import os import copy import json import sys import datetime import time import random import numpy as np import multiprocessing as mp from pathos.multiprocessing import ProcessingPool as Pool import binary_c_python_api import binarycpython from binarycpython.utils.grid_options_defaults import grid_options_defaults_dict from binarycpython.utils.custom_logging_functions import ( autogen_C_logging_code, binary_c_log_code, create_and_load_logging_function, temp_dir, ) from binarycpython.utils.functions import get_defaults, parse_binary_c_version_info, output_lines # Todo-list # DONE: add functionality to parse cmdline args # TODO: add functionality to 'on-init' set arguments # DONE: add functionality to export the arg string. # DONE: add functionality to export all the options # TODO: add functionality to return the initial_abundance_hash # TODO: add functionality to return the isotope_hash # TODO: add functionality to return the isotope_list # TODO: add functionality to return the nuclear_mass_hash # TODO: add functionality to return the nuclear_mass_list # TODO: add functionality to return the source_list # TODO: add functionality to return the ensemble_list # DONE: add verbosity options # DONE: add functionality to return the evcode_version_string # Make this function also an API call. Doest seem to get written to a buffer that is stored into a python object. rather its just written to stdout # DONE: add functionality to return the evcode_args_list # DONE: add grid generation script class Population(object): def __init__(self): """ Initialisation function of the population class """ self.defaults = get_defaults() # Different sections of options self.bse_options = ( {} ) # bse_options is just empty. Setting stuff will check against the defaults to see if the input is correct. self.grid_options = grid_options_defaults_dict.copy() self.custom_options = {} # Argline dict self.argline_dict = {} ################################################### # Argument functions ################################################### # General flow of generating the arguments for the binary_c call: # - user provides parameter and value via set (or manually but that is risky) # - The parameter names of these input get compared to the parameter names in the self.defaults; with this, we know that its a valid # parameter to give to binary_c. # - For a single system, the bse_options will be written as a arg line # - For a population the bse_options will get copied to a temp_bse_options dict and updated with all the parameters generated by the grid # I will NOT create the argument line by fully writing ALL the defaults and overriding user input, that seems not necessary # because by using the get_defaults() function we already know for sure which parameter names are valid for the binary_c version # And because binary_c uses internal defaults, its not necessary to explicitly pass them. # I do however suggest everyone to export the binary_c defaults to a file, so that you know exactly which values were the defaults. # TODO: maybe make a set_bse option. def set_bse_option(self, key, arg): self.bse_options[key] = arg def set(self, **kwargs): """ Function to set the values of the population. This is the preferred method to set values of functions, as it provides checks on the input. the bse_options will get populated with all the those that have a key that is present in the self.defaults the grid_options will get updated with all the those that have a key that is present in the self.grid_options If neither of above is met; the key and the value get stored in a custom_options dict. """ for key in kwargs.keys(): # Filter out keys for the bse_options if key in self.defaults.keys(): if self.grid_options["verbose"] > 0: print("adding: {}={} to BSE_options".format(key, kwargs[key])) self.bse_options[key] = kwargs[key] # Filter out keys for the grid_options elif key in self.grid_options.keys(): if self.grid_options["verbose"] > 0: print("adding: {}={} to grid_options".format(key, kwargs[key])) self.grid_options[key] = kwargs[key] # The of the keys go into a custom_options dict else: print( "!! Key doesnt match previously known parameter: adding: {}={} to custom_options".format( key, kwargs[key] ) ) self.custom_options[key] = kwargs[key] def parse_cmdline(self): """ Function to handle settings values via the command line: TODO: remove the need for --cmdline """ import argparse parser = argparse.ArgumentParser() parser.add_argument( "--cmdline", help='Setting values via the commandline. Input like --cmdline "metallicity=0.02"', ) args = parser.parse_args() # How its set up now is that as input you need to give --cmdline "metallicity=0.002" # Its checked if this exists and handled accordingly. if args.cmdline: if