"""
Module containing most of the utility functions for the binarycpython package

Functions here are mostly functions used in other classes/functions, or
useful functions for the user

Tasks:
    - TODO: change all prints to verbose_prints
"""

import json
import os
import tempfile
import copy
import inspect
import sys

from io import StringIO
from typing import Union, Any
from collections import defaultdict

import h5py
import numpy as np


from binarycpython import _binary_c_bindings
import binarycpython.utils.moe_distefano_data as moe_distefano_data

import py_rinterpolate

########################################################
# Unsorted
########################################################
def convert_bytes(size):
    """
    Function to return the size + a magnitude string
    """

    for x in ['bytes', 'KB', 'MB', 'GB', 'TB']:
        if size < 1024.0:
            return "%3.1f %s" % (size, x)
        size /= 1024.0

    return size

def get_size(obj, seen=None):
    """
    Recursively finds size of objects

    From https://github.com/bosswissam/pysize
    """

    size = sys.getsizeof(obj)
    if seen is None:
        seen = set()
    obj_id = id(obj)
    if obj_id in seen:
        return 0
    # Important mark as seen *before* entering recursion to gracefully handle
    # self-referential objects
    seen.add(obj_id)
    if isinstance(obj, dict):
        size += sum([get_size(v, seen) for v in obj.values()])
        size += sum([get_size(k, seen) for k in obj.keys()])
    elif hasattr(obj, '__dict__'):
        size += get_size(obj.__dict__, seen)
    elif hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes, bytearray)):
        size += sum([get_size(i, seen) for i in obj])
    return size

def subtract_dicts(dict_1: dict, dict_2: dict) -> dict:
    """
    Function to subtract two dictionaries.

    Only allows values to be either a dict or a numerical type

    For the overlapping keys (key name present in both dicts):
        When the keys are of the same type:
            - If the types are of numerical type: subtract the value at dict 2 from dict 1.
            - If the types are both dictionaries: call this function with the subdicts

        WHen the keys are not of the same type:
            - if the keys are all of numerical types

    For the unique keys:
        - if the key is from dict 1: adds the value to the new dict (be it numerical value or dict)
        - If the key is from dict 2: Adds the negative of its value in case of numerical type.
            if the type is a dict, the result of subtract_dicts({}, dict_2[key]) will be set

    If the result is 0, the key will be removed from the resulting dict.
    If that results in an empty dict, the dict will be removed too.

    Args:
        dict_1: first dictionary
        dict_2: second dictionary

    Returns:
        Subtracted dictionary
    """

    # Set up new dict
    new_dict = {}

    # Define allowed numerical types
    ALLOWED_NUMERICAL_TYPES = (float, int, np.float64)

    #
    keys_1 = dict_1.keys()
    keys_2 = dict_2.keys()

    # Find overlapping keys of both dicts
    overlapping_keys = set(keys_1).intersection(set(keys_2))

    # Find the keys that are unique
    unique_to_dict_1 = set(keys_1).difference(set(keys_2))
    unique_to_dict_2 = set(keys_2).difference(set(keys_1))

    # Add the unique keys to the new dict
    for key in unique_to_dict_1:
        # If these items are numerical types
        if isinstance(dict_1[key], ALLOWED_NUMERICAL_TYPES):
            new_dict[key] = dict_1[key]
            if new_dict[key] == 0:
                del new_dict[key]

        # Else, to be safe we should deepcopy them
        elif isinstance(dict_1[key], dict):
            copy_dict = copy.deepcopy(dict_1[key])
            new_dict[key] = copy_dict
        else:
            msg = "Error: using unsupported type for key {}: {}".format(
                key, type(dict_1[key])
            )
            print(msg)
            raise ValueError(msg)

    # Add the unique keys to the new dict
    for key in unique_to_dict_2:
        # If these items are numerical type, we should add the negative of the value
        if isinstance(dict_2[key], ALLOWED_NUMERICAL_TYPES):
            new_dict[key] = -dict_2[key]
            if new_dict[key] == 0:
                del new_dict[key]

        # Else we should place the negative of that dictionary in the new place
        elif isinstance(dict_2[key], dict):
            new_dict[key] = subtract_dicts({}, dict_2[key])
        else:
            msg = "Error: using unsupported type for key {}: {}".format(
                key, type(dict_2[key])
            )
            print(msg)
            raise ValueError(msg)

    # Go over the common keys:
    for key in overlapping_keys:

        # See whether the types are actually the same
        if not type(dict_1[key]) is type(dict_2[key]):
            # Exceptions:
            if (type(dict_1[key]) in ALLOWED_NUMERICAL_TYPES) and (
                type(dict_2[key]) in ALLOWED_NUMERICAL_TYPES
            ):
                # We can safely subtract the values since they are all numeric
                new_dict[key] = dict_1[key] - dict_2[key]
                if new_dict[key] == 0:
                    del new_dict[key]

            else:
                print(
                    "Error key: {} value: {} type: {} and key: {} value: {} type: {} are not of the same type and cannot be merged".format(
                        key,
                        dict_1[key],
                        type(dict_1[key]),
                        key,
                        dict_2[key],
                        type(dict_2[key]),
                    )
                )
                raise ValueError

        # This is where the keys are the same
        else:
            # If these items are numeric types
            if isinstance(dict_1[key], ALLOWED_NUMERICAL_TYPES):
                new_dict[key] = dict_1[key] - dict_2[key]

                # Remove entry if the value is 0
                if new_dict[key] == 0:
                    del new_dict[key]

            # Else, to be safe we should deepcopy them
            elif isinstance(dict_1[key], dict):
                new_dict[key] = subtract_dicts(dict_1[key], dict_2[key])

                # Remove entry if it results in an empty dict
                # TODO: write test to prevent empty dicts from showing up
                if not new_dict[key]:
                    del new_dict[key]
            else:
                msg = "Error: using unsupported type for key {}: {}".format(
                    key, type(dict_2[key])
                )
                print(msg)
                raise ValueError(msg)

