diff --git a/examples/notebook_common_envelope_evolution.ipynb b/examples/notebook_common_envelope_evolution.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..4c80b2d020495fba50c5bed33fd79f8e97ca7b19 --- /dev/null +++ b/examples/notebook_common_envelope_evolution.ipynb @@ -0,0 +1,706 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "bbbaafbb-fd7d-4b73-a970-93506ba35d71", + "metadata": { + "tags": [] + }, + "source": [ + "## Common-envelope evolution\n", + "\n", + "In this notebook we look at how common-envelope evolution (CEE) alters binary-star orbits. We construct a population of low- and intermediate-mass binaries and compare their orbital periods before and after CEE. Not all stars evolve into this phase, so we have to run a whole population to find those that do. We then have to construct the pre- and post-CEE distributions and plot them.\n", + "\n", + "First, we import a few required Python modules. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "bf6b8673-a2b5-4b50-ad1b-e90671f57470", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import math\n", + "import matplotlib.pyplot as plt\n", + "from binarycpython.utils.functions import temp_dir\n", + "from binarycpython.utils.grid import Population\n", + "TMP_DIR = temp_dir(\"notebooks\", \"notebook_comenv\")" + ] + }, + { + "cell_type": "markdown", + "id": "f268eff3-4e08-4f6b-8b59-f22dba4d2074", + "metadata": {}, + "source": [ + "## Setting up the Population object\n", + "We set up a new population object. Our stars evolve to $13.7\\text{ }\\mathrm{Gyr}$, the age of the Universe, and we assume the metallicity $Z=0.02$. We also set the common-envelope ejection efficiency $\\alpha_\\mathrm{CE}=1$ and the envelope structure parameter $\\lambda=0.5$. More complex options are available in *binary_c*, such as $\\lambda$ based on stellar mass, but this is just a demonstration example so let's keep things simple." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "79ab50b7-591f-4883-af09-116d1835a751", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "adding: log_dt=10 to grid_options\n", + "adding: max_evolution_time=13700 to BSE_options\n", + "adding: metallicity=0.02 to BSE_options\n", + "adding: alpha_ce=1.0 to BSE_options\n", + "adding: lambda_ce=0.5 to BSE_options\n" + ] + } + ], + "source": [ + "# Create population object\n", + "population = Population()\n", + "population.set(\n", + " # grid options\n", + " tmp_dir = TMP_DIR,\n", + " verbosity = 1,\n", + " log_dt = 10, # log every 10 seconds\n", + "\n", + " # binary-star evolution options\n", + " max_evolution_time=13700, # maximum stellar evolution time in Myr (13700 Myr == 13.7 Gyr)\n", + " metallicity=0.02, # 0.02 is approximately Solar metallicity \n", + " alpha_ce = 1.0,\n", + " lambda_ce = 0.5,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "f9a65554-36ab-4a04-96ca-9f1422c307fd", + "metadata": {}, + "source": [ + "## Stellar Grid\n", + "We now construct a grid of stars, varying the mass from $1$ to $6\\text{ }\\mathrm{M}_\\odot$. We avoid massive stars for now, and focus on the (more common) low- and intermediate-mass stars. We also limit the period range to $10^4\\text{ }\\mathrm{d}$ because systems with longer orbital periods will probably not undergo Roche-lobe overflow and hence common-envelope evolution is impossible." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "47979841-2c26-4b26-8945-603d013dc93a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Added grid variable: {\n", + " \"name\": \"lnm1\",\n", + " \"longname\": \"Primary mass\",\n", + " \"valuerange\": [\n", + " 1,\n", + " 6\n", + " ],\n", + " \"resolution\": \"10\",\n", + " \"spacingfunc\": \"const(math.log(1), math.log(6), 10)\",\n", + " \"precode\": \"M_1=math.exp(lnm1)\",\n", + " \"probdist\": \"three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 150, -1.3, -2.3, -2.3)*M_1\",\n", + " \"dphasevol\": \"dlnm1\",\n", + " \"parameter_name\": \"M_1\",\n", + " \"condition\": \"\",\n", + " \"gridtype\": \"centred\",\n", + " \"branchpoint\": 0,\n", + " \"grid_variable_number\": 0\n", + "}\n", + "Added grid variable: {\n", + " \"name\": \"q\",\n", + " \"longname\": \"Mass ratio\",\n", + " \"valuerange\": [\n", + " \"0.1/M_1\",\n", + " 1\n", + " ],\n", + " \"resolution\": \"10\",\n", + " \"spacingfunc\": \"const(1/M_1, 1, 10)\",\n", + " \"precode\": \"M_2 = q * M_1\",\n", + " \"probdist\": \"flatsections(q, [{'min': 1/M_1, 'max': 1.0, 'height': 1}])\",\n", + " \"dphasevol\": \"dq\",\n", + " \"parameter_name\": \"M_2\",\n", + " \"condition\": \"\",\n", + " \"gridtype\": \"centred\",\n", + " \"branchpoint\": 0,\n", + " \"grid_variable_number\": 1\n", + "}\n", + "Added grid variable: {\n", + " \"name\": \"log10per\",\n", + " \"longname\": \"log10(Orbital_Period)\",\n", + " \"valuerange\": [\n", + " 0.15,\n", + " 5.5\n", + " ],\n", + " \"resolution\": \"10\",\n", + " \"spacingfunc\": \"const(0.15, 4, 10)\",\n", + " \"precode\": \"orbital_period = 10.0 ** log10per\\nsep = calc_sep_from_period(M_1, M_2, orbital_period)\\nsep_min = calc_sep_from_period(M_1, M_2, 10**0.15)\\nsep_max = calc_sep_from_period(M_1, M_2, 10**4)\",\n", + " \"probdist\": \"sana12(M_1, M_2, sep, orbital_period, sep_min, sep_max, math.log10(10**0.15), math.log10(10**4), -0.55)\",\n", + " \"dphasevol\": \"dlog10per\",\n", + " \"parameter_name\": \"orbital_period\",\n", + " \"condition\": null,\n", + " \"gridtype\": \"centred\",\n", + " \"branchpoint\": 0,\n", + " \"grid_variable_number\": 2\n", + "}\n" + ] + } + ], + "source": [ + "import binarycpython.utils.distribution_functions\n", + "# Set resolution and mass range that we simulate\n", + "resolution = {\"M_1\": 10, \"q\" : 10, \"per\": 10} \n", + "massrange = [1, 6] \n", + "logperrange = [0.15, 4]\n", + "\n", + "population.add_grid_variable(\n", + " name=\"lnm1\",\n", + " longname=\"Primary mass\",\n", + " valuerange=massrange,\n", + " resolution=\"{}\".format(resolution[\"M_1\"]),\n", + " spacingfunc=\"const(math.log({min}), math.log({max}), {res})\".format(min=massrange[0],max=massrange[1],res=resolution[\"M_1\"]),\n", + " precode=\"M_1=math.exp(lnm1)\",\n", + " probdist=\"three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 150, -1.3, -2.3, -2.3)*M_1\",\n", + " dphasevol=\"dlnm1\",\n", + " parameter_name=\"M_1\",\n", + " condition=\"\", # Impose a condition on this grid variable. Mostly for a check for yourself\n", + ")\n", + "\n", + "# Mass ratio\n", + "population.add_grid_variable(\n", + " name=\"q\",\n", + " longname=\"Mass ratio\",\n", + " valuerange=[\"0.1/M_1\", 1],\n", + " resolution=\"{}\".format(resolution['q']),\n", + " spacingfunc=\"const({}/M_1, 1, {})\".format(massrange[0],resolution['q']),\n", + " probdist=\"flatsections(q, [{{'min': {}/M_1, 'max': 1.0, 'height': 1}}])\".format(massrange[0]),\n", + " dphasevol=\"dq\",\n", + " precode=\"M_2 = q * M_1\",\n", + " parameter_name=\"M_2\",\n", + " condition=\"\", # Impose a condition on this grid variable. Mostly for a check for yourself\n", + " )\n", + "\n", + "# Orbital period\n", + "population.add_grid_variable(\n", + " name=\"log10per\", # in days\n", + " longname=\"log10(Orbital_Period)\",\n", + " valuerange=[0.15, 5.5],\n", + " resolution=\"{}\".format(resolution[\"per\"]),\n", + " spacingfunc=\"const({}, {}, {})\".format(logperrange[0],logperrange[1],resolution[\"per\"]),\n", + " precode=\"\"\"orbital_period = 10.0 ** log10per\n", + "sep = calc_sep_from_period(M_1, M_2, orbital_period)\n", + "sep_min = calc_sep_from_period(M_1, M_2, 10**{})\n", + "sep_max = calc_sep_from_period(M_1, M_2, 10**{})\"\"\".format(logperrange[0],logperrange[1]),\n", + " probdist=\"sana12(M_1, M_2, sep, orbital_period, sep_min, sep_max, math.log10(10**{}), math.log10(10**{}), {})\".format(logperrange[0],logperrange[1],-0.55),\n", + " parameter_name=\"orbital_period\",\n", + " dphasevol=\"dlog10per\",\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "163f13ae-fec1-4ee8-b9d4-c1b75c19ff39", + "metadata": {}, + "source": [ + "## Logging and handling the output\n", + "\n", + "We now construct the pre- and post-common envelope evolution data for the first common envelope that forms in each binary. We look at the comenv_count variable, we can see that when it increases from 0 to 1 we have found our object. If this happens, we stop evolution of the system to save CPU time." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0c986215-93b1-4e30-ad79-f7c397e9ff7d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "adding: C_logging_code=\n", + "\n", + "/*\n", + " * Detect when the comenv_count increased \n", + " */\n", + "if(stardata->model.comenv_count == 1 && \n", + " stardata->previous_stardata->model.comenv_count == 0)\n", + "{\n", + " /*\n", + " * We just had this system's first common envelope:\n", + " * output the time at which this happens, \n", + " * the system's probability (proportional to the number of stars),\n", + " * the previous timestep's (pre-comenv) orbital period (days) and\n", + " * the current timestep (post-comenv) orbital period (days)\n", + " */\n", + " Printf(\"COMENV %g %g %g %g\\n\",\n", + " stardata->model.time,\n", + " stardata->model.probability,\n", + " stardata->previous_stardata->common.orbit.period * YEAR_LENGTH_IN_DAYS,\n", + " stardata->common.orbit.period * YEAR_LENGTH_IN_DAYS);\n", + " \n", + " /*\n", + " * We should waste no more CPU time on this system now we have the\n", + " * data we want.\n", + " */\n", + " stardata->model.evolution_stop = TRUE;\n", + "}\n", + " to grid_options\n" + ] + } + ], + "source": [ + "custom_logging_statement = \"\"\"\n", + "\n", + "/*\n", + " * Detect when the comenv_count increased \n", + " */\n", + "if(stardata->model.comenv_count == 1 && \n", + " stardata->previous_stardata->model.comenv_count == 0)\n", + "{\n", + " /*\n", + " * We just had this system's first common envelope:\n", + " * output the time at which this happens, \n", + " * the system's probability (proportional to the number of stars),\n", + " * the previous timestep's (pre-comenv) orbital period (days) and\n", + " * the current timestep (post-comenv) orbital period (days)\n", + " */\n", + " Printf(\"COMENV %g %g %g %g\\\\n\",\n", + " stardata->model.time,\n", + " stardata->model.probability,\n", + " stardata->previous_stardata->common.orbit.period * YEAR_LENGTH_IN_DAYS,\n", + " stardata->common.orbit.period * YEAR_LENGTH_IN_DAYS);\n", + " \n", + " /*\n", + " * We should waste no more CPU time on this system now we have the\n", + " * data we want.