiysrSMNWXllHl86IpMopCnIxrlQF8vp0eGieVzE0jTM2dPs76iknKPd8qMziVIQtA2TTmb5TjEcllGrsoSlbjclHrmrtBT5ffPqYzr3YbeeJK+RJITfUOc6Bviq3sP83cf+wB3LGuatjF6f2fPOFHVZJm1NRVo81SOWkpIQsGj1uCZInMxHRRZxiyYGHkTVVNwHIdsOjcjabKs2YMY7+HawXEgWzCQhcA3Q9nrbKjy+PGpM1c/tMcGsXEwTZt/fn4PP3v/VkqDC8s86LrCti3NbNsyfY/pQrGoX90lGdKBVIpkoYBP06gJBMgYxYs8V++DzlO9eP1uUvEM+WwB3a1R1Vg2XraSimUY6o1i5A0kWSIY8VFWXYJpWsRHUuTSefLZPC6PjqzIZJJZSipD3PLwJpLxNKMDCQq5Am6PTqQ6jNs7d8nSuWCgN8rX/+V1Du87T2l5gEQsQz5vEI74SCVz1DZEcGaQ7Xw3QBYSy8IR/sstd/Jnb+9mT9/l2sGOeJTPH9uPpsi8r7F11jIq23HoSyf5yvFDfPnEYRKFiSULbkXllqpa/sstd9JWUjrNXq49hGBGiVjHHsGyLiBJ5chKPZbVi21NjhIDONYwjpO4VkOdBFmRl8SrxXBM+rIj2I59XcukpoJbUwjNod4UoL17iNFkhoqg74YTpEtwHDjXP8I33zo2JzW1Ep+bVbWTfXuuRrWvuMi/EhdjMbKGOe1vcTidoTtRVKeRhMCnaSTGSoeShQLnoqNsr5k6MGI7DoPpNNHs5UbyhmCIwDSL7ICu8/jyVXzFOEzI5WJnbT231NaxsbIKnzb1Ng5Fl+zvnjrJV44dpjMWGycbDvBG10XurG+izONd0Pebtyx2X+wcP/9yr5eHWtr4+Np1tIanJgOD6RTfOnmCrx0/QlficvbVtG2ePXuaHbX1LNdKpx2PS1H50mMfnfK9WC7L108c43OH9o+/pkgSH2hbwa/Ow9Val+UFZZZvdvTGEoykLpOw8oCPgFufcY77xa98Z7zUstTn4Zu/9AkqAwsjpguBgwOOQ94axbATWE4BsGf0q3LJEdzK5ZLy5tU17N/Vzu4fHqJ+WQWmYXPw9dNUN5URLJl6QWnavUt9Ku9hHpAkQanfS8G06BlN0FQ+fc/uTAjrblyzEOMLydFxCfRXD5/j1z+wc0HHchyHQsEimytgWfaUJtahoGfBDeGLIhp5y+JAby/fa2/nzMgILSUl/P6dd7K3uxtVlrmrafrO+ivx//2Xr9GwvJp0Ikt8JIlpWHz4V+9nw50rkSWJ04cu8OJX3ySdyAKC8towT/3uB7Ftmxf+7Q0unuolk8yh6ipVjaWcP9HDtvvXsvORjbzzwhGOvnGGfDaP7tG57QOb2HTnKjz+ucuWzob+3hhdnUN8+KlbefCxzTz/vYMMD8R5/OO38OoLx8ik84Qj7/7mPFmSWFlSxn/adht/uff1ItkYa2A8NTrM547sQ5Uk7q5vnnaBY9o252Ij/OPhfTx3/jQZY6Led0DTub+xld/ddvucHVivFYQQMyo3mcZhsqnPorkewe37WfLpfyOX/meE8MPVGQ7HwrancDK+RpAW6WlxCaOFBF/qfI68VeCP1/7iEoxs4fC7XVQE53ZPtPcOcbp3mKaKEtza9feruRqO49A9kuDvnn2T/tjshFMSgspQgJVzIBqlHg+lHi+KJI0TmM54jKwxtZa+Axwe7BvX2PJpGu9rbuWbJ48DYxmN0dFpezwyhsFQJj1ebgRQHwwR1KefUx9dvoJKn48ddfWUuNyz3psCKPN4+fjqdeiywt/tfYuhzOUMyvlYlAuxKDvq6ufdGH41Sj0ePrl2A5/esHlGr4Ryr49Prd+IjcMXDh2YkNE5PNDPhViU5nDJtOO5RGimgiJNDswJigpc023zk4ThZJr4FcS2LhTEN0P26KaA45AwznIx8R1GcofIW8NYTp6ZypoaA0+wquTXx//esHMZmVSO3T84xIvf3ANAQ1sVj/7M7ZRUBKc6KKbZvcQn8h7mA02R2dRUzbMHT/G9fSf50PY1eHUV23EomBZuVSE8h4Zwn6qjSTPPbRdTMRyK/XRNlSUMxlLUl4fm/eyPxjMcPdbNuY5BMtnClIHxJz+ynbKyuQvGXIlFEY3BVIpvHj9OSzhMUzjMyaEhXIrCcCZDbzI5Z6LhONB7fpBP/+GHqWoq44v/87u8/I23WX1LK7JHp76tip/+z49SXhfh4uk+/vG//jvH3j7Dqm0t5LMFAhE/Dzx1G9/++xepaiyjdlkl549388YPDnL26EUeeGonK7c08/LX3+ad549QVh1m+aa5jW0uKORNPB6dtZsa8Xh1FFnCth1cHo1N21v47tfe4Wx7H9V106vAvFsgSxKrSyv47S07+et9b/DOFWTj2PAg/3xkH6okc3ttA56ryEbONDgyNMBnD77DW71dE6QxobiweLR1Jb+5ecdNE5WbydNCVlbg9v0Skny5tEvRtqK57gcxMcLs2DFy6S9cs3FeDUkS8zFOnRa2Y5Oz8uPOtTcSPrdGTUkQl6rM2hSeN0x+sP8kLZUlrKytmFa3/HrAtGzOD47y+Zf38tapTqw5ZDf9bp31jVVUhWfv55IlidpAgKCuj5fedMZjE4jAlXAchwN9lzNvPlXjnsZmnj17hrRRIGMadCbi5ExzSpnboXSK4Ux6wmv1geC0GQ0oLtI/0LZi1nO5Gl5N47b6Bg729/L0qcueJKZtczERI5rLLiog4VYU7m5o4udmIRmX4FFVHmhu5WB/Lz863zG+ZDRsm/aRIbbX1KG5311CH+8GpAsG+Sukf0u8nnkb6F1v2E6B9tHPMpB5Da9aj1etndWN2i1PDCzoLo27H93M9ntXExtJoekKwZLpVSttO4tlDSzZObyH+UOVZdY2VHLP2hbeaL/AUCJFVTiAbduYls2m5hruXDV7eVLRnX7m51Ysn8VxQJYlNrZU88WX9nP/pmXoV7QE+N06rTUzV4a8/c45vv/MIVwulXDIO6XNxA3z0UgbBvFcjp/dtIm9PT2cHBpCk2U0WaZgzs/TYst9ayivi6C7NJZtaOT5L7+ObY3VV7pUhnujDPWOkopl8fjdxEeKDTIuj44/7MUX8FDTWkFFfSmZZPFhe/54N8mRFLGhJIdfO0U+U2Cwa4TY0NTNNQuFokgoikx+zMfD5dYwDIt4NIPLo5HLGWTSc5PlfDdAkSTWlVXwmU238rcH3ppANg4N9vO5I/tQJIkd1fXjC5VEPsdbvV38w6E9HB0emFQ60hgI8eTKdfzMmo3oi1CTWUoIIVBmJBo1yErNFZ93o2jb0N0fRUgTFxu2PUoh+/1rNtarISSBWILSKcuxyVkF3PKNjx6qskxNJEhDWZhTvbMbm+0918XTe47j1lQay0uuO9lwHIfRVIbjXQN89bVD7DnbjTGN3O2VkISgoSzMnavnXitbFwgSdLnGiUZ3MkFqGuUpBzg4pjglgKDLRVuklKZwmGODA9iOQzSboTuZmFIidzCdZviK7IJHVany+2f13lgoagMB1pRX8Oy5M+SueK4MZzKkCgUqFhHwr/L5+ak162ctUbgSTaEwbSWlvNXdNSEjey4aJWMYhN8jGkuOnGlSMC//djyaekODB3OBg8VIdj+aHGZ15LcIaitRrjJwvRqSmPgbMg2LkYE40aEERqF4/n2dxcx4y6qaSZUZhtWF4/z4rDXerQi4XfzSfdtpqyrlcGcfHf0j6KpCc0UJ1XMIHs0VmbFgkuM4jCQydA3H+MILe/G7Lz+vl9WUzko04oksNTVhnvjQNpa1lC95ufGiVnSqJOFWFM6NjpIzi86BPYkEw5kM5b75RZl8Qc94V7ssS9hWcSFqmTbP/OtuRvpiuL0uctkC0YH4ePZRSGPlLaJYl64oMgKBbRXdunsvDPHOc4dRxiIAlY1lhJdY9ckXcOP1u+jvGWXNhnpKynxkUjnefLUdl1sllcjict/48o2lhCLJbKio4tc33gK8wzt9XeNkY29/D8qR/aiSxLaqWhKFPC9eOMe/HDtQlM68Yj8CwerScn5u7SYeaVmx6DKIpcZ8DCQVbRMggZicjRHCg6yuvG6GfZIo5iAupPuIGwtXuhnIRYkZyZuCaADUl4VY31jF6b6hmUzEgWKm9Dt7jmOYFh/YsorVdRV49PlL+c4XpmUzkkxzYTDKO2e6+OGBk/THkrOO9xICHhd3rGpiZc3sZVOXUBcMEtLdQBQoqrkNptMYtj3pN5XI5zg3OgoUgwZNoTABTaetJMKxwWI0NJ7P0xEdnZpoZNIMT2oEd10zkzhVkqn0+ijzeOlKXHY9Tl9lGDhfaLLMqrJy1pRXzGs7WZKoDwYpcbknEI2hdHpR45krUqkcsXiGUMiDb4qepc6LI5SEvfh8xV5Ex3HI5Qzc7psjSzwlHBuc6Ul43jQn+Am4VAV5CQIp1xYSXrUOw0kT1tegy/Ov1b94doDXnznMQNcIjsOE/o6nfvPByUTDODdjD8h7mBscx6EvN0LcSJMyM7gknRZfNcP5OCkzi41NvacCv+IhWkjSnyvOp4ZjUu+poGAbDBtxWts8LGtrpc5Tjk91kzQydGeGOBpL4FPc1HhK0abxosqaBuY0HhqXcGm+UWSJ92+dOmPsc8/+7F7RVkn/QJx9B84zPJJEVeVJVQyrVlThmZeB8WUsimiUeDxsqKria0ePYto2nbEYXz96FMtxeHDZ/HwPhJi61COXzfPtz77E7/3jp9l01yo6T/XyTx2zpwZVTcZdGWTdzjYe+dm7qGurwjIt8pkCumdpJ9yKqiBbdrSOe2PUN5VRXhni1eePYls2zW2V1DXeuKbmawVVktlUUc2vbNgGOOOZDQd4u68LVZYYzWU5H4/yzVPH6UklrtpeYltlLb+0YRu3VtdNkgG90RACpHlEzVT91hn2pePy/hyyPHfFkcVAiOJv6pm+NzkYPb3g/Ri2yXA+TpXr5rh/K4I+NrfU8NrJ8/RFZ89MmpbNd/ee4PzgKO9b38aa+koaykKEfZ4lWxg7TrFUK5rOMBBP0TMS5+jFft461UnXcHxOjd+XoCkyG5uqeXjTink189f5g5Mi6RfiUXKmOYlonBweIjcWCVNlmbaSCC5FmUAq4vkcHbHoFOfqMJhJM3JFRqM+EJzUjL7U8Gn6pNKsvGViWgtP53tUlR119Qu6D8Iu96SeirRRmFNZ3GIxOJTk0JGLbFhfPyXR6OuPoWsKXq+GEIJ8weTo8e55qskIlqT2cs6wcZi61O8SrhyNbTs3vYKrJFSaQ0/Rmfgm5+P/TolrI6rkQwhl2lJUTQ7jVi4HGPbvamd0KMEt968hVOqfkKUOT1Evb5jtwMJ/E++hCMM2eWfkBGkzR1dmAJ/qQZEkjsTOoQh5XCTljrL1dKR7eaF/D2uCzQzmovRkhtBljQPRU7T6aokbKRJGmu2lq0ibOTpSPcTNNIpQuFVaTb1n6kBHxixgzEI0LpFKWZJY21S14PN1uzVisQz7DpynJOzF45ksmPQbv3LvjSEaIZeLR1as4PkzZzg5NERbaVFx496mJlaXzz0aNxMkSaJhZTWnD3USG04SH0nNKcosEKza2sLZIxd5/fsHKK0OYZk2gRIfq7e3TtNItTCEIz7ufnAd8phvQWl5gHsfXkekzE+hYLJmYwP1zWVLdrybCaoss6Wyhl9avw2Ad3qLalS24/B6dycdsVGShQKxfG7Cdl5V4666Jn5x/VZWz8Hs6kZh6aK0AkVdPvvHlhhDuRgDuVEqXCXTRk5mw7WKVC8EsiSxrqGK21c28Z09xyeUU8yEI539tPcMsaq2gvVNVbRWlFIR8hH2ugl4XHh1FZc2tQmY4zjYjoNhWhRMi2zBJFswSOXyJLN5Yukcg4kUF4ejnO0b4Vz/CMlsft7rIFkSLKsq5cmd66mJzG9+CrtclHu8xbLVsczihViMnGlMWqAf6O8bH5sqSbRFSnEpCq0lEQTF9VtizPvCsu0JXhU5y2IonSZZuFyeURcMEnItnbjGVFAlaRJhsm1nSnWUucIlK6wuXdhzyqUok+asrDnRZ2OpMDiUoLcvhmFYlEZ85PMG6XSe02f6GRxMUFkZpLoqhKYqdPWMYhjWWG+ZIJHMcujIRV7ZfQpdV6msCFIxp4y+BFy/wI+DheNMTzR0uehrYtnFCG48myM/x9/+jYJApkRfz4CymzPxL+BNv4gulyJJGoKpn3dVnrtoCHxo/O9MMsuyNbXc+r41c5LiLxjvEY2lgIVNwTYIaz4UIVHtKWUgF0WVVO4u34giZP73mW+wLVL09/IpHh6u3sH5VC/f6t7FtshKyvUwD1ffytFYB8cT59kWWYUmqdR5KwgZGboygwzmotMSjdF8huwsGVJdKt4TjuNgWDbtXYP0jiRwayo7VzcQTWaxcagIzdzEffBQJyOjKe69axV1tVOXGQdm8XOaCYsiGpIQVPp8/PSGDRQsC9O2cavqvBcmOx7eQG1rxbjuf3VTOTsf3oiqKaiawsd/52GOvnGKvgtDVDWW8dgv3ovLq+Hy6LRtaEBRFUKlflZvb6W0Oow/7EFWJFZuaaaqsYyjb52m78IQsiwTLg+iaEs7gdq2g23ZqGM1ykII6hrLqGv88SQXV0OTZbZV1WI7Do7DuPSt5Th0JScr7ERcHt7f3MbPrt1IYyC8YNOta495NlQ7Npbdj2WcwbFHp4zQafo9SPL1zQ6U6SE+WH07Fa75p+6H8jG+3f3q0g9qEagKB7hv3TJO9w5z+ELvnBf0BdPi0IVeDl3oxatr1JUGqQoHKPV7CXpc+FxasSRjnGw42A7Yto1h2eQNk1zBIJUrkMjmiaWzjCQzDMZTJLK5RUWzJSFoKi/h47dtYPuy+fvGSJJEXSCIX9PH1ZAuZTSuxsH+y/KXiiSzrKQURZKo8vkJuVxEczkKlkV/KsVoLkvZFX4ao9kMQ5n0eCRNIKjzB2dUnFoKCCGQljjCrsky9cGFBZwkIU0az0Jdz2eCA5w81cfxkz3UVofRNBlZlkkkszjAaDRN58UR7rlrJWWlflKpPC/+6Dh+v4twyINRsOjuiZLJ5BkZSRIMzG2xIJBnbVxeUjg2ONMvqry6iq4q4/fzhZEoyVwex2FaH40bDQeDi8nvMpB5HQkNkLCcLJY1vQO95eTI5wrks8VnR7g8wOhQkjNHu6moLZmggujxuybIjTqOScE4zc2U6nEcE8PqJVc4huMYOBQomBcxrT4cxyRfOEk09VWE0BBCQ5ZC6Gobqnx58W1aI+SNdix7FNsp4DgGeeM0OCaWFSWe+TayFEIIDQkdTW1GVy+bydpOgYJxnoJ5dnwMeeMUlh3DcXJk8weISV9DoCGEiiKVoanLUYRC3EgT1vw0e2u4mBlAFhICgSLJY0GF4rUu0fxFA1JJxbBNZCER0vyXP2tbZK087YlOzqf78KsekmZmxsDE+USUeD477fvAuOCObTvsOXWRFw+cJpUtMJrIsH1FHef6RugcjPKxOzfMuJ+yUj8rl1exYX09LU3lqMrkgJu+CPPiRc0kpm2TGvPP0GSZvGVxeniYgK5T6ffPmXA8+vP3TPi7ZW0dLWsva7hvvmsVm++a2hl60xWvl9VcXki1rC0+rIOlfhpWXFv9/+7OEd54+QSR8gAlpT5KSv2UlPoIBD0zyqP+OEGTZbZX1+KM/W9PX8+Uab86f5DHl63iyZVrqfTO/R65UZiP2pJldZPPfBOj8CY4BlOxFEVdd92JRkQLsj7USr23cvYPX4WuzACvDO6f/YPXEZIQrGuo5MO3rCWRzdExMDrvfaTzBdp7hmjvmdhULihmTSQhcChmMi4R6GsFSRQzGZ+8cxMPbly+YP+T+mBwTHmqSDQ6YzFyponD5TsxaxqcHLp8zkFdpzbgRwiBV1VpCpUQHSMisVyWzlhsAtEYzhSJxiUEdI0Kn29ezdRw2YNpJJthJJslkc+RM01yplksibLtsX8Olm3TER1dcldtl6Jcc4K0FPB5dcIhL8Ggh0iJj2zOwO9zsW1zE2Wlfr713f2kUrnxxUJdbcl4v2Mk4mPDunri8Qz3TPMMnRJCQYjr2Vdo4TjTL8AjPi8Blz4ucXt+JMrR3gGaSsN49Zuz98R2TC4mv4NAojn4CQJ6K6rwTpY+vwJupZKTey+w95Wiwlp8JMXFM/2cOXKRqobSCeuJD37qdipqL695LKt/THHqZiIaBpn8HoYS/wvHzmOTx3FyOE4OcEjn3yRbOIAQOkLo6GorEf8vTSAaBbODkeT/JW+cxHZyOE4e28kCFqbdz2D8z5GEjhAuJOEl5H1yAtFw7DSp3ItE018pjsHJ4ZAfu98cEtlnSeVeQQgdSei4tc0EfD+P6ZgoQsaveBjKR6lwhenKDHAgegrDsVgbbB6vEpiq7+/qVyzHIm3lsB0br+LCJU9/3zqOw5n4EKOzEI0S3YMQYFgW39h1hJ2rGygP+/nnZ99BkWWEEBw40zMr0XC5VDq7RugbiFNVGUJT5Unn9NgHNlEaWZjC36KIxmgmw4vnznFvSwsuReHV8+d5p6uL+mCQe1paWF56c9R1X2uYhkV/X4yuzmEkWUKWJVxulXCJj0i5n0hZgOZlFZSULkyD+N0CXVa4pboO23EQCPb2d5O/QmVHIHiweRmfWLWe8gUabd3MMAv7MApvoSgrUbQNICbXM0ry/BpPFwu/6sGnuhdcNiUL6aZpBL8SHl3jjlVNZAsFvvbGYc4PjC7J49WBefVULBaKLHHLsnoe376Gu9Y0L6pPqT4YInDFwnkokyaay2JfUf50IRYlmis+vGQhaAyFcSnFe8OjqiwriXBgjGhEcznOx6Jsqb7cVzScSTOUvtyfUe0PUOKe3RfjEtKFAqdHRzgzOsLFeIzBdIqhTIZYLkfWNMgaBrlLRMMqkg1jjHQsZZOrhMCtajf9HCSAFW1VqIpM++k+stkC4bAXr09H0xQUVR4nw9NBkgSmOb97WiCzyOXBvOA4BWxneiJZE/RT6vPQFS2KAWQKBt86cAwBbG+qozrkR5MnL45uNBTJi+TotIY+iSLNzeFdUc7hGmvcd9WWTCATV+LqgETeOILDzaU4JYSMpjQR9Dw2p8/LUgmKXHXVa6X4XHfj0lbPZQ+41JVXjUFHV1cR9Dw+pzGocg39eQu3rKNKCgXb4OjIOR6qupXVwSZGCwmw4bbS9eiSSpUrgioV+24CqpfbytZR76mgXA8jCYkKPcz68DI8sos2fy0C8Mg6K/wNVLuntjzozyZpjw2SNHJTvn8JFe5i1sSybbqG4zy8fRWjyeL8LAmBKstzK+cUgrJSP6Zpk0hMTW7MRZQqLo5oZLP8qKOD+1tauBCNsvv8eVojEWK5HG90dk5LNGJDCVRNwe13L4l78Y1GfXMZn/ylu4gOpxgdSREdSTHYF+f82QH2v3UW23F44lO3ceud89eRf7dBlxV2VNejSBL6MYW3ei6OS7CBQ8YwikTkJnsgLAVsqxdJKkX3PomizmVSvPa4p3wzQhQnwIVAk1Sq3aUU7JkbNW8Ewj43D2xoQ1cVvvnWUU72DC6qOfh6ozLk5561LTy0aQVr6ysX/ZuoCwQm9EpYjsPFeJx15ZW4x4jGwf7+8UWpIkmsKrvco+BW1AkN4bFcjgvxiQ3hV2c0av2TXcmnQsGy2N/Xw67OCxwbGuDs6CgDS5yhmA+EYN5ZmBsB07Lp6Y0yOJTAsorqUZZpFzOtV90uhYLJifZeuntGOXJMQwArV1QTDnkZjaV5dXc7y1orqKkOz35gISPE9bs+tpPHsqc3smwqLaEuHORIdz/W2P17rHeAeDbHWx0XqQ0H8evamOpkEVfOBdmCwdf2Hsbvuj5Bk5++ZSOypNESfIru1LP0pV8irK9DlQNIQps2Uy6EypptLazZ1jLvY+YKB3BmKD+7ERBCw6NvxqNvXvA+dLUJXV2475kkefC778Hvvmf2D49hKNmF5ZxHG/ue/IoXVVJYE5wsqFDjKaPGUyyTD2k+7irfOOH9SneEyjFC0eitotE7c9O2A7zRf4H22ND4vT4dGvwhBEUp++qInzeOX6A6EsCyHXpH4hy90EdTxewl0xvW1tHWWgyCZnMGmUweWZLw+VzjEv/h8MIVMxc1k9iOg2nb6IrCmZERPKrKJ9av58WzZzk9MrULsmVavP70XrpO9dK0tp6V21qobqlA1a+v/GtvxwBnD10gk5zIGMNlATbeswbNNffxKIqEx6uTSuRwnKKBXzZTGDft0zQF1zz2926HrhQzG25FxaOovNrVQbJQwAGeP3+GzRXVPNjUhuca6e7fMAgVIXmBmyeVvyHcNvuHZoBP8XBPxRasWdQvbhTCPg/vW99Gqd/LDw+c5M1TncTSM0eBbjQCbp1ty+q4Z20r25fVUxZYGsnjgO6iwutDHytjBbgQj1GwrHGPi0P9fROIxrorpF3dqkpzODzuMJ42CvQkEmQMA4+qYlgWw5k08SuEHWoCk9WurkYsl+XrJ47xUsc5Dg30YcyQMVIlCY+q4lZUNFlGHfNlypoGA6kU2Xn6M80E+V0Q7BAIVFXG5dKoqy2hqjJIwO+mtNRHSdiLS1e4dVszkRIfQoCmKey4ZRkej4Y29kyNlHi567blaLo6XlI1+3FluI5EwyGH7cSnfT/i87Cpvpq9nT30xS+rzXVF43RF48Vzl2UUSR4nYFdmJjMFgy++ffC6Bbh+att6ZAkMK4FppzgV/ScC2jJUyV/0yphmHGWubVT77p/38RzHIp/fD9xcROPdilp3GQXbIGVmcRyH7ZFVRLSltUWYDh2JEV7uOUNfZnrifQltoTIkIZBkmcd3ruGVQ+coGCYD0SSff34vPrfOQ9PI3l4Jn8+FYVgcPHKRk+29xBNZZFmirNTPpg0N41nVhWJRM4kmy+iyzDeOHaNjdJRtdXV4VBXLtqetvR/uibL3hcPse+EIkeoSGlbV0LqhkVXbW1m+tQV/yLskRmOzIR3L8MKXXuPiyZ4JrwcjfhpW11JRXzrnSen8mQG+/4292JaNphcb2H0BNw0tZUTK/JSU+qmqmUMU6ccIqiSzsaIKl6LgUVWeP3+GWD7HcDbD19qPsjJSxvKSspu+R2M+kNVVWOYpzMI+JLkCSbo+E9O1hEvWWO6ff3Py9YTXpXHr8gaqSwKsrqtg94nzHL3YTyZ/c2VhKkN+NjXXsLWllnWNVbRURpb0/peEoD4YxKfp5Mf6NC7GYuMqVLbjcHTMkA9AkxVWX5HRkIWgzOOl0uejO5HAdhyGsxn6U0mawyUk8nmGMunxBZwkBDV+P6EZ+hziuRz/dHAfXz9xbILJ3+XtA7RFSqn1Byj3egnoLlyKgj5GMhRJQpEkTgwN8o0Tx7gQjy3Z9Xo3QJYFTY1lNF0lLFJ2hbTp+rWXf5+rVlSzaoqexDtvn282XUFcx4CJ4+Sx7emJhiQEt7c2cri7n+ePn5ngX1LcHvKmRZ6pAyIORbJx3eCA7Rh0pb6PYSewnALDuX2zbqZJQaqZP9EwrR4M8wLvKU4tDTyKa8rsxbXGQCbJN88dZu9g16zStgJYHa4semYJ2LmqEZeqcr5/lGW1ZZT4PaysK2dZ7ewtDPFElhd/dJzX3z6LpsoEA27yBZP9By9w4mQvT3x4KxvW1aNN40g/GxZFNMq8Xt7X2srRgQGaSkrYWV9PulBAkWVaSqZO13Qc7WSgcxjTsBjoHGKgc4hjb5xiz3OHeOr3H2fzfWvQXNd+gqtsKkeSJIa6R8fNAQEGL45wZPdJ7v7YDtQ5XtTR4RRv7z6FososW1HF8jW1rFxbS/OySnwB101XJvSl44c4G50647RQyJJAkxVcsoJLUcYWC8V/df4gNf4AKaOAadscHOjlf+19k0qvb84LrSqfn1/esG1Jx7xYmIWjFHLPjf/tOClM8yymcRKzsAchl056WOveTyDL11ac4CcRiizRUhmhIuRjfWM1hy/0caCjh8MXehlNZa+JItBcUBrwsry6lLX1lSyrKmNZVYS6SAhJEtdkXmgMhfFf0RB+MXGZaAxl0gykk+PN4dV+P+Xey819Qgh8msaycITuRDGaFs3m6ErEaQ6XMJLLMHhF2VTI5aLc65vWZNNxHL596gT/fvzY+HgYO3ZjKMTDrctZV1FFjd9PqcczTjKmgkDwjLZwP5i5wLQzDOcOkrdiNPgfAgSWU2Ag8zaWk6faeyfyFGacP4641Fh7veDYGSxraMbPVIcCfHzrekzb5tVT50nmp28evxkgCY228C/Maxuf2rigY+Xye3Gc9OwffA83LS6monyr4yjf7zzBaD4z6+drvEHqfaGi440QuDSVHasauGVFPQXTQteUOa+vTpzs4dDRLjasrWPblmYCfheW7TAykuS7PzjEj3adpLGhlPKyhQVPF0U0/LrO/a2trK6oIOx2U+b1kjNNttXWok4jWXrhRA/DvRPrfjOJLBdP9qDqyrwM0hYDX8jDso2NnHj7DMnRy7XCjuPw1g8OcPvj2+ZMNFqWV/Jrv/sQoyMpYqNphgfiPHduECEEkXI/NfUR1m9pummyGq9c7GBX1/kl3ackijJuqiQV/41FI9Wx10aymfHFnmHbvNR5jvkkrtaUVtx0RMO2hzAKV0apBAINBwfLPAtWF1dr0WvuR6+nPP2i4TgONg7gIIubf+A+l866hipaKyPc2lZP51CMM/3DnO4d4mzfCD2jcYxr1MehyjKlfg/VJQEaysK0VJZQXRKkOuynpiSIz61f8wxeYzBE4Aojua5EgvyYieapkeFx0iELibXllZO8IHyaRmtJhFc6i/NDLJcdJx2xbG5CVqLa5ycyQyP4mdERvt1+Yrz5/BJWlZXzW9t3sLGympJZyq4u49oTRSFkCnaSvvRrlLu34VbKyJoDDOUO4JbLp/U++HGEJHmQpOsnXmI7aSxrAMexEdOoMgkhWF1dzi/evo011RW8duYCx/sGiWWz11QVbqGQhEKt7/3X5VjZ/C7sGVS73sPNi4xZ4MBwD9+9cIzX+s4zlJ1b79ot5Q24FRUhBI7jkCsYvH7sAu3dg+QKJhG/h/Ut1Wxorp61ZLLj/BAet8YdO9tobblcTtvUUEoimePfv7mHVDpP+QIdGxbtoxF0uQhe0YDoUhTqptEmz2XyDHQOk45PZmut6xuoai5HXkQd2HwghGDZpib8Ye8EogFw/K3T5LMFXN7J7ohToaTUz857VpHPFYhHMwz2x+g8N8S50/0cO9DJ27tO4XZrNw3RsBx71iaj+e/TwbBtZhZjuwwHB2seQ1jq8S4FFHUtHv9/nNc277ZsRtxI86PB/RTsAk/Wzz+lf6Pg0TVaq0pproywpaWW4WSa4WSa0VSWvtEEfbEkw4nia8lsnnS+QCZvUDCKfkD2mFKHLCQkSaBIEpqi4NZVvLqKR9cIuHXCPjdhn5uI30t5wEfI6yLocRHyuon4PbhU5bpmNOsCwQnKU/F8jpFshoZgkJPDg5hjXh+SJNhYOVnu2KtpExvC8zm6k8WSlmguO5Fo+ANE3NMr6ey+eIHueHxCNsmtKPzmth3c1dA0L/8cw7bHSdK1giQ0/Go9iuQlmj+BW7mTZOEilp2lxLMS6Tr2LNxoCOG5zqWfRtEnwY4hy9M3r8qSxLLyCJUBH1sba+lPJOmNJRlNZ8gUDAqmheM4JPMFnj12avy54VIVHli1bLxX6VrjenpDWdYI+cIhmMVZ/T3cPDBti8FsmsMjPbw10Mmh4V46kiNXCOfMDIHggfoVaGOGfaZl8/Qbx9h/toeG8jA+l8ZwIs133jxGKpvnznUziwvkCyaapuB2T87YhoIeDNPCns+C7SosauZ0HId4LsfhgQFi2YlLzMZwmPVXPciGe6KM9kcnlCpdwprbVuALXl/J06Y1dfhCkx+UieEUXad6CUTa5jSe6EiK44cv0t8Tpb8nxvBggkLBRNcVKmvDBENeKm8SkvEelg6SXIYk/3ibMmatPEfjZzFv0mbw2SAJQdDrIuh10VIZwbYd0vnCOLHIFgoUDAvDsjAsG8u2J/hmCCGQRPH/ZUlCkYvZOlWW0FUFl6rg0hTcmopbU2+4+aRX06j2+3EpRXMz23HoTsRZV17ByaGhcalDWQjWV0wmGrqsUOMPENB1Evk8WcOgP5Uimc8Tz+cYvWKen41o7O3rIW1MlNvcWFnNbfUN875OOdOcVJe/1BAI3EolfrWB4dwhylxbSBkXkYWLgNZ6TY99s0ESHoS4vnLsth3HtPpnJBqX4HfprKoqZ2VlGTnDJGeYGLaFNeYWH8/mePHkGawxSU6PqvKJbRso9c1NYnaxmMpZ+Vohm38byx7hZvLPuJ7YN9hF4SZ+PtmOQ84yyJgGabPAYDZFZzLKQDbJQCZFfzYxZ4JxCWtLKlkdrhgXtDAsm2f3tfNLD++gtSqCIksks3nebu/k1SMdsxKNcNjL6TMD9PTGqKoMIo3Nz6ZpceRYNwG/+8YZ9g1nMvzrgQO0Dw/jVlWGMxkCmoYD/NT69ZM/3ztKYmRyWkgIwfItzXj819c8KVIVorSmhI4jFzGNyzeq4zicPXiBVbcsYy7Z8ovnh/ju196hpNRPpNTP+i1NVFSHCIU9eH0uvH4X/uDC7dvfw7sDpnEMxzFR1JWIqzw0LGsQ2+pEVpa/q5rELccmZxaKai4/BpAkgd+t43fffN4gSwFJCBpDIbyqOu6i3JNMULAtTo2MYI01cpe43TQGJwc/LmWpG4Ihjg4OFN2ns1l6kgliuRzJQrE8QxaC6jEn8alg2Tb9yeQkhamt1TXo8/QKsRyb0WyG0ezsdcuLhSYF8WuNJNIXxvo1RglqLajSwoyq3r1QkCTvWCno9fFmsOwopnURnbkbCwohxkn+lSj3e9EVhfwY0ZAkQXnAR2Xgx+97zOSex7F/cvsz/vrobkZy135uWDgcTMfBtIvZ8qxlkDIKszZ7TwcB/NSyjYT1K8pWHYdswWRjSzXesR7nsN/NSDLDsQsDs+5z/Zpajhzr4ktffYNDRzopLw9gmjYd54c4dqKHR96/jvAUQfm5YlFEI5rNcmxwkF/cupXBdJo3L17kw6tWsa+3l2h2chFNfDg5ZdlUaU2Y8vpSlAV2tC8UiqpQ2ViG5tYwjYnj7T7bj207cyqnb2qt4NO/cT8er47bq+Hx6rhcGrJyc9b03lHbRIXHz8QIiJjh70tZnZn+nuu+5vt38Vg1/pt/cW7k38RxUshKwySi4Vh95NL/gtv3G+8qomFjkbXz+OdoNvUebjyaQmG8msbI2Bzcn0rRn0oxms2MN4KvKi1Hn6bxOqDptIRLODpYfEDFcjnORUcZzV5uqo94PJR5vZN6PC4hYxpTljpV+eYfJR/NZDkfiy2ptO10kISMT63FLZfSnX4ZVfJT4lp7zTPtkhCT+hotp7hAuREoZvK8CMmHY49el2Na9jCGcQ6WICanyDJhr5tE7se7b8Ewz5MvHL7pjPqmQyKWYc/uU+RzBg8/sTQ9l+cSIwzOsa/hxwE7KxvZWdmEdkXwT1FkHtjUxld+dIC71rXg1lV6huO83X6RtU2V9I8mAQeXphLyTf6B1dVG+NAHN/PCy8d4651zpDN5JCGIlPp55P3ruev25Xg8Cw/OLWplb46VGWypruZQfz8hl4vNNTX0pVJ0xmKTPp8cSU3yrQCoaq7A478x6kxltaXobo3MVW6I/ReGcOy5TfKBkIfANGzPsmxe+P4hyiuDbL5l/iY8S43B3EWWlQ9zR/1KfMrEiObB2Es0eNdQolYwyQ3qBkO9jqnohcKxEzhOAqZ04hRY5nkc5/pGXp7te4vz6d4Fb58wMvRmh296idv3cBlNoTA+9XKtbX8qyZnRkfHyAiEEGyunN43y6zqt4ct9GvF8jjOjIxPKpip9fso8nmnnbE2a2qV5Ia7r7SPD7O3tnvd2C4VHqcSr1tCTeZVa73341NprfkxZkvAoE6PytuMUndJN84aYCwrhQxJBbK4P0bDtKIbZge3kkMTiqxvKfV46R2KLH9hNjHT2BSx7kHdL2ZRpWAz2Rsmk506MjILJGy+foG11DdX1Uztp/6Sg1OXl51fcQrnbN2F+NS2LH+w5SSKT54X9p5EkQa5gkszm8bt1vvPGMQB2rm7kNx69bdJ+VVVmRVsVlRVBYrEMuZyBJAs8Hp3SiA+vR1+UufaiZi9VlvHrOgPpNJoskzNN9vX0MJhKkZ8i+pSMpcmmpiAaTWXoi2BLi0FZbcmU5nyDXSM4SxBNMgomZ9t7l2RfS4GCnUVRspR6dMLaxOiiT78Ll+xBEdpNJ8n7bodlngPsohHWdcSh2BneGTm+4O1tx7kpXcHfw/SoD4QI6K7xvGB/OsWp4aFxp2QBMxINn6bRFAohC4HlOCTyOTqioxMyClU+P6We6eVPNVnGqxYdkJ0rFkHnovNbtHYn4rx0fnoD2GsBWbip8d5FiWsNuhQqGqxdY+iyTMg9eXE9kE7Rm0zQHJ69b2GpIUthZLkU01pahcLpYWFavZjmRTR1cUajAOUzlEk5jkPBGiFn9hB0TS7zni8cx2I0+zYh1xZk6fqsZWw7SSb3PLadnP3D72L0XhzhxKFOquuu/2/gZoJLVvm11TvYWFqDcpUym64q/PmnH551H4EZ1tmqKlNW6qes1D++Xl2qdeCiiEapx8MHVqwoGi8FioZL/+WFF6gJBPjUxo2TPl/IGZiFyQSkpCo87mJ6veEPe1HUyYu/dGxpIs+FvEk+a+BcI0nNhWC00Mdbw9/FcgzWh+6hxrOM9sQ7HIvt5s7yj1HhasQBCnaO1wa/geHkGc73sMK/na2R6yPX926BZXaSz3wTo7AX2+oETEzjOHDl/VzAtrpRtE0I6fqKAhQsA1UobAi3EVTmr4ufMDMcjJ66BiObGzL5/URTX6Ii9F9Q5IrZN3gPuBSF2kCAQwPFhvC+VJJTI8Pj2YSiUd/011IWgojHS5XPT3cyQbJQoCMWRZcvPy6qfD5KPdOX0wkhaItEOD40MIGgvHj+LL+1fQd+ffbF2FAmzbfaj/PdU+0LrmdeCIQQaHIQTZ5aPfFaQJVkyr0+Im7PBM+R40OD7OvroTEUvu7mprIcQZHLuZ7FR6bVTcE4sTREwz/9fGc5GUayb5IsHF8SopEyOriQ+AJr9ZXIXB+ikc6+NGbSd/M2QluWTVfHEN/4/G76ekaprCnB7dFwjy14R4eTvPHScd5+tZ10MkdVbQkPfngLa7c0YuQtnv/OfnY9e4TeiyMc29+Jx6ux5fblPPSRLQRC18/n5UZDk2R+edUtPFS/shjAuWoukCWJFXXl02w9O1KpHJZl4/XqKEoxG93bF+X0mQEiER/LWipwTRGQnysWRTSCLhd3NTWhSBIS8NT69TzQ2oqmKFR4J98EZsEcV4G4Eh6f64b1M7g82pTeHblMftosRGfHIH/2+9+a0/4ty2ZkKMHKtdc+/T5XKKisCu4E4ExqH2GtklbfRjpSh7GcsUWBA0ljlJQZ5bayj3A4+goBdXaHyZ80SHIlmvv9CClAPvtdHDuOkEKICcZeKqp+G5rrEaQbIG9b5Y7weM0d1Hnmv1Dvzg7Slxu+BqOaG2wni2F14zjvZVXmCiEELeESPGMN4dFslj293eOlU22RCF5teuM5IQQhl4vmcAndyQSmbdMRjY4rnCiSROUMjeCXsK26lhc6zk4gGn3JJH/y2qv84Z334JlGatSwLE6NDPMvhw/wQsdZkoV3R/35YiDGXNlXl5Wz++KF8df7Ukm+duwoEbeXO+obUOfZSL8YSFIEWbq+5N40u8gXDuN1P4JYpJxwmX/6jIZpJ4nnD2E7kyssFoJY7gB5cxDnOjlz23aGdPZpLOvGzc1zQSKW4Vv/+jqBsIcnPn0Hp4/38PSX32TTLUUVN1VTaF1ZQ+vKatwejZd/cIg3Xz5BaUWAqroIdz+0Hp/fxesvHuf+xzbRvLwSt0fHe52Fg24k/IrGr6+5jcea1hBxea9JwOHgkYu89fZZ7rtnNZs2NHChc5h/+sIujp/sRVEkfuapndxz1yo8U8jfzgWLLvwcTqf5ypEj7O/pYUNVFb+ybRunhodJFwqsKp/IsIpEY/IPUXNPvdi/HtDc2riU15XIZ6aP4xTyJsNDCTZsacLlmfnCF/IGhcLNtUjyqiF8ahiPHOBA9EUsx0CXw6hC48reDI8SoGDn2Df6LA42Ne5lN27QNykEGrKyHFlpwnHSOHYcl/enr8pcCAQKCNe0ZlTXEj7Fg1/14lfn39DtNzx45Z+cSf1GI53Mcu5EL/WtFYQiC1fIaQmX4FU1RrNZHIoN3ZfCJhsqqmbtwArqOs3h8PiiN3uF/GKZx0u5x4s0y718b1MzXzp6eEITueU4fO90O2dGR3h0+QrWlldS4nZjOw7D2QznRkd5s/si+3p7GM1lKVgWkhBsqapGlWXe6Lq4sAvyLkCtP8C9jc283tU5fr1sx+HI4AB/8MqLbKqqYnNlDRU+H7IQ5C2TZL5ANJctur6nUtzb1MLDy5bjm4FIzhXF0qlyitKL12cB7ZCnYJymYJxF11Ysal8VPu8kmZG8OcS52P8hlttP1uwBYCT7BgBerZXG4M8Rce9kOPMaXYkvUeLeQY3/CRTJg+2YXIj9E9HcXlrCv0ZQ30hX8qsMpp4nZZzBtJO83fP4mLGjREPwZ2gIfmpR5zAdMrnnKRgnuZm9MxzHIZ3McfpYN7/7Zx+lrrkcRZU5cejyb9jrc7FsdTVCCIQQtK6s5vjBTpLxLDUNAn/QTSDsxeXRKCn1U1H9k2UTsDJczq+u3sntlU341Gtn+NrdE8Uwbfy+4rP+1d3tpDMFfve33s+RY1288fZZNq5vuDFEYzCd5nP79xPNZllbUcHQWK/G+WiUaDY7iWgISSAkcK5KaliGNefG66WGZdhTZi6m8vq4BMeBsoogP/eZ+wmFZ07fpRJZPv9/Xlr0OJcSGTOBZRuknBgu2Ys0leOzAAkJRVK5vewJVKGiSu8tOCdBiLG+Czey0objJBFSGEkK3eiRAcVshiQk3PLCJghZSLhlHfPqH+11hGVFGUl9jlRuFxI6Qe+HCHmfRJb8FMxOYul/J5l9GdtJ41JXUOr/NVzaeoSQ6Br6NG59C+n8GxhmJx59B+XB30WWSjjbt5Oy4H9kJPkPgEXA/UFKA7+C7RRIZL5HtrCf6pK/BCRsJ0ss/XUKxjnKgr+HLF2btL1l2nR3DLL31Xay6Txur87KjQ3seN+aee2nOVQyIWNw5Qw3U3/GJQR0F02hqWuiK7xeyr3eWcmKV9X4ja3b+U8vPcfQFUZ/Ocvk8GA/7SNDKJI0XgbgOA6m7WCMyUBCUY3p9voGfnP7Dvb0dHOgr/e6qE/dCHhUle21ddzX1MILHWfHX7ccm4F0ihc7zvHKhfPjmSWH4jWznaIBqm07rCotH/dKWSyEkJClUmSpBMu+fpFzwzxLwTi0aKKxurqCT+/cjOOAV9fwaiqKpFDj/yhh11a6Ev+GIvloDP48AIrkwa0UKw9Crk3E80fpTz+HW6mjzHsPQ+mXGcy8RJXvA3i1ZYAg4t6BX1tBd+JrxHL7aIv8PqpULLlzqzWLGv90sOwYyfQ3MK2+a7L/pYJjOyTjGWzboawqhCQJXG6NcKmPQq74G07E0rz1o5O8s6udTLpAIpamsiaMvQDRiB8nlLm8PN60lo82r6feH0IR0jXtm01n8rjdKn6/i/7BOCdP97F1UyNrVtfgdqscPtpFPr9wUrsoohHLZrkYj/OXDzzAof5+vtfejkdV0WR5gkLJ+MFUBUmWsa2JD4pcJo91g3oY0onM1FkW1/QLM92l0NhSTqTUjzaLiYmQBG6PBjdNc7XAwebNke+Qs9JsDr8PSci8NvQNOjMnSJkxWvwbWR+6m5QZJ2dleLH/CwgEtZ7lbC55AIDRdJZv7j3Kc0dP8/Fb1vPRrWtv8HndeGiu91F8/N88DsI/2/QIAMpUZHIOcMs6K4ON5KwbV75i2kMIJBpKv0y2cJBE5oeocg0Bz0NIwoff/SBB7xNIQmM4/jckss+iyBWoSjWWEyeVe4WK0H9FkSL0RX+f0dQXKA38OqY9RDr3Kg1lX8G0+umP/TFKupyQ90lc6kqS2efI5o/h1tdhmN0UjE40tRVJLEzq13bsabVhJIoRPUWVKSkPMDKQIBnPYBpTl5vOhvpgkICuT4roAmysmp1ouBWFGr8fv6ZNKl0qKk7NTrSEENxW18B/3nkH/+P1XROeCbbjzEoYdFnmnqZm/sO2HSwriTCUTlMXDHF65OYuF1kohBAsK4nwixu3EMvl2NvbPeG7M217VtUuG2cJBYgEslyGLJVdV6JhWl3k8u/gcd2HLC+8XLc+EuIz9xRLhIVgXIo5oK1CEV40KYQihwi7tlyxVfE5LQsP1b7HyJnd9KW+i2Vn6Et/j6C+jnLPfSjCjxACj9KAR2lgWNmFJFyE9PVo42Ne+me+4zgk0/9OwTjOzdybAcW1j9fvxnEgFc/iD7gxTYtsKo+syFiWzZ7dp3lnVztPfPoOmpdX8fqLxzlxqHPifmD8nr4yKPzjJFgjKAZVWgIRHqpfxUP1K6jzhVAl+br0ZmmqjCQJbNvh2IlujILJ8rYq/D4XLl0lmzOwbpQzOBQbBzV57GI4DjnTxLTtKVO3Lo+GpquTGsKjAzGMRbClxSAVz0ww67sEl1efdpqobyrjd/5/j81J7kvTZO56YA3+4M3hQ1DjXka1u5VLv1wx5ki4s/TD7Cz90NhrAsuxaE+8xa2RD1LjaSNa6GfvyDPj+4mlsxzr7ufMwDAnegev+3ncnChey5tp/lOlxf3Eg6qPj9TevUSjWRhUuZ6A+4MochW6mkaR92Fa/cBYeYfkH6+N1tWVFMxObOeygZXf/X40pRlJeAl6P8xo8nNE/L+IQCLk+ziyVIokPPjd95LKvULY9ySKUoVLW0c69woubQ0FsxPLjuHRti34Afdze/6KnszwBBUmAJ/i5jNtj3NPxUZGBhM8/YXXqG+t5JZ7V9O0vIpw2fxLqBRJYllJhLOjo+SuKHuq8QconyNJiLg9tEVKOTE08fddFwhS4Z3bmGRJ4rHlq2gJR/jzN3dzsL8Pw7KnJF2XHraykKj2+/nE2vV8ZOUagrqOEILGUJi2kghd8RgAuqLM+SEsC4FbVVHGvD1kSZq3ceDV+9MVBfcVsrMuRVn04kcSgk1V1fzZPe/jS0cP8f0z7cRzOSyn6Hh9tdvQpW2KvhdiLEO0qCFMgCJXIys1YJ5cup3OCodcYT/Z/Bt43R9c8DWVhEBTpvqOxfg+BUxZziqEwKVUUeP/COdif0f7yP9DwLWeav/juJSay9uPbSvGdyZds/JYx3EoGEdIZ54ek7S9+eHzu2hsq+D57+zn8ad20tHex9H9F9iwvQXbdsjnDRRFxh/0EBtNc/pYNyMDiQn7CIQ8pFM5hgbi1DWVIisyqqaM3+eqkCapMN2MEGM3iaB4q8iSRInuYXmojM1ltdxa0UhroBS3oox96vqRqcqKIMdP9PL9Zw7RfrqPupoSaqpDCCEYiaZRVRlZvkHytkGXiyq/n797+20qfT4S+TzPnznD4f5+7muZ7BnhC3tx+3QyyYnZjp6zA+TSN8ZYZ6hrmEJucrS2pDI07YpRCDHniy5JEus2Ny1miEsKIcT4TTzh9atek4BG71reGfk+xxNvIhCsDd05/n7Y62Z9fTXDyQyb6q9/g/PNCMs8BU4BWWkG4QIWv/C40ZjufrmekCQXshwZu5YyCAkHq/jgNTuJZ54mm9+LQx7TGsKlreXKsK4sBRBj34UiRbDs+Pj7sggjhMBBRpaCWHYMEChSKW5tI7H0VzGsixTM8yhyGJe2cDUcy7GnLEGznMvlmzUNpfz3z36Kwd4Yb798nO/8y2ssW1PDp3/vkXkdSwjB/7j7fv7H3fcveLwbKqv45kc+vuDtL0ESgvUVlfzb40+wt7ebH104z6H+PgbSKZKFPI5TlNSt8vlYFinllpo6bqmpo8Q90VhqWUmEv3twftfhEj64fCUfXL5y0edyCTvq6tlRd228ZYQQNIRC/N4tt/GR1lXs6jzPvr4eOqJRRnNZbAF+t45HUvAoKi2lEVaVl7MyUsaqsnJURyKVzo/XU6czeXRdQVMvP+4dx8EwLQqGhVtXkafpkVSVejSlieyUubFrB8M8Sy7/Jm7X7cjixsiaCiHwayvxqcuJ5Q4S1jfjURpumMWU7SSIp/6Zgtl+YwYwTwghCJZ4efLn7+Rf/+5Ffuen/5GWFdXsuHcVlmmjqjLrtjTR0d7HH33my0QqArStrmH1poYJ92PLyiq27FzGv//fV/nC37zAA49v4v0f2ToevP31NbeRMZcu4563LPKmiSQELkVFWYR/RBGXSkNBERLlHi91vhCVHj8hzY08jenpQuE4DpbjkM4XiuegKrOKSGzZ1MSpswM89+JRyssD3HXHCirKiyWA5zoGqawI4pqhymc2LIpoVPh8fHLDBj77zjt8r70d23FIFQp8csMGbm9omPT5QMSPJ+BmpC824fULJ7pJxzM4jnNdF2a2bXP6wPkp3crL6yOIedxgtu1gmhaWaTGVWJWmKVPK6N6skIREraeNWs/vTPl+2Ovm03ds4dN3bJny/Z9EGLmXyaY/j6KuRXN/AFXbhiSVjJGOqQ3M3sPcMPWVs0hkvoVhdlEZ/hM0pZHR1OcomBNT76bVj0Mex9EwrG4UuYxL2SfD6kJ32nAcA9MaQJGKfWVCKGhKA5pSTzz9LWyngEe/ZXy7a4XB3hhf/F/PgRBUN0b48KfvYNnaujlvf2kBqcjSlCIXNxpbq2vZWn3zKPDdjHAch+GRJC+8dpJX3z7DSDRFKp3HKphU6CqP3r+Ojz68mVfeOsWLr7XzqZ9Zx4ZVl6/pZ7+0i9f2nOXv//hJbMfhZ377X/mpR7fyU49ddmLO5gyeeeUY33vxCL//6w+yoqVyyrFIUgBFaUSSQth29Jqf+2U4ZPNv4MrtGstqLPWzsxhXnok62Y7JYOYlEvkjeJQmhrO78OltlLrvQEzyVhHXlIc5Tp5k+ktkc7txnHeP27ksS7SurOaPPzt1U3xDSzn/4Q8fm3EfkiTxgY/fwgc+fsuU73+sdcMiRzkR//TWPr7y1iFqQ0H+4P472Vy3+F6b7licv3vtbd7s6OTJTet4323Lr1lJlO04HOnp58kv/jt1oSB/8L67uGdZ84zblIS9/OrP380nP3Yrmq7gdmnjcfYd21u587bllJYuXJxkUURDEoLWSIT/9/3vJ2ua5E2TgK5Py9DKakoIlgboOjWxiWm0L0bH0YvUr6jB5b1+xn3R/jg9Z/op5CaXbTWuqp2zE6Jl2gz2xzhy4AJd54fJ54zxOUeIoj38HfevZuU8Fgzv4d0Hzf0hhFRCIfcc2cRfkJNCY7K270NWmkAKAPoNUZ6aDgXboGCbsxpKKkLGrdwYU83p4GDjICEJN7aTJmccJVs4xNVkIJ3bhVvbgCyFSGR+iM91F0KoONgkMt9FUxoxrUHS+bcIep4Y306Vq3CpaxlN/TMubQNubfM1P6dQxMftD61n9zOH6TjZW/QoaiybswJVwbB47XAHa1uqqCjxz77Be7jpkC+Y7HrnDD964xQffN96Nq6q5Y19HTzzyjEevncNH3pwI7o2t0d3adjHbVtbeH7XCT780CZ0TcFxHBKpLO8cPE9jbYS2ppn191W5EVWuJ39diQYY5jnS2WfQ1NWoyrIlDdQIZCRJx7JTGHYSacz3SBIKQig4jk0if4z+1DP49dVU+x6jK/FVepNPo8vlBLRVE8iPIvmwyGNYcRRRLE0UQlkSs0fHKZDJvkgq/a13TcnUzQLLtonncpiWTZnPe8OCffFsjpP9QwxnMpwfjZI3TdzTyHvfKMiyRCg0ucR/WeviJa6XpGtVCIFHVcdVTrKGgWnbk0yZKhpKKakIMlUW9vXv7GXdHSupaiq/LjeDbdu88+zBSdmVS1i2qQkxx4jgQF+Ur35uN2+/dppgyEMmnadQMPEH3ORzBnVNZey4a3EKGkuNTKFAIpsnb5hY9tVV48WvyKOrVAYvL1YMy2IomSZ7RY+NJARBj06Jd+oelGg6Szybw62qhL3uaWpmIZbJEk1n0RSZ6lBgwj1gOw45wySRzZE3TGzHQZYkXKqC36XjUm+OEiVZqUZWfgrd81Es4wSF3PMY+dcp5J5HVpeh6fehaFuQ5AqECBT7Y27QuB3HYbSQ4EjsLGdSXWSs6X1jAJq81TxWe8d1HGERknCjyrXjEUQhNBSpFFkKIQkNv/t+Yul/YyD2h6hyDS51NZJwT/AxceubiaW/SsHswq1tIez9OAIdgYRH385A7I+wnSx+14MEPR+4fGzJi6rUIoQbTa5Hka99CcfoUIJjezv45f/2QdxenYNvnuXtl0/woU/P7dqf7xvhB68fp6LE/x7ReJcilshwvmuExroId9/aRtDvBiE4fqaX0ViGXM6YM9EAeOTedbz69hn2Helk55ZibXzfYILOnlE+/bGds2a+VKUJRWkgbxxe7KnNG9ncbjR1LUFfNUIsPKJ6NRTJh19bSV/qe1yI/V/caj2K5CeorcGl1JA3++lLfQdwqPQ+TEBfTa3/I5yN/m8GUs+iB0vR5crx505AX4ucepoL8f9LSN+Mg0NAX01Qn59a3NVwnALZ/JvEkp9915RM3UwYSWf405d20RtP8MVPfBSXemOEWsp8Xu5b3kyJ183OpoabjmRca1yTq364v5+LsRhPrJ2oRFRSFaKquQKXR5/Uk3HwleMcf+s0kcoQmnuy8+FSY6Q3yutP72W0PzbpPY/fTdvmpjlnNPp6olw4N8hHP7mThz+yhRe+d4jhwTiPPXkLLz97BNOwKK+8fi6zs2E0leGlE2d57tgZOoeiZAoGWcOgMKZuoysyPpfOHW2N/I+PPDC+3WAizZ/98FX2ne/BtCzypoVLU3jq1o185v4dUx7r+4dO8s+797GquozffuB2llWUTlpbO47D53fv54tvHGBbSx3/8KnHxktlLNtmIJHi9dMXeObIKc4MjJAzTHy6xpraCh5Y08bOZQ2UeN03BdkAEEJF0dYjq2vQPU9SyL1EIfttMok/RZIrUfU70V2PIKsrgRsz7riR5m/PfIO9oyeQhYwqZNJWDlUoqJKC6VgUbANFyIQ1/3V3Jb4Ej74Zj345k6AptZQGfmX8b7e2Frf2P2fch66uoDTwm0hickbGo+8g7PvkVa8WCZfjWNh2ClWuxOOa+v5eakiSQNUVbNshlymgKBKqNnvZSDyVJZbK8faxTgajSboGouhjpZpBn5vSkHc805wvmAzHUmQLBiDw6ColQQ8uTcWybZLpPKlsHpeukkjl8Ht0XLpCNFH05IgEPHivmKMN0yKeypLM5DEtG02VCfs9+K7yKOoaiOJxaXhcGkOxFPmCiSJLhPxuwv5ioCKbNxhNpPG5i99VNJnFtCx0VaVk7LgApmkRT+dIpIvRSlWRCfvd+DzFjHrXQAyPSyXsdyON/Z0rGLTUFHt9MnmDwdEkdeUhlGmCH0sJx3GIGikSRlGkQCBwyzrlrtAUnxZIksAwLLI5A69bI5crYI1dW2m2/sCr4gUrWytpbSjjmR8dY/vGJrLZAm8d6CAYcLN1/eQS56uhKDWociMCDYfrqz5nOwnS2e+gKs143fcjpvgNLwSqHKTK9wiWkyWW2080t5eAvhaf2gzYxAvHKFgxqn2PEdSL65igawNVvscYzLxI2jiPJpcixjIhJe7tNAV/icHMC/SkvoEifLiVxfUuOo5BrnCQWPL/kDcOLfKMf/LgOA7JfIEjvQOUet2zb3ANUe738Zk7rs8z5GbEvImGZdsMpFIzfubc6OiUn5EkiWUbGymvL+XiyZ4J75kFi2//72epaalk+ZZm5Gs4+adiaZ7/4m46jnZN6Zex7o4V+MO+OS8A8zkDj1dn4/ZmvGMu57bt4PHqbN3Ryvf+fQ+nT/TeFGYz2YLBl948yNf3HCXkdbGzrYFSr4fO0Rh7O7oZSWVYVlHKIxtWsKp6Yko96Nb54MaVrK6pYCCe4kBnL33xxDRHKmJTQw1Npec4fLGfzuEYzWUlKFc1HqbyBXad6sBybB7btGqcZNiOQ388xT+88g4/PNxOZdBPS1kJbk0lns1xomeQo139dAyt4ad3bpw2q3K94Tg5bHsU2+zCKLyNWXgbxymguu5FkkKYhUMY+d24/b81Jom7eHOt+eLVwf0cjp0hpPrZGG6jRAvwre5XWO6vY0WgkdFCgrOpbgq2yeM1d7KzbN11H+OSYcaysMnvOY6FaQ+TN06Rzr+OqtTjUlddu/FdAc2l4fG5+NF3D+Bya6QTORrbZk9dHzjVzQvvnOL4+X5GEmn+73ffwqUVF0H3bV3Gk/dvwufWyRUMdh88x/dfP85wPA0CqiNB3rd9Obevb8Z2HF7Yc4rn32ln8/JaXj/cQVt9OSsay3n9cAeZnMFjd67lwe0r0FQFw7Q43tHPs2+d5NTFQXKGgc/tYseaRh68ZQUVEf84wfl/vvAC61qqaK0t44U97fSPJHHrKo/sWM2H7i7eX2e7h/mHp99g26p6hBC8dewCsWSW+oowH7lnPVtX1mOYFqcuDvLcW+0cP99HtmDidWlsX9XAg7esoKYsyF9+5UesbKrgkw9uwaOr/Lf/+wwdvSM8/Wc/R9DnZn97F3/ztV187g+eHCc51xIODv/W+SNeGTgIFEsRN5W08XsrPzbpsyUhD2vaqvnui0f4/otHWL28imOnejFNm+UtFXg9My+2DdOacFsLIXjonjV89ku76eoZRdVkDp3oZtPqekpCc1Eg09C05ShKLYbZMb8TXwIUjJMk019GkcvQtU1T9EcsBEVVqdbwZ6Z8t8L7Piq875v0erX/Uar9j065v+nfmz9sJ0ehcIx48u/J5d/mejbi/7jAtG164gl6YvEbTjR+0jFvopHM5/nrN98k6JrevK1jdJSm8NSL6hXbWmlYUU336b5Ji/yOo1187S++x1N/8DjN6xqQlaU1KXEch1QszStff5sXv/Qa0cH4pM/IisQdH96OOo/UtCzLKIqMUShmBFwuFdOwSMQzeHw6+bxBOnVzNHCd7B1k16nzAPzHB29n57JGNEXGsm3+4ZV3+Kdde1Fkiadu3TAppe5z6dy/ehn3r4a+WIJ/enUvPzgyM9Foq4zQVlnK0e5+Dl7sZUNDFWX+iQ+3t89epD+eotzvY0frZSWXnGHyw0Pt/ODQSTY2VPNr997KhvoqZEkins3x3NHTfOG1/Tx75BT1kRCPbVw15yzUtYBjJ7GsfizzJEbuNUzjeLHUR9+Ox/8gsroSIVzY1iCZxF+QS/0zqnYrQo5c97EeiJ3GsE0+0fwAD1ZtJ28Z/LD3DdaGWvmZpocxbYtTyU7+9cKztCcvcEfZhus+xqWAS101psU/+b7w6NsQYvIDyHZypHNvksh8H7e2lpD3yWvQjDo1wqU+Hv6pWzh9pItspsC6W1qobSqbdbuNy2tZVlfGD944zo/2neGXHttBW30xUOBza3j04uLswKlu/urfXuG+rW188v1bsG2H1w538E/ffRtJCG5d24hpWQzHUvjcOg/csoJvvXqEeDrH+7atYF97F/tOdrGprZba8hAX+kb5l2f2YNsOH7lnPZWRAO2dA3x39zFyBYOnHtxCwHv5WbGvvYu+4QQfuG0NkaCHaCJLaXDifBBLZfn/s/fXYXbl95kv+lm8mWoXM6lKzNBqZnK320xxwA4nk7kz9+TM3JmTmTOZJwPnGToZCE0csJM4hrgN7QY3Sy1mLJVUzLSZF90/dqmk6gJVSVWS2tbbj1rae629fr8Na63f+4X3/eBMD2sbyvm5p3egyhJ53aCyxAfAwHiMb7x2nEQ6y0sPbaS6LMCVwQl+sO88mVyBn3tmB03VJYxMJtANk0jBYCqRpjTg4WLvGDvX1tE7HKE06LktJANAt0yOTF4kUkgCRaKR1OeKkACoisz6NVWc6Rji3cOdXOwapTzs5RPPbGHbhtqZ7KIsiViWhWlaM0IqpmkxGUnN8qUSBNi7rYm/efkIr713gXWtlcQTGR7YNVcZciFoyiZUpQ3d6OFOLHqz+X1I6VICone6X+Ont/TEspLk8keIp/6MbP4D7na/jLsFV9WWRhJJMoUCkXSWn1y6gk0xmHlsYAj1Q+pLpR43DaHAvOvMq88kc3kmUmkS+WLGVhQF3KpKudeDzzG/W7dpWUylM/RGYrOeFwWBsMdFQ2jhoPNQPMFoIkW5102510NW15lIZUjm8+imhfyh8W9mjWxaFmPJNCOJBCBQ6fNQ7vWsuALWVSybaORNk+NDQ3xh08IRzkgmM2OO82GU1oTY+NBaLh7tYnIwMmf74VdPYegmn/ydZ2jb0Ywn4FoRsmHoJuMDkxz4wXFe+d9vM9o7Me9+9etq2PLIeqRlKER5fA5cbo3R4SjrNtcSDHtIp/IcPXAFp0sllcyhOe4OE7dLo5PEMlk21lTQXFYy0zMhiSIvbGnnrz84wfmhMXK6gUu79Ui7Kstsb6jm4JV+Dnf188zGVsKea9+pYVm8ce4yOV3n0zs24NaKJRm2bRNLZ/n2sbME3E5+8cHtbG+4pv7gdzp4tL2JnvEIXz9wktP9Izyxrhmf8865l+uFQ+TS38CyxhGlahzuz6JojyFK1bMWqqJUhuZ8kVT8nwN3xuV4PBdBEWXuL92EON08rYoKeatYGiGLEs2eGp4s38k3+l7n4NQ5nq/66KV+K4K/v+C2utKvz/u8JHoIuD9JwP3J1ZrWgrBMm3xWxxfy4A1Y5LMFxoaiVNQs3h8S8DiLf7xOVEWiLOShtjwwZ7+/f/Mk4YCbf/zZh2fq/FtqwgyMx/jBvnPsaC8KVpQGPDyyrYV4OseRC/00VZXwwgPrSWXznLo8TDJTDJwcOtfHRCzFr318Lw9sbkIUBXa01xJPZnnzWCdP7W7D67p2MxyZTPAff/MFKqZJw3zI5Q1qywJ85WO78XvmEsETlwYZHI/xc89s56ldbYiiyI72WtLZAq8d6uDR7a00VZVwvmcU3TDp6B2npjRAecjL+e5RtrXV0DcaZU3tjQncSmE8F2Uwt3TTu+GxGJFomp/7xG6efnjdvIuZcMiDadl0909SUxFAlkWGRuP0DkUwZhENAbdL47G9bbzx/kXiiQz11SULKk3NB1luQFU2kM19gGUvHlxaHVikMj9AQMHn+SqqsuanjmzYto1lRcjk3iSe+hoF/cydntKKI5vJk4xlKFul6o5ELsd/ffcD+qNxBqJxYtMmoVcmI/zyN783Z//Pbt3Av3rqUeR55F8lUWQsmebi2AQ/udRF58TkTL9pQyjA42uaeX5dG7VB/5zzs2Ca7O/u49+9+R6GaaFbJrppockSn968gX/9zGMLvofvn73I1w4f59Ob1/PM2jWcGR7lJ5eucHliikQuj1NVaAwFeWJNM8+vb6PG71vWGtmwLHojUf76yEleudBJbcDPV/Zs58m2Zpx3C9FQJYlHm5r4lZ07F9znza4uuiJzScRV7H5mC2ff7+DQ+An0wtyF1vE3zzJ0ZZTnvvoomx5cS0VjKf6wb9nRatu2yWcLTA1HGegc4b3vHOLIq6dJxdLz7q85VV78tSfwBpdHbsoq/Gza0YAyTU7qGksJhty8+r1jWJZNXWMp1bW3P2o9H3K6gWHZuBzKHPbqcWgICFi2Taag34BoLP3z2VJXSWNpkP2dfVwem6K1PIxzuqxjOBrnVP8IiiTx9MY1M3OybJv+SIyhaIJyn4dYOsc7F7tmHbdgmCTzBWxgKpVmMpm5o0TDsuKIUhUO1xeRtV2I4sIXU0EKI6s7Qbj9ZVMAumWgiSoSxayhIAg4ZY2Yfu3ccEgq9e4KwKYz2c/zfPSIxkcNyXiG9398mngkjW0VI8eNaytvSDTmYu75aVk2nf0TPLC5EfW6QIqmKrTXl/HeiS6mEsXvX5ElPC6NdK6A3+3AM00WJKloCGdZNpZtMzIVx+92UBJwz7o+r20o58cHLzI6laS+IoQyHdCorwhRdoMmdaemUFsWnJdk2LbNeCSJU5MpC3pnZV3X1JbyyoELjEYS1JUHicQzpLM6Z7tGaKkJU1seYP/pbkzTon8sygsPrF/eR3oLOBntuqGy2/XQDZN0Nk//UIQPjnYhigKqIhEOeaks8+HQFNY0ldPWVMa7By8xMhbD6VQZHIkR8DrIf8gAV5JEHtmzhn949RRnLw3zhRd3znwnS4EgyGjqNmS5kcIdaAovokAy8x1sLHyeX0BT1q1Yz8adhm3n0Y0B0tkfk8z8HYbRe6entCoY6Y9w+J2LfOE3Fl5o3wpMy8YwLap8Xko9bromI/RGogQcDnbV18whBOvKFxYfyuk63z51joFYDJei0FpaAjbEsjkuT0xxbmSMkXiC3338Ibza7L5iWRRZUxbmC9s2kcoXGEumODU0QjK/9MqWzvEp+qNHuTQ+iUdTaSsLY9sQy2a5ND7J2eFRRhJJ/tnjD+FcoiCOYVn0TEX4+tFT/PhiJw2hAF/Zs53HW5tXtVF+2Uf2qCo/t2XLovvU+f24F+mqr2go5aFP7WLg0jB9F4fmvQCP9k7wtd/7Fi1bGtjx1EbWbGsiWO7HG3Tj9DrQnBqKKiPKIgJFiVlDNzF0g1w6TyqWJhlJMdw9zrn9HZzZ38HUcGzBi70gCGx7YgO7n9+Goi0vUlIS9vLMx7chycWbXlmFnyde2IIv6KKQN9i2u5nG1luXCFsJlPvcuBSZoUicRDZHZeBao+/F4QkMyyLkduK+YTZj6TfNCr+XjTUVnOwb5uCVfnY31VITKjbHv3Whi3gux6baSprLQjNzMS2bwUixtG0imeb3v//Wgsd3qQqiIKCbdzbFrDmeQ3M+P285zochyU24ff8XgrBwZHc14ZadjOdj5C0dj20jIBBQvAxnJihYBuq0o7gkiEiCRMrI3uCI97ASSCezDPZM8vnffAx1OuOwnDLOa5h7flq2jWlZKPLs4wlCkVgUPTismeekaeIgiOLMv68/vm3bmJaNKIpzbuCKLCEKwozAxFV4b9BfACDLIi7H/Ndg6/oxPzQneXpM3TCpKfejKBKjUwnOdY/w/N51NFaH+KsfHyWayjIWSdJ6GzMaJ6KdS943nsySSOVwOlVOnR/gbMcQCAK2ZVNe6uPjT21iQ1sVlWV+PvP8dg4c72ZgOEKuYHD/jmY8LpUT5wZmGfSJokB52Ed9TYhUOs+urQ3Lfg+asgFVaaegn+dOZWJBJ5X5LpaVwOf+Ig5tN4Kw9H7Kuw22bWFZEXKFo6Qy3yeTexvbTt7pad00+i6PYlkLrw16OkYY7ptalbEFQaDU4+YPP1U09Yxnc/zRB0f42uHjNJQE+E8ff3ZZi+nuqSjjqTSPtTbxsfVttJaGsW2b7qkoXz96ive6eviHsxd4adM6ttZUzQrtKJLEhspyNlQW131XJqf4gzfe5djA0PyDzYOjA4N4VI3H1zTxsfXttIRDWLbNlckIf3XkJPt7evnO6XN8evMGNlQuLFF9dV5FkhHlr4+e4rWLnTSXhPjF3dt4rLUJTV7diptlH12RpAX7L65iTTh8w+PsenYLQ1dG+cEfvzmv8tNVXDnVy5VTvTjcGrVrKqlsKqOkMog36MHpdRRvwgLoOZ18VieXzhGbTDLWO8FIzzhTI1H0/I0vio0b6/jMP3kef8nyL1qiJCJe1+AsCAKNLeU0roD+8EpjY00FzeUlHO0e5MdnLhHL5HBrColsnr87dBrLtnl+c/uKs9vdTbW8daGL471DDMUSVAa85HSDfZ295HWDj21u+1D9pD2T/g+4HHx867pFlWAbwkECrjuXzQAQBCeWNYFhnsO24tj23N+dou1GFIMIggNBunPzrXOV050apic1TChUJJuN7kr2TZzmVLSTzYFWbGyGshOkjCwO6c5kXhbC1YDBR3WBsRBEqagyNT4YxeFSQQCPz4lzif5CoiBg2fP3v8uSSGXYT/9YFNOykaVrqlGD4zE8Lo2Ad+lNk5IoEvK5uDwwQTKTn2W4OjAeBwHCfveK9k1JYlGlKl8wiKdyWLY9Q3KGJ+NYlk2Jz03A46KqxEfPyBT9YzHW1JVRPe10e7xjEEkUqJuntGw1kDXyXEz0L2lf07Q43znCW/s72LK+lt1bGlBVGdO06Owe5x9eO8npC4OsaSzD6VBpbSyjdR4fjL07Zvdf2LZNKpMnl9PZvrGOspLlSx9LUhiHuo1sfj+mufQF08rDIJN7FcMcxOf+Ek7Ho8hSFYJwd5QnLwW2bWPbKQr6JTK5d0hnv49udN34hXc5/vZ/vb2o509kPLG4NsddhIJpsru+hl++bweNJaGZBXuZ14NbVTg1PMJEKs3hvkE2V1Ug3sB9e7nIGyZPttXyK/ftpC4UmDv+0AjRbJZDfQMLEg1REJBEcYZkfP3oSV67eJnW0jC/tHsbDzc3Lmg5sJK4pTPTtm3ShQKdU1OMpVKYto1f02gKBqn0+RaVxHS4NJ768kMkI2l+8jf7SEwtrmSVS+e5fLKXyyd7b2XK86KuvYrP/R8fw24aIGMH8dglyzZVixWGSehjVDrXooh3dsG7GGpCAT61fQOTyQx/d+g0By7343OqxDI5CobJUxta+dJ9W1d83LbKUlrLS+gcm+TMwCjtlaV0jk7SOxmlzOthZ1PtLDUqQRAomW7UDLqd/Oqju/DfwbKopcAyR8hnX6aQfx/bTjNfVFmS6xctqbpd2Bxo5YPJs5yMdbI12IokSOwIreWt8WN8ve81+jNjgM3RyEVEBBpcS6/nvh0Y7hknnylQ317F1GgMWZGLHj0fcSiKjKoqHN/fiT/oAkGguiG85JrmgNeFZdl0DU5SMr3Id6gyfrcDURR5Zk87X3/1KO+f7GJNXSm2bXO+Z4zO/gke3Ny0pIzD9djUXMXxjgEOn+/D69LwuR1MxlIcONvDmtoyKq5TnVoprGso5/D5Po5e6CfsdxPwOokk0hw820t9RZDqUj+yJNJSE+Zk5xAOTaaixItDkWmuLuG9k1eoKQvidt6espvu9AhRffH721VYtk0kliaRylFZ5iM0XZKWzenF8ilVXlbJk2GYROIZ8nmD949cJpvTeeqhtTf7VnA6HiCTe4eMOcady2oUUdDPEk38J/L6OdyOJ9HUnYii/64yRP0wbNvCspMU9IvkCyfI5N4mnz+Gzd0hFnOr6Dw7yOd//dEF/aEcLpXxodtr/Hiz0GSJh5obij0QH9q2rqIMv0NjMpVmOJ5krnbprcMhyzzS0kil3ztn/A2V5XgdGtFsluFFlD9FUUCVJHqnovz10ZO83nGZteWl/OLurTzY1ICywuRoIdwS0UgVCrzT3c3+vj4Mu5hKlwSBhmCQZ1pbaSlZvC+hpCrIi7/+JAjw9jcPEBuP31a2KwjQvLmej//m0+x6ZjPfGf8dvG4/bjlYNFNbBkazl7ic3EdIrburiYYgQHXIT9DtZG1VKc2lJSiyhFtTaQwHub+1nhLPUnpUlheldCgyu5trOdIzyAeXe3lyfQv7OntJ5gp8cvv6OT4YkijSEA7idzpI5goc6xnk8XUtN/GObx/0wlEK+beRpDpkdfO8JVSiePvKNRbD1uAaHghvptZVrFEVEdjgb2JXaB0HJ8/RmSxGYFVRZnuwnR0lt0fedak4e+Ay0fEEdW2VnHq/A2/AzX3PbbnT07plqJpMy4ZqaprKiqaK4wlMY+klge11ZbTVlfHOiSt09I2jKhI71tayZ30DmlokGj3DU3z7nVPUlAYAGI8m2dBUycfun79nYbEzfVNLFU/sbOPg2R7+JpLA7dSYSqRRZYlPPbpp3j6LW8XahnKe3LmG90518TdvHMfr0ogmM1iWzccf2khpsBhRbakJ8/rhDtobypGne0vWNlTwvffO3tb+jBORy1j20pYisiTSUFNCVbmf9w9f4VL3OKJQbJCfjKSoLg+waW0NjiWW9ybSeb7zyglS6Ry9gxGefXQ9bU03HzSQ5Qacjoco6Gcx7mhWowjTmiSZ/gb5/DFczmdxaLvRlPWIYuguIhx2UTLbHEU3LpPLHyebf59C4cxPDcG4ij2PreWpT+1YcP3QeXaQ91/9aDS5h91F1Sd1nrIiSRTxasW+tbxpLLGSfHlrplKPqzj+Ao3qXoeGQDHzsRBEBKKZLK9fuswPz3fQXBLiK3u280BT/YKCTauBWyIaE+k0P+7s5MGGBjZXVCCLIgPxOPv6+ni/t/eGRAOgorGUT/3jZ/GHvbzz9wfp7xhe1o31ZuH0aKy/bw3PffUxtj2+AafHAeOrPuxdgR+dusipvmF+5ZFdfGbnhuIP9jaUoOxoqKE25Of80BiXRiY43jOIIMBja5vn1AiKgkCFz8vj65r58ZlLfPvoWfwuB+0VpXgcGqZlkS0YTKXSRNJZynweqoN3pt/hKixzEFEM43D/ErK68cYvuIMIawF+ofFZQqoPcfqG7JGdfKnuacq0IMPZokJOuSPE7pJ11N9lGQ3TMIlPJZkaiTPUPU4g7CUZnSvy4PQ4kJehIHenYegmsckkNY2lqKrM+FCEwDLKXGrLg3zuiS2cujxEJJFBlkQ8zmvnd9Dr4tde2su+090MjccRBNjQXMHOtXVUhf3kdYP2+nI0RUZVZEI+F/dvaqQ0UFy8t9WV4XaolExL0rqdKs/dt5aaMj8dfeNkcgVqywJsWVPNmtrSWX0CT+5sQ1PkRW+34YCbp3e301y9cPmty6HyxM42Kkp8XOgdI53NU13qZ3NLFW31ZTP+IesaK3hu7zra68tQZAlBEHhgcyOmZfHApsYlf6a3Atu2ORXrwlpiBE0QBFobyvj8izs5d2mYSCyNaVkEfE7amspZv6aS6or55TjngyQIODQFSRJ54YkaHtjVfEulbAIiLsdjZHPvY9wFWY2rKBgdFJJXUHNv4dT2oKnbUJX1KHIdwh0R3LCxbQvTHKFgdKEbVyjoF8gXzlDQO1jdz01BVVoxzSimNbKK48zFi19eXDAkXOFj58Ntt2k2twafQ1u0d+Fqxc5yRB6WN75j0fElQSj2bi3CchL5PK91XGZfdy853cCraZR73LeVZMAtEo28aaJbFi+tXYtbLZ7MTaEQsVyOvlhsyccpqSxmNqpbKzjwg+OcevcCkZGFG7dvBbIiUdtWxfYnNvLQp3fTtKF2VvN3Qh/nXOw1dCuHWw7R5N2DKrqwbJNIvp+RXAcFM40iOghrTVQ422cWarqZYTBzmqwZRxIUyh1rCDsaKZgZxnKdRAvDWLaBRy6hxr0JlxS8IzXmOd3AtG1O9g2TyReKNXqCgCwKeDSN2hI/W+uqZpShoKjw1DcVZSyeomCajCfS9E3FMEyLK+NTvHHuMqosocoSNUE/1UHfnJKJcr+HzbWVXBga5wcnL9IzGWV9VTnNZaF5yytcmsLndm9iNJ7keO8wmfwBNtVW4nc5MC2LVK7AWCKJblp8bHP7HScaCCKC6IElNIPfDQhrgVmPRUGk3l3BlxueZSIfAyCoePEod9/7qWoq4/KpPr71h6/RfX4AzaUxPji3yfCFrz5K1Tw17HcrnG6N8uogR9+9iG1DWXWQddsblvx6QSgusNc1LkwMS/xuXnpofiKsKTLb2mrY1lZTnI+m8Ox910pttrRWs6W1etZrPC6NvRsb2btx8cX7Zx/fcsP5V5b4+MKT2264n9upsnt9PbvXL+xsXVMW4Ndemr3w2dhcxcbmW3NsXg6ihSS96dFFFwMfhqbJrG2pYG3LrZN7v8/JVz63smpxilyHy/HoXZPVuAaDgn6Ggn4GWapHUzejKm0ocguK3IwsVSJJAVhmtcJSYdsFTHMcwxyZ/jOErndS0C9SMC5j2/P7pqw0XI7H8Lo/Sy5/gnjqf96WMa+i8gbqmqFSH6HSO3yfXiKkeUQubvf4wjKzIB9GJJ3h+MAQLeES4rkc50fH+Pbp83zFoVETuH2lxrdENLzT/RgHBwZYV1qKJIoMJRJMpNNU+3xEslmwbZyKgnMRFSooRh4f+PhOmjbUsenBds590EnniW4GO0cwjVuvgHP5nNS3V9O+s5mND7Wz/r41+Eu8CB+K7vSnTxLWGgC4mHgbQRBp8z2CjUXGjJHSpxAFkWR+nNFcJ07ZT1At3ngTxgRjuU6cko8pvY+4PoIsasiCRsqYomClsWyTzuQ5LEyaPfehSrfXzTqVy1PqdeNSZd652MW+zp4i2bGL7rUuTaW+JMDja5v5+fu3oU1HJNP5Aq+cvsSBy30UDJOMrhNNZ8kbBke6B+gam5omGjIvbGnnkzs24FJnX9BFQeDBNQ28eeEKh7r7KegmT29onfbOmDtXSRRpqyjltx6/j1dOd3Cqf4R/OH6OTEFHFARcqkKZz8PW+irKfQs3oN0uSHIbpn4ZUz+FKJUjistvuLzTEAQBh6RS67q7F+ctm+owdZPu84MMdY/jdKl4/HNdjqVbrEHVLZOpfILh7CQT+ThJI0PWLGDZFqIg4hAVfIqLsOanyhkmrPlQxPkvq4vdNDLpHD/57jGgqDXfdXGY6GSKB5/dyEDX+KINlktB1sgzlo8ymo0S01Mk9Qx5S8e0TUBAFWVcsgO/4qZU81PhCBFUPTNBlLsJBVNnIh9nJBchkk+QMDLkTR3dNhAQkAUJp6TikV2UaF4qHCHKHUEkYWUNYJcyzxPRy2SMn67yGBCKWY38fszs5F1Z/mOYfRjZPtJZCVmuR5WbkaVqJKlimnCUIYoBJMGHKHqnlau0BcqtitkJGx1sA8tOY1kJLCuOZSewrASmFcE0x6YJxjCmOYxhjGCTu63vW5bqCHj/EZq6BUmsuO1E4yqK1gI6F072MtgziV4w8AXcNK2tpGFNBZJ0911Xfhrh1lQea23imbVr6Byf5GuHj/OTjsuUuJx8ftsmSty3Z/15S0TDtCwuTU5yZHCQ5lAxKj2WShHJZqn1+zkzOgrAE83NPN68NBfSquZyKhvL2PLIOrrPDtB3cYiBjuEZBanoWJxCTl/0GIIg4PRoBMsDlNaGqGoup66tiob1tTSur8VX4pmlEnU9nHKADcHncEheDk78Nd3Jg7T5HkFEotTRTFhrxCF5Gc9d5tjUt5nK984QDVnQqHJuoNGzi6HsOS4l3iFaGKDevYMmz24U0YmAwKHJbzCZ76XGtem2Eo1kNs/LJy9wqKuf7Q01NJWG8DhUREHAtovyZ5PJNN8/eYG/+uAkW+ur2NFYjGyqssSG6nI8SzDxaykvQV4gPd9WWcovP7SD8UQaAXiovXGGzMwHVZbYXFtBbcjPxZEJRmKJGaLh1lTCHhf14SCV/ju/qBcEF5Y1SS79Nxj6mWI/xodMpTTnS4jS3VWGlDd1JvJRcmYB7SNAMgC8ATc7Ht/A9sfWI0ki/rCXJz5334odP2cWuJIa4mysh67UCKO5CFP5BMnpRe1VoqFJCh7ZSYnqo8IRoslTyQZ/A63eGlzy7GZjVSyWDc0b27Zn/ofTpbLt/lZyWR3NcfNlH5ZtM5AZpyMxwJXUEKPZCOP5GHE9TcrIUjB1DNsqytsKMk5Jw6e4KNF8VDpC1LvLWeurp9lTNee93Cp0y+DI1CXOxXtmPe9VXGwPttLmq53zmnghzaXkABfiffRlxhjPxYgWkiSNLHlTx7BNBIpmkw5RxS07CaoeyhwBal1lrPPXsdnfjHOF34tt22TMPFP5BFOFBFP5OJP5BJFCgguJPgrW3DIZy7boTY/yJ1d+dEtj17nL2FOylqB6e69/slyNx/VJCvoldGPp0r23HyaG0Y1hdAMgoCFJpUhSKeI0yRAFL4LgRhDUaWNVZUbByrZ1QMe2DWxMsHUsO4tlJadJRhLbTmJaMSwrBqvSFrxUqPg8v4ymbgZEZLkKQfDeEblcQzfZ99pZTnzQicfnBEFgsGeSy+cHeejZTWzYcRtKF4VrXRG2zZLLF1cPqze+zfwdID6HxoPNDextrKM5HCKSyfLNk2d4+dxFQm4XL65vX4KVwa3jloiGW1V5rKlp1se3rmzuIqXEtbzFtCAKVDSUUdFQxs6nNzMxMMXkUITYRILEVIpMMks6kaWQLWDoBta0rrqiymguFZfPiSfgxlfiIVTup7S2hEDYh7wEPfoa10YckgdJkAmq1YzlLgHFaH/aiDCUOYtuZcmaCQpWBt265i/gVcKUOpqQRRWXFEASVHQrh2EXGMtdJloYxLINIvl+XHIIy769vg+nB0d5+cQFHIrMZ3ZuYGt9Ndp07TIUT8Z4NstAJMb+zj5OD4zOEA23pvLE+ltvxnapCi9uXV5jsSiKhL1uHvTOjVjfTbCsScDEtnPo+SMIggMEmesvAYr26F1DNEzL5Gj0IicinUzkoxQsg3p3Ob/a/BIAaSPL2Xg3EgIbAs04pbvPHEsQBLY8tBbNuTIuwaZtMZqN8Pb4SY5HLtOTGiFhzF/yYNkmhmGSNnKM5aJcSPRxNNLBYXcF20KtPFq2hWpnGFksZlXcsgOB+WtqnR6Nhz+2ef73KC0/Cj+YmeDwVAenY1e4khxhPBfFXGARZNuQt3Xylk5MT9GfGecUAl7ZSaOnko3+RvaE17LGW7Ngtma5MG2L49FOvje4f9bzIdWLLIiziEbe1OlMDrJv4ixnYl30ZybImvNH0W2gYBkULIOEkWEkN8WFRB+qKFPvLmeTv4lHyrawPlB/02UJeVNnNBdhODvFRD7OZD5GJJ8ipieJ6WlihRSxQoqMmVtwaWFhM5Sd5Jv979zUHK5iV0k7a311t51ogIBTexC38wyJ9CSWtbBB790EmzyGOYhhDi6whwDI04SDaYlyk9VcJK4UPK6X8Lg+AUjTJqxOFLnxjjiM53M6b37vOE99egetG2pQFInYVIrj+zs58JPzt4VoiAgz5d8F02QynaZODaz6uHcTBISZsvQyj5tPbFpHNJvlh+c7+NbJswSdTh5rbVp1idtbumuEXS5+cduN62lvBYoqU9VcTlVz0ZPCtm1M3SSXKaAXdCzDKmqpiwKSLKFoCppTvekGUHU66wCAIE7rXdtkzQRHp/6eErWegFqFJKhMCX2zXisKMvKHGs8s26IreYCJXDdhrQFN9jAp9U4v7m/vxatrbJLJZJpH2htpLA3N8coQBAi4nLimT86lVBlE8kkuJYcYyUaIFtLUuUrJWzqRQor7w+00eysxLZOz8X5Ox3pI6znq3KXsDbcTVIueJf3pCQ5OdjCWiyMKAq3eKp4o30zGzPON3nfZGWrlaOQyNjZt3mr2lrbflYteWdmA4P7VRfcRpcrbNJvFYWPz+uhhfjxykK7UEBYWIgJ5qzCzT84scCxygdFcBLfiZJ3v9jTQLgXX+2g0bahZkWPqlsGFRB8vD37AyegV4vrc5vIbIWlkORvvoTc9RldymBer97Ip0IQmKXhlJ6IgzhtgEBBQtFtfxBdMnSORDt4eO8WZWBeRQmpZ/QFXYWOTMDKcjnVxJTXEhUQfj5RtZm94PSXa6tVYZ4w8Q9lrvTZJPcOhqYu8OnKES4kBMgsQjBuhYBlcTg7RmxqjOzXCs1W7eKxsC5K4/PvERD7Gj4YPcSraRUJPE9fT5K3Fs+w/jRBFN173ZyjoZ8nk3gcKN3zN3Q+bYgbjo/V9OtQ9+D2/giRe6/sUkFGVNXeEaFiWTTqZ477H1+PyFO/VZVVB0sncbVOdUmWJpmn/i/FkipfPXuSljWsJOp2YlkW6oKPJEmHP3R3AXCkIgkBd0M/ntm4kls3x3pUe/u7EaQLO+V3TVxIfHYebaQiCgKzKeG7KLXcJx18gypU3Uwylz7I58AJljlb60ydmZTOuP8L1sGyDiXw3IjKNnt2IgkRv+uhtz2YAOFUFRRK5PDbFYDRBicc1S0c5mcuzv7OXE33DqLLElrobN02mjBzHIlfImzqaqPDm2CnW++sZzExyJtZHjSvM+Xg/+ycuUKr5CbvLOBPrRbcMnqjYgldxolsGqqjQ6q0ka+b5/uBhqp0hyhwBvj94mLyl0+KpJK5n2D9xEaessjd881rwqwVJbkCSG+70NJaEzkQ/Lw+9z2Q+zlMVu6l0lvBXPa/M2kcTFUrUAPsnz3Ax3ntXEY2LR7tIxbNsfXgtfZeG0Rwqta03nynSLYNTsS6+3vsTLsT7MJcoR7oQkkaGg1MXmCok+GL9Y+wMteNT3DP9UKuBhJ7hzbHjvD5yjJ7UCPoKXWPSRo5T0SuMZCOMZCM8W7WLWtfqyDTnLZ2JXIycWUC3DN6fOMt3B96nLz2GtQIfnG4Xv+eonsKwTJ6p3Lnsvo20kaMrNcyV1N3UCH1noMgN+Nw/j250o0+XJ93D7YUs1RHw/Taq0jaTiQFAkFCVO6PwpKgyW/e28M6PTrF5TxOqKjMxEqfz7CCN7ZVEJorGfZpDKZZWrcYcJIl1FaXsqq/haP8Q3z51jrPDo7hUFcu2MUyTB5sb+OL2+TPJNwvDsrgyMcX7Xb3kDIOcbjCeStE1GUE3LY72D/IHb7yLJss4FJkyj5sdddU0lYRWdB7zQRJF1pSG+eK2TcSzOU4NjfB3J87gc2isq1i9kullr9YzRobvDb1CVI8hIFDrrOLF6udWY253FTTJQ5VrPaeiL+OU/EiCSkC98UJcFCTKHWvoTR3lwMRf4pR9CEioopPl6irfKnY01PBuRQ8neof4b6/vp7U8TNDlRBAgmc8zFk/RNR5hKpXly3u3sLZyaYsJEZF6dynljiAJI0ObtwpJEEgYGTJmnoOTHTgkhUfLN1Ki+bCBA5MX2VnSildxUukMEdb8eBQHeVPn0GQnHYlByhwBZFGixVPJU5VbmcwnmMzHuRgfvCuJBoBlxTCNbmxzDHseCUNFux9RXP0Lyo3w3sQpRnNTvFT9MM9U7sEpaXOJxnS/RtbIM5ybvEMznR+9F4eJTSTY/th6Lhy+gi/kuWmiYdoWV5JD/EX363Qk+laMB5i2xcVEP3/d8xNcsgOP7EBcpXM+oWf40dBBXhk5zGg2siKL8uthYTOSm+LVkSNkzBwv1dxPg3vlSwBtbJJGhqHMJIPZCb7T/x69mbEVH6M/PcY/DO6jzBFge2jNih7/ZwsCDu1+vO6fI5b8n1jWXOW3e1g9iGKIgPe3cah75jijC8go8p0hGqZhcvZYL/teP8v+184iySLpRI7oVJJQqZeTB66ADdvub+WlX7h/VeYgCgLVfh+/9cAevnfmPMcGhjnUO4BpWThVlXKvhz3myvfUmJbFxbEJ/uLICYxpZVbdtNDNYuDnymSEvmgMWZRQJJH6YICQy3lLRGM5dxVVlthcXcnnt20kkcuxv7uPEpeTX9i1jfpQ4KbnsBiWTTRkUWGtbw3D2REOTR0jaSR5kVsjGsXGuH4qnRU4pTtndvdIxW8Q1hpnzPpqXZsJKJXF5nLJx+7wF0noY4hIOCQviuhAnjbnq3ZtwK9W4pCKtbI+pZyNgWJTuSyoBNRqClYaRXTiED0IgohLDtzW91dXEuBXH9nFG+c6Odo9yNsXuzAsC4Ei0/U5NdZUhPnKQzt4oLV+lrztYnBMN8Q6JIWQWpRDVUUFw8yTMnKM5WIMZCbpS08iiyLRQorRbGymSTJSSLJv/AKThQS2bTOei82USKiiQruvBlWUZxR+UnepiotpDJDPfBM9/x62nQNM7Om6eEHQkKRGZGUj3AVEoyPRi23DUxW7qHSUzFvzLgsSPsWNaZskbqKMaDUhCAKTIzF6LwwxPhghn9WZHJ7rOOsv8cySr/4wbNsmWkjyFz2v0ZHoX3R57pEdNHuqafZUEtb8aKKCbhmkzByRfIKu1Ah9mTFy5uwSksupIf665w2ckrbiBACKilKvjhzhh8OHGMtFFy2VqnaGWeOtptJZQkDxoIgypm2RNnJM5uP0pEfpSY+QNuZXy4npKd4ZO4UoiHyy5kFqXAv7XdwsEnqad8dPcz7eS988JEMVZWqcpTR7qih3BPEqLhRBomAbpI0cQ9lJriSHGMpOLpiZsrDpTY/x3cF9NHuqCahLL59QRJkS1Uel48Y+USkjQ9KYL/NdzBiG1FsrQytRfcjCnfWJEUUXXtenMc0JEulv3JHm459FCIKbgOc3cDufRxBczF1uSihyI6AAt7cUTHMofPZXHr6hRUF5dXB15yHLbK+tosrvZTiRJJMvYNk2iiThUlWq5xGRebKtmZZwCKeiLLr4/6eP3k8sm6PC50W+TlxIFkV21Fbzb555fElzdKkKzeFr4zyztpW15aW4VIWGRRb+v/vYAyRyeap8s9+DKAg0hYP8j0+9gEuVaSubGzB2qQoPNNVT6fMykcpQ4nYScK7e2nvZREMRZDYHNlDjrKIr3UvWnP8iuhxM5qd4a/w9Xqh69o4SjTr37H4Tn1KGTymmk0RBokSrp0SbX7fdq5TiVa59oZrkpky6prR1u0nFfJAlkY015VQGvDy3qY1kroAxzbJlScSpKgRcTir8XrRlNAcJcK0udNplemZMQUQSJNb769hVsgZ1uplUEkTKHUEMy+TPut6gwV3O3vBaREGgJzU2U14iCqBJ8nVjCatmkHOrMPTj6IUPkNUtKOr95NJfR1LakORm8rkfISmbEMS7Q0M8oadxyRp+xbNg6YggCDOLmDuv2DEbzRtruXKmnz/9vW8x2j+JrEgc+cnc2t9f/4PP0byxbsHjGLbJ9wY/4GS0a8EFulNS2Rxo5vHybTS4y/ErbpyShiSImFjolkneLBDX0wxnp3hv/DTHIp2kzWuL9XPxXhySijGPAtGtwLIt9k+e49WRI4uSjDZvLU9UbGONt4aQ6sUtO1BFBUkQi2UEtkHWLJDQMwxnJzk8dZEDkxfm7VNJGBneHjtJUPHwser7CKorKy09lovx2sgREkZm1rtxSCqb/E08WLqRJk8lfsWNS3agijIiAhZ2kfgZWeJ6mnPxHn48fITBzMS8BM+wTToSA+yfOMvHqvcseX4VjhBfqH9sQTJ2PV4bOcobo8cwPlTGJgkia7w1/Erz80sedz54FSdh7fbp4S8ESSrF5/kqpjVOOvsjbPvuDAb9tEAQNHyer+JxfQpRnN/AURBAFH3IUjWG2Xtb56eoMnufXH9bx1wIiiRRFwxQFwwsaf+GUJCG0I0J0M66+XsDJVGkNuinNnhz52VTSWhJ2Y3d9XOV+aB43w44nTzVvrh4j8/hYGvN7fEUWjbREAQBCQlFVJBWyPimJ93HYHYY/Wewoe52QxJFyn2e2+Y7oYgybb4qBjKTlDn8tHgqSZs5EoUMsiCi2wYX4gM8UraBzYEGBjKTjOZiHzrKnTPNWQ4sYxBRLEdzfgpJ2UQh/zaSvAbV+RyCoKIXTmJbibsio+GUHEzkY5i2tSBx0y2DqUICUZDwyrfX7+VGqG+v4hO//jiRsThv/v0hvAEXO57YMGe/skUMpGzb5kpymFeGD81ZCF6FX3HzePlWXqzeS4UjhCYtnB2pcBblbdd4a9gYaOLbA+8xlitmWa5mDW6EbDrPSP8UTWuLN4BELEMylqG6Yf7MQUdigDdHjzOYmZiXZMiCxMeq9/Bk+Xbq3eW4JG0BYqnhU9yUaQEa3OW0eWvZ6G/i5aEP6EzOVeiJ62leHT1KlSvMQ6UbV0yNCop9GvnC7HtBmRbgmcqdPFK2mQpnCIeoLkiQA6qHGkqpc5XT7qvjf3e9yoV477xkI6GneX/iDE9UbMMhLU3m0SVrNHmWJupwInq52GT5oaEFBHyKm42Bu6fv6VahyNUEvP8E05wgmz/A3eIa/tMGQdDwub+Kz/0lJKlsAe8PmJaYQFFabjvRuId7uB6r0lFt2ibD2VFOxk7Tmx4gbaRxSA7W+drYEdxKiVZcaB2NnOBE9DRd6R4m8xH+uOtrqGLxYr+7ZDuPlz2MIhZv7JZtM5Wf4p2JffSk+xGwaXDXc394D9XOaxf9jkQnZ+IXWOtbQ0JPcjx6ioyZod5Vy0Ole6l23j5X2HsoXuoeL9/Mu+Nn+Wbf+yT0LIogsSfczhMVm3HJGk9VbuX7g4d5bfgElc4Q20NL81y522BjIYheBDGIIEgIghPbzgIikrKBXOZb2Fb8Tk8TgBZPDb2ZEY5HL/JI2fZ594nrKQ5MnsEjO2lY4sLqdkFzqtS0VFDdXE7XuQH8JV62PrS8vh0Lm+8Mvr+gupRbcvBQ6SY+X/coYc2/pKZhRZSpdoV5WtmBLEj8Td+bTOSX/p2nElnOHumeIRoTw1G6LgzPSzRSepZ9E2c4F++dt0RIFEQ+V/cIz1ftptwRXJL5niAIKIJMuSPII2Wb8Souvtn/NufjfXP2Hc1GeHP0OHWuUlq9K6P8NR8qHEFeqr6fpyt34r/aUL8EeBUnG/yN/GbLC/z+ua8zmp9bWmfaFkPZSS4lBtgc/Ghedxxd+EQAAGzxSURBVO4mKHITIf//xVT8X5HLH6UoDXsPK4UZkuH5BWSpenbz97z7K6jyGrK8eZtmeOv47nvFzPQzu9pxO1ff4+EeVh+rQjQEBMbzkwxkhql0lOOSnPRnB3lr/H0s2+Lh0gdwyU4qHOVsD21Ft3WyZo49JTsJqcWUVaWzfObGWKyjjvG/e/+agqmzObABy7boTF1hKDvCZ2s/MUM2kkaajmQnA5lBvIqHRnc9pm2iiupM78U9rBwqHAFerNmNIkjIokSDuxyv4qTcEcDCxq+4kASRpyq2sqtkDXlTRxREgqobl1wsP/l07V4eK9uIhY1T0nBMR439iov/sPkXKJ8uDfApLj5WvfOWFYFWC6Lgw7QL2FYMAEEMY5mD2NYUtpUBOzfTs3Gn8XjFDj6YOsNf976GZdus9zfNbNMtgyupQV4bOcThyAUa3JXsDN2dzfeCIPDIJ3Yhycs/twcyExyavDDvNhGRVm8Nn617eMkk43p4FCePV2xlPBflB8MHSS1Qp38VpmnR1znK2z84Qdf5IQp5HcuyiU4kKSmbv9zuXLyHE9ErC0q+PlmxnWcrdy2ZZFwPQRBwyho7QmvImnlihTRD2dmCADY2p6JXOBm9QpUzjFte+bJXj+zk4bLNPFO1C7+yfBlKSRBZ46vhM3UP80dXfjhv5ipl5Dgf771HNFYAgiCgKusIB/4jkfjvk8m9w501sfvpgSh48Xm+itf9RWSp6oYkAwBBQVVaV39yK4jhqQRQVG9aLmzbJp7O8crBi3zpydW1XriHpWPViMZa7xoaXLWooookSMT1ON8efJmedB9bAhtxyU4qHRWUO8oYSA8ykBlig3/tDGEQBQlxmhiYtsm+yQMMZ0f4reZfpdZVjY1NU6qBv+//Bw5PHeOTNS/MjB8pxCjxhHi6/HHC2tXSCRtVvHu8FwzdJJctkEnnyWULZDMFMukC2XSeoYEIK1US3905yqH3OnC5NBwuFadLxenSin+7VSRJXPYi6nqokkL4unKSq4sN54fKEPyqG/8CDZdB1bNgnXeL91okXRYlwquo4X+rEJUmBP0UljkKgKxsJJv6I9Lxf1XMZAgagnB3aHav8dbxmdrH+Ebva/x59w9xyQ4sbC4nB/ntE/+ZrJEnYaQJKB5eqn6QiiU0vt4pnN7fweHX59dm/8I/fZ66tvmzMW+NnVhwkV6ieXmqYjtVzpKbPj88spOP19zPsWgnl5NDizZpi5JAaVWAjTubSEQyNLZXIgAOt0blPOVfKSPLiegVetKj8x6v1lnK85W7qXCGlk0yrocmKewMtdGfGeebfe/MWajnLJ0PJs+zMdDEWt/CvTA3i3W+ep6t3IXvFkr3JEHiiYptfLP/nXmzSzkzT3d65FameVtxZnCU7506z5NrW9jTWIsoLv/7HU+m+aP3DuFSVX73qQdXdH6CIKHILYQD/4FI/A9IZV9e0eP/LEKSyouN366XkMTw0kgGV5WnPlpE41ZgWTZnukfo6B9f9msLhknPWITjVwbpHJpkJJoklc1hWBaKLOF1apQHPNSXBllXW876+nLc2sIlnIshkclxvn+M41cG6R6NEEllKBgmLk2lMuhlXW0Zu9vqqS31z7IgWC5yBZ2LgxMcuzzApaEJIskMOd3AoSqU+d20VZeye00dzZUlaMrquV2sDtEQBFyyE5d8TR/ZIWmE1CBj+QkK06ZgRcdcCUmQEBCQBXmmdOp6mLbJmfh5KhzltHqbkAQJG5tyrYyA6qc33Y9pmTPmSw5RpcZVRa2r+pZusgvBsixyWZ1sOk8mnSebKRKETKZIHDLpPNl0nmy6ML29+Cdz9XG6QKGgY5k2llU0BLQsC9sqPs6k89jWyjCN/W9e4NgHlxFFAUEUEAWx+Pf0Y1WTcV0lH+7i3y53kYi43BrO6X9fT06K26/ur6Ks4g/0owRZ2YrkbUacbvhWtD1YZj/57A9AcOBw/xKStHolJsuBKso8X7mXUi3AtwbeomvaEyBn5elNj6AIMhsCTXy65lE2+puRVuE8WimUVodo29YAFF2u04ksp/dfoml9DQ7P/MEF27bZN3523m0iAtXOMPeXrr/l60dY83NfeB1D2clFezQEBJxujfat9fhCbhrWFKVjRVGcN1vTnRqhMzmAvkBz+VOVO6h3l9/y93a1l2B7sJVT0Suci/fO2edivJ8rySGa3JWL9rAsF2HNz66SdmpcpbcUDAHwyi52hNp5deTwnG0Fy2AsFyNvFb2A7nZkCgWGY0kSuTwW3FSe3jBNhmIJvI6lBd8sy6ZjbAKvplEbunGTqyCIyHI1ocC/QRC9JNNfv4lZ3gOAIrcR8P4j3M4nEATvIj0Z80FEkkoQxTCWdfdIlI9Fk7x6uIMD53pJZwu015XxqYc2sa6xaMw8OB7nD7+zj8uDk5T4XXzh8a1saa1GlSU6+sf5h/fO0DEwDjZsaqni11+4D8Oy+H/+9h0u9o0Rz+T4hX//d/hcDj7x4AYe27Yw2bJtm4uD4/z9vtMcvTxIMpsjr5sYpllcnzHdWC+IyJKIKktoikzA5WBPex2/9swevM6Fet9mI5vXOXplgL/fd5qOwQmyeZ2CYWBOrwNFUUCWRN4918Xfvn+KRzc18/kHtlAZ8i7rGqgbJhcGxvjGuyc42T1MNq+TN0xMs9iTKQjFcfZf6OXbH5xhd1sdn39gC2uqw7d8rZ0Pq7JCtLEZy41zOHKczsQVIoUYeStPwkiyxtu8bIFHG5tIPkJMT/BPTv2LmedN2yRtZGjztpK3CrjEIrFxSA68kmfJi4TB3klGBqOkEtkZopBJ58mm8qSvIw7F5wvksgWs6S/Msm3sGbJQ/Nu2bCybmeeLj2fvd7uQyxbnuxhEUUAQisRDEKZJiMDMc+J122YeX/23KKCo8nXE5BoRcc36d5G0uNwq7Rtr8fpXx6TnTkIQPAiSZ6Z1XRAcaM7PoDqKyjKC6AXunppTl+xgb3gjmwItjGan6M+MkbMKeGQnta4yKrQSXLJjRRt9VwNrtjbQtOGaAodtWTzwwja+98dvkphKUVY9t/n+SmqI0Vxk3uO5ZSdbgy0r0gAvCgL3lazjtZGjN2wGL557IuNDUV7/1hH0QpFEtG+p47kv3Deznz2deepOzR+FL3cE2RJsxiOvzDkmCgLNnio2BZrnJRq6bXAq2sWWYMuKGvnVOMNsC7auCMkVBIF1vrp5iQZA3iyQKKQpdQRueazVxta6KtaUh3GqCtIquvlej7Fkiu+fvsjW2solEY0iBCSxlJDvn6Mq64gm/iPWdFnpPSwFIi7H4/i9v4GmbkVgaYvZ6yEIAoLgQJWbyRXuDqIxGU/zowMX6B6J8FufuB+/20G+YBD2X8v2Xxma4ItPbuPnntrOjw9d5M3jnZQFPTRUhPA6NZ7csYYvPbWNbN7g333jTd491cXTu9r4x595kO+9f5bOgQn++ZceQxAE3M6FybRt2xzo6ONPXjtMx8AYeWP+niLbLvZzmZZFXjdIZvNMJdIosrTk7ySezvLDIxf5y7ePEU1lMebx8DAtG9MyyesmiUyeb+07zeXhSX7nhQdYUxVGWkL2MlcweOfsFf7fH+xnMpGZ8e/48PsuGCYFwySZzfPK0Yv0jEb45ad3sWdN/Sy53pXAqqwg+tIDvDz0Cikzxd6S3dS5anBJLn44/CpxI3ETRxRwyk6CWpDnK56cs9WneFFnRdKEZZ2Qr718nHdeOVPMJNjFL6H4Z/5/r5az751CkfjYt9S3V7ygXf37+n+DIApw3fO//99/jg1b55cJ/ihj7m9OQBBdCNxdik3XQxUVgopMQPHQ6q3FxkZAQBLEVckGrgYUVUZRZ1/KalsrSUYz5DLzl0adjfUs2OvjVYpEY6UiO83eKkKql/FcbNHyKYDoZILj+zp59vN7cDiL1zSXd3bvQ7yQpj8zvqA/w+ZAM6Wqv6h2tELwyE5aPFVUOELzErQLiT4m8/EVIxqqKFPnKqPOvXJutU2eCgTmv3wbtklCz3wkiIYmy2jy7SX/PZNReiajrK9a3vdRJM9BvO7PoambiMT/Lbn8oVWa5U8Pip/ZF/G5vzzd9H3z37eAiqI0kyvMT7JvN0YjSXpGIjy+rYUNjRWIgoA1HWW/io1Nlexsr6WmNMDW1mp+dPAiqUwxYFpR4qU85EUSBWwb1taVMzARAyDkdeF2amiqQllwrkfGh9E5PMl3PjjL2b6RmQBwRdDL1qZqWipLCLgd2DYks3kGJmNcGprg8vAkBcPEBh7Z1Iy6BLKRyOT4/uEL/PGrh0jnr1b0iDSUh9jZWkNdaQBZEokks5zpHeFM7wjJbJ5sweDwpX7+m7WP/99nHqO+NMhiQxX0Isn4g2+9TTJbvPeJgkBlyMeetjoay0M4FJl4JsfFgXFOdg8xlcyQ101O947wx68ewqEobG+uWXSc5WJZv96FZDCvf14QBCbyk0wUJnkgfB8PhfciCiIxPY5uz5/mV0QZwzawseeMIQjFRU+7dw3nExdp87bi+lCkUZj+72ZRyBszJVD3cHO4SsaWwsJM415z4N0EQSiePx8VYvFhRMcTJCKpmceWZXHhSBeZdG5Bs74LiT6sBYiGR3bS4q1esflJgkibt5bu1Aj5G0h4S5JIqMxH87qqmQv9h69tI7kIw9mFHZjX+erw3UTj9GIQBIEqZwl1rrJ5icZYLsJINsJ6v466AuVHAdVLs7dqRUv2FvtMLNumsMD9abVxaWyC//72QZ5Y24IkCnzj8ClG4knWlIf5xfu28UBLAwAvn7rA/95/jNFE0RDvD156iqfXzS4JsW2brskIf7bvKCf7h4lmczP3VLem8gcff4oHWopBHkEQSOcL/O2R03zr2Bli2RxrysN8ZvsGHmtrRhJFPujq468OnuDc8DjxbJYjPQP8/o/eBuDx9hZ+65Hd1N3ATVgQBLAdaMoWykJ/QiL1NWLJPwFuLPf8swcRh7odv/e3cWoPIAiOZZZKzYUgqCjy4p4KtxPZvE42r1Me9M5E6D+cmQt6XfhcDkRBQFMkbNvCmpZi7x2J8J33ztA1PIVp2QxNxnhmZ/uy52HbNpcGJzh6eQDLshEEeHZbG195che14cBMZUdx5+I1wrRsoqkMBzv6eOdMF89vb0e5geeYbpqc6h7mL948OkMyqkI+vvDwFl7YuRaXphaDQsJ05sSyON0zzB/9+BBnekcwLZsjnQP8w4Gz/NITOwi4nfMSG8u26Z+I8V9e3jdDMvxuB5/au5EvPbwVr1ObNY5lWVwenuLPf3KE9893Y1o25/vGePnQOUr9burC8/uz3AyWTZN1SydlphnPTZA2M+TMPMO5EVySC5fkRJM03LIbVVS5lLhMhVaGaZucip+lK9VNnWuuyUiNqxoBgVdG3mBbYBOCIFKqhahz1SIhIQsyT1c8zvnERf7w8p9wf3gPHsVDrBBjPD9Jo7ue+0p2rsgHcg+3H6ZlzUQTxOnSrevTivJ0w7pl25imVTz57WL9uih+NDw27jaYtoltFz9vYZkZwLsNr/zle3zvT96aeSxJIiUVAV769cepaS6fs79t23SlRub1VbjqOu2Yp1fsZiEgUOcuQxHlGxIN24bB7gn+x+99l9KqIIII9a0V7H3ymkfIRC7G2ByvmSKckkaNq3TGE8K2TYp+BgrLzfR+GKVagErn/KIANtCbHiWhZwkv4sS+VPhlF7WulctmANOlZPPnNGzsFTdTXCosy2Y0keI7J87jd2p8ZvtGnIpCpqBT4r4WVHtuwxr2Ntfxk4tX+OuDJ+ctvYhn8/zLl39CyO3kP37yGSRR4D++8T6j8RTf+pXPE7zueIZp0TE6Tqag86XdWxAEgZ9cvMKf7TuGU1F4oKWBdZVl/NMnHuD9y728craDp9ev4cHWBgACDo2yJfoxFX93xVKqgO//g8vxGLHk/yCTe4+ia/VPWZnAsiEiS1V43V/A6/oiklTGrZ6vVyEI2l1FNDRFQlVkoqnsvIFluFbO/WEYpsV/+vt32dlex6+9eB8uTeHf/83bSNeV+oiCcK365EPHvR7ZgsFYLDmzKK8u8fPwhiZaKhcXAHGqPj553wZe2rP+hqVMtm0zEknyrf1niKSKGejygIeff3Q7n31g0wLvU2LXmjoEBP7L99+nY3ACy7b53qFzPLmlFb/LOSfbYNs22bzOn//kKOPxYtDN69T49H0b+c3n9iItMM6G+nJ+5endFAyTDy72Ytk2b5/p4v61jVSH/MjSHSAauq3z+thb/GD41VnP/9/n/wOqqLI3vIsv1X2WFk8jz1U8yeujb/PnPV/Hp3iLHhaOSqJ6bE7kdINvLR+reoZ3x/fxV31/hyZqvFj1DDXOGq6+zzKtlP+j7Xf40fBr/HDkNbJmBr/ip927hipnxcyxJEHCIWkzjsb3cHfDtm3eOXKZ/Se7wIZdG+p5bHcb/+0b75DXDSzT5qufvI+6yiB9QxH+4vuHqC4LYFkW921uZEv73dFc/VHD9wbf40pqiOcq72ODv+mWMoJ3Gl/63Y/xpd/92JL3z5kFIvn5SzjVaR+MlSZe1c7wkq5JvqCbJz+5Y9ZzobJrJQC2bRMpJIkU5p9/lbMEt+yYmb+e/T56+i/RfL+HpG7lVqplA6qbUs0/48L9YQxnJ8kYOVgBZTi37KBshcuYFsuO2BT76u4Ukrk8PqfGv3r+Mcq882deFEmi1OOmwuddUCHm3PAYo/Ek/98nH2BjTQWSIPCVvdv53e++xlQ6S4nn2rFNyyLkdvEvnn2EtvKiT0u518N/f+cgl8YmeaClgYDTQcDpoGcyiktVqQn62FB58wSwmN3Q0NSdlIX+mGz+A+LJPyJfOIlNgZ89KVwZSQzhcj6Fz/0VVKUYmV/Z64+MItdd5+t0Z1Ee8lId9vHakQ4qQ16CXhfxdA63Q6UsuDhx1Q0L3TAJep1Ylk3nwARnuoZ5cFNRnl0QBMJ+F8OTccZjKTyOorKmQ50b/DAtaxZZL/bcFinvYp/+1fLwpeSZDMuiezTCoUtFHyJJFNjWXM3HdrUjiuKC5UmiILBrTS1bGqvoG4+RLegkMnnePddNfVkQn2t2Oa0NjEQTvHn68swcG8tD/Pxj25EWGUcQhGmFqzrO9o2QyORJ5wocvtTPpoYKqktuzt38w1jWXUcVVV6oepYXqp694X47Q9vYGVqajrEgCDxcej8Pl96/4HYBKNPCfKXx5xY91rbgJrYFNy1p3Hu4M7j+Rx9P5Xjr0CV+9ytPEPQWm1dtG377Cw9RMEwOnu7hxIUB6iqDFAwD24bPPLWFkP/ukIn9qOJYtIPTsSs8EN70kY8lGrpZVNFQri3kbdvGKBhIsoTwoajMWC66YH+GLMiUaitzcb0eJapvSWVALo/G5vuayWUL2DYoioTmvHaTNG2LhJ5esLG8RPPNcrhWXZ/E0s8jCMVj2HYBbAMEJ2CCnQXBDXYOBBkBBRsD7DyCOPumLwoiXsWJW3aSNDJzxh7LRcmYK1MO45Q0QuqNa6x/WuBSFVpKSyhfJEOwlMWnYRUb7a5miQWx2GAqCQLyh6KvoihQ5vPQXnGtr8atqbg1ldR0icd8Y97qIvjq6wXBhdv5JA5tF5ns6yTSf42ud2LZOYpZjp9WCAioiFIIp3o/Ps+XcWg7uDn9sCWMNt0QrshNFPTzqzLGclAW8PKJhzbyvX3n+L0/f51sQWdjUyWfe2wLZUEPrumM6NViBUWW8Dg1ZEnC5VD44uPb+OY7p/i7t07RVhvm4w9smCl9kkSBvRsbOXShn1//z9+lPOjhy0/v4P4NDXPm4dIUSnwuVFmiYJgMRxIc7uxnbW0Z1SV+lFuU/gdIZPIcutSHPk1oSv0etjVX43Xe2HNIEAQ2NVay/0Ivg1NFWe4zPSNk8vocomGaFm+f6aIw3czucajsaa8n4LmxIIggCLRWllAbDnC+fwyAy8OTRJKZO0M0bgV50yBdKOCQZZyy8pEu1biHW8P12dJoPEM46EGRRK6WNYxNJfjay4cI+V1MRFO0NxTLXwRBwOPS7pGMFUAkn8C2bdp8dYgf4WwGwOn9l3B5HKzbdc1wzTItDr9+hrbtjZR+SHUqpqfmjchDUXI7uAoLXL/qXlJzdj6rc/LAZd770Sly2QKtG2p49MWtVNUXI85Zs7CoelVA8SzaI2HmD2Lqp1E9v4Vl9FJI/U8c/n+Dnv0egliG7HgSs3AcI/8uDt8/n/N6t+zALTvmJRqxQprCCpQfCRT9OxySWuydMA0KlsXV8hpNktGku1sJbblQJAnfEqVmF8PmmqIq1DcOn0QWBVRZ5tvHz7GxumJOL4Usiri12SWCxV/o3F7J1YQk+vG6P4vb+QzZ/CFS2e+Rzx/DtKLTEfifliyHhCi4kKRSnNoj0w3yG1k8fr4yKJZP3R1EQxCgOuzntz9xP7/9ibnB5a8+v3vW403NVWxqrpp5/Nj2Vh7bvrBcrdep8a9/8akbzkMSRZoqSlhXW87pnmFsG35w+AL9EzE+vXcjW5uq8LudOFR5RmlzucjkClwamph5HPK4aKkML/n1lUEfLse1c/TKyCR5fe41ttjXcU2F0KUpbKqvmLPfQijxugm4r5GS/skoiQWEVG4Gt+1qfXZijD87e5Qn61v4RMu62ybLdw93N8IhN6lMnvFIinzBQFVlLnaPUhby8vyD63n32OWZfQVYMAV4D8uDLEoogrQijbt3Gp0newmW+mYRDUEU2PfDE4QqAnOIRkLPLqj+JCLgllbe4dolO5bUbB+ZSHD2SDe//q8+jtOlcerAZQ69eYFPfvUhoOhzspDJIIBb0lCWXDY6/RkIbiRlG4XMt5HUbVhGD5Kyfd5XaKI6K2NyPZJGZkWIhiRIOEQVAYGJbIojY4NciU1RME1EQeCBqgb2VM7t9VsN6Gaxl0mdbvgsmCYC3JKJ1moi6HLyqw/u4t++8hb/1w/ewutQ2VhVzq8+uHNeycqlKpNd3xS7WhBFH27nU7gcj6EbV0hnf0Qm9y6GMYhlZ6ZJx53po7l5SIiCG1H0oshNuJ3P4XI8gSzf3pLfYkaj+cY7/oxhfV05z+9oZzSWZCKewrRsTnQNcap7mJbKEh7Z2Mz9axuoKvHhdWho06RjqcgWdHrGrolniCLkdJ2+8eiSXh9LZ7Guc0iPZ/IY13lhXIVl21wanG1SaFrWkseZSqZnlZGlsgXyhjFnnJvFbSMaTlmh2uPDq2of+VKNe1g5eF0Onr6/nR+8exZJFFjbXMH6pkr2n+rhlffPo6oSJYFiBkNVZEpvUMN5D0tDvbuS/vQokUICn/zRzBBlklmSsQypWBpRFBjpuxY5yiRy5DL5eYlpziosuGASBXHBhfStwCEqS+qDEUUB1SGDDfmcPi3de21Ra1jmgiZ9AJqkzhiXLjAC1yLERcIiCBKCWIIgyFj6RSyjH9U7f3msKsqoC/iq5C0d0zJv+eYkCsK0mStciIxzZnKUcpeHWD6LS1ZWhMwsFf2xOKlCgc2Vxehg5+QkDlmmpWT+pvjVgm0XqbE1XVdu23bxtzBNvq6PuL5zqZt1leX83x97nIDLsSILBaeiIAgQzWSJZ3NIoogkCKiytCRt/+VAEGRUpR1Vacfn+RUK+nly+YPkCscwjH4sK4llp7DtPHdjtqOoFOVGFLwocg0O7X6c2oNo6uZbkqm91Tlp6iZUee2qHF8UrgotrCwmcili+QyapFDm9OBYQUNQAKeq8PzOtWiqzHc+OEvPWIR0roBl23QOT9I5PMnX3znB5sZKHt/cwpbGKsqDXrwO7YZCNLZtY5jWTLM5wLm+MX7jf33vpudrWhbZgj6rj+SqN1ssfS3TPRZL8Y//7Ac3PY5l2+QKOqZlr0hD+G371a8Pl7E+/NjtGu4e7mJ8+L63Z1MjezY1znruX/3aM3NeV18V4pde2rOaU/uZwSOlWzkf6+L98VOU14ZwSss3g7rT6Do3yPsvH+XswcvIssTlM/0z21KxNDXN5QTL5taY6paxYEZDgJlF7kpCFMQllaipDgWnS+Otl4/jcKqk4tkZl3CYNo1aoL8Eig3P125ABrY1hW0nscwJBCkCoh/LjGKZfZj6Za7ergTRh6RuRs+/jSiWIYqBBd6HsOj7MGxzxovlZnHVxwVAlWSa/SFqPH7Gsyl00yI/jwHVSsO0LNKFAhfGx4lmsoTdLmwbTgyOUOP33XaikdMNBqIxRhMpzo2MkcoXOD88jt/pwKtptJWH8UyXXo0nU8iiSMfoBB5HUTpTk2XKfZ4lO4F/GLVBPzUBP+929pDOF/A6NOpCAbbWVuJbQr35zUIS/Ti1vTi1vdi2jm70kCscI184QUHvwrKi2NPZDsvO3oFSKxVRcCIITkTRhSj6UeQ1aOpmHOpuNLWd1eq9WA5EwYHb+Sxu5+L9tXcb/vLyYf626xjrAhX83pZnaA/MVRG8VbgdKi/uWsfG+kpeO3GJgx29DE0lSGRy6GZxYX/oUj+HLvVTVxrgmW1tPLqpmcayEA5VXvC+aQN5w5hXHe5WYFjFQMP1C6m8YcxrzHcruOpWvhJYNtGwbJtYPstIKknY6WYkncSnapQ4XYykk+iWRYXLQ9jpQhAEprIZhlIJ8mYxClXvC1DmmhuVzhkGo+kk8UIOw7KQBBGPolLt9eGQrn2Zlm2TLOQZTSfJGDqWbaNJMiGHk1KXG2UVFgn3cA8/bdgebOfRsu28PX6MckcJ63wNOCV1Qc12VZRX3JvhVrF2RxMlFX5sy0aUJDbdv2Zmm9vroGljHb7Q3DnbiyzUgVXrWVksAqbrJn2XRwHYtKuJS2cGSETT1LWU07y+ata+i5n+XfVEKe6Yw8jvB9vA1E8CNrL2IIbowsj+AEQ/4tVyCsGFKK9DyB9G1uYX5QBuKIVs3dCScHnwqxp5lweHLDOQjJMs5NlbufpmnwXTpGNikkP9AyRyeWK5HKZlkzcM2suWXmO9FDhVhfaKUqr8C/cGjSfTfP90BycHhgGo9Hs5NzzGueExnIrM//n0Q7Q5ShmOJWgoCbL/Si//7rV3ESjWojtVhafXtfKlXZuRJQlVlmgpK8GlzI4QuzWV1rIwVYHZymGN4RBf2LmJH5/r5Hj/EKIo8lhbExurl14HfqsQBAVVWYOqrAH3F7FtHcMcRte70I1udKML3ejBshPYdmH2Hwpg69iYgAW2hY1V/HcxV3R1FIrEQACkYrYPGQQFAQVBUBEEDUHQpvstKlHkBhS5CVVZgyKvQRDm9zm4h7sXgiDQVBHiN57dw4u71nKgo48DHX30jUWZTKZJZQszPhV/+vph3jp9hV98fDuPbGzG61x6kM6pKpT5Pbcky+9Q5HkDOdcLdyuSSGXId0vZRo9TW7FS9WUTDcMyOTDUz389/gGfbF3PG32XCTpcPF7XxPuDvUxk0zxZ38Ivrd+GS1HpiEzwdx2nuRSZZCiV4F/ueYQvrd0y65iWbXNguI8fdHUwmk6SNXRkUaTE4eZf7nmYOm8AKKaIUoU83718nvcGekgbBXTTxCWr7K6s5RfWbyXouHGX/T3cw886TsY6KXMEcYga//3yt2j31VPtLEVZILXf4K7kheoHbvMsF4esSFQ1lrH9sfW4vE42P9C2pNctXloE1qpFRBe+amdSOX7y/WPoBYN4JI0v6EaWRY69f4mp8QQvfrm4+BcFcVH1Ksu+ttQXRA+q61Pg+tSsfRy+fzZ3ZoKIpLQiBf7dou/Asm2sRaJcsiCtKFFbV1LOOor3nZDmJG+aM/eD1YRTUdhSWYFumowmU2yurEAUBQIOJ4EVjuA3lAT5/RefWHSf+pIAv/vUg4vuo5smf7rvKGOJJL/z2H1U+n2IgkBW1/nhmQ7++P0jPLNhDeVeD2GPm//zqYfmHGNNeZh/8ewjc54XBNhaV8XWuqo52+4UBEFBketR5HrgarWEhWUlMM0pDCuCZU1imhEsawrTimHb2WnioU8rsBWwbR17WuVKECS4SiwEx0x/hSh4EcUAshhGksqQpFIkseweqfgpgyAI1IQDfPaBAC/sXMfFwTE+uNjH6Z4R+sajTCXTmJZN1+gU/+G776KbFi/sWjevQpUoCDgUBU2WyRvFQHtLZQm/+vRuvK6bv4bUhv2zCIBwdRxFJjfdKF7ic/NPP/7QklSnFkJ9aQBxhcoib6p0yrJtIvliQ+XPrd3K/zh1kFe6dT6zZgMdkUkOjwzweG0z7SWl7KmsZXNZBe/0d/O/Th2e93g5Q+dPzxzFq2r82qZdhJxOJrMZzk2OEdSufVA2MJhK8KdnjvBCUzvPNrZh2RZ9iTiiIOBWPvqNrfdwD7cDX+v+IWP5YqOYJqn0pEfoSY8suP92o+2uIxpXsf3R9QjLiBCpwvwRIShmC3Rr5UtzihrtCxMYr9/FU7+xnYnROPt+fJpHP74dp1ul6/wQydg1hSdZKBqYLgTdMhclArcKwzYx7Pk/H0kQkYVbl4S8HgXTYDyTJpq/Zu6V0vNzIvGrAVWW2VxZwbpyi6CzeB9K5HJkCjoebeX7eG4VOV3n7NAouxpqaC0LE3A6ihUAuQIlbheaLK14GcfdgGhhgsn8CIY9WxK3XKsj6Nhxw99j3swykR8macRmPe+R/ZRqVTgk1/wvvIefajg1hW3NNWxrrmEkkuC9c928dfoKZ3pHyOkG6VyBP339MDtba6kNzy8Dq8gSIZ+LkUjR90iVJWpLAzSWh+bd/2YhCALlAS99E8V7uiSKVIa8tNesrOnpzeKmezS8isZTDa0ookRroASPqvGJ1vW81tPJ+akxovmiMYwkinhEDb/mQF1AqaNgmUiCgFdVccoyNR4/G8MVPF43WyXBxqZgmWiSjFfV8KkaFR4vOypuTcGhaU0Fex5pp5D7adbuvnvgC6z+hVuURFrXVZFNX2vEGs9H6cuMkTcLs/atd1dQ7SydE4l1eRyEy6+VEGTNPH3pUSbzsVn7+RUP9e6KFSktEkSBcLmf+x+7taa9qtqSRdOzj5ZvJ6nPlShdCLWuG9fGhst8bN3dRE398urXbWAinuZc/ygpt3hTzcTWVd8AARJTKbKZPIGwF82pzjmWU144JWzZNtlFVJ1uFrptLNpbIYoCHr+LVCJLIW+g53VsyyKXKcz6DWuignORZvWMmUO3V69ZOm/qc86fq3BJ2or3t/QnY7w90E1KL8wQjYeqG+Ytv11JGJaFaVmosoxtGCTzxe/g5PAIAadzpjn8boJbVdnVWEvH6DjfPn4Ov9OBaVlMpTOcGxrluQ1tVPp++rxJetMdvDv+feJ6BMPWKVjFptgXqn6RB8LP3fD1CSPKwanXuZg4gWHr6FYB0zZo927jqYrPUeNqWu23cA93OSpDPj7/0Ba2Nlfzn7/3Pse7BjFMi9FokhNdg1SX+OZVUnVpCq1V4RmiEc/kGJiIrTjRkESBDfXlM0QjV9C5PDz50Scasijg1xzkDQOfpuFTHYiCgCSKyKKIaS09cuLXnLzYso4fd1/ia+dO0BYKszFczoZwOZVu7zVbekGk3hvg6YZWDgz305eIsz5cxsZwOa3BEgLazaWJnvnEdp75xPxyjvfw0YSqyXz8C3v4+BeuNY/vnzjNtwfeZiQ3hW4ZZM08NjaPNqzlU7WP3lDqNaGneXPsKB9MnqFgGeTNArptsNnfwi82Ps86f+Oir18KJElkw9Z6Nmxd3Tr0z9Y+vuLHXLu5lrWbly87apoW75ztYt+f/4jRsIhl28uSv+4+P4BeMGnZVEsqnuXgj08xPjjFul0tbH6wDbd39nXBr7gXzGiYtkXSWHn33IyRX1JjndOtUVET4vi+TmRFxDRtWtZdK1dxSipueeG0e1LPLKpKdavImnkyCxANn+Jecbnk4VQS07L4cvtWlOk0vlNe/WzGVCZDNJtDBM6Mjs1kUE6PjLKtuvKuJBqiKPLVvdt5t7OHS2OTjCcnEQWBkNvFz+3eysNtjbdUG363osrZwH0lT5E04uStLIemfjJDNpYCt+Rjg383YbWSnJWlL32J7vSFVZzx7YFpWQwNRrnSPU5JiYfNG2+PJPRyYNoWU7k0fakI0XwG07ZxySpVbj81Lj8iwqLCEpZtM55LMppJEClkyBk6FvZ0T6GDKpefapd/xZTR2qpLeXxzC5eGxmdUnvomYsV71jz7exwqWxor2Xe+G9suBtRO9Y6wu60OTVk5LSZJFLmvvY4fH+/Atim6e3f288SWVpzzuKLfbtzCOxVmFgOiIM5yHV1u4l4APrNmA+3BMAeG+zkzOcqB4T42lJTzG1t2U+7yzLiDBzQHv7P1Pg4OD3B4dID3Bnp4f7CHJ+pa+HjLWrzqrZse3U6MJJOcGB5GEAQeaWy8LSUBP6todFfxsar7iRQSZM08r4wcIKGnl/x6r+xib8lGKh1hsmaOjmQ/RyMf/RvSRx1nD1zGtm0a2qs48sYZrpzpxxdy8973jlLZEKZx3eyMZ4nqWzBjYtgmkXxyxecY01OLZjSuwh/y8NSndzI6ECGf0wmV+Si5LqumiDJexYUmKuStuRnYqUKSnLk6mVnLtkkaWVILELGQ6kVbYaKhShK6ZdGXjM4QjPLp5vDVhGFa5A2DaCZLx/gEa0qLDeBFbflVHfqWEPa6+fT2DXd0Dv3py+h2ngZ3O9JtkHMtd9RS7ri2iD4dO7AsouGSPaz1bWetrxhs3DfxCj3piys+z9sN07A4dLSLP/vae+ze2XzXEQ3dMumMj/Pq4AX2j3XTn4pQsExKNDebQlU8XbOWjFFYMOhk2zbvjlzmwHgP56Mj9KWjxPNZLCycskqV08fmUDVPVa/lvrLGORU1lm2DvbhIx3zQlNleGoq0cFea26GytamKqqCPoUiCeCbH4Ut97GqtZUdLzbzeNgvBtKwFjQMlUWB7cw0NpUF6xqPkdINjVwb54EIvD29oQpGXnmm+WhmwkiWwd429qigIbC6rZHNZJaPpFO8MdPFvD77DtvJqXmxun9lPEAQ8qsaTDS08VNtAZ2SSb146w3cvn2NDuJwtZZV38F0sHxcnJvj3+95HFkW2VVbeIxqriGpXKdWu0pnHB6bOLYtouGQH20JtbAsVm45fHz3MschH/4b0UUcuk8df4kXP63SdHWDT/Wu479nN/Jff+WsyybkLjpDqxSGqpJm7TbeMmd6VlcRkPrEkogFFidu61vlL1QRBIKh4CaleRnKROdvHc9GZTN2tSMzOh5yZJ6anKMxDcADKHSFci2RbbgYeRaVgGRweHcCraCDA9rJqSp2rq4BW7fdR7fcxmkxSHwzQGAoCcG50bNVJzkcZlm3xzvjLmLZOTX0z0k+Zg/tKwLIsorEMsViG2poQqvqz9xnZtk1vKsLXLh/ijaEO/IqDrSW1hDQXumXSn47yV5ePYN1AzvvHg+d5b/QKFU4fGwKV+NXi9SdWyHIxNsY/9J2hMzGBX3WwpWR2wCmSzHB5eBJVlqgrDRD0OJEXMeK0bRiOxDnc2U8mf+0a2FIZXnBRLokiDWUhntnexjfePUleN7g8PMnX3zlOXjfY1FBBwL2woEDBMIkkMwxOxolncuxsrcE3TyO5IAiU+Nx85oFN/OGPPiBXMJiIpfmLt45hWjbbmqsI+9wLjqObJrFUjqGpOJFUhnW15VQEV67MclV/4bZtY9o2BdMgo+sYlkVW10kVCqiShCyKiILARCZNZ3QSn1rs5QCocvuQRGFWY6ZhWfQnYgwk41R6vDhlBUWUCDvd2HZx+z3cwz38bMHjdzE1EuWtbx9GkkXq2ipRVKVYqjRP9FmVFCqcISKFxJzNBctgMDOBZVtLcvJeKoYzkws2US8XYc1HWPPPSzQihSRT+QSGZaIsYKx3s4gUkoznFiZhNa7womVdN4Ow001rIMxIOklSL/ZJXJVKvx2o8M6+2baVhlecwP00IWFEGc714pUDKyx0/NODbFbn6LEeLl0e5ctf3EvoZ5BoJPU8+0av8PZwJyHVxUv1m3iudj2VTh85U+dibIxv9Zzg0EQvaWP+Uk1BEHihbiPN3lKafWGavWHCDjcCMJZL8dbwJf688xBdiUleG7o4h2iMRpN8+4MzTCUyrK0to6EsSFnAQ9DjxO1QUWUZgeJiP5nNMxpNcuzKIPsv9MyoOzVVhNjYULmoW7jf7eDpbW1cGZli34Ue8rrJ4Uv9TCbS3NdeT3NFCSGvC6daNMU0pr07kpk8E4k0A5NxOocmEASBlsqSeYkGFBvNn9y6hgsD47x6vAPDsrg4MMb/eOUDHlzXyJrqMCVeNy5NQRQFTNMmp+sks3mmEhkGp+JcHp4kbxj8o+fv/+gQjWg+x6Hhfi5MjdMdjzCWSfHuQA9TuSxeVeW5xjYa/EGi+SyvdF8iWcjjlGUkUWQqm+Gh6gZ2Xdfobdk2vYkof9txGq+ioUkShm2RyOd5vL6J5sDKNtjcwz3cw92PtTubOPz6GXo7htj+yDqqGsuITiQorynB5Zv/otziqeJion+Op4Zhm4znokQLKUo037yvvRn0pEdXrHeiwhmiylnC2XjPnG2mbdGdGmZrsIWAurIN02O5KEPZyXm3aaJCrasUt7SyRCOSyzCcTuCUlBl1YPU2eiXlDYPRZJKJdGZGzasuEKDCu7TP9meNkvSnL5E3s3jl+VV47gGSqRxHj/cwOZVE128fab6bMJyJs3+sm7xpsLOqns83baPSVfzN+HBQ6vBgYTGQjtERH1vwOHvLGnmwvBmB2aU+XsWBr97BkYk+Doz3cDk+MUdkxAZS2TyneoY51TOMSyt6XIT9bnxODW3aryKvG8QyWQYn40wmivK2AOUBD19+dDslXteiZUaSKNJYHuLnH9uObdscvTxAtmDQMTjB5eFJgh4nYZ8bt1YULtFNk0y+QDSVI5bOzijFtVaFF6XugiBQ4nXxS0/swLQs3j/XTTqv0z8R4+/eP4XPpVHm9+BxaEiSUDQjzOvE0lmiqSwFoxgIqysNrHiIYNlEQxJE1oTC/Pz6rTMZhSfrW3BMp0ibAyE+0bKOWl8A27axsZFEkdZgmNbgNaMjy75mPFXp9vJYXRO9iShpXUcRRTaXVrK9vIoar3/mS5RFkbZQKU/VtzKZTWNYFi5FodYbYEtZ5T0PjXv4mYRtw8muIY5fGWRbSzWbGytnUsCXhyc5dnmAeCbHE1taaSgLzdSFnu8f4+DFPtbVlXFfe/3MeWZaFmPRFOf7RxmNJsnrBg5VoTzgpb2mlOqwf94ITufQBMevDNJQFmJTYyW6aXKxf5y+iSipbAFFlgh7XWxprqIy6F2yRrdpWfSNxzhwsRfDNFlfV8GWpqqZutOWjXU43Q5S8Qw1rRV4/C70vMHDn9xJafX8wYf1/gZeGT48r2NG0sjSkRzgfm39kuZ3I+RNna7UyIoRjZDqpdZVhkvSyMyjkHUm3sPjFdtWlGjolsFAZoLBzPxEo8ZVSrkjuOKqU1O5DLIg8VLzupk+QG2R8oaVRlckwtGBIRK5PDnDQBZFhAZhyURDEhae61JL6e5mGJbOcLaHqcI4SSNKZ+IUBStLXJ/infGXkYVrpcCyINPoWUeDe67fjW3bpM0EQ9kepvJj5MxMUbJe9lPpqKPUUY0mrp4D+e2Cbdskk1k6L48SmsdM9GcBNjCRS9ERHyegOlkfqKDCNZuYCoLA5lAN9Z7gokRjIYNmQRBwSDKtvjL2j3WTNvKYto183X3LqcoEPS4USUQ3LTJ5nd7xKL3ji5fOypLI+rpyntvRzlNbWlGW0GehyhKbGir5tWf2UFPi50BHHwOTMUzLZjKRYTKxuAKk26HSVBHCcYMG8quk5tef2UN1yMe+C710jUxhWBaxdG6mgX0hOFWF+tIAPufK9jovn2iIIu2hUiolNz/+9gkS8QyiKFDfVAq10BIooSVwTd7y+aZ2nr/BMb2qxhP1LTccWxQEqj0+Ptu2cbnTvoc7BBubg5Nn6UwOsCu0jlZv7UxJx0QuyjvjJ0gZWdb5G9gRXDuzUMmZBb47+A6KIPNc1V48cpFE2rZNwkjTmexnMDNBysgWRQJUD43uKhrdVSteJ/5RQMfgON945wSpXJ7mipIZo54jnf385ZvHmIin8To1KoM+5Gl51H3ne/jaG0f4zef3cl97UeVKN0yOXR7kR0cvcKF/nPF4CtO0kCWRUr+HjQ2VPL1tDTtba1A/dNHrHJrgb987xX3tdaiKxIkrQ7x/rpv+iRipXAFFFgl5XPzrLz5JecDLUmiGaVn0jEX4xtsn2He+h7V1Zaytnd2/IKsy9e2zjcSCZT6CZQtnJDYGGnFICiljbjlTQs9wPNLJfSVrV6R8qjs9zHguirVCcSJFlGn2VFHjKqUzOThn+5XkED2pUSodJWjSyvR8jediXEz0L9gIvtHfQKm28lFsWZSYymU4PDqAW1ERBGjwBqnx3p6I+XgyTcE0qfJ5yRvmsn1WXJI2b6mVZVvkVkFG+XYjZ2U4EX2fvkwnST1Gxkxh2AYJPcqByVe5PqejiQ4UUZtDNEzbYDTbz4noPnrSF4kUxslbGQRE3LKPckctG/y7WOfbgU8J3uZ3eOuwLJvJqSTnzg8xNZWiq2ec0bEEhYLB333rMG7XtUVdadjL9m0N1NbMDpAkkln6+qcYGIgQiabJ53VkWcLnc9JQH2ZtWyWaJi+rgTeZzHHqTD+XOkepqQ6wY3sj4ZLZ5TLpdJ4r3eN090wQjxcXw36fk6bGUtrWVKBpyvKlyG2LhJ4jmk/T6A1T6fLPm/kLqE6Cmgv5BtfgZCHH5eQEQ+k40UKGrKGjWyYZo8DpyOD0mHONRssDXj6+Zx01YT89oxFGo0kiqQypXIGcbmBOZxIUWcLtUCnxuqgp8bOmupTtzdVsbqpEk5f+mauyxLraMkr9HrY0VXGmd5SukUmGIgliqSxZ3cC0LGRRxKUp+N1OyvxuasIBmitCbKirIOC+8dpGEkXqy4L8/GPb2dhQyemeES4PTzI4FSeSzJAtFNsYZFHEocr4XQ5K/R6qS3w0lpewvq6cmgV8QW4WN106JQoCDofM6Eiek8d6GRqI8NiTd1bt4lbwzbNnyRkGL7a1sb+/n87JSQJOB8+taaPU5eK93l5Oj47iUGR2VFWzq7p61g8so+v0RKNcmpxkJJkkVSggCODTNBqDIbZUVFDmXrgZZz6YlsXx4WHe7O7Co6o8v6aN5tDsC1DeMOiKRjg1MsJoKoVhWXhVjeZQiM03MeZq4FKynx8O7UcSJKpdpfjFYjSwMzXA94beI1JIsDezkc2BVmQkbNsmUojzzf6fUOkI87GqoiuyYZn0Z0Z5Y/QI5xLdjGUjpM0cAkVpzVpnGXvCG3ggvJkyx+2/ISUKQ4xkT+NVKihzrEcWlx4VMKwcXcm3aPPfiJbPhSBAWcBD2OdiPJ4mls4S8DiLDXejUSRBRJEkrgxPkc3ruB1FotE1PIlp2aytLWptm5bFhf4x/vjVg3QOTbC1uZpnd7ThcWgks3nO9Y2y73z3jCb4fWvr581sDEzE+fb+M4xGk9SVBbl/XQOiKBBL5RiYjFEW8Cxa03oVpmXRNxbl62+fYP/5HtbVlfMLj29nS1PVok17S0GZFqDFU82pWNecbTmzwMV4H/3pcRo8tyZjats2+yfOkTSW7lmyFLR4q2j1VtOVGp4TGc+Yed4bP027r44KR/CWz3/dMulIDHAm1j3vdp/sYp2/gaC68h4NQc1BQHMUy6fkItEocdw+AzVFEil1uwk4HHRHoyRzeco9S88UeWTH/ESDooJXxsjjkj9aSonXQxFUWrwbqXQWAxVn44fpSp3Hr4R4IPw8ynUqZKIgU+Oc7Ulh2RbjuSHenfg+lxKn8CshNgXuwycHMTEZyfbSl+5kKj+CbVtsDtyPS15dD5WVhmVZDAxGeOOtc8RiGaYiKQzDJBbPcPBwF9J1EfHmxlIaG0tnEY1EIsurb5zl4OErjI7GSaVyCKKAZdlomkJ1VYCH7m/jhee34HAsLbCQSGbZt7+T7/3gBKZp8dIL22bNA2B0NM4771/k0JEuBoei6LqJaVpomkJNdZA9u5p5/plN+HzLc0c3LYusoWPaNpoo41pArloUBFyyumDWwrJtDo738PZwJ52JccaySdJGAU2SpjOJNrH8whF8r1PjvrZ6NtZXMhpNMplIE0/nSOcLFAxzxqJBkSScqkLA7aAi6KUm7J/up1j6ex5Ppni7s5uwx8UTbS08saWVna21DE3FGYulSGRz5HUTy7KQpgmA1+mgxOukIuijxOdCue6e9+qFTkbiCb64Y8u8WQ5BEPC7nTy0oYltzdUMTsUZiyaJZXLkCwbG9DiaIuN1qoQ8LsoDXkr97hWV3b2Kmz6ix+vgmRe2MtA3yfhoYiXndEfwRtcVeiIRdNPkh5c66IlG0WSZ3miMx5ub+X8PHmQomcCwLE7VjBBwaLSFiwpGGV1nX18vf3P6DAPxONFcdiZ2KQkC5R4P99fW8YVNm+YQhYVg2TYHBwb474cO0Tk1yZe3bJmjdhLL5Xi7u4sfdHRwJRIhVSg2TYmCQIXHw66aGj69bj3rysqWtLBbDQgIVDrCeBU3I7lJMkYev1K8UVxJDmDaJj7ZTVd6EN0ycIgqFjYDmTFM26bKGcYlFx1uR3NTfLP/TY5FOgiqXh4p20qpFsTEoic1zNl4F8OD72LaJk+V78a/wjXqN4IkaqSNcSy7QFhbAyyDaNgF+lL7bopoQLFeNOz3MBFLEZ9Oj8bSWUaiCZqrShBHBbpGJskUimoZVzMFiiTSVFHMQOYKBn/z3kkuDoxzX3s9v/rsHporStAUaUYt4zsfnOUnJzt59XgH9WXBeSMfFwfGqC0N8LGda7lvbT2l/iKxSGXzjMfTVJf4FpQULMpYC1iWRf9EjL986xgfXOhlQ30Fv/jEDjY1VM65Id4MREHk8fJt8xING5uh7BRvjZ3g511P3VJTdU96lOORTnILeE/cLEKql82BZk5HuxnMTszZfjx6maNTHTxRse2WMnw2NgOZcfZNnFmwEXxToIkWT9WKN58D1HkDvNDYPus5n3b7MpZBpxPdsij3eIjlcjhkmbrA0qN9Qc274IIkbeToy4yx1le3UtO97dAkJxv8u2ceT+ZH6U134JH97Ag9ckNX7YyZ5Fz8MBcTxwmrVTxc9iJN7rW4ZC+WbTFVGOXQ1Bucin7Aseh7VDjraJDbP1IN+aIoUF0V4GPPbsaybHp6J/jLr39AVWWAT31iB36/C4FiSZHX46DuQ9kMSRZJJLJomsIjD7VTXubD6VQpFAzOXRhi/4HLjI7GWb+umva2inlLUq//CSaSWd55t4Pv/+gEkiTy+c/sYu+eFrzX+Q3F4hl+8tY5fvjqacpKvbzw3BbKSn3Yts3QcJT39l3iH75/HE2Tee7pTTidC5uIzodr81lcMkBAWNBc9dB4D390cR8np4Zo8IZ4tHINdZ4gXkVDFSUKlskbQx28MdSxyDwEvE4Nr1OjtSq84H63ikgmy+sXL9NSWsITbS1IokjI6yLkdXEz9TkHevo5MzjCZ7ZuXLScShQEfC4H61wO1tXe2HR3tXDTdwZBEFAUCYdTRVZuX83samI8nebd3h4+s34DgiDwXw8e4PsdHXRHo9xfX0e9P8CPL3dycmSEfX39M0RDFoXptJzNw40NNAdD+DQN07bpnJzk9a4rfOfCeWr9fso9Hjzq3JPywxfO/X19/LeDB+iLxfi1nbv41Lp1lLqv1XRmdJ0P+vv4k6NHKVgWH2tro7WkBFkQGUuneKenhx9duoRhWXx123Yag3cu5VzlDONTXIxkp8iYxdILy7a5khrCr3goUf1cTPQynovi9biwphtaFUGiyVMNQNrI8sHkGQ5PnafcEeIL9U+y0d+MT3EXTXvyUV4fOcRro4d4e+w4De5KdoTW3tYbklsO41OqsblaWmEzmj1DrNCPZetUOLfgV+uQBIm+1AdkjQgmOvXuB2eyH6atM5w+hiRqVLm2LXnsMr+HsM/N2d4RYuniZ9w/ESOSyrKnrQ5ZErnQP0YyWzSOm0ikiaay1IT9eJ0atg1941H2n+/B69T45P0bWV937cLkUBXW1ZbzxOYsp7uHOdc7ytnekXmJRjKb54F1jTy1rY2g59rNS1NkSnyL1yUrsoQNDE7G+dobRzlwsZfNTVX84uM7WF9fvmLGSwB7wmsp7w3OK2ebMrJ8MHmeNl8t95duuKnfUbSQ4gdDBxjITKxY2dRViILIlkAzpwNXGM9HKXyo/yNlZHl56APKHEG2hVpRb5IETORivDF6jBPRy/O+h4DiYU94HZXO5bnBLxWiIJDU8wym4jNNmGuCYXy3yS/JqShEMllGEkniuRyaLC9Ld7/eXYEiSmTnqbZKGhkOTp6n3Vd71yycxxIpzo2MUe330V5ReuMX3CLihSnOxY8gCyrtvq2s9+9EvS4TXOVsYIN/N0PZHkayvQxle6hyNn6k+jVEUaSiPEBFeQDLsnC5ivd/n8/Jzu2NlJctTlzdLo2nn9zAwzmd0lIvPq8TSRKxLJttW+oZG4tz/uIQ5y4M0tJchqrOvkYKgjCTAU4ks7z51nl+8MopnE6Vz316Fzt3NM4q3wI4d26Qd/ddIhR086mXdrBzRxNuV7FZORbP4PU6+dZ3jvDyD06yZ1czVY6lR/glUcQpqUiCQM40SOvzlxDatk3WKKDPoyZq2hZ/33OCk5EhKl0+/umGR9kcqiakuWeCqvFClnORkSXNaTlIG2kckmPR/qt7mI1V11XL5w0uXRjmxNFupiaTuNwam7c1sGlLHR5v8WKh6yYXzw1y/uwgY6Nx9IJBIOhm555mNm2tQxSLJ9XIUJTvfvMQTzyziXUbr6lRZTMFjh/tpq97giee2Uh5ZYBCwaCzY4Tjh7uZnEjgdGls2lLH5m31eH3zN43rlsWGsnJeWrsWTZbZ19fLW93dFEyDX962HbeqggAnhoe5PDU18zpVktldU0ONz0/Y5SLsKqa5bNtmMpNBtyy+ff4cFybGeTTTOC/RUCRxhua/09PDHx46yFAiwT/Zu5ePtbUTcMy+sA4nEnz73HnSus6XN2/hU+vWUeIqqh+kCwXq/H7+5NgxfnLlCjuqqqj1+2eZKt5OVDpL8MluutPDZIxitD1SiDORj1LjKqfBVUFHso/LqX4aPZVYtk1XehhZlGh2F4lGXE/x/vgpZFFiR2gt95VsxCFd+xzrXOXcF97IpWQ/FxO9dCYHWO9ruqP9Gkl9lKncZZxyCZKgMpg+jCp60K0MkfwVSh3rMKwslxOv0uZ/AYChzFHihX7qPPcva6yg10Wp3000lSWWzmHbNj1jEeLpLLWlARyqzLneUQYnYrRUltAzUszetdeWIYoClm1xvn+MTF6nPOBhe3PNnDEkSaSqxE9LVZh953voGYtg2facbFnY52ZtbRn+JdSTXg9BEHCqCmOxJH/+xhEOXOxla3M1X3lyJ+01ZSvuahxSvTxXtYu/6Hl9zjYbm8HMJP8wsB9NVNkeal1Wv0askOK7A+/z/sTZeRu2VwIlmo+HyjZzJTXCpeTAnO096VG+3vsTdNtgd0n7sly7bdtmNBflh0MHeXP0xLxu6QICu0va2RJonnUuriQ6o5PsH+7Dsi2SegGHJONVNZr8t0dhUJUkLNumOxIhlS/g0TQSuaV/nyHVS5UzTFLvn0PTskaeg5MX2R5aw+ZA88pO/CbhVBVqAn78K9wMOh9M2ySmTzGRHyakllPjap5FMq4ipJbjV0oYyFxhKj9KzkijqR8dorESqKudS+RFUaCmJkRjQymXLo8yMZEsSnp/CIIgoDlkksksr71xlldePY3f5+ILn9vD1s11c8qtcnmdC5eGGRyM8ImPb2fL5jo87mvfS8Dv4oG9Lbz6+hkGhyL0909RXuZDXqIpnIiAX3UQdniIFDIMZeLYzFVoixWyRPIZjHl6ohKFHJ3xCXTLZFdpPXvLGnHKs69BumUymIktaU5LRd7McSFxhnW+jbhvooRvRe9gd7gkfjlYVaJh6CZHD17h1R+dwuFQKK/wE42k+d63jhCPZXjw0XY8nuIF49jhbiJTKXx+J4JH4/zpAU6f7OOf/d6L1NSVIAggSiIXzw+jqsosojE1mWTfux3Ylo3LrWEYJsePdPPK90+iqhIVlQFi0Qzf/4djxGIZHn587aw04fXYWlWJQ5ZRJInWkhLe7elhXVkZYbcbw7Ko9fkxLIvEh2r/Qk4XIefsNLEgCJS63bSWlODXHESzOTLG/GZXTkVBFIolXP/z8GHG0mn+2QMP8nRrC54PRe8M06Q3FuPY8BAby8t5uqWF8HXZDreqsq2qmtZQD6dHR7k8FSGZzxN03hlVrqDiJaj6SMe7iOkpDMukJz1C2sjR4Kqg3VePPCzRkejnifJdWFh0p4ZQBJkmTxWmbTFViNOXGSWsBWjz1s27sCnVApQ7gpyNdzGWi5DQ03eWaBSGEQWZUkcbTinMQPogBStFrNCHQwpQ5lyPiMTF+PdZ43+OpD7CpfgrbAp+Hr+6PBdXVZYoD3hQZYn/f3tnGhzXeZ3p5659e+9GY983AiQA7iIlUiQlS6IWa7MtS7ZjxzNxZhJnaqqSVKamxqnKeFI1S1ITp6aSmdSUJ4kTO45ly7Jk2ZYlSyQlkRIXUdxBgAQ37EADaKD35W7zo5sgIYA0SYGUk9znJ3CX7/a933K+c857phNpsgWDS5OzGKZFVchHxO/B7VI4OzbNllVNnJ+YwTCt4gJeKHrkxmMJxFJs5+U8jg/j1VTK/B7yukE8nUM3zEUxnSGfG5/muulwPUEo5hx9e9dh3jw2gMelcteK+qIxdBsGVQGBndUbeTt6ggvpxTtfum1wOjHIty+9wWR+lnvLewj/knA83TI4MXeBXZNHOTB9mjk9teztvowoiPQEm3mgah2xQoKpfHzRMX2JIb514TXOJUd5sGoD9Z7y6xpMNjYZI8/xufO8OXGEY7PnmdWXrpS+MtDAA1XrqbqN+VCJQh5Fkqj3hUkW8oiCcFPJ2B+Vobk53h8eodzr4Z7GBhpDIZrLQjd8viSIbC7rZCA5siiXxsJmKDPJP1zahd5gsK6sHflj3iUNaC4C2p3xFpm2TsqIY9g6CT3G3qmfcnR276LjdKvAeG4QgKyRpmAvbxjiPwUMw2RwaIYzAxOMj8+RSObI53V03WTg3CS6bmIY1pJV60VRwLZtdu3p46Uff4DH4+LLX7qXNT31SxYLnJvLEI0mKegmhw5fYHRsdlE4lq4bzMRS2DZMRhNFwZAbNDQEQaBC89EdquHtiXOcnB1jKBWjybdw8+BYbJRLqdg1fcGX+1NxA3Xh/GBYJmfiUY7OLN6A+TAT2THOpc6QMTPUuRto861gMHORkcwQeStPh38VTZ4WMmaaE3NHOBE/xkx+ijZfBy3eduQb9BYLgkAyn+cnp/o5dGkEw7Lorqnk/hUt1JfCMQ3Ton9yioODw1yKzZEt6AQ0F/c0N7C1tRGf60rfVCSR42MT7D13ielUmqqAj0dXdbCmbmFeoW6aXJiZ5c3+cwzG5lAliTV11exob6E6cGfCy2+roTEyPMPbu/vwel08/dlNVFUHyWTyPP+d93h712na2ivpWFWLLIvc/1A3oijg87kQRJE1axv5b19/iVMnhkuGhkAw6Gb9XS0cP3KJ2EyKsogPy7KZnIgzOhTjocdW4/NrDA/O8M7uPlRV5jOf20x1TYhspsAPv3eAvXv6aG2vpKtn8Y4tQJnmnl/U+NSiq7DCUzQgBIo7XDaLiwOalsV4MsmR8XHOx2aYzmRI6zoFw2Q4ESeWzWDaSw8EAF5FZe/gIH9/9ChnZ2b4k50P80h7O+4lKoVnDYPBuTkyus65mRm+vmf3ooQpw7I4P1ss6BXLZkkXCh+boSGLMjXuCC5RZTIXI28VOJcaIWvmafXWssLfgCap9CcGsWyblJ5lKj9LnbuSclcI0zaZLSTRbYNZPcGLI3vYNXl40X0Kts5IJgoUQ61y1sc7IcmihmUbWLaJaeeRBBkBEUV0k9YnsG0b3c4hixog4JJ8NHt3MJI+SLmrE0m8uV3iy8WGovEUE7NJxmYSlPk9BD0aYb8Hj0tlYGyaXMHgQsnQWFVaxFuWVdTRForJb9da14uCMO8ZMy1rPmHuahRJuiXvg2XZjEzHiSUyBDwas6kMB88MsWlFA201yx+aIwgClVqIX29+iD/te57cEhWv85ZOX2KQqfwc78/00x1sps1XS4UrhFtSMWyLjJljtpDiUnqCs8kRLqTGGc1ML/j+Kl0hIq4AA8nRZSvcB8Vq9Q9UrWcyN8svJj5YpAplY3MxPUGskOSD2QE6/Q10Bhqod5cTVn2oooxl26TNHFO5OBfT4/QnhrmQGmc8F7tmFfAaLcJjNZvpDjYvu6Tt1SiiSMil4VNUBmZnSOsFtGVS0roRWiNlPLO6m0Qux4XYLEdGx9i5op1tLU03fI2d1Rt5ZXT/kkZnwTI4MXeeuUKK1TMtrA61UO8uJyB7kEUZy7YoWAY5q0DGyJMysiT1DHE9zZyeYqW/kfVl7fOqfEthWhZ/9LM3+drO+7Cx+d/vHGBVVSWPdq3g6PA4k8kkj6zq4P3BEV7vG8CjKjy8agWbm67MkS8fP008l6NgWpyZnCLkcfNkTydd1ZULklRvBtu2Mezi95WzMlxM9103hExAwMJaVPvmnzszsRSvv3GKA4fOMz2dRFVlAgE3bk1FlsX5OgvXWpAbhsnZgUlOnhphYjJBfV2YdDp/zYrk2WyBbLY4dk1NJUkml06o9rhVPG4VUbr5sb7OE2J7VRuHpgZ5f2qQb509wKea1tDkKyNvGhyfHeOFi0cYz8SRlpiMfIqLWk+Q4fQc+yYvcGh6kLsrmnGJElP5FPsmLvD9C0fI/pLinmkjzUh2CASBJm8Lo9lhXJKLClcVbsnDeHaUsewwEbUcj+QlrEYIKiGavK2UuypvysutmyYnxyaxbJvqgJ/pVIafnupnJp3hi3etpdznBQFOjE0wEJ2hzOsh4nHTOx7l2Mg4miJzT3Mjasmgi2WyfPvgUTqryqkNBjg2Ok7veJSvP/YAreVFo820LPompvi/+w6hmyadVeWkCzqvnj7LyFyCL25aS9UNSnV/FG6voTEUY2J8jk881EXnqhpkWcK2/azsquPlFw4xNZWkvdNGFAVa2ysXnOsPtKBpCpNXJZq7NIUt21aw760+jh6+yIOPrCaVzNLfO4rLJbNuQzOCIDA2OsvoSIyt2ztZ2VVbui90dtVy6sQw0Yk4K7vqllwMqVcNmpcNDlW68jNdPuNqgyGZz7Pn4kV+cOokI4lieyMeDwGXC1WSiufMd5alh4OxZIK/OniQoXgcy7YZmptblPx9Gd0ymcsVO39a1xeEcX2Yap8Pr6p87G62Gnc5vlKeRtbMcyE1WpQr9lQQUnzUuSvoSwwSN1KMZIqdsdlbgyLK5M3CfA2CnFngTHLoBiakxXJ2txPTLjCeOcpo5hCWbWLbNpXuLiRB5VzidSxMKrQuPHIEj1zGdO4MvXMvYFg5VvgfQxQkVNFHo28rF5O76Yu/TE/4WW7G2VoV8hMJeJiOpzk/Ns1sKkNTZZiAR6Mi6KU84OHixAx53eDiZAyXItNYEUIQSioVHg3btknl8tj20p+MbppkC3rR6Fbk+UFvuVAkiS8/eBdNFSG+vfswh84O8923jvA7n9xCRXD5B0QRkbvKOnmu8X6+c+nNJVMTTdtiMjfLTD7BqfglAooHTVSRBAkLG9M2yVs6KT1LwsgsqpfhEhW+0PQAebPAYHoSw1zeHfmIGuAz9dvImnnejp5YMlQrrqeJx9NcSI3z3nQvXllDFWUkQSwt+Exypk7SyJDQM9c1hipdIZ6q28L2itXLXgn8w5S7veRNkwZfkIJpkjF01pTfuaTGyWSK9waHiiqLssLqmirqgzdXyLHWHWFn9QZeGH5nyf8XLIPzqVFGs9McnOnDK2kooowoCNg2WFiYtoVhmei2gW6ZFCy9mJdTB13BpusaGjYwPBvn4swsZV4Phy6NMJPKcF97M/3RKVRJQpUkOqvKmU6n2X9xmGhioVF0fjrGexcHebJnFU/0rGTf+Uu8dnqAMo+HhvCtSWGKgoRLLLa70lXPveWPUu6que45PjlESL09+UC/ipimya49p3n5J0eQRJHHHlnN6p56fF4NRSlu6PzD9/YzM3Ntz6lhWMzOptm4vom7NjTzxu7TvPLTo4RDHtasXuw5FwVhfm30+CfXsm3Liuu2sboqiHKTeboeWWF7dRsDiSg/GjzOT4d7OTIzgk9xYdoWsXyGek+IrVWtfDC92CuhiBKfb93A2XiUsXScPzn+BuWaD1UUSRsFZvIZyl1efmflNr5xavc125E2koxkh4jrc8wWYuTNHNVaLaOZIaL5KEkjXpK0LuBSyyhTIwTkALXueoJK6KaeuWCa+FwunlnXQ0skTE43+NHxXvZfGmZ1bRUPdLQhCQL3tbewuakev+ZCEkUuzczyxz/fzZHhMdbUVqOW+vpsOstjOzrY0tKALIpsm27iP73yOi+dOM0fPLCteEwmy89PnyWWyfB792+lrTxCwTL5We8ZdvWfo6MywhM9K6/X7GXhthoa6XSe6EScV148zN63rmT+z8bSTE0myKTzmKaFIEj0nhzmg0MXGBmaIZnMYegmyWQO86pJWRQFaurCNLVWcODdAT6xs4eZ6RR9p8doba+krqFs/r6TE3FefeUoB98bmD9/bjZDdDJOJl3ANC3EJXbibnY5bto2JyYn+T+HDhLLZNjZ1s4TnZ2Uud2okoQoirw2MMB3jh277nUmUinurq/nM13dfPODw3z35AmawyGeWrlqiTYKyKWBYENNDf9x2/br2hEhzT3vlfm4qNMq8MseJnIzTOfjRHOz1LjL8cpuREGkw99Ib/wiF1NjDGcmkQSR9lIiuCiIeEoVh2u1cp5teIBG7/VlR/2y545K3IqCTFhtYXX4C4CNKvrQpBCNPj8FK4VtW3jkMlSxKDe8IvAohp3Dti18SjWSoLCp/Kuooo9m//0UzKXDVa5HddhPxO9ldCbOmbEpEpk8mzoa8HtcKJJEa3WE3sHJktRdiqbK8LxMnygKdNSVY9uQyOQYjyWojSxeUMXTOcZiCfwejYqAd1mTswH8bpWn7+nCrSpIosifv/wOe06cJ+zz8JWdm64Z0nWrCIKAV9Z4vPZu4nqaV0b3X1MHxbBNYoUkscKNvxtFkPl80yfYUbmGscx0cfd/mSN/BEGgxl3OrzU9iCLI7I4eu2a9i6yZJ/sRckZq3BE+XXcvD1VvIKjc/oJjsigymkpwamaClF5AkxVaAneuXzeFQzyxshNZEnHLCl5VWdLLfD1EQeSzDfdxNjnC8WtIBNuU3k325t7NjYSRCcDKqgr6o1PUBQM0R8JkdYNYJstUMs22tiZkSaQ64KezsoLe8eiS12kIh9jS0kBbRQTdNHnt9ABz2ewCQ+PyBtCNbPHIgkxQKUMT3SWJ8jJW+NfcwJn/cohOJek9Pcr0dJJf+/wWPvnoWsrC3gWbpIIgcM1QCYq5dS0tFfzbr9xHLm+gGyZ73u7nxZcP4/drtDQvTPoPBNzzoeVuTaWluQKvd3nD6QRBoNYT5Csd99DkL+P1kX7OJaIULJNKzc+9Va083tBNNJfifHLpIqHbq9v5+vrH+NHgcY7HRrmUmsEtqdR7Qzxct5KnGlZjYfE3Z/dfsx2KqOKT/QSVEKv8PYiCRNpMcjF3niqtGp/hI5qfnP+eRUHEsI0lc2F+GbIoUhcMsL6+Zj6Hd01dNfsvDjEUi8//LnWhhfNuUHMR8biZTmfQzSvePJ9LZVtrE+W+4tpOU2RWVVVweGh0/pjZbJYTYxO0V0TY2FhXvC/QXV3Jm/3nOD81g1mSur2d3FZDQ5IE/AGNzlW1rOyqW/T/lV21SKLAu2/38+L3D9LQGOGuza2EIz5UVebrX3thwfGCUAytuntLOy//8DDnByaJTsaJTSd59PG181a1JIn4/RrtHdV0L2Gxd6+uX7bE0mQ+z/GJCc7HYuxoauY3N26kORRa8OLcivxLq8CWud383pYttITL0BSF/7n3Hf7X/v1Uen3c07DwGTRZptpX1KwXBZEqn++mtN0/Dmrd5fhlD9F8jAupMTJmjjWh9vlci05/I5IgcjY5xHR+DkmQaPcXXfeyIFGhhfDJbmxsvLKbnmDr9W53xxEQ0eQQmhxa8HdZdOFhceKqT1m8Kxt2tQCgSUE06eZ3CUNeN+VBL/0jUc6Nz5ApFGisCOMrxVy315ajyBKHB0ZI5wpsWdk4LxUrCgKrGqqojwSJZ3K8fuQsv7HzrgXXz+sG58am6RuO0lgRZGVD5bLXaBFLcoOiILBxRR2/sfMu/uKVd/n54X4ifg/PbV87X9l8uRAEgXJXkOca78clKrw08i66/dGreHtljWcb7uOTNZsJKV4Un4wi3J4hVxQEat3lfKnlISq1MD8efXfJnI1bvj4CnYEGnqnfzubISnzyzWnn3yqaJOOWZS4mcsQLOXyK65p5breDoKYR1D6616bCFeSr7U/yZ/0vcD41tgwtu3EEQWBlVQWnx6OkcnnW1FYzMhenf3KKqVSalsiNGW41AT/lPi+yKBLQXFhYi0KIFbFYoDCpzxbDnLCv6X0WBJGgEqHZu5IL6T7OJI/R4l11zToZlxd3H3ddqI/C1QpQhmGRy13/W85kCmSyBWwbGurKCIc8C9YusViai5em0JcoPHrlnkXlqurqEIZh8fSTG4jHsxz+4BJ+v5t/9cWtVFRcWdwGAm4a6svw+zSOnxhi86ZWVnVe39N0K8iiSL03zDPN67i/egUZo4CNjSrK88X6cqZOR6ACSRCp/VD1cK+scl9NO13halJ6Ht2ykAQBlyQTVj2UuTzkLYO/2/4lVElaUgzHLweodzfSl+hlf2wfETVCnbuBrJmhN3FikThBSCkjb+V4Y/JVuoNr6PCtuuEcDVkU8bnU+VBDQRDwqS5kUSKVz2NaFqIocmZyircHLtI/Oc1sJkPOMDk3NUN1wL9gE8yvuXApVwoGioJIhc/H+enZ+YJ8ecNkdC7OpZlZzkxekUFPFXQmEknW1tVQME3c/5QNjfKKAGURH5XVQXY8uGpRJWFFlRBEgQ/ev4BeMHjk8bW0tlehKBJjo7PF4elDhqPqKiaC//wnR3ln92lsIFTmZfX6K1rkkYiP8ooA5RUBdjywalEsoqLeWgz5UhRMk0Q+h2XbRDxuGoPBBUZGIp/jXCxGLLv0DuP8c0kSNT4/IU3jue5uJlNJ/vbIEf77O+/wjUcfZUXkirvYJcu0hMPU+P0MxefYNzjIM93dy/I8twuv7KZCC3EhPcr5dDE/o91Xj6uUh9AZKMq+nk+PktSzKKJMa0lxShAEQoqfdaEODsVOc2DmFOvCK+brcXyYfw4T0q0gSyJVIT+2XSzG53GpRAIepNK3vqImgltVOHhmiGxBp7O+cv5bFQSBkFfjyw9s5E9f3MOP3juJ163wyPpOAh4XiWyet06c57t7jmDbNhtXNLC66aMVs7selxWodvS0MpvK8s3XDvLS/lNEAl4eXt+x7JGAoiBSrYV5tvE+6j0VPD/0FmPZpXfSboQWbw2fa7yPzZFVBBUPoiDilTSqtDCxQvKXqMffGmLJYHqqbgsdgXpeGt7HkdkB8tfIs7hRylQ/D1SuZ2fNRho9lbdNYWopzs5N8/PBs7QEwjzU0EZbKEK1Z/kLA94JVvjq+Nqqz/P80Fu8OXnkjt1XALqqK3jlZB9ZQ+fZdT1IosDpiSg5Q6fyBmO0ZVG8arxY+pgqrR5JUEjoMfZN/Ywt5Y/glQIYtk7GTKEKrgWGRFitYEN4B6PZS5ycO4Bu5VkT2kKlqx5JkMmaaRL6DCPZC2TMFBtC26nz/GptMt0sbrdCOOwlOpXk0OGL1FSH5tcoVslwu5x8HQy456Vn+8+Ms35dI5Ulo+DS4DTf+8EBRkZnr+fQWIAsi7S1VPLsZzaRSObY++5ZggGNLzx3z7wwjySJbNrYzPGTQxw/Psz3vn+Ap55YR3dXHW5NJZstMBNL0ds3SiFv8OAnuvB4bs3jIQoCAUUjoCxtzCuihD94bUNfkxQavNc2lDVJoSt87XlKFmVavO1UaTVYtoksKmiiRrmrEt3SkQQJAWFeYcoluni0+ilM28QjeW5K4taybQofCps1LLNoXMkSoiDw/qVh/vbAEVyKzNbmBmpDAdyKwn9//a1F18sbxgJPlo1NzjDQFHk+r0USBPyai5pAgJ0r2xddo72iDOUOqJHekqFh2zamaZHNFIhNp8hmC8iSSHQygceromkKsizR3lHNmvVNHNh7Ftuy6V7bgACMjRSrTG7d3kFNXZhAwE0inuXCuSiKKjMVTfCLV08UjYEPjWiiKBAu87Gqu5533z5DXUMZPWsaCFwlWdvaXsn6jc28s7sPURRYva4BQRAZH50ln9e5Z9sK6peQi7sVPIpChacYQjAcj3MqGmV9TdH6H08mef7USXZfuLBo5+d6+F0uvrppM6PJJG+cO8cf79nDnz/2GJUlZSlREGgtC/OpVav46w8+4O+OHsWwLB5qayPi8ZA3DKYzGXqjUcaTSbY0NNBRfvuK0dwIl3dcAfoTg+iWQbO3Zl7fv0wNUqWFGUxNULB0arQIPvlKuFdY9fNI9d30Jy5xcOY0eUvngcq7aPHWoEoyKT3LdCHO2eQwc4Uk91Wu/5XzetwJasJ+VFliaGqWrauaCXmv7Dy3VEfwaSpnR6coGCad9RXzIXhQrGGxc/0KJuMpvrP7A/7qp+/x3T1H0RSZnG6QyOQwTIuH1rXz7L2rlz2M6cMIpWJDj2zoJJbM8Pzbx3hh73HKfG42ddycKteNIAoiETXAQ9Ub6Aw0sGfyGG9FjzFxjUJ1S1HnjvBA1Xp2VKyh3lOBS1Su2nESaPFVczY5sqwJ4VcjIOBXPKwLtdHqreHk3EV2R49yOHaG7E0UDRQRqHKXsa28h20VPTR7q/DKbqSbSH5cDjZU1tHoDzGWSnBwYoQXBk7xRMtKnm7ruqPt+KgIgoCISIuvht9uf4It5V28Pv4+R+bOY1i35j3zShpBxXtDSlV1oSCxTBZZEumoLGc2k+P1vnN0VVfclOz5L7PvV/jXUudu4Xyql31Tr3J0di+iUAwTUUSVT1R9mnWhK9LdsqDQ4V/HQ1UZ3pp6mRNz+zmbPI4sqggUK4dbtknBylOp1dEd2LTgfsOZc5xOHCZRiJG3suSsLGmjmCe5f/o1zqVO4RI1XKJGWK1gR8WTyFfJPKeMBP2JIwxlzpI3i+dP58exsRnKnOXHo39LQAmXruFmQ3g7dZ62m0oCXvD7CQKRiJ8d2zr4yc+O8Y/P7+fN3afxel3kcgUa6iN8+ukNrOworiHCYS9rVjdwum+MX+w6Rd+ZMSrK/cXw8KkEHreLhx/q5s1dvTfcBkWR6O6q4wvP3s1ff+ttfrGrF7/fzaef3oirZPA0N5Xz7Gc2kcvpHP7gIqf7x/B6VCRJRNctDMMkl9NZu6ae7ds6+XgDsz8aLsmFS3J96G9LGzeCIBBWb01au2CaTCZTzKQzRLyeotJjIkmmoBPxFksTnBqPMp1O85V7NnLfihZUSWIikVxy03QmnWV4Ls4qzYUAFAyT3olJ2ssj88f7XC7ayiOYls2DnW24P7TZf/Xmwe3klgyNTKbAKy8e5ic/+gDDMEmn8iDA7/7Wt3B7VB755Fo+9+tb8fpcPP70esJhL3v39LH7F6eAoqdj630duFzF2z/21Hri8Sw//uH75PM6NXVhnvz0RkSBJT0PPr/GXfe08epPjuLxuth4d+uCF+HxunjkibUEQx7e3nWat97sxQbKy/1s2d6xSDf6o+BRFNZUV9NTWcWxiQl+/+ev0hgMYtk2Y8kkoiBwd109Z6+TsL0UYU3jD3fsYDqd5oOxUf7rW3v4HzsfLtbyoCin+9mubuK5HC+dPs2f7H2Hvzx4AKWk+14wTQqGQVtZ5GM3Mi5T767AI2lcTI/R7K3FL3vm3epSKU/jsprUPZGeBZKmsiDRE2zlN1uf5NuXXuPQTC8n586jiHJxQiol5RYsgzp3BZvLFua2DCSHeW/6JJO5GBkzR8bMM1HasX51fD/H587hkTU8kkaZ6udLzY8uqDuQ1DMcmOnlZPwcWTNPxswxkZ3BxmYgNcJfnXuRMjWIR3LhljXur1xPT7Dtji/MasoChHxuTMumsSJE0HNlwHSrMk1VYc5PzBD0aNSEAwv6jSAIhHxuvvzABrqbqvjx/l5ODU4wEUvi86h0N1bx8IZOtnUtNGBuJ6IgUBn08fQ93UwnMrx+5Azfe+cYYb+b9prl/64FQcAtuWj31VLnLueTtXdzNjHMybmLnEuNMZmfJVlKlpZFmYDsoVoL0+arZU2olRX+OsKqH7ekLrkY+a22x/lS00OL7hlQlneqVkSZiCvA1opu1ofbmSkkOJ24RG98kKFMlInsLBkjS8EykEUJTXIVaz5oZbT6aukKNtHircanuEvFtZY36d8lKvzrlod5ruG+Rf8rvoPiONcXi/KjgV7cikKN18/nOtbQE7m1ZHCvrPGPW/5wyf9JokRQvr3LpctV7yNqgG0Vq1kXamMiN0tfYoizyWEG01Hm9BRpI0fOLGADqijjkVyEVC9laoBqrYx6TznN3mpq3RHCqg+3dP3dZEEQUCSRcp+HsNuNR1WoCfqYSadpq+gE4MJ0jL87eIST45NMJlK8d3GI1/sH+NSaLh7svPEaH5ro5rMNX+XAzBv0xt8nVohiY6GJHkJqOT55Yfx58V172Vi2gzpPC6fiBxlInmQmP4FpG2iSh6ASocHTTlfgLmrdzQvOj+ZGODb7LnG9OBbbto1VSoKaKUwyq09RDGwVKXNVsbX8MWSujOtZM8VA8jin4oeK52NhlcKcM2aK4cwAgiAWK1QjUOdppdbTAtz6uF4W9vDsZzYR8Lt5Z98ZhoaLa4NAwE17WxWa60r7JEnkkYd6CIU8vP7GKc6dm2R0dJZA0M36NU08+fg6bNtm37tnb6oNiiKxcUMzqXSOv/n7vaXaGm4e2dmDKIrIssSangb+4Hcf5d39A+w/cI7BoRmyOR2vR6W83M/We9q4b/vKRcX+HJZGEgUGojP82a59PNjZRjSZ4scn+2gIB1lXXwsUw6FyukHfRJTqgJ9ELs/PT58hmkqzsmphLo1XVfgvr+7my5vXE9Bc/LS3n1g6y2d39swfU+n38lhXB3/x1n6+sWsvn1jRiltRGE8kmUlnuKuxjo2Ni9MalhvBvoWsFsuyyV0lgbbggoKApil4SslDtm1TKBjkczqGUezAkiTicsmoLnm+GF82W6CQLybZSJKIx6OSzxuIkoDbrS5Y1Ni2jaGbJBI5ZFnE63Mt0nC2bRu9ULS6jVL8oiSJqC4ZV+m+V/OVl19i3+AgLzz3OXqqihWIv3n4ff78vff4/S1b+e1NmzAtiyNjY3zxxR+yo6mZv/7Up4CipXo6GuX7p07y7tAQ8VwOn+pibXU1z3R30RgM8Y333kU3Tf7DvfeyquKKwtbuCxf4z7t3IYsizz/7HNV+/3z7beB8LMa/++lPiKZSPNPVzR/u2DEf42laFnO5HAdHhnml/wwnJyeZzWVxyTJVXi89VVU83NbO5vr6RQX/Pg4G0xP8+Znv0Z8cZGfVZn6j5XEiritxl6+NH+AvB15AQODfr3iGR2u2LDi/KAdrMJqdYt/UCQ7H+hjJRilYBl5Zo1wt1ti4J9LDqmDzAiWWt6JH+O7g64xlp7FL17Iofo8Cxd3sy5NJQPHy/zZ9bYGiTjQ3y7cvvcpb0aOlCamoanU5BEZEmF9ICAj8m7aneLxmK8otVmS+VQzTJJ0rUDBM3C4Fj6os+NaTmRx5w0QAwj73on4Apf5lWmQLOrppYVs2glhcrLhKSlNLGRm5gk4mrxdjTzUV5QYVqWzbpmCYJDI5JFEk7FtsxJiWRSavkyvoKLKEV1NvWVbzZrisyKRbBoZtliSq7fkCU4IgIAkisiChiDKysPRv83Fj2TZGSbHIsE2sq54DLu+4l55FlFCEoiLVx/0sBdMgYxiIAsiltsmieFvqqtxpimOQjWGZGLaBYVvFMeWqceXyNyZSfGZREJEFEUmQbur92LZNPJdHFIoec9OyiedyeErJ7YZpkS4UMKxiGwRKFZwVBU2RSeWLc71HVRAFgYJhktV1PKqyqB/atk3ByqPbBayS505AQBJkVNG1wKMwfw42tm2hWzqGrReV+0r5HaIgIQkyiqggsrB/Faw8eTN7Q6GIIiJeeeHmimmb5M3svMzuL0OTPCiC+pH7hWXZ5As6+byBaV4OlxJQFRlNU+Zz56A07xkm+ZyBYRQVDYWrjrWBZCKLqsp4PFfaZts2uZxOJltAVaRFtcNs20bXTdKZPNiguRU018IK35ZlU9ANCnkDwyyOGZdVqRRFRlUlJOnjHyd+1emfnOKb775PYzhEwTTZffY8Od1gY0Mtv7ZpLevqapBEkZl0hh8cOclrfWeZy+SoDvh5Zl03pyeiuGSZ39yykUq/jz/62ZsookR7RRkvHe9ldC5JddDHlzat48melfN90rZtMrrO4cFRfnD0JP2TU+imRbnPy70tjXxqbRdt5be/+OktGRr/HLk8yHpVFUkoLhrzhlGMeZNlXLJcDBmzbdKFArIoznsXbNue9yLoVrEzCqV6A6pUjL3L6sWBTJPlBa4q3TTJGkXXuU9VF0yglxcC6UIBy7ZRJAm3LC8yukzLomCaGKVJ6vLkJIsiSsk19qswEFi2Rc4sYNoWiiijisqC59Utg1wpvEOT1CUX6cUJieLEbJklXfXFCyWRhc+sWwYFS78hyVtBAK+0cLFr2RZ5S1+ySulSuCQFRZB/JX53BwcHBwcHh48H07LIGyaSIGBjUzAtwEYWJVyyNL8mtOejUUysklHnkq+ICbnkoux1tqCDUIwEyRsGlm0jicVjlzL8TdsmbxiYVnG9JJa8nIok3ZHQKcfQcHBwcHBwcHBwcHBYdu5sALmDg4ODg4ODg4ODw78IHEPDwcHBwcHBwcHBwWHZcQwNBwcHBwcHBwcHB4dlxzE0HBwcHBwcHBwcHByWHcfQcHBwcHBwcHBwcHBYdhxDw8HBwcHBwcHBwcFh2XEMDQcHBwcHBwcHBweHZccxNBwcHBwcHBwcHBwclh3H0HBwcHBwcHBwcHBwWHYcQ8PBwcHBwcHBwcHBYdn5/5HlzVd22p7kAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 600x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIQCAYAAAA7N+yKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMkJJREFUeJzt3X18zfX/x/Hn2cw2uzgYNhfDZC4WukAMRUwrCrWv6Of6q5RcfKPL5SpyEcpFLlNy8Y1ykUrleklhrqJcFUVshRG2udxmO78/+jm/TiM73jvOGY/77XZuN+f9+ZxzXmdLe/iczzmz2Gw2mwAAAK6Tl7sHAAAABRsxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEB4JZRsWJFde3a1eWPc+jQIVksFs2ePdu+1rVrVwUGBrr8sS+zWCx67bXXbtjj4dZGTOCmtWvXLv3rX/9ShQoV5Ofnp7Jly6p58+aaNGmSu0fzSBUrVtTDDz98xW1ff/21LBaLFi9efIOnuromTZrIYrHIYrHIy8tLwcHBqlq1qjp16qTVq1fn2+MsW7bMY38oe/JsuLUUcvcAgCts3LhR999/v8qXL6+nnnpKYWFhSk5O1qZNmzRx4kT16dPH3SMiH5QrV06jRo2SJJ07d06//PKLlixZog8++ECPP/64PvjgA/n4+Nj337dvn7y8nPs31LJlyzRlyhSnfmhXqFBBFy5ccHhsV/in2S5cuKBChfhfPG4M/kvDTWnEiBGyWq3aunWrihYt6rDt+PHj7hkK+c5qtapjx44Oa2+88Yb69u2rqVOnqmLFiho9erR9m6+vr0vnuXTpknJyclS4cGH5+fm59LGuxd2Pj1sLL3PgpnTgwAHdfvvtuUJCkkqVKuVw3WKxqHfv3po3b56qVq0qPz8/1a5dW998843DfocPH9azzz6rqlWryt/fXyEhIWrbtq0OHTrksN/s2bNlsVi0fv169e3bVyVLllTRokX19NNPKzMzU6mpqercubOKFSumYsWK6aWXXtK1fnnvww8/rEqVKl1xW3R0tOrUqWO/vnr1ajVq1EhFixZVYGCgqlatqldfffUf7/96uPPr8U+8vb319ttvKyoqSpMnT1ZaWpp929/PmcjKytLQoUMVGRkpPz8/hYSEqFGjRvaXSbp27aopU6ZIkv0lFYvFIun/z4t48803NWHCBN12223y9fXV3r17r3jOxGUHDx5UbGysAgICVKZMGQ0bNszh+V5+Senrr792uN3f7/OfZru89vcjFjt27NBDDz2k4OBgBQYGqlmzZtq0aZPDPpe/Xxs2bFD//v1VsmRJBQQE6NFHH9WJEyeu/Q3ALYkjE7gpVahQQYmJidq9e7dq1Khxzf3XrVunBQsWqG/fvvL19dXUqVP14IMPasuWLfbbb926VRs3blT79u1Vrlw5HTp0SNOmTVOTJk20d+9eFSlSxOE++/Tpo7CwMA0dOlSbNm3SjBkzVLRoUW3cuFHly5fXyJEjtWzZMo0dO1Y1atRQ586drzpfu3bt1LlzZ23dulV169a1rx8+fFibNm3S2LFjJUl79uzRww8/rFq1amnYsGHy9fXVL7/8og0bNuTp65aVlaU//vgj1/pffyBf5s6vx7V4e3vriSee0KBBg7R+/Xq1bNnyivu99tprGjVqlJ588kndc889Sk9P17Zt27R9+3Y1b95cTz/9tI4cOaLVq1frv//97xXvY9asWbp48aJ69OghX19fFS9eXDk5OVfcNzs7Ww8++KDq16+vMWPGaMWKFRoyZIguXbqkYcOGOfUc8zLbX+3Zs0f33nuvgoOD9dJLL8nHx0fvvPOOmjRponXr1qlevXoO+/fp00fFihXTkCFDdOjQIU2YMEG9e/fWggULnJoTtwgbcBNatWqVzdvb2+bt7W2Ljo62vfTSS7aVK1faMjMzc+0rySbJtm3bNvva4cOHbX5+frZHH33Uvnb+/Plct01MTLRJss2dO9e+NmvWLJskW2xsrC0nJ8e+Hh0dbbNYLLZnnnnGvnbp0iVbuXLlbI0bN/7H55OWlmbz9fW1Pf/88w7rY8aMsVksFtvhw4dtNpvNNn78eJsk24kTJ/7x/q6kQoUK9q/F1S6LFi2y7+/Or4fNZrM1btzYdvvtt191+yeffGKTZJs4caLDc+zSpYv9+h133GFr2bLlPz5Or169bFf6X+Wvv/5qk2QLDg62HT9+/IrbZs2aZV/r0qWLTZKtT58+9rWcnBxby5YtbYULF7Z/z9auXWuTZFu7du017/Nqs9lsf/53PWTIEPv1Nm3a2AoXLmw7cOCAfe3IkSO2oKAg23333Wdfu/z9iomJcfh+9evXz+bt7W1LTU294uPh1sbLHLgpNW/eXImJiWrVqpV++OEHjRkzRrGxsSpbtqyWLl2aa//o6GjVrl3bfr18+fJq3bq1Vq5cqezsbEmSv7+/fXtWVpZOnjypypUrq2jRotq+fXuu++zevbvDYed69erJZrOpe/fu9jVvb2/VqVNHBw8e/MfnExwcrIceekgLFy50OCS+YMEC1a9fX+XLl5ck+8s6n3322VX/dfxP6tWrp9WrV+e6vPnmm7n2defXIy8uvw3zzJkzV92naNGi2rNnj37++efrfpy4uDiVLFkyz/v37t3b/ufLL7FlZmZqzZo11z3DtWRnZ2vVqlVq06aNw8tlpUuX1v/8z/9o/fr1Sk9Pd7hNjx49HL5f9957r7Kzs3X48GGXzYmCi5jATatu3bpasmSJTp8+rS1btig+Pl5nzpzRv/71L+3du9dh38jIyFy3r1Klis6fP29/nfjChQsaPHiwwsPD5evrqxIlSqhkyZJKTU294ssAl3/AX2a1WiVJ4eHhudZPnz59zefTrl07JScnKzExUdKf54V89913ateuncM+DRs21JNPPqnQ0FC1b99eCxcuzHNYlChRQjExMbkufw2ty9z99biWs2fPSpKCgoKuus+wYcOUmpqqKlWqqGbNmnrxxRe1c+dOpx4nIiIiz/t6eXnlOvelSpUqkpTrXJP8dOLECZ0/f15Vq1bNta169erKyclRcnKyw/rfv1/FihWTpHz53uDmQ0zgple4cGHVrVtXI0eO1LRp05SVlaVFixY5fT99+vTRiBEj9Pjjj2vhwoVatWqVVq9erZCQkCv+sPb29r7i/Vxp3ZaHEw4feeQRFSlSRAsXLpQkLVy4UF5eXmrbtq19H39/f33zzTdas2aNOnXqpJ07d6pdu3Zq3ry5/QhLfnH31+Nadu/eLUmqXLnyVfe57777dODAAb3//vuqUaOG3nvvPd19991677338vw4fz1Ckx/+ejTgr/L7+3ctV/t+5cf3BjcfTsDELeXyux6OHj3qsH6lw9z79+9XkSJF7IewFy9erC5duuitt96y73Px4kWlpqa6buC/CAgI0MMPP6xFixZp3LhxWrBgge69916VKVPGYT8vLy81a9ZMzZo107hx4zRy5EgNGDBAa9euVUxMTL7N4+6vxz/Jzs7W/PnzVaRIETVq1Ogf9y1evLi6deumbt266ezZs7rvvvv02muv6cknn5R09R/u1yMnJ0cHDx60H42Q/vzvTPrznSbS/x8B+PvX8UovL+R1tpIlS6pIkSLat29frm0//fSTvLy8ch0hApzBkQnclNauXXvFf0EtW7ZMknId7k1MTHR4nT85OVmfffaZHnjgAfu/0Ly9vXPd56RJk27ovxjbtWunI0eO6L333tMPP/zg8BKHJJ06dSrXbe68805JUkZGRr7O4glfjyvJzs5W37599eOPP6pv374KDg6+6r4nT550uB4YGKjKlSs7fK0CAgIk5f7hfr0mT55s/7PNZtPkyZPl4+OjZs2aSfrznUje3t653po8derUXPeV19m8vb31wAMP6LPPPnN4OSUlJUXz589Xo0aN/vHrBFwLRyZwU+rTp4/Onz+vRx99VNWqVVNmZqY2btyoBQsWqGLFiurWrZvD/jVq1FBsbKzDW0MlaejQofZ9Hn74Yf33v/+V1WpVVFSUEhMTtWbNGoWEhNyw59WiRQsFBQXphRdekLe3t+Li4hy2Dxs2TN98841atmypChUq6Pjx45o6darKlSt3zX+hO8sTvh5paWn64IMPJEnnz5+3fwLmgQMH1L59e73++uv/ePuoqCg1adJEtWvXVvHixbVt2zYtXrzY4STJy+eL9O3bV7GxsfL29lb79u2va14/Pz+tWLFCXbp0Ub169bR8+XJ9+eWXevXVV+1HwKxWq9q2batJkybJYrHotttu0xdffHHFD1tzZrbhw4fbP4Pk2WefVaFChfTOO+8oIyNDY8aMua7nA1xGTOCm9Oabb2rRokVatmyZZsyYoczMTJUvX17PPvusBg4cmOvDrBo3bqzo6GgNHTpUSUlJioqK0uzZs1WrVi37PhMnTpS3t7fmzZunixcvqmHDhlqzZo1iY2Nv2PPy8/NTq1atNG/ePMXExOT6AK5WrVrp0KFDev/99/XHH3+oRIkSaty4sYYOHWo/4TG/eMLX47ffflOnTp0k/XlUoXTp0oqOjta0adPUvHnza96+b9++Wrp0qVatWqWMjAxVqFBBw4cP14svvmjf57HHHlOfPn300Ucf6YMPPpDNZrvumPD29taKFSvUs2dPvfjiiwoKCtKQIUM0ePBgh/0mTZqkrKwsTZ8+Xb6+vnr88cftn7/xV87Mdvvtt+vbb79VfHy8Ro0apZycHNWrV08ffPBBrs+YAJxlsXE2DW5xFotFvXr1cjj8DADIO86ZAAAARogJAABghJgAAABGOAETtzxOGwIAMxyZAAAARogJAABg5KZ/mSMnJ0dHjhxRUFBQvn4sLgAANzubzaYzZ86oTJky8vK6+vGHmz4mjhw5wmfOAwBgIDk5WeXKlbvq9ps+Ji7/+uHk5GQ+ex4AACekp6crPDzc/rP0am76mLj80kZwcDAxAQDAdbjWaQKcgAkAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwUcvcAAOBKD4341N0jAC63fEAbtz4+RyYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGHFrTGRnZ2vQoEGKiIiQv7+/brvtNr3++uuy2Wz2fWw2mwYPHqzSpUvL399fMTEx+vnnn904NQAA+Cu3xsTo0aM1bdo0TZ48WT/++KNGjx6tMWPGaNKkSfZ9xowZo7ffflvTp0/X5s2bFRAQoNjYWF28eNGNkwMAgMsKufPBN27cqNatW6tly5aSpIoVK+rDDz/Uli1bJP15VGLChAkaOHCgWrduLUmaO3euQkND9emnn6p9+/Zumx0AAPzJrUcmGjRooISEBO3fv1+S9MMPP2j9+vV66KGHJEm//vqrjh07ppiYGPttrFar6tWrp8TERLfMDAAAHLn1yMQrr7yi9PR0VatWTd7e3srOztaIESPUoUMHSdKxY8ckSaGhoQ63Cw0NtW/7u4yMDGVkZNivp6enu2h6AAAgufnIxMKFCzVv3jzNnz9f27dv15w5c/Tmm29qzpw5132fo0aNktVqtV/Cw8PzcWIAAPB3bo2JF198Ua+88orat2+vmjVrqlOnTurXr59GjRolSQoLC5MkpaSkONwuJSXFvu3v4uPjlZaWZr8kJye79kkAAHCLc2tMnD9/Xl5ejiN4e3srJydHkhQREaGwsDAlJCTYt6enp2vz5s2Kjo6+4n36+voqODjY4QIAAFzHredMPPLIIxoxYoTKly+v22+/XTt27NC4ceP073//W5JksVj03HPPafjw4YqMjFRERIQGDRqkMmXKqE2bNu4cHQAA/B+3xsSkSZM0aNAgPfvsszp+/LjKlCmjp59+WoMHD7bv89JLL+ncuXPq0aOHUlNT1ahRI61YsUJ+fn5unBwAAFxmsf314yZvQunp6bJarUpLS+MlD+AW9NCIT909AuByywe0ccn95vVnKL+bAwAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGCEmAACAEWICAAAYISYAAIARYgIAABghJgAAgBFiAgAAGHF7TPz+++/q2LGjQkJC5O/vr5o1a2rbtm327TabTYMHD1bp0qXl7++vmJgY/fzzz26cGAAA/JVbY+L06dNq2LChfHx8tHz5cu3du1dvvfWWihUrZt9nzJgxevvttzV9+nRt3rxZAQEBio2N1cWLF904OQAAuKyQOx989OjRCg8P16xZs+xrERER9j/bbDZNmDBBAwcOVOvWrSVJc+fOVWhoqD799FO1b9/+hs8MAAAcufXIxNKlS1WnTh21bdtWpUqV0l133aV3333Xvv3XX3/VsWPHFBMTY1+zWq2qV6+eEhMTr3ifGRkZSk9Pd7gAAADXcWtMHDx4UNOmTVNkZKRWrlypnj17qm/fvpozZ44k6dixY5Kk0NBQh9uFhobat/3dqFGjZLVa7Zfw8HDXPgkAAG5xbo2JnJwc3X333Ro5cqTuuusu9ejRQ0899ZSmT59+3fcZHx+vtLQ0+yU5OTkfJwYAAH/n1pgoXbq0oqKiHNaqV6+upKQkSVJYWJgkKSUlxWGflJQU+7a/8/X1VXBwsMMFAAC4jltjomHDhtq3b5/D2v79+1WhQgVJf56MGRYWpoSEBPv29PR0bd68WdHR0Td0VgAAcGVufTdHv3791KBBA40cOVKPP/64tmzZohkzZmjGjBmSJIvFoueee07Dhw9XZGSkIiIiNGjQIJUpU0Zt2rRx5+gAAOD/uDUm6tatq08++UTx8fEaNmyYIiIiNGHCBHXo0MG+z0svvaRz586pR48eSk1NVaNGjbRixQr5+fm5cXIAAHCZxWaz2dw9hCulp6fLarUqLS2N8yeAW9BDIz519wiAyy0f0MYl95vXn6Fu/zhtAABQsBETAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMBIIWdvkJGRoc2bN+vw4cM6f/68SpYsqbvuuksRERGumA8AAHi4PMfEhg0bNHHiRH3++efKysqS1WqVv7+/Tp06pYyMDFWqVEk9evTQM888o6CgIFfODAAAPEieXuZo1aqV2rVrp4oVK2rVqlU6c+aMTp48qd9++03nz5/Xzz//rIEDByohIUFVqlTR6tWrXT03AADwEHk6MtGyZUt9/PHH8vHxueL2SpUqqVKlSurSpYv27t2ro0eP5uuQAADAc+UpJp5++uk832FUVJSioqKueyAAAFCwOH0C5l/t3r1b69atU3Z2tho2bKjatWvn11wAAKCAuO63hk6ZMkXNmjXTunXrtHbtWjVt2lQjRozIz9kAAEABkOcjE8nJyQoPD7dfnzx5svbs2aMSJUpIkhITE9WqVSsNGDAg/6cEAAAeK89HJmJiYjRx4kTZbDZJUkhIiFasWKGMjAydOXNGa9asUcmSJV02KAAA8Ex5jomtW7dq3759qlevnr7//nvNmDFD48ePl7+/v4oWLaoFCxZozpw5rpwVAAB4oDy/zBEcHKypU6dq48aN6tq1q5o2bapvv/1W2dnZys7OVtGiRV04JgAA8FROn4DZoEEDbdu2TcWKFdNdd92lb775hpAAAOAWlucjE5cuXdKMGTP0448/6o477tCrr76qdu3a6ZlnntHs2bM1efJkhYaGunJWAADggfJ8ZKJ79+6aPHmyAgICNGvWLPXr109VqlTRV199pQcffFDR0dGaNm2aK2cFAAAeKM8x8dlnn+njjz/WG2+8odWrV+vLL7+0b+vevbs2bdqkb7/91iVDAgAAz5XnmAgNDdWqVauUmZmpr776SiEhIQ7bS5Uqpfnz5+f7gAAAwLPl+ZyJyZMnq0OHDurfv79Kly6thQsXunIuAABQQOQ5Jpo3b66UlBT98ccffDgVAACwc+qtoRaLhZAAAAAO8hQTDz74oDZt2nTN/c6cOaPRo0drypQpxoMBAICCIU8vc7Rt21ZxcXGyWq165JFHVKdOHZUpU0Z+fn46ffq09u7dq/Xr12vZsmVq2bKlxo4d6+q5AQCAh8hTTHTv3l0dO3bUokWLtGDBAs2YMUNpaWmS/nzpIyoqSrGxsdq6dauqV6/u0oEBAIBnyfMJmL6+vurYsaM6duwoSUpLS9OFCxcUEhIiHx8flw0IAAA8W55j4u+sVqusVmt+zgIAAAogp3/RFwAAwF8REwAAwAgxAQAAjBATAADAyHXFRGpqqt577z3Fx8fr1KlTkqTt27fr999/z9fhAACA53P63Rw7d+5UTEyMrFarDh06pKeeekrFixfXkiVLlJSUpLlz57piTgAA4KGcPjLRv39/de3aVT///LP8/Pzs6y1atNA333yTr8MBAADP53RMbN26VU8//XSu9bJly+rYsWP5MhQAACg4nI4JX19fpaen51rfv38/v1EUAIBbkNMx0apVKw0bNkxZWVmS/vzdHElJSXr55ZcVFxeX7wMCAADP5nRMvPXWWzp79qxKlSqlCxcuqHHjxqpcubKCgoI0YsQIV8wIAAA8mNPv5rBarVq9erXWr1+vnTt36uzZs7r77rsVExPjivkAAICHu+5f9NWoUSM1atQoP2cBAAAFkNMx8fbbb19x3WKxyM/PT5UrV9Z9990nb29v4+EAAIDnczomxo8frxMnTuj8+fMqVqyYJOn06dMqUqSIAgMDdfz4cVWqVElr165VeHh4vg8MAAA8i9MnYI4cOVJ169bVzz//rJMnT+rkyZPav3+/6tWrp4kTJyopKUlhYWHq16+fK+YFAAAexukjEwMHDtTHH3+s2267zb5WuXJlvfnmm4qLi9PBgwc1ZswY3iYKAMAtwukjE0ePHtWlS5dyrV+6dMn+CZhlypTRmTNnzKcDAAAez+mYuP/++/X0009rx44d9rUdO3aoZ8+eatq0qSRp165dioiIyL8pAQCAx3I6JmbOnKnixYurdu3a8vX1la+vr+rUqaPixYtr5syZkqTAwEC99dZb+T4sAADwPE6fMxEWFqbVq1frp59+0v79+yVJVatWVdWqVe373H///fk3IQAA8GjX/aFV1apVU7Vq1fJzFgAAUABdV0z89ttvWrp0qZKSkpSZmemwbdy4cfkyGAAAKBicjomEhAS1atVKlSpV0k8//aQaNWro0KFDstlsuvvuu10xIwAA8GBOn4AZHx+vF154Qbt27ZKfn58+/vhjJScnq3Hjxmrbtq0rZgQAAB7M6Zj48ccf1blzZ0lSoUKFdOHCBQUGBmrYsGEaPXp0vg8IAAA8m9MxERAQYD9PonTp0jpw4IB92x9//JF/kwEAgALB6XMm6tevr/Xr16t69epq0aKFnn/+ee3atUtLlixR/fr1XTEjAADwYE7HxLhx43T27FlJ0tChQ3X27FktWLBAkZGRvJMDAIBbkNMxUalSJfufAwICNH369HwdCAAAFCxOnzNRqVIlnTx5Mtd6amqqQ2gAAIBbg9MxcejQIWVnZ+daz8jI0O+//54vQwEAgIIjzy9zLF261P7nlStXymq12q9nZ2crISFBFStWzNfhAACA58tzTLRp00aSZLFY1KVLF4dtPj4+qlixIr8pFACAW1CeYyInJ0eSFBERoa1bt6pEiRIuGwoAABQcTr+b49dff3XFHAAAoIC6rt8ampCQoISEBB0/ftx+xOKy999/P18GAwAABYPTMTF06FANGzZMderUUenSpWWxWFwxFwAAKCCcjonp06dr9uzZ6tSpkyvmAQAABYzTnzORmZmpBg0auGIWAABQADkdE08++aTmz5/vilkAAEAB5PTLHBcvXtSMGTO0Zs0a1apVSz4+Pg7b+WVfAADcWpyOiZ07d+rOO++UJO3evdthGydjAgBw63E6JtauXeuKOQAAQAHl9DkTl/3yyy9auXKlLly4IEmy2Wz5NhQAACg4nI6JkydPqlmzZqpSpYpatGiho0ePSpK6d++u559/Pt8HBAAAns3pmOjXr598fHyUlJSkIkWK2NfbtWunFStW5OtwAADA8zl9zsSqVau0cuVKlStXzmE9MjJShw8fzrfBAABAweD0kYlz5845HJG47NSpU/L19c2XoQAAQMHhdEzce++9mjt3rv26xWJRTk6OxowZo/vvvz9fhwMAAJ7P6Zc5xowZo2bNmmnbtm3KzMzUSy+9pD179ujUqVPasGGDK2YEAAAezOkjEzVq1ND+/fvVqFEjtW7dWufOndNjjz2mHTt26LbbbrvuQd544w1ZLBY999xz9rWLFy+qV69eCgkJUWBgoOLi4pSSknLdjwEAAPKf00cmJMlqtWrAgAH5NsTWrVv1zjvvqFatWg7r/fr105dffqlFixbJarWqd+/eeuyxxzgCAgCAB3H6yMSsWbO0aNGiXOuLFi3SnDlznB7g7Nmz6tChg959910VK1bMvp6WlqaZM2dq3Lhxatq0qWrXrq1Zs2Zp48aN2rRpk9OPAwAAXMPpmBg1apRKlCiRa71UqVIaOXKk0wP06tVLLVu2VExMjMP6d999p6ysLIf1atWqqXz58kpMTLzq/WVkZCg9Pd3hAgAAXMfplzmSkpIUERGRa71ChQpKSkpy6r4++ugjbd++XVu3bs217dixYypcuLCKFi3qsB4aGqpjx45d9T5HjRqloUOHOjUHAAC4fk4fmShVqpR27tyZa/2HH35QSEhInu8nOTlZ//nPfzRv3jz5+fk5O8ZVxcfHKy0tzX5JTk7Ot/sGAAC5OR0TTzzxhPr27au1a9cqOztb2dnZ+uqrr/Sf//xH7du3z/P9fPfddzp+/LjuvvtuFSpUSIUKFdK6dev09ttvq1ChQgoNDVVmZqZSU1MdbpeSkqKwsLCr3q+vr6+Cg4MdLgAAwHWcfpnj9ddf16FDh9SsWTMVKvTnzXNyctS5c2enzplo1qyZdu3a5bDWrVs3VatWTS+//LLCw8Pl4+OjhIQExcXFSZL27dunpKQkRUdHOzs2AABwEadiwmaz6dixY5o9e7aGDx+u77//Xv7+/qpZs6YqVKjg1AMHBQWpRo0aDmsBAQEKCQmxr3fv3l39+/dX8eLFFRwcrD59+ig6Olr169d36rEAAIDrOB0TlStX1p49exQZGanIyEhXzSVJGj9+vLy8vBQXF6eMjAzFxsZq6tSpLn1MAADgHKdiwsvLS5GRkTp58qRLQuLrr792uO7n56cpU6ZoypQp+f5YAAAgfzh9AuYbb7yhF198Ubt373bFPAAAoIBx+gTMzp076/z587rjjjtUuHBh+fv7O2w/depUvg0HAAA8n9MxMWHCBBeMAQAACiqnY6JLly6umAMAABRQTp8zIUkHDhzQwIED9cQTT+j48eOSpOXLl2vPnj35OhwAAPB8TsfEunXrVLNmTW3evFlLlizR2bNnJf35cdpDhgzJ9wEBAIBnczomXnnlFQ0fPlyrV69W4cKF7etNmzblV4MDAHALcjomdu3apUcffTTXeqlSpfTHH3/ky1AAAKDgcDomihYtqqNHj+Za37Fjh8qWLZsvQwEAgILD6Zho3769Xn75ZR07dkwWi0U5OTnasGGDXnjhBXXu3NkVMwIAAA/mdEyMHDlS1apVU3h4uM6ePauoqCjdd999atCggQYOHOiKGQEAgAdz+nMmChcurHfffVeDBw/Wrl27dPbsWd11110u/6VfAADAM+U5JnJycjR27FgtXbpUmZmZatasmYYMGZLr47QBAMCtJc8vc4wYMUKvvvqqAgMDVbZsWU2cOFG9evVy5WwAAKAAyHNMzJ07V1OnTtXKlSv16aef6vPPP9e8efOUk5PjyvkAAICHy3NMJCUlqUWLFvbrMTExslgsOnLkiEsGAwAABUOeY+LSpUvy8/NzWPPx8VFWVla+DwUAAAqOPJ+AabPZ1LVrV/n6+trXLl68qGeeeUYBAQH2tSVLluTvhAAAwKPlOSau9KvHO3bsmK/DAACAgifPMTFr1ixXzgEAAAoopz8BEwAA4K+ICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABghJgAAABGiAkAAGCEmAAAAEaICQAAYISYAAAARogJAABgxK0xMWrUKNWtW1dBQUEqVaqU2rRpo3379jnsc/HiRfXq1UshISEKDAxUXFycUlJS3DQxAAD4O7fGxLp169SrVy9t2rRJq1evVlZWlh544AGdO3fOvk+/fv30+eefa9GiRVq3bp2OHDmixx57zI1TAwCAvyrkzgdfsWKFw/XZs2erVKlS+u6773TfffcpLS1NM2fO1Pz589W0aVNJ0qxZs1S9enVt2rRJ9evXd8fYAADgLzzqnIm0tDRJUvHixSVJ3333nbKyshQTE2Pfp1q1aipfvrwSExPdMiMAAHDk1iMTf5WTk6PnnntODRs2VI0aNSRJx44dU+HChVW0aFGHfUNDQ3Xs2LEr3k9GRoYyMjLs19PT0102MwAA8KAjE7169dLu3bv10UcfGd3PqFGjZLVa7Zfw8PB8mhAAAFyJR8RE79699cUXX2jt2rUqV66cfT0sLEyZmZlKTU112D8lJUVhYWFXvK/4+HilpaXZL8nJya4cHQCAW55bY8Jms6l379765JNP9NVXXykiIsJhe+3ateXj46OEhAT72r59+5SUlKTo6Ogr3qevr6+Cg4MdLgAAwHXces5Er169NH/+fH322WcKCgqynwdhtVrl7+8vq9Wq7t27q3///ipevLiCg4PVp08fRUdH804OAAA8hFtjYtq0aZKkJk2aOKzPmjVLXbt2lSSNHz9eXl5eiouLU0ZGhmJjYzV16tQbPCkAALgat8aEzWa75j5+fn6aMmWKpkyZcgMmAgAAzvKIEzABAEDBRUwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBSyN0DFHRf7PjV3SMALvfwXRHuHgGAB+PIBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwQkwAAAAjxAQAADBCTAAAACPEBAAAMEJMAAAAI8QEAAAwUiBiYsqUKapYsaL8/PxUr149bdmyxd0jAQCA/+PxMbFgwQL1799fQ4YM0fbt23XHHXcoNjZWx48fd/doAABABSAmxo0bp6eeekrdunVTVFSUpk+friJFiuj9999392gAAEBSIXcP8E8yMzP13XffKT4+3r7m5eWlmJgYJSYmXvE2GRkZysjIsF9PS0uTJKWnp7tkxvNnz7jkfgFP4qq/PzfCpYvn3T0C4HKu+jt6+X5tNts/7ufRMfHHH38oOztboaGhDuuhoaH66aefrnibUaNGaejQobnWw8PDXTIjAADuZh3u2vs/c+aMrFbrVbd7dExcj/j4ePXv399+PScnR6dOnVJISIgsFosbJ0N+SE9PV3h4uJKTkxUcHOzucQD8DX9Hby42m01nzpxRmTJl/nE/j46JEiVKyNvbWykpKQ7rKSkpCgsLu+JtfH195evr67BWtGhRV40INwkODuZ/VIAH4+/ozeOfjkhc5tEnYBYuXFi1a9dWQkKCfS0nJ0cJCQmKjo5242QAAOAyjz4yIUn9+/dXly5dVKdOHd1zzz2aMGGCzp07p27durl7NAAAoAIQE+3atdOJEyc0ePBgHTt2THfeeadWrFiR66RM3Bp8fX01ZMiQXC9lAfAM/B29NVls13q/BwAAwD/w6HMmAACA5yMmAACAEWICAAAYISYAAIARYgI3zIkTJ9SzZ0+VL19evr6+CgsLU2xsrDZs2ODu0QD8TdeuXdWmTZtc619//bUsFotSU1Nv+EzwXB7/1lDcPOLi4pSZmak5c+aoUqVKSklJUUJCgk6ePOnu0QAABjgygRsiNTVV3377rUaPHq37779fFSpU0D333KP4+Hi1atVKkmSxWDRt2jQ99NBD8vf3V6VKlbR48WKH+3n55ZdVpUoVFSlSRJUqVdKgQYOUlZVl3/7aa6/pzjvv1Pvvv6/y5csrMDBQzz77rLKzszVmzBiFhYWpVKlSGjFixA19/sDN6OTJk3riiSdUtmxZFSlSRDVr1tSHH37osE+TJk3Up08fPffccypWrJhCQ0P17rvv2j98MCgoSJUrV9by5cvd9CyQH4gJ3BCBgYEKDAzUp59+6vAr4v9u0KBBiouL0w8//KAOHTqoffv2+vHHH+3bg4KCNHv2bO3du1cTJ07Uu+++q/Hjxzvcx4EDB7R8+XKtWLFCH374oWbOnKmWLVvqt99+07p16zR69GgNHDhQmzdvdtnzBW4FFy9eVO3atfXll19q9+7d6tGjhzp16qQtW7Y47DdnzhyVKFFCW7ZsUZ8+fdSzZ0+1bdtWDRo00Pbt2/XAAw+oU6dOOn+eXxdfYNmAG2Tx4sW2YsWK2fz8/GwNGjSwxcfH23744Qf7dkm2Z555xuE29erVs/Xs2fOq9zl27Fhb7dq17deHDBliK1KkiC09Pd2+Fhsba6tYsaItOzvbvla1alXbqFGj8uNpATelLl262Ly9vW0BAQEOFz8/P5sk2+nTp694u5YtW9qef/55+/XGjRvbGjVqZL9+6dIlW0BAgK1Tp072taNHj9ok2RITE132fOBaHJnADRMXF6cjR45o6dKlevDBB/X111/r7rvv1uzZs+37/P0XuEVHRzscmViwYIEaNmyosLAwBQYGauDAgUpKSnK4TcWKFRUUFGS/HhoaqqioKHl5eTmsHT9+PJ+fIXBzuf/++/X99987XN577z379uzsbL3++uuqWbOmihcvrsDAQK1cuTLX38latWrZ/+zt7a2QkBDVrFnTvnb51yPwd7LgIiZwQ/n5+al58+YaNGiQNm7cqK5du2rIkCF5um1iYqI6dOigFi1a6IsvvtCOHTs0YMAAZWZmOuzn4+PjcN1isVxxLScnx+zJADe5gIAAVa5c2eFStmxZ+/axY8dq4sSJevnll7V27Vp9//33io2NdfrvpMVikST+ThZgxATcKioqSufOnbNf37Rpk8P2TZs2qXr16pKkjRs3qkKFChowYIDq1KmjyMhIHT58+IbOC+D/bdiwQa1bt1bHjh11xx13qFKlStq/f7+7x4Ib8NZQ3BAnT55U27Zt9e9//1u1atVSUFCQtm3bpjFjxqh169b2/RYtWqQ6deqoUaNGmjdvnrZs2aKZM2dKkiIjI5WUlKSPPvpIdevW1ZdffqlPPvnEXU8JuOVFRkZq8eLF2rhxo4oVK6Zx48YpJSVFUVFR7h4NNxgxgRsiMDBQ9erV0/jx43XgwAFlZWUpPDxcTz31lF599VX7fkOHDtVHH32kZ599VqVLl9aHH35o/x9Tq1at1K9fP/Xu3VsZGRlq2bKlBg0apNdee81Nzwq4tQ0cOFAHDx5UbGysihQpoh49eqhNmzZKS0tz92i4wfgV5PAYFotFn3zyyRU/dQ8A4Lk4ZwIAABghJgAAgBHOmYDH4BU3ACiYODIBAACMEBMAAMAIMQEAAIwQEwAAwAgxAQAAjBATAADACDEBAACMEBMAAMAIMQEAAIz8L9c+x5BXtbJAAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Spam messages: 747 (13.41%)\n", + "Ham messages: 4825 (86.59%)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 1000x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIjCAYAAAD80aFnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlEZJREFUeJzs3Xd8VFXCxvHfTHoPSUgBgVAiXZAgASyIRkBQBBEQGyCi+7pgQV3FRUBdxcqCgiK7YtkFQSysoqKIWIkoBMRCLwlCKoGE9DL3/WOYgSEJJCGZSXm+73s/M7n33HPPnUQ2T065JsMwDERERERERKROmV3dABERERERkaZA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERq3ezZszGZTGRmZjrtmpdffjmXX365U65lMpmYPXu2/Wtn3290dDQTJkxwyrUq8txzz9GpUycsFovL2iB158Ybb2TMmDGuboZIo6TwJSJ17s0338RkMmEymfj+++/LHTcMg1atWmEymbjmmmtc0ML66cCBA5hMJl544QVXN6VSTz/9NKtWrar1eidMmGD/mTGZTPj7+9OuXTtuuOEG3n///Vr7pX/Dhg3Mnj2bY8eO1Up9tam+ti0nJ4dnn32Whx9+GLP55K8Rubm5zJo1i27duuHn50doaCg9e/bk3nvv5fDhwy5scf10tsAeHR3tsn8PH374Yd5//31++eUXl1xfpDFzd3UDRKTp8Pb2ZtmyZVxyySUO+7/55hv+/PNPvLy8XNQyqamnn36aG264gREjRtR63V5eXvz73/8GoKCggKSkJD7++GNuuOEGLr/8cv73v/8RGBhoL//FF19U+xobNmzg8ccfZ8KECQQHB1f5vIKCAtzd6/Z/Qs/Utp07dzoEH2dasmQJpaWljBs3zr6vpKSEyy67jB07djB+/HimTp1Kbm4uv//+O8uWLWPkyJG0aNHCJe2V6rvwwgvp3bs3L774Im+//barmyPSqCh8iYjTDB06lJUrV/LSSy85/OK6bNkyYmNjnTpETeo/d3d3brnlFod9//jHP3jmmWeYPn06kydPZsWKFfZjnp6eddoei8VCcXEx3t7eeHt71+m1zsaVf6h44403GD58uMNnsGrVKrZs2cLSpUu56aabHMoXFhZSXFzs7GbKORozZgyzZs3ilVdewd/f39XNEWk0NOxQRJxm3LhxHDlyhLVr19r3FRcX895775X7hc3GYrEwb948unbtire3NxEREdx1110cPXrUodymTZsYPHgwYWFh+Pj40LZtW26//XaHMsuXLyc2NpaAgAACAwPp3r078+fPtx/PysriwQcfpHv37vj7+xMYGMjVV19d4dCbpKQkhg8fjp+fH+Hh4dx///18/vnnmEwmvv76a4eyGzduZMiQIQQFBeHr68uAAQP44YcfqvvxVaqoqIhZs2bRoUMHvLy8aNWqFX/7298oKipyKGcymZgyZQqrVq2iW7dueHl50bVrV9asWVOuzq+//prevXvj7e1N+/btee211+zDpE6tLy8vj7feess+PPD0eUjHjh2z99wEBQUxceJE8vPzz+l+H3nkEQYNGsTKlSvZtWuXfX9Fc75efvllunbtiq+vL82aNaN3794sW7YMsA77euihhwBo27at/R4OHDjg8HktXbqUrl274uXlZf+sTp/zZZOZmcmYMWMIDAwkNDSUe++9l8LCQvtx21DSN998s9y5p9Z5trZVNOdr3759jB49mpCQEHx9fenbty+ffPKJQ5mvv/4ak8nEu+++y1NPPcV5552Ht7c3V155JXv27Kn0M7fZv38/27ZtIz4+3mH/3r17Abj44ovLnePt7e3QQzlhwgT8/f3Zt28fgwcPxs/PjxYtWvDEE09gGIbDuS+88AL9+/cnNDQUHx8fYmNjee+99yr87KZMmcLKlSvp0qULPj4+9OvXj19//RWA1157jQ4dOuDt7c3ll19u/xwr895772Eymfjmm2/KHXvttdcwmUz89ttvAKSmpjJx4kTOO+88vLy8iIqK4rrrrjvrNWrCmZ/HVVddRV5ensO/1yJy7tTzJSJOEx0dTb9+/XjnnXe4+uqrAfjss8/Izs7mxhtv5KWXXip3zl133cWbb77JxIkTueeee9i/fz8LFixgy5Yt/PDDD3h4eJCens6gQYNo3rw5jzzyCMHBwRw4cIAPPvjAXs/atWsZN24cV155Jc8++ywA27dv54cffuDee+8FrL+8rlq1itGjR9O2bVvS0tJ47bXXGDBgAH/88Yd92FReXh5XXHEFKSkp3HvvvURGRrJs2TLWr19frv1fffUVV199NbGxscyaNQuz2cwbb7zBFVdcwXfffUefPn3O6TO1WCwMHz6c77//njvvvJPOnTvz66+/8s9//pNdu3aVm4/1/fff88EHH3D33XcTEBDASy+9xKhRo0hOTiY0NBSALVu2MGTIEKKionj88ccpKyvjiSeeoHnz5g51/ec//+GOO+6gT58+3HnnnQC0b9/eocyYMWNo27Ytc+bMITExkX//+9+Eh4fbvwc1deutt/LFF1+wdu1azj///ArL/Otf/+Kee+7hhhtusIegbdu2sXHjRm666Sauv/56du3axTvvvMM///lPwsLCABzu86uvvuLdd99lypQphIWFER0dfcZ2jRkzhujoaObMmcOPP/7ISy+9xNGjR6s9dKsqbTtVWloa/fv3Jz8/n3vuuYfQ0FDeeusthg8fznvvvcfIkSMdyj/zzDOYzWYefPBBsrOzee6557j55pvZuHHjGdu1YcMGAHr16uWwv02bNgC8/fbbzJgxwyGkV6SsrIwhQ4bQt29fnnvuOdasWcOsWbMoLS3liSeesJebP38+w4cP5+abb6a4uJjly5czevRoVq9ezbBhwxzq/O677/joo4/461//CsCcOXO45ppr+Nvf/sYrr7zC3XffzdGjR3nuuee4/fbb+eqrrypt37Bhw/D39+fdd99lwIABDsdWrFhB165d6datGwCjRo3i999/Z+rUqURHR5Oens7atWtJTk4+688LWP/oU5GK5jU68/OwhbYffvih3M+PiJwDQ0Skjr3xxhsGYPz888/GggULjICAACM/P98wDMMYPXq0MXDgQMMwDKNNmzbGsGHD7Od99913BmAsXbrUob41a9Y47P/www/t9Vfm3nvvNQIDA43S0tJKyxQWFhplZWUO+/bv3294eXkZTzzxhH3fiy++aADGqlWr7PsKCgqMTp06GYCxfv16wzAMw2KxGDExMcbgwYMNi8ViL5ufn2+0bdvWuOqqqypti+3agPH8889XWuY///mPYTabje+++85h/6JFiwzA+OGHH+z7AMPT09PYs2ePfd8vv/xiAMbLL79s33fttdcavr6+xqFDh+z7du/ebbi7uxun/8+Gn5+fMX78+HLtmjVrlgEYt99+u8P+kSNHGqGhoWe8b8MwjPHjxxt+fn6VHt+yZYsBGPfff79934ABA4wBAwbYv77uuuuMrl27nvE6zz//vAEY+/fvL3cMMMxms/H7779XeGzWrFn2r233O3z4cIdyd999twEYv/zyi2EYJ7+nb7zxxlnrPFPb2rRp4/C533fffQbg8HNw/Phxo23btkZ0dLT953r9+vUGYHTu3NkoKiqyl50/f74BGL/++mu5a51qxowZBmAcP37cYX9+fr7RsWNHAzDatGljTJgwwXj99deNtLS0cnWMHz/eAIypU6fa91ksFmPYsGGGp6enkZGR4VDvqYqLi41u3boZV1xxhcN+wPDy8nL4rF577TUDMCIjI42cnBz7/unTp1f6uZ5q3LhxRnh4uMO/GSkpKYbZbLb/e3D06NGz/jdaGdvPzJm2U/89NAznfx7nn3++cfXVV1f73kSkchp2KCJONWbMGAoKCli9ejXHjx9n9erVlQ45XLlyJUFBQVx11VVkZmbat9jYWPz9/e09TbbFCFavXk1JSUmFdQUHB591CI2Xl5d9EYOysjKOHDmCv78/HTt2JDEx0V5uzZo1tGzZkuHDh9v3eXt7M3nyZIf6tm7dyu7du7nppps4cuSIvf15eXlceeWVfPvtt+e8at/KlSvp3LkznTp1cviMrrjiCoByvXHx8fEOvVMXXHABgYGB7Nu3z37fX375JSNGjHBYIKFDhw723srq+Mtf/uLw9aWXXsqRI0fIycmpdl2nss1BOX78eKVlgoOD+fPPP/n5559rfJ0BAwbQpUuXKpe39TLYTJ06FYBPP/20xm2oik8//ZQ+ffo4LGbj7+/PnXfeyYEDB/jjjz8cyk+cONFhjtyll14KYP85qMyRI0dwd3cvNwfIx8eHjRs32odKvvnmm0yaNImoqCimTp1abggswJQpU+zvbcPkiouL+fLLLx3qtTl69CjZ2dlceumlDv892lx55ZUOPU1xcXGAtWcqICCg3P6z3evYsWNJT093GEb83nvvYbFYGDt2rL19np6efP311+WGQlfV+++/z9q1a8ttERER5co6+/No1qyZ5uKK1DINOxQRp2revDnx8fEsW7aM/Px8ysrKuOGGGyosu3v3brKzswkPD6/weHp6OmD9BXnUqFE8/vjj/POf/+Tyyy9nxIgR3HTTTfaFCe6++27effddrr76alq2bMmgQYMYM2YMQ4YMsddnsViYP38+r7zyCvv376esrMx+zDYkD6zzvdq3b19uaFWHDh3KtR9g/PjxlX4e2dnZNGvWrNLjZ7N79262b99e6XA022dk07p163JlmjVrZv/FMT09nYKCgnL3AuXvrypOv57tXo8ePeowD6i6cnNzARx+iTzdww8/zJdffkmfPn3o0KEDgwYN4qabbqpwXlJl2rZtW612xcTEOHzdvn17zGZzncz/OVVSUpL9l+hTde7c2X7cNkwOzvx9qamgoCCee+45nnvuOZKSkli3bh0vvPACCxYsICgoiH/84x/2smazmXbt2jmcbxs+eupntXr1av7xj3+wdetWhwBX0bDG0+8pKCgIgFatWlW4/2z3apunuWLFCq688krAOuSwZ8+e9rZ6eXnx7LPP8sADDxAREUHfvn255ppruO2224iMjDxj/TaXXXaZfVjpqSpa1MXZn4dhGGcdQioi1aPwJSJOd9NNNzF58mRSU1O5+uqrK13i22KxEB4eztKlSys8bgscJpOJ9957jx9//JGPP/6Yzz//nNtvv50XX3yRH3/8EX9/f8LDw9m6dSuff/45n332GZ999hlvvPEGt912G2+99RZgXTb9scce4/bbb+fJJ58kJCQEs9nMfffdV6MeKts5zz//PD179qywzLmuImaxWOjevTtz586t8Pjpv2i5ublVWM44baGD2lJX17MtdnCmQNi5c2d27tzJ6tWrWbNmDe+//z6vvPIKM2fO5PHHH6/SdU7taaiJ039xrewX2VODvjPU9PsSGhpKaWkpx48fP2PwbdOmDbfffjsjR46kXbt2LF261CF8VcV3333H8OHDueyyy3jllVeIiorCw8ODN954w75oSlXuqab36uXlxYgRI/jwww955ZVXSEtL44cffuDpp592KHffffdx7bXXsmrVKj7//HMee+wx5syZw1dffcWFF15Yxbs9O1d8HkePHi33BwUROTcKXyLidCNHjuSuu+7ixx9/dFgq/HTt27fnyy+/5OKLL67SL8F9+/alb9++PPXUUyxbtoybb76Z5cuXc8cddwDWpcivvfZarr32WiwWC3fffTevvfYajz32GB06dOC9995j4MCBvP766w71Hjt2zOEv023atOGPP/4o91fh01eLsw3vCwwMLLc6XG1p3749v/zyC1deeWWt/IU6PDwcb2/vCle+q2ifq/4q/p///AeTycRVV111xnJ+fn6MHTuWsWPHUlxczPXXX89TTz3F9OnT8fb2rvX2796926G3bM+ePVgsFvvwL1sP0+kPTk5KSipXV3Xa1qZNG3bu3Flu/44dO+zHa0OnTp0A66qHF1xwwVnLN2vWjPbt29vDso3FYmHfvn0Oi6XYVq60fVbvv/8+3t7efP755w5L67/xxhvnehtVNnbsWN566y3WrVvH9u3bMQzDPuTwVO3bt+eBBx7ggQceYPfu3fTs2ZMXX3yR//73v7XWFmd/HqWlpRw8eNBheLWInDvN+RIRp/P39+fVV19l9uzZXHvttZWWGzNmDGVlZTz55JPljpWWltp/gT169Gi5v9raeppsQ3OOHDnicNxsNtt/ebSVcXNzK1fPypUrOXTokMO+wYMHc+jQIT766CP7vsLCQv71r385lIuNjaV9+/a88MIL9mFyp8rIyKjwvqtjzJgxHDp0qNy1wfog4Ly8vGrV5+bmRnx8PKtWreLw4cP2/Xv27OGzzz4rV97Pz69ckKhrzzzzDF988QVjx44941/lT/+ee3p60qVLFwzDsM8N9PPzA8qHoZpauHChw9cvv/wygH2+XGBgIGFhYXz77bcO5V555ZVydVWnbUOHDuWnn34iISHBvi8vL4/FixcTHR1drXlrZ9KvXz/A+miHU/3yyy8Vzg1KSkrijz/+oGPHjuWOLViwwP7eMAwWLFiAh4eHfYifm5sbJpPJoVfwwIED5VbwrEvx8fGEhISwYsUKVqxYQZ8+fRzCdX5+vsOjBMAaxAICAiqc53YunP15/PHHHxQWFtK/f/86qV+kqVLPl4i4xJnmQdkMGDCAu+66izlz5rB161YGDRqEh4cHu3fvZuXKlcyfP58bbriBt956i1deeYWRI0fSvn17jh8/zr/+9S8CAwMZOnQoAHfccQdZWVlcccUVnHfeeSQlJfHyyy/Ts2dP+7yYa665hieeeIKJEyfSv39/fv31V5YuXVpubspdd93FggULGDduHPfeey9RUVEsXbrUPkfD1mNhNpv597//zdVXX03Xrl2ZOHEiLVu25NChQ6xfv57AwEA+/vjjs34O69atK/cLHsCIESO49dZbeffdd/nLX/7C+vXrufjiiykrK2PHjh28++67fP755/Tu3fus1zjV7Nmz+eKLL7j44ov5v//7P8rKyliwYAHdunVj69atDmVjY2P58ssvmTt3Li1atKBt27YVzj2qidLSUnvPQWFhIUlJSXz00Uds27aNgQMHsnjx4jOeP2jQICIjI7n44ouJiIhg+/btLFiwgGHDhtmHzMXGxgLw97//nRtvvBEPDw+uvfZae/Cprv379zN8+HCGDBlCQkIC//3vf7npppvo0aOHvcwdd9zBM888wx133EHv3r359ttvHZ5XZlOdtj3yyCP2Rzjcc889hISE8NZbb7F//37ef/99+0Iy56pdu3Z069aNL7/80uE5emvXrmXWrFkMHz6cvn372p/jtWTJEoqKiso9E83b25s1a9Ywfvx44uLi+Oyzz/jkk0949NFH7cOJhw0bxty5cxkyZAg33XQT6enpLFy4kA4dOrBt27ZauZ+z8fDw4Prrr2f58uXk5eXxwgsvOBzftWsXV155JWPGjKFLly64u7vz4YcfkpaWxo033lirbXH257F27Vp8fX3P2rssItXkmkUWRaQpOXWp+TM5fal5m8WLFxuxsbGGj4+PERAQYHTv3t3429/+Zhw+fNgwDMNITEw0xo0bZ7Ru3drw8vIywsPDjWuuucbYtGmTvY733nvPGDRokBEeHm54enoarVu3Nu666y4jJSXFXqawsNB44IEHjKioKMPHx8e4+OKLjYSEhHJLmBuGYezbt88YNmyY4ePjYzRv3tx44IEHjPfff98AjB9//NGh7JYtW4zrr7/eCA0NNby8vIw2bdoYY8aMMdatW3fGz8O2LHll23/+8x/DMKzLTT/77LNG165dDS8vL6NZs2ZGbGys8fjjjxvZ2dn2+gDjr3/9a4Wf++nLxa9bt8648MILDU9PT6N9+/bGv//9b+OBBx4wvL29Hcrt2LHDuOyyywwfHx8DsNdjW0b71GXDDePkz8LZlvm2LUdu23x9fY3o6Ghj1KhRxnvvvVfukQCGUX6p+ddee8247LLL7J97+/btjYceesjhMzEMw3jyySeNli1bGmaz2aFtlX1etmMVLTX/xx9/GDfccIMREBBgNGvWzJgyZYpRUFDgcG5+fr4xadIkIygoyAgICDDGjBljpKenl6vzTG2r6Hu2d+9e44YbbjCCg4MNb29vo0+fPsbq1asdytiWml+5cqXD/jMtgX+6uXPnGv7+/g7Lnu/bt8+YOXOm0bdvXyM8PNxwd3c3mjdvbgwbNsz46quvHM63PUZg7969xqBBgwxfX18jIiLCmDVrVrnv6+uvv27ExMQYXl5eRqdOnYw33njD/lmfqqLvVWWPaqjsM6jM2rVrDcAwmUzGwYMHHY5lZmYaf/3rX41OnToZfn5+RlBQkBEXF2e8++67Z623sv9GbCr699CZn0dcXJxxyy23nPU+RKR6TIZRR7OsRUSamHnz5nH//ffz559/0rJlS1c3p9aNGDGC33//3b6KozRN2dnZtGvXjueee45JkyZV+/wJEybw3nvvVTgUV+qHrVu30qtXLxITEytdLEhEakZzvkREaqCgoMDh68LCQl577TViYmIaRfA6/f52797Np59+yuWXX+6aBkm9ERQUxN/+9jeef/75c35OndRPzzzzDDfccIOCl0gdUM+XiEgNXH311bRu3ZqePXuSnZ3Nf//7X37//XeWLl1a6UOjG5KoqCgmTJhAu3btSEpK4tVXX6WoqIgtW7Zo6Wk5J+r5EpGmTAtuiIjUwODBg/n3v//N0qVLKSsro0uXLixfvrzCZagboiFDhvDOO++QmpqKl5cX/fr14+mnn1bwEhEROQfq+RIREREREXECzfkSERERERFxAoUvERERERERJ9CcrxqyWCwcPnyYgIAA+wNVRURERESk6TEMg+PHj9OiRYszPthe4auGDh8+TKtWrVzdDBERERERqScOHjzIeeedV+lxha8aCggIAKwfcGBgoItbIyIiIiIirpKTk0OrVq3sGaEyCl81ZBtqGBgYqPAlIiIiIiJnnY6kBTdEREREREScQOFLRERERETECRS+REREREREnEBzvkREREREGgHDMCgtLaWsrMzVTWl03NzccHd3P+dHTCl8iYiIiIg0cMXFxaSkpJCfn+/qpjRavr6+REVF4enpWeM6FL5ERERERBowi8XC/v37cXNzo0WLFnh6ep5zD42cZBgGxcXFZGRksH//fmJiYs74IOUzUfgSEREREWnAiouLsVgstGrVCl9fX1c3p1Hy8fHBw8ODpKQkiouL8fb2rlE9WnBDRERERKQRqGlvjFRNbXy++g6JiIiIiIg4gYYdioiIiIg0UsnJyWRmZjrlWmFhYbRu3dop12qoFL5ERERERBqh5ORkOnfqRH5BgVOu5+vjw/YdOxTAzkDhS0RERESkEcrMzCS/oID/jhxJ5+bN6/Ra2zMyuOXDD8nMzKxW+MrIyGDmzJl88sknpKWl0axZM3r06MHMmTO5+OKL67DFrqHwJSIiIiLSiHVu3pxeUVGubkaFRo0aRXFxMW+99Rbt2rUjLS2NdevWceTIEVc3rU5owQ0REREREXG6Y8eO8d133/Hss88ycOBA2rRpQ58+fZg+fTrDhw8HwGQy8eqrr3L11Vfj4+NDu3bteO+99xzqefjhhzn//PPx9fWlXbt2PPbYY5SUlNiPz549m549e7JkyRJat26Nv78/d999N2VlZTz33HNERkYSHh7OU089Vef3rPAlIiIiIiJO5+/vj7+/P6tWraKoqKjSco899hijRo3il19+4eabb+bGG29k+/bt9uMBAQG8+eab/PHHH8yfP59//etf/POf/3SoY+/evXz22WesWbOGd955h9dff51hw4bx559/8s033/Dss88yY8YMNm7cWGf3CwpfIiIiIiLiAu7u7rz55pu89dZbBAcHc/HFF/Poo4+ybds2h3KjR4/mjjvu4Pzzz+fJJ5+kd+/evPzyy/bjM2bMoH///kRHR3Pttdfy4IMP8u677zrUYbFYWLJkCV26dOHaa69l4MCB7Ny5k3nz5tGxY0cmTpxIx44dWb9+fZ3es8KXiIiIiIi4xKhRozh8+DAfffQRQ4YM4euvv6ZXr168+eab9jL9+vVzOKdfv34OPV8rVqzg4osvJjIyEn9/f2bMmEFycrLDOdHR0QQEBNi/joiIoEuXLg4PTo6IiCA9Pb2W79CRwpeIiIiIiLiMt7c3V111FY899hgbNmxgwoQJzJo1q0rnJiQkcPPNNzN06FBWr17Nli1b+Pvf/05xcbFDOQ8PD4evTSZThfssFsu53cxZaLVDkXqqsoci6gGGIiIi0ph16dKFVatW2b/+8ccfue222xy+vvDCCwHYsGEDbdq04e9//7v9eFJSktPaWl0KXyL10JkeiqgHGIqIiEh1bM/IqJfXOHLkCKNHj+b222/nggsuICAggE2bNvHcc89x3XXX2cutXLmS3r17c8kll7B06VJ++uknXn/9dQBiYmJITk5m+fLlXHTRRXzyySd8+OGHtXZftU3hS6QequyhiDV9gKGIiIg0PWFhYfj6+HCLk8KIr48PYWFhVS7v7+9PXFwc//znP9m7dy8lJSW0atWKyZMn8+ijj9rLPf744yxfvpy7776bqKgo3nnnHbp06QLA8OHDuf/++5kyZQpFRUUMGzaMxx57jNmzZ9f27dUKk2EYhqsb0RDl5OQQFBREdnY2gYGBrm6ONDKJiYnExsay+c47HR6KmJiSQuzixWzevJlevXq5sIUiIiJSXxQWFrJ//37atm2Lt7e3w7HKpjHUhbqYGmEymfjwww8ZMWJErdZbE2f6nKuaDdTzJSIiIiLSSLVu3VqjZeoRrXYoIiIiIiLiBOr5EhERERGReqmxzZBSz5eIiIiIiIgTKHyJiIiIiIg4gcKXiIiIiIiIEyh8iYiIiIiIOIHCl4iIiIiIiBNotUMRERERkUaqoT9kubFR+BIRERERaYSSk5Pp1LkTBfkFTrmej68PO7bvUAA7A4UvEREREZFGKDMzk4L8AkY+OpLmbZrX6bUykjL48OkPyczMrFb4mjBhAseOHWPVqlUO+7/++msGDhzI0aNHCQ4Ort3GupDCl4iIiIhII9a8TXOizo9ydTMELbghIiIiIiL12JEjRxg3bhwtW7bE19eX7t2788477ziUufzyy5k6dSr33XcfzZo1IyIign/961/k5eUxceJEAgIC6NChA5999pmL7sJK4UtEREREROqtwsJCYmNj+eSTT/jtt9+48847ufXWW/npp58cyr311luEhYXx008/MXXqVP7v//6P0aNH079/fxITExk0aBC33nor+fn5LroThS8REREREXGh1atX4+/v77BdffXV9uMtW7bkwQcfpGfPnrRr146pU6cyZMgQ3n33XYd6evTowYwZM4iJiWH69Ol4e3sTFhbG5MmTiYmJYebMmRw5coRt27Y5+xbtNOdLRERERERcZuDAgbz66qsO+zZu3Mgtt9wCQFlZGU8//TTvvvsuhw4dori4mKKiInx9fR3OueCCC+zv3dzcCA0NpXv37vZ9ERERAKSnp9fVrZyVwpeIiIiIiLiMn58fHTp0cNj3559/2t8///zzzJ8/n3nz5tG9e3f8/Py47777KC4udjjHw8PD4WuTyeSwz2QyAWCxWGr7FqpM4UtEREREROqtH374geuuu87eE2axWNi1axddunRxccuqr17M+Vq4cCHR0dF4e3sTFxdXbvLc6VauXEmnTp3w9vame/fufPrpp5WW/ctf/oLJZGLevHkO+7Oysrj55psJDAwkODiYSZMmkZubWxu3IyIiIiJSb2QkZZCyK6VOt4ykjDprf0xMDGvXrmXDhg1s376du+66i7S0tDq7Xl1yec/XihUrmDZtGosWLSIuLo558+YxePBgdu7cSXh4eLnyGzZsYNy4ccyZM4drrrmGZcuWMWLECBITE+nWrZtD2Q8//JAff/yRFi1alKvn5ptvJiUlhbVr11JSUsLEiRO58847WbZsWZ3dq4iIiIiIs4SFheHj68OHT3/olOv5+PoQFhZW6/XOmDGDffv2MXjwYHx9fbnzzjsZMWIE2dnZtX6tumYyDMNwZQPi4uK46KKLWLBgAWDtRmzVqhVTp07lkUceKVd+7Nix5OXlsXr1avu+vn370rNnTxYtWmTfd+jQIeLi4vj8888ZNmwY9913H/fddx8A27dvp0uXLvz888/07t0bgDVr1jB06FD+/PPPCsPa6XJycggKCiI7O5vAwMBz+QhEyklMTCQ2NpbNd95Jr6iTD0VMTEkhdvFiNm/eTK9evVzYQhEREakvCgsL2b9/P23btsXb29vhWHJyMpmZmU5pR1hYGK1bt3bKtVzhTJ9zVbOBS3u+iouL2bx5M9OnT7fvM5vNxMfHk5CQUOE5CQkJTJs2zWHf4MGDWbVqlf1ri8XCrbfeykMPPUTXrl0rrCM4ONgevADi4+Mxm81s3LiRkSNHljunqKiIoqIi+9c5OTlVvk8REREREVdo3bp1ow5EDY1L53xlZmZSVlZmX/bRJiIigtTU1ArPSU1NPWv5Z599Fnd3d+65555K6zh9SKO7uzshISGVXnfOnDkEBQXZt1atWp31/kRERERERGzqxYIbtWnz5s3Mnz+fN998076cZG2YPn062dnZ9u3gwYO1VreIiIiIiDR+Lg1fYWFhuLm5lVutJC0tjcjIyArPiYyMPGP57777jvT0dFq3bo27uzvu7u4kJSXxwAMPEB0dba/j9IerlZaWkpWVVel1vby8CAwMdNhERERERESqyqXhy9PTk9jYWNatW2ffZ7FYWLduHf369avwnH79+jmUB1i7dq29/K233sq2bdvYunWrfWvRogUPPfQQn3/+ub2OY8eOsXnzZnsdX331FRaLhbi4uNq+TRERERGROufidfQavdr4fF2+1Py0adMYP348vXv3pk+fPsybN4+8vDwmTpwIwG233UbLli2ZM2cOAPfeey8DBgzgxRdfZNiwYSxfvpxNmzaxePFiAEJDQwkNDXW4hoeHB5GRkXTs2BGAzp07M2TIECZPnsyiRYsoKSlhypQp3HjjjVVa6VBEREREpL7w8PAAID8/Hx8fHxe3pvHKz88HTn7eNeHy8DV27FgyMjKYOXMmqamp9OzZkzVr1tgX1UhOTsZsPtlB179/f5YtW8aMGTN49NFHiYmJYdWqVeWe8XU2S5cuZcqUKVx55ZWYzWZGjRrFSy+9VKv3JiIiIiJS19zc3AgODrZPq/H19a3VtQ+aOsMwyM/PJz09neDgYNzc3Gpcl8uf89VQ6TlfUpf0nC8RERGpDsMwSE1N5dixY65uSqMVHBxMZGRkhcG2QTznS0REREREzp3JZCIqKorw8HBKSkpc3ZxGx8PD45x6vGwUvkREREREGgk3N7daCQlSNxrdc75ERERERETqI4UvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcYJ6Eb4WLlxIdHQ03t7exMXF8dNPP52x/MqVK+nUqRPe3t50796dTz/91OH47Nmz6dSpE35+fjRr1oz4+Hg2btzoUCY6OhqTyeSwPfPMM7V+byIiIiIiIlAPwteKFSuYNm0as2bNIjExkR49ejB48GDS09MrLL9hwwbGjRvHpEmT2LJlCyNGjGDEiBH89ttv9jLnn38+CxYs4Ndff+X7778nOjqaQYMGkZGR4VDXE088QUpKin2bOnVqnd6riIiIiIg0XS4PX3PnzmXy5MlMnDiRLl26sGjRInx9fVmyZEmF5efPn8+QIUN46KGH6Ny5M08++SS9evViwYIF9jI33XQT8fHxtGvXjq5duzJ37lxycnLYtm2bQ10BAQFERkbaNz8/vzq9VxERERERabpcGr6Ki4vZvHkz8fHx9n1ms5n4+HgSEhIqPCchIcGhPMDgwYMrLV9cXMzixYsJCgqiR48eDseeeeYZQkNDufDCC3n++ecpLS2ttK1FRUXk5OQ4bCIiIiIiIlXl7sqLZ2ZmUlZWRkREhMP+iIgIduzYUeE5qampFZZPTU112Ld69WpuvPFG8vPziYqKYu3atYSFhdmP33PPPfTq1YuQkBA2bNjA9OnTSUlJYe7cuRVed86cOTz++OM1uU0RERERERHXhq+6NHDgQLZu3UpmZib/+te/GDNmDBs3biQ8PByAadOm2ctecMEFeHp6ctdddzFnzhy8vLzK1Td9+nSHc3JycmjVqlXd34iIiIiIiDQKLh12GBYWhpubG2lpaQ7709LSiIyMrPCcyMjIKpX38/OjQ4cO9O3bl9dffx13d3def/31StsSFxdHaWkpBw4cqPC4l5cXgYGBDpuIiIiIiEhVuTR8eXp6Ehsby7p16+z7LBYL69ato1+/fhWe069fP4fyAGvXrq20/Kn1FhUVVXp869atmM1me8+YiIiIiIhIbXL5sMNp06Yxfvx4evfuTZ8+fZg3bx55eXlMnDgRgNtuu42WLVsyZ84cAO69914GDBjAiy++yLBhw1i+fDmbNm1i8eLFAOTl5fHUU08xfPhwoqKiyMzMZOHChRw6dIjRo0cD1kU7Nm7cyMCBAwkICCAhIYH777+fW265hWbNmrnmgxARERERkUbN5eFr7NixZGRkMHPmTFJTU+nZsydr1qyxL6qRnJyM2Xyyg65///4sW7aMGTNm8OijjxITE8OqVavo1q0bAG5ubuzYsYO33nqLzMxMQkNDueiii/juu+/o2rUrYB1CuHz5cmbPnk1RURFt27bl/vvvd5jTJSIiIiIiUptMhmEYrm5EQ5STk0NQUBDZ2dma/yW1LjExkdjYWDbfeSe9oqJO7k9JIXbxYjZv3kyvXr1c2EIRERERsalqNnD5Q5ZFRERERESaAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXEChS8REREREREnUPgSERERERFxAoUvERERERERJ1D4EhERERERcQKFLxERERERESdQ+BIREREREXGCehG+Fi5cSHR0NN7e3sTFxfHTTz+dsfzKlSvp1KkT3t7edO/enU8//dTh+OzZs+nUqRN+fn40a9aM+Ph4Nm7c6FAmKyuLm2++mcDAQIKDg5k0aRK5ubm1fm8iIiIiIiJQD8LXihUrmDZtGrNmzSIxMZEePXowePBg0tPTKyy/YcMGxo0bx6RJk9iyZQsjRoxgxIgR/Pbbb/Yy559/PgsWLODXX3/l+++/Jzo6mkGDBpGRkWEvc/PNN/P777+zdu1aVq9ezbfffsudd95Z5/crIiIiIiJNk8kwDMOVDYiLi+Oiiy5iwYIFAFgsFlq1asXUqVN55JFHypUfO3YseXl5rF692r6vb9++9OzZk0WLFlV4jZycHIKCgvjyyy+58sor2b59O126dOHnn3+md+/eAKxZs4ahQ4fy559/0qJFi7O221ZndnY2gYGBNbl1kUolJiYSGxvL5jvvpFdU1Mn9KSnELl7M5s2b6dWrlwtbKCIiIiI2Vc0GLu35Ki4uZvPmzcTHx9v3mc1m4uPjSUhIqPCchIQEh/IAgwcPrrR8cXExixcvJigoiB49etjrCA4OtgcvgPj4eMxmc7nhiTZFRUXk5OQ4bCIiIiIiIlXl0vCVmZlJWVkZERERDvsjIiJITU2t8JzU1NQqlV+9ejX+/v54e3vzz3/+k7Vr1xIWFmavIzw83KG8u7s7ISEhlV53zpw5BAUF2bdWrVpV615FRERERKRpc/mcr7oycOBAtm7dyoYNGxgyZAhjxoypdB5ZVUyfPp3s7Gz7dvDgwVpsrYiIiIiINHYuDV9hYWG4ubmRlpbmsD8tLY3IyMgKz4mMjKxSeT8/Pzp06EDfvn15/fXXcXd35/XXX7fXcXoQKy0tJSsrq9Lrenl5ERgY6LCJiIiIiIhUlUvDl6enJ7Gxsaxbt86+z2KxsG7dOvr161fhOf369XMoD7B27dpKy59ab1FRkb2OY8eOsXnzZvvxr776CovFQlxcXE1vR0REREREpFLurm7AtGnTGD9+PL1796ZPnz7MmzePvLw8Jk6cCMBtt91Gy5YtmTNnDgD33nsvAwYM4MUXX2TYsGEsX76cTZs2sXjxYgDy8vJ46qmnGD58OFFRUWRmZrJw4UIOHTrE6NGjAejcuTNDhgxh8uTJLFq0iJKSEqZMmcKNN95YpZUORUREREREqsvl4Wvs2LFkZGQwc+ZMUlNT6dmzJ2vWrLEvqpGcnIzZfLKDrn///ixbtowZM2bw6KOPEhMTw6pVq+jWrRsAbm5u7Nixg7feeovMzExCQ0O56KKL+O677+jatau9nqVLlzJlyhSuvPJKzGYzo0aN4qWXXnLuzYuIiIiISJPh8ud8NVR6zpfUJT3nS0RERKThaBDP+RIREREREWkqFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5EREREREScQOFLRERERETECRS+REREREREnEDhS0RERERExAkUvkRERERERJxA4UtERERERMQJFL5E6jOLxdUtEBEREZFaovAlUk+9BfR46y04fNjVTRERERGRWqDwJVIPBX39NbcBbiUl8NFHYBiubpKIiIiInCOFL5F6KPTjj09+kZZm3URERESkQVP4EqlvDAO/X38FwGI+8Z9oSooLGyQiIiIitUHhS6S+OXAAjyNHKAEyO3Wy7tO8LxEREZEGT+FLpL758UcAtgB5kZHWfer5EhEREWnwFL5E6ps//gCs4Ss/LMy6Lz1di26IiIiINHAKXyL1zZ49AOwGiv39rftKSqCgwHVtEhEREZFzpvAlUt/s3g3AHsBwdwdbAMvOdl2bREREROSc1YvwtXDhQqKjo/H29iYuLo6ffvrpjOVXrlxJp06d8Pb2pnv37nz66af2YyUlJTz88MN0794dPz8/WrRowW233cbh0xYsiI6OxmQyOWzPPPNMndyfSJUZhr3na49tX1CQ9VXhS0RERKRBc3n4WrFiBdOmTWPWrFkkJibSo0cPBg8eTHp6eoXlN2zYwLhx45g0aRJbtmxhxIgRjBgxgt9++w2A/Px8EhMTeeyxx0hMTOSDDz5g586dDB8+vFxdTzzxBCkpKfZt6tSpdXqvImd15Ig9ZO217VP4EhEREWkUXB6+5s6dy+TJk5k4cSJdunRh0aJF+Pr6smTJkgrLz58/nyFDhvDQQw/RuXNnnnzySXr16sWCBQsACAoKYu3atYwZM4aOHTvSt29fFixYwObNm0lOTnaoKyAggMjISPvm5+dX5/crckYner2KIyIotO1T+BIRERFpFFwavoqLi9m8eTPx8fH2fWazmfj4eBISEio8JyEhwaE8wODBgystD5CdnY3JZCI4ONhh/zPPPENoaCgXXnghzz//PKWlpZXWUVRURE5OjsMmUusOHgSg2LbEPCh8iYiIiDQS7q68eGZmJmVlZURERDjsj4iIYMeOHRWek5qaWmH51NTUCssXFhby8MMPM27cOAIDA+3777nnHnr16kVISAgbNmxg+vTppKSkMHfu3ArrmTNnDo8//nh1bk+k+v78E7D2fNnZfm4V+EVEREQaNJeGr7pWUlLCmDFjMAyDV1991eHYtGnT7O8vuOACPD09ueuuu5gzZw5eXl7l6po+fbrDOTk5ObRq1aruGi9N04nwVRIefnKfbbXDvDwXNEhEREREaotLw1dYWBhubm6kpaU57E9LSyPy1GFXp4iMjKxSeVvwSkpK4quvvnLo9apIXFwcpaWlHDhwgI4dO5Y77uXlVWEoE6lVFfV8+fpaXxW+RERERBo0l8758vT0JDY2lnXr1tn3WSwW1q1bR79+/So8p1+/fg7lAdauXetQ3ha8du/ezZdffkloaOhZ27J161bMZjPhp/Y4iDhbRT1ftoVgiosxnWFeooiIiIjUby4fdjht2jTGjx9P79696dOnD/PmzSMvL4+JEycCcNttt9GyZUvmzJkDwL333suAAQN48cUXGTZsGMuXL2fTpk0sXrwYsAavG264gcTERFavXk1ZWZl9PlhISAienp4kJCSwceNGBg4cSEBAAAkJCdx///3ccsstNGvWzDUfhAhU3PPl5QVublBWhnthYSUnioiIiEh9V6PwtW/fPtq1a1crDRg7diwZGRnMnDmT1NRUevbsyZo1a+yLaiQnJ2M2n+yg69+/P8uWLWPGjBk8+uijxMTEsGrVKrp16wbAoUOH+OijjwDo2bOnw7XWr1/P5ZdfjpeXF8uXL2f27NkUFRXRtm1b7r//foc5XSJOV1YGJx4G7tDzZTJZe79ycvAoKHBR40RERETkXNUofHXo0IEBAwYwadIkbrjhBry9vc+pEVOmTGHKlCkVHvv666/L7Rs9ejSjR4+usHx0dDSGYZzxer169eLHH3+sdjtF6lRGBpSWgslEyelDZX19IScHd4UvERERkQarRnO+EhMTueCCC5g2bRqRkZHcdddd/PTTT7XdNpGmxbaQTPPm4H7a30VOzPtS+BIRERFpuGoUvnr27Mn8+fM5fPgwS5YsISUlhUsuuYRu3boxd+5cMjIyarudIo2f7Vl1Fa30aQtfmvMlIiIi0mCd02qH7u7uXH/99axcuZJnn32WPXv28OCDD9KqVStuu+02UlJSaqudIo1fFcKX5nyJiIiINFznFL42bdrE3XffTVRUFHPnzuXBBx9k7969rF27lsOHD3PdddfVVjtFGj9b+Dp1pUMbHx9APV8iIiIiDVmNFtyYO3cub7zxBjt37mTo0KG8/fbbDB061L4qYdu2bXnzzTeJjo6uzbaKNG62OV8V9XydCF9uRUVObJCIiIiI1KYaha9XX32V22+/nQkTJhAVFVVhmfDwcF5//fVzapxIk3KmYYe28FVc7MQGiYiIiEhtqlH4Wrt2La1bt3Z4/haAYRgcPHiQ1q1b4+npyfjx42ulkSJNwpmGHZ54nIO7er5EREREGqwazflq3749mZmZ5fZnZWXRtm3bc26USJNUlZ4vhS8RERGRBqtG4auyhxjn5uae8wOXRZos2yMawsPLH1P4EhEREWnwqjXscNq0aQCYTCZmzpyJr6+v/VhZWRkbN26kZ8+etdpAkSahrAyysqzvmzeHw4cdj5/4o4ZbaSkeTm6aiIiIiNSOaoWvLVu2ANaer19//RVPT0/7MU9PT3r06MGDDz5Yuy0UaQqOHQOLxfo+NLTS8AXQzHmtEhEREZFaVK3wtX79egAmTpzI/PnzCQwMrJNGiTQ5tjmUQUHgUUHflslkDWCFhQpfIiIiIg1UjVY7fOONN2q7HSJNmy18hYVVXsbHBwoLCXFOi0RERESkllU5fF1//fW8+eabBAYGcv3115+x7AcffHDODRNpUqoSvk4MPVTPl4iIiEjDVOXwFRQUhMlksr8XkVpU1Z4vFL5EREREGqoqh69Thxpq2KFILbMtM1+Fnq/gum+NiIiIiNSBGj3nq6CggPz8fPvXSUlJzJs3jy+++KLWGibSpFSl5+vE6qIBTmiOiIiIiNS+GoWv6667jrfffhuAY8eO0adPH1588UWuu+46Xn311VptoEiTUJXw5eUFgNYYFREREWmYahS+EhMTufTSSwF47733iIyMJCkpibfffpuXXnqpVhso0iQofImIiIg0ejUKX/n5+QQEWAc/ffHFF1x//fWYzWb69u1LUlJSrTZQpElQ+BIRERFp9GoUvjp06MCqVas4ePAgn3/+OYMGDQIgPT1dD14WqQmFLxEREZFGr0bha+bMmTz44INER0cTFxdHv379AGsv2IUXXlirDRRpEhS+RERERBq9Ki81f6obbriBSy65hJSUFHr06GHff+WVVzJy5Mhaa5xIk1BSAtnZ1vdVCF9a7VBERESkYapR+AKIjIwkMjLSYV+fPn3OuUEiTc6RI9ZXkwmaneERyqf0fOXWfatEREREpJbVKHzl5eXxzDPPsG7dOtLT07FYLA7H9+3bVyuNE2kSbEMOQ0LAza3ycgpfIiIiIg1ajcLXHXfcwTfffMOtt95KVFQUJpOpttsl0nTYwlfz5mcud0r4Oly3LRIRERGROlCj8PXZZ5/xySefcPHFF9d2e0SanqostgH28OUL1nliIiIiItKg1Gi1w2bNmhESElLbbRFpmqoavjw97W/d8vPrsEEiIiIiUhdqFL6efPJJZs6cSb5+ARQ5d1UNX25uWE7MCVP4EhEREWl4ajTs8MUXX2Tv3r1EREQQHR2Nh4eHw/HExMRaaZxIk1DV8AWUeXpiLijAnKslN0REREQamhqFrxEjRtRyM0SasOqELw8PPAoKcMvLq+NGiYiIiEhtq1H4mjVrVm23Q6TpOhG+DuTmknWi13j79u0VFrWcmPel8CUiIiLS8NT4IcvHjh3jvffeY+/evTz00EOEhISQmJhIREQELVu2rM02ijRqxYcO4Qn8dfZsPp092+HY8dOGF5adGOKr8CUiIiLS8NQofG3bto34+HiCgoI4cOAAkydPJiQkhA8++IDk5GTefvvt2m6nSKNlnOj5mjpgAE927AjAp7t389j69RQWFjqUtYUvzfkSERERaXhqtNrhtGnTmDBhArt378bb29u+f+jQoXz77be11jiRpsD92DEAzouKoteJrW2zZhWW1bBDERERkYarRuHr559/5q677iq3v2XLlqSmpp5zo0SajPx83E70bpWe8oeMypTZwpeWmhcRERFpcGoUvry8vMjJySm3f9euXTRv3vycGyXSZBw5AkAJYDntkQ0VsQ87VM+XiIiISINTo/A1fPhwnnjiCUpKSgAwmUwkJyfz8MMPM2rUqFptoEijdmK+VyaAyXTW4vaeL835EhEREWlwahS+XnzxRXJzc2nevDkFBQUMGDCADh06EBAQwFNPPVXbbRRpvE4NX1Vg0WqHIiIiIg1WjVY7DAoKYu3atfzwww/88ssv5Obm0qtXL+Lj42u7fSKN2ynhK6gKxW09Xxp2KCIiItLwVDt8WSwW3nzzTT744AMOHDiAyWSibdu2REZGYhgGpioMnRKRE6obvtTzJSIiItJgVWvYoWEYDB8+nDvuuINDhw7RvXt3unbtSlJSEhMmTGDkyJE1asTChQuJjo7G29ubuLg4fvrppzOWX7lyJZ06dcLb25vu3bvz6aef2o+VlJTw8MMP0717d/z8/GjRogW33XYbhw8fdqgjKyuLm2++mcDAQIKDg5k0aRK5mkcjznYifGVUsbiWmhcRERFpuKoVvt58802+/fZb1q1bx5YtW3jnnXdYvnw5v/zyC19++SVfffVVtR+wvGLFCqZNm8asWbNITEykR48eDB48mPT09ArLb9iwgXHjxjFp0iS2bNnCiBEjGDFiBL/99hsA+fn5JCYm8thjj5GYmMgHH3zAzp07GT58uEM9N998M7///jtr165l9erVfPvtt9x5553VarvIOavmnC+tdigiIiLScJkMwzCqWnjQoEFcccUVPPLIIxUef/rpp/nmm2/4/PPPq9yAuLg4LrroIhYsWABYhzW2atWKqVOnVnidsWPHkpeXx+rVq+37+vbtS8+ePVm0aFGF1/j555/p06cPSUlJtG7dmu3bt9OlSxd+/vlnevfuDcCaNWsYOnQof/75Jy1atChXR1FREUVFRfavc3JyaNWqFdnZ2QQGBlb5fkUcjB0L777LPcCEO++kV1QUAEt//ZVbPviANddfz+Du3e3Ff9++na7vvktpQADuFTzuQUREREScLycnh6CgoLNmg2r1fG3bto0hQ4ZUevzqq6/ml19+qXJ9xcXFbN682WGhDrPZTHx8PAkJCRWek5CQUG5hj8GDB1daHiA7OxuTyURwcLC9juDgYHvwAoiPj8dsNrNx48YK65gzZw5BQUH2rVWrVlW9TZHKVbfn69Rhh1X/u4mIiIiI1APVCl9ZWVlERERUejwiIoKjR49Wub7MzEzKysrK1RkREUFqamqF56SmplarfGFhIQ8//DDjxo2zp9DU1FTCw8Mdyrm7uxMSElJpPdOnTyc7O9u+HTx4sEr3KHJGNVxq3mSxQH5+HTVKREREROpCtVY7LCsrw9298lPc3NwoLS0950bVlpKSEsaMGYNhGLz66qvnVJeXlxdeXl611DKRE6obvk797y8vD/z8ar9NIiIiIlInqhW+DMNgwoQJlYaQU+dEVUVYWBhubm6kpaU57E9LSyMyMrLCcyIjI6tU3ha8kpKS+OqrrxzGXkZGRpZb0KO0tJSsrKxKrytS6wyj2uELk4lcwB8gNxdO68EVERERkfqrWsMOx48fT3h4uMPcp1O38PBwbrvttirX5+npSWxsLOvWrbPvs1gsrFu3jn79+lV4Tr9+/RzKA6xdu9ahvC147d69my+//JLQ0NBydRw7dozNmzfb93311VdYLBbi4uKq3H6Rc5KbC8XFQDXCF2Bf51CPRhARERFpUKrV8/XGG2/UegOmTZvG+PHj6d27N3369GHevHnk5eUxceJEAG677TZatmzJnDlzALj33nsZMGAAL774IsOGDWP58uVs2rSJxYsXA9bgdcMNN5CYmMjq1aspKyuzz+MKCQnB09OTzp07M2TIECZPnsyiRYsoKSlhypQp3HjjjRWudChSJ070elm8vCioRq9xLhABCl8iIiIiDUy1wlddGDt2LBkZGcycOZPU1FR69uzJmjVr7ItqJCcnYzaf7KDr378/y5YtY8aMGTz66KPExMSwatUqunXrBsChQ4f46KOPAOjZs6fDtdavX8/ll18OwNKlS5kyZQpXXnklZrOZUaNG8dJLL9X9DYvYZFgfrVwaHAynDaU9E3vk0rO+RERERBoUl4cvgClTpjBlypQKj3399dfl9o0ePZrRo0dXWD46OpqqPLosJCSEZcuWVaudIrXqRM9XjcOXer5EREREGpRqzfkSkVp0aviqBs35EhEREWmYFL5EXKWG4Us9XyIiIiINk8KXiKuca/jSnC8RERGRBkXhS8RV1PMlIiIi0qQofIm4iuZ8iYiIiDQpCl8irqJhhyIiIiJNisKXiKvYwlezZtU6TcMORURERBomhS8RV9GwQxEREZEmReFLxBUsFjhyBIAyLbghIiIi0iQofIm4QlaWNYChOV8iIiIiTYXCl4grZGRYX4ODMTw8qnWqer5EREREGiaFLxFXsIWv5s2rfarmfImIiIg0TApfIq6Qnm59rUH4Us+XiIiISMOk8CXiCufQ86U5XyIiIiINk8KXiCvYwld4eLVPtYev/HwoK6u1JomIiIhI3VL4EnGF2pjzBdYAJiIiIiINgsKXiCucw5yvAsAwmaxfaN6XiIiISIOh8CXiCufQ8wVg8fW1vtG8LxEREZEGQ+FLxBXOMXyV+fhY36jnS0RERKTBUPgScYVzWHADwKLwJSIiItLgKHyJOJvFApmZ1vcadigiIiLSZCh8iTjb0aMnl4gPC6tRFer5EhEREWl4FL5EnM025DAwELy8alSF5nyJiIiINDwKXyLOdo6LbcApww4VvkREREQaDIUvEWc7x8U24JRhh5rzJSIiItJgKHyJOFst9HyVqedLREREpMFR+BJxtvR06+u5DDvUnC8RERGRBkfhS8TZamPOl8KXiIiISIOj8CXibLW54IbmfImIiIg0GApfIs5WCwtuaKl5ERERkYZH4UvE2TTsUERERKRJUvgScbbaWHBDww5FREREGhyFLxFnMgzIzLS+P5el5tXzJSIiItLgKHyJONOxY1Baan1fGz1fCl8iIiIiDYbCl4gz2eZ7BQSAt3eNq9GcLxEREZGGR+FLxJlqYbEN0JwvERERkYZI4UvEmWphsQ04Zc5XYeHJYYwiIiIiUq8pfIk4U231fNnCF6j3S0RERKSBUPgScSZbz9c5PGAZwPD0BDc36xea9yUiIiLSICh8iThTaqr1NSrq3OoxmcDf3/pePV8iIiIiDYLLw9fChQuJjo7G29ubuLg4fvrppzOWX7lyJZ06dcLb25vu3bvz6aefOhz/4IMPGDRoEKGhoZhMJrZu3VqujssvvxyTyeSw/eUvf6nN2xKpmC18RUaee1228KWeLxEREZEGwaXha8WKFUybNo1Zs2aRmJhIjx49GDx4MOm2oVmn2bBhA+PGjWPSpEls2bKFESNGMGLECH777Td7mby8PC655BKeffbZM1578uTJpKSk2LfnnnuuVu9NpEK28BURce51+flZXxW+RERERBoEl4avuXPnMnnyZCZOnEiXLl1YtGgRvr6+LFmypMLy8+fPZ8iQITz00EN07tyZJ598kl69erFgwQJ7mVtvvZWZM2cSHx9/xmv7+voSGRlp3wIDA2v13kQqVEs9X9u3byffbP3Pd8/WrSQnJ59ry0RERESkjrksfBUXF7N582aHkGQ2m4mPjychIaHCcxISEsqFqsGDB1da/kyWLl1KWFgY3bp1Y/r06eTn55+xfFFRETk5OQ6bSLWdY/hKyc3FBNxyyy38vGMHANPvvZfOnTopgImIiIjUcy4LX5mZmZSVlRFx2vCriIgIUm2/oJ4mNTW1WuUrc9NNN/Hf//6X9evXM336dP7zn/9wyy23nPGcOXPmEBQUZN9atWpVrWuKkJt7cnGMGoavY4WFGMCCgQPpeeJncFqvXuQXFJCZmVlLDRURERGRuuDu6ga4wp133ml/3717d6KiorjyyivZu3cv7du3r/Cc6dOnM23aNPvXOTk5CmBSPWlp1ldf35OLZdRQh2bNCAoIAOA8b+9zbZmIiIiIOIHLwldYWBhubm6k2X4hPSEtLY3ISnoFIiMjq1W+quLi4gDYs2dPpeHLy8sLLy+vc7qONHGnDjk0mc69Pk9PAMwlJedel4iIiIjUOZcNO/T09CQ2NpZ169bZ91ksFtatW0e/fv0qPKdfv34O5QHWrl1bafmqsi1HH3Wuz14SOZPaXGYeToav0tLaqU9ERERE6pRLhx1OmzaN8ePH07t3b/r06cO8efPIy8tj4sSJANx22220bNmSOXPmAHDvvfcyYMAAXnzxRYYNG8by5cvZtGkTixcvtteZlZVFcnIyhw8fBmDnzp0A9lUN9+7dy7Jlyxg6dCihoaFs27aN+++/n8suu4wLLrjAyZ+ANCm1ucw82MOXm3q+RERERBoEl4avsWPHkpGRwcyZM0lNTaVnz56sWbPGvqhGcnIyZvPJzrn+/fuzbNkyZsyYwaOPPkpMTAyrVq2iW7du9jIfffSRPbwB3HjjjQDMmjWL2bNn4+npyZdffmkPeq1atWLUqFHMmDHDSXctTZZtyGxt93wpfImIiIg0CC5fcGPKlClMmTKlwmNff/11uX2jR49m9OjRldY3YcIEJkyYUOnxVq1a8c0331S3mSLn7kTP12GLhdTERPvu7du316w+9XyJiIiINCguD18iTUX+/v34ArNfe41/vfZauePHc3OrV6F6vkREREQaFIUvEScxUlIAuKlvX/5yyvzCT3fv5rH16yksLKxehVpwQ0RERKRBUfgScRKPEw9BjoyMpNMpK2tur+nDkTXsUERERKRBcdlS8yJNimHgnpUFQKmPT+3UqWGHIiIiIg2KwpeIMxw9ag9JJQpfIiIiIk2SwpeIM5x47twRwHCvpdG+GnYoIiIi0qAofIk4w4nwdbg26/TyAtTzJSIiItJQKHzJWRmGwYrfVpBwMMHVTWm4ToSvQ7VZ54meLxNQSwMZRURERKQOKXzJWS39dSk3vn8j/Zf058b3buRg9kFXN6nhqYueLw8P+1v/2qxXREREROqEwpecUUlZCbO/nm3/esXvK+i0sBNPf/c0FsPiuoY1NHURvkwmewALqM16RURERKROKHzJGb39y9vsPbqX5r7N+X7i91zS+hLyS/L5+1d/Z8mWJa5uXsNRF+EL7EMP1fMlIiIiUv8pfEmlisuKefLbJwF45JJHuLj1xXw74Vv+funfAXj5p5cxDMOVTazXkpOTSUxMJDExkbxduwCFLxEREZGmTOFLKrVkyxKSspOI9I/kL73/AoDJZOKBfg/g4+7DtrRtbDi4wcWtrJ+Sk5Pp3KkTsbGxxMbGkvX774B1wY3jubm1d6ETKx4qfImIiIjUfwpfUqHC0kL+8e0/AHj0kkfx9fC1H2vm04ybut8EwCubXnFJ++q7zMxM8gsK+O/IkWyePJnzTCbA2vNVWFhYexdSz5eIiIhIg6HwJRVavHkxh44f4rzA85gcO7nc8bsvuhuAlb+vJC03zdnNazA6N29Or8BATIaBAdT6J6XwJSIiItJgKHxJhf6d+G/A2uvl7e5d7nivqF7EtYyjxFLC61ted3bzGpbjxwEo9PKirLbrVvgSERERaTAUvqScnKIcfkv/DYCRnUdWWu6vF/0VgEWbFlFmqfVY0XicCF/5PnXwKOQT4UtLzYuIiIjUfwpfUs6mw5swMGgd1JpI/8hKy43uOppQn1AO5hxk9a7VTmxhA3MifBV4l+9BPGcnnvOlni8RERGR+k/hS8rZ+OdGAOJaxp2xnLe7N5MunARo4Y0zsoWvuuj50mqHIiIiIg2GwpeUs/FQ1cIXwF297wLgy31fklWQVaftarBsww7roudLc75EREREGgyFL3FgGMbJ8HXe2cNXu2bt6B7eHYthYc2eNXXdvIapLocdKnyJiIiINBgKX+LgYM5BUnNTcTO50SuqV5XOGRYzDEDzviqTnQ1Avq/vWQrWgMKXiIiISIOh8CUObPO9Loi4wOHBymdyzfnXALBmzxpKLaV11rYGKycH0GqHIiIiIk2dwpc4qM58L5u+5/UlxCeEo4VHSTiYUFdNa5DMJSVQWAhAXh2GL/V8iYiIiNR/Cl/ioDrzvWzczG4MjRkKaOjh6Tzy8qxvvLwoPbEsfK1S+BIRERFpMBS+xK6krITNhzcD1ev5Argmxjr0cPVuha9TeebmWt8EBtbRBRS+RERERBoKhS+x+y39NwpKCwjyCqJjWMdqnTu4w2DcTG78kfEH+47uq6MWNjz2ni+FLxEREZEmT+FL7GxDDvu07IPZVL0fjWDvYC5pfQkAn+z6pNbb1lA5tefLMOrmGiIiIiJSKxS+xK4mi22cyrbq4Se7Fb5sPG09X0FBdXQBa/hyA0wnFvYQERERkfpJ4UvsbMvMV2exjVPZwtf6A+vJLc6ttXY1ZHU+7PCURTzcCgrq5hoiIiIiUisUvgSA7MJsdmTuAGre89UxtCPtm7WnuKyYtXvX1mbzGqw6H3ZoNlPm7m59m59fN9cQERERkVqh8CUAbDq8CQODtsFtae7XvEZ1mEwm+5Lzn+/9vDab12DZw1ddDTsELCd6v9TzJSIiIlK/ubu6AVI//Jb+GwA9I3uWO5acnExmZmaV6mlPewA+/uNjJkdNxmQynfWcsLAwWrduXfXGNhABgFtJifWLwEBISamT65R5eOBRUKCeLxEREZF6TuFLANh1ZBdgHTp4quTkZDp17kRBfhV7VTyAR+BwwWF6D+4NR85+io+vDzu272h0Aew82xtvb/vCGHXB1vOl8CUiIiJSvyl8CQA7j+wEKPd8r8zMTAryCxj56Eiat6nacMTVR1ZzuPgw/f/en25+3c5YNiMpgw+f/pDMzMxGF75a2d7U1XyvEywn5ny5KXyJiIiI1GsKXwKc7Pk6P/T8Co83b9OcqPOjqlRX5+TOHN5/mEz3zCqf0xjZo2QdzvcC67BDUM+XiIiISH2nBTeEvOI8DuYcBMoPO6yJDiEdANh/bD9llrJzrq+hamN7U8fhyz7sUAtuiIiIiNRrCl/Cnqw9AIT4hBDqG3rO9UX4ReDn4UeJpcQe6pqiaNub4OA6vY59tUP1fImIiIjUawpfcnK+Vy30eoF1yfn2zayrHtqCXVNk7/mq4/ClYYciIiIiDYPCl5x1vldNtAtpB8C+o/tqrc6GRsMORURERORUCl9S6z1fgL3nKyU3hbzivFqrt8EoKaGl7X1dDzu0rXaY1wQ/ZxEREZEGxOXha+HChURHR+Pt7U1cXBw//fTTGcuvXLmSTp064e3tTffu3fn0008djn/wwQcMGjSI0NBQTCYTW7duLVdHYWEhf/3rXwkNDcXf359Ro0aRlpZWm7fVoOzMrHiZ+XPh7+lPhF8E0DR7vzzT03EDLG5u4OdXp9cqU8+XiIiISIPg0vC1YsUKpk2bxqxZs0hMTKRHjx4MHjyY9PT0Cstv2LCBcePGMWnSJLZs2cKIESMYMWIEv/32m71MXl4el1xyCc8++2yl173//vv5+OOPWblyJd988w2HDx/m+uuvr/X7awgMw6iTYYcA7UOsvV97j+6t1XobAs+UFACK/f3BZKrTa2nBDREREZGGwaXha+7cuUyePJmJEyfSpUsXFi1ahK+vL0uWLKmw/Pz58xkyZAgPPfQQnTt35sknn6RXr14sWLDAXubWW29l5syZxMfHV1hHdnY2r7/+OnPnzuWKK64gNjaWN954gw0bNvDjjz/WyX3WZ+l56WQXZWPCZF8ivrZ0aGatb+/RvRiGUat113eehw8DJ8JXHVPPl4iIiEjD4LLwVVxczObNmx1CktlsJj4+noSEhArPSUhIKBeqBg8eXGn5imzevJmSkhKHejp16kTr1q3PWE9RURE5OTkOW2Ng6/VqE9wGb3fvWq27VVArPMwe5BbnkpqbWqt113eeqdb7LQ4IqPNrWbTaoYiIiEiD4LLwlZmZSVlZGREREQ77IyIiSE2t+Bf11NTUapWvrA5PT0+CT1sE4Wz1zJkzh6CgIPvWqlWrKl+zPquLxTZs3M3utGtmXfVwV9auWq+/PvNyYs+Xhh2KiIiINAwuX3CjoZg+fTrZ2dn27eDBxvHw4Lqa72Vjq3f3kd11Un99ZZ/z5YSeLz3nS0RERKRhcHfVhcPCwnBzcyu3ymBaWhqRkZEVnhMZGVmt8pXVUVxczLFjxxx6v85Wj5eXF15eXlW+TkNRlz1fADEhMQAcOn6IvOI8/DzrduW/+sIWvoqc0fNlW2pe4UtERESkXnNZz5enpyexsbGsW7fOvs9isbBu3Tr69etX4Tn9+vVzKA+wdu3aSstXJDY2Fg8PD4d6du7cSXJycrXqaSzquucrwCuASH9rqN2d1UR6v8rK8DjxRwKn9Hx5egIner4sljq/noiIiIjUjMt6vgCmTZvG+PHj6d27N3369GHevHnk5eUxceJEAG677TZatmzJnDlzALj33nsZMGAAL774IsOGDWP58uVs2rSJxYsX2+vMysoiOTmZwyfm3Ozcae3ZiYyMJDIykqCgICZNmsS0adMICQkhMDCQqVOn0q9fP/r27evkT8C1Si2l7M2yLgNfm8/4Ol1MSAypuansztpNz8iedXadeuPgQcylpRQBJb6+dX45W/gyGQbk5kJgYJ1fU0RERESqz6Xha+zYsWRkZDBz5kxSU1Pp2bMna9assS+qkZycjNl8snOuf//+LFu2jBkzZvDoo48SExPDqlWr6Natm73MRx99ZA9vADfeeCMAs2bNYvbs2QD885//xGw2M2rUKIqKihg8eDCvvPKKE+64fjlw7AAllhJ83H04L/C8OrvO+aHn813yd+zN2kuZpQw3s1udXate2Gd9qPQBAHPddy4bbm6UAB4A2dkKXyIiIiL1lEvDF8CUKVOYMmVKhce+/vrrcvtGjx7N6NGjK61vwoQJTJgw4YzX9Pb2ZuHChSxcuLA6TW10dmZaewVjQmMwm+ouJLQIaIGvhy/5JfkkZyfTtlnbOrtWvbDX2pu4F6j6bMRzYDKRDYQBNJJHIIiIiIg0RlrtsAmr68U2bMwms33hjSYx7+tEz9deJ14y2/4m+0zFRERERMSFFL6asLpebONUTSp8nej52ufES9r7uxS+REREROotha8mzFk9XwDtQ9pjwkRmfiZZBVl1fj2XcmXPl4YdioiIiNRbCl9NmO3BxzGhMXV+LW93b1oHtQZO9rg1Wi7o+dKwQxEREZH6T+GriSooKeDQ8UPAySGBdc22nP32jO1OuZ5LHD0Kx44BGnYoIiIiIo4UvpqofUet0SDIK4gQnxCnXLNr864AJOckk13YSEPCiV6vktBQCpx4WQ07FBEREan/FL6aqL1HrSGhfUh7TCaTU64Z6BVoH3r4e8bvTrmm052Y71V0Xt09N60iGnYoIiIiUv8pfDVRe7L2ANC+WXunXrdbc+sDsRtt+DrR8+Xs8KVhhyIiIiL1n8JXE7U360TPl5PDV5fmXTBh4vDxw41z1UMXhS8NOxQRERGp/xS+mijbsMMOIR2cel0/Tz/aNmsLwO/pjbD3a6d1+f6iVq2celn1fImIiIjUfwpfTdSpc76czTb08LeM35x+7Tp3InwVRkc79bKa8yUiIiJS/yl8NUGlllIOHDsAOH/YIUCnsE6YTWbS89I5WnLU6devM0ePQkYGAEWtWzv10hp2KCIiIlL/KXw1QcnZyZRaSvFy86JlYEunX9/Hw8c+3HFv4V6nX7/O7Drx8OgWLbD4+Tn10hp2KCIiIlL/ubu6AVI7kpOTyczMrFLZHzN+BKCFTwu2btl6xrLbt9fNA5G7Ne/GriO72FvQiMLXiSGHdOzo9Etr2KGIiIhI/afw1QgkJyfTqXMnCvKr+Fjf3sA1sH/zfmIfjK3SKbm5uTVvYAU6hnXEw+xBdlk2OHeEXt2pD+GruBiKisDLy+ltEBEREZEzU/hqBDIzMynIL2DkoyNp3qb5Wcv/mPMj2/K20e3CbvS/vP8Zy+7euJv1S9ZTWFhYW80FwNPNk+4R3UlMSYQ+tVq167gwfB0/9YvsbAgPd3obREREROTMFL4akeZtmhN1ftRZyxX/Xgx5cF6L84hqeebymclVG8pYExe1uMgavjpDRmFGnV3HaVwYvixAma8vbvn5Cl8iIiIi9ZQW3GiCbA83DvEOcWk7Iv0jifSMBDf4IOkDl7blnJWVwe7d1vcuCF8AZf7+1jda8VBERESkXlL4amIMw+BogXV59xAf14YvgK6+XQF4P+l9isuKXdyac5CcbJ1r5ekJbdq4pAllthUWteiGiIiISL2k8NXE5JXkUWIpwYSJYO9gVzeHtt5t4TgcKTrC+3+87+rm1JxtVciYGHBzc0kT7D1fCl8iIiIi9ZLCVxNjG3IY6BWIm9k1IeFUZpMZNlnfL/h5gWsbcy5+/dX62r27y5qgYYciIiIi9ZvCVxNjn+9VD4Yc2m0Gd5M7Gw5usC7A0RDVg/Bl0bBDERERkXpN4auJsc33aubTzMUtOUUuXNniSgDmJsx1cWNqqB6ELw07FBEREanfFL6amKOFJxbbcPFKh6e7td2tACz7dRm/p//u4tZUU0nJyTlfF1zgsmZo2KGIiIhI/abw1cTYhh3Wq54voHNwZ67vfD0GBjO/nunq5lTPzp3WABYYCK1bu6wZ9vB19KjL2iAiIiIilVP4amLsPV/1ac7XCU9c/gQmTHyw/QM2H97s6uZU3bZt1tfu3cFkclkzSoOCrG+yslzWBhERERGpnMJXE1JYWkh+ST4AzbzrV88XQNfwrtx8wc0AzFg/w8WtqYZ6MN8LoEzhS0RERKReU/hqQmyLbfh6+OLl7uXi1lRs9oDZuJvdWbNnDd8nf+/q5lRNPQlf9p6vI0dc2g4RERERqZjCVxOSVVgPl5k/TfuQ9tze83YA/v7V3zEMw8UtqoJffrG+KnyJiIiIyBkofDUhWfknwlc9W+nwdDMum4GnmyffJn3L/3b+z9XNObPDh+HPP8FshgsvdGlTyoKDrW+ysqAhhFYRERGRJkbhqwk5UmDtEQn1DXVxS86sVVArHuj3AAD3rrmXvOI8F7foDDZutL527Qq21QZdpDQw0PqmqAjy813aFhEREREpT+GrCcnMzwQgzDfMxS05u79f+ndaB7UmOTuZp757ytXNqZwtfPXt69p2ABZfX/DwsH6hoYciIiIi9Y7CVxNhGIY9fIX61O+eLwA/Tz/mD5kPwAsbXmBn5k4Xt6gStvAVF+fadoB1mfvQE99brXgoIiIiUu8ofDUReSV5FJUVAfV7wY1TXdfxOobGDKXEUsKUz6bUv8U3yspg0ybr+/oQvgBCTnxv1fMlIiIiUu8ofDURR/Ktv4wHewfj4ebh4tZUjclk4qUhL+Hl5sWX+75k5R8rXd0kR3/8Abm51rlenTu7ujVWtp4vhS8RERGRekfhq4nILDgx38un/s/3OlX7kPY8cskjANzz2T1kFdSj4XS2IYcXXQRubq5ti43Cl4iIiEi9pfDVRNjne9XzlQ4r8sglj9AprBNpeWnc//n9rm7OSd9+a32tB4tt2GnOl4iIiEi9pfDVRNiGHTbE8OXt7s2S4UswYeLtX97m092furpJ1udorV1rfR8f79q2nEpzvkRERETqLXdXN0Ccw/aMr/o67HD79u1nPO6FFze1u4ml+5Zy+we3s+LyFQR4BJy13rCwMFq3bl1bzTzpt98gNRV8fODii2u//prSsEMRERGRekvhqwkotZRytOAoUP+e8ZWblQvALbfccvbCHsD/QVpIGpf/43JYffZTfHx92LF9R+0HMFuv14AB4OVVu3WfCw07FBEREam3FL6agKMFRzEw8HTzxN/T39XNcVCYWwjAwLsHEtMj5qzlDxcdZnXWaugNwwYNo6VXy0rLZiRl8OHTH5KZmVn74euLL6yvgwbVbr3nSj1fIiIiIvVWvZjztXDhQqKjo/H29iYuLo6ffvrpjOVXrlxJp06d8Pb2pnv37nz6qeMcIMMwmDlzJlFRUfj4+BAfH8/u3bsdykRHR2MymRy2Z555ptbvrT6wrXQY6hOKyWRycWsq1qxlM6LOjzrrFts9lt4tegPwQ/4PhLYPrbRs8zbN66axhYUnF9uob+FLc75ERERE6i2Xh68VK1Ywbdo0Zs2aRWJiIj169GDw4MGkp6dXWH7Dhg2MGzeOSZMmsWXLFkaMGMGIESP47bff7GWee+45XnrpJRYtWsTGjRvx8/Nj8ODBFBYWOtT1xBNPkJKSYt+mTp1ap/fqKrbFNurbkMOaim8bT5BXEMcKj/HV/q+c34B166CgAFq0gC5dnH/9M9GwQxEREZF6y+Xha+7cuUyePJmJEyfSpUsXFi1ahK+vL0uWLKmw/Pz58xkyZAgPPfQQnTt35sknn6RXr14sWLAAsPZ6zZs3jxkzZnDddddxwQUX8Pbbb3P48GFWrVrlUFdAQACRkZH2zc/Pr65v1yUa8kqHFfFy9+Ka868BYOOhjSRnJzu3AStPPOx51Ciobz2Jp4Yvi8W1bRERERERBy4NX8XFxWzevJn4U5bqNpvNxMfHk5CQUOE5CQkJDuUBBg8ebC+/f/9+UlNTHcoEBQURFxdXrs5nnnmG0NBQLrzwQp5//nlKS0srbWtRURE5OTkOW0Nhe8ZXfV3psCY6hHSgZ2RPAD7a+RElZSVOue7BXbsoff99AHb26EFiYiIJCQkkJiY6bGdbvbHO2IYdWiyQne2aNoiIiIhIhVy64EZmZiZlZWVEREQ47I+IiGDHjh0VnpOamlph+dTUVPtx277KygDcc8899OrVi5CQEDZs2MD06dNJSUlh7ty5FV53zpw5PP7449W7wXrAMIyTc74aSc+XzaB2g9iTtYcjBUf4Oulrrmp3VZ1eLzk5mZnduvFmSQlJQOc77sAATIBRyTnHc3PrtE3leHmBnx/k5Vl7v5o1c+71RURERKRSTXa1w2nTptnfX3DBBXh6enLXXXcxZ84cvCpYOnz69OkO5+Tk5NCqVSuntPVc5JfkU1hqnesW6tO4wpePhw/XxFzD8t+Xk3Awgc5hnTkv8Lw6u15mZia3lVh72Dx79WJT7958uns3j61fz4KBA+kXc3K1Rtv+0+cZOkVoqDV8ZWZC+/bOv76IiIiIVMilww7DwsJwc3MjLS3NYX9aWhqRkZEVnhMZGXnG8rbX6tQJEBcXR2lpKQcOHKjwuJeXF4GBgQ5bQ2B7uHKQVxAebh4ubk3t6xjWkQvCL8DAYNWOVXU6/NBn1y6uAAyTiajLLqNXVBRtT/QsdWjWjF5RUfatrSt7nMLDra+VLFojIiIiIq7h0vDl6elJbGws69ats++zWCysW7eOfv36VXhOv379HMoDrF271l6+bdu2REZGOpTJyclh48aNldYJsHXrVsxmM+G2X1wbCft8r0ay0mFFhnQYQoBnAEcKjrBu/7qzn1BDEW++CcDRtm0hKKjOrnPObH9kOGWYrYiIiIi4nsuHHU6bNo3x48fTu3dv+vTpw7x588jLy2PixIkA3HbbbbRs2ZI5c+YAcO+99zJgwABefPFFhg0bxvLly9m0aROLFy8GwGQycd999/GPf/yDmJgY2rZty2OPPUaLFi0YMWIEYF20Y+PGjQwcOJCAgAASEhK4//77ueWWW2jWyObI2MJXY5vvdSofDx+uPf9alv22jI2HNtIprBPRwdG1e5FffiHk888BSOvZk5Darb122cLXab2/IiIiIuJaLg9fY8eOJSMjg5kzZ5KamkrPnj1Zs2aNfcGM5ORkzOaTHXT9+/dn2bJlzJgxg0cffZSYmBhWrVpFt27d7GX+9re/kZeXx5133smxY8e45JJLWLNmDd7e3oB1COHy5cuZPXs2RUVFtG3blvvvv99hTldjYRt22Njme50uJjSGCyMvZEvqFv6383/8JfYvtVe5YcCJZ8CtAGLC6nkvom2xGfV8iYiIiNQrLg9fAFOmTGHKlCkVHvv666/L7Rs9ejSjR4+utD6TycQTTzzBE088UeHxXr168eOPP9aorQ1NY3vA8pkMbj+YfUf3cazwGJ/t+Yw4c1ztVDx3Lnz3HWXe3jxUWMiq2qm17mjYoYiIiEi9VC/Cl9SNkrISsgqygKYRvrzcvRjZaSRv/fIWv6T9QrOgqg0hTU5OJjMzs9z+sLAwWiclwcMPA3Dovvs4+MwztdrmOmHr+dKwQxEREZF6ReGrEUvNTcXAwM/DjwDPAFc3xynaBLdhQJsBfJ30Nd/nfM/ZJmclJyfTuVMn8gsKyh27xMuLr318cCsrg5tuIvOGG6AhhC/1fImIiIjUSwpfjVhKbgoALQJaYDKZXNwa57m0zaXsP7afpOwkuAGKy4orLZuZmUl+QQH/HTmSzs2b2/cf+eMP+n7/PW5FRdCnD7z2Guza5YzmnzvN+RIRERGpl1y61LzUrcPHDwMQFRDl4pY4l9lk5vrO1+Nl8oIWMG/7vLOe07l585PP6Tp+nCsTEggAjvfuDV9+Cf7+dd7uWmPr+crNtT5sWURERETqBYWvRsze8+XfwsUtcb5Ar0AuD74cgBX7V/DKz69U7cRff4UVKzCXlfE/YM9LL0FAAxuyGRBwMiweOuTatoiIiIiIncJXI1VcVkxGXgZgHXbYFLXxbgMnnrk89bOprN61+swnbN4MH3wAFgtHOnTgBsDw8qrzdtY6kwnOO8/6/s8/XdsWEREREbFT+Gqk0nLTMDDw9/QnwKuB9dzUpu/gutbXYTEsjH1vLJsPb66wWMiuXbD6RDi76CKSBg6k1InNrHUKXyIiIiL1jsJXI2Wb79UUhxyebnr36VzV7iryS/K55p1r2HXEceGMoUCbb76xftGnD1x9tbX3qCFT+BIRERGpdxS+GqnDuU1zsY2KeJg9eG/Me3QP705qbir9Xu/Hd0nfAeCVlMQywGQY0LMnDBnS8IMXKHyJiIiI1EMKX41UyvGTy8yLdQGOtbeupU/LPmQVZBH/n3iWJb5Ju4ceIgjIjYyEa65pHMELFL5ERERE6iGFr0aouKyYjPymvdhGRSL8I1g/fj3Xd76e4rJibv54Ik9G72WvB+yLjwc3t3LnbN++ncTERBITE9m+fbsLWl1DtvB18KBr2yEiIiIidnrIciOUmmt9uG6AZwD+ng3o+VRO4Ovhy8rRK3l4+SRe2PUmcy6FeRfA3y2H6U47TFh7vlJyczEBt9xyS7k6jufmOrnVNdC6tfU1Kcm17RARERERO4WvRsi+2EYD7vXKzs4mPz/fYZ+vry9BQUHnXLfZgOcX7KLPMZg23Is/g4qYwVd8bOzkr1zEcDpyrLAQA1gwcCD9YmIA+HT3bh5bv57CwsJzbkOda9vW+nr0KBw7BsHBrmyNiIiIiKDw1SjZ5ns11MU2srOzWbBgAaWljou9u7u7M2XKlGoHsNOHC4a9/z6tN2zgel9fyiIfZ9z7D+F1uRsb3Q6xkUN4GGbatwiBWEjyP04sZXhyckji7qNHaZ5i/YwzTwuI1ZFNIbs4wobgg3AZ/CvqV1Io40IiKcVS43oB60OWw8MhPR3274cLLzy3+kRERETknCl8NUK2lQ4b6jLz+fn5lJaWMrJTJ5r7+QKQkZfPhzt2kJ+fX+XwlZtlHR546tDBSMAWxabl5/PSfQ8BULSlDHoDXaGkuYUdYZlwLTzPJp4v2wSZQDgwBKZmr4fv10M2eBw3QxXW6MihiP0+R6EnzGuZyDS+4w+TdV4era3b++zmfXYD4N7NWm+OuahK91qhdu2s4WvfPoUvERERkXpA4auRKSotIjM/E2jYww4Bmvv5EuVf8wdEF+ZahwcOvHsgMT1iyM3NZcRT7xCcZfCzLyzohD04XdOhPS2CgjBKDI6mF7KJwxwwZePRzEyJuwUisG6nKcECpTCmbDXNS9cTaPHC23AnrVUuTIS7mq3luOUzstwKIAaIgTUcsJ8fWuaDf64nSfuyGdC8JbnNLez0OEKuuRi6w19K1hFIMIPpUP0PoF07+PFHa/gSEREREZdT+GpkbIttBHoF4ufp5+LW1A/NWjYj6vwowj75kdFZBmUmWDOqE3eE+7L7SBbrDxwgKMSDqHBr0GtBIGXpBgf+yGZ05xjCw4NJI48/jmfwy7E02oQHYPEycaQ0n3y3UnCHHPdicig+eVFvoBkkcfzkvlysPWh/Aget25H8Ao5QAMA3HDpZ9jzgOshqXsgQljLV6MPzXFW9G2/Xzvq6f3/1zhMRERGROqHw1cgcOm79Bb6hDjmsK54FxYx78wcA1sWGU9Yugigg4yxztkyYCMKbILwpLCjll31pXOLVkg7hEfy6PY0PVu2AC6F/5yiaBftRZC6j1GQhPTePP9Iy6dU8nDa+IQSVepF0JJv1+w9wddtoWrULsV9jd1bWyf0h1v2Je1PY9FoKAya05JvzDvGy6SeyjAKGVKcHrH176+uuXdX6rERERESkbih8NTJ7svYA0DqotYtbUr8MXPIVoZm5HPCCj/tHEVpbFZ9YF6NtQBAdQk+OS9xWnMYfuZl0bhVChzDr/mxzEWRCSHNvey8bQIZbfrn9AVlZUAo37D2faS0v5XpWsNT0K0XhZVVvW6dO1teG9HwyERERkUZMD1luRIotxSRlW5/rdH7o+S5uTf3RMekIfd/fCMD/nQ/FHuUfplyfDacjrzAMgPci/4CuVTyxc2fr6+HDkJ1dN40TERERkSpT+GpEDhYdxGJYCPMNI9S31vp2GjRv4K8fbMZkwIbLzmdNA/1Y7iSW+42+1i9GwE6frLOfFBQELU4MP92xo87aJiIiIiJVo/DViCQVqtfLgWGwAGiZmUtOWADv3trP1S06J89zFT1zIsEDHo/+kSNU4Rljtt6vP/6o28aJiIiIyFkpfDUWZmvPF0DH0I4ubkz9MHjzPiYBZSZY9cgICvy8XN2kc+KGmb8mXwQZkOVRyF2sxsA480ldT4xR/PXXum+giIiIiJyRwldj0QqKjCJ83H04L/A8V7fG5S744hcmfbENgKWDu7Evtp2LW1Q7fCwe8AG4GSbeN23nbX458wm2hytv3lz3jRMRERGRM1L4aixOdHadH3o+ZlMj+bYaBmEZeXT/NY3LtmZwUxq0OpCJucxS6SmmMguXLP2O6+esws0weB343yUxzmuzM6TAranW4YRT+YxDbjmVl42Ntb5u2QKWyj83EREREal7Wmq+sTglfDV4hsH1GfD3/+ygdUaBfffNAI9+QLH3xxw+vwWHOrfkUKcW5DXzx62klMg9qfRc8wvhSRkAfHJReyb/vJeRJpNr7qMOjc7oyO7I4/xgOsjM4K+hslvs3Bm8veH4cdizB85vBD8fIiIiIg2UwlcjcCD3AISCGTPtm7V3dXPOiWd+EZMWfEWf3wEKKHE3kxLlzxEvE9kZ2fQp8cQ3v5jobUlEb0uqsI4Cf2/+N/4SFltKMX7ey9GjR0lJSSEjI8Op91KX3DDxH0ZygbGIrV6pcEklBd3doWdP+PFH2LhR4UtERETEhRS+GoFvU78FoIVnC7zcG+6iEn5H87jtwbeJ2JdOKfBFXAS/XtaeAl8PUnKPs3hzInfdMZ7uxe603HGI87YfInJPKt65hRgmExltmpPUow3f9o3mhTf/TemhUgDWr1/P+k3r7dcpKi520R1W38Hjx0lMSbF/vf/oUQB2Hz1K85QwHvDpx+PNvoGB8L/E/1VYR8uYGCJ+/JHM998nuevJh4SFhYXRurUexi0iIiLiLApfjcC3adbw1ca7jYtbclJ2djb5+Y5Lofv6+hIUFFRh+aDcQsbf/xbhSRlkB/swtG0B3S5pSZSvh0O59COZbGvenG09I6FnZIX1ZqWkUFpaSu+oKDZtT2Fg22hi2oSw+0gW6w8coLS0tJbvtvYV5lvb+NymTTy3aVO541PXr4f1JwLl9cAF8MTvT/DEPU9AgWPZocAnwNH//Y/Y/50MaD6+PuzYvkMBTERERMRJFL4auCP5R/gly7riXWuv+vFLdHZ2NgsWLCgXctzd3ZkyZUq5ABYBPP7v7wjPOE5OWAAvTB/Kho9X0O2UMsdP9FZ9+OGH5a5XWb0BXtZewGbe3kT5B5CRX4XnYtUTJUVlAFxwaRh9O5/8vu7OymL9/gNc3TaaViEhAKQUHOfj3N0QDNEzo7mq2VWYTpnn5l1QjOX+t4gxDP72zE0ca+ZPRlIGHz79IZmZmQpfIiIiIk6i8NXAlRllTOgwgSWrlhBwVYCrmwNAfn4+paWljOzUieZ+vgBk5OXz4Y4d5OfnO4SkkJx81gOtMo6T3TyQt/45nnRzUbk6C08Euaujo2kVGmLfb6s3KSmJ5s2bW/c1orld/sEeREWd/L5muOVDJoQ09yYq/MT+XGAHmHqbOFB0gD8sf9A1uKtDj+ChLi1p9fufXJp6jE1xjWz1RxEREZEGQuGrgQv3C+evnf/KkluWwFWubo2j5n6+RPlXHghDDx7hr299Q3MgI8iHZf8cz9GWIXDKHKfThfh4O9R5ph6xhjC8sDYcLy6GXDD2GNABfkj9gR/W/oD78ZM9gjsu7kir3/+k0w872XTdRa5usoiIiEiTpPAl58Q2tyvoaB7tdqcTkF3AeTk5ZGRA1JECTH7+GKcv9W4Y9PhiG0Nf+hSv/GJ2AbPG9CTQXATVXJWwoh4x29yuMktZbd1mvWb7DIa4t2FXSTb7PI7h1t1E6dZSe0/jjos7cdXidbRN3I/vsTwXt1hERESkaVL4khrLTz9C8axXmPynhd65jsfuAPh9O4VeuzjUMpCdzT3xy4SB722i96+HidqdCsDvLYIZePgYGYkJsDvBoY7qrEp4ao9YQ5rbVZtCfXwY596a5cZv7DUfhe6QVZRFFFEcaR3GoU4taLnjMD2+2MbentGubq6IiIhIk6PwJdVmLi3jwk+3cMmb62l21AKAxQSHwnzIDPIkp6QE76x8ehSY8C4qo/2+o7TfZ111j72JAJR4ufPtLZcxx8NCxqKv6d0iil7nRwE0qFUJ6xt3zIyhK0vKtpDmkccnf35CRHgEYb5hbLn6QlruOEzvjzbx4QVaZENERETE2RS+pMpMFoOu63/jiiXrCTlsfd5Ukhds7HceBy5qTf6JZeG3pafx4fYd3NrxfPrjz3l/5hDw51EOpmQS3aUjxy7swB8DupAf5ItlpXWZ/AAvrybfc1VbPHFjSH573jJto8C/gMWbFzMsZhieV13AFa9/ReihLHpv2sdrrm6oiIiISBOj8CXlnPqMrqMnHurbdutebn/9e1rtSwcgt5kfq4f3YPz+DUyIDS/3PC4Ai9lEarg/qZH+pHQKYPHmTO68cwBRUVHOu5kmygt3+AWi4qNIKUhh1c5V7AvfxwU3xHLNku8Zsepnprq6kSIiIiJNjMKXODj9GV0XHYDPgUErrc8SK/TxZMON/flxdD+Sjh2hePEG1zVWzqwEhp03jL0le/n6wNdsS9/GLR0CmX6lF3/97jhPu7p9IiIiIk2Mwpc4yM/Pp7SklCd9z2P0r8fo+Kd1JY0SEyxsAQcfG0tAx3bWwsdc106pmiOZR4hpHkNAqwC+SvmK7OIcHrkUnukNf9kE2//1D4w7/k7z5s31sGURERGROqbwJXaB6dlc8NFW7v8JOhX8CVhD138NWDukJe8UHOLOQB/qx6Oc5UwqfP6ZGYgEzoNjvvDMpQAf4vvOhxQlmXnmL88ysPNAOjfvjK+HrwtaLSIiItK4KXw1IafO5QLwzi8mJjWXbrvSidm4hxa7DmMyrMcKPM0kxrbgzSAv/r1mLwP9PKAAh2dwVed5XOJcFT3/DE6sJPnTATqdF4zJOMaBaMgPALpZeOj7h+B7MGGifUh72jdrT5ugNrQOak2b4BOvQW1oGdgSd7P+6RARERGprnrxG9TChQt5/vnnSU1NpUePHrz88sv06dOn0vIrV67kscce48CBA8TExPDss88ydOhQ+3HDMJg1axb/+te/OHbsGBdffDGvvvoqMTEx9jJZWVlMnTqVjz/+GLPZzKhRo5g/fz7+/v51eq+uUpiawdYXXuPCY2XEHofY49CpoHy5nZ2jeNaSQsBV3WkWGkzWr2nW80/8Mu/Qk3JCdZ7HJc516vPP4ORKkm0Lg/nsvWP82K0Tx/N28GV72HieiV/P8+CIezF7svawJ2tPhXWaMRPiFUKYdxhhXmE0925ufx/mHUawZzCtw1vTtW1XgryD8HTzxM3khun0h22LiIiINDEuD18rVqxg2rRpLFq0iLi4OObNm8fgwYPZuXMn4eHh5cpv2LCBcePGMWfOHK655hqWLVvGiBEjSExMpFu3bgA899xzvPTSS7z11lu0bduWxx57jMGDB/PHH3/g7e0NwM0330xKSgpr166lpKSEiRMncuedd7Js2TKn3r8zxL+2lv4rNmA2yh9L8oI/u7Rkd58O/H5BK/aW5vHhhx9yp5ebQ7mSsjLAsSelJs/jOr237Pjx49W8G6kNBfnW71nf33bQG5i3H57BAIpJ94NNzeGbZrA1CJKDICMIjgdDcSBY3C1kFmWSWZRZrWuaMeNmcsPd5Ia72R03szuGYWD/P+PkqwWLwzEzZrzdvO2bv5c/wX7B+Hr44ufph7+nP34e1tdTNx93H3voM2FyeG8xLBSVFVFYWuiwpWelcyzvGMVlxRRZiiguK6bMKMNsMmM2ma33YjJjxgwmcDe542X2wsvNC083z5PvzZ4V7g9vFk6blm3wcPOgzFJGmVF2xleLYXHYZxgGPh4++Hr44uvhi4/7yfe+Hr74e/rj5e5VWz8qIiIiUotcHr7mzp3L5MmTmThxIgCLFi3ik08+YcmSJTzyyCPlys+fP58hQ4bw0EMPAfDkk0+ydu1aFixYwKJFizAMg3nz5jFjxgyuu+46AN5++20iIiJYtWoVN954I9u3b2fNmjX8/PPP9O7dG4CXX36ZoUOH8sILL9CiRQsn3b1zHA8LxGxAshccaRVEVqtmpLQI4DufEhbv2QEcgp2HYOfJcyrrzTq1J6U6z+OqcA4SgLVjTQ9UdrLiImuYHjg0mmYh3lzyxw4eu/BShvyRRo9fDjD0QDFDD5Q/z2KCFD/YE+7BgeaeHGzmRqqfQbqfQbpPGZleZWS7l5LtYSHXG4xTOrssWLAYFkqMErBUv81FliKyS7KtX+QBWdWvo6nwMHsQ4BVAgGcA/p7+BHhZXz3dPPEwe+Dh5oGH2QN3s7v9FcDA+heaU4Ow7f8AcnNzKSgscCxjOwcD6/+fPPfUOoET4dsdN7P11d3sbt8X6BdISHAIHm4emE3m8m04pb7Tj1XY5tOOZedkk1uQaw+xFsNCqVFqDba2ry2nfX3iuC0Al1pK7ffhZnbDjBl3sztenl74+/rb99vvy2y9V/v7U/bZvq6o/JmO2f4AcPofEwBMJtM5vT+1rtM/V9v704+d+j2p7WNVub7FsFT4fbe9WgxLhT8Tp36Gp3+Wp+47/bOq6rHK6jrX69QG2+dYK3VRO3XVVptqqz3g2KbT663qsTO1yfZ9hfL//VW079Tvf2X/3Va27/R2VNT+yu6pIZTt0rwLl7a5lIbCpeGruLiYzZs3M336dPs+s9lMfHw8CQkJFZ6TkJDAtGnTHPYNHjyYVatWAbB//35SU1OJj4+3Hw8KCiIuLo6EhARuvPFGEhISCA4OtgcvgPj4eMxmMxs3bmTkyJHlrltUVERRUZH96+xs6y+BOTk51b/xWpaba12R8PCuwxQXlA9N6S2a8d9pV7Hsq7Vc2jqIYG8PKCnkzyM5cAw6hzQj2M8PgIy8PPZkHWX77gyyAov485D1/jJS86EEdu8/Ss4R6y/uf+ZYzz91X2X7bftOvRbA3vSjpJPHoUPHSfQ8fNbzq3OtVIs1HO4/eJSS4rJaq9e2z/bZcLxm55+pbHqGte2pqfkkbj9c7XrPdi3bZ3Msr4BSdwtY4Gtf2BrfEfMV5xOVmUvUnkO4/7KbbmZPziu0EFZQRnCJQUAuXJhbwoX7SjgTC5DnAaVmKHU78Xpi+zQmjE/7d8L2b6v9f0go/z8uYP3H1mKyUEYZmamZ7P55t/VfLw/AE+t7zxObxynvT/0XrqLfW8qA0vJbZIdIAgIDrL11hhsmTCf/wTc5/gJosf2fyfpaZiqzvlJmb7PtWFFxEYX5heCGdbNg/QxsYdT2tXHasVNf4eS9u5/y3uNEnUAJJWTlZ5GlhCoiIo3c2I5j6XF9D1c3w54JzvrHBMOFDh06ZADGhg0bHPY/9NBDRp8+fSo8x8PDw1i2bJnDvoULFxrh4eGGYRjGDz/8YADG4cOHHcqMHj3aGDNmjGEYhvHUU08Z559/frm6mzdvbrzyyisVXnfWrFm2X4m0adOmTZs2bdq0adOmrdx28ODBM+Yflw87bCimT5/u0ONmsVjIysoiNDTUZQsJ5OTk0KpVKw4ePEhgYKBL2iBNh37exFn0sybOop81cRb9rDV+hmFw/Pjxs05fcmn4CgsLw83NjbS0NIf9aWlpREZGVnhOZGTkGcvbXtPS0oiKinIo07NnT3uZ9PR0hzpKS0vJysqq9LpeXl54eTlOYg8ODj7zDTpJ4P+3d+9BVdZpHMC/53A5HJQDXripILgySkrERVnEdCZQcI4OYhd0aD1eVleDQmylssRudtSUHFwXspnEDJe0NSsSdxGMlAwRF1NBNJNoC5ZKCW/I5Tz7h+O7vYKVrZ4j9f3MnBne3+/xPc/vzOPAM+97fq/BwP/IZDWsN7IW1hpZC2uNrIW19uvm6ur6kzFaK+RxQ46OjggLC0NxcbEyZrFYUFxcjMjIyG7/TWRkpCoeAIqKipR4f39/eHl5qWJaWlpQXl6uxERGRqK5uRmVlZVKTElJCSwWCyIiIm7Z+oiIiIiIiK6x+W2HixcvhslkQnh4OEaPHo1169bh4sWLyu6HM2fOxMCBA2E2mwEAqampGD9+PNauXQuj0Yj8/HwcOnQIGzduBHB1l5dFixbhxRdfREBAgLLV/IABAzB16lQAQGBgIOLi4jBv3jzk5OSgvb0dKSkpmD59+q9up0MiIiIiIroz2Lz5SkxMxDfffIOMjAw0Njbinnvuwe7du+Hp6QkAqK+vh1b7vwt0Y8aMwdatW/HMM89g6dKlCAgIwM6dO5VnfAFAeno6Ll68iPnz56O5uRljx47F7t27lWd8AUBeXh5SUlIQHR2tPGQ5KyvLegu/BXQ6HZYvX97ldkii24H1RtbCWiNrYa2RtbDW6BqNyC184AMRERERERF1y6bf+SIiIiIiIvqtYPNFRERERERkBWy+iIiIiIiIrIDNFxERERERkRWw+erBNmzYAD8/Pzg5OSEiIgIHDx60dUrUw5jNZowaNQouLi7w8PDA1KlTUVtbq4ppbW1FcnIy+vXrh969e+P+++/v8qDz+vp6GI1GODs7w8PDA0uWLEFHR4c1l0I9yMqVK5XHglzDOqNb6auvvsLDDz+Mfv36Qa/XIygoCIcOHVLmRQQZGRnw9vaGXq9HTEwMTp06pTrH2bNnkZSUBIPBADc3N8ydOxcXLlyw9lLoDtbZ2Ylly5bB398fer0ev/vd7/DCCy/gh3vZsdboemy+eqi33noLixcvxvLly3H48GEEBwcjNjYWTU1Ntk6NepDS0lIkJyfjk08+QVFREdrb2zFx4kRcvHhRiUlLS8P777+P7du3o7S0FF9//TWmTZumzHd2dsJoNKKtrQ0ff/wxNm/ejNzcXGRkZNhiSXSHq6iowKuvvoq7775bNc46o1vl3LlziIqKgoODAwoLC1FdXY21a9eiT58+Sszq1auRlZWFnJwclJeXo1evXoiNjUVra6sSk5SUhOPHj6OoqAgFBQX46KOPMH/+fFssie5Qq1atQnZ2Nv7yl7+gpqYGq1atwurVq7F+/XolhrVGXQj1SKNHj5bk5GTluLOzUwYMGCBms9mGWVFP19TUJACktLRURESam5vFwcFBtm/frsTU1NQIADlw4ICIiOzatUu0Wq00NjYqMdnZ2WIwGOTKlSvWXQDd0c6fPy8BAQFSVFQk48ePl9TUVBFhndGt9cQTT8jYsWNvOG+xWMTLy0tefvllZay5uVl0Op387W9/ExGR6upqASAVFRVKTGFhoWg0Gvnqq69uX/LUoxiNRpkzZ45qbNq0aZKUlCQirDXqHq989UBtbW2orKxETEyMMqbVahETE4MDBw7YMDPq6b7//nsAQN++fQEAlZWVaG9vV9Xa8OHD4evrq9TagQMHEBQUpDwYHQBiY2PR0tKC48ePWzF7utMlJyfDaDSq6glgndGt9d577yE8PBwPPvggPDw8EBISgtdee02ZP3PmDBobG1X15urqioiICFW9ubm5ITw8XImJiYmBVqtFeXm59RZDd7QxY8aguLgYJ0+eBAAcOXIE+/fvx6RJkwCw1qh79rZOgG7et99+i87OTtUfIQDg6emJEydO2Cgr6uksFgsWLVqEqKgojBw5EgDQ2NgIR0dHuLm5qWI9PT3R2NioxHRXi9fmiAAgPz8fhw8fRkVFRZc51hndSp9//jmys7OxePFiLF26FBUVFXjsscfg6OgIk8mk1Et39fTDevPw8FDN29vbo2/fvqw3Ujz55JNoaWnB8OHDYWdnh87OTqxYsQJJSUkAwFqjbrH5IiIAV69KHDt2DPv377d1KvQr8+WXXyI1NRVFRUVwcnKydTr0K2exWBAeHo6XXnoJABASEoJjx44hJycHJpPJxtnRr8m2bduQl5eHrVu3YsSIEaiqqsKiRYswYMAA1hrdEG877IH69+8POzu7LjuB/ec//4GXl5eNsqKeLCUlBQUFBdi7dy8GDRqkjHt5eaGtrQ3Nzc2q+B/WmpeXV7e1eG2OqLKyEk1NTQgNDYW9vT3s7e1RWlqKrKws2Nvbw9PTk3VGt4y3tzfuuusu1VhgYCDq6+sB/K9efux3qJeXV5cNrDo6OnD27FnWGymWLFmCJ598EtOnT0dQUBD+8Ic/IC0tDWazGQBrjbrH5qsHcnR0RFhYGIqLi5Uxi8WC4uJiREZG2jAz6mlEBCkpKXjnnXdQUlICf39/1XxYWBgcHBxUtVZbW4v6+nql1iIjI3H06FHVL4+ioiIYDIYufwDRb1N0dDSOHj2Kqqoq5RUeHo6kpCTlZ9YZ3SpRUVFdHplx8uRJDB48GADg7+8PLy8vVb21tLSgvLxcVW/Nzc2orKxUYkpKSmCxWBAREWGFVVBPcOnSJWi16j+l7ezsYLFYALDW6AZsveMH/TL5+fmi0+kkNzdXqqurZf78+eLm5qbaCYzopyxcuFBcXV3lww8/lIaGBuV16dIlJWbBggXi6+srJSUlcujQIYmMjJTIyEhlvqOjQ0aOHCkTJ06Uqqoq2b17t7i7u8tTTz1liyVRD/HD3Q5FWGd06xw8eFDs7e1lxYoVcurUKcnLyxNnZ2d58803lZiVK1eKm5ubvPvuu/Lpp59KfHy8+Pv7y+XLl5WYuLg4CQkJkfLyctm/f78EBATIjBkzbLEkukOZTCYZOHCgFBQUyJkzZ2THjh3Sv39/SU9PV2JYa3Q9Nl892Pr168XX11ccHR1l9OjR8sknn9g6JephAHT72rRpkxJz+fJleeSRR6RPnz7i7OwsCQkJ0tDQoDpPXV2dTJo0SfR6vfTv318ef/xxaW9vt/JqqCe5vvlindGt9P7778vIkSNFp9PJ8OHDZePGjap5i8Uiy5YtE09PT9HpdBIdHS21tbWqmO+++05mzJghvXv3FoPBILNnz5bz589bcxl0h2tpaZHU1FTx9fUVJycnGTJkiDz99NOqx1+w1uh6GpEfPIabiIiIiIiIbgt+54uIiIiIiMgK2HwRERERERFZAZsvIiIiIiIiK2DzRUREREREZAVsvoiIiIiIiKyAzRcREREREZEVsPkiIiIiIiKyAjZfREREREREVsDmi4iI6Dfu2WefxT333GPrNIiIfvXYfBER0W03a9YsaDQaLFiwoMtccnIyNBoNZs2aZf3ErOhOaXA0Gg127txp6zSIiH6T2HwREZFV+Pj4ID8/H5cvX1bGWltbsXXrVvj6+towMyIiIutg80VERFYRGhoKHx8f7NixQxnbsWMHfH19ERISooq1WCwwm83w9/eHXq9HcHAw3n77bWX+3LlzSEpKgru7O/R6PQICArBp0yYAQFtbG1JSUuDt7Q0nJycMHjwYZrNZ+beZmZkICgpCr1694OPjg0ceeQQXLlxQvf9rr70GHx8fODs7IyEhAZmZmXBzc1PFvPvuuwgNDYWTkxOGDBmC5557Dh0dHb/48/nyyy/x0EMPwc3NDX379kV8fDzq6uqU+VmzZmHq1KlYs2YNvL290a9fPyQnJ6O9vV2JaWhogNFohF6vh7+/P7Zu3Qo/Pz+sW7cOAODn5wcASEhIgEajUY6v2bJlC/z8/ODq6orp06fj/Pnzv3g9RETUFZsvIiKymjlz5ihNEgC8/vrrmD17dpc4s9mMN954Azk5OTh+/DjS0tLw8MMPo7S0FACwbNkyVFdXo7CwEDU1NcjOzkb//v0BAFlZWXjvvfewbds21NbWIi8vT9VkaLVaZGVl4fjx49i8eTNKSkqQnp6uzJeVlWHBggVITU1FVVUVJkyYgBUrVqjy27dvH2bOnInU1FRUV1fj1VdfRW5ubpe4n6u9vR2xsbFwcXHBvn37UFZWht69eyMuLg5tbW1K3N69e3H69Gns3bsXmzdvRm5uLnJzc5X5mTNn4uuvv8aHH36Iv//979i4cSOampqU+YqKCgDApk2b0NDQoBwDwOnTp7Fz504UFBSgoKAApaWlWLly5S9aDxER3YAQERHdZiaTSeLj46WpqUl0Op3U1dVJXV2dODk5yTfffCPx8fFiMplERKS1tVWcnZ3l448/Vp1j7ty5MmPGDBERmTJlisyePbvb93r00UflvvvuE4vF8rNy2759u/Tr1085TkxMFKPRqIpJSkoSV1dX5Tg6OlpeeuklVcyWLVvE29v7hu+zfPlyCQ4O7nZuy5YtMmzYMFXOV65cEb1eL//4xz9E5OpnOHjwYOno6FBiHnzwQUlMTBQRkZqaGgEgFRUVyvypU6cEgLzyyivKGAB55513uuTm7OwsLS0tytiSJUskIiLihushIqKbZ2/j3o+IiH5D3N3dYTQakZubCxGB0WhUrlhd89lnn+HSpUuYMGGCarytrU25PXHhwoW4//77cfjwYUycOBFTp07FmDFjAFy9PW/ChAkYNmwY4uLiMHnyZEycOFE5z549e2A2m3HixAm0tLSgo6MDra2tuHTpEpydnVFbW4uEhATVe48ePRoFBQXK8ZEjR1BWVqa60tXZ2ak6z804cuQIPvvsM7i4uKjGW1tbcfr0aeV4xIgRsLOzU469vb1x9OhRAEBtbS3s7e0RGhqqzA8dOhR9+vT5WTn4+fmp3t/b21t11YyIiP5/bL6IiMiq5syZg5SUFADAhg0busxf+/7VBx98gIEDB6rmdDodAGDSpEn44osvsGvXLhQVFSE6OhrJyclYs2YNQkNDcebMGRQWFmLPnj146KGHEBMTg7fffht1dXWYPHkyFi5ciBUrVqBv377Yv38/5s6di7a2tp/dNF24cAHPPfccpk2b1mXOycnppj6Pa+cLCwtDXl5elzl3d3flZwcHB9WcRqOBxWK56ffrzu08NxERXcXmi4iIrOra95g0Gg1iY2O7zN91113Q6XSor6/H+PHjb3ged3d3mEwmmEwm3HvvvViyZAnWrFkDADAYDEhMTERiYiIeeOABxMXF4ezZs6isrITFYsHatWuh1V792vO2bdtU5x02bJjqu1AAuhyHhoaitrYWQ4cO/UWfwfVCQ0Px1ltvwcPDAwaD4RedY9iwYejo6MC//vUvhIWFAbh6FfHcuXOqOAcHB3R2dv7fORMR0c1j80VERFZlZ2eHmpoa5efrubi44M9//jPS0tJgsVgwduxYfP/99ygrK4PBYIDJZEJGRgbCwsIwYsQIXLlyBQUFBQgMDARwdTdDb29vhISEQKvVYvv27fDy8oKbmxuGDh2K9vZ2rF+/HlOmTEFZWRlycnJU7//oo49i3LhxyMzMxJQpU1BSUoLCwkJoNBolJiMjA5MnT4avry8eeOABaLVaHDlyBMeOHcOLL754w7VfvnwZVVVVXdablJSEl19+GfHx8Xj++ecxaNAgfPHFF9ixYwfS09MxaNCgn/xchw8fjpiYGMyfPx/Z2dlwcHDA448/Dr1er8rdz88PxcXFiIqKgk6n+9m3JRIR0f+Pux0SEZHVGQyGH73C88ILL2DZsmUwm80IDAxEXFwcPvjgA/j7+wMAHB0d8dRTT+Huu+/GuHHjYGdnh/z8fABXm5nVq1cjPDwco0aNQl1dHXbt2gWtVovg4GBkZmZi1apVGDlyJPLy8lTb0ANAVFQUcnJykJmZieDgYOzevRtpaWmq2wljY2NRUFCAf/7znxg1ahR+//vf45VXXsHgwYN/dN0nT55ESEiI6vWnP/0Jzs7O+Oijj+Dr64tp06YhMDAQc+fORWtr601dCXvjjTfg6emJcePGISEhAfPmzYOLi4sq97Vr16KoqAg+Pj5dtvgnIqLbSyMiYuskiIiI7mTz5s3DiRMnsG/fPlunclP+/e9/w8fHB3v27EF0dLSt0yEi+s3jbYdERETXWbNmDSZMmIBevXqhsLAQmzdvxl//+ldbp/WTSkpKcOHCBQQFBaGhoQHp6enw8/PDuHHjbJ0aERGBzRcREVEXBw8exOrVq3H+/HkMGTIEWVlZ+OMf/2jrtH5Se3s7li5dis8//xwuLi4YM2YM8vLyuuxkSEREtsHbDomIiIiIiKyAG24QERERERFZAZsvIiIiIiIiK2DzRUREREREZAVsvoiIiIiIiKyAzRcREREREZEVsPkiIiIiIiKyAjZfREREREREVsDmi4iIiIiIyAr+CzKU+IKcA8dbAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Total words in Spam messages: 10688\n", + "Total words in Ham messages: 39246\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 600x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAIQCAYAAACmOuUCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATchJREFUeJzt3XtcFnXe//H3BQoIcuEpQBPPRww1URG1PESiUmlpq+WtqKiri94J5anMQ4fbVktl85TVpnVnnjbdTVIjj6mkiZKH1FazsFXQUrgMFRTm90c38/MSVDDxcur1fDzmsc73+7nm+swQ8N65ZgabYRiGAAAALMDN1Q0AAAAUF8EFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFf1ibN2+WzWbT5s2bXd0KXGjgwIGqVauWq9sAUEwEF5Sq5cuXy2azadWqVYXmmjVrJpvNpk2bNhWaq1Gjhtq2bXsnWiy2Y8eO6c9//rPq1KkjLy8v2e12tWvXTgkJCbp48aKr25MkzZs3T4sWLSrRay5duqRZs2YpLCxMfn5+8vLyUoMGDTRy5Eh9++23pdMofrNPPvlEHTp0kL+/v7y9vVWnTh396U9/0rp161zd2l3n+++/l81m0+uvv17k/JQpU2Sz2fTTTz/d4c5wK8q4ugH8vrVv316StG3bNj3++OPmuMPh0IEDB1SmTBlt375dnTp1MudOnDihEydOqG/fvne83+tJTEzUk08+KU9PTw0YMED33XefcnNztW3bNo0ZM0YHDx7UwoULXd2m5s2bpypVqmjgwIHFqv/pp5/UtWtXpaSk6JFHHtHTTz+t8uXL68iRI1q6dKkWLlyo3Nzc0m3axd5++23l5+e7uo0Sef311zVmzBh16NBBEyZMkLe3t44eParPP/9cS5cuVdeuXV3dIlBqCC4oVdWqVVPt2rW1bds2p/Hk5GQZhqEnn3yy0FzBekHouVWGYejSpUsqV67cb9rO8ePH1bdvX9WsWVMbN25U1apVzbnY2FgdPXpUiYmJv+k9XGXgwIHau3evVq5cqV69ejnNvfzyy3rhhRdc1Fnpy87Olo+Pj8qWLevqVkrkypUrevnll/Xwww/rs88+KzR/+vRpF3QF3Dl8VIRS1759e+3du9fp45Tt27erSZMm6tatm7788kun/8e7fft22Ww2tWvXTtL//0Fdt25deXp6qlatWnr++eeVk5Pj9D61atXSI488ovXr16tly5YqV66c3nrrLUnSjz/+qJ49e8rHx0f+/v6Ki4sr9PrrmT59un755Re9++67TqGlQL169fTMM8+Y68Xt12azacqUKYW2V6tWLaczJosWLZLNZtP27dsVHx+ve+65Rz4+Pnr88cd15swZp9cdPHhQW7Zskc1mk81mU8eOHa+7Xzt37lRiYqJiYmIKhRZJ8vT0LHRqfePGjXrggQfk4+OjChUqqEePHjp06JBTTcFp92+//Vb/9V//JT8/P91zzz168cUXZRiGTpw4oR49eshutyswMFBvvPGG0+sLrj1atmyZnn/+eQUGBsrHx0ePPfaYTpw44VT7xRdf6Mknn1SNGjXk6empoKAgxcXFFfrobuDAgSpfvryOHTum7t27y9fXV/369TPnrr3GZenSpQoNDZWvr6/sdrtCQkKUkJDgVPPdd9/pySefVKVKleTt7a02bdoUCrAF+7J8+XK9+uqrql69ury8vPTQQw/p6NGjTrUXLlzQ4cOHb/pxxU8//SSHw2F+f1zL39//jhzLtLQ0PfLIIypfvrzuvfdezZ07V5K0f/9+de7cWT4+PqpZs6aWLFlyw/25fPmyKlWqpEGDBhWaczgc8vLy0nPPPWeOvfnmm2rSpIm8vb1VsWJFtWzZ8qbvcStcdTxQDAZQyt566y1DkrFp0yZzrHPnzsawYcOMo0ePGpKMr7/+2pxr3ry50bhxY3M9OjrakGT07t3bmDt3rjFgwABDktGzZ0+n96lZs6ZRr149o2LFisb48eONBQsWGJs2bTIuXLhgNGjQwPDy8jLGjh1rzJ492wgNDTWaNm1aqK+i3HvvvUadOnWKvb/F7VeSMXny5EKvr1mzphEdHW2uv/fee4Yk4/777zc6d+5svPnmm8azzz5ruLu7G3/605/MulWrVhnVq1c3GjVqZHzwwQfGBx98YHz22WfX7fP55583JBlbt24t1n4lJSUZZcqUMRo0aGBMnz7dmDp1qlGlShWjYsWKxvHjx826yZMnG5KM5s2bG0899ZQxb948IyoqypBkzJw502jYsKExYsQIY968eUa7du0MScaWLVvM12/atMmQZISEhBhNmzY1Zs6caYwfP97w8vIyGjRoYFy4cMGsHTVqlNG9e3fjf/7nf4y33nrLiImJMdzd3Y3evXs79R4dHW14enoadevWNaKjo40FCxYY77//vjlXs2ZNs/azzz4zJBkPPfSQMXfuXGPu3LnGyJEjjSeffNKsSU9PNwICAgxfX1/jhRdeMGbOnGk0a9bMcHNzMz7++ONC+3L//fcboaGhxqxZs4wpU6YY3t7eRuvWrZ16LKgt6r+Jq+Xl5RnlypUzQkNDjZ9//vmGtaV1LL28vIzg4GBj+PDhxty5c422bdsakoz33nvPqFatmjFmzBjjzTffNJo0aWK4u7sb33333Q37HDx4sFGhQgUjJyfHaXzx4sWGJOOrr74yDMMwFi5caH5vvfXWW0ZCQoIRExNj/Pd///cNt3/8+HFDkjF16lTjzJkzhZYxY8YYkowzZ87cFccDN0ZwQak7ePCgIcl4+eWXDcMwjMuXLxs+Pj7G4sWLDcMwjICAAGPu3LmGYRiGw+Ew3N3djaFDhxqGYRipqamGJGPIkCFO23zuuecMScbGjRvNsZo1axqSjHXr1jnVzp4925BkLF++3BzLzs426tWrd9PgkpWVZUgyevToUax9LUm/JQ0uERERRn5+vjkeFxdnuLu7G5mZmeZYkyZNjA4dOhSr18cff9yQZJw7d65Y9c2bNzf8/f2dfll+/fXXhpubmzFgwABzrCC4DBs2zBy7cuWKUb16dcNmsxmvvfaaOX7u3DmjXLlyTvtb8Mv23nvvNRwOhzm+fPlyQ5KRkJBgjl39i7fAtGnTDJvNZvzwww/mWEGYHD9+fKH6a4PLM888Y9jtduPKlSvXPRajR482JBlffPGFOXb+/Hmjdu3aRq1atYy8vDynfWncuLHTL+WEhARDkrF///5C+32z4GIYhjFp0iRDkuHj42N069bNePXVV42UlJRCdaV5LP/nf/7HHCv4OtpsNmPp0qXm+OHDh4u1T+vXrzckGZ988onTePfu3Z3+T0OPHj2MJk2a3HBbRSkILjdbrg4urjweuDE+KkKpa9y4sSpXrmxeu/L1118rOzvbvGuobdu22r59u6Rfr33Jy8szr2/59NNPJUnx8fFO23z22WclqdCp+dq1aysyMtJp7NNPP1XVqlXVu3dvc8zb21vDhg27ae8Oh0OS5OvrW6x9LWm/JTFs2DDZbDZz/YEHHlBeXp5++OGHW9peSfbt1KlTSk1N1cCBA1WpUiVzvGnTpnr44YfN/b7akCFDzH+7u7urZcuWMgxDMTEx5niFChXUsGFDfffdd4VeP2DAAKfeevfurapVqzq919XXL2VnZ+unn35S27ZtZRiG9u7dW2ibI0aMuOm+VqhQQdnZ2UpKSrpuzaeffqrWrVs7XYdVvnx5DRs2TN9//72++eYbp/pBgwbJw8PDXH/ggQckyWm/O3bsKMMwivz48FpTp07VkiVLdP/992v9+vV64YUXFBoaqhYtWhT66E4qnWN59de34Ovo4+OjP/3pT+Z4w4YNVaFChSK/vlfr3LmzqlSpomXLlplj586dU1JSkvr06eP0Pj/++KO++uqrG27veoYNG6akpKRCS//+/QvVuvJ44MYILih1NptNbdu2Na9l2b59u/z9/VWvXj1JzsGl4H8LfiH88MMPcnNzM2sLBAYGqkKFCoV+adeuXbvQ+//www+qV6+e0y996dcfIjdjt9slSefPny/Orpa435KoUaOG03rFihUl/foD/laUZN8K+i7qmDVu3Fg//fSTsrOzb9hvwa3WVapUKTRe1D7Ur1/fad1ms6levXr6/vvvzbG0tDQzTJUvX1733HOPOnToIEnKyspyen2ZMmVUvXr1m+yp9Je//EUNGjRQt27dVL16dQ0ePLjQLcY//PDDdY9FwfzVbvfXTpKeeuopffHFFzp37pw+++wzPf3009q7d68effRRXbp0yan2dh9LLy8v3XPPPU5jfn5+ql69eqHvs+t9fa9WpkwZ9erVS//85z/Na8E+/vhjXb582Sm4jBs3TuXLl1fr1q1Vv359xcbGmj8ziqN+/fqKiIgotNSpU6dQrSuPB26M4II7on379srKytL+/fu1fft2p2e0tG3bVj/88IP+85//aNu2bapWrVqhHyTXfvNfz2+9g+hadrtd1apV04EDB0r0uuL2W5S8vLwix93d3YscNwzjlt6nUaNGkn69eLA0FNXv7dyHvLw8Pfzww0pMTNS4ceO0evVqJSUlmc+xufYWZ09PT7m53fxHnr+/v1JTU/Wvf/1Ljz32mDZt2qRu3bopOjq6xD0WuN1fu6vZ7XY9/PDD+vDDDxUdHa1jx45p586dJdpGSY/l9fbnt+xn3759df78ea1du1bSr8+AatSokZo1a2bWNG7c2LxVv3379vrHP/6h9u3ba/LkycXZzWK7G44Hro/ggjvi6ue5bN++3emOiNDQUHl6emrz5s3auXOn01zNmjWVn5+vf//7307by8jIUGZmpmrWrHnT965Zs6aOHTtW6IfFkSNHitX7I488omPHjik5OblY71XcfitWrKjMzEynutzcXJ06dapYfRWlJIHp0UcflST97//+701rC/ou6pgdPnxYVapUkY+PT7HfuziuPYaGYejo0aPmHUD79+/Xt99+qzfeeEPjxo1Tjx49FBERoWrVqv3m9/bw8NCjjz6qefPmmQ8efP/99807gWrWrHndY1Ew7wotW7aUpEL/DbnyWBbXgw8+qKpVq2rZsmX66aeftHHjRqezLQV8fHzUp08fvffee0pLS1NUVJReffXVQmeZfou74Xjg+gguuCNatmwpLy8vffjhh/rPf/7jdMbF09NTLVq00Ny5c5Wdne103UD37t0lSbNnz3ba3syZMyVJUVFRN33v7t276+TJk1q5cqU5duHChWI/MG7s2LHy8fHRkCFDlJGRUWj+2LFj5q2yJem3bt262rp1q1PdwoULr3vGpTh8fHwKhaHrCQ8PV9euXfXOO+9o9erVheZzc3PN21CrVq2q5s2ba/HixU7bP3DggD777DNzv2+n999/3+ljrJUrV+rUqVPq1q2bpP///2avDqSGYRS6bbmkfv75Z6d1Nzc3NW3aVJLMjzG6d++uXbt2OYXZ7OxsLVy4ULVq1VJwcHCJ37e4t0NfuHDhuiG64GzFtR9juepYloSbm5t69+6tTz75RB988IGuXLlSKLhc+7Xx8PBQcHCwDMPQ5cuXb1svd8PxwPXxADrcER4eHmrVqpW++OILeXp6KjQ01Gm+bdu25vM8rg4uzZo1U3R0tBYuXKjMzEx16NBBu3bt0uLFi9WzZ0+nJ+5ez9ChQzVnzhwNGDBAKSkpqlq1qj744AN5e3sXq/e6detqyZIl6tOnjxo3buz05NwdO3ZoxYoV5nNXStLvkCFDNHz4cPXq1UsPP/ywvv76a61fv77QNSAlERoaqvnz5+uVV15RvXr15O/vr86dO1+3/v3331eXLl30xBNP6NFHH9VDDz0kHx8f/fvf/9bSpUt16tQp81kuM2bMULdu3RQeHq6YmBhdvHhRb775pvz8/Ip1QWlJVapUSe3bt9egQYOUkZGh2bNnq169eho6dKikXz/qqlu3rp577jn95z//kd1u1z/+8Y/ffP3AkCFDdPbsWXXu3FnVq1fXDz/8oDfffFPNmzc3r2EZP368PvroI3Xr1k3//d//rUqVKmnx4sU6fvy4/vGPfxTrI6lr7dq1S506ddLkyZNveDwvXLigtm3bqk2bNuratauCgoKUmZmp1atX64svvlDPnj11//33O73GVceypPr06aM333xTkydPVkhIiHm8C3Tp0kWBgYFq166dAgICdOjQIc2ZM0dRUVHFvoC+OO6W44HruLM3MeGPbMKECYYko23btoXmPv74Y0OS4evrW+g21MuXLxtTp041ateubZQtW9YICgoyJkyYYFy6dMmprmbNmkZUVFSR7/3DDz8Yjz32mOHt7W1UqVLFeOaZZ4x169YV6zkuBb799ltj6NChRq1atQwPDw/D19fXaNeunfHmm2869VLcfvPy8oxx48YZVapUMby9vY3IyEjj6NGj170duuBZFgUKbnW9uv/09HQjKirK8PX1NSQV69boCxcuGK+//rrRqlUro3z58oaHh4dRv359Y9SoUcbRo0edaj///HOjXbt2Rrly5Qy73W48+uijxjfffONUU3A79NW3lhrGr7eN+vj4FHr/Dh06ON3iWrBfH330kTFhwgTD39/fKFeunBEVFeV0G6phGMY333xjREREGOXLlzeqVKliDB061Pj666/NZ2jc7L0L5q6+HXrlypVGly5dDH9/f8PDw8OoUaOG8ec//9k4deqU0+uOHTtm9O7d26hQoYLh5eVltG7d2lizZo1TTcG+rFixwmm84Pbcq3ss7u3Qly9fNt5++22jZ8+eRs2aNQ1PT0/D29vbuP/++40ZM2Y43XZ9J4/ltV/HAjf6vrxWfn6+ERQUZEgyXnnllULzb731lvHggw8alStXNp/LM2bMGCMrK+uG2y043jNmzChyvqj/Zu+G44Gi2QyDq4QA3D02b96sTp06acWKFU63sKPkOJb4PeIaFwAAYBkEFwAAYBkEFwAAYBlc4wIAACyDMy4AAMAyCC4AAMAyeADdbZKfn6+TJ0/K19f3N/2dGgAA/mgMw9D58+dVrVq1mz7AkeBym5w8eVJBQUGubgMAAMs6ceLETf+KO8HlNil43PSJEydkt9td3A0AANbhcDgUFBRUrD/dQHC5TQo+HrLb7QQXAABuQXEuteDiXAAAYBkEFwAAYBkEFwAAYBkEFwAAYBkEFwAAYBkEFwAAYBl3TXB57bXXZLPZNHr0aHPs0qVLio2NVeXKlVW+fHn16tVLGRkZTq9LS0tTVFSUvL295e/vrzFjxujKlStONZs3b1aLFi3k6empevXqadGiRYXef+7cuapVq5a8vLwUFhamXbt2lcZuAgCA3+CuCC5fffWV3nrrLTVt2tRpPC4uTp988olWrFihLVu26OTJk3riiSfM+by8PEVFRSk3N1c7duzQ4sWLtWjRIk2aNMmsOX78uKKiotSpUyelpqZq9OjRGjJkiNavX2/WLFu2TPHx8Zo8ebL27NmjZs2aKTIyUqdPny79nQcAAMVnuNj58+eN+vXrG0lJSUaHDh2MZ555xjAMw8jMzDTKli1rrFixwqw9dOiQIclITk42DMMwPv30U8PNzc1IT083a+bPn2/Y7XYjJyfHMAzDGDt2rNGkSROn9+zTp48RGRlprrdu3dqIjY011/Py8oxq1aoZ06ZNK/Z+ZGVlGZKMrKys4u88AAAo0e9Ql59xiY2NVVRUlCIiIpzGU1JSdPnyZafxRo0aqUaNGkpOTpYkJScnKyQkRAEBAWZNZGSkHA6HDh48aNZcu+3IyEhzG7m5uUpJSXGqcXNzU0REhFkDAADuDi595P/SpUu1Z88effXVV4Xm0tPT5eHhoQoVKjiNBwQEKD093ay5OrQUzBfM3ajG4XDo4sWLOnfunPLy8oqsOXz48HV7z8nJUU5OjrnucDhusrcAAOC3ctkZlxMnTuiZZ57Rhx9+KC8vL1e1ccumTZsmPz8/c+EvQwMAUPpcFlxSUlJ0+vRptWjRQmXKlFGZMmW0ZcsW/e1vf1OZMmUUEBCg3NxcZWZmOr0uIyNDgYGBkqTAwMBCdxkVrN+sxm63q1y5cqpSpYrc3d2LrCnYRlEmTJigrKwsczlx4sQtHQcAAFB8LgsuDz30kPbv36/U1FRzadmypfr162f+u2zZstqwYYP5miNHjigtLU3h4eGSpPDwcO3fv9/p7p+kpCTZ7XYFBwebNVdvo6CmYBseHh4KDQ11qsnPz9eGDRvMmqJ4enqafwmavwgNAMCd4bJrXHx9fXXfffc5jfn4+Khy5crmeExMjOLj41WpUiXZ7XaNGjVK4eHhatOmjSSpS5cuCg4OVv/+/TV9+nSlp6dr4sSJio2NlaenpyRp+PDhmjNnjsaOHavBgwdr48aNWr58uRITE833jY+PV3R0tFq2bKnWrVtr9uzZys7O1qBBg+7Q0QAAAMXh0otzb2bWrFlyc3NTr169lJOTo8jISM2bN8+cd3d315o1azRixAiFh4fLx8dH0dHReumll8ya2rVrKzExUXFxcUpISFD16tX1zjvvKDIy0qzp06ePzpw5o0mTJik9PV3NmzfXunXrCl2wCwAAXMtmGIbh6iZ+DxwOh/z8/JSVlcXHRgAAlEBJfoe6/DkuAAAAxUVwAQAAlnFXX+MCAFZxev5YV7cAlDr/EdNd3QJnXAAAgHUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGW4NLjMnz9fTZs2ld1ul91uV3h4uNauXWvOd+zYUTabzWkZPny40zbS0tIUFRUlb29v+fv7a8yYMbpy5YpTzebNm9WiRQt5enqqXr16WrRoUaFe5s6dq1q1asnLy0thYWHatWtXqewzAAC4dS4NLtWrV9drr72mlJQU7d69W507d1aPHj108OBBs2bo0KE6deqUuUyfPt2cy8vLU1RUlHJzc7Vjxw4tXrxYixYt0qRJk8ya48ePKyoqSp06dVJqaqpGjx6tIUOGaP369WbNsmXLFB8fr8mTJ2vPnj1q1qyZIiMjdfr06TtzIAAAQLHYDMMwXN3E1SpVqqQZM2YoJiZGHTt2VPPmzTV79uwia9euXatHHnlEJ0+eVEBAgCRpwYIFGjdunM6cOSMPDw+NGzdOiYmJOnDggPm6vn37KjMzU+vWrZMkhYWFqVWrVpozZ44kKT8/X0FBQRo1apTGjx9frL4dDof8/PyUlZUlu93+G44AACs6PX+sq1sASp3/iOk3L7oFJfkdetdc45KXl6elS5cqOztb4eHh5viHH36oKlWq6L777tOECRN04cIFcy45OVkhISFmaJGkyMhIORwO86xNcnKyIiIinN4rMjJSycnJkqTc3FylpKQ41bi5uSkiIsKsAQAAd4cyrm5g//79Cg8P16VLl1S+fHmtWrVKwcHBkqSnn35aNWvWVLVq1bRv3z6NGzdOR44c0ccffyxJSk9Pdwotksz19PT0G9Y4HA5dvHhR586dU15eXpE1hw8fvm7fOTk5ysnJMdcdDsctHgEAAFBcLg8uDRs2VGpqqrKysrRy5UpFR0dry5YtCg4O1rBhw8y6kJAQVa1aVQ899JCOHTumunXrurBradq0aZo6dapLewAA4I/G5R8VeXh4qF69egoNDdW0adPUrFkzJSQkFFkbFhYmSTp69KgkKTAwUBkZGU41BeuBgYE3rLHb7SpXrpyqVKkid3f3ImsKtlGUCRMmKCsry1xOnDhRgr0GAAC3wuXB5Vr5+flOH8FcLTU1VZJUtWpVSVJ4eLj279/vdPdPUlKS7Ha7+XFTeHi4NmzY4LSdpKQk8zoaDw8PhYaGOtXk5+drw4YNTtfaXMvT09O8jbtgAQAApculHxVNmDBB3bp1U40aNXT+/HktWbJEmzdv1vr163Xs2DEtWbJE3bt3V+XKlbVv3z7FxcXpwQcfVNOmTSVJXbp0UXBwsPr376/p06crPT1dEydOVGxsrDw9PSVJw4cP15w5czR27FgNHjxYGzdu1PLly5WYmGj2ER8fr+joaLVs2VKtW7fW7NmzlZ2drUGDBrnkuAAAgKK5NLicPn1aAwYM0KlTp+Tn56emTZtq/fr1evjhh3XixAl9/vnnZogICgpSr169NHHiRPP17u7uWrNmjUaMGKHw8HD5+PgoOjpaL730kllTu3ZtJSYmKi4uTgkJCapevbreeecdRUZGmjV9+vTRmTNnNGnSJKWnp6t58+Zat25doQt2AQCAa911z3GxKp7jAvyx8RwX/BHwHBcAAIASILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLcGlwmT9/vpo2bSq73S673a7w8HCtXbvWnL906ZJiY2NVuXJllS9fXr169VJGRobTNtLS0hQVFSVvb2/5+/trzJgxunLlilPN5s2b1aJFC3l6eqpevXpatGhRoV7mzp2rWrVqycvLS2FhYdq1a1ep7DMAALh1Lg0u1atX12uvvaaUlBTt3r1bnTt3Vo8ePXTw4EFJUlxcnD755BOtWLFCW7Zs0cmTJ/XEE0+Yr8/Ly1NUVJRyc3O1Y8cOLV68WIsWLdKkSZPMmuPHjysqKkqdOnVSamqqRo8erSFDhmj9+vVmzbJlyxQfH6/Jkydrz549atasmSIjI3X69Ok7dzAAAMBN2QzDMFzdxNUqVaqkGTNmqHfv3rrnnnu0ZMkS9e7dW5J0+PBhNW7cWMnJyWrTpo3Wrl2rRx55RCdPnlRAQIAkacGCBRo3bpzOnDkjDw8PjRs3TomJiTpw4ID5Hn379lVmZqbWrVsnSQoLC1OrVq00Z84cSVJ+fr6CgoI0atQojR8/vlh9OxwO+fn5KSsrS3a7/XYeEgAWcHr+WFe3AJQ6/xHTS2W7Jfkdetdc45KXl6elS5cqOztb4eHhSklJ0eXLlxUREWHWNGrUSDVq1FBycrIkKTk5WSEhIWZokaTIyEg5HA7zrE1ycrLTNgpqCraRm5urlJQUpxo3NzdFRESYNQAA4O5QxtUN7N+/X+Hh4bp06ZLKly+vVatWKTg4WKmpqfLw8FCFChWc6gMCApSeni5JSk9PdwotBfMFczeqcTgcunjxos6dO6e8vLwiaw4fPnzdvnNycpSTk2OuOxyOku04AAAoMZefcWnYsKFSU1O1c+dOjRgxQtHR0frmm29c3dZNTZs2TX5+fuYSFBTk6pYAAPjdc3lw8fDwUL169RQaGqpp06apWbNmSkhIUGBgoHJzc5WZmelUn5GRocDAQElSYGBgobuMCtZvVmO321WuXDlVqVJF7u7uRdYUbKMoEyZMUFZWlrmcOHHilvYfAAAUn8uDy7Xy8/OVk5Oj0NBQlS1bVhs2bDDnjhw5orS0NIWHh0uSwsPDtX//fqe7f5KSkmS32xUcHGzWXL2NgpqCbXh4eCg0NNSpJj8/Xxs2bDBriuLp6Wnexl2wAACA0uXSa1wmTJigbt26qUaNGjp//ryWLFmizZs3a/369fLz81NMTIzi4+NVqVIl2e12jRo1SuHh4WrTpo0kqUuXLgoODlb//v01ffp0paena+LEiYqNjZWnp6ckafjw4ZozZ47Gjh2rwYMHa+PGjVq+fLkSExPNPuLj4xUdHa2WLVuqdevWmj17trKzszVo0CCXHBcAAFA0lwaX06dPa8CAATp16pT8/PzUtGlTrV+/Xg8//LAkadasWXJzc1OvXr2Uk5OjyMhIzZs3z3y9u7u71qxZoxEjRig8PFw+Pj6Kjo7WSy+9ZNbUrl1biYmJiouLU0JCgqpXr6533nlHkZGRZk2fPn105swZTZo0Senp6WrevLnWrVtX6IJdAADgWnfdc1ysiue4AH9sPMcFfwQ8xwUAAKAECC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyXBpcpk2bplatWsnX11f+/v7q2bOnjhw54lTTsWNH2Ww2p2X48OFONWlpaYqKipK3t7f8/f01ZswYXblyxalm8+bNatGihTw9PVWvXj0tWrSoUD9z585VrVq15OXlpbCwMO3ateu27zMAALh1Lg0uW7ZsUWxsrL788kslJSXp8uXL6tKli7Kzs53qhg4dqlOnTpnL9OnTzbm8vDxFRUUpNzdXO3bs0OLFi7Vo0SJNmjTJrDl+/LiioqLUqVMnpaamavTo0RoyZIjWr19v1ixbtkzx8fGaPHmy9uzZo2bNmikyMlKnT58u/QMBAACKxWYYhuHqJgqcOXNG/v7+2rJlix588EFJv55xad68uWbPnl3ka9auXatHHnlEJ0+eVEBAgCRpwYIFGjdunM6cOSMPDw+NGzdOiYmJOnDggPm6vn37KjMzU+vWrZMkhYWFqVWrVpozZ44kKT8/X0FBQRo1apTGjx9/094dDof8/PyUlZUlu93+Ww4DAAs6PX+sq1sASp3/iOk3L7oFJfkdeldd45KVlSVJqlSpktP4hx9+qCpVqui+++7ThAkTdOHCBXMuOTlZISEhZmiRpMjISDkcDh08eNCsiYiIcNpmZGSkkpOTJUm5ublKSUlxqnFzc1NERIRZc62cnBw5HA6nBQAAlK4yrm6gQH5+vkaPHq127drpvvvuM8effvpp1axZU9WqVdO+ffs0btw4HTlyRB9//LEkKT093Sm0SDLX09PTb1jjcDh08eJFnTt3Tnl5eUXWHD58uMh+p02bpqlTp/62nQYAACVy1wSX2NhYHThwQNu2bXMaHzZsmPnvkJAQVa1aVQ899JCOHTumunXr3uk2TRMmTFB8fLy57nA4FBQU5LJ+AAD4I7grgsvIkSO1Zs0abd26VdWrV79hbVhYmCTp6NGjqlu3rgIDAwvd/ZORkSFJCgwMNP+3YOzqGrvdrnLlysnd3V3u7u5F1hRs41qenp7y9PQs/k4CAIDfzKXXuBiGoZEjR2rVqlXauHGjateufdPXpKamSpKqVq0qSQoPD9f+/fud7v5JSkqS3W5XcHCwWbNhwwan7SQlJSk8PFyS5OHhodDQUKea/Px8bdiwwawBAACu59IzLrGxsVqyZIn++c9/ytfX17wmxc/PT+XKldOxY8e0ZMkSde/eXZUrV9a+ffsUFxenBx98UE2bNpUkdenSRcHBwerfv7+mT5+u9PR0TZw4UbGxseYZkeHDh2vOnDkaO3asBg8erI0bN2r58uVKTEw0e4mPj1d0dLRatmyp1q1ba/bs2crOztagQYPu/IEBAABFcmlwmT9/vqRfb3m+2nvvvaeBAwfKw8NDn3/+uRkigoKC1KtXL02cONGsdXd315o1azRixAiFh4fLx8dH0dHReumll8ya2rVrKzExUXFxcUpISFD16tX1zjvvKDIy0qzp06ePzpw5o0mTJik9PV3NmzfXunXrCl2wCwAAXOeueo6LlfEcF+CPjee44I+A57gAAACUAMEFAABYRomDS1pamor6dMkwDKWlpd2WpgAAAIpS4uBSu3ZtnTlzptD42bNni3U7MwAAwK0qcXAxDEM2m63Q+C+//CIvL6/b0hQAAEBRin07dMHj7W02m1588UV5e3ubc3l5edq5c6eaN29+2xsEAAAoUOzgsnfvXkm/nnHZv3+/PDw8zDkPDw81a9ZMzz333O3vEAAA4P8UO7hs2rRJkjRo0CAlJCTwrBIAAHDHlfjJue+9915p9AEAAHBTJQ4u2dnZeu2117RhwwadPn1a+fn5TvPffffdbWsOAADgaiUOLkOGDNGWLVvUv39/Va1atcg7jAAAAEpDiYPL2rVrlZiYqHbt2pVGPwAAANdV4ue4VKxYUZUqVSqNXgAAAG6oxMHl5Zdf1qRJk3ThwoXS6AcAAOC6SvxR0RtvvKFjx44pICBAtWrVUtmyZZ3m9+zZc9uaAwAAuFqJg0vPnj1LoQ0AAICbK3FwmTx5cmn0AQAAcFMlvsYFAADAVUp8xsXNze2Gz27Jy8v7TQ0BAABcT4mDy6pVq5zWL1++rL1792rx4sWaOnXqbWsMAADgWiUOLj169Cg01rt3bzVp0kTLli1TTEzMbWkMAADgWrftGpc2bdpow4YNt2tzAAAAhdyW4HLx4kX97W9/07333ns7NgcAAFCkEn9UVLFiRaeLcw3D0Pnz5+Xt7a3//d//va3NAQAAXK3EwWX27NlO625ubrrnnnsUFhamihUr3q6+AAAACilxcImOji6NPgAAAG6qxMFFkjIzM/Xuu+/q0KFDkqQmTZpo8ODB8vPzu63NAQAAXK3EF+fu3r1bdevW1axZs3T27FmdPXtWM2fOVN26dfkDiwAAoFSV+IxLXFycHnvsMb399tsqU+bXl1+5ckVDhgzR6NGjtXXr1tveJAAAgHQLwWX37t1OoUWSypQpo7Fjx6ply5a3tTkAAICrlfijIrvdrrS0tELjJ06ckK+v721pCgAAoCglDi59+vRRTEyMli1bphMnTujEiRNaunSphgwZoqeeeqo0egQAAJB0Cx8Vvf7667LZbBowYICuXLkiSSpbtqxGjBih11577bY3CAAAUKDEwcXDw0MJCQmaNm2ajh07JkmqW7euvL29b3tzAAAAVyv2R0V5eXnat2+fLl68KEny9vZWSEiIQkJCZLPZtG/fPuXn55daowAAAMUOLh988IEGDx4sDw+PQnNly5bV4MGDtWTJktvaHAAAwNWKHVzeffddPffcc3J3dy80V3A79MKFC29rcwAAAFcrdnA5cuSI2rRpc935Vq1amX8CAAAAoDQUO7hkZ2fL4XBcd/78+fO6cOHCbWkKAACgKMUOLvXr19eOHTuuO79t2zbVr1//tjQFAABQlGIHl6effloTJ07Uvn37Cs19/fXXmjRpkp5++unb2hwAAMDViv0cl7i4OK1du1ahoaGKiIhQo0aNJEmHDx/W559/rnbt2ikuLq7UGgUAACh2cClbtqw+++wzzZo1S0uWLNHWrVtlGIYaNGigV199VaNHj1bZsmVLs1cAAPAHV6In55YtW1Zjx47V2LFjS6sfAACA6yrxH1kEAABwFZcGl2nTpqlVq1by9fWVv7+/evbsqSNHjjjVXLp0SbGxsapcubLKly+vXr16KSMjw6kmLS1NUVFR8vb2lr+/v8aMGWP+AcgCmzdvVosWLeTp6al69epp0aJFhfqZO3euatWqJS8vL4WFhWnXrl23fZ8BAMCtc2lw2bJli2JjY/Xll18qKSlJly9fVpcuXZSdnW3WxMXF6ZNPPtGKFSu0ZcsWnTx5Uk888YQ5n5eXp6ioKOXm5mrHjh1avHixFi1apEmTJpk1x48fV1RUlDp16qTU1FSNHj1aQ4YM0fr1682aZcuWKT4+XpMnT9aePXvUrFkzRUZG6vTp03fmYAAAgJuyGYZhuLqJAmfOnJG/v7+2bNmiBx98UFlZWbrnnnu0ZMkS9e7dW9KvdzE1btxYycnJatOmjdauXatHHnlEJ0+eVEBAgCRpwYIFGjdunM6cOSMPDw+NGzdOiYmJOnDggPleffv2VWZmptatWydJCgsLU6tWrTRnzhxJUn5+voKCgjRq1CiNHz/+pr07HA75+fkpKytLdrv9dh8aAHe50/O59g+/f/4jppfKdkvyO/SuusYlKytLklSpUiVJUkpKii5fvqyIiAizplGjRqpRo4aSk5MlScnJyQoJCTFDiyRFRkbK4XDo4MGDZs3V2yioKdhGbm6uUlJSnGrc3NwUERFh1lwrJydHDofDaQEAAKWrWHcVxcfHF3uDM2fOvKVG8vPzNXr0aLVr10733XefJCk9PV0eHh6qUKGCU21AQIDS09PNmqtDS8F8wdyNahwOhy5evKhz584pLy+vyJrDhw8X2e+0adM0derUW9pXAABwa4oVXPbu3eu0vmfPHl25ckUNGzaUJH377bdyd3dXaGjoLTcSGxurAwcOaNu2bbe8jTtpwoQJToHO4XAoKCjIhR0BAPD7V6zgsmnTJvPfM2fOlK+vrxYvXqyKFStKks6dO6dBgwbpgQceuKUmRo4cqTVr1mjr1q2qXr26OR4YGKjc3FxlZmY6nXXJyMhQYGCgWXPt3T8Fdx1dXXPtnUgZGRmy2+0qV66c3N3d5e7uXmRNwTau5enpKU9Pz1vaXwAAcGtKfI3LG2+8oWnTppmhRZIqVqyoV155RW+88UaJtmUYhkaOHKlVq1Zp48aNql27ttN8aGioypYtqw0bNphjR44cUVpamsLDwyVJ4eHh2r9/v9PdP0lJSbLb7QoODjZrrt5GQU3BNjw8PBQaGupUk5+frw0bNpg1AADA9Ur05Fzp149Ezpw5U2j8zJkzOn/+fIm2FRsbqyVLluif//ynfH19zWtS/Pz8VK5cOfn5+SkmJkbx8fGqVKmS7Ha7Ro0apfDwcLVp00aS1KVLFwUHB6t///6aPn260tPTNXHiRMXGxppnRIYPH645c+Zo7NixGjx4sDZu3Kjly5crMTHR7CU+Pl7R0dFq2bKlWrdurdmzZys7O1uDBg0q6SECAAClpMTB5fHHH9egQYP0xhtvqHXr1pKknTt3asyYMU7PVymO+fPnS5I6duzoNP7ee+9p4MCBkqRZs2bJzc1NvXr1Uk5OjiIjIzVv3jyz1t3dXWvWrNGIESMUHh4uHx8fRUdH66WXXjJrateurcTERMXFxSkhIUHVq1fXO++8o8jISLOmT58+OnPmjCZNmqT09HQ1b95c69atK3TBLgAAcJ0SP8flwoULeu655/T3v/9dly9fliSVKVNGMTExmjFjhnx8fEql0bsdz3EB/th4jgv+CO6G57iU6IxLXl6edu/erVdffVUzZszQsWPHJEl169b9wwYWAABw55QouLi7u6tLly46dOiQateuraZNm5ZWXwAAAIWU+K6i++67T999911p9AIAAHBDJQ4ur7zyip577jmtWbNGp06d4rH3AADgjinxXUXdu3eXJD322GOy2WzmuGEYstlsysvLu33dAQAAXKXEweXqp+gCAADcSSUOLh06dCiNPgAAAG6qxMFFkjIzM/Xuu+/q0KFDkqQmTZpo8ODB8vPzu63NAQAAXK3EF+fu3r1bdevW1axZs3T27FmdPXtWM2fOVN26dbVnz57S6BEAAEDSLZxxiYuL02OPPaa3335bZcr8+vIrV65oyJAhGj16tLZu3XrbmwQAAJBuIbjs3r3bKbRIvz7yf+zYsWrZsuVtbQ4AAOBqJf6oyG63Ky0trdD4iRMn5Ovre1uaAgAAKEqJg0ufPn0UExOjZcuW6cSJEzpx4oSWLl2qIUOG6KmnniqNHgEAACTdwkdFr7/+umw2mwYMGKArV65IksqWLasRI0botddeu+0NAgAAFCh2cDl+/Lhq164tDw8PJSQkaNq0aU5/Hdrb27vUmgQAAJBKEFzq1q2rmjVrqlOnTurcubM6deqkkJCQ0uwNAADASbGDy8aNG7V582Zt3rxZH330kXJzc1WnTh0zxHTq1EkBAQGl2SsAAPiDK3Zw6dixozp27ChJunTpknbs2GEGmcWLF+vy5ctq1KiRDh48WFq9AgCAP7hbeuS/l5eXOnfurPbt26tTp05au3at3nrrLR0+fPh29wcAAGAqUXDJzc3Vl19+qU2bNmnz5s3auXOngoKC9OCDD2rOnDn8AUYAAFCqih1cOnfurJ07d6p27drq0KGD/vznP2vJkiWqWrVqafYHAABgKnZw+eKLL1S1alV17txZHTt2VIcOHVS5cuXS7A0AAMBJsZ+cm5mZqYULF8rb21t//etfVa1aNYWEhGjkyJFauXKlzpw5U5p9AgAAFP+Mi4+Pj7p27aquXbtKks6fP69t27Zp06ZNmj59uvr166f69evrwIEDpdYsAAD4Yyvx3yoq4OPjo0qVKqlSpUqqWLGiypQpo0OHDt3O3gAAAJwU+4xLfn6+du/erc2bN2vTpk3avn27srOzde+996pTp06aO3euOnXqVJq9AgCAP7hiB5cKFSooOztbgYGB6tSpk2bNmqWOHTuqbt26pdkfAACAqdjBZcaMGerUqZMaNGhQmv0AAABcV7GDy5///OfS7AMAAOCmbvniXAAAgDuN4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACyD4AIAACzDpcFl69atevTRR1WtWjXZbDatXr3aaX7gwIGy2WxOS9euXZ1qzp49q379+slut6tChQqKiYnRL7/84lSzb98+PfDAA/Ly8lJQUJCmT59eqJcVK1aoUaNG8vLyUkhIiD799NPbvr8AAOC3cWlwyc7OVrNmzTR37tzr1nTt2lWnTp0yl48++shpvl+/fjp48KCSkpK0Zs0abd26VcOGDTPnHQ6HunTpopo1ayolJUUzZszQlClTtHDhQrNmx44deuqppxQTE6O9e/eqZ8+e6tmzpw4cOHD7dxoAANwym2EYhqubkCSbzaZVq1apZ8+e5tjAgQOVmZlZ6ExMgUOHDik4OFhfffWVWrZsKUlat26dunfvrh9//FHVqlXT/Pnz9cILLyg9PV0eHh6SpPHjx2v16tU6fPiwJKlPnz7Kzs7WmjVrzG23adNGzZs314IFC4rVv8PhkJ+fn7KysmS322/hCACwstPzx7q6BaDU+Y8o/InF7VCS36F3/TUumzdvlr+/vxo2bKgRI0bo559/NueSk5NVoUIFM7RIUkREhNzc3LRz506z5sEHHzRDiyRFRkbqyJEjOnfunFkTERHh9L6RkZFKTk6+bl85OTlyOBxOCwAAKF13dXDp2rWr3n//fW3YsEF//etftWXLFnXr1k15eXmSpPT0dPn7+zu9pkyZMqpUqZLS09PNmoCAAKeagvWb1RTMF2XatGny8/Mzl6CgoN+2swAA4KbKuLqBG+nbt6/575CQEDVt2lR169bV5s2b9dBDD7mwM2nChAmKj4831x0OB+EFAIBSdlefcblWnTp1VKVKFR09elSSFBgYqNOnTzvVXLlyRWfPnlVgYKBZk5GR4VRTsH6zmoL5onh6esputzstAACgdFkquPz444/6+eefVbVqVUlSeHi4MjMzlZKSYtZs3LhR+fn5CgsLM2u2bt2qy5cvmzVJSUlq2LChKlasaNZs2LDB6b2SkpIUHh5e2rsEAABKwKXB5ZdfflFqaqpSU1MlScePH1dqaqrS0tL0yy+/aMyYMfryyy/1/fffa8OGDerRo4fq1aunyMhISVLjxo3VtWtXDR06VLt27dL27ds1cuRI9e3bV9WqVZMkPf300/Lw8FBMTIwOHjyoZcuWKSEhweljnmeeeUbr1q3TG2+8ocOHD2vKlCnavXu3Ro4cecePCQAAuD6XBpfdu3fr/vvv1/333y9Jio+P1/33369JkybJ3d1d+/bt02OPPaYGDRooJiZGoaGh+uKLL+Tp6Wlu48MPP1SjRo300EMPqXv37mrfvr3TM1r8/Pz02Wef6fjx4woNDdWzzz6rSZMmOT3rpW3btlqyZIkWLlyoZs2aaeXKlVq9erXuu+++O3cwAADATd01z3GxOp7jAvyx8RwX/BHwHBcAAIASILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLKOPqBlA8z65939UtAKXujW4DXN0CgLscZ1wAAIBlEFwAAIBlEFwAAIBluDS4bN26VY8++qiqVasmm82m1atXO80bhqFJkyapatWqKleunCIiIvTvf//bqebs2bPq16+f7Ha7KlSooJiYGP3yyy9ONfv27dMDDzwgLy8vBQUFafr06YV6WbFihRo1aiQvLy+FhITo008/ve37CwAAfhuXBpfs7Gw1a9ZMc+fOLXJ++vTp+tvf/qYFCxZo586d8vHxUWRkpC5dumTW9OvXTwcPHlRSUpLWrFmjrVu3atiwYea8w+FQly5dVLNmTaWkpGjGjBmaMmWKFi5caNbs2LFDTz31lGJiYrR371717NlTPXv21IEDB0pv5wEAQInZDMMwXN2EJNlsNq1atUo9e/aU9OvZlmrVqunZZ5/Vc889J0nKyspSQECAFi1apL59++rQoUMKDg7WV199pZYtW0qS1q1bp+7du+vHH39UtWrVNH/+fL3wwgtKT0+Xh4eHJGn8+PFavXq1Dh8+LEnq06ePsrOztWbNGrOfNm3aqHnz5lqwYEGx+nc4HPLz81NWVpbsdvvtOiwm7irCH4GV7yo6PX+sq1sASp3/iMKfWNwOJfkdetde43L8+HGlp6crIiLCHPPz81NYWJiSk5MlScnJyapQoYIZWiQpIiJCbm5u2rlzp1nz4IMPmqFFkiIjI3XkyBGdO3fOrLn6fQpqCt6nKDk5OXI4HE4LAAAoXXdtcElPT5ckBQQEOI0HBASYc+np6fL393eaL1OmjCpVquRUU9Q2rn6P69UUzBdl2rRp8vPzM5egoKCS7iIAACihuza43O0mTJigrKwsczlx4oSrWwIA4Hfvrg0ugYGBkqSMjAyn8YyMDHMuMDBQp0+fdpq/cuWKzp4961RT1Daufo/r1RTMF8XT01N2u91pAQAApeuuDS61a9dWYGCgNmzYYI45HA7t3LlT4eHhkqTw8HBlZmYqJSXFrNm4caPy8/MVFhZm1mzdulWXL182a5KSktSwYUNVrFjRrLn6fQpqCt4HAADcHVwaXH755RelpqYqNTVV0q8X5KampiotLU02m02jR4/WK6+8on/961/av3+/BgwYoGrVqpl3HjVu3Fhdu3bV0KFDtWvXLm3fvl0jR45U3759Va1aNUnS008/LQ8PD8XExOjgwYNatmyZEhISFB8fb/bxzDPPaN26dXrjjTd0+PBhTZkyRbt379bIkSPv9CEBAAA34NI/srh792516tTJXC8IE9HR0Vq0aJHGjh2r7OxsDRs2TJmZmWrfvr3WrVsnLy8v8zUffvihRo4cqYceekhubm7q1auX/va3v5nzfn5++uyzzxQbG6vQ0FBVqVJFkyZNcnrWS9u2bbVkyRJNnDhRzz//vOrXr6/Vq1frvvvuuwNHAQAAFNdd8xwXq+M5LsBvx3NcgLsbz3EBAAAoAYILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwDIILAACwjLs6uEyZMkU2m81padSokTl/6dIlxcbGqnLlyipfvrx69eqljIwMp22kpaUpKipK3t7e8vf315gxY3TlyhWnms2bN6tFixby9PRUvXr1tGjRojuxewAAoITu6uAiSU2aNNGpU6fMZdu2beZcXFycPvnkE61YsUJbtmzRyZMn9cQTT5jzeXl5ioqKUm5urnbs2KHFixdr0aJFmjRpkllz/PhxRUVFqVOnTkpNTdXo0aM1ZMgQrV+//o7uJwAAuLkyrm7gZsqUKaPAwMBC41lZWXr33Xe1ZMkSde7cWZL03nvvqXHjxvryyy/Vpk0bffbZZ/rmm2/0+eefKyAgQM2bN9fLL7+scePGacqUKfLw8NCCBQtUu3ZtvfHGG5Kkxo0ba9u2bZo1a5YiIyPv6L4CAIAbu+vPuPz73/9WtWrVVKdOHfXr109paWmSpJSUFF2+fFkRERFmbaNGjVSjRg0lJydLkpKTkxUSEqKAgACzJjIyUg6HQwcPHjRrrt5GQU3BNq4nJydHDofDaQEAAKXrrg4uYWFhWrRokdatW6f58+fr+PHjeuCBB3T+/Hmlp6fLw8NDFSpUcHpNQECA0tPTJUnp6elOoaVgvmDuRjUOh0MXL168bm/Tpk2Tn5+fuQQFBf3W3QUAADdxV39U1K1bN/PfTZs2VVhYmGrWrKnly5erXLlyLuxMmjBhguLj4811h8NBeAEAoJTd1WdcrlWhQgU1aNBAR48eVWBgoHJzc5WZmelUk5GRYV4TExgYWOguo4L1m9XY7fYbhiNPT0/Z7XanBQAAlC5LBZdffvlFx44dU9WqVRUaGqqyZctqw4YN5vyRI0eUlpam8PBwSVJ4eLj279+v06dPmzVJSUmy2+0KDg42a67eRkFNwTYAAMDd464OLs8995y2bNmi77//Xjt27NDjjz8ud3d3PfXUU/Lz81NMTIzi4+O1adMmpaSkaNCgQQoPD1ebNm0kSV26dFFwcLD69++vr7/+WuvXr9fEiRMVGxsrT09PSdLw4cP13XffaezYsTp8+LDmzZun5cuXKy4uzpW7DgAAinBXX+Py448/6qmnntLPP/+se+65R+3bt9eXX36pe+65R5I0a9Ysubm5qVevXsrJyVFkZKTmzZtnvt7d3V1r1qzRiBEjFB4eLh8fH0VHR+ull14ya2rXrq3ExETFxcUpISFB1atX1zvvvMOt0AAA3IVshmEYrm7i98DhcMjPz09ZWVmlcr3Ls2vfv+3bBO42b3Qb4OoWbtnp+WNd3QJQ6vxHTC+V7Zbkd+hd/VERAADA1QguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMgguAADAMggu15g7d65q1aolLy8vhYWFadeuXa5uCQAA/B+Cy1WWLVum+Ph4TZ48WXv27FGzZs0UGRmp06dPu7o1AAAggouTmTNnaujQoRo0aJCCg4O1YMECeXt76+9//7urWwMAAJLKuLqBu0Vubq5SUlI0YcIEc8zNzU0RERFKTk4uVJ+Tk6OcnBxzPSsrS5LkcDhKpb+cCxdLZbvA3aS0vn/uhPMXc25eBFicVyl9jxZ87xuGcdNagsv/+emnn5SXl6eAgACn8YCAAB0+fLhQ/bRp0zR16tRC40FBQaXWI/B7N1fDXd0CgBt59m+luvnz58/Lz8/vhjUEl1s0YcIExcfHm+v5+fk6e/asKleuLJvN5sLOcDs4HA4FBQXpxIkTstvtrm4HwDX4Hv19MQxD58+fV7Vq1W5aS3D5P1WqVJG7u7syMjKcxjMyMhQYGFio3tPTU56enk5jFSpUKM0W4QJ2u50fisBdjO/R34+bnWkpwMW5/8fDw0OhoaHasGGDOZafn68NGzYoPDzchZ0BAIACnHG5Snx8vKKjo9WyZUu1bt1as2fPVnZ2tgYNGuTq1gAAgAguTvr06aMzZ85o0qRJSk9PV/PmzbVu3bpCF+zi98/T01OTJ08u9HEggLsD36N/XDajOPceAQAA3AW4xgUAAFgGwQUAAFgGwQUAAFgGwQUAAFgGwQW/O2fOnNGIESNUo0YNeXp6KjAwUJGRkdq+fburWwNwjYEDB6pnz56Fxjdv3iybzabMzMw73hPubtwOjd+dXr16KTc3V4sXL1adOnWUkZGhDRs26Oeff3Z1awCA34gzLvhdyczM1BdffKG//vWv6tSpk2rWrKnWrVtrwoQJeuyxxyRJNptN8+fPV7du3VSuXDnVqVNHK1eudNrOuHHj1KBBA3l7e6tOnTp68cUXdfnyZXN+ypQpat68uf7+97+rRo0aKl++vP7yl78oLy9P06dPV2BgoPz9/fXqq6/e0f0Hfo9+/vlnPfXUU7r33nvl7e2tkJAQffTRR041HTt21KhRozR69GhVrFhRAQEBevvtt82HiPr6+qpevXpau3ati/YCtwvBBb8r5cuXV/ny5bV69Wrl5ORct+7FF19Ur1699PXXX6tfv37q27evDh06ZM77+vpq0aJF+uabb5SQkKC3335bs2bNctrGsWPHtHbtWq1bt04fffSR3n33XUVFRenHH3/Uli1b9Ne//lUTJ07Uzp07S21/gT+CS5cuKTQ0VImJiTpw4ICGDRum/v37a9euXU51ixcvVpUqVbRr1y6NGjVKI0aM0JNPPqm2bdtqz5496tKli/r3768LFy64aE9wWxjA78zKlSuNihUrGl5eXkbbtm2NCRMmGF9//bU5L8kYPny402vCwsKMESNGXHebM2bMMEJDQ831yZMnG97e3obD4TDHIiMjjVq1ahl5eXnmWMOGDY1p06bdjt0Cfpeio6MNd3d3w8fHx2nx8vIyJBnnzp0r8nVRUVHGs88+a6536NDBaN++vbl+5coVw8fHx+jfv785durUKUOSkZycXGr7g9LHGRf87vTq1UsnT57Uv/71L3Xt2lWbN29WixYttGjRIrPm2j+cGR4e7nTGZdmyZWrXrp0CAwNVvnx5TZw4UWlpaU6vqVWrlnx9fc31gIAABQcHy83NzWns9OnTt3kPgd+XTp06KTU11Wl55513zPm8vDy9/PLLCgkJUaVKlVS+fHmtX7++0Pdk06ZNzX+7u7urcuXKCgkJMccK/nwL35PWRnDB75KXl5cefvhhvfjii9qxY4cGDhyoyZMnF+u1ycnJ6tevn7p37641a9Zo7969euGFF5Sbm+tUV7ZsWad1m81W5Fh+fv5v2xngd87Hx0f16tVzWu69915zfsaMGUpISNC4ceO0adMmpaamKjIyssTfkzabTZL4nrQ4ggv+EIKDg5WdnW2uf/nll07zX375pRo3bixJ2rFjh2rWrKkXXnhBLVu2VP369fXDDz/c0X4B/H/bt29Xjx499F//9V9q1qyZ6tSpo2+//dbVbcFFuB0avys///yznnzySQ0ePFhNmzaVr6+vdu/erenTp6tHjx5m3YoVK9SyZUu1b99eH374oXbt2qV3331XklS/fn2lpaVp6dKlatWqlRITE7Vq1SpX7RLwh1e/fn2tXLlSO3bsUMWKFTVz5kxlZGQoODjY1a3BBQgu+F0pX768wsLCNGvWLB07dkyXL19WUFCQhg4dqueff96smzp1qpYuXaq//OUvqlq1qj766CPzh+Bjjz2muLg4jRw5Ujk5OYqKitKLL76oKVOmuGivgD+2iRMn6rvvvlNkZKS8vb01bNgw9ezZU1lZWa5uDS5gMwzDcHUTwJ1ks9m0atWqIp/WCQC4u3GNCwAAsAyCCwAAsAyuccEfDp+OAoB1ccYFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYBsEFAABYxv8DlnsLAWOXHmIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 600x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAIjCAYAAABS7iKKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAORdJREFUeJzt3XmcjXX/x/H3GWZfzYytDDNMlmEsN3d2Q2RXCFGEJCVbbsmUbMWoXxQlW1ma7Etyo2StVJQ1RSPGRBrLWMYyzDBz/f7o4dyOGcxXOEdez8djHo/Oda5znc91muHlOtd1xmZZliUAAAADbs4eAAAA3H0ICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggI3BPq1q2runXrOnsM3GJnz57VM888o0KFCslms6lfv363/DnCw8PVpUuXW77du9WwYcNks9mcPQZcAAEBlzFjxgzZbDZ5eXnp0KFD2e6vW7euypUr54TJbl7dunVls9nsXx4eHoqIiNCzzz6rgwcPOnu8W+L06dMaPny4KlSoID8/P3l7e6tcuXJ6+eWX9eeff97W5x41apRmzJih559/XvHx8erUqdNtfb476fLPg81m04YNG7Ldb1mWwsLCZLPZ1Lx585t6jlGjRmnJkiV/c1Lcq/I6ewDgaunp6Ro9erTee++9W7bNL7/88pZty1SRIkUUFxcnScrIyNCuXbs0adIkrVy5Urt375aPj4/TZvu7EhMT1aBBAx04cEBt27bVs88+Kw8PD/3000/66KOP9Omnn2rPnj237fnXrl2ratWqaejQobftORISEuTm5rx/a3l5eWn27NmqVauWw/KvvvpKf/zxhzw9PW9626NGjVKbNm3UsmXLXD9m8ODBGjRo0E0/J/45CAi4nIoVK2rq1KmKjY3Vfffdd0u26eHhcUu2czMCAwPVsWNHh2URERHq1auXvv32Wz388MNOmuzvuXTpklq3bq0jR45o/fr12f6CGzlypN58883bOsPRo0cVFRV1W5/j7/wFfSs0bdpUCxYs0Pjx45U37//+yJ49e7YqV66slJSUOzLHuXPn5Ovrq7x58zrMgXsXb2HA5bzyyivKzMzU6NGjb7ju9OnT9dBDD6lAgQLy9PRUVFSUJk6cmG29K8+BOHLkiPLmzavhw4dnWy8hIUE2m03vv/++fdmpU6fUr18/hYWFydPTU5GRkXrzzTeVlZV10/tYqFAhSXL4g/j3339Xz549VapUKXl7eyskJERt27ZVUlKSfZ3ExETZbDa988472bb53XffyWazac6cOfZlhw4d0tNPP62CBQvK09NTZcuW1bRp07I99r333lPZsmXl4+OjfPnyqUqVKpo9e/Z192HRokXasWOHXn311WzxIEkBAQEaOXKkw7IFCxaocuXK8vb2VmhoqDp27Jjt7aouXbrIz89Phw4dUsuWLeXn56f8+fNrwIAByszMlCStX79eNptN+/fv1/Lly+2H+pOSkuyH/q983a58zPr16+3LfvvtNz322GMqVKiQvLy8VKRIEbVv316pqan2dXI6ByIxMVFt27ZVcHCwfHx8VK1aNS1fvjzH55s/f75GjhypIkWKyMvLS/Xr19fevXuv+9peqUOHDjp+/LhWrVplX5aRkaGFCxfqiSeeyPExb7/9tmrUqKGQkBB5e3urcuXKWrhwocM6NptN586d08yZM+2v3+X9vHyew65du/TEE08oX7589v/HV58DMX36dNlstmzfV6NGjZLNZtOKFStyva+4uxAQcDkRERF66qmnNHXq1Bu+hz5x4kQVK1ZMr7zyisaMGaOwsDD17NlTEyZMuOZjChYsqJiYGM2fPz/bffPmzVOePHnUtm1bSVJaWppiYmL0ySef6KmnntL48eNVs2ZNxcbGqn///rnan8zMTKWkpCglJUXJyclau3athg4dqsjISNWsWdO+3o8//qjvvvtO7du31/jx4/Xcc89pzZo1qlu3rtLS0iRJxYsXV82aNTVr1qxszzNr1iz5+/vr0UcflfRXKFWrVk2rV69Wr169NG7cOEVGRqpbt25699137Y+bOnWq+vTpo6ioKL377rsaPny4KlasqE2bNl13v5YuXSpJuT7vYMaMGWrXrp3y5MmjuLg4de/eXYsXL1atWrV06tSpbK9Zo0aNFBISorffflsxMTEaM2aMpkyZIkkqU6aM4uPjFRoaqooVKyo+Pl7x8fHKnz9/rmaR/vpLuFGjRtq4caN69+6tCRMm6Nlnn1ViYmK2ea505MgR1ahRQytXrlTPnj01cuRIXbhwQY888og+/fTTbOuPHj1an376qQYMGKDY2Fht3LhRTz75ZK7nDA8PV/Xq1R3C8PPPP1dqaqrat2+f42PGjRunSpUqacSIERo1apTy5s2rtm3bOkROfHy8PD09Vbt2bfvr16NHD4fttG3bVmlpaRo1apS6d++e43N17dpVzZs3V//+/e3n9ezcuVPDhw9Xt27d1LRp01zvK+4yFuAipk+fbkmyfvzxR2vfvn1W3rx5rT59+tjvj4mJscqWLevwmLS0tGzbadSokVW8eHGHZTExMVZMTIz99uTJky1J1s6dOx3Wi4qKsh566CH77ddff93y9fW19uzZ47DeoEGDrDx58lgHDhy47j7FxMRYkrJ9lSlTxkpMTLzhvnz//feWJOvjjz/ONvvu3bvtyzIyMqzQ0FCrc+fO9mXdunWzChcubKWkpDhss3379lZgYKD9+R599NFsr2tuVKpUyQoMDMzVuhkZGVaBAgWscuXKWefPn7cvX7ZsmSXJGjJkiH1Z586dLUnWiBEjsj1f5cqVHZYVK1bMatasmcOyy99H+/fvd1i+bt06S5K1bt06y7Isa9u2bZYka8GCBdedvVixYg6va79+/SxJ1jfffGNfdubMGSsiIsIKDw+3MjMzHZ6vTJkyVnp6un3dcePG5fi9d7Urfx7ef/99y9/f3/7/rG3btla9evWu+Rpc/b2UkZFhlStXzuF727Isy9fX12HfLhs6dKglyerQocM177tScnKyFRwcbD388MNWenq6ValSJato0aJWamrqdfcRdzeOQMAlFS9eXJ06ddKUKVOUnJx8zfW8vb3t/52amqqUlBTFxMQoMTHR4TD01Vq3bq28efNq3rx59mU///yzdu3apccff9y+bMGCBapdu7by5ctnP4qQkpKiBg0aKDMzU19//fUN9yU8PFyrVq3SqlWr9Pnnn+vdd99VamqqmjRpomPHjuW4LxcvXtTx48cVGRmpoKAgbd261X5fu3bt5OXl5XAUYuXKlUpJSbGfa2FZlhYtWqQWLVrIsiyH2Rs1aqTU1FT7NoOCgvTHH3/oxx9/vOG+XOn06dPy9/fP1bqbN2/W0aNH1bNnT3l5edmXN2vWTKVLl852+F+SnnvuOYfbtWvXVmJiotGM1xMYGCjpr9fu8hGe3FixYoUefPBBh7dt/Pz89OyzzyopKUm7du1yWL9r164O5+DUrl1bkoz2pV27djp//ryWLVumM2fOaNmyZdd8+0Jy/F46efKkUlNTVbt2bYfvo9y4+v/BtRQqVEgTJkzQqlWrVLt2bW3fvl3Tpk1TQECA0fPh7kJAwGUNHjxYly5duu65EN9++60aNGggX19fBQUFKX/+/HrllVck6boBERoaqvr16zu8jTFv3jzlzZtXrVu3ti/77bff9MUXXyh//vwOXw0aNJD010l8N+Lr66sGDRqoQYMGaty4sfr27aulS5cqISHBYd/Onz+vIUOG2M+1CA0NVf78+XXq1CmHfQkKClKLFi0czlGYNWuW7r//fj300EOSpGPHjunUqVOaMmVKttm7du3qMPvLL78sPz8/Pfjgg3rggQf0wgsv6Ntvv73hfgUEBOjMmTM3XE/66/wOSSpVqlS2+0qXLm2//zIvL69sb0fky5dPJ0+ezNXz5UZERIT69++vDz/8UKGhoWrUqJEmTJhw3e8b6a99yWk/ypQpY7//SkWLFnW4nS9fPkky2pfL33OzZ8/W4sWLlZmZqTZt2lxz/WXLlqlatWry8vJScHCw8ufPr4kTJ95w364WERGR63Xbt2+vZs2a6YcfflD37t1Vv359o+fC3YdTaeGyihcvro4dO2rKlCk5Xja2b98+1a9fX6VLl9bYsWMVFhYmDw8PrVixQu+8884NT3Js3769unbtqu3bt6tixYqaP3++6tevr9DQUPs6WVlZevjhhzVw4MAct1GyZMmb2rfKlSsrMDDQ4QhG7969NX36dPXr10/Vq1dXYGCgbDab2rdvn21fnnrqKS1YsEDfffedoqOjtXTpUvXs2dN+ueHl9Tt27KjOnTvnOEP58uUl/fUXX0JCgpYtW6YvvvhCixYt0gcffKAhQ4bkeKLpZaVLl9a2bdt08OBBhYWF3dTrcC158uS56cde60OOLp+AeaUxY8aoS5cu+uyzz/Tll1+qT58+iouL08aNG1WkSJGbnuFK19oXy7KMtvPEE0+oe/fuOnz4sJo0aaKgoKAc1/vmm2/0yCOPqE6dOvrggw9UuHBhubu7a/r06Tc8MfZqVx7JuJHjx49r8+bNkqRdu3YpKyvLqZe/4vYjIODSBg8erE8++STHywH/+9//Kj09XUuXLnX4V966detyte2WLVuqR48e9rcx9uzZo9jYWId1SpQoobNnz9qPONxKmZmZOnv2rP32woUL1blzZ40ZM8a+7MKFCzme0Ne4cWPlz59fs2bNUtWqVZWWluZwMmP+/Pnl7++vzMzMXM3u6+urxx9/XI8//rgyMjLUunVrjRw5UrGxsQ5vOVypRYsWmjNnjj755JNsr9vVihUrJumvq1wuHyW5LCEhwX7/rXD5X/hXv25XHxm4LDo6WtHR0Ro8eLC+++471axZU5MmTdIbb7yR4/rFihVTQkJCtuW//vqr/f7boVWrVurRo4c2btzo8Nbb1RYtWiQvLy+tXLnS4RLU6dOnZ1v3Vn6i5AsvvKAzZ84oLi5OsbGxevfdd3N9ojHuTuQhXFqJEiXUsWNHTZ48WYcPH3a47/K/7K78l1xqamqOf1DmJCgoSI0aNdL8+fM1d+5ceXh4ZPtAnXbt2un777/XypUrsz3+1KlTunTpkuEe/WXdunU6e/asKlSoYF+WJ0+ebP8qfe+993L8l3PevHnVoUMHzZ8/XzNmzFB0dLT9iMLlbT322GNatGiRfv7552yPv/Lci+PHjzvc5+HhoaioKFmWpYsXL15zH9q0aaPo6GiNHDlS33//fbb7z5w5o1dffVWSVKVKFRUoUECTJk1Senq6fZ3PP/9cu3fvVrNmza75PKZKlCghSQ5HdzIzM+1XcFx2+vTpbP//oqOj5ebm5jDj1Zo2baoffvjBYZ/PnTunKVOmKDw8/LZ9LoWfn58mTpyoYcOGqUWLFtdcL0+ePLLZbA7fN0lJSTl+4qSvr+91rzjJrYULF2revHkaPXq0Bg0apPbt22vw4MG39UPE4HwcgYDLe/XVVxUfH6+EhASVLVvWvrxhw4by8PBQixYt1KNHD509e1ZTp05VgQIFrnvi5ZUef/xxdezYUR988IEaNWqU7bDwSy+9pKVLl6p58+bq0qWLKleurHPnzmnnzp1auHChkpKSHN7yyElqaqo++eQTSX99+FJCQoImTpwob29vh7dmmjdvrvj4eAUGBioqKkrff/+9Vq9erZCQkBy3e/my0nXr1uV4hGb06NFat26dqlatqu7duysqKkonTpzQ1q1btXr1ap04ccL+OhYqVEg1a9ZUwYIFtXv3br3//vtq1qzZdU+SdHd31+LFi9WgQQPVqVNH7dq1U82aNeXu7q5ffvlFs2fPVr58+TRy5Ei5u7vrzTffVNeuXRUTE6MOHTroyJEjGjdunMLDw/Xiiy9e9zU0UbZsWVWrVk2xsbE6ceKEgoODNXfu3GyxsHbtWvXq1Utt27ZVyZIldenSJcXHx9vj61oGDRqkOXPmqEmTJurTp4+Cg4M1c+ZM7d+/X4sWLbqth+2v9XbUlZo1a6axY8eqcePGeuKJJ3T06FFNmDBBkZGR+umnnxzWrVy5slavXq2xY8fqvvvuU0REhKpWrWo009GjR/X888+rXr166tWrlyTp/fff17p169SlSxdt2LCBtzL+qZx5CQhwpSsvW7va5Uv7rr7ccOnSpVb58uUtLy8vKzw83HrzzTetadOmZbuM7+rLOC87ffq05e3tbUmyPvnkkxznOnPmjBUbG2tFRkZaHh4eVmhoqFWjRg3r7bfftjIyMq67T1dfxmmz2azg4GDrkUcesbZs2eKw7smTJ62uXbtaoaGhlp+fn9WoUSPr119/zXYZ4ZXKli1rubm5WX/88UeO9x85csR64YUXrLCwMMvd3d0qVKiQVb9+fWvKlCn2dSZPnmzVqVPHCgkJsTw9Pa0SJUpYL730Uq4vwTt58qQ1ZMgQKzo62vLx8bG8vLyscuXKWbGxsVZycrLDuvPmzbMqVapkeXp6WsHBwdaTTz6ZbfbOnTtbvr6+2Z4np8sHc7qE0bIsa9++fVaDBg0sT09Pq2DBgtYrr7xirVq1yuEyzsTEROvpp5+2SpQoYXl5eVnBwcFWvXr1rNWrV2d7jqtf/3379llt2rSxgoKCLC8vL+vBBx+0li1b5rDO5cs4r75MdP/+/ZYka/r06dnmvtL1fh5u9Bp89NFH1gMPPGB5enpapUuXtqZPn57j6/frr79aderUsf8MXN7Py+seO3Ys2/NdvZ3WrVtb/v7+VlJSksN6n332mSXJevPNN687P+5eNssyPJMHgMuoVKmSgoODtWbNGmePAuAew3El4C61efNmbd++XU899ZSzRwFwD+IIBHCX+fnnn7VlyxaNGTNGKSkpSkxMvOaVEgBwu3AEArjLLFy4UF27dtXFixc1Z84c4gGAU3AEAgAAGOMIBAAAMEZAAAAAYwQEAAAw9o/8JErvSr2cPQKA6zj54/vOHgHANXjlsgw4AgEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIzldfYAkmRZlhYuXKh169bp6NGjysrKcrh/8eLFTpoMAADkxCUCol+/fpo8ebLq1aunggULymazOXskAABwHS4REPHx8Vq8eLGaNm3q7FEAAEAuuMQ5EIGBgSpevLizxwAAALnkEgExbNgwDR8+XOfPn3f2KAAAIBdc4i2Mdu3aac6cOSpQoIDCw8Pl7u7ucP/WrVudNBkAAMiJSwRE586dtWXLFnXs2JGTKO8Rfj6eGtqzuR55qILy5/PTjoQ/NOCthdqy64B9nVIRBfVG35aq/a9I5c3rpl8TD6vDgA918PBJSdLKqX1Vp8oDDtudunCD+oyce0f3BbiXzZ09SzOnf6SUlGMqWaq0Br3ymqLLl3f2WLgDXCIgli9frpUrV6pWrVrOHgV3yMQhTygq8j49PXimko+lqkPTB7V8Um/967E39OexVEUUCdWaaf01c8l3emPicp0+d0FRJQrrQvpFh+18tOhbvT5xmf122oWLVz8VgNvki89X6O234jR46HBFR1fQrPiZer5HN3227AuFhIQ4ezzcZi5xDkRYWJgCAgKcPQbuEC9Pd7WsX1GvvrtE327dp8SDKRo5eYX2HTym7m1rS5KG92qhlRt+0avjPtOOhD+0/48ULf9qp46dPOuwrfMXMnTk+Bn715lzF5yxS8A9KX7mdLVu004tWz2mEpGRGjx0uLy8vLRk8SJnj4Y7wCUCYsyYMRo4cKCSkpKcPQrugLx53JQ3bx5dyHA8WnAh/aJqVCohm82mxrXK6rcDR7V0wgv6fU2cvv54gFrUzX5Y9PGmVXRw7WhtXvCKRvR+RN5e7tnWAXDrXczI0O5dv6ha9Rr2ZW5ubqpWrYZ+2rHNiZPhTnGJtzA6duyotLQ0lShRQj4+PtlOojxx4sQ1H5uenq709HSHZVZWpmxueW7LrPj7zqala+OORMV2b6KE/Ud05PhptWtcRVXLR2jfwWMqEOwnf18vDej6sIZPWKbB45aoYc0ozR3zjBo9O14btuyVJM37fLMOJJ9Q8rFURT9wn97o+6hKFiug9gM+dPIeAv98J0+dVGZmZra3KkJCQrR/f6KTpsKd5BIB8e677970Y+Pi4jR8+HCHZXkK/lvuhR/8m1Phdnp68MeaPOxJJX45UpcuZWr7rwc1/4vNqlSmqNzc/jowtmz9Tr03a50k6ac9h1S1QnF1b1PLHhDTFn9r394ve/9UcsppfTGljyKKhGr/Hyl3fqcA4B7iEgHRuXPnm35sbGys+vfv77CsQO2X/+5IuM32/5Gihs+Mk4+XhwL8vHQ45bTiR3fV/kMpSjl5VhcvZmp3YrLDYxISD6tGpWt/4NiPO5MkSSXC8hMQwG2WLyif8uTJo+PHjzssP378uEJDQ500Fe4klzgH4koXLlzQ6dOnHb6ux9PTUwEBAQ5fvH1x90i7kKHDKacV5O+tBjXKaNn6nbp4KVNbdv2uksUKOqz7QLECOpB88prbqlCqiCTpcErqbZ0ZgOTu4aEyUWW1aeP39mVZWVnatOl7la9QyYmT4U5xiSMQ586d08svv6z58+dnq1lJyszMdMJUuJ0aVC8jm03ak3RUJcLya9SLLbVn/xF9vPSvP4zembla8W8+rQ1b9+qrzXvUsEaUmtYpp0bdx0mSIoqE6vEmVbRywy86fuqcokver7f+01rfbPlNP//2pzN3DbhndOrcVa+98rLKli2nctHl9Un8TJ0/f14tW7V29mi4A1wiIAYOHKh169Zp4sSJ6tSpkyZMmKBDhw5p8uTJGj16tLPHw20Q6OelEb0f0f0Fg3QiNU2frdmuoRP+q0uX/vpV7kvX/aTeI+fqpacbaszANtrz+1F1eOlDfbf9r5OzLl68pIeqllKvJ+rJ19tDfxw5qSVrtmv0hyuduVvAPaVxk6Y6eeKEPnh/vFJSjqlU6TL6YPKHCuEtjHuCzbIsy9lDFC1aVB9//LHq1q2rgIAAbd26VZGRkYqPj9ecOXO0YsUKo+15V+p1myYFcCuc/PF9Z48A4Bq8cnlowSXOgThx4oT9t3EGBATYL9usVauWvv76a2eOBgAAcuASAVG8eHHt379fklS6dGnNnz9fkvTf//5XQUFBTpwMAADkxCUComvXrtqxY4ckadCgQZowYYK8vLz04osv6qWXXnLydAAA4GoucQ7E1X7//Xdt2bJFkZGRKn8Tv9WNcyAA18Y5EIDryu05EC5xFYYkrVmzRmvWrNHRo0eVlZXlcN+0adOcNBUAAMiJSwTE8OHDNWLECFWpUkWFCxeWzWZz9kgAAOA6XCIgJk2apBkzZqhTp07OHgUAAOSCS5xEmZGRoRo1atx4RQAA4BJcIiCeeeYZzZ4929ljAACAXHLaWxhX/gbNrKwsTZkyRatXr1b58uXl7u7usO7YsWPv9HgAAOA6nBYQ27Ztc7hdsWJFSdLPP//ssJwTKgEAcD1OC4h169Y566kBAMDf5BLnQAAAgLsLAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMDYTQXEN998o44dO6p69eo6dOiQJCk+Pl4bNmy4pcMBAADXZBwQixYtUqNGjeTt7a1t27YpPT1dkpSamqpRo0bd8gEBAIDrMQ6IN954Q5MmTdLUqVPl7u5uX16zZk1t3br1lg4HAABck3FAJCQkqE6dOtmWBwYG6tSpU7diJgAA4OKMA6JQoULau3dvtuUbNmxQ8eLFb8lQAADAtRkHRPfu3dW3b19t2rRJNptNf/75p2bNmqUBAwbo+eefvx0zAgAAF5PX9AGDBg1SVlaW6tevr7S0NNWpU0eenp4aMGCAevfufTtmBAAALsZmWZZ1Mw/MyMjQ3r17dfbsWUVFRcnPz+9Wz3bTvCv1cvYIAK7j5I/vO3sEANfglctDC8ZHIC7z8PBQVFTUzT4cAADcxYwDol69erLZbNe8f+3atX9rIAAA4PqMA6JixYoOty9evKjt27fr559/VufOnW/VXAAAwIUZB8Q777yT4/Jhw4bp7Nmzf3sgAADg+m7ZL9Pq2LGjpk2bdqs2BwAAXNhNn0R5te+//15eXl63anN/y+Hvxjt7BADXcSQ13dkjALiGYiGeuVrPOCBat27tcNuyLCUnJ2vz5s167bXXTDcHAADuQsYBERgY6HDbzc1NpUqV0ogRI9SwYcNbNhgAAHBdRgGRmZmprl27Kjo6Wvny5btdMwEAABdndBJlnjx51LBhQ37rJgAA9zjjqzDKlSunxMTE2zELAAC4SxgHxBtvvKEBAwZo2bJlSk5O1unTpx2+AADAP1+uf5nWiBEj9J///Ef+/v7/e/AVH2ltWZZsNpsyMzNv/ZSGUs9nOXsEANdxKu2is0cAcA25vYwz1wGRJ08eJScna/fu3dddLyYmJldPfDsREIBrIyAA13XLPwficme4QiAAAADnMjoH4nq/hRMAANw7jD4HomTJkjeMiBMnTvytgQAAgOszCojhw4dn+yRKAABw78n1SZRubm46fPiwChQocLtn+ts4iRJwbZxECbiu3J5EmetzIDj/AQAAXJbrgMjlgQoAAHAPyPU5EFlZvC0AAAD+YvxR1gAAAAQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGN5nT3A8ePHNWTIEK1bt05Hjx5VVlaWw/0nTpxw0mQAAOBanB4QnTp10t69e9WtWzcVLFhQNpvN2SMBAIAbsFmWZTlzAH9/f23YsEEVKlS4ZdtMPZ9145UAOM2ptIvOHgHANRQL8czVek4/B6J06dI6f/68s8cAAAAGnB4QH3zwgV599VV99dVXOn78uE6fPu3wBQAAXI/Tz4EICgrS6dOn9dBDDzkstyxLNptNmZmZTpoMAABci9MD4sknn5S7u7tmz57NSZQAANwlnB4QP//8s7Zt26ZSpUo5exQAAJBLTj8HokqVKjp48KCzxwAAAAacfgSid+/e6tu3r1566SVFR0fL3d3d4f7y5cs7aTIAAHAtTv8cCDe37AdBbDbb3zqJks+BuPssnD9HixfMVfKfhyRJESUi9cyzPVWjVh39eeiQWjZrkOPjRr31jho0bHwnR8UtwOdAuLaftm3Wgtkz9FvCbp1IOaahce+qZsz/TnTfsH61ln26QL8l7NKZ06maOGO+SpQs7bCNd98coW0/btTxlGPy9vFRVLkK6tbzRRUNj7jTuwNDuf0cCKcfgdi/f7+zR4ALKFiwkF7o019hRYvJkqXlSz/TgH69FD93kcIjimvF6q8d1l+yaL4+mTlNNWrVdtLEwD/XhQvnVTyylBo1b6URsS9mv//8eZWrUEkx9RvqndHDc9zGA6Wi9FDDpipQqLDOnE5V/EcTFftiD3288HPlyZPndu8C7gCnB0SxYsWcPQJcQO2Yeg63e/bup8UL5urnnTtUIvIBhYbmd7h//do1qt+wsXx8fO/kmMA94cHqtfVg9WvHeYMmLSRJh5MPXXOdZi3b2P+7UOH71eXZ3nruqTY6kvyn7isSduuGhdM4PSAu27Vrlw4cOKCMjAyH5Y888oiTJoKzZGZmas2qL3T+fJqiy1fMdv/uXb9oT8JuDYx97c4PB8DY+fNpWrl8iQrdd7/yFyzk7HFwizg9IBITE9WqVSvt3LnTfu6DJPvnQdzoHIj09HSlp6c7Lstyl6dn7t7DgevY+9sedXuqgzIy0uXt7aO3xr6n4iUis6239NOFiiheQuUrVnLClABya+miufrwg3d04fx5FSkartHvTsl2ojzuXk6/jLNv376KiIjQ0aNH5ePjo19++UVff/21qlSpovXr19/w8XFxcQoMDHT4Gvt/o2//4LjlioWH65N5izUtfp4ea9dew4fEKnHfXod1Lly4oJWfL9cjLR9z0pQAcqt+o2aaOGO+3p4wTUWKFtMbrw1QxlX/4MPdy+lHIL7//nutXbtWoaGhcnNzk5ubm2rVqqW4uDj16dNH27Ztu+7jY2Nj1b9/f4dlF7Io3LuRu7uHwor+dU5Mmaiy2vXLTs2bHa/Y1/53ktba1St14cIFNW3+qLPGBJBLvn7+8vXz1/1hxVSmXAW1blRT3361RvUaNnX2aLgFnB4QmZmZ8vf3lySFhobqzz//VKlSpVSsWDElJCTc8PGenp7Z3q6wuIzzHyEry8p2TszSTxepTt16yhcc7KSpANwMy7IkS7p4kUt4/ymcHhDlypXTjh07FBERoapVq+qtt96Sh4eHpkyZouLFizt7PNwhE8aPVfWatVWo0H1KSzunlZ8v09bNP2j8B1Pt6xw88Lu2bd2sd9+f7MRJgX++82lp+vOPA/bbh5MPad+eX+UfEKgChQrr9OlUHTucrOMpxyRJBw8kSZLyhYQqOCRUyYf+0Po1X6jygzUUFJRPx44d0bz4j+Th6al/V6/ljF3CbeD0D5JauXKlzp07p9atW2vv3r1q3ry59uzZo5CQEM2bNy/bb+nMDT5I6u7z+rBXtXnTRqWkHJOfn78iS5bUU12eUdXqNe3rfDD+HX2+4r/6bMXqHD+ADHcPPkjKte3Y+qNe6tUt2/KHmz6ilwa/oS+Xf6a3R2a/Cqrj08/pqWd66vixoxo7eph++3WXzp45raDgEEVXrKyOXXsorBgfJOXqcvtBUk4PiJycOHFC+fLlu+nfzElAAK6NgABc113zSZRXuvxLtcLC+JARAABcmdOPA1+6dEmvvfaaAgMDFR4ervDwcAUGBmrw4MGcbAMAgIty+hGI3r17a/HixXrrrbdUvXp1SX9d2jls2DAdP35cEydOdPKEAADgak4/ByIwMFBz585VkyZNHJavWLFCHTp0UGpqqvE2OQcCcG2cAwG4rtyeA+H0tzA8PT0VHh6ebXlERIQ8PDzu/EAAAOCGnB4QvXr10uuvv+7w+yzS09M1cuRI9erVy4mTAQCAa3H6WxitWrXSmjVr5OnpqQoVKkiSduzYoYyMDNWvX99h3cWLF+dqm7yFAbg23sIAXNddcxlnUFCQHnvM8RcjcRknAACuzelHIM6fP6+srCz5+vpKkpKSkrRkyRKVKVNGjRo1uqltcgQCcG0cgQBc111zEuWjjz6q+Ph4SdKpU6dUrVo1jRkzRi1btuQSTgAAXJTTA2Lr1q2qXbu2JGnhwoUqWLCgfv/9d3388ccaP368k6cDAAA5cXpApKWl2X+d95dffqnWrVvLzc1N1apV0++//+7k6QAAQE6cHhCRkZFasmSJDh48qJUrV6phw4aSpKNHjyogIMDJ0wEAgJw4PSCGDBmiAQMGKDw8XFWrVrV/nPWXX36pSpUqOXk6AACQE6dfhSFJhw8fVnJysipUqCA3t7+a5ocfflBAQIBKly5tvD2uwgBcG1dhAK4rt1dhuERA3GoEBODaCAjAdd01l3ECAIC7DwEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIzZLMuynD0EcD3p6emKi4tTbGysPD09nT0OgCvw83nvIiDg8k6fPq3AwEClpqYqICDA2eMAuAI/n/cu3sIAAADGCAgAAGCMgAAAAMYICLg8T09PDR06lBO0ABfEz+e9i5MoAQCAMY5AAAAAYwQEAAAwRkAAAABjBATumLp166pfv37OHgMAcAsQEAAAwBgBAQAAjBEQuKOysrI0cOBABQcHq1ChQho2bJj9vrFjxyo6Olq+vr4KCwtTz549dfbsWfv9M2bMUFBQkJYtW6ZSpUrJx8dHbdq0UVpammbOnKnw8HDly5dPffr0UWZmphP2Drj7LFy4UNHR0fL29lZISIgaNGigc+fOqUuXLmrZsqWGDx+u/PnzKyAgQM8995wyMjLsj/3iiy9Uq1YtBQUFKSQkRM2bN9e+ffvs9yclJclms2n+/PmqXbu2vL299e9//1t79uzRjz/+qCpVqsjPz09NmjTRsWPHnLH7+BsICNxRM2fOlK+vrzZt2qS33npLI0aM0KpVqyRJbm5uGj9+vH755RfNnDlTa9eu1cCBAx0en5aWpvHjx2vu3Ln64osvtH79erVq1UorVqzQihUrFB8fr8mTJ2vhwoXO2D3grpKcnKwOHTro6aef1u7du7V+/Xq1bt1alz8eaM2aNfblc+bM0eLFizV8+HD748+dO6f+/ftr8+bNWrNmjdzc3NSqVStlZWU5PM/QoUM1ePBgbd26VXnz5tUTTzyhgQMHaty4cfrmm2+0d+9eDRky5I7uO24BC7hDYmJirFq1ajks+/e//229/PLLOa6/YMECKyQkxH57+vTpliRr79699mU9evSwfHx8rDNnztiXNWrUyOrRo8ctnh7459myZYslyUpKSsp2X+fOna3g4GDr3Llz9mUTJ060/Pz8rMzMzBy3d+zYMUuStXPnTsuyLGv//v2WJOvDDz+0rzNnzhxLkrVmzRr7sri4OKtUqVK3ardwh3AEAndU+fLlHW4XLlxYR48elSStXr1a9evX1/333y9/f3916tRJx48fV1pamn19Hx8flShRwn67YMGCCg8Pl5+fn8Oyy9sEcG0VKlRQ/fr1FR0drbZt22rq1Kk6efKkw/0+Pj7229WrV9fZs2d18OBBSdJvv/2mDh06qHjx4goICFB4eLgk6cCBAw7Pc+XPfcGCBSVJ0dHRDsv4mb37EBC4o9zd3R1u22w2ZWVlKSkpSc2bN1f58uW1aNEibdmyRRMmTJAkh/dcc3r8tbYJ4Pry5MmjVatW6fPPP1dUVJTee+89lSpVSvv378/V41u0aKETJ05o6tSp2rRpkzZt2iTJ8WdWcvy5tdlsOS7jZ/buk9fZAwCStGXLFmVlZWnMmDFyc/ura+fPn+/kqYB/PpvNppo1a6pmzZoaMmSIihUrpk8//VSStGPHDp0/f17e3t6SpI0bN8rPz09hYWE6fvy4EhISNHXqVNWuXVuStGHDBqftB+48AgIuITIyUhcvXtR7772nFi1a6Ntvv9WkSZOcPRbwj7Zp0yatWbNGDRs2VIECBbRp0yYdO3ZMZcqU0U8//aSMjAx169ZNgwcPVlJSkoYOHapevXrJzc1N+fLlU0hIiKZMmaLChQvrwIEDGjRokLN3CXcQb2HAJVSoUEFjx47Vm2++qXLlymnWrFmKi4tz9ljAP1pAQIC+/vprNW3aVCVLltTgwYM1ZswYNWnSRJJUv359PfDAA6pTp44ef/xxPfLII/ZLr93c3DR37lxt2bJF5cqV04svvqj/+7//c+Le4E7j13kDALLp0qWLTp06pSVLljh7FLgojkAAAABjBAQAADDGWxgAAMAYRyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICwG3TpUsXtWzZ0n67bt266tev3x2fY/369bLZbDp16tQdf27gn4qAAO5BXbp0kc1mk81mk4eHhyIjIzVixAhdunTptj7v4sWL9frrr+dqXf7SB1wbv0wLuEc1btxY06dPV3p6ulasWKEXXnhB7u7uio2NdVgvIyNDHh4et+Q5g4ODb8l2ADgfRyCAe5Snp6cKFSqkYsWK6fnnn1eDBg20dOlS+9sOI0eO1H333adSpUpJkg4ePKh27dopKChIwcHBevTRR5WUlGTfXmZmpvr376+goCCFhIRo4MCBuvpz6q5+CyM9PV0vv/yywsLC5OnpqcjISH300UdKSkpSvXr1JEn58uWTzWZTly5dJElZWVmKi4tTRESEvL29VaFCBS1cuNDheVasWKGSJUvK29tb9erVc5gTwK1BQACQJHl7eysjI0OStGbNGiUkJGjVqlVatmyZLl68qEaNGsnf31/ffPONvv32W/n5+alx48b2x4wZM0YzZszQtGnTtGHDBp04cUKffvrpdZ/zqaee0pw5czR+/Hjt3r1bkydPlp+fn8LCwrRo0SJJUkJCgpKTkzVu3DhJUlxcnD7++GNNmjRJv/zyi1588UV17NhRX331laS/Qqd169Zq0aKFtm/frmeeeYZfMw3cDhaAe07nzp2tRx991LIsy8rKyrJWrVpleXp6WgMGDLA6d+5sFSxY0EpPT7evHx8fb5UqVcrKysqyL0tPT7e8vb2tlStXWpZlWYULF7beeust+/0XL160ihQpYn8ey7KsmJgYq2/fvpZlWVZCQoIlyVq1alWOM65bt86SZJ08edK+7MKFC5aPj4/13XffOazbrVs3q0OHDpZlWVZsbKwVFRXlcP/LL7+cbVsA/h7OgQDuUcuWLZOfn58uXryorKwsPfHEExo2bJheeOEFRUdHO5z3sGPHDu3du1f+/v4O27hw4YL27dun1NRUJScnq2rVqvb78ubNqypVqmR7G+Oy7du3K0+ePIqJicn1zHv37lVaWpoefvhhh+UZGRmqVKmSJGn37t0Oc0hS9erVc/0cAHKHgADuUfXq1dPEiRPl4eGh++67T3nz/u+PA19fX4d1z549q8qVK2vWrFnZtpM/f/6ben5vb2/jx5w9e1aStHz5ct1///0O93l6et7UHABuDgEB3KN8fX0VGRmZq3X/9a9/ad68eSpQoIACAgJyXKdw4cLatGmT6tSpI0m6dOmStmzZon/96185rh8dHa2srCx99dVXatCgQbb7Lx8ByczMtC+LioqSp6enDhw4cM0jF2XKlNHSpUsdlm3cuPHGOwnACCdRArihJ598UqGhoXr00Uf1zTffaP/+/Vq/fr369OmjP/74Q5LUt29fjR49WkuWLNGvv/6qnj17XvczHMLDw9W5c2c9/fTTWrJkiX2b8+fPlyQVK1ZMNptNy5Yt07Fjx3T27Fn5+/trwIABevHFFzVz5kzt27dPW7du1XvvvaeZM2dKkp577jn99ttveumll5SQkKDZs2drxowZt/slAu45BASAG/Lx8dHXX3+tokWLqnXr1ipTpoy6deumCxcu2I9I/Oc//1GnTp3UuXNnVa9eXf7+/mrVqtV1tztx4kS1adNGPXv2VOnSpdW9e3edO3dOknT//fdr+PDhGjRokAoWLKhevXpJkl5//XW99tpriouLU5kyZdS4cWMtX75cERERkqSiRYtq0aJFWrJkiSpUqKBJkyZp1KhRt/HVAe5NNutaZzgBAABcA0cgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgLH/B6YMUO8VfdHxAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 800x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhcNJREFUeJzs3XlYVNX/B/D3zMAM+yayoyiK+4qK+wYIpigKammulS22mpW2aGVpfW3RStNKRVNzAVRSw9y3zH0HMRdckEVE2WFg5vz+8OfkxCIgcBl4v55nnuaeuct75iZ8OHPuuTIhhAARERERkQGSSx2AiIiIiKiiWMwSERERkcFiMUtEREREBovFLBEREREZLBazRERERGSwWMwSERERkcFiMUtEREREBovFLBEREREZLBazRERERGSwWMwSEdUQ8+bNQ+PGjaFQKNC+fXup41SYTCbDxx9/LHUMIqojWMwSEQAgLCwMMplM9zAyMoKrqysmTJiAhISEYrcRQuDXX39F7969YWNjAzMzM7Rp0waffvopsrOzSzzWxo0bMXDgQNjb20OpVMLFxQUjR47E7t27y5Q1Ly8P3377LXx8fGBtbQ0TExN4eXnh1VdfxaVLlyr0/qX2559/4t1330WPHj2wfPlyzJkzp0qPN2HCBMhkMrRt2xbF3dVcJpPh1VdfrdIMle3R/39lMhnMzc3RsmVLfPbZZ8jJyZE6HhFVESOpAxBRzfLpp5+iUaNGyMvLw99//42wsDAcPHgQ58+fh4mJiW49jUaD0aNHY/369ejVqxc+/vhjmJmZ4cCBA/jkk0+wYcMG7Ny5E46OjrpthBCYNGkSwsLC0KFDB0ydOhVOTk5ITEzExo0b4evri0OHDqF79+4l5ktNTUVgYCBOnDiBwYMHY/To0bCwsEBcXBzWrl2Ln376CWq1uko/o6qwe/duyOVyLF26FEqlstqOe+7cOURGRiIkJKTS9pmbmwsjI2l+vfj7+2PcuHEAgKysLBw4cAAfffQRzpw5gw0bNkiSiYiqmCAiEkIsX75cABDHjh3Ta3/vvfcEALFu3Tq99jlz5ggAYtq0aUX2FRUVJeRyuQgMDNRrnzdvngAg3nzzTaHVaotst3LlSnHkyJFScw4aNEjI5XIRHh5e5LW8vDzx9ttvl7p9WRUUFIj8/PxK2VdZTJw4UZibm1fa/rRarcjJySnx9fHjxwtTU1Ph5eUl2rZtW+R8ABBTpkyptDzVoaTMoaGhQi6Xi9zcXAlSEVFV4zADIipVr169AABXrlzRteXm5mLevHnw8vLC3Llzi2wTFBSE8ePHIzo6Gn///bdum7lz56J58+b46quvIJPJimw3duxYdOnSpcQsR44cwdatW/Hcc88V25OoUqnw1Vdf6Zb79u2Lvn37FllvwoQJ8PDw0C3Hx8dDJpPhq6++wvz58+Hp6QmVSoVTp07ByMgIn3zySZF9xMXFQSaT4YcfftC13b9/H2+++Sbc3d2hUqnQpEkTfPnll9BqtSW+J+DB1+PLly9Hdna27ivysLAwAEBhYSFmz56ty+Th4YH3338f+fn5evvw8PDA4MGDsX37dnTq1AmmpqZYsmRJqceVy+X48MMPcfbsWWzcuLHUddVqNWbOnAlvb29YW1vD3NwcvXr1wp49e4p9Pw/HzIaHh0Mmk2Hfvn1F1luyZAlkMhnOnz+va7t48SJCQ0NhZ2cHExMTdOrUCVFRUaVmexwnJyfd0JmHDhw4gBEjRqBBgwZQqVRwd3fHW2+9hdzcXN06y5cvh0wmw6lTp4rsc86cOVAoFHpDcI4cOYLAwEBYW1vDzMwMffr0waFDh/S2y8zMxJtvvgkPDw+oVCo4ODjA398fJ0+efKL3SFSXsZglolLFx8cDAGxtbXVtBw8exL179zB69OgSv05++FXvli1bdNukpaVh9OjRUCgUFcrysKgZO3ZshbZ/nOXLl+P777/H5MmT8fXXX8PZ2Rl9+vTB+vXri6y7bt06KBQKjBgxAgCQk5ODPn36YNWqVRg3bhy+++479OjRAzNmzMDUqVNLPe6vv/6KXr16QaVS4ddff9WNQwaA559/HjNnzkTHjh3x7bffok+fPpg7dy6efvrpIvuJi4vDM888A39/fyxYsKBMF5GNHj0aTZs2xaefflrs2NmHMjIy8Msvv6Bv37748ssv8fHHH+POnTsICAjA6dOnS9xu0KBBsLCwKPEzbNWqFVq3bg0AuHDhArp27YrY2FhMnz4dX3/9NczNzREcHPzYYvuhvLw8pKamIjU1FdevX8eaNWuwYsWKIv+vbtiwATk5OXj55Zfx/fffIyAgAN9//73u/1sACA0NhampKVavXl3kOKtXr0bfvn3h6uoK4MEwkd69eyMjIwOzZs3CnDlzcP/+ffTv3x9Hjx7VbffSSy/hxx9/REhICBYtWoRp06bB1NQUsbGxZXp/RFQMqbuGiahmeDjMYOfOneLOnTvi5s2bIjw8XNSvX1+oVCpx8+ZN3brz588XAMTGjRtL3F9aWpoAIIYPHy6EEGLBggWP3eZxhg0bJgCIe/fulWn9Pn36iD59+hRpHz9+vGjYsKFu+dq1awKAsLKyEikpKXrrLlmyRAAQ586d02tv2bKl6N+/v2559uzZwtzcXFy6dElvvenTpwuFQiFu3LhRatbx48cXGWZw+vRpAUA8//zzeu3Tpk0TAMTu3bt1bQ0bNhQARHR0dKnHKe54K1asEABEZGSk7nX85yv7wsLCIsMu7t27JxwdHcWkSZP02gGIWbNm6ZafeeYZ4eDgIAoLC3VtiYmJQi6Xi08//VTX5uvrK9q0aSPy8vJ0bVqtVnTv3l00bdr0se8JQLGP4OBgvX0KIYodgjF37lwhk8nE9evX9bK7uLgIjUajazt58qQAIJYvX67L2LRpUxEQEKA3XCMnJ0c0atRI+Pv769qsra0NbvgGUU3Hnlki0uPn54f69evD3d0doaGhMDc3R1RUFNzc3HTrZGZmAgAsLS1L3M/D1zIyMvT+W9o2j1MZ+yhNSEgI6tevr9c2fPhwGBkZYd26dbq28+fPIyYmBqNGjdK1bdiwAb169YKtra2uZzA1NRV+fn7QaDTYv39/ufNs27YNAIr07L799tsAgK1bt+q1N2rUCAEBAeU+zpgxYx7bO6tQKHQXpmm1WqSlpaGwsBCdOnV67Ffko0aNQkpKCvbu3atrCw8Ph1ar1X2GaWlp2L17N0aOHInMzEzd53f37l0EBATgn3/+KXFWjUcNHToUO3bswI4dO7B582bMmDED0dHRGD16tN57MzU11T3Pzs5GamoqunfvDiGE3rCCcePG4fbt23rDKVavXg1TU1PdUJfTp0/jn3/+wejRo3H37l1d9uzsbPj6+mL//v26oSY2NjY4cuQIbt++/dj3QkRlw9kMiEjPwoUL4eXlhfT0dCxbtgz79++HSqXSW+dhMfmwqC3OfwteKyurx27zOI/uw8bGpsL7KUmjRo2KtNnb28PX1xfr16/H7NmzATz4etzIyAjDhw/XrffPP//g7NmzRYrhh1JSUsqd5/r165DL5WjSpIleu5OTE2xsbHD9+vXH5i8LhUKBDz/8EOPHj8emTZswbNiwYtdbsWIFvv76a1y8eBEFBQVlPu7DcaTr1q2Dr68vgAefYfv27eHl5QUAuHz5MoQQ+Oijj/DRRx8Vu5+UlBTd1/olcXNzg5+fn255yJAhqFevHqZNm4YtW7YgKCgIAHDjxg3MnDkTUVFRuHfvnt4+0tPTdc/9/f3h7OyM1atXw9fXF1qtFr/99huGDh2q+3/7n3/+AQCMHz++xFzp6emwtbXF//73P4wfPx7u7u7w9vbGU089hXHjxqFx48alvi8iKhmLWSLS06VLF3Tq1AkAEBwcjJ49e2L06NGIi4uDhYUFAKBFixYAgLNnzyI4OLjY/Zw9exYA0LJlSwBA8+bNATyYCqqkbR7n0X08vDCtNDKZrNieRo1GU+z6j/bWPerpp5/GxIkTcfr0abRv3x7r16+Hr68v7O3tdetotVr4+/vj3XffLXYfD4u2iijuYrnilJS/LMaMGYPZs2fj008/Lfb8rFq1ChMmTEBwcDDeeecdODg4QKFQYO7cuXoXBxZHpVLpxr0uWrQIycnJOHTokN5cug97LqdNm1Zi7/J/i/qyelhA79+/H0FBQdBoNPD390daWhree+89NG/eHObm5khISMCECRP0LthTKBQYPXo0fv75ZyxatAiHDh3C7du38eyzzxbJPm/evBLHKT/8tzNy5Ej06tULGzduxJ9//ol58+bhyy+/RGRkJAYOHFih90dU17GYJaISPSxW+vXrhx9++AHTp08HAPTs2RM2NjZYs2YNPvjgg2Iv6Fq5ciUAYPDgwbptbG1t8dtvv+H999+v0EVgQUFBmDt3LlatWlWmYtbW1hZXr14t0v7fHs3HCQ4OxosvvqgbanDp0iXMmDFDbx1PT09kZWXp9Qo+qYYNG0Kr1eKff/7R/QEBAMnJybh//z4aNmxYacd62Ds7YcIEbN68ucjr4eHhaNy4MSIjI/WK61mzZpVp/6NGjcKKFSuwa9cuxMbGQgihN0zjYc+ksbFxpX6GwIMZIYAH884CD/4YunTpElasWKF3wdeOHTuK3X7cuHH4+uuv8fvvv+OPP/5A/fr19QpuT09PAA++OShLdmdnZ7zyyit45ZVXkJKSgo4dO+Lzzz9nMUtUQRwzS0Sl6tu3L7p06YL58+cjLy8PAGBmZoZp06YhLi4OH3zwQZFttm7dirCwMAQEBKBr1666bd577z3ExsbivffeK7bHdNWqVXpXfv9Xt27dEBgYiF9++QWbNm0q8rparca0adN0y56enrh48SLu3Lmjaztz5kyR6ZIex8bGBgEBAVi/fj3Wrl0LpVJZpPdy5MiROHz4MLZv315k+/v37+sKqvJ46qmnAADz58/Xa//mm28APJgpoDI9++yzaNKkSbFTkT384+PR83bkyBEcPny4TPv28/ODnZ0d1q1bh3Xr1qFLly56wxMcHBzQt29fLFmyBImJiUW2f/Qcltfvv/8OAGjXrl2J70UIgQULFhS7fdu2bdG2bVv88ssviIiIwNNPP603M4K3tzc8PT3x1Vdf6Qrm4rJrNBq9IQzAg/ft4uJSZKo1Iio79swS0WO98847GDFiBMLCwvDSSy8BAKZPn45Tp07hyy+/xOHDhxESEgJTU1McPHgQq1atQosWLbBixYoi+7lw4QK+/vpr7NmzB6GhoXByckJSUhI2bdqEo0eP4q+//io1y8qVKzFgwAAMHz4cQUFB8PX1hbm5Of755x+sXbsWiYmJurlmJ02ahG+++QYBAQF47rnnkJKSgsWLF6NVq1a6i8nKatSoUXj22WexaNEiBAQEFBmz+8477yAqKgqDBw/GhAkT4O3tjezsbJw7dw7h4eGIj4/XG5ZQFu3atcP48ePx008/4f79++jTpw+OHj2KFStWIDg4GP369SvX/h5HoVDggw8+wMSJE4u8NnjwYERGRmLYsGEYNGgQrl27hsWLF6Nly5bFFnD/ZWxsjOHDh2Pt2rXIzs7Wmw/4oYULF6Jnz55o06YNXnjhBTRu3BjJyck4fPgwbt26hTNnzjz2OJcuXcKqVasAPJgu7e+//8aKFSvQpEkT3ZRuzZs3h6enJ6ZNm4aEhARYWVkhIiKiyNjZR40bN073h9KjQwyAB/P1/vLLLxg4cCBatWqFiRMnwtXVFQkJCdizZw+srKzw+++/IzMzE25ubggNDUW7du1gYWGBnTt34tixY/j6668f+96IqARSTaNARDVLSXcAE0IIjUYjPD09haenp970ShqNRixfvlz06NFDWFlZCRMTE9GqVSvxySefiKysrBKPFR4eLgYMGCDs7OyEkZGRcHZ2FqNGjRJ79+4tU9acnBzx1Vdfic6dOwsLCwuhVCpF06ZNxWuvvSYuX76st+6qVatE48aNhVKpFO3btxfbt28vcWquefPmlXjMjIwMYWpqKgCIVatWFbtOZmammDFjhmjSpIlQKpXC3t5edO/eXXz11VdCrVaX+p6Km5pLiAd3Ivvkk09Eo0aNhLGxsXB3dxczZswoMtVUw4YNxaBBg0o9RlmP5+npWWRqLq1WK+bMmSMaNmwoVCqV6NChg9iyZUuRz1KIolNzPbRjxw4BQMhkMr2p3h515coVMW7cOOHk5CSMjY2Fq6urGDx4cLF3fPsv/GdKLoVCIdzc3MTkyZNFcnKy3roxMTHCz89PWFhYCHt7e/HCCy+IM2fO6E259ajExEShUCiEl5dXicc/deqUGD58uKhXr55QqVSiYcOGYuTIkWLXrl1CCCHy8/PFO++8I9q1aycsLS2Fubm5aNeunVi0aNFj3xsRlUwmRCmzZBMRERFSU1Ph7OyMmTNnljjbAhFJg2NmiYiIHiMsLAwajabK7j5HRBXHMbNEREQl2L17N2JiYvD5558jODgYHh4eUkciov/gMAMiIqIS9O3bF3/99Rd69OiBVatWPfamDURU/VjMEhEREZHB4phZIiIiIjJYLGaJiIiIyGDVuQvAtFotbt++DUtLyzLf75yIiIiIqo8QApmZmXBxcYFcXnrfa50rZm/fvg13d3epYxARERHRY9y8eRNubm6lrlPnillLS0sADz4cKysridMQERER0X9lZGTA3d1dV7eVps4Vsw+HFlhZWbGYJSIiIqrByjIklBeAEREREZHBYjFLRERERAaLxSwRERERGSwWs0RERERksFjMEhEREZHBYjFLRERERAaLxSwRERERGSwWs0RERERksFjMEhEREZHBYjFLRERERAaLxSwRERERGSwWs0RERERksFjMEhEREZHBYjFLRERERAZL0mJ2//79CAoKgouLC2QyGTZt2vTYbfbu3YuOHTtCpVKhSZMmCAsLq/KcRERERFQzSVrMZmdno127dli4cGGZ1r927RoGDRqEfv364fTp03jzzTfx/PPPY/v27VWclIiIiIhqIiMpDz5w4EAMHDiwzOsvXrwYjRo1wtdffw0AaNGiBQ4ePIhvv/0WAQEBVRWTiKpBYiLw5ZdAQoLUSYiIqCgtADmefhoICZE6iz5Ji9nyOnz4MPz8/PTaAgIC8Oabb5a4TX5+PvLz83XLGRkZVRWPiJ7Al18CCxZInYKIiPQJdOx4Cl27/o1lyyahXTsTqQMVYVAXgCUlJcHR0VGvzdHRERkZGcjNzS12m7lz58La2lr3cHd3r46oRFRO7JElIqpZlMp8hIREYsiQ3+HgcAedOh2TOlKxDKpntiJmzJiBqVOn6pYzMjJY0FKttnMn8N57wL17Uicpn+Tkf58fPQo4O0uXhYiorrt7Nwm7d29ARkYaZDIZvL37Y9KkHrC2ljpZUQZVzDo5OSH50d94AJKTk2FlZQVTU9Nit1GpVFCpVNURj6hG+PRT4ORJqVNUnEwGNG4M1KsndRIiorpHCIHjx49j+/bt0Gg0sLKyQmhoaI3uCDSoYrZbt27Ytm2bXtuOHTvQrVs3iRIRVb68PKCEUTNlkpb273MHhyfPU52MjIBJk1jIEhFJJS0tDdHR0dBqtfDy8sLQoUNhZmYmdaxSSVrMZmVl4fLly7rla9eu4fTp07Czs0ODBg0wY8YMJCQkYOXKlQCAl156CT/88APeffddTJo0Cbt378b69euxdetWqd4CUaVauxZ47jkgJ+fJ92Viov/VPRER0ePUq1cPAQEB0Gg06Nq1K2QymdSRHkvSYvb48ePo16+fbvnh2Nbx48cjLCwMiYmJuHHjhu71Ro0aYevWrXjrrbewYMECuLm54ZdffuG0XFRrLF1aOYUsADg5Vc5+iIio9hJC4OjRo2jYsCGc/v8XR5cuXSROVT4yIYSQOkR1ysjIgLW1NdLT02FlZSV1HKqjcnKAv/8GtFr99rffBs6effB8wABAoajY/k1NgVdfBR75W5GIiEhPbm4uoqKicPHiRdjZ2eHFF1+EUqmUOhaA8tVrBjVmlqg2UKuB5s2BmzdLXy8qCuC1i0REVBVu3bqF8PBwpKenQ6FQwMfHB8bGxlLHqhAWs0TVLC7u8YVs48aAgf5MISKiGkwIgcOHD2PXrl3QarWwtbVFaGgoXFxcpI5WYSxmiZ6AWg1s3AjEx5d9m3Pn/n3evj0weLD+6yoVMHIkIDeoW5oQEVFNp1arERERgUuXLgEAWrVqhaCgIIOfwpTFLNETWLQIeOutim/fuTMwe3bl5SEiIiqJsbExCgsLoVAoEBgYCG9vb4OYreBxWMwSPYHz559s+z59KicHERFRcYQQ0Gg0MDIygkwmw7Bhw5CVlaWbuaA2YDFLksrOBr78EoiNlTpJxRw//u/zBQuABg3Kvq2Hx4NhBkRERFUhOzsbGzduhLW1NYKCggAAFhYWsLCwkDhZ5WIxS5Javbr2fM0eEAA0ayZ1CiIiIiA+Ph4RERHIysqCkZERevbsCVtbW6ljVQkWsySphASpE1SO3r0BLy+pUxARUV2n1Wpx4MAB7Nu3D0II2NvbY8SIEbW2kAVYzNIT0mqBl18Gduyo2PZpaf8+X7XKMMeQyuWAszNQC8bQExGRAcvKykJkZCSuXbsGAGjfvj0GDhxYY26EUFVYzNITOXoU+OmnytlXo0aAm1vl7IuIiKguEUJg5cqVuHPnDoyNjTFo0CC0a9dO6ljVgsUslUtGBqDR/Lv832ECDg4V2++AAUDXrhXPRUREVJfJZDL4+flh9+7dCA0Nhb29vdSRqg2LWSqzkSOBDRtKfn3mTOCTT6ovDxERUV2WmZmJtLQ0NGzYEADg5eWFJk2aQF7H7rrDYpbKJCmp9EIWAGrRlHVEREQ12uXLl7Fx40ZotVq8+OKLsLGxAYA6V8gCLGbp/wnxYPxrZmbxr6ek/Pvc0RHo2FH/9RYtgGefrbp8RERE9GC2gt27d+PQoUMAACcnJ2i1WolTSYvFLAEAXnwR+Pnnsq3buzewfn3V5iEiIiJ96enpiIiIwM2bNwEAnTp1QkBAAIyM6nY5V7ffPen8+WfZ123evOpyEBERUVGXLl3Cpk2bkJubC5VKhaCgILRq1UrqWDUCi1mCVgtcv/7gubk58NZbJa/r6srhBERERNXtn3/+QW5uLlxcXBAaGlqrb4JQXixmCdHR/z63sKg9t5clIiKqLQICAmBjYwMfH586P6zgv+reJW9UxPnz/z7PyZEuBxERET1w8eJFrF+/Xndxl5GREXr06MFCthj8ROqIP/8EwsKAgoKir128+O/zpUurLRIRERH9R2FhIXbs2IGjR48CAE6dOgVvb2+JU9VsLGbrgIIC4OmngXv3Hr+uiUnV5yEiIqKi0tLSEB4ejsTERABAt27d0L59e2lDGQAWs3VAXl7ZCllPT6Bv3yqPQ0RERP9x4cIF/P7778jPz4epqSmCg4Ph5eUldSyDwGK2lvrkE2DVKkCjeTBbwUO9egFr1hS/jYsLUAdvHEJERCSpAwcOYPfu3QAAd3d3hISEwNraWuJUhoPFbC2UlAR8/HHxr9nbA25u1RqHiIiISuHl5YUDBw7Ax8cH/fr1q5O3pH0SLGZroaysf5+rVMDDP+4cHYGpU6XJRERERP+6e/cu6tWrBwBwdHTEa6+9BktLS4lTGSYWs7XciBHAr79KnYKIiIgAoKCgANHR0Th9+jQmTpwIt///upSFbMWxmCUiIiKqBnfu3EF4eDhSUlIAAAkJCbpiliqOxWwtIARw8uS/MxYkJEibh4iIiPSdPn0a27ZtQ0FBAczNzTF8+HA0btxY6li1AovZWuC994B586ROQURERP+lVquxbds2nDlzBgDQqFEjDB8+HBYWFhInqz1YzNYCf/5Z8mvNm1dfDiIiItJ3/vx5nDlzBjKZDH379kXPnj05W0ElYzFbiygUwIwZ/y43aACMGSNdHiIiorquQ4cOSEhIQJs2beDh4SF1nFqJxWwtYmwMzJ4tdQoiIqK6Kz8/H/v370fv3r2hUqkgk8kQFBQkdaxajcUsERERUSVISkpCeHg47t69i+zsbAQHB0sdqU5gMUtERET0BIQQOHHiBKKjo6HRaGBlZYWOHTtKHavOYDFLREREVEF5eXnYsmULLly4AODBrWmHDh0KMzMziZPVHSxmiYiIiCogJSUFa9euxb179yCXy+Hn54euXbtCJpNJHa1OYTFrgCIigE8+AbKyHizfuiVtHiIiorrIzMwMarUa1tbWCA0N5d28JMJi1gC9/z5w6VLRds6/TEREVLUKCgpgbGwMALCwsMCYMWNgY2MDU1NTiZPVXZy118Co1cD16w+ey2SAg8ODR8OGwOefS5uNiIioNrt16xYWLlyI8+fP69qcnZ1ZyEqMPbMGZMcOYORIID//wXKDBkB8vKSRiIiIaj0hBP7++2/s3LkTWq0Whw4dQqtWrTg2toZgMWtAVq4E7t//d9nJSbIoREREdUJOTg42b96MS/8/vq9ly5YICgpiIVuDsJitwW7fBmJi/l2+efPf5z4+wPffV38mIiKiuuLmzZsIDw9HRkYGFAoFAgMD4e3tzUK2hmExW0PFxgLe3kBubvGvr10L8BbPREREVePevXsICwuDVquFnZ0dRowYASd+JVojsZitob79tuRC1tYWcHSs3jxERER1ia2tLXx8fJCVlYVBgwZBpVJJHYlKwGK2Brp/H1i9+sFzS0vgjTf+fU2hAIYNA3jhJBERUeWKj4+Hra0trK2tAQB+fn6QyWQcVlDDsZitgTZsAHJyHjwfPx6YPVvaPERERLWZVqvFgQMHsG/fPri6umLChAlQKBSQyzmDqSFgMVsD3b797/PAQOlyEBER1XZZWVmIjIzEtWvXAAD16tWDVquFQqGQOBmVFYvZGiQm5sFY2UOH/m3jvyUiIqKqce3aNURERCA7OxvGxsZ46qmn0L59e6ljUTmxmK1B3nzzwY0RHmXEM0RERFSptFot9u3bh/379wMAHBwcEBoaivr160ucjCqCpVINkpCgv9y8OdCjhzRZiIiIaiutVou4uDgAQIcOHTBw4EAYGxtLnIoqisWsRJKSgOeeezCf7EP/P1wH5ubAxYuAiwvAsedERESVy8jICKGhoUhMTESbNm2kjkNPiMWsRFavBrZtK/41KyvAza168xAREdVWWq0Wu3fvhlKpRO/evQEA9vb2sLe3lzgZVQYWs9VMqwXS04Hk5H/brK2Bh3Mxm5kBH34oTTYiIqLaJj09HREREbh58yZkMhlatWqFevXqSR2LKhGL2WqUkAD07AnEx+u3r18PDBggSSQiIqJa69KlS9i0aRNyc3OhUqkQFBTEQrYWYjFbjX7/vWghCwC81TMREVHl0Wg02LVrFw4fPgwAcHZ2RmhoKOzs7CRORlWBxWw1ys3993nbtoCr64Me2bZtpctERERUmwghsGrVKsT/f+9Rly5d4O/vDyPOdVlr8cxWo6lT/33+3nvA6NHSZSEiIqqNHo6LTUpKwpAhQ9CiRQupI1EVYzFbTbRa/eXmzaXJQUREVNsUFhYiIyNDN4zA29sbzZs3h4WFhcTJqDqwmK0GmZnA2rX6bR07SpOFiIioNrl37x42bNiAnJwcvPjiizA1NYVMJmMhW4ewmK0G774LLF7873L37tJlISIiqi1iYmIQFRWF/Px8mJqa4u7du3DjRO11DovZanD+vP5ynz7S5CAiIqoNCgsLsX37dhw/fhwA4O7ujpCQEFhbW0ucjKTAYraKHT0KHDz47/KePSxmiYiIKuru3bsIDw9HUlISAKBHjx7o168fFAqFxMlIKixmq9hzz/37XC4HevUCZDLp8hARERmyvXv3IikpCWZmZhg2bBiaNGkidSSSGIvZKpaQ8O/ziRMB/uFIRERUcQMHDgQA+Pv7w8rKSuI0VBPIpQ5QV9jYAL/8InUKIiIiw3Lnzh3s2bMHQggAgJmZGUJCQljIkg57ZquJg4PUCYiIiAzLmTNnsHXrVhQUFMDOzg7t2rWTOhLVQCxmiYiIqEZRq9X4448/cPr0aQBAo0aN4OnpKW0oqrFYzBIREVGNkZKSgg0bNiA1NRUymQx9+vRBr169IJdzZCQVj8UsERER1Qjnzp1DVFQUCgsLYWFhgZCQEHh4eEgdi2o4FrNERERUI5ibm6OwsBCenp4YNmwYzM3NpY5EBoDFLBEREUlGrVZDqVQCABo3bowJEyagQYMGkHFSdiojDkAhIiKiaieEwPHjx7FgwQKkpaXp2hs2bMhClsqFxSwRERFVq/z8fERERGDr1q3IycnB8ePHpY5EBkzyYnbhwoXw8PCAiYkJfHx8cPTo0VLXnz9/Ppo1awZTU1O4u7vjrbfeQl5eXjWlJSIioidx+/ZtLFmyBBcuXIBcLoe/vz/8/f2ljkUGTNIxs+vWrcPUqVOxePFi+Pj4YP78+QgICEBcXBwcirnLwJo1azB9+nQsW7YM3bt3x6VLlzBhwgTIZDJ88803ErwDIiIiKgshBI4ePYodO3ZAo9HA2toaoaGhcHNzkzoaGThJe2a/+eYbvPDCC5g4cSJatmyJxYsXw8zMDMuWLSt2/b/++gs9evTA6NGj4eHhgQEDBuCZZ555bG8uERERSev06dOIjo6GRqNB8+bN8eKLL7KQpUohWTGrVqtx4sQJ+Pn5/RtGLoefnx8OHz5c7Dbdu3fHiRMndMXr1atXsW3bNjz11FMlHic/Px8ZGRl6DyIiIqpebdu2RYMGDRAYGIiRI0fC1NRU6khUS0g2zCA1NRUajQaOjo567Y6Ojrh48WKx24wePRqpqano2bMnhBAoLCzESy+9hPfff7/E48ydOxeffPJJpWYnIiKi0gkhcO7cObRq1QoKhQIKhUI3NJCoMkl+AVh57N27F3PmzMGiRYtw8uRJREZGYuvWrZg9e3aJ28yYMQPp6em6x82bN6sxMRERUd2Tm5uLtWvXYuPGjdizZ4+unYUsVQXJembt7e2hUCiQnJys156cnAwnJ6dit/noo48wduxYPP/88wCANm3aIDs7G5MnT8YHH3xQ7H2bVSoVVCpV5b8BIiIiKuLmzZsIDw9HRkYGFAoFrK2tpY5EtZxkPbNKpRLe3t7YtWuXrk2r1WLXrl3o1q1bsdvk5OQUKVgVCgWAB19nEBERkTSEEDh48CCWL1+OjIwM2NnZ4fnnn0fnzp2ljka1nKRTc02dOhXjx49Hp06d0KVLF8yfPx/Z2dmYOHEiAGDcuHFwdXXF3LlzAQBBQUH45ptv0KFDB/j4+ODy5cv46KOPEBQUpCtqiYiIqHplZ2dj06ZNuHz5MgCgdevWGDx4ML8ZpWohaTE7atQo3LlzBzNnzkRSUhLat2+P6Oho3UVhN27c0OuJ/fDDDyGTyfDhhx8iISEB9evXR1BQED7//HOp3gIREVGdl5ubi+vXr8PIyAgDBw5Ehw4dOD6Wqo1M1LHv5zMyMmBtbY309HRYWVlV+fHs7IB79wAvLyAursoPR0REJImLFy/C1ta2yCxFRBVRnnrNoGYzICIiIullZWVh1apVuH79uq6tefPmLGRJEixmiYiIqMyuXr2KxYsX48qVK4iKioJWq5U6EtVxko6ZJSIiIsOg1Wqxb98+7N+/HwBQv359jBgxothpMYmqE4tZIiIiKlVmZiYiIyMRHx8PAOjQoQMGDhwIY2NjaYMRgcUsERERlSI9PR0//fQTcnJyYGxsjMGDB6Nt27ZSxyLSYTFLREREJbKyskKjRo2QmpqKESNGoF69elJHItLDYpaIiIj0ZGRkQKlUwsTEBDKZDEFBQZDL5RxWQDUSR20TERGRzqVLl7B48WJERUXpbhWvUqlYyFKNxZ5ZIiIigkajwa5du3D48GEAwP3795Gfnw8TExOJkxGVjsUsERFRHXf//n1ERETg1q1bAIAuXbrA398fRkYsE6jm4/+lREREddjFixexefNm5OXlQaVSYejQoWjRooXUsYjKjMUsERFRHVVQUIA//vgDeXl5cHV1RUhICGxtbaWORVQuLGaJiIjqKGNjY4SEhODixYvw9fWFQqGQOhJRubGYJSIiqkNiYmJQWFiou/FBgwYN0KBBA4lTEVUci1kiIqI6oLCwENu3b8fx48dhZGQEV1dX3gCBagUWs0RERLXc3bt3ER4ejqSkJACAj48PbGxspA1FVElYzBIREdVi58+fx++//w61Wg0zMzMEBwejadOmUsciqjQsZomIiGohIQS2bt2KEydOAHgwNjYkJARWVlYSJyOqXCxmiYiIaiGZTAYzMzMAQK9evdC3b1/I5byLPdU+LGaJiIhqEbVaDaVSCQDo27cvmjZtCnd3d4lTEVUd/olGRERUC6jVamzevBlhYWEoLCwEAMjlchayVOuxZ5aIiMjApaSkIDw8HHfu3IFMJkN8fDyaNGkidSyiasFiloiIyEAJIXD69Gls27YNhYWFsLCwQEhICDw8PKSORlRtWMwSEREZoPz8fGzduhXnzp0DAHh6emLYsGEwNzeXOBlR9WIxS0REZIC2bNmC8+fPQyaToV+/fujZsydkMpnUsYiqHYtZIiIiA9S/f38kJydj8ODBaNCggdRxiCTD2QyIiIgMQH5+Pi5cuKBbtrW1xcsvv8xCluo89swSERHVcImJidiwYQPu3bsHlUqlm6mAwwqIWMwSERHVWEIIHDt2DH/++Sc0Gg2sra1hYmIidSyiGoXFLBERUQ2Ul5eHqKgoxMbGAgCaNWuGoUOHwtTUVOJkRDULi1kiIqIaJiEhAeHh4bh//z7kcjn8/f3h4+PDYQVExWAxS0REVMOkpqbi/v37sLGxQWhoKFxdXaWORFRjsZglIiKqAYQQup7Xdu3aQa1Wo02bNhwjS/QYnJqLiIhIYjdv3sSyZcuQk5Oja+vcuTMLWaIyYDFLREQkESEEDh06hOXLl+PWrVvYvXu31JGIDA6HGRAREUkgOzsbmzZtwuXLlwEArVu3hr+/v8SpiAwPi1kiIqJqdv36dURERCAzMxNGRkYIDAxEx44dOVsBUQWwmCUiIqpGFy9exPr16yGEQL169TBixAg4OjpKHYvIYLGYJSIiqkYeHh6wsbGBu7s7Bg0aBKVSKXUkIoPGYpaIiKiKJScnw8HBATKZDCYmJnj++edhamrKYQVElYCzGRAREVURrVaLvXv3YvHixTh+/Liu3czMjIUsUSVhzywREVEVyMzMRGRkJOLj4wEAKSkp0gYiqqVYzBIREVWyK1euYOPGjcjOzoaxsTEGDx6Mtm3bSh2LqFZiMUtERFRJHg4rOHDgAADA0dERoaGhsLe3lzgZUe3FYpaIiKiSJCcn4+DBgwAAb29vBAQEwNjYWOJURLUbi1kiIqJK4uzsDH9/f1haWqJ169ZSxyGqE1jMEhERVZBGo8HevXvRtm1b1K9fHwDQrVs3iVMR1S2cmouIiKgC0tPTERYWhoMHDyI8PBwajUbqSER1EntmiYiIyikuLg6bNm1CXl4eVCoV+vTpA4VCIXUsojqJxSwREVEZaTQa7NixA0eOHAEAuLi4IDQ0FLa2thInI6q7WMwSERGVQXZ2NtasWYPbt28DALp27Qo/Pz/2yBJJjMUsERFRGZiamsLIyAgmJiYIDg5Gs2bNpI5ERGAxS0REVKLCwkLIZDIoFArI5XKEhIRAq9XCxsZG6mhE9P84mwEREVEx0tLSsHTpUuzYsUPXZmVlxUKWqIZhzywREdF/nD9/Hr///jvUajUyMjLQu3dvmJmZSR2LiIrBYpaIiOj/FRQUIDo6GidPngQANGjQACEhISxkiWowFrNEREQAUlNTsWHDBqSkpAAAevXqhb59+0Iu54g8opqMxSwREdV5hYWFWLlyJTIzM2Fubo5hw4bB09NT6lhEVAZPVMzm5eXBxMSksrIQERFJwsjICAEBATh+/DiGDx8OS0tLqSMRURmV+7sTrVaL2bNnw9XVFRYWFrh69SoA4KOPPsLSpUsrPSAREVFVSElJwfXr13XLrVq1wrhx41jIEhmYchezn332GcLCwvC///0PSqVS1966dWv88ssvlRqOiIiosgkhcOrUKfz8889Yv349MjMzda/JZDIJkxFRRZS7mF25ciV++uknjBkzRu8Wfu3atcPFixcrNRwREVFlUqvV2LRpE6KiolBYWAgnJyde4EVk4Mo9ZjYhIQFNmjQp0q7ValFQUFApoYiIiCpbcnIyNmzYgLt370Imk6Ffv37o2bMne2OJDFy5i9mWLVviwIEDaNiwoV57eHg4OnToUGnBiIiIKoMQAidPnkR0dDQKCwthaWmJkJCQIr/HiMgwlbuYnTlzJsaPH4+EhARotVpERkYiLi4OK1euxJYtW6oiIxERUYXJZDLcvHkThYWFaNKkCYYNG8abIBDVIuUuZocOHYrff/8dn376KczNzTFz5kx07NgRv//+O/z9/asiIxERUbkJIXRDCJ566im4ubnB29ubwwqIapkKzTPbq1cv7Nixo7KzEBERPTEhBI4dO4b4+HiMGDECMpkMSqUSnTp1kjoaEVWBcl/C2bhxY9y9e7dI+/3799G4ceNKCUVERFQReXl5CA8Pxx9//IHY2FjExsZKHYmIqli5e2bj4+Oh0WiKtOfn5yMhIaFSQhEREZVXQkICwsPDcf/+fcjlcvj7+6NFixZSxyKiKlbmYjYqKkr3fPv27bC2ttYtazQa7Nq1Cx4eHpUajoiI6HGEEDhy5Ah27NgBrVYLGxsbhIaGwtXVVepoRFQNylzMBgcHA3hwVej48eP1XjM2NoaHhwe+/vrrSg1HRET0OH/88QeOHTsGAGjRogWGDBkCExMTiVMRUXUpczGr1WoBAI0aNcKxY8dgb29fZaGIiIjKql27djhz5gx8fX3RuXNnzlZAVMeUe8zstWvXqiIHERFRmQghkJycDCcnJwCAq6sr3nzzTZiamkqcjIikUKEbUmdnZ2Pbtm1YvHgxvvvuO71HeS1cuBAeHh4wMTGBj48Pjh49Wur69+/fx5QpU+Ds7AyVSgUvLy9s27atIm+DiIgMTE5ODn777Tf88ssvSEpK0rWzkCWqu8rdM3vq1Ck89dRTyMnJQXZ2Nuzs7JCamgozMzM4ODjg9ddfL/O+1q1bh6lTp2Lx4sXw8fHB/PnzERAQgLi4ODg4OBRZX61Ww9/fHw4ODggPD4erqyuuX78OGxub8r4NIiIyMNevX0dERAQyMzOhUCiQmpqq650lorpLJoQQ5dmgb9++8PLywuLFi2FtbY0zZ87A2NgYzz77LN544w0MHz68zPvy8fFB586d8cMPPwB4MC7X3d0dr732GqZPn15k/cWLF2PevHm4ePEijI2NyxNbJyMjA9bW1khPT4eVlVWF9lEednbAvXuAlxcQF1flhyMiqnWEEDh48CD27NkDIQTq1auHESNGwNHRUepoRFRFylOvlXuYwenTp/H2229DLpdDoVAgPz8f7u7u+N///of333+/zPtRq9U4ceIE/Pz8/g0jl8PPzw+HDx8udpuoqCh069YNU6ZMgaOjI1q3bo05c+YUO+/tQ/n5+cjIyNB7EBGRYcjOzsbq1auxe/duCCHQtm1bTJ48mYUsEemUu5g1NjaGXP5gMwcHB9y4cQMAYG1tjZs3b5Z5P6mpqdBoNEV+IDk6OuqNg3rU1atXER4eDo1Gg23btuGjjz7C119/jc8++6zE48ydOxfW1ta6h7u7e5kzEhGRtM6ePYsrV67AyMgIQ4YMQXBwMJRKpdSxiKgGKfeY2Q4dOuDYsWNo2rQp+vTpg5kzZyI1NRW//vorWrduXRUZdbRaLRwcHPDTTz9BoVDA29sbCQkJmDdvHmbNmlXsNjNmzMDUqVN1yxkZGSxoiYgMRNeuXZGWlobOnTsXey0FEVG5e2bnzJkDZ2dnAMDnn38OW1tbvPzyy7hz5w6WLFlS5v3Y29tDoVAgOTlZr/3R6Vb+y9nZGV5eXlAoFLq2Fi1aICkpCWq1uthtVCoVrKys9B5ERFQzZWZmYsuWLSgoKADw4EY9gwYNYiFLRCUqd89sp06ddM8dHBwQHR1doQMrlUp4e3tj165duruLabVa7Nq1C6+++mqx2/To0QNr1qyBVqvVDXW4dOkSnJ2d+bUTEZGBu3LlCjZu3Ijs7GzI5XI89dRTUkciIgNQoXlmi3Py5EkMHjy4XNtMnToVP//8M1asWIHY2Fi8/PLLyM7OxsSJEwEA48aNw4wZM3Trv/zyy0hLS8Mbb7yBS5cuYevWrZgzZw6mTJlSWW+DiIiqmVarxe7du7Fq1SpkZ2fDwcEBXbp0kToWERmIcvXMbt++HTt27IBSqcTzzz+Pxo0b4+LFi5g+fTp+//13BAQElOvgo0aNwp07dzBz5kwkJSWhffv2iI6O1l0UduPGDV0PLAC4u7tj+/bteOutt9C2bVu4urrijTfewHvvvVeu4xIRUc2QkZGBiIgI3cXEHTt2RGBgYIWnXySiuqfM88wuXboUL7zwAuzs7HDv3j3Uq1cP33zzDV577TWMGjUKb7zxBlq0aFHVeZ8Y55klIqoZbty4gXXr1iEnJwdKpRJBQUFVfiExERmG8tRrZe6ZXbBgAb788ku88847iIiIwIgRI7Bo0SKcO3cObm5uTxyaiIjqFmtrawgh4OTkhNDQUNSrV0/qSERkgMrcM2tubo4LFy7Aw8MDQgioVCrs2bMHPXr0qOqMlYo9s0RE0snLy4OJiYluOSkpCfb29jAyKvf1yERUi1XJHcByc3NhZmYG4MFUKSqVSjdFFxER0ePExcXhu+++Q9wjf9k7OTmxkCWiJ1KunyC//PILLCwsAACFhYUICwuDvb293jqvv/565aUjIiKDp9FosHPnTvz9998AgGPHjqFZs2YSpyKi2qLMwww8PDwgk8lK35lMhqtXr1ZKsKrCYQZERNXn3r17iIiIQEJCAgDAx8cH/v7+eje/ISL6ryq5ACw+Pv5JcxERUR0SGxuLzZs3Iz8/HyYmJhg6dCiaN28udSwiqmU4UImIiCpdYmIi1q9fDwBwc3NDSEgIbGxspA1FRLUSi1kiIqp0zs7O6NSpE5RKJfr3789hBURUZVjMEhFRpYiJiUGDBg10Fwo/9dRTj73WgojoSZV5ai4iIqLiFBQUYMuWLdiwYQMiIyOh1WoBgIUsEVUL9swSEVGFpaamIjw8HMnJyQAAV1dXiRMRUV1ToWL2ypUrWL58Oa5cuYIFCxbAwcEBf/zxBxo0aIBWrVpVdkYiIqqBzp49iy1btqCgoABmZmYYPnw4PD09pY5FRHVMuYcZ7Nu3D23atMGRI0cQGRmJrKwsAMCZM2cwa9asSg9IREQ1S0FBAaKiorBx40YUFBTAw8MDL730EgtZIpJEuYvZ6dOn47PPPsOOHTugVCp17f3799fd3YWIiGovIQRu3rwJAOjTpw/Gjh0LS0tLiVMRUV1V7mEG586dw5o1a4q0Ozg4IDU1tVJCERFRzSOEgEwmg1KpRGhoKLKzs9G4cWOpYxFRHVfunlkbGxskJiYWaT916hQH/hMR1UJqtRqbNm3S+/bN0dGRhSwR1QjlLmaffvppvPfee0hKSoJMJoNWq8WhQ4cwbdo0jBs3rioyEhGRRJKTk/Hzzz/jzJkz2L17t+46CSKimqLcwwzmzJmDKVOmwN3dHRqNBi1btoRGo8Ho0aPx4YcfVkVGIiKqZkIInDx5EtHR0SgsLISlpSVCQkJ0N0QgIqopZEIIUZENb9y4gfPnzyMrKwsdOnRA06ZNKztblcjIyIC1tTXS09NhZWVV5cezswPu3QO8vIC4uCo/HBHRE8vPz8eWLVtw/vx5AECTJk0QHBwMc3NziZMRUV1Rnnqt3D2zBw8eRM+ePdGgQQM0aNCgwiGJiKjm0Wg0WLp0Ke7cuQOZTAZfX190796dd/Miohqr3GNm+/fvj0aNGuH9999HTExMVWQiIiKJKBQKdOjQAVZWVpg4cSJ69OjBQpaIarRyF7O3b9/G22+/jX379qF169Zo37495s2bh1u3blVFPiIiqmJ5eXm4e/eubrlr1654+eWX4e7uLmEqIqKyKXcxa29vj1dffRWHDh3ClStXMGLECKxYsQIeHh7o379/VWQkIqIqcvv2bSxZsgS//fYb8vPzAQAymQwmJiYSJyMiKptyj5l9VKNGjTB9+nS0a9cOH330Efbt21dZuYiIqAoJIXDkyBHs2LEDWq0WNjY2yMzMhEqlkjoaEVG5VLiYPXToEFavXo3w8HDk5eVh6NChmDt3bmVmIyKiKpCbm4uoqChcvHgRANC8eXMMHTqUvbFEZJDKXczOmDEDa9euxe3bt+Hv748FCxZg6NChMDMzq4p8RERUiW7duoXw8HCkp6dDoVBgwIAB6Ny5My/yIiKDVe5idv/+/XjnnXcwcuRI2NvbV0UmIiKqIvv27UN6ejpsbW0RGhoKFxcXqSMRET2Rchezhw4dqoocRERUDYYOHYq9e/fC39+f42OJqFYoUzEbFRWFgQMHwtjYGFFRUaWuO2TIkEoJRkRET+7GjRu4cuUK+vXrBwCwsLDA4MGDJU5FRFR5ylTMBgcHIykpCQ4ODggODi5xPZlMBo1GU1nZiIiogoQQOHjwIPbs2QMhBJydndG8eXOpYxERVboyFbNarbbY50REVPNkZ2dj48aNuHLlCgCgbdu2aNy4scSpiIiqRrlvmrBy5UrdxNqPUqvVWLlyZaWEIiKiiomPj8fixYtx5coVGBkZYciQIQgODoZSqZQ6GhFRlZAJIUR5NlAoFEhMTISDg4Ne+927d+Hg4FDjhxlkZGTA2toa6enpsLKyqvLj2dkB9+4BXl5AXFyVH46I6rDDhw9jx44dEELA3t4eI0aMKPKzmojIEJSnXiv3bAZCiGLnI7x16xasra3LuzsiIqokdnZ2EEKgffv2GDhwIHtjiahOKHMx26FDB8hkMshkMvj6+sLI6N9NNRoNrl27hsDAwCoJSURExcvLy9PduatZs2Z44YUXOHcsEdUpZS5mH85icPr0aQQEBMDCwkL3mlKphIeHB0JCQio9IBERFaXVarF3716cOHECkydP1n0zxkKWiOqaMhezs2bNAgB4eHhg1KhRvIc3EZFEMjIyEBkZievXrwMAYmJi0K1bN4lTERFJo9xjZsePH18VOYiIqAwuX76MjRs3IicnB0qlEkFBQWjdurXUsYiIJFOmYtbOzg6XLl2Cvb09bG1ti70A7KG0tLRKC0dERA9oNBrs2bNHd0txJycnhIaGol69ehInIyKSVpmK2W+//RaWlpa656UVs0REVPmOHDmiK2Q7d+6MAQMG6F2IS0RUV5XpJ+GjQwsmTJhQVVmIiKgEnTt3RlxcHHx8fNCyZUup4xAR1RjlvgPYyZMnce7cOd3y5s2bERwcjPfffx9qtbpSwxER1VUajQbHjx/X3ULc2NgYEyZMYCFLRPQf5S5mX3zxRVy6dAkAcPXqVYwaNQpmZmbYsGED3n333UoPSERU19y/fx/Lly/H1q1bceDAAV07h3gRERVV7mL20qVLaN++PQBgw4YN6NOnD9asWYOwsDBERERUdj4iojolNjYWS5YsQUJCAkxMTODo6Ch1JCKiGq1Ct7N9+LXXzp07MXjwYACAu7s7UlNTKzcdEVEdUVhYiB07duDo0aMAADc3N4SEhMDGxkbaYERENVy5i9lOnTrhs88+g5+fH/bt24cff/wRAHDt2jX2IBARVUBaWhrCw8ORmJgIAOjWrRt8fX2hUCgkTkZEVPOVu5idP38+xowZg02bNuGDDz5AkyZNAADh4eHo3r17pQckIqrt1Go1UlJSYGpqiuDgYHh5eUkdiYjIYMiEEKIydpSXlweFQgFjY+PK2F2VycjIgLW1NdLT02FlZVXlx7OzA+7dA7y8gLi4Kj8cERkIIYTeBV0XL16Es7MzrK2tJUxFRFQzlKdeq/CM2ydOnEBsbCwAoGXLlujYsWNFd0VEVKfcvXsXkZGReOqpp+Dq6goAaN68ucSpiIgMU7mL2ZSUFIwaNQr79u3TXZhw//599OvXD2vXrkX9+vUrOyMRUa1x7tw5bNmyBWq1Gn/88Qeee+45TrlFRPQEyj0112uvvYasrCxcuHABaWlpSEtLw/nz55GRkYHXX3+9KjISERm8goICREVFITIyEmq1Gh4eHhg1ahQLWSKiJ1Tuntno6Gjs3LkTLVq00LW1bNkSCxcuxIABAyo1HBFRbXDnzh2Eh4cjJSUFANCnTx/07t0bcnm5+xOIiOg/yl3MarXaYi/yMjY21s0/S0RED6SkpOCXX35BQUEBzM3NERISgkaNGkkdi4io1ih3t0D//v3xxhtv4Pbt27q2hIQEvPXWW/D19a3UcEREhq5+/fpo1KgRGjVqhJdeeomFLBFRJSt3z+wPP/yAIUOGwMPDA+7u7gCAmzdvonXr1li1alWlByQiMjQpKSmwsbGBUqmETCZDSEgIjIyMOKyAiKgKlLuYdXd3x8mTJ7Fr1y7d1FwtWrSAn59fpYcjIjIkQgicOnUKf/zxB1q2bIng4GDIZDIolUqpoxER1VrlKmbXrVuHqKgoqNVq+Pr64rXXXquqXEREBiU/Px9bt27FuXPnAAA5OTnQaDQwMqrwdN5ERFQGZf4p++OPP2LKlClo2rQpTE1NERkZiStXrmDevHlVmY+IqMZLSkrChg0bkJaWBplMBl9fX3Tv3p3TbhERVYMyD+D64YcfMGvWLMTFxeH06dNYsWIFFi1aVJXZiIhqNCEEjh07hl9++QVpaWmwsrLCxIkT0aNHDxayRETVpMzF7NWrVzF+/Hjd8ujRo1FYWIjExMQqCUZEVNPl5eVh37590Gg08PLywosvvqi7MJaIiKpHmYcZ5Ofnw9zcXLcsl8uhVCqRm5tbJcGIiGo6U1NTDB8+HMnJyejatSt7Y4mIJFCuKxM++ugjmJmZ6ZbVajU+//xzWFtb69q++eabyktHRFSDCCFw9OhRWFpaomXLlgCAxo0bo3HjxhInIyKqu8pczPbu3RtxcXF6bd27d8fVq1d1y+yVIKLaKjc3F1FRUbh48SKUSiXc3NxgZWUldSwiojqvzMXs3r17qzAGEVHNdevWLYSHhyM9PR0KhQK+vr6wtLSUOhYREaECN00gIqorhBA4fPgwdu3aBa1WC1tbW4SGhsLFxUXqaERE9P9YzBIRFUOr1WLdunW4dOkSAKBVq1YICgqCSqWSOBkRET2KxSwRUTHkcjns7OygUCgQGBgIb29vXhdARFQDsZglIvp/Qgjk5+fDxMQEAODn54eOHTuifv36EicjIqKSlPmmCUREtVl2djbWrFmDNWvWQKPRAAAUCgULWSKiGq5CxeyBAwfw7LPPolu3bkhISAAA/Prrrzh48GClhiMiqg7x8fFYsmQJLl++jMTERCQlJUkdiYiIyqjcxWxERAQCAgJgamqKU6dOIT8/HwCQnp6OOXPmVHpAIqKqotVqsW/fPqxcuRKZmZmwt7fHCy+8AFdXV6mjERFRGZW7mP3ss8+wePFi/PzzzzA2Nta19+jRAydPnqzUcEREVSUrKwurVq3C3r17IYRA+/bt8cILL8DBwUHqaEREVA7lvgAsLi4OvXv3LtJubW2N+/fvV0YmIqIqt3HjRly7dg3GxsYYNGgQ2rVrJ3UkIiKqgHL3zDo5OeHy5ctF2g8ePFjh+5MvXLgQHh4eMDExgY+PD44ePVqm7dauXQuZTIbg4OAKHZeI6q6BAwfCzc0NkydPZiFLRGTAyl3MvvDCC3jjjTdw5MgRyGQy3L59G6tXr8a0adPw8ssvlzvAunXrMHXqVMyaNQsnT55Eu3btEBAQgJSUlFK3i4+Px7Rp09CrV69yH5OI6p7MzEycO3dOt2xvb49JkybB3t5ewlRERPSkyj3MYPr06dBqtfD19UVOTg569+4NlUqFadOm4bXXXit3gG+++QYvvPACJk6cCABYvHgxtm7dimXLlmH69OnFbqPRaDBmzBh88sknOHDgAIc3EFGpLl++jI0bNyI3NxdWVlZo2LAhAPAmCEREtUC5i1mZTIYPPvgA77zzDi5fvoysrCy0bNkSFhYW5T64Wq3GiRMnMGPGDF2bXC6Hn58fDh8+XOJ2n376KRwcHPDcc8/hwIEDpR4jPz9fN+MCAGRkZJQ7JxEZJq1Wi927d+PQoUMAHgyTqsjPKiIiqrkqfAcwpVKJli1bPtHBU1NTodFo4OjoqNfu6OiIixcvFrvNwYMHsXTpUpw+fbpMx5g7dy4++eSTJ8pJRIYnPT0dERERuHnzJgCgU6dOCAgIgJERb3xIRFSblPuner9+/Ur9am737t1PFKg0mZmZGDt2LH7++ecyj3ObMWMGpk6dqlvOyMiAu7t7VUUkohrg0qVL2LRpE3Jzc6FSqRAUFIRWrVpJHYuIiKpAuYvZ9u3b6y0XFBTg9OnTOH/+PMaPH1+ufdnb20OhUCA5OVmvPTk5GU5OTkXWv3LlCuLj4xEUFKRr02q1AAAjIyPExcXB09NTbxuVSgWVSlWuXERk2NLT05GbmwtnZ2eEhobCzs5O6khERFRFyl3Mfvvtt8W2f/zxx8jKyirXvpRKJby9vbFr1y7d9FparRa7du3Cq6++WmT95s2b612NDAAffvghMjMzsWDBAva4EtVhQgjdt0adOnWCsbExWrduzWEFRES1XKX9lH/22WfRpUsXfPXVV+XaburUqRg/fjw6deqELl26YP78+cjOztbNbjBu3Di4urpi7ty5MDExQevWrfW2t7GxAYAi7URUd1y8eBH79+/HuHHjYGJiAplMVuRbJCIiqp0qrZg9fPgwTExMyr3dqFGjcOfOHcycORNJSUlo3749oqOjdReF3bhxA3J5uafDJaI6oLCwEDt37sSRI0cAAH/99Rf69+8vcSoiIqpOMiGEKM8Gw4cP11sWQiAxMRHHjx/HRx99hFmzZlVqwMqWkZEBa2trpKenw8rKqsqPZ2cH3LsHeHkBcXFVfjiiOiMtLQ3h4eFITEwEAHTr1g2+vr5QKBQSJyMioidVnnqt3D2z1tbWestyuRzNmjXDp59+igEDBpR3d0RE5XbhwgX8/vvvyM/Ph6mpKYKDg+Hl5SV1LCIikkC5ilmNRoOJEyeiTZs2sLW1rapMREQlOnHiBLZs2QIAcHd3R2hoaLV8y0JERDVTuQajKhQKDBgwgLePJSLJtGjRAlZWVujZsycmTJjAQpaIqI4r95VVrVu3xtWrV6siCxFRsR7exQsAzMzM8Morr8DX15cXhxIRUfmL2c8++wzTpk3Dli1bkJiYiIyMDL0HEVFlKSgoQFRUFJYtW6Z3C2veCIWIiB4q85jZTz/9FG+//TaeeuopAMCQIUP0bmv7cMJyjUZT+SmJqM65c+cOwsPDkZKSAuDB7ayJiIj+q8zF7CeffIKXXnoJe/bsqco8REQ4c+YMtm7dioKCApibm2P48OFo3Lix1LGIiKgGKnMx+3A62j59+lRZGCKq29RqNf744w/dkILGjRtj2LBhsLCwkDYYERHVWOWamuvRYQVERJXt9u3bOH36NGQyGfr27YuePXvyIi8iIipVuYpZLy+vxxa0aWlpTxSIiOouDw8PDBgwAM7OzvDw8JA6DhERGYByFbOffPJJkTuAERFVVH5+Pv7880/06NEDdnZ2AB7clpaIiKisylXMPv3003BwcKiqLERUhyQlJSE8PBx3795FSkoKJk2axKFMRERUbmUuZvlLhogqgxACJ06cQHR0NDQaDaysrODv78+fMUREVCHlns2AiKii8vLysGXLFly4cAHAg3H4Q4cOhZmZmcTJiIjIUJW5mNVqtVWZg4hquXv37uHXX3/FvXv3IJfL4efnh65du7JHloiInki5xswSEVWUlZUVTE1NodVqERoaCjc3N6kjERFRLcBiloiqTF5eHpRKJeRyORQKBUaOHAmlUglTU1OpoxERUS3B2ciJqEokJCRgyZIlerfAtra2ZiFLRESVisUsEVUqIQQOHz6MZcuW4f79+4iJiYFarZY6FhER1VIcZkBElSY3NxebNm3CpUuXAAAtW7ZEUFAQlEqlxMmIiKi2YjFLRJXi5s2bCA8PR0ZGBhQKBQIDA+Ht7c3ZCoiIqEqxmCWiJ5aXl4fVq1cjPz8fdnZ2GDFiBJycnKSORUREdQCLWSJ6YiYmJggMDMTVq1cxaNAgqFQqqSMREVEdwWKWiCrk+vXrkMvlcHd3BwC0b98e7dq147ACIiKqVixmiahctFotDh48iL1798LCwgIvvfSS7na0LGSJiKi6sZglojLLysrCxo0bcfXqVQBA48aNYWTEHyNERCQd/hYiojK5du0aIiIikJ2dDWNjYzz11FNo37691LGIiKiOYzFLRKUSQmDv3r3Yv38/AMDBwQGhoaGoX7++xMmIiIhYzBJRGaSmpgIAOnTogIEDB8LY2FjiRERERA+wmCWiYgkhIJPJIJPJEBQUhFatWqFly5ZSxyIiItIjlzoAEdUsWq0WO3fuRHh4OIQQAB7MI8tCloiIaiL2zBKRTnp6OiIiInDz5k0AD+aS9fDwkDYUERFRKVjMEhEA4NKlS9i0aRNyc3OhUqkQFBTEQpaIiGo8FrNEdZxGo8GuXbtw+PBhAICzszNCQ0NhZ2cncTIiIqLHYzFLVMdFREQgNjYWANClSxf4+/vzRghERGQw+BuLqI7z8fHB9evXERQUhObNm0sdh4iIqFxYzBLVMYWFhUhKSoKbmxsAoGHDhnjjjTegVColTkZERFR+nJqLqA65d+8eli1bhpUrV+LOnTu6dhayRERkqNgzS1RHxMTEICoqCvn5+TA1NUVWVhZvSUtERAaPxSxRLVdYWIjt27fj+PHjAAB3d3eEhITA2tpa4mRERERPjsUsUS129+5dhIeHIykpCQDQo0cP9OvXDwqFQuJkRERElYPFLFEtdvbsWSQlJcHMzAzDhg1DkyZNpI5ERERUqVjMEtViffr0gVqtRrdu3WBlZSV1HCIiokrH2QyIapHU1FRs2rQJhYWFAAC5XI6AgAAWskREVGuxZ5aoljhz5gy2bt2KgoICWFlZoX///lJHIiIiqnIsZokMnFqtxh9//IHTp08DABo1aoQuXbpIG4qIiKiasJglMmApKSkIDw/HnTt3IJPJ0KdPH/Tq1QtyOUcQERFR3cBilshAXbx4ERERESgsLISFhQVCQkLg4eEhdSwiIqJqxWKWyEA5ODhAoVCgYcOGGDZsGMzNzaWOREREVO1YzBIZkOzsbF3Ramdnh+eeew729vaQyWQSJyMiIpIGB9YRGQAhBI4fP4758+fjypUruvb69euzkCUiojqNPbNENVxeXh62bNmCCxcuAADOnz8PT09PiVMRERHVDCxmiWqw27dvIzw8HPfu3YNcLoevry+6desmdSwiIqIag8UsUQ0khMDRo0exY8cOaDQaWFtbIzQ0FG5ublJHIyIiqlFYzBLVQNeuXUN0dDQAoHnz5hgyZAhMTU0lTkVERFTzsJglqoEaN26Mjh07wsHBAV26dOFFXkRERCVgMUtUAzycraBVq1YwMzMDAAQFBUmcioiIqObj1FxEEsvJycHatWuxbds2bNq0CUIIqSMREREZDPbMEkno5s2bCA8PR0ZGBhQKBZo2bSp1JCIiIoPCYpZIAkIIHDp0CLt374YQAnZ2dhgxYgScnJykjkZERGRQWMwSVbOcnBxs3LgRly9fBgC0bt0agwcPhkqlkjgZERGR4WExS1TN5HI5UlNTYWRkhIEDB6JDhw6crYCIiKiCWMwSVYOHF3XJZDKYmJhg5MiRkMvlcHR0lDgZERGRYeNsBkRVLCsrC6tWrcLx48d1bc7OzixkiYiIKgF7Zomq0LVr1xAREYHs7GwkJiaibdu2HBtLRERUiVjMElUBrVaLffv2Yf/+/QCA+vXrY8SIESxkiYiIKhmLWaJKlpmZicjISMTHxwMAOnTogIEDB8LY2FjaYERERLUQi1miSqRWq/HTTz8hKysLxsbGGDx4MNq2bSt1LCIiolqLxSxRJVIqlejcuTNiYmIwYsQI1KtXT+pIREREtRqLWaInlJGRgYKCAl3h2rNnT3Tv3h1GRvznRUREVNU4NRfRE7h06RIWL16M9evXo6CgAMCDmyKwkCUiIqoe/I1LVAEajQa7du3C4cOHAQA2NjbIzc3lRV5ERETVjMUsUTndv38fERERuHXrFgCgS5cu8Pf3Z28sERGRBGrEMIOFCxfCw8MDJiYm8PHxwdGjR0tc9+eff0avXr1ga2sLW1tb+Pn5lbo+UWW6ePEilixZglu3bkGlUmHkyJEYOHAgC1kiIiKJSF7Mrlu3DlOnTsWsWbNw8uRJtGvXDgEBAUhJSSl2/b179+KZZ57Bnj17cPjwYbi7u2PAgAFISEio5uRU1wghcPjwYeTl5cHFxQUvvvgiWrRoIXUsIiKiOk0mhBBSBvDx8UHnzp3xww8/AHhw5yR3d3e89tprmD59+mO312g0sLW1xQ8//IBx48Y9dv2MjAxYW1sjPT0dVlZWT5z/cezsgHv3AC8vIC6uyg9HVSw9PR3Hjx9H3759oVAopI5DRERUK5WnXpO0Z1atVuPEiRPw8/PTtcnlcvj5+ekurHmcnJwcFBQUwM7OrtjX8/PzkZGRofcgKquYmBjs2bNHt2xtbQ1fX18WskRERDWEpMVsamoqNBoNHB0d9dodHR2RlJRUpn289957cHFx0SuIHzV37lxYW1vrHu7u7k+cm2q/wsJCbN26FRs2bMD+/ftx7do1qSMRERFRMSQfM/skvvjiC6xduxYbN26EiYlJsevMmDED6enpusfNmzerOSUZmrt372Lp0qU4fvw4AKBHjx5o0KCBxKmIiIioOJJegm1vbw+FQoHk5GS99uTkZDg5OZW67VdffYUvvvgCO3fuRNu2bUtcT6VSQaVSVUpeqv3OnTuHLVu2QK1Ww8zMDMOGDUOTJk2kjkVEREQlkLRnVqlUwtvbG7t27dK1abVa7Nq1C926dStxu//973+YPXs2oqOj0alTp+qISnXA9u3bERkZCbVajYYNG+LFF19kIUtERFTDST455tSpUzF+/Hh06tQJXbp0wfz585GdnY2JEycCAMaNGwdXV1fMnTsXAPDll19i5syZWLNmDTw8PHRjay0sLGBhYSHZ+yDD5+bmBgDo1asX+vbtC7ncoEfhEBER1QmSF7OjRo3CnTt3MHPmTCQlJaF9+/aIjo7WXRR248YNvaLixx9/hFqtRmhoqN5+Zs2ahY8//rg6o1MtkJWVpfsjqFWrVnB0dIS9vb3EqYiIiKisJJ9ntrpxnlkCHkwL98cff+Cff/7BSy+9xF59IiKiGqQ89ZrkPbNE1S0lJQXh4eG4c+cOZDIZrl69WupFhERERFRzsZilOkMIgdOnT2Pbtm0oLCyEhYUFQkJC4OHhIXU0IiIiqiAWs1QnqNVqbNmyBefOnQMAeHp6YtiwYTA3N5c4GRERET0JFrNUJ+zfvx/nzp2DTCZDv3790LNnT8hkMqljERER0RNiMUt1Qu/evZGYmIg+ffrwbl5ERES1CCfSpFopPz8ff/31Fx5O1qFUKjF27FgWskRERLUMe2ap1klMTER4eDjS0tIAAN27d5c4EREREVUVFrNUawghcOzYMfz555/QaDSwtrZmTywREVEtx2KWaoW8vDxERUUhNjYWANCsWTMMHToUpqamEicjIiKiqsRilgze7du3sWHDBty/fx9yuRz+/v7w8fHhbAVERER1AItZMnhCCGRkZMDGxgahoaFwdXWVOhIRERFVExazZJC0Wi3k8geTcbi6umLUqFFo0KABTExMJE5GRERE1YlTc5HBuXnzJhYtWoSkpCRdm5eXFwtZIiKiOojFLBkMIQQOHTqE5cuX4+7du9i9e7fUkYiIiEhiHGZABiE7OxubNm3C5cuXAQCtW7fG4MGDJU5FREREUmMxSzXe9evXERERgczMTBgZGSEwMBAdO3bkbAVERETEYpZqths3bmDFihUQQqBevXoYMWIEHB0dpY5FRERENQSLWarR3Nzc4OHhAUtLSwwaNAhKpVLqSERERFSDsJilGufGjRtwdnaGsbEx5HI5nnnmGRgbG0sdi4iIiGogzmZANYZWq8XevXuxfPlybN++XdfOQpaIiIhKwp5ZqhEyMzMRGRmJ+Ph4AIBGo9G7MQIRERFRcVjMkuSuXLmCyMhI5OTkwNjYGIMHD0bbtm2ljkVEREQGgMUsSUar1WLPnj04ePAgAMDR0RGhoaGwt7eXOBkREREZChazJJns7GycOHECAODt7Y2AgACOjyUiIqJyYTFLkrG0tERwcDDUajVat24tdRwiIiIyQCxmqdpoNBrs3r0bDRo0QLNmzQAAXl5eEqciIiIiQ8ZLxalapKenIywsDH/99Rc2b96MvLw8qSMRERFRLcCeWapycXFx2LRpE/Ly8qBSqRAUFAQTExOpYxEREVEtwGKWqoxGo8GOHTtw5MgRAICLiwtCQ0Nha2srcTIiIiKqLVjMUpUoKChAWFgYbt++DQDo2rUr/Pz8oFAoJE5GREREtQmLWaoSxsbGcHJyQlpaGoKDg3UXfBERERFVJhazVGkKCwtRUFAAU1NTAEBgYCB69+4Na2triZMRERFRbcXZDKhSpKWlYenSpdiwYQO0Wi2AB72zLGSJiIioKrFnlp7Y+fPn8fvvv0OtVsPU1BT37t1DvXr1pI5FREREdQCLWaqwgoICREdH4+TJkwCABg0aICQkBFZWVhInIyIiorqCxSxVSGpqKsLDw5GcnAwA6NWrF/r27Qu5nCNXiIiIqPqwmKVyE0IgMjISycnJMDMzw/Dhw+Hp6Sl1LCIiIqqDWMxSuclkMgwZMgS7du3CkCFDYGlpKXUkIiIiqqP4nTCVSUpKCs6ePatbdnJywpgxY1jIEhERkaTYM0ulEkLg9OnT2LZtG7RaLerVqwdXV1epYxEREREBYDFLpVCr1di6dauuR7Zx48awsbGRNhQRERHRI1jMUrGSk5OxYcMG3L17FzKZDP369UPPnj0hk8mkjkZERESkw2KWijh58iS2bdsGjUYDS0tLhISEoGHDhlLHIiIiIiqCxSwVkZeXB41GgyZNmmDYsGEwMzOTOhIRERFRsVjMEgBAq9XqbnjQrVs3WFtbo2XLlhxWQERERDUap+aq44QQOHr0KH766Seo1WoAD+aRbdWqFQtZIiIiqvHYM1uH5eXlISoqCrGxsQAejJXt2rWrxKmIiIiIyo7FbB2VkJCA8PBw3L9/H3K5HP7+/vDx8ZE6FhEREVG5sJitY4QQOHLkCHbs2AGtVgsbGxuEhobyRghERERkkFjM1jH79+/H3r17AQAtWrTAkCFDYGJiIm0oIiIiogpiMVvHeHt749SpU+jevTs6d+7Mi7yIiIjIoLGYreWEELh69So8PT0BABYWFnj11VdhZMRTT0RERIaPU3PVYjk5Ofjtt9+watUqXLhwQdfOQpaIiIhqC1Y1tdT169cRERGBzMxMKBQKFBQUSB2JiIiIqNKxmK1lhBA4ePAg9uzZAyEE6tWrhxEjRsDR0VHqaERERESVjsVsLZKdnY3IyEhcvXoVANC2bVsMGjQISqVS4mREREREVYPFbC2SkJCAq1evwsjICE899RTat2/P2QqIiIioVmMxW4t4eXlhwIAB8PT0hIODg9RxiIiIiKocZzMwYJmZmVi/fj3S09N1bd26dWMhS0RERHUGe2YN1JUrV7Bx40ZkZ2dDrVbj2WeflToSERERUbVjMWtgtFot9u7diwMHDgAAHBwcEBgYKHEqIiIiImmwmDUgGRkZiIiIwI0bNwAAHTt2RGBgIIyNjSVORkRERCQNFrMGIikpCStXrkRubi6USiWCgoLQunVrqWMRERERSYrFrIGoV68eLC0tYW1tjdDQUNSrV0/qSERERESSYzFbg2VmZsLCwgIymQzGxsYYPXo0zM3NYWTE00ZEREQEsJitseLi4rBp0yZ069YNvXv3BgBYW1tLnIqIpKTRaFBQUCB1DCKiSmFsbAyFQvHE+2ExW8NoNBrs3LkTf//9NwDgn3/+Qc+ePSGXc0pgorosKysLt27dghBC6ihERJVCJpPBzc0NFhYWT7QfFrM1yL179xAREYGEhAQAgI+PD/z9/VnIEtVxGo0Gt27dgpmZGerXr8/bVBORwRNC4M6dO7h16xaaNm36RD20LGZriNjYWGzevBn5+fkwMTHB0KFD0bx5c6ljEVENUFBQACEE6tevD1NTU6njEBFVivr16yM+Ph4FBQUsZg1dZmYmIiIioNFo4ObmhpCQENjY2Egdi4hqGPbIElFtUlk/01jM1gCWlpYIDAxEWloafH19K2UwNBEREVFdwGJWIhcuXICNjQ1cXV0BAJ06dZI4EREREZHh4ZVF1aygoABbtmxBeHg4wsPDkZeXJ3UkIqIar2/fvnjzzTeljkG10NixYzFnzhypY9Q60dHRaN++PbRabZUfq0YUswsXLoSHhwdMTEzg4+ODo0ePlrr+hg0b0Lx5c5iYmKBNmzbYtm1bNSV9MqmpqVi6dClOnDgBAGjdujWUSqXEqYiIqsaECRMgk8nwxRdf6LVv2rSp3GPlIiMjMXv27MqMV8TDvA8f9erVQ2BgIM6ePVulx31S8fHxernt7OzQp08fHDhwoMi6aWlpePPNN9GwYUMolUq4uLhg0qRJuHHjRpF1k5KS8Nprr6Fx48ZQqVRwd3dHUFAQdu3aVR1vq1qcOXMG27Ztw+uvvy51lCpz48YNDBo0CGZmZnBwcMA777yDwsLCUrc5efIk/P39YWNjg3r16mHy5MnIysrSW+fYsWPw9fWFjY0NbG1tERAQgDNnzuheDwwMhLGxMVavXl0l7+tRkhez69atw9SpUzFr1iycPHkS7dq1Q0BAAFJSUopd/6+//sIzzzyD5557DqdOnUJwcDCCg4Nx/vz5ak5ePh4eZ/HTTz8hOTkZZmZmePbZZ+Hr68tpt4ioVjMxMcGXX36Je/fuPdF+7OzsYGlpWUmpShYYGIjExEQkJiZi165dMDIywuDBg6v8uJVh586dSExMxP79++Hi4oLBgwcjOTlZ93paWhq6du2KnTt3YvHixbh8+TLWrl2Ly5cvo3Pnzrh69apu3fj4eHh7e2P37t2YN28ezp07h+joaPTr1w9TpkyptvckhHhs4fUkvv/+e4wYMeKJ5jmt6oxPQqPRYNCgQVCr1fjrr7+wYsUKhIWFYebMmSVuc/v2bfj5+aFJkyY4cuQIoqOjceHCBUyYMEG3TlZWFgIDA9GgQQMcOXIEBw8ehKWlJQICAvRu7DJhwgR89913VfkWHxAS69Kli5gyZYpuWaPRCBcXFzF37txi1x85cqQYNGiQXpuPj4948cUXy3S89PR0AUCkp6dXPHQ52NsXiCFDNomPP/5YfPzxxyIsLExkZGRUy7GJqHbIzc0VMTExIjc3V+oo5TJ+/HgxePBg0bx5c/HOO+/o2jdu3Cge/fWTmpoqnn76aeHi4iJMTU1F69atxZo1a/T21adPH/HGG28IIYSYMWOG6NKlS5HjtW3bVnzyySe65Z9//lk0b95cqFQq0axZM7Fw4cLH5h06dKhe24EDBwQAkZKSomt79913RdOmTYWpqalo1KiR+PDDD4VarRZCCHHt2jUhk8nEsWPH9Pbz7bffigYNGgiNRiOEEOLcuXMiMDBQmJubCwcHB/Hss8+KO3fu6NbfsGGDaN26tTAxMRF2dnbC19dXZGVlFZv72rVrAoA4deqUru3s2bMCgNi8ebOu7aWXXhLm5uYiMTFRb/ucnBzh6uoqAgMDdW0DBw4Urq6uxR7z3r17xeZ4aOnSpaJly5ZCqVQKJycn3e/44nLeu3dPABB79uwRQgixZ88eAUBs27ZNdOzYURgbG4slS5YIACI2NlbvON98841o3Lixbvlxn+l/FRYWCmtra7Flyxa99pUrVwpvb29hYWEhHB0dxTPPPCOSk5N1rxeXcc+ePUKj0Yg5c+YIDw8PYWJiItq2bSs2bNigd7xJkybpXvfy8hLz588v9bN8Utu2bRNyuVwkJSXp2n788UdhZWUl8vPzi91myZIlwsHBQff/qhD//v/0zz//CCGEOHbsmAAgbty4UeI6Qghx/fp1AUBcvny52GOV9rOtPPWapN2CarUaJ06cgJ+fn65NLpfDz88Phw8fLnabw4cP660PAAEBASWun5+fj4yMDL1HddJoFLCwyIYQQJ8+fTB27Nhq6V0gotqtUyfAza36H+W9VlWhUGDOnDn4/vvvcevWrWLXycvLg7e3N7Zu3Yrz589j8uTJGDt2bIlDzsaMGYOjR4/iypUrurYLFy7g7NmzGD16NABg9erVmDlzJj7//HPExsZizpw5+Oijj7BixYoyZ8/KysKqVavQpEkT1KtXT9duaWmJsLAwxMTEYMGCBfj555/x7bffAgA8PDzg5+eH5cuX6+1r+fLlmDBhAuRyOe7fv4/+/fujQ4cOOH78OKKjo5GcnIyRI0cCABITE/HMM89g0qRJiI2Nxd69ezF8+PAy3/0tNzcXK1euBADdUDatVou1a9dizJgxcHJy0lvf1NQUr7zyCrZv3460tDSkpaUhOjoaU6ZMgbm5eZH9lzZ15I8//ogpU6Zg8uTJOHfuHKKiotCkSZMy5X7U9OnT8cUXXyA2NhahoaHo1KlTka+rV69erTvfj/tMi3P27Fmkp6cXuQC7oKAAs2fPxpkzZ7Bp0ybEx8fr9UoWl7Ft27aYO3cuVq5cicWLF+PChQt466238Oyzz2Lfvn0AHpwDNzc3bNiwATExMZg5cybef/99rF+/vtTPwsLCotTHSy+9VOK2hw8fRps2beDo6KhrCwgIQEZGBi5cuFDsNvn5+VAqlXrfHD+c3/rgwYMAgGbNmqFevXpYunQp1Go1cnNzsXTpUrRo0QIeHh667Ro0aABHR8dih7xUqseWu1UoISFBABB//fWXXvs777xT7F/dQghhbGxc5C/2hQsXCgcHh2LXnzVrlgBQ5FFdPbO2tkKYmWWLnj2vVcvxiKj2Ka73wtVVCKD6H66uZc/9aE9n165dxaRJk4QQRXtmizNo0CDx9ttv65Yf7ZkVQoh27dqJTz/9VLc8Y8YM4ePjo1v29PQs8rti9uzZolu3bqXmVSgUwtzcXJibmwsAwtnZWZw4caLUrPPmzRPe3t665XXr1glbW1uRl5cnhBDixIkTQiaTiWvXrulyDBgwQG8fN2/eFABEXFycOHHihAAg4uPjSz3uQw97PE1NTYW5ubmQyWQCgPD29tb1GCclJQkA4ttvvy12H5GRkQKAOHLkiDhy5IgAICIjI8t0/Ee5uLiIDz74oNScZemZ3bRpk9623377rfD09NQtx8XF6fXWPu4zLc7GjRuFQqEQWq221Pf0sBcyMzOzxIx5eXnCzMysSD3z3HPPiWeeeabEfU+ZMkWEhISUevx//vmn1Mejvcb/9cILLxT5XLKzs3U9y8U5f/68MDIyEv/73/9Efn6+SEtLEyEhIQKAmDNnjm69c+fOCU9PTyGXy4VcLhfNmjUr9v/ZDh06iI8//rjYY1VWz2ytn5prxowZmDp1qm45IyMD7u7u1Xb8c+cAIcxgZORRbcckotrvP51rNf64X375Jfr3749p06YVeU2j0WDOnDlYv349EhISoFarkZ+fDzMzsxL3N2bMGCxbtgwfffQRhBD47bffdD/rs7OzceXKFTz33HN44YUXdNsUFhbC2tq61Jz9+vXDjz/+CODBLcYXLVqEgQMH4ujRo2jYsCGAB9d6fPfdd7hy5QqysrJQWFgIKysr3T6Cg4MxZcoUbNy4EU8//TTCwsLQr18/XY/VmTNnsGfPnmLHaV65cgUDBgyAr68v2rRpg4CAAAwYMAChoaGwtbUtNfu6devQvHlznD9/Hu+++y7CwsJgbGyst44oQ+9uWdYpTkpKCm7fvg1fX98Kbf+o//aWPv3005g2bRr+/vtvdO3aFatXr0bHjh11d8p83Gfq5eVVpD03NxcqlarIxYgnTpzAxx9/jDNnzuDevXu6q/Fv3LiBli1bFpvx8uXLyMnJgb+/v96+1Go1OnTooFteuHAhli1bhhs3biA3NxdqtRrt27cv9bOoSM/2k2jVqhVWrFiBqVOnYsaMGVAoFHj99dfh6Oio663Nzc3Fc889hx49euC3336DRqPBV199hUGDBuHYsWN6dyo0NTVFTk5OlWaWtJi1t7eHQqHQG6AOAMnJyUW+BnnIycmpXOurVCqoVKrKCVwB/z+NLBFRpTp+XOoE5dO7d28EBARgxowZRb6ynTdvHhYsWID58+ejTZs2MDc3x5tvvgm1Wl3i/p555hm89957OHnyJHJzc3Hz5k2MGjUKAHRXXf/888/w8fHR2+5xN6UxNzfXKx5++eUXWFtb4+eff8Znn32Gw4cPY8yYMfjkk08QEBAAa2trrF27Fl9//bVuG6VSiXHjxmH58uUYPnw41qxZgwULFuhez8rKQlBQEL788ssix3d2doZCocCOHTvw119/4c8//8T333+PDz74AEeOHEGjRo1KzO7u7o6mTZuiadOmKCwsxLBhw3D+/HmoVCrUr18fNjY2iI2NLXbb2NhYyGQy3XuXyWS4ePFiqZ/Vfz3uVssPC6FHi+VHLxZ61H+HNzg5OaF///5Ys2YNunbtijVr1uDll1/Wvf64z7Q49vb2yMnJgVqt1g3HyM7ORkBAAAICArB69WrUr18fN27cQEBAQJH/Hx/N+PD/ua1bt+rmj3/oYQ2ydu1aTJs2DV9//TW6desGS0tLzJs3D0eOHCk230OPuzjt2WefxeLFi4t9zcnJqchwnYc1VEl1EwCMHj0ao0ePRnJyMszNzSGTyfDNN9+gcePGAIA1a9YgPj4ehw8f1p3XNWvWwNbWFps3b8bTTz+t21daWhrq169f6nt4UpIWs0qlEt7e3ti1axeCg4MBPBhTsmvXLrz66qvFbtOtWzfs2rVLb77BHTt2oFu3btWQmIiIKuqLL75A+/bt0axZM732Q4cOYejQoXj22WcBPPg9cOnSJb1esP9yc3NDnz59sHr1auTm5sLf3x8ODg4AAEdHR7i4uODq1asYM2bME2WWyWSQy+XIzc0F8GBGnYYNG+KDDz7QrXP9+vUi2z3//PNo3bo1Fi1ahMLCQgwfPlz3WseOHREREQEPDw8YGRX/a1gmk6FHjx7o0aMHZs6ciYYNG2Ljxo163zSWJjQ0FDNnzsSiRYvw1ltvQS6XY+TIkVi9ejU+/fRTvUImNzcXixYtQkBAAOzs7AA8GFe5cOFCvP7660UKy/v37xc7btbS0hIeHh7YtWsX+vXrV+T1hwVNYmKirrfy9OnTZXo/wIPe+HfffRfPPPMMrl69qlcwleUz/a+HPaIxMTG65xcvXsTdu3fxxRdf6L7FPV6GvxxbtmwJlUqFGzduoE+fPsWuc+jQIXTv3h2vvPKKru3Rcd8ledxn9Oi3Av/VrVs3fP7550hJSdH9+9ixYwesrKxK/ff10MOxtsuWLYOJiYmu5zknJwdyuVyvV/vh8qPzyubl5eHKlSt6vdNV4rEDEarY2rVrhUqlEmFhYSImJkZMnjxZ2NjY6K68Gzt2rJg+fbpu/UOHDgkjIyPx1VdfidjYWDFr1ixhbGwszp07V6bjVfdsBkRET8qQZzP47+wAY8eOFSYmJnpjZt966y3h7u4uDh06JGJiYsTzzz8vrKys9Lb975hZIR7MVuDi4iLs7e3Fr7/+WuQ1U1NTsWDBAhEXFyfOnj0rli1bJr7++utS8wYGBorExESRmJgoYmJixCuvvCJkMpluTOfmzZuFkZGR+O2338Tly5fFggULhJ2dnbC2ti6yv+7duwulUileeuklvfaEhARRv359ERoaKo4ePSouX74soqOjxYQJE0RhYaH4+++/xeeffy6OHTsmrl+/LtavXy+USmWJYxyLG4sqhBCLFi0SDg4OIjs7WwjxYNYIT09P0bp1a7Ft2zZx48YNsW/fPtGrVy/h4OAgrly5otv2ypUrwsnJSbRs2VKEh4eLS5cuiZiYGLFgwQLRvHnzEj/DsLAwYWJiIhYsWCAuXbokTpw4Ib777jvd6127dhW9evUSMTExYu/evaJLly7FjpktbsaEjIwMYWpqKtq1ayd8fX3L9ZmWpGPHjuL777/XLaekpAilUineeecdceXKFbF582bh5eWl9/mWlPGDDz4Q9erVE2FhYeLy5cu69x4WFiaEEGLBggXCyspKREdHi7i4OPHhhx8KKysr0a5duxLzPanCwkLRunVrMWDAAHH69GkRHR0t6tevL2bMmKFb58iRI6JZs2bi1q1burbvv/9enDhxQsTFxYkffvhB92/podjYWKFSqcTLL78sYmJixPnz58Wzzz4rrK2txe3bt3Xr7dmzR1hYWOj+H/yvyhozK3kxK8SDD61BgwZCqVSKLl26iL///lv3Wp8+fcT48eP11l+/fr3w8vISSqVStGrVSmzdurXMx2IxS0SGpjYVs9euXRNKpVKvmL17964YOnSosLCwEA4ODuLDDz8U48aNe2wxe+/ePaFSqYSZmZnu4pxHrV69WrRv314olUpha2srevfuXepFTePHj9e7UNjS0lJ07txZhIeH6633zjvviHr16gkLCwsxatQo8e233xZbzC5dulQAEEePHi3y2qVLl8SwYcOEjY2NMDU1Fc2bNxdvvvmm0Gq1IiYmRgQEBIj69esLlUolvLy89Aqu/yqpmM3Ozha2trbiyy+/1LXduXNHvPbaa8Ld3V0YGxsLR0dHMWHCBHH9+vUi+719+7aYMmWKaNiwoVAqlcLV1VUMGTJEV3iWZPHixaJZs2bC2NhYODs7i9dee033WkxMjOjWrZswNTUV7du3F3/++WeZi1khHkzPCUAsW7asyGulfaYlWbRokejatate25o1a4SHh4dQqVSiW7duIioqqkzFrFarFfPnz9e99/r164uAgACxb98+IcSDi8QmTJggrK2thY2NjXj55ZfF9OnTq7SYFUKI+Ph4MXDgQGFqairs7e3F22+/LQoKCnSvP3w/Dy9QFOLBH512dnZCqVSKtm3bipUrVxbZ759//il69OghrK2tha2trejfv784fPiw3jqTJ08uderUyipmZUJUcKS3gcrIyIC1tTXS09NL7ZonIqop8vLycO3aNTRq1AgmJiZSx6Eymj17NjZs2FDj7yBWl+Xm5qJZs2ZYt24dhytWstTUVDRr1gzHjx8vcax3aT/bylOv8fZTRERElSgrKwvnz5/HDz/8gNdee03qOFQKU1NTrFy5EqmpqVJHqXXi4+OxaNGiUi9arCy1fmouIiKi6vTqq6/it99+Q3BwMCZNmiR1HHqMvn37Sh2hVurUqVORKdaqCotZIiKiShQWFoawsDCpYxDVGRxmQEREREQGi8UsEZGBqGPX6xJRLVdZP9NYzBIR1XAP71pV2h2xiIgMzcOfaY+7M9/jcMwsEVENZ2RkBDMzM9y5cwfGxsa620cSERkqrVaLO3fuwMzMrMx3bSsJi1kiohpOJpPB2dkZ165dK/bWqUREhkgul6NBgwZ6t8WtCBazREQGQKlUomnTphxqQES1hlKprJRvmljMEhEZCLlczjuAERH9BwdeEREREZHBYjFLRERERAaLxSwRERERGaw6N2b24QS9GRkZEichIiIiouI8rNPKcmOFOlfMZmZmAgDc3d0lTkJEREREpcnMzIS1tXWp68hEHbs/olarxe3bt2FpafnE85qVRUZGBtzd3XHz5k1YWVlV+fGo8vEcGj6eQ8PHc2jYeP4MX3WfQyEEMjMz4eLi8tjpu+pcz6xcLoebm1u1H9fKyor/gA0cz6Hh4zk0fDyHho3nz/BV5zl8XI/sQ7wAjIiIiIgMFotZIiIiIjJYLGarmEqlwqxZs6BSqaSOQhXEc2j4eA4NH8+hYeP5M3w1+RzWuQvAiIiIiKj2YM8sERERERksFrNEREREZLBYzBIRERGRwWIxS0REREQGi8VsJVi4cCE8PDxgYmICHx8fHD16tNT1N2zYgObNm8PExARt2rTBtm3bqikplaQ85/Dnn39Gr169YGtrC1tbW/j5+T32nFPVK++/w4fWrl0LmUyG4ODgqg1Ij1Xec3j//n1MmTIFzs7OUKlU8PLy4s9TCZX3/M2fPx/NmjWDqakp3N3d8dZbbyEvL6+a0tJ/7d+/H0FBQXBxcYFMJsOmTZseu83evXvRsWNHqFQqNGnSBGFhYVWes1iCnsjatWuFUqkUy5YtExcuXBAvvPCCsLGxEcnJycWuf+jQIaFQKMT//vc/ERMTIz788ENhbGwszp07V83J6aHynsPRo0eLhQsXilOnTonY2FgxYcIEYW1tLW7dulXNyemh8p7Dh65duyZcXV1Fr169xNChQ6snLBWrvOcwPz9fdOrUSTz11FPi4MGD4tq1a2Lv3r3i9OnT1ZychCj/+Vu9erVQqVRi9erV4tq1a2L79u3C2dlZvPXWW9WcnB7atm2b+OCDD0RkZKQAIDZu3Fjq+levXhVmZmZi6tSpIiYmRnz//fdCoVCI6Ojo6gn8CBazT6hLly5iypQpumWNRiNcXFzE3Llzi11/5MiRYtCgQXptPj4+4sUXX6zSnFSy8p7D/yosLBSWlpZixYoVVRWRHqMi57CwsFB0795d/PLLL2L8+PEsZiVW3nP4448/isaNGwu1Wl1dEakU5T1/U6ZMEf3799drmzp1qujRo0eV5qSyKUsx++6774pWrVrptY0aNUoEBARUYbLicZjBE1Cr1Thx4gT8/Px0bXK5HH5+fjh8+HCx2xw+fFhvfQAICAgocX2qWhU5h/+Vk5ODgoIC2NnZVVVMKkVFz+Gnn34KBwcHPPfcc9URk0pRkXMYFRWFbt26YcqUKXB0dETr1q0xZ84caDSa6opN/68i56979+44ceKEbijC1atXsW3bNjz11FPVkpmeXE2qZ4yq/Yi1SGpqKjQaDRwdHfXaHR0dcfHixWK3SUpKKnb9pKSkKstJJavIOfyv9957Dy4uLkX+UVP1qMg5PHjwIJYuXYrTp09XQ0J6nIqcw6tXr2L37t0YM2YMtm3bhsuXL+OVV15BQUEBZs2aVR2x6f9V5PyNHj0aqamp6NmzJ4QQKCwsxEsvvYT333+/OiJTJSipnsnIyEBubi5MTU2rLQt7ZomewBdffIG1a9di48aNMDExkToOlUFmZibGjh2Ln3/+Gfb29lLHoQrSarVwcHDATz/9BG9vb4waNQoffPABFi9eLHU0KoO9e/dizpw5WLRoEU6ePInIyEhs3boVs2fPljoaGSD2zD4Be3t7KBQKJCcn67UnJyfDycmp2G2cnJzKtT5VrYqcw4e++uorfPHFF9i5cyfatm1blTGpFOU9h1euXEF8fDyCgoJ0bVqtFgBgZGSEuLg4eHp6Vm1o0lORf4fOzs4wNjaGQqHQtbVo0QJJSUlQq9VQKpVVmpn+VZHz99FHH2Hs2LF4/vnnAQBt2rRBdnY2Jk+ejA8++AByOfvaarqS6hkrK6tq7ZUF2DP7RJRKJby9vbFr1y5dm1arxa5du9CtW7dit+nWrZve+gCwY8eOEtenqlWRcwgA//vf/zB79mxER0ejU6dO1RGVSlDec9i8eXOcO3cOp0+f1j2GDBmCfv364fTp03B3d6/O+ISK/Tvs0aMHLl++rPtDBAAuXboEZ2dnFrLVrCLnLycnp0jB+vAPEyFE1YWlSlOj6plqv+Ssllm7dq1QqVQiLCxMxMTEiMmTJwsbGxuRlJQkhBBi7NixYvr06br1Dx06JIyMjMRXX30lYmNjxaxZszg1l8TKew6/+OILoVQqRXh4uEhMTNQ9MjMzpXoLdV55z+F/cTYD6ZX3HN64cUNYWlqKV199VcTFxYktW7YIBwcH8dlnn0n1Fuq08p6/WbNmCUtLS/Hbb7+Jq1evij///FN4enqKkSNHSvUW6rzMzExx6tQpcerUKQFAfPPNN+LUqVPi+vXrQgghpk+fLsaOHatb/+HUXO+8846IjY0VCxcu5NRchuz7778XDRo0EEqlUnTp0kX8/fffutf69Okjxo8fr7f++vXrhZeXl1AqlaJVq1Zi69at1ZyY/qs857Bhw4YCQJHHrFmzqj846ZT33+GjWMzWDOU9h3/99Zfw8fERKpVKNG7cWHz++eeisLCwmlPTQ+U5fwUFBeLjjz8Wnp6ewsTERLi7u4tXXnlF3Lt3r/qDkxBCiD179hT7u+3heRs/frzo06dPkW3at28vlEqlaNy4sVi+fHm15xZCCJkQ7M8nIiIiIsPEMbNEREREZLBYzBIRERGRwWIxS0REREQGi8UsERERERksFrNEREREZLBYzBIRERGRwWIxS0REREQGi8UsERERERksFrNERADCwsJgY2MjdYwKk8lk2LRpU6nrTJgwAcHBwdWSh4iourCYJaJaY8KECZDJZEUely9fljoawsLCdHnkcjnc3NwwceJEpKSkVMr+ExMTMXDgQABAfHw8ZDIZTp8+rbfOggULEBYWVinHK8nHH3+se58KhQLu7u6YPHky0tLSyrUfFt5EVFZGUgcgIqpMgYGBWL58uV5b/fr1JUqjz8rKCnFxcdBqtThz5gwmTpyI27dvY/v27U+8bycnp8euY21t/cTHKYtWrVph586d0Gg0iI2NxaRJk5Ceno5169ZVy/GJqG5hzywR1SoqlQpOTk56D4VCgW+++QZt2rSBubk53N3d8corryArK6vE/Zw5cwb9+vWDpaUlrKys4O3tjePHj+teP3jwIHr16gVTU1O4u7vj9ddfR3Z2dqnZZDIZnJyc4OLigoEDB+L111/Hzp07kZubC61Wi08//RRubm5QqVRo3749oqOjdduq1Wq8+uqrcHZ2homJCRo2bIi5c+fq7fvhMINGjRoBADp06ACZTIa+ffsC0O/t/Omnn+Di4gKtVquXcejQoZg0aZJuefPmzejYsSNMTEzQuHFjfPLJJygsLCz1fRoZGcHJyQmurq7w8/PDiBEjsGPHDt3rGo0Gzz33HBo1agRTU1M0a9YMCxYs0L3+8ccfY8WKFdi8ebOul3fv3r0AgJs3b2LkyJGwsbGBnZ0dhg4divj4+FLzEFHtxmKWiOoEuVyO7777DhcuXMCKFSuwe/duvPvuuyWuP2bMGLi5ueHYsWM4ceIEpk+fDmNjYwDAlStXEBgYiJCQEJw9exbr1q3DwYMH8eqrr5Yrk6mpKbRaLQoLC7FgwQJ8/fXX+Oqrr3D27FkEBARgyJAh+OeffwAA3333HaKiorB+/XrExcVh9erV8PDwKHa/R48eBQDs3LkTiYmJiIyMLLLOiBEjcPfuXezZs0fXlpaWhujoaIwZMwYAcODAAYwbNw5vvPEGYmJisGTJEoSFheHzzz8v83uMj4/H9u3boVQqdW1arRZubm7YsGEDYmJiMHPmTLz//vtYv349AGDatGkYOXIkAgMDkZiYiMTERHTv3h0FBQUICAiApaUlDhw4gEOHDsHCwgKBgYFQq9VlzkREtYwgIqolxo8fLxQKhTA3N9c9QkNDi113w4YNol69errl5cuXC2tra92ypaWlCAsLK3bb5557TkyePFmv7cCBA0Iul4vc3Nxit/nv/i9duiS8vLxEp06dhBBCuLi4iM8//1xvm86dO4tXXnlFCCHEa6+9Jvr37y+0Wm2x+wcgNm7cKIQQ4tq1awKAOHXqlN4648ePF0OHDtUtDx06VEyaNEm3vGTJEuHi4iI0Go0QQghfX18xZ84cvX38+uuvwtnZudgMQggxa9YsIZfLhbm5uTAxMREABADxzTfflLiNEEJMmTJFhISElJj14bGbNWum9xnk5+cLU1NTsX379lL3T0S1F8fMElGt0q9fP/z444+6ZXNzcwAPeinnzp2LixcvIiMjA4WFhcjLy0NOTg7MzMyK7Gfq1Kl4/vnn8euvv+q+Kvf09ATwYAjC2bNnsXr1at36QghotVpcu3YNLVq0KDZbeno6LCwsoNVqkZeXh549e+KXX35BRkYGbt++jR49euit36NHD5w5cwbAgyEC/v7+aNasGQIDAzF48GAMGDDgiT6rMWPG4IUXXsCiRYugUqmwevVqPP3005DL5br3eejQIb2eWI1GU+rnBgDNmjVDVFQU8vLysGrVKpw+fRqvvfaa3joLFy7E/7V3RyFNrnEcx7/HRNSYF6Mkd2Fe6CQoqzeXGYQggUWFOMKRQjcSYsjESvTCtBFFKirkjUIYFNKkboqWFl1YtiCsMMFyy1KrmyCDZKAotXNxcLRMww6cc7bz+1w+7/O87//Zbn57eJ533d3dvHv3jtnZWebn59m2bduK9b548YLx8XFMJlNY+9zcHG/evPmNT0BEooHCrIhElbVr15Kenh7WNjk5ycGDB6moqODcuXOYzWYePXpEWVkZ8/PzPw1lZ86coaSkBI/HQ19fH42NjbjdboqKiggEApSXl+N0OpeMS01NXbY2k8nE8+fPiYmJISUlhYSEBABmZmZ+OS/DMJiYmKCvr4/79+9TXFzM3r17uXHjxi/HLufQoUMEg0E8Hg82m43BwUHa29tD1wOBAC6XC7vdvmRsfHz8sveNi4sLfQcXLlzgwIEDuFwuzp49C4Db7ebUqVO0traSm5uLyWSipaWFJ0+erFhvIBBgx44dYT8iFv1XDvmJyD9PYVZEot6zZ8/49u0bra2toVXHxf2ZK7FarVitVqqrqzly5AiXL1+mqKgIwzB4+fLlktD8KzExMT8dk5SUhMViwev1kpeXF2r3er3s3LkzrJ/D4cDhcHD48GH27dvH58+fMZvNYfdb3J/69evXFeuJj4/HbrfT09PD+Pg4mZmZGIYRum4YBj6fb9Xz/FF9fT35+flUVFSE5rl7926OHz8e6vPjympcXNyS+g3DoLe3l+TkZJKSkv5WTSISPXQATESiXnp6OgsLC3R0dPD27VuuXr1KZ2fnsv1nZ2eprKxkYGCAqakpvF4vQ0NDoe0DtbW1PH78mMrKSoaHh3n9+jU3b95c9QGw79XU1NDU1ERvby8+n4+6ujqGh4epqqoCoK2tjWvXrjE2Nobf7+f69ets2LDhp3/0kJycTEJCAv39/Xz8+JEvX74s+9zS0lI8Hg/d3d2hg1+LGhoauHLlCi6Xi9HRUV69eoXb7aa+vn5Vc8vNzSUrK4vz588DkJGRwdOnT7l79y5+v5/Tp08zNDQUNiYtLY2RkRF8Ph+fPn1iYWGB0tJS1q1bR2FhIYODg0xMTDAwMIDT6eTDhw+rqklEoofCrIhEva1bt9LW1kZTUxObN2+mp6cn7LVWP1qzZg3T09McPXoUq9VKcXEx+/fvx+VyAZCVlcWDBw/w+/3s2bOH7du309DQgMVi+e0anU4nJ06c4OTJk2zZsoX+/n5u3bpFRkYG8NcWhebmZrKzs7HZbExOTnLnzp3QSvP3YmNjuXjxIl1dXVgsFgoLC5d9bn5+PmazGZ/PR0lJSdi1goICbt++zb1797DZbOzatYv29nY2bty46vlVV1dz6dIl3r9/T3l5OXa7HYfDQU5ODtPT02GrtADHjh0jMzOT7Oxs1q9fj9frJTExkYcPH5KamordbmfTpk2UlZUxNzenlVqR/7E/gsFg8N8uQkRERETkd2hlVkREREQilsKsiIiIiEQshVkRERERiVgKsyIiIiISsRRmRURERCRiKcyKiIiISMRSmBURERGRiKUwKyIiIiIRS2FWRERERCKWwqyIiIiIRCyFWRERERGJWH8CSTi6Zmu53tIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 600x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAIjCAYAAABS7iKKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN9NJREFUeJzt3Xl8TPfi//H3JLJv9tiFqK0ilF5Ve6mUUmsXW23VVmlL7b9riy0tl2tprV2QotRWRatq6U7tbRVFBa1dbBESyZzfH/1mbkcS8iHMqNfz8cjj3vnMmXM+MxJ9OfM5E5tlWZYAAAAMeLh6AgAA4N5DQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZA4L4VFxcnm82m2bNnGz2ubt26qlu37h2ZE27PyZMn1bp1a+XJk0c2m00TJ07M9mPYbDYNHz482/d7r+rUqZPCwsJcPQ24AAEBl5k9e7ZsNpvjy9fXV4UKFVJUVJQmT56sS5cuuXqKbiMsLMzptcrsyzSG7oSTJ0+qb9++Klu2rPz9/RUQEKAqVapo1KhROn/+/B09du/evbVmzRoNGjRIsbGxeuKJJ+7o8e6m4cOHy2azycPDQ0ePHk13/8WLF+Xn5yebzaaePXsa7z8xMVHDhw/Xxo0bs2G2uB/kcPUEgBEjRqhEiRK6du2aTpw4oY0bN6pXr16aMGGCVqxYoYoVK96R4xYvXlxXrlyRl5eX0eO++OKLOzKfG5k4caISEhIct1evXq0FCxbov//9r/LmzesYf/TRR+/63P5uy5Ytaty4sRISEtS+fXtVqVJFkrR161a9+eab+vrrr+/o67d+/Xo1a9ZMffv2vWPHuHLlinLkcN1fnT4+PlqwYIH69+/vNL506dLb2m9iYqKio6MlyegM26xZs2S322/r2Lg3ERBwuUaNGqlq1aqO24MGDdL69evVpEkTPfXUU9qzZ4/8/Pyy/bhpZz1MeXt7Z/tcbqZ58+ZOt0+cOKEFCxaoefPmNzx9fPnyZQUEBNzZyf2f8+fPq0WLFvL09NSOHTtUtmxZp/tHjx6tWbNm3dE5nDp1Sjlz5ryjx7iV75ns1Lhx4wwDYv78+XryySe1ZMmSuzKPtO8t0wDHPwdvYcAtPfbYYxoyZIgOHz6sDz/80Om+vXv3qnXr1sqdO7d8fX1VtWpVrVixIt0+zp8/r969eyssLEw+Pj4qUqSInn/+eZ05c0ZSxmsgTpw4oc6dO6tIkSLy8fFRwYIF1axZM8XFxTm2yWgNxKlTp9S1a1eFhobK19dXkZGRmjNnjtM2acf7z3/+o5kzZyo8PFw+Pj56+OGHtWXLltt7wfTXe9GBgYE6ePCgGjdurKCgILVr106SZLfbNXHiRD344IPy9fVVaGioXnrpJZ07dy7dfj777DPVqlVLAQEBCgoK0pNPPqndu3ff9PgzZszQn3/+qQkTJqSLB0kKDQ3V4MGDncamTp2qBx98UD4+PipUqJB69OiR7m2OunXrqkKFCvr1119Vr149+fv7q3Dhwho7dqxjm7S3wyzL0jvvvON4S0f636n/66U95u9/tlu3blVUVJTy5s0rPz8/lShRQl26dHF6XEZrIHbs2KFGjRopODhYgYGBql+/vjZt2pTh8b777ju98cYbypcvnwICAtSiRQudPn0609f1em3bttXOnTu1d+9ex9iJEye0fv16tW3bNt32ycnJGjp0qKpUqaKQkBAFBASoVq1a2rBhg2ObuLg45cuXT5IUHR3teP3SnueNvreuXwMxbNgweXh4aN26dU7zePHFF+Xt7a1du3Zl+bnCvREQcFsdOnSQ5PyWwe7du/XII49oz549GjhwoMaPH6+AgAA1b95cy5Ytc2yXkJCgWrVqacqUKWrYsKEmTZqkl19+WXv37tUff/yR6TFbtWqlZcuWqXPnzpo6dapee+01Xbp0SUeOHMn0MVeuXFHdunUVGxurdu3aady4cQoJCVGnTp00adKkdNvPnz9f48aN00svvaRRo0YpLi5OLVu21LVr127lZXKSkpKiqKgo5c+fX//5z3/UqlUrSdJLL72kfv36qUaNGpo0aZI6d+6sefPmKSoqyum4sbGxevLJJxUYGKi33npLQ4YM0a+//qqaNWs6/Yc2IytWrJCfn59at26dpbkOHz5cPXr0UKFChTR+/Hi1atVKM2bMUMOGDdO9FufOndMTTzyhyMhIjR8/XmXLltWAAQP02WefSZJq166t2NhYSdLjjz+u2NhYx+2sOnXqlBo2bKi4uDgNHDhQU6ZMUbt27dKFwPV2796tWrVqadeuXerfv7+GDBmiQ4cOqW7dutq8eXO67V999VXt2rVLw4YNU/fu3fXpp58arVmoXbu2ihQpovnz5zvGFi5cqMDAQD355JPptr948aLeffdd1a1bV2+99ZaGDx+u06dPKyoqSjt37pQk5cuXT9OmTZMktWjRwvH6tWzZ0rGfzL63rjd48GBVqlRJXbt2daxjWrNmjWbNmqWhQ4cqMjIyy88Vbs4CXOSDDz6wJFlbtmzJdJuQkBCrcuXKjtv169e3IiIirKtXrzrG7Ha79eijj1oPPPCAY2zo0KGWJGvp0qXp9mm32y3LsqxDhw5ZkqwPPvjAsizLOnfunCXJGjdu3A3nXadOHatOnTqO2xMnTrQkWR9++KFjLDk52apevboVGBhoXbx40el4efLkseLj4x3bfvLJJ5Yk69NPP73hcf9u3LhxliTr0KFDjrGOHTtakqyBAwc6bfvNN99Ykqx58+Y5jX/++edO45cuXbJy5sxpdevWzWm7EydOWCEhIenGr5crVy4rMjIyS/M/deqU5e3tbTVs2NBKTU11jL/99tuWJOv99993jNWpU8eSZM2dO9cxlpSUZBUoUMBq1aqV034lWT169HAaGzZsmJXRX3Vp339pr+GyZctu+v2Ydoxhw4Y5bjdv3tzy9va2Dh486Bg7duyYFRQUZNWuXTvd8Ro0aOD4HrQsy+rdu7fl6elpnT9//obHTXsep0+ftvr27WuVKlXKcd/DDz9sde7cOcPXICUlxUpKSnLa17lz56zQ0FCrS5cujrHTp0+ne25pMvveSruvePHiTmM///yz5e3tbb3wwgvWuXPnrMKFC1tVq1a1rl27dsPniHsLZyDg1gIDAx3/iomPj9f69ev1zDPP6NKlSzpz5ozOnDmjs2fPKioqSvv379eff/4pSVqyZIkiIyPVokWLdPvM6HS2JPn5+cnb21sbN27M8NR+ZlavXq0CBQqoTZs2jjEvLy+99tprSkhI0FdffeW0/bPPPqtcuXI5bteqVUuS9Pvvv2f5mDfSvXt3p9sff/yxQkJC9PjjjzteszNnzqhKlSoKDAx0nMpeu3atzp8/rzZt2jht5+npqWrVqjmd8s7IxYsXFRQUlKU5fvnll0pOTlavXr3k4fG/v4a6deum4OBgrVq1ymn7wMBAtW/f3nHb29tb//rXv7LtNZPkWDuxcuXKLJ8NSk1N1RdffKHmzZurZMmSjvGCBQuqbdu2+vbbb3Xx4kWnx7z44otO34O1atVSamqqDh8+nOW5tm3bVgcOHNCWLVsc/5vR2xeS5Onp6Vi3Y7fbFR8fr5SUFFWtWlXbt2/P8jGl9N9bmalQoYKio6P17rvvKioqSmfOnNGcOXNcuvgU2Y+AgFtLSEhw/EfpwIEDsixLQ4YMUb58+Zy+hg0bJumv09CSdPDgQVWoUMHoWD4+Pnrrrbf02WefKTQ0VLVr19bYsWN14sSJGz7u8OHDeuCBB5z+QyhJ5cqVc9z/d8WKFXO6nRYTJtGSmRw5cqhIkSJOY/v379eFCxeUP3/+dK9bQkKC4zXbv3+/pL/Wn1y/3RdffOHYLjPBwcFZvvQ27TUpU6aM07i3t7dKliyZ7jUrUqRIuvDLlStXtrxmaerUqaNWrVopOjpaefPmVbNmzfTBBx8oKSkp08ecPn1aiYmJ6Z6H9Nefv91uT3fJZXb8+VeuXFlly5bV/PnzNW/ePBUoUECPPfZYptvPmTNHFStWlK+vr/LkyaN8+fJp1apVunDhQpaPmdH31o3069dPkZGR+vHHHzVs2DCVL18+y4/FvYEchNv6448/dOHCBZUqVUqSHJeK9e3bV1FRURk+Jm3bW9WrVy81bdpUy5cv15o1azRkyBDFxMRo/fr1qly58m3tO42np2eG45Zl3fa+fXx80oWM3W5X/vz5NW/evAwfk7Z4Lu31jY2NVYECBdJtd7N/PZYtW1Y7d+5UcnJytl+pcjuvWWZnnFJTU9Ntt3jxYm3atEmffvqp1qxZoy5dumj8+PHatGmTAgMDzSeegez682/btq2mTZumoKAgPfvss+n+3NN8+OGH6tSpk5o3b65+/fopf/788vT0VExMjA4ePJjl42X0vXUjv//+uyNKf/755yw/DvcOAgJuK20RXFospJ0i9vLyUoMGDW742PDwcP3yyy+3dNzw8HD16dNHffr00f79+1WpUiWNHz8+3dUgaYoXL66ffvpJdrvd6S/YtFXyxYsXv6V5ZJfw8HB9+eWXqlGjxg0vhw0PD5ck5c+f/6avb0aaNm2qH374QUuWLHF6Oycjaa/Jvn37nE79Jycn69ChQ7d0/Myk/Qv//PnzTpd4ZvaWwSOPPKJHHnlEo0eP1vz589WuXTt99NFHeuGFF9Jtmy9fPvn7+2vfvn3p7tu7d688PDxUtGjR7Hki12nbtq2GDh2q48eP33DB6OLFi1WyZEktXbrUKabSztqlySy0boXdblenTp0UHBysXr16acyYMWrdurXTokzc+3gLA25p/fr1GjlypEqUKOG4XCx//vyqW7euZsyYoePHj6d7zN8vhWvVqpV27drldGVGmsz+pZeYmKirV686jYWHhysoKOiGp7EbN26sEydOaOHChY6xlJQUTZkyRYGBgapTp86Nn+wd9swzzyg1NVUjR45Md19KSorjssmoqCgFBwdrzJgxGa4BuNmlhi+//LIKFiyoPn366Lfffkt3/6lTpzRq1ChJUoMGDeTt7a3Jkyc7/Xm89957unDhQoZXE9yqtDD6+uuvHWOXL19Od5ntuXPn0n1vVKpUSZIy/fP39PRUw4YN9cknnzhdpXLy5EnNnz9fNWvWVHBwcDY8i/TCw8M1ceJExcTE6F//+lem26Wd8fj7c9u8ebN++OEHp+38/f0lKVs+LXTChAn6/vvvNXPmTI0cOVKPPvqounfv7riEGv8MnIGAy3322Wfau3evUlJSdPLkSa1fv15r165V8eLFtWLFCqcP7nnnnXdUs2ZNRUREqFu3bipZsqROnjypH374QX/88YfjGvN+/fpp8eLFevrpp9WlSxdVqVJF8fHxWrFihaZPn57hpWS//fab6tevr2eeeUbly5dXjhw5tGzZMp08eVLPPfdcpvN/8cUXNWPGDHXq1Enbtm1TWFiYFi9erO+++04TJ07M8sLCO6VOnTp66aWXFBMTo507d6phw4by8vLS/v379fHHH2vSpElq3bq1goODNW3aNHXo0EEPPfSQnnvuOeXLl09HjhzRqlWrVKNGDb399tuZHidXrlxatmyZGjdurEqVKjl9EuX27du1YMECVa9eXdJf/3IfNGiQoqOj9cQTT+ipp57Svn37NHXqVD388MNOCyZvV8OGDVWsWDF17dpV/fr1k6enp95//33Hc0szZ84cTZ06VS1atFB4eLguXbqkWbNmKTg4WI0bN850/6NGjdLatWtVs2ZNvfLKK8qRI4dmzJihpKQkp8+quBNef/31m27TpEkTLV26VC1atNCTTz6pQ4cOafr06SpfvrzTp5v6+fmpfPnyWrhwoUqXLq3cuXOrQoUKxmuJ9uzZoyFDhqhTp05q2rSppL8+A6NSpUp65ZVXtGjRIrMnCfflugtAcL9Lu6wt7cvb29sqUKCA9fjjj1uTJk1yXP54vYMHD1rPP/+8VaBAAcvLy8sqXLiw1aRJE2vx4sVO2509e9bq2bOnVbhwYcvb29sqUqSI1bFjR+vMmTOWZaW/jPPMmTNWjx49rLJly1oBAQFWSEiIVa1aNWvRokVO+73+Mk7LsqyTJ09anTt3tvLmzWt5e3tbERERjv2mSTteRpeJKpPL5zKT2WWcAQEBmT5m5syZVpUqVSw/Pz8rKCjIioiIsPr3728dO3bMabsNGzZYUVFRVkhIiOXr62uFh4dbnTp1srZu3ZqluR07dszq3bu3Vbp0acvX19fy9/e3qlSpYo0ePdq6cOGC07Zvv/22VbZsWcvLy8sKDQ21unfvbp07d85pmzp16lgPPvhguuNkdPmgMriM07Isa9u2bVa1atUsb29vq1ixYtaECRPSXca5fft2q02bNlaxYsUsHx8fK3/+/FaTJk3SPe+M/qy2b99uRUVFWYGBgZa/v79Vr1496/vvv3faJrPLljds2GBJsjZs2JBu3n/398s4b+T618But1tjxoyxihcvbvn4+FiVK1e2Vq5cmeHr9/3331tVqlSxvL29nZ7njb63/r6flJQU6+GHH7aKFCmS7rLUSZMmWZKshQsX3nD+uHfYLCsbVm4BAID7CmsgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAsX/kJ1H6Ve7p6ikAuIFzWzL/REsAruWbxTLgDAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADCWw9UTkCTLsrR48WJt2LBBp06dkt1ud7p/6dKlLpoZAADIiFsERK9evTRjxgzVq1dPoaGhstlsrp4SAAC4AbcIiNjYWC1dulSNGzd29VQAAEAWuMUaiJCQEJUsWdLV0wAAAFnkFgExfPhwRUdH68qVK66eCgAAyAK3eAvjmWee0YIFC5Q/f36FhYXJy8vL6f7t27e7aGYAACAjbhEQHTt21LZt29S+fXsWUd4nAv19NOyVJnrqsUjlyxWoXfv+UN+xi7Xt1yPptp387+fUrXVN9Ru3WG/P3+gY7981So1qPaiKpYsoOSVFBWv3v4vPALh/vDdrhtat/UKHDv0uH19fVapUWb3e6KuwEunferYsSz1e7qbvvv1G/538jh6r38AFM8bd4BYBsWrVKq1Zs0Y1a9Z09VRwl0wb2lblSxVSl8FzdPz0BbVp/C+tmv6qHmo1SsdOX3Bs91S9ivpXRJiOnTqfbh/eXp5aunaHNv90SB2bV7+LswfuL1u3/Khn27TTgxERSk1J1ZRJE/Ryt65aumKV/P39nbb9cO4c/hF4n3CLNRBFixZVcHCwq6eBu8TXx0vN61fSvycu13fbD+r3o2c0esZqHTx6Wt2eruXYrlC+EE0Y8LQ6/7/ZupaSmm4/o6av1pR5G/TL/mN3c/rAfWfazPfUrEVLlSr1gMqULasRo9/U8ePHtOfX3U7b7d2zR3PnvK/okWNcNFPcTW4REOPHj1f//v0VFxfn6qngLsjh6aEcOTx1Nfma0/jVpGt6tHK4JMlms+m9Uc/rv3PWac/vJ1wxTQCZSLh0SZIUHBLiGLty5YoG9e+j/zd4qPLmy+eqqeEucou3MNq3b6/ExESFh4fL398/3SLK+Pj4TB+blJSkpKQkpzHLniqbh+cdmStuX0Jikjbt+l2DujXSvkMndfLsRT3zRFVVq1hCB4+eliT16fy4UlLtemfBRtdOFoATu92usW+NUaXKD+mBB0o7xse9FaPIypVV7zHWPNwv3CIgJk6ceMuPjYmJUXR0tNOYZ+jD8ir4r9ucFe6kLoPnasbwdvr9i9FKSUnVzr1HtejzrapcrpgqlyuqHm3q6tG2b7l6mgCuM2ZUtA7u36/ZsfMdYxvXr9OWzZu0cPEyF84Md5vNsizL1ZO4HRmdgchfawBnIO4R/r7eCg701YkzFxX7ZmcF+Pto/aa9eqtPS9nt//vWzJHDU6mpdv1x8pzKPjnMaR/tm1bTuH6tuArjHnJuy9uungJuwZhRI7Rxwzq9P+dDFSlS1DE+Nma05s+LlYfH/94VT01NlYeHhx6qUlXvzY51xXRxi3yzeGrBLc5A/N3Vq1eVnJzsNHajBZY+Pj7y8fFxGiMe7h2JV5OVeDVZOYP81ODRcvr3xE+0fN1Ord+8z2m7T6f20PxVP2ruJ5tcNFPg/mVZlmJGj9T6dWv13uxYp3iQpC4vvKgWrZ92GmvdvKn6DhikOnXr3c2p4i5yi4C4fPmyBgwYoEWLFuns2bPp7k9NTb8CH/e2BtXLyWaTfos7pfCi+TSmd3P9duik5q74QSkpdsVfuOy0/bWUVJ08c1H7D59yjBUtkEu5gv1VtGAueXp4qGLpwpKkg0dP6/IV5wgFcOvGjIzWZ6tXauKUqQrwD9CZ03+tVQoMCpKvr6/y5suX4cLJggULpYsN/HO4RUD0799fGzZs0LRp09ShQwe98847+vPPPzVjxgy9+eabrp4e7oCQQF+NePUpFQ7NqfgLifpk3U4Ne+dTpaTYb/7g/zOk+5Pq8NQjjtubFw6SJDV8YZK+2bY/2+cM3K8WLVwgSeraqYPT+IhRMWrWoqUrpgQ34BZrIIoVK6a5c+eqbt26Cg4O1vbt21WqVCnFxsZqwYIFWr16tdH+/Cr3vEMzBZAdWAMBuK+sroFwi8+BiI+Pd/w2zuDgYMdlmzVr1tTXX3/tyqkBAIAMuEVAlCxZUocOHZIklS1bVosWLZIkffrpp8qZM6cLZwYAADLiFgHRuXNn7dq1S5I0cOBAvfPOO/L19VXv3r3Vr18/F88OAABczy3WQFzv8OHD2rZtm0qVKqWKFSsaP541EIB7Yw0E4L7uuc+BWLdundatW6dTp07Jbndeif/++++7aFYAACAjbhEQ0dHRGjFihKpWraqCBQvyq2ABAHBzbhEQ06dP1+zZs9WhQ4ebbwwAAFzOLRZRJicn69FHH3X1NAAAQBa5RUC88MILmj9//s03BAAAbsFlb2G88cYbjv9vt9s1c+ZMffnll6pYsaK8vLyctp0wYcLdnh4AALgBlwXEjh07nG5XqlRJkvTLL784jbOgEgAA9+OygNiwYYOrDg0AAG6TW6yBAAAA9xYCAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgLFbCohvvvlG7du3V/Xq1fXnn39KkmJjY/Xtt99m6+QAAIB7Mg6IJUuWKCoqSn5+ftqxY4eSkpIkSRcuXNCYMWOyfYIAAMD9GAfEqFGjNH36dM2aNUteXl6O8Ro1amj79u3ZOjkAAOCejANi3759ql27drrxkJAQnT9/PjvmBAAA3JxxQBQoUEAHDhxIN/7tt9+qZMmS2TIpAADg3owDolu3bnr99de1efNm2Ww2HTt2TPPmzVPfvn3VvXv3OzFHAADgZnKYPmDgwIGy2+2qX7++EhMTVbt2bfn4+Khv37569dVX78QcAQCAm7FZlmXdygOTk5N14MABJSQkqHz58goMDMzuud0yv8o9XT0FADdwbsvbrp4CgEz4ZvHUgvEZiDTe3t4qX778rT4cAADcw4wDol69erLZbJnev379+tuaEAAAcH/GAVGpUiWn29euXdPOnTv1yy+/qGPHjtk1LwAA4MaMA+K///1vhuPDhw9XQkLCbU8IAAC4v2z7ZVrt27fX+++/n127AwAAbuyWF1Fe74cffpCvr2927e62nN08xdVTAHADZy4lu3oKADJRJJd3lrYzDoiWLVs63bYsS8ePH9fWrVs1ZMgQ090BAIB7kHFAhISEON328PBQmTJlNGLECDVs2DDbJgYAANyX0QdJpaam6rvvvlNERIRy5cp1J+d1WxKTb+mzsQDcJfGXr7l6CgAykdW3MIwWUXp6eqphw4b81k0AAO5zxldhVKhQQb///vudmAsAALhHGAfEqFGj1LdvX61cuVLHjx/XxYsXnb4AAMA/X5bXQIwYMUJ9+vRRUFDQ/x78t4+0tixLNptNqamp2T9LQ6yBANwbayAA95XVNRBZDghPT08dP35ce/bsueF2derUydKB7yQCAnBvBATgvrL9cyDSOsMdAgEAALiW0RqIG/0WTgAAcP8w+iCp0qVL3zQi4uPjb2tCAADA/RkFRHR0dLpPogQAAPefLC+i9PDw0IkTJ5Q/f/47PafbxiJKwL2xiBJwX9n+SZSsfwAAAGmyHBAGvzIDAAD8w2V5DYTdbr+T8wAAAPcQ44+yBgAAICAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGMvh6gmcPXtWQ4cO1YYNG3Tq1CnZ7Xan++Pj4100MwAAkBmXB0SHDh104MABde3aVaGhobLZbK6eEgAAuAmbZVmWKycQFBSkb7/9VpGRkdm2z8Rklz4lADcRf/maq6cAIBNFcnlnaTuXr4EoW7asrly54uppAAAAAy4PiKlTp+rf//63vvrqK509e1YXL150+gIAAO7H5WsgcubMqYsXL+qxxx5zGrcsSzabTampqS6aGQAAyIzLA6Jdu3by8vLS/PnzWUQJAMA9wuUB8csvv2jHjh0qU6aMq6cCAACyyOVrIKpWraqjR4+6ehoAAMCAy89AvPrqq3r99dfVr18/RUREyMvLy+n+ihUrumhmAAAgMy7/HAgPj/QnQWw2220touRzIO49ixYu0OKFC3Ts2J+SpJLhpfTiyz1Us1Ztxza7du7QO1Mm6ueff5Knh4dKlymnqTPela+vr6umjVvE50C4t592bNXCD2dr/75fdfbMaUW/NVE169R33P/Nhi/16bJF+m3vr7p08YJmzP1YpUqXzXBflmVpUO/u2rLpu3T7gXvK6udAuPwMxKFDh1w9BbiB0NBQvdqrj4oVLy5Zlj5dsVy9X+uhjz5eqvBSD2jXzh3q2b2bOnd9UQMGDZanp6d+27cvwwAFcHuuXLmi8AdKq1HTFho2sFe6+69evaIKkZVVp36UJsQMv+G+lnwUy+L4fyiXB0Tx4sVdPQW4gTp1nS/j7flab3288CP99NMuhZd6QOPHvann2nZQlxdedGwTVqLk3Z4mcF+o9mgtVXu0Vqb3P96oqSTpxP+dMczMgd/26uP5czRt9kI9/WS9bJ0jXM/lAZHm119/1ZEjR5ScnOw0/tRTT7loRnCV1NRUrf3ic125kqiKkZUUf/asfv5plxo1bqKO7Z/TH0ePKqxECfV8rbcqP1TF1dMFkIGrV69o9NABeq3fv5U7T15XTwd3gMsD4vfff1eLFi30888/O9Y+SHKc8rrZGoikpCQlJSU5jaXavOXj43NnJow7Zv9v+9SxfRslJyfJz99f4ye+rfDwUvpp105J0oxpb6t3n/4qU7acVq74RC+90EkfL/tUxYuHuXTeANKbOnGsHoyopBq1H7v5xrgnufwN5Ndff10lSpTQqVOn5O/vr927d+vrr79W1apVtXHjxps+PiYmRiEhIU5f/xkbc+cnjmwXVqKEPlq8THPnLdTTzzynoYMH6uDBA7Jbf/2K91ZPP6tmLVqpbLny6jtgkMLCSuiTZUtcPGsA1/v+6w3aufVH9eg9wNVTwR3k8jMQP/zwg9avX6+8efPKw8NDHh4eqlmzpmJiYvTaa69px44dN3z8oEGD9MYbbziNpdqytoIU7sXLy1vFiv21Jqb8gxW0+5dftODDuerc9a91DyVLlnLavkTJcJ04fvyuzxPAje3Y9qOO/XlUTz3+qNN49KA3FBH5kCZM+8BFM0N2cnlApKamKigoSJKUN29eHTt2TGXKlFHx4sW1b9++mz7ex8cn3dsVXMb5z2BZdiUnJ6tQ4cLKlz+/4uKcr9g5fDhONWpmvtALgGu0eb6rGj/V0mnshXYt1f31/qpeq46LZoXs5vKAqFChgnbt2qUSJUqoWrVqGjt2rLy9vTVz5kyVLMkq+/vF5InjVaNmbRUsWFCXL1/WZ6tXauuWHzV1+ruy2Wzq2Kmrpk+dotJlyqhM2XL69JPlijv0u8ZNmOTqqQP/OFcSE/XnH0cct08c+1MHfturoOAQhRYoqIsXLujUyeM6e+aUJOno4ThJUu48eZ2+rpe/QAEVLFTkrjwH3HkuD4jBgwfr8uXLkqQRI0aoSZMmqlWrlvLkyaOFCxe6eHa4W+Lj4zXk3wN05vRpBQYF6YEHymjq9Hf1yKM1JEntOnRUUlKSxo99UxcuXlDp0mU0beb7Klq0mItnDvzz7NuzW316dHHcnjZpnCSpYeOnNGDoaH3/zQaNGzXEcf+oIf0kSc937a6O3V65u5OFy7j8kygzEh8fr1y5ct3yh4/wFgbg3vgkSsB93TOfRPl3ab9Uq2jRoi6eCQAAuBGXX8aZkpKiIUOGKCQkRGFhYQoLC1NISIgGDx6sa9f4VwoAAO7I5WcgXn31VS1dulRjx45V9erVJf11aefw4cN19uxZTZs2zcUzBAAA13P5GoiQkBB99NFHatSokdP46tWr1aZNG124cMF4n6yBANwbayAA95XVNRAufwvDx8dHYWFh6cZLlCghb28+EAoAAHfk8oDo2bOnRo4c6fT7LJKSkjR69Gj17NnThTMDAACZcflbGC1atNC6devk4+OjyMhISdKuXbuUnJys+vXrO227dOnSLO2TtzAA98ZbGID7umcu48yZM6datWrlNMZlnAAAuDeXn4G4cuWK7Ha7AgICJElxcXFavny5ypUrp6ioqFvaJ2cgAPfGGQjAfd0ziyibNWum2NhYSdL58+f1yCOPaPz48WrevDmXcAIA4KZcHhDbt29XrVp//UbFxYsXKzQ0VIcPH9bcuXM1efJkF88OAABkxOUBkZiY6Ph13l988YVatmwpDw8PPfLIIzp8+LCLZwcAADLi8oAoVaqUli9frqNHj2rNmjVq2LChJOnUqVMKDg528ewAAEBGXB4QQ4cOVd++fRUWFqZq1ao5Ps76iy++UOXKlV08OwAAkBGXX4UhSSdOnNDx48cVGRkpD4+/mubHH39UcHCwypYta7w/rsIA3BtXYQDuK6tXYbhFQGQ3AgJwbwQE4L7umcs4AQDAvYeAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGbJZlWa6eBHAjSUlJiomJ0aBBg+Tj4+Pq6QD4G34+718EBNzexYsXFRISogsXLig4ONjV0wHwN/x83r94CwMAABgjIAAAgDECAgAAGCMg4PZ8fHw0bNgwFmgBboifz/sXiygBAIAxzkAAAABjBAQAADBGQAAAAGMEBO6aunXrqlevXq6eBgAgGxAQAADAGAEBAACMERC4q+x2u/r376/cuXOrQIECGj58uOO+CRMmKCIiQgEBASpatKheeeUVJSQkOO6fPXu2cubMqZUrV6pMmTLy9/dX69atlZiYqDlz5igsLEy5cuXSa6+9ptTUVBc8O+Des3jxYkVERMjPz0958uRRgwYNdPnyZXXq1EnNmzdXdHS08uXLp+DgYL388stKTk52PPbzzz9XzZo1lTNnTuXJk0dNmjTRwYMHHffHxcXJZrNp0aJFqlWrlvz8/PTwww/rt99+05YtW1S1alUFBgaqUaNGOn36tCuePm4DAYG7as6cOQoICNDmzZs1duxYjRgxQmvXrpUkeXh4aPLkydq9e7fmzJmj9evXq3///k6PT0xM1OTJk/XRRx/p888/18aNG9WiRQutXr1aq1evVmxsrGbMmKHFixe74ukB95Tjx4+rTZs26tKli/bs2aONGzeqZcuWSvt4oHXr1jnGFyxYoKVLlyo6Otrx+MuXL+uNN97Q1q1btW7dOnl4eKhFixay2+1Oxxk2bJgGDx6s7du3K0eOHGrbtq369++vSZMm6ZtvvtGBAwc0dOjQu/rckQ0s4C6pU6eOVbNmTaexhx9+2BowYECG23/88cdWnjx5HLc/+OADS5J14MABx9hLL71k+fv7W5cuXXKMRUVFWS+99FI2zx7459m2bZslyYqLi0t3X8eOHa3cuXNbly9fdoxNmzbNCgwMtFJTUzPc3+nTpy1J1s8//2xZlmUdOnTIkmS9++67jm0WLFhgSbLWrVvnGIuJibHKlCmTXU8LdwlnIHBXVaxY0el2wYIFderUKUnSl19+qfr166tw4cIKCgpShw4ddPbsWSUmJjq29/f3V3h4uON2aGiowsLCFBgY6DSWtk8AmYuMjFT9+vUVERGhp59+WrNmzdK5c+ec7vf393fcrl69uhISEnT06FFJ0v79+9WmTRuVLFlSwcHBCgsLkyQdOXLE6Th//7kPDQ2VJEVERDiN8TN77yEgcFd5eXk53bbZbLLb7YqLi1OTJk1UsWJFLVmyRNu2bdM777wjSU7vuWb0+Mz2CeDGPD09tXbtWn322WcqX768pkyZojJlyujQoUNZenzTpk0VHx+vWbNmafPmzdq8ebMk559Zyfnn1mazZTjGz+y9J4erJwBI0rZt22S32zV+/Hh5ePzVtYsWLXLxrIB/PpvNpho1aqhGjRoaOnSoihcvrmXLlkmSdu3apStXrsjPz0+StGnTJgUGBqpo0aI6e/as9u3bp1mzZqlWrVqSpG+//dZlzwN3HwEBt1CqVCldu3ZNU6ZMUdOmTfXdd99p+vTprp4W8I+2efNmrVu3Tg0bNlT+/Pm1efNmnT59WuXKldNPP/2k5ORkde3aVYMHD1ZcXJyGDRumnj17ysPDQ7ly5VKePHk0c+ZMFSxYUEeOHNHAgQNd/ZRwF/EWBtxCZGSkJkyYoLfeeksVKlTQvHnzFBMT4+ppAf9owcHB+vrrr9W4cWOVLl1agwcP1vjx49WoUSNJUv369fXAAw+odu3aevbZZ/XUU085Lr328PDQRx99pG3btqlChQrq3bu3xo0b58Jng7uNX+cNAEinU6dOOn/+vJYvX+7qqcBNcQYCAAAYIyAAAIAx3sIAAADGOAMBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAO6YTp06qXnz5o7bdevWVa9eve76PDZu3Cibzabz58/f9WMD/1QEBHAf6tSpk2w2m2w2m7y9vVWqVCmNGDFCKSkpd/S4S5cu1ciRI7O0Lf/RB9wbv0wLuE898cQT+uCDD5SUlKTVq1erR48e8vLy0qBBg5y2S05Olre3d7YcM3fu3NmyHwCuxxkI4D7l4+OjAgUKqHjx4urevbsaNGigFStWON52GD16tAoVKqQyZcpIko4ePapnnnlGOXPmVO7cudWsWTPFxcU59peamqo33nhDOXPmVJ48edS/f39d/zl117+FkZSUpAEDBqho0aLy8fFRqVKl9N577ykuLk716tWTJOXKlUs2m02dOnWSJNntdsXExKhEiRLy8/NTZGSkFi9e7HSc1atXq3Tp0vLz81O9evWc5gkgexAQACRJfn5+Sk5OliStW7dO+/bt09q1a7Vy5Updu3ZNUVFRCgoK0jfffKPvvvtOgYGBeuKJJxyPGT9+vGbPnq33339f3377reLj47Vs2bIbHvP555/XggULNHnyZO3Zs0czZsxQYGCgihYtqiVLlkiS9u3bp+PHj2vSpEmSpJiYGM2dO1fTp0/X7t271bt3b7Vv315fffWVpL9Cp2XLlmratKl27typF154gV8zDdwJFoD7TseOHa1mzZpZlmVZdrvdWrt2reXj42P17dvX6tixoxUaGmolJSU5to+NjbXKlClj2e12x1hSUpLl5+dnrVmzxrIsyypYsKA1duxYx/3Xrl2zihQp4jiOZVlWnTp1rNdff92yLMvat2+fJclau3ZthnPcsGGDJck6d+6cY+zq1auWv7+/9f333ztt27VrV6tNmzaWZVnWoEGDrPLlyzvdP2DAgHT7AnB7WAMB3KdWrlypwMBAXbt2TXa7XW3bttXw4cPVo0cPRUREOK172LVrlw4cOKCgoCCnfVy9elUHDx7UhQsXdPz4cVWrVs1xX44cOVS1atV0b2Ok2blzpzw9PVWnTp0sz/nAgQNKTEzU448/7jSenJysypUrS5L27NnjNA9Jql69epaPASBrCAjgPlWvXj1NmzZN3t7eKlSokHLk+N9fBwEBAU7bJiQkqEqVKpo3b166/eTLl++Wju/n52f8mISEBEnSqlWrVLhwYaf7fHx8bmkeAG4NAQHcpwICAlSqVKksbfvQQw9p4cKFyp8/v4KDgzPcpmDBgtq8ebNq164tSUpJSdG2bdv00EMPZbh9RESE7Ha7vvrqKzVo0CDd/WlnQFJTUx1j5cuXl4+Pj44cOZLpmYty5cppxYoVTmObNm26+ZMEYIRFlABuql27dsqbN6+aNWumb775RocOHdLGjRv12muv6Y8//pAkvf7663rzzTe1fPly7d27V6+88soNP8MhLCxMHTt2VJcuXbR8+XLHPhctWiRJKl68uGw2m1auXKnTp08rISFBQUFB6tu3r3r37q05c+bo4MGD2r59u6ZMmaI5c+ZIkl5++WXt379f/fr10759+zR//nzNnj37Tr9EwH2HgABwU/7+/vr6669VrFgxtWzZUuXKlVPXrl119epVxxmJPn36qEOHDurYsaOqV6+uoKAgtWjR4ob7nTZtmlq3bq1XXnlFZcuWVbdu3XT58mVJUuHChRUdHa2BAwcqNDRUPXv2lCSNHDlSQ4YMUUxMjMqVK6cnnnhCq1atUokSJSRJxYoV05IlS7R8+XJFRkZq+vTpGjNmzB18dYD7k83KbIUTAABAJjgDAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIz9fw4aoWzOA4coAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 