    #
    return new_dict


def get_moe_distefano_dataset(options):
    """
    Function to get the default moe and Distefano dataset or accept a userinput.
    """

    if not options.get("file", None):
        print("Using the default Moe and de Stefano 2017 datafile")

        json_data = copy.deepcopy(moe_distefano_data.moe_distefano_2017_data)

    else:
        if not os.path.isfile(options["file"]):
            print(
                "The provided 'file' Moe and de Stefano JSON file does not seem to exist at {}".format(
                    options["file"]
                )
            )
            raise ValueError
        if not options["file"].endswith(".json"):
            print("Provided filename does not end with .json")

        else:
            # Read input data and Clean up the data if there are whitespaces around the keys
            with open(options["file"], "r") as data_filehandle:
                datafile_data = data_filehandle.read()
            datafile_data = datafile_data.replace('" ', '"')
            datafile_data = datafile_data.replace(' "', '"')
            datafile_data = datafile_data.replace(' "', '"')
            json_data = json.loads(datafile_data)

    return json_data


def imports():
    for name, val in globals().items():
        if isinstance(val, types.ModuleType):
            yield val.__name__


class catchtime(object):
    """
    Context manager to calculate time spent
    """

    def __enter__(self):
        """On entry we start the clock"""
        self.t = time.clock()
        return self

    def __exit__(self, type, value, traceback):
        """On exit we stop the clock and measure the time spent"""
        self.t = time.clock() - self.t
        print("Took {}s".format(self.t))


def is_capsule(o):
    """
    Function to tell whether object is a capsule
    """

    t = type(o)
    return t.__module__ == "builtins" and t.__name__ == "PyCapsule"


class Capturing(list):
    """
    Context manager to capture output and store it
    """

    def __enter__(self):
        """On entry we capture the stdout output"""

        self._stdout = sys.stdout
        sys.stdout = self._stringio = StringIO()
        return self

    def __exit__(self, *args):
        """On exit we release the capture again"""

        self.extend(self._stringio.getvalue().splitlines())
        del self._stringio  # free up some memory
        sys.stdout = self._stdout


########################################################
# utility functions
########################################################


def verbose_print(message: str, verbosity: int, minimal_verbosity: int) -> None:
    """
    Function that decides whether to print a message based on the current verbosity
    and its minimum verbosity

    if verbosity is equal or higher than the minimum, then we print

    Args:
        message: message to print
        verbosity: current verbosity level
        minimal_verbosity: threshold verbosity above which to print
    """

    if verbosity >= minimal_verbosity:
        print(message)


def remove_file(file: str, verbosity: int = 0) -> None:
    """
    Function to remove files but with verbosity

    Args:
        file: full filepath to the file that will be removed.
        verbosity: current verbosity level (Optional)

    Returns:
        the path of a subdirectory called binary_c_python in the TMP of the filesystem

    """

    if os.path.exists(file):
        if not os.path.isfile(file):
            verbose_print(
                "This path ({}) is a directory, not a file".format(file), verbosity, 0
            )

        try:
            verbose_print("Removed {}".format(file), verbosity, 1)
            os.remove(file)

        except FileNotFoundError as inst:
            print("Error while deleting file {}: {}".format(file, inst))
    else:
        verbose_print(
            "File/directory {} doesn't exist. Can't remove it.".format(file),
            verbosity,
            1,
        )


def temp_dir(*args: str) -> str:
    """
    Function to create directory within the TMP directory of the filesystem

    Makes use of os.makedirs exist_ok which requires python 3.2+

    Args:
        function arguments: str input where each next input will be a child of the previous full_path. e.g. temp_dir('tests', 'grid') will become '/tmp/binary_c_python/tests/grid'

    Returns:
        the path of a subdirectory called binary_c_python in the TMP of the filesystem
    """

    tmp_dir = tempfile.gettempdir()
    path = os.path.join(tmp_dir, "binary_c_python")

    # loop over the other paths if there are any:
    if args:
        for extra_dir in args:
            path = os.path.join(path, extra_dir)

    #
    os.makedirs(path, exist_ok=True)

    return path


def create_hdf5(data_dir: str, name: str) -> None:
    """
    Function to create an hdf5 file from the contents of a directory:
     - settings file is selected by checking on files ending on settings
     - data files are selected by checking on files ending with .dat

    TODO: fix missing settingsfiles

    Args:
        data_dir: directory containing the data files and settings file
        name: name of hdf5file.

    """

    # Make HDF5:
    # Create the file
    hdf5_filename = os.path.join(data_dir, "{}".format(name))
    print("Creating {}".format(hdf5_filename))
    hdf5_file = h5py.File(hdf5_filename, "w")

    # Get content of data_dir
    content_data_dir = os.listdir(data_dir)

    # Settings
    if any([file.endswith("_settings.json") for file in content_data_dir]):
        print("Adding settings to HDF5 file")
        settings_file = os.path.join(
            data_dir,
            [file for file in content_data_dir if file.endswith("_settings.json")][0],
        )

        with open(settings_file, "r") as settings_file:
            settings_json = json.load(settings_file)

        # Create settings group
        settings_grp = hdf5_file.create_group("settings")

        # Write version_string to settings_group
        settings_grp.create_dataset("used_settings", data=json.dumps(settings_json))

    # Get data files
    data_files = [el for el in content_data_dir if el.endswith(".dat")]
    if data_files:
        print("Adding data to HDF5 file")

        # Create the data group
        data_grp = hdf5_file.create_group("data")

        # Write the data to the file:
        # Make sure:
        for data_file in data_files:
            # filename stuff
            filename = data_file
            full_path = os.path.join(data_dir, filename)
            base_name = os.path.splitext(os.path.basename(filename))[0]

            # Get header info
            header_name = "{base_name}_header".format(base_name=base_name)
            data_headers = np.genfromtxt(full_path, dtype="str", max_rows=1)
            data_headers = np.char.encode(data_headers)
            data_grp.create_dataset(header_name, data=data_headers)

            # Add data
            data = np.loadtxt(full_path, skiprows=1)
            data_grp.create_dataset(base_name, data=data)

        hdf5_file.close()


########################################################
# version_info functions
########################################################


def return_binary_c_version_info(parsed: bool = False) -> Union[str, dict]:
    """
    Function that returns the version information of binary_c. This function calls the function
    _binary_c_bindings.return_version_info()

    Args:
        parsed: Boolean flag whether to parse the version_info output of binary_c. default = False