\n", + " */\n", + " stardata->model.evolution_stop = TRUE;\n", + "}\n", + "\"\"\"\n", + "\n", + "population.set(\n", + " C_logging_code=custom_logging_statement\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "id": "ae1f1f0c-1f8b-42d8-b051-cbf8c6b51514", + "metadata": {}, + "source": [ + "The parse function must now catch lines that start with \"COMENV\" and process the associated data. We set up the parse_data function to do just this." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "fd197154-a8ce-4865-8929-008d3483101a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "adding: parse_function=<function parse_function at 0x14736bebc040> to grid_options\n" + ] + } + ], + "source": [ + "from binarycpython.utils.functions import bin_data,datalinedict\n", + "import re\n", + "\n", + "# log-period distribution bin width (dex)\n", + "binwidth = 0.5 \n", + "\n", + "def parse_function(self, output):\n", + " \"\"\"\n", + " Parsing function to convert HRD data into something that Python can use\n", + " \"\"\"\n", + " \n", + " # list of the data items\n", + " parameters = [\"header\", \"time\", \"probability\", \"pre_comenv_period\", \"post_comenv_period\"]\n", + " \n", + " # Loop over the output.\n", + " for line in output.splitlines():\n", + " \n", + " # obtain the line of data in dictionary form \n", + " linedata = datalinedict(line,parameters)\n", + " \n", + " # choose COMENV lines of output\n", + " if linedata[\"header\"] == \"COMENV\":\n", + " # bin the pre- and post-comenv log10-orbital-periods to nearest 0.5dex\n", + " binned_pre_period = bin_data(math.log10(linedata[\"pre_comenv_period\"]), binwidth)\n", + " \n", + " # but check if the post-comenv period is finite and positive: if \n", + " # not, the system has merged and we give it an aritifical period\n", + " # of 10^-100 days (which is very much unphysical)\n", + " if linedata[\"post_comenv_period\"] > 0.0:\n", + " binned_post_period = bin_data(math.log10(linedata[\"post_comenv_period\"]), binwidth)\n", + " else:\n", + " binned_post_period = bin_data(-100,binwidth) # merged!\n", + " \n", + " # make the \"histograms\"\n", + " self.grid_results['pre'][binned_pre_period] += linedata[\"probability\"]\n", + " self.grid_results['post'][binned_post_period] += linedata[\"probability\"]\n", + "\n", + " # verbose reporting\n", + " #print(\"parse out results_dictionary=\",self.grid_results)\n", + " \n", + "# Add the parsing function\n", + "population.set(\n", + " parse_function=parse_function,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "91509ce5-ffe7-4937-aa87-6d7baac9ac04", + "metadata": {}, + "source": [ + "## Evolving the grid\n", + "Now we actually run the population. This may take a little while. You can set amt_cores higher if you have a powerful machine." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8ea376c1-1e92-45af-8cab-9d7fdca564eb", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "adding: amt_cores=4 to grid_options\n", + "Creating and loading custom logging functionality\n", + "Generating grid code\n", + "Generating grid code\n", + "Constructing/adding: lnm1\n", + "Constructing/adding: q\n", + "Constructing/adding: log10per\n", + "Saving grid code to grid_options\n", + "Writing grid code to /tmp/binary_c_python/notebooks/notebook_comenv/binary_c_grid_ad303100d719457c83256568f9a9887c.py\n", + "Loading grid code function from /tmp/binary_c_python/notebooks/notebook_comenv/binary_c_grid_ad303100d719457c83256568f9a9887c.py\n", + "Grid code loaded\n", + "Grid has handled 1000 stars\n", + "with a total probability of 0.0645905996773004\n", + "Total starcount for this run will be: 1000\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2021-09-12 18:07:39,950 DEBUG Process-2] --- Setting up processor: process-0\n", + "[2021-09-12 18:07:39,953 DEBUG Process-3] --- Setting up processor: process-1\n", + "[2021-09-12 18:07:39,959 DEBUG Process-4] --- Setting up processor: process-2\n", + "[2021-09-12 18:07:39,962 DEBUG MainProcess] --- setting up the system_queue_filler now\n", + "[2021-09-12 18:07:39,965 DEBUG Process-5] --- Setting up processor: process-3\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Process 0 started at 2021-09-12T18:07:39.965721.\tUsing store memaddr <capsule object \"STORE\" at 0x14736bee47e0>\n", + "Process 1 started at 2021-09-12T18:07:39.970949.\tUsing store memaddr <capsule object \"STORE\" at 0x14736bee4870>\n", + "Process 2 started at 2021-09-12T18:07:39.978355.\tUsing store memaddr <capsule object \"STORE\" at 0x14736bee4f30>\n", + "Process 3 started at 2021-09-12T18:07:39.983689.\tUsing store memaddr <capsule object \"STORE\" at 0x14736bee4870>\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2021-09-12 18:07:40,066 DEBUG MainProcess] --- Signaling stop to processes\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating grid code\n", + "Generating grid code\n", + "Constructing/adding: lnm1\n", + "Constructing/adding: q\n", + "Constructing/adding: log10per\n", + "Saving grid code to grid_options\n", + "Writing grid code to /tmp/binary_c_python/notebooks/notebook_comenv/binary_c_grid_ad303100d719457c83256568f9a9887c.py\n", + "Loading grid code function from /tmp/binary_c_python/notebooks/notebook_comenv/binary_c_grid_ad303100d719457c83256568f9a9887c.py\n", + "Grid code loaded\n", + "163/1000 16.3% complete 18:07:49 ETA= 51.5s tpr=6.16e-02 ETF=18:08:41 mem:594.9MB\n", + "322/1000 32.2% complete 18:07:59 ETA= 42.9s tpr=6.33e-02 ETF=18:08:42 mem:538.2MB\n", + "465/1000 46.5% complete 18:08:09 ETA= 38.1s tpr=7.12e-02 ETF=18:08:47 mem:538.2MB\n", + "586/1000 58.6% complete 18:08:19 ETA= 34.3s tpr=8.29e-02 ETF=18:08:54 mem:540.0MB\n", + "682/1000 68.2% complete 18:08:30 ETA= 34.0s tpr=1.07e-01 ETF=18:09:04 mem:540.1MB\n", + "784/1000 78.4% complete 18:08:40 ETA= 21.2s tpr=9.81e-02 ETF=18:09:01 mem:541.8MB\n", + "872/1000 87.2% complete 18:08:50 ETA= 15.0s tpr=1.17e-01 ETF=18:09:05 mem:546.1MB\n", + "963/1000 96.3% complete 18:09:00 ETA= 4.2s tpr=1.14e-01 ETF=18:09:04 mem:546.9MB\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2021-09-12 18:09:06,366 DEBUG Process-5] --- Process-3 is finishing.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Process 3 finished:\n", + "\tgenerator started at 2021-09-12T18:07:39.964604, done at 2021-09-12T18:09:06.370832 (total: 86.406228s of which 86.24177551269531s interfacing with binary_c).\n", + "\tRan 222 systems with a total probability of 0.014137215791516371.\n", + "\tThis thread had 0 failing systems with a total probability of 0.\n", + "\tSkipped a total of 0 systems because they had 0 probability\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2021-09-12 18:09:06,374 DEBUG Process-5] --- Process-3 is finished.\n", + "[2021-09-12 18:09:06,979 DEBUG Process-3] --- Process-1 is finishing.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Process 1 finished:\n", + "\tgenerator started at 2021-09-12T18:07:39.953039, done at 2021-09-12T18:09:06.982866 (total: 87.029827s of which 86.82909393310547s interfacing with binary_c).\n", + "\tRan 273 systems with a total probability of 0.01877334232598154.\n", + "\tThis thread had 0 failing systems with a total probability of 0.\n", + "\tSkipped a total of 0 systems because they had 0 probability\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2021-09-12 18:09:06,985 DEBUG Process-3] --- Process-1 is finished.\n", + "[2021-09-12 18:09:07,174 DEBUG Process-2] --- Process-0 is finishing.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Process 0 finished:\n", + "\tgenerator started at 2021-09-12T18:07:39.949775, done at 2021-09-12T18:09:07.176660 (total: 87.226885s of which 87.02672934532166s interfacing with binary_c).\n", + "\tRan 268 systems with a total probability of 0.016469813170514686.\n", + "\tThis thread had 0 failing systems with a total probability of 0.\n", + "\tSkipped a total of 0 systems because they had 0 probability\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2021-09-12 18:09:07,179 DEBUG Process-2] --- Process-0 is finished.\n", + "[2021-09-12 18:09:07,233 DEBUG Process-4] --- Process-2 is finishing.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Process 2 finished:\n", + "\tgenerator started at 2021-09-12T18:07:39.958802, done at 2021-09-12T18:09:07.236252 (total: 87.27745s of which 87.0905077457428s interfacing with binary_c).\n", + "\tRan 237 systems with a total probability of 0.015210228389288167.\n", + "\tThis thread had 0 failing systems with a total probability of 0.\n", + "\tSkipped a total of 0 systems because they had 0 probability\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2021-09-12 18:09:07,238 DEBUG Process-4] --- Process-2 is finished.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Population-ad303100d719457c83256568f9a9887c finished! The total probability was: 0.06459059967730076. It took a total of 87.54819011688232s to run 1000 systems on 4 cores\n", + "There were no errors found in this run.\n" + ] + } + ], + "source": [ + "# set number of threads\n", + "population.set(\n", + " # set number of threads (i.e. number of CPU cores we use)\n", + " amt_cores=4,\n", + " )\n", + "\n", + "# Evolve the population - this is the slow, number-crunching step\n", + "analytics = population.evolve() \n", + "\n", + "# Show the results (debugging)\n", + "#print (population.grid_results)" + ] + }, + { + "cell_type": "markdown", + "id": "91ab45c7-7d31-4543-aee4-127ab58e891f", + "metadata": {}, + "source": [ + "After the run is complete, some technical report on the run is returned. I stored that in `analytics`. As we can see below, this dictionary is like a status report of the evolution. Useful for e.g. debugging. We check this, and then set about making the plot of the orbital period distributions using Seaborn." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e1f0464b-0424-4022-b34b-5b744bc2c59d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'population_name': 'ad303100d719457c83256568f9a9887c', 'evolution_type': 'grid', 'failed_count': 0, 'failed_prob': 0, 'failed_systems_error_codes': [], 'errors_exceeded': False, 'errors_found': False, 'total_probability': 0.06459059967730076, 'total_count': 1000, 'start_timestamp': 1631462859.9342952, 'end_timestamp': 1631462947.4824853, 'total_mass_run': 4680.235689312421, 'total_probability_weighted_mass_run': 0.22611318083528567, 'zero_prob_stars_skipped': 0}\n" + ] + } + ], + "source": [ + "print(analytics)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "05c6d132-abee-423e-b1a8-2039c8996fbc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'merged': 0.035263029200000025, 'unmerged': 0.019388724199999995}\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Number of stars')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLMAAAJgCAYAAABx+CHZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADkIUlEQVR4nOzdd3yV9fn/8ddZ2TuEBBIy2JCAIhuC4mC5KtbW1aK1VVtta1WqReuvtV+1YlWwuLUOqrV14QZBlL0EFQhhJ2RACGTv5KzfHyeJRFaA5Nwnyfv5ePTR5D73uc/7xBtIrnyu62Nyu91uREREREREREREOgCz0QFERERERERERERaS8UsERERERERERHpMFTMEhERERERERGRDkPFLBERERERERER6TBUzBIRERERERERkQ5DxSwREREREREREekwVMwSEREREREREZEOw2p0gM6gtLQal8vdqnOjo0MoLq5q50QiHrrfxJt0v4k36X4Tb9L9Jt6k+028SfebeNOp3G9ms4nIyODjPq5iVhtwudytLmY1nS/iLbrfxJt0v4k36X4Tb9L9Jt6k+028SfebeFNb3W9qMxQRERERERERkQ5DxSwREREREREREekwDC9mffLJJ1xyySUMHTqUadOm8cEHH5zw/Orqah588EHGjx/PsGHDuPnmm9m3b99xz3/zzTeZNGnSCa/pcDi46qqruPHGG0/9DYiIiIiIiIiIiNcYWsz67LPPmDlzJunp6TzzzDOMGjWKe++9l0WLFh33OXfeeSeLFi1i5syZzJ49m8LCQmbMmEFlZeVR5y5evJi///3vJ83x4osvsnXr1jN6LyIiIiIiIiIi0v4MHQA/Z84cpk2bxqxZswCYMGEC5eXlPPXUU0ydOvWo8zdu3Mjy5ct56aWXOPfccwEYMWIEF154IW+99Ra33HILAOXl5cybN4833niDsLCwE2bYsWMHL7zwAjExMW387kREREREREREpK0ZVszKy8sjNzeXu+66q8XxKVOmsHDhQvLy8ujVq1eLx1avXk1wcDDjx49vPhYVFcXIkSNZsWJFczFr/vz5LFmyhDlz5rB8+XI2bdp0zAwNDQ3cc889/PznP2fz5s1t/A5FREREREREpKOpra2mqqoMp9NhdJRO5dAhM2DCavUjNDQCm83vtK9lWDErKysLgJSUlBbHk5KSAMjOzj6qmJWVlUVSUhIWi6XF8cTERBYuXNj8+aWXXsqtt96Kn58fy5cvP26GZ555BofDwe9//3t++ctfntH7EREREREREZGOrba2msrKUiIiYrDZ/DCZTEZH6jQsFhMNDXbq62spLT1EaGgkgYHBp3Utw4pZTTOuQkJCWhwPDva8kaqqqqOeU1VVddT5Tc858vwfFsiOZcuWLbzyyiu8+eab+PmdfjUQIDr66EwnEhMTekavJ3IqdL+JN+l+E2/S/SbepPtNvEn3m3iT7reWdu06SHR0d/z9A4yO0in5+/s1/s+fqqpSEhPjTus6hhWz3G73CR83m4+eTX+i5xzr/OOpr6/nT3/6EzfccANDhw5t9fOOp7i4CpfrxO+nSUxMKIcPHz2sXqQ96H4Tb9L9Jt6k+028SfebeJPuN/Em3W9Hq6+vx2y24XC4jI7S6Vit5uavq9lso7a27rj3n9lsOuHCIcN2MwwN9VR/q6urWxxvWmHV9PiRQkJCjjq/6RrHWrF1PHPnzsXlcnHbbbfhcDhwOBy43W7cbnfzxyIiIiIiIiLS9ai1sP2d6dfYsJVZTa2Aubm5DBgwoPl4Tk5Oi8d/+Jy1a9fidrtbvPGcnJxWtRY2+fzzz9m/fz/Dhg076rHU1FTmz5/P6NGjW309ERERERERERHxDsNWZiUlJZGQkMCiRYtaHF+8eDHJycn07NnzqOekp6dTUVHBmjVrmo+VlJSwceNGxo0b1+rXfu6553j33Xdb/C81NZWhQ4c2fywiIiIiIiIiIr7HsJVZALfffjuzZs0iPDyciRMnsnTpUhYuXMicOXMAT6EqNzeXvn37EhISwsiRIxk1ahR33XUXM2fOJCIignnz5hEaGsq1117b6tc9ciVYk+DgYCwWC0OGDGmz9yciIiIiIiIiIm3L0GLWlVdeSUNDA6+88grvvPMOvXr1Yvbs2Vx88cUALFu2jFmzZrVo+3v66ad59NFHeeyxx3C5XAwfPpy5c+cSHh5u5FsREREREREREREvMLk17fyMaTdD8VW638SbdL+JN+l+E2/S/SbepPtNvEn329EOHswhLi7J6Bid0pG7GcKJv9Yn283Q0JVZIiIiIiIiIiLSvq666jKmTbuUiopyFi36FJvNxsSJF/Hb3/6BgIAAfvvbW4iL60F1dTUbNqxl+PBRPPbYHOrr63j55Rf44ovPKS8vIykpmV/+8lbS088z9P2omCUiIiIiIiIi0sm9885/SUnpzQMP/B8HDuznxRefoaSkmEce+QcAS5YsYtq0S5k9ew4mkwm32819991DRsZmfvnLX5OYmMSXXy5h1qyZPPLIP5gwYaJh70XFLBERERERERGRE8g6UMHHq7Opa3AamiPAz8Jl41Po3TPslJ9rtVp44ol5BAUFAWCxmJkz5x9kZe0FwN8/gLvv/hM2mw2Ar79ex/r1a3joodlMnHghAGPGjKOyspJnnvmnilkiIiIiIiIiIr5qycY8Nu8tNjoGAIH+Vm65PPWUnzd+/LnNhSyA8867kDlz/sGWLd8CkJyc0lzIAti48WssFgtjxozH4XA0H09PP5eVK5dRUHCAHj16nvb7OBMqZomIiIiIiIiInMCkEb2oq3f4xMqsSSN7ndZzu3WLafF5REQEAJWVnk0AAgODWjxeUVGO0+nkoovSj3m9oqLDKmaJiIiIiEjr1Dc4eXXhdqLDArhqYh9MJpPRkUREOrXePcO44ydnGR3jjJSXl7f4vKysFIDIyMhjnh8cHEJISAhz5z57zMcTE43b9dFs2CuLiIiIiMhpWbH5ABu2H2Lh+lx25JQaHUdERDqA9evXtmgX/OqrpZhMJoYNG3HM888++xyqqqqwWCwMHDi4+X/btmXw+uv/Aoz7RYpWZomIiIiIdDCZ+0qaP161tYBByVEGphERkY7g4MED3H//H5k+/Sfs25fFSy89x6WX/oj4+IRjnj9uXDpDhpzFvffexQ03/JJevRLZunUzr776EpMmTW0xf8vbVMwSEREREelAHE4XO/LKmj/fuPMw109yEBSgb+1FROT4Jk+eip9fAA88cC/BwSFcd90MbrzxV8c932w288QT/+Sll57n1Vdfory8jO7dY5kx4yZmzLjJi8mPpn/xREREREQ6kKwDFdQfMYDY7nCxYUchE8+ONzCViIj4OpvNj3vvvZ97773/qMeefvrFYz4nKCiYO+64mzvuuLu9450SzcwSEREREelAjmwxDA3ybKG+akuBUXFERES8TsUsEREREZEOJLNx4HtCTDDnne3ZEj3rQAX7i6qNjCUiIuI1ajMUEREREekgausdZO2vAGBwchTjh/TgkzU5AKzeUsBPL+hrZDwREfFR7777sdER2pRWZomIiIiIdBA7c8twud0ADE6OJDYyiP69IgBYs+0gDqfLwHQiIiLeoWKWiIiIiEgH0TQvy2I2NRexJgztAUBFdQNbs4qNiiYiIuI1KmaJiIiIiHQQ2xqLWX3iwwnw80wMGTGgO/5+FkCD4EVEpGtQMUtEREREpAMoraynoLgG8LQYNvH3szBqYHcAtuwtpqK6wZB8IiIi3qJiloiIiIhIB9DUYgie4e9HSm9sNXS63KzddtCruURERLxNxSwRERERkQ6gqZgV6G8hpUdoi8f6xocTGxUEeFoN3Y1D4kVERDojFbNERERERHyc2+0mc18pAAMTI7GYW34bbzKZSB8SB8D+omr2Haz0ekYRERHAK79QUTFLRERERMTHHSiqprxxFtYPWwybjEvrgcnk+ViD4EVExNuqqqp4+OG/snnzt+3+WipmiYiIiIj4uKZVWdBy+PuRIkP9GdI7GoB1mYU02J1eySYiIgKwd+8eFi78BJfL1e6vpWKWiIiIiIiP29Y4Lysy1J+4xtlYx5I+xDMIvrbewTe7D3slm4iIiLdZjQ4gIiIiIiLH53C62JlbBnhWZZmaegmP4ay+3QgJtFFVa2fVlgLGDI7zUkoREfFlV111GdOmXUpFRTmLFn2KzWZj4sSL+O1v/0BAQAAAixZ9yttv/4fc3BxCQ8O48MLJ3Hzzr/H39zxeWlrKP//5BJs2fU1VVRWJiUlcffV1TJt2Kd98s5Hf//7XAPz+97/m7LPP4emnX2y396NiloiIiIiID8s6UEF9Y8vg8eZlNbFZzYwZHMsXm/LZvq+UovJauoUHeiOmiIj4uHfe+S8pKb154IH/48CB/bz44jOUlBTzyCP/4F//eoHXXnuZn/zkGn7969+RlbWHf/3rRXbv3sXcuc9gMpn4v/97gNLSEmbOnEVISAiLFn3Kww//ldjYOAYMGMgf/3gf//jHI9x1170MGza8Xd+LilkiIiIiIj4ss7HFEE5ezAJIH9qDLzbl4wbWbD3I5ekp7ZhORKTrsO9ciX3XqpOeZ+ufjm3AhObP69a8ias496TP8x97HZZuSc2f13z895Ne+1RYrRaeeGIeQUGednWLxcycOf9gy5bvePPN15k+/Sp+//u7ARg1agwxMbH85S+zWLt2NePGpfPdd99w442/4txzJwJw9tnnEB4egc1mIzg4hOTk3gAkJ6eQktL7tDK2+r2069VFREREROSMNA1/T4gJJjzY76TnJ8aGkhgbQm5hFau2FnDp+GTMJ2hNFBGR1nFVFuEs2HnS8yw9BrZ8XnFuq57nbqhp8fmxnvPDa5+K8ePPbS5kAZx33oXMmfMP9u7dQ0NDAxddNKXF+eeffyEPPWTj2283MW5cOsOGjeBf/3qBXbt2MmbMWMaMSef22+847TxnQsUsEREREREfVVvvIOtABdC6VVlNJgztyZtLdlFUXsfO3DIGJR17B0QREWk9c2g3LD0GtOq8Fp9HJ7bq+ia/lht8HOu1fnjtU9GtW0yLzyMiIgCoqCgHIDr6B7nNZiIiIqmqqgLgwQcfYf78V/jyyyUsW7YUs9nMiBGjueee+4iL63HauU6HilkiIiIiIj5qR24pLrcbOLVi1ujBsfzvy904nG5WbSlQMUtEpA3YBkw4rRa/gHHXn9brBV0267Sedzzl5eUtPi8r86z8DQkJBaC4uIj4+ITmx10uF6WlJc1Fr5CQEG677ffcdtvvyc3dx8qVy3nttZd58snHeOyxOW2a9WTMXn01ERERERFptaYWQ4vZRP9e4a1+XkigjWH9PL+B37TzEDV1jnbJJyIiHcf69WtxOL7/9+Crr5ZiMplISxuKn58fX3zxeYvzv/pqKQ6Hg6FDz+LQoUKuvPISvvrqCwASE5O5/vobGDFiNIcOFQKeGVzeopVZIiIiIiI+qmn4e5/4cAL8Tu1b9/ShPfh6xyEaHC6+3lHIeWfHt0dEERHpIA4ePMD99/+R6dN/wr59Wbz00nNceumPGDBgINde+3Pmz38Fq9XK2LHjyc7O4l//eoGzzz6H0aPHYTabiYvrwdy5j1NdXU18fAI7dmxn3brV3HDDL4HvV3itXbua0NAw+vXr327vRcUsEREREREfVFJRR0GxZxhwavKptwmmJkcRGepPaWU9q7YWqJglItLFTZ48FT+/AB544F6Cg0O47roZ3HjjrwC4+ebfEBUVxXvvvc2CBe8SGRnFj350JTfddCtms2fF1cMPP8Zzz83j5Zefp7y8jO7dY7npplu4/vobAEhMTGLSpKm8997bbNiwltdf/2+7vRcVs0REREREfND2nNLmj09lXlYTs9nEuLQ4Pl2bw979FRwoqqZnt+C2jCgiIh2IzebHvffez7333n/Mx3/846v58Y+vPu7zIyOjuO++vxz3cbPZzF/+8tAZ52wNzcwSEREREfFBTS2Ggf5WknuEntY10od8v7vU6q0FbZJLRETEaCpmiYiIiIj4GLfb3Tz8fWBiBBbz6X3bHhsVRP8Ez+D4NRkHcbpcbZZRRETEKGozFBERERHxMfuLqimvbgBOr8XwSOOH9mBXfjnl1Q1szSrh7L7d2iKiiIh0IO+++7HREdqUVmaJiIiIiPiYplVZAINPY/j7kUYO7I6/zQLAqi1qNRQRkY5PxSwRERERER/TNC8rMtSfuKigM7pWgJ+VkQO7A7B5TxEVNQ1nnE9ERMRIKmaJiIiIiPgQh9PFztwyAFKTozCZTGd8zfShnkHwTpebdRkHz/h6IiKdmdvtNjpCp3emX2MVs0REREREfEjWgQrq7U7gzFsMm/RLCCc2MhCAVVsL9IOaiMhxWCxW7HatYG1vdns9VqvttJ+vYpaIiIiIiA9pajEEGHSGw9+bmEym5tVZ+Yer2Xewsk2uKyLS2YSERFBWdpiGhnoV/tuY2+3G6XRQXV1JWVkRwcHhp30t7WYoIiIiIuJDtjUWsxJiQggP9muz645L68H7K7Jwuz2rs1J6hLXZtUVEOovAwGAAysuLcDodBqfpXMxmM2DCZvMjMrI7Ntvp/xunYpaIiIiIiI+oqXOQfcCzaqqtWgybRIb6k5oSRUZWCeu3FXLNBX2xWS1t+hoiIp1BYGBwc1FL2k5MTCiHD7fNymC1GYqIiIiI+IideaW4GttaBrdRi+GRJgztCUBNvYNvdhW1+fVFRES8QcUsEREREREfkbmvFACL2cSAXhFtfv2z+3YjOMDTnLFqa0GbX19ERMQbVMwSEREREfERTcPf+8aH4+/X9i2ANquZMalxntfKLqG4vK7NX0NERKS9qZglIiIiIuIDSirqKCiuAdp+XtaR0od4djV0A2sytDpLREQ6HhWzRERERER8wPac0uaP22NeVpOkuFASu4cAnlZDl7aeFxGRDkbFLBERERERH7CtscUw0N9Kco/Qdn2t8UM9q7MOl9WxO6+sXV9LRESkramYJSIiIiJiMLfb3Tz8fWBiBBZz+36bPjY1DqvFBMDKLWo1FBGRjkXFLBERERERg+0vqqaiugFo3xbDJiGBNs7u2w2AjTsPUVvvaPfXFBERaSsqZomIiIiIGCwzu6T549SU9i9mAaQP7QlAg93F1zsOeeU1RURE2oKKWSIiIiIiBstsHP4eFeZPbGSgV14zLSWKiBA/AFap1VBERDoQFbNERERERAzkcLrYmVsGwOCkKEwmk1de12w2MX6IZxD8nv3lFBRXe+V1RUREzpSKWSIiIiIiBtq7v5x6uxOAwSmRXn3tpmIWwKqtWp0lIiIdg4pZIiIiIiIGatrFEGBQknfmZTWJiwqib0I4AGsyDuJ0ubz6+iIiIqdDxSwREREREQNl5niGvyfEhBAe7Of115/QuDqrvKqBjKySk5wtIiJiPBWzREREREQMUlPnIPtAJQCDk73bYthkxMDu+Nk8Pxao1VBERDoCFbNERERERAyyM7cUl9sNQGqKd1sMmwT6Wxk5sDsA3+0uorKmwZAcIiIirWV4MeuTTz7hkksuYejQoUybNo0PPvjghOdXV1fz4IMPMn78eIYNG8bNN9/Mvn37jnv+m2++yaRJk4463tDQwPPPP8/UqVM5++yzmTp1Ks8++ywNDfrHW0RERES8o2lelsVson9ChGE50htbDZ0uN+u2FRqWQ0REpDUMLWZ99tlnzJw5k/T0dJ555hlGjRrFvffey6JFi477nDvvvJNFixYxc+ZMZs+eTWFhITNmzKCysvKocxcvXszf//73Y17noYce4vnnn+fKK6/kueee48orr+SFF17goYcearP3JyIiIiJyIk3zsvrGh+PvZzEsR/9eEXSPDARg5ZYC3I2rxURERHyR1cgXnzNnDtOmTWPWrFkATJgwgfLycp566immTp161PkbN25k+fLlvPTSS5x77rkAjBgxggsvvJC33nqLW265BYDy8nLmzZvHG2+8QVhY2FHXKS8v5+2332bmzJn86le/AmDs2LEAPPHEE9x9992Eh4e3y3sWEREREQEoqaijoLgGgMEGtRg2MZlMjB/SgwUrssg/XEVuYRVJcaGGZhIRETkew1Zm5eXlkZuby+TJk1scnzJlCllZWeTl5R31nNWrVxMcHMz48eObj0VFRTFy5EhWrFjRfGz+/PksWbKEOXPmcMEFFxx1naqqKq699tqjHuvdu3dzNhERERGR9tTUYgjGDX8/0vi0OEyNH6/ccsDQLCIiIidiWDErKysLgJSUlBbHk5KSAMjOzj7mc5KSkrBYWi7BTkxMbHH+pZdeypIlS5g2bdoxXzs+Pp6//OUvzcWrJkuXLsVmszVnEBERERFpL00thoH+VpJ9YBVUVFhA8xD69ZmF2B1OgxOJiIgcm2HFrKYZVyEhIS2OBwcHA57VUz9UVVV11PlNzzny/JSUFPz8/E4pz5IlS1iwYAHXXXcdoaHGfzMhIiIiIp2X2+1uXpk1KCkSi9nwfZkASB/qGQRfXefg291FBqcRERE5NsNmZp1sqKT5GP+gn+g5xzq/tRYvXszdd9/N8OHDufvuu0/5+dHRRxfYTiQmRsUy8R7db+JNut/Em3S/iTe19f22r6CCimrPLtqj0nr4zP08KSKINxbvoqrWzoYdh7nk3L5GR+qSfOV+kK5B95t4U1vdb4YVs5pWP1VXV7c43rTC6liro0JCQsjPzz/qeHV19TFXbLXGa6+9xuzZsxk1ahTPPPMM/v7+p3yN4uIqXK7W7fgSExPK4cNH77wo0h50v4k36X4Tb9L9Jt7UHvfb6m++n9Ga2C3Ip+7nUYO68+U3+/l25yF27j1MVFiA0ZG6FP39Jt6k+0286VTuN7PZdMKFQ4atZ26alZWbm9vieE5OTovHf/icvLy8o1Zo5eTkHPP8k3nkkUf4+9//zsUXX8xLL7102gUxEREREZFTkZnjaTGMDvMnNjLQ4DQtTRjaEwA3sDrjoLFhREREjsGwYlZSUhIJCQksWrSoxfHFixeTnJxMz549j3pOeno6FRUVrFmzpvlYSUkJGzduZNy4caf0+nPnzuX111/nF7/4BY8//vgpz9gSERERETkdDqeLnbllAAxKjsJkMp34CV6WGBtCQoznl7yrtxScdDyIiIiItxnWZghw++23M2vWLMLDw5k4cSJLly5l4cKFzJkzB/AUqnJzc+nbty8hISGMHDmSUaNGcddddzFz5kwiIiKYN28eoaGhXHvtta1+3Z07d/LCCy8wZMgQpk6dyubNm1s83vR6IiIiIiJtbe/+curtnp0CBydHGpzmaCaTiQlDe/DW0t0cKqtlV14ZAxJ9L6eIiHRdhhazrrzyShoaGnjllVd455136NWrF7Nnz+biiy8GYNmyZcyaNYv58+czevRoAJ5++mkeffRRHnvsMVwuF8OHD2fu3LmEh4e3+nWXLFmCy+Vi69atXH311Uc9/uabbzJixIi2eZMiIiIiIkdo2sUQYHBSlIFJjm9Maixvf7UHp8vNqq0FKmaJiIhPMbm1bviMaQC8+Crdb+JNut/Em3S/iTe19f328PyN7D1QQa/uITx406g2u25be2bBVjbtPIyfzcyc36YT6G/o78G7DP39Jt6k+028qVMMgBcRERER6Wpq6hxkFVQAvtlieKT0IT0AaLC72LjjkMFpREREvqdiloiIiIiIl+zMLaWpL2Jwsm+2GDZJ6x1FeIhnk6SVWwsMTiMiIvI9FbNERERERLxk274SAKwWE/0TIowNcxIWs5lxaXEA7Mkv52BJjcGJREREPFTMEhERERHxkqbh733jw/H3sxic5uSaWg0BVm3R6iwREfENKmaJiIiIiHhBSUVd8+qmQT7eYtikR3QwfeM9u4avySjA6XIZnEhERETFLBERERERr2hqMQRI7SDFLID0oZ7VWWVVDWzLLjnJ2SIiIu1PxSwRERERES/Y3thiGOhvJTku1OA0rTdyYHf8bJ4fG9RqKCIivkDFLBERERGRduZ2u8lsXJk1KCkSs9lkcKLWC/S3MmJAdwC+3V1EZU2DwYlERKSrUzFLRERERKSd7T9cTUWNHYDByZEGpzl1ExpbDZ0uN+syCw1OIyIiXZ2KWSIiIiIi7ayjzstq0r9XBDERAQCsVquhiIgYTMUsEREREZF2ltk4Lys6zJ/ukYEGpzl1JpOJ9CGe1Vm5h6rIOVhpcCIREenKVMwSEREREWlHDqeLnXmeYtag5ChMpo4zL+tI44f0oCn5qq1anSUiIsZRMUtEREREpB3t3V9Og90FdMwWwyZRYQEMTvHkX7ftIHaHy+BEIiLSVamYJSIiIiLSjrY1thiCZyfDjqyp1bC6zsF3e