800x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjMNJREFUeJzs3XdYk+f+BvA7CYQhW0QQEBTFva24J4oLRYF6Tv252qptte2pHUe77NSeTtvTZZfWVo9VUEvVat2KtVoHLhAVwclQkT0CyfP7g5KKCZogyZuQ+3NduWpe3if5hlC8ffJ9n0cmhBAgIiIiIrJCcqkLICIiIiKqK4ZZIiIiIrJaDLNEREREZLUYZomIiIjIajHMEhEREZHVYpglIiIiIqvFMEtEREREVothloiIiIisFsMsEREREVkthlkiIom89957aNmyJRQKBbp27Sp1OSa1fPlyyGQyZGRkGDVOJpPhtddeM0lNRNQwMMwS2ajqcFF9s7Ozg7+/P6ZPn46rV6/qHSOEwA8//ICBAwfCw8MDzs7O6NSpE9544w0UFxfX+lzr16/HqFGj4O3tDaVSiWbNmuHBBx/Ezp07Daq1rKwMH330EcLCwuDu7g5HR0eEhoZi7ty5OHv2bJ1ev9R+++03vPDCC+jXrx+WLVuGRYsWmfT5pk+fXuP9dnFxQcuWLRETE4P4+HhoNBqTPr+1yMjIqPF9utvN2GBORKYhE0IIqYsgIvNbvnw5ZsyYgTfeeAMtWrRAWVkZ/vjjDyxfvhzBwcE4deoUHB0dteer1Wo89NBDWLNmDQYMGICJEyfC2dkZ+/btw6pVq9C+fXts374dTZs21Y4RQuDhhx/G8uXL0a1bN8TExMDX1xeZmZlYv349jhw5gv3796Nv37611nnjxg2MHDkSR44cwdixYxEeHg4XFxekpqZi9erVyMrKgkqlMun3yhTmz5+P9957D6WlpVAqlSZ/vunTp2P16tX45ptvAAClpaW4ePEifvnlF5w4cQKDBw/Gzz//DDc3N5M8v1qtRkVFBRwcHCCTyQweV1ZWBjs7O9jZ2ZmkrjsVFxdj/fr1NY598MEHuHLlCj766KMaxydMmIBGjRqZpS4iugtBRDZp2bJlAoD4888/axz/97//LQCIn376qcbxRYsWCQDiueee03mshIQEIZfLxciRI2scf++99wQA8a9//UtoNBqdcStWrBAHDx68a51jxowRcrlcxMXF6XytrKxMPPvss3cdb6iKigpRXl5eL49liBkzZohGjRrV2+NpNBpRUlJS69enTZtW6/MtXrxYABAPPvhgvdXTkIwZM0YEBQXd9Zx7ff+JyHQYZolsVG1hduPGjQKAWLRokfZYSUmJ8PT0FKGhoaKiokLv482YMUMAEAcOHNCO8fLyEm3bthWVlZV1qvGPP/4QAMTMmTMNOn/QoEFi0KBBOsenTZtWI4ykp6cLAOK9994TH330kWjZsqWQy+Xijz/+EAqFQrz22ms6j3HmzBkBQPz3v//VHrt165Z4+umnRUBAgFAqlSIkJES88847Qq1W37VOADq3ZcuWCSGqQvUbb7whWrZsKZRKpQgKChILFiwQZWVlNR4jKChIjBkzRmzZskX06NFDODg4iI8++qjW57xbmBVCiBEjRgiZTCZSU1NrHN+8ebPo37+/cHZ2Fi4uLmL06NHi1KlTOuNTUlJEbGys8Pb2Fo6OjiI0NFS8+OKL2q9X/7ylp6drj/35559ixIgRonHjxsLR0VEEBweLGTNm6HyvFi5cWOPY0aNHxciRI4Wrq6to1KiRGDp0qPbn7s7nS0xMFM8884zw9vYWzs7OIioqSuTk5NT6fdBHX5i92/ff0J8LtVotPvroI9G+fXvh4OAgfHx8xKxZs0Rubq5R9RHZOvN8bkNEVqO6D9DT01N7LDExEbdu3cLTTz9d68e9U6dOxbJly7Bx40b07t0biYmJyM3Nxb/+9S8oFIo61ZKQkAAAmDJlSp3G38uyZctQVlaGWbNmwcHBAX5+fhg0aBDWrFmDhQsX1jj3p59+gkKhQGxsLACgpKQEgwYNwtWrVzF79mw0b94cv//+OxYsWIDMzEwsWbKk1uf94Ycf8NVXX+HQoUPaj/2rWy0effRRfP/994iJicGzzz6LgwcPYvHixUhJSdH5+Ds1NRX//Oc/MXv2bMycORNt2rSp8/diypQp+O2337Bt2zaEhoZq65w2bRoiIiLwn//8ByUlJfjiiy/Qv39/HDt2DMHBwQCAEydOYMCAAbC3t8esWbMQHByMtLQ0/PLLL3j77bf1Pl9OTg5GjBiBJk2aYP78+fDw8EBGRgbWrVt31zpPnz6NAQMGwM3NDS+88ALs7e2xdOlSDB48GHv27EFYWFiN85988kl4enpi4cKFyMjIwJIlSzB37lz89NNPdf5eVdP3/Tfm52L27Nnadp+nnnoK6enp+PTTT3Hs2DHs378f9vb2910jkU2QOk0TkTSqZ662b98url+/Li5fvizi4uJEkyZNhIODg7h8+bL23CVLlggAYv369bU+Xm5urgAgJk6cKIQQ4uOPP77nmHuZMGGCACBu3bpl0PnGzsy6ubnpzNItXbpUABAnT56scbx9+/Zi6NCh2vtvvvmmaNSokTh79myN8+bPny8UCoW4dOnSXWvVN1OalJQkAIhHH320xvHnnntOABA7d+7UHgsKChIAxJYtW+76PHd7vtsdO3ZMABDPPPOMEEKIwsJC4eHhoTMrnpWVJdzd3WscHzhwoHB1dRUXL16sce7trSV3zsyuX79e7ycDd8IdM7NRUVFCqVSKtLQ07bFr164JV1dXMXDgQJ3nCw8Pr1HHM888IxQKhcjLy7vr896utplZfd9/Q38u9u3bJwCIlStX1jhvy5Yteo8TUe24mgGRjQsPD0eTJk0QGBiImJgYNGrUCAkJCQgICNCeU1hYCABwdXWt9XGqv1ZQUFDjv3cbcy/18Rh3Ex0djSZNmtQ4NnHiRNjZ2dWYuTt16hSSk5MxadIk7bG1a9diwIAB8PT0xI0bN7S38PBwqNVq7N271+h6Nm/eDACYN29ejePPPvssAGDTpk01jrdo0QIRERFGP48+Li4uAP5+r7dt24a8vDz885//rPH6FAoFwsLCsGvXLgDA9evXsXfvXjz88MNo3rx5jce824VeHh4eAICNGzeioqLCoBrVajV+++03REVFoWXLltrjfn5+eOihh5CYmKj9mak2a9asGnUMGDAAarUaFy9eNOg570bf99/Qn4u1a9fC3d0dw4cPr3Fejx494OLiov3+EtG9sc2AyMZ99tlnCA0NRX5+Pr777jvs3bsXDg4ONc6pDpPVQUefOwNv9VXxdxtzL7c/RnX4qU8tWrTQOebt7Y1hw4ZhzZo1ePPNNwFUtRjY2dlh4sSJ2vPOnTuHEydO6IThajk5OUbXc/HiRcjlcrRq1arGcV9fX3h4eOgEMH3111VRURGAv9+/c+fOAQCGDh2q9/zq9+bChQsAgI4dOxr1fIMGDUJ0dDRef/11fPTRRxg8eDCioqLw0EMP6fz8Vbt+/TpKSkr0tlO0a9cOGo0Gly9fRocOHbTH7wzY1e0zt27dMqpeffR9/w39uTh37hzy8/Ph4+Nz1/OI6N4YZolsXK9evdCzZ08AQFRUFPr374+HHnoIqamp2tm6du3aAajqjYyKitL7OCdOnAAAtG/fHgDQtm1bAMDJkydrHXMvtz/GgAED7nm+TCaD0LPaoFqt1nu+k5OT3uP/+Mc/MGPGDCQlJaFr165Ys2YNhg0bBm9vb+05Go0Gw4cPxwsvvKD3Mar7TuvC0KWraqu/Lk6dOgUA2iBdve7sDz/8AF9fX53z73epLJlMhri4OPzxxx/45ZdfsHXrVjz88MP44IMP8Mcff2h/9u5Xbf3a+n5OjKXv+2/oz4VGo4GPjw9Wrlyp97zawjAR6WKYJSIthUKBxYsXY8iQIfj0008xf/58AED//v3h4eGBVatW4aWXXtIbEFasWAEAGDt2rHaMp6cn/ve//+HFF1+s00VgkZGRWLx4MX788UeDwqynp6d2pvB2xn6kHBUVhdmzZ2tbDc6ePYsFCxbUOCckJARFRUUIDw836rHvJigoCBqNBufOndP+AwIAsrOzkZeXh6CgoHp7rjv98MMPkMlkGD58OICq1wcAPj4+d32N1R/3V4dhY/Xu3Ru9e/fG22+/jVWrVmHy5MlYvXo1Hn30UZ1zmzRpAmdnZ6Smpup87cyZM5DL5QgMDKxTHfXF0J+LkJAQbN++Hf369avXf5QQ2SL2zBJRDYMHD0avXr2wZMkSlJWVAQCcnZ3x3HPPITU1FS+99JLOmE2bNmH58uWIiIhA7969tWP+/e9/IyUlBf/+97/1zoT9+OOPOHToUK219OnTByNHjsQ333yDDRs26HxdpVLhueee094PCQnBmTNncP36de2x48ePY//+/Qa/fqCqnzMiIgJr1qzB6tWroVQqdWaXH3zwQRw4cABbt27VGZ+Xl4fKykqjnhMARo8eDQA6KyF8+OGHAIAxY8YY/ZiGeOedd/Dbb79h0qRJaN26NQAgIiICbm5uWLRokd6e1urvcZMmTTBw4EB89913uHTpUo1z7jb7eevWLZ2vV2/pW15erneMQqHAiBEj8PPPP9fYfSs7OxurVq1C//79Tbbpg6EM/bl48MEHoVarta0st6usrEReXp6pSyVqMDgzS0Q6nn/+ecTGxmL58uV47LHHAFTtWHXs2DH85z//wYEDBxAdHQ0nJyckJibixx9/RLt27fD999/rPM7p06fxwQcfYNeuXdodwLKysrBhwwYcOnQIv//++11rWbFiBUaMGIGJEyciMjISw4YNQ6NGjXDu3DmsXr0amZmZeP/99wEADz/8MD788ENERETgkUceQU5ODr788kt06NBB58Kge5k0aRL+7//+D59//jkiIiJ0enaff/55JCQkYOzYsZg+fTp69OiB4uJinDx5EnFxccjIyKjRlmCILl26YNq0afjqq6+Ql5eHQYMG4dChQ/j+++8RFRWFIUOGGPV4d6qsrMSPP/4IoGpnrYsXLyIhIQEnTpzAkCFD8NVXX2nPdXNzwxdffIEpU6age/fu+Mc//oEmTZrg0qVL2LRpE/r164dPP/0UAPDJJ5+gf//+6N69O2bNmoUWLVogIyMDmzZtQlJSkt5avv/+e3z++eeYMGECQkJCUFhYiK+//hpubm7aUK/PW2+9hW3btqF///544oknYGdnh6VLl6K8vBzvvvvufX1/6oOhPxeDBg3C7NmzsXjxYiQlJWHEiBGwt7fHuXPnsHbtWnz88ceIiYmR+uUQWQdJ11IgIsnUtmmCEFWLuYeEhIiQkJAaGx6o1WqxbNky0a9fP+Hm5iYcHR1Fhw4dxOuvvy6Kiopqfa64uDgxYsQI4eXlJezs7ISfn5+YNGmS2L17t0G1lpSUiPfff1888MADwsXFRSiVStG6dWvx5JNPivPnz9c498cff9RuONC1a1exdevWu26aUJuCggLh5OQkAIgff/xR7zmFhYViwYIFolWrVkKpVApvb2/Rt29f8f777wuVSnXX11TbUlkVFRXi9ddfFy1atBD29vYiMDDwrpsmGGratGk1NmlwdnYWwcHBIjo6WsTFxdW60cOuXbtERESEcHd3F46OjiIkJERMnz5dHD58uMZ5p06dEhMmTBAeHh7C0dFRtGnTRrzyyivar9+5NNfRo0fFP//5T9G8eXPthgFjx47VeVzUsmlCRESEcHFxEc7OzmLIkCHi999/r3FObT/fu3btEgDErl27DP7e3W3TBH2M+bn46quvRI8ePYSTk5NwdXUVnTp1Ei+88IK4du2awfUR2TqZEPXQBU9EREREJAH2zBIRERGR1WKYJSIiIiKrxTBLRERERFaLYZaIiIiIrBbDLBERERFZLYZZIiIiIrJaNrdpgkajwbVr1+Dq6mrw/udEREREZD5CCBQWFqJZs2aQy+8+92pzYfbatWuS791NRERERPd2+fJlBAQE3PUcmwuzrq6uAKq+OVLv4U1EREREugoKChAYGKjNbXdjc2G2urXAzc2NYZaIiIjIghnSEsoLwIiIiIjIajHMEhEREZHVYpglIiIiIqvFMEtEREREVothloiIiIisFsMsEREREVkthlkiIiIisloMs0RERERktRhmiYiIiMhqMcwSERERkdVimCUiIiIiq8UwS0RERERWi2GWiIiIiKwWwywRERERWS1Jw+zevXsRGRmJZs2aQSaTYcOGDfccs3v3bnTv3h0ODg5o1aoVli9fbvI6iYiIiMgySRpmi4uL0aVLF3z22WcGnZ+eno4xY8ZgyJAhSEpKwr/+9S88+uij2Lp1q4krJSIiIiJLZCflk48aNQqjRo0y+Pwvv/wSLVq0wAcffAAAaNeuHRITE/HRRx8hIiLCVGUSERER2ZziYuDkSeD4ceD4cQ2OH5fjzTeBoUOlrqwmScOssQ4cOIDw8PAaxyIiIvCvf/2r1jHl5eUoLy/X3i8oKDBVeURERERWRwjg8uXq0Pr37fx5QAiB7t2PoXfvP3D06MP4809Hhtn7kZWVhaZNm9Y41rRpUxQUFKC0tBROTk46YxYvXozXX3/dXCUSERERWayyMuD06Zqh9cQJ4NYt3XOVynJERm5Ep06nAAA9e/6Jy5cHmLnie7OqMFsXCxYswLx587T3CwoKEBgYKGFFRERERKYlBJCZqTvbevYsoFbfe3zz5ll48MG1cHHJBSBDy5ZDkZDQD56eJi/daFYVZn19fZGdnV3jWHZ2Ntzc3PTOygKAg4MDHBwczFEeERERkdmpVEBKim5wvXHDsPH+/kCXLlW3zp0FGjU6jOPHt0KtVsPNzQ0xMTEWPRFoVWG2T58+2Lx5c41j27ZtQ58+fSSqiIiIiMh8rl/XDa0pKUBFxb3HKpVA+/Z/B9eq8Ap4e/99zs2bufj88y3QaDQIDQ3F+PHj4ezsbLoXVA8kDbNFRUU4f/689n56ejqSkpLg5eWF5s2bY8GCBbh69SpWrFgBAHjsscfw6aef4oUXXsDDDz+MnTt3Ys2aNdi0aZNUL4GIiIio3lVWVrUE3BlcMzMNG+/jUzO0dukCtG0L2NvffVzjxo0REREBtVqN3r17QyaT3f+LMTFJw+zhw4cxZMgQ7f3q3tZp06Zh+fLlyMzMxKVLl7Rfb9GiBTZt2oRnnnkGH3/8MQICAvDNN99wWS4iIiKyWrdu6YbW06eB2xZjqpVCAbRr9/csa3Vw9fU17LmFEDh06BCCgoLg+9egXr163cerMT+ZEEJIXYQ5FRQUwN3dHfn5+XBzc5O6HCIiIrIRajWQlqYbXC9fNmy8l5fubGv79kBdLw0qLS1FQkICzpw5Ay8vL8yePRtKpbJuD1bPjMlrVtUzS0RERGQNCgurlry6PbSePAmUlNx7rEwGhIbqBld//6qv1YcrV64gLi4O+fn5UCgUCAsLg/29ehAsFMMsERERUR0JAaSn11yz9fhx4MIFw8a7udVsD+jSBejYETDVNVdCCBw4cAA7duyARqOBp6cnYmJi0KxZM9M8oRkwzBIREREZoLgYOHVKd8OBwkLDxoeE6Pa2BgfX32zrvahUKsTHx+Ps2bMAgA4dOiAyMtLqlzBlmCUiIiK6jRDAlSu6va3nzlV97V4aNQI6dao529qpE+Dqavra78be3h6VlZVQKBQYOXIkevToYRWrFdwLwywRERHZrLIyIDlZN7jq295Vn+bNdXtbQ0IAudy0dRtKCAG1Wg07OzvIZDJMmDABRUVF2pULGgKGWSIiImrwhACysnR7W8+cMWx7VweHql7WOzccsMTtXasVFxdj/fr1cHd3R2RkJADAxcUFLi4uEldWvxhmiYiIqEFRqapC6p2zrdevGza+WTPd2dbWrQE7K0pNGRkZiI+PR1FREezs7NC/f394WnLyvg9W9LYQERER1XTjhm5oTU42bHtXe3v927s2aWL6uk1Fo9Fg37592LNnD4QQ8Pb2RmxsbIMNsgDDLBEREVmBysqqC7DuDK7Xrhk2vkkT/du7WsgeAfWiqKgI69atQ3p6OgCga9euGDVqlMVshGAqDLNERERkUfLy9G/vWlZ277EKBdCmjW5w9fU13xJYUhBCYMWKFbh+/Trs7e0xZswYdOnSReqyzIJhloiIiCSh0ejf3vXSJcPGe3rq397V0dG0dVsimUyG8PBw7Ny5EzExMfD29pa6JLNhmCUiIiKTKyys2s71zu1di4vvPVYmq7oA687gGhDQsGdb76WwsBC5ubkICgoCAISGhqJVq1aQW8q6YGbCMEtERET1RgggI+Pvpa+qb2lpho13ddW/vWujRiYt2+qcP38e69evh0ajwezZs+Hh4QEANhdkAYZZIiIiqqOSEv3buxYUGDa+ZUvd4BocbDkbDlgijUaDnTt3Yv/+/QAAX19faDQaiauSFsMsERER3ZUQwNWr+rd3NSRHOTvr397Vzc30tTck+fn5iI+Px+XLlwEAPXv2REREBOysaQFcE7DtV09EREQ1lJfr3941N9ew8YGB+rd3VShMW3dDd/bsWWzYsAGlpaVwcHBAZGQkOnToIHVZFoFhloiIyEbVtr1rZeW9xzo4AB066G444OVl+rpt0blz51BaWopmzZohJiamQW+CYCyGWSIiogauokL/9q45OYaN9/PTDa1t2ljX9q7WLiIiAh4eHggLC7P5toI78btBRETUgNy8qX97V5Xq3mPt7YF27XTbBKx5e1drdebMGZw4cQIxMTGQy+Wws7NDv379pC7LIjHMEhERWSG1Wv/2rlevGjbe21s3tLZr17C2d7VGlZWV2LZtGw4dOgQAOHbsGHr06CFxVZaNYZaIiMjC5eXprtt66pRh27vK5fq3d/Xzs+0NByxRbm4u4uLikJmZCQDo06cPunbtKm1RVoBhloiIyEJoNMCFC7qzrRcvGjbew0O3t7VDB8DJyaRlUz04ffo0fvnlF5SXl8PJyQlRUVEIDQ2VuiyrwDBLREQkgaIi/du7FhXde6xMBrRqpTvbGhjI2VZrtG/fPuzcuRMAEBgYiOjoaLi7u0tclfVgmCUiIjIhIYBLl3RnW9PSqr52Ly4u+rd3dXExfe1kHqGhodi3bx/CwsIwZMgQm9yS9n7IhDDkf6WGo6CgAO7u7sjPz4cbtx4hIqJ6VFqqf3vX/HzDxrdo8Xd7QHVwbdGC27s2RDdv3kTjxo219wsLC+Hq6iphRZbFmLzGmVkiIiIjCQFcu6Y723r2rGHbuzo56d/elZ8sN3wVFRXYsmULkpKSMGPGDAQEBAAAg+x9YJglIiK6i/JyICVFN7jevGnY+IAA3d7WVq24vastun79OuLi4pDz124VV69e1YZZqjuGWSIior9kZ+tu75qSYtj2rkql/u1db/skmWxYUlISNm/ejIqKCjRq1AgTJ05Ey5YtpS6rQWCYJSIim1NRAaSm6s62ZmcbNt7XV7e3tU2bqh20iG6nUqmwefNmHD9+HADQokULTJw4ES68gq/eMMwSEVGDlpurG1pPnzZse1c7O/3bu/r4mL5uahhOnTqF48ePQyaTYfDgwejfvz9XK6hnDLNERNQgqNXA+fO6wfXKFcPGN26sf3tXBwfT1k0NW7du3XD16lV06tQJwcHBUpfTIDHMEhGR1cnP/7untfq/J09WLY11L3I5EBqqG1ybNeOGA3T/ysvLsXfvXgwcOBAODg6QyWSIjIyUuqwGjWGWiIgslkYDpKfrzrZmZBg23t1dN7Rye1cylaysLMTFxeHmzZsoLi5GVFSU1CXZBIZZIiKyCMXFutu7njhh2PaugP7tXZs352wrmZ4QAkeOHMGWLVugVqvh5uaG7t27S12WzWCYJSIisxICuHxZd7b1/HnDtndt1Eh3e9dOnbi9K0mjrKwMGzduxOnTpwFUbU07fvx4ODs7S1yZ7WCYJSIikyktrVo54M7Z1rw8w8YHBenOtrZsye1dyTLk5ORg9erVuHXrFuRyOcLDw9G7d2/I+HGAWTHMEhHRfRMCyMzUnW1NTTVse1dHR93tXTt35vauZNmcnZ2hUqng7u6OmJgY7uYlEYZZIiIyikqlf3vXGzcMG+/vrzvb2ro1t3cl61BRUQH7v3bHcHFxweTJk+Hh4QEnXlUoGYZZIiKqVU7O30tfVd9SUqp20LoXpRJo3143uHJ7V7JWV65cQVxcHMLDw9GxY0cAgJ+fn8RVEcMsERGhslL/9q5ZWYaN9/HRDa1t23J7V2oYhBD4448/sH37dmg0Guzfvx8dOnRgb6yFYJglIrIxt27p3961vPzeYxUK/du7Nm1q+rqJpFBSUoKff/4ZZ8+eBQC0b98ekZGRDLIWhGGWiKiBUquBtDTd4Hr5smHjvbx0Q2v79tzelWzH5cuXERcXh4KCAigUCowcORI9evRgkLUwDLNERA1AQUHN3tYTJ6o2ICgpufdYubzqAqw7g6u/PzccINt169YtLF++HBqNBl5eXoiNjYWvr6/UZZEeDLNERFZECP3bu6anGzbezU13+auOHQGu705Uk6enJ8LCwlBUVIQxY8bAgR9JWCyGWSIiC1VcDJw6pbvhQGGhYeNDQnRnW4OCONtKVJuMjAx4enrC/a8FjsPDwyGTydhWYOEYZomIJCYEcOWK7mzruXOGb+9654YDnToBrq6mr52oIdBoNNi3bx/27NkDf39/TJ8+HQqFAnJuNWcVGGaJiMyorEz/9q63bhk2vnlz3dnWkBBu70pUV0VFRVi3bh3S/+rVady4MTQaDRTcxcNqMMwSEZmAEFVrtOrb3lWtvvd4R8eqXtbbe1s7dwY8PU1fO5GtSE9PR3x8PIqLi2Fvb4/Ro0eja9euUpdFRmKYJSK6TyoVcOaMbnC9ft2w8c2a6d/e1Y6/oYlMQqPRYM+ePdi7dy8AwMfHBzExMWjSpInElVFd8FclEZERrl//uzWgOrQmJxu2vau9vf7tXb29TV83Ef1No9EgNTUVANCtWzeMGjUK9tyuzmoxzBIR6VFZCZw9qzvbmplp2Pjq7V07d665vatSadq6ieje7OzsEBMTg8zMTHTq1Enqcug+McwSkc3Ly9O/vWtZ2b3HKhRVIfXO2VaurU5kOTQaDXbu3AmlUomBAwcCALy9veHNj0UaBIZZIrIZGo3+7V0vXTJsvKen/u1dHR1NWzcR1V1+fj7i4+Nx+fJlyGQydOjQAY0bN5a6LKpHDLNE1CAVFlb1td7e23ryZNVGBPcik+nf3jUggBsOEFmTs2fPYsOGDSgtLYWDgwMiIyMZZBsghlkismpCABkZurOtFy4YNt7VVbe3tWPHqo0IiMg6qdVq7NixAwcOHAAA+Pn5ISYmBl5eXhJXRqbAMEtEVqOkRP/2rgUFho1v2VJ3tjU4mLOtRA2JEAI//vgjMjIyAAC9evXC8OHDYce17hosvrNEZHGEAK5e1b+9q0Zz7/HOzvq3d3VzM33tRCSt6r7YrKwsjBs3Du3atZO6JDIxhlkiklR5uf7tXXNzDRsfGKh/e1fuRElkOyorK1FQUKBtI+jRowfatm0LFxcXiSsjc2CYJSKz0be965kzhm3v6uDw9/au1f2tnTsDbIEjsm23bt3C2rVrUVJSgtmzZ8PJyQkymYxB1oYwzBJRvauo0L+9a06OYeP9/HRnW0NDub0rEdWUnJyMhIQElJeXw8nJCTdv3kRAQIDUZZGZ8a8GIrovN2/qhtbkZECluvdYe3ugXTvd4Mrt0YnobiorK7F161YcPnwYABAYGIjo6Gi4u7tLXBlJgWGWiAyiVuvf3vXaNcPGe3vrhtZ27bi9KxEZ5+bNm4iLi0NWVhYAoF+/fhgyZAgUbJS3WQyzRKQjL6/mZgPHj1ctiWXo9q5t2ujf3pVLYBHR/dq9ezeysrLg7OyMCRMmoFWrVlKXRBJjmCWyYRpN1eYCd862Xrxo2HgPD93Q2qEDt3clItMZNWoUAGD48OFw43p7BIZZIptRVKR/e9eionuPlcmAVq10g2tgIGdbici0rl+/jlOnTmHw4MGQyWRwdnZGdHS01GWRBWGYJWpghKiaWb1ztjUtzbDxLi41t3at3nCA27sSkbkdP34cmzZtQkVFBby8vNClSxepSyILxDBLZMVKS/Vv75qfb9j4Fi30b+8ql5u0bCKiu1KpVPj111+RlJQEAGjRogVCQkKkLYosFsMskRUQomrVgDtnW8+eNWx7Vycn/du7chUbIrI0OTk5WLt2LW7cuAGZTIZBgwZhwIABkPNf2VQLhlkiC1NeXrVO6+0zrcePV63naoiAAN3Z1latuL0rEVm+kydPIiEhAZWVlXBxcUF0dDSCg4OlLossHMMskYSys/Vv71pZee+xDg5VKwdUB9bqPldu70pE1qpRo0aorKxESEgIJkyYgEZs1icDMMwSmUFFBZCaqhtcs7MNG+/rq397V3t709ZNRGRqKpUKyr92T2nZsiWmT5+O5s2bQ8alUshADLNE9Sw3Vze0nj5t2Paudnb6t3f18TF93URE5iSEwJEjR7Br1y488sgj8PrrY6WgoCCJKyNrwzBLVEdqNXDunO5KAleuGDa+cWP927s6OJi2biIiqZWXl+OXX37B6dOnAQCHDx/GiBEjJK6KrJXkYfazzz7De++9h6ysLHTp0gX//e9/0atXr1rPX7JkCb744gtcunQJ3t7eiImJweLFi+HILYfIhPLz9W/vWlp677Fyec3tXat7W5s144YDRGR7rl27hri4ONy6dQtyuRzDhg1Dnz59pC6LrJikYfann37CvHnz8OWXXyIsLAxLlixBREQEUlNT4aPnc9VVq1Zh/vz5+O6779C3b1+cPXsW06dPh0wmw4cffijBK6CGRqMB0tN12wQyMgwb7+6uf3tXJyeTlk1EZPGEEDh06BC2bdsGtVoNd3d3xMTEICAgQOrSyMrJhBBCqicPCwvDAw88gE8//RQAoNFoEBgYiCeffBLz58/XOX/u3LlISUnBjh07tMeeffZZHDx4EImJiQY9Z0FBAdzd3ZGfn889nW1cUVHVdq63z7ieOGH49q4hIbrBtXlzzrYSEelz7NgxJCQkAADatm2LcePGwYn/0qdaGJPXJJuZValUOHLkCBYsWKA9JpfLER4ejgMHDugd07dvX/z44484dOgQevXqhQsXLmDz5s2YMmVKrc9TXl6O8vJy7f2CgoL6exFkFYQALl3Sv72rIf+Uq97e9fYtXjt1qjpORESG6dy5M5KSktC+fXv06tWLqxVQvZEszN64cQNqtRpNmzatcbxp06Y4c+aM3jEPPfQQbty4gf79+0MIgcrKSjz22GN48cUXa32exYsX4/XXX6/X2slylZZWrRxw50VZeXmGjQ8O1p1tbdGC27sSERlLCIGTJ0+iQ4cOUCgUUCgU2tZAovok+QVgxti9ezcWLVqEzz//HGFhYTh//jyefvppvPnmm3jllVf0jlmwYAHmzZunvV9QUIDAwEBzlUwmIgSQmak725qaavj2rh071gytnTtze1ciovpQWlqKDRs24OzZs8jJyUF4eDgAMMiSSUgWZr29vaFQKJB9x6rx2dnZ8PX11TvmlVdewZQpU/Doo48CADp16oTi4mLMmjULL730kt59mx0cHODAtY6smkpVtb3rnasJ3Lhh2Hh/f93Z1tatub0rEZEpXL58GXFxcSgoKIBCoYA7ZwnIxCQLs0qlEj169MCOHTsQFRUFoOoCsB07dmDu3Ll6x5SUlOgEVsVfiUTC69ioHuXk6M62pqQYtr2rUlm1csDtva1dulSt50pERKYlhMD+/fuxc+dOCCHg5eWF2NjYWieoiOqLpG0G8+bNw7Rp09CzZ0/06tULS5YsQXFxMWbMmAEAmDp1Kvz9/bF48WIAQGRkJD788EN069ZN22bwyiuvIDIyUhtqyTpUVurf3jUry7DxTZvqzra2acPtXYmIpFBcXIwNGzbg/PnzAICOHTti7Nix/GSUzELSMDtp0iRcv34dr776KrKystC1a1ds2bJFe1HYpUuXaszEvvzyy5DJZHj55Zdx9epVNGnSBJGRkXj77beleglkgNxc3RaB06eB2xaZqJWdHdC2rW5wveO6QSIiklBpaSkuXrwIOzs7jBo1Ct26dWN/LJmNpOvMSoHrzJqOWg2cP68722ro9q5eXrqhtX17bu9KRGQNzpw5A09PT51ViojqwirWmSXrVlCgf3vXkpJ7j5XLgdBQ3d5Wf39uOEBEZA2KioqwYcMGDBgwAEFBQQCqNkIgkgLDLN2VRlO1leuds63p6YaNd3PTv72rs7NJyyYiIhO5cOEC1q1bh+LiYty6dQtz5szRu5oQkbkwzJJWcXHV7OqdGw4UFho2Xt/2rkFBnG0lImoINBoN9uzZg7179wIAmjRpgtjYWAZZkhzDrA0SArh8WXe29fx5w7Z3bdSoajvX20Nrp06Aq6vpayciIvMrLCzEunXrkJGRAQDo1q0bRo0aBXsuIUMWgGG2gSsr07+9661bho0PCtKdbW3Zktu7EhHZivz8fHz11VcoKSmBvb09xo4di86dO0tdFpEWw2wDIUTVGq36tndVq+893tFR//auHh4mL52IiCyYm5sbWrRogRs3biA2NhaNuRMNWRiGWSukUlXtinX7TOvx48D164aNb9ZM//audvxpICIiVC2LpFQq4ejoCJlMhsjISMjlcrYVkEVifLFw16/r3961ouLeY+3tq9ZpvTO4enubvm4iIrJOZ8+exYYNGxAcHIzY2FjIZDLu5EUWjWHWQv3vf8ALLxi+4YCPj/7tXZVK09ZJREQNg1qtxo4dO3DgwAEAQF5eHsrLy+Ho6ChxZUR3xzBroebP1x9kFQr927v6+pq/RiIiahjy8vIQHx+PK3/9xdOrVy8MHz4cduw/IyvAn1ILVd3/6u4OTJ9ec3tX/iOZiIjqy5kzZ/Dzzz+jrKwMDg4OGD9+PNq1ayd1WUQGY5i1QBoNUFpa9ee2bYElSyQth4iIGqiKigr8+uuvKCsrg7+/P6Kjo+Hp6Sl1WURGYZi1QCUlf/+5USPp6iAioobN3t4e0dHROHPmDIYNGwaFQiF1SURGY5i1QMXFf//ZxUW6OoiIqOFJTk5GZWWlduOD5s2bo3nz5hJXRVR3DLMWqKjo7z9zZpaIiOpDZWUltm7disOHD8POzg7+/v7cAIEaBIZZC3T7zCzDLBER3a+bN28iLi4OWVlZAICwsDB4cItHaiAYZi0QwywREdWXU6dO4ZdffoFKpYKzszOioqLQunVrqcsiqjcMsxaIPbNERHS/hBDYtGkTjhw5AqCqNzY6Ohpubm4SV0ZUvxhmLRBnZomI6H7JZDI4OzsDAAYMGIDBgwdDLpdLXBVR/WOYtUC8AIyIiOpKpVJB+dde5oMHD0br1q0RGBgocVVEpsN/olkgzswSEZGxVCoVfv75ZyxfvhyVlZUAALlcziBLDR5nZi0Qe2aJiMgYOTk5iIuLw/Xr1yGTyZCRkYFWrVpJXRaRWTDMWiDOzBIRkSGEEEhKSsLmzZtRWVkJFxcXREdHIzg4WOrSiMyGYdYCsWeWiIjupby8HJs2bcLJkycBACEhIZgwYQIa8S8OsjEMsxaIM7NERHQvGzduxKlTpyCTyTBkyBD0798fMplM6rKIzI5h1gKxZ5aIiO5l6NChyM7OxtixY9G8eXOpyyGSDFczsECcmSUiojuVl5fj9OnT2vuenp54/PHHGWTJ5nFm1gKxZ5aIiG6XmZmJtWvX4tatW3BwcNCuVMC2AiKGWYvEmVkiIgKqViv4888/8dtvv0GtVsPd3R2Ojo5Sl0VkURhmLVB1mJXLAf7OIiKyTWVlZUhISEBKSgoAoE2bNhg/fjycnJwkrozIsjDMWqDqMNuoEcBPkIiIbM/Vq1cRFxeHvLw8yOVyDB8+HGFhYWwrINKDYdYCVffMssWAiMg23bhxA3l5efDw8EBMTAz8/f2lLonIYjHMWqDbZ2aJiMg2CCG0M69dunSBSqVCp06d2CNLdA9cmssCVYdZrjFLRGQbLl++jO+++w4lJSXaYw888ACDLJEBGGYtTGUlUF5e9WfOzBIRNWxCCOzfvx/Lli3DlStXsHPnTqlLIrI6bDOwMFyWi4jINhQXF2PDhg04f/48AKBjx44YPny4xFURWR+GWQvDMEtE1PBdvHgR8fHxKCwshJ2dHUaOHInu3btztQKiOmCYtTC3h1n2zBIRNTxnzpzBmjVrIIRA48aNERsbi6ZNm0pdFpHVYpi1MJyZJSJq2IKDg+Hh4YHAwECMGTMGSqVS6pKIrBrDrIWpXmMWYJglImoosrOz4ePjA5lMBkdHRzz66KNwcnJiWwFRPeBqBhaGM7NERA2HRqPB7t278eWXX+Lw4cPa487OzgyyRPWEM7MWhj2zREQNQ2FhIdatW4eMjAwAQE5OjrQFETVQDLMWhjOzRETWLy0tDevXr0dxcTHs7e0xduxYdO7cWeqyiBokhlkLw55ZIiLrVd1WsG/fPgBA06ZNERMTA29vb4krI2q4GGYtDGdmiYisV3Z2NhITEwEAPXr0QEREBOzt7SWuiqhhY5i1MOyZJSKyXn5+fhg+fDhcXV3RsWNHqcshsgkMsxaGM7NERNZDrVZj9+7d6Ny5M5o0aQIA6NOnj8RVEdkWLs1lYdgzS0RkHfLz87F8+XIkJiYiLi4OarVa6pKIbBJnZi0MZ2aJiCxfamoqNmzYgLKyMjg4OGDQoEFQKBRSl0VkkxhmLQzDLBGR5VKr1di2bRsOHjwIAGjWrBliYmLg6ekpcWVEtoth1sLwAjAiIstUXFyMVatW4dq1awCA3r17Izw8nDOyRBJjmLUwnJklIrJMTk5OsLOzg6OjI6KiotCmTRupSyIiMMxanOoLwOzsAKVS2lqIiGxdZWUlZDIZFAoF5HI5oqOjodFo4OHhIXVpRPQXrmZgYapnZjkrS0QkrdzcXHz77bfYtm2b9pibmxuDLJGF4cyshakOs+yXJSKSzqlTp/DLL79ApVKhoKAAAwcOhLOzs9RlEZEeDLMWhjOzRETSqaiowJYtW3D06FEAQPPmzREdHc0gS2TBGGYtTHXPLMMsEZF53bhxA2vXrkVOTg4AYMCAARg8eDDkcnbkEVkyhlkLolIBlZVVf2aYJSIyn8rKSqxYsQKFhYVo1KgRJkyYgJCQEKnLIiID3FeYLSsrg6OjY33VYvO4xiwRkTTs7OwQERGBw4cPY+LEiXB1dZW6JCIykNGfnWg0Grz55pvw9/eHi4sLLly4AAB45ZVX8O2339Z7gbaEa8wSEZlPTk4OLl68qL3foUMHTJ06lUGWyMoYHWbfeustLF++HO+++y6Uty2E2rFjR3zzzTf1Wpytqe6XBRhmiYhMRQiBY8eO4euvv8aaNWtQWFio/ZpMJpOwMiKqC6PD7IoVK/DVV19h8uTJNbbw69KlC86cOVOvxdkazswSEZmWSqXChg0bkJCQgMrKSvj6+vICLyIrZ3TP7NWrV9GqVSud4xqNBhUVFfVSlK1izywRkelkZ2dj7dq1uHnzJmQyGYYMGYL+/ftzNpbIyhkdZtu3b499+/YhKCioxvG4uDh069at3gqzRZyZJSKqf0IIHD16FFu2bEFlZSVcXV0RHR2t8/cYEVkno8Psq6++imnTpuHq1avQaDRYt24dUlNTsWLFCmzcuNEUNdoM9swSEdU/mUyGy5cvo7KyEq1atcKECRO4CQJRA2J0mB0/fjx++eUXvPHGG2jUqBFeffVVdO/eHb/88guGDx9uihptBmdmiYjqjxBC20IwevRoBAQEoEePHmwrIGpg6rTO7IABA7Bt27b6rsXmsWeWiOj+CSHw559/IiMjA7GxsZDJZFAqlejZs6fUpRGRCRh9CWfLli1x8+ZNneN5eXlo2bJlvRRlqzgzS0R0f8rKyhAXF4dff/0VKSkpSElJkbokIjIxo2dmMzIyoFardY6Xl5fj6tWr9VKUrWLPLBFR3V29ehVxcXHIy8uDXC7H8OHD0a5dO6nLIiITMzjMJiQkaP+8detWuLu7a++r1Wrs2LEDwcHB9VqcreHMLBGR8YQQOHjwILZt2waNRgMPDw/ExMTA399f6tKIyAwMDrNRUVEAqq4KnTZtWo2v2dvbIzg4GB988EG9Fmdr2DNLRGS8X3/9FX/++ScAoF27dhg3bhwcHR0lroqIzMXgMKvRaAAALVq0wJ9//glvb2+TFWWrODNLRGS8Ll264Pjx4xg2bBgeeOABrlZAZGOM7plNT083RR0E9swSERlCCIHs7Gz4+voCAPz9/fGvf/0LTk5OEldGRFKo04bUxcXF2Lx5M7788kt88sknNW7G+uyzzxAcHAxHR0eEhYXh0KFDdz0/Ly8Pc+bMgZ+fHxwcHBAaGorNmzfX5WVYHM7MEhHdXUlJCf73v//hm2++QVZWlvY4gyyR7TJ6ZvbYsWMYPXo0SkpKUFxcDC8vL9y4cQPOzs7w8fHBU089ZfBj/fTTT5g3bx6+/PJLhIWFYcmSJYiIiEBqaip8fHx0zlepVBg+fDh8fHwQFxcHf39/XLx4ER4eHsa+DIvEMEtEVLuLFy8iPj4ehYWFUCgUuHHjhnZ2lohsl0wIIYwZMHjwYISGhuLLL7+Eu7s7jh8/Dnt7e/zf//0fnn76aUycONHgxwoLC8MDDzyATz/9FEBVX25gYCCefPJJzJ8/X+f8L7/8Eu+99x7OnDkDe3t7Y8rWKigogLu7O/Lz8+Hm5lanxzCVrl2B48cBBwegrEzqaoiILIMQAomJidi1axeEEGjcuDFiY2PRtGlTqUsjIhMxJq8Z3WaQlJSEZ599FnK5HAqFAuXl5QgMDMS7776LF1980eDHUalUOHLkCMLDw/8uRi5HeHg4Dhw4oHdMQkIC+vTpgzlz5qBp06bo2LEjFi1apHfd22rl5eUoKCiocbNU1T2znJUlIqpSXFyMlStXYufOnRBCoHPnzpg1axaDLBFpGR1m7e3tIZdXDfPx8cGlS5cAAO7u7rh8+bLBj3Pjxg2o1WqdX0hNmzat0Qd1uwsXLiAuLg5qtRqbN2/GK6+8gg8++ABvvfVWrc+zePFiuLu7a2+BgYEG12hu1W0GDLNERFVOnDiBtLQ02NnZYdy4cYiKioJSqZS6LCKyIEb3zHbr1g1//vknWrdujUGDBuHVV1/FjRs38MMPP6Bjx46mqFFLo9HAx8cHX331FRQKBXr06IGrV6/ivffew8KFC/WOWbBgAebNm6e9X1BQYLGBtjrMco1ZIqIqvXv3Rm5uLh544AG911IQERk9M7to0SL4+fkBAN5++214enri8ccfx/Xr17F06VKDH8fb2xsKhQLZ2dk1jt++3Mqd/Pz8EBoaCoVCoT3Wrl07ZGVlQaVS6R3j4OAANze3GjdLJARnZomICgsLsXHjRlRUVACo2qhnzJgxDLJEVCujZ2Z79uyp/bOPjw+2bNlSpydWKpXo0aMHduzYod1dTKPRYMeOHZg7d67eMf369cOqVaug0Wi0rQ5nz56Fn5+f1X/sVF4O/LUvBcMsEdmktLQ0rF+/HsXFxZDL5Rg9erTUJRGRFajTOrP6HD16FGPHjjVqzLx58/D111/j+++/R0pKCh5//HEUFxdjxowZAICpU6diwYIF2vMff/xx5Obm4umnn8bZs2exadMmLFq0CHPmzKmvlyEZbphARLZKo9Fg586d+PHHH1FcXAwfHx/06tVL6rKIyEoYNTO7detWbNu2DUqlEo8++ihatmyJM2fOYP78+fjll18QERFh1JNPmjQJ169fx6uvvoqsrCx07doVW7Zs0V4UdunSJe0MLAAEBgZi69ateOaZZ9C5c2f4+/vj6aefxr///W+jntcS3b7GLHtmichWFBQUID4+Xnsxcffu3TFy5Mg6L79IRLbH4HVmv/32W8ycORNeXl64desWGjdujA8//BBPPvkkJk2ahKeffhrt2rUzdb33zVLXmU1OBjp0qPrzjBnAd99JWw8RkaldunQJP/30E0pKSqBUKhEZGWnyC4mJyDoYk9cMnpn9+OOP8Z///AfPP/884uPjERsbi88//xwnT55EQEDAfRdt67j7FxHZGnd3dwgh4Ovri5iYGDRu3FjqkojIChkcZtPS0hAbGwsAmDhxIuzs7PDee+8xyNYT9swSkS0oKyuDo6MjgKowO3XqVHh7e8POzujrkYmIABhxAVhpaSmcnZ0BVC2V4uDgoF2ii+4fZ2aJqKFLTU3FJ598gtTUVO0xX19fBlkiui9G/Qb55ptv4PLX1UmVlZVYvnw5vL29a5zz1FNP1V91NoQXgBFRQ6VWq7F9+3b88ccfAIA///wTbdq0kbgqImooDA6zzZs3x9dff6297+vrix9++KHGOTKZjGG2jjgzS0QN0a1btxAfH4+rV68CAMLCwjB8+HCJqyKihsTgMJuRkWHCMog9s0TU0KSkpODnn39GeXk5HB0dMX78eLRt21bqsoiogWGjkoXgzCwRNSSZmZlYs2YNACAgIADR0dHw8PCQtigiapAYZi0Ee2aJqCHx8/NDz549oVQqMXToUCgUCqlLIqIGimHWQnBmloisXXJyMpo3b669UHj06NGQyWQSV0VEDZ3BS3ORabFnloisVUVFBTZu3Ii1a9di3bp10Gg0AMAgS0RmwZlZC8GZWSKyRjdu3EBcXByys7MBAP7+/hJXRES2pk5hNi0tDcuWLUNaWho+/vhj+Pj44Ndff0Xz5s3RoUOH+q7RJrBnloiszYkTJ7Bx40ZUVFTA2dkZEydOREhIiNRlEZGNMbrNYM+ePejUqRMOHjyIdevWoeivz8ePHz+OhQsX1nuBtoIzs0RkLSoqKpCQkID169ejoqICwcHBeOyxxxhkiUgSRofZ+fPn46233sK2bdugVCq1x4cOHard3YWMd3vP7F+7BhMRWSQhBC5fvgwAGDRoEKZMmQJXV1eJqyIiW2V0m8HJkyexatUqneM+Pj64ceNGvRRli6pnZp2cADkvyyMiCySEgEwmg1KpRExMDIqLi9GyZUupyyIiG2d0bPLw8EBmZqbO8WPHjrHx/z5Uh1n2yxKRpVGpVNiwYUONT9+aNm3KIEtEFsHoMPuPf/wD//73v5GVlQWZTAaNRoP9+/fjueeew9SpU01Ro02oDrPslyUiS5KdnY2vv/4ax48fx86dO7XXSRARWQqj2wwWLVqEOXPmIDAwEGq1Gu3bt4darcZDDz2El19+2RQ12oTqvx8YZonIEgghcPToUWzZsgWVlZVwdXVFdHS0dkMEIiJLIRNCiLoMvHTpEk6dOoWioiJ069YNrVu3ru/aTKKgoADu7u7Iz8+Hm5ub1OUAADQaoHqnx169gIMHpa2HiGxbeXk5Nm7ciFOnTgEAWrVqhaioKDTiv7aJyEyMyWtGz8wmJiaif//+aN68OZo3b17nIulvpaV//5mTHkQkJbVajW+//RbXr1+HTCbDsGHD0LdvX+7mRUQWy+ie2aFDh6JFixZ48cUXkZycbIqabA7XmCUiS6FQKNCtWze4ublhxowZ6NevH4MsEVk0o8PstWvX8Oyzz2LPnj3o2LEjunbtivfeew9XrlwxRX024fbrKRhmicjcysrKcPPmTe393r174/HHH0dgYKCEVRERGcboMOvt7Y25c+di//79SEtLQ2xsLL7//nsEBwdj6NChpqixwePMLBFJ5dq1a1i6dCn+97//oby8HAAgk8ng6OgocWVERIYxumf2di1atMD8+fPRpUsXvPLKK9izZ0991WVTbg+z7JklInMQQuDgwYPYtm0bNBoNPDw8UFhYCAcHB6lLIyIySp3D7P79+7Fy5UrExcWhrKwM48ePx+LFi+uzNpvBmVkiMqfS0lIkJCTgzJkzAIC2bdti/PjxnI0lIqtkdJhdsGABVq9ejWvXrmH48OH4+OOPMX78eDg7O5uiPpvAMEtE5nLlyhXExcUhPz8fCoUCI0aMwAMPPMCLvIjIahkdZvfu3Yvnn38eDz74ILy9vU1Rk83hBWBEZC579uxBfn4+PD09ERMTg2bNmkldEhHRfTE6zO7fv98Uddg09swSkbmMHz8eu3fvxvDhw9kfS0QNgkFhNiEhAaNGjYK9vT0SEhLueu64cePqpTBbwjYDIjKVS5cuIS0tDUOGDAEAuLi4YOzYsRJXRURUfwwKs1FRUcjKyoKPjw+ioqJqPU8mk0GtVtdXbTaDYZaI6psQAomJidi1axeEEPDz80Pbtm2lLouIqN4ZFGY1Go3eP1P9YM8sEdWn4uJirF+/HmlpaQCAzp07o2XLlhJXRURkGkZvmrBixQrtwtq3U6lUWLFiRb0UZWvYM0tE9SUjIwNffvkl0tLSYGdnh3HjxiEqKgpKpVLq0oiITMLoMDtjxgzk5+frHC8sLMSMGTPqpShbwzYDIqoPBw4cwIoVK1BUVARvb2/MnDkT3bp147JbRNSgGb2agRBC7y/GK1euwN3dvV6KsjUMs0RUH7y8vCCEQNeuXTFq1CjOxhKRTTA4zFb/614mk2HYsGGws/t7qFqtRnp6OkaOHGmSIhs69swSUV2VlZVpd+5q06YNZs6cybVjicimGBxmq1cxSEpKQkREBFxua+5UKpUIDg5GdHR0vRdoC9gzS0TG0mg02L17N44cOYJZs2ZpPxljkCUiW2NwmF24cCEAIDg4GJMmTeIe3vWoOszKZAC/rUR0LwUFBVi3bh0uXrwIAEhOTkafPn0kroqISBpG98xOmzbNFHXYtOow26hRVaAlIqrN+fPnsX79epSUlECpVCIyMhIdO3aUuiwiIskYFGa9vLxw9uxZeHt7w9PT865Xxubm5tZbcbaiumeW/bJEVBu1Wo1du3ZptxT39fVFTEwMGjduLHFlRETSMijMfvTRR3B1ddX+mcu81K/bZ2aJiPQ5ePCgNsg+8MADGDFiRI0LcYmIbJVMCCGkLsKcCgoK4O7ujvz8fLi5uUldDgDAyQkoKwM6dwaOH5e6GiKyRBUVFfjxxx8RFhaG9u3bS10OEZFJGZPXjN404ejRozh58qT2/s8//4yoqCi8+OKLUKlUxldr49TqqiALcGaWiP6mVqtx+PBh7Rbi9vb2mD59OoMsEdEdjA6zs2fPxtmzZwEAFy5cwKRJk+Ds7Iy1a9fihRdeqPcCGzpumEBEd8rLy8OyZcuwadMm7Nu3T3ucLV5ERLqMDrNnz55F165dAQBr167FoEGDsGrVKixfvhzx8fH1XV+DxzBLRLdLSUnB0qVLcfXqVTg6OqJp06ZSl0REZNHqtJ1t9cde27dvx9ixYwEAgYGBuHHjRv1WZwO4YQIRAUBlZSW2bduGQ4cOAQACAgIQHR0NDw8PaQsjIrJwRofZnj174q233kJ4eDj27NmDL774AgCQnp7OGYQ64MwsEeXm5iIuLg6ZmZkAgD59+mDYsGFQKBQSV0ZEZPmMDrNLlizB5MmTsWHDBrz00kto1aoVACAuLg59+/at9wIbuuo1ZgGGWSJbpVKpkJOTAycnJ0RFRSE0NFTqkoiIrIbRYbZz5841VjOo9t5773EWoQ44M0tkm4QQ2gu6qjdA8PPzg7u7u8SVERFZlzqvuH3kyBGkpKQAANq3b4/u3bvXW1G2hD2zRLbn5s2bWLduHUaPHg1/f38AQNu2bSWuiojIOhkdZnNycjBp0iTs2bNHe2FCXl4ehgwZgtWrV6NJkyb1XWODxplZItty8uRJbNy4ESqVCr/++iseeeQRLrlFRHQfjF6a68knn0RRURFOnz6N3Nxc5Obm4tSpUygoKMBTTz1lihobNPbMEtmGiooKJCQkYN26dVCpVAgODsakSZMYZImI7pPRM7NbtmzB9u3b0a5dO+2x9u3b47PPPsOIESPqtThbwJlZoobv+vXriIuLQ05ODgBg0KBBGDhwIORyo+cTiIjoDkaHWY1GA3t7e53j9vb22vVnyXDsmSVq2HJycvDNN9+goqICjRo1QnR0NFq0aCF1WUREDYbR0wJDhw7F008/jWvXrmmPXb16Fc888wyGDRtWr8XZAs7MEjVsTZo0QYsWLdCiRQs89thjDLJERPXM6JnZTz/9FOPGjUNwcDACAwMBAJcvX0bHjh3x448/1nuBDR17ZokanpycHHh4eECpVEImkyE6Ohp2dnZsKyAiMgGjw2xgYCCOHj2KHTt2aJfmateuHcLDw+u9OFvAmVmihkMIgWPHjuHXX39F+/btERUVBZlMBqVSKXVpREQNllFh9qeffkJCQgJUKhWGDRuGJ5980lR12Qz2zBI1DOXl5di0aZN2U5mSkhKo1WrY2dV5OW8iIjKAwb9lv/jiC8yZMwetW7eGk5MT1q1bh7S0NLz33numrK/B48wskfXLysrC2rVrkZubC5lMhmHDhqFv375cdouIyAwMbuD69NNPsXDhQqSmpiIpKQnff/89Pv/8c1PWZhMYZomslxACf/75J7755hvk5ubCzc0NM2bMQL9+/RhkiYjMxOAwe+HCBUybNk17/6GHHkJlZSUyMzNNUpitqL4ATKEA2FZHZF3KysqwZ88eqNVqhIaGYvbs2doLY4mIyDwMbjMoLy9Ho9umDuVyOZRKJUpLS01SmK2onpl1cQE4kUNkXZycnDBx4kRkZ2ejd+/enI0lIpKAUVcmvPLKK3B2dtbeV6lUePvtt+Hu7q499uGHH9ZfdTagOsyyxYDI8gkhcOjQIbi6uqJ9+/YAgJYtW6Jly5YSV0ZEZLsMDrMDBw5EampqjWN9+/bFhQsXtPc5K2E8hlki61BaWoqEhAScOXMGSqUSAQEBcHNzk7osIiKbZ3CY3b17twnLsF3VPbMMs0SW68qVK4iLi0N+fj4UCgWGDRsGV1dXqcsiIiLUYdMEqj8VFVU3gGvMElkiIQQOHDiAHTt2QKPRwNPTEzExMWjWrJnUpRER0V8YZiXEZbmILJdGo8FPP/2Es2fPAgA6dOiAyMhIODg4SFwZERHdjmFWQgyzRJZLLpfDy8sLCoUCI0eORI8ePXhdABGRBWKYlVB1vyzAMEtkCYQQKC8vh6OjIwAgPDwc3bt3R5MmTSSujIiIamPwpglU/26fmWXPLJG0iouLsWrVKqxatQpqtRoAoFAoGGSJiCxcncLsvn378H//93/o06cPrl69CgD44YcfkJiYWK/FNXRsMyCyDBkZGVi6dCnOnz+PzMxMZGVlSV0SEREZyOgwGx8fj4iICDg5OeHYsWMoLy8HAOTn52PRokX1XmBDxjBLJC2NRoM9e/ZgxYoVKCwshLe3N2bOnAl/f3+pSyMiIgMZHWbfeustfPnll/j6669hb2+vPd6vXz8cPXq0Xotr6NgzSySdoqIi/Pjjj9i9ezeEEOjatStmzpwJHx8fqUsjIiIjGH0BWGpqKgYOHKhz3N3dHXl5efVRk81gzyyRdNavX4/09HTY29tjzJgx6NKli9QlERFRHRg9M+vr64vz58/rHE9MTKzz/uSfffYZgoOD4ejoiLCwMBw6dMigcatXr4ZMJkNUVFSdnldqbDMgks6oUaMQEBCAWbNmMcgSEVkxo8PszJkz8fTTT+PgwYOQyWS4du0aVq5cieeeew6PP/640QX89NNPmDdvHhYuXIijR4+iS5cuiIiIQE5Ozl3HZWRk4LnnnsOAAQOMfk5LwTBLZD6FhYU4efKk9r63tzcefvhheHt7S1gVERHdL6PbDObPnw+NRoNhw4ahpKQEAwcOhIODA5577jk8+eSTRhfw4YcfYubMmZgxYwYA4Msvv8SmTZvw3XffYf78+XrHqNVqTJ48Ga+//jr27dtnte0N7JklMo/z589j/fr1KC0thZubG4KCggCAmyAQETUARodZmUyGl156Cc8//zzOnz+PoqIitG/fHi51aPpUqVQ4cuQIFixYoD0ml8sRHh6OAwcO1DrujTfegI+PDx555BHs27fvrs9RXl6uXXEBAAoKCoyu01Q4M0tkWhqNBjt37sT+/fsBVLVJ1eV3FRERWa467wCmVCrRvn37+3ryGzduQK1Wo2nTpjWON23aFGfOnNE7JjExEd9++y2SkpIMeo7Fixfj9ddfv686TYUXgBGZTn5+PuLj43H58mUAQM+ePREREQE7O258SETUkBj9W33IkCF3/Whu586d91XQ3RQWFmLKlCn4+uuvDe5zW7BgAebNm6e9X1BQgMDAQFOVaBTOzBKZxtmzZ7FhwwaUlpbCwcEBkZGR6NChg9RlERGRCRgdZrt27VrjfkVFBZKSknDq1ClMmzbNqMfy9vaGQqFAdnZ2jePZ2dnw9fXVOT8tLQ0ZGRmIjIzUHtNoNAAAOzs7pKamIiQkpMYYBwcHODg4GFWXubBnlsg08vPzUVpaCj8/P8TExMDLy0vqkoiIyESMDrMfffSR3uOvvfYaim5PZwZQKpXo0aMHduzYoV1eS6PRYMeOHZg7d67O+W3btq1xNTIAvPzyyygsLMTHH39sMTOuhuLMLFH9EUJoPzXq2bMn7O3t0bFjR7YVEBE1cPX2W/7//u//0KtXL7z//vtGjZs3bx6mTZuGnj17olevXliyZAmKi4u1qxtMnToV/v7+WLx4MRwdHdGxY8ca4z08PABA57g1YJglqh9nzpzB3r17MXXqVDg6OkImk+l8ikRERA1TvYXZAwcOwNHR0ehxkyZNwvXr1/Hqq68iKysLXbt2xZYtW7QXhV26dAlyudHL4VqF6jCrVAK37QxMRAaqrKzE9u3bcfDgQQDA77//jqFDh0pcFRERmZNMCCGMGTBx4sQa94UQyMzMxOHDh/HKK69g4cKF9VpgfSsoKIC7uzvy8/Ph5uYmaS2tWwPnzwOenkBurqSlEFmd3NxcxMXFITMzEwDQp08fDBs2DAqFQuLKiIjofhmT14yemXV3d69xXy6Xo02bNnjjjTcwYsQIYx/OplXPzLLFgMg4p0+fxi+//ILy8nI4OTkhKioKoaGhUpdFREQSMCrMqtVqzJgxA506dYKnp6eparIZ1WGWa8wSGe7IkSPYuHEjACAwMBAxMTGSf8pCRETSMaoZVaFQYMSIEVa7fawlEYIzs0R10a5dO7i5uaF///6YPn06gywRkY0z+sqqjh074sKFC6aoxaaoVIBaXfVnhlmiu6vexQsAnJ2d8cQTT2DYsGEN9uJQIiIynNF/E7z11lt47rnnsHHjRmRmZqKgoKDGjQzDDROI7q2iogIJCQn47rvvamxhbakboRARkfkZ3DP7xhtv4Nlnn8Xo0aMBAOPGjauxrW31guXq6ulGuqvb15hlzyyRruvXryMuLg45OTkAqrazJiIiupPBYfb111/HY489hl27dpmyHpvBDROIanf8+HFs2rQJFRUVaNSoESZOnIiWLVtKXRYREVkgg8Ns9XK0gwYNMlkxtoRhlkiXSqXCr7/+qm0paNmyJSZMmAAXfnxBRES1MGpprtvbCuj+sGeWSNe1a9eQlJQEmUyGwYMHo3///rzIi4iI7sqoMBsaGnrPQJvLrawMwp5ZIl3BwcEYMWIE/Pz8EBwcLHU5RERkBYwKs6+//rrODmBUN2wzIALKy8vx22+/oV+/fvDy8gJQtS0tERGRoYwKs//4xz/g4+NjqlpsCsMs2bqsrCzExcXh5s2byMnJwcMPP8xWJiIiMprBYZZ/ydQv9sySrRJC4MiRI9iyZQvUajXc3NwwfPhw/o4hIqI6MXo1A6of7JklW1RWVoaNGzfi9OnTAKr68MePHw9nZ2eJKyMiImtlcJjVaDSmrMPmsM2AbM2tW7fwww8/4NatW5DL5QgPD0fv3r05I0tERPfFqJ5Zqj8Ms2Rr3Nzc4OTkBI1Gg5iYGAQEBEhdEhERNQAMsxJhzyzZgrKyMiiVSsjlcigUCjz44INQKpVwcnKSujQiImoguBq5RNgzSw3d1atXsXTp0hpbYLu7uzPIEhFRvWKYlQjbDKihEkLgwIED+O6775CXl4fk5GSoVCqpyyIiogaKbQYSYZilhqi0tBQbNmzA2bNnAQDt27dHZGQklEqlxJUREVFDxTArkdt7ZrkqETUEly9fRlxcHAoKCqBQKDBy5Ej06NGDqxUQEZFJMcxKpHpm1skJUCikrYXofpWVlWHlypUoLy+Hl5cXYmNj4evrK3VZRERkAxhmJVIdZtliQA2Bo6MjRo4ciQsXLmDMmDFwcHCQuiQiIrIRDLMSYZgla3fx4kXI5XIEBgYCALp27YouXbqwrYCIiMyKYVYi1T2zDLNkbTQaDRITE7F79264uLjgscce025HyyBLRETmxjArASGAkpKqP3ONWbImRUVFWL9+PS5cuAAAaNmyJezs+GuEiIikw7+FJFBaWhVoAc7MkvVIT09HfHw8iouLYW9vj9GjR6Nr165Sl0VERDaOYVYCXGOWrIkQArt378bevXsBAD4+PoiJiUGTJk0kroyIiIhhVhK3rzHLMEvW4MaNGwCAbt26YdSoUbC3t5e4IiIioioMsxLgzCxZAyEEZDIZZDIZIiMj0aFDB7Rv317qsoiIiGqQS12ALbo9zPICMLI0Go0G27dvR1xcHMRfzd2Ojo4MskREZJE4MysBzsySpcrPz0d8fDwuX74MoGot2eDgYGmLIiIiuguGWQkwzJIlOnv2LDZs2IDS0lI4ODggMjKSQZaIiCwew6wEeAEYWRK1Wo0dO3bgwIEDAAA/Pz/ExMTAy8tL4sqIiIjujWFWAuyZJUsSHx+PlJQUAECvXr0wfPhwboRARERWg39jSYBtBmRJwsLCcPHiRURGRqJt27ZSl0NERGQUhlkJMMySlCorK5GVlYWAgAAAQFBQEJ5++mkolUqJKyMiIjIel+aSAHtmSSq3bt3Cd999hxUrVuD69eva4wyyRERkrTgzKwH2zJIUkpOTkZCQgPLycjg5OaGoqIhb0hIRkdVjmJUA2wzInCorK7F161YcPnwYABAYGIjo6Gi4u7tLXBkREdH9Y5iVAMMsmcvNmzcRFxeHrKwsAEC/fv0wZMgQKBQKiSsjIiKqHwyzEmDPLJnLiRMnkJWVBWdnZ0yYMAGtWrWSuiQiIqJ6xTArAfbMkrkMGjQIKpUKffr0gZubm9TlEBER1TuuZiCB6jArkwFOTtLWQg3LjRs3sGHDBlRWVgIA5HI5IiIiGGSJiKjB4sysBKrDrLNzVaAlqg/Hjx/Hpk2bUFFRATc3NwwdOlTqkoiIiEyOYVYC1T2z7Jel+qBSqfDrr78iKSkJANCiRQv06tVL2qKIiIjMhGFWAtUzs+yXpfuVk5ODuLg4XL9+HTKZDIMGDcKAAQMgl7ODiIiIbAPDrASqwyxnZul+nDlzBvHx8aisrISLiwuio6MRHBwsdVlERERmxTBrZmo1UFpa9WeGWbofPj4+UCgUCAoKwoQJE9CIP1BERGSDGGbNrKTk7z8ze5CxiouLtaHVy8sLjzzyCLy9vSHjlYRERGSj2FhnZlxjlupCCIHDhw9jyZIlSEtL0x5v0qQJgywREdk0zsyaGbeyJWOVlZVh48aNOH36NADg1KlTCAkJkbgqIiIiy8Awa2YMs2SMa9euIS4uDrdu3YJcLsewYcPQp08fqcsiIiKyGAyzZla9xizAMEu1E0Lg0KFD2LZtG9RqNdzd3RETE4OAgACpSyMiIrIoDLNmxp5ZMkR6ejq2bNkCAGjbti3GjRsHJ+59TEREpINh1szYZkCGaNmyJbp37w4fHx/06tWLF3kRERHVgmHWzBhmSZ/q1Qo6dOgAZ2dnAEBkZKTEVREREVk+Ls1lZuyZpTuVlJRg9erV2Lx5MzZs2AAhhNQlERERWQ3OzJoZe2bpdpcvX0ZcXBwKCgqgUCjQunVrqUsiIiKyKgyzZsY2AwKq2gr279+PnTt3QggBLy8vxMbGwtfXV+rSiIiIrArDrJkxzFJJSQnWr1+P8+fPAwA6duyIsWPHwsHBQeLKiIiIrA/DrJmxZ5bkcjlu3LgBOzs7jBo1Ct26deNqBURERHXEMGtmnJm1TdUXdclkMjg6OuLBBx+EXC5H06ZNJa6MiIjIunE1AzPjBWC2p6ioCD/++CMOHz6sPebn58cgS0REVA84M2tmnJm1Lenp6YiPj0dxcTEyMzPRuXNn9sYSERHVI4ZZM2OYtQ0ajQZ79uzB3r17AQBNmjRBbGwsgywREVE9Y5g1s+oLwORygLmmYSosLMS6deuQkZEBAOjWrRtGjRoFe3t7aQsjIiJqgBhmzax6ZtbFBeAF7A2PSqXCV199haKiItjb22Ps2LHo3Lmz1GURERE1WAyzZlYdZtli0DAplUo88MADSE5ORmxsLBo3bix1SURERA0aw6yZMcw2PAUFBaioqNAG1/79+6Nv376ws+P/XkRERKbGpbnMrLpnlmG2YTh79iy+/PJLrFmzBhUVFQCqNkVgkCUiIjIP/o1rRpWVgEpV9WeuMWvd1Go1duzYgQMHDgAAPDw8UFpayou8iIiIzIxh1oy4LFfDkJeXh/j4eFy5cgUA0KtXLwwfPpyzsURERBKwiDaDzz77DMHBwXB0dERYWBgOHTpU67lff/01BgwYAE9PT3h6eiI8PPyu51sShlnrd+bMGSxduhRXrlyBg4MDHnzwQYwaNYpBloiISCKSh9mffvoJ8+bNw8KFC3H06FF06dIFERERyMnJ0Xv+7t278c9//hO7du3CgQMHEBgYiBEjRuDq1atmrtx41f2yAMOsNRJC4MCBAygrK0OzZs0we/ZstGvXTuqyiIiIbJpMCCGkLCAsLAwPPPAAPv30UwBVOycFBgbiySefxPz58+85Xq1Ww9PTE59++immTp16z/MLCgrg7u6O/Px8uLm53Xf9xjh2DOjeverPjz0GfPGFWZ+e6kF+fj4OHz6MwYMHQ6FQSF0OERFRg2RMXpN0ZlalUuHIkSMIDw/XHpPL5QgPD9deWHMvJSUlqKiogJeXl96vl5eXo6CgoMZNKmwzsD7JycnYtWuX9r67uzuGDRvGIEtERGQhJA2zN27cgFqtRtOmTWscb9q0KbKysgx6jH//+99o1qxZjUB8u8WLF8Pd3V17CwwMvO+664ph1npUVlZi06ZNWLt2Lfbu3Yv09HSpSyIiIiI9JO+ZvR/vvPMOVq9ejfXr18PR0VHvOQsWLEB+fr72dvnyZTNX+Tf2zFqHmzdv4ttvv8Xhw4cBAP369UPz5s0lroqIiIj0kfQSbG9vbygUCmRnZ9c4np2dDV9f37uOff/99/HOO+9g+/bt6Ny5c63nOTg4wMHBoV7qvV+3z8xynVnLdPLkSWzcuBEqlQrOzs6YMGECWrVqJXVZREREVAtJZ2aVSiV69OiBHTt2aI9pNBrs2LEDffr0qXXcu+++izfffBNbtmxBz549zVFqvWCbgWXbunUr1q1bB5VKhaCgIMyePZtBloiIyMJJvjjmvHnzMG3aNPTs2RO9evXCkiVLUFxcjBkzZgAApk6dCn9/fyxevBgA8J///AevvvoqVq1aheDgYG1vrYuLC1wsfLqTYdayBQQEAAAGDBiAwYMHQy636i4cIiIimyB5mJ00aRKuX7+OV199FVlZWejatSu2bNmivSjs0qVLNULFF198AZVKhZiYmBqPs3DhQrz22mvmLN1o7Jm1PEVFRdp/BHXo0AFNmzaFt7e3xFURERGRoSQPswAwd+5czJ07V+/Xdu/eXeN+RkaG6QsyEfbMWg6VSoVff/0V586dw2OPPaYNtAyyRERE1sUiwqytYJuBZcjJyUFcXByuX78OmUyGCxcu3PUiQiIiIrJcDLNmxDArLSEEkpKSsHnzZlRWVsLFxQXR0dEIDg6WujQiIiKqI4ZZM2LPrHRUKhU2btyIkydPAgBCQkIwYcIENOIbQUREZNUYZs2IPbPS2bt3L06ePAmZTIYhQ4agf//+kMlkUpdFRERE94lh1ozYZiCdgQMHIjMzE4MGDeJuXkRERA0IF9I0o+owa29fdSPTKS8vx++//w4hBICqDTqmTJnCIEtERNTAcGbWjKp7Zjkra1qZmZmIi4tDbm4uAKBv374SV0RERESmwjBrRtUzs+yXNQ0hBP7880/89ttvUKvVcHd350wsERFRA8cwa0bVYZYzs/WvrKwMCQkJSElJAQC0adMG48ePh5OTk8SVERERkSkxzJoRw6xpXLt2DWvXrkVeXh7kcjmGDx+OsLAwrlZARERkAxhmzUSlAiorq/7MMFu/hBAoKCiAh4cHYmJi4O/vL3VJREREZCYMs2Zy+4YJ7Jm9fxqNBnJ51WIc/v7+mDRpEpo3bw5HR0eJKyMiIiJz4tJcZsI1ZuvP5cuX8fnnnyMrK0t7LDQ0lEGWiIjIBjHMmgnD7P0TQmD//v1YtmwZbt68iZ07d0pdEhEREUmMbQZmwjB7f4qLi7FhwwacP38eANCxY0eMHTtW4qqIiIhIagyzZnJ7zyzDrHEuXryI+Ph4FBYWws7ODiNHjkT37t25WgERERExzJrL7TOzvADMcJcuXcL3338PIQQaN26M2NhYNG3aVOqyiIiIyEIwzJoJ2wzqJiAgAMHBwXB1dcWYMWOgVCqlLomIiIgsCMOsmTDMGu7SpUvw8/ODvb095HI5/vnPf8Le3l7qsoiIiMgCcTUDM2HP7L1pNBrs3r0by5Ytw9atW7XHGWSJiIioNpyZNRP2zN5dYWEh1q1bh4yMDACAWq2usTECERERkT4Ms2bCNoPapaWlYd26dSgpKYG9vT3Gjh2Lzp07S10WERERWQGGWTNhmNWl0Wiwa9cuJCYmAgCaNm2KmJgYeHt7S1wZERERWQuGWTNhz6yu4uJiHDlyBADQo0cPREREsD+WiIiIjMIwaybsmdXl6uqKqKgoqFQqdOzYUepyiIiIyAoxzJoJ2wyqLurauXMnmjdvjjZt2gAAQkNDJa6KiIiIrBkvFTcTWw+z+fn5WL58OX7//Xf8/PPPKCsrk7okIiIiagA4M2smttwzm5qaig0bNqCsrAwODg6IjIyEo6Oj1GURERFRA8AwaybVM7OOjoBCIW0t5qJWq7Ft2zYcPHgQANCsWTPExMTA09NT4sqIiIiooWCYNZPqMGsrs7IVFRVYvnw5rl27BgDo3bs3wsPDobCVJE9ERERmwTBrJrYWZu3t7eHr64vc3FxERUVpL/giIiIiqk8Ms2ZS3TPbkMNsZWUlKioq4OTkBAAYOXIkBg4cCHd3d4krIyIiooaKqxmYgRB/z8w21DVmc3Nz8e2332Lt2rXQaDQAqmZnGWSJiIjIlDgzawZlZVWBFmiYM7OnTp3CL7/8ApVKBScnJ9y6dQuNGzeWuiwiIiKyAQyzZtBQ15itqKjAli1bcPToUQBA8+bNER0dDTc3N4krIyIiIlvBMGsGDXGN2Rs3biAuLg7Z2dkAgAEDBmDw4MGQy9m5QkRERObDMGsGt8/MNoSeWSEE1q1bh+zsbDg7O2PixIkICQmRuiwiIiKyQQyzZtDQ2gxkMhnGjRuHHTt2YNy4cXB1dZW6JCIiIrJR/EzYDBpCmM3JycGJEye09319fTF58mQGWSIiIpIUZ2bNwJrDrBACSUlJ2Lx5MzQaDRo3bgx/f3+pyyIiIiICwDBrFrdfAGZNPbMqlQqbNm3Szsi2bNkSHh4e0hZFREREdBuGWTOwxpnZ7OxsrF27Fjdv3oRMJsOQIUPQv39/yGQyqUsjIiIi0mKYNQNrC7NHjx7F5s2boVar4erqiujoaAQFBUldFhEREZEOhlkzsLYwW1ZWBrVajVatWmHChAlwdnaWuiQiIiIivRhmzcAaemY1Go12w4M+ffrA3d0d7du3Z1sBERERWTQuzWUGljwzK4TAoUOH8NVXX0GlUgGoWke2Q4cODLJERERk8TgzawaWGmbLysqQkJCAlJQUAFW9sr1795a4KiIiIiLDMcyagSWG2atXryIuLg55eXmQy+UYPnw4wsLCpC6LiIiIyCgMs2ZgST2zQggcPHgQ27Ztg0ajgYeHB2JiYrgRAhEREVklhlkzsKSZ2b1792L37t0AgHbt2mHcuHFwdHSUtigiIiKiOmKYNYPbw6yTk3R1AECPHj1w7Ngx9O3bFw888AAv8iIiIiKrxjBrBtVh1tkZkJt5/QghBC5cuICQkBAAgIuLC+bOnQs7O771REREZP24NJcZVPfMmrvFoKSkBP/73//w448/4vTp09rjDLJERETUUDDVmEH1zKw5L/66ePEi4uPjUVhYCIVCgYqKCvM9OREREZGZMMyaQXWYNcfMrBACiYmJ2LVrF4QQaNy4MWJjY9G0aVPTPzkRERGRmTHMmphGA5SUVP3Z1GG2uLgY69atw4ULFwAAnTt3xpgxY6BUKk37xEREREQSYZg1seogC5g+zF69ehUXLlyAnZ0dRo8eja5du3K1AiIiImrQGGZN7PZluUzdMxsaGooRI0YgJCQEPj4+pn0yIiIiIgvA1QxMzJQbJhQWFmLNmjXIz8/XHuvTpw+DLBEREdkMzsyamKnCbFpaGtavX4/i4mKoVCr83//9X/09OBEREZGVYJg1seo1ZoH6CbMajQa7d+/Gvn37AAA+Pj4YOXLk/T8wERERkRVimDWx+uyZLSgoQHx8PC5dugQA6N69O0aOHAl7e/v7e2AiIiIiK8Uwa2L11WaQlZWFFStWoLS0FEqlEpGRkejYseP9F0hERERkxRhmTay+wmzjxo3h6uoKd3d3xMTEoHHjxvdfHBEREZGVY5g1sfvpmS0sLISLiwtkMhns7e3x0EMPoVGjRrCz49tGREREBDDMmlxde2ZTU1OxYcMG9OnTBwMHDgQAuLu713N1RGRphBCorKyEWq2WuhQiIpOyt7eHQqG478dhmDUxY9sM1Go1tm/fjj/++AMAcO7cOfTv3x9yOZcEJmroVCoVMjMzUXL71oFERA2UTCZDQEAAXO7zCnmGWRMzJszeunUL8fHxuHr1KgAgLCwMw4cPZ5AlsgEajQbp6elQKBRo1qwZlEolt6MmogZLCIHr16/jypUraN269X3N0DLMmpihPbMpKSn4+eefUV5eDkdHR4wfPx5t27Y1fYFEZBFUKhU0Gg0CAwPh7OwsdTlERCbXpEkTZGRkoKKigmHWkhnSM1tYWIj4+Hio1WoEBAQgOjoaHh4eZqmPiCwLP4khIltRX58+McyamCFtBq6urhg5ciRyc3MxbNiwemmGJiIiIrIFDLMmVluYPX36NDw8PODv7w8A6Nmzp5krIyIiIrJ+/DzLxO4MsxUVFdi4cSPi4uIQFxeHsrIy6YojIrIywcHBWLJkSb2fS7br22+/xYgRI6Quo8FJTk5GQEAAim8PQiZiEWH2s88+Q3BwMBwdHREWFoZDhw7d9fy1a9eibdu2cHR0RKdOnbB582YzVWq86gvA5HKgqOgGvv32Wxw5cgQA0LFjRyiVSgmrIyK6f9OnT4dMJtNu8NK0aVMMHz4c3333HTQaTb0+159//olZs2bV+7l1cfvr1ncLDg422XPfKTg4WPu8zs7O6NSpE7755hud89RqNT766CN06tQJjo6O8PT0xKhRo7B//36dc1UqFd5991106dIFzs7O8Pb2Rr9+/bBs2TJUVFSY42WZXFlZGV555RUsXLhQ6lJMpqysDHPmzEHjxo3h4uKC6OhoZGdn33VMUVER5s6di4CAADg5OaF9+/b48ssvtV/PyMio9ed+7dq1AID27dujd+/e+PDDD036+gAAQmKrV68WSqVSfPfdd+L06dNi5syZwsPDQ2RnZ+s9f//+/UKhUIh3331XJCcni5dfflnY29uLkydPGvR8+fn5AoDIz8+vz5dRq3bthACE6NXruHj77bfFa6+9Jt59911x/vx5szw/EVmH0tJSkZycLEpLS6UuxWjTpk0TI0eOFJmZmeLKlSviyJEj4u233xYuLi5i1KhRoqKiQuoSTSIvL09kZmZqbwDEsmXLtPdzcnJqnF9eXm6yWoKCgsQbb7whMjMzRVpamnjnnXcEALF582btORqNRsTExAgPDw/x9ddfiwsXLoikpCQxc+ZMYWdnJ9avX1+j1sGDBwtPT0/x6aefimPHjom0tDSxcuVK0a1bN3Hs2DGTvZY7qVQqkz32Dz/8INq0aXPfj2PKGu/XY489JgIDA8WOHTvE4cOHRe/evUXfvn3vOmbmzJkiJCRE7Nq1S6Snp4ulS5cKhUIhfv75ZyGEEJWVlTV+9jMzM8Xrr78uXFxcRGFhofZxNm7cKPz8/Gr9HXC333vG5DXJw2yvXr3EnDlztPfVarVo1qyZWLx4sd7zH3zwQTFmzJgax8LCwsTs2bMNej5zh9ng4AoxbtwG8dprr4nXXntNLF++XBQUFJjluYnIelh7mB0/frzO8R07dggA4uuvv9Yeu3XrlnjkkUeEt7e3cHV1FUOGDBFJSUk1xiUkJIiePXsKBwcH0bhxYxEVFaX9WlBQkPjoo4+EEFXhbOHChSIwMFAolUrh5+cnnnzySb3nCiHExYsXxbhx40SjRo2Eq6uriI2NFVlZWdqvL1y4UHTp0kWsWLFCBAUFCTc3NzFp0iSDf2cDqBEIqwPmlClThKurq5g2bZoQQoh9+/aJ/v37C0dHRxEQECCefPJJUVRUpB1XVlYmnn32WdGsWTPh7OwsevXqJXbt2nXX577ztQohhJeXl3jmmWe091evXi0AiISEBJ3xEydOFI0bN9bW8Z///EfI5XJx9OhRnXNVKlWNeu+UmJgoBg0aJJycnISHh4cYMWKEyM3NrbXOLl26iIULF2rvAxCff/65iIyMFM7OzuKVV14R/v7+4vPPP68x7ujRo0Imk4mMjAwhhGE/W3caM2aMeO6552ocO3TokAgPDxeNGzcWbm5uYuDAgeLIkSM1zrmzxur6N2zYILp16yYcHBxEixYtxGuvvVYjyH3wwQeiY8eOwtnZWQQEBIjHH3+8Rvirb3l5ecLe3l6sXbtWeywlJUUAEAcOHKh1XIcOHcQbb7xR41j37t3FSy+9VOuYrl27iocffrjGsfLycuHg4CC2b9+ud0x9hVlJ2wxUKhWOHDmC8PBw7TG5XI7w8HAcOHBA75gDBw7UOB8AIiIiaj2/vLwcBQUFNW7mVFiogItLMYQABg0ahClTpsDV1dWsNRCR9erZEwgIMP+tPq5JHTp0KLp06YJ169Zpj8XGxiInJwe//vorjhw5gu7du2PYsGHIzc0FAGzatAkTJkzA6NGjcezYMezYsQO9evXS+/jx8fH46KOPsHTpUpw7dw4bNmxAp06d9J6r0Wgwfvx45ObmYs+ePdi2bRsuXLiASZMm1TgvLS0NGzZswMaNG7Fx40bs2bMH77zzTp2/B++//z66dOmCY8eO4ZVXXkFaWhpGjhyJ6OhonDhxAj/99BMSExMxd+5c7Zi5c+fiwIEDWL16NU6cOIHY2FiMHDkS586dM+g5NRoN4uPjcevWrRqtbKtWrUJoaCgiIyN1xjz77LO4efMmtm3bBgBYuXIlwsPD0a1bN51z7e3t0aiW5XmSkpIwbNgwtG/fHgcOHEBiYiIiIyON3p75tddew4QJE3Dy5Ek8+uij+Oc//4lVq1bVOGflypXo168fgoKCANz7Z0ufxMREnQuwCwsLMW3aNCQmJuKPP/5A69atMXr0aBQWFtZa48MPP4x9+/Zh6tSpePrpp5GcnIylS5di+fLlePvtt7Vj5HI5PvnkE5w+fRrff/89du7ciRdeeOGu34tRo0bBxcWl1luHDh1qHXvkyBFUVFTUyE1t27ZF8+bNa81NANC3b18kJCTg6tWrEEJg165dOHv2bK29xUeOHEFSUhIeeeSRGseVSiW6du2Kffv23fU13rd7xl0Tunr1qgAgfv/99xrHn3/+edGrVy+9Y+zt7cWqVatqHPvss8+Ej4+P3vMXLlwoAOjczDUz6+AghLNzsRg2LN0sz0dE1qm2GQp//6pWJXPf/P0Nr722mVkhhJg0aZJo166dEKJqRtLNzU2UlZXVOCckJEQsXbpUCCFEnz59xOTJk2t9rttn9j744AMRGhpa60e8t5/722+/CYVCIS5duqT9+unTpwUAcejQISFE1d8Xzs7ONWZin3/+eREWFlb7i78N9MzM3j6rLIQQjzzyiJg1a1aNY/v27RNyuVyUlpaKixcvCoVCIa5evVrjnGHDhokFCxbU+txBQUFCqVSKRo0aCTs7OwFAeHl5iXPnzmnPadu2ba3vU25urgAg/vOf/wghhHBychJPPfWUIS+7hn/+85+iX79+d63TkJnZf/3rXzXOOXbsmJDJZOLixYtCiKpPcf39/cUXX3whhDDsZ+tOt27dEgDE3r177/qa1Gq1cHV1Fb/88stdaxw2bJhYtGhRjWM//PCD8PPzq/Wx165dKxo3bnzX579y5Yo4d+5crbfqmWl9Vq5cKZRKpc7xBx54QLzwwgu1jisrKxNTp04VAISdnZ1QKpXi+++/r/X8xx9/XPv/+Z0mTJggpk+frvdr9TUz2+CX5lqwYAHmzZunvV9QUIDAwECzPf/Vq0BxsTM0mmCzPScRNRy+vtb9vEII7cLox48fR1FRERo3blzjnNLSUqSlpQGomtmbOXOmQY8dGxuLJUuWoGXLlhg5ciRGjx6NyMhI2Nnp/tWWkpKCwMDAGr//27dvDw8PD6SkpOCBBx4AUHUh1e2fnvn5+SEnJ8e4F32bO2f9jh8/jhMnTmDlypXaY0II7XbGFy5cgFqtRmhoaI1x5eXlOt+3Oz3//POYPn06MjMz8fzzz+OJJ55Aq1atapwjhDCobkPPu1NSUhJiY2PrNPZ2d37funbtinbt2mHVqlWYP38+9uzZg5ycHO1zGfKzdafS0lIAgKOjY43j2dnZePnll7F7927k5ORArVajpKQEly5dumuNx48fx/79+2vMxKrVapSVlaGkpATOzs7Yvn07Fi9ejDNnzqCgoACVlZU1vq5P9RKe5vTf//4Xf/zxBxISEhAUFIS9e/dizpw5aNasmc6n46WlpVi1ahVeeeUVvY/l5OSEkpISk9YraZj19vaGQqHQuaouOzsbvrX8JvX19TXqfAcHBzg4ONRPwXXQuHHVjYioLg4flrqC+5OSkoIWLVoAqLpC2s/PD7t379Y5r3rXQycnJ4MfOzAwEKmpqdi+fTu2bduGJ554Au+99x727NkDe3v7OtV75ziZTHZfKzLc+XF8UVERZs+ejaeeekrn3ObNm+PEiRNQKBQ4cuSIzgY6LrVtI/kXb29vtGrVCq1atcLatWvRqVMn9OzZE+3btwcAhIaGIiUlRe/Y6uPVITo0NBRnzpwx7EXe5l7vn1wu1wnK+lZG0NfGMHnyZG2YXbVqFUaOHKkNr4b8bN2pcePGkMlkuHXrVo3j06ZNw82bN/Hxxx8jKCgIDg4O6NOnD1Qq1V1rLCoqwuuvv46JEyfqPJejoyMyMjIwduxYPP7443j77bfh5eWFxMREPPLII1CpVLWG2VGjRt31Y/qgoCCcPn1a79d8fX2hUqmQl5dX4/twt9xUWlqKF198EevXr8eYMWMAAJ07d0ZSUhLef/99nTAbFxeHkpISTJ06Ve/j5ebmIiQkpNb664OkPbNKpRI9evTAjh07tMc0Gg127NiBPn366B3Tp0+fGucDwLZt22o9n4iIpLFz506cPHkS0dHRAIDu3bsjKysLdnZ22tBVffP29gZQ9Zfmnb/j78bJyQmRkZH45JNPsHv3bhw4cAAnT57UOa9du3a4fPkyLl++rD2WnJyMvLw8bdgzh+7duyM5OVnn9bdq1QpKpRLdunWDWq1GTk6OztdrCx/6BAYGYtKkSViwYIH22D/+8Q+cO3cOv/zyi875H3zwARo3bozhw4cDAB566CFs374dx44d0zm3oqKi1rVD7/X+NWnSBJmZmdr7BQUFSE9PN+g1PfTQQzh16hSOHDmCuLg4TJ48Wfs1Q3627qRUKtG+fXskJyfXOL5//3489dRTGD16NDp06AAHBwfcuHHjnvV1794dqampet9buVyOI0eOQKPR4IMPPkDv3r0RGhqKa9eu3fNxv/nmGyQlJdV6u9vypD169IC9vX2N9yQ1NRWXLl2qNTdVVFSgoqJCZ2tthUKh9x923377LcaNG4cmTZrofbxTp07p7b2uV/dsRDCx1atXCwcHB7F8+XKRnJwsZs2aJTw8PLRXmE6ZMkXMnz9fe/7+/fuFnZ2deP/990VKSopYuHChRS/NRURkCGtfzaC2pbnGjh0rKisrhRBVqw/0799fdOnSRWzdulWkp6eL/fv3ixdffFH8+eefQgghdu3aJeRyuXj11VdFcnKyOHHihHjnnXe0z3V7z+WyZcvEN998I06ePCnS0tLEyy+/LJycnMSNGzd0ztVoNKJr165iwIAB4siRI+LgwYOiR48eYtCgQdrHrl7N4HYfffSRCAoKMuj7AD09s3f2hx4/flw4OTmJOXPmiGPHjomzZ8+KDRs21FjVZ/LkySI4OFjEx8eLCxcuiIMHD4pFixaJjRs31vrc+p7r9OnTQiaTab+3Go1GTJgwQXh6eopvvvlGpKeni+PHj4tZs2bpLM1VVlYmBgwYoF2aKykpSaSlpYmffvpJdO/evdaluVJTU4VSqRSPP/64OH78uEhJSRGff/65uH79uhBCiPnz5wtfX1+xd+9eceLECREVFSVcXFx0emZvr+V2/fr1E126dBGurq6ipKREe9yQny195s2bJ6Kjo2sc69atmxg+fLhITk4Wf/zxhxgwYIBwcnKq8f3VV+OWLVuEnZ2deO2118SpU6dEcnKy+N///qddASApKUkAEEuWLBFpaWlixYoVwt/fXwAQt27dqrXG+/XYY4+J5s2bi507d4rDhw+LPn36iD59+tQ4p02bNmLdunXa+4MGDRIdOnQQu3btEhcuXBDLli0Tjo6OOitKnDt3TshkMvHrr7/qfe709PQaK07cqcEszSWEEP/9739F8+bNhVKpFL169RJ//PGH9muDBg3SLmdSbc2aNSI0NFQolUrRoUMHsWnTJoOfi2GWiCyRtYdZ/HVxrZ2dnWjSpIkIDw8X3333nVCr1TXOLSgoEE8++aRo1qyZsLe3F4GBgWLy5Mk1LsyKj48XXbt2FUqlUnh7e4uJEydqv3Z7aFu/fr0ICwsTbm5uolGjRqJ37941lgCq69Jct6vvMCtE1dJPw4cPFy4uLqJRo0aic+fO4u2339Z+XaVSiVdffVUEBwcLe3t74efnJyZMmCBOnDhR63PX9lwRERFi1KhR2vsVFRXivffeEx06dBBKpVK4ubmJiIgIkZiYqDO2rKxMLF68WHTq1Ek4OjoKLy8v0a9fP7F8+fK7rh28e/du0bdvX+Hg4CA8PDxERESENqzl5+eLSZMmCTc3NxEYGCiWL1+u9wKw2sLs559/LgCIqVOn6nzNkJ+tO50+fVo4OTmJvLw87bGjR4+Knj17CkdHR9G6dWuxdu1ane9vbTVu2bJF9O3bVzg5OQk3NzfRq1cv8dVXX2m//uGHHwo/Pz/h5OQkIiIixIoVK0weZktLS8UTTzwhPD09hbOzs5gwYYLIzMyscQ7+WiO5WmZmppg+fbpo1qyZcHR0FG3atBEffPCB0Gg0NcYtWLBABAYG6vx/Xm3RokUiIiLirrXVR5iV/fUibEZBQQHc3d2Rn58PNzc3qcshIgJQtUtPeno6WrRooXNBChGZTmxsLLp3716jJYPun0qlQuvWrbFq1Sr069dP7zl3+71nTF6ziO1siYiIiKTw3nvv3fPiOjLepUuX8OKLL9YaZOtTg1+ai4iIiKg2wcHBePLJJ6Uuo8GpvvjNHDgzS0RERERWi2GWiIiIiKwWwywRkQWxsWtyiciG1dfvO4ZZIiILUL3zlKm3fSQishTVu6rdududsXgBGBGRBVAoFPDw8EBOTg4AwNnZGTKZTOKqiIhMQ6PR4Pr163B2doad3f3FUYZZIiILUb1daXWgJSJqyORyOZo3b37f/3BnmCUishAymQx+fn7w8fFBRUWF1OUQEZmUUqmEXH7/Ha8Ms0REFkahUNx3DxkRka3gBWBEREREZLUYZomIiIjIajHMEhEREZHVsrme2eoFegsKCiSuhIiIiIj0qc5phmysYHNhtrCwEAAQGBgocSVEREREdDeFhYVwd3e/6zkyYWN7J2o0Gly7dg2urq5mWZC8oKAAgYGBuHz5Mtzc3Ez+fFT/+B5aP76H1o/voXXj+2f9zP0eCiFQWFiIZs2a3XP5LpubmZXL5QgICDD787q5ufF/YCvH99D68T20fnwPrRvfP+tnzvfwXjOy1XgBGBERERFZLYZZIiIiIrJaDLMm5uDggIULF8LBwUHqUqiO+B5aP76H1o/voXXj+2f9LPk9tLkLwIiIiIio4eDMLBERERFZLYZZIiIiIrJaDLNEREREZLUYZomIiIjIajHM1oPPPvsMwcHBcHR0RFhYGA4dOnTX89euXYu2bdvC0dERnTp1wubNm81UKdXGmPfw66+/xoABA+Dp6QlPT0+Eh4ff8z0n0zP2/8Nqq1evhkwmQ1RUlGkLpHsy9j3My8vDnDlz4OfnBwcHB4SGhvL3qYSMff+WLFmCNm3awMnJCYGBgXjmmWdQVlZmpmrpTnv37kVkZCSaNWsGmUyGDRs23HPM7t270b17dzg4OKBVq1ZYvny5yevUS9B9Wb16tVAqleK7774Tp0+fFjNnzhQeHh4iOztb7/n79+8XCoVCvPvuuyI5OVm8/PLLwt7eXpw8edLMlVM1Y9/Dhx56SHz22Wfi2LFjIiUlRUyfPl24u7uLK1eumLlyqmbse1gtPT1d+Pv7iwEDBojx48ebp1jSy9j3sLy8XPTs2VOMHj1aJCYmivT0dLF7926RlJRk5spJCOPfv5UrVwoHBwexcuVKkZ6eLrZu3Sr8/PzEM888Y+bKqdrmzZvFSy+9JNatWycAiPXr19/1/AsXLghnZ2cxb948kZycLP773/8KhUIhtmzZYp6Cb8Mwe5969eol5syZo72vVqtFs2bNxOLFi/We/+CDD4oxY8bUOBYWFiZmz55t0jqpdsa+h3eqrKwUrq6u4vvvvzdViXQPdXkPKysrRd++fcU333wjpk2bxjArMWPfwy+++EK0bNlSqFQqc5VId2Hs+zdnzhwxdOjQGsfmzZsn+vXrZ9I6yTCGhNkXXnhBdOjQocaxSZMmiYiICBNWph/bDO6DSqXCkSNHEB4erj0ml8sRHh6OAwcO6B1z4MCBGucDQERERK3nk2nV5T28U0lJCSoqKuDl5WWqMuku6voevvHGG/Dx8cEjjzxijjLpLuryHiYkJKBPnz6YM2cOmjZtio4dO2LRokVQq9XmKpv+Upf3r2/fvjhy5Ii2FeHChQvYvHkzRo8ebZaa6f5ZUp6xM/szNiA3btyAWq1G06ZNaxxv2rQpzpw5o3dMVlaW3vOzsrJMVifVri7v4Z3+/e9/o1mzZjr/U5N51OU9TExMxLfffoukpCQzVEj3Upf38MKFC9i5cycmT56MzZs34/z583jiiSdQUVGBhQsXmqNs+ktd3r+HHnoIN27cQP/+/SGEQGVlJR577DG8+OKL5iiZ6kFteaagoAClpaVwcnIyWy2cmSW6D++88w5Wr16N9evXw9HRUepyyACFhYWYMmUKvv76a3h7e0tdDtWRRqOBj48PvvrqK/To0QOTJk3CSy+9hC+//FLq0sgAu3fvxqJFi/D555/j6NGjWLduHTZt2oQ333xT6tLICnFm9j54e3tDoVAgOzu7xvHs7Gz4+vrqHePr62vU+WRadXkPq73//vt45513sH37dnTu3NmUZdJdGPsepqWlISMjA5GRkdpjGo0GAGBnZ4fU1FSEhISYtmiqoS7/H/r5+cHe3h4KhUJ7rF27dsjKyoJKpYJSqTRpzfS3urx/r7zyCqZMmYJHH30UANCpUycUFxdj1qxZeOmllyCXc67N0tWWZ9zc3Mw6KwtwZva+KJVK9OjRAzt27NAe02g02LFjB/r06aN3TJ8+fWqcDwDbtm2r9Xwyrbq8hwDw7rvv4s0338SWLVvQs2dPc5RKtTD2PWzbti1OnjyJpKQk7W3cuHEYMmQIkpKSEBgYaM7yCXX7/7Bfv344f/689h8iAHD27Fn4+fkxyJpZXd6/kpISncBa/Q8TIYTpiqV6Y1F5xuyXnDUwq1evFg4ODmL58uUiOTlZzJo1S3h4eIisrCwhhBBTpkwR8+fP156/f/9+YWdnJ95//32RkpIiFi5cyKW5JGbse/jOO+8IpVIp4uLiRGZmpvZWWFgo1Uuweca+h3fiagbSM/Y9vHTpknB1dRVz584VqampYuPGjcLHx0e89dZbUr0Em2bs+7dw4ULh6uoq/ve//4kLFy6I3377TYSEhIgHH3xQqpdg8woLC8WxY8fEsWPHBADx4YcfimPHjomLFy8KIYSYP3++mDJlivb86qW5nn/+eZGSkiI+++wzLs1lzf773/+K5s2bC6VSKXr16iX++OMP7dcGDRokpk2bVuP8NWvWiNDQUKFUKkWHDh3Epk2bzFwx3cmY9zAoKEgA0LktXLjQ/IWTlrH/H96OYdYyGPse/v777yIsLEw4ODiIli1birfffltUVlaauWqqZsz7V1FRIV577TUREhIiHB0dRWBgoHjiiSfErVu3zF84CSGE2LVrl96/26rft2nTpolBgwbpjOnatatQKpWiZcuWYtmyZWavWwghZEJwPp+IiIiIrBN7ZomIiIjIajHMEhEREZHVYpglIiIiIqvFMEtEREREVothloiIiIisFsMsEREREVkthlkiIiIisloMs0RERERktRhmiYgALF++HB4eHlKXUWcymQwbNmy46znTp09HVFSUWeohIjIXhlkiajCmT58OmUymczt//rzUpWH58uXaeuRyOQICAjBjxgzk5OTUy+NnZmZi1KhRAICMjAzIZDIkJSXVOOfjjz/G8uXL6+X5avPaa69pX6dCoUBgYCBmzZqF3Nxcox6HwZuIDGUndQFERPVp5MiRWLZsWY1jTZo0kaiamtzc3JCamgqNRoPjx49jxowZuHbtGrZu3Xrfj+3r63vPc9zd3e/7eQzRoUMHbN++HWq1GikpKXj44YeRn5+Pn376ySzPT0S2hTOzRNSgODg4wNfXt8ZNoVDgww8/RKdOndCoUSMEBgbiiSeeQFFRUa2Pc/z4cQwZMgSurq5wc3NDjx49cPjwYe3XExMTMWDAADg5OSEwMBBPPfUUiouL71qbTCaDr68vmjVrhlGjRuGpp57C9u3bUVpaCo1GgzfeeAMBAQFwcHBA165dsWXLFu1YlUqFuXPnws/PD46OjggKCsLixYtrPHZ1m0GLFi0AAN26dYNMJsPgwYMB1Jzt/Oqrr9CsWTNoNJoaNY4fPx4PP/yw9v7PP/+M7t27w9HRES1btsTrr7+OysrKu75OOzs7+Pr6wt/fH+Hh4YiNjcW2bdu0X1er1XjkkUfQokULODk5oU2bNvj444+1X3/ttdfw/fff4+eff9bO8u7evRsAcPnyZTz44IPw8PCAl5cXxo8fj4yMjLvWQ0QNG8MsEdkEuVyOTz75BKdPn8b333+PnTt34oUXXqj1/MmTJyMgIAB//vknjhw5gvnz58Pe3h4AkJaWhpEjRyI6OhonTpzATz/9hMTERMydO9eompycnKDRaFBZWYmPP/4YH3zwAd5//32cOHECERERGDduHM6dOwcA+OSTT5CQkIA1a9YgNTUVK1euRHBwsN7HPXToEABg+/btyMzMxLp163TOiY2Nxc2bN7Fr1y7tsdzcXGzZsgWTJ08GAOzbtw9Tp07F008/jeTkZCxduhTLly/H22+/bfBrzMjIwNatW6FUKrXHNBoNAgICsHbtWiQnJ+PVV1/Fiy++iDVr1gAAnnvuOTz44IMYOXIkMjMzkZmZib59+6KiogIRERFwdXXFvn37sH//fri4uGDkyJFQqVQG10REDYwgImogpk2bJhQKhWjUqJH2FhMTo/fctWvXisaNG2vvL1u2TLi7u2vvu7q6iuXLl+sd+8gjj4hZs2bVOLZv3z4hl8tFaWmp3jF3Pv7Zs2dFaGio6NmzpxBCiGbNmom33367xpgHHnhAPPHEE0IIIZ588kkxdOhQodFo9D4+ALF+/XohhBDp6ekCgDh27FiNc6ZNmybGjx+vvT9+/Hjx8MMPa+8vXbpUNGvWTKjVaiGEEMOGDROLFi2q8Rg//PCD8PPz01uDEEIsXLhQyOVy0ahRI+Ho6CgACADiww8/rHWMEELMmTNHREdH11pr9XO3adOmxvegvLxcODk5ia1bt9718Ymo4WLPLBE1KEOGDMEXX3yhvd+oUSMAVbOUixcvxpkzZ1BQUIDKykqUlZWhpKQEzs7OOo8zb948PProo/jhhx+0H5WHhIQAqGpBOHHiBFauXKk9XwgBjUaD9PR0tGvXTm9t+fn5cHFxgUajQVlZGfr3749vvvkGBQUFuHbtGvr161fj/H79+uH48eMAqloEhg8fjjZt2mDkyJEYO3YsRowYcV/fq8mTJ2PmzJn4/PPP4eDggJUrV+If//gH5HK59nXu3///7d1fSNNrHMfx97EQLebFKKldWBe6EZTVL1cZhCBBRYU4wpFCNxJi6ML+UBdmjSiyUKEICsKgkiZ1k7S06MKynxBWrKBsy9L+3AQpFAOHYjsXB0fLf9iBc852Pq/L5/c8v9/3+e3ms4fn2cy4ldixsbFp3xuAw+Ggra2NSCTC9evXCQQCVFdXx/W5cOECzc3NfPz4keHhYUZGRli1atW09b548YK+vj4sFktceyQS4d27d7/xBkQkGSjMikhSmT9/PtnZ2XFtAwMDbN++ncrKSk6ePInVauXx48eUl5czMjIyaSg7fvw4paWl+P1+2tvbOXbsGD6fj+LiYsLhMBUVFXg8ngnjsrKypqzNYrHw/PlzUlJSWLx4Menp6QB8//59xnkZhkF/fz/t7e08ePCAkpISNm3axK1bt2YcO5UdO3YQjUbx+/04nU66urpoamqKXQ+Hw3i9Xlwu14SxaWlpU943NTU19hmcPn2abdu24fV6OXHiBAA+n4+DBw/S0NBAfn4+FouFs2fP8uTJk2nrDYfDrFmzJu5LxLj/yiE/EfnnKcyKSNJ79uwZP378oKGhIbbqOL4/czp2ux273U5NTQ27du3iypUrFBcXYxgGr1+/nhCaZ5KSkjLpmIyMDGw2G6ZpUlBQEGs3TZO1a9fG9XO73bjdbnbu3MmWLVsYGhrCarXG3W98f+rY2Ni09aSlpeFyuWhpaaGvrw+Hw4FhGLHrhmEQDAZnPc9f1dbWUlhYSGVlZWyeGzZsYO/evbE+v66spqamTqjfMAxaW1vJzMwkIyPjb9UkIslDB8BEJOllZ2czOjrK+fPnef/+PdeuXePixYtT9h8eHqaqqorOzk4+fPiAaZr09PTEtg8cPnyY7u5uqqqqCAQCvH37ltu3b8/6ANjPDh06RH19Pa2trQSDQY4cOUIgEGDfvn0ANDY2cuPGDd68eUMoFOLmzZssWrRo0j96yMzMJD09nY6ODr58+cK3b9+mfG5ZWRl+v5/m5ubYwa9xdXV1XL16Fa/Xy6tXr+jt7cXn81FbWzurueXn55Obm8upU6cAyMnJ4enTp9y7d49QKMTRo0fp6emJG7N06VJevnxJMBjk69evjI6OUlZWxoIFCygqKqKrq4v+/n46OzvxeDx8/vx5VjWJSPJQmBWRpLdy5UoaGxupr69n+fLltLS0xP2s1a/mzJnD4OAgu3fvxm63U1JSwtatW/F6vQDk5uby8OFDQqEQGzduZPXq1dTV1WGz2X67Ro/Hw/79+zlw4AArVqygo6ODtrY2cnJygL+2KJw5c4a8vDycTicDAwPcvXs3ttL8s7lz53Lu3DkuXbqEzWajqKhoyucWFhZitVoJBoOUlpbGXdu8eTN37tzh/v37OJ1O1q9fT1NTE0uWLJn1/Gpqarh8+TKfPn2ioqICl8uF2+1m3bp1DA4Oxq3SAuzZsweHw0FeXh4LFy7ENE3mzZvHo0ePyMrKwuVysWzZMsrLy4lEIlqpFfkf+yMajUb/7SJERERERH6HVmZFREREJGEpzIqIiIhIwlKYFREREZGEpTArIiIiIglLYVZEREREEpbCrIiIiIgkLIVZEREREUlYCrMiIiIikrAUZkVEREQkYSnMioiIiEjCUpgVERERkYT1J9Kf+8ZvQwXIAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 600x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAIjCAYAAABS7iKKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMslJREFUeJzt3Xt8jvXjx/H3vbEZO5pDCMMy5FTpIIc5RQohfCOaHL5pYSOHfCtMaiWHpHKqHJaUkIQSi6SDmMM3h1ZkSBOZ0zbb2K7fH37ur9uG+6PZfeP1fDz2eHRf13Vf1+eyxmvX6bZZlmUJAADAgIerBwAAAK4/BAQAADBGQAAAAGMEBAAAMEZAAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBCBp9OjRstls+vvvv109lOvOxo0bdf/996tYsWKy2WzaunVrvq5/7dq1stlsWrt2bb6u93oWEhKinj17unoYuMkREEA+aNKkiWw2m9q2bZtrXlJSkmw2m8aPH2+fdv4fRZvNpoSEhFzv6dmzp3x9fZ3e/tatW9W9e3eVL19e3t7eKl68uFq0aKFZs2YpOzv76nbKCWfOnFHnzp2VkpKiSZMmKS4uThUrVrxm2yto57+vt912W57zV61aZf8+Lly40Hj9O3fu1OjRo5WUlPQPRwoUvEKuHgBwI1m2bJkSEhJ01113Of2e0aNH6/PPP7/qbb777rvq16+fSpcurR49eui2227TqVOnFB8fr969eys5OVn/+c9/rnr9l7Nnzx7t27dPM2fOVJ8+fa7JNho3bqzTp0/Ly8vrmqz/SooUKaLdu3frp59+0j333OMwb968eSpSpIgyMjKuat07d+5UTEyMmjRpopCQEKffl5iYKA8Pfv+DaxEQQD6pUKGCTp06pZiYGC1dutSp99StW1fLli3T5s2bdeeddxpv88cff1S/fv1Uv359rVixQn5+fvZ50dHR2rRpk7Zv3268XmcdPnxYkhQYGHjNtuHh4aEiRYpcs/VfSZUqVXT27FnNnz/fISAyMjL06aef6uGHH9aiRYuu+Tgsy1JGRoZ8fHzk7e19zbcHXAkJC1zCvn37FBoaqpo1a+qvv/664vJ+fn4aNGiQPv/8c23evNmpbQwYMEBBQUEaPXr0VY0xJiZGNptN8+bNc4iH8+rVq+dwrjwtLU3PPvus/VRHWFiYxo8fr4s/lNdms6l///5asmSJatasKW9vb91+++368ssv7cv07NlT4eHhkqTOnTvLZrOpSZMmks4d+j//3xfq2bNnrt+0P/roI911113y8/OTv7+/atWqpcmTJ9vnX+oaiE8++UR33XWXfHx8VKJECXXv3l0HDx7MtT1fX18dPHhQ7du3l6+vr0qWLKkhQ4YYndrp2rWrPv74Y+Xk5Ninff7550pPT1eXLl1yLb9v3z5FRkYqLCxMPj4+Cg4OVufOnR1OVcyePVudO3eWJDVt2tR+KuT8foaEhKhNmzZauXKl6tWrJx8fH02fPt0+7/z31bIsNW3aVCVLlrQHnSRlZWWpVq1aqlKlitLS0pzeV8BZBASQhz179qhx48by8/PT2rVrVbp0aafeFxUVZRQE/v7+xtFxXnp6uuLj49W4cWNVqFDhistblqV27dpp0qRJevDBBzVx4kSFhYVp6NChGjx4cK7l169fr8jISD322GMaN26cMjIy9Oijj+ro0aOSpKeeesp+amTgwIGKi4vT888/b7QPq1atUteuXRUUFKTXXntNr776qpo0aaLvvvvusu+bPXu2unTpIk9PT8XGxqpv375avHixGjZsqOPHjzssm52drVatWik4OFjjx49XeHi4JkyYoBkzZjg9zm7duik5OdkhYj788EM1b95cpUqVyrX8xo0b9f333+uxxx7Tm2++qX79+ik+Pl5NmjRRenq6pHOnZgYOHChJ+s9//qO4uDjFxcWpevXq9vUkJiaqa9eueuCBBzR58mTVrVs317ZsNpvef/99ZWRkqF+/fvbpo0aN0o4dOzRr1iwVK1bM6X0FnGYBsEaNGmVJso4cOWLt2rXLKlu2rHX33XdbKSkpTr0/PDzcuv322y3LsqyYmBhLkpWQkGBZlmXt3bvXkmS9/vrr9uXXrFljSbI++eQT6/jx41ZQUJDVrl07+/yIiAirWLFil93mtm3bLElWVFSUU2NcsmSJJckaO3asw/ROnTpZNpvN2r17t32aJMvLy8th2vntTZkyJc/9uPjPIzw8PNcYIiIirIoVK9pfR0VFWf7+/tbZs2cvOe7z21izZo1lWZaVlZVllSpVyqpZs6Z1+vRp+3LLli2zJFkjR4502J4ka8yYMQ7rvOOOO6y77rrrktu8cD/Of1/r1atn9e7d27Isyzp27Jjl5eVlzZkzJ88/g/T09Fzr+uGHHyxJ1ty5c+3TPvnkE4d9u1DFihUtSdaXX36Z57yIiAiHadOnT7ckWR988IH1448/Wp6enlZ0dPQV9xG4WhyBAC6wfft2hYeHKyQkRKtXr1ZQUJDxOs4fhYiJiXFq+YCAAEVHR2vp0qXasmWL09s5efKkJOV56iIvK1askKenp/233vOeffZZWZalL774wmF6ixYtVKVKFfvr2rVry9/fX7///rvTY7ySwMBApaWladWqVU6/Z9OmTTp8+LAiIyMdro14+OGHVa1aNS1fvjzXey78zVySGjVqZLwf3bp10+LFi5WVlaWFCxfK09NTHTp0yHNZHx8f+3+fOXNGR48eVWhoqAIDA42ONFWqVEmtWrVyatl///vfatWqlQYMGKAePXqoSpUqeuWVV5zeFmCKgAAu0LZtW/n5+WnlypXy9/d3mJeamqpDhw7Zv44cOZLnOq4mCKKiohQYGGh0LcT58Z06dcqp5fft26eyZcvmCo7zh8z37dvnMD2v0yJBQUE6duyY02O8ksjISFWtWlWtW7fWrbfeql69ejlcZ5GX8+MMCwvLNa9atWq59qNIkSIqWbKkw7Sr2Y/HHntMJ06c0BdffKF58+apTZs2l4y306dPa+TIkfZrTUqUKKGSJUvq+PHjOnHihNPbrFSpktEY33vvPaWnp+u3337T7NmzHUIGyG8EBHCBRx99VHv27NG8efNyzRs/frzKlClj/7r77rsvuZ7zQXAtj0KEhoaqUKFC+vnnn51a3pSnp2ee062LLrjMi81my3P6xRculipVSlu3btXSpUvVrl07rVmzRq1bt1ZERIT5gC/hUvthqkyZMmrSpIkmTJigdevWqVu3bpdcdsCAAXr55ZfVpUsXLViwQF999ZVWrVql4OBghwsxr8Q0ANauXavMzExJumb/XwDncRsncIHXX39dhQoVUmRkpPz8/Bz+kXjiiSfUsGFD++vL/eV+PghGjx7t9D+G0dHReuONNxQTE+PUbZFFixZVs2bN9PXXX+vAgQMqX778ZZevWLGiVq9erVOnTjn85vzLL7/Y5+eXoKCgPE8RXHx0QJK8vLzUtm1btW3bVjk5OYqMjNT06dP14osvKjQ0NM/9kM5dYNisWTOHeYmJidf0QVbdunVTnz59FBgYqIceeuiSyy1cuFARERGaMGGCfVpGRkauCzwvFVpXIzk5WQMGDFDLli3l5eWlIUOGqFWrVjfUg73gXjgCAVzAZrNpxowZ6tSpkyIiIhye51C5cmW1aNHC/tWgQYPLris6OlqBgYEaM2aMU9s+Hx2fffaZ04+DHjVqlCzLUo8ePZSampprfkJCgubMmSNJeuihh5Sdna233nrLYZlJkybJZrOpdevWTm3TGVWqVNEvv/zicJpn27Ztue6uOH9Hx3keHh6qXbu2JNl/k75YvXr1VKpUKU2bNs1hmS+++EK7du3Sww8/nF+7kUunTp00atQovfPOO5d9sJWnp2euIzVTpkzJdQTm/N0RF4fF1ejbt69ycnL03nvvacaMGSpUqJB69+7t1BEj4GpwBAK4iIeHhz744AO1b99eXbp00YoVK3L9puuMgIAARUVFOX0aQzp36mPSpEnatm2bU7fe3X///Xr77bcVGRmpatWqOTyJcu3atVq6dKnGjh0r6dz1HU2bNtXzzz+vpKQk1alTR1999ZU+++wzRUdHO1ww+U/16tVLEydOVKtWrdS7d28dPnxY06ZN0+23326/+FOS+vTpo5SUFDVr1ky33nqr9u3bpylTpqhu3boOtzNeqHDhwnrttdf05JNPKjw8XF27dtVff/2lyZMnKyQkRIMGDcq3/bhYQECAU9eptGnTRnFxcQoICFCNGjX0ww8/aPXq1QoODnZYrm7duvL09NRrr72mEydOyNvbW82aNcvz1tDLmTVrlpYvX67Zs2fr1ltvlXQuWLp3766pU6cqMjLSaH2AMzgCAeShcOHCWrhwoe677z498sgj2rBhw1WtJzo6WgEBAU4vHxgYqOjoaKNtPPXUU9q4caPCw8M1d+5c9evXTzExMTp16pRmzZql4cOHSzoXRkuXLlV0dLSWLVum6Oho7dy5U6+//romTpxotM0rqV69uubOnasTJ05o8ODBWrp0qeLi4nI9bbN79+4qUqSI3nnnHUVGRmrOnDn617/+pS+++OKyj2ru2bOnPv74Y2VlZWn48OGaPn26OnTooPXr11/Tp2I6a/LkyXriiSc0b948Pfvss0pOTtbq1atzfb7JLbfcomnTpunw4cPq3bu3unbtqp07dxpt648//tCgQYPUtm1bh9Nljz/+uDp06KBhw4Zp7969+bJfwIVsFse3AACAIY5AAAAAYwQEAAAwRkAAAABjBAQAADBGQAAAAGMEBAAAMEZAAAAAYzfkkyh97ujv6iEAuIxjG9+68kIAXKKIk2XAEQgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCskKsHIEmWZWnhwoVas2aNDh8+rJycHIf5ixcvdtHIAABAXtwiIKKjozV9+nQ1bdpUpUuXls1mc/WQAADAZbhFQMTFxWnx4sV66KGHXD0UAADgBLe4BiIgIECVK1d29TAAAICT3CIgRo8erZiYGJ0+fdrVQwEAAE5wi1MYXbp00fz581WqVCmFhISocOHCDvM3b97sopEBAIC8uEVAREREKCEhQd27d+ciypuEb1FvjYpso3bN6qhkkK+2Jf6hIeMWKmHnfvsyYZVKa2xUezW6M1SFCnnol98PqeuQd3Xg0LFc61vy1tNq1eB2dRk0Q5+v/W9B7gpwU0rYtFGz339Pu3Zu15EjRzTpzbfVrHkLVw8LBcgtAmL58uVauXKlGjZs6OqhoIBMHdlNNULLqtcLc5R85IS6PnSPlk8boDsfHas/j5xQpVtLKP79wZqz5HuNnbpcJ9MyVKNKGWVknsm1rgGPN5VluWAngJvY6dPpCgsLU/uOj2pwVH9XDwcu4BYBUb58efn7+7t6GCggRbwLq33zuuo8aIa+27xHkvTy9BV6qHFN9e3cSDHvLFNM/7ZauX6Hnp/8mf19e//4O9e6alctp6gezdTg8XFKWh1bYPsA3OwaNgpXw0bhrh4GXMgtLqKcMGGChg0bpqSkJFcPBQWgkKeHChXyVEaW49GEjMwzuv+OKrLZbHqw4e36bf9hLX37Ge2Lj9W6uUPUtklth+V9ihTW7Niein51gf46eqogdwEAbnpuERDdu3fXmjVrVKVKFfn5+al48eIOX5eTmZmpkydPOnxZOdkFNHJcjdT0TP247XeN6NtaZUoGyMPDpsceulv31q6kW0r4q1RxX/kVK6IhTz6gVd/vVNun39LSNdv00YQ+anhXqH094559VD9u26tla3924d4AwM3JLU5hvPHGG1f93tjYWMXExDhM8yx9twqXuecfjgrXUq8X5mr66Mf1+1cv6+zZbG395YAWfLlJd1SvIA+Pc127bO3PmjJvjSTpv78e1L11Kqtvp4Zan7BbD4fXUpN7quq+x1515W4AwE3LLQIiIiLiqt87YsQIDR482GFaqUbD/+mQcI3t/eNvtewzWUWLeMnft4gO/X1Sca8+qb0H/9bfx1J15ky2dv2e7PCexN8P6f47zj1wrMndVVX51hI6tO51h2Xmj++j77bsUau+kwtsXwDgZuQWAXGhjIwMZWVlOUy73AWW3t7e8vb2dphm8/C8JmND/kvPyFJ6RpYC/XzU4v7qev6Nz3TmbLYSdu5T1YqlHZa9rWIp7U8+dwvn+Flfadan3zvMT1j4vIZNWKTl32wvsPEDwM3KLQIiLS1Nw4cP14IFC3T06NFc87OzuabhRtOifnXZbNKvSYdVpXxJvTKovX7d+5fmLv1BkjRpzmrFvdZL6zfv1jebflXL+2voocY17UcW/jp6Ks8LJw8kH9O+P3P/PwQgf6WnpWn//v89t+XgH3/ol127FBAQoDJly7pwZCgobhEQw4YN05o1azR16lT16NFDb7/9tg4ePKjp06fr1Vc5x30jCvAtojED2qlc6UClnEjXZ/FbNertz3X27LmPcl+65r8a8PJHGtqrpSYM66Rf9x1W16Hv6vutv7t45AAkaceO7erz5BP21+PHnbuNut0jHfTSK/y9fTOwWZbrH8FToUIFzZ07V02aNJG/v782b96s0NBQxcXFaf78+VqxYoXR+nzu4KEmgDs7tvEtVw8BwCUUcfLQglvcxpmSkmL/NE5/f3+lpKRIkho2bKh169a5cmgAACAPbhEQlStX1t69eyVJ1apV04IFCyRJn3/+uQIDA104MgAAkBe3CIgnn3xS27ZtkyQ999xzevvtt1WkSBENGjRIQ4cOdfHoAADAxdziGoiL7du3TwkJCQoNDVXt2rWv/IaLcA0E4N64BgJwX85eA+EWd2FIUnx8vOLj43X48GHl5OQ4zHv//fddNCoAAJAXtwiImJgYjRkzRvXq1VOZMmVks9lcPSQAAHAZbhEQ06ZN0+zZs9WjRw9XDwUAADjBLS6izMrK0v333+/qYQAAACe5RUD06dNHH374oauHAQAAnOSyUxgXfoJmTk6OZsyYodWrV6t27doqXLiww7ITJ04s6OEBAIDLcFlAbNmyxeF13bp1JUnbtzt+kiIXVAIA4H5cFhBr1qxx1aYBAMA/5BbXQAAAgOsLAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMDYVQXEt99+q+7du6t+/fo6ePCgJCkuLk7r16/P18EBAAD3ZBwQixYtUqtWreTj46MtW7YoMzNTknTixAm98sor+T5AAADgfowDYuzYsZo2bZpmzpypwoUL26c3aNBAmzdvztfBAQAA92QcEImJiWrcuHGu6QEBATp+/Hh+jAkAALg544C45ZZbtHv37lzT169fr8qVK+fLoAAAgHszDoi+ffsqKipKGzZskM1m059//ql58+ZpyJAhevrpp6/FGAEAgJspZPqG5557Tjk5OWrevLnS09PVuHFjeXt7a8iQIRowYMC1GCMAAHAzNsuyrKt5Y1ZWlnbv3q3U1FTVqFFDvr6++T22q+ZzR39XDwHAZRzb+JarhwDgEoo4eWjB+AjEeV5eXqpRo8bVvh0AAFzHjAOiadOmstlsl5z/9ddf/6MBAQAA92ccEHXr1nV4febMGW3dulXbt29XREREfo0LAAC4MeOAmDRpUp7TR48erdTU1H88IAAA4P7y7cO0unfvrvfffz+/VgcAANzYVV9EebEffvhBRYoUya/V/SOJ8RNcPQQAl5FxJtvVQwBwCUUKeTq1nHFAdOzY0eG1ZVlKTk7Wpk2b9OKLL5quDgAAXIeMAyIgIMDhtYeHh8LCwjRmzBi1bNky3wYGAADcl9GDpLKzs/Xdd9+pVq1aCgoKupbj+kf2p2S6eggALsPfJ9/OngLIZ4E+zp3CMLqI0tPTUy1btuRTNwEAuMkZ34VRs2ZN/f7779diLAAA4DphHBBjx47VkCFDtGzZMiUnJ+vkyZMOXwAA4Mbn9DUQY8aM0bPPPis/P7//vfmCR1pbliWbzabsbNffnsU1EIB74xoIwH05ew2E0wHh6emp5ORk7dq167LLhYeHO7Xha4mAANwbAQG4L2cDwumf4vOd4Q6BAAAAXMvoGojLfQonAAC4eRgdR6xateoVIyIlJeUfDQgAALg/o4CIiYnJ9SRKAABw83H6IkoPDw8dOnRIpUqVutZj+se4iBJwb1xECbivfH8SJdc/AACA85wOCIOPzAAAADc4p48j5uTkXMtxAACA64jxo6wBAAAICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCrl6AEePHtXIkSO1Zs0aHT58WDk5OQ7zU1JSXDQyAABwKS4PiB49emj37t3q3bu3SpcuLZvN5uohAQCAK7BZlmW5cgB+fn5av3696tSpk2/r3J+SmW/rApD//H1c/rsLgEsI9PF0ajmXXwNRrVo1nT592tXDAAAABlweEO+8846ef/55ffPNNzp69KhOnjzp8AUAANyPy48jBgYG6uTJk2rWrJnDdMuyZLPZlJ2d7aKRAQCAS3F5QDz++OMqXLiwPvzwQy6iBADgOuHygNi+fbu2bNmisLAwVw8FAAA4yeXXQNSrV08HDhxw9TAAAIABlx+BGDBggKKiojR06FDVqlVLhQsXdphfu3ZtF40MAABcisufA+HhkfsgiM1m+0cXUfIcCPf33y2b9Mm82fo1cZdS/j6i0a++oQbh/7uQ1rIszZn5jr5Yukipp07p9tp1NXDYC7q1fEX7Mn/sT9KMtyZqx3+36uyZM6oUWlU9//2M6t51jyt2CQZ4DsT1bc77M/XOm5P0r249NHjYCJ04cVwzp76lDT98r78OJSswKEjhTZvrqciB8vXzc/VwYcjZ50C4/Kd47969rh4CXCAj47Qq3xamVm06KGbEoFzzP/5glpZ88qGGvThWt5Qtp9kz3tKI6H5678Ml8vL2liS9MGSAypWvoNffelde3t5a/NEHenFIf81ZuELFg0sU9C4BN4Wd23/WpwsXKLTq/65b+/vIER05ckQDBw9VpcpVdCj5T706NkZHjhzRq+PfcN1gcU25PCAqVqx45YVww7mnfiPdU79RnvMsy9KnH3+gx3v21f2Nm0qSho98WZ0fbqrv1n2tpg+01onjx3TwwD49+5/RqhxaVZLUJzJany/+WEl7dhMQwDWQnp6mkf8Zpv+MjNGsmdPt06uE3qbXJky2v761fAU93T9Ko54frrNnz6pQIZf/U4NrwG2+qzt37tT+/fuVlZXlML1du3YuGhFc5dCfB5Vy9G/dcfd99mnFfP1UrUYt7dy+TU0faC3/gECVrxCiVV98rtCw6vIq7KXlSz5RYFBx3VathgtHD9y4Xn9lrBo0Ctc9993vEBB5SU1NVTFfX+LhBuby7+zvv/+uDh066Oeff7Zf+yDJ/jyIK10DkZmZqczMzIumSd7/f5gb15+Uo39LkoKKBztMDyoerGNHj0o69//Ha1NmaNTwaD3SvL5sHh4KDCqu2ElT5efvX+BjBm50X325Qom/7NSseQuuuOzxY8f0/sypat+xcwGMDK7i8ts4o6KiVKlSJR0+fFhFixbVjh07tG7dOtWrV09r16694vtjY2MVEBDg8PXOG+Ou/cDhUpZlacr4VxQYVFwTp87WW+/NU4PGTfXi0AE6+vcRVw8PuKH8dShZE8fFKuaVcVf85Sw1NVWDB/RTpcpV1LffMwU0QriCy49A/PDDD/r6669VokQJeXh4yMPDQw0bNlRsbKwGDhyoLVu2XPb9I0aM0ODBgx2m/ZV2LUeMa+389QvHUo4quERJ+/RjKUdV5f8v3NqyaYM2fLdOi79ar2LFfCVJtw2toYSfftSqFUv12BO9C37gwA3ql507dCzlqCK6drJPy87O1pbNm7Tw4w/17U9b5enpqbS0NEVH/ltFixXTaxOnqNBFt+XjxuLygMjOzpbf/9/mU6JECf35558KCwtTxYoVlZiYeMX3e3t75yri42e5jfN6dkvZcioeXEJbNm1QaNVqkqS0tFT9svNnte3YRZKUmZEhSfKwOR5E8/CwKScnp2AHDNzg6t1bXx8u/Mxh2ksjn1fFSpX0xJN95OnpqdTUVEVF9pVXYS+Nf+NtTiPfBFweEDVr1tS2bdtUqVIl3XvvvRo3bpy8vLw0Y8YMVa5c2dXDwzVyOj1dB//Yb3996M+D2v3rL/L3D1CpW8qow7+668PZM1SufAWVKVNOs2e+reASJdWg8blnRdSoVUe+fv4a99Lz6t6rn7y9vbXis0U69OdB3dugsat2C7ghFStWTFVCb3OY5uPjo4CAQFUJvU2pqaka+HQfZWZkKObl15SWlqq0tFRJUmBQcXl6OvdcAVxfXP4gqZUrVyotLU0dO3bU7t271aZNG/36668KDg7Wxx9/nOtTOp3Bg6Tc37bNGzXkmdynGR54qJ2GvTjW/iCpFZ8tVGrqKdWsfYcGDn1et1YIsS+buGuHZk2fol937VD22bOqWLmKuvd66pK3h8J98CCp69/TvSN0W1g1DR42Qgkbf1Jk3555Lvfp8lUqW65cwQ4O/4izD5JyeUDkJSUlRUFBQVf9yZwEBODeCAjAfV03T6K80PkP1SpfvryLRwIAAC7H5bdxnj17Vi+++KICAgIUEhKikJAQBQQE6IUXXtCZM2dcPTwAAJAHlx+BGDBggBYvXqxx48apfv36ks7d2jl69GgdPXpUU6dOdfEIAQDAxVx+DURAQIA++ugjtW7d2mH6ihUr1LVrV504ccJ4nVwDAbg3roEA3Jez10C4/BSGt7e3QkJCck2vVKmSvLy8Cn5AAADgilweEP3799dLL73k8HkWmZmZevnll9W/f38XjgwAAFyKy09hdOjQQfHx8fL29ladOnUkSdu2bVNWVpaaN2/usOzixYudWienMAD3xikMwH1dN7dxBgYG6tFHH3WYxm2cAAC4N5cfgTh9+rRycnJUrFgxSVJSUpKWLFmi6tWrq1WrVle1To5AAO6NIxCA+7puLqJ85JFHFBcXJ0k6fvy47rvvPk2YMEHt27fnFk4AANyUywNi8+bNatTo3GcXLFy4UKVLl9a+ffs0d+5cvfnmmy4eHQAAyIvLAyI9Pd3+cd5fffWVOnbsKA8PD913333at2+fi0cHAADy4vKACA0N1ZIlS3TgwAGtXLlSLVu2lCQdPnxY/v7+Lh4dAADIi8sDYuTIkRoyZIhCQkJ077332h9n/dVXX+mOO+5w8egAAEBeXH4XhiQdOnRIycnJqlOnjjw8zjXNTz/9JH9/f1WrVs14fdyFAbg37sIA3Jezd2G4RUDkNwICcG8EBOC+rpvbOAEAwPWHgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxmyWZVmuHgRwOZmZmYqNjdWIESPk7e3t6uEAuAA/nzcvAgJu7+TJkwoICNCJEyfk7+/v6uEAuAA/nzcvTmEAAABjBAQAADBGQAAAAGMEBNyet7e3Ro0axQVagBvi5/PmxUWUAADAGEcgAACAMQICAAAYIyAAAIAxAgIFpkmTJoqOjnb1MAAA+YCAAAAAxggIAABgjIBAgcrJydGwYcNUvHhx3XLLLRo9erR93sSJE1WrVi0VK1ZM5cuXV2RkpFJTU+3zZ8+ercDAQC1btkxhYWEqWrSoOnXqpPT0dM2ZM0chISEKCgrSwIEDlZ2d7YK9A64/CxcuVK1ateTj46Pg4GC1aNFCaWlp6tmzp9q3b6+YmBiVLFlS/v7+6tevn7Kysuzv/fLLL9WwYUMFBgYqODhYbdq00Z49e+zzk5KSZLPZtGDBAjVq1Eg+Pj66++679euvv2rjxo2qV6+efH191bp1ax05csQVu49/gIBAgZozZ46KFSumDRs2aNy4cRozZoxWrVolSfLw8NCbb76pHTt2aM6cOfr66681bNgwh/enp6frzTff1EcffaQvv/xSa9euVYcOHbRixQqtWLFCcXFxmj59uhYuXOiK3QOuK8nJyeratat69eqlXbt2ae3aterYsaPOPx4oPj7ePn3+/PlavHixYmJi7O9PS0vT4MGDtWnTJsXHx8vDw0MdOnRQTk6Ow3ZGjRqlF154QZs3b1ahQoXUrVs3DRs2TJMnT9a3336r3bt3a+TIkQW678gHFlBAwsPDrYYNGzpMu/vuu63hw4fnufwnn3xiBQcH21/PmjXLkmTt3r3bPu2pp56yihYtap06dco+rVWrVtZTTz2Vz6MHbjwJCQmWJCspKSnXvIiICKt48eJWWlqafdrUqVMtX19fKzs7O8/1HTlyxJJk/fzzz5ZlWdbevXstSda7775rX2b+/PmWJCs+Pt4+LTY21goLC8uv3UIB4QgEClTt2rUdXpcpU0aHDx+WJK1evVrNmzdXuXLl5Ofnpx49eujo0aNKT0+3L1+0aFFVqVLF/rp06dIKCQmRr6+vw7Tz6wRwaXXq1FHz5s1Vq1Ytde7cWTNnztSxY8cc5hctWtT+un79+kpNTdWBAwckSb/99pu6du2qypUry9/fXyEhIZKk/fv3O2znwp/70qVLS5Jq1arlMI2f2esPAYECVbhwYYfXNptNOTk5SkpKUps2bVS7dm0tWrRICQkJevvttyXJ4ZxrXu+/1DoBXJ6np6dWrVqlL774QjVq1NCUKVMUFhamvXv3OvX+tm3bKiUlRTNnztSGDRu0YcMGSY4/s5Ljz63NZstzGj+z159Crh4AIEkJCQnKycnRhAkT5OFxrmsXLFjg4lEBNz6bzaYGDRqoQYMGGjlypCpWrKhPP/1UkrRt2zadPn1aPj4+kqQff/xRvr6+Kl++vI4eParExETNnDlTjRo1kiStX7/eZfuBgkdAwC2EhobqzJkzmjJlitq2bavvvvtO06ZNc/WwgBvahg0bFB8fr5YtW6pUqVLasGGDjhw5ourVq+u///2vsrKy1Lt3b73wwgtKSkrSqFGj1L9/f3l4eCgoKEjBwcGaMWOGypQpo/379+u5555z9S6hAHEKA26hTp06mjhxol577TXVrFlT8+bNU2xsrKuHBdzQ/P39tW7dOj300EOqWrWqXnjhBU2YMEGtW7eWJDVv3ly33XabGjdurH/9619q166d/dZrDw8PffTRR0pISFDNmjU1aNAgvf766y7cGxQ0Ps4bAJBLz549dfz4cS1ZssTVQ4Gb4ggEAAAwRkAAAABjnMIAAADGOAIBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAK6Znj17qn379vbXTZo0UXR0dIGPY+3atbLZbDp+/HiBbxu4UREQwE2oZ8+estlsstls8vLyUmhoqMaMGaOzZ89e0+0uXrxYL730klPL8o8+4N74MC3gJvXggw9q1qxZyszM1IoVK/TMM8+ocOHCGjFihMNyWVlZ8vLyypdtFi9ePF/WA8D1OAIB3KS8vb11yy23qGLFinr66afVokULLV261H7a4eWXX1bZsmUVFhYmSTpw4IC6dOmiwMBAFS9eXI888oiSkpLs68vOztbgwYMVGBio4OBgDRs2TBc/p+7iUxiZmZkaPny4ypcvL29vb4WGhuq9995TUlKSmjZtKkkKCgqSzWZTz549JUk5OTmKjY1VpUqV5OPjozp16mjhwoUO21mxYoWqVq0qHx8fNW3a1GGcAPIHAQFAkuTj46OsrCxJUnx8vBITE7Vq1SotW7ZMZ86cUatWreTn56dvv/1W3333nXx9ffXggw/a3zNhwgTNnj1b77//vtavX6+UlBR9+umnl93mE088ofnz5+vNN9/Url27NH36dPn6+qp8+fJatGiRJCkxMVHJycmaPHmyJCk2NlZz587VtGnTtGPHDg0aNEjdu3fXN998I+lc6HTs2FFt27bV1q1b1adPHz5mGrgWLAA3nYiICOuRRx6xLMuycnJyrFWrVlne3t7WkCFDrIiICKt06dJWZmamffm4uDgrLCzMysnJsU/LzMy0fHx8rJUrV1qWZVllypSxxo0bZ59/5swZ69Zbb7Vvx7IsKzw83IqKirIsy7ISExMtSdaqVavyHOOaNWssSdaxY8fs0zIyMqyiRYta33//vcOyvXv3trp27WpZlmWNGDHCqlGjhsP84cOH51oXgH+GayCAm9SyZcvk6+urM2fOKCcnR926ddPo0aP1zDPPqFatWg7XPWzbtk27d++Wn5+fwzoyMjK0Z88enThxQsnJybr33nvt8woVKqR69erlOo1x3tatW+Xp6anw8HCnx7x7926lp6frgQcecJielZWlO+64Q5K0a9cuh3FIUv369Z3eBgDnEBDATapp06aaOnWqvLy8VLZsWRUq9L+/DooVK+awbGpqqu666y7Nmzcv13pKlix5Vdv38fExfk9qaqokafny5SpXrpzDPG9v76saB4CrQ0AAN6lixYopNDTUqWXvvPNOffzxxypVqpT8/f3zXKZMmTLasGGDGjduLEk6e/asEhISdOedd+a5fK1atZSTk6NvvvlGLVq0yDX//BGQ7Oxs+7QaNWrI29tb+/fvv+SRi+rVq2vp0qUO03788ccr7yQAI1xECeCKHn/8cZUoUUKPPPKIvv32W+3du1dr167VwIED9ccff0iSoqKi9Oqrr2rJkiX65ZdfFBkZedlnOISEhCgiIkK9evXSkiVL7OtcsGCBJKlixYqy2WxatmyZjhw5otTUVPn5+WnIkCEaNGiQ5syZoz179mjz5s2aMmWK5syZI0nq16+ffvvtNw0dOlSJiYn68MMPNXv27Gv9RwTcdAgIAFdUtGhRrVu3ThUqVFDHjh1VvXp19e7dWxkZGfYjEs8++6x69OihiIgI1a9fX35+furQocNl1zt16lR16tRJkZGRqlatmvr27au0tDRJUrly5RQTE6PnnntOpUuXVv/+/SVJL730kl588UXFxsaqevXqevDBB7V8+XJVqlRJklShQgUtWrRIS5YsUZ06dTRt2jS98sor1/BPB7g52axLXeEEAABwCRyBAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMb+D3JfeVmNN0z6AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 800x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAi3hJREFUeJzs3Xdck9fiBvAnBBJAtsgSFPfAvagTB4oLRVm3U7t3e2uXdll729re7l/rvXZqvbaVjbjrwlXrxr0VJ0NE2RBIzu+Pt8ZiQAmSvCQ838+HT82bk+ShUXg4nPe8CiGEABERERGRBbKROwARERERUX2xzBIRERGRxWKZJSIiIiKLxTJLRERERBaLZZaIiIiILBbLLBERERFZLJZZIiIiIrJYLLNEREREZLFYZomIiIjIYrHMEhERPvnkE7Rt2xZKpRK9evUy6WsNHz4c3bp1M+lrEFHTwTJLRLJbuHAhFAqF/sPW1hYtW7bE9OnTcenSpRofI4TA//73PwwbNgxubm5wdHRE9+7d8d5776GkpKTW10pJScG4cePg6ekJlUoFPz8/xMTEYMOGDXXKWl5eji+++ALBwcFwdXWFvb09OnbsiOeeew4nTpyo1+cvt99//x2vvfYaBg8ejAULFuDDDz+UO9Jt3fh78tlnnxncd+Pv0u7du/XH3n33XSgUCnh7e6O0tNTgMYGBgZg4caJJMxOR6djKHYCI6Ib33nsPbdq0QXl5Of78808sXLgQW7duxaFDh2Bvb68fp9Vqcd999yE+Ph5Dhw7Fu+++C0dHR2zZsgVz5sxBQkIC1q1bB29vb/1jhBB45JFHsHDhQvTu3RszZsyAj48PsrKykJKSglGjRmHbtm0YNGhQrfny8vIwduxY7NmzBxMnTsR9990HJycnHD9+HEuWLMF3330HjUZj0v9HprBhwwbY2Njgxx9/hEqlkjtOnX3yySd4+umn4ejoWKfxubm5+O9//4uXX37ZxMmIyKwEEZHMFixYIACIXbt2VTv++uuvCwAiLi6u2vEPP/xQABCvvPKKwXOlpaUJGxsbMXbs2GrHP/nkEwFA/POf/xQ6nc7gcYsWLRI7duy4bc4JEyYIGxsbkZiYaHBfeXm5ePnll2/7+LqqrKwUFRUVDfJcdfHwww+LZs2aNdjz6XQ6UVpaWuv9ISEhIigoqN7PD0D06tVLABCfffZZtftq+rs0e/Zs/WO8vb0NsrVu3VpMmDCh3nmISF5cZkBEjdbQoUMBAKdPn9YfKysrwyeffIKOHTti7ty5Bo8JDw/HtGnTsHr1avz555/6x8ydOxedO3fGp59+CoVCYfC4Bx98EAMGDKg1y44dO7BixQo8+uijiIyMNLhfrVbj008/1d8ePnw4hg8fbjBu+vTpCAwM1N/OzMyEQqHAp59+ii+//BLt2rWDWq3Gvn37YGtrizlz5hg8x/Hjx6FQKPDNN9/oj12/fh3//Oc/ERAQALVajfbt2+Pjjz+GTqer9XMCpF/ZL1iwACUlJfpf3y9cuBAAUFVVhX/961/6TIGBgXjjjTdQUVFR7Tlu/Jp+zZo16NevHxwcHPDtt9/e9nVv9fvvv8PR0RH33nsvqqqq7jh+8ODBGDlyJP7973+jrKysTq/xzjvvICcnB//973+NykZEjRvLLBE1WpmZmQAAd3d3/bGtW7fi2rVruO+++2BrW/NKqYceeggAsHz5cv1j8vPzcd9990GpVNYrS1paGgCp9JrCggUL8PXXX+OJJ57AZ599Bl9fX4SEhCA+Pt5gbFxcHJRKJaKjowEApaWlCAkJweLFi/HQQw/h//7v/zB48GDMmjULM2bMuO3r/u9//8PQoUOhVqvxv//9T78OGQAee+wxvPPOO+jTpw+++OILhISEYO7cufjHP/5h8DzHjx/Hvffei9GjR+Orr74y6iSy5cuXY9KkSYiOjsbixYtrfV9v9e677xpVTocOHWp0ASaixo9rZomo0SgoKEBeXh7Ky8uxY8cOzJkzB2q1utrJOUeOHAEA9OzZs9bnuXHf0aNHq/23e/fu9c7WEM9xOxcvXsSpU6fQokUL/bHY2Fg8+eSTOHToULWz/+Pi4hASEqJfE/z555/j9OnT2LdvHzp06AAAePLJJ+Hn54dPPvkEL7/8MgICAmp83QceeADr1q3D3r178cADD+iP79+/Hz///DMee+wxfP/99wCAZ555Bl5eXvj000+xceNGjBgxQj/+1KlTWL16NcLCwoz6vJOTk/GPf/wD06dPx/z582FjU/c5lqFDh2LEiBH6tbMODg53fMzs2bMREhKC+fPn46WXXjIqKxE1TpyZJaJGIzQ0FC1atEBAQACioqLQrFkzpKWlwd/fXz+mqKgIAODs7Fzr89y4r7CwsNp/b/eYO2mI57idyMjIakUWAKZOnQpbW1vExcXpjx06dAhHjhxBbGys/lhCQgKGDh0Kd3d35OXl6T9CQ0Oh1WqxefNmo/OsXLkSAAxmdm+cPLVixYpqx9u0aWN0kf3tt9/0hf3bb781qsje8O677yI7Oxvz58+v0/hhw4ZhxIgRnJ0lsiIss0TUaMybNw9r165FYmIixo8fj7y8PKjV6mpjbpTJG6W2JrcWXhcXlzs+5k4a4jlup02bNgbHPD09MWrUqGpLDeLi4mBra4upU6fqj508eRKrV69GixYtqn2EhoYCkM7iN9a5c+dgY2OD9u3bVzvu4+MDNzc3nDt37o75b+fs2bN44IEHEBkZia+//tpgHXN+fj6ys7P1HwUFBTU+T33KqbEFmIgaN5ZZImo0BgwYgNDQUERGRiItLQ3dunXDfffdh+LiYv2YLl26AAAOHDhQ6/PcuK9r164AgM6dOwMADh48WO9sxj5HTSeZAdK2YjWp7Vfk//jHP3DixAlkZGQAAOLj4zFq1Ch4enrqx+h0OowePRpr166t8aOmE9bqqrbPo675a+Pr64tBgwZh5cqV1faEvWHq1Knw9fXVf7z44ou1Ptfs2bORnZ1d55POhg0bhuHDh3N2lshKsMwSUaOkVCoxd+5cXL58udpZ+0OGDIGbmxt+/fXXWovhokWLAEC/1nbIkCFwd3fHb7/9Vutj7iQ8PBwAsHjx4jqNd3d3x/Xr1w2O3zqjeScRERFQqVSIi4tDRkYGTpw4YXACVrt27VBcXIzQ0NAaP1q1amXUawJA69atodPpcPLkyWrHc3JycP36dbRu3dro5/w7e3t7LF++HB06dMDYsWNx+PDhavd/9tln1Qr5a6+9VutzhYSEYPjw4fj444+Nnp01dtcFImp8WGaJqNEaPnw4BgwYgC+//BLl5eUAAEdHR7zyyis4fvw43nzzTYPHrFixAgsXLkRYWBjuuece/WNef/11HD16FK+//jqEEAaPW7x4MXbu3FlrloEDB2Ls2LH44YcfkJqaanC/RqPBK6+8or/drl07HDt2DFeuXNEf279/P7Zt21bnzx8A3NzcEBYWhvj4eCxZsgQqlQoRERHVxsTExGD79u1Ys2aNweOvX79ep62ubjV+/HgAwJdfflnt+Oeffw4AmDBhgtHPeStXV1esWbMGXl5eGD16dLUt2Pr27VutkN+YZa/NjXL63Xff1em1/16Ab/zdIiLLxN0MiKhRe/XVVxEdHY2FCxfiqaeeAgDMnDkT+/btw8cff4zt27cjMjISDg4O2Lp1KxYvXowuXbrg559/Nniew4cP47PPPsPGjRsRFRUFHx8fZGdnIzU1FTt37sQff/xx2yyLFi3CmDFjMHXqVISHh2PUqFFo1qwZTp48iSVLliArK0u/1+wjjzyCzz//HGFhYXj00UeRm5uL+fPnIygoSH8yWV3FxsbigQcewH/+8x+EhYXBzc3N4HNLS0vDxIkTMX36dPTt2xclJSU4ePAgEhMTkZmZWW1ZQl307NkT06ZNw3fffYfr168jJCQEO3fuxM8//4yIiIhqOxncDU9PT6xduxZDhgxBaGgotm7dipYtWxr9PCEhIQgJCcGmTZvq/JjZs2c32OdBRDKS+6oNRES1XQFMCCG0Wq1o166daNeunaiqqqp2fMGCBWLw4MHCxcVF2Nvbi6CgIDFnzhxRXFxc62slJiaKMWPGCA8PD2Frayt8fX1FbGysSE9Pr1PW0tJS8emnn4r+/fsLJycnoVKpRIcOHcTzzz8vTp06VW3s4sWLRdu2bYVKpRK9evUSa9asEdOmTROtW7fWjzl79qwAID755JNaX7OwsFA4ODgIAGLx4sU1jikqKhKzZs0S7du3FyqVSnh6eopBgwaJTz/9VGg0mtt+TtOmTavxCmCVlZVizpw5ok2bNsLOzk4EBASIWbNmifLy8mrjjL2CVk1XADt16pTw9fUVXbp0EVeuXLnt4wGIZ5991uD4xo0bBYBarwBW0/OGhIQIALwCGJEFUwhRw+/biIiIiIgsANfMEhEREZHFYpklIiIiIovFMktEREREFotlloiIiIgsFsssEREREVksllkiIiIislhN7qIJOp0Oly9fhrOzc52vOU5ERERE5iOEQFFREfz8/GBjc/u51yZXZi9fvoyAgAC5YxARERHRHVy4cAH+/v63HdPkyqyzszMA6X+Oi4uLzGmIiIiI6FaFhYUICAjQ97bbaXJl9sbSAhcXF5ZZIiIiokasLktCeQIYEREREVksllkiIiIislgss0RERERksVhmiYiIiMhiscwSERERkcVimSUiIiIii8UyS0REREQWi2WWiIiIiCwWyywRERERWSyWWSIiIiKyWCyzRERERGSxWGaJiIiIyGKxzBIRERGRxWKZJSIiIiKLJWuZ3bx5M8LDw+Hn5weFQoHU1NQ7PiY9PR19+vSBWq1G+/btsXDhQpPnJCIiIqLGSdYyW1JSgp49e2LevHl1Gn/27FlMmDABI0aMQEZGBv75z3/isccew5o1a0yclIiIiKhpE0LuBDWzlfPFx40bh3HjxtV5/Pz589GmTRt89tlnAIAuXbpg69at+OKLLxAWFmaqmERERERNkhDA7t1AXJwOCQk2WLsW6NhR7lTVWdSa2e3btyM0NLTasbCwMGzfvr3Wx1RUVKCwsLDaBxERERHVTAhg3z5g5kygXTuBp57ai7Ky+cjNLUd8vNzpDMk6M2us7OxseHt7Vzvm7e2NwsJClJWVwcHBweAxc+fOxZw5c8wVkYiIiMjiCAEcPAjExwNxccCpU4BKVYHw8OXo3v0QAGDAgF3IzR0qc1JDFlVm62PWrFmYMWOG/nZhYSECAgJkTERERETUOBw9KpXXuDjg2LGbx318shEdnYDmzfMhhAKuriORlDQYnp7yZa2NRZVZHx8f5OTkVDuWk5MDFxeXGmdlAUCtVkOtVpsjHhEREVGjd/LkzQJ76NCt9wr0778b48atgY2NFk5OLoiJiWrUE4EWVWYHDhyIlStXVju2du1aDBw4UKZERERERI3fmTM3lxBkZBjer1AAQ4YAkZH5KCxcDZ1Oh44dO2Ly5MlwdHQ0e15jyFpmi4uLcerUKf3ts2fPIiMjAx4eHmjVqhVmzZqFS5cuYdGiRQCAp556Ct988w1ee+01PPLII9iwYQPi4+OxYsUKuT4FIiIiokbp3DkgIUEqsLt31zxm4EAgJgaIjgZatgSA5ti5MwxarRb33HMPFAqFOSPXi6xldvfu3RgxYoT+9o21rdOmTcPChQuRlZWF8+fP6+9v06YNVqxYgZdeeglfffUV/P398cMPP3BbLiIiIiIAFy8CiYlSgf3zz5rH9O9/s8C2aiWwc+dOKJWtAfgAAAYMGGC+wA1AIURj3QLXNAoLC+Hq6oqCggK4uLjIHYeIiIjormRn3yywW7fWPKZ3b6nAxsQAbdtKx8rKypCWloZjx47Bw8MDTz75JFQqlfmC34Yxfc2i1swSEREREZCbCyQnSwV206aar87VvfvNAnvrhQ4uXryIxMREFBQUQKlUIjg4GHZ2duYJ38BYZomIiIgswNWrQEqKVGA3bAB0OsMxnTsDsbHSR5cuhvcLIbB9+3asX78eOp0O7u7uiIqKgp+fn+k/ARNhmSUiIiJqpK5fB1JTpQK7bh1QVWU4pn37mwW2WzdpZ4KaaDQaJCUl4cSJEwCAoKAghIeHW/wWpiyzRERERI1IYSGQliYV2DVrgMpKwzFt2kjLB2JjgV69ai+wf2dnZ4eqqioolUqMHTsWffv2tYjdCu6EZZaIiIhIZsXFwPLlUoFdtQqoqDAc06rVzTWw/frVrcAKIaDVamFrawuFQoEpU6aguLgYPj4+Df9JyIRlloiIiEgGpaXAypVSgV2xAigrMxzj53ezwAYHAzY2dX/+kpISpKSkwNXVFeHh4QAAJycnODk5NdBn0DiwzBIRERGZSXk5sHq1VGCXLQNKSgzHeHtLe8DGxACDBxtXYG/IzMxEUlISiouLYWtriyFDhsDd3f3uP4FGiGWWiIiIyIQqKoC1a6UCu3QpUFRkOMbTE4iMlNbADhsGKJX1ey2dToctW7Zg06ZNEELA09MT0dHRVltkAZZZIiIiogZXWQmsXy8V2JQUoKDAcIyHBzB1qjQDO2IEYHuXray4uBjJyck4e/YsAKBXr14YN25co7kQgqmwzBIRERE1gKoqID1dKrDJyUB+vuEYV1dgyhSpwIaGAg11nQIhBBYtWoQrV67Azs4OEyZMQM+ePRvmyRs5llkiIiKietJqgc2bgfh4ICkJuHLFcIyzMzB5slRgx4wBTLGtq0KhQGhoKDZs2ICoqCh4eno2/Is0UiyzREREREbQ6YA//pBmYBMTgexswzGOjsCkSVKBHTsWcHBo+BxFRUXIz89H69atAQAdO3ZE+/btYVOfM8YsGMssERER0R0IAezYIRXYhATg0iXDMQ4OwIQJUoGdMEEqtKZy6tQppKSkQKfT4cknn4SbmxsANLkiC7DMEhEREdVICGD3bmkJQXw8cP684Ri1Ghg3Tiqw4eGAqbdw1el02LBhA7Zt2wYA8PHxgU6nM+2LNnIss0RERER/EQLIyLhZYM+cMRxjZweEhUkFdvJkwMXFPNkKCgqQlJSECxcuAAD69euHsLAw2N7tNggWrml/9kRERNTkCQEcOiSV17g44ORJwzG2ttLuAzExQEQEYO5tW0+cOIHU1FSUlZVBrVYjPDwcQUFB5g3RSLHMEhERUZN07JhUXuPigKNHDe+3sQFGjpQK7NSpQPPm5s94w8mTJ1FWVgY/Pz9ERUVZ9UUQjMUyS0RERE3GyZM3Z2APHjS8X6EAQkKkK3FNnQp4eZk/Y03CwsLg5uaG4ODgJr+s4Fb8v0FERERW7ezZmwV2376axwwZIs3ARkUBvr7mzVeTY8eO4cCBA4iKioKNjQ1sbW0xePBguWM1SiyzREREZHXOn5e20IqLA3btqnnMPfdIBTY6GvD3N2++2lRVVWHt2rXYuXMnAGDfvn3o27evzKkaN5ZZIiIisgqXLkkXMYiLA7Zvr3lMv37SEoLoaOCvaw00Gvn5+UhMTERWVhYAYODAgejVq5e8oSwAyywRERFZrOxs6TKycXHA1q3SzgS36tXrZoFt187sEevk8OHDWLZsGSoqKuDg4ICIiAh07NhR7lgWgWWWiIiILMqVK0ByslRgN22SLi97q27dpAIbEwM09k64ZcsWbNiwAQAQEBCAyMhIuLq6ypzKcrDMEhERUaOXnw+kpEgFdsMGQKs1HNOpk1RgY2OBrl3Nn7G+OnbsiC1btiA4OBgjRoxokpekvRsKIWqakLdehYWFcHV1RUFBAVzMdckOIiIiMtr168DSpVKBXbsWqKoyHNO+/c0Z2O7dpa21LMHVq1fR/G8b1xYVFcHZ2VnGRI2LMX2NM7NERETUaBQWAsuWSQV2zRpAozEcExh4s8D27m05BRYAKisrsXr1amRkZODhhx+G/1/bKLDI1h/LLBEREcmqpEQqsPHxwMqVQEWF4ZiAAKm8xsQA/ftbVoG94cqVK0hMTERubi4A4NKlS/oyS/XHMktERERmV1oKrFolzcAuXw6UlRmO8fOTdiCIiZH2hLXkpaQZGRlYuXIlKisr0axZM0ydOhVt27aVO5ZVYJklIiIisygvl5YOxMUBaWnSjOytvL2lq3DFxgKDB1t2gQUAjUaDlStXYv/+/QCANm3aYOrUqXBycpI5mfVgmSUiIiKT0WiA33+XlhAsXSqtib2VpycQGSnNwIaEAEql+XOayqFDh7B//34oFAoMHz4cQ4YM4W4FDYxlloiIiBpUZSWwfr1UYFNSpF0JbuXuDkydKhXYkSMBWyttJL1798alS5fQvXt3BAYGyh3HKlnpXx0iIiIyp6oqID1dKrDJycDVq4ZjXF2BiAipwIaGAiqVuVOaXkVFBTZv3oxhw4ZBrVZDoVAgPDxc7lhWjWWWiIiI6kWrlS4hGxcnXVL2r5P0q3FyAiZPltbAjhkDqNXmz2ku2dnZSExMxNWrV1FSUoKIiAi5IzUJLLNERERUZzod8Mcf0gxsYiKQlWU4xtERCA+XCuzYsYCDg/lzmpMQAnv27MHq1auh1Wrh4uKCPn36yB2ryWCZJSIiotsSAtixQyqwCQnAxYuGY+ztgQkTpCUEEyYAzZqZP6ccysvLsXz5chw+fBiAdGnayZMnw9HRUeZkTQfLLBERERkQAtizRyqw8fHAuXOGY1QqYNw4aQZ24kSgqV3EKjc3F0uWLMG1a9dgY2OD0NBQ3HPPPVBY4hUdLBjLLBEREQGQCuz+/TcL7OnThmPs7KS1r7GxwKRJ0kldTZWjoyM0Gg1cXV0RFRXFq3nJhGWWiIioiTt0SCqvcXHAiROG9yuV0u4DsbHSbgTu7maP2GhUVlbCzs4OAODk5IT7778fbm5ucLD2hcGNGMssERFRE3Ts2M0Ce+SI4f02NsCIEVKBnTJFurBBU3fx4kUkJiYiNDQU3bp1AwD4+vrKnIpYZomIiJqIU6duFtgDBwzvVyiAYcOkAjt1qnRpWZJ2K/jzzz+xbt066HQ6bNu2DUFBQVwb20iwzBIREVmxs2elHQji4oC9e2seM3iwVGAjIwE/P/Pma+xKS0uxdOlSnPhr/UXXrl0RHh7OItuIsMwSERFZmQsXbhbYnTtrHhMcLBXYqCggIMC8+SzFhQsXkJiYiMLCQiiVSowdOxZ9+/ZlkW1kWGaJiIiswOXLUoGNj5cualCTvn2lAhsdDQQGmjWexbl27RoWLlwInU4HDw8PREdHw8fHR+5YVAOWWSIiIguVkyNdRjYuDtiyRdpa61Y9e94ssO3bmz+jpXJ3d0dwcDCKi4sxYcIEqK35OrwWjmWWiIjIguTlAcnJUoFNT5cuL3uroCCpwMbEAJ06mT2ixcrMzIS7uztc/9o8NzQ0FAqFgssKGjmWWSIiokYuPx9ISZGWEKxfD2i1hmM6dbpZYIOCzJ/Rkul0OmzZsgWbNm1Cy5YtMX36dCiVStjY2MgdjeqAZZaIiKgRKigAUlOlAvv770BVleGYdu1uFtgePaSttcg4xcXFSE5OxtmzZwEAzZs3h06ng1KplDkZ1RXLLBERUSNRVASkpUkFdvVqQKMxHBMYKJXXmBigTx8W2Ltx9uxZJCUloaSkBHZ2dhg/fjx69eoldywyEsssERGRjEpKgOXLpQK7ciVQXm44xt9fKq+xsUD//iywd0un02HTpk3YvHkzAMDLywtRUVFo0aKFzMmoPlhmiYiIzKysTCqu8fFSkS0tNRzj6yvtQBAbC9xzj3R5WWoYOp0Ox48fBwD07t0b48aNg52dncypqL5YZomIiMygokJaOhAfLy0lKC42HOPlJV3EIDZWuioXl22ahq2tLaKiopCVlYXu3bvLHYfuEsssERGRiWg0wNq1UoFNTQUKCw3HNG8uXUY2NhYYNgyw5XfmBqfT6bBhwwaoVCoMGzYMAODp6QlPT0+Zk1FD4D8ZIiKiBlRZCWzYIBXYlBTg2jXDMW5uwNSpUoEdMQLgb7hNp6CgAElJSbhw4QIUCgWCgoLQvHlzuWNRA2KZJSIiuktVVcCmTVKBTUoCrl41HOPiAkRESAU2NBRQqcwes8k5ceIEUlNTUVZWBrVajfDwcBZZK8QyS0REVA9aLbB1q1RgExOB3FzDMU5OwKRJUoEdMwawtzd/zqZIq9Vi/fr12L59OwDA19cXUVFR8PDwkDkZmQLLLBERUR3pdMD27VKBTUgAsrIMxzg6AhMnSgV23DjAwcH8OZsyIQQWL16MzMxMAMCAAQMwevRo2HIxstXiO0tERHQbQgA7d0oFNj4euHjRcIy9PTB+vFRgJ0wAmjUzf06S3FgXm52djUmTJqFLly5yRyITY5klIiK6hRDA3r03C+xfk3zVqFTA2LFSgQ0PB5ydzR6T/lJVVYXCwkL9MoK+ffuic+fOcHJykjkZmQPLLBEREaQCe+AAEBcnFdjTpw3H2NpKa19jY6W1sG5uZo9Jt7h27RoSEhJQWlqKJ598Eg4ODlAoFCyyTQjLLBERNWmHD98ssH9dFKoapRIYNUoqsBERAM8hajyOHDmCtLQ0VFRUwMHBAVevXoW/v7/cscjMWGaJiKjJOX5cKq9xcVKZvZWNDTB8uFRgp04FuLd+41JVVYU1a9Zg9+7dAICAgABERkbC1dVV5mQkB5ZZIiJqEk6fvjkDu3+/4f0KBTB0qFRgIyMBb2/zZ6Q7u3r1KhITE5GdnQ0AGDx4MEaMGAElr/3bZLHMEhGR1crMvHkS1549NY8ZNEgqsFFRgJ+fWeNRPaSnpyM7OxuOjo6YMmUK2rdvL3ckkhnLLBERWZULF6Q9YOPjgR07ah4zYIBUYKOjgYAA8+ajuzNu3DgAwOjRo+Hi4iJzGmoMWGaJiMjiZWXdLLDbttU8pk8fqcDGxACBgWaNR3fhypUrOHToEIYPHw6FQgFHR0dERkbKHYsaEZZZIiKySDk5QFKSVGA3b5a21rpVjx43Cyx/G2159u/fjxUrVqCyshIeHh7o2bOn3JGoEWKZJSIii5GXByQnSwV240bp8rK36tr1ZoHt3Nn8GenuaTQarFq1ChkZGQCANm3aoF27dvKGokaLZZaIiBq1a9eAlBSpwK5bB2i1hmM6dpQKbGwsEBRk/ozUcHJzc5GQkIC8vDwoFAqEhIRg6NChsLGxkTsaNVIss0RE1OgUFABLl0oF9vffgcpKwzFt294ssD16SFtrkWU7ePAg0tLSUFVVBScnJ0RGRiKQC5zpDlhmiYioUSgqApYtkwrsqlWARmM4pnVraflAbKx0QhcLrHVp1qwZqqqq0K5dO0yZMgXNmjWTOxJZAJZZIiKSTUkJsGKFdDGDlSuB8nLDMS1b3iywAwawwFobjUYDlUoFAGjbti2mT5+OVq1aQcE3muqIZZaIiMyqrEyaeY2Pl2ZiS0sNx/j4SHvAxsYCAwdKl5cl6yKEwJ49e7Bx40Y8+uij8PDwAAC0bt1a5mRkaVhmiYjI5CoqgDVrpAK7dClQXGw4pkUL6SpcsbHAkCEAr05qvSoqKrBs2TIcPnwYALB7926MGTNG5lRkqWT/WXfevHkIDAyEvb09goODsXPnztuO//LLL9GpUyc4ODggICAAL730Espr+r0UERHJSqORlg5Mnw54ewOTJwO//FK9yHp4AI8/Lu1ScPky8J//ACEhLLLW7PLly/j2229x+PBh2NjYYPTo0Rg9erTcsciCyTozGxcXhxkzZmD+/PkIDg7Gl19+ibCwMBw/fhxeXl4G43/99VfMnDkTP/30EwYNGoQTJ05g+vTpUCgU+Pzzz2X4DIiI6O+qqoANG6Q1sCkp0rZat3JzA6ZMkWZgR44E7OzMHpNkIITAzp07sXbtWmi1Wri6uiIqKgr+/v5yRyMLpxCipmummEdwcDD69++Pb775BgCg0+kQEBCA559/HjNnzjQY/9xzz+Ho0aNYv369/tjLL7+MHTt2YOvWrXV6zcLCQri6uqKgoIDXdCYiagBaLbBpk1Rgk5OlCxvcytkZiIiQCuzo0cBf5/tQE7Jv3z6kpaUBADp37oxJkybBwcFB5lTUWBnT12SbmdVoNNizZw9mzZqlP2ZjY4PQ0FBs3769xscMGjQIixcvxs6dOzFgwACcOXMGK1euxIMPPljr61RUVKCiokJ/u7CwsOE+CSKiJkqnA7ZuldbAJiZKl5a9VbNmwKRJUoENCwPs7c2fkxqPHj16ICMjA127dsWAAQO4WwE1GNnKbF5eHrRaLby9vasd9/b2xrFjx2p8zH333Ye8vDwMGTIEQghUVVXhqaeewhtvvFHr68ydOxdz5sxp0OxERE2RTgf8+ac0A5uYKK1xvZWDAzBxolRgx4+XblPTJITAwYMHERQUBKVSCaVSqV8aSNSQZD8BzBjp6en48MMP8Z///Ad79+5FcnIyVqxYgX/961+1PmbWrFkoKCjQf1y4cMGMiYmILJsQwM6dwMsvA4GBwODBwP/9X/Uiq1ZLa2CXLAGuXJFmayMjWWSbsrKyMixZsgQpKSnYuHGj/jiLLJmCbDOznp6eUCqVyLnld1M5OTnw8fGp8TFvv/02HnzwQTz22GMAgO7du6OkpARPPPEE3nzzzRqv26xWq6FWqxv+EyAislJCAPv2STOw8fFAZqbhGJVKWjoQGystJXB2NntMaqQuXLiAxMREFBYWQqlUwtXVVe5IZOVkK7MqlQp9+/bF+vXrERERAUA6AWz9+vV47rnnanxMaWmpQWFV/rV/i4znsRERWTwhgIMHbxbYU6cMx9jaSidvxcZK22y5uZk9JjViQghs27YNGzZsgBACHh4eiI6OrnWCiqihyLo114wZMzBt2jT069cPAwYMwJdffomSkhI8/PDDAICHHnoILVu2xNy5cwEA4eHh+Pzzz9G7d28EBwfj1KlTePvttxEeHq4vtUREVHdHjtwssDWdrqBUAqNGSZeTnTJF2heW6FYlJSVITU3Fqb9+CurWrRsmTpzI34ySWchaZmNjY3HlyhW88847yM7ORq9evbB69Wr9SWHnz5+vNhP71ltvQaFQ4K233sKlS5fQokULhIeH44MPPpDrUyAisjgnTtwssIcOGd5vYwMMHy4V2KlTpStzEd1OWVkZzp07B1tbW4wbNw69e/fm+lgyG1n3mZUD95kloqbozJmbBTYjw/B+hUK6hGxsrHTyFn8zTMY6duwY3N3dDXYpIqoPi9hnloiITOvcOam8xscDu3fXPGbgQKnARkUBLVuaNx9ZruLiYqSmpmLo0KFo3bo1AOlCCERyYJklIrIiFy8CCQlSgf3zz5rHDBggLSGIjgZatTJvPrJ8Z86cQXJyMkpKSnDt2jU8++yzNe4mRGQuLLNERBYuK0u6iEFcHLBtW81j+vSRCmxMDNCmjXnzkXXQ6XTYtGkTNm/eDABo0aIFoqOjWWRJdiyzREQWKDcXSEqSZmA3bZK21rpVjx43C2yHDubPSNajqKgIycnJyPxr0+HevXtj3LhxsLOzkzcYEVhmiYgsxtWrQHKyVGA3bJAuL3urLl2kNbAxMdKfie5WQUEBvvvuO5SWlsLOzg4TJ05Ejx495I5FpMcyS0TUiF27BqSmSgV23TqgqspwTIcOUoGNjQWCgqSdCYgaiouLC9q0aYO8vDxER0ejefPmckciqoZlloiokSksBJYuldbA/v47UFlpOKZtW2n2NTYW6NmTBZYaVmFhIVQqFezt7aFQKBAeHg4bGxsuK6BGiWWWiKgRKC4Gli2TCuzq1UBFheGYVq1uFti+fVlgyTROnDiB1NRUBAYGIjo6GgqFglfyokaNZZaISCalpcCKFVKBXbECKC83HNOypbSFVmwsEBzMAkumo9VqsX79emzfvh0AcP36dVRUVMDe3l7mZES3xzJLRGRG5eXAqlXSGthly4CSEsMxPj7SRQxiY4FBg6TLyxKZ0vXr15GUlISLFy8CAAYMGIDRo0fD1pY1gRo//i0lIjKxigpp7Wt8vLQWtqjIcEyLFtJlZGNjgaFDAaXS/DmpaTp27BiWLl2K8vJyqNVqTJ48GV24FQZZEJZZIiITqKyUdh+Ii5N2IygoMBzj4QFMnSoV2OHDAU6CkblVVlZi1apVKC8vR8uWLREZGQl3d3e5YxEZhV86iYgaSFUVsHGjVGBTUoD8fMMxrq7AlClSgR01CuDJ4SQnOzs7REZG4tixYxg1ahSU/JUAWSCWWSKiu6DVAps3SwU2KQnIyzMc4+wMRERIOxGMHg3wxHCS05EjR1BVVaW/8EGrVq3QqlUrmVMR1R/LLBGRkXQ6YNs2qcAmJgI5OYZjmjUDJk2SCuzYsQBPCCe5VVVVYc2aNdi9ezdsbW3RsmVLXgCBrALLLBFRHQgB/PmnVGATEoDLlw3HODgAEyZISwjGjwccHc2fk6gmV69eRWJiIrKzswEAwcHBcHNzkzcUUQNhmSUiqoUQwO7dNwvs+fOGY9RqYNw4qcBOnAg4OZk/J9HtHDp0CMuWLYNGo4GjoyMiIiLQoUMHuWMRNRiWWSKivxECyMiQCmx8PHD2rOEYOztp6UBMjLSUwMXF7DGJ7kgIgRUrVmDPnj0ApLWxkZGRcOFfWLIyLLNE1OQJARw6dLPAnjxpOMbWVjp5KyZGOpmLv6Glxk6hUMDxr7UuQ4cOxfDhw2HDK3CQFWKZJaIm6+jRmwX26FHD+5VKYORIqcBOmQLwXBmyBBqNBiqVCgAwfPhwdOjQAQEBATKnIjIdllkialJOnrxZYA8eNLxfoZAuYBATI12Rq0ULs0ckqheNRoNVq1YhJycHjzzyCGxtbWFjY8MiS1aPZZaIrN6ZM1J5jY8H9u0zvF+hAIYMkQpsVBTg42P+jER3Izc3F4mJibhy5QoUCgUyMzPRvn17uWMRmQXLLBFZpfPnbxbYXbtqHjNwoFRgo6OBli3Nm4+oIQghkJGRgZUrV6KqqgpOTk6IjIxEYGCg3NGIzIZlloisxqVL0hZacXHSnrA16d//ZoFt3dq8+YgaUkVFBVasWIGDf62XadeuHaZMmYJmzZrJnIzIvFhmiciiZWdLV+GKiwO2bq15TO/eUoGNiQHatjVvPiJTWb58OQ4dOgSFQoERI0ZgyJAhUCgUcsciMjuWWSKyOFeuAElJ0hKCTZuky8veqnt36UIG0dFAx47mz0hkaiNHjkROTg4mTpyIVq1ayR2HSDYKIYSQO4Q5FRYWwtXVFQUFBdw4msiCXL0KpKRIBXbDBkCrNRzTubNUYGNjgS5dzJ+RyJQqKipw6tQpBAUF6Y8JITgbS1bJmL7GmVkiarSuXwdSU6UlBOvWAVVVhmPat79ZYLt1k3YmILI2WVlZSEhIwLVr16BWq/U7FbDIErHMElEjU1gIpKVJBXbNGqCy0nBMmzZSeY2JAXr1YoEl6yWEwK5du/D7779Dq9XC1dUV9vb2cscialRYZolIdsXFwPLlUoFdtQqoqDAc06rVzZO4+vVjgSXrV15ejrS0NBz96/J0nTp1wuTJk+Hg4CBzMqLGhWWWiGRRWgqsXCkV2BUrgLIywzF+fjcLbHAwwMvKU1Nx6dIlJCYm4vr167CxscHo0aMRHBzMZQVENWCZJSKzKS8HVq+WCuyyZUBJieEYb29pB4KYGGDwYBZYapry8vJw/fp1uLm5ISoqCi15VQ+iWrHMEpFJaTTA779LBXbpUqCoyHCMp6d0GdmYGGDYMECpNH9OIrn9fWeCnj17QqPRoHv37lwjS3QHLLNE1OAqK4H166UCm5oq7UpwKw8PYOpUqcCOGAHY8qsRNWEXLlzA77//jnvvvReOjo4AgP79+8ucisgy8NsHETWIqiogPV0qsMnJQH6+4RhXV2DKFKnAhoYCdnZmj0nUqAgh8Mcff2D9+vUQQmDDhg2YOHGi3LGILArLLBHVm1YLbNkiFdikJOnKXLdydgYmT5YK7JgxgFpt/pxEjVFJSQlSU1Nx6tQpAEC3bt0wevRomVMRWR6WWSIyik4H/PGHVGATE4HsbMMxzZoB4eFSgR07FuBOQkTVnTt3DklJSSgqKoKtrS3Gjh2LPn36cLcConpgmSWiOxIC2LFDKrAJCcClS4ZjHByACROkAjthAvDXsj8iusWxY8cQHx8PIQSaN2+O6OhoeHt7yx2LyGKxzBJRjYQA9uyRCmx8PHD+vOEYtRoYN04qsOHhgJOT+XMSWZrAwEC4ubkhICAAEyZMgEqlkjsSkUVjmSUiPSGA/ftvFtgzZwzH2NkBYWFSgZ08GXBxMX9OIkuTk5MDLy8vKBQK2Nvb47HHHoODgwOXFRA1AJZZIsKhQzcL7IkThvfb2kq7D8TEABERgLu72SMSWSSdTofNmzdj06ZNGD9+vH67LUeuwyFqMCyzRE3UsWM3C+yRI4b329gAI0cCsbHSdlrNm5s/I5ElKyoqQnJyMjIzMwEAubm58gYislIss0RNyKlTNwvsgQOG9ysUQEiIVGCnTgW8vMyfkcganD59GikpKSgpKYGdnR0mTpyIHj16yB2LyCqxzBJZubNnpfIaFwfs21fzmCFDpCUEUVGAr6958xFZE51Oh/T0dGzZsgUA4O3tjaioKHh6esqcjMh6scwSWaELF24W2F27ah5zzz3SDGxUFODvb958RNYqJycHW7duBQD07dsXYWFhsOOl7ohMimWWyEpcviztARsXB2zfXvOYfv2kAhsdDbRubd58RE2Br68vRo8eDWdnZ3Tr1k3uOERNAssskQXLyZGuwhUXB2zdKm2tdatevW4W2HbtzB6RyKpptVqkp6ejR48eaNGiBQBg4MCBMqcialpYZokszJUrQHKyVGA3bZIuL3urbt2kAhsTA3TsaP6MRE1BQUEBEhMTcfHiRZw4cQJPPPEElEql3LGImhyWWSILkJ8PpKRIBXbDBkCrNRzTufPNAtu1q/kzEjUlx48fR2pqKsrLy6FWqxESEsIiSyQTllmiRqqgAEhNlQrs2rVAVZXhmPbtbxbY7t2lrbWIyHS0Wi3Wrl2LHTt2AAD8/PwQFRUFd15JhEg2LLNEjUhhIbBsmVRg16wBNBrDMYGBNwts794ssETmUlJSgl9//RWXL18GANxzzz0IDQ3ljCyRzFhmiWRWUgIsXy4V2JUrgYoKwzEBAVJ5jYkB+vdngSWSg4ODA2xtbWFvb4+IiAh06tRJ7khEBJZZIlmUlUnFNS5OKrJlZYZj/PykHQhiYqQ9YW1szJ+TqKmrqqqCQqGAUqmEjY0NIiMjodPp4ObmJnc0IvoLyyyRmZSXS0sH4uKAtDRpRvZW3t7SRQxiY4HBg1lgieSUn5+PhIQEtG7dGmPHjgUAuLi4yJyKiG7FMktkQhqNdPJWXBywdKm0JvZWnp5AZKQ0AxsSAnD5HZH8Dh06hGXLlkGj0aCwsBDDhg2Do6Oj3LGIqAYss0QNrLJS2j4rLk7aTuv6dcMx7u7A1KnSDOyIEYAt/yUSNQqVlZVYvXo19u7dCwBo1aoVIiMjWWSJGjF+CyVqAFVV0gUM4uKkCxpcvWo4xtUViIiQCuyoUYBKZfaYRHQbeXl5SEhIQG5uLgBg6NChGD58OGy43oeoUWOZJaonrVa6hGxcHJCUBPz1/a8aJydg8mSpwI4ZA6jV5s9JRHdWVVWFRYsWoaioCM2aNcOUKVPQjtd/JrIId1Vmy8vLYW9v31BZiBo9nQ7Yvl0qsImJQFaW4RhHRyA8XCqwY8cCDg7mz0lExrG1tUVYWBh2796NqVOnwtnZWe5IRFRHRpdZnU6HDz74APPnz0dOTg5OnDiBtm3b4u2330ZgYCAeffRRU+Qkko0QwM6dUoFNSAAuXjQcY28PTJggFdjx44Fmzcyfk4iMk5ubi7KyMrRu3RoAEBQUhK5du0LBjZyJLIrRC4Hef/99LFy4EP/+97+h+tuiv27duuGHH35o0HBEchEC2LMHeO01oE0baZ/XL76oXmRVKmkJwa+/SksMEhOlfWFZZIkaNyEE9u3bh++//x7x8fEoKirS38ciS2R5jJ6ZXbRoEb777juMGjUKTz31lP54z549cezYsQYNR2ROQgAHDkgzsPHxwOnThmPs7KS1r7GxwKRJ0kldRGQ5NBoNVqxYgQMHDgCQdivgCV5Els3oMnvp0iW0b9/e4LhOp0NlZWWDhCIyp8OHbxbY48cN71cqgdBQqcBGREjbahGR5cnJyUFCQgKuXr0KhUKBESNGYMiQIZyNJbJwRpfZrl27YsuWLfo1RjckJiaid+/eDRaMyJSOH5cKbFwccOSI4f02NtL+r7GxwJQp0oUNiMgyCSGwd+9erF69GlVVVXB2dkZkZKTB9zEiskxGl9l33nkH06ZNw6VLl6DT6ZCcnIzjx49j0aJFWL58uSkyEjWIU6ek2de4OGk5wa0UCmDYMKnARkYCXl7mz0hEDU+hUODChQuoqqpC+/btMWXKFF4EgciKKIQQwtgHbdmyBe+99x7279+P4uJi9OnTB++88w7GjBljiowNqrCwEK6urigoKOA1tpuAzMybBfavC/oYGDz4ZoH18zNrPCIyISGEfgmBRqPBgQMH0LdvXy4rILIAxvS1epVZS8Yya/0uXJC20IqLk7bUqklwsFRgo6KAgADz5iMi0xJCYNeuXcjMzER0dDTLK5EFMqavGb3MoG3btti1axeaN29e7fj169fRp08fnDlzxtinJLprly9LW2PFxQF//FHzmL59pQIbHQ0EBpo1HhGZSXl5OZYtW4Yjfy2GP3r0KLp27SpzKiIyJaPLbGZmJrRarcHxiooKXLp0qUFCEdVFTo50Gdm4OGDLFmlrrVv17CkV2JgYgFemJLJuly5dQmJiIq5fvw4bGxuMHj0aXbp0kTsWEZlYnctsWlqa/s9r1qyB69822NRqtVi/fj0COd1FJpaXByQnSwU2PV26vOytgoJuFthOncwekYjMTAiBHTt2YO3atdDpdHBzc0NUVBRatmwpdzQiMoM6l9mIiAgA0lmh06ZNq3afnZ0dAgMD8dlnnzVoOCIAyM8HUlOlArt+PVDDLwbQqdPNAhsUZPaIRCSjVatWYdeuXQCALl26YNKkSbC3t5c5FRGZS53LrO6vKbA2bdpg165d8OTGm2RCBQXA0qVSgV27Fqjpehzt2kkFNjYW6N5d2lqLiJqenj17Yv/+/Rg1ahT69+/PE76ImhjuZkCNRlERsGyZVGBXrwY0GsMxgYHS7GtsLNC7NwssUVMkhEBOTg58fHz0x8rKyuDg4CBjKiJqSCbdzQAASkpKsGnTJpw/fx6aWxrHCy+8YNRzzZs3D5988gmys7PRs2dPfP311xgwYECt469fv44333wTycnJyM/PR+vWrfHll19i/Pjx9flUSGYlJcCKFVKBXbkSKC83HOPvf7PA9u/PAkvUlJWWliI1NRVnzpzBY489pi+0LLJETZfRZXbfvn0YP348SktLUVJSAg8PD+Tl5cHR0RFeXl5Gldm4uDjMmDED8+fPR3BwML788kuEhYXh+PHj8Krh8ksajQajR4+Gl5cXEhMT0bJlS5w7dw5ubm7Gfhoko7IyYNUqqcAuXw6UlhqO8fWVttCKjQXuuUe6vCwRNW3nzp1DUlISioqKoFQqkZeXV212loiaJqOXGQwfPhwdO3bE/Pnz4erqiv3798POzg4PPPAAXnzxRUydOrXOzxUcHIz+/fvjm2++ASCtyw0ICMDzzz+PmTNnGoyfP38+PvnkExw7dgx2dnbGxNbjMgN5VFQAa9ZIBTYtDSguNhzj5SVdxCA2Vroql1Jp/pxE1PgIIbB161Zs3LgRQgg0b94c0dHR8Pb2ljsaEZmISa8A5ubmhh07dqBTp05wc3PD9u3b0aVLF+zYsQPTpk3DsWPH6vQ8Go0Gjo6OSExM1O+UAADTpk3D9evXsXTpUoPHjB8/Hh4eHnB0dMTSpUvRokUL3HfffXj99dehrKX5VFRUoKKiQn+7sLAQAQEBLLNmoNEA69ZJBTY1FSgsNBzTvLl0GdnYWGDYMMC2XgtfiMhalZSUICUlBadPnwYA9OjRAxMmTIBKpZI5GRGZkknXzNrZ2cHmr9/5enl54fz58+jSpQtcXV1x4cKFOj9PXl4etFqtwU/W3t7etRbiM2fOYMOGDbj//vuxcuVKnDp1Cs888wwqKysxe/bsGh8zd+5czJkzp8656O5UVgIbN0oFNiUFuHbNcIybGzB1qlRgR4wA6jnJTkRNwIEDB3D69GnY2tpi/Pjx6NWrF3crIKJqjC6zvXv3xq5du9ChQweEhITgnXfeQV5eHv73v/+hW7dupsiop9Pp4OXlhe+++w5KpRJ9+/bFpUuX8Mknn9RaZmfNmoUZM2bob9+YmaWGo9UCmzZJBTYpCbh61XCMiwsQESEV2NBQgJMqRFQX99xzD/Lz89G/f/8az6UgIjK6zH744YcoKioCAHzwwQd46KGH8PTTT6NDhw748ccf6/w8np6eUCqVyMnJqXb81u1W/s7X1xd2dnbVlhR06dIF2dnZ0Gg0Nf7aSa1WQ61W1zkX1Y1WC2zbJhXYxEQgN9dwjJMTMGmSVGDHjAG4hzkR3UlRURE2bdqEsLAw2NnZQaFQYMKECXLHIqJGzOgy269fP/2fvby8sHr16nq9sEqlQt++fbF+/Xr9mlmdTof169fjueeeq/ExgwcPxq+//gqdTqdf6nDixAn4+vpy/ZQZ6HTAn39KBTYhAcjKMhzj6AhMnCgV2HHjAO6WQ0R1dfr0aaSkpKCkpAQ2NjbccpGI6qTBNjzau3cvJk6caNRjZsyYge+//x4///wzjh49iqeffholJSV4+OGHAQAPPfQQZs2apR//9NNPIz8/Hy+++CJOnDiBFStW4MMPP8Szzz7bUJ8G3UIIYOdO4OWXpQsWDB4M/N//VS+y9vbSGti4OGmGNi5Ous0iS0R1odPpsGHDBixevBglJSXw8vK67X7jRER/Z9TM7Jo1a7B27VqoVCo89thjaNu2LY4dO4aZM2di2bJlCAsLM+rFY2NjceXKFbzzzjvIzs5Gr169sHr1av1JYefPn9fPwAJAQEAA1qxZg5deegk9evRAy5Yt8eKLL+L111836nXp9oQA9u2TSml8PJCZaThGpQLGjpVmYMPDAWdns8ckIitQWFiIpKQknD9/HgDQp08fjB07tt7bLxJR01Pnrbl+/PFHPP744/Dw8MC1a9fQvHlzfP7553j++ecRGxuLF198EV26dDF13rvGfWZrJgRw4IBUXuPjgVOnDMfY2kprX2NjgcmTAVdX8+ckIutx/vx5xMXFobS0FCqVCuHh4SY/kZiILINJtub66quv8PHHH+PVV19FUlISoqOj8Z///AcHDx6Ev7//XYcmeRw5Is3AxsUBx48b3q9UAqNGSQU2IgLw8DB7RCKyUq6urhBCwMfHB1FRUWjevLnckYjIAtV5ZrZZs2Y4fPgwAgMDIYSAWq3Gxo0bMXjwYFNnbFCcmQVOnLhZYA8fNrzfxgYYPlwqsFOnAp6eZo9IRFaqvLwc9n/b2iQ7Oxuenp6w5RVTiOhvTDIzW1ZWBkdHRwCAQqGAWq2Gr6/v3SUlszl9Wlo+EBcH7N9veL9CAQwdKhXYyEiAV4kkooZ2/PhxLF26FJMnT0anTp0AoNatGImI6sqoH4V/+OEHODk5AQCqqqqwcOFCeN4ybffCCy80XDq6K5mZ0hZacXHAnj01jxk0SCqwUVGAn59Z4xFRE6HVarFu3Tr8+eefAIBdu3bpyywR0d2q8zKDwMDAO15CUKFQ4MyZMw0SzFSsfZnBxYs3C+yOHTWPGTBAKrDR0QAvhkZEpnTt2jUkJSXh0qVLAIDg4GCMHj262sVviIhuZZJlBpk17c9EjUJWlnQVrrg46apcNenTRyqwMTHSfrFERKZ29OhRLF26FBUVFbC3t8fkyZPRuXNnuWMRkZXhinsLlZsLJCVJBXbzZmlrrVv17CmV15gYoH1782ckoqYrKysL8fHxAAB/f39ERkbCzc1N3lBEZJVYZi1IXh6QkiIV2I0bpcvL3qpr15szsJwAISK5+Pr6ol+/flCpVBg5ciSXFRCRybDMNnLXrgGpqVKBXbcO0GoNx3TsKBXY2FggKMjsEYmIAABHjhxBq1at9CcKjx8//o7nWhAR3S2W2UaooABIS5MK7O+/A5WVhmPatr1ZYHv0kLbWIiKSQ2VlJdasWYM9e/agTZs2eOCBB2BjY8MiS0RmwTLbSBQVAcuXSwV29WqgosJwTOvW0vKB2FjphC5+nyAiueXl5SExMRE5OTkAgJYtW8qciIiamnqV2dOnT2PBggU4ffo0vvrqK3h5eWHVqlVo1aoVgvh77jorKQFWrpQK7IoVQHm54ZiWLW8W2AEDWGCJqPE4cOAAli9fjsrKSjg6OmLq1Klo166d3LGIqIkxusxu2rQJ48aNw+DBg7F582Z88MEH8PLywv79+/Hjjz8iMTHRFDmtRlmZNPMaFwcsWwaUlhqO8fGR9oCNjQUGDpQuL0tE1FhUVlZi1apV2LdvHwBpH/KpU6fC2dlZ5mRE1BQZXWZnzpyJ999/HzNmzKj2hWvkyJH45ptvGjSctRBCmoH97Tdg6VKguNhwTIsW0lW4YmOBIUMAnvhLRI2VEAIXLlwAAISEhGDYsGGw4U/dRCQTo8vswYMH8euvvxoc9/LyQl5eXoOEsjZvvw188IHh8ebNgalTpQIbEgLYcgUzETViQggoFAqoVCpERUWhpKQEbdu2lTsWETVxRtcnNzc3ZGVloU2bNtWO79u3jwv/a5GefvPPbm7AlClSgR05ErCzkysVEVHdaDQarFy5Et7e3hg4cCAAwNvbW+ZUREQSo8vsP/7xD7z++utISEiAQqGATqfDtm3b8Morr+Chhx4yRUaL9/eLG2RlAfb28mUhIjJGTk4OEhMTkZeXB1tbW3Tv3l2/jywRUWNgdJn98MMP8eyzzyIgIABarRZdu3aFVqvFfffdh7feessUGS3e38usWi1fDiKiuhJCYO/evVi9ejWqqqrg7OyMyMhIFlkianQUQghRnweeP38ehw4dQnFxMXr37o0OHTo0dDaTKCwshKurKwoKCuDi4mKW1wwOBnbulP5cv//bRETmU1FRgeXLl+PQoUMAgPbt2yMiIgLNmjWTORkRNRXG9DWjZ2a3bt2KIUOGoFWrVmjVqlW9QzYlN2ZmebIvETV2Wq0WP/74I65cuQKFQoFRo0Zh0KBBvJoXETVaRterkSNHok2bNnjjjTdw5MgRU2SyOiyzRGQplEolevfuDRcXFzz88MMYPHgwiywRNWpG16vLly/j5ZdfxqZNm9CtWzf06tULn3zyCS5evGiKfFaBZZaIGrPy8nJcvXpVf/uee+7B008/jYCAABlTERHVjdH1ytPTE8899xy2bduG06dPIzo6Gj///DMCAwMxcuRIU2S0eDfWyXJyg4gam8uXL+Pbb7/Fb7/9hoqKCgCAQqGAPbddISILcVfb9Ldp0wYzZ85Ez5498fbbb2PTpk0NlcuqcGaWiBobIQR27NiBtWvXQqfTwc3NDUVFRVBzyxUisjD1LrPbtm3DL7/8gsTERJSXl2Py5MmYO3duQ2azGiyzRNSYlJWVIS0tDceOHQMAdO7cGZMnT+ZsLBFZJKPL7KxZs7BkyRJcvnwZo0ePxldffYXJkyfD0dHRFPmswo1lBiyzRCS3ixcvIjExEQUFBVAqlRgzZgz69+/Pk7yIyGIZXWY3b96MV199FTExMfD09DRFJqtzY2aW3yuISG6bNm1CQUEB3N3dERUVBT8/P7kjERHdFaPL7LZt20yRw6pxmQERNRaTJ09Geno6Ro8ezfWxRGQV6lRm09LSMG7cONjZ2SEtLe22YydNmtQgwawJyywRyeX8+fM4ffo0RowYAQBwcnLCxIkTZU5FRNRw6lRmIyIikJ2dDS8vL0RERNQ6TqFQQKvVNlQ2q8GtuYjI3IQQ2Lp1KzZu3AghBHx9fdG5c2e5YxERNbg6lVndjanFW/5MdcOZWSIyp5KSEqSkpOD06dMAgB49eqBt27YypyIiMg2j69WiRYv0G2v/nUajwaJFixoklLVhmSUic8nMzMT8+fNx+vRp2NraYtKkSYiIiIBKpZI7GhGRSSiEuPFL8LpRKpXIysqCl5dXteNXr16Fl5dXo19mUFhYCFdXVxQUFMDFxcUsr9m6NXD+PODrC1y+bJaXJKImaPv27Vi7di2EEPD09ER0dLTB12oiIktgTF8zejcDIUSN+xFevHgRrq6uxj5dk8CtuYjIHDw8PCCEQK9evTBu3DjOxhJRk1DnMtu7d28oFAooFAqMGjUKtrY3H6rVanH27FmMHTvWJCEtHZcZEJGplJeX66/c1alTJzz++OPcO5aImpQ6l9kbuxhkZGQgLCwMTk5O+vtUKhUCAwMRGRnZ4AGtAcssETU0nU6H9PR07NmzB0888YT+N2MsskTU1NS5zM6ePRsAEBgYiNjYWF7D2wi8nC0RNaTCwkIkJyfj3LlzAIAjR45g4MCBMqciIpKH0Wtmp02bZoocVo1rZomooZw6dQopKSkoLS2FSqVCeHg4unXrJncsIiLZ1KnMenh44MSJE/D09IS7u3uNJ4DdkJ+f32DhrAWXGRDR3dJqtdi4caP+kuI+Pj6IiopC8+bNZU5GRCSvOpXZL774As7Ozvo/367MkiGWWSK6Wzt27NAX2f79+2PMmDHVTsQlImqq6vSV8O9LC6ZPn26qLFaLl7MlorvVv39/HD9+HMHBwejatavccYiIGg2j5wr37t2LgwcP6m8vXboUEREReOONN6DRaBo0nLXgzCwRGUur1WL37t36S4jb2dlh+vTpLLJERLcwul49+eSTOHHiBADgzJkziI2NhaOjIxISEvDaa681eEBrwDJLRMa4fv06FixYgBUrVmDLli3641ziRURkyOh6deLECfTq1QsAkJCQgJCQEPz6669YuHAhkpKSGjqfVeDWXERUV0ePHsW3336LS5cuwd7eHt7e3nJHIiJq1Op1Odsbv/Zat24dJk6cCAAICAhAXl5ew6azEtyai4jupKqqCmvXrsXOnTsBAP7+/oiMjISbm5u8wYiIGjmjy2y/fv3w/vvvIzQ0FJs2bcJ///tfAMDZs2c5g1ALLjMgotvJz89HYmIisrKyAAADBw7EqFGjoFQqZU5GRNT4GV1mv/zyS9x///1ITU3Fm2++ifbt2wMAEhMTMWjQoAYPaA1YZonodjQaDXJzc+Hg4ICIiAh07NhR7khERBZDIcSNFZ13p7y8HEqlEnZ2dg3xdCZTWFgIV1dXFBQUwMXFxSyvaWcHVFUBffoAe/aY5SWJqJETQlQ7oevYsWPw9fWFq6urjKmIiBoHY/pavXfc3rNnD44ePQoA6Nq1K/r06VPfp7J6nJklor+7evUqkpOTMX78eLRs2RIA0LlzZ5lTERFZJqPLbG5uLmJjY7Fp0yb9iQnXr1/HiBEjsGTJErRo0aKhM1o8llkiuuHgwYNYvnw5NBoNVq1ahUcffZRbbhER3QWj69Xzzz+P4uJiHD58GPn5+cjPz8ehQ4dQWFiIF154wRQZLdrfF3GwzBI1XZWVlUhLS0NycjI0Gg0CAwMRGxvLIktEdJeMnpldvXo11q1bhy5duuiPde3aFfPmzcOYMWMaNJw1+HuZ5fcsoqbpypUrSExMRG5uLgAgJCQEw4YNgw1/wiUiumtGl1mdTlfjSV52dnb6/Wfppr//L+H3LaKmJzc3Fz/88AMqKyvRrFkzREZGok2bNnLHIiKyGkbXq5EjR+LFF1/E5cuX9ccuXbqEl156CaNGjWrQcNaAZZaoaWvRogXatGmDNm3a4KmnnmKRJSJqYEbPzH7zzTeYNGkSAgMDERAQAAC4cOECunXrhsWLFzd4QEvHNbNETU9ubi7c3NygUqmgUCgQGRkJW1tbLisgIjIBo8tsQEAA9u7di/Xr1+u35urSpQtCQ0MbPJw1+PvMLNfMElk3IQT27duHVatWoWvXroiIiIBCoYBKpZI7GhGR1TKqzMbFxSEtLQ0ajQajRo3C888/b6pcVoPLDIiahoqKCqxYsQIHDx4EAJSWlkKr1cLWtt7beRMRUR3U+avsf//7Xzz77LPo0KEDHBwckJycjNOnT+OTTz4xZT6Lx2UGRNYvOzsbCQkJyM/Ph0KhwKhRozBo0CBuu0VEZAZ1rlfffPMNZs+ejePHjyMjIwM///wz/vOf/5gym1XgMgMi6yWEwK5du/DDDz8gPz8fLi4uePjhhzF48GAWWSIiM6lzmT1z5gymTZumv33fffehqqoKWVlZJglmLbjMgMh6lZeXY9OmTdBqtejYsSOefPJJ/YmxRERkHnVeZlBRUYFmzZrpb9vY2EClUqGsrMwkwawFyyyR9XJwcMDUqVORk5ODe+65h7OxREQyMOrMhLfffhuOjo762xqNBh988AFcXV31xz7//POGS2cFuGaWyHoIIbBz5044Ozuja9euAIC2bduibdu2MicjImq66lxmhw0bhuPHj1c7NmjQIJw5c0Z/m7MShrhmlsg6lJWVIS0tDceOHYNKpYK/vz9cXFzkjkVE1OTVucymp6ebMIb14jIDIst38eJFJCYmoqCgAEqlEqNGjYKzs7PcsYiICPW4aAIZh8sMiCyXEALbt2/H+vXrodPp4O7ujqioKPj5+ckdjYiI/sIya2KcmSWyTDqdDnFxcThx4gQAICgoCOHh4VCr1TInIyKiv2OZNTGumSWyTDY2NvDw8IBSqcTYsWPRt29fnhdARNQIscyaGGdmiSyHEAIVFRWwt7cHAISGhqJPnz5o0aKFzMmIiKg2rFcmxjWzRJahpKQEv/76K3799VdotVoAgFKpZJElImrk6lWvtmzZggceeAADBw7EpUuXAAD/+9//sHXr1gYNZw24zICo8cvMzMS3336LU6dOISsrC9nZ2XJHIiKiOjK6zCYlJSEsLAwODg7Yt28fKioqAAAFBQX48MMPGzygpeMyA6LGS6fTYdOmTVi0aBGKiorg6emJxx9/HC1btpQ7GhER1ZHR9er999/H/Pnz8f3338POzk5/fPDgwdi7d2+DhrMGXGZA1DgVFxdj8eLFSE9PhxACvXr1wuOPPw4vLy+5oxERkRGMPgHs+PHjGDZsmMFxV1dXXL9+vSEyWRXOzBI1TikpKTh79izs7OwwYcIE9OzZU+5IRERUD0bXKx8fH5w6dcrg+NatW+t9ffJ58+YhMDAQ9vb2CA4Oxs6dO+v0uCVLlkChUCAiIqJer2sOXDNL1DiNGzcO/v7+eOKJJ1hkiYgsmNFl9vHHH8eLL76IHTt2QKFQ4PLly/jll1/wyiuv4OmnnzY6QFxcHGbMmIHZs2dj79696NmzJ8LCwpCbm3vbx2VmZuKVV17B0KFDjX5Nc+LMLFHjUFRUhIMHD+pve3p64pFHHoGnp6eMqYiI6G4Zvcxg5syZ0Ol0GDVqFEpLSzFs2DCo1Wq88soreP75540O8Pnnn+Pxxx/Hww8/DACYP38+VqxYgZ9++gkzZ86s8TFarRb3338/5syZgy1btjTq5Q1cM0skv1OnTiElJQVlZWVwcXFB69atAYAXQSAisgJGl1mFQoE333wTr776Kk6dOoXi4mJ07doVTk5ORr+4RqPBnj17MGvWLP0xGxsbhIaGYvv27bU+7r333oOXlxceffRRbNmy5bavUVFRod9xAQAKCwuNznk3ODNLJB+dTocNGzZg27ZtAKRlUvX5WkVERI1Xva8AplKp0LVr17t68by8PGi1Wnh7e1c77u3tjWPHjtX4mK1bt+LHH39ERkZGnV5j7ty5mDNnzl3lvBtcM0skj4KCAiQlJeHChQsAgH79+iEsLAy2trzwIRGRNTH6q/qIESNu+6u5DRs23FWg2ykqKsKDDz6I77//vs7r3GbNmoUZM2bobxcWFiIgIMBUEQ1wmQGR+Z04cQKpqakoKyuDWq1GeHg4goKC5I5FREQmYHSZ7dWrV7XblZWVyMjIwKFDhzBt2jSjnsvT0xNKpRI5OTnVjufk5MDHx8dg/OnTp5GZmYnw8HD9Md1fU5+2trY4fvw42rVrV+0xarUaarXaqFwNicsMiMyvoKAAZWVl8PX1RVRUFDw8POSOREREJmJ0mf3iiy9qPP7uu++iuLjYqOdSqVTo27cv1q9fr99eS6fTYf369XjuuecMxnfu3Lna2cgA8NZbb6GoqAhfffWVWWdc64rLDIjMQwih/61Rv379YGdnh27dunFZARGRlWuwr/IPPPAABgwYgE8//dSox82YMQPTpk1Dv379MGDAAHz55ZcoKSnR727w0EMPoWXLlpg7dy7s7e3RrVu3ao93c3MDAIPjjQVnZolM79ixY9i8eTMeeugh2NvbQ6FQGPwWiYiIrFODldnt27fD3t7e6MfFxsbiypUreOedd5CdnY1evXph9erV+pPCzp8/DxsLboFcM0tkOlVVVVi3bh127NgBAPjjjz8wcuRImVMREZE5GV1mp06dWu22EAJZWVnYvXs33n777XqFeO6552pcVgAA6enpt33swoUL6/Wa5sKZWSLTyM/PR2JiIrKysgAAAwcOREhIiMypiIjI3Iwus66urtVu29jYoFOnTnjvvfcwZsyYBgtmLbhmlqjhHT58GMuWLUNFRQUcHBwQERGBjh07yh2LiIhkYFSZ1Wq1ePjhh9G9e3e4u7ubKpNV4TIDooa1Z88eLF++HAAQEBCAqKgouLi4yJyKiIjkYlS9UiqVGDNmTKO+fGxjw2UGRA2rS5cucHFxwZAhQzB9+nQWWSKiJs7oetWtWzecOXPGFFmsEpcZEN29G1fxAgBHR0c888wzGDVqlEWfHEpERA3D6O8E77//Pl555RUsX74cWVlZKCwsrPZB1XFmlqj+KisrkZaWhp9++qnaJazlvBAKERE1LnVeM/vee+/h5Zdfxvjx4wEAkyZNqnZZ2xsblmu12oZPacG4Zpaofq5cuYLExETk5uYCkC5nTUREdKs6l9k5c+bgqaeewsaNG02Zx+pwZpbIePv378eKFStQWVmJZs2aYerUqWjbtq3csYiIqBGqc5kVf00xch9H43DNLFHdaTQarFq1Sr+koG3btpgyZQqcnJzkDUZERI2WUVtzKdjGjMZlBkR1d/nyZWRkZEChUGD48OEYMmQIT/IiIqLbMqrMduzY8Y6FNj8//64CWRsuMyCqu8DAQIwZMwa+vr4IDAyUOw4REVkAo8rsnDlzDK4ARrfHMktUu4qKCvz+++8YPHgwPDw8AEiXpSUiIqoro8rsP/7xD3h5eZkqi1XimlmimmVnZyMxMRFXr15Fbm4uHnnkES5lIiIio9W5zPKbTP1wzSxRdUII7NmzB6tXr4ZWq4WLiwtGjx7NrzFERFQvRu9mQMbhMgOim8rLy7F8+XIcPnwYgLQOf/LkyXB0dJQ5GRERWao6l1nd31sZ1RmXGRBJrl27hv/973+4du0abGxsEBoainvuuYczskREdFeMWjNLxuMyAyKJi4sLHBwcoNPpEBUVBX9/f7kjERGRFWCZNTEuM6CmrLy8HCqVCjY2NlAqlYiJiYFKpYKDg4Pc0YiIyEqwXpkYlxlQU3Xp0iV8++231S6B7erqyiJLREQNimXWjFhmqSkQQmD79u346aefcP36dRw5cgQajUbuWEREZKW4zICIGkxZWRlSU1Nx4sQJAEDXrl0RHh4OlUolczIiIrJWLLNE1CAuXLiAxMREFBYWQqlUYuzYsejbty93KyAiIpNimSWiu1ZeXo5ffvkFFRUV8PDwQHR0NHx8fOSORURETQDLLBHdNXt7e4wdOxZnzpzBhAkToFar5Y5ERERNBMssEdXLuXPnYGNjg4CAAABAr1690LNnTy4rICIis2KZJSKj6HQ6bN26Fenp6XBycsJTTz2lvxwtiywREZkbyywR1VlxcTFSUlJw5swZAEDbtm1ha8svI0REJB9+FyKiOjl79iySkpJQUlICOzs7jB8/Hr169ZI7FhERNXEss0R0W0IIpKenY/PmzQAALy8vREVFoUWLFjInIyIiYpklojrIy8sDAPTu3Rvjxo2DnZ2dzImIiIgkLLNEVCMhBBQKBRQKBcLDwxEUFISuXbvKHYuIiKgaG7kDEFHjotPpsG7dOiQmJkIIAUDaR5ZFloiIGiPOzBKRXkFBAZKSknDhwgUA0l6ygYGB8oYiIiK6DZZZIgIAnDhxAqmpqSgrK4NarUZ4eDiLLBERNXoss0RNnFarxfr167F9+3YAgK+vL6KiouDh4SFzMiIiojtjmSVq4pKSknD06FEAwIABAzB69GheCIGIiCwGv2MRNXHBwcE4d+4cwsPD0blzZ7njEBERGYVllqiJqaqqQnZ2Nvz9/QEArVu3xosvvgiVSiVzMiIiIuNxay6iJuTatWv46aefsGjRIly5ckV/nEWWiIgsFWdmiZqII0eOIC0tDRUVFXBwcEBxcTEvSUtERBaPZZbIylVVVWHNmjXYvXs3ACAgIACRkZFwdXWVORkREdHdY5klsmJXr15FYmIisrOzAQCDBw/GiBEjoFQqZU5GRETUMFhmiazYgQMHkJ2dDUdHR0yZMgXt27eXOxIREVGDYpklsmIhISHQaDQYOHAgXFxc5I5DRETU4LibgYlVVt78M/ehJ1PLy8tDamoqqqqqAAA2NjYICwtjkSUiIqvFemViJSU3/9ysmXw5yPrt378fK1asQGVlJVxcXDBy5Ei5IxEREZkcy6yJ/b3MOjrKl4Osl0ajwapVq5CRkQEAaNOmDQYMGCBvKCIiIjNhmTWx0tKbf+bMLDW03NxcJCYm4sqVK1AoFAgJCcHQoUNhY8MVRERE1DSwzJoYlxmQqRw7dgxJSUmoqqqCk5MTIiMjERgYKHcsIiIis2KZNTEuMyBT8fLyglKpROvWrTFlyhQ0409LRETUBLHMmhiXGVBDKikp0ZdWDw8PPProo/D09IRCoZA5GRERkTy4sM7EuMyAGoIQArt378aXX36J06dP64+3aNGCRZaIiJo0zsyaGMss3a3y8nIsX74chw8fBgAcOnQI7dq1kzkVERFR48Aya2JcM0t34/Lly0hMTMS1a9dgY2ODUaNGYeDAgXLHIiIiajRYZk3s72tmHRzky0GWRQiBnTt3Yu3atdBqtXB1dUVUVBT8/f3ljkZERNSosMya2I2ZWUdHgFt/Ul2dPXsWq1evBgB07twZkyZNggN/GiIiIjLAMmtify+zRHXVtm1b9OnTB15eXhgwYABP8iIiIqoFy6yJ3VhmwJO/6HZu7FYQFBQEx79+8gkPD5c5FRERUePHX3ybmEYj/VelkjcHNV6lpaVYsmQJVq5cidTUVAgh5I5ERERkMTgzayb8LTHV5MKFC0hMTERhYSGUSiU6dOggdyQiIiKLwjJLJAMhBLZt24YNGzZACAEPDw9ER0fDx8dH7mhEREQWhWWWyMxKS0uRkpKCU6dOAQC6deuGiRMnQq1Wy5yMiIjI8rDMEpmZjY0N8vLyYGtri3HjxqF3797crYCIiKieWGaJzODGSV0KhQL29vaIiYmBjY0NvL29ZU5GRERk2bibAZGJFRcXY/Hixdi9e7f+mK+vL4ssERFRA+DMLJEJnT17FklJSSgpKUFWVhZ69OjBtbFEREQNiGWWyAR0Oh02bdqEzZs3AwBatGiB6OhoFlkiIqIGxjJL1MCKioqQnJyMzMxMAEDv3r0xbtw42NnZyRuMiIjICrHMEjUgjUaD7777DsXFxbCzs8PEiRPRo0cPuWMRERFZLZZZogakUqnQv39/HDlyBNHR0WjevLnckYiIiKwayyzRXSosLERlZaW+uA4ZMgSDBg2CrS3/eREREZkat+YiugsnTpzA/PnzER8fj8rKSgDSRRFYZImIiMyD33GJ6kGr1WL9+vXYvn07AMDNzQ1lZWU8yYuIiMjMWGaJjHT9+nUkJSXh4sWLAIABAwZg9OjRnI0lIiKSQaNYZjBv3jwEBgbC3t4ewcHB2LlzZ61jv//+ewwdOhTu7u5wd3dHaGjobccTNaRjx47h22+/xcWLF6FWqxETE4Nx48axyBIREclE9jIbFxeHGTNmYPbs2di7dy969uyJsLAw5Obm1jg+PT0d9957LzZu3Ijt27cjICAAY8aMwaVLl8ycnJoaIQS2b9+O8vJy+Pn54cknn0SXLl3kjkVERNSkKYQQQs4AwcHB6N+/P7755hsA0pWTAgIC8Pzzz2PmzJl3fLxWq4W7uzu++eYbPPTQQ3ccX1hYCFdXVxQUFMDFxeWu89+Jhwdw7RrQsSNw/LjJX45MrKCgALt378bw4cOhVCrljkNERGSVjOlrss7MajQa7NmzB6GhofpjNjY2CA0N1Z9YcyelpaWorKyEh4dHjfdXVFSgsLCw2gdRXR05cgQbN27U33Z1dcWoUaNYZImIiBoJWctsXl4etFotvL29qx339vZGdnZ2nZ7j9ddfh5+fX7VC/Hdz586Fq6ur/iMgIOCuc5P1q6qqwooVK5CQkIDNmzfj7NmzckciIiKiGsi+ZvZufPTRR1iyZAlSUlJgb29f45hZs2ahoKBA/3HhwgUzpyRLc/XqVfz444/YvXs3AGDw4MFo1aqVzKmIiIioJrKegu3p6QmlUomcnJxqx3NycuDj43Pbx3766af46KOPsG7dOvTo0aPWcWq1Gmq1ukHykvU7ePAgli9fDo1GA0dHR0yZMgXt27eXOxYRERHVQtaZWZVKhb59+2L9+vX6YzqdDuvXr8fAgQNrfdy///1v/Otf/8Lq1avRr18/c0SlJmDNmjVITk6GRqNB69at8eSTT7LIEhERNXKyb445Y8YMTJs2Df369cOAAQPw5ZdfoqSkBA8//DAA4KGHHkLLli0xd+5cAMDHH3+Md955B7/++isCAwP1a2udnJzg5OQk2+dBls/f3x8AMHToUAwfPhw2Nha9CoeIiKhJkL3MxsbG4sqVK3jnnXeQnZ2NXr16YfXq1fqTws6fP1+tVPz3v/+FRqNBVFRUteeZPXs23n33XXNGJytQXFys/yEoKCgI3t7e8PT0lDkVERER1ZXs+8yaG/eZJUDaFm7VqlU4efIknnrqKc7qExERNSLG9DXZZ2aJzC03NxeJiYm4cuUKFAoFzpw5c9uTCImIiKjxYpmlJkMIgYyMDKxcuRJVVVVwcnJCZGQkAgMD5Y5GRERE9cQyS02CRqPB8uXLcfDgQQBAu3btMGXKFDRr1kzmZERERHQ3WGapSdi8eTMOHjwIhUKBESNGYMiQIVAoFHLHIiIiorvEMktNwrBhw5CVlYWQkBBezYuIiMiKcCNNskoVFRX4448/cGOzDpVKhQcffJBFloiIyMpwZpasTlZWFhITE5Gfnw8AGDRokMyJiIiIyFRYZslqCCGwa9cu/P7779BqtXB1deVMLBERkZVjmSWrUF5ejrS0NBw9ehQA0KlTJ0yePBkODg4yJyMiIiJTYpkli3f58mUkJCTg+vXrsLGxwejRoxEcHMzdCoiIiJoAllmyeEIIFBYWws3NDVFRUWjZsqXckYiIiMhMWGbJIul0OtjYSJtxtGzZErGxsWjVqhXs7e1lTkZERETmxK25yOJcuHAB//nPf5Cdna0/1rFjRxZZIiKiJohlliyGEALbtm3DggULcPXqVWzYsEHuSERERCQzLjMgi1BSUoLU1FScOnUKANCtWzdMnDhR5lREREQkN5ZZavTOnTuHpKQkFBUVwdbWFmPHjkWfPn24WwERERGxzFLjdv78efz8888QQqB58+aIjo6Gt7e33LGIiIiokWCZpUbN398fgYGBcHZ2xoQJE6BSqeSORERERI0Iyyw1OufPn4evry/s7OxgY2ODe++9F3Z2dnLHIiIiokaIuxlQo6HT6ZCeno4FCxZgzZo1+uMsskRERFQbzsxSo1BUVITk5GRkZmYCALRabbULIxARERHVhGWWZHf69GkkJyejtLQUdnZ2mDhxInr06CF3LCIiIrIALLMkG51Oh40bN2Lr1q0AAG9vb0RFRcHT01PmZERERGQpWGZJNiUlJdizZw8AoG/fvggLC+P6WCIiIjIKyyzJxtnZGREREdBoNOjWrZvccYiIiMgCscyS2Wi1WmzYsAGtWrVCp06dAAAdO3aUORURERFZMp4qTmZRUFCAhQsX4o8//sDSpUtRXl4udyQiIiKyApyZJZM7fvw4UlNTUV5eDrVajfDwcNjb28sdi4iIiKwAyyyZjFarxdq1a7Fjxw4AgJ+fH6KiouDu7i5zMiIiIrIWLLNkEpWVlVi4cCEuX74MALjnnnsQGhoKpVIpczIiIiKyJiyzZBJ2dnbw8fFBfn4+IiIi9Cd8ERERETUklllqMFVVVaisrISDgwMAYOzYsRg2bBhcXV1lTkZERETWirsZUIPIz8/Hjz/+iISEBOh0OgDS7CyLLBEREZkSZ2bprh06dAjLli2DRqOBg4MDrl27hubNm8sdi4iIiJoAllmqt8rKSqxevRp79+4FALRq1QqRkZFwcXGRORkRERE1FSyzVC95eXlITExETk4OAGDo0KEYPnw4bGy4coWIiIjMh2WWjCaEQHJyMnJycuDo6IipU6eiXbt2csciIiKiJohlloymUCgwadIkrF+/HpMmTYKzs7PckYiIiKiJ4u+EqU5yc3Nx4MAB/W0fHx/cf//9LLJEREQkK87M0m0JIZCRkYGVK1dCp9OhefPmaNmypdyxiIiIiACwzNJtaDQarFixQj8j27ZtW7i5uckbioiIiOhvWGapRjk5OUhISMDVq1ehUCgwYsQIDBkyBAqFQu5oRERERHoss2Rg7969WLlyJbRaLZydnREZGYnWrVvLHYuIiIjIAMssGSgvL4dWq0X79u0xZcoUODo6yh2JiIiIqEYsswQA0Ol0+gseDBw4EK6urujatSuXFRAREVGjxq25mjghBHbu3InvvvsOGo0GgLSPbFBQEIssERERNXqcmW3CysvLkZaWhqNHjwKQ1srec889MqciIiIiqjuW2Sbq0qVLSExMxPXr12FjY4PRo0cjODhY7lhERERERmGZbWKEENixYwfWrl0LnU4HNzc3REVF8UIIREREZJFYZpuYzZs3Iz09HQDQpUsXTJo0Cfb29vKGIiIiIqonltkmpm/fvti3bx8GDRqE/v378yQvIiIismgss1ZOCIEzZ86gXbt2AAAnJyc899xzsLXlW09ERESWj1tzWbHS0lL89ttvWLx4MQ4fPqw/ziJLRERE1oKtxkqdO3cOSUlJKCoqglKpRGVlpdyRiIiIiBocy6yVEUJg69at2LhxI4QQaN68OaKjo+Ht7S13NCIiIqIGxzJrRUpKSpCcnIwzZ84AAHr06IEJEyZApVLJnIyIiIjINFhmrcilS5dw5swZ2NraYvz48ejVqxd3KyAiIiKrxjJrRTp27IgxY8agXbt28PLykjsOERERkclxNwMLVlRUhPj4eBQUFOiPDRw4kEWWiIiImgzOzFqo06dPIyUlBSUlJdBoNHjggQfkjkRERERkdiyzFkan0yE9PR1btmwBAHh5eWHs2LEypyIiIiKSB8usBSksLERSUhLOnz8PAOjTpw/Gjh0LOzs7mZMRERERyYNl1kJkZ2dj0aJFKCsrg0qlQnh4OLp16yZ3LCIiIiJZscxaiObNm8PZ2Rmurq6IiopC8+bN5Y5EREREJDuW2UasqKgITk5OUCgUsLOzw3333YdmzZrB1pZvGxERERHAMttoHT9+HKmpqRg4cCCGDRsGAHB1dZU5FRFRwxFCoKqqClqtVu4oRCQDOzs7KJXKu34eltlGRqvVYt26dfjzzz8BACdPnsSQIUNgY8MtgYnIemg0GmRlZaG0tFTuKEQkE4VCAX9/fzg5Od3V87DMNiLXrl1DUlISLl26BAAIDg7G6NGjWWSJyKrodDqcPXsWSqUSfn5+UKlUvPQ2URMjhMCVK1dw8eJFdOjQ4a5maFlmG4mjR49i6dKlqKiogL29PSZPnozOnTvLHYuIqMFpNBrodDoEBATA0dFR7jhEJJMWLVogMzMTlZWVLLOWrqioCElJSdBqtfD390dkZCTc3NzkjkVEZFL8rRNR09ZQv5FhmW0EnJ2dMXbsWOTn52PUqFENshiaiIiIqClgmZXJ4cOH4ebmhpYtWwIA+vXrJ3MiIiIiIsvD3/GYWWVlJZYvX47ExEQkJiaivLxc7khERFRHw4cPxz//+U+5Y1ADunr1Kry8vJCZmSl3FKui0WgQGBiI3bt3m/y1GkWZnTdvHgIDA2Fvb4/g4GDs3LnztuMTEhLQuXNn2Nvbo3v37li5cqWZkt6dvLw8/Pjjj9izZw8AoFu3blCpVDKnIiIiU5o+fToUCgU++uijasdTU1OrrRlMT0+HQqFAUFCQwd67bm5uWLhwYa2v8e6770KhUEChUECpVCIgIABPPPEE8vPzDcb+8ccfGD9+PNzd3fXfRz///PMa9/vduHEjxo8fj+bNm8PR0RFdu3bFyy+/rN91xxp88MEHmDx5MgIDA+WOYjLG9qYbf2dv/QgKCtKPCQwMrHHMs88+CwBQqVR45ZVX8Prrr5v0cwMaQZmNi4vDjBkzMHv2bOzduxc9e/ZEWFgYcnNzaxz/xx9/4N5778Wjjz6Kffv2ISIiAhERETh06JCZkxsnMPAAvvvuO+Tk5MDR0REPPPAARo0axRMgiIiaAHt7e3z88ce4du3aHceeOXMGixYtMvo1goKCkJWVhfPnz2PBggVYvXo1nn766WpjUlJSEBISAn9/f2zcuBHHjh3Diy++iPfffx//+Mc/IITQj/32228RGhoKHx8fJCUl4ciRI5g/fz4KCgrw2WefGZ2vvjQajcmeu7S0FD/++CMeffTRu3oeU2a8W/XpTV999RWysrL0HxcuXICHhweio6P1Y3bt2lVtzNq1awGg2pj7778fW7duxeHDh033CQKAkNmAAQPEs88+q7+t1WqFn5+fmDt3bo3jY2JixIQJE6odCw4OFk8++WSdXq+goEAAEAUFBfUPbQRPz0oxaVKqePfdd8W7774rFi5cKAoLC83y2kREjVFZWZk4cuSIKCsrkzuK0UJCQsSLL76ov718+XLh4uIiFi9eXOtjpk2bJiZOnCg6d+4sXn31Vf3xlJQU8fdvwxs3bhQAxKuvvioCAgJEeXm5/j5XV1exYMGCWl9j9uzZomfPntWOzZgxQ7i7u+tvFxcXi+bNm4upU6caPD4tLU0AEEuWLBFCCHHhwgWhUqnEP//5zxpf79q1a7VmuXbtmnjiiSeEl5eXUKvVIigoSCxbtqzWnF988YVo3bq1/va0adPE5MmTxfvvvy98fX1FYGCgmDVrlhgwYIDBa/Xo0UPMmTNHf/v7778XnTt3Fmq1WnTq1EnMmzev1pxCCJGQkCBatGhR7VhVVZV45JFHRGBgoLC3txcdO3YUX375ZbUxNWUUQojz58+L6Oho4erqKtzd3cWkSZPE2bNn9Y/buXOnCA0NFc2bNxcuLi5i2LBhYs+ePbfNeLfutjcJIf1dVSgUIjMzs9YxL774omjXrp3Q6XTVjo8YMUK89dZbNT7mdl8LjOlrsp4AptFosGfPHsyaNUt/zMbGBqGhodi+fXuNj9m+fTtmzJhR7VhYWBhSU1NrHF9RUYGKigr97cLCwrsPbgStVgknpxIIAQwfHoJhw4ZxNpaIqAb9+gHZ2eZ/XR8foD7L+n799Vc89dRT+PXXXzFx4sTbjlUqlfjwww9x33334YUXXoC/v3+tY//5z39i8eLF+Prrr/HKK68YHwxAZmYm1qxZU20p2++//46rV6/W+Jzh4eHo2LEjfvvtN8TGxiIhIQEajQavvfZajc9f2/aROp0O48aNQ1FRERYvXox27drhyJEjRu/Ss379eri4uOhn+wBg7ty5OH36NNq1awdAOpH6wIEDSEpKAgD88ssveOedd/DNN9+gd+/e2LdvHx5//HE0a9YM06ZNq/F1tmzZgr59+xp8Dv7+/khISEDz5s3xxx9/4IknnoCvry9iYmJqzVhZWYmwsDAMHDgQW7Zsga2tLd5//32MHTsWBw4cgEqlQlFREaZNm4avv/4aQgh89tlnGD9+PE6ePAlnZ+caM/7yyy948sknb/v/a9WqVRg6dGiN9xnbm2ry448/IjQ0FK1bt67xfo1Gg8WLF2PGjBkG220NGDAAW7ZsqfNr1YesZTYvLw9arRbe3t7Vjnt7e+PYsWM1PiY7O7vG8dm1fAWcO3cu5syZ0zCB60WB1NQI9OmTi3ffDZQxBxFR45adDVjKUsx58+bhzTffxLJlyxASElKnx0yZMgW9evXC7Nmz8eOPP9Y6ztHREbNnz8Ybb7yBxx9/HK6urnV6/oMHD8LJyQlarVZ/cvHnn3+uv//EiRMAgC5dutT4+M6dO+vHnDx5Ei4uLvD19a3Ta9+wbt067Ny5E0ePHkXHjh0BAG3btjXqOQCgWbNm+OGHH6qV8Z49e+LXX3/F22+/DUAqecHBwWjfvj0AYPbs2fjss88wdepUAECbNm1w5MgRfPvtt7WW2XPnzsHPz6/aMTs7u2q9oU2bNti+fTvi4+OrldlbMy5evBg6nQ4//PCDvtAtWLAAbm5uSE9Px5gxYzBy5Mhqr/Xdd9/Bzc0NmzZtqvUHokmTJiE4OPi2/79u7IxUE2N7060uX76MVatW4ddff611TGpqKq5fv47p06cb3Ofn54dz587V6bXqy+q35po1a1a1n0gKCwsREBBgttc/eBAQwhG2toFme00iIkvk42MZr5uYmIjc3Fxs27YN/fv31x/fsmULxo0bp7/97bff4v7776/22I8//hgjR46844zro48+is8++wwff/wxPvzwwzrl6tSpE9LS0lBeXo7FixcjIyMDzz//vME48bd1sbURQtRrQ/uMjAz4+/vri2x9de/e3eAE6fvvvx8//fQT3n77bQgh8Ntvv+m/v5eUlOD06dN49NFH8fjjj+sfU1VVddsfBsrKymBvb29wfN68efjpp59w/vx5lJWVQaPRoFevXrfNuH//fpw6dcpghrW8vBynT58GAOTk5OCtt95Ceno6cnNzodVqUVpaivPnz9ea0dnZudZZW3P4+eef4ebmhoiIiFrH/Pjjjxg3bpzBDwYA4ODggNLSUhMmlLnMenp6QqlUIicnp9rxnJwc+NTy1cXHx8eo8Wq1Gmq1umEC18NtflgiIqK/McMOPg2id+/e2Lt3L3766Sf069dPX/r69euHjIwM/bhbZ8MAYNiwYQgLC8OsWbNqnMW6wdbWFh988AGmT5+O5557rk65VCqVfpbyo48+woQJEzBnzhz861//AgB9wTx69CgGDRpk8PijR4+ia9eu+rEFBQXIysoyanbWwcHhtvfb2NgYlOnKykqDcc2aNTM4du+99+L111/H3r17UVZWhgsXLiA2NhYAUFxcDAD4/vvvDWYxb7fEwdPT0+CkvCVLluCVV17BZ599hoEDB8LZ2RmffPIJduzYcduMxcXF6Nu3L3755ReD12nRogUAYNq0abh69Sq++uortG7dGmq1GgMHDrztCWR3u8zA2N70d0II/PTTT3jwwQdr3X3p3LlzWLduHZKTk2u8Pz8/X//5m4qsizdVKhX69u2L9evX64/pdDqsX78eAwcOrPExAwcOrDYeANauXVvreCIioobUrl07bNy4EUuXLq028+ng4ID27dvrP2qbTfvoo4+wbNmyWs8NuSE6OhpBQUH1Xir31ltv4dNPP8Xly5cBAGPGjIGHh0eNOxGkpaXh5MmTuPfeewEAUVFRUKlU+Pe//13jc1+/fr3G4z169MDFixf1yxVu1aJFC2RnZ1crtH//AeB2/P39ERISgl9++QW//PILRo8eDS8vLwDSDw5+fn44c+ZMtfegffv2aNOmTa3P2bt3bxw5cqTasW3btmHQoEF45pln0Lt3b7Rv314/s3o7ffr0wcmTJ+Hl5WWQ4cbs8LZt2/DCCy9g/PjxCAoKglqtRl5e3m2fd9KkScjIyLjtx+0uvHQ3vWnTpk04derUbXd7WLBgAby8vDBhwoQa7z906BB69+59x9e6K3c8RczElixZItRqtVi4cKE4cuSIeOKJJ4Sbm5vIzs4WQgjx4IMPipkzZ+rHb9u2Tdja2opPP/1UHD16VMyePVvY2dmJgwcP1un1zL2bARERVWctuxkcO3ZM+Pj4VNvdoCY3znz/uwcffFDY29vXuJvB33cKWL9+vbC1tRW2trZG72YghOGOQQkJCUKpVIrHH39c7N+/X5w9e1b88MMPwt3dXURFRVU7E33evHlCoVCIRx55RKSnp4vMzEyxdetW8cQTT4gZM2bUmmX48OGiW7du4vfffxdnzpwRK1euFKtWrRJCCHHkyBGhUCjERx99JE6dOiW++eYb4e7uXuNuBjX5/vvvhZ+fn/D09BT/+9//DO5zcHAQX331lTh+/Lg4cOCA+Omnn8Rnn31Wa9YDBw4IW1tbkZ+frz/21VdfCRcXF7F69Wpx/Phx8dZbbwkXF5dq/39rylhSUiI6dOgghg8fLjZv3izOnDkjNm7cKJ5//nlx4cIFIYQQvXv3FqNHjxZHjhwRf/75pxg6dKhwcHAQX3zxRa0Z71ZdetPMmTPFgw8+aPDYBx54QAQHB9f63FqtVrRq1Uq8/vrrtY5p3bq1WLRoUY33NdRuBrKXWSGE+Prrr0WrVq2ESqUSAwYMEH/++af+vpCQEDFt2rRq4+Pj40XHjh2FSqUSQUFBYsWKFXV+LZZZIiJ5WUuZFUIqZ15eXrctdzUVn7NnzwqVSnXHMiuEEGPGjBEA6lVmf/vtN6FWq8X58+f1xzZv3izCwsKEi4uL/vvop59+Kqqqqgwev3btWhEWFibc3d2Fvb296Ny5s3jllVfE5cuXa81y9epV8fDDD4vmzZsLe3t70a1bN7F8+XL9/f/9739FQECAaNasmXjooYfEBx98UOcye+3aNaFWq4Wjo6MoKioyuP+XX34RvXr1EiqVSri7u4thw4aJ5OTkWrMKIRX++fPn62+Xl5eL6dOnC1dXV+Hm5iaefvppMXPmzDuWWSGEyMrKEg899JDw9PQUarVatG3bVjz++OP6zrF3717Rr18/YW9vLzp06CASEhJE69atTVpmhbhzb5o2bZoICQmpduz69evCwcFBfPfdd7U+75o1awQAcfz48Rrv/+OPP4Sbm5soLS2t8f6GKrMKIeqwEtyKFBYWwtXVFQUFBXBxcZE7DhFRk1NeXo6zZ8+iTZs2NZ58Q2ROK1aswKuvvopDhw5x68wGFhsbi549e+KNN96o8f7bfS0wpq9Z/W4GRERERLWZMGECTp48iUuXLpl1tyNrp9Fo0L17d7z00ksmfy2WWSIiImrS/vnPf8odweqoVCq89dZbZnktzqcTERERkcVimSUiIiIii8UyS0REsmhi5x8T0S0a6msAyywREZmVnZ0dAJj8EpdE1LjduPLZ7a7SVhc8AYyIiMxKqVTCzc0Nubm5AABHR0f9JWGJqGnQ6XS4cuUKHB0dYWt7d3WUZZaIiMzuxnXhbxRaImp6bGxs0KpVq7v+YZZlloiIzE6hUMDX1xdeXl6orKyUOw4RyUClUjXIhSpYZomISDZKpfKu18sRUdPGE8CIiIiIyGKxzBIRERGRxWKZJSIiIiKL1eTWzN7YoLewsFDmJERERERUkxs9rS4XVmhyZbaoqAgAEBAQIHMSIiIiIrqdoqIiuLq63naMQjSx6wnqdDpcvnwZzs7OZtmku7CwEAEBAbhw4QJcXFxM/nrU8PgeWj6+h5aP76Fl4/tn+cz9HgohUFRUBD8/vztu39XkZmZtbGzg7+9v9td1cXHhP2ALx/fQ8vE9tHx8Dy0b3z/LZ8738E4zsjfwBDAiIiIislgss0RERERksVhmTUytVmP27NlQq9VyR6F64nto+fgeWj6+h5aN75/la8zvYZM7AYyIiIiIrAdnZomIiIjIYrHMEhEREZHFYpklIiIiIovFMktEREREFotltgHMmzcPgYGBsLe3R3BwMHbu3Hnb8QkJCejcuTPs7e3RvXt3rFy50kxJqTbGvIfff/89hg4dCnd3d7i7uyM0NPSO7zmZnrH/Dm9YsmQJFAoFIiIiTBuQ7sjY9/D69et49tln4evrC7VajY4dO/LrqYyMff++/PJLdOrUCQ4ODggICMBLL72E8vJyM6WlW23evBnh4eHw8/ODQqFAamrqHR+Tnp6OPn36QK1Wo3379li4cKHJc9ZI0F1ZsmSJUKlU4qeffhKHDx8Wjz/+uHBzcxM5OTk1jt+2bZtQKpXi3//+tzhy5Ih46623hJ2dnTh48KCZk9MNxr6H9913n5g3b57Yt2+fOHr0qJg+fbpwdXUVFy9eNHNyusHY9/CGs2fPipYtW4qhQ4eKyZMnmycs1cjY97CiokL069dPjB8/XmzdulWcPXtWpKeni4yMDDMnJyGMf/9++eUXoVarxS+//CLOnj0r1qxZI3x9fcVLL71k5uR0w8qVK8Wbb74pkpOTBQCRkpJy2/FnzpwRjo6OYsaMGeLIkSPi66+/FkqlUqxevdo8gf+GZfYuDRgwQDz77LP621qtVvj5+Ym5c+fWOD4mJkZMmDCh2rHg4GDx5JNPmjQn1c7Y9/BWVVVVwtnZWfz888+mikh3UJ/3sKqqSgwaNEj88MMPYtq0aSyzMjP2Pfzvf/8r2rZtKzQajbki0m0Y+/49++yzYuTIkdWOzZgxQwwePNikOalu6lJmX3vtNREUFFTtWGxsrAgLCzNhsppxmcFd0Gg02LNnD0JDQ/XHbGxsEBoaiu3bt9f4mO3bt1cbDwBhYWG1jifTqs97eKvS0lJUVlbCw8PDVDHpNur7Hr733nvw8vLCo48+ao6YdBv1eQ/T0tIwcOBAPPvss/D29ka3bt3w4YcfQqvVmis2/aU+79+gQYOwZ88e/VKEM2fOYOXKlRg/frxZMtPda0x9xtbsr2hF8vLyoNVq4e3tXe24t7c3jh07VuNjsrOzaxyfnZ1tspxUu/q8h7d6/fXX4efnZ/CPmsyjPu/h1q1b8eOPPyIjI8MMCelO6vMenjlzBhs2bMD999+PlStX4tSpU3jmmWdQWVmJ2bNnmyM2/aU+7999992HvLw8DBkyBEIIVFVV4amnnsIbb7xhjsjUAGrrM4WFhSgrK4ODg4PZsnBmlugufPTRR1iyZAlSUlJgb28vdxyqg6KiIjz44IP4/vvv4enpKXccqiedTgcvLy9899136Nu3L2JjY/Hmm29i/vz5ckejOkhPT8eHH36I//znP9i7dy+Sk5OxYsUK/Otf/5I7GlkgzszeBU9PTyiVSuTk5FQ7npOTAx8fnxof4+PjY9R4Mq36vIc3fPrpp/joo4+wbt069OjRw5Qx6TaMfQ9Pnz6NzMxMhIeH64/pdDoAgK2tLY4fP4527dqZNjRVU59/h76+vrCzs4NSqdQf69KlC7Kzs6HRaKBSqUyamW6qz/v39ttv48EHH8Rjjz0GAOjevTtKSkrwxBNP4M0334SNDefaGrva+oyLi4tZZ2UBzszeFZVKhb59+2L9+vX6YzqdDuvXr8fAgQNrfMzAgQOrjQeAtWvX1jqeTKs+7yEA/Pvf/8a//vUvrF69Gv369TNHVKqFse9h586dcfDgQWRkZOg/Jk2ahBEjRiAjIwMBAQHmjE+o37/DwYMH49SpU/ofRADgxIkT8PX1ZZE1s/q8f6WlpQaF9cYPJkII04WlBtOo+ozZTzmzMkuWLBFqtVosXLhQHDlyRDzxxBPCzc1NZGdnCyGEePDBB8XMmTP147dt2yZsbW3Fp59+Ko4ePSpmz57NrblkZux7+NFHHwmVSiUSExNFVlaW/qOoqEiuT6HJM/Y9vBV3M5Cfse/h+fPnhbOzs3juuefE8ePHxfLly4WXl5d4//335foUmjRj37/Zs2cLZ2dn8dtvv4kzZ86I33//XbRr107ExMTI9Sk0eUVFRWLfvn1i3759AoD4/PPPxb59+8S5c+eEEELMnDlTPPjgg/rxN7bmevXVV8XRo0fFvHnzuDWXJfv6669Fq1athEqlEgMGDBB//vmn/r6QkBAxbdq0auPj4+NFx44dhUqlEkFBQWLFihVmTky3MuY9bN26tQBg8DF79mzzByc9Y/8d/h3LbONg7Hv4xx9/iODgYKFWq0Xbtm3FBx98IKqqqsycmm4w5v2rrKwU7777rmjXrp2wt7cXAQEB4plnnhHXrl0zf3ASQgixcePGGr+33Xjfpk2bJkJCQgwe06tXL6FSqUTbtm3FggULzJ5bCCEUQnA+n4iIiIgsE9fMEhEREZHFYpklIiIiIovFMktEREREFotlloiIiIgsFsssEREREVksllkiIiIislgss0RERERksVhmiYiIiMhiscwSEQFYuHAh3Nzc5I5RbwqFAqmpqbcdM336dERERJglDxGRubDMEpHVmD59OhQKhcHHqVOn5I6GhQsX6vPY2NjA398fDz/8MHJzcxvk+bOysjBu3DgAQGZmJhQKBTIyMqqN+eqrr7Bw4cIGeb3avPvuu/rPU6lUIiAgAE888QTy8/ONeh4WbyKqK1u5AxARNaSxY8diwYIF1Y61aNFCpjTVubi44Pjx49DpdNi/fz8efvhhXL58GWvWrLnr5/bx8bnjGFdX17t+nboICgrCunXroNVqcfToUTzyyCMoKChAXFycWV6fiJoWzswSkVVRq9Xw8fGp9qFUKvH555+je/fuaNasGQICAvDMM8+guLi41ufZv38/RowYAWdnZ7i4uKBv377YvXu3/v6tW7di6NChcHBwQEBAAF544QWUlJTcNptCoYCPjw/8/Pwwbtw4vPDCC1i3bh3Kysqg0+nw3nvvwd/fH2q1Gr169cLq1av1j9VoNHjuuefg6+sLe3t7tG7dGnPnzq323DeWGbRp0wYA0Lt3bygUCgwfPhxA9dnO7777Dn5+ftDpdNUyTp48GY888oj+9tKlS9GnTx/Y29ujbdu2mDNnDqqqqm77edra2sLHxwctW7ZEaGgooqOjsXbtWv39Wq0Wjz76KNq0aQMHBwd06tQJX331lf7+d999Fz///DOWLl2qn+VNT08HAFy4cAExMTFwc3ODh4cHJk+ejMzMzNvmISLrxjJLRE2CjY0N/u///g+HDx/Gzz//jA0bNuC1116rdfz9998Pf39/7Nq1C3v27MHMmTNhZ2cHADh9+jTGjh2LyMhIHDhwAHFxcdi6dSuee+45ozI5ODhAp9OhqqoKX331FT777DN8+umnOHDgAMLCwjBp0iScPHkSAPB///d/SEtLQ3x8PI4fP45ffvkFgYGBNT7vzp07AQDr1q1DVlYWkpOTDcZER0fj6tWr2Lhxo/5Yfn4+Vq9ejfvvvx8AsGXLFjz00EN48cUXceTIEXz77bdYuHAhPvjggzp/jpmZmVizZg1UKpX+mE6ng7+/PxISEnDkyBG88847eOONNxAfHw8AeOWVVxATE4OxY8ciKysLWVlZGDRoECorKxEWFgZnZ2ds+f/27jakye6PA/j3nmHqnIGV5F5YkG4IZbVcZRaRPRkZwyVaCgmZiaaGVtQL00ZoWahQ9CCIRjZSDCLJ1OiFtRaEPahQuWXNHgiCDJSRS9vO/SK8uJcP3XbD/39v9/cDe3Gu6/zO9TvX3vx2dq7NZILZbEZgYCDi4+MxMjLyt3MiIi8jiIi8RHp6uvDx8RFyuVx6JSUlTdi3qalJzJ49W2rX1dWJWbNmSW2FQiEuX748YWxGRobYt2+f2zGTySRkMpkYHh6eMObn8a1Wq1CpVCI6OloIIYRSqRSlpaVuMVqtVuTk5AghhMjLyxNxcXHC5XJNOD4AcePGDSGEEDabTQAQz549c+uTnp4udDqd1NbpdGLPnj1Su7q6WiiVSuF0OoUQQmzYsEGUlZW5jVFfXy9CQ0MnzEEIIUpKSoRMJhNyuVz4+fkJAAKAqKysnDRGCCH2798vduzYMWmuY9dWq9Vu9+Dbt2/C399ftLe3Tzk+EXkv7pklIq+yfv16XLx4UWrL5XIAP1YpT548id7eXgwNDeH79+9wOBz4+vUrAgICxo1TWFiIvXv3or6+XvqqfOHChQB+bEHo6emB0WiU+gsh4HK5YLPZEBkZOWFug4ODCAwMhMvlgsPhwJo1a1BTU4OhoSF8/PgRsbGxbv1jY2PR3d0N4McWgU2bNkGtViM+Ph4JCQnYvHnzP7pXaWlpyMzMxIULFzBz5kwYjUbs3LkTMplMmqfZbHZbiXU6nVPeNwBQq9Vobm6Gw+HA1atX0dXVhby8PLc+58+fR21tLd69e4fh4WGMjIxg6dKlU+bb3d2Nvr4+KBQKt+MOhwOvX7/+jTtARN6AxSwReRW5XI7w8HC3Y/39/UhISEB2djZKS0sRHByMBw8eICMjAyMjIxMWZcePH0dqaipaWlrQ2tqKkpISNDQ0IDExEXa7HVlZWcjPzx8XFxYWNmluCoUCT58+hUwmQ2hoKPz9/QEAQ0NDv5yXRqOBzWZDa2sr7t69i+TkZGzcuBHXr1//Zexktm/fDiEEWlpaoNVqYTKZUFVVJZ232+0wGAzQ6/XjYv38/CYd19fXV3oPTp06hW3btsFgMODEiRMAgIaGBhw6dAgVFRWIiYmBQqHAmTNn8OjRoynztdvtWL58uduHiDH/lof8iOh/j8UsEXm9J0+ewOVyoaKiQlp1HNufORWVSgWVSoWCggLs2rULdXV1SExMhEajwYsXL8YVzb8ik8kmjAkKCoJSqYTZbMa6deuk42azGStWrHDrl5KSgpSUFCQlJSE+Ph5fvnxBcHCw23hj+1OdTueU+fj5+UGv18NoNKKvrw9qtRoajUY6r9FoYLFYpj3PnxUVFSEuLg7Z2dnSPFevXo2cnBypz88rq76+vuPy12g0aGxsREhICIKCgv5RTkTkPfgAGBF5vfDwcIyOjuLcuXN48+YN6uvrcenSpUn7Dw8PIzc3Fx0dHXj79i3MZjM6Ozul7QNHjhzBw4cPkZubi66uLrx69Qo3b96c9gNgf3X48GGUl5ejsbERFosFR48eRVdXFw4cOAAAqKysxLVr19Db2wur1YqmpibMmzdvwj96CAkJgb+/P9ra2vDp0ycMDg5Oet20tDS0tLSgtrZWevBrTHFxMa5cuQKDwYDnz5/j5cuXaGhoQFFR0bTmFhMTg6ioKJSVlQEAIiIi8PjxY7S3t8NqteLYsWPo7Ox0i1mwYAF6enpgsVjw+fNnjI6OIi0tDXPmzIFOp4PJZILNZkNHRwfy8/Px4cOHaeVERN6DxSwReb0lS5agsrIS5eXlWLRoEYxGo9vPWv3Mx8cHAwMD2L17N1QqFZKTk7F161YYDAYAQFRUFO7duwer1Yq1a9di2bJlKC4uhlKp/O0c8/PzUVhYiIMHD2Lx4sVoa2tDc3MzIiIiAPzYonD69GlER0dDq9Wiv78ft2/fllaa/2rGjBk4e/YsqquroVQqodPpJr1uXFwcgoODYbFYkJqa6nZuy5YtuHXrFu7cuQOtVotVq1ahqqoK8+fPn/b8CgoKUFNTg/fv3yMrKwt6vR4pKSlYuXIlBgYG3FZpASAzMxNqtRrR0dGYO3cuzGYzAgICcP/+fYSFhUGv1yMyMhIZGRlwOBxcqSX6D/tDCCH+30kQEREREf0OrswSERERkcdiMUtEREREHovFLBERERF5LBazREREROSxWMwSERERkcdiMUtEREREHovFLBERERF5LBazREREROSxWMwSERERkcdiMUtEREREHovFLBERERF5rD8BTpwP3jp0XcgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 