    Returns:
        Either the raw string of binary_c or a parsed version of this in the form of a nested
        dictionary
    """

    found_prev = False
    if "BINARY_C_MACRO_HEADER" in os.environ:
        # the envvar is already present. lets save that and put that back later
        found_prev = True
        prev_value = os.environ["BINARY_C_MACRO_HEADER"]

    #
    os.environ["BINARY_C_MACRO_HEADER"] = "macroxyz"

    # Get version_info
    version_info = _binary_c_bindings.return_version_info().strip()

    # parse if wanted
    if parsed:
        version_info = parse_binary_c_version_info(version_info)

    # delete value
    del os.environ["BINARY_C_MACRO_HEADER"]

    # put stuff back if we found a previous one
    if found_prev:
        os.environ["BINARY_C_MACRO_HEADER"] = prev_value

    return version_info


def parse_binary_c_version_info(version_info_string: str) -> dict:
    """
    Function that parses the binary_c version info. Long function with a lot of branches

    TODO: fix this function. stuff is missing: isotopes, macros, nucleosynthesis_sources

    Args:
        version_info_string: raw output of version_info call to binary_c

    Returns:
        Parsed version of the version info, which is a dictionary containing the keys: 'isotopes' for isotope info, 'argpairs' for argument pair info (TODO: explain), 'ensembles' for ensemble settings/info, 'macros' for macros, 'elements' for atomic element info, 'DTlimit' for (TODO: explain), 'nucleosynthesis_sources' for nucleosynthesis sources, and 'miscellaneous' for all those that were not caught by the previous groups. 'git_branch', 'git_build', 'revision' and 'email' are also keys, but its clear what those contain.
    """

    version_info_dict = {}

    # Clean data and put in correct shape
    splitted = version_info_string.strip().splitlines()
    cleaned = {el.strip() for el in splitted if not el == ""}

    ##########################
    # Network:
    # Split off all the networks and parse the info.

    networks = {el for el in cleaned if el.startswith("Network ")}
    cleaned = cleaned - networks

    networks_dict = {}
    for el in networks:
        network_dict = {}
        split_info = el.split("Network ")[-1].strip().split("==")

        network_number = int(split_info[0])
        network_dict["network_number"] = network_number

        network_info_split = split_info[1].split(" is ")

        shortname = network_info_split[0].strip()
        network_dict["shortname"] = shortname

        if not network_info_split[1].strip().startswith(":"):
            network_split_info_extra = network_info_split[1].strip().split(":")

            longname = network_split_info_extra[0].strip()
            network_dict["longname"] = longname

            implementation = (
                network_split_info_extra[1].strip().replace("implemented in", "")
            )
            if implementation:
                network_dict["implemented_in"] = implementation.strip().split()

        networks_dict[network_number] = copy.deepcopy(network_dict)
    version_info_dict["networks"] = networks_dict if networks_dict else None

    ##########################
    # Isotopes:
    # Split off
    isotopes = {el for el in cleaned if el.startswith("Isotope ")}
    cleaned = cleaned - isotopes

    isotope_dict = {}
    for el in isotopes:
        split_info = el.split("Isotope ")[-1].strip().split(" is ")

        isotope_info = split_info[-1]
        name = isotope_info.split(" ")[0].strip()

        # Get details
        mass_g = float(
            isotope_info.split(",")[0].split("(")[1].split("=")[-1][:-2].strip()
        )
        mass_amu = float(
            isotope_info.split(",")[0].split("(")[-1].split("=")[-1].strip()
        )
        mass_mev = float(
            isotope_info.split(",")[-3].split("=")[-1].replace(")", "").strip()
        )
        A = int(isotope_info.split(",")[-1].strip().split("=")[-1].replace(")", ""))
        Z = int(isotope_info.split(",")[-2].strip().split("=")[-1])

        #
        isotope_dict[int(split_info[0])] = {
            "name": name,
            "Z": Z,
            "A": A,
            "mass_mev": mass_mev,
            "mass_g": mass_g,
            "mass_amu": mass_amu,
        }
    version_info_dict["isotopes"] = isotope_dict if isotope_dict else None

    ##########################
    # Argpairs:
    # Split off
    argpairs = set([el for el in cleaned if el.startswith("ArgPair")])
    cleaned = cleaned - argpairs

    argpair_dict = {}
    for el in sorted(argpairs):
        split_info = el.split("ArgPair ")[-1].split(" ")

        if not argpair_dict.get(split_info[0], None):
            argpair_dict[split_info[0]] = {split_info[1]: split_info[2]}
        else:
            argpair_dict[split_info[0]][split_info[1]] = split_info[2]

    version_info_dict["argpairs"] = argpair_dict if argpair_dict else None

    ##########################
    # ensembles:
    # Split off
    ensembles = {el for el in cleaned if el.startswith("Ensemble")}
    cleaned = cleaned - ensembles

    ensemble_dict = {}
    for el in ensembles:
        split_info = el.split("Ensemble ")[-1].split(" is ")
        if len(split_info) > 1:
            ensemble_dict[int(split_info[0])] = split_info[-1]
    version_info_dict["ensembles"] = ensemble_dict if ensemble_dict else None

    ##########################
    # macros:
    # Split off
    macros = {el for el in cleaned if el.startswith("macroxyz")}
    cleaned = cleaned - macros

    param_type_dict = {
        "STRING": str,
        "FLOAT": float,
        "MACRO": str,
        "INT": int,
        "LONG_INT": int,
        "UINT": int,
    }

    macros_dict = {}
    for el in macros:
        split_info = el.split("macroxyz ")[-1].split(" : ")
        param_type = split_info[0]

        new_split = "".join(split_info[1:]).split(" is ")
        param_name = new_split[0]
        param_value = " is ".join(new_split[1:])

        # Sometimes the macros have extra information behind it. Needs an update in outputting by binary_c
        try:
            macros_dict[param_name] = param_type_dict[param_type](param_value)
        except ValueError:
            macros_dict[param_name] = str(param_value)
    version_info_dict["macros"] = macros_dict if macros_dict else None

    ##########################
    # Elements:
    # Split off:
    elements = {el for el in cleaned if el.startswith("Element")}
    cleaned = cleaned - elements

    # Fill dict:
    elements_dict = {}
    for el in elements:
        split_info = el.split("Element ")[-1].split(" : ")
        name_info = split_info[0].split(" is ")