4oMTiMiIl2VilkiIiIiIu1oe+Pw917dQwgL9jM4zZk5p383gvytAKzccsDgNCIi0lWpmCUiIiIi0k5q6uxkFVQAHbvFsInNamF0aiwA27JLKKmoMziRiIh0RSpmiYiIiIi0kx25Zbjdno8HJ3fsFsMmTa2GbjesyThocBoREemKVMwSEREREWknmY0thlaLiX69IowN00aS40JJiAkGPLsaupuqdSIiIl6iYpaIiIiISDvJbBz+3jc+HH+bxeA0bcNkMjWvzjpUWsvu/HKDE4mISFejYpaIiIiISDsoqajjYEkNAIM7wbysI41Ji8NiNgGwakuBwWlERKSrUTFLRERERKQdbGtsMYTOV8wKC/LjrL7dAPh6xyHqGhwGJxIRka5ExSwRERERkXawvbHFMMjfSnJcqMFp2l76UE+rYb3dydc7DhmcRkREuhIVs0RERERE2pjL7W4e/j4oKRJzY0teZzKkdxThwX4ArFaroYiIeJGKWSIiIiIibWz/4WoqauwADE6ONDhN+7CYzYxLiwNgV345hY3zwURERNqbilkiIiIiIm0ssxPPyzpSU6shwKqtWp0lIiLeoWKWiIiIiEgbaxr+Hh0WQPfIQIPTtJ8e0cH0iQ8DYE3GQVwut8GJRESkK1AxS0RERESkDdkdLnbllQGeFkOTqfPNyzpS+hDP6qzSyvoWOziKiIi0FxWzRERERETaUNaBchrsLqBztxg2GTUoFj+r58eKlRoELyIiXqBiloiIiIhIGzpyddKgTjr8/UiB/laGD+gOwHe7D1NVazc4kYiIdHYqZomIiIiItKHMfaUAJHYPISzIz+A03tE0CN7hdLNu20GD04iISGenYpaIiIiISBupqbOTXVABdI0WwyYDEiPoFh4AaFdDERFpfypmiYiIiIi0kR25ZbgbN/Qb3AVaDJuYTabmQfC5hVXkFlYanEhERDozFbNERERERNpI07wsq8VEv14RxobxsnFD4mjat3GVBsGLiEg7UjFLRERERKSNNM3L6hsfjr/NYnAa7+oWHtg88H5dZiF2h8vgRCIi0lmpmCUiIiIi0gaKy+soLKkButa8rCM1DYKvqrWzeU+RwWlERKSzUjFLRERERKQNZDa2GAKkpnTNYtY5/WII9LcCGgQvIiLtR8UsEREREZE2kJnjaTEM8reSFBtqcBpj+NksjBkcC8DWrGJKK+sNTiQiIp2RilkiIiIiImfI5XY3r8walBSJ2Ww6yTM6r6ZWQ7cb1mRodZaIiLQ9FbNERERERM5Q/qEqKmvsAAzuoi2GTZLjQomPCQY8uxq63W6DE4mISGejYpaIiIiIyBlq2sUQYHDjjn5dlclkIn2IZ3VWYWkte/aXG5xIREQ6GxWzRERERETOUGaOp8UwOiyA7hGBBqcx3tjUOCyNrZYrt6jVUERE2paKWSIiIiIiZ8DucLErrwyA1JRITKauOy+rSViwH0P7RAPw9Y5D1DU4DE4kIiKdiYpZIiIiIiJnYO/+chrsLgAGJ3fteVlHahoEX9/gZOOOwwanERGRzkTFLBERERGRM9DUYggwMKlrz8s60pDe0YQF+wGwaqtaDUVEpO2omCUiIiIicgaahr8ndg8hLMjP4DS+w2oxMy41DoBdeWUUltYYnEhERDoLFbNERERERE5TdZ2d7IIKAAanqMXwh8Y3thoCrNbqLBERaSMqZomIiIiInKYdOWW43Z6PByerxfCH4rsF07tnGACrtx7E5XIbnEhERDoDFbNERERERE5T07wsq8VEv4QIY8P4qKZB8KWV9WTuKznJ2SIiIienYpaIiIiIyGnKzPYUZ/olROBvsxicxjeNGhiLn9XzY4cGwYuISFtQMUtERERE5DQUlddSWFoLqMXwRIICrAwfEAPAN7sOU1VrNziRiIh0dCpmiYiIiIichu2NuxgCDE7W8PcTSR/iaTV0ON2szyw0OI2IiHR0KmaJiIiIiJyGbY3zn4IDrCTFhhqcxrcNSIqkW3gAAKu2qNVQRETOjIpZIiIiIiKnyOV2sz3HszJrYFIkZrPJ4ES+zWwyMb5xdVZOYSW5hZUGJxIRkY5MxSwRERERkVOUf6iKyhrP7Ce1GLbO+LS45o81CF5ERM6EilkiIiIiIqcos8W8LA1/b41uEYEMSvJ8rdZtK8ThdBmcSEREOioVs0RERERETlFm47ysbuEBdI8INDhNx5E+1NNqWFVr57vdRQanERGRjkrFLBERERGRU2B3uNiVVwZ4VmWZTJqX1VrD+8cQ6G8F1GooIiKnT8UsEREREZFTsHd/OQ0OT4uc5mWdGj+bhdGDugOwNauY0sp6gxOJiEhHpGKWiIiIiMgp2NbYYgg0z4CS1ksf2hMAtxvWbjtocBoREemIVMwSERERETkFTcPfE2NDCA3yMzhNx5PSI5Se3YIBWLWlALfbbXAiERHpaAwvZn3yySdccsklDB06lGnTpvHBBx+c8Pzq6moefPBBxo8fz7Bhw7j55pvZt2/fcc9/8803mTRp0jEfe/3115k0aRJDhw5l+vTpLF++/AzeiYiIiIh0dtV1dvYdrADUYni6TCYT6UM8g+APltSwd3+FwYlERKSjMbSY9dlnnzFz5kzS09N55plnGDVqFPfeey+LFi067nPuvPNOFi1axMyZM5k9ezaFhYXMmDGDysrKo85dvHgxf//73495nZdffpnZs2czffp05s2bR69evbjtttv47rvv2urtiYiIiEgnsyOnlKaFRKkqZp22sWlxmBsH56/aesDgNCIi0tFYjXzxOXPmMG3aNGbNmgXAhAkTKC8v56mnnmLq1KlHnb9x40aWL1/OSy+9xLnnngvAiBEjuPDCC3nrrbe45ZZbACgvL2fevHm88cYbhIWFHXWdmpoann/+eW666SZuu+02AM4991yuueYann76aV5++eX2essiIiIi0oE1tRhaLWb6JYQbnKbjCg/2Y2ifaL7bU8T67Ye49sL++PtZjI4lIiIdhGErs/Ly8sjNzWXy5Mktjk+ZMoWsrCzy8vKOes7q1asJDg5m/PjxzceioqIYOXIkK1asaD42f/58lixZwpw5c7jggguOus7mzZuprKxs8domk4lJkyaxdu1aGhoa2uItioiIiEgnk9k4/L1fQjh+NhVfzsSEoZ5Ww/oGJxt3HjI4jYiIdCSGFbOysrIASElJaXE8KSkJgOzs7GM+JykpCYul5TcOiYmJLc6/9NJLWbJkCdOmTTvha/fu3fuo13Y4HMcspImIiIhI11ZUXkthaS0Ag5O1i+GZGtInmrAgG+AZBC8iItJahrUZNs24CgkJaXE8ONizs0lVVdVRz6mqqjrq/KbnHHn+Dwtkx7rOka/1w9eurq4+WfwWoqOPznQiMTGhp3S+yJnQ/SbepPtNvEn3m3hTTEwo32aVNH8+fliC7sE2cMHIRD5YvpedeWU4TGZ6dAs++ZO6AN1b4k2638Sb2up+M6yYdbIteM3moxeNneg5xzr/dF/b1DiMsrWKi6twuVq3pXBMTCiHDx89rF6kPeh+E2/S/SbepPtNvKnpflvfOKg8OMBKmJ9F92AbGN43mg+W7wXgo+V7uPLc3id5Ruenv9/Em3S/iTedyv1mNptOuHDIsDbD0FBPNe6Hq6CaVk01PX6kkJCQY66aqq6uPuaKrbZ8bRERERHpulxuN9tzPMPfByZFYjaf2i8/5djiY0JI6eHZsGlNRkGrf0EsIiJdm2HFrKZWwNzc3BbHc3JyWjz+w+fk5eUdtbIqJyfnpK2FrX1tPz8/evbs2epriYiIiEjnl3+oisoaOwCpyVEGp+lc0hsHwZdU1JOZU3KSs0VERAwsZiUlJZGQkMCiRYtaHF+8eDHJycnHLCilp6dTUVHBmjVrmo+VlJSwceNGxo0b1+rXHjZsGEFBQXz++efNx9xuN0uWLGHkyJH4+fmdxjsSERERkc4qc19p88ca/t62Rg/qjs3q+bFEg+BFRKQ1DJuZBXD77bcza9YswsPDmThxIkuXLmXhwoXMmTMH8BSqcnNz6du3LyEhIYwcOZJRo0Zx1113MXPmTCIiIpg3bx6hoaFce+21rX7dwMBAbrrpJp599lksFgtnnXUW7733Htu2bWP+/Pnt9XZFREREpIPK3OdZMdQtPICYiECD03QuQQE2hvePYV1mId/sKqK6zk5wgM3oWCIi4sMMLWZdeeWVNDQ08Morr/DOO+/Qq1cvZs+ezcUXXwzAsmXLmDVrFvPnz2f06NEAPP300zz66KM89thjuFwuhg8fzty5cwkPDz+l17799tuxWCy8/fbbvPzyy/Tt25dnn32W4cOHt/n7FBEREZGOq8HuZFdeGQCDk6NOebMgObn0oT1Yl1mIw+lifWYhF5yTYHQkERHxYSb3ybb2k5PSbobiq3S/iTfpfhNv0v0m3lRQXsf9z3nGXPz6R6mMGhRrcKLOx+V2c+9zaymuqCM5LpT/d+NIoyMZRn+/iTfpfhNv6hS7GYqIiIiIdATf7ToMgAkYlKR5We3BbDIxfkgcAPsOVpJ/qMrgRCIi4stUzBIREREROYGmYlZibCihQdooqL2MH9Kj+eNVWzUIXkREjk/FLBERERGR46ius7MnvwzQLobtLSYikIGJEQCsyTiIw+kyNpCIiPgsFbNERERERI5jR04pTRNmBydHGRumC5gwtCcAVbV2Nu8pNjiNiIj4KhWzRERERESOI3NfKQBWi5l+Cae2e7acunMGxBDobwFg1ZYDBqcRERFfpWKWiIiIiMhxbNtXAkC/hHD8bBaD03R+/jZL826RW7NKKKuqNziRiIj4IhWzRERERESOoaislkOltYDmZXlTeuMgeJfbzdqMgwanERERX6RiloiIiIjIMWTmlDZ/rHlZ3tO7Zxg9ooMAz66G7qahZSIiIo1UzBIREREROYbMxhbD0CAbSbGhBqfpOkwmE+lDPauzCopr2HugwuBEIiLia1TMEhERERH5AZfb3Tz8fWjfGMxmk8GJupZxqXGYTZ6v+aotBQanERERX6NiloiIiIjID+QfqqKq1g7AWf1jDE7T9YSH+DO0TzQAG7YXUt/gNDiRiIj4EhWzRERERER+oGkXQ4BhKmYZYnzjIPi6Biebdh0yOI2IiPgSFbNERERERH6gqcWwW3gAcdHBBqfpms7qG01okA1Qq6GIiLSkYpaIiIiIyBHsDie788oA7WJoJKvFzNjUOAB25JZxqKzW4EQiIuIrVMwSERERETnCnv0VNDhcAAxOjjQ4TdfWtKshwJqtWp0lIiIeKmaJiIiIiBwhs3FelgkYlKRilpESYkJIjgsFYPXWAlxut8GJRETEF6iYJSIiIiJyhKZiVmJsKKFBfgankQmNq7OKK+rZnlNqcBoREfEFKmaJiIiIiDSqrrOzr6ASUIuhrxg1OBarxfNjiwbBi4gIqJglIiIiItJs+75SmhrZBqdo+LsvCA6wMXxADACbdh6mus5ucCIRETGailkiIiIiIo0yG9vYrBYz/eLDDU4jTdKHeFoNHU4XGzILDU4jIiJGUzFLRERERKRR07ysfgnh+NksBqeRJoOSIokO8wdglXY1FBHp8lTMEhEREREBispqOVRaC0CqWgx9itlsYlyaZ3VWdkEl+YerDE4kIiJGUjFLRERERITvWwxBw9990fjGXQ1Bg+BFRLo6FbNERERERPi+xTA4wEpi91CD08gPdY8IZGBiBABrtx3E4XQZG0hERAyjYpaIiIiIdHkut5vMfZ6VWYOSozCbTQYnkmMZ3zgIvrLGzpa9xQanERERo6iYJSIiIiJdXl5hFVW1dkAthr5sxIDuBPh5BvOr1VBEpOtSMUtEREREurzMnJLmjwcna/i7r/L3szBqUHcAtuwtpryq3uBEIiJiBBWzRERERKTLa2ox7BYeQPeIQIPTyImkD+0JeFpD124rNDiNiIgYQcUsEREREenS7A4nu/LKAEhN0aosX9enZxhxUUEArNxyALfbbXAiERHxNhWzRERERKRL25Nfjt3h2RlPLYa+z2QyMWGoZxB8QXENWQUVBicSERFvUzFLRERERLq0zBxPi6EJGJSk4e8dwdi0OMwmz46TGgQvItL1qJglIiIiIl3atmzP8PfEuFBCAm0Gp5HWiAjxZ0hvzyq6DdsLqbc7DU4kIiLepGKWiIiIiHRZVbV2cg5WAjA4WauyOpL0xlbD2non3+w8bHAakaM5XS6WfJ3HZ+tyqK6zGx1HpFOxGh1ARERERMQoO3JKaRofrnlZHctZfbsREmijqtbOqq0FjE2LMzqSSLPaegfPf7iNrVnFAHy2NodpYxK5aHgv/P0sBqcT6fi0MktEREREuqzMfZ4WQ5vVTP+EcIPTyKmwWsyMTfUUsLbnlHK4rNbgRCIeReW1PPLGpuZCFkBNvYP3lmdx7/Nr+GJjXvOmEyJyelTMEhEREZEuK3OfZ/h7v4RwbFatluhomloNAVZv1SB4Md7eA+U8NH8T+w9XA3BWn2huuyKNhJhgACpq7Pzni93c9+JaVm45gNOlopbI6VCboYiIiIh0SYfLajnUuJpHLYYdU6/uISTFhZJzsJLVWw9yeXpK8y6HIt729Y5DvPxJZvOqq0kjenH1BX0xm02cMyCGDdsL+WBlNodKaymuqOfVz3awcF0u08/tzfABMbp3RU6BilkiIiIi0iVtzylt/ljD3zuu9CE9yDlYSXFFHTtySlWYFK9zu918ujaH91dkAWA2mbh+cn/OHxbffI7ZZGLM4DhGDOjO6q0FfLR6H6WV9RwsqeG5DzJIig3lyvN6k5YShUlFLZGTUpuhiIiIiHRJ27I987KCA6wkxoYanEZO1+jBsVgtnh9rVqnVULzM7nDxyqfbmwtZgf4W/vDToS0KWUeyWsycd3Y8f79lDFdf0JeQQBsAOYWVzHl7M7Pf/IZdeWXeii/SYamYJSIiIiJdjsvtbl6ZNSg5Su09HVhIoI1z+ncDYNPOw9TU2Q1OJF1FVa2dJ/77LaszDgLQLTyA+342nLSU6JM+189mYcqoRGb/eixXpKcQ0LjD4a78ch598xvmvL2ZnIOV7ZpfpCNTMUtEREREupy8wiqqaj1FD7UYdnxNg+DtDhcbth8yOI10BQXF1Tw0fyO78ssB6BMfxp9njCA+JuSUrhPob+Xy9BQe+804po5KxGb1/Ii+NauYB1/7mmc/yKCguLrN84t0dCpmiYiIiEiXk7mvpPnjVM1Y6vAGJ0URGeoPwMotajWU9rU9p5SH52/iUKlnA4nRg2O559phhAX7nfY1QwJt/PSCvjx661gmDovHYvasFt244xB/fnk9r3y2naLy2jbJL9IZqJglIiIiIl1OUzErJiKAmIhAg9PImTKbTYwf4lmdlV1Qwf7DVQYnks5q5eYDPPm/76ipdwBw+fhkbrlsMDarpU2uHxnqz4wpA3j45tGMTY3FBLjdsGpLAfe9uI7/LNlFeXVDm7yWSEemYpaIiIiIdCl2h7O5NUg733Ue6UPimj/WIHhpay63m3e+2sOrC3fgdLmxWkzcfNlgrpjQu112H+weGcTNl6Xy4C9HMayfZyacw+nmi035/On5tby/Yq/mw0mXpmKWiIiIiHQpu/PLsTtcgFoMO5PukUEM6BUBwNqMgzicLmMDSadR3+Dk2QUZLFyfC3haAv947TDGpsad5JlnLiEmhN/9eCj3zxjOoCTPfL96u5NP1uRwz3Nr+XTtPuobnO2eQ8TXqJglIiIiIl1K5j7PLoYmYGCShr93Jk2D4Ctq7GzdW2xwGukMSivrefQ/3/DNrsMA9IgO4s83jKBfQoRXc/TpGc4frx3GzGvOpnfPMABq6h28tzyLe19Yy9JN+c1FepGu4JSLWbW13w+dKy0t5c033+Stt96irKysLXOJiIiIiLSLpnlZiXGhhATaDE4jbWnEgO74+3lmF6nVUM5UbmElD83fSM7BSsCz8+n9Px9OdwPn7A1OjuL+nw/ndz8eQnxMMAAV1Q28uWQX9724jlVbCnC53IblE/EWa2tPrKio4M4776SiooJ33nmHqqoqfvzjH1NQUIDb7ebZZ5/lP//5D7169WrPvCIiIiIip62q1t78g6laDDsffz8LowZ2Z+WWAjbvKaa8uoHwM9hhTrqu73YX8cJH26i3e1r4zju7J9dP6o/VYnxzk8lkYli/GM7q04312wv5YGUWh8vqKK6o45XPtrNwfQ7TJ/Rm+ICYdpnnJeILWv0nce7cuaxfv54JEyYA8O6773LgwAH++Mc/Mn/+fMxmM3Pnzm2vnCIiIiIiZ2xHTilNaxYGJ6vFsDNqajV0ud2szThocBrpaNxuN4s35DLvvS3U252YgKsv6MuMKQN8opB1JLPZxNjUOB6+eQwzpgwgIsRTuC0oruHZDzL42+sbycgqxu3WSi3pfFr9p/HLL7/kZz/7Gb///e8B+OKLL4iOjuamm25i1KhRXH/99axZs6bdgoqIiIiInKmmFkOb1Uy/hHCD00h76BsfTmxUEOBpNdQP8tJaDqeLfy/exX+/3IMb8LdZ+O2PhzBlVKJPr3CyWsxMHBbPo7eO5afn921un845WMmTb29m9n++ZXd+mbEhRdpYq4tZxcXF9OvXD4DKykq+++47xo8f3/x4ZGRki3laIiIiIiK+pmn4e7+EcGxWi8FppD2YTCbSh3h2mTtQVE12QaXBiaQjqKmz89Q7m1n27X4AIkP9+dP15zCsX4zByVrPz2Zh6uhEZv96LJePT26eH7crr4y/v/ENc9/ZTG6h/jxI59DqYlZsbCx5eXmAZ1WW0+lk4sSJzY9/88039OjRo80DioiIiIi0hcNltRwq8/zyVfOyOrdxaT1oWkijQfByMofLann435vY1ljsTooN5c8zRpAUF2pwstMT6G/ligm9eezXY5kyqldze+SWvcX89dWvef7DDA6W1BicUuTMtHoA/Pnnn8/rr79OVVUVn376KeHh4VxwwQUUFhby0ksv8eGHH3Lbbbe1Z1YRERERkdPW1GIInh3BpPOKDPVnSO9otuwtZn1mIddc0Bc/m1biydH25Jcz7/0tVNbYARjWrxu3XJbavKqpIwsN8uPqC/oxaUQvPlmzjxWbC3C53WzYfoiNOw4zfkgcN16ehu82UIocX6tXZv3xj3/kkksu4d133yUsLIw5c+YQEBBAYWEhb775Jpdddhm33HJLe2YVERERETltTS2GIYE2esWGGJxG2lv6EE/XSG29g292HTY4jfiidZkHeeytb5sLWVNHJ3L7lUM6RSHrSFFhAcyYOpCHbxnNmNRYTHg2SFi5pYBb/76Ut77YTUV1g9ExRU5Jq1dm5eTk8H//93889NBDLY4PHDiQ5cuX07179zYPJyIiIiLSFlxuN9tzPMWsQUmRmH14mLO0jbP7dSMk0EZVrZ2VWwoYkxpndCTxEW63m49W7+PDVdkAWMwmfj5lAOee1dPgZO0rNjKIWy5LZdroJBasyOK7PUU4nC6WbMxjxeYDTBrZi6mjehEUYDM6qshJtXpl1o033sgTTzxx1HE/Pz8VskRERETEp+UVVlFV61l9MTg50uA04g1Wi5kxqbEA7MgppahMm1UJ2B1OXvo4s7mQFeRv5c6fntXpC1lH6tU9hN9fNZT7fz6coX27AVBvd/LJmn3c+/xaPluXQ73daXBKkRNrdTGrpqaGhISE9swiIiIiItIuNC+ra2pqNXQDqzMOGhtGDFdR08A/3vqOdZmFAHSPCOT+GcO77N8JfeLDefg345l5zdmk9AgDoLrOwbvL9vKn59eydFM+DqfL4JQix9bqYtYNN9zAq6++ytatW9szj4iIiIhIm9vWWMzqHhFITESgwWnEWxJjQ0lsnI+2eqtn+LV0TfuLqnno9Y3s2V8OQL+EcO6fMZwe0cEGJzPe4OQo/jxjOL+9cgjx3Txfj/LqBt5csov7Xlzn+bPj0p8d8S2tnpmVkZHBoUOH+OlPf0pAQAARERGYzS1rYSaTiS+++KLNQ4qIiIiInK4Gu5NdeZ4fYNVi2PVMGNqTN5fsoqi8jp05pQzqoqtwurJt2SU8+0EGtfUOAMamxnHjtIHYrK1e29HpmUwmzukfw9l9u7E+s5AFK7MoKq+jqLyOf326nc/W5XDlub05p38MJs0cFB/Q6mJWfX09aWlpbR7gk08+4bnnniMvL4/4+HhuvfVWrrjiiuOeX11dzeOPP87ixYupqalhxIgR3H///SQnJzef43A4ePrpp1mwYAFlZWWkpqbypz/9iaFDhzafY7fbeemll1iwYAFFRUX06dOHP/zhD6Snp7f5exQRERER4+zZX97cKtNV24m6stGDY/nfl7txON2s2lqgYlYXs+zb/byxeFfzqrzpE1K4dFyyCjLHYTabGJsWx8hB3Vm5pYCPVmdTXtVAQXENzyzIIDkulCvP601qcpS+hmKoVhez/v3vf7f5i3/22WfMnDmTG264gfT0dL744gvuvfdeAgICmDp16jGfc+edd7J