""" Collection of useful functions. Part of this is copied/inspired by Rob's binary_stars module Functions: - calc_period_from_sep(m1, m2, sep) calculate the period given the separation. - calc_sep_from_period(m1, m2, per) does the inverse. - rzams(m, z) gives you the ZAMS radius of a star - ZAMS_collision(m1, m2, e, sep, z) returns 1 if stars collide on the ZAMS - roche_lobe(q): returns roche lobe radius in units of separation - ragb(m, z): radius at first thermal pulse Tasks: - TODO: check whether these functions are correct """ import math import re from typing import Union from binarycpython import _binary_c_bindings from binarycpython.utils.functions import create_arg_string AURSUN = 2.150445198804013386961742071435e02 YEARDY = 3.651995478818308811241877265275e02 def minimum_period_for_RLOF(M1, M2, metallicity, store_memaddr=-1): """ Wrapper function for _binary_c_bindings.return_minimum_orbit_for_RLOF Handles the output and returns the minimum orbital period at which RLOF just does not occur at zams Args: M1: Primary mass in solar mass M2: Secondary mass in solar mass metallicity: metallicity store_memaddr (optional): store memory adress Returns: minimum orbital_period that just does not cause a RLOF at ZAMS """ bse_dict = {"M_1": M1, "M_2": M2, "metallicity": metallicity, "minimum_orbital_period_for_instant_RLOF": 1, "minimum_separation_for_instant_RLOF": 1} argstring = "binary_c " + create_arg_string(bse_dict) output = _binary_c_bindings.return_minimum_orbit_for_RLOF(argstring, store_memaddr) minimum_period = float(re.search('MINIMUM PERIOD (.*)', output).group(1)) return minimum_period # print(minimum_period_for_RLOF(10, 5, 0.02)) # print(minimum_period_for_RLOF(10, 2, 0.02)) def minimum_separation_for_RLOF(M1, M2, metallicity, store_memaddr=-1): """ Wrapper function for _binary_c_bindings.return_minimum_orbit_for_RLOF Handles the output and returns the minimum separation at which RLOF just does not occur at ZAMS Args: M1: Primary mass in solar mass M2: Secondary mass in solar mass metallicity: metallicity store_memaddr (optional): store memory adress Returns: minimum separation that just does not cause a RLOF at ZAMS """ bse_dict = {"M_1": M1, "M_2": M2, "metallicity": metallicity, "minimum_orbital_period_for_instant_RLOF": 1, "minimum_separation_for_instant_RLOF": 1} argstring = "binary_c " + create_arg_string(bse_dict) output = _binary_c_bindings.return_minimum_orbit_for_RLOF(argstring, store_memaddr) minimum_separation = float(re.search('MINIMUM SEPARATION (.*)', output).group(1)) return minimum_separation # print(minimum_separation_for_RLOF(0.08, 0.08, 0.00002)) # print(minimum_separation_for_RLOF(10, 2, 0.02)) def calc_period_from_sep( M1: Union[int, float], M2: Union[int, float], sep: Union[int, float] ) -> Union[int, float]: """ calculate period from separation Args: M1: Primary mass in solar mass M2: Secondary mass in solar mass sep: Separation in solar radii Returns: period in days """ return YEARDY * (sep / AURSUN) * math.sqrt(sep / (AURSUN * (M1 + M2))) def calc_sep_from_period( M1: Union[int, float], M2: Union[int, float], period: Union[int, float] ) -> Union[int, float]: """ Calculate separation from period. Args: M1: Primary mass in solar mass M2: Secondary mass in solar mass period: Period of binary in days Returns: Separation in solar radii """ return AURSUN * (period * period * (M1 + M2) / (YEARDY * YEARDY)) ** (1.0 / 3.0) def roche_lobe(q: Union[int, float]) -> Union[int, float]: """ A function to evaluate R_L/a(q), Eggleton 1983. # TODO: check the definition of the mass ratio # TODO: check whether the logs are correct Args: q: mass ratio of the binary (secondary/primary). If you input: q = mass_accretor/mass_donor, you will get the rochelobe radius of the accretor. And vice versa for the donor. Returns: Roche lobe radius in units of the separation """ p = q ** (1.0 / 3.0) return 0.49 * p * p / (0.6 * p * p + math.log(1.0 + p)) def ragb(m: Union[int, float], z: Union[int, float]) -> Union[int, float]: """ Function to calculate radius of a star in units of solar radii at first thermal pulse as a function of mass (Z=0.02 only, but also good for Z=0.0001) TODO: ask rob about this function Args: m: mass of star in units of solar mass z: metallicity of star Returns: radius at first thermal pulse in units of solar radii """ return m * 40.0 + 20.0 def zams_collision( m1: Union[int, float], m2: Union[int, float], sep: Union[int, float], e: Union[int, float], z: Union[int, float], ) -> Union[int, float]: """ given m1,m2, separation and eccentricity (and metallicity) determine if two stars collide on the ZAMS Args: m1: Primary mass in solar mass m2: Secondary mass in solar mass sep: separation in solar radii e: eccentricity z: metallicity Returns: integer boolean whether the binary stars will collide at pericenter """ # calculate periastron distance peri_distance = (1.0 - e) * sep # calculate star radii r1 = rzams(m1, z) r2 = rzams(m2, z) if r1 + r2 > peri_distance: return 1 return 0 def rzams(m, z): """ Function to determine the radius of a ZAMS star as a function of m and z: Based on the fits of Tout et al., 1996, MNRAS, 281, 257 Args: m: mass of star in solar mass z: metallicity Returns: radius of star at ZAMS, in solar radii """ lzs = math.log10(z / 0.02) # # A function to evaluate Rzams # ( from Tout et al., 1996, MNRAS, 281, 257 ). # p = {} xz = ( 666, 0.39704170, -0.32913574, 0.34776688, 0.37470851, 0.09011915, 8.52762600, -24.41225973, 56.43597107, 37.06152575, 5.45624060, 0.00025546, -0.00123461, -0.00023246, 0.00045519, 0.00016176, 5.43288900, -8.62157806, 13.44202049, 14.51584135, 3.39793084, 5.56357900, -10.32345224, 19.44322980, 18.97361347, 4.16903097, 0.78866060, -2.90870942, 6.54713531, 4.05606657, 0.53287322, 0.00586685, -0.01704237, 0.03872348, 0.02570041, 0.00383376, 1.71535900, 0.62246212, -0.92557761, -1.16996966, -0.30631491, 6.59778800, -0.42450044, -12.13339427, -10.73509484, -2.51487077, 10.08855000, -7.11727086, -31.67119479, -24.24848322, -5.33608972, 1.01249500, 0.32699690, -0.00923418, -0.03876858, -0.00412750, 0.07490166, 0.02410413, 0.07233664, 0.03040467, 0.00197741, 0.01077422, 3.08223400, 0.94472050, -2.15200882, -2.49219496, -0.63848738, 17.84778000, -7.45345690, -48.96066856, -40.05386135, -9.09331816, 0.00022582, -0.00186899, 0.00388783, 0.00142402, -0.00007671, ) p["8"] = xz[36] + lzs * (xz[37] + lzs * (xz[38] + lzs * (xz[39] + lzs * xz[40]))) p["9"] = xz[41] + lzs * (xz[42] + lzs * (xz[43] + lzs * (xz[44] + lzs * xz[45]))) p["10"] = xz[46] + lzs * (xz[47] + lzs * (xz[48] + lzs * (xz[49] + lzs * xz[50]))) p["11"] = xz[51] + lzs * (xz[52] + lzs * (xz[53] + lzs * (xz[54] + lzs * xz[55]))) p["12"] = xz[56] + lzs * (xz[57] + lzs * (xz[58] + lzs * (xz[59] + lzs * xz[60]))) p["13"] = xz[61] p["14"] = xz[62] + lzs * (xz[63] + lzs * (xz[64] + lzs * (xz[65] + lzs * xz[66]))) p["15"] = xz[67] + lzs * (xz[68] + lzs * (xz[69] + lzs * (xz[70] + lzs * xz[71]))) p["16"] = xz[72] + lzs * (xz[73] + lzs * (xz[74] + lzs * (xz[75] + lzs * xz[76]))) m195 = m ** 19.5 rad = ( p["8"] * (m ** 2.5) + p["9"] * (m ** 6.5) + p["10"] * (m ** 11) + p["11"] * (m ** 19) + p["12"] * m195 ) / ( p["13"] + p["14"] * (m * m) + p["15"] * (m ** 8.5) + (m ** 18.5) + p["16"] * m195 ) return rad