diff --git a/binarycpython/utils/distribution_functions.py b/binarycpython/utils/distribution_functions.py index e8e0176a5fefd1185b4dc200cc368ec5c8b3de92..9e6658e771d0ac16047bac4e87c741212667297c 100644 --- a/binarycpython/utils/distribution_functions.py +++ b/binarycpython/utils/distribution_functions.py @@ -24,6 +24,9 @@ import functools import math import json +import traceback +import sys + from typing import Union import numpy as np @@ -786,7 +789,7 @@ def interpolate_in_mass_izzard2012( def Izzard2012_period_distribution( - P: Union[int, float], M1: Union[int, float], log10Pmin: Union[int, float] = 1 + P: Union[int, float], M1: Union[int, float], log10Pmin: Union[int, float] = -1.0 ) -> Union[int, float]: """ period distribution which interpolates between @@ -809,7 +812,6 @@ def Izzard2012_period_distribution( """ # Check if there is input and force it to be at least 1 - log10Pmin //= -1.0 log10Pmin = max(-1.0, log10Pmin) # save mass input and limit mass used (M1 from now on) to fitted range @@ -828,16 +830,17 @@ def Izzard2012_period_distribution( N = 200.0 # Resolution for normalisation. I hope 1000 is enough dlP = (10.0 - log10Pmin) / N C = 0 # normalisation constant. + #print("LOOP",log10Pmin) for lP in np.arange(log10Pmin, 10, dlP): C += dlP * Izzard2012_period_distribution(10 ** lP, M1, log10Pmin) distribution_constants["Izzard2012"][M1][log10Pmin] = 1.0 / C - # print( - # "Normalisation constant for Izzard2012 M={} (log10Pmin={}) is\ - # {}\n".format( - # M1, log10Pmin, distribution_constants["Izzard2012"][M1][log10Pmin] - # ) - # ) + #print( + # "Normalisation constant for Izzard2012 M={} (log10Pmin={}) is\ + # {}\n".format( + # M1, log10Pmin, distribution_constants["Izzard2012"][M1][log10Pmin] + # ) + #) lP = math.log10(P) # log period