        # get isotope info
        isotopes = {}
        if not split_info[-1][0] == "0":
            isotope_string = split_info[-1].split(" = ")[-1]
            isotopes = {
                int(split_isotope.split("=")[0]): split_isotope.split("=")[1]
                for split_isotope in isotope_string.split(" ")
            }

        elements_dict[int(name_info[0])] = {
            "name": name_info[-1],
            "atomic_number": int(name_info[0]),
            "amt_isotopes": len(isotopes),
            "isotopes": isotopes,
        }
    version_info_dict["elements"] = elements_dict if elements_dict else None

    ##########################
    # dt_limits:
    # split off
    dt_limits = {el for el in cleaned if el.startswith("DTlimit")}
    cleaned = cleaned - dt_limits

    # Fill dict
    dt_limits_dict = {}
    for el in dt_limits:
        split_info = el.split("DTlimit ")[-1].split(" : ")
        dt_limits_dict[split_info[1].strip()] = {
            "index": int(split_info[0]),
            "value": float(split_info[-1]),
        }

    version_info_dict["dt_limits"] = dt_limits_dict if dt_limits_dict else None

    ##########################
    # Nucleosynthesis sources:
    # Split off
    nucsyn_sources = {el for el in cleaned if el.startswith("Nucleosynthesis")}
    cleaned = cleaned - nucsyn_sources

    # Fill dict
    nucsyn_sources_dict = {}
    for el in nucsyn_sources:
        split_info = el.split("Nucleosynthesis source")[-1].strip().split(" is ")
        nucsyn_sources_dict[int(split_info[0])] = split_info[-1]

    version_info_dict["nucleosynthesis_sources"] = (
        nucsyn_sources_dict if nucsyn_sources_dict else None
    )

    ##########################
    # miscellaneous:
    # All those that I didnt catch with the above filters. Could try to get some more out though.
    # TODO: filter a bit more.

    misc_dict = {}

    # Filter out git revision
    git_revision = [el for el in cleaned if el.startswith("git revision")]
    misc_dict["git_revision"] = (
        git_revision[0].split("git revision ")[-1].replace('"', "")
    )
    cleaned = cleaned - set(git_revision)

    # filter out git url
    git_url = [el for el in cleaned if el.startswith("git URL")]
    misc_dict["git_url"] = git_url[0].split("git URL ")[-1].replace('"', "")
    cleaned = cleaned - set(git_url)

    # filter out version
    version = [el for el in cleaned if el.startswith("Version")]
    misc_dict["version"] = str(version[0].split("Version ")[-1])
    cleaned = cleaned - set(version)

    git_branch = [el for el in cleaned if el.startswith("git branch")]
    misc_dict["git_branch"] = git_branch[0].split("git branch ")[-1].replace('"', "")
    cleaned = cleaned - set(git_branch)

    build = [el for el in cleaned if el.startswith("Build")]
    misc_dict["build"] = build[0].split("Build: ")[-1].replace('"', "")
    cleaned = cleaned - set(build)

    email = [el for el in cleaned if el.startswith("Email")]
    misc_dict["email"] = email[0].split("Email ")[-1].split(",")
    cleaned = cleaned - set(email)

    other_items = set([el for el in cleaned if " is " in el])
    cleaned = cleaned - other_items

    for el in other_items:
        split = el.split(" is ")
        key = split[0].strip()
        val = " is ".join(split[1:]).strip()
        misc_dict[key] = val

    misc_dict["uncaught"] = list(cleaned)

    version_info_dict["miscellaneous"] = misc_dict if misc_dict else None
    return version_info_dict


########################################################
# binary_c output functions
########################################################


def output_lines(output: str) -> list:
    """
    Function that outputs the lines that were recieved from the binary_c run, but now as an iterator.

    Args:
        output: raw binary_c output

    Returns:
        Iterator over the lines of the binary_c output
    """

    if output:
        return output.splitlines()
    return []


def example_parse_output(output: str, selected_header: str) -> dict:
    """
    Function that parses output of binary_c. This version serves as an example and is quite
    detailed. Custom functions can be easier:

    This function works in two cases:
    if the caught line contains output like 'example_header time=12.32 mass=0.94 ..'
    or if the line contains output like 'example_header 12.32 0.94'
    Please dont the two cases.

    You can give a 'selected_header' to catch any line that starts with that.
    Then the values will be put into a dictionary.

    Tasks:
        - TODO: Think about exporting to numpy array or pandas instead of a defaultdict
        - TODO: rethink whether this function is necessary at all
        - TODO: check this function again

    Args:
        output: binary_c output string
        selected_header: string header of the output (the start of the line that you want to 
            process)

    Returns:
        dictionary containing parameters as keys and lists for the values
    """

    value_dicts = []

    # split output on newlines
    for line in output.split("\n"):
        # Skip any blank lines
        if not line == "":
            split_line = line.split()

            # Select parts
            header = split_line[0]
            values_list = split_line[1:]

            # print(values_list)
            # Catch line starting with selected header
            if header == selected_header:
                # Check if the line contains '=' symbols:
                value_dict = {}
                if all("=" in value for value in values_list):
                    for value in values_list:
                        key, val = value.split("=")
                        value_dict[key.strip()] = val.strip()
                    value_dicts.append(value_dict)
                else:
                    if any("=" in value for value in values_list):
                        raise ValueError(
                            "Caught line contains some = symbols but not \
                            all of them do. aborting run"
                        )

                    for j, val in enumerate(values_list):
                        value_dict[j] = val
                    value_dicts.append(value_dict)

    if len(value_dicts) == 0:
        print(
            "Sorry, didnt find any line matching your header {}".format(selected_header)
        )
        return None

    keys = value_dicts[0].keys()

    # Construct final dict.
    final_values_dict = defaultdict(list)
    for value_dict in value_dicts:
        for key in keys:
            final_values_dict[key].append(value_dict[key])

    return final_values_dict


########################################################
# Argument and default value functions
########################################################


def get_defaults(filter_values: bool = False) -> dict:
    """
    Function that calls the binaryc get args function and cast it into a dictionary.

    All the values are strings

    Args:
        filter_values: whether to filter out NULL and Function defaults.

