diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..814104c0fbcc943cfec11bb7c91ab8062c788f57 --- /dev/null +++ b/README.md @@ -0,0 +1,98 @@ + +# ML Mavericks – Machine Learning Coursework + +**Course**: Machine Learning / Data Mining +**Group Name**: ML Mavericks +**University**: University of Surrey +**Term**: Spring 2025 + +--- + +## 📌 Project Overview + +This project implements a complete Machine Learning / Data Mining pipeline using Python and Prolog. It covers multiple learning tasks across regression, classification, clustering, logic-based learning (ILP), and reinforcement learning. +We apply various machine learning algorithms to different datasets and evaluate their performance using appropriate metrics and visualizations. + +--- + +## 🧪 Datasets Used + +| Dataset Type | Purpose | +|----------------------|--------------------------------------| +| Regression (Garment) | Used for SVM, Decision Tree, MLP | +| Regression (Incident)| Used for SVM, Decision Tree, MLP | +| Classification | Used for SVM, Neural Network | +| Clustering | Used for KMeans, Hierarchical | +| ILP | Used Aleph on Census Dataset | +| Reinforcement Learning | Used RL environments in Colab | + +--- + +## 🧠Algorithms Implemented + +- **Regression**: SVM, Decision Tree, MLP +- **Classification**: SVM, Neural Network +- **Clustering**: KMeans, Hierarchical +- **Logic-Based Learning**: ILP (Aleph) +- **Reinforcement Learning**: Q-Learning, Deep Q-Learning + +--- + +## ðŸ—‚ï¸ Repository Structure + +``` +mlmavericks_coursework/ +├── data/ +│ ├── raw/ # Original datasets +│ └── processed/ # Cleaned and transformed datasets +├── media/ # RL video outputs +├── models/ # Saved models (.pkl/.pth) +├── notebooks/ # Jupyter notebooks organized by task +│ ├── classification/ +│ ├── clustering/ +│ ├── regression/ +│ ├── reinforcement learning/ +│ └── induction logic programming (ILP)/ +├── src/ # Utility scripts and functions +├── requirements.txt # Environment dependencies +└── README.md # Project overview +``` + +--- + +## 🚀 How to Run + +### Local (Jupyter): +1. Install dependencies manually or use Anaconda. +2. Open Jupyter Lab/Notebook. +3. Navigate to the desired notebook and run all cells. + +### Google Colab (ILP and RL): +1. Open notebooks in Colab. +2. Install dependencies via `!pip install ...`. +3. Upload relevant data/model files if needed. + +--- + +## 📤 Outputs + +- **Evaluation Metrics**: Notebooks output tables and scores. +- **Plots**: Visualizations of model performance. +- **RL Videos**: `media/rl-video-episode-0.mp4` +- **ILP Rules**: Prolog outputs in ILP notebooks. + +--- + +## 👨â€ðŸ’» Team Members + +- Ritwik Mishra +- Shivasmi Sharma +- Ishwari Niphade +- Arpit Mahapatra +- Suraj Borude + +--- + +## 📄 License + +This project is for educational purposes only.