self.grid_options["verbose"] > 0: print("Found cmdline args. Parsing them now") # Grab the input and split them up, while accepting only non-empty entries cmdline_args = args.cmdline split_args = [ cmdline_arg for cmdline_arg in cmdline_args.split(" ") if not cmdline_arg == "" ] # Make dict and fill it cmdline_dict = {} for cmdline_arg in split_args: split = cmdline_arg.split("=") parameter = split[0] value = split[1] # Add to dict cmdline_dict[parameter] = value # unpack the dictionary into the setting function that handles where the values are set self.set(**cmdline_dict) def return_argline(self, parameter_dict=None): """ Function to create the string for the arg line from a parameter dict """ if not parameter_dict: parameter_dict = self.bse_options argline = "binary_c " for param_name in sorted(parameter_dict): argline += "{} {} ".format(param_name, parameter_dict[param_name]) argline = argline.strip() return argline def generate_population_arglines_file(self, output_file): """ Function to generate a file that contains all the argument lines that would be given to binary_c if the population had been run """ pass def add_grid_variable( self, name, longname, valuerange, resolution, spacingfunc, precode, probdist, dphasevol, parameter_name, condition=None, ): """spec Function to add grid variables to the grid_options. TODO: Fix this complex function. The execution of the grid generation will be through a nested forloop, and will rely heavily on the eval() functionality of python. Which, in terms of safety is very bad, but in terms of flexibility is very good. name: name of parameter example: name = 'lnm1' longname: Long name of parameter example: longname = 'Primary mass' range: Range of values to take example: range = [log($mmin),log($mmax)] resolution: Resolution of the sampled range (amount of samples) example: resolution = $resolution->{m1} spacingfunction: Function determining how the range is sampled example: spacingfunction = "const(log($mmin),log($mmax),$resolution->{m1})" precode: # TODO: think of good description. example: precode = '$m1=exp($lnm1);' probdist: FUnction determining the probability that gets asigned to the sampled parameter example: probdist = 'Kroupa2001($m1)*$m1' dphasevol: part of the parameter space that the total probability is calculated with example: dphasevol = '$dlnm1' condition: condition that has to be met in order for the grid generation to continue example: condition = '$self->{_grid_options}{binary}==1' """ # Add grid_variable grid_variable = { "name": name, "longname": longname, "valuerange": valuerange, "resolution": resolution, "spacingfunc": spacingfunc, "precode": precode, "probdist": probdist, "dphasevol": dphasevol, "parameter_name": parameter_name, "condition": condition, "grid_variable_number": len(self.grid_options["grid_variables"]), } # Load it into the grid_options self.grid_options["grid_variables"][grid_variable["name"]] = grid_variable if self.grid_options["verbose"] > 0: print("Added grid variable: {}".format(json.dumps(grid_variable, indent=4))) ################################################### # Return functions ################################################### def return_population_settings(self): """ Function that returns all the options that have been set. Can be combined with json to make a nice file. """ options = { "bse_options": self.bse_options, "grid_options": self.grid_options, "custom_options": self.custom_options, } return options def return_binary_c_version_info(self, parsed=False): """ Function that returns the version information of binary_c """ version_info = binary_c_python_api.return_version_info().strip() if parsed: version_info = parse_binary_c_version_info(version_info) return version_info def return_binary_c_defaults(self): """ Function that returns the defaults of the binary_c version that is used. """ return self.defaults def return_all_info( self, include_population_settings=True, include_binary_c_defaults=True, include_binary_c_version_info=True, include_binary_c_help_all=True, ): """ Function that returns all the information about the population and binary_c """ from binarycpython.utils.functions import get_help_all # all_info = {} # if include_population_settings: population_settings = self.return_population_settings() all_info["population_settings"] = population_settings # if include_binary_c_defaults: binary_c_defaults = self.return_binary_c_defaults() all_info["binary_c_defaults"] = binary_c_defaults if include_binary_c_version_info: binary_c_version_info = self.return_binary_c_version_info(parsed=True) all_info["binary_c_version_info"] = binary_c_version_info if include_binary_c_help_all: binary_c_help_all_info = get_help_all(print_help=False, return_dict=True) all_info["binary_c_help_all"] = binary_c_help_all_info