    Returns:
        dictionary containing the parameter name as key and the parameter default as value
    """

    default_output = _binary_c_bindings.return_arglines()
    default_dict = {}

    for default in default_output.split("\n"):
        if not default in ["__ARG_BEGIN", "__ARG_END", ""]:
            key, value = default.split(" = ")
            default_dict[key] = value

    if filter_values:
        default_dict = filter_arg_dict(default_dict)

    return default_dict


def get_arg_keys() -> list:
    """
    Function that return the list of possible keys to give in the arg string.
    This function calls get_defaults()

    Returns:
        list of all the parameters that binary_c accepts (and has default values for, since
        we call get_defaults())
    """

    return list(get_defaults().keys())


def filter_arg_dict(arg_dict: dict) -> dict:
    """
    Function to filter out keys that contain values included in ['NULL', 'Function', '']

    This function is called by get_defaults()

    Args:
        arg_dict: dictionary containing the argument + default keypairs of binary_c

    Returns:
        filtered dictionary (pairs with NULL and Function values are removed)
    """

    old_dict = arg_dict.copy()
    new_dict = {}

    for key in old_dict.keys():
        if not old_dict[key] in ["NULL", "Function"]:
            if not old_dict[key] == "":
                new_dict[key] = old_dict[key]

    return new_dict


def create_arg_string(
    arg_dict: dict, sort: bool = False, filter_values: bool = False
) -> str:
    """
    Function that creates the arg string for binary_c. Takes a dictionary containing the arguments
    and writes them to a string
    This string is missing the 'binary_c ' at the start.

    Args:
        arg_dict: dictionary
        sort: (optional, default = False) Boolean whether to sort the order of the keys.
        filter_values: (optional, default = False) filters the input dict on keys that have NULL or `function` as value.

    Returns:
        The string built up by combining all the key + value's.
    """

    arg_string = ""

    # Whether to filter the arguments
    if filter_values:
        arg_dict = filter_arg_dict(arg_dict)

    #
    keys = sorted(arg_dict.keys()) if sort else arg_dict.keys()

    #
    for key in keys:
        arg_string += "{key} {value} ".format(key=key, value=arg_dict[key])

    arg_string = arg_string.strip()
    return arg_string


########################################################
# Help functions
########################################################


def get_help(
    param_name: str = "", print_help: bool = True, fail_silently: bool = False
) -> Union[dict, None]:
    """
    Function that returns the help info for a given parameter, by interfacing with binary_c

    Will check whether it is a valid parameter.

    Binary_c will output things in the following order;
    - Did you mean?
    - binary_c help for variable
    - default
    - available macros

    This function reads out that structure and catches the different components of this output

    Tasks:
        - TODO: consider not returning None, but return empty dict

    Args:
        param_name: name of the parameter that you want info from. Will get checked whether its a
            valid parameter name
        print_help: (optional, default = True) whether to print out the help information
        fail_silently: (optional, default = False) Whether to print the errors raised if the
        parameter isn't valid

    Returns:
        Dictionary containing the help info. This dictionary contains 'parameter_name',
        'parameter_value_input_type', 'description', optionally 'macros'
    """

    available_arg_keys = get_arg_keys()

    if not param_name:
        print(
            "Please set the param_name to any of the following:\n {}".format(
                sorted(available_arg_keys)
            )
        )
        return None

    if param_name in available_arg_keys:
        help_info = _binary_c_bindings.return_help(param_name)
        cleaned = [el for el in help_info.split("\n") if not el == ""]

        # Get line numbers
        did_you_mean_nr = [
            i for i, el in enumerate(cleaned) if el.startswith("Did you mean")
        ]
        parameter_line_nr = [
            i for i, el in enumerate(cleaned) if el.startswith("binary_c help")
        ]
        default_line_nr = [
            i for i, el in enumerate(cleaned) if el.startswith("Default")
        ]
        macros_line_nr = [
            i for i, el in enumerate(cleaned) if el.startswith("Available")
        ]

        help_info_dict = {}

        # Get alternatives
        if did_you_mean_nr:
            alternatives = cleaned[did_you_mean_nr[0] + 1 : parameter_line_nr[0]]
            alternatives = [el.strip() for el in alternatives]
            help_info_dict["alternatives"] = alternatives

        # Information about the parameter
        parameter_line = cleaned[parameter_line_nr[0]]
        parameter_name = parameter_line.split(":")[1].strip().split(" ")[0]
        parameter_value_input_type = (
            " ".join(parameter_line.split(":")[1].strip().split(" ")[1:])
            .replace("<", "")
            .replace(">", "")
        )

        help_info_dict["parameter_name"] = parameter_name
        help_info_dict["parameter_value_input_type"] = parameter_value_input_type

        description_line = " ".join(
            cleaned[parameter_line_nr[0] + 1 : default_line_nr[0]]
        )
        help_info_dict["description"] = description_line

        # Default:
        default_line = cleaned[default_line_nr[0]]
        default_value = default_line.split(":")[-1].strip()

        help_info_dict["default"] = default_value

        # Get Macros:
        if macros_line_nr:
            macros = cleaned[macros_line_nr[0] + 1 :]
            help_info_dict["macros"] = macros

        if print_help:
            for key in help_info_dict:
                print("{}:\n\t{}".format(key, help_info_dict[key]))

        return help_info_dict

    else:
        if not fail_silently:
            print(
                "{} is not a valid parameter name. Please choose from the \
                following parameters:\n\t{}".format(
                    param_name, list(available_arg_keys)
                )
            )
        return None


def get_help_all(print_help: bool = True) -> dict:
    """
    Function that reads out the output of the return_help_all api call to binary_c. This return_help_all binary_c returns all the information for the parameters, their descriptions and other properties. The output is categorized in sections.

    Args:
        print_help: (optional, default = Tru) prints all the parameters and their descriptions.