161buuecegoODefrpp5kxYwaffvopoaGhADz88MMsWLCAmTNn0rNnT1599VVuvPFGPvzwQ3r16gXAvHnzePnll7njjjsYMmQI77//Prfccgtvvvkmw4YNa/P3KiIiIiLGyNzn2cXQBAxM0sqsriYk0MawfjF8veMQG3ce5vpJDoICWv1jkHRQLpebt7/aw+Kv8wDPhgC/unQQowbFGpysY7BazJw/LJ5xaXF8+U0+n63NobrOwb6DlTz5v80M6BXBj8/rQ9+EcKOjShfVpusqMzMzT+n8OXPmMG3aNGbNmsWECRN48MEHmTZtGk899dQxz9+4cSPLly9n9uzZTJ8+ncmTJ/Paa69RWVnJW2+9BUB+fj7/+9//uPfee/nZz37GBRdcwL/+9S/Cw8N5+eWXm6/1/vvv86Mf/Yhbb72VcePGMXv2bOLi4nj77bdP/wsgIiIiIj6naV5WUlwoIYHacr4rSh/qGQRvd7jYsKPQ4DTS3uoaHDz9/tbmQlZYkI17rxumQtZp8LdZmDY6idm/Hsfl45Px97MAsDOvjEfe2MRT72wmt7DS4JTSFbX6VxINDQ3885//ZOXKldTU1OByfb+rgdPppLq6mqqqKrZv396q6+Xl5ZGbm8tdd93V4viUKVNYuHAheXl5zauomqxevZrg4GDGjx/ffCwqKoqRI0eyYsUKbrnlFtatW4fT6WTKlCnN5/j5+TFx4kSWLVvW4v0EB38/7M9isRAWFkZpaWmr8ouIiIiI76uqtZN70PODlloMu67U5CgiQ/0praxn9ZYCJp4db3QkaSclFXX8890t5B6qAiC+WzB3XDWUbtr44YwEBVi5YkJvLhiewGdrc/jym/04nC427y1m895iRg3qzvQJvYmNCjI6qnQRrV6Z9dRTT/Hyyy9TXl5OYGAg+/fvp0ePHlitVg4ePIjdbuf+++9v9QtnZWUBkJKS0uJ4UlISANnZ2cd8TlJSEhaLpcXxxMTE5vOzsrIIDw8nKqrlNytJSUkcOHCAuro6AGbMmMEHH3zA2rVrqays5I033mD79u1cfvnlrX4PIiIiIuLbduSU0rQHl4a/d11ms4lxaXEA7D1QwYGiaoMTSXvYd7CC/5u/sbmQldY7ivt+PlyFrDYUFuTHNRf249Fbx3DuWT0xN87N2rD9EPe/tJ7XFu6gpKLO4JTSFbR6ZdaiRYsYNWoUr732GocPH+a8887j//2//0f//v1Zvnw5t99+OzZb65dtV1Z6fkMWEhLS4njTaqmqqqqjnlNVVXXU+U3PaTr/ROeAZ4B8QEAAN954I9988w033nhj8zm33347F198cavfg4iIiIj4tqYWQ5vVTD/NdunS0of24NO1OQCs2lrAT8/va3AiaUubdh7mpU+20WD3dBBdcE48117UD4tZOxa2h6iwAG6cNpBpoxP5YFU26zMLcbndrNh8gDUZB7ngnHguHptEWJCf0VGlk2p1MauwsJBf/OIXmM1mYmNjiY6O5ttvv6V///6cd955TJ8+nbfffpurr766Vddzu90nfNx8jL90TvScpvNPdl2TyURDQwPXXXcdxcXFPPTQQyQmJrJmzRpeeOEFQkJCuOmmm1rxDr4XHX108exEYmJCT+l8kTOh+028SfebeJPuN2mNnXllAKT2jqZnj4jTvo7ut44vJiaU1N7RbMsqZk3GQcYM7cmw/t0xm31vRzbdb63ndrtZsGwPr32aidsNZhP86kdDuGxCb6OjdRhncr/FxISSNiCW7APl/Hvhdr7OLMThdLH46zxWbjnA5ef2Yfp5fQnWvEJp1FZ/v7W6mBUQENBi5VViYiK7du1q/nzo0KF8/vnnrX7hpp0Hq6tbLvFtWmHV9PiRQkJCyM/PP+p4dXV182qskJCQo6555HVDQkL4/PPP2blzJ/Pnz2f06NEAjB49GrfbzZNPPsn06dOJjGz9MvTi4ipcrhMX0ZrExIRy+LAG5Il36H4Tb9L9Jt6k+01a41BZLQeLawDo1zPstO8Z3W+dx5hB3dmWVUxFdQN/fWkdsVFBXDQ8gXFpcQT6+8YOh7rfWs/hdPHvz3eycksBAP5+Fn7zo1SG9ummr2ErtdX9FmIz85vLU5l0TgLvLd/Lzrwyauud/G/JLj5ZmcXFY5K4YHgC/jbLyS8mndap3G9ms+mEC4daveZy0KBBrFixovnz3r178+233zZ/XlhYiMnU+t9qNM3Kys3NbXE8JyenxeM/fE5eXt5Rq69ycnKaz+/duzdlZWWUl5cfdU5CQgJ+fn4cOHAAgGHDhrU4Z8SIEdjt9qMyiYiIiEjHk9nYYgga/i4eY9PiuHhMUvMP1IUlNby5ZBd3P7Oa/3yxi8LSGoMTSmtV19l58n/fNReyosL8ue9nwxnap5vBybq2vgnh3HPdMO6++myS4xoXsNQ5eGfZXv70wlq++iYfh9N1kquInFyri1nXXXcdS5cu5brrrqOqqopLLrmEzMxMZs2axUsvvcRrr73GkCFDWv3CSUlJJCQksGjRohbHFy9eTHJyMj179jzqOenp6VRUVLBmzZrmYyUlJWzcuJFx48YBNP//kavEGhoaWLZsWfNjTYWvb775psX1v/vuO0wmEz169Gj1+xARERER35S5z7NLdUigjV6xpzYWQjons8nEVRP78MTt47jmgr50Cw8AoK7ByRcb87nvhXXMfWczGVnFuE4yvkSMU1haw8PzN7EjtwyAlB6hPDBjBL2668+5LzCZTKSmRPHADSO4ffoQenbzzK8ur2rg34t3cd+L61iTUdDq7iaRY2n1Wtpp06ZRVVXFq6++SmBgIOPGjeP666/nzTffBKBnz5786U9/OqUXv/3225k1axbh4eFMnDiRpUuXsnDhQubMmQN4ClW5ubn07duXkJAQRo4cyahRo7jrrruYOXMmERERzJs3j9DQUK699loA4uPjmT59Og899BA1NTUkJSXx6quvUlFRwa9+9SsALrjgAoYMGcLdd9/NH/7wBxISEtiwYQMvvfQS11xzDd27dz+l9yEiIiIivsXldrO9cWXWoKTI5h23RACCAmxMHpXIRSN6sWVvMV9syiNzn2fnyy17i9myt5i4qCAu9LEWRIFdeWXMe28L1XUOAEYMiOGXlw5W+5oPMplMDB8Qw7B+3Vi77SAfrsqmqLyOovI6Xv5kO5+ty2X6hN6c07/bKXV5iQCY3CebmH4SBw4coLy8nD59+uDnd+o7Ffz3v//llVdeoaCggF69enHLLbdwxRVXAPD+++8za9asFrOtysvLefTRR/niiy9wuVwMHz6cP/3pT/Tu/f2Av4aGBh5//HE++eQTampqSE1N5Z577uGss85qPqeyspInnniCJUuWUFVVRWJiItdccw3XXnvtMYfPn4hmZomv0v0m3qT7TbxJ95uczL6DFfzttY0A3DhtIOeedfSq/9bS/dY17C+qZummfNZkFDTviAcQ6G8hfUhPLhgeT2xkULvn0P12fKu3FvDawh04G3/2umRsEtPP7a1i9Rnw5v3mcLpYsfkAH6/eR3l1Q/PxlB6hXHleHwYnRaqo1cm15cysVhezZsyYwW9+8xvGjh17zMe//PJLnnjiCT799NNWBetMVMwSX6X7TbxJ95t4k+43OZnP1uXw7rK9ADz267F0iwg87WvpfutaquvsrNpSwNJN+RSV1zUfNwFD+0Rz4YgEUpOj2u2Hbt1vR3O53XywMotP1njmK1vMJm6YOpD0oRoPc6aMuN/q7U6+3JTPZ+tymlfYAQxMjODK8/rQNz7cq3nEe9qymHXc9bK1tbWUlpY2f75hwwYmTZpEUlLSUee6XC5WrFhxzJ0GRURERES8rWn4e/eIwDMqZEnXExxgY8qoRCaN6MXmvUV8sTGf7TmeFsTNe4vZvLeYHtHftyAG+KkFsT012J3869PtfL3jEADBAVZ+e+UQBiS2fvd58S3+NgvTxiRx3tk9+XxDHou/zqPe7mRHbhmP/HsTZ/ftxvRze2sGmpzQcVdmlZSUMHXqVCorW1c1c7vdjB8/nn/9619tGrAj0Mos8VW638SbdL+JN+l+kxNpsDv57dyVOJwuJp7dkxlTB57R9XS/yf7DVY0tiAdpcBzZgmhlwtAeXHBOPN3bqAVR99v3yqsbmPfeFrIOVAAQGxnIH35yFrFR7d/u2VX4wv1WUd3Ap2tz+OrbfBxOz8/VJmDCWT2ZMXWA2kg7Ea+szIqKiuIf//gHW7duxe1288wzzzBp0iQGDBhwjBcxExUVxSWXXNKqUCIiIiIi7WX3/vLmrd8HJ0cZnEY6g/iYEGZMHciPJ/Zh5eYCvvzG04JYW+9g8dd5LPk6j7P6duPCEQma+9NG8g9V8dS7mymuqAc8LWi3TR9CSKDN4GTS1sKC/bj2on5MHtmLj9dks2rLQVxuNys2H2BwciSjBsUaHVF80AnXxJ533nmcd955gGfQ+zXXXNNiiLqIiIiIiK9pajE0AQOT1IokbSc4wMbU0YlMHtmLzXuK+GLT9y2I3+0p4rs9RfSIDuKi4QmMVQviaduaVcxzH2RQ1+AEIH1ID2ZMHYDVcmobdUnHEh0ewI3TBjF1dBIPvvo19XYnW7OKVcySY2r1365///vfj3l89+7dmM1m+vTp02ahREREREROV+Y+z9zXpLhQreKQdmE2mxjWP4Zh/WPIP1zFl0e0IBYU1/Dvxbt4d3mWpwVxeALdNbet1ZZuyuc/X+yiaRjOVRP7MG10ola7dSFxUUEMTIxg895iMrJLcLvd+u8vRzmlXxW8+OKLZGdn8/e//x2Xy8Wvf/1rVq5cCcC4ceP45z//SXBwcLsEFRERERE5mapaO7kHPfM4UlPUYijtL6GxBfHK8/o074JYXKEWxFPldLn479I9LN3k2VTMz2rmV5cOZsTA7gYnEyOk9Y5m895iyqsayD9crWHwcpRWr9N8+eWXefLJJykqKgJg4cKFrFixgsmTJ3P77bezceNGnnnmmXYLKiIiIiJyMk0tXwCD1WIoXhQS6GlBnP3rsfz2yiEMTIwAaG5BfOK/3/HAvzbw1bf7qW9snxOP2noH/3x3a3MhKzzYj3uvP0eFrC4s7YhfRmRkFxuYRHxVq1dmLViwgEmTJjFv3jwAPvvsMwIDA5k9ezYBAQFUV1ezaNEi7rnnnnYLKyIiIiJyIk3zsmxWM30Twg1OI12R2WzinP4xnNM/hvxDVXyxKZ912zwtiAeKqvn35zt5b9leJpzVgwvOSSCmi7cgFpfX8dS7m8k/XA1Ar+4h3HHVUKLCAgxOJkbqHhlIt/AAisrryMgqYdroJKMjiY9p9cqsvLw8zj33XADsdjtr165l1KhRBAR4/pLp06dP86otEREREREjbMv2FLP694rAZrUYnEa6uoTuIdw4bSCP3z6en5zfh+gwfwBq6h18viGPPz2/lnnvbSFzn2cuUFeTdaCC/5u/sbmQNbRPNH+6/hwVsgSTyURa72gAdueXaTWjHKXVK7PCwsKoqqoCYP369dTU1DQXtwByc3Pp1q1b2ycUEREREWmFQ2W1FJXXATA4WS2G4jtCAm1MG53E5JG9+G53MUs35bEjtww38O3uIr7dXUR8t2AuHJ7AZef1NTquV3y94xAvf5KJ3eECYNKIXlx9QV/MZs0UE4+0lCiWfbsfh9PNzrxShvZRvUG+1+pi1rBhw3jjjTeIj4/n+eefx2q1MnnyZOx2O1999RVvvfUWF110UXtmFRERERE5rqYWQ4DBSRr+Lr7HYjYzfEAMwwfEkHeoiqWb8lm77SB2h4v9RdXM/3wn763IYsKQHlxwTjzdOmELotvt5tO1Oby/IgsAs8nE9ZP6cf45CQYnE18zKCkSi9mE0+UmI6tExSxpodVthvfddx/+/v78/ve/Z/v27dx9993ExMTwzTff8Pvf/56YmBjuuOOO9swqIiIiInJcmftKAc8qmF6x2vlKfFuvxhbEJ24fz08mft+CWF1rZ9GGXO59wdOCuD2ntNO0INodLl75dHtzISvQ38IffjJUhSw5pkB/K33iPbMPM7JLTnK2dDWtXpnVo0cPPvroIzIzM4mNjSU2NhaAgQMH8uSTT3L++ecTGNj5fnMgIiIiIr7P5XKzvXFl1uDkSMwmtSpJxxASaGPamCQmj+rFd7uLWL6lgIy9xbjdR7QgxnhaEMemxuFv65iz4Kpq7Tz9/lZ25ZUB0C08gDuuGkp8jArPcnxpKVHsyivjYEkNReW1dAtXzUE8Wl3MArBarQwdOrTFsfDwcC6++OI2DSUiIiIicipyD1VSXecAYHCyWgyl4/G0IHZnanofvtlWwNJNeazdVuhpQTxczfxFTbsg9uSCYR2rBbGguJqn3t3CodJaAPrEh/G7K4cSFuxncDLxdWm9o5pX8mVklzDx7HiDE4mvOKViloiIiIiIL2pqMQQYnKTh79KxeVoQB3HVxL6s2HyAL7/Jp6Sinuo6B4vW5/L5hlyG9YvhwuEJDEyMwOTDKxG355Ty7IKtzcXmUYO688tLBmm3UWmVxNhQQoNsVNbY2ZalYpZ8T8UsEREREenwtjXOU+keGdihVqyInEhIoI2LxyQxZVQvvt1VxBeb8tmVV4bbDd/sOsw3uw4THxPMRcMTGOODLYgrNx9g/uc7cbo8M78uH5/Mj9JTfLr4Jr7FbDKRmhzFusxCMnNKcbpcWMytHv0tnZiKWSIiIiLSoTXYnezOLwfUYiidk8VsZsTA7owY2J3cwkqWbspnXeb3LYivL9rJu8v2cu5ZPTn/nHjD5wq53G7eW7aXhetzAbBaTPzi4kGMTY0zNJd0TKkpnmJWbb2DrAMV9EuIMDqS+IDjFrOWLVtGWloa3bpp+0sRERER8V2795fjcLoAtRhK55cYG8ovLh7EVRP7NLYg7qe00tOCuHB9Los25HJOvxguGpFA/17eb0Gstzt5+eNMNu06DHhWl/32yiH07xXh1RzSeaSlfP9Liq1ZJSpmCQDHXZ83c+ZMli1b1vz5jBkzWLt2rTcyiYiIiIi0WmZji6EJGJSsYpZ0DaFBflwyNpnHfjOW265Iay4Wud2waddhZv/nW/7yytes2HyAervTK5lKK+t59M1vmgtZPaKD+PMNI1TIkjMSHuJPr+6eXS+3ZRcbnEZ8xXGLWW63m02bNlFb69lxYsOGDRQX68YREREREd/SNPw9uUcowQE2g9OIeFdTC+Kfrj+Hv/5iJOlDe2C1eH7Myz9cxWsLdzDzmdW8s2wPxeV17ZYjt7CSh+ZvJOdgJQCDkiK5/+fD6a4ZdtIGmlZn7SuopLKmweA04guO22Y4efJkFixYwAcffNB87I9//CN//OMfj3sxk8lEZmZmmwYUERERETmeypoGcgs9PzxrXpZ0dYmxodx08SB+cqwWxHW5LFqfyzn9Y7hoeNu2IH63u4gXPtrWvALsvLN7cv2k/s1FNZEzlZYSxcL1ubjx/AJj9OBYoyOJwY5bzHrwwQdJTU1l165dNDQ08OGHHzJ8+HB69erlzXwiIiIiIse1PacUd+PHmpcl4tHUgjhlVCLf7i7ii4157M4v97Qg7jzMpp2HSYgJ4aIRCYwZHIvfae6C6Ha7WbIxn/8t3Y0bT6vvTy/oy+SRvbRjobSpvgkR+NnMNNhdZGQXq5glxy9m+fn58bOf/az58w8++ICrr76ayy67zCvBREREREROpqnF0M9qpm9CuMFpRHyL1WJm5MDujBzYnZyD3++C6HC6mlsQ3/lqD+edHc8F58QTFRbQ6ms7nC7+88Vuln27HwA/m5lbL09lWL+Y9no70oXZrGYGJkayZW8x27JLcLvdKph2ccctZv3Qjh07mj8uKiriwIED2Gw2YmNjiYrSkm4RERER8b7MfZ7h7/16RWCznt7qEpGuICkulJsuGcRV5/dhxXcH+Orb71sQP1uX09iC2I0LW9GCWFPn4LkPM9jWuPlCZKg/v//xUJLiQr31dqQLGtI7mi17iymramD/4WoSGofCS9fU6mIWQEZGBn/729/YunVri+NnnXUW999/P0OGDGnTcCIiIiIix3OorJaixoHWg7WLoUirhAX5cem4ZKaObtmC6HK72bjzMBt3HqZX9xAuGp7A6GO0IB4uq+Wpd7dwoKgagMTYEO646iwiQ/2NeDvShTQNgQfIyC5RMauLa3Uxa+fOnfz85z8H4Kc//Sl9+vTB5XKRlZXFxx9/zIwZM3j77bfp169fu4UVEREREWmS2bgqBCBVw99FTskPWxC/2JTH+sxCHE43eYeqeHXhDt5Ztpfzzu7J+cM8LYh78suZ9/4WKmvsAAzr141bLkvF30+rIqX9dY8MpFt4AEXldWRkFzN1dKLRkcRArS5mzZ07l+DgYP73v/8RHx/f4rHbbruNq666iqeffpqnnnqqzUOKiIiIiPxQU4thSKBNv6EXOQNJcaH88pLB/GRiX5ZvPsBX3+RTVtVAVa2dT9fmsHBdLmm9o8jcV4rD6QJg6uhErprYB7PmFomXmEwm0npHs+zb/ezKK6fe7sT/NDcvkI6v1Xulbty4keuuu+6oQhZAXFwc1157LevXr2/TcCIiIiIix+Jyudme4xn+Pjg5Uj9Qi7SBsGA/LhuXzGO/Gcevf5TavKmCy+1my95iHE4XFrOJG6cN5Kfn99WfO/G6plZDh9PFztwyY8OIoVq9MquhoYHg4ODjPh4SEkJdXV2bhBIREREROZGcwkqq6xwADFaLoUibslrMjBoUy6hBsew7WMHSjfms316Iv83Cb65I0585McygpEgsZhNOl5uM7GKG9ok2OpIYpNXFrEGDBvHJJ59w/fXXY7W2fJrdbufjjz+mf//+bR5QREREROSHmloMQcPfRdpTclwYv7x0MNdP7o8Jk+ZjiaEC/a306RnGrvxyMrJKTv4E6bRa3Wb4q1/9iq1bt/Kzn/2Mzz//nJ07d7Jz504WLlzIz372M7Zt28ZNN93UnllFRERERADI3OdpMfQMBA40OI1I5xfgZ1UhS3xCam/PaqyDJTUUldcanEaM0uqVWRdddBEPPPAAjz/+OH/4wx+aj7vdbvz9/bn33nuZOnVqe2QUEREREWnWYHeyO78c0C6GIiJdTVpKFAtWZAGQkV3CxLOPnustnV+ri1kA119/PZdccglr164lPz8ft9tNQkIC48aNIyIiop0iioiIiIh8b3d+efOOamoxFBHpWpLiQgkJtFFVa2dblopZXdUpFbMAIiIimDZtWntkERERERE5qaZ5WSZgYJKKWSIiXYnZZCI1JYr1mYVk5pTidLmwmFs9QUk6Cf0XFxEREZEOpWleVnKPUIIDbAanERERb0tL8bSY19Y7yDpQYXAaMYKKWSIiIiLSYVTWNJBbWAnAYM3LEhHpklJTvv/7X7sadk0qZomIiIhIh7E9pxR348cqZomIdE0RIf706h4CeIbAS9fT6mKWy+VqzxwiIiIiIifV1GLoZzXTNz7c4DQiImKUplbDfQUVVNXaDU4j3tbqYtaPfvQjXn/99fbMIiIiIiJyXG63u3n4e/9eEdisajIQEemqmopZbr7fGES6jlZ/B7Bv3z4CAwPbM4uIiIiIyHEdLqulqLwOUIuhiEhX1zchAj+bp6ShuVldT6uLWenp6SxevJiGhob2zCMiIiIickxNLYYAg5MjDUwiIiJGs1nNDEz0/FuQkV2M2+0+yTOkM7G29sSBAwfy+uuvM2HCBIYMGUJ0dDRmc8tamMlk4pFHHmnzkCIiIiIi2xrbSEKDbCQ0Dv4VEZGuKy0lii17iymramD/4Wr929CFtLqY9dxzzzV/vGrVqmOeo2KWiIiIiLQHl8vNjhzPyqxBSZGYTSaDE4mIiNHSekcDuwHProYqZnUdrS5m7dixoz1ziIiIiIgcV05hJdV1DkDzskRExCM2MpBu4QEUldeRkV3M1NGJRkcSLzmtLWBcLhdFRUWanyUiIiIiXnHkTlWalyUiIuDpDmva1XBXXjn1dqfBicRbTqmYlZOTw+9+9zuGDx/OhAkT2LRpE2vXruUnP/kJGzdubK+MIiIiItLFNQ1/9/wWXjtsi4iIR2pKNAAOp4uduWXGhhGvaXUxa9++ffzkJz9hw4YNTJgwofm4xWIhKyuLm266ie+++649MoqIiIhIF1Zvd7I7vwxQi6GIiLR05BzFjOxig9OIt7S6mPXkk08SEBDAZ599xl//+tfmbS9HjRrFZ599Rrdu3Xj66afbLaiIiIiIdE178stxOD3fe6rFUEREjhQUYKVvfBgA27JLTnK2dBatLmatW7eOa6+9lujoaEw/2D0mNjaW6667joyMjDYPKCIiIiJd27bGeVkmEwxMUjFLRERaSu3taTUsKK6huLzO4DTiDa0uZjU0NBAWFnbcx202G/X19W0SSkRERESkSdPw9+S4MIIDbAanERERX9M0BB7UathVtLqYNXDgQL788stjPuZwOPjoo48YMGBAmwUTEREREamsaSC3sApQi6GIiBxbUlwoIYGeX3ZkqNWwS2h1MevWW29lzZo1zJw5k3Xr1gGwf/9+li5dyowZM8jMzOQXv/hFuwUVERERka5ne05p88epGv4uIiLHYDaZSG1cnZW5rxSny2VwImlv1taeeP755/Pwww/zyCOP8OmnnwLwwAMP4Ha78ff3595772XKlCntFlREREREup6mFkM/q5k+8eEGpxEREV+VlhLF+sxCausdZB+opG+C/s3ozFpdzAK48sormTx5MqtXryYvLw+Xy0V8fDzjxo0jMlLLvkVERESk7bjdbrZle1Zm9e8Vgc3a6qYCERHpYlJ/MDdLxazO7ZSKWQAhISFMnjyZkpISzGazilgiIiIi0i4OldVSXOHZlWqwWgxFROQEIkL8SYgJIf9wFVuzSrhiQm+jI0k7OqVi1t69e3nqqadYtWoVtbW1AISGhnLhhRdyxx13EBcX1y4hRURERKTrydz3/bwsDX8XEZGTSesdRf7hKvYVVFBVa28eCi+dT6uLWVu3bmXGjBnY7XbOPfdcEhMTcbvdZGdn89FHH7FixQreeustEhMT2zOviIiIiHQRTfOyQoNsJHQPMTiNiIj4urSUKBatz8WN59+QUYNijY4k7aTVxazHH3+ckJAQ3nzzzaMKVrt27WLGjBnMnj2bZ555ps1DioiIiEjX4nK52dG4k+GgpEjMJpPBiURExNf1S4jAz2amwe4iI0vFrM6s1VM0N2/ezIwZM4658qp///7MmDGDtWvXtmk4EREREemacgorqa5zAJCqeVkiItIKNquZgYmetvSM7GLcbrfBiaS9tLqYFRYWhtPpPO7jwcHBBAQEtEkoEREREenamloMQcPfRUSk9dIadzUsq2pgf1G1wWmkvbS6mHX99dfz2muvsWfPnqMeKyws5N///jc//elPTznAJ598wiWXXMLQoUOZNm0aH3zwwQnPr66u5sEHH2T8+PEMGzaMm2++mX379rU4x+FwMHfuXM477zzOOussrrvuOrZs2XLUtZYsWcL06dMZOnQo559/Pk899RQOh+OU34OIiIiItK2m4e+xkYFEh+sXpiIi0jppvaObP87IKjnBmdKRHXdm1qxZs446Vl9fzxVXXMGECRNISUnBZDKxf/9+VqxYgb+//ym/+GeffcbMmTO54YYbSE9P54svvuDee+8lICCAqVOnHvM5d955J1u3buWee+4hODiYp59+mhkzZvDpp58SGhoKwMMPP8yCBQuYOXMmPXv25NVXX+XGG2/kww8/pFevXgB8/vnn3HHHHVx99dXcc889ZGRk8M9//hO73c7MmTNP+b2IiIiISNuotzvZnV8GwOAUrcoSEZHWi40MpFt4AEXldWzLLmbqaG1S1xkdt5i1YMGC4z7pq6++4quvvmpxrKamhhdeeIE//OEPrX7xOXPmMG3atObC2YQJEygvL+epp546ZjFr48aNLF++nJdeeolzzz0XgBEjRnDhhRfy1ltvccstt5Cfn8///vc/HnjgAa699loA0tPTmTJlCi+//DIPPvggbreb2bNnc9lll/Hggw8CMHbsWMrLyzX3S0RERMRgu/PLcDg9c04GJ6mYJSIirWcymUhLiWLZdwfYmVdOvd2Jv81idCxpY8ctZu3YsaNdXzgvL4/c3FzuuuuuFsenTJnCwoULycvLa15F1WT16tUEBwczfvz45mNRUVGMHDmSFStWcMstt7Bu3TqcTidTpkxpPsfPz4+JEyeybNkyALZt28b+/ft58sknW1xfK7JEREREjNfUYmgywaCkCGPDiIhIh5OaEs2y7w7gcLrYlVfGkCNaD6VzaPXMrLaWlZUFQEpKSovjSUlJAGRnZx/zOUlJSVgsLauqiYmJzednZWURHh5OVFTL3+IlJSVx4MAB6urq2LlzJwBWq5Vf/vKXpKWlMWbMGObOnYvL5WqbNygiIiIipyUz2zPjJKVHGEEBNoPTiIhIRzMoKRKzyQRoblZnddyVWcfywQcfsHr1ag4fPnzMoo/JZOL1119v1bUqKysBCAkJaXE8ODgYgKqqqqOeU1VVddT5Tc9pOv9E54BngHxJiedmvv3227niiiu4+eab2bBhA88//zwWi4Xf/e53rXoPIiIiItK2KmoayD3k+b5ucHKkwWlERKQjCgqw0ic+jN355WRkFwP9jI4kbazVxaw5c+bwwgsvYLPZiI6Oxmw+s0Vdbrf7hI8f6/onek7T+Se7rslkwm63A3DxxRdz5513AjBmzBgqKip46aWXuPnmmwkIaP2uOdHRRxfPTiQmJvSUzhc5E7rfxJt0v4k36X7rnHZ8u7/543FnJfjMf2dfySFdg+438abOer+NTuvB7vxyCoprcFstdI8MMjqS0Hb3W6uLWQsWLCA9PZ158+YRGBh4xi/ctPNgdXV1i+NNK6yaHj9SSEgI+fn5Rx2vrq5uXo0VEhJy1DWPvG5ISEjzKq2mIfJN0tPT+fe//82+ffsYOHBgq99LcXEVLteJi2hNYmJCOXy4stXXFjkTut/Em3S/iTfpfuu81m7xFLP8bGaig20+8d9Z95t4k+438abOfL+lxH6/6GTFxlzOOzvewDQCp3a/mc2mEy4cavXyqqqqKqZMmdImhSz4flZWbm5ui+M5OTktHv/hc/Ly8o5afZWTk9N8fu/evSkrK6O8vPyocxISEvDz8yM5ORmAhoaGFuc0rdgSEREREe9zu91k7vOMg+jfKwKb1bDxriIi0sElxYYSEuiZu5iRrblZnU2rv0OYMGEC69ata7MXTkpKIiEhgUWLFrU4vnjxYpKTk+nZs+dRz0lPT6eiooI1a9Y0HyspKWHjxo2MGzcOoPn/P//88+ZzGhoaWLZsWfNjw4cPJzAwkM8++6zF9b/66isiIiLo06dP27xJEREREWm1Q2W1FFfUAzA4KeokZ4uIiByf2Wxqnr2Yua8UpzZ761Ra3Wb4wAMP8Itf/IK7776biy66iOjoaEyNuwMcaeTIka1+8dtvv51Zs2YRHh7OxIkTWbp0KQsXLmTOnDmAp1CVm5tL3759CQkJYeTIkYwaNYq77rqLmTNnEhERwbx58wgNDeXaa68FID4+nunTp/PQQw9RU1NDUlISr776KhUVFfzqV78CPK2Gt99+O48//jjh4eGcf/75rFq1ivfff5/77rsPm0275oiIiIh4W+a+0uaPNfxdRETO1JDe0WzYfojaegfZByrpmxBudCRpI60uZh04cIDKyko+/fTTo1Y0gWdZuMlkYvv27a1+8SuvvJKGhgZeeeUV3nnnHXr16sXs2bO5+OKLAVi2bBmzZs1i/vz5jB49GoCnn36aRx99lMceewyXy8Xw4cOZO3cu4eHf35R/+9vfCAsL48UXX6SmpobU1FReffVVkpKSms+5+eabCQsL47XXXuM///kP8fHx/PWvf+Waa65pdX4RERERaTuZjW0gYUE2Erqf2gY7IiIiP5Sa8v0q34zsYhWzOhGT+2Tb/zW66qqryMrK4tprryU5ORmr9dh1sOnTp7dpwI5AA+DFV+l+E2/S/SbepPut83G53Pz+qZXU1DsYPTiWWy9PNTpSM91v4k2638SbusL99v/+tYH8w1X07hnGn2eMMDpOl9aWA+BbvTJr9+7d/Pa3v+Xmm29u7VNEREREuhxXxSFc5Qex9hpqdJQOJaewkpp6BwCDk9RiKCIibSOtdxT5h6vILqigqtbePBReOrZWD4CPi4vDbNaOMiIiIiLH43a7qVv9BrULn6R2ydO4qrR7UmttO2KnqcHJGv4uIiJtI62x1dDtpnnHXOn4Wl2d+tWvfsXrr7/Onj172jOPiIiISIfiqqvE7fbskOSuLMJ5cBcAjuyNVL9zHw1bFuF2OYyM2CE0/YARGxVEdHiAwWlERKSz6JcQgZ/NU/rIyFYxq7NodZvhjh07MJlMXH755fTq1Ytu3bphsVhanGMymXj99dfbPKSIiIiIL3I31FD78aOYI3oQcP4tmMNiCP7p36lf+xaOrA1gr6N+3X+x71qFf/oNWOP6GR3ZJ9XbnezZXw5oF0MREWlbNquZgYmRbNlbzLbskubN66Rja3Ux66uvvsJisRAXF4fdbqegoKA9c4mIiIj4NLfT4WklLN2Pq3Q/9rh++A2Zgjk4ksCLbsORfy51q/+Nu7wQV0k+tR89jLX/BPzH/BRzQKjR8X3K7rwyHE7PZjqpajEUEZE2lpoSxZa9xZRW1nOgqJr4GO2Y29G1upj15ZdftmcOERERkQ7D7XZTt/J1nPszAbAmn4MtdVKLc6wJaQRf9RANmxfS8O3H4LTj2LUSR843BE75g1ZpHSFzXykAJhMMTIwwNoyIiHQ6TXOzALZmlaiY1QlooruIiIjIKWr49mMcu1YCYI5JIeCCWzEdY6Mck8WG/zmXE/yTh7E07m5oMluxRMV7Na+va5qXldIjjKAA7TIlIiJtKy4qiOgwzzzGbdnFBqeRttDqlVkzZsxo1Xnz588/7TAiIiIivs6+ew0NG98HwBTajcApf8Bk9T/hc8xh3QmceieOnG8AEya/oObHnKX7MQdHYfILbM/YPquipoHcQ1WA5mWJiEj7MJlMpPWOYvl3B9iZV0693Ym/zXLyJ4rPanUxKz8//6hjLpeL0tJS6uvriY+Pp18/LZcXERGRzstxYAd1y1/xfOIXRODUuzAHhbfquSaTCVvy8BbH3E47tYvngb0O/zHXYO0zuksNpa1vcPKfJbuaP9e8LBERaS9pKZ5ilsPpYldeGUN6RxsdSc7AGc/McjqdLF26lD//+c/88pe/bLNgIiIiIr7EWXaA2iXzwOUAs4XAyb/DEtnzjK7p2LMOd/lBAOq+fB7LzhUEjP855ogebRHZpx0sqeGZ97eyv6gagB7RQfSJb11hUERE5FQNSorCbDLhcrvJyCpRMauDO+OZWRaLhcmTJ/OTn/yExx9/vC0yiYiIiPgc5/5MqPcUXgLO+yXWnoPO+JrW/ukETLwZU+Puhs79mVS/+2fqv34Pt6P+jK/vqzbuOMTfXvu6uZA1KCmSe687B6tF41xFRKR9BAVY6RMfBkCG5mZ1eK1emXUyycnJvPHGG211ORERERGf4pd6ESZbIK7qEmz9xrXJNU0mE7b+47EmnU391+9hz/wKXE4avv0Y+561BIz/GdbEs9vktXyBw+ni3WV7Wfx1XvOxS8YmMX1Cb8zmrtNeKSIixkhLiWJ3fjkFxTWUVNQR1TgUXjqeNvn1V0NDAx999BHR0VqmJyIiIp2Xrf94/Idd1ubXNfkHE5A+g6ArHsDcLRkAd2URtYvmUrv4n7gbatr8Nb2ttLKef7z1bXMhK9Dfyu9/PJQfn9dHhSwREfGKtCNaCzOySwxMImfqjHczbGhoIDs7m4qKCn73u9+1WTARERERo9V//R6W7n2wJp3tldezdO9N0BX/D/v2L6n/+j1oqMVVXQbWjv2b4x05pTz/0TYqqhsASIwN4bbpQ+ge0TV3cBQREWMkxYYSEmijqtZORlYx5551ZrMvxThntJsheGZm9e7dm0svvZTrrruuzYKJiIiIGKkh4wsavv0YTCYCzr8FW9+xXnldk9mMX+pFWFNGUL/uf/gNmYLJ/P1ieldNeat3UDSa2+1m4fpc3lu+F7fbc2zC0B5cP6k/ftoSXUREvMxsNjE4OZIN2w+Rua8Up8uFxax5jR3RGe9mKCIiItLZOHK+o37tmwCYAkKxxPb1egZzUASBF9za4pirpozqt2dhTRqG/+irfbqoVVNn51+fbufb3UUA2KxmfjapPxP0W3ARETFQWko0G7YfoqbeQXZBJX21k26H1GYD4EVEREQ6A+fhfdQufRbcbrD6ETj1TsyhMUbHAqB+w7vQUItj9xocOd/hP+oqbAMntli55QtyCyt5dkEGh8pqAYiJCOC2K4aQFBdqcDIREenqUlOimj/OyCpWMauDOm4x6+mnnz6tC/72t7897TAiIiIiRnJVFVO7aA44GgATgRf8BktMitGxmvkPvwLqq3HkfAsNNdSvmo9950oC0mf4TM5VWwr49+Kd2B0uAM7u241fXTqIoACbwclEREQgMtSfhJhg8g9Xsy27hCsm9DY6kpyGMy5mmUwtd59RMUtEREQ6IndDDbULn8RdWw6A/7jrsCYPMzhVS+bQbgROuQNHzrfUrXkTd2URrsPZ1Cz4G7bB5+M/8seY/IMNyWZ3OHlzyW5WbD4AgMkEV57bm2ljkjCbtFuhiIj4jrSUaPIPV5NVUEFVrZ2QQP3CpaM5bjFr6dKlJ31yVVUVc+bMYdmyZVit1uPueCgiIiLiy9wuB7VLnsFVuh8AW9pk/NImGZzq+KxJwwiOH0zDNx/TsGUhuJzYM7/Ekb0R/zHXYOs3zqt5DpfV8uyCDHIKKwEIC7Jx64/SGJQU6dUcIiIirZHaO4pFG3JxuyFzXwmjBsUaHUlO0XGLWfHx8Sd84meffcajjz7KoUOHOOecc/jrX/9K//792zygiIiISHtr+OZjnPu3AWBNPgf/MdcYnOjkTFZ//EddhbX/OOpX/Rvnge24aytw5G/zajFr854iXvo4k5p6BwB948P5zRVpRIb6ey2DiIjIqeifEI6fzUyD3UVGtopZHdEpD4DPy8vjwQcfZPXq1YSHh/PQQw9x1VVXtUc2EREREa/wGzoFZ+Fu3A21BFxwq88NVD8RS0RPAi+5B8fe9TR88xH+o3/a4nG3y4nJbGnz13W53HywKotP1uQ0H5s8shdXTeyD1dJxvn4iItL12KwWBiZGsmVvMduyS3C73UeNUBLf1upilt1u58UXX+Sll16ivr6e6dOn88c//pHISC0fFxERkY7N5BdE4NS7wF6HydrxVhSZTCZsfcdg7TMKk+n7QpLzUBa1S5/Ff+x1WJOGtdk36hU1Dbzw4Ta255QC4O9n4aaLBzFyYPc2ub6IiEh7S02JYsveYkor6zlQVE18TIjRkeQUtKqYtW7dOh588EGys7Pp168ff/nLXxgxYkR7ZxMRERFpN86ifZjDumPyCwLAZLGCpWN/I3tkIcvtclG36nXclUXULf4nlsSzCBj3M8xhMWf0Gnv2l/PcBxmUVtYD0LNbMLdPT6NHtDGD50VERE5HWkpU88cZ2SUqZnUwJyxmlZSU8Mgjj/Dpp58SEBDA3XffzS9+8Qus1lPuThQRERHxGa6yAmo+/QfmoAgCp96JObSb0ZHanglsg86nfsM7UF+NM3cz1fu343fOZfgNnYrJcmo7N7ndbr7YlM/bX+7B6XIDMGZwLDOmDiDAT98biohIxxIXFUR0WADFFXVkZJcwZVSi0ZHkFBz3O4+33nqLuXPnUlFRwQUXXMCf//xnevTo4c1sIiIiIm3OVVtBzcInob4aV301zsI9nbKYZTKZ8Rs0EWvyOdSvfxvHrlXgbKDh6/dw7FqNf/oMrPGDW3WtugYHry3cwYbthwCwmE1ce1E/zh8WrxkjIiLSIZlMJtJ6R7H8uwPsyiujwe7Ez9b2MyalfRy3mPXggw82f/zll1/y5ZdfnvRiJpOJzMzMtkkmIiIi0sbcjgZqP5+Lu/IwAH7Dr8DWd4zBqdqXOTCMwIm/wjFgAvWr/o2rNB9X+UFqP30Ma58x+I+9BnNQxHGff6CommcWbKWguAaAqDB/fnNFGn16hnvpHYiIiLSPtBRPMcvucLErr4y03tFGR5JWOm4x64orrtBv2kRERKTTcLtd1H35Aq5DWQBY+43H75wfGZzKe6w9BmD58V+xb11C/aYPwFGPY+86LN0S8Tvr4mM+Z31mIa8t3EG93QlAanIkt1yeSmiQnxeTi4iItI9BSVGYTSZcbjcZ2SUqZnUgxy1mPfroo97MISIiItKu6te/jWPfJgAsPQcRcO4vutwv7kxmK35nTcPaZxT1a9/CVXoAW9rko85zOF28/eUevtiU33zs8vHJXD4+BbO5a33NRESk8woKsNI7Pow9+eVkZJcYHUdOgaZ1ioiISKfXsO0L7FsWAWCO6EngpN96di/soswh0QRO+i3u+uoWXwf77jVU527n5f0DyDzQAEBwgJWbL0tlaB/9tlpERDqftJQo9uSXc6CompKKOqLCAoyOJK1gPvkpIiIiIh2XI+c76te8CYApMIzAaXdi8g82OJVvOPLr4K6vpnr1f7DsXcn1Nf9mlN8ekmJD+MuNI1XIEhGRTist5ft/47Q6q+NQMUtEREQ6P4sNLH4ETvkD5tAYo9P4HJfbzZJ1e9hdHQpAiLme60PWcHfUEiJdRQanExERaT/JcaEEB3hWKWdkFRucRlqr666vFxERkS7BmnQ2QZfdh7u2DEv33kbH8TnVdXZe+jiTLXuLgYsYEZDHNeHfYLNX4C7cTc17f8E2ZDL+w6/AZFPrhYiIdC5ms4nUlCg2bD9E5r5SnC4XFrPW/fg6/RcSERGRTsftcrb43BKTjDXxbGPC+LCcg5U8+OrXjYUs6B4ZxGXXXUXk9bOxDZkCJjO4Xdi3LKL67VnYs77G7XYbnFpERKRtNbUa1tQ7yC6oNDiNtIaKWSIiItKpuF0Oahc+Sf2mD1V4OQ63282KzQd4+N+bKCqvA+Cc/jH8vxtG0qt7CCa/QALGXkvQlX/FHNvX85zqUuq+eAZn4R4Dk4uIiLS91JSo5o/VatgxqJglIiIinYbb7aZ+5es492+jYdMC7NuWGh3J5zTYnbz62Q5eW7gDh9OF2WTip+f35fbpaQQFtJxAYYlOJOjy+wg49yZM/iFYk4ZhjetnUHIREZH2ERnqT0KMZ1OUbRoC3yFoZpaIiIh0Gg3ffYJ950oAzDEp2AZMMDiRbyksreHZBRnkHaoCIDzYj1//KJUBiZHHfY7JZMY28FysyefgdjlaPNaQsQRzRA+sCWntmltERKS9paVEk3+4mqyCCqrr7AQH2IyOJCegYpaIiIh0CvY9a2n4+j0ATCHRBE65A5PN3+BUvuPbXYd5+dPt1NZ7ClL9E8L59RVpRIS07mtkCgjBdMTnztL91K/9L7idWHuPxH/sdZiDj18UExER8WWpvaNYtCEXtxsy95UycmB3oyPJCaiYJSIiIh2eo2Andcv+5fnEL5DAaXdhDoowNJOvcLpcvL8ii4XrcpuPTR2VyJXn9cZqOf2JE66yg2C1gd2JI+trHHlb8R8+HVvaRZjMlraILiIi4jX9E8Lxs5ppcLjIyCpWMcvHqZglIiIiHZqrrIDaxf8ElwPMFgIn/Q5LZLzRsXxCeXUDL3yYwY7cMgAC/S3cdPFghg+IOeNr21KGY+nem/q1b+HI2gD2OurXvYV91yr802dotpaIiHQoNquFAYmRbM0qJiO7BLfbjclkOvkTxRAaAC8iIiIdlqu2gpqFT0J9NQAB596ENX6wwal8w668Mv766obmQlZCTDD/74aRbVLIamIOjiTwotsIvHgmpvBYAFwledR+9DB1y/+Fq07bm4uISMeR1rirYWllPQeKawxOIyeiYpaIiIh0WPZtX+CuPAyA3/ArsPUfb3Ai47ndbhZvyOWx/3xLeVUDAOPS4rh/xghio4La5TWtCWkEX/UQfiOuBItnYK5950pq3vkzbnt9u7ymiIhIW0vrHdX88basYgOTyMmozVBEREQ6LL/hV+B2NOCurcTvnB8ZHcdwtfUOXv1sOxt3egp8VouJ6yb157yzerZ7q4TJYsP/nMux9R1D3eo3cOZtwdZ/vIbwi4hIhxEXFUR0mD/FFfVszS5h8qhEoyPJcaiYJSIiIh2WyWQmYMw1uN2uLj/XIv9wFc8syKCwxNMWER0WwG3T00jpEebVHOaw7gROvRNnzndYftDy2bBjObbeozD5BXo1k4iISGuYTCZSU6JZsfkAu/LKaLA78bNpUxNfpDZDERER6VDsu1bTcDivxTGTqWt/S7N220Eemr+xuZA1pHc0f/nFSK8XspqYTCasycNarMpy5HxL/YpXqX57Fva963G73YZkExEROZEhja2GdoeLXXllxoaR49LKLBEREekwHLnfUbf8ZQ6sDcR/0u+w9hxkdCRD2R0u/rt0N199ux8AE/CjCSlcOi4Zs4+tVLPv3QCAu6aMuqXPYdmxgoDxP8ccEWdwMhERke8NSorCbDLhcrvJyC4hrXe00ZHkGLr2rzFFRESkw3AW7aP2i+fA7cbtdGCydu1ZTMXldTz65qbmQlZIoI07rz6Ly8en+FwhCyDg/FsImHgzpoBQAJz7t1H97p+p3/g+bkeDwelEREQ8ggKs9I73rGzOyC4xOI0cj1ZmiYiIiM9zVRVTu2guOOoBE92vuJOaqN5GxzJMRlYxL36cSVWtHYCUHmHcdkUa0eEBBic7PpPJhK3/eKyJZ1H/9XvYty8Dl4OGbz7CvnstAekzsPYaYnRMERER0lKi2JNfzoGiakoq6ogK891/X7sqrcwSERERn+ZuqKF24RzcNWUA+I+7juABo4wNZRCX282Hq7KZ8/bm5kLWBefE86frz/HpQtaRTAEhBEy4gaArHsDcLQkAd+Vhahc+Qf03HxqcTkREBNJSvm8t1Oos36RiloiIiPgst8tB7ZJncJXmA2BLm4Rf2iSDUxmjqtbO3Hc28+GqbNyAn83MLZcN5meTB2Czdrxv6SzdexN0xV/wH/8zsHkKcU0tiCIiIkZKjgslOMDTyKZilm9Sm6GIiIj4JLfbTf3K+Tj3bwPAmjQM/zHXGpzKGNkFFTy7YCvFFfUAxEUFcfv0NOJjQgxOdmZMZjN+qRdhiR+MY896bIPONzqSiIgIZrOJ1JQoNmw/xPZ9Jbhcbsxm35tH2ZWpmCUiIiI+yb5lEfadKwAwx6QQcMGvMZk73gqkM+F2u1n23QHe+mIXDqcbgBEDu/OLaQMJ9O8838ZZInpiGTG9xTH7zpVgsWHrO8agVCIi0pU1FbOq6xxkF1TQJz7c6EhyhM7zXZCIiIh0KtakYTRs/wpcTgKn3IHJ1rV2L6xvcDL/8x2s3VYIgMVs4ifn92XSiARMPrhbYVtyHtpL3crXweXAeTgb/9E/xWS2GB1LRES6kB/OzVIxy7eomCUiIiI+yRwRR9CP/gz11ZiDIoyO41UHS2p4ZsFW9h+uBiAixI/fXJFGv4QIY4N5idteDzZ/qHdg3/o5rqIcAi66DXNgmNHRRESki4gM9Sc+Jpj9h6vJyC7mR+kpRkeSI3SttfoiIiLi01w1ZbhdrubPzYFhmCN6GJjI+zbtPMTfXvu6uZA1MDGCv/xiVJcpZAFY4wcTPP2vmKN7AeAs2EHN+3/FeSjL4GQiItKVpKVEAZB1oILqOrvBaeRIKmaJiIiIT3DVVlDz0SPULZnnWZnTxTicLv735W6eWZBBXYMTgEvGJnH3NWcTHuxncDrvM4fFEPSjP2PtOxYAd3UJNR89QsOO5QYnExGRriKtt6fV0O2GzH2lBqeRI6mYJSIiIoZzOxqoXfxP3BWHcOR8i333GqMjeVVZVT2Pv/Utn2/IAyDQ38rvfjyEH5/XB0sXG3p/JJPVn4Dzb8F/3PVgsoDLQf2KV6lb8Rpup35DLiIi7at/Qjh+Vs+/wxlZxQankSNpZpaIiIgYyu12UffVi7gK9wBg7TcO26CJxobyop25pTz34TYqqhsASOwewm3T0+geGWRwMt9gMpnwS5uEOTqRui+ewV1bgX3HMkyh0fgPu8zoeCIi0onZrBYGJEayNauYjOwS3G53p9+EpaPour/qExEREZ9Qv/4dHNkbAbD0GEjAuTd1iW8U3W43C9fl8I+3vmsuZKUP7cF9Px+uQtYxWHsMIOjKBzF374M5JgW/IVOMjiQiIl1A09ys0sp6DhTXGJxGmmhlloiIiBimIfNL7FsWAmCO6EHg5N9hsnT+b09q6hz869NMvt1dBIDVYuZn/7+9Ow+PqrzfP/4+s2Wyk7CHhCxsAgFZBGRREBQErQpuVVu1dWmr1l9raZW231attGJt0VbbalXcrYI7yqoiiiKiArJqSEjCDlkI2WY75/fHkIExrBpystyv6+JK5sw5M3fG4+TkM8/zecb35MxT02xO1rQ54lOI+94dWL5qDNfBPmJmdTlGbHKrKIKKiEjjys1JhXfC36/LL6FLu3h7AwnQBEZmzZ07l/POO4/+/fszceJEXnvttaPuX1VVxV133cXIkSMZOHAgN9xwA1u2bInaJxgM8sADDzB69GhOPfVUrrzyStasWXPExwwGg1xyySVce+213/0HEhERkeMSLFqNb9kzABixScSeextGTMu/QCzatZ+7n/o0Ushql+zldz8crELWcTKcbhxxyZHbZnU51a/cSe17j2IFW9/CASIicnJ1So2jbVIMAGsLSm1OI3VsLWa9/fbbTJ06lVGjRvHwww8zdOhQbr/9dubPn3/EY375y18yf/58pk6dyowZM9i1axdXX301+/fvj+wzffp0nnzySW644QZmzpyJ0+nk2muvpbi4+LCP+eijj/Lll182+M8nIiIihxfaW0jN4n+Flwdyeoid8AscSe3tjnXSLftyB9Of+YzdZTUADOjejj/+aAiZnRJtTtZ8+T5+Aau6nGDex1S/Ph2zYo/dkUREpAUxDIO+2eFVDTcVl+MPhGxOJGBzMWvmzJlMnDiRadOmccYZZ3DXXXcxceJEHnzwwcPuv3LlSt5//31mzJjB5MmTGT9+PE8++ST79+/nhRdeAGDr1q28+OKL3H777fzgBz9g7NixPP744yQnJ/PYY4/Ve8yNGzfyyCOP0L59y7+AFhERaSpCu/Ig6AMMvON+grNDjt2RTqpAMMRT8zfy+FsbCARNDAMuHp3DLRf3I97rtjtesxYz4iqcnU8BwCwpourVOwkW60NKERFpOHV9swJBk6+2ltsbRgAbi1nFxcUUFRUxfvz4qO0TJkwgPz//sKOoli1bRnx8PCNHjoxsS01NZciQISxduhSA5cuXEwqFmDDhYFNQj8fDmDFjIvvU8fv9/OY3v+GHP/wh2dnZDfnjiYiIyFF4+o7DO+5nxIy4EnfWYLvjnFR7ymv48zOf8/6q7QAkxrn51eUDOG94Fg71ePrOHLFJxJ73a9x1DeF9VdTM+zu+L+ZiWZa94UREpEXok5US+Z29Nl9TDZsC24pZ+fn5APWKSJmZmQAUFBQc9pjMzEycTmfU9q5du0b2z8/PJzk5mdTU1HqPu337dmprayPbHn74YYLBILfeeut3/4FERETkhLi7DcOTe47dMU6qNZv3cveTn1K4K9wOoXuXZO780VD6ZKUe40g5EYbDiXf4FXjH/hScHsDC/+kcahc9hOWvsTueiIg0c3FeNzlpSQCsU9+sJsG25YLqelwlJCREbY+PDzd+raysrHdMZWVlvf3rjqnb/2j7QLiBvNfrZc2aNTzxxBM899xzeDyeevufiLZt6z/f0bRvr74Y0nh0vklj0vkmR2JZFiULnyA2M5f4U4Y1yGM25fMtZFq8sGAjLy7+KrLtgjNz+NH5fXE5bV9/p+Vqfw6+nB7smnMfwfJdBLd8hu/NnXS89A48bb9bg/2mfL5Jy6PzTRqTzrfjMzS3M3nb9rFtbxWG20W7NrF2R2qWGup8s62Ydaxh3w5H/Qu9ox1Tt/+xHtcwDHw+H3fccQfXXHMN/fv3P460R1dSUolpHt8w9vbtE9mzZ/+xdxRpADrfpDHpfJOj8X0xF//Kt6lYOQ/v2J/g7n76d3q8pny+VVT7efSNdazfUgZAjMfJjyaewtDeHSkrrbI5XSvgaIv3wj9Q8+4jhIrXEKyqoKzCj8P89udLUz7fpOXR+SaNSefb8cvueHDF5aUrizhDqxCfsBM53xwO46gDh2wrZiUmhqtxVVXRF3V1I6zq7j9UQkICW7durbe9qqoqMhorISGh3mMe+rgJCQnMnDkT0zS56aabCAaDQLgIZlkWwWAQp9OJoR4WIiIiDSKQtxz/p3MAMBJScaadYnOik2fztn3867W1lO33AdC5bRw3T+5HWrv4YxwpDcmIiSd2wi/wf/4azrTeOBLa2h1JRESauexOScR7XVTVBvmyoFTFLJvZVsyq65VVVFREr169ItsLCwuj7v/mMR9//DGWZUUVmwoLCyP75+TkUF5ezr59+0hOTo7aJz09HY/Hw4IFC9i2bRsDBw6s9xx9+/bl6aefZtiwhpkCISIi0poFd35F7ZIDqwl7Yok99zYccW1szXSyfFVczl9f+ILQgdHaw/p05Jpze+H12Ha51aoZDgcxp02J2maZQfwrX8XTfyKG98TaRIiISOvmcBj0zU5lxYbdbNhSimlaOBwaBGMX25o2ZGZmkp6ezvz586O2L1y4kKysLNLS6lc5R40aRUVFBR999FFkW2lpKStXrmTEiBEAka8LFiyI7OP3+1myZEnkvn//+9/MmTMn6l/fvn3p379/5HsRERH5bszyndQseBDMIBhOYs/5Oc7ULnbHOilMy+L5RV8RMi2cDoOrzunJjd/ro0JWE+Nb/iL+VW9R9epdhEqK7I4jIiLNTN/s8AIuVbVBCnZU2JymdbP1Cuvmm29m2rRpJCcnM2bMGN555x3mzZvHzJkzgXChqqioiO7du5OQkMCQIUMYOnQot912G1OnTqVNmzb885//JDExkSuuuAKALl26MHnyZO655x6qq6vJzMxk1qxZVFRUcP311wNEjQSrEx8fj9PppF+/fo33AoiIiLRQZk0F1fP/Dr7w1H/v6B/h6tLH5lQnz8drd1K0O9zS4Hsjsxg3ON3mRPJNlhnCqgr3MbP276H6tXvwjv4R7u7DbU4mIiLNRW72wWnrawtK6dYl+Sh7y8lkazFrypQp+P1+nnjiCWbPnk1GRgYzZsxg0qRJACxZsoRp06ZFTft76KGHuPfee7nvvvswTZPBgwfzwAMPRE0pvPvuu0lKSuLRRx+lurqavn37MmvWLDIzM235OUVERFoTK+inZuE/sCp2A+AZdCHunqNsTnXy+AMhXlmaD0BygocJQ7ranEgOx3A48Z59M/7V8/B/OhtCfmrffYTQ7nxiTr8cw6FRdCIicnQpiTF0aR/Ptj1VrC0o4cJR9dsjSeMwrGMt/yfHpNUMpanS+SaNSeeb1PF98hL+1W8D4OoxAu+YGxp8YZWmdL699fEWXn4/XMy6duIpnKmGsE1ecOtaat75d2TkoLNzL7zjbsIRd/hP2JvS+SYtn843aUw6307ci+9+zYIVxRgG/OP/nUG81213pGajIVcztK1nloiIiLRMnoHfw5meGy4QnPmjFr1CcEW1n7c+Di9e06V9PKP6dbY5kRwPV3ou8VPuxNE2PGo/tGMT1a/eSWj3ZnuDiYhIk1c31dCyYMOWMpvTtF4qZomIiEiDMjyxxJ77C2In/ALD2bI/rXzzwy3U+kMAXHZWd61q1Iw4EtsTd+HvcPUILxBkVZVRPXcGZo0a+oqIyJH1zEjG4wqXUtYWlNicpvVSMUtERES+s+DOr7BqKyO3DYcLwxNrY6KTb2dpNUtWbQOgT1YKuQdWOJLmw3B58I65gZgRPwDDScyQi3HEJtkdS0REmjC3y0nPrm2AcBN4dW6yhzpdioiIyHcS2ltIzdt/wxGfQuzE23AkdbA7UqOYs2QzIdPCIDwqqyVPp2zJDMPAk3s2zi59cLSJniZq+aowYuJtSiYiIk1VbnZb1uaXUlrhY0dJNWnt9LuisWlkloiIiHxrZmUJNfNnQtCHuW8XZuk2uyM1iq+Ky/n8qz0AjMjtRNeOiTYnku/KmZIWVZAMfLWMqpemEdy+0cZUIiLSFB06GnttQamNSVovFbNERETkW7H8NdTMn4lVXQ5AzPDv48oaaG+oRmBZFi+9lweA2+Vg8pk5NieShmZWllD7wZNYNRXUvHUf+1bM1TQSERGJ6Nw2jtSkGEB9s+yiYpaIiIicMMsMUrP4YczSrQC4+56NO3e8zakax6cbd5O/PdwkfPyQDFKTvDYnkobmSGiLd+QPwekCy6Rk0Sxq33sEK+CzO5qIiDQBhmFEVjXcVFSOPxCyOVHro2KWiIiInBDLsvB9+DShrWsBcHYdQMzwK1tFz6hA0OTl9zcDkBjnZtLpmTYnkpPFfcqZxF3wO4z48FSSYN5yql+/B7Nit83JRESkKaibahgImny1tdzeMK2QilkiIiJyQvyr3yKwcSkAjnZZxI77GYajdVxSvPfFNvaU1wJwwchsYmO0lk5L5myfTdyUO/Fm9QPALC2m6pU7CRatsTeYiIjYrk9WCo4DH+StzVffrMbWOq48RUREpEEE8pbjXzEHACOhLbHn/gLDHWNzqsZRVRvgzWUFAHRMjWP0gDSbE0ljcMQm0fmK/8Pd/9zwBn81NfNn4vv8DfXREhFpxeK8bnLSkgBYpybwjU7FLBERETluRkw8uL3gjiX23NtwxLWxO1KjeeujQqpqgwBcMrobLqcuo1oLw+HEe/r38Y77Gbg8gIVZvsPuWCIiYrO6qYbb9lZRWlFrc5rWRVdhIiIictxcGf2Iu+B3xE64FWdqF7vjNJq95TUs/qwYgB7pyQzq2c7mRGIHd7dhxF30B1zZp+E989pW0SdORESOrG9OauR7jc5qXCpmiYiIyFFZoWDUbWfbDFxpvW1KY49XluYTDIWnlF02truKGK2YMzWd2HNuwXAdnF4b2rOFQMFKG1OJiIgdsjslEe8N989cq2JWo1IxS0RERI7ICvqpnnsvvk9fbrX9gQp2VLB8/S4AhpzSgW5pyTYnkqbErN1PzaJ/UrvoIXwr5mCZpt2RRESkkTgcBn2ywqOz1m8pxTRb57WSHVTMEhERkcOyLJPaJY9h7srD/8WbBDYssTtSo7Msi5fezQPA6TC4eEw3mxNJU2OW78DyVQPgXzWXmvl/x6qttDmViIg0lrq+WVW1QQp2VticpvVQMUtEREQOy79iDsH8FQA4O/fC3WuUzYka3+q8EjYVlwMwbnA6HdrE2htImhxXp57ET/kjjpTw6pahrWupevVOQnsLbU4mIiKNoW/2IX2z8jXVsLGomCUiIiL1+Ne/h3/12wA4kjsRO/5WDKfb5lSNK2SazF4SHpUVF+Pi/BFZ9gaSJsuR3CncGD5nCADW/r1Uv34Pga8/sjmZiIicbKlJXrq0iwfUN6sxqZglIiIiUYLbN+Bb9gwAhjeR2Im3YcTE25yq8X2wegc7SsLTx84fkUVCbOsq5smJMdxevONuImbYZWAYEApQ+96j1H70HJYZPPYDiIhIs5V7YFXDzdv3UVUbsDlN66BiloiIiERYgVpqlzwGlglON7Hn/gJHUge7YzW6Gl+Q1z7IB6Btkpdxg7vYnEiaA8Mw8Jw6idiJUzFiEgAIrF2Eb9lzNicTEZGTKTe7LQCWBRu2lNmcpnVQMUtEREQifCtmY1WWABBz+uU4O7TOhufzPymiojr8yerFY3Jwu5w2J5LmxJXel7gpd+Jolwkx8XhOnWR3JBEROYl6ZiTjcYXLK2sLSmxO0zq47A4gIiIiTUNoVx6Bde8A4OzUE3efsTYnskfZfh8LPi0CIKtTIkN7d7Q5kTRHjsR2xF3wO8zyHTiS2ke2W0E/ON0YhmFjOhERaUhul5OeXduwNr+UtQWlWJal9/mTTCOzREREBABHuyw8p00GTyze0T/GMFrnZcJrH+TjD5gAXD62Ow5djMq3ZLg8ONtlRm5bZoia+TPxLX0iXNQSEZEWo26qYWmFL9JzU04ejcwSERERAAyni5hBF+LJPQfDE2d3HFts3V3Jh2t2ADCgezt6dU2xOZG0JP4v3iS0fQMhIFS6ldhzbsGR0NbuWCIi0gBys1Mj368tKCWtXetbPKcxtc6PXEVERCTCsqyo2621kAXw0pI8LMBhGFwypnX2C5OTx917DM6OPQAw9xRQ/cqdBLdvsDmViIg0hM5t40hNigHUN6sxqJglIiLSillBPzVz7yWw+ZN6Ra3WZt2WUtbmlwJw5oA0faIqDc4R14bY82/H3WccAFbtfmre+iv+NfNb/f9/IiLNnWEYkdFZXxWVEwiGbE7UsqmYJSIi0or5P3+D0I5N1L7zb4IFK+2OYxvTtHjp3TwAYjxOLhyVbXMiaakMpwvvqB/iHXM9ON1gmfiW/4/ad/+DFfDZHU9ERL6Dur5Z/qDJV8X7bE7TsqmYJSIi0kqF9m7Bv/ptINz83ZU1yOZE9vl43U6Kd1cCMHFYV5LjPTYnkpbO3XMUcRf+DuNAz6zg5k+ofv1PmBW7bU4mIiLfVu+sFOrWjdFUw5NLxSwREZFWyAoFqV3yOFgmGE68o6/DcDjtjmULfyDEK0vzAWiT4GHCkK42J5LWwtkui7gpd+Ls0gcAs2ybilkiIs1YvNdNTloSEG4CLyePilkiIiKtkH/VW5ilxQB4Bp6Ps22GzYnss2hlMWX7w9O7Jp+RQ4yndRb1xB4ObyKxE3+F59RJeIZcgis91+5IIiLyHdRNNdy2pypyfSENT8UsERGRViZUWoz/izcAcKSm4xn4PZsT2aei2s9bHxcCkN4+npH9OtucSFojw+EkZthlxAw4L2p74KtlWP5qm1KJiMi3kZuTGvleUw1PHhWzREREWhHLDIWnF5ohMBx4R1+P4XTZHcs2b3xYQK0/vNrQpWd1x+EwbE4kEhbY/Am1S/5L1at3EyrbZnccERE5Ttmdkoj3hq+t1mmq4UmjYpaIiEgr4l8zH3PvFgA8p07E2T7L1jx22llazfurtgPQNyslspy2SFMQ3PI5ANa+nVS/ejeB/E9tTiQiIsfD4TDokxW+plhXUIppWjYnaplUzBIREWklLMvC3BueUudo0xnPoAttTmSvOUs2EzItDMKjsgxDo7Kk6fCO/QmewZMBA4I+ahc/jO+Tl7BM0+5oIiJyDHUfkFXVBinYWWFzmpap9c4rEBERaWUMw8A77mcEswbhSGyH4fLYHck2XxWX8/lXewAYkduJrh0TbU4kEs0wHMQMvhBn+0xq3n0E/DX4V79NaG8h3nE/xeHVOSsi0lT1PWS097r8UrqlJduYpmXSyCwREZFWxDAM3N1Px9mxu91RbGNZFi+9lweA2+Vg8pk5NicSOTJX1wHET74TR0o6AKFt66h+5U5CB6YLi4hI05Oa5KVLu3gA1qpv1kmhYpaIiEgLZ1bsIVSqBtJ1Pt24m/zt4SH/44dkkJrktTmRyNE5kjsSd9HvceUMBcCqLKH69emESrfanExERI6kbnRW/vYKqmsDNqdpeVTMEhERacEsy6T2/cepfuUP+D5/A8tq3U1IA0GTl9/fDEBinJtJp2fanEjk+BhuL95xPyPm9MvBMHBlDsCR0sXuWCIicgS5OeFilmlZrN9SZnOalkc9s0RERFqwwIYlhHZsBMCqLm/1Tc7f+2Ibe8prAbhgZDaxMboUkubDMAw8/SfiaJ+Ds11m1P/PodJtOFNV3BIRaSp6prfB7XIQCJqsLSjltFM62B2pRdHILBERkRbK3L8X3ycvAWAktCVm6KU2J7JXVW2AN5cVANAxNY7RA9JsTiTy7bg698JwH5weG9q7heqXf0/NggcxK0tsTCYiInU8bie9MtoAsK6gpNWPjm9oKmaJiIi0QJZlUfvBkxAIj0LynvkjDE+svaFs9tZHhVTVBgG4dEw3XE5dBknL4FsxByyLYOEXVL30W/xrFmCZIbtjiYi0erkH+maVVPjYWVptc5qWRVdxIiIiLVDwqw8JbV0LgLvXmbjSc21OZK+95TUs/qwYgB7pyQzs0c7mRCINx3vWjbi6Dw/fCPrwLX+B6lfvJrQ7395gIiKtXN+ctpHv1+ZrVcOGpGKWiIhIC2NWlVH78fMAGHFtwg2jW7mXl+YTDIWH9182tnur7x0mLYsjNonYsT8hdtKvMZI6AmCWFFL92p+oXfYMlr/G5oQiIq1TWts4UpNiAFhboGJWQ1IxS0REpAWJTC888Mer94xrMWLi7Q1ls4IdFXyyfhcAQ3t3oFtass2JRE4OV3pf4i/5E55BF4LDCVgE1r1D1UvTCBR8Znc8EZFWxzCMyFTDTUVlBIKaAt5QVMwSERFpQYIFKwkVrQbA1X04rswB9gaymWVZvPRuHgBOh8GU0d1sTiRychkuDzGnTSbukj/h7NwLCK9kapZutTmZiEjrlJsdnmroD5p8VbzP5jQth4pZIiIiLYir66m4+0/EiGuDd8RVdsex3eq8EjYVlwMwbnA6Hdq07ib40no426QRe/4deEdfh7NTTzwDJkXusyxLDeJFRBpJ76wU6robrC3QirMNRcUsERGRFsRwefCefjnxl9+L4U2wO46tQqbJ7CXhUVlxMS7OH5FlbyCRRmYYBu5eZxD7vWkYTndkezB/BdWv/JHQrjwb04mItA7xXjc5aUmA+mY1JBWzREREWgDLsqJuG26vTUmajqWrd7CjJLwM9vkjskiIdR/jCJGW6dAFDyxfFb6PnsMs3Ur169Op/eApLF+VjelERFq+uqmG2/ZUUbbfZ3OalkHFLBERkWbOrN1P9at3EjzQK0ugxhfk9Q/yAWiX7GXc4HSbE4k0ES4P7r5ng9MFWAQ2vBduEJ+3vF5RXEREGkZdE3jQVMOGomKWiIhIM+f76HnMvYXUzJ9JaOfXdsdpEuZ/UkRFdQCAKaNzcLt0ySMCYDjdxAy6gPhL7sHZpQ8AVk0Fte/+h5p5f8Os2G1zQhGRlie7cxLxXhcA6zTVsEHoyk5ERKQZCxZ+QTDvYwCcXQfg6Njd5kT2K9vvY8GKIgCyOiUytHdHmxOJND2O5E7ETvo13rNuxPAmAhDaupaq2b/D98WbWKGgzQlFRFoOh8Ogd1Z4dNa6glJMUyNhvysVs0RERJopy1dF7QdPhW94YvGecU1Ub5zW6tUP8vEHTQAuH9sdh14TkcMyDAN3jxHEX/YX3KeMDm8MBfB/+jKhrWvtDSci0sLUTTWsqg2yZed+m9M0fypmiYiINFO+5f/Dqi4HwHv6FTjiU+wN1ARs3V3JsjU7ABjQvR29uuo1ETkWw5uA98wfEXvBb3GkpOHseirOrqfaHUtEpEVR36yGpWKWiIhIMxTcupbApg8AcKbn4up