600x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAIjCAYAAABS7iKKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM3pJREFUeJzt3Xd0VHXex/HPJCQhnV6FBIiGHguoSJeOdFmVZqiPinQpovQWFwQEpKkrJUvoCEgRkCIiyiJgVhDBAKEISG8JSSC5zx8cZhmSQH4QmEHer3M469y5c+d7wyJvb5mxWZZlCQAAwICbswcAAACPHgICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgLAPRkzZoyKFi0qd3d3Pf3005m+/bZt2yo4ODjTt/uo2rRpk2w2mzZt2uTsUQBJBASQyq+//qrmzZsrKChIWbNmVcGCBVWrVi1NmjRJkrRz507ZbDYNGDAg3W388ccfstls6tWrlyRpyJAhstlscnNz09GjR1Otf+nSJXl7e8tms6lLly4ZmjM5OVkzZsxQtWrVlCNHDnl5eSk4OFjt2rXTzz//fA97nnFr165V3759VbFiRc2YMUOjRo16oO/3MMXGxspms8lms2nEiBFprtOqVSvZbDb5+fnd03tERUXpk08+uY8pAecjIIBbbN26VeXKlVN0dLQ6deqkTz/9VB07dpSbm5smTJggSXr22WdVvHhxzZ07N93tREVFSZJat27tsNzLyyvN1y1ZssRozqtXr6pBgwZq3769LMvSBx98oKlTp+rNN9/Ujz/+qOeff17Hjh0z2qaJDRs2yM3NTf/617/05ptvqn79+pn+Hp9//rn27duX6dvNqKxZs6b5exUXF6dly5Ypa9as97ztewmIKlWq6OrVq6pSpco9vy+QmbI4ewDAlYwcOVKBgYHavn27smXL5vDcqVOn7P/cqlUrDRw4UD/99JNefPHFVNuZO3euihcvrmeffdZhef369TV37lz17dvXYXlUVJReeeUVLV68OENz9unTR998843Gjx+vHj16ODw3ePBgjR8/PkPbuVenTp2St7e3PD09H9h7eHh4PLBtZ0T9+vW1ZMkSRUdHKywszL582bJlSkpKUt26dbVhw4YHPkdCQoI8PT3l5uZ2X9ECZDaOQAC3OHDggEqVKpUqHiQpT5489n9u1aqVpP8dabjVjh07tG/fPvs6t2rZsqV++eUX/f777/ZlJ0+e1IYNG9SyZcsMzXjs2DFNnz5dtWrVShUPkuTu7q7evXvriSeesC/btWuX6tWrp4CAAPn5+alGjRr66aefHF43c+ZM2Ww2/fDDD+rVq5dy584tX19fNW3aVKdPn7avZ7PZNGPGDMXFxdkP9c+cOdN+6H/mzJmpZrLZbBoyZIj98eXLl9WjRw8FBwfLy8tLefLkUa1atbRz5077OmldAxEXF6f33ntPhQoVkpeXl0JDQ/Xxxx/r9i8VvnkqaOnSpSpdurS8vLxUqlQpffPNNxn4Cd9QoUIFFSlSJNXv8Zw5c1S3bl3lyJEj1WuWLVumV155RQUKFJCXl5eKFSum4cOHKzk52b5OtWrVtHLlSh0+fNj+87u5nzevc5g3b54GDBigggULysfHR5cuXUp1DcTevXvl7e2tN99802GGLVu2yN3dXf369cvwvgL3goAAbhEUFKQdO3Zo9+7dd1yvSJEieumll7RgwQKHvxyk/0VFWkFQpUoVPfHEEw5/Kc2fP19+fn565ZVXMjTj6tWrdf36dbVp0yZD6+/Zs0eVK1dWdHS0+vbtq4EDB+rQoUOqVq2atm3blmr9rl27Kjo6WoMHD9Y777yjr7/+2uG6jMjISFWuXFleXl6KjIxUZGSk8WH1t99+W1OnTtWrr76qKVOmqHfv3vL29tbevXvTfY1lWWrUqJHGjx+vunXraty4cQoNDVWfPn3s15rcasuWLercubPeeOMNjR49WgkJCXr11Vd19uzZDM/ZokULzZs3zx4oZ86c0dq1a9ONvZkzZ8rPz0+9evXShAkT9Nxzz2nQoEF6//337et8+OGHevrpp5UrVy77z+/20xnDhw/XypUr1bt3b40aNSrNIz0lSpTQ8OHDFRkZqeXLl0u6EVht27ZV8eLFNWzYsAzvJ3BPLAB2a9eutdzd3S13d3erQoUKVt++fa01a9ZYSUlJqdadPHmyJclas2aNfVlycrJVsGBBq0KFCg7rDh482JJknT592urdu7cVEhJif658+fJWu3btLMuyLEnWu+++e8cZe/bsaUmydu3alaF9atKkieXp6WkdOHDAvuz48eOWv7+/VaVKFfuyGTNmWJKsmjVrWikpKQ7v5+7ubl24cMG+LDw83PL19XV4n0OHDlmSrBkzZqSaQZI1ePBg++PAwMC77md4eLgVFBRkf7x06VJLkjVixAiH9Zo3b27ZbDYrJibG4f08PT0dlkVHR1uSrEmTJt3xfW/ux5gxY6zdu3dbkqzvv//esqwbv+d+fn5WXFxcmj+D+Pj4VNt76623LB8fHyshIcG+7JVXXnHYt5s2btxoSbKKFi2aals3n9u4caN9WXJyslWpUiUrb9681pkzZ6x3333XypIli7V9+/Y77iOQGTgCAdyiVq1a+vHHH9WoUSNFR0dr9OjRqlOnjgoWLGj/r7ybXn/9dXl4eDgcTfjuu+/0559/pnn64qaWLVsqJiZG27dvt/9vRk9fSDfu2JAkf3//u66bnJystWvXqkmTJipatKh9ef78+dWyZUtt2bLFvr2b/u///k82m83+uHLlykpOTtbhw4czPOPdZMuWTdu2bdPx48cz/JpVq1bJ3d1d3bp1c1j+3nvvybIsrV692mF5zZo1VaxYMfvjsmXLKiAgQAcPHszwe5YqVUply5a1X0wZFRWlxo0by8fHJ831vb297f98+fJlnTlzRpUrV1Z8fLzDaau7CQ8Pd9hWetzc3DRz5kxduXJF9erV05QpU9S/f3+VK1cuw+8F3CsCArhN+fLltWTJEp0/f17/+c9/1L9/f12+fFnNmzfXb7/9Zl8vZ86cqlOnjr766islJCRIuvEXTJYsWfTaa6+lu/1nnnlGxYsXV1RUlObMmaN8+fLp5ZdfzvB8AQEBkm78BXU3p0+fVnx8vEJDQ1M9V6JECaWkpKS6rbRw4cIOj7Nnzy5JOn/+fIZnvJvRo0dr9+7dKlSokJ5//nkNGTLkrn+xHz58WAUKFEgVTiVKlLA/f6vb90O6sS+m+9GyZUstXLhQMTEx2rp16x1jb8+ePWratKkCAwMVEBCg3Llz2+/EuXjxYobfs0iRIhlet1ixYhoyZIi2b9+uUqVKaeDAgRl+LXA/CAggHZ6enipfvrxGjRqlqVOn6tq1a1q4cKHDOq1bt9alS5e0YsUKJSUlafHixapdu7Zy5859x223bNlS8+fPV1RUlF5//XW5uWX8j2Lx4sUl3fi8igfB3d09zeXWbRcq3u7Woxa3uv0aEUl67bXXdPDgQU2aNEkFChTQmDFjVKpUqVRHEe7Hve7H7Vq0aKEzZ86oU6dOypkzp2rXrp3mehcuXFDVqlUVHR2tYcOG6euvv9a6dev0z3/+U5KUkpKS4ffMyNGHW61du1aSdPz4caNrPID7QUAAGXDzkPCJEyccljdq1Ej+/v6KiorS6tWrdf78+TuevripZcuWOnHihPbv3290+kKS6tWrJ3d3d/373/++67q5c+eWj49Pmp+n8Pvvv8vNzU2FChUyev/03DxSceHCBYfl6Z36yJ8/vzp37qylS5fq0KFDypkzp0aOHJnu9oOCgnT8+PFUR15unhoICgq6j+nTV7hwYVWsWFGbNm3SP/7xD2XJkvbd75s2bdLZs2c1c+ZMde/eXQ0aNFDNmjXtP5dbpRdb92LatGlat26dRo4cqaSkJL311luZtm3gTggI4BYbN25M879QV61aJUmpTgV4e3uradOmWrVqlaZOnSpfX181btz4ru9TrFgxffLJJ4qIiNDzzz9vNGOhQoXUqVMnrV271v7pmLdKSUnR2LFjdezYMbm7u6t27dpatmyZYmNj7ev89ddfioqKUqVKleynRO5XQECAcuXKpc2bNzssnzJlisPj5OTkVIfz8+TJowIFCigxMTHd7devX1/Jycn69NNPHZaPHz9eNptN9erVu889SN+IESM0ePBgde3aNd11bh7xuPX/P0lJSan2X5J8fX2NTmmk59ChQ+rTp49effVVffDBB/r444+1fPlyzZ49+763DdwNHyQF3KJr166Kj49X06ZNVbx4cSUlJWnr1q2aP3++/WOib9e6dWvNnj1ba9asUatWreTr65uh9+revfs9zzl27FgdOHBA3bp105IlS9SgQQNlz55dR44c0cKFC/X777/rjTfekHTjL79169apUqVK6ty5s7JkyaLp06crMTFRo0ePvucZ0tKxY0d99NFH6tixo8qVK6fNmzdr//79DutcvnxZTzzxhJo3b66wsDD5+fnp22+/1fbt2zV27Nh0t92wYUNVr15dH374oWJjYxUWFqa1a9dq2bJl6tGjh8MFk5mtatWqqlq16h3Xeemll5Q9e3aFh4erW7dustlsioyMTDNIn3vuOc2fP1+9evVS+fLl5efnp4YNGxrNZFmW2rdvL29vb02dOlWS9NZbb2nx4sXq3r27atasqQIFChhtEzDixDtAAJezevVqq3379lbx4sUtPz8/y9PT0woJCbG6du1q/fXXX2m+5vr161b+/PktSdaqVavSXOfW2zjvRBm4jfPW9/3iiy+sypUrW4GBgZaHh4cVFBRktWvXLtUtnjt37rTq1Klj+fn5WT4+Plb16tWtrVu3Oqxz8zbO228BTOv2wbRuYbSsG7cxdujQwQoMDLT8/f2t1157zTp16pTDbZyJiYlWnz59rLCwMMvf39/y9fW1wsLCrClTpjhs6/bbOC3Lsi5fvmz17NnTKlCggOXh4WE9+eST1pgxYxxuO7Ws9H+OQUFBVnh4eBo/zf+59TbOO0nrZ/DDDz9YL774ouXt7W0VKFDAfhvw7T+/K1euWC1btrSyZctmSbLv582f9cKFC1O93+2/DxMmTLAkWYsXL3ZY78iRI1ZAQIBVv379O84P3C+bZRleUQQAAB57XAMBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACM/S0/idL7mS7OHgHAHZzf/undVwLgFFkzWAYcgQAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAAAADGCAgAAGCMgAAAAMayOHsASbIsS4sWLdLGjRt16tQppaSkODy/ZMkSJ00GAADS4hIB0aNHD02fPl3Vq1dX3rx5ZbPZnD0SAAC4A5cIiMjISC1ZskT169d39igAACADXOIaiMDAQBUtWtTZYwAAgAxyiYAYMmSIhg4dqqtXrzp7FAAAkAEucQrjtdde09y5c5UnTx4FBwfLw8PD4fmdO3c6aTIAAJAWlwiI8PBw7dixQ61bt+YiyseEn4+XBnduoEYvhyl3dj9F7zum3qMXacdvR+zrhBbJqxHdm6jysyHKksVNvx88qRa9v9DRk+dTbW/pp++oTsVSeq3nZ/p6038f5q4Aj6UdP2/XzC//pb2/7dbp06c1fuJkvVyjprPHwkPkEgGxcuVKrVmzRpUqVXL2KHhIpg5qqZIhBdR+wCydOH1RLeo/r5XTuurZV0fo+OmLKvJELq3/spdmLd2qEVNX6lJcgkoWy6+ExGupttW1VXVZlhN2AniMXb0ar9DQUDVp9qp6de/i7HHgBC4REIUKFVJAQICzx8BDktXLQ01qPK1/9PxMP+w8IEkaOX2V6lcprU7/qKyhU1ZoaJeGWrNljz6csMz+ukPHzqTaVtmnCqp7m5dVsdVoxX4b8dD2AXjcVapcVZUqV3X2GHAil7iIcuzYserbt69iY2OdPQoegizubsqSxV0JSY5HExISr+mlZ4rJZrOpbqVS+uPIKS2f/K4Or4/Q5tm91bBaWYf1vbN6aGZEW/X4aIH+Onv5Ye4CADz2XCIgWrdurY0bN6pYsWLy9/dXjhw5HH7dSWJioi5duuTwy0pJfkiT415ciU/UT9EH1b9TPeXPHSg3N5veqF9eL5Qtony5ApQnh5/8fbOqd7taWrf1NzV851Mt3xiteWM7qtJzIfbtjH7vVf0UfUgrNv3qxL0BgMeTS5zC+OSTT+75tRERERo6dKjDMve85eWR//n7nAoPUvsBszV9SCsdXDtS168n65ffj2rBNz/rmRKF5eZ2o2tXbPpVk+ZslCT9d/+feiGsqDo1r6QtO2L0StUyqvb8U3rxjY+cuRsA8NhyiYAIDw+/59f2799fvXr1cliWp3K/+x0JD9ihY2dUu+ME+WT1VIBfVp08c0mRH7XToT/P6Mz5K7p2LVl7D55weM2+gyf10jM3PnCsWvmnVPSJXDq5eYzDOnM/7qgfdh1QnU4THtq+AMDjyCUC4lYJCQlKSkpyWHanCyy9vLzk5eXlsMzm5v5AZkPmi09IUnxCkrL5e6vmSyX04SfLdO16snb8dlhPBeV1WPfJoDw6cuLGLZwfz1irGV9tdXh+x6IP1XfsYq38bvdDmx8AHlcuERBxcXHq16+fFixYoLNnz6Z6PjmZaxr+bmpWKCGbTdofe0rFCuXWqJ5NtP/QX5q9/EdJ0vhZ3yryn+21ZWeMvvt5v2q/VFL1q5S2H1n46+zlNC+cPHrivA4fT/3/IQCZKz4uTkeO/O9zW/48dky/792rwMBA5S9QwImT4WFxiYDo27evNm7cqKlTp6pNmzaaPHmy/vzzT02fPl0ffcQ57r+jQL+sGta1kQrmzaZzF+O1bP0vGjz5a12/fuOr3Jdv/K+6jpynPu1ra2zf5tp/+JRa9PlCW3856OTJAUjSnj271bHdm/bHH4++cRt1o8ZNNXwU/95+HNgsy/kfwVO4cGHNnj1b1apVU0BAgHbu3KmQkBBFRkZq7ty5WrVqldH2vJ/hQ00AV3Z++6fOHgFAOrJm8NCCS9zGee7cOfu3cQYEBOjcuXOSpEqVKmnz5s3OHA0AAKTBJQKiaNGiOnTokCSpePHiWrBggSTp66+/VrZs2Zw4GQAASItLBES7du0UHR0tSXr//fc1efJkZc2aVT179lSfPn2cPB0AALidS1wDcbvDhw9rx44dCgkJUdmyZe/+gttwDQTg2rgGAnBdGb0GwiXuwpCk9evXa/369Tp16pRSUlIcnvvyyy+dNBUAAEiLSwTE0KFDNWzYMJUrV0758+eXzWZz9kgAAOAOXCIgpk2bppkzZ6pNmzbOHgUAAGSAS1xEmZSUpJdeesnZYwAAgAxyiYDo2LGjoqKinD0GAADIIKedwrj1GzRTUlL02Wef6dtvv1XZsmXl4eHhsO64ceMe9ngAAOAOnBYQu3btcnj89NNPS5J273b8JkUuqAQAwPU4LSA2btzorLcGAAD3ySWugQAAAI8WAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAICxewqI77//Xq1bt1aFChX0559/SpIiIyO1ZcuWTB0OAAC4JuOAWLx4serUqSNvb2/t2rVLiYmJkqSLFy9q1KhRmT4gAABwPcYBMWLECE2bNk2ff/65PDw87MsrVqyonTt3ZupwAADANRkHxL59+1SlSpVUywMDA3XhwoXMmAkAALg444DIly+fYmJiUi3fsmWLihYtmilDAQAA12YcEJ06dVL37t21bds22Ww2HT9+XHPmzFHv3r31zjvvPIgZAQCAi8li+oL3339fKSkpqlGjhuLj41WlShV5eXmpd+/e6tq164OYEQAAuBibZVnWvbwwKSlJMTExunLlikqWLCk/P7/Mnu2eeT/TxdkjALiD89s/dfYIANKRNYOHFoyPQNzk6empkiVL3uvLAQDAI8w4IKpXry6bzZbu8xs2bLivgQAAgOszDoinn37a4fG1a9f0yy+/aPfu3QoPD8+suQAAgAszDojx48enuXzIkCG6cuXKfQ8EAABcX6Z9mVbr1q315ZdfZtbmAACAC7vniyhv9+OPPypr1qyZtbn7cnLrRGePAOAO/rqY6OwRAKQjKKdXhtYzDohmzZo5PLYsSydOnNDPP/+sgQMHmm4OAAA8gowDIjAw0OGxm5ubQkNDNWzYMNWuXTvTBgMAAK7LKCCSk5PVrl07lSlTRtmzZ39QMwEAABdndBGlu7u7ateuzbduAgDwmDO+C6N06dI6ePDgg5gFAAA8IowDYsSIEerdu7dWrFihEydO6NKlSw6/AADA31+Gv0xr2LBheu+99+Tv7/+/F9/ykdaWZclmsyk5OTnzpzR08WqKs0cAcAcX4q85ewQA6cjobZwZDgh3d3edOHFCe/fuveN6VatWzdAbP0gEBODaCAjAdWX650Dc7AxXCAQAAOBcRtdA3OlbOAEAwOPD6HMgnnrqqbtGxLlz5+5rIAAA4PqMAmLo0KGpPokSAAA8fjJ8EaWbm5tOnjypPHnyPOiZ7hsXUQKujYsoAdeV0YsoM3wNBNc/AACAmzIcEBk8UAEAAB4DGb4GIiWF0wIAAOAG44+yBgAAICAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGMvi7AHOnj2rQYMGaePGjTp16pRSUlIcnj937pyTJgMAAOlxekC0adNGMTEx6tChg/LmzSubzebskQAAwF3YLMuynDmAv7+/tmzZorCwsEzb5sWrKXdfCYDTXIi/5uwRAKQjKKdXhtZz+jUQxYsX19WrV509BgAAMOD0gJgyZYo+/PBDfffddzp79qwuXbrk8AsAALgep18DkS1bNl26dEkvv/yyw3LLsmSz2ZScnOykyQAAQHqcHhCtWrWSh4eHoqKiuIgSAIBHhNMDYvfu3dq1a5dCQ0OdPQoAAMggp18DUa5cOR09etTZYwAAAANOPwLRtWtXde/eXX369FGZMmXk4eHh8HzZsmWdNBkAAEiP0z8Hws0t9UEQm812XxdR8jkQj55FC+ZqycJ5OnH8T0lSkWIh6vh/nfVSpSqSpDNnTmvS+DHa9tOPio+LU1BwsNp1fFsv16ztzLFxj/gcCNf2310/a2HUTP2xb6/OnTmtwRGfqGLV/13ovmXTt1rx1UL9se83Xb50UVNnLlCxp4rbn7906aIiv5iiHf/ZqlMnTyowe3a9VPlltf2/d+Xr5++MXYKBjH4OhNOPQBw6dMjZI8AF5M2bT+9266VChYNkydLK5cvUu0cXRc5brGIhT2rogPd1+fJljf1ksrJlz65vVq/QB317albUQoUWL+ns8YG/lYSEqyoaEqo6DZpqWP+eqZ+/elWlw55R1Rq1Nf6joameP3v6lM6eOaVOXd5TUHAx/XXyuCaOGaGzZ05p0KhxD2MX8BA4PSCCgoKcPQJcQOWq1R0ed+7aQ0sWztPuX6NVLORJ/Tf6F/X7cJBKlblxSqtDp3c099+ztPe3PQQEkMmer1BZz1eonO7zNes1lCSdPPFnms8XKfakBo0ab39c4IlCavdWV/1zaH8lX78u9yxO/6sHmcBlfhd/++03HTlyRElJSQ7LGzVq5KSJ4CzJyclav+4bXb0arzJln5YklQ17WuvWrFbFylXl7x+gb9euVlJikp4r97xzhwWQIXFXLsvH1494+Btx+u/kwYMH1bRpU/3666/2ax8k2T8P4m7XQCQmJioxMdFxWYqHvLwydg4HriPmj/3q8GYLJSUlytvbR6PHTVLRYiGSpFGjx+uDfr1Uq2oFuWfJoqxZs2r0uEkqVJgjWICru3jhvObM+Ez1G73q7FGQiZx+G2f37t1VpEgRnTp1Sj4+PtqzZ482b96scuXKadOmTXd9fUREhAIDAx1+jRvz0YMfHJkuKDhY/56/RF9Gzterr72hoYP66+CBGEnStCkTdeXyZX06/UvNmrNQLVu31Qd9eyrmj/1OnhrAncTFXdGA3u+qcJGiatPxHWePg0zk9CMQP/74ozZs2KBcuXLJzc1Nbm5uqlSpkiIiItStWzft2rXrjq/v37+/evXq5bAsIcUjnbXhyjw8PO1HFEqULKXf9vyq+VGRatO2gxbOm6O5i5arWMiTkqSnQovrl10/a+H8KPUfMMSJUwNIT3xcnD7s+Y58fHw1JOITZcnCv5v/TpweEMnJyfL3v3FbT65cuXT8+HGFhoYqKChI+/btu+vrvby8Up2usLiN828hJcVSUlKSEhISJKW+5dfNzV1WCr/XgCuKi7uiD3q8LQ9PTw0dPVGenFb+23F6QJQuXVrR0dEqUqSIXnjhBY0ePVqenp767LPPVLRoUWePh4dk8sRxqlCxsvLlK6D4+DitWb1CO3/+jyZO+VzBwUVUqFBhRYwYrO49+yowWzZ9t3G9/vPTVo2bONXZowN/O1fj43X82BH745Mn/tSB/b/LPyBQefLl16VLF3X65AmdPXNaknT0SKwkKXvOXMqRM5fi4q6of4+3lJiQoH6DIxQfF6f4uDhJUmC27HJ3d3/o+4TM5/QPklqzZo3i4uLUrFkzxcTEqEGDBtq/f79y5syp+fPnp/qWzozgg6QePcOHfKift/2kM2dOy8/PXyFPPaU323bUCxUqSpKOHI7V5InjFL1rp+Lj4/VE4cJq/WY71W/Q2MmT417wQVKuLXrndvXp0iHV8lr1G6nPgBFau3KZPh45MNXzrdu/rTc7dk739ZI0e/Fq5ctfMNNnRubJ6AdJOT0g0nLu3Dllz579nr+Zk4AAXBsBAbiuR+aTKG9180u1ChUq5ORJAADAnTj9Ns7r169r4MCBCgwMVHBwsIKDgxUYGKgBAwbo2jX+KwUAAFfk9CMQXbt21ZIlSzR69GhVqFBB0o1bO4cMGaKzZ89q6lQukgMAwNU4/RqIwMBAzZs3T/Xq1XNYvmrVKrVo0UIXL1403ibXQACujWsgANeV0WsgnH4Kw8vLS8HBwamWFylSRJ6eng9/IAAAcFdOD4guXbpo+PDhDt9nkZiYqJEjR6pLly5OnAwAAKTH6acwmjZtqvXr18vLy0thYWGSpOjoaCUlJalGjRoO6y5ZsiRD2+QUBuDaOIUBuK5H5jbObNmy6dVXHb+hjds4AQBwbU4/AnH16lWlpKTI19dXkhQbG6ulS5eqRIkSqlOnzj1tkyMQgGvjCATguh6ZiygbN26syMhISdKFCxf04osvauzYsWrSpAm3cAIA4KKcHhA7d+5U5cqVJUmLFi1S3rx5dfjwYc2ePVsTJ0508nQAACAtTg+I+Ph4+9d5r127Vs2aNZObm5tefPFFHT582MnTAQCAtDg9IEJCQrR06VIdPXpUa9asUe3atSVJp06dUkBAgJOnAwAAaXF6QAwaNEi9e/dWcHCwXnjhBfvHWa9du1bPPPOMk6cDAABpcfpdGJJ08uRJnThxQmFhYXJzu9E0//nPfxQQEKDixYsbb4+7MADXxl0YgOvK6F0YLhEQmY2AAFwbAQG4rkfmNk4AAPDoISAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDECAgAAGCMgAACAMQICAAAYIyAAAIAxAgIAABgjIAAAgDGbZVmWs4cA7iQxMVERERHq37+/vLy8nD0OgFvw5/PxRUDA5V26dEmBgYG6ePGiAgICnD0OgFvw5/PxxSkMAABgjIAAAADGCAgAAGCMgIDL8/Ly0uDBg7lAC3BB/Pl8fHERJQAAMMYRCAAAYIyAAAAAxggIAABgjIDAQ1OtWjX16NHD2WMAADIBAQEAAIwREAAAwBgBgYcqJSVFffv2VY4cOZQvXz4NGTLE/ty4ceNUpkwZ+fr6qlChQurcubOuXLlif37mzJnKli2bVqxYodDQUPn4+Kh58+aKj4/XrFmzFBwcrOzZs6tbt25KTk52wt4Bj55FixapTJky8vb2Vs6cOVWzZk3FxcWpbdu2atKkiYYOHarcuXMrICBAb7/9tpKSkuyv/eabb1SpUiVly5ZNOXPmVIMGDXTgwAH787GxsbLZbFqwYIEqV64sb29vlS9fXvv379f27dtVrlw5+fn5qV69ejp9+rQzdh/3gYDAQzVr1iz5+vpq27ZtGj16tIYNG6Z169ZJktzc3DRx4kTt2bNHs2bN0oYNG9S3b1+H18fHx2vixImaN2+evvnmG23atElNmzbVqlWrtGrVKkVGRmr69OlatGiRM3YPeKScOHFCLVq0UPv27bV3715t2rRJzZo1082PB1q/fr19+dy5c7VkyRINHTrU/vq4uDj16tVLP//8s9avXy83Nzc1bdpUKSkpDu8zePBgDRgwQDt37lSWLFnUsmVL9e3bVxMmTND333+vmJgYDRo06KHuOzKBBTwkVatWtSpVquSwrHz58la/fv3SXH/hwoVWzpw57Y9nzJhhSbJiYmLsy9566y3Lx8fHunz5sn1ZnTp1rLfeeiuTpwf+fnbs2GFJsmJjY1M9Fx4ebuXIkcOKi4uzL5s6darl5+dnJScnp7m906dPW5KsX3/91bIsyzp06JAlyfriiy/s68ydO9eSZK1fv96+LCIiwgoNDc2s3cJDwhEIPFRly5Z1eJw/f36dOnVKkvTtt9+qRo0aKliwoPz9/dWmTRudPXtW8fHx9vV9fHxUrFgx++O8efMqODhYfn5+DstubhNA+sLCwlSjRg2VKVNG//jHP/T555/r/PnzDs/7+PjYH1eoUEFXrlzR0aNHJUl//PGHWrRooaJFiyogIEDBwcGSpCNHjji8z61/7vPmzStJKlOmjMMy/sw+eggIPFQeHh4Oj202m1JSUhQbG6sGDRqobNmyWrx4sXbs2KHJkydLksM517Ren942AdyZu7u71q1bp9WrV6tkyZKaNGmSQkNDdejQoQy9vmHDhjp37pw+//xzbdu2Tdu2bZPk+GdWcvxza7PZ0lzGn9lHTxZnDwBI0o4dO5SSkqKxY8fKze1G1y5YsMDJUwF/fzabTRUrVlTFihU1aNAgBQUF6auvvpIkRUdH6+rVq/L29pYk/fTTT/Lz81OhQoV09uxZ7du3T59//rkqV64sSdqyZYvT9gMPHwEBlxASEqJr165p0qRJatiwoX744QdNmzbN2WMBf2vbtm3T+vXrVbt2beXJk0fbtm3T6dOnVaJECf33v/9VUlKSOnTooAEDBig2NlaDBw9Wly5d5ObmpuzZsytnzpz67LPPlD9/fh05ckTvv/++s3cJDxGnMOASwsLCNG7cOP3zn/9U6dKlNWfOHEVERDh7LOBvLSAgQJs3b1b9+vX11FNPacCAARo7dqzq1asnSapRo4aefPJJValSRa+//roaNWpkv/Xazc1N8+bN044dO1S6dGn17NlTY8aMceLe4GHj67wBAKm0bdtWFy5c0NKlS509ClwURyAAAIAxAgIAABjjFAYAADDGEQgAAGCMgAAAAMYICAAAYIyAAAAAxggIAABgjIAA8MC0bdtWTZo0sT+uVq2aevTo8dDn2LRpk2w2my5cuPDQ3xv4uyIggMdQ27ZtZbPZZLPZ5OnpqZCQEA0bNkzXr19/oO+7ZMkSDR8+PEPr8pc+4Nr4Mi3gMVW3bl3NmDFDiYmJWrVqld599115eHiof//+DuslJSXJ09MzU94zR44cmbIdAM7HEQjgMeXl5aV8+fIpKChI77zzjmrWrKnly5fbTzuMHDlSBQoUUGhoqCTp6NGjeu2115QtWzblyJFDjRs3VmxsrH17ycnJ6tWrl7Jly6acOXOqb9++uv1z6m4/hZGYmKh+/fqpUKFC8vLyUkhIiP71r38pNjZW1atXlyRlz55dNptNbdu2lSSlpKQoIiJCRYoUkbe3t8LCwrRo0SKH91m1apWeeuopeXt7q3r16g5zAsgcBAQASZK3t7eSkpIkSevXr9e+ffu0bt06rVixQteuXVOdOnXk7++v77//Xj/88IP8/PxUt25d+2vGjh2rmTNn6ssvv9SWLVt07tw5ffXVV3d8zzfffFNz587VxIkTtXfvXk2fPl1+fn4qVKiQFi9eLEnat2+fTpw4oQkTJkiSIiIiNHv2bE2bNk179uxRz5491bp1a3333XeSboROs2bN1LBhQ/3yyy/q2LEjXzMNPAgWgMdOeHi41bhxY8uyLCslJcVat26d5eXlZfXu3dsKDw+38ubNayUmJtrXj4yMtEJDQ62UlBT7ssTERMvb29tas2aNZVmWlT9/fmv06NH2569du2Y98cQT9vexLMuqWrWq1b17d8uyLGvfvn2WJGvdunVpzrhx40ZLknX+/Hn7soSEBMvHx8faunWrw7odOnSwWrRoYVmWZfXv398qWbKkw/P9+vVLtS0A94drIIDH1IoVK+Tn56dr164pJSVFLVu21JAhQ/Tuu++qTJkyDtc9REdHKyYmRv7+/g7bSEhI0IEDB3Tx4kWdOHFCL7zwgv25LFmyqFy5cqlOY9z0yy+/yN3dXVWrVs3wzDExMYqPj1etWrUcliclJemZZ56RJO3du9dhDkmqUKFCht8DQMYQEMBjqnr16po6dao8PT1VoEABZcnyv38d+Pr6Oqx75coVPffcc5ozZ06q7eTOnfue3t/b29v4NVeuXJEkrVy5UgULFnR4zsvL657mAHBvCAjgMeXr66uQkJAMrfvss89q/vz5ypMnjwICAtJcJ3/+/Nq2bZuqVKkiSbp+/bp27NihZ599Ns31y5Qpo5SUFH333XeqWbNmqudvHgFJTk62LytZsqS8vLx05MiRdI9clChRQsuXL3dY9tNPP919JwEY4SJKAHfVqlUr5cqVS40bN9b333+vQ4cOadOmTerWrZuOHTsmSerevbs++ugjLV26VL///rs6d+58x89wCA4OVnh4uNq3b6+lS5fat7lgwQJJUlBQkGw2m1asWKHTp0/rypUr8vf3V+/evdWzZ0/NmjVLBw4c0M6dOzVp0iTNmjVLkvT222/rjz/+UJ8+fbRv3z5FRUVp5syZD/pHBDx2CAgAd+Xj46PNmzercOHCatasmUqUKKEOHTooISHBfkTivffeU5s2bRQeHq4KFSrI399fTZs2veN2p06dqubNm6tz584qXry4OnXqpLi4OElSwYIFNXToUL3//vvKmzevunTpIkkaPny4Bg4cqIiICJUoUUJ169bVypUrVaRIEUlS4cKFtXjxYi1dulRhYWGaNm2aRo0a9QB/OsDjyWald4UTAABAOjgCAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIwREAAAwBgBAQAAjBEQAADAGAEBAACMERAAAMAYAQEAAIz9P/Li9uPg26/pAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 800x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfPtJREFUeJzt3XdYU2fDBvA7CSTsACIgiuLCvQfiHiA4UBTUqlVrbWt339qlHVo7tMM63re2tlpFq9YBanFh3avUjQvFBU6GiOwRSJ7vDz/TpgwJAofA/buuXCUnZ9whVW8ennOOTAghQERERERkguRSByAiIiIiKiuWWSIiIiIyWSyzRERERGSyWGaJiIiIyGSxzBIRERGRyWKZJSIiIiKTxTJLRERERCaLZZaIiIiITBbLLBERERGZLJZZIiLS+/bbb9GoUSMoFAq0b99e6jhERE/EMktEVUZISAhkMpn+YWZmhrp16+K5557D3bt3i9xGCIFff/0VvXv3hr29PaysrNCmTRt89tlnyMrKKvZYmzdvxqBBg+Dk5ASlUgk3NzeMHj0a+/btK1XW3NxcLFiwAF5eXlCr1bCwsICnpydef/11XLlypUzvX2p//PEH3n//ffTo0QMrVqzAnDlzKvyYW7duRZ8+feDs7AwrKys0atQIo0ePRkREBABg/vz5kMlk2LNnT7H7WLp0KWQyGcLDwwEAffv2hUwmQ9OmTYtcf/fu3fr/x0JDQ8v/TRFRpTKTOgAR0b999tlnaNiwIXJzc/HXX38hJCQER44cwYULF2BhYaFfT6vVYty4cdiwYQN69eqFTz/9FFZWVjh8+DBmz56NjRs3Ys+ePXBxcdFvI4TA888/j5CQEHTo0AHTpk2Dq6sr4uPjsXnzZgwYMABHjx5F9+7di82XnJwMf39/nDp1CkOHDsW4ceNgY2ODmJgYrFu3Dj///DM0Gk2Ffo8qwr59+yCXy/HLL79AqVRW+PHmzZuH9957D3369MGMGTNgZWWFa9euYc+ePVi3bh38/f3xzDPP4L333sPatWvh4+NT5H7Wrl2LWrVqYdCgQfplFhYWuHbtGo4fP46uXbsarL9mzRpYWFggNze3Qt8fEVUSQURURaxYsUIAECdOnDBY/sEHHwgAYv369QbL58yZIwCId999t9C+wsPDhVwuF/7+/gbLv/32WwFA/Oc//xE6na7QdqtWrRLHjh0rMeeQIUOEXC4XoaGhhV7Lzc0V77zzTonbl1Z+fr7Iy8srl32VxuTJk4W1tXW57U+n04ns7OwiX8vPzxd2dnbC19e3yNcTExP1Xw8YMECo1WqRm5tbaL07d+4IuVwuXn75Zf2yPn36iFatWolmzZqJ//znPwbr5+TkCDs7OxEUFCQAiI0bN5blrRFRFcJpBkRU5fXq1QsAcP36df2ynJwcfPvtt/D09MTcuXMLbRMQEIBJkyYhIiICf/31l36buXPnonnz5pg3bx5kMlmh7SZMmFBoJO+fjh07hu3bt2PKlCkICgoq9LpKpcK8efP0z/v27Yu+ffsWWu+5556Dh4eH/nlcXBxkMhnmzZuHhQsXonHjxlCpVDhz5gzMzMwwe/bsQvuIiYmBTCbD999/r1+WmpqK//znP3B3d4dKpUKTJk3w9ddfQ6fTFfueAEAmk2HFihXIysrS/wo+JCQEAFBQUIDPP/9cn8nDwwMffvgh8vLyDPbh4eGBoUOHYteuXejcuTMsLS3x008/FXm85ORkpKeno0ePHkW+7uzsrP/62WefRVpaGrZv315ovXXr1kGn02H8+PGFXhs7dizWr19v8N63bt2K7OxsjB49usTvBxGZDpZZIqry4uLiAAAODg76ZUeOHMHDhw8xbtw4mJkVPWNq4sSJAIBt27bpt0lJScG4ceOgUCjKlOXxvMwJEyaUafsnWbFiBf73v//hpZdewnfffYc6deqgT58+2LBhQ6F1169fD4VCgVGjRgEAsrOz0adPH6xevRoTJ07Ef//7X/To0QMzZszAtGnTSjzur7/+il69ekGlUuHXX3/Vz0MGgBdeeAEzZ85Ex44dsWDBAvTp0wdz587FM888U2g/MTExGDt2LHx9fbFo0aJiTyJzdnaGpaUltm7dipSUlBKzjRw5EhYWFli7dm2h19auXYsGDRoUWYrHjRuH+Ph4HDhwwGD9AQMGGJRlIjJtnDNLRFVOWloakpOTkZubi2PHjmH27NlQqVQYOnSofp3o6GgAQLt27Yrdz+PXLl26ZPDfNm3alDlbeeyjJHfu3MG1a9dQu3Zt/bIxY8Zg6tSpuHDhAlq3bq1fvn79evTp00c/J3j+/Pm4fv06zpw5oz/5aerUqXBzc8O3336Ld955B+7u7kUe99lnn8WePXtw+vRpPPvss/rlZ8+excqVK/HCCy9g6dKlAIBXX30Vzs7OmDdvHvbv349+/frp17927RoiIiLg5+dX4vuUy+V477338Nlnn6F+/fro3bs3evbsCX9/f3Ts2NFgXTs7OwQEBGDr1q1IT0+HnZ0dgEfF+fTp05gxY0aRo+xNmzZF586dsXbtWvTv3x+pqanYsWOH/n0QUfXAkVkiqnJ8fHxQu3ZtuLu7Izg4GNbW1ggPD0e9evX062RkZAAAbG1ti93P49fS09MN/lvSNk9SHvsoSVBQkEGRBR6NTJqZmWH9+vX6ZRcuXEB0dDTGjBmjX7Zx40b06tULDg4OSE5O1j98fHyg1Wpx6NAho/Ps2LEDAAqN7L7zzjsAUOhX/w0bNnxikX1s9uzZWLt2LTp06IBdu3bho48+QqdOndCxY0f9Dw2PPfvss8jNzcWmTZv0yx6P1BY1xeCxcePGYdOmTdBoNAgNDYVCocCIESNKlY+ITAPLLBFVOYsXL8bu3bsRGhqKwYMHIzk5GSqVymCdx2Xycaktyr8L7+MRvZK2eZLy2EdJGjZsWGiZk5MTBgwYYDDVYP369TAzM8PIkSP1y65evYqIiAjUrl3b4PH4KgBJSUlG57l58ybkcjmaNGlisNzV1RX29va4efPmE/OXZOzYsTh8+DAePnyIP/74A+PGjcOZM2cQEBBgcLWBQYMGwdHR0WCqwW+//YZ27dqhVatWxe7/mWeeQVpaGnbu3Ik1a9Zg6NChFfaDCBFJg9MMiKjK6dq1Kzp37gwACAwMRM+ePTFu3DjExMTAxsYGANCiRQsAwLlz5xAYGFjkfs6dOwcAaNmyJQCgefPmAIDz588Xu82T/HMfj09MK4lMJoMQotByrVZb5PqWlpZFLn/mmWcwefJkREVFoX379tiwYQMGDBgAJycn/To6nQ6+vr54//33i9yHp6fnE/MWp6hf4xeluPxPYmdnB19fX/j6+sLc3BwrV67EsWPH0KdPHwCAubk5Ro8ejaVLlyIxMRG3bt3C1atX8c0335S43zp16qBv37747rvvcPToUYSFhZUpHxFVXRyZJaIqTaFQYO7cubh3757BWfs9e/aEvb091q5dW2wxXLVqFQDo59r27NkTDg4O+O2334rd5kkCAgIAAKtXry7V+g4ODkhNTS20/N8jmk8SGBgIpVKJ9evXIyoqCleuXCl0Albjxo2RmZkJHx+fIh/169c36pgA0KBBA+h0Oly9etVgeWJiIlJTU9GgQQOj9/kkj3+QiY+PN1g+fvx4aLVarF+/HmvXroVMJsPYsWOfuL9x48bh8OHDsLOzw+DBg8s9LxFJi2WWiKq8vn37omvXrli4cKH+V89WVlZ49913ERMTg48++qjQNtu3b0dISAj8/PzQrVs3/TYffPABLl26hA8++KDIEdPVq1fj+PHjxWbx9vaGv78/li1bhi1bthR6XaPR4N1339U/b9y4MS5fvoz79+/rl509exZHjx4t9fsHAHt7e/j5+WHDhg1Yt24dlEplodHl0aNHIzIyErt27Sq0fWpqKgoKCow6JgB9+Vu4cKHB8vnz5wMAhgwZYvQ+gUdXXoiMjCzytZ07dwIAmjVrZrC8R48e8PDwwOrVq/Unv/1zHnVxgoODMWvWLPzwww+VcjMIIqpcnGZARCbhvffew6hRoxASEoKXX34ZADB9+nScOXMGX3/9NSIjIxEUFARLS0scOXIEq1evRosWLbBy5cpC+7l48SK+++477N+/H8HBwXB1dUVCQgK2bNmC48eP488//ywxy6pVqzBw4ECMHDkSAQEBGDBgAKytrXH16lWsW7cO8fHx+mvNPv/885g/fz78/PwwZcoUJCUlYcmSJWjVqpX+ZLLSGjNmDJ599ln88MMP8PPzg729faH3Fh4ejqFDh+K5555Dp06dkJWVhfPnzyM0NBRxcXEG0xJKo127dpg0aRJ+/vlnpKamok+fPjh+/DhWrlyJwMBAgysZGCM7Oxvdu3dHt27d4O/vD3d3d6SmpmLLli04fPgwAgMD0aFDB4NtZDIZxo0bp7/N7meffVaqY6nVanz66adlyklEJkDquzYQET1W3B3AhBBCq9WKxo0bi8aNG4uCggKD5StWrBA9evQQdnZ2wsLCQrRq1UrMnj1bZGZmFnus0NBQMXDgQOHo6CjMzMxEnTp1xJgxY8SBAwdKlTU7O1vMmzdPdOnSRdjY2AilUimaNm0q3njjDXHt2jWDdVevXi0aNWoklEqlaN++vdi1a5eYNGmSaNCggX6d2NhYAUB8++23xR4zPT1dWFpaCgBi9erVRa6TkZEhZsyYIZo0aSKUSqVwcnIS3bt3F/PmzRMajabE9zRp0qQi7wCWn58vZs+eLRo2bCjMzc2Fu7u7mDFjRqE7cjVo0EAMGTKkxGP8c59Lly4VgYGBokGDBkKlUgkrKyvRoUMH8e233xZ757OLFy8KAEKlUomHDx8Wuc7jO4CVZP/+/bwDGFE1IROiiN+zERERERGZAM6ZJSIiIiKTxTJLRERERCaLZZaIiIiITBbLLBERERGZLJZZIiIiIjJZLLNEREREZLJq3E0TdDod7t27B1tb21Lfa5yIiIiIKo8QAhkZGXBzc4NcXvLYa40rs/fu3YO7u7vUMYiIiIjoCW7fvv3E21bXuDJra2sL4NE3x87OTuI0RERERPRv6enpcHd31/e2ktS4Mvt4aoGdnR3LLBEREVEVVpopoTwBjIiIiIhMFsssEREREZksllkiIiIiMlkss0RERERkslhmiYiIiMhkscwSERERkclimSUiIiIik8UyS0REREQmi2WWiIiIiEwWyywRERERmSyWWSIiIiIyWSyzRERERGSyWGaJiIiIyGSxzBIRERGRyZK0zB46dAgBAQFwc3ODTCbDli1bnrjNgQMH0LFjR6hUKjRp0gQhISEVnpOIiIiIqiZJy2xWVhbatWuHxYsXl2r92NhYDBkyBP369UNUVBT+85//4IUXXsCuXbsqOCkRERERVUVmUh580KBBGDRoUKnXX7JkCRo2bIjvvvsOANCiRQscOXIECxYsgJ+fX0XFpCooNxf47DPg6lWpkxAREdUEOgByPPMMEBQkdRZDkpZZY0VGRsLHx8dgmZ+fH/7zn/8Uu01eXh7y8vL0z9PT0ysqHlWin34C5s6VOgUREVF1J9Cx4xl06/YXli9/Hu3aWUgdqBCTOgEsISEBLi4uBstcXFyQnp6OnJycIreZO3cu1Gq1/uHu7l4ZUamCHTwodQIiIqLqTanMQ1DQJgwbthXOzvfRufMJqSMVyaRGZstixowZmDZtmv55eno6C20VtnQpsGDBo2kEJblz59F/bW2BixcBmazisxEREdUUDx4kYN++jUhPT4FMJkOnTv3x/PM9oFZLnawwkyqzrq6uSExMNFiWmJgIOzs7WFpaFrmNSqWCSqWqjHhUDt55B8jIKP36XbsC/NmEiIiofAghcPLkSezatQtarRZ2dnYIDg6u0gOBJlVmvb29sWPHDoNlu3fvhre3t0SJ6EmEAFJTS7/+4yJrZgY4Opa8bu3awKefljUZERER/VtKSgoiIiKg0+ng6emJ4cOHw8rKSupYJZK0zGZmZuLatWv657GxsYiKioKjoyPq16+PGTNm4O7du1i1ahUA4OWXX8b333+P999/H88//zz27duHDRs2YPv27VK9BSqBRgP06AGcPGn8tp07A5GR5Z+JiIiIilerVi34+flBq9WiW7dukJnAPD5Jy+zJkyfRr18//fPHc1snTZqEkJAQxMfH49atW/rXGzZsiO3bt+Ptt9/GokWLUK9ePSxbtoyX5aqiIiPLVmQBwNW1fLMQERFRYUIIHD9+HA0aNIDr///j27VrV4lTGUcmhBBSh6hM6enpUKvVSEtLg52dndRxTN69e0B0dNGvnT4NfPDBo68bNwY8PUu3z1q1gBkzgJYtyycjERERFZaTk4Pw8HBcvnwZjo6OmDp1KpRKpdSxABjX10xqzixVLVFRj6YDaLVPXnfsWODzzys8EhEREZXCnTt3EBoairS0NCgUCnh5ecHc3FzqWGXCMktltn9/6YosADRvXrFZiIiI6MmEEIiMjMTevXuh0+ng4OCA4OBguLm5SR2tzFhmCQDw4AGwfr1xl8U6fPjvr0eOLH5aQPPmwOjRT5ePiIiIno5Go0FYWBiuXLkCAGjVqhUCAgJM/hKmLLMEAJg0CXiai0KMGcPCSkREVJWZm5ujoKAACoUC/v7+6NSpk0lcreBJWGYJAHDhQtm3NTcHeKlfIiKiqkcIAa1WCzMzM8hkMowYMQKZmZn6KxdUByyzZMDeHlixwrhtunYFTHiqDRERUbWUlZWFzZs3Q61WIyAgAABgY2MDGxsbiZOVL5ZZMmBhAQQGSp2CiIiInkZcXBzCwsKQmZkJMzMz9OzZEw4ODlLHqhAss0RERETVhE6nw+HDh3Hw4EEIIeDk5IRRo0ZV2yILsMxWe0IA06YB4eGPvi7OnTuVl4mIiIjKX2ZmJjZt2oTY2FgAQPv27TFo0KAqcyOEisIyW81FRwMLF5Z+/Wo2jYaIiKhGEEJg1apVuH//PszNzTFkyBC0a9dO6liVgmW2mktP//trS0vA1rb4dW1sgE8/rfBIREREVM5kMhl8fHywb98+BAcHw8nJSepIlYZltgaZOhVYsEDqFERERFQeMjIykJKSggYNGgAAPD090aRJE8jlcomTVS6WWSIiIiITc+3aNWzevBk6nQ5Tp06Fvb09ANS4IguwzFZrWi1w5IjUKYiIiKi86HQ67Nu3D0ePHgUAuLq6QqfTSZxKWiyz1VhgILBtm9QpiIiIqDykpaUhLCwMt2/fBgB07twZfn5+MDOr2XWuZr/7au6PPwyft2ghTQ4iIiJ6OleuXMGWLVuQk5MDlUqFgIAAtGrVSupYVQLLrInR6YDt2x9dcutJCgr+/nrlSuCZZyouFxEREVWcq1evIicnB25ubggODq7WN0EwFsusiQkPB0aMMG6bDh2AiRMrJg8RERFVPD8/P9jb28PLy6vGTyv4t5p3ypuJO3/e+G369Cn/HERERFRxLl++jA0bNuhP7jIzM0OPHj1YZIvA74gJSUgAZs78+/lHHwGdO5e8jaMj0LNnxeYiIiKi8lFQUIDdu3fj+PHjAIAzZ86gU6dOEqeq2lhmTci33xo+79UL8POTJgsRERGVr5SUFISGhiI+Ph4A4O3tjfbt20sbygSwzJqQu3f//lqlelRmiYiIyPRdvHgRW7duRV5eHiwtLREYGAhPT0+pY5kEltkqLjYWePFF4MYNIDHx7+XR0YCVlXS5iIiIqHwcPnwY+/btAwC4u7sjKCgIarVa4lSmg2W2ilu2DNi7t/ByG5vKz0JERETlz9PTE4cPH4aXlxf69etXI29J+zRYZquwrCwgKenv5w4OgIUFMHky4OwsXS4iIiJ6Og8ePECtWrUAAC4uLnjjjTdga2srcSrTxDJbRX35JfDpp4Y3PvjjjydfvYCIiIiqrvz8fERERCAqKgqTJ09GvXr1AIBF9imwzFZRP/5oWGQBjsYSERGZsvv37yM0NBRJ//9r17t37+rLLJUdy2wVkJ0N/PXXo1vVPpaZ+ei/FhZA//5AYCBQv74k8YiIiOgpRUVFYceOHcjPz4e1tTVGjhyJRo0aSR2rWmCZlVh+PtCiBXDrVtGv16kDbN9euZmIiIiofGg0GuzYsQNnz54FADRs2BAjR46EDc/kLjcssxK7cqX4IgsAzZtXXhYiIiIqXxcuXMDZs2chk8nQt29f9OzZk1crKGcss1VIu3ZAQMDfz+3sgGeflS4PERERPZ0OHTrg7t27aNOmDTw8PKSOUy2xzFYhnTsDn38udQoiIiIqq7y8PBw6dAi9e/eGSqWCTCZDwD9HqqjcscwSERERlYOEhASEhobiwYMHyMrKQmBgoNSRagSWWQkJASxcKHUKIiIiehpCCJw6dQoRERHQarWws7NDx44dpY5VY7DMSujPPx/drvYxM34aREREJiU3Nxfbtm3DxYsXATy6Ne3w4cNhZWUlcbKag/VJQnfvGj4fM0aaHERERGS8pKQkrFu3Dg8fPoRcLoePjw+6desGmUwmdbQahWVWQhs2/P31F18A/fpJl4WIiIiMY2VlBY1GA7VajeDgYN7NSyIssxLavPnvr3mrWiIioqovPz8f5ubmAAAbGxuMHz8e9vb2sLS0lDhZzcWr9krI1vbvr4OCpMtBRERET3bnzh0sXrwYFy5c0C+rU6cOi6zEWGYlcukSkJb26OvGjQFHR2nzEBERUdGEEIiMjMSKFSuQlpaGo0ePQgghdSz6f5xmIJGwsL+/Tk+XLgcREREVLzs7G7///juuXLkCAGjZsiUCAgJ4klcVwjIrkczMv79++23pchAREVHRbt++jdDQUKSnp0OhUMDf3x+dOnVika1iWGYlIATw9dd/P+/USbosREREVNjDhw8REhICnU4HR0dHjBo1Cq6urlLHoiKwzEogKcnwuaenNDmIiIioaA4ODvDy8kJmZiaGDBkClUoldSQqBsusBHJy/v5arQY8PCSLQkRERP8vLi4ODg4OUKvVAAAfHx/IZDJOK6jieDUDCcyb9/fXffpIl4OIiIgAnU6HgwcPYtWqVQgNDYVWqwUAyOVyFlkTwJFZCSQk/P1106bS5SAiIqrpMjMzsWnTJsTGxgIAatWqBZ1OB4VCIXEyKi2W2Up28aLhZbn+8x/JohAREdVosbGxCAsLQ1ZWFszNzTF48GC0b99e6lhkJJbZSvbWW4bP//+OeERERFRJHk8rOHToEADA2dkZwcHBqF27tsTJqCxYZivZ3bt/fx0QALi4SJeFiIioJtLpdIiJiQEAdOjQAYMGDYI5R5dMFsushMLDpU5ARERU85iZmSE4OBjx8fFo06aN1HHoKbHMSuT/r/pBREREFUyn02Hfvn1QKpXo3bs3AMDJyQlOTk4SJ6PywDJLRERE1VZaWhrCwsJw+/ZtyGQytGrVCrVq1ZI6FpUjllkiIiKqlq5cuYItW7YgJycHKpUKAQEBLLLVEMssERERVStarRZ79+5FZGQkAKBOnToIDg6Go6OjxMmoIrDMVrL4eKkTEBERVV9CCKxevRpxcXEAgK5du8LX1xdmZqw81RU/2Up04QKQliZ1CiIiourr8bzYhIQEDBs2DC1atJA6ElUwltlKtH//31+z1BIREZWPgoICpKen66cRdOrUCc2bN4eNjY3EyagyyKUOUFPNnSt1AiIiItP38OFDLF++HKtWrUJOTg6AR6OzLLI1B0dmJVK/vtQJiIiITFt0dDTCw8ORl5cHS0tLPHjwAPXq1ZM6FlUyllkiIiIyKQUFBdi1axdOnjwJAHB3d0dQUBDUvCNRjcQyW0nWrwfefFPqFERERKbtwYMHCA0NRUJCAgCgR48e6NevHxQKhcTJSCoss5UgMREYP95wGa8QQkREZLwDBw4gISEBVlZWGDFiBJo0aSJ1JJIYK1UlSEoCtNq/nzdoAPj6SpeHiIjIVA0aNAgA4OvrCzs7O4nTUFXAqxlUskGDgOvXAQcHqZMQERFVfffv38f+/fshhAAAWFlZISgoiEWW9DgyW8nq1QM4rYeIiOjJzp49i+3btyM/Px+Ojo5o166d1JGoCmKZJSIioipFo9Fg586diIqKAgA0bNgQjRs3ljYUVVkss0RERFRlJCUlYePGjUhOToZMJkOfPn3Qq1cvyOWcGUlFY5klIiKiKuH8+fMIDw9HQUEBbGxsEBQUBA8PD6ljURXHMktERERVgrW1NQoKCtC4cWOMGDEC1tbWUkciE8AyS0RERJLRaDRQKpUAgEaNGuG5555D/fr1IZPJJE5GpoITUIiIiKjSCSFw8uRJLFq0CCkpKfrlDRo0YJElo7DMEhERUaXKy8tDWFgYtm/fjuzsbJw8eVLqSGTCJC+zixcvhoeHBywsLODl5YXjx4+XuP7ChQvRrFkzWFpawt3dHW+//TZyc3MrKS0RERE9jXv37uGnn37CxYsXIZfL4evrC1/eFpOegqRzZtevX49p06ZhyZIl8PLywsKFC+Hn54eYmBg4OzsXWn/t2rWYPn06li9fju7du+PKlSt47rnnIJPJMH/+fAneAREREZWGEALHjx/H7t27odVqoVarERwcjHr16kkdjUycpCOz8+fPx4svvojJkyejZcuWWLJkCaysrLB8+fIi1//zzz/Ro0cPjBs3Dh4eHhg4cCDGjh37xNFcIiIiklZUVBQiIiKg1WrRvHlzTJ06lUWWyoVkZVaj0eDUqVPw8fH5O4xcDh8fH0RGRha5Tffu3XHq1Cl9eb1x4wZ27NiBwYMHF3ucvLw8pKenGzyIiIiocrVt2xb169eHv78/Ro8eDUtLS6kjUTUh2TSD5ORkaLVauLi4GCx3cXHB5cuXi9xm3LhxSE5ORs+ePSGEQEFBAV5++WV8+OGHxR5n7ty5mD17drlmJyIiopIJIXD+/Hm0atUKCoUCCoVCPzWQqDxJfgKYMQ4cOIA5c+bghx9+wOnTp7Fp0yZs374dn3/+ebHbzJgxA2lpafrH7du3KzExERFRzZOTk4N169Zh8+bN2L9/v345iyxVBMlGZp2cnKBQKJCYmGiwPDExEa6urkVu88knn2DChAl44YUXAABt2rRBVlYWXnrpJXz00UdF3rdZpVJBpVKV/xsgIiKiQm7fvo3Q0FCkp6dDoVBArVZLHYmqOclGZpVKJTp16oS9e/fql+l0Ouzduxfe3t5FbpOdnV2osCoUCgCPfp1BRERE0hBC4MiRI1ixYgXS09Ph6OiIF154AV26dJE6GlVzkl6aa9q0aZg0aRI6d+6Mrl27YuHChcjKysLkyZMBABMnTkTdunUxd+5cAEBAQADmz5+PDh06wMvLC9euXcMnn3yCgIAAfaklIiKiypWVlYUtW7bg2rVrAIDWrVtj6NCh/M0oVQpJy+yYMWNw//59zJw5EwkJCWjfvj0iIiL0J4XdunXLYCT2448/hkwmw8cff4y7d++idu3aCAgIwJdffinVWyAiIqrxcnJycPPmTZiZmWHQoEHo0KED58dSpZGJGvb7+fT0dKjVaqSlpcHOzq5Sjnn+PNC27aOvX3wR+PnnSjksERFRpbl8+TIcHBwKXaWIqCyM6WsmdTUDIiIikl5mZiZWr16Nmzdv6pc1b96cRZYkwTJLREREpXbjxg0sWbIE169fR3h4OHQ6ndSRqIaTdM4sERERmQadToeDBw/i0KFDAIDatWtj1KhRRV4Wk6gyscwSERFRiTIyMrBp0ybExcUBADp06IBBgwbB3Nxc2mBEYJklIiKiEqSlpeHnn39GdnY2zM3NMXToULR9fFYzURXAMlvBhAAWLJA6BRERUdnY2dmhYcOGSE5OxqhRo1CrVi2pIxEZYJmtYEeOACtW/P3cjN9xIiKq4tLT06FUKmFhYQGZTIaAgADI5XJOK6AqibO2K9jdu4bPR4+WJgcREVFpXLlyBUuWLEF4eLj+VvEqlYpFlqosjhNWojlzgL59pU5BRERUmFarxd69exEZGQkASE1NRV5eHiwsLCRORlQyltlKZGUldQIiIqLCUlNTERYWhjt37gAAunbtCl9fX5hxbhyZAP5fSkREVINdvnwZv//+O3Jzc6FSqTB8+HC0aNFC6lhEpcYyS0REVEPl5+dj586dyM3NRd26dREUFAQHBwepYxEZhWWWiIiohjI3N0dQUBAuX76MAQMGQKFQSB2JyGgss0RERDVIdHQ0CgoK9Dc+qF+/PurXry9xKqKyY5klIiKqAQoKCrBr1y6cPHkSZmZmqFu3Lm+AQNUCyywREVE19+DBA4SGhiIhIQEA4OXlBXt7e2lDEZUTllkiIqJq7MKFC9i6dSs0Gg2srKwQGBiIpk2bSh2LqNywzBIREVVDQghs374dp06dAvBobmxQUBDs7OwkTkZUvlhmiYiIqiGZTAar/79bT69evdC3b1/I5byLPVU/LLNERETViEajgVKpBAD07dsXTZs2hbu7u8SpiCoOf0QjIiKqBjQaDX7//XeEhISgoKAAACCXy1lkqdrjyCwREZGJS0pKQmhoKO7fvw+ZTIa4uDg0adJE6lhElYJlloiIyEQJIRAVFYUdO3agoKAANjY2CAoKgoeHh9TRiCoNyywREZEJysvLw/bt23H+/HkAQOPGjTFixAhYW1tLnIyocrHMEhERmaBt27bhwoULkMlk6NevH3r27AmZTCZ1LKJKxzJbwWbPljoBERFVR/3790diYiKGDh2K+vXrSx2HSDK8mkEFu3nz769dXaXLQUREpi0vLw8XL17UP3dwcMArr7zCIks1HkdmK5iFBZCT8+jr4cOlzUJERKYpPj4eGzduxMOHD6FSqfRXKuC0AiKW2Urj6fmo2BIREZWWEAInTpzAH3/8Aa1WC7VaDQv+Y0JkgGWWiIioCsrNzUV4eDguXboEAGjWrBmGDx8OS0tLiZMRVS0ss0RERFXM3bt3ERoaitTUVMjlcvj6+sLLy4vTCoiKwDJLRERUxSQnJyM1NRX29vYIDg5G3bp1pY5EVGWxzBIREVUBQgj9yGu7du2g0WjQpk0bzpElegJemouIiEhit2/fxvLly5Gdna1f1qVLFxZZolJgmSUiIpKIEAJHjx7FihUrcOfOHezbt0/qSEQmh9MMiIiIJJCVlYUtW7bg2rVrAIDWrVvD19dX4lREpodlloiIqJLdvHkTYWFhyMjIgJmZGfz9/dGxY0derYCoDFhmiYiIKtHly5exYcMGCCFQq1YtjBo1Ci4uLlLHIjJZLLNERESVyMPDA/b29nB3d8eQIUOgVCqljkRk0lhmiYiIKlhiYiKcnZ0hk8lgYWGBF154AZaWlpxWQFQOeDUDIiKiCqLT6XDgwAEsWbIEJ0+e1C+3srJikSUqJxyZJSIiqgAZGRnYtGkT4uLiAABJSUnSBiKqplhmiYiIytn169exefNmZGVlwdzcHEOHDkXbtm2ljkVULbHMEhERlZPH0woOHz4MAHBxcUFwcDCcnJwkTkZUfbHMEhERlZPExEQcOXIEANCpUyf4+fnB3Nxc4lRE1RvLLBERUTmpU6cOfH19YWtri9atW0sdh6hGYJklIiIqI61WiwMHDqBt27aoXbs2AMDb21viVEQ1Cy/NRUREVAZpaWkICQnBkSNHEBoaCq1WK3UkohqJI7NERERGiomJwZYtW5CbmwuVSoU+ffpAoVBIHYuoRmKZJSIiKiWtVovdu3fj2LFjAAA3NzcEBwfDwcFB4mRENRfLLBERUSlkZWVh7dq1uHfvHgCgW7du8PHx4YgskcRYZomIiErB0tISZmZmsLCwQGBgIJo1ayZ1JCICyywREVGxCgoKIJPJoFAoIJfLERQUBJ1OB3t7e6mjEdH/49UMiIiIipCSkoJffvkFu3fv1i+zs7NjkSWqYjgyS0RE9C8XLlzA1q1bodFokJ6ejt69e8PKykrqWERUBJZZIiKi/5efn4+IiAicPn0aAFC/fn0EBQWxyBJVYSyzREREAJKTk7Fx40YkJSUBAHr16oW+fftCLueMPKKqjGWWiIhqvIKCAqxatQoZGRmwtrbGiBEj0LhxY6ljEVEpPFWZzc3NhYWFRXllISIikoSZmRn8/Pxw8uRJjBw5Era2tlJHIqJSMvp3JzqdDp9//jnq1q0LGxsb3LhxAwDwySef4Jdffin3gERERBUhKSkJN2/e1D9v1aoVJk6cyCJLZGKMLrNffPEFQkJC8M0330CpVOqXt27dGsuWLSvXcEREROVNCIEzZ85g6dKl2LBhAzIyMvSvyWQyCZMRUVkYXWZXrVqFn3/+GePHjze4hV+7du1w+fLlcg1HRERUnjQaDbZs2YLw8HAUFBTA1dWVJ3gRmTij58zevXsXTZo0KbRcp9MhPz+/XEIRERGVt8TERGzcuBEPHjyATCZDv3790LNnT47GEpk4o8tsy5YtcfjwYTRo0MBgeWhoKDp06FBuwYiIiMqDEAKnT59GREQECgoKYGtri6CgoEL/jhGRaTK6zM6cOROTJk3C3bt3odPpsGnTJsTExGDVqlXYtm1bRWQkIiIqM5lMhtu3b6OgoABNmjTBiBEjeBMEomrE6DI7fPhwbN26FZ999hmsra0xc+ZMdOzYEVu3boWvr29FZCQiIjKaEEI/hWDw4MGoV68eOnXqxGkFRNVMma4z26tXL+zevbu8sxARET01IQROnDiBuLg4jBo1CjKZDEqlEp07d5Y6GhFVAKNP4WzUqBEePHhQaHlqaioaNWpULqGIiIjKIjc3F6Ghodi5cycuXbqES5cuSR2JiCqY0SOzcXFx0Gq1hZbn5eXh7t275RKKiIjIWHfv3kVoaChSU1Mhl8vh6+uLFi1aSB2LiCpYqctseHi4/utdu3ZBrVbrn2u1WuzduxceHh7lGo6IiOhJhBA4duwYdu/eDZ1OB3t7ewQHB6Nu3bpSRyOiSlDqMhsYGAjg0VmhkyZNMnjN3NwcHh4e+O6778o1HBER0ZPs3LkTJ06cAAC0aNECw4YNg4WFhcSpiKiylLrM6nQ6AEDDhg1x4sQJODk5VVgoIiKi0mrXrh3Onj2LAQMGoEuXLrxaAVENY/Sc2djY2IrIQUREVCpCCCQmJsLV1RUAULduXfznP/+BpaWlxMmISApluiF1VlYWduzYgSVLluC///2vwcNYixcvhoeHBywsLODl5YXjx4+XuH5qaipee+011KlTByqVCp6entixY0dZ3gYREZmY7Oxs/Pbbb1i2bBkSEhL0y1lkiWouo0dmz5w5g8GDByM7OxtZWVlwdHREcnIyrKys4OzsjDfffLPU+1q/fj2mTZuGJUuWwMvLCwsXLoSfnx9iYmLg7OxcaH2NRgNfX184OzsjNDQUdevWxc2bN2Fvb2/s2yAiIhNz8+ZNhIWFISMjAwqFAsnJyfrRWSKquWRCCGHMBn379oWnpyeWLFkCtVqNs2fPwtzcHM8++yzeeustjBw5stT78vLyQpcuXfD9998DeDQv193dHW+88QamT59eaP0lS5bg22+/xeXLl2Fubm5MbL309HSo1WqkpaXBzs6uTPswhqMj8PAh4OkJxMRU+OGIiKodIQSOHDmC/fv3QwiBWrVqYdSoUXBxcZE6GhFVEGP6mtHTDKKiovDOO+9ALpdDoVAgLy8P7u7u+Oabb/Dhhx+Wej8ajQanTp2Cj4/P32Hkcvj4+CAyMrLIbcLDw+Ht7Y3XXnsNLi4uaN26NebMmVPkdW8fy8vLQ3p6usGDiIhMQ1ZWFtasWYN9+/ZBCIG2bdvipZdeYpElIj2jy6y5uTnk8kebOTs749atWwAAtVqN27dvl3o/ycnJ0Gq1hf5CcnFxMZgH9U83btxAaGgotFotduzYgU8++QTfffcdvvjii2KPM3fuXKjVav3D3d291BmJiEha586dw/Xr12FmZoZhw4YhMDAQSqVS6lhEVIUYPWe2Q4cOOHHiBJo2bYo+ffpg5syZSE5Oxq+//orWrVtXREY9nU4HZ2dn/Pzzz1AoFOjUqRPu3r2Lb7/9FrNmzSpymxkzZmDatGn65+np6Sy0REQmolu3bkhJSUGXLl2KPJeCiMjokdk5c+agTp06AIAvv/wSDg4OeOWVV3D//n389NNPpd6Pk5MTFAoFEhMTDZb/83Ir/1anTh14enpCoVDol7Vo0QIJCQnQaDRFbqNSqWBnZ2fwICKiqikjIwPbtm1Dfn4+gEc36hkyZAiLLBEVy+iR2c6dO+u/dnZ2RkRERJkOrFQq0alTJ+zdu1d/dzGdToe9e/fi9ddfL3KbHj16YO3atdDpdPqpDleuXEGdOnX4ayciIhN3/fp1bN68GVlZWZDL5Rg8eLDUkYjIBJTpOrNFOX36NIYOHWrUNtOmTcPSpUuxcuVKXLp0Ca+88gqysrIwefJkAMDEiRMxY8YM/fqvvPIKUlJS8NZbb+HKlSvYvn075syZg9dee6283gYREVUynU6Hffv2YfXq1cjKyoKzszO6du0qdSwiMhFGjczu2rULu3fvhlKpxAsvvIBGjRrh8uXLmD59OrZu3Qo/Pz+jDj5mzBjcv38fM2fOREJCAtq3b4+IiAj9SWG3bt3Sj8ACgLu7O3bt2oW3334bbdu2Rd26dfHWW2/hgw8+MOq4RERUNaSnpyMsLEx/MnHHjh3h7+9f5ssvElHNU+rrzP7yyy948cUX4ejoiIcPH6JWrVqYP38+3njjDYwZMwZvvfUWWrRoUdF5nxqvM0tEVDXcunUL69evR3Z2NpRKJQICAir8RGIiMg3G9LVSj8wuWrQIX3/9Nd577z2EhYVh1KhR+OGHH3D+/HnUq1fvqUMTEVHNolarIYSAq6srgoODUatWLakjEZEJKvXIrLW1NS5evAgPDw8IIaBSqbB//3706NGjojOWK47MEhFJJzc3FxYWFvrnCQkJcHJygpmZ0ecjE1E1ViF3AMvJyYGVlRWAR5dKUalU+kt0ERERPUlMTAz++9//IuYfP9m7urqyyBLRUzHqb5Bly5bBxsYGAFBQUICQkBA4OTkZrPPmm2+WXzoiIjJ5Wq0We/bswV9//QUAOHHiBJo1ayZxKiKqLko9zcDDwwMymazknclkuHHjRrkEqyicZkBEVHkePnyIsLAw3L17FwDg5eUFX19fg5vfEBH9W4WcABYXF/e0uYiIqAa5dOkSfv/9d+Tl5cHCwgLDhw9H8+bNpY5FRNUMJyoREVG5i4+Px4YNGwAA9erVQ1BQEOzt7aUNRUTVEsssERGVuzp16qBz585QKpXo378/pxUQUYVhmSUionIRHR2N+vXr608UHjx48BPPtSAielqlvjQXERFRUfLz87Ft2zZs3LgRmzZtgk6nAwAWWSKqFByZJSKiMktOTkZoaCgSExMBAHXr1pU4ERHVNGUqs9evX8eKFStw/fp1LFq0CM7Ozti5cyfq16+PVq1alXdGIiKqgs6dO4dt27YhPz8fVlZWGDlyJBo3bix1LCKqYYyeZnDw4EG0adMGx44dw6ZNm5CZmQkAOHv2LGbNmlXuAYmIqGrJz89HeHg4Nm/ejPz8fHh4eODll19mkSUiSRhdZqdPn44vvvgCu3fvhlKp1C/v37+//u4uRERUfQkhcPv2bQBAnz59MGHCBNja2kqciohqKqOnGZw/fx5r164ttNzZ2RnJycnlEoqIiKoeIQRkMhmUSiWCg4ORlZWFRo0aSR2LiGo4o0dm7e3tER8fX2j5mTNnOPGfiKga0mg02LJli8Fv31xcXFhkiahKMLrMPvPMM/jggw+QkJAAmUwGnU6Ho0eP4t1338XEiRMrIiMREUkkMTERS5cuxdmzZ7Fv3z79eRJERFWF0dMM5syZg9deew3u7u7QarVo2bIltFotxo0bh48//rgiMhIRUSUTQuD06dOIiIhAQUEBbG1tERQUpL8hAhFRVSETQoiybHjr1i1cuHABmZmZ6NChA5o2bVre2SpEeno61Go10tLSYGdnV+HHc3QEHj4EPD2BmJgKPxwR0VPLy8vDtm3bcOHCBQBAkyZNEBgYCGtra4mTEVFNYUxfM3pk9siRI+jZsyfq16+P+vXrlzkkERFVPVqtFr/88gvu378PmUyGAQMGoHv37rybFxFVWUbPme3fvz8aNmyIDz/8ENHR0RWRiYiIJKJQKNChQwfY2dlh8uTJ6NGjB4ssEVVpRpfZe/fu4Z133sHBgwfRunVrtG/fHt9++y3u3LlTEfmIiKiC5ebm4sGDB/rn3bp1wyuvvAJ3d3cJUxERlY7RZdbJyQmvv/46jh49iuvXr2PUqFFYuXIlPDw80L9//4rISEREFeTevXv46aef8NtvvyEvLw8AIJPJYGFhIXEyIqLSMXrO7D81bNgQ06dPR7t27fDJJ5/g4MGD5ZWLiIgqkBACx44dw+7du6HT6WBvb4+MjAyoVCqpoxERGaXMZfbo0aNYs2YNQkNDkZubi+HDh2Pu3LnlmY2IiCpATk4OwsPDcfnyZQBA8+bNMXz4cI7GEpFJMrrMzpgxA+vWrcO9e/fg6+uLRYsWYfjw4bCysqqIfEREVI7u3LmD0NBQpKWlQaFQYODAgejSpQtP8iIik2V0mT106BDee+89jB49Gk5OThWRiYiIKsjBgweRlpYGBwcHBAcHw83NTepIRERPxegye/To0YrIQURElWD48OE4cOAAfH19OT+WiKqFUpXZ8PBwDBo0CObm5ggPDy9x3WHDhpVLMCIienq3bt3C9evX0a9fPwCAjY0Nhg4dKnEqIqLyU6oyGxgYiISEBDg7OyMwMLDY9WQyGbRabXllIyKiMhJC4MiRI9i/fz+EEKhTpw6aN28udSwionJXqjKr0+mK/JqIiKqerKwsbN68GdevXwcAtG3bFo0aNZI4FRFRxTD6pgmrVq3SX1j7nzQaDVatWlUuoYiIqGzi4uKwZMkSXL9+HWZmZhg2bBgCAwOhVCqljkZEVCFkQghhzAYKhQLx8fFwdnY2WP7gwQM4OztX+WkG6enpUKvVSEtLg52dXYUfz9ERePgQ8PQEYmIq/HBEVINFRkZi9+7dEELAyckJo0aNKvR3NRGRKTCmrxl9NQMhRJHXI7xz5w7UarWxuyMionLi6OgIIQTat2+PQYMGcTSWiGqEUpfZDh06QCaTQSaTYcCAATAz+3tTrVaL2NhY+Pv7V0hIIiIqWm5urv7OXc2aNcOLL77Ia8cSUY1S6jL7+CoGUVFR8PPzg42Njf41pVIJDw8PBAUFlXtAIiIqTKfT4cCBAzh16hReeukl/W/GWGSJqKYpdZmdNWsWAMDDwwNjxozhPbyJiCSSnp6OTZs24ebNmwCA6OhoeHt7S5yKiEgaRs+ZnTRpUkXkICKiUrh27Ro2b96M7OxsKJVKBAQEoHXr1lLHIiKSTKnKrKOjI65cuQInJyc4ODgUeQLYYykpKeUWjoiIHtFqtdi/f7/+luKurq4IDg5GrVq1JE5GRCStUpXZBQsWwNbWVv91SWWWiIjK37Fjx/RFtkuXLhg4cKDBibhERDVVqf4m/OfUgueee66ishARUTG6dOmCmJgYeHl5oWXLllLHISKqMoy+A9jp06dx/vx5/fPff/8dgYGB+PDDD6HRaMo1HBFRTaXVanHy5En9LcTNzc3x3HPPscgSEf2L0WV26tSpuHLlCgDgxo0bGDNmDKysrLBx40a8//775R6QiKimSU1NxYoVK7B9+3YcPnxYv5xTvIiICjO6zF65cgXt27cHAGzcuBF9+vTB2rVrERISgrCwsPLOR0RUo1y6dAk//fQT7t69CwsLC7i4uEgdiYioSivT7Wwf/9prz549GDp0KADA3d0dycnJ5ZuOiKiGKCgowO7du3H8+HEAQL169RAUFAR7e3tpgxERVXFGl9nOnTvjiy++gI+PDw4ePIgff/wRABAbG8sRBCKiMkhJSUFoaCji4+MBAN7e3hgwYAAUCoXEyYiIqj6jy+zChQsxfvx4bNmyBR999BGaNGkCAAgNDUX37t3LPSARUXWn0WiQlJQES0tLBAYGwtPTU+pIREQmQyaEEOWxo9zcXCgUCpibm5fH7ipMeno61Go10tLSYGdnV+HHc3QEHj4EPD2BmJgKPxwRmQghhMEJXZcvX0adOnWgVqslTEVEVDUY09fKfMXtU6dO4dKlSwCAli1bomPHjmXdFRFRjfLgwQNs2rQJgwcPRt26dQEAzZs3lzgVEZFpMrrMJiUlYcyYMTh48KD+xITU1FT069cP69atQ+3atcs7IxFRtXH+/Hls27YNGo0GO3fuxJQpU3jJLSKip2D0pbneeOMNZGZm4uLFi0hJSUFKSgouXLiA9PR0vPnmmxWRkYjI5OXn5yM8PBybNm2CRqOBh4cHxowZwyJLRPSUjB6ZjYiIwJ49e9CiRQv9spYtW2Lx4sUYOHBguYYjIqoO7t+/j9DQUCQlJQEA+vTpg969e0MuN3o8gYiI/sXoMqvT6Yo8ycvc3Fx//VkiInokKSkJy5YtQ35+PqytrREUFISGDRtKHYuIqNoweligf//+eOutt3Dv3j39srt37+Ltt9/GgAEDyjUcEZGpq127Nho2bIiGDRvi5ZdfZpElIipnRo/Mfv/99xg2bBg8PDzg7u4OALh9+zZat26N1atXl3tAIiJTk5SUBHt7eyiVSshkMgQFBcHMzIzTCoiIKoDRZdbd3R2nT5/G3r179ZfmatGiBXx8fMo9HBGRKRFC4MyZM9i5cydatmyJwMBAyGQyKJVKqaMREVVbRpXZ9evXIzw8HBqNBgMGDMAbb7xRUbmIiExKXl4etm/fjvPnzwMAsrOzodVqYWZW5st5ExFRKZT6b9kff/wRr732Gpo2bQpLS0ts2rQJ169fx7fffluR+YiIqryEhARs3LgRKSkpkMlkGDBgALp3787LbhERVYJST+D6/vvvMWvWLMTExCAqKgorV67EDz/8UJHZiIiqNCEETpw4gWXLliElJQV2dnaYPHkyevTowSJLRFRJSl1mb9y4gUmTJumfjxs3DgUFBYiPj6+QYEREVV1ubi4OHjwIrVYLT09PTJ06VX9iLBERVY5STzPIy8uDtbW1/rlcLodSqUROTk6FBCMiquosLS0xcuRIJCYmolu3bhyNJSKSgFFnJnzyySewsrLSP9doNPjyyy+hVqv1y+bPn19+6YiIqhAhBI4fPw5bW1u0bNkSANCoUSM0atRI4mRERDVXqcts7969ERMTY7Cse/fuuHHjhv45RyWIqLrKyclBeHg4Ll++DKVSiXr16sHOzk7qWERENV6py+yBAwcqMAYRUdV1584dhIaGIi0tDQqFAgMGDICtra3UsYiICGW4aQIRUU0hhEBkZCT27t0LnU4HBwcHBAcHw83NTepoRET0/1hmiYiKoNPpsH79ely5cgUA0KpVKwQEBEClUkmcjIiI/ollloioCHK5HI6OjlAoFPD390enTp14XgARURXEMktE9P+EEMjLy4OFhQUAwMfHBx07dkTt2rUlTkZERMUp9U0TiIiqs6ysLKxduxZr166FVqsFACgUChZZIqIqrkxl9vDhw3j22Wfh7e2Nu3fvAgB+/fVXHDlypFzDERFVhri4OPz000+4du0a4uPjkZCQIHUkIiIqJaPLbFhYGPz8/GBpaYkzZ84gLy8PAJCWloY5c+aUe0Aiooqi0+lw8OBBrFq1ChkZGXBycsKLL76IunXrSh2NiIhKyegy+8UXX2DJkiVYunQpzM3N9ct79OiB06dPl2s4IqKKkpmZidWrV+PAgQMQQqB9+/Z48cUX4ezsLHU0IiIygtEngMXExKB3796FlqvVaqSmppZHJiKiCrd582bExsbC3NwcQ4YMQbt27aSOREREZWD0yKyrqyuuXbtWaPmRI0fKfH/yxYsXw8PDAxYWFvDy8sLx48dLtd26desgk8kQGBhYpuMSUc01aNAg1KtXDy+99BKLLBGRCTO6zL744ot46623cOzYMchkMty7dw9r1qzBu+++i1deecXoAOvXr8e0adMwa9YsnD59Gu3atYOfnx+SkpJK3C4uLg7vvvsuevXqZfQxiajmycjIwPnz5/XPnZyc8Pzzz8PJyUnCVERE9LSMnmYwffp06HQ6DBgwANnZ2ejduzdUKhXeffddvPHGG0YHmD9/Pl588UVMnjwZALBkyRJs374dy5cvx/Tp04vcRqvVYvz48Zg9ezYOHz7M6Q1EVKJr165h8+bNyMnJgZ2dHRo0aAAAvAkCEVE1YHSZlclk+Oijj/Dee+/h2rVryMzMRMuWLWFjY2P0wTUaDU6dOoUZM2bol8nlcvj4+CAyMrLY7T777DM4OztjypQpOHz4cInHyMvL019xAQDS09ONzklEpkmn02Hfvn04evQogEfTpMrydxUREVVdZb4DmFKpRMuWLZ/q4MnJydBqtXBxcTFY7uLigsuXLxe5zZEjR/DLL78gKiqqVMeYO3cuZs+e/VQ5icj0pKWlISwsDLdv3wYAdO7cGX5+fjAz440PiYiqE6P/Vu/Xr1+Jv5rbt2/fUwUqSUZGBiZMmIClS5eWep7bjBkzMG3aNP3z9PR0uLu7V1REIqoCrly5gi1btiAnJwcqlQoBAQFo1aqV1LGIiKgCGF1m27dvb/A8Pz8fUVFRuHDhAiZNmmTUvpycnKBQKJCYmGiwPDExEa6uroXWv379OuLi4hAQEKBfptPpAABmZmaIiYlB48aNDbZRqVRQqVRG5SIi05aWloacnBzUqVMHwcHBcHR0lDoSERFVEKPL7IIFC4pc/umnnyIzM9OofSmVSnTq1Al79+7VX15Lp9Nh7969eP311wut37x5c4OzkQHg448/RkZGBhYtWsQRV6IaTAih/61R586dYW5ujtatW3NaARFRNVduf8s/++yz6Nq1K+bNm2fUdtOmTcOkSZPQuXNndO3aFQsXLkRWVpb+6gYTJ05E3bp1MXfuXFhYWKB169YG29vb2wNAoeVEVHNcvnwZhw4dwsSJE2FhYQGZTFbot0hERFQ9lVuZjYyMhIWFhdHbjRkzBvfv38fMmTORkJCA9u3bIyIiQn9S2K1btyCXG305XCKqAQoKCrBnzx4cO3YMAPDnn3+if//+EqciIqLKJBNCCGM2GDlypMFzIQTi4+Nx8uRJfPLJJ5g1a1a5Bixv6enpUKvVSEtLg52dXYUfz9ERePgQ8PQEYmIq/HBENUZKSgpCQ0MRHx8PAPD29saAAQOgUCgkTkZERE/LmL5m9MisWq02eC6Xy9GsWTN89tlnGDhwoLG7IyIy2sWLF7F161bk5eXB0tISgYGB8PT0lDoWERFJwKgyq9VqMXnyZLRp0wYODg4VlYmIqFinTp3Ctm3bAADu7u4IDg6ulN+yEBFR1WTUZFSFQoGBAwfy9rFEJJkWLVrAzs4OPXv2xHPPPcciS0RUwxl9ZlXr1q1x48aNishCRFSkx3fxAgArKyu8+uqrGDBgAE8OJSIi48vsF198gXfffRfbtm1DfHw80tPTDR5EROUlPz8f4eHhWL58ucEtrHkjFCIieqzUc2Y/++wzvPPOOxg8eDAAYNiwYQa3tX18wXKtVlv+KYmoxrl//z5CQ0ORlJQE4NHtrImIiP6t1GV29uzZePnll7F///6KzENEhLNnz2L79u3Iz8+HtbU1Ro4ciUaNGkkdi4iIqqBSl9nHl6Pt06dPhYUhoppNo9Fg586d+ikFjRo1wogRI2BjYyNtMCIiqrKMujTXP6cVEBGVt3v37iEqKgoymQx9+/ZFz549eZIXERGVyKgy6+np+cRCm5KS8lSBiKjm8vDwwMCBA1GnTh14eHhIHYeIiEyAUWV29uzZhe4ARkRUVnl5efjjjz/Qo0cPODo6Anh0W1oiIqLSMqrMPvPMM3B2dq6oLERUgyQkJCA0NBQPHjxAUlISnn/+eU5lIiIio5W6zPIfGSIqD0IInDp1ChEREdBqtbCzs4Ovry//jiEiojIx+moGRERllZubi23btuHixYsAHs3DHz58OKysrCRORkREpqrUZVan01VkDiKq5h4+fIhff/0VDx8+hFwuh4+PD7p168YRWSIieipGzZklIiorOzs7WFpaQqfTITg4GPXq1ZM6EhERVQMss0RUYXJzc6FUKiGXy6FQKDB69GgolUpYWlpKHY2IiKoJXo2ciCrE3bt38dNPPxncAlutVrPIEhFRuWKZJaJyJYRAZGQkli9fjtTUVERHR0Oj0Ugdi4iIqilOMyCicpOTk4MtW7bgypUrAICWLVsiICAASqVS4mRERFRdscwSUbm4ffs2QkNDkZ6eDoVCAX9/f3Tq1IlXKyAiogrFMktETy03Nxdr1qxBXl4eHB0dMWrUKLi6ukodi4iIagCWWSJ6ahYWFvD398eNGzcwZMgQqFQqqSMREVENwTJLRGVy8+ZNyOVyuLu7AwDat2+Pdu3acVoBERFVKpZZIjKKTqfDkSNHcODAAdjY2ODll1/W346WRZaIiCobyywRlVpmZiY2b96MGzduAAAaNWoEMzP+NUJERNLhv0JEVCqxsbEICwtDVlYWzM3NMXjwYLRv317qWEREVMOxzBJRiYQQOHDgAA4dOgQAcHZ2RnBwMGrXri1xMiIiIpZZIiqF5ORkAECHDh0waNAgmJubS5yIiIjoEZZZIiqSEAIymQwymQwBAQFo1aoVWrZsKXUsIiIiA3KpAxBR1aLT6bBnzx6EhoZCCAHg0XVkWWSJiKgq4sgsEemlpaUhLCwMt2/fBvDoWrIeHh7ShiIiIioByywRAQCuXLmCLVu2ICcnByqVCgEBASyyRERU5bHMEtVwWq0We/fuRWRkJACgTp06CA4OhqOjo8TJiIiInoxllqiGCwsLw6VLlwAAXbt2ha+vL2+EQEREJoP/YhHVcF5eXrh58yYCAgLQvHlzqeMQEREZhWWWqIYpKChAQkIC6tWrBwBo0KAB3nrrLSiVSomTERERGY+X5iKqQR4+fIjly5dj1apVuH//vn45iywREZkqjswS1RDR0dEIDw9HXl4eLC0tkZmZyVvSEhGRyWOZJarmCgoKsGvXLpw8eRIA4O7ujqCgIKjVaomTERERPT2WWaJq7MGDBwgNDUVCQgIAoEePHujXrx8UCoXEyYiIiMoHyyxRNXbu3DkkJCTAysoKI0aMQJMmTaSOREREVK5YZomqsT59+kCj0cDb2xt2dnZSxyEiIip3vJoBUTWSnJyMLVu2oKCgAAAgl8vh5+fHIktERNUWR2aJqomzZ89i+/btyM/Ph52dHfr37y91JCIiogrHMktk4jQaDXbu3ImoqCgAQMOGDdG1a1dpQxEREVUSllkiE5aUlITQ0FDcv38fMpkMffr0Qa9evSCXcwYRERHVDCyzRCbq8uXLCAsLQ0FBAWxsbBAUFAQPDw+pYxEREVUqllkiE+Xs7AyFQoEGDRpgxIgRsLa2ljoSERFRpWOZJTIhWVlZ+tLq6OiIKVOmwMnJCTKZTOJkRERE0uDEOiITIITAyZMnsXDhQly/fl2/vHbt2iyyRERUo3FklqiKy83NxbZt23Dx4kUAwIULF9C4cWOJUxEREVUNLLNEVdi9e/cQGhqKhw8fQi6XY8CAAfD29pY6FhERUZXBMktUBQkhcPz4cezevRtarRZqtRrBwcGoV6+e1NGIiIiqFJZZoiooNjYWERERAIDmzZtj2LBhsLS0lDgVERFR1cMyS1QFNWrUCB07doSzszO6du3Kk7yIiIiKwTJLVAU8vlpBq1atYGVlBQAICAiQOBUREVHVx0tzEUksOzsb69atw44dO7BlyxYIIaSOREREZDI4Mkskodu3byM0NBTp6elQKBRo2rSp1JGIiIhMCssskQSEEDh69Cj27dsHIQQcHR0xatQouLq6Sh2NiIjIpLDMElWy7OxsbN68GdeuXQMAtG7dGkOHDoVKpZI4GRERkelhmSWqZHK5HMnJyTAzM8OgQYPQoUMHXq2AiIiojFhmiSrB45O6ZDIZLCwsMHr0aMjlcri4uEicjIiIyLTxagZEFSwzMxOrV6/GyZMn9cvq1KnDIktERFQOODJLVIFiY2MRFhaGrKwsxMfHo23btpwbS0REVI5YZokqgE6nw8GDB3Ho0CEAQO3atTFq1CgWWSIionLGMktUzjIyMrBp0ybExcUBADp06IBBgwbB3Nxc2mBERETVEMssUTnSaDT4+eefkZmZCXNzcwwdOhRt27aVOhYREVG1xTJLVI6USiW6dOmC6OhojBo1CrVq1ZI6EhERUbXGMkv0lNLT05Gfn68vrj179kT37t1hZsY/XkRERBWNl+YiegpXrlzBkiVLsGHDBuTn5wN4dFMEFlkiIqLKwX9xicpAq9Vi7969iIyMBADY29sjJyeHJ3kRERFVMpZZIiOlpqYiLCwMd+7cAQB07doVvr6+HI0lIiKSQJWYZrB48WJ4eHjAwsICXl5eOH78eLHrLl26FL169YKDgwMcHBzg4+NT4vpE5eny5cv46aefcOfOHahUKowePRqDBg1ikSUiIpKI5GV2/fr1mDZtGmbNmoXTp0+jXbt28PPzQ1JSUpHrHzhwAGPHjsX+/fsRGRkJd3d3DBw4EHfv3q3k5FTTCCEQGRmJ3NxcuLm5YerUqWjRooXUsYiIiGo0mRBCSBnAy8sLXbp0wffffw/g0Z2T3N3d8cYbb2D69OlP3F6r1cLBwQHff/89Jk6c+MT109PToVarkZaWBjs7u6fO/ySOjsDDh4CnJxATU+GHowqWlpaGkydPom/fvlAoFFLHISIiqpaM6WuSjsxqNBqcOnUKPj4++mVyuRw+Pj76E2ueJDs7G/n5+XB0dCzy9by8PKSnpxs8iEorOjoa+/fv1z9Xq9UYMGAAiywREVEVIWmZTU5OhlarhYuLi8FyFxcXJCQklGofH3zwAdzc3AwK8T/NnTsXarVa/3B3d3/q3FT9FRQUYPv27di4cSMOHTqE2NhYqSMRERFRESSfM/s0vvrqK6xbtw6bN2+GhYVFkevMmDEDaWlp+sft27crOSWZmgcPHuCXX37ByZMnAQA9evRA/fr1JU5FRERERZH0FGwnJycoFAokJiYaLE9MTISrq2uJ286bNw9fffUV9uzZg7Zt2xa7nkqlgkqlKpe8VP2dP38e27Ztg0ajgZWVFUaMGIEmTZpIHYuIiIiKIenIrFKpRKdOnbB37179Mp1Oh71798Lb27vY7b755ht8/vnniIiIQOfOnSsjKtUAu3btwqZNm6DRaNCgQQNMnTqVRZaIiKiKk/zimNOmTcOkSZPQuXNndO3aFQsXLkRWVhYmT54MAJg4cSLq1q2LuXPnAgC+/vprzJw5E2vXroWHh4d+bq2NjQ1sbGwkex9k+urVqwcA6NWrF/r27Qu53KRn4RAREdUIkpfZMWPG4P79+5g5cyYSEhLQvn17RERE6E8Ku3XrlkGp+PHHH6HRaBAcHGywn1mzZuHTTz+tzOhUDWRmZup/CGrVqhVcXFzg5OQkcSoiIiIqLcmvM1vZeJ1ZAh5dFm7nzp24evUqXn75ZY7qExERVSHG9DXJR2aJKltSUhJCQ0Nx//59yGQy3Lhxo8STCImIiKjqYpmlGkMIgaioKOzYsQMFBQWwsbFBUFAQPDw8pI5GREREZcQySzWCRqPBtm3bcP78eQBA48aNMWLECFhbW0ucjIiIiJ4GyyzVCIcOHcL58+chk8nQr18/9OzZEzKZTOpYRERE9JRYZqlG6N27N+Lj49GnTx/ezYuIiKga4YU0qVrKy8vDn3/+iccX61AqlZgwYQKLLBERUTXDkVmqduLj4xEaGoqUlBQAQPfu3SVORERERBWFZZaqDSEETpw4gT/++ANarRZqtZojsURERNUcyyxVC7m5uQgPD8elS5cAAM2aNcPw4cNhaWkpcTIiIiKqSCyzZPLu3buHjRs3IjU1FXK5HL6+vvDy8uLVCoiIiGoAllkyeUIIpKenw97eHsHBwahbt67UkYiIiKiSsMySSdLpdJDLH12Mo27duhgzZgzq168PCwsLiZMRERFRZeKlucjk3L59Gz/88AMSEhL0yzw9PVlkiYiIaiCWWTIZQggcPXoUK1aswIMHD7Bv3z6pIxEREZHEOM2ATEJWVha2bNmCa9euAQBat26NoUOHSpyKiIiIpMYyS1XezZs3ERYWhoyMDJiZmcHf3x8dO3bk1QqIiIiIZZaqtlu3bmHlypUQQqBWrVoYNWoUXFxcpI5FREREVQTLLFVp9erVg4eHB2xtbTFkyBAolUqpIxEREVEVwjJLVc6tW7dQp04dmJubQy6XY+zYsTA3N5c6FhEREVVBvJoBVRk6nQ4HDhzAihUrsGvXLv1yFlkiIiIqDkdmqUrIyMjApk2bEBcXBwDQarUGN0YgIiIiKgrLLEnu+vXr2LRpE7Kzs2Fubo6hQ4eibdu2UsciIiIiE8AyS5LR6XTYv38/jhw5AgBwcXFBcHAwnJycJE5GREREpoJlliSTlZWFU6dOAQA6deoEPz8/zo8lIiIio7DMkmRsbW0RGBgIjUaD1q1bSx2HiIiITBDLLFUarVaLffv2oX79+mjWrBkAwNPTU+JUREREZMp4qjhVirS0NISEhODPP//E77//jtzcXKkjERERUTXAkVmqcDExMdiyZQtyc3OhUqkQEBAACwsLqWMRERFRNcAySxVGq9Vi9+7dOHbsGADAzc0NwcHBcHBwkDgZERERVRcss1Qh8vPzERISgnv37gEAunXrBh8fHygUComTERERUXXCMksVwtzcHK6urkhJSUFgYKD+hC8iIiKi8sQyS+WmoKAA+fn5sLS0BAD4+/ujd+/eUKvVEicjIiKi6opXM6BykZKSgl9++QUbN26ETqcD8Gh0lkWWiIiIKhJHZumpXbhwAVu3boVGo4GlpSUePnyIWrVqSR2LiIiIagCWWSqz/Px8RERE4PTp0wCA+vXrIygoCHZ2dhInIyIiopqCZZbKJDk5GaGhoUhMTAQA9OrVC3379oVczpkrREREVHlYZsloQghs2rQJiYmJsLKywsiRI9G4cWOpYxEREVENxDJLRpPJZBg2bBj27t2LYcOGwdbWVupIREREVEPxd8JUKklJSTh37pz+uaurK8aPH88iS0RERJLiyCyVSAiBqKgo7NixAzqdDrVq1ULdunWljkVEREQEgGWWSqDRaLB9+3b9iGyjRo1gb28vbSgiIiKif2CZpSIlJiZi48aNePDgAWQyGfr164eePXtCJpNJHY2IiIhIj2WWCjl9+jR27NgBrVYLW1tbBAUFoUGDBlLHIiIiIiqEZZYKyc3NhVarRZMmTTBixAhYWVlJHYmIiIioSCyzBADQ6XT6Gx54e3tDrVajZcuWnFZAREREVRovzVXDCSFw/Phx/Pzzz9BoNAAeXUe2VatWLLJERERU5XFktgbLzc1FeHg4Ll26BODRXNlu3bpJnIqIiIio9Fhma6i7d+8iNDQUqampkMvl8PX1hZeXl9SxiIiIiIzCMlvDCCFw7Ngx7N69GzqdDvb29ggODuaNEIiIiMgksczWMIcOHcKBAwcAAC1atMCwYcNgYWEhbSgiIiKiMmKZrWE6deqEM2fOoHv37ujSpQtP8iIiIiKTxjJbzQkhcOPGDTRu3BgAYGNjg9dffx1mZvzoiYiIyPTx0lzVWHZ2Nn777TesXr0aFy9e1C9nkSUiIqLqgq2mmrp58ybCwsKQkZEBhUKB/Px8qSMRERERlTuW2WpGCIEjR45g//79EEKgVq1aGDVqFFxcXKSORkRERFTuWGarkaysLGzatAk3btwAALRt2xZDhgyBUqmUOBkRERFRxWCZrUbu3r2LGzduwMzMDIMHD0b79u15tQIiIiKq1lhmqxFPT08MHDgQjRs3hrOzs9RxiIiIiCocr2ZgwjIyMrBhwwakpaXpl3l7e7PIEhERUY3BkVkTdf36dWzevBlZWVnQaDR49tlnpY5EREREVOlYZk2MTqfDgQMHcPjwYQCAs7Mz/P39JU5FREREJA2WWROSnp6OsLAw3Lp1CwDQsWNH+Pv7w9zcXOJkRERERNJgmTURCQkJWLVqFXJycqBUKhEQEIDWrVtLHYuIiIhIUiyzJqJWrVqwtbWFWq1GcHAwatWqJXUkIiIiIsmxzFZhGRkZsLGxgUwmg7m5OcaNGwdra2uYmfFjIyIiIgJYZqusmJgYbNmyBd7e3ujduzcAQK1WS5yKiKhiCCFQUFAArVYrdRQiqiTm5uZQKBRPvR+W2SpGq9Viz549+OuvvwAAV69eRc+ePSGX85LARFQ9aTQaxMfHIzs7W+ooRFSJZDIZ6tWrBxsbm6faD8tsFfLw4UOEhYXh7t27AAAvLy/4+vqyyBJRtaXT6RAbGwuFQgE3NzcolUrehpuoBhBC4P79+7hz5w6aNm36VCO0LLNVxKVLl/D7778jLy8PFhYWGD58OJo3by51LCKiCqXRaKDT6eDu7g4rKyup4xBRJapduzbi4uKQn5/PMmvqMjIyEBYWBq1Wi3r16iEoKAj29vZSxyIiqjT8DRRRzVNev4Vhma0CbG1t4e/vj5SUFAwYMKBcJkMTERER1QQssxK5ePEi7O3tUbduXQBA586dJU5EREREZHr4e51Klp+fj23btiE0NBShoaHIzc2VOhIREVGN9cknn+Cll16SOka1Ex0djXr16iErK6vCj1UlyuzixYvh4eEBCwsLeHl54fjx4yWuv3HjRjRv3hwWFhZo06YNduzYUUlJn05ycjJ++eUXnDp1CgDQunVrKJVKiVMREVFZ3L9/H6+88grq168PlUoFV1dX+Pn54ejRo9BoNHBycsJXX31V5Laff/45XFxckJ+fj5CQEMhkMrRo0aLQehs3boRMJoOHh0eJWWQymf5hZ2eHLl264Pfffy+0Xk5ODmbNmgVPT0+oVCo4OTlh1KhRuHjxYqF109PT8dFHH+n/vXV1dYWPjw82bdoEIUTpvklVXEJCAhYtWoSPPvpI6igVJiUlBePHj4ednR3s7e0xZcoUZGZmlrjN9evXMWLECNSuXRt2dnYYPXo0EhMTDdY5ffo0fH19YW9vj1q1auGll14y2G/Lli3RrVs3zJ8/v0Le1z9JXmbXr1+PadOmYdasWTh9+jTatWsHPz8/JCUlFbn+n3/+ibFjx2LKlCk4c+YMAgMDERgYiAsXLlRycuN4eJzDzz//jMTERFhZWeHZZ5/FgAEDeNIDEZGJCgoKwpkzZ7By5UpcuXIF4eHh6Nu3Lx48eAClUolnn30WK1asKLSdEAIhISGYOHEizM3NAQDW1tZISkpCZGSkwbq//PIL6tevX6o8K1asQHx8PE6ePIkePXogODgY58+f17+el5cHHx8fLF++HF988QWuXLmCHTt2oKCgAF5eXvrrmwNAamoqunfvjlWrVmHGjBk4ffo0Dh06hDFjxuD9999HWlpaWb5lZZKfn19h+162bBm6d++OBg0aPNV+KjLj0xo/fjwuXryI3bt3Y9u2bTh06FCJI9FZWVkYOHAgZDIZ9u3bp//hLCAgADqdDgBw7949+Pj4oEmTJjh27BgiIiJw8eJFPPfccwb7mjx5Mn788UcUFBRU5FsEhMS6du0qXnvtNf1zrVYr3NzcxNy5c4tcf/To0WLIkCEGy7y8vMTUqVNLdby0tDQBQKSlpZU9tBGcnPLFsGFbxKeffio+/fRTERISItLT0yvl2EREVV1OTo6Ijo4WOTk5UkcxysOHDwUAceDAgWLXOXfunAAgDh8+bLB8//79AoC4dOmSEEKIFStWCLVaLV5//XXxwgsv6Ne7ffu2UKlUYvr06aJBgwYl5gEgNm/erH+enp4uAIhFixbpl3311VdCJpOJqKgog221Wq3o3LmzaNmypdDpdEIIIV555RVhbW0t7t69W+hYGRkZIj8/v9gs4eHhonPnzkKlUolatWqJwMDAYnMKIYRarRYrVqwQQggRGxsrAIh169aJ3r17C5VKJRYtWiQsLCzEjh07DLbbtGmTsLGxEVlZWUIIIW7duiVGjRol1Gq1cHBwEMOGDROxsbHF5hRCiFatWonvv//eYNnOnTtFjx49hFqtFo6OjmLIkCHi2rVr+teLyvg4/9KlS0Xz5s2FSqUSzZo1E4sXLzbY9/vvvy+aNm0qLC0tRcOGDcXHH38sNBpNiRmfRnR0tAAgTpw4YfD+ZDJZkZ+tEELs2rVLyOVyg56UmpoqZDKZ2L17txBCiJ9++kk4OzsLrVarX+fx/+9Xr17VL8vLyxMqlUrs2bOnyGOV9OffmL4m6bCgRqPBqVOn4OPjo18ml8vh4+NT6KfTxyIjIw3WBwA/P79i18/Ly0N6errBozJptQrY2GRBCKBPnz6YMGECbG1tKzUDEZGp6dwZqFev8h+lPRfXxsYGNjY22LJlC/Ly8opcp02bNujSpQuWL19usHzFihXo3r17oWuJP//889iwYYP+TmghISHw9/eHi4uLUd+7goIC/PLLLwBgMJVt7dq18PX1Rbt27QzWl8vlePvttxEdHY2zZ89Cp9Nh3bp1GD9+PNzc3Ip872ZmRZ8/vn37dowYMQKDBw/GmTNnsHfvXnTt2tWo/AAwffp0vPXWW7h06RJGjRqFoUOHYu3atQbrrFmzBoGBgbCyskJ+fj78/Pxga2uLw4cP4+jRo7CxsYG/vz80Gk2Rx0hJSUF0dHShE7CzsrIwbdo0nDx5Env37oVcLseIESP0o5JFZfTz88OaNWswc+ZMfPnll7h06RLmzJmDTz75BCtXrtRvY2tri5CQEERHR2PRokVYunQpFixYUOL3olWrVvr/34p6DBo0qNhtIyMjYW9vb/AefXx8IJfLcezYsSK3ycvLg0wmg0ql0i+zsLCAXC7HkSNH9OsolUqD3y5bWloCgH4d4NH/f+3bt8fhw4dLfI9P7Yl1twLdvXtXABB//vmnwfL33ntPdO3atchtzM3Nxdq1aw2WLV68WDg7Oxe5/qxZswSAQo/KGpl1cBDCyipL9OwZWynHIyIyJcWNzNStKwRQ+Y+6dUufPTQ0VDg4OAgLCwvRvXt3MWPGDHH27FmDdZYsWSJsbGxERkaGEOLRiKmVlZVYtmyZfp3HI7NCCNG+fXuxcuVKodPpROPGjcXvv/8uFixYUKqRWQsLC2FtbS3kcrkAIDw8PMSDBw/061hYWIi33nqryO1Pnz4tAIj169eLxMREAUDMnz+/9N+M/+ft7S3Gjx9fYs7SjMwuXLjQYJ3NmzcbjMKmpaUJCwsLsXPnTiGEEL/++qto1qyZfmRZiEejgpaWlmLXrl1FZjlz5owAIG7dulXie7p//74AIM6fP19ixsaNGxfqJ59//rnw9vYudt/ffvut6NSpU4nHj4uLE1evXi32cefOnWK3/fLLL4Wnp2eh5bVr1xY//PBDkdskJSUJOzs78dZbb4msrCyRmZkpXn/9dQFAvPTSS0IIIS5cuCDMzMzEN998I/Ly8kRKSooICgoSAMScOXMM9jdixAjx3HPPFXmsajEyWxlmzJiBtLQ0/eP27duVevzz54GYGCts3OhRqcclIjJlrq5A3bqV/3B1LX3GoKAg3Lt3D+Hh4fD398eBAwfQsWNHhISE6NcZO3YstFotNmzYAODReSJyuRxjxowpcp/PP/88VqxYgYMHDyIrKwuDBw8udZ4FCxYgKioKO3fuRMuWLbFs2TI4OjoarCNKceJWadYpTlRUFAYMGFDm7R/792jp4MGDYW5ujvDwcABAWFgY7Ozs9L+pPXv2LK5duwZbW1v9iKWjoyNyc3Nx/fr1Io+Rk5MD4NGo4z9dvXoVY8eORaNGjWBnZ6c/+e7WrVvFZszKysL169cxZcoUg1HTL774wuD469evR48ePeDq6gobGxt8/PHHhfb7bw0aNECTJk2KfTy+xGd5qV27NjZu3IitW7fCxsYGarUaqamp6Nixo34ktlWrVli5ciW+++47WFlZwdXVFQ0bNoSLi0uhc4EsLS31v22oKJJeZ9bJyQkKhaLQGXKJiYlwLeZvFFdXV6PWV6lUBkPlla2c/x8jIqoRTp6UOkHpWFhYwNfXF76+vvjkk0/wwgsvYNasWfoTYezs7BAcHIwVK1boi+ro0aNhY2NT5P7Gjx+P999/H59++ikmTJhQ7K/zi+Lq6qovOCtWrMDgwYMRHR0NZ2dnAICnpycuXbpU5LaPl3t6eqJ27dqwt7fH5cuXjfhOPPL4V83FkclkhcpyUSdPWVtbGzxXKpUIDg7G2rVr8cwzz2Dt2rUYM2aM/vuTmZmJTp06Yc2aNYX2Vbt27SKzODk5AQAePnxosE5AQAAaNGiApUuXws3NDTqdDq1bty40XeGfGR+fxb906VJ4eXkZrPf4RkiRkZEYP348Zs+eDT8/P6jVaqxbtw7fffddkfkea9WqFW7evFns67169cLOnTuLfM3V1bXQCfUFBQVISUkptjcBwMCBA3H9+nUkJyfDzMwM9vb2cHV1RaNGjfTrjBs3DuPGjUNiYiKsra0hk8kwf/58g3WAR9M5GjduXOJ7fFqSjswqlUp06tQJe/fu1S/T6XTYu3cvvL29i9zG29vbYH0A2L17d7HrExERVZaWLVsWuq7mlClTcOTIEWzbtg1//vknpkyZUuz2jo6OGDZsGA4ePIjnn3++zDm6du2KTp064csvv9Qve+aZZ7Bnzx6cPXvWYF2dTocFCxagZcuWaNeuHeRyOZ555hmsWbMG9+7dK7TvzMzMYs9Ob9u2baF/o/+pdu3aiI+P1z+/evVqqUftxo8frz9rft++fRg/frz+tY4dO+Lq1atwdnYuNHKpVquL3F/jxo1hZ2eH6Oho/bIHDx4gJiYGH3/8MQYMGIAWLVrg4cOHT8zm4uICNzc33Lhxo9DxGzZsCODR1ZgaNGiAjz76CJ07d0bTpk1LLKmP7dixA1FRUcU+li1bVuy23t7eSE1N1V8SFAD27dsHnU5XqHQXxcnJCfb29ti3bx+SkpIwbNiwIt+7jY0N1q9fr//h7p8uXLiADh06PPFYT+WJExEq2Lp164RKpRIhISEiOjpavPTSS8Le3l4kJCQIIYSYMGGCmD59un79o0ePCjMzMzFv3jxx6dIlMWvWLGFubq6fy/IklX01AyIiKp6pXs0gOTlZ9OvXT/z666/i7Nmz4saNG2LDhg3CxcVFPP/88wbr6nQ60aRJE+Hg4CCaN29eaF//nDMrhBDZ2dkiOTlZ/7y0c2b/PRd1x44dQqVS6edU5uTkCC8vL+Hu7i42bNggbt68KY4fPy4CAwOFtbW1iIyM1G/74MED0bx5c1GvXj2xcuVKcfHiRXHlyhXxyy+/iCZNmoiHDx8WmWP//v1CLpeLmTNniujoaHHu3Dnx1Vdf6V9/5plnRIsWLcTp06fFiRMnRP/+/YW5uXmhObNnzpwptG+dTifc3d1Fu3btROPGjQ1ey8rKEk2bNhV9+/YVhw4dEjdu3BD79+8Xb7zxhrh9+3ax37eRI0eKd955R/9cq9WKWrVqiWeffVZcvXpV7N27V3Tp0sXg+1tcxqVLlwpLS0uxaNEiERMTI86dOyeWL18uvvvuOyGEEL///rswMzMTv/32m7h27ZpYtGiRcHR0NPjsK4K/v7/o0KGDOHbsmDhy5Iho2rSpGDt2rP71O3fuiGbNmoljx47ply1fvlxERkaKa9euiV9//VU4OjqKadOmGez3f//7nzh16pSIiYkR33//vf69/1NsbKyQyWQiLi6uyGzlNWdW8jIrxKNvSP369YVSqRRdu3YVf/31l/61Pn36iEmTJhmsv2HDBuHp6SmUSqVo1aqV2L59e6mPxTJLRFR1mGqZzc3NFdOnTxcdO3YUarVaWFlZiWbNmomPP/5YZGdnF1p/zpw5AoD45ptvCr327zL7b2UtszqdTjRv3ly88sor+mVZWVnio48+Ek2aNBHm5ubC0dFRBAUFFTkglJqaKqZPny6aNm0qlEqlcHFxET4+PmLz5s0GJ1r9W1hYmGjfvr1QKpXCyclJjBw5Uv/a3bt3xcCBA4W1tbVo2rSp2LFjR5EngBVVZoV4dGkrAGLmzJmFXouPjxcTJ04UTk5OQqVSiUaNGokXX3yxxH/vd+zYIerWrWtwiandu3eLFi1aCJVKJdq2bSsOHDhQqjIrhBBr1qzRv3cHBwfRu3dvsWnTJv3r7733nqhVq5awsbERY8aMEQsWLKjwMvvgwQMxduxYYWNjI+zs7MTkyZP1JyT+8/3s379fv+yDDz4QLi4uwtzcXDRt2lR89913hT7zCRMmCEdHR6FUKkXbtm3FqlWrCh17zpw5ws/Pr9hs5VVmZUJUk9t4lFJ6ejrUajXS0tJgZ2cndRwiohotNzcXsbGxaNiwYaETcYgqmhACXl5eePvttzF27Fip41QrGo0GTZs2xdq1a9GjR48i1ynpz78xfa3aX82AiIiIqCgymQw///xzxd+hqga6desWPvzww2KLbHmS9GoGRERERFJq37492rdvL3WMaufxCXCVgSOzRERERGSyWGaJiIiIyGSxzBIRkeRq2LnIRITy+3PPMktERJIxNzcHgAq/3SURVT2P76r2+C5pZcUTwIiISDIKhQL29vb6W25aWVlBJpNJnIqIKppOp8P9+/dhZWVl1G2bi8IyS0REknp8j/h/30OeiKo3uVyO+vXrP/UPsCyzREQkKZlMhjp16sDZ2Rn5+flSxyGiSqJUKiGXP/2MV5ZZIiKqEhQKxVPPnSOimocngBERERGRyWKZJSIiIiKTxTJLRERERCarxs2ZfXyB3vT0dImTEBEREVFRHve00txYocaV2YyMDACAu7u7xEmIiIiIqCQZGRlQq9UlriMTNewegjqdDvfu3YOtrW2lXJg7PT0d7u7uuH37Nuzs7Cr8eFT++BmaPn6Gpo+foWnj52f6KvszFEIgIyMDbm5uT7x8V40bmZXL5ahXr16lH9fOzo5/gE0cP0PTx8/Q9PEzNG38/ExfZX6GTxqRfYwngBERERGRyWKZJSIiIiKTxTJbwVQqFWbNmgWVSiV1FCojfoamj5+h6eNnaNr4+Zm+qvwZ1rgTwIiIiIio+uDILBERERGZLJZZIiIiIjJZLLNEREREZLJYZomIiIjIZLHMloPFixfDw8MDFhYW8PLywvHjx0tcf+PGjWjevDksLCzQpk0b7Nixo5KSUnGM+QyXLl2KXr16wcHBAQ4ODvDx8XniZ04Vz9g/h4+tW7cOMpkMgYGBFRuQnsjYzzA1NRWvvfYa6tSpA5VKBU9PT/59KiFjP7+FCxeiWbNmsLS0hLu7O95++23k5uZWUlr6t0OHDiEgIABubm6QyWTYsmXLE7c5cOAAOnbsCJVKhSZNmiAkJKTCcxZJ0FNZt26dUCqVYvny5eLixYvixRdfFPb29iIxMbHI9Y8ePSoUCoX45ptvRHR0tPj444+Fubm5OH/+fCUnp8eM/QzHjRsnFi9eLM6cOSMuXboknnvuOaFWq8WdO3cqOTk9Zuxn+FhsbKyoW7eu6NWrlxg+fHjlhKUiGfsZ5uXlic6dO4vBgweLI0eOiNjYWHHgwAERFRVVyclJCOM/vzVr1giVSiXWrFkjYmNjxa5du0SdOnXE22+/XcnJ6bEdO3aIjz76SGzatEkAEJs3by5x/Rs3bggrKysxbdo0ER0dLf73v/8JhUIhIiIiKifwP7DMPqWuXbuK1157Tf9cq9UKNzc3MXfu3CLXHz16tBgyZIjBMi8vLzF16tQKzUnFM/Yz/LeCggJha2srVq5cWVER6QnK8hkWFBSI7t27i2XLlolJkyaxzErM2M/wxx9/FI0aNRIajaayIlIJjP38XnvtNdG/f3+DZdOmTRM9evSo0JxUOqUps++//75o1aqVwbIxY8YIPz+/CkxWNE4zeAoajQanTp2Cj4+PfplcLoePjw8iIyOL3CYyMtJgfQDw8/Mrdn2qWGX5DP8tOzsb+fn5cHR0rKiYVIKyfoafffYZnJ2dMWXKlMqISSUoy2cYHh4Ob29vvPbaa3BxcUHr1q0xZ84caLXayopN/68sn1/37t1x6tQp/VSEGzduYMeOHRg8eHClZKanV5X6jFmlH7EaSU5OhlarhYuLi8FyFxcXXL58uchtEhISilw/ISGhwnJS8cryGf7bBx98ADc3t0J/qKlylOUzPHLkCH755RdERUVVQkJ6krJ8hjdu3MC+ffswfvx47NixA9euXcOrr76K/Px8zJo1qzJi0/8ry+c3btw4JCcno2fPnhBCoKCgAC+//DI+/PDDyohM5aC4PpOeno6cnBxYWlpWWhaOzBI9ha+++grr1q3D5s2bYWFhIXUcKoWMjAxMmDABS5cuhZOTk9RxqIx0Oh2cnZ3x888/o1OnThgzZgw++ugjLFmyROpoVAoHDhzAnDlz8MMPP+D06dPYtGkTtm/fjs8//1zqaGSCODL7FJycnKBQKJCYmGiwPDExEa6urkVu4+rqatT6VLHK8hk+Nm/ePHz11VfYs2cP2rZtW5ExqQTGfobXr19HXFwcAgIC9Mt0Oh0AwMzMDDExMWjcuHHFhiYDZflzWKdOHZibm0OhUOiXtWjRAgkJCdBoNFAqlRWamf5Wls/vk08+wYQJE/DCCy8AANq0aYOsrCy89NJL+OijjyCXc6ytqiuuz9jZ2VXqqCzAkdmnolQq0alTJ+zdu1e/TKfTYe/evfD29i5yG29vb4P1AWD37t3Frk8VqyyfIQB88803+PzzzxEREYHOnTtXRlQqhrGfYfPmzXH+/HlERUXpH8OGDUO/fv0QFRUFd3f3yoxPKNufwx49euDatWv6H0QA4MqVK6hTpw6LbCUry+eXnZ1dqLA+/sFECFFxYancVKk+U+mnnFUz69atEyqVSoSEhIjo6Gjx0ksvCXt7e5GQkCCEEGLChAli+vTp+vWPHj0qzMzMxLx588SlS5fErFmzeGkuiRn7GX711VdCqVSK0NBQER8fr39kZGRI9RZqPGM/w3/j1QykZ+xneOvWLWFraytef/11ERMTI7Zt2yacnZ3FF198IdVbqNGM/fxmzZolbG1txW+//SZu3Lgh/vjjD9G4cWMxevRoqd5CjZeRkSHOnDkjzpw5IwCI+fPnizNnzoibN28KIYSYPn26mDBhgn79x5fmeu+998SlS5fE4sWLeWkuU/a///1P1K9fXyiVStG1a1fx119/6V/r06ePmDRpksH6GzZsEJ6enkKpVIpWrVqJ7du3V3Ji+jdjPsMGDRoIAIUes2bNqvzgpGfsn8N/YpmtGoz9DP/880/h5eUlVCqVaNSokfjyyy9FQUFBJaemx4z5/PLz88Wnn34qGjduLCwsLIS7u7t49dVXxcOHDys/OAkhhNi/f3+R/7Y9/twmTZok+vTpU2ib9u3bC6VSKRo1aiRWrFhR6bmFEEImBMfziYiIiMg0cc4sEREREZksllkiIiIiMlkss0RERERkslhmiYiIiMhkscwSERERkclimSUiIiIik8UyS0REREQmi2WWiIiIiEwWyywREYCQkBDY29tLHaPMZDIZtmzZUuI6zz33HAIDAyslDxFRZWGZJaJq47nnnoNMJiv0uHbtmtTREBISos8jl8tRr149TJ48GUlJSeWy//j4eAwaNAgAEBcXB5lMhqioKIN1Fi1ahJCQkHI5XnE+/fRT/ftUKBRwd3fHSy+9hJSUFKP2w+JNRKVlJnUAIqLy5O/vjxUrVhgsq127tkRpDNnZ2SEmJgY6nQ5nz57F5MmTce/ePezateup9+3q6vrEddRq9VMfpzRatWqFPXv2QKvV4tKlS3j++eeRlpaG9evXV8rxiahm4cgsEVUrKpUKrq6uBg+FQoH58+ejTZs2sLa2hru7O1599VVkZmYWu5+zZ8+iX79+sLW1hZ2dHTp16oSTJ0/qXz9y5Ah69eoFS0tLuLu7480330RWVlaJ2WQyGVxdXeHm5oZBgwbhzTffxJ49e5CTkwOdTofPPvsM9erVg0qlQvv27REREaHfVqPR4PXXX0edOnVgYWGBBg0aYO7cuQb7fjzNoGHDhgCADh06QCaToW/fvgAMRzt//vlnuLm5QafTGWQcPnw4nn/+ef3z33//HR07doSFhQUaNWqE2bNno6CgoMT3aWZmBldXV9StWxc+Pj4YNWoUdu/erX9dq9ViypQpaNiwISwtLdGsWTMsWrRI//qnn36KlStX4vfff9eP8h44cAAAcPv2bYwePRr29vZwdHTE8OHDERcXV2IeIqreWGaJqEaQy+X473//i4sXL2LlypXYt28f3n///WLXHz9+POrVq4cTJ07g1KlTmD59OszNzQEA169fh7+/P4KCgnDu3DmsX78eR44cweuvv25UJktLS+h0OhQUFGDRokX47rvvMG/ePJw7dw5+fn4YNmwYrl69CgD473//i/DwcGzYsAExMTFYs2YNPDw8itzv8ePHAQB79uxBfHw8Nm3aVGidUaNG4cGDB9i/f79+WUpKCiIiIjB+/HgAwOHDhzFx4kS89dZbiI6Oxk8//YSQkBB8+eWXpX6PcXFx2LVrF5RKpX6ZTqdDvXr1sHHjRkRHR2PmzJn48MMPsWHDBgDAu+++i9GjR8Pf3x/x8fGIj49H9+7dkZ+fDz8/P9ja2uLw4cM4evQobGxs4O/vD41GU+pMRFTNCCKiamLSpElCoVAIa2tr/SM4OLjIdTdu3Chq1aqlf75ixQqhVqv1z21tbUVISEiR206ZMkW89NJLBssOHz4s5HK5yMnJKXKbf+//ypUrwtPTU3Tu3FkIIYSbm5v48ssvDbbp0qWLePXVV4UQQrzxxhuif//+QqfTFbl/AGLz5s1CCCFiY2MFAHHmzBmDdSZNmiSGDx+ufz58+HDx/PPP65//9NNPws3NTWi1WiGEEAMGDBBz5swx2Mevv/4q6tSpU2QGIYSYNWuWkMvlwtraWlhYWAgAAoCYP39+sdsIIcRrr70mgoKCis36+NjNmjUz+B7k5eUJS0tLsWvXrhL3T0TVF+fMElG10q9fP/z444/659bW1gAejVLOnTsXly9fRnp6OgoKCpCbm4vs7GxYWVkV2s+0adPwwgsv4Ndff9X/qrxx48YAHk1BOHfuHNasWaNfXwgBnU6H2NhYtGjRoshsaWlpsLGxgU6nQ25uLnr27Illy5YhPT0d9+7dQ48ePQzW79GjB86ePQvg0RQBX19fNGvWDP7+/hg6dCgGDhz4VN+r8ePH48UXX8QPP/wAlUqFNWvW4JlnnoFcLte/z6NHjxqMxGq12hK/bwDQrFkzhIeHIzc3F6tXr0ZUVBTeeOMNg3UWL16M5cuX49atW8jJyYFGo0H79u1LzHv27Flcu3YNtra2Bstzc3Nx/fr1MnwHiKg6YJklomrF2toaTZo0MVgWFxeHoUOH4pVXXsGXX34JR0dHHDlyBFOmTIFGoymylH366acYN24ctm/fjp07d2LWrFlYt24dRowYgczMTEydOhVvvvlmoe3q169fbDZbW1ucPn0acrkcderUgaWlJQAgPT39ie+rY8eOiI2Nxc6dO7Fnzx6MHj0aPj4+CA0NfeK2xQkICIAQAtu3b0eXLl1w+PBhLFiwQP96ZmYmZs+ejZEjRxba1sLCotj9KpVK/Wfw1VdfYciQIZg9ezY+//xzAMC6devw7rvv4rvvvoO3tzdsbW3x7bff4tixYyXmzczMRKdOnQx+iHisqpzkR0SVj2WWiKq9U6dOQafT4bvvvtOPOj6en1kST09PeHp64u2338bYsWOxYsUKjBgxAh07dkR0dHSh0vwkcrm8yG3s7Ozg5uaGo0ePok+fPvrlR48eRdeuXQ3WGzNmDMaMGYPg4GD4+/sjJSUFjo6OBvt7PD9Vq9WWmMfCwgIjR47EmjVrcO3aNTRr1gwdO3bUv96xY0fExMQY/T7/7eOPP0b//v3xyiuv6N9n9+7d8eqrr+rX+ffIqlKpLJS/Y8eOWL9+PZydnWFnZ/dUmYio+uAJYERU7TVp0gT5+fn43//+hxs3buDXX3/FkiVLil0/JycHr7/+Og4cOICbN2/i6NGjOHHihH76wAcffIA///wTr7/+OqKionD16lX8/vvvRp8A9k/vvfcevv76a6xfvx4xMTGYPn06oqKi8NZbbwEA5s+fj99++w2XL1/GlStXsHHjRri6uhZ5owdnZ2dYWloiIiICiYmJSEtLK/a448ePx/bt27F8+XL9iV+PzZw5E6tWrcLs2bNx8eJFXLp0CevWrcPHH39s1Hvz9vZG27ZtMWfOHABA06ZNcfLkSezatQtXrlzBJ598ghMnThhs4+HhgXPnziEmJgbJycnIz8/H+PHj4eTkhOHDh+Pw4cOIjY3FgQMH8Oabb+LOnTtGZSKi6oNlloiqvXbt2mH+/Pn4+uuv0bp1a6xZs8bgslb/plAo8ODBA0ycOBGenp4YPXo0Bg0ahNmzZwMA2rZti4MHD+LKlSvo1asXOnTogJkzZ8LNza3MGd98801MmzYN77zzDtq0aYOIiAiEh4ejadOmAB5NUfjmm2/QuXNndOnSBXFxcdixY4d+pPmfzMzM8N///hc//fQT3NzcMHz48GKP279/fzg6OiImJgbjxo0zeM3Pzw/btm3DH3/8gS5duqBbt25YsGABGjRoYPT7e/vtt7Fs2TLcvn0bU6dOxciRIzFmzBh4eXnhwYMHBqO0APDiiy+iWbNm6Ny5M2rXro2jR4/CysoKhw4dQv369TFy5Ei0aNECU6ZMQW5uLkdqiWowmRBCSB2CiIiIiKgsODJLRERERCaLZZaIiIiITBbLLBERERGZLJZZIiIiIjJZLLNEREREZLJYZomIiIjIZLHMEhEREZHJYpklIiIiIpPFMktEREREJotlloiIiIhMFsssEREREZms/wNvSaKKjhFWqgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Confusion Matrix Comparison Table:\n", + " True Negative False Positive False Negative True Positive \\\n", + "Naive Bayes 965.0 0.0 37.0 113.0 \n", + "Decision Tree 941.0 24.0 36.0 114.0 \n", + "k-NN 964.0 1.0 108.0 42.0 \n", + "SVM 964.0 1.0 38.0 112.0 \n", + "\n", + " Accuracy Precision Recall F1-Score \n", + "Naive Bayes 0.966816 1.000000 0.753333 0.859316 \n", + "Decision Tree 0.946188 0.826087 0.760000 0.791667 \n", + "k-NN 0.902242 0.976744 0.280000 0.435233 \n", + "SVM 0.965022 0.991150 0.746667 0.851711 \n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 1000x800 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAKSCAYAAABV1K1TAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8VeX9wPHP3TN77wGBkBCmgKAI4mZYrduqOGptrataZ3+uWrW2Vuuqo1rcExcKDlQURGSvMAPZITu5e99zfn+EXLlk3YSw9Hm/XnlJzj3PeZ7z3JPr+d7zPM9XIcuyjCAIgiAIgiAIwiBSHu4GCIIgCIIgCILw8yMCDUEQBEEQBEEQBp0INARBEARBEARBGHQi0BAEQRAEQRAEYdCJQEMQBEEQBEEQhEEnAg1BEARBEARBEAadCDQEQRAEQRAEQRh0ItAQBEEQBEEQBGHQiUBDEARBEARBEIRBJwINQfiZqaysRKFQ8PLLL/er3PTp05k+ffpBadMvyeHux/vuuw+FQhG2LRAIcNttt5GVlYVSqeSss84CQKFQcN999x36RgqCIAi/CCLQEIRB9vLLL6NQKEI/er2e9PR0TjvtNJ588knsdvvhbuIRIzc3N6yvevrpb9B0MDQ2NvLnP/+ZwsJCjEYjJpOJ8ePH87e//Q2LxXK4m9er//3vf/zzn//k3HPP5ZVXXuFPf/rT4W5Sr3q7Ljwez0Gp86GHHuKjjz46KMc+ULm5ucyePftwN2PAtm7dyn333UdlZeXhboogCIeYQpZl+XA3QhB+Tl5++WWuuOIK/vrXv5KXl4ff76ehoYFvv/2WxYsXk52dzYIFCxg1atRBqV+WZbxeLxqNBpVKFXE5n88HgFarPSjt6s5HH32Ew+EI/b5o0SLeeustHn/8cRITE0Pbp0yZQn5+/iFr1/5Wr17NzJkzcTgcXHLJJYwfPx6ANWvW8PbbbzNlyhS+/PJLgNDTjG+//fawtDUQCBAIBNDr9aFtF154Id9//z21tbVh+3o8HtRqNWq1+lA3s1e5ubnExcVxyy23dHnt4osvRqkc/O/IzGYz55577hER1O4vNzeXkSNH8umnnx7upgzI/PnzOe+881iyZIl4aioIvzBH1v9dBOFn5IwzzuCYY44J/X7nnXfyzTffMHv2bM4880y2bduGwWAY9Ho7n6L016EMMDp1DuHp1NDQwFtvvcVZZ51Fbm5uj+WcTicmk+ngNm4vi8XC2WefjUqlYv369RQWFoa9/uCDD/Lf//73kLQlEt0FDk1NTcTGxnbZdyDXSU88Hg9arXbQgoCMjAwuueSSQTnW4SJJEj6fb1D7+WjSeU0IgvDLJYZOCcIhNGPGDO6++26qqqp4/fXXw17bvn075557LvHx8ej1eo455hgWLFjQ5RgWi4U//elP5ObmotPpyMzM5LLLLqOlpQXofo5GQ0MDV1xxBZmZmeh0OtLS0vjVr34VNpShu7kFTU1NXHXVVaSkpKDX6xk9ejSvvPJK2D6d9T366KO88MILDBkyBJ1Ox4QJE1i9evWBdRhw+eWXYzab2b17NzNnziQqKorf/OY3QMeN3L///W+Ki4vR6/WkpKRwzTXX0N7e3uU4n332GVOnTsVkMhEVFcWsWbPYsmVLn/U///zz1NXV8dhjj3UJMgBSUlL4v//7vx7L+3w+7rnnHsaPH09MTAwmk4mpU6eyZMmSLvu+/fbbjB8/nqioKKKjoykpKeGJJ54Ive73+7n//vspKChAr9eTkJDA8ccfz+LFi0P77DtHo/O9WbJkCVu2bAkNP+p82tLdHI26ujquvPJKUlJS0Ol0FBcX87///S9sn2+//RaFQsHbb7/N//3f/5GRkYHRaMRms/XZn4PFYrFw0003kZWVhU6nY+jQoTzyyCNIkhS236OPPsqUKVNISEjAYDAwfvx45s+fH7aPQqHA6XTyyiuvhPro8ssvBzquv+6C3u7mwigUCq677jreeOMNiouL0el0fP7550Bk/Rqpff/mnnnmGfLz8zEajZx66qnU1NQgyzIPPPAAmZmZGAwGfvWrX9HW1hZ2jM7hWF9++SVjxoxBr9dTVFTEBx980KW+8vJyzjvvPOLj4zEajRx77LEsXLgwbJ+eroknn3yS8847D4ATTzyxyzX48ccfM2vWLNLT09HpdAwZMoQHHniAYDAYdvzp06czcuRItm7dyoknnojRaCQjI4N//OMfXdrr8Xi47777GDZsGHq9nrS0NH7961+ze/fu0D79+ewQBGHgxBMNQTjELr30Uu666y6+/PJLrr76agC2bNnCcccdR0ZGBnfccQcmk4l3332Xs846i/fff5+zzz4bAIfDwdSpU9m2bRtXXnkl48aNo6WlhQULFlBbWxs23Ghf55xzDlu2bOH6668nNzeXpqYmFi9eTHV1dY9PDtxuN9OnT2fXrl1cd9115OXl8d5773H55ZdjsVi48cYbw/Z/8803sdvtXHPNNSgUCv7xj3/w61//mvLycjQazQH1WSAQ4LTTTuP444/n0UcfxWg0AnDNNdeEhqrdcMMNVFRU8PTTT7N+/XqWL18eqve1115j7ty5nHbaaTzyyCO4XC6effZZjj/+eNavX9/r05MFCxZgMBg499xzB9R2m83Giy++yEUXXcTVV1+N3W7npZde4rTTTmPVqlWMGTMGgMWLF3PRRRdx0kkn8cgjjwCwbds2li9fHurr++67j4cffpjf/va3TJw4EZvNxpo1a1i3bh2nnHJKl7qTkpJ47bXXePDBB3E4HDz88MMAjBgxotu2NjY2cuyxx4ZumJOSkvjss8+46qqrsNls3HTTTWH7P/DAA2i1Wv785z/j9XoH9dtrv98fCp47GY1GjEYjLpeLadOmUVdXxzXXXEN2djY//PADd955J/X19fz73/8OlXniiSc488wz+c1vfoPP5+Ptt9/mvPPO49NPP2XWrFlAx/XR2ae/+93vABgyZMiA2v3NN9/w7rvvct1115GYmEhubm6/+zVSb7zxBj6fj+uvv562tjb+8Y9/cP755zNjxgy+/fZbbr/9dnbt2sVTTz3Fn//85y6BTVlZGRdccAG///3vmTt3LvPmzeO8887j888/D11PjY2NTJkyBZfLxQ033EBCQgKvvPIKZ555JvPnzw99NnXa/5o49dRTueGGG3jyySe56667Qtde539ffvllzGYzN998M2azmW+++YZ77rkHm83GP//5z7Bjt7e3c/rpp/PrX/+a888/n/nz53P77bdTUlLCGWecAUAwGGT27Nl8/fXXXHjhhdx4443Y7XYWL15MaWlp6H2N9LNDEIQDJAuCMKjmzZsnA/Lq1at73CcmJkYeO3Zs6PeTTjpJLikpkT0eT2ibJEnylClT5IKCgtC2e+65RwbkDz74oMsxJUmSZVmWKyoqZECeN2+eLMuy3N7eLgPyP//5z17bPW3aNHnatGmh3//973/LgPz666+Htvl8Pnny5Mmy2WyWbTZbWH0JCQlyW1tbaN+PP/5YBuRPPvmk13r39c9//lMG5IqKitC2uXPnyoB8xx13hO27bNkyGZDfeOONsO2ff/552Ha73S7HxsbKV199ddh+DQ0NckxMTJft+4uLi5NHjx4d8Tns34+BQED2er1h+7S3t8spKSnylVdeGdp24403ytHR0XIgEOjx2KNHj5ZnzZrVa/333nuvvP9H+7Rp0+Ti4uIu+wLyvffeG/r9qquuktPS0uSWlpaw/S688EI5JiZGdrlcsizL8pIlS2RAzs/PD20bTDk5OTLQ5aezrQ888IBsMpnknTt3hpW74447ZJVKJVdXV4e27d8+n88njxw5Up4xY0bYdpPJJM+dO7dLW+bOnSvn5OR02d5dPwOyUqmUt2zZErY90n7tSU5OTtj73vk3l5SUJFssltD2O++8Uwbk0aNHy36/P7T9oosukrVabdjnS2cfv//++6FtVqtVTktLC/tsuummm2RAXrZsWWib3W6X8/Ly5NzcXDkYDMqy3Ps18d5778mAvGTJki7n1t25X3PNNbLRaAxr77Rp02RAfvXVV0PbvF6vnJqaKp9zzjmhbf/73/9kQH7ssce6HLfzMzLSzw5BEA6cGDolCIeB2WwOrT7V1tbGN998w/nnn4/dbqelpYWWlhZaW1s57bTTKCsro66uDoD333+f0aNHd/kWEegyjKOTwWBAq9Xy7bff9mtYwKJFi0hNTeWiiy4KbdNoNNxwww04HA6+++67sP0vuOAC4uLiQr9PnToV6Bh2MRj+8Ic/hP3+3nvvERMTwymnnBLqs5aWFsaPH4/ZbA4NTVq8eDEWi4WLLroobD+VSsWkSZO6HcK0L5vNRlRU1IDbrVKpQt/0S5JEW1sbgUCAY445hnXr1oX2i42Nxel0hg2D2l9sbCxbtmyhrKxswO3piSzLvP/++8yZMwdZlsP66rTTTsNqtYa1F2Du3LkHZZ4RwKRJk1i8eHHYz2WXXQZ0vPdTp04lLi4urJ0nn3wywWCQpUuXho6zb/va29uxWq1MnTq1y7kMlmnTplFUVBT6fSD9GqnzzjuPmJiY0O+TJk0C4JJLLgmbpzNp0iR8Pl/oc6RTenp62GdJdHQ0l112GevXr6ehoQHo+ByYOHEixx9/fGg/s9nM7373OyorK9m6dWvYMft7Tey7b+fn39SpU3G5XGzfvj1sX7PZHDZvR6vVMnHixLDPmPfff5/ExESuv/76LnV1fkZG+tkhCMKBE0OnBOEwcDgcJCcnA7Br1y5kWebuu+/m7rvv7nb/pqYmMjIy2L17N+ecc06/6tLpdDzyyCPccsstpKSkcOyxxzJ79mwuu+wyUlNTeyxXVVVFQUFBl8m9nUMeqqqqwrZnZ2eH/d4ZdAzGmGe1Wk1mZmbYtrKyMqxWa6gf99fU1BTaDzrmx3QnOjq617qjo6MPeEniV155hX/9619s374dv98f2p6Xlxf697XXXsu7777LGWecQUZGBqeeeirnn38+p59+emifv/71r/zqV79i2LBhjBw5ktNPP51LL710UFYwa25uxmKx8MILL/DCCy90u09nn3bX/r6Ove+Ye7PZjNls7rVMYmIiJ598crevlZWVsWnTJpKSkvps56effsrf/vY3NmzYgNfrDW3vKTA/UPv3yUD6NVL7/811Bh1ZWVndbt//b3Ho0KFd+mHYsGFAxzyQ1NRUqqqqQgHMvvb9HBg5cmRoe6TXRKctW7bwf//3f3zzzTdd5vhYrdaw3zMzM7u0Ny4ujk2bNoV+3717N8OHD+91JbVIPzsEQThwItAQhEOstrYWq9XK0KFDAUKTV//85z9z2mmndVumc9+Buummm5gzZw4fffQRX3zxBXfffTcPP/ww33zzDWPHjj2gY3fqaSldeRBW0NbpdF0CHkmSSE5O5o033ui2TOdNaGf/vvbaa90GVn0t7VpYWMiGDRvw+XwDmoPw+uuvc/nll3PWWWdx6623kpycjEql4uGHHw6bnJqcnMyGDRv44osv+Oyzz/jss8+YN28el112WWgC/gknnMDu3bv5+OOP+fLLL3nxxRd5/PHHee655/jtb3/b77btq7OfLrnkEubOndvtPvsHNJF+cz1hwoSwwPTee+89oESBkiRxyimncNttt3X7eufN8rJlyzjzzDM54YQT+M9//kNaWhoajYZ58+bx5ptvRlRXTwHJ/pOVO+3fJwPp10j19Dd3MP8W+9KfpxkWi4Vp06YRHR3NX//6V4YMGYJer2fdunXcfvvtXSb2D9Z5RfrZIQjCgROBhiAcYq+99hpAKKjozA+h0Wh6/Aa305AhQygtLR1QvUOGDOGWW27hlltuoaysjDFjxvCvf/2ry+pXnXJycti0aROSJIXd5HcOZ8jJyRlQOwbLkCFD+OqrrzjuuON6vbnpnPyZnJzcZ/92Z86cOaxYsYL3338/bBhZpObPn09+fj4ffPBB2E3rvffe22VfrVbLnDlzmDNnDpIkce211/L8889z9913h4LN+Ph4rrjiCq644gocDgcnnHAC99133wEHGklJSURFRREMBgfUT7154403cLvdod8PNCfKkCFDcDgcfbbz/fffR6/X88UXX6DT6ULb582b12XfngKKuLi4bhMy7v9ErycHs18PVOfT1H3PfefOnQChBRJycnLYsWNHl7L9+RzoqW+//fZbWltb+eCDDzjhhBNC2ysqKiI+h/0NGTKElStX4vf7e5zQHelnhyAIB07M0RCEQ+ibb77hgQceIC8vL7REa3JyMtOnT+f555+nvr6+S5nm5ubQv8855xw2btzIhx9+2GW/nr7Vc7lcXbIpDxkyhKioqLChJPubOXMmDQ0NvPPOO6FtgUCAp556CrPZzLRp03o/2YPs/PPPJxgM8sADD3R5LRAIhG4OTzvtNKKjo3nooYfChi112rd/u/P73/+etLQ0brnlltBN2L6ampr429/+1mP5zm9h931/Vq5cyYoVK8L2a21tDftdqVSGvunufJ/238dsNjN06NBe38dIqVQqzjnnHN5///1ug9m++qk3xx13HCeffHLo50ADjfPPP58VK1bwxRdfdHnNYrEQCASAjnNSKBRhTx8qKyu7zQBuMpm6DSiGDBmC1WoNG55TX1/f7d9gdw5mvx6oPXv2hJ2HzWbj1VdfZcyYMaGnfzNnzmTVqlVh16vT6eSFF14gNzc3bD5KTzpz3uzfv939bfh8Pv7zn/8M+JzOOeccWlpaePrpp7u81llPpJ8dgiAcOPFEQxAOks8++4zt27cTCARobGzkm2++YfHixeTk5LBgwYKwJF7PPPMMxx9/PCUlJVx99dXk5+fT2NjIihUrqK2tZePGjQDceuutoSy7V155JePHj6etrY0FCxbw3HPPMXr06C7t2LlzJyeddBLnn38+RUVFqNVqPvzwQxobG7nwwgt7bP/vfvc7nn/+eS6//HLWrl1Lbm4u8+fPZ/ny5fz73/8+oAnSg2HatGlcc801PPzww2zYsIFTTz0VjUZDWVkZ7733Hk888QTnnnsu0dHRPPvss1x66aWMGzeOCy+8kKSkJKqrq1m4cCHHHXdctzclneLi4vjwww+ZOXMmY8aMCcsMvm7dOt566y0mT57cY/nZs2fzwQcfcPbZZzNr1iwqKip47rnnKCoqCsuK/tvf/pa2tjZmzJhBZmYmVVVVPPXUU4wZMyY0Hr6oqIjp06czfvx44uPjWbNmDfPnz+e6664blD79+9//zpIlS5g0aRJXX301RUVFtLW1sW7dOr766qsuuRgOl1tvvZUFCxYwe/ZsLr/8csaPH4/T6WTz5s3Mnz+fyspKEhMTmTVrFo899hinn346F198MU1NTTzzzDMMHTo0LHAAGD9+PF999RWPPfYY6enp5OXlMWnSJC688EJuv/12zj77bG644YbQ0sjDhg2LeBL3kdqvw4YN46qrrmL16tWkpKTwv//9j8bGxrAnPnfccQdvvfUWZ5xxBjfccAPx8fG88sorVFRU8P7770eUoHHMmDGoVCoeeeQRrFYrOp2OGTNmMGXKFOLi4pg7dy433HADCoWC11577YCGeF122WW8+uqr3HzzzaxatYqpU6fidDr56quvuPbaa/nVr34V8WeHIAiD4HAsdSUIP2edy9t2/mi1Wjk1NVU+5ZRT5CeeeCK0LOz+du/eLV922WVyamqqrNFo5IyMDHn27Nny/Pnzw/ZrbW2Vr7vuOjkjI0PWarVyZmamPHfu3NDSmfsvb9vS0iL/8Y9/lAsLC2WTySTHxMTIkyZNkt99992w4+6/LKssy3JjY6N8xRVXyImJibJWq5VLSkpCx+3UWV93y+ey3/KpfelpeVuTydRjmRdeeEEeP368bDAY5KioKLmkpES+7bbb5D179oTtt2TJEvm0006TY2JiZL1eLw8ZMkS+/PLL5TVr1kTUtj179sh/+tOf5GHDhsl6vV42Go3y+PHj5QcffFC2Wq2h/fbvR0mS5IceekjOycmRdTqdPHbsWPnTTz/tsmzq/Pnz5VNPPVVOTk6WtVqtnJ2dLV9zzTVyfX19aJ+//e1v8sSJE+XY2FjZYDDIhYWF8oMPPij7fL7QPgeyvK0sd7znf/zjH+WsrCxZo9HIqamp8kknnSS/8MILYX0JyO+9915Efddf+y/n2h273S7feeed8tChQ2WtVisnJibKU6ZMkR999NGw/njppZfkgoICWafTyYWFhfK8efO67aPt27fLJ5xwgmwwGGQgbKnbL7/8Uh45cqSs1Wrl4cOHy6+//nqPy9v+8Y9/7La9kfRrpP3R099cT+9Ld0tudx7ziy++kEeNGhXqn+7e0927d8vnnnuuHBsbK+v1ennixInyp59+GlHdnf773//K+fn5skqlClvqdvny5fKxxx4rGwwGOT09Xb7tttvkL774ostyuD1dw90tP+xyueS//OUvcl5eXqivzz33XHn37t1h+0X62SEIwsApZPkQzA4TBEEQBOGIkZuby8iRI/n0008Pd1MEQfgZE3M0BEEQBEEQBEEYdCLQEARBEARBEARh0IlAQxAEQRAEQRCEQSfmaAiCIAiCIAiCMOjEEw1BEARBEARBEAadCDQEQRAEQRAEQRh0ItAQBEEQBEEQBGHQiczggiAIgiAIwhHF6XSyZs0agsFgv8tqtVomTJiATqc7CC0T+kNMBhcEQRAEQRCOKJdccglvvPHGgMvfcccdPPzww4PYImEgxBMNQRAEQRAE4YjS2FDPccOSefziiQCU1rbjD0okmvU02z2kxxoJyjJOb4AWu4c2p5fUGAPH5CXym+eW0djYeJjPQAARaAiCIAiCIAhHoASzjpxEMwCrypuxuPyUZMaRm2QmKMk4PH4CkkSsScvwtBjG5SYAEGsSQ6aOFCLQEARBEARBEI5o503MO9xNEAZABBqCIAiCIAjCEUGSJKqqqmhpaSFb1bFt4YYaEsw62l0+vH6JJpubooxYRmbGoVYqWFfVis3lJyFKR6JZjyRJ1NbWUltbS0ZGBgqF4vCe1C+YCDQEQRAEQRCEQ0qWZerr6yktLaW0tJQtW7aE/ut0OlEqwDg0if9+u5NhKdG0OX1MKUhGrVRQ2+5i1e5mGixu4kxajh2axA9lzVhcPtRKJZIksXjxYrKysoiJiWHkyJGhn+LiYkaOHElSUtLh7oJfBLHqlCAIgiAIgnDQtLa2dgkoSktLaW9vB8BgMFBUVBQWDDz04IOY7ZU8f8WULsdrtLpJiTF0W1ej1c3v5v3I0AnTueyyy0J1lZaWsn37dnw+HwDJycldApDi4mJiYmIOXkf8AolAQxAEQRAEQThgNpuNrVu3dgkqGhoaAFCr1RQWFnZ5upCXl4dKpQo71vnnn8d7780fcFtuvvlm/vWvf4VtCwQC7Nq1Kyz42LJlCzt37kSSJACysrK6tG/EiBEYjcYBt+WXTAQagiAIgiAIQsS++uorWltb+eSTT0hPT2fLli1s2bKFqqoqABQKBUOHDu3yxKCgoACtVhtRHQ0NDXz77bcDTth38sknExcXF9H+Ho+HHTt2dAmQKioqQuczZMiQ0Lk4nU5Gjx6NRqMhLy+PyZMn97uNvxQi0BAEQRAEQTgK2O12Vq9ePeCb70mTJqHX6yMu4/f7KSsr6/IEYNeuXaEnANnZ2WEBxciRIyksLMRg6H5o09HE4XB0+4Rmz549QMcTmuHDh3d5ApKfn9/lCU1fmpqaaG1t7XcbU1JSiI+P73e5Q0UEGoIgCIIgCEeBA82Wffvtt/P3v/+9y3ZJkqioqOgSUGzfvh2/3w9Aampq6Ea686eoqIjo6OgBt+do1dbWFjbXpPOnra0NAL1eH5pzsm+fZWVldbsC1ubNmxk9ejQDuSXXaDTs2bOHxMTEAz6vg0GsOiUIgiAIgnAUaGps4PihCTx+wWgA1ldbUKsUxBm1qFUKDBoVpXU20mL0WNw+VAoFo7NiAfjNS2toamoKO97o0aPZtGkTRqMRl8sFQGxsLCUlJRx33HFcc801oZvlI/VG9nCIj49n6tSpTJ06NbRNlmUaGxu7BB8ffPABDocDgKioKOLi4mhsbGTHjh3k5OQAUF1djSzL3Pz4a8Qnp1GzaxvBQICo2Hhs7S3EJaUiSRJetwuX3YrP48YYFUPA72Pew7eJQEMQBEEQBEE4cPEmLZlxHcOSOv+7r+L07p8wxBi7zo0IBAKoVCoeeOCB0LfuaWlpIu/EACgUClJTU0lNTeXkk08ObZckiZqamlDg8eKLL+L1eqmurg4FGp0Kx00mLimV4WOPjajOXZvXDuo5HAwi0BAEQRAEQTgKvbe2FqvLz4mFSejUKiRJxu4N4PQGaHP6SInWMzY7tsfyW7ZsOXSN/YVSKpXk5OSQk5PDrFmzuP322/ss892Ct3Ba2xkz9RQ0Wj2SFMTtsGNvb8HjdhGTkMSw0RMPQesPnAg0BEEQBEEQjnA2mw2r1UrnM4yFm+vJijMSpfNRWmejye6lKC2K4vQY1EoF62ssNNo8rK5sI9aoRZIkWlpacDqdmEymw3ouQs9WLv6Y5PRsHKYoKrZtxNLSSM6wkeQWjiIlK5ddm9YgBYPs3LgKpbJ/E84PBxFoCIIgCIIgHCE6VzrqXDK2c9JxbW0tSgXMHpUGwKyStF6PM7UgfMx+MBjkk08+ISoqitzc3FCCus7Jyj+XlaKOZjs2rKStoQ69KQpZlhk95SRUajVVO0rZtXktwWCAomOOZ9em1Xg9bvZUlB3uJvdJBBqCIAiCIAiHmNPpZNu2bWEBxf65KPLy8iguLuaSSy6huLiYZ55+mpaWMl5cVkFBihmXL8jk/ATUSgV1FjdBSabe6sHhDXDyiGRWVbbj9QdJitKhUauZM2cOv/71r0PBy5tvvklNTQ3QMcQnPz8/LAApLi6msLAQnU53OLvqZ02WZTZt2gTA8DGTiEtK7bJPSlZe2PaSyScCsD1mBQClpaWMGjXqELS2/8TytoIgCIIgCAeJ2+1m+/btoZv7zoCisrIytJzp/k8YiouLu81GPWf2bD5duJAR6R2J6Ny+AIGghAwolQp0KhUyMpIsI8sgyTImnQZ/UGJXo5U//OEP/Oc//wk7Zmc27/0Dnrq6OgBUKhVDhw7t0r5hw4ZFnHxP6MrhcPD666/z9NNPh+bKqDVa9AYjwWAAeW+eEoVStXdyvowsychyx3alSoXLYQ8db9KkSVx33XWcd955R1RgKAINQRAEQRCEA9SZXXr/G/by8vJQcrusrKwuN+xFRUWYzeaI6li1ahVvv/32gBP2XXXVVRQWFka0v8ViCSWr2/d8GhoagI5kdQUFBaGhV53nM3ToUDQaTb/b90vx7LPP8sknn7B8+XIcDge/+tWv+P3vf09dXR0tLS39Pl5mZiYmk4mnn36axYsXk5SUxNy5cxk3bhwXXXTRQTiD/hGBhiAIgiAIRy273T6gG2+VSkVUVFS/y/l8Pnbu3NllDsW+2bLT09O7BBTFxcU/i+R2ncnq9j//5uZmoCOB3PDhw7vMARkyZEi/s2V3crvdeL3eiPc3Go0H5WmLzWYLvceRiomJCS0XLElSqA/uvPNOfv/735OdnT1o7du+fTvPPPMMzz33HIFAgJdffpm5c+eGXne5XPh8voiPZzKZDjhoFIGGIAiCIAhHpfvuu4/7779/wOUfeugh7rzzzm5f8/v97Nq1K+xmesuWLZSVlREIBABISUkJ+za/8wlFXFzcgNt0tGpubu42AOnMlq3T6SgsLOwSfOXl5fUagHz22WeceeaZoT6PhNFkYktpKbm5uQd6WiE33XQTTzzxRL/LXXDBhbz99luh37/++muSk5MpKSkZtLbtb+3atTz55JM88sgjpKZ2zO145513uPjii/sVKMVER7Nr9+4DSgYoJoMLgiAIgnBU2rBhA7kJBv5yegG7m51Y3QEUCsiM1aNSKtCplZS3uEgwa6lsdQMyU/LjAbhvURkbNmwIO97FF1/MggULyMvLY8eOHfj9fgCSkpIoLi5mxowZXH/99aGb5ISEhEN8xkeupKQkpk+fzvTp00PbOrNl7x+ALFq0CIvFAoBer2fEiBEUFxfj8/lISUnhySefDB2jtLSUQCDAkF/dhOT3oInqeP80xhjUBjOOup0olCpkKYgsSWij4tn+5v3s2rVrUAONtevWk5BXzMSLbsFSt5ug34fWFI3OFINSpaK9tgyVVo+rvRmNwURKwRg2Lvgva9etDzvOSSedNGht6sn48eN55ZVXwrZt3rwZtVLB708pxun1I8tQkBqNSqlEq1ZS0WwnMUqPze1DkmQUCgWPLtxMZWWlCDQEQRAEQfhlKkg2MXtUSr/LvbZqT5dtS5cuxel0ctxxx3HNNdeEAork5OTBaOovzr7Zsve9wZZlmT179nQJQH788UcA7rrrrtA38QA6cwzDz+870R2Au7mG7W8O/ClXbxLzihg69cyI92/YsRb7pq8OSlsGIjXOzF/OGhPRvltq23l04eYDrlMEGoIgCIIg/Gy8t24PVneAE4cloFMrkWSwewI4fR3zOCbmxvZYtra2FlmWQ2PqhYNDoVCQkZFBRkYGp556amh7XV0dTqczLMjYV92y9/A7rSSOPhGVRocsSQTcdgIeJ15rE/q4NPSxBz8o3P71u3gdFrLHz0C9N3O3z2XH1d5E0OdBH51AevGkg96OgXpvZTkWp48ZxenoNCqCkozD46fV4cXp9ZMea0StUg5KXSLQEARBEAThqOP3+3E4HHSGBAtLG0kwaYnSqdGqlHyzo5WiNDPFaVHEmzSsrrTgC0qsq7aiUSmQkbHb7QQCAdTqn26HRJBx+GRkZPT4WsPqhRiSslAborBVluK1NhGdVUR0bjEKpRpbNchSEGvlgX8L35tdyz8lKiULrdFM8+7NuNqbSMwrIjG/hJjUHOq3rQagbvMPB7UdA7VwfTVZ8WbMei+ba9posnkoyohlZGYcOYlmtta1s8fiwumJfE5Mb0SgIQiCIAjCEcvj8bBz5062bdvG1q1bQz9lZWX4/X5OLuwYPz5rZO/Dp04cHj7OXJIkPvvsM0wmE8OGDaOoqIgRI0ZQVFREUVERBQUFR1Q+gl+61Amzen09fvhEoGPo1ME09LjZvb6eM35G6N8VK784qG0ZiFlje1/lauKQjidCW2rbB6U+EWgIgiAIgnDYOZ1Otm/fHgokOgOL3bt3h1bKSU1NZcSIEZx44on88Y9/5M0336S9ppQXl1dTkGTC5Q8yOS8OtUpBXbsHi9tPncVDtF7N5Pw41tVYcXqDxJu0qJRKpk+fzjnnnBOq69tvv6WpqQn4KVHdvsFHUVERw4cP75JITzj4Wrf9gL1qK6aMAoJeFwkjJqNQqvG07UEKBpB8Hnz2NrzW5oPWBld7Mxs/foG4rGH4PS4ySqagVKmwNlTRWrGV/GPPoHFnx+Rvt60Vj31wbtYH0w87G9lS286wtBic3gBTCpJRq5Rsq7Ng1KlDTzU2V4tAQxAEQRCEo4zVau3ydGLr1q1UVVWF9snKyqKoqIjZs2eHbvRHjBhBfHx82LGWLl3KO8uXY+9YHAqPL0BA6siKrVKCRq1C3idLtiyDUacmEJQob7Jz2eRsrrvuurBjtra2dmnfK6+8EsqUrVAoyM3NDQs+RowYwYgRI34WeTKONHq9Hq/Dyo6X7yTg8yAFAwQCfjQ6PSqlGp/fiyxJqBSAQoEU8IfKDSaDXk/Nsi+xN1Xj93gACZVCgUqjRZJkVCoVq157iGAggCRJKNUanK31FI88eMvY9oder6e62crt76zr+DsJSgRlCZ1GjUqhwOP3o0BGpdIgyzIefyBU7kCIQEMQBEEQhEHX0tLS5enE1q1b2bOnY7UnhUJBfn4+I0aM4IILLgjdtBcWFkacSO/OO+8kOzu7XzkWOqnVai677LIu2xMSEjj++OM5/vjjw7ZbrdawJy5bt25l/vz5VFRUhPbJzMzsMgSrqKioS4AkRO6CCy6gubkZh8MRcZmUlBQmTpw4qO144IG/MmpUCU6nE4vFQlpaWo/71tTUoNFoSEtLY9as3od8HSpz587F7XbjdrsjLpORkUFRUdEB1SsS9gmCIAjCz4Ddbu9X1t9OSqVywAnmZFmmoaEh7Oa7M6jozBStUqkoKCgIuwEfMWIEhYWFGAyGAdV7JHE6nezYsaNLQLVvpvCUlJQuwUdRURHJyckHNPnc4XD0K2O22WwW807oyJDdnxtugKioqAFnG/d6vREHSmq1mpiYmAHVAx1zj9rbIx/2FBsbO+CM7ZEQgYYgCIIgHOX++9//8rvf/W7A5X/3u9/x/PPP9/i6LMvU1NR0Ge60bdu2UOI1rVbL8OHDw4YTdU6qHugN2tHM6/V2O4l9586doUSAcXFxXYZgFRUVkZmZ2WcAMn/+fC644IJ+ZXo2m83s3Lmz12/jD4eamhomTzmOlpbI51eYzVEs+Pgj8vPz+e677yLqh/T0dGRZ5pRTTun3U7DomBgqysv7/XSqoaGBgqFDcTidEZf517/+xc0339yvejpNPOYYVq9dG/H+o0pGsnHTZmpqali+fDmRhAU5OTlMmTIlouOLoVOCIAiCcJTbvHkz0QYNj59TiD8ooenHGvhPLqlk04bw7MWvvfYajzzyCOPGjWPbtm1s27YN594bJaPRSGFhIUVFRcyZMyd0k5yXlxe2TOwvnU6no6SkhJKS8DH6fr+f8vLysOBjzZo1vPbaa3g8HqDj2/POeR9FRUUolUqGDBnC2WefHTrOli1bALjriVdQa7QE/D7Ump4Dupryncx79F4qKiqOuECjtLSUutoacudcjzaSPBiyzM7X72HVqlX845FH+HjBgojruvfeewkEApx0xzxQKAgGfKjUvQfCbRWlrH/7Uaqrq/sdaFRUVOBwOrnjjGHkJhj6/Nu868NtbNq0qV917GvT5s3MLEnlnPEZ+AMSGnXP9S3cVM8H60oBuOTSy1j63bcR11NfX99jvpN9iU8EQRAEQfgZyIgzcUZxMu+urUehkFEqFEzIiaHZ4SMlSsfmOjuFqSbaXH5s7gBjsqIxaFR8tb2V8v2Oddddd1FbW4vRaKSkpCRsDkV2djZK5eAk8/ol0mg0DB8+nOHDh4cFDsFgkKqqqi5DsN5///3QsBu73Y7ZbA6ViU9KISt/GE67DY1Wh8FkJj4pBbVGS+maHzCao1BrNLgdDqacPJt5j957yM+3PzJPvhxr2Rq8lkYSSqbhs7ZgTM1DoVTjaqwAZIIeFwmjplPx/iMAtLe1MrMonifPHsqHm1uweQKckB+DTq0kKIPDG6TJ7iMlWsvs/5bicrlQqtTkTplN2ddvA5A+aiq2PeWYEtPxu52o9UbaykvRxySg1hkwJ2Wy/u1HD+jc0qJ15MQbMWhVtDp95CeaUCsVVLS68Pg7kknq1CpyE819HKlv+YlGYo0aVAoFsUZNeH0tTmTA65cw6X4aMtXS1kby1IvIvegBWlZ+SMBlI6boBJQaHUhBgh4HPmsTKq2BbY9fjMViEYGGIAiCIPzSnD8+jfnr6rG4A9g9QWIMGly+IMnRWrY1OLB7gySaNBg0PY/L3rVrFw0NDeTk5BzClv+yqVQq8vPzyc/PZ/bsn3I1yLLMRx99hMfjCQsyOg0pGs1XH76J3WphwrRT8LhdBB12ElLSsLW1olKrURxFgaHk3zvnRKHEkJSF5PcRcLcCMj57G7rYrvlS9GolS3ZZGJJowOIOUNbqodnuZ0SqkeJUE8OSjXy0ueuwrIKTLqRsybuUL/2AzHEnAaDW6vE5rWgMJjzWVkyJ6YNyXqOzYthUZ8Pq8nNiYRIBScYXkDBqVcgyWN1+zLrBuS1PjzVQ1+7G6u6oKzveiC8g0eoNIAM2t584k5YxWbG8tuKnvCNKjR5L6RIMqUMIOC14GsrwW5sxZo3AlFWMMX0Yzas+7ldbRKAhCIIgCD8ji0qbyIrTY9YHKK2302z3MiLVTHF6FDnxBtZUWdlj9bK6ykKsQdPtMXQ6nQgyjhAKhSLsycf+vv/iI1IyczCao9i1ZSPtzY3kFY5kSNEo0rLyWP3dl+iOkkn3LRu/wZQ+FJXBjL2qFJ+1GXPWCKJyOrJ/O2q2Ivk82Cq6Di2aWZTQ67EnZHdderjyh0+JSs7Ca4iitXwTrvYm4nOLScgfSVRKLk3bV2GrL0cKBg/43JbubKEkM4YonZrSOhtNdi9FaVEUp0ejVirYWm/H4vYfcD2djFoVWfFGyhodeP1SR33pURSnx6BWKvixvJWte2xdyiWMn9n7cdOH9asdItAQBEEQhKNUTU0NP/zwA0uXLiWwN3/AzJG9j3GfPqzrDVlVZSUvvfQSkydPprCwUAyNOoocf9pZvb4+bdY5AFSVbTsErTkwiaNnoI/vef5I7LDul6xtdvh56cd6CpIMuHwSx+Z23LzXWb3IMngDEmXNri7lcqf0nuU7c1xHlu+WXRv7cRbdO2FYIsNTe162eWJex8pvT3xdecB1Acwa1fs8nJOLUmiyh69Y5mtvoP6rlzCkFSB5XUQPPxaFUo23fQ8qnYmAy4q3pX+Z10WgIQiCIAhHAa/Xy7p161ixYkXopzOJXHR0NCkGBSvK29lS76Ag2YjLJzE5P7bjhsviweIOUNvuJsagYXJeLFvqHaiVClocPpxOF7/73e+QJInY2FiOPfZYJk+ezOTJk5k0aZJIRHcE27RyGbu3bSZ76HA8LiejJk1FpVLTtKcGj9tJztARbFq1jPbmpsPd1D5Zd62lqb0BU3pH9u+4vdm/3U1VaMyxeNsb8TvaAJD3WWWq2eHD7gnwzc52JBnKW13o1EraXQF0aiUBSWZbQ/iqT/Wly2mr2EJs5jD8XhdpI6egUKppr96GFPARlZKLbc9uABwtew743DbUWFlW1kpBihmXL8jk/PjQk4yAJFGSEc22egduX/9zwuyvvMXJi8sqKEjeW9eQBNRKBdvqbZh0arLjjXyzvYlGmydURgG4G3ejTczE01SFJjYVT1sdSBLe1lqQJVCo8Fkb+9UWEWgIgiAIwhGotrY2LKhYt24dPp8PvV7PhAkT+M1vfhMKBh5++GGeeOIJ3l7TcUP03c5W3P4gL35fTZReRVCS0aiUBCWZoCzz0vJqkqM68imsrrJQMno8n3+5mFWrVvHDDz+wYsUK/v3vf3PvvfeiUCgoLi5m8uTJTJkyhcmTJzNs2LADyv8gHBhZlnnmmWdoaW7m8/dexdreyvIvFyDLMl/Mfw21WoPX40aSgvi8HhQKJQFfx7fXCxYsiHhp0kNFo+kYwlf9yVOgVCL5fUjBICq9EaVKTdDvRZaCIAVBoUCtMxLwutFoNEw8djKPfr+c7U21fdYTHxdLcnIyUjDAzsVv4rG1UbliEcgSO796E6VKTcDr6Zj87PeCQoHWFIPX3pGXYiBP+jrLzF+7B51ayWeljcgyvL2qFo1KgdMXRKNUEpRlgpLMtnor4w/giaJSqWTJ9mZyE418trmho67VNWiUe+vq/ByQZGraXKG/48mTJrLlxRdx79nZZx3JKalkZmZG1B6RR0MQBEEQDjOfz8f69evDAouamo4hCrm5uaGAYvLkyYwePTp0Y9bphx9+4J67/w+vx9Pd4XulVKq4+ppruOSSS8K2S5LEzp07Q+354Ycf2Lp1K7IsEx8fH/bUY+LEiRFn8xYOXGNjI6mpqahUKsaPP6bL9dCd1tZWtm/fxoUXXshbb711CFoZOafTyZ133hlK8hiJqKgo7rnnHjIzM/F4PBHlf9BqtVRVVXH99TfQbrX2vGPnsfYJpnOys3j1lVci6ut9eTwe5l52GXvqfgqEZDqeIHT3u0ar5S//dzcnnXRSv+rpdN999/H14i97fH3/uqdOm85DDz0Uamsk/ajT6SIOukSgIQiCIAiHWH19fVhQsWbNGrxeLzqdjmOOOSYssDiSch5YrVZWrlwZavePP/6I1WpFqVRSUlIS1u6hQ4eKpx4HkdvtRqvVHtSszoJwoESgIQiCIAj7+Mc//sHzzz6DLPX/f496g4Gn//MsM2bMCG0rKytjy5YtVFdXh27Qq6qqAMjKygobkjRmzJijKou2JEls27YtLGjatq1j0nFiYmLYU48JEyZgMpm6BB+/ueQSfvjhh4jrVKlU/OWuu7jiiisG9VwOpXfffZff/va3oQR9kcjLy2PDhg0YBmkFKVmWOfe881m9JvIs0p3OOftXPP744/0q4/f7GTN2HDt37oi4jEaj5dn/PMPFF18cCsb7EhMTQ0ZGBuPGH0NjY0O/2hgbG8c3X3+FSqWiqanvOS0qlYpjjjkGg8FAbW0tu3btiqgehULBuHHjiIqKoqmpia1bt0ZUbtiwYbS0tHDZJb/B1tsTmf3rUyr4wx+v5/rrr2fNmjWhzPS9SUhIYOTIkQf8ZYEINARBEARhH+PGjKKtpowzSyLIULyfZ5bWcPMtt/DPf/4TAIfDERpSpNVqGT9+fNi3/hkZGYPa9iNBe3t72FOPlStXYrPZUCqVSJLEX/7yF/72t78BHTefWq2WMROnMHbScREd/6M3X2bKsRP59NNPD+ZpHFQ33ngjL774Iv/4+8NARz/0NiRn/YaNvPS//7Ft2zYKCwsHpQ12u53o6GgSiqYQN3R8xOWaNi1BaaunvbWlX/XV1NSQnZ1NypRziMobBYBS1fswpIr3/8FlF55DTk4O99xzT8R1/f3vf+eOO+6g6Fd/wJSQjlLd93CnoN/Lmnn38tBDD3HXXXdFXNdVV13Fs88+S2JCAja7PeJys2aewacLF5GbP4Sqiv1TZnYvPiGRe++5mxtvvJHrpuUQaQzw8cZGknKHM+3Ek3jssccibuPSpUuZOnVqxPt3R0wGFwRBEIR9yTC9IIGR6VEkmjS0ufwUpprZ3ewiJ95AUpQWrUrBqkorBo0SqydAvEnDxJxYFm23hB3KbDZzyy23YDQa+ctf/oJOpzs853QIxcXFcfrpp3P66acDHRmvt27dyocffsj999/f7Q312RdfgU5vIDEllZjYeGRZxtreSnpWLpIUxGm309xYT8DvZ8OqFYf6lA6K/Lw8rv3D73nl1dcAmHnG6ZSV7SIzMwOHw4nJZGTDxo3Ex8ej1+t56X//Oyjt0Menk1A0BV1MEkqNDingI+jzIPk9mFLzUSjVOBsrQvMWPJZGHKX1A64vZco5qLQGFCo12uhEFCo1Kp0R2+71mHOK8bTUIAcCxBYeS/OK9wFoaGggI87AO5cO5/Ntbdi9QSblRKFVK5EkGadPosXpZ3JuNMc/uYHW1lYAhp16KUGvG5/LTnx+CfY95ejjknG3N6KPScTRVIPWGIXOHIc+NpE18+7FYrEA8NZlI9hS7+y1rps+3E1DQz0ejweb3c4dJ2Uzuzi+zzY+8GUVDXs6Fm5obGgg7ZSrSTlxLm3rPyfothM1bBJKtRZZkpC8Tvy2Fnzt9dQueAxJktBr1JRk7PP5lGJmd4uLnHg9SWYdWvVPn09OX5DtDQ7a6JjbY8ospODaF3uty5RdzOYHZtLY2L8VprojFsoWBEEQhG7MKUlmcn4cbr/Ekp1tDEkyYtKpcHgCVLV1DHlRKBQkmbVMzInt8TiPPvoof/3rX38RQUZ3VCoVJSUl3HPPPQSDQe69995u9zv1zHPZU1PFqmVL0Gi0YUFGe1sLsiwz7bTZxMTGHeIzOLjmXnYpSqWSt95+h8TEjhwnBoMei8WKWq1m6vHHM6yg4KDVnzL2ZJJGTcdWvZXmTd+i1OjQxyZjSMjEZ2vF2VCOz9Zx4x4/fCLm9ANvi6elBnv5emQpAMgE3HZ0cSk4qraAQolKZ+xSJs6oZVuji3FZUYzOMGPxBNlS7wKFgok50Zw5MpFaq69Lufj8EpzNtez+5m3UBjOyFEQXFYfPYUEO+HE01eBs6bpiVVWbp9e6ylrcJJrCv69vdflpcvjJTzQwPMVIWbMHSYbiNDNT8mIoSDJQZ/WRbA4fHqlLyMRVu42o/HGYc0cTdFpwVW9BoYDogokkTjgTKRg+3GlOSTJ1Fg/11o7hZEVpZgwaFfU2D6sqrbQ6fWjVSk4uTCQtRh8qpzHH91mXr71/Q856I55oCIIgCEIPFpU2kxWrx6zzU7rHTrPdtzfLtpmceD1rqqxo1WreXLOHY7JiDndzj2pfL/qI9KwcbOZotpduoLW5kYIRIxlePJqMnDzW/fg9SxcvOtzNHFQffPgRSUmJREdHodVq+ezzLxg1qoQxo0eTmJhIdU01X3z5JSaj6aC3RaUzYkjKwlFXhuT34rE0EZ1dRHROMUqVGsvu9TRtXHLA9Vh3riJ+5DT8+2X/NmcXo0/KwVGzFY+1iaC/6/yVvrJ/T83v+jdYteJTzMnZeB3ttFVsxt3eRFxuEfF5I4lKzaVl5zp8TjvNO9eFlTuxII7M2J6/HDh1eDzvrAufxzE208yknJ5zznRmJ/90S2uX1/rKyG1Iye+yzahVkRVnoKzZiTcghT6fxmV3JCz8scLCqkpLv+uKHj6519f7QwQagiAIgtCDmSOTen29M8v2OBFkHLCTZp7V6+tTTz4DgI/enHcIWnNo/Prss3p9fc7sjszV33+//KC3JW3irF5fTxzZMVbfVrXlgOqJGTaR2OGTeny9p+zfACsqrWxtcHXJAN5g86HXKGl1dp3knDO59+zfaaNPADrmaOxrXa2dL7a3damrqt1DrEFNi8NPuytA4j5ldja7us1Qvq3RSUCSGZlqYk2NHas7APuMIPQ0VfaakdtnbcTX3nW42syRvc8jO7mwo3UfbPhpCFTAZe2jrqaOnCWDRAQagiAIgrCfBpuXF3+opSDJiMsfZHJeZ4ZtLxa3nzannwSzhuJUM1saHDTbfaRG/zKHRg2Gyl07eOvFZ8grGI7b5WL85Kmo1Gqa6vfQ1tLIiFHj2LB6BSqVCqfDjin24H/Dfyh8t3QpGzduYsSIQpxOJ9NOOAG1Wk11dQ3t7e2MGlXCih9/pHx3xUFtR+u2H7BVbcWcUUDQ4yJ+xGSUKjWetnqUWj1eS8fNp9Z84MPWHDXbcNfvwrg3+3dsYUf2b2fddlQ6E0GfG7+9I/t30PfTU416q5udzW5sngCrq+1kxGj5bpcFvyTR7PBj0Cjx+MPXN2opW8+e9UuIySwg4HGRMnIKSpWa9qptqHWG0BMNAKUmfDjTjiYXaqWix7q8AZnW/QINuydIslnL2ho7kgwWtx+DRkWL04deo2JHkwtvQKbO6mXfgu7mStTRCdh3rUabkIFly3fIkoS7qQLF3ozczqrSsPatKG9nS72DgmTT3kzjHZ9R2xqcmLQqsuP1bKy1kxwVfl4Btx2FSo29fC1IEn6XBZXWgN/Rjhz0E3RZQ/0/GESgIQiCIAj7sNis1DRbMetUbKy10eby89/va5ABrUqBWacOZfGVJAhIMslRWtz+ILsbbdTXD3yi7C9N59KZ3325kNSMLL5e9BGyLPHR2y+jVqvxuN1IkrQ3u7WCqJhYStev5uSTZvRx5CPfjp07+fyLL6mvr+e7ZcuQJIlPF32GTqvFZrOh1WoJBAL4/QFcLueg19+ZcK3soyeIzinCZ2+jfvVCkGWqv30LhUpN0O8GSULyewEFSq0OV30F+gPIXG3Z+j2a6ETat/8IskTLhq9QqrUEPU5kKYjkc4NCgSYqAUd9OXAsQ4cOpdXh465PIwu40tPTAahb9zUKlYaG0h+QZYmatYtRqrX43U6QAgS8bhQKJbqYBFSajnkMiYmJqFQq/v1dXUR1zRpagNFoJDUlmZd+jHxuwwVThgMwZOhQtmxegnVz38PSsrJzOv4u/AHeWL2HdpefRaVNyMDbq/egVilw+YKoVYrQZ1OUXsWqKiu5w1MYMmQInuY3qHi971W1FAoFubm5EZ9Pj8cRy9sKgiAIwk9iYmJw2G0MGTKEtNTUiNaRDwQC1NbWUl1Tiwxs376d4cOHH/zG/gzceeed/LCi55WkgoEASqUKhbLjfVCrVNx4442ceeaZh6qJg+7LL7/k5ptvZs+ePWg0mh6zqsuyTEtLCwaDgZKSEhYtWtTvzNS9ueWWW8LyaMjIBPyBsDq6W3r3zDmz+fOf/9yvuiRJYtbsOWzb3nMeDUkKolAqUezNXa3Vann0H3/nzDPPpLa2NqI8GtHR0Wi1Ws6YOYs99b3d+MvIsoxC8VPQlBAfx3vvvkNcXBxtbX1/q69SqcjJyUGhUOB2u9mzdyWpvnTexCuVSnw+HzU1NRGVy8jIoK6ujj/ddBM2q6XH/fyBAGq1OpQBXKFUcsWVV3HppZdSU1MTUR6N2NhYEhJ6nxMTCRFoCIIgCMI+GhoacLlc5Od3nXzZlzfeeIN33nmHN998E7PZfBBaJwiCcPQQgYYgCIJw1Fu2bBn33XMPXm/kmZY7KZVKrvnDtfzmN785CC2De++9l8Vffd2vMqmpKbzy8ss9ftN9tLn33nt55eWX+1Xmoosv5sEHH2T37t1IkhRRmfT09EPWZ9999x33338fPm/XJVUjcd7553PjjTf2q0xpaSl/uvkWHI7IhlLFx8Xy3HPPkpaWRnl5OZHe8mVmZmIymZAkifLycoLByCYH33rrbTS3dF1RKRJDhuTx94cfxuns+9z0ej3Z2dlcd911rNuwEfpxJ2s0Gnjk7w8zfPjwiJ9A5OfnD+qTpEi89dZbPPvM0xFf+yazmcce/zfFxcXU1tZG1I9Go5GsrKwDbWqvRKAhCIIgHPWuv/56/vPMM5w7NqXfZb/a3krx2Iks/f77g9AyMJpMRCVlkDuy59V09mVva2LbisUsWbKE6dOnH5Q2HWrDhw1DKfmZfdLxqNWqPvf/5KtlODwBpp94Iq+88krE9UTHxNDY0IBer+975wP0hz/8gf/+979cNLv/80W+W7URtc5IeUX/Jnk/8sgj3HHHHWSecEGf+0pBP3uWf8Arr7zC/Pc/4JMFH0dcT2paOnW1NVx77bU8//zzEZVRKBTIskzC+JmoDf17mudurMRWtqpfZR5++GHuvPNO4vJKiMstjrhc+ZK3ufXWW3nh+eex2mwRlZk+7QSWfPtdv9p3oE6cPo2Nq3/glOHxEe3/7vomHnnkEXJycrjwwgsjrufll19m7ty5A21mn8RkcEEQBOGoJ0kSxRkx/PucQhaWNmPzBIjWq3H7g0zIiUGtVGDUqlhfY8OsV6NWKihvcXHOmBT+9P526gZxOcfu2pY3ahITZ16Ew9JK+tBimqrKSMjIJTohBZVaQ/nGH9HqDXhdTmytDWxbsTjibzKPFmecOIXh+TkYDHqUSgWTx42iqaWN1ORENmzZQfGwIZRX16LVanC5PXz89Qp2lVdgzh9Hznn/h6X0W4IeJ+b8sSjUmo5Jyj4Xfns7UUPGYSn9lrqFT2KxWEhNTT3o5yNJEqNHDOWFB/7MU699QFZaMkqlkrrGZsYUDiU1KR6NWoXRoGf1ph1Em42oVCoKcjN44pX3eeeL/i9ZK0kShpgEMqedj2XXerJPugxXQzm62GQ8lka0UQn47W0d2bYNUexZ/gGSJLG7vJyYoqlkzvlTn/3YunYhDV+9hM/no6J8NyVpJu4/I5dvd1lweoOMzTSjUSmQZHD5JNpdfuJNGm7+aDcABZc/gsYcj233OiSfG010ItqYJBQqLbayVSi1ho5EfcEgcSXTAbCWrWbTQ2cB8MGVxb3WNS4rit++U0ZlZSUAI8+9CQBddDymxAycLXWYk7ORpSB+lwO/x4nH0oQxPpXE4cfQtmMlLpcLq83GDSdkAPRa1ws/7GHb7t0HdK0MhBQMMjrDzGmF8SSbOxabSDRrSTJr0KoUrKqyE2NQ0+7qmG/xdZkNSZKoqKgAhYLi297v873e9thFHfsfRCIzuCAIgvCzMmtkEhqVgnqbl7FZ0aiUCoKSzJ69GXQrW93Issy5YyOb6D0YMoePZui44/F73Gxb8RXJOQXojGY8ThutdZWoNBrsbU0YY+IoOOaEQ9Kmw+GSX8/E6/Wxp7EFu8NJbEwULpeb1KQEdpZX0dDcMezGsM8TCX1yLn57K7EjpxMz4jgUSiX+9gY00QnEjz2d1OmXgkKJ4gBWQjpQ11/6a1xuD7X1TZw8eTyZqUkoUNBmtbNx227iYqIw6HVMHFVIXPSBD+1KGDEFXWwytUvfQbU327XWHE/AZSPo9+Juq8fdXB1WxpA6tM9+lAM+VIbwhHPZcTpanX6mD43luPwYlEoFDTY/CSYNp4+I59IJqai6+TuKHjIOb3s9lq3f43e0E3BZMaYNRW2MRg503Bw79luyVa1U9FmXLyiTHB3+xCp78myczXXUrvkSQ1z4U03J70GWJQK+rsMqZZle67J7gwxP7pql/FCJN2o4fUQC5a1utu9dbtftk2hzBUiJ1mJ1B5BkmQRT+LAufVR8n++15HOjjz7wyd59EU80BEEQhJ+VRVuayYrTY9YFKN3joNnhY0SqieK0vdm8q20oFQrWVFuJNRy6cdcblywgPi0bvSmK2h0bsbU2kTG0mIxhJSRk5FK1dS1OaxtR8b0nCTyaffTFt2RnpBJlNrFh604aW9ooGT6EUSMKyMtKZ82mbQSDXZ/k9JnJuGACQZflILU6MkaDnpz0FLZXVOP1+mhsaWfksDzGFA1FrVLx/drNuD1eJo+NfJhPT+pXLcSYlIXPEIWtshSvpYmo7CJicopRqNTYqrcS9Lq7lOurH2OKpuKzNXfZ3ldG7mOyuwZPLWsWoU/MIqCPwrk3A7gpawSmvRnAnbXb8NtaugQbkWX/rg3bVv3jQszJWXgdZtrKN+OxNBGbU0Rc3kjMqTm0lq3D1VJH07bw4VnHZEf1msn75GFxrKux99qeg23R1layYnVEuVWU1jtodvgZkWLs+DyL0/FNmYUaS9fVuPp6r2NHTqfqYDV6HyLQEARBEH5WZhb3kc27ILIxz4Nt9Im9L8c6fMJ0AFrqDu5QhsPprNOm9/r6iVOOAeDLpT+GtvltzX1mTQ7Y2/C2RTax92A56+Tje339jBN6zobdX31l8Y4fPhEpGAjb5mtv6L0fLQ3IkoTPEr4kbKvT3222632zcVe2dX1akHhMH0FNwYTQv61lq0P/jiT7t8sXfm7Zx/beH6mjun9KuL3RRVWbp0td25tcpEVraXH4O5LrcfiScfYVeJ05siPz3/8tCg8brDtW4KrZ2msG8KB/YAsZ9IcINARBEISfjRUVlr3Zco0d2XL3y+jdYPMRY1AzITuaLQ1OXL4gLU4fHPy5w+xa9z11ZaWk5A7D53ExdOxxKFVq6ndvRWeKwud20VZfhTH6wLMvH4lq6xt55tX3KBySg9PlYerEMahVKvY0ttDU2sbY4uFs2r4LtVpFa7s1VE6WJLQxybgbdoMUxFa2GpXOiN/eihzwEXC2g1LV8fphsGzNJjbvKGd4fhZOt5epx5SgVqmoqW/C4fKQmhhH9Z4m8rPTsdodmAx6yiprCQQCfR+8B/tn8k4YMTn0JCMqqxDHnl17k+z9REaOrB/rd4WVC8qQbNayu8VNUILVVTaMWhVNdh8GrQpfQGJLw08rHNnKVuNpqQ1l/o7Ze4PrszSg0ptwVGwirmQ6zrodyMEA+oQMrDtXAh0J5locAZQK2NnkJidOx5Z6J/6gTIPdh1GjxBOQcPt+mlNlqdmBq62emIxhBLxOkos7sn9bqrcBEJtVSOuu9QCo9SaCgZ9urjUqRY/n1uLw4wtIe58WHL5AY0WFla2NTgoSjbj8QY7NjUGthG2Nro4M4HE6tjW4CO4zp8vnshGwtYBCiXvPTnRJOTirt3RkG68vAzkIShV+z8F/WiMCDUEQBOFnYUeDja92dIzx31hnw+kN8s7aBuKMGvyShE6tJBDsyOj99tp6MmI7oovSeicFB3GocjAQZNXCN0nJGYbX7WDn6m8xxsSzbcVXyLKEvbUZ6EgcZopLwGVtB4g4idfRYndVLZPGlvDlspXY7A4+/eZ7UhLj8fsC6A1aPv9uBf69mbBXbdwCQEZaGsuXvYNte2QTp/UGAzExMQfzNMJsLavg86Udw3HWbtmJw+nmtY++JD4mikAgiE6nIRAIEggGCQSCZKUlA7BlV+WA5we5ra1UL3mToMdJS+n3aKPiaN60BFmW8VqbYW8SOo3ppyFBGenpbP3yc9rXfx5RHbFx8Wg0GtLSM/hysZ3V1ZHfkLZt/Bq1MRpHxUaCXieNy95BY45DDvpRag0E3Q4alr2NYm/2b7UpBmftT0n8fv/ezojqSUnpmIvRuPl7jInpNG5ejixL1K7+oiP7995M40GvGxRK9NHxaEwx2Jvq0Ol06PU6/vpFZIOHjp1YGPH5DxqFgh/KrShkcPqCfL/bSpxRzZKydoIS2L0BtKqOz7SMWB0WV0cAlZqaihTws/O530dUTVpa2sE8C7G8rSAIgnD0++KLL7j1lj/h9fSeOdjj9aDT6UKZh6Ejj8b1N/2Ja6+99qC0LSsri/qGRtLT09Hqev9mVJYkLFYr7W1tyFKQTZs2UVJSclDadSjdcMMNvPjii/j9PtQqNUpV90vcSlKQQCCARqPlsssu4/HHH2f9+vURr8CVl5dHRkbGYDa9R4sWLeKO22/vM1u11+tFq9OGXXMAF150Effff3+/6lyzZg1XXf27UB4Nv9+PUqlAper43jgQ8AMK1OqO3+PiYnnnrTdJSUlh48aNEefRKCgoICUlBY/Hw/r16yPOo/HnW2+nuSV8joffH0CpVKJSKUO/K5QK1PtdA/l5uTzy97/jcrn6rEev1zNmzBguvvg3rF2/ocf9ZFnC7w+g1WpD24xGA8889SRDhgyJeMWlkpKSQxrAAjz33HM88di/Qk8q/H4fKpUKpVLV7e9RUVG88OJLjB07lo0bN0acR2PMmDEoD+JCCiLQEARBEIQjzLPPPssLL7zAxx9/THZ29uFujiAIwoCIQEMQBEE4KuzevZtr//B7rFZr3zvvRwGcPnMWf/rTnyLaf+vWrdz1l/+LOAPz/nQ6Lffc/X+ccsopAyrfnWeffZZvvvkmon1jYmL429/+Nuj5JFauXMkTTzyB3++PuEx8fDwPP/ww8fGRTcK3Wq3cfvvttLYOLMM0gFqt5vrrr2fKlCkDPsa+Hn74YdatW9ev+q+99lqmTp2K2+2OqL+0Wm0o0aDP58PjiSzLvUajwWAwAB1PONzurqtN7U+pVGI29y+p3v4cDke/cr1ERUWhUCj63cZXXnmFTz/9tF9tU6lUXHPNNUyfPh27PbJhX2az+aB+s98Tr9fb51OxTgO5RlQqFSaT6YDaeCBEoCEIgiAcFZ577jn+8Ic/cOH4VCRJRqWMfIz7j5UWqq1BgoHIb5ABsqZf3ONrcjCIoochQHXL32fuJRfzv//9r1/19SYmJgaj0cjo0aN73U+SJBYvXsy8efO4/PLLB61+gKuuuor/zZtH8qhpEe0f9Hlo3fYj7733Hueee25EZT755BPOPPNMJhakYdZr+y7QjW+3VHPRRRfz+uuvD6j8vlwuFyaTieyUBAqyIwvcvlu3nXPOPZezzz6b3/zmNxENPVJrNHyyYAF5eXmMGz8eVwRDX6Djhvzll1/mjDPOoGDoUCwRBuLXXXcdTz31VET7dlf2mWee6VeZ46aewLtvv8WIwkJsEd7833rrrbz59ju0WJ3E54+KuK7G0uXMmXUGToeDr77+OqIywwsK2Lp9+yENNpYvX85JJ83A641s9SeNRs2CBZ/0+xp58MEHueuuuw6kqQMmJoMLgiAIRwVZltGolDz26+GsrbYRkCSq2jxkxOrIjNWHZf/OjNOzsc7O0EQjY7Oi+c/Sav72RQUJk84ifuxp2HauRPI6MWYVo1BpQJaQfB4CLgum7JFUvfcgssdBYskJSH4vxuRs1IYobNVbkfxetNGJGBIzkINBdLFJaKPiadv2Iyq9Cb/Lhq088nkFkQoEApx55pkcf/zxyLLM8ccfj0ajwWQysXLlSnJycmhpaaG+vp7Fixcf0KpGvbUhJruIEZc+gLu1Dl1MEgqFEp+jDVNqPgqlGmdjBcgyQY8Tr7WZ1m0/9qstnfv+4bTRuP1BMhI6cjQ0W11kJ0WjU6vwBoIYtGraHB7yU2JQq5RUNFo7JkT7gzRZXYN2/p1Bwm9/dQLHjMgHICHajMvrIyU+moQYM8s3lREMSsTHmGm1OkLnsWnTJmSFkoLfP93nNVf23B8oLS3F7/fjcjrJvfgBNNGJfZYrn3czGzdupLCwEIvVyk3TMrC4Azh9EsWpxlC2a49fwuIOMDLNxNPL6li/ds2A+2TN2vUYs4rJmHUdQJ9tbFn5MevWLmP37t3Y7HZum5FFk8PXaxv//V0t69auIRAIMPT0KzGn5GBMysTnaCeh4Bg81mYMccm0l28mJnsEfpcNr72NuLxRrHzqj/gDAdatXcOMgljOG5PEyipbj/U1O/y8u6EMl8t1wE96+mPr1q14vT7+c14BCui1jSPTTPzhvbIu14i7YXevfV89/6F+PY0bbCLQEARBEI4647M7VtSpaW9kW4OT1GgdKqUCuydASrSO2nYPsQYNY7PCk3HFjphK4oQzSZzQe06Lhq/m4anfSfrkX4W21S57D7/TStLoE1FpdMiSRMBtx91Sh616G2q9ifjhEwGo/GRg3xT3pbi4mEsvvZTXXnuNTz/9lNNPPx1ZliksLMRms2G327ngggu48MILD0r9ABpjFOb0oVh2r8dRV0bS6BMxJmUj+X0E3K0gy/hdNtR6E6kTZ7HxuRsHVM9xIzKJj+oYEvTu8u1YnF5GZiei16gJyhJ2tw+vL8CPO/aQGG1kalFmqGxnucGUlZLA8aOH8daXP7J5dy0nTyhGlqGxzUZKfDStVgcer4/Tjy3h+Q+XhMoZ4lMjuuaqXrs97PeEY+agjUnq+1pd8K+w32cWJVCc2vtQmSVlFup63aNvpuziUNv6aqPf0oRnx7LQ77OKExia2Pt79Pm2Nhz7/J477Twqv3sPn8NCTOZwtKYYAh4X+rgU7HVlSFIQfXQiGkP4uR+bE82ZIxND+Sa683FpC+9u6Jqo8FD51d629dZGgDsWhq+S1XmN9Kbl+3cPrHEHSAQagiAIwlFn0ZZmEkwazDoVGpWCJTvbQtm/400amh0+YvXqbrN/t65dhCYqgYDTguT34Lc2Y8wagSmruOMb+dptBPbLMh1JJmYpcPCTX23cuJFly5YRHR2NVqvls88+Y9SoUYwZM4bExEQcDgfffvvtQW/Hoe4Po1ZNVmIUO/e04/UHaLK6KMpKZNyQFFRKJevLG1m8sZJTRucOWp3dWbB0HTmpCUTb9WzaVU1jm42R+ZmUDM0kNy2Jtdsr+GzFpi7l+rrmbDt/7FKmfdPXGFLyer1Ou/N9uRWHN4jFHcATkGi2+xmRaqQ41YRaqWBb48DmHXUnkr8lX/sePC3hSzUv3WWh1envsY3r6xxd6qr9cSGmpCw0BjPtFR3Zv2NyiojLHYk5JYe2snVYqrcRDHSd77BoaysJJk2P9W2uH7w+GYi+2vdNWTtZsV1XrBvoNXIoiUBDEARBOOr0N/v3l3v/f+tu2I02LhWV3gyyTGzxtFC23KDHic/aSNBlRaEO/596JJmYD4XRo0czderUHl8/7rjjDkk7Iu2PgGdwbuBmTxja6+snFGcNSj19OfOEcb2+Pn3cCABe+OjbsO1qcxzO6lIMaQUgyyRNOTcsS7NSZ0CWwudxqI0xvZZRqFTIwWCX7M7RelVHbpgkA7IM545JCgUYw5ONaFVKmh1+OMCHPj5rE772+j7/llQ6E0pteEbMaIO62zZ2Zv+O1qlodfrD0uRl9pH9O6WH7N9V7R70GiVmnQpZhmlDYkPZv52+IC0OPwbNoZ8Evq84Y/f90ZGUT8mMgjhWV9sISuHTqiO5RoIeJxDZQgwHgwg0BEEQhKNKePZvicl5Mftk/w7QYPPuzf4dw5YGB0FJpra9Y3UWTXQiSVPOCzueLEugUKIyRGEwREEqIIfPr4gkE7McDKA1x2HOKDho575r1y6efPJJRowYgdPpZNq0aajVatavX09+fj5tbW1oNJq+D3SAIu2P/W8wB2L59jq2VLcwLD0Ol9fPlMIMVEolDe0OmmxucpOiKa1uIS85hmEZB++GantVPc9+8A3Ds1NxeXwcN7oAtUpFbWMbDo+XYVmpbKusw+Jw43R7id1bLujzYsoqxpRVHHa8fa87U3YJwf3mlBgzCogZcVyPZQyGjrkrcjA80MiN13cZOiXJMnHGjlu+vAQ9/VhHoUcqnSmyvyXAumNF2H75CfouQ6ckWQaFTLReRbRehXKfRjqbati58L9EZ+7N/l00BYVKjaulFjkYxLT3iQZ0ZP/2ux1Ax7DJeKOG88Ykdakr1qAiStfxoy8/vIFGcaqph/dMRbJZiyTLjM+KIhAM/1yK5BqRpP4tgDHYRKAhCIIgHDX8QYlmh4+UKB2bah1Y3H5WVlpJi9biC0gYtCp8AZmqNjdrqmwMT+n4n/fuVjcKpYqqd/9K1bt/jbi++h8/AcDZWInf0Y67uRZ9fBpeSyOyJONqrqJh1UIUShX6hAxUGi32mu04GiqBEYN+/qWlpahUKjZs2IAkSaxYsQKdTofFYkGr1RIIBGhraxv0evdlq9mBtWJzx9yUqlJkSaK9bA1KjRa/y4H8w4cd36IqlKFkYgPx/BcbiTV3fKdd22pnc1UzkiyzqqwenUaF1eVDuzfbuz8YJCnaSJShY5WqrTXNpI0clNMN2byrlty0RDbvqiEoyazcshudRoPF4USn0RAIBvEFggzJSGZXbSMZwyEhIQGPpYnV10d2LSQkJJCQ0JGmfsNfIlvZq7Nc5/LB587bGlGZMwt7fyrYm8TEBFZ++gltaxdGXCYjKzt0bnP+WxpRmfPHJwI7sNXtJDZnBPXrvsLnslG38jN0MUlIQT9qnRG/09rx9EyhRB+bhL2uDEX2eBISEnhqWTlPLet7RorRYEDXR0LNwdbZHyMeXt2vMv29RhJOntD/xg0SEWgIgiAIR4Xi4mK0Wg2/f3tg444nTjiGP996W0T7rlu3jn8++ijrnvzdgOoCGDNmzIDLdmfWrFl8+OGHLF++PCzT8b5kWcbj8RATE8OECYN/czFjxgw+XvAJVR8+GtoWDAZR7V3mV0ZGCkqh3wEys7IZN673IUf7Gj16NLk52Tz/9ZY+99237n1pNFpOOumkiOvsjdlsZtoJJ/DNypX4A350Wh1KVfffgPt9PgKBIEajkZNPPpnLLruMYcOGRZQ3wmw2M2PGDDQaDd988w0tLS0RtU+v1zNjxgxMJhPLly+nrq7vm2qlUsnxxx8f0fG789KL/+X777/v18pqY8aMYejQoSxdupSGhoY+91epVEydOpU777yTt95+h53z/9njvvtfB2qVilNOOYUnn3yStWvXRtS+wsLCQ/I0cF9z5szhiy++iDg30ECuEbVazfTp0w+wpQMn8mgIgiAIRw2PxxNxcqv9RUdHo1BEPmbE7Xbj8w1sQrNarT6sSbIEQRCOBCLQEARBEI4Yzc3N/Pvf/444m+/+kpKS+POf/xzKlHwkeuaZZ9ixY0fE+6elpXHrrbeiVvd/EEJdXR1PPfUULpfroNc1UGVlZbzwwgsRB5DJycncdtttPT7V6Y3X6+Wf//wnTU1NEe2v0+m45pprGDq098noPamuruaZZ56J+InGjTfeSEpKyoDqOlo9++yzbNs28NWRUlJSuO222w750wghMiLQEARBEI4YL7zwAtdccw2FaTH04+EDAA5vgJpWJ3EJiXgiuLHT6XS88PxzzJw5k3HHTKCmujqietRqNY/8/WGuueYajpt8LJtLIxtvfuFFF/HQQw+TkpJCXLSZ9KS+Jy63We3Ut7SzatWqAQ2F+sc//sHtt99Ocn5Rn/u6be3YW+pZtWoVzz73HG+//U7E9cyaNYv33n2HO++8k6efepJIbi1ysrNZvXYd//d//8fjjz9OUVZCn2WsLi91rQ6WLl2Kz+fjgosujig7stFk4t2330KtVjNt2jQyk2KINvY9UX1rVSM333wz//rXv/rctzt//etfuffee0npo/9lWaapYhtPPvkk119//YDqOhq1traSmJiI1hSDOSmj3+W9DgvOlj2YDHoi+cBIT0tj1Zq1xMbGDqC1wkCIORqCIAjCEcPr9WLQqrlmSioFSUaMWhXtLj96tRJPQEKvVhJjUNPq9JMWo8PlC2LUqqhp92DzBLji9S20t7aQe+F9OCo2IfndGFKHolCpkWUZ2e8l4LZjTC+g5sNH+O677ygsLGTn9m0kT70YY8ZwHBUbey2357Nn+Prrrzn33HP5cdVqZhcnoFUqcPslhiYZUCsVHRmqAzJ2b4CCJCMfl7bw+aKF3HvvfQBcdeY0ZhxTRKvVQVF+BrtqGshNSyI5PgatRs2KzWXEmo1s3FnFLU+8OeDhYl6vl6iEVE6+4394HBaCfi+m+FTc1lbMien4PU40ehPtNTvxuex8+fBVeL1eFi76HFVaIYkTzuyzP9o2fMHChR2Tgr/8fBGZJpmLxqWwsc7RY58EZXhr3Q7Ky8vxer2UZCfy6EXHYHX7sLl8jMqOR6NSYtSpWVfRQmaCmTaHh/WVrdz3wXq8Xi8rVqygtbmJ3Avv77ONlW/fyw8//MCkSZMAuGHWOIZnJFDXamfayGyarS5SYk1sqmwiKzEaXyCIy+vn5nlLBtz3nf0fl5bNzL/8D7fdgjk+BWtjNTGpOchSEJ/TjqOtAVmW+eyhqw6orqNR59DECdc/Q9q4UwCw79mNPjYZR0M5+thk3O2N6GMScTbVoFCp0cckYk7NA8DRUMmXN04iyQBXTOz9mtOolMxbVc727ds59thjD9s5/9KIQEMQBEE44lwwLjX07/nrG7G4/Zw4LB6dWokkyRi1KnY2Omlx+slPNDA5L5Ym+975FAoFaadc3WcdbSvCM+Ymn3AxUflj+yxnLV0S9vs5oxI5tbD3pxNWT4B3dvy0zORxo4dR09SGxe6kKD+DkUOyCEoSe5rbabU6Qk8Epo0bnJWrYjOHsuPrd/E6LJjiUjAnpiNLQaSAn/aanShVahJyw791jx15Immn/DaCo8s0Vm/s/CcTc6L57eS0XkusrbHz1rrw4UtjcxN4d2U5VqePoCSjVoHN7Scl1kij1Y3T6yc3OSqsjCEuOaI2Nn7+dNjvp4zJY8X2OixOD3a3j1iTDpfXT0qsidpWGx5/kIQoA+oeJn33V/32dXgcFvKOmREWZDjbm/B7XJgT0lCqxC0ZQNuudfgcFlLHzECWguii4vA5rEhBPyqlCndbQyjQAFAA4zLNfV5zO5pczFvV9yR0YXCJq1oQBEE4IkWS/Ts7To8kw65mF9H6n/6XNpBMzNbtPyAHfP3Osrumxk6MQd3vTMwmvZac1AR2VtXj8fk7skwPyWT0sGzUKhXLN+4k1mwclL7cvfxTolKy0BrNNO/ejKu9icS8IhLyS4hOzWFP6Ypuy0WS+dnT3HXIWV+Zjrc2dO2TT9dXkx1vpl3vZXNNG002D0UZsYzMjCM30cy6ylYc3q45Afpqo6NifZcyX2+sZHhGAmaDls1VTTRZXBRlJ1KSk0ROcgyry/agGaQgA0CjNxKdkkVr9U6CPi/Ovf2fOnwcSpWK2s3d9/8vTd3KjozzGoMZS+Xe7N/ZRcTmjuzIlbFrHT57G+3lG4nLHx1Wtq9rbnW17TCd1S+bCDQEQRCEI1J/s3+HnmjQdyZmtTmOgCd8grTaEBVZJmavE/hpPoFZ13cm5jqLFwi/cT3zhPG9nt/pk0exs6q+130iNeS42b2+njvxVNprysK2eVtqUBuje838DKDUhU+8b7D5qLf5umRi3tboRKmA3S3dz5+ZPTa71zaeUJhKdaujy/a+s24bkYLhyfBOGp1LVmJ0j3XNGJXba1v6q+D43vs/f9Kpg1rf0SpjUh/Zv0u6z/7d7PB3e83VWb002Hx49w67FA49EWgIgiAIR5z+Zv+ut3qp2Zv9G1kmZvhkYoZP7nJctTcGbWwKuoQMlPutrGTKKel26NS+ZQBQhOdtGJ5s5LRuhk5lx+mJ1qsZnWHe+7QlPOfA9xt2sHl3DcNz0nC5fRw3ZhhqlYrKPc3ERZtoaLVQuae5H73Ws7rNy2kt30Jc1jD8HhfpJVNQqlS0VmwlPncEltpduNrDhzLpEjJJO/mqLsfavz8sW5eGvZ4SpeWqY7sOY9m3P5ocXZcN/mFnI1tq2ylIi8HlDTClIBm1Skm9xUWzzUNOopk15fv1R4TvdccAm5+s2VXPZ2t3Myw9viPb+IjMULbxNoeH9Hgza3c14PUFuhx3IGo2Lae5fAsJWcPwe11k7u1/R0sDap0er9OGJAUHpa6jkbV6G46Gyo7M3x4nSftk/g56Xehjk3E21WBOzcPVUoNKa0Rjiqa9fBMASWZNt9dcrEFNSlTH6mRO3y+3fw8nEWgIgiAIRxS3L0CDzUeiWUu7K0Blq5uVlVYkWcasVZJo1hGQZGraPayvteMLSAxPMeEL/HQjv+r3+aF5DgqF8qf7TFkObZcCPqKiziEqqmPcf+mDs1Gqtb2WUSiVBH0eoqZcjsFgQKVSceVbO9CpVch07KNEsU9ZkAFvIEjhsIJQ+xYu30BaQgztNhdVe1pIS4ylrrmdQCBIi9WBXqfB5w/g9XUdKtRfjrZG6resxGtvx9ZQhSkhDUdrHUgytsYqdn//MQqlCq/zp6El0VFR7FrwL+o/ezqifkxK6ZhTExUdzWvLNvHuhpY++wMI9X11i52Vu5qwuHxUtThIizVS3+7CH5Roc3jRa1Qs3V6PUffTEqZRUVG4Lc39eK9/mt9R02InEAjy9aYqJEmivMGCTqumzeFGr1HjD0j4AkHq27s+QekvW3M9daUr8TjasTZUYU5Iw95chyzLWBurQJI7+t/V9+pZP1euphqSiqfgs7fhaKikZftKZCmI2mBGH52ELEv47G3UrVqIQqHEmJiBPjYZS9VWJBk+2NTCwq3t/brmhENDBBqCIAjCEWPkyJFotRr++O7A1tU3GY3cfc89EeXR0Ol0nH322SQnJ/Phhx9S3Y/lbefMmYPZbGbRokVs3749onJTp04lOTmZrMxMXvxoSd8F9oqJiR5wHofRo0ejUqlY9epDEe0fHRPD0KFDefedt1i2bFnE9XSu5vTcC/9l8eLFkS1vm5NDTk4OY8eO5bnn/Dz8yabI2hgVRUFBARMmTCAqKgpnBMvbmkwmzj33XCwWC9HRUfz17e8jqkupVDJ2bN8LBPRk9OjRIEv88Erf/a/VaikpKRlwXUejxMREsrJzKP/qVcq/enVAxzCZzdxx++1ER/c8FK5Teno6RUV9L/UsDB6RR0MQBEE4ovh8vgFn5NbpdEd84q5gMBhRArdOer3+gBLoeb1e/P7InowcaF0D5fF4CAQiG6Z0oO+x3++PeBlZtVqNXt93vo3eRHpuGo0GnU53QHUdjfr797C/w3XNCpERgYYgCIJwyC1YsIAtW7YMqGxSUhKXX375z/Lmora2lnfeeSeiQCs2Npa5c+diNA7OylQHk91u59VXX8Vmi2zln6ioKC699FJiYmL6Xddbb71FZWVlv8ooFApOP/10xowZ0+/6hL6tWLGCN998E0mS+t65G6mpqdx5550/y7/5nzsRaAiCIAiHlMvlIjo6mmAwSEJU/74tdnr8ePxBSkaNxu7oe8iMUqnk1lv+xO9///uBNndA2tvbmTNrFo0Nfa8apVKruO2Ou7jyyiu5+eabefzxx4mNT+y1TDAYwG618O6773Leeedx4403suDTRRG1bcrkY3nj9ddoamrirDPn0NzU1GcZtUbNX+6+l0suuSSiOvb36quvMnfuXOLNehR9ZHCWZZk2h4cXXniBmTNnctavz6GlpbXvNqrV/OnG6/njH/+IQgHx5r6Hz3VqtbuZcuyxDBsxgm+/i2zI2Omnnsyzzz5LZWUl55x3Pm1t7X2W0Wq1PPLwg5x11lm89tprPPS3vxLw9/20Iyk5mY8/+ZSkpN5XYjtSnXHGTD7//DMS8kZ2eU2WJBTKnleE8tjbcbbUkZ+X0zH3og8xsbG88dbbDB8+/IDaLAwOERoKgiAIh5TX6yUYDPLixUXMLE5iYWkzNk+A4Skm4o0a6m1e8hI6MvtWtLqRAZcviFqpID/RyDH/+JHNmzaSMPFX6BIye62r5cf3efOttw95oLFhwwaWr1jBOaMTSd276k1P3t3QzLvvvMOVV16J0+lkxOjxnH7+5cTGJ5I3fCQtjXvIyB2CSqVmT1U5Xo8btVrDny46NTQ/4X/zXkaOzyGmqPvlPzvZd63mzTde56UX/8vatWtZsXIVF45NIsHU+1CkN9fVMn/+/AEHGk6nE41ayRtXjkOtUhIISiSYddS0u8iONyJJHdmbnd4ATl+QK19ej9PpZNWqVaxZtZKUaZegMvb+dKP2u9f49NNPAbj1jCKOK0gi1qglKHV8n+rxB/H6JfKTzaiUCiqbHciA0xvgteXl1DhsvDxvHuYh44ke1nvmaOv25fxv3jyeffZZVqxYwbo1q0k96UqU2t6Dm5pv5vHRRx9x1llnMX/+fBprK7l4XHKvZVqcft5ZuYq1a9dy+umn97rvkcrj9ZIwfCLpE84goXASHksT+rgUWrYsJ2nk8Sg1OnyOdsyp+ShUKpwNlQR9HoI+NwG3g9VPXUttdQ1XT07ttR5JhmeXb2DZsmUi0DhCiEBDEARBOKxmjUxi/vpG1tXYOHFYPFlxenwBiVZvELsngCR35Ko4Ni+WPdafxtZnzrkJZ+UmAi4rsSOno9TokaUgQY8dn6WRuJIZ+Nrrken72/CD5ZbpWayusWN1B5g+NBa9WklQlrF7gzTafcwoiKOizcP+C2/OvugqFn/4Jiu//YIJJ5xCMBDE7/OhNxrxety0NO7pUlfipLNJP+0amn+Y32OfGDOGYy9bFVbu1hnZfF9h7bWN25sGPoZ+X2OyY3lvbR1Wl58TCxO7BBluf5BEsxaVMvyb66xf345l0ze9vteuqo2h/acOS2ZifiLvrarC4vYxY0QqMQYtQVmm1eGlde9KVkFJ5sQRqXxZWk/N3gcSyVMvImXqRb32ozYujT3vPxDWxuxz7qRt7aLe27g7vO/HZ0Zx1yk5zN/Y3GP/FyYbeWf94CxzfDgZEtIpmPMHAKqXvkdbSy1pE85ApdUhS0FkScLVVI2jsQJjQgbJJVMBsO/ZBcDQZFOffTWjII5nl3f92xAOHxFoCIIgCIdNJNm/DXsTbZXucRC/zzfvli1LMeeUoHJ2JNrbNyO0PjEHe/m6w3VaId/uslCYYiRKp6K0wRmWrTgnTs+ycmu35ZZ9/hEpGTkYzVHs2rqRtuZG8gtHMrRoFGlZeWxY8V235VrXLkKXmNVjn9QufLJLmW/K2hmSaOixjYOZUXnh5gay4gxE6dSU1tlosnspSoumOD0atVLB+hoLjdauE7XbN36FPimnx/Oybu063GnhxjqyEoyYnRo211o6Mo2nxzAyM5acBBOrK3oOQPvqx/ZN33Qp07b+i17L9HQ9LtraSlasrsf+/2pnWz96+OiQfcJ5Pb6WUDixx9f66qtvd1kOQmuFAyECDUEQBOGw6W/2732faMQWn4AxfViPZaPyx9Hw9bwDa+ABmj40lpz4nuehTM2P4dXVDV23n35Wr8eddGL3Q2gSxs/stZwxo+twkhkFcaRG9zy8a0J2NDA43xLPKul96MvUgu7npsSNPhmNuWtSxE4xRVPZ89nT4XWNzui1rhNH9NyWvvrRkDqE/WdkxI89DZWu54n5Ufnjut0+syih2+2dJmb3vWzr0aRu5UJ00Qn4HBYkvwePpZmY7BHE5I5EoVLTvms9ar2JoNdF0sjjw8r21VfTh8YexJYLAyECDUEQBOGw2NHoZI/VG3H2b5cviMv306o1jooNWLcuw5BWgOR1ET38WBRKNd72Pah0JgIuKwG3DXqfInFQra+189XOdgqSDLh8Esfmdnxzv73JhUmrxBeQaXP52X/2wcaVy9i9bTPZQ4bjcTsZPWkqKpWalsY96PQGWhq63vh7miqp/+qlHvvDZ23C29a13NoaOw12X5c2bmt0MjzZSEWrB4s7gHkQ+uOH3a1s3WOnIMWEyxdkcn4CaqWCepuHZruXnAQj5c1OJCl8nRr7rtV4W2p7PjdLA0GvC/gpGdsPZc1s2WNhWEo0Tl+AKUOTOuqyuml3+kiLNVDV4iQ5OjwQdDfs7rMffZbGLudm27kST2N5r9dj0Bs+BK3d5eelH+u79H2DzYdeo6TV6aeumyc8RzNtVByWylKiMgoAmewTzkOhUuNuqSXgcRE3ZDTtuzuGwbWVrcPntITKrqi0srXB1aW/6qxeZBm8gYGtaiUcPCLQEARBEA4LuzfIsXmxAFQ7PLz84x4kWSZKpyIluiP7d73Vy/wNDXgDMiXpZspbfrpRq3rrbtS6jsm3CpWmY+UaWSbo99G5sJHH0ozptEM/gbYzYeBdi6rQalQAaFQKlAoFsgz+oIRKqUCSZRqtHs4a89Mk4qb6Oqp378DlsLN1/UpS0rNY+/03SJJEXcUuJFmC/RaM1BsMNH73OvqYjm98e+wPWztqjQaVShVq420LK9GolH22seC4yFdx6o4/IIEMWrWCddUWJEnG6vZj0KhCcyZ2NjrwBoK4967E1NnGypf/jEKl6v3cLM3oSs4C4MfdLRyTm4BWpWRdZRtBWcbm8mPQqmixe9Br1Gyts+INBLG4jOxstIE2Ca1OR8PiF9BFxfdel7U1lCCus40V824KrajVWxsNhuND5dbWOtjjCBLYG1h19n9n38syODzhfXG08lqbcTRUYohPx2e34GyoRJKCtJWtQ6Uz4rW1IAV8tO1aj0KpIip9CBpzHPaGcgC21tu5/sOKLn2177XaOfH/aO+rnxMRaAiCIAiHlNlsJikxgee+r+W572v7XV6hUHDHHXdElH1aqVRyzjnnDKSZB+SYY47h8ccfp7Gx6zff+1OpVJx//vkA5Ofn09rUwL//74aI6snLywPg1ZfnsXTp0ojKjBs3Do1Gw5QpU/jXv/5Fc3PfE43VajUXXnhhRMfvTn5+PgDnPLeyX2WmTZvGo48+SktLS5/7azQa5syZw+eff8aDn5T2u42/Pvs47r3/AVavXh3R/lOmTAHglFNO4R//+AdtbX3PpdBqtVx66aUA3H333RQUFESUzC85OZnJkydH1K4jUWpqCt8ueYsvb+x9Na/eXHfddZjNfT9Xi4mJYfbs2QOuRxhcIo+GIAiCcMg5nU727BnYuP/4+HgSEnofq320kmWZ6urqiBL2xcTEkJzc+9KoR5KGhgbsdntE+5rNZtLS0gZUj81miyjA25dCoSAvLw/V3qcmwuByOp2sXbuWYHD/9dUik5qayogRIwa5VcKhIJ5oCIIgCIOuqamJ1157Dbd74MuiFhcXc/bZZw9iq44MVquVl19+OaKbbr1ez29+85sB33QfSi6Xi3nz5tHe3nfiOuh42nTWWWdRVFQ0oPq2bt3KqlWr+t5xr4kTJw64LiEyTqeTefPmYbFY+lUuPT2dK664os9kjsLRRwQagiAIwqB78cUX+ctf/kJSdNex0rIs93lD0WzrCFCOnTwFpbKPb5kV8Ks5s7ntttsG3N5D6f333+emm24iKj4JZHrtC1tbE3a7nfvvv5833niD/77wPFIE3wpnZGXxyiuvotUeupnwn3/+Oddddx3xZj1KRcd59fZeN9vcrPzxRz786COuuPJKdu0q77MOpVLBZZdewtVXX82cWTMpr6yKuH1D8nLZVV7BCy+8wKuvv4Es9T2gY1jBEF566SWUvWSuFn6ycOFCrr/+egwxCSj2/t329ffudVgJ+r2kpaXxzNNPY7Na+qxHbzDw1wf+xrHHDnwolnBoiEBDEARBGHROp5PsRDMvXTAMmyeAQaOiyeEjRq/GoFUSlGQqWz2cPDyeilY3SVFamuw+ksxaGmxevilr47FvqtlU044xq/dvoe1lq9m+/dGjJtBwOp1o9QamX30fAEMmnUJ77W6ikjLwuR1oDWYsDVUoVSo+ffgPoezfz/3nGbZsWM2Mgthej7/H6uPt5T9w6623MW5c90uqHgyd7Xxw1hCSo7Q0OXwMSTQSkGSSzFriTRpWVlgw6lRYXAFe+qEGp9NBRUUFr77yCub8cehT8nqtw1q6jNYnnuLqq6/GYrFw22lDmZATi0qhIDlai0apxKBVsaHGilmnRq1UUN7ipNbiYd6ajrwZjz/xFLvrmokpOr7XujyN5fyw/GXuvvvu0BwToXed10Dx3AfRxSbjqC8nJrcYQ0IGXmsz+thkLBWbic4eQcDjxGdrBaWS7++Zw7fffsvCRYv49ahE+nqw8f7yFkaWjBKBxlFABBqCIAjCQVOc9tPkzfnrG6lu93BiQRw6tZIEo4bqdg8tTj9NDh8nD++Yd5Eeo6OyreOJRsbsG5D9vl6zLdctehrbkhcOy/kdCIVCicdhwWO3EJWUgSwFkYIBWqp3oDfHgCyj1vz0REKSJE4dHsdjZw3tNTtyslnLac9tQpIOz1KfZxQnsWBzIxZ3gJHpUejUHYFleYsLSYYGq5czR6XwwYYGnHvPCyD73Lvwtdb1+l5XvHUPUt2Pobo0SgX1Vi9Wt5/k6ESUSgVuf5D0WD1OXxCHN0hhWhRNjp/mvEiSROLEOeReeH+v2b+VGj1b/3neYevHo1n6sXNQKFW4W+po27mWlNHRaEwxBLwu9HEpuJprcDZUYEzORmvoWNxZlmXUKiVPnVPQZ/bvLU0+8b4cJUSgIQiCIBwS545N6XZ7cS/TDxzl64kfe3qP2ZbbNnx5kFp78JWcekG321OGjOy1XF/ZkRdu6Tnj9aFy7tju39Te3mvbzh+JGT6lx/faVtb9alDnjU/vsz1Ly7r2SV/ZvxuWvtHncYXeZfWWAXx4RwZwW832sO0i+/fPiwg0BEEQhINu0ZYWEkwa2t1+vAFp782DieI0E2qlgjXVNvRqJVq1MpTTAcCcP5boYZN6PG78mFOp27PzUJzCoNu+9BOMsYm47e0EfR4cbU0k5xeTMrQEpUrFnu3rui3XV3bk4jTTwWhuxD7f2kxKlG6f99rHiFQzxelm1EoF62tsqJRdx8ZEDzu21/c6umACrWs+6bJ94eZGEsxaLC4/Xn+QJoePolQzxekdydxWV1moae+6KEFf2b/NOSURnK3Qkz2rFqKLSsDntCD5OjKAR+eMICanIwO4Zdd6VHoTzsaKsHKRZP9+4Ku6g9l0YRCJQEMQBEE4qFZUWNhj82LSqZBlmDY0LpQBfEejiwa7lxi9mpL0KFZUWgBoc/oBcO3Z2WuWZm9bHd7Wo/OmwxATT+OuTSRkDwNZpuTUC1GqVDSVbyEptwitwYx/v0zSTXZft5mk983iva3RdZjOqEOsQcPmejsFSSZk4NxxqXszcntpcfjITzRSZ/Vg9wTYd4q1s3oLrpqtvWTkbsTvCF/RqqrVhV6jwqxTIcsy04YlhjKN72xykBajR61UYNCELyjgbavvPfu3pQFvS83B76yfqZZtK3C31qPWm0GWSRo1HYVKjaetnsYNX5M4oiMnSNDjZP8JGZFk/3b5+s49IhwZRKAhCIIgHBT+gITbH2RMZhRjMqO6vK7XKBkVb2YUP83jOC4/Fm9Aoqq14wa78euX0cYkgiyj0uqpX6RCZu8Nyl6etnoSYrse/0gWDPhJLxxHemHXydrmhFRUGg3J+UXI/LQykkar5YdKO43OIP6AhAzoNSpUSgU+fxCVSokkyzTbO+YjaDSaQ3U6YcZkRTMhN6bLdq1awZisjmza8SZNKLl5ZzvrP3sGtSmm1/fa3VJN+oifFgdQqZSkReuoaHERlGTWVLVj1KposvkwaJU0Wr14AsFQ4Aqg1WiwbPoKT/3OXusKOC1h7RMiFzdkLPEF47tsV2q0pE/seJIUP/wYAKzV24COpJCBoMTdn1cT2Pf6/r4eWZbx+iVUKgWSJFPd6hLvy1FCBBqCIAjCoIuLi6Pe4mLI/csHfAyVSsmFZ8+KKInaKaecMuB6DrW4uDiCgQD/OCMjov3j4+MB+L+77+HNN9+MaBJsRkYGI0f2PtdjsMXFxQFQ+NfIMpQDnDc2gZycHO6//37Ky/te3lahOJ5f//rXAKSmpvHKiu28siKyJw/FIwoBeOjBB/jggw8iyiw/ZMgQsrOzIzq+8NM1sPDyIf0uO3v2bBwOBzabrc99p+n1XHnllf2uQzj0RGZwQRAEYdA5nU6+/PLLA0rYN3z4cMaP7/qt6NHO6/Xy5ZdfRpyw79RTT8VsNve57+EWCARYvHhxxAn7VCoV06dPJyWl+0UC+tLW1kZpaWnE+48cOTIUtAkHh9/vZ/HixQNK2Dd9+vSD0ibh8BKBhiAIgjBgsiyzfv16Wlpa+l02IyOD4uLig9Aq4eeiurqa7du3973jXvHx8YwbN04k2DvISktL2bNnT7/KxMTEMGHCBPHe/MKIQEMQBEEYsDVr1jBhwoQBl3/yySf5/vvvI9q3uLiYe+65Z8B1HUoej4fbbruNxsbGPvdVqVT89re/ZcaMGaxfv57HHnsMn8/XZ7nY2Fj+9re/kZSUNBhNjthDDz3Exo0bI9pXoVBwySWXMHv2bP7zn//w3XffRVTuuOOO4/rrryc5KZGW1rZ+te/rr79Gr9fzzDPPEAj0PWk4ISGBv//970RHR/ernl+qyspK8vJ6T6zYk/nz57N06VIaGhr63FepVHLllVceVcMiha5EoCEIgiAM2GeffcbMmTP55JoxpEZpeXNNAxNyojFpVdTbvGTE6AhK4PQFaXb4iDGo0SgVeAIyv31rK2kZmTRbHJhze19K1NNYiaelhubmZhITEw/R2Q3csmXLOOGEEzBnF6OO6n24jnXHSs449RQWLvyUP/7xj/znP/9h6pDYXssEJJkVFVZee+01LrnkkkFsee/sdjvR0dFkxurISzD0uf+aahvjjpnE9z/8gMFoQtKaMWYO77WMq24nQXsLfr8fpVLJr0cnk59oJCVKi1atJDvup5WkSuvtmLVqArJMvdXL/Z/t5q233uKTTz7hzbfeJrbouF7rCrod2MvX88knnzB79ux+9cUv1erVq5k4cSIT//wqICEFAuhiEvFYmjAkpIMkEfA4CXpdSFIQhUJB3NBxLL5uPHfccQd///vfGZFqItHU+2TuVVU2ps84mc+/+OLQnJhwUIjJ4IIgCMIBy4jRkRrdcfO5q8XNiQVxpMXokKSOjL42b4CUaB3xRg0l6WY21nXMTwgEgqTMuJzss27tNUszUpDtT14e0TfUR4LOdhZc+1/sZat7zXa94z9Xh/YPBAKMyYrh7ctG9Jod+YT8WHL++uMh74/O+u49LYeZRQl9ZnD+88e72R3oeDoTDAbInH0jqTMu7/W99rU3UP7KraE6p+THoVUpsLgDHJsXi06tDF1XiSYtfkkmxaTlpGHx3P/Z7lA7Y4uOY8TNb/dalzl3DGtuKjlqrqsjiSExg5icYmqWvYe1spTk0Sei1OiQpSAqt4OAxwlSEKVGhyGhY+GDYDAIwHPnFbChztHrtXPteztxBPy9NUE4CohAQxAEQRg0PWf/7n0yc19Zmus+/8/BaO5BZyn9FmNGYY/nZSn9tttyfWVHXl3d90Tyg2ldrZ0Ek4YonQqNSsGSMkuoffFGDW2uQI8ZnPt6r2sXPtGlzLljU7s91r7XldPbNVjoqy7rzpUD6wAhJGtqz9m/e7J0l4XiNFOP1/eycutBaKlwOIhAQxAEQRgUkWb/Bmhxhn9T2VeW5qj8sQet3QdT7Mjp6JNyen29cekbXbb3lR15QvbhzRsyLjOKSTk9z2mYmt+RR+PTLa1dXuvrvdYndx3/v2hLc8e15Qp0XFsO395ryxy6tjy+YL/rOlqvqyPFnlUL0UUn4HNYkPwevJZmorNHEJ0zEqVKTfvu9SiUKhT7JeU7YWgsQxN7Hno3NT+Gt9b2Pb9JOPKJQEMQBEE4YGurbdTbfRFl//56ZxuNdm+orLelts/s3+76XYfx7AbOXr6e9o1f9ZLtuqkj23VC+E17T9mROzOA72oe+LLBg2FHk4t6m69L+xpsPpqdPrLj9OxscmF1B9gnHyPuxoreM3JbO4ZO7Wt3i4u0aF3HtYXMtIK4vdm/vexscpEercOoVRFvDL+lCTgtfdYliyFTA2Yp30jQ6/op+3fJdJQqNe62emzVWzGl5AJ0DKXSm8LKbqhz8N0uS7fXj16jpNXpp9XpR3cYzksYXCLQEARBEA7Y8BQT0wu6TnrWqpSMTDMzcp8hLicNi2d1dcfQCJVKSfPmJXibKpFlCZUhisalbwIyAacVkEGhwGdt3rt/38n7jgSd7az//LmOceu9nJujuhRV/kmhchtrrfz7O/D4JSRZJkqn4s21jQRlcPuDqJUKfAEprJ5DpXNp0gWlrSRHaVlQ2ooky7y6ugG1UoHbL6FWKQhKMkEZtjY4GTmm41ZDpVTRuuZT9AmZvb/XrXVhS6CmRmm5aHzXoVNqhYLi1I4b2Dijmsq2n4IvlUqFs3YHqg1f/j979x0Yx1nnf/w9s33Vu2Vb7nIviR3HdqpJr4RAIIRAwgFHqEc5jnIc9bijE7iDgx9HLhA6BAJJcAoh1XGJHdtx71W97mp7mZnfH3IUC9nSSrYs2f68/omzmu88z6NkZX13Zp4P7S89jOPYND37AIbpxs4kwbGxMymyyWjP8TI4+dVTKZrUNxTScLkpnrIAgJJpCwF6whFf/e/641UNBDyuE/7/bTmwuSHKJdP0a+qZTv8FRURkyF4NQLvse+uHVP/hD36AZ555luNvf1ja68/z5r7xtG/lOlSLFi3i7W9/O41NJ7r947W1uae9jve//30AvP3tb+fwoUOk0yn+/sYSE3h1n54g8OalJVx55ZWneOb9Kyoq4l/+5V/YtHEDQJ855v3dvy+b7uIfjiY4f+ELn+epvz19gjMf8996cimXXXoJAMVFhXxhxT6+sGJfznMsLS3l3e9+N52dITLZ7HFmGTz6z3ygjMrLF3Hxxf3vTiWvefU9/+KXbhl07YIFC3jHO95BU2PfDI5j//8GuGyGm/e9//1DnKWMFtreVkREhsy2bZ599llaW1uJx+OYponf7z/h8aFQCNM0KSwspKamhosuuug0zlbONNu3b2fLli05H19aWsoVV1yhKxTDbOXKldTX1xMKhSgsLDxhCJ/jOIRCIYqLiykuLubKK6/E4+l/W1s5u6jREBERAOLxOPv25f7J8asCgQBTp07t88BnLurr6+noyC2Q7WTGEZG+UqkUu3fvHlSNaZrMmDEDt3vwN8V0dnZSV1eX8/Fer5fp06frPX8GU6MhIiIAzJszm63bdwyp9n/+5394/yBvcxhKqvgPfvADPvCBDwyqRka3vXv38r//+7+kUqmBDwYqKyv5xCc+QVtbGz/4wQ+IxWID1uTl5fHBD36QsWPHnux0zyqXL38dzz/37KDr3vnOd3L//fcPqiYWi1FZWUk8Hh9U3Ze+9CU+//nPD6pGRg89oyEiIgAcPnKEty6sYsmkItpjaUqCHlJZm+KAm5KgB7dpsL0phs9t4jr6AePs6nze+tNtHD58eNDjHTlyBICb73gX5y+9FH8wSHtrM+VV1TiWRSIRJ9oVxnS58PsDfPcL/zykcWR0++EPf8h3vvMdZow58Xa5r+pKZGgMJ7jssstYvXo1//mf/0nhAEnjAF11uygpKeETn/jEqZjyWePgocNUXnA9lRd0p6LbVgbHyhCsnEyyox5PfgnpSAeevCLSXW04tk39s7/k0OEjgx6ro6ODeDzO5e/6LPllY0iEOxgzfQFdrfUECktJhNvx5xeT6OrAcLnw+vN4+v99Tu/5M5waDRER6TGjKsjtC6t4cGMzoWSW19WWHE1ihkgqy+SyAI7jUJ7v5fzx3VkOZQUntwnl+z/z76z62+M01x9hyfJr8Pp82JZNLNpFuKOd1qYGaqZMo6Ss/FQsUUaZZDLJ3HFFPPHe2QMmjR/pTLL0uxtJJpMkk0kCJZXM+dLT/aZ/l8y7gk3/fB7JZHKklzoqBcdMpfriN9Kw8vdYiQhl87sTvgMVNWQTke4mI9JBfs0siqctonPnamDogZHVM84j3tmG2+ulsGIspeOm4NgWqXiEaEczFZNnguMwbvZi1j34g1O3UBkRajRERKSPEyd8D894173pbcNzYjljDJSG/sL+MA2hvs3CQOnfXXvWjcBqzjxjLxl8wvdQzbvm9uO+XjW173a5cmZToyEiIr28lvB9NIU5kv67hO8IRQE3LgMC3pPf3efFp1YwtmYSXeFO0skk7a3NTJs1j2mz5+N2u9m7Ywtu7VRz1hsoDf3SKUUc6ex79Wyg9O/C2sE9B3Qual73F7yFZWSiIexMinS4hfya2RRMnINhugnv7074dgdOTSL9zucfIVhcTiLSiZVOEu1ooXLKHKqmzcN0uTi8eTXoEeKzghoNERHpcbA9gcs0jiZ8O1w+rbhXwndbLIPHZTC9IsiulhiHO5JkLPukxiwsLmH3tleYNG0mjuNw3ZvuxO12s3vbK4ydMAmX202ovY1MOn2KVimj0YnS0Ju60nQmMlQX+lh9sKtPXXjXauJHtvebAG5bSgA/kWR7Pb7iqp6E77J5l2OYbqJHthM5vJ3CSfMAsNMJUqk42UTktSiSIWjZvw23x4c32D3e5AuuwHS5aNm/jY66vVRMmonHF8BxbDKpxMAnlFFNjYaIiPSYWBrgPcvG9Xm9OGgzo6p3HNvCmkJSWRuDk9t6ct4Fy7j4qhv7vD5+0lTKq6qprB4PwHf+TVtcno0Mw2BXUxcPvOQmlrZ4dk+I4oCLJ3d2YDkO0aSFx22QtRzcLrOnxjAMEp0tND/zAFYqRmjLs7jyiunY9CSO45CJtGM43WnjqUintkg9AX/ZOCZc+54+rwcqJ+Ir7r6FsmzOpUB3LkbdM78Aht64VU6Zw9TFfYMmi6snUVDWnQA/6fzu8Uzj+PkccuZQoyEiIgDk5+Xx5ccP8O1n67BsG8fp/sXCxMBwGWCD7VhA9y95rqO/9MWSGQoKBn9Lxas1N58/AZfbg+PYgNETtmZbFg4OhmFimibJRHxI48jo9oY3vIE1q15kXzLZ81tJc5bXfpc1ge7/NcCGK183n4ULF1JUVMSfH3mUaPSY7JfI8ZPYp124hOuuu274FnGGKiwoYOuj36f+b/dj2xY4Do5DTwCf4zjYto1pdjdphmGSTSUovOUNgx4rL6/7g4rffOrNR69YOIADholpGICDZVl094Pd7/l0Mk7BjVeckrXKyFCOhoiIALBmzRrWrFkz6LpAIMBtt91GWVn/99j/vXQ6zW9/+1va29uHdRwROb5Nmzbx7LPPDqrG5XJxww03MHXq1EGP95e//IU9e/bkfLzX6+XWW2+lunqYdqGQYadGQ0TkHOI4Dp2dndj24J6rcLlclJSUDNOsRGS4WJbFjh07yGYHd7vT9OnTCQYH/zCGbdt0dHTkfLxhGJSWlurWtrOUGg0RkXPIPffcw49//OMh1X7iE5+gtraWUCg04LFer5fbbruN8ePH8/vf/54DBw7kNIbL5eKWW25h2rRprFixgq1bt+ZUd/HFF3PxxRfndKzIueRDH/oQP/jB4PMozl90Ab/51S955JFHsCxrwOOrqqp4xzvewaWXXc6qF1cOaqz3vOc93HvvvfziF7+gq6vvA/9/z+fzcfvttzNmzJhBjSOnn57REBE5h2zd/AoLxuXzkeUTWHeoi0K/i0jKYk51Hs1daYoCbkKJLIV+N23RNAGvC5/b5Cer6nnmmWf41re+hSdYgOnq/6+PVKSTQ4cO8S//8i+85S1vAcBXMPAVkVSkk/Xr13P//fdzyy23kM1mKcnrPxCwM5ZiYs14Dg4hrVjkbHfkyBHyJ8xh1ru/jZ3p3rnN9Hj7r3nyJxzZ/QKf+cyn+eMfHxrwPRhNZshYNnPmzGHz5s1Mu/hGqmctJhnpxLEt8svHko5HyS+rwjBdxDqaux/YT8TYs/IRNm3ewkMPPcT73/9+ioM+Brq40RlL0drayle+8pVBfS/k9FOjISJyTnGYWZXHdbPKuG5W7s86PLunk+ajW4QuvHcz7S893G8S8/b/vJloNEosFgNgzif/QOGMpQMmOO/873cRiUbJZDJks1l++OZa0pbTb1r091+o58cvD/wpqMi5yl9aTeHk+YT3bSTesIeyBVcSb96Pv6SabCqO2xck0XYE0+PDdHkIVk+la/cLRCMRbpxdyo9vn9FvavuUsgAXf28j0WgUgLGzL+SC2z6Y09zioVbo2EM0GsXtMtn2qYUDJsRf+aNtPWPJ6KZGQ0TkHPbgxmZCySyvqy3B5zaxbYiksjR2pQl6TC6aUtynpmPD4/0mMYe2Ptunpmv3GjAMXIECDLeH0JZnemo8+aVYyfhx6zbWRbluVukJ06I31EVO/TdF5CwVb9pHNtFFNhbCX1KN49g4VoZo/W4yXW0EqiZRMHUhbZuf7lU3UGr74zuO/0zG9qd+RzIaYvIFV+Dydn+wkI5FiHW2kE5EyS/r+5B3LgnxcuZQoyEicg56Nf073+/G4zZ5ZndnT/p3aZ6b1miGgNfFusNdFAd6/1VRuvA6TPeJb70onruchoe/3eu1wulLKZy+5IQ1r6Y3Nz3zQK/Xzx+fz5KJhSesWzi+gFUHdDVDZCAt61bgL68h688ncmgrqXAr+TWzKJg4h0DFRLr2bwQgvPflPrUDpbZfMKHvttN7Vj5KYVUN3mA+LXu3EOtsoXzybCqnzqOoeiJ1W1ZjZVKDHuvSKUVAXb/HyOihRkNE5Bx0w5zyfr++vPbEz1N07V5DomFPP0nMLWSTvW9riB3eRuzItn7Tm7ORDqxkFHht7N2tce5b09gnLXprY4wJJT5aoxmOhJIn9b0QORdULr6h36+XHg3lA+jY/trD3O2xzHHfg01dafwek/ZYhoMdfd+DtZfc1O94U5ZcA8COpx/s9Xp/CfGvjhdPK+n9TKFGQ0TkHNMSSfOT1fXUVgSJpy2WTS7CbRrUh1KEElnaYhk8LoOLJxezqyVGeyxDIm3B0edB2196FDuTJLp/I+7CMiL7XwbHId3ZDNhgmCRaD/caM7L/Zdx5xUQPvAKOTXj3aky3FysRxbEt7FQMDJN43Q6MaRf11L1SH6Om2Mcr9VFsp/uXEK/bJJK08LgMsrbDi/vDQOD0fQNFzjCZaCdHnvwJwbHdjX7xzGUYppvoke0YLje+kjHEG/dhZzPg2KQjr2bbGBzqTLGvLdHve/BQR6LXeKHGg2z4048pq5lOJhVn/LyLMF0uWg9sx7ayVE6dT/OeTeA4pKJh/EfrspbNI1vbiaYsNtZFKctz83JdBMt2CCcsvEcT4ptCvceT0UuNhojIOcQfCPL0nk4Ohbs/EUxmLDJZC9u28bjdeN0m6XS6O63X5cJxHPweFwdao1xzzYVMnjqNzm2P95zvRJ8rlpeWcNVVVzFx4kQWXrCY/XtXcuwGmSeqKwq4uf7668nPz+fqq65iw8vreaUtNUBlgFvf9KZBfBdEzh0ej4eu/Ztwe/00v/ggdiaN7di4fEEM2waXGyudBDsLhonLFyDWuJ+K4gJuuPFGNm3cwKN7B3oPmsyeOYO5c+fi9/vZ+tjPKSirwrYsHMfGMN243G5sK0s2mwHHwXS5cHt8hJoOc9nly1m6dClTJk3k0b3hAcaCisoqrrzyylP5bZJhohwNEZFzyEsvvcQf//jHIQX23XHHHcyfP3+YZiYiw2HlypX8+Mc/HnRg3/XXX8873vGOQY/36KOP8vzzz+d8vGma3HrrrSxZcuJnuOTMpUZDREREREROOd06JSJylnnf+97Hfff9ZEi102trufe736O5uXnAYw3D4PLLL6empmZIY4nIqWFZFosuWMzWrVtyrvF4PHz33nu54447eOKJJ0gmB95UobCwkGuvvZarr7mWNatXDWqO1WPHsfmVTaxbt46mpqYBjzdNkyuuuILq6r5b4MqZQ1c0RETOMjOmTcUON7J4QiH5Phcet0FLJE1JwEOez0UsZVGe78E0oD2WxcEhlbE53Jnk6T2hQY117XXX8/hjK4ZnISKSk9bWViorK6lccgve4ioy0Q7ya+aQibTjCuRjxSO4/Hlk42FMbwDDdNHw9M94883XMnPmTD73uc/lPNZPf/pT3vnOd1I18wKKx9fizSvE7QuQiobwF5biDRZgmC66Gg/i9gVwHIeuxoMcXLOCX//619xxxx05j3Xbm97E7x98cOADZdTSFQ0RkbPQ1TPL+Nx1kwdV8/zezp5GY+5n/ky8aS9WPEzRnMsxPT4c28ZKRMiEWyieu5x9P/0E7R3az15ktKhcegsVC6/L6diu3asB6OzsZFJ5Hs+8fy5/3NxKOGlx+dSiowGe3YncLdEMy6cVU/uf6wiFQgDMvv5uZlz51pzGatu/lYNrVhCJdAds/vX989ncEO13rA8+uIfOzuMHAcqZQ42GiMhZ7kTp382RNGnLoTTo5sKJRb1quvauo2DKQrKxEIn6Xb3Sv4NjptG1c1V3aJ91gkFFZEQ0vfgg2ViI0vmv6/UBQaqzGZcviOnxUTj1/F41HpfJU7s7mVwWIJTIsqs10SuRe1pFkLWHI7hNo894u5/+HaloiJpFV+Ly+LrTv+MREp0tuLw+PIF8DNPVq2bNwS7mVOf1O5bHZdA3zk/ONGo0RETOUrmkf4ODZTtsa+wdsFc06xLyJ8474bmL5y6nff2jw7wCERmM8N6XKV9wFZlAd/p3+mj6d/6EOfhfTf82TUI71/SpzS2Ru7f9qx6loLIGT7CAtn2biXe2UDZ5DuVT5lI4ZhKN21bh2Da+gt4BoJdNK2Za+Ymzby6dUsSvXx74OTEZ/dRoiIicpQab/v383s6eP0cPbiay56V+078zXW09IX4iMvKKpi2ieMaJt4k9Nv370J97fy2XRG7b7v1Y75SL+k//nri4O/27bf/WXq9vqo/y3N5Qv2O1xzL68XIWUKMhInKWWn0gxLamWM4J4OsPd/XURvasxR0sItm8H09xFcm2w+DYpNrrwHG6U7wbd8OkMSO4QhE5VqxuF6m2OoJja7GOSQCP1e3AFSjASsbIxkI4joOVivfU1XXEWXWgi1Aiy/72JFUFHg53JsnaDh3xLD63SdqySVuv5e901u1hy8M/prhmOtlknLHzLsIw3bQf3IbpcpNXVk24YT+ObZNO9L5iuvpAmKDXdcKxMpZNXTjN1NP2nZPhokZDROQs4/F6eGDdITY2xACIbmwllbWwbJt8nxfbcTAcG9sBTJOvO4cpCng40tH9i0dZeQVtq/+Q01iXvO3W4VqGiOTI4/EA0PjMA3gLyrCzaWzbxvT6cbk92JkUlmWBbWGaJi5fkPD+TXguPY8LLriALAbfeXbgjR2CgQDz58/HNE12P/Ub8kqrsDJpHMfB9Hhxu71Y2TR2NottZTFdJh5/kGRX99XSKVOmUF5Wym82tua0rrdfdPHQvykyKmh7WxGRs8wf//hHHnrooSHVTp8+nc9+9rPdv5Tk4NVfcERkZH39619n69atAx94lMfj4QMf+AAXXHABlmVh2/aANaZp4nK5+P73v8/atWsHNb9x48bxH//xHxiGkdPPF8MwcLv1efiZTo2GiIiIiIiccmoVRUTOQJs2beLOO95KpKtr4IOPZcDiC5dw73e/x+7du3MqmTt3LmPG6FkMkZH2kY9+lN8/+MecjzcMgw++/x4+/elPs2HDhp4MjP54vV6WLFmCYRhcceVVHDh4MKex3G43X/z85/iHf/gHDh48yN69e3Oqmz9/PpWVlTkdK2ceXdEQETkD/dd//Rcf+chH+OjlNdB3a/sTWn+4i5X7wxQVFxPO4ZcOgImTp3Bw/76hTVRETpnyyipSwUpKF1yV0/Gta//MlMpCvv7V/+Cmm/rfIepYn//853nrW9/K7NmzmbD0RoonzBiwZvcTD3Dt8ov57W9/S2lJCfFEIqex5s+dwytbcr/lS84suqIhInKGCnjdfPKqSQA8srWVQx1J7r6wmgPtCSoKvLRE0lTke2nq6o69mlOdz2Pb21i5P0w4FKLm1k9SsfRNtG9YgZWIUDh9Gabbi+PYWMkoma424g27aF35ixFcpYj0cMBTWEnR9AvxFlaQjXeRP3EuieYDeIsqSIda8BSUkQ634NgWqfZ66NpNS0sLAKs+cj5P7OwgkrJYNqkQr8vEdhyiaYu2aIaLJhfx1p/vorn5tQyL0slzyKsYT0HVJCpmLKJt70aCZWPJJmO4/XlEmw9julw0bV0FQDweJ55I8IVrJwL0O9b/rKzn8YNNp//7KKeNGg0RkbNAKmvj95i0RNOU5nnIWA5u02BncwzTMCjL8+Bzm71qfKVjiR7aTP6kBWRjITKR1p4E8IKpCzFMN9H9L4/QikTkeIpqF1M6dznNLz5IJh7CW1yJp6AUO5vBcLmJNewmGw0RqJyIy58Hx9xduaUxxoJx+YQSWVpjmZ5E7oXjC3CbBhvroxQGev9qWD3/UiJNh+g4sAV/cQXBsrE4toWdzRBp2E8mGcNfWIo3WNirrjma5poZpf2OVVXgBbKn4bsmI0WNhojIGW7FtjZqiv3k+7JsbYzRGk0zq6o7AXxiqZ/1hyPUh1MkMhaNR69uvKps0Q39njtQPY3IcE5eRAatdf0KfOU1uGL5RI8mgOcdkwAeObARO5sm3dXWq+76WaW4zBPfa3nplCK++nR9r9eatq6iavYyUtFOOg5sIdHZQsmk2ZROnkvBmEk0b1tNJhnrc66F4wtYMrGwz+vHjrXhiH66nO3UaIiInOEGkwDeEH6t0Ug07qXxqfv6Tf9Oth0ZtnmLyNBUXND/BwQls7sTwFvXPQLJ197Daw52sbOl//TvaKr3FYYxcy+ictaJ08bHX3A1ADv/8n+9Xt/VEqepK93vWHWh1PFOKWcRNRoiImewftO/k1naor3Tv1+pf+0TxETjXgy3l67da/GVjqVz89M4jk2y+QDggOEi3pDbzlQicnokWw9T99efEDz6AUHR0fTvZOsh3HnFpDubyMRC4Djd/zzGjuYY4aTF2kNdjC3y8fTuTjK2Q1s0TcDjImXZdMYyvWra92+hfd9misbXkk3GqZp7EabLTeeh7XgCBWRTCRKdzWQSMSDQUxdKZCkJuFl3OILtOLTHMwTcJu2xNH6Pi4zlsKMpBviH/XsmI0eNhojIGcg0TRLpLD99qRED+OvOdpJZmx+urCPf58KyHTwuE8t2sB2HH79YR3m+l21NUQAmTJzE4Y2P07Hx8QHHWnD+wmFejYjkwnSZdG57jmR7Ha0vPQKOQ8MzP8dwubHSSXBsnGwaMHAHC+jat4Hq2ilMmzYN0zT5wuOHchpnxowZmGb3M137nv093mAhB178MzgOu554ANPlJptJgm1jZVKAQfu+V3DNuJGCggLGVFVy35rcHvK+7JLzhvbNkDOCtrcVETkD7d+/n3/++MeJRE6co+E4DpZl9UnXvWDxhXz5y1+mqSm3XwTGjh2rhF6RUeB73/sef374kRN+/dV071ebBMMwuPuud3DXXXfR2dlJJDLwMxFer5cxY8ZgWRbvfe97OXDwxM2JZWVxubp/Nnjcbj760Y9w/fXXk0wme3a6Gsi4ceNwuVw5HStnHjUaIiIiIiJyyukjKhGRUaqtrY1rrrqS5ubB7zM/duw4Hn/yr4O6alFSUjLwgSIyrH71q1/x3f/6byzLyrnm6iuv4Gtf+xptbW29MjBOxDRNamtrcbvdfOpTn+JvTz+b20AGvP1td/DRj36UVCqVc/r3+PHjKSoqym0MOavoioaIyCj19NNPc+WVV3LnBWMYU+Alazm4XQPHgB/qTPLgphYuWHwh69e9lNNYgWCQ1pYW8vLyTnbaInISrrjyKl5Yu4HyRdfndHzXvpdJt+zn0MGDTJgwIecG5W133MEvf/Ur3G43eWNrKZu+aMCa5s3PM6bQz769u7lo6RJWr83t50txURHNLS14vd6cjpezh65oiIiMctfOLAXDoD2WIeAxyfe5SGVsZo3Jw+0yCXpMNtZFKPC5cJkGL+4PAdDQ1ETJgqsZd8OH6NzyDHYySv6UhRhuLzg2VipONtqBnUly5KFv0NbWpkZDZIQ5jkPJ3MuoXv6O7vdoPETh1EWkw614i6uIHtqCv2w82UQET34Jndtf4MAvP0t9fT2WZfHVmybTHEkTTdksrMnH6zKwHYinLTriWRbVFPCffz3EoYMHesarnHcJJVMWUDBmMobLjb+4El9BKa071uD25/WkgPsKSkm8sgKAQ4cOcvOcMt6zrJpn9nSecLxQIst/PV9PV1cX5eX9b8UtZx9z4ENERGQkTasIcuX0UkwDWiJpJpT4mTc2H8MwCMUzbKyLEElZGIbBwppCrp5Z1lMbqJ5GOtxC8ZzLKJx5ERiQ7qjHnV9M6XlXU3XZnWDqrwKR0aZg8gJSHfWk2uvJJiK484qwUnG8RZUkWg+R6mggE2nvU5fI2Fw2tZiLJneH5dWH0hQH3Fw9o5Q7F1XhOA4TS3pvKVs4fgYGBh37NuEJFoLjkAy14C+uxMokcXl8x53j9IoALZF0v+N5c7gKK2cvXdEQETkDvJr+XdBP+nd7LMPqAyFao733wR8o/Tt/0oLhnLqIDEHb+hX4y2vI+LvTvzNH07/zeqV/Z0i2907yvmRKEXPGnPjK5OIJhfzq5b47Qrn8QYora+iq342dTpEMtVA0cTYlk+djuNx07N1AV/0ePH9Xd8Pssj7nOtbsfuYiZz81GiIiZ4DBpH/vbI71/DnV0TBg+rdC+URGn/Ic07/jjXt6vb65Icqag119Erl3NMeYURnkQHuy+8OIQO/zjV9yY7/jVc27jJbNz5Noe228I6EU961p7Df9e3drfBCrlrONGg0RkVFuY12Ep3Z19KR/Lz0m/TuczNJ6TPr3iwdChOKvXdHIRtrBcYjX7cBfMZHogVdwHJtE415wbAzTRar18AiuTkT+Xrqrjfq//oTg2FqsVJyiGd3p3/H6nXhLqkmHmshGQzg4pMO9r040htMU+t3saI4zscTPK/VRMpZDcyRNXShFMusQS1u9rkxEGvaxZ8X/UjhuOtlUjIrZF2G43MSaD+HNLybZ2Uwi1Ewq0tFrLNuBsqCH3S0JrKN7CwU8Jq1Hk8bTls3OpsRwf7tkFFOjISIyym2sizC2yMdTuzuIJLM8tqOd8jwPGcvG73GRsWyytsPTuzuYXBZgX1v3X+yV5eVs2riS8I6VA47h8XopLS0d7qWIyAAMwyBev5uuwgo6t68E26bt5ccwXF6sVBzsLHY6CYaBp6CUyMHNYBiMGTMGgG8/W5fTOG++cHzPeG071pDsnEzz5udxHIe6tSsw3R6yyTiObWGlExiGSeeBrYwpDgLdW2g/uGEjD77SOuBY+Xl5FBQUDPE7ImcyNRoiIqPUnDlzqJ06hd9t7T9h17YszJ5k3SgAM6fX8pdHH+Hw4dyuVkyYMEG/CIiMAm+/8200NbdghY+5pbGjoeePlm1hWRZejxdS9RTlG1x9zz3U1NRw6NAhGhoajnPW3kzTZP78+QDcc889PPX0s9C+67UD4t3PfXhxSKVS5Pm6Hx4vrCzm7rveDsDTzz7Htm3bclrT5MmT8fmO/0C5nN2UoyEiIiIiIqecrmiIiIywz33uc2zdunXQdUVFRXz1q18lGAzmFNIVDAbx+/0DHiciw2vTpk18/etfJ5lM5lwzefJkvv3tb2PbNuFwOKeakpISDMPgf/7nf7jv/36KneNnyxctvZAf/OAHAITD4Zx+vuTl5emqhfShKxoiIiOovb2d8vJyJpcFmFIWGLjgKMdxeHpPJ294wxv405/+lFONPxDglU2bmD59+hBnKyKnwj//8z/zne98h9IFV+V0fLLtCPH6XezatYvX33QTu/bsGbgIuOySi3nuhZXMm38e+xpaqZj/umNuszy+0P5NhPZvJplM8rnPfY5vfvObOY2VFwyyY+dOampqcjpezg26oiEiMoJe/aTw89dOosDvZsORCFPLAwS8JpNKA7hdxjHJ326ytkNLNM0t8yoY97mVHDp0CH/FRCa8+d/o2rUaKxUnb8IcDJcHHBs7nSQbC+EtruLALz/Lnj171GiIjLBsNkthzUzmfPQBWtc9QjrUTNUlt5NoPoC3qIJ0qAVPQRnpcAuGy02iaT+7/t8HiMfj7Nqzh7ecV8HVM0pYfbCLeNpiTnUeHrM7kTuZsQkls+xqibPmlVcAsB2H4qnnMfmqO7EzaUprF9G5bxOBsuqe1O94y2Fc/jxaysYS2r8Zx3F4ZdMmaisCfPKKmn7HKvK7+fcnD7Fv3z41GtKLGg0RkVFi2eQi6sMp6sMplteW4DbBsh0awikAOuIZyvM93DKvolddYMxUyhbd0G8wXzrcwoFffnZY5y8ig2dnut/f6XALnoJSnGwGw+Um3rAbKxHBU1iOr7S6V82lU4u4YXZZv2F5P3qxgTX1ryWHB0rGUDptIYef/z3hg1upXPA6AFxeP5louDtfJ9xKsOLYRsFhekVgwLEOdiT59ycPDWH1crZToyEiMkp0p3/7KPC52NoYPSb9O78n/bstmmHdoS5Kgr1/fLe/vAJPQRnZWAg7kyQTbiVYM4u8mjkYppvwzlUjtCoROZFX07+z/nxih7aSPk76t5WIkAo19aldsb2dsjwPoUSWZNamNZJh1pggc8bk4TYNjnT2ff6jfu1fCFbUkA4UED64hWSolaIJsyiaNBfD5aZz70aizQcHPdbmhuhwfHvkLKBGQ0RklBhM+vexMtFO0p2NuPz54DgUz7m8J/3bSsZIh1tw+fOGY8oichJyTf8O717b6/U9rQnK8zzk+1w4Dlw+tbgn/ds0YF9bguM9gDtugPTvynmXkgr13k67PZahsSvd/1h62ldOQI2GiMgosLM5xpFQitqKAPG0fTT9m+Omf6/cH8LrNntqTbeH8qW39vy749g4VhrHcTB9AfyVE7FT8ZFYloj0I7RzNbEj246bAO7y5WGl42SjIWL1O3vVlQU93Dr/tQ8mbMchbTkU+l1kbYeaEh+mafSqSXQ0su+xn1AwrpZsKk75rGUYLjddR3YSKK0mGWom2dlCorP31ROf2xxwrNZYehi+O3I2UKMhIjIKvNIQ5YIJhfx1V3f694rtbZTne0hbNgG3i4zlkLUd/rarg0llAdLZ7o8Q8/Pz6dr4Aus/Mi+nccrL+79qIiKnR6z5INEDG0l1NBA9tAVsm67dL2G6vWSTERzLwk7FwDDJxrsAcLvdFOTn84XHD/KFxw8OOMbUyZN6/pzsbCKTiNC06Wkc2ybauB/T6ycTC+NkM2QSEQzTReTIa01NWXkFv/5rmHlfX5/TmvTzRf6etrcVERlBtm2z/LLL2Lp1S7/HZbIZ3G43Bq99SllcXMzPf/krOjo6yGazA45VUVHBxRdfjGEYAx4rIsPnT3/6E/e8/wMnzNFwHAcra+H2vPZ58OTJk1m7ehUHDhxgx44dOY1z/vnnM2nSJN7znvdw33335Ty/ufPms/mVTXR2drJy5cqccjSqqqpYtmyZfr5IL2o0RERERM5yiUSCXH/lCwQCahjklNCtUyIiwyiRSPC1r32N1tbWkzrPFVdcwW233XaKZiUiw629vZ1vfetbOad4A5SVlfGpT32K/Pz8QY+3efNm7rvvPjKZTE7Hjxs3js985jOYpjnwwSJDpCsaIiLD6G9/+xtXXXUVk8vzyPd7hnSO3U1dpB0D9wCJvgDBYB5/euiPLF++fEhjicip8cADD3D33Xd3bx2bw9WBbCpBtGEvDz/8MI888jA/+9nPOO7WUX9n5ozpvLxxE+9973u5//77KZ0yf8CaZLiNeHsDmzdvZs+ePfzDO+8mmUwNWFdYWMAjj/6FpUuXDjwxEXRFQ0RkWKVS3X95P/gPsxlT6APg4S2tjC3yked1UV3kY0dTjAklPiwHIsks8bTNgY4E44p8XDylmLfev4UXDnQx/q1fJrJ/I3Y6QXDsdAyXG8exsTMprHgXwXEzOPDLz7J27Vo1GiIj7NX3fvX1H8JTWI4rUIiveAyJlv14S8ZiJ2OYvmD3DlP+fAy3h83/8XpSqRR/e/JJ5lT4uG1BBRvrIyQyNtPLg7hdBrbjkMradCUtommLP27eRlNTE6lUioo5FzHnXd8kFWqmcOJcYk378RVXkgo14y0oIxVuBdsmFW5h/b3vJpVK8eKLL5JKxPnCNRP7HWt6ZYB/W3GQ9evXq9GQnKnREBE5zV4/r4IHN7UQTmRZXlvSq8lojqTJWA4TSvwsnVTUU+MpLGfMFe9kzBXv7PfcDQ9/e5hnLyKDUb74ZlpWPUg2tp2SecvxlowF28K2MiQbdmOlYpjeAHnVs3rVXTy5kHcuGcM7GXPCcz+zp5M/bm7r9Vpo78tkYmF8xZX4CstwshlMl4dkRyPpSAfeglKClRN71UwoyxtwLICv/PXIIFcv5zo1GiIip9GKbW2U5Xko8LnwuAye2dPRk/5dGnTTGs0QSXXvILW3Nc60imBP7UDp35F9uW1BKSKnT9vLK/CV1+AKFBA9fDT9e/ws8o+mf0cPbCQTaesTygcDJ3Lvbumbj+PyBQlU1BCt34OdSZEMtVA4YTaFE+dgutyE9m2k/UDfXe4GGmtHc2xYvj9ydlOjISJyGg01/RvAnV9C7PBWAtW14DhUXHRbTwK4y5eHK1iEbeX2IKiInB7li/pP/y4+mv6djfd+aLw+nKKywDvo9O/qC/tP/y6feynegtI+r5cE3WxtjFFbEcBx4LbzKnrGm1EZxOsysW091iuDo0ZDROQ0ePlIF01dmQGTvyeVBsjzmtSHUxgYFAfcRFMWOFA0YxlFM5b1Obc7VYS3uApf2TgMQzvIiIwm4V2riR3eTmBsLXYqTtGMpWC6SXXUg+NgpWJkYyGsZO8rBmOLfLx7aXWf800o8VPod7NgXD772hK9vpaOhTnw+E/IH1eLlYxTOmsZpstN5MhOXP48rHSSVKgZ/m4fIMeBZZOKWHbM7ZrHGw/teCuDpEZDRGQYOI7D+vXr+eEPfwjA4c4UlfleWqMZDnUkWX0gjOU45HldlOd7yFoOGcthS0OUdNZhemXwaB10JrJkulpZ/Y8TXvt7vtcuNk7P7jSObVFYWHja1iki/Uu21ZFNhOnc/Dcc2yLeuBfT6yMb78KxMliJKBgm7kBBT01hURE/WLmFH61q7Hnt73/HdwDLdjAMg7y8PABS4TYysTDNG58CxybSuBeXx9ed/m1lySaiYJpkoqHXxiosZG9LhAlfWtPvWA5g245+vsigaHtbEZFTqK6ujl/84hc88MAD7Nixg4qKCiJdYZKp9Emdt6iwkGgshm3bzJ49myVLljB//nw8nt5b5ubn53PrrbdSUFBwgjOJyOmwZs0arrjyShLxvs9RnEh+fgFr167BcRyee+65nGpqa2u5+uqr+e53v8vHP/7xnEP5SsvK2bN7F9CdVH6ilPJjFRYW8sY3vpFgMDjgsSKgRkNE5KQ1NTXxzne+k0wmwzPPPIPP5+PWW2/l7rvv5sorr8QwjJxDtE7E5/PR2dnJ7373O372s5+xZs0aiouLuf3227n77rs577zzCAQCp2hFInIqZLNZstlszsd7PB5cOeTlnEg6nca27ZyO9Xq9CuuTYadGQ0TOSdlslq985Ss0NjYOfPDfGTNmDP/2b//WczXhlltu4eGHH2bmzJl84hOf4LbbbqOoqO+9zqfSrl27+PnPf84DDzzAkSPdW07+4Ac/4AMf+AAAmUyG++67L+dEcr/fz5133snYsWOHbc4iZxvbtrn//vtpaGjIuSYYDHLXXXdRUVEx6PHa29v52c9+RiyW2w5QxcXFvOtd7+q5tUrkdFOjISLnpPXr17N48WJqSoMUBz2YOST3AoTiaQ61x1m9enVPaFUoFOLpp5/mpptuwuv1Due0+7Btmx/96Ed8+tOf5t577+Xd7343AM899xzLly+nID+PvByudDS1tvHZz36Wr3zlK8M9ZZGzxubNm1mwYAEurx9vXm7PLiQ6W/jGN75BRUUFX/nyF7Gy1oA1FZWVPLriMX7zm9/wkY98hGBJ5YA1tmWR7Grnd7/7HfPnz+etb3kzoc7OAeu8Pi/f+s53ufnmm3NZjki/9DC4iJyT0unuZyYeuHMmkVSWSNKiJOhmZlUemxuijC30EkvbBL0me1sT+NwmFfkeXKbBJd99uSf1F7o/NXzjG984IuswTZMPfOADPVcyXhU/el/4f3zi/cybOY38YIBxYyrYumsfE8dXY1s2XbEY7Z1hQl1R/vWb/5Pzp6Qi0u3V98z8z60g1dmIyxvE8HjxFlXgzi+la/daXL487EwSx7Yombucjf9yAbFYjJUrVxJqaeDORf03DW3RDL96eQMbNmwgFosRKCpj2p1fBiBQXoO3sJxkex2Bigk4tk02ESEdbiGbivPK995DLBZj1apVbNq8hQ9eMhaX2f+HKj9efYi//OUvajTklFCjISLnvEU1hTy4qYV9bQnyfW7GFnqxHMhYNrtbkmSs7t2hplUEOdCeGPiEo8iNV1zCs6vX09kV4ZpLl/RpMhqaW5k2qYZgwD/SUxU5o2W62kjEwpTMWw4OZMKteAsrSIeaMX0BTE/f99j54/L51JUTePCVVsKJLMunFeN3m1iOQyRl0RxJM7MyyK82tPSqq156Cw0rf0943wbK57+uV5NhpWI4to23sO+tWZ+6cgIPbWk74VhX1Jbw3IHocH2L5BykRkNEznkrtrVRU+yjwOdia2OU1mi6J617Yqmf9YcjdCYybG2I0h47swLxnnhuNbVTJlAQymPTjj00t7Yzb8Y05s+axuTx49ji3asHQkVOUmjb8+RNmt+T/p0JtxI8mv7tO5r+bWdSRA9t7VO7Ynv7az9/mmK9Erknlvh5YV+oT03zur8QKK/BHSig69BW0qEW8o+mfxumm/C+jWSifW+TemxHR79jrTvcNRzfHjmHqdEQkXPeYNK6z7QrGtdevoyxVSde30WL5p/G2YicnYrnXEZw3IwTf/1o+vfx3DC7rN9zLxiX3+e1qsX9p3+Xzb0U2+q729X1s0r7vXVq8QRlZMippUZDRM5pm+ojvLAvdMLEbgODzkSGiycXs/pgmNboyeVhnG5rN22lobmVmVMnEUskuHTxebhdbrbs2ovb7WJsVQWNLW2k0mfWukRGk8iBVwhtX0lwbC3WMenf6VATpsdPJtxMJhYCx+nVAHTGM9y3pvG1nz+TCnGbBjuaY8yoDHKgPUl9ONVnvI4dq4gc3k7e0fFKZy3DMN0k2+txHAcrnSDZ0XcnrDUHu9jZEu93vGgq9+14RQaiRkNEzmn5XhcLxxewozlGWzTDgxubmVjqJ5W1yfe5SGZs0pbDX7a1sbCmgLSV2x71o0U8kcDtcrFm4xZs26YjFCbg99PW0Ynf5+PlLTtIpTO0tg28G42IHJ+ViGCYLrr2rsexLTLRDkxvgGy0E8fKkI13YZgmvvIJpCLd77VgMMjLdVGOdGWx7O4NQD2miWGAZdsYhoEDxJKZnuMBEuF2onW7yMTCdO56iUDZOFo3PQOOTaz5ADg2huHCV1bdM79Xaz/wx328utfoq2N1J4wfHc+B1kiS1yuQT04RNRoick4aM2YMAP/4m50nVT9aTZo0CZfLxXs+9R8510ybNm0YZyRy9pkwYQIej4cDv/78oOqmTZvG7bffzsyZM3MK9KusrGTp0qU0NzcDsONn/5rTOIZhMHXqVM477zy+9a1vEQqFBqzx+Xy84x3vyOn8IgNRjoaInLP27t075MC+2traYZjRqRUKhejMYd986A7sq66uHvhAEemlq6uL9vb2nI8PBoNUVVUNebyWlpact6IuLCykrKz/Z0BEhpMaDRE54+3YsYMXX3xx0HVer5cbb7xxSH8Rv/TSSzz22GPk8iN08uTJ3H333YMeA6ChoYEnnngCyxo41OtVbreb66+/ftC/zKRSKR555JGcPvU81qJFizj//PMHVSNyJgiFQvzf//0fXV1D241pwYIF3HrrrYOqsSyLRx55hLa2tpyO9/v93HTTTRQXFw9hhiLDS42GiJzx5s2ZzdbtO4ZU+6lPfYqvfe1rg667cMlS1r20luLKsTiOg3GCZPFoZxvZTJrDhw9TU1Mz6HHe8Y538Itf/GLQdffccw8/+tGPBlXzxz/+kTe96U2DHquqsoKm5paBDxQ5w9x333285z3vIVg6BgdO+D4/nkRnM6ZhcOklF5NMDrxbXUFBId/7r/+mtbWVyy+/fFDz/PKXv8wnP/lJ3n7nndTVHR7weJfp4n0f+CBvf/vbBzWOyGDpGQ0ROeOFQyH+6fIaLphQQDRlkcra1BT7CXhMZo3pnfSd5zU53JnCMODTjx4gHA4PacxYPM4Ft76Xedfcjmm6cLk95JVW4fJ4OLJlDR5/kGw6idefxwMfuaEnqXvQawuHKZ0yn9orbmfMvIuIdzSTDLdRNetCDJcHjz9I6+4NeIL5mKabeKiFnY/+75DW9WrN/95zBS1dCS6eUU1TKE57JMmFtVV4XCZBr5uXD7QysbyAlq4ED6/bzy9f3DuktYmMdvF4HJfXz3nffJnY4a1kExHcwSKiB1+heM5lpDoa8JWMxUrFcPnySLYdxvT4MFxekk372P3jD/Dsc8/z1vP7hucdywF++1Qrjz32WM9tmTPe+XW8RRX4K2q6g/+6WvEVVxE5uIX88TPJxLvIxkLsvu9jhMNhtm7dyoN/+AOXTClifJG33/H+uruTH//oh2o0ZNip0RCRs4JpwJXTSwF4cFML25tiLK8toS2apqrASyiRpTmSxjQMyvM8zB2bT8B78j8C2w/tJhkNMWXxlWSScdJxi4LyaqIdzfjzi2je2zega7DyyqqZffM/sveZ35GOhhm38AoMlxvHzhJrq8d0ezBNN9lUgolLrmfXX35yUuO9/oIpPLhmLy/uauTKueOZMbYEy7bpjKXY1xSmrSuB3+Pikplj2VHXMahPeUXOVHkT5gLQsupB7FQcO53EVzIWx7ZwrAzxhl24/AUUTFkIQLJpHwA1ZXl8+w3T+k3/vqK2hMd2hrHt13a1q1h0He1bnyO0czVl816HJ1iElYrjLa4kemQH2USE4JgpmK7un2Ov1n7+2onsaI73O9bHHtpLvX1m7aAnZyY1GiJy1lixrY2yPA8FPhcel8Ezezp6Er5Lg25aoxnaYxnyvC52twztCsPfm3fN7cd9vWpq9y8ldg47yuTK7Q+SXzmBUN1urHSKRKiF0omzKZs6H9N007h18M+pnEjQ56amPJ/djSGSGYuWcII5NaXMn1jOwskVbKvrYO2eplM2nsiZovKi2477el7NnBPWDJT+fbxE7rZNTxEcM4WMP5/Ioa2kw63k18wif+IcAhUT6dq/kWwi0qdu5f4w543LV/q3jApqNETkrDGYhO9TZefzjxAsLicR6cRKJ4l2tFA5ZQ5V0+Zhulw07tp0ysaatOymfr8+4cJrT9lYNy2a3O/Xl9R2b++75XDuu+2InMnaX16Bp6CMbCyEnUmSDreSVzOLvJo5GKabyIGNZKMd+ErHUTDtgl61A6V/Hy+Ru/y8q/AWnfiWq9I5x08bv2RKEXPG5PU71q9e1jNVcnqo0RCRs0JdKMl9qxv6TfgOJ7Msm1TE6oNhivxu0tncd3I6nkhbA5G2BrzBfHAcJl9wBabLRcv+bRiGSduh3bi9vlO0QmjauoqOA9soqqklm4wzZu5FmKabjkPbKJkwi/Z9mwkU938veK5e3NXItiPtTK8uJp7KctGMatymQUNnjIxlk0hnKQj0fx+4yNkivGs16c5GXP58HMeheM7lGKabWN0OMEzCO1+kcOZFJBr3AJAONRM9+EpP/eqDYbY39Z/Inf27MNDwnvUkO+p70r+LZ3anf6c6GzG9ATLhVlKhZqxMulfd5oYoaw529TtWazQDgeH/vomo0RCRs4LjwKVTi9l5NOH79xubmVDSN+H70W1tnD++O+G7K545qTF9eYXMv/aOPhMJFpVjGFA+oZb2Iyf/oHSis5nQ4V0kOrs/hQwd2knBmEm0792MY1uE6nbTtnsjhuki3tFEItQGjBvyeDsbOmkNxzGAnfWdTKwo4JVDbWQsi6ZQnKDXTSpjMaGigAMtug1Dzm5WJkXehLk9z2i8ysHBXVAKhkHhzIsACFS/lq/jK+/eZe5Ie4x/W3GYjGXjAH63C5fZiO04pC0bl2FgOQ7xdBav97XmPRVuBgyidbsIVE4kcnALjm0Ta9jTnf5tughWTSYT77596tXabz5TT77XdcKxbMdhf1uMS8efug9BRE5EjYaInPGqx47lD+tf5g+vtA6+doghdWWlpbzw+K/Y/Pivcjq+pGRot21VV1fT9sgjPPTh498mccK6N143pLEALv/CHwZVN3nSxEGPJXImKC0tBcfhpQ/NHFK9z+/n3e96F6lUasBjb8jP57bbbqOhoQGA3Tmmf0P3e3fu3Ll8/vOfp76+fsDjLzdN7rjjjgGPEzlZytEQkTNeV1cXW7cOfncnn8/HggULcLsH/5lLfX09q1atyimwb+LEiSxZsmTQYwCk02k2btw4qMA+j8fDeeedh8fjGdRYjuOwY8eOQQf2zZw5s/sXMpGzTDqd5umnnx5yYN+sWbOYN2/eoOt27949qMC+BQsW4HK5Bj2OyHBToyEiZ4RwOMzq1asH9Qs3gGmaLF26dMhXFM5GLS0trF+/PqcmCbq/h0uWLFEzIXIKPPXUU+zbt29ItS6Xi2uvvXZI4Z8iI0GNhoicEe6++24eeOCBIdXedOONjB03LqdPCN1uNx/60Ie49NJLefHFF/nv//5vMpmBn+UoKyvj61//OiUlJdx7772sXLkyp7lddtllfOQjH6Gjo4NPfepTdHR0DFjj8Xj4yEc+wrJly3juuef4n//5H7I5bKNbUVHBN7/5TW668QaefyG3+b3q1je8gR/9v//Hv/7rv9LZ2Tng8V6vl49//OMsXrx4UOOIjJQHHniAP//5zzkfbxgGt912G1dffTWf+tSncnpfOI7DQw891F1vmj2v5ZpF49g28+bN6wn1G8g111zDPffck9OxIsNBjYaInBFuuP56QrtW8+bzKhlb5KMhnCKVtYmkLK6bVcbhziTleR7aommKgx5CiSwBj8mPVtZTb1ayfcdOCqZdgNtf0O84oR0vcPubb+PXv/41d911Fz//xS8pmXN5vzVWOk7X7rX86U9/4pZbbsHr9VAWMJlVdeItJgF2NMcIpQwSySR//OMfedOb3kTh9KW4vP1vB9O57Tneefdd3H///bzlLW/hoT88yKVTi/ut6UpmeflIhMcff5yPf/SfKMm2c+WsKuaOKyKSzDJzTCGHO2KU5ftoi6QoyfPSEErgcZnc98J+rPJpfOBDH+Ztb3sbRbMuxnT1v+NU59ZneN/73scPf/jDfo8TGS0mTp5KQ1snBZPOy+n4yP4NTJ04nn//0hd4y1vewrLJRfjdZr81z+zpbkYmvP5jlMy5rLvJME0ykXasZAxf6Tj85TUk247gr6jBsW2sRIRMtINMpIOGv/2Urj1rGVfkY3plsN+xtjZGsT15tHUM3ACJDBc9DC4iZ4xiv5vbF1YB3enfGcvhulll+N0GU8sDRJJZHOBIZ5KxRT4umFDIbzY0U5fo/jxlxgfvI7T1WbLxMMVzl2N6/Di2hZWMkA41UzLvCnbee2fP1YFsNkvxzGXM/NgvaF314AnrCqYuYt2HZx9TZ/Gxyyfw9guq+k0Drgul+Nzjh3vGApjxTz+lc+MT/c5xxzdv6zXHy6YW8/O3z+x3rLlj8jj/Wy/31M0dV8wHrqjl9+uOEE6kmVldSO2YAizbwWUaxFJZsrbDjQvG8OjmBhqOmePMj/6C9pce7neO2//z5pyusoiMFtlslqrldzHh1k8C9PueL5l3BQd/+2WyB57t+f/8gbfNYMWOjn4Tua//8VY210comrGUoundz201r3qQbCxEybzXYXp8OLaNO1hIrG4ndiaFr2QMJbO7N4Nofan7isunr6rhjfMr+n3P724p5L9WK+dGRpYaDRE5I912XuVxX5/TzyZSnZufwl85GVesgNjhrWTCrQSPBm75yycS3v7CcevaX16Br7zmhHWh7c8dt26gNOCV+4/0qenY9CT+fsbqfOWpIY216kD4uHVvXjz4e707Njze7/eja8+6QZ9TZLR4NZjPFSjAcHsIbXmm5/9vT34p2UgHbS/9mXSomWOvKTyxs2PQ6d8AVSdIGs+fcOKkcRj4Pf+3XbqSISNPjYaInFFWbGujLK/71qhk1qY1mmZWVR5zqvNxm7D+cIT2WIYJJX4C3t63MZTMvwpP4YnTw4tmX0rjEz/q83rZohv6nVPRrEuO+/pAacCTSv19Xis97xrcgRPf3lWy4Cqanuw7x4HGOm9cfp/X/rK5gbI8H6F4uvt72ZVk1thC5o4rwm0abG/oIpbu+/B96cLrMN0nvnWqsFbPZciZa8D3+9GrC9EDr0Dnjp7Xr51ZStB74p2fjpf+3bZ+BZ7CMjLRTuxMisyraeMTXksbdyyL0nnL+9QO9J6vKfEDsX6PERluajRE5IzRHsvQ2JUm3+fCceDyaSU96d+7W2IYGGTt7tupNtRF6EpliaVe+0U5snc9qY56AtW12Kk4hTOWHk3abcDlyyMdasJKxoDXmpFsLEzjU/eduCbcgpXo+0nl/rYE961p7Ded92BHsk9d156XSLUcPOF4ydaDWKl4r5rOeGbAsZq60n3GKgl62VoforaqAIfuqxtu06Ah3J1S7HYZVBf1bYa6dq8h0bCnn+9JM1Y6MYj/siKjQ6q9rv/3e6iJbCwEjkM21vuKwdpDXexvT/b7Poymejfu7vwSooe2EBxbCzhUXnzb0cTx7eSNm4nLn0861Ey8cQ/BY8IA97QO/PPlcGffny8ip5saDRE5Y/g9Jm/6u1umsjaYpsH0ytcevM7YDvPG5pPO2jxgNfbs6FL36PcwXG5wbEx/Pk3P/RwcByt+9LYiwyB6cAuuRVOA7q0kY/U7MTc8hp35Ezg2jU/fj+FyY2eSYNs42TTZZKzn+O5/mjy2s4NxRT7+tMXGduD+lxpxmwaJdPcv8LYDu1viuExXr9q6R+7FwBh4jped11O3vTmOf0dHv2O1x9K9xokkM8weW8jssb0/Zc3aDjgOY4u7H0hv6UoSS2XB81rtkT9/B2yr/zke2YHLddnQ/kOLjACXy0V42/OkOxr6fb9jGLj8BcQObaGkprrnfXHvs3U4gO1Avs/k5+ubsB163oeW7XCgrfeHBMUzl1E8c1mfufgrJuIOFlI45XwAUqHm7i8c3b/n4a3tVBd6+33P72iK4fL3vZIpcjqp0RCRM0JZeTmPPR5izn+uGXTtDdcv5YILL6S19UTb277WpLjn1vDe974XgPe85z10RSJk0sfb3rb3ji/lVy3lssu6f7H+93//Ci88//xxRzq2asksuHz5cgAuv/xy3v72t9PefqLtbV+bo2feBN797ncDcM8995BOp8hm+j54fexYJcCyykqWLVtGaWk5v1q1il+tPXyCsfq65fWLueKKK7jzzjvpOOEuNq/N0Tt/InfffXfO5xcZaZ//t3/lj3986ARf7bvDkzHpIm6//S0sX76cO++8k84TbE197K/6181xeOyxx9nyzdtx+7rP6dgWjuPgODam6QLDwHFsHPu1bW8N08QwTLKpOLNmzWLypEkDzvKiWXDtddcNsGqR4aXtbUXkjNDe3s4LL7wwpMC+Sy65hIqKimGa2Zmnvr6etWvXDiqw7+KLL6ay8vgP4ItI7h599NGTCuy78cYbmTx58imelcjwUKMhIqOG4zjs3LmTZHLw9xbX1taSn6/bBEREREYL3TolIqPGf//3f/ORj3xkSLVzZ8/i3f/4Xvbu3TvgsYZhcPPNN3PNNdcMaawzxRNPPMEjjzyS07HTp0/nn/7pn7Btm2984xvU1dUNWGMYBm9+85t7bhkTkd5+97vf8fwJbqM8nmuvvZabb76Zxx57jL/85S851cycOZMPfehDQ52iyLDSFQ0RGTU++clP8r8/+B7/dNlYxhT42NeWoDjgJpm1mVIWIJzMUp7nIZGxCXhMmiLdDzj/bXcHq4+k6IrG8BaU4i/tJ0wDiNTtZs7s2WzZvOk0rGrkzJ87m507dzK9qv809MZwko5YmsbGRjo6OpgzZw7+kiq8/WwFDNB1eAeXXHopLzz37CmctcjZo7iklGgiSd6YKQMeG23Yy/hx4zh0YB+zZ05n39591Fb1f5X21fduS0uLbg+VUUlXNERkVCnN93HPxeOB7vTvcCLLtUfTvy0HIskszZE0iYzNzKogi2oKiSSzrDrSCsC0e35IurNpwETf5MHjh+ydTZLJJO9ZWs2/XTOx3wRht2lwxwM7SKVSpFIpAGo//DMS9bv6/T7u++knSCb3j/AqRUavVCpFza2fpvrq9wyYNH7kz98mte633XXJFO9dNobPXN3/e9cA3v6LnT3vW5HRRo2GiIxaQ0n/7tq9lqJZlww6/ftsNlCC8E/WNPSpCe9YScGUhUr/FjkF2l9ega+8pt+fS8nWw/x93N9A791frm8akfWI5EqNhoiMOoNJ/y4J9v4xVjh9CYXTl5zw3EWzL6VzyzPDvYRRZaAE4YXj+95aVTTrEvInzjthTWHtYlpf/O1Jz03kXJBL2njXnpfIHFzd6/WB3rvTK/tuuysymqjREJFRpyToYWtjjNqKAI4Dt51X1ZMAHk5myfO6yNoOs8fksaEuwqGOJLZtAxA7sp14/a5+k30z0RPlQJx9GsKp4yYIN3alyFgOGcthZ3O8T1304GYie17qN/07GwvrbxGRASRbDvafNh5uIRNuIRPpncNRf4L37rHp37ta+r53RUYT/RUhIqOK4zgsm1zEsslFfb5WHLSZUZXX67VLpxazqT7SE2zVtvqPuAvL6dz8N9x5RbRvWAGOc/QvcQcMg/iR7ZSM6f+TwrOBaZhsrI+StRye2dOJ7cCft7bhMQ1iaQuPy8CyYW9r9y8rhmH0fB9bV/4WV7Cw3+9j9MArmPNmjuAKRUY3wzAI71pNOtzSfSXVsWlb92cMlwcrlQDb6k4dNwwS9TspDbh76jbURUln+3/v7j7mvSsyGqnREJFRo7CwkAOtUaZ+ufv2Adt2cOhuPkzTwABsx+n+d8PEAVymQTJjUTNuLNdedwO79uwFjl6xSIZfO/kxNz8bk8bxD3e/4zStauT84/vezy8e+Cn1Dj0/7cMADuA5epAJwWp4y+tmMX78eKqqqrjhxps4fKSOgb6PZu1k3vOufxjuZYicsT78oQ+y4vEnIVMP5tEXj30/wWvvqZoxvPUttwHw3vd/gF//8ucDvnfzq+GtV85h7Nixw7kMkSHT9rYiMmp0dHTw0EMPkUgkBl27dOlSLrjggmGYlYiIiAyFGg0ROe327dtHZ+fgn5OYMGEClZXH34lKRERERhfdOiUip9Xf/vY3rrrqqiHVBgJ+HnzwD2zcuDGn4xcuXMj1118/pLFERETk5KjREJHTqr6+HoBH75mP12Xy5M4O/G6TRRMKqA+lKA266YhnKQq4CSeyuEyYWh7k+X2dfOWJQ9z59ncQ6uzAX9R/anUy3IY/ECAWjWKaZr/HioiIyKmnRkNERsScMXl43SZzqo/ZRWriiY9viaYBSCTiTLrjy1Rf9e5+k3Yz4Vb23f9xdHeoiIjIyFCjISIj6sFNLYQTWZbXluB3m1iOQyRp0RxJ4+BQHPCwqKZvoNxASbtHHrl3BFYjIiIir1KjISIjZsW2dmqKfRT4XGxtjNIazTCrKsic6nwmlvpYfzjCwfYEjuPQEE71qh0oaTc4dvpwTl1EREQGoEZDREbMDXP6D81bXlvS8+dIyur5c7LlQP9Ju6Em0qGmYZu3iIiIDEyNhoiMiDUHw+xpTVBbESSetlg6uQi3CfWhNOFkFgMIJ7Msm1TEhroIG+siPbVdu9aQiXQS2bseT0EZXXteAscmHW4Bpzu1OtG0f+QWJyIiImo0ROT08ni6Y22/9Uw9bpdJdFMb6ayNZR8iz+vGdsA0bLKWg2maWM4RigIeDnfEAXj961/P0888Bwe608MzJxgnAFz7xjfhcrlOcISIiIgMJwX2ichp1d7ezr//+78PKbBv5syZfOYznxmGWYmIiMippkZDRIZFPB4fUjNRVFREfn7+MMxIRERETifdOiUip1xrayuTJk0kHk8Mutbj8fDEE09w8ODBnDIwampquPrqq4cyTRERERlGuqIhIqfchg0bWLRoEZ+5aiJzqvNIWzZe18Dp3A3hFJ98eB/nnb+QTRs35DzewYMHmTixn7Q/EREROe10RUNEhs3l04qZNzafjXURGsIpplUEqcj34HUZvHQoQsBjkrUdLNtheW1JT1ZGNBaj4pK3MvXub9K6+g/d6d9zlmN6fEfTv6OkQ814CkrY+h83EwqF1GiIiIiMMgN/xCgicpL2tSVoiqRxmwaJtE1HPEtVoZdExiaVtfF7+v4oMkwXHRsfx18xAX95DfG6bXRueoJ0Zz3+8vEUTV9C7NCWEViNiIiI5EJXNERkWK3YfjT9O3Gc9O+S7vTvw50pDMLE03av2oHSv/MnnzeMMxcREZGToUZDRIbVDbNzT/9+9dYpgHSoecD071RHw7DNW0RERE6OGg0RGTabG6K8dLiL2vIg8YzF0klH07/DacKJvunfdaFkT22iaS++svHEG/fgLaoi0bwfx7FJtdcDDoZhkom0j9jaREREpH/adUpETrlXXnmF8847j4XjCxhX7CUUz5LI2jiOQ4HPRdYGj8vAsh1sx8GyoTzfQ3ssw6oDXbzpTW/iD3/4Q05jjR03nh3bt1FYWDjMqxIREZHBUKMhIqdcJpPhve99L3VHDvd7nOOAYfR+rbJqDD/84Q8pKCjIeTzj708iIiIiI06NhoiIiIiInHJ6RkNEhuxNb7yV1ateHHRdfn4B993/UzKZDOl0esDjS0pKWLx4MaapHblFRETOFLqiISJDkk6n8fl8XDy5iGWTcn8+wgG+/cwRli9fzrPPPptz3ZNPPsnVV189+ImKiIjIiNAVDRE5KW8+v5I3n1fJvrYEyaxNgc9FfSjFhBI/luMQSVl0xDKEk1nGFHi5YEIh/7ummVgsRv646Uz/2K9of/kvWPEIhTOXYbqPpn+nYmTCrRRMXcSmf72ElpaWkV6qiIiIDIIaDRE5JTbWRQgnsyyfVtKryWjuSpO1bcYV+Th/fO8HvN3BQqL7N5I/YR7ZWIhMqJlMuJVgzSwKJi3AMN107V07QisSERGRk6FGQ0ROWi7p33taE2RthyJ/7x87A6V/F828eDinLiIiIsNEjYaInLTBpH8fKxuPDJj+bbi9wzFlERERGWZqNETkpOxtjXPfmoac07/9bhPb7t6DIhMP4zgOXbvX4Dg26a4WTI+fbCyEY2XIxruw4l0ju0AREREZEu06JSJDkslk8Hq9TCr1M3tMHqFElmTGxsEh3+vCejX923GwbQfLgbI8D5bt8MTODm6++WYeeeSRnMZyuVy8+OKLLFmyZJhXJSIiIqeKGg0RGbIvfvGLrFm9ut9jLNvCZbp6vZZfkM/Xv/4NCgsLyWQyA46Tn59PYWHuW+iKiIjIyFOjISIiIiIip5ye0RCRfn3nO9/hlz//WXfS3iB4fT6+8KUvM336dCKRyIDHBwIBamtrMQxjiDMVERGR0URXNESkXzOmTSXRXn/CnaNO5PcbW1h6yWWDSv/+wQ9+wAc+8IFBzlBERERGI13REJF+2Y7DTXPK+bdrJ/XkZViOQ0W+l9Kgm7UHu8jzuoikLGzH4aoZpQDsbE0Ri8UAmPe5FXRu/htWMkrB1EXdW9baNlYqTjbaTsG0xez89ls5cuTISC5VRERETiFzpCcgImeOG2aXsaslzstHIiQzNh2xLFPKAwR93Q97u02DzQ3RXjWeQD6p9nqKZl5MYe0SHCtLquUQrkA+JfNeR+XFb8WKd+ErLB2JJYmIiMgw0RUNEcnJiu3tlAXdFPhceFwGz+zp7En/Lg26aY2kaYlmyPN1p4Mfa8D079mXDufURUREZASo0RCRnAw1/RsgvGs18SPb+00At7PpUz1lERERGUFqNERkQA3hVM7p3+sOd2E5DqmMhQ/IJKKkOxpwbIvYkW34y2uI7N8Atk28cS84NobpIhUJj/QyRURE5BRSoyEi/TINg031UUrzPBxoT9IaTfPL9c04joPPbVLgd2M5Dpbl8PtNLWQth8oCL7uaIyyrzQNg70/+Kaexxo8fP5xLERERkdNI29uKSL+++c1v8osHfkp/PymymQymy8Q8JgHc5/PxxS//O7W1tTnnaMyaNUs5GiIiImcJNRoiIiIiInLK6dYpkXOYbdvc8da3snPH9pM6T9WYMfy/H/8veXl5/R7ncrkoK+v/oXIRERE5O+iKhsg57MiRI0yYMIELJxQwe0weWdvBbfa+del4rx1rX1uCF/Z3Abn9KPn0pz/NV7/61ZOZtoiIiJwBdEVD5Bz26ucMb5hfwfSKIKbR/fC3aRqkszYd8QzleR5Mw6CywIvbZRD0mGysi1Lgc+EyDR7f0cYL+8NMettXSLYewk7FyJswD8PtwbFt7HSCbCxE/qT5HPr9V9i6desIr1pEREROBzUaIsKkUj/LJhf1/PuDm1oIJ7Msn1aC321iOQ6RlEVzVxqv2+CK6a9lZuxqiQFQet41+MrG9TtOywu/GZ4FiIiIyKijRkNEeuSS/t0QTrPucBclATfTKoI9tZ1bniE4tpZsLISdSZIJtxKsmUVezRwM0030wMYRXJmIiIicbmo0RKTHyaR/u4NFxA5vJVBdC45DxUW39Ur/Nn1BrGQUOPE5RERE5OyhRkNEAFh9IMz25ljO6d9+j8m4Il9Pva98PIUzlvb8u53NABkcK4vh9uIrn4CdSZ7+hYmIiMiIUKMhIqzY3s7iCYUU+d20RNMc6kiy6kAY23HI87goy/eQtR0yWYdN9VEyls3kUj+7WuJsbYgCsPU/bspprPJL3zmMKxEREZHRQtvbipzDUqkUs2bO4MDBQyd1nsLCAr7//R9QXFzc73Eul4uLL76YoqKifo8TERGRM58aDZFznOM4ZDKZkzqH2+3GNM1TNCMRERE5G+jWKZFzxMGDB/nud79LPB4fdO1ll13G29/+9mGYlYiIiJytdEVD5Bzxla98hc997nOcP6F4UHX7WqI4bh/jJ0xi184dOdW84667+On99w9hliIiInK20BUNkXNEOp1mXEke711aRVW+B9uBooCbI51Jlk0u4mBHkop8Dy2RNBX5Xpq60vg8Jk/t6uB7LzSxY/s2ype9CcN0YacSBMZNx3QdTf/OJLESEYLjZtC6+kH+9vSzI71cERERGWFqNETOMa+fWw50p39vb46xfFoJkaRFccBNRzxLeyxLPG3jNg3mjMnjpUNdPbXlF95Cyfwr+z1/qqMBtjw8rGsQERGR0U+Nhsg5Jpf07yOhFFPK/Oxt6/08R2TvOlz+fKV/i4iIyIDUaIicYwab/v3CvnDPn13+ggHTvzORdrzDMnMRERE5k6jREDnHDDYBfFdzHPvonhHBcTMoWXBVn3O6U0V4i6vwlY2jbe2fTu+CREREZFRSoyFyDmkMxTgcSpLvc7H2cJhwIsvz+0JUFXhIWw4Bj0nacshaDmsOhamtCFIfSmLgYJomO//r7pzGmTtvwTCvREREREY7NRoi54gLLrgAx4GPP7R30LW106by4//9Cbt3787p+EsvvXTQY4iIiMjZRTkaIueQTZs24ff7qa2tzen4TCbDM888w1VXXYXH4xnm2YmIiMjZRI2GyBngyJEj/PznPyeVSg269oorruDyyy8/JfPo7OzkvvvuIxKJDLr2vPPO49Zbbz0l8xAREZHRT42GyBngk5/8JN/85jcZV5I3qLr6zhjTpkxmz779p2QeP/7xj7nnnnsoGzMOwzByrutoacRlmkSjUbxe7UklIiJyLtAzGiJngHg8zpyxRTz5vrk8vqOdgx1JLpxQiGU7VBZ4cbsMgh6TjXVRxhf76IhnaI6k2deW4Nc7Yqd0Hv5gHnd97vt0tbfg4GBls1TWTKGt/hBzL7qKro4WisrHcHjHJsbVzqHlyH7W//Uhnvnd/2JZ1imbi4iIiIxu5khPQEQG57pZZZTnedhYH6E0z4PbNLBsh4auNADtsQyW7XDLvIphm8OcZVey7KY7MDBIJWIUlVcxc/FlpFMJAOr3bMN2bDqa6pix6BKmLVgybHMRERGR0UlXNETOILmkekdSWQr9bva2xgc+4UnyBvIoGzuRxgO7yaSSdLU3M752LhNmLcDlcrP3lbXDPgcREREZndRoiJxBBpvqPdwWXfn6fr8+96K+4X4iIiJyblCjIXIGySXVO5m1WTi+gHWHu9jbmiCbHZ79Hna9vJIju7dQPXkG6USc6YsuxuVyc2TPNsZNnUXjgV0E8gsZO2XmsIwvIiIio5saDZEzRGM4QSprM7UswJ7WOJ3xDK/URxlX5CWVtcnzukhlHTKWzeaGKHPG5BFNZTHNU/s2T8ZjbF31VM+/79m4Gse26OpoweMLEAt3sO+VtcQjYdLJOONr53Bg24ZTOgcREREZ/dRoiJwBZsyYQUcszZ0/3z7o2iuWn5oMDaAn6O+7H3rjoGsnTJyIz+c7ZXMRERGR0U05GiJniNbW1iEF9lVXV+NyuU7ZPDo7O4nFBr9lbmVlpTI0REREziFqNEROk5aWFh599FHS6fSQz+H1ernpppuorKzMuSaVSvGnP/2Jzs7OnI5fuHAhF1544VCnKCIiIgKo0RA5bT7+8Y9z77334jJzT9T+e5bt8LGPfYzvfOc7Odc8/PDD3HLLLQCYA1zZsC2L4pISOjs6WLduHR/7508Qjw+8TW5BQQE/+O//Yu7cuXznO9/h17/6BeTwk2XmrNk88POfDyplXERERM4MekZD5DTp6uri/JpiHv3HOT2vbWuK0ZXIMrU8QGssQ1W+hy2NMWZWBYmlLdYe7OKN8ysIeLsbhJt/so1wODzocQHe/e8/pnzsRApKynG53bjcHryBIAe2rsefV4htZdn8/OP89ZffB7oblBdfeJ7Ky+8ccIyWZ3/J448/zty5c/nh9/+bVGcjl00t6rdmd2uCX/xyI1/92tcYP378oNYkIiIio58aDZHT6O8/uN/RFCOczFJZ4KXY7yaesaks8LKjKU7AY7JgXH5Pk3G8+sG44Ko3sP6vD3Fo5ybmXnQVpstNItpFcUU10c52MpkUxjFXPBzHIa+ihql3fYPWVQ+SjYcpnrsc0+PHsS2sZIR0qJmSeVcQfvkvvHpx1HEcXj+3jH+9eiIPvtJKOJFl+bRi/G4Ty3GIpCyaI2lunG3wtp/vQBdVRUREzk5qNERGyIrt7dQU+yhIuNjaGKU1mulJ+Z5Y4mP94QiRcJZExibgMZlbnX9S42189lHKxk7E31XI4Z2be1K8a2bMo2LcJPa+spaKcZP61LW/vAJfeQ2uWAGxw1vJhFsJ1swir2YO/vKJhLe/0P/6fC62NsVojWSYNSbInDF5TCzx86uXm09qPSIiIjK6qdEQGSGnO+X7/OU34fH5T/j1uRddxXN/uL/P62WLbuj3vEWzLz3u6wOtb0ZlsN+vi4iIyJlNjYbIaZZLuncsbTG2yEee10VLNE3WcigOuomnrSGPu3vDKhoP7uo3yTvU2tSnLrxrNfEj2wlU12Kn4hTOWIphukl1NuDy5ZEONWHbvedVH05x35pGaisCxNM2SycV4jYNdjTHmFEZ5EB7kp0tAz9kLiIiImcuNRoip1FbNEVRwM2ySd0PSu9qzvD7jc1YDhT6XIwt8pG2HFJZmy2NUVJZm/PGFeBzQ8Zy6Epkhjx2Z0s9jm1Tt3sr5eMmcWDry9i2TeOB3ezb/BKm6aLp4K6e471eL7HWIxz6xWdwrAw4DqbXT4NpguOQTSUwAAyDTDzSE8bn9Xl5fGcn25qTZCwHB/B7TEzDIG3ZuAwD23Fo7kr1jCMiIiJnHzUaIqfJuHHjONyR4Or/2XTS5xnK8T/90gdzOn58TQ0Ad911F6FQKKftbfPz83nzm98MwDe/fS+PPPJITmPNmDGDqqqqnI4VERGRM4tyNEROE8uy2LJly0kH9s2bN2/QSd979uzJObCvtraWkpJT+3yIiIiInHvUaIicQplMhhdeeIFIJDLkcxiGwbJly6ioqDiFMxMRERE5vXTrlMgp9Nvf/pZ3vOMdJ32eqqoqlixZMuBxZWVlfOc736G4uJhvfOMbvPjiizmdf/ny5XzsYx+jra2Nf/mXf6Gjo2PAGo/Hw8c//nEuuuiinMYQERGRc5saDZFTqK2tDdMw2PTJxTy5s4PSPDfprIPX1Z20N6U8wOGOJFWFXuLp7nyMXS1xCvwuyoIeJpcFuO5Hm2hsbeeFQ4l+x7KSUbp2Pcytt97KzTffzGc+8xk8JWMJjp/Vb13syDae/OtTfOxjH+OZZ57hpz/9KZdOKcLvMfute3R3J0VFRWo0REREJCdqNEROMb/XTVmehzsWdT/k/OCmFlqiWZZPK8HvNqmtDBJJWURTFpbtMKnUzwUTCnvq3aZBwfQLmflPP+03kTt/8nms/8g8stksALZtM+6mj1B12dv6rUu1Hqbu918Cup8bAbjvrTN4bGfHCVO8r6gt4Y0/3dEzloiIiMhA1GiIDLPbzqs87utzxuT1WzdgIveetUOqO7zlmT41T+zs6DfFe93hrsEvXERERM5pajREhtGK7e2UBd2EElmSWZvWaIZZVUHmVOfjNmH94Qhpy6bI7ybodTFvbH5P7UCJ3AVTzj/u6wPVBcZM7fPatTNLyfOdeCerxRMKgfp+zysiIiJyLDUaIsPg2PTvzkS2T/r3npZ4n/TvfW0J/B6TjOWQjYdpfOq+E6dxh5txrL63MSWa9vVfF2oiHW7pU/fSoS72dyT7TfKOJHXblIiIiOROjYbIKZZMZ5leGWR6ZbDnNct2sGxwHIep5YE+NRNK/Ewo8QNgO5Co20X7+kexMylwHFxP/QTDdGFnUjiOjZPNYCWjALjd3W9j0zRpW/NHvCXV3TX+PJqevh/HAStx9NYnwyDVXofb1V3zah7Ht545ggM4QJ7Xxf0vNWE7DsmMjds0sByHHY1Rlrr1I0NERERyo98aRE6h8vJybMdh/tdfOqnzjKmq4sJZY3IYbzmXXnopAF/96lf72d629Jg/T+R1r3sdAK973et45zvfmdP2tpMu9PDud797wONEREREQIF9IqfUqQjsM02TpUuXKrBPREREzmi6oiEyRIcPH2b9+vWDrvP5fFx++eXk5+cPfLCIiIjIGUpXNESGaMG8uWzeum1Itf/0T/+E2+0mFosNeGxeXh4f/ehHqampGdJYIiIiIiNBVzREhqi9vY13L63myukleF0GkZRFTbGfI6EkE0v8uEyDw51JUlmbUCJLZYGXheMLuOW+7axbt47Vq1dTNGXBgOOE979CVVUVn/zkJ0/DqkRERERODTUaIiehyO/m8mklvV6bdUwQ37SK4N+XEPC6sCyLQHEFsz+7ot8U75J5V7DpE+eTSqWGfS0iIiIip5IaDZFT5MFNLYSTWZZPK8HvNrEch0jKorkrTcBj4nEZXDChsFfNQCneXXvWjdBqRERERE6OGg2Rk/Rq+neBz4XHZfDMns6e9O/SoJvWSJpIKktJ0MPe1niv2oFSvAtrFw/n1EVERESGjRoNkZN0w+yyfr++vLbkhF8L71pN/Mj2fhPA7eMkgIuIiIiMdmo0RE7CkVCS+9Y0UFseJJ6xWDqpCLcJ9eE04UQWA4ilLRZPKGRDXYS0ZZPO2gSBRKiVxr/+BDsdp+OVv+IOFtK2/hFwHDLRDsDBMExSXR0YhjHCKxUREREZHDUaIkMUCAT5/aYDrDkcJ5W1sGwHx3FwmwYYYBgm2WwGwzAxDBO/x4XjONR1xrnr2pn4A0Ei0TbwHz2hk4BXL14EXhsn//Ll3HTTTad7eSIiIiInRTkaIkP07LPP8tRTTw26zufzcddddzFx4sRhmJWIiIjI6KBGQ6QfqVSKzZs3Y1nWoOpM02T+/Pn4/f6BDxYRERE5C6nREOnHu971Lu6///4h1b75ttu47PLLaW9vH/BYt9vN7bffzrRp04Y0loiIiMhoo2c0RPrRUF/PopoC7r5wDNGURUc8y+RSP2nLYWKpj7pQiop8L4mMRcDjojWaxrId7l/bxI4d2/n9gw/izSvC7Qv0O068o4m9e/cOuakRERERGW3UaIgMoKrAy5sWVB73a0tO8JjFC/vD7EzbAMz/j5WEtjzdb/r3ju+8lXg8fvyTiYiIiJyB1GiIDEJ/6d8FPhemabCopqBXTecrT+GvnKj0bxERETmnqNEQyUEu6d+diQwlAQ9723pfmShZcBWegtITnruwdjH1w70AERERkdNMjYZIDk4m/Tuydx2p9rp+07+tZOxUT1lERERkRKnREBlAeywzqPTvpkiaWPq17XDb1v4JgK49L+HJLyW8azU4DulwMwCGYRCr2w2LtOOUiIiInD3UaIj0w+v1su5wFxYm0EkslSWVPYxt23jdLnweF9lsFtsBwzSxHYd8n5tXjoRZdtFM5s5bQGvdy73O+ep+0p5jXquuLOPmm28+XcsSERERGXbK0RDpx4svvsjPfvazIQX23XnnnSxfvnx4JiYiIiIyyqnRkHPKYBuGoTJNE8MwTstYIiIiIqORbp2Sc8bnP/95vvKVr3A6euuKinK++MUv4Xa/9hYzDIPLL7+c6dOnD/v4IiIiIiNNVzTknHHVlVew5aWV3HZ+JUGPSUcsg8dlksjajCnw0BHP0pW0qMj34DYNLNuhK9V9BSTgNulMZJlU6iOZscnzuQgnLXwug3ufrTs6wt9dwfj7CxqOw4VLl7F29aphX6uIiIjISNMVDTmnLJ1UyGevPkGc9xAcaE9w77N1zP6X35HuaOw3/fvArz9PqG71KRtbREREZDRToyHyd7rTvy2WTyvOOf27a/dLFM28qN/0bz2zISIiIucSNRoiR3Wnf3so8LnxuMyj6d95zKnOozToOZr+naU06GFvW4Jp5YGe2sLpSyicvuSE5y6sXUzHy4+ejmWIiIiIjApqNESOOpn079iRbcTrdvSb/p2Jdp7qKYuIiIiMWmo0RI5afSDM9uY4teWBYxLADerDqeMmgHtcBvbRvRS6dq7CW1RFvH4X3qJKEo17cGybVEc94GAYJpH9mygt8Y3oGkVEREROFzUacs7wen08uq2dIz/Z3u9xsVQrmayN5Rwi6HVjO4BtYTkOLpcb23Eo8HuwHYesZePzeOjc9GSf85im2evfDcPgqjfdcyqXJCIiIjJqaXtbOWe8+OKL/OIXvzgtoX0zZszgn//5n4d9HBEREZHRSo2GnDMsyxpSk+HxeLRjlIiIiMgg6dYpOSesX7+e1y1fTjQWG3TttKlTWPHY4+zcuTOn42fPns3UqVMHPY6IiIjI2USNhpwTtm7dSjQW41u3TMXjMshYNh6XOWDdmoNd/HrDfi659DJamptyGquktIz2tlZdBREREZFzmhoNOae8+bxKHtvRzrgiH3XhFPPH5tMRyzC5LIDbhAMdSXAgmbXpTGS5blYpv97QQmdnJ+Nu/ihjXvdO2tc/ihXvonDmxZgeL45tYyWjZLpaSbfXcfiPXxvpZYqIiIiMuIE/0hU5y9w8t5z6cIqupIXbNJhQ4idt2TRHM0SS3c9wBL0uXj+3vFedp6CcyN515NXMJjh+JunOeiJ7XsJOx8ifOJfSBVeTTURGYkkiIiIio46uaMg5Z8X2dmqK/RQksmxtjNEaTfckgE8s8bP+cBdpy2HNwTCHO5O9assW3dDvuf1Vk4dz6iIiIiJnDDUacs4ZTAJ4NPXaLlXJ5gM0PnVfv+nf6c7cnuMQEREROdup0ZBzypqDYXa1JnJO/95UF+2pTTTsxvQFSYea8JaMpX3DY93p362HwHHANIkd2jJyixMREREZRdRoyDnh1R2gHt7Wjsc0eOlgF7GMxc/XNVPkd5G1HXxuk6ztYNkOD6xrorrQx9bG7kZjxowZbN3yAuEdLww41sxZs4d1LSIiIiJnAgX2yTnhwIED/MPdd9HZ2dn/gY4Dx2xLawCz587jgZ//nI6OjpzGKisrw+VyncRsRURERM58ajREREREROSU061TctaIRCJcvGwp9fX1g66trKzkib8+RVtbG7n03mPHjqW6unoo0xQRERE5J+iKhpw11q9fz+LFi3nrwkqmlPkByFoOblf/Cd3NkQz3rWlk6bKLWLN6VU5juVwuGhoaqKysPOl5i4iIiJyNdEVDzjr/sKSaVQfCzKvOw+s2qQulWDapkNZYhqp8D1saY8ysCtIRz1IccOM4DvetaaSlrY2iucuZ+KbP0PnKU1jJKAXTLsBwe8G2sVIxMpEOTJeb/T//NM3NzWo0RERERE5AyeByVnrvRWOpD6fYVB9lbnUeGcuhwOeiOZrBcaCuM0UyYzOuyNerzl82nmTrYQpnLKNg2mLsTIpk035MX4DiOZdTedGbcYz+r5CIiIiIiK5oyFkq1/Tv1QfCxDNWr9qB0r/zarR9rYiIiMhA1GjIWWkw6d91oWTPn9Oh5gHTv5Oth4Zt3iIiIiJnCzUactbZ3BBl7aGunNO/68Opntp0Vxt2Nk3s0BZ85TV07V0Htk2iaR84Npgu0uGWkVuciIiIyBlCjYacddYe6mJKWYAVO9qJpiwe3tJOWZ6bjOXg85hkLYes7fDw1nYmlvppONpoVFWUs3/VKmIHNg44htvtZsyYMcO9FBEREZEzlra3lbNGNBrlsksupr6+rt/jLMvG5eq9D0JV1RhWPP4EHR0dOeVoVFdXa8cpERERkX6o0RARERERkVNOt07JGefzn/88L61dO+i6gsICvv71b1BQUEAmkxn4+IICCgoKhjJFERERkXOermjIGSWVSuH3+5lc5mdWVXBQtSu2d3DzzTfzyCOP5HS82+1m1apVLF68eChTFRERETmn6YqGnFFe7Ys/tryGsYVeNtRFmFoewO82CXpdeN0GFfleSoNu1h7swmUa+N0mnYksz+2P0NTUhK+kmsl3f4PwjpVYyRj5k+ZjuDw4jo2dTpCNhghUT2XPj97P3r171WiIiIiIDIEaDTljLZtcRH04RX04zfJpxfjdJpbjEEpk2dUcp8DnwnIcFk8sPFqxD4BAxXhK5l1BybwrTnhuKxU/DSsQEREROXup0ZAzVq7p32sOhinP8/SqbX95BZ6CMrKxEHYmSSbcSrBmFnk1czBMN5EctrgVERERkRNToyFnrMGkfx8rG+8i3dmIy58PjkPxnMt70r+tZIx0uBlXoPC4tSIiIiKSGzUackba0xrnvjWNOad/Z20H23513wOD0kU39JzLSicAsDMpXIECvCXVpFoPn/5FiYiIiJxF1GjIGWnDkSjLJhXy6LY2oimLP21uoyzPQ8ay8btNMraDZTn8eUsbE0r8ZGyHRDpLXl4e0bp1bPjEBTmNo1A+ERERkaHR9rZyxnnjrW9gzepV/R6TTmfweNwYhtHzWkFBIffd/1PS6TTpdHrAcUpLS7ngggswTXPAY0VERESkNzUaIiIiIiJyyunWKRl1YrEYX/rSl2htbR1S/fnnn8+HP/zhnI8/9qqHiIiIiJwauqIho86TTz7Jtddey8wx+eT7BtcLH2yP0xZNEwjmkYjHBjze5/fzm1//mje84Q1DnK2IiIiIHI+uaMio8+rzE++6sJIpZQFaYxmmlQdoCKdoiqQpz/MwqyoPt8sg6DHZWBelwOcilrZ4fl+Y/7eqgUQ8xpS7v0lk/wbsVJzAuJmYLnd3+ncmhRUPExw/iwM//zTr1q1ToyEiIiJyiqnRkFHr6hmlVBZ4AXhwUwvhpHWcBPB0TwL48toSwkkLAG9eIVWXvY2qy97W7xjNK7437OsQERERORep0ZBRbcX2dsqCHgp8bjwuk2f2dPakf5cGPbRG0nQmshT6XexuifeqHSj9O1a3Y4RWJSIiInL2U6Mho9pg0793NL/WbLjzS4gd3kqguhYch4qLbutJAHf58jBcLuxsZljmLSIiInKuU6Mho9b6IxEau9I5p3/H0zbtse7GwbEsCmuXUFi7pM95Xf4CvMVVeEuqT/OKRERERM4dajRk1NrTmqAi30NdOMWRziTP7wtjOw5Br0lZ0EPWdshYDmsOdpG2HCaV+lm5PwRAJhljzT/W5DROcXHx8C1CRERE5Byl7W1l1Dlw4ABLLlxMa1v7kOrPP28Bn/r0Z4jFBt7eNhAIcNNNN1FQUDCksURERETk+NRoiIiIiIjIKadbp2TEbN++nd/+9rdks9lB1RmGwS233MLixYuHaWYiIiIicrJ0RUNGzB133MFvfvMbJpTlD6rucHuUZUuXEIrEaGlpHfB4t9vNv3/pC/zjP/7jUKcqIiIiIoOkKxoyYhKJBFdOL+GBt8/ika1tVBV4MYAp5QH2tycYW+gjlrbI87o43JkEoCLfw/9b1cD69jZ279lH1RXvxFtY0e84TU//lEcffVSNhoiIiMhppEZDRoWb55b3pH+X5nkYW+jDchwytsOuljgBj4nfYzKtItirbtz1H6Rr5yqy8TDFc5djevw4toWVjJAONVMy7wqiBzaO0KpEREREzl1qNGTE5ZL+HUlZAOxt7Z3+3bnlaYLVtbhiBcQOb+2V/u0vn0jXnnUjsSQRERGRc54aDRlxg03/PlbJvCvwlY494dcLaxfT8NiQpyYiIiIiQ6RGQ0ZUZzzDfWsac07/TlsO0aNXNwAi+16mY8NjBKprsVNxCmcsxTDdpDobcPnySIebsZJRIHjCOYiIiIjIqadGQ0ZUKGExscRH2rI53JnklfootuOQ73NRme8lYzmkLZtdLXHSWZtpFQEOdCQxC1wA7L/vI5geLwCG6cIwDBzAyWbB6B4jE4+Qt/COEVqhiIiIyLlJjYaMmDlz5vDnP/+Zu3+5c9C1d921lI//8ydoaWkZ8Fi3280b3/jGoUxRRERERIZIORoyotra2gYd2GeaJhUVFRiGMUyzEhEREZGTpSsaMixWrlzJX/7yF05FH1tZWcmHP/xhPB7PKZiZiIiIiJwOuqIhw2LxooWs37CRyRXHT/22HQdzgCsSjuPQEE6SsQ0mT55MMJjX7/HvuPMOPvnJTw55ziIiIiJy6qjRkGExd9ZMpnnaeO9FY2nuypDM2sypzmNfawIHh66kRYHPxYRSP27TIJGxqMj3Uhp0s/ZgF3leFwc6EnzsoX0U1C4hOH5mv+OFtj7LmHw3B/fvPU0rFBEREZH+6NYpGTYV+V7OG1cA4157bVNdhHDSYvm0YvxuE8txiKQsOmJZEmmb9pirJzdjXLGv+583fphspL3f9O9Df/gqzvYVI7FMERERETkONRpyWt12XuVxX58z5sS3RUX2rqN4zuVK/xYRERE5g6jRkNNixfZ2yoIeQoksyaxNazTNrKo85lTn4TYN1h/uIm05FPpd5PvczK1+rfEomLaYwulLTnjuwtrFdG5+6nQsQ0RERERypEZDTouSgJutTTFqywM4ONx2XmWvBPA8rwvSFvOq89lQF2HdoS7Mo8+Kx+t2kGze32/6dybSrv+ZRUREREYR/W4mwyaUyNIWTQNQWxGgtiLQ87WsZZO1wLZtppT5e15PZCxmVQVJZ20au7pr6x75Lt78EgwDTI8PwzTBASud6C4yDBLtjdTW1p6+xYmIiIhIv9RoyLAor6jgwRd28eCm1pM+l52K8fpbbqSioqLf42688caTHktERERETg1tbyvDorm5mXXr1p2ywL4LL7xQSeAiIiIiZxBd0ZCTZlkWzz//PB0dHYOunTx5MgsXLhyGWYmIiIjISFKjISft6aef5pprrhlSrWmafOUrX+GFF1bmdPyFFy7mi1/84pDGEhEREZHTR7dOyUn7zW9+wx133MG6f17Eyv1hppQHCCeyHO5McsmUItpjWSryPWxvijG9MsjhziR7WhOUBNx84s/7KCgqJmUGyJ98Xr/jxOt2kGw5SDKZxOfznZ7FiYiIiMiQ6IqGnDLFATdvOb+SBze19Er/9hWZRFIWeV4XHbEMVQVerp5Rygv7QgDYlkX1Ne9h7HXvo3XVgydMAM/GQuz93w9j2/bILlREREREBqRGQ065oaR/A7S/vAJfec0JE8Drn/jRcExXRERERIaBGg05pXJNAC/wuTjQnuhVW7bohn7PHRgzZTinLiIiIiKnkBoNOWXWHuqisStNvteFg8Pl04p70r93t8R5dXPaiycXsaEuQnss21ObbD1E41P39Zv+nepoHJmFiYiIiMigqdGQU2ZiqZ/Zx9welcrapICMZTOx9LX072jaYnplkPpQCgCX203buofxl40Hx8Hly6Pprz/BwcFKRLqLDIN0qAnDMDBN83QuS0RERESGQI2GnLRXE7sv/d7GQde6XC6++PnPsXJlLtvbTmfx4sXacUpERETkDKDtbeWk2bbN2rVrhxzYN3v27GGYlYiIiIiMJDUakpN4PM4rr7zCUP93mT17NsXFxad2UiIiIiIyaqnRkJzcfNONPPqXFUOunzShhquvvS6nDIxx48bx+c9/HpfLNeTxRERERGRkqdGQnFyw8DyMtv3cPLcM04CuZHcAXyJjM6bQiwFMqwhQF0pRGnTTEctSmuemIZzmyV0dPLkngmVD0eT5/Y6TCreSaD3Mpk2bWLBgwelZnIiIiIiccnoYXHI2a0yQ9ywb2/PvD25qwUxaLKopwO82sRwHr9ukuSvNmEIviycWAtASTfPknhjlS29h2rvu7Tf921tcxeYvXkM6nR6pZYqIiIjIKaBGQ4ZsKAngA6V/t28Y+u1ZIiIiIjJ6qNGQQcs1/bvQ76I8z9OrdqD077wJc4Zz6iIiIiJymqjRkEFZfSCcc/r39qYYhzpThBLdCeDpcMuA6d/pTqV/i4iIiJwN1GhIzmwHlk0uYtnkoj5fKw64mVEZ7PXa4omFpLI2Lx/pAhyi+zfiWFnY+ASuQCGta/8EOGSinRg4gIkV7wJQ+reIiIjIGU6NhuSkqKiEXz77Cr9c3zyk+vKyMqbNmIllZY++0nnMyV/9gw1FQSYsvo25c+eezHRFREREZIRpe1vJyf79+3nmmWeGHNi3ZMkS5s2bd4pnJSIiIiKjlRoN6SWVStHQ0DDoury8PCorj78LlYiIiIice9RoSC+106ayd9/+IdV+//vfp6OjI6cMjOLiYt773vdSUFAwpLFEREREZHRToyG9GIbB2xZV4jIM5lbn4XEZZCyHtGWTsRzGFHpxGQZNkTTJjI3tOCSzNt97rp6LL76YF198kbyKmn7HcGyLeHsDv/nNb7j99ttP08pERERE5HTSw+DSx8LxBdyxqGpQNb94uZ1MJkPRlAXM/uyKftO/i+dczpp/nEA8Hh+mFYiIiIjISFOjIf16cFML4aTF8mnF+N0mluMQSVk0d6Up8LlYPLGwT81A6d+RvetGYCUiIiIicjqp0ZDjejX9u8DnxuMyeWZPZ0/6d2nQQ2skTWciy+oDYSoKvL1qB0r/Lpi2eDinLiIiIiKjgBoNOa4bZpf1+/XltSUn/Fp412riR7afMAE8pfRvERERkbOeGg3pY19bgvvWNFJbHiCesVg6qQi3aVAfThFOZDGAWNpi8YRCtjfFONiZxLJtAKJ1u2h98fdYyShdu1bjzi8ltGMlODaZcCvgoO0HRERERM5+ajSkl2AgwA9fbKCyKEAm272rlGXbuA0DTBMDh6xlYRomhmngdbtwHIdQPM2CBQto7wyTOrL2tRO2vfZHzzHjjJ9/HhdffPFpW5eIiIiInF7a3lZ6eeyxx1i/fv2g6/Ly8rj77rspK+v/lisREREROTeo0ThHJZPJQdeYponX6x34QBERERE55+nWqXPQu971D9x//08HXWcYBl/72tcYO3YsXV1dAx7v9/t5wxveQGlp6RBmKSIiIiJnMjUa56CXVq9m4fh83rmkmg1HIqSyNmOLfAAU+l3k+Vzsa03gc5uYpgHApFI///HkIR566CHWrFmD6XKDYfQ7jp3NcOTIEb7whS8M+5pEREREZHRRo3GOWlhTwJsWVPCmBRU51/xmYyupTAaXx8eFP9rfb/p3ybwr2Pq5y3O68iEiIiIiZx81GtJv+nfGcigNunsngBvGgOnfXXvWDXjFQ0RERETOXmo0zmG5pH8bBmRth71tiV61A6V/F9Yq/VtERETkXKZG4xw2nOnf6XAzViZ1qqcsIiIiImcINRrnqMZwalDp35bjkMxYGICVTtL5ylNYiQjxuh14CiuI1+/EcWxSHQ0YjgOmSby9caSXKSIiIiIjRI3GOcjn9/PXLSEOd1kAxNNZ0plD2LaD1+PC63aRyWQAMEwXtgNBn4tt9RFunD+G0rJy2p75vwHHyQ8GlP4tIiIico5SYN856K9//St/+tOfGOx/eo/Hw7vf/W7mz58/TDMTERERkbOFGg0RERERETnldOvUWer//u//+PQn/4VsNjuoOsMweO/73s/NN99Mc3PzgMe7XP+/vTsPsqs67Dz+u/et/bbeW62lpZbULVkbSIBsdssYYgcM2CwJmwmJKxBcxCmmKplxwNsU8SROaobMmJiEMC4cw2TBRFhGDjarQQjQhkBIaBfqXb2+9/rt7947f7RoqQPqfr283vT9VLmq9fqee87pv/zjvHt/Ll166aW0fwMAAGAITjRmqVtuuUUv/OIZ3XvJvFGN+7d3TsgOz9XBw0cKHnPbbbfpySefHO0SAQAAMItxojGLrZwb0r2Xztfe9oSiqYGTjdVzgzrak1Z1yKMT8ZyqQx61x7KSpPKAWy3RjF7pGHhIfPUDm5T48D3lkzGVrrhEhtsnOZasdEK56AmVrrxMB//hPp3o7JqyPQIAAGB6ImicBVbWBgfbv2vCXlUGPMpZjtwuQx90JAfbvxdXlgwZlzj2rgILViif6FOmq2lI+7excI0Szfvk8ock5aZmYwAAAJi2CBqzXCHt36YpWY6j99sTQ8aWrd4gf039Ge8daVyvtl8/VuQdAAAAYCYiaMxy42n/jh/Zpd53Xxy2/TufikvyT/CqAQAAMNMRNGaxvlRuVO3ffem84pm8JJ8kqf/ILpkenzI9rfKW1yq7rVNybKU7j0sn27/T7UdkzF85pfsEAADA9EPQmKXcbrf2tSX0atCjVw/1KZbO629fbZbtOPK4TAU8LtmOLcuRbHvgq1Nlfre2N8W1aGm1AsGg2l98vKC51q69tci7AQAAwExD0Jil7rnnHmWzWeVyAw9qh89wneM4Mgxj8N9XrjF066236rrrrlMikTjDqFNcLpdKS0snYskAAACYRejRAAAAADDhONGYob7//e/ryX96QhpHTAyGQvrmAw9q7ty5Iyy7Q/sAACIeSURBVF67atUqhcNnOhcBAAAAhuJEY4ZqXLJYdqxdn1925rdGDSeVs/XTHScGHuouwLrzL9DO7dvGNBcAAADOPpxozFCO4+jqlZX65lWLtGlPl6qCHrXHs1peE1DWsrWkskTHTmsArwy61ZPMy+c25Xeb8roN/XR7hxbe8N/kSLJScUUa1stwe+U4tuxMUrl4lyKNn1Hr8z9Sy5E3pnrLAAAAmEHMqV4Axu/a1VW6aHGpLNvR1mMxhX1uxdOWykoGwkV3IqcdTf2Kpy0trwloUcWp3ot8Kq5I46cVXnq+rGxSqbaDMj1ela64RNUX3qh8Ki5f1aIp3B0AAABmIk40ZonNe7tVV+ZXOJXXnraEOvuzgw3gi8r92n48pmTO0s6muLxuQ5VBjyQpvPR8RZZ95oz3jTSuV3Tva5O1DQAAAMwSBI1ZYrQN4G2xjCQp2bJfme7mYdu/c7Guoq0bAAAAsxNBYwZr6csU1Pw9r9SnoNeljnhWPcmcFlX41RodCBrpE8dUUrtE/Ud3yVdZp+gHWyXHVqrjsGQ7MkxTqfZD8g+/FAAAAGAIgsYMZRiGtjXFVeI19UHHQLHev+46oWTOViZnqSrklcdlyLKdgf85kmU7mhP2SpJ6kjnJMNW55V8Kmu9TF15UtL0AAABg9uH1tjPUww8/rKee/KlGLNJwHOVyeXm8no/9KhyO6Jt//kBBPRoNDQ3y+XxjXC0AAADONgQNAAAAABOOr05Nc93d3fr61+9Vd9foH8heVL9YP/rRj9Te3l7Q9TU1NfL7eRoDAAAA48eJxjT385//XNdff72uaCxTyOcqeNzx3ozeaenX+Res144CG71r5tSqpblJbjf5EwAAAOPD/6Oc5mzbliT97Q2Neu1IVMmMpXPnh+R1GerPWqoOeVURcOutD2NymYZ6k3mVB9zyu019+fE9OnzkqCrO+23N2XCnontfk5VOKLj4XJkuz0ADeDalfH+vcvEutb/wuOLxuMrLy0dYFQAAADA8gsYMcv3qKj29+4S2HotpQ0OZqoNeWbajI91p2Y4UTeZVFfToksWl2nY8NjguuGiNylZdrrJVl5/x3t3bn1P7C49PxjYAAABwFiBozCCD7d++vPa0J9QZz2pFbVCrak+2fzfFlMxaevNYVG2x7JCx3Ts2yxOuVD7RJzuXVi7aqUDdCgXrVskw3Uq1HZqiXQEAAGA2ImjMICO2fzec+srT6Sca6a7jcvlDcvlDkuOobNVnB9u/rXRC2WiHTF+gaOsGAADA2YegMUNsOx5Tc19WjdUlSmY/oQXcGGgBX18X0d6OhHY2xwfHWsm4TI9f6Y6j8tcsVqr1kBzHVrJlv+TYMkyX0p0fTuHuAAAAMNsQNGaI1w5HVVri1rPvJdSftfTMu52qCHiUtxx53YbytqO87eiZ3Z2qK/drX/tAW3hVZYUO7XhOPTueG3GOQDCoQICTDQAAAIwfr7ed5pqbm3Xdl65RV2fnGa9x5CibzcrnHdrcXb94sZ7653/RBx98UNBcDQ0Nqq+vH89yAQAAAEkEDQAAAABFwFenpgHLsvTAAw+opaVl1GNLS0v17W9/WxUVFSokM7pcLpmmOZZlAgAAAAXjRGMa2L17t9auXaslVQHVhL0Fj7Md6e1jfbr22mu1adOmgsZUVFbp/T3vqba2dqzLBQAAAEbEicY0kMvlJEn3f3a+5ka8Mg1DHpeheNrSgc6kbllXo6M9aVWHPDoRz6ky6FZbLCvLdnTjj/t04OAhlcxt0Pyr71Ps4DbZ2aQCC1bIcHkkx5adTSufjMr0BdSy6WEdPHiQoAEAAICiImhMI8trAlpVG9TTu08omrK0oaFMDVUl6k3l5TIN7etIyjQklymtXxgZMjZQt0rVF9+s6otvPuP9U+2H1LLp4SLvAgAAACBoTDuFtH+3xbLKWXEFva4hY0dq/+7/8L0p2hUAAADONgSNaWY07d+ny8W6lO1tG7b92+UPFWPJAAAAwMcQNKaRd1v79eaxWMHt3z3J/OBYd6BUczZ89WP3NH0BeUqr5SmtVuzAW5O5HQAAAJzFCBrTyL72pJZWlei1w32KpS29cKBXNSGvspatEo9LOctW3nL00oE+La0qUS5vS5KCgRLt37lZb92zuKB5yss/+VQEAAAAmCi83nYa6Ovr09pzz1FLa+uw1zm2I8M0hnxWGonoyaf+n7q7u2VZ1ohz1dbW6sorr5RhGCNeCwAAAIwVQQMAAADAhOOrU5No48aNeuONN0Y9LhAI6O6779a8efOKsCoAAABg4nGiMYnKSiNKJRNaUB4c1bgjnXF99atf1a9ffEnpdHrE6yORiJ7992e0du3aMa4UAAAAGB9ONCZROp3Rd35rke76zFy9eKBX/VlLn6oJqCeZ0+KKErlN6WjPQJBI521l844+v6xc6x9+RwcOHNCJzi4tuO6/DD+J4+j4M3+prVu3EjQAAAAwZQgaU6Q3lVM0Zclda2hhmV9Zy1Z30lI8Y8k0pKqgR6vnDu29CNUu1vyr71PnG08rn4yqbPUGmR6/HNuSlY4r29eh8jVXqPnZv5miXQEAAAADCBpToND276wVV8T38fZvX1WdXImwEsf3DGn/9lctUuzgtinaFQAAAHAKQWMKjLX9W5LcoXIlju9RydxGyXFUffFNgw3gLl9QhsslHrsBAADAVCNoTLKj3Sk9/mZbwe3fsbSlvGUPji9dfpFKl1/0sfu6M6Xyls2Rr3L+ZG4HAAAA+EQEjUl2IpHTxUvKtLc9od5UXjua4ppb6lM2byvgdSmTt5WzHL3T0q8Vc4LKWba642kt83gUa/pA2//4U3LsgeBhmK6TxXuOHNs+eZLhyLEthUKhYdcBAAAAFBOvt51En77gfG3bsXPU4wzD0KOPPqp0Ol3w623vuOMOwgYAAACmDEFjEtm2rZ6enlGP8/l8CofDRVgRAAAAUBx8dWqCbdmyRRs3bhz1A9lut1u333671qxZU6SVAQAAAJOHE40JdunFF2nL1jfVOOfUCYTtODINY9hxBzviuvbaa9XZ3aO+vr4R5/H7/PrrH/ylrrzyyvEuGQAAAJhwnGhMsHQ6pa9eMEeXLS3T4gq/Yum8DMNQeyyri+oj6kzkNCfk0XttCX1qTkAt0axylq2HX21WS0uLdu7cqdorfl8yzGHn6XjlJ9q4cSNBAwAAANMSQaNIrjnZlfH07hOKpixtaChTznIU9rnU0Z+TI+nt43HNL/XpovpSPfJ66+DXrRbf/tCI7d+pw2/RlwEAAIBpi6BRZDedW/OJn6+qDZ5xDO3fAAAAmOkIGkWyeW+3KoMe9aXySudtdcazWlEb1KraoNymoe1NMeUsR1VBjzyuoV+Tqjz/6mHvHWlcX8ylAwAAAONG0CiCjnhWbbGsQj6XHMfRZ5eWDbZ/HziR1EfPhV9cX6q9HQnlbUupnDU4Prp/q5JNe1Uyt1F2JqnI8gtlmG5lelvl8gWVjXbIyo7cpwEAAABMFYJGEXjd5uAzGpKUzg00eWfzthaW+wc/j2cs1ZX5lc3bSmZteV0uSdKxH98vx7YkRzI9XhmGKcmRlc0MDDSkVHer/P7rJm1PAAAAwGgQNCZYdc0c/eL53frF+92jHnvXb63W1VdfrWg0OuK1Pp9Pf/iHfziWJQIAAABFR4/GBOvp6dHbb789psK+iy66SKFQqEgrAwAAACYPJxpj0NzcrGeeeUa5XG7UYz//+c9r7dq1E78oAAAAYBrhRGMM7rvvPj3yyCOKlHgHP3McR8YI7d+xVFZrz1mjc9edp+aW1hHncZmm7rnnbt1www3jXjMAAAAwmTjRGIP+/n6try/Txt9fqXda4nKbhvozluZGfHK7DAU8pna19Cvid+t4b1qLK/xatyCs//78Mf3yw2498cQTCjesl7dszrDz9L3/G2WyWYIGAAAAZhyCxhh9dHaxdn54sP27OuSV2zQUz1iaE/aqI56VyzRkOafGfHR8tOTOv1Liw/eGbf8++NgfK291TcHuAAAAgPEhaEyAsbR/9+39jUKLzqH9GwAAALMSQWMcCm3/rgx65DGHPr9RtvJyBeYvP+O9I43r1fHKT4q9BQAAAKAoCBpjFEvnR9X+3dmfUyyd10d/8v6juxXd9/qw7d/5ZEwqnbo9AgAAAGNF0BijkM+tP/hM7cc+L/W7tKy6ZMhnF9SFlcnbevlgr4yTT3e0PPe3Mn0lkuPI5Quo7VePypFkpfolOZJhKNl6WJ7LL52E3QAAAAATi6AxBqWlpdr+YZ8WfHfrqMdecN55uuHmm9XaOvLrbU3zXN11111jWCEAAAAwtejRGIOuri798pe/HFNh32WXXabGxsYirAoAAACYPggaw3j33Xe1Z8+eUY3x+Xy66qqrFIlEirQqAAAAYPojaJyBbdsqLytVLN4/6rEPPvigqqqqtGvXroKuv+qqq3T77bePeh4AAABguiJonEE+n5fH49HXL5mnS5ZE5DENed2mKgJuNfVlVFfmk2VL/VlLyayl3lRelQGP/vyXx/W562/TY489Jk+kWoE59cPO09+8X2Uhvzo72idnYwAAAMAk4GHwETTWlGhDQ/mQz5ZWBc54vc898Lpbx3G06JbvqurT16vzjafP2ACebNqn6EuPFnsbAAAAwKQiaBTo6d2diqby2tBQJr/blOU4imcsdcSzimcsLSj16fy68MfGde/YLF9V3RkbwHt3/WoKdgMAAAAUF0GjAJv3dquuzKewz6U97Ql1xnNaURvQqtqgFpX7tb0prp5kXm8eiymTs4aMrTz/6mHv7auqU7qYiwcAAACmAEGjAFevrBz29xsaygZ/9nlcgz8nWw+o7YXHh23/zsY6i7VsAAAAYMoQNEZwqCulx99sU2N1iZJZWxfWR+Q2DbVEM4qm8jIMKZG1tb4urK0fDj3R6Hpro7zltQPt3yURndj6tOQ4yid6T15hKN1xVCG3OTWbAwAAAIqEoHEGhmHI7/PpkddaVR0pUc6yZdsDD3m7XaZsRzIcW5bjyGW65MiRx2WqK57Wl8vKdP/99+utbdulwXd6nfYFqYD31M81y3Tdl66ZzK0BAAAARcfrbYexefNm7dy5c1RjfD6fbrvtNs2fP79IqwIAAACmv7M+aPT19RVcrPcR0zR1/vnnKxQKFWlVAAAAwMx21geNz152qX7z+pZRj7v5ppt079e/rl/9qrDX065YsUJ33nnnqOcBAAAAZqKzPmh8qnGpVpRE9dsrKlXqdylnO4qnLXldhiqCHpWVuPVOS79KPKay+YE/1c/e7ZTmrlbbiW4dPLhfoTmLhp0j1dMhK5tST0+PysvLh70WAAAAmA14GFxSbdirL6068ytsl9cMbQJ/9XCfuiQlUynNv+YbWviVPxu2/Vu2rQ/+9+8pnaYxAwAAAGcHgsZphmv/zlmOqoKeMbV/t7/ykynYDQAAADB1CBonFdr+vbM5rng6L0VOjR2p/Tswb1mRVw8AAABMLwSNk0bT/h32u5U5+XOmu3nE9u9Md3PxFg4AAABMQwQNSa3RTMHt3y8c7B1yohE/uE1WJqnovi1yh8rV+/6rkuMoF+2U5EiGqWxP65TuDwAAAJhsZ33Q8Pn9+o99fTrSZymZ7VTecpS3LJV43XIkGc7Av02XS44MBb0uvd8a01UL/fr93/uqfvrUP0t9BwduFjvDJC7pc9dep9ra2snaFgAAADClzvrX2z7//PPatGmTRvNnME1Tt9xyiy655JIirgwAAACYuWZ90HAcR0ePHlU2mx3T+KVLl8rj8UzwqgAAAIDZbdZ/der73/++HnzwwTGPv/jCC3XbHXfIsqwRr62pqdHNN98sl8s15vkAAACA2WDWB42jR49qXplfj9ywVJKUzdvyus2Cxv5oS6u2vPuu3rjvPrl9gWGvzWeSkqT6+npdeOGF41s0AAAAMMPN+qAhSXMjfoV8LrXFsupO5lTicSnkNZXJO2qJZlRf4VcsndfK2qCqQx55XabePh6Tz2XItm2Vr/2CPvXH/3fY9u/A3GXa+V8/o3g8PtXbBQAAAKZcYf9pfxZYWRvU55eVyzQMnYhntbDcrzVzg7pqeblqI16Vlrh1rCeto91phXwuXdFYrkUVfhmGIRnGYPu3r3KBEsf3qGfnL5XpbpKvYr4iDZ9W/7HdU71FAAAAYNo4K040PjKa9u+If+ifZqT271D9ucVcOgAAADCjnFVBYzTt36fLxXtGbP+2kv1FWDEAAAAwM501QWPrsaj2ticLav/e35k87UTDUbanWZmuZiWa9kqOrfiRnTLdXuVTccm2ZKUTykZPTOn+AAAAgOlk1gcNt9utHcf79HevG5Kkn+/pViZvy37FUdDrku1ILlOybMmWI8eWykrcylmO9rQnFAyWKpXpV9+WJ0eca9HiJVq9enWxtwQAAABMe7M+aHzta19TX1/fYGFf6SjGfk7SDTfcoDvuuKMoawMAAABmq1nfDA4AAABg8s2aE41f//rXuuO2W5VMpUY1buWKFXrhpZf16quvKlXA2HA4rCuuuEJer3esSwUAAABmvVkTNLZs2aITXd36zhcWFTxmR3O/frF9h37wgx/ooYceKnjcE088oTvvvHMsywQAAADOCrMmaEjSvPKA7r54nv7hjVYtKPPJkbS6Nii3y1DAY2pXS7/ml/oUTeW1Zm5QS6pK9Iv3u9Xb26uSynla/d0X1fX2s7KSMZWuvFSG2yfZtqx0v7LREypbdbl23H+Ouru7p3qrAAAAwLQ2q4LGRyqCHrXFstrQUCa3aciyHbXGBh4GP9aTVqnfrRKva8gYl8en6L7XFZi3TPlEn9InjikX7VSgboWCdasUrFupRPM+uTx8ZQoAAAAYyawLGoW0f0fTeW09FtXx3vSQsSO1f0ca1xdz6QAAAMCsMeuCxmjavxNZe8jvovu3Ktm0d9gGcMe2BQAAAGB4sy5ojKYBfFdzfHBcqqdN8UPbBr421dUkb3mtMn3tkmMr3dUkObYMw1Q+M7q3WgEAAABno1kTNNxut1p7k/rh622KpfPK5G05tqMSrymPy6VULi+XYchxJFtSecCjo11JSdKaNWvk5LNqeuavRp7H46H9GwAAABjBrCnsO3jwoB566CElk8kzXuM4jgzDGPLZypUr9b3vfU+pVEq5XG7Eebxer/x+/7jXCwAAAMxmsyZoAAAAAJg+ZsxXp9555x1d/cUvKBqLjWl8RXm5/v6xf1QkEhnxWq/Xq3Xr1snj8YxpLgAAAOBsN2OCxvbt29XWcULf/WK9zKHfflLOsuVxmWccG0tb+puXm3TNNdcUPN8DDzwwqrZwAAAAAKfMmKDxkfKAWx6XodqwVyf6cwp5TVWHvIpn8lpWHdCR7rTmRbxKZC0FvS4d70tLp3057JzvPK++Pa/KSscVbvyMTLdXjm3LziSUi3cpsuxCHfg/d6mtrW3qNgkAAADMcDMuaNx0bvXgz0/v7tSJeFYLy/0qL/ErkbUU8Jra35lUznJU6nfrovpSxdL5wTGp9sMKN1ygfKJPViqm9Mn27486MxLN++QNV0zF1gAAAIBZY8YFDWmg/bsy6FHY55LHZejlg32D7d8VAY86+3OSHHndhva0JbSw3Dc4tmLdF2V6fGe8d6RxvVomYQ8AAADAbDYjg8Zo2r8lDTnRiB14S6m2g8O2f1uU8gEAAADjMiODxmjav7d+GFN18NQ2U+2HZaUTih/eIV/lAvXte12ybaU6jkiOI8M0lenrmMLdAQAAADPfjAsaf/nC8cG3Tr3fnlAiY+lnuztVEXArbznyekzlLUeW7ehnuzu1oNSrrsSpIr5jTz1Y0DyLFy8uxvIBAACAs8KMKezbt2+fbvmdmxXt6xv2OtuxJUmmMfR1t5VVVfr7x/5R4XB4xLm8Xq/q6+s/1iIOAAAAoDAzJmgAAAAAmDmm3VencrmcfvuLX9SxI4dHNS4ciejHT/xES5YsUWdn54jXG4ah+vp6meaZi/4AAAAAjM20CxqHDx/Wiy+9pN9aXq5l1SWSpLztyP2f68BP40h65PX3tGnTJj30F3+hbCZT0Fy33nqbnnrqyYlYNgAAAIDTTLug8ZFz5gVVG/ZqSVWJAh5TLdGsVswJyO0yFPCY2tXSr4Vlfr3b1i/HkQI+t6LRqLKZjBb9zreU6++Vle5XaPHaU+3f2aRy/b0KL1mnpo1/o/0HD071NgEAAIBZadoGjUuXlGr9woie3t2paCqvDQ1lcpuGLNtRaywrSTrcndLiCr/WLQjrm5s/HBwbWX6xQvXnDHv/rtqNUoqgAQAAABTDtA0aW4/FZDsasf07nbd1qHNowV503xbZ2ZTyiT7ZubRy0U4F6lYoWLdKhulWonnf1GwKAAAAOEtM26BxUX1E6xdGzvj7/9z+fTpXIKzE8T0qmdsoOY6qL75pSPu34XIpn+iTeA4cAAAAKIppGzT2tCX0bmuioPbvnS39su1Tb+nNx7rlCpUp1XZIvppFSjTvk2PbSrUekBxbMl3KRjukcpIGAAAAUAzTNmjs60hqZW1QvzkcVSyd1wsHelUd8ihn2fJ7XMpZtvKWo5cO9GpxhV+pbF6hUEiS1LTxBwXNMe/a64q5BQAAAOCsNe0K+1KplNaes0ZHP/zwzBc5kiNnSHN3OBTSsz/fpDlz5qilpWXEeUzT1Lp16wpqCgcAAAAwOtMuaAAAAACY+absq1Pf+ta39MpLL45qjNfn04Pf+rY2bNigdDpd0Bi/3z/k5AMAAABA8U3ZiYbX61FdxK1z5w08V+Eapvn7I8/u6dKdd/2Btu/cpd27dhY0z+UbPqdXX35pXGsFAAAAMDpTdqJh246+sLxCV6+qUM5ydKI/p8qAW/NLfR9r/+5MZNWVyOtIT1aWZWn3rp2q/PT1Kj/3KsUOvi07k1RgwQoZbo9k27JzaeWTUaXbDuntt7ZM1RYBAACAs9aUvnVqUYVf5y0ID7Z/r5wT+MT275qQR9euqtRjb54YHFu2eoOqL/yKqi/8yhnv3/brf1TqAEEDAAAAmGxT/nrbzXu7VVfmU9jn0p72hDrjucEG8EXlfm1viutEf07vtvYrlbOGjO3esVmecOUZG8DTncenaFcAAADA2W3Kg8bVKyuH/f3pDeAlHtfgz6m2Q/KWzZHLH5IcR2WrPjvY/m2lE8pGO2R6/cVaNgAAAIBhTGnQONKd0uNvthXU/r2tKa70aScavop5qr7kdz92T8PtkztUIXeoQj07/2MytwMAAADgpCkNGh3xrD69KKw9bQn1pfLa1hTT3IhX2byjgNdUNu8oZ9va1RzX8poStUXTMgxDoXBER598QEeffGDEOebOXzAJOwEAAABwuikLGueuWa1n39mtZ/d0j2rcOeeco/vvv1979uwp6Pp169aNZXkAAAAAxmHKejRs21Zvb++oxng8HkUikSKtCAAAAMBEmZATjc7OTv3whz9UPB6fiNt9okgkom984xtFuz8AAACAiTMhJxqPPvqo7r33XjXOCU/EmiRJnfGMYhlL0kBjuO048vt8cns8H7u2sbFRb219Q55P+B0AAACAyTchJxrpdFpBv0e3ra1QecAjr9tQbdgr0zDUk8wp4h94Le2csFevH4nqgrqwDEPaciSm8+pCaurLqKGqRGGfSy3RjBaW+fWVJ/YrW9mo6otuGHbu/g/f0663Nqq5uVmLFy+eiO0AAAAAGKcJfRj87ovnnfF3T+/u1N72pDY0lMnvNmU5ji5aHFFHPKtSv1uW7WhhuV8Lywe6L9ymodKVl2neF/5InW88rXwyqrLVG2R6/HJsS1Y6rmxfh4J1q9T91saJ3AYAAACAcZqUt04V0v7dFstK6lfA41JDdcng2O4dm+WrqpMrEVbi+J4h7d/+qkU68fo/T8YWAAAAAIzCpASN0bR/ny7T0ypfxbzh2799gSKsGAAAAMB4FD1obD0W1d72ZEHt3ztb+jU34lVD1cCJhq98ruZe+bWPLzpTKm/ZHPkq5yvT1VzsLQAAAAAYpQkLGol0Tpve7z75jqih5oS9erd1oP37rQ9PtX+XeE1lLUd5y9aOpriWVZeoqTetDzqSsm1bbb/6e3W8/GNJkuOYMl2mTMOQ49jSyZdl5bNpSVIwGJyorQAAAAAYpwkJGqtWrZLb7dYf/euBibjdEHYuK0lyuUzd87U/0tKlSz92TUNDg2pqaiZ8bgAAAABjM2HN4KlUSplMZiJu9Yl8Pp9KSkpGvhAAAADAlBvXicYLL7ygXbt2jXl8ZWWlbr/9dvl8vvEsAwAAAMA0M+YTDdu2FQoGlUqnVRrwjnp8Nm8rlc2rblG9fD7/iNdXV1fp33/2tObMmTOW5QIAAACYRGM+0bBtW6l0Wv/rK0v1O2tr9E5Lv7wuQ1nLUcTvUncir3kRrxJZS0GvSwe7UvK5DUX8bq2qDSqWzmvF/9im1s4e1Vx6y7Bz5ft7dWjLv2nbtm360pe+NNYlAwAAAJgkE/bWqbXzQ3p6d6eiqbw2NJRpXsQry3GUsx3t70zKNAwFvS6tqh36dqjwkvNU/7vfGb79e+Eadb7xb5qgx0kAAAAAFNmEBY3RtH+bhqGF5aeeyxip/Tu6/42JWiYAAACASTBhQWO07d+xdH7w58rzrx52bGjxujGvCwAAAMDkG3fQONSV0uNvto3Y/D0v4lXQ61JHf1Y1Ia8OdyUlSflEn9peeFwlcxtlZ5KKLL9QhulWprdVLl9Q2WiH7FzxXpsLAAAAYOKNO2iks7bOmReSJDX3ZfRP2zpkO47Cfpdqw17lLEeZvK2WvowyeVtr5oXUFsuqKzFwotF/9B3Z8S7Z1sC/TbdHhmHKtvOSo4FnNTIpSZLfP/LbqQAAAABMvTG/3tZxHC2sW6DmltZxLeDOO+8sqNW7qqpKf/Inf0LYAAAAAGaAcTWDJxIJHT9+fMyTl5eXq7a2dszjAQAAAExP4woaAAAAAPBJCnpGY9++ffqzP/1TJRLxUd28oXG57rvvPn3zm3+u/mRyxOvDwaD++q9/oBUrVoxqHgAAAADTS0FBY9OmTfrFc8/py2uGf4Xt6Y50p/XyK79ROBzW5s3PqfIzXx5xTPcrG3X55ZcRNAAAAIAZrqCgYdu2KkN+PXLTMkka0gDud5uyHEfxjKWOeFZXNJZLkl47EtUtT+yVZVkKVM7TsrsfGbb9u3zNFdq17zXZtl283QIAAACYFKN6ve3mvd2qDHoU9rnkcRl6+WDfYPt3RcCjzv6cnv+gR9Uhj452p4aMHan9O3Zw24RuDAAAAMDUGVXQGE37dyI79GRipPbvSOP60SwFAAAAwDQ2qqCx9VhUe9uTI7aAr68La1fz0AfHo/u3Ktm0d/gG8JOlfQAAAABmtoKChsfjUXd/Wv/z1VbF03llLVuOIwW8LrlMQ5mcJZdpynYc2Y6j0hKPmnoGvjrl8/mU7G7V8X/5nux8VnIcuXwBtf3H38lxHFmZhOQ4kmEom4jK4/EUdcMAAAAAiq+goHHjjTdq//79SiQSBd+4XlJjY6PuuOMO9fT0KFnA622Dwct14403FjwHAAAAgOmJwj4AAAAAE86c6gUAAAAAmH0IGgAAAAAmHEEDAAAAwIQjaAAAAACYcAQNAAAAABOOoAEAAABgwhE0AAAAAEw4ggYAAACACUfQAAAAADDhCBoAAAAAJtz/BxjyENZ6fBOLAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 800x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlc9JREFUeJzs3Xd8HMX9P/7X7J7u1Lt06sWSm1zBDVNsiG1MMz9a4GMnARtCQgKJgwMkDgRDKKYEQhIcSEgIJB9aqN/kE0rAmNAMNja2Me4qli2r2ur9duf3x9yd7qSTdCfLlhdez8fDCdrbMjs7M/ve2d1ZIaWUICIiIiKyIG2kE0BERERENFQMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiWjEnXnmmTjzzDNHOhlD8t5770EIgffee2+kk0JE9LXEYJboKDz11FMQQuCzzz7zm97Y2IiZM2ciPDwcb775JgDgjjvugBACmqbhwIEDfdbV1NSEiIgICCFwww03HJf0H2vV1dW46aabMG7cOERGRiIqKgrTpk3D3XffjYaGhuOWjnvvvRevvfbacdveiaqsrAzLli1DQUEBwsPDkZaWhjlz5mDVqlV+85155pkQQmD06NEB1/P2229DCAEhBF566SW/37744gtcdtllyM3NRXh4ODIzM7FgwQL8/ve/DyqN//rXvzB37lykpqYiMjISo0aNwuWXX+6tR1bjySchBGw2GxITEzFt2jQsX74cO3bsGPJ629racMcdd5wwF1Eff/wx7rjjjuNar4k8GMwSDbOmpiacffbZ2LZtG1599VWcc845fr87HA4899xzfZZ75ZVXjlcSj4uNGzdi4sSJWLNmDc444ww8/PDDeOihh3DSSSfhvvvuw+WXX37c0nIsg9k5c+agvb0dc+bMOSbrHy779u3DSSedhLfeeguLFy/Go48+iuuvvx5JSUm4//77+8wfHh6Offv2YcOGDX1+e+aZZxAeHt5n+scff4zp06dj69atuPbaa/Hoo4/iu9/9LjRNw29/+9tB0/jrX/8aF154IYQQWLlyJX7zm9/g0ksvxd69e/H8888PbcdPAAsWLMDf//53/PWvf8WvfvUrnHzyyXj66acxZcoUPPzww0NaZ1tbG+68884TKpi98847GczSiLCNdAKIvkqam5uxcOFCbNmyBa+88grOPffcPvOcd955eO6553DLLbf4TX/22Wdx/vnn4+WXXz5eyT1mGhoacPHFF0PXdXz++ecYN26c3+/33HMPnnjiiRFK3fDo6OiA3W6HpmkBA7sTzW9+8xu0tLRgy5YtyM3N9futpqamz/wFBQVwuVx47rnnMHPmTO/0jo4OvPrqqwHL6j333IO4uDhs3LgR8fHxg27Dl8vlwl133YUFCxbgP//5T5/fB1v+RDZmzBh8+9vf9pt23333YdGiRfjpT3+KcePG4bzzzhuh1BFZH3tmiYZJS0sLzjnnHGzevBkvv/wyzj///IDzLVmyBFu2bMGuXbu806qqqvDuu+9iyZIlAZfp7OzEqlWrUFhYCIfDgezsbNxyyy3o7Oz0m++vf/0rvvGNbyA1NRUOhwNFRUV47LHH+qwvLy8PF1xwAT788EPv4xCjRo3C3/72N7/5uru7ceedd2L06NEIDw9HUlISTj/9dLz99tsD5sUf//hHVFRU4OGHH+4TyAKA0+nEbbfd1u/ynsc3ysrK/KYHej517969uPTSS5GWlobw8HBkZWXhf/7nf9DY2AhA3eZtbW3F008/7b3du3TpUu/yFRUVuPrqq+F0OuFwODBhwgQ8+eSTAbf7/PPP47bbbkNmZiYiIyPR1NQUME1nnnkmJk6ciB07duCss85CZGQkMjMz8cADD/TZ1/379+PCCy9EVFQUUlNTceONN+Ktt94a9udwi4uLkZWV1SeQBYDU1NSAyyxevBgvvPACTNP0TvvXv/6Ftra2gD3rxcXFmDBhQp9AdqBteNTV1aGpqQmnnXZawN99l/fk+QsvvIBf/OIXSEtLQ1RUFC688MI+j/B88MEH+OY3v4mcnBxv3bnxxhvR3t7uN9/SpUsRHR2N8vJyXHDBBYiOjkZmZibWrFkDQD0+8Y1vfANRUVHIzc3Fs88+O+D+DCYpKQnPP/88bDYb7rnnHu/0rq4u3H777Zg2bRri4uIQFRWFM844A+vWrfPOU1ZWhpSUFADAnXfe6S3Xd9xxBwBg27ZtWLp0KUaNGuV9nOTqq6/G4cOH/dLQ3NyMn/zkJ8jLy4PD4UBqaioWLFiAzZs3+8336aef4pxzzkFcXBwiIyMxd+5cfPTRR97f77jjDtx8880AgPz8fG96etdfomOFPbNEw6C1tRXnnnsuNm7ciJdeegkXXHBBv/POmTMHWVlZePbZZ/GrX/0KAPDCCy8gOjo6YABsmiYuvPBCfPjhh/je976H8ePH44svvsBvfvMb7Nmzx+/2+WOPPYYJEybgwgsvhM1mw7/+9S/88Ic/hGmauP766/3Wu2/fPlx22WW45pprcNVVV+HJJ5/E0qVLMW3aNEyYMAGAOkmtXr0a3/3udzFz5kw0NTXhs88+w+bNm7FgwYJ+9/Gf//wnIiIicNlll4WSjSHr6urCwoUL0dnZiR/96EdIS0tDRUUF/u///g8NDQ2Ii4vD3//+d2/6v/e97wFQvY6Aeqb3lFNO8T6nnJKSgjfeeAPXXHMNmpqa8JOf/MRve3fddRfsdjtuuukmdHZ2wm6395u2+vp6nHPOObjkkktw+eWX46WXXsLPfvYzTJo0ydtj39raim984xuorKzE8uXLkZaWhmeffdYvcBkuubm5eOedd/Duu+/iG9/4RlDLLFmyxPtcpmeZZ599FvPmzQsYnObm5mL9+vXYvn07Jk6cGFL6UlNTERERgX/961/40Y9+hMTExEGXueeeeyCEwM9+9jPU1NTgkUcewfz587FlyxZEREQAAF588UW0tbXhBz/4AZKSkrBhwwb8/ve/x8GDB/Hiiy/6rc8wDJx77rmYM2cOHnjgATzzzDO44YYbEBUVhVtvvRXf+ta3cMkll+Dxxx/HlVdeidmzZyM/Pz+k/fSVk5ODuXPnYt26dWhqakJsbCyamprw5z//GYsXL8a1116L5uZm/OUvf8HChQuxYcMGTJ06FSkpKXjsscfwgx/8ABdffDEuueQSAMDkyZMBqGeaS0pKsGzZMqSlpeHLL7/En/70J3z55Zf45JNPIIQAAFx33XV46aWXcMMNN6CoqAiHDx/Ghx9+iJ07d+Lkk08GALz77rs499xzMW3aNKxatQqapnkvmj/44APMnDkTl1xyCfbs2YPnnnsOv/nNb5CcnAwA3oCb6JiTRDRkf/3rXyUAmZubK8PCwuRrr73W77yrVq2SAGRtba286aabZGFhofe3GTNmyGXLlkkppQQgr7/+eu9vf//736WmafKDDz7wW9/jjz8uAciPPvrIO62tra3PdhcuXChHjRrlNy03N1cCkO+//753Wk1NjXQ4HPKnP/2pd9qUKVPk+eefP1g29JGQkCCnTJkS9Pxz586Vc+fO9f7tydfS0lK/+datWycByHXr1kkppfz8888lAPniiy8OuP6oqCh51VVX9Zl+zTXXyPT0dFlXV+c3/X/+539kXFycNz892x01alSfPO6dJs/+AJB/+9vfvNM6OztlWlqavPTSS73THnroIQnAr9y0t7fLcePG9Vnn0dq+fbuMiIiQAOTUqVPl8uXL5WuvvSZbW1v7zDt37lw5YcIEKaWU06dPl9dcc42UUsr6+nppt9vl008/7d1v37z/z3/+I3Vdl7quy9mzZ8tbbrlFvvXWW7KrqyuoNN5+++0SgIyKipLnnnuuvOeee+SmTZv6zOfZdmZmpmxqavJO/8c//iEByN/+9rfeaYHqxOrVq6UQQu7fv9877aqrrpIA5L333uudVl9fLyMiIqQQQj7//PPe6bt27ZIA5KpVqwbdp971ubfly5dLAHLr1q1SSildLpfs7Oz0m6e+vl46nU559dVXe6fV1tb2m4ZA+/zcc8/1qfNxcXEDps00TTl69Gi5cOFCaZqm3/rz8/PlggULvNMefPDBgHWW6HjgYwZEw6C6uhrh4eHIzs4Oav4lS5Zg37592Lhxo/f/+3vE4MUXX8T48eMxbtw41NXVef95esp8e/E8vVGAGlGhrq4Oc+fORUlJife2u0dRURHOOOMM798pKSkYO3YsSkpKvNPi4+Px5ZdfYu/evUHtl0dTUxNiYmJCWmYo4uLiAABvvfUW2traQlpWSomXX34ZixYtgpTSL28XLlyIxsbGPrdbr7rqKr88Hkh0dLTfc5J2ux0zZ870y98333wTmZmZuPDCC73TwsPDce2114a0L8GYMGECtmzZgm9/+9soKyvDb3/7W1x00UVwOp0DPr+8ZMkSvPLKK+jq6sJLL70EXddx8cUXB5x3wYIFWL9+PS688EJs3boVDzzwABYuXIjMzEz885//HDSNd955J5599lnvi2q33norpk2bhpNPPhk7d+7sM/+VV17pV84uu+wypKen4/XXX/dO8z1era2tqKurw6mnngopJT7//PM+6/zud7/r/e/4+HiMHTsWUVFRfo9VjB07FvHx8X7Hcqiio6MBqFv+AKDrurfH3zRNHDlyBC6XC9OnT+9THvvju88dHR2oq6vDKaecAgB+64iPj8enn36KQ4cOBVzPli1bsHfvXixZsgSHDx/21o/W1lbMmzcP77//vt8jKEQjhcEs0TD44x//CLvdjnPOOQe7d+8edP6TTjoJ48aNw7PPPotnnnkGaWlp/d763bt3L7788kukpKT4/RszZgwA/xdjPvroI8yfPx9RUVGIj49HSkoKfvGLXwBAn2A2Jyenz7YSEhJQX1/v/ftXv/oVGhoaMGbMGEyaNAk333wztm3bNuj+xcbGek/Ox1J+fj5WrFiBP//5z0hOTsbChQuxZs2aPvsaSG1tLRoaGvCnP/2pT94uW7YMQN+XjkK5pZyVleW9nevRO3/379+PgoKCPvMVFhYOuv6uri5UVVX5/TMMY8BlxowZg7///e+oq6vDtm3bcO+998Jms+F73/se3nnnnYDLeJ4/fuONN/DMM8/gggsuGPBCZcaMGXjllVdQX1+PDRs2YOXKlWhubsZll10W1FBUixcvxgcffID6+nr85z//wZIlS/D5559j0aJF6Ojo8Ju399BhQggUFhb6PatZXl6OpUuXIjExEdHR0UhJScHcuXMB9K0T4eHhfW6Nx8XFBTyWcXFxfsdyqFpaWgDAL0+ffvppTJ482fucekpKCv79738HVa4B4MiRI1i+fDmcTiciIiKQkpLiLbu+63jggQewfft2ZGdnY+bMmbjjjjv8AnTPRexVV13Vp478+c9/RmdnZ9BpIjqW+Mws0TAoKirC66+/jnnz5mHBggX46KOPBu2lXbJkCR577DHExMTgiiuugKYFvrY0TROTJk3qdwgfz3aKi4sxb948jBs3Dg8//DCys7Nht9vx+uuv4ze/+U2fHhRd1wOuT0rp/e85c+aguLgY/+///T/85z//wZ///Gf85je/weOPP+7Xg9XbuHHjsGXLFnR1dQ34XGl/egcOHoGCtYceeghLly71pvHHP/4xVq9ejU8++QRZWVn9bsOTH9/+9rdx1VVXBZzH8wyiR7C9skBw+Xs0Pv74Y5x11ll+00pLS5GXlzfosrquY9KkSZg0aRJmz56Ns846C8888wzmz5/fZ9709HSceeaZeOihh/DRRx8FPdqG3W7HjBkzMGPGDIwZMwbLli3Diy++2GdM2/7ExsZiwYIFWLBgAcLCwvD000/j008/9QaiwTAMAwsWLMCRI0fws5/9DOPGjUNUVBQqKiqwdOnSoOvEsTyW27dvh67r3mDzf//3f7F06VJcdNFFuPnmm5Gamgpd17F69WoUFxcHtc7LL78cH3/8MW6++WZMnToV0dHRME0T55xzjt8+X3755TjjjDPw6quv4j//+Q8efPBB3H///d6RWDzzPvjgg5g6dWrAbXl6lolGEoNZomEyc+ZMvPbaazj//POxYMECfPDBBwO+ALFkyRLcfvvtqKysxN///vd+5ysoKMDWrVsxb968foM8QL1l3tnZiX/+859+va5H+zJRYmIili1bhmXLlqGlpQVz5szBHXfcMWAwu2jRIqxfvx4vv/wyFi9eHPI2ExISAKDPmJX79+8POL8nMLvtttvw8ccf47TTTsPjjz+Ou+++G0Dg4DglJQUxMTEwDCNgEHc85ObmYseOHZBS+qVx3759gy47ZcqUPqNKpKWlhZyG6dOnAwAqKyv7nWfJkiX47ne/i/j4+CENIRXMNgZb/umnn+6zfO/HX6SU2Ldvn/ci5IsvvsCePXvw9NNP48orr/TON9hoHMdLeXk5/vvf/2L27NnentmXXnoJo0aNwiuvvOJXJnpfBPTXFtTX12Pt2rW48847cfvtt3un9/eoUHp6On74wx/ihz/8IWpqanDyySfjnnvuwbnnnut9UTI2NnbQOjJQ20R0rPExA6JhNG/ePDz33HPYt28fzjnnHDQ1NfU7b0FBAR555BGsXr3abxzP3i6//HJUVFQEfK6xvb0dra2tAHp6j3x7ixobG/HXv/51qLvTZyif6OhoFBYW9hkSrLfrrrsO6enp+OlPf4o9e/b0+b2mpsYbaAbiOYm+//773mmGYeBPf/qT33xNTU1wuVx+0yZNmgRN0/zSGBUV1Scw1nUdl156KV5++WVs3769Txpqa2v738FhsnDhQlRUVPg9T9rR0RHUGLwJCQmYP3++37+Bxrv94IMP0N3d3We65/nSsWPH9rvsZZddhlWrVuEPf/jDgD3t69atC9hbGcw22trasH79+oC/vfHGGwGX/9vf/ub3OMtLL72EyspK72gRgeqElDKoDzgca0eOHMHixYthGAZuvfVW7/RAaf7000/75E1kZCSAvhd8gZYHgEceecTvb8Mw+jwikJqaioyMDG/dmTZtGgoKCvDrX//a+ziEL986EhUVFTA9RMcDe2aJhtnFF1+MJ554AldffTUuvPBCvPnmm/0GGcuXLx90fd/5znfwj3/8A9dddx3WrVuH0047DYZhYNeuXfjHP/6Bt956C9OnT8fZZ58Nu92ORYsW4fvf/z5aWlrwxBNPIDU1dcg9YkVFRTjzzDMxbdo0JCYm4rPPPvMO5TOQhIQEvPrqqzjvvPMwdepUfPvb38a0adMAqBdQnnvuOcyePbvf5SdMmIBTTjkFK1euxJEjR5CYmIjnn3++T+D67rvv4oYbbsA3v/lNjBkzBi6XC3//+9+9garHtGnT8M477+Dhhx9GRkYG8vPzMWvWLNx3331Yt24dZs2ahWuvvRZFRUU4cuQINm/ejHfeeQdHjhwZUr4F6/vf/z4effRRLF68GMuXL0d6errf17WGs7fr/vvvx6ZNm3DJJZd4ey43b96Mv/3tb0hMTOwzDJmvuLg47ximA/nRj36EtrY2XHzxxRg3bhy6urrw8ccf44UXXkBeXp73WeRA2tracOqpp+KUU07BOeecg+zsbDQ0NOC1117DBx98gIsuuggnnXSS3zKJiYk4/fTTsWzZMlRXV+ORRx5BYWGh9wW6cePGoaCgADfddBMqKioQGxuLl19+eViedQ3Fnj178L//+7+QUqKpqQlbt27Fiy++iJaWFjz88MN+Xwm84IIL8Morr+Diiy/G+eefj9LSUjz++OMoKiryCygjIiJQVFSEF154AWPGjEFiYiImTpyIiRMneocW6+7uRmZmJv7zn/+gtLTUL03Nzc3IysrCZZddhilTpiA6OhrvvPMONm7ciIceeggAoGka/vznP+Pcc8/FhAkTsGzZMmRmZqKiogLr1q1DbGws/vWvfwGAt37feuut+J//+R+EhYVh0aJF3iCX6JgagREUiL4yPENIbdy4sc9vv/71ryUAecEFF8ju7m6/obkGggBD+XR1dcn7779fTpgwQTocDpmQkCCnTZsm77zzTtnY2Oid75///KecPHmyDA8Pl3l5efL++++XTz75ZJ8hc3JzcwMOudV7iKy7775bzpw5U8bHx8uIiAg5btw4ec899wQ91NKhQ4fkjTfeKMeMGSPDw8NlZGSknDZtmrznnnv80t17u1JKWVxcLOfPny8dDod0Op3yF7/4hXz77bf9hqwqKSmRV199tSwoKJDh4eEyMTFRnnXWWfKdd97xW9euXbvknDlzvENT+Q7TVV1dLa+//nqZnZ0tw8LCZFpampw3b57805/+5J0n0DBUvX/rPTSXZ2grX1dddZXMzc31m1ZSUiLPP/98GRERIVNSUuRPf/pT+fLLL0sA8pNPPhkkh4P30Ucfyeuvv15OnDhRxsXFybCwMJmTkyOXLl0qi4uL/ebtL/2+AuXJG2+8Ia+++mo5btw4GR0dLe12uywsLJQ/+tGPZHV19YDr6+7ulk888YS86KKLZG5urnQ4HDIyMlKedNJJ8sEHH/Qbrsqz7eeee06uXLlSpqamyoiICHn++ef7DbclpZQ7duyQ8+fPl9HR0TI5OVlee+21cuvWrRKA/Otf/+qd76qrrpJRUVF90tVfXvRXh3oD4P2naZqMj4+XJ510kly+fLn88ssv+8xvmqa89957vXlw0kknyf/7v/8LWHY+/vhjOW3aNGm32/2G6Tp48KC8+OKLZXx8vIyLi5Pf/OY35aFDh/zm6ezslDfffLOcMmWKjImJkVFRUXLKlCnyD3/4Q580ff755/KSSy6RSUlJ0uFwyNzcXHn55ZfLtWvX+s131113yczMTKlpGofpouNKSDlMbyMQEdGweOSRR3DjjTfi4MGDyMzMHOnknHDee+89nHXWWXjxxReP+Yc5iOjEx2dmiYhGUO/PqnZ0dOCPf/wjRo8ezUCWiCgIfGaWiGgEXXLJJcjJycHUqVPR2NiI//3f/8WuXbvwzDPPjHTSiIgsgcEsEdEIWrhwIf785z/jmWeegWEYKCoqwvPPP48rrrhipJNGRGQJfGaWiIiIiCyLz8wSERERkWUxmCUiIiIiy/raPTNrmiYOHTqEmJgYfn6PiIiI6AQkpURzczMyMjKgaQP3vX7tgtlDhw4hOzt7pJNBRERERIM4cOAAsrKyBpznaxfMxsTEAFCZExsbO8KpISIiIqLempqakJ2d7Y3bBvK1C2Y9jxbExsYymCUiIiI6gQXzSChfACMiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJb1tfuc7fEkpYQ0TcA01AQhYAobpASEkIAUkAAkAM/H2jQBCEi1jKauNQypQfr9DhjuCUKtFqbsWYfnb01IaEJASgnhTQMATYdhCu92e+ZXs5gS0EXPMhIAdB2mKbzr0N3LSLWj7rRJSAhIKQBI79+mFN60a5AwZM+n6bzb1gBpenMOGiSENCE1DUIIuEwBTXg2JdVuCAkIDYYJaJqE6V0e0DQBAXinmfDPH+neX9OTscL9t+k+Hu589vwu3GkXMCGF7p1P13rSpPY9wHbc8wgBlafuHZWaDlNq8Hypz3M8PMdSuPNQ5ZdQ+SkFpHtOdbykO3+ldx7TXa58j5HwSY+AhAZT5aI7403vMRFqPqgrXdNdVqX0LS8SAsJv3bqmyqwUutoHd170/A7AdHknqPlMmFJXf3uOg/vYAxJC02H4lAldqOkGdMB7XKTf9jzlzFMsPfvhWwaE7/aE9B53VR7864XvAfXkgW898RwTzVNfvBXZBsOENy89q9FET931XY9wl0HhyQNpuAuPrU996Um7OuyeYw6fdXjKm6dcefLDs1+e7UnZk0+eNPUci5464qmnus/++NYTz/p7/uhJL6Rv3vfM5MlLw6fe2jRAmiaEEDCk8G/bfOqkQE+98h5nAXe+mYDQYArd7zdI6W0zXGbfY6D57JtvXviVB/j8DdlPuVMTdM1/33QNMKTwtj0CPscN0q/8ae686ml/VF4IKb3lx5tGnzT07KvvMZU+x1h4j4n0tgf++y7c5clblDX3Ocf0LyfeY+5OqxDCrw32PXbuUxlMT52QPXUDEn7l2reOeVo2zx+aaQDesiG8y3vOCd62yzS8K5ZCc+ez6Fs/pISmqbbMm9foSY9v+2VKQEgDQpqqHAoN0l3GPG2k2lfZ57hL2XOsPflheM6n8M8L3/LmSaOnXNg0/3OS6XNMPO19T7nw/xvwL+eQgAa1PypjhNof+KRBGhBSTZFCB0RPLGLTe9J/ImAwewy4DBO6NABNh6zZD/NwBaRpQDgioWWNgx4RBZepCkVZLdDQqopHTLjAKCdg09RJzFOoSnvNk5+qph88ooKKvBSgywXsr5XoNoDcFIGYcHebrkvIwwdh1JZDGi4Iezj0zLGwRcWish441CgwKlUgNkIVdNNlwGHXYNaUw6g74E53BLTMcdAiolHVoBrkjASBLhdQXC3R1qUqSHI0kJPiPlFJgW5DoKQGaO6QEAJIjBLITRHodKfVMIHR6UCYLtDVDZTUSLR2qnUlRQO5yTqk4YLUw2DTgcp6oLJBwjAARxgwKgWIjlANQ3MbUFoHdHUDWckCaXGAy91w7q8FjrSqBt2Tf0IAHd1ApEPlnSMMqGkEWjslMhJUg19aAzS3q3yPi1T5JNyNV7cB2G2+jbnAgTqgrlmdgCLtQH6qgN0GdHabiLABsrMdxoFdkB0tEJoGxKfDlj4KhikBTYcmVFpKaySSogWSYwXqW1V+pcYCzR0CZbUSnd0qeExPEEhPEGhtU2k1IZGdKJAUDUAAjW3A/jqJrm5A14GMeIG0eKCpXSAyTEDTNWgADhwBaprU8Y+wSxQ4BRw2lX9hNuBIs0D5YZV/+akC8VEC1Q1ARb06FvYwIC9ZIC7S5j1JVB4BqhrVBUaEHRiVCkSEaTDryiF0G0RSJjoNDWE60N6ljn1Hl2r4nXFAZqIO0zChCeDgEaC2WR3TjEQdwpQwDAOdho5Ih0C3CRRXAy0+5SwvRdWRA3XqYiAvRR0nTQMOHgZqmtRxinIAY9MFhAZ0u4Dimp71JEQJ5KeoQOFQvUR1ozrY8VEC+SnuQM8wEWbT4Ko7CPjVsTGwRcVDSomKBg3JMaq8lNep9eckC0SH+6clwg4UOAXCwwRMAxC2MHT2qRcCOcmq7OqamtbeBUSFA3XNwOFmibwUAV0D2jslosPVmaukBmhsUyf8UU6BhCh1guzoVuXNU4dTYgSyk4HWTuDgYYmUWIHEaKCzW8IR1lPnWzuBhCggJ1lAF6r8JEarE2CJOw89eZWXovK2ol4iPlIgOcYd3EqgqR0oq5Hocqn9L0wTCLdr6OhSddKbP+5ylJcqEGkHTCnh8rQv7Z5tAaNSNUDo6DZ60qkJIDFaIDdZwCVVenWYMCHQ6RJobJNIjhFo71Zp8eRFaqxAVhLQ0gGU16m8zEmGN3owpECpO18BIDZCtd9CCGhQ9a/Mp/5lJgg44wHTUKFCW5fwlntNA5zxApkJgGEAUlPnhiOtalsFqUBCNNDQJrC/VuWXTQeyk4DkWFUGKuslMhMFpLvtCtPV3y6odKp2WCIxCshLETBMVV6SogVcUGUqLgKoaRKoOCLhMtT6nfECrZ2966hAZpIKcDu7JSLsAm0+82ieeRIBl6GCc5ehAl7DUAFklwto61TlprENfvuVkSDgdLfhmlCdK4bLAGw2NLRKhNsFbDq8+a8JYLTTRGykBrOxBkZlCaSrE8LmgEgbBT0+FUeaDdQ0a9760dgikRQrYEh1bjnSIpGbos6Fh+qB6gZ1jkqKAfKTDOgCMA7ugdFcp9r8yDhoWeNgChvaXDpiIlRw2dAqsb9OdTbkpwpEhQMHjwi/ej7KfW6orJdoaFP1PsIO1DZL7K/rqeu5KUCXodblDajdQXqHu9301t1YgZwkdbHcbQD7+pR/eM8xmnTBrgPGoT1A02FISGiRcdCzxwF6GAAJaRgwDu6CbG1QbWdMEvSssQAAU9jgcp9gT5SgVkjPZeTXRFNTE+Li4tDY2IjY2NhhX7/LkNBhwqjYA9e+TUB3p9/vWmoubJO/ga0HgJJqn55BADERwIIJni4/HdvKZZ95ABUsZCcCJ+cLfHFAoqwWKHACE7IE1u+VqGpQJ5pZhUB4azWMzW/4d7cAELHJsE0+Ey1mFKIideyskBifbgLVxXDt/Qzo6uizbyI+FfpJC2GIMGwoVtvpzaYD4zKA0WkC7++UONzi/7uu9aT1UD2QGgd8VixR2c+6xqYDYzMEPtkrcai+7zyJ0cCMAoGmNuCTvRKzRqtgzm4DvjwoUVzt3zsCqBNuZhIwLV+dTJxxAoYBlB+WmJQjsLlU4sDhPlnmbpyAKbmegF0diz2VwO5D6kKit9NGm0iPcaF723swD1cE2Ek79Pwp0HImoMOlodsAosOBhlbgs1KJCVkCcZHAxmKJIy19F3eEAZOyVZD63g6JqXkC4WEqTxva+s4fYQdmjAKSYwWKqyR2VKBPum0a8I2JAi5Dbbe5Qy13ZpHAkRZgW7lEe1ffdcdHAjMLBdq7gA93yz75lxwDnFKoTnRHWtUF14ZiicPNAfbLBkzMkshNNCGlif31NmwuE3CEAVOyTWQlqh6XDcUSFUf6Lq9rQKETmJgtsKdKYlSqCnx2VfQcpzAdWDAJcIQJbHSvp3dj6FtePXULUEHw/Akm9CMH0L3rE6Czb2aL2CSETT4LCI/C7koduyoloh3A3CIVXOysCFxmUmOBWaMFGlqBD3b1bZ5tOjAmXWBMGrDzkMTYdIEDh4HYCPXbf3dKFGWqwHDLfomymp4emdPHqXzXBLCxJHAdDtNVnSt0Au/vkshNVkHchmKJSncdzElW9WfLfgldqHzeXNZ/vRnlVOV0wz6JpnbVdsWEAxCq3JoSOKtIoL5VlZPyOmBHhQpuekuJVXW+phH4rKRnYxOz1YXqQO3JmHSBsemAYZgqoGkXiHSo41/dGDgvxmUKjEoF3t+p6sLYdIEx6aqM1zb5zy8EkJus9m/rftX++Jo9WiAhGvh0X//lfkK2Cmrf26EClTPGqYvrTSUq73qLdKhjkRwDbNsvUVKryn5RlsCmUomKw/2X60nZAsU1EqmxKmD9vEyizX3KmlmgLmQ2lgxQR7NV2dhUIlF+uP95spPVzcaqRiAtHthUKlHoVAHpZyUSjQHaqkg7MCVPIDFKteetHSo/J+cKbCuX6gJequP6jfEmIjsPw9zxAWRb3wMpImOhFZ2BNkcy3t2pITUWmD5KoLgacJkSRZkquD94BPjygESnu9xlJACnFEqYezbAOLi75y6rd8UCWtoo6EWnY3elhuRYtU9b9kucPnbwej6jQJ0HPy+TSI5Rf9c1q3YXUPs2IRMoSFPp89zl+HSfRE0/5XV8pkBhmiqfvvPYNODkfCAnScK1eyOMg7v67I+eNRa2sbPQvfNjmJXFASqzri7Ux82ChIbGNiA20n3nUgx/UBtKvMZgdhipQNaAUfYFXPs29/ldRCfANuv/w/pi4T0peH8TwP93kqm69cPs/QZvvhKi1Ilx/R7VEGclAtMLBNZ+oRrdMB2YV2TCUbcH5q71fVdgs8N+yoWobI9CUgxgO7QTrj0b+t2eljUWGD0b73ypGr6BeAKA/2yT6Oju+/tJeUBussA72yVa+sbNfkalApNy1LoCBVFhOvCNCepKPzwMcNjVCe1ggCDHV3ykCtA2lqigMToc+O+OvgF4b+nxwOwxqsfuiwMS+6oCz1eQCkzO7Ibx6WuQ7QOvVMudAFEwA12G6rF/a6tEUZY6qa3bEfik7mtKrrrybusE3tupelUCsduAsycL7K2U2F0ZeJ5TxwjYNNUYem4Tzp8kcKRVnbQGYtOBM8cLHG5RDXRvjjC1fcMA1m7vOWn0Z3K2REFiJyA0fFFpx75qdYKZVSjw7peBT4K+spPUSbm4WmLLfv/f5k1UvTDrvgwc+PvKSlInv3e+kGjtABZOMhF+pBjGjg8HXtAWBtvMC7G/JQbbK4TK+yqJ3YcGXizCrvJ8Z0X/5ctTLz7aLXHqGHWCz04S7p4Y4OM9/gHa9FECybESYZrKu8HqcGGaqsNSqjxqdtfTxGhg7ni1XSFUefnvzsAXW758j1tzO3DaWNUb5elxqm1Sdau0FthxcOByFh6mLriKq1Ve5iarOvDul8G3J5Dq0aB3tvcEcP0Zk66C2Le2qbo4WJuUHAPMGa8u6OvcgWBRluo5W/fl4OV+Yraa93CLKgvv75R9OjV6mz1aXeztPiQxq1DgvR1BlOtEFUBVNajOAM8mQknrpGyB7CTgrW2yT8eB7zx5qaotWfelxNgMVff+u7P/ZTxmFgrERagLSE0AH+/1vwibM8ZEolkDY/Nb8HlWrS+hQT9pIY7YUvH+bg0x4aoMbdkvMSlboLxOXah7xEYA8ydKGFvfhVlbPmAaRVwybNMvwMf7BMakq4uAnQf7b2M9Iuzq3LW7UtVzR5j6u7RGYtchFRcsmCTcdwFVj/baL9RFzkDGpKu6++/Pe84d3v3Ztg5mzf4+y2iJ6Qg7aQG6Nr0J2VAz4Pq15GzYps6DCQ0HD6s7TZo2ssHsiL4A9v7772PRokXIyMiAEAKvvfbaoMu89957OPnkk+FwOFBYWIinnnrqmKczWEIAsq0pYCALACJvCsrq0CeQBdSVtM2mQdjsKK3BoIEsANS3qkZ/XKYqRAePqNtyo9PV390G8NE+DbascUCYo+8KXF3o3rIW6YkawlytAwaygIA26mRsKhs8kAXUbd8jLeqWZiDOONUDOtiJB1C3LWub1K2YQLoNdaWaGKNuVx08jEEDWQBoaAO2H1Q9W10ulZeDBbIAUNmgbiUdbkG/gYYAUJRhqp6CQQJZADD3fwnZWIvKBglHmLp1PzoN+LR48EAWALbuVwFs+eH+A1kAyE8BmjvQbyMbG6F6Tj7Z13PyTE9QQfDm0sGve12GWjY/VTXMgX7XNXW8BjtJAsC2AwLtRhhQXYyiDBNCAEWZKnAbLJAFgAPuspAQ5V924qPUnZBt5YOf8AF3mTqsevYyEoAIrRvGzo8GX9DVDWPrO8h3qp7O5g4MGsgC6rbxxmLVY9Rfh4enXjjj1Al5bIZQ9SBa1T/fQDbCrgI+Xage1GDq8L4qdYegtqknkAWAcRkCe6vUowXjMgV2VAweyAKqTSurVXloSlUGosNV50+YDjS1SbR3Dx7IAuqW+MZiVXc1oXqjtpSF1p5AqAvZwQJZQN19aWxXQazvOvprk+qa1V2Aidnqd10DxqSpNAdT7rcfkHCZKtj8ZO/ggSyges7jIlWQvf1gcOW6o1vl/4binkA21LR+cUD1POYkDzxPl0s9rmOYqiyu3zt4IAuojonwMKhHrFzwC2TjI4GUOAFj69qBA1kAkCaMbWuREisQH6nq4pb9qiOjs9s/kAWAcekmzIq9gwayACAb62AWb0JRuoHaRommtv7bWF/tXaqXelyGquednnKdocp1ZqJqe02p7iB9Vjx4IAuo8trQBkzM7r0/+wIGsgCg50+Bq3TroIEsAJh1B2Ae3A2Xy0BWErC3SnXmjaQRDWZbW1sxZcoUrFmzJqj5S0tLcf755+Oss87Cli1b8JOf/ATf/e538dZbbx3jlA7OMCRguOAq+yLwDGEO2NLysbc6cOM3Jk3CaGuBEOpZr2CV1arnS2Mj1N/7qiRyk1UPGQA0twNHmg3omWMCLi9b6gFXF8z+0u2mJWfB0OyoCCLI9thXLTEqFX1Oxqlx6uQVTMDpuy7Pc4qBNLQBja1AWoLKg2CV1QJxkaq3qWTwOgxA7U+kQ2BPZf/bSU8AbOgOqiH0Kv8CWfEmmtuBqbkqMG9oDX7xPZUSWYkDXx2PcooB86fAqW5Z+wbQBU7VAxbsPZyWDnWiz0/p+1tOsvo9mIsGj901OmRiJnSzG2PS1GMY+2uDX35PpURCtLrN5lGUqV7W2F8X/HqKq1XdGus0IA9s73sLrh+ytRGu+loUDJL3vVU1qEdkMhMGTtOoVKDiiLqlmxKr6kjvNmRUqrqFLwRwKIR6t6dSIimmJ6COsKve05JqidgI1faUBllvPOnNTlIn6C6XepygrUvtZ0GaevQlWLVN6uQ/ISv09qShTT2HG6hjod+0V0m/i/PiQdqkkhqVP1EOd7nvDK3ct3epC4BAd7YCMUx1LKIcql0LRmGaevzGN6gcSlr3Vct+A3uPPYckEqIERjkFKhsQsEc7EFOq3vooh0CYTd2R9KbfKeE6VAy4glyZqwuuQ8UodKpydqAOsOvq+X5fdhuQnaTBLP8yuPUCMCr2ICFaxyin6mkNlqeeZ7jreV2zypvsZKDQKdBtqGfOu1wI+PhMf/ZUqjs1/vuzPeC8IjIOWoJTPUoRJKP8S9jD1GvRHV3S+5LfSBnRzZ977rm4++67cfHFFwc1/+OPP478/Hw89NBDGD9+PG644QZcdtll+M1vfnOMUzo4IQBN12FWlQb8XUvORHObgeYAzzyF6UBEmATs4WhsR8DnovrT5VINsqciNLSplzecPj3ypYd1SGdB4BU4IiHCHDAqiwfcjkjNxf7DWtABDaAqqXqRxn96ZoIKmILpbfCoaVTPfSVG9z/PkRbVyxJMj4SHy1AnjNZOBNUDCqj90QQCPm/okZVgQh7aE3TAA6ir3TBdorZRvZSxvy60K92yOiApRgTsEQVU0O6wDdzrn5GgekA8dA1IixchBX2AepkjM0BgnZmgXmAJRXkdYIuOg6wpQW6yREU9vG+jB6O+VQU9+ak905xxKgAcqBc70HraOoGk+DAYh/YFvyAAceQAbHpwd1x8ldUiYD56VLvrRUKU6oUelaoeB+nd85qRoO5glNf1fX5yIJUNqqx76nB6vDrZtnWpdVbWB19vANW2Nbap/AfUC4qx7lvIUQ61D6HYX6fKWajtSZRDoDSECyJAHbswXfUGAj1531+b1NGt8iojQb3QFGq5jw4HSkNcZn+dehkq2HKdkYA+7cxQ62h8pLrY6Xeew+r5ysxE/zYmGGW1EmkJ6kIsI6GnPmQmSNXOhkAe2oPMBLV9U6oyp/fqcXHGAa7WJu/LT0Hp7oTRUA37IG1sIOV1Kt899teqjomUWIHYCPU4TigXjYBKgybUcRlsf7TUbPVOR4B3Zfoj25pgNjdAE0BagkB9CBc/x4Klxpldv3495s+f7zdt4cKFWL8+wPOgbp2dnWhqavL7dyxomgCM7r4PiLuJMAfa+7nCttugHiTX9aCvVn21dwF2m+j1t//vItBjBu50wegGjIHPSNIeGdTtjd46u1UA5ctuA9q7Q78l0dFrv3ozEXwvhq/2LvgNKTMYu23w7Th0GfCloAFJCbOrE4ZUQWSoZcFlqFs9dj3w73Yb0OkaOL6221Q+e4S519URYlrauwMfK7st9P0yTMBwmYCrG2GaOeQ64nui1QT6rY8DrsezTKjH1jDQbYR0baO21yX7vTjx6Oj25KvsN3/tNnVh2d41hHrncyx912+3iSHlYUdXT5vgaatchgqKQwlIPcvrWujtiSe/QiGh2jO7z/Ho6Kece7R1qnxSbV5Im/OO9BGK9i51LtKDOLOrN+RFn20MJa2GqS6Werf1feZxqZ7QUNvpji71glGnyz+/bTY99LrY2YawsJ5Gsq1LIizAOQqdIdwWcxPdHYO2sYF46q73b/d505RSDa2J0Mu4Z9SdCLtnf/rPJxHmgOwIMR8ByM5WuEyV1vaunmHpRoKlgtmqqio4nU6/aU6nE01NTWhvD9yduXr1asTFxXn/ZWdnB5zvaEkpATFAdhpqaI9ATAn1MoKUQTVCvQUcz7D3OHf9BNlqPNt+oh9fhmtIaes9jiSg/h7KaB6a1nddftxB4FDWGwrDHHw7hkRw+donMWoMVXkU+9Lfo0uG2f8tUb95NP+/PesNRe8y6Lu+oeyX0ATgHsdyqHXEt7dKYmhl0LtMqMdWDJ73AbenqaGaBkuTylfRb/6aR1GmfI+l7/qHox571q1pQ0+bKdW+h2Ko5bBP2xqgffObXwcMUz3SEGpemUM4Xr7HJpj1+y7jMeTjOkheeLZlyNDrgqf90eC/DWmaoddFTYfpc9XkqTe+DBOANoSRS4U+rOVKEz3j6Q71mHQbnv3pP5+kaUDoQzlf2bzHXdfUsHQjxVLB7FCsXLkSjY2N3n8HDhw4JtvxFBYRkxjwd7OlAQkxWsCC3tHtPtl0dSIxOvQGLCUWaGzvGcojIUq9rOCRGiOB5sD372RHKyAlRFyABxx9iJY6pMWEcE8WamiVKEffxyYa29T4laEIDwNiwhHwMQ3vPHbhHZ4oFM5Ytf5gNberfYsM3NkNAKhv0yETs0JKh4iIge5wICpcoMOFkPMoOUYFbP31orZ0qJeyosP7X0dTuxoyxqPbANo6JVJCHPgjJVYEfEGrsT30/UqMBiBNyOhkNHbqIaclTFfPlNf43JRp71LPboe6nvgooLvbBS0xPbSFw2MRpg+c94E448WAj81E2NU6m9pVO9DQpob46R0sNLap8SlDzftIhyrrnnrX1K7G3RRCtTmhHgtdc48r6l5fSizQ2tEzdFhcZGjrS4lV45uGmo7WDom0+NDyIsqh6k+LO+3h7ro0UJuUEqP2tbEt9HLf2ulfF4OREgt0uYLvHWtq63sMh1JHE6LUxdJAd+8SotRFZGNb6PuVGqvGLk6OBZrae/avuc0MuS5qielobus5l6XFA929egCa2gE9LgnQQwtoZXTikOp5SqzwO2enxKpn3Du6JTq71cuAzrjQjkl0uBon3PNoz0D7I5vrIRLS0PPVkyBoOvS4ZOhCveydFBNS8oadpYLZtLQ0VFf7D9xXXV2N2NhYREREBFzG4XAgNjbW79+xYNOFGporpyjg77KxBrK9BTlJAX6TQFWjDs1mA+TAb4X25nmZyvNSR16yKrieQELX1LOC8kA/D7ILNfSOnjthwO0YFXuQFKeHVEk9D/r3vqW0v04V/NjAh6zfdVU19t9YqoG2VcCWG0L+JccA4XbVyDqDDG46utXzkwWp/Vf80lrAlpQGERF8DRfZ41FdbyIzUY1N6PsiXzBGpwvvmKKBdLnUSzIDvahRHOBFjpIaNSZksDShXv4qqembkJJqiZzkgW/N9jY61YRZXQpbcjq27QeiHQM/O91bXgrQ4YJ3iCRADV8UHa5e0AlWbop6HntPlQbkTAx+QU2HllGImgHefg8kwq4utALlo0d+qqoXdveLMV8eUKejrF7tTHG1RFykQEpsaCfaAqdATVNPHa5u7Hkp7dAR1fYEW28A1ba1dcI7+kGhUw1a396pnqkMJX8cYer5y23l0u8l2GAITeXFQBekvRU4BSqOwPuG/2BtUkaCCvqr6tUxDLXcm6Z6QSsUhU71FnxykM1OcY3E6F7bGEodLUxTz9UP1DM7Ok0NSVlcrV6kC6UTryBNoLJeIirc/7nqPTU6kDMp+BUBQM5EtRzU86SxEUCk3T8xR1rUBY+e3s+7JgFoSRmQYeGoOIKQ2ssIuwqoS9313GFT9bekRo2l29GtPgbkjFcXlsEqdKqxqrtc6nw10P6YteUQmg4tOTPo9etpo+AyVfzS0imHdOdpOFkqmJ09ezbWrl3rN+3tt9/G7NmzRyhF/nRdg55RCBHdz+vH5V+gKMNEWIAAZWu5hNBt0GBgfIYIOE9vmlBjyZXWqgDGbgPGZAjs83mTeVw6INtb+h1uQ8+fgrZOCd2ZDxETINL26OqAUb0fk7OCu+qPdKhhbPYFGJmhy6VevpmcE1zpV19GGniUh/EZapD/ti414HswDbEQaoDy0ho1asCkHBFUhQzT1f4VOPs/GXZ0A5VHTGijZwy+Qrh7ZbPGwQUdbV1qGKjGNjXkUDASooCMeEAO8npPcZV6A7u/gKbCHaDk+XTUl9aoi6ZgT5Bj0tX+9x5QHlC9BB3dajSBYMRFAllJGhDmQHW9iZZO9VLUxOzgToYOmxo+6tBh/3zZX6eChYk5wa3HblNDShVXS/eFSjpEvHPwBQFo+ZPR1iWw4+DAed/b5ByB6sb+n5uMsKsh/YqrJSZmqZegMhMBCFUffC+EqhtVL3tjG7zDRQ0m0qHGSu59QVVcLTHePWRYSY1qg4KtN2PTe9qnvJSeIDwqHKhrUhdwwQalE7IEapvUifrA4eD3yzNMWUcXMCnIp86iHKpTwNMG+eZ9ILqm0rOvStXIpnY1OkAo5d7T01UQXDFDeoJarrRGtWvBlOtD9SqgS/c5ZQ0lrdlJA7fPqh6r3mzP2/uFQe6XM05ddMZHC+8noj0OHAbgiISWXhjUurT0AsARhQPuF1onZKsLlMzEvncF9tToEPknAbYgIkihQRTOQHGNhpYONTRhsPV8YrYa59dTz4uyBOqaVMdMSbW66I6NVHfdJgZ5zvSU1+0Heo7JnuoB9kdKGAd3w1ZwUnCPbdjCoBWcBD3MhsZ2z0XU13horpaWFmzZsgVbtmwBoIbe2rJlC8rL1XBGK1euxJVXXumd/7rrrkNJSQluueUW7Nq1C3/4wx/wj3/8AzfeeONIJL8PTROQELDPOC9gQGtU7EFYSxXmjjX7BFutncC+GjXwsCNMDbg9UECma8Apo9VJZGeFeknkjHHqC03l7oo6Og0Ym27C/OLdwOvInQhb/iR0GDbsqJAIm35uv49JAICx62M4Yw1MGzXwzYgoBzBnnDq5BvpKiSMMiA1XvWvTRokB1xVpV3lx6Ej/oweMzVBfGNqwT91i7XKpvBjoxRlNAKcUqouGlg51q01AfQxhoMc87Db1FSWbrtYxd7xAVD8B7eb9GoyEbOjjT8VAOSYiY6BPPx/1bRrS4lT+ZSep8QZHpar9G0hClErTXvfQQQOd/A63qBPYmUUiYGNrSjW27Ul5wtu719ENfF4qcdpYMWhAW+BUweOGfYEbtknZKqjJSQaKBukEiIsE5o4zYTbVwojLwGdl6sAcPKJ64k4pHPjZO0eY2k8pgfQE//01TPVlo8QoVQ4GW88cn7rV3gVsLgVsJy+EiE/tf0EAek4RwkZNwZYDGg63qM/lzhkfOO99Tc1Vn/Pc1M/Yvp56cfAIkJUoEBOhgsGT8gQ+2dPz5Sjfi+INxWrkgJQY9YWqgUQ5VNk+cFhdEMwo6AmO9lap3snTx6rAVAg1YP9g9eaMcQLN7UBZjRo/9aQ8Vfe/PCCxbb/ElFw1cP0Z48SgAe1E91eyPPmzdb/at2Dbk/ZOCYduIiNBYGruwHkRHa6WKa1Rvfu+eR/wK4iayhtIYJfPmMKbSlSPZ1HWwNuLi1R5sOOgxCd7JSbniEHv1jnj1DHYVCKx/YBEmB5EubYBp41Rt7NnFQq/HvZQ0jpnvEprf6PwxEWqstTYKhFuV2VpQ7Eagzdv4KfbkBqr9quxTSLcpjodTh/bU65NCazfJ6BPOB2aM2/AdWmpubBNOAOfFKtnUGcUqHq446C6lT93vPALaEtrgNoOB/Rp5wUep927Yh361Plo1ePR2K4ueivrVZsxWD2fkiuQGtvzgZkJWard9ZTrti6VPs9LYFkJCKq8njVBfSHPd6zp0lrgSKcDYTMC74+rdBsgJcKmzhv48YowO8KmnwvYI7wvTkfYAW2Ex+Ya0S+AvffeezjrrLP6TL/qqqvw1FNPYenSpSgrK8N7773nt8yNN96IHTt2ICsrC7/85S+xdOnSoLd5rD9nC6jvtQshYVQWw9i/A9LzvKqmQ88YDTF6JkzNhuJqdTXruSJz2IBTxwBJ0RKm1GBINfh5SXXPQMkOG5CXqm55tbk/P5iTrL4VX9WoGqGMBHVLJz4KkEcOwSje3NMzKzRoaXmw5U6CEZmAD/cKTM5W349ubDWRGgsYVaUw9n8J2VTnTbeWlg+RMwlGeCy6TR0SajzX/XU9L9bERACjnRJ5qRoMUwXZZbU9Q/eo3syetO48KHHGeBVs7K2UKPNdV7gaQzAvVUBAoKIe2FvVMzi7JtSV/tj0ngZpT5X6tvjp41Rl1zXVc1Rc3TMwut2meoQKnOplok6XCqqPtKhbz2Pc6/P0wHW6b696vqdd4HQ/6O452ELdZimrVb3QnufnbLrq/SlME4gOM4CuNhhlX8A4VKxGj4D6IpzILoItczQ6XapnX0D1aKbEqsCzskENqN3WqdZ/0GcIosRotR/ZSeoKfE+luoCZmC3Q1K72p6K+583a5Bg1f2YiIE0JoQnsrzWxt0p4T0S6ptI9PlN9Fre2WR2bygZ1pX9SnurJKK7u+bKREKpnY2y6OhnUNKr0eJ711DUVnI9xGoiyGYAQaHPpsNt1dHQBe6okDtT17FdClPrOenayBrOrC53Shv/u0uAIU+UrK0mDNA1IoaPLcJcdn3IW5S5no5zqecyP90jMLBRIiFLj0+6t6jnx5qWofepyqemB1pOfqk4KG/b5f1t9dJqETQNc1fthln8J2VDdU8ecebDlTQSiE3G4VUOiezzWfVUSeSnqc5P761Q++j4SlJusToYRdlU29xzqWy8KnCoIqG9VaRFC7WdijBpgXt3J6LkYLq5Wtyzbu1QZOG2sKr0d3f3U4TT1NbnSGqCmSd2GTox2p6dSYr/7TtDs0aqN2V8LJMeqtJRUq1ujnlvxkXZ1Oz4/FahrAsrr1AWX5znNA3USn5Wox3wK01RvdFO7REy4CmyLqwOUo3R1AVlSLbGrsqeOJkSp4MyUKp0B8y1VvZAVpgGQJvbVaMhIUMvsq5Ior+sZ9i02Qi2Tm6I+PV5aI1GYpvJeShXUe/IVUBc9o1LhvW2/db/6xKtv/RufqZ6HbOkAdlf2LfeFaerLW3XNEhtL1CMZqbHqK2v1raqMVtb3DK+WGqvuhDjjBFo6VSBdXK0+zTy9QCAirKct82+H1WNSLlPdoTjcLJGRqB6bKK6SqGlS+3/GODWCwN4AdbTQqYJsU0q0dIiA9bjAqcpStyFhmML7EqopgaoGidwU9Wz93ir1xUtPXqXEqmUzEtwvQsGEpglUNwA2m/oUcklNT/6nJwCzCwFZXwVz/xcw6yqgckmoW+c5E6EnpmNjieodLnCqY17XDOQkuT+E06Y+UnLgsMqz+laV1tmFJpwxJsyDO2Ec2AV0uE9C9nDomWMgsieizQxDh6EjKVrV2S8PqnbYU8/3+bQ5nnpe4FQXgB/vUR86GZ2m6uz7u9R5JDpc5XF+qnreXV1MqnS3d7nros+jHbER8JbP5nb1OWTPZ3R91+VyGQgTAfYnLBx6znjY8iZCmgaM/TvUJ289w3WFR8GWNQ56ThGkpsGADul+edM2lLfTgsDP2Q7geASzgKrgME31dp90txg2G6ShRg+Q0v2GovstRgnVEBmmCpTUrxImtIDzeHh+E+43Cm262pQm3FVZqq8mwZ0e6Db1Mo2me7/GBEC9Qe9en2ma6ores4zNBhgGpGaDy1RpcA/A4H1LXAhVqKX3gc2e/XO598k3raY7rS73m7NmP+vShPvrNz4jRZimektYvSFsQkLAlAKa1vOFKU/ypeh5M9STf555VFKl921WT8+T5xOu/aXds9/qjVjhDWg1TaVJSv99c88FmC4I3Qa4utXMQoOUJkzo3mU9x80wAZsm1X6JnhOE5n67XfPZRyHc23Jnkcpfd0Pus7/wOWaek4qUKqj1TbfvCUdAbUDAfxse/mVOQkDCkJp3PzzHWb0hLdUQcJoOCAHDfcxMM8B+AdBMF6Ru85sOAEIacEGHprIehnQf197HCvCrY5688ZS/QPsb8Ji78z3QdAjfOgY1OohuA0xVx0yfcuE5fp5te/bJM9JATz6Z7iqpynXveuEZ0cG3fEGqsmLT1bya5i6rJgK2M6Ype56XD7B+bxmXgBASnv7OQPXUMHvaJW8d65VXEu56DkCDp1z3lO9AZctd9PqUI+FuDjzb7b0tXRgwpN63PXHnsw51IeT7Nr/v6Ap9ljHVcfY7ju6099c2C6hP5faufypaE958C9RmuTcX8JhJBM4vzzTNp8wH+tt3vb7745sPnnbQk7+etr53Wj3Nn6f99szjW18N2fMWvreeGj3to8ozd570bsd8lpcANOmCFDZvIO9bJrx5JCU06TkhGupEISVMocE0hXe7mvAffcE3rz3tiqfcec81cI/84xnGUvc5n0O1pZr7nO27LxLqOPSu557te8u1O02966Ln/z3nHiHgbmeFNz97z++tG37nU2+1Un8bBjTdf39gGjCh9keHS43oEOB37zaOURDrwWB2AMcrmCUiIiKioQklXhvZhxyIiIiIiI4Cg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsa8SD2TVr1iAvLw/h4eGYNWsWNmzYMOD8jzzyCMaOHYuIiAhkZ2fjxhtvREdHx3FKLRERERGdSEY0mH3hhRewYsUKrFq1Cps3b8aUKVOwcOFC1NTUBJz/2Wefxc9//nOsWrUKO3fuxF/+8he88MIL+MUvfnGcU05EREREJ4IRDWYffvhhXHvttVi2bBmKiorw+OOPIzIyEk8++WTA+T/++GOcdtppWLJkCfLy8nD22Wdj8eLFg/bmEhEREdFX04gFs11dXdi0aRPmz5/fkxhNw/z587F+/fqAy5x66qnYtGmTN3gtKSnB66+/jvPOO6/f7XR2dqKpqcnvHxERERF9NdhGasN1dXUwDANOp9NvutPpxK5duwIus2TJEtTV1eH000+HlBIulwvXXXfdgI8ZrF69Gnfeeeewpp2IiIiITgwj/gJYKN577z3ce++9+MMf/oDNmzfjlVdewb///W/cdddd/S6zcuVKNDY2ev8dOHDgOKaYiIiIiI6lEeuZTU5Ohq7rqK6u9pteXV2NtLS0gMv88pe/xHe+8x1897vfBQBMmjQJra2t+N73vodbb70VmtY3Nnc4HHA4HMO/A0REREQ04kasZ9Zut2PatGlYu3atd5ppmli7di1mz54dcJm2trY+Aauu6wAAKeWxSywRERERnZBGrGcWAFasWIGrrroK06dPx8yZM/HII4+gtbUVy5YtAwBceeWVyMzMxOrVqwEAixYtwsMPP4yTTjoJs2bNwr59+/DLX/4SixYt8ga1RERERPT1MaLB7BVXXIHa2lrcfvvtqKqqwtSpU/Hmm296XworLy/364m97bbbIITAbbfdhoqKCqSkpGDRokW45557RmoXiIiIiGgECfk1uz/f1NSEuLg4NDY2IjY2dqSTQ0RERES9hBKvWWo0AyIiIiIiXwxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWSMezK5ZswZ5eXkIDw/HrFmzsGHDhgHnb2howPXXX4/09HQ4HA6MGTMGr7/++nFKLRERERGdSGwjufEXXngBK1aswOOPP45Zs2bhkUcewcKFC7F7926kpqb2mb+rqwsLFixAamoqXnrpJWRmZmL//v2Ij48//oknIiIiohEnpJRypDY+a9YszJgxA48++igAwDRNZGdn40c/+hF+/vOf95n/8ccfx4MPPohdu3YhLCxsSNtsampCXFwcGhsbERsbe1TpJyIiIqLhF0q8NmKPGXR1dWHTpk2YP39+T2I0DfPnz8f69esDLvPPf/4Ts2fPxvXXXw+n04mJEyfi3nvvhWEY/W6ns7MTTU1Nfv+IiIiI6KthxILZuro6GIYBp9PpN93pdKKqqirgMiUlJXjppZdgGAZef/11/PKXv8RDDz2Eu+++u9/trF69GnFxcd5/2dnZw7ofRERERDRyRvwFsFCYponU1FT86U9/wrRp03DFFVfg1ltvxeOPP97vMitXrkRjY6P334EDB45jiomIiIjoWBqxF8CSk5Oh6zqqq6v9pldXVyMtLS3gMunp6QgLC4Ou695p48ePR1VVFbq6umC32/ss43A44HA4hjfxRERERHRCGLGeWbvdjmnTpmHt2rXeaaZpYu3atZg9e3bAZU477TTs27cPpml6p+3Zswfp6ekBA1kiIiIi+mob0ccMVqxYgSeeeAJPP/00du7ciR/84AdobW3FsmXLAABXXnklVq5c6Z3/Bz/4AY4cOYLly5djz549+Pe//417770X119//UjtAhERERGNoBEdZ/aKK65AbW0tbr/9dlRVVWHq1Kl48803vS+FlZeXQ9N64u3s7Gy89dZbuPHGGzF58mRkZmZi+fLl+NnPfjZSu0BEREREI2hEx5kdCRxnloiIiOjEFkq8NqI9s0RERERWYBgGuru7RzoZXyl2u93vDvxQMZglIiIi6oeUElVVVWhoaBjppHzlaJqG/Pz8o36Jn8EsERERUT88gWxqaioiIyMhhBjpJH0lmKaJQ4cOobKyEjk5OUeVrwxmiYiIiAIwDMMbyCYlJY10cr5yUlJScOjQIbhcLoSFhQ15PZb6AhgRERHR8eJ5RjYyMnKEU/LV5Hm8wDCMo1oPg1kiIiKiAfDRgmNjuPKVwSwRERERWRaDWSIiIqITyJlnnomf/OQnQc373nvvQQhx1KMt5OXl4ZFHHjmqdYwUBrNEREREZFkMZomIiIjIshjMEhEREZ2g/v73v2P69OmIiYlBWloalixZgpqamj7zffTRR5g8eTLCw8NxyimnYPv27X6/f/jhhzjjjDMQERGB7Oxs/PjHP0Zra+vx2o1jisEsERER0Qmqu7sbd911F7Zu3YrXXnsNZWVlWLp0aZ/5br75Zjz00EPYuHEjUlJSsGjRIu/QYsXFxTjnnHNw6aWXYtu2bXjhhRfw4Ycf4oYbbjjOe3NshPzRBMMwvNF/fHz8MUgSEREREQHA1Vdf7f3vUaNG4Xe/+x1mzJiBlpYWREdHe39btWoVFixYAAB4+umnkZWVhVdffRWXX345Vq9ejW9961vel8pGjx6N3/3ud5g7dy4ee+wxhIeHH9d9Gm4h98zquo6zzz4b9fX1xyI9REREROS2adMmLFq0CDk5OYiJicHcuXMBAOXl5X7zzZ492/vfiYmJGDt2LHbu3AkA2Lp1K5566ilER0d7/y1cuBCmaaK0tPT47cwxMqTP2U6cOBElJSXIz88f7vQQEREREYDW1lYsXLgQCxcuxDPPPIOUlBSUl5dj4cKF6OrqCno9LS0t+P73v48f//jHfX7LyckZziSPiCEFs3fffTduuukm3HXXXZg2bRqioqL8fo+NjR2WxBERERF9Xe3atQuHDx/Gfffdh+zsbADAZ599FnDeTz75xBuY1tfXY8+ePRg/fjwA4OSTT8aOHTtQWFh4fBJ+nA0pmD3vvPMAABdeeKHfp8iklBBCHPU3domIiIi+7nJycmC32/H73/8e1113HbZv34677ror4Ly/+tWvkJSUBKfTiVtvvRXJycm46KKLAAA/+9nPcMopp+CGG27Ad7/7XURFRWHHjh14++238eijjx7HPTo2hhTMrlu3brjTQUREREQ+UlJS8NRTT+EXv/gFfve73+Hkk0/Gr3/9a1x44YV95r3vvvuwfPly7N27F1OnTsW//vUv2O12AMDkyZPx3//+F7feeivOOOMMSClRUFCAK6644njv0jEhpJRypBNxPDU1NSEuLg6NjY18HIKIiIj61dHRgdLSUuTn51v+jf8T0UD5G0q8NuRxZj/44AN8+9vfxqmnnoqKigoAamDfDz/8cKirJCIiIiIKyZCC2ZdffhkLFy5EREQENm/ejM7OTgBAY2Mj7r333mFNIBERERFRf4YUzN599914/PHH8cQTTyAsLMw7/bTTTsPmzZuHLXFERERERAMZUjC7e/duzJkzp8/0uLg4NDQ0HG2aiIiIiIiCMqRgNi0tDfv27esz/cMPP8SoUaOOOlFERERERMEYUjB77bXXYvny5fj0008hhMChQ4fwzDPP4KabbsIPfvCD4U4jEREREVFAQxpn9uc//zlM08S8efPQ1taGOXPmwOFw4KabbsKPfvSj4U4jEREREVFAQwpmhRC49dZbcfPNN2Pfvn1oaWlBUVERoqOjhzt9RERERET9GtJjBldffTWam5tht9tRVFSEmTNnIjo6Gq2trbj66quHO41ERERElmaYEqYpIaX6f8P8Wn2z6pgaUjD79NNPo729vc/09vZ2/O1vfzvqRBERERF9FRimRJdLYvchYO12ide3SKzdrv7uch27oPbMM8/ET37yk2Oy7hNNSI8ZNDU1QUp1VdHc3Oz36THDMPD6668jNTV12BNJREREZDWGKbGvCvjigIT0iVnbADS0SeyoACZlCxSmSeiaGLF0Wl1IwWx8fDyEEBBCYMyYMX1+F0LgzjvvHLbEEREREVmRJ5DdVt5/z6uUnt8Z0B6NkB4zWLduHdauXQspJV566SW8++673n8ffvghysvLceuttx6rtBIRERFZgmGqHtlgfHFAwjCHPw2maeKWW25BYmIi0tLScMcdd3h/e/jhhzFp0iRERUUhOzsbP/zhD9HS0uL9/amnnkJ8fDz+7//+D2PHjkVkZCQuu+wytLW14emnn0ZeXh4SEhLw4x//GIZhDH/iQxBSz+zcuXMBAKWlpcjJyYEQvIIgIiIi8uXplZVBPg4rJVBcDYxJH97e2aeffhorVqzAp59+ivXr12Pp0qU47bTTsGDBAmiaht/97nfIz89HSUkJfvjDH+KWW27BH/7wB+/ybW1t+N3vfofnn38ezc3NuOSSS3DxxRcjPj4er7/+OkpKSnDppZfitNNOwxVXXDFs6Q7VkF4A27lzJz766CPv32vWrMHUqVOxZMkS1NfXD1viiIiIiKxGAKg4EtqLXQcPD/+LYJMnT8aqVaswevRoXHnllZg+fTrWrl0LAPjJT36Cs846C3l5efjGN76Bu+++G//4xz/8lu/u7sZjjz2Gk046CXPmzMFll12GDz/8EH/5y19QVFSECy64AGeddRbWrVs37GkPxZCC2ZtvvhlNTU0AgC+++AIrVqzAeeedh9LSUqxYsWJYE0hERERkJUIAXSHeee82gOF+ZHby5Ml+f6enp6OmpgYA8M4772DevHnIzMxETEwMvvOd7+Dw4cNoa2vzzh8ZGYmCggLv306nE3l5eX7fFXA6nd51jpQhBbOlpaUoKioCALz88stYtGgR7r33XqxZswZvvPHGsCaQiIiIyEqkBOx6aMuE6cBwj9IVFhbm97cQAqZpoqysDBdccAEmT56Ml19+GZs2bcKaNWsAAF1dXQMu3986R9KQglm73e6N3N955x2cffbZAIDExERvjy0RERHR15EEkJkYWjdrVtLxew9p06ZNME0TDz30EE455RSMGTMGhw4dOm7bH25D+pzt6aefjhUrVuC0007Dhg0b8MILLwAA9uzZg6ysrGFNIBEREZGV6JoaamtHRXAvgQkBFDhx3IbmKiwsRHd3N37/+99j0aJF+Oijj/D4448fl20fC0PqmX300Udhs9nw0ksv4bHHHkNmZiYA4I033sA555wzrAkkIiIishpdUx9ECMakbAF9SBHZ0EyZMgUPP/ww7r//fkycOBHPPPMMVq9effwSMMyElMEOHPHV0NTUhLi4ODQ2NiI2Nnakk0NEREQnqI6ODpSWliI/P9/vq6fB6u8LYB5CeL4Advx6ZU8kA+VvKPHakB4zKC8vH/D3nJycoayWiIiI6CvD87hBfqpAcbUafqvbUC97ZSUJ96MFX89AdjgNKZjNy8sb8IMJI/0lCCIiIqITga6pRwjGpEuMSRfQRM+oBQxih8eQgtnPP//c7+/u7m58/vnnePjhh3HPPfcMS8KIiIiIvip8A1edMeywGlIwO2XKlD7Tpk+fjoyMDDz44IO45JJLjjphRERERESDGdZ358aOHYuNGzcO5yqJiIiIiPo1pJ7Z3h9GkFKisrISd9xxB0aPHj0sCSMiIiIiGsyQgtn4+Pg+L4BJKZGdnY3nn39+WBJGRERERDSYIQWz69at8/tb0zSkpKSgsLAQNtuQVklEREREFLIhRZ5z584d7nQQERERfWVJw6W+kiA0QJqAlBA6OwCHQ9C5+M9//jPolV544YVDSgwRERHRV4k0XIBpwCjfAaN6P+DqBGwO6M5c6DlFgKYzqD1KQefeRRddFNR8Qgh+NIGIiIi+9qRpwCjfCdfez1RvrFcLXM2H4SreAtvo6dBziyA0fcTSaXVBB7OmaQ4+ExERERFBGi4VyO7ZMMBMpvpdAHr2ePbQDlFI48y+++67KCoq6jM0FwA0NjZiwoQJ+OCDD4YtcURERESWZBqqRzYIrj2fAebw3tV+6aWXMGnSJERERCApKQnz589Ha2srli5diosuugh33nknUlJSEBsbi+uuuw5dXV3eZd98802cfvrpiI+PR1JSEi644AIUFxd7fy8rK4MQAv/4xz9wxhlnICIiAjNmzMCePXuwceNGTJ8+HdHR0Tj33HNRW1s7rPsVSEjB7COPPIJrr70WsbGxfX6Li4vD97//fTz88MPDljgiIiIiq1G9sjt6PVow0AImjPKd6vnaYVBZWYnFixfj6quvxs6dO/Hee+/hkksugZQSALB27Vrv9Oeeew6vvPIK7rzzTu/yra2tWLFiBT777DOsXbsWmqbh4osv7nOXftWqVbjtttuwefNm2Gw2LFmyBLfccgt++9vf4oMPPsC+fftw++23D8s+DSSk/uytW7fi/vvv7/f3s88+G7/+9a+POlFEREREliWEetkrBEZ1GfT8ScOy+crKSrhcLlxyySXIzc0FAEya1LNuu92OJ598EpGRkZgwYQJ+9atf4eabb8Zdd90FTdNw6aWX+q3vySefREpKCnbs2IGJEyd6p990001YuHAhAGD58uVYvHgx1q5di9NOOw0AcM011+Cpp54aln0aSEg9s9XV1QgLC+v3d5vNdly6k4mIiIhOWEJToxaEwtWllhsGU6ZMwbx58zBp0iR885vfxBNPPIH6+nq/3yMjI71/z549Gy0tLThw4AAAYO/evVi8eDFGjRqF2NhY5OXlAQDKy8v9tjN58mTvfzudTgD+QbPT6URNTc2w7NNAQsq1zMxMbN++vd/ft23bhvT09KNOFBEREZFlSROwOUJbxmYP/rGEQei6jrfffhtvvPEGioqK8Pvf/x5jx45FaWlpUMsvWrQIR44cwRNPPIFPP/0Un376KQD4PVcLwK+D0/Nl2N7TjscAAiEFs+eddx5++ctfoqOjo89v7e3tWLVqFS644IJhSxwRERGR5UgJ3Zkb0iK6Mw9wP9M6HIQQOO2003DnnXfi888/h91ux6uvvgpAPTba3t7unfeTTz5BdHQ0srOzcfjwYezevRu33XYb5s2bh/Hjx/v16p6IQnpm9rbbbsMrr7yCMWPG4IYbbsDYsWMBALt27cKaNWtgGAZuvfXWY5JQIiIiIisQug16ThFcxVuC620VGvSc4Rua69NPP8XatWtx9tlnIzU1FZ9++ilqa2sxfvx4bNu2DV1dXbjmmmtw2223oaysDKtWrcINN9wATdOQkJCApKQk/OlPf0J6ejrKy8vx85//fFjSdayElGtOpxMff/wxfvCDH2DlypXet+KEEFi4cCHWrFnjfWaCiIiI6GtL02EbPX3gcWbdbGOmA8P40YTY2Fi8//77eOSRR9DU1ITc3Fw89NBDOPfcc/HCCy9g3rx5GD16NObMmYPOzk4sXrwYd9xxh0q2puH555/Hj3/8Y0ycOBFjx47F7373O5x55pnDlr7hJqQcWp92fX099u3bByklRo8ejYSEhOFO2zHR1NSEuLg4NDY2BhxijIiIiAgAOjo6UFpaivz8fISHh4e8vHR/xta1p/cXwNyEBtuY6dBzjt8XwJYuXYqGhga89tprx2V7Axkof0OJ14bcn52QkIAZM2YMdXEiIiKirzSh6dCzx0PPHAOjfCeM6jI1aoHNDt2ZBz1nPKDp/JTtUeJ304iIiIiOEaHbAN0GPW+iGkdWaKqXVkp+vnaYMBeJiIiIjjG/wFWMXE/s8fiIwfE2PKPzEhERERGNAAazRERERAMY4rvyNIjhylcGs0REREQBeL5m1dbWNsIp+WryfFFM14/usQs+M0tEREQUgK7riI+PR01NDQAgMjLS+9lWOjqmaaK2thaRkZGw2Y4uHGUwS0RERNSPtLQ0APAGtDR8NE1DTk7OUV8gMJglIiIi6ocQAunp6UhNTUV3d/dIJ+crxW63Q9OO/olXBrNEREREg9B1/aif7aRjgy+AEREREZFlMZglIiIiIss6IYLZNWvWIC8vD+Hh4Zg1axY2bNgQ1HLPP/88hBC46KKLjm0CiYiIiOiENOLB7AsvvIAVK1Zg1apV2Lx5M6ZMmYKFCxcO+tZgWVkZbrrpJpxxxhnHKaVEREREdKIZ8WD24YcfxrXXXotly5ahqKgIjz/+OCIjI/Hkk0/2u4xhGPjWt76FO++8E6NGjTqOqSUiIiKiE8mIBrNdXV3YtGkT5s+f752maRrmz5+P9evX97vcr371K6SmpuKaa64ZdBudnZ1oamry+0dEREREXw0jGszW1dXBMAw4nU6/6U6nE1VVVQGX+fDDD/GXv/wFTzzxRFDbWL16NeLi4rz/srOzjzrdRERERHRiGPHHDELR3NyM73znO3jiiSeQnJwc1DIrV65EY2Oj99+BAweOcSqJiIiI6HgZ0Y8mJCcnQ9d1VFdX+02vrq72fj7OV3FxMcrKyrBo0SLvNNM0AQA2mw27d+9GQUGB3zIOhwMOh+MYpJ6IiIiIRtqI9sza7XZMmzYNa9eu9U4zTRNr167F7Nmz+8w/btw4fPHFF9iyZYv334UXXoizzjoLW7Zs4SMERERERF8zI/452xUrVuCqq67C9OnTMXPmTDzyyCNobW3FsmXLAABXXnklMjMzsXr1aoSHh2PixIl+y8fHxwNAn+lERERE9NU34sHsFVdcgdraWtx+++2oqqrC1KlT8eabb3pfCisvL4emWerRXiIiIiI6ToSUUo50Io6npqYmxMXFobGxEbGxsSOdHCIiIiLqJZR4jV2eRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZJ0Qwu2bNGuTl5SE8PByzZs3Chg0b+p33iSeewBlnnIGEhAQkJCRg/vz5A85PRERERF9dIx7MvvDCC1ixYgVWrVqFzZs3Y8qUKVi4cCFqamoCzv/ee+9h8eLFWLduHdavX4/s7GycffbZqKioOM4pJyIiIqKRJqSUciQTMGvWLMyYMQOPPvooAMA0TWRnZ+NHP/oRfv7znw+6vGEYSEhIwKOPPoorr7xy0PmbmpoQFxeHxsZGxMbGHnX6iYiIiGh4hRKvjWjPbFdXFzZt2oT58+d7p2mahvnz52P9+vVBraOtrQ3d3d1ITEwM+HtnZyeampr8/hERERHRV8OIBrN1dXUwDANOp9NvutPpRFVVVVDr+NnPfoaMjAy/gNjX6tWrERcX5/2XnZ191OkmIiIiohPDiD8zezTuu+8+PP/883j11VcRHh4ecJ6VK1eisbHR++/AgQPHOZVEREREdKzYRnLjycnJ0HUd1dXVftOrq6uRlpY24LK//vWvcd999+Gdd97B5MmT+53P4XDA4XAMS3qJiIiI6MQyoj2zdrsd06ZNw9q1a73TTNPE2rVrMXv27H6Xe+CBB3DXXXfhzTffxPTp049HUomIiIjoBDSiPbMAsGLFClx11VWYPn06Zs6ciUceeQStra1YtmwZAODKK69EZmYmVq9eDQC4//77cfvtt+PZZ59FXl6e99na6OhoREdHj9h+EBEREdHxN+LB7BVXXIHa2lrcfvvtqKqqwtSpU/Hmm296XworLy+HpvV0ID/22GPo6urCZZdd5reeVatW4Y477jieSSciIiKiETbi48webxxnloiIiOjEZplxZomIiIiIjgaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZFoNZIiIiIrIsBrNEREREZFkMZomIiIjIshjMEhEREZFlMZglIiIiIstiMEtERERElsVgloiIiIgsi8EsEREREVkWg1kiIiIisiwGs0RERERkWQxmiYiIiMiyGMwSERERkWXZRjoBX0emKWFKQEr1txDqv206IIQIah2Gex3CvbyuDbycy5Bwbw66Bmj9bEdKCcMEIADp/n/PNjzbs+mBlzVNCcO9EW2QNHm2I9UmoGs9+957PYDaNgDoAtAG2ddgefIwmPQapoT0HDPhvgoMIt+PlWCPp2850YYx7zwGOo4AYBgSpiedAbbvMvyPgeazL559DLTeYPmuQ0L9jxDwK98aAL1XmfbdL0iVLlP65/VA5cc0JVzuHfekf7C8D6X+HK1QtuVtr0JI13Dvi+lplzztgAbv+gO1HwOl11OXAf+2c7jSfKzrXKgC7ZdhSphmzzwqHwLXsVD3x2976Fu3hsrwaSuECO68N9K87bQEhKbOH73bQd+2RnPHAkfb7vXH99jo7nO65zxiG2BbJ1qZDoTB7HHkMiQ0ARw4DNQ0qcIRYQfyUwQcYUBzh0R0uLvA91NYXIZqiEtqgMY2VQxjIwVGpap1+waaplTzdnQBxTUS7V2qIDrjBLIS1fY98xumhBBAexcQEQZUNQKH6iUMA7CHATlJAvFRwOFmINwuEe2ACgSEgMtQy+6vBQ63qPVGOYACJ2C3qW0K4b+dw83AgcMSXS41T36qQEx44PXkpwrYNHd6TIG8FLXf/QXVwRwHACitAepb1X/HhAuMckromv96PcFWSQ3Q5JPf+SnqOJm6HDDAH06muyVv7QRKaiQ6ulRj54wXyExUJyebLiClSnNnN1BcLdHmPu7JMQI5ydJ94XR06fUcxyPNQLnPccxOEkiKUWlxmUBxNdDSoeZNihbITZbedZgSKKkGmtrVtPhIgXwnAE2ioRXYX6vWa9OBrCSBlFg5YN3onbbmdrXfEXag/DDQ0SWRnSQQYVdl7IhPGSt0AmE2AJAQQqC2CTh4WMJluPcrWSAhCmjvBBxh6gRVWg00eMpEhECBU21XE2p7te46HmlXZTjCrq6GdN3/hpin/pTXAXXNA9efo+VX9ttUfsa6y75N989bT7oO9NqXAifgCAucrlDagmAYhoTQgIojQFWDKlfhdmBUqkC4Haiql6huAjISBNLi1e+VDe55e6UXUsKUwq/tdMYLZCYEnyf98ba13UCJT51LjRXITvJva48Xz7EuqwWOtEpkJgg441SZbu8CSmsl2jvVhZpKZ0/d0dyBTu82ZKD98Rz7Mp+6Fe0+9mFDLMeetqzb8G9LEqMEclMA0yXdF8DDG/QdDU873dgOlNVKdHUDuu4uo3FASwcQ6VDzaBpwpAXodgEpsUBTu2r3On2XiZeQ5tFdFHjKwv46IDwMcMapbZX5bCs9XiA9oWdbJ2KZHoiQUsrBZ/vqaGpqQlxcHBobGxEbG3vctmuYEsVVwI4KiW6j7++pccCMUQI1jaqxTont24iapsTnZRJltT09lR5CALnJwMn5wtsQdRvAJ3slapv6bs9uA4oyBUY51d/VDUBsJNDQCmzZrwLf3uIigemjBLpdwJcVErNHCzhswM4KiT2V8PZE+UpPAGYVCOi6Cv4OtwCbSiRaOnrmSY4BTh8nsOeQxJ4qwBUgf9LjgRkFAsXVwK5DEgVOYFK2CPkK0TQltpZLlFQHzsPsRGB6gYCAhITA5lKJ/XU9vegemgDyUoApuQLldRK5KeKYNqiGqRqdT/ZKHG7p+7sjTOVHTjJgmMCn+ySqGvrOZ9OBcRkCY9OHfnVtGBL1rcDGXscRAMZmqPV/ViJRcaTvsroGFKapsrd+b08adQ04Y5yAEKp8NLX3XTbSAUzLFwHrhjdtplp29yGJafkCe6uA3ZUSiVHAqWMFdlVI7KsKXFYzEoCZBQIlNRLbyvv+HhsBzCoU0DRg7RfSbx0JUcCZRap87uynjjvj1Pptes9JwDQldh1Saeyv3M8qVPWnv973YJmmxLZyiZIaVUZ8CQBZSap+6+4epD1VwK4B9mVWoUCY3lOOTFOqtqC/OuzTFgSzL4Ypsb8W2H5AotPV9/fkGNUmHG4GNhRLhIcBk3MEkmOB975UJ1/f9M4sEDhwWLVvnvScUiiw/UBwedJf3TZNlUef7JOoaez7e5gOjM8UGJ12/Hq0TFPiiwMSxdWAaQKzxwgkRas2b2OxRE2Ac0KYDhRlCRQ4AcO9P9UD7E9hmn+v9pcHJfZW9c1HAMhMAGYWipB69Tw97Bv2SVTU9/3dty2RGN67dkNlmKpN/HSfRGNb398j7MBJeaoNa2xTbd2kHIHocHVc6lv7LhMeps4zmYlD64k2TYntB1X8MaNQIDZctd1HApxHwsOAybkCWQmqjRzpMh1KvMZg9jgwTIkvD0jsrhx4vgg7MG+iwK5DEqmxAmnx/o3Fh7sDNy6+kmOAOeOBbkPgnS8CB6W+xmcCY9MFWjrUleTG4oGLg64Bc4vU/OnxwNb9KrgeSEw4MG+SQGsH8M526RcYRtiBsycLbCuXKK0ZeD3R4cA3Jghs3a8CzKxET3ARfOP48V6JygANo6/8VODkPIH3dwW+EPCVGgecNkZga7nESbmhB9fBMKXqhX37C9VTOZDJOQJZScBbW2XAk4pHgVM1kKE2joYpcbgZeH+X7BPgZyao4GLdjsANua/sJBWYvrNdNf4zCwUi7cD7O2Wfi4zeTh0j4Izr2ytgmGq76/dIzJ8k8OVBdTKPdABnTxL4vEyVm4HERgBnTRDYVCpx8HDf33UNmDNOoLVTBVCAujA8d6rADvfJfCCRDmDeBIEwm7qR+HlZcOV+/iSBsKPoBTFNiU/2Bg4KfCVEqf0vq5XYXDrwvJEOYMEkFdCaEvi8VKI0yLZgsH0xTIm9lcAXBwYuDI4w1SaU1UrsrFDTTs4XSI5R9cW3jEY61Lw7K1S9njdR9Bso+fLkSaC6IqWqk+984R88BzI2HZiQHXqdC5VpSmwoljjgLr+TcwRyktTF+btfDn5OGJcBjE4XeGvrwO3NmHRgYraAgAqOyoOoW/MmiqB781yGxNrtgS9sfeW4O3GkVEHWSPXQGqZEczvw7pcDt72njlEXtB/skpicI5AaC7y3I/BFo6+T8wXyUkILaE1Teo/N5BwVU6z7cuBtFTqB8VkCa0+AMh1KvHZCvAC2Zs0a5OXlITw8HLNmzcKGDRsGnP/FF1/EuHHjEB4ejkmTJuH1118/TikNnZQSDW0YNJAF1K2fTSUS4zIENhT3NMSGqXqTBgtkAXXLwjBVIz1YowUAOyuAti4gwqG2PRjDVL2D2YlATSMGDWQBoLlDneg0rW8PZ6FT3dId7IQOqNszW/ZLjM9UFefgEXUL1Bws+oHKw9JaDBrIAurWzq5DGDSQBVQe7KsGnLECuw+pXsthJ4H1ewcPZAFgW7lEt0sFiwMprgbqmlX5DNXHe/oGsoBqAL84MHggC6jjVlEPjE4TiHKoC5NP9g4eyAKq1yPQbEIAH+2WyEsVONKi9hFQ26hswKCBLKBuvW3dLzE+o7+eX9VbkZWkgiMAGJWqelkGC2QBoK0T2FQqIWVo5X5zqfTeKgyVaaogfrCgDQDqW4EvyiViIwY/ObV1qotfQ6q2abBAFuhpCwbbl7bOwQNZQN0G31AsMSZd9Z4Cav02TfW0917nplLVvo5JFyHnSaA0m1IFcoOd9AF1DqhvHVqdC5ZpShxwt4uAutAqTAOEpi7Qgjkn7DoEtLSrO08D2ePen6b2wQNZQNWtLfuDK8cuQ2Lr/sEDWUA9nnPoiGrPgmk/jhVNqLZxoEA2LlLdJfhkr0SYrjoVPt03eCALqDYgmHOAhynVhVp5HYLelhDAuEyBz4qDL9MNx7hMB2vEg9kXXngBK1aswKpVq7B582ZMmTIFCxcuRE1N4Fb+448/xuLFi3HNNdfg888/x0UXXYSLLroI27dvP84pD45hqluewapsULeFnHFw3/pSzwjtrQ5uHZmJqoEPJvD1TWOg2+796ehS8+4LMk2AalwdNvX4hIcmVC/ovqrg13PwsGqgU93r2RPkskIAe4OYN9Kh8r44hH0rrpbISAAq6tXzfcOtpRMBbwkNlJ7CtMGDkT2VwQWPHqapensCNYaJ0er5uP1BBDQe+6okcpPVBc2hevVsVjAMUz2vavgkXkrV497pUsGlp2zqmjoph1pWIx1AUkzg39u71EVRQarK49FpAnsqg19/VYMqj6G0CwcP970QDJpASOkrq1W9kXGRg89bWa8eKTjcHFr+DrQvLkOGlDeHm1WgmuO+gJNQ7wgUOPvWgcp69XtOUmh1vKy252VUX92u4C6QPfYcCq3ODcVen2OdlwK0dqhjFOixo37XURU4/3rbc0jCERZ8r1wwQa9HMBefHvuqJVJiAj/ecjxIqR7daO0ceL4Cp3rUpculjs3hFgQVsHvsqQzholb21Pu8FHXhMVhHQ0YCvM+dB2t3iOeRY2XEg9mHH34Y1157LZYtW4aioiI8/vjjiIyMxJNPPhlw/t/+9rc455xzcPPNN2P8+PG46667cPLJJ+PRRx89zikPjhDAoRAaO0BV4swEdetMCHXl0zZIJfHISBDYXxd8yRJCnbjKaoNfJjlGBTTB9Fx6mFKdxDISehq+pBgVmAR6fivY9TS0IqjehpYO9ULQYDLi1X4FG1gB6tjUtQDxUeqFqOHkMiRKQjjpAqr8xEeqRzgGUtUQ+Pm2/kgApTWB05KRIFBRH/hZ1P7Ut6p8zkxSLz2EorRW+gUXhqleikuIUmXac+JOjlEnjsMhHBfDVMFjZkL/J+myOomMRHXMdT20gCbJXX9CLffq2e3QzxqtHaGdMLsNdTLr3bMZiARQVgNEh4dw61MC+w/3vy+6pl6gC8X+OomMxJ407K9VL7ra9L7zltepfQzmDoKHJ098GaZ61jYUh+qP4qIkCO3d8HvuMiNBoMsVWmAIqB5rR9jgFzSH6tXxig/iwgfoqVuDleODR0Jrm460qLaktim4O3XDTXUIDb7djAR4z88ZCSLkdm9/bfAvXXW6ejpBMhKDiwtU/BBSknDoyLEt08Ea0WC2q6sLmzZtwvz5873TNE3D/PnzsX79+oDLrF+/3m9+AFi4cGG/83d2dqKpqcnv3/HU5Qr9QLd3S9htcI8+IIIK1jzsNtVzGizPM0ahbiOU+T06uiUcPuNn2G2hBY0e7V0S9jCfv4NYR3uQFwND3rcu1fMczK2ZUEiEnh7DVCdfexBjlYRy20oT/adlqPnW3qXKYKjLdnT7PxsnhDoGvct/qPXBm67ugfPPsy27zV3HQ1i3XR9imrqG1gMy1ONitwV30vS0VyGtv7P/fXGZoQUygCe9PX93dKuAyR4gmG3v6hmeKBStnf5BmHrTO7QVSQS+szFcepcru81TN0JMpwS6BqkDgNqfzm74tceDaesa+JxomjLozhtfHd3+w+Udb8HUM992cihtZqcr+Atav3YwyDZHnZNPrDIdrBENZuvq6mAYBpxOp990p9OJqqrAD6BVVVWFNP/q1asRFxfn/ZednT08iQ/SUJ6L1oVqzNVbxRJ6CEfJNNVwH8HynDRC2YYnbaHShPA7SQ11PWqcRN+/g1gmwEktEEMOcd+0oe/PYIaWR8EFBKGUTzlA3gz9WPaM3xqK3umWcI8F2ysdRoj1wZsuMXD+eY63aYZex4dextTLNqE6luUHGDyvAq+//30ZUpvZK72ekUUCpUvXMKR8DDQO51DSeizf/+p9rA1T1duh1AEtyDIQSlnxrHegd7Q8Y96GyrOPIzVCVzBp9m0ne7dVwRAhjJjje8zNIMvAUNoz4NiW6aDTMNIJONZWrlyJxsZG778DBw4c1+2H2dTbyKFIiRVobFfPlxqmeh4x2MLS2K7GgQuWYQJtndLvWdbBNLWrt5IdIVyNA+o518b2nqu+pnaVN+EhricltmfM1zBdvSU7mPjI4BqOxjZ1azqUuikEkByt9ie5n+csh0oX6nZpKBKjVaM02FV/hF0NAxcsU6LfctLUFloZAtSxi4tUj3+EumxqLPyfHZNqWlO7et7V84hFU7vaRqg9hylx/mU10Pab2lTaHTY1lmqwmtrV/KGW+/T4oQ2DEx8V+klTDR0UXA9NWrxAa2dovTlp8f3vi4B69CkUKbECTW2+f6veyEBDeqXGCtht6iWxUDjj/f/WNbXvoYgO94xnfGzERKh65dHUrtqnUM4JgGrf7Tb0GXqvtyiHOg+0hPAYS3r8wAGZEOqt+1DYbaqNj4kQIxJYCQGkBtFON7X1tHXqHB9aYlVMEFxd8xxDQJ3XgikDocYPwLEv08Ea0WA2OTkZuq6jurrab3p1dTXS0tICLpOWlhbS/A6HA7GxsX7/jicp1QsuwYq0q8peWiMxNl0NY6IJ9WJXMEpq1MtIoZwo2zrV28BBz9+lguD8Qd529RUXqU6qvi8ItXWq5wbzU4NfT2yECtY8oyjkpgT/GEfOIG/4A+pZSwk1BmWwshLVbRY1fmjwywVD09Rg5mEhrLfAKVBWO3hvSYFThPQIjE0XGNtPOSk/rF4AS4wOfn2elxL2VAb3somvMRn+Q/zYdIHR6QId3eoYetbX0qHecg6ljCVEAXER/b+sIqAG7S+uVsFSZUNodRxQFwajQiz38SEGeB5SqjGog5USqwL0QOME9xblAJJjQ7v487QFAxkdxAuMHupjHeqlL49Cpwj4PGukQw2n19yhxmQOVkps3zZVCDVEXGQIFzKh1rlQSanaRI/iaonYCHVOGewZel8FaQIHDw/+GFJhmkBjGwJeNASSEKWCrMHEhId2QZOXot6fiI8amaG5dE2NzzvYpn1fTCyulu6htoLfzpi04IN1U/aMSFFcrV62HewCrrRGIi0+tDJdeIzLdLBGNJi12+2YNm0a1q5d651mmibWrl2L2bNnB1xm9uzZfvMDwNtvv93v/CNN19SHCYLtnZ2QrYYRSohSHzEA1Il6YrYIqiehs1sFVpNzgivxMeFAfJRAYnTPCAGDGZ2mtjE6TQQdNE/OUYOb9362prhKvXkfbEM7MVt4X+Cw29TAzcE8EG/TBYqyRFBBYUm1xMRsEVQjY9NUGkpr1TLHolfAlMCErOBWHB/Z98QeSKQdfoOeByvcjoBBgGGqC4yJ2SKo23wOGzAmXQWEnpenCpwDL+ORHh/4xRTP8DP7qiVGpfY0yMXVMqSyOiFbvQTR35vRBWnqgsfzQtCeSolRzuB7Zydmqwwakx58uZ+cI0J7MNdHKGVfCLWtA4eDG91kco46kY1yDt++eC7gghlNAVAD/R9u7nnBMylG9aKWBKgDE7MFKuvVSBpjM0LLk0BVxZTApCDb2iiHuoA5luPM2nSB8ZnC2yN3pMX98mtHT7kbTHS4CoIGG+3Bsz/RQd6lEwj+vASocbCDmdsRps5Fns/CjxRdU+fGgXhG48lNVsemtVN9ZCYYSdGqXAcbrNt0gXEZ6uui9a2qDIzLHHjZ9i71Ut/EIM83UQ5glPPE+KzwiD9msGLFCjzxxBN4+umnsXPnTvzgBz9Aa2srli1bBgC48sorsXLlSu/8y5cvx5tvvomHHnoIu3btwh133IHPPvsMN9xww0jtwqCEUF8HGiygnZKrBlA+eETilNHC7ys5EXZgzviBG1+bBpw+Vrg//wlMGaThiAlX6QLUMEGnjhGD3u7NT1WB1cd7JFo71WDiA53EhFAD4qfEqh6c3m9IVzaotyHnjBt8PdNHCcRGqLFUHWEq7aH0WDrC1AcfBrrlrGvq1k+UQ32RaqCe1jAdOG2sQGe3+hRglOPY9ArYdHVBVJQ18HxxkWr/GlrlgLf9Ih3AmRMEhjIGv64JzBglAt4p2H5QveA3s2DgoD48DDhjvEBds3uYJqjxDyfniEF7EJ1x6mtGgb4gpWsCU3MFIsLUeueME4h0qB7G6kZ1PAcKaIVQaY+yq3FFA8lNUV9a+3Rvz+91zSqQP7NIDBrQTs0VyExQjw3pGnBW0eDlfkaBQGrc0X1px25T6Ruo7GtCfQAkNkLV08H25eR8gfQEle82Ta1/0LagQLUFg+6Lu80cLKAtyhLISQI+c4+RnRSt2sAtZX3HVJ2aK5ASA+9XFBvbVDkMJk/iIgPXbV1Tx/OkvIH3JzpctZVDeXY1VGG6KleeAHNDsUSE+47flNzB03lmkUBzOwJ+adB3Ps/+eMrxYHVr1mj1FbJgyrGmqQ6WWaMHvjgOD1P13GWo9m8kgypdE5iULQa8C2RKda6dPkogK1F93Wx02uBBcGK0Kquh7p1N7zk2G4vVlzPHpA+8TGmNGkc72DJ9gnxF+MT4Atijjz6KBx98EFVVVZg6dSp+97vfYdasWQCAM888E3l5eXjqqae887/44ou47bbbUFZWhtGjR+OBBx7AeeedF9S2Rupztp7vHO+vVWP4eYbK0TV1lVbgFAizqWF0kmMCV3jDVAMy76tSvQ6exjo8TAWZo9OE37fEDfdbobsr1aDWntvOcZFq3pzknmdxJdRtmrhIdWVWXN3z9Ssh1Mmt0CkQHwXsq5RIT1QnPQFVQUtrVI+Y5xmrMF2d+Memq0/e6j6f76xtVhXaMxaugPrUaGps/+spcAqYpho4OjNRBXcqIAitJhmm+n77vmq1j548dNjceZiuAmT1kpn6xOjeKvWVJs/IC+FhqidqVKq6DRcehqC/4X40PJ9K3H1I+vWcJUSp45mdBMDdO9HRpY67bw9jTLi6LZifqvL8aIIjz3HcU+n/2dxsdyNousc4LKvtuVUZ5VBlKN8J7xiIJT75mpWoAjfPoweeMUEBdddgTLqAM37wT6Gapvrkb5dLLVdWp3rbR6erE0hpjao/vmUsL0Wt325TwenuQz2f/BRQj50UpqkvSwWqg44wFfR4HqXxreM2TfVmj05XXzkTPuXWNCVMqOGt9lb1Lfdj0tWJaDjKlqfsF9eosu95Y9zuLvtj0lQbpGs932Uvq1W9mH774q7XEXb/dHk+PxpsWzAYU0rAPRTf3qqeT31qQuVngVPlzQe71AD0o9MFMhLUJ3h3VPikNxkYm6HmLa1Rn8Pu6FbrOWW0Cq5LgsiTwfK2vUuVm/K6niHqYiNU3cxNUcf9aD9JHCzPW/0l7nbObgPOGCsgNNX7treq7zmhMM3/YjKU/fEc+5IaVV4846361i3HEMqxYUh0GSodZbU9d/aiHOr456eq9u54tL/BMk1VVndXSr+h2FJiVZozEtSFVHwkUNsMHKpXH2lp6VD1puJIT9ueFK3KdWaiaoeG0lnie2xqGiWmjVJfMCyukjjos63EaFXeMxPVsTVlTxnY71NWjmeZ5udsBzBSwayHaUpAqBd0PJXQZaoXfSR63sIdiGFIvzdNPW+T9ne73WWoERFchrvwaQBk32DGcwLz25apTgiqwEtomgoqA31KVHj2C2qZ/tIkpapcAmrfbVrPvpsSAdcDodLc8/b70VUgw1TjlBpBpNdlSuhCpVVApcGT7oHy/VhxeY6/4X4z2D299/H0HnfTE7x6RiQYnvQOdByFEH223/vYBfrdMAFNqE9vetbredwjmLoRKG2e0QNME4C7fAnNvw76HkfPsoB/+ReQEJqqqJ4RGALVQb+64LP+gb5LH0r9OVqhlP3+9mWgdA33vnjGDZVwvwGu94za4jJ8RidwtxG921ffbQdqO013+xJsngwk2Lb2eAl0rE3ZMzKJbzpNqc5DvnUs1P0JpWyFonc6PMdN4vi3v8GQUnpHUvGUUfWDT15rwq+d8rQ5gcr1cASMvsfG80hGMNsayTLNYHYAIx3MEhEREdHAQonXRvyZWSIiIiKioWIwS0RERESWxWCWiIiIiCyLwSwRERERWRaDWSIiIiKyLAazRERERGRZDGaJiIiIyLIYzBIRERGRZTGYJSIiIiLLYjBLRERERJbFYJaIiIiILIvBLBERERFZlm2kE3C8SSkBAE1NTSOcEiIiIiIKxBOneeK2gXztgtnm5mYAQHZ29ginhIiIiIgG0tzcjLi4uAHnETKYkPcrxDRNHDp0CDExMRBCHPPtNTU1ITs7GwcOHEBsbOwx3x4Fh8flxMNjcuLhMTnx8JiceHhMjg0pJZqbm5GRkQFNG/ip2K9dz6ymacjKyjru242NjWUhPwHxuJx4eExOPDwmJx4ekxMPj8nwG6xH1oMvgBERERGRZTGYJSIiIiLLYjB7jDkcDqxatQoOh2Okk0I+eFxOPDwmJx4ekxMPj8mJh8dk5H3tXgAjIiIioq8O9swSERERkWUxmCUiIiIiy2IwS0RERESWxWCWiIiIiCyLwewxtmbNGuTl5SE8PByzZs3Chg0bRjpJXxnvv/8+Fi1ahIyMDAgh8Nprr/n9LqXE7bffjvT0dERERGD+/PnYu3ev3zxHjhzBt771LcTGxiI+Ph7XXHMNWlpa/ObZtm0bzjjjDISHhyM7OxsPPPDAsd41S1q9ejVmzJiBmJgYpKam4qKLLsLu3bv95uno6MD111+PpKQkREdH49JLL0V1dbXfPOXl5Tj//PMRGRmJ1NRU3HzzzXC5XH7zvPfeezj55JPhcDhQWFiIp5566ljvnmU99thjmDx5sndA99mzZ+ONN97w/s5jMrLuu+8+CCHwk5/8xDuNx+T4u+OOOyCE8Ps3btw47+88Jic4ScfM888/L+12u3zyySfll19+Ka+99loZHx8vq6urRzppXwmvv/66vPXWW+Urr7wiAchXX33V7/f77rtPxsXFyddee01u3bpVXnjhhTI/P1+2t7d75znnnHPklClT5CeffCI/+OADWVhYKBcvXuz9vbGxUTqdTvmtb31Lbt++XT733HMyIiJC/vGPfzxeu2kZCxculH/961/l9u3b5ZYtW+R5550nc3JyZEtLi3ee6667TmZnZ8u1a9fKzz77TJ5yyiny1FNP9f7ucrnkxIkT5fz58+Xnn38uX3/9dZmcnCxXrlzpnaekpERGRkbKFStWyB07dsjf//73Utd1+eabbx7X/bWKf/7zn/Lf//633LNnj9y9e7f8xS9+IcPCwuT27dullDwmI2nDhg0yLy9PTp48WS5fvtw7ncfk+Fu1apWcMGGCrKys9P6rra31/s5jcmJjMHsMzZw5U15//fXevw3DkBkZGXL16tUjmKqvpt7BrGmaMi0tTT744IPeaQ0NDdLhcMjnnntOSinljh07JAC5ceNG7zxvvPGGFELIiooKKaWUf/jDH2RCQoLs7Oz0zvOzn/1Mjh079hjvkfXV1NRIAPK///2vlFLlf1hYmHzxxRe98+zcuVMCkOvXr5dSqgsUTdNkVVWVd57HHntMxsbGeo/BLbfcIidM+P/bufOQqNo2DODXTNMxzaZRtBlbDKOsfNsNZWglh0wKrP5IQkJbCFuooBUqiihaiKAiCor2wiLQIEoacsmiBjI1K5OMKQ00aTGtLM25vz/6OnTSFnpfO566fiDMzHN75nme28HLwXn+0TxXUlKSxMfHt/WS/hhBQUFy6NAh9kRH9fX10q9fP3G73TJu3Dg1zLIn+tiwYYMMHTq01TH2pP3jvxm0kcbGRhQUFMDlcqmPmc1muFwu3LhxQ8eZ/R28Xi+qq6s1+9+1a1fExsaq+3/jxg3YbDaMHDlSrXG5XDCbzfB4PGrN2LFjoSiKWhMfH4+ysjK8evXqN63GmF6/fg0ACA4OBgAUFBSgqalJ05MBAwYgPDxc05PBgwfDbrerNfHx8airq8O9e/fUmi+v8bmGr6sfa25uRnp6Ot6+fQun08me6GjRokWYPHlyi31jT/Tz8OFDdO/eHX369EFycjIqKioAsCdGwDDbRp4/f47m5mbNDzYA2O12VFdX6zSrv8fnPf7e/ldXV6Nbt26acYvFguDgYE1Na9f48jmoJZ/Ph2XLlmHUqFEYNGgQgE/7pSgKbDabpvbrnvxov79VU1dXh4aGhrZYjuGVlJQgMDAQfn5+SEtLQ0ZGBqKiotgTnaSnp+P27dvYunVrizH2RB+xsbE4evQosrKysH//fni9XowZMwb19fXsiQFY9J4AEf15Fi1ahLt37+LatWt6T4UA9O/fH0VFRXj9+jXOnTuHlJQU5OXl6T2tv1JlZSWWLl0Kt9uNTp066T0d+r+EhAT19pAhQxAbG4vevXvj7Nmz8Pf313Fm9DP4zmwbCQkJQYcOHVp82vHZs2dwOBw6zerv8XmPv7f/DocDNTU1mvGPHz/i5cuXmprWrvHlc5DW4sWLceHCBeTk5KBnz57q4w6HA42NjaitrdXUf92TH+33t2qsVit/6XyDoijo27cvoqOjsXXrVgwdOhS7d+9mT3RQUFCAmpoajBgxAhaLBRaLBXl5edizZw8sFgvsdjt70g7YbDZERkaivLycrxMDYJhtI4qiIDo6GleuXFEf8/l8uHLlCpxOp44z+ztERETA4XBo9r+urg4ej0fdf6fTidraWhQUFKg12dnZ8Pl8iI2NVWuuXr2KpqYmtcbtdqN///4ICgr6TasxBhHB4sWLkZGRgezsbERERGjGo6Oj0bFjR01PysrKUFFRoelJSUmJ5o8Mt9sNq9WKqKgotebLa3yu4evq5/l8Pnz48IE90UFcXBxKSkpQVFSkfo0cORLJycnqbfZEf2/evMGjR48QFhbG14kR6P0JtD9Zenq6+Pn5ydGjR+X+/fsyf/58sdlsmk870q+rr6+XwsJCKSwsFACya9cuKSwslCdPnojIp6O5bDabnD9/Xu7cuSOJiYmtHs01fPhw8Xg8cu3aNenXr5/maK7a2lqx2+0ya9YsuXv3rqSnp0tAQACP5mrFggULpGvXrpKbm6s53ubdu3dqTVpamoSHh0t2drbcunVLnE6nOJ1Odfzz8TYTJ06UoqIiycrKktDQ0FaPt1m5cqWUlpbKvn37eLzNd6xZs0by8vLE6/XKnTt3ZM2aNWIymeTy5csiwp60B1+eZiDCnuhh+fLlkpubK16vV65fvy4ul0tCQkKkpqZGRNiT9o5hto3t3btXwsPDRVEUiYmJkZs3b+o9pT9GTk6OAGjxlZKSIiKfjudav3692O128fPzk7i4OCkrK9Nc48WLFzJz5kwJDAwUq9Uqs2fPlvr6ek1NcXGxjB49Wvz8/KRHjx6ybdu237VEQ2mtFwDkyJEjak1DQ4MsXLhQgoKCJCAgQKZNmyZVVVWa6zx+/FgSEhLE399fQkJCZPny5dLU1KSpycnJkWHDhomiKNKnTx/Nc5DWnDlzpHfv3qIoioSGhkpcXJwaZEXYk/bg6zDLnvx+SUlJEhYWJoqiSI8ePSQpKUnKy8vVcfakfTOJiOjznjARERER0b/D/5klIiIiIsNimCUiIiIiw2KYJSIiIiLDYpglIiIiIsNimCUiIiIiw2KYJSIiIiLDYpglIiIiIsNimCUiIiIiw2KYJSL6A5hMJmRmZuo9DSKi345hlohIZ6mpqZg6dare0yAiMiSGWSIiIiIyLIZZIqJ2ZPz48ViyZAlWrVqF4OBgOBwObNy4UVPz8OFDjB07Fp06dUJUVBTcbneL61RWVmLGjBmw2WwIDg5GYmIiHj9+DAB48OABAgICcPr0abX+7Nmz8Pf3x/3799tyeURE/zmGWSKidubYsWPo3LkzPB4PduzYgU2bNqmB1efzYfr06VAUBR6PBwcOHMDq1as139/U1IT4+Hh06dIF+fn5uH79OgIDAzFp0iQ0NjZiwIAB2LlzJxYuXIiKigo8ffoUaWlp2L59O6KiovRYMhHRLzOJiOg9CSKiv1lqaipqa2uRmZmJ8ePHo7m5Gfn5+ep4TEwMJkyYgG3btuHy5cuYPHkynjx5gu7duwMAsrKykJCQgIyMDEydOhUnT57E5s2bUVpaCpPJBABobGyEzWZDZmYmJk6cCACYMmUK6urqoCgKOnTogKysLLWeiMgoLHpPgIiItIYMGaK5HxYWhpqaGgBAaWkpevXqpQZZAHA6nZr64uJilJeXo0uXLprH379/j0ePHqn3Dx8+jMjISJjNZty7d49BlogMiWGWiKid6dixo+a+yWSCz+f76e9/8+YNoqOjcerUqRZjoaGh6u3i4mK8ffsWZrMZVVVVCAsL+/VJExHphGGWiMhABg4ciMrKSk34vHnzpqZmxIgROHPmDLp16war1drqdV6+fInU1FSsXbsWVVVVSE5Oxu3bt+Hv79/mayAi+i/xA2BERAbicrkQGRmJlJQUFBcXIz8/H2vXrtXUJCcnIyQkBImJicjPz4fX60Vubi6WLFmCp0+fAgDS0tLQq1cvrFu3Drt27UJzczNWrFihx5KIiP4VhlkiIgMxm83IyMhAQ0MDYmJiMG/ePGzZskVTExAQgKtXryI8PBzTp0/HwIEDMXfuXLx//x5WqxXHjx/HxYsXceLECVgsFnTu3BknT57EwYMHcenSJZ1WRkT0a3iaAREREREZFt+ZJSIiIiLDYpglIiIiIsNimCUiIiIiw2KYJSIiIiLDYpglIiIiIsNimCUiIiIiw2KYJSIiIiLDYpglIiIiIsNimCUiIiIiw2KYJSIiIiLDYpglIiIiIsP6HwE56hZNnnKcAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import nltk\n", + "import string\n", + "import re\n", + "import torch\n", + "import torch.nn as nn\n", + "from nltk.corpus import stopwords\n", + "from nltk.tokenize import word_tokenize\n", + "from wordcloud import WordCloud\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve, auc\n", + "from sklearn.feature_extraction.text import TfidfVectorizer\n", + "from sklearn.naive_bayes import MultinomialNB\n", + "from sklearn.tree import DecisionTreeClassifier, plot_tree\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.svm import SVC\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.utils import shuffle\n", + "from imblearn.over_sampling import SMOTE\n", + "import warnings\n", + "\n", + "warnings.filterwarnings(\"ignore\")\n", + "nltk.download('stopwords')\n", + "\n", + "# ------------------------ 1. Load and Preprocess SMS Spam Dataset -------------------------\n", + "sms_df = pd.read_csv('SMSSpamCollection', sep='\\t', names=['label', 'message'])\n", + "sms_df = shuffle(sms_df)\n", + "\n", + "# Preprocessing function using regex for tokenization\n", + "def preprocess_simple(text):\n", + " text = text.lower()\n", + " text = re.sub(r\"\\d+\", \"\", text)\n", + " text = text.translate(str.maketrans(\"\", \"\", string.punctuation))\n", + " tokens = re.findall(r'\\b\\w+\\b', text) # Tokenize using regex\n", + " tokens = [w for w in tokens if w not in stopwords.words('english')]\n", + " return ' '.join(tokens)\n", + "\n", + "sms_df['clean_text'] = sms_df['message'].apply(preprocess_simple)\n", + "\n", + "# Encode labels to numerical values\n", + "le = LabelEncoder()\n", + "sms_df['label_num'] = le.fit_transform(sms_df['label'])\n", + "\n", + "# ------------------------ 2. Feature Extraction -------------------------\n", + "vectorizer = TfidfVectorizer()\n", + "X = vectorizer.fit_transform(sms_df['clean_text'])\n", + "y = sms_df['label_num']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "# Apply SMOTE to training data\n", + "smote = SMOTE(random_state=42)\n", + "X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)\n", + "\n", + "# ------------------------ 3. Word Cloud Generation -------------------------\n", + "\n", + "def plot_word_cloud(sms_df):\n", + " all_text = ' '.join(sms_df['clean_text'])\n", + " wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_text)\n", + "\n", + " # Ensure the plot appears\n", + " plt.figure(figsize=(10, 6))\n", + " plt.imshow(wordcloud, interpolation='bilinear')\n", + " plt.axis('off')\n", + " plt.title('Word Cloud for SMS Spam Dataset')\n", + " plt.show()\n", + "\n", + "# Call the function to display the word cloud\n", + "plot_word_cloud(sms_df)\n", + "\n", + "\n", + "# ------------------------ 4. Spam Distribution Analysis -------------------------\n", + "def analyze_spam_distribution(sms_df):\n", + " # Count the number of spam and ham messages\n", + " spam_count = sms_df[sms_df['label'] == 'spam'].shape[0]\n", + " ham_count = sms_df[sms_df['label'] == 'ham'].shape[0]\n", + " total_count = sms_df.shape[0]\n", + "\n", + " # Calculate the percentage of spam and ham messages\n", + " spam_percentage = (spam_count / total_count) * 100\n", + " ham_percentage = (ham_count / total_count) * 100\n", + "\n", + " # Plot the distribution using a bar plot\n", + " plt.figure(figsize=(6, 6))\n", + " sns.barplot(x=['Spam', 'Ham'], y=[spam_percentage, ham_percentage], palette='Blues')\n", + " plt.title('Spam vs Ham Distribution')\n", + " plt.ylabel('Percentage (%)')\n", + " plt.show()\n", + "\n", + " # Print the spam and ham message counts and percentages\n", + " print(f\"Spam messages: {spam_count} ({spam_percentage:.2f}%)\")\n", + " print(f\"Ham messages: {ham_count} ({ham_percentage:.2f}%)\")\n", + "\n", + "# Call the function to display the spam distribution analysis\n", + "analyze_spam_distribution(sms_df)\n", + "\n", + "\n", + "# ------------------------ 5. Message Length Distribution -------------------------\n", + "def plot_message_length_distribution(sms_df):\n", + " # Calculate the length of each message\n", + " sms_df['message_length'] = sms_df['message'].apply(len)\n", + "\n", + " # Separate spam and ham messages for plotting\n", + " spam_messages = sms_df[sms_df['label'] == 'spam']['message_length']\n", + " ham_messages = sms_df[sms_df['label'] == 'ham']['message_length']\n", + "\n", + " # Plot the message length distribution using seaborn\n", + " plt.figure(figsize=(10, 6))\n", + " sns.histplot(spam_messages, bins=30, kde=True, color='red', label='Spam', stat='density')\n", + " sns.histplot(ham_messages, bins=30, kde=True, color='green', label='Ham', stat='density')\n", + "\n", + " # Add titles and labels\n", + " plt.title('Message Length Distribution (Spam vs Ham)')\n", + " plt.xlabel('Message Length')\n", + " plt.ylabel('Density')\n", + " plt.legend()\n", + " plt.show()\n", + "\n", + "# Call the function to display the message length distribution\n", + "plot_message_length_distribution(sms_df)\n", + "\n", + "\n", + "# ------------------------ 4. Word Count Analysis -------------------------\n", + "def word_count(sms_df):\n", + " # Join the messages and calculate word count\n", + " spam_words = ' '.join(sms_df[sms_df['label'] == 'spam']['clean_text'])\n", + " ham_words = ' '.join(sms_df[sms_df['label'] == 'ham']['clean_text'])\n", + "\n", + " spam_word_count = len(spam_words.split())\n", + " ham_word_count = len(ham_words.split())\n", + "\n", + " print(f\"Total words in Spam messages: {spam_word_count}\")\n", + " print(f\"Total words in Ham messages: {ham_word_count}\")\n", + "\n", + " # Ensure the plot displays correctly\n", + " plt.figure(figsize=(6, 6))\n", + " sns.barplot(x=['Spam', 'Ham'], y=[spam_word_count, ham_word_count], palette='Set2')\n", + " plt.title('Word Count Comparison: Spam vs Ham')\n", + " plt.ylabel('Word Count')\n", + " plt.show()\n", + "\n", + "# Call the function to show the word count analysis\n", + "word_count(sms_df)\n", + "\n", + "\n", + "# ------------------------ 7. Train and Evaluate Models -------------------------\n", + "from sklearn.metrics import confusion_matrix, roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "# Models to evaluate\n", + "models = {\n", + " 'Naive Bayes': MultinomialNB(),\n", + " 'Decision Tree': DecisionTreeClassifier(),\n", + " 'k-NN': KNeighborsClassifier(),\n", + " 'SVM': SVC(probability=True)\n", + "}\n", + "\n", + "# Initialize an empty dictionary to store confusion matrix results\n", + "cm_data = {}\n", + "\n", + "# Iterate over each model\n", + "for name, model in models.items():\n", + " # Train the model\n", + " model.fit(X_train, y_train)\n", + "\n", + " # Predict on the test set\n", + " y_pred = model.predict(X_test)\n", + " y_prob = model.predict_proba(X_test)[:, 1] # Probability for ROC curve\n", + "\n", + " # Generate confusion matrix\n", + " cm = confusion_matrix(y_test, y_pred)\n", + "\n", + " # Plot confusion matrix heatmap\n", + " plt.figure(figsize=(6, 6))\n", + " sns.heatmap(cm, annot=True, fmt=\"d\", cmap=\"Blues\", cbar=False, xticklabels=le.classes_, yticklabels=le.classes_)\n", + " plt.title(f\"{name} Confusion Matrix\")\n", + " plt.xlabel(\"Predicted\")\n", + " plt.ylabel(\"True\")\n", + " plt.show()\n", + "\n", + " # Calculate performance metrics\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " precision = precision_score(y_test, y_pred)\n", + " recall = recall_score(y_test, y_pred)\n", + " f1 = f1_score(y_test, y_pred)\n", + "\n", + " # Store the results in the dictionary\n", + " cm_data[name] = {\n", + " 'True Negative': cm[0, 0],\n", + " 'False Positive': cm[0, 1],\n", + " 'False Negative': cm[1, 0],\n", + " 'True Positive': cm[1, 1],\n", + " 'Accuracy': accuracy,\n", + " 'Precision': precision,\n", + " 'Recall': recall,\n", + " 'F1-Score': f1\n", + " }\n", + "\n", + " # Calculate and plot ROC curve\n", + " fpr, tpr, thresholds = roc_curve(y_test, y_prob)\n", + " roc_auc = auc(fpr, tpr)\n", + "\n", + " plt.figure(figsize=(8, 6))\n", + " plt.plot(fpr, tpr, color='blue', lw=2, label=f'{name} ROC curve (area = {roc_auc:.2f})')\n", + " plt.plot([0, 1], [0, 1], color='gray', linestyle='--')\n", + " plt.title(f\"ROC Curve for {name}\")\n", + " plt.xlabel('False Positive Rate')\n", + " plt.ylabel('True Positive Rate')\n", + " plt.legend(loc=\"lower right\")\n", + " plt.show()\n", + "\n", + "# Convert the dictionary to a pandas DataFrame for comparison\n", + "cm_comparison_df = pd.DataFrame(cm_data).T\n", + "\n", + "# Display the confusion matrix comparison table\n", + "print(\"Confusion Matrix Comparison Table:\")\n", + "print(cm_comparison_df)\n", + "\n", + "\n", + "# ------------------------ 8. Decision Tree Feature Importance -------------------------\n", + "decision_tree = DecisionTreeClassifier()\n", + "decision_tree.fit(X_train, y_train)\n", + "plt.figure(figsize=(10, 8))\n", + "plot_tree(decision_tree, filled=True, feature_names=vectorizer.get_feature_names_out(), class_names=le.classes_, rounded=True)\n", + "plt.title(\"Decision Tree Classifier - Feature Importance\")\n", + "plt.show()\n", + "\n", + "# ------------------------ 9. KMeans Clustering -------------------------\n", + "kmeans = KMeans(n_clusters=2, random_state=42)\n", + "kmeans.fit(X)\n", + "sms_df['cluster'] = kmeans.labels_\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.scatterplot(x=sms_df.index, y=sms_df['cluster'], hue=sms_df['label'], palette=\"coolwarm\", s=100)\n", + "plt.title(\"KMeans Clustering - SMS Spam Dataset\")\n", + "plt.xlabel(\"Index\")\n", + "plt.ylabel(\"Cluster\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install stable-baselines3[extra]\n" + ], + "metadata": { + "id": "KNGiBkawCWYB", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "cd041818-0f21-4c45-fbdc-6966cb7e006d" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting stable-baselines3[extra]\n", + " Downloading stable_baselines3-2.6.0-py3-none-any.whl.metadata (4.8 kB)\n", + "Requirement already satisfied: gymnasium<1.2.0,>=0.29.1 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (1.1.1)\n", + "Requirement already satisfied: numpy<3.0,>=1.20 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.0.2)\n", + "Requirement already satisfied: torch<3.0,>=2.3 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.6.0+cu124)\n", + "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (3.1.1)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.2.2)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (3.10.0)\n", + "Requirement already satisfied: opencv-python in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (4.11.0.86)\n", + "Requirement already satisfied: pygame in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.6.1)\n", + "Requirement already satisfied: tensorboard>=2.9.1 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (2.18.0)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (5.9.5)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (4.67.1)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (13.9.4)\n", + "Requirement already satisfied: ale-py>=0.9.0 in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (0.11.0)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-packages (from stable-baselines3[extra]) (11.2.1)\n", + "Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.11/dist-packages (from gymnasium<1.2.0,>=0.29.1->stable-baselines3[extra]) (4.13.2)\n", + "Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/lib/python3.11/dist-packages (from gymnasium<1.2.0,>=0.29.1->stable-baselines3[extra]) (0.0.4)\n", + "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.4.0)\n", + "Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.71.0)\n", + "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (3.8)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (24.2)\n", + "Requirement already satisfied: protobuf!=4.24.0,>=3.19.6 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (5.29.4)\n", + "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (75.2.0)\n", + "Requirement already satisfied: six>1.9 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.17.0)\n", + "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (0.7.2)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (3.1.3)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (3.18.0)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (3.1.6)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (2025.3.2)\n", + "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-curand-cu12==10.3.5.147 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (0.6.2)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (2.21.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (12.4.127)\n", + "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch<3.0,>=2.3->stable-baselines3[extra])\n", + " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (3.2.0)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch<3.0,>=2.3->stable-baselines3[extra]) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch<3.0,>=2.3->stable-baselines3[extra]) (1.3.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (1.3.2)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (4.58.0)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (1.4.8)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (3.2.3)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3[extra]) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->stable-baselines3[extra]) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->stable-baselines3[extra]) (2025.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich->stable-baselines3[extra]) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich->stable-baselines3[extra]) (2.19.1)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich->stable-baselines3[extra]) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.11/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.9.1->stable-baselines3[extra]) (3.0.2)\n", + "Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m111.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m103.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m64.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m15.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m40.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading stable_baselines3-2.6.0-py3-none-any.whl (184 kB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m184.5/184.5 kB\u001b[0m \u001b[31m13.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, stable-baselines3\n", + " Attempting uninstall: nvidia-nvjitlink-cu12\n", + " Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n", + " Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n", + " Attempting uninstall: nvidia-curand-cu12\n", + " Found existing installation: nvidia-curand-cu12 10.3.6.82\n", + " Uninstalling nvidia-curand-cu12-10.3.6.82:\n", + " Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n", + " Attempting uninstall: nvidia-cufft-cu12\n", + " Found existing installation: nvidia-cufft-cu12 11.2.3.61\n", + " Uninstalling nvidia-cufft-cu12-11.2.3.61:\n", + " Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n", + " Attempting uninstall: nvidia-cuda-runtime-cu12\n", + " Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cuda-nvrtc-cu12\n", + " Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cuda-cupti-cu12\n", + " Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cublas-cu12\n", + " Found existing installation: nvidia-cublas-cu12 12.5.3.2\n", + " Uninstalling nvidia-cublas-cu12-12.5.3.2:\n", + " Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n", + " Attempting uninstall: nvidia-cusparse-cu12\n", + " Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n", + " Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n", + " Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n", + " Attempting uninstall: nvidia-cudnn-cu12\n", + " Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n", + " Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n", + " Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n", + " Attempting uninstall: nvidia-cusolver-cu12\n", + " Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n", + " Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n", + " Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n", + "Successfully installed nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127 stable-baselines3-2.6.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "f5wGpSyLxaNr", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "312ff87c-f51d-4486-d028-d08ae2bc0bdb" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Before SMOTE: Counter({0: 17080, 1: 16582})\n", + "After SMOTE: Counter({1: 17080, 0: 17080})\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 1200x500 with 2 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT5xJREFUeJzt3XlUVfX+//HXQWRwAJwA+YZTg2j6dcCJnDJJTK1wqBxumpGmQaUUDvcWasP1pplDmmRdQw2vZt8000S5ktpXyYEih9TsXlK7dcBSOKGpKPv3R1/2zxM4IewD+Hysddbq7M/77PPetLa814t99rEZhmEIAAAAAAAAsJCbqxsAAAAAAADAzYdQCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCkCFMXPmTDVp0kRVqlRR69atXd0OAABAubRs2TKFhISoatWq8vPzc3U7AHBZhFIASlViYqJsNpvTw9/fXz169NCGDRtKvN9NmzZpwoQJ6ty5s9577z399a9/LcWuS66goEBLly5Vx44dVbt2bdWsWVN33HGHhg8fri+++MKs27Jli/nzeP/994vdV+fOnWWz2dSiRYsia/n5+Zo3b57at2+vmjVrqkaNGmrfvr3mzZun/Px8s27q1KlFfv7FPe6++25J0mOPPXbZGi8vr9L9YQEAgBv21ltvyWazqWPHjsWuHzp0SI899phuvfVWvfPOO1q0aJHOnDmjqVOnasuWLZb2euLECT377LMKCQmRt7e3/P391aFDB02cOFF5eXlmXeE84uPjo99++63Ifo4cOWLOJ6+//nqR9WPHjmnMmDFq1KiRPD095e/vr8jISG3fvt2prlGjRtc0JyUmJkrSFWvGjBlTuj8s4Cbl7uoGAFROL730kho3bizDMJSVlaXExET16dNHn3zyifr163fd+0tNTZWbm5v+/ve/y8PDoww6LplnnnlGCxYs0IMPPqhhw4bJ3d1dhw8f1oYNG9SkSRN16tTJqd7Ly0vLly/Xn/70J6ft33//vXbs2FFsEHT69Gn17dtXW7duVb9+/fTYY4/Jzc1NycnJevbZZ/XRRx9p/fr1ql69ugYMGKDbbrvNfG1eXp7Gjh2r/v37a8CAAeb2gIAA8789PT317rvvFnnfKlWqlPjnAgAAykZSUpIaNWqkXbt26bvvvnP6vS/9/oewgoICzZ0711z7+eefNW3aNEky/zBV1k6ePKl27drJ4XDo8ccfV0hIiH755Rft3btXCxcu1NixY1WjRg2z3t3dXWfOnNEnn3yihx9+2GlfSUlJ8vLy0tmzZ4u8z/bt29WnTx9J0hNPPKHmzZvLbrcrMTFRXbt21dy5c/X0009LkubMmeMUhn366af6xz/+odmzZ6tu3brm9rvuusv873vvvVfDhw8v8r533HFHCX8yAJwYAFCK3nvvPUOSsXv3bqftJ0+eNKpWrWoMHTq0RPsdOXKkUb169dJo0TAMwygoKDDOnDlzQ/uw2+2GzWYzRo0aVez+s7KyzOefffaZIckYMGCA4e7ubpw4ccKp/tVXXzUCAgKMLl26GHfeeafT2ujRow1JxptvvlnkfebPn29IMsaMGVNsjydOnDAkGVOmTCl2fcSIEaX6cwUAAGXn3//+tyHJ+Oijj4x69eoZU6dOLVIzbdo0Q5LTrHG1eaCk8vLyLrs2Y8YMQ5Kxffv2Imu5ubnGb7/9Zj4vnEd69eplREZGFqm//fbbjYEDBxqSjJkzZ5rbT548aQQGBhoBAQHGd9995/SaM2fOGF27djXc3NyK7cEwDGPmzJmGJCMzM7PYdUlGdHT0ZY8RwI3j43sALOHn5ydvb2+5uztfoFlQUKA5c+bozjvvlJeXlwICAvTkk0/q1KlTZo3NZtN7772n06dPF7ms+sKFC3r55Zd16623ytPTU40aNdKf//xnnTt3zul9GjVqpH79+mnjxo1q166dvL299fbbb0uScnJyNG7cOAUHB8vT01O33XabXnvtNRUUFFzxmDIzM2UYhjp37lxkrfBji3/04IMPytPTU6tWrXLavnz5cj388MNFrk764Ycf9Pe//1333HOPYmJiiuwvOjpaPXr00Lvvvqsffvjhiv0CAICKLSkpSbVq1VLfvn01aNAgJSUlOa03atRIU6ZMkSTVq1dPNptNjz32mOrVqydJmjZtmjlLTZ061XzdoUOHNGjQINWuXVteXl5q166d1q5d67Tvwls0bN26VU899ZT8/f11yy23XLbXf/3rX6pSpUqRq8YlycfHp9irw4cOHaoNGzYoJyfH3LZ7924dOXJEQ4cOLVL/9ttvy263a+bMmbr11lud1ry9vbVkyRLZbDa99NJLl+0TgGsRSgEoE7m5ufr555914sQJHThwQGPHjlVeXl6Rj609+eSTiouLU+fOnTV37lyNHDlSSUlJioiIMO+VtGzZMnXt2lWenp5atmyZli1bpm7dukn6/TLt+Ph4tW3bVrNnz1b37t01ffp0DR48uEhPhw8f1pAhQ3Tvvfdq7ty5at26tc6cOaPu3bvr/fff1/DhwzVv3jx17txZkydPVmxs7BWPsWHDhpKkVatW6cyZM9f0c6lWrZoefPBB/eMf/zC3ff311zpw4ECxw9aGDRt08eLFYi8bLzR8+HBduHBBycnJ19RDcX7++eciD4fDUeL9AQCA0peUlKQBAwbIw8NDQ4YM0ZEjR7R7925zfc6cOerfv78kaeHChVq2bJnGjx+vhQsXSpL69+9vzlKFH+s/cOCAOnXqpIMHD2rSpEmaNWuWqlevrsjISK1evbpID0899ZS++eYbxcfHa9KkSZfttWHDhrp48aKWLVt2zcc3YMAA2Ww2ffTRR+a25cuXKyQkRG3bti1S/8knn8jLy6vIx/0KNW7cWF26dFFqamqx96q6FmfPni12Tjp//nyJ9gfgD1x9qRaAyqXw43t/fHh6ehqJiYlOtZ9//rkhyUhKSnLanpycXGR7cR8zy8jIMCQZTzzxhNP2559/3pBkpKammtsaNmxoSDKSk5Odal9++WWjevXqxrfffuu0fdKkSUaVKlWMY8eOXfF4hw8fbkgyatWqZfTv3994/fXXjYMHDxapK/z43qpVq4x169YZNpvN3HdcXJzRpEkTwzAMo3v37k4f3xs3bpwhyfjqq68u28OXX35pSDJiY2OLrF3Lx/eK+/8lyYiIiLjisQMAAOvs2bPHkGSkpKQYhvH7rQJuueUW49lnn3WqmzJlynV9fK9nz55Gy5YtjbNnz5rbCgoKjLvuusu4/fbbzW2FM16XLl2MCxcuXLVfu91u1KtXz5BkhISEGGPGjDGWL19u5OTkFKm9dM4bNGiQ0bNnT8MwDOPixYtGYGCgMW3aNCMzM7PIx/f8/PyMVq1aXbGPZ555xpBk7N27t8jatXx873KPf/zjH1f9GQC4Oq6UAlAmFixYoJSUFKWkpOj9999Xjx499MQTTzj95WvVqlXy9fXVvffe6/SXp9DQUNWoUUOfffbZFd/j008/laQiVzQ999xzkqT169c7bW/cuLEiIiKctq1atUpdu3ZVrVq1nHoIDw/XxYsXtW3btiv28N5772n+/Plq3LixVq9ereeff17NmjVTz5499Z///KfY1/Tq1Uu1a9fWihUrZBiGVqxYoSFDhhRb++uvv0qSatasedkeCtdKemWTl5eX+f/q0sff/va3Eu0PAACUvqSkJAUEBKhHjx6Sfr9VwCOPPKIVK1bo4sWLJdrnyZMnlZqaqocffli//vqrOQf98ssvioiI0JEjR4rMM6NGjbqmL0MJCAjQ119/rTFjxujUqVNKSEjQ0KFD5e/vr5dfflmGYRT7uqFDh2rLli2y2+1KTU2V3W4v9mpy6fc56UozknTjc9KDDz5Y7JxU+P8BwI3h2/cAlIkOHTqoXbt25vMhQ4aoTZs2iomJUb9+/eTh4aEjR44oNze32HsvSVJ2dvYV3+Po0aNyc3Mr8q0zgYGB8vPz09GjR522N27cuMg+jhw5or1795r3WrjeHtzc3BQdHa3o6Gj98ssv2r59uxISErRhwwYNHjxYn3/+eZHXVK1aVQ899JCWL1+uDh066Pjx45cdtgoHqcJwqjjXElxdSZUqVRQeHl6i1wIAgLJ38eJFrVixQj169FBmZqa5vWPHjpo1a5Y2b96sXr16Xfd+v/vuOxmGoRdffFEvvvhisTXZ2dn6r//6L/N5cfPU5dSvX18LFy7UW2+9pSNHjmjjxo167bXXFB8fr/r16+uJJ54o8po+ffqoZs2aWrlypTIyMtS+fXvddttt+v7774vU1qxZ84ozknTjc9Itt9zCnASUIUIpAJZwc3NTjx49NHfuXB05ckR33nmnCgoK5O/vX+QmnYUuFxT9kc1mu6Y6b2/vItsKCgp07733asKECcW+5nq+7rdOnTp64IEH9MADD+juu+/W1q1bdfToUfPeU5caOnSoEhISNHXqVLVq1UrNmzcvdp/NmjWTJO3du1etW7cutmbv3r2SdNl9AACAii01NVU//fSTVqxYoRUrVhRZT0pKKlEoVfilLs8//3yRq8kL/fGPf8XNU1djs9l0xx136I477lDfvn11++23KykpqdhQytPTUwMGDNCSJUv073//2+mG7H/UrFkzffXVVzp37pw8PT2Lrdm7d6+qVq2q22+//br7BlD2CKUAWObChQuSpLy8PEnSrbfeqn/+85/q3LlziQachg0bqqCgQEeOHDHDG0nKyspSTk5OsWHQH916663Ky8sr9b+AtWvXTlu3btVPP/1UbB9dunRRgwYNtGXLFr322muX3c99992nKlWqaNmyZZe92fnSpUvl7u6u3r17l1r/AACg/EhKSpK/v78WLFhQZO2jjz7S6tWrlZCQcNl56nJ/wGvSpImk36/itupqoCZNmqhWrVr66aefLlszdOhQLV68WG5ubsV+eU2hfv36KS0tTatWrSryZTqS9P333+vzzz9XeHh4iWZNAGWPe0oBsER+fr42bdokDw8PM0B6+OGHdfHiRb388stF6i9cuOD0dcDF6dOnj6Tfv2nmUm+88YYkqW/fvlft6+GHH1ZaWpo2btxYZC0nJ8cM0opjt9v1zTffFNl+/vx5bd68udiPFhay2WyaN2+epkyZokcfffSy7xEcHKyRI0fqn//8p/nNOZdKSEhQamqqoqKirvi1zAAAoGL67bff9NFHH6lfv34aNGhQkUdMTIx+/fVXrV279rL7qFatmiQVma38/f1199136+233y42JDpx4kSJ+965c6dOnz5dZPuuXbv0yy+/qGnTppd9bY8ePfTyyy9r/vz5CgwMvGzdk08+KX9/f8XFxenf//6309rZs2c1cuRIGYah+Pj4Eh8HgLLFlVIAysSGDRt06NAhSb/fi2D58uU6cuSIJk2aJB8fH0lS9+7d9eSTT2r69OnKyMhQr169VLVqVR05ckSrVq3S3LlzNWjQoMu+R6tWrTRixAgtWrRIOTk56t69u3bt2qUlS5YoMjLymm5AGRcXp7Vr16pfv3567LHHFBoaqtOnT2vfvn368MMP9f3336tu3brFvvaHH35Qhw4ddM8996hnz54KDAxUdna2/vGPf+jrr7/WuHHjLvta6fcbZz744INX7XH27Nk6dOiQnnrqKSUnJ5tXRG3cuFEff/yxunfvrlmzZl11P5dz4cIFvf/++8Wu9e/fX9WrVy/xvgEAwI1Zu3atfv31Vz3wwAPFrnfq1En16tVTUlKSHnnkkWJrvL291bx5c61cuVJ33HGHateurRYtWqhFixZasGCBunTpopYtW2rUqFFq0qSJsrKylJaWph9++EFff/11ifpetmyZkpKS1L9/f4WGhsrDw0MHDx7U4sWL5eXlpT//+c+Xfa2bm5teeOGFq75HnTp19OGHH6pv375q27atnnjiCTVv3lx2u12JiYn67rvvNHfuXN11110lOgZJ+vbbb4udkwICAnTvvfeWeL8AfkcoBaBMXPoXKS8vL4WEhGjhwoV68sknneoSEhIUGhqqt99+W3/+85/l7u6uRo0a6U9/+pM6d+581fd599131aRJEyUmJmr16tUKDAzU5MmTNWXKlGvqs1q1atq6dav++te/atWqVVq6dKl8fHx0xx13aNq0afL19b3sa5s2bao5c+bo008/1VtvvaWsrCx5eXmpRYsWeueddxQVFXVNPVxNjRo1tHnzZr311lt6//33FRcXJ8MwFBISojlz5uipp55S1apVS7z/c+fOXfZqrczMTEIpAABcKCkpSV5eXpcNQNzc3NS3b18lJSXpl19+uex+3n33XT399NMaP368zp8/rylTpqhFixZq3ry59uzZo2nTpikxMVG//PKL/P391aZNmxu6wujJJ59UtWrVtHnzZn388cdyOByqV6+eevXqpcmTJ6tNmzYl3velunbtqr1795qz3E8//SRfX1/dddddWrx4sbp06XJD+y/8tr0/6t69O6EUUApsxuW+ixMAAAAAAAAoI9xTCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDl3F3dQGVRUFCgH3/8UTVr1pTNZnN1OwAAoJQYhqFff/1VQUFBcnPj73mljRkKAIDK51rnJ0KpUvLjjz8qODjY1W0AAIAycvz4cd1yyy2ubqPSYYYCAKDyutr8RChVSmrWrCnp9x+4j4+Pi7sBAAClxeFwKDg42Pxdj9LFDAUAQOVzrfMToVQpKbzc3MfHh4EKAIBKiI+WlQ1mKAAAKq+rzU/cGAEAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWc3d1A7g+oXFLXd0CUO6lzxzu6hYAAOUMMxRwdZVlhuJ8B66uvJzvXCkFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHLurm4AAHB5oXFLXd0CUK6lzxzu6hYAAABQQlwpBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwnEtDqW3btun+++9XUFCQbDab1qxZU6Tm4MGDeuCBB+Tr66vq1aurffv2OnbsmLl+9uxZRUdHq06dOqpRo4YGDhyorKwsp30cO3ZMffv2VbVq1eTv76+4uDhduHDBqWbLli1q27atPD09ddtttykxMbEsDhkAAOCGMUMBAIDKwKWh1OnTp9WqVSstWLCg2PV//etf6tKli0JCQrRlyxbt3btXL774ory8vMya8ePH65NPPtGqVau0detW/fjjjxowYIC5fvHiRfXt21fnz5/Xjh07tGTJEiUmJio+Pt6syczMVN++fdWjRw9lZGRo3LhxeuKJJ7Rx48ayO3gAAIASYoYCAACVgc0wDMPVTUiSzWbT6tWrFRkZaW4bPHiwqlatqmXLlhX7mtzcXNWrV0/Lly/XoEGDJEmHDh1Ss2bNlJaWpk6dOmnDhg3q16+ffvzxRwUEBEiSEhISNHHiRJ04cUIeHh6aOHGi1q9fr/379zu9d05OjpKTk6+pf4fDIV9fX+Xm5srHx6eEP4WrC41bWmb7BiqL9JnDXd1CqeGcB67MivPdqt/xJcUMdW349xS4usoyQ3G+A1dX1uf7tf5+L7f3lCooKND69et1xx13KCIiQv7+/urYsaPT5enp6enKz89XeHi4uS0kJEQNGjRQWlqaJCktLU0tW7Y0hylJioiIkMPh0IEDB8yaS/dRWFO4DwAAgIqCGQoAAFQU5TaUys7OVl5env72t7+pd+/e2rRpk/r3768BAwZo69atkiS73S4PDw/5+fk5vTYgIEB2u92suXSYKlwvXLtSjcPh0G+//VZsf+fOnZPD4XB6AAAAuBozFAAAqCjcXd3A5RQUFEiSHnzwQY0fP16S1Lp1a+3YsUMJCQnq3r27K9vT9OnTNW3aNJf2AAAA8EfMUAAAoKIot1dK1a1bV+7u7mrevLnT9mbNmpnfHBMYGKjz588rJyfHqSYrK0uBgYFmzR+/Sabw+dVqfHx85O3tXWx/kydPVm5urvk4fvx4yQ4UAACgFDFDAQCAiqLchlIeHh5q3769Dh8+7LT922+/VcOGDSVJoaGhqlq1qjZv3myuHz58WMeOHVNYWJgkKSwsTPv27VN2drZZk5KSIh8fH3NYCwsLc9pHYU3hPorj6ekpHx8fpwcAAICrMUMBAICKwqUf38vLy9N3331nPs/MzFRGRoZq166tBg0aKC4uTo888oi6deumHj16KDk5WZ988om2bNkiSfL19VVUVJRiY2NVu3Zt+fj46Omnn1ZYWJg6deokSerVq5eaN2+uRx99VDNmzJDdbtcLL7yg6OhoeXp6SpLGjBmj+fPna8KECXr88ceVmpqqDz74QOvXr7f8ZwIAAHA1zFAAAKAycGkotWfPHvXo0cN8HhsbK0kaMWKEEhMT1b9/fyUkJGj69Ol65pln1LRpU/3P//yPunTpYr5m9uzZcnNz08CBA3Xu3DlFRETorbfeMterVKmidevWaezYsQoLC1P16tU1YsQIvfTSS2ZN48aNtX79eo0fP15z587VLbfconfffVcREREW/BQAAACuDzMUAACoDGyGYRiubqIycDgc8vX1VW5ubplehh4at7TM9g1UFukzh7u6hVLDOQ9cmRXnu1W/429WzFBA+VFZZijOd+Dqyvp8v9bf7+X2nlIAAAAAAACovAilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFjOpaHUtm3bdP/99ysoKEg2m01r1qy5bO2YMWNks9k0Z84cp+0nT57UsGHD5OPjIz8/P0VFRSkvL8+pZu/everatau8vLwUHBysGTNmFNn/qlWrFBISIi8vL7Vs2VKffvppaRwiAABAqWOGAgAAlYFLQ6nTp0+rVatWWrBgwRXrVq9erS+++EJBQUFF1oYNG6YDBw4oJSVF69at07Zt2zR69Ghz3eFwqFevXmrYsKHS09M1c+ZMTZ06VYsWLTJrduzYoSFDhigqKkpfffWVIiMjFRkZqf3795fewQIAAJQSZigAAFAZuLvyze+77z7dd999V6z5z3/+o6efflobN25U3759ndYOHjyo5ORk7d69W+3atZMkvfnmm+rTp49ef/11BQUFKSkpSefPn9fixYvl4eGhO++8UxkZGXrjjTfMwWvu3Lnq3bu34uLiJEkvv/yyUlJSNH/+fCUkJJTBkQMAAJQcMxQAAKgMyvU9pQoKCvToo48qLi5Od955Z5H1tLQ0+fn5mcOUJIWHh8vNzU07d+40a7p16yYPDw+zJiIiQocPH9apU6fMmvDwcKd9R0REKC0t7bK9nTt3Tg6Hw+kBAABQHjBDAQCAiqBch1Kvvfaa3N3d9cwzzxS7brfb5e/v77TN3d1dtWvXlt1uN2sCAgKcagqfX62mcL0406dPl6+vr/kIDg6+voMDAAAoI8xQAACgIii3oVR6errmzp2rxMRE2Ww2V7dTxOTJk5Wbm2s+jh8/7uqWAAAAmKEAAECFUW5Dqc8//1zZ2dlq0KCB3N3d5e7urqNHj+q5555To0aNJEmBgYHKzs52et2FCxd08uRJBQYGmjVZWVlONYXPr1ZTuF4cT09P+fj4OD0AAABcjRkKAABUFOU2lHr00Ue1d+9eZWRkmI+goCDFxcVp48aNkqSwsDDl5OQoPT3dfF1qaqoKCgrUsWNHs2bbtm3Kz883a1JSUtS0aVPVqlXLrNm8ebPT+6ekpCgsLKysDxMAAKBUMUMBAICKwqXfvpeXl6fvvvvOfJ6ZmamMjAzVrl1bDRo0UJ06dZzqq1atqsDAQDVt2lSS1KxZM/Xu3VujRo1SQkKC8vPzFRMTo8GDB5tffTx06FBNmzZNUVFRmjhxovbv36+5c+dq9uzZ5n6fffZZde/eXbNmzVLfvn21YsUK7dmzx+krjwEAAMoLZigAAFAZuPRKqT179qhNmzZq06aNJCk2NlZt2rRRfHz8Ne8jKSlJISEh6tmzp/r06aMuXbo4DUK+vr7atGmTMjMzFRoaqueee07x8fHmVxlL0l133aXly5dr0aJFatWqlT788EOtWbNGLVq0KL2DBQAAKCXMUAAAoDKwGYZhuLqJysDhcMjX11e5ubllem+E0LilZbZvoLJInznc1S2UGs554MqsON+t+h1/s2KGAsqPyjJDcb4DV1fW5/u1/n4vt/eUAgAAAAAAQOVFKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLuTSU2rZtm+6//34FBQXJZrNpzZo15lp+fr4mTpyoli1bqnr16goKCtLw4cP1448/Ou3j5MmTGjZsmHx8fOTn56eoqCjl5eU51ezdu1ddu3aVl5eXgoODNWPGjCK9rFq1SiEhIfLy8lLLli316aeflskxAwAA3ChmKAAAUBm4NJQ6ffq0WrVqpQULFhRZO3PmjL788ku9+OKL+vLLL/XRRx/p8OHDeuCBB5zqhg0bpgMHDiglJUXr1q3Ttm3bNHr0aHPd4XCoV69eatiwodLT0zVz5kxNnTpVixYtMmt27NihIUOGKCoqSl999ZUiIyMVGRmp/fv3l93BAwAAlBAzFAAAqAxshmEYrm5Ckmw2m1avXq3IyMjL1uzevVsdOnTQ0aNH1aBBAx08eFDNmzfX7t271a5dO0lScnKy+vTpox9++EFBQUFauHCh/vKXv8hut8vDw0OSNGnSJK1Zs0aHDh2SJD3yyCM6ffq01q1bZ75Xp06d1Lp1ayUkJFxT/w6HQ76+vsrNzZWPj08JfwpXFxq3tMz2DVQW6TOHu7qFUsM5D1yZFee7Vb/jS4oZ6trw7ylwdZVlhuJ8B66urM/3a/39XqHuKZWbmyubzSY/Pz9JUlpamvz8/MxhSpLCw8Pl5uamnTt3mjXdunUzhylJioiI0OHDh3Xq1CmzJjw83Om9IiIilJaWdtlezp07J4fD4fQAAAAoj5ihAABAeVRhQqmzZ89q4sSJGjJkiJmy2e12+fv7O9W5u7urdu3astvtZk1AQIBTTeHzq9UUrhdn+vTp8vX1NR/BwcE3doAAAABlgBkKAACUVxUilMrPz9fDDz8swzC0cOFCV7cjSZo8ebJyc3PNx/Hjx13dEgAAgBNmKAAAUJ65u7qBqykcpo4eParU1FSnzyIGBgYqOzvbqf7ChQs6efKkAgMDzZqsrCynmsLnV6spXC+Op6enPD09S35gAAAAZYgZCgAAlHfl+kqpwmHqyJEj+uc//6k6deo4rYeFhSknJ0fp6enmttTUVBUUFKhjx45mzbZt25Sfn2/WpKSkqGnTpqpVq5ZZs3nzZqd9p6SkKCwsrKwODQAAoMwwQwEAgIrApaFUXl6eMjIylJGRIUnKzMxURkaGjh07pvz8fA0aNEh79uxRUlKSLl68KLvdLrvdrvPnz0uSmjVrpt69e2vUqFHatWuXtm/frpiYGA0ePFhBQUGSpKFDh8rDw0NRUVE6cOCAVq5cqblz5yo2Ntbs49lnn1VycrJmzZqlQ4cOaerUqdqzZ49iYmIs/5kAAABcDTMUAACoDFwaSu3Zs0dt2rRRmzZtJEmxsbFq06aN4uPj9Z///Edr167VDz/8oNatW6t+/frmY8eOHeY+kpKSFBISop49e6pPnz7q0qWLFi1aZK77+vpq06ZNyszMVGhoqJ577jnFx8dr9OjRZs1dd92l5cuXa9GiRWrVqpU+/PBDrVmzRi1atLDuhwEAAHCNmKEAAEBl4NJ7St19990yDOOy61daK1S7dm0tX778ijX//d//rc8///yKNQ899JAeeuihq74fAACAqzFDAQCAyqBc31MKAAAAAAAAlROhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACzn0lBq27Ztuv/++xUUFCSbzaY1a9Y4rRuGofj4eNWvX1/e3t4KDw/XkSNHnGpOnjypYcOGycfHR35+foqKilJeXp5Tzd69e9W1a1d5eXkpODhYM2bMKNLLqlWrFBISIi8vL7Vs2VKffvppqR8vAABAaWCGAgAAlYFLQ6nTp0+rVatWWrBgQbHrM2bM0Lx585SQkKCdO3eqevXqioiI0NmzZ82aYcOG6cCBA0pJSdG6deu0bds2jR492lx3OBzq1auXGjZsqPT0dM2cOVNTp07VokWLzJodO3ZoyJAhioqK0ldffaXIyEhFRkZq//79ZXfwAAAAJcQMBQAAKgObYRiGq5uQJJvNptWrVysyMlLS73/hCwoK0nPPPafnn39ekpSbm6uAgAAlJiZq8ODBOnjwoJo3b67du3erXbt2kqTk5GT16dNHP/zwg4KCgrRw4UL95S9/kd1ul4eHhyRp0qRJWrNmjQ4dOiRJeuSRR3T69GmtW7fO7KdTp05q3bq1EhISrql/h8MhX19f5ebmysfHp7R+LEWExi0ts30DlUX6zOGubqHUcM4DV2bF+W7V7/iSYoa6Nvx7ClxdZZmhON+Bqyvr8/1af7+X23tKZWZmym63Kzw83Nzm6+urjh07Ki0tTZKUlpYmPz8/c5iSpPDwcLm5uWnnzp1mTbdu3cxhSpIiIiJ0+PBhnTp1yqy59H0Kawrfpzjnzp2Tw+FwegAAALgaMxQAAKgoym0oZbfbJUkBAQFO2wMCAsw1u90uf39/p3V3d3fVrl3bqaa4fVz6HperKVwvzvTp0+Xr62s+goODr/cQAQAASh0zFAAAqCjKbShV3k2ePFm5ubnm4/jx465uCQAAoNxjhgIAAIXKbSgVGBgoScrKynLanpWVZa4FBgYqOzvbaf3ChQs6efKkU01x+7j0PS5XU7heHE9PT/n4+Dg9AAAAXI0ZCgAAVBTlNpRq3LixAgMDtXnzZnObw+HQzp07FRYWJkkKCwtTTk6O0tPTzZrU1FQVFBSoY8eOZs22bduUn59v1qSkpKhp06aqVauWWXPp+xTWFL4PAABARcEMBQAAKgqXhlJ5eXnKyMhQRkaGpN9vzJmRkaFjx47JZrNp3LhxeuWVV7R27Vrt27dPw4cPV1BQkPntMs2aNVPv3r01atQo7dq1S9u3b1dMTIwGDx6soKAgSdLQoUPl4eGhqKgoHThwQCtXrtTcuXMVGxtr9vHss88qOTlZs2bN0qFDhzR16lTt2bNHMTExVv9IAAAArooZCgAAVAburnzzPXv2qEePHubzwiFnxIgRSkxM1IQJE3T69GmNHj1aOTk56tKli5KTk+Xl5WW+JikpSTExMerZs6fc3Nw0cOBAzZs3z1z39fXVpk2bFB0drdDQUNWtW1fx8fEaPXq0WXPXXXdp+fLleuGFF/TnP/9Zt99+u9asWaMWLVpY8FMAAAC4PsxQAACgMrAZhmFc74vuueceffTRR/Lz83Pa7nA4FBkZqdTU1NLqr8JwOBzy9fVVbm5umd4bITRuaZntG6gs0mcOd3ULpYZzHrgyK8730vodz/xUPGYooPyoLDMU5ztwdWV9vl/r7/cSfXxvy5YtOn/+fJHtZ8+e1eeff16SXQIAAFRqzE8AAADOruvje3v37jX/+5tvvpHdbjefX7x4UcnJyfqv//qv0usOAACggmN+AgAAKN51hVKtW7eWzWaTzWbTPffcU2Td29tbb775Zqk1BwAAUNExPwEAABTvukKpzMxMGYahJk2aaNeuXapXr5655uHhIX9/f1WpUqXUmwQAAKiomJ8AAACKd12hVMOGDSVJBQUFZdIMAABAZcP8BAAAULzrCqUudeTIEX322WfKzs4uMmTFx8ffcGMAAACVDfMTAADA/1eiUOqdd97R2LFjVbduXQUGBspms5lrNpuNoQoAAOAPmJ8AAACclSiUeuWVV/Tqq69q4sSJpd0PAABApcT8BAAA4MytJC86deqUHnroodLuBQAAoNJifgIAAHBWolDqoYce0qZNm0q7FwAAgEqL+QkAAMBZiT6+d9ttt+nFF1/UF198oZYtW6pq1apO688880ypNAcAAFBZMD8BAAA4K1EotWjRItWoUUNbt27V1q1bndZsNhtDFQAAwB8wPwEAADgrUSiVmZlZ2n0AAABUasxPAAAAzkp0TykAAAAAAADgRpToSqnHH3/8iuuLFy8uUTMAAACVFfMTAACAsxKFUqdOnXJ6np+fr/379ysnJ0f33HNPqTQGAABQmTA/AQAAOCtRKLV69eoi2woKCjR27FjdeuutN9wUAABAZcP8BAAA4KzU7inl5uam2NhYzZ49u7R2CQAAUKkxPwEAgJtZqd7o/F//+pcuXLhQmrsEAACo1JifAADAzapEH9+LjY11em4Yhn766SetX79eI0aMKJXGAAAAKhPmJwAAAGclCqW++uorp+dubm6qV6+eZs2addVvlgEAALgZMT8BAAA4K1Eo9dlnn5V2HwAAAJUa8xMAAICzEoVShU6cOKHDhw9Lkpo2bap69eqVSlMAAACVFfMTAADA70p0o/PTp0/r8ccfV/369dWtWzd169ZNQUFBioqK0pkzZ0q7RwAAgAqP+QkAAMBZiUKp2NhYbd26VZ988olycnKUk5Ojjz/+WFu3btVzzz1X2j0CAABUeMxPAAAAzkr08b3/+Z//0Ycffqi7777b3NanTx95e3vr4Ycf1sKFC0urPwAAgEqB+QkAAMBZia6UOnPmjAICAops9/f35/JzAACAYjA/AQAAOCtRKBUWFqYpU6bo7Nmz5rbffvtN06ZNU1hYWKk1BwAAUFkwPwEAADgr0cf35syZo969e+uWW25Rq1atJElff/21PD09tWnTplJtEAAAoDJgfgIAAHBWolCqZcuWOnLkiJKSknTo0CFJ0pAhQzRs2DB5e3uXaoMAAACVAfMTAACAsxKFUtOnT1dAQIBGjRrltH3x4sU6ceKEJk6cWCrNAQAAVBbMTwAAAM5KdE+pt99+WyEhIUW233nnnUpISLjhpgAAACob5icAAABnJQql7Ha76tevX2R7vXr19NNPP91wUwAAAJUN8xMAAICzEoVSwcHB2r59e5Ht27dvV1BQ0A03BQAAUNkwPwEAADgrUSg1atQojRs3Tu+9956OHj2qo0ePavHixRo/fnyR+yTciIsXL+rFF19U48aN5e3trVtvvVUvv/yyDMMwawzDUHx8vOrXry9vb2+Fh4fryJEjTvs5efKkhg0bJh8fH/n5+SkqKkp5eXlONXv37lXXrl3l5eWl4OBgzZgxo9SOAwAAwKr5SWKGAgAAFUOJbnQeFxenX375RU899ZTOnz8vSfLy8tLEiRM1efLkUmvutdde08KFC7VkyRLdeeed2rNnj0aOHClfX18988wzkqQZM2Zo3rx5WrJkiRo3bqwXX3xRERER+uabb+Tl5SVJGjZsmH766SelpKQoPz9fI0eO1OjRo7V8+XJJksPhUK9evRQeHq6EhATt27dPjz/+uPz8/DR69OhSOx4AAHDzsmp+kpihAABAxWAzLv2T2XXKy8vTwYMH5e3trdtvv12enp6l2Zv69eungIAA/f3vfze3DRw4UN7e3nr//fdlGIaCgoL03HPP6fnnn5ck5ebmKiAgQImJiRo8eLAOHjyo5s2ba/fu3WrXrp0kKTk5WX369NEPP/ygoKAgLVy4UH/5y19kt9vl4eEhSZo0aZLWrFljfmXz1TgcDvn6+io3N1c+Pj6l+nO4VGjc0jLbN1BZpM8c7uoWSg3nPHBlVpzvpf07vqznJ4kZqjj8ewpcXWWZoTjfgasr6/P9Wn+/l+jje4Vq1Kih9u3bq0WLFmUyUN11113avHmzvv32W0nS119/rf/93//VfffdJ0nKzMyU3W5XeHi4+RpfX1917NhRaWlpkqS0tDT5+fmZw5QkhYeHy83NTTt37jRrunXrZg5TkhQREaHDhw/r1KlTxfZ27tw5ORwOpwcAAMDVlPX8JDFDAQCAiqFEH9+zyqRJk+RwOBQSEqIqVaro4sWLevXVVzVs2DBJv3+LjSQFBAQ4vS4gIMBcs9vt8vf3d1p3d3dX7dq1nWoaN25cZB+Fa7Vq1SrS2/Tp0zVt2rRSOEoAAIDSxQwFAAAqghu6UqqsffDBB0pKStLy5cv15ZdfasmSJXr99de1ZMkSV7emyZMnKzc313wcP37c1S0BAABIYoYCAAAVQ7m+UiouLk6TJk3S4MGDJUktW7bU0aNHNX36dI0YMUKBgYGSpKysLNWvX998XVZWllq3bi1JCgwMVHZ2ttN+L1y4oJMnT5qvDwwMVFZWllNN4fPCmj/y9PQss0vuAQAAbgQzFAAAqAjK9ZVSZ86ckZubc4tVqlRRQUGBJKlx48YKDAzU5s2bzXWHw6GdO3cqLCxMkhQWFqacnBylp6ebNampqSooKFDHjh3Nmm3btik/P9+sSUlJUdOmTYu97BwAAKA8Y4YCAAAVQbkOpe6//369+uqrWr9+vb7//nutXr1ab7zxhvr37y9JstlsGjdunF555RWtXbtW+/bt0/DhwxUUFKTIyEhJUrNmzdS7d2+NGjVKu3bt0vbt2xUTE6PBgwcrKChIkjR06FB5eHgoKipKBw4c0MqVKzV37lzFxsa66tABAABKjBkKAABUBOX643tvvvmmXnzxRT311FPKzs5WUFCQnnzyScXHx5s1EyZM0OnTpzV69Gjl5OSoS5cuSk5OlpeXl1mTlJSkmJgY9ezZU25ubho4cKDmzZtnrvv6+mrTpk2Kjo5WaGio6tatq/j4eI0ePdrS4wUAACgNzFAAAKAisBmGYbi6icrA4XDI19dXubm58vHxKbP3CY1bWmb7BiqL9JnDXd1CqeGcB67MivPdqt/xNytmKKD8qCwzFOc7cHVlfb5f6+/3cv3xPQAAAAAAAFROhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwXLkPpf7zn//oT3/6k+rUqSNvb2+1bNlSe/bsMdcNw1B8fLzq168vb29vhYeH68iRI077OHnypIYNGyYfHx/5+fkpKipKeXl5TjV79+5V165d5eXlpeDgYM2YMcOS4wMAACgLzFAAAKC8K9eh1KlTp9S5c2dVrVpVGzZs0DfffKNZs2apVq1aZs2MGTM0b948JSQkaOfOnapevboiIiJ09uxZs2bYsGE6cOCAUlJStG7dOm3btk2jR4821x0Oh3r16qWGDRsqPT1dM2fO1NSpU7Vo0SJLjxcAAKA0MEMBAICKwN3VDVzJa6+9puDgYL333nvmtsaNG5v/bRiG5syZoxdeeEEPPvigJGnp0qUKCAjQmjVrNHjwYB08eFDJycnavXu32rVrJ0l688031adPH73++usKCgpSUlKSzp8/r8WLF8vDw0N33nmnMjIy9MYbbzgNXgAAABUBMxQAAKgIyvWVUmvXrlW7du300EMPyd/fX23atNE777xjrmdmZsputys8PNzc5uvrq44dOyotLU2SlJaWJj8/P3OYkqTw8HC5ublp586dZk23bt3k4eFh1kREROjw4cM6depUsb2dO3dODofD6QEAAFAeMEMBAICKoFyHUv/+97+1cOFC3X777dq4caPGjh2rZ555RkuWLJEk2e12SVJAQIDT6wICAsw1u90uf39/p3V3d3fVrl3bqaa4fVz6Hn80ffp0+fr6mo/g4OAbPFoAAIDSwQwFAAAqgnIdShUUFKht27b661//qjZt2mj06NEaNWqUEhISXN2aJk+erNzcXPNx/PhxV7cEAAAgiRkKAABUDOU6lKpfv76aN2/utK1Zs2Y6duyYJCkwMFCSlJWV5VSTlZVlrgUGBio7O9tp/cKFCzp58qRTTXH7uPQ9/sjT01M+Pj5ODwAAgPKAGQoAAFQE5TqU6ty5sw4fPuy07dtvv1XDhg0l/X7DzsDAQG3evNlcdzgc2rlzp8LCwiRJYWFhysnJUXp6ulmTmpqqgoICdezY0azZtm2b8vPzzZqUlBQ1bdrU6VtqAAAAKgJmKAAAUBGU61Bq/Pjx+uKLL/TXv/5V3333nZYvX65FixYpOjpakmSz2TRu3Di98sorWrt2rfbt26fhw4crKChIkZGRkn7/q2Dv3r01atQo7dq1S9u3b1dMTIwGDx6soKAgSdLQoUPl4eGhqKgoHThwQCtXrtTcuXMVGxvrqkMHAAAoMWYoAABQEbi7uoErad++vVavXq3JkyfrpZdeUuPGjTVnzhwNGzbMrJkwYYJOnz6t0aNHKycnR126dFFycrK8vLzMmqSkJMXExKhnz55yc3PTwIEDNW/ePHPd19dXmzZtUnR0tEJDQ1W3bl3Fx8fzVcYAAKBCYoYCAAAVgc0wDMPVTVQGDodDvr6+ys3NLdN7I4TGLS2zfQOVRfrM4a5uodRwzgNXZsX5btXv+JsVMxRQflSWGYrzHbi6sj7fr/X3e7n++B4AAAAAAAAqJ0IpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWK5ChVJ/+9vfZLPZNG7cOHPb2bNnFR0drTp16qhGjRoaOHCgsrKynF537Ngx9e3bV9WqVZO/v7/i4uJ04cIFp5otW7aobdu28vT01G233abExEQLjggAAKDsMUMBAIDyqMKEUrt379bbb7+t//7v/3baPn78eH3yySdatWqVtm7dqh9//FEDBgww1y9evKi+ffvq/Pnz2rFjh5YsWaLExETFx8ebNZmZmerbt6969OihjIwMjRs3Tk888YQ2btxo2fEBAACUBWYoAABQXlWIUCovL0/Dhg3TO++8o1q1apnbc3Nz9fe//11vvPGG7rnnHoWGhuq9997Tjh079MUXX0iSNm3apG+++Ubvv/++Wrdurfvuu08vv/yyFixYoPPnz0uSEhIS1LhxY82aNUvNmjVTTEyMBg0apNmzZ7vkeAEAAEoDMxQAACjPKkQoFR0drb59+yo8PNxpe3p6uvLz8522h4SEqEGDBkpLS5MkpaWlqWXLlgoICDBrIiIi5HA4dODAAbPmj/uOiIgw9wEAAFARMUMBAIDyzN3VDVzNihUr9OWXX2r37t1F1ux2uzw8POTn5+e0PSAgQHa73ay5dJgqXC9cu1KNw+HQb7/9Jm9v7yLvfe7cOZ07d8587nA4rv/gAAAAyggzFAAAKO/K9ZVSx48f17PPPqukpCR5eXm5uh0n06dPl6+vr/kIDg52dUsAAACSmKEAAEDFUK5DqfT0dGVnZ6tt27Zyd3eXu7u7tm7dqnnz5snd3V0BAQE6f/68cnJynF6XlZWlwMBASVJgYGCRb5IpfH61Gh8fn2L/widJkydPVm5urvk4fvx4aRwyAADADWOGAgAAFUG5DqV69uypffv2KSMjw3y0a9dOw4YNM/+7atWq2rx5s/maw4cP69ixYwoLC5MkhYWFad++fcrOzjZrUlJS5OPjo+bNm5s1l+6jsKZwH8Xx9PSUj4+P0wMAAKA8YIYCAAAVQbm+p1TNmjXVokULp23Vq1dXnTp1zO1RUVGKjY1V7dq15ePjo6efflphYWHq1KmTJKlXr15q3ry5Hn30Uc2YMUN2u10vvPCCoqOj5enpKUkaM2aM5s+frwkTJujxxx9XamqqPvjgA61fv97aAwYAACgFzFAAAKAiKNeh1LWYPXu23NzcNHDgQJ07d04RERF66623zPUqVapo3bp1Gjt2rMLCwlS9enWNGDFCL730klnTuHFjrV+/XuPHj9fcuXN1yy236N1331VERIQrDgkAAKDMMUMBAABXsxmGYbi6icrA4XDI19dXubm5ZXoZemjc0jLbN1BZpM8c7uoWSg3nPHBlVpzvVv2Ov1kxQwHlR2WZoTjfgasr6/P9Wn+/l+t7SgEAAAAAAKByIpQCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5cp9KDV9+nS1b99eNWvWlL+/vyIjI3X48GGnmrNnzyo6Olp16tRRjRo1NHDgQGVlZTnVHDt2TH379lW1atXk7++vuLg4Xbhwwalmy5Ytatu2rTw9PXXbbbcpMTGxrA8PAACg1DE/AQCAiqDch1Jbt25VdHS0vvjiC6WkpCg/P1+9evXS6dOnzZrx48frk08+0apVq7R161b9+OOPGjBggLl+8eJF9e3bV+fPn9eOHTu0ZMkSJSYmKj4+3qzJzMxU37591aNHD2VkZGjcuHF64okntHHjRkuPFwAA4EYxPwEAgIrAZhiG4eomrseJEyfk7++vrVu3qlu3bsrNzVW9evW0fPlyDRo0SJJ06NAhNWvWTGlpaerUqZM2bNigfv366ccff1RAQIAkKSEhQRMnTtSJEyfk4eGhiRMnav369dq/f7/5XoMHD1ZOTo6Sk5Ov2pfD4ZCvr69yc3Pl4+NTNgcvKTRuaZntG6gs0mcOd3ULpYZzHrgyK853q37Hl6XyOj9JzFBAeVJZZijOd+Dqyvp8v9bf7+X+Sqk/ys3NlSTVrl1bkpSenq78/HyFh4ebNSEhIWrQoIHS0tIkSWlpaWrZsqU5UElSRESEHA6HDhw4YNZcuo/CmsJ9AAAAVFTMTwAAoDxyd3UD16OgoEDjxo1T586d1aJFC0mS3W6Xh4eH/Pz8nGoDAgJkt9vNmksHqsL1wrUr1TgcDv3222/y9vZ2Wjt37pzOnTtnPnc4HDd+gAAAAKWsPM1PEjMUAAD4/yrUlVLR0dHav3+/VqxY4epWNH36dPn6+pqP4OBgV7cEAABQRHmanyRmKAAA8P9VmFAqJiZG69at02effaZbbrnF3B4YGKjz588rJyfHqT4rK0uBgYFmzR+/Tabw+dVqfHx8iv0r3+TJk5Wbm2s+jh8/fsPHCAAAUJrK2/wkMUMBAID/r9yHUoZhKCYmRqtXr1ZqaqoaN27stB4aGqqqVatq8+bN5rbDhw/r2LFjCgsLkySFhYVp3759ys7ONmtSUlLk4+Oj5s2bmzWX7qOwpnAff+Tp6SkfHx+nBwAAQHlQXucniRkKAAD8f+X+nlLR0dFavny5Pv74Y9WsWdO8h4Gvr6+8vb3l6+urqKgoxcbGqnbt2vLx8dHTTz+tsLAwderUSZLUq1cvNW/eXI8++qhmzJghu92uF154QdHR0fL09JQkjRkzRvPnz9eECRP0+OOPKzU1VR988IHWr1/vsmMHAAAoCeYnAABQEZT7K6UWLlyo3Nxc3X333apfv775WLlypVkze/Zs9evXTwMHDlS3bt0UGBiojz76yFyvUqWK1q1bpypVqigsLEx/+tOfNHz4cL300ktmTePGjbV+/XqlpKSoVatWmjVrlt59911FRERYerwAAAA3ivkJAABUBOX+SinDMK5a4+XlpQULFmjBggWXrWnYsKE+/fTTK+7n7rvv1ldffXXdPQIAAJQnzE8AAKAiKPdXSgEAAAAAAKDyIZQCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5Qil/mDBggVq1KiRvLy81LFjR+3atcvVLQEAAJRrzE8AAKAkCKUusXLlSsXGxmrKlCn68ssv1apVK0VERCg7O9vVrQEAAJRLzE8AAKCkCKUu8cYbb2jUqFEaOXKkmjdvroSEBFWrVk2LFy92dWsAAADlEvMTAAAoKUKp/3P+/Hmlp6crPDzc3Obm5qbw8HClpaW5sDMAAIDyifkJAADcCHdXN1Be/Pzzz7p48aICAgKctgcEBOjQoUNF6s+dO6dz586Zz3NzcyVJDoejTPu8eO63Mt0/UBmU9XloJc554MqsON8L38MwjDJ/r4rmeucniRkKKM8qywzF+Q5cXVmf79c6PxFKldD06dM1bdq0ItuDg4Nd0A2AS/m+OcbVLQCwiJXn+6+//ipfX1/L3q+yYoYCyi9mKODmYdX5frX5iVDq/9StW1dVqlRRVlaW0/asrCwFBgYWqZ88ebJiY2PN5wUFBTp58qTq1Kkjm81W5v2ifHA4HAoODtbx48fl4+Pj6nYAlCHO95uXYRj69ddfFRQU5OpWyp3rnZ8kZij8jn9TgZsH5/vN6VrnJ0Kp/+Ph4aHQ0FBt3rxZkZGRkn4fkjZv3qyYmJgi9Z6envL09HTa5ufnZ0GnKI98fHz4Bxa4SXC+35y4Qqp41zs/ScxQcMa/qcDNg/P95nMt8xOh1CViY2M1YsQItWvXTh06dNCcOXN0+vRpjRw50tWtAQAAlEvMTwAAoKQIpS7xyCOP6MSJE4qPj5fdblfr1q2VnJxc5OadAAAA+B3zEwAAKClCqT+IiYm57OXmwB95enpqypQpRT6GAKDy4XwHLo/5CdeLf1OBmwfnO67EZvD9xgAAAAAAALCYm6sbAAAAAAAAwM2HUAoAAAAAAACWI5QCAAAAAACA5QilgBuwYMECNWrUSF5eXurYsaN27drl6pYAlIFt27bp/vvvV1BQkGw2m9asWePqlgCgwmJ+Am4OzE+4FoRSQAmtXLlSsbGxmjJlir788ku1atVKERERys7OdnVrAErZ6dOn1apVKy1YsMDVrQBAhcb8BNw8mJ9wLfj2PaCEOnbsqPbt22v+/PmSpIKCAgUHB+vpp5/WpEmTXNwdgLJis9m0evVqRUZGuroVAKhwmJ+AmxPzEy6HK6WAEjh//rzS09MVHh5ubnNzc1N4eLjS0tJc2BkAAED5xPwEAPgjQimgBH7++WddvHhRAQEBTtsDAgJkt9td1BUAAED5xfwEAPgjQikAAAAAAABYjlAKKIG6deuqSpUqysrKctqelZWlwMBAF3UFAABQfjE/AQD+iFAKKAEPDw+FhoZq8+bN5raCggJt3rxZYWFhLuwMAACgfGJ+AgD8kburGwAqqtjYWI0YMULt2rVThw4dNGfOHJ0+fVojR450dWsASlleXp6+++4783lmZqYyMjJUu3ZtNWjQwIWdAUDFwvwE3DyYn3AtbIZhGK5uAqio5s+fr5kzZ8put6t169aaN2+eOnbs6Oq2AJSyLVu2qEePHkW2jxgxQomJidY3BAAVGPMTcHNgfsK1IJQCAAAAAACA5binFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFABch8TERPn5+d3wfmw2m9asWXPD+wEAACjvmJ8AXA6hFICbzmOPPabIyEhXtwEAAFBhMD8BKAuEUgAAAAAAALAcoRQAXOKNN95Qy5YtVb16dQUHB+upp55SXl5ekbo1a9bo9ttvl5eXlyIiInT8+HGn9Y8//lht27aVl5eXmjRpomnTpunChQtWHQYAAIBlmJ8AlBShFABcws3NTfPmzdOBAwe0ZMkSpaamasKECU41Z86c0auvvqqlS5dq+/btysnJ0eDBg831zz//XMOHD9ezzz6rb775Rm+//bYSExP16quvWn04AAAAZY75CUBJ2QzDMFzdBABY6bHHHlNOTs413Sjzww8/1JgxY/Tzzz9L+v1GnSNHjtQXX3yhjh07SpIOHTqkZs2aaefOnerQoYPCw8PVs2dPTZ482dzP+++/rwkTJujHH3+U9PuNOlevXs29GQAAQIXA/ASgLLi7ugEAKE/++c9/avr06Tp06JAcDocuXLigs2fP6syZM6pWrZokyd3dXe3btzdfExISIj8/Px08eFAdOnTQ119/re3btzv9Ze/ixYtF9gMAAFAZMD8BKClCKQD4P99//7369eunsWPH6tVXX1Xt2rX1v//7v4qKitL58+eveRjKy8vTtGnTNGDAgCJrXl5epd02AACAyzA/AbgRhFIA8H/S09NVUFCgWbNmyc3t91vuffDBB0XqLly4oD179qhDhw6SpMOHDysnJ0fNmjWTJLVt21aHDx/WbbfdZl3zAAAALsD8BOBGEEoBuCnl5uYqIyPDaVvdunWVn5+vN998U/fff7+2b9+uhISEIq+tWrWqnn76ac2bN0/u7u6KiYlRp06dzCErPj5e/fr1U4MGDTRo0CC5ubnp66+/1v79+/XKK69YcXgAAACljvkJQGnj2/cA3JS2bNmiNm3aOD2WLVumN954Q6+99ppatGihpKQkTZ8+vchrq1WrpokTJ2ro0KHq3LmzatSooZUrV5rrERERWrdunTZt2qT27durU6dOmj17tho2bGjlIQIAAJQq5icApY1v3wMAAAAAAIDluFIKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABY7v8BA/CxvmA0yRoAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.60 0.01 0.03 4244\n", + " 1 0.50 0.99 0.66 4172\n", + "\n", + " accuracy 0.50 8416\n", + " macro avg 0.55 0.50 0.35 8416\n", + "weighted avg 0.55 0.50 0.34 8416\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 600x400 with 2 