    Returns:
        returns a dictionary containing dictionaries per section. These dictionaries contain the parameters and descriptions etc for all the parameters in that section
    """

    # Call function
    help_all = _binary_c_bindings.return_help_all()

    # String manipulation
    split = help_all.split(
        "############################################################\n"
    )
    cleaned = [el for el in split if not el == "\n"]

    section_nums = [i for i in range(len(cleaned)) if cleaned[i].startswith("#####")]

    # Create dicts
    help_all_dict = {}

    # Select the section name and the contents of that section. Note, not all sections have content!
    for i in range(len(section_nums)):
        if not i == len(section_nums) - 1:
            params = cleaned[section_nums[i] + 1 : section_nums[i + 1]]
        else:
            params = cleaned[section_nums[i] + 1 : len(cleaned)]
        section_name = (
            cleaned[section_nums[i]]
            .lstrip("#####")
            .strip()
            .replace("Section ", "")
            .lower()
        )

        #
        params_dict = {}

        if params:

            # Clean it, replace in-text newlines with a space and then split on newlines.
            split_params = params[0].strip().replace("\n ", " ").split("\n")

            # Process params and descriptions per section
            for split_param in split_params:
                split_param_info = split_param.split(" : ")
                if not len(split_param_info) == 3:
                    # there are ocassions where the semicolon
                    # is used in the description text itself.
                    if len(split_param_info) == 4:
                        split_param_info = [
                            split_param_info[0],
                            ": ".join([split_param_info[1], split_param_info[2]]),
                            split_param_info[3],
                        ]

                    # other occassions?

                # Put the information in a dict
                param_name = split_param_info[0]
                param_description = split_param_info[1]

                if len(split_param_info) > 2:
                    rest = split_param_info[2:]
                else:
                    rest = None

                params_dict[param_name] = {
                    "param_name": param_name,
                    "description": param_description,
                    "rest": "".join(rest) if rest else "",
                }

            # make section_dict
            section_dict = {
                "section_name": section_name,
                "parameters": params_dict.copy(),
            }

            # Put in the total dict
            help_all_dict[section_name] = section_dict.copy()

    # Print things
    if print_help:
        for section in sorted(help_all_dict.keys()):
            print(
                "##################\n###### Section {}\n##################".format(
                    section
                )
            )
            section_dict = help_all_dict[section]
            for param_name in sorted(section_dict["parameters"].keys()):
                param = section_dict["parameters"][param_name]
                print(
                    "\n{}:\n\t{}: {}".format(
                        param["param_name"], param["description"], param["rest"]
                    )
                )

    # # Loop over all the parameters an call the help() function on it.
    # # Takes a long time but this is for testing
    # for section in help_all_dict.keys():
    #     section_dict = help_all_dict[section]
    #     for param in section_dict['parameters'].keys():
    #         get_help(param)

    return help_all_dict


def get_help_super(print_help: bool = False, fail_silently: bool = True) -> dict:
    """
    Function that first runs get_help_all, and then per argument also run
    the help function to get as much information as possible.

    Args:
        print_help: (optional, default = False) Whether to print the information
        fail_silently: (optional, default = True) Whether to fail silently or to print the errors

    Returns:
        dictionary containing all dictionaries per section, which then contain as much info as possible per parameter.
    """

    # Get help_all information
    help_all_dict = get_help_all(print_help=False)
    for section_name in help_all_dict:
        section = help_all_dict[section_name]

        # print(section_name)
        # for parameter_name in section["parameters"].keys():
        #     print("\t", parameter_name)

    help_all_super_dict = help_all_dict.copy()

    # Loop over all sections and stuff
    for section_name in help_all_dict:
        # Skipping the section i/o because that one shouldn't be available to python anyway
        if not section_name == "i/o":
            section = help_all_dict[section_name]

            for parameter_name in section["parameters"].keys():
                parameter = section["parameters"][parameter_name]

                # Get detailed help info
                detailed_help = get_help(
                    parameter_name,
                    print_help=False,
                    fail_silently=fail_silently,
                )

                if detailed_help:
                    # check whether the descriptions of help_all and detailed help are the same
                    if not fail_silently:
                        if not parameter["description"] == detailed_help["description"]:
                            print(json.dumps(parameter, indent=4))

                    ## put values into help all super dict
                    # input type
                    parameter["parameter_value_input_type"] = detailed_help[
                        "parameter_value_input_type"
                    ]

                    # default
                    parameter["default"] = detailed_help["default"]

                    # macros
                    if "macros" in detailed_help.keys():
                        parameter["macros"] = detailed_help["macros"]

                section["parameters"][parameter_name] = parameter

    if print_help:
        print(json.dumps(help_all_super_dict, indent=4))

    return help_all_super_dict


def make_build_text() -> str:
    """
    Function to make build text

    Returns:
        string containing information about the build and the git branch
    """

    version_info = return_binary_c_version_info(parsed=True)

    git_revision = version_info["miscellaneous"]["git_revision"]
    git_branch = version_info["miscellaneous"]["git_branch"]
    build_datetime = version_info["miscellaneous"]["build"]

    info_string = """
This information was obtained by the following binary_c build:
\t**binary_c git branch**: {}\t**binary_c git revision**: {}\t**Built on**: {}
""".format(
        git_branch, git_revision, build_datetime
    )

    return info_string.strip()


def write_binary_c_parameter_descriptions_to_rst_file(output_file: str) -> None:
    """
    Function that calls the get_help_super() to get the help text/descriptions for all the
    parameters available in that build.
    Writes the results to a .rst file that can be included in the docs.

    Tasks:
        - TODO: add the specific version git branch, git build, git commit, and binary_c version to
            this document

    Args:
        output_file: name of the output .rst faile containing the ReStructuredText formatted output
            of all the binary_c parameters.
    """

    # Get the whole arguments dictionary
    arguments_dict = get_help_super()

    build_info = make_build_text()

    if not output_file.endswith(".rst"):
        print("Filename doesn't end with .rst, please provide a proper filename")
        return None

    with open(output_file, "w") as f:

        print("Binary\\_c parameters", file=f)
        print("{}".format("=" * len("Binary\\_c parameters")), file=f)
        print(
            "The following chapter contains all the parameters that the current version of binary\\_c can handle, along with their descriptions and other properties.",
            file=f,
        )
        print("\n", file=f)
        print(build_info, file=f)
        print("\n", file=f)

        for el in arguments_dict.keys():
            print("Section: {}".format(el), file=f)
            print("{}\n".format("-" * len("Section: {}".format(el))), file=f)
            # print(arguments_dict[el]['parameters'].keys())

            for arg in arguments_dict[el]["parameters"].keys():
                argdict = arguments_dict[el]["parameters"][arg]

                print("| **Parameter**: {}".format(argdict["param_name"]), file=f)
                print("| **Description**: {}".format(argdict["description"]), file=f)
                if "parameter_value_input_type" in argdict:
                    print(
                        "| **Parameter input type**: {}".format(
                            argdict["parameter_value_input_type"]
                        ),
                        file=f,
                    )
                if "default" in argdict:
                    print("| **Default value**: {}".format(argdict["default"]), file=f)
                if "macros" in argdict:
                    print("| **Macros**: {}".format(argdict["macros"]), file=f)
                if not argdict["rest"] == "(null)":
                    print("| **Extra**: {}".format(argdict["rest"]), file=f)
                print("", file=f)


########################################################
# logfile functions
########################################################


def load_logfile(logfile: str) -> None:
    """
    Experimental function that parses the generated logfile of binary_c.