return all_info def export_all_info( self, use_datadir=True, outfile=None, include_population_settings=True, include_binary_c_defaults=True, include_binary_c_version_info=True, include_binary_c_help_all=True, ): """ Function that exports the all_info to a json file TODO: if any of the values in the dicts here is of a not-serializable form, then we need to change that to a string or something so, use a recursive function that goes over the all_info dict and finds those that fit TODO: Fix to write things to the directory. which options do which etc """ all_info = self.return_all_info( include_population_settings=include_population_settings, include_binary_c_defaults=include_binary_c_defaults, include_binary_c_version_info=include_binary_c_version_info, include_binary_c_help_all=include_binary_c_help_all, ) if use_datadir: base_name = os.path.splitext(self.custom_options["base_filename"])[0] settings_name = base_name + "_settings.json" # Check directory, make if necessary os.makedirs(self.custom_options["data_dir"], exist_ok=True) settings_fullname = os.path.join( self.custom_options["data_dir"], settings_name ) if self.grid_options["verbose"] > 0: print("Writing settings to {}".format(settings_fullname)) # if not outfile.endswith('json'): with open(settings_fullname, "w") as f: f.write(json.dumps(all_info, indent=4)) else: if self.grid_options["verbose"] > 0: print("Writing settings to {}".format(outfile)) # if not outfile.endswith('json'): with open(outfile, "w") as f: f.write(json.dumps(all_info, indent=4)) def set_custom_logging(self): """ Function/routine to set all the custom logging so that the function memory pointer is known to the grid. """ # C_logging_code gets priority of C_autogen_code if self.grid_options["verbose"] > 0: print("Creating and loading custom logging functionality") if self.grid_options["C_logging_code"]: # Generate entire shared lib code around logging lines custom_logging_code = binary_c_log_code( self.grid_options["C_logging_code"], verbose=self.grid_options["verbose"], ) # Load memory adress ( self.grid_options["custom_logging_func_memaddr"], self.grid_options["custom_logging_shared_library_file"], ) = create_and_load_logging_function( custom_logging_code, verbose=self.grid_options["verbose"] ) elif self.grid_options["C_auto_logging"]: # Generate real logging code logging_line = autogen_C_logging_code( self.grid_options["C_auto_logging"], verbose=self.grid_options["verbose"], ) # Generate entire shared lib code around logging lines custom_logging_code = binary_c_log_code( logging_line, verbose=self.grid_options["verbose"] ) # Load memory adress ( self.grid_options["custom_logging_func_memaddr"], self.grid_options["custom_logging_shared_library_file"], ) = create_and_load_logging_function( custom_logging_code, verbose=self.grid_options["verbose"] ) ################################################### # Evolution functions ################################################### def evolve_single(self, parse_function=None, clean_up_custom_logging_files=True): """ Function to run a single system The output of the run gets returned, unless a parse function is given to this function. """ ### Custom logging code: self.set_custom_logging() # Get argument line argline = self.return_argline(self.bse_options) print('Running {}'.format(argline)) # Run system out = binary_c_python_api.run_system( argline, self.grid_options["custom_logging_func_memaddr"], self.grid_options["store_memaddr"], ) # Todo: change this to run_binary again but then build in checks in binary # TODO: add call to function that cleans up the temp customlogging dir, and unloads the loaded libraries. # TODO: make a switch to turn this off if clean_up_custom_logging_files: self.clean_up_custom_logging(evol_type="single") # Parse if parse_function: parse_function(self, out) else: return out def evolve_population(self, parse_function, custom_arg_file=None): """ The function that will evolve the population. This function contains many steps TODO: fix the verbosity in this function when this function is finished """ ### Custom logging code: self.set_custom_logging() ### Load store if self.grid_options["verbose"] > 0: print("loading binary_c store information") self.grid_options["store_memaddr"] = binary_c_python_api.return_store("") # Execute. # TODO: CHange this part alot. This is not finished whatsoever out = binary_c_python_api.run_population( self.return_argline(), self.grid_options["custom_logging_func_memaddr"], self.grid_options["store_memaddr"], ) print(out) ### Arguments # If user inputs a file containing arg lines then use that if custom_arg_file: # check if file exists if os.path.isfile(custom_arg_file): # load file with open(custom_arg_file) as f: # Load lines into