diff --git a/docs/source/notebook_luminosity_function.ipynb b/docs/source/notebook_luminosity_function.ipynb
index ce85368a47ff9ee7bb0fba67962b4e3ac9e257ba..bca70b71a9303605395a39351d84df3e03490ad8 100644
--- a/docs/source/notebook_luminosity_function.ipynb
+++ b/docs/source/notebook_luminosity_function.ipynb
@@ -45,7 +45,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 13,
    "id": "79ab50b7-591f-4883-af09-116d1835a751",
    "metadata": {},
    "outputs": [
@@ -54,78 +54,28 @@
      "output_type": "stream",
      "text": [
       "adding: max_evolution_time=15000 to BSE_options\n",
-      "<<<< Warning: Key does not match previously known parameter:                     adding: data_dir=/tmp/lumfunc to custom_options >>>>\n",
-      "1\n"
+      "verbosity is 1\n"
      ]
     }
    ],
    "source": [
     "# Create population object\n",
-    "example_pop = Population()\n",
+    "population = Population()\n",
     "\n",
     "# If you want verbosity, set this before other things\n",
-    "example_pop.set(verbosity=1)\n",
+    "population.set(verbosity=1)\n",
     "\n",
     "# Setting values can be done via .set(<parameter_name>=<value>)\n",
     "# Values that are known to be binary_c_parameters are loaded into bse_options.\n",
     "# Those that are present in the default grid_options are set in grid_options\n",
     "# All other values that you set are put in a custom_options dict\n",
-    "example_pop.set(\n",
+    "population.set(\n",
     "    # binary_c physics options\n",
     "    max_evolution_time=15000,  # maximum stellar evolution time in Myr\n",
-    "    data_dir = '/tmp/lumfunc', # directory for data\n",
     " )\n",
     "\n",
-    "# We can access the options through\n",
-    "print(example_pop.grid_options['verbosity'])"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "f8d46d19-633d-4911-821d-a59daed31816",
-   "metadata": {},
-   "source": [
-    "After configuring the population, but before running the actual population, its usually a good idea to export the full configuration (including version info of binary_c and all the parameters) to a file. To do this we use `example_pop.export_all_info()`.\n",
-    "\n",
-    "On default this exports everything, each of the sections can be disabled:\n",
-    "  - population settings (bse_options, grid_options, custom_options), turn off with include_population\n",
-    "      settings=False\n",
-    "  - binary_c_defaults (all the commandline arguments that binary c accepts, and their defaults).\n",
-    "      turn off with include_binary_c_defaults=False\n",
-    "  - include_binary_c_version_info (all the compilation info, and information about the compiled\n",
-    "      parameters), turn off with include_binary_c_version_info=False\n",
-    "  - include_binary_c_help_all (all the help information for all the binary_c parameters),\n",
-    "      turn off with include_binary_c_help_all=Fase\n",
-    "      \n",
-    "On default it will write this to the custom_options['data_dir'], but that can be overriden by setting use_datadir=False and providing an outfile=<>"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "id": "b9c2471a-a5b0-48b7-a50b-2f0d22100926",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Writing settings to /tmp/lumfunc/simulation_20210908_102035_settings.json\n"
-     ]
-    },
-    {
-     "data": {
-      "text/plain": [
-       "'/tmp/lumfunc/simulation_20210908_102035_settings.json'"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "example_pop.export_all_info()"
+    "# We can access the options through \n",
+    "print(\"verbosity is\", population.grid_options['verbosity'])"
    ]
   },
   {
@@ -143,7 +93,7 @@
     "\n",
     "A notable special type of grid variable is that of the Moe & di Stefano 2017 dataset (see further down in the notebook).\n",
     "\n",
-    "To add a grid variable to the population object we use `example_pop.add_grid_variable` (see next cell)"
+    "To add a grid variable to the population object we use `population.add_grid_variable` (see next cell)"
    ]
   },
   {
@@ -153,7 +103,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "# help(example_pop.add_grid_variable)"
+    "# help(population.add_grid_variable)"
    ]
   },
   {
@@ -199,8 +149,8 @@
     "total_probability = 1.0\n",
     "\n",
     "# Mass\n",
-    "example_pop = Population()\n",
-    "example_pop.add_grid_variable(\n",
+    "population = Population()\n",
+    "population.add_grid_variable(\n",
     "    name=\"M_1\",\n",
     "    longname=\"Primary mass\",\n",
     "    valuerange=massrange,\n",
@@ -250,7 +200,7 @@
     "};\n",
     "\"\"\"\n",
     "\n",
-    "example_pop.set(\n",
+    "population.set(\n",
     "    C_logging_code=custom_logging_statement\n",
     ")\n"
    ]
@@ -320,7 +270,7 @@
     "    #print(\"parse out results_dictionary=\",self.grid_results)\n",
     "    \n",
     "# Add the parsing function\n",
-    "example_pop.set(\n",
+    "population.set(\n",
     "    parse_function=parse_function,\n",
     ")"
    ]
@@ -331,7 +281,7 @@
    "metadata": {},
    "source": [
     "## Evolving the grid\n",
-    "Now that we configured all the main parts of the population object, we can actually run the population! Doing this is straightforward: `example_pop.evolve()`\n",
+    "Now that we configured all the main parts of the population object, we can actually run the population! Doing this is straightforward: `population.evolve()`\n",
     "\n",
     "This will start up the processing of all the systems. We can control how many cores are used by settings `amt_cores`. By setting the `verbosity` of the population object to a higher value we can get a lot of verbose information about the run, but for now we will set it to 0.\n",
     "\n",
@@ -357,7 +307,7 @@
       "Total starcount for this run will be: 10\n",
       "Generating grid code\n",
       "Constructing/adding: M_1\n",
-      "Population-497443180adf46c7af8b1bb75d6309a2 finished! The total probability was: 1.0. It took a total of 0.8296694755554199s to run 10 systems on 2 cores\n",
+      "Population-93ae2b040eb7472aae2b1b3369d1a2e0 finished! The total probability was: 1.0. It took a total of 0.907357931137085s to run 10 systems on 2 cores\n",
       "There were no errors found in this run.\n",
       "OrderedDict([('luminosity distribution', OrderedDict([(4.25, 0.1), (4.75, 0.1), (2.75, 0.1), (6.25, 0.1), (5.25, 0.2), (5.75, 0.4)]))])\n"
      ]
@@ -365,7 +315,7 @@
    ],
    "source": [
     "# set number of threads\n",
-    "example_pop.set(\n",
+    "population.set(\n",
     "    # verbose output is not required    \n",
     "    verbosity=0,\n",
     "    # set number of threads (i.e. number of CPU cores we use)\n",
@@ -373,10 +323,10 @@
     "    )\n",
     "\n",
     "# Evolve the population - this is the slow, number-crunching step\n",
-    "analytics = example_pop.evolve()  \n",
+    "analytics = population.evolve()  \n",
     "\n",
     "# Show the results\n",
-    "print (example_pop.grid_results)"
+    "print (population.grid_results)"
    ]
   },
   {
@@ -397,7 +347,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'population_name': '497443180adf46c7af8b1bb75d6309a2', 'evolution_type': 'grid', 'failed_count': 0, 'failed_prob': 0, 'failed_systems_error_codes': [], 'errors_exceeded': False, 'errors_found': False, 'total_probability': 1.0, 'total_count': 10, 'start_timestamp': 1631089236.3068738, 'end_timestamp': 1631089237.1365433, 'total_mass_run': 500.0, 'total_probability_weighted_mass_run': 50.0, 'zero_prob_stars_skipped': 0}\n"
+      "{'population_name': '93ae2b040eb7472aae2b1b3369d1a2e0', 'evolution_type': 'grid', 'failed_count': 0, 'failed_prob': 0, 'failed_systems_error_codes': [], 'errors_exceeded': False, 'errors_found': False, 'total_probability': 1.0, 'total_count': 10, 'start_timestamp': 1631092644.1666706, 'end_timestamp': 1631092645.0740285, 'total_mass_run': 500.0, 'total_probability_weighted_mass_run': 50.0, 'zero_prob_stars_skipped': 0}\n"
      ]
     }
    ],
@@ -407,23 +357,23 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 11,
    "id": "05c6d132-abee-423e-b1a8-2039c8996fbc",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "Text(0.5, 0, '$\\\\log_{10}$ ($L_\\\\mathrm{ZAMS}$ / L$_{☉}$)')"
+       "Text(0, 0.5, 'Number of stars')"
       ]
      },
-     "execution_count": 12,
+     "execution_count": 11,
      "metadata": {},
      "output_type": "execute_result"
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAJWCAYAAADcCteYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACGiklEQVR4nOzdeXzUhYH///dMJvc1k2RyABmukAkk4IWCgHiByBmqPbVSW+Xqut3629q6tYfab7fbbSs9tkXxqG3Fqq2agAjirSR4gApJIIFwJUDu+75mfn9EUpEjAZJ85ng9H499PMwcyTvZT3O8+XzeY3K73W4BAAAAAADAr5mNDgAAAAAAAADjURIBAAAAAACAkggAAAAAAACURAAAAAAAABAlEQAAAAAAAERJBAAAAAAAAFESAQAAAAAAQJLF6ABnU1fXIpfLbXQMvxUbG6GammajYwBDhmMcvozjG76OYxy+jOMbvozj21hms0k2W/gZ7/foksjlclMSGYyvP3wdxzh8Gcc3fB3HOHwZxzd8Gce35+JyMwAAAAAAAFASAQAAAAAAwMMvNwMAAAAAYLj19HSrrq5K3d2dRkfxOZWVZrlcLqNj+AWLJUg2m10BAQOvfiiJAAAAAAD4jLq6KoWEhCk8PFEmk8noOD7FYjGru5uSaKi53W61tDSqrq5KcXFJA34el5sBAAAAAPAZ3d2dCg+PoiCC1zKZTAoPjzrns+EoiQAAAAAA+BwKIni78zmGKYkAAAAAAABASQQAAAAAgKfatetj3X77LSf93+zZV+iVV17ue8zzzz+ra66Zrpqa6pOeO2vWVP1//99dJ91WX1+vq6+epscff0SSVF5eru9//2594xtf1W23fVk//vG9qqurPSXH448/0vecC7Fu3Vpt2/b2Bb+fE7Ky/qmsrH9Kkv77vx9QeXnZeb2fu+5aoY8+2qHCwj36n//52Rkfd/z4Mf3iFw/2m2XWrKnn9PG3bXtHzzzz1CnvZ7gxXA0AAAAAgIe66KJL9OSTT/e9/eyz67VlyyZdc831fbdt2rRRs2ZdrZdeytY3vnHHSc8vLS1VY2OjoqKiJElvvfW6IiOj+u7/1a/+WzfeuEBz594oSfrb3/6sX/3qF/rv//7VkHw+K1asHtTh6qVLv9j33x99tEPf/ObyC3p/aWmTdO+9k854f3l5mY4dO9pvlnNVVLR3UN7PhaIkAgAAAADAC+za9bH++tcntG7dXxQcHCxJKi7er8bGBn3/+/fpRz/6vm677Zsym/910dCsWbP17rtvaeHCJZJ6S6LZs6/pu7+2tlodHe19b99885e1d++es+aYNWuqtm3bIUl6+eWN+vjjnbrvvvv1xS8u1nXXzVVu7jYFBARo5cp/0zPPPKWjR0v1b//2XV1//Vw9+OBPdfHFl+qSSy7TD3/4PY0bN1779hUpJiZWP/vZ/ygqKlo5Oe/q0UfXyu12acSIkbrnnh8qJiZW//d/v9WHH76vgACzZs26Wt/61oq+s5uCgoJVXV2le+75D9155yo988x6PfzwE5KkzZtfUkFBnr73vf/q+xw6Ozv1y1/+TIWFe5WYOEINDfWSeoumJ55Yp//7v3V65pmntHnzJpnNJk2cmK7vf/8+/e53v9bx48f0m9/8Utdee73Wrv29enpcGjduvJKSRkiS7rhjpSTpl7/8ufbuLVB0tFX/9V8/UWJiou66a4W+9a0VuvTSqSorO65///eV+tWvfqfs7BckSYmJSX1nQ91xx8ozfi2++MXFmjdvgT74YLva2tr1ox89oLS0iQM+ls6EkggAAAAAgDPIySvTtt3ndwlTf2ZNSdLMyQN7efK6ulrdf/99+sEPfqyRI0f13f7yyxt03XVzlJY2UQEBAXr//VxdeeWsvvuvu26O/vrXJ7Rw4RLV1FTL7ZZiY+P67l+58i49+OCP9fjj63TZZZdr+vQZuu66uef9OcXF2fXUU8/pv//7AT311JP6/e8fVl7eLv3+97/R9def/H6Li/frv/7rJ0pNTdN9992jrVs36/rrb9CvfvXfWrv2cSUljdDTT/9VDz30v7rrru/qvfdy9dRTz6mjo0O//OX/U0dHR9/7uu2225Wd/bx+9avfKTExSX/84+917NhRjRw5Sps3v6SVK0++7O6f/3xWkrR+/T9VWlqib3zjayfd393draeeelJZWVtkNpv10EO/VFVVpf7jP76nJ55Yp//8zx/oo492qLS0RP/850uKiIg45XK8Sy65VD/4wX164YV/6He/+7V+8Ytfn/ZrNnbsOGVm3iRJWrhwSd/7qaurPe3X4v/9v19KkqKjo/Xoo3/VP//5jP72tyf0859f+NlfbBIBAAAAAODBXC6X7r//R5ozZ95JZwF1d3dr69YtmjNnniTpuuvm9p2RckJGxhSVlBxRc3Oz3nrrdV177XUn3T99+gy9+OLL+sEPfiSr1aY//en3uu++e8476/TpMyRJCQmJuvjiS2WxWJSYmKSmpqZTHmuzxSg1NU2SNG5cihobG7VnT4EmTkzvOytnyZKbtHPnh4qLsys4OFirV39Lzz33tJYvX913NtXnmUwmzZ+/UK+88rLKy8tVW1ur9PSMkx7zySc7de21vaVVcrJDkydPOel+i8WijIwpuvPOZfrznx/VTTd9SXZ7/CkfKzl5tCIiIk65PTg4WDfcMF+SNG/efH388c6zft1O50xfixOmTev9Wp/42g0GziQCAAAAAOAMZk4e+Nk+Q+XPf35U3d1dWrny3066PSfnXTU1NeqHP+wtdbq7u1VXV6vKygrFxydI6i1MZs68Stu2va23335TDzzwC73wwnOSpMbGBj355GP6znf+U9Onz9D06TN0++13KjNznurq6mSz2c6Yye12y2Qyqbu7+6TbAwMD+/47ICDgrJ9XUFDQKe/T7XadcltPT48sFovWrXtSn3zykbZvz9GqVd/UH/6w7ozve8GCxfrP//x3BQUF6cYbF5zmEaaTPtbpsv7iF79RQUGe3nsvV//5n9/RT35y6qD1mYoqs/lf78/t7i2dpJNflv7zX7vPO9PX4oTPfv3cbvdZ39dAcSYRAAAAAAAe6sMP39PGjVl64IFf9BUNJ7z88gYtX75a//znRv3znxuVlbVZkydfpI0bs0563HXXzdULL/xDFkvgScVPeHiEtm17R5s3v9R327FjRxUTE9s3dH06VqtVhw4dkNvt1rZt7wzOJ/qpSZMytGdPnsrKjkuSNmx4QZdeepn27SvUXXet0EUXXaK77vquxowZp5KSIyc9NyAgoK9ESUxMkt0er6ys53XjjQtP+ThTp16hV199RS6XS+XlZcrL233S/XV1dbr11i9q3LgU3XnnKl1++TQdOLBfAQGWk4qaM2lra+17FbdNm7I1deoVkqTo6N6vnSS9++5bp83e39diKHEmEQAAAAAAHupvf3tSPT09+t73vnPS7bNnX6OPPtqh//qvn550+1e/+nX95jf/o9tvv7PvtvT0yaqpqdaSJUtPemxAQIB+/evf6Q9/WKPHHntYISEhiouz65e/fOisZwGtWnWXvv/9uxUTE6spUy7uG30eDDExsbrnnvv0wx9+T11d3UpMTNS99/5EcXFxysiYomXLvqKQkBBNmODU9OkzTnpVsBkzrtL3vvcfeuihP2jEiJGaM+cGvfXWG4qLs5/ycW666Us6dOiAbr31i0pMTNK4ceNPut9msykz8yYtX75MwcEhSkhI1IIFi9XV1aXm5ib97Gc/1sKFmWf8PCIiIvXOO2/p0Ucflt1u1w9/2Pv/p1tvXaaf//x+bdq0QVdddU3f4y+++FL9/Of3KyYmpt+vxVAyuQfrnKQhUFPTLJfLY+P5PLs9UlVVp143CvgKjnH4Mo5v+DqOcfgyjm/jlZcfUWLiaKNj+CSLxazublf/D7xA3d3d+tnPfqLrrpujq6++rv8n+KjPH8tms0mxsaduKPXdPxyhAAAAAAAAhoPb7dbSpfNlNptPOlsH/eNyMwAAAAAA4DNMJpNeeulVo2N4pQGdSbRx40YtWLBAc+fO1fr168/4uLfeekvXXfev07gaGxu1YsUKzZ8/X7feequqqqouPDEAAAAAAAAGXb8lUUVFhdasWaOnn35a2dnZevbZZ1VcXHzK46qrq/XLX/7ypNt++9vfaurUqdq8ebO+9KUv6ec///ngJQcAAAAAYIh48HwvMCDncwz3WxLl5uZq+vTpslqtCgsL07x587Rly5ZTHvejH/1Id91110m3vfXWW1q8eLEkadGiRXrnnXfU1dV1ziEBAAAA4FyU17aqobnD6BjwUhZLkFpaGimK4LXcbrdaWhplsQSd0/P63SSqrKyU3f6vl4uLj4/X7t27T3rMX//6V02aNEkXXXTRGZ9rsVgUERGh2tpaJSQkDCjc2Ra3MTzs9kijIwBDimMcvozjG76OYxxn0tXt0v/3fzlyjrbpR9+aZnSc88LxbSyrNUSlpaWqqjpqdBTgvIWGhiglZawCAwMH/Jx+S6LTNacmk6nvv/ft26etW7fqySefVHl5eb8f0Gwe+Auq1dQ0y+WiuTUKL70JX8cxDl/G8Q1fxzGOs/l4X5Xqmzu0u7hKFRWNMptN/T/Jg3B8e4bISLsi6eoGHcf38Kqvb5fU3ve22Ww66wk5/TY2CQkJqq6u7nu7srJS8fHxfW9v2bJFVVVVuvnmm7VixQpVVlbqlltukdR71tGJ53Z3d6u5uVlWq/VcPycAAAAAGLCc/N5/vG7r6FFpZbPBaQDAe/RbEs2YMUPbt29XbW2t2tratHXrVs2ePbvv/u985zt65ZVXlJ2drXXr1ik+Pl5PP/20JOnqq69WVlaWJOnll1/W1KlTz+k0JwAAAAA4F42tndpVXK0rJvb+w3ZhSZ3BiQDAewzoTKK7775by5Yt09KlS7Vo0SJNmTJFy5cvV15e3lmf+x//8R/65JNPtHDhQj399NP6yU9+MmjBAQAAAODz3t9ToR6XWwuvHKMEW6iKSuqNjgQAXqPfTSJJWrx4cd+rlJ3w6KOPnvK4UaNG6Y033uh722q16uGHH77AiAAAAAAwMLl55XIkRCg5PkJOh00fFlbK5XJ73S4RABhh4CvSAAAAAODBjlY260hFk2ZOTpIkOR1WtXV0s0sEAANESQQAAADAJ+TklynAbNK0SQmSJGeyVZJUxC4RAAwIJREAAAAAr9fjcml7QYWmjI9VVFiQJCkmKkTxtlAVsksEAANCSQQAAADA6+UfrFVjS2ffpWYnOJOt2n+0Xi6326BkAOA9KIkAAAAAeL2cvDJFhAZqyvjYk25Pc9jU0t6to+wSAUC/KIkAAAAAeLXmti59Ulyt6ZMSZAk4+U8cp8MqSVxyBgADQEkEAAAAwKt9sLdC3T3uUy41kz7dJbKGMl4NAANASQQAAADAq+XklWmUPUKOhIjT3p/qsGpfKbtEANAfSiIAAAAAXutYdYsOlTVp5uREmUym0z4mzWFllwgABoCSCAAAAIDXys0rk9lk0vT0xDM+xplskyQVsUsEAGdFSQQAAADAK7lcbm0vKNfkcTGKDg864+Nio0MUFx2iotL64QsHAF6IkggAAACAVyo4XKv65s7TDlZ/XprDpqKSOnaJAOAsKIkAAAAAeKWcvDKFh1h0UUpcv491frpLdKyqZRiSAYB3oiQCAAAA4HVa27v00b5qTZuUoEBL/3/WOB1WSVJRSd0QJwMA70VJBAAAAMDrfFBYqe4e14AuNZOkuOjQ3l0ixqsB4IwoiQAAAAB4nZy8Mo2IC9eYxMgBP8fpsKqotJ5dIgA4A0oiAAAAAF6lrKZFB441aubkRJlMpgE/L81hU3Nbl46zSwQAp0VJBAAAAMCr5OaXy2SSrkxPPKfnOZOtkqSi0vrBDwUAPoCSCAAAAIDXcLncys0vV8bYWFkjgs/puXHWUMVGhaiQ8WoAOC1KIgAAAABeY29JneqaOjRz8rmdRXRCmsOqopJ6udklAoBTUBIBAAAA8Bo5eWUKDbbokglx5/X8VIe1d5eoml0iAPg8SiIAAAAAXqGto1sfFVVp2sR4BVoCzut9pDlskqTCkvpBTAYAvoGSCAAAAIBX+LCwUp3dLs2cnHTe7yMuOkSxUcEqYpcIAE5BSQQAAADAK+TmlSkxJkzjRkSd9/swmUxKTbapqJRdIgD4PEoiAAAAAB6voq5V+442aObkRJlMpgt6X2kOq5pau3S8pnWQ0gGAb6AkAgAAAODxcvPKZZJ0Zfr5varZZzlH9+4ScckZAJyMkggAAACAR3O53crNL9ekMTbFRIVc8PuzR4coJiqY8WoA+BxKIgAAAAAeraikXjWN7Rc0WP1ZJpNJzmSr9pXUsUsEAJ9BSQQAAADAo+XmlSkkKECXpNoH7X06HTY1tnapjF0iAOhDSQQAAADAY7V3dmtHUZWumBiv4MCAQXu/aQ6rJHaJAOCzKIkAAAAAeKydRVXq6OrRjIzBudTsBLs1VLbIYBWV1g/q+wUAb0ZJBAAAAMBj5eSVKd4aqgmjogf1/ZpMJjkdVhWW1LNLBACfoiQCAAAA4JGq69tUWFKvmZMTZTKZBv39pzlsamzpVHktu0QAIFESAQAAAPBQufnlkqQrMxKH5P07k62SpMKS+iF5/wDgbSiJAAAAAHgct9utnPwyTRxtU1x06JB8jHhbqKwRQYxXA8CnKIkAAAAAeJz9RxtUVd+uGUN0FpHUu0uU5rCpiF0iAJBESQQAAADAA23LK1NwUICmOuOH9OM4HVY1sEsEAJIoiQAAAAB4mI7OHu0orNRUp13BQQFD+rGcDpskqai0fkg/DgB4A0oiAAAAAB7lo31Vau/s0azJSUP+sRJsoYqOCFIR49UAQEkEAAAAwLPk5JcpLjpEEz599bGhdGKXqLCkjl0iAH6PkggAAACAx6htbNfew3WakZEos8k0LB/TmWxVQ3OnKuvahuXjAYCnoiQCAAAA4DFy88vlljRjGC41O8HpsEqSCkvqhu1jAoAnoiQCAAAA4BHcbrdy8sqUmmxVvDV02D5uYkyYosPZJQIASiIAAAAAHuHAsUZV1LVp5uTEYf24JpNJToeVXSIAfo+SCAAAAIBHyMkvU1CgWVOd8cP+sZ0Om+qbO1VZzy4RAP9FSQQAAADAcJ1dPfpgb4UuS41XaLBl2D9+2qe7RFxyBsCfURIBAAAAMNzH+6vV1tEz7JeanZAYE6ao8CDGqwH4NUoiAAAAAIbLyStTTFSw0kbbDPn4JpNJzmSrikrq2SUC4LcoiQAAAAAYqq6pQwWHazUjI0lmk8mwHGkOq+qaOlTFLhEAP0VJBAAAAMBQ2wvK5XZLMzOMudTsBKej9yymQnaJAPgpSiIAAAAAhnG73crJK1PKqGglxIQZmiUpNkxRYYEqYpcIgJ+iJAIAAABgmENlTSqraTX8LCKpd5co1WFTUSm7RAD8EyURAAAAAMPk5JUp0GLW5WkJRkeR1LtLVNvYoaqGdqOjAMCwG1BJtHHjRi1YsEBz587V+vXrT7n/1Vdf1eLFi7Vw4ULde++96uzslCRlZWVp1qxZyszMVGZmptasWTO46QEAAAB4ra7uHn2wt0KXptoVFmIxOo6kf+0SFR3hkjMA/qff78QVFRVas2aNXnjhBQUFBemrX/2qpk2bppSUFElSa2urHnzwQb344ouKi4vT3XffrRdffFFf+cpXlJeXp3vvvVeLFi0a8k8EAAAAgHf5pLhGLe3dmjnZ+EvNThgRG6bIsEAVldbrqotGGB0HAIZVv2cS5ebmavr06bJarQoLC9O8efO0ZcuWvvvDwsL0xhtvKC4uTq2traqpqVFUVJQkKS8vT1lZWVqyZIm+973vqaGhYeg+EwAAAABeJSevTLbIYE0aHWN0lD4mk0nOZKuKSurYJQLgd/o9k6iyslJ2u73v7fj4eO3evfukxwQGBurtt9/W97//fcXHx2vWrFmSJLvdrhUrVmjKlCl66KGH9OCDD+o3v/nNgMPFxkYM+LEYGnZ7pNERgCHFMQ5fxvENX8cx7t3qGtuVf6hWN12TooSEKKPjnGTqpETtKKqSKyBAibHhhmTg+IYv4/j2XP2WRKdrz00m0ym3XX311Xr//ff10EMP6f7779dvfvMb/fGPf+y7/84779ScOXPOKVxNTbNcLtp7o9jtkaqqajI6BjBkOMbhyzi+4es4xr3flvdL5HK5dcn4GI/7/+WImFBJ0vZPjmnWlKRh//gc3/BlHN/GMptNZz0hp9/LzRISElRdXd33dmVlpeLj4/verq+v17Zt2/reXrx4sYqKitTU1KQnn3yy73a32y2LxTPG6AAAAAAYx+12Kye/TONGRCnJoDN1zmZEXLgiQgNVVMJ4NQD/0m9JNGPGDG3fvl21tbVqa2vT1q1bNXv27L773W637rnnHh0/flyStHnzZl166aUKCwvTY489pl27dkmSnnrqKc2dO3eIPg0AAAAA3qKkolnHqlo0c/Lwn6UzEGaTSU6HVYUl9UZHAYBh1e+pPQkJCbr77ru1bNkydXV16Ytf/KKmTJmi5cuX6zvf+Y4mT56sn/3sZ1q5cqVMJpNSUlL0wAMPKCAgQL/97W91//33q729XWPGjNH//u//DsfnBAAAAMCDbcsrkyXArCsmxvf/YIM4k63aWVSl6vo2xVlDjY4DAMNiQNd/LV68WIsXLz7ptkcffbTvv+fMmXPavaGpU6fqxRdfvMCIAAAAAHxFd49L7++p0CUT4hQeEmh0nDNKc9gkSUWl9ZREAPxGv5ebAQAAAMBg2VVco+a2Ls2cnGh0lLMaYe/dJSpklwiAH6EkAgAAADBscvLKFB0epPSxMUZHOSuzySRnslVF7BIB8COURAAAAACGRWNLp/IO1ujK9EQFmD3/T5FUh1XVDe2qbmgzOgoADAvP/84MAAAAwCe8t6dCPS63Znj4pWYn9O0ScTYRAD9BSQQAAABgWOTmlWlMYqRG2SOMjjIgI+3hCg+xUBIB8BuURAAAAACGXElFk0oqmzVzcpLRUQbMbDIpNdmqolLGqwH4B0oiAAAAAEMuN79cAWaTpk1KMDrKOUlz2FRV366ahnajowDAkKMkAgAAADCkuntc2l5QrotT4hQRGmh0nHPidFglibOJAPgFSiIAAAAAQyrvYI2aWru86lKzE0bFRyg8xKJCdokA+AFKIgAAAABDKjevXJFhgcoYF2N0lHN2YpdoHyURAD9ASQQAAABgyDS3demT4mpdmZ4oS4B3/vnhdNhUWd+m2kZ2iQD4Nu/8Lg0AAADAK7y/p0I9LrdmZCQaHeW8pZ3YJeJsIgA+jpIIAAAAwJDZllcmR3yEHAmRRkc5b6PsEQoLtjBeDcDnURIBAAAAGBJHq5p1pLzJKwerP8ts7t0lYrwagK+jJAIAAAAwJHLzyhVgNmlaeoLRUS5YmsOqyjp2iQD4NkoiAAAAAIOux+XS9oJyTRkfq6iwIKPjXDCnwyZJKiqtNzYIAAwhSiIAAAAAg67gUK0aWjo1I8O7LzU7ITk+QqHBFsarAfg0SiIAAAAAg25bXrkiQgN1UUqs0VEGhdlskjPZqqISxqsB+C5KIgAAAACDqqW9S5/sr9K0SQmyBPjOnxxOh1UVdW2qa+owOgoADAnf+Y4NAAAAwCN8sKdC3T1uzfLyVzX7PKfDKkkqKuVsIgC+iZIIAAAAwKDKyS/XSHu4HAkRRkcZVI74SIUGB7BLBMBnURIBAAAAGDRlNS06eLxRMzOSZDKZjI4zqMxmk1JHWVVISQTAR1ESAQAAABg0OXnlMptMujI9wegoQ8LpsKmitlX1zewSAfA9lEQAAAAABoXL5VZufpkyxsUoOiLY6DhDom+XiLOJAPggSiIAAAAAg2LPkVrVN3f63GD1ZzkSIj7dJWK8GoDvoSQCAAAAMChy8soVHmLRRSlxRkcZMgFmsyawSwTAR1ESAQAAALhgre3d+mhfla6YlKBAi2//meF0WFVe26oGdokA+Bjf/u4NAAAAYFh8WFihrm6XZmb47qVmJ6Q5bJKkotJ6Y4MAwCCjJAIAAABwwXLyypUUG6axSZFGRxlyjoQIhQQFcMkZAJ9DSQQAAADgglTUtqr4WINmTU6SyWQyOs6QO7FLxHg1AF9DSQQAAADgguTkl8lkkqanJxodZdikOawqq2lVQ0un0VEAYNBQEgEAAAA4by63W7n55UofGyNbZLDRcYaN88QuEWcTAfAhlEQAAAAAzlvhkTrVNnb4xWD1Z41OjFBwUICK2CUC4EMoiQAAAACct5y8coUGW3TJhDijowyr3l2iaF7hDIBPoSQCAAAAcF7aOrq1c1+lrpgYr6DAAKPjDLs0h03Hq1vUyC4RAB9BSQQAAADgvOwoqlRnl0szJ/vXpWYnOJOtksTZRAB8BiURAAAAgPOSk1euBFuoxo+IMjqKIUYnRio4MIDxagA+g5IIAAAAwDmrrG/TvtJ6zZycJJPJZHQcQ1gCPt0lYrwagI+gJAIAAABwznLzymSSNCMj0egohnI6rDpW3aLGVnaJAHg/SiIAAAAA58Tldis3v1wTx9gUExVidBxDOR02SdI+ziYC4AMoiQAAAACck/2l9apuaPfbwerPGpMYqaBAM5ecAfAJlEQAAAAAzsm2vDKFBAXo0lS70VEM17tLZFVhKePVALwfJREAAACAAWvv7NaOwipdnhav4MAAo+N4BGeyVceqWtTELhEAL0dJBAAAAGDAdhZVqaOrh0vNPiPtxC5Rab2xQQDgAlESAQAAABiw3Pxy2a0hmjAq2ugoHmNMUu8uUSG7RAC8HCURAAAAgAGpbmjT3iN1mpmRJJPJZHQcj2EJMCtlZLSKStglAuDdKIkAAAAADEhufrkkaUZGosFJPI/TYdPRqhY1t3UZHQUAzhslEQAAAIB+ud1u5eaVK81hVZw11Og4HifNYZUkFXHJGQAvRkkEAAAAoF/7jzaosr6NweozGJsUpSCLmUvOAHg1SiIAAAAA/crNL1NwYIAuc9qNjuKRLAFmjR8ZrSJe4QyAF6MkAgAAAHBWHV09+mBvpaY67QoJshgdx2OlOaw6WtnMLhEAr0VJBAAAAOCsPt5XpfbOHi4164fTYZNb0j7OJgLgpQZUEm3cuFELFizQ3LlztX79+lPuf/XVV7V48WItXLhQ9957rzo7OyVJx48f16233qobb7xRq1evVktLy+CmBwAAADDkcvLKFBsVotRPx5lxemOTohRoMauQXSIAXqrfkqiiokJr1qzR008/rezsbD377LMqLi7uu7+1tVUPPvig/vznP2vTpk3q6OjQiy++KEl64IEHdMstt2jLli3KyMjQn/70p6H7TAAAAAAMutrGdu05XKeZkxNlNpmMjuPRAi1mpYyM1j5e4QyAl+q3JMrNzdX06dNltVoVFhamefPmacuWLX33h4WF6Y033lBcXJxaW1tVU1OjqKgodXV16cMPP9S8efMkSTfddNNJzwMAAADg+bYXlMstaUZGotFRvILTYVUpu0QAvFS/JVFlZaXs9n+9gkF8fLwqKipOekxgYKDefvttXXvttaqrq9OsWbNUV1eniIgIWSy9w3Z2u/2U5wEAAADwXG63W9vyypU6KlrxtjCj43iFtE93ifazSwTAC/X70gRut/uU20ynOc306quv1vvvv6+HHnpI999/v77//e8P6HlnExsbcU6Px+Cz2yONjgAMKY5x+DKOb/g6jvGhV3ikVhW1rfrKnIv5eg+Q1RamoGc/UUl1q26Yef5fM77e8GUc356r35IoISFBO3bs6Hu7srJS8fHxfW/X19crPz9fs2bNkiQtXrxYd999t2JiYtTc3Kyenh4FBASoqqrqpOcNRE1Ns1yuU0sqDA+7PVJVVU1GxwCGDMc4fBnHN3wdx/jw2PTOAQVZzHKOjOLrfQ7GjYjSx0UVqqoafV7P5/iGL+P4NpbZbDrrCTn9Xm42Y8YMbd++XbW1tWpra9PWrVs1e/bsvvvdbrfuueceHT9+XJK0efNmXXrppQoMDNTUqVP18ssvS5KysrJOeh4AAAAAz9XV3aP391bqMqddocH9/tsyPiPNYVNpRbNa2tklAuBd+i2JEhISdPfdd2vZsmVaunSpFi1apClTpmj58uXKy8uTzWbTz372M61cuVJLlizR4cOHdc8990iSfvrTn+q5557TggULtGPHDn33u98d6s8HAAAAwCD4eH+12jq6NWNyktFRvI7TYZVb0j52iQB4GZP7dKNDHoLLzYzFaYDwdRzj8GUc3/B1HONDb81zu3Ssuln/u2qGzOZz2xb1d13dPfq3Ne/quktH6qvXTzjn53N8w5dxfBvrgi83AwAAAOBf6po6lH+oRlemJ1IQnYdAS4BSRkapqKTe6CgAcE4oiQAAAACc5L095XK7pZlcanbeUpOtKqloUiu7RAC8CCURAAAAgD5ut1s5eeVKGRmtxJgwo+N4rTSHrXeX6GiD0VEAYMAoiQAAAAD0OVzepOPVLZoxOdHoKF5t/MgoWQLMKiqpMzoKAAwYJREAAACAPjl5ZQq0mHVFWrzRUbxaoCVA40dEqZBdIgBehJIIAAAAgCSpq9ul9/dU6JIJcQoLCTQ6jtdzOk7sEnUbHQUABoSSCAAAAIAkaVdxtVrauzWLwepB4XTY5HZL+4/WGx0FAAaEkggAAACApN5LzawRQZo0JsboKD5h/IgoWQJMKuKSMwBegpIIAAAAgBpaOpV3sFZXZiTKbDYZHccnBAUGaFxSlAoZrwbgJSiJAAAAAOi9gnK53G7NzOBSs8HkdNh0pKJJbR3sEgHwfJREAAAAgJ9zu93KySvT2KQojYgLNzqOT0lzWNklAuA1KIkAAAAAP1dS0ayjVS2aNTnR6Cg+Z9zIaAWYTSpklwiAF6AkAgAAAPxcTl6ZLAEmXT4xwegoPic4MEDjRkQxXg3AK1ASAQAAAH6su8el9/ZU6OIJdkWEBhodxyc5HTYdKWeXCIDnoyQCAAAA/NjuAzVqbuvSzAwuNRsqaQ6rXG639h9tMDoKAJwVJREAAADgx3LyyhQVHqSMcTFGR/FZ4z/dJSoqqTM6CgCcFSURAAAA4KcaWzu1+0CNrkxPUICZPw2GSnBggMaOiFJRab3RUQDgrPhJAAAAAPip9/dUqMfl1syMJKOj+Lw0h1WHy9glAuDZKIkAAAAAP5WTV6bRCZEaFR9hdBSf50y2yeV2q/gYu0QAPBclEQAAAOCHSiubVVLRrJmTGaweDil9u0T1RkcBgDOiJAIAAAD8UE5emQLMJk2blGB0FL8QHBSgsUlRjFcD8GiURAAAAICf6e5x6b2Ccl2UEqfIsCCj4/gNp8OqQ2VNau9klwiAZ6IkAgAAAPxM/qFaNbZ2canZMHM6rOwSAfBolEQAAACAn8nJK1NkWKAmj4s1OopfYZcIgKejJAIAAAD8SHNbl3YVV2v6pERZAvhzYDiFBFk0JilShewSAfBQ/FQAAAAA/Mj7eyrU3ePmUjODOJNtOlzWpI7OHqOjAMApKIkAAAAAP5KbX6bk+Ag5EiKNjuKX0hxW9bjYJQLgmSiJAAAAAD9xrLpFh8qaNDODs4iMkjIqWmaTiUvOAHgkSiIAAADAT+TmlSnAbNL0dEoio5zYJWK8GoAnoiQCAAAA/ECPy6XcgnJNHherqPAgo+P4NafDqkNljewSAfA4lEQAAACAHyg4VKeG5k4Gqz1AmsPWu0t0nF0iAJ6FkggAAADwA7n5ZYoIDdRFKXFGR/F7KSN7d4mK2CUC4GEoiQAAAAAf19LepY/2VWvaxARZAvgTwGihwRaNTmSXCIDn4ScEAAAA4OM+3Fup7h6XZk7hUjNPkeaw6uDxRnV0sUsEwHNQEgEAAAA+LievTCPjwjU6IdLoKPiU89NdogPH2CUC4DkoiQAAAAAfVlbTogPHGzVzcpJMJpPRcfCpCaOiZTJJhVxyBsCDUBIBAAAAPiw3v1wmkzQ9PcHoKPiM0GCLxiRGah/j1QA8CCURAAAA4KNcLrdy88s1eVysrBHBRsfB5zgdNh0sY5cIgOegJAIAAAB81N4jdapr6tDMyUlGR8FpOJOt6u5x6yC7RAA8BCURAAAA4KNy8soUFmzRxSmxRkfBaUwYZZXJJBWV1hsdBQAkURIBAAAAPqm1vVsf7avStEkJCrQEGB0HpxEWYtHohEjGqwF4DEoiAAAAwAftKKpUZ7dLMyYnGh0FZ5HmsOng8QZ1sksEwANQEgEAAAA+KCevTEmxYRqXFGV0FJxFqqN3l+jA8UajowAAJREAAADgayrqWrX/aINmZCTKZDIZHQdnkToquneXqKTO6CgAQEkEAAAA+JrcvHKZTNKMDF7VzNOFhQTKkRCpInaJAHgASiIAAADAh7jcbuXmlyl9TIxskcFGx8EAOJOtOnC8UV3d7BIBMBYlEQAAAOBDikrqVdPYwWC1F0lz2NTd49JBdokAGIySCAAAAPAhOXllCg0O0KUT7EZHwQClJkfLJKmQS84AGIySCAAAAPARbR3d2lFUqcvTEhQUGGB0HAxQWEigkhMiGK8GYDhKIgAAAMBH7CyqUmeXS7MmM1jtbdIcNnaJABiOkggAAADwETl5ZUqwhWr8yCijo+AcOR1WdXWzSwTAWJREAAAAgA+oqm9TUWm9ZkxOkslkMjoOzlFqslUm9Q6PA4BRKIkAAAAAH5CbXy6TpBnpvKqZNwoPCVRyfIQK2SUCYKABlUQbN27UggULNHfuXK1fv/6U+1977TVlZmZqyZIl+va3v62GhgZJUlZWlmbNmqXMzExlZmZqzZo1g5seAAAAgFxut3LyypQ22qbY6BCj4+A8OdklAmAwS38PqKio0Jo1a/TCCy8oKChIX/3qVzVt2jSlpKRIkpqbm3X//ffr+eefV0JCgn73u9/pD3/4g370ox8pLy9P9957rxYtWjTknwgAAADgr/aX1qu6oV1fuGqc0VFwAdIcVr26o1T7SuoVHxlkdBwAfqjfM4lyc3M1ffp0Wa1WhYWFad68edqyZUvf/V1dXbr//vuVkJAgSXI6nSorK5Mk5eXlKSsrS0uWLNH3vve9vjOMAAAAAAyenPxyBQcF6NJUu9FRcAEmfLpLlHeg2ugoAPxUvyVRZWWl7PZ//bCJj49XRUVF39s2m01z5syRJLW3t2vdunV9b9vtdv37v/+7srOzlZSUpAcffHCw8wMAAAB+raOzRx8WVurytHgFBwUYHQcXICI0UKPiI5RPSQTAIP1ebuZ2u0+57XSvltDU1KRvf/vbSktL0xe+8AVJ0h//+Me++++8886+8migYmMjzunxGHx2e6TREYAhxTEOX8bxDV/HMd7rjR2l6ujs0cJZ4/ia+IBLnPHa8t4RWW1hCrRQ+sE38b3Kc/VbEiUkJGjHjh19b1dWVio+Pv6kx1RWVuqOO+7Q9OnT9cMf/lBSb2n0/PPP6/bbb5fUWzZZLP1+uJPU1DTL5Tq1pMLwsNsjVVXVZHQMYMhwjMOXcXzD13GM/8uW3EOyW0Nkjwzia+IDkuPC1dnVow92H1dqstXoOMCg4/u3scxm01lPyOn3crMZM2Zo+/btqq2tVVtbm7Zu3arZs2f33d/T06NVq1Zp/vz5uu+++/rOMgoLC9Njjz2mXbt2SZKeeuopzZ0790I/HwAAAACfqmloV+GROs3ISJL5NGf7w/s4HVZJUlFJnbFBAPilAZ1JdPfdd2vZsmXq6urSF7/4RU2ZMkXLly/Xd77zHZWXl2vPnj3q6enRK6+8IknKyMjQz3/+c/32t7/V/fffr/b2do0ZM0b/+7//O+SfEAAAAOAvcgvK5ZY0IyPR6CgYJBGhgRqTFKWi0notNjoMAL9jcp9udMhDcLmZsTgNEL6OYxy+jOMbvo5jvHfO4Yfr3pM1Ilg/uPVSo+NgEL2Yc1ivbD+s/7t7tiwB/V78AXgVvn8b64IvNwMAAADgeQ4ca1RFXZtmTk4yOgoGWca4WHV2u3SorNHoKAD8DCURAAAA4IW25ZUpODBAU9PsRkfBIEsfFytJKiqpNzYIAL9DSQQAAAB4mc6uHn1YWKHLnHaFBJ3bKwjD80VHBGuUPZzxagDDjpIIAAAA8DIf7a9SW0cPl5r5MGeyTfuPNai7x2V0FAB+hJIIAAAA8DI5eeWKjQrpe7l0+B6nw6rOLpcOlzPwC2D4UBIBAAAAXqSuqUN7DtdqRkaizCaT0XEwRFI/LQC55AzAcKIkAgAAALxIbn6Z3G5pxuREo6NgCEWFBWmkPVyFjFcDGEaURAAAAICXcLvdys0v14RR0UqwhRkdB0PMmWxV8VF2iQAMH0oiAAAAwEscLGtUWU0rg9V+Is1hU0dXj46wSwRgmFASAQAAAF4iN69cQRazpjrjjY6CYZCabJUkFbJLBGCYUBIBAAAAXqCru0fv76nQpU67wkIsRsfBMIgKD9KIuHAVsUsEYJhQEgEAAABe4JPiGrV2dGtmBpea+ROnw6r9x9glAjA8KIkAAAAAL5CTVyZbZLAmjrYZHQXDKM1hU0dnj45UsEsEYOhREgEAAAAerr65Q3kHazQjI1Fms8noOBhGJ3aJuOQMwHCgJAIAAAA83HsFFXK7pRkZiUZHwTCLDg9SUmwYJRGAYUFJBAAAAHgwt9utnLwyjR8RpaTYcKPjwABpDpv2Ha1Xj4tdIgBDi5IIAAAA8GBHKpp0rLpFMyczWO2vnA5r7y5RebPRUQD4OEoiAAAAwIPl7C6XJcCsKybGGx0FBnH27RLVGRsEgM+jJAIAAAA8VFe3S+/tKdelqXEKCwk0Og4MEh0R3LtLVFpvdBQAPo6SCAAAAPBQuw9Uq6W9m0vNIKfDpn2l7BIBGFqURAAAAICHyskrV3REkNLHxBgdBQZzJlvV3tmjkgp2iQAMHUoiAAAAwAM1tHRq94EazUhPlNlsMjoODOZ0WCVJRSX1huYA4NsoiQAAAAAP9H5BuVxut2ZwqRkkWSOClRgTpkLGqwEMIUoiAAAAwAPl5JdrbFKkRsaFGx0FHsLpsGr/UXaJAAwdSiIAAADAw5RUNKm0slkzMjiLCP/idFjV1sEuEYChQ0kEAAAAeJicvHJZAkyaNinB6CjwIM5kmyR2iQAMHUoiAAAAwIN097j03p5yXZwSp4jQQKPjwIPYIoOVEBOmInaJAAwRSiIAAADAg+QdrFFTaxeD1TgtZ7JV+47Wy+VyGx0FgA+iJAIAAAA8SE5euaLCg5QxNsboKPBAaZ/uEpVWsksEYPBREgEAAAAeoqm1U7uKqzV9UoIsAfyqjlM5Hb27RIVccgZgCPCTBwAAAPAQ7++pUI/LrZlcaoYzsEUGK94Wyng1gCFBSQQAAAB4iJy8cjkSIpQcH2F0FHiwNIdV+0rZJQIw+CiJAAAAAA9wtLJZRyqaOIsI/XI6bGrt6GaXCMCgoyQCAAAAPEBOfpkCzCZNm5RgdBR4OGeyVZJUxC4RgEFGSQQAAAAYrMfl0vaCCk0ZH6uosCCj48DDxUSFKN4aqkJ2iQAMMkoiAAAAwGD5B2vV2NKpWVxqhgFyOqzaf7ReLje7RAAGDyURAAAAYLCc/HJFhAZq8vhYo6PAS6Q5bGpp79ZRdokADCJKIgAAAMBAzW1d+mR/laanJ8gSwK/nGBinwypJXHIGYFDxUwgAAAAw0Id7K9Td49bMDC41w8DFRIXIbg1hvBrAoKIkAgAAAAy0La9co+wRciREGB0FXsbpsGlfKbtEAAYPJREAAABgkOPVLTpU1qiZkxNlMpmMjgMv40y2sksEYFBREgEAAAAGyckvk9lk0vT0RKOjwAud2CUqKq03NAcA30FJBAAAABjA5XJre365Jo+LUXR4kNFx4IXiokMVFx2iIsarAQwSSiIAAADAAHsO16q+uVMzJzNYjfOX5rCpqKSOXSIAg4KSCAAAADDAtrwyhYdYdFFKnNFR4MWcjt5domNVLUZHAeADKIkAAACAYdba3qWP91dr2qQEBVr4lRznz5lslSQVldQZGwSAT+AnEgAAADDMPiisVFe3i0vNcMHirOwSARg8lEQAAADAMMvNK9eIuHCNSYw0Ogp8gDPZqqLSenaJAFwwSiIAAABgGJXXtqr4WINmTk6UyWQyOg58gNNhU3Nbl45Xs0sE4MJQEgEAAADDKCevTCaTdGV6otFR4CPSHFZJ4pIzABeMkggAAAAYJi6XW7n55coYGytrRLDRceAj4qyhio0KViHj1QAuECURAAAAMEz2ltSprqlDMydzFhEGl9NhU1FJvdzsEgG4AJREAAAAwDDJzStTaLBFl0yIMzoKfIzTYWWXCMAFG1BJtHHjRi1YsEBz587V+vXrT7n/tddeU2ZmppYsWaJvf/vbamhokCQdP35ct956q2688UatXr1aLS18wwIAAIB/auvo1s6iKk2blKBAS4DRceBj0hw2SVIhu0QALkC/JVFFRYXWrFmjp59+WtnZ2Xr22WdVXFzcd39zc7Puv/9+rVu3Ths2bJDT6dQf/vAHSdIDDzygW265RVu2bFFGRob+9Kc/Dd1nAgAAAHiwHYWV6ux2aWYGl5ph8MVFhygmKlhF7BIBuAD9lkS5ubmaPn26rFarwsLCNG/ePG3ZsqXv/q6uLt1///1KSEiQJDmdTpWVlamrq0sffvih5s2bJ0m66aabTnoeAAAA4E9y8sqUGBOmcSOijI4CH2QymeRMtqmolF0iAOev35KosrJSdru97+34+HhVVFT0vW2z2TRnzhxJUnt7u9atW6c5c+aorq5OERERslgskiS73X7S8wAAAAB/kX+oRvuONmjm5ESZTCaj48BHpTmsamrt0vGaVqOjAPBSlv4ecLoW+nQ/2JqamvTtb39baWlp+sIXvnDaQuhcfyDGxkac0+Mx+Oz2SKMjAEOKYxy+jOMbvs5bjvGahjY9vmmvRidG6qs3TlRIUL+/ggPndXxfefEo/XlzoY7VtuniiVzWCM/lLd+//VG/P6ESEhK0Y8eOvrcrKysVHx9/0mMqKyt1xx13aPr06frhD38oSYqJiVFzc7N6enoUEBCgqqqqU57Xn5qaZrlcnCppFLs9UlVVTUbHAIYMxzh8Gcc3fJ23HOM9Lpd+/fdP1NbRrXu+eomaGtrk+alhtPM9vgPcbtkig7VzT7muSOUV9OCZvOX7t68ym01nPSGn38vNZsyYoe3bt6u2tlZtbW3aunWrZs+e3Xd/T0+PVq1apfnz5+u+++7rO1soMDBQU6dO1csvvyxJysrKOul5AAAAgK/bsO2wikrrddsNTo2ICzc6DnycyWRSmsOqopI6dokAnJcBnUl09913a9myZerq6tIXv/hFTZkyRcuXL9d3vvMdlZeXa8+ePerp6dErr7wiScrIyNDPf/5z/fSnP9W9996rtWvXKikpSQ899NCQf0IAAACAJyg4XKuXcg9r5uREzZycZHQc+Amnw6btBRUqq2mlmARwzkxuD66YudzMWJwGCF/HMQ5fxvENX+fpx3hDc4d++ucPFREaqB8vm6rgoACjI8GLXMjxXVHXqv965D3ddkOqrr101CAnAy6cp3//9nUXfLkZAAAAgIFzudxat3GP2ju6tToznYIIwyreGipbZLCKSuuNjgLAC1ESAQAAAIPopdzD2nukTrfOTdVIO6/Wi+FlMpnkdFhVWFLPLhGAc0ZJBAAAAAySwiN1ys45pCvTEzRrCjtEMIYz2arGlk6V17YaHQWAl6EkAgAAAAZBY0unHtlYoARbmG6b5+x71V9guKU5bJKkopJ6Y4MA8DqURAAAAMAFcrndenRjgVrbu7V6aYZCgvp9EWFgyMTbQmWNCFJhSZ3RUQB4GUoiAAAA4AJt2n5EBYfr9LU5E5Qczw4RjNW7S2RTEbtEAM4RJREAAABwAYpK6pT17kFNm5Sgqy8aYXQcQJLkdFjVwC4RgHNESQQAAACcp8bWTj2yoUDx1lAtY4cIHqRvl6i03tggALwKJREAAABwHlxutx57aY+a23p3iEKD2SGC50iwhSo6PIjxagDnhJIIAAAAOA9b3i9R/sFafe36FDkSIo2OA5ykd5fIqsKSOnaJAAwYJREAAABwjvYfrdcLbx/U1LR4XXPJSKPjAKeV5rCpoblTlXVtRkcB4CUoiQAAAIBz0NzWpYezCxQbHazbb0xjhwgey+mwSpIKS+qMDQLAa1ASAQAAAAPkdrv1+Et71NTaqdVLMxQWwg4RPFdiTJii2CUCcA4oiQAAAIABeuWDUu06UKMvX5uiMYlRRscBzspkMinNYVVRaT27RAAGhJIIAAAAGIADxxr0/NsHdFmqXddfNsroOMCAOB021TV1qLKeXSIA/aMkAgAAAPrRu0OUL1tksL65gB0ieA9nslWSuOQMwIBQEgEAAABn4Xa79cSmvapvPrFDFGh0JGDAkmLDFBUWyHg1gAGhJAIAAADO4tUdR/VJcbW+dG2KxiaxQwTvYjKZ5HTYVFTCLhGA/lESAQAAAGdwqKxR/3izWJdMiNPcqewQwTulOayqa+pQFbtEAPpBSQQAAACcRmt7l9Zm5csaEaRvLpjIDhG8VqrDJkkqZJcIQD8oiQAAAIDPcbvd+vPLhapr6tCqzAxFhLJDBO81IjZMkWGBjFcD6BclEQAAAPA5b3x0TDv3Venmq8dr/Mhoo+MAF6Rvl6i0jl0iAGdFSQQAAAB8xuHyRj37xn5NGR+rG65INjoOMCicyVbVNnaoqqHd6CgAPBglEQAAAPCp1vZurc3KV2RYkO5cNElmdojgI9IcVklSUUmdsUEAeDRKIgAAAEC9O0RPbilUTUOHVrNDBB8zIi5cEaHsEgE4O0oiAAAAQNJbHx/TjsJK3XT1OKWMYocIvqV3l8iqohJ2iQCcGSURAAAA/F5JRZP+/nqxJo+L1Y3THEbHAYZEmsOmmsYOVbNLBOAMKIkAAADg19o6eneIIkItumPRRHaI4LOcfbtE9YbmAOC5KIkAAADgt9xut/76SpEq69u0ckm6osKCjI4EDJl/7RIxXg3g9CiJAAAA4Lfe2XVc7++p0NKrxsnpsBkdBxhSZpNJzmSrCjmTCMAZUBIBAADAL5VWNuvp1/YrfYxNC68cbXQcYFg4HVbVNLarur7N6CgAPBAlEQAAAPxOe2fvDlFYsEV3Lk5nhwh+I+3TM+aKSuuNDQLAI1ESAQAAwK+43W797ZUiVdS1asWSdEWHs0ME/zHCHq7wEIsK2SUCcBqURAAAAPAr23aXaXtBhTJnjtXE0ewQwb+YTSY5HTZe4QzAaVESAQAAwG8cq2rW+lf3aeJomxbNGGN0HMAQTodV1Q3tqm5glwjAySiJAAAA4Bc6Onv0p6x8hQRbtGLxJJnN7BDBPzmTrZLE2UQATkFJBAAAAL/w1KtFKq9p1YrFkxQdEWx0HMAwo+IjFB5ioSQCcApKIgAAAPi8nLwy5eSVa9GMMZo0JsboOIChzCaTUpOtKiplvBrAySiJAAAA4NOOV7fob1uL5Ey2KnPWWKPjAB4hzWFTVX27ahrajY4CwINQEgEAAMBndXT1aG12voIDA7RiSTo7RMCnnA6rJHE2EYCTUBIBAADAZ/39tX06XtWi5YsnyRbJDhFwArtEAE6HkggAAAA+aXtBud7ZVaYFV45WxthYo+MAHqVvl4iSCMBnUBIBAADA55TVtOivW4qUOipaS69ihwg4HWeyVZX1baptZJcIQC9KIgAAAPiUzq4erc0qUKDFrBVL0hVg5lde4HScDpskcTYRgD78xAQAAIBPeeb1/Tpa1aw7F01STFSI0XEAj5UcH6GwYAvj1QD6UBIBAADAZ3ywt0JvfXJc86c5NGU8O0TA2ZjNvbtEhZxJBOBTlEQAAADwCRV1rXpyc6FSRkbrC7PHGR0H8ApOh1WVdW2qa+owOgoAD0BJBAAAAK/X1d2jtVn5CjCbtHJJuiwB/JoLDERa3y4Rl5wBoCQCAACAD3j2jWKVVDTrjoWTFBvNDhEwUMnxEQoNtnDJGQBJlEQAAADwcjsKK/XGR8c074pkXTwhzug4gFcxm01KHRXNmUQAJFESAQAAwItV1rfpz5v3atyIKN189Xij4wBeyemwqYJdIgCiJAIAAICX6up2aW1WvkwyaRU7RMB5SxttlSQVlXI2EeDv+EkKAAAAr/SPN4t1pLxJ31o4UXHWUKPjAF7LER+p0OAAFbFLBPi9AZVEGzdu1IIFCzR37lytX7/+jI/7wQ9+oBdeeKHv7aysLM2aNUuZmZnKzMzUmjVrLjwxAAAA/N72vON6bedRzZk6Spem2o2OA3g1s9mkCaOsjFcDkKW/B1RUVGjNmjV64YUXFBQUpK9+9auaNm2aUlJSTnrMT3/6U23fvl3Tpk3ruz0vL0/33nuvFi1aNDTpAQAA4Heq69v0u2c/0ZjESH352pT+nwCgX2kOm3YfqFF9c4esEcFGxwFgkH7PJMrNzdX06dNltVoVFhamefPmacuWLSc9ZuPGjbr++us1f/78k27Py8tTVlaWlixZou9973tqaGgY3PQAAADwK909Lq3NLpDb7daqpRnsEAGDxOmwShKXnAF+rt8ziSorK2W3/+sU3vj4eO3evfukx9x5552SpJ07d550u91u14oVKzRlyhQ99NBDevDBB/Wb3/xmwOFiYyMG/FgMDbs90ugIwJDiGIcv4/iGL3p8Q74OlTXq3m9crvQJ8UbHAYbMcH8Pj4kJV2iwRUeqWrSInx8YYvyO4rn6LYncbvcpt5lMpgG98z/+8Y99/33nnXdqzpw55xBNqqlplst16sfH8LDbI1VV1WR0DGDIcIzDl3F8wxd9sr9aWW8f0HWXjtTMKSM4xuGzjPoePmFUtHbtq+R/WxhS/I5iLLPZdNYTcvo9PzchIUHV1dV9b1dWVio+vv9/tWlqatKTTz7Z97bb7ZbF0m8nBQAAAJyipqFdj2/ao9EJkfrKdewQAUPB6bCqrKZVDc0dRkcBYJB+S6IZM2Zo+/btqq2tVVtbm7Zu3arZs2f3+47DwsL02GOPadeuXZKkp556SnPnzr3wxAAAAPAr3T0uPbwhXz0ut1YtTVegJcDoSIBPcibbJElFpfXGBgFgmAGdSXT33Xdr2bJlWrp0qRYtWqQpU6Zo+fLlysvLO+PzAgIC9Nvf/lb333+/5s+fr4KCAt1zzz2DGh4AAAC+74V3DurAsUbdPj9NCbYwo+MAPmt0YoSCgwJUyHg14LdM7tONDnkINomMxbWi8HUc4/BlHN/wFbuKq/W7f+7WNZeM1LJ5zr7bOcbhy4w8vtc8t0vVDW36+fLphnx8+D6+fxvrgjeJAAAAACPUNrbr8U17lRwfoa9dzw4RMBz6dolaOo2OAsAAlEQAAADwOD0ulx7ZUKCuHpdWL81ghwgYJk6HVZJUVFJnbBAAhqAkAgAAgMfJeveQ9h9t0DfmOZUYww4RMFxGJ0QqOCiA8WrAT1ESAQAAwKPkH6zRpu1HNPuiJE1PTzQ6DuBXLAFmTRgVrSLGqwG/REkEAAAAj1HX1KFHX9qjUfZw3TIn1eg4gF9yJlt1vLpFjewSAX6HkggAAAAeocfl0roNBers6t0hCgpkhwgwQprDJknaxyVngN+hJAIAAIBH2LDtsIpK63XbvFQlxYYbHQfwW6MTIxUcGKBCxqsBv0NJBAAAAMMVHK7VS7mHNWtykmZkJBkdB/BrlgCzUtglAvwSJREAAAAMVd/coUc3FCgpLly3zmWHCPAEaQ6rjlW3qLGVXSLAn1ASAQAAwDAul1vrNhSovbNHqzPTFRzEDhHgCZwndok4mwjwK5REAAAAMMzG3MMqLKnXrTekaqQ9wug4AD41JjFSQYFmLjkD/AwlEQAAAAyx90idNmw7pCvTEzVrMjtEgCexBJg1YWS0CksZrwb8CSURAAAAhl1DS6fWbShQYmyYbpuXKpPJZHQkAJ/jdNh0rKpFTewSAX6DkggAAADDyuV267GNBWrt6NbqzAyFBFmMjgTgNNJO7BKV1hsbBMCwoSQCAADAsNq0/YgKDtfp1rmpGhXPDhHgqcYkRSrIYlYhu0SA36AkAgAAwLApKqlT1rsHNX1Sgq6awg4R4MksAWaljIpWUQm7RIC/oCQCAADAsGhs7dQjGwoUbwvTbfOc7BABXsDpsOloVYua27qMjgJgGFASAQAAYMj17hDtUXNbt1Znpis0mB0iwBs4k62SpCIuOQP8AiURAAAAhtzm944o/1CtvjZnghwJkUbHATBAY5OiFGQxc8kZ4CcoiQAAADCk9pXW68V3DunytHhdc/EIo+MAOAeBFrPGj4xWEa9wBvgFSiIAAAAMmea2Lj2yoUBx0SG6fX4aO0SAF3I6rDpa2cwuEeAHKIkAAAAwJFxutx57aY+aWju1emkGO0SAl0pz2ORW71mBAHwbJREAAACGxNYPSrX7QI2+ct0EjU5khwjwVmOTohRoMTNeDfgBSiIAAAAMugPHGvT82wc01WnXdZeONDoOgAsQaDErZWQ049WAH6AkAgAAwKBqbuvSw9n5skUG6/b5E9khAnyAM9mqUnaJAJ9HSQQAAIBB43a79cSmvapv7t0hCgthhwjwBU6HVW5J+9klAnwaJREAAAAGzasfluqT4mp9+doUjU2KMjoOgEEybsSnu0SURIBPoyQCAADAoDh4vFH/eOuALpkQpzlTRxkdB8AgCrQEaPyIKBWySwT4NEoiAAAAXLDW9t4dImtEsL61kB0iwBc5HTaVVjSrpZ1dIsBXURIBAADggrjdbj3xcqHqmjq0amm6wkMCjY4EYAik9e0SNRgdBcAQoSQCAADABXl951F9tK9KX7xmvMaPiDY6DoAhMm5ElCwBZi45A3wYJREAAADO2+HyRj33ZrEuTonTDZcnGx0HwBA6sUtUVFJvdBQAQ4SSCAAAAOeltb1ba7PyFRUexA4R4CecDqtKKprUyi4R4JMoiQAAAHDO3G63ntxSqJqGDq1akqGIUHaIAH+Q5rDJLWnfUXaJAF9ESQQAAIBz9tbHx7SjsFI3Xz1OKaPYIQL8Re8ukUlF7BIBPomSCAAAAOfkSHmT/v76fk0eF6t50xxGxwEwjIICAzRuRLQK2SUCfBIlEQAAAAasraNba7PzFRkWpDsXTZSZHSLA76T17RJ1Gx0FwCCjJAIAAMCAuN1u/WVLoarr27VySboiw4KMjgTAAM5kq9xuaf/ReqOjABhklEQAAAAYkLd3HdcHeyu19KqxSk22Gh0HgEHGjYz+dJeo3ugoAAYZJREAAAD6VVrZrL+/tl/pY2O04MrRRscBYKDgwACNS4pSUSnj1YCvoSQCAADAWbV3dmttVr7CQixavmgSO0QA5HTYdLi8SW0d7BIBvoSSCAAAAGfkdrv1t1eKVFHXqlVL0hUVzg4RAMnpYJcI8EWURAAAADijbbvLtL2gQpmzxsrpsBkdB4CHGD8yWgFmkwrZJQJ8CiURAAAATutoVbPWv7pPE0fbtOjKMUbHAeBBggMDNG5EFOPVgI+hJAIAAMApOjp7tDYrXyHBFq1Yki6zmR0iACdzOqw6wi4R4FMoiQAAAHCKp7YWqbymVSsWT1I0O0QATsPpsMnldmv/0QajowAYJJREAAAAOElOXply8su1eOYYTRoTY3QcAB4qZUTvLlFRaZ3RUQAMEkoiAAAA9DlW3aK/bS1SmsOqJTPHGh0HgAcLDgrQ2CR2iQBfQkkEAAAASVJHV48ezspXSGAAO0QABsTpsOpwGbtEgK+gJAIAAIAk6elX9+l4dYuWL06XNSLY6DgAvEDap7tEB46xSwT4AkoiAAAAaHtBud7dXaaFM0YrfSw7RAAGJmVk7y5RIZecAT6BkggAAMDPldW06K9bipQ6KlqZs9ghAjBwwUEBGpMUqaISxqsBX0BJBAAA4Mc6u3q0NqtAgRazVmZmKMDMr4cAzk2aw6ZDZU1q72SXCPB2A/otYOPGjVqwYIHmzp2r9evXn/FxP/jBD/TCCy/0vX38+HHdeuutuvHGG7V69Wq1tLRceGIAAAAMmr+/vl9Hq5q1fPEk2SLZIQJw7pwOq1xut4rZJQK8Xr8lUUVFhdasWaOnn35a2dnZevbZZ1VcXHzKY1atWqUtW7acdPsDDzygW265RVu2bFFGRob+9Kc/DW56AAAAnLf391To7U+Oa/50hyaPizU6DgAvlTIyWmaTSUXsEgFez9LfA3JzczV9+nRZrVZJ0rx587RlyxbdddddfY/ZuHGjrr/++r7HSFJXV5c+/PBD/fGPf5Qk3XTTTfr617+ue+65Z3A/AwCGqW/u0Eu5h7Vg+mjFRIUYHQeAl9t7uFav7jgql9ttdBS/UVRar5SR0frCVeOMjgLAi4UEWTQ2KVIFh2p10+xxMplMRkcCcJ76LYkqKytlt9v73o6Pj9fu3btPesydd94pSdq5c2ffbXV1dYqIiJDF0vsh7Ha7KioqzilcbGzEOT0eg89ujzQ6AjxUT49LD/1jl/IP1Oh4Tat+8W+zZAnwvh0LjnH4Mm86vstrWvSnrHwFBQYoNprSebikj43VXV+6WHZbqNFRzos3HePAufK243vOtNF65MU87Siu0YIZDODj7Lzt+PYn/ZZE7tP8a95AmuHzfd5n1dQ0y+XiXxONYrdHqqqqyegY8FAvvHNQ+QdqdGV6grYXVOiR53fpy9emGB3rnHCMw5d50/Hd1e3SL57aKZdbuvfWS2W3emdh4bW6u73mWPksbzrGgXPljcf35alxyh0Xq0ez8pUQFSxHAiUATs8bj29fYjabznpCTr//7J+QkKDq6uq+tysrKxUfH9/vB46JiVFzc7N6enokSVVVVQN6HgDPV3C4VptyD2vm5EQtX5yuay4eoS3vl2hXcXX/TwaAz/nHW8U6XN6kby2YSEEEAF7KbDLpzkUTFRkWqLVZ+Wrr4JXOAG/Ub0k0Y8YMbd++XbW1tWpra9PWrVs1e/bsft9xYGCgpk6dqpdfflmSlJWVNaDnAfBs9c0denRDgZLiwvX1uU5J0levn6BR9gg9vmmvahvbDU4IwJt8tK9Kr+04qjmXjdJlTnv/TwAAeKzIsCCtXJKuqvp2/WVL4WmvLgHg2QZ0JtHdd9+tZcuWaenSpVq0aJGmTJmi5cuXKy8v76zP/elPf6rnnntOCxYs0I4dO/Td7353sHIDMIDL5da6DQVq7+zR6sx0BQcFSJKCAgO0emm6urpdemRDgXpcLoOTAvAG1fVtemLTXo1OjNSXvOxyVQDA6aUmW7X0qrH6YG+l3t513Og4AM6Rye3B9S6bRMbiWlF8Xva2Q8redkjfXJCmq6aMOOX+7QXlenTjHi28crRuvnq8AQnPDcc4fJmnH9/dPS79z/qPVFbTop9+8wrFc5kZzpGnH+PAhfD249vldmvNc7u0r7ReP1o2VcnxvCAR/sXbj29vd8GbRAAgSXuP1GnDtkO6Mj1RsyYnnfYxV6YnavZFSdq0/YjyD9YMc0IA3uT5tw/o4PFGfXP+RAoiAPAxZpNJyxdNUliIRWuz8tXeyT4R4C0oiQD0q6GlU+s2FCgxNky3zUs96ysVfm1Oqkbaw/XoS3tU19QxjCkBeItPiqv1ygeluvbSkZqaxotaAIAvigoP0srF6aqoa9XfXilinwjwEpREAM7K5XbrsY0Fau3o1urMDIUEWc76+ODAAK3OzFBHV4/WsU8E4HNqG9v1+Et75IiP0FevY4cIAHxZ2mibMmeO1faCCm3bXWZ0HAADQEkE4Kw2bT+igsN1umXOBI0a4PXkI+LCddsNThWV1mvDtsNDGxCA1+jucenh7AJ1u9xavTRDgZYAoyMBAIbYohljNHG0Tetf3adjVc1GxwHQD0oiAGdUVFKnrHcPatqkBM2+6NSh6rOZOTlJMycn6qXcwyo4XDtECQF4kxffOajiYw26/cY0JcSEGR0HADAMzGaTVixJV0iwRX/KyldHZ4/RkQCcBSURgNNqbO3UIxsKFG8N1bJ5zrPuEJ3J1+c6lRQXrkc3FKi+mX0iwJ/tPlCtze+X6JqLR2japASj4wAAhlF0eJBWLJ6k8ppWPfVqkdFxAJwFJRGAU/TuEO1Rc1u3Vi/NUGjw2XeIziQ4KECrM9PV3tm7T+RyMVgI+KPaxnY99tJejbJH6KvXTzA6DgDAAJPGxGjxzDHKyStXTh77RICnoiQCcIrN7x1R/qFafW3OBDkSIi/ofY20R+jWuakqLKnXxtzDgxMQgNfocbn0yIYCdXW7tHppuoIC2SECAH+1ZOZYpTms+tvWIh2rbjE6DoDToCQCcJJ9pfV68Z1DujwtXtdcfG47RGcya0qSrkxP1IZth7T3SN2gvE8A3iHr3UPaf7RBy250Kik23Og4AAADmc0mLV+cruDAAD2cla+OLvaJAE9DSQSgT3Nblx7ZUKC46BDdPj/tvHaITsdkMum2ealKjA3Tug0FamjpHJT3C8Cz5R+q0cvbj+iqT4tiAABskcFavniSjle36OlX9xkdB8DnUBIBkPTpDtFLe9TU2nlBO0RnEhJk0erMDLV2dOuxjQVyudknAnxZXVOHHt24RyPs4bplbqrRcQAAHiRjbKwWXDla7+4u0/aCcqPjAPgMSiIAkqStH5Rq94EafeW6CRqdeGE7RGcyKj5Ct8yZoILDddq0/ciQfAwAxutxubRuQ4E6unq0OjNDwewQAQA+Z+lVY5U6Klp/3VKkshr2iQBPQUkEQMXHGvTPtw7oslS7rrt05JB+rNkX9b78dda7B1VUwj4R4Is2bDusotJ63XaDUyPi2CECAJwqwGzWiiXpCrSYtTarQJ3sEwEegZII8HPNbV16JDtfMVHB+uaCwdshOhOTyaRl85yKt4bqkQ0FamxlnwjwJQWHa/VS7mHNnJyomZOTjI4DAPBgMVEhWr54ko5WNeuZ1/cbHQeAKIkAv+Z2u/XEpr2qb+7dIQoLCRyWjxsabNHqpRlqbuvWYxv3sE8E+IiG5t4doqS4cH19rtPoOAAALzB5XKzmT3forU+O6/09FUbHAfweJRHgx179sFSfFFfry9emaGxS1LB+bEdCpL52fYryD9Vq83vsEwHezuVya93GPWrv6NbqzHQFB7FDBAAYmC9cNU4pI6P15JZCVdS2Gh0H8GuURICfOni8Uf9464AumRCnOVNHGZLhmktG6vK0eL34ziHtK603JAOAwfFS7mHtPVKnW+emaqQ9wug4AAAvYgkwa1Vmuixmk9Zm5aurm30iwCiURIAfam3v0sPZ+bJGBOtbCycO+Q7RmZhMJt0+P01x0SF6ZEOBmtu6DMkB4MIUHqlTds4hXZmeoFlT2CECAJy7mKgQ3bFokkoqm/XMG8VGxwH8FiUR4GfcbreeeLlQdU0dWrU0XeHDtEN0Jif2iZpaO/XYS+wTAd6msaVTj2wsUIItTLfNcxpWOgMAvN/FKXGad0Wy3vzomHYUVhodB/BLlESAn3l951F9tK9KN189XuNHRBsdR5I0OjFSX7lugnYfqNHWD0qNjgNggFxutx7dWKDW9m6tXpqhkCCL0ZEAAF7u5qvHa9yIKP15815V1rFPBAw3SiLAjxwqa9SzbxTrovGxmndFstFxTnLdpSN1Wapdz799QAeONRgdB8AAbNp+RAWH6/S1OROUHM8OEQDgwlkCzFq1JF0mmbQ2u0Bd3S6jIwF+hZII8BOt7d16ODtf0RFBumPRJI+7JMRkMumbC9JkiwzWw9n57BMBHq6opE5Z7x7UtEkJuvqiEUbHAQD4kDhrqO5YOFFHypv0jzfZJwKGEyUR4Afcbree3LxXNQ0dWrUkQxGhxu4QnUlYSKBWL81QfXOnnti0V272iQCP1NjaqUc2FCjeGqpl7BABAIbAJal2zZ2arNd2HtXOoiqj4wB+g5II8ANvfnxMO4qqdPPV45QyyjN2iM5kbFKUvnRtij4prtarH7JPBHgal9utx17ao+a23h2i0GB2iAAAQ+NL147X2KRIPfHyXlXVtxkdB/ALlESAjztS3qRnXt+vyeNiNW+aw+g4AzJ36ihdMiFO/3jrgA4ebzQ6DoDP2PJ+ifIP1upr16fIkRBpdBwAgA+zBJi1KjNDkvRwdr66e9gnAoYaJRHgw9o6urU2O1+RYUG6c9FEmb3kkpDefaKJskb07hO1trNPBHiC/Ufr9cLbBzU1LV7XXDLS6DgAAD9gt4bqWwvSdKisSf9864DRcQCfR0kE+Ci3262/bClUdX27Vi5JV2RYkNGRzklEaKBWLU1XXVOHnni5kH0iwGDNbV16OLtAsdHBuv3GNHaIAADD5jJnvK6/dJS2fliqj/ezTwQMJUoiwEe9veu4PthbqaVXjVVqstXoOOdl/Iho3Xz1eH20r0qv7zxqdBzAb7ndbj3+0h41tXZq9dIMhYWwQwQAGF5fvi5FoxMi9cSmvapuYJ8IGCqURIAPKqlo0tOv7lf62BgtuHK00XEuyLwrknXR+Fg992axDpezTwQY4ZUPSrXrQI2+fG2KxiRGGR0HAOCHAi1mrVqarh6XW49kF7BPBAwRSiLAx/TuEBUoPNSi5Ysmec0O0ZmYTCbdsWiSosKDtDYrX63t3UZHAvzKgWMNev7tA7os1a7rLxtldBwAgB9LsIXp9vlpOnC8US+8c9DoOIBPoiQCfIjb7dbfthapsq5VKxenKyrcu3aIziQiNFCrlmSopqFDT25hnwgYLr07RPmyRQbrmwvYIQIAGO+KiQm65pKR2vJ+iXYVVxsdB/A5lESAD3l3d5neK6hQ5qyxShttMzrOoEoZFa2brh6nHYWVevPjY0bHAXye2+3WE5v2qr75xA5RoNGRAACQJH3t+hQlx0fo8U17VdvYbnQcwKdQEgE+4mhVs55+dZ8mjrZp0ZVjjI4zJG6c5tDkcbF65vX9OlLeZHQcwKe9uuOoPimu1peuTdHYJHaIAACeI9ASoG8vzVBXj0sPb2CfCBhMlESAD+jo7NHarHyFBFu0Ykm6zGbfvCTEbDLpjkUTFREaqLXZ+WrrYJ8IGAqHyhr1jzeLdcmEOM2dyg4RAMDzJMSE6Rs3OlV8tEFZ7x4yOg7gMyiJAB/w1NYilde0asXiSYr2kR2iM4kKC9KqzAxV1bfpL+wTAYOutb1La7PyZY0I0jcXTGSHCADgsaZPStTsi0bo5feOKO9gjdFxAJ9ASQR4uZy8MuXkl2vxzDGaNCbG6DjDIjXZqi9cNU4f7K3U27uOGx0H8Blut1t/frlQdU0dWpWZoYhQdogAAJ7tljkTNMoerkc37lFdU4fRcQCvR0kEeLFj1S3629YipTmsWjJzrNFxhtWCK0crfWyM/v7afpVWNhsdB/AJb3x0TDv3Venmq8dr/Mhoo+MAANCvoMAArV6aoa5ulx7ZUKAeF/tEwIWgJAK8VEdXjx