    This function is not finished and shouldn't be used yet.

    Tasks:
        - TODO:

    Args:
        - logfile: filename of the logfile you want to parse

    Returns:

    """

    with open(logfile, "r") as file:
        logfile_data = file.readlines()

    time_list = []
    m1_list = []
    m2_list = []
    k1_list = []
    k2_list = []
    sep_list = []
    ecc_list = []
    rel_r1_list = []
    rel_r2_list = []
    event_list = []

    # random_seed = logfile_data[0].split()[-2]
    # random_count = logfile_data[0].split()[-1]
    # probability = logfile_data[-1].split()

    for line in logfile_data[1:-1]:
        split_line = line.split()

        time_list.append(split_line[0])
        m1_list.append(split_line[1])
        m2_list.append(split_line[2])
        k1_list.append(split_line[3])
        k2_list.append(split_line[4])
        sep_list.append(split_line[5])
        ecc_list.append(split_line[6])
        rel_r1_list.append(split_line[7])
        rel_r2_list.append(split_line[8])
        event_list.append(" ".join(split_line[9:]))

    print(event_list)


########################################################
# Ensemble dict functions
########################################################


def inspect_dict(
    input_dict: dict, indent: int = 0, print_structure: bool = True
) -> dict:
    """
    Function to (recursively) inspect a (nested) dictionary.
    The object that is returned is a dictionary containing the key of the input_dict, but as value
    it will return the type of what the value would be in the input_dict

    In this way we inspect the structure of these dictionaries, rather than the exact contents.

    Args:
        input_dict: dictionary you want to inspect
        print_structure: (optional, default = True)
        indent: (optional, default = 0) indent of the first output

    Returns:
        Dictionary that has the same structure as the input_dict, but as values it has the
            type(input_dict[key]) (except if the value is a dict)
    """

    structure_dict = {}

    #
    for key, value in input_dict.items():
        structure_dict[key] = type(value)

        if print_structure:
            print("\t" * indent, key, type(value))

        if isinstance(value, dict):
            structure_dict[key] = inspect_dict(
                value, indent=indent + 1, print_structure=print_structure
            )

    return structure_dict


def merge_dicts(dict_1: dict, dict_2: dict) -> dict:
    """
    Function to merge two dictionaries in a custom way.

    Behaviour:

    When dict keys are only present in one of either:
        - we just add the content to the new dict

    When dict keys are present in both, we decide based on the value types how to combine them:
        - dictionaries will be merged by calling recursively calling this function again
        - numbers will be added
        - (opt) lists will be appended
        - In the case that the instances do not match: for now I will raise an error

    Args:
        dict_1: first dictionary
        dict_2: second dictionary

    Returns:
        Merged dictionary

    """

    # Set up new dict
    new_dict = {}

    #
    keys_1 = dict_1.keys()
    keys_2 = dict_2.keys()

    # Find overlapping keys of both dicts
    overlapping_keys = set(keys_1).intersection(set(keys_2))

    # Find the keys that are unique
    unique_to_dict_1 = set(keys_1).difference(set(keys_2))
    unique_to_dict_2 = set(keys_2).difference(set(keys_1))

    # Add the unique keys to the new dict
    for key in unique_to_dict_1:
        # If these items are ints or floats, then just put them in
        if isinstance(dict_1[key], (float, int)):
            new_dict[key] = dict_1[key]
        # Else, to be safe we should deepcopy them
        else:
            copy_dict = copy.deepcopy(dict_1[key])
            new_dict[key] = copy_dict

    for key in unique_to_dict_2:
        # If these items are ints or floats, then just put them in
        if isinstance(dict_2[key], (float, int)):
            new_dict[key] = dict_2[key]
        # Else, to be safe we should deepcopy them
        else:
            copy_dict = copy.deepcopy(dict_2[key])
            new_dict[key] = copy_dict

    # Go over the common keys:
    for key in overlapping_keys:

        # See whether the types are actually the same
        if not type(dict_1[key]) is type(dict_2[key]):
            # Exceptions:
            if (type(dict_1[key]) in [int, float, np.float64]) and (
                type(dict_2[key]) in [int, float, np.float64]
            ):
                new_dict[key] = dict_1[key] + dict_2[key]

            else:
                print(
                    "Error key: {} value: {} type: {} and key: {} value: {} type: {} are not of the same type and cannot be merged".format(
                        key,
                        dict_1[key],
                        type(dict_1[key]),
                        key,
                        dict_2[key],
                        type(dict_2[key]),
                    )
                )
                raise ValueError

        # Here we check for the cases that we want to explicitly catch. Ints will be added,
        # floats will be added, lists will be appended (though that might change) and dicts will be
        # dealt with by calling this function again.
        else:
            # ints
            # Booleans (has to be the type Bool, not just a 0 or 1)
            if isinstance(dict_1[key], bool) and isinstance(dict_2[key], bool):
                new_dict[key] = dict_1[key] or dict_2[key]

            elif isinstance(dict_1[key], int) and isinstance(dict_2[key], int):
                new_dict[key] = dict_1[key] + dict_2[key]

            # floats
            elif isinstance(dict_1[key], float) and isinstance(dict_2[key], float):
                new_dict[key] = dict_1[key] + dict_2[key]

            # lists
            elif isinstance(dict_1[key], list) and isinstance(dict_2[key], list):
                new_dict[key] = dict_1[key] + dict_2[key]

            # dicts
            elif isinstance(dict_1[key], dict) and isinstance(dict_2[key], dict):
                new_dict[key] = merge_dicts(dict_1[key], dict_2[key])

            else:
                print(
                    "Object types {}: {} ({}), {} ({}) not supported.".format(
                        key,
                        dict_1[key],
                        type(dict_1[key]),
                        dict_2[key],
                        type(dict_2[key]),
                    )
                )
                raise ValueError

    #
    return new_dict


def update_dicts(dict_1: dict, dict_2: dict) -> dict:
    """
    Function to update dict_1 with values of dict_2 in a recursive way.