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAGJCAYAAADxMfswAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUaZJREFUeJzt3XlcVNX/P/DXgDAgMCwKDKQi7qCoqaWTuyKoaJqYuYNrGKaiolHuG4X7kuKWmIJrZSml4oKmoqlJ7nxcMCoZcEkQhGG7vz/8cn9OF5V9kHk9e9xHzrnnnvu+w+i8Ocu9MkEQBBAREREBMNB1AERERFRxMDEgIiIiERMDIiIiEjExICIiIhETAyIiIhIxMSAiIiIREwMiIiISMTEgIiIiERMDIiIiEjExoBK7desWPDw8YGlpCZlMhn379pVq+/fu3YNMJkNYWFiptvsm69SpEzp16lRq7aWlpWH06NFQKpWQyWSYNGlSqbVNUiX5+dWuXRu+vr6lGg/Ri5gYVBJ37tzBxx9/jDp16sDExAQKhQJt27bFypUrkZGRUabn9vHxwZUrV7Bw4UJs27YNrVq1KtPzlSdfX1/IZDIoFIoC38dbt25BJpNBJpNhyZIlRW7//v37mDNnDmJjY0sh2uJbtGgRwsLCMG7cOGzbtg3Dhg0r0/PVrl0bMpkM7u7uBe7fuHGj+L5euHBBLJ8zZw5kMhkePnwolvn6+sLc3LzIMeQnnDKZDAsWLCiwzpAhQyCTyYrVPtGbqoquA6CSi4yMxIcffgi5XI7hw4ejSZMmyMrKwqlTpxAYGIhr165hw4YNZXLujIwMxMTE4IsvvsD48ePL5BxOTk7IyMiAkZFRmbT/OlWqVMGzZ8+wf/9+DBgwQGtfeHg4TExMkJmZWay279+/j7lz56J27dpo3rx5oY87fPhwsc73MseOHUObNm0we/bsUm33VUxMTHD8+HGo1WoolUqtfSV9X4sax44dOzBjxgyt8vT0dPz4448wMTEp8xiIKhL2GLzh4uPjMXDgQDg5OeH69etYuXIlxowZA39/f+zYsQPXr19H48aNy+z8Dx48AABYWVmV2TlkMhlMTExgaGhYZud4Fblcjq5du2LHjh2SfREREfDy8iq3WJ49ewYAMDY2hrGxcam1m5ycXKo/w5ycHGRlZb2yTtu2bWFubo5du3Zplf/999/49ddfy+197dmzJ65fv44//vhDq/zHH39EVlYWunXrVi5xEFUUTAzecCEhIUhLS8PmzZvh4OAg2V+vXj1MnDhRfJ2Tk4P58+ejbt26kMvlqF27Nj7//HNoNBqt42rXro1evXrh1KlTePfdd2FiYoI6derg22+/FevMmTMHTk5OAIDAwEDIZDLUrl0bwPPu3fw/vyi/K/hFUVFRaNeuHaysrGBubo6GDRvi888/F/e/bI7BsWPH0L59e5iZmcHKygp9+vTBjRs3Cjzf7du34evrCysrK1haWmLEiBHil2xhDB48GL/88guePHkilp0/fx63bt3C4MGDJfUfP36MqVOnws3NDebm5lAoFOjRo4fWl090dDTeeecdAMCIESPEbu386+zUqROaNGmCixcvokOHDqhatar4vvx3jNrHxwcmJiaS6/f09IS1tTXu379f4HVFR0dDJpMhPj4ekZGRYgz37t0D8DxhGDVqFOzt7WFiYoJmzZph69atWm3k/3yWLFmCFStWiJ+t69evv/I9NTExQb9+/RAREaFVvmPHDlhbW8PT0/OVx5cWlUoFZ2dnSRzh4eHo3r07bGxsCjxu7dq1aNy4MeRyORwdHeHv76/1+ci3YcMG1K1bF6ampnj33Xfx66+/FtieRqPB7NmzUa9ePcjlctSsWRPTpk2T/N0kKmtMDN5w+/fvR506dfDee+8Vqv7o0aMxa9YstGjRAsuXL0fHjh0RHByMgQMHSurevn0b/fv3R7du3bB06VJYW1vD19cX165dAwD069cPy5cvBwAMGjQI27Ztw4oVK4oU/7Vr19CrVy9oNBrMmzcPS5cuxfvvv4/Tp0+/8rgjR47A09MTycnJmDNnDiZPnowzZ86gbdu24pfaiwYMGICnT58iODgYAwYMQFhYGObOnVvoOPv16weZTIbvv/9eLIuIiECjRo3QokULSf27d+9i37596NWrF5YtW4bAwEBcuXIFHTt2FL+kXVxcMG/ePADA2LFjsW3bNmzbtg0dOnQQ23n06BF69OiB5s2bY8WKFejcuXOB8a1cuRK2trbw8fFBbm4uAGD9+vU4fPgwVq9eDUdHxwKPc3FxwbZt21C9enU0b95cjMHW1hYZGRno1KkTtm3bhiFDhmDx4sWwtLSEr68vVq5cKWlry5YtWL16NcaOHYulS5e+9Av1RYMHD8Zvv/2GO3fuaL2v/fv3L9eho0GDBmHnzp3Ifwr9w4cPcfjw4QKTPuB5wunv7w9HR0csXboU3t7eWL9+PTw8PJCdnS3W27x5Mz7++GMolUqEhISgbdu2eP/99/HXX39ptZeXl4f3338fS5YsQe/evbF69Wr07dsXy5cvx0cffVR2F05UEIHeWCkpKQIAoU+fPoWqHxsbKwAQRo8erVU+depUAYBw7NgxsczJyUkAIJw8eVIsS05OFuRyuTBlyhSxLD4+XgAgLF68WKtNHx8fwcnJSRLD7NmzhRc/dsuXLxcACA8ePHhp3Pnn2LJli1jWvHlzwc7OTnj06JFY9scffwgGBgbC8OHDJecbOXKkVpsffPCBUK1atZee88XrMDMzEwRBEPr37y907dpVEARByM3NFZRKpTB37twC34PMzEwhNzdXch1yuVyYN2+eWHb+/HnJteXr2LGjAEAIDQ0tcF/Hjh21yg4dOiQAEBYsWCDcvXtXMDc3F/r27fvaaxSE5z9vLy8vrbIVK1YIAITt27eLZVlZWYJKpRLMzc2F1NRU8boACAqFQkhOTi7S+XJycgSlUinMnz9fEARBuH79ugBAOHHihLBlyxYBgHD+/HnxuPyf54uflxd/RkXx4s/t6tWrAgDh119/FQRBEL7++mvB3NxcSE9Pl7SfnJwsGBsbCx4eHlo/4zVr1ggAhG+++UZ8r+zs7ITmzZsLGo1GrLdhwwYBgNbPb9u2bYKBgYF4/nyhoaECAOH06dNa752Pj0+Rr5eosNhj8AZLTU0FAFhYWBSq/s8//wwAmDx5slb5lClTADyfxPgiV1dXtG/fXnxta2uLhg0b4u7du8WO+b/yx7V//PFH5OXlFeqYxMRExMbGwtfXV+u30qZNm6Jbt27idb7Iz89P63X79u3x6NEj8T0sjMGDByM6OhpqtRrHjh2DWq1+6W+UcrkcBgbP/3rl5ubi0aNH4jDJ77//XuhzyuVyjBgxolB1PTw88PHHH2PevHno168fTExMsH79+kKf679+/vlnKJVKDBo0SCwzMjLChAkTkJaWhhMnTmjV9/b2hq2tbZHOYWhoiAEDBojzN8LDw1GzZk2tz115aNy4MZo2bSrGERERgT59+qBq1aqSukeOHEFWVhYmTZok/owBYMyYMVAoFOLfowsXLiA5ORl+fn5a80F8fX1haWmp1eaePXvg4uKCRo0a4eHDh+LWpUsXAMDx48dL/ZqJXoaJwRtMoVAAAJ4+fVqo+n/++ScMDAxQr149rXKlUgkrKyv8+eefWuW1atWStGFtbY1///23mBFLffTRR2jbti1Gjx4Ne3t7DBw4ELt3735lkpAfZ8OGDSX7XFxc8PDhQ6Snp2uV//darK2tAaBI19KzZ09YWFhg165dCA8PxzvvvCN5L/Pl5eVh+fLlqF+/PuRyOapXrw5bW1tcvnwZKSkphT7nW2+9VaRJhkuWLIGNjQ1iY2OxatUq2NnZFfrY//rzzz9Rv359rS8/4Pl7nL//Rc7OzsU6z+DBg8XJfxERERg4cKBkHkp5GDx4MPbs2YPbt2/jzJkzL036Xvb5MzY2Rp06dcT9+f+vX7++Vj0jIyPUqVNHq+zWrVu4du0abG1ttbYGDRoAeD7Xg6i8cLniG0yhUMDR0RFXr14t0nGF/Uf3ZasAhP8bhy3OOfLHv/OZmpri5MmTOH78OCIjI3Hw4EHs2rULXbp0weHDh0ttJUJJriWfXC5Hv379sHXrVty9exdz5sx5ad1FixZh5syZGDlyJObPnw8bGxsYGBhg0qRJhe4ZAZ6/P0Vx6dIl8UvkypUrWr/tl7WixpqvdevWqFu3LiZNmoT4+PiXfiGXtUGDBiEoKAhjxoxBtWrV4OHhUW7nzsvLg5ubG5YtW1bg/po1a5ZbLETsMXjD9erVC3fu3EFMTMxr6zo5OSEvLw+3bt3SKk9KSsKTJ0/EFQalwdrausAZ2v/9LRMADAwM0LVrVyxbtgzXr1/HwoULcezYsZd2n+bHGRcXJ9l38+ZNVK9eHWZmZiW7gJcYPHgwLl26hKdPnxY4YTPf3r170blzZ2zevBkDBw6Eh4cH3N3dJe9Jaf5mnJ6ejhEjRsDV1RVjx45FSEgIzp8/X+z2nJyccOvWLUkic/PmTXF/aRk0aBCio6Ph4uJSpPs5lKZatWqhbdu2iI6OxocffogqVQr+velln7+srCzEx8eL+/P//9+/b9nZ2YiPj9cqq1u3Lh4/foyuXbvC3d1dshXUO0ZUVpgYvOGmTZsGMzMzjB49GklJSZL9d+7cEWeQ9+zZEwAkKwfyf0spzXXjdevWRUpKCi5fviyWJSYm4ocfftCq9/jxY8mx+V8ML1um5eDggObNm2Pr1q1aX7RXr17F4cOHxessC507d8b8+fOxZs0ayU15XmRoaCjpjdizZw/++ecfrbL8BKagJKqopk+fjoSEBGzduhXLli1D7dq14ePjU+zlbj179oRarda6z0BOTg5Wr14Nc3NzdOzYscQx5xs9ejRmz56NpUuXllqbxbFgwQLMnj0bn3766UvruLu7w9jYGKtWrdL6GW/evBkpKSni36NWrVrB1tYWoaGhWvd0CAsLk/y8BwwYgH/++QcbN26UnC8jI0MyNEZUljiU8IarW7cuIiIi8NFHH8HFxUXrzodnzpzBnj17xPuqN2vWDD4+PtiwYQOePHmCjh074rfffsPWrVvRt2/fly6FK46BAwdi+vTp+OCDDzBhwgQ8e/YM69atQ4MGDbQm382bNw8nT56El5cXnJyckJycjLVr16JGjRpo167dS9tfvHgxevToAZVKhVGjRiEjIwOrV6+GpaXlK7v4S8rAwEByh7yC9OrVC/PmzcOIESPw3nvv4cqVKwgPD5eMLdetWxdWVlYIDQ2FhYUFzMzM0Lp16yKP1x87dgxr167F7NmzxeWTW7ZsQadOnTBz5kyEhIQUqT3g+RLK9evXw9fXFxcvXkTt2rWxd+9enD59GitWrCj0pNfCcHJyKtHPLTs7u8DbGtvY2OCTTz4pdDsdO3Z8bcJja2uLoKAgzJ07F927d8f777+PuLg4rF27Fu+88w6GDh0K4PlcggULFuDjjz9Gly5d8NFHHyE+Ph5btmyRfA6GDRuG3bt3w8/PD8ePH0fbtm2Rm5uLmzdvYvfu3Th06FClutU4VXC6XRRBpeV///ufMGbMGKF27dqCsbGxYGFhIbRt21ZYvXq1kJmZKdbLzs4W5s6dKzg7OwtGRkZCzZo1haCgIK06glDw8jVBkC6Te9lyRUEQhMOHDwtNmjQRjI2NhYYNGwrbt2+XLFc8evSo0KdPH8HR0VEwNjYWHB0dhUGDBgn/+9//JOf475K+I0eOCG3bthVMTU0FhUIh9O7dW7h+/bpWnYKWtwmCIC6Fi4+Pf+l7KgiFWwr3suWKU6ZMERwcHARTU1Ohbdu2QkxMTIHLDH/88UfB1dVVqFKlitZ1duzYUWjcuHGB53yxndTUVMHJyUlo0aKFkJ2drVUvICBAMDAwEGJiYl55DS/7eSclJQkjRowQqlevLhgbGwtubm6Sn8OrPgNFPd+LirJcEUCBW926dV/afmHjftlnYM2aNUKjRo0EIyMjwd7eXhg3bpzw77//SuqtXbtWcHZ2FuRyudCqVSvh5MmTBX4OsrKyhK+++kpo3LixIJfLBWtra6Fly5bC3LlzhZSUFLEelytSWZMJQhFmXxEREVGlxjkGREREJGJiQERERCImBkRERCRiYkBEREQiJgZEREQkYmJAREREIiYGREREJKqUdz7MyNZ1BERlz+bd8boOgajMZVxaU6btm75d/L9HZR2brlTKxICIiKhQZOw4/y8mBkREpL9K8QmnlQUTAyIi0l/sMZDgO0JEREQi9hgQEZH+4lCCBBMDIiLSXxxKkGBiQERE+os9BhJMDIiISH+xx0CC7wgREekvmaz4WzF9+eWXkMlkmDRpkliWmZkJf39/VKtWDebm5vD29kZSUpLWcQkJCfDy8kLVqlVhZ2eHwMBA5OTkaNWJjo5GixYtIJfLUa9ePYSFhRU5PiYGRERE5eT8+fNYv349mjZtqlUeEBCA/fv3Y8+ePThx4gTu37+Pfv36iftzc3Ph5eWFrKwsnDlzBlu3bkVYWBhmzZol1omPj4eXlxc6d+6M2NhYTJo0CaNHj8ahQ4eKFCMTAyIi0l8yg+JvRZSWloYhQ4Zg48aNsLa2FstTUlKwefNmLFu2DF26dEHLli2xZcsWnDlzBmfPngUAHD58GNevX8f27dvRvHlz9OjRA/Pnz8fXX3+NrKwsAEBoaCicnZ2xdOlSuLi4YPz48ejfvz+WL19epDiZGBARkf4qwVCCRqNBamqq1qbRaF56Kn9/f3h5ecHd3V2r/OLFi8jOztYqb9SoEWrVqoWYmBgAQExMDNzc3GBvby/W8fT0RGpqKq5duybW+W/bnp6eYhuFxcSAiIj0Vwl6DIKDg2Fpaam1BQcHF3ianTt34vfffy9wv1qthrGxMaysrLTK7e3toVarxTovJgX5+/P3vapOamoqMjIyCv2WcFUCERHprxJMIgwKCsLkyZO1yuRyuaTeX3/9hYkTJyIqKgomJibFPl95YY8BERHprxL0GMjlcigUCq2toMTg4sWLSE5ORosWLVClShVUqVIFJ06cwKpVq1ClShXY29sjKysLT5480TouKSkJSqUSAKBUKiWrFPJfv66OQqGAqalpod8SJgZERERlqGvXrrhy5QpiY2PFrVWrVhgyZIj4ZyMjIxw9elQ8Ji4uDgkJCVCpVAAAlUqFK1euIDk5WawTFRUFhUIBV1dXsc6LbeTXyW+jsDiUQERE+qscbnBkYWGBJk2aaJWZmZmhWrVqYvmoUaMwefJk2NjYQKFQ4NNPP4VKpUKbNm0AAB4eHnB1dcWwYcMQEhICtVqNGTNmwN/fX+yl8PPzw5o1azBt2jSMHDkSx44dw+7duxEZGVmkeJkYEBGR/jKoGLdEXr58OQwMDODt7Q2NRgNPT0+sXbtW3G9oaIgDBw5g3LhxUKlUMDMzg4+PD+bNmyfWcXZ2RmRkJAICArBy5UrUqFEDmzZtgqenZ5FikQmCIJTalVUQGdm6joCo7Nm8O17XIRCVuYxLa8q0fdMuC4t9bMaxL0oxkoqDPQZERKS/+BAlCSYGRESkv/gQJQm+I0RERCRijwEREekvDiVIMDEgIiL9xaEECSYGRESkv9hjIMHEgIiI9Bd7DCSYGBARkf5ij4EEUyUiIiISsceAiIj0F4cSJJgYEBGR/uJQggQTAyIi0l/sMZBgYkBERPqLiYEEEwMiItJfHEqQYKpEREREIvYYEBGR/uJQggQTAyIi0l8cSpBgYkBERPqLPQYSTAyIiEh/scdAgokBERHpLRkTAwn2oRAREZGIPQZERKS32GMgxcSAiIj0F/MCCSYGRESkt9hjIMXEgIiI9BYTAykmBkREpLeYGEhxVQIRERGJmBgQEZHekslkxd6KYt26dWjatCkUCgUUCgVUKhV++eUXcX+nTp0k7fv5+Wm1kZCQAC8vL1StWhV2dnYIDAxETk6OVp3o6Gi0aNECcrkc9erVQ1hYWJHfEw4lEBGR/iqnkYQaNWrgyy+/RP369SEIArZu3Yo+ffrg0qVLaNy4MQBgzJgxmDdvnnhM1apVxT/n5ubCy8sLSqUSZ86cQWJiIoYPHw4jIyMsWrQIABAfHw8vLy/4+fkhPDwcR48exejRo+Hg4ABPT89CxyoTBEEopeuuMDKydR0BUdmzeXe8rkMgKnMZl9aUaftWQ7YX+9ikbz6ERqPRKpPL5ZDL5YU63sbGBosXL8aoUaPQqVMnNG/eHCtWrCiw7i+//IJevXrh/v37sLe3BwCEhoZi+vTpePDgAYyNjTF9+nRERkbi6tWr4nEDBw7EkydPcPDgwUJfF4cSiIhIb5VkKCE4OBiWlpZaW3Bw8GvPmZubi507dyI9PR0qlUosDw8PR/Xq1dGkSRMEBQXh2bNn4r6YmBi4ubmJSQEAeHp6IjU1FdeuXRPruLu7a53L09MTMTExRXpPOJRARER6qySrEoKCgjB58mStslf1Fly5cgUqlQqZmZkwNzfHDz/8AFdXVwDA4MGD4eTkBEdHR1y+fBnTp09HXFwcvv/+ewCAWq3WSgoAiK/VavUr66SmpiIjIwOmpqaFui4mBkRERMVQlGEDAGjYsCFiY2ORkpKCvXv3wsfHBydOnICrqyvGjh0r1nNzc4ODgwO6du2KO3fuoG7dumUR/ktxKIGIiPRWea1KAABjY2PUq1cPLVu2RHBwMJo1a4aVK1cWWLd169YAgNu3bwMAlEolkpKStOrkv1Yqla+so1AoCt1bADAxICIifSYrwVZCeXl5ksmL+WJjYwEADg4OAACVSoUrV64gOTlZrBMVFQWFQiEOR6hUKhw9elSrnaioKK15DIXBoQQiItJb5XXnw6CgIPTo0QO1atXC06dPERERgejoaBw6dAh37txBREQEevbsiWrVquHy5csICAhAhw4d0LRpUwCAh4cHXF1dMWzYMISEhECtVmPGjBnw9/cXhzP8/PywZs0aTJs2DSNHjsSxY8ewe/duREZGFilWJgZERKS3yisxSE5OxvDhw5GYmAhLS0s0bdoUhw4dQrdu3fDXX3/hyJEjWLFiBdLT01GzZk14e3tjxowZ4vGGhoY4cOAAxo0bB5VKBTMzM/j4+Gjd98DZ2RmRkZEICAjAypUrUaNGDWzatKlI9zAAeB8DojcW72NA+qCs72NgN3J3sY9N/mZAKUZScXCOAREREYk4lEBERPqLD1eUYGJARER6i49dlmJiQEREeouJgRQTAyIi0ltMDKSYGBARkd5iYiDFVQlEREQkqjCJwa+//oqhQ4dCpVLhn3/+AQBs27YNp06d0nFkRERUaenwlsgVVYVIDL777jt4enrC1NQUly5dEu8dnZKSgkWLFuk4OiIiqqzK8yFKb4oKkRgsWLAAoaGh2LhxI4yMjMTytm3b4vfff9dhZEREVJkxMZCqEJMP4+Li0KFDB0m5paUlnjx5Uv4BERGRXqjMX/DFVSF6DJRKpfjM6RedOnUKderU0UFERERE+qlCJAZjxozBxIkTce7cOchkMty/fx/h4eGYOnUqxo0bp+vwiIiosuLkQ4kKMZTw2WefIS8vD127dsWzZ8/QoUMHyOVyTJ06FZ9++qmuw6P/k5SUhJXLFuP0qV+RmZmBmrWcMHf+IjRu4obs7Gx8vXoFTv16En///RcszM3Rus17mBAwBXZ29roOnUhi6ohumD+hD9aEH0fgku8AACP7tcVHPVqheaMaUJibQtk+EClpGVrH1atlh0UBfaFqVgfGRoa4eus+5q49gJMXbgEA3Bq8hakjuuG95nVRzcoMf95/jE17T+HrHdHlfYlUCBxKkKoQiUFOTg6++OILBAYG4vbt20hLS4OrqyvMzc3x8OFDVK9eXdch6r3UlBT4DhuEd95tjTWhG2FjbY0///wTCoUlACAzMxM3rl/HmI/HoWHDRkhNTUXIlwsxafw4ROz+XsfRE2lr6VoLo7zb4vL//tYqr2pihKgz1xF15jrmT+hT4LHfr/LD7YRk9Ph4FTI02Rg/uDO+X+WHxr3nIOnRU7ztUhMPHj/FiBlb8bf6X7RpVgdfzxiE3Lw8hO46WR6XR0XAxECqQiQGAwcOxN69e2FsbAxXV1exPCkpCV27dsXVq1d1GB0BwJZvNkKpVGLegmCx7K0aNcU/W1hYYP2mLVrHfPb5TAwd9CESE+/DwcGx3GIlehUzU2NsWeSLT+bvwGeju2vtWxMRDQBo37J+gcdWszJDfSc7jJsbjqu37gMAZq76EX4fdYBrPUckPYrDtz+e1Trm3j+P0LqpM/p0acbEoAJiYiBVIeYYJCQkYPTo0VpliYmJ6NSpExo1aqSjqOhFJ44fg2vjJpg6eQI6d1Dho/598d3e3a88Ji0tDTKZDBYWinKKkuj1VgR9hIO/XsXxc3FFPvbRk3TExasxuNe7qGpiDENDA4z2boekR6m4dD3hpcdZmpvg39RnJQmbygiXK0pViMTg559/xpkzZzB58mQAwP3799GpUye4ublh9+5Xf/lQ+fj777+wZ9cO1KpVG+vWb8aHHw1CSPAC/PTjDwXW12g0WLl8Cbr39IK5uXk5R0tUsA89W6J5o5qYufqnYrfh5bcGzRrVxIPTS/Dk7HJMGNYFffzX4snTjALrt2nmjP4eLbH5u9PFPidReaoQQwm2trY4fPgw2rVrBwA4cOAAWrRogfDwcBgYvDp30Wg04p0S8+UZyCGXy8ssXn2UlyfAtXETTJj0PHlr5OKKO7duYe/unXi/zwdadbOzszFtykQIgoAvZs7VRbhEEjXsrbA40Bu9xq2BJiun2O0sDxqAB4+fwn3kCmRosuD7wXv4buXHaDd0MdQPU7XqutZ1wO7lY7Fww884evZmSS+BykLl/cW/2CpEjwEA1KxZE1FRUQgPD8e7776LHTt2wNDQ8LXHBQcHw9LSUmtb/FXwa4+jorG1tUXdunW1ypzr1EFi4n2tsudJwSQk3r+P0I3fsLeAKoy3XWrBvpoCMRHT8fT8Sjw9vxIdWtXHJ4M64un5lTAweP03RKd3G6Bn+yYY/tkWxPxxF7E3/8ak4N3I0GRjaO/WWnUb1VHi5/Wf4pvvzuCrTYfK6rKohDiUIKWzHgNra+sC39hnz55h//79qFatmlj2+PHjl7YTFBQkDkHkyzNgb0Fpa/Z2C9y7F69V9uef9+Dg8Jb4Oj8pSEj4Exu/+RZWVtblHSbRSx3/LQ4t+y/UKtswdyji4pOwNCwKeXnCa9uoamIMAMjLy9Mqz8sTtP49c6mjxC8bJiB8/znM+Xp/KURPZaUyf8EXl84SgxUrVpRKO3K5dNggI7tUmqYXDB3mA99hg7BpQyg8uvfA1SuX8d3e3Zg5ex6A50lB4OQJuHH9OlZ9vR55ebl4+PABgOe3tjYyMtZl+ERIe6bB9TuJWmXpGVl4nJIulttXs4B9NQXq1nq+RLpJfUc8Tc/EX+p/8W/qM5y7HI9/U59h0/zhWLThF2RkZmNkv/dQ+61qOHjqGoDnwwe/bJiAI2duYNX2Y7CvZgEAyM0T8PDftHK8YioM5gVSMkEQXp8mv2GYGJSNk9HHsWrlMiT8eQ9vvVUDQ31GwLv/AADAP//8DS/PrgUet/Gbb/HOu60L3EfFZ/PueF2H8MY7tHEiLsf9Ld7g6IuPe2KGX09JvTGztmH7/nMAgBautTDHvzdauNaCURUD3LirxqINv+Dw6euvbOPP+4/QyGt2GV5N5ZRxaU2Ztl8/8GCxj721uPvrK72BKlxikJmZiaysLK0yhaJoy92YGJA+YGJA+oCJQfmrEJMP09PTMX78eNjZ2cHMzAzW1tZaGxERUVmQyYq/VVYVIjGYNm0ajh07hnXr1kEul2PTpk2YO3cuHB0d8e233+o6PCIiqqS4KkGqQiQG+/fvx9q1a+Ht7Y0qVaqgffv2mDFjBhYtWoTw8HBdh0dERJVUefUYrFu3Dk2bNoVCoYBCoYBKpcIvv/wi7s/MzIS/vz+qVasGc3NzeHt7IykpSauNhIQEeHl5oWrVqrCzs0NgYCBycrTvyREdHY0WLVpALpejXr16CAsLK/J7UiESg8ePH6NOnToAns8nyF+e2K5dO5w8yXuLExFR2TAwkBV7K4oaNWrgyy+/xMWLF3HhwgV06dIFffr0wbVrz1ezBAQEYP/+/dizZw9OnDiB+/fvo1+/fuLxubm58PLyQlZWFs6cOYOtW7ciLCwMs2bNEuvEx8fDy8sLnTt3RmxsLCZNmoTRo0fj0KGi3UejQiQGderUQXz88zXyjRo1Em+DvH//flhZWekwMiIiqszKq8egd+/e6NmzJ+rXr48GDRpg4cKFMDc3x9mzZ5GSkoLNmzdj2bJl6NKlC1q2bIktW7bgzJkzOHv2+UO5Dh8+jOvXr2P79u1o3rw5evTogfnz5+Prr78WJ+yHhobC2dkZS5cuhYuLC8aPH4/+/ftj+fLlRYpVp4nB3bt3kZeXhxEjRuCPP/4AAHz22Wf4+uuvYWJigoCAAAQGBuoyRCIiogJpNBqkpqZqbf+9RX9BcnNzsXPnTqSnp0OlUuHixYvIzs6Gu7u7WKdRo0aoVasWYmJiAAAxMTFwc3ODvb29WMfT0xOpqalir0NMTIxWG/l18tsoLJ0mBvXr18fDhw8REBCACRMm4KOPPoKbmxtu3ryJiIgIXLp0CRMnTtRliEREVImVZPJhQbfkDw5++S35r1y5AnNzc8jlcvj5+eGHH36Aq6sr1Go1jI2NJT3k9vb2UKvVAAC1Wq2VFOTvz9/3qjqpqanIyCj4IV8F0elDlP57C4Wff/4ZwcHBqFOnDpycnHQUFRER6YuSLC4o6Jb8r3qAX8OGDREbG4uUlBTs3bsXPj4+OHHiRPEDKCMV4umKREREulCSZYcF3ZL/VYyNjVGvXj0AQMuWLXH+/HmsXLkSH330EbKysvDkyROtXoOkpCQolUoAgFKpxG+//abVXv6qhRfr/HclQ1JSEhQKBUxNTQsdp06HEgpaC1qZ14YSEVHFosv7GOTl5UGj0aBly5YwMjLC0aNHxX1xcXFISEiASqUCAKhUKly5cgXJyclinaioKCgUCri6uop1Xmwjv05+G4Wl86EEX19fMePKzMyEn58fzMzMtOp9//33ugiPiIgqufL6XTQoKAg9evRArVq18PTpU0RERCA6OhqHDh2CpaUlRo0ahcmTJ8PGxgYKhQKffvopVCoV2rRpAwDw8PCAq6srhg0bhpCQEKjVasyYMQP+/v7id6ifnx/WrFmDadOmYeTIkTh27Bh2796NyMjIIsWq08TAx8dH6/XQoUN1FAkREVHZSU5OxvDhw5GYmAhLS0s0bdoUhw4dQrdu3QAAy5cvh4GBAby9vaHRaODp6Ym1a9eKxxsaGuLAgQMYN24cVCoVzMzM4OPjg3nz5ol1nJ2dERkZiYCAAKxcuRI1atTApk2b4OnpWaRYK9xDlEoDH6JE+oAPUSJ9UNYPUXp77rFiH3tpdpdSjKTi4ORDIiLSW5zWJsXEgIiI9BYnvEsxMSAiIr3FvECKiQEREekt9hhIVYiHKBEREVHFwB4DIiLSW+wwkGJiQEREeotDCVJMDIiISG8xL5BiYkBERHqLPQZSTAyIiEhvMS+Q4qoEIiIiErHHgIiI9BaHEqSYGBARkd5iXiDFxICIiPQWewykmBgQEZHeYmIgxcSAiIj0FvMCKa5KICIiIhF7DIiISG9xKEGKiQEREekt5gVSTAyIiEhvscdAiokBERHpLeYFUkwMiIhIbxkwM5DgqgQiIiISsceAiIj0FjsMpJgYEBGR3uLkQykmBkREpLcMmBdIcI4BERHpLZlMVuytKIKDg/HOO+/AwsICdnZ26Nu3L+Li4rTqdOrUSXIOPz8/rToJCQnw8vJC1apVYWdnh8DAQOTk5GjViY6ORosWLSCXy1GvXj2EhYUVKVYmBkREpLdksuJvRXHixAn4+/vj7NmziIqKQnZ2Njw8PJCenq5Vb8yYMUhMTBS3kJAQcV9ubi68vLyQlZWFM2fOYOvWrQgLC8OsWbPEOvHx8fDy8kLnzp0RGxuLSZMmYfTo0Th06FChY+VQAhERURk7ePCg1uuwsDDY2dnh4sWL6NChg1hetWpVKJXKAts4fPgwrl+/jiNHjsDe3h7NmzfH/PnzMX36dMyZMwfGxsYIDQ2Fs7Mzli5dCgBwcXHBqVOnsHz5cnh6ehYqVvYYEBGR3pKV4D+NRoPU1FStTaPRFOq8KSkpAAAbGxut8vDwcFSvXh1NmjRBUFAQnj17Ju6LiYmBm5sb7O3txTJPT0+kpqbi2rVrYh13d3etNj09PRETE1Po94SJARER6S0DWfG34OBgWFpaam3BwcGvPWdeXh4mTZqEtm3bokmTJmL54MGDsX37dhw/fhxBQUHYtm0bhg4dKu5Xq9VaSQEA8bVarX5lndTUVGRkZBTqPeFQAhER6a2SLFcMCgrC5MmTtcrkcvlrj/P398fVq1dx6tQprfKxY8eKf3Zzc4ODgwO6du2KO3fuoG7dusWOs6iYGBARkd4qyW0M5HJ5oRKBF40fPx4HDhzAyZMnUaNGjVfWbd26NQDg9u3bqFu3LpRKJX777TetOklJSQAgzktQKpVi2Yt1FAoFTE1NCxUjhxKIiEhvGchkxd6KQhAEjB8/Hj/88AOOHTsGZ2fn1x4TGxsLAHBwcAAAqFQqXLlyBcnJyWKdqKgoKBQKuLq6inWOHj2q1U5UVBRUKlWhY2ViQEREVMb8/f2xfft2REREwMLCAmq1Gmq1Whz3v3PnDubPn4+LFy/i3r17+OmnnzB8+HB06NABTZs2BQB4eHjA1dUVw4YNwx9//IFDhw5hxowZ8Pf3F3su/Pz8cPfuXUybNg03b97E2rVrsXv3bgQEBBQ6ViYGRESkt8rrPgbr1q1DSkoKOnXqBAcHB3HbtWsXAMDY2BhHjhyBh4cHGjVqhClTpsDb2xv79+8X2zA0NMSBAwdgaGgIlUqFoUOHYvjw4Zg3b55Yx9nZGZGRkYiKikKzZs2wdOlSbNq0qdBLFQFAJgiCULTLq/gysnUdAVHZs3l3vK5DICpzGZfWlGn7/bf8Xuxj945oUYqRVBycfEhERHqLz1CSYmJARER6q6iTCPUBEwMiItJbTAukCpUY/PTTT4Vu8P333y92MERERKRbhUoM+vbtW6jGZDIZcnNzSxIPERFRuSnJnQ8rq0IlBnl5eWUdBxERUbkzYF4gwTkGRESkt9hjIFWsxCA9PR0nTpxAQkICsrKytPZNmDChVAIjIiIqa8wLpIqcGFy6dAk9e/bEs2fPkJ6eDhsbGzx8+BBVq1aFnZ0dEwMiInpjsMdAqsi3RA4ICEDv3r3x77//wtTUFGfPnsWff/6Jli1bYsmSJWURIxEREZWTIicGsbGxmDJlCgwMDGBoaAiNRoOaNWsiJCQEn3/+eVnESEREVCYMZMXfKqsiJwZGRkYwMHh+mJ2dHRISEgAAlpaW+Ouvv0o3OiIiojIkk8mKvVVWRZ5j8Pbbb+P8+fOoX78+OnbsiFmzZuHhw4fYtm0bmjRpUhYxEhERlYnK+/VefEXuMVi0aBEcHBwAAAsXLoS1tTXGjRuHBw8eYMOGDaUeIBERUVkxkMmKvVVWRe4xaNWqlfhnOzs7HDx4sFQDIiIiIt3hDY6IiEhvVeJf/IutyImBs7PzKydd3L17t0QBERERlZfKPImwuIqcGEyaNEnrdXZ2Ni5duoSDBw8iMDCwtOIiIiIqc8wLpIqcGEycOLHA8q+//hoXLlwocUBERETlpTJPIiyuIq9KeJkePXrgu+++K63miIiIypxMVvytsiq1xGDv3r2wsbEpreaIiIhIB4p1g6MXJ2sIggC1Wo0HDx5g7dq1pRocERFRWeLkQ6kiJwZ9+vTReiMNDAxga2uLTp06oVGjRqUaXHHx50x6wdBI1xEQvfFKrdu8EilyYjBnzpwyCIOIiKj8scdAqsjJkqGhIZKTkyXljx49gqGhYakERUREVB74dEWpIvcYCIJQYLlGo4GxsXGJAyIiIiovlfkLvrgK3WOwatUqrFq1CjKZDJs2bRJfr1q1CsuXL4e/v3+FmWNARERUkQQHB+Odd96BhYUF7Ozs0LdvX8TFxWnVyczMhL+/P6pVqwZzc3N4e3sjKSlJq05CQgK8vLxQtWpV2NnZITAwEDk5OVp1oqOj0aJFC8jlctSrVw9hYWFFirXQPQbLly8H8LzHIDQ0VGvYwNjYGLVr10ZoaGiRTk5ERKRL5TXH4MSJE/D398c777yDnJwcfP755/Dw8MD169dhZmYGAAgICEBkZCT27NkDS0tLjB8/Hv369cPp06cBALm5ufDy8oJSqcSZM2eQmJiI4cOHw8jICIsWLQIAxMfHw8vLC35+fggPD8fRo0cxevRoODg4wNPTs1CxyoSXjQ28ROfOnfH999/D2tq6KIeVq8yc19chetNZtwnQdQhEZS7jwvIybT/wQNzrK73E4l4Ni33sgwcPYGdnhxMnTqBDhw5ISUmBra0tIiIi0L9/fwDAzZs34eLigpiYGLRp0wa//PILevXqhfv378Pe3h4AEBoaiunTp+PBgwcwNjbG9OnTERkZiatXr4rnGjhwIJ48eVLopyEXefLh8ePHK3RSQEREVFglufOhRqNBamqq1qbRaAp13pSUFAAQbwx48eJFZGdnw93dXazTqFEj1KpVCzExMQCAmJgYuLm5iUkBAHh6eiI1NRXXrl0T67zYRn6d/DYKo8iJgbe3N7766itJeUhICD788MOiNkdERKQzBjJZsbfg4GBYWlpqbcHBwa89Z15eHiZNmoS2bduiSZMmAAC1Wg1jY2NYWVlp1bW3t4darRbrvJgU5O/P3/eqOqmpqcjIyCjce1KoWi84efIkevbsKSnv0aMHTp48WdTmiIiIdMagBFtQUBBSUlK0tqCgoNee09/fH1evXsXOnTvL4pJKrMjLFdPS0gpclmhkZITU1NRSCYqIiKiik8vlkMvlRTpm/PjxOHDgAE6ePIkaNWqI5UqlEllZWXjy5IlWr0FSUhKUSqVY57ffftNqL3/Vwot1/ruSISkpCQqFAqampoWKscg9Bm5ubti1a5ekfOfOnXB1dS1qc0RERDpTXk9XFAQB48ePxw8//IBjx47B2dlZa3/Lli1hZGSEo0ePimVxcXFISEiASqUCAKhUKly5ckXrJoNRUVFQKBTi969KpdJqI79OfhuFUeQeg5kzZ6Jfv364c+cOunTpAgA4evQoIiIisHfv3qI2R0REpDMG5bRc0d/fHxEREfjxxx9hYWEhzgmwtLSEqakpLC0tMWrUKEyePBk2NjZQKBT49NNPoVKp0KZNGwCAh4cHXF1dMWzYMISEhECtVmPGjBnw9/cXey78/PywZs0aTJs2DSNHjsSxY8ewe/duREZGFjrWIicGvXv3xr59+7Bo0SLs3bsXpqamaNasGY4dO8bHLhMR0RulvB6VsG7dOgBAp06dtMq3bNkCX19fAM/vF2RgYABvb29oNBp4enpqPbXY0NAQBw4cwLhx46BSqWBmZgYfHx/MmzdPrOPs7IzIyEgEBARg5cqVqFGjBjZt2lToexgAxbiPwX+lpqZix44d2Lx5My5evIjc3NySNFcqeB8D0ge8jwHpg7K+j8Gcw7eKf6xH/VKMpOIo9hMnT548CR8fHzg6OmLp0qXo0qULzp49W5qxERERlamSLFesrIo0lKBWqxEWFobNmzcjNTUVAwYMgEajwb59+zjxkIiIqBIodI9B79690bBhQ1y+fBkrVqzA/fv3sXr16rKMjYiIqEyV16qEN0mhewx++eUXTJgwAePGjUP9+pVzXIWIiPQLH7ssVegeg1OnTuHp06do2bIlWrdujTVr1uDhw4dlGRsREVGZkpXgv8qq0IlBmzZtsHHjRiQmJuLjjz/Gzp074ejoiLy8PERFReHp06dlGScREVGpM5AVf6usirwqwczMDCNHjsSpU6dw5coVTJkyBV9++SXs7Ozw/vvvl0WMREREZYKJgVSxlysCQMOGDRESEoK///4bO3bsKK2YiIiISEeKfOfDghgaGqJv377o27dvaTRHRERULmSVeXlBMZVKYkBERPQmqsxDAsXFxICIiPQWOwykmBgQEZHeqsy3Ni4uJgZERKS3OJQgVaJVCURERFS5sMeAiIj0FkcSpJgYEBGR3jKoxLc2Li4mBkREpLfYYyDFxICIiPQWJx9KMTEgIiK9xeWKUlyVQERERCL2GBARkd5ih4EUEwMiItJbHEqQYmJARER6i3mBFBMDIiLSW5xoJ8XEgIiI9JaMXQYSTJaIiIhIxMSAiIj0lqwEW1GcPHkSvXv3hqOjI2QyGfbt26e139fXFzKZTGvr3r27Vp3Hjx9jyJAhUCgUsLKywqhRo5CWlqZV5/Lly2jfvj1MTExQs2ZNhISEFDFSJgZERKTHDGSyYm9FkZ6ejmbNmuHrr79+aZ3u3bsjMTFR3Hbs2KG1f8iQIbh27RqioqJw4MABnDx5EmPHjhX3p6amwsPDA05OTrh48SIWL16MOXPmYMOGDUWKlXMMiIhIb5XXDIMePXqgR48er6wjl8uhVCoL3Hfjxg0cPHgQ58+fR6tWrQAAq1evRs+ePbFkyRI4OjoiPDwcWVlZ+Oabb2BsbIzGjRsjNjYWy5Yt00ogXoc9BkREpLdksuJvGo0GqampWptGoyl2LNHR0bCzs0PDhg0xbtw4PHr0SNwXExMDKysrMSkAAHd3dxgYGODcuXNinQ4dOsDY2Fis4+npibi4OPz777+FjoOJARER6a3/jusXZQsODoalpaXWFhwcXKw4unfvjm+//RZHjx7FV199hRMnTqBHjx7Izc0FAKjVatjZ2WkdU6VKFdjY2ECtVot17O3tterkv86vUxgcSiAiIiqGoKAgTJ48WatMLpcXq62BAweKf3Zzc0PTpk1Rt25dREdHo2vXriWKs6jYY0BERHrLoASbXC6HQqHQ2oqbGPxXnTp1UL16ddy+fRsAoFQqkZycrFUnJycHjx8/FuclKJVKJCUladXJf/2yuQsFYWJARER6qyRDCWXp77//xqNHj+Dg4AAAUKlUePLkCS5evCjWOXbsGPLy8tC6dWuxzsmTJ5GdnS3WiYqKQsOGDWFtbV3oczMxICIivVVe9zFIS0tDbGwsYmNjAQDx8fGIjY1FQkIC0tLSEBgYiLNnz+LevXs4evQo+vTpg3r16sHT0xMA4OLigu7du2PMmDH47bffcPr0aYwfPx4DBw6Eo6MjAGDw4MEwNjbGqFGjcO3aNezatQsrV66UDHe8DucYEBGR3iqvWyJfuHABnTt3Fl/nf1n7+Phg3bp1uHz5MrZu3YonT57A0dERHh4emD9/vtbQRHh4OMaPH4+uXbvCwMAA3t7eWLVqlbjf0tIShw8fhr+/P1q2bInq1atj1qxZRVqqCAAyQRCEEl5vhZOZo+sIiMqedZsAXYdAVOYyLiwv0/a//yOx2Mf2a+ZQipFUHBxKICIiIhGHEoiISG/x6YpSTAyIiEhvMS2QYmJARER6ix0GUkwMiIhIbxmwz0CCiQEREekt9hhIcVUCERERidhjQEREekvGoQQJJgZERKS3OJQgxcSAiIj0FicfSjExICIivcUeAykmBkREpLeYGEhViFUJv/76K4YOHQqVSoV//vkHALBt2zacOnVKx5ERERHpF50nBt999x08PT1hamqKS5cuQaPRAABSUlKwaNEiHUdHRESVmawE/1VWOk8MFixYgNDQUGzcuBFGRkZiedu2bfH777/rMDIiIqrsDGTF3yornc8xiIuLQ4cOHSTllpaWePLkSfkHREREeqMy/+ZfXDrvMVAqlbh9+7ak/NSpU6hTp44OIiIiIn0hkxV/q6x0nhiMGTMGEydOxLlz5yCTyXD//n2Eh4dj6tSpGDdunK7DIyIi0is6H0r47LPPkJeXh65du+LZs2fo0KED5HI5pk6dik8//VTX4RERUSXGoQQpnfcYyGQyfPHFF3j8+DGuXr2Ks2fP4sGDB5g/f76uQ6NX2LxxA5o1boiQ4IVi2d7duzDKdxjee7cFmjVuiNTUVB1GSPRqU326IuPCciye3FcsG/mBCofW+yMpOhgZF5bD0txEctyeZaPwvwOz8O/pENw9OBeb5w2BQ3WFuF9uXAUbZg/C+Z2BeHp2CXYvGVkel0PFxMmHUjpPDPIZGxvD1dUV7777LszNzXUdDr3C1SuXsXfPTjRo0FCrPDMzA++1bY9RY/x0FBlR4bR0rYlR/VS4/L9/tMqrmhgh6sxNLN5y5KXHnrxwG0M/24pm3sEYPG0L6rxVDRFf+Yr7DQ0MkKHJxtqdv+LYb/8rq0ugUsLlilI6H0ro3LkzZK+YxXHs2LFyjIZe51l6OoKmB2L23AXYuH6d1r6hw30BAOd/O6eDyIgKx8zUGFvmD8UnC3fjs1HdtPat2XESANC+Zd2XHr864oT45wT1v1iy9Sh2LxmJKoYGyMnNw7PMLEz8ci8AQNXMGVYWpmVwFVRaKvMkwuLSeY9B8+bN0axZM3FzdXVFVlYWfv/9d7i5uek6PPqPRQvmoUOHjmijek/XoRAVy4rp/XHw9A0cL4Xf5q0VVTGwe0ucvXwPObl5pRAdlTdZCbbKSuc9BsuXLy+wfM6cOUhLSyvnaOhVfvk5EjduXEfErr26DoWoWD70eBvNG72FdsML/nensBZ82gt+A9rBzFSOc5fvoV/AxlKKkEj3dN5j8DJDhw7FN99889p6Go0GqampWlv+bZWp9KgTExHy5UIEf7UYcrlc1+EQFVkNeyssnvIBRszYDk1WTonaWv7tcbQZshRe/uuQm5eHTXOHlFKUVN4MZLJib5WVznsMXiYmJgYmJtIZwf8VHByMuXPnapV9MXM2ZsyaU0aR6afr16/h8aNHGPhhP7EsNzcXFy+cx84d4Th/6QoMDQ11GCHRq73dqAbsq1kgZvsUsaxKFUO0e7sO/Aa0g+V7gcjLEwrV1qOUdDxKScfthAeIi0/C7Z/noLWbE85d+bOswqcyUnm/3otP54lBv379tF4LgoDExERcuHABM2fOfO3xQUFBmDx5snYbhvyNtrS1btMGe/ft1yqb/UUQatepgxGjxjApoArv+PlbaPnRV1plG2YNQtyfyVi69Wihk4L/yv/N0dhY5/+cUnEwM5DQ+VCCpaWl1mZjY4NOnTrh559/xuzZs197vFwuh0Kh0NrY1V36zMzMUb9+A63NtGpVWFlaoX79BgCAhw8e4OaNG/grIQEAcPvW/3Dzxg2k8JkXVAGkPdPg+h211paemYXHT9Jx/Y4aAGBfzQJNGziibo3qAIAm9RzRtIEjrBVVAQDvNK4FvwHt0LSBI2oprdGxVT1sXTQcd/56gHOX74nnauRs//w4y6pQmJugaYPn7VDFU17LFU+ePInevXvD0dERMpkM+/bt09ovCAJmzZoFBwcHmJqawt3dHbdu3dKq8/jxYwwZMgQKhQJWVlYYNWqUZC7e5cuX0b59e5iYmKBmzZoICQkp8nui0xQ3NzcXI0aMgJubG6ytrXUZCpWCPbt3InTtGvH1iOHPx13nLQhGnw/6vewwogpjtPd7mDG2u/j6yKbnd18dMycC2w+cx7PMbPTp3BQzxnaHmakx1A9TcTjmJr7aHIWs7FzxuH0rx8LJ0UZ8fS4iEABg2iqgnK6ECqu8pgqkp6ejWbNmGDlypKSnHABCQkKwatUqbN26Fc7Ozpg5cyY8PT1x/fp1cVh9yJAhSExMRFRUFLKzszFixAiMHTsWERERAIDU1FR4eHjA3d0doaGhuHLlCkaOHAkrKyuMHTu20LHKBEEoXv9ZKTExMcGNGzfg7Oxcam1mlmxeEdEbwboNv2So8su4ULIVJK/z292UYh/b7C0TyWR3uVz+2l5rmUyGH374AX379gXwvLfA0dERU6ZMwdSpUwEAKSkpsLe3R1hYGAYOHIgbN27A1dUV58+fR6tWrQAABw8eRM+ePfH333/D0dER69atwxdffAG1Wg1jY2MAzx87sG/fPty8ebPQ16XzoYQmTZrg7t27ug6DiIj0UEnuYxAcHCwZDg8ODi5yDPHx8VCr1XB3dxfLLC0t0bp1a8TExAB4PiHfyspKTAoAwN3dHQYGBjh37pxYp0OHDmJSAACenp6Ii4vDv//+W+h4dJ4YLFiwAFOnTsWBAweQmJgoWXpIRERUZkqQGQQFBSElJUVrCwoKKnIIavX/zXGxt9cqt7e3F/ep1WrY2dlp7a9SpQpsbGy06hTUxovnKAydzTGYN28epkyZgp49ewIA3n//fa1bIwuCAJlMhtzc3Jc1QUREVCIleeZBYYYN3kQ6Swzmzp0LPz8/HD9+XFchEBGRnqsI9ylSKpUAgKSkJDg4OIjlSUlJaN68uVgnOTlZ67icnBw8fvxYPF6pVCIpKUmrTv7r/DqFobPEIH/OY8eOHXUVAhER6bkKkBfA2dkZSqUSR48eFROB1NRUnDt3DuPGjQMAqFQqPHnyBBcvXkTLli0BPH/IYF5eHlq3bi3W+eKLL5CdnQ0jIyMAQFRUFBo2bFiklX86nWPwqqcqEhERVRZpaWmIjY1FbGwsgOcTDmNjY5GQkACZTIZJkyZhwYIF+Omnn3DlyhUMHz4cjo6O4soFFxcXdO/eHWPGjMFvv/2G06dPY/z48Rg4cCAcHZ/fI2Pw4MEwNjbGqFGjcO3aNezatQsrV66U3ATwdXR6H4MGDRq8Njl4/PhxOUVDRER6p5x+P71w4QI6d+4svs7/svbx8UFYWBimTZuG9PR0jB07Fk+ePEG7du1w8OBBrUcDhIeHY/z48ejatSsMDAzg7e2NVatWifstLS1x+PBh+Pv7o2XLlqhevTpmzZpVpHsYADq8j4GBgQFWrFgBS0vLV9bz8fEpctu8jwHpA97HgPRBWd/H4NKfT4t97NtOFqUYScWh0x6DgQMHSpZfEBERlReOaEvpLDHg/AIiItI1fhNJ6XxVAhERkc4wM5DQWWKQl5enq1MTERHRS/AB4kREpLdKcufDyoqJARER6S1Od5NiYkBERHqLeYEUEwMiItJfzAwkmBgQEZHe4hwDKZ0+K4GIiIgqFvYYEBGR3uLkQykmBkREpLeYF0gxMSAiIv3FzECCiQEREektTj6UYmJARER6i3MMpLgqgYiIiETsMSAiIr3FDgMpJgZERKS/mBlIMDEgIiK9xcmHUkwMiIhIb3HyoRQTAyIi0lvMC6S4KoGIiIhE7DEgIiL9xS4DCSYGRESktzj5UIqJARER6S1OPpRiYkBERHqLeYEUJx8SEZH+kpVgK4I5c+ZAJpNpbY0aNRL3Z2Zmwt/fH9WqVYO5uTm8vb2RlJSk1UZCQgK8vLxQtWpV2NnZITAwEDk5OcW77ldgjwEREVE5aNy4MY4cOSK+rlLl/38FBwQEIDIyEnv27IGlpSXGjx+Pfv364fTp0wCA3NxceHl5QalU4syZM0hMTMTw4cNhZGSERYsWlWqcTAyIiEhvlefkwypVqkCpVErKU1JSsHnzZkRERKBLly4AgC1btsDFxQVnz55FmzZtcPjwYVy/fh1HjhyBvb09mjdvjvnz52P69OmYM2cOjI2NSy1ODiUQEZHeksmKv2k0GqSmpmptGo3mpee6desWHB0dUadOHQwZMgQJCQkAgIsXLyI7Oxvu7u5i3UaNGqFWrVqIiYkBAMTExMDNzQ329vZiHU9PT6SmpuLatWul+p4wMSAiIr1VkikGwcHBsLS01NqCg4MLPE/r1q0RFhaGgwcPYt26dYiPj0f79u3x9OlTqNVqGBsbw8rKSusYe3t7qNVqAIBardZKCvL35+8rTRxKICIivVWS5YpBQUGYPHmyVplcLi+wbo8ePcQ/N23aFK1bt4aTkxN2794NU1PT4gdRBthjQEREeqz4fQZyuRwKhUJre1li8F9WVlZo0KABbt++DaVSiaysLDx58kSrTlJSkjgnQalUSlYp5L8uaN5CSTAxICIiKmdpaWm4c+cOHBwc0LJlSxgZGeHo0aPi/ri4OCQkJEClUgEAVCoVrly5guTkZLFOVFQUFAoFXF1dSzU2DiUQEZHeKq87H06dOhW9e/eGk5MT7t+/j9mzZ8PQ0BCDBg2CpaUlRo0ahcmTJ8PGxgYKhQKffvopVCoV2rRpAwDw8PCAq6srhg0bhpCQEKjVasyYMQP+/v6F7qUoLCYGRESkt8prseLff/+NQYMG4dGjR7C1tUW7du1w9uxZ2NraAgCWL18OAwMDeHt7Q6PRwNPTE2vXrhWPNzQ0xIEDBzBu3DioVCqYmZnBx8cH8+bNK/VYZYIgCKXeqo5llv6NoIgqHOs2AboOgajMZVxYXqbtJ6ZkFftYB8vSu3dARcIeAyIi0lt8uqIUEwMiItJfzAskuCqBiIiIROwxICIivcUOAykmBkREpLfKa7nim4SJARER6S1OPpRiYkBERPqLeYEEEwMiItJbzAukuCqBiIiIROwxICIivcXJh1JMDIiISG9x8qEUEwMiItJb7DGQ4hwDIiIiErHHgIiI9BZ7DKTYY0BEREQi9hgQEZHe4uRDKSYGRESktziUIMXEgIiI9BbzAikmBkREpL+YGUhw8iERERGJ2GNARER6i5MPpZgYEBGR3uLkQykmBkREpLeYF0gxMSAiIv3FzECCiQEREektzjGQ4qoEIiIiErHHgIiI9BYnH0rJBEEQdB0Evdk0Gg2Cg4MRFBQEuVyu63CIygQ/56QvmBhQiaWmpsLS0hIpKSlQKBS6DoeoTPBzTvqCcwyIiIhIxMSAiIiIREwMiIiISMTEgEpMLpdj9uzZnJBFlRo/56QvOPmQiIiIROwxICIiIhETAyIiIhIxMSAiIiIREwMqFWFhYbCystJ1GEREVEJMDEiLr68vZDKZZLt9+7auQyMqNQV9xl/c5syZo+sQiXSGD1Eiie7du2PLli1aZba2tjqKhqj0JSYmin/etWsXZs2ahbi4OLHM3Nxc/LMgCMjNzUWVKvznkvQDewxIQi6XQ6lUam0rV66Em5sbzMzMULNmTXzyySdIS0t7aRsPHjxAq1at8MEHH0Cj0SAvLw/BwcFwdnaGqakpmjVrhr1795bjVRH9fy9+ti0tLSGTycTXN2/ehIWFBX755Re0bNkScrkcp06dgq+vL/r27avVzqRJk9CpUyfxNT/nVBkwBaZCMTAwwKpVq+Ds7Iy7d+/ik08+wbRp07B27VpJ3b/++gvdunVDmzZtsHnzZhgaGmLhwoXYvn07QkNDUb9+fZw8eRJDhw6Fra0tOnbsqIMrInq1zz77DEuWLEGdOnVgbW1dqGOCg4P5Oac3HhMDkjhw4IBWV2qPHj2wZ88e8XXt2rWxYMEC+Pn5SRKDuLg4dOvWDR988AFWrFgBmUwGjUaDRYsW4ciRI1CpVACAOnXq4NSpU1i/fj3/waQKad68eejWrVuh6/NzTpUFEwOS6Ny5M9atWye+NjMzw5EjRxAcHIybN28iNTUVOTk5yMzMxLNnz1C1alUAQEZGBtq3b4/BgwdjxYoV4vG3b9/Gs2fPJP/IZmVl4e233y6XayIqqlatWhWpPj/nVFkwMSAJMzMz1KtXT3x979499OrVC+PGjcPChQthY2ODU6dOYdSoUcjKyhITA7lcDnd3dxw4cACBgYF46623AECcixAZGSmW5eN956miMjMz03ptYGCA/95BPjs7W/wzP+dUWTAxoNe6ePEi8vLysHTpUhgYPJ+vunv3bkk9AwMDbNu2DYMHD0bnzp0RHR0NR0dHuLq6Qi6XIyEhgd2p9MaytbXF1atXtcpiY2NhZGQEAPycU6XBxIBeq169esjOzsbq1avRu3dvnD59GqGhoQXWNTQ0RHh4OAYNGoQuXbogOjoaSqUSU6dORUBAAPLy8tCuXTukpKTg9OnTUCgU8PHxKecrIiq6Ll26YPHixfj222+hUqmwfft2XL16VRwmsLCw4OecKgUuV6TXatasGZYtW4avvvoKTZo0QXh4OIKDg19av0qVKtixYwcaN26MLl26IDk5GfPnz8fMmTMRHBwMFxcXdO/eHZGRkXB2di7HKyEqPk9PT8ycORPTpk3DO++8g6dPn2L48OFadfg5p8qAj10mIiIiEXsMiIiISMTEgIiIiERMDIiIiEjExICIiIhETAyIiIhIxMSAiIiIREwMiIiISMTEgIiIiERMDIjeAL6+vujbt6/4ulOnTpg0aVK5xxEdHQ2ZTIYnT56U+7mJqHwwMSAqAV9fX8hkMshkMhgbG6NevXqYN28ecnJyyvS833//PebPn1+ouvwyJ6Ki4EOUiEqoe/fu2LJlCzQaDX7++Wf4+/vDyMgIQUFBWvWysrJgbGxcKue0sbEplXaIiP6LPQZEJSSXy6FUKuHk5IRx48bB3d0dP/30k9j9v3DhQjg6OqJhw4YAgL/++gsDBgyAlZUVbGxs0KdPH9y7d09sLzc3F5MnT4aVlRWqVauGadOm4b+PNPnvUIJGo8H06dNRs2ZNyOVy1KtXD5s3b8a9e/fQuXNnAIC1tTVkMhl8fX0BAHl5eQgODoazszNMTU3RrFkz7N27V+s8P//8Mxo0aABTU1N07txZK04iqpyYGBCVMlNTU2RlZQEAjh49iri4OERFReHAgQPIzs6Gp6cnLCws8Ouvv+L06dMwNzdH9+7dxWOWLl2KsLAwfPPNNzh16hQeP36MH3744ZXnHD58OHbs2IFVq1bhxo0bWL9+PczNzVGzZk189913AIC4uDgkJiZi5cqVAIDg4GB8++23CA0NxbVr1xAQEIChQ4fixIkTAJ4nMP369UPv3r0RGxuL0aNH47PPPiurt42IKgqBiIrNx8dH6NOnjyAIgpCXlydERUUJcrlcmDp1quDj4yPY29sLGo1GrL9t2zahYcOGQl5enlim0WgEU1NT4dChQ4IgCIKDg4MQEhIi7s/OzhZq1KghnkcQBKFjx47CxIkTBUEQhLi4OAGAEBUVVWCMx48fFwAI//77r1iWmZkpVK1aVThz5oxW3VGjRgmDBg0SBEEQgoKCBFdXV63906dPl7RFRJUL5xgQldCBAwdgbm6O7Oxs5OXlYfDgwZgzZw78/f3h5uamNa/gjz/+wO3bt2FhYaHVRmZmJu7cuYOUlBQkJiaidevW4r4qVaqgVatWkuGEfLGxsTA0NETHjh0LHfPt27fx7NkzdOvWTas8KysLb7/9NgDgxo0bWnEAgEqlKvQ5iOjNxMSAqIQ6d+6MdevWwdjYGI6OjqhS5f//tTIzM9Oqm5aWhpYtWyI8PFzSjq2tbbHOb2pqWuRj0tLSAACRkZF46623tPbJ5fJixUFElQMTA6ISMjMzQ7169QpVt0WLFti1axfs7OygUCgKrOPg4IBz586hQ4cOAICcnBxcvHgRLVq0KLC+m5sb8vLycOLECbi7u0v25/dY5ObmimWurq6Qy+VISEh4aU+Di4sLfvrpJ62ys2fPvv4iieiNxsmHROVoyJAhqF69Ovr06YNff/0V8fHxiI6OxoQJE/D3338DACZOnIgvv/wS+/btw82bN/HJJ5+88h4EtWvXho+PD0aOHIl9+/aJbe7evRsA4OTkBJlMhgMHDuDBgwdIS0uDhYUFpk6dioCAAGzduhV37tzB77//jtWrV2Pr1q0AAD8/P9y6dQuBgYGIi4tDREQEwsLCyvotIiIdY2JAVI6qVq2KkydPolatWujXrx9cXFwwatQoZGZmij0IU6ZMwbBhw+Dj4wOVSgULCwt88MEHr2x33bp16N+/Pz755BM0atQIY8aMQXp6OgDgrbfewty5c/HZZ5/B3t4e48ePBwDMnz8fM2fORHBwMFxcXNC9e3dERkbC2dkZAFCrVi1899132LdvH5o1a4bQ0FAsWrSoDN8dIqoIZMLLZjQRERGR3mGPAREREYmYGBAREZGIiQERERGJmBgQERGRiIkBERERiZgYEBERkYiJAREREYmYGBAREZGIiQERERGJmBgQERGRiIkBERERif4fELM0kBYwVO4AAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 800x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAIjCAYAAAA5hmzfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMkBJREFUeJzt3Xl4VdXd+O1vGJJAQgLIrAiIoJSiPkK1gApOVXG2FQdKgYpU66z4/LQWAUVqrVpHnCteFrVqrR0cOilapzoUrFUciVMVqYoIWmVa7x++nIdjABO6IEjv+7pymeyzz95rn3WCn2x2NiUppRQAAEAWjRp6AAAAsCER2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAbFAWLlwYo0ePjg4dOkRJSUmceOKJDT2kDdrgwYNj8ODBa/Tcrl27xsiRI7OOB9YHAhuol6lTp0ZJSclKP0477bS1ss9HHnkkJkyYEB988MFa2f5/Yvnr8eSTTzb0UNbYlClTYurUqQ09jGwmT54cU6dOjaOPPjpuvPHGGD58+FrdX9euXaOkpCR22223lT5+zTXXFL5HVnyfTJgwIUpKSuLdd98tLBs5cmRUVlbWewyvvvpqYR+TJk1a6TrDhg2LkpKSNdo+UD9NGnoAwJfTWWedFd26dSta9tWvfnWt7OuRRx6JiRMnxsiRI6Nly5ZrZR//zaZMmRJt2rTZYM4k3nffffH1r389xo8fv872WV5eHvfff3/MmTMnOnToUPTYtGnTory8PD755JN1Mo6bb745fvjDHxYt/+ijj+LXv/51lJeXr/UxAM5gA2tor732im9/+9tFH9tss01DD6tePvroo4YeQoP6+OOPG3oIa8XcuXOz/iC2ZMmSWLRo0WrXGThwYFRWVsYvfvGLouVvvvlm/OUvf4m9994723hWZ8iQIfHcc8/F008/XbT817/+dSxatCh23333dTIO+G8nsIG14p577okdd9wxKioqokWLFrH33nvHs88+W7TO3//+9xg5cmRsttlmUV5eHh06dIjvfve78d577xXWmTBhQpx66qkREdGtW7fCX4O/+uqrhb8WX9nlDSUlJTFhwoSi7ZSUlMRzzz0Xhx9+eLRq1Sp22GGHwuM///nPo2/fvtGsWbNo3bp1HHroofHGG2+s0bEv/2v+119/PfbZZ5+orKyMjTfeOC6//PKIiHjmmWdil112iYqKiujSpUvcdNNNRc9fftnJgw8+GN/73vdio402iqqqqvjOd74T8+bNq7W/KVOmRO/evaOsrCw6deoUxxxzTK3LaQYPHhxf/epX46mnnoqddtopmjdvHj/4wQ+ia9eu8eyzz8YDDzxQeG2XX0/7/vvvx9ixY6NPnz5RWVkZVVVVsddee9WKt+nTp0dJSUnceuutcc4558Qmm2wS5eXlseuuu8bLL79ca7x//etfY8iQIdGqVauoqKiIrbbaKi6++OKidZ5//vn41re+Fa1bt47y8vLo169f/OY3v1nt6758HDU1NXHXXXcVvVciPgvvI444Itq3bx/l5eWx9dZbxw033FC0jeXvqfPPPz8uuuii6N69e5SVlcVzzz232n2Xl5fHQQcdVGsub7755mjVqlXsscceq31+Lv37949u3brVGse0adNizz33jNatW6/0eXV5D0VEXH311dG9e/do1qxZbLfddvGXv/xlpdv79NNPY/z48bH55ptHWVlZdO7cOf73f/83Pv300//4GOHLwCUiwBqZP39+0bWjERFt2rSJiIgbb7wxRowYEXvssUf8+Mc/jo8//jiuuOKK2GGHHWLGjBnRtWvXiIj44x//GLNnz45Ro0ZFhw4d4tlnn42rr746nn322XjssceipKQkDjrooHjxxRfj5ptvjp/+9KeFfbRt2zb+9a9/1XvcBx98cPTo0SMmT54cKaWIiDjnnHNi3LhxMXTo0Bg9enT861//iksvvTR22mmnmDFjxhqdDV26dGnstddesdNOO8V5550X06ZNi2OPPTYqKirijDPOiGHDhsVBBx0UV155ZXznO98phNGKjj322GjZsmVMmDAhXnjhhbjiiivitddeK4RkxGc/OEycODF22223OProowvrPfHEE/Hwww9H06ZNC9t77733Yq+99opDDz00vv3tb0f79u1j8ODBcdxxx0VlZWWcccYZERHRvn37iIiYPXt23HnnnXHwwQdHt27d4p133omrrroqBg0aFM8991x06tSpaLznnntuNGrUKMaOHRvz58+P8847L4YNGxZ//etfC+v88Y9/jH322Sc6duwYJ5xwQnTo0CFmzZoVv/vd7+KEE06IiIhnn302Bg4cGBtvvHGcdtppUVFREbfeemsccMAB8ctf/jIOPPDAlb7mvXr1ihtvvDFOOumk2GSTTeKUU06JiM/eK//+979j8ODB8fLLL8exxx4b3bp1i9tuuy1GjhwZH3zwQWHfy11//fXxySefxJgxY6KsrGyVYbqiww8/PL7xjW/EK6+8Et27d4+IiJtuuim+9a1vFc3D2nbYYYfFz3/+8zj33HML13j/4Q9/iBtvvDHuvffeWuvX9T103XXXxfe+970YMGBAnHjiiTF79uzYb7/9onXr1tG5c+fC9pYtWxb77bdfPPTQQzFmzJjo1atXPPPMM/HTn/40XnzxxbjzzjvX1UsBDScB1MP111+fImKlHymltGDBgtSyZct05JFHFj1vzpw5qbq6umj5xx9/XGv7N998c4qI9OCDDxaW/eQnP0kRkWpqaorWrampSRGRrr/++lrbiYg0fvz4wtfjx49PEZEOO+ywovVeffXV1Lhx43TOOecULX/mmWdSkyZNai1f1evxxBNPFJaNGDEiRUSaPHlyYdm8efNSs2bNUklJSbrlllsKy59//vlaY12+zb59+6ZFixYVlp933nkpItKvf/3rlFJKc+fOTaWlpekb3/hGWrp0aWG9yy67LEVE+tnPflZYNmjQoBQR6corr6x1DL17906DBg2qtfyTTz4p2m5Kn73mZWVl6ayzziosu//++1NEpF69eqVPP/20sPziiy9OEZGeeeaZlFJKS5YsSd26dUtdunRJ8+bNK9rusmXLCp/vuuuuqU+fPumTTz4penzAgAGpR48etcb5eV26dEl777130bKLLrooRUT6+c9/Xli2aNGi1L9//1RZWZk+/PDDwvFFRKqqqkpz5879wn2tuL8lS5akDh06pLPPPjullNJzzz2XIiI98MADK32fLH9P/utf/yosGzFiRKqoqKjTfle0fNw/+clP0j/+8Y8UEekvf/lLSimlyy+/PFVWVqaPPvqo1vbr+h5atGhRateuXdpmm22K5vjqq69OEVH0/rnxxhtTo0aNCvtf7sorr0wRkR5++OGi127EiBH1Pl5Y37lEBFgjl19+efzxj38s+oj47AzlBx98EIcddli8++67hY/GjRvH9ttvH/fff39hG82aNSt8/sknn8S7774bX//61yMi4m9/+9taGfdRRx1V9PUdd9wRy5Yti6FDhxaNt0OHDtGjR4+i8dbX6NGjC5+3bNkytthii6ioqIihQ4cWlm+xxRbRsmXLmD17dq3njxkzpujM59FHHx1NmjSJu+++OyIi/vSnP8WiRYvixBNPjEaN/u+P8yOPPDKqqqrirrvuKtpeWVlZjBo1qs7jLysrK2x36dKl8d5770VlZWVsscUWK52fUaNGRWlpaeHrHXfcMSKicGwzZsyImpqaOPHEE2v9rcDyM/Lvv/9+3HfffTF06NBYsGBBYT7ee++92GOPPeKll16Kf/7zn3U+huXuvvvu6NChQxx22GGFZU2bNo3jjz8+Fi5cGA888EDR+t/85jejbdu29dpH48aNY+jQoXHzzTdHxGeXZXTu3LnwOqwrvXv3jq222qowjptuuin233//aN68ea116/oeevLJJ2Pu3Llx1FFHFc3xyJEjo7q6umibt912W/Tq1Su23HLLou+pXXbZJSLiP/qegi8Ll4gAa2S77baLfv361Vr+0ksvRUQU/mf6eVVVVYXP33///Zg4cWLccsstMXfu3KL15s+fn3G0/+fzl2G89NJLkVKKHj16rHT9Nf2r/fLy8lqBVl1dHZtsskkhJldcvrJrqz8/psrKyujYsWPhmuLXXnstIj6L9BWVlpbGZpttVnh8uY033rgojr7IsmXL4uKLL44pU6ZETU1NLF26tPDYRhttVGv9TTfdtOjrVq1aRUQUju2VV16JiNXfbebll1+OlFKMGzcuxo0bt9J15s6dGxtvvHGdjyPis9eqR48eRREZ8dllJcsfX9Hn3yd1dfjhh8cll1wSTz/9dNx0001x6KGH1prvdeHwww+PCy64IE466aR45JFH4gc/+MFK16vre2j5fz//nmzatGlsttlmRcteeumlmDVr1ip/QPn89zpsiAQ2kNWyZcsi4rPrsD9/u7KIiCZN/u+PnaFDh8YjjzwSp556amyzzTZRWVkZy5Ytiz333LOwndVZVbisGIKft+JZ8+XjLSkpiXvuuScaN25ca/01vWfwyra1uuXp/78efG36/LF/kcmTJ8e4cePiu9/9bpx99tnRunXraNSoUZx44okrnZ8cx7Z8u2PHjl3lLwZuvvnmdd7emqrva7Xc9ttvH927d48TTzwxampq4vDDD888sro57LDD4vTTT48jjzwyNtpoo/jGN76xzva9bNmy6NOnT1x44YUrfXzF67VhQyWwgayW/3JXu3btVvkPb0R8dlbzz3/+c0ycODHOPPPMwvLlZ8BXtKqQXn6G9PN3O/j82cgvGm9KKbp16xY9e/as8/PWhZdeeil23nnnwtcLFy6Mt99+O4YMGRIREV26dImIiBdeeKHoLOKiRYuipqZmta//ilb1+t5+++2x8847x3XXXVe0/IMPPij8sml9LH9v/OMf/1jl2JYfR9OmTes8/rro0qVL/P3vf49ly5YVncV+/vnnC4/ncthhh8WkSZOiV69eDXbryk033TQGDhwY06dPL1xatDJ1fQ8tX++ll14q+tupxYsXR01NTWy99daFZd27d4+nn346dt111wY5ew/rA9dgA1ntscceUVVVFZMnT47FixfXenz5nT+Wn+38/NnNiy66qNZzKioqIqJ2SFdVVUWbNm3iwQcfLFo+ZcqUOo/3oIMOisaNG8fEiRNrjSWlVHTLwHXt6quvLnoNr7jiiliyZEnstddeERGx2267RWlpaVxyySVFY7/uuuti/vz5db73ckVFxUpvyda4ceNar8ltt922RtdAR0Rsu+220a1bt7joootq7W/5ftq1axeDBw+Oq666Kt5+++1a21iTO8dEfHZ/6Dlz5hTdp3rJkiVx6aWXRmVlZQwaNGiNtrsyo0ePjvHjx8cFF1yQbZtrYtKkSTF+/Pg47rjjVrlOXd9D/fr1i7Zt28aVV15ZdE/wqVOn1prLoUOHxj//+c+45pprau3v3//+93/9/ef57+AMNpBVVVVVXHHFFTF8+PDYdttt49BDD422bdvG66+/HnfddVcMHDgwLrvssqiqqircwm7x4sWx8cYbxx/+8Ieoqamptc2+fftGRMQZZ5wRhx56aDRt2jT23XffqKioiNGjR8e5554bo0ePjn79+sWDDz4YL774Yp3H271795g0aVKcfvrp8eqrr8YBBxwQLVq0iJqamvjVr34VY8aMibFjx2Z7fepj0aJFseuuu8bQoUPjhRdeiClTpsQOO+wQ++23X0R8dvu5008/PSZOnBh77rln7LfffoX1vva1r8W3v/3tOu2nb9++ccUVV8SkSZNi8803j3bt2sUuu+wS++yzT5x11lkxatSoGDBgQDzzzDMxbdq0Wtfc1lWjRo3iiiuuiH333Te22WabGDVqVHTs2DGef/75ePbZZ+P3v/99RHz2C7Q77LBD9OnTJ4488sjYbLPN4p133olHH3003nzzzVr34a6LMWPGxFVXXRUjR46Mp556Krp27Rq33357PPzww3HRRRdFixYt1uiYVqZLly5F92Cvr8WLF6/0nztv3bp1fP/736/zdgYNGvSFPzjU9T3UtGnTmDRpUnzve9+LXXbZJQ455JCoqamJ66+/vtb7Yfjw4XHrrbfGUUcdFffff38MHDgwli5dGs8//3zceuut8fvf/36lv78BG5SGuXkJ8GW1stuNrcz999+f9thjj1RdXZ3Ky8tT9+7d08iRI9OTTz5ZWOfNN99MBx54YGrZsmWqrq5OBx98cHrrrbdq3bYupZTOPvvstPHGG6dGjRoV3bLv448/TkcccUSqrq5OLVq0SEOHDk1z585d5W36Vrwl2op++ctfph122CFVVFSkioqKtOWWW6ZjjjkmvfDCC/V+PVZ1q7VBgwal3r1711r++dvKLd/mAw88kMaMGZNatWqVKisr07Bhw9J7771X6/mXXXZZ2nLLLVPTpk1T+/bt09FHH13rNnir2ndKn91Cce+9904tWrQouuXaJ598kk455ZTUsWPH1KxZszRw4MD06KOPpkGDBhXdlm35bfpuu+22ou2u6jaKDz30UNp9991TixYtUkVFRdpqq63SpZdeWrTOK6+8kr7zne+kDh06pKZNm6aNN9447bPPPun2229f6TGsaGW36UsppXfeeSeNGjUqtWnTJpWWlqY+ffrUGtuKt7urq1Xtb0X1uU1frOI2mN27d1/l9us67lW9N+vyHkoppSlTpqRu3bqlsrKy1K9fv/Tggw/Wej+k9Nlt/X784x+n3r17p7KystSqVavUt2/fNHHixDR//vzCem7Tx4aqJKV18Js1ANTZ1KlTY9SoUfHEE0840wfwJeQabAAAyEhgAwBARgIbAAAycg02AABk5Aw2AABkJLABACAj/9DMemDZsmXx1ltvRYsWLfyzsgAA66GUUixYsCA6deoUjRqt/hy1wF4PvPXWW9G5c+eGHgYAAF/gjTfeiE022WS16wjs9cDyf6L3jTfeiKqqqgYeDQAAn/fhhx9G586dC922OgJ7PbD8spCqqiqBDQCwHqvL5bx+yREAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQUZOGHgD/p/pH1RHlDT0KAID1XxqfGnoIq+QMNgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADI6D8K7OnTp0dJSUl88MEHq12va9eucdFFF/0nuyqYMGFCbLPNNlm2lUNJSUnceeedDT0MAADWE/UK7MGDB8eJJ55Y+HrAgAHx9ttvR3V1dURETJ06NVq2bJlzfOuN9S3sAQBYPzX5T55cWloaHTp0yDUWAAD40qvzGeyRI0fGAw88EBdffHGUlJRESUlJTJ06tXCJyPTp02PUqFExf/78wuMTJkxY6bY++OCDGD16dLRt2zaqqqpil112iaeffnqND+Laa6+NXr16RXl5eWy55ZYxZcqUwmOvvvpqlJSUxB133BE777xzNG/ePLbeeut49NFHi7ZxzTXXROfOnaN58+Zx4IEHxoUXXlg4Gz916tSYOHFiPP3000XHvty7774bBx54YDRv3jx69OgRv/nNb9b4WAAA+HKrc2BffPHF0b9//zjyyCPj7bffjrfffjs6d+5ceHzAgAFx0UUXRVVVVeHxsWPHrnRbBx98cMydOzfuueeeeOqpp2LbbbeNXXfdNd5///16H8C0adPizDPPjHPOOSdmzZoVkydPjnHjxsUNN9xQtN4ZZ5wRY8eOjZkzZ0bPnj3jsMMOiyVLlkRExMMPPxxHHXVUnHDCCTFz5szYfffd45xzzik895BDDolTTjklevfuXTi2Qw45pPD4xIkTY+jQofH3v/89hgwZEsOGDVvtsXz66afx4YcfFn0AALBhqHNgV1dXR2lpaTRv3jw6dOgQHTp0iMaNGxceLy0tjerq6igpKSk8XllZWWs7Dz30UDz++ONx2223Rb9+/aJHjx5x/vnnR8uWLeP222+v9wGMHz8+LrjggjjooIOiW7ducdBBB8VJJ50UV111VdF6Y8eOjb333jt69uwZEydOjNdeey1efvnliIi49NJLY6+99oqxY8dGz5494/vf/37stddehec2a9YsKisro0mTJoVja9asWeHxkSNHxmGHHRabb755TJ48ORYuXBiPP/74Ksf8ox/9KKqrqwsfK/6gAgDAl9s6v03f008/HQsXLoyNNtooKisrCx81NTXxyiuv1GtbH330UbzyyitxxBFHFG1r0qRJtba11VZbFT7v2LFjRETMnTs3IiJeeOGF2G677YrW//zXq7PitisqKqKqqqqw7ZU5/fTTY/78+YWPN954o877AgBg/fYf/ZLjmli4cGF07Ngxpk+fXuux+t6BZOHChRHx2fXT22+/fdFjK55dj4ho2rRp4fOSkpKIiFi2bFm99rcqK257+fZXt+2ysrIoKyvLsm8AANYv9Qrs0tLSWLp06Ro/HhGx7bbbxpw5c6JJkybRtWvX+uy+lvbt20enTp1i9uzZMWzYsDXezhZbbBFPPPFE0bLPf12XYwMAgHoFdteuXeOvf/1rvPrqq1FZWVnrLG3Xrl1j4cKF8ec//zm23nrraN68eTRv3rxond122y369+8fBxxwQJx33nnRs2fPeOutt+Kuu+6KAw88MPr161evA5g4cWIcf/zxUV1dHXvuuWd8+umn8eSTT8a8efPi5JNPrtM2jjvuuNhpp53iwgsvjH333Tfuu+++uOeeewpnupcfW01NTcycOTM22WSTaNGihbPQAADUUq9rsMeOHRuNGzeOr3zlK9G2bdt4/fXXix4fMGBAHHXUUXHIIYdE27Zt47zzzqu1jZKSkrj77rtjp512ilGjRkXPnj3j0EMPjddeey3at29f7wMYPXp0XHvttXH99ddHnz59YtCgQTF16tTo1q1bnbcxcODAuPLKK+PCCy+MrbfeOu6999446aSTory8vLDON7/5zdhzzz1j5513jrZt28bNN99c77ECALDhK0kppYYexProyCOPjOeffz7+8pe/rPV9ffjhh5/9a5inRUT5F64OAPBfL41ftwm7vNfmz58fVVVVq113nf+S4/rq/PPPj9133z0qKirinnvuiRtuuKHoH6wBAIC6WOe36fsivXv3Lrrl3oof06ZNW2v7ffzxx2P33XePPn36xJVXXhmXXHJJjB49eq3tDwCADdN6dwb77rvvjsWLF6/0sTW5Rruubr311rW2bQAA/nusd4HdpUuXhh4CAACssfXuEhEAAPgyE9gAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWwAAMioSUMPgP8z//T5UVVV1dDDAADgP+AMNgAAZCSwAQAgI4ENAAAZCWwAAMhIYAMAQEYCGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBGAhsAADIS2AAAkJHABgCAjAQ2AABkJLABACAjgQ0AABk1aegBEJFSioiIDz/8sIFHAgDAyizvtOXdtjoCez3w3nvvRURE586dG3gkAACszoIFC6K6unq16wjs9UDr1q0jIuL111//wgnjy+PDDz+Mzp07xxtvvBFVVVUNPRwyMa8bLnO7YTKvG6aGmNeUUixYsCA6der0hesK7PVAo0afXQpfXV3tm38DVFVVZV43QOZ1w2VuN0zmdcO0rue1ridC/ZIjAABkJLABACAjgb0eKCsri/Hjx0dZWVlDD4WMzOuGybxuuMzthsm8bpjW93ktSXW51wgAAFAnzmADAEBGAhsAADIS2AAAkJHABgCAjAT2OnL55ZdH165do7y8PLbffvt4/PHHV7v+bbfdFltuuWWUl5dHnz594u67715HI6U+6jOv11xzTey4447RqlWraNWqVey2225f+D6gYdT3+3W5W265JUpKSuKAAw5YuwNkjdR3Xj/44IM45phjomPHjlFWVhY9e/b0Z/F6qL7zetFFF8UWW2wRzZo1i86dO8dJJ50Un3zyyToaLXXx4IMPxr777hudOnWKkpKSuPPOO7/wOdOnT49tt902ysrKYvPNN4+pU6eu9XGuVmKtu+WWW1JpaWn62c9+lp599tl05JFHppYtW6Z33nlnpes//PDDqXHjxum8885Lzz33XPrhD3+YmjZtmp555pl1PHJWp77zevjhh6fLL788zZgxI82aNSuNHDkyVVdXpzfffHMdj5zVqe+8LldTU5M23njjtOOOO6b9999/3QyWOqvvvH766aepX79+aciQIemhhx5KNTU1afr06WnmzJnreOSsTn3nddq0aamsrCxNmzYt1dTUpN///vepY8eO6aSTTlrHI2d17r777nTGGWekO+64I0VE+tWvfrXa9WfPnp2aN2+eTj755PTcc8+lSy+9NDVu3Djde++962bAKyGw14HtttsuHXPMMYWvly5dmjp16pR+9KMfrXT9oUOHpr333rto2fbbb5++973vrdVxUj/1ndfPW7JkSWrRokW64YYb1tYQWQNrMq9LlixJAwYMSNdee20aMWKEwF4P1Xder7jiirTZZpulRYsWrashsgbqO6/HHHNM2mWXXYqWnXzyyWngwIFrdZysuboE9v/+7/+m3r17Fy075JBD0h577LEWR7Z6LhFZyxYtWhRPPfVU7LbbboVljRo1it122y0effTRlT7n0UcfLVo/ImKPPfZY5fqse2syr5/38ccfx+LFi6N169Zra5jU05rO61lnnRXt2rWLI444Yl0Mk3pak3n9zW9+E/37949jjjkm2rdvH1/96ldj8uTJsXTp0nU1bL7AmszrgAED4qmnnipcRjJ79uy4++67Y8iQIetkzKwd62M3NWmwPf+XePfdd2Pp0qXRvn37ouXt27eP559/fqXPmTNnzkrXnzNnzlobJ/WzJvP6ef/v//2/6NSpU60/FGg4azKvDz30UFx33XUxc+bMdTBC1sSazOvs2bPjvvvui2HDhsXdd98dL7/8cnz/+9+PxYsXx/jx49fFsPkCazKvhx9+eLz77ruxww47REoplixZEkcddVT84Ac/WBdDZi1ZVTd9+OGH8e9//zuaNWu2zsfkDDY0gHPPPTduueWW+NWvfhXl5eUNPRzW0IIFC2L48OFxzTXXRJs2bRp6OGS0bNmyaNeuXVx99dXRt2/fOOSQQ+KMM86IK6+8sqGHxn9g+vTpMXny5JgyZUr87W9/izvuuCPuuuuuOPvssxt6aGxgnMFey9q0aRONGzeOd955p2j5O++8Ex06dFjpczp06FCv9Vn31mRelzv//PPj3HPPjT/96U+x1VZbrc1hUk/1nddXXnklXn311dh3330Ly5YtWxYREU2aNIkXXnghunfvvnYHzRdak+/Xjh07RtOmTaNx48aFZb169Yo5c+bEokWLorS0dK2OmS+2JvM6bty4GD58eIwePToiIvr06RMfffRRjBkzJs4444xo1Mh5xy+jVXVTVVVVg5y9jnAGe60rLS2Nvn37xp///OfCsmXLlsWf//zn6N+//0qf079//6L1IyL++Mc/rnJ91r01mdeIiPPOOy/OPvvsuPfee6Nfv37rYqjUQ33ndcstt4xnnnkmZs6cWfjYb7/9Yuedd46ZM2dG586d1+XwWYU1+X4dOHBgvPzyy4UfmCIiXnzxxejYsaO4Xk+sybx+/PHHtSJ6+Q9RKaW1N1jWqvWymxrs1yv/i9xyyy2prKwsTZ06NT333HNpzJgxqWXLlmnOnDkppZSGDx+eTjvttML6Dz/8cGrSpEk6//zz06xZs9L48ePdpm89VN95Pffcc1NpaWm6/fbb09tvv134WLBgQUMdAitR33n9PHcRWT/Vd15ff/311KJFi3TsscemF154If3ud79L7dq1S5MmTWqoQ2Al6juv48ePTy1atEg333xzmj17dvrDH/6QunfvnoYOHdpQh8BKLFiwIM2YMSPNmDEjRUS68MIL04wZM9Jrr72WUkrptNNOS8OHDy+sv/w2faeeemqaNWtWuvzyy92m77/FpZdemjbddNNUWlqatttuu/TYY48VHhs0aFAaMWJE0fq33npr6tmzZyotLU29e/dOd9111zoeMXVRn3nt0qVLiohaH+PHj1/3A2e16vv9uiKBvf6q77w+8sgjafvtt09lZWVps802S+ecc05asmTJOh41X6Q+87p48eI0YcKE1L1791ReXp46d+6cvv/976d58+at+4GzSvfff/9K/3+5fC5HjBiRBg0aVOs522yzTSotLU2bbbZZuv7669f5uFdUkpK/EwEAgFxcgw0AABkJbAAAyEhgAwBARgIbAAAyEtgAAJCRwAYAgIwENgAAZCSwAQAgI4ENAAAZCWyAL7mRI0fGAQcc0NDDWKlXX301SkpKYubMmQ09FIB1RmADsFYsWrSooYcA0CAENsAGZPDgwXHcccfFiSeeGK1atYr27dvHNddcEx999FGMGjUqWrRoEZtvvnncc889hedMnz49SkpK4q677oqtttoqysvL4+tf/3r84x//KNr2L3/5y+jdu3eUlZVF165d44ILLih6vGvXrnH22WfHd77znaiqqooxY8ZEt27dIiLif/7nf6KkpCQGDx4cERFPPPFE7L777tGmTZuorq6OQYMGxd/+9rei7ZWUlMS1114bBx54YDRv3jx69OgRv/nNb4rWefbZZ2OfffaJqqqqaNGiRey4447xyiuvFB6/9tpro1evXlFeXh5bbrllTJky5T9+jQG+iMAG2MDccMMN0aZNm3j88cfjuOOOi6OPPjoOPvjgGDBgQPztb3+Lb3zjGzF8+PD4+OOPi5536qmnxgUXXBBPPPFEtG3bNvbdd99YvHhxREQ89dRTMXTo0Dj00EPjmWeeiQkTJsS4ceNi6tSpRds4//zzY+utt44ZM2bEuHHj4vHHH4+IiD/96U/x9ttvxx133BEREQsWLIgRI0bEQw89FI899lj06NEjhgwZEgsWLCja3sSJE2Po0KHx97//PYYMGRLDhg2L999/PyIi/vnPf8ZOO+0UZWVlcd9998VTTz0V3/3ud2PJkiURETFt2rQ488wz45xzzolZs2bF5MmTY9y4cXHDDTdkf80BiiQAvtRGjBiR9t9//5RSSoMGDUo77LBD4bElS5akioqKNHz48MKyt99+O0VEevTRR1NKKd1///0pItItt9xSWOe9995LzZo1S7/4xS9SSikdfvjhaffddy/a76mnnpq+8pWvFL7u0qVLOuCAA4rWqampSRGRZsyYsdpjWLp0aWrRokX67W9/W1gWEemHP/xh4euFCxemiEj33HNPSiml008/PXXr1i0tWrRopdvs3r17uummm4qWnX322al///6rHQvAf8oZbIANzFZbbVX4vHHjxrHRRhtFnz59Csvat28fERFz584tel7//v0Ln7du3Tq22GKLmDVrVkREzJo1KwYOHFi0/sCBA+Oll16KpUuXFpb169evTmN855134sgjj4wePXpEdXV1VFVVxcKFC+P1119f5bFUVFREVVVVYdwzZ86MHXfcMZo2bVpr+x999FG88sorccQRR0RlZWXhY9KkSUWXkACsDU0aegAA5PX54CwpKSlaVlJSEhERy5Yty77vioqKOq03YsSIeO+99+Liiy+OLl26RFlZWfTv37/WL0au7FiWj7tZs2ar3P7ChQsjIuKaa66J7bffvuixxo0b12mMAGtKYAMQERGPPfZYbLrpphERMW/evHjxxRejV69eERHRq1evePjhh4vWf/jhh6Nnz56rDdbS0tKIiKKz3MufO2XKlBgyZEhERLzxxhvx7rvv1mu8W221Vdxwww2xePHiWiHevn376NSpU8yePTuGDRtWr+0C/KcENgAREXHWWWfFRhttFO3bt48zzjgj2rRpU7i/9imnnBJf+9rX4uyzz45DDjkkHn300bjsssu+8K4c7dq1i2bNmsW9994bm2yySZSXl0d1dXX06NEjbrzxxujXr198+OGHceqpp672jPTKHHvssXHppZfGoYceGqeffnpUV1fHY489Ftttt11sscUWMXHixDj++OOjuro69txzz/j000/jySefjHnz5sXJJ5+8pi8TwBdyDTYAERFx7rnnxgknnBB9+/aNOXPmxG9/+9vCGehtt902br311rjlllviq1/9apx55plx1llnxciRI1e7zSZNmsQll1wSV111VXTq1Cn233//iIi47rrrYt68ebHtttvG8OHD4/jjj4927drVa7wbbbRR3HfffbFw4cIYNGhQ9O3bN6655prC2ezRo0fHtddeG9dff3306dMnBg0aFFOnTi3cOhBgbSlJKaWGHgQADWf69Omx8847x7x586Jly5YNPRyALz1nsAEAICOBDQAAGblEBAAAMnIGGwAAMhLYAACQkcAGAICMBDYAAGQksAEAICOBDQAAGQlsAADISGADAEBG/x9UUpn8ZvUyHQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 1000x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIjCAYAAADFthA8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA71hJREFUeJzsvXd4lOeV/n+POkIF0UQTHUwVHYRASCBEL7ZxI3bibMo6ifPdOLvZ7y/ebHpx7KyTfL25ktgpTnXBNjZgm96bQPTee68qoC69vz8OR88raSRNeWfedj7XpUuDJGYejaY893Pucx+PpmkaBEEQBEEQBEEQXEKE2QsQBEEQBEEQBEEIJyKCBEEQBEEQBEFwFSKCBEEQBEEQBEFwFSKCBEEQBEEQBEFwFSKCBEEQBEEQBEFwFSKCBEEQBEEQBEFwFSKCBEEQBEEQBEFwFSKCBEEQBEEQBEFwFSKCBEEQBEEQBEFwFSKCBEEQXEBOTg5ycnLMXobQgHPnzsHj8eAvf/lLWG9XHg+CILgdEUGCIAgGc/jwYTzzzDPo2rUrYmNj0aVLFzzzzDM4cuRIi/938eLF8Hg8+OMf/9jkz6xevRoejwevvfaakcsWfMDj8TT58ZWvfMXs5QmCIAg+EmX2AgRBEJzE4sWLsXDhQrRt2xZf/OIX0atXL5w7dw5/+tOf8P777+Pdd9/F/Pnzm/z/s2fPRnJyMt566y186Utf8vozb731FiIjI/HUU0+F6tcQmiEvLw+f+9znGn29f//+fl9Xjx49UFZWhujoaCOWJgiCIPiIiCBBEASDOH36ND772c+id+/e2LRpEzp06FD3vW984xvIysrCM888gwMHDqBXr15eryM2NhaPPfYY3nzzTVy5cgVdunSp9/3y8nJ8+OGHyMvLQ8eOHUP6+7iR8vJyxMTEICKiaaNE//798cwzzxhyex6PB3FxcYZclyAIguA7YocTBEEwiF/84hcoLS3FG2+8UU8AAUD79u3x+uuv4969e/jFL37R7PU888wzqK2txTvvvNPoe5988gmKiorw9NNPAwDefPNNTJkyBR07dkRsbCwGDRqE3/3udy2u9S9/+Qs8Hg/OnTtX7+sbNmyAx+PBhg0b6n19x44dmDFjBpKTkxEfH4/s7Gxs3bq13s+UlJTghRdeQM+ePREbG4uOHTsiLy8Pe/bsaXE9e/fuxcyZM5GUlISEhATk5uYiPz+/7vu7du2Cx+PBX//610b/d+XKlfB4PPj444/rvnb58mV84QtfQGpqKmJjYzF48GD8+c9/9vq7vvPOO/jv//5vdO3aFfHx8SguLm5xvS2Rk5ODIUOGYPfu3cjMzESrVq3Qq1cv/P73v6/3c956gq5du4Z/+Zd/Qbdu3RAbG4vOnTtj/vz5jf5Wv/3tbzF48OA6y+Xzzz+PwsLCRmt544030KdPH7Rq1Qpjx47F5s2bva65oqIC3//+99G3b1/ExsYiLS0N//f//l9UVFTU+7nVq1dj4sSJaNOmDRISEvDQQw/hv/7rvwK6nwRBEMxCKkGCIAgGsWzZMvTs2RNZWVlevz9p0iT07NkTy5Ytw29/+9smr2fSpEno1q0b3nrrLfz7v/97ve+99dZbiI+Px8MPPwwA+N3vfofBgwdj3rx5iIqKwrJly/C1r30NtbW1eP755w35vdatW4eZM2di1KhR+P73v4+IiIg68bV582aMHTsWAPCVr3wF77//Pr7+9a9j0KBBuH37NrZs2YKjR49i5MiRTV7/4cOHkZWVhaSkJPzf//t/ER0djddffx05OTnYuHEjxo0bh9GjR6N3795YtGgRnn322Xr//91330VKSgqmT58OALh+/ToyMjLg8Xjw9a9/HR06dMDy5cvxxS9+EcXFxXjhhRfq/f8f//jHiImJwbe+9S1UVFQgJiam2fujvLwct27davT1pKSkev/37t27mDVrFp544gksXLgQixYtwle/+lXExMTgC1/4QpPXv2DBAhw+fBj/5//8H/Ts2RM3btzA6tWrceHCBfTs2RMA8IMf/AA//OEPMXXqVHz1q1/F8ePH8bvf/Q4FBQXYunVrnb3uT3/6E5577jlkZmbihRdewJkzZzBv3jy0bdsWaWlpdbdZW1uLefPmYcuWLfjXf/1XDBw4EAcPHsSvfvUrnDhxAh999FHd32rOnDlIT0/Hj370I8TGxuLUqVONBLEgCILl0QRBEISgKSws1ABo8+fPb/bn5s2bpwHQiouLm/25//zP/9QAaMePH6/7WlFRkRYXF6ctXLiw7mulpaWN/u/06dO13r171/tadna2lp2dXffvN998UwOgnT17tt7PrV+/XgOgrV+/XtM0TautrdX69eunTZ8+Xautra13u7169dLy8vLqvpacnKw9//zzzf5e3nj44Ye1mJgY7fTp03Vfu3LlipaYmKhNmjSp7msvvviiFh0drd25c6fuaxUVFVqbNm20L3zhC3Vf++IXv6h17txZu3XrVr3beeqpp7Tk5OS6+4x/1969e3u9H70BoMmPt99+u+7nsrOzNQDaq6++Wm+tw4cP1zp27KhVVlZqmqZpZ8+e1QBob775pqZpmnb37l0NgPaLX/yiyTXcuHFDi4mJ0aZNm6bV1NTUff03v/mNBkD785//rGmaplVWVmodO3bUhg8frlVUVNT93BtvvKEBqPd4+Pvf/65FRERomzdvrndbv//97zUA2tatWzVN07Rf/epXGgDt5s2bPt1fgiAIVkXscIIgCAZQUlICAEhMTGz25/j7/PNNwT0nb731Vt3XPvjgA5SXl9dZ4QCgVatWdZeLiopw69YtZGdn48yZMygqKvLvl/DCvn37cPLkSXzmM5/B7du3cevWLdy6dQv3799Hbm4uNm3ahNraWgBAmzZtsGPHDly5csXn66+pqcGqVavw8MMPo3fv3nVf79y5Mz7zmc9gy5Ytdfa0J598ElVVVVi8eHHdz61atQqFhYV48sknAQCapuGDDz7A3LlzoWla3Xpv3bqF6dOno6ioqJE979lnn613P7bE/PnzsXr16kYfkydPrvdzUVFReO655+r+HRMTg+eeew43btzA7t27vV53q1atEBMTgw0bNuDu3btef2bNmjWorKzECy+8UK936ctf/jKSkpLwySefACAL4Y0bN/CVr3ylXoXq85//PJKTk+td53vvvYeBAwdiwIAB9e6zKVOmAADWr18PgP7GALBkyZK6v7sgCIIdETucIAiCAfgqbkpKSuDxeNC+fXsAwJ07d1BZWVn3/VatWiE5ORnp6ekYMmQI3n77bfzgBz8AQIKoffv2dbYvANi6dSu+//3vY/v27SgtLa13W0VFRY02u/5y8uRJAGhkQWt4OykpKXjllVfw7LPPIi0tDaNGjcKsWbPwuc99rp64acjNmzdRWlqKhx56qNH3Bg4ciNraWly8eBGDBw/GsGHDMGDAALz77rv44he/CICscO3bt6/brN+8eROFhYV444038MYbb3i9zRs3btT7d1MhFU3RrVs3TJ06tcWf69KlC1q3bl3va5wgd+7cOWRkZDT6P7GxsXj55ZfxH//xH0hNTUVGRgbmzJmDz33uc+jUqRMA4Pz58wDQ6D6LiYlB7969677Pn/v161fv56Kjoxv9TU6ePImjR4826mVj+D578skn8cc//hFf+tKX8O1vfxu5ubl49NFH8dhjjzUbJiEIgmA1RAQJgiAYQHJyMrp06YIDBw40+3MHDhxAt27d6k7mH330UWzcuLHu+88++2xdk/wzzzyDb3/729i1axe6deuG9evX47nnnkNUFL10nz59Grm5uRgwYAB++ctfIi0tDTExMfj000/xq1/9qtmTeo/H4/XrNTU19f7N1/GLX/wCw4cP9/p/EhISAABPPPEEsrKy8OGHH2LVqlX4xS9+gZdffhmLFy/GzJkzm71ffOXJJ5/ET3/6U9y6dQuJiYlYunQpFi5cWHef8HqfeeaZJoVbenp6vX/7UwUKBy+88ALmzp2Ljz76CCtXrsR3v/tdvPTSS1i3bh1GjBgRktusra3F0KFD8ctf/tLr97l/qFWrVti0aRPWr1+PTz75BCtWrMC7776LKVOmYNWqVYiMjAzJ+gRBEIxGRJAgCIJBzJ07F6+//jq2bNmCiRMnNvr+5s2bce7cuXphB6+++mo925M+EnvhwoV48cUX8dZbb6FHjx6oqampZ4VbtmwZKioqsHTpUnTv3r3u62xdao6UlBQAaJQmxtUDpk+fPgCo6d+X6kfnzp3xta99DV/72tdw48YNjBw5Ej/96U+bFEEdOnRAfHw8jh8/3uh7x44dQ0RERL0G/ieffBI//OEP8cEHHyA1NRXFxcX15iV16NABiYmJqKmp8Wm9oeTKlSu4f/9+vWrQiRMnAKAu4KAp+vTpg//4j//Af/zHf+DkyZMYPnw4Xn31VfzjH/9Ajx49AADHjx+vV9GprKzE2bNn635v/rmTJ0/WVcoAoKqqCmfPnsWwYcPq3d7+/fuRm5vbpEBmIiIikJubi9zcXPzyl7/Ez372M3znO9/B+vXrTb/PBUEQfEVq14IgCAbxrW99C/Hx8Xjuuedw+/btet+7c+cOvvKVryApKQlf//rX674+atQoTJ06te5j0KBBdd/r3r07srKy8O677+If//gHevXqhczMzLrv86m7pml1XysqKsKbb77Z4lpZ3GzatKnuazU1NY0sZKNGjUKfPn3wP//zP7h3716j67l582bd/23Yg9SxY0d06dKlUcSynsjISEybNg1LliypFwF9/fp1vPXWW5g4cSKSkpLqvj5w4EAMHToU7777Lt5991107twZkyZNqnd9CxYswAcffIBDhw41ud5wUF1djddff73u35WVlXj99dfRoUMHjBo1yuv/KS0tRXl5eb2v9enTB4mJiXX349SpUxETE4PXXnut3t/+T3/6E4qKijB79mwAwOjRo9GhQwf8/ve/r2e5/Mtf/tJI/D7xxBO4fPky/vCHPzRaU1lZGe7fvw+AHscN4Qphc39nQRAEqyGVIEEQBIPo27cv/va3v2HhwoUYOnQovvjFL6JXr144d+4c/vSnP+Hu3bt45513/OpBeeaZZ/Cv//qvuHLlCr7zne/U+960adMQExODuXPn4rnnnsO9e/fwhz/8AR07dsTVq1ebvd7BgwcjIyMDL774Iu7cuYO2bdvinXfeQXV1db2fi4iIwB//+EfMnDkTgwcPxr/8y7+ga9euuHz5MtavX4+kpCQsW7YMJSUl6NatGx577DEMGzYMCQkJWLNmDQoKCvDqq682u5af/OQndbNnvva1ryEqKgqvv/46Kioq8MorrzT6+SeffBLf+973EBcXhy9+8YuNelF+/vOfY/369Rg3bhy+/OUvY9CgQbhz5w727NmDNWvWeN3I+8OJEyfwj3/8o9HXU1NTkZeXV/fvLl264OWXX8a5c+fQv39/vPvuu9i3bx/eeOONughrb9edm5uLJ554AoMGDUJUVBQ+/PBDXL9+va7i1aFDB7z44ov44Q9/iBkzZmDevHk4fvw4fvvb32LMmDF1oRrR0dH4yU9+gueeew5TpkzBk08+ibNnz+LNN99s1BP02c9+FosWLcJXvvIVrF+/HhMmTEBNTQ2OHTuGRYsWYeXKlRg9ejR+9KMfYdOmTZg9ezZ69OiBGzdu4Le//S26devmtfopCIJgWcwNpxMEQXAeBw8e1D7zmc9onTp10iIiIjQAWlxcnHb48GG/r+vOnTtabGysBkA7cuRIo+8vXbpUS09P1+Li4rSePXtqL7/8svbnP/+5Ufx1w4hsTdO006dPa1OnTtViY2O11NRU7b/+67+01atX14vIZvbu3as9+uijWrt27bTY2FitR48e2hNPPKGtXbtW0zSKf/7P//xPbdiwYVpiYqLWunVrbdiwYdpvf/tbn37PPXv2aNOnT9cSEhK0+Ph4bfLkydq2bdu8/uzJkyfrYqm3bNni9WeuX7+uPf/881paWpoWHR2tderUScvNzdXeeOONup/hiOz33nvPpzVqWvMR2fr7Nzs7Wxs8eLC2a9cubfz48VpcXJzWo0cP7Te/+U2962sYkX3r1i3t+eef1wYMGKC1bt1aS05O1saNG6ctWrSo0Vp+85vfaAMGDNCio6O11NRU7atf/ap29+7dRj/329/+VuvVq5cWGxurjR49Wtu0aZPXx0NlZaX28ssva4MHD9ZiY2O1lJQUbdSoUdoPf/hDraioSNM0TVu7dq02f/58rUuXLlpMTIzWpUsXbeHChdqJEyd8vg8FQRCsgEfTdLV0QRAEwXD+9re/4fOf/zyeeeYZ/O1vfzN7OUIYyMnJwa1bt7xa8gRBEATzETucIAhCiPnc5z6Hq1ev4tvf/ja6deuGn/3sZ2YvSRAEQRBcjVSCBEEQBMFgpBIkCIJgbSQdThAEQRAEQRAEVyGVIEEQBEEQBEEQXIVUggRBEARBEARBcBUiggRBEARBEARBcBW2Toerra3FlStXkJiYCI/HY/ZyBEEQBEEQBEEwCU3TUFJSgi5dujQapN0QW4ugK1euIC0tzexlCIIgCIIgCIJgES5evIhu3bo1+zO2FkGJiYkA6BdNSkoyeTWCIAiCIAiCIJhFcXEx0tLS6jRCc9haBLEFLikpSUSQIAiCIAiCIAg+tclIMIIgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJAgCIIgCIIgCK5CRJBgPnv2APfvm70K23HrFlBYaPYqbEh1tTzeBEEQBMHliAgSzGXFCmDUKODrXzd7JbaiqAgYNAgYM4b29IIffP7zQGoqcOKE2SuxFZs2AQMGAOvWmb0Sm3H/PrBwIfDHP5q9EkEQBEGHiCDBXNaupc9LlgA1NeauxUZs2wbcvAmcOgVs3mz2amxEaSnw3nu0MX3nHbNXYyt+/nPg+HHg1782eyU247336LH2rW/JiYWfPP00MGkSUF5u9koEQXAiIoIEc9m3jz7fvQvs32/qUuzE1q3q8kcfmbYM+7FtG1BZSZc//dTctdiI4mJ1XrFhg+zl/YIfZ0VFQEGBuWuxEefOAW+9RYc8/NgTfOTYMeBHP6JDH0EQmkREkGAemlZf+IjPxmcaiiBNM20p9kL/GNu5k8ppQousWKG0Y0mJ7OV9pqoKWLVK/Vt/WWgWvfD5+GPz1mFLvv514PvfB375S7NXIgiWRkSQYB5Xr9bfhIoI8omqKtq/A0BEBHDhArB3r7lrsg36x5imAStXmrcWG/Hhh/X/vWaNOeuwHdu2UQWIERHkM/rH2CefyEGPz9y7Rw18ALBokblrsRnFxcA3vgHs3m32SoRwISJIMA+2wrVuTZ83b6YdvtAs+/eTy6FNG2DePPqaWOJ8oLgY2LWLLj/9NH0WS1yLVFTQJhQAnn2WPosI8hF+fE2aRJ937JBIRx+ora1fCbp4ETh40Lz12IoNG9T76MGDwNGjpi7HTvy//we89hrwla+YvRIhXIgIEsyDrXBz5wJt29IJFm9ShSZhK1xmJvDoo3RZRJAPbN5M4Rt9+gBf/Sp9bcUKCeRogQ0byALXqRPwX/9FX9u+XVLGfYJF0Fe+QtF6NTVS8faBgwfJJNC6NTBtGn2NhbjQAg2r2+++a846bMiyZfR51y7g9Glz12I7vvUt4P336dTMRogIEsyDK0EjRwKTJ9Nl2SC0iF4EzZ4NREbSpkFetFuAH1tTpgDjxgEpKRTIkZ9v7rosDlvh5s8H+vUDevSgg2ZJJWyBCxeAQ4fIszp9utrNiyWuRbjSmJ0NPPIIXZa+IB9hEcR33KJF4iX0gWvX6vc6ipPQD44fB159lUYB3Ltn9mr8QkSQgRQXA2VlZq/CRrAIGj6cNqaAiKAW0DQlgiZMoAJadjb9W6pBLaAXQVFRtDEFxBLXDLW1lF4PAA8/DHg8wNSp9G+xxLUAP67Gj6cnKouglStlU9oC/NiaOhWYNYsu5+fTgGihGc6eBU6epJOx//f/gJgYssMdOmT2yiwPP10jHuyKpYDmBzxuYto0oF07c9fiJyKCDOKpp+hgecUKs1diE+7fpxdrABg2TImgrVtlKEQzXLgAXLlCe/ixY+lrDz9Mn0UENcPt20p0c9WRd1cigppk5046IU1KUk/R3Fz6LCKoBfhxxY+z7GwgOpqyn6Vs2yQVFaqvf+pUoHt3ID2dBLm8v7YAVxnHjwfS0oCZM+nfsqNvEbbC/Z//Q++v+/dT0rjQApqmRNBTT5m7lgAQEWQQbdvSi7RYRHzk4EF68nTuDHTsCDz0EDUdVFRQw4HgFa4CjRgBxMfT5fnz1fdu3DBnXZZnwwb6PHgwkJpKl2fMoNLGvn3A5ctmrczSsLCeNYsOlQElhvbvl8dbk5SXq85+FkEJCcDEiXRZUgmbJD+fgl86dgSGDKGvzZ5Nn6UvqAX4ccVVxyefpM/vvivVx2YoLwdWr6bLzz4L5OXRZdGOPnDgAKnF2Fi1GbERIoIMgt/btmwxdx22QW+FA2gzKpa4FtH3AzHduwOjRtF7HJ9mCQ3QW+GYDh1UOU2OmBuhaaofiKuNAGnI9HS6vH592JdlDzZtop18ly5U6WakL6hF9FY4j4cuz5lDn1eskEG9TVJVpYQ3W33nzAHi4oBTp9R7rtCIDRvInNKlC21JRDv6wdtv0+fZs8kyYDNEBBkEi6A9e2zXF2YODUUQICLIB7Zto88TJtT/uljiWsCbCALEEtcMx44BJ05QBYhdNYz0BbUAlyxmzVI7eUCJoHXrZBxAE+hFEDNuHLUaFBaq10ChATt3UmNy27Z0KgYAiYmqjCZljSbh0I05c+jp+vDD0k7lE3or3MKF5q4lQEQEGUT37vRRU0OjIIQW4Hhs/Skpb1B37hQl6YWSEqo8A02LoNWr6ecEHVeu0I7e41EpEgyLoNWrgcrK8K/NwrCgzs1tfMDHfUGrV8tJqVca9gMxw4cD7dvT65ukEjaiqEgNgubHGEB9/izEJSWuCdgKl5dHdxgjZY1m0TT1mJo7lz4nJ6vHG+/xBS/s2AGcP09W34avdTZBRJCBiCXOR2pq1G5eXwnq1Qvo2ZP8DnInNiI/n/rOevSgsr2ewYNp/E1FhbQbNII9WyNGUHqJnpEjqfmgpEQecw3wZoVjJk2i5uHz54EzZ8K6LOtz8iTZj6Kj65czAIqe4oYDeaI2YsMGeo3r358OFfVIX1AL8OOJrXDMrFnUQHrunMzh88KhQ/Q6FhdX3ygg2tEH2Ao3f75qUrYZIoIMhEWQhCO0wKlT5JePjwf69q3/PbHENUlTVjiAihw8FkIscQ1oygoH0KaUj/zEElfHpUs0M8PjAebNa/z9hAQKoALEEtcIfhxNmkR2pIbwJlX6ghrhzQrHTJ9OBY4jRygJWtBx+7YacsMim2ndWpU4xBLXCK4CTZ1afx8/dy7QqhUFOe7ZY87aLE1NjRqmZFMrHCAiyFCysuhzfr7YvZuF+4HS0+uX7QERQc2gnw/kDT6x//hjefzVgytB3kQQoI6YRQTVsXQpfR4/nkIbvcEbVe7FFh6g7wfyBm9Sd+2izatQR3MiKCVFvfZJNagBa9ZQuWLwYKBbt8bf57LGokVUahPq4DAhDt9gEhLU18QS54VNm2h+QkpKY+FtI0QEGcigQfR4uH9ftbwIXvDWD8TwDJc9e4C7d8O3JotTU6NaCJoSQRkZ5OwqKlKJ0K7n7Fn6iIpSpdqGsIf+6FE5Yn5Ac1Y4Ri+CZF/1gHv3gI0b6XJTIqhLF8p+1jRRkDouXaLWvYgIICfH+8/wplREUAO4qtjQCsfMmEG7+osXpWlZx82b6n21oQgC6mtHscQ1gJXhggVqfoINERFkIBERaoMqlrhm8JYMx3TpQjODNE1tJgQcPEhtK4mJanZGQyIjlXVJLHEP4CrQ2LHerUkA0KaNeuIuXx6WZVmZu3eViG5OBI0ZQ/uqO3ckfbeOdesoYKN3b3odawqJym4E68HRoxu37jFctF2/ng4bBdB7ZVP9QEyrVmqGi1ji6vj0U7r7RowAunZt/P1Zs+g17sIFyTGpR2Ul8P77dNmGA1L1iAgyGAlH8IHmRBAgljgvcD9QRkZjB6Ee3rQuWSKn8wCa7wfSw6f2csSMTz+lbJLBg4F+/Zr+uehodWIvfUEPaCoauyG8WV25Uo6YH9CcFY4ZOJCycyoqpIhWx5EjNOw5Lk558r3BZY333pM3hwfoo7G9IdqxCdasodOv1NSmy7Y2QUSQwehFkLy3eeHGDeDqVdogDB3q/Wd4wyqTGOtoqR+Iyc2lk6vLl4Hdu0O/Lkujaf6LoHXrgLKy0K7L4vhihWOkL0iHpjUdjd2QrCyasM4eMJejab6JII9HbVglKvsBXAWaNIl27U0xbRplP1+5ot5QXExlpbrrODfCG3pLXE1N6NdlC9gK98QTzZ/K2gARQQYzejS9t924QUmpQgO4H6hfP0qt8QafLBw6BFy/HpZlWR1fRVBcnAo7c70l7vhxEtyxsSrKrCmGDKGG4vJyVzdUlZUBK1bQZX9E0ObNdNe5mkOHSNS0atXy6WirVrRpBcQSB2rHu3aN7paWnqr6qGw5aETL/UBMbKx6UktZA5s2kcW8Uyc1W9YbrB2vXhWHDwB6k+DNhc2tcIDJIqikpAQvvPACevTogVatWiEzMxMFHPNoU2Jjqf0AkCeMV1qywgE0TJBDE1y8IWUuX6Y5BhERNDm9Jfh9jk/0XQtXgSZMIHXYHB6PpMSBKjr375MebG5jwAwaRJuIsjJg+/bQr8/S8ONmypTmT+QZ6Quqg6tAWVktP1VzcijK+MoV6UVDWZnqnW1JBAGqrPH++64va3AlcfZsem9tithY4NFH6bJoR9DrXEkJDfLKyDB7NUFjqgj60pe+hNWrV+Pvf/87Dh48iGnTpmHq1Km4fPmymcsKGpkX1Ay+iCBA+oJ0cD9QenrTvf16Zs2iMLSjR6kY4lr4scOJgy3BFibulnUhfMD38MPNt7QwHg9ZMAHpC2oxGrshvGndsIGaXFyML1Y4Ji5O/ZzrW/i4BNu1K51ItMTUqZQ6cf06lUJciqY1HY3tDb12rK4O3bpsAVvhnnqqefVoE0z7DcrKyvDBBx/glVdewaRJk9C3b1/84Ac/QN++ffG73/3OrGUZAvcmSiXIC83FY+sREVSHr1Y4pk0bte9fsiQkS7I+tbUtzwdqyJQpFPV55owr1WNNjZoP5IsVjpG+IFCkHp9W+CqChgyhMlppqat7NKqqVMHfFxEESF9QHdzUMm2ab6cW0dFS1gC14Z05Qy/3vjzmpkwB2rWjSG1XtyqXlKgnnQOscICJIqi6uho1NTWIa1D7btWqFbY0oR4qKipQXFxc78OKjB9Pr0enTpHPWXhAWZlqAm6pEpSVRacMp05RPqWL8VcEAcAjj9Bn1/YFHThA6TWtW1OWsy8kJADZ2XTZhZa4bdvoTT4lRbWr+AJXggoKgMLCkCzN+qxeTSpy0CCKL/MFj0cscaDHTUkJbTJbOhtjWGfu3En9t66lpWhsb3BZ44MPXFvW4H38lCn0st8S0dHAY4/RZRdrRzpVLS8H+vdveQ9nE0wTQYmJiRg/fjx+/OMf48qVK6ipqcE//vEPbN++HVevXvX6f1566SUkJyfXfaSlpYV51b7Rpg1ZlwCpBtXj8GHaKHToAHTu3PzPJidTygTg6qOX+/eBvXvpcmam7/+P5wXl51NDp+vgx8ykSfQO5it6S5zLYME8Z45/d1laGr0n1ta6uIXP11S4hogIqrPC5eb67q7p2pVmu2iai0d7Xb5M76kej+8lNIBsAu3bA7duudZp4Y8VjmHtuHgxJcu5Er0VzpfKow0w1dD397//HZqmoWvXroiNjcVrr72GhQsXIqKJV8IXX3wRRUVFdR8XL14M84p9R+YFeYH7gYYN8+0JJFHZKCgg3di1K/Uh+krXrhTQoWnK4uQqfI3GbgiHI3B0kEvQNP+isRvCezBX9gXV1qqduL8iKC+PPu/d69okTH/6gfToU+JcCQvnMWOojOYrUVHAggV0edEi49dlce7cUe4Kf0TQpEnkXr17lwq/ruPOHVV5dIgVDjBZBPXp0wcbN27EvXv3cPHiRezcuRNVVVXo3bu315+PjY1FUlJSvQ+rIiLIC9wP5GsZVd8X5NJGdb0Vzt+DF97Mus4SV12tEpP8FUH9+gF9+1KjgouaXA4eBM6epaZzf5w1jKv7gnbvJk9WYqJ/nlUA6NiRShqAKxXkvXsqVdBfEcQb2JUr6enqOvT9QP7i4rLG8uV0bjF0KNCjh+//LzLS5Za4xYvpvXXYMJpa7BAsEe3QunVrdO7cGXfv3sXKlSsxn0f02hgWQXv3uupAuXl8TYZjJkwgX87Fi8Dp06FalaVhEeSPFY7hvqC1awGLts+Fht276UmXkuJ7k4EeF1riWChPm9b0+K7myMkhK9OxYzQqx1Xw42TaNOq09hcXW+I2baJ9Ve/eQK9e/v3fMWPIWV1c7MLDxpoaVY4I5NRi0iQgNZXKGi4T39wP1NyA1KbgAshHH7lwLtrbb9NnB1WBAJNF0MqVK7FixQqcPXsWq1evxuTJkzFgwAD8y7/8i5nLMoRu3ag/traW+jJcT22t/5Wg+Hg1Oc+F3uXaWnVK6u8BMwAMGAA89BCdkrrKN8+PlZycwKZZuzAqOxgrHEB6k+cKua4aFGg/EKMXQS55vDGBWuEAEt18l7suJW7PHrInJSX5NjyuIfqyhosscfr3Qn+scMz48bS3Kylx2Xvq1auqLUFEkHEUFRXh+eefx4ABA/C5z30OEydOxMqVKxHtT1euhZF5QTrOnaNXjthY2pn7ioujso8epbSt+PjAChqASwenBtoPxGRn07DLy5cpZc7hnDtHRdqIiMA2Bowr+4Ju3KDGPQCYMSOw65gwgZ7k164Bhw4ZtzYbEIwIAlzcF8RWuNxc/1JM9LAl7qOPXDOnautWoKiIciF4qL0/REQATzxBl11liXv/fTqgycjwPf3SJpgqgp544gmcPn0aFRUVuHr1Kn7zm98gOTnZzCUZiswL0sFWuCFDqDHTV1zcF8RWuHHjAn+fYxH06acueZ+rqFBPuEBFUFycyn12gSWOZ0llZZG9KFD0fUGueaquWEG/7IgRQJcugV1HbCxVLQG1uXUB165RL5rH4/s844ZMm0ZvJ8eP0zQF1xBINHZDJkygx2xRkWsed1wxnD07MJMAoAohy5ZReqsr0KfCOQxL9AQ5Fa4E5ee7tHFTj7/9QMzYsXQqf/MmxYG6iGD6gZixYymNvKTEJSF7+flk1k5NDa55k4+YXSCCuB8oUCsck5lJ+vHqVapiugJ+fPDjJVBc2BfEBdsRI+hkPhCSk9Vho2uqQUVFyicdSCgCExEBPP44XXaJJS6QaOyGjB5NPWylpS55zJ0/T0PkPB71eHEQIoJCyIABQNu2NCN0zx6zV2My+nhsf4iNVWrSZZY4HkAfSD8QExEBcM6IK1Li+DEyeXJwcwxmzqTP27ZR87BDuXWLmtOB4EVQXJzakLrCElddrU7QA+0HYngzu2kTvWG4gGCtcIzrLHHr11MwQr9+/qdJNIQtcUuWOP5xd+IEfURHB6cdPR5lieMCiaNh319OTuDVbgsjIiiERERIVHYd/oYi6HHhvKDr18ne4fGobIhA4c3tkiUUtuBogu0HYnr0AAYPpjvMwafzH39Mv+Lw4cZYvdlF6AoRtH07Ne21bRtYg4GeAQOo47qiwhVNpJpmnAjiU/0NG1ySxGqEFY7JyKABdPfuOb7Tn61w2dmUJxEMrB0//dQFyasOtsIBIoJCjoggUIrNhQt0OT3d///PG9oNG+gEzAVwFWjwYKBNm+Cua/JketG/dg3YsSPopVmX+/fVLxisCALU6b6Dj5iNssIxvKHdsIEKJY6GrXAzZgTeYMB4POp42gX9GSdP0uQDfaE/UPr3B/r0Icu548W3phkrgvQWJ4db4lgEBWOFY4YNo3ynigqHDyM/fpzmvERFAY8+avZqQoKIoBCjD0dwTbNwQ7gK1Ls3mbj9ZeRI2sUXFipbncMxoh+IiYlR+3lHW+K2bqWdUPfu9FgLFr7TeLqew7h/X+2njBJBw4dTYaSkRIWmORaj+oEY3tQ6uPLIsFiZMIFaPoPB41EbW8dHZZ86RVONo6NVmEawcFnDwZ3+hYWqwGqECPJ41N3maEsc/3J5eYE37lkcEUEhZuRI8srfukWi2pWwCAo05zkqimrYgGv6gozoB9Kjj8p2rBjXW+GC6QdiJkwg8X3rFrBrV/DXZzFWraIMiV69AivQeiMyUhXhHH0qf/Eixad7PMacyAPkJfR4KCb7yhVjrtOiGGWFY/Q5Jg48r1DwqcWECUBCgjHX6YJO/5UrqTI9cCBVDY2ARdCqVQ5tG9U0JYIWLjR3LSFERFCIiYlRs8xca4kLNBlOj4vmBZWXA7t302WjRNDMmfRYPHkSOHbMmOu0HEb1AzH6DloHpsTprXBGaEbGFX1B3D+RkQG0a2fMdbZrRxtSAFi92pjrtCA1NeqpapQImjSJNMG1aw4PIeIqoVHCG6jf6e9QSxxXCOfONe46Bw0Chg4l84Ej5/AdOECbhdhYla7kQEQEhQG2xLmg39U7RoggHiSxeTNQWRnsiizNrl30K6amGuPqAqigwZtTR1riCguVcgx06Ig32BLnMBFUVaXiYo2ywjG8sd2+3bHuGuOtcIwL+oJ276aU5zZtyClhBLGx5NgBHFvMoDcFDgcyUgQBSgR98onj0iWqq9XT1QgrnB6uBjlycOrbb9Pn2bODT5KwMCKCwoCrwxEqK4EjR+hyoHY4gI5c2rWjXZXDmw30/UBGntDrLXGOY9Mm8sH0708pW0YxYwZ9LiigyD6HsHkzWTjatzeu2sj06UPhelVVDj34qahQZa5go7Ebwpvb1asd6+viu27KlODzJPQ4vi9o2zZKcevQIbj3Um8MH06R2+Xl6nTEIeTnUzZT27bBJ602hEXQ2rU0ytAx6K1wDk2FY0QEhYHx4yku+8wZx1u9G3P0KO2G2rShhvVAiYhQJ/wOj8o2uh+ImTePRFVBAXDpkrHXbTpGW+GYzp3VcfWKFcZet4lwNXDePGM3ogA9xrga5EhL3KZNdBjTuXNw1W1vZGSQr+vWLceGwBjdD8SwHt21i2xxjoOrg9Om0fuhkeg7/R1W1mBNN3MmtRcbSd++wKhRZPH84ANjr9tUduygIakJCcZXuy2GiKAwkJSkDm5cVw3SW+GCLWu4oC9I00Ingjp1Uidhjov1DJUIAhxnidM046OxG+LoviB+HMycaWypFqA+NH4MOzAlrrRUVbqNFkGdOqmWKoc8VesTin4gPWyJW7GC/IoOwchobG84UjtyFWj+fCA+3ty1hBgRQWHCtZY4I/qBGN4cbNvm2OnWJ07QIXBsLDBihPHXz5teR/UF3bgBHDxIl42KjdXDJ2EcMWRz9uyhcLPWrY3fiDL8VN2/n/48jiJU/UAM9wU5UARt2UIO6e7d6RTdaPhP4ri+oBs3VOIDPz6MZsgQik+rrKTJ2g7gzBly40dGKmez0bB23LjRIU6fmhql6BxuhQNEBIUN14YjBBuPrad/f6BLF/Lkb98e/PVZEK4CjRlDQshoWAStX++gWM8NG+jz0KHklzeaMWOoH62oyBGPOxbAM2YEP6OlKVJTVey2o9yrp07RSUVUVOgUJJ/0b9lCPSAOQm+FM7qIBqjT/lWr6G3CMXBa4PDh9OQKBQ60xHEVKCsr+KHjTdGjB7lYNQ14//3Q3EZY2bSJ/KQpKaET3BZCRFCYYGvTgQOOqjQ3j6YZWwnyeBxviWOriNFWOKZfP4r21Cfm2J5QWuGA+seIDrjTQm2FYxzZF8R//6ys0CUm9elDw5uqquh42UGEqh+IGTmSNMK9ew47cNT3A4USLms4ZPhNKKKxvcEFE0doR7bCLVhAczUcjoigMNGlC8Ud19ZSWokruHiRXkijo2nnbQQigoLGcZY4LjWESgQBqi/I5j6bU6doFmdUVOj7XbkvaPVqBw3oZRFkdCqcHo/HkZa4W7eAvXvpcqieqhERDrTE1daGvh+IGTiQKurV1baPES0uViaBUPUDMY8/Tk/bbduACxdCe1shpapKlbNcYIUDRASFFddZ4rgKNHCgcScKnBC3c6fj5hncvq0GmRod5annkUfo8/LllIhqay5dIntSRARNTAwV06fTu9zBgyTubQoL35wccjuEkkmTSGydP0/efNtz/77aVYVaQTpQBPG5VXp66BxdgPrTOCYq++BBiuePjw/t6RjjEEvc6tW0p+/Xj5z0oaRLF7W/s/W82dWrKU88NTU0/bUWRERQGHFdOAL3AxkZI9uzJ1lFamocpya53eShh2h+S6gYNQro2pX2dGvXhu52wgJXgUaNCp3pG6CeoIwMurx8eehuJ8SEywoHULoqi3nbP84A2sVXVNBr0IABob0tHqJz7JjNj5YVobbCMXl5ZD7g9i3bw1a4yZND0yjaELbErV1L5TubEi4rHOMISxxb4Z54wvjZCRZFRFAYYRG0Y4fDmjabwsh+ID3spXBUx3V4rHAAFTQcMzg11P1AeviI2aZ9Qdevq+CN+fPDc5uO6gvSW+FC0dWvp00bYNw4uuyQahA/BtgmGSoSE4HsbLrsiGpQuPqBmH79KJq0pgZYvDg8t2kwNTXKDhlqKxyzYAEZEnbtAk6fDs9tGkpZmTolc4kVDhARFFb4hL+8XKVdOhoWQUZPt3ZoX1C4RBCgRNDSpfSGYUs0LbwiiPtA1qyx5SnG0qV0l40ZA3TrFp7bZBG0di21NtgWTQt9NHZDHGSJO3MGOHuW7JGhdK0yjukLun9fWUdC3Q+kx+aWuIIC4OZNIDlZHT6Hmo4d1duQLe+2Tz+lFoPu3ZXrwQWICAojHo+LLHHFxaoRwGgRxH1Be/eSf9UBVFbSCzcAZGaG/vays+mw+eZNG6c+nzlDVqHo6PAox+HDgc6daWNiQytmOK1wzJgxZIu7c0edidiSI0fosRYXFz6vPIugNWtsfFJBcBVo/Hh6PIQaPv3ftMnmaawbN9KbQ48eoW9s0fP44/R5wwYqIduMZcvo84wZ9PYQLmytHdkK9+STVNJyCe75TS0CiyAb7qH848AB+pyWRv0URtK5M4UtaJpjImT37qUKYbt2VDEMNdHRaqNg25Q4rgJlZNDkz1Dj8QAzZ9Jlmx0xFxerjWg4RVB0tNIMtu4L4r/35Mnhm6A+ZgwdZd+9Sx4bGxOufiCmb1/SDNXVasSOLWErHAezhIvevenxV1sLfPBB+G7XIMLdD8Q8+ihVOw8cUCFHtqCkRN1pCxeau5YwIyIozHCCyNatNreHtESo+oEYh1ni2AqXmRm+9zp9VLYtI4zDaYVj2BJns76gFSvoQLlfPzo/CCeO6AsKRzR2Q/QDWW1siautVQI4XCIIUIc8tu4L0ougcGPTssb58yRCIiLUeLdw0batKuDa6m5bupROYfv3D92ezaKICAozI0bQQeKdOzY7KfCXUPUDMQ4WQeFi+nQKGzp9mmbH2Ap9PxDbI8NBXh5tTk+coPgpm8DVvkceCe+BMqA2vps32zSSvahI+ZfDKYIAR/QF7dtH73eJiVRcCBf6HBNbHjiePw8cP04pXeE86GHYErd5M3DlSvhvP0C4aJuZabwJxRdYO77zjo0OF99+mz4/9VT43yBMRkRQmImOVj1njrbEhSIeW092Nj1ZjxwBrl0LzW2ECU0LbygCk5BAe3rAhpa4I0eAGzeoRyOcTZxJSaqca5Oo7MpKtTEIpxWOGTQI6NSJwods2X+2ejX15AwYQDahcMJP0O3bydNoQ7gCmJMT3v6MiRPp6Xrzpuq3tBUsfMeNC238f1N0705NXJqmBmjaALOscMz8+XS4eOwYjXiyPHfuqIqji1LhGBFBJuD4cITqavXsD5UIatdOVZl4gKFNOXuWek+jo4HRo8N72zw41XYiiOPRJ04Mz+wMPTazxK1fT/vnTp1U6nI48XhULLItLXGsIMNdBQJoJlq/fiTCbDoSINz9QExMjCqk2ayFjzDTCsfYzBJ3/74yCIQrGrshycmqddQWd9vixbRnGzYs/F5pCyAiyAQcL4KOH6cI4YQEehMPFQ6xxHEVaNQooFWr8N723Lnknd6zx2YzGc3oB2J4M7x+PVBaGv7b9xMWuPPnmxf6o4/KthW1tariZ4YIAtQmmDfFNqK8XDkewi2CABv3BVVXK/Vopgh67DE6xdi2Dbh40bx1+AhPL+jd29z9vK0scZwK58IqECAiyBQyMsjme+4ccOmS2asJAWyFGzYstLsuh4mgcPYDMR06KAvekiXhv/2AqKlR1T8zRNDAgRRZW1Fh+cdeba36u5phhWO4ElRQABQWmrcOv9m7l8q0CQnKBhlubNwXtG0bCSEO9Aw3M2fSHn7vXuDy5fDffsDs3Em9aCkp4bcH6OnaVZ3avveeeevwEY7GnjPH3NaWuXOp9/vMGWD3bvPW0SLXrqkKMys3lyEiyAQSE5VLzJHVoFAnwzFZWaQmT5+mJlKbsm0bfQ5nP5Ae3hx/+KE5t+83+/dTbHBiIpXPwo3HYxtL3M6dwNWrdFeFMz+iIWlpFDxUW2sz9yr7qPLyyF9lBjk5FMZx+rTtRtHrrXBmbEo7dgTGjqXLFn+q1oerflOn0nucmdjEEldbq56uZlnhmNat1Rosfbe99x7dcRkZoXXtWBgRQSbh6HlB4RJBSUkqbsimfvnCQpXMZrYI2rQJuH3bnDX4BVdfsrNpc2gG+ugpC/sd2Ao3e3b4W6caYsuobDOisRuSmKjKxDYbemNWP5Aefqraqi+Iq35mWuGYBQvI0bFzJzWwWpQ9e6iwkZBAbw1mw9px0SILpxO63AoHiAgyDXZWOK4SpGmhj8fWY3NLXH4+3WV9+gCpqeasoXdvID2dXGa22CiY2Q/ETJ5MquL8eeDoUfPW0QIsgsy0wjG26wu6eZM2foDqdDYLtsTZqC9IP+OV7ZBmwCfya9bYJKL97l31uLOCCOrUSakKC1vi2Ao3fbp5RVs9M2eSILtwgd7nLcf582RD8XhUHLoLERFkElwJOnjQZh75lrh2jTYPERHAkCGhvz32+KxbZ+kT+aYwsx9Ij35wqqWpqqKSFWCuCIqPV489i/psjh6ljJKYGPP38AC5uiIiKDrWFr2QK1fSa8rw4dQbYSa8GV63jp4DNmD9err7Bg409+4bPhzo0oWSwzZuNG8dPrNmDZUOBg0CunUzezWEDSxxZkdjN6RVK/W+asm7jReVnU1PEJciIsgkUlMp+VTTVE+II+Aq0IAB4Yk6y8ykXd7ly7YaXsmY3Q/E8Iv1ihUWDzwrKKDdTLt2wNCh5q6FLVIWLZ+xoM3NJeeo2aSkqBYuW1SDzIzGbsiIEfSYLy5WVQKLYwUrHFC/hc+iT9X6cLWPq39W4NFHqTdpzx5Lvs9evkxL83isceDDsHZ87z1yWlgKtsItXGjuOkxGRJCJODIqO5xWOIBO5MePp8s2s8RVVwM7dtBls0XQ8OE0G6+szOJtB/w35rKCmfC77ZYtlORkMaxkhWNs0xdUXa02o1YQQZGR6s6zSUqcVUQQUD8q29KGAU2zVj8Q06GDqrwvWmTuWrzA4jYjg8IwrMK0aTTn9upVi/V/Hz9OkYlRUSRwXYyIIBNxpAjieOxQhyLosWlf0P79VNRITibng5l4PDaxxFmhH4jp25ciz/QzPSzC5ctUMPB4gHnzzF6NQt8XZOnN6I4d1JvRti3trKyAjaKyz58HTp4k7WaFJvXcXDIMnD1LdkzLcuwYzeOJjQUmTTJ7NfWxsCVOH41tJWJilMaw1N3GVaC8PKB9e3PXYjIigkyEwxF27qSRI44gXMlwenhDvH69hWNYGsP9QOPHm1/UAIBHHqHPy5bRvt5ylJcr/6AVRBBQPyXOQvBsoIwM6mu2CpmZQFwcnYxaOE9C/T2nTzc/ophhEbRzJwk0C8N2x7Fj6ZDHbBISVAufpQencvVx0iRyOViJRx6hysGBA5ZSkqWl6gzKaiIIUNrxgw8s8r6qaZIKp8MCWy/30rcvlW4rKlSKjq25fx84cYIuh8sOB9A7bXw8BTIcPhy+2w0Sq/QDMRMn0sH37dtKoFmK7dvpydK5M/DQQ2avhtDPC7JQaYOreSxsrUJcnDr8sVjxrD5W6gdiunWjknFtreWbqqxkhWNsEZVtxX4gpm1bqhwAlrLErV9P52Pdu5vfJuqNKVOo2HLzpkUmebCIjY21llfaJEQEmYjH47B5QQcP0kawU6fw5j3HxKidlY0scSw0rCKCoqJUso4lB6fqrXBmjgPXk5VFk/GuXVNVUJMpLFRvtlZ8j+O4ZMuKoMuXyavq8VirLwOwhSWuttbaImjLFosW0srLVXyd1R53jAUtcXornFXeFvRERdGoJUAVYEyFFzF7tjUSc0xGRJDJOGpekBn9QIzN+oIuXKCY4MhINdHcCuj7gixU2CCs1A/ExMaqnZ5Fjpg/+YRsF4MGUQKl1eC7a8MGi9hDGrJ8OX0eN44awq2EXgRZ7glKHDpEp97x8dZppwJoHtrAgZTSZUkNuWULJdN06RKe8RKB8PDDdOh45Iia8m0imma9aGxvsOts8WKgstLEhYgVrhEigkyGK0Fbt9qqncU7ZvQDMWz43rjRglmUjeEq0PDhVEiwCtOmUbL5+fNK01qCkhIVDWwlEQTUt8RZAKta4Zjhw8lZU1JCieeWg/+OVrLCMdnZtAk9f15Zjy0GV4F4qVZCnxJnOfRWOCuWNABq8Joxgy5bwBK3bx8VbuPjKTDUqmRlkUGmsNDk9NUdO4Bz56hJjkujLkdEkMnwJriw0FbtLN4Jdzy2nhEj6AW6qIiiHy2O1fqBmPh45cSwVErcli1UNujVC+jZ0+zV1Ic3y/n5wK1bpi6lvFwVMqxohQOo+sk61nKWuIoKtUuxogiKj1f2AUuWM6xphWN437d8uQXPyqzcD6TniSfo87vvml6NZDGbl0f9hlYlMhJ4/HG6bKoljm98/nzrBW+YhIggk4mKUmNubG2Jq6mhniDAnEpQVJTKYrWBJc5q/UB6LBmVbUUrHNOtG5CeXn/Gh0msWUP5JN26qcGkVsSyfUFbtgD37lFP44gRZq/GOxbuC6qsVG0tVhRBmZk0t+X2bTWjzRJcuULvnx6PCh+wKvPmkeI4ccJ0u4AdrHAMu8+WLKHDqrBTU6N6ucQKV4epIqimpgbf/e530atXL7Rq1Qp9+vTBj3/8Y2gW9TqHCkfMCzp9mnZfrVqZ14hgk76gkhL13pGZae5avDFnDkV2799PczUsgZVFEGAZS5x+QKpVHTWA2iBv304vG5ZBb4WzQm69N1gErV9vcoNBY3bsoMjijh2t2dYSHa0q3RZp4SO4+jhqlPXntiQmqtc7Ey1x164ph7QVi7YNycgA0tLo/Z+r9WFl0ya601JSrF9tDCOmvsq//PLL+N3vfoff/OY3OHr0KF5++WW88sor+N///V8zlxV22N1g64Q4tsKlp5s3V4M3yJs3W25zoGfnTur/6t6dTuytRrt2ak6fJapBd+4oiyP3flkNfhdescI0n01NDbB0KV22qhWO6dMH6NEDqKqy2OueFaOxG5KeTirj/n3lq7UIXNnLzbWuhrRkXxBb4ayaCtcQC1ji+LxizBiammB1IiLU3WaKJY5vdMEC6zXrmYipL1Pbtm3D/PnzMXv2bPTs2ROPPfYYpk2bhp0s713CuHGkGy5epNQwW2JmPxAzeDClOZWWqiMiC2JlKxzDTfWWEEEbN9Ib7YAB1n23Gz+eetJu3zbtsbdtG6VypaRYb9h8QzweVQ2yjCXu9Gng+HGy1lrZkhQRYVlLnJX7gZgZM+jxd+AAveeaTm2tqgTZRQTNmUM9JWfOALt3m7IEfTS2XeCE8Y8/DnMFvKoKeP99uixWuHqYKoIyMzOxdu1anHiQcrN//35s2bIFM2fO9PrzFRUVKC4urvfhBFq3BkaOpMuWOhX1BzPjsZmICFUpsLAlzg4iaP58+rxlC22sTYWH3ljVCgfQxpk3MCZZ4liwzplDth+rY7m+IPaoTJxIgtbKWFAEFRerPhsri6D27VV0tyUCHffsoUCVxERrZYo3R+vWSn2YMDOovFzpRjv0AzGjR1NUe2lpmCuRq1eToyI11doxeiZgqgj69re/jaeeegoDBgxAdHQ0RowYgRdeeAFPP/20159/6aWXkJycXPeRlpYW5hWHDtvPCzIzHluPxUVQTQ31QQDW7AdievSgvvDaWnXiZhpW7wdiOHrKhJ2VptXvB7ID/Ofcvx+4ccPctQCwdjR2Q1hl7NljgVMKgqcT9OtHVl8rYylLHAvZKVPscXrBsLdr0aKwW+I2bKBKSpcu5m85/MHjMWneLFvhHn/cvHYFi2KqCFq0aBH++c9/4q233sKePXvw17/+Ff/zP/+Dv/71r15//sUXX0RRUVHdx0VL1LKNwdbhCDduULqNxwMMHWruWnhntX07DZ6zGIcPU2NkQoL5d1VLWCIl7vp1lR1v9RMsnp+xZw9w9WpYb/rQIXKmxMXZx1GTmkrtLYAq9plGaalahB1EUOfOKpFw7VqzVwPAHlY4hs8r1q61wNuE3fqBmFmz6I3swoWwR+2xeJ0zx9oBMN5gEfTpp1Q9DTllZepNfOHCMNygvTBVBP3nf/5nXTVo6NCh+OxnP4tvfvObeOmll7z+fGxsLJKSkup9OAW2Rh06RFVLW8FWuL596UXRTPr1A7p2pWAEizUNA8oKl5FBDiorwyJo1SpKDTYF3pgOH06JDVamY0fq0gUoICGMfPghfc7Ls9bw3ZawTF/Q+vXkseneHRg0yOTF+AhvmnkTbTJ2EkHp6RRKU1ZmsgAvLlbvU3YTQa1aUVw2ENayhqbZKxq7Ienp1N5aUUFx2SFn+XI6ee3e3T52yzBiqggqLS1FRIMImcjISNTW1pq0IvPo2BF46CG6bMG9e/NYoR+I8XgsHZVth34gZuhQ8i9XVJjYemAXKxxjUlQ2H/RxoIVd4A3z6tUmz13kv9fs2fY5Wtb3BZk8VuLKFeDIEbrrrBrgqMfjUdUgU6Oy16+nIdB9+tCLrd1gS9x775F3OgwcOgScP09Vb7u8LegJuyXu7bfp85NPWjey0URMvUfmzp2Ln/70p/jkk09w7tw5fPjhh/jlL3+JR+z2Tm4QtrXEWaUfiLGBCLJyPxDj8VjAEmdXEbRqFSXyhIHz5ylBPCLCXklJAPVCRkXR73DmjEmL0DR79QMxEyfSTpAViImwI2/0aEontAP6viDTNKRdrXDMjBlAUhJw+XLYTm+5CjR1KgXU2REWQStXhtj5U1Ki7jCxwnnFVBH0v//7v3jsscfwta99DQMHDsS3vvUtPPfcc/jxj39s5rJMw7bzgqwQj62HjyILCsJkuvWNK1eAc+dos2qXqjSLoGXLwranV5w/T7HFkZHqyWF1Ro+mmPbiYqV4QwwL1IkT6abtREICpYsDJra2HD1KT8zYWHuUMZi4OCA7my6bnBJnJyscM2UK3YUXLqi2w7DDfze7iqDYWPUmESZLnB2jsRsycCDZ4qqrlZU5JCxdSjbf/v2tc0htMUwVQYmJifj1r3+N8+fPo6ysDKdPn8ZPfvITxLh0kBNXggoKLNCs6Svl5cCxY3TZKk+yHj3IXlBTYylFyQdlQ4fS4ZkdyMykjXVhIQ2cDits1h8zxj53WEQEwBH/YbLE2dUKx5jeF8R/p5wcezVUAZboC9I0e4qg+HhVYDYlJe70afqIirKX+G4IW+Lefz/kg6Jv3gTy8+ky2xntSlgscZwK99RT9rH5hhkxCFqI3r2BTp3oxH3XLrNX4yOHD9MLX/v2lFdpFSxoibOTFY6JjFS9r2G3xNnNCseEsS/o9m0lTnm2k93gjfPatWFrK6iPvh/IbnBf0MaNdCBlAseOUZU7Ls5er22AyX1BLFwnTKAZQXYlL488kNeuhfzQcflyEt0jRlCwhZ1hEbRuXYhGBNy5ox5jMiC1SUQEWQiPx4aWOL0VzkonDXyyZnr2rsJOoQh69H1BYfPOa5oSQXY7JZ02jSpChw+TpS+ELFtGwmHYMKBXr5DeVMgYM4ZscXfuqJeTsFFcrF5smxjSbWkGDaLDp/Jy05pJuQqUlUVCyE6wCNq2jQ4UwgpvUFnI2pWYGFWGDrElzglWOKZPH2DUKDpD/uCDENzA4sV0oj5sGPnvBK+ICLIYtgtHsFooAsMb5337THh3a0xpKTWvA/YTQbm55BK6dIlG4ISFU6eo2TYmxn7Hyykpas0hrgbZ3QoH0HxIHgEV9r6g1avJmN+/P0X82w2Pp35KnAnY0QrH9OgBDBlCBwlhdRRWValDHrv2A+nhssYHH9DzKQRUVqq/kR2jsb3BBZqQaEe9FU5oEhFBFoNF0NatIbfXGoOV4rH1dOpEp6SaRlYRkykooPeGLl3ojddOtGql5oCGtIlTD28Qxo+3ZwRQGCxxpaVq38vVOrtiWl+QHVPhGsIiyIS+oOpqVWy3owgC6qfEhY3t22n4WocO5O2yO5Mn0xy3mzeBDRtCchObNlHYWWoqVVCcALdTbdpEllLDuHZNPTFZoApeERFkMdLTyR5cXEx5+Jamtta6lSDAUn1B+n4gK7kGfSXsUdl27Qdi9CPpQ9SrsXIlBaj07EmvG3aGN9CbN4extUUfjW3HfiAmL49eVA4cAK5eDetNFxTQxrRtW2u+BfgC/+lXrAhZEaMxLFjz8pwxuyU6GliwgC6HyBLHInX2bGfcZQDNLx0/nl6K3nvPwCvmuU3jxtnXJx0mHPJQcg5RUSoy1vKWuHPn6B0wJkZNerUSFhJBnAxnNyscM3s2PTYPHwZOngzxjdXWqlMsu4qgoUOBrl1JpYSoEqm3wtlRWOsZNIiKt2VldEgeFvbupRPT1q3tE8HujfbtgZEj6XKYS2l8c7m59t2YZmSQiLt7N4yPPaf0A+nhigP3ohiIpql+IKdY4ZiQWOLYCiezgVrEpi9bzoYtcZYPR2Ar3JAhdBJkNbKzaXd49GjYT0j11NbaXwSlpKi+jSVLQnxjhw+TrSI+Hhg7NsQ3FiI8npBa4qqr1abA7lY4gO6u3Fy6HLa+IP67TJ1K807sjEl9QXbuB2KiopTdNywpcTdvquZKJ4mgSZOAjh0p4cTgJ/GxYzRMOSbG3o81bzz2GL3+bd9OM6uC5vx52nB4PMDjjxtwhc5GRJAF0SfEmTbJ2hesbIUD6HiP/dYmpsQdO0anjK1aWfeu8gXebIe8L4grd1lZ9K5nV0IogjZvpsdU+/b2y41oirD3BTnBCsfwZnr16rDljN+7pyondt+YhjUqe80aemNPTwc6dw7DDYaJqCja0QOGW+LYCjdlCiVJOokuXUg/AsCiRQZcId/32dnWGltiUUQEWZCxY6mwcuVKyBN2g0Mfj21VOCXOREsc9wPx39Wu8Lyg7dvJRRQy7N4PxOTm0h/81CngxAlDr5qF6Ny5tPdwAlwJKiig4bwh5dYtNXXRjtHYDcnMJFvf9evUGxQGNm8m11OvXjTjzs7MmEF2vkOHwvCey1Y4J6TCNYQtcR9+CFRUGHa1TorG9gbfbexiCwpJhfMLEUEWJD5epZ9Y2hJn9UoQoDbSJlaC7G6FY9LSgNGj6/uzDae6WqUL2V0EJSaqIz4Dq0Ga5oxo7IakpVFSdW1tyAKmFCtXqtN4u09dBKhiygc+YbLEOcEKx7RtqyqqIa0GaZr6+zhRBE2YQNWtoiKqShrAnTvqINGpImjBAhpMvns3nZkFzPHj1OsYFaWCKoRmERFkUSw/L+juXWVgtXIlKCuLXl3OnKEgBxOw65BUb/CmO2QpcXv3UjRicrIzomPZZ2OgCNq7F7h4kQ5LnLAB1cO/T8j7gpwQjd2QMPcFOUkEAWGKyj54kPpTW7VyxhtCQyIjVR+KQZa45cvpYGToUPuNl/CVjh3VmV9Qlji+z/PyyCsttIiIIIti+XAEDkXo1Ys2rFYlMVE115tQDbpxQ6WpceqfneG+oDVrKBjQcNgKl51Nb6h2hzfZGzdSE4UBsBVuxgzaSzmJsPQF1dRQHjLgjH4ghkXQ5s00RCqE6F13di/YMvxQWLcOuH8/RDfCAjUnB4iLC9GNmAx7u5YsMSTvnkWpU6tATNCWOE0D3n6bLosVzmdEBFkUPiQ6epTs65bDDv1AjIlR2WyFGzSIEtbszsCBQL9+NL17+fIQ3IDdo7Eb0r8/NUxUVhr2+HOiFY7JyaHejGPHgEuXQnQjO3eSx6ZNG8pHdgr9+9PgkcrKkA+I5ofyiBHOOXAePJgqDRUVIXyrcHI/EJORQRbTkhJ12BAgVVXqKpwWjd2QRx6hFtKDB2nf5zcHDtALZ2ysMyJDw4SIIIvSvj1tOAG1kbYUXAmycj8QoxdBYY7bc0o/EOPxhHBwamWlKn06RQQZHJV96hQ1b0dGOquIwaSkUN8ZEEJLHDd9TJ/unFQJgB5rvLkOsSXOaVY4gO6+kKbElZaq1zcni6CICOCJJ+hykJa4rVspJKV9e/tOS/CVtm1VMTegu41LSLNnA0lJhq3L6YgIsjCWtsTZIRSBGT+eTkeuXDE8paslnNQPxLAI+uQT0i2GsXMnbRQ6dKBjWafAIuiTT4IW4Sw8c3KcUVn0BqfEhcwS58R+ICYMfUGapnrenSSCAGW5MuCp2piNG6nMlJZmzeHiRsLermXLgrJmshVu9mxnuKNbgu+2d9/18/GnaZIKFyAigiwMzwuyXDhCZSUNtATsYYdr1UpF/4TREldeDuzaRZedMssFILdDairlFxia4sV/m8mT7Tt+3hs5OfQYvHSJyjhB4GQrHKMPRzB8I3rlCiVLeDxqQqaTmDKFnjtHjoTMT3jqFAVzxMSogzqnoH+qGp40rrfCeTwGX7nFGDMG6NmTmquCqIA7PRq7IfPn03ntsWN+Pv527KDgp4QEZ1oEQoiDdhrOg99gdu8OeZ+rfxw9Smbd5GT7xLVwfGwYwxF27ya92KED0Ldv2G425ERE0Is1YLAlzinzgRrSqpX6nYLYEFy/ruyVPLPJiWRmUs/41asBeuObgxsMxoyhSCan0bYt/W5AyKpBXKGbMIESCp1Eq1ZKhBueEufkaOyGeDxBW+JOnKCP6GhV4HQ6SUmqQO3X3cZVoPnznfekDDEigixMz55A166kN3buNHs1OvT9QHY50dLPCwrTRHV9P5Bd7iZf0fcFGXJ3lpaq8fNOE0GAIX1By5ZRZWT0aHLUOJW4OFUFN9wSx80eTrTCMSHuC+K/CdsWnUZI+oIuXiRFHxHh3DuuIezt+uSTgJIxWYRmZ7urxcVvS1xNjcrVFiuc34gIsjAej0XnBdmpH4gZM4Ymqt+6FbQlyVec2A/ETJlC6eNXrwIFBQZc4bZtVDbr1s1ZZTNm5kz6zJ2+AcDR2E62wjEh6QuqrFTNLE62jPCx+erVtEEykJoaVbB1Wj8Qww+N/Hzg5k2DrpStcGPHOreZryEjRtBreVlZQGU1t0RjN2TOHCrmnDmj7PTNsmkTvRG3aeOekpmBiAiyOJYWQXboB2JiYtTxchj6gjRNVYKc1A/ExMaqw3RDLHF6K5zTymYAzdMaOJB2kQFMUi8pUYLADemnvMHesAGorjboSrdupTuyY0dg5EiDrtSCjB1LR+d37lD/k4Hs2UMaPjkZGDXK0Ku2DN260VubpgWd8KxwQzR2Q4KwxBUWqkAot4mg1q1VHLhPdxtb4RYsoH2O4BcigiwO79u3bTP8UC8wNM1e8dh6wjgv6NQpOkWMjXXuZsHQqGyn9gPp0afE+cmKFVTI6NdPRec7meHDqb2lpMSgSiOg7veZM50VvNGQ6Gj1PDLYEsdCfPJkZ6WLN4Q33ob0BdXUqDvOTSIIUN6u5cspScdHVq6kw4+BA4E+fUK0NgvDd9uiRS3YzauqgPffp8sLF4Z8XU7Ewe8EzmDIEDrUKykJQVpNIFy6RCeMUVE0AdRO8MZg40YDj5e9w1a40aNJCDmRmTNpv3XsGH0ETFGR2ulygIUTYZ/N8uV+N1KxFe7hh51ZKGtIZKR6uhpmiXNyNHZDeLPNFQiDcOJ8IG/wU3XlStpnBkVBAZU22rRRoRVuYehQYMAAigZfutTn/8bi0+kDUpti5kyym1+8SLbMJlmzhvZjqakUbSj4jYggixMZqexUlpgXxFa4gQPtt7sfPpzeiIqLydcRQpzcD8QkJ6uNalDVoM2bSRT06UMT753KhAn0znbjhl+Pv8pKVcRwQz8QY2hf0Nmz1JgeGekO3zz/jtu20QmaAZSWKlu200XQ2LE0oLOoyIBh5SxEp051dvnMGwFY4qqr1XmF26xwTFycclqw280rb79Nnx9/3B2DlEKAiCAbYKl5QXYMRWAiIylqBgi5JY5FkBP7gfQYYonj2HInW+EA8mvn5dFlP1LiNmwg3Z6aCowbF5qlWRHeaG/fTuNGgmL5cvo8YQIdhDid3r3pUKG62rBhXlu3quyS/v0NuUrLEhmpskyCtsSxCHKD+PYGe7tWrgTu3m3xx/PzqbiRkkJzzt0K323vvddEK0RZmXrjFStcwIgIsgH6cATDhwf6i137gRh9VHaIuHNHzTdxugjieUE7dtAcyoBwQz8QE0BUNlvh5s93ditLQ/r0oTFkVVUGVMHdEI3dEN50G9QXpLfCucGSaUhUdmEhvTgC7usHYgYNIl9/VZVPp2UsOmfNcl/hTE9eHgnBa9eaeP1bvpyqvN270wRzISBc9JZqX8aMod6Lq1cpNtFU7FwJAtRGe/NmOtYMATzupn9/GpTqZDp3Vq+/fli+Fbdvq8eUk/uBGD5e3rnTp/zd2lpgyRK67CYrHEAbba4GBWWJKytTQtuNIsigviC39AMx06dTRejo0SDed9eupSfxgAHOtvq2BFvieJ5NMyxbRp/daoVjYmLUa75XSxxb4Z580l2nYwYj95wNaNVK9VOaaokrLgZOn6bLdorH1jN4MCmTsjJ1QmcwbrHCMWyJ44qFX7BVZ/Bg8ns5nS5d6ADBx/zdggI6/EhMdIdGbIghfUEbNgDl5TRhdsgQI5ZlD6ZMoV38yZPUExUEt26ptG23zPps00a5MAKuBrkxGtsb7O1as4YOvprgzBngyBF62M6YEaa1WRieffrBBw2ynEpKVMlMBqQGhYggm2CJeUEHD9Lnbt2Adu1MXEgQeDwhj8p2QyiCHhZB69YFMAfUTVY4hn02PljiWFjOmmW/HBIj4IfF/v1BDK7Up8K5wcfFJCWppooAZlPpWb+edPuQIUCnTgaszSYEFZWtadIPxPTvT4c/1dXA4sVN/hjfz1lZ7mjda4nJk+nM9tatBtuVpUvpYKd/fxpKKwSMiCCbwOEIpibE2d0Kx4RQBFVVkdMJcI8IeughcntUV6v+c59xowhiSxYPw2gGttC7zQrHpKYC6el0OaCnq6a5sx+IMagvyG1WOIbPKzZsAO7d8/M/Hz8OXLhAviYO5HEzPljiWAS53QrHREXRDFSgQbge++OeespdBzshQESQTWBr1fHjQZyIBguLILta4RjecG/fTrmvBrJ3Lx3QtG1L4sAt8Cbdr5S4K1dowJDH465Nwrhx9AC5e7dZS+axY/R8j45WrURuJKi+oOPHyQoWE+Muoc2wCFqzJqjZaG4VQQMGUNBeZWUAjz8WnllZQOvWhq/NdrAlbt06GhPQgOJi5Y5263wgb7DbbfHiB23Md+6oCiPfp0LAiAiyCW3bUtsEYKIlzimVoD59qD+gqkp51wyCr278eHf1KrIl7tNPaS6eT3BC38iRFIPjFiIjVY9AM5Y4FpS5ueRscitBiSC+f3NygIQEo5ZkH0aPpueWfiCxn5w5Qx9RUcCkSQavz+J4PEGkxEk/UH1696bHY20tNbk0YPVqekvu18/5Eez+MHEiBRAVFj7Q1YsX0x2Vnm6/gfUWxEXbNPtj6ryg6mrg0CG6bHcR5PGoLnODo7Ld1g/EjB5NPf/37lEgkk+40QrHsDWrmZ0V9wO51QrHZGXRBvzcuQBSutxshQNIcLOKDNASx8/njAwK6HAbbM365BM/RlRUVKiyhoggRTOWOLbCSRWoPpGRNAsVeGCJYyuczAYyBBFBNsLUcIQTJ8jnlZBAJzp2JwR9QZrmXhEUEaFmBvlsieP73o2xZ9Onkxjfvx+4fLnRty9fpt4yjweYN8+E9VmIhATV3+9XNai4WDVRulUEAUH3BbnVCsdkZ5Ob7epVlZDXIlu2kNW6Uydg6NCQrs9WsAjauJHu0AfU1KjzCukHagy73rYtvgaND27FCmcIIoJsBIugPXsMmKDuL2yFS093hs+LN94FBWQVMYBz52iwWVSUijR3E1yxWLKkiQnXes6epTssKko9sN1Ehw7UGwR4TZPgmUsZGe5K42qKgCxxa9cqf02/fiFZly1gEbRjh9/xjbW1qhLkVhEUG0uDKwE/UuJYcE6bJo3renr0oBc1TQPef7/uywUF1OucnOzOt4OWyMigMVOzSt+Dp7aW3jt69TJ7WY7AAbtZ99CjB7WyVFeHbMRN0+zfT5/tboVjuncH+vald3mDIve4CjRyJM12chvZ2fQmduOGD49PPs0aO9adHhtAVSe89AWxFY57rdwOb8B59qRP6KOx3Uz37tThX1Pjd+V7/34a65KQQE9Vt+J3X5D0AzUNVzB0ljgekDpjBgXBCPWJiKAi2lPQpcIJhiAiyGaYZolzSiiCHoMtcdu20We3WeGYmBi1WWjREufmfiCGN+erVz+I/SEKC5VGdHs/EDNmDG3E79xRL0XNomkigvQEaInjyltOjrs3p/wQKigArl9v4YevXVOHhlxCEhSPPUaft2wBLl0CINHYvvDZSecxAdtQCw9K5zxh9nIcg4ggm2HKvCBNU2Zou8dj6zFYBLm1H0gPVy4+/LCZJmJNExEE0JC71FRKk9Cdanz6KVV7Bw1yt4tLT3Q0bcQBH4M39u+nCPb4ePdFmnmDRdDKlX5090s/ENOlC1X4Nc2HWWgsNEeOJNurUJ9u3dRp7nvv4cIF4MABqna4eRRASww9QoOCNiIbS3d1MXk1zkFEkM3g147t24Ma++Af166RYTcigkaGOwXeVe3fTyOZg6CoCDh4kC7zTCc3MmMGeehPnQKOHGnih44fp6bY2FjV8e5G9O/6Op+NWOG841dfEFeBpk4F4uJCtibbkJ1NSvLcOeD0aZ/+S3m5OmxzuwgC/LDEiRWuZXSWOK4CZWYC7dqZtySr43mXrHDv4Kn6g1OFoBARZDMGDwbatKFgBK64hxy+oYceopNVp5CaqkTdxo1BXVV+Pp0S9upFmf5uJTFRbZiatMRxFWjCBNmg8s7qwaa9vFydNIsVrj78uNq8me6nZhErXH0SElSJmjfpLbB9O1BWRsEcMo5EWbVWrqznXq1PbS3ZWwERQc2xYAEFRuTnY+d75wFINHazHD8O7N0LLSoKH2ABli83LM/J9YgIshkREeq9LGyWOCf2AzGcEhekJc7t/UB6uILRoghysxWOycujQRDHjgFnzmDtWjrg6NoVGDXK7MVZi0GDaENeVkYb9Ca5fVv9gPhrFLwp97EvSG+Fk4AzmoXWsSNQUtJMT+6+feSa0Oe6C43p3JmqkwA6b6aABOkHagYu/eTloePA9qiooBRWIXhEBNmQsIcjsAhyUj8QY1BfkPQDKebOpU3Trl3AxYsNvllbq7r+RQTVz4RdvrxOOD78sGw8G+LxALm5dLnZvqBVq+hxNmQIJaMJBPcFrVtH0eEtIP1A9YmIUIXFJqOyuco2eTIlxQhN88ASt6DmXfTqBQwcaPJ6rIqmAW+/DQDwPPVUnZNQLHHGYKoI6tmzJzweT6OP559/3sxlWR7eM23e7FePa+A4LR5bT3Y27a6OHaNG6gCoriY7HODufiAmNVXdD41Oqw4coIivhAQ6WhXqdlbaJ5/W3V9ihfOOT31BbIVjq6FADB8OtG9PQRz8gtUEhYV0iAEo4Sn40Bck/UC+8+ijqPVEYDR24/NZp+XQpykOHKD9SWws8PDDdSJo1Sp6KxWCw1QRVFBQgKtXr9Z9rH7gpX388cfNXJblGTOGng83blADeki5f5/8qIAzRVBKCqX4AKpC4ScHDtDdlJREPVtCM5Y4rrhNmuTuzF09D0RQ7dp1KLlZhjZtJNCsKXhDXlDQxNzPmhpgxQq6LP1A9YmIUJHNLfQFbdhAxbQBAyjMSyCmTaP5zidOACdPNvhmSYnyRYsIapHa9h2xOZrcAAsjF7Xw0y7mnQezgWbPBpKSMGAAzayvrlYhOkLgmCqCOnTogE6dOtV9fPzxx+jTpw+yH3hFBe/ExpIQAsJgiTt0iMpNqan04USCtMTx+9748dTeISgRtGEDcPeu7hssNLkXSyDlnJaGyMpyTMZ6zJkj+rAp0tKA/v1pg75hg5cfKCigpMfkZOnJ8IaPfUFihfNOUpI6oGhUDdqwgWyGvXvTIG6hWfbsAf5eSWWNPrvF2+UVTVMiSDcglS/yt4TAsUxPUGVlJf7xj3/gC1/4AjxN1EUrKipQXFxc78Ot6C1xIcXJoQhMkCJI+oEa07cvtWTU1Og2C9XVKoVP+oEUHg+0WeSzmYVPJRq7BXhj7rUviK1w06aJkvQGV4J27aIAiSYQEdQ03MDfqC9IrHB+sWwZ8CEeQbUnChEH9ivHiaDYsYNi7Vu3rmfvZUvcunXkCBICxzIi6KOPPkJhYSE+//nPN/kzL730EpKTk+s+0tLSwrdAi8FDU0NeCXJyPxAzcSJ5HM6dA86e9fu/swiSfqD66AenAgB27ybLSEqKM0M2guD8YLJuzfF8ghnTw9HoZ1+a7QuSfqDm6dKFTic0rcl0iYsXaT8aEaFGqQkKfmht2gTUO4dlEcQBFEKzfPwxcAftcG3Igyf0IrHENYJLPfPn1xtP0rs3tdTW1gIffGDS2hyCZUTQn/70J8ycORNdujQ9CffFF19EUVFR3cfFRtFT7iEzk/r5T54Erl8P4Q25oRKUkACMHUuX/ewLuniRPiIjgXHjQrA2G8MiaMUKijWuq7Tl5IhvsAHv3JiCCsSgp3YOrS/JiWhz5OTQBv3YMeDSJd03rl4loQ3Q1F7BO7xJb8ISx9po7FhyFQr16d8f6NePnG88EghnzlCDblSUVLl94PJlssN5PEDSlyTuzCs1NUoYLlzY6NtiiTMGS4ig8+fPY82aNfjSl77U7M/FxsYiKSmp3odbadMGGDqULoesGlRTQ13/gPNP7gO0xHE/0LBhpKUExciR1MNRWvrg1F7mAzXJok9aYwNy6B9czRC8kpKiggXrFTM4EGH0aOf2LxoB27VWrvQaLypWuJZplBLHgnL8eGocEpqF77dx44Ckz84n6+rhw/QhEJs308FOmzZeq4tPPKF+LMBgWwEWEUFvvvkmOnbsiNliYfCLkM8LOn2aYs9ataLjLyejF0F+5I5LP1DTeDyqGvTxBxXqgSoiqB7nzwN79wLLPQ/SzJrM3xUYr/OCxArnG1lZlK5z6RKV03RomoggX+C+oE8+IUuS9AP5B/dTzZ0LOtXg+00scYoHs4GwYIHXmVNpaeQI0jTgvffCvDYHYboIqq2txZtvvolnn30WUVFRZi/HVoQ8HIH7gYYOdb59afx42hhcvepXg6b0AzUPi6BrH+UD5eV0Qi9T8erBs4FujH4ggjZvbtBsIDRE3xekaSBvEp/GSzR287RqpSLOGljiDh8me3V8PJCRYcLabEJWFpCYSE3pe3ZUKTUu/UAtUlamhDaLyXoTQMMy/NDiVFUB779Pl3WpcA2RwanBY7oIWrNmDS5cuIAvfOELZi/FdnA4wt691G9uONwP5HQrHADExalyjo+WuHv3lE6USpB3srIejGIq0lnhZCpePTg4YszCfqrZoImmdYHIzKSn7NWrwNGjoNOI4mKgQwcZwusLTfQF8eZ00iQ6ExK8ExOjgvYOvJFPb8Dt2qmZc0KTrFtHQqh7d2Xpx7x59IA7fhw4eNDU9VmCNWtoEmpqarPjJB5/nN5Ot28nR4HgP6aLoGnTpkHTNPR3ut0qBHTrBvToQeX4HTtCcANuCEXQ42df0M6d1DaVlkYfQmOio+m0bwqkH8gbt29TyhTwoGrGVQzpC2qWuDh1CLRmDdT9NWMGpSYIzcMiaMMGoKKi7stihfMdrmLUrnggJPPynO+YMIBly+jznDm687CkJGDmTLosZQ1lhXv88WYfU507AzxWU5yEgSHvFjYnpJY4N8Rj6+EN+vr1D4zezSP9QL7x2Mz7GAdS6dpkEUF6Pv6YHmrDhgG9eqG+CBJbSLPU6wuSfiD/GDoU6NSJUksevJBVVakBtCKCWob37OnXpB/IVzRN9QPVWeEYscQRZWXARx/R5WascIxY4oJDRJDNCdm8oJs3KcfS49HVrB3O6NEU8Xbnjk8leekH8o1prbciBlU4j+44eK+X2cuxFPxeVzcgddIkasi4ckUlMwpe4Y36qbXnqZklIkJ6MnzF42lkiduxg3JwOnRwz0t+MHTqBEwdfgujsYu+II+9Ftm3j7YV8fFeXF5z5lC/2unT5PF3K8uXk72ye3fqVW6BBQuoWLR7N6W0C/4hIsjmcCUoP59O8gyDq0B9+lAHqBuIjlaqsgVLXG0t+XABqQS1RNw2ui/XYQo+/Ej6gZjSUhUq9cgjD74YF6dKHJIS1yzDhwNt2wKT7j+oAmVmUgOa4BsNRBBb4XJzxVHoK8/1WYMIaDifNIQG0QrNwlWgvDx6qatHQoKq5Lq5rMGDf5580qcnYocO6i3DzXdboMhLnc0ZOJA2AqWlBh+euK0fiPGxL+jwYerDbt0aSE8Pw7rszDolgrjyIdDes6wM6NmzwWOINwLSF9QskZH0dJ2FB/eTpML5B3f2790L3Lgh/UABkFNJAvKj0un61iqhCepFY3uDvV2LFrnTEldSopqmfLDCMWKJCxwRQTYnIkJVIgy1xLmtH4hhEbRxI1Bd3eSPsRVu3DgaEi40QWEh1ekBbPRMxr59wLlzZi7IOuitcPUC87jZYPt2smYKTTJtUjly8SBJT/qB/KNjR2DECABA6dLVyM+nL4sI8hFNQ7vdVMr9uHp6XcCJ4J1r1yhMCGjmvGLWLDpZPHdO/bCbWLqURkn061f33PSFRx4hI8vBg8CRIyFcnwMREeQAQjI01U3x2HqGDSNLTUlJ3ebdGxKK4CObNpF3sH9/9J7UDYCai+NmqqvVgV9dPxDTvTswZAjdbw0ijIX6zE7YiHiU4RK64n5vaWTxmweWuNtvr0JNDdC3LyWOCj5w+DA8V66gMjIOm5FVV+UQvMOF7TFjKNXMK/HxqkzkxrgztsItXOjXKAn9vFmpBvmHiCAHoA9HMKSCXF7+YPgG3FcJiowEcnLocjOWuG3b6LOIoBZYp6KxebMvljhKc7xzB2jfvonHkERl+0TnPdQ39SlmYfMW6TfzmwciKCl/FQBNqkD+8KCh7+7QbFQgDh9/7E4Hl6/oo7GbRW+J8yGl1THcuaOaRPk+8AMJ1wsMEUEOYORIajK8eRM4ccKAKzxyhAbgtGsHdO1qwBXajBb6gq5dA86coYMamareAjoRNH8+Xdy0Cbh1y7wlWQEWgnPnNmGnZBG0fLm7NgL+oGnwfEoi6BPMrutpEfxgwgQgPh7JpdcwBIdEBPnDgw1r8hPTERND7wnHj5u8JotSXg6sXk2XWxRBM2ZQGNOlSyp9yA0sXkzpVunpwKBBfv93/bxZCRb1HRFBDiA2Fhg7li4bMi9IH4rgR0nWMbAI2roV3rpd2Qo3ZAiQnBzGddmNGzdU1HhODnr1IrdhbS1cbR3RNC/R2A3JzKQH161bQEFBmFZmM06eBM6cQU1kNNYiV0RQIMTGonx8DgBgBlY2N5xe0FNWVjflOG7+9LqBlRLo6J2NGyl+vUsXH1pd4uJQd2LmJkscW+H8CETQk5Sk2iL5qoSWERHkEAydF+TWfiBm4EAgNZXe6HbsaPRtscL5CE9eTE+nHE+oKGg3W+L27gUuXCD7Owd0NSI6WkUYiyXOOw92nNUTsnEfCdi/n6rhgn8c7EyPswVJq9C2rcmLsQubNtEBWbduwMCBddUNNx/uNIfeCufTuSp7u957j1wpTufaNRrSDgQsggCxxAWCiCCHYGg4glvjsRmPR01y82KJk1AEH9FZ4RiufKxaRbHuboQF4IwZNBuwSaQvqHke3C+xD8+qixhvIdle8MLiEhJBo+5vooMfoWW4d2P6dMDjqTuB37KFAjEFhab5EI3dkGnTqBJ+9WoIJsFbkPfeI4vEuHFAr8AHis+eTYdrZ88Cu3YZuD4HIyLIIYwfT3v306fpdSNgNM298dh6mugLKisD9uyhyyKCWoBPtnQiKD2d5uKUlbk3+KxFKxwzYwZ93rULuH49hCuyIffukccGAGbPrutlEUucf2ga8PeCAbiIboiuqTDIT+0CWAQ9qNb26QMMGECpj259XWuKQ4eA8+fJ5aZ7K2iemBhlG3CDJS5IKxzTujX1BgGSEucrIoIcQnKycq8FdXBy7hxNAY2JoVd1t8Kv1vn5ZGZ+QEEB9S526kSbeaEJLl2ilI6ICGDSpLovezxq8//hh+YszUxOn6Y2qchIHxqEO3UCRo2iyytWhHxttmLtWnoi9ukD9OsnIihAjh8HLl/xYG3kA+slb+6Fprl0icKDIiLqDVXiapD0BdWHq0C5uVSl8Bn2dr3/frMz+2zP+fPksfd4gCeeCPrq9JY4ydRpGRFBDsIQSxxb4QYPpr4Et9K7N81rqapS/jfU7wdyY2aEz3AVaNSoRukRLIKWLXP2e5s3uAqUk0OzHVqELXGys6oP3x+zZgEeD7KyKGXv3DlK6RJ8g0XjxUEPhoxIGaNl+D4aMwb6JioWQcuXu6ONxVe4H8hnKxyTm0sJtTduqKqvE+FKV3Y2JUcEyYwZFJLgtnC9QBER5CA4HCEoR4NY4QiPx6slTvqBfMRLPxAzYQLNx7l7133uG5+tcAyLoFWrSJAL5OHiPqkH909CAlmCAakG+QPfV0kP59Jr3qFDwJUr5i7K6uj7gXRMnEibz5s3JdCRuXmTzBSAEok+Ex0NPPooXXayJe7tt+lzkFY4Rh+uJ5a4lhER5CB4Y75/PznaAsLtoQh6Goig2lpVCcrMNGlNdkDTmhVBUVHqVNBNKXHXrysRzW9SLTJmDCnGoiI51mMOHgQuX6ZUCR5sDIglzk+qq1XBduL8dsDo0fQPHugiNKamRt0/nN74gOhopYukcEssX05vByNGUJCe37A97IMPnHkIdPw4xYVGRQELFhh2tayn3BKuFwwighxE164ULFJbG8R+ye3x2Ho4IW73bqCoCMeP01DnuDgfZh24mTNnKAM6OrrJkhlXQj76yD1RnsuW0e86ejSQlubjf4qMVAEJkhJH8P2Qm0tPxgewCFq3TrzwvrBrFx2WtW374MyLN/ViiWuaXbuohJ2cTEleDZCo7Proo7EDIieHxivcvu3M6Ecu1eTl0WGXQUydSnbra9fqxlkJTSAiyGEENS/o7l1q0gNEBAF0dNWvH+2oNm2qqwKNHUu5EUIT8JtVRgbF1XghL4+aZC9coIMwN+C3FY6RqOz66PuBdIwZQ7a427eVq1doGq6YTZlCWruujLFqlajIpmCBmJtLp/cNmDmTXIX79lGx0s1UVirnoN/9QExUFPDYY3TZaZY4TTPcCsfExCgnoVjimkdEkMMIKhzhwAH63LMn0KaNQSuyOTpLnPQD+UgzVjimVSu153KDJa6kRLlo/BZB06ZREtXBg8DFi0YvzV7cvas8qQ1EUHS0cseJJa5l+D7KzX3whYwMUpG3bilHgFCfJvqBmA4dVIHI7Za4TZvodS81VYVcBgRb4hYvJmXlFA4cAI4dA2Jj/fBH+w7rKqc6CY1CRJDDYBGUnx/A64VY4RrjRQRJP1AztNAPpIfHQLhBBK1YQc/Hfv2AQYP8/M/t2tEGFZBqEFcpBg8GevRo9G3pC/KN+/eVlqxLeY6OVs9ZscQ1pqhIdfk36AfSI1HZBFsCZ8+mM5yAycqicQGFhc7qV+PZQLNmNUpQNQJ2Et665UwnoVGICHIYAwbQnqm8XA319BkJRWgMHy0fOIA7J24CEBHULEeOUKRpq1ZePfN6Zs8mG87BgzQ/x8norXABRavzzsrtIqgJKxzDG/rNm4GKijCtyYZs3kynwz160KilOqQvqGnWrqUu8/79mx0Sx/0va9bQ+7Ab0bQgorEbEhkJPP44XXaKJU7TlAhauDAkN6F3EoolrmlEBDkMjycIS5zEYzemY0dg6FAAQA42YODAeqMhhIbUxU1NpDJ/M7RtS6MRAGdXgyor1d7dbyscw5v+NWvcu7uvraW4KaBJETRoEB0al5VJmF5zcKVs6tQGopxF0JYtwL17YV+XpWFh2IQVjhk2jEKKSkuBDRtCvywrcuwY5ePExNSbJxs4bIn76CNnKMsdO2ioWevWAWSH+w4PTv3wQ/e+bbSEiCAHEtC8oMpK4PBhuiwiqD4PLCJTsE76gVqC6+6crNcC+pQ4p7JhAzlpUlOVq81vhg0DOnemnZVb43527SJvR1JSk415Ho/qcRFLXNPoRVA9+valiNGqKmcPqPQXTWuxH4jxeNS+1q0pcfx7T5lCbWZBk5lJyrK4WP0d7AxXgebPp4SgEDFxIs1fLSyU4m5TiAhyIFwJ2rrVj5CfY8dICCUne/Xau5oHImgy1osVrjlqatTRZwv9QAyLoK1byUXnRFjgzZ8fhDfe45GUOP69p02j/pUmkL6g5rlxQxX9Gz1NPR6xxHnj5Ek6udenbzSDvi/ILSMA9AQdjd2QiAhVDbK7t6umRtn6DE6Fa4jeSWj3uy1UiAhyICNGUEvG7ds0i8sn9KEIATUtOJeKcZNQgwgMwHFk93V57mlz7N9P6V2JiT7HAaWl0Y/qPeROorYWWLKELgdshWPcLoJa6AdiuBJUUEAnoEJ9uFg7bBi5fRshIqgxXH2YOLHJ2H89ubnkBj53jtok3cSdO2ootGEiCFAiaOlS8rvalc2bgatXKYG3haqiEbAlbskSe99toUJEkAOJiVG2G58tcdIP1CR7zrTBHowEAPQ6t97k1VgY3l1lZ3udodEUTrbEFRQAV66QLvSxONY0U6fSSfSJE8CpU4aszzZcv052OICGsTRDWhrw0EMkQN3ak9EcTVrhGB4cdOwYDfISfO4HYlq3Vo5gt6XELV9Oz72hQw02lYwbR1d4/769D4J4NtCCBWEZOJiRQXfbvXuqpVJQiAhyKH6HI0g8dpNs3QqsA+1gPesla7JJfIzGbgiLoNWraa6Ek2BhN2tWizkRLZOUpBr+7LwJCIQVK+jzqFGUfNACXA1auzaEa7IhmqZShpsUQW3aqGRHqQaRTZwDX/w4uXdrXxD/voZWgQByqNjdEldVBbz/Pl0OsRWO0d9t3IokKEQEORQWQT5VgjRN4rGbQS+CsHatO03eLVFVpRr2/RRBgwdTTG9FhTN6XvXoo7ENwa2WOP59W7DCMdIX5J3Tp6m4Ex2t9LRXxBKn2LqVqg+pqUB6us//jUXQtm3kEnYDVVXqvCLoaGxv8G7+44/pb2I31qwhv2Bqqs/hQUbAlriPP5bQx4aICHIo48dTL+G5c8ClSy388OXL9MSMigpgkqOz0TR6E9uCiaiNjKIdxNmzZi/LehQU0JtSu3Z1keK+4vE4c3DqsWP0ER3t8969ZfiKNmyw5yYgEKqqlDr28Y7MyaHXv2PHfHj9cxEsCjMzW2htYRG0Zg01crsZfuzl5fmVbNKrF72d1tQ473CnKbZupT689u2BsWNDcAOjRgG9e1Nzix1LbFyKefxxspyGiZEjKfjRrndbKBER5FASE1VRh5sUm4SrQAMHAnFxIVyV/Th9mtKUqmNaA+MeNFrJ+OXG6KOxA4hA40rJxx/TntcJsKDLzSUnmyEMGECDGisqlEXH6WzfThnj7dsDY8b49F9SUoDRo+myWOIULfYDMWPGUFLo3bvA7t0hX5el8TEa2xtsCXPLxpN/Tx6EbTgejypr2M0SV1ZGA3uAsFnhGP3dJpa4+ogIcjA+W+KkH6hJWECOGgVETH1g8xIR1JgA+4GYjAxKqioqck4zu+FWOMCdUdn8e86Y4dfOSvqC6lNTo56mLYqgqCj1Q24pY3jj+nX1/sjVMT9gS9zy5e4oqBkeje0N3s1/+qm9mkiXL6f1pqWRVSfM8N22fDm9zwqEiCAHw57vFsMRpB+oSVgETZgAtcFfv176gvSUl5NnEAhYBEVGAvPm0WUnWOIuX6ah4B6P+r0Mg0WQW4aQ+NkPxOj7gtxwN7XE3r1U2ElKUlWyZpG+IJUiMWJEE3nizZOZSTkTd+4A+fnGLs1qnDhBH9HRAelF30lPB/r3p2r40qUhvCGD4RLMU08FMTAucIYMIbNPZaUa2yCICHI0XAk6cKAF5S/x2E3Ce/sJE0Dlirg44No1ajYQiO3b6Q2pc2d6cwoQrpgsWeLHkF+Lwu/NGRl0txjK5Mn0OLxwwflDSC5cAA4epE2Dn3akzEy6m65eBY4eDdH6bARb4SZP9jHBPi+PPm/fDhQXh2xdliYIKxxA9/OMGXTZ6VHZ/PtlZxto//WGHS1xJSXKKxhmKxzj8aibtsvdFg5EBDmYTp2oGY6b+71SUqJmjogdrh537wKHD9PlzExQxvGECfQFscQp9Fa4IAbt5uYCCQlURbF7G0JIrHBMfLxKFnK6JY4HW4wfD7Rt69d/jYtT1XBJifOjH4jp1Qvo1498XG7pP9NTW6uqYEGUNtzSFxQWKxzDImjlSntMROYBr/36UVXRJPhuW7UKuH3btGVYChFBDqfFeUEHDtDnrl2p8VioY/t2+ty3r84JMUX6ghoRZD8QExen5mDa2RJXWKjukpCIIMA9fUEBWuEY6QsiysrUe4DPIghQm3839gUdOECpOK1bq8OvAJgxgwqZBw86d/ZsYaHqPQ6LCBo8mKL37OLt0lvhgjgoDJaHHqKz7upqldHgdkQEOZwWwxHECtck9fqBGH1fkN09W0ZQUgLs3EmXgxRBgBINdn6B/vRTepMZNCgod2DzsCjYssW5Xa7l5ap8EaAI4g3/+vX0N3ErW7eSY7VrV9oI+QzbwNzYF8TCb/JkICYm4Ktp1071wTvVErdyJT2/Bg6kmW9hwS6WuDt31GPJJCucHrHE1UdEkMNhO8jOnfQm2AgJRWiSev1AzOjRlD9+964SkG5myxZ69+vVi6Kbg2TWLPLRHz0KHD8e/PLMIKRWOKZ3b9rNVler5m2nsWkTUFoKdOkSsFV3+HBy0ZWU0Cgrt6K3wvl1EJ2TQ0/I06fpw00E2Q+kh1PinCqC2OoXlioQw4NTV68moWFVFi+muQ/p6ZaYw8h327p1FH7odkQEOZx+/YAOHUgAee2zkHhsr1RVUboX0EAERUUBkybRZbHEGWaFY9q0UVdlB5dDQ8rLVRtLSEUQoHZWTrXE6a1wAVpIIiPV48nNfUF+9wMxiYkPGiLhXLHtjXv3lH/QgKgzFgdr15KudxLV1eqpOnduGG94wAASFlb3dumtcBagd28aA1ZbC3zwgdmrMR8RQQ7H42nGElddTUZlQCpBDdi3j3z0bdrQa2099JY4t2OwCAKUeLBjX9DatbR/6trVxxjiYGCL2PLlzrRmBtkPxLi9L+j2bWDPHrrM94VfuLEvaMMGOgnr2ZNOEoNkyBAaD1Ne7ry3jfx8KsSkpJgw/sbqlrhr19Qf3CIiCLD+3RZORAS5gCbnBZ08Sa/KrVuH0chrD9gKl5npJdKfk7k2bqQ3Srdy5w4NHwHUfWIAPFcnP5/ije2E3goX8v7XiRMpTu/aNVXRdQonT9JHdHSAO3cFVz+2bQPu3zdgbTaDx5oNHhxgXDvbwdatc8/rHfdATZ9uyBPZ43FuShz/PmxlDit6b9fNm2G+cR94/306oBo3jizjFoHvts2bKY3VzZgugi5fvoxnnnkG7dq1Q6tWrTB06FDs2rXL7GU5Cq4Ebd3a4MCYN07p6aYM77IyXkMRmGHD6Njr3j37ZzkHw8aNtLsaONDQYThduwJjx9JV22kWXk2NWm/IrXAARbbzDt9pljj+fbKygh460qcP0KMH7d+bDIhxMAFb4ZgRI6i7v7hYhaA4HQP7gRh9X5CThveGNRq7IX37AiNH0ovv4sUmLKAF3n6bPluoCgRQVXLCBHocvvee2asxF1N3vnfv3sWECRMQHR2N5cuX48iRI3j11VeRkpJi5rIcx4gRVOy5e7fBbEUJRfCKprUggiIiVOXDzX1BIbDCMXa0xG3fTom6bdrQwMCw4NSobP59eOcYBB6PEgBu7AsKWgRFRqr/7IaUuHPngBMn6jeUGQDPOL54UbnQ7c6ZM7SniIxUQ2HDjlW9XefPU/nZ41GlFwth1bst3Jgqgl5++WWkpaXhzTffxNixY9GrVy9MmzYNfcSaZShRUTS5HmhgiRMR5JXz54ErV+h+GzOmiR+SeUHK6xwCEfTII/R57Vr7DKtnwTZnDrm4wgIPVsrPB27dCtONhpj796knAwi6H4jhPbzb+oLOnaNQt8jIIIU59wW5QQRxFSgjA0hONuxq4+OVs9MpKXFshcvKosMfU2CBsXEjWYOtwqJF9Dk7mxIuLcbjj9N5bn4+vU64FVNF0NKlSzF69Gg8/vjj6NixI0aMGIE//OEPTf58RUUFiouL630IvuF1aKrMCPIK9wONGEFvXF7hjf/WrdRX5TauXwcOH6ZTrhCUPQYMoAToqiqVtmZlNC1M0dgN6daN7Jma5pzG9bVraQhir15+DrVpGn667ttnzdaBUMGiLyODgt4ChkXQzp1kKXAy+n4gg3FaVLYp0dgN6dmT/NNWizuzWCpcQzp1Um/drNfciKki6MyZM/jd736Hfv36YeXKlfjqV7+Kf/u3f8Nf//pXrz//0ksvITk5ue4jLS0tzCu2LxyOUOeJv3aNNrIRERRdI9TRrBWOGTCAXkXKy+koxW1wFWjYMOoXCAF2ssQdOkQn7rGxIdk7NY/TLHEGRGM3pGNHan0E3FW8DdoKx3TrRjNOamudXU6rrla/XwhF0PbtlNpnZ4qLVcE2rNHY3rCat+vECYpkjIwEFiwwezVNYrW7zQxMFUG1tbUYOXIkfvazn2HEiBH413/9V3z5y1/G73//e68//+KLL6KoqKju4+LFi2FesX0ZN46ejxcu0EedFa5//2bKHe6ERRCPx/CKx+PuqOwQ9gMxLII++aSJQb8WgoXatGkU2BZWWAStWEENwnZG0wztB9Ljtr4gvV4JWgQB7rDE7dgBFBXRhN1Rowy/+u7dgaFD6W+zYoXhVx9WVq+mSn2/frSNMJXHH6fPW7ZYI+6Mq0B5eUD79uaupRkWLKB94Z49wKlTZq/GHEwVQZ07d8agBhN0Bw4ciAsXLnj9+djYWCQlJdX7EHwjIYHsXcADS5xY4bxSXKyaVputBAHu7gsKgwgaO5ZC50pKrK8zTbHCMRkZZMi/c8f+6V2HD1PneFwckJNj6FW7TQQdPEjWv4QEOgQLGr0IclK8mR62lE6dSrvDEOCUqGxev+lVIKB+3Nn775u7Fk1TqXALF5q7lhZo3169Lrq1GmSqCJowYQKOHz9e72snTpxAjx49TFqRs6k3L4grQcOGmbUcS7JjB53S9ezpQy8jJ8Tl57trAMn586rbmh9UISAiApg/ny5b2RJ34QKdpEVEmLQhiIpS1h27W+K4WWLKFKBVK0OvOiuL7qpz5yjVyumw2MvONiioY9IkICaGnv8nThhwhRYkhP1ADBc4V6wg950dqalRT1VT+4H0cECC2bv5AweAY8fIG81vYBaGLXFcvHIbpoqgb37zm8jPz8fPfvYznDp1Cm+99RbeeOMNPP/882Yuy7HUC0eQZDiv+NQPxPTqRQNIqqu9TKJ1MFyWGTMm6BkuLcGVlSVLGsy4shAs0CZOBDp0MGkRTum4DpEVDqCKCE+0d0M1yLB+IKZ1a3Xo4URL3J07QEEBXeaqVwjIyCC3XWGhCuGxGwUFVGVMTlb7CtN57DGyqW/f/sDzbxKsJmbNMjRdMFQ8/DAdkhw61GCEiksIWgSVB5GMNWbMGHz44Yd4++23MWTIEPz4xz/Gr3/9azz99NPBLkvwAm/sTx8shcYneSKC6uFTPxCj7wtykyUuDFY4ZvJk0lnXrlGVzoqYaoVjeLL93r2U725HCgvVE5Cjvw3GLZa4igpg0ya6bJgIApzdF7RmDZ20DB5MQRAhIjJSPbztembBA1JnzAjjOICW6NKFqpWAeRNANc3yqXANSUlRM57MLqKZQUAiqLa2Fj/+8Y/RtWtXJCQk4MwDb8F3v/td/OlPf/LruubMmYODBw+ivLwcR48exZe//OVAliT4QGoqNTAOxiF4amvpC506mb0sy1BdrYLefKoEAe4TQZoWVhEUE6P6/q1oibt9W202TRVBHTuqoVZ27bhetYp8NgMHUpU1BLAgWLfOupVFI8jPB0pL6SV+8GADr5hF0Pr1FGPuJLgfKIRVIMbufUGWiMb2htmWuJ07yW/burUF75ym0VvinNru1xQBiaCf/OQn+Mtf/oJXXnkFMTExdV8fMmQI/vjHPxq2OMF4Jk4EhmMf/UP6gepx6BBw7x5VHnxODee+oD17nD8/AwBOnqT0nZgYH8tlwcPi4sMPrfcC/fHHtG8fNixk+3bfsXtUtj4aO0SMGUO2uNu3VTaME9Fb4QxKGSfS00lw379vXy+XN/RztsKQcT99OlWEjhwBzp4N+c0ZyoUL1PYSERGygm3gLFhACysoMKfxjwMR5s+3VeruvHmURXPihLNfF70RkAj629/+hjfeeANPP/00InUJKsOGDcOxY8cMW5xgPFlZOhEkVrh6sBMnI8OPYKCuXWmgY22tKgk4Ge4Hysw0vHG9KWbOJM118iT1m1oJS1jhGBYPq1ZRdq2dqK1VU3FD0A/EREer0DknW+IM7wdiIiKcaYk7epQOd+LilKUqhKSkKLeB3SxxXAXKzAzZiLjASU1VB5PhtsTV1KipozaxwjGJiepl122WuIBE0OXLl9G3b99GX6+trUWV3d58XcbEicAwkNSvHDTc3MVYDL/6gfS4aV4QW+H4jSYMJCUBubl02UqWuNJSdXhsCRE0ahSd0peUqAezXdizB7hxg96NffaiBobT+4KKilRSOj9vDMWJIoifyJMmhe1wx65ZJpaKxvaGWZa4zZuBq1dpXEHYJ2YHj35wqtUcF6EkIBE0aNAgbN68udHX33//fYzgYTSCJenTqxbDPSSCDkaIHU4Puzv83oO5pS+otlYJvTD0A+nRW+KswqpVQFkZxalbwlmq96fYbWfF683Lo7JfCGERtHmz9YfwBsKGDfRUfeghGp9iOHwH7tlDEWFOIIxWOIZbRtavt8+Ehfv31ducZVteHn2UrBx795J9IFxwIMKCBSF/DQsFs2dTK9PZsyok0Q0EJIK+973v4etf/zpefvll1NbWYvHixfjyl7+Mn/70p/je975n9BoFA/GcOY3W2n2UIQ6rz5s95tk6XL5M4y8iIgIYLMj+moMH6TTbqRw+TJue+HiaZBpG5s2j3oaCAuDSpbDedJPorXCG9l0Eg137gsLQD8QMGkR5MGVllKbrNEJmhWM6d6beIE0D1q4N0Y2EkbIyYONGuhyGUARm4EA6QKmosM/duGYNrbdXL1q/JTFjAmhVlRrSajMrHBMfr6p7brLEBSSC5s+fj2XLlmHNmjVo3bo1vve97+Ho0aNYtmwZ8vLyjF6jYCQP5gMdxFBs3h5l7losBLuHhg0jR45ftG9PmwKAjmGdCh8BZmWF/aSrUyc142Xp0rDetFeqq1VMrCWscExenuq4PnfO7NX4xo0b6ugxDJ3WHo+yiTnREhdyEQSoiglXUOzMli1AeTn1dxoapdc8Ho+yxNklJY5f8+bOtdDBjzfYEsc9OqFmzRpKW+nYUR2K2hDWb4sWOTs9U0/Ac4KysrKwevVq3LhxA6WlpdiyZQumhfEURQiQB9Ef+zAcW7dSL58QRD8Q4wZLXBijsb3BYsMKfUFbttBsxXbtQt7C4h8pKepBzEEDVmflSqoqjBhBsz7CgFP7gi5dovCQiIgQ78X0fUF2byDQR2OHeWfPlrJPP7X+3Vhbq1yrlrXCMY88QikoBw9S6EWoYSvcE08AUfY9XJ4xg3pwL11yVvhjcwQ9LFWwGQ8qQcdihqGoiBxOQhD9QIzTRVB1tapymSyC1q+nuZpmwr1J8+ZZ8D3PbpY43lmFwQrHcCWooMD8x5KRsK1qzBjqzw4ZEydSktqVK/YfM29CPxCTk0M2pMuXrR9NvGcPDa1OSACys81eTQukpCihHmpvV1mZekOwqRWOiY1V77NuscQFJIIiIiIQGRnZ5IdgYR6IoNphwwHQibbbuX+feiiBIETQpEl0/HrypHWaVoxk716guBhITqYTexPo14/6Oaqrze371zSLRWM3hMXE2rX0Bm1lqqvVJjSE0dgNSUtTyfbcDuIEwmKFA0gA8U7Yzilxly/TgDiPJwx3WmPi4tTNWt0Sx1a46dNt0vevt8SFssy2fDklcqalKc+2jWEd9/777nAKBSSCPvzwQyxevLju491338W3v/1tdO7cGW+88YbRaxSM4tYtetEH0Hka9bB4CflzHTt30pO9a9cg0pSSk4HRo+myE6OyucKVk+PHECXjsYIlbt8+GhgYH08tOJZj6FCgW7f6Dd9WJT+fSjFt24Y9bMNpfUGaFkYRBKiTdjv3BbGAGz3atKE3donKZpFmeSscM38+qbWjR0nohgq2wj35JB2E2pypU+nl+No1d4w+DDgYQf/x2GOP4ac//SleeeUVLLVC17LgHa639+mDsbnU/b95s/W9yKGG+4EmTAjSEu5kS5zJ/UDMI4/Q5+XLqZfZDNj5MGNG2EaK+IfHYx9LHK9vxoywi2un9QUdOUIbl1atwnQgzfaxjRvNezIGC4sgE+e6sAjascO6ieOXL5MdTv/SYnmSk1XQSqi8XSUlSh0uXBia2wgz0dGUMg4ofedkDJWtGRkZWGuXrEc38sAKh+HDMW4c9TJwNLSbCbofiOEBouvWOUtZVlYq36TJImjUKKrY3b9vXqyspa1wDO9UPvnE2o9FE/qBmJwcOrg9dqyuQG5rWMxNmkTe/pAzaBAFWZSX29NXXVMDrF5Nl00UQV27AsOH09PUqlkm/DQdN44C0GxDqC1xS5dSxb1fP9Ns4qGAB6d+8AGlfzsZw0RQWVkZXnvtNXTt2tWoqxSMRieC4uNpQwnY8/3LKGpr1ayQoEXQhAl0jHLhAnDmTNBrsww7dwKlpUCHDmGNkPWGx2Pu4NTTpylwKDIyrC0s/pObS4/FM2fCOzDQHy5dAg4coD/qjBlhv/mUFOVgdcLZXVitcAD93fQpcXZjzx6KNU5KCmA4nLGwxcyqfUG8Lp4jYxvmzqXGq5Mn1f7HSLhU8tRTFs8M94+cHBK7t28709iiJyARlJKSgrZt29Z9pKSkIDExEX/+85/xi1/8wug1CkbBdrjhwwFQwA/gbhF05Ai1JMTHq1E/AdO6NZCRQZed9MrBv8vkyZZ4oWcRtHRp+Bs3uQqUk0O+acuij3CyqiWOj70zMkzrx3BKX1BVlQpvDGt/v51FEPcyTZlCBwYmwgcqK1da7+S9rEw9P2zTD8QkJqo712hL3J076jFk81S4hkRFAY89RpedbokLSAT96le/qvfx2muv4eOPP8b58+cxb948o9coGEF5ucrLHzYMgBJBbg5H4H6gceMMeh90Yl+QRfqBmOxsiv+9eVNV8cKFLaxwjNU7rk20wjH6viAruwZbYudO4N69+nObw0JeHh2M7N9PDUl2wgL9QMyYMVRoLy623qHkunUkhLp3p8wV28HeLqMtcR9+SIo1PZ2soQ6D77YPPwQqKsxdSygJSAR9/vOfx7PPPlv38dnPfhYzZsxASkqK0esTjOLIEYqjbduWkqOg7F9HjlDZ040Y1g/E6EWQnXdVTGmpUhoWEUHR0epEMpwpcTduKNE8f374bjdgWFxs3Eg7ZCtRUaGOl00UQZmZ5Ja5ejU8MxVDBd+VublhDqhq3x4YOZIuc3+NHSguVq9rFhBBkZGqh99qZxYcjT1njiWMAP4zaxZZPc6eBXbtMu56336bPjusCsRMnEgtf0VF9iz0+orPL5cHDhzw+UOwIHor3INXsg4dgAED6MtumQ7cEH0ynCGMG0fxTDdu2H+IIEAPjMpKEs59+5q9mjr0Udnh0ppLl9JtjR4dRJR6OOnXD+jTh04rrdb0snkzpVt07mxqQ3FcHJCVRZftbIkLez+QHjta4tato0PBfv2AXr3MXg0Aa/YFaZoNo7Eb0rq1amYyyhJ37ZoahcElE4cREaFyJZw8ONVnETR8+HCMGDECw4cPb/ZjhIMSMhwFNwU+sMIxbrbEXb9Oje4ej2rlCZrYWHWnOmFekN4KZ6FjwOnT6a4+fTq0IyD02MoKB1g7KpvXM3Om6Y8r7guymk70lZISGrcEmCyCVq+mpBk7wL0cvHYLMG0a9WIcPw6cOmX2aoh9+yg5MT5ehZ/aEqMtce+/T4/1ceOA3r2Dvz6LwnfbkiXWn7sdKD6LoLNnz+LMmTM4e/Zssx9nnJSK5SR0yXB6+BTUaj7kcMDVr8GDqcfEMJzUF2SxfiAmIUENKg2HJa6kRJ2220YEAfVFkJXsmRboB2JYOKxfT8UBu7FpE627Tx+gZ08TFpCZSaft169T2p8dsFA/EJOcrM7PrGKJ4ypQXh5VTW3LjBn0pnHxojoxCAaHW+GYceOAHj3ITW21czSj8FkE9ejRw+cPwWJoWqNkOIZfdHftcq7SbwrDrXAMH5lt2BD++DIjKSoCCgrosgWPAXlwajhE0MqV1MbSt6/NemCzs8meeelS+EpmLXHqFHDiBB17m1K6qM/w4dQqWVKiHu52Qt8PZAoxMer1wQ6WuFOnKDo+Otpyr2tsObOaCLJdNHZDWrVSjZzBervOn6cTVI8HePzx4NdmYTweVQ1yqiUuqBbKI0eOYMWKFVi6dGm9D8FinD9PG9qYGNUE9IBevaj5raqKEobcBIugzEyDr3jUKIrmvHtXiU87snkzlfz79qVoIIsxdy75lvfsodFMoYRnEj3yiOnuLf9o1Urtjq2ys+Jo7KwsOv42mchIVei0Y1+Qqf1AjJ36gtgKN2ECVQcsBAc6bthAotxMrl1TewILFGyDh3fz770XnG1z0SL6PGkSTbp1OHy3ffyx9fJ1jCAgEXTmzBkMGzYMQ4YMwezZs/Hwww/j4YcfxiOPPIJH+HhWsA5shRs0iISQDo/HnfOCysqA3bvpsuGVoKgoNaPFzpY47mmymBWO6dBB/e2WLAnd7VRWKv1gKyscY7W+IF6HhXZWdu0LunaNCnwej8lFDRZBmzdToqSVYRFkISsc89BDKsvEbEHOT9PRoym/xPZMm0aHLleuqBPQQODBOQsXGrMuizNiBJ2DlpWppEAnEZAI+sY3voFevXrhxo0biI+Px+HDh7Fp0yaMHj0aG3him2AdmugHYtwYjrB7N73RpKaGqK/RCX1BFu0H0sOihCs1oWDjRiqkpqYaGKARTjh7d9s2qk6ayf37SlxbSARxFWXbNlqiXWDRNmIEpVWbRv/+VC2urKQnjFWprFSPPwuFIjAej3XGe/GG1/ZWOCY2Vr1hBOrtOnGCrAeRkcCCBYYtzcp4PKr1yYmWuIBE0Pbt2/GjH/0I7du3R0REBCIiIjBx4kS89NJL+Ld/+zej1ygESxP9QAyHI2zbZu8WFn/Q9wOFxN7EwmHTJuuNAPeF27eVeM7JMXMlzcLvaZs2hW7WFQus+fPDPIPFKHr2pCpwTY35s1zWr6fmqp49gYEDzV2Ljj59qAG4qspeh0GWsMIB9CLKlRUrW+K2bydPT4cOTb4fmo2+L8issL3ycvVSYdtobG+wt+v99wPb7HAVKC/P5FOH8MJ32/LldCDoJAJ6S6+pqUFiYiIAoH379rhy5QoACk84fvy4casTjKGJeGxm6FBqYSkpAQ4eDN+yzCRk/UDM0KFAu3Z0rGzkgLZwwRXdwYOpBGJRevemgd01NaE5Oa2tVVY7W1rhGKtY4vRWOAs1V3k8SkiYbUPyFU2zkAgC7NEXpI/GtuiJxqRJFLZ37Rqwd685a9i4kd66unQxdYyX8eTmAikplGS4aZN//1fTXJMK15AhQ+gcrbIyvAPKw0FArwJDhgzB/gfVhXHjxuGVV17B1q1b8aMf/Qi9HZyZbksKC4Fz5+hyEyIoMlKJATudggaKpql4bMP7gZiICGXSt6MlzgZWOEY/ONVodu0iC3lioi3uiqZhEbR8uXnHy5pmqWjshrCQsEtf0IkTFPqnH01mKlOm0OvekSO0MCti4X4gJjZW6UmzBqeyFW7OHEudVQRPTAzw6KN02V9v18GDwLFj9W11LsKplriARNB///d/o/bBG+mPfvQjnD17FllZWfj000/x2muvGbpAIUjYCtejB52ANIGb5gWdOEHWqbg4YOTIEN6QiKCwwO9HK1YY35PNVrhZs+i9z7ZMnEhK7sYNlQgSbo4coRi/uDjLRRMD6qG+bx9w86apS/EJrgJNmEAhgKbTti0wZgxdNtt26Y0bN6ifA1BDxiyKmX1BmqbEl6OscAx7uz74wL/BYFwFmjXLEqmW4YbvttWrQ2c9N4OARND06dPx6AM13bdvXxw7dgy3bt3CjRs3MMUGmyZX0UI/EKNPiLPSTMVQwFa4MWMaheUZCz8Xtm4lk7VduHKFTrw8HpVyZ2GGD6ee7LIy4/deXF2y/cFfdLQ6XjbLEse3O3kyjaC3GB07krUSsMe5haWscAxXWLjiYiX4Dhs2DOjUydy1tAAXSgsKyBYXTg4doqkacXEmzp4KJZMnUz/PrVsqJKMlNE31A7nMCsf070/vtdXVwOLFZq/GOAISQf/4xz9wv0GETtu2beFxVN3UIbTQD8SMHUv7pCtXgLNnQ78sMwl5PxDz0EOULVpRQQ25doHfGEaObLZ6aBU8ntBY4o4do4/oaBWwZmvM7guyYDR2Q+zSF1RdrZ6mlhJBLLRXr7Zeyo4NrHBM5840bg5QY7XCBVeBcnMteVYRPFFRKtnNV2/Xzp3UVtC6tUPLY77hxMGpAYmgb37zm0hNTcVnPvMZfPrpp6ix2oudoGghHptp1YrmAQDOt8Tpk+FCisdjz6hsG1nhGB5PtmyZfw6H5uBAhNxch7gfZsygzwUFZA0KJ0VF6oXFBiLI6n1Bu3fTXdqmTYgtvf4ydiyQlATcuWNeV783NE0FNthABAFqrx3uviDHRWN7g3fzixdTt39LcBVo/nyHKkPf4Ltt/XrKlnACAYmgq1ev4p133oHH48ETTzyBzp074/nnn8c27jYXrEFVFXD4MF32IQ7UDfOCbt0COMAw5JUgQERQmJg4kVoSbt8Obg6eHu4Hsr0VjuGoJ00Lv11p9WpSpw89FKLBXMaQlUUHxWfPAmfOmL2apuFK1ZQpFGxjGaKj1euGlVLiDhwgX1l8fBhOv4yB+4JWrfJtn24EN28C+fn1b9+RTJpEqad377Z84lFTo0ofLrXCMb160TlHbS21VDmBgERQVFQU5syZg3/+85+4ceMGfvWrX+HcuXOYPHky+vTpY/QahUA5doxePZOSaC5HC7ghHIFdaQMGUIJ1yOENwc6dNJ/C6pw9S2X/qCiLRE75RlSUOrk0YnDqlSvAjh10ed684K/PMpjVcc1WOIvvrBISgPHj6bKVLXGW7Adi2BJnpb4gXktOjm0STkaNon36vXv+pzkHyvLldEYyYgTQrVt4btMUIiOBxx6jyy15uzZvBq5epbKrBQfshhuuBnFxzO4EHZQfHx+P6dOnY+bMmejXrx/OcRyzYD76fiAf+rW4MnLsmD3SkQIhbP1ATM+edHxSXW0PdcmNBuPG0Y7QRuj7goIN91i6lD5nZJA/3zGwFW3lSuN8gy1RW6saGyxshWOs3hd0/76K+LekCGK72bZtNHzOCtjMCgdQ2jg/XcJ1ZqGPxnY8vJv/6CPq220K3u0vWGAbAR1KnniCPm/ZAly+bO5ajCBgEVRaWop//vOfmDVrFrp27Ypf//rXeOSRR3CY7VeC+fjYD8S0a0cDsQDjLEVWI+TzgbxhJ0scr9GCEcYtMW0a9badP69CEQOFq0nca+QYxo4l32BhofK9hJq9e8mKlJCgys0WhoXFunXmjVRqji1bqMDfvTvQt6/Zq/FC795Anz4ksnnospncv6883jYSQYAqnIajL6iyUhXMXCGCJkwgi3BRUdPWzaoq4P336bLLrXBMt25kEtE04L33zF5N8AQkgp566il07NgR3/zmN9G7d29s2LABp06dwo9//GMMGDDA6DUKgeJjPLYeJ1viKiupJxwIswiyy7wgTbNlPxATH6/2OMGkxBUWqrvBMf1ATGSkCkgIV0oc305eXogz6Y1hzBjSa7dvBy+mQ4HeCmfZQFa2DVmhL2jjRnrx79GDcn5tRF4etVmdOkXz7ULJpk1UuEtNVSFJjiYiAnj8cbrclCVuzRp6IejYkayUAgBnWeICEkGRkZFYtGgRrl69it/85jcYzyZqwTpoms/x2Hr084Kcxp49NK6nXbswvxeyCNqzhxoxrcrx4+R9jo1VjRE2w4io7OXL6RB74EDb7Zl8I9xR2TaIxtYTHa32O1a0xFm6H4ixUl8Qr2HaNAurRu8kJVEPPxD6ahBf/+zZpA9cAe/mlyyhQXMN4V3+449T46kAgNqpIiKob9buHTABPdTZBhcZGYmf//znKCwsNHhZQtBcvkwnGJGRwODBPv83FkG7d5OLwEno+4HC+l7YpQslMWganUpaFS5/TJhAk/JsyJw59OK8f3/g864ca4Vjpk+nJ8D+/aE3dd+6pRImbDRsyap9QTdvqrMtSxdrObbu5EnzB8/ZsB9ID1vTQtkXpGkuicZuSEYG+Urv3Ws8kKm8XL0ZLFwY/rVZmE6d1EHRokWmLiVogtb7P/vZz3Dnzh0j1iIYCfs4Bg70a0Pbowd5PqurKdDMSZjSD8TYoS/IxlY4pl07dXIaSDWovFy9FzrOCse0b09v/kDoq0ErVtAOa9gwoGvX0N6WgbAI2ry5+Z7pcMNP0fR0si1ZlqQkVU1evdq8dVy4QEk/kZE08MuGcF/Qpk1AcXFobuPYMYqEj4mxeIXRaDweZYlruJv/9FPyB6al2dYZEUqcMjg1aBGkBRvDJISGAKxwAL0mONESp2lhHJLqDauLoNpalQxnYxEEqApOICJo3To6FOzaVU1sdyThssTZJBq7IYMG0WlnWZmK1bcCtrDCMVboC2Ir3LhxFHFsQ/r1I1tudXXo7kq2wk2ebLtQ0ODh3fyyZfXtL2yFe/JJF/kDfefRR+lsYc8eKvjaFfnLOhU/k+H0cDiCk4amnjlDE46jo03a3HLt+PBha45aPnCAprwnJNi+K3b+fPq8ZYv/Ue/6AamOft9jEbRmTehKHTU1VAnS355N8HhU4cAqljhNU0UVW4mgtWvDF8feEH0/kI0J9XgvV1rhmNGjaYxFaam6g0tKlDKUVDivtG9PwR2AvatBQb3N37p1C0ePHkVPHwZxCmEmCBHElaDt28177zIargKNGkUxymGnXTv1t7BCbGxDuEI1aRIpRRvTowcN+6utVW/uvlBTo+YDOdYKxwwfTqWOe/dCV/LNz6cgkJQUOom3GVbrCzpzhuLfo6NtkTROm8uUFIpb5FjOcFJdrf54Nu0HYrgv6NNPjY9tv3NHvT+6Ihq7IR6PGn7Dlrhly6gM3K8fMHKkeWuzOE6wxPktggoLC/H888+jffv2SE1NRY8ePdClSxe8+OKLKC0t9eu6fvCDH8Dj8dT7kIhtAygpAU6fpst+2uEAylFITqb9kRUjYgPB1H4gxspR2Q6xwjGBpMTl5wM3bpBrJjs7BIuyEhERKqggVJY4vt7p022ZrMSVoIIC2sebDe/nx4+3iWUpMlIpSTMscQUFNAMmJYVyz23MxIlAYiK9Pu3aZex1L19OwmroUDpAciW8m//kE9o/vf02/fupp2yXKBhOHn6Y+sgOHSKTix3xSwTduXMH48aNw1//+lcsWLAAr776Kl599VXMmzcP//u//4tJkyahvLwcO3fuxGuvvebTdQ4ePBhXr16t+9jipEYUszh4kLwTXboAHTr4/d8jI5VYcMqfw9R+IMaqfUHV1Sq1zmEiaNUqEvO+wIJpzhzbF8N8I9R9QTbtB2LS0oCHHqINohVCHW3VD8SY2RfEVripU+lNzcbExKhiltFR2Xx9rqwCMcOHU9WnvBz429/UY0escM3Spo0aO2fXapBfIuhHP/oRYmJicPr0abz++ut44YUX8MILL+CNN97AqVOnUFlZic9+9rPIy8tDcnKyT9cZFRWFTp061X20b98+oF9E0BGEFY5xUjhCYaE6pcjMNHEhkybRm/GpU5RaZBV276bTr5SUgCqHVmToUBpcX1Hh2/5L0+r3A7mCvDyq0HA0lJFcvkyvQx6Pra1IVukLqqlRZye2EkHcNLBjR/jLabyRtfHjT08o+oKqqlTbniv7gRi9Je7b36Y7Jj2dElKEZtFb4uyYk+aXCProo4/wP//zP0j1ks3ZqVMnvPLKK/jggw/w7//+73j22Wd9us6TJ0+iS5cu6N27N55++mlcaGZzWFFRgeLi4nofghcMFEGbN9vzga1n+3b6Hfr0MTlWNilJhQ6w/cwK8O4qJ8cxaQAej3+WuMOHyUEaG+uYPVPLJCerJ7rR1SDOGR87NqBqtFWwSl/Qvn3Uu5GYaDNnV48eVE7Tq7hwcPeumvFg81AEZuZMel3bswe4csWY69y6lbRp+/b0VHU1vJtn64BUgXxi7lyawnLihD3bJ/za8Vy9ehWDmxm8OWTIEEREROD73/++T9c3btw4/OUvf8GKFSvwu9/9DmfPnkVWVhZKSkq8/vxLL72E5OTkuo+0tDR/lu8e+JEYxKn+mDFUgr9+XbUX2RVL9AMxVrTEOWA+kDdYBC1bRgd7zcFCKS/PJv0WRhEqSxxfn81S4RrC5wLHjoV+rmxzrF1LnydPtmF7FZ8qhNMSt3Yt+RgHDiRfowNITVUC2KinK1vhZs2yvWMweIYMoccLw6JIaJbERFWl5FRxO+GXCGrfvj3OnTvX5PfPnj2Ljh07+nx9M2fOxOOPP4709HRMnz4dn376KQoLC7GoiRG0L774IoqKiuo+Ll686M/y3UF1NcUdA0FVguLi1Auu3S1xlugHYlhorF9vjRJbRYX6AztMBGVmUhGisJAGDTYHW+F4xpBrYJGyfj1FxBpBZaXKcrZpPxCTkqKKtyxEzMCW/UAMV2JWrgzfa57DrHAM9+0Y1Rfk6mjshng8SviMHUt+asEnuGhmR0ucXyJo+vTp+M53voPKyspG36uoqMB3v/tdzOAuqQBo06YN+vfvj1OnTnn9fmxsLJKSkup9CA04eZKa+1q3Jv9XEDhhXlBVFdnRAZP7gZjMTCqxXbxojRJbfj49XlJT65+COYDISGDePLrcnCXuwgWymEREuHAzMGgQ0L07PQaMim7fsoUsJamplFVuc8zuCyovV6/BthRB2dmUNHLuXHhe8zTNsSKIzxTWrKHHRTCcOEEf0dGOcQwGz7//O/Cf/wm88YbZK7EVs2bRljM6Grh2zezV+IffwQjHjx9Hv3798Morr2Dp0qVYsmQJfv7zn6Nfv344evQofvCDHwS8mHv37uH06dPo3LlzwNfhetgKN3Ro0PVtJ4QjHDhAB9xt2likxzE+njJuAWtY4vRWOAdGger7gpo6oVqyhD5PmGDr9pXA8HiM77jm65k50xE9Zvq+IDNOObdtow1vly6ALSdIJCSoMjyLk1By7BgdMsXGUhiNgxgxAujcGbh/P/jEQn6aZmdTu6oA8na98opjAoLCRXw8cOQIcPw4PT7thF/vUN26dcP27dsxaNAgvPjii3j44YfxyCOP4Dvf+Q4GDRqErVu3onv37j5f37e+9S1s3LgR586dw7Zt2/DII48gMjISCxcu9PsXER5gQCgCk5lJe6QTJ6g3yI6wFW78eAvtx6w0L8ih/UBMbi6dUF26RNUeb7jWCsfo+4KM2OXbPBq7IZmZZA++ehU4ejT8t6+3wtn2nCKcfUF8G1lZtDtzEEaeWbAVztXR2IJhdO9uz9cnv7eFvXr1wvLly3Hr1i3k5+cjPz8fN2/exIoVK9C3b1+/ruvSpUtYuHAhHnroITzxxBNo164d8vPz0cF1x7EGYqAISkmhXkFAiQm7weu2hBWO0YcjmGmgvX9feQUdKoJatVJzDFjs6Ll9W/ULzZ8fvnVZismT6dT83Dk6RQ+GM2foOiIjVTyyzYmLU9ZgM/qCbN0PxLDfat26llNKgsWhVjiGRdDHHwf+9lFYqCyWIoIENxPw2XhKSgrGjh2LsWPHom3btgFdxzvvvIMrV66goqICly5dwjvvvIM+QfaxuB4DRRBgb0ucplksFIEZN4525zdvmjtmeetW2pD06AH06mXeOkJMc1HZn3xC6b3p6S7ug23dmmLQgOBjpzgae+JEiuB2CGb1Bd29C+zaVX8NtmT4cMphvneP+hBDhb63zaEiaOpUais9ezbwM4uVKylDaeDAoFuHBcHWWMUgJBjBtWvkW/N4VAknSPTzguzGxYsUaxsZabEZCDEx6mjZTEucw/uBmNmzKVb48GHKDdHDwsi1VjjGqKhs9ujYPBq7IVyFWb+eNo/hgkMkBw2iniDbEhGhKoOhtMRt2QKUlVFjgkHvgVYjIUGdWQRqieN0OakCCW5HRJCT4FCE/v3pdNcAeK++d6+aIWYXuAo0YoRhd4dx6KOyzcLh/UBMSoraNHAIAkCBGTwtnatFroVFy+bNQKBDqEtL1ePZIf1AzPDhQNu2QEkJUFAQvtt1hBWO4cpMKMMR+LqnTXP0wU4wUdnV1eqsw3VpmILQABFBTsJgKxxAc+a6dyfLELeP2AVL9gMxLDw2bKA7N9wUFgK7d9NlDmpwMN4scatX06Fxjx4SBoS+fenwpKoqcM/Xhg1kR+re3SJRjMYRGamesuHsC3KUCOJK0K5d1IwXCrjK5FArHMNnDFu20Eu5P+TnA3fu0OEQB5UKglsREeQkuBJk8I7OrpY4S/YDMSNGUM9EYaESr+Fk0yaaqN6/P9C1a/hvP8zwvKBt21TSIQuihx929KGx7wRridNb4Rx4h+qjssPB+fNk34yMpBhj29OlC1nUNC00SvLqVZqJ4PE4JpSjKXr3pn6emhr/C2tcPZo1i2zCguBmRAQ5iRBUggBlibNTOEJJCb0fAhYVQVFRaoaFGX1BLrHCMWlpwOjRtP9aupQsIRwR6/p+ICaYqGxNU+LJYf1ADAcTbNtGwYqhhnXCuHEOmuPCKXGh6Avi6xw1ikIYHE6gUdkSjS0IChFBTqG0lCZVAYaLIK4E5eeHPt3UKHbsoEJHjx4WLnToo7LDjctEEKDEzkcfkaC/fRto186iItkMJk2iuSpXr6qqsq8cO0YR27Gxjn1M9elDrydVVeGpijvKCsewCFq50vjxAPp+IBfAIubTT313VJ85Q0MtIyMd7xgUBJ8QEeQUDh2iXX/HjkCnToZe9aBB5B++f98c51YgWLofiOHN4ubNQGVl+G73xg3g4EG6zIkBLoD7gtasAf7+d7o8d65YQuqIjVU7bn8tcfzzOTkWTCExBo8nfJa42lqHiqBJk+hxdulS8DOp9NTWUpMf4JrdfWYmOapv3wZ27vTt/7AVLiuL3tMFwe2ICHIK+n4gg/34ERHqtNwuljhL9wMxQ4aQbeP+/fBGTvEcjfR0wEWDiQcOBPr1I7355pv0NbHCNSDQviCHRmM3hAVJqMMRDh2iMWKtW5MdzjG0aqVswEZa4vbuBW7dAhITXdPtHx2tBkH7mhIn0diCUB8RQU4hRP1AjJ3CEWpq1Dw+S4ugiAiVzBZOS5wLrXAAnQ1wNUjTyPnl8P5p/2ERs3277wlexcXqhcHhIoifMvv2kUgJFVwFys6msWKOIhR9QWyFmzKF1IFL8KcvqKREnX9JNLYgECKCnEKIRZA+HMFoK7fRHDpEL/gJCcDQoWavpgXMmBfEt+UyEQTUr/xMn04H04KOtDR60tTW+r5JXbOGkib696eobQfTsSMVUIHQnls40grHsAjasAGoqDDmOl3WD8TMmEGHO/v303Dw5li1ivrZ+vWjp6ogCCKCnEFtrYpCC9HAk1GjyMp98ybFtloZtsJlZFADqKVhIbJtGw2tCTWXLgEnTlAVim0pLmLcONUy5/oBqU3hryXO4alwDQl1X1BlJbBxY/3bchRDh9KTsLRUvVgHQ3ExvX4CrukHYjp0oPc5oOWnq1jhBKExIoKcwJkzwL17pFIeeigkNxEbC4wdS5etbonj90NLW+GYfv0ovq6igixIoYarQKNHU1ety4iIoH6g/+//AxYuNHs1FoXFzIoVLcdOuSAauyGh7gvKzyd90LEjtQ06Do/HWEvchg1UiezThz5cBlvimusLqqlRljmxwgmCQkSQE2Ar3NChIY26ssu8IFuEIjAeT3j7glzaD6Rnxgzg5z93VeuAf4wfTwL51i1g167mf3bfPorUbt3aNZXFrCx6mT17ls6fjEZvhXPgzFnCSBHEVjiXVYEYruysXdu0maCggFwcycmqv1cQBBFBziDE/UAMv3haWQRduULjSiIibJSqFK55QZqmboOFlyA0JDpabShb8tjw96dOpXKxC0hIUAFkobDEObofiOFEkr17KbI/GFwugtLTgW7dSABx8EFDeEDqjBly+CMIekQEOQF9PHYIycykk8lTp4Br10J6UwHDVaChQ200ZZ1F0M6dlOgQKs6cAS5coHdBW5TJBNNga1tLsVMus8IxoeoLKipSM19yc429bkvRsSMwYgRd5vk+gXD6NH1ERblq5pkej6dlS5z0AwmCd0QEOYEwVYKSk1UyklWrQbbqB2J69AB69ybjdigbrrgKlJHh2IGWgkHwAJLdu5s+8bh9W2XRz5wZnnVZBBZB69ZRLo1RbNxILwP9+wPduxt3vZbECEsc/9/MTBudehmPPiq7YXrrhQuUmxQR4bqnqSC0iIggu3P7NiV+AUqhhBCrzwuyVT+QnnBEZUs/kOArqakUngFQQII3Vq4kBZCeTtHaLmLMGLLF3b6tCvFG4AorHKMXQYHOXXC5FY7JzQXi4oDz54HDh+t/j6tAmZlAu3bhX5sgWBkRQXaH34F79w7LSZiVwxFKS8liDtALvq0IdV+Qvh9IRJDgCy1FZbvUCgeQo5TdV0Za4lwlgiZMoEFd167RcDd/qapSr2kuF0Hx8arNs6GDVaxwgtA0IoLsTpiscAxXWPbtC237SiDs3ElJqV26kMPMVvA72N69wJ07xl//kSPUgNyqlY0SIwRTYXHDUxb11NSoCpELRRBgfF/Q5cvA0aNkW3JFe0tsrPpFuaLjD9u305tQ+/aqv8jFsMjR9wXdv690okRjC0JjRATZnTCLoG7dgJ49yQUTjrE2/qDvB7JdtGynTsCgQVSx4UmJRsLvhBMnuibFSwiSMWNoGmNRkXpyMTt3khesTRsVleYyWARt3kxjvoKF5w6NHg2kpAR/fbaAKziB9AXx/8nLI+XocrgvaNs2dY62Zg09Nnv1AgYONG9tgmBV5JXD7oRZBAHWtcTZth+ICeW8IO41Eiuc4CsRESogoaEljv89fXpIZ5NZmUGD6OyirMyYAyGuKDk6Fa4h3Be0aVPTQ26aQvqB6tGjBw3Xra1VRVquCs2da8ODQUEIAyKC7ExFBfkngJDHY+ux4ryg2lp1WG27fiAmVH1BNTVqgISIIMEfmuoLcnE/EOPxKMESrCVO01zWD8QMGED2gooK/9J2bt2i5EJACSmhXkpcba30AwlCS4gIsjNHjlATTEpKWNOZWATl5wOVlWG72WY5dgwoLKQG0TAWxYwlO5t2VkeOGDuIaf9+4O5dCs4YOdK46xWcz7RpVBE6dIiydgHg6lVgzx56rHKlyKUY1Rd09CjdrXFxNj7ECQSPR4kYf/qCVq8m5ZieDnTuHJq12RAWO8uXk2P12jVKMZw0ydx1CYJVERFkZ/RWuDDWugcOpKjNsjKVxmY2bIUbO9bGE7HbtVMKzsiobK4sTZrkWuuSECBt26qen+XL638eM4aGXroYrgQVFFDrVKCwiMrKIiHkKgLpC2LBJFWgemRk0Jno3bvAf/83fW36dGkDFYSmEBFkZzgeO4xWOID0FvfdWMUSxyLI9qeooZgXJNHYQjA0tMSJFa6OtDTgoYfIesSO00BwpRWOyc2lN5VDh4ArV1r+eU1Tgkn6geoRFaWKsxy0IVY4QWgaEUF2xoRQBIbDEawyNNX2oQiM0X1BVVXUdKy/bkHwB240WLOGIol5AyoiCEDwfUFVVUpAuVIEtWunBvOuXt3yzx86RN7BVq2UN1uoQy96PB55mgpCc4gIsiuaZqoI0ocjBDrs2yhu3ABOnaLLtk/rzcoCIiOB06dp/HewFBTQsIh27YChQ4O/PsF9pKfT8K3SUuBnPyMh1LEjMGqU2SuzBMH2BRUU0F3atq2N+xmDhW1tvlji2AqXk+NC72DLzJihEsPHjXO9Y1UQmkVEkF05f55M6NHRpgwAGDmSDuJu36ZQAjPhVLjBgx0wXyMxkXotAGMscVxRmjxZZmkIgaE/Tv7lL+nzzJnyeHpATg7dFceO0cBTf9FHY7v2LtX3BdXWNv+z0g/ULG3bKlu4DEgVhOZx60uu/eF+oEGDgJiYsN98TAydMgHm9wU5ph+IMdISJ/1AghGwCOI4SPHY1JGSotxc3IfhD67uB2IyMijG7NYt5XDwRmmp8mBLP1CT/Pa3wP/3/wHf+IbZKxEEayMiyK6YaIVjrDIvyDH9QIxeBAXjNSwvV2UyEUFCMEydqmIXIyOBvDxz12MxAu0LundPDVp1tQiKjlavUc1Z4jZtoplCaWk0Y0jwytChwM9/DrRubfZKBMHaiAiyKxYSQWaGI5SXq5l5jhFBmZlUart8GTh5MvDr2b6dNgxdugD9+xu3PsF9JCaqYSOZmQ7wnRqLvi/In3OLTZto1FuvXkDv3qFZm23wpS+IrXDTp4d1LIQgCM5ERJBdMSkeW8/48eRhP3s2MC+8EezeTQ6djh2BPn3MWYPhtGqlvH3B9AXprXCyYRCC5Stfoc9f/aq567AgmZnUo3/1Kg0+9RWxwulgEbRlC5XIvKEXQYIgCEEiIsiOFBaS8gBMFUFJSerm2ZIWbvT9QI7a5xvRFyT9QIKRPPYYUFMDLFxo9kosR1ycGhvgT1+QiCAdfftSSayqCti4sfH3L14khRkRofyHgiAIQSAiyI4cOECfu3enKBgTMXtekOP6gRj90NSW0pK8UVIC7NxZ/7oEIVhcG1/WMv72BV27Bhw8SJflKQo6xWrOEsdfGztW7JiCIBiCvKPZEQv0AzFmhiNomur7d5wIGjOGulpv3gQOH/b//2/ZopoNevQwfn2CINSDqznr19NTryW4UDtiBNC+fejWZSuaE0FihRMEwWBEBNkRC/QDMSyC9u+nsUXh5ORJSlSNjaW5RY4iJkbduYFY4sQKJwhhZfhwKsyXlNAA1JYQK5wXpkyh9MFjx4ALF9TXa2rUHSYiSBAEgxARZEcsVAnq3JkCCTRNRb2GC7bCjR5NQshxBNMXJCJIEMJKZKR6urXUF6RpIoK80qaNGkCnrwYVFAB37wLJyWqYtCAIQpCICLIbVVXAoUN02QIiCDDPEudYKxzDO6qNG+kk1Ffu3AH27qXLkycbvy5BELyij8pujpMnqc9fX/AVHuDNEseXp04FoqLCvyZBEByJiCC7cfw4ZUInJgI9e5q9GgDmzQtybCgCM2IEnXwWFSlR4wsbN9JR88CBVKoTBCEscDjCtm3A/ftN/xyLpAkTgPj40K/LVrAIWrNGHf5IP5AgCCFARJDdYCvcsGGWSWrihLidO2k2Zzi4c0fN4xg/Pjy3GXYiI4GcHLrsjyVOrHCCYAp9+lAOSVVV84dCYoVrhjFj6PDn7l0aBFdYCOzYQd9jgSQIgmAA1thFC75joX4gpn9/SjcqLwf27AnPbbIVrn9/oEOH8NymKQTSF8QDVkUECUJY8XiUsGmqL6imRj2dRQR5ISpKldRWrqQ7sqYGeOghSboUBMFQLCOCfv7zn8Pj8eCFF14weynWxoIiyOMJvyXO8f1ADAuZzZvJBtkS169TpLbHA2Rnh3ZtgiA0oqW+oN27yeGanAyMGhW+ddkKtr2tWiVWOEEQQoYlRFBBQQFef/11pKenm70Ua6NplorH1sOWuHCFIzi+H4gZPJhKXaWlavhpc3AVaPhwoF27kC5NEITG8LnFvn005qshLI44DVrwQl4efd6+Hfj4Y7osIkgQBIMxXQTdu3cPTz/9NP7whz8gRaZAN8+VKzQYJzKSNscWgitBW7cCtbWhva3KSqUHMjNDe1um4/GohDdfLHHSDyQIptKxI8Dned6estIP5AO9egH9+pEN7upVitGTyrYgCAZjugh6/vnnMXv2bEz14R2hoqICxcXF9T5cBVvhBgwAWrUydSkNGTGCUo70gQWhYu9e6j9q25Zs4o7Hn74g/hmJxhYE02iqL6i0VFWxRQS1gD4EISsLaN3avLUIguBITBVB77zzDvbs2YOXXnrJp59/6aWXkJycXPeRlpYW4hVaDH0ynMWIjgYyMuhyqC1x3A+UmWmZgLzQwiJo+3agrKzpnzt/Hjh9miqF7E8UBCHsNNUXtGULVbLT0qjQITSD3v4mqXCCIIQA07aQFy9exDe+8Q3885//RFxcnE//58UXX0RRUVHdx8WLF0O8SovB/UAWCkXQE65wBNf0AzF9+wLdutHuiRWgN7gfaMwYICkpPGsTBKERWVkUcnb2LHDmjPq63grn8ZizNtuQk0M2OACYMcPUpQiC4ExME0G7d+/GjRs3MHLkSERFRSEqKgobN27Ea6+9hqioKNTwkDQdsbGxSEpKqvfhKiyYDKcnHOEImqZEkOP7gRiPxzdLnPQDCYIlSEhQ88v01SC2x4kVzgcSE4F33wVef101WQmCIBiIaSIoNzcXBw8exL59++o+Ro8ejaeffhr79u1DpMTm1OfePeDUKbpsQTscAIwbR06s8+eBUBXpzp4Frl0j+92YMaG5DUvSkgjSNBFBgmAhGlribt2ifkZAjcERWuDhh4F//VezVyEIgkMxTQQlJiZiyJAh9T5at26Ndu3aYciQIWYty7ocPEgb3c6dKX7IgiQmqiJVqKpB7AYbOdJy2RChhYMOCgoAb4EgJ08Cly+TfcQ1JTJBsC4sgtato8TM9evpJXzoUCA11dy1CYIgCBZIhxN8xOJWOCbUljjX9QMx3bsDffpQZKy3pivuB8rMdJk6FARrMmYM2eJu36Z2TonGFgRBsBaWEkEbNmzAr3/9a7OXYU1sIoI4HCHUIsiVxY7mLHFihRMESxEdTb39AAkgEUGCIAjWwlIiSGgGC8dj62ERdPAgUFho7HUXFQGHDtFl11WCgKZFEHtt9D8jCILpsOD5858pJS4qCpg0ydw1CYIgCISIIDtQU0OqArB8JSg1leZfaFrzac6BkJ9P19u7N9Cpk7HXbQu4L2j/fvLYMIcPAzdv0jBBV6VFCIK1YRF07Bh9Hj+eLHKCIAiC+YgIsgMnT9KQzPh4mhljcUI1L8jVVjiAFObgwaQEN25UX+fK0MSJaq6GIAimM2hQ/QMbscIJgiBYBxFBdoCtcOnplEFtcUIVjuDaUAQ93ixx0g8kCJbE46kfhy0iSBAEwTqICLID+/fTZ4v3AzFcCdq5EygvN+Y6q6uBHTvosoggKOFTXQ1s2FD/e4IgWAYWPomJ4lYVBEGwEiKC7IBNkuGYvn1plFFlJbBrlzHXeeAAcP8+kJREjjDXkp1Nx8tHjwJXr9L0xeJiIDkZGDHC7NUJgtCARx8FZswAfvADSowTBEEQrIGIIDtgMxHk8RhviWMr3PjxQISbH7UpKUrsrF+vKkI5ObawSgqC20hKApYvB/79381eiSAIgqDHzdtJe3D9OnDtGimLoUPNXo3PGD0vSPqBdOgtcdIPJAiCIAiC4DcigqwO9wP160cRyDaBRdDWrTTGJlg4bltEEJTgWb1aqUwRQYIgCIIgCD4jIsjq2MwKxwwfTpqtsJDG2ATDxYv0ERkJjB1rxOpszsSJNHXxwgWgtBTo0MHljVKCIAiCIAj+ISLI6thUBEVFUf8OELwljq1ww4bJoEEAFDOlV4NTppBdUhAEQRAEQfAJEUFWx2bx2Ho4HCHYoanSD+QFvf1NrHCCIAiCIAh+ISLIypSVAceO0WWbVYIA48IRpB/ICyKCBEEQBEEQAibK7AUIzXDoEKUKdOgAdO5s9mr8Ztw4ssVdvAicPw/06OH/ddy7p4phIoJ0ZGaS37BdO6BPH7NXIwiCIAiCYCukEmRluB9o2DBb9ny0bg2MHEmXA60G7dgB1NQAaWlAt27Grc32xMZSiWzZMls+NgRBEARBEMxERJCV4RKIDa1wTLCWOLHCCYIgCIIgCEYjIsjK2DQZTg+LoEDDESQUQRAEQRAEQTAaEUFWpbbWUZWgw4eBO3f8+781NcD27XQ5M9PYdQmCIAiCIAjuRUSQVTl7llIBYmOBhx4yezUB06GDWj5b23zl8GGguJh6i9LTjV+bIAiCIAiC4E5EBFkVtsINGUIRazYm0HlBLJoyMmx/FwiCIAiCIAgWQkSQVXFAPxATaDiC9AMJgiAIgiAIoUBEkFXRx2PbHBZBBQU0/9VXWARJP5AgCIIgCIJgJCKCrIoDQhGY3r1p1mtVFQkhX7h6ldqiPB6ywwmCIAiCIAiCUYgIsiK3bwMXL9JlByQCeDz+W+K4H2joUCA5OTTrEgRBEARBENyJiCArwlWg3r0dowD8nRck/UCCIAiCIAhCqBARZEVYBDmgH4jhhLht22j+T0tIP5AgCIIgCIIQKkQEWREHJcMxQ4cCiYk09+fQoeZ/trQU2LOHLkslSBAEQRAEQTAaEUFWxIEiKCoK/3979x0W1Z2vAfwdkIGhS9GBSBErFgyIKBDFGA2aSILxWrkb0Q27WSFquBpLVEDXsrEbI5b1ig3hJoq4PkZFXCyoUYjYQIKIyhoQSwQpAYRz/5idWUdAUGAOMu/nec7jzJlTvjMcknn5lQNPT8Xj+rrEpaQAz54pJlNwdGz20oiIiIhIyzAEtTTl5UB6uuJxK+oOB/ynS1x9kyM83xVOImnemoiIiIhI+zAEtTQZGYpmEHNzwN5e7Gqa1POTIwhC3dtxUgQiIiIiak4MQS3N813hWlkziIcHoKcH/PorcPt27dtUVwPnzikeMwQRERERUXNgCGppWuF4ICVDQ6BvX8XjurrEZWYCjx8DMhng6qq52oiIiIhIezAEtTStcHrs59V3vyBlV7h+/RStRkRERERETY0hqCURhFbdEgTUPzkCxwMRERERUXNjCGpJ7t4FnjxRNIH06CF2Nc1CefPTjAzg4cOar589q/iXIYiIiIiImgtDUEuibAVydgakUlFLaS5WVoq3B/yn1UfpwQPgl18Uj5X3FCIiIiIiamoMQS2JcjxQK+0Kp1RXlzhlK5CzM2BhodmaiIiIiEh7MAS1JK18PJCScnKEF0MQxwMRERERkSYwBLUkWhKClC1BKSlAael/1nM8EBERERFpAkNQS1FYCOTkKB630umxlRwcgLfeAp49Ay5cUKwrL1eEIoAhiIiIiIiaF0NQS3HliuJfO7tWPyBGIql5v6DUVEUQsrYGOncWrzYiIiIiav1EDUGRkZFwcXGBqakpTE1N4enpiR9//FHMksSjJV3hlF6cHEE5HsjLSxGSiIiIiIiai6ghqEOHDli+fDlSU1ORkpKCIUOG4OOPP8b169fFLEscyhDUyrvCKSlbgs6eVXSL43ggIiIiItKUNmKe3M/PT+35kiVLEBkZifPnz6Nnz54iVSUSLZkeW6lXL8DUFCgqUvQEfL4liIiIiIioObWYMUFVVVWIiYlBSUkJPOu4U2Z5eTmKiorUllahshK4dk3xWEtCkK7uf1p9tm9X3ChVKgX69hW3LiIiIiJq/UQPQVevXoWxsTH09fXx+eefIy4uDj169Kh122XLlsHMzEy12NnZabjaZpKZqZgVwMQE6NhR7Go0Rtklbts2xb/u7oCBgXj1EBEREZF2ED0EdevWDWlpafjpp5/wl7/8BZMmTUJ6enqt286dOxeFhYWqJTc3V8PVNhPleCAXF0BH9B+JxihDUFmZ4l+OByIiIiIiTRB1TBAASKVSdP73nMh9+/bFxYsXsW7dOmzevLnGtvr6+tDX19d0ic1Py8YDKXl4KLrAVVQonnM8EBERERFpQotrdqiurkZ5ebnYZWiWlk2PrWRgoOgCp8QQRERERESaIGpL0Ny5czFixAjY29vj6dOniI6ORlJSEo4ePSpmWZolCFo3PfbzBg5UTI/dpQvQrp3Y1RARERGRNhA1BBUUFODTTz9FXl4ezMzM4OLigqNHj2LYsGFilqVZeXnAw4eKsUC9eoldjcYFBACbNwOffSZ2JURERESkLUQNQduU04JpM2UrUPfugEwmaili6N0b+O03sasgIiIiIm3S4sYEaR0tHQ9ERERERCQWhiCxafF4ICIiIiIiMTAEiU1Lp8cmIiIiIhILQ5CYiouBrCzFY7YEERERERFpBEOQmK5eVUyRLZcD7duLXQ0RERERkVZgCBITu8IREREREWkcQ5CYODMcEREREZHGMQSJiSGIiIiIiEjjGILEUlUFXLmieMxJEYiIiIiINIYhSCw3bwJlZYBMBnTpInY1RERERERagyFILMqucC4ugK6uqKUQEREREWkThiCxKEMQu8IREREREWkUQ5BYOD02EREREZEoGILEwpnhiIiIiIhEwRAkhvv3gbw8QCIBevcWuxoiIiIiIq3CECQGZVe4zp0BY2NxayEiIiIi0jIMQWLgeCAiIiIiItEwBImB44GIiIiIiETDECQGTo9NRERERCQahiBNKysDMjMVj9kSRERERESkcQxBmnb9OlBVBVhZAba2YldDRERERKR1GII07fnxQBKJmJUQEREREWklhiBN43ggIiIiIiJRMQRpGqfHJiIiIiISFUOQJlVXMwQREREREYmMIUiTcnKAp08BqRTo1k3saoiIiIiItBJDkCYpW4F69QL09MSthYiIiIhISzEEadLzM8MREREREZEoGII0iSGIiIiIiEh0DEGaxOmxiYiIiIhExxCkKY8fA7m5iscMQUREREREomEI0hTlpAgdOwJmZuLWQkRERESkxRiCNIVd4YiIiIiIWgSGIE3hTVKJiIiIiFoEhiBN4cxwREREREQtAkOQJlRUAOnpiscMQUREREREomII0oT0dKCyEjA3B+ztxa6GiIiIiEirMQRpgnI8UJ8+gEQibi1ERERERFqOIUgTOB6IiIiIiKjFYAjSBE6PTURERETUYjAENTdBYEsQEREREVELImoIWrZsGfr16wcTExO0a9cO/v7+yMzMFLOkppebCzx5ArRpA/ToIXY1RERERERaT9QQdPLkSQQHB+P8+fNISEhAZWUl3n//fZSUlIhZVtNStgL16AHo64taChERERERAW3EPPmRI0fUnkdFRaFdu3ZITU3FoEGDamxfXl6O8vJy1fOioqJmr7HROB6IiIiIiKhFETUEvaiwsBAAYGFhUevry5YtQ0REhCZLajzl9NgcD0RERCSqqqoqVFZWil0GEb0mPT096OrqNsmxJIIgCE1ypEaqrq7GRx99hCdPnuDMmTO1blNbS5CdnR0KCwthamqqqVJfTadOwK1bQGIiMGSI2NUQERFpHUEQkJ+fjydPnohdChE1krm5OeRyOSS13HuzqKgIZmZmDcoGLaYlKDg4GNeuXaszAAGAvr4+9N+kcTWFhYoABLA7HBERkUiUAahdu3YwNDSs9csTEbVsgiCgtLQUBQUFAAAbG5tGHa9FhKCQkBAcOnQIp06dQocOHcQup+lcuaL4t0MHwNJS3FqIiIi0UFVVlSoAWfL/xURvNJlMBgAoKChAu3btGtU1TtTZ4QRBQEhICOLi4nDixAl07NhRzHKaHscDERERiUo5BsjQ0FDkSoioKSh/lxs7vk/UlqDg4GBER0cjPj4eJiYmyM/PBwCYmZmpkt4bjTdJJSIiahHYBY6odWiq32VRW4IiIyNRWFiIwYMHw8bGRrXExsaKWVbT4fTYREREREQtjujd4WpbAgMDxSyraTx7Bly7pnjMliAiIiJ6w9y+fRsSiQRpyj/qimTLli2ws7ODjo4O1q5dK2otDdFSPreXGTRoEKKjo0WtYdOmTfDz8xPt/KKGoFYtMxMoLweMjQEnJ7GrISIiojdQbm4upkyZAltbW0ilUjg4OGD69Ol49OiR2KVpRFFREUJCQjB79mzcu3cPf/rTn8QuSU1gYCD8/f3V1tnZ2SEvLw+9evVq9vN///336N69OwwMDNC7d28cPny43n0OHjyI+/fvY/z48UhKSoJEInnpkpSU1Cy1T5kyBT///DNOnz7dLMevD0NQc1GmfxcXQIcfMxEREb2aW7duwd3dHVlZWdi7dy9u3ryJTZs2ITExEZ6ennj8+LHYJTa7u3fvorKyEh9++CFsbGxee4ILTd4kV1dXF3K5HG3aNO/Q+7Nnz2LChAn44x//iEuXLsHf3x/+/v64puyJVIf169dj8uTJ0NHRgZeXF/Ly8lTL2LFjMXz4cLV1Xl5eqn0rKiqarH6pVIqJEydi/fr1TXbMV8Fv582FkyIQERG1SIIAlJRofnnV29MHBwdDKpXi2LFj8PHxgb29PUaMGIHjx4/j3r17+Prrr+vcd+LEiRg3bpzausrKSlhZWWHnzp0AgCNHjuCdd96Bubk5LC0tMXLkSGRnZ9d5zKioKJibm6utO3DgQI2B6vHx8XBzc4OBgQGcnJwQERGBZ8+eAVAMhQgPD4e9vT309fVha2uLadOm1Xm+3r17AwCcnJwgkUhw+/ZtAIpx5Z06dYJUKkW3bt2wa9cutX0lEgkiIyPx0UcfwcjICEuWLKn1HLt27YK7uztMTEwgl8sxceJE1X1olK5fv46RI0fC1NQUJiYmGDhwILKzsxEeHo4dO3YgPj5erdWktu5wJ0+ehIeHB/T19WFjY4M5c+aoPhMAGDx4MKZNm4avvvoKFhYWkMvlCA8Pr7VmpXXr1mH48OGYNWsWnJ2dsXjxYri5uWHDhg117vPgwQOcOHFC1Q1NKpVCLperFplMBn19fdXzTZs2wcPDA3//+9/RsWNHGBgYAAAcHR1rdE18++231Wp+8uQJPvvsM1hbW8PU1BRDhgzBZeXMyf/m5+eHgwcPoqys7KXvtTkwBDUXTo9NRETUIpWWKnqra3opLW14jY8fP8bRo0cxderUGjPmyuVyBAQEIDY2FkIdySogIAD/+Mc/UFxcrFp39OhRlJaWYtSoUQCAkpIShIaGIiUlBYmJidDR0cGoUaNQXV396h/qv50+fRqffvoppk+fjvT0dGzevBlRUVGqELJv3z6sWbMGmzdvRlZWFg4cOKAKOi8aN24cjh8/DgC4cOEC8vLyYGdnh7i4OEyfPh3/8z//g2vXruHPf/4zJk+ejH/+859q+4eHh2PUqFG4evUqpkyZUus5KisrsXjxYly+fBkHDhzA7du31cam37t3D4MGDYK+vj5OnDiB1NRUTJkyBc+ePcPMmTNrtJw832ry/DE++OAD9OvXD5cvX0ZkZCS2bduGv/71r2rb7dixA0ZGRvjpp5/wzTffYNGiRUhISKjzsz537hyGDh2qts7X1xfnzp2rc58zZ87A0NAQzs7OdW7zops3b2Lfvn3Yv3//K41zGjNmDAoKCvDjjz8iNTUVbm5ueO+999RaMN3d3fHs2TP89NNPDT5uU2kRN0ttdQSBM8MRERHRa8vKyoIgCHV+WXV2dsZvv/2GBw8eoF27djVe9/X1hZGREeLi4vCHP/wBABAdHY2PPvoIJiYmAIDRo0er7fO///u/sLa2Rnp6+muPZ4mIiMCcOXMwadIkAIoWnMWLF+Orr75CWFgY7t69C7lcjqFDh0JPTw/29vbw8PCo9VgymUx1g1tra2vI5XIAwMqVKxEYGIipU6cCAEJDQ3H+/HmsXLkS7777rmr/iRMnYvLkyS+t9/lw5OTkhPXr16Nfv34oLi6GsbExvvvuO5iZmSEmJgZ6enoAgK5du6rVWF5erqqtNhs3boSdnR02bNgAiUSC7t2749dff8Xs2bOxcOFC6Px72ISLiwvCwsIAAF26dMGGDRuQmJiIYcOG1Xrc/Px8tG/fXm1d+/btVbecqc2dO3fQvn171TkboqKiAjt37oS1tXWD9zlz5gwuXLiAgoIC6OvrA1D83A4cOIAffvhBNbbL0NAQZmZmuHPnToOP3VTYEtQc8vKABw8UY4E0MCiOiIiIGs7QECgu1vzyOsNZ6mrpUZJKpbh79y6MjY1Vy9KlS9GmTRuMHTsWe/bsAaBo9YmPj0dAQIBq36ysLEyYMAFOTk4wNTWFo6MjAMU4nNd1+fJlLFq0SK2eoKAg5OXlobS0FGPGjEFZWRmcnJwQFBSEuLg4tW5hDZGRkQFvb2+1dd7e3sjIyFBb5+7uXu+xUlNT4efnB3t7e5iYmMDHxwfAfz6DtLQ0DBw4UBWAXkdGRgY8PT3Vug16e3ujuLgY//rXv1TrXFxc1PazsbGp0TWvscrKylRd2hrKwcHhlQIQoLgOiouLYWlpqXYt5OTk1OhyKZPJUPoqzaRNhC1BzUHZFa5bt9f7Lx4RERE1G4kEMDISu4qX69y5MyQSCTIyMlTd156XkZEBa2trmJubw9jYWK2bkoWFBQBFlzgfHx8UFBQgISEBMpkMw4cPV23n5+cHBwcHbN26Fba2tqiurkavXr3qHPyuo6NTI5S9OOFAcXExIiIi8Mknn9TY38DAAHZ2dsjMzMTx48eRkJCAqVOnYsWKFTh58mSjgkZtjOr5IZeUlMDX1xe+vr7Ys2cPrK2tcffuXfj6+qo+gxe7IjanF9+/RCJ5addEuVyO+/fvq627f//+S1ulrKys8Ntvv71SXbV9jvVdC8XFxbCxsal1ZrkXx5U9fvz4lUNWU2BLUHPgpAhERETUCJaWlhg2bBg2btxYY9B4fn4+9uzZoxq70qZNG3Tu3Fm1KEOQl5cX7OzsEBsbiz179mDMmDGqL9qPHj1CZmYm5s+fj/fee0/Vve5lrK2t8fTpU5SUlKjWvThGxM3NDZmZmWr1KBdlFyyZTAY/Pz+sX78eSUlJOHfuHK5evdrgz8bZ2RnJyclq65KTk9GjR48GHwMAbty4gUePHmH58uUYOHAgunfvXqPlxcXFBadPn65zdjmpVIqqqqp66z137pxaaEhOToaJiQk6dOjwSjU/z9PTE4mJiWrrEhIS4OnpWec+rq6uyM/Pf+Ug9CJra2vk5eWpnhcVFSEnJ0f13M3NDfn5+TWuzc6dO8PKykq1XXZ2Nn7//Xe4uro2qp7XwRDUHDgeiIiIiBppw4YNKC8vh6+vL06dOoXc3FwcOXIEw4YNQ9euXbFw4cJ6jzFx4kRs2rQJCQkJal3h2rZtC0tLS2zZsgU3b97EiRMnEBoa+tJj9e/fH4aGhpg3bx6ys7MRHR2NqKgotW0WLlyInTt3IiIiAtevX0dGRgZiYmIwf/58AIoZ37Zt24Zr167h1q1b2L17N2QyGRwcHBr8ucyaNQtRUVGIjIxEVlYWVq9ejf3792PmzJkNPgYA2NvbQyqV4ttvv8WtW7dw8OBBLF68WG2bkJAQFBUVYfz48UhJSUFWVhZ27dqFzMxMAIpZ0q5cuYLMzEw8fPiw1rA0depU5Obm4osvvsCNGzcQHx+PsLAwhIaGvtLYnBdNnz4dR44cwapVq3Djxg2Eh4cjJSUFISEhde7j6uoKKyurGiHyVQ0ZMgS7du3C6dOncfXqVUyaNAm6urqq14cOHQpPT0/4+/vj2LFjuH37Ns6ePYuvv/4aKSkpqu1Onz4NJycndOrUqVH1vA6GoObAliAiIiJqpC5duuDixYtwcnLC2LFj4eDggBEjRqBr165ITk6GsbFxvccICAhAeno63nrrLbVxNDo6OoiJiUFqaip69eqFL7/8EitWrHjpsSwsLLB7924cPnwYvXv3xt69e2tM4+zr64tDhw7h2LFj6NevHwYMGIA1a9aoQo65uTm2bt0Kb29vuLi44Pjx4/jHP/6hmgChIfz9/bFu3TqsXLkSPXv2xObNm7F9+3YMHjy4wccAFK0ZUVFR+P7779GjRw8sX74cK1euVNvG0tISJ06cQHFxMXx8fNC3b19s3bpV1aIWFBSEbt26wd3dHdbW1rWGi7feeguHDx/GhQsX0KdPH3z++ef44x//qAqGr8vLywvR0dHYsmUL+vTpgx9++AEHDhx46aQWurq6mDx5smqs2OuaO3cufHx8MHLkSHz44Yfw9/dXCzISiQSHDx/GoEGDMHnyZHTt2hXjx49XTcygtHfvXgQFBTWqltclEeobcdeCFRUVwczMDIWFhTA1NRW7HIWSEsDERDFDXH4+8MKsHURERKQ5v//+O3JyctTucfImCwsLw+rVq5GQkIABAwaIXQ69gfLz89GzZ0/8/PPPr9QC19SuX7+OIUOG4JdffoGZmVmD93vZ7/SrZAO2BDW1q1cVAah9ewYgIiIialIRERFYv349zp8/36j7+ZD2ksvl2LZtW6NmAWwKeXl52Llz5ysFoKbE2eGaGrvCERERUTOq7943RPXx9/cXu4QaN3rVNLYENTXl9NgMQURERERELRJDUFNjSxARERERUYvGENSUqqqAK1cUjzk9NhERERFRi8QQ1JRu3gRKSwGZDOjaVexqiIiIiIioFgxBTUk5Hqh3b+C5G0YREREREVHLwRDUlJTjgdgVjoiIiIioxWIIakqcFIGIiIiIqMVjCGpKnB6biIiIWonbt29DIpEgTflHXpFs2bIFdnZ20NHRwdq1a0WtpSFayuf2Mn/4wx+wdOnSJjlWeHg43m6i774VFRVwdHRESkpKkxzvZRiCmkpBAfDrr4BEohgTRERERNRIubm5mDJlCmxtbSGVSuHg4IDp06fj0aNHYpemEUVFRQgJCcHs2bNx7949/OlPfxK7JDWBgYE1bjxqZ2eHvLw89OrVq1nPff36dYwePRqOjo6QSCQNDoiXL1/G4cOHMW3aNNW6wYMHQyKR1FiePXvWTNXXTiqVYubMmZg9e3azn4shqKkoW4E6dQJMTMSthYiIiN54t27dgru7O7KysrB3717cvHkTmzZtQmJiIjw9PfH48WOxS2x2d+/eRWVlJT788EPY2NjA0NDwtY5TWVnZxJXVTVdXF3K5HG3atGnW85SWlsLJyQnLly+HXC5v8H7ffvstxowZA2NjY7X1QUFByMvLU1ua+z3UJiAgAGfOnMH169eb9TwMQU2F44GIiIjeDIIAlJRofhGEVyozODgYUqkUx44dg4+PD+zt7TFixAgcP34c9+7dw9dff13nvhMnTsS4cePU1lVWVsLKygo7d+4EABw5cgTvvPMOzM3NYWlpiZEjRyI7O7vOY0ZFRcHc3Fxt3YEDByCRSNTWxcfHw83NDQYGBnByckJERISqRUEQBISHh8Pe3h76+vqwtbVVa5F48Xy9/927xsnJCRKJBLdv3wYAREZGolOnTpBKpejWrRt27dqltq9EIkFkZCQ++ugjGBkZYcmSJbWeY9euXXB3d4eJiQnkcjkmTpyIgoICtW2uX7+OkSNHwtTUFCYmJhg4cCCys7MRHh6OHTt2ID4+XtVykpSUVGt3uJMnT8LDwwP6+vqwsbHBnDlz1FpZBg8ejGnTpuGrr76ChYUF5HI5wsPDa61ZqV+/flixYgXGjx8PfX39l26rVFVVhR9++AF+fn41XjM0NIRcLldbAGD27Nno2rUrDA0N4eTkhAULFrw0VCYlJcHDwwNGRkYwNzeHt7c37ty5o3r9ZdcHALRt2xbe3t6IiYlp0Ht6XZqPd60VxwMRERG9GUpLgRf+Cq4RxcWAkVGDNn38+DGOHj2KJUuWQCaTqb0ml8sREBCA2NhYbNy4sUYIARR/TR8zZgyKi4tVf/E/evQoSktLMWrUKABASUkJQkND4eLiguLiYixcuBCjRo1CWloadHRe7+/kp0+fxqeffor169erwoKyC1tYWBj27duHNWvWICYmBj179kR+fj4uK79DvWDcuHGws7PD0KFDceHCBdjZ2cHa2hpxcXGYPn061q5di6FDh+LQoUOYPHkyOnTogHfffVe1f3h4OJYvX461a9fW2aJRWVmJxYsXo1u3bigoKEBoaCgCAwNx+PBhAMC9e/cwaNAgDB48GCdOnICpqSmSk5Px7NkzzJw5ExkZGSgqKsL27dsBABYWFvj111/VznHv3j188MEHCAwMxM6dO3Hjxg0EBQXBwMBALejs2LEDoaGh+Omnn3Du3DkEBgbC29sbw4YNe62fRW2uXLmCwsJCuLu7N3gfExMTREVFwdbWFlevXkVQUBBMTEzw1Vdf1dj22bNn8Pf3R1BQEPbu3YuKigpcuHBBdY3Wd30oeXh44PTp0418t/UQ3mCFhYUCAKGwsFDsUgQhLEwQ3NwE4ccfxa6EiIiI/q2srExIT08XysrK/rOyuFgQFO0yml2Kixtc9/nz5wUAQlxcXK2vr169WgAg3L9/v9bXKysrBSsrK2Hnzp2qdRMmTBDGjRtX5zkfPHggABCuXr0qCIIg5OTkCACES5cuCYIgCNu3bxfMzMzU9omLixOe/zr53nvvCUuXLlXbZteuXYKNjY0gCIKwatUqoWvXrkJFRUWddTzv0qVLAgAhJydHtc7Ly0sICgpS227MmDHCBx98oHoOQJgxY0aDzvG8ixcvCgCEp0+fCoIgCHPnzhU6duxYZ72TJk0SPv74Y7V1L35u8+bNE7p16yZUV1ertvnuu+8EY2NjoaqqShAEQfDx8RHeeecdteP069dPmD17doPqdnBwENasWVPvdnFxcYKurq5aLcrz6+npCUZGRqolNDS01mOsWLFC6Nu3r+p5WFiY0KdPH0EQBOHRo0cCACEpKanWfeu7PpTWrVsnODo61nqMWn+n/+1VsgG7wzWV8HAgNRUYPlzsSoiIiOhlDA0VrTKaXl5jPItQTxc6qVSKu3fvwtjYWLUsXboUbdq0wdixY7Fnzx4Ailaf+Ph4BAQEqPbNysrChAkT4OTkBFNTUzg6OgJQjMN5XZcvX8aiRYvU6lGONSktLcWYMWNQVlYGJycnBAUFIS4u7pUH32dkZMDb21ttnbe3NzIyMtTWNaS1IzU1FX5+frC3t4eJiQl8fHwA/OczSEtLw8CBA6Gnp/dKNb5Yr6enp1qLnbe3N4qLi/Gvf/1Ltc7FxUVtPxsbmxpd8xqrrKwM+vr6dbYepqWlqZa5c+cCAGJjY+Ht7Q25XA5jY2PMnz+/zmvEwsICgYGB8PX1hZ+fH9atW4e8vDzV6/VdH0oymUzteXNgdzgiIiLSLhJJg7uliaVz586QSCTIyMhQdV97XkZGBqytrWFubg5jY2O18ScWFhYAFF9qfXx8UFBQgISEBMhkMgx/7o+1fn5+cHBwwNatW2Fra4vq6mr06tULFRUVtdako6NTI5S9ODakuLgYERER+OSTT2rsb2BgADs7O2RmZuL48eNISEjA1KlTsWLFCpw8ebJRQaM2RvX8jEtKSuDr6wtfX1/s2bMH1tbWuHv3Lnx9fVWfwYtdEZvTi+9fIpGgurq6Sc9hZWWF0tJSVFRUQCqVqr1mZmaGzp07q607d+4cAgICEBERAV9fX5iZmSEmJgarVq2q8xzbt2/HtGnTcOTIEcTGxmL+/PlISEjAgAED6r0+lB4/fgxra+tGvtuXYwgiIiIiamEsLS0xbNgwbNy4EV9++aXal/H8/Hzs2bMHwcHBAIA2bdrU+PIKAF5eXrCzs0NsbCx+/PFHjBkzRvVF+9GjR8jMzMTWrVsxcOBAAMCZM2deWpO1tTWePn2KkpISVcB48V44bm5uyMzMrLUeJZlMBj8/P/j5+SE4OBjdu3fH1atX4ebmVv8HA8DZ2RnJycmYNGmSal1ycjJ69OjRoP2Vbty4gUePHmH58uWws7MDgBr3p3FxccGOHTtQWVlZa0iTSqWoqqqqt959+/ZBEARVC0xycjJMTEzQoUOHV6q5sZT380lPT2/QvX3Onj0LBwcHtUk4np/koC6urq5wdXXF3Llz4enpiejoaAwYMKBB1wcAXLt2Da6urvWepzHYHY6IiIioBdqwYQPKy8vh6+uLU6dOITc3F0eOHMGwYcPQtWtXLFy4sN5jTJw4EZs2bUJCQoJaV7i2bdvC0tISW7Zswc2bN3HixAmEhoa+9Fj9+/eHoaEh5s2bh+zsbERHRyMqKkptm4ULF2Lnzp2IiIjA9evXkZGRgZiYGMyfPx+AYsa3bdu24dq1a7h16xZ2794NmUwGBweHBn8us2bNQlRUFCIjI5GVlYXVq1dj//79mDlzZoOPAQD29vaQSqX49ttvcevWLRw8eBCLFy9W2yYkJARFRUUYP348UlJSkJWVhV27diEzMxMA4OjoiCtXriAzMxMPHz6sdda0qVOnIjc3F1988QVu3LiB+Ph4hIWFITQ09LUnoAAUNxZVdl2rqKjAvXv3kJaWhps3b9a5j7W1Ndzc3OoNvEpdunTB3bt3ERMTg+zsbKxfvx5xcXF1bp+Tk4O5c+fi3LlzuHPnDo4dO4asrCw4OzsDqP/6UDp9+jTef//9BtX42uodNdSCtaiJEYiIiKjFedkg6jdBTk6OMGnSJKF9+/aCRCIRAAiffPKJUFJS0qD909PTBQCCg4NDjcHwCQkJgrOzs6Cvry+4uLgISUlJapMxvDjAXxAUA+s7d+4syGQyYeTIkcKWLVuEF79OHjlyRPDy8hJkMplgamoqeHh4CFu2bFHt379/f8HU1FQwMjISBgwYIBw/frzO+mubGEEQBGHjxo2Ck5OToKenJ3Tt2lVtAghBEF46qcTzoqOjBUdHR0FfX1/w9PQUDh48WOM9X758WXj//fcFQ0NDwcTERBg4cKCQnZ0tCIIgFBQUCMOGDROMjY0FAMI///nPWj+3pKQkoV+/foJUKhXkcrkwe/ZsobKyUvW6j4+PMH36dLXaPv74Y2HSpEl11q48z4uLj4/PS9/zxo0bhQEDBqitq+38SrNmzRIsLS0FY2NjYdy4ccKaNWvUJsh4fmKE/Px8wd/fX7CxsRGkUqng4OAgLFy4UDUBhCC8/PoQBEE4e/asYG5uLpSWltZaT1NNjCARhFectL4FKSoqgpmZGQoLC2Fqaip2OURERNTC/P7778jJyUHHjh3Vxhy8qcLCwrB69WrVGAuiV1VWVoZu3bohNjYWnp6eYpdTw7hx49CnTx/Mmzev1tdf9jv9KtmAY4KIiIiI3hARERFwdHTE+fPn4eHh0ajuVKSdZDIZdu7ciYcPH4pdSg0VFRXo3bs3vvzyy2Y/F1uCiIiIqNVqbS1BRNquqVqC+OcDIiIiIiLSKgxBRERERESkVRiCiIiIqNV7g3v/E9Fzmup3mSGIiIiIWi3lDS5LS0tFroSImoLyd7m2m9e+Cs4OR0RERK2Wrq4uzM3NUVBQAAAwNDSERCIRuSoielWCIKC0tBQFBQUwNzeHrq5uo47HEEREREStmlwuBwBVECKiN5e5ubnqd7oxRA1Bp06dwooVK5Camoq8vDzExcXB399fzJKIiIiolZFIJLCxsUG7du1QWVkpdjlE9Jr09PQa3QKkJGoIKikpQZ8+fTBlyhR88sknYpZCRERErZyurm6TfYEiojebqCFoxIgRGDFihJglEBERERGRlnmjxgSVl5ejvLxc9byoqEjEaoiIiIiI6E30Rk2RvWzZMpiZmakWOzs7sUsiIiIiIqI3zBvVEjR37lyEhoaqnhcWFsLe3p4tQkREREREWk6ZCRpyQ9U3KgTp6+tDX19f9Vz5RtkiREREREREAPD06VOYmZm9dJs3KgS9yNbWFrm5uTAxMRH9xmdFRUWws7NDbm4uTE1NRa2FtAOvOdI0XnOkSbzeSNN4zb35BEHA06dPYWtrW++2ooag4uJi3Lx5U/U8JycHaWlpsLCwgL29fb376+jooEOHDs1Z4iszNTXlLw5pFK850jRec6RJvN5I03jNvdnqawFSEjUEpaSk4N1331U9V473mTRpEqKiokSqioiIiIiIWjNRQ9DgwYMbNHCJiIiIiIioqbxRU2S3ZPr6+ggLC1ObuIGoOfGaI03jNUeaxOuNNI3XnHaRCGyKISIiIiIiLcKWICIiIiIi0ioMQUREREREpFUYgoiIiIiISKswBBERERERkVZhCGoi3333HRwdHWFgYID+/fvjwoULYpdErdSyZcvQr18/mJiYoF27dvD390dmZqbYZZGWWL58OSQSCWbMmCF2KdSK3bt3D//93/8NS0tLyGQy9O7dGykpKWKXRa1QVVUVFixYgI4dO0Imk6FTp05YvHgxb+GiBRiCmkBsbCxCQ0MRFhaGn3/+GX369IGvry8KCgrELo1aoZMnTyI4OBjnz59HQkICKisr8f7776OkpETs0qiVu3jxIjZv3gwXFxexS6FW7LfffoO3tzf09PTw448/Ij09HatWrULbtm3FLo1aob/97W+IjIzEhg0bkJGRgb/97W/45ptv8O2334pdGjUzTpHdBPr3749+/fphw4YNAIDq6mrY2dnhiy++wJw5c0Sujlq7Bw8eoF27djh58iQGDRokdjnUShUXF8PNzQ0bN27EX//6V7z99ttYu3at2GVRKzRnzhwkJyfj9OnTYpdCWmDkyJFo3749tm3bplo3evRoyGQy7N69W8TKqLmxJaiRKioqkJqaiqFDh6rW6ejoYOjQoTh37pyIlZG2KCwsBABYWFiIXAm1ZsHBwfjwww/V/ltH1BwOHjwId3d3jBkzBu3atYOrqyu2bt0qdlnUSnl5eSExMRG//PILAODy5cs4c+YMRowYIXJl1NzaiF3Am+7hw4eoqqpC+/bt1da3b98eN27cEKkq0hbV1dWYMWMGvL290atXL7HLoVYqJiYGP//8My5evCh2KaQFbt26hcjISISGhmLevHm4ePEipk2bBqlUikmTJoldHrUyc+bMQVFREbp37w5dXV1UVVVhyZIlCAgIELs0amYMQURvsODgYFy7dg1nzpwRuxRqpXJzczF9+nQkJCTAwMBA7HJIC1RXV8Pd3R1Lly4FALi6uuLatWvYtGkTQxA1uf/7v//Dnj17EB0djZ49eyItLQ0zZsyAra0tr7dWjiGokaysrKCrq4v79++rrb9//z7kcrlIVZE2CAkJwaFDh3Dq1Cl06NBB7HKolUpNTUVBQQHc3NxU66qqqnDq1Cls2LAB5eXl0NXVFbFCam1sbGzQo0cPtXXOzs7Yt2+fSBVRazZr1izMmTMH48ePBwD07t0bd+7cwbJlyxiCWjmOCWokqVSKvn37IjExUbWuuroaiYmJ8PT0FLEyaq0EQUBISAji4uJw4sQJdOzYUeySqBV77733cPXqVaSlpakWd3d3BAQEIC0tjQGImpy3t3eNaf9/+eUXODg4iFQRtWalpaXQ0VH/Oqyrq4vq6mqRKiJNYUtQEwgNDcWkSZPg7u4ODw8PrF27FiUlJZg8ebLYpVErFBwcjOjoaMTHx8PExAT5+fkAADMzM8hkMpGro9bGxMSkxngzIyMjWFpachwaNYsvv/wSXl5eWLp0KcaOHYsLFy5gy5Yt2LJli9ilUSvk5+eHJUuWwN7eHj179sSlS5ewevVqTJkyRezSqJlxiuwmsmHDBqxYsQL5+fl4++23sX79evTv31/ssqgVkkgkta7fvn07AgMDNVsMaaXBgwdzimxqVocOHcLcuXORlZWFjh07IjQ0FEFBQWKXRa3Q06dPsWDBAsTFxaGgoAC2traYMGECFi5cCKlUKnZ51IwYgoiIiIiISKtwTBAREREREWkVhiAiIiIiItIqDEFERERERKRVGIKIiIiIiEirMAQREREREZFWYQgiIiIiIiKtwhBERERERERahSGIiIiIiIi0CkMQERERERFpFYYgIiIS3YMHD/CXv/wF9vb20NfXh1wuh6+vL5KTkwEAEokEBw4ceOXjOjo6Yu3atU1bLBERvfHaiF0AERHR6NGjUVFRgR07dsDJyQn3799HYmIiHj16JHZpRETUCkkEQRDELoKIiLTXkydP0LZtWyQlJcHHx6fG646Ojrhz547quYODA27fvo3s7GyEhobi/PnzKCkpgbOzM5YtW4ahQ4cCAAYPHoyTJ0+qHUv5v7wzZ85g7ty5SElJgZWVFUaNGoVly5bByMioGd8pERG1FOwOR0REojI2NoaxsTEOHDiA8vLyGq9fvHgRALB9+3bk5eWpnhcXF+ODDz5AYmIiLl26hOHDh8PPzw93794FAOzfvx8dOnTAokWLkJeXh7y8PABAdnY2hg8fjtGjR+PKlSuIjY3FmTNnEBISoqF3TEREYmNLEBERiW7fvn0ICgpCWVkZ3Nzc4OPjg/Hjx8PFxQWAYkxQXFwc/P39X3qcXr164fPPP1cFGkdHR8yYMQMzZsxQbfPZZ59BV1cXmzdvVq07c+YMfHx8UFJSAgMDgyZ/f0RE1LKwJYiIiEQ3evRo/Prrrzh48CCGDx+OpKQkuLm5ISoqqs59iouLMXPmTDg7O8Pc3BzGxsbIyMhQtQTV5fLly4iKilK1QBkbG8PX1xfV1dXIyclp4ndGREQtESdGICKiFsHAwADDhg3DsGHDsGDBAnz22WcICwtDYGBgrdvPnDkTCQkJWLlyJTp37gyZTIb/+q//QkVFxUvPU1xcjD//+c+YNm1ajdfs7e2b4q0QEVELxxBEREQtUo8ePVTTYuvp6aGqqkrt9eTkZAQGBmLUqFEAFOHm9u3battIpdIa+7m5uSE9PR2dO3duttqJiKhlY3c4IiIS1aNHjzBkyBDs3r0bV65cQU5ODr7//nt88803+PjjjwEoxvYkJiYiPz8fv/32GwCgS5cu2L9/P9LS0nD58mVMnDgR1dXVasd2dHTEqVOncO/ePTx8+BAAMHv2bJw9exYhISFIS0tDVlYW4uPjOTECEZEWYQgiIiJRGRsbo3///lizZg0GDRqEXr16YcGCBQgKCsKGDRsAAKtWrUJCQgLs7Ozg6uoKAFi9ejXatm0LLy8v+Pn5wdfXF25ubmrHXrRoEW7fvo1OnTrB2toaAODi4oKTJ0/il19+wcCBA+Hq6oqFCxfC1tZWs2+ciIhEw9nhiIiIiIhIq7AliIiIiIiItApDEBERERERaRWGICIiIiIi0ioMQUREREREpFUYgoiIiIiISKswBBERERERkVZhCCIiIiIiIq3CEERERERERFqFIYiIiIiIiLQKQxAREREREWkVhiAiIiIiItIq/w8bMxovhHNfBgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 