list temp = f.read().splitlines() # Filter out all the lines that dont start with binary_c population_arglines = [ line for line in temp if line.startswith("binary_c") ] else: # generate population from options pass quit() ####### # Do stuff for line in population_arglines: print(line) pass # TODO: add call to function that cleans up the temp customlogging dir, and unloads the loaded libraries. ################################################### # Testing functions ################################################### def test_evolve_population_lin(self): """ Test function to evolve a population in a linear way. returns total time spent on the actual interfacing with binaryc """ import time ####################### ### Custom logging code: self.set_custom_logging() ### Load store self.grid_options["store_memaddr"] = binary_c_python_api.return_store("") ####################### # Dry run and getting starcount self.grid_options['probtot'] = 0 self.generate_grid_code(dry_run=True) self.load_grid_function() self.dry_run() total_starcount_run = self.grid_options['total_starcount'] print("Total starcount for this run will be: {}".format(total_starcount_run)) ####################### # Linear run start_lin = time.time() self.grid_options['probtot'] = 0 # To make sure that the values are reset. TODO: fix this in a cleaner way self.generate_grid_code(dry_run=False) self.load_grid_function() for i, system in enumerate(self.grid_options["system_generator"](self)): #full_system_dict = self.bse_options.copy() #full_system_dict.update(system) #binary_cmdline_string = self.return_argline(full_system_dict) pass # out = binary_c_python_api.run_population( # binary_cmdline_string, # self.grid_options["custom_logging_func_memaddr"], # self.grid_options["store_memaddr"], # ) # print("{}/{}".format(i+1, total_starcount_run), binary_cmdline_string) stop_lin = time.time() print( "Without mp: {} systems took {}s".format(total_starcount_run, stop_lin-start_lin)) return stop_lin-start_lin def test_evolve_population_mp(self): """ Test function to evolve a population in a parallel way. returns total time spent on the actual interfacing with binaryc """ import time import multiprocessing as mp from pathos.multiprocessing import ProcessingPool as Pool ####################### ### Custom logging code: self.set_custom_logging() ### Load store self.grid_options["store_memaddr"] = binary_c_python_api.return_store("") ####################### # Dry run and getting starcount self.grid_options['probtot'] = 0 self.generate_grid_code(dry_run=True) self.load_grid_function() self.dry_run() total_starcount_run = self.grid_options['total_starcount'] print("Total starcount for this run will be: {}".format(total_starcount_run)) ####################### # MP run self.grid_options['probtot'] = 0 # To make sure that the values are reset. TODO: fix this in a cleaner way start_mp = time.time() self.generate_grid_code(dry_run=False) self.load_grid_function() def evolve_system(binary_cmdline_string): # print(binary_cmdline_string) # pass # print('next') # self.set_bse_option("M_1", mass) # out = binary_c_python_api.run_population( # binary_cmdline_string, # self.grid_options["custom_logging_func_memaddr"], # self.grid_options["store_memaddr"], # ) pass # # parse_function(self, out) def yield_system(): for i, system in enumerate(self.grid_options["system_generator"](self)): full_system_dict = self.bse_options.copy() full_system_dict.update(system) binary_cmdline_string = self.return_argline(full_system_dict) # print("{}/{}".format(i+1, total_starcount_run), binary_cmdline_string) yield binary_cmdline_string # yield i print("generator done") # Create pool p = Pool(nodes=self.grid_options["amt_cores"]) # Execute r = list(p.imap(evolve_system, yield_system())) stop_mp = time.time() # Give feedback print( "with mp: {} systems took {}s using {} cores".format( self.grid_options['total_starcount'], stop_mp - start_mp, self.grid_options["amt_cores"], ) ) return stop_mp - start_mp def test_evolve_population_mp_chunks(self): """ Test function to evolve a population in a parallel way. returns total time spent on the actual interfacing with binaryc """ import time import multiprocessing as mp # from pathos.multiprocessing import ProcessingPool as Pool from pathos.pools import _ProcessPool as Pool ####################### ### Custom logging code: self.set_custom_logging() ### Load store self.grid_options["store_memaddr"] = binary_c_python_api.return_store("") ####################### # Dry run and getting starcount self.grid_options['probtot'] = 0 self.generate_grid_code(dry_run=True) self.load_grid_function() self.dry_run() total_starcount_run = self.grid_options['total_starcount'] print("Total starcount for this run will be: {}".format(total_starcount_run)) ####################### # MP run self.grid_options['probtot'] = 0 # To make sure that the values are reset. TODO: fix this in a cleaner way start_mp = time.time() self.generate_grid_code(dry_run=False) self.load_grid_function() def evolve_system(binary_cmdline_string): # print(binary_cmdline_string) # pass # print('next') # self.set_bse_option("M_1", mass) out = binary_c_python_api.run_population( binary_cmdline_string, self.grid_options["custom_logging_func_memaddr"], self.grid_options["store_memaddr"], ) parse_function(self, out) # pass def yield_system(): for i, system in enumerate(self.grid_options["system_generator"](self)): full_system_dict = self.bse_options.copy() full_system_dict.update(system) binary_cmdline_string = self.return_argline(full_system_dict) # print("{}/{}".format(i+1, total_starcount_run), binary_cmdline_string) yield binary_cmdline_string # yield i print("generator done") # Create pool p = Pool(processes=self.grid_options["amt_cores"]) # Execute # TODO: calculate the chunksize value based on: total starcount and cores used. r = list(p.imap_unordered(evolve_system, yield_system(), chunksize=1000)) stop_mp = time.time() # Give feedback print( "with mp: {} systems took {}s using {} cores".format( self.grid_options['total_starcount'], stop_mp - start_mp, self.grid_options["amt_cores"], ) ) return stop_mp - start_mp def evolve_population_mp_chunks(self): """ Test function to evolve a population in a parallel way. returns total time spent on the actual interfacing with binaryc """ import time import multiprocessing as mp # from pathos.multiprocessing import ProcessingPool as Pool from pathos.pools import _ProcessPool as Pool ####################### ### Custom logging code: self.set_custom_logging() ### Load store self.grid_options["store_memaddr"] = binary_c_python_api.return_store("") ####################### # Dry run and getting starcount self.grid_options['probtot'] = 0 self.generate_grid_code(dry_run=True) self.load_grid_function() self.dry_run() total_starcount_run = self.grid_options['total_starcount'] print("Total starcount for this run will be: {}".format(total_starcount_run)) ####################### # MP run self.grid_options['probtot'] = 0 # To make sure that the values are reset. TODO: fix this in a cleaner way start_mp = time.time() self.generate_grid_code(dry_run=False) self.load_grid_function() def evolve_system(binary_cmdline_string): out = binary_c_python_api.run_population( binary_cmdline_string, self.grid_options["custom_logging_func_memaddr"], self.grid_options["store_memaddr"], ) if self.custom_options['parse_function']: self.custom_options['parse_function'](self, out) def yield_system(): for i, system in enumerate(self.grid_options["system_generator"](self)): full_system_dict = self.bse_options.copy() full_system_dict.update(system) binary_cmdline_string = self.return_argline(full_system_dict) print("{}/{}".format(i+1, total_starcount_run), binary_cmdline_string) yield binary_cmdline_string # yield i print("generator done") # Create pool p = Pool(processes=self.grid_options["amt_cores"]) # Execute # TODO: calculate the chunksize value based on: total starcount and cores used. r = list(p.imap_unordered(evolve_system, yield_system(), chunksize=20)) stop_mp = time.time() # Give feedback print( "with mp: {} systems took {}s using {} cores".format( self.grid_options['total_starcount'], stop_mp - start_mp, self.grid_options["amt_cores"], ) ) return stop_mp - start_mp def test_evolve_single(self): """ Function to test the evolution of a system. Calls the api binding directly. """ if self.grid_options["verbose"] > 0: print("running a single system as a test") m1 = 15.0 # Msun m2 = 14.0 # Msun separation = 0 # 0 = ignored, use period orbital_period = 4530.0 # days eccentricity = 0.0 metallicity = 0.02 max_evolution_time = 15000 argstring = "binary_c M_1 {0:g} M_2 {1:g} separation {2:g} orbital_period {3:g} eccentricity {4:g} metallicity {5:g} max_evolution_time {6:g} ".format( m1, m2, separation, orbital_period, eccentricity, metallicity, max_evolution_time, ) output = binary_c_python_api.run_binary(argstring) print("\n\nBinary_c output:") print(output) ################################################### # Unordered functions ################################################### def remove_file(self, file, verbose): """ Function to remove files but with verbosity """ if os.path.exists(file): try: if verbose > 0: print("Removed {}".format(file)) os.remove(file) # TODO: Put correct exception here. except: print("Error while deleting file {}".format(file)) raise FileNotFoundError def clean_up_custom_logging(self, evol_type): """ Function to clean up the custom logging. Has two types: 'single': - removes the compiled shared library (which name