    Behaviour:

    When dict keys are only present in one of either:
        - we just add the content to the new dict

    When dict keys are present in both, we decide based on the value types how to combine them:
        - value of dict2 will be taken

    Args:
        dict_1: first dictionary
        dict_2: second dictionary

    Returns:
        New dictionary with Updated values

    """

    # Set up new dict
    new_dict = {}

    #
    keys_1 = dict_1.keys()
    keys_2 = dict_2.keys()

    # Find overlapping keys of both dicts
    overlapping_keys = set(keys_1).intersection(set(keys_2))

    # Find the keys that are unique
    unique_to_dict_1 = set(keys_1).difference(set(keys_2))
    unique_to_dict_2 = set(keys_2).difference(set(keys_1))

    # Add the unique keys to the new dict
    for key in unique_to_dict_1:
        # If these items are ints or floats, then just put them in
        if isinstance(dict_1[key], (float, int)):
            new_dict[key] = dict_1[key]
        # Else, to be safe we should deepcopy them
        else:
            copy_dict = copy.deepcopy(dict_1[key])
            new_dict[key] = copy_dict

    for key in unique_to_dict_2:
        # If these items are ints or floats, then just put them in
        if isinstance(dict_2[key], (float, int)):
            new_dict[key] = dict_2[key]
        # Else, to be safe we should deepcopy them
        else:
            copy_dict = copy.deepcopy(dict_2[key])
            new_dict[key] = copy_dict

    # Go over the common keys:
    for key in overlapping_keys:

        # See whether the types are actually the same
        if not type(dict_1[key]) is type(dict_2[key]):
            # Exceptions:
            if (type(dict_1[key]) in [int, float]) and (
                type(dict_2[key]) in [int, float]
            ):
                new_dict[key] = dict_2[key]

            else:
                print(
                    "Error key: {} value: {} type: {} and key: {} value: {} type: {} are not of the same type and cannot be merged".format(
                        key,
                        dict_1[key],
                        type(dict_1[key]),
                        key,
                        dict_2[key],
                        type(dict_2[key]),
                    )
                )
                raise ValueError

        # Here we check for the cases that we want to explicitly catch. Ints will be added,
        # floats will be added, lists will be appended (though that might change) and dicts will be
        # dealt with by calling this function again.
        else:
            # dicts
            if isinstance(dict_1[key], dict) and isinstance(dict_2[key], dict):
                new_dict[key] = update_dicts(dict_1[key], dict_2[key])
            else:
                new_dict[key] = dict_2[key]

    #
    return new_dict


def extract_ensemble_json_from_string(binary_c_output: str) -> dict:
    """
    Function to extract the ensemble_json information from a raw binary_c output string

    Args:
        binary_c_output: raw binary_c output string

    Returns:
        json dictionary with the parsed ENSEMBLE_JSON data
    """

    json_dict = None

    try:
        # If there is no output just return an empty dict:
        if not binary_c_output:
            json_dict = {}
            return json_dict

        ensemble_jsons_strings = [
            line
            for line in binary_c_output.splitlines()
            if line.startswith("ENSEMBLE_JSON")
        ]

        json_dict = handle_ensemble_string_to_json(
            ensemble_jsons_strings[0][len("ENSEMBLE_JSON ") :]
        )

        if len(ensemble_jsons_strings) > 1:
            verbose_print(
                "Warning: There is more than one line starting with ENSEMBLE_JSON. Taking the first, but you should check this out.",
                1,
                0,
            )
    except IndexError:
        verbose_print(
            "Error: Couldn't extract the ensemble information from the output string",
            0,
            0,
        )

    return json_dict


class binarycDecoder(json.JSONDecoder):
    """
    Custom decoder to transform the numbers that are strings to actual floats
    """

    def decode(self, s):
        """
        Entry point function for decoding
        """

        result = super().decode(
            s
        )  # result = super(Decoder, self).decode(s) for Python 2.x
        return self._decode(result)

    def _decode(self, o):
        """
        Depending on the type of object is will determine whether to loop over the elements,
        or try to change the type of the object from string to float

        The try except might be a somewhat rough solution but it catches all cases.
        """

        # Check if we can turn it into a float
        # if isinstance(o, str) or isinstance(o, unicode):
        if isinstance(o, str):
            try:
                return float(o)
            except ValueError:
                return o
        elif isinstance(o, dict):
            return {k: self._decode(v) for k, v in o.items()}
        elif isinstance(o, list):
            return [self._decode(v) for v in o]
        else:
            return o


class BinaryCEncoder(json.JSONEncoder):
    """
    Encoding class function to attempt to convert things to strings.
    """

    def default(self, o):
        """
        Converting function. Well, could be more precise. look at the json module
        """
        try:
            str_repr = str(o)
        except TypeError:
            pass
        else:
            return str_repr

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, o)


def binaryc_json_serializer(obj: Any) -> Any:
    """
    Custom serializer for binary_c to use when functions are present in the dictionary
    that we want to export.

    Function objects will be turned into str representations of themselves

    Args:
        obj: obj being process

    Returns:
        Either string representation of object if the object is a function, or the object itself
    """

    if inspect.isfunction(obj) or isinstance(obj, py_rinterpolate.Rinterpolate):
        return str(obj)
    return obj


def handle_ensemble_string_to_json(raw_output):
    """
    Function that deals with the raw output of the ensemble and
    creates a working JSON dictionary out of it.

    Having this wrapper makes it easy to

    Args:
        raw_output: raw output of the ensemble dump by binary_c

    Returns:
        json.loads(raw_output, cls=binarycDecoder)

    """

    # return json.loads(json.dumps(ast.literal_eval(raw_output)), cls=binarycDecoder)
    return json.loads(raw_output, cls=binarycDecoder)