1000x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAIjCAYAAAAwSJuMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfXe8HUX5/rPn3JsbDEkIoUOASC8BFKRXQRApgoIiKFVUwC+CFfypWICAVCsCSlMRKSIgvQQSOiGUUNJ7SC83/ZZz5vfHubs75Z22u+fce8M8fMLdszs78+7s7My8877vMxFjjCEgICAgICAgICAgICBAQam7BQgICAgICAgICAgICOipCApTQEBAQEBAQEBAQECABkFhCggICAgICAgICAgI0CAoTAEBAQEBAQEBAQEBARoEhSkgICAgICAgICAgIECDoDAFBAQEBAQEBAQEBARoEBSmgICAgICAgICAgIAADYLCFBAQEBAQEBAQEBAQoEFQmAICAgICAgICAgICAjQIClNAQECvw/PPP48oivD88893tyg9AlEU4Ze//GV3i9EtuOOOOxBFEaZNm9bQchtV5/UqZ21pM4ceeigOPfTQ7hbDijPPPBNbb711d4sREBCQEUFhCggIcEIURU7/XJSYK6+8Ev/973/rLnM8mY7/NTU1YfPNN8eZZ56J2bNn1738ABGxoqv7d88993S3iAENwqJFi/CjH/0IO+ywA/r27Yv1118fRx11FB599NHuFi0gICBAQVN3CxAQENA78Pe//134fdddd+Hpp59Wzu+0007WvK688kqcdNJJOOGEE4oUUYtf//rXGDp0KNasWYNXX30Vd9xxB1588UW899576Nu3b0NkCEhx4YUX4jOf+Yxyfr/99vPO6xvf+AZOOeUUtLS0FCHaxwarV69GU1P3TAHGjx+Pww8/HAsWLMBZZ52FvfbaC0uXLsU///lPHHvssfjJT36Cq666qltkqxduvfVWVKvV7hYjICAgI4LCFBAQ4ISvf/3rwu9XX30VTz/9tHK+J+Loo4/GXnvtBQD45je/iQ022ABXX301Hn74YXzlK1/pZunsWLlyJfr169fdYjjBRdaDDjoIJ510UiHllctllMvlQvJa21GtVtHe3o6+fft220JBR0cHTjrpJCxZsgQjR47EPvvsk1y7+OKLcdppp+Hqq6/GnnvuiZNPPrlbZLSBMYY1a9ZgnXXWcb6nubm5jhIFBATUG8ElLyAgoDCsXLkSP/jBDzBkyBC0tLRghx12wLXXXgvGWJImiiKsXLkSd955Z+KKdeaZZwIApk+fjvPPPx877LAD1llnHQwePBgnn3xy4fEpBx10EABg8uTJwvlx48bhpJNOwvrrr4++fftir732wsMPP5xcX7p0KcrlMn7/+98n5xYuXIhSqYTBgwcLz3neeedhk002SX6PGjUKJ598Mrbccku0tLRgyJAhuPjii7F69WpBhjPPPBPrrrsuJk+ejC984Qvo378/TjvtNABAW1sbLr74Ymy44Ybo378/jj/+eMyaNcvpmWN3uH//+9/46U9/ik022QT9+vXD8ccfj5kzZyrpX3vtNXz+85/HwIED8YlPfAKHHHIIXnrpJSHNL3/5S0RRhA8++ACnnnoqBg0ahAMPPNBJHhuiKMJ3v/td/POf/0zctvbcc0+MHDlSSEfFMI0ePRpHHXUUNthgA6yzzjoYOnQozj77bOE+l7YK+NX57NmzcfbZZ2PjjTdGS0sLdtllF9x2221Oz+taji4WJn4XPPg63GWXXdDS0oInnngiucbHMMX3T5o0CWeeeSbWW289DBw4EGeddRZWrVol5Lt69WpceOGF2GCDDRJZZ8+e7RQX9cADD+C9997DJZdcIihLQE35vfnmm7HeeuvhsssuM+ZjQltbGy677DJsu+22ybf24x//GG1tbUK622+/HZ/97Gex0UYboaWlBTvvvDNuuukmJb+tt94axx57LJ588knstddeWGeddXDzzTcn39S9996LK664AltssQX69u2Lww8/HJMmTRLykN/btGnTEEURrr32Wtxyyy3YZptt0NLSgs985jN44403FBnuu+8+7Lzzzujbty923XVXPPjggyEuKiCggQgWpoCAgELAGMPxxx+PESNG4JxzzsEee+yBJ598Ej/60Y8we/Zs3HDDDQBqrn3f/OY3sffee+Nb3/oWAGCbbbYBALzxxht4+eWXccopp2CLLbbAtGnTcNNNN+HQQw/FBx98gE984hOFyBpPrgcNGpSce//993HAAQdg8803xyWXXIJ+/frh3nvvxQknnIAHHngAJ554ItZbbz3suuuuGDlyJC688EIAwIsvvogoirB48WJ88MEH2GWXXQDUFKRYMQNqE55Vq1bhvPPOw+DBg/H666/jD3/4A2bNmoX77rtPkK+zsxNHHXUUDjzwQFx77bXJc3/zm9/EP/7xD5x66qnYf//98dxzz+GYY47xevYrrrgCURThJz/5CebPn48bb7wRRxxxBN5+++1kxfy5557D0UcfjT333BOXXXYZSqVSMrkcNWoU9t57byHPk08+Gdtttx2uvPJKReGgsHz5cixcuFA5P3jwYGHS/8ILL+Df//43LrzwQrS0tODPf/4zPv/5z+P111/HrrvuSuY9f/58HHnkkdhwww1xySWXYL311sO0adPwn//8J0nj2lYB9zqfN28e9t1330RJ2XDDDfH444/jnHPOwbJly3DRRRcZ66SId0vhueeew7333ovvfve72GCDDawT7K985SsYOnQohg8fjjFjxuCvf/0rNtpoI1x99dVJmjPPPBP33nsvvvGNb2DffffFCy+84CzrI488AgA4/fTTyesDBw7EF7/4Rdx5552YPHly0je4olqt4vjjj8eLL76Ib33rW9hpp50wduxY3HDDDZgwYYIQO3nTTTdhl112wfHHH4+mpiY88sgjOP/881GtVnHBBRcI+Y4fPx5f+9rX8O1vfxvnnnsudthhh+TaVVddhVKphB/+8IdobW3Fb3/7W5x22ml47bXXrPLefffdWL58Ob797W8jiiL89re/xZe+9CVMmTIlsUo9+uij+OpXv4phw4Zh+PDhWLJkCc455xxsvvnmXnUTEBCQAywgICAgAy644ALGdyH//e9/GQB2+eWXC+lOOukkFkURmzRpUnKuX79+7IwzzlDyXLVqlXLulVdeYQDYXXfdlZwbMWIEA8BGjBhhlPH2229nANgzzzzDFixYwGbOnMnuv/9+tuGGG7KWlhY2c+bMJO3hhx/Ohg0bxtasWZOcq1arbP/992fbbbed8Nwbb7xx8vv73/8+O/jgg9lGG23EbrrpJsYYY4sWLWJRFLHf/e53xmcbPnw4i6KITZ8+PTl3xhlnMADskksuEdK+/fbbDAA7//zzhfOnnnoqA8Auu+wyY13Edbb55puzZcuWJefvvfdeBiCRtVqtsu22244dddRRrFqtCvIPHTqUfe5zn0vOXXbZZQwA+9rXvmYsW5ZB92/OnDlJ2vjc6NGjk3PTp09nffv2ZSeeeGJyLn7HU6dOZYwx9uCDDzIA7I033tDK4dpWfer8nHPOYZtuuilbuHChkPaUU05hAwcOJN9/DJ9yzjjjDLbVVlspecTvggcAViqV2Pvvv6+kl/ON7z/77LOFdCeeeCIbPHhw8vvNN99kANhFF10kpDvzzDOd2uEee+zBBg4caExz/fXXMwDs4YcfNqZjjLFDDjmEHXLIIcnvv//976xUKrFRo0YJ6f7yl78wAOyll15KzlHv5KijjmKf/OQnhXNbbbUVA8CeeOIJ4XzcnnfaaSfW1taWnP/d737HALCxY8cm5+T3NnXqVAaADR48mC1evDg5/9BDDzEA7JFHHknODRs2jG2xxRZs+fLlybnnn3+eASDbQkBAQPEILnkBAQGF4LHHHkO5XE4sLzF+8IMfgDGGxx9/3JoHHxPQ0dGBRYsWYdttt8V6662HMWPGZJbtiCOOwIYbboghQ4bgpJNOQr9+/fDwww9jiy22AAAsXrwYzz33HL7yla8k1o+FCxdi0aJFOOqoozBx4sSEVe+ggw7CvHnzMH78eAA1S9LBBx+Mgw46CKNGjQJQszoxxgQLE/9sK1euxMKFC7H//vuDMYa33npLkfm8884Tfj/22GMAoNSvzXIh4/TTT0f//v2T3yeddBI23XTTJP+3334bEydOxKmnnopFixYldbFy5UocfvjhGDlypBK8/p3vfMdLhl/84hd4+umnlX/rr7++kG6//fbDnnvumfzecsst8cUvfhFPPvkkKpUKmfd6660HAPjf//6Hjo4OMo1rW3Wtc8YYHnjgARx33HFgjCV1tnDhQhx11FFobW01tt+i3i2FQw45BDvvvLNzevldHnTQQVi0aBGWLVsGAIlL3/nnny+k+7//+z+n/JcvXy60Pwrx9eXLlzvlyeO+++7DTjvthB133FF4D5/97GcBACNGjEjS8t9ka2srFi5ciEMOOQRTpkxBa2urkO/QoUNx1FFHkWWeddZZ6NOnT/I7/u6nTJlilferX/2qYOmW7/3oo48wduxYnH766Vh33XWTdIcccgiGDRtmzT8gIKAYBJe8gICAQjB9+nRsttlmymQoZs2bPn26NY/Vq1dj+PDhuP322zF79mzBvUuewPjgT3/6E7bffnu0trbitttuw8iRIwVWtUmTJoExhp///Of4+c9/TuYxf/58bL755smEZtSoUdhiiy3w1ltv4fLLL8eGG26Ia6+9Nrk2YMAA7L777sn9M2bMwC9+8Qs8/PDDWLJkiZC3/GxNTU2JMhdj+vTpKJVKiosS7xrkgu222074HUURtt1228RNceLEiQCAM844Q5tHa2urMMkbOnSolwzDhg3DEUcc4S0rAGy//fZYtWoVFixYIMSIxTjkkEPw5S9/Gb/61a9www034NBDD8UJJ5yAU089NXnnrm3Vtc4XLFiApUuX4pZbbsEtt9xCPsv8+fO1z1nUu6Xg+2623HJL4Xf8npcsWYIBAwYkssr5brvttk759+/fn3TH5BErShtttBEAYMWKFVixYkVyvVwuY8MNNyTvnThxIj788EPtdf49vPTSS7jsssvwyiuvKHFara2tGDhwYPLbVI+mOrPBdm/cFqn63XbbbXMtJAUEBLgjKEwBAQE9Bv/3f/+H22+/HRdddBH2228/DBw4EFEU4ZRTTslFybv33nsnLHknnHACDjzwQJx66qkYP3481l133STvH/7wh9pV5HjCstlmm2Ho0KEYOXIktt56azDGsN9++2HDDTfE9773PUyfPh2jRo3C/vvvj1KpZsSvVCr43Oc+h8WLF+MnP/kJdtxxR/Tr1w+zZ8/GmWeeqTxbS0tLcm+jEctyzTXXYI899iDT8CvdALzYwuqNKIpw//3349VXX8UjjzyCJ598EmeffTauu+46vPrqq4rsRSCus69//etaRXO33XYrpCyZ2CGGzuLm+250jIPMITbNBTvvvDPefvttzJgxQ1EWYrz77rsAgE9+8pMAgGuvvRa/+tWvkutbbbWVlgimWq1i2LBhuP7668nrQ4YMAVAjfDn88MOx44474vrrr8eQIUPQp08fPPbYY7jhhhuUb9JUj3nqrN71HRAQUAyCwhQQEFAIttpqKzzzzDOKy824ceOS6zF0k777778fZ5xxBq677rrk3Jo1a7B06dLC5CyXyxg+fDgOO+ww/PGPf8Qll1ySTMyam5udLB8HHXQQRo4ciaFDh2KPPfZA//79sfvuu2PgwIF44oknMGbMGGGCN3bsWEyYMAF33nmnEOz+9NNPO8u91VZboVqtYvLkyYLlIXYNdEVsQYrBGMOkSZOSCX1s5RgwYIBTXdQTsqwAMGHCBHziE5/QWhBi7Lvvvth3331xxRVX4O6778Zpp52Ge+65B9/85jed26prncfMdpVKJVOd+bzbQYMGkd+DiwW3CMSyTp06VbAAyqxwOhx33HG4++67cdddd+FnP/uZcn3ZsmV46KGH8OlPfzr5Lk8//XSBfdGkvGyzzTZ45513cPjhh2v7GaBGPtHW1oaHH35YUNx4l72egLgtUvXrWucBAQH5EWKYAgICCsEXvvAFVCoV/PGPfxTO33DDDYiiCEcffXRyrl+/fuSkr1wuKyurf/jDH7Sr51lx6KGHYu+998aNN96INWvWYKONNsKhhx6Km2++GXPmzFHSL1iwQPh90EEHYdq0afj3v/+duOiVSiXsv//+uP7669HR0SHEL8WryPyzMcbwu9/9zlnmuP54SnMAuPHGG53zAGobDvOxIffffz/mzJmT5L/nnntim222wbXXXiu4QcWQ66KeeOWVVwSXo5kzZ+Khhx7CkUceqV2ZX7JkidKGYktZTCvt2lZd67xcLuPLX/5yQpktw1ZnPu92m222QWtra2KFAYA5c+bgwQcfNJZRFGIL7J///Gfh/B/+8Aen+7/85S9jl112wVVXXYXRo0cL16rVKs477zwsWbIE/+///b/k/Cc/+UkcccQRyb8DDjhAm/9XvvIVzJ49G7feeqtybfXq1Vi5ciUA+ptsbW3F7bff7vQcjcJmm22GXXfdFXfddZfwPb7wwgsYO3ZsN0oWEPDxQrAwBQQEFILjjjsOhx12GP7f//t/mDZtGnbffXc89dRTeOihh3DRRRcJ8Rl77rknnnnmGVx//fWJi9s+++yDY489Fn//+98xcOBA7LzzznjllVfwzDPPYPDgwYXL+6Mf/Qgnn3wy7rjjDnznO9/Bn/70Jxx44IEYNmwYzj33XHzyk5/EvHnz8Morr2DWrFl45513kntjZWj8+PG48sork/MHH3wwHn/88WQ/lRg77rgjttlmG/zwhz/E7NmzMWDAADzwwANOMQ4x9thjD3zta1/Dn//8Z7S2tmL//ffHs88+673KvP766+PAAw/EWWedhXnz5uHGG2/Etttui3PPPRdATfH761//iqOPPhq77LILzjrrLGy++eaYPXs2RowYgQEDBiTU0FkxatQorFmzRjm/2267Ca5ru+66K4466iiBVhyAYL2Tceedd+LPf/4zTjzxRGyzzTZYvnw5br31VgwYMABf+MIXALi3VZ86v+qqqzBixAjss88+OPfcc7Hzzjtj8eLFGDNmDJ555hksXrxYK7NPOaeccgp+8pOf4MQTT8SFF16IVatW4aabbsL222/fkHiWPffcE1/+8pdx4403YtGiRQmt+IQJEwDorccxmpub8cADD+Czn/1s0g732msvLF26FHfffTfGjBmDn/70p/jSl76USb5vfOMbuPfee/Gd73wHI0aMwAEHHIBKpYJx48bh3nvvTfZSOvLII9GnTx8cd9xx+Pa3v40VK1bg1ltvxUYbbUQumnQnrrzySnzxi1/EAQccgLPOOgtLlizBH//4R+y6667kokZAQEAd0GhavoCAgLUDMq04Y4wtX76cXXzxxWyzzTZjzc3NbLvttmPXXHONQE/NGGPjxo1jBx98MFtnnXUYgIRifMmSJeyss85iG2ywAVt33XXZUUcdxcaNG8e22morgYbcl1acopiuVCpsm222Ydtssw3r7OxkjDE2efJkdvrpp7NNNtmENTc3s80335wde+yx7P7771fu32ijjRgANm/evOTciy++yACwgw46SEn/wQcfsCOOOIKtu+66bIMNNmDnnnsue+eddxgAdvvttyfpzjjjDNavXz/yeVavXs0uvPBCNnjwYNavXz923HHHsZkzZ3rRiv/rX/9il156Kdtoo43YOuusw4455hiB1jzGW2+9xb70pS+xwYMHs5aWFrbVVluxr3zlK+zZZ59N0sRU1AsWLDCWLcug+8c/AwB2wQUXsH/84x9su+22Yy0tLexTn/qU8s5lWvExY8awr33ta2zLLbdkLS0tbKONNmLHHnusQE/OmHtb9anzefPmsQsuuIANGTKENTc3s0022YQdfvjh7JZbbrHWjU85Tz31FNt1111Znz592A477MD+8Y9/aGnFL7jgArI8OV/du5TrlzHGVq5cyS644AK2/vrrs3XXXZedcMIJbPz48QwAu+qqq6zPyhhjCxYsYD/4wQ/Ytttuy/r06ZO0gb/97W9O98eQacUZY6y9vZ1dffXVbJdddmEtLS1s0KBBbM8992S/+tWvWGtra5Lu4YcfZrvtthvr27cv23rrrdnVV1/NbrvtNuV5t9pqK3bMMccoZcft+b777hPOx5Th8ndN0Ypfc801Sr7UO7/nnnvYjjvuyFpaWtiuu+7KHn74YfblL3+Z7bjjjvZKCggIyI2IsRBZGBAQELC24/nnn8dhhx2G++67DyeddFJ3i2NFFEW44IILFLe5gJ6Jt99+G5/61Kfwj3/8A6eddpr3/WPHjsVBBx2EIUOG4MUXXxQY6gJo7LHHHthwww29YiEDAgKyIcQwBQQEBAQEBDhj9erVyrkbb7wRpVIJBx98cKY8hw0bhoceeggTJ07ECSecgPb29rxirjXo6OhAZ2encO7555/HO++8g0MPPbR7hAoI+JghxDAFBAQEBAQEOOO3v/0t3nzzTRx22GFoamrC448/jscffxzf+ta3EtruLDjkkEPI2LaPO2bPno0jjjgCX//617HZZpth3Lhx+Mtf/oJNNtnEe9PogICAbAgKU0BAQEBAQIAz9t9/fzz99NP4zW9+gxUrVmDLLbfEL3/5S4HZLqA4DBo0CHvuuSf++te/YsGCBejXrx+OOeYYXHXVVXUhxAkICFARYpgCAgICAgICAgICAgI0CDFMAQEBAQEBAQEBAQEBGgSFKSAgICAgICAgICAgQIOPVQxTtVrFRx99hP79+1s31wsICAgICAgICAgIWHvBGMPy5cux2WaboVTS25E+VgrTRx99lIvBJyAgICAgICAgICBg7cLMmTOxxRZbaK9/rBSm/v37A6hVyoABA7pZmoCAgICAgICAgICA7sKyZcswZMiQREfQ4WOlMMVueAMGDAgKU0BAQEBAQEBAQECANVQnkD4EBAQEBAQEBAQEBARoEBSmgICAgICAgICAgIAADYLCFBAQEBAQEBAQEBAQoEFQmAICAgICAgICAgICAjQIClNAQEBAQEBAQEBAQIAGQWEKCAgICAgICAgICAjQIChMAQEBAQEBAQEBAQEBGgSFKSAgICAgICAgICAgQIOgMAUEBAQEBAQEBAQEBGgQFKaAgICAgICAgICAgAANgsIUEBAQEBAQEBAQEBCgQVCYAgICAgICAgICAgICNAgKU0BAQEBAQEBAQEBAgAZBYQoICAgICAgICAgICNCgxyhMI0eOxHHHHYfNNtsMURThv//9r3CdMYZf/OIX2HTTTbHOOuvgiCOOwMSJE7tH2ICAgICAgICAgICAjwV6jMK0cuVK7L777vjTn/5EXv/tb3+L3//+9/jLX/6C1157Df369cNRRx2FNWvWNFjSgICAgICAgICAgICPC3qMwnT00Ufj8ssvx4knnqhcY4zhxhtvxM9+9jN88YtfxG677Ya77roLH330kWKJCgjoTnRUqhgzYwk6K1VjutXtFbw9cykYYw2SrDFgjOGdmUuxqr2zu0UpFMvXdOC92a3WdAtXtGHivOUNkMiMmYtXYdaSVcnv1lUdeP8ju/w2TJi3HItWtBnTMMYwdlYrlq/pyFzOtIUrMad1deb7AaBaZRgzYwnaOivGdO/NbsUyg6ytqzrwwUfLyGuu7SIPGGN4e+ZSrG43PweF9k66P5q/fA0mzV+hvW/CvOVYaHjPq9o78Y6m/1rTUcFz4+Zh8gJ9/jLmtq7Bk+/PResq+j2Mm7sMi1e2G+ti5uJVmLl4FXF3DXFdVKr5+9wPPlqGpavaMXnBCkxbuFJbF0XB9mwxXNt8vWBqF43Ce7Nb0bo6bUeMMbw7aylWtNFjku37t4ExhjenL8arUxbh/Y9asXRVu9N985atwRTDN9JZqeKlSQvx7qylwvklK9sxbq7aH3V2zT3aO9W5x8R5yzFt4Uq8O2upUhfVau2bWtORrc0sWtGGJ9+fax0XAKCts1LYN9gdaOpuAVwwdepUzJ07F0cccURybuDAgdhnn33wyiuv4JRTTiHva2trQ1tb+hKXLaMHvYCAovCLh97Dv16fibMO2BqXHbeLNt3pt72GN6YtweUn7Iqv77tVAyWsLx4YMxs/vO8d7LbFQDz83QO7W5zCcNQNI/FR6xrccdZncOgOG2nT7XX5MwCA5394KLbeoF+jxBOwpqOCg347AgAw4fKj0aephAN/+xyWr+nE/d/ZD3ttvX6mfKcuXIkjbxgJAJh21THadM+Nm49z7hyNIeuvg1E//qx3Oa2rOnDotc9by7Hhphcm45onx+PInTfGLafvRaYZNXEBvvG317HJgL549aeHk2n2u+pZrGqv4MHz98enthwkXPvc9SMxd5m9XeTBPW/MxKX/GYtPb7ke/nP+AV73XvqfsXhgzCx8+5BP4tKjd0rO733FswCAVy89HJsM7CvcM83hPZ900yv4YM4y3PDV3XHip7YQrv32ifG47aWpAIB3f3kkBvRttsp57B9exMIVbThw2w3wj2/uI1wbN3cZPn/jKJQi4MoTh+ESoi7aOtU2L+MnD7yLB9+ajQsO2wY/OmpHq0w6vDVjCU7888vK+Ru/ugdO+NTmmfPVob2zmjzbuN98Hn2by9q0cZv/3M4b41ZNm68n4nZRr7qw4ZXJi/C1W1/F+v36YMzPPwcAeGzsXFxw9xhss2E/PPuDQ4X0L05ciK//7TVs2L8Fb/y/I4gc7Xh58iKc9tfXkt/rNJfx4W8+b71vnytr3+Donx2BDdZtUa7fO3oWfvrg2NozXHgQdt5sAADg05c/DcaARy88ELtsNjBJf82T43HzyCk4ac8tcO3JuyfnZy5ehc91fc8xtttoXTz9/UMAAP98bTp+/tD72O+Tg/Gvb+3r+tgJTvvraxg3dzl22Lg/nrz4YGPaH9z7Dv737hxcfMT2+N4R23mX1d3oMRYmE+bOnQsA2HjjjYXzG2+8cXKNwvDhwzFw4MDk35AhQ+oqZ0DAv16fCQC4/aVpxnRvTFsCALjnjRn1FqmhuHd07fnfnVXfVfdG46PWmuvvY2PnOKV/e+bSOkpjxvI16ephvJIYnxsxfn7mfN+ascQp3f/erdXRzMXZLESzltpX0l3wtxdrk/anPpinTfPEe7XxY+4yvWv3qi5rxgsTFijX4vvifOqBe16v9RFjZiz1vveBMbMAADe/MIW8/iGxUv3mdPt7/mBO7b4H3pytXOMtg4tX2FfbGWOJNYtaOX9x4kIAQJUB/3qj1r/IdbFsddrmV2osCQ++VZNVVxeueH682g6AtK6Lxmpu5X+pxgIX49ZRtWd72tDm64mkXdSpLmyIn3vxyrTd/fft2nufvGClkv6J92t91YLlduuIDrOXiv3cak9LzRRCLgCCh8DcZWkZsfHulcmLhPQ3j6y9+/vfFOueGosnctblO1+ZXstvyiIlnQvGza15VIx38KyIx4abR07OVFZ3o1coTFlx6aWXorW1Nfk3c+bM7hYpIEBAhKi7RSgUpbXrcRS4ehIwdJ/LQXM5fQmyK1ae9kat2tcDRX0TfD3o0OTRYNe2bxUA+UQ+LdfWztstrskA0Ml9VH3KahvrqKTXda/L53trJsrwQaO/bP6ZO6vm+uwpHt7VbhKEagflSP/dFiFmtU7uZbxrHSVnJD2X7tuwdXG28IF6oLf2pL1CYdpkk00AAPPmiasm8+bNS65RaGlpwYABA4R/AQE9CYa+vFdibZxU8qjX4FgvdBQob96JZhbkiYVwkbfkozB1V9OuY8HypAvIP9nlb6fiKWTwaZoJpbyDm9C51IStuvIq/o2Oz+E/4c6KuezuUlRkWPS6uoF6/JLhdRdRW5U61Tm/2EAqTNJvXX9HfeM8OixtKiBFr1CYhg4dik022QTPPvtscm7ZsmV47bXXsN9++3WjZAEBATzWNgVQRk+ZkJjAi9jhMGF1Bb/6X89JI9+G8uh7lLVChp+F6WOCnK+WX+Vv81WYiHfGr4DbJn8uyG1hanAXwH9rvcXC1J0WdhmlOluY6kVgIFiYiOvyY+n6O9sn42IFDqihx5A+rFixApMmTUp+T506FW+//TbWX399bLnllrjoootw+eWXY7vttsPQoUPx85//HJttthlOOOGE7hM6ICBAgGlwWhvguhjXnRMXvuiOAgdDfqLZUWHo01Sfdy0qTAzljKpKIy1MPWWiWgTyTna9LUxcG6VeB28l1b4CD5H7OLhqmtBoZYCfkNusAT2FdbWHiAHANiblF7QhChNRoYqFqakEEKFYtjG5yDFibUePUZhGjx6Nww47LPn9/e9/HwBwxhln4I477sCPf/xjrFy5Et/61rewdOlSHHjggXjiiSfQt29fXZYBAd0G13nY2qZerOX6Uq+wMPEyyquHed4PHxPUXqnWLaaJd+vMU9/NDgqdl4Wpuxp3Pa15xLm88z/+dpfVa1ushmhhspdvcwtu6mUWJv592Ca3PcVjuCd1k6ZPvCdbmNoqNguT+GC6mE3bJ2Nz8wxI0WMUpkMPPdS4OhJFEX7961/j17/+dQOlCgjIhrXd0vJxRW+IYTKt8OdplfxEs72zCqhMuIWA/3TyTGhcLEymgPC1Ffw4Sz1+3kmkr4WpzeJ6xFtVdMqQj8guZCAmNLoH4N+XrT57yoJOd7nkUXPInu6SpxPPTvog/tbHMJnLDy557ugVMUwBAb0Nzq4+a9mErdtW4RuEnjIhMcFnguUDvknX042Db0G5FCZTtHcX+O+0p7gzFQnqc7TN73wmu3SV+bU/WxqhrTl0Lzb5e1sMU8Xje+4pTbinyAH4ud1mQWcDXPIoNd2V9CG45BWHoDAFBNQBH8eVa2DtpxV3HVt6TgxTcYIIrlYFKmIy5BimrPB1ybPVVW/8pKlJFF+nlMWmyPlfe8W+J43IBqYW3ulAK87D1mRys+Q12HrCvw+bNaCnkC10H624CqNLXgH1ldfrQFdVvrTiWpc8yzfTk5Tbno6gMAUE1AEf2xim7hagzugNVgjBJcphwpoFLuxn2VFQDJMn6YNtMtobKfMp5ixrnXrUOZU0D6047ZLH04prXPK4G23Su7AnmtDwGCZuQm53yau3NG7oLjlIWvF6u+Q1glacuO7uktf7+q2eiqAwBQTUAa5uAGtbX7a2d869wSWvanLhyfF+fCfCWSHEMOXIxzeGyfZMvbFpU6vO/HskY5hylimSPthzs7kE8S5PLu/AtqiR3yWvsX2AuADSW2KYeg5MY3ERcmaJYbLFEQLid0HvwyRbmDQKk7d0AToEhSkgoA4or+2+aRqs7Y/tTCteXzGcyy7WEqRn3ysSQgxTjmJ8LQlWhclwrae4QsmgJlG2CV5+0occMUwUSx6395BucsnXv018anNcH4QYJgf0GEF6JkueS7mi5ZWIYXLchykQUBWHoDAFBNQBH9cYprV9Pat3uOTpJ1h53k7jLExFueTZn7bTw92pN37S9hgmFXmtFL6xboWw5DH6mEJzzlWdRvcARotxD0W3ueQRb8foklenfZhscU0upVpjmKTfupjN3thv9VQEhSkgoA5wdU1b2/qytb1zrteeG0XCx4UnK+qqMHHHRbnk6RRdIT6kTvFeeZGnDiiCA6EJ9wBacVsb7XDYh8lHyettLHnCAkgvYTTrSRZXo4WlThYmW1yTy8KbzTvAOYbJWlKAK4LCFBBQB+Qck3st1vbOudcpTLKFKccLEtn3GjNxy2Pt4JUF3XsT3Z0sLHm9sHWTpA+WNlyohcmFJU9YSTez5GnLFEgfLDFMvYwlj//UeouFqbsM8d6kDwWUSdGKW91euWOddFbSB+lOnUteT4kr7g17GNrwMZ3WBQTUF64ueT2lMysKa7u/dE8JqjahXi48/KPXkyWPr+GiWPJ0K/MVwcK0FrrkEW46tjr1qXJKecgTw2RjydP1L4LMRCb8ZC33xrWNZsnjCqwvO2Vx6DaFiThnjmHKLyj1PRWxsEYtJJjIIviFABdSiXrAVJ/tgqW4F3amCApTQEBdUO/N8noqemk/6AzXcbA7Y53qZQlqlGsQX06ujWu5ibFu4l7xiGHqjWgiNu+tWpSLIi0obgqT2QrlwpJnI33g22t+WvHGftv8hLy3bDLakxaWTARMdbMweSxK6FJS3w5flLIPk2ZPOddFzLzfBWDur9ssluTegKAwBQTUAa4seWubfrG2K0y9wyWvThYm7rieyoUwn89R3cIeSwUoTKZV0Z46/tv2YaLE9rIwWdK6KNbtFvpkcR8muxxUHvxkLf/GtY1FNbjk5Sq33tYMytWsYnEjdVmUoL4LE2GLzqLu+vhNOS2vgFlR5ttuLxhGSQSFKSCgDnBd1VnbFIzeamp3hevKWHeOB/xg1CZNWIuKw2nUxC3XSrWDC2HFg/TBTCveM8G75MUTO75OqfrNO5nxdd200ScLLHma/kVUAtU8+DLybvnQnS55vUZh6kFfRHfQivtYmCjxKlUm5BvXZ8VgbW3iFaZO+yKDjLxkKIC57+CVuN5iKZURFKaAgDrgY+qR9zGIYepuCVygn2DlIn0QyCTqxyjHl5NHYRLJB+gB+uNEKx7XQVWoX/Uen8kuvfEt70LmspJuTtPpYmHij4nsbFYsHzRaGRAUpl4y0exJ/SQ/JsnWoCJcB0mFKWcFyH1RLKZp02l+ztFhIYyo5SVeyRvbB5jrs4N7ps4q65UkEEFhCgioAz6uG9eu7U/dO1zy0uNiXfIaNXErJobJxTWxNwbU+4BXmOLn4ycqlMU0r0uer2Jt22+mU1hpt8tBxjDVifykEajW6XuuJ7ovRkUtlx+KbZafLKDyzLs5tNy/0i554mirc5nWlSXLWISFyQT5mXqL8s8jKEwBAXWAs0veWqZi9MZVeB/0pGBmHeo2weLydbEcZC7GEo+SJR+dCwg/abA9U3c17Tx10CQEgscWpmIUUh2892GyTO6E1XKNwCJRCOXWV1zAecNjmHqlS17PAR/LKCsJRciZjVbcfF2xMHX9FRQmqUPSucLq2ntnlQnXinHJc4thAoLCFBAQ0IW13TVNh7X9uXuDwtQIS1CjrDGFueTVmfShNyB+PtElj4hhymlF9W1/ttgxp32Y+GPKJc9CXe6DhluYuPchxyT2WHRTN2nbh0lRmIqgFc/pkkd1K6qFiXWVxd8n30j3ZTpJqowJi0TFuOTpr8ljRm9R/nk0dbcAAQFrI5xd8nr3HEzBWvY4CpzHwW7Uq0ysWnnej4sCUgT4cnIpTA6WDlFhspA+9MLGTdWBSPpA3OOTv+W6r4WJQmfVnoetnRSp4DeeVjw97i2TzO5aWKKK5cfierjk5aYVtyj4gMbCZMjTZaGis8pQZWm6rBamKOJjrDwsTL2kLfMIFqaAhqCzG1bGOivVbvOlpvZhouTJOwerdmPwJPVOixwoTc/GGGtIPBFjTHjO3hCoKgbd678732+yXrFRPGrfSPp7+ZpO7XtmjGHpqnasau+kr3P1oFuZN21cK7/7ovUluf517yMXUQdh7dHFMC1f04FKlYmkG9w36NpeTO0k7gN1lj2qv9atlncKbnZq+fx1Pg/ZFUlOG/9u66xg6ar2Qhm9+HJ0xzL48ruDXcz23ulxwL29xOlM6bPOH1a3V4Q6k+m+ixiuXCxMcl/ivdBAxTAZXPJcYpg6OqtY3Z4uEjWVo0TuzkoVK9s6k2PX8bazwrB8TQf3m/sG5RimoDAFBKj41SPvY/dfPYXZS1c3rMwVbZ3Yd/hz+M4/3mxYmTxkfal1VQc+c8Uz+N49bxdWRrXKcOwfXsRxf3yx4RP5G5+ZgF0uexLj5y5Pzv36kQ/w37c/KiR/xhi++KeXcOwf6Gf7ys2v4PDrnq/7BOK7d7+Fva98NvntqhB2J62uC63z/W/Owk6/eAIjxs93z1eYfBfPkte6ugP7Dn8WF/377eTcF//0Eo684QXyPX/7729ij18/jWG/fAqPvKO2OycLkyE+5Izb38Ah1zyfnihwH6ZbR07Bzr94Em/NWAIAeG3KIuz0iydw1yvT/DKygLYwpefi45uen4xhv3wKX/jdKMGic9SNI3HCn1/CguVt+NSvn8ZP7n/XXiZ3zLe/aQtXYtdfPomhlz6Gfa58Fiu6JmTtlomkQPrAJdj9V0/hFw+9p5xnYHj2w3nY+RdP4qG3Zytl3P3aDHz77+m4sHhlOz79m6fxo/veAQD88bmJ2Pb/PY4dfvYE9vj10zjw6ueESWDWSfaP7nsHn/7N01i0oi2pi+GPf4jnxs3Djj9/Ag+8OUu557Upi3D6ba8nvxs9yfzDsxOx82VP4oOPlpHXFyxvw56XP4OfPjhWOD9j8SrsfNmTGDVxgTH/65+ujSO/euR97HzZk3h58kIlzf/e/QjDfvkUnvlgnlVevo96dcoi7P7rp3DjMxOTc7LlpxBacQfSh/P+MQb7Dn82aUe2hdzv3j1G+J3QihviD5nWJY8ua8/Ln8Fnrngm+f3e7GU44voXsGxNBw7+7QgM++WTuOLRD7DLZbVv9sCrn8OaDrXf53vFL/x+FIb98in8acQkPPruHOz48yfw+Ng5ikxAiGEKCCBx+0vTsLK9gr88P7lhZT79wVwsXNGGJ9+3d7L1QFmaXD30zmwsWdWBh6WJXZ7V44Ur2vDBnGV4/6NlWLq6w35DgbjxmYlo66ziysc+TM7d9tLUwvJfuqoDY2e34oM5y7BwZZty/Y1pSzBt0SpMnLeisDIpPDp2DhavbE9+18Olo2iYFIW4vf3wvnfQUWH45p2jM5VRD+veQ2/PxsIV7fhwjjg5m7xgJRauUNvAy5MXJbK8OX2JMW/dggI/GZdJH0ZOWCAs8hRpYbrisQ/RXqni0v/UJpr/96+30FFh+MVD7ytpC9qKKnlWkfShdvza1Fpdjp+3XGjvE+evwLuzWvG3F6dieVsn/j16plehfDv53bMTsaaj1h4XrmjDsx/W+mZbjJJukWJlewV3vTKdeCbgnDtHo71STRao5Pf/FDf5vueNGVi2phP3dSks1z41QUg7b1kbpi1cZZXHhvvenIVlazpxzxszccMzE7Cmo4qbX5iCs+8Yjc4qww+6FDYe8gJboxWm656egPbOKn7zvw/I639/dTpaV3fg7tdmKNfaO6s49y5z//L7Z2vjyO0vTUN7ZxXn/3OMkuaNqYuxuqOCN6Yv9pL9rRlLlfpSSR/y92MutOJPvD8XC1e046mu+Yit1PnLxf6OohWX2yH/U3Bj9XjEqQtXYsS4+fiodQ2qDLh11NRk0WNO6xq8OmWRcg8fIzandQ2AmrJ6wd1j0FllOK/rnVYk11qX2MSehqAwBTQMvWGyWRRkl7x6PDrvc9xdG8HV643y9WfqWBu+J0ovWBQzBd3LgcI+7PdFsdfpYIr7c/HzV+/hJtGaNPxEmlIkejvEd9a1Si08s5qO+t58Fnb49mdSLmI5+BRUcp5J1OWtUGlM/YQLUU3VoS35wLV5yZ9Ed63K675NeRKsXverLSqOJp43uCiLsqXRJk8hFqYsLHncZZL0oetZd9i4fy1913nT98Qcjl1gqhPy+3TsG0wWsd6CoDAFNAyNnIR093ynEdsw8QN9tylMDahoeQLXnZNZU9k9ZZLtEyTuw/xW76drLumHI7lsxpi0GakqnW0iDogTm07NcYx6kj7UL291ok9NKvmn7SAmwVrxiHoVV8H1eVDKmm0SpfvGZGVXnuCbPk3ZG8CevzW5Fa5ZyAtv3RX3oasi6jvxuS6jD6UwVd0VJhsaRiuuo793LDju21qaa/URZ8cXpSggxOIIlc4Gs1JG9LNEcioPtQ/3k6snIChMAQ1DI1fnu/tjdGXJy7MPE98p9UbztglVYfIqNpzu5F0wWUm7u83FcNmwNYbLZJHKtx7P2mSgtZUnyrL7HGlVcJiIC9YWC8V4b9wzjZpEUSx5fP1Sq+M+r5tPK0yclCD1RIUz5ufSRMV3rVIkm9orRdAjQ7QwNe5Dl8eR7lKYdOOZLXbWt5/o06RXmFwWBW2LJPWwMOWlFafuje9v6aqPuM0JhC1SOxQsu1X6vAt8LUxUcmquJytRvWGLDhlBYQpoGD5WLnmRPGDTz56PAStFd1mY6oWqYQJX74m7Ca7jYHc2db5omwtPVktoPSaNPi55KqMdcQ/s7aSiaWekwtT79CVyAmlzPaQWX7K2Z9OkKL5mc/V0qXb5OWXXLpP4Lt+AaWW/npDHkUbtf2aTI0bRww61F1Bchq9LHgV1DpL/ZRa9cS0/lrc0lWvpyW9XyZQ69IbpXufxz8ES1Rung0FhCmgYGsnk1t3forOFKY/CxFsSus0lrz758k1FniR057s1teHubnMxfCxMLqvrSb5CGb5S2eGzD4i6T4l5gNaJq3PJo76nXqgvkXFc1KSLrytq8cVHQebLNHkVJNYtoZxsEBUzprh2mdxlXfrqoscuV/fdnhLDpFOYirYSkDFMXY3I99mpOq6LhcmhHFkmU7n8eJdamOKy+LykvDUyFeqSR7naEedc9ncLFqaAAAMaaWHqjngSvkzZ1ake0vCdkuyi1BOQ5x1UDcpgd3a0roNJd74N2+SXh0vAe5oxeVgYmnwsTLLCZBmgdW1RJEDIbmHqqQHMwiQqYcnjzsUTOC4lGXfi8Xi6iZvs0phamHyUMft5XwuTSxyfSOfcuHctf5/d5Umg+zRdNhX2AU36UPvr647o5JLnlSMNyiJrtzDpwT9nUh9dD1MRXPKkPDVt1PcZjXG6ruccFKtesKWhgqAwBTQMjfxAuuNb5J/PZ+U+K3T7LvQU5JlXmCav3bkwZRoIe0r/z8shW+fkuaEXS56Di1semGKYZEW1CPccQE/0QLk+1TOGqV5tmrKyicyA6j2UwqQTz2bZM7vkqTLQAeTaLARJ+KPmJvd35RLHJz6Tc9b6/BzT9fQYpqL1N5r0oVaIizsik9qBmlfxH5qXhSn+a/gu4gXCPk2lpL+m7lNoxQWZuPOenYs5hsn8vVPl69L1FJIkHwSFKaBhaPTmqo0G30m6TkTzTML4/qa7BlLTynoeS5CJ6a1b44OMg0nj5DDBRl7Aw8fC5EKikAemb0EuTd441zw90UNQHjzqrZHIU9eUtadCTLr4d9tJzIJ9+m7dxE1uaol7kvbu+AwjjwX5JKVLdcnTy+sWw5R9xT4PZOtXd7VL3QKgjVbcF5Sim5Ulz430If/b9KIVZ8IfEvFztpQ5hYlYXJAz0cUCeluYDNfcY3jVhCYFr7cgKEwBDUM9Vne06Iavke8QVNKH4svzcb2qF0zPled1myav9bZ0mGBkyeshQwAvRXulapwUZLaE1uFRfXznlbg2y4qmC+mDuIkt8T31wiAmRsycpHAf5RxJ+uBXaHJoUrTiazYSF5f3KCvzqmtXvm9AcIVqqEue+Luzyrpl4VFnhfOlDbehidhaIFGYXMY4y6KO3H8XIT2pMFnaiOlyPN71aSoli0gUw6XKkpeimkNjMvfDrnnY7+2NC+hBYQpoGBoZe9Idk1d+8HCdiOZjyUvL6y72JLPClMfCxClMDoxojUIRg0m9IQf88u1StuJk3rg2s3R6+Lg7qqvNxCTfwSKmpRVfS0gfeMRPJ9KKx1YeXnEkSB8cFBW5HLksGe6MW3bIbV6JYTJamPxc8gpp+46ZUK5w3UH8oOsnip700qQP7hYmYS3AycLkJR4JSjnSu+SZ+ykgfc7mcinpdOIkouIu56N+17oyTTB6UchKmiaxbV88IMQwBQQY0RtZUXzAd2Y++9tkheC21gNpxYtyyZNX+7uV9MGxmru1qWsGYApeLnn8cR0e0DSA6iYVuuuAmyVSy5LXg1zy8oCKJxJJH9R0dAxTtvdt3rg2tjDx5RBwKFq2Qin7MBnu5ZUB141xGwWKkKI7Fsd0/UTRFqY+lEteVxG+XhSUZD2H9IFXaETE7sY1C1NXGuI7le8r6k2Y8pEfS/cpUI+vuOT1wvlgUJgCGoZGuuR1x7coKEzyTvN1KM+HPrpeMMcwZc+X71xNtOKNtiT2BqXfbo1J4RfDpB/ki4B5ABWvKRvXUgoTM18HxG+2Yvmeev6bV0EpjdTml/yzUYybPs2eUtJM6UQZzcqa1tIlxTn5WJj4vlo3RnXXajjFg+LS1xfNOaTzmChakTTSijsRvZg/evOeflkXBfwVJlNn0t5Zu1gjfYiE5K77MOWhFTey5Dm6NJLjsqxs+YnVIxAUpoCGoZHM193xMfKdpOt45UJpqwPfd/XEFfE8CrIxhqkbe1pXl7zujGdSGOW4lVmFJS/jCFCPd2CMD5MtTArpAzXRpo+FMjUueeQqvrs+12NArUiLLnnSRdCkD15lgq5TGZSFiczP4buS58l9mmRacX0hfB+sa4MmV6gscO0fqAUNF28Cr+0CnOSgzwsLDgVolXld8ni4WJiE9BnF99m4Nl0k0JebsOSVeQtTLZFAb6/EMPHfnT5/G4pws6Q8MWR5e8Pio4ygMAU0DL3RBOsD0x4J9YCoMFX0CbsJ+fZhSo9Vhak7lRH9tR5D+iCJ0dbBKUxS2swuef5iWWGqW/laUbTiPhvX1uP9UhOoeuQP0C55Lpt76tK5lZkey00tpRU395suEys5ic8myLz7tG3DUVd5igJl2enQtH1+olu0R7gLrXgR7nlGhcl741r1nCmGKav0lIJhpxXnZZAWuHjSBw2zJGB2j8vD6mjuh+X6oxNT34icb4hhCggwoDeuKPjAtLlhPSb5wj5MaxtLHtM/m4urVXegp8giiyFbY3hkphWvR3s2WZikp3JiybO4egESxbYlhqmnvF8fCPXWdUhZ1fh0HcTysM+37OqSR8Ywke/RfL2WRrQAZaUVd3HJa2Q7oPQUXV/Pt+U8ngu0HHZa8SLG9z6ED2L8Ttz2YeKP7YqMSx9hA0n6YMnLGMMksOTFstX+Vg0fg075896HyXBN7hp8cpbF6I0L6EFhCmgY1vYYpiym7DzDGv+MVNxBI2DsXHO8hIph8tpTu9meIpdc72s69BMNv1iH7KuWLvBhIHRqEw6rxzoLExVg3l3vN09fRikvVCwan46mFTevmOvOuVDF2x7PxQogKDRgaOZc8qpVs22w5BDDVCHqLA9c3ynpkqdRHLLsA+gKnYVJt/FzVhTqkkeIo9CKC9+HV/Zpnh6kD4lF2VBWvMDVIsQw1W4Q4w+lvDXKn+9jmeYxSpmapLSFSV/3vQVBYQpoGAre486I7qYVb0TpJmKEhsFkYcoxgJris7prE0kbesyKmSSGqW1kjnWow6OajKQ6P3/ddUASUSOvYG3hrZprjYWJOyZWqROWPC4dyZLnZWHi6zQ9L1PaU/FTWb8heS8nniXPuheZp0teFhGzPhelqOi+ZzGGtjEWJiEergCFqUxZmLrKsL1HwK5cm13yCrQwedSFbjFIjGFSy1ItNulxHouoz354+jyIez3K6akIClNAw2AzUxeJ7vgWswQG59uHKUVPJH1ohEteT+p0e4okcp20daQueXJ7060cUyhicmGCcaCWyjNtZpycExRrjeWAXyHnVopplrye8oY9QEwgKddhvq4o0oesT+7kkmewXLq6NssTZd4lz7aYxOepd8kTVE9jfvT9cplu91GudVoLE5dp4Sx5Olpx7psphGKcyCIugzF7GdQCAY9uJ31A3ObVczF4lzx5HyaTW7T+2f0ezId8R9cn8t9LJGt9SRovsXoEgsIU0DA0duPaxqORLoeA2GH2TIUpe32YKJ7zrva6Io/FqDv1OLls04TRJ9bBNhlJ8nTOUco/h0se9cG7yKulFe+B+5plgcCcRShHqdKSgnTJy9ieGUvL05E+mPKWr+kmzLI7Er8Q0N5ZNZfBHetZ8vQyuSDr2EDSiutimLj31iiWPF4WnYXJx/JEpeTHEZ+9mPxjmJyzFuBD+pCWRaxkdKFNiGGKBNlM3hVFLSSaXfLkBQxtwgRx01EXDXqfxhQUpoCGoehdwXsaTCx5ur6hqBgmU2B/PWFadc+jQDLD5JVp0hUN36xdYi0aAbnsNgODos9KtLi66V6+K3x0FJcYJpf3wU+Q+fZKKZn1eGYX5LJCE++M2qOFT0eRPvg8oVxPum4gHg+qhhclT/x0Y4icBZ+qvVI19lP8vZSyKMuR5V1nncB6xTDVsS/UWaJ5WXTKrM/ig4210bYwaFJE5LwANfYtC0gLUw7Xwbi+msspS14sm9mLRVw00Kczw2TFc81LtDDFSp++7nsLgsIU0DA00iWvO5b4xc7Mrfxc+zBxxz3RwpTnFZhpxel0RcM76x4yACgueVz9ybENWVeiG+2SZ9pbSgcXCflVedvErB6vN3HR8bCy+OXP59OloHCPRn0/PhYm20aztTLMSoggo5KXfA8thylmw943pjfoZM1LK+7qyiSDohV3IX0ooq0yYtJrkkW3QOanMKnnfBQmIS/inGkRL8tYolPgbaQPJphY8kxWJN246PtYPts7uKRLnkFKEyxMdUSlUsHPf/5zDB06FOussw622WYb/OY3v+mVlf5xRWNJHxqPhiqEsAepNwKmRy7KLcBI+lDHOveVv6fEuCguefw+TPLGtT4WpgLcV4z5+7jkKXFt1CTfLm9FMxEmv6deONZQbFnUM/NPRq0w+3wLqoWpdqIIlzwXUgaAiRazisUlj7tWL1rx7BYm9ZzOLU1HYJIVfH66ba14WXRl6vaNokAqOVy+PuRGpLVK1VyN6W3QWWP89mES03TwG9cq34yhj+SPc1iYXDabtuXNjxXxM6wN+zA1dbcArrj66qtx00034c4778Quu+yC0aNH46yzzsLAgQNx4YUXdrd4AQ7oSQH69YDRJU9jLs8DcVLQPXVrKrVuMUxCGZmLsCKPS173QhSkzbDCS61ga3PNsWrpAtO7lC/FbaKlqYS2zirtkicc2yc2vGWlJ9GK54E4iYr/Ek/i4ULkUyagXyijaMXVQHbxt9YCJOQhnvGKYXKYAGdpB1kX07LSihfRF/Eylx0sTMW45BFy8GQslryo9i7kZYphcpJQhK49WmOYhHLFtHzftrpddGczKe46dkrfhTwj6YPyW7PAwL2mNA7L/G33BvQahenll1/GF7/4RRxzzDEAgK233hr/+te/8Prrr3ezZAGuaCjpQzd8ixVHOzgvW1ExTN1FK25S/vK8b/5WkzWhrjFMnh16T+n+5bGaZ8mT4bVxLX9ch4c1M1jpJxVtugmxg1VgracV52SuEpOudONaSz4e59VYBYuSQ1jBiEvmvKQ85L5RJ2cURaKFySX/LC55MkeJYxbUgoZuAaSeFiatS54D6YOfG52ah2nxjMiAOkzzMtGKZxhCXRRsbYGaU4JLXiSmERV3WQFJQcUpusLYdlwtTII7p64cP7l6AnqNS97++++PZ599FhMmTAAAvPPOO3jxxRdx9NFHa+9pa2vDsmXLhH8B3YfGblybv6w/PjcRP7rvHee8TJ2ZIFtuyWowUW+b8PKkhTjjttcxc/Eq5dqb0xfj9Ntex6T5K3LLd+5db+LeN2bi+/e+jZuenyxcmzBvOU6/7XU8+f5cnHn763hu3DzhumnyqvPV5vHhnGU4/bbXMXZWa2b5XQYD0/n5y9bgzNtfx7Mfps82c/EqnHHb63h58sLkXFwXb81YgufHz8dxf3gRl/7n3SS/x8fOwdl3vIElK9tx8wuT8YXfjcI3/vYajvn9KNzw9ASr3LwyffmjH+KLf3wx+a1bOebx2yfG4bKH3lPcnuRn/8G97+CEP72EB9+aLVz771uz8c0738CKtk4AwLuzluL0217Hh3OW4Yn3as+2eGW7caD+0k0v4zt/fzOx/CQKU3NZkeatGUtw+m2vY8K85RppU/CTMX6FnPqenvlwHs66/XUsWN6mlTNG/J6P/+OL+NUj7wvXfv7f96z383Dpfto7qzj/n2/iH69OF+8ljvl+6rqnJ2DsrFZrGfe/OctNWKh1/e2/v9lFPCK2tQqhrNnkcIkNufmFybjnjZnJ75qFST9R5fvqz984isw/z9C1pqOCc+8a7ZT2LKkvdLUwvT1zKb7+t9eS35T14ZIH3sXvnpkonJ+yYAVOv+11vD51MQDgz89Pwg/urY15okse3U+0uViYutKMnLAAZ9z2OmYvXU2mo+QG1BimpavacfYdb+CEP72Ei+55C/eNnolv3jkaj42dg0fHzknS/u3Fqca8ANUK/b93P8IJf3oJJ930Mp58f65Wzhhal7yuB2ld3YFz7nhDuDZ/+Rqcdfsb1G0A0r6nj0D60PXXoAjp3eP8YHbJS4+Xr+nAN++k2zWfrq2zij+NmES48/U+janXWJguueQSLFu2DDvuuCPK5TIqlQquuOIKnHbaadp7hg8fjl/96lcNlDLAhEauKBRR1LVP1SajX9tnS3x6y0HW9K6rei6rL76g9k7R4dS/1gbWH9z7Du79zn7CtS/f9AoA4Ft3jcZzPzw0l0xTF67Ejx94N/l93qHbJMdn3vY6Pmpdg5ETFgAAnh+/ANOuOia5bgr0FV3D6Do/9dZXsWRVB16etBCTrvxCJvlNVokmiu9Xuvk3j36I58cvEJ7twnvewlszluKFCem5M257HXO66uKoXTbG2NmtGDu7FRcdsT02HtAX5/1zDADg+qcn4O/ShPj9j5bh4s9tL5wz7cMEAO9wSqSt/XVWqvhzl7K7zUbr8o8nYPT0JXhgjDqpZozhon+/DQC45YXJ+P6RO+DLN72MjgrD2FlLsWRVBwDg2qfGY+jgflo5GAOeeH8u3v9oGfYYsl4yUWkuqe4eJ/75ZToDQjZB+ebaHOWSN2piTcm94tEPcOMpn9LKCgAX//ttjJ6+BADw7qxWfOeQbbDxgL6YunCl8g6LwINvzcJjY+fisbFz8fV9t0ovEJYReaLy5b+8jO03Xhf1wouTFuLe0WrbSGnO9ffK11xijJ75cL5wraNidtl06bbzuLv9/ZXpeH3aYrJsGSPGL8AIrr+guhmqbZ7wp5eE33If8MGcZYkS+b0jtkvOf+cfb2LCvBUY2dUf/faJ8QCAr35miNAmdJ67vCw20ofTb6t5A13ywLv4+zn70BkSqEgLGdc/PQHPjau947dnLsV/3/4IQG1BwwbTpL3KgO/e/Vbye/Tf3xTGJDI/C5X6a1MW4dlxaXtkAH71yAeYsnClcI5He2dX39ZUAhRacWjv01mYfGHeQDzN98/PT8YrUxbR6STprnlyPC49ekcpr8widht6jYXp3nvvxT//+U/cfffdGDNmDO68805ce+21uPPOO7X3XHrppWhtbU3+zZw5U5s2oP5o9D5FRYEPmjfBZAbXW0Wya0x5zO4AMHfZGu21Oa36azyyvtGPLPmbXPKq0iBHIZ6I59lMUc/uRaeXV/MXr1QtEXOJ5+brumKYtC8i8rPJAZjrwOaSp2MrlHNco3H746uwdXXtncTxdvE7AoClq9qd4jwSq0RX2thlyXYnOWGWTnY6TooXrWwn8hJvmLVEXEWP5TZRvOvgsqiyfE0neZ6y3sjNwRbj4w0ir5VtncpzpPJw9W6JWdK6zNks+sRlKoZKB5OMNixb0yH89tleg/o+Xd6V+n3SY9i0RaqXAQCs7qg4ueTxsSquzHDzDOOOjVa8o7OKhSvc+kEXWcTvw/8j0O8LVgMVW7xgmSi/zoW1qRSptOLGOQY9Lvo+V8XAzsXntMjwHqhqUUkfet98sNdYmH70ox/hkksuwSmnnAIAGDZsGKZPn47hw4fjjDPOIO9paWlBS0tLI8UMMKA3fiA+ECwfpo65IKc8F0tLVrhavur1So0ueZp0RUOXsz6OgktTZWgq+a9H8YOKyd9ePM+ECY08QJoWKmwi8s9qos3XKV58KhOFflOp5PQu5Uluuou87T6zbIC7S60L5Il90RuJuoLqI6j2UORnRGVFuX5SFiZTvwmYCCT08lQZI99nfMZlQil+29bkAuR377OGQ8UwubRN+VvSNT+dZ0IEOYZJcz9XGfr4L72cSlrinLA/moXx0J6/vk/Nkq12Ua1L5k6qscgLB9LlWAkrRRFBK84rRXqJczHUGr8ltzzcthvwkapnoNdYmFatWoWSNLqXy2VUG8lVHZALjdSXukM3cy2Sly3XppSaPItAvad3tueW3TB4NIz0wXMCIDMuNdvc9ixlulpkbb7sJgZFn4m8YIGRrulycX0/TeXIqQ2nk9za3zyKiEmxNMnisnea/O50t6Tl6At0qRedTHybjIfKIhcZSEWUOEmJR1Ga2/Ky7elEZ6LL21CwBGFl33NqTVFDu5ZNucI5fSfM7dszdTEma0btHDMu8CTpPOqLKseL9MEzf9Fbwf+7sFmYSBpuSzGxslUWLEx2GXULD76PZWTJc/RqoarFVPe9Bb3GwnTcccfhiiuuwJZbbolddtkFb731Fq6//nqcffbZ3S1agCMaSvpQYF6uczJXt42i+om8u8+b4LqhbtZyS1Fk7Jh1rmDytXr2ubrmqu3oJbmadZuXOJbp+r1UGUOJU1nktmdysbC75KV58bTbchXoJ+x8Gn05zaWSk6tSstLa9TuW3zYpo1c8Rej2ZPLJM8lLVpisueWDLsaEWkF3sbblAZUXv1oeI92HSd+PKe8owxiiU1BcNg3m80iP/cqXvzGfRR7aJc99ISXPgpytruXrLvFlNpAseYZ4Vl/IuVepD8QDuj4rzlbeBJqm9Bd/xlapcilKNxrvuo/vyk003cxxLkLB1A+7VpdtXzxrBj0UvUZh+sMf/oCf//znOP/88zF//nxsttlm+Pa3v41f/OIX3S1agCMavbFrw2GYyNfDfU4oo+CqdR5oM77TUgSYojn4zlUdJLNPXrygyVsfRyEeZ1OY0lxcv5cKY0JHLutH5hgmmzxiOTHkHF0m7CblrLnJrECn+THhr0y7q73PIhvgbmEqOZTpE6dSBPQWPv64a9LlMpnJASorimXNZfKorkrTZZrdk8zv36U/Fl3y/OpKfnafcZB0yXO8Pc8bjSKzCy6gPodeYXKXhLQwSQpTLq8MuT1xfWWWT9ZmVXNaeFEWuGp/KQuTOYYpPc6zqGjeHNcts2Bh6mb0798fN954I2688cbuFiUgIxo5iShyAuCsO2ToTPKtPGdfRQLMSlH9XfIimIZ0wcKkuOTx6erXpnR1qtuvQ56cWpn0LMjskiddl1c5eejogtO803v5eAclhkmTj7Dju6GcWgyTUZSu/MS/iYXJpjCRc3P9hM+UnUvYlKyk1rvnc7HwxXVQ74Ur6ruhmkc8WTWK4zjJMnrkWVzgnCxMOfY4Ul3yANcWQbrkOZZbZQzlHD25bQFBXphxJX0wQU4qu/35bJ9B5y+WkIfMAzC45MXfmrz/FlGOTpGoWZjENEZrrEZJ8nbJM1SxqyJGfSMq6YOfXD0BvSaGKaD3ozeuKADu7mmCudyUjquHPKtl9XRNc33mzPlbrpv81nusS56EPnktTI5xMLb9LToMLnm29+zqIuhi4TC65JUjv+D7rr+JtcfmkmeRDRAnxW6y6NPISkm9+z59jJQ6ISSVxzp3zSVutTxGPNkUY/9kRVP8rSMpME/e6PaRTkL198YQ3TXt6XmopA/uGVBWWdf7XTb5NcG2gCATGrhs+muDyeoL1DeGKcs3YHsXJndoHeLvohxFSf+cWqzSdOpCmbtSb1onc46TMvW5xCW5LoomqmoEgsIU0DA0duNa/ti/3Ez3aMqXwU/MVM9+j/KEzqtY2Fy18pZri50xueTpfLWLhi5vF2pjxpDJwuRC06vIY2HTM1mYbO9ZsDAZVpy1Fg4unemdN5VLTs+bTPq7/rpbmOx5u9KKp5MYXi4R8rPUu+tzaWnxM1GW/qyTFxdFFDBP/E2TQNdVafMkzxLDpL2TLtdX+ZW/sWrVnfQhj3KrS6c/L45LNtIHxcKk6Wfkd2aWX1KQC1aYZOR5r4C+b43r0oXpVLdww48fqcXKsLigmfNQEpoYXE0u3EKZxkUK9aKcb7AwBQQY0MgPJO/qhevKOA9X39+i6kFcHSu2cp1JHzIWa4+d4RSmSlV4vrx+567wnZzJroKuMUx8VcsWJhdWImVCYnA1k+GzD5NpsNbGMPHpjBYmR5c8Jv5Ny/GHspotWBH0OcpuMhQUhanuGpNdYY1FoBT+IrsPKq9yFCmLQ4mFyaLs8NB+ewZ5rDFMntZEf4UpO604bRlzy4BpPj1Xt0bTQgvgbmHKE8Mk35vbJc/QnvJYmGi3S7d9AOUUcb2WIjWGSbfXkpyPuAihymDaTsLVwmQC9diq8tj7NKagMAU0DN3lkpel2PwTMH0ORVna6mlhqj+rl7kEeVzkqbF9XA/yQBvDpFuhlY5dXfL4muDzqFSZ0wRBYUuS5JM3wOXhY+nrEGKYxHQuFiaTNbW55OeSF//NRSueNYapwI8jnQjly4dXWLV0+IRbTxZkmeiQtOKJSx6Xt1yW9FvbdxpE0n7H9lvJcn29rORvIy8JguvdvsqlfN4W3+NK+uDTXBrukpfzY4gVomZJA9GRPtCKu7y4UvsrsOTF14SPxaDYCG6uKqh90dLy3RYwzIsURHtp9CJSHRAUpoCGodtc8jLdn+kusnwZRcUwyS5gRcJ549qsqhq5v4heEWrXTNbr2qI0mbvEBsguee4EDmm6CmNOEwSb21Ke705rYZJXNx0mZ6Y21VR23LhWdskr0fIo91ETT6KeUhY+U25uVOY88ij2LnfyEythdZmwbLtQrBvlsUzayBVt4uUnFgrDarjN4mA7X7tmkdPh4Yt0yWPMvb7pCbbbvb4EGfK4ZCN9cKUV94phsljH85M+iMjrkhfLJ7tfx1kp5C/M7o4p0IpLjJzGrUSEZ6HPx9CR9ADm8cJmuTIU2XAinHogKEwBDUMjLUx5S8rCZCdOVCR5NBPPPKirhanuLnlq/u0GFjZecWCOnXZe6F6Ty0oqAxP8xE1WHl2ZlSrTPrdJHnnS0eHqk05d5woVN66VVgs12fD3m9wwm8uRkZ0pzU/8m7Yjy3NQrk1Euvg5jC55jlTmVL71Av85aSe6XT/k9lKKfCe1/tfLBOlDRdWXCAuT46TcJA+jWzlL/joo6gW65Pn0/1RRruXrUlHPWy5FSr42i2td9mEiFjF49DTSh1g+2f06zsppbzk5z64TZW7vsvidGRetNJ4X1PtuMnTGJpFd5xwkDX2IYQoIcEcjLUw8shE4ZLjH8Ra+HgrbUyKLm0zGa1oZPED11/xgKE+eBcWhh7rkyWn6NKXda5thoOeVU8HCJLnkyTED1D2AOhDpmMViOU3gL2exMIkLD/pWFUXqhM0kT/w3IWCwPQdx3WVQp5Dlk623vz4vk26im0ziJFFKUeRpYeJfqts+QaRLXmLNM83Q5HvoZGYLk4b0QVK+TRBc8jxfpbya79dnuSn65J0O2x/EaCpFZmWFuMmVVtzLBVH6TSlM7Z3ZvyUTUUIeC5OiMLH4uoNMchvvyrNc5hYZiLZqpCc3vzrjdhK2b8kFZAyTYj3ufRpTUJgCGoaGkj44roS43J+F9EH1S863kkXB5qecB3VmFSctWLxSpLjkaSwtGVhbneHiumICPyiZVkbFgOz0WLYw6ZQu5buS5DOyHlkehX/WTs1EnPpNXYhfOdW2aq4qDgqT5DKX0opb7nM8F0+AerWFSdMPJTFDkuClUuTVgQhJM3wLMTqTutZn51pvRp2LaSZnTPhjRB7XLfnJqzp5COSxMPnI2VwuGRUmKieF9CGD9U9JK8tAjAN53PJ8n9GGuI77KIyorCt/VVabCkzTiovlAZSFSZVLB5PCZGbJ444NRZD7MCkWpqAwBQT0CBTJkue6pqxZ4FF+84NAHlpxywJgLuQJptfB5p4lEDvIA2Wlkhwb/bgLhK5Dd3LJk1a1XQd52cLEu/K1ddB5KCt30nWjhclSg/yjCvloVkVN+ceDP9W2GHPbUFV+8ymtuPlek4WBRyyDKbuIiGGyW7iyt1SXL5HvRyoV+vugJl1Al0uehzx2q6SaoBSpPV1K+mCaoDkqFoZrWpY82N91moeqeLpCYcnL6ZLn+rJ0yUgLU1m08EaQFW/1HsWFT2tlNvdP4jVJeZCY+torVbR3VpAVctl5XfIS0ocmjYXJaRFIkimOixI2rmVKfsocg2+j/FhElGmiFS+C9IF6bDWey5BBD0VQmALWSoiT1wz3Z3LJ09+j3ZA0l0se33kV2/s4u+R55Ck8ttXCJF5rE1zy+Dzr1+vqLUya9BAHLP630cIk0Iqnx5UqE567TTNRUFbuHGML5PJseWeLYUqP48eklOUqY4604uIk1y2CSfN9UApTVcyfQqMtTE63aixMlGuOrD+XIzeGwhi2BQsqKxPpg8065AJb32t0yfOOYXKTKYayDxNz761dY+8oiCQOEXk+RjNBumKjxJavF0H6oLpgSgpTZzVfHJPs+SF8H/4fadw/yi55sdxZlISEVrwUJd910la5+02KqE0RzEornme8DTFMAQG9AFmUCXFy71iOQUnL2zH7lpcXrqQPPrBZmHgrkty56qxP9d24VndeNzEQjwULk9Elj4th4tqqzJKnc8kzuWYAYt3Z7jXBNeBYJ0vqkkdYmOD2LtNJbg1F0ooDbi556f35ygI4BdAjLxt0bkbpRrFiaUVbk6lnKUUEvXZM+iC3pQwWZOPr0i5wONzbBdc9uijk2oeJSOtqofKhFW8uqXFsVcMCCeDDkmcU0ygbxZKXyyVP+p3XWyFWiGQShThb+V25KMDxLTyteJxGyE/5bjTHRJkmWvEiWPIoqBvX9j6NKShMAQEE8hJFKHfzFqaiFCYPl6B6ISu7FuWK2JYhhqmez62b5OotTOK9uj2MTOBd3t1jmMyrmGYiA3MFOscwOSiX8TunBusqY07xaOlKa+3A1drj7JKXuInp4eoGyKOesXa1/Ln+RVBsiQmadC4q2iXPMTM9iQl/7JaZ1cJkuMelhDzuzzLpQ15GwrxKJFV+U7kkkkQUSCvupyCa82zvrKIjD+mDdGtRLHl9ZJe8rr9OG9dKScy04moZ1G/bhucmWnFXC5NvdfXGfZdkBIUpYK1HNpe8YsuRXa1i5Fnb1XjeFAKTyT4reHltLHlyXbZrXfIKEo6A7n26uJ7IFiYTSx4P2XWTX01d00G75MkKuDzgdRhm67ZvQxfDpDLzaeqEO47fOfXuGfOLYYr/lqSgaB9QsiXv1pShI9EEj3qvpgr9i2ZSE8sg13OZYEgzwW6xJ5Q0IlVs+DTu5+Iol6kf0JEsJGecLJu0QuoCublXmH0vnrRct3Ou9wIaC1O5nrTi2RXEwkkfZFdigf3Q/xu1seQpFiaiLaoy1f6StOIm7wrBCsrnryIrrbjJwmWDvEDSGxWooDAFrJXI66rFr7Zl2ofJMKEsarU5r5ufye0uDxmFDhQBAA+BVlweKHnSh5yDnCt8N8lk0jH/fox+95qqdrUw2d69HDgt3Gu8U8zbZGHSjX3UJs3U6iZjzM0NLrYKsDgvVU7TfbpzcRB03O7cZLEmKQQu37agaAvuq1CO5XdVoxX3mNRakrpO8lPSBymtsyRu99g2cHUpr5Kjz3H9Vuh71cR5WfLi0/wCSHO5ZFRWyPcnK1ja8rK3LZr0oTiWPJu3gk32+JkVlzxCwXFF3NYoC5PJciSOP+YHKxtWRPPEvJoQYpgCAtZS2Cb35D1GU3Z6LLDk5YnBqOOMrR604oKFieh5+JVDo0uekGf96kCXs97VRfwhkD4YVkVFWnFu4isrTBoLkzzwxHkoVhNSZnP96Syj6sRDVynpoYklr2YFMIoiZBf/dY2/ISdD3HFMsxsrGyZRkhJ1SiJR3/W3MHHtRrAwqUouRSvuZ2HKcl09m9KKi9eybBJrtFJB9/5F5dsE/pX6TvRcrbH0zX5lOZXTdZrvk2SWPEC2MBHvr6JPLxTn2ldAfVxqHHC11rvkb4tNs1kTdaQPcUEu1khFSeQVJmk1zeQSxzRtlJJAFpeHWWEytwkTVIWp92lMQWEKWCthWzmyIQuRnamcemy2Ks3PC0WeiahLWsqCZXLJa9PFMLkX7w3ds7m6jvHJXFdFZcVacMnT5CEPRHG5sdXEFD9lnfw6Wphc3H8ig0telTHHyQUT/jpvXEvmlR7HK8QuFqZ0bxS6PijluN6rqWIMk2bPsq4fcj2XIr/vOEvch9HCZOo3c+SfXmP05I6l120QPATyWpiqPix5ZlmM92rGsPh+vk9qKpWU91qxzLrlfrAeMUxyDFCNJS8Hrbgki60uXZkC5X2NdN8a2Q9Jv+N7mwQLU5wfd5+siAoxzWa5M5M+WOLaTFAYA/1u7xEIClPAWglBmcjwaeYmfVBW1dJjsdPJ3m30DFpx93L5tLYYJirYN8mHn7zUcSaqezf6QVacVPH3u9OK8xNfkVbcNUYg/tXUtZliLlpxXoGr6kdrm/sPkCrJOgtTFjc42cff9T7+nihK3QQrDlTX6d4o9HVqBTx+tiyfu4sVWnxP6TG1cCS/c9PkiQKz6P66eCG5mIRWnEhLHRvLNKSsVjW04h5l5HEDzmNhol1JXe/VnO/6y/dJstLMmF1ZkPsVXfo8MUxy/56fJU9+F9w1Sqm3WeB1LHldf91IH6R6rKS04vK2CSbrqzjHoM/HMPUpZtIHc74mqAt7vU9lCgpTQACBTIO2sCAndcw6FqsMspHlFd331Nslj4phMrnkVWiXvLqSPujOOygHjMlWB8dVUWHiy5zY9XSrpvEgbrQwWRoO3447NRui1sqk7xfdT+O/NOuDSxtOJw61v4bYZefMInAueVXhEolk1VdznVKOY3mzfKe+FhA9+xxT0gL+bsFW5ZQsWz1X1dSJ+B25VZiN9IGCzzsRXPI8Ox31+/S4lzznWie6fqp2Xt7bTh6/qpZxSnGxKkBhkkFbmPLswyT+tCnCrhYmlQlRzZ8/b0J8SzmKks4mXezQZ6Cbf1DfkOmTb9w+TL1PYWrqbgECej/mL1+D+9+cha/sNQQbrNtSt3JaV3fgn69Nx/G7b4YtBn3CmDavMiG6J+QftLWT/Bx9hm82H3y0DC9NWuiUt2kKdd/omWm5DHhl8iJMXbjSmuflj36AA7fdEMfstilZwKwlq/Hn5yfhq3sNUeqyo2CXvLguzjxga9X/nCiHh3YCJh3z95uocHn3RFMMkw66lcb4uVxc3f737kd4e8ZSfPUzQ7Ddxv0BACvaOvHnEZOTNIJLnjLJ1UyWCEZIqrpnLlmNR8fOscqZTHK7ajtWvF+atAgjxs3HYTtuRN8HhhcnLsSz4+bh2N02w7SFKzFy4oKaXFHEKUzM+Dz8c+jSvD51MSE3E+Tm8eb0xVi8sl049/KkhZixeBV22Wwgxs1drpXlsbFzEEEllZm8YAXueX0GZi9dzclQ2/z4P2NmC3mUSiJRhA338t8/GF6dsgiTF6zA7lush1enLCLzmjBvOW5/aZpwburClZjTuhqmrzjLYhWVh07xmLFoFW56YTJxVUQe+mk5OZOszxTmL1uD+8fMwqIV7co1/nOesmAFnvpgHplHLPOiFW348/OTFHn4hZS3ZizF4+/N4e4VFztuGTkFLU0lnH3AUAzq1wcAwZKneab3P1qGBcvbyGsyHn13Ds7cfzE+s/X6NTmkMvj2nAV3vDwNR+6yMfbcqit/wUtDxfxlbbj5hckY9Ik+OHSHDfHsh/Nx5C6b4N9vzMTmg9ZJ0rlamDTOoQIEWvGuc1MXrsRfXpiMFW3pwhtjtfHhjpen4uDtN9TOMajyTOO7abz452szsPGAvmgqR5i2yD7mm/L904jJ2HGTAThu98288ulOBIUpIDfOvuMNvDd7GZ77cD7uP2//upXz0wfH4tF35+C2F6dh9M+OMKY17onkggyTcpNLns4HPo8rna9S94Xfj3LOWxfDNHHecvzo/nfTcgF87dZXnfL81+sz8a/XZ+LwnT5P5n/Nk+MB1BSwPYasJ1zTWZ+ymvXjuiiVIpxz4FAyjW4FzCW4mTGgyr3bNtd9mLg8KlU35jidPLFLXoeR9AFY1d6J7979FgBg2qJV+OsZewEArnj0Qzz8zkdkOSbXFh78hKFkIH148K3ZyjlSXsQKTe03bx056443MO2qY+j7GHD6ba+hyoB/vzETq9rTiUeE1C0tVZj0MqQxTHz+6a9rnxqv3KOzpgDAl296RTl36l9f0wvQheVrOnD+P8cAAL53+HbJ+QpjuPGZiXiEe3exvCMnqAsm5ShCp0c/dOVj44Tfp9xi//5/9+xE8vztL02zxGK4yWTqR5nGeskYcMzvR2F5W6c9f/679OxzTGQKOpx9Z21M5TFwnWa0ru4QZPnsdS9o84iTnffPMYISH98vb2j9q0c+4NKoMYV/eG4SBq7TjG8e9EnyOXTPdcvIKVoZKZz8l1eS7ziu6z5NpXyWpS60dVbx5ZvS/EUXM1X+v78yDXe+Mh0AcPmjHwIAhj+etv8z9tsKgH6vrSxuxgmtOBfD9OKkhXhRWuxkAG57aSquenwcrnxsHHbcpH+ah0XB79tcdpZHxvVPTzAn0ICy1r06ZVGvUpiCS15AbsQd++jpS+pazosTax3GwhX21aosbh3C/d53mK1awoCbI3BSW16G+02rTDqT/ZzWNRlKEtFeqRpdqUZNXEgMxumxuJKWowIBvD+7VXtNb2HSKEyCki5N4UwWC64u+LsqjMFFz1JY8hK/+lr33mkkfRCtWCu5yeNrUxcJaTs1ZAK13zrlMr0nJX3Iwwwp/pXbkc4tiCGtJ15ZiuWKLUxJrJHhi6JimGytsB7++svXpO+KtxZUqlWsWNOhpK8yJrzfGKXIjyWvSKxsU1U1URY3wUzy1zauVRMwwKosxU01T5+dxSVPVpa233hdnLn/1nGOjuXW0skWz7gudK6bcQnUc67kLBwUu2FcX6fusyU2X28d5EU8ye4jmaUP22HD3HnLfQX1XpauVr8jHsu6vsFyFOG+7+yHfT9Zs1zFWclMgowRfaf0PnmqctP2HowB785aqrlIHuK3J+2Gu87eG5/oo1eYslChu4AaN2WyjJ6OoDAF9Brk3SHdB9mYoEwr8OJE2DdvClWfGZsn6rEPUwxWNU+ay6VIGbz4ibdorStcPLIcHrp3JpxndnePGAKDFTeHqVT89iaSy4otTEZXUWIAp+SK5eHvo8qUQelqeTZFZsnf2pHcjrQB4UYXu3QlN65vl73SmGZWQvVTJgtTVvCTMZn0gXrnjNGKYKnktw9TkagpsvqyXb9v2+a3tIVJPHnCHpuhT5PYOGPLYy6WPCl9lkWer+29ZSKb6z5+2rrrOm/bboCSU4hpJOJz4lsuPmJ7bLfxuqbinZDSdovf+Vc/M0SwqGSB+nyqZDarVtzfNJUifGbr9fGFYZsKWWVpK/F7KXEWJjIt1PqPQXlhHL/7ZvjKXkNw8PYbwrRcatq3Lw+ofIPCFBBgQHcwo2QpMdMqp2N+9WB2KzpHXUetrgb7l2ybnDWXIyVfYR4sTE69i88NJ/rr5H9dvzNM/CqMObUVXTCtaTd3Xi5dCTIZAO/aJ9+jmxjwq9gmlzxX6DaujaFTmIy1GKUypRYmQ3KC9cHmAmyKYcqKjqpoVYrRWa1qJrt0O/SlFRfyzPk4JoXdJ/88pA8xokhdJkotj9x9biJp02dRmCLwZCNu9+s33q79NStMeqU7hokyO4ryfecxOhOFSfzQoyjKtYchQFjmiee1KUw8ox2QqiFaWnHOCpeeo2VoKpmXLU2WKupZ+HKzkj7kAdXefBk6uxtBYQpoKBo2wc1pxcliYTLtUaCziuSZQOV1OzRBNxjprBk+YMw8mDaXSoRLHs/olH211wfeLnmSUsynctnXp5YuPV+LYbLLKaeJi9KRWYj3iivJwobNUlrRLUlW0jT5c/ONQl3yEhklC5NmgmNqJjxLXmoJMr0vUQZAfE7qXdfbwsSv9lertAw1q4GaTymKMvdC+RUmlQBBNJw7LlYZFSY7yQJQawdy25RdNbuE8oIyFlT9662mzNktxqZyk/OgJ/M8qoz+BoQFHQvrWRFTYd3GsGVCufXO29DuYtgozONvMFmckljtTFY4qlxhgcliYdL1+7Vr6sNEmmM13zopTF358ut45XJQmAICtMjzKTZK1wLkQdvxHs0xoE6EqXJ84erylQXO3VhGZdTkllXbdV48J+zILuwxUb9W4e2SJ1kZsmzyJ8QwOZI+2FzyzOXJind6rOybk4GeXKAV7/qbxwsjqZ+uP7KMWoXJFJOUsvc6baaa5KmZ2JPuX13Xi2ytYtwSrzxVSbctppkE54lhyju5oiycjSR9EBCp7akIlzw5fSYLEyebu9XN3H/ZXPLodpxCt2E2EFvEirQwiXmVSmYriQuoGCwZ1J5qPGKru2xhituj+u7VPHQLL2WrFY3u95XjpK9M8zJlm2ObKyPi9sK74QULU0CAAbkmuB63Mu2PDMXmXNGrXaMH3FwKpGaiWwRcXfKygMEcI9VULikDjUBpzZ3P691oul13zUWRkieCpnKEGCZesXZcGVdXGuNVT4funamKXiqX+I5Mir5OTJH0oQiXvFjOeLXSzcJkQoSIc8kT86cQj/e6iT1VFzrLVZ7myytMgoWJMTJwu0Z+oCJPTFleMBAaE3/dSXE1W2JdFjiArlg2KU2pCJc8x2/FhJr1Ky7fLQP9c9dgVJigs1Kmx6aNSKMoyrdHWhdiGWiXvLx5m38D7i55sYVJVmoV0gfLu+MtTLb4HrVdMfq4q0zRwqTPu14WpvjZ+D47xDAFBBhQn0+RKEez+uuKbPsw6UdVnbm8KP2x6KBt7aRWfq4Meddc8vTX+5RLqsuXxh2sjgYmvdXEKYaJSZNo10lOmq5SoSe+ijwa1xKnGCZ5wsqvEku3izFM8sopLScV6FtPljxtDJOhGmvxFrXjhPTBlB6i2w1g/w5cYqN8wdNC84QcnRVa0WYaAWqrvNkky/v9kRYmz76bMbMgVY1OJt9Cxd3E35BuwcsFcuoKc9mNRwLnkpffwsQSOXTQKaEyi6dYHicu8luAgLT/kBWmUmRmkHOBYmEi3oldYRIXbpJ3pCuDbO9c2+ItTL4KE3csemF0HXRzDBNPlx4jKEwBAQY0yMCUG7knAoYJpTjhzl5QbsXL0FfV01JeC3w1xDCVI2UwFlfQwR3Xr1Vo43J0K7dMPHaWjasKYQXXsnKeykMP/E4ueYq+JK4S8zBZmHRyioyQXZOLHIMkk/66WphM1cjHriSKjcO7E+rNphwzNV1eCC550oTehyUv6k6XPJitbk4WJpjfb9XBvQzo+gylphm31Xy04m6LC0K5khwC6YPz4ov5PLUvDp+GpGLn+15DDFNRpA9xu5Zd8spFWJgU07yapsPinxYTr2gtTAYrHFUs/x3bnlF5P5qFBuotm96Ny4JgFiQb8vIWpuCSFxCgRz6SA/d7s/jBi/fTx8Z7DAl1k/xc8w1pgl4k6tmNMZgtTDWXPPFcVaNk5o1hMt9vXqFVU5snIDqILnmiYp0lhimuKhfSBybJxh8bSR8sMiSyEPtn5YphkhQaWanLZmGiXPJM6UVZ5Duoe9P3WNyHyiuHnUI8k570gaqHcikH6UPG+5L7mdma56QwMfN3UlOo6PrgQU3y5RimTKygxOKCLZsmxQWN3jDZBFvfYWLglPsF/nwMWRkQLUyRs5cCmSS29GpIH0pR/jHKySXPpjB1XY8tJWnfJsovnpXAnYyViijqIn2w7MOky1twIe06FvIyxjDVR2Hi6dJjBNKHgAAD6ulCpSsnS5GZWPIM94jB/BkEspRXNLQseVJtZplAVK0WptQlL15ZFFfQeXnqBxeriQ7yJM6dCpgrp+pKKy6XXfvrRisuugfxpRlXNwlXEwrUZrdFsuQpLnkaC5ORpRBpHI8L6QMVfK87TsvXX8sKPiCdn7zWSB/olWx6tTn7wkN+C5Pqnmbaz47Ow1yvLgQGgLgfVwyVPdEqjgIl8N/hm26WGjY/dXadz+ot5LULZpY8uu8RLOAm6wlBoOGDOGsTrXheE1OhLnkJ6YPYXlS3Req75Ma2ruJkixUF06IV9T1HbvpSboVJ52YXv8tA+hAQsJZBVLjcOhB6vVnNT4jH8ReNLq9g5Um7OGhY1XIFY2YrQ3M5SjrteKDUucTknbCZFDdd1i4uefIqsjEmRqAV5xXrjC55Xb/lVWr6Xr3102ew1u/5orb1IljyklVTV4XJHJTkaUlQH8DGolaPGKZ2DUue3iWPtsTkoRXP+0CMmfsU98Uq0zW6B5fzjgirRaIwVbO/P9dvhSqXly0hfXDu8+h08e3Z9mES+yceCq14jslwvNCSkD7IGwpb9ihygQuDnU1h6pBIHyC9I4X0wfLqZGIE0zOqCh9/jT/PlLyyjHuuaGmix53EwhRIHwIC3JDnY/S5Na8yIdzjPGibV+yo4zyKTl4rmgmu3VgW8W23NJVSWvEmKoaAX5HLPWEzTRp0Ew7NeeFYstxkmOPkphV3In2QVybTa8YpiSSW1hpHUMDnimGSynGNYbJZBaNEYYLwl06rymJaLJHTFoV2nYWpQrcbnStYHlpxF2urCUyjzCTXnfIwL2pVGTQvQJ7g2/dhapRLnmJRAeeSl1OJjE+b3l2VqZY//l7qfsElL9IvjLiIH1taEtIHKbNSfgOTQr1PvVurhUlSAmKR4pxIpcZgnZeJETxYxbVxlNTiktHClPOb1o078RjOXw8KU0CAAUVt1OqTNu+qoPNcV9NhAZKrFbHqngWFxUIR0G9cmz/vqsVy0szRivfpWq3qWaQPdkVKXqGlVvli8FUtWJg0rkQ2OX0sTJDK4LMyjWWyWLrvukJsCJTLJU/6W0gME1SWPOO+TYkM9PdHun8lE275gl4uG/jJnGxhoqwHNcVCRR5acYoF0Qcs+R93ztCP0nloHozIz3xedclL24X41wcu+/3IkAlbhH2YXN17NcImLHmWh7FZmIykD8j3nSsWJopWPHPuEPKOQdVGm+fGtbJSq8Z5uSmhZcnFj4KpD6beHZ+XeR+mfN+0bkGMcslzWdTrSQgKU0BDUcf5rVhOTpuLbQJkL1/Ojx5oirK4FU8rbi8zD0yKTnO5pAT76mjFc7sEGa/plAB7XgzZ2pAcw+QyeKmuMbW/8qosBSV3wcRkctvQLwjw6CTaeh6/9aTY2Frl6JJnqscoilTXK5OCZbEwUa0qjYEp7jtt76wkx2IME61oVyn/N8QWpmxyFbNxrawxkYfGPIykDzqXPOl3FKnVE+9l5qJIu8Llm5b3UKvFVxVsYbKx5FGTe+6UygCXHudVaBILUzwONBGkD0XHMGWwMMUueerGtV1lODDx8cXGC0wuFiY5Nk+wVBFeLHxeRTAY6qDLOa4LQY6gMAUE6JFnuPEarHIqPJkC9g2KkNgp8nnnQE4Lk6mrch3uskwgNPO2BM3l1CUvVph0FLj1tDDpHs1141rXt8vXtEgO4uaSR+31AXjQimsmqB7eINoJN+VKmWesTmKYun67uuQZSR+4yZdPcL+gIFu+RVnuIiDGMKXHVUO7oc7miWEyUVO7gIGwkAqWO7f8Tcm0tOLSOapZlhSXPCdxpHLkxQX7PkzKt8vFV7n2eboydNYPWUabNcRmYdJ7KTgsAklWMIVWvIgYJg1Zjg/iOowtJbGem8QwubDkcahIpA8mqH2wJh1xvp5qik4Zk+sKCKQPAQECVDat7AOsz61ZFJ6sZaXluMnDe7HkqY+6ssVpSR/0q4quqE1g9DfyLnnxxEEXA1YnBlRj3nrZhSm0tHmgo9ItKdYuzydnndadC624PtbKvLoplakRNM/+NRRkhUaeV+hcaKwsebJLniG9zVpEna0HS55IK55m3FmlNzw2ssVllCuv+w6z9AVOiiuzkT64jQEU8Vo5YU90l4cqn4dtwahWruSSB9qyaYJ+Al27YKQV18hosjC5xjC5IHHJixWmErFxbZ6FF0IhzNKUOzoli5C0ubCiVFKusuC/XYn0wULOoLtMke0Iaeuop9gsf6UQwxQQQEOxtHRHuRkn9WRervcY8yumFmyr2nlQz36MWlXmUaMVrx33iS1MFfpZ62lh8nXJE+6VJmmuLHkyC5UbrTidxsklT5oYCRvXWu/m77PLxqS/mSC5RsmDc0dGlzx541pTtcf1xYhztWNaWeHlLgLtFbGt8MfUZ1EjG9AoUhll6My5RwKDeaXcRS6KmlzOz2T1i0HZLMoFuOTJZVcc6ltWEKi9wmywWRntFibqXq6dEZazRF7TPkwOkF3yyJiuHLP+mpLNpHP+77ZDUXC68uqqJ7mObO1doRU3lK3mw4035GfJxTDVUWOyDTvCxrVBYQoISGHqHOqJIi0PrlmJSprcGafHRW0MJ2ZTbMXqOtQi3qfO3SNGE0ErrrMq1bM9+ZM+iGlc5eRrWrUw2R9QN/CXHaL5q9LEgR9ojaubUktwqatE0chjZZbyUmjFtRYmfZ4RCDY04wScCTLw9+nKSq4X2F51LHl6dyq9xTLrOynGwiSdE6675qO/5kMrLk9R43m6iyJtKt/0mwJpYUp+uQnBmMaiwexyMOiU6/S4olBmSwqoZS5sanMU6QOfXznnzrXUN5KlJSekD5JCF2dto16Xy00sTA4xTGZacbXfFVjy6mphMl8vBwtTQIAjcoyvPrfqNuN0vt+yYkyXqYeWJa+g+ihCceCf07VDzUqza7qtqaS65ImuXfRx0chFKy49o/NeXryFSbPKq94j/k7jv1wsTKJk/LFxdVOe5GrqRKAVj+N48rR5Jv51jmEyWpi4GCYH16v0Gv0dmyaaRbZWHUtep0bRrlk9VejOuyA/rbjtuj3/2rdmVnBJC5OsMBH3qhvXZujvpN/06r8I+dvlKc9dRagyRi4gJNYPoxlV11bE/glIrSHiYovdNcuo5EoWplIkWqxKeUklGOUq6f9uFVpx6R2pm/va5KolKDtYmOQXpLPMkvswmcXIBZtlMezDFBCggbpHTGM0JnEC41+Uyb1OX6b+Hp37XD6a9XxKoQzZB50uU3+PO8yWkyjiJ/0q6YO4kpalfE4S85yBhH6VXrzXdR8mkVY8Pa65VtkfULdjvQvpgywbX55p4FMVJjodT0ZQhNKQurbV4MqSZ17Vj5QYJvNcUlX8bAs0uhimPHXRXqFZ8qpVRk7KtS55OaRwmfybQCsyfv0as6TTXVNc8oj2LrtqZuvu5EmzXUOV4w8jzsTkTPrAgDbie9BN5nlUGe0OLPS9Ek20LJdtLmx6ilgZi8toKkdCfnn3YSItTDk+RtmFLm5blNujUg6vhCr7MLlb+XVkKY22MNkUpkArHhCggaFvqG+5eVc+tT9MZdLHchZFBcJnsYKZwMul6/Qoxidf1CZupuvpYNaHcMkTJ1T1a1AuzG+69KqFyR8VTfC+kk4z8MvUxBRqaTVleIxlunZATxhyLBJIeSgWJo1Lnmm7oChK/erT5zBNJtUUwiMRt/rEwLjWj2hhEt3z6Peha7fZ+6HOnBoTSU7BHzvIpbMgxdBuwuqQd0I6E9PNZ3hc+RNw+aZl9rCIc5J2fVVVxsgFBBeFiYFeNOBFTyi/kz6ak9dBoTG187g96yxMNdryHDFSTF1UyDOSyC508aOZmASpcuPvqRyJ+VFQxhjumCKE4uurnrTiNvCkD90pRxYEhSmgrihyRdVncizOX/xLzTIpN+82z68iFaQw5XQ7lFev3OJlzL9dUFtgNdzIeN/1mox60gf/8qWi9Nc0F10omxkk65DFwkHBlSVP905c3B1qcnK/+UmP6T5FcabTUa6UufoA6WZl49ostOJcPi5sdoxIY9GXkpNuCoA9DWCIYdIoTNWqzqKTfeEhv4XXnIHbxrXm91tlcGp01NxNJlrINJbA7Vsx3ZPFJY8xegHBZP3g79XFwcWQ3ccEl24D6YN9SSK1tMT9R1NJzK+ckyVPjt2sncvemBNa8fgddZ037VVFnavKFiZDmaa5lW3sqauFyaJV8I4PwSWvjpg9eza+/vWvY/DgwVhnnXUwbNgwjB49urvFCvBAPWNOxHLoY1dkC+7lyjQMknkpz5N7cz6jKT+dK4Bqzcg2gTDTAKfXmygLU87yXaHL2uk8c5hEW+BK+qDWQbwqa3d5kL2D+PZodMmTfuvkpBYH8rwyeT8chVY8YwyT6pJnmEzGLnl8LQjfIqGseCiLrtUj7sOU3tVZZSSTo45NTlaaGwnKyuFrmZXbsHrdkfSBZMkTLY9ZF4hUecwZUeVEUhu1wWZhMn0TLsQ28SJWM7H1A6/g6WB6jNjSErePUkl2ycunMFF9a55vQFZwmKYfsb33TmnjWuPm4WDCZauFSciqfoqK7b3zng+9TWFq6m4BXLFkyRIccMABOOyww/D4449jww03xMSJEzFo0KDuFi3AANXPNkdeHjfnp5tWJ3rWOwwKjEwX7Zs3BZGFLf+Mh1eGdP1YIS55VTtDUzyY9yFimHSsbllg6q61SoDWwiQqdTolWZFBI0SFZaMVj+skiqKa+4PV9YZujz77MGllIxTdIubmcV27kj4YacURpRPj2PXKVDah+LnHMGVRgGno9mGqMDr2rWY1oMor5p1kgY262qkqmLnOmOY6ZcWR23yT3C6y9HfSLS7MgnKaGq24f7kmhcloYQLdZ1HkRfEEmHd7rVltzfIZPTJiC1NsxYr7sjj/KC+tuLpol2fOUNa45Jn2quJlkWVwohVX8uK/G/UbEkgfujGGibdA9TaFqddYmK6++moMGTIEt99+O/bee28MHToURx55JLbZZpvuFm2txNJV7fjgo2W581EVh9xZCvhwzjIsWdmulqs5VtIxhvdmt2L6opWYMG95cu6tGUu5NPr7l63pwHuzW5P7YlQZ8NaMJVjTUVHycF2l7KxUMWbGEnRo4jJ0k7QpC1Zgbusaa/6T5q/A0lXtmLJgBeYtWyMqIgwYM2OJMuAWsdmfbUW7UmV4efJCANzqZZWhdXUH3v+oVTtRzYJ3Zy3FyrZOjZw0xkxfkkygqlUmvOcY8ua8ySSbS9PWWcGYGUu0deFqYfpo6WpMXbgSi1e2Y9zcZUKd2HZSr1TFtj532RpMXrDCWqZiQdU0hA/nLE/v8VAadHhrxlKs6aikkwCZ9CHLxrWR6npl3tQznjzz+ZvLKsrCNHXhSgDApPnLMXtp+o3PXro6OX5n5lJShuVrOjF2VitdXjdpTKb3MnPxKsxYvMopH1OTqn2L6vl3pbqgvhTVJc8Nwrgg3bWirRPvEO+Bh0LRDX8LU1tnBa9PXaScf3vWUlAbt/IYM13t+7skS44Sd7ky4ZLnEGNkeowpC1fgo6WrJdIHziWvlN8lr6jtPQC+n01d8kjKfKa2h5ETF+KJ9+Zg/rI1ycKHC634mBlL0dahkuoAOgslp3CaH6cmQ8b6td3Wm1nyeo2F6eGHH8ZRRx2Fk08+GS+88AI233xznH/++Tj33HO197S1taGtrS35vWxZfgXg44L9hj+H1R0V/PeCA7DHkPUKyzeXC5r0+73ZrTj2Dy+iqRRh0pVfENMKk1V9mSMnLsQZt72e/H72B4fg3VlLcfmjH2rL5XH0jaMwe+lq/OOcfYR0H85ZhhP//DIO3WFD3HHW3pIyYl6NjnH1E+Nw66ipOHnPLXDNybsr12UXMABYtKINn73uBQDAtKuOMeRewx6/fjo5fucXRybHIycswMgJC3D87pvh91/7VCq7NIZmWZXTrfjG+N+7c5Ljvs1lALWVukOvGYElqzpw3O6bceV7Fy9g2qJV+PJNL+OJiw4m5KQzf+qDefj7q9Nxxv5b47aXpuLyRz/EoTtsiG8d9EnuXrtr0f/d/Rae+mCeVjbXGKZbR03FraOmJr9322IggNrApHPJ22LQOpi1pKZoXfqfscn55Ws6cfh1L+D1nx7uZWHSyfnIOx9Z7/XBo2PnoK2zkrqZSNfbOyvyLUb54jzkyahJRCqexbaJNFMOsuGwa5/H//7vQBz7hxe1aV6dspg8/8T7c7X31IM8JYrs75q83mUZOei3I5zKsS3AVBld7T/773vC75rVQkQ8oUtY2xwb71E3jMSc1jW48+y9Fdk6Kgy2hiC31yhKb3H9fr53z9vk+Z//9z20NJWMFqYH35pNnufLjhWONIZJTJtnLhzLftKeW3Tlpbrk5YG8oAXk65dU0gemcTdVzz03bj6eGzcf2260Ln545PYAONIHg/qxcEUbnh03P82bL0dYTFXLdKm+plJJuwBlgtc+TIH0oT6YMmUKbrrpJmy33XZ48skncd555+HCCy/EnXfeqb1n+PDhGDhwYPJvyJAhDZS4d2N114r5C+MXWNN6tfkcnZLc2bw0qWaFcKLu1ODxsXOE36OnLcYDb4qDhWlyH6/sPvbeHDLd8131pyN9MNVHPAm+781Z5HWqvGmLVuoztICaDDwsTXh1jGw+0LkGUThouw1r5VYZlqzqAAA8wykZ+V0vgXFzl5PnTVn/87XpAIDbXqy9o+fHL1CsmjbXIpOyBHRN9DI8X7xyHkUiIxGPnx2zszGP8fOWe8UwObG/UbE/Fmy+3jrKuWc+nJ/Ui0pcQudjtjBFiiUhFnHPrVSX7ySJ5jOOj4d/aVh6jtHPbtsclMKjUp+VBV/69OZYt6VrvbR4XQkAcN+397Om0bGGLVvT4VxOrT/RP4RrH0HSisvKgGNdzemy8D/x3tyMbnziPTyJQhFeGveNnunk7itDaPNdxxSteAR930PlpUNiYSrJ+zC5yWvKt1CXvETBqYHBf14yt3VNIpOLhUnNm1uU5fe/6zot0Io72Jgo8oYdN+mvTX/MsE3xyHcP9KMVd9z6oqeg1yhM1WoVn/70p3HllVfiU5/6FL71rW/h3HPPxV/+8hftPZdeeilaW1uTfzNnzmygxGsHXDoRHz/bIsdm1xVwn36wytR8XW6PYFYCRHO5efXHFdSEzbZZoAkudLdFxDDVSB/s95285xYY9Ilmczl1muzZso799js08WiyO0ZWpsY8biMRaNKHn3x+R2ywbp/M+QJ6C1MyCTfcY3r1Z+6/dXL8hWGbYL9tBtN5df2VB2eTe6MJcgxT3N6u/8ru+NFRO0hlWCZCXceHbL8hjtltUyFfF8tcPanyYzSXSrjmpN2S8op2lQaA7TfpjxP22MyYRvdefCbzVnsNcxsDqJ6znCgpscLrj7jsY4Zt6nyPGsPk75LnW4YL+LbJM9jJclHWOlNeOsT9a6kkxzBFucY6iiUvT7XGovAb1+pYBnXl8NtpiA5+buCzpbxYRFpxe37ythRbDFoHX/r05mTazddbB3867dMYtsVAu4VJ2oC4N6HXKEybbropdt5ZXBXdaaedMGPGDO09LS0tGDBggPAvwA8uq2Nem6vl6JR8bnVfVVTvk5/HVWZTOkFhqiPpA98B+a4gZqEVN7l1mPJwee5yKQ3GFzeu5VbS6jHTc8i7KaE753zIpZgy4f6MYuZxOSxJgdIxXPZIiWCbkNCWEpNPerJIb3gmeRVUm1u8Eisvbmgyt5Wpc8mjJKAUP1FfYkm+Ms2wqjD5rUIXBf6ZGavPukPN1dHfysCYX7+SdR8mBYSocfuK78667xzgay1QRYvbYlHvKkvfTS38KdZZmBUal4WTRMau/rWpJH6J5VIeyocu5USm/M6RX1wHfHuh6te2qBrXSZxfnjZjOu+ibMp9q4n5kD9tJ33gLEwOewX2JPQaaQ844ACMHz9eODdhwgRstdVW3STRxwMunYhptUK1MBU3NJu6zKylVFl2wk3nfZiI1Z+85cVH/OqNi8VIyM8hucrIlmXQpVm8ZESRyl4GiO+9wLhdBSYR41XVDs3+UPKqdtaV6TwKYRTRFibReUQPn+9a3pPFdJPpiZQNOzXZxXnICqEubyNLXqRO+ig3lrQMJvwVbuDv5VqqjjQgq0trXtQmTOkEvB70/LXAfzPojWtpOmwdbPK7LtBQ0pYk64nropgoX+2CjeKfh+KSF3HfYxHvH1FG74AU6dYPohUuhu1xXUrv5CxMct75acXFc3n7Wv4vIxSy2nm93LyFKdYjfNRCim0PEBdwfBBv6SGc07xUYaHL5pLHW5h6jQZSQ68R9+KLL8arr76KK6+8EpMmTcLdd9+NW265BRdccEF3i7ZWI+tAk9yfIT9XWerhkscYIzp6twxsq5wxKoJ/cfYKoZ6RrxNflwuX9LK8vkoZEFtf7OlKEbrVwmTKOR5M2gULE3+vqD5nUiwdXRd14GNzxPNug6e7fSltf24WJv0zCfdH+r4ljWGiz8swtdMIUTKIy/swUXVltzDVUOImuSmznss3Zk2SG6KFqT5OgFHyPz10FjafYHObhcz12ahvImkXkqsmXQ59LbEaeChMantNWeEK6fOirN4Bat9bjmnFq+I3ad+HyV5+bGFSF1LyWZjIxagc1ZpYhOJFCKaJYTK45FEWJp+HpJRZ/gKflUv/T70/Xf/u4+4nkD70Mpa8XqMwfeYzn8GDDz6If/3rX9h1113xm9/8BjfeeCNOO+207hZtrUbRE9IGzAVq5RArLC6oVrO55NlWOfNOnsk8iWfkOzlfhSmLS162FXI3RYB3ydPVWT3bk+l9xittnToa66r8fvxRZSoroQ8i0EG1dsJf+4CqxrLV/ppYj1xccYQ4BYMcLEkjJtCSPtgsTCUxXar0qLVFMemRLJiC5Uq9R74vRiNimFL7Utx31aEMg8IbQ/dafCxMtXz0D0AxolGg2pvMAJe1vwP8GMGoxcEkPsZfBBKZxiHulkRhShS52t/4Ka19iENxsdIhWzZqtOLZJ9tVxhSltAgLU/zwDHoLk0kmlezDA8S7IWWEm+WKsiaVHUxCttciuuT1LoWp19CKA8Cxxx6LY489trvF+FjBpQsxW3qY8Xe9kLWUClM7Kde8TOOPbp+WPLUhLCIlq5jpuUa45GWBbUU4RomzkOhWQ+vZnowueV0WJiqODFBXEuupWOoQRfQkjZ98meDFkufgkufCkicYmCL9XivpSqxZrhhGljyk9ZG65KWr5ToLk+6c4JInMZspi9qWvCgUoVAJE/A6dsk+ine8xzID0OblkmeOYXK1oFGy+igpepe8GnxW000T56IWMTPFMAly1P4mSqWUNkv8mgx5X6IYpSi76zxAb+6cp1ZTC1NXXkzjbmpZVJUtTJmVQqYeCvswOWQrt9faBt/2+6wsedzlQPoQsFbBySXPpDBlyM8VRrIJfvLqUSZjzGmCJJcBmCcyfNpKRtnUPPmyaxAsTBW/zN0sTAUoTHBTdKIotZBUNXWWxwJjg+l9UitjsgIr/M4wHOdd+deRPtSume81WXdAyOUSw+SySs8reLwio+RFWFRredOZmz6FKFJd8gSlRylbLYsqViSTkO+OfxGTKr2ohYF/rnqV52LJ5BdgUtpspt2sm4RlAaZm7bVnQ0kbTxBlV01SDO04Ufvr45KnxjCpyndeZI0/le/n3xuQfrPWx3VRmKoc6YM00c4z167FGMnnsueXxjBxLnlEp2Pq04UYJn+PPK3FO3kv3HWXpkgZk1wUHGsME5dxbyN96FUWpoDGw82VwT5JqgdMn6XjVkdKLoypH7xusiv72dvM7cmxEI+THRQLGy+5r4XJLYbJK0sS1B4YFMrcRFa3GlpXljzDnI10JZBeh07Jc4ZmldIVWtIHws1Mk4NeNMVyXPvrFMNkKFGeVOpySxSajIsbchlxsbLrHBVcTlFMU0oUma+iaPrJWhTkGKZ6l6GDyKyWHvuSPmSJLZJhjGHSvD+XclLXNQ+FSXp8fgGjiLcVoQgLU+2XvKiVeqdZLEwOT9LBWZiY0lbyuOSpbSaXNV+i0tG1SVeWvHgO4qMUiqQPYr6CcLArNYCqzDAwp32TbCl4K1Uv05eChSnADKd9mHqgVVVc7XfvCKuMqSvKmtvlQd19HyaHzB1AWTCEAc07hkk9J7/bRlqYSlwMk06Zq+fU0pQ3NXDIG9XmrSrbRNCG2oSdUJjgSPrgYTmW3XPIe1j8V/9MvLymCbfsupLKlUGx5tzTFEsCpRcz8W/tWJ1QU6QbshTknk56SQuDMAGv66KWzS2LUzC51XkvhYnBWGk1Nz+XhT/inGTVyWRh6vqbyyWvDgpuJsIeYRyLrSFd307XK0tJHzR5QP1WdOAtTDzKOS1MVLxQnlotJc+cWtvojWvNpVSSOq399lKYhGPzoqxLttT701mY+PJ8SB96m4Wpd0kb0HC4dGpGM610f7Euefpr2fdhcu+kOhSTu75Mvu8silacsmDw53xXEKk6a5aclvNYPPhyXESLInVDURn1XI037sNEdPRicia9nyyTE7d60iGKIpr0wdG4ZBz4FEuJfRWdUupl8INpBPuEW5ZRZxU0eXjxiqVCK044lqXv1azs8EqJ18a1tndeQJPnrYz1stK6WJhEl7z0vBdLHsz7LNn2aUpAWF4V0gejHPryAb94DVJhgihLXmRj7uTu7/ohb1wby2lzQXQpPYlhkuquRsaSHSSteI7ONn5WfhHCl/QhlquWT2yxcn9KQZmtqueFvByypcY4FwXHug8Td72X6UtBYQoww2mcMd4vr+IUNzgbP0tGHqrJiImfbVU4Br8K2lmpWgOPkzIK2riWekY+vyJoxftIClMhgzVzm6SVInrjWh713IfJ1HBICxOjj4FscjKkbSXLamoU5bQweWwXEMO8D5PlZsgWJhPpQ9dEStmHSdNOjCx5aTBztSoGg5MueYkMvDyiXLV7IyhkEnJ/SH0HlrZSRJOPatoogPp9QxHsVgC+H+Dbm6+FyeQ+y1j2cawsKQPGbktzLb7HxZ0phqwv8nVZFOlHblrxrvvjmBTZKutD+KFDHMumEBA4KOPmsot1yZNjjhg0FibLu4vH4CwWJt0CHbUPk4siRim8RZA+8Jd93FR7AoLCFGBE3tVH+fZiLUz21WzfMmu04lJemgz4Qb29s+rsrlEE0xwgmeCJAb0IhUke5IugRGdweydlTmHSMQvWlSXPMLjZ6FCr0qp2lkkO7zaShX61FEU5Y5j0UGnF48mTXckyfSfygKzLjWmu67I278Mk0n/LbnVK2YS1IXXlEzO2xTBRUjWGVpwjfaijhcm2lC3WdXrOl1bctmm4yyNSw4lCC5/Djc3HwqSUE3FuowUR3RRGK54QY9T+xk9pj2GyQ0crnrcPqzKmjHf5xmVRY2KMzs+mvCcWpgzPJm5toJWwduxkYaIUJgeVwUP04JIXsFYh60CjzS+7KF5wHVRIlzzHL769UuGOzRYmcp8W5JscUeQRwga5noN7I13ynGKYIjiQPuQWRwtT3tQu6Ew6zkv6UFsF7Sovw8ASgV4ldFmdjRAZ3SXkx3FjyWPkvTwECxP0iyLpxrKShUmTuZFWnJ+MShOaUqSWQSk/LPnLWUw4Cx+T0iV5ZXDbMcFVrxafuX4fkauFqeZyVgMDQ5uXS575W61dsz8jZRFLNh6G+JeWQ9dHiYqFCyhacVmWvMhG+qBOylO3RTE/W1t0aXY6WnEgn4WpUlWV6CK+u8RtEjrSB3MhSVxYV1vxoRUXia7UsUe0MNmhEvDoacX5x7IzsAaXvICPMcyWHul3gYOzOXRKnr66ocqY0pvoRG5TLEyWfJNje94uEC0t6vUiLEzNJXmy6JUlCV4RMCHiLExZJsJ5YcparpdSJLlBMHpC7Vt+nKePO0+MKKJdHniLiuleH/ZLP9IHfbklaVTXidmhiW3I5JLHTQTkYHDTOrb4vlUlivN6466LclBS2dqKeUNltyGdl61+Lnn2iVm8ACMrxx1eLnlmC5KPhUlOx/c/tnJ01+LTXix5Ul68RaWIMTRClKnv5G+RSR/kibmtj3FZLNTRivPlZEHRLHnpvkm133rSB3M+8T1pDJM7+PGbtjBxiopD5WW1MPm892BhClirkJclr8jN4ZRyDdeEyapHoYxRMUx0BrzbSFtn1RJ4nB7zHVsuhYm4N49LHmlhapJjmPK/Qd3qm4wyx5KnZJDIk1scLYwbrEpyNZdLioqe1S2UR/wOs7jk6Ugf4MAwZfOmUmNxan/NpA/0vTxE0ge9utLWUbPuKhvXahVrbZGCJagqrzwTShvlkkdlz++do2vv9DecvVG7MrHxVsb6kT44xDBV07QxGPMkfWBAESMLJWpJkstMX64533XBax8mqcHWFEoxPx1ci6H2CbKBUph0pA/6+MP4wF3GUhQpz53HJY9RLnk5vgNZSWTQWI8t+aQxTOY6tIFazBHWohzylftyBuak9PvI3Mv0paAwBZjh0oeYVhTk2+s5weXhqivIktdc8kToZJZjmEy9IX9JF4/jC4UWVVod91WYqAFUnqgXEX9VZW6OiKXIPgGsZ7yHK008UCPHEJV0mYUpy+QkfZ9OvuMSdJYkl5V/aO5NZZN/x3LmtTCJv3UixNZdWUbdhNbWbkWXvDQt9ThkPBLxbHz9656dkjdPi3ZVrEt8DEhdLUxmefi9exJrHPxjmGzWfVcLk9ze+PZsy0en6CbfhpeFSVKYONlsfV5LU9mpjEy04rxLXtcrSkkfar9jOW3uZC6lx6QP9MKPQwYa+LjkuSxCqBYm2uXRSiteTb+H2t9sD2nzbnDJlXpul2HIamHiBAoWpoC1Ck4WJq8cCxydjR9mNqWkyijSBzotvwraXjGTPugUmSJdFBkTn9XbJY+yMElOy4W47zC35+Zd8nQoKgCahOP7BOIBXR6BufQZ5GScCM2ZXPJ0pA9uq4BuX1cNbqQPhKIhgV+F5+NaZKSuK2a5kvOGQqMoEjYoFZSeSJ2ypBYmtY+RY5hSK456nc/Lds4VZdd20hALk18MUxowz7xZ8kzvt1p1W1ihJvh8c2Yw15VGXUrOe1mYCGtKSgNvvrel2T6ti6Jsi1/8LSrpgzjZLySGibO4KC559tu1oFzydPXhsgiRKIldvxlj2vhEU1vNw5LHg4qfFbJyyJhUmDT3yX2mKzI4TnQrgsIUYITrfjk6uK7iZIHpY8saJ1Rl7mxGsoXJVEwey49LnoA6oHuTPhBzFFlhKkLBc92HqaRRmMTA4+6xMMnvsFmxMOUn96gylrzDLDFMpUgTLO1gY7K6UymWktpfFwuTCfwqPO+GpINqYaLT2Vny4vslhQnqBCB5r8L7VpXBUhSlgfqUVQp0+7W1FVM9ulqYeGfHusUwEcqmjNQqIab03YepCAsToH4VJcnCZJRDc9llMUGG3F4FC5NFjpYmt2ldlnGIcslLLExS/E0hMUyVtO4Ul7wcQUzUHne69yuPgRQUCxNoC5OtDSkuedaSaZAEEFLfagM1drh5HDlkHsuRJxCtGxAUpgAL8o2m6j5MxcEclJ6tJEZZmDRpO7hBvaNiIX0gNpLLC8otij/n7ZJHaEyyZaMIBUVWJnQol3SkBem5+qlLllVr6ZJqiZNoRzIIytdTJpa8iJ5Au1qYjLLpYpgcRkvTu1csTA7kFKQgEowb13KKZbUqyketbDPpL5C2B/nZVFpqOi/7SbUsCj4xTPFnVF+WPJt7TmqVSFbnkYVW3HzN5QkpUfn+p2Yd8BILQDrR93HJk/uemlIfJXKY0MdBYcpqYYKwWFX7q6UVL8TClJI+yMhrYZKVUl11UHuxKbIk19N3RC3S2B45uadAC5MomXu+WeJm5XIo1HPMrjeCwhRghJvvt8nE5J9fERAmq54sebIipps4yyx5rkoa35HmqQ9aGc1uyaI6WZk+22PhVwsG15Uq2sKk26CvaBgnYUykRm8qR4qCJG4emK38WIfNug8TbWFym2wYDUyEsg440oobKkNelbbJ6brJtNklT3RPY/I1JbM4T/6U/PWJCh9hlNIKbGsrpv7MNeYh4tI2qk+mwMe98HXVVqBLno3dLgZVd4WQPsR55XDJ410obY/iHMNUlIUpITqQlLwCYphiEclYzBwaU0XqvwE9k2a5FFmtZaqFiaFCxATb2mFVsjBlVgv5vkk1MDn1E2pf7CaLz35jvQ1BYQowwm2g8civwPUF/rtUN9Lkr7nlEd/namEqwiUv1z5MhDLKn/OnFVfP9SEsJ3nhKlfMMibPM3hXh+7ah6nKRNpYxSVPchPKamFKacWzddU6C5PPbuykbNJvefJkusfMksfJgMg66VK/Xzpvs0seH8Mk9iUR4ReYWIv4GCZCieL39UlimBQ3Wv9Jlem66/cpK4lFIw38N6fjN+rk03Z47sNkrpPs/Swvk5WsRiNE+m24l0u9E9m9UwdXl7xMtOL8/fHkvpR+OwCSCYE9hsm9/KZy0TFMaoyRrj7KpZL1WdJ9mGrQWZhsdZ7GbHXlV4CFKX0taWYuuntmC1NQmAI+rshNKy7/LnBs5ovVrXj7olJlameiyUomfTC7cNFWkVwWJvmZkc8lj0qvEmDkf4GuecQTDJPVor77MOnzrlRFhbmpFCkTaP7ubBM2LoYpI624zqXRZUwzSazbLqDIfZhcXAcVC5Mmb+M+TJHoOscnpYjNE8WPUoj5eyMxNkq6rJXX1lbM5DLGW1PZhBimOihMXDkmCKQPCXxJH5ixzlz7G9IlT2HJM5RjuUAt/mhvkTLj4w6tpA+OClOmjWs5wdJNtSPhmu3du/QDMkha8ZwxTLIBSFcd5ZJLWbXrvNukqc/RoS4xTEn7S8+5VJ3clzOo4QoUinDF7KkIClOAES5t249+OJ88OhhdJTzKZJRLnqYWlH2YDOUIikxOVy1eMrkMfkArQmGSnynPXhW+ecQrl3mJBOoBmcmrT5NsYYLss5WhDG5SUiDpAyL7RDaCuW7lS06kD4TbmgxFYTJK6aEwGQrljUhVSdOlurbEtZDIS2DJI+RTyTLs35zPdVflp0S4CxaJZONNywtMiAIgrs57KUywW5hcvj9KVFFhMrcjnQxxm3CJydPKJrjkmR/G1SUvy4Sev0MhfeAUQ6BYBrSiY5gqVcorha6PplLJoR/qkomzAmbZuDaxuCb5ZXtKKYJWue6Srw9JCY/exnzng6AwreWgNmjr5CwjnR6WER1M34caZ+PXSVPyJ+XyLnnStawMZQzqIL+yrUIO4IpLnm3Q7kJFIICg302nwSUlvkax2vHldFb1dUfmS2TI112nhdjCFT4ueYDFzaurfdhjGMx10d5Zxar2TiGvDsPGjlXGBAtjFEVC/pWqaKnI6v4Sy9KcaR8mDa043FYYTRIzJrZReRNL3T38XwriIG23hMnF6erZWP9crJy6D5MqQzwRqnDfS9zG+EkStXGtPImimqStpZjc1Uz9hoBIdRcsEpH0Vwd+kh3XVUX6tmyoLSzoH6KjYnaXjkEpNJE0yBj75a6HUVy9uM15s04meeXbtuGsE604okwWpviWzko1ec7YjTZul3GV2dx+fcovl4i+IMfEvGZJlt8TLU+pZH+W1CLUtQgBuk3axoF4TpEsOBhT60FamDzzyK4wrb0aU1N3CxBQX5x1xxuYMHc5nvvhoejbXMYfnp2IP4yYhP+efwC2HPwJfPba57HX1oPw59P2JO93meeZVivyWpi+cvMrmL+8Dc98/xC1XK4LUDdxzVZmbR8m8Xl+/b8P8McRk/D0xQdj8LotyXlBYbLswyS4MggxTCmufXI8/vriFHx9n61w16vTyXwefGsWfnz/u/jL1/dUlVFpsnfuXaPxyQ364amLD3bq/L53z9uE3LW/C5a34fDrnseyNZ3WfGxwVZhiRckk+/K2Tuw7/FnsMWQ93Hr6XmSa0/76Gto7q1i6ugNPfO8gMr/9hj+LRSvbAQCH7rAhfvPFXXH1E+P0zyCtgk9ftBIX/fvt5Peb05cI6bPMSXk65CyDV6SxMLmsLvLKmg67/eopnHfINvi/w7dL0poC2+lWL8I30Fh+Fp3IpjbHT0arVdklT5Xh3VmtuPQ/Y/Gv12ek5QL4xt9ex1sz0vde4ixkVcYwYtx8/PTBscbnqT2Dud7veWOm/l5r7jWIFp3iNSbXGCbKJe/zN47yLM1M6vD+R8vw/kfLrLlQbY1frBk3dxm+esur2vs/nLMMVz72IX581A6ydF35x+3Vv755ivY5rWtw8b/fxg1f3YNM6+KSF0VZSR8YrnzsQ/zj1elY1V4BkFqYlneNDYmybHj3P77/Hdw7epZzuSWKVjyHxkTRius8H8oOii65ca2G9MHUVv89emZXfhDy84Uwx0gWJdLrLvnqNj3Pcp943SGTHopgYVrL8fz4BfiodQ1em7oYAHDd0xPQ3lnFb/73AZ56fy7mL2/DY2Pnau/3HUyLHnzfmLYE0xetwvi5y9WL/OKfVKxz8LPUBVCkDwCweGU7JsxbIZzrlDol3QBUrTJhVVjomLnDP46YhDUdVfz1xalal5SL//0OOioM59w5WiV9ICYOUxauxJSFKzO73cT1+PdXpxeiLAFiPW230brYqH8LmS7uWE3KwpQFK7FgeRue/mCeNs3Lkxdh9PQlmDR/BaZq6iJWlgDg5UmL8KcRk4zPUGXiO126qsOYPkv953XJaypltzDZBnYAWNVewXVPT0jSAzZrYO2vKy22SwyTfF036TH1B3KskUz6QMnAK0vxfS9OWoiVXZPI2r0pu1aV1RavXJCnCz14+w2d0tWd9AHxBNL8AvnV7zzzqCzWEhl0DFN6/PbMpdY8bhk5RWnfPNNbZgtTJE5EH3xrtjZt/77N2PeT61vz9CHW4HHLyCmJsgSo33zqjql/WB9lCaA37s5jyKhU1fHaxJLnSz7DuPhToQxnl1lRAfMF5WHDP4OLsknV+ae3GoQtBq2jnFeIcgw4bvfNMHSDfvj6vltaZehpCArTxwRyG2ZgThuyuboyxFAn8dLvOrh/1MrVW5i88qkybVeiWnTE3x2aDld2MSlq41rKeqf3o89ZRoEvjn9XD333APztjM+Q6eJBo0gTf1O5ZK2L9kqVVNL6tzTh11/cBUC8QuleJ1lqjy9D5+p28PYbYp+h9OSouamkpeN12R/Hl44fAMpGxY4leevAP6bLJFrduFbzDVosTLzrnGBhitzWsXWPlDKbOWSSEw9/9wDngH8fEoFMiIQ/WsSTSutGyQb4xjz5gP9O1nS4lSG2wXQRqxaTl+0hXRY5YpQi4F/n7osLD9/OmM7H7TEG1Y7laUQsZpGWhD7lUuEseYo7PPch/IizEpYc+gDZoqpbQPWxANf+ZntKme1Tyd8hW3mRLkKE5nIJj33vION9tvG6X58mPPeDQ3D5CcPsQvQwBIXpYwxqBUGGy2AqKkxmpaJQWnGhHPEaM1wzoeaSR19TrVji7woVVIRax8nHw4i04tkQRVR8mL5+s2/km+k2I/hxmooRiZE38JVCUynKXhfgXbf8VrWzlMmQ1r+OVrwc6a1PLeWSgVbcvWwXJKQPxLuK+5kkhsmQj7xxrQ1KDJPOymsoNNLEMLm6lQHqM6kTKJ+24pxUQCmy7xcTo94WprQg82WaJc8PDNmtJTyofoZXVNo6K8p1Cmp9siSvPBYm57RddPzNlsI6MiiZ1Piic8MtcqGL2ow3T/bywgggutDxspdqmq4RVAwTuUjD3OZASVvMZUWLF6jiPP3u122WntflzmXBrqciKEwfEygmYwbBwqQb0F0Gen4VRO4k8sQw2cy8/EdnU9R0kPOtMn2HIJchm9x1JAEdlapCCOArp4xypPp0U37ZybVMpXCde4EdXEV6r7r6jiexRa5UlkqRU11QaRhjiawV5keokan+uVVKnYUpMkyS+zSVSEtZRJJlS0UbrJW69ADtPhkPvInCZMjX5NJHQX72LCyO/ES2WtOYhLxdVnnV+Iquv5zlyhVZF5V8XL5461099CXXFXLeJS/r7LAoCxNVOv99uVuYxFxFl7ysnZmfMsz/1aEoC5PcN/ksNLiij7TPHZA3hkmdq/ALYMJ+cA7FxGliHaPmTq1WlrdLnlNqGnFfGJfI15dLvvKCetwvucZz6dBLdSUAQWH62EChypYUJt1qucvnzX9Atv7AZ2zOssJN3evrWqT7nm1xUjoGpdUd4sokz0aXda5S25eCsDBpFd9s5dRjMsVbAUpRBB0BXNzxZmXr0ZXt8kxUGoZ0IGWMkSyF+gw90nK3JC55GgtTbbKvV5ho0geHGCb4ueTF7Y5WmOJVVyakpSDQijsM68qCR4Z5M7/iya88+7U68ZlSamXRuuaCrC5y5ZJdEY5R4uIyupP0IU2fwyUPDG1FKEzUohzSdpDVwsR4rTCHhcm9LuO/+hsYM7OAmu6TUVY68Mhavg9KEd3/5Ytholzy0jbE90O178omo2RhYowmfYBfv5anDuPHyfp560I2qPGGL8JE/APkU3S7G0Fh+hiDd+XRrdA5WZgMlp4s+SVpbeUaEvM/fVfKdZ2ULU5KZ3FY3V6R0mWTjUeppNYPY/o6y+p2Uw93nYqkMOmsCsmqXYFLUrqVPzUdvTqYTqxpGnYdMtGKs1S507nXmNzr+jTRLnmAw7zN08JkirVq8nLJ42SM7H2AawyTCRHSNki55LmM7/K3H9+Skkm4y5P1m6vtu+WePpaxPrTifivkeb5wxrJZS1xk4C3gzhYm2cuCyz9rXxbBR0GIFRZ9iqwujFTblD2C0347UxEKYnc8JYYpR/6kS560JUAMl3emuOBCt8ea20JUwpJnTalHPD4p/ZkjdIt0NlgtUL1Y6+jFogfYYN6VXCR90ClMLnNC/vuQXWJMsUU22JQrU+xUHgXBNYZJniTpVuxkC5Owf0sO9xtlosOKXy2uw1xKqLfaRICu8NhaUaQJ39VlS7ehaOKSV/UkfchQkVWWyqu3shlc8so60ofIOhIz+L37xO2IkDNegU7yM2TMK88ur11xycsy++cUDZ7K3WcvFNlCr9IM+1vrfMHvZWRPW98YpkwWpoxlFeaSR1i5+Hpa42xhon/nY8nL4JJnqNGsChPVUsrSxJpxz1sE+pRFl94U2fOnFs46uX2k+Pfk8s5kFzrdxrW2zY+V/PIohfErJizmLl+8bpHOdU8qHYKFKaBHQmR7Eq/VJn/pb90KndOEnsuHSdlQewW5QtwPhZr48Wn15fhO/HQftE0p01kcVrXLLnnpfXkCvClCDV1+PcklT41hotPVxSWPubnk6TYULXMTa9sGkuK9GSxM4FjyDKt9OhcInYUpgltsSRZrsAvpg2mCLj+LTQQ1BjGLhYkj82BpnScGJodZi6KoSdZRH7nyuOS5xzCl7nvdGcOUpI/Mk0PbcxWjMBHnuAWJto4sLnmp65cpXtMqG/ytdaY6y2yRI9qK/M0z6fvJiz5NZfJ8Lpc8ptJ+x9+wbAnk3Vd1SPuK2l8GevGGwc9rh/p+TJuD80gtTKJsrtCNOXYLkqWueq++FBSmtRl8xy230ZrJOP2td8mzl8PnbZ8YFDfJ5ItSY5gYeSxDrhcfC5P8WzeBXiMpTDomLx9EES2PnvQhW5n1iG9IBqYIAkOZjPh0sS55bi4RZAwTS0kfGPMjGPCd+Mf3JC55GiY8o0teWR/DZGfJc1MsU1n1lrCkzuIYJkM+Aq24hytMjCwWJn4iW62qK+QurU/nkpfECXnIk30RJZuCUh8Lk98KuU2JNy2aMLC6uuTFz+AaJ8X37xUuZtLECFoks5iLdS8e712YcnlQfac8r04n6HTevmNKnzLdlvKMCtTCWWcyLonvyWX8SdNw4wOlMDku2JneoU0hiSGPT76WHbltxPeTMUxcUXZSCC8xehSCwrQWwzR5kD9c3WDgRiuefgG2OB/feCLX6xTFdhaY9mGyWZg6NBYmlfShIAsTRSuucSXLbGHKdpsR8YTCts9SEW4JStmOdaFzyePJAbKw5OkehaoDXgbdhFFeDeVhjGGyVCpjvpbZLkuYIYYpztBU//Kz2N69GsNkTm/LR3TJc5Mhvo+HHMfRmBgmP5Y8ubzuXPm1lW1qr5Wq37foK0Qaw+TvkifHxOmeQ0fhnIgGd1IM08Q2Ruw+3sczToVqmro4Ql1b9H1TFKU4kDeGKR2H4nziBc8I4nvycclL912j26Rrv2qKYXJlEk1pxdXv2yUHHemDb59M5OBQes9EUJjWYpjGXXlyrXdpcFmN51bUFDcx39zcITg+GBQznzIrVaZdwVH3XZJM+s4xTPlroVyiacWpnKua8y5IJm8FrkInm1V2/davutYu+FJNG8uuutUFqTAhHch8J2lWCxNxjs9fr/iYFSY9rbgZOuWbTMtSxkDq20lZ8uK89fny8lJWVBnKZC2LhQkRp9ikFkhb++QhxyvIpAd+LnnZvjUfKwRfb9lYAS2ySH/t6c0KgakPKGrTWtrClMrlbGHi3p9sydC6H1tmYlFEeENo2rpLE0gsTI4bHcegSpT3gUsXHIppUbHCJH8WeWJhqtXUJS9WDGIXNjWGyUFZTRZXUgsTPYao7HwUku+TKNfmksePUbUys0G7SJczhilYmAJ6JIQPVmqksvuWNobJ4WszKy5mi5MxX6uFSRyYePC/TfnIH3/FYGGSux55vOrQDGDmGKasq8mENU+THx+X4Yt6xDc4W5i6eqciXfJc64KMYWIsmbjpBkQdbO+ZtjClx3pa8Ugfw1TWKEyRfVKlU74pdFRSJcO8D1O84qnPy5dWXC4u0z5MnKLBWyB92p0ymYstTMmSs7s8Wb+5csnDCkG0gUI3k/TRNkErBDyM8ThFKUxUnSCVq82RJU/cZ4+3uOiXKmwWpvh+HrqtQNKqNyiZXeO9r4WJZMmTZLdZmHxRHwtTqsjGdZBamMT3RPUD8rPJFiEG+v1Uq45eO8lfomxLxcZtSd641hdy2+BHBJMI9n2Yeq/GFBSmtRhiDJO0CgTxA9Cx5jhNCgUXBHN6v0ByS15CvnI5jmVICSuMaUduU5wUoN+HyeTKkVUfqZE+yPLoYm9yuOTF9xVp5ZFcBGwrWa5Fu7Qt17qgAryrTHTJ8yN9MMP2jFloxZt0ChPsykhN+TbLFKO9Uk2+DSOtOJe3Dr7KsTz4ZiJ9iNI2KCjUySTIv+3Lk9ZGWJh8N0aVn6t7LUxmmJ6riD2YajLQiwvxBNWVJY9/fXwMk+lbdYthEs/p2km6B5g+v1jJ1CkjOlBFKta/DAsOJsQT92JjmDg34q7+qZMztQoWJqKK5H6VYsWkLIDyvEsH09hnI0GKn0e2MPkqKrLlkJIvhqsyBfRmh7ygMK3VMFKCS860WlpxTwuT7KYk3+4zFbDOGwyKmlkKPSpVpu3o5TKUncJ1LnntBoUpoyJTi2GS8tJ0xZUq86t4DvXZh6n21xYjUk4Gfrcu1kVU17pYo/keEncHT6tdFgsTD3VzyBpMLnm6fCN+2VwHjybT3llNno8qL3HJc9CYFJc8ixTy4Jxp41reJY9z2fQ0kkhyRUIejWDJM03I1bQ0hXZR8CZ9iMxMZKZVddcNZe0yEOc4ljz3GCYmHKftSf+Mtj1vZKsHYHftNlV9vEDqrTAR5+QJfNFrbFqXvBwF8DFGikseJJa8SFWltQpTTPoA2sLkSvpgIpyxKUz84k9cppyXSxdjZGY1WZisLoO9V2UKCtNaDMHCRCwCObHkeZZjs/T4zL9N8tdkM5Wrv8bDxyVPt79GDB3pg+ySxyP7PkzEJJzREzM+LqMnoCpNrm2kD6604rb2EqdxqQsdhXA6GOldYijktTCZVvtMAxDt72533XL1tQdihal2TLrkxfuodP02KQ/8GO3y1pXvN6OFKSV94Fzy8vgUdd3K5+uKrIsUZQ8LUwRqxb64iUwaguEojyWZqQ8ozsJEWN04JdR541pp7EkXE/T32Po4ysKkdclLFqL0eSYWJt/NSUmXPLGclESkIAuThlY8D2r76HXlL7vkSXVNfVOyVU1e/GNMx5LnNgcqGd6hLaY3VQBlC5O9XCEfQ5s0Lm5YXfL85OhJCArTWgzTwFszMKXXdYOOq5uTvkzZ1lPcJNNUblbDiIkUQI3HcrMwua5M+iCiXPJAP7crMxyFesQwxQOJjdQhpRV3y9dNuXd7Jr2FKbaWFEv6YBtktLTiMDOj6WnFzeX5uHG2d1aT74+a+JVLaZ0B5vfED8QuA6tiYcrqzsatysorslkmfvEdJW4C5Yo8VmdXnaeWtH4zF1/rnC2dqY0XpjARFk1+nd/VksW3QdklTwfbJJh0ydPGMMULUfr84sl0SyEWJilNvOBQlIVJRyueI/8qp8g2Sy5ssiWwFKl9gNzPqQvSGpY8x4Uok/eF6+KCbqsDF/Buyun9Yp3o0JtJHWwICtNaDH61VZ1cM9HClIv0gXdBsCZ2hq1s/jL1fBmKFAY4mzzqxrX0jTJLnilPV5RLEakkUtkVwpJXIPh9mAAT6UM8UPpbmHRwJTPQWZhiUbLSiusQReY9UXQuebAoP/qNa82QF1RMsMYwySx5hvfk664hp8/SXKOIZ8lL5fTZh4nKk8/DK3azATFMlIWpHvqTa5Y2lrxujWGK/MoRacU5lzzDM1gtTFDfrc3C5KJRFBHDpKcVp8v3bd5a0oc8LHlM3RS8kxuXZJY8GTqXvFKyOERbu12946McfU+zrDAlCju3GGXJo2xxkVVi4rmHsrLk9WKNKihMazH4Rkyx1bnQivtu8qnEMBFWEGfYFCaDhanK6HQ2VAwuW0oMk2O+xhgmZ8lElCIqPoxevapW3d2rZNTBwJS6bHT9jjS9kK9LnmsMk0td6CZHsUyVqh89vK3MCPp9LwADrTjMlMQ0S56LS56fhSlxOzK45MWNSZetbCDJsnFtFkTgXOeqjHMpyl5GOmmt/WlIDFPJfXW3VFKnm0VOY/xjmMxpjQpTURZ80uoWcUqvWzZiDJPa31EwudwCdP3o+p84mUtb8FWYKCVNZvhLFESvnPXQuQ3msjBVWRJLa41hMljNE1mkv4zR24ww5hb7mmcPwrJC+iD2Z055lCyeC6ZrVuW/96KpuwUIqB/kjlsGf0qrMLlYmEyKWYb80nvNiU2WLTGGyb1QEymAzcKkw6o6WJh8WPJqg3a2cuqyD1PsktfVsRbmkucgomtd6NwoefcyP9IH8/VSKdJ2xpR7RHrNbFXIzJLH3IKTgZqFKU5KvcvUwtQ1gGvylfc7iQxp+XvyQoxh4p87e97ppFW0rrmg22KYCpzJpEYOd3lMaFQMk3Iucu9/YvCKjLgRsn6hwm5hUr9ZHbOtT/yYbwwTxQSrkD4UHsOkszBlB++SF7v8pTFM4nsqRWpZVpY8MNLC5LoQlWbv/5RxH5yHVrymMEnvVWDC08tl+156M+lDUJjWYgj7QcixRIqFiZ4g+g7equIi/faJYfKwMOXZ74mHKYZJdYFzK2SNwcKU1YZTolzyUAfSBxbnke12CnIMU+Nd8rJbmHiXPD/SB3PaUhQlK4PUNV0dyauhMigFxraaD3QN7K4ueVwME7VSrrDkaaBMCh1eeyEKE9JBnp/gpnur+JchUzs3gvSBYvPSIqrVtnCqDqQP7ukjRIbHNuVX3D5MBHMg/Cf+sucDT/qge7UuMUzyRFTvkudunfC1MFFWLVVhqv3t6fswxd+ZTJIgv3Oa+VOUSVZSGaNjzJjjgl1W63YUpeOmrDD5ZGXb0y2rNdh2b09HUJjWYogdt3hN3oFcF8PkRCvOZaTSimdXZKx7OmmObddMMLlsyaddXbKMLHmZLUxUXrRVoKoLbnJAfJuPcmBDhRuYAH0HaiOFkOEy0aw41oXOwpS65NH7bOhgt5SY2AL1kw/bCrhu41obdNZKCu2d1YTOm5xclNNJhNU10XMwLWJSFkURR/rAs3xlk4mXK1lxLtAaqUNNEe4ZFqb46y7KJa/7LEzumwHHkD074l9ZJ6CJdFKaioaVNU7m8m2Y3IApUEywOlrxomJV+pRrLHnyd5HHglVlLHGpT/ZhSva7kGKYiOfg9SX+u0stTHpacZcBKGv8ZIR0gUp2yeMbmU2CmsKkLz1fPF7vRYhhWosh7wehXk+Ptat0jm5OpnI8s3NPa3g+V1pxGSbSB1OclAlG0gdXwSRoXfKItDm2YUqeuUjyh3TjWouFqeu0KUaHB/8+dJ2ya13oJmFlzlriZWGyJo20kxeb251pYkK75LlMAn1c8ipGlrx4NVYmmrEhgrrXmJKmCIUJooWJLz++ni1X0dXPFZld8gg3Gh3keDGg2ImMj1uYS9mmRZP67sPkb8UU42c5lzzDU7qsysv3a/sfj7r3tjARcTk6psqi2lN9XPLMFiZlHyapML498pfiY8byueRlVQb5sSIuP5OFKfKLYeIfySZ6Ua6a3YFeqzBdddVViKIIF110UXeL0mMh9KfERyq45HEdoaBsuJA+8Ix0xCReV6Y1X0Yfp+WmkBe+XCdm8rdrpBVX5HMrpF604jr3O+pcVn0nvk9HmZ4FsWUm7nR1K1I2lz0FTsq9W13orIf8xNqPJc+cthTpWfLKnAVEhm1CR95nsGbFqCnfbs/HL7ZQxfEueT4WJpfXXtTgS8UwyVYiH6TWqfTZXZHd6uxuDTFtoloE4pzdLUzm6X1jXPLoc77VxPcLFYJEJJNsIFzyNH1ylGpMVvjSindIfR5Fuc3HbFHwdQ/X0Yrn0ZjEGKZaHaTsrWJbpPo0fswS+lLOwkQpl7yiZkL6/fg9ZITUYqbQintkRS2+iLTi+ZT/3ope6ZL3xhtv4Oabb8Zuu+3W3aL0aMjBpzxkawQ/6Jhc+SjIPtu6a4CvhcmsuAkKlez6Z7lXh4phQl0XC1Pm1WSNckpkV61mj2GK7yvWwlT7mypEdLo0kNathy0yhkmHKJlY+7Lkma+Xoki7s7rZJc+8EpiZVhweLnmVdBJgouDVNE9RNs3KrQ5FBRCnLHnUxpv+ZcR3UJYrG7Jbnd1dFEkLUx1mMq45Rpbyu5dW3K9e+D5dJn3Qlm2dZKoKro1W3EVuX9IHuc8zxc3p2qKvd3fdaMW7mk2TQvogvg8brbhsjQKgpRV39Y5P4yf9EEUE6UN8jcvNlm+ZYNGUy9HB1gf1Yn2p91mYVqxYgdNOOw233norBg0a1N3i9GiIHbd0TaKgFhQmTR7acrhjuZNQJqd+GhMnB3HZ4HYn/PYos2JQLuQ6dJ0w14dWPCKVREr2PBvXxoOKj3Jgz1NccdVNFmJXPAvjbpqvSwxTNXtdAGIMEzUg6mBXFPTxBMWTPtitCz5hbzXSh1RWGbEi6BIXJd9tk6GIMAkGycIUy1KEhQmpgu2KrIsTLu81RomwnBQ5kfGtO0qB49GQGCbKwuTkvipCdFHnYnpyTjJVC5M5hslFbF+XPJmZz9g36SxMnu27LqQPXP9N04qnaWvPJxZGWZWkQ3rjWsexOCU8sqflESFSNq5NFXb3fPLEMFn3YerFJqZeZ2G64IILcMwxx+CII47A5Zdfbkzb1taGtra25PeyZcvqLV7d8Jv/fYBSBPy/Y3bGh3OWYfjj47BoRRuO3HkTfO+I7ch7TLFF8ofbXqlw13jrjB18Pmf87XXc/I09sf+2G9BppRwfHzsH9705C9edvDsG9euD8XOX44rHPsT3P7c9Nh3Y11wud2yzbAHAn0ZMwpQFK3Htybvho9Y1+Ol/xuKjpauFNKYYpqfen4uH3pqNjirDNw8c6jyxmb+81gajSJVr6aoO3P/mLJy05xbGPG54egIu/tz2ye+aS56YhjF6Ynb7S1ONxBMmLFjRhrNufx3vfVTctyOz5Ong65L36/99gPFzl2PgOs3aCertL001WvxsiBUQxnxJH8xpS1GkdckrlfQueYiyxDC5WJjc9+764X3vJMdUvFls5Ro5cQHOvP11Y16yS56LZa4IxHLzLjP5XKjitlv7/frUxc73ZrU618pzEzrq+k86WRjS+C93eUyjjWmCVtg+TCCqIIOFSfDs4EiETMqXPe5DrcsOnUtebGFy0IW892GSyiyV9LLruiXf5q3dh8kvGwG3jpqKA7YdLORfTRQLUQkk3YzL9HW+nepIH5xc8iK/7ye9EYrClGVZltqHiZ+7KQtbXBFrs0ter7Iw3XPPPRgzZgyGDx/ulH748OEYOHBg8m/IkCF1lrA+WNXeib+9OBW3jpqKNR0VfONvr2HkhAV4/6NluOGZCdr7BFpxwtDDn+rodLOq0EgTLW/rxKl/fU1frvT7vH+OwXPj5uPap8YDQPJsJ/zpJXsMk7SSJ15Tlb5rnhyPB8bMwhvTluDH97+DFyYswMT5K4T7TJaUURMXYvT0JXhn5lL837/e8u74hw7uR57nJ5w6/O7ZicLvcqTSlurcqF6evAhvz1zqKqaA9s4qRoxfgAXL2+yJHeFqmfF1yXvo7Y8wbu5yvGaYnL48eRHemrHUKT8KsShVVjTpA3DOgUMBAPt+cn3hfLkUaYPeI9AuebECvsX6n1DvIawLlLy8yIM+0Wy+oQvbbLiucm7T9WoLH+2dVbw8eZH23ipjktuISmwio6jBl59kyEH6WYpIJ63+d2vIz7zKtSfMb2Hakmhbshw6eU7bZ0s1vUEAk+dYcRambIsLMjq5Fyi65On7AeskE6oJrlPLkuc+2d5qcD/suvkAa7oYlEueDrprvhbU2EJ9wWHbAgCO330zAPm//TemLQGgKo2RlDftklcir/MpKQugK0trYiUknnGPIesZ70v6sjykD6ZFOpjnhdZ9mIrim+8G9BqFaebMmfje976Hf/7zn+jb12x5iHHppZeitbU1+Tdz5sw6S1kf8BOzzirDwhXtTvfxHZO6T5G40iHG/IjpbCgioHnhitqEfD43MdfJl57j81WVB12ZqzsqmNu6hpTDRCtOpXXFoE804/g9NnNOb0MpihQqeN/NVLsLcb3x1o+3f/E5/Ptb+wrpUlKIhommYO+hovLCMxB5WZgs18ulCF/cY3M88/1D8NczPiNc61MuGd1S+AF76Ab98Mz3D8bVX67Fd26+3jp44UeH4sz9t07vcQj455Xvn35hRxw9bFPLEwDHDNsUWw3uhzd/dgRe++nhuP87+2HUjw/D4H59rPcCtUFYtjDZUJSFKV5lrk2+YwtoLId/GbFcviv4QL54QecYJuqcx3PuPXR9PPeDQ/DM9w/G0btu4pR/jN98cRd886BPKmWb7jG9ZxPpw93f3MeQq4gIah3oGCo/u+NGePrig0mlkR+vKZp6CpQl+NuHpHVU+8715Ygyi391KEXAyXtugQfO2x/HOHzfgEorbiIa0Z339e6O6+Yb+26FZ75/MG746h61/B1VgIe/ewBu/saeyvm43azTpyycl/tUaoLPOwMIChN3nno//J51Jpja+8YD+uLh7x5AXosIC5PsYsyfi/HNA4cmC3ZAzZPCVLs6ZR2w04r7xs31JPQayd98803Mnz8fn/70p9HU1ISmpia88MIL+P3vf4+mpiZUKqpZvqWlBQMGDBD+9UYwrm1SzCva+0wWGMN1m2VHhqkDcCV9IC1IQhnUPUx7Peuko8LcKQF8yvj0loOM1Li+bjilKFImCrLVsKeik1CY1vtEH2w6cB0hnTdLXh2w/caixSSlFffcuNbyfuN8t91oXYWooU+TQWGCHHQMbLtRf6FutxrcD5/acr30HofqrNEh12T+5AbrOu2FtfUGtcnj4HVbsPGAvthr6/UxZP1PeLmVRJpjbfqCmkZcv3w8VuoWkx0tGSYHecIF3WnFiU1aPR50u43WRVO5hG036o/dtliPzJ//y2Pbjfork39b0WbSB71L3uaD1tFek1GzAImVL1sbUnmA7TZWnwMQ3daEmDjpKXkXXOr7+kSzGDGhkD5oWfLo9DL2GLIeoihCS1MZQzegvR9kyN1YKdIrLrqJs+/YXObaEt+3ubbXDdZtwQbr6hdt1mkuS2fEb4OK9+OfTeyz0l+Uham9s+pH+kA8Y7kUYfP16HZdi2ESWf94l1AdmsolwTvAFsPUYViksLW73qww9ZoYpsMPPxxjx44Vzp111lnYcccd8ZOf/ATlstzo1x7wU3iaeYWRjbTCxI5bylSyQNHlOTGPWVOIsmZJa7PmqBY07lgmRzDIUKm4U3D79PvN5VJmE3daXpooitSVVabzyethkEkfYugGpe5UmORBJmU9c3ctBNxIH6hjoDaxMg0y4gonXVe+7HOAuDLpYrnQvief1+f5qou2MLVXqgQpiX9+8T3NGSxMjVj2oKwpXvc7WgJpS5b6XdXcRPUZmVatY0t7n6aS0ifaVrtFWdW0ern0+fIT5Sq38CBnI8R9UJujSnUsJ9FtXBsX5KOEZvWSKpX0Fibdt+k7ROXtVmr361PLCpP8zm0secK3wH3upIWpUk32pbPLTLdJispdkC0Sy0+k4OUkyuOzpGKYeFlkenm+z7LGJvdil7xeozD1798fu+66q3CuX79+GDx4sHJ+bQPfNilTKGN0pyK6tEn3KHlolCenibzhmsLk5g7RAkYpivx1uVwxnav7VM3C5JaWd7Ww1VOfppJxYuFGiZ0el0sR4bvvtzFodyFuw8o+DxoFqhv1JXXQ6BKmylhmay9dDq/QiIX2aSqjT5NOEZIZnRyEcUjDk8LYJrOpLBoZHURK08ozcXPFFW1hYkzcwDJrGfE9WVZTG2NhIiZNHuWIe7KYy1Hvpb91U/mmMto6av1JS16FiWjnuhhBU7aCSx7Hyim/G/41U/T/JWFSrpJ0aEkfknv0MiryZPyQTC55ujoyuXPpyiDh2tYNZBsA4ZIHe58q0IprrE3U++moMESR/QNPLbTqtRozoe6+VDZ5zmOrLf66zcKkY2isyWcpqBej99rGPkbgJ9NUX6Nb6RaVINXKYlNIAFeWPA+XPE1SWzmUwiNumKu3MAFiHZk6AhNLnpK2K6GODppHn6aScTLjEg/Fv6NSFCkUr7VJbs/XmOI2rFNGYsT15TPpKRqqTLW/3rTilrTyajKPPk0l9NFY0COIwbkm+nH+Hht4inpdHIepDOG8x2RMmMM5pC/CwsQYE1we40l3ZqYq7p6eGsNETXSzvyf1vnSF3DE/S0ojS15nrDCp30iEiFRGaBmocnOy5DGVpp6/FsPWx1FKppb0oSudD1tZZguToX5078x3QUBnkHFuWxZlvC9hYZJjmOT7dUQP/DPrLIBUzJ1cVSnhkXq/afuACGlbSixMkouxDjYLEw8j6cNarDH1GgsTheeff767RWgI+PGzwphi0dANsCZacfmcbJFJj/O55FFqDpmOOC0/t3hNVvj05TC4EzTU9mFyQ5xlcymCjYajT1PJEsNkL49fuSyVCNIH9JYYJo2FSUrXE2KYdG6CPlZLwP5eqM0PY7R4kD7oXfLoYx0ECxPciDdclDUb5LS2r7FolzwAWNNFU51n3E8sTJkUpuzluk5WSLc4j3LESSKdf+0vpUzR8VOmV2nqO+MYphairqOoq04cKlVnDaOq1JRbh8YlT46FkT0GZMhkAorCpLUwxYq+GbrNV31g2rhW9858+s24DAquIteUTX3iTygWJjmGSW2vTZq645P5xLhGENtUunGtKne5pO+boijdhyme37lKwZdVJhbJXGdGZuZER2F6KIKFqRdAiOWpMLUha9qxlVbcqHCY81Yyc4QXox4fSyUtyjAmK3l6CxNjzF1hYj4xTF0WJodJUZ9yfpc8fiAuRXQMU29wydPtw6T87qrW7nXJo2WsepM+uJcjP66R9CGSrFOa/H12eQdklzw3C5PJTcQVvnE1RQ3ATeVSkldssUjqLEMZ8S1ZXPLyWIm9lB5CaXG/16ykJ5N2jTKlur6ZrUymsI/UwkQnciEsiaVQUtZm247316Cy5KWZ6V4tJaP4XasueXaWPLPchcQwGV3y6As+lnlTPs6W38j8XZAxTBaXU55WXPwW0jQ6hZYUUf4eIvEvj5LVwqQjfbAJkR6WDbFpFIR4PMN9LvFbPRm9W/qPCfh+scIYEfypszCJHTcPWeHQUXjnJX0w0X1TufAfqfzccmqR2EEvEyPu10rh4dYW17uLS16LzSXPSWESXfJUljx3SvTuRDzQy32nzi3BfcJTPFS3wdrfStWPwt1qKeHqgnTJ0yrl0iaLDj26i1LCWyttK7Rp2flWguOyFEFM6QtsG3EdxxYLX7cyHvE70U3iTcjjkudaHzSNt/uTii55+uvkNdjdcWUYWfI6UtIHqixnlzxKudPEMJlekagw8a6t+nsyWZh0ChN3jwmi1Tnbd1QT2++7923e+S1MOWOYKFpxrqnJim0Mn21HZCQuecS12gKW5sYoJX2Qyxesm9JtjIlllUvExtaOMLmX9nJ9KShMvQH8AFqpVpXOTRt/ZHDJY5D2YdKRPnjKp8hgkIk6Hwnn9IobPxDprvPwCdDXBdPK4F3ybOjTVDJ2JMwhDlb2WZfpuXmrQFY0QjdJ9mHSrKrF6AkueXLZfF37rCDa3ktZmByJZfYpl/S73Udwi2GK6GMdeFrxKMq3F5YXrbjnqy6yacR1vKZDimHKUkjXLZlc8nLsw+pM+pD8jzvnpdiaV+CTU6RLntombC55pncQuya3KPTQNUGc3RTJcnV1qv+gBZa8KuNiNvVyUGODrJTK9+sC710VfR3Tmw9MLHlFxZ7q+h7X3Kn2xkO1MNnjQrUsedyxHGNslFH+nfQ9alrKXY7PR7UwqbJR4POsbVxrFZuWwVBQsDAF1B1811ypqgOUbiFDdMkjXNaY9Jsoz5e9zXbNJyZBkKOqym9yKRTKZaIFx2aF0dK1SvB1yTMHUdrrmZ+g86uLLRzDl3sEFo1GKCdxu6QYqXjESkS39rEaJa7KfEkfuv7qijHUe7PRwiQTRugHUurYhHQRw9UlL99KcFxWUn7tRKYys6BPF2lAYmFKZPJHfI+L9VlGni/YdY5qm0S63J8eU5N9/Qo5iBV/mySmuJe4PyFjmHxIH0jXQk0Mk8nCJOzDJOblo1wI8kRqHeksGPF9VnpnwSUvW1swxTAV9W26xGUa77eklS1MgMqSp4xN3KDks3GtVkZlnEmukLLpnqcWwySWn1g4DW7Z8oJFjfTBPD7rYPrcensMkxPpw/e//33nDK+//vrMwgTQ4AeLzmpVaci6wUS3z1L8W3TZ0ygUDt+8zyTdxpInmI15lzxZYZLKVCxokouhzFxkgrrHAI04H1eWPNOk2DeGiV9dbGkqYVV7pcslz5qNEeUoQqXO1BFpDJN4XplEdVVrT7IwxT+rHnFxQNq+de+Hqos4bZ9ySevaJa8862rK28KE9Buz7fsRo5DBUM7DUsVFlBkX0afLlyW2MOWJoYvrq9Esea6ykix5PuVYyoxM14jJv4n5C3BbrTeSPjiASkXReQPmZqm45CWkD4YYJts+TISSafOEsFsU6GMfmFjyipoc+7Lw+aZTN64F+NZAuYTrSR/SYz8LUwS+VZliAEsGd7maN0DtO1BoxS3VxV9vsrDkyeBLMrnQN/XiTWsBR4XprbfeEn6PGTMGnZ2d2GGHHQAAEyZMQLlcxp577lm8hAGiJaWqdiBuLnnEddDXmSaNi3zmUvT5ibtRMyU1GYNlUOzkcvjJra0fc3Xf84lhsrnk+cYw8fFLcflFkD6USgAq+fKwQXYlTMqO6N/dqzDJv2snqszPRz1uq7rFBaou4jbRp6mkbWM1lyG9vDTcNKakSUZucWSmVU8T+A1HvV3yclhJKDkA3sIUCX/95KrB1brBIxfpg4dLHrXK7F6OW5naSClPZc3lW6NpxT1jmIiFC+rxTO9IcclzcIkiLUyKHGIam0uej4Up63dkJH2os0ueKyL4WZiYFCdOtW8Xa7pXDJMyzpCnkzK0BDuAamFyFEN0s6V6CMd8DJXdnWN5EXBSmEaMGJEcX3/99ejfvz/uvPNODBo0CACwZMkSnHXWWTjooIPqI+XHHLxC1FmtKh+/i0seZYERmeTo4/ykD/JvS37cs9nkMF6XnkdUmMwyuJrS4yKby/ZOoNnikufSqfExTDEzlMy+17td8mRZxL/dAZ2bIJAthkn3nk110WJQtl33YeJzdLMwcfvHaALfZWSlFe9T5hQmezFi3gW2jURh6simvPGI780S/9SwjWszutzU7ucn21SCtBzqXjKGyVCei9WftjC5uZPGMijnQNepSZoOYdwV+2StS57BrTGWw1SOcF9S+QYhUUxfb7J29BiXvMjctmULU5Wp7opyWQLpA0/Yw6XxYsmTf3cVSD27MYYpipK2lNCKuypMXJYUS547rbj+Wi83MPnHMF133XUYPnx4oiwBwKBBg3D55ZfjuuuuK1S4gBpESxBFK+7ikqdaekzX0/OeArpfIsE/mcCSR8UwadLK5forTG6m9CJd8lyUNL4DjlfB+zSVxLiPvBamBihMcb3ZXPJKhkGjUdBZmAA/l4t4sNG9HlNdmNy6aquNdmVIsAiYBO0Cb8F1dWvKOrHhn0/Ig+VV//2QWphk0gf/vPJYvnK55HmkVCdp2coxuuRp7lXdAc1MZjprCg9dG21yWNCKZVDORToLkz4fPga2yi1M+rjkyeVS35Yt1tb21PxEvyMj04gpnqbeLnmusH2L8sa1VcaEZ7LRiuv2wXOdR1BIFlyIayarXsTJpsQwedRjmdis1xWm9/WxI31YtmwZFixYoJxfsGABli9fXohQASJEljz1A9a5c+nc7ABK4aATu1mY9Gmo2Ck6jxp01hKK5U+0iqkWNB58Hdnc33z2bALcLEw2WnGXCQG/UW1iYWpKLUyKm2IGNMKak9CKyyvcGpe8otiWskBZhed6THnjYBNsFiZTgK1pL5/aCjj328HKk41W3HqLwU3EfDNvGfB507rJbFbE9VwI6UMOufJtXOuWjqo7v7oXV+B112kLkz42UAeXPlmnnDlvSxBRedCr+SZpdPsw+bjkRZC+WUs5wr1diW2KhjC597CG8DCVUdRCV9Z+hUuorfs+ZdV6zyBZmKy04pzCxKXx8sjTLhbSaU2LU7FsVcklj7+Dmg/yefqOuXzqQCvO4cQTT8RZZ52F//znP5g1axZmzZqFBx54AOeccw6+9KUv1UPGjz34STBJ+qBTQnhSBzKISezYk9Pc5+Qy//bpGHTKFc/IRZWt0obLCpVeJgbZwmSe6LpaDuJsnCxM5ZLRHO1SJv8Myd4j5VJSY4WQPjRAOUloxYlVVR49wSVPoRXPbGFSj4R8FRNTemi2MEn7MOkmFzYXKgk8CyXv5qHmyx1rZTSXJVqYHITjyqtPDJPkkpehiDyTxTyLHj604qpbnLvMtveeVh2lgtDWLVPxTgqTTjnLSStOW5j08ogseenSg5fCJBVM3atTcpK6tzy26F6c1cLUAFrxIlzydApTU0mJcWOKhUltr2VNf5r1s5dLSGOYKGUtEtLIOSm04o6y8fn5vju+JZrK6e0WJqcYJh5/+ctf8MMf/hCnnnoqOjo6apk0NeGcc87BNddcU7iAASrpg7IPk2YwqWgUIgBd+zDxv+nyXAZvUxqSztwA/jsVWfLUfI0WJkHpY36kD84xTH4ueSaLhMveTx2ChSl1yeP3W8hN+tAA97d4cNZZlGKkA0P3aUy6lT/AN4ZJXO1Ty1FXmGPY2pcvPbBLdfKbIFMWgUS2UtqutRvXWsriJyxZ42iKQEwrvqaj9m2lm0f6l5NHsjyLHl7MYTmE5G+lLUxEQu4a6ZJnEMjFZZlW3IqgFferKIH0gbFEsjzKBVU3elpx/T08+CJdmWGVPEr6NlfUQpeL1dx4P/R10VyOVAsTk/tU9T7eJc/mOukko2acobLjyZDkhWTewpR8M8RiNLlgwZ0tRyprpTutuD7dx4JWPEalUsHo0aNxxRVX4JprrsHkyZMBANtssw369etXFwEDxElwzcIkX/d3yatK7lsiDbf+PgqmNJTp15SO/0gFC5JCK26JYZJ++1mY3AaPZONaB5e8Pk0lRO36dC7Wig4hhil1yVvdXpvg1eokp0teA3q0uN4MRpXa73hg6MZe1hRblMXCpHs7WWOYACnoWFNVwiqow8DHu+ya4hSayxG6ml/mGCZeIfS2MBXQNHj6doCzMGWQKZEth1yNiGEyvVOncsQGRcgR6S4J18n8CPDxIKWIXhgi259B2XeF7+2CS16VJW68EfTjn7KJN+zvUtf/xHVr6zbFxZ/sFiZdOUUtdOmt5u55mCxMcrthUvoaAYKYho+Lo9xL83p6mF5+Yn2im3tKK04oU8YiuetN5ey2e5Py/7GyMJXLZRx55JH48MMPMXToUOy22271kiuAg7xfUhaXPMoKxN+nI4Bw+fBNaQzkdVK6rtVszb0qy5+YQFYUZKWvHhamNIbJ0SXP0GO5TL47qRimcglroi6FiRWzD1O9EU9+lEmCduCtt0R6mKxgroo1wMcwaVzyDOX4kD640N26WZj4z0tdhY1R21dDjPkhSjeWpft+ajLo6zinkURBn6ZabqqFyR/5FKbs93qx5BHnXGFarRbzVK9GhDZgc8njrblNJdpaT90eRT6kD9T9mhgmwzuSN66NW7fJ+lCWZFTqg7hV65KXaPp6GQFxIcqnLxPLqj9Lnokh1AUR4VIXg+pbmTTHstGKq9bSfGRXfP6kUpRcU0uKonQsUTeudZfBZA21wXRfd8YjFwFvdW/XXXfFlClT6iFLgAYCrXiFOVuYzLTiBjc8h7yzwodWnIdC1MBkOeWC+DIl0geLhcmdVryWzhSUH6NPk5lWvL3TxSWPfwaW5Bt3ULYJpgsa0Z/paMX1GyB2XyercxMEPC1MsUue5rqRVtxI+hBZB/faeScxU7CUWNzokmdYaXUtm5/Q+k7ai3TLky1M+VzWst+cL4bJLR1Vd1lX7E0ueaQSAmrTXHON8X2ydtKlWXHPR7VO16nJkt8hseRVq+l3pHXJs8hIXbYx29n3YeLyymhhKhueqe4uec5t3WBhIvrWGq14+pt2yeOvy9+R/4OrY2HtL9UVxO1f923F/alM+mCXIT323T+O77NM7e5jpzBdfvnl+OEPf4j//e9/mDNnDpYtWyb8CygesqXFNYZJtCDJeTKhkYsWJv19qmzmBCbLDwX+YxMsa4pLnnsME+BJK+5K+pC45NGfEc/+ZacVd7AwEWl4WnFZCc6CRri/xfXvWlTPimFKjzO55GlekOqSl57wszDZZfG1MOkmjYDoYuExjxXQzMcD+CgaUdEWJmkfpriYTBOg7HLkcsnjCjZOeoi684ofE8o0yUOfU8q2FM33yT4WhyjyiGEi76ffv5lWXBxX418mKWQZ5Zgu6l59DJN+Qs0jazymnIeunHq75LmiJgadSR9is2MmzbGo9ibGMOkXu5xllH6nG6Sr78XokseNB6mFSZ9eJwW1v5aru7+ZJa93K0zepA9f+MIXAADHH3+8GG/S1cgqlUpx0gUAUMkPZDdQ3fxfpwRR51zysMlGJ7D8lsB/1OJzUxYyvQVNTC6RPlhkcHbJ60qnc/loaSoJrnOmjsQtholQmISNa3sHS15cvXJZPdPCBMEnne/zCnXJI2iFYxgVJki04tp0EXmsg8yS57LHjWkzRRP4Z/ezMOVTTGSkLHmSS16GMvJYvvK45PHFlkuRnnoa6nP5WZjM792fVjwyCuBiYdJaOpxJH4hzmq/F2SWvimRZ2rQPkyKjVB1Ue7Kz5JmfW3DJy7wPk37VoqjJsf59uyvCWgsT5ZIHeUGAUJgMi1SZPn319QOg5yKxPFRbikDRiruo7BJLXg6XPOPGtb1bX/JXmEaMGFEPOQIMEFzyqlXFfK8lfTC55EFlkkuv6e8zyUbBdewnFTqhHLVc0cIk5ycqi16kDwVtXNvSXAbWdAIo3iUvRs3CVEONJS+fxtSIGKYYrnuxdDeteASxLZZLESpV5rcPk3XjWs2ICcs+TJE4MdEql8LkyyRpDbwFOjLkK7R9e9F0Hpp9mKzeu5rV/6zoU66tNsu04kWsGPsgzzfMv6emUoQ2TToq9sRH5sjSnpJJO2W1IV3yzOXz/bfOYqSdQDpPrIlzhHIHWFzyJJa8+H2axLCRPlC36rwS4qzspA9cXlktTCVPq3CWMnQLMY73G3Q60t3ZjSVPzF+USx4x/BH3a9R6h6k9R1FKK+5rYRKsajk0G1Of/LEifQCAQw45pB5yBBggkz4oLnkuLHmKBUaiFecv85Yny3Knb7dgM+vyHZXOZTAu16RQyaV4kT44Dh6xSDqWPN4lr7ls3rjWjfSBUJjKqaufXCdZ0EhjjkFHENDdZvyINzGhNoBW4McsldyueUGmumi2seRxN7ttXGvMDoDYlmqTRjpdk4OyZiuvuWSXn0JeCn0Zun2YslmYssuRZ83DdS+VCPlktE2STXVXm8C6LZbE4Ps+qj9oLkfkQlgUuZM+6C0l6rlsLnkGWnGLjNR9Nk8IW52KBDbF78NUFLRrQB7l6vqV5iZCGZZIH6hnLAuuyH5tmZRP+p3GMBEueTHroq4tdZ2P47Z512pXGSilzPTN81IaacV7t77krzDFWLVqFWbMmIH29nbhfGDOKx58Y+ysMOVD0RlEZJe8B96cJebLZby6o4I/jZiEjkoVi1e2C2k6KlXc8dI07L/tYOyy2UAhj+fHL9DLzRj+/sp04VylCvztxanYa6tB2H3IetwzMrw0aaFQ9l9emMzdR7jkcaf+OmoKvvSpzcEA3P7SVOHaLaOm4LxDtuHyslmY3GYsNgtTH4ku2dSR5othqkGukyxoZFCm3LH6uuTp6IWLBOWjH7MT+brkvTl9MZa3dWrLUcuowWxhEml9XQZrX5e82oRBM+EoO8QwWYoTSB8IOfQyFvPy41xihWnB8ppdJn0n/t9Enq8oz3Pxdd1kaDcmNzrfcoz7MFH3EtdtChzf91EWpj7lEvk9yqQoJmhjmDzfpkArzoBVXbz70rqLAIoxVLDiETI88+F8iyRmuYUYpqz7MEXu9ZsVRVuYmjhXVapvZRDrnlIemgyLPNkWWOj+XyG7QlofpEU1AspdzyQvdtu+b6HvyDEPMFnAeruFyVv6BQsW4Nhjj0X//v2xyy674FOf+pTwL6B4yJYWV5c8/r7JC1bgB/e9w10TrT3vf7QM1zw5Hjc+MxF3cUpOhTH849XpuOKxD3HM719Uyjj3rtFauUdNXIgn3p8rnBszYwl+878P8KtH3pdkBU7762vCuSffnyfIIaQHE+QfN3c5Hn7nI9zzxgxc/uiHQtq3ZizF7S9NS/MqiFY87nSNLnldWLelyRzDlNElb/1+fZLRQCbyyAKfwW+j/i25ylJ3t6fTaa0bRL3b9izyRSkCPr/rJgCAHTbuL8jT3uljYWL48k2vaK+r8VzpcUx3vcWgdWgZBSsPnT8/WLpbmNK2pBsEmx0Y7mwTzv0+OVibx7AtBkIH1+/UFS1S21m3pYmUyQV8fW+70bpe9+aLYUrL/fSWgwzpaKVlp00HuJUj5eUijym9jvp5yPq1Nv/ZHTdKzlH9aIUx7LmV+rxR5D75iyLgkO03FM9prEKmV2RzlaOgxjBKpA8Z2qDPPkyf2VrfVkwwubsVhaJjmPj+khq7GZOUVaIYIe5Suramw99aJ5cRZ79+vz5E2i6FSZNP3N7j+UJq4Uyxwyb9hft23WwgBqzTnPwesE6z8FuGzU1ch/23Hay/2AvgbWG66KKLsHTpUrz22ms49NBD8eCDD2LevHm4/PLLcd1119VDxo89xI1rqX2Y6O6bn1DMWyZ6s7vu2cMY8N7sbOyHUxeuVM4tW90BAGjt+usKZXJK+J+Nn7c8yV/GO7OWJsf2jWvdOjye2ptC3+YS7jp7b1QYQ/++zUZlxCUehnIBO//QbTBqYs3KV4RLnk1h+r/PbotT99kSz344H4fvtBH2G/6ckuaGr+6Oi//9DnG3CGXCxp1wcfVqLkVol861lEteigyPv56+F5asasdjY+dgRJfltFSKMPxLw7DP0PXx+V037ZKtBKDqGcNkhqkuYvePB87bH6fc8qryXfUp691DkvyI44e/ewDGzm7F/3vwPVVern+IIr0rhW/8VIwBfZsw/Eu7YZOBLdh9i/XQ0lzGPkPXF56bgeG43TZDW0cVy9Z0KAshRVsXZdfaS47eUUnzs2N2woC+zWjrrOBzO2+Cpz+ch3+/MUPpI/mc7j53Hzz53lzMXLIat4y0b8nhG8M0/EvDsG+X0sm/g5P23Byf23kjfHrLQfjcDSMV+RQVJQLuOntvPPH+XByx00Z45oN5+PfomWT/b7N+mDeupVycaCvmA9/ZH09+MA+Hbr9hYlGhJtCXHr0TTt1nS/RtLmPMjCW4n/Om8HHp/dFRO+ATfcr4w3OTapJGmhgmwzvSTZibSiXtZNLVsv+f8/fHuDnL8dMHxwrnrzlpN/zo/neFc1bSB+7yWQcMxbotzdh/m8EYPX0Jdt50AGYsXoX5y9fgFw+9r82jpUn/TEUh78a1spWQX/yJFaZHvnsgjvtjbUFY3uuScsnjx/winDLkLOJ3t1H/vrj19L2wfE0Hvn/vO4L81IJRU6mUPFMyjyHa6iHbb4jrTt4dpVJtsfYLwzYBY8AVJ+6KFWs68ZXPDMGAvs24/azP4Kzb31Duf/YHh2DkxAXk2MHX3Y+O2gEbD+iLz2w9CC9OWoiT9xxir4weDG+F6bnnnsNDDz2EvfbaC6VSCVtttRU+97nPYcCAARg+fDiOOeaYesj5sYbAZlclXPIcYpjIGCCHgTlPADJ1b/yRy5PN/9/em8fJUZX7/5/q7umemSQz2WYm22QPCSEkQAIhhCVAICwXjCL3ioGbAMIFQUPYF9lcCALyU/kqi17AqwjKVbiKiCKrKPumERJFCGAgbIEkJGQyM12/P3qq+5yqc6pOVVd318x83q8XpKeWU6eqTlWd5zzP8zlBh+lwdYJ1xoGuEyWGHKjc3Ko6DhuQxQdb3F1y73a6HCYLwL7CiKVvyImJweQ6uZZBObQ21UuqOUE5Z0EEfbhPmD8BQwZkceye45Trp40YhPmThhsdy884k9TXNHVS1TWbSUGb6R7ATqObMLK5QfJsWgAG1dfhuHnjS/WJ8IEMat+ekDxpXeHftqZ6LJk71mM4yB9v3Wis9/fMMYMxuXWg8qMHQMq9MAmXNMmfErc9fObI4t/H7DFWXX7Kwr/v3o5H/64P/Y0L0fDMZVIYN2wAALn++0xpkUZnj9tzHB5e/S5WwWUwCTu1DqrHcfPG440PthoaTOHqLV47sW1mUin8x+7q6+pWYetZhJZBORzX82wfN288HlytDvuSVfJU6+V/3evcRpbOg9naVI/j9hyHD4X3sKotzh43BHXpFD4/dyw+3FraNoyHybaB+ro0jt1znMtgMtq9yCc9IXijmuvx1sZtpXr7OL89suIFi1b+GwWv4W5jh+Dnz7yJF978CEDBC3Hw9BE4B7LBFOhhcnlaPj+30FbGDy+0++mjmrB6vf9gqTitRaUI817RbacLN3OugejJtiG3MdV3pl6IHvHN2bHMnmfdPEwAcND0NqwX21HPOpXBlLJK3wNn4FDMRRWPd9TsMa46AEvmyt/1/aeWPLtixEH70EYsmTuu+O0Qv2/i9Zo+sgn793iHnfdpbyZ0/MqWLVvQ2lq4AEOGDMF77xU+ZDvvvDOee+65eGtHALhV8lQepuD9PJsY5ruUE+Gl2tfJDwrrBejo9BpYnrmXfAyGMKIPjmFi6vLXxeW69/eL7TXJh3Ffs+J8DD1/y0GK0QgajTUKeTP8kvldD5PcGFU4RTkheU59/OLTAf/cEB1Bd0aVw+AQ5PXLGijVyQjnp9lBlhX3zyNT/ZaOptg3idNxiHOyiO0oyDhQdahMQ9FUlJXDJI6k+wgJqOSylfMN6fZXdObl8r31Ede5L1k67d/tDjqen7BDWNEYS/qt9nz53aJtPbL09Vl5jp9MKmUsK+6ylzzXUfbAQ/ncBxkyceQeZdOpisfkab8TpiF57u+w0FaUxrQiJM99LevrggepAPPBj6Bn0W3s6MikUsXvgTMoLb7Hq0FKbrh9itBf/qlTp2LNmjUAgFmzZuHGG2/EunXrcMMNN2DkyJEBe5MoiIZPd972zsOknbhWWO7axIbZw1xQ5VOvC5601osTDufu/Ad1KJ25UcR6qQ5vEp4YFJLneHtMv7M6FTP37n4fbqOQPFe9i2EvJYupfNGHgHMOMkgKIgRmF85vxLXOIMxM1Ukqy2DquT9pqTOi6uyH/woEepg81favg4iRh0mTD6F9tiHIivsYTCbzO6mWxikHHhfidcxppM6Vc7KoDCZF+aYd9/JkxUu//eWHFZ2yEMeR25Oqt+56N0mrvEZI0LwvupAqv2XOfsYeJucb5O4sq/vUWpzBvYY62WDyT4Z3d5Dla+TeNeXqlfrcAi0mlyXI6MpWJSTP/L2i287SPBeqst19HtU2OWFwpfxhSi9+czsFTQyb83iYet7jVbJeguZo682EDslbvnw53n77bQDApZdeikMOOQS33XYbstksbr311rjrR+AKybO9HiZdiJkkG+56qG3bzB9hQ/9iCjK4VAaV40nxGEwVDskTCbJNnDJMH/asLiTP/ZHzKS6KrLi7vIIRXFnRh6DOh2awU72tYQdCO2mqwuLyS0YNwvkQBYkoRFEQCmqXfiOKQcJCJvH0kpGkWS5SEIVxyrSMyg2TaxD2CsbfJRHKtr25iG6FSwdVZ0XVPlXnbNpsynmE5dw3n46VVV73KejVaLn+da9zLw98rwjPgOod5TeZbdi55eRBgPA5TJ90Fgb33AZTKqW/bkHvXb/rVfCAKPYJNJiCr0vQJoX5BSvbKS7TweQZHBDbiupzYRKSJw6ohFFL9aujiDdE2/+b5JBJWcXBxqLBpFJ9iFJHwwLSAd/P3kxog+nYY48t/p49ezZef/11rF69GmPHjsXw4Wa5CyQc4ru5K++dh0n37pbnb3KVqVgWVEaYdbp66XKYgvAYTBoPk0k4S3c+bzTCbfpC1obkuV4wfh8Wk4kD3S9m5xyc48Shshw0Cm523QxfrGWG5Kk8TDrFQhOcc3d3RtxEkV4Pko1XTVxZrFeIkDzdlvrl6jVijqMFfbswyWFSHjfkJYxLQtwP8TrKk+mGN6D9hBCCKE8lr/Tbdx4mlREb4p6Im+rkjf2OrfKY+F2fICNfazAhQkieJf9W7e13i7Y5BlOIkDyvSp6/Z9Ot0iZ5o4r/+p+3yXUJ2qIunSq3Hx6I/t6aHdmtwCgbTCqVPNsVDultc2IOk8mUIAa19F8rDUz5DISkrFIOkzskr7wK+iK+n8XbVS2vVrUI3bt49VU5abWxsRG77bYbjaUKIhk+edvz0dbLigcUbNAJcUtsikSR9XXygzq7ZQnsoJI6OuWQPBMjUUe3ofy26aOunVg0YNRIxMTD5N7GKc75VwyjikrY0Vg3hfAts239thOFNHTXTSv6EBGn4xtkBESZSiIoZ899KkEzzYuYhOSJBOXkALKHyTckz1L/lrbR+hmSRc7Aw6T0biiWledhKickz39k3EHVCQzTuZH31ddX7V1Uh+T5HT7Ic6Zvn+YheYqIPG3ZvjlMPh4mHZ5zchmVfnWK7mHyX29SRk1D8sIY+Jpn2MTDpEJ855oMdobFd45Cn6qlLa/oQ3G3KoXHhfl29TZCe5gmT56MMWPGYL/99sOCBQuw3377YfLkyZWoG+khquiDaNCoBBLKfcyDvuuqkD9RDS6Ml0m1rap8s5A8szM3fcFoQ/Jcf5ctK+6qt7s82y5farnceeUKH2/zkT8dRqIPqpC8Mgwm53oGSZq7PYqWFT6k1I1vSF4ID5N2wEDzvdXdg4LxXdpDdw/c8rvKQ6s6zSE/pJX3L7lC8jTtSDUqrxZ98O5r+j6JLYcpwMNUzoSb4jOu9DApfvkdx0+gAnCLiyieSZ93cHgPk6uzqulU63DewSoPU+SQPNdqyQuuyWEKKtMslM5/m1y68ip52lDfEGVIOXBCgaroENv2GqRuxEES02lIfOvnHjBzVcvS/HajFH0ou3bhkAfR+pbFFLp38eabb2LlypVoaGjAVVddhR122AFjxozBkiVL8MMf/rASdez3iA1e6WEyEH3whuTZxh9mExU+0/1EY0UaAQnqcCpV8uRtLMvQw2RoVZgaD7owMM8Irs+7w2SUyi09XlTJ6ym4kNdV2RymICz4jxSbHstE9CEotjwsRQ+TK9zFjfuwJnlTQW3OX1bcfLSzU3McneiDr4fJRPTBoCzl6Ld6Uz1V+OqLbU5rMKk6T6YheYYnHdfEtf7e4jKfc2F3VXWL4cI+h5HCBy3/bndQWKRW9MEKn3Po3lrZ6TP4zjS6DCa/aqief7+Op/SO0gxS9RUPk1ZWPIyBL2xrMsefJT3+KkXJ0m/3QGYU3OV72oOhEZJKKWTFhdDqcjDtW/TlHKbQvYvRo0djyZIluOmmm7BmzRqsWbMGCxcuxM9//nP813/9VyXq2O+xXR4m9wNjMg+TewuVwaFDqzwXIYdJHI0JIy3uVslTe5fMJuM1fcGZGg86mWn3/n4jvlFC8pzynVJt2y7bwxQlP8eNaRF+doYYkqf7QKjmv4pD9EEWnPBuJ45KZtPxJD27qx1GaUgOD1G3IzmiI/jaAuI8TOpR+rq0rIgYZuJak2tWhbQlCRPRB1PBgSgj/g7leJgkI8QghymoI6Z1WArb+nmYlMZyz0J3+KCpcWWqVOhget3FEFTp2D7b+iHmuTgT82plxT2Da/45Xe5Ov7q9+dcvrOdNRTkefVPKzWEqbKsuz88z6YfYpuIIyQtqc6ocNRWZVMqjkqc7RqWImtfaGwgdkrd161Y89thjePjhh/Hwww/j+eefx7Rp03D66adjwYIFFagiEXMKu21VDpNuP9FicoXkIYaQvIA+vsqokTxMQucuWFZcPljehifMcHtX3qizYTq5q+mHVjtxrWtxuSF5Hu+Bq9NTSNQPLMaXOHKYTF+S/hPXlj7EupwOlaFazgfcqXegrLiwPptJla1MqDtO6Xj++4qdJ51ik1i6ye0RRVUKUvGq47pGl7X2UvjR71qQ1XiYdN45B9N5mKqhkhcmh8n513YtM0HcVvXuLhlk+muj68QqjxdgCOpV8kLkMDn7GIj1mNwj0cMU9F5VhUf67WJm7PhvY5TvGLA+m65GDpNmRcQGG/R+dy9XbSIuiyUkD+77720PfvVx8Bd9qNyNEh8Hk6iD3kpog2nw4MEYMmQIlixZgvPPPx/77LMPhgwZUom6kR6keZi6FbLiBiF5ni3sECOZEUPy1B4mdUheaFlx2/uZNjWYTAeETD8EYkcrnbK098NfVjxKSF5Px8Mp1y7+LzLljghZMH9JmsqK684obtEHVbnKiWtdBlPYSZhVlJPDJO4bx8cbkEPyUpa6DqYeJmWHI2x9KhiT57wydPMwiag6vqrzVntWDD0dVchhKr07rEgWWtCpFOeIU67zlpEJVMkT25l3vfzM6tf5oZNfdnZPWeHCJeuFuXqcQQ/ddQvr2ffIigd06lWYheT5b5TNpKsgK655r4QpQ5vDZGAwKeoQt8HkPb5fffy/m05/pDtvoztfmj6m3NtkLCseYGz2ZkL3Lg477DB0d3fjjjvuwB133IE777wTf//73ytRN9KD+I7uVkwkq/vAii93tyFhw1z1QR/yF/5DKxoT2zrLCcnzfucLBpNJHcxkxaOE5Mlyr66RSp8vlC6USt7GLfogH8eGjXIVTsuIaOupjH/Hx/RYkuGjuadxh+Q5uCV73Yj3sS4dz7idu9pGoW4KdMa63ySYKkQPtAX1ZMSFOVhKf4fKYQr5JY1qQ4TpiOY0og+isaYWAVEYTBE6sA7lhNUae5iK7w7vMhPETZX3xinf5zpIRlBASJ4kVRw2JK8MWXHxeLo2oUMUfdBNPeGgEMnzxd0pVb2F4hB9CNoim6mhrHiIBqvzUOrahumAABBPSJ6fgVQ4nmk5lqTau70rXxVZcXcdSvQtiyl07+Luu+/G+++/j/vuuw/z5s3D73//e+yzzz7F3CYSP6JBlM9783RMRBncHWk7jIdJQ3AOk3d9l2QwlYygoJooRR9ce23vzhuF23Xn45UVz2hGrMKE5JmMUrnD9tweJtU1CUu5OUwWzDtepqIPunNSzaERt4cpqIOczaRi+Sb4JfmGUS7UfbzlkI7gCos5jpalNoYK9yh45DOq1zIOn1KY9qzLYRJfFcY5TIryq5HDJOIXBlb0AEntwrxsKYdJWb6+zGI7EdZlAnOYxGfSu97vPpcv+lD4V9cmdIgGU9h8IsvySq+LuAfmonhx45q4ttJ5KvGo5Inlqb/X0vau96WuTQBAZyzzMOnLd//t15ZEDxPgymOqku0it6sqJ6JWmNAheQ4777wzurq6sH37dmzbtg2/+93v8LOf/Qy33XZbnPUjkA2irrxX3U5nuIjGg9fDZD5qq9ssUFZcsV6c5E0MswvqJHhlmb2Go3FIXow5TOmU5ZoIz2ek06e47UYhef75KWGEPHT4ffxMv4vm25l1csRzyqSsotFdpxQiiMFgCuqcCevjEn3whHwIv8OUr8uFCzvmZ8OWPSuaa23kYfLxMpgS2cMU4kBiR0M8X/GdojJe485hqq6HyYLzho86D5Pf4JNf/lqYNh4Uauh3n81FH5zQJXl7Z/9sJg2gq7CticEkiD7ohIEKxwuvTuoOQYxioBuF5AW0iWwVJq6NZx4m9Ttd94y4Q/L8MAmnD0LX5pR/+1QonbKkyIvt3fnqmCzioJIYHNK37KXwHqZrr70WRx55JIYNG4a5c+fi9ttvxw477IBf/OIXeO+99ypRx36PLA/uNRRMQvLcRoIqB0h//OB6me7XLbxcxDC7oE6CO09ENY+UeUie2ZmbvJBTlty5r5PUtfxfgiKdBnkw7hnFi+X1/Guj/HmY/DoeJp1PXXhI2PLEsALxnIIUjsqRFXdwS/Z615d+ZzNpY3UvP9zXQryNYTpTJrPOG4XkGXmY5FC9MLkGoQ2mcJsXieph0s0zVI6HyfS5KCuHSWibRucujaSbHydo02JZPp4Pd5iUbw5TQIhqJT1Mzu7ifHsmd6hR8jD5nBu8z5elqIdUJ1fYsFpcw79+Ju0j2MPk7xmMA135UdtrWNGHIEz7E2GIek1TPWqMovBDSVa8vBtl2mOsdE5bLQntYbr99tux33774eSTT8Y+++yD5ubmStSLCIjfz65uVUhecI6Rx2Dy2c+vHJGgF4XqARPd11IOU0Bd3CPnyhwmw+TLOGXFLcuSPl5+cxD45jAZdHTdI1nFROKevwtGcOVC8kxyAQofb7Nj+RWX1YTkyeEUlQnJk8MqvZWUZMUz/h6mTMoyGoF0Xwu5kx64exGjkDyDD6eUw2Spc5jq0impgx7Gw1Stj2oYg0nnnQwyXk09TKanXJasOMTnw88AcbYX9/Wiq0mwrLgVWGYYWXHdsf2WOVQkh8ngHomy4s69UF4rxfNlWf7txSMrHlgb9XHLJZtOVzwkTzvHVkSPqGUFPyOBAwLGRzZD1+ZU64O+N0BhQuHtXflCDpPmGJVCrF8fczCFN5iefvrpStSD+CAZPopOsa6v7d5PJI7wrSghed2aHKYgG8ZtnBXOzZXD1JU36jCbdkhMckfcHqaMa+TPva0Oo5A814125yGECbPUYfIy9kPXuVYey3BUWDwn6cOhUsmLWfQhSFY8FxCSkjY1mFznIoeBmX/p9IMGohFoUJBtQ5zwUGcwmc3pFO1LHUc4RziDSb2t2DlWnaKqQ1eOkVjexLXC8fwMJkUOU5gelRSSF1JWvFSHEmHuk+Y2aTH1MOnkl51TCDsY05gtda+CQrW9l8nf4+YO0VJ7wv3PO45Bi2rMwxRLSJ6okid6K41ymMyPExf+Knl++wnGfUdPZI4dvF+cyOG6VTpolYjU2v/4xz/i2GOPxbx587Bu3ToAwI9//GM89thjsVaOFBAbXbdC9EGbw+TjYdItU1dAvThQVlyxrFMKyTPPYfKUrTD4tnfnjc7JVNXGKIfJZSBEnUDRKCRPq5JXQJSCjorfN9Y0H8T0xew7gip5mNRlq+oav+iDom4u0Qe/8zC+Zq7NgsLAdJh5mIIRje+U1sNkuUY+1WWpqh/+eY/Wro0myNXkrjjoQkKLxzAWfQisSqE+MXUyfPN6it7paN0oXchicb3r3aQsw2CkX0WgzL7rqGGFbNzFS53QHsLmMPnJiluwQs9/5x6YU3rdAsowitgM2KYaBlMsBos0kFD6rRd9cA0wVdja0LW54nrDcpzzKYbkSR6m8k7C710hPg7lCkclmdCt/Re/+AUWLVqEhoYGPP/88+jo6AAAbNy4EVdccUXsFSTyCF63QvQhSg4TYB6apg/5C9gx4KsSxsOkKjqq6EPeto1eHqbS42IujTtUwr2tDrOQPPfM3Zb0bxyz1fi97NIGQ7uFj7fhsXw2lEb7pRF+/fUFYjKY3B9LF+Jxg1SiTL1D/knrRkUAMBwEMShPzBG0LLW3tc4leBEmhymssJQcFme+X1SHo3wq6pBQB3NZcUNPRxlPsfj+83telSp5IY4TdCpKD1YPKpnjlOWvCicfO1yHzHgeJs3yUg5TuMbUkC1t7ysrbqlU8vyvcdBccU4ZfhiFWAcUEodHP2odosqKS1M2GLYN91Zxe510Xk0Hk/csUDqfUg5TdylSoEp2TF/OYQrd2r/+9a/jhhtuwA9+8APU1dUVl8+fPx/PPfdcrJUjBcTORWEiMtd6nQcoLxtabrrLlMMMzmHyR5IVDzviDG9oYhjRBxPDyuSxtyy5s+s3gaLfu9kkbMuTw+QaxS1IxQcW44tpmJyOwofe7IVpLisulO86lptqT1wbNA+T6ci537UI8wHSydNL180ohyk4JM/tXdNVU3UNy/GEhhnBDJr/xgTxmVKqJio9TN5l1fAwifv6yoq73h3iMhPETf09TD6FCqtUAi46wvbRy/UwOecQdh4mMYfJrwopS+1R8Kt10FxxhXL9zzuueZhqRSgDX/htIisu71t5AyCoPZmGCDrn43w/xSieapkx4iUtN+IlaYRu7WvWrMG+++7rWd7c3IyPPvoojjoRF+7QOk9InqaXHBSSZ+ph0rX5oIch6FkRH+awSjO6kDyTB1R1DVWYfGfTKb3og7c8/Tq3CqAK9+S2JQ9T4e9CGFXlQvLMPrDRRv3c1OnmPBH2UXUI62LoIAflMInrg1TyTDtr7jKkHKY4DKYAr5kbSYVS0aEDvB4mba6BYlnQHG6q+hTLC3E9YmgO0sCT6aSp5XiYyhF9kDxMvjlM3jqF6oAKG/vV1++U3Z1Y0+OHHcEOu71nwvGePwuy4gVMPleyweR3L6xQXlPAf2CuVK4/cYTkxaFKGpVQBr70niotNwqFrIKl4XmEXH+bPqdOu3A8f2JIXrUImqOtNxO6tY8YMQKvvPKKZ/ljjz2GiRMnxlIpFStXrsTuu++OQYMGobW1FYsXL8aaNWsqdrwkIT5MeSEZu7TeICRPsY3JJK/OMYPKD7OfQ4cUkhf+0XLvYexhss08TCYf2pRlueLJ9d4JP++NycS1na6TK3mYCj9UUuth8fuAhJXnDTyWT3liSJ54r3QjhcVlMdQxKIdJMpgC5mEy7ay520rcKnm25hrqEHOYLFjKUf3ycphM6mBLfwUdR0UcHqagqpoaTKaU4yWWPExhVfLChDgZ9iJVW6lyxoImrpXKDHltzUUf1KFLRZW8EK6turRlPHhjWd57FSokT3Mvgu6nkax4wH2urYcpTHstYTpvorS/51pWy1/jxaRdOPelU1BVrmSkXF/zJOkI3dpPOukkLF++HE8++SQsy8Jbb72F2267DWeffTZOPfXUStQRAPDII4/gtNNOwxNPPIH7778fnZ2dOPjgg7Fly5aKHTMpiB2HrqgheYqOlLGHSbM8yCsUVLzoYQr7uJWTw9TVbRt5tKLIikvrPOXpyzExmHQeJudAYhhVVPwMDiNjJMRL2TgkTzQeRGNG8faKw6gL6ozIHib/V2jU+ohPeZiQIpNZ5006xm5lQtU+5h4m7/KyQvLCeJgiNgexekFVNZUVN6UcD5NpSF7xQbU8S1zlqesiFq3awv1uUiFetjADHWGvbWhZcff+PcfLhZAVz6ZTRjmfTvnekDxLUZMSQXmWfstL602+b/7rq5HDpCOch0n8Hd5gqjTu5hQQoKdd4zaYCh6mYjZq5PoV6hRhULuP2VGhZcXPP/985PN5HHjggdi6dSv23Xdf5HI5nH322fjSl75UiToCAO677z7p71tvvRWtra149tlnlSGCvYnV6zehdVA9hg7IAgDe3vgJtnXmMWH4AABe8Qb3B7U7b2PVuo1oH9qIdzdtw5ABWQwbkMXTr28obaNouaZhcC+++VHx99/f2Ywd2gbBtm08/+aH2n3e3LA1MEdKzGEKG5L3SWe35/gfbNmO4QNzgfuqJv9VYfJCTqf8lHbkv/0MhA+3dgYey+09sFz/dnXbeO71jwLL8cOvjmYjkmGOpV+X0UwSWRUPkyZ8Q3XcoJCUqEnFeclgMT8nEwVIIw+TyyOllxUPJqqHSUeYECuTNhs8PYL/BkpZ8cCj6nnjg62R9zWVoy87h0kMu1Fcn9K7SWUse8tIhwjJC3ttjT1MTvlu46XnT9HrHdRmsplUKFVRr1fL/37Ik2ubDdh5yojBVgiTexY3YY4cVlbc5DiWVTmDwK9c33bhMu6feX0D3tzwSeB+laJ8GapkEdpgsiwLF110Ec455xy88sor+PjjjzF9+nQMHDgQn3zyCRoaGipRTw8bN24EAAwdOlS7TUdHR1HFDwA2bdpU8XqF5eW3N+HQ7/wRlgW8tvJwAMC8lQ8CAF685GA0N9YF5jD96ZX38dV7XpKW3X7SnsUHBVB7k0yNlHc3l67hwf/fo3jo7AV4Zu0GXHTXKu0++1z1ED4/d6xvuaKHyVTq2+HUnzyLD7Zs9yxf887mwH27DEUfTHN2TEfWy1WPcXsPnPKcYlf+9mW8s6nDvVso/L4fjgHvR9ROl5sWwfAdOqBOuY1qotGw8rwqwog+ZDMpz/PYPrSh+OyZh+TJf+uapzOo4iadstCdtzE+pnvkzqFStYvRgxvwnvBuCNO+RcllEwbVl9pAGKM46jM3ornU/gbk/D+TKi9jOR6mv67bGHnfhqzZdS29O/zrOXqw+nsu7tXc4G2TRYNMUbzz3IqrMun4VPLcq029CIN67rO4dS6TLtZXvLbtQxsBAGOHDcBahYGbzaSUHvDxwwbgXx9+Ii2b0DIAA7LeNtZUr37vAf7z/TlUQ/RBN9lzNdBVvy7tnftOCh02kBUXGVSfwbihjXjl3Y+Ly+rrUpjaNgir1wf3N0wYN6wR6z4qtQvdnHAAPG1l/LDGYhssyor33Jdb/rS2VGaZ4clRxC9U7bo3E/lsstkspk+fDqBgmFx77bW46qqrsH79+tgqpyOfz+OMM87A/PnzMWPGDO12K1euxOWXX17x+pTDn//5AQB1B+nND7eiubHZ42Fyb/vA6nc9+/7rQ/klrspXCuvVcXju9Q/xs6ffDNxuw8deg0ZkWxk5TCpjyZS8qcFk8H5JpyxzD5OrvK8cviO+/puXtWV/etfRuOv5dcW/PfMwueZSEY2lw2eOREdnHtu785g7YSiu/p0632/B1BY8vOa9Upk+H9FvHjXTs+xXp8/H8jtewGvvy6GxXzl8R7y9cRtmjG7CL59bhwHZDI6ZOxZLb36quI2qI/Oto2fhydc+wKd3HV1cdsTMUXj8nx9g7oRhuOLe0vU6es4Y/PO9j/HHf7xfXOb+0OwzZTga6tKY0jYQ33von9pzEwlKqBY77Nl0SjyZjDEAAFwhSURBVJKEP2BaK848aAf823WPafdXYfopOnLWKDzx6gf4+TP/kpb/6vT5+P5D/8TZi6Yq95O9dMFHkz1ccrtYOm8cNn7SiS/uPwlfEwZqdM+L+xrsMX4o/nOvcYF1ECu916RhOG7PcdhhxCBc+3vz3NWwITc/+M85uOcvb+HUBZOLy2aOacbx88ejfUijcp8FU1txyE4jcN/fSt++uAZzrzl6Fv7xzmbc+OirRtvv0DYIJ+0zAW1N9b7bFT1AlrjMW+vzD52Grdu7saWjS/rOiPsdPL0Nx+zRjmw6hR89/jqAUu6YWOIRs0Zh/LBGtAzKecoIa9heeNg0XHHvaqNtxTbwhb0nYPX6zXhjw1a8saHwjTxkpxEY0VyP2eOGFOqSsnDeIdOwaVsn2oc24vCdR2LVWxtxzB5jcdRuY3Drn9fiK4cX+j5XHTUTX//NS9jS0YWHhPdoNpNS5s9dffRMfP03L+OE+eORSaVw0x9fxfmHTEP70Eacst8k3PBI4R1lAdhz4lD857xxmNI60PecoobkGV1zzSZ7TBiK/XZokYQtHO48ZV5wuT0cPnMktnR0YeboZrQ11+OltzZhnynDccpPTBSX1ZX7v9P2xvceegUbP+nEITNGeNabhBEDwOVH7oTX3t+C3cYOwRWf2Rlfu6dwn3cc2YQxQxpx03Fz8M37VuO/9pNz97/zuV3wv8/+C43ZNE7aZyI+e8PjnrJHD26QDKRv/fssfOM3L2NLRxd2Ht2MYYpIma8cviPe2bQNU0cMAgDccvzuuOu5dThkxgh88bbC9XLLijscPXsMpo9q0p5rubh7U5ceMR1vbNiKmWOaK3bMWmBsMHV0dOCyyy7D/fffj2w2i3PPPReLFy/GLbfcgosuugjpdBorVqyoZF2LnHbaaVi1alXgRLkXXHABzjzzzOLfmzZtQnt7e6WrFwr346qcVd7lYXI6+21NOa1HYbsr30UVkucWETDFssxUroKMkm2d0VXyRL5y+I4YOiCLM3/+otH23bYNg5Qho45lOmVpO2VBIXlf2GciNmzZju8/XPhIjmquR64uXTQ+rvrsTNlg8og+yB4mkb0nD8cxexQ8fG98sFVrMB05axTyNvDo33s+9ppT/s7ndlF2wmaOGYzvL9kNh37njz27W8Vzc/j0rmOKv5fOG1fsVKku21Gzx+Co2WOkZZl0Cld9dhaAghfNYadRzfjxiXNx5s9fwC+fK1wn94fixyfOBQA8/s8PPAbTvju0lM5bIEglz+1hEkczbzpuNrZsLw0ERBV90EWxO9fCbTDtNKoZ31uym9GxTHrzstCGnKd38E4jMH/ycE9h2uRzYfm/zRyJ//d5w3qKZVgWvra4MDj2nT/83Xi/sDlkB01vw0HT2zzHvvSInbT7DB2QxQ3HzcaP/rwWl/7qbz37hDoszlk0Fbf+ea3ksfu3mSPx2Z5nwW0wDRuQ1Q4aXdTTmfdDmWKkqPPgxiy+e8yuAICzfv4ifvHcv6T9gUInbeVnZuJvb20sPttOSJDYrr98wGRMaRukPGAmFUYlDzh530n44R9fk6IfdIhe56PntGPqiEFYtW5jcVBj2fzx2HPiMGmfUxdMKv4eO6wR3xPa7JzxpaiWEc31xfb81V+/hJv/9BoARwzGW5eRzQ1SWeLv8w+dVjKYrILH7aufUg8Im6nkeVccOWsUfvXiWwAMVfI0d+W8Q6Zi9jhvdM9J+0zA7uP1UT8Thg8oft/amnLS+YscPL0Nv3/pHf+6aeo/fVST512oM8793g9L9xpf/N3WVO95b40d1qh8535ql9H41C6jPctF9pw4DJNbB+Kb9xWM/pHNDYHvRfGbCgD7T23F/lNb8ed/lgYM3RPXAoUBqquPnuVbdtwcP39CVY9XLYwNpksuuQQ33ngjFi5ciD//+c84+uijcfzxx+OJJ57Atddei6OPPhrpdLgwiyicfvrpuOeee/Doo49izJgxvtvmcjnkcsE5LUlCGtnteVnp1O7SQodZJYAgorJd3CICYTAxcAINpq7oOUxuwqj1dHebiSOYdHoK6k5mn3p58rnCv2K93edg2oFQHV5c5HdtLCs4L6iwnb42GYOPt6ou0cKWvPu4J5INOq6+pAJhVPLq0inpOcqkU7CsUrs29jC5tit3Pq0wx1LhlnIXr4PcXtS/dceLQ1UrnKx4XL4eg2NprpEJ2XRKOzF1JShNLCsavAH7BHijxGXZosFUWq+anFVcF9YbaxqVkFK8n8R3RlyJ/2Lbrkv7T2hdLkYqeYpHTX5eg+un2yTKdwKQ+yV+7ziTOxvm6orXSJIVr5HoQ5yRjKp5IMVQyVoqGfY1jA2mO++8E//zP/+DI488EqtWrcLMmTPR1dWFF198saIvBgfbtvGlL30Jd911Fx5++GFMmNA3LVjVR0BclhdC8hwVnpRleTw+ZvP6RO+VmRlM/us7BA+TqWJfNpPynJtlWaHUemKVFfdNrJbXiZs68cRug0m8DkHPVdHDpOq8GHZSLRhKQ/vVI6LBFCXfSBkiJyzLZVLIpCxPe1KJM+haQFAOk1slzxMvL9XN0MPkrlsF5YVMapR3ebrTcm+5iMkM9Jbr/pRLOFnx6nWILINroSObSaHT/V7zPVao4rX7W4pl2n0CtpXeOYo8JdXkrA6F+xTupEwHFVT5PibvvLCI77ZKz08UdR6msApxui10cv1BJYqDAn6vODNRJvMbpzPca2cwxdc+ROENt0qe+zcpD2OD6V//+hdmz54NAJgxYwZyuRxWrFhRFWMJKITh/fSnP8X//d//YdCgQcVcqebm5qoJTVQDlSEivjxEwQLnpZW2LHRDbTA5yeAqTCSIw9Qz7DYdETxMOZXBhJAepryprHhwWX4dMvcaad6Rnpdc1jUS1C2Fc5nVT915Cfa6OPuadPD9Ov66eahUZAUvdJRvhuqaSCPb6UKSdle+W9pGdQ10HtYgyV63weQOf5VGryO6mCqpLWTyzhafD8u1j260Vm9si/fH/KZrDdowHqYqfZ/cxwp7WFU7qkbVg7xG2m0VlVMN0vgZJlIuSQRZcdNvRpCHKa4+TC7GTmpQldIG9Ve1ffkemtRDU3bE05MNJr/7F4/ap2rbSngXw2JZ8SnIqb43Ur8iJndWX1O8i4Lxlezu7kY2W1LDyWQyGDjQm4xYKa6//nps3LgRCxYswMiRI4v//exnP6taHaqBe/4TAF6VvJ7fzsOuenk5H996nxd35T1M8ecw5TLesE/LCm8wxTWC5TuDu886595JH1nXi83Uw6Q8tvA76IVpEpbj910J0ykV71OUzqyqUye2/2wmpZS6VV0D3dxX4vwpqjqKH9mcotywnRLAe91NJ5U2RXqvGGwvHt6tkid+OE28KrUMyYtDVtyUMMaHm0JInt5TGTclIyKakafaVB0aq3+WxD9DTVzb86/pM6Ia1JINuXiutHvwqxwCDSYDlTzlQJrP/QhD1AmhxTbu1z+Ia9qP0rbqQaxazsMU13tHvBfKfkUVPEx9bb4lHcYeJtu2sWzZsmJO0LZt23DKKadgwABZxvaXv/xlvDUUjt8XcZ+VOxQGkBujKPrgPPiqF5/jhcnVpaUkdBHTMDgVJgZOkEEWJYepvk6dixImBMJUVtzkVeo3D4Xf/k6Msdt1HuYjVgyrUY4klpb5SZSmLLlrp+/0+niYhPKDql8XYIxEwe1NUxlHqo+Gu4PqEDQPU1rZMRTqE6FTUkVHiGEOkyskT7aYlGWZhHPGIUMcppNTzQ6RlMMU8rB1MUuTB1E0l0IZSf7Pueo+60Kh3NuHmYfJ2VAnPOQuR/ZIWspjx4H4bqv0hK5RRR90ZejQbaE9vYAiRS9q2TlMEQ38WoXkWVZlDAvRdq1kSF4UWfG+hrHBtHTpUunvY489NvbKkOAcpm7bLr5NnAdf9cJ35jjyMyTKEn0wePK7AkL+5Bwms7roHv4wHbGCrHjwdiYvZH8Pk34/lZpNIVE4+Jil8r0f/1K9vNvp6mgy2upXrzAdjlyZHib1RLKl39lMStkW1AaTxsMUoJInyYorO7rq3364P0YVDckz+PDJHilZ2ESsm4lEb9wepjB9nOp2iIJH/XWoOtiVrHlxsEWxLGifwn7+XptiSJ6w3n0rwubTuI9tKvqgMi5kz6jxoX3JCtEPZXuYQhg7YTxMYY163Ta6HJygepuH5AUTpgOvG9ipZshuJuWdHyoO0goDUHyf1HKurL6GscF0yy23VLIepAeV3SA+Yt15u/iQO51uVfx3MSTPZ4LIinuYQuQwmVSlLq2eJNayrFAfqK58fNG4fh96v1exc+/El1nYRGH/HCazMgofneDOg9+HJUz+gRySZ7xbEaU3Tah/XdpCXca7jeqjofOABnXeJFnxgJC8yB/kGqvkuT3d4iWRJceNjlj8FeY51XWowrS3uLwHJoQxPtwon/0KVr2kkuddpt0nsLNdWqiSFfd7FtJhQvJ6tjP9fKmMi4qE5Emj+uUpBocKyQsxyBX2vHVtQvdcBRUpPtL+og8mI5rBmxQ31bTDaorCFI5bOC8L8UVNZVQGUxUFSPoTvJIJwnapt6lG0qSQPMfDpHjoOw08TLoRdhNiCcnrDHf8bDqlUf4JFwKRt81kxU3wNZj8Ogga0YdQo2aK8BKHMKFgJmFVft8V8YUdNOpbvqy4F9Ewz/WIPrhRPQdRPUxu0Qc3UZLZ3YcJO5FzMOHKcz/e4jlJ+U2p4HOVPA8xjHaG6eBWV1Zc7JiHO25QaKebsM3DfclKHqYwnhZ/r4bqPsseJku7fSplGV8zZyvTHCaVcWFp1peDZDBVOiTPwJsZJP1ezsS1aZ8wb1P83nFGESARj1srWXHxO2kjvvA8pehDtXOY+okgBA2mGiM+rnlb/RJx5zAVZcUdD5Pime8Qcph0VFr0IcggEz1MJmQz6pA1C+FFH8y+tcEvU78RbL+9lbLiIUPynKiIcgwP2b8UbrSyVA+hMx1gA4sqeVE+Vqp6iKGl2hwmxTIxnl73EVVFnrjnYfLUUfPbD/d2lVXJC97GL4dJObk2zHKY4hjtDOM1quoIsnBqYR/JoNDOcnEXpfK0BJYR4GESF6kHEvTlZVKWcaer5GGKYDAV6yIaDkbFBCIPfpVXaNDeJjlMyvDllP96Tz10BpPuOxFcZJFy33FRv3u1ymGqVPifSvRBmoeJIXmxwSuZILrztpQb5HxAbJeHyVnuPByqzv+2zoIx4quSV2FZ8aCQvLDxvHVpjQcmZEhe3i5/olwHP9EHv69HUVa8jJEgvxwm04+JeQ6TvjyxUxqU21ZuSJ6qfmI70+UwqTwNnZLB5B2lA9SjtIGiD5rcDL/zdZ9WJTVuTEbyu12ebrF+4XOY/K9XWMINKtTIwxSycxQ2h6nsvpcl/dNTpn+hQduq7rOurbj/TlmWcYidakJ3P1Ry77LxF08b8VM8DUtQncxC8pRfhnD10CyPYxohX5U8g/2je5hqYzBV6pVeLdGH/uJF8oMGU4Jwy1079oz4YcjbdnG501FViTd84hhMlcphMhF9KCPkT4WfhymXLi9mXIXJd9Rf2lu/zkmadct/hvl4FyeuVY0kGhcjh8JEymESw7UC2lTZsuKKXURPUTpl+RuxAqLBrvuIKlXyRFnxgJF00bhSSeI7uNtK/CF5wrEMLo8sKy5fH8nDJJarO57wOx7RB/N2Y+KNqkRHIHEeJo2xElWoQrWtJL7SYzCIbcV34tq0ZRxiF/a6qN4HFfEwxTkPU8B6E9EH5Zx1lvp3WKLKiov4quSZqNhGrL9KJKEWxPXWSYKseH+BV7LGSIIOrhwm50MuLhONHOfhUHlLHAU6f5W8aI9s3ga6DfaNWxFGZ1BYVmVeCiavUt+Ja30KqCvmMAnKSul0xE6L4prEoCAkElcOkyQrHtPHym2Ym6oCiR4m8RoEjd7qcpic5dI+ws+cQhJftV0lCD8Pkxh2Z0mGhy0ZUyYj3aXfYRSbdE0pubLi0YwPQBfaGV/d3SVFKTnIKyOJr/Q8F3K+m7s8oeNqWbENErirFugxjqmN1KWr10k1khVX3iP9X6ZlANFFH0SqqZInEmli8QoQWw6TysNUgZC8OHMqeytGKnm/+tWvjAs88sgjI1emv9PdLefWOI1QXKYSfVB5ipw5jvw8TFFFH/Ku0EEd5YT8qdCKPiBcSF6c+HX6/V7FKllxnQdNe+yebZVeN8NyjEPyfL1lpXVBNnKuAiF57gED0w+ELiQvE8LDJMu3qkayS7/9Bi/ce1Y2h8nA6+LyIom7iJfbLIdJfb2iklRZcVXolymqthGvh8n9t+VZHnQ8yRMdcIzSfTbzMKVTVuC7w7SebtSy4qX1FVHJKzfiIaBKsocp2uCYyWnrNtGJPoSpi79KXvD+UW9brUQfKoXoYXJOp9qiD/0FI4Np8eLFRoVZloXu7nCJ/KREt21LYQnFETd3DlPPnxk/g6knJM/XwxQxJK/bto1ygOLKE3LIZVLKOltW4cWXTlmxHzOIqB6mjGbi2nAGU0+nR7nOvByTj5x//o3ofQgIyRM6EpFC8hTL3J5Mv4l6RbqkkLzS8pTUwTL3MNUpwlTEc/QbvPAcp6I5TMGIYx0Fozr4Hpt4mGIJyUuqrLjkWAx33MqLPlgQG5VTtMYZqi4jRGfb+e7ovJHuA6ZTVgiPQ7gLo+oUl2Pc6nArnpZDUJXSEesf1guqKzsOD5N/DpNBSJ7wO5tOSaHZftQqh0mk8DTGpNQrXXT1QCyJByODKR+zp4CUsKVwu7z0EnH6/m4Pk1v0QWUkODlMfmFAUY0L0cvlRyVC8ro7vQa587rIplP4JF9dg93fw6Rfp/Iw5cLKivvkMJknUEP68kQRfRAJalPl5jCpLo/bU2oa9iUa35E9TKLBFCAxHsbDVPscJjkkT16n3sek71GNHCax8xSH/LEp4vmHzmFSttlYLSb5T8fTIuUv+h9P6pYpNlUZxr4hecLvMINdcXuYKiIrXuFOqpiXFeZ6yPcweEftPEwxXDP/HCaDAlztzdhgEuqecbWN3hhapnrHie8TzsMUH7ySNUb8SOTzcIXkeXOYRElsv5eWM8dRfZkT6KnozttG3qmKiD6o8nV6FgV5Fur9ckjg9RaZfIh8ZcV99i/Jf5Y2qkubT94olq+6JmHCLcW9tWFVhvUKZzCZlSnVQ7HMnYunMlwCy9UYjcp5mIRl4vmovI3i7v4eJvnvuL/bYnkmHSX/2xjdwxTm462rQpDXSOxMVtfDFG70XiSshyn0PEyev72DLcEeJvH8VG3d+1z4ij64RvqNDSajrUqo52Hyf8ajEGeifdAzGnXOr7BtVOth0s25ZlwTf8zmrTUbjPLuV0KKJjAuIR7iMs5U7zhpIK8KsuK90M6MhJGHyc2WLVvwyCOP4I033sD27duldV/+8pdjqVh/QTQ8uvJ52YBSeZhscR4m/YOwzUAlLypuNT8dnTGHx+nmKXJenIXZ1bu0++cyaWzvyvuMkFvIpEr3xORDFF30oUclr4wQNb8cpjCCHtIs6JrzMa1bmIlro4g+qOrR6fKAR8mTCTM3hz6Hyd/DFKZecU2sHBXnPobxXuqNbfEalP8+CmqKmRD3Mk7KkhVXTlxbQSzpn8LvCIM1iiIBCCp5wjKvrHjpdxjRh9AeJoWRUI43UIecw1ReoUF7m4g+KMuN6Vwr/ViZhKuJ7SWqgSq2jVSINhgF8Z1uIz4jQ+4GFkqtxDxMlBWPYDA9//zzOOyww7B161Zs2bIFQ4cOxfvvv4/Gxka0trbSYApJ3uVhkh6qnt9iQ7Xt0ovCr7PuqOQFeVWiYDoSGHc+UV1aI7vdsyholCmbSSGdspD3MSaymRS6tpuH9fl3+vXrVPMl+O+hOLZPSF5UD5Pu+KYfyKBbLr68I3mYDM41ymSl2pA8RVmRRR98nkV3Z7LKqXgenHeMykDVdSq0Hibhd1VC8kKGfcbVR4pqfADB3skw61TojBX5nkXzVKiOUQrJU+cJugnnYQp38tKky6VCSutjsiLEd4HfYKYJQVUymYdJWW5MnrW45q7SYfJMiiF4UcPO0hFDG5OESuKdsuKVIfSVXLFiBY444gh8+OGHaGhowBNPPIHXX38ds2fPxjXXXFOJOvZpRLW5gqx4aZ3z0/3ycELd/F54zsvEb+6XqJgo5AHxG0yFkDwvlrDed/90KnDEWSzD5AVatqy4u85hPn7FUWKV1yWMh0n8ren0xuVhEjoVcUVsxhGSpxV9UGzrtKFMypLj4VXS0FIOk3lIXq1xmo+qWrpbbBLOaSrI4UfQMyzPS1L24YwR+y1hO/VBMt3l4tFbKIamRStD+R6W7nPPxZAUFfWDAulUiIlrAyrtvm6SwaRovHGF5InvnUo/zibzMKmQ3/Xhtg99gArT2SUaTOb9HLEFBEnOV5SYRmpUr8NK5NNV/fokkNBX8oUXXsBZZ52FVCqFdDqNjo4OtLe346qrrsKFF15YiTr2aUSjotst+tCzzj2hnxMyZjKSXksPU9xoJ67tWRjkes5lUoGjiWIZJu/+6LLiheO4O3/hPn5Fi8mDaf6YZcmvQb3og1mdwkxcG0V2XlU/dz5dlBAEsTMX9FzpvIPquXRK1DL5Nuy32fYJydMVZSJJH+bjratzUFusy5Q2KHekPwxSfkgMfYtK9j0tz49whkhQSF5RJc+nPPFbVzCYKvNdEd+xxVeOZMjFc5y4Qp+A4M6pW6zAvNx461Fu+TpMWoIoKhUm9Na2NftV216KqRzVYEvVVfL6SbRe6CtZV1eHVM9HqLW1FW+88QYAoLm5GW+++Wa8tesHyAYTlDlM7rbojKibKEDlKpTDVAty5XqYMuE8TCZElxUvzzABhLAaxbpQIXkGHT3TUdgg76N4feNqR96Ja8N/+aRY9oCJeJ1t3W1FlbdgLvqQrNG7Yg6TonWFza8STy2Oj3fQM1yXro2HydL8jqO8ctEbs+bHkz1M/hZTSfRBX564LkxIXliPUFrxPIcVQTGhLsbwrqD9o06SXGkPU2yvMYOmIA64RT2u2DaqqTBeuUN5B4/jNOT7O6FzmHbddVc8/fTTmDJlCvbbbz9ccskleP/99/HjH/8YM2bMqEQd+zTiR6Irn5c+IiqVPKCU5G4Se12JUe3tXbWRmc9qcpicRUGdsbqQIXkm+H28TWTFvfuEP7bqmphKuluuY+ouj3EOU0DTEK9/GGEKB5NzjaIKJJ5fRgrh8W7rDFS4P0SqkDzx6oaRFa81xfuoqJjOE6B7FsR3XC4G0YegDnOdFJJXvc5C3HP7xGlEu0ty7kgYr5hkXKk8j0KzcJ4NP6+R2C4qOYeePLF2j8FUAQ9TNQc9xLDTMMcNq65X7hlZVrTIMxOBgaj9EMlQr2FIXiV1fZi3VBlCX9UrrrgCI0eOBAB84xvfwJAhQ3Dqqafivffew4033hh7Bfsitm3jo63bsWHLdnQID31BwU1WUils796/8K+JG7oSOUwbtm4P3qgCaHOYHIMpoKNc8DAF5zmFodyJa737mL+0Lde/It65iXzKlUYd1dvFpZInEsYL5mB2ruWF5InnGsbDFCxrH/+zWCm2bC+oTarOKGwOk3h/qiH6IIXkVbETW45KXq2QPUz+dQ7KYVLdZ+OQPMuqWAdSbAMqIaXeiJwvF4LQHqOwIXmW6+9oGKnwCgNlYaopCZFEDG1MOjSYKkNoD9OcOXOKv1tbW3HffffFWqH+wCed3djlq/d7ln/6+3/GDcfuVvw7r/EwOdQqh+mnT75RdhkpK7wSWDaTUnaWSrLiJqIPPnVKyV4AkxEnt9Equ/j1+6sMs5QVbozLd+Ja18Wtr0ujs1stuS7lJoQ4voowo8RRchbUSnTyMj81OpNyU1IHy7utatJhQD04ITYPP4MprsRzHWGL/8u/NobeT3cOYscmzIdcd+wgw1S8D7rQV5G4rn3c6RB+1Qorl16XSQEdpb9VOWqBHqYAi0n0GIcdtEinLGMxoaBzd5+H5GFSjNFU4snzq4MJQe1W9jC5j63fN6wXNOy1cZ9mXTolDQobl2NwvcT2olKK05atOfFCm63cxPcpV9+gEiGApoPHUfCrbxUd+TUl9GkecMAB+OijjzzLN23ahAMOOCCOOvV5/D7QP/jja8XfxRwmzXdk9wlDA4/VmI001VZoGrPhRs/326El9DEyqRT2n9bqeXCdy3mAYp1INpPyfbH+6Pg9ZM+PUNa0EYNwxKxR2NdVb+dDuPIzO2P4wByuOXqW7zl8+cApGNlcjy/uP6m4bNle49E+tAGfnTPG8xE7ff/J2rKcdqRqT8vmT5D+vmXZ7hg+MIuzDtoBzQ110jpx93TKwufnjsXE4QOw06gmz7GCMDGCjp49BpNbB2LB1FajMkW++dmZGD4wh68vLoX/fm/Jbhg+MItv/8cuAIAlc8ehfWgDTnBdg+t7tjv74B0wfGAW3z1mV1zVU951x5QGKurSFhZMbcHscUMwdmijpw47jmzC6MENWLhjGwDgK4fviNZBOVx25E6ebS0LOGznEZgxugnLD5yCqW2DPNtMbh2IA3cMfy3CsGv7YMwY3YTDdx7pWXf2wTtgRFM9zjxoB8865xwB4Jg9Cu3i0BneMgB9B2zi8AHYpX0wDpzWatRx/PIBkzGquR6n7DdJuf7Cw3ZEW1MOFxw6DQBw2v6TMKq5HmcsnILhA3NY+Zmd8Z/zxmHcsEYcPWeMtO//nLAHhg3I4r+XzsFlR0xHy6AcvrbYe9+isOPIJoxqrkdjNo29Jg9XbrP8wCnS79GDG3Dqgkk95zVN2lYcyPj64hnFd9vp+0/G9cfOltp8ED/4z9kYNiALANhnynAMzBW+CwdMK9zfurTlebe5mTdpGBrq0hg9uAHTRzZ51o8d2ojdxg7G/lNbikbtvInDMG3EIHxql1Ge7Y/arfC+W7hjKyzLkgZ5hg/M4tp/l9+lX3K1i5uOK1yD274wV9ru33dvx9ihjTh+/ngABQNi4Y5t2KV9MKa0DgQAjGiqxx4ThkrXIg6O2aMdE4cPwCE7FZ6RK3u+C9/6d//vgsMVny5sf/Vn/bdvGZTDrDHNyKQs7NfzHl2213iMG9aIo2aX2vxndh2NHdoG4qR9JmD04AZ8Ye8JWLhjK3ZpH6x8F7lJpSzsP7UFu40djGP2GFs8Rzcn7zsRY4Y04D/njZeW/+iEPYrfnZZBOVx2xHT899I5GDYgix+dsIf2uN9YPAMtg3L46qf0z+biXUZh7NBGLNtrPL551Ey0DJK/C24+s+toTG0bhNP2n4wZo5tw6IwR0vr/Xjqn+F2Ik+uO2RXDB2Zx87LdsfzAKRjRVI/TD5iMZfMnSM9/ORy12xhMaR1Y7FdZloWDprdh1phm7Kh4VsNwteIb6fC9zxe+qT86Xn8v+xKWHTKDN5VKYf369WhtlT/w7777LkaPHo3Ozs5YKxgnmzZtQnNzMzZu3IimpvIaUTl0dHVj6lfUnrk9JgzFU69tAADccvzu2H9qKy6666+4TeHV+eO5++PyX/8Nf3j5XWVZ6ZSFu764F478f3+Kr/I9LJ03Dj96/HUABePngGmtuPRXfzPa99p/n4W5E4dh/pUPetaNGdKAg6ePwM1/es2zbsXCHbB84RR0523c8fQbuOiuVQCA73xuF3xql9EACgIAky/6rfK4B01vw+r1m/Dmhk8AACOb6/H2xm0AgN98eW/sNKoZ/37D43hqbeH6Hz5zJH7zl7cBAK+tPAyWZcG2bVz+65dw65/XAih8xM86eCqAwqitZVkYf/5vABQ+YKpOtLOdapl4/LVXHg4AuOxXfyseT+TEvSfg4n+bjrN+/iJ+8dy/istvPG42Fu00wrO9c4xtnd2YdnGh/f330jm4b9V63Pnsv6Rrads2Pv+DJ/H4qx8AAO47Yx9MG6F/ZpxzHjogi+cuPki7nd81MMXv+gWV7ywX1wdta1IH99/O9Vi0UxtuPG6OdNzuvC21UadtiTj7A6V2oFp/8r4TceFhOyrrGOV8fvjHV/H137ysLdtdxrd+vwbXPfiKtp4mx46yve76u+9rV97GFOFar73ycKN7HxW7Z2oIP8Ow5N2xPMd/aPW7OP7WpwGUnm/VflHqLn7qxf26uvOwLMvImO3O20hZei+GybPpLs857oKrH8LaD7YCUD8TqrLCPLuqfYH4wydN62i6v9927rbmd97ltHtne/F+mdY76vHDbhNm+yjv/HLQ1TPO44V99sotO+5j1BJT28B4aOUvf/lL8fdLL72E9evXF//u7u7Gfffdh9GjR0esbv/CWAyg5/vmF+Xk95HLplMVi2VtFEblbIRTmMlmUlqXsZ+r2lmeTllSYrckCe3jis66ZMXFkUXnnujmtyiFv1naiTHdLw29RLd3uZ9EuK4cp6ru0Exd3oYuhM/tYXK2zYYMTwTMQ/LKecH6Xr+A8sX7aLqtyTr9pK3y8QodU/PjxInJ+cjzRvnPKxXXsaNsr7v+7vuqev2Z3PuoWJaFoChAv+PLz5x+P9XfJnVT4ffOdBMcDhf8bOrKE0OsTJ/JMM9uudfPlErdJ9V27rbmd97ltHtne7/7H8c716Q83TZhto/yzi8HXT3jPF7YZ6/csuM+Rm/A2GDaZZddYFkWLMtSht41NDTguuuui7VyfZWgGc8dSuFNGlWqlOWfJ+NjmJSLWK5t26GSHfwMOcvSxy/rEjRNj5xzqeQNrBcMJsEYC0I896iiD2HQlVMMyXPVISie2JuYW/pbNLZkw9CkpsHzMPU3VPcuyR8YsWaVzquqBkm+1irCTpzdl4gwLRshhFQNY4Pptddeg23bmDhxIp566im0tJTinbPZLFpbW5GOQTK2P+DXEZENpp5/NR8SC/7JkdlM5TxM7nLDfNuzmZRWYtmCn0dF6NhHULdxz8MkeZjCGEyiIRFz5qaqON0hnM6g22gL09G1LLWHCXB33gw9TJXUSu2F9LZOr1hfE1EZEi/yxNn96/rXan4/QggxwdhgGjduHAAgz2GgsvH7DspzwPir5FlWsBJbpQwm0eCx7XCd9HJD8pztHEzDxQrzMJWOO6g+ICRPc07iNfX1MBnVyr2Pdy99aF/hX7eRF3QvTELygIJHrlSmb5FFoijf9WWqPbdHuUgeJhpMVUdUl+tvV5/vDkJIkokkD/PPf/4T3/72t/Hyy4Xk4OnTp2P58uWYNKl8tY/+gGk8aD4ghylImjKbScUyUaSubIe8bYcaSc9lUvrOmI8RqJNEDeNhEjcdICgIpjTGh7IcoVPjt31cHU59foy6DoEGk8+Scj1MHE9x0ct6vVI+IA2mqiMNcPWzy0+DiRCSZEK7H373u99h+vTpeOqppzBz5kzMnDkTTz75JHbaaSfcf793biGiRtcXCTPJngV9gj9QWQ+TnMMUTvTBb46OlGUZ5TDpxBn8yGZS0kd5gCokzwouV7ymvkmwhvWS9lHmvJR+q0IZPQZTUA6TJylZXVakHCZ2eiR6W59X1xZIdQg7D1xfgiF5hJAkE9rDdP7552PFihW48sorPcvPO+88HHRQsKQwKRgGqs5lWpC9CZqHyRHh0FGtHCYbdqiPu1+dCjlM6nXakDxTD1M6JX2UxZA8KEPy9OU4xN2pVB0z5TKYnIkAI4fkSb/lOycZTFJIHnOYotDb8lB0bYFUh/4s+kCDiRCSZEL3pl9++WWceOKJnuUnnHACXnrppVgq1R/QfQylHCaY5DDpj+GIHFSi35N15TCFGQz1U+7zy8sSl8vnZHbwbCYldejFSX2jij5EkVn1IyiHKZtJe7Z1exnLymHSqOSZngrtpV6ORliFVAfx3djfvLW0lwghSSa0wdTS0oIXXnjBs/yFF17wTGZL9ATlpQDBOUwFb4x/SB7g79GJSp0nJC8eD5Op6IMVwcOUy6Qk2Ws5/KVAaIPJNx/NrF5B+4iLVCF5HlnxgON6QvJizGEiMr3tqkmiD33knvcmw0985rq6+5cF0d8MREJI78I4JO+rX/0qzj77bJx00kk4+eST8eqrr2KvvfYCAPzpT3/CN7/5TZx55pkVq2hfQ/cNF7+RxRwmzYfEL98HKH18s+kUtnXGm43vDcmLtq8Koxwmg1wj1XG7BINJZRCEFX2ohpKYNJlondfr45EVD1MnS5+3UhdBJY/I9Daboy/KiqdTVq8J9xLfSdu7+peCSm+5R4SQ/omxwXT55ZfjlFNOwcUXX4xBgwbhW9/6Fi644AIAwKhRo3DZZZfhy1/+csUq2tfQjd6KHhA7MIcpOCSv8G8aQFeUamrJuTxMoVTyfJT7LEs/Ga8UkieKSRke3J3DlFV5mEKKPvh1KqP0N1XnIp53TgrJKxA2h8lzTOG3JCsuiT70jc5zteltV030NvYVWfG6lIXtta6EIeL7pLO7fxlM9DARQpKMscHkeDksy8KKFSuwYsUKbN68GQAwaNCgytSuD6PrinQJusz5oHmYoDcugFLHXjdJbDnIHqY4Q/LMRB+sCB6mOpfBpDIIRNENk3mY/FXyouQweXGLPrjxGkwhj6nJW1EZlCQcvS2UsS96mDLpFIDuWlfDCLG9bO9nBhM9TISQJBNKJc/98aehFB2dgSF+NAJV8lL+HfZcBXOYZNGHcPMw1aV9jAxD0QfJE2R47GzG5WFKe8Pb/HKSxHKK9fAVfTCrV9A+4rL6OoXBFFL0wQ+dSl5v6/gnhd521XText5MbzX8OvtdDlOta0AIIXpCGUw77LBDYMdpw4YNZVWov6C7jLLBFORh8u+UOzkofqp0UXF7mMKQ8VPJ8/GaySp5EQ0m4Vqq5oMymd9JkhX3E30wq1bgPlIOkxCS55x4OSF57jaU0XiYemmfs/b0suvWF+dhyvgM0CSZzn6Ww0QIIUkmlMF0+eWXo7m5uVJ16Vfo8gOkQcUAlbyUT74PIOYwVcBgKkMlzw/fkLyUvJ2Daeibx8OkkM1OywVry3Hw7VRGkRUPzGEKVvYLmrjWc0wxb0U4VibCPExEprdNPiopJvaRe54J+0AkBDE8mxBCSG0JZTB97nOfo3R4TOi6InmFh0mnkmcq+uAXAhcVt4cptr6Vj/Kf7FUKNmzc5NKyrHgcKnn+OUzhUXuYSr9zdV7BjLJFHyQPU+ncslI+V6giSQ+662ZZCZ2zqg96mCrx/qsG2/tZSB4hhCQZ46E35jDEi65TK4s+FP7VfTYtGMqKVziHCbYds4fJIIfJIHTOja+suKJcv3JU9YgD1anrRB90k+2GCsmzZB+IOBgvGk98/qOhu2pJ9d70xRym3noeDMkjhJDkYNyT1nk5SDR0HVAxCiMwh8nHuADEiWv1Mt5REaXB83Z8qRoWzAwmnWKeH9lMSrqWcYg++F3/+IxIdV6RY+qUr5JX+i0aSWLuRy/tcyaWpIY46hQTezOqXMXeQH+TFSeEkCRjHJKXZzx1rOj6S6KHyena63KYjOdhqkCHoS5TOrCNcCp5fhTmYVKvK1dW3O1hUsqKS54rdcmi0eI3d0i0a+LdSRZ9iF8lTyyfHqZ40Rr/CVW6pocpOdBgIoSQ5NA7h976ALpveLc0cW1ADhMsX4+I07muyDxMnolrYwzJ0+UwpdSj36aHrkunpLyRyCF5wrn7zR0SKYdJsZO4qN4ghylsB1FsX2J7qqOHqWx0bTO5HqbS76SGDYalt8qKM4eJEEKSQ68zmL73ve9h/PjxqK+vx9y5c/HUU0/VukqR0M7DJHReHYECnRMjZfkbKpXMYcq4DaYoZSg6Muay4vI+Jrg9bVKojiYfKKgcX4MpwkVR7RI2hynMcS3IHkw5JI8qeZUiqdezb8qK97rPHAB6mAghJEn0qi/Jz372M5x55pm49NJL8dxzz2HWrFlYtGgR3n333VpXLTT6iWtLv0shebocJn9Z8UrOwyRiI5qHSTk/ik+Yobg8yjxMbk+bypA08VyJni7/kLzw10Qp+iAcT5yHSecVC9sZF40+MSSvjip5ZaP3MFW3HqZIsuJJrWRIequHiQYTIYQkh15lMF177bU46aSTcPzxx2P69Om44YYb0NjYiJtvvrnWVYsNWVbc+VfdKfebswgQRR8qbDDZdqQOoCoZ21QlL4KquOd44nXp6gl/CRuGFHefRuUtE5cEGXlAeINJDMkTPUzi9ept8wklh+Dw0iTRFz1MvVX0oYsheYQQkhh6zZdk+/btePbZZ7Fw4cLislQqhYULF+Lxxx9X7tPR0YFNmzZJ/yUF3VyKouhDdz6PM+54Hk+8ugGAKvTKTFa8Gh2GKB4IVb38pNJ1OUymffm0y6Mlet6c0dywnUS/ySUjheSpnG46lTwnJM8t+hDidluWHAZKD1O86K5bb8gP6isGU289j+30MBFCSGLoNQbT+++/j+7ubrS1tUnL29rasH79euU+K1euRHNzc/G/9vb2alTVCJ0XQMwneeTv7+HuF94q/q2agNFXVlyTwzSksU76u60pF1hfkYG5grjiQdML9+LEvSdot509bggAYOiALABgnynDi+uWHzgFADB/8rDislQqQkieocU0IJvBlw6YDAA4ed+JksHUMqhwDcTO1aEzRgAARjTVe8pywvvmjB/qWTd8YKGsA6e1edYF8R+7F9rorPbBxWVjhzYWf48fVvpdnGzX1S7CeJh2HNmkzWEaNbih+Duog3/OoqkAgGP3HGt87L7MlNaBAIDFu4xWrg8K11y213gAwJd7nhE3Tptw2mhchJUVX7RT4fgjm73PSFI4bs9xAIA9Jnif1STymV0LbeaLCybVuCbV5Qs93xHnHU0IIUnCWFa8N3LBBRfgzDPPLP69adOmxBhNYlfkys/sjJsefRWvvr9F8lh8vK1L2qcxm8G2zu0ASsaD2Kc5++AdcM9f3sbq9ZsBqA2m/5w3Dpf823T868NPMKg+g63bu3Hu//4F72zqCKzzys/sjL0nD8eQHuPn+iW7Ye0HWzGpZQAeWqPOI/vSAZMxenADJrUMxGsfbJE6//85bxzmTx6GQfV1mHvFAz3XJYLog4F98OxXFiKdsnDmQTvgyFmjMKllIFIpC89dfBC6uvNozBYeBbGTOH1UEx49Z/+iMSXyzFcWYuMnnRgtGBUOj567AB98vB3twrmasmBqKx46ewFGDS51QPfdoQW/Xb4PgIKB4yaKrPiLlx6Mrdu7MHxgTgoDFa9rYzaDpy48EJl0KjCE7IsLJuHg6W2Y1DIw8Nj9gV9/aW+s37gN44cPUK4Pcvpe8m/TsWTuWExuVV/P36/YF+9s2oZxw9TlR0W8yyYG04zRzdpnJCksnN6GB8/aD2OGhH8ea8HVR8/CF/ef1O+epQsP2xH/sXu7ts0TQkgt6TUG0/Dhw5FOp/HOO+9Iy9955x2MGKEeZc3lcsjlkvkhFzu17UMbMaVtIF59fwu6hbj1blfuUoMgKV30LgidmoG5DMYObSwaTLm0V1Z8cutAZNKpYkduGMxznHZoGygZAZl0KvDjlrIsTGkbBACeDoBlWZjcOggbtmz37KMrS/XbxJ8yrMfrYwn1AUqeLwf3PExjh3kNIgAYVF+HQfV1ynWN2Qwah0Z/tCYoOtkqQ8nBndRuEu7V3FCH5oZC/cUcObfno1XhXVPhvq79nfq6tNZYAoKN2lTK/3rW16VjN5YA9yTGZp7KscOSb4hM7EXGRzpVeC/2N4LaPCGE1JJeE5KXzWYxe/ZsPPDAA8Vl+XweDzzwAObNm1fDmkXDLVrghJXJsuLyPvV13nmD5ElHZe+MauJaVSiQaY5TFNU3E2+H2C+zoReQ0KvkxZejkJbKja3YiuL2/lghn2ofZXRSIRIrKw71oAQhhBDSn+k1HiYAOPPMM7F06VLMmTMHe+yxB7797W9jy5YtOP7442tdtdC4O/zOn2Ker1sdryFb8jA5+8uhaZaUtK8KyVMZI6YT20bpPpkMUosGj237eJhSle/MyR6mZKObhynstcnTYqo6vUGIoDfUkRBCCKkGvcpg+o//+A+89957uOSSS7B+/XrssssuuO+++zxCEL0BS/KWlP72m9ensU64XcUcJrmDr1JUk5TVFGaAaUheJCPFYBfJw2TrVd50eUtx2k5R1PdqjddgCre/X5sjlSGptkhflBUnhBBCyqVXGUwAcPrpp+P000+vdTXKxuNh6umdd3WLsuJyR7Ze8jD1/OvyuoghZaqJa1V9INOJbaMYTCb7mHpIxOWV8gS5c5iSjFO/KKIPIpzupfokdh4m4TcNJkIIIaRAr8lh6mtIuUeFJCYAcj6Jex6Ohjqvp0jO65H/dgyhOikkL7qHKYonxyyHSQjJgx1e9KFCHqakp3DEFpJHD1PVSWp+ED1MhBBCiBcaTDVC7IpYVkmsQZQV39bZLe3jSF8X9in86zYixL9zStEHb10qazCFK9c3h0kjKx6njyms+l4SKDskjzlMVadXTFzbC+pICCGEVAMaTDVCzNNJWaXOuRiGt61T9jDV13lFH6ROjSWH+jiGkCjqoFKUq2QOk8kuacnD5JPDJF6zCnmCZA9T7+gwemTFQ1pM9DBVn6Q2Ld0kxoQQQkh/hl/EGqFXyRMNJreHSZiHqbivXKYUkmeokmcqKx7NYAoXkgdjD5OsrBcXvUnzwamfR1Y8bA5TPngbEi9JDXcTjWfaS4QQQkgBfhJrhDuHyflLHOHt6HLnMIkT1zr7yuVI8zClVQaTt6NmKisepY9nYmTJ9pKtNVT0IXnxWUyVyo2qBE79RA9TlHtk08NUdZKawyQO2NDDRAghhBTgF7FGiN2llGUZeQWkiWudeZiEO2hZwnILyChU8pQ5TMYT1xptJu9jVK7sLdJdC/ecU+I+cSGF+iXcx1QS/lB73kxhSF71SapKntgUaC8RQgghBfhJrBHu/pJJ9ymjMHzcnWVnE9GrlI0phylKTk/YDrwNvWEmdjLFkKY4NQuk+5LMPq0H8VpE6YhTVrz6JNRekjxMFH0ghBBCCtBgqhEer0BIcYSU5fUuiGp7Yl5SUA5TrUUfRPzCw3QheXGGlKWl6xlbsRWBIXm9l6SG5InexqTmWRFCCCHVhgZTjZDEGlLhJ3gtJvxrcpjEvCR54lqFh8k0JM9oK5lIHiZtWepy4+zui1603tJddE9eHBb3BMmk8iTVeyPazr1FJZIQQgipNDSYaoTl8haZdE1Uk6qKto6Fkocpq/EwqY5TlyAPk98+1VDJ6+2y4lGuBXOYqk9Sm1Y32wIhhBDigQZTjXDLV5t0oFKKzrxbbc/ZJKvxMKmcCe55fHREm7g2pIfJp7+W0oSexRlS1ptkxR3E62JH8LflKStedZIa7kbjmRBCCPFCg6lGeOZhMuieZwJC8izLKnaedaIPXYresanBFEVQIOwu/jlM4u8qhOQls09bxKmreP+iRNexk1x9EpvDxPBMQgghxAMNphohTzhr1jlXiz7IZTqb6AymToUkmmlIXhSi9Qt1suJqY6ZiIXkJ9zGpjOYo0GCqPkmVFae9RAghhHihwVQj3Pk4RgaTIofJnfDvGFViGJ7ogejs9nqY6io44UrYPCBfWXGXN80hzg6/2wDtDUgewgiXgrLi1Seh9hIFQAghhBAFNJhqhDf0K16VPN3cS10KgymTrlzvLaz3w8/40XUy4+ziJTVUSkVJ+KM845Gy4tUnqSp59DYSQgghXmgw1Qixu5SyLKMRZ5WCmzuvpyT6kFaWoQzJMzSYonSs4xxJ1xkz8Yo+9KIcJuffMvO56FWoPklVYKTBRAghhHihwVQjdLlHfihlxcUdrVKIXlZjBKlFH8yaQZS+VNg8INv2mYdJY3311xwmFVGMR9pL1SepIXlsC4QQQogXGkw1IopKnspgcs/npArJE1F5mCoZkhd2ID1v60ff9SF5/TuHSSTKlaAyWvWhrDghhBDSe6DBVCPc8yfFoZInzcOUVt/aLmVIXuWaQZxqYPqQvNgOIeeWxVdsRVAZlpy4tneQ1Fw5Gs+EEEKIFxpMNUKWFQ/2L00cPgDptMJgcoWQNTXUAQCGDMgqy5k2cpBn2fCBOaM6N9XXade1D2lULg/bLbRtG62D1PXRdTLHaI7tMLFlgPHxhwrXLal5Jg5T2gYWf9fXFR7l8cP8r4WKfXdoASCfO6kse0wYWusqKNlxZFOtq0AIIYQkjkytK9Bf8eYw6Tvnx+wxFisWTsHq9ZuLyxyhBrdK3md2GwPLsrBoeptUxn1n7IO//GsjDnYtBwod5ZuXzUE2nUauLoWjb3i8uO7ri2egvi6NoQPq0NyoN5imtA3C95fshm2d3Tjz5y8KdQpvdIwa3ICbjpuNzdu68P2HX8E/39tSKMtl3v/i1HlYv7EDU0d4jUCHry2egUU7ec9Zh3Mtcpl0YsOm7vnS3vjHu5ux16ThxWW3fWEuHlnzHhbNGBG6vLMPnooJwwfggGmtcVaT+LBk7lhkMynMTZjhdMC0Vlxz9CxMp+FECCGEFKHBVCOkHKYAP8yJe49Ha1M9/vHux8VlTo6SbHhZGJjL4Lg9x3nKmDaiCdNG6DtBB0xTGxXHKsrScdjOIwEAz7z+IX765Bue+pngRIcdvFOh4//h1u34+m9e7ilLLmz2OP/OZjaTUl6LIHTXIinMGN2MGaObpWWzxw0NvB46GrLpUPeZlE8mncIxe4ytdTU8WJaFz84eU+tqEEIIIYmCIXk1wvLkHukti2y6IBEuejycHCW3hykJiNUIP3GtnEMhptckNe+DEEIIIYT0XWgwJYCUZfmKPjjeJMlgUixLSs6NZal/m+DWHxANqKQYhIQQQgghpP9AgykBBIk+qIwjR9nO7alKAuLZhPUKuTW6RNGupBiEhBBCCCGk/0CDKQkEyIoXDSZho1zGG5KXFIOiHK+Qe+JVKl4TQgghhJBaQoMpAaQCVPKcfCVVSJ5sMFWogmVgMiGvH2VNSktjixBCCCGElAkNpgQQFJLnSIirRB/EOWeTKIpghWxhbhuHHiZCCCGEEFJLaDAlAMuCdobXbDpV9D5lFB4mK4EqeWUp27lFH8qwmMryThFCCCGEEAIaTIkgZVlaw8IxjAAgFRCSl0QPU+gcJvfftHkIIYQQQkgNocGUACxL62CSDCbJw+TMzZRAI0kkbA6TR/QhzsoQQgghhBASEhpMCcBvHqaskKQkepDqMoXfsqx4Mown0cgpMyIPebqYCCGEEEJIDaHBlAAKKUzBIXmi6EOux5ASw/RSCbyboedh8uQwxVgZQgghhBBCQpLALnb/w9fDpAvJK+YwlbYtV8K7EoT3MDEkjxBCCCGEJAcaTAnAN4cp7S/6kE6gSp5I+R6mMlTyaG0RQgghhJAyocGUACzL0rpidB6mdMorK+43+W01kWXFo++r+psQQgghhJBqQoMpIegMC52HqWcuWzkkLxn2EsRAunKNuHLmUqKtRQghhBBCyoUGU0IwEX2QPUyW9C/QN70xffGcCCGEEEJI74EGU0IwEX0Q84FUIXl9wafilhHPl3FKiXG4EUIIIYSQXgsNpoRgIvoge5gK/yZR6CFOrxBD8gghhBBCSC2hwZQQTDxMaYXog+h16gvha55z6APnRAghhBBCei80mBKCThxBNJgsy+thknKYKlO1quINyesLZ0UIIYQQQnorvcJgWrt2LU488URMmDABDQ0NmDRpEi699FJs37691lWrOKLBJFLKYapmbapPOfZSOXM4EUIIIYQQAgCZWlfAhNWrVyOfz+PGG2/E5MmTsWrVKpx00knYsmULrrnmmlpXLxZ0E7yKOUwizoS1SQzJK8vICfibEEIIIYSQatIrDKZDDjkEhxxySPHviRMnYs2aNbj++uv7jMFkksMkUgzJEw2mPmBeuI0thuQRQgghhJBa0isMJhUbN27E0KFDfbfp6OhAR0dH8e9NmzZVulqR0UXW1dellcubG7KF/YQd6zPqbcMypLEOH27txPCB2VjKC8P4YY3S3y2DcqHLsKyC4TWxZWBc1SKEEEIIIf2UXmkwvfLKK7juuusCvUsrV67E5ZdfXqValYfbw9TWlMOOI5uweJdR0vKvfmonvPLux9hz4tCe/Sycf+g0fLS1E+OHD4ilLj//r3n49gP/wBkHTom0fxRP111f3As/fOw1XHjYjtLyE+ZPwCvvfIyDprcZl/Xr0/fG9Q//E+csmhq6HoQQQgghhIhYdg0z488//3x885vf9N3m5ZdfxrRp04p/r1u3Dvvttx8WLFiAH/7wh777qjxM7e3t2LhxI5qamsqrfJl88bZnce9f1wMA1l55OH7w6Kv4xr0vF9f/7OQ9MXfisFpVryzO/d8X8fNn/gWgcG6EEEIIIYQkjU2bNqG5uTnQNqiph+mss87CsmXLfLeZOHFi8fdbb72F/fffH3vttRduuummwPJzuRxyufAhXbXA7WHSyYwTQgghhBBCqkdNDaaWlha0tLQYbbtu3Trsv//+mD17Nm655RakUr1CET0yqV5sL1GngRBCCCGE9BV6RQ7TunXrsGDBAowbNw7XXHMN3nvvveK6ESNG1LBm8eGWFaeDiRBCCCGEkNrTKwym+++/H6+88gpeeeUVjBkzRlrXVyYn9RpItJgIIYQQQgipNb0irm3ZsmWwbVv5X1/BbR716pC8WleAEEIIIYSQmOgVBlN/wC3yQNEHQgghhBBCag8NpoTgUcmrTTUIIYQQQgghAjSYEoI3JK/3mkx9KFKSEEIIIYT0c2gwJQWq5BFCCCGEEJI4aDAlBLfIQ282mGzKPhBCCCGEkD4CDaaEYLmC8tx/E0IIIYQQQqoPDaaE4BF9oL1ECCGEEEJIzaHBlBD6kugDI/IIIYQQQkhfgQZTQqCHiRBCCCGEkORBgykhuHOW3CIQhBBCCCGEkOpDgykpeAyk3msxMSKPEEIIIYT0FWgwJQR3zhJD8gghhBBCCKk9NJgSQp8SfSCEEEIIIaSPQIMpIXhEH2pTDUIIIYQQQogADaaE0JdU8mybWUyEEEIIIaRvQIMpIXhV8nqxxUQIIYQQQkgfgQZTQqB9RAghhBBCSPKgwZRQUr14IiYG5BFCCCGEkL4CDaYa4Q6588iKV7MyMZOmu4wQQgghhPQRaDDViPMOmYa2phzOO2QagL4l+nDWoqkY0VSPcxZNrXVVCCGEEEIIKYtMrSvQX2kf2ognLjgQVo9l1JdEH0YPbsDjFxxQPDdCCCGEEEJ6K/Qw1RDRoOhr8zDRWCKEEEIIIX0BGkwJwWNe0N4ghBBCCCGk5tBgSghuh0xvDskjhBBCCCGkr0CDKTH0HZU8QgghhBBC+go0mBKCe9olepgIIYQQQgipPTSYEoJbJIH2EiGEEEIIIbWHBlNCcNtHbplxQgghhBBCSPWhwZQQPLLivDOEEEIIIYTUHHbLE0Jfm4eJEEIIIYSQvgANpoTgDsHjxK+EEEIIIYTUHhpMScGjklebahBCCCGEEEJK0GBKCG4ZcYo+EEIIIYQQUntoMCUEj0oe7SVCCCGEEEJqDg2mhOARfaDBRAghhBBCSM2hwZQQPKIPDMkjhBBCCCGk5tBgSghujxJFHwghhBBCCKk9NJgSgjeHiRYTIYQQQgghtYYGU1Kgh4kQQgghhJDEQYMpIXhkxelhIoQQQgghpObQYEoINI8IIYQQQghJHr3OYOro6MAuu+wCy7Lwwgsv1Lo6sSF6lBiORwghhBBCSDLodQbTueeei1GjRtW6GrEjRuAxHI8QQgghhJBk0KsMpt/+9rf4/e9/j2uuuabWVYkdS/ObEEIIIYQQUjsyta6AKe+88w5OOukk3H333WhsbDTap6OjAx0dHcW/N23aVKnqlY3oVHILQBBCCCGEEEJqQ6/wMNm2jWXLluGUU07BnDlzjPdbuXIlmpubi/+1t7dXsJblYil/EkIIIYQQQmpHTQ2m888/H5Zl+f63evVqXHfdddi8eTMuuOCCUOVfcMEF2LhxY/G/N998s0JnUj4pS/2bEEIIIYQQUjtqGpJ31llnYdmyZb7bTJw4EQ8++CAef/xx5HI5ad2cOXOwZMkS/OhHP1Lum8vlPPskFVHowaKLiRBCCCGEkERQU4OppaUFLS0tgdt997vfxde//vXi32+99RYWLVqEn/3sZ5g7d24lq1g1JNEH2kuEEEIIIYQkgl4h+jB27Fjp74EDBwIAJk2ahDFjxtSiSrFD0QdCCCGEEEKSR68QfegPiGF4NJcIIYQQQghJBr3Cw+Rm/PjxsG271tWIFYsTMRFCCCGEEJI46GFKIAzJI4QQQgghJBnQYEoIopFEe4kQQgghhJBkQIMpIVD0gRBCCCGEkORBgykhiDYSzSVCCCGEEEKSAQ2mhCCp5NFiIoQQQgghJBHQYEoIkoeJFhMhhBBCCCGJgAZTQqCqOCGEEEIIIcmDBlNCkD1MtasHIYQQQgghpAQNpoQghuFRJY8QQgghhJBkQIMpITAkjxBCCCGEkORBgykhWNLEtTSZCCGEEEIISQI0mBKC5GGivUQIIYQQQkgioMGUECj6QAghhBBCSPKgwZQQxIlrKfpACCGEEEJIMqDBlBAkD1PtqkEIIYQQQggRoMGUEESDiR4mQgghhBBCkgENpoRg0cVECCGEEEJI4qDBlBA4DxMhhBBCCCHJgwZTQmBIHiGEEEIIIcmDBlNCSEkT19awIoQQQgghhJAiNJgSQl26dCvydg0rQgghhBBCCClCgykhZDOlW9HVna9hTQghhBBCCCEONJgSQlbwMHV208VECCGEEEJIEqDBlBDq0qXEpU56mAghhBBCCEkENJgSgjgPUxeTmAghhBBCCEkENJgSSGcXPUyEEEIIIYQkARpMCaQzT4OJEEIIIYSQJECDKYF0UfSBEEIIIYSQRECDKYEwh4kQQgghhJBkQIOJEEIIIYQQQjTQYCKEEEIIIYQQDTSYCCGEEEIIIUQDDSZCCCGEEEII0UCDiRBCCCGEEEI00GAihBBCCCGEEA00mAghhBBCCCFEAw2mBGFZta4BIYQQQgghRIQGU4KoS/F2EEIIIYQQkiTYQ08QdWm6mAghhBBCCEkSNJgSRCbN20EIIYQQQkiSYA89QdTRYCKEEEIIISRRsIeeILIMySOEEEIIISRR9CqD6Te/+Q3mzp2LhoYGDBkyBIsXL651lWKFIXmEEEIIIYQki0ytK2DKL37xC5x00km44oorcMABB6CrqwurVq2qdbViJUMPEyGEEEIIIYmiVxhMXV1dWL58Oa6++mqceOKJxeXTp0+vYa3ih7LihBBCCCGEJIte0UN/7rnnsG7dOqRSKey6664YOXIkDj300EAPU0dHBzZt2iT9l2QmtgyodRUIIYQQQgghAr3CYHr11VcBAJdddhm+8pWv4J577sGQIUOwYMECbNiwQbvfypUr0dzcXPyvvb29WlWOxFc/NQP/NnMkfnrS3FpXhRBCCCGEEIIaG0znn38+LMvy/W/16tXI5/MAgIsuughHHXUUZs+ejVtuuQWWZeHOO+/Uln/BBRdg48aNxf/efPPNap1aJFoG5fD/Pr8b9po0vNZVIYQQQgghhKDGOUxnnXUWli1b5rvNxIkT8fbbbwOQc5ZyuRwmTpyIN954Q7tvLpdDLpeLpa6EEEIIIYSQ/kdNDaaWlha0tLQEbjd79mzkcjmsWbMGe++9NwCgs7MTa9euxbhx4ypdTUIIIYQQQkg/pVeo5DU1NeGUU07BpZdeivb2dowbNw5XX301AODoo4+uce0IIYQQQgghfZVeYTABwNVXX41MJoPjjjsOn3zyCebOnYsHH3wQQ4YMqXXVCCGEEEIIIX0Uy7Ztu9aVqBabNm1Cc3MzNm7ciKamplpXhxBCCCGEEFIjTG2DXiErTgghhBBCCCG1gAYTIYQQQgghhGigwUQIIYQQQgghGmgwEUIIIYQQQogGGkyEEEIIIYQQooEGEyGEEEIIIYRooMFECCGEEEIIIRpoMBFCCCGEEEKIBhpMhBBCCCGEEKKBBhMhhBBCCCGEaKDBRAghhBBCCCEaaDARQgghhBBCiAYaTIQQQgghhBCiIVPrClQT27YBAJs2bapxTQghhBBCCCG1xLEJHBtBR78ymDZv3gwAaG9vr3FNCCGEEEIIIUlg8+bNaG5u1q637CCTqg+Rz+fx1ltvYdCgQbAsq6Z12bRpE9rb2/Hmm2+iqamppnUhvQO2GRIWthkSFrYZEha2GRKWJLUZ27axefNmjBo1CqmUPlOpX3mYUqkUxowZU+tqSDQ1NdW8sZDeBdsMCQvbDAkL2wwJC9sMCUtS2oyfZ8mBog+EEEIIIYQQooEGEyGEEEIIIYRooMFUI3K5HC699FLkcrlaV4X0EthmSFjYZkhY2GZIWNhmSFh6Y5vpV6IPhBBCCCGEEBIGepgIIYQQQgghRAMNJkIIIYQQQgjRQIOJEEIIIYQQQjTQYCKEEEIIIYQQDTSYasT3vvc9jB8/HvX19Zg7dy6eeuqpWleJ1ICVK1di9913x6BBg9Da2orFixdjzZo10jbbtm3DaaedhmHDhmHgwIE46qij8M4770jbvPHGGzj88MPR2NiI1tZWnHPOOejq6qrmqZAaceWVV8KyLJxxxhnFZWwzxM26detw7LHHYtiwYWhoaMDOO++MZ555prjetm1ccsklGDlyJBoaGrBw4UL84x//kMrYsGEDlixZgqamJgwePBgnnngiPv7442qfCqkC3d3duPjiizFhwgQ0NDRg0qRJ+NrXvgZRJ4xtpn/z6KOP4ogjjsCoUaNgWRbuvvtuaX1c7eMvf/kL9tlnH9TX16O9vR1XXXVVpU9NjU2qzh133GFns1n75ptvtv/2t7/ZJ510kj148GD7nXfeqXXVSJVZtGiRfcstt9irVq2yX3jhBfuwww6zx44da3/88cfFbU455RS7vb3dfuCBB+xnnnnG3nPPPe299tqruL6rq8ueMWOGvXDhQvv555+37733Xnv48OH2BRdcUItTIlXkqaeessePH2/PnDnTXr58eXE52wwR2bBhgz1u3Dh72bJl9pNPPmm/+uqr9u9+9zv7lVdeKW5z5ZVX2s3Nzfbdd99tv/jii/aRRx5pT5gwwf7kk0+K2xxyyCH2rFmz7CeeeML+4x//aE+ePNk+5phjanFKpMJ84xvfsIcNG2bfc8899muvvWbfeeed9sCBA+3vfOc7xW3YZvo39957r33RRRfZv/zlL20A9l133SWtj6N9bNy40W5ra7OXLFlir1q1yr799tvthoYG+8Ybb6zWaRahwVQD9thjD/u0004r/t3d3W2PGjXKXrlyZQ1rRZLAu+++awOwH3nkEdu2bfujjz6y6+rq7DvvvLO4zcsvv2wDsB9//HHbtgsvrVQqZa9fv764zfXXX283NTXZHR0d1T0BUjU2b95sT5kyxb7//vvt/fbbr2gwsc0QN+edd5699957a9fn83l7xIgR9tVXX11c9tFHH9m5XM6+/fbbbdu27ZdeeskGYD/99NPFbX7729/almXZ69atq1zlSU04/PDD7RNOOEFa9pnPfMZesmSJbdtsM0TGbTDF1T6+//3v20OGDJG+S+edd549derUCp+RF4bkVZnt27fj2WefxcKFC4vLUqkUFi5ciMcff7yGNSNJYOPGjQCAoUOHAgCeffZZdHZ2Su1l2rRpGDt2bLG9PP7449h5553R1tZW3GbRokXYtGkT/va3v1Wx9qSanHbaaTj88MOltgGwzRAvv/rVrzBnzhwcffTRaG1txa677oof/OAHxfWvvfYa1q9fL7WZ5uZmzJ07V2ozgwcPxpw5c4rbLFy4EKlUCk8++WT1ToZUhb322gsPPPAA/v73vwMAXnzxRTz22GM49NBDAbDNEH/iah+PP/449t13X2Sz2eI2ixYtwpo1a/Dhhx9W6WwKZKp6NIL3338f3d3dUkcFANra2rB69eoa1YokgXw+jzPOOAPz58/HjBkzAADr169HNpvF4MGDpW3b2tqwfv364jaq9uSsI32PO+64A8899xyefvppzzq2GeLm1VdfxfXXX48zzzwTF154IZ5++ml8+ctfRjabxdKlS4v3XNUmxDbT2toqrc9kMhg6dCjbTB/k/PPPx6ZNmzBt2jSk02l0d3fjG9/4BpYsWQIAbDPEl7jax/r16zFhwgRPGc66IUOGVKT+KmgwEZIQTjvtNKxatQqPPfZYratCEsybb76J5cuX4/7770d9fX2tq0N6Afl8HnPmzMEVV1wBANh1112xatUq3HDDDVi6dGmNa0eSyM9//nPcdttt+OlPf4qddtoJL7zwAs444wyMGjWKbYb0SxiSV2WGDx+OdDrtUax65513MGLEiBrVitSa008/Hffccw8eeughjBkzprh8xIgR2L59Oz766CNpe7G9jBgxQtmenHWkb/Hss8/i3XffxW677YZMJoNMJoNHHnkE3/3ud5HJZNDW1sY2QyRGjhyJ6dOnS8t23HFHvPHGGwBK99zvuzRixAi8++670vquri5s2LCBbaYPcs455+D888/H5z73Oey888447rjjsGLFCqxcuRIA2wzxJ672kaRvFQ2mKpPNZjF79mw88MADxWX5fB4PPPAA5s2bV8OakVpg2zZOP/103HXXXXjwwQc9rufZs2ejrq5Oai9r1qzBG2+8UWwv8+bNw1//+lfpxXP//fejqanJ00kivZ8DDzwQf/3rX/HCCy8U/5szZw6WLFlS/M02Q0Tmz5/vma7g73//O8aNGwcAmDBhAkaMGCG1mU2bNuHJJ5+U2sxHH32EZ599trjNgw8+iHw+j7lz51bhLEg12bp1K1IpuYuYTqeRz+cBsM0Qf+JqH/PmzcOjjz6Kzs7O4jb3338/pk6dWtVwPACUFa8Fd9xxh53L5exbb73Vfumll+yTTz7ZHjx4sKRYRfoHp556qt3c3Gw//PDD9ttvv138b+vWrcVtTjnlFHvs2LH2gw8+aD/zzDP2vHnz7Hnz5hXXOxLRBx98sP3CCy/Y9913n93S0kKJ6H6EqJJn22wzROapp56yM5mM/Y1vfMP+xz/+Yd922212Y2Oj/ZOf/KS4zZVXXmkPHjzY/r//+z/7L3/5i/2pT31KKQG866672k8++aT92GOP2VOmTKFEdB9l6dKl9ujRo4uy4r/85S/t4cOH2+eee25xG7aZ/s3mzZvt559/3n7++edtAPa1115rP//88/brr79u23Y87eOjjz6y29ra7OOOO85etWqVfccdd9iNjY2UFe9PXHfddfbYsWPtbDZr77HHHvYTTzxR6yqRGgBA+d8tt9xS3OaTTz6xv/jFL9pDhgyxGxsb7U9/+tP222+/LZWzdu1a+9BDD7UbGhrs4cOH22eddZbd2dlZ5bMhtcJtMLHNEDe//vWv7RkzZti5XM6eNm2afdNNN0nr8/m8ffHFF9ttbW12LpezDzzwQHvNmjXSNh988IF9zDHH2AMHDrSbmprs448/3t68eXM1T4NUiU2bNtnLly+3x44da9fX19sTJ060L7roIknemW2mf/PQQw8p+y9Lly61bTu+9vHiiy/ae++9t53L5ezRo0fbV155ZbVOUcKybWHaZkIIIYQQQgghRZjDRAghhBBCCCEaaDARQgghhBBCiAYaTIQQQgghhBCigQYTIYQQQgghhGigwUQIIYQQQgghGmgwEUIIIYQQQogGGkyEEEIIIYQQooEGEyGEEEIIIYRooMFECCGkz7B27VpYloUXXnihYsdYtmwZFi9eXLHyCSGEJAsaTIQQQhLDsmXLYFmW579DDjnEaP/29na8/fbbmDFjRoVrSgghpL+QqXUFCCGEEJFDDjkEt9xyi7Qsl8sZ7ZtOpzFixIhKVIsQQkg/hR4mQgghiSKXy2HEiBHSf0OGDAEAWJaF66+/HoceeigaGhowceJE/O///m9xX3dI3ocffoglS5agpaUFDQ0NmDJlimSM/fWvf8UBBxyAhoYGDBs2DCeffDI+/vjj4vru7m6ceeaZGDx4MIYNG4Zzzz0Xtm1L9c3n81i5ciUmTJiAhoYGzJo1S6oTIYSQ3g0NJkIIIb2Kiy++GEcddRRefPFFLFmyBJ/73Ofw8ssva7d96aWX8Nvf/hYvv/wyrr/+egwfPhwAsGXLFixatAhDhgzB008/jTvvvBN/+MMfcPrppxf3/9a3voVbb70VN998Mx577DFs2LABd911l3SMlStX4n/+539www034G9/+xtWrFiBY489Fo888kjlLgIhhJCqYdnuoTJCCCGkRixbtgw/+clPUF9fLy2/8MILceGFF8KyLJxyyim4/vrri+v23HNP7Lbbbvj+97+PtWvXYsKECXj++eexyy674Mgjj8Tw4cNx8803e471gx/8AOeddx7efPNNDBgwAABw77334ogjjsBbb72FtrY2jBo1CitWrMA555wDAOjq6sKECRMwe/Zs3H333ejo6MDQoUPxhz/8AfPmzSuW/YUvfAFbt27FT3/600pcJkIIIVWEOUyEEEISxf777y8ZRAAwdOjQ4m/RMHH+1qninXrqqTjqqKPw3HPP4eCDD8bixYux1157AQBefvllzJo1q2gsAcD8+fORz+exZs0a1NfX4+2338bcuXOL6zOZDObMmVMMy3vllVewdetWHHTQQdJxt2/fjl133TX8yRNCCEkcNJgIIYQkigEDBmDy5MmxlHXooYfi9ddfx7333ov7778fBx54IE477TRcc801sZTv5Dv95je/wejRo6V1pkIVhBBCkg1zmAghhPQqnnjiCc/fO+64o3b7lpYWLF26FD/5yU/w7W9/GzfddBMAYMcdd8SLL76ILVu2FLf905/+hFQqhalTp6K5uRkjR47Ek08+WVzf1dWFZ599tvj39OnTkcvl8MYbb2Dy5MnSf+3t7XGdMiGEkBpCDxMhhJBE0dHRgfXr10vLMplMUazhzjvvxJw5c7D33nvjtttuw1NPPYX//u//VpZ1ySWXYPbs2dhpp53Q0dGBe+65p2hcLVmyBJdeeimWLl2Kyy67DO+99x6+9KUv4bjjjkNbWxsAYPny5bjyyisxZcoUTJs2Dddeey0++uijYvmDBg3C2WefjRUrViCfz2PvvffGxo0b8ac//QlNTU1YunRpBa4QIYSQakKDiRBCSKK47777MHLkSGnZ1KlTsXr1agDA5ZdfjjvuuANf/OIXMXLkSNx+++2YPn26sqxsNosLLrgAa9euRUNDA/bZZx/ccccdAIDGxkb87ne/w/Lly7H77rujsbERRx11FK699tri/meddRbefvttLF26FKlUCieccAI+/elPY+PGjcVtvva1r6GlpQUrV67Eq6++isGDB2O33XbDhRdeGPelIYQQUgOokkcIIaTXYFkW7rrrLixevLjWVSGEENJPYA4TIYQQQgghhGigwUQIIYQQQgghGpjDRAghpNfAKHJCCCHVhh4mQgghhBBCCNFAg4kQQgghhBBCNNBgIoQQQgghhBANNJgIIYQQQgghRAMNJkIIIYQQQgjRQIOJEEIIIYQQQjTQYCKEEEIIIYQQDTSYCCGEEEIIIUTD/w/PHCG5uTA8iAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000109 |\n", + "| n_updates | 2141 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8672 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8672 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.69e-05 |\n", + "| n_updates | 2142 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8676 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8676 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000256 |\n", + "| n_updates | 2143 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8680 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8680 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.71e-05 |\n", + "| n_updates | 2144 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8684 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8684 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000126 |\n", + "| n_updates | 2145 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8688 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8688 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000269 |\n", + "| n_updates | 2146 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8692 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8692 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000279 |\n", + "| n_updates | 2147 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8696 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8696 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000155 |\n", + "| n_updates | 2148 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8700 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8700 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000276 |\n", + "| n_updates | 2149 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8704 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8704 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.55e-05 |\n", + "| n_updates | 2150 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8708 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8708 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000429 |\n", + "| n_updates | 2151 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8712 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8712 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000118 |\n", + "| n_updates | 2152 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8716 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8716 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.2e-05 |\n", + "| n_updates | 2153 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8720 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8720 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.64e-05 |\n", + "| n_updates | 2154 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8724 |\n", + "| fps | 454 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8724 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000126 |\n", + "| n_updates | 2155 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8728 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8728 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000101 |\n", + "| n_updates | 2156 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8732 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8732 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000324 |\n", + "| n_updates | 2157 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8736 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8736 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.11e-05 |\n", + "| n_updates | 2158 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8740 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8740 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.0001 |\n", + "| n_updates | 2159 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8744 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8744 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000134 |\n", + "| n_updates | 2160 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8748 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8748 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000186 |\n", + "| n_updates | 2161 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8752 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8752 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.86e-05 |\n", + "| n_updates | 2162 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8756 