is stored in grid_options['custom_logging_shared_library_file']) - TODO: unloads/frees the memory allocated to that shared library (which is stored in grid_options['custom_logging_func_memaddr']) - sets both to None 'multiple': - TODO: make this and design this """ if evol_type == "single": if self.grid_options["verbose"] > 0: print("Cleaning up the custom logging stuff. type: single") # TODO: Unset custom logging code # TODO: Unset function memory adress # print(self.grid_options["custom_logging_func_memaddr"]) # remove shared library files if self.grid_options["custom_logging_shared_library_file"]: self.remove_file( self.grid_options["custom_logging_shared_library_file"], self.grid_options["verbose"], ) if evol_type == "population": if self.grid_options["verbose"] > 0: print("Cleaning up the custom logging stuffs. type: population") # TODO: make sure that these also work. not fully sure if necessary tho. whether its a single file, or a dict of files/memaddresses def increment_probtot(self, prob): """ Function to add to the total probability """ self.grid_options["probtot"] += prob def increment_count(self): """ Function to add to the total amount of stars """ self.grid_options["count"] += 1 ################################################### # Gridcode functions ################################################### def generate_grid_code(self, dry_run=False): """ Function that generates the code from which the population will be made. dry_run: when True, it will return the starcount at the end so that we know what the total amount of systems is. The phasevol values are handled by generating a second array # DONE: make a generator for this. # TODO: Add correct logging everywhere # TODO: add different types of grid. # TODO: add part to handle separation if orbital_period is added # TODO: add part to calculate probability # TODO: add part to correctly set the values with the spacingsfunctions. # TODO: add phasevol correctly # TODO: add centering center left right for the spacing # TODO: add sensible description to this function. Results in a generated file that contains a system_generator function. """ if self.grid_options["verbose"] > 0: print("Generating grid code") # Some local values code_string = "" depth = 0 indent = " " total_grid_variables = len(self.grid_options["grid_variables"]) # Import packages code_string += "import math\n" code_string += "import numpy as np\n" code_string += "from binarycpython.utils.distribution_functions import *\n" code_string += "from binarycpython.utils.spacing_functions import *\n" code_string += "\n\n" # Make the function code_string += "def grid_code(self):\n" # Increase depth depth += 1 # Write some info in the function code_string += ( indent * depth + "# Grid code generated on {}\n".format( datetime.datetime.now().isoformat() ) + indent * depth + "# This function generates the systems that will be evolved with binary_c\n\n" ) # Set some values in the generated code: code_string += indent * depth + "# Setting initial values\n" code_string += indent * depth + "total_starcount = 0\n" code_string += indent * depth + "starcounts = [0 for i in range({})]\n".format( total_grid_variables ) code_string += indent * depth + "probabilities = {}\n" code_string += ( indent * depth + "probabilities_list = [0 for i in range({})]\n".format( total_grid_variables ) ) code_string += ( indent * depth + "probabilities_sum = [0 for i in range({})]\n".format( total_grid_variables ) ) code_string += indent * depth + "parameter_dict = {}\n" code_string += indent * depth + "phasevol = 1\n" code_string += indent * depth + "\n" code_string += indent * depth + "# setting probability lists\n" # Prepare the probability for el in sorted( self.grid_options["grid_variables"].items(), key=lambda x: x[1]["grid_variable_number"], ): # Make probabilities dict grid_variable = el[1] code_string += indent * depth + 'probabilities["{}"] = 0\n'.format( grid_variable["parameter_name"] ) ################################################################################# # Start of code generation ################################################################################# code_string += indent * depth + "\n" # Generate code print("Generating grid code") for loopnr, el in enumerate( sorted( self.grid_options["grid_variables"].items(), key=lambda x: x[1]["grid_variable_number"], ) ): print("Constructing/adding: {}".format(el[0])) grid_variable = el[1] ################################################################################# # Check condition and generate forloop # If the grid variable has a condition, write the check and the action if grid_variable["condition"]: # Add comment code_string += ( indent * depth + "# Condition for {}".format(grid_variable["parameter_name"]) + "\n" ) # Add condition check code_string += ( indent * depth + "if not {}:".format(grid_variable["condition"]) + "\n" ) # Add condition failed action: code_string += ( indent * (depth + 1) + 'print("Condition for {} not met!")'