""" Module that contains functionality to plot some properties of (binary) systems. Different routines are defined here to plot orbits, masses, angular momenta etc. Structure of file: custom logging strings parsing functions plotting functions master function: plot_system All the loose components here can of course be used in other routines if you want. There is no pre loaded matplotlib rc, you should do that yourself These plotting routines are designed for binary systems, and admittedly they are here mostly for inspirational purposes, since one would probably want to customise the plots. Regardless, having some plotting routines in here seemed like a nice idea Tasks TODO: This module is not finished yet. TODO: Make modules for single system TODO: Put all the plotting functions in here """ import math import pandas as pd import numpy as np import astropy.constants as const import matplotlib.pyplot as plt from binarycpython.utils.functions import output_lines from binarycpython.utils.run_system_wrapper import run_system from binarycpython.utils.custom_logging_functions import binary_c_log_code # Define the custom_logging_strings. # These are kept to the minimum necessary for each plotting routine. CUSTOM_LOGGING_STRING_MASSES = """ Printf("MASS_PLOTTING %30.12e %g %g %g %g %g %g\\n", // stardata->model.time, // 1 // masses stardata->common.zero_age.mass[0], // stardata->common.zero_age.mass[1], // stardata->star[0].mass, stardata->star[1].mass, stardata->star[0].core_mass[ID_core(stardata->star[0].stellar_type)], stardata->star[1].core_mass[ID_core(stardata->star[1].stellar_type)] ); """ CUSTOM_LOGGING_STRING_ORBIT = """ Printf("ORBIT_PLOTTING %30.12e %g %g %g\\n", // stardata->model.time, // 1 // orbit elements stardata->common.orbit.period, //2 stardata->common.orbit.separation, //3 stardata->common.orbit.eccentricity //4 ); """ CUSTOM_LOGGING_STRING_HR_DIAGRAM = """ Printf("HR_PLOTTING %30.12e %d %d %g %g %g %g %g %g\\n", // stardata->model.time, // 1 // stellar types stardata->star[0].stellar_type, //2 stardata->star[1].stellar_type, //3 // luminosity and radii stardata->star[0].luminosity, // 4 stardata->star[1].luminosity, // 5 stardata->star[0].radius, // 6 stardata->star[1].radius, // 7 // masses stardata->common.zero_age.mass[0], // 8 stardata->common.zero_age.mass[1] // 9 ); """ def color_by_index(row, column, colors): """ Function that returns a color based on row and column information. Used to color the stellar types """ return colors[int(row[column])] def plot_HR_diagram( df, show_stellar_types: bool = False, show_plot: bool = True, use_astropy_values: bool = True, ): """ Function to plot the HR diagram evolution of the system. Assumes its a binary system. For a single star see plot_HR_diagram_single Plot shows Log luminosity on y axis, log temperature on x axis (reversed) requires: - time - stellar_type_1 - stellar_type_2 - radius_1 - radius_2 - luminosity_1 - luminosity_2 Plots: - luminosity_1 vs teff_1 - luminosity_2 vs teff_2 Tasks: - TODO: add HD limit - TODO: add lines of constant radius Args: df: pandas dataframe with the required columns show_stellar_types: whether to color code the tracks and show the stellar types show_plot: whether to actually show the plot. If false: returns the figure object use_astropy_values: Whether to use astropy values for for Rsun, Lsun and stefan boltzman constant. Returns returns a figure object if show_plot is false """ # prefactor = (1/(4 * math.pi * omega_sb))**(1.0/4) # prefactor_approx = 1000 * (1130)**(1.0/4) * ((R_SUN**2)/L_SUN)**(1.0/4) if use_astropy_values: R_SUN = const.R_sun.cgs.value L_SUN = const.L_sun.cgs.value omega_sb = const.sigma_sb.cgs.value print( "Using astropy values: R_SUN= {} L_SUN = {} omega_sb = {}".format( R_SUN, L_SUN, omega_sb ) ) else: R_SUN = 6.956600000000000000000000000000e10 L_SUN = 3.851500000000000274321803705319e33 omega_sb = 5.670352798655924736991040813194e-05 print( "Using binary_c values: R_SUN= {} L_SUN = {} omega_sb = {}".format( R_SUN, L_SUN, omega_sb ) ) prefactor = (1 / (4 * math.pi * omega_sb)) ** (1.0 / 4) if show_stellar_types: fig, _ = plt.subplots(ncols=1, nrows=1, figsize=(20, 20)) # fig, colors = add_stellar_types_bar(df, fig, ax_index=-1, only_colorbar=True) else: fig, _ = plt.subplots(ncols=1, nrows=1, figsize=(20, 20)) df = df.assign( teff_1=prefactor * ((df["luminosity_1"] * L_SUN) / ((df["radius_1"] * R_SUN) ** 2)) ** (1.0 / 4) ) df = df.assign( teff_2=prefactor * ((df["luminosity_2"] * L_SUN) / ((df["radius_2"] * R_SUN) ** 2)) ** (1.0 / 4) ) # # Add colors to dataframe # df = df.assign(colors_1=df.apply(color_by_index, axis=1, args=('stellar_type_1', colors))) # df = df.assign(colors_2=df.apply(color_by_index, axis=1, args=('stellar_type_2', colors))) # Star 1: fig.axes[0].scatter( df["teff_1"], df["luminosity_1"], label="Star 1 (M={})".format(df["pms_mass_1"].values.tolist()[0]), # color=df['colors_1'] ) # Star 2: fig.axes[0].scatter( df["teff_2"], df["luminosity_2"], label="Star 2 (M={})".format(df["pms_mass_2"].values.tolist()[0]), # color=df['colors_2'] ) margin_fraction_x = 0.1 margin_fraction_y = 0.9 # Fix axes min_y, max_y = ( df[["luminosity_1", "luminosity_2"]].min().min(), df[["luminosity_1", "luminosity_2"]].max().max(), ) min_x, max_x = ( df[["teff_1", "teff_2"]].min().min(), df[["teff_1", "teff_2"]].max().max(), ) fig.axes[0].set_xlim( min_x * (1 - margin_fraction_x), max_x * (1 + margin_fraction_x) ) fig.axes[0].set_ylim( min_y * (1 - margin_fraction_y), max_y * (1 + margin_fraction_y) ) fig.axes[0].set_yscale("log") fig.axes[0].set_xscale("log") fig.axes[0].invert_xaxis() # Other stuff fig.axes[0].set_title("HR diagram") fig.axes[0].legend(loc="best") fig.axes[0].set_ylabel(r"Luminosity [$L_{star}$/$L_{\odot}$]") fig.axes[0].set_xlabel(r"$T_{eff}$ (K)") # Show or return if show_plot: plt.show() return fig def plot_orbit(df, show_stellar_types: bool = False, show_plot: bool = True): """ Function to plot the orbital elements of the system Plots the following quantities: - Orbital period - Separation - eccentricity TODO: fix stellar_types plot Args: df: pandas dataframe with the required columns show_stellar_types: whether to color code the tracks and show the stellar types show_plot: whether to actually show the plot. If false: returns the figure object Returns returns a figure object if show_plot is false """ if show_stellar_types: fig, _ = plt.subplots(ncols=1, nrows=4, figsize=(20, 10)) fig.subplots_adjust(hspace=0) else: fig, _ = plt.subplots(ncols=1, nrows=3, figsize=(20, 10), sharex=True) fig.subplots_adjust(hspace=0) # fig.axes[0].plot(df["time"], df["orbital_period"], label="Orbital period") fig.axes[1].plot(df["time"], df["separation"], label="Separation orbit") fig.axes[2].plot(df["time"], df["eccentricity"], label="Eccentricity orbit") # Make up fig.axes[0].set_title("Orbital elements evolution") fig.axes[0].legend(loc="best") fig.axes[1].legend(loc="best") fig.axes[2].legend(loc="best") # fig.axes[0].set_ylim(0, 1.1*max_total_mass) fig.axes[0].set_ylabel(r"Orbital period") fig.axes[1].set_ylabel(r"Separation") fig.axes[2].set_ylabel(r"Eccentricity") fig.axes[0].set_yscale("log") fig.axes[1].set_yscale("log") fig.axes[2].set_xlabel(r"Time (Myr)") # Show or return if show_plot: plt.show() return fig def plot_masses(df, show_stellar_types: bool = False, show_plot: bool = True): """ Function to plot the masses of the system. Function requires the following keys: - time - pms_mass_1 - pms_mass_2 - mass_1 - mass_2 Plots the following quantities: - Total mass - Mass star 1 - Mass star 2 - Pms mass 1 - pms mass 2 - pms total mass - (maybe?) core and env masses TODO: fix stellar_types plot Args: df: pandas dataframe with the required columns show_stellar_types: whether to color code the tracks and show the stellar types show_plot: whether to actually show the plot. If false: returns the figure object Returns returns a figure object if show_plot is false """ if show_stellar_types: fig, _ = plt.subplots(ncols=1, nrows=2, figsize=(20, 10)) fig.subplots_adjust(hspace=0) else: fig, _ = plt.subplots(ncols=1, nrows=1, figsize=(20, 10)) max_total_mass = ( df["pms_mass_1"].values.tolist()[0] + df["pms_mass_2"].values.tolist()[0] ) df["total_mass_temp"] = df["mass_1"] + df["mass_2"] df["pms_total_mass_temp"] = max_total_mass # total mass fig.axes[0].plot(df["time"], df["total_mass_temp"], label="Total mass") fig.axes[0].axhline( df["pms_total_mass_temp"].values.tolist()[0], label="Initial total mass", linestyle="--", alpha=0.5, ) # Mass 1 fig.axes[0].plot(df["time"], df["mass_1"], label="star 1", color="red") fig.axes[0].axhline( df["pms_mass_1"].values.tolist()[0], color="red", linestyle="--", linewidth=2, label="Initial mass 1", alpha=0.5, ) fig.axes[0].plot( df["time"], df["core_mass_1"], color="red", linestyle="-.", linewidth=2, label="Core mass 1", alpha=0.5, ) # mass 2 fig.axes[0].plot(df["time"], df["mass_2"], color="orange", label="star 2") fig.axes[0].axhline( df["pms_mass_2"].values.tolist()[0], color="orange", linestyle="--", linewidth=2, label="Initial mass 2", alpha=0.5, ) fig.axes[0].plot( df["time"], df["core_mass_2"], color="orange", linestyle="-.", linewidth=2, label="Core mass 2", alpha=0.5, ) # Make up fig.axes[0].set_title("Stellar mass evolution") fig.axes[0].legend(loc="best") fig.axes[0].set_ylim(0, 1.1 * max_total_mass) fig.axes[0].set_ylabel(r"Mass [$M_{\odot}$]") fig.axes[0].set_xlabel(r"Time (Myr)") # Show or return if show_plot: plt.show() return fig # Define the parse functions for the plotting routines def dummy(): """ Placeholder function """ return None def parse_function_hr_diagram(output: str): """ Parsing function for the HR plotting routine Args: output: raw binary_c output string Returns: pandas dataframe containing the columns for the HR diagram plotting routine """ # extract info from the single evolution values_list = [] parameters = [ "time", "stellar_type_1", "stellar_type_2", "luminosity_1", "luminosity_2", "radius_1", "radius_2", "pms_mass_1", "pms_mass_2", ] # Go over the output. for line in output_lines(output): headerline = line.split()[0] # Check the header and act accordingly if headerline == "HR_PLOTTING": values = line.split()[1:] values_list.append(values) df = pd.DataFrame(values_list) df.columns = parameters df = df.astype(np.float64) df["stellar_type_1"] = df["stellar_type_1"].astype(np.int64) df["stellar_type_2"] = df["stellar_type_2"].astype(np.int64) return df def parse_function_orbit(output: str): """ Parsing function for the orbit plotting routine Args: output: raw binary_c output string Returns: pandas dataframe containing the columns for the orbit plotting routine """ values_list = [] parameters = [ "time", "orbital_period", "separation", "eccentricity", ] # Go over the output. for line in output_lines(output): headerline = line.split()[0] # Check the header and act accordingly if headerline == "ORBIT_PLOTTING": values = line.split()[1:] values_list.append(values) df = pd.DataFrame(values_list) df.columns = parameters df = df.astype(np.float64) return df def parse_function_masses(output: str): """ Parsing function for the orbit plotting routine Args: output: raw binary_c output string Returns: pandas dataframe containing the columns for the masses plotting routine """ values_list = [] parameters = [ "time", "pms_mass_1", "pms_mass_2", "mass_1", "mass_2", "core_mass_1", "core_mass_2", ] # Go over the output. for line in output_lines(output): headerline = line.split()[0] # Check the header and act accordingly if headerline == "MASS_PLOTTING": values = line.split()[1:] values_list.append(values) df = pd.DataFrame(values_list) df.columns = parameters df = df.astype(np.float64) return df def plot_system(plot_type, **kwargs): """ Function to plot the different quantities of a system. This goes (in general) via the following steps: - a preset custom logging for a specific plotting routine is loaded, depending on the choice of plot_type - This is used for the run_system call - The output of this run_system is loaded into a dataframe by parsing it with a corresponding parsing function - The dataframe is passed to the plotting routine - plot is shown or returned. There are several pre-set plots to choose from: - mass_evolution - orbit_evolution - hr_diagram All keywords are considered kwargs, except for plot_type Args: plot_type: string input should be one of ['mass_evolution', 'orbit_evolution', 'hr_diagram']. Input will be matched against this, and then go through a dictionary to pick the correct plotting function. show_plot: boolean whether to show the plot. If False it returns the figure object (makes so that you can customize it) show_stellar_types: whether to plot the stellar type evolution on a second pane. This is not included in all the plotting routines. Other input: other kwargs that are passed to run_system (inspect the docstring of run_system for more info) Returns: returns a object figure if show_plot = false """ # set defaults and options show_plot = False show_stellar_types = False plot_types_dict = { "mass_evolution": { "plot_function": plot_masses, "custom_logging_string": CUSTOM_LOGGING_STRING_MASSES, "parse_function": parse_function_masses, }, "orbit_evolution": { "plot_function": plot_orbit, "custom_logging_string": CUSTOM_LOGGING_STRING_ORBIT, "parse_function": parse_function_orbit, }, "hr_diagram": { "plot_function": plot_HR_diagram, "custom_logging_string": CUSTOM_LOGGING_STRING_HR_DIAGRAM, "parse_function": parse_function_hr_diagram, }, } plot_system_specific_keywords = ["plot_type", "show_plot", "show_stellar_types"] # First check on the plot_type input if not plot_type in plot_types_dict: print( "Warning, the provided plot type is not known. \ Please choose one from the following:\n\t{}".format( plot_types_dict.keys() ) ) raise ValueError # First: check all the arguments. Chosen to not check all the keywords for run_system # and binary_c specifically, but just to pick out the ones needed for this routine. # run_system will handle the rest run_system_arg_dict = {} for key, value in kwargs.items(): if key == "show_plot": show_plot = value elif key == "show_stellar_types": show_stellar_types = value # The rest will be passed to run_system else: run_system_arg_dict[key] = value # TODO: When a list of plot_types is passed, make it so that the strings are chained, # and that the output of the binary_c call is handled by multiple parsers custom_logging_code = binary_c_log_code( plot_types_dict[plot_type]["custom_logging_string"] ) run_system_arg_dict["custom_logging_code"] = custom_logging_code run_system_arg_dict["parse_function"] = plot_types_dict[plot_type]["parse_function"] # Run and get the output of the parse stellar_type_dict_shortfunction binary_c_output_df = run_system(**run_system_arg_dict) fig = plot_types_dict[plot_type]["plot_function"]( binary_c_output_df, show_plot=show_plot, show_stellar_types=show_stellar_types ) return fig