diff --git a/README.md b/README.md deleted file mode 100644 index 8f12fcebcf2b993cc7585012e07f986bdc64075a..0000000000000000000000000000000000000000 --- a/README.md +++ /dev/null @@ -1,131 +0,0 @@ - -# 🤖 ML Mavericks – Machine Learning Coursework - -**Course:** Machine Learning / Data Mining -**Group Name:** ML Mavericks -**University:** University of Surrey -**Term:** Spring 2025 - ---- - -## 📌 Project Overview - -This project implements a complete Machine Learning / Data Mining pipeline using Python and Prolog. It covers multiple learning tasks across regression, classification, clustering, logic-based learning (ILP), and reinforcement learning. - -We apply various machine learning algorithms to four different datasets and evaluate their performance using appropriate metrics and visualisations. - ---- - -## 🧪 Datasets Used - -| Dataset Type | Purpose | -|---------------------|----------------------------------| -| Regression (Small) | Used for SVM & Perceptron | -| Regression (Large) | Used for Decision Trees & MLP | -| Classification | Used for SVM & Neural Networks | -| Clustering | Used for KNN & Hierarchical | - ---- - -## 🧠Algorithms Implemented - -| Category | Algorithms | -|--------------------------|------------------------------------------| -| **Regression** | SVM, Decision Tree, Perceptron, MLP | -| **Classification** | SVM, Neural Network | -| **Clustering** | KNN Clustering, Hierarchical Clustering | -| **Logic-Based Learning** | Aleph ILP, FOIL ILP (in Prolog) | -| **Reinforcement Learning** | Q-Learning, Deep Q-Learning (DQL) | - ---- - -## ðŸ—‚ï¸ Project Structure - -``` -ml_mavericks/ -├── data/ # Contains all datasets (.csv) -├── notebooks/ # EDA and initial experiments in Jupyter -├── models/ # Saved ML models (optional) -├── outputs/ # Metrics, plots, ILP & RL outputs -├── src/ # Modular Python code -│ ├── preprocess.py -│ ├── visualize.py -│ ├── regression_models.py -│ ├── classification_models.py -│ ├── clustering_models.py -│ ├── logic_learning_aleph.pl -│ ├── logic_learning_foil.pl -│ ├── reinforcement_q_learning.py -│ ├── reinforcement_dql.py -│ └── evaluate.py -├── main.py # Main pipeline controller -└── requirements.txt # Python dependencies -``` - ---- - -## 🚀 How to Run - -### 1. Install Dependencies - -```bash -pip install -r requirements.txt -``` - -### 2. Run the Pipeline - -Example for regression task using SVM: - -```bash -python main.py --task regression --model svm --dataset regression_small -``` - ---- - -## 📤 View Outputs - -- Evaluation metrics: `/outputs/evaluation_results.csv` -- Visualisations: `/outputs/plots/` -- ILP rule output: `/outputs/logic_output/` -- Reinforcement learning logs: `/outputs/reinforcement_logs/` - ---- - -## ðŸ–¼ï¸ Visualisations - -The pipeline outputs various visual aids: -- Confusion matrices -- Regression error plots -- Clustering dendrograms -- RL training reward curves - ---- - -## 📘 Tools & Technologies - -- **Python 3.x** -- Libraries: `scikit-learn`, `matplotlib`, `seaborn`, `gym`, `stable-baselines3` -- **SWI-Prolog** for ILP (Aleph & FOIL) - ---- - -## 👨â€ðŸ’» Team Members - -**Group Name:** ML Mavericks -- Ritwik Mishra -- Shivasmi Sharma -- Ishwari Niphade -- Arpit Mahapatra -- Suraj Borude - ---- - -## 📌 Project Status - -✅ In development – submitted as coursework for ML module Spring 2025. - ---- - -## 📄 License - -This project is for educational use only.