diff --git a/binarycpython/tests/main.py b/binarycpython/tests/main.py index db49ca2d8553f87884184199395aa0a657fb12b4..66fef0673d8b2972fb85fbe23811e729493bf418 100644 --- a/binarycpython/tests/main.py +++ b/binarycpython/tests/main.py @@ -1,10 +1,16 @@ # Main file for the tests. This file imports all the combined_test functions from all files. import unittest -from test_c_bindings import * -from test_functions import * - - +from binarycpython.tests.test_c_bindings import * +from binarycpython.tests.test_custom_logging import * +from binarycpython.tests.test_distributions import * +from binarycpython.tests.test_functions import * +from binarycpython.tests.test_grid import * +from binarycpython.tests.test_hpc_functions import * +from binarycpython.tests.test_plot_functions import * +from binarycpython.tests.test_run_system_wrapper import * +from binarycpython.tests.test_spacing_functions import * +from binarycpython.tests.test_useful_funcs import * if __name__ == '__main__': unittest.main() diff --git a/binarycpython/tests/test_distributions.py b/binarycpython/tests/test_distributions.py index 5908653a2de01b6074a3b8aa99f6120e65381b8f..4d54820a8067aed2620b020e6f2efd3ed8c2d28b 100644 --- a/binarycpython/tests/test_distributions.py +++ b/binarycpython/tests/test_distributions.py @@ -1 +1,189 @@ +""" +Module containing the unittests for the distribution functions. +""" +import unittest + from binarycpython.utils.distribution_functions import * +from binarycpython.utils.useful_funcs import calc_sep_from_period + +class TestDistributions(unittest.TestCase): + """ + Unittest class + + # https://stackoverflow.com/questions/17353213/init-for-unittest-testcase + """ + + def __init__(self, *args, **kwargs): + super(TestDistributions, self).__init__(*args, **kwargs) + # self.gen_stubs() + + self.mass_list = [0.1, 0.2, 1, 10, 15, 50] + self.logper_list = [-2, -0.5, 1.6, 2.5, 5.3, 10] + self.q_list = [0.01, 0.2, 0.4, 0.652, 0.823, 1] + self.per_list = [10**logper for logper in self.logper_list] + + self.tolerance = 1e-5 + + def test_powerlaw(self): + """ + unittest for the powerlaw test + """ + + perl_results = [0, 0, 1.30327367546194, 0.00653184128064016, 0.00257054805572128, 0.000161214690242696] + python_results = [] + + for mass in self.mass_list: + python_results.append(powerlaw(1, 100, -2.3, mass)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + def test_three_part_power_law(self): + """ + unittest for three_part_power_law + """ + + perl_results = [10.0001044752901, 2.03065220596677, 0.0501192469795434, 0.000251191267451594, 9.88540897458207e-05, 6.19974072148769e-06] + python_results = [] + + for mass in self.mass_list: + python_results.append(three_part_powerlaw (mass, 0.08, 0.1, 1, 300, -1.3, -2.3, -2.3)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + def test_Kroupa2001(self): + """ + unittest for three_part_power_law + """ + + perl_results = [5.71196495365248, 2.31977861075353, 0.143138195684851, 0.000717390363216896, 0.000282322598503135, 1.77061658757533e-05] + python_results = [] + + for mass in self.mass_list: + python_results.append(Kroupa2001(mass)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + def test_ktg93(self): + """ + unittest for three_part_power_law + """ + + perl_results = [5.79767807698379, 2.35458895566605, 0.155713799148675, 0.000310689875361984, 0.000103963454405194, 4.02817276824841e-06] + python_results = [] + + for mass in self.mass_list: + python_results.append(ktg93(mass)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + + def test_gaussian(self): + """ + unittest for three_part_power_law + """ + + perl_results = [0.00218800520299544, 0.0121641269671571, 0.0657353455837751, 0.104951743573429, 0.16899534495487, 0.0134332780385336] + python_results = [] + + for logper in self.logper_list: + python_results.append(gaussian(logper, 4.8, 2.3, -2.0, 12.0)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + + def test_Arenou2010_binary_fraction(self): + """ + unittest for three_part_power_law + """ + + perl_results = [0.123079723518677, 0.178895136157746, 0.541178340047153, 0.838798485820276, 0.838799998443204, 0.8388] + python_results = [] + + for mass in self.mass_list: + python_results.append(Arenou2010_binary_fraction(mass)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + def test_raghavan2010_binary_fraction(self): + """ + unittest for three_part_power_law + """ + + perl_results = [0.304872297931597, 0.334079955706623, 0.41024, 1, 1, 1] + python_results = [] + + for mass in self.mass_list: + python_results.append(raghavan2010_binary_fraction(mass)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + def test_Izzard2012_period_distribution(self): + """ + unittest for three_part_power_law + """ + + perl_results = [0, 0.00941322840619318, 0.0575068231479569, 0.0963349886047932, 0.177058537292581, 0.0165713385659234, 0, 0.00941322840619318, 0.0575068231479569, 0.0963349886047932, 0.177058537292581, 0.0165713385659234, 0, 0.00941322840619318, 0.0575068231479569, 0.0963349886047932, 0.177058537292581, 0.0165713385659234, 0, 7.61631504133159e-09, 0.168028727846997, 0.130936282216512, 0.0559170865520968, 0.0100358604460285, 0, 2.08432736869149e-21, 0.18713622563288, 0.143151383185002, 0.0676299576972089, 0.0192427864870784, 0, 1.1130335685003e-24, 0.194272603987661, 0.14771508552257, 0.0713078479280884, 0.0221093965810181] + python_results = [] + + for mass in self.mass_list: + for per in self.per_list: + python_results.append(Izzard2012_period_distribution(per, mass)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + def test_flatsections(self): + """ + unittest for three_part_power_law + """ + + perl_results = [1.01010101010101, 1.01010101010101, 1.01010101010101, 1.01010101010101, 1.01010101010101, 1.01010101010101] + python_results = [] + + for q in self.q_list: + python_results.append(flatsections(q, [{'min': 0.01, 'max': 1.0, 'height': 1.0}])) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + + + def test_sana12(self): + """ + unittest for three_part_power_law + """ + + perl_results = [0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.121764808010258, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805, 0.481676471294883, 0.481676471294883, 0.131020615300798, 0.102503482445846, 0.0678037785559114, 0.066436408359805] + python_results = [] + + for mass in self.mass_list: + for q in self.q_list: + for per in self.per_list: + mass_2 = mass * q + + sep = calc_sep_from_period(mass, mass_2, per) + sep_min = calc_sep_from_period(mass, mass_2, 10**0.15) + sep_max = calc_sep_from_period(mass, mass_2, 10**5.5) + python_results.append(sana12(mass, mass_2, sep, per, sep_min, sep_max, 0.15, 5.5, -0.55)) + + # GO over the results and check whether they are equal (within tolerance) + for i in range(len(python_results)): + self.assertLess(np.abs(python_results[i]-perl_results[i]), self.tolerance) + +if __name__ == '__main__': + unittest.main()