.format( grid_variable["parameter_name"] ) + "\n" ) code_string += indent * (depth + 1) + "raise ValueError" + "\n" # Add some whiteline code_string += indent * (depth + 1) + "\n" ######################### # Setting up the forloop # Add comment for forloop code_string += ( indent * depth + "# for loop for {}".format(grid_variable["parameter_name"]) + "\n" ) code_string += ( indent * depth + "sampled_values_{} = {}".format(grid_variable["name"], grid_variable["spacingfunc"]) + "\n" ) # TODO: Make clear that the phasevol only works good if you sample linearly in that thing. code_string += ( indent * depth + "phasevol_{} = sampled_values_{}[1]-sampled_values_{}[0]".format(grid_variable["name"], grid_variable["name"], grid_variable["name"]) + "\n" ) # # Some print statement # code_string += ( # indent * depth # + "print('phasevol_{}:', phasevol_{})".format(grid_variable["name"], grid_variable["name"]) # + "\n" # ) # Adding for loop structure code_string += ( indent * depth + "for {} in sampled_values_{}:".format( grid_variable["name"], grid_variable["name"] ) + "\n" ) ######################### # Setting up pre-code and value in some cases # Add pre-code code_string += ( indent * (depth + 1) + "{}".format( grid_variable["precode"].replace("\n", "\n" + indent * (depth + 1)) ) + "\n" ) # Set phasevol code_string += indent * (depth + 1) + "phasevol *= phasevol_{}\n".format( grid_variable["name"], ) ####################### # Probabilities # Calculate probability code_string += indent * (depth + 1) + "\n" code_string += indent * (depth + 1) + "# Setting probabilities\n" code_string += ( indent * (depth + 1) + "d{} = phasevol_{} * {}".format(grid_variable["name"], grid_variable["name"], grid_variable["probdist"]) + "\n" ) # Saving probability sum code_string += ( indent * (depth + 1) + "probabilities_sum[{}] += d{}".format( grid_variable["grid_variable_number"], grid_variable["name"] ) + "\n" ) if grid_variable["grid_variable_number"] == 0: code_string += ( indent * (depth + 1) + "probabilities_list[0] = d{}".format(grid_variable["name"]) + "\n" ) else: code_string += ( indent * (depth + 1) + "probabilities_list[{}] = probabilities_list[{}] * d{}".format( grid_variable["grid_variable_number"], grid_variable["grid_variable_number"] - 1, grid_variable["name"], ) + "\n" ) ####################### # Increment starcount for this parameter code_string += "\n" code_string += indent * ( depth + 1 ) + "# Increment starcount for {}\n".format(grid_variable["parameter_name"]) code_string += ( indent * (depth + 1) + "starcounts[{}] += 1".format(grid_variable["grid_variable_number"],) + "\n" ) # Add value to dict code_string += ( indent * (depth + 1) + 'parameter_dict["{}"] = {}'.format( grid_variable["parameter_name"], grid_variable["parameter_name"] ) + "\n" ) # Add some space code_string += "\n" # The final parts of the code, where things are returned, are within the deepest loop, # but in some cases code from a higher loop needs to go under it again # SO I think its better to put an ifstatement here that checks whether this is the last loop. if loopnr == len(self.grid_options["grid_variables"]) - 1: ################################################################################# # Here are the calls to the queuing or other solution. this part is for every system # Add comment code_string += indent * (depth + 1) + "#" * 40 + "\n" code_string += ( indent * (depth + 1) + "# Code below will get evaluated for every generated system\n" ) # Calculate value code_string += ( indent * (depth + 1) + 'probability = self.grid_options["weight"] * probabilities_list[{}]'.format( grid_variable["grid_variable_number"] ) + "\n" ) code_string += ( indent * (depth + 1) + 'repeat_probability = probability / self.grid_options["repeat"]' + "\n" ) code_string += indent * (depth + 1) + "total_starcount += 1\n" # set probability and phasevol values code_string += ( indent * (depth + 1) + 'parameter_dict["{}"] = {}'.format("probability", "probability") + "\n" ) code_string += ( indent * (depth + 1) + 'parameter_dict["{}"] = {}'.format("phasevol", "phasevol") + "\n" ) # Some prints. will be removed # code_string += indent * (depth + 1) + "print(probabilities)\n" # code_string += ( # indent * (depth + 1) + 'print("total_starcount: ", total_starcount)\n' # ) # code_string += indent * (depth + 1) + "print(probability)\n" # Increment total probability code_string += ( indent * (depth + 1) + "self.increment_probtot(probability)\n" ) if not dry_run: # Handling of what is returned, or what is not. # TODO: think