7OyldwYICWL/bdHaIzMZtMWr5oksJCLFqbla/2TvaJgAtxuLxRz76xX1PGx+qGK5KNjgMAwIAlxYbrtnmp2ldar+xth42OA3g1SiLAS61/dZ+OV7do+eJJskUGGx3HEFHhQVq5OF0Vda362ytF7BMB56m1vVtrs/IVGRakOxdNkpkdIgCAl5mRkaRZk5O0KfewCg7XGh0H8FqURIAX2p5frm27y7RwxmhljI01Oo6h0kbblDlzrLYXVGjb7jKj4wBex+1268kthapp6NBqdogAAF7s1rmpSooL16MbClTfzD4RcD4oiQAvU1bTor++UqTUUdHKnOVfO0RnsmjGGE0cbdP6V/fpaBX7RMC5eOvjY9pRWKmbrh6nlFHsEAEAvFdwUO8+UXtXj9ZtKJDLxVnmwLmiJAK8SGdXj9Zm5SvQYtbKzAwFmPmfsCSZzSatWDxJIcG9+0QdnT1GRwK8QklFk/7+erEmj4vVjdMcRscBAOCCjYwL19fnOlVYUq8NOYeMjgN4Hf7CBLzI31/fr6NV/r1DdCbREcFasXiSymta9dTWIqPjAB6vraN3hygi1KI7Fk1khwgA4DNmTUnSjIxEbcw5rL3sEwHnhJII8BLv76nQ258c1/zpDk0e5987RGcyaUyMFs8co5z8cuXksU8EnInb7dZfXylSZX2bVi5JV1RYkNGRAAAYVF+/IVWJsWFat3GPGlo6jY4DeA1KIsALVNS26skthUoZGa0vXDXO6DgebcnMsUpzWPW3rUU6Vt1idBzAI72z67je31OhpVeNk9NhMzoOAACDLiTIotWZGWrt6NajG9knAgaKkgjwcF3dvTtEFrNJqzLTZQngf7ZnYzabtHxxuoIDA/RwVr46utgnAj6rtLJZT7+2X+ljbFp45Wij4wAAMGRGxUfo1rmp2nO4Tpu2HzY6DuAV+GsT8HDPvF6skspm3bFokmKiQoyO4xVskcFavniSjle36OlX9xkdB/AY7Z29O0RhIRYtX5zODhEAwOddNSVJ0yclKGvbIRWV1BkdB/B4lESAB/tgb4Xe/PiY5l2RrItT4oyO41UyxsZqwZWj9e7uMm0vKDc6DmA4t9utv71SpIq6Vq1cnK6ocHaIAAC+z2Qy6bZ5TsXbwvTIhgI1trJPBJwNJRHgoSrrWvXk5kKNHxGlm68eb3Qcr7T0qrFKHRWtv24pUlkN+0Twb9t2l2l7QYUyZ45V2mh2iAAA/iM02KLVmelqbuvWYxv3yOVmnwg4E0oiwAN1dbu0NqtAAWaTVrJDdN4CzGatWJKuQItZa7Py1ck+EfzUsapmrX91nyaOtmnRjDFGxwEAYNg5EiJ1y5wJyj9Uq83vHTE6DuCx+MsT8EDPvVmsIxVN+taCiYqLDjU6jleLiQrRnYsm6WhVi/7++n6j4wDDrqOzR3/KyldIsEUrFk+S2cwOEQDAP1198QhdMTFeL75zSPtK642OA3gkSiLAw+wsqtTrO49q7tRkXZJqNzqOT5gyPlbzpzv09ie9L/sN+JOnXi1SeU2rViyepOiIYKPjAABgGJPJpG/cmKY4a4ge2VCgJvaJgFMMqCTauHGjFixYoLlz52r9+vWn3L93717dfPPNmjdvnu677z51d3dLkrKysjRr1ixlZmYqMzNTa9asGdz0gI+pqm/TEy8XamxSpL50LTtEg+kLV41TyshoPbmlUBW1rUbHAYZFTl6ZcvLKtWjGGE0aE2N0HAAADNe7T5ShptZOPb5pL/tEwOf0WxJVVFRozZo1evrpp5Wdna1nn31WxcXFJz3mnnvu0Y9//GO98sorcrvdeu655yRJeXl5uvfee5Wdna3s7GzdfffdQ/NZAD6gu8elh7PzJUmrMjPYIRpklgCzVmWmy2I2aW1Wvrq62SeCbyutaNLfthbJmWxV5qyxRscBAMBjjE6M1Feum6DdB2r0ygclRscBPEq/f4Xm5uZq+vTpslqtCgsL07x587Rly5a++48dO6b29nZdfPHFkqSbbrqp7/68vDxlZWVpyZIl+t73vqeGhoah+SwAH/CPNw/oUFmTvrUgTXYrO0RDISYqRHcsmqSSymY980Zx/08AvFRHV4/+568fKjgwQCuWpLNDBADA51x36UhNddr1/FsHVXyMv1OBE/otiSorK2W3/2sXJT4+XhUVFWe83263991vt9v17//+78rOzlZSUpIefPDBwcwO+IyP91Xp1R2luv7SUbrMGW90HJ92cUqc5l2RrDc/OqacXceNjgMMiadf3afSiiYtXzxJtkh2iAAA+DyTyaTb509UTFSwHsnOV3Nbl9GRAI9g6e8B7tNco2kymQZ0/x//+Me+2+68807NmTPnnMLFxkac0+Mx+Oz2SKMj+LzK2lY9sblQ40dF69++crECLQFGR/J5q754sQ6XN+v3z32s3959jZLiwo2OBAyat3aW6t3dZfrS9RN07RVjjI4DDCl+T4Ev4/geHj/85hX6/h/e1frX9uu+b15x0t+6GDoc356r35IoISFBO3bs6Hu7srJS8fHxJ91fXV3d93ZVVZXi4+PV1NSk559/Xrfffruk3jLJYun3w52kpqZZLhdDYkax2yNVVdVkdAyf1t3j0i/XfySXy6XlCyeqvo5B5eFyx4I0PfCXHfr5n9/XD79+mQItbEDB+5XVtOj//rFLqaOideu8NL6Hw6fxewp8Gcf38LGGWPSla1L099f36+mX9+iGKxxGR/J5HN/GMptNZz0hp9+/imbMmKHt27ertrZWbW1t2rp1q2bPnt13/8iRIxUcHKydO3dK6n1Fs9mzZyssLEyPPfaYdu3aJUl66qmnNHfu3Av9fACf8sLbB3XgeKNunz9R8bYwo+P4lThrqP7jK5foSHmTnnuTfSJ4v86uHq3NKlCgxawVS9IVwPg9AAADMmfqKF0yIU7/eOuADh5vNDoOYKh+f4NMSEjQ3XffrWXLlmnp0qVatGiRpkyZouXLlysvL0+S9Otf/1q/+MUvNH/+fLW1tWnZsmUKCAjQb3/7W91///2aP3++CgoKdM899wz5JwR4i13F1dryQYmuvWSkLk9jh8gIV05O0pypo/T6zqPaWVRpdBzggjzz+n4drWrWnYsmKSYqxOg4AAB4DZPJpG8tnChbZLDWZuWrpZ19Ivgvk/t0o0IegsvNjMVpgEOntrFdP33iA8VGhei+ZZexQ2QQuz1SZeUN+sVTO1Ve26b7v3k5rywHr/TB3go9nF2g+dMc+tK1KZL4Hg7fxzEOX8bxbYwDxxv0P099pCnjY3XXTZPZJxoiHN/GuuDLzQAMru4elx7OLlC3y63VSzMoiAxmCTBrVWaGJOnh7Hx197gMTgScm4raVj25uVApI6P1hdnjjI4DAIDXGj8iWl+8Zrw+3l+t13YeNToOYAhKImCYvfjuQRUfa9A3bnQqIYYdIk9gt4bqWwvSdKisSf9864DRcYAB6+ru0dqsfAWYTVq5JF0WdogAALggN1yerItT4vTcG8U6VMY+EfwPv00Cw2j3gRptfq9Esy8aoemTEo2Og8+4zBmv6y8dpa0flurj/VVGxwEG5Jk3ilVS2aw7Fk5SbDQ7RAAAXKgT+0TREUF6ODtfre3dRkcChhUlETBM6po69NhLezTKHq5b5kwwOg5O48vXpWh0QqSe2LRX1Q1tRscBzmpHYaXe/OiY5l2RrIsnxBkdBwAAnxERGqhVSzJU09ChJzfvlQfP+AKDjpIIGAY9Lpceyc5XV7dLq5dmKCiQHSJPFGgxa9XSdPW43Hoku4B9InisyrpW/XnzXo0bEaWbrx5vdBwAAHxOyqho3Xz1OO0oqtKbHx8zOg4wbCiJgGGQve2Q9h1t0LJ5TiXFhhsdB2eRYAvT7fPTdOB4o15456DRcYBTdHW7tDa7QCaZtIodIgAAhsy8aQ5NHherZ17fryPlvBoX/AO/WQJDrOBQrTblHtGsKUm6MoMdIm9wxcQEXXPJSG15v0S7iquNjgOc5B9vFutIeZO+tXCi4qyhRscBAMBnmU0m3blooiLDgrQ2O19tHewTwfdREgFDqL65Q+s2FmhEXLhunZtqdBycg69dn6Lk+Ag99tIe1Ta2Gx0HkCTtLKrSazuPas7UUbo01W50HAAAfF5kWJBWLklXdX27/rKlkH0i+DxKImCIuFxurdtQoI6uHq1amqFgdoi8SqAlQKuXZqjb5dbDG9gngvGq69v055f3akxipL58bYrRcQAA8BupyVZ9YfZYfbC3Um9/ctzoOMCQoiQChsiGnEMqLKnX1+c6NTKOHSJvlBgTpm/c6FTx0QZlvXvI6DjwY909vTtEbrm1amkGO0QAAAyz+dNHK2NsjJ5+bb9KKtgngu/it0xgCOw5XKuNOYc1IyNRs6YkGR0HF2D6pETNvmiEXn7viPIO1hgdB37qn28d0KGyRn1z/kTFs0MEAMCw690nmqTwUIvWZhewTwSfRUkEDLKG5g6t27hHibFhuu0Gp9FxMAhumTNBo+zhenTjHtU1dRgdB37m4/1V2vphqa6/dJSmpsUbHQcAAL8VFR6kVUvSVVnXqr9tLWKfCD6JkggYRC6XW+s27lF7R7dWL81QcBA7RL4gKLB3n6ir26VHNhSox8U+EYZHdUObnti0V6MTIvXl69ghAgDAaE6HTZmzxuq9ggq9u7vM6DjAoKMkAgbRS9sPa++ROt0yN1Wj7BFGx8EgSooN123zUrWvtF7Z2w4bHQd+oLvHpUeyC9TjcmvV0nQFWviRDQCAJ1h05RhNHG3T06/u09GqZqPjAIOK3ziBQVJUUqfsbYc0PT1BV7FD5JNmZCRp1uQkbco9rIJDtUbHgY974Z2DOnC8UbfPT1OCLczoOAAA4FNms0krlqQrJNiitVn56ujsMToSMGgoiYBB0NjSqYc3FCje1rtDZDKZjI6EIXLr3FQlxYVr3cYC1TezT4Shsau4WlveL9E1l4zUFRMTjI4DAAA+Jzo8SCsXT1J5Taue2lpkdBxg0FASARfI5Xbr0Zf2qKWtW6sz0xUabDE6EoZQcFCAVmemq6OzR+s2FMjlYrAQg6u2sV2Pb9qr5PgIfe16dogAAPBUE8fEaPHMMcrJL9c29ongIyiJgAu0+b0jKjhUq1vmTJAjIdLoOBgGI+0R+voNThWW1GtDziGj48CH9LhcenhDgbp6XFq9NEOBFsbvAQDwZEtmjlWaw6qnXi3SseoWo+MAF4ySCLgA+0rr9cI7B3XFxHhdffEIo+NgGM2akqQZGYnamHNYew+zT4TB8eI7h1R8tEHfmOdUYgw7RAAAeLq+faLAAD2cla+OLvaJ4N0oiYDz1NTaqUc2FMhuDdU3bkxjh8gPff2GVCXGhmndxj1qaOk0Og68XN7BGr383hHNvmiEpqcnGh0HAAAMkDUiWMsXp+t4dYvWv7rP6DjABaEkAs6Dy+3WYy/tVVNrp1ZnZrBD5KdCgixanZmh1o5uPbqRfSKcv7qmDj26cY9G2cN1y5wJRscBAADnKH1sjBbOGK1tu8u0Pb/c6DjAeaMkAs7DK++XKO9gjb56/QSNTmSHyJ+Nio/QrXNTtedwnTZtP2x0HHihHpdLj2woUFd37w5RUCA7RAAAeKPMWWOVOipaf32lSGU17BPBO1ESAeeo+GiDnn/7oKY67br2kpFGx4EHuGpKkqZPSlDWtkMqKqkzOg68TPa2w9pXWq/b5qUqKTbc6DgAAOA8BZjNWpmZoUCLWWuz8tXJPhG8ECURcA6a27r08IZ8xUYH6/b5E9khgiTJZDLptnlOxdvC9MiGAjWyT4QBKjhcq025hzVrcpJmZCQZHQcAAFwgW2Swli+epKNVLfr76/uNjgOcM0oiYIDcbree2LRXDc2dWpWZobAQdojwL6HBFq3OTFdzW7cefWmPXG72iXB29c0denRDgZLiwnXr3FSj4wAAgEEyeVysFkwfrbc/Oa739rBPBO9CSQQM0NYPS/VJcbW+fF2KxiZFGR0HHsiREKlb5kxQwaFabX7viNFx4MFcLrfWbShQe2ePVmemKziIHSIAAHzJF2aPVcqoaP1lS5HKa1uNjgMMGCURMAAHjjXon28d0KWpds25bJTRceDBrr54hK6YGK8X3zmkfaX1RseBh9qQc0iFJfW69YZUjbRHGB0HAAAMsgCzWauWpMtiNmltVr66utkngnegJAL60dLepYezC2SLDNY3F6SxQ4SzMplM+saNaYqzhuiRDQVqamWfCCfbe7hWG3MOa0ZGomZNZocIAABfFRMVojsXTVJpZbOeeb3Y6DjAgFASAWdxYoeovrlDqzIzFB4SaHQkeIHefaIMNbV26vFNe9knQp+Glk6t27hHibFh+voNqZTOAAD4uItS4nTjFQ69+fExfbC3wug4QL8oiYCzeG3HUX28v1pfuma8xo1ghwgDNzoxUl+5boJ2H6jRKx+UGB0HHsDlcuvRjQVq7ejW6swMhQQxfg8AgD+46epxGj8iSk9uLlRlHftE8GyURMAZHCpr1HNvFuvilDjNvTzZ6DjwQtddOlJTnXY9/9ZBFR9rMDoODLZp+2HtOVynW+emalQ8O0QAAPgLS4BZKzPTFWA2aW1Wgbq6XUZHAs6Ikgg4jdb2Lq3Nypc1IkjfWjiRS0JwXkwmk26fP1ExUcF6JDtfzW1dRkeCQYpK6pS17ZCmT0rQVVPYIQIAwN/ERYfqWwsm6khFk557k30ieC5KIuBz3G63/ry5UHVNHVqZmaGIUHaIcP7CQixavTRD9c2demLTXrnZJ/I7ja2demRDgeJtYbptnpPSGQAAP3VJql1zpybr9Z1HtbOo0ug4wGlREgGf88ZHx7SzqEo3XT1OKSOjjY4DHzA2KUpfvjZFnxRXa+uHpUbHwTByud16bOMeNbd1a3VmukKD2SECAMCffena8RqbFKknXi5UZX2b0XGAU1ASAZ9xpLxJz76xX1PGx2reFQ6j48CHzJk6SpdMiNM/3zqgA8fZJ/IXm987ovxDtfranAlyJEQaHQcAABjMEmDWqswMSdIj2fnq7mGfCJ6Fkgj4VFtHt9Zm5SsyLEh3LJwoM5eEYBCZTCZ9a+FE2SKD9XBWgVra2SfydftK6/XiO4d0xcR4XXPxCKPjAAAAD2G39u4THSpr0j/ePGB0HOAklESAeneIntxcqOqGdq1ckq7IsCCjI8EHhYcEamVmuuqbO9gn8nFNn+4QxVlD9I0b09ghAgAAJ7nMadf1l43SqztK9fG+KqPjAH0oiQBJb31yXB8WVuoLs8cqNdlqdBz4sPEjovXFa8br4/3Vem3nUaPjYAi43G49vmmvmlo7tTozgx0iAABwWl++NkWjEyP1+Ka9qm5gnwiegZIIfq+kokl/f22/MsbFaP700UbHgR+44fJkXZwSp+feKNahskaj42CQvfJBiXYfqNFXrpug0YnsEAEAgNMLtJi1OjNdbrn1SHYB+0TwCJRE8GsndogiQi26c9EkdogwLE7sE0VHBOnh7Hy1tncbHQmDpPhYg55/66CmOu267tKRRscBAAAeLt4WptvnT9SB44164e2DRscBKIngv9xut/72SpEq69u0ckm6otghwjCKCA3UqiUZqmno0JOb2SfyBc1tXXokO18xUcG6ff5EdogAAMCAXJ4Wr2svGaktH5RoV3G10XHg5yiJ4Lfe3V2m9/ZUaOmssXI6bEbHgR9KGRWtm68epx1FVXrz42NGx8EFcLvdemLTXtU3d2r10gyFhbBDBAAABu6r16fIER+hx17ao9rGdqPjwI9REsEvHa1s1vpX92nSGJsWXjnG6DjwY/OmOTR5XKyeeX2/jpQ3GR0H5+nVD0v1SXG1vnxtisYmRRkdBwAAeJlAS4BWL81Qt8uth9kngoEoieB32ju79aesfIUFW7R8cbrMZi4JgXHMJpPuXDRRkWFBWpuVr7YO9om8zYHjDfrHWwd0yYQ4zZk6yug4AADASyXEhOkbNzpVfKxBL77LPhGMQUkEv9K7Q7RPFXWtWrEkXdHh7BDBeJFhQVq5JF3VDe36y5ZC9om8SEt7lx7OKpA1IljfWsgOEQAAuDDTJyXq6otHaPN7va+WCgw3SiL4lW15ZdpeUK4lM8dq4mh2iOA5UpOt+sLssfpgb6Xe/uS40XEwAP/aIerQqqXpCg8JNDoSAADwAV+7foJG2Xv3ieqaOoyOAz9DSQS/cayqWeu37tPE0TYtnjHG6DjAKeZPH62MsTF6+rX9Kqlgn8jTvbbzqD7eX60vXjNe40dEGx0HAAD4iKDAAK1emq6ubpceyc5Xj4t9IgwfSiL4hY7OHq3NLlBIUIBWLJ7EDhE8Uu8+0SSFh1q0NruAfSIPdqisUc+9UayLU+J0w+XJRscBAAA+Jik2XMvmObXvaIOytx0yOg78CCUR/ML6V/eprLpFy5ekKzoi2Og4wBlFhQdp1ZJ0Vda16m9bi9gn8kCt7d16ODtf0RFB7BABAIAhc2VGomZNSdKm3CMqOFRrdBz4CUoi+Lzc/DJtyyvTwhljlD4mxug4QL+cDpsyZ43VewUVend3mdFx8Blut1tPbt6rmoYOrVqSoYhQdogAAMDQuXVuqkbEhWvdxgLVN7NPhKFHSQSfdry6RX99pUipyVZlzhpjdBxgwBZdOUYTR9u0/tV9OlrZbHQcfOrNj49pR1GVbr56nFJGsUMEAACGVnBggFYtzVBHV4/WbSiQy8VZ5hhalETwWR1dPVqbna8gS4BWLklXgJnDHd7DbDZpxZJ0hQZbtDY7X+2d7BMZ7Uh5k555fb8mj4vVvGkOo+MAAAA/MTIuXF+f61RhSb025LBPhKHFX83wWX9/bZ+OVbVoxeJJskWyQwTvEx0epJWLJ6m8plVPbd1ndBy/1tbRrbVZ+YoMC9KdiybKzA4RAAAYRrOmJGlmRqI25hzWnsPsE2HoDKgk2rhxoxYsWKC5c+dq/fr1p9y/d+9e3XzzzZo3b57uu+8+dXf3/ov38ePHdeutt+rGG2/U6tWr1dLSMrjpgTN4r6Bc7+wq08IrRytjXKzRcYDzNnFMjBbPHKPc/HJtY5/IEG63W3/ZUqjqhnatXJKuyLAgoyMBAAA/9PUbnEqMDdO6jXvUwD4Rhki/JVFFRYXWrFmjp59+WtnZ2Xr22WdVXFx80mPuuece/fjHP9Yrr7wit9ut5557TpL0wAMP6JZbbtGWLVuUkZGhP/3pT0PzWQCfUV7bqr+8UqQJo6K19KqxRscBLtiSmWOV5rDqqVeLdKyasn24vf3JcX2wt1JfmD1WqclWo+MAAAA/FRwUoNVLM9Te0a11G/ewT4QhYenvAbm5uZo+fbqsVqskad68edqyZYvuuusuSdKxY8fU3t6uiy++WJJ000036fe//72+9KUv6cMPP9Qf//jHvtu//vWv65577hmaz8RD9bhcqqhtMzrGeWl3SbW13vUHqdvt1rqNexQYYGaHCD7jxD7R/U98oLVZ+VqVmc7lTsOkrqlDT7+2XxljYzR/+mij4wAAAD83yh6hW+am6snNhXrx3YO6Mj3R6EjnzBv/zpSkoECz4qJDjY4x5PotiSorK2W32/vejo+P1+7du894v91uV0VFherq6hQRESGLxXLS7f7muTcO6NUdpUbH8Dvf/dIUxUSFGB0DGDTWiGAtX5yuh579RD95/AOj4/iV6Igg3bloEsUcAADwCFdNSVJhSZ02bT+iTduPGB3Hr/xo2VSNGxFldIwh1W9J5Hafegqb6TO/KJ/p/v6eNxCxsRHn9HhPtGxRui5JSzA6hl9JiA1TqsNmdAx4Cbs90ugIA3aNPVIjk6JUXt1qdBS/MnFsjOKs3vmvRt50fAPng2McvozjG2fz/WWXa2dhpbq6XEZH8RshwQG6NC1BAWbf/ofDfkuihIQE7dixo+/tyspKxcfHn3R/dXV139tVVVWKj49XTEyMmpub1dPTo4CAgL7bz0VNTbNPXGeZNso7m0a7PVJVVU1Gxzgv3pobw8sbj3FriEVWL/2e4q3cXd1ed5xI3nl8A+eCYxy+jOMbAzE+wTtPqvDm47u2ptnoCBfMbDad9YScfgdbZsyYoe3bt6u2tlZtbW3aunWrZs+e3Xf/yJEjFRwcrJ07d0qSsrKyNHv2bAUGBmrq1Kl6+eWXT7odAAAAAAAAnqffkighIUF33323li1bpqVLl2rRokWaMmWKli9frry8PEnSr3/9a/3iF7/Q/Pnz1dbWpmXLlkmSfvrTn+q5557TggULtGPHDn33u98d0k8GAAAAAAAA58fkPt14kIfwlcvNvJU3nwYIDATHOHwZxzd8Hcc4fBnHN3wZx7exLvhyMwAAAAAAAPg+SiIAAAAAAABQEgEAAAAAAICSCAAAAAAAAKIkAgAAAAAAgCiJAAAAAAAAIEoiAAAAAAAA6P9v715jojoTMI4/IwxYWzVFLdraViTW2io6WK1EEcGWCKJii8HSqK2XBi+hJfamIVT7oRe0IXiJtmmjIcR4aUJR66Uo8YKDxUtFYgApWCKKGKUtWpXhMvvB9eyOYHe7e3YP4v+XkHDOeec9j8eJMc+85wwlEQAAAAAAAERJBAAAAAAAAFESAQAAAAAAQJREAAAAAAAAECURAAAAAAAAREkEAAAAAAAAURIBAAAAAABAlEQAAAAAAAAQJREAAAAAAABESQQAAAAAAABREgEAAAAAAECSt9UB/kynTjarIzzw+DtAR8d7HB0Z7290dLzH0ZHx/kZHxvvbOv/q2tvcbrf7/5QFAAAAAAAA7RS3mwEAAAAAAICSCAAAAAAAAJREAAAAAAAAECURAAAAAAAAREkEAAAAAAAAURIBAAAAAABAlEQAAAAAAAAQJREAAAAAAABESQQAAAAAAABJ3lYHQPuzZs0a7d69W5IUFham999/3+JEgLkyMjK0d+9e2Ww2xcXF6c0337Q6EmC6zz//XL/++qs+++wzq6MAppo5c6auXr0qb+/b/439+OOPNXToUItTAebIy8vTmjVrdOPGDY0ZM0YpKSlWRwJMs23bNmVlZRnb1dXVmjJlilJTUy1MhbtREsGD0+lUfn6+srOzZbPZNHfuXOXm5urll1+2OhpgisLCQh09elTbt29XU1OToqOjFRYWpv79+1sdDTBNQUGBsrOzNW7cOKujAKZyu92qrKzUgQMHjJII6CjOnz+vjz76SNu2bVOPHj00a9YsHTx4UGFhYVZHA0wxbdo0TZs2TZJUXl6uhQsXatGiRRanwt243QweevXqpQ8//FA+Pj6y2+0KDAzUxYsXrY4FmGbkyJHKzMyUt7e3rl69qubmZnXp0sXqWIBpfvvtN6WnpysxMdHqKIDpKisrZbPZNG/ePE2ePNnjE2ngfpebm6vo6Gj17t1bdrtd6enprJJDh7Vs2TIlJyfLz8/P6ii4CyURPAwYMEDDhg2TJP3yyy/atWsXn16gw7Hb7Vq1apUmTpyokJAQ+fv7Wx0JME1qaqqSk5PVrVs3q6MApquvr1dISIjWrl2rjRs3avPmzTpy5IjVsQBTVFVVqbm5WXPmzNHkyZO1adMmde/e3epYgOmcTqdu3bqlqKgoq6OgDZREaFN5eblmz56tDz74QP369bM6DmC6pKQkFRQUqKamRlu3brU6DmCKbdu2qU+fPgoJCbE6CvA/4XA4lJaWpi5dusjPz09xcXE6ePCg1bEAUzQ3N6ugoEArVqzQ1q1bVVxcrOzsbKtjAabbvHkzzwRtxyiJ0MqJEyf0xhtvaPHixZo6darVcQBTVVRUqKSkRJL00EMPKTIyUmVlZRanAsyxa9cuHTlyRFOmTNGqVauUl5enTz75xOpYgGmOHz+ugoICY9vtdvNsInQYPXv2VEhIiPz8/NS5c2eNHz9ep0+ftjoWYCqXy6Vjx44pIiLC6ii4B0oieKipqdHChQu1cuVKTZw40eo4gOmqq6uVkpIil8sll8ul/fv3a/jw4VbHAkyxYcMG7dy5Uzk5OUpKSlJERISWLl1qdSzANNeuXVNaWpoaGhp0/fp1ZWdn8+Ua6DDCw8OVn5+v+vp6NTc36/Dhw3r++eetjgWYqqysTP369eOZoO0YH73AwzfffKOGhgaPr0yePn26XnvtNQtTAeYJCwtTUVGRYmNj5eXlpcjISApRALhPhIeHG/+Gt7S0KCEhQQ6Hw+pYgCmGDh2quXPnKiEhQY2NjRo9erReffVVq2MBpjp//rx69+5tdQz8CZvb7XZbHQIAAAAAAADW4nYzAAAAAAAAUBIBAAAAAACAkggAAAAAAACiJAIAAAAAAIAoiQAAAAAAACBKIgAAAAAAAIiSCAAAAAAAAKIkAgAA7URERIScTqfVMQAAAB5YlEQAAABtqKur08CBA1VbW2t1FAAAgP8LSiIAAIC/W7lypQ4fPixJKi0tlZ+fn/z9/S1OdVtSUpLOnj1rbFdXV8vhcPxHc/3xxx+aO3eubt26ZVY8AADQAVASAQCAdqeiokIzZszQCy+8oIkTJ2r//v3GsTNnzig2NlYOh0NJSUl65513lJ6e/l+f89SpU/r5558VGhoqSSopKdGzzz77X89rBpfLpaqqKj3zzDOmzPfwww8rJiZGGRkZpswHAAA6BkoiAADQrjQ2NioxMVGjR4+W0+lUSkqK3n33XVVWVsrlcmnRokWaOnWqCgsLFRMTo3379ply3tWrVys+Pt7Ybk8lkdPpVEhIiKlzRkVFaceOHbpy5Yqp8wIAgPsXJREAAGhXioqKdOPGDb311lvy8fFRSEiIwsPD9f3336uoqEhNTU2aOXOm7Ha7IiMjNWTIEOO1165dU1xcnBwOh8etWStWrFBCQoLee+89NTY2tjpnfX29Tpw4odGjRxv7SktLNWjQoFZjt2zZohkzZhg/QUFBOn36tHF8+vTpWrNmjaTbt4QNHDhQR48elXR7RdCIESOUlZUlSbp+/boSExM1Y8YMxcfH6+DBg21ek/379+ull176K5fxX/L19VVwcPA9zwkAAB483lYHAAAA+GeXL19W79691anTPz7Levzxx1VbW6vLly/L399fNpvNONanTx/j986dO+urr75SWlqasa+0tFS1tbXatGmT1q1bp7179yomJsbjnFVVVerVq5d8fHwkSQ0NDTp37pyee+65Vvni4+ONFUd5eXnKzs5WUFCQJKmmpkb+/v4qLCw0xg8ePFi5ubkaNWqUCgoK9PTTTxvHcnJyFBoaqtdff11ut1vXrl1rdb6WlhadOnVKy5Yt+7eu3x21tbXKzMxUU1OT3G63Bg0apKlTp3qMeeqpp3Tu3Lm/NC8AAOi4WEkEAADalccee0yXLl1SS0uLse9O+dKrVy/V1tbK7XZ7HLvDbrfLz8/PY76TJ09qzJgxkqTQ0FCdPHmy1Tk7deqk5uZmY/vs2bPy9vZWQEDAPXPW1dUpIyNDy5cvN/bt3btXkyZNUv/+/VVRUSFJeuKJJ3Tx4kW53W7l5uYqMjLSGO/r66tTp07pypUrstls6tatW6vzFBUVafDgwfLy8rpnlru1tLRo+/btSk5O1pIlS7R06VIFBgbqwIEDHuOam5v/0rwAAKBjoyQCAADtSlBQkDp37qyvv/5ajY2N+vHHH5WXl6fo6GgNGzZMXl5eysrKUlNTk/bt26fi4uI/na++vl6PPPKIJKlr1676/fffW4158sknVVdXp4aGBkm3Vx8FBgaqqalJDQ0NamhokMvl8njNsmXL9Pbbb3uUUvn5+Ro7dqxiYmK0Z88eY7/D4dCxY8dUV1ennj17GvunTJmigIAAzZkzR/Hx8aqsrGyVbd++fRo/fvy/ceX+4fTp04qNjZW3t7d2796tCxcuKCgoSDdv3vQYV11d/adFGAAAeLBQEgEAgHbFx8dH69ev16FDhzRq1CgtX75caWlpCgwMlI+Pj1avXq1vv/1WI0aM0Pbt2zVu3DjjNrG2dO3aVdevX5d0+5lF3bt3bzWmW7duGj58uPHsoJKSEp05c0ZBQUHGT3R0tDH+u+++U9euXRUREWHsu3TpksrLyzV//nytW7fO41k/kZGR+vTTTzVy5EiP89rtdi1YsEA5OTlKSkrS6tWrW2VzOp3GSqi73bhxQw6Hw+OnrKxMXl5exkqs9evX6/jx45LksWrI5XLpp59+8vgzAACABxvPJAIAAO1CXl6e8fuAAQOMhzvfbciQIcrJyTG2p02bpvDw8HvOGxwcrA0bNig2Nlb5+fkKDg5uc9zChQu1fv16hYWFKTU1VampqW2Oq6mp0caNG1vl27Nnj5YsWaIJEyZIur3S6M7qo379+mn48OGaMGGCnE6n8ZoLFy4Yz0Lq0aOHx210d2RnZ7eZo2/fviorK2vzWGNjozIzMzVr1izjWhUXF3uURDt37tSkSZPavMUNAAA8mCiJAADAfaWwsFABAQF69NFHtWPHDpWVlSk0NNQ4Pm/ePJWUlOjcuXOKj4/XK6+8oh49eighIUF9+vTR7Nmz25w3ODhYAQEBOnTokMaOHXvP83/55Zeqr6/X/PnzjX0LFizQDz/8oLVr1xr7XnzxRe3evdvYTklJaTXX2bNnlZycLF9fX7nd7nsWU3+V3W5XVFSUvvjiC2NF0YABAxQXFyfp9req7dy50/gWNgAAAEmyudv6yAoAAKCd2rJlizIyMnTz5k317dtXixcv1rhx46yOBQAAcN+jJAIAAAAAAAAPrgYAAAAAAAAlEQAAAAAAAERJBAAAAAAAAFESAQAAAAAAQJREAAAAAAAAECURAAAAAAAAREkEAAAAAAAAURIBAAAAAABA0t8AreRVZGCgiR4AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAJWCAYAAADlbWbDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACTmUlEQVR4nOzdd3iV9f3/8dc5J4vscZIQCGElbJIDIiAiOECGAydYbe1y16qIWr/Vfqv2Z/u1LeBua21r66igIogj4CguEGQkhJ2wElb23sm5f39YU6liGDn5nPF8XFevy7NfUO6M1/tzf26bZVmWAAAAAAAAgJNgNx0AAAAAAAAAvotyCQAAAAAAACeNcgkAAAAAAAAnjXIJAAAAAAAAJ41yCQAAAAAAACeNcgkAAAAAAAAnjXIJAAAAAAAAJy3IdABPqKysl9ttmY4B+L2EhEiVl9eZjgEENI5DwCyOQcA8jkPA8+x2m+LiIo75uF+WS263RbkEdBOONcA8jkPALI5BwDyOQ8AsTosDAAAAAADASaNcAgAAAAAAwEnzy9PiAAAAAADobu3tbaqsLFVbW4vpKMBJCwoKUVxcohyO46+MKJcAAAAAAOgClZWlCgsLV0RET9lsNtNxgBNmWZbq62tUWVkqpzPluF/HaXEAAAAAAHSBtrYWRUREUyzBZ9lsNkVERJ/w6jvKJQAAAAAAugjFEnzdyfwbplwCAAAAAADASaNcAgAAAADAz+TmbtIPfnD1Uf+bNGmsVqx4u+M5r722SGefPV7l5WVHvXbixDG6885bj7qvqqpKkyeP01/+8idJ0pEjR3TPPXP1/e9fpe99b7Z+8Yt7VVlZ8bUcf/nLnzpecyqeffaP+uSTD0/5fb60dOmrWrr0VUnSr3/9oI4cOXxS73PrrTdo48b12rFjm/7v/351zOcdOnRQv/nNQ51mmThxzAl9/ieffKSXX37ha+/T3djQGwAAAAAAP5OVNUrPPfdSx+1Fi15UdvZbOvvs8zrue+ut5Zo4cbLefHOZvv/9Hx/1+qKiItXU1Cg6OlqStGrV+4qKiu54/He/+7WmT5+pqVOnS5Kef/5v+t3vfqNf//p3HvnzXHfdTV36fpdcckXHf2/cuF4//OH1p/R+Q4YM0733Djvm40eOHNbBgwc6zXKidu7c3iXvc6oolwAAAAAA8GO5uZv0j3/8Vc8883eFhoZKkgoK8lVTU6177rlP999/j773vR/Kbv/PyU0TJ07Sxx+v0gUXXCzpi3Jp0qSzOx6vqChTc3NTx+3LL5+t7du3fWuOiRPH6JNP1kuS3n57uTZt2qD77ntAV1xxkc49d6pWr/5EDodDN974E7388gs6cKBIP/nJHTrvvKl6+OEHNGrUaRo16jT9/Od3acCAgdq1a6fi4xP0q1/9n6KjY/Tppx/rz3/+gyzLrV69euvuu3+u+PgEPfnko/r887VyOOyaOHGyfvSjGzpWU4WEhKqsrFR33327rrvuJr388ov64x//Kkl65503tXVrnu666386/gwtLS165JFfaceO7erZs5eqq6skfVFQ/fWvz+jJJ5/Ryy+/oHfeeUt2u01Dhw7XPffcp8ce+70OHTqo+fMf0TnnnKc//OFxtbe7NWDAQKWk9JIk/fjHN0qSHnnkYW3fvlUxMbH6n//5X/Xs2VO33nqDfvSjGzR69BgdPnxIP/3pjfrd7x7TsmVLJEk9e6Z0rL768Y9vPObfxRVXXKRp02Zq3bo1amxs0v33P6ghQ4Ye97+lY6FcAgAAAACgi32ad1ifbD65U606MzEzRWeOPL7LxFdWVuiBB+7Tz372C/Xundpx/9tvv6Fzz52iIUOGyuFwaO3a1TrjjIkdj5977hT94x9/1QUXXKzy8jJZlpSQ4Ox4/MYbb9VDD/1Cf/nLMzrttNM1fvwEnXvu1JP+MzmdiXrhhcX69a8f1AsvPKfHH/+j8vJy9fjj83XeeUe/b0FBvv7nf/5XgwYN0X333a2VK9/Reeedr9/97tf6wx/+opSUXnrppX9owYLf6tZb79Bnn63WCy8sVnNzsx555P+pubm5472+970faNmy1/S73z2mnj1T9NRTj+vgwQPq3TtV77zzpm688ejTA199dZEk6cUXX1VRUaG+//3vHPV4W1ubXnjhOS1dmi273a4FCx5RaWmJbr/9Lv31r89o3ryfaePG9SoqKtSrr76pyMjIr502OGrUaP3sZ/dpyZJX9Nhjv9dvfvP7b/w7699/gGbNukySdMEFF3e8T2VlxTf+Xfy///eIJCkmJkZ//vM/9OqrL+v55/+qhx8+9dVm7LkEAAAAAIAfcrvdeuCB+zVlyrSjVh21tbVp5cpsTZkyTZJ07rlTO1bAfGnEiEwVFu5XXV2dVq16X+ecc+5Rj48fP0Gvv/62fvaz+xUbG6enn35c991390lnHT9+giQpObmnXK7RCgoKUs+eKaqtrf3ac+Pi4jVo0BBJ0oAB6aqpqdG2bVs1dOjwjlVAF198mTZs+FxOZ6JCQ0N1880/0uLFL+n662/uWL3132w2m2bMuEArVrytI0eOqKKiQsOHjzjqOTk5G3TOOV+UXX36pGnkyMyjHg8KCtKIEZm67rpr9be//VmXXXalEhOTvvZZffr0VWRk5NfuDw0N1fnnz5AkTZs2Q5s2bfjWv7dvcqy/iy+NG/fF3/WXf3ddgZVLAAAAAAB0sTNHHv/qIk/529/+rLa2Vt1440+Ouv/TTz9WbW2Nfv7zL8qgtrY2VVZWqKSkWElJyZK+KFrOPPMsffLJh/rww3/pwQd/oyVLFkuSamqq9dxzz+q22+Zp/PgJGj9+gn7wg+s0a9Y0VVZWKi4u7piZLMuSzWZTW1vbUfcHBwd3/LfD4fjWP1dISMjX3tOy3F+7r729XUFBQXrmmeeUk7NRa9Z8qptu+qGeeOKZY773zJkXad68nyokJETTp8/8hmfYjvqsb8r6m9/M19atefrss9WaN+82/e//fn2j72MVXHb7f97Psr4oq6Qv/v/40n//3f23Y/1dfOmrf3+WZX3rex0vVi4BAAAAAOBnPv/8My1fvlQPPvibjoLiS2+//Yauv/5mvfrqcr366nItXfqORo7M0vLlS4963rnnTtWSJa8oKCj4qMIoIiJSn3zykd55582O+w4ePKD4+ISODcC/SWxsrPbu3S3LsvTJJx91zR/034YNG6Ft2/J0+PAhSdIbbyzR6NGnadeuHbr11huUlTVKt956h/r1G6DCwv1HvdbhcHSULz17pigxMUlLl76m6dMv+NrnjBkzVu++u0Jut1tHjhxWXt7mox6vrKzUNddcoQED0nXddTfp9NPHaffufDkcQUcVPMfS2NjQcVW8t95apjFjxkqSYmK++LuTpI8/XvWN2Tv7u/AkVi4BAAAAAOBnnn/+ObW3t+uuu2476v5Jk87Wxo3r9T//88uj7r/qqu9q/vz/0w9+cF3HfcOHj1R5eZkuvviSo57rcDj0+98/pieeWKhnn/2jwsLC5HQm6pFHFnzrqqObbrpV99wzV/HxCcrMdHVsht0V4uMTdPfd9+nnP79Lra1t6tmzp+6993/ldDo1YkSmrr12jsLCwpSRMVjjx0846iprEyacpbvuul0LFjyhXr16a8qU87Vq1QdyOhO/9jmXXXal9u7drWuuuUI9e6ZowICBRz0eFxenWbMu0/XXX6vQ0DAlJ/fUzJkXqbW1VXV1tfrVr36hCy6Ydcw/R2RklD76aJX+/Oc/KjExUT//+Rf/P11zzbV6+OEH9NZbb+iss87ueL7LNVoPP/yA4uPjO/278CSb1VVroLxIeXmd3G6/+2MBXicxMUqlpV8/BxpA9+E4BMziGATM86bj8MiR/erZs6/pGDgFbW1t+tWv/lfnnjtFkyef2/kL/NR//1u2221KSPj6HlEdj3dHKAAAAAAAAG9mWZYuuWSG7Hb7UauD0DlOiwMAAAAAAAHPZrPpzTffNR3DJ3l05dLy5cs1c+ZMTZ06VS+++OIxn7dq1Sqde+5/lpvV1NTohhtu0IwZM3TNNdeotLTUkzEBAAAAAABwkjxWLhUXF2vhwoV66aWXtGzZMi1atEgFBQVfe15ZWZkeeeSRo+579NFHNWbMGL3zzju68sor9fDDD3sqJgAAAAAAXcYPtzVGgDmZf8MeK5dWr16t8ePHKzY2VuHh4Zo2bZqys7O/9rz7779ft95661H3rVq1ShdddJEk6cILL9RHH32k1tZWT0UFAAAAAL9T09Cig2X1pmMElKCgENXX11AwwWdZlqX6+hoFBYWc0Os8tudSSUmJEhP/c9m+pKQkbd68+ajn/OMf/9CwYcOUlZV1zNcGBQUpMjJSFRUVSk5OPq7P/rYdzAF0rcTEKNMRgIDHcQiYxTEIb/XEn1ar4ECV/vHAdAU5/PtaTt5yHMbGhqmoqEilpQdMRwFOWo8eYUpP76/g4ODjfo3HyqVvamptNlvHf+/atUsrV67Uc889pyNHjnT6fnb78X8xLC+vk9tNUwx4mjdd9hUIVByHgFkcg/BWhcW12rTri71rV286oKF94wwn8hxvOw6johIV5R1dF3DSqqqaJDV13Lbbbd+6kMdj9XVycrLKyso6bpeUlCgpKanjdnZ2tkpLS3X55ZfrhhtuUElJia6++mpJX6xy+vK1bW1tqqurU2xsrKeiAgAAAIBfWbGuUKHBDgUH2ZWTX9b5CwDgFHisXJowYYLWrFmjiooKNTY2auXKlZo0aVLH47fddptWrFihZcuW6ZlnnlFSUpJeeuklSdLkyZO1dOlSSdLbb7+tMWPGnNByLAAAAAAIVBU1TVq3vUSTsnppaN84bcovZQ8gAB7l0ZVLc+fO1bXXXqtLLrlEF154oTIzM3X99dcrLy/vW197++23KycnRxdccIFeeukl/e///q+nYgIAAACAX1n5eZEsS5p6eqpcGU6VVTfpEBt7A/Agm+WHFTZ7LgHdw9vObwcCEcchYBbHILxNQ1Or5j29WqPSnbrh4uGqrG3WvKc+1eWTB+iCM/qZjucRHIeA5xnbcwkAAAAA0L1W5RxSc0u7po1NkyTFRYWqf0oU+y4B8CjKJQAAAADwA23tbr27vkhD+8apb8//XK7Mle7UnkM1qq5vMZgOgD+jXAIAAAAAP/DZ1mJV17Voxri0o+53ZSTKkrS5gNVLADyDcgkAAAAAfJxlWVqxrlCpiZEa3j/+qMdSEyOUEB2mHMolAB5CuQQAAAAAPi5vT7kOltVr+rg+stlsRz1ms9nkSndq694KtbS2G0oIwJ9RLgEAAACAj8teW6i4qFCNHZr8jY+7MpxqaXNr2/7Kbk4GIBBQLgEAAACAD9t7uEY7Cqs0dUwfBTm++Ve8wWmxCgtxcNU4AB5BuQQAAAAAPmzFukL1CHVosqvXMZ8T5LBr5IAE5RaUyW1Z3ZgOQCCgXAIAAAAAH1Va1ajPd5Rosqu3eoQGfetzXRlOVde3aN/h2m5KByBQUC4BAAAAgI9a+XmR7Dabpo7p0+lzRw5IkN1mU05BaTckAxBIKJcAAAAAwAfVNbbq482HNG5YsuKiQjt9fmSPYA3qE6Oc/PJuSAcgkFAuAQAAAIAP+temg2ppdWv62LTjfk1WulMHSutUVtXowWQAAg3lEgAAAAD4mNa2dr2/4YBGDIhXalLkcb/Ole6UJOUUcNU4AF2HcgkAAAAAfMzqLUdUU9+iGSewakmSkuPDlZIQTrkEoEtRLgEAAACAD3FbllasK1Lf5CgN6Rt3wq93ZTi1s7BKDU1tHkgHIBBRLgEAAACAD8nNL9ORigZNG9dHNpvthF8/Kj1R7W5LW/aysTeArkG5BAAAAAA+JHtdoRKiw3T6kKSTev2AXtGKCg9WTj6nxgHoGpRLAAAAAOAjdh+sVv6Bap1/eh857Cf365zdblPWQKc27y5XW7u7ixMCCESUSwAAAADgI7LXFioiLEhnZaWc0vu4MpxqaG5TwYHqLkoGIJBRLgEAAACADyiuaNDGXaU6e1RvhYUEndJ7De8XryCHnavGAegSlEsAAAAA4ANWfF4kh8Om805LPeX3Cg1xaFi/OOXkl8myrC5IByCQUS4BAAAAgJeraWjRp3mHdcbwnoqNDO2S93SlO1VS1ahD5Q1d8n4AAhflEgAAAAB4uQ82HFBrm1vTxqZ12XtmpTslSTn5pV32ngACE+USAAAAAHix5tZ2fbDxoFzpTvVyRnTZ+8ZFhapfzyj2XQJwyiiXAAAAAMCLfZp3WHWNrZo+rutWLX3JleHUnoM1qqlv6fL3BhA4KJcAAAAAwEu53ZZWritS/5RoZaTGdPn7u9KdsiTl7mb1EoCTR7kEAAAAAF5q465SlVQ1asa4NNlsti5//z5JkYqPDlVOPuUSgJNHuQQAAAAAXsiyLGWvK1RSbA+NHpTokc+w2WxypTu1dV+FWlrbPfIZAPwf5RIAAAAAeKH8A9Xac6hG54/tI7u961ctfcmV4VRLq1vb91d67DMA+DfKJQAAAADwQtlrCxXZI1hnjkzx6OcM7hOnsBAHV40DcNIolwAAAADAyxwur1dOQZnOHd1bocEOj35WcJBdIwYkKKegTG7L8uhnAfBPlEsAAAAA4GVWrCtUcJBd556W2i2fNyrdqeq6Fu0/UtstnwfAv1AuAQAAAIAXqa5r1uotR3TmyBRFh4d0y2eOHJggu83GVeMAnBTKJQAAAADwIu9tOKD2dkvTTu/TbZ8Z2SNY6akx7LsE4KRQLgEAAACAl2hqadOqTQc1alCikuPDu/WzXelOFZXUqay6sVs/F4Dvo1wCAAAAAC/x8ebDqm9q0/Rxad3+2aMynJKk3ILybv9sAL6NcgkAAAAAvEC72613Py9SemqM0nvHdPvnJ8eHKyUhXDn5pd3+2QB8G+USAAAAAHiB9TtKVVbdpBlju3/V0pdc6U7tKKxSQ1ObsQwAfA/lEgAAAAAYZlmWstcWKjk+XFn/Pj3NBFeGU+1uS1v2cmocgONHuQQAAAAAhu3YX6n9xbWaNraP7DabsRwDe8UoskewcrlqHIATQLkEAAAAAIZlrytSdHiwzhzR02gOu92mrIEJ2ry7XO1ut9EsAHwH5RIAAAAAGHSgtE55e8p13mmpCg5ymI4jV4ZT9U1tKjhQbToKAB9BuQQAAAAABq1YW6iQYLvOGZ1qOookaXj/eAU5bNqUz6lxAI4P5RIAAAAAGFJZ26zPthXrrMxeiuwRbDqOJCksJEhD+8YrJ79MlmWZjgPAB1AuAQAAAIAh764vktuydP7pfUxHOYorw6mSqkYdLm8wHQWAD6BcAgAAAAADGpvb9GHOQY0ZnKTE2B6m4xwla2CCJCmHq8YBOA6USwAAAABgwIc5h9TY3K7p49JMR/ma+Ogw9e0ZRbkE4LhQLgEAAABAN2trd+vd9UUakhar/inRpuN8I1e6U7sPVKumocV0FABejnIJAAAAALrZuu3Fqqxt9spVS19ypTtlSdpcUG46CgAvR7kEAAAAAN3Isixlry1SL2eERgxIMB3nmNKSIxUXFcqpcQA6RbkEAAAAAN1o674KHSit07SxfWS32UzHOSabzSZXhlNb9parta3ddBwAXoxyCQAAAAC6UfbaQsVEhmj8sJ6mo3RqVLpTLa1ubd9faToKAC9GuQQAAAAA3WT/kVpt21epqWP6KDjI+38dG5wWp9AQh3LyOTUOwLF59KvZ8uXLNXPmTE2dOlUvvvji1x5/9913ddFFF+mCCy7Qvffeq5aWL65CsHTpUk2cOFGzZs3SrFmztHDhQk/GBAAAAIBusWJdoUJDHDrb1ct0lOMSHGTXyP7xyikok2VZpuMA8FJBnnrj4uJiLVy4UEuWLFFISIiuuuoqjRs3Tunp6ZKkhoYGPfTQQ3r99dfldDo1d+5cvf7665ozZ47y8vJ077336sILL/RUPAAAAADoVuXVTVq3vURTxqQqPCzYdJzjlpXu1PqdpdpfXKt+PaNNxwHghTy2cmn16tUaP368YmNjFR4ermnTpik7O7vj8fDwcH3wwQdyOp1qaGhQeXm5oqO/+EKVl5enpUuX6uKLL9Zdd92l6upqT8UEAAAAgG7x7voiSdLUMX0MJzkxmQMTZLOJU+MAHJPHVi6VlJQoMTGx43ZSUpI2b9581HOCg4P14Ycf6p577lFSUpImTpwoSUpMTNQNN9ygzMxMLViwQA899JDmz59/3J+dkBDZNX8IAJ1KTIwyHQEIeByHgFkcgzgedY2t+njzIU0a1VtD0hM7f4EXSZQ0rH+Ctuyt1PWXeee/d45DwCyPlUvfdD6u7Rsuszl58mStXbtWCxYs0AMPPKD58+frqaee6nj8uuuu05QpU07os8vL6+R2cz4w4GmJiVEqLa01HQMIaByHgFkcgzheb63Zp8bmdp2dleKT/2aG943T4n8VaEdBqRJiwkzHOQrHIeB5drvtWxfyeOy0uOTkZJWV/WfZZElJiZKSkjpuV1VV6ZNPPum4fdFFF2nnzp2qra3Vc88913G/ZVkKCvJYBwYAAAAAHtXa5tZ76w9oeL84pSX75gobV4ZTkpRTwKlxAL7OY+XShAkTtGbNGlVUVKixsVErV67UpEmTOh63LEt33323Dh06JEl65513NHr0aIWHh+vZZ59Vbm6uJOmFF17Q1KlTPRUTAAAAADzqs21HVF3fomnj0kxHOWk948PVMz6ccgnAN/LYkqDk5GTNnTtX1157rVpbW3XFFVcoMzNT119/vW677TaNHDlSv/rVr3TjjTfKZrMpPT1dDz74oBwOhx599FE98MADampqUr9+/fTb3/7WUzEBAAAAwGPclqUV64rUJylSw/vFm45zSlwZTr37eZEam9vUI5SzSwD8h836ps2RfBx7LgHdg/PbAfM4DgGzOAbRmdyCMj326mZdf+EwnTGip+k4p2RXUZX+78WNuuWSERozJKnzF3QTjkPA84ztuQQAAAAAgS57baHiokJ1+lDvKWNO1sDe0YrsEaxN+ZwaB+BolEsAAAAA4AF7D9doZ1GVpo7poyCH7//q5bDblTkwQZt3l6nd7TYdB4AX8f2vcAAAAADghbLXFqpHqEOTXb1MR+kyrnSn6pvaVHCg2nQUAF6EcgkAAAAAulhJVaPW7yzR2a7efrX59fD+8Qpy2LhqHICjUC4BAAAAQBd7d12R7DabpozpYzpKl+oRGqQhfeO0Kb9MfnhtKAAniXIJAAAAALpQXWOrPs47pPHDkxUXFWo6Tpcble5USWWjjlQ0mI4CwEtQLgEAAABAF/pg4wG1tLo1bWya6SgekZXulCROjQPQgXIJAAAAALpIa1u73t9wQCMHJCg1MdJ0HI+Ijw5TWnKkcvIplwB8gXIJAAAAALrIp1uOqLahVdPH+eeqpS+50p0qOFitmoYW01EAeAHKJQAAAADoAm7L0op1RerbM0pD0mJNx/GoURmJsiwpb3e56SgAvADlEgAAAAB0gZz8MhVXNGjGuDTZbDbTcTwqLTlScVGhnBoHQBLlEgAAAAB0iey1hXLGhOm0wYmmo3iczWaTK92pLXsr1NrWbjoOAMMolwAAAADgFBUcqFbBwWpNPb2PHPbA+DXLleFUc2u7tu+vMh0FgGGB8VUPAAAAADwoe12hIsKCdFZmiuko3WZIWqxCgx3KLeDUOCDQUS4BAAAAwCk4UtGgTbtKdc7o3goLCTIdp9sEBzk0on+8cgrKZFmW6TgADKJcAgAAAIBTsHJdoRwOm847rY/pKN3OleFUZW2zCovrTEcBYBDlEgAAAACcpJr6Fn265YgmjOipmIgQ03G63ciBCbLZpE35paajADCIcgkAAAAATtIHGw+otc2taWPTTEcxIjo8ROm9Y5TDvktAQKNcAgAAAICT0Nzarg82HpQr3amUhAjTcYxxZThVWFynipom01EAGEK5BAAAAAAn4ZPNh1XX2Krp4wJz1dKXXOlOSWL1EhDAKJcAAAAA4AS53ZZWfl6ogb2ilZEaYzqOUSkJEUqOD1dOPuUSEKgolwAAAADgBG3cVarSqiZNG5smm81mOo5xrvQE7SisVGNzm+koAAygXAIAAACAE2BZlt5ZW6ikuB4aPSjRdByv4Ep3qq3d0ta9FaajADCAcgkAAAAATsCuoirtPVyjaaf3kd3OqiVJSk+NUURYEPsuAQGKcgkAAAAATkD22kJF9gjWmSNTTEfxGg67XZkDndq8u1ztbrfpOAC6GeUSAAAAAByng2X1yt1drvNOS1VIsMN0HK8yKsOpusZW7T5YYzoKgG5GuQQAAAAAx2nlukIFB9l1zujepqN4neH94xXksHHVOCAAUS4BAAAAwHGoqmvWmq1HNHFkiqLDQ0zH8To9QoM0JC1Om9h3CQg4lEsAAAAAcBze33BA7e2Wzh/bx3QUr5WV7lRxRYMOl9ebjgKgG1EuAQAAAEAnGpvb9K+NBzV6cKKS48JNx/FarnSnJCm3oNxwEgDdiXIJAAAAADrx8ebDamhu0/SxaaajeLWEmDClJUUqJ7/UdBQA3YhyCQAAAAC+RbvbrXc/L1RGaowG9o4xHcfruTKcyj9YrdqGFtNRAHQTyiUAAAAA+Baf7yhReU2zpo9j1dLxcGU4ZVnS5t2cGgcECsolAAAAADgGy7KUvbZQKQnhyvr3fkL4dn2ToxQbGaIcrhoHBAzKJQAAAAA4hu37K1VYXKdpY9Nkt9lMx/EJNptNroxEbdlbodY2t+k4ALoB5RIAAAAAHEP22kJFR4TojOHJpqP4FFd6gppb2rWzsNJ0FADdgHIJAAAAAL5BUUmdtuyt0HmnpSo4yGE6jk8Z2jdOIcF2beLUOCAgUC4BAAAAwDdYsa5QocEOnTOqt+koPic4yKER/ROUk18my7JMxwHgYZRLAAAAAPBfKmqatHZbsc7KTFFkj2DTcXySK92pytpmFRbXmY4CwMMolwAAAADgv7y3/oDclqXzT+9jOorPykxPkE3iqnFAAKBcAgAAAICvaGhq06qcgzp9SJKcsT1Mx/FZ0eEhGpgao5x8yiXA31EuAQAAAMBXfJR7SE0t7Zo+Ls10FJ83Kt2p/cW1qqhpMh0FgAdRLgEAAADAv7W1u/Xu+iINSYtVv57RpuP4vKx0pyQpd3e54SQAPIlyCQAAAAD+be22YlXWNmv6uL6mo/iFlIRwJcX14NQ4wM9RLgEAAACAJMuytGJdoXonRmjkgHjTcfyCzWaTK92p7fsr1NTSZjoOAA+hXAIAAAAASVv3VuhAab2mnZ4mm81mOo7fGJXhVFu7pa17K0xHAeAhlEsAAAAAIOmdtYWKjQzR+OHJpqP4lfTUGEWEBXFqHODHKJcAAAAABLz9R2q1fX+lpo7poyAHvyZ1JYfdrsyBCcrdXS632zIdB4AH8FUTAAAAQMDLXleosBCHJrt6m47il1wZiaprbFXBwWrTUQB4AOUSAAAAgIBWVt2oz7eXaLKrl8LDgkzH8Usj+sfLYbcpp4BT4wB/RLkEAAAAIKC9+/kB2WzS1DF9TEfxWz1CgzQkLVa5lEuAX6JcAgAAABCw6pta9VHuIY0dmqT46DDTcfyaKyNRh8sbdKSiwXQUAF3Mo+XS8uXLNXPmTE2dOlUvvvji1x5/9913ddFFF+mCCy7Qvffeq5aWFknSoUOHdM0112j69Om6+eabVV9f78mYAAAAAALUqk0H1dzarmlj00xH8XtZ6QmSxFXjAD/ksXKpuLhYCxcu1EsvvaRly5Zp0aJFKigo6Hi8oaFBDz30kP72t7/prbfeUnNzs15//XVJ0oMPPqirr75a2dnZGjFihJ5++mlPxQQAAAAQoFrb3Hpv/QEN7x+vtOQo03H8njOmh/okRbLvEuCHPFYurV69WuPHj1dsbKzCw8M1bdo0ZWdndzweHh6uDz74QE6nUw0NDSovL1d0dLRaW1v1+eefa9q0aZKkyy677KjXAQAAAEBXWLP1iKrrWzR9HKuWuosr3an8A1Wqa2w1HQVAF/JYuVRSUqLExMSO20lJSSouLj7qOcHBwfrwww91zjnnqLKyUhMnTlRlZaUiIyMVFPTFVRoSExO/9joAAAAAOBVuy9KKdYVKS4rUsL5xpuMEDFeGU5Ylbd7N6iXAn3jsOpuWZX3tPpvN9rX7Jk+erLVr12rBggV64IEHdM899xzX675NQkLkCT0fwMlLTGQJOWAaxyFgFsegb1q37YgOlzdo3tWjlZQUbTpOwEhIiFR8dKi2F1Zr1jmDuux9OQ4BszxWLiUnJ2v9+vUdt0tKSpSUlNRxu6qqSlu2bNHEiRMlSRdddJHmzp2r+Ph41dXVqb29XQ6HQ6WlpUe97niUl9fJ7f56uQWgayUmRqm0tNZ0DCCgcRwCZnEM+q5FK3cqPjpUg3tH8/9hNxs5IEFrtxXr0OFqBQed+sk0HIeA59nttm9dyOOx0+ImTJigNWvWqKKiQo2NjVq5cqUmTZrU8bhlWbr77rt16NAhSdI777yj0aNHKzg4WGPGjNHbb78tSVq6dOlRrwMAAACAU7HnUI12FVXp/DF9FOTw6AW08Q1c6U41tbRrZ1Gl6SgAuojHvpImJydr7ty5uvbaa3XJJZfowgsvVGZmpq6//nrl5eUpLi5Ov/rVr3TjjTfq4osv1r59+3T33XdLkn75y19q8eLFmjlzptavX6877rjDUzEBAAAABJjstfvVIzRIZ2X1Mh0lIA3tG6eQYLty8tl3CfAXNuubNkfycZwWB3QPliAD5nEcAmZxDPqeksoG/c8zn2n6uDRdeXa66TgB64nXNmt/ca1+d/OEE95j979xHAKeZ+y0OAAAAADwNis/L5LdZtOU0/qYjhLQXBlOVdQ0q6ikznQUAF2AcgkAAABAQKhtaNEnmw/rjOE9FRcVajpOQMsa6JRN4tQ4wE9QLgEAAAAICP/aeFAtbW5NG8uqJdOiI0I0oHe0NhVQLgH+gHIJAAAAgN9raW3X+xsPKHNggnonHnvfEHQfV7pT+4/UqrK22XQUAKeIcgkAAACA31u95YhqG1o1fWya6Sj4N1dGoiQpl9VLgM+jXAIAAADg19xuSyvWFapfzygNTos1HQf/1ishXEmxPZRDuQT4PMolAAAAAH5tU36ZiisbNX1c2ilf9h5dx2azyZXh1LZ9lWpqaTMdB8ApoFwCAAAA4Ney1+2XMyZMpw1ONB0F/8WV7lRbu1tb91aajgLgFFAuAQAAAPBb+QeqtPtgjc4/vY8cdn798TbpqTGKCAtSTkGp6SgATgFfXQEAAAD4rey1hYoIC9JZmb1MR8E3CHLYNXJAgnILyuV2W6bjADhJlEsAAAAA/NKRigbl5JfpnNGpCg1xmI6DY3BlOFXX2Krdh6pNRwFwkiiXAAAAAPilFesK5XDYdd5pqaaj4FuM6J8gh93GVeMAH0a5BAAAAMDvVNe36NO8IzpzZE/FRISYjoNvER4WpMFpscrJp1wCfBXlEgAAAAC/88GGA2pvd+v80/uYjoLj4Ep36nB5g4orGkxHAXASKJcAAAAA+JXmlnZ9sPGAXBlOpSREmI6D4+BKd0oSp8YBPopyCQAAAIBf+STvsOqb2jR9XJrpKDhOztgeSk2M5NQ4wEdRLgEAAADwG+1ut1asK9TA3tHKSI01HQcnwJWRoPwD1aprbDUdBcAJolwCAAAA4Dc27CxVWXWTpo/tazoKTpArPVFuy1Le7nLTUQCcIMolAAAAAH7BsiytWFeopLgeGpXhNB0HJ6hfSpRiIkLYdwnwQZRLAAAAAPzCrqIq7T1cq2lj02S320zHwQmy22zKSncqb0+52trdpuMAOAGUSwAAAAD8wjtrCxUVHqwzR/Q0HQUnyZXhVFNLu3YWVpmOAuAEUC4BAAAA8HkHy+q1eXe5zhudqpBgh+k4OEnD+sYpJMjOVeMAH0O5BAAAAMDnrVhbqJAgu84Z3dt0FJyCkGCHhvePV05BqSzLMh0HwHGiXAIAAADg06rqmrVm6xGdmZmiqPAQ03FwirLSnSqvaVZRSZ3pKACOE+USAAAAAJ/23voDcluWpp3ex3QUdIGsdKdsEleNA3wI5RIAAAAAn9XY3KZ/bTqo0wYlKiku3HQcdIGYiBAN6BWtXMolwGdQLgEAAADwWR/nHlJjc5umjUszHQVdyJXh1N7DtaqsbTYdBcBxoFwCAAAA4JPa2t1aub5Ig1JjNLBXjOk46EKudKckKXc3q5cAX0C5BAAAAMAnrd9RooqaZk0f19d0FHSxXs4IJcaGKSefcgnwBZRLAAAAAHyOZVnKXluolIRwZaYnmI6DLmaz2eRKT9S2fZVqbmk3HQdAJyiXAAAAAPicbfsrVVhSp2lj02S32UzHgQe4Mpxqa3dr674K01EAdIJyCQAAAIDPyV5bqOiIEJ0xvKfpKPCQjNQY9QgN4tQ4wAdQLgEAAADwKYXFtdq6t0JTTktVcBC/0virIIddmQMTlLu7TG63ZToOgG/BV2IAAAAAPmXFuiKFBjt0zujepqPAw1zpTtU2tGrP4RrTUQB8C8olAAAAAD6joqZJ67YX66ysFEWEBZuOAw8bOSBeDruNU+MAL0e5BAAAAMBnvLu+SJYlnX96H9NR0A3Cw4I1qE+scgoolwBvRrkEAAAAwCc0NLXpw5xDOn1okpwxPUzHQTdxZTh1qKxexZUNpqMAOAbKJQAAAAA+4cPcg2pqadf0sWmmo6AbudKdkqRcTo0DvBblEgAAAACv19bu1nvrD2ho3zj17RllOg66UWJsD/VOjODUOMCLUS4BAAAA8HprtxWrsrZZ08exaikQudKd2lVUrfqmVtNRAHwDyiUAAAAAXs2yLGWvK1RqYoRG9I83HQcGuDKccluW8naXm44C4BtQLgEAAADwanl7KnSwtF7TxqbJZrOZjgMD+qdEKzoihFPjAC9FuQQAAADAq61YV6i4qFCNG5ZsOgoMsdtscqUnKG9Pudra3abjAPgvlEsAAAAAvNb+I7Xavr9SU8akKsjBry+BzJWeqMbmdu0sqjIdBcB/4aszAAAAAK/1ztr9CgtxaHJWb9NRYNjQfnEKCbIrJ59T4wBvQ7kEAAAAwCuVVTVq/Y5Sne3qrfCwINNxYFhosEPD+sUrJ79MlmWZjgPgKyiXAAAAAHillZ8XyWaTpoxJNR0FXsKV4VR5TZMOlNabjgLgKyiXAAAAAHidusZWfbz5sMYOTVZ8dJjpOPASWQMTJImrxgFehnIJAAAAgNdZtemgmlvbNX1cmuko8CIxkaEa0CuafZcAL0O5BAAAAMCrtLa1670NBzSif7z6JEWajgMv40p3au/hGlXVNZuOAuDfKJcAAAAAeJU1W4tVU9/CqiV8I1eGU5KUy6lxgNegXAIAAADgNdyWpey1hUpLitTQvnGm48AL9XZGyBkTxqlxgBehXAIAAADgNTYXlOtIRYOmj0uTzWYzHQdeyGazyZXu1Lb9lWpuaTcdB4A8XC4tX75cM2fO1NSpU/Xiiy9+7fH33ntPs2bN0sUXX6xbbrlF1dXVkqSlS5dq4sSJmjVrlmbNmqWFCxd6MiYAAAAAL5G9dr8SokM1ZkiS6SjwYq4Mp1rb3Nq2r8J0FACSgjz1xsXFxVq4cKGWLFmikJAQXXXVVRo3bpzS09MlSXV1dXrggQf02muvKTk5WY899pieeOIJ3X///crLy9O9996rCy+80FPxAAAAAHiZ3YeqtetAta46L0NBDk6ywLEN6hOrHqFByiko0/lnDjAdBwh4HvuKvXr1ao0fP16xsbEKDw/XtGnTlJ2d3fF4a2urHnjgASUnJ0uSBg8erMOHD0uS8vLytHTpUl188cW66667OlY0AQAAAPBf2WsLFR4apLMyU0xHgZcLctg1ckC8cgvK5HZbpuMAAc9j5VJJSYkSExM7biclJam4uLjjdlxcnKZMmSJJampq0jPPPNNxOzExUT/96U+1bNkypaSk6KGHHvJUTAAAAABeoLiyQRt3lursUb3VI9RjJ1jAj7gynKppaNWuokrTUYCA57Gv2pb19fb4mzbkq62t1S233KIhQ4bo0ksvlSQ99dRTHY9fd911HaXT8UpIiDzBtABOVmJilOkIQMDjOATM4hjsGq9+tEcOh11zpg1RfHSY6TjwAeecHqq/vLld67Ye0bUzh5mOAwQ0j5VLycnJWr9+fcftkpISJSUdvSlfSUmJfvzjH2v8+PH6+c9/LumLsum1117TD37wA0lflFRBQScWs7y8jqWRQDdITIxSaWmt6RhAQOM4BMziGOwatQ0tem9docYPT1Z7c6tKS1tNR4KPGNQnVmu3HtGM0/uYjgL4Nbvd9q0LeTx2WtyECRO0Zs0aVVRUqLGxUStXrtSkSZM6Hm9vb9dNN92kGTNm6L777utY1RQeHq5nn31Wubm5kqQXXnhBU6dO9VRMAAAAAIZ9sPGgWtrcmj42zXQU+JisdKcKj9SqpLLBdBQgoHl05dLcuXN17bXXqrW1VVdccYUyMzN1/fXX67bbbtORI0e0bds2tbe3a8WKFZKkESNG6OGHH9ajjz6qBx54QE1NTerXr59++9vfeiomAAAAAIOaW9v1/oYDyhqYoF7OCNNx4GNc6Ql6+f185RSU6/zTw03HAQKWzfqmzZF8HKfFAd2DUwEA8zgOAbM4Bk/dvzYe0PMrd+lnV4/S4LQ403Hggx547nOFhzh0z9WjTUcB/Jax0+IAAAAA4Nu43ZZWfF6k/ilRGtQn1nQc+Khxw3tqV1G16pvYqwswhXIJAAAAgBGb8ktVUtmo6eP6fuOVpYHjMXZ4T7ktS3l7yk1HAQIW5RIAAACAbmdZlrLXFioxNkynDUo0HQc+bFCfOEWHBysnv8x0FCBgUS4BAAAA6Hb5B6q1+1CNzj89TXY7q5Zw8ux2m7LSncrbU6G2drfpOEBAolwCAAAA0O1WrCtURFiQJo5MMR0FfsCV7lRjc5t2FVWZjgIEJMolAAAAAN3qcHm9cvLLdO7oVIWGOEzHgR8Y1i9ewUF2To0DDKFcAgAAANCtVqwrUlCQXeedlmo6CvxEaIhDw/rGKaegTJZlmY4DBBzKJQAAAADdprq+Rau3HNGZI3oqOiLEdBz4EVeGU2XVTTpYVm86ChBwKJcAAAAAdJv3NxSpvd2t88emmY4CP5OV7pQkTo0DDKBcAgAAANAtmlva9a+NB+XKcKpnfLjpOPAzsZGh6p8SrZwCyiWgu1EuAQAAAOgWH28+pPqmNs0Y19d0FPgpV4ZTew7VqLqu2XQUIKBQLgEAAADwuHa3Wys/L1J67xilp8aYjgM/5fr3qXG5u8sNJwECC+USAAAAAI/bsLNUZdVNmj6OvZbgOamJEUqIDmPfJaCbUS4BAAAA8CjLsvTO2kIlx/WQK8NpOg78mM1mkyvDqa37KtTc2m46DhAwKJcAAAAAeNTOwirtP1KraWPTZLfZTMeBn3NlONXa5tb2fZWmowAB44TLpdbWVk/kAAAAAOCnstcVKio8WBNG9DQdBQFgcJ9Y9Qh1KKeg1HQUIGB0Wi6tX79eTz/9tFpaWnTppZdqzJgxevvtt7sjGwAAAAAfd7C0Tpt3l+u801IVEuwwHQcBIMhh18gBCcopKJfbskzHAQJCp+XS7373O7lcLr333ntyOp1666239Ne//rU7sgEAAADwcdnrChUSZNe5o1NNR0EAcaU7VVPfor2Ha0xHAQJCp+VSe3u7JkyYoNWrV2vKlClKTU2V2+3ujmwAAAAAfFhlbbM+21qsiZkpiuwRbDoOAsjIgQmy22xcNQ7oJp2WS263W5s3b9aqVat05plnateuXey7BAAAAKBT720oktuydP7YNNNREGAiwoI1qE+Mcgool4Du0Gm5dPPNN2vevHm64oorlJqaqptuukl33HFHN0QDAAAA4Ksam9u0atMhnTY4SUmxPUzHQQBypTt1sLRepVWNpqMAfi+osyeUlJTo3Xff7bj97rvvyuFgIz4AAAAAx/ZR7iE1NrdpxjhWLcEMV4ZTL39QoJyCMk0d08d0HMCvdbpy6Z///OdRtymWAAAAAHybtna33l1fpMF9YtU/Jdp0HASopLhw9XJGsO8S0A06XbnUv39/3X///RozZozCw8M77j///PM9GgwAAACAb/p8e4kqapr13fMHm46CAOdKd2rFukI1NLUqPIxN5QFP6bRcqqqqUlVVlfbv399xn81mo1wCAAAA8DWWZSl7XaFSEsKVOTDBdBwEOFeGU29/tl95eyo0bliy6TiA3+q0XHr++ee7IwcAAAAAP7BtX6WKSur0wxlDZLfZTMdBgBuQEq2o8GDlFJRRLgEe1Gm5tG/fPr3wwgtqaGiQZVlyu93av3+/Xn755e7IBwAAAMCHZK/dr5jIEI0f3tN0FEB2u01ZA53asKtUbe1uBTk63XYYwEno9MiaN2+eWltbtWnTJvXu3VsFBQUaNGhQd2QDAAAA4EMKi2u1dV+lppyWquAgfomHd3BlONXY3Kb8oirTUQC/1elX/Pr6ej344IOaOHGiJk2apL/97W/aunVrd2QDAAAA4EOy1xUqNNihs0f1Nh0F6DC8X7yCHHZtKuCqcYCndFouxcbGSpL69u2r/Px8RUdHy+12ezoXAAAAAB9SUdOkddtKNCmrlyK4Khe8SGiIQ8P6xSknv0yWZZmOA/ilTsulvn376uGHH9bo0aP1wgsv6Pnnn1dLS0t3ZAMAAADgI1Z+XiRJmnp6quEkwNe5Mpwqq27SobJ601EAv9RpufTAAw9ozJgxGjZsmK688kp99tln+tWvftUd2QAAAAD4gIamVn2Ye0hjhybJGdPDdBzga7IGOiVJOZwaB3hEp+XSn/70J02bNk2SdPXVV+upp57S22+/7fFgAAAAAHzDqpxDam5p17SxaaajAN8oLipU/VOilJNPuQR4QtCxHnj88cdVU1Ojt99+W3V1dR33t7a26oMPPtD999/fLQEBAAAAeK+2drfeXV+koX3j1LdnlOk4wDFlpTu17OO9qq5rVkxkqOk4gF855sqlrKwsxcbGym63KzY2tuN/PXv21BNPPNGdGQEAAAB4qc+2Fqu6rkUzxrFqCd7Nle6UJSl3d7npKIDfOebKpcmTJ2vy5MmaNGmSMjMzO+5vbW1VcDBXfwAAAAACnWVZWrGuUKmJkRreP950HOBb9UmKVEJ0qHLyyzQpq5fpOIBf6XTPpZaWFj399NNqaWnRpZdeqjFjxrDnEgAAAADl7SnXwbJ6TR/XRzabzXQc4FvZbDa50hO1bV+FWlrbTccB/Eqn5dLvfvc7uVwuvffee3I6nXrrrbf017/+tTuyAQAAAPBi2WsLFRcVqrFDk01HAY6LK8Oplja3tu2vNB0F8Cudlkvt7e2aMGGCVq9erSlTpig1NVVut7s7sgEAAADwUnsP12hHYZWmjumjIEenv1YAXmFwWqzCQhxcNQ7oYp1+F3C73dq8ebNWrVqlM888U7t27VJra2t3ZAMAAADgpVasK1SPUIcmu9i7Br4jyGHXyAEJyi0ok9uyTMcB/Ean5dJNN92kefPm6YorrlBqaqpuuukm3XHHHd0QDQAAAIA3Kq1q1Oc7SjTZ1Vs9Qo95jSDAK7nSnaqub9G+w7WmowB+o9PvBOeff77OP//8jtvvvvuuHA6HR0MBAAAA8F4rPy+S3WbT1DF9TEcBTtjIgQmy22zKKSjVgF7RpuMAfuGET46mWAIAAAACV11jqz7efEjjhyUrLirUdBzghEX2CFZGagz7LgFdiJ33AAAAABy3f206qJZWt6aNTTMdBThprgynDpTWq6yq0XQUwC8cs1x69913JUktLS3dFgYAAACA92pta9f7Gw5oxIB4pSZFmo4DnDRXulOSlFPA6iWgKxyzXHr88cclSXPmzOm2MAAAAAC81+otR1RT36IZrFqCj0uOD1dKQjjlEtBFjrmhd0REhKZNm6bi4mJddNFFX3t8+fLlHg0GAAAAwHu4LUsr1hWpb3KUhvSNMx0HOGWuDKdWritSQ1ObwsO46iFwKo55BD377LPavn277rvvPv3iF7/ozkwAAAAAvExufpmOVDTohouHyWazmY4DnDJXulPvfFaoLXvLNXZosuk4gE875mlxkZGROv300/WnP/1Jw4cPlyS1tbVp2LBhGjt2bLcFBAAAAGBe9rpCJUSH6fQhSaajAF1iYK8YRfYI5qpxQBfodO1fbW2tvve978npdKq9vV3FxcX64x//qNGjR3dHPgAAAACG7T5YrfwD1frOeRly2LngNPyD3W5TVnqCNu0qU1u7W0EO/m0DJ6vTcumRRx7R73//e40fP16StGbNGv3f//2fFi9e7PFwAAAAAMzLXluoiLAgnZWVYjoK0KVc6Yn6NO+I8g9Uayh7iQEnrdNqtq6urqNYkqQzzjhDjY2NHg0FAAAAwDsUVzRo465SnT2qt8JC2PQY/mV4/zgFOezK5apxwCnptFyy2+06ePBgx+0DBw7I4XB4NBQAAAAA77Di8yI5HDadd1qq6ShAlwsLCdKwfnHKyS+TZVmm4wA+q9PRw09+8hPNmTNHZ5xxhiTp008/1S9/+cvjevPly5frD3/4g1pbW/WDH/xA11xzzVGPv/fee3riiSdkWZZSU1P1m9/8RjExMTp06JDuvvtulZeXq3///vr973+viIiIk/jjAQAAADhZNQ0t+jTvsM4Y3lOxkaGm4wAe4Up36h+7d+pQeYN6O/m9EzgZna5cmjJliv7xj39o1KhRcrlcev755zVt2rRO37i4uFgLFy7USy+9pGXLlmnRokUqKCjoeLyurk4PPPCAnnnmGb3xxhsaPHiwnnjiCUnSgw8+qKuvvlrZ2dkaMWKEnn766VP4IwIAAAA4GR9sOKDWNremjU0zHQXwmKx0pyQpJ7/UcBLAdx3XdvgDBgzQ1VdfrWuuuUYDBw48rjdevXq1xo8fr9jYWIWHh2vatGnKzs7ueLy1tVUPPPCAkpOTJUmDBw/W4cOH1draqs8//7yjwLrsssuOeh0AAAAAz2tubdcHGw/Kle5UL1ZzwI/FRYWqb88o5bDvEnDSPHatxZKSEiUmJnbcTkpKUnFxccftuLg4TZkyRZLU1NSkZ555RlOmTFFlZaUiIyMVFPTFGXuJiYlHvQ4AAACAZ1mWpX++t0t1ja2aPo5VS/B/o9Kd2nOwRtX1LaajAD7JY5d7+KbN0Gw229fuq62t1S233KIhQ4bo0ksv/cYi6Zte920SEiJP6PkATl5iYpTpCEDA4zgEzPLHY/D5d7bro9zDmj1lkM4c3cd0HKBTp3ocnjO2r5Z+sld7i+s0dVzfLkoFBI5Oy6V77rlHv/3tb0/4jZOTk7V+/fqO2yUlJUpKSjrqOSUlJfrxj3+s8ePH6+c//7kkKT4+XnV1dWpvb5fD4VBpaenXXteZ8vI6ud3s9A94WmJilEpLa03HAAIaxyFglj8eg++uL9Li9/I1KauXpp3W2+/+fPA/XXEcRgbbFB8dqo83HZBrQHwXJQP8h91u+9aFPJ2eFrdjx46TuiTjhAkTtGbNGlVUVKixsVErV67UpEmTOh5vb2/XTTfdpBkzZui+++7rWJ0UHBysMWPG6O2335YkLV269KjXAQAAAPCMz7Ye0T/fy9foQYm6dtrgEz6DAPBVNptNrnSntu6rUEtru+k4gM/pdOVSYmKiLrjgAmVlZSki4j8b+d1///3f+rrk5GTNnTtX1157rVpbW3XFFVcoMzNT119/vW677TYdOXJE27ZtU3t7u1asWCFJGjFihB5++GH98pe/1L333qs//OEPSklJ0YIFC07xjwkAAADg22zZU66/vLVdg/vE6saLh8lup1hCYHFlOPXBxoPavr+y4wpyAI6PzepkWdKTTz75jfffeuutHgnUFTgtDuge/ngqAOBrOA4Bs/zlGNx9qFq//2eOkuJ66GdXj1Z4mMe2ZgW6XFcdh61tbt32+McaPyxZ358+pAuSAf6js9PiOv2uceutt6qpqUn79+9XRkaGWlpaFBYW1qUhAQAAAJhxuLxej72yWdERwbpzdhbFEgJWcJBdI/vHK6egTN+zLNk5LRQ4bp3uuZSbm6spU6boxhtvVElJiSZPnqyNGzd2RzYAAAAAHlRR06T5i3Jkt9s0b45LMZGhpiMBRrkynKqua9H+I76/IhHoTp2WS4888oiee+45xcbGqmfPnvrtb3+rhx9+uDuyAQAAAPCQusZWzV+Uo8bmNt05O0tJceGmIwHGZQ50ymaTNuWXmY4C+JROy6Wmpialp6d33J48ebLa29k9HwAAAPBVzS3teuyVXJVWNemnl2UqLTnKdCTAK0T2CFZGaqxyCyiXgBPRabkUFBSk6urqjsuQ7tmzx+OhAAAAAHhGW7tbTy/doj2Ha3TjxcM1pG+c6UiAV3GlO1VUUqey6kbTUQCf0Wm5dPPNN+u73/2uDh8+rDvvvFPf+c53dPPNN3dHNgAAAABdyG1Z+tvb25W3p1zXThus0wYnmo4EeJ1RGU5JUm5BueEkgO/o9FIQ55xzjgYMGKBPP/1Ubrdbt9xyy1GnyQEAAADwfpZlafEHBVqztViXTRqgya7epiMBXik5Plw948OVk1+q805LNR0H8AmdrlySpLa2NrndbgUFBSk4ONjTmQAAAAB0sXfWFmrl50WaclqqLjijr+k4gFdzZTi1o7BKDU1tpqMAPqHTcum1117T9773PeXl5WnDhg265pprtGLFiu7IBgAAAKALfJx7SK+u2q1xw5J11ZSMjv1UAXwzV7pT7W5LW/ZyahxwPDo9Le65557T0qVLlZSUJEk6dOiQbrzxRk2bNs3j4QAAAACcmk35pXoue4dG9I/Xjy8YKjvFEtCp9N4xiuwRrJyCMo0dmmw6DuD1Ol25FBwc3FEsSVKvXr04NQ4AAADwAbuKqvTHZVvVr2e0brl0hIIcx7UrBhDw7HabsgYmKG93udrdbtNxAK93zJVLW7dulSQNHjxYDz30kObMmSOHw6ElS5Zo9OjR3RYQAAAAwIkrKqnTY69uVkJ0mO64MlNhIZ2etADgK1wZTn265YgKDlRrcFqc6TiAVzvmd5if/vSnR91etWpVx3/bbDbdf//9HgsFAAAA4OSVVjVqwaIchYU4NG+OS1HhIaYjAT5neP94BTls2pRfRrkEdOKY5dIHH3zQnTkAAAAAdIGa+hbNX5Sjtna37v3OaUqICTMdCfBJYSFBGtI3Tjn5ZZpzbjob4QPfotO1saWlpXr99ddVVVV11P333HOPpzIBAAAAOAmNzW1auDhXVbXNuus7o9TbGWE6EuDTRqU79fzKXTpc3qBeHE/AMXW6o9/NN9+szZs3y7Kso/4HAAAAwHu0trn15JI8HSit0y2XjlR67xjTkQCfl5XulCTlFJQZTgJ4t05XLrW2turJJ5/sjiwAAAAAToLbbenPy7dq+/5KXX/hMGUOTDAdCfAL8dFh6pscpZz8Ms0c39d0HMBrdbpyafjw4dq1a1d3ZAEAAABwgizL0gvv7tL6naW66tx0nTGip+lIgF9xZTi1+2C1aupbTEcBvFanK5dGjx6tSy65RImJiQoK+s/T33//fY8GAwAAANC5ZZ/s1apNBzVjfJrOH5tmOg7gd1zpTi37ZK827y7XxMwU03EAr9RpufTkk0/q97//vdLS+EYFAAAAeJMPNh7QG5/u08TMFF0xeaDpOIBfSkuOVFxUqHIKyiiXgGPotFyKiYnRzJkzuyMLAAAAgOO0bnuxXly5S650p74/fTCXSQc8xGazyZXu1KdbDqu1rV3BQQ7TkQCv0+meS2effbYeeeQRbdq0SVu3bu34HwAAAAAztu6r0J+Xb1NGaoxumjVcDnunP9YDOAWuDKdaWt3avr/SdBTAK3W6cmn58uWSpBUrVnTcZ7PZ2HMJAAAAMGDv4Ro9uSRPKQnhuu2KTIUEs4oC8LQhaXEKDXEoJ79MmQOdpuMAXqfTcumDDz7ojhwAAAAAOnGkokELF+cqqkew7pzjUnhYsOlIQEAIDrJrRP945RSU6buWJTunoQJH6bRc+tvf/vaN9//whz/s8jAAAAAAvlllbbPmv5wjm02aN8el2MhQ05GAgOJKd2rDzlLtP1Kr/inRpuMAXqXTcmnXrl0d/93S0qINGzZo3LhxHg0FAAAA4D/qm1q1YHGO6pta9bOrRys5Ptx0JCDgZA5MkM0m5RaUUS4B/6XTcuk3v/nNUbcrKip0zz33eCwQAAAAgP9obm3XY69uVnFFg+ZemaW+PaNMRwICUlR4iDJ6xygnv0yXnDXAdBzAq5zwZSXi4+N18OBBT2QBAAAA8BVt7W79cekW7T5QrRsuGq6h/eJNRwICWlaGU4UldSqvbjIdBfAqJ7TnkmVZ2rJlixISEjwaCgAAAAh0lmXp79k7lLu7XN+bNlhjhiSZjgQEPFe6U6/8a7dyCsp03mmppuMAXuOE9lySpJSUFE6LAwAAADzs1VW79WneEV0ysb/OGdXbdBwAklISIpQcH065BPyXE95zCQAAAIBnZa8t1DtrC3Xu6N666Mx+puMA+IpR6U69u75Ijc1t6hHa6a/UQEA45pHwP//zP8d8kc1m069//WuPBAIAAAAC2ad5h7X4XwU6fUiSrp4ySDabzXQkAF/hynAqe12htuyt0OmcrgpI+pZyKSMj42v3VVZW6u9//7t692ZZLgAAANDVcgvK9Le3d2hYvzhdd+Ew2e0US4C3Gdg7WpE9gpWTX0a5BPzbMculH/3oR0fdXr16tX72s5/poosu0v333+/xYAAAAEAgKThQrT8s3aK05Ej95NKRCg464Qs7A+gGDrtdmQMTlFtQpna3Ww47xyrQ6QmibW1tmj9/vl5//XU98MADmj59enfkAgAAAALGgdI6PfpKruKiw3TH7Cz2cQG8nCvdqdVbjqjgQLUGp8WZjgMY963ftfbv36+5c+cqPDxcr7/+ulJSUrorFwAAABAQyqobtWBRjkKC7Zo3O0vR4SGmIwHoxPD+8Qpy2JRTUEa5BEg65vq9V199VVdeeaWmTp2qF154gWIJAAAA6GI1DS2avyhXLa1u3TnbJWdsD9ORAByHHqFBGpIWp035ZbIsy3QcwLhjrly6//77Zbfb9cwzz+jPf/5zx/2WZclms2njxo3dEhAAAADwR43NbXp0ca4qapp011UupSZFmo4E4AS4Mpx6YeUuHaloUEpChOk4gFHHLJfef//97swBAAAABIy2dreeej1PhcV1uvXykcpIjTUdCcAJcqV/US7l5JdRLiHgHbNc6t27d3fmAAAAAAKC27L07JvbtG1fpX58wVC50p2mIwE4CfHRYUpLjtSmgjLNGN/XdBzAKK6ZCAAAAHQTy7L0z3fztW57ia48Z6DOHMm+poAvc6U7tftgtWoaWkxHAYyiXAIAAAC6yZur9+n9jQc0fWyaZoxjpQPg60ZlJMqypLzd5aajAEZRLgEAAADdYNWmg3r9472aMKKnrjhnoOk4ALpAWnKk4qJClZNfZjoKYBTlEgAAAOBh63eU6PkVO5U5MEE/mDFEdpvNdCQAXcBmsykr3akteyvU2tZuOg5gDOUSAAAA4EHb91fqmeVbNbB3jG6+ZISCHPwIDvgTV7pTza3t2r6/ynQUwBi+swEAAAAesv9IrZ54bbOS48J1+5WZCg12mI4EoIsN7Rur0GCHcgo4NQ6Bi3IJAAAA8IDiygYtXJyjiLAg3TnHpYiwYNORAHhAcJBDI/rHK7egTJZlmY4DGEG5BAAAAHSxqrpmzX85R25LunOOS3FRoaYjAfAgV4ZTlbXNKiyuMx0FMIJyCQAAAOhCDU2tWrg4V7UNrZo7O0spCRGmIwHwsJEDE2SzSZvyS01HAYygXAIAAAC6SEtrux5/LU+Hyup162Uj1T8l2nQkAN0gOjxEA3vHsO8SAhblEgAAANAF2t1u/emNrcovqtL1Fw3T8P7xpiMB6Eaj0p0qLK5TRU2T6ShAt6NcAgAAAE6RZVn6R/ZObcov09VTB2ns0GTTkQB0M1eGU5JYvYSARLkEAAAAnKIlH+3Rx5sP66IJ/XTeaamm4wAwoGd8uJLjeignn3IJgcej5dLy5cs1c+ZMTZ06VS+++OIxn/ezn/1MS5Ys6bi9dOlSTZw4UbNmzdKsWbO0cOFCT8YEAAAATtrKz4v01pr9OtvVS5ec1d90HACG2Gw2uTKc2lFYqcbmNtNxgG4V5Kk3Li4u1sKFC7VkyRKFhIToqquu0rhx45Senn7Uc375y19qzZo1GjduXMf9eXl5uvfee3XhhRd6Kh4AAABwylZtKNLL7+frtMGJ+u75g2Wz2UxHAmCQK92pFeuKtHVvhcYMSTIdB+g2Hlu5tHr1ao0fP16xsbEKDw/XtGnTlJ2dfdRzli9frvPOO08zZsw46v68vDwtXbpUF198se666y5VV1d7KiYAAABwUvL2lOvRlzdpSFqsbrhomOx2iiUg0KWnxigiLIh9lxBwPLZyqaSkRImJiR23k5KStHnz5qOec91110mSNmzYcNT9iYmJuuGGG5SZmakFCxbooYce0vz584/7sxMSIk8hOYATkZgYZToCEPA4DoHut2N/hZ5eukV9U6L14I0TFB4WbDoSENC86Xvh6cN7asP2EsXHR8jhYJtjBAaPlUuWZX3tvuNdJvzUU091/Pd1112nKVOmnNBnl5fXye3++ucD6FqJiVEqLa01HQMIaByHQPc7VFav37ywQTHhIXrg+vGqr21SfS2XHgdM8bbvhUP7xGrVhgP6LPegBvWJNR0H6BJ2u+1bF/J4rEZNTk5WWdl/lgKWlJQoKanzc05ra2v13HPPddy2LEtBQR7rwAAAAIDjVlHTpPmLchTksOvOq1yKiwozHQmAlxnRP14Ou42rxiGgeKxcmjBhgtasWaOKigo1NjZq5cqVmjRpUqevCw8P17PPPqvc3FxJ0gsvvKCpU6d6KiYAAABwXOoaWzV/UY6aWto0d3aWkmJ7mI4EwAv1CA3SkL5x2sS+SwggHl25NHfuXF177bW65JJLdOGFFyozM1PXX3+98vLyjvk6h8OhRx99VA888IBmzJihrVu36u677/ZUTAAAAKBTzS3tevSVXJVWNem2yzOVluw9+7sA8D6udKeKKxp0uLzedBSgW9isb9ocycex5xLQPbzt/HYgEHEcAp7X1u7W469t1ta9Fbr10pEaNeg/F63hGATM88bjsLy6SXf/YbVmn5Ou6ePSTMcBTpmxPZcAAAAAX+e2LP317e3asqdC358+5KhiCQCOJSEmTGlJkcrJLzUdBegWlEsAAADAN7AsSy+/n6/Pthbr8skDNCmrl+lIAHxIVrpT+QerVdvQYjoK4HGUSwAAAMA3ePuz/Xpv/QFNHdNHM8f3NR0HgI9xZThlWdLm3eWmowAeR7kEAAAA/JePcg/ptQ/3aPzwZM05L102m810JAA+pm/PKMVGhiiHq8YhAFAuAQAAAF+xcVep/p69QyMGxOtHM4fKTrEE4CTYbTa50p3asqdCrW3tpuMAHkW5BAAAAPzbzsJK/XHZVvVPidZPLhmpIAc/LgM4ea4Mp5pb27WjsMp0FMCj+G4JAAAASCosrtXjr21WYmyY7rgyS6EhDtORAPi4oX3jFBJsV04+p8bBv1EuAQAAIOCVVDVqweJchYUEad4clyJ7BJuOBMAPBAc5NKJ/gnIKymRZluk4gMdQLgEAACCgVde3aMHLOWpvd2veHJfio8NMRwLgR7LSE1RZ26zC4jrTUQCPoVwCAABAwGpsbtPCxTmqqm/WHbOz1MsZYToSAD+TNdApm8RV4+DXKJcAAAAQkFrb2vXEa5t1sLReP7l0pAb2ijEdCYAfio4I0cDeMey7BL9GuQQAAICA43ZbeuaNbdpRWKUfXTBUIwckmI4EwI+5MpzaX1yripom01EAj6BcAgAAQECxLEsvrNypDbtK9Z3zMnTG8J6mIwHwc650pyQpl1Pj4KcolwAAABBQln68V6tyDumCM/pq6ul9TMcBEABSEsKVFNdDmyiX4KcolwAAABAw3ltfpOWr92lSVooumzTAdBwAAcJms8mV7tSO/ZVqamkzHQfocpRLAAAACAhrtxXrn+/la1SGU9+bNlg2m810JAABxJXuVFu7pa17K0xHAboc5RIAAAD83ta9FXr2zW3K6BOrm2YNl8POj8EAuld6aowiwoK4ahz8Et9VAQAA4Nf2Hq7Rk0vy1MsZodsuz1RwkMN0JAABKMhh18iBCcrdXS632zIdB+hSlEsAAADwW4fL67Vwca6iwoM1d3aWwsOCTEcCEMBc6U7VNbaq4GC16ShAl6JcAgAAgF+qrG3WgkU5stukeVe5FBsZajoSgAA3on+CHHabcrhqHPwM5RIAAAD8Tl1jqxYsylF9U5vmznYpOS7cdCQAUHhYkIakxbLvEvwO5RIAAAD8SnNrux5/dbOKKxv008sz1bdnlOlIANDBlZGoIxUNOlLRYDoK0GUolwAAAOA32trd+sPSLdp9qFo3XjxcQ/vGmY4EAEfJSk+QJFYvwa9QLgEAAMAvuC1Lz72zQ5t3l+t70wbrtMFJpiMBwNc4Y3ooNTGSfZfgVyiXAAAA4Bde/ddurd5yRJee1V9nu3qbjgMAx+TKcCr/QJXqGltNRwG6BOUSAAAAfN47a/cre12hzhudqgsn9DMdBwC+1agMpyxL2ryb1UvwD5RLAAAA8GmfbD6sV/61W2OHJuk7UzNks9lMRwKAb9W3Z5RiIkPYdwl+g3IJAAAAPisnv0zPvbNDw/vH67oLh8lOsQTAB9htNrnSncrbW6HWNrfpOMApo1wCAACAT9pVVKU/LNuivj0j9ZNLRyjIwY+2AHyHK92p5pZ27SysNB0FOGV8BwYAAIDPOVBSp8df3ayE6DDdfmWWwkKCTEcCgBMytG+cQoLsXDUOfoFyCQAAAD6lrKpR8xfnKDTEoTvnZCk6PMR0JAA4YSHBDg3vH6+cgjJZlmU6DnBKKJcAAADgM2rqWzR/UY7a2ty6c3aWnDE9TEcCgJPmSneqoqZZRSV1pqMAp4RyCQAAAD6hsblNC1/JVWVts26/Iku9EyNNRwKAU5KZ7pRN4qpx8HmUSwAAAPB6rW1uPbkkT0XFdbr5khFKT40xHQkATllMRIgG9I7WJvZdgo+jXAIAAIBXc7st/fnNbdq+v1I/nDlEWelO05EAoMu40p3af6RWFTVNpqMAJ41yCQAAAF7Lsiy9+N4urd9RotnnpOvMkSmmIwFAl3JlJEqScneXG04CnDzKJQAAAHit5Z/u0782HtSMcWmaPi7NdBwA6HK9EsKVGBumXE6Ngw+jXAIAAIBX+temg1r6yV6dObKnrjh7oOk4AOARNptNrvREbdtXqaaWNtNxgJNCuQQAAACvs35HiV5YsVNZAxP0gxlDZLPZTEcCAI9xZTjV1u7W1r2VpqMAJ4VyCQAAAF5l274KPbN8q9JTY3TTJSPksPMjKwD/lpEao/DQIOUUlJqOApwUvlMDAADAa+w7UqMnluQpOT5ct12RqdBgh+lIAOBxQQ67MgcmKLegXG63ZToOcMIolwAAAOAViisatHBxriLDgnXnbJciwoJNRwKAbuPKcKqusVW7D1WbjgKcMMolAAAAGFdZ26z5i3JkWdK8q1yKiwo1HQkAutWI/gly2G3KyeeqcfA9lEsAAAAwqqGpVQsX56i2sVVzZ2epZ3y46UgA0O3Cw4I0OC1WOQWUS/A9lEsAAAAwpqW1XY+9ulmHyxt062Uj1T8l2nQkADAmK92pw+UNKq5oMB0FOCGUSwAAADCi3e3WH5dtVcGBal1/0TAN7xdvOhIAGOVKd0oSq5fgcyiXAAAA0O0sy9Lf39mpnIIyfff8QRo7NNl0JAAwLjG2h1ITI9h3CT6HcgkAAADd7tUPd+uTvMO6+Mx+Omd0quk4AOA1XBlO5R+oVl1jq+kowHGjXAIAAEC3WrGuUO98VqhzRvXWrIn9TccBAK/iSk+U27KUt7vcdBTguFEuAQAAoNus3nJYiz4o0JjBibpm6iDZbDbTkQDAq/RLiVJMRIg2se8SfAjlEgAAALrF5t1l+tvbOzS0b5yuv2i47HaKJQD4b3abTVnpTm3ZU662drfpOMBxoVwCAACAxxUcrNbTr29RalKkbr1spIKD+DEUAI7Fle5UU0u7dhZWmY4CHBe+qwMAAMCjDpbW6bFXchUXFaq5V2apR2iQ6UgA4NWG9otTSJCdq8bBZ3i0XFq+fLlmzpypqVOn6sUXXzzm8372s59pyZIlHbcPHTqka665RtOnT9fNN9+s+vp6T8YEAACAh5RXN2nB4lwFBdl15xyXoiNCTEcCAK8XGuzQsH7xyikolWVZpuMAnfJYuVRcXKyFCxfqpZde0rJly7Ro0SIVFBR87Tk33XSTsrOzj7r/wQcf1NVXX63s7GyNGDFCTz/9tKdiAgAAwENqG1o0f1GOmlradedslxJje5iOBAA+w5XhVHlNs4pK6kxHATrlsTXJq1ev1vjx4xUbGytJmjZtmrKzs3Xrrbd2PGf58uU677zzOp4jSa2trfr888/11FNPSZIuu+wyffe739Xdd9/tqahAl2trd2vJh3s0rF+cRgxIMB0HAHyOZVlasa5IOworTUfBKThS0aDK2mbNm+NSn6RI03EAwKdkpTtlk/T5jhKlJUeZjgN8K4+VSyUlJUpMTOy4nZSUpM2bNx/1nOuuu06StGHDho77KisrFRkZqaCgL6IlJiaquLj4hD47IYEfXmCO221p/ksb9NGmg3p/4wE9dMMZGjHQaTqWxyQm8o0OMM0fj8NX3t+lxf8qUGpSpMJCHKbj4CTFRYfp5suzNGZosukoHuWPxyDga/zxOExMlM7ITNE7n+1X1uAknTGyl+lIwDF5rFz6pvNCbbbOLzd7sq/7qvLyOrndnJeK7mdZlv75Xr4+2nRQF07oqw07S/XQXz7Tz64e7ZfThsTEKJWW1pqOAQQ0fzwOP8o9pH+8s0PjhyXruouGyX6CPwfA+/jbv9Gv8sdjEPA1/nwcfm/KIB0pq9dvn9+geXPaNDgtznQkBCi73fatC3k8tudScnKyysr+s7N9SUmJkpKSOn1dfHy86urq1N7eLkkqLS09rtcB3uCtNfv13oYDOv/0Prr0rAGaN8elsJAgLVycq5KqRtPxAMDrbdxVqr9n79CI/vH60QVDKZYAAAEtNMShO67MUmJsmB5/bbMKi/2zRIPv81i5NGHCBK1Zs0YVFRVqbGzUypUrNWnSpE5fFxwcrDFjxujtt9+WJC1duvS4XgeY9mHOQS35aI/OGJ6s2eemy2azKT46TPPmuNTW7taCl3NUXd9iOiYAeK2dhZX647Kt6p8SrZ9cOlJBDo9e1BYAAJ8Q2SO4Y2i9YHGuSiobTEcCvsajK5fmzp2ra6+9VpdccokuvPBCZWZm6vrrr1deXt63vvaXv/ylFi9erJkzZ2r9+vW64447PBUT6BIbdpbqHyt2auSABP1w5tGT9l7OCN0xO0tV9c1auDhHjc1tBpMCgHcqLK7V469tVmJsmO64Mkuh7LMEAECHL4fW7e1uLViUq+q6ZtORgKPYrG/a5MjHsecSutOO/ZVasDhXfZMjdddVo475C1HennI9/upmZaTGaO7sLAUH+f4vTv58fjvgK/zhOCypatSvn98gh92mn3/3NCXEhJmOBBw3fzgGAV8XSMfh7kPV+t0/N6lnXLjuuXq0wsM8to0ycBRjey4BgaCwuFZPLPli0n57J5P2kQMS9KMLhmpHYZWeeWMbBSgASKqub9GCl3PU3u7WnXNcFEsAAHyLgb1i9JNLR+pgWb2eXLJZrW3tpiMBkiiXgJNWUtmgBYtz1SM0SPPmuBTZI7jT15wxvKe+c16GNuwq1Qsrd37j1REBIFA0NLVp4aIcVdU36/Yrs9TbGWE6EgAAXu+rQ+s/MbSGl6BcAk5CdV2z5i/Kkdttad4cl+Kjj3/SPvX0PrrgjL5alXNISz/e68GUAOC9Wtva9eSSzTpYVq9bLhmp9N4xpiMBAOAzvhxab9z1xd6vDK1hGidoAieooalNCxfnqrq+RXd/Z5RSEk580n7ZpAGqbWjR8tX7FB0RovNOS/VAUgDwTm63pWfe2KYdhVW6/qJhyhyYYDoSAAA+Z+rpfVTT0KK31uxXdESILps0wHQkBDDKJeAEtLa164nXvpi0335Fpgb2OrlJu81m0/emDVZtQ6teeneXInsEa9yw5C5OCwDex7IsPb9ypzbsKtVV52XojOE9TUcCAMBnfTm0fnP1PkWHB2vKmD6mIyFAcVoccJzcbkt/emObdhZV6ccXDNWIAac2aXfY7bpp1nBl9InVs29u09a9FV2UFAC81+sf79WHOYc0c3xfnX86PwADAHAqvhxaj8pw6qX38vXZtiOmIyFAUS4Bx8GyLP1jxU5t3FWq70zJ0PgumrQHBzl02+WZ6uWM0JNL8rT3cE2XvC8AeKP31hfpzdX7NDEzRZdPZuk+AABd4cuh9aA+sfrLm9u1ZU+56UgIQJRLwHF4/eM9+ij3kC6c0FdTu3ipaXhYkObOzlJUeLAWLs7V4fL6Ln1/APAGa7cV65/v5WtUhlPfnz5YNpvNdCQAAPzGV4fWT72+RXsOMbRG96JcAjrx7voivbl6vyZl9dKlZ3lm0h4bGap5V7lkt0kLFuWosrbZI58DACZs2VuuZ9/cpozUGN148XA57Pz4AQBAVwsPC9Kds7MUHRGsR19haI3uxU93wLf4bNsR/fO9fI0elKjvTRvk0Ul7cly45s52qb6pTQsW5aiusdVjnwUA3WXPoRo9tWSLUhIidNsVmQoJdpiOBACA34qJDNW8OV8MrecvylFFTZPpSAgQlEvAMWzZU66/vLldg/vE6saLh3XLpL1vzyj99PJMFVc26PFXN6u5td3jnwkAnnK4vF6PvpKrqPBg3TknS+FhwaYjAQDg95L+PbRuaGrTgsW5DK3RLSiXgG+w+1C1nnp9i3o5I/TTyzMVHNR9k/ahfeN048XDtftQtf6wdIva2t3d9tkA0FUqapq0YFGO7DZp3hyXYiNDTUcCACBgfDm0Lqls0GOv5jK0hsdRLgH/5XB5vR57ZbOiI4J15+wshYcFdXuG0wYn6XvTBmvz7nI9984OuS2r2zMAwMmqa2zVgsW5qm9q09zZLiXHh5uOBABAwPlyaL3nUA1Da3gc5RLwFRU1TZq/KEd2u03z5rgUY3DSfrarty49q79WbzmiV/+121gOADgRza3teuzVXJVUNuinl41U355RpiMBABCwvjq0/tvb2xlaw2O6f0kG4KW+nLQ3Nrfpnu+MVlKc+Un7hRP6qaa+VdnrChUVEawZ4/qajgQAx9TW7tYflm7RnoM1uvmSERraL950JAAAAt7Zrt6qrW/R6x/vVVR4iOacm+7RCxUhMFEuAZKaW76ctDfqztlZXjNpt9ls+s7UDNU2tuiVf+1WVI8QTcxMMR0LAL7GbVn629s7tHl3ua6dNlhjhiSZjgQAAP7twgn9VNPQqpWfFykmIkQzxjO0RteiXELAa2t36+mlW7TnUI1uuWSEhvSNMx3pKHabTdddOEz1TW167p0diuwRLFeG03QsAOhgWZYWf1CgNVuP6JKz+uvsUb1NRwIAAF9hs9n0nSkZqm1o0SurdisyPFhnZfYyHQt+hD2XENC+mLRvV96eLybtpw32zkl7kMOun1w6Qn17RuoPy7ZoV1GV6UgA0CF7baFWfl6kc0f31kUT+pmOAwAAvsGXQ+vh/eP193d2alN+qelI8COUSwhY/5m0F+vSSQM02eXdk/awkCDdfmWWEqLD9Pirm3WgpM50JADQx5sP6ZVVuzV2aJKunjqIPRwAAPBiXx1a/3HZVobW6DKUSwhY7/x70j7ltFRdeIZvnHMcHR6iO+dkKTTEofmLc1RW1Wg6EoAAlpNfpr+/s1PD+8XpuguHyU6xBACA1/vq0PqxVzeriKE1ugDlEgLSx7mH9Oqq3Ro3LFlXTcnwqUm7M6aH7pydpbY2t+YvylFNfYvpSAAC0K6iKv1h2RalJUfqlktHKsjBjxQAAPiKL4fWYSEOLVico1KG1jhF/CSIgLMpv1TPZe/Q8P7x+vEFQ31y0t47MVK3X5GlytpmLXwlV43NbaYjAQggB0rq9NirmxUfHaY7ZmepRyjXBwEAwNcwtEZXolxCQNlVVKU/Ltuqfj2j9ZNLR/j0pD09NUY3XzJCRcV1enJJnlrb3KYjAQgAZVWNmr84R6HBds2bk6Xo8BDTkQAAwEn6cmhdVdushYsZWuPk+e5v1sAJKvr3pD0hOkx3XJmpsBDfn7RnpTv1w5lDtH1/pf785ja53ZbpSAD8WE19i+YvylFrq1t3znHJGdPDdCQAAHCKOobWJQytcfIolxAQSqsatWBRjsJCHJo3x6UoP5q0nzkyRbPPSdf6HSV68b1dsiwKJgBdr7G5TQtfyVVFbbNuvzJTqYmRpiMBAIAuctTQevlWhtY4YZRL8HtfTtrb2t26c3aWEmLCTEfqctPHpWnGuDT9a+NBLf90n+k4APxMa5tbTy7JU1FxnW6+ZIQyUmNNRwIAAF2sY2i9s1QvvMvQGifG988LAr5FY3ObFi7OVVVts+76zij19uNJ+xVnD1RNQ4uWfrJXUREhOmdUb9ORAPgBt9vSn9/cpu37K/XjC4bKle40HQkAAHjI9HFpqm1o0TtrCxUdHqxLzhpgOhJ8BOUS/FbHpL2kTrddMVLpvWNMR/Iom82mH8wYorqGVr2wYqeiegRrzJAk07EA+DDLsvTie7u0fkeJZp+TrjNHppiOBAAAPOyKsweqtqFVb3y6T9ERITp3dKrpSPABnBYHv+R2W/rz8q3avr9SP7pgiDIHBsak3WG366ZLRig9NUbPLN+qbfsqTEcC4MPe+HSf/rXxoKaPS9P0cWmm4wAAgG5gs9n0/RmD5Up36sWVu7Rue7HpSPABlEvwO5Zl6YV3d2n9zlLNOTddE0YE1qQ9NNih267IVHJ8uJ5Ykqd9R2pMRwLgg/618YCWfbJXZ47oqSvPHmg6DgAA6EYOu103zhqu9NQY/Xn5Nm1laI1OUC7B7yz7ZK9WbTqoGePTNG1sYE7aI8KCdedslyLDgrVwca6KKxpMRwLgQz7fUaIXVu5S1sAEfX/GENlsNtORAABAN/tyaN0zIVxPLsnT3sMMrXFslEvwKx9sPKA3Pt2niZkpumJyYE/a46JCNe8qlyxLmr8oR5W1zaYjAfAB2/ZV6Jk3tmpgaoxuumSEghz8qAAAQKD66tD60VdydYShNY6BnxjhN9ZtL9aLK3fJle7U96cPZtIuqWd8uObOzlJtY6sWLs5RQ1Or6UgAvNi+IzV6YkmeeiaE6/YrMhUa7DAdCQAAGHbU0Pplhtb4ZpRL8Atb91Xoz8u3KT01RjfNGi6HnX/aX+qfEq1bLxupw+UNeuzVzWppbTcdCYAXKq5o0MLFuYr894QyIizYdCQAAOAlvhxa1zW1asHiHNUztMZ/4Tdw+Ly9h2v05JI8pfx70h7CpP1rhveL1/UXDVPBgWr9cdlWtbvdpiMB8CKVtc2avyhHliXNu8qluKhQ05EAAICX6Z8SrZ9eNlLFFV8MrZsZWuMrKJfg0478e9Ie1SNYc2e7FM6k/ZjGDk3Wd88fpJyCMv39nZ2yLMt0JABeoP7fE8jaxlbNnZ2lnvHhpiMBAAAvNaxfvK6/aLh2H6jWH5duYWiNDpRL8FmVtc2a/3KObDZp3hwm7cfjnNGpuvjMfvok77Be/XC36TgADGtpbdfjr27WkfIG3XrZSPVPiTYdCQAAeLnThyTpu+cPUu7ucj33zg6G1pAkBZkOAJyMLyftdU2t+tnVo5TMpP24zZrYX7UNrXrns0JFh4do2tg005EAGNDuduuPy7aq4EC1bpw1XMP7xZuOBAAAfMQ5o1NVXd+iNz7dp+jwEF15TrrpSDCMcgk+p7m1XY+9ulnFFQ2ae2WW+vVk0n4ibDabrpk6SLUNLVr0QYGiwoM1YUSK6VgAupFlWfr7OzuVU1Cm754/SGOHJpuOBAAAfEzH0HptoaLCQzR9HEPrQEa5BJ/S1u7WH5du0e4D1br5khEayqT9pNjtNl1/0XDVN+Xqb2/vUGSPYGUOdJqOBaCbvPrhbn2Sd1gXn9lP545ONR0HAAD4oK8OrRf/64uh9ZkjGVoHKvZcgs+wLEt/z96h3N3l+u75gzRmSJLpSD4tOMiuWy8bqdTESD39+hYVHKw2HQlAN8heW6h3PivU2aN6a9bE/qbjAAAAH/bl0Hpo3zj97e0dyi0oMx0JhlAuwWe8umq3Ps07olkT++scJu1dokdokObOzlJsVKgeeyVXB0vrTEcC4EGf5h3W4n8VaMzgRH136iDZbDbTkQAAgI/7cmjdJzlSf1i6RQUHGFoHIsol+ITstYV6Z22hzhndWxef2c90HL8SHRGieXNcCgqya8HiXJVXN5mOBMADcgvK9Le3d2ho3zhdf9Fw2e0USwAAoGv0CA3S3CuzFBcVqsdeZWgdiCiX4PW+nLSfPiRJ10xh0u4JibE9dOdsl5pa2jV/UY5qG1pMRwLQhQoOVOsPS7eoT1Kkbr1spIKD+PYPAAC6VnREiO78ytC6rLrRdCR0I366hFf76qT9uguHMWn3oD5Jkbr9ikyV1zTp0Vc2q6mlzXQkAF3gYGmdHns1V7FRoZo7O0s9QrmWBwAA8Iyjh9a5qmFoHTAol+C1OibtyUzau8ugPrG6adZw7T9Sq6de36K2drfpSABOQXl1kxYszlWQw655c1yKjggxHQkAAPi5L4fWFTVNeuyVXIbWAYLf1uGVDpTW6dFXchXHpL3bjcpI1PdnDNbWvRX6y1vb5bYs05EAnITahhbNX5SjppZ23TnHpcTYHqYjAQCAADGoT6xunjVC+4/U6akleQytAwDlErxOWXWjFizKUXDwvyft4Uzau9tZmb10xdkDtXZbsf75Xr4sCibApzS1tOnRV3JVXtOk26/IVJ+kSNORAABAgHFlOL8YWu+r1LNvbmNo7edYDgKvUtPQovmLctXS6ta914yWk0m7MTPGpammvkUrPy9SdESILprQz3QkAMehrd2tp5bkad+RWt162UgN6hNrOhIAAAhQZ2X2Ul1Dq15ZtVtRPUJ09dQMLtDkpyiX4DUam9v06OJcVdQ0ad4cl1KZtBtls9k0+9x01Ta06vWP9ig6PFiTXb1NxwLwLdyWpWff3Kat+yr1wxlDNCoj0XQkAAAQ4KaPS1N1x9A6WBed2d90JHgA5RK8Qlu7W0+9nqfC4jom7V7EbrPphzOHqL6pVf9YsVORPYJ12uAk07EAfAPLsvTP9/K1bnuJrjh7oM7K6mU6EgAAwNFD64/3Kio8RGePYmjtb9hzCcZ9OWnftq9SP5gxRK4Mp+lI+Iogh103zxqhAb2i9ac3tmnH/krTkQB8gzfX7Nf7Gw7o/NP7aMa4NNNxAAAAOnw5tM4cmKDnV+7U+h0lpiOhi3m0XFq+fLlmzpypqVOn6sUXX/za49u3b9fll1+uadOm6b777lNb2xeXKFy6dKkmTpyoWbNmadasWVq4cKEnY8Igy7L0z3e/mLRfec5ATcxMMR0J3yA0xKHbr8hSUlwPPf7aZu0/Ums6EoCvWJVzUK9/tEdnDE/W7HPT2csAAAB4na8OrZ9ZvlXbGVr7FY+VS8XFxVq4cKFeeuklLVu2TIsWLVJBQcFRz7n77rv1i1/8QitWrJBlWVq8eLEkKS8vT/fee6+WLVumZcuWae7cuZ6KCcPeXL1P7288oGlj+2jGuL6m4+BbRPYI1p2zsxQeFqSFr+SqpLLBdCQAklZvPqTnV+zUyAEJ+uHMobJTLAEAAC/1n6F1uJ5gaO1XPFYurV69WuPHj1dsbKzCw8M1bdo0ZWdndzx+8OBBNTU1yeVySZIuu+yyjsfz8vK0dOlSXXzxxbrrrrtUXV3tqZgwaNWmg3r9472aMKKnrjwn3XQcHIf46DDNm+OS221p/qIcVdY0mY4EBLTt+yv1uxc2aEBKtG65ZISCHJztDgAAvNtRQ+vFOSpmaO0XPPZTaElJiRIT/3OVmqSkJBUXFx/z8cTExI7HExMT9dOf/lTLli1TSkqKHnroIU/FhCHrd5To+RU7lTkwQT+YMYRJuw9JSYjQHVdmqaa+Vb/88xo1NLWZjgQEpP1HavXEa5uV4ozQ7VdmKTTEYToSAADAcekYWlvSgkU5qqprNh0Jp8hjV4uzLOtr9311D4hve/ypp57quO+6667TlClTTuizExK4hL0321xQqmeWb9OQfvH6xXXjFRbCRQt9TWJilH4eFqxf/eUz/XH5Vj14/RkKCeYXW6C7HCqr02OvblZkeIgeuuEMOWN7mI4EBLTExCjTEYCAx3HoexITo/TgDWfovj98qieW5OnXt0xUZI9g07Fwkjz2W31ycrLWr1/fcbukpERJSUlHPV5WVtZxu7S0VElJSaqtrdVrr72mH/zgB5K+KKGCgk4sZnl5ndzur5dXMG//kVo98tJGJcf10M2zhqu2ulGcZeub+sT30B1XjdbvX9ygh/+6VrdcMkJ2OyvQAE+rrmvWr1/YoLZ2t+7+jkvO2B4qLeUrKWBKYmIUxyBgGMeh74rrEaRbLh2hx17ZrF/+abXunJ3F0NpL2e22b13I47HT4iZMmKA1a9aooqJCjY2NWrlypSZNmtTxeO/evRUaGqoNGzZI+uIKcZMmTVJ4eLieffZZ5ebmSpJeeOEFTZ061VMx0Y2KKxu0cHGOIsKCdOccF620H5g8OlXfmZKhjbtK9Y8VO79xRSKArtPQ1KYFi3NVXd+i26/MVEpChOlIAAAAp2RE/wT9+MKhyi+q0p/e2Kp2t9t0JJwEj65cmjt3rq699lq1trbqiiuuUGZmpq6//nrddtttGjlypH7/+9/r/vvvV319vYYNG6Zrr71WDodDjz76qB544AE1NTWpX79++u1vf+upmOgmVXXNmv9yjtyWdOccl+KiQk1HQheZOqaPahta9Obq/YqOCNZlkwaajgT4pda2dj3+2mYdKqvX7VdkamCvGNORAAAAusT4YT1V19Cql97L1z+yd+oHM4Ycta0OvJ/N8sOlBpwW510amlr1yEubVFLZqHuuHqX+KdGmI6GLfLkE2bIs/T17pz7KPaTvTMnQ1DF9TEcD/Eq7262nX9+iTflluuGiYRo/vGfHY5wKAJjFMQiYx3HoP5Z8tEdvrt6nC87oq8snM7T2Jp2dFsdOyvColtZ2Pf5ang6V1euOK7MolvyUzWbTtdMGq76xVf98L19RPYKP+uUXwMmzLEvPr9ipTfll+s6UDI4tAADgty49q79qG1r01pr9ig4P0dTTGVr7Co/tuQS0u9360xtblV9UpesvGqbh/eNNR4IH2e023XDxMA1Ji9Vf3tquLXvKTUcC/MKSj/boo9zDunBCX1YFAgAAv2az2fS98wfrtEGJ+uf7+Vqz9YjpSDhOlEvwCMuy9I/sLybtV08dpLFDk01HQjcIDnLo1ssy1dsZoade36Ldh6pNRwJ82rufF+mtNfs1KauXLj1rgOk4AAAAHvfVofVf39quPIbWPoFyCR6x5KM9+njzYV00oZ/OOy3VdBx0o/CwIM2dnaXoiGA99soXmw8DOHFrth7RP9/P1+hBifretEFsagkAAALG0UPrPIbWPoByCV1u5b8n7ZNdvXTJWf1Nx4EBMZGhmjfHJbvdpgWLc1RR02Q6EuBT8vaU669vbdfgPrG68eJhctj5dg0AAAJLeFiQ5s5xKTYiVI8uzmVo7eX4aRVdas3WI3r5/XydNihR3zt/MJP2AJYUF647Z2epsblN8xflqK6x1XQkwCfsPlStp17PUy9nhH56eaaCgxymIwEAABgRExGiO69yyeGwa/4ihtbejHIJXebLSfuQtFjdcPEw2e0US4EuLTlKP70sU6VVTXrslVw1t7SbjgR4tUNl9Xp0ce4XP0jNzlJ4GBd1BQAAgS0ptofunJ2lphaG1t6McgldYvfBLybtvROZtONoQ/rG6caLh2vP4Ro9vXSL2trdpiMBXqmipkkLFufI4bBr3hyXYiJDTUcCAADwCmnJUbrt8i+G1o8ytPZKlEs4ZYfK6vXoK7mKjQjV3Nku9Qhl0o6jnTY4Ud+fPkR5e8r1t7e3y21ZpiMBXqWusVXzF+WosblNc6/MUlJcuOlIAAAAXmVw2hdD672Ha/TU0jyG1l6GcgmnpKKmSfMX5SjIYdedV7kUExFiOhK81KSsXrps0gCt2VqsxR8UyKJgAiRJzS3teuyVXJVWNemnl2Wqb88o05EAAAC80pdD6y17KvRXhtZehSUmOGlfTtqbWtr0s6tHKym2h+lI8HIXnNFXNfUtWvl5kaIjQjRzfF/TkQCj2trdemppnvYcrtEtl4zQkL5xpiMBAAB4tUlZvVRT36IlH+1RVI8QXXVeOheS8gKUSzgpzS3tevTfk/Z5c7KUlsykHZ2z2Wy6akqGahtb9eqq3YrqEayzsnqZjgUY4bYs/fXt7dqyp0Lfnz5Ypw1OMh0JAADAJ1xwRl/VNLTo3fVFio4I1gVn9DMdKeBRLuGEtbW79dTredp7uEY/uXSkBqcxacfxs9ts+vEFQ1Xf2KrnsncoMjxYozISTccCupVlWVr0foE+21qsSycN0GRXb9ORAAAAfIbNZtNV52WorqFVr324R1HhIZrE0Noo9lzCCXFblv761nZt2Vuh708fotGDKAVw4oIcdt1y6Qj16xmtPy7bql1FVaYjAd3q7c/26931RZpyWqouPIPTQwEAAE6U3WbTjy4YqhH94/X37B3auKvUdKSARrmE42ZZll5+P1+fbSvW5ZMH0AzjlISFBOmOKzPljAnTY69uVlFJnelIQLf4KPeQXvtwj8YNS9ZVUzLYIwAAAOAk/ffQemdhpelIAYtyCcft7c/26731BzR1TB82YkaXiAoP0Z2zXQoLcWjBohyVVjWajgR41MZdpfp79g4N7x+vH18wVHaKJQAAgFPy5dA6MTZMj7+2WYXFtaYjBSTKJRyXLyft44cnaw678aMLJcSE6c45LrW1uzV/UY5q6ltMRwI8Ymdhpf64bKv69YzWTy4doSAH34IBAAC6wn+G1kFauDhXJQytux0/2aJTX07aRwyI149mMmlH1+vtjNDtV2apqrZZCxfnqrG5zXQkoEsVFtfq8dfy5IwJ0x1XZioshOtpAAAAdKWvDq0XvJyjaobW3YpyCd/qy0l7/5Ro/eSSkUza4THpvWN0y6UjdaC0Tk8uyVNrm9t0JKBLlFQ1auHiXIWFODRvjktR4SGmIwEAAPiljqF1fbMWLs5haN2NaApwTF9M2jcrMTZMd1yZpdAQh+lI8HOZAxP0o5lDtX1/pf68fKvcbst0JOCUVNe3aMGiHLW1u3XnHJcSYsJMRwIAAPBr6b1jdMslI3WwtF5PvLZZrW3tpiMFBMolfKOSqkYtWJyrsJAgzZvjUmSPYNORECDOGNFTV52brvU7S/XCu7tkWRRM8E2NzW1auDhHVbXNuv3KLPV2RpiOBAAAEBC+HFrvKKzSM29sY2jdDSiX8DXV9S1a8HKO2tvdmjfHpfhoJu3oXuePTdPM8X21atNBLftkr+k4wAlrbWvXE69t1oGSet1y6Qil944xHQkAACCgfDm03rCrVC+s3MnQ2sPYURRH6Zi01zfr7qtGqReTdhhy+eQBqmlo0Ruf7lNUeIjOOy3VdCTguLjdlp75/+3de1hVBb7/8c8GNiACKqhImkp4TbmpqeQVzRuSoqE0OuqpdEabDqVO5/xqnMr5Y5qxjONtdJrOk9MxT2AnL5hiXropFllxSbl4QU1TSNG4ChvYvz/MnaQ2uYUW7P1+PQ/P415rsdanreuBPt+11k45otzTlzU3prdCg9saHQkAAMApjR3YWSUVFu345JR8vNw1Zfg9RkdyWJRLsLk2aT/7bbkS4kIVzKQdBjKZTJozvqfKKizauDtfPl5mDewdYHQs4CdZrVZteC9Pn+d9q/hR3XR/30CjIwEAADi1a0PrlLST8m3J0LqxcFscJH0/ad92ddL+6MTeCrnH3+hIgFxdXDR/ch9179RK/0g5osMni42OBPykrfsL9EHGN5owuLPGDexsdBwAAACnd21oHdG9rTbuzld6TqHRkRwS5RJ+mLTnf6tfje6uyD4djI4E2LibXZUQF6pAfy+t/r9sFZwrMToScFN7Pz+jbQdOamhooOJGBBsdBwAAAN9zdXHRbyddN7QuYGjd0CiXoC0fX520T4zsojH33W10HOAGXp5mLYoPl4+XWYnJmTpfXGF0JKCe9JxCbdydr/BubTVnfE+ZTCajIwEAAOA6PwytW2r1OwytGxrlkpPbc+hrpaSd1LDQQE3l4WZowlp7e2hxfLhMJmn5Wxm6VFpldCRAknS4oFj/SDmibp1aaf7kPnJ14UcrAABAU3R1aB1mG1qfu1hudCSHwW/ATuzTI4X63z1HFdG9rWYzaUczEODnpUXTw1V+xaJXkjNUfsVidCQ4uYJzJVr9TrYC/b30ZFyo3M2uRkcCAADAT7h+aP1KEkPrhkK55KQOFxTrte1H1P3u1vrtJCbtaD66dPDRv08NUWFxhVa8naUqS63RkeCkzl0sV2Jypny8zFo4PVxenmajIwEAAOBn+GFoXaNXkjJUVsnQ+k7RKDiha5P2u9q2VMJDTNrR/PTu6qffPNhHx898p3VbvlJNbZ3RkeBkLpVW6ZWkDJlM0uL4cLXx8TA6EgAAAG6DbWh9qUIrGVrfMcolJ1N/0h4mL083oyMBdhnQq71+Pa6nMo9f1D935spqtRodCU6irNJydcJ1pUYLp4cpwM/L6EgAAACwg21offY7rWVofUcol5xIcckVvZKUIReTtPjhcLX2ZtKO5i0qoqNihwbpwFfntemD40bHgROostRq5dtZKrxUoYSpIerawdfoSAAAALgD14bWWccvav3OXNUxtLYLl604ibJKixKTM1V+pUb/OaOfAtowaYdjeHBIV5VUVCv109Py9XLX+EGdjY4EB1VTW6e1W77S8bPfaUFsX/Xu6md0JAAAADSAqIiOKi2v1pb9BfL1ctf0Ud2MjtTsUC45gesn7Qunh6tLBx+jIwENxmQyacYDPVRaYVHy+8fk42XWkJBAo2PBwdRZrVq/M1dZxy9q1tgeGtCrvdGRAAAA0IBsQ+v00/JpadaEQV2MjtSsUC45uBsm7V3aGB0JaHAuLibNjblX5Vcsen1Hrlq2MCu8W1ujY8GBvP3+caV9dV6ThwYpql8no+MAAACggZlMJs0Y00NllRZtev+4fFq4a2goQ+ufi2cuObB6k/ZxPZm0w6GZ3Vz0uykh6hzgrXVbvtLRM5eNjgQHsfPTU0pNP62ofh01aUhXo+MAAACgkbiYTHps4r26t2sbrd+Zq4yjF4yO1GxQLjmwa5P2KcOCNDKio9FxgEbXwsNNT00PUxtfT63YlKUz35YZHQnN3IHsc9r0/nHd16u9Zj7QQyaTyehIAAAAaETXD63Xbv1K+V9fNjpSs0C55KCuTdpH9+ukmPu7Gh0H+MX4erlr8fQwuZtd9EpShi58V2l0JDRTGccu6PUduerdpY3mxtwrFxeKJQAAAGdwbWjt5+uplW9n6UwRQ+t/hXLJAe3PujppH9i7vX41pjuTdjidtq1baNH0cFVb6rQ8KVMlFdVGR0Izk//1Za3d8pXuDvDWE1NDZHbjxyUAAIAzuX5ovTw5QxcuM7T+Kfy27GAyjl7Q+p256tP1+0k7xRKcVKf23kqIC1VxyRX9V3KmKqtqjI6EZuJMUZlWvp0lPx8PLZwephYefPYFAACAM2rbuoUWxYfLYqnT8qQMlZQztL4VyiUHkv/1Za3d+pW6dPDW41NC5ObKXy+cW4+7W2vB5L46XVimNZuzZampMzoSmrgLlyv1SnKGzGYXLY4Pl6+Xu9GRAAAAYKBO7bz15LRQFZdWKXETQ+tboX1wENcm7f6+nnpyGpN24Jrw7m31SHQvHTl5Sf/97hHVWa1GR0ITVVJRreXJmaq21Gnx9HC1bd3C6EgAAABoArp3aq0FsX31dWGZVr/D0PpmKJccwIXLlVqenCEPd1ctig9j0g78yJCQQE2LClZ6TpH+d/dRWSmY8COVVTX6r+RMFZdcUUJcqDq19zY6EgAAAJqQ8G5Xh9Y5py7pte1HVFfH/1Ncj8tbmrmS8motT8pQTU2d/t/Mfmrbikk7cDMTBnVRablFqemn5dPSrElDgoyOhCbCUlOnNZuzdbqwTE9MDVGPu1sbHQkAAABN0JCQQJVWWJT8/jH5eJk1c0wPPkDre5RLzVhlVY0SN2XqUmmVfv9whDq2Y9IO/JS4qGCVVFRry8cF8vVy18iIjkZHgsHq6qz673eP6MjJS3o0urfCu7c1OhIAAACasPGDOqukvFqp6afl6+WuSUMZWkuUS82WpaZOq9/J1teFZfr3h0LUrVMroyMBTZ6LyaR/m9BLZZUW/c+uPHm3MGtAr/ZGx4JBrFarNu7JV3pOkaZFBWtoaKDRkQAAANAMxEUFq7SiWlv2F8inpbuiGFrzzKXmqK7Oqn9sP6KcU5f0SHQvhXVj0g78XG6uLloQ21fBHVvp1ZTDyjlZbHQkGCTlwEnt++Ksxg28WxMGdTE6DgAAAJoJF5NJcyb0UmiwvzbsytOh3CKjIxmOcqmZsVqtenNPvg7lFml6VDcNCWHSDtwuD7OrnpwWqoA2Xlr1TrZOnS81OhJ+Ye9/eVZb9hfo/r4dNC2qm9FxAAAA0MwwtK6PcqmZSTlwUu9/cVYTBnXW+EGdjY4DNFstPc1aFB+ulp5uSkzOUOGlCqMj4RdyKLdIG3blKTTYX/82oZdceAgjAAAA7GAbWvt5aeU72Tp5vsToSIahXGpG3v/ijLbsL9CQkA6KGxlsdByg2Wvj46FF8eGqs0rL38rQ5bIqoyOhkeWcLNarKYcV3LGVFsT2lZsrPwYBAABgv5aeZi2aHi5vT7MSkzNVWOycQ2t+q24mPsst0ob38hX2/aSdjzsEGkagf0stnB6m0gqLXknKVMUVi9GR0EhOni/RyneyFdDGSwlxofIwuxodCQAAAA7g6tA6TFartDwpQ5dKnW9oTbnUDBw5Wax/pBxWcKdWmh/bV64u/LUBDSko0FdPTA3RuYvlWvl2lqottUZHQgMrLK5QYnKmvD3dtCg+XN4tzEZHAgAAgAO5fmidmJzhdEPrRm0pUlJSFB0drTFjxujNN9+8YX1OTo4eeughjRs3Tn/4wx9UU1MjSfrmm280c+ZMjR8/XgsWLFB5eXljxmzSTp4v0ap3shXg56UnmbQDjaZPkJ/mPXivjp75Tn/fdli1dXVGR0IDuVRapeVJGbJapUXx4Wrj42F0JAAAADigH4bWFVrhZEPrRiuXCgsLlZiYqI0bN2rr1q1KSkrSsWPH6m3z9NNP649//KN27dolq9Wq5ORkSdLSpUs1Y8YMpaamqm/fvvrb3/7WWDGbtB8m7Vfv4WzpyaQdaEwDewdoxpge+vLoBf0zNU9Wq9XoSLhDFVeuTo5KKyxaOD1Mgf4tjY4EAAAAB3ZtaH3szHdat9V5htZujbXjtLQ0DR48WK1bt5YkjRs3TqmpqXriiSckSWfPntWVK1cUHh4uSZo6dapWrlypadOm6bPPPtOaNWtsy3/961/r6aefbqyoTdL1k/bFDzNpB34po/t3Ukl5tVLSTsrb06yhoYFGR4KdrFar/mdXns5drNBT08IUFOhrdCQAAAA4gYG9A1RaYdGbu/P1z9Q8PeIEz01utHKpqKhI7dq1s71u3769srKybrm+Xbt2Kiws1KVLl+Tt7S03N7d6y53Njk9OqbTSov/4VYQ6+HkZHQdwKrHDglRaUa3U9NNKTT9tdBzcAZOk307uoz5BfkZHAQAAgBMZ3b+TSiuqte3ASY0Iu0vBHVsZHalRNVq5dLPbSa5v6m61/l9938/h7+99W9s3RXNi+uhX43srgGIJTVy7dj5GR2gUT80coBEDilR5pcboKLgDAf5e6tG5jdExGp2jnodAc8E5CBiP8xBN0dwpoRoxoLO6dWotFxeuXLJLQECADh06ZHtdVFSk9u3b11t/4cIF2+tvv/1W7du3l5+fn8rKylRbWytXV1fb8ttx8WKZ6uqa/7NSXCR9+22p0TGAW2rXzseh/412aUu56wgc+d+o5PjnIdDUcQ4CxuM8RFPWpoWbLl4sMzrGHXNxMf3khTyN9kDv+++/XwcPHlRxcbEqKyv13nvvafjw4bb1HTt2lIeHhz7//HNJ0pYtWzR8+HCZzWYNGDBAO3bsqLccAAAAAAAATU+jlUsBAQFauHChZs+erdjYWMXExCg0NFTz5s1Tdna2JOnll1/Wiy++qAkTJqiyslKzZ8+WJD3//PNKTk5WdHS0Dh06pKeeeqqxYgIAAAAAAOAOmKwO+FnbjnJbHNDUcQkyYDzOQ8BYnIOA8TgPgcZn2G1xAAAAAAAAcHyUSwAAAAAAALAb5RIAAAAAAADsRrkEAAAAAAAAu1EuAQAAAAAAwG6USwAAAAAAALAb5RIAAAAAAADsRrkEAAAAAAAAu1EuAQAAAAAAwG6USwAAAAAAALAb5RIAAAAAAADsRrkEAAAAAAAAu1EuAQAAAAAAwG6USwAAAAAAALAb5RIAAAAAAADsRrkEAAAAAAAAu1EuAQAAAAAAwG6USwAAAAAAALCbm9EBGoOLi8noCIDT4HwDjMd5CBiLcxAwHuch0Lj+1Tlmslqt1l8oCwAAAAAAABwMt8UBAAAAAADAbpRLAAAAAAAAsBvlEgAAAAAAAOxGuQQAAAAAAAC7US4BAAAAAADAbpRLAAAAAAAAsBvlEgAAAAAAAOxGuQQAAAAAAAC7US4BAAAAAADAbm5GBwDQPK1YsUK7du2SyWRSXFycHnnkEaMjAU7pr3/9qy5duqS//OUvRkcBnMrs2bN18eJFubld/XX6T3/6k8LCwgxOBTiXffv2afXq1aqoqNDQoUO1ZMkSoyMBTotyCcBtS09P1yeffKJt27appqZG0dHRGjFihO655x6jowFO5eDBg9q8ebNGjhxpdBTAqVitVp04cUIffPCBrVwC8Mv6+uuv9fzzz2vTpk3y9/fXnDlz9OGHH2rEiBFGRwOcErfFAbhtAwcO1BtvvCE3NzddvHhRtbW18vLyMjoW4FQuX76sxMREzZ8/3+gogNM5ceKETCaT5s2bp0mTJmnDhg1GRwKczu7duxUdHa0OHTrIbDYrMTGRqwcBA1EuAbCL2WzWypUrNXHiREVGRiogIMDoSIBTee6557Rw4UL5+voaHQVwOiUlJYqMjNSaNWu0fv16vfXWWzpw4IDRsQCncurUKdXW1uqxxx7TpEmTtHHjRrVq1croWIDTolwCYLeEhAQdPHhQ586dU3JystFxAKexadMmBQYGKjIy0ugogFOKiIjQsmXL5OXlJT8/P8XFxenDDz80OhbgVGpra3Xw4EG99NJLSk5OVnZ2tjZv3mx0LMBpUS4BuG3Hjx9XTk6OJKlFixYaO3as8vLyDE4FOI8dO3bowIEDmjx5slauXKl9+/bpz3/+s9GxAKdx6NAhHTx40PbaarXy7CXgF9a2bVtFRkbKz89Pnp6eGj16tLKysoyOBTgtyiUAt+3MmTNasmSJqqurVV1drb1796p///5GxwKcxuuvv67t27dr69atSkhI0KhRo/Tss88aHQtwGqWlpVq2bJmqqqpUVlamzZs3a8yYMUbHApxKVFSU9u/fr5KSEtXW1urjjz9Wnz59jI4FOC1GLABu24gRI5SZmanY2Fi5urpq7NixmjhxotGxAAD4RURFRdl+DtbV1WnGjBmKiIgwOhbgVMLCwjR37lzNmDFDFotFQ4YM0UMPPWR0LMBpmaxWq9XoEAAAAAAAAGieuC0OAAAAAAAAdqNcAgAAAAAAgN0olwAAAAAAAGA3yiUAAAAAAADYjXIJAAAAAAAAdqNcAgAAAAAAgN0olwAAAAAAAGA3yiUAANCsjRo1SmlpaUbHAAAAcFqUSwAAAA2ouLhYPXv2VGFhodFRAAAAfhGUSwAAAHfo5Zdf1scffyxJys3NlZ+fnwICAgxOdVVCQoLy8/Ntr8+cOaOIiAi79lVeXq65c+fqypUrDRUPAAA4AMolAADgMI4fP65Zs2ZpwIABmjhxovbu3Wtbd/jwYcXGxioiIkIJCQl66qmnlJiYeMfHzMjI0LFjxzRs2DBJUk5Ojnr16nXH+20I1dXVOnXqlHr06NEg+2vZsqViYmK0YsWKBtkfAABwDJRLAADAIVgsFs2fP19DhgxRWlqalixZot///vc6ceKEqqur9cQTT2jKlClKT09XTEyM9uzZ0yDHXbVqleLj422vm1K5lJaWpsjIyAbd54QJE5SSkqILFy406H4BAEDzRbkEAAAcQmZmpioqKvSb3/xG7u7uioyMVFRUlN59911lZmaqpqZGs2fPltls1tixYxUSEmL73tLSUsXFxSkiIqLeLWQvvfSSZsyYoaeffloWi+WGY5aUlOjzzz/XkCFDbMtyc3PVu3fvG7ZNSkrSrFmzbF+hoaHKysqyrX/44Ye1evVqSVdvXevZs6c++eQTSVevQLrvvvu0YcMGSVJZWZnmz5+vWbNmKT4+Xh9++OFN35O9e/fqgQceuJ238V/y8PBQv379bnlMAADgfNyMDgAAANAQioqK1KFDB7m4/DA7u+uuu1RYWKiioiIFBATIZDLZ1gUGBtr+7OnpqVdffVXLli2zLcvNzVVhYaE2btyotWvXateuXYqJial3zFOnTqldu3Zyd3eXJFVVVamgoED33nvvDfni4+NtVzjt27dPmzdvVmhoqCTp3LlzCggIUHp6um37vn37avfu3Ro8eLAOHjyoLl262NZt3bpVw4YN08yZM2W1WlVaWnrD8erq6pSRkaEXXnjhZ71/1xQWFuqNN95QTU2NrFarevfurSlTptTbpnPnziooKLit/QIAAMfFlUsAAMAhtG/fXufPn1ddXZ1t2bXSpl27diosLJTVaq237hqz2Sw/P796+/viiy80dOhQSdKwYcP0xRdf3HBMFxcX1dbW2l7n5+fLzc1NQUFBt8xZXFysFStWaOnSpbZlu3bt0oMPPqh77rlHx48flyR17NhR33zzjaxWq3bv3q2xY8fatvfw8FBGRoYuXLggk8kkX1/fG46TmZmpvn37ytXV9ZZZfqyurk7btm3TwoUL9cwzz+jZZ59VcHCwPvjgg3rb1dbW3tZ+AQCAY6NcAgAADiE0NFSenp567bXXZLFY9Omnn2rfvn2Kjo5WeHi4XF1dtWHDBtXU1GjPnj3Kzs7+yf2VlJTI29tbkuTj46Pvvvvuhm3uvvtuFRcXq6qqStLVq52Cg4NVU1OjqqoqVVVVqbq6ut73vPDCC3ryySfrlVn79+/X8OHDFRMTo9TUVNvyiIgIffbZZyouLlbbtm1tyydPnqygoCA99thjio+P14kTJ27ItmfPHo0ePfpnvHM/yMrKUmxsrNzc3LRz506dPXtWoaGhqqysrLfdmTNnfrJAAwAAzoVyCQAAOAR3d3etW7dOH330kQYPHqylS5dq2bJlCg4Olru7u1atWqW3335b9913n7Zt26aRI0fabme7GR8fH5WVlUm6+kymVq1a3bCNr6+v+vfvb3s2Uk5Ojg4fPqzQ0FDbV3R0tG37LVu2yMfHR6NGjbItO3/+vI4ePaoFCxZo7dq19Z5lNHbsWL344osaOHBgveOazWY9/vjj2rp1qxISErRq1aobsqWlpdmuvPqxiooKRURE1PvKy8uTq6ur7cqvdevW6dChQ5JU7yql6upqffnll/X+GwAAgHPjmUsAAKBZ27dvn+3P3bt3tz30+sdCQkK0detW2+tp06YpKirqlvvt16+fXn/9dcXGxmr//v3q16/fTbf73e9+p3Xr1mnEiBF67rnn9Nxzz910u3Pnzmn9+vU35EtNTdUzzzyj8ePHS7p6ZdO1q526du2q/v37a/z48UpLS7N9z9mzZ23PevL39693u981mzdvvmmOTp06KS8v76brLBaL3njjDc2ZM8f2XmVnZ9crl7Zv364HH3zwprfiAQAA50S5BAAAnEJ6erqCgoLUpk0bpaSkKC8vT8OGDbOtnzdvnnJyclRQUKD4+HhNnTpV/v7+mjFjhgIDA/Xoo4/edL/9+vVTUFCQPvroIw0fPvyWx//73/+ukpISLViwwLbs8ccf13vvvac1a9bYlg0aNEg7d+60vV6yZMkN+8rPz9fChQvl4eEhq9V6y0LrdpnNZk2YMEHLly+3XcHUvXt3xcXFSbr6KXXbt2+3faodAACAJJmsNxt1AQAAOJikpCStWLFClZWV6tSpkxYvXqyRI0caHQsAAKDZo1wCAAAAAACA3XigNwAAAAAAAOxGuQQAAAAAAAC7US4BAAAAAADAbpRLAAAAAAAAsBvlEgAAAAAAAOxGuQQAAAAAAAC7US4BAAAAAADAbpRLAAAAAAAAsNv/B4bxVfNguLrnAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 1440x720 with 1 Axes>"
       ]
@@ -441,7 +391,7 @@
     "sns.set( rc = {'figure.figsize':(20,10)} )\n",
     "\n",
     "# get the luminosity distribution and a sorted list of keys (x-values) \n",
-    "ldist = example_pop.grid_results['luminosity distribution'] # saves typing\n",
+    "ldist = population.grid_results['luminosity distribution'] # saves typing\n",
     "lkeys = sorted(ldist.keys(), key = lambda x: float(x)) # sorted list of the luminosities (the keys of the dictionary)\n",
     "\n",
     "# pad with zeros\n",
@@ -462,22 +412,6 @@
     "\n"
    ]
   },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "74a4c26c-0476-49cd-95b8-fab30f110b11",
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "d2c7e930-6f77-487e-b92b-8df9dac9eb45",
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
   {
    "cell_type": "markdown",
    "id": "44586e42-b7cb-4a55-be0a-330b98b20de4",