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8756 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.43e-05 |\n", + "| n_updates | 2163 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8760 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8760 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.55e-05 |\n", + "| n_updates | 2164 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8764 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8764 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.89e-05 |\n", + "| n_updates | 2165 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8768 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8768 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00015 |\n", + "| n_updates | 2166 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8772 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8772 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00012 |\n", + "| n_updates | 2167 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8776 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8776 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000143 |\n", + "| n_updates | 2168 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8780 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8780 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.37e-05 |\n", + "| n_updates | 2169 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8784 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8784 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000381 |\n", + "| n_updates | 2170 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8788 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8788 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.3e-05 |\n", + "| n_updates | 2171 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8792 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8792 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.5e-05 |\n", + "| n_updates | 2172 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8796 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8796 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.44e-05 |\n", + "| n_updates | 2173 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8800 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8800 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.09e-05 |\n", + "| n_updates | 2174 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8804 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8804 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.77e-05 |\n", + "| n_updates | 2175 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8808 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8808 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000109 |\n", + "| n_updates | 2176 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8812 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8812 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.89e-05 |\n", + "| n_updates | 2177 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8816 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8816 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9e-05 |\n", + "| n_updates | 2178 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8820 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8820 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.98e-05 |\n", + "| n_updates | 2179 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8824 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8824 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.67e-05 |\n", + "| n_updates | 2180 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8828 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8828 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.98e-05 |\n", + "| n_updates | 2181 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8832 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8832 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.47e-05 |\n", + "| n_updates | 2182 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8836 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8836 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.34e-05 |\n", + "| n_updates | 2183 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8840 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8840 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00013 |\n", + "| n_updates | 2184 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8844 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8844 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00011 |\n", + "| n_updates | 2185 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8848 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8848 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 3.94e-05 |\n", + "| n_updates | 2186 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8852 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8852 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000242 |\n", + "| n_updates | 2187 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8856 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8856 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.16e-05 |\n", + "| n_updates | 2188 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8860 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8860 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000327 |\n", + "| n_updates | 2189 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8864 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8864 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.67e-05 |\n", + "| n_updates | 2190 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8868 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8868 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.57e-05 |\n", + "| n_updates | 2191 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8872 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8872 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000136 |\n", + "| n_updates | 2192 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8876 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8876 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000425 |\n", + "| n_updates | 2193 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8880 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8880 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000154 |\n", + "| n_updates | 2194 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8884 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8884 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000126 |\n", + "| n_updates | 2195 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8888 |\n", + "| fps | 455 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8888 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000124 |\n", + "| n_updates | 2196 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8892 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8892 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.65e-05 |\n", + "| n_updates | 2197 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8896 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8896 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000219 |\n", + "| n_updates | 2198 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8900 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8900 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000278 |\n", + "| n_updates | 2199 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8904 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8904 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000152 |\n", + "| n_updates | 2200 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8908 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8908 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.02e-05 |\n", + "| n_updates | 2201 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8912 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8912 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.79e-05 |\n", + "| n_updates | 2202 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8916 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8916 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.68e-05 |\n", + "| n_updates | 2203 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8920 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8920 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000274 |\n", + "| n_updates | 2204 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8924 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8924 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.95e-05 |\n", + "| n_updates | 2205 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8928 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8928 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.65e-05 |\n", + "| n_updates | 2206 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8932 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8932 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000212 |\n", + "| n_updates | 2207 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8936 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8936 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.95e-05 |\n", + "| n_updates | 2208 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8940 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8940 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.55e-05 |\n", + "| n_updates | 2209 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8944 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8944 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.37e-05 |\n", + "| n_updates | 2210 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8948 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8948 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.45e-05 |\n", + "| n_updates | 2211 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8952 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8952 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000103 |\n", + "| n_updates | 2212 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8956 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8956 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000281 |\n", + "| n_updates | 2213 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8960 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8960 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000109 |\n", + "| n_updates | 2214 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8964 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8964 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.69e-05 |\n", + "| n_updates | 2215 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8968 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8968 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000164 |\n", + "| n_updates | 2216 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8972 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8972 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000106 |\n", + "| n_updates | 2217 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8976 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8976 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.41e-05 |\n", + "| n_updates | 2218 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8980 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8980 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000424 |\n", + "| n_updates | 2219 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8984 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8984 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.24e-05 |\n", + "| n_updates | 2220 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8988 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8988 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.06e-05 |\n", + "| n_updates | 2221 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8992 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8992 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000233 |\n", + "| n_updates | 2222 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 8996 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 8996 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000337 |\n", + "| n_updates | 2223 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9000 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9000 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000127 |\n", + "| n_updates | 2224 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9004 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9004 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00027 |\n", + "| n_updates | 2225 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9008 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9008 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000189 |\n", + "| n_updates | 2226 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9012 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9012 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000134 |\n", + "| n_updates | 2227 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9016 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9016 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000117 |\n", + "| n_updates | 2228 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9020 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9020 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.81e-05 |\n", + "| n_updates | 2229 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9024 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9024 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000174 |\n", + "| n_updates | 2230 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9028 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9028 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.19e-05 |\n", + "| n_updates | 2231 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9032 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9032 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00012 |\n", + "| n_updates | 2232 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9036 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9036 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000114 |\n", + "| n_updates | 2233 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9040 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9040 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.47e-05 |\n", + "| n_updates | 2234 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9044 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9044 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000236 |\n", + "| n_updates | 2235 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9048 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9048 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000108 |\n", + "| n_updates | 2236 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9052 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9052 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000149 |\n", + "| n_updates | 2237 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9056 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9056 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.41e-05 |\n", + "| n_updates | 2238 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9060 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9060 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000296 |\n", + "| n_updates | 2239 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9064 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9064 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000268 |\n", + "| n_updates | 2240 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9068 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9068 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.53e-05 |\n", + "| n_updates | 2241 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9072 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9072 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000194 |\n", + "| n_updates | 2242 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9076 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9076 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000119 |\n", + "| n_updates | 2243 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9080 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9080 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000244 |\n", + "| n_updates | 2244 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9084 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9084 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000199 |\n", + "| n_updates | 2245 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9088 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9088 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000115 |\n", + "| n_updates | 2246 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9092 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9092 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000371 |\n", + "| n_updates | 2247 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9096 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9096 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000266 |\n", + "| n_updates | 2248 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9100 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9100 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.43e-05 |\n", + "| n_updates | 2249 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9104 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9104 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000175 |\n", + "| n_updates | 2250 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9108 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9108 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000157 |\n", + "| n_updates | 2251 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9112 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9112 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.77e-05 |\n", + "| n_updates | 2252 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9116 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9116 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000406 |\n", + "| n_updates | 2253 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9120 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9120 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.54e-05 |\n", + "| n_updates | 2254 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9124 |\n", + "| fps | 456 |\n", + "| time_elapsed | 19 |\n", + "| total_timesteps | 9124 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.67e-05 |\n", + "| n_updates | 2255 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9128 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9128 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.06e-05 |\n", + "| n_updates | 2256 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9132 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9132 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.19e-05 |\n", + "| n_updates | 2257 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9136 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9136 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.68e-05 |\n", + "| n_updates | 2258 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9140 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9140 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.44e-05 |\n", + "| n_updates | 2259 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9144 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9144 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.16e-05 |\n", + "| n_updates | 2260 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9148 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9148 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.99e-05 |\n", + "| n_updates | 2261 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9152 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9152 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000251 |\n", + "| n_updates | 2262 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9156 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9156 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.56e-05 |\n", + "| n_updates | 2263 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9160 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9160 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.41e-05 |\n", + "| n_updates | 2264 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9164 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9164 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.33e-05 |\n", + "| n_updates | 2265 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9168 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9168 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00012 |\n", + "| n_updates | 2266 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9172 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9172 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.21e-05 |\n", + "| n_updates | 2267 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9176 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9176 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.24e-05 |\n", + "| n_updates | 2268 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9180 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9180 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.9e-05 |\n", + "| n_updates | 2269 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9184 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9184 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000209 |\n", + "| n_updates | 2270 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9188 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9188 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000119 |\n", + "| n_updates | 2271 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9192 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9192 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000234 |\n", + "| n_updates | 2272 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9196 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9196 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000317 |\n", + "| n_updates | 2273 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9200 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9200 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.35e-05 |\n", + "| n_updates | 2274 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9204 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9204 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.7e-05 |\n", + "| n_updates | 2275 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9208 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9208 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.58e-05 |\n", + "| n_updates | 2276 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9212 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9212 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.73e-05 |\n", + "| n_updates | 2277 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9216 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9216 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00011 |\n", + "| n_updates | 2278 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9220 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9220 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000124 |\n", + "| n_updates | 2279 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9224 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9224 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.39e-05 |\n", + "| n_updates | 2280 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9228 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9228 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000218 |\n", + "| n_updates | 2281 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9232 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9232 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000238 |\n", + "| n_updates | 2282 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9236 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9236 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000154 |\n", + "| n_updates | 2283 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9240 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9240 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000102 |\n", + "| n_updates | 2284 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9244 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9244 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.88e-05 |\n", + "| n_updates | 2285 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9248 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9248 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.67e-05 |\n", + "| n_updates | 2286 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9252 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9252 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000258 |\n", + "| n_updates | 2287 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9256 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9256 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000109 |\n", + "| n_updates | 2288 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9260 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9260 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000181 |\n", + "| n_updates | 2289 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9264 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9264 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000149 |\n", + "| n_updates | 2290 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9268 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9268 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.03e-05 |\n", + "| n_updates | 2291 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9272 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9272 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.64e-05 |\n", + "| n_updates | 2292 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9276 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9276 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.87e-05 |\n", + "| n_updates | 2293 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9280 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9280 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.12e-05 |\n", + "| n_updates | 2294 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9284 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9284 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.1e-05 |\n", + "| n_updates | 2295 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9288 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9288 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000305 |\n", + "| n_updates | 2296 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9292 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9292 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000159 |\n", + "| n_updates | 2297 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9296 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9296 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.68e-05 |\n", + "| n_updates | 2298 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9300 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9300 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.49e-05 |\n", + "| n_updates | 2299 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9304 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9304 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000196 |\n", + "| n_updates | 2300 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9308 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9308 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000243 |\n", + "| n_updates | 2301 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9312 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9312 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.42e-05 |\n", + "| n_updates | 2302 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9316 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9316 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.87e-05 |\n", + "| n_updates | 2303 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9320 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9320 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.07e-05 |\n", + "| n_updates | 2304 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9324 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9324 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000105 |\n", + "| n_updates | 2305 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9328 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9328 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000304 |\n", + "| n_updates | 2306 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9332 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9332 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000102 |\n", + "| n_updates | 2307 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9336 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9336 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.72e-05 |\n", + "| n_updates | 2308 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9340 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9340 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000217 |\n", + "| n_updates | 2309 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9344 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9344 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000266 |\n", + "| n_updates | 2310 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9348 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9348 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.88e-05 |\n", + "| n_updates | 2311 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9352 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9352 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.75e-05 |\n", + "| n_updates | 2312 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9356 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9356 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000217 |\n", + "| n_updates | 2313 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9360 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9360 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.44e-05 |\n", + "| n_updates | 2314 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9364 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9364 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.09e-05 |\n", + "| n_updates | 2315 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9368 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9368 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.36e-05 |\n", + "| n_updates | 2316 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9372 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9372 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.95e-05 |\n", + "| n_updates | 2317 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9376 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9376 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.98e-05 |\n", + "| n_updates | 2318 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.88 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9380 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9380 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.66e-05 |\n", + "| n_updates | 2319 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9384 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9384 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.91e-05 |\n", + "| n_updates | 2320 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9388 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9388 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 3.64e-05 |\n", + "| n_updates | 2321 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9392 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9392 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 2.42e-05 |\n", + "| n_updates | 2322 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9396 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9396 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7e-05 |\n", + "| n_updates | 2323 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9400 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9400 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.99e-05 |\n", + "| n_updates | 2324 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9404 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9404 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000106 |\n", + "| n_updates | 2325 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9408 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9408 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.54e-05 |\n", + "| n_updates | 2326 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9412 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9412 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.04e-05 |\n", + "| n_updates | 2327 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9416 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9416 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000224 |\n", + "| n_updates | 2328 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9420 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9420 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.56e-05 |\n", + "| n_updates | 2329 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9424 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9424 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.21e-05 |\n", + "| n_updates | 2330 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9428 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9428 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.82e-05 |\n", + "| n_updates | 2331 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9432 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9432 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 3.99e-05 |\n", + "| n_updates | 2332 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9436 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9436 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.78e-05 |\n", + "| n_updates | 2333 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9440 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9440 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.16e-05 |\n", + "| n_updates | 2334 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9444 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9444 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000164 |\n", + "| n_updates | 2335 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9448 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9448 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.41e-05 |\n", + "| n_updates | 2336 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.9 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9452 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9452 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.25e-05 |\n", + "| n_updates | 2337 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9456 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9456 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.67e-05 |\n", + "| n_updates | 2338 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9460 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9460 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000165 |\n", + "| n_updates | 2339 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9464 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9464 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000131 |\n", + "| n_updates | 2340 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.92 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9468 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9468 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 3.3e-05 |\n", + "| n_updates | 2341 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9472 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9472 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.58e-05 |\n", + "| n_updates | 2342 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9476 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9476 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.94e-05 |\n", + "| n_updates | 2343 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9480 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9480 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.93e-05 |\n", + "| n_updates | 2344 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9484 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9484 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000167 |\n", + "| n_updates | 2345 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9488 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9488 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000172 |\n", + "| n_updates | 2346 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9492 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9492 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.41e-05 |\n", + "| n_updates | 2347 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9496 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9496 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.91e-05 |\n", + "| n_updates | 2348 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9500 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9500 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.53e-05 |\n", + "| n_updates | 2349 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9504 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9504 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.58e-05 |\n", + "| n_updates | 2350 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9508 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9508 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.62e-05 |\n", + "| n_updates | 2351 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9512 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9512 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00027 |\n", + "| n_updates | 2352 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9516 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9516 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.1e-05 |\n", + "| n_updates | 2353 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9520 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9520 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.47e-05 |\n", + "| n_updates | 2354 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9524 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9524 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.7e-05 |\n", + "| n_updates | 2355 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9528 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9528 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000109 |\n", + "| n_updates | 2356 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9532 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9532 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.39e-05 |\n", + "| n_updates | 2357 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9536 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9536 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.31e-05 |\n", + "| n_updates | 2358 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9540 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9540 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000164 |\n", + "| n_updates | 2359 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9544 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9544 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000124 |\n", + "| n_updates | 2360 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9548 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9548 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.46e-05 |\n", + "| n_updates | 2361 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9552 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9552 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.69e-05 |\n", + "| n_updates | 2362 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9556 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9556 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.69e-05 |\n", + "| n_updates | 2363 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9560 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9560 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000154 |\n", + "| n_updates | 2364 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9564 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9564 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.63e-05 |\n", + "| n_updates | 2365 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9568 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9568 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.77e-05 |\n", + "| n_updates | 2366 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9572 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9572 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.07e-05 |\n", + "| n_updates | 2367 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9576 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9576 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000144 |\n", + "| n_updates | 2368 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9580 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9580 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.4e-05 |\n", + "| n_updates | 2369 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9584 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9584 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 3.99e-05 |\n", + "| n_updates | 2370 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9588 |\n", + "| fps | 456 |\n", + "| time_elapsed | 20 |\n", + "| total_timesteps | 9588 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000158 |\n", + "| n_updates | 2371 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9592 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9592 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000295 |\n", + "| n_updates | 2372 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9596 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9596 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.9e-05 |\n", + "| n_updates | 2373 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9600 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9600 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000113 |\n", + "| n_updates | 2374 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9604 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9604 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.09e-05 |\n", + "| n_updates | 2375 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9608 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9608 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000163 |\n", + "| n_updates | 2376 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9612 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9612 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.01e-05 |\n", + "| n_updates | 2377 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9616 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9616 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 2.95e-05 |\n", + "| n_updates | 2378 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9620 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9620 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.09e-05 |\n", + "| n_updates | 2379 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9624 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9624 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.4e-05 |\n", + "| n_updates | 2380 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9628 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9628 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000178 |\n", + "| n_updates | 2381 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9632 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9632 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000265 |\n", + "| n_updates | 2382 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9636 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9636 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00016 |\n", + "| n_updates | 2383 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9640 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9640 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 3.11e-05 |\n", + "| n_updates | 2384 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9644 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9644 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000186 |\n", + "| n_updates | 2385 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9648 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9648 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000169 |\n", + "| n_updates | 2386 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9652 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9652 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000153 |\n", + "| n_updates | 2387 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9656 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9656 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000266 |\n", + "| n_updates | 2388 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9660 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9660 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000216 |\n", + "| n_updates | 2389 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9664 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9664 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.49e-05 |\n", + "| n_updates | 2390 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9668 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9668 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.4e-05 |\n", + "| n_updates | 2391 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9672 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9672 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.3e-05 |\n", + "| n_updates | 2392 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9676 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9676 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 2.78e-05 |\n", + "| n_updates | 2393 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9680 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9680 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000146 |\n", + "| n_updates | 2394 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9684 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9684 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.12e-05 |\n", + "| n_updates | 2395 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9688 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9688 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000183 |\n", + "| n_updates | 2396 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9692 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9692 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.38e-05 |\n", + "| n_updates | 2397 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9696 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9696 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00024 |\n", + "| n_updates | 2398 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9700 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9700 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.59e-05 |\n", + "| n_updates | 2399 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9704 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9704 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000167 |\n", + "| n_updates | 2400 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9708 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9708 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.27e-05 |\n", + "| n_updates | 2401 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9712 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9712 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.72e-05 |\n", + "| n_updates | 2402 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9716 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9716 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000321 |\n", + "| n_updates | 2403 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9720 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9720 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000112 |\n", + "| n_updates | 2404 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9724 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9724 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.37e-05 |\n", + "| n_updates | 2405 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9728 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9728 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.52e-05 |\n", + "| n_updates | 2406 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9732 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9732 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.92e-05 |\n", + "| n_updates | 2407 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9736 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9736 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000206 |\n", + "| n_updates | 2408 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9740 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9740 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.1e-05 |\n", + "| n_updates | 2409 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9744 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9744 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.17e-05 |\n", + "| n_updates | 2410 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9748 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9748 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.8e-05 |\n", + "| n_updates | 2411 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9752 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9752 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.67e-05 |\n", + "| n_updates | 2412 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9756 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9756 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000247 |\n", + "| n_updates | 2413 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9760 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9760 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.65e-05 |\n", + "| n_updates | 2414 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9764 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9764 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 3.99e-05 |\n", + "| n_updates | 2415 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9768 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9768 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.46e-05 |\n", + "| n_updates | 2416 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9772 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9772 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000112 |\n", + "| n_updates | 2417 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9776 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9776 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.48e-05 |\n", + "| n_updates | 2418 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9780 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9780 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.97e-05 |\n", + "| n_updates | 2419 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9784 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9784 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.49e-05 |\n", + "| n_updates | 2420 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9788 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9788 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000236 |\n", + "| n_updates | 2421 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9792 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9792 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000112 |\n", + "| n_updates | 2422 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 1 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9796 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9796 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000198 |\n", + "| n_updates | 2423 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9800 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9800 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000112 |\n", + "| n_updates | 2424 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9804 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9804 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000106 |\n", + "| n_updates | 2425 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9808 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9808 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.06e-05 |\n", + "| n_updates | 2426 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9812 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9812 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.8e-05 |\n", + "| n_updates | 2427 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9816 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9816 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.19e-05 |\n", + "| n_updates | 2428 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9820 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9820 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.15e-05 |\n", + "| n_updates | 2429 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9824 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9824 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.09e-05 |\n", + "| n_updates | 2430 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9828 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9828 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.08e-05 |\n", + "| n_updates | 2431 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9832 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9832 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.87e-05 |\n", + "| n_updates | 2432 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9836 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9836 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.34e-05 |\n", + "| n_updates | 2433 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9840 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9840 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000111 |\n", + "| n_updates | 2434 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9844 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9844 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000246 |\n", + "| n_updates | 2435 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9848 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9848 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.34e-05 |\n", + "| n_updates | 2436 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9852 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9852 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.55e-05 |\n", + "| n_updates | 2437 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9856 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9856 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.48e-05 |\n", + "| n_updates | 2438 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9860 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9860 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.74e-05 |\n", + "| n_updates | 2439 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9864 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9864 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.48e-05 |\n", + "| n_updates | 2440 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9868 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9868 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000108 |\n", + "| n_updates | 2441 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9872 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9872 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.83e-05 |\n", + "| n_updates | 2442 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9876 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9876 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.19e-05 |\n", + "| n_updates | 2443 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9880 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9880 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.0002 |\n", + "| n_updates | 2444 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9884 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9884 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000431 |\n", + "| n_updates | 2445 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9888 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9888 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000108 |\n", + "| n_updates | 2446 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9892 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9892 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.43e-05 |\n", + "| n_updates | 2447 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9896 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9896 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 8.96e-05 |\n", + "| n_updates | 2448 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9900 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9900 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000123 |\n", + "| n_updates | 2449 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9904 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9904 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.76e-05 |\n", + "| n_updates | 2450 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9908 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9908 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000258 |\n", + "| n_updates | 2451 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9912 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9912 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.3e-05 |\n", + "| n_updates | 2452 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.98 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9916 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9916 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.33e-05 |\n", + "| n_updates | 2453 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9920 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9920 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.19e-05 |\n", + "| n_updates | 2454 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9924 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9924 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.07e-05 |\n", + "| n_updates | 2455 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9928 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9928 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 7.65e-05 |\n", + "| n_updates | 2456 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9932 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9932 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.86e-05 |\n", + "| n_updates | 2457 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9936 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9936 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.00016 |\n", + "| n_updates | 2458 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9940 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9940 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.57e-05 |\n", + "| n_updates | 2459 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.96 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9944 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9944 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4e-05 |\n", + "| n_updates | 2460 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9948 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9948 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000255 |\n", + "| n_updates | 2461 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9952 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9952 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 4.48e-05 |\n", + "| n_updates | 2462 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9956 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9956 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.82e-05 |\n", + "| n_updates | 2463 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9960 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9960 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000147 |\n", + "| n_updates | 2464 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9964 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9964 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000134 |\n", + "| n_updates | 2465 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9968 |\n", + "| fps | 456 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9968 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 9.32e-05 |\n", + "| n_updates | 2466 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9972 |\n", + "| fps | 455 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9972 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.1e-05 |\n", + "| n_updates | 2467 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9976 |\n", + "| fps | 455 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9976 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6e-05 |\n", + "| n_updates | 2468 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9980 |\n", + "| fps | 455 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9980 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.83e-05 |\n", + "| n_updates | 2469 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9984 |\n", + "| fps | 455 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9984 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 2.85e-05 |\n", + "| n_updates | 2470 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9988 |\n", + "| fps | 455 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9988 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000151 |\n", + "| n_updates | 2471 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9992 |\n", + "| fps | 455 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9992 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 6.74e-05 |\n", + "| n_updates | 2472 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 9996 |\n", + "| fps | 455 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 9996 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 0.000132 |\n", + "| n_updates | 2473 |\n", + "----------------------------------\n", + "----------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 1 |\n", + "| ep_rew_mean | 0.94 |\n", + "| exploration_rate | 0.05 |\n", + "| time/ | |\n", + "| episodes | 10000 |\n", + "| fps | 455 |\n", + "| time_elapsed | 21 |\n", + "| total_timesteps | 10000 |\n", + "| train/ | |\n", + "| learning_rate | 0.0001 |\n", + "| loss | 5.62e-05 |\n", + "| n_updates | 2474 |\n", + "----------------------------------\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 1000x600 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAIjCAYAAABh3KjvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhRxJREFUeJzt3Xl8E3X+x/F32tL0gLZAaUuh3Mh9o1gBdaVrUVZl11VxQY4fghcrggfiKiqoeLKurivqCl4o3niDLIgngnKpiCg3AuVuCwUKbef3BzY2zdFJmkyS9vX00Ydk5jvf7+f7ne9M8kkmE5thGIYAAAAAAJaJCnUAAAAAAFDbkIgBAAAAgMVIxAAAAADAYiRiAAAAAGAxEjEAAAAAsBiJGAAAAABYjEQMAAAAACxGIgYAAAAAFiMRAwAAAACLkYgBiCgjR45UixYt/Nr2rrvuks1mC2xAcFiyZIlsNpuWLFkS8Lqt3Hdnn322zj77bMfj8n698cYblrRfnTkeDMHar8GcLzXBgw8+qPbt26usrCzUoVRpyJAhuvTSS0MdBhBxSMQABITNZjP1V1tfdI0cOdJpHOx2u0455RRNmTJFx44dC3V4lnruueecxiIuLk6ZmZnKzc3VY489pkOHDgWknZ07d+quu+7S6tWrA1JfIIVzbLWBP3Ow/M2A8r86deqoRYsWuv7665Wfn+9SvkWLFvrTn/7kV3yFhYV64IEHNGnSJEVF/f5SrWL7MTExatCggXr16qXx48frxx9/9Fjf/v37dfPNN6tdu3aKi4tTgwYNlJubqw8++MCl7JYtWxxtvPnmmx7HYd++fY5lkyZN0ptvvqk1a9b41V+gtooJdQAAaoYXX3zR6fELL7yghQsXuizv0KFDtdp55pln/H6H+Pbbb9ett95arfarw26367///a8kqaCgQO+8846mTZumjRs3as6cOSGLK1SmTp2qli1b6sSJE8rLy9OSJUt0ww03aMaMGXr33XfVtWtXR1l/9t3OnTt19913q0WLFurevbvp7T7++GOf2vGHt9iqM8cjyZlnnqmjR48qNjY2ZDH4MgfLPfnkk6pbt66Kioq0aNEiPf7441q5cqW++OKLgMU1a9YslZSU6PLLL3dZ98c//lHDhw+XYRgqKCjQmjVr9Pzzz+s///mPHnjgAU2cONGp/Pr16zVgwADt3btXo0aNUu/evZWfn685c+boT3/6kyZNmqT777/fbRxTp07VX/7ylyo/je7Ro4d69+6tRx55RC+88IL/HQdqGwMAguC6664zzJxiioqKLIgm9EaMGGEkJiY6LSsrKzNOP/10w2azGXl5eSGKzLyysjLjyJEjHtd/8sknhiTjk08+8VrP7NmzDUnGN99847Ju0aJFRnx8vNG8eXOvbZnxzTffGJKM2bNnmyrvaS6W9+v111+vVjzViS2UzO5Xs44ePWqUlpYGpC5/+TMH77zzTkOSsXfvXqfyl112mSHJWLZsmdPy5s2bG4MGDfIrvq5duxrDhg1zWS7JuO6661yW79u3z8jOzjYkGR988IFj+fHjx43OnTsbCQkJxtdff+20TUlJiSP21157zbF88+bNhiSje/fuhiTjzTffdNrO0zg8/PDDRmJionHo0CG/+gzURlyaCMAyZ599tjp37qwVK1bozDPPVEJCgm677TZJ0jvvvKNBgwYpMzNTdrtdrVu31rRp01RaWupUR+Xvz5RfRvPwww/r6aefVuvWrWW323Xqqafqm2++cdrW3feMbDabxo0bp3nz5qlz586y2+3q1KmT5s+f7xL/kiVL1Lt3b8XFxal169Z66qmnqvXdJZvNpn79+skwDG3atMlp3UcffaT+/fsrMTFR9erV06BBg7R27VrH+nfffVc2m03fffedY9mbb74pm82mv/zlL051dejQQZdddpnj8ezZs3XOOecoLS1NdrtdHTt21JNPPukSX/mlVQsWLFDv3r0VHx+vp556SpL066+/avDgwUpMTFRaWpomTJig4uJiv8ahonPOOUd33HGHtm7dqpdeesmx3N04L1y4UP369VNKSorq1q2rdu3aOebTkiVLdOqpp0qSRo0a5bjU6rnnnpPkfS5W/o5YudLSUt12223KyMhQYmKiLrzwQm3fvt1lzEaOHOmybcU6q4rN3XfEioqKdOONNyorK0t2u13t2rXTww8/LMMwnMr5Mp/dMbtfzfSzvK82m01z587V7bffriZNmighIUGFhYVuvyNWvl9+/PFH/eEPf1BCQoKaNGmiBx980KWtrVu36sILL3SKdcGCBdW+BNrTHPSkf//+kqSNGzf63WZFmzdv1nfffaecnBzT2zRs2FBz585VTEyM7r33XsfyN998Uz/88INuvfVW9enTx2mb6OhoPfXUU0pJSdGdd97pUueQIUN0yimnaOrUqS7zzJ0//vGPKioq0sKFC03HDdR2XJoIwFL79+/XeeedpyFDhmjYsGFKT0+XdPI7G3Xr1tXEiRNVt25dLV68WFOmTFFhYaEeeuihKut9+eWXdejQIV111VWy2Wx68MEH9Ze//EWbNm1SnTp1vG77xRdf6K233tK1116revXq6bHHHtPFF1+sbdu2qWHDhpKkVatWaeDAgWrcuLHuvvtulZaWaurUqWrUqFG1xmPLli2SpPr16zuWvfjiixoxYoRyc3P1wAMP6MiRI3ryySfVr18/rVq1Si1atFC/fv1ks9n02WefOS6f+vzzzxUVFeV0idTevXv1008/ady4cY5lTz75pDp16qQLL7xQMTExeu+993TttdeqrKxM1113nVN869ev1+WXX66rrrpKY8aMUbt27XT06FENGDBA27Zt0/XXX6/MzEy9+OKLWrx4cbXGotwVV1yh2267TR9//LHGjBnjtszatWv1pz/9SV27dtXUqVNlt9u1YcMGffnll5JOJp9Tp07VlClTNHbsWMeL5TPOOMNRh6e56Mm9994rm82mSZMmac+ePXr00UeVk5Oj1atXKz4+3nT/zMRWkWEYuvDCC/XJJ59o9OjR6t69uxYsWKCbb75ZO3bs0D//+U+n8mbmszvB3K/Tpk1TbGysbrrpJhUXF3u9HPHgwYMaOHCg/vKXv+jSSy/VG2+8oUmTJqlLly4677zzJJ1MTM855xzt2rVL48ePV0ZGhl5++WV98skn1Y5VMjcHy7k7hqvjq6++kiT17NnTp+2aNWums846S5988okKCwuVlJSk9957T5I0fPhwt9skJyfroosu0vPPP6+NGzeqdevWjnXR0dG6/fbbNXz4cL399tsub/BU1rFjR8XHx+vLL7/Un//8Z59iB2qt0H4gB6Cmcndp4llnnWVIMmbOnOlS3t1laFdddZWRkJBgHDt2zLFsxIgRRvPmzR2Pyy+jadiwoXHgwAHH8nfeeceQZLz33nuOZeWX1FQkyYiNjTU2bNjgWLZmzRpDkvH44487ll1wwQVGQkKCsWPHDseyX375xYiJiTF1CWb5pYl79+419u7da2zYsMF4+OGHDZvNZnTu3NkoKyszDMMwDh06ZKSkpBhjxoxx2j4vL89ITk52Wt6pUyfj0ksvdTzu2bOncckllxiSjHXr1hmGYRhvvfWWIclYs2aNo5y7sc7NzTVatWrltKx58+aGJGP+/PlOyx999FGXy5mKioqMNm3aVPvSxHLJyclGjx49HI8r77t//vOfbi+Pqsjb5X/e5uJZZ51lnHXWWY7H5ZfmNWnSxCgsLHQsf+211wxJxr/+9S/HsubNmxsjRoyosk5vsVWe4/PmzTMkGffcc49Tub/+9a+GzWZzmrtm57M7vuxXs/0sH7tWrVq5zDt3lzyW75cXXnjBsay4uNjIyMgwLr74YseyRx55xJBkzJs3z7Hs6NGjRvv27YM+B9evX2/s3bvX2LJlizFr1iwjPj7eaNSokculrf5emnj77bcbktxe4icPlyaWGz9+vNPx3r17dyM5OdlrezNmzDAkGe+++65hGL+fUx966CGjpKTEaNu2rdGtWzfHOcrTpYmGYRinnHKKcd5555ntKlDrcWkiAEvZ7XaNGjXKZXnFTxQOHTqkffv2qX///jpy5Ih++umnKuu97LLLnN6RLv+UofIlf+7k5OQ4vRPctWtXJSUlObYtLS3V//73Pw0ePFiZmZmOcm3atHG8Q29GUVGRGjVqpEaNGqlNmza66aab1LdvX73zzjuOy+4WLlyo/Px8XX755dq3b5/jLzo6Wn369HF6x79///76/PPPJZ0cszVr1mjs2LFKTU11LP/888+VkpKizp07O7arONYFBQXat2+fzjrrLG3atEkFBQVOMbds2VK5ublOyz788EM1btxYf/3rXx3LEhISNHbsWNNjUZW6det6vXtiSkqKpJOXtPp7YwtPc9GT4cOHq169eo7Hf/3rX9W4cWN9+OGHfrVv1ocffqjo6Ghdf/31TstvvPFGGYahjz76yGl5VfPZWzvB2q8jRoww/alh3bp1NWzYMMfj2NhYnXbaaU7xz58/X02aNNGFF17oWBYXF1flp1e+8DQH27Vrp0aNGqlFixb6v//7P7Vp00YfffSREhISAtLu/v37FRMTo7p16/q8bfk25XEfOnTIac66U77eXV/LPxVbs2aN5s2bV2X79evXd7qbIgDvSMQAWKpJkyZuL0tau3at/vznPys5OVlJSUlq1KiR48VY5eTAnWbNmjk9Lk/KDh486PO25duXb7tnzx4dPXpUbdq0cSnnbpkncXFxWrhwoRYuXKjZs2erQ4cO2rNnj9ML1F9++UXSye+plCdt5X8ff/yx9uzZ4yjbv39/7dq1Sxs2bNBXX30lm82m7OxspwTt888/V9++fZ1ugf3ll18qJydHiYmJSklJUaNGjRzfj3KXiFW2detWtWnTxuU7W+3atTM9FlU5fPiw1xeQl112mfr27asrr7xS6enpGjJkiF577TWfkjJPc9GTtm3bOj222Wxq06aN49K0YNm6dasyMzNdxqP8DqRbt251Wl7VfPbWTrD2q7t55EnTpk1dYqgc/9atW9W6dWuXcr4cj1XxNAfffPNNLVy4UC+//LJOP/10l2M4lA4fPizp9+SqXr16Vf4cRPn6tLQ0t+uHDh2qNm3amPqumGEY/FYj4AO+IwbAUu5esOTn5+uss85SUlKSpk6dqtatWysuLk4rV67UpEmTTL24jo6Odru8qhcO1d3WF9HR0U5fwM/NzVX79u111VVX6d1335UkR19ffPFFZWRkuNQRE/P7abtfv36SpM8++0ybNm1Sz549lZiYqP79++uxxx7T4cOHtWrVKqcv72/cuFEDBgxQ+/btNWPGDGVlZSk2NlYffvih/vnPf7qMdSheYP76668qKCjw+qI6Pj5en332mT755BN98MEHmj9/vl599VWdc845+vjjjz3u08p1BJqnF6GlpaWmYgoEK+azr/30ZaytOh698TYHzzzzTKWmpkqSLrjgAnXp0kVDhw7VihUrnN7w8FfDhg1VUlJi6tOsyn744QdFR0c7Et+OHTtq9erV2rZtm9sEXZLjhj+tWrVyu778U7GRI0fqnXfe8dr+wYMHXd6wAOAZn4gBCLklS5Zo//79eu655zR+/Hj96U9/Uk5OTsC+/F5daWlpiouL04YNG1zWuVtmVuPGjTVhwgS99957+vrrryXJcUlZWlqacnJyXP4q3pGuWbNmatasmT7//HN9/vnnjssxzzzzTG3ZskWvv/66SktLdeaZZzq2ee+991RcXKx3331XV111lc4//3zl5OT49EK5efPm2rhxo8sL4/Xr1/s7FE7Kf3uu8iWRlUVFRWnAgAGaMWOGfvzxR917771avHix4/LNQL8zX/5pZTnDMLRhwwanOxzWr1/f7Y/7Vv7UypfYmjdvrp07d7p8slF+yW7z5s1N11VVO2b3q9l+BounWKtzPFZkdg7WrVtXd955p1avXq3XXnstIG23b99e0sm7J/pi27Zt+vTTT5Wdne1I4C644AJJ8vjbXoWFhXrnnXfUs2dPj4mYJA0bNkxt2rTR3Xff7TEhLikp0fbt26v9W5FAbUIiBiDkyt8Br/gEf/z4cf3nP/8JVUhOyj/Jmjdvnnbu3OlYvmHDBpfv5/jq73//uxISEhw/qJqbm6ukpCTdd999OnHihEv5vXv3Oj3u37+/Fi9erOXLlzsSse7du6tevXq6//77FR8fr169ejn1RXIe64KCAs2ePdt0zOeff7527typN954w7HsyJEjevrpp03X4cnixYs1bdo0tWzZUkOHDvVY7sCBAy7Lyn8Yufx264mJiZLkNmHwxwsvvOCUDL3xxhvatWuX0/cEW7dura+//lrHjx93LHv//fddbnPvS2znn3++SktL9e9//9tp+T//+U/ZbDafvqdYVTtm96vZfgZLbm6uduzY4fgkWZKOHTumZ555ptp1m52D5YYOHaqmTZvqgQceqHbbkpSdnS1J+vbbb01vc+DAAV1++eUqLS3VP/7xD8fyiy++WJ06ddL999/vUl9ZWZmuueYaHTx40Gkbd8o/FVu9erXTmFf0448/6tixYx7v/gnAFZcmAgi5M844Q/Xr19eIESN0/fXXy2az6cUXX7T0UqSq3HXXXfr444/Vt29fXXPNNY4Xxp07d9bq1av9rrdhw4YaNWqU/vOf/2jdunXq0KGDnnzySV1xxRXq2bOnhgwZokaNGmnbtm364IMP1LdvX6cX5P3799ecOXMcv0kmnXzRdMYZZ2jBggU6++yznb4Hde655yo2NlYXXHCBrrrqKh0+fFjPPPOM0tLStGvXLlMxjxkzRv/+9781fPhwrVixQo0bN9aLL77o880KPvroI/30008qKSnR7t27tXjxYi1cuFDNmzfXu+++q7i4OI/bTp06VZ999pkGDRqk5s2ba8+ePfrPf/6jpk2bOsahdevWSklJ0cyZM1WvXj0lJiaqT58+Pn1fqaIGDRqoX79+GjVqlHbv3q1HH31Ubdq0cbpBxJVXXqk33nhDAwcO1KWXXqqNGzfqpZdecrp5hq+xXXDBBfrDH/6gf/zjH9qyZYu6deumjz/+WO+8845uuOEGl7r95ct+NdvPYLnqqqv073//W5dffrnGjx+vxo0ba86cOY45Y/YTx+rMwXJ16tTR+PHjdfPNN2v+/PkaOHCgY92GDRt0zz33uGzTo0cPDRo0yG19rVq1UufOnfW///1P//d//+ey/ueff9ZLL70kwzBUWFioNWvW6PXXX9fhw4c1Y8YMp/br1KmjN998U+ecc45j7vbu3Vv5+fl6+eWXtXLlSt12221V3ppeOplwTps2zeP5buHChUpISNAf//jHKusC8Bvrb9QIoDbwdPv6Tp06uS3/5ZdfGqeffroRHx9vZGZmGrfccouxYMECl1tRe7p9/UMPPeRSpyTjzjvvdDz2dPt6d7eDdnd77kWLFhk9evQwYmNjjdatWxv//e9/jRtvvNGIi4vzMAq/K799vTsbN240oqOjndr75JNPjNzcXCM5OdmIi4szWrdubYwcOdL49ttvnbZdu3atIcno0KGD0/J77rnHkGTccccdLu29++67RteuXY24uDijRYsWxgMPPGDMmjXLkGRs3rzZaQw83X5769atxoUXXmgkJCQYqampxvjx44358+f7dOvw8r/Y2FgjIyPD+OMf/2j861//crpFfLnK+27RokXGRRddZGRmZhqxsbFGZmamcfnllxs///yz03bvvPOO0bFjR8fPDJTfLt7bXPR0C/ZXXnnFmDx5spGWlmbEx8cbgwYNMrZu3eqy/SOPPGI0adLEsNvtRt++fY1vv/3WpU5vsVWe44Zx8mcNJkyYYGRmZhp16tQx2rZtazz00EOOW4qX82U+u+PLfjXTz/Kxe/31113a8nT7enf7xd2YbNq0yRg0aJDj9vE33nij8eabbxqSjK+//tprP6szB93dtr2goMBITk526nv5zz+4+xs9erTX+GbMmGHUrVvX5Zb/FeuIiooyUlJSjB49ehjjx4831q5d67G+vXv3GjfeeKPRpk0bIzY21lHHs88+61LW2zm14rhVHoc+ffoYw4YN89ovAM5shhFGbzkDQIQZPHiw1q5d6/L9IQDWe/TRRzVhwgT9+uuvatKkSajD8VtBQYFatWqlBx98UKNHjw54/d9//7369++vrKwsffHFF0pOTq5WfatXr1bPnj21cuVKxyXCAKpGIgYAJh09etTlVvOdOnXSiBEjAvLdFADmVT4ejx07ph49eqi0tFQ///xzCCMLjAceeECzZ8/Wjz/+GJC7MVb26aefKjc3V9nZ2VqwYIFPP+VQ2ZAhQ1RWVhawG5YAtQWJGACY1LhxY40cOVKtWrXS1q1b9eSTT6q4uFirVq3ils2Axc477zw1a9ZM3bt3V0FBgV566SWtXbtWc+bM0d/+9rdQhwcAVeJmHQBg0sCBA/XKK68oLy9Pdrtd2dnZuu+++0jCgBDIzc3Vf//7X82ZM0elpaXq2LGj5s6dq8suuyzUoQGAKXwiBgAAAAAW43fEAAAAAMBiJGIAAAAAYDG+IxYAZWVl2rlzp+rVq2f6RyQBAAAA1DyGYejQoUPKzMz0etdTErEA2Llzp7KyskIdBgAAAIAwsX37djVt2tTjehKxAKhXr56kk4OdlJQU4mgAAAAAhEphYaGysrIcOYInJGIBUH45YlJSEokYAAAAgCq/ssTNOgAAAADAYiRiAAAAAGAxEjEAAAAAsBiJGAAAAABYjEQMAAAAACxGIgYAAAAAFiMRAwAAAACLkYgBAAAAgMVIxAAAAADAYiRiAAAAAGAxEjEAAAAAsBiJGAAAAABYjEQMAAAAACxGIgYAAAAAFouoROyzzz7TBRdcoMzMTNlsNs2bN6/KbZYsWaKePXvKbrerTZs2eu6551zKPPHEE2rRooXi4uLUp08fLV++PPDBAwAAAMBvIioRKyoqUrdu3fTEE0+YKr9582YNGjRIf/jDH7R69WrdcMMNuvLKK7VgwQJHmVdffVUTJ07UnXfeqZUrV6pbt27Kzc3Vnj17gtUNAAAAALWczTAMI9RB+MNms+ntt9/W4MGDPZaZNGmSPvjgA/3www+OZUOGDFF+fr7mz58vSerTp49OPfVU/fvf/5YklZWVKSsrS3//+9916623moqlsLBQycnJKigoUFJSkv+dCoBPf96rEbNOfqJXzx6jQ8Ulstmk7FYN9dXG/UpJqKPM5Hj9uKtQ3Zomq/BYiU6UlmnPoWLFxUQpPjZauwuLJUkD2qcpr/CY6ifEypChLzfsd7TTv22q8gqO6XhpmbbuP6J6cTHq1jRFh4tLdOjYCaUnxWlH/lGdkl5Pew4Va832fMe2g7o21s95h5QcX0ddm6bo4JHj2lVwVC1T6+r0Vg302rfbFV8nRhv2HNLf+jTTi19vVbv0ejq1RQMVFZfo8w37dF7nDBUeLVGCPVqHjpUota5dqXVjtWzzAdVPqKOWqXV1vKRMa3cWqMww1C69njKS4zyO2878Y9q077Aa1Y1Toj1aSXF1lBQfo72Hj+u77fka0CFNknSg6IS27i9Sy9RE7S86rqb147Vy60HZbDZ1bZqshNhoSdLxUkPb9hepTVpdGYa0ad/JbaJsvu3PzfuOKCPZroIjJ7TnULFapCYqKS5Gvx48qryCY+reLEUxUTb9uOuQSkrL1LVpstP2G/cWqWn9eNljfn/P5USpoc9+3qt2GfUUHWVT4+Q4FZeU6deDR9W6UaLHWCr2yZ0jx0tPxtgwwRF3fJ1obdhzWM0aJio2+mTnDUP6Zc9htWqUqJJSQ1v3H1FMtE2tGyVq+4GjSkuyyx4T5RR74dESFR47oab143XoWIl2Fx6TzXZyG8OQ1vxaoHpxMZKktHp2/bz7kDKS49Uk5fd9fvREqdbuKFTjlHgdKS5RqWGorMxQWlKcTpSWqfBoiU5Jryubl320aV+RMpPjtf3AETVPPdmnE6WGtuwrUlSUTU3rxyv/yAlFR9mUWjdWq7blKyUhVrExUUqMjVZKQh1JJ+fR0ROlev3b7Rp2enOl1o2VYUgLf9ytRvXs6twkWZv3FalVo0TFRNlUcPSEDheXqqi4RM0bJujTn/fq9FYNlVdwTG3T6mrf4WKVlhkqPFai5Pg6iom2qWFirCQ5ti0fi18PHlVSfB0l/TZeP+8+rMPFJerZLMUxP7bsO7mfK49FxTlQXFKmxT/tUW6nDEXZpJIyQ5v2FqltWl2dKDO0dV+R2qafnCvbDhxRg0S76tpPHh8/7jokSUqKi3Eca5UVFZdq3+FiNW+Y4Fi2cW+RSkoNNWsYr/g60Y7lxSVl+mX3YSXaY9QyNcGlLjPyj5xQ0fFSpzlT7tCxEi3dtF9/7JAum03asOewshokaFfBMaXVszuO+4rK52+UzaZNe4skSXViTh5v5bFXnNflDONk/S1ST+778mMlxuTJY2f+McXHRqt+Qp2T+/q38TWMk/u6TVpdRVd6C9bb8b9l/xE1qmtXov33Ph4vdd6/pWUnYy4/flZuy9eOg0f1p66NZbOdjOlEaZmOl5Rp/e5DOrtdmr7auE8D2qcrOkqOc8SJkjLtKjgqSYqrE62i4lI1rR+vgqMnlFDh+Ckfp4r9KR/LenExOlxcqsbJcfp598l51jatnnbkn5yDh4+d0Ge/7FNup3TlFRSrbXpdfb1pv1qlJjo9RxQeK1Hh0RNqVM+u7QeOKCUhVmWGobR6dkeZ8nNKbEyUDheXKD0pTi0aJjqN79ETpdpVcEytUj2fWyVp+eaDapwcp6wGJ+fCgaITOl5S6vV5qzzOjXsOq0n9eK3PO6T2jZN04PBx2WxSy9RE1fntvHvwyAkdO3FyXCqqfD6oaOPeIh0uLlGzBgk6erxUmb8dG4eOlejgkePKSI7XR9/v0qCujRVls2nhj7vVv22q43jYkX9MMVE2fbv1oFqlJqpdRj3tPVSs6CibYmOiVHDkhLIaxGvTviIVHi1RlybJLnOz4r4oP05OlBr637rdGtAh3fG8YtaJUkPzVu1Qz+b1HfO98rFf8Xm3TkyUGiTE6pc9h9W6UV39sueQdhcWyx4TpW5Zydq2/6japtdVlM11Tkrejy3JdZud+cdc5vrh4lLtP1ys5Pg6Wrb5gM7tmO7xeaq4pOzk81PDRG3ZV6T0pDgVHjshm82muvZo7S86LsOQYqJsssdEqbikTGt+zdfZp6TpcHGJygxDZYah2OgoFR4r0f7DxerdooGOnSjVwSPHlZkS7zjPe3uuXPNrgRJjoz2+XvDmQNEJvbx8q64+q7XLea/8/FhqGGqZmqjtB444vb6QpLbp9dS6ke/tBprZ3KBGJ2JnnnmmevbsqUcffdSxbPbs2brhhhtUUFCg48ePKyEhQW+88YZTPSNGjFB+fr7eeecdt/UWFxeruLjY8biwsFBZWVkhT8QKjp5Qt7s/Dln7AAAAQKjcMrCdrj27TajDMJ2Iub4FUoPk5eUpPT3daVl6eroKCwt19OhRHTx4UKWlpW7L/PTTTx7rnT59uu6+++6gxFwdOw4eDXUIYa1r02TFunm77cCR4453rCvq2SxFK7flOx53a5qsNb8WeG2jd/P6kqRvtx70ut4MT3VkJsdpZ8Ext48bJMY63nmtuH3FdivX2zatrn7Zc7jKGD3VV1W8lbepqlxlFfdDWj279hwq9r5BBU3rxysjKc6nds30v2JZX/rTo1mKysoMl3nkrZ4ezVK0qsI8NKtr02TFRNkcY9ckJV5Fx0uUf+SEo82jJ0q1dmehxzgqj4W3ee1pXZ3fPjX0Vq5X8/qq/OZqebmYKJu6Z6W4bOdtTvtynElSqWE4xrh5wwQ1qmt3Wm92bvtS3pC04rdyafXsatYgweu2ZvpU8VyWWteufYdPHiuVz2Xe4vU0rt6We+tvi4YJ2rL/SJWxm9GjWYqif3sbvmKbvZrXd4xldXRukqS4mGiX+ivqlJnk+ETTzL6q6rxZuUyXJsmKirI5riJpn1FPde3uX6pVnEOe9G5eXyfKDEd9bdPqKjn+5KctG/ce1sEK54OK1u0qVNHxUqdlrRslqn5CrKn5nVd4TL/68ZqkchwV+1j+/GZmTD2puG1KQh21TE10HPvNGiRo2wH/5qqnc6cvz5sVj5XuWSmOT4M8Pfe44+vza3WYiaF+Qh2fP53y9zmoXOVPfcNdjU7EgmXy5MmaOHGi43H5J2IIb09d0UuNk+Ndln+1cZ/+9swyl+WvXpWttv/4yPH42ZGnqvc9//PaxhvXnCFJanHrB5JOvnBYu6NQx0vLnNabcce8H/Ti11tdlk+5oJOufmmF4/Ejl3bX5c98LUm668JOurBbpiRp2H+X6YsN+1zaLY+t3PS/dNFfZy6VJJ11SiM9/3+nuY2nfLvTWjbQa1dle1xfUcUkojyG3vcs1L7Dx922Ua5vm4aOS2Er7oc7/tRRf39llaPcBd0y9d6anR7rmXpRJ53TPt1jfJXF14n2uI9uffM7zf1mu9OyN645w2O9DRNjtb/IuZ8vje6jI8dLdeq9zvPIWz0vX3m6OkyZX2XslT0zvLeS4+uo/R0nt73zgo46eOS4Jr35vaPNzfuK9IeHl5zs33ntdfVZrR1xtE2r6zIW5eu6ZaU4XW5cMf4mKfHakX/yBVjXpsk6r3NjPTD/J0e5O9/5Qc8vdZ7Xr12VrehKl6CU1zfhj6fouj+00bVzVujD7/Oc2qxcVpJGZDfX3Rd1NjtMkqSi4hJ1uvPkd4fvvrCTzm6X5jYWSTq9VQN9vemA0/rK4zRq9nJ9sn6vx/beuOYMlZSWqU2FeX3Bb8ftH2d86nhjJLVurONYMXPuqHguu+ncU3TrWyf3deVzmaf9mtMhXf8d0dux/JGP1+vxxRtctqk4Dyru+/g60erdor4+/2Wfo+y0wZ11xbOeb4DlSxL10ug+SvwtKam4T167Klutb/vQVB3ePH55T7X87Y0sT8fjo5d1V9v0el7LuBuroX2a6d4/d3Fbfvis5frs55Pz5clhPRVfJ1q9fnuueeDiruqWleJ2u7IyQ62q6Pcb15yh/CPH1X3qQkknz/e9WzSQJL327Xbd8sZ3LjFL0nNfbtZd7/3otOzeP3fR6a0aVnkufeOaM7Ro3W6Nfv5br+UkKSE2WkcqJHyV4zAMQy0nn+zjbed30F97NXVq35fnVMl5n00+r73+1DXz92P/ok76/Od9mvXlZp/qLI+j3e0fqbjE+bm+vL2LumfqX0N6eI2n4rHy0pV9HAm4u/H21G8zz3OBkJJQx2MME15drbdX7ZAkTT6/gy7t7dvrY2/7t+L5sSJf50E4qdGJWEZGhnbv3u20bPfu3UpKSlJ8fLyio6MVHR3ttkxGRobHeu12u+x2u8f1AAAAAOBNRN010VfZ2dlatGiR07KFCxcqO/vku/mxsbHq1auXU5mysjItWrTIUQYAAAAAAi2iErHDhw9r9erVWr16taSTt6dfvXq1tm3bJunkJYPDhw93lL/66qu1adMm3XLLLfrpp5/0n//8R6+99pomTJjgKDNx4kQ988wzev7557Vu3Tpdc801Kioq0qhRoyztGwAAAIDaI6IuTfz222/1hz/8wfG4/HtaI0aM0HPPPaddu3Y5kjJJatmypT744ANNmDBB//rXv9S0aVP997//VW5urqPMZZddpr1792rKlCnKy8tT9+7dNX/+fJcbeAAAAABAoERUInb22WfL2932n3vuObfbrFq1yrVwBePGjdO4ceOqGx4AAAAAmBJRlyYCAAAAQE1AIgYAAAAAFiMRAwAAAACLkYgBAAAAgMVIxADP938JUPX+NeB5O3P1+dtuILm7t46X++34VMZqvsYUhl0IybhWnof+hhAuc8LU/K1O/T625WnjQAxXIMa8qjq83YCrtgjZGHhptroRme1SuO3+6jxvWjVm4S6Y87mGDJETEjEAAAAAsBiJGGoNm2w+lg9Em763W932fN7G5v7fgWwjUCrHV1UsPu/zAHbOXVWBrN/X9m1VNO5a3nzZYJbzdcyq6mewt/evzSDU6eHfgYzDlzkTCEGvP4gxmN2u8vwLdJ+rU18wht+XeALdfuXnh2BOL1/rDuXzrBmBfg6ozUjEAAAAAMBiJGIAAAAAYDESMQAAAACwGIkYAAAAAFiMRAwAAAAALEYiBgAAAAAWIxEDAAAAAIuRiAEA8BvDMEIdAgALGOJYR+iRiAEIO7wWBsTLREQs5i5gDokYar1gPmEY8v9dN0/JiNkkxZ9yZrbxpTfuylZnvCvHV1Vdvo69t/5H+runhuHaA2+f/ngfC5NtuqnH1yS7vLz5+Rzc/WSmdn/7ePLf/sdvePi3P3GcrMN7La7zyZ9jtHbwd7cGejo7zTUvo++u3WDsK1/6F+y54u585XMFvq/yqUy48BZrdc9DXtutge/SkogBQBDYbKGOALUZ0w8Awh+JGGoNTy+MPb1gsVXawJ8XNjZJNj9fEnmM1+b5sad/m23HzDa+9MZdWTPbO8XkYbmZunwde2/9930/upa3yeZzguZ3QmervG9de1BxjnubV26qNhuCqXq9tmWruoxzed8HrPI4eS3rY32ey7gfe3/id2zrIQazdboeX76Nhc3mro4q2jQVmfd4ApV0mhumwJ7PT66rMBcqPzZxbFTZtjzMNS99cXucmmvOp7JV9aHy2ARS5fOxu/OVjxX6s8ptmXB/I89beDYP/w5Iu+E+MH4gEQMAIAzVvJccAICKSMQAAAAAwGIkYgAAAABgMRIxAAAAALAYiRgAAAAAWIxEDAAAAAAsRiIGAAAAABYjEQMQdgwj1BEAocdhgEjF3AXMIRFDrRfsJwzDzxY8JSNmk5RwSGbchRAGYfnF9/0Yfj0NRUSV56G/8zIc5rNkbgyrE6tRjY0rbhmI8fLn3OWyv6tsA9XZ59Vq18voWxVSuBzX5aoVTzX7EmZD4bdg9iNUx0owkYgBAAAAgMVIxFBr2IJc3m0dNptsAanJZHt+tWVz8y8vpa3rjmvblSKsMhYfYw1s11xrs3LsXMbK5/Ket/DWD6d1Jjts81LOyuPnZHvWC3Yfzdbu8zmy0gbBHrtgHz9m9oO/MZjdx65jGuhO+1+ft+PU/zqDU9YfweifFXWHgtn+1LR+BwOJGAAANQyvf4AqhPExYvUbUAgdEjEAAAAAsBiJGAAAAABYjEQMAAAAACxGIgYAAAAAFiMRAwAAAACLkYgBAPCbmvdzoQDc4mBHGCARAwAAAACLkYgBCDsGb1UCMgyOA0Qm5i5gDokYar1gPl8YhuF3UuFpK7O1me+X4eZfgajXfeHqPEFXHssqq/KxKW/FI/11hSHXPnjbF97mrbexcFrnbv/7uFPKy4dNcm4iDF8jNXw8Bj3WY7j/t/k4PNdXVXvl27seo94rifTjyiz/nwcCPUAV5pq349jdsiDsLF+qDPZcqW7/vJ8zq647kpJXr88dhrlyfrUb0NrCA4kYAASBzRbqCAAAQDiLuETsiSeeUIsWLRQXF6c+ffpo+fLlHsueffbZstlsLn+DBg1ylBk5cqTL+oEDB1rRFVjNwwtjTy+YKy+3+fHK2mazyeap4aq2Nbm84uOKIZoP1+bmX15K+9IdN4XNjGPFMatYvvJYVlmVj0Pvrbivu9/s/gsWm63SOMr7nHZZ5yVSb2Nh8zQhTdTrtr7fyvt7HPnSxsl/V1nYRH2+lfGpfW91ejj+zc5dl3NLFdu5zhl3x6j3SgLxhkWg3vQwU4+/TXk/npzPcZ7mhrftqmjc7QOvx3F12vOhrC/7Lhhvbnl6rqluXS7rzDzvRdC7d95idT73BLZPkTNC5sWEOgBfvPrqq5o4caJmzpypPn366NFHH1Vubq7Wr1+vtLQ0l/JvvfWWjh8/7ni8f/9+devWTZdccolTuYEDB2r27NmOx3a7PXidAAAgyIKZuAI1QhgfIhGUk6GaIuoTsRkzZmjMmDEaNWqUOnbsqJkzZyohIUGzZs1yW75BgwbKyMhw/C1cuFAJCQkuiZjdbncqV79+fSu6AwAAAKCWiphE7Pjx41qxYoVycnIcy6KiopSTk6OlS5eaquPZZ5/VkCFDlJiY6LR8yZIlSktLU7t27XTNNddo//79XuspLi5WYWGh0x8AAIEUSZcqAQB8FzGJ2L59+1RaWqr09HSn5enp6crLy6ty++XLl+uHH37QlVde6bR84MCBeuGFF7Ro0SI98MAD+vTTT3XeeeeptLTUY13Tp09XcnKy4y8rK8u/TgEAAAColSLqO2LV8eyzz6pLly467bTTnJYPGTLE8e8uXbqoa9euat26tZYsWaIBAwa4rWvy5MmaOHGi43FhYSHJGAAAAADTIuYTsdTUVEVHR2v37t1Oy3fv3q2MjAyv2xYVFWnu3LkaPXp0le20atVKqamp2rBhg8cydrtdSUlJTn8AAAAAYFbEJGKxsbHq1auXFi1a5FhWVlamRYsWKTs72+u2r7/+uoqLizVs2LAq2/n111+1f/9+NW7cuNoxAwAAAIA7EZOISdLEiRP1zDPP6Pnnn9e6det0zTXXqKioSKNGjZIkDR8+XJMnT3bZ7tlnn9XgwYPVsGFDp+WHDx/WzTffrK+//lpbtmzRokWLdNFFF6lNmzbKzc21pE8AXBkyQh0CEHKGwXGAyMTcBcyJqO+IXXbZZdq7d6+mTJmivLw8de/eXfPnz3fcwGPbtm2KinLOLdevX68vvvhCH3/8sUt90dHR+u677/T8888rPz9fmZmZOvfcczVt2jR+SwwAAABA0ERUIiZJ48aN07hx49yuW7Jkicuydu3aeXxnJj4+XgsWLAhkeIhA4frGnaewzIYbFv1yE0SkvlMaoWE7CYc++PtpZ9h8SmoijOpEWq1tK2wciPHyZ75Ubreq4z0c5mSoheqc6K1ZdovvqnvMRepzY2XB7EbNGCFnEXVpIlAdNvn2mzyB+A0fq38FyJ/2KnbTTJ99HcdAqhxeVZH4Gmmwf7cpGNV7qrPyYl/b9lbeW1VO88m3Jn2OIxDlA719OLZpdl77PNZ+tuOvcPhZNX/7aHYzl3NcgPtcnfpCPf5BP04itO5QMNufmtbvYCARAwAAAACLkYgBAFDDhPKTayAScIQgHJCIAQAAAIDFSMQAAAAAwGIkYgAAAABgMRIxAAAAALAYiRgAAL+pIT/lA6AKHOoIByRiAMIOL4YBXigicjF3AXNIxAAAAADAYiRiqPWMIL53Z1Sjfk+fCpn9tMhsuxXrM0xU7kt/3JWszmhXDq+qunxty1v/fa7Lx/L+Mj0fDNd957W/Xur11qTTfHLThq+fdpaX96WfwWRm/ps5jpzLOzXgt4qx+XPeqe7xZRhG0I/RSOXvvAz0fK58fHou57o2GMeWL3UG/9j2/dh12t7Pc6YvZcKF17ljslzAG45QJGIAEARW/ViojV8lBQAgIpGIodbw9ILVZvIlsz+vd20+1O+yrad4bZUf29yuM92vituYeFXvS3/clTSztXM/3C83U5evI++t/77X5a4Om6kxrqoe5zo9bWertG9d953z3Km8zvc2K29n87Feb/WZ3c6fxLTyOHkta2ImmDqOPLVZjcS6Ymz+nHeqe3xVnnP+1OG9rPvSvh5THus3UY2/LXk9nioeh/JtPvratqdzq7eY/InFbFGf6gzCm05Vna/8rctlnZnt/W7Zel7njslyAW84QpGIAQAAAIDFSMQAAKhpauA7x0AghfMhwiXntQeJGAAAAABYjEQMAIAwxJviAFCzkYgBAAAAgMVIxAAAAADAYiRiAAAAAGAxEjEAYccwQh0BEHocBohUzF3AHBIxAAAAALAYiRhqPSPI7935W7+nT4XMfloU7H6Zi8Hcskjga9zh+KleKOaEUWkg/B2XcBlPM2NYuc8+NlCNTY2KD6rNnyoqd72qOsJkt4ZUteZLddr1ts6imMLluC5XnX5Xty9hNhR+C2o/asogVUAiBgAAAAAWIxFDrRGK3+Sx2SSbpS373pbNw789lg/hjxtVbtpWRTBVra+q/upw13Qwxs5TH13Hqop6AtDmyXpsFcr5UKnH+nwtX71GrT1ey9sMD772vfI8CHY/gn3uMXO+8DcG05sFu48h2tZjnT5UGuxjM6jzK1wO8gAxO1ahfL0QKUjEAAAAAMBiJGIAANQ0vBMNeOXrFRNWCsUn8wgNEjEAAAAAsBiJGAAAAABYjEQMAIDfhMPPPgAIvlD9bABQEYkYAAAAAFiMRAxA2OF9SiD8fuwWMIu5C5hDIgYAAAAAFiMRAwAAAACLkYgBAAAAgMVIxFBrVPfHG8P1tx8rxhWuMfqqYjcitU/ufpDTJt9/Z7eqH/b0tNZm862tSB3nQLPqh1TD+cdkw1WwR8xM/cGYHxXngu23/wJaf0BrM9km0xswhUQMAAAAACxGIgYAAAAAFiMRAwCghuHKMMC7cL48OIxDQ4CRiAEAAACAxUjEAAAAAMBiJGIAAIQhLk8CgJot4hKxJ554Qi1atFBcXJz69Omj5cuXeyz73HPPyWazOf3FxcU5lTEMQ1OmTFHjxo0VHx+vnJwc/fLLL8HuBgAvjFAHAIQBgwMBEYq5C5gTUYnYq6++qokTJ+rOO+/UypUr1a1bN+Xm5mrPnj0et0lKStKuXbscf1u3bnVa/+CDD+qxxx7TzJkztWzZMiUmJio3N1fHjh0LdncAAAAA1FIRlYjNmDFDY8aM0ahRo9SxY0fNnDlTCQkJmjVrlsdtbDabMjIyHH/p6emOdYZh6NFHH9Xtt9+uiy66SF27dtULL7ygnTt3at68eRb0CAAAAEBtFDGJ2PHjx7VixQrl5OQ4lkVFRSknJ0dLly71uN3hw4fVvHlzZWVl6aKLLtLatWsd6zZv3qy8vDynOpOTk9WnTx+vdRYXF6uwsNDpD5Er2JdQGH5faOd+O7P1hcOlIe5iCIe4/OFr3P7v9+AJxdhXbjOwR4P1gn++qMa2FTYORJj+9NVlm6rqiNQTQgAZIRqDcBj6cIihomodf6FsPIwEcz7XkCFyEjGJ2L59+1RaWur0iZYkpaenKy8vz+027dq106xZs/TOO+/opZdeUllZmc444wz9+uuvkuTYzpc6JWn69OlKTk52/GVlZVWnawAAAABqmYhJxPyRnZ2t4cOHq3v37jrrrLP01ltvqVGjRnrqqaeqVe/kyZNVUFDg+Nu+fXuAIkYwheIGZLbf/rOuPT+2qXBrNjN3aQvlndwqt11VKD6HGsC+udvvwfgBUU9VVm6/qnlYea23WL3VVHGzQPTW1yGr7hCHYn6Hy90RfR7rKhcEVrB/gDeY5z+zsbuc4wLc5eqMYTCG35c6g32cBPO52srXAdbwbz7DVcQkYqmpqYqOjtbu3budlu/evVsZGRmm6qhTp4569OihDRs2SJJjO1/rtNvtSkpKcvoDAAAAALMiJhGLjY1Vr169tGjRIseysrIyLVq0SNnZ2abqKC0t1ffff6/GjRtLklq2bKmMjAynOgsLC7Vs2TLTdQIAAACAr2JCHYAvJk6cqBEjRqh379467bTT9Oijj6qoqEijRo2SJA0fPlxNmjTR9OnTJUlTp07V6aefrjZt2ig/P18PPfSQtm7dqiuvvFLSyY/ob7jhBt1zzz1q27atWrZsqTvuuEOZmZkaPHhwqLoJAEC1cEUQ4F04HyPhHBsCK6ISscsuu0x79+7VlClTlJeXp+7du2v+/PmOm21s27ZNUVG/f8h38OBBjRkzRnl5eapfv7569eqlr776Sh07dnSUueWWW1RUVKSxY8cqPz9f/fr10/z5811++BkAUPOF213cAAQHhzrCQUQlYpI0btw4jRs3zu26JUuWOD3+5z//qX/+859e67PZbJo6daqmTp0aqBABAAAAwKuI+Y4YAAAAANQUJGIAwg/XjAAh+6FfoPqYu4AZJGIAAAAAYDESMQAAAACwGIkYar1gXkBh/PafX9t62Mzs1UpmW614+ZOZun25Wspd36tzuVXlTauqyeeWvGzg6370d7/7yvx8cI3I277wus5kPIabsr7u/vLypvsZ5GE3U72/fTz572ocHx7+7U8cJ+vwXovLWsN1G5/rqKH83a+Bns9O53svo++u3WAcWz49nwT92Daq1Yb3c2bVFVv1nBEY5p4fgjl/awoSMQAIAptFvwRj4wdnAACISCRiqDU8vWA1+zrWnxfWtt/+84fHeCsttzmts7ld7r2dCtuY2MiXF/7u+m4z1Yj78t76XkU15njZwNf96K6bNg/Lfa3HuU7PE9t5PriWdB5bm8d1bqr2vK7ivnNT1t/+m93On8TUKeYqxzvwMdg8zHdf2Tz82584TtbhvRaXtTbXbXyuI0Bl/RHMN0+8Hk+Vz9s+zEdf2658TvC8jbllXlo1V8qX55Mg7B7n85WtWm14P2dWXbFVb94Fhrnnh0Dvs+qcH8MViRgAAAAAWIxEDAAAAAAsRiIGAEANUxMv4QECKZyPEI7f2oNEDAAAAAAsRiIGAAAAABYjEQMQfmreT4UAQC3CSRwwg0QMAAAAACxGIgYAAAAAFiMRAwAAAACLkYih1gvXK9kND4F5Wu5SLnCh+M1wE4VhtgNhxl1fIk0oelC5TX93f7hMGzNhVCfW6hwfFbcMxHHmz5yvvE1VdYTJbg2pUJ0Tve2bcDnerBaqY1eqGc8xUnCP6Uh9/eANiRhqDVsofjXE4ib9ac7m5ZH78qH8fROb14cupX0MNdg9C8pPw3io06UtH8fKW3Fv/ai4KhC/hePrfKtui6GZ3eHxm0E+Hy++HY7VFuyfVjJTf/BjqHxGDmyD1astPOZpsARz39a0nwUz25/Qvl6IDCRiAAAAAGAxEjEAAAAAsBiJGAAAv6l530AAAIQrEjEAAGqYQHw/D0BocPTWHiRiAAAAAGAxEjEAYaem3MYXqA6OAkSqGniXcSAoSMQAAAAAwGIkYgAAAABgMRIxAAAAALAYiRhqPSOYF7Mb/n/fyVNYpmszWdDw8sh9efP9cdeH6o224fWhmfZ9qN2ntqrbtt/MtmPIJShvc99btd76VnGVYRhuyvo2ML/PN3PbBXvYzZwvfD/mDTf/8l3F2Pw5r7ls4uPx5WaKVXkc8F2iqo6nwA6Q8/Hpa7uB31nhtP+NajxfS/6fM30pEy68xmpU/Gfw5m9NQSIGAEFg2d3Duc8xAAARiUQMtYeHF6ymf2/Hnxe8Nsnm5ytlT2FVXlyxnNM2fnWr6o186Y+7PpjZ2nMbNq8PzbTvvV1/V5orbrPZfJ4PVZX2NlI2lwWV9naFxy7zylubXlY6TUGbzU1ZX/tvc/zLXHnfVdwnVY63iUnl+zFvvn2vtVTcn368E+CyiY/Hl5spVuUx6EuYwf5tNFPnpiDE4HQOd3lc/fY8PS14P47dnsHMt2n2+SfEbyQ5HfvVeL4+WZeXdSaqDfVY+MJrrAGevx6qrjFIxAAAAADAYiRiAAAAAGAxEjEAAAAAsBiJGAAANUxN/C4FEEjh/J2scI4NgUUiBgAAAAAWIxEDEHYC/dsjQETiMECEiqTfxAJCiUQMAAAAACxGIgYAQDjieyIAUKORiAEAAACAxUjEUOsZQb6Y3d/vO3kKy3RtYXCNvrs+hEFY/vEx8LDsZwi+uOHapL8xhMeImjlfVOc7jtXpZcXYAjJaflRSeXiqGi6+SxS6MfDWrlXf0w23/R+qY1cKv7HwWxD7UVOGqCISMQAAgBDh5kRA7RVxidgTTzyhFi1aKC4uTn369NHy5cs9ln3mmWfUv39/1a9fX/Xr11dOTo5L+ZEjR8pmszn9DRw4MNjdQAiE4nc5bJJsFn7Rw58+VtzGzPah/H2Tym1XNba+jr0tgJ2zapg8hVy5L1XGU7m8lw28jWvFdgMxBr7ukmrvwlCcJ8Lku2A+Hy+qPGfCpCP+MnP+87dqkxu6nOMCPKTVqS8Yu9eXOoM9v4JZe4QfGS7M9ifSTwlWiKhE7NVXX9XEiRN15513auXKlerWrZtyc3O1Z88et+WXLFmiyy+/XJ988omWLl2qrKwsnXvuudqxY4dTuYEDB2rXrl2Ov1deecWK7gAAwg0fTgC1Qo25FBARLaISsRkzZmjMmDEaNWqUOnbsqJkzZyohIUGzZs1yW37OnDm69tpr1b17d7Vv317//e9/VVZWpkWLFjmVs9vtysjIcPzVr1/fiu4AAAAAqKUiJhE7fvy4VqxYoZycHMeyqKgo5eTkaOnSpabqOHLkiE6cOKEGDRo4LV+yZInS0tLUrl07XXPNNdq/f7/XeoqLi1VYWOj0BwAAAABmRUwitm/fPpWWlio9Pd1peXp6uvLy8kzVMWnSJGVmZjolcwMHDtQLL7ygRYsW6YEHHtCnn36q8847T6WlpR7rmT59upKTkx1/WVlZ/nUKAIAg4KsZgHfh/P2liP++JUyLCXUAVrn//vs1d+5cLVmyRHFxcY7lQ4YMcfy7S5cu6tq1q1q3bq0lS5ZowIABbuuaPHmyJk6c6HhcWFhIMgYEENfuA+L7aohYTF3AnIj5RCw1NVXR0dHavXu30/Ldu3crIyPD67YPP/yw7r//fn388cfq2rWr17KtWrVSamqqNmzY4LGM3W5XUlKS0x8AAAAAmBUxiVhsbKx69erldKON8htvZGdne9zuwQcf1LRp0zR//nz17t27ynZ+/fVX7d+/X40bNw5I3AAAAABQWcQkYpI0ceJEPfPMM3r++ee1bt06XXPNNSoqKtKoUaMkScOHD9fkyZMd5R944AHdcccdmjVrllq0aKG8vDzl5eXp8OHDkqTDhw/r5ptv1tdff60tW7Zo0aJFuuiii9SmTRvl5uaGpI8AAAAAar6I+o7YZZddpr1792rKlCnKy8tT9+7dNX/+fMcNPLZt26aoqN9zyyeffFLHjx/XX//6V6d67rzzTt11112Kjo7Wd999p+eff175+fnKzMzUueeeq2nTpslut1vaNwAAAAC1R0QlYpI0btw4jRs3zu26JUuWOD3esmWL17ri4+O1YMGCAEUGAAAAAOZE1KWJQHVU92aw4Xs3WVuFf4VtkD4J37E2z+Pth33sW1W3Mfa0z23ybRxrwJD7zWmcavNA1HJmzp/BPjfZgnAWD8X5NFIOo5rwXIPIRiIGAAAAABYjEQMAAAAAi5GIAQAAAIDFSMQAAAAAwGIkYgDCjmGEOgIg9KpzGHATAoRSJJzCOUYQDkjEAAAAAMBiJGIAAAAAYDESMQAAAACwGIkYAAAAAFiMRAy1XrC/VGz42YKn7QyTd7Lwt91Achtq6MPyi69hm91PVgpFRJXnob/DEi7DaSaM6sRacVtf7yVQsdlAjJc/VVTepqo4wuE8FWqhmtvemrUqpnA5rssF6tgNxfbhIpjHdE0Zo4pIxAAAAEKkJr64BGAOiRhqDVsI7lVrs0k2n9/Xrk6D/mxiq/Dv8FY5vqp2qa+7PJBTxKr55qmZysurise1vLfC5laF4vbQoTjOqytsIvY1EF/mTAQwE7+/53PT2wV5TKvzfBSM3etL/wLdvksCHMT5G+nHRmU1rT+hRCIGAAAAABYjEQMAAAAAi5GIAQAAAIDFSMQAAAAAwGIkYgDCDjcRA6p3HPBleoRSJNwJkmME4YBEDAAAAAAsRiIGAAAAABYjEQMAAAAAi5GIAQAAAIDFSMQAAAAAwGIkYqg1qnuDpHC9wVLFOz+Fa4y+qin9cMfXO3X5OxY22WTzoTFbjR5172xO/66941Dbmdnzwb7Tns0mn45bU3WGYE5Hyh0JIyRM1GAxZgtOnDjRdKUzZszwKxgAAAAAqA1MJ2KrVq1yerxy5UqVlJSoXbt2kqSff/5Z0dHR6tWrV2AjBAAAAIAaxnQi9sknnzj+PWPGDNWrV0/PP/+86tevL0k6ePCgRo0apf79+wc+SgAAAACoQfz6jtgjjzyi6dOnO5IwSapfv77uuecePfLIIwELDgAAAABqIr8SscLCQu3du9dl+d69e3Xo0KFqBwWgdjNCHQAQBgyDIwGRiakLmONXIvbnP/9Zo0aN0ltvvaVff/1Vv/76q958802NHj1af/nLXwIdIwAAABAw3CEV4cD0d8Qqmjlzpm666Sb97W9/04kTJ05WFBOj0aNH66GHHgpogAAAAABQ0/iciJWWlurbb7/Vvffeq4ceekgbN26UJLVu3VqJiYkBDxAAAAAAahqfE7Ho6Gide+65WrdunVq2bKmuXbsGIy4AAAAAqLH8+o5Y586dtWnTpkDHAgAAAAC1gl+J2D333KObbrpJ77//vnbt2qXCwkKnPyCihOndnap716lwuGuVuxDCICy/1IQ72IWiC5Xb9DeGcBl9M/FXZ5yNCj212Xy8mUCFdgOxr/2a85X3d5Vt+N5ETWOEanZ7GfzasFvcjXso+11TxjyYx3TIjpUg8utmHeeff74k6cILL3R6ojAMQzabTaWlpYGJDgggX1/TBKRNi+/K5PMLNzmPi5nN/WkjUCq3XVUkvkZak+6hVXk3VTlWLuU9b+G1rorzKQAj6ut8i8R9GMpjqqLqHi/h0Qv/mdkP/vbRW9UVX7i6jmlgR7U6Uy3U8zTYzfs71qaeNyP+6HBmtj+hnjORwK9E7JNPPgl0HAAAAABQa/iViJ111lmBjgMAAAAAag2/ErFyR44c0bZt23T8+HGn5dxJEQAAAAA88ysR27t3r0aNGqWPPvrI7Xq+IwYAAAAAnvl118QbbrhB+fn5WrZsmeLj4zV//nw9//zzatu2rd59991AxwiglqkJdygEqovjAJGqJt7dDggGvz4RW7x4sd555x317t1bUVFRat68uf74xz8qKSlJ06dP16BBgwIdJwAAABAQNe1OhohMfn0iVlRUpLS0NElS/fr1tXfvXklSly5dtHLlysBF58YTTzyhFi1aKC4uTn369NHy5cu9ln/99dfVvn17xcXFqUuXLvrwww+d1huGoSlTpqhx48aKj49XTk6Ofvnll2B2AQAAAEAt51ci1q5dO61fv16S1K1bNz311FPasWOHZs6cqcaNGwc0wIpeffVVTZw4UXfeeadWrlypbt26KTc3V3v27HFb/quvvtLll1+u0aNHa9WqVRo8eLAGDx6sH374wVHmwQcf1GOPPaaZM2dq2bJlSkxMVG5uro4dOxa0fgAAAACo3fxKxMaPH69du3ZJku6880599NFHatasmR577DHdd999AQ2wohkzZmjMmDEaNWqUOnbsqJkzZyohIUGzZs1yW/5f//qXBg4cqJtvvlkdOnTQtGnT1LNnT/373/+WdPLTsEcffVS33367LrroInXt2lUvvPCCdu7cqXnz5gWtHwAAAABqN78SsWHDhmnkyJGSpF69emnr1q365ptvtH37dl122WWBjM/h+PHjWrFihXJychzLoqKilJOTo6VLl7rdZunSpU7lJSk3N9dRfvPmzcrLy3Mqk5ycrD59+nisU5KKi4tVWFjo9IfIFcwvFRu//effth6Wm6zObKsV6zNTty83EHBXtjo3IKi8bVU1+dqSt/Lh+tVzX+aDy/h52djbvPXaZMX55KYWX4+H8hjNzptg7ycz9fvbx5P/9jEgD+36U43LvqqiEtd969r3qvZbbbkfibd+ej/vBHaAnM73Jsv9vizwO8uXKoM9VwwZfrVh6nnTxH6MpJvzeH1+cHpNEbz5W1P4lYht2rTJ6XFCQoJ69uyp1NTUgATlzr59+1RaWqr09HSn5enp6crLy3O7TV5entfy5f/3pU5Jmj59upKTkx1/WVlZPvcHAAAAQO3lVyLWpk0bNWvWTFdccYWeffZZbdiwIdBxhbXJkyeroKDA8bd9+/ZQhwQTPN0hyeydk2w23++wZPvtP3942qpyGDYT//bajs39vz2XN98fd2XNbO+pTOXlVdXk68h7K+9zXR42CFQ9ZtdXbNdl/Co8rlyNt3nrtcmK88lNLb4eD+Uxmp13/hxtTuNQ1XibisG/Pppp32y7fo1D5cc+joVNrn2var9Vp7+BZioUP+P11k+n87bNeQQDcWc/T+d4r+c7Nyt9Ovebfl41XWVQ5orzOdDmVxumnjdNjIc/rzFCxevzg9N8C2yfImiITPMrEdu+fbumT5+u+Ph4PfjggzrllFPUtGlTDR06VP/9738DHaMkKTU1VdHR0dq9e7fT8t27dysjI8PtNhkZGV7Ll//flzolyW63KykpyekPAAAAAMzyKxFr0qSJhg4dqqefflrr16/X+vXrlZOTo9dee01XXXVVoGOUJMXGxqpXr15atGiRY1lZWZkWLVqk7Oxst9tkZ2c7lZekhQsXOsq3bNlSGRkZTmUKCwu1bNkyj3UCAAAAQHX59YPOR44c0RdffKElS5ZoyZIlWrVqldq3b69x48bp7LPPDnCIv5s4caJGjBih3r1767TTTtOjjz6qoqIijRo1SpI0fPhwNWnSRNOnT5d08u6OZ511lh555BENGjRIc+fO1bfffqunn35a0smPTG+44Qbdc889atu2rVq2bKk77rhDmZmZGjx4cND6AQAAAKB28ysRS0lJUf369TV06FDdeuut6t+/v+rXrx/o2Fxcdtll2rt3r6ZMmaK8vDx1795d8+fPd9xsY9u2bYqK+v1DvjPOOEMvv/yybr/9dt12221q27at5s2bp86dOzvK3HLLLSoqKtLYsWOVn5+vfv36af78+YqLiwt6fwC4F0l3jwKChaMAkSqYdyMGahK/ErHzzz9fX3zxhebOnau8vDzl5eXp7LPP1imnnBLo+FyMGzdO48aNc7tuyZIlLssuueQSXXLJJR7rs9lsmjp1qqZOnRqoEAEAAADAK7++IzZv3jzt27dP8+fPV3Z2tj7++GP179/f8d0xAAAAIFzVxDvwIfL49YlYuS5duqikpETHjx/XsWPHtGDBAr366quaM2dOoOIDAAAAgBrHr0/EZsyYoQsvvFANGzZUnz599Morr+iUU07Rm2++qb179wY6RgAAAACoUfz6ROyVV17RWWedpbFjx6p///5KTk4OdFwAAFiO+8QAtQPHOsKBX4nYN998E+g4gJAJ17s7eYrK7JNHOPTK3d0PI/WOiJEZtbNQjH3lFv093sJl3piJojrnlOp0s2K7gRgtf2Kp3Peq9luY7NaQCtUQeGu3tu6XUPY7XM5x1RXMbtSQIXLi16WJkvT5559r2LBhys7O1o4dOyRJL774or744ouABQcEUii+mGt1m9Vtz6aqKwjl95srt11lf30M1laDvr1duStVdc2X8l7XeXzgH5+rqO4xEIrzhPVNuuXr/HedM+HSE/+YCd/MOdL9dl5UeHHp8znOQqEOxd+xN12/n9Wb2Syc9mMgmO1PDet2UPiViL355pvKzc1VfHy8Vq1apeLiYklSQUGB7rvvvoAGCABAbcSLGACo2fxKxO655x7NnDlTzzzzjOrUqeNY3rdvX61cuTJgwQEAAABATeRXIrZ+/XqdeeaZLsuTk5OVn59f3ZgAAAAAoEbzKxHLyMjQhg0bXJZ/8cUXatWqVbWDAlC71cDv4wI+4zhApKqJN1UAgsGvRGzMmDEaP368li1bJpvNpp07d2rOnDm68cYbdc011wQ6RgAAAACoUfy6ff2tt96qsrIyDRgwQEeOHNGZZ54pu92um2++WVdeeWWgYwQAAACAGsWvT8RsNpv+8Y9/6MCBA/rhhx/09ddfa+/evUpOTlbLli0DHSMAAAAQMDXtlvKITD4lYsXFxZo8ebJ69+6tvn376sMPP1THjh21du1atWvXTv/61780YcKEYMUKAAAAADWCT5cmTpkyRU899ZRycnL01Vdf6ZJLLtGoUaP09ddf65FHHtEll1yi6OjoYMUKAAAAADWCT4nY66+/rhdeeEEXXnihfvjhB3Xt2lUlJSVas2aNbHzGCwAAAACm+HRp4q+//qpevXpJkjp37iy73a4JEyaQhAEAAACAD3z6RKy0tFSxsbG/bxwTo7p16wY8KCAcRcLbDbaIiLJqNaEXnt6f8vWNK3/f6PJ1LtSUueMPm4d/o3YxcwwE+33nmvK+dqT0I0LCRA3mUyJmGIZGjhwpu90uSTp27JiuvvpqJSYmOpV76623AhchAAAAANQwPiViI0aMcHo8bNiwgAYDAAAAALWBT4nY7NmzgxUHAAAAANQafv2gMwAEkxHqAIAwYHAgIEIxdwFzSMQAAAAAwGIkYgAAAABgMRIxAAAAALAYiRgAAL/hqy0AAKuQiAEAAACAxUjEUOsF++5Ohp/vsXuKy2x9Rpjetio8o6qar8Np1fD70k5Ixr5SgP6OS9jMGxMdqM6+D9S2gTj+/amhcrNV1RE2+zWE/H2OqHa7Xpq1Kqbwe5oKXUBhNxR+CubcCb/5Un0kYgAAACFSE19cAjCHRAy1hs0WmjZtsq5hf/pYcRsz24diHD21XdXY+jr2geyaVePkqR1fx6ryam+lvdVlq9BwIIbA13Gs7vEWiukdymOqIl/DqDzWYdIN/5k5//lbtckNgz2m1ZlrwZinvtQZ7OPE/31b9ZbhcowHitnu1LR+BwOJGAAAAABYjEQMAIAwxLvJAFCzkYgBCDt8ZwLgOEDkYuoC5pCIAQAAAIDFSMQAAAAAwGIkYgAAAABgMRIxAAAAALAYiRgAAAAAWIxEDAAAAAAsRiIGAAAAABYjEUOtYVP1fh01En5cNQJCNCUSxroqnuabVV3ztZ0aMOR+qzjfbDVh8sEvZnZ9sOeHzVb95yp3dVotUo4iDneEWsQkYgcOHNDQoUOVlJSklJQUjR49WocPH/Za/u9//7vatWun+Ph4NWvWTNdff70KCgqcytlsNpe/uXPnBrs7AAAAAGqxmFAHYNbQoUO1a9cuLVy4UCdOnNCoUaM0duxYvfzyy27L79y5Uzt37tTDDz+sjh07auvWrbr66qu1c+dOvfHGG05lZ8+erYEDBzoep6SkBLMrAAAAAGq5iEjE1q1bp/nz5+ubb75R7969JUmPP/64zj//fD388MPKzMx02aZz58568803HY9bt26te++9V8OGDVNJSYliYn7vekpKijIyMoLfEQCmGEaoIwBCzxAHAiITMxcwJyIuTVy6dKlSUlIcSZgk5eTkKCoqSsuWLTNdT0FBgZKSkpySMEm67rrrlJqaqtNOO02zZs2SUcWrwOLiYhUWFjr9AQAAAIBZEfGJWF5entLS0pyWxcTEqEGDBsrLyzNVx759+zRt2jSNHTvWafnUqVN1zjnnKCEhQR9//LGuvfZaHT58WNdff73HuqZPn667777b944AAAAAgEL8iditt97q9mYZFf9++umnardTWFioQYMGqWPHjrrrrruc1t1xxx3q27evevTooUmTJumWW27RQw895LW+yZMnq6CgwPG3ffv2ascIAAAAoPYI6SdiN954o0aOHOm1TKtWrZSRkaE9e/Y4LS8pKdGBAweq/G7XoUOHNHDgQNWrV09vv/226tSp47V8nz59NG3aNBUXF8tut7stY7fbPa4DAESuqi5NBwAgUEKaiDVq1EiNGjWqslx2drby8/O1YsUK9erVS5K0ePFilZWVqU+fPh63KywsVG5urux2u959913FxcVV2dbq1atVv359Ei0AAAAAQRMR3xHr0KGDBg4cqDFjxmjmzJk6ceKExo0bpyFDhjjumLhjxw4NGDBAL7zwgk477TQVFhbq3HPP1ZEjR/TSSy853VSjUaNGio6O1nvvvafdu3fr9NNPV1xcnBYuXKj77rtPN910Uyi7CwAAAKCGi4hETJLmzJmjcePGacCAAYqKitLFF1+sxx57zLH+xIkTWr9+vY4cOSJJWrlypeOOim3atHGqa/PmzWrRooXq1KmjJ554QhMmTJBhGGrTpo1mzJihMWPGWNcxAAAAALVOxCRiDRo08PjjzZLUokULp2v7zz777Cqv9R84cKDTDzmjdgrXr4R4+g0hs/GGQ7fcxRqu412VCA3bSSjGvnKT/oYQLvPGTBihCrXiGAUiBn/G3GV/V1EH38kL5Xzx3HJt3S2h7HdNGfOa0g+rRMTviAGBYLOFoE1Z3KgfzVWM0cwYhWAYf2/b5v1xVeV9rT+S2Sp1puqxMj+43uqquCoQ4+lrFdVt02UcLBAu8666x0u49MNfZsL3t4ve5pW3hCjQY1qd5yTLn89c2g9y/X4OtrmtIvzgqMTsWIV6zkQCEjEAAAAAsBiJGAAAAABYjEQMQNjhEnMAiFx89w8wh0QMAAAAACxGIgYAAAAAFiMRAwAAAACLkYgBAAAAgMVIxAAAAFCrhOI3A4HKSMQAAAAAwGIkYqj1gnmTXeO3//zc2P1iw0sxw3M5z838XtDMNr70xl3f/R4Puel7FVX5egdlb+V9vR1zdfrpUztm97Phuu+89snLOq+bVW7Tx33mqT6zmwX7rtmm6q/GvKvObb89nQv8ieNkFd4rcbdvXeOvWbcx97c33vartzoDPZ+dzvfV2DZQfOlfsGeSYRh+jbe5TYJw4gghs/M50HOmJv4sAokYAASBTVz2AgAAPIsJdQCAVTy9LDb7ctmfF9a23/7z650uD81Vvqzd5uGB2cvfK/bLzDa+jIK7MTMzjh73VeW+V1GVr18B8Fbe1+8TeCoe6K8leGzHTTnXZRX2vdmKva9yqsdm832fearP9HHqx/g6jUMg5lQ15l11vrfi6VzgTxwnq/Beibt96xp/5LwhYWbs/e2Nt7orHzPy8tivtiue4+XlmPehnirLmgzcl/4FYyY5H/s2/84fAStVM44Vp/kc4D7VxO/18YkYAAAAAFiMRAxA2Kl5V4EDvquBX4dALVETv8sDBAOJGAAAAABYjEQMAAAAACxGIgYAAAAAFiMRAwDgN3y1Bagd+B4bwgGJGAAAAABYjEQMAAAAtUpN/E0qRB4SMQAAAACwGIkYar2wvUrcQ2BmL2sPh8vfDTedcLcsEtSE7xOEogeVh83fYQyX0TcVfzWCrc48Mzw+8Lc+3ytxjT9c9lz4CtUIsWdchfY0XzP2SDB7UROehysjEUOtEYrLEKxu0ibfG6wYo5ntQ3k5R+X4qgrFj9HweYtwVXlsquqZL+W9jbuv86kqvs636rYYiukdiHEKBF+jcB2r8OiHv8xE7+/88LZZxdeWrnMhsGNanfkd6iv5gt2+3/vWxHahHrtQqa399gWJGAAAAABYjEQMQPipgZcfAL7iKACAmo1EDAAAAAAsRiIGAAAAABYjEQMAIAzxPXcAqNlIxAAAAADAYiRiAAAAAGAxEjEAAAAAsBiJGAAAAGoVvoOJcEAiBgAAAAAWIxEDAAAAAIuRiKHWqO5lCDauY7BODRhsTz2wWXRBjM3HMawBQx4QDEPtFQ7HQDBiCId+AXCPRAwAAAAALEYiBiD8GEaoIwBCjqMAAGo2EjEAAAAAsBiJGAAAAABYjEQMAIDfcDkgUDtwrCMckIgBAAAAgMUiJhE7cOCAhg4dqqSkJKWkpGj06NE6fPiw123OPvts2Ww2p7+rr77aqcy2bds0aNAgJSQkKC0tTTfffLNKSkqC2RUAAAAAtVxMqAMwa+jQodq1a5cWLlyoEydOaNSoURo7dqxefvllr9uNGTNGU6dOdTxOSEhw/Lu0tFSDBg1SRkaGvvrqK+3atUvDhw9XnTp1dN999wWtLwAAAAgdfl4N4SAiErF169Zp/vz5+uabb9S7d29J0uOPP67zzz9fDz/8sDIzMz1um5CQoIyMDLfrPv74Y/3444/63//+p/T0dHXv3l3Tpk3TpEmTdNdddyk2NjYo/QEAAABQu0XEpYlLly5VSkqKIwmTpJycHEVFRWnZsmVet50zZ45SU1PVuXNnTZ48WUeOHHGqt0uXLkpPT3csy83NVWFhodauXeuxzuLiYhUWFjr9IXIZYfqbVZ6iMhttOPTK3dCG6XBXKULDdhKKuW5UGrnKj03XEyYTx0z8/vbx5Lb+qzhG1Ynh9/r82MbHOsJkt4ZUqIbA29iHy/FmtUAcN363XUOGPJj9qCFD5CQiPhHLy8tTWlqa07KYmBg1aNBAeXl5Hrf729/+pubNmyszM1PfffedJk2apPXr1+utt95y1FsxCZPkeOyt3unTp+vuu+/2tzsIEVstuA7Bnz46bWNi+5AOo0vj3qOx+TggNXqOVNE3W6UC3saicllP6wIxnr7WUd02QzIFwmTe+Xy8+DBnIoG3ee1LGQ8belbhlWvlYoEe08jeR8EN3t/azc2bmsXsPKpp/Q6GkCZit956qx544AGvZdatW+d3/WPHjnX8u0uXLmrcuLEGDBigjRs3qnXr1n7XO3nyZE2cONHxuLCwUFlZWX7XBwAAAKB2CWkiduONN2rkyJFey7Rq1UoZGRnas2eP0/KSkhIdOHDA4/e/3OnTp48kacOGDWrdurUyMjK0fPlypzK7d++WJK/12u122e120+0C8E1NvPwA8BkHAiJUTbnMDgi2kCZijRo1UqNGjaosl52drfz8fK1YsUK9evWSJC1evFhlZWWO5MqM1atXS5IaN27sqPfee+/Vnj17HJc+Lly4UElJSerYsaOPvQEAAAAAcyLiZh0dOnTQwIEDNWbMGC1fvlxffvmlxo0bpyFDhjjumLhjxw61b9/e8QnXxo0bNW3aNK1YsUJbtmzRu+++q+HDh+vMM89U165dJUnnnnuuOnbsqCuuuEJr1qzRggULdPvtt+u6667jEy8AAAAAQRMRiZh08u6H7du314ABA3T++eerX79+evrppx3rT5w4ofXr1zvuihgbG6v//e9/Ovfcc9W+fXvdeOONuvjii/Xee+85tomOjtb777+v6OhoZWdna9iwYRo+fLjT744BAAAAQKBFxF0TJalBgwZef7y5RYsWTrdbzcrK0qefflplvc2bN9eHH34YkBgBAAAAwIyI+UQMAIBahXs/A0CNRiIGAAAAABYjEQMAAECtEtk/bo2agkQMAAAAACxGIgYAAAAAFiMRQ61h4zqEiFET9pSn+Rau0zBc47Ia41B7hcO+t9lsAY8jFN0Kh7EEIgGJGICwY1RdBKj5OBAQoQzmLmAKiRgAAAAAWIxEDAAAAAAsRiIGAMBvuKQKqB041hEOSMQAAAAAwGIkYgAAAABgMRIxAAAAALAYiRgAAAAAWIxEDAAAALUKPzqNcEAiBgAAAAAWIxFDrReud7A1PNxb19NyNwUDGI1/3EUQ+qj8FLGBh5bLNIzwcTRzWFXn0KvWtgGqpzoqt1tVGEakT4gACNUIeGs3DJ4+QiKU/a45Qx68ntTEeUkiBgSRzeJrH/xpzVZhKzPbh/JyjspNVxWLr7HW5CtVbD72zltpb+NacV0g5oqvVfjaT5ftQzAJwmXe+TzWlTYIl34ElZ+d9DYvK764dDnH+decX3FUuW2Id3Cw2/e7fhPbhXrsAs1sf2pav4OBRAxA2KmJ73oBvuLTIkQq5i5gDokYAAAAAFiMRAwAAAAALEYiBgAAAAAWIxEDAAAAAIuRiAEAAACAxUjEAAAIQ9W9FT8AILyRiAEAAACAxUjEAAAAUKvwiTPCAYkYAAAAAFiMRAwwycabZ5ZhrBE6TL7aKhzOOzZb4D+psYWgY3zaBJhDIgYg7BhGqCMAQs8QBwIiE3MXMIdEDAAAAAAsRiIGAIAD7+QDtQGf2iEckIgBAAAAgMVIxAAAAADAYiRiAAAAAGAxEjEAAAAAsBiJGAAAAABYjEQMAAAAACxGIgYAAIBaxSZbqEMASMRqEn4Twz9GmA6bp7DMhhsO3TLcDW44BOYHX48vt30PsVCEVLlJf0MIl+E0E0d1Qq3OebxibIEYLn/msMv+rqKKcNmvoRSq525v+7e27pZQ9rumHAvB7EdNfJ1LIgYEkdXvt9lsvrdYcRNz2we/V55OtpXjqyoSXyP1Y/giRlV9cxnbAAxGQN5x9jGO6odt/STwNNaWvzCrZtcj/fgxM1/97aO37Sru52Ach2bjqHJbHyZIMOZu8KeXfy2Ye9aM8IOjEvP9qVn9DoaIScQOHDigoUOHKikpSSkpKRo9erQOHz7ssfyWLVtks9nc/r3++uuOcu7Wz50714ouAQAAAKilYkIdgFlDhw7Vrl27tHDhQp04cUKjRo3S2LFj9fLLL7stn5WVpV27djkte/rpp/XQQw/pvPPOc1o+e/ZsDRw40PE4JSUl4PEDAAAAQLmISMTWrVun+fPn65tvvlHv3r0lSY8//rjOP/98Pfzww8rMzHTZJjo6WhkZGU7L3n77bV166aWqW7eu0/KUlBSXsgAAAAAQLBFxaeLSpUuVkpLiSMIkKScnR1FRUVq2bJmpOlasWKHVq1dr9OjRLuuuu+46paam6rTTTtOsWbOq/IJycXGxCgsLnf4AAAAAwKyI+EQsLy9PaWlpTstiYmLUoEED5eXlmarj2WefVYcOHXTGGWc4LZ86darOOeccJSQk6OOPP9a1116rw4cP6/rrr/dY1/Tp03X33Xf73hEAAAAAUIg/Ebv11ls93lCj/O+nn36qdjtHjx7Vyy+/7PbTsDvuuEN9+/ZVjx49NGnSJN1yyy166KGHvNY3efJkFRQUOP62b99e7RgBAAAA1B4h/UTsxhtv1MiRI72WadWqlTIyMrRnzx6n5SUlJTpw4ICp73a98cYbOnLkiIYPH15l2T59+mjatGkqLi6W3W53W8Zut3tcBwAAAABVCWki1qhRIzVq1KjKctnZ2crPz9eKFSvUq1cvSdLixYtVVlamPn36VLn9s88+qwsvvNBUW6tXr1b9+vVJtAAAAAAETUR8R6xDhw4aOHCgxowZo5kzZ+rEiRMaN26chgwZ4rhj4o4dOzRgwAC98MILOu200xzbbtiwQZ999pk+/PBDl3rfe+897d69W6effrri4uK0cOFC3Xfffbrpppss6xsAAO5E+g8kAwC8i4hETJLmzJmjcePGacCAAYqKitLFF1+sxx57zLH+xIkTWr9+vY4cOeK03axZs9S0aVOde+65LnXWqVNHTzzxhCZMmCDDMNSmTRvNmDFDY8aMCXp/AAAAEBq80YFwEDGJWIMGDTz+eLMktWjRwu1t5++77z7dd999brcZOHCg0w85R7oq7roPAAAAIExExO+IAQBghXB6l5w316wVLvs+0HGESbcAuEEiBgDAb0h+gNqBYx3hgEQMAAAAACxGIgYAAAAAFiMRAwAAAACLkYgBAAAAgMVIxAAAAADAYiRiAAAAAGAxEjEAAAAAsBiJGAAAAABYjEQMkLlfdbT6xx89tmcyjnD4sUp3IRhmOxBmfB3PcOxlKMa+8rgZfk7McJk3ZqLwt48nt/V7U1WMLhDHv19VVGq4qv0WHns1tFyPkdDEEW4xBJvN5roslP0Ol3NcdQWzFzVxXpKIAUHk7kQfbu3ZPPw7kG34ytPJtnLTVcXia6w2UyNQPaF6IqmqZy5j662sl4GtuC4Qc8XXKqrbpNXHrOQ5Zquniq/zv/I8sOL4CSZT578g1O1tPwd6RKtTny/HRjDOc97OO4GpP3jbheK8Ekxm+1PT+h0MJGIAAAAAYDESMQAAAACwGIkYAAAAAFiMRAwAAAAALEYiBgAAAAAWIxEDAAAAAIuRiAEAAACAxUjEAAAAAMBiJGIAAAAAYDESMQAAAACwGIkYAABhyBbqAIAajOML4YBErAYxjFBHAAAIFE7pCAQbGYdbHF8IByRiAAAAAGAxEjEAAAAAsBiJGAAAAABYjEQMAAAAACxGIgYAAAAAFiMRAwAAAACLkYgBAAAAgMVIxAAAAADAYiRiAAAAAGAxEjEAAAAAsBiJWA1iyAh1CBHJCNNh8xSW2f0cFvPBTQhmxjsc94mvMXkqH8r9Eopxrdxff0MIlzlhmAikOqFW3NZMW07bVigeiHnmz5hX3qSqOnztY01UeQysOkd4G/rqxhAJe9XmZlltOz8HQzCP6RoyRE5IxIAgcneiD7f2bDb3/w5kG4FSOT5bldH4Fq2Z/kcqWxWdcxlbL8W91RToIfR5n1RzJ4ZiCoTLvPM1jsrFw6Uf/qrqGDFbxv12fm0W8DGtTn2h3r/Bbt7f+qt+Hgrt82YwmO1PTet3MJCIAQAAAIDFSMQAAAAAwGIkYgAAAABgMRIxAAAAALAYiRgAAAAAWIxEDAAAAAAsFjGJ2L333qszzjhDCQkJSklJMbWNYRiaMmWKGjdurPj4eOXk5OiXX35xKnPgwAENHTpUSUlJSklJ0ejRo3X48OEg9AAAAAAAToqYROz48eO65JJLdM0115je5sEHH9Rjjz2mmTNnatmyZUpMTFRubq6OHTvmKDN06FCtXbtWCxcu1Pvvv6/PPvtMY8eODUYXAAAAAECSFBPqAMy6++67JUnPPfecqfKGYejRRx/V7bffrosuukiS9MILLyg9PV3z5s3TkCFDtG7dOs2fP1/ffPONevfuLUl6/PHHdf755+vhhx9WZmZmUPoCAAAAoHaLmE/EfLV582bl5eUpJyfHsSw5OVl9+vTR0qVLJUlLly5VSkqKIwmTpJycHEVFRWnZsmUe6y4uLlZhYaHTXziICvXP3keopPg6VZbJTI6TP8ObkRyvVo0S/YhKykiyu12eHB/r9DjR/vv7KfGx0Y5/N01JMNWOPeb3bdKT4qqOK9l7mdS6v8eX1cA1BjPjkdUg3u3yin2VpEb17KoX5/n9pIQK42FGMzfxlquq35U1b+i+rkAfp23S6poqlxAbrfqJznMnrs7vTwFJcc7HQWaK+31wcp3nsWha//ftMpPj1aiu8zzOMDHHKkr+7fj0Fk9FDSv10VcJsd7fn3Q3pytrWt/csVeu4rxuUWHetGpkbt+Wq3guS6l0nig/LlMSPJ/v0urZvT6urPI8aNYgwWn/V47JHW/HnDdm+hMM0X4evw0TPY9ly1Tnc2LFc0RsTGBfplU831c+H1TUsK5rvHEx5s+nySaeVyWpbYXzV4Mqjt26Xs71/qhX6ZyXEBvj9jkws4pzf4vf9l+T385Rdjf7rJGHY6n8+Su1rt3Ua5Fw4e082LjCuTrQ+6yFh+fVSBYxn4j5Ki8vT5KUnp7utDw9Pd2xLi8vT2lpaU7rY2Ji1KBBA0cZd6ZPn+74hC6cmD3xhbObzj1FD3/8s9t17TPq6ae8Q5Kk9CS7dhcWK7WuXfsOF6tlaqJuH9RBo5//VpL0xN96aummfXrp622SpDNaN/TY5hmtG+ry07L0yvLtSq0bqz92TFePZvUlSed1ztBHP+Tpo/Fnyh4T7YhvQs4p2rD3sHI6pGn83NWSpKev6OWo8/n/O01vrvhVkwa2U+HREj2w4Cddc1Zrn8bi+gFttfdQsS7olqkl6/fqxa+3asal3XRux3T1bdNQX27Yr/f/3k+npNdTTJRNJWWGOmUmO7afNriz6sREaWifZk71PjfqVI2c/Y2apMTrwu6ZymqQoGdH9NZ7a3bq7+e08RjPc6NO1durdujGc9u5Xf/oZd315YZ9un1QR9357g8a1DVTXZsma9r7P2rEGS0c5Z4Z3lsPLliva85qra37j+j2ed/r9FYNdfdFnTT9w5+U2ylDvZrXV2xMtCP2uy7oqC37j6hHVoru/XNn/et/v+iM1g01pn8r5XbKUO6jn6lVaqLaN66nxsnxevaLzbqsd5Y6NE5ytPv45T3091dWqWezFCXaY/T5L/uUWjdWF3TL1OZ9RUq0x+gf53fw2P+J556ig0eO6/RWDfXlhn0a1fdkn16+so+e/HSjDEMae2YrfbFhn9Lq2fWnrpk6ffoidcpMUvesFHVucnLfxNWJ1s257fTx2jyt+bVAp7VsIEl6b1w/XfDvLyRJj13eQwvW5jnmzO2DOmj55gOqExOlTplJenD+ev2pa2PZbDZN+VNHzf5ys37KO6SE2GhF2WzqlpXiiHvKnzpqR/5RdcpMUvuMevp2ywFl/3Y8NE6OV0pCHeUfOaH+bVMd/Xnlm+2a8qeOLmPwwv+dpjdW/KpJA9uraf0EPbRgvd65rq8kae7Y0zVn2Tbd8acOuiK7uV7/9ldNPr+94upE68ddhRrQ/uS5eNw5bfTsF5uVEButnI7pym7l/th86K9dtWLrQZ3XubEk6R/nd1D+keNavb1A9/+li1PZ2SNP1ZUvfKsB7dN0+WnN3FVXpdsHddCeQ8Vql1HPZd3QPs00Z9k2fTHpD4qNiVJcnWhd3LOJ3lm9U7mdMlzK33nBybG7/LQslZVJd723Von2GNkkjfvD78fY3Rd20uZ9RepRYX89OqSH7vtwnUb3a6mGibGOY8WMM1o31BWnN1e7jHoa2DlDl5+W5TiXzR17uv75v180fkBbl+2eGd5bH3y3U9f9wfn4v7J/K23aV+TSx4rzQJLeuvYMPfvFZv3j/A6qEx2lD78/+fy5dPI5ykiK07DTm2npxv3auLdIkpTbKV0L1u7W+3/vp7R6dk19/0cNz26hrfuL9PDH69WtaYqOnijVN1sO6J+XdteXG/epY+Nkpxgq96d8LJvWj1dewTH9pWdT3fT6GknS/Rd30XNfbdE57dP05JKNWruzUH/r00wFR0/o8lObadizy/Snro0VHfV7AjTtok7asOewzm6Xpnmrd6hBYqwaJMQ6vdn1ryHdHed/ScrpkK5xlc6h//5bDy3+aY+Gnu55Xj58STd99EOe41xQJzpKN+e209HjpWqc7P0NiKkXddKUd9ZqUNfG+uC7Xcpu1VDHS8t07ESppl7UWZJks9k0aWB7FR474fQCenD3TC3fvF+nuzkGL+udpUcX/qyDR47ruj+00YlSw5FwTP9LF/2wo0DdslJ0yxvfafbIU1UvLkZ/nblUtw86eQ4d0D5Nf+vTTJ/9vFe/Hjyq5g0T9Nyo0/Tysq1KT4qTvU60fs47pFsGttOQp7/Wxr2H9erY0932sXxf9PltfP55WTdNeHWNnqrwnGtW+T5Lq2dX3zYn+337oA7aXXhM7TLq6bo/tNGu/KMa1DVTSzfuV1aDeJ15SiPNWPizRp7RQiNnLVfR8VJJ0i0D22ntzkJNyj15HLww+jTNWPiz0zE+c1hPLVi7W6P7tXIbzxtXn6HHFv+iCTlt1bpRXQ07vZnT85YkPfjXrlq17aBKywy99u2vWnbbAI/9mz3yVM1bvUPndc7QB9/nqVVqogqOntDx0jK1aJigNb8WaOXWg4qPjdb5nRvrnTU7tP3AUU0+r71+PXhU3/2ar46ZybLHROm5r7ZIkt685gz9vPuQfthRoME9muj5r7bo9kGuzw/lJuW218vLtqllaqLH87s3p7VsoOWbD+i5Uae6rHt0SA/d+Npq7cg/qpvObaeFP+52en0RiWyGYRihavzWW2/VAw884LXMunXr1L59e8fj5557TjfccIPy8/O9bvfVV1+pb9++2rlzpxo3buxYfumll8pms+nVV1/Vfffdp+eff17r16932jYtLU133323x++jFRcXq7i42PG4sLBQWVlZKigoUFJSktttAAAAANR8hYWFSk5OrjI3COknYjfeeKNGjhzptUyrVu7fRahKRsbJd/B2797tlIjt3r1b3bt3d5TZs2eP03YlJSU6cOCAY3t37Ha77Hbvl2wAAAAAgCchTcQaNWqkRo0aBaXuli1bKiMjQ4sWLXIkXoWFhVq2bJnjk67s7Gzl5+drxYoV6tXr5EfcixcvVllZmfr06ROUuAAAAAAgYm7WsW3bNq1evVrbtm1TaWmpVq9erdWrVzv95lf79u319ttvSzp5TfQNN9yge+65R++++66+//57DR8+XJmZmRo8eLAkqUOHDho4cKDGjBmj5cuX68svv9S4ceM0ZMgQ7pgIAAAAIGgi5mYdU6ZM0fPPP+943KNHD0nSJ598orPPPluStH79ehUUFDjK3HLLLSoqKtLYsWOVn5+vfv36af78+YqL+/0OOHPmzNG4ceM0YMAARUVF6eKLL9Zjjz1mTacAAAAA1EohvVlHTWH2C3kAAAAAajazuUHEXJoIAAAAADUFiRgAAAAAWIxEDAAAAAAsRiIGAAAAABYjEQMAAAAAi5GIAQAAAIDFSMQAAAAAwGIkYgAAAABgMRIxAAAAALAYiRgAAAAAWIxEDAAAAAAsRiIGAAAAABYjEQMAAAAAi8WEOoCawDAMSVJhYWGIIwEAAAAQSuU5QXmO4AmJWAAcOnRIkpSVlRXiSAAAAACEg0OHDik5OdnjeptRVaqGKpWVlWnnzp2qV6+ebDZbSGMpLCxUVlaWtm/frqSkpJDGgsjAnIGvmDPwFXMGvmLOwBfhNl8Mw9ChQ4eUmZmpqCjP3wTjE7EAiIqKUtOmTUMdhpOkpKSwmIiIHMwZ+Io5A18xZ+Ar5gx8EU7zxdsnYeW4WQcAAAAAWIxEDAAAAAAsRiJWw9jtdt15552y2+2hDgURgjkDXzFn4CvmDHzFnIEvInW+cLMOAAAAALAYn4gBAAAAgMVIxAAAAADAYiRiAAAAAGAxEjEAAAAAsBiJWA3yxBNPqEWLFoqLi1OfPn20fPnyUIcEC0yfPl2nnnqq6tWrp7S0NA0ePFjr1693KnPs2DFdd911atiwoerWrauLL75Yu3fvdiqzbds2DRo0SAkJCUpLS9PNN9+skpISpzJLlixRz549Zbfb1aZNGz333HPB7h4scP/998tms+mGG25wLGPOoLIdO3Zo2LBhatiwoeLj49WlSxd9++23jvWGYWjKlClq3Lix4uPjlZOTo19++cWpjgMHDmjo0KFKSkpSSkqKRo8ercOHDzuV+e6779S/f3/FxcUpKytLDz74oCX9Q2CVlpbqjjvuUMuWLRUfH6/WrVtr2rRpqniPOOZM7fbZZ5/pggsuUGZmpmw2m+bNm+e03sr58frrr6t9+/aKi4tTly5d9OGHHwa8v24ZqBHmzp1rxMbGGrNmzTLWrl1rjBkzxkhJSTF2794d6tAQZLm5ucbs2bONH374wVi9erVx/vnnG82aNTMOHz7sKHP11VcbWVlZxqJFi4xvv/3WOP30040zzjjDsb6kpMTo3LmzkZOTY6xatcr48MMPjdTUVGPy5MmOMps2bTISEhKMiRMnGj/++KPx+OOPG9HR0cb8+fMt7S8Ca/ny5UaLFi2Mrl27GuPHj3csZ86gogMHDhjNmzc3Ro4caSxbtszYtGmTsWDBAmPDhg2OMvfff7+RnJxszJs3z1izZo1x4YUXGi1btjSOHj3qKDNw4ECjW7duxtdff218/vnnRps2bYzLL7/csb6goMBIT083hg4davzwww/GK6+8YsTHxxtPPfWUpf1F9d17771Gw4YNjffff9/YvHmz8frrrxt169Y1/vWvfznKMGdqtw8//ND4xz/+Ybz11luGJOPtt992Wm/V/Pjyyy+N6Oho48EHHzR+/PFH4/bbbzfq1KljfP/990EfAxKxGuK0004zrrvuOsfj0tJSIzMz05g+fXoIo0Io7Nmzx5BkfPrpp4ZhGEZ+fr5Rp04d4/XXX3eUWbdunSHJWLp0qWEYJ0+GUVFRRl5enqPMk08+aSQlJRnFxcWGYRjGLbfcYnTq1Mmprcsuu8zIzc0NdpcQJIcOHTLatm1rLFy40DjrrLMciRhzBpVNmjTJ6Nevn8f1ZWVlRkZGhvHQQw85luXn5xt2u9145ZVXDMMwjB9//NGQZHzzzTeOMh999JFhs9mMHTt2GIZhGP/5z3+M+vXrO+ZQedvt2rULdJcQZIMGDTL+7//+z2nZX/7yF2Po0KGGYTBn4KxyImbl/Lj00kuNQYMGOcXTp08f46qrrgpoH93h0sQa4Pjx41qxYoVycnIcy6KiopSTk6OlS5eGMDKEQkFBgSSpQYMGkqQVK1boxIkTTvOjffv2atasmWN+LF26VF26dFF6erqjTG5urgoLC7V27VpHmYp1lJdhjkWu6667ToMGDXLZr8wZVPbuu++qd+/euuSSS5SWlqYePXromWeecazfvHmz8vLynPZ3cnKy+vTp4zRnUlJS1Lt3b0eZnJwcRUVFadmyZY4yZ555pmJjYx1lcnNztX79eh08eDDY3UQAnXHGGVq0aJF+/vlnSdKaNWv0xRdf6LzzzpPEnIF3Vs6PUD5XkYjVAPv27VNpaanTCyJJSk9PV15eXoiiQiiUlZXphhtuUN++fdW5c2dJUl5enmJjY5WSkuJUtuL8yMvLczt/ytd5K1NYWKijR48GozsIorlz52rlypWaPn26yzrmDCrbtGmTnnzySbVt21YLFizQNddco+uvv17PP/+8pN/3ubfnoby8PKWlpTmtj4mJUYMGDXyaV4gMt956q4YMGaL27durTp066tGjh2644QYNHTpUEnMG3lk5PzyVsWL+xAS9BQCWue666/TDDz/oiy++CHUoCGPbt2/X+PHjtXDhQsXFxYU6HESAsrIy9e7dW/fdd58kqUePHvrhhx80c+ZMjRgxIsTRIRy99tprmjNnjl5++WV16tRJq1ev1g033KDMzEzmDPAbPhGrAVJTUxUdHe1yR7Pdu3crIyMjRFHBauPGjdP777+vTz75RE2bNnUsz8jI0PHjx5Wfn+9UvuL8yMjIcDt/ytd5K5OUlKT4+PhAdwdBtGLFCu3Zs0c9e/ZUTEyMYmJi9Omnn+qxxx5TTEyM0tPTmTNw0rhxY3Xs2NFpWYcOHbRt2zZJv+9zb89DGRkZ2rNnj9P6kpISHThwwKd5hchw8803Oz4V69Kli6644gpNmDDB8Sk8cwbeWDk/PJWxYv6QiNUAsbGx6tWrlxYtWuRYVlZWpkWLFik7OzuEkcEKhmFo3Lhxevvtt7V48WK1bNnSaX2vXr1Up04dp/mxfv16bdu2zTE/srOz9f333zud0BYuXKikpCTHi6/s7GynOsrLMMciz4ABA/T9999r9erVjr/evXtr6NChjn8zZ1BR3759XX4W4+eff1bz5s0lSS1btlRGRobT/i4sLNSyZcuc5kx+fr5WrFjhKLN48WKVlZWpT58+jjKfffaZTpw44SizcOFCtWvXTvXr1w9a/xB4R44cUVSU88vM6OholZWVSWLOwDsr50dIn6uCfjsQWGLu3LmG3W43nnvuOePHH380xo4da6SkpDjd0Qw10zXXXGMkJycbS5YsMXbt2uX4O3LkiKPM1VdfbTRr1sxYvHix8e233xrZ2dlGdna2Y335rcjPPfdcY/Xq1cb8+fONRo0aub0V+c0332ysW7fOeOKJJ7gVeQ1S8a6JhsGcgbPly5cbMTExxr333mv88ssvxpw5c4yEhATjpZdecpS5//77jZSUFOOdd94xvvvuO+Oiiy5ye6vpHj16GMuWLTO++OILo23btk63ms7PzzfS09ONK664wvjhhx+MuXPnGgkJCdyKPAKNGDHCaNKkieP29W+99ZaRmppq3HLLLY4yzJna7dChQ8aqVauMVatWGZKMGTNmGKtWrTK2bt1qGIZ18+PLL780YmJijIcffthYt26dceedd3L7evju8ccfN5o1a2bExsYap512mvH111+HOiRYQJLbv9mzZzvKHD161Lj22muN+vXrGwkJCcaf//xnY9euXU71bNmyxTjvvPOM+Ph4IzU11bjxxhuNEydOOJX55JNPjO7duxuxsbFGq1atnNpAZKuciDFnUNl7771ndO7c2bDb7Ub79u2Np59+2ml9WVmZcccddxjp6emG3W43BgwYYKxfv96pzP79+43LL7/cqFu3rpGUlGSMGjXKOHTokFOZNWvWGP369TPsdrvRpEkT4/777w963xB4hYWFxvjx441mzZoZcXFxRqtWrYx//OMfTrcRZ87Ubp988onb1y8jRowwDMPa+fHaa68Zp5xyihEbG2t06tTJ+OCDD4LW74pshlHhJ84BAAAAAEHHd8QAAAAAwGIkYgAAAABgMRIxAAAAALAYiRgAAAAAWIxEDAAAAAAsRiIGAAAAABYjEQMAAAAAi5GIAQAAAIDFSMQAAHBjy5YtstlsWr16ddDaGDlypAYPHhy0+gEA4YtEDABQI40cOVI2m83lb+DAgaa2z8rK0q5du9S5c+cgRwoAqI1iQh0AAADBMnDgQM2ePdtpmd1uN7VtdHS0MjIyghEWAAB8IgYAqLnsdrsyMjKc/urXry9JstlsevLJJ3XeeecpPj5erVq10htvvOHYtvKliQcPHtTQoUPVqFEjxcfHq23btk5J3vfff69zzjlH8fHxatiwocaOHavDhw871peWlmrixIlKSUlRw4YNdcstt8gwDKd4y8rKNH36dLVs2VLx8fHq1q2bU0xVxQAAiBwkYgCAWuuOO+7QxRdfrDVr1mjo0KEaMmSI1q1b57Hsjz/+qI8++kjr1q3Tk08+qdTUVElSUVGRcnNzVb9+fX3zzTd6/fXX9b///U/jxo1zbP/II4/oueee06xZs/TFF1/owIEDevvtt53amD59ul544QXNnDlTa9eu1YQJEzRs2DB9+umnVcYAAIgsNqPy23EAANQAI0eO1EsvvaS4uDin5bfddptuu+022Ww2XX311XryyScd604//XT17NlT//nPf7Rlyxa1bNlSq1atUvfu3XXhhRcqNTVVs2bNcmnrmWee0aRJk7R9+3YlJiZKkj788ENdcMEF2rlzp9LT05WZmakJEybo5ptvliSVlJSoZcuW6tWrl+bNm6fi4mI1aNBA//vf/5Sdne2o+8orr9SRI0f08ssve40BABBZ+I4YAKDG+sMf/uCUaElSgwYNHP+umPCUP/Z0l8RrrrlGF198sVauXKlzzz1XgwcP1hlnnCFJWrdunbp16+ZIwiSpb9++Kisr0/r16xUXF6ddu3apT58+jvUxMTHq3bu34/LEDRs26MiRI/rjH//o1O7x48fVo0ePKmMAAEQWEjEAQI2VmJioNm3aBKSu8847T1u3btWHH36ohQsXasCAAbruuuv08MMPB6T+8u+TffDBB2rSpInTuvIbjAQ7BgCAdfiOGACg1vr6669dHnfo0MFj+UaNGmnEiBF66aWX9Oijj+rpp5+WJHXo0EFr1qxRUVGRo+yXX36pqKgotWvXTsnJyWrcuLGWLVvmWF9SUqIVK1Y4Hnfs2FF2u13btm1TmzZtnP6ysrKqjAEAEFn4RAwAUGMVFxcrLy/PaVlMTIzjBhevv/66evfurX79+mnOnDlavny5nn32Wbd1TZkyRb169VKnTp1UXFys999/35G0DR06VHfeeadGjBihu+66S3v37tXf//53XXHFFUpPT5ckjR8/Xvfff7/atm2r9u3ba8aMGcrPz3fUX69ePd10002aMGGCysrK1K9fPxUUFOjLL79UUlKSRowY4TUGAEBkIREDANRY8+fPV+PGjZ2WtWvXTj/99JMk6e6779bcuXN17bXXqnHjxnrllVfUsWNHt3XFxsZq8uTJ2rJli+Lj49W/f3/NnTtXkpSQkKAFCxZo/PjxOvXUU5WQkKCLL75YM2bMcGx/4403ateuXRoxYoSioqL0f//3f/rzn/+sgoICR5lp06apUaNGmj59ujZt2qSUlBT17NlTt912W5UxAAAiC3dNBADUSjabTW+//bYGDx4c6lAAALUQ3xEDAAAAAIuRiAEAAACAxfiOGACgVuLKfABAKPGJGAAAAABYjEQMAAAAACxGIgYAAAAAFiMRAwAAAACLkYgBAAAAgMVIxAAAAADAYiRiAAAAAGAxEjEAAAAAsNj/Az0hcHVc1+OFAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import classification_report, confusion_matrix\n", + "from imblearn.over_sampling import SMOTE # <-- Added for SMOTE\n", + "from collections import Counter\n", + "import gym\n", + "from stable_baselines3 import DQN\n", + "from stable_baselines3.common.callbacks import BaseCallback\n", + "\n", + "\n", + "# Load datasets\n", + "import csv\n", + "true_news_df = pd.read_csv('True.csv', quoting=csv.QUOTE_NONE, on_bad_lines='skip')\n", + "false_news_df = pd.read_csv('Fake.csv', quoting=csv.QUOTE_NONE, on_bad_lines='skip')\n", + "\n", + "# Label the datasets\n", + "true_news_df['label'] = 'True'\n", + "false_news_df['label'] = 'False'\n", + "\n", + "# Combine the datasets\n", + "df = pd.concat([true_news_df[['title', 'label']], false_news_df[['title', 'label']]], ignore_index=True)\n", + "\n", + "# Convert text to features (title length)\n", + "df['title_length'] = df['title'].apply(lambda x: len(str(x).split()))\n", + "\n", + "# Create feature and label arrays\n", + "X = df[['title_length']] # Feature\n", + "y = df['label'].apply(lambda x: 1 if x == 'True' else 0) # Label\n", + "\n", + "# Split the data\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "# =============================== #\n", + "# Apply SMOTE to balance classes\n", + "# =============================== #\n", + "smote = SMOTE(random_state=42)\n", + "X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)\n", + "\n", + "# Print class distribution before and after SMOTE\n", + "print(f\"Before SMOTE: {Counter(y_train)}\")\n", + "print(f\"After SMOTE: {Counter(y_train_resampled)}\")\n", + "\n", + "# Visualize class distribution\n", + "fig, ax = plt.subplots(1, 2, figsize=(12, 5))\n", + "sns.countplot(x=y_train, ax=ax[0])\n", + "ax[0].set_title(\"Before SMOTE\")\n", + "ax[0].set_xlabel(\"Label\")\n", + "sns.countplot(x=y_train_resampled, ax=ax[1])\n", + "ax[1].set_title(\"After SMOTE\")\n", + "ax[1].set_xlabel(\"Label\")\n", + "plt.tight_layout()\n", + "plt.show()\n", + "\n", + "# Initialize and train RandomForestClassifier on resampled data\n", + "clf = RandomForestClassifier(n_estimators=100, random_state=42)\n", + "clf.fit(X_train_resampled, y_train_resampled)\n", + "\n", + "# Predict the labels\n", + "y_pred = clf.predict(X_test)\n", + "\n", + "# Print classification report\n", + "print(classification_report(y_test, y_pred))\n", + "\n", + "# Confusion Matrix Visualization\n", + "cm = confusion_matrix(y_test, y_pred)\n", + "plt.figure(figsize=(6, 4))\n", + "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Fake', 'True'], yticklabels=['Fake', 'True'])\n", + "plt.title('Confusion Matrix for MIL Model')\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.show()\n", + "\n", + "# Feature Importance Visualization\n", + "plt.figure(figsize=(8, 6))\n", + "feature_importance = clf.feature_importances_\n", + "plt.barh(X.columns, feature_importance, color='green')\n", + "plt.title('Feature Importance for MIL Model')\n", + "plt.xlabel('Importance')\n", + "plt.show()\n", + "\n", + "# Q-learning Parameters\n", + "n_actions = 2 # Two actions: True or False\n", + "n_states = 10 # Simplified state space\n", + "Q = np.zeros((n_states, n_actions)) # Initialize Q-table\n", + "learning_rate = 0.1\n", + "discount_factor = 0.9\n", + "exploration_rate = 1.0\n", + "exploration_decay = 0.995\n", + "episodes = 1000\n", + "rewards_per_episode = []\n", + "\n", + "# Define reward function\n", + "def reward_function(action, state):\n", + " return 1 if (state % 2 == action) else -1\n", + "\n", + "# Q-learning algorithm\n", + "for episode in range(episodes):\n", + " state = np.random.choice(n_states)\n", + " done = False\n", + " episode_reward = 0\n", + " while not done:\n", + " if np.random.rand() < exploration_rate:\n", + " action = np.random.choice(n_actions)\n", + " else:\n", + " action = np.argmax(Q[state])\n", + " reward = reward_function(action, state)\n", + " episode_reward += reward\n", + " next_state = (state + 1) % n_states\n", + " Q[state, action] = Q[state, action] + learning_rate * (reward + discount_factor * np.max(Q[next_state]) - Q[state, action])\n", + " state = next_state\n", + " if state == 0:\n", + " done = True\n", + " exploration_rate *= exploration_decay\n", + " rewards_per_episode.append(episode_reward)\n", + "\n", + "# Plot Q-values over episodes\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(Q[:, 0], label='Q-values for action 0 (True)', color='blue')\n", + "plt.plot(Q[:, 1], label='Q-values for action 1 (False)', color='red')\n", + "plt.title('Q-Values over Episodes')\n", + "plt.xlabel('State')\n", + "plt.ylabel('Q-value')\n", + "plt.legend()\n", + "plt.show()\n", + "\n", + "# Plot rewards per episode\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(rewards_per_episode)\n", + "plt.title('Total Reward per Episode during Q-learning')\n", + "plt.xlabel('Episode')\n", + "plt.ylabel('Total Reward')\n", + "plt.show()\n", + "\n", + "# Custom environment for news classification\n", + "class NewsEnv(gym.Env):\n", + " def __init__(self):\n", + " super(NewsEnv, self).__init__()\n", + " self.action_space = gym.spaces.Discrete(2)\n", + " self.observation_space = gym.spaces.Box(low=0, high=1, shape=(5,), dtype=np.float32)\n", + " self.state = np.random.rand(5)\n", + "\n", + " def reset(self):\n", + " self.state = np.random.rand(5)\n", + " return self.state\n", + "\n", + " def step(self, action):\n", + " reward = 1 if action == 0 else -1\n", + " done = True\n", + " next_state = np.random.rand(5)\n", + " return next_state, reward, done, {}\n", + "\n", + "# Callback for reward logging\n", + "class RewardLoggerCallback(BaseCallback):\n", + " def __init__(self, verbose=0):\n", + " super(RewardLoggerCallback, self).__init__(verbose)\n", + " self.reward_history = []\n", + "\n", + " def _on_step(self) -> bool:\n", + " rewards = self.locals.get('rewards', [])\n", + " if rewards:\n", + " self.reward_history.append(sum(rewards))\n", + " return True\n", + "\n", + " def get_reward_history(self):\n", + " return self.reward_history\n", + "\n", + "# Train DQN on custom environment\n", + "env = NewsEnv()\n", + "model = DQN('MlpPolicy', env, verbose=1)\n", + "reward_logger = RewardLoggerCallback(verbose=1)\n", + "model.learn(total_timesteps=10000, callback=reward_logger)\n", + "model.save(\"news_dqn_model\")\n", + "\n", + "# Plot training rewards\n", + "reward_history = reward_logger.get_reward_history()\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(reward_history)\n", + "plt.title('Training Reward Distribution during DRL (DQN)')\n", + "plt.xlabel('Episodes')\n", + "plt.ylabel('Reward')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "source": [ + "pip install pandas pyDatalog\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "diSVa-_y2MVH", + "outputId": "9037c331-4545-42bc-ea86-030240b8597b" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (2.2.2)\n", + "Collecting pyDatalog\n", + " Downloading pyDatalog-0.17.4.tar.gz (325 kB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m325.5/325.5 kB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.0.2)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Building wheels for collected packages: pyDatalog\n", + " Building wheel for pyDatalog (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for pyDatalog: filename=pydatalog-0.17.4-cp311-cp311-linux_x86_64.whl size=1549120 sha256=04646175946f61d762ce9bceb6643379d5f01e1f5223a2ed85e4cd13ab56da96\n", + " Stored in directory: /root/.cache/pip/wheels/8f/f8/a0/c12514fe74e5f69d0d8967bd92363ea7a2961589ead1350b1d\n", + "Successfully built pyDatalog\n", + "Installing collected packages: pyDatalog\n", + "Successfully installed pyDatalog-0.17.4\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "from pyDatalog import pyDatalog\n", + "\n", + "# Clear any previous definitions\n", + "pyDatalog.clear()\n", + "\n", + "# Load the SMS Spam Collection dataset\n", + "df = pd.read_csv('spam.csv', encoding='latin-1')[['v1', 'v2']]\n", + "df.columns = ['label', 'message']\n", + "df = df.head(500) # Use subset for clarity\n", + "\n", + "# Create Datalog terms\n", + "pyDatalog.create_terms('MessageText, MsgID, contains_word, is_spam, Label')\n", + "pyDatalog.create_terms('X, W')\n", + "\n", + "# Assert messages and label facts\n", + "for index, row in df.iterrows():\n", + " msg_id = f\"msg{index}\"\n", + " message = row['message'].lower()\n", + " label = row['label'].lower()\n", + "\n", + " pyDatalog.assert_fact('MessageText', msg_id, message)\n", + " pyDatalog.assert_fact('Label', msg_id, label)\n", + "\n", + " # Mark presence of spammy keywords\n", + " for keyword in ['free', 'win', 'offer', 'urgent']:\n", + " if keyword in message:\n", + " pyDatalog.assert_fact('contains_word', msg_id, keyword)\n", + "\n", + "# Define spam detection rule: if message contains spam words\n", + "pyDatalog.create_terms('is_spam')\n", + "is_spam(MsgID) <= contains_word(MsgID, 'free')\n", + "is_spam(MsgID) <= contains_word(MsgID, 'win')\n", + "is_spam(MsgID) <= contains_word(MsgID, 'offer')\n", + "is_spam(MsgID) <= contains_word(MsgID, 'urgent')\n", + "\n", + "# Get predicted spam messages\n", + "predicted_spam = is_spam(MsgID).data\n", + "print(\"Predicted Spam Message IDs:\", predicted_spam)\n", + "\n", + "# Evaluate against true labels\n", + "true_spam_ids = set(f\"msg{idx}\" for idx in df[df['label'] == 'spam'].index)\n", + "predicted_spam_ids = set(msg_id for (msg_id,) in predicted_spam)\n", + "\n", + "# Metrics\n", + "TP = len(predicted_spam_ids & true_spam_ids)\n", + "FP = len(predicted_spam_ids - true_spam_ids)\n", + "FN = len(true_spam_ids - predicted_spam_ids)\n", + "\n", + "precision = TP / (TP + FP + 1e-5)\n", + "recall = TP / (TP + FN + 1e-5)\n", + "\n", + "print(\"\\nEvaluation Metrics:\")\n", + "print(f\"True Positives: {TP}\")\n", + "print(f\"False Positives: {FP}\")\n", + "print(f\"False Negatives: {FN}\")\n", + "print(f\"Precision: {precision:.2f}\")\n", + "print(f\"Recall: {recall:.2f}\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OP66sY4E2LRf", + "outputId": "dcf299c0-25db-4815-9ea4-cc77cfc79125" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Predicted Spam Message IDs: [('msg429',), ('msg120',), ('msg166',), ('msg67',), ('msg423',), ('msg12',), ('msg258',), ('msg295',), ('msg366',), ('msg462',), ('msg398',), ('msg180',), ('msg53',), ('msg380',), ('msg238',), ('msg65',), ('msg2',), ('msg154',), ('msg249',), ('msg356',), ('msg279',), ('msg116',), ('msg417',), ('msg251',), ('msg150',), ('msg485',), ('msg8',), ('msg334',), ('msg336',), ('msg311',), ('msg54',), ('msg159',), ('msg133',), ('msg11',), ('msg42',), ('msg494',), ('msg400',), ('msg5',), ('msg9',), ('msg177',), ('msg171',), ('msg269',), ('msg187',), ('msg388',), ('msg318',), ('msg486',), ('msg267',), ('msg138',), ('msg491',), ('msg95',), ('msg226',), ('msg454',), ('msg179',), ('msg89',), ('msg384',), ('msg75',), ('msg146',), ('msg56',)]\n", + "\n", + "Evaluation Metrics:\n", + "True Positives: 40\n", + "False Positives: 18\n", + "False Negatives: 31\n", + "Precision: 0.69\n", + "Recall: 0.56\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.feature_extraction.text import TfidfVectorizer\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import classification_report, confusion_matrix\n", + "\n", + "# Labels to binary\n", + "df['label_bin'] = df['label'].map({'spam': 1, 'ham': 0})\n", + "\n", + "# TF-IDF vectorization\n", + "vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)\n", + "X_tfidf = vectorizer.fit_transform(df['message'])\n", + "y = df['label_bin']\n", + "\n", + "# Train classifier\n", + "model = LogisticRegression()\n", + "model.fit(X_tfidf, y)\n", + "\n", + "# Predict & Evaluate\n", + "y_pred = model.predict(X_tfidf)\n", + "print(\"\\n🤖 ML Model Evaluation:\")\n", + "print(classification_report(y, y_pred, target_names=['ham', 'spam']))\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Vryjuqk-4TRI", + "outputId": "c1823bf3-cf2f-4723-bfc9-838863c5c742" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "🤖 ML Model Evaluation:\n", + " precision recall f1-score support\n", + "\n", + " ham 0.90 1.00 0.95 429\n", + " spam 1.00 0.32 0.49 71\n", + "\n", + " accuracy 0.90 500\n", + " macro avg 0.95 0.66 0.72 500\n", + "weighted avg 0.91 0.90 0.88 500\n", + "\n" + ] + } + ] + } + ], + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file