of whether this is a good method code_string += indent * (depth + 1) + "yield(parameter_dict)\n" # The below solution might be a good one to add things to specific queues # $self->queue_evolution_code_run($self->{_flexigrid}->{thread_q}, # $system); # If its a dry run, dont do anything with it else: code_string += indent * (depth + 1) + "pass\n" code_string += indent * (depth + 1) + "#" * 40 + "\n" # increment depth depth += 1 depth -= 1 code_string += "\n" # Write parts to write below the part that yield the results. this has to go in a reverse order: # Here comes the stuff that is put after the deepest nested part that calls returns stuff. for loopnr, el in enumerate( sorted( self.grid_options["grid_variables"].items(), key=lambda x: x[1]["grid_variable_number"], reverse=True, ) ): grid_variable = el[1] code_string += indent * (depth + 1) + "#" * 40 + "\n" code_string += ( indent * (depth + 1) + "# Code below is for finalising the handling of this iteration of the parameter\n" ) # Set phasevol # TODO: fix. this isnt supposed to be the value that we give it here. discuss code_string += indent * (depth + 1) + "phasevol /= phasevol_{}\n".format( grid_variable["name"] ) code_string += indent * (depth + 1) + "\n" depth -= 1 ################ # Finalising print statements # # code_string += indent * (depth + 1) + "\n" code_string += indent * (depth + 1) + "#" * 40 + "\n" code_string += ( indent * (depth + 1) + "print('Grid has handled {} stars'.format(total_starcount))\n" ) code_string += ( indent * (depth + 1) + "print('with a total probability of {}'.format(self.grid_options['probtot']))\n" ) if dry_run: code_string += ( indent * (depth + 1) + "return total_starcount\n" ) ################################################################################# # Stop of code generation. Here the code is saved and written # Save the gridcode to the grid_options if self.grid_options["verbose"] > 0: print("Saving grid code to grid_options") self.grid_options["code_string"] = code_string # Write to file gridcode_filename = os.path.join( self.grid_options["tmp_dir"], "example_grid.py" ) self.grid_options["gridcode_filename"] = gridcode_filename if self.grid_options["verbose"] > 0: print("Writing grid code to {}".format(gridcode_filename)) with open(gridcode_filename, "w") as f: f.write(code_string) def cleanup_grid(self): """ Function that handles all the cleaning up after the grid has been generated and/or run - reset values to 0 - remove grid file - unload grid function/module - remove dry grid file - unload dry grid function/module """ pass def load_grid_function(self): """ Test function to run grid stuff. mostly to test the import """ # Code to load the import importlib.util if self.grid_options["verbose"] > 0: print( "Loading grid code function from {}".format( self.grid_options["gridcode_filename"] ) ) spec = importlib.util.spec_from_file_location( "binary_c_python_grid", os.path.join(self.grid_options["gridcode_filename"]), ) grid_file = importlib.util.module_from_spec(spec) spec.loader.exec_module(grid_file) generator = grid_file.grid_code self.grid_options["system_generator"] = generator if self.grid_options["verbose"] > 0: print("Grid code loaded") def dry_run(self): """ Function to dry run the grid and know how many stars it will run Requires the grid to be built as a dry run grid """ system_generator = self.grid_options["system_generator"] total_starcount = system_generator(self) self.grid_options['total_starcount'] = total_starcount def write_binary_c_calls_to_file(self, output_dir=None, output_filename=None): """ Function that loops over the gridcode and writes the generated parameters to a file. In the form of a commandline call On default this will write to the datadir, if it exists """ if self.grid_options["system_generator"]: if self.custom_options.get("data_dir", None): binary_c_calls_output_dir = self.custom_options["data_dir"] print("yo") else: if not output_dir: # if self.grid_options['verbose'] > 0: print( "Error. No data_dir configured and you gave no output_dir. Aborting" ) raise ValueError else: binary_c_calls_output_dir = output_dir if output_filename: binary_c_calls_filename = output_filename else: binary_c_calls_filename = "binary_c_calls.txt" print(binary_c_calls_output_dir, binary_c_calls_filename) with open( os.path.join(binary_c_calls_output_dir, binary_c_calls_filename), "w" ) as f: for system in self.grid_options["system_generator"]: full_system_dict = self.bse_options.copy() full_system_dict.update(system) binary_cmdline_string = self.return_argline(full_system_dict) f.write(binary_cmdline_string + "\n") else: print("Error. No grid function found!") raise KeyError ################################################################################################