1hs2JmoaXluRhAQ7D4NKzutkdR6RZcXXqSdyUu4kdc0PUKE//mgUEvlqmBvEiIt9BapKXLu3iAVirvlnfmcvuACIiInJiLH8NtUtnhW+4vXjPuFbTCwn3oFibH744PHNAGp3bxtucSKT5MZwucCZEbpvlO/CtmA1mEOdXH+IddQ2ONp1sTCgi0nz1zU5l294q8rdVUF0bJM6rksy3pZFZIiIizYxvxWysyvDw9Jhhl+FIbGdzIvuZpsVL7+UBEONxcuGobJsTibQMZlUZRkwcAKHtG6ia83t8n72OFQrYnExEpPnJzQlPNTQtiw2FGp31XaiYJSIi0oxYZhBz3y4AnJ1Pwd17jL2BmoiP1+2keHclAJOGdSU53mNzIpGWwdWlT7hBfO+zAAPMIP7PXqV6zv8R3L7B7ngiIs1Kz/Q2uF3hMsyX+SpmfRcqZomIiDQjhsNF7KSpxJxxLd7RP8Yw9KvcFwjxytJ8ANokeBg/tKvNiURaFiMmHu8Z1xB34e9wpGYAYO7bSc3cGdQs+S9mrVblEhE5Hh63k14ZbQBYV1CiXoTfga6ARUREmhnDMPD0HoMjqYPdUZqERZ8WU7bfB8DkM3KIcTttTiTSMjk7diduyh+JGXYZuMKjH4NfLaN69u+w/DU2pxMRaR7qVjUsqfCxs7Ta5jTNl4pZIiIizUBobyFmxW67YzQ5FVV+3l5eCEB6+3hG9utscyKRls1wuPCcOon4S6fj7HoqAK4eIzA8sTYnExFpHvrmtI18v1ZTDb8124tZc+fO5bzzzqN///5MnDiR11577aj7V1VVcddddzFy5EgGDhzIDTfcwJYtW6L2CQaDPPDAA4wePZpTTz2VK6+8kjVr1kTt4/f7+c9//sO5557LgAEDOPfcc/nXv/6F3+9v4J9QRETku7GCfmre+TdVc36Pf/27dsdpUt5YVkCtPwTAZWd1x+HQqo4ijcGR2J7YCb/AO/5WYgZPjrovsPkTrKCuqUVEDietbRwpiTEArC1QMevbsrWY9fbbbzN16lRGjRrFww8/zNChQ7n99tuZP3/+EY/55S9/yfz585k6dSozZsxg165dXH311ezff3Cu/vTp03nyySe54YYbmDlzJk6nk2uvvZbi4uLIPvfccw//+c9/mDJlCv/+97+ZMmUKjzzyCPfcc89J/ZlFREROlP+z17D27YSgH8tfa3ecJmNHSRXvr9oOQN+sFHIP+aRTRE4+wzBwZw3CcMdEtgWL1lD7zr+pevn/CG5bb2M6EZGmyTCMyFTDTUVlBIIhmxM1T7YWs2bOnMnEiROZNm0aZ5xxBnfddRcTJ07kwQcfPOz+K1eu5P3332fGjBlMnjyZ8ePH8+STT7J//35eeOEFALZu3cqLL77I7bffzg9+8APGjh3L448/TnJyMo899hgA+/bt46WXXuKWW27hxhtvZPjw4dx4443cfPPNvPjii+zbt6/RXgMREZGjCe3Ox79mHgCO9tl4+k+wOVHTMWfJZkKmhQFcelZ3u+OICBDY+D4A1r5d1Lx1HzXvPoJZU2FzKhGRpqXuAzh/0OSrrao/fBu2FbOKi4spKipi/PjxUdsnTJhAfn5+1CiqOsuWLSM+Pp6RI0dGtqWmpjJkyBCWLl0KwPLlywmFQkyYcPBi3+PxMGbMmMg+lZWVXHHFFYwdOzbq8XNyciLZRERE7GaFAtS+/zhYFjiceEdfh+FQc3OAdfklfPH1XgBG9OtE146JNicSEQDv2TcRc/oV4AqP1grmfUzVS9Pwb3wfyzJtTici0jT0yUrBONAZYZ36Zn0rthWz8vPDS2hnZ2dHbc/MzASgoKDgsMdkZmbidEZfyHft2jWyf35+PsnJyaSmptZ73O3bt1NbW0uXLl344x//GCle1XnnnXdwu92RDCIiInbyfzEXs2wbAJ5BF+BMTbc5UdNgWRaz3lwHgMflYPIZOcc4QkQai+Fw4uk/gfjL/owrc2B4o68K39JZ1LzxF0Kl2+wNKCLSBMR73eR0TgJgbUGJzWmaJ9uKWXU9rhISEqK2x8fHA+HRU99UWVlZb/+6Y+r2P9o+EG4gfziLFi3i1Vdf5corryQxUZ/uioiIvUJ7C/F/MRcAR9sMPAPOszlR0/Hpxt1sKioD4JwhGaQmeW1OJCLf5EhoS+yE/4d3/M8x4sMfMod2fU31y3/At2quzelEROxXN9Vw654qyvb7bE7T/LjsemLLso56v8NRv852tGPq9j/W4xpG/VWOFi5cyK9+9SsGDx7Mr371q6Mefzht29Yvnh1N+/Yqlknj0fkmjUnnW8OwQkG2vf4kWCEwHHS+8FZiOqbYHatJCARDvPpBeDR2coKHq8/vS5zXbXMqaQ30/vYttR+D2X8YZUv/x75P3wYrRFL7DiTp9TwqnW/SmHS+2WPUoHRe/zB8TVO0t5qeOe1sTtQ4Gup8s62YVTf66ZsjpepGWB1udFRCQgJbt26tt72qqioyGishIeGwo6/qHvebo7aefPJJZsyYwdChQ3n44YeJiYmpd+yxlJRUYppHL6LVad8+kT179h97R5EGoPNNGpPOt4bj/3IB/l3hixvPqZOocLUHvbYALFxRxK7SagC+NyKLqv21VO3XCo9ycun9rQEMuIS49NMIbFxKbdpp+A68npYZwqqtxBGXbHPApkPnmzQmnW/2SfG6iPe6qKoN8vGabZya3fI/uDyR883hMI46cMi2aYZ1vbKKioqithcWFkbd/81jiouL642+KiwsjOyfk5NDeXl5vRUJCwsLSU9Px+PxRLb9+c9/5i9/+QuTJk3iv//972GnJ4qIiDQ2d68zcfcZiyOlC57BF9odp8moqg3w5kdbAOjSPp4zT02zN5CInBBnuyy8o67GMA7+CRJYu4iql+7Av/5dNYgXkVbF4TDonRWehr1+S9lxD5CRMNuKWZmZmaSnpzN//vyo7QsXLiQrK4u0tPoXqKNGjaKiooKPPvoosq20tJSVK1cyYsQIgMjXBQsWRPbx+/0sWbIkch/AAw88wFNPPcWPfvQj7r///qgil4iIiJ0MTyzeUVcTN/kPGE5Noavz1keFVNUGAbjmvL64nLZdxohIAzBr9+Nb+Sr4a/B9+DTVr08nVKJVxUWk9cjNDhezKmsCbNmpEXInwrZphgA333wz06ZNIzk5mTFjxvDOO+8wb948Zs6cCYQLVUVFRXTv3p2EhASGDBnC0KFDue2225g6dSpt2rThn//8J4mJiVxxxRUAdOnShcmTJ3PPPfdQXV1NZmYms2bNoqKiguuvvx6ATZs28cgjj9CvXz/OPfdcVq9eHZWr7vlEREQak2VZUb0dDdeJT31vqfaU17D4s/AfuT3Skzk9txN799ZfLEZEmg+HN5HYs39G7YfPYFWWYO7eTPUrf8TdbwIxgy/CcOs9UERatrpiFoRXNcxJS7IxTfNiazFrypQp+P1+nnjiCWbPnk1GRgYzZsxg0qRJACxZsoRp06bx9NNPM2zYMAAeeugh7r33Xu677z5M02Tw4ME88MADJCcfnGd/9913k5SUxKOPPkp1dTV9+/Zl1qxZZGZmAuGVC03T5Msvv+Tyyy+vl+u5557jtNNOa4RXQEREJMzct5OahQ8RM/IHuNJOsTtOk/PK0nyCofDw+8vGdj/sgi4i0vy4ug4g/tLe+D57jcCXC8AyCayZRzB/Bd5RP8TVdYDdEUVETprUJC9p7eLZvreKtQWlXDCyfrslOTzDOtbyf3JMagAvTZXON2lMOt++PcsyqXnzXkI7vwLDIP7yGTiSOtgdq8ko2FHBn55aCcDQ3h346YW5Ot+kUel8axyhkiJqP3gSc3d+ZJsr+zRiRlyFI77lN0auo/NNGpPON/v9752vWfhpMQ7D4B//7wzivLaOOTqpWkQDeBEREQkLrHs3XMgC3H3GqZB1CMuyeOndPACcDoMpo7vZnEhEThZn267EXfh7YkZdDZ5YAIIFKzH377U5mYjIyVM31dC0LDYUltqcpvlouSU/ERGRZsCs2INvxWwAjMR2xAy9xOZETcuqvL1sKi4HYNzgdDq0ibU3kIicVIbhwNNnLK6sQfg+eh7DE4erU4/I/d/sLSgi0tz1zGiD2+UgEDRZW1DK4F76UPN4qJglIiJiE8uyqP1gFgR9AHjP/DGG22tzqqYjZJrMWbIZgLgYF+ePyLI3kIg0GkdcG2LPvgnLDEVt9334FDg9xJw2GcOj4raINH8et5OeGW1YV1DK2vxSFe2Pk6YZioiI2CSw8X1C29YD4D5lDK4ufWxO1LQsXb2DHSXVAJw/IouEWLfNiUSksRkOZ+T74I5NBDYsIbB2IVWzf0dgy+c2JhMRaTh1Uw1LKmrZWVptc5rmQcUsERERG5iVJfiW/w8AIz6VmNMvszlR01LjC/L6B+Em0O2SvYwbnG5zIhGxm+FNxNkxPOXQqiqlduE/qFnwIGZlic3JRES+m9yctpHv1xaob9bxUDFLRESkkYWnFz4FgVoAvGdci+GJszlV0zLvkyIqqgMAXDy6G26XLllEWjtnShqxF0wj5oxr4cB7ZrDwC6pe+i3+NQvqTUkUEWku0trGkZIYA8A6FbOOi64MRUREGpu/GstXBYCr50hcXfvbHKhpKdvvY+GKIgCyOycytLcaoYpImGE48PQeQ/xlf8HVfXh4Y9CHb/kLVL96N6E9BfYGFBH5FgzDiEw13FhURiBo2pyo6VMxS0REpJEZMfHEXfA7Ykb8AO/pV9gdp8l59YN8/Acu4i47q7uaoIpIPY64ZGLH/oTYSb/GSOoIgFlSSPXc+7D8NTanExE5cXVTDf0Bk6+3ltsbphlQMUtERMQGhsOBJ/dsDG+C3VGalOLdlSxbswOAAd3b0atris2JRKQpc6X3Jf6SP+EZdAE4nMScdpFWORSRZqlPVgp1n9+tzddUw2NRMUtERKSRBHdswqwqsztGkzb7vTwswGEYXHpWN7vjiEgzYLg8xJw2hfhLp+Pue3Zku2WZ+FbMwdy/x8Z0IiLHJ97rJqdzEgBrC7SwxbGomCUiItIIzJoKahc9RNVLvyWQ97HdcZqkdQWlkRV8Rg9Io3PbeJsTiUhz4kjuhOFwRm4HNn2Af9Vcqmb/Dv/qt7HMoI3pRESOre+Bvllb91RRtt9nc5qmTcUsERGRRuD76Dms2v0QqAFDv36/yTQtXnw3D4AYj5MLRmXbnEhEmjuzdFv4m6Af3ycvUf3KXYR25dkbSkTkKOr6ZoFWNTwWXU2LiIicZIEtnxHc/AkArqxBuHKG2pyo6flo7U627qkEYNKwriTHe2xOJCLNnXfElcSefzuO5E4AmKXFVL8+ndoPn46sKCsi0pRkd04kLsYFaKrhsaiYJSIichJZvip8HzwdvhETT8yoq7U63zf4AiFe/SAfgDYJHsYP7WpzIhFpKVxpvYm75E94Bk8GpwuwCKx/l8rnp1Kz5HGC2zfYHVFEJMLpcNAnK7z4zfotZZimZXOipkvFLBERkZOo9uPnsWr2AeAdfiWOuDb2BmqCFn1aHOkLMfnMHGLczmMcISJy/Aynm5jBFxJ/8T0403qHNwZqCH71AYG1i+0NJyLyDXVTDStrAhTu2m9zmqZLxSwREZGTJFi0huBXywBwZvTH1WOEzYmanooqP28vLwQgvX08I3M725xIRFoqR5tOxJ73G7zjb8WVNQgcLlzdT4/ap3bZs/g+fx2zYrdNKUWktcs90AQeYG2+phoeicvuACIiIi2R5a+h9oMnwzfcsXjPuFbTCw/j9WUF1PpDAFx2VnccDr1GInLyGIaBO2sQ7qxB4b5ZroP9+cza/QTWvwdWCP/KV3F06Ia7+3Bc3YbiiE2yMbWItCapSV7S2sWzfW8VawtK+d5ILYpzOCpmiYiInAS+z1/HqgqvQhNz+uU4ElKPcUTrs6Okive/2A6El6I+dAUfEZGTzYiJj7ptVZbiSE3DLCkGwNy9Gd/uzfg+fh5nei7u7qfjyhqM4Y6xI66ItCK52als31vF5m0VVNcGifOqdPNNekVEREROgpgB52NV78Oq2Yf7lNF2x2mS5izZjGlZGIRHZYmI2MnZLpP4i/9EqHQbwbyPCeR9jFVZApZJqHgNoeI14PLgyT2HmKGX2h1XRFqw3OxUFn5ajGlZbCgsY3Cv9nZHanJUzBIRETkJDG8CsWN/ghX0a3rhYXxVXM4XX+8FYES/TmR0SLA5kYhImDO1C86hl+AZMoXQrjyCX39MIH8F+Kog6AenO2p/s7IUIz5F7/Ui0mB6ZrTB7XIQCJqsKyhRMeswVMwSERFpQJZlYhgH11cxDunHImGWZfHiu3kAeFwOJp+RY3MiEZH6DMOBq1NPXJ16EjPiKkJbvyTw9ce4D2kab1km1W9MB8MRnobYfTjOlDQbU4tIS+BxO+mZ0YZ1BaV8mV+KZVkqmH+DilkiIiINJLhjE75lz+Id/WOc7dWs80g+3bibgh0VAIwfmkFqktfmRCIiR2c4XbgyB+LKHBi1PbTz6/BURMD/xZv4v3gTR9uu4cbx3U/HEZ9iR1wRaQFys1NZV1BKSUUtO0ur6dw2/tgHtSKOY+8iIiIix2IFfdQufQKztJjquTPCq2RJPYGgyZwlmwFIjHMzcVimzYlERL49R0oaMSOuwtH+4AhTs6QI3ycvUvXcbVTPnYF/4/v6nSAiJyw3++DiQWsLSm1M0jRpZJaIiEgD8K18FWvfLgBiBl1Yb5UsCXvv863s3VcLwIWjsomN0aWIiDRfDm8intxz8OSeg7lvJ4G85eHG8ft2ARah7RvC/7atJ3bcz+yOKyLNSFq7eFISYyjb72NdQSnnnJZhd6QmRSOzREREvqPQ7s0EvlwAgKN9Du5+E2xO1DRV1QZ486MtAHRMjePMU9VXRkRaDkdyJ2IGX0T8ZfcSN/mPuHPHY8QmA+DqNixqX/+XCwhuW49lmnZEFZFmwDAM+h4YnbWxqIxAUO8Xh9LHoSIiIt+BFQpQ+/7jYFngcOEdfR2GQ58VHc7cj7ZQVRsE4LIx3XA59TqJSMtjGAbO9tk422djnf59QtvX4+zcK3K/WVOBb/mLYJkYcW1wdT8dd/fhONp2VYNnEYmSm53Kh2t24A+YfL21nD5Zqcc+qJVQMUtEROQ78H/+BmbZdgA8gy7AmdrF5kRN057yGt75bCsAPdOTGdCjnc2JREROPsPhwJWeG7XN3J0PhgEWWNXlBNbMJ7BmPo42abi6n05g2NlAnD2BRaRJ6ZOVGn67sMJ9s1TMOkgfiYqIiHxLob2F+Fe9BYCjbSaeAZNsTtR0vbI0n2DIAuCysT00+kBEWi1X5gASfvAgMaOuiR6xVb4d/8pXKH74Jqpev4dA/gobU4pIU5AQ6yancxIAa/PVBP5QGpklIiLyLVhmkNr3HwPLBMOJd/SPMRz6tXo4BTsq+GR9uDn+0N4dyElLsjmRiIi9DG8Cnj5n4elzFmZlCYG85QTzPsYsDY9gNXflYWb0jzrGskwMQ2MRRFqbvtmpbN5ewdY9lZRX+miTEGN3pCZB74YiIiLfglVdAeGBRngGnoezXaa9gZooy7J48d08AFxOg4tHd7M5kYhI0+JIaEvMgPOIv+Qe4i75E8nDL8JIaIu7+/DIPpZpUv3Sb6l59xGCRWuwzJCNiUWkMeXmtI18v65Ao7Pq6CNkERGRb8GRkErc5D8S2PAe7t5j7I7TZK3K28tXxeUAjB2UTvs2sfYGEhFpwpypGbTt1YdQ7oVR07FDOzdh7tuJuW8nwbyPMbyJuLoNDTeO79BNU7dFWrDszonExbio9gVZW1DKyH6d7Y7UJKiYJSIi8i0ZThee3HPsjtFkBUMms9/bDEBcjIvzR2TZG0hEpJn4ZnHK8MThyhlKsPALCAWwavcTWPcOgXXvYCR1wF23ImIb/ZEr0tI4HQ76ZKWwctMe1hWUYloWDhWwNc1QRETkRAQLV2HW7rc7RrPwwert7CytBuD8EVkkxLptTiQi0jw522USe/ZNJPzwH3jHXI+zS9/wioiAVbEb/+dvUPXSNHwr5ticVEROhrqphpU1AQp36joUNDJLRETkuJnlO6hZ/BCGOxbvmOtxdT3V7khNVo0vyOsfFgDQLtnLuMHpNicSEWn+DE8s7p6jcPcchVldTnDzJwTylmPuCb/fOjt2j9o/WLQGZ6fuGJ44O+KKSAPJzU6NfL82v4TszlpMR8UsERGR42CZJjXvPw6hIFaoEvSHwVHN+6SIiuoAABeP7obbpcHgIiINyRHXBk+/CXj6TcAs30kgfwXOjNzI/WZ1OTULZoLDiavrAFw9huPK6I/h1ChZkeYmNclL57Zx7CipZm1BKd8bmW13JNupmCUiInIcAusWY+4Kr8rnzj0bV6ceNidqusr2+1i4oggINy0d2ruDzYlERFo2R5tOxAy6IGpbsGAlWBaEggQLVoZve+Jw55yGq/twnJ17YRj6oEGkucjNbsuOkmo2b6ugujZInLd1l3Na908vIiJyHMyK3ZE+JEZie2KGXGJzoqbt1aX5+IMmAJed1V2rbImI2MDd+ywcSR0J5H1McMvnEKgFfzWBjUsJbFyKEZ+Kq9sw3L1G4UzpYndcETmG3JxUFq0sxrQsNhSWMbhXe7sj2UrFLBERkaOwLJPapbMg5AfAO/rHGO4Ym1M1XcW7K1n25Q4ABvZoR6+uKTYnEhFpnQyHE1dGP1wZ/bCCPoJbviCQ9zGh4rVghbCqSgmsmYfhTVAxS6QZ6JnRBpfTQTBksq6gRMUsuwOIiIg0ZYENSwht3wCEP+V2pfW2OVHTNvu9PCzAYRhcMqab3XFERAQwXDG4u5+Ou/vpmLX7CeZ/SvDrjwntzsPd/fTIfpZpUrvonzgz+uHOGYrhTbAxtYgcKsbtpFdGMuu2lLG2oBTLslr16HcVs0RERI7ArCzB98lLABjxqcQMu8zmRE3b2oIS1haUAjB6QBqd28bbnEhERL7J4U3E02csnj5jMavLccS1idwX2r6BYOEXBAu/wLfsOZwZubi7D8eVNRDDpVHJInbLzWnLui1l7N1Xy66yGjqltt4FiVTMEhEROQLf8v+Fe4wA3jN/hOGJtTlR02WaFi+9uxmAGI+TC0ZplR0Rkabu0EIWgOWvwohPxaoqBStEqGg1oaLV4PbiyhqEu9swnGm9MVweewKLtHK52am8eOD7tfklKmaJiIhIfTHDr4RQEGIScGX0sztOk/bR2p1s3VMJwKTTM0mO1x86IiLNjTtnKK7s0wjt2EQwbzmB/E/BXw2BWoJff0Tw64/AFUPM8Cvw9B5jd1yRVietXTwpiTGU7fextqCUs0/LsDuSbVTMEhEROQJHfAre8beCGbI7SpPmC4R49YN8AFISYxg/pPVeWImINHeG4cCV1htXWm9iRv6AYPEagl9/TLBoVfgDnqAPR2K7qGP8G9/H2akHjuTOrbqHj8jJZhgGfbNT+XDNDjYWlREImrhdDrtj2ULFLBERkUNYlgWWheEIXxgYhgFO/bo8moWfFlO23wfARWdkE+N22pxIREQaguF0484ajDtrMJa/huDWtYSK1+Ds3Cuyj1lZgm/prPD+yR1xZQ7ElTkQZ8fuGA79PhBpaLkHiln+gEne1nJ6Z6XaHckWujoXERE5RHDzJ/i/XIh39HU4U7VU+bFUVPmZt7wQgPT2CYzM7WxzIhERORkMTyzunCG4c4ZEba9b8RfA2reLwJr5BNbMh5h4XBn9cWUNxJXeT30nRRpIn6xUDAMsC9YWlLbaYlbrHI8mIiJyGGZNBb5lz2Luyadm3t+wzKDdkZq815cVUOsPT8O8bGw3HA5NLxERaU3cPUcRf9lfiBl2Gc5OPaFumqGvimDex9Qu/heVT9+Cb8Vse4OKtBAJsW6yOycB8GV+qc1p7KORWSIiIgf4lj2L5Qs3MY8ZfgWGQ78mj2ZHSRXvf7EdgL7ZqeRmt7U5kYiI2MHRpjOeNp3xnDoJs3Y/oaI1BAu/IFj8JQR9YIYwvrFyYiB/BY7E9jjaZWIYGmMhciJys1PJ317B1j2VlFf6aJMQY3ekRqerdBERESBQsJJg/goAXNmn1ZtGIfXNWbIZ07IwgMvO6m53HBERaQIc3kQcPUfi7jkSK+gntGMjwcJVuDIHRPaxzCC1S2eBvwYjrg2uzAG4MgfgTOuD4dJquCLHkpvdljeWbQFgXUEpI/u1vjYPKmaJnADLX0No7xbMPQU4UtJxde0fuS9Y/CVm2TaM+FQc8SkYCakYccka2SHSDFi1lfg+fDp8IyaemJE/tDdQM/BVcTlffL0XgJH9OpPRIcHmRCIi0tQYLk+4b1ZG/6jt5p4t4K8BwKouJ7BhCYENS8DlwZWeG24g3/VUHLFJjR9apBnITkskNsZFjS/IWhWzRORQViiAWVJMaHc+oT0FmHsKMMt3ABYAru7Do4tZ+Z8S2LT0G49ihAta8Sk44lMx4lNw9xiBs0POwecxQ1rpRcRmtR89h1VTAYB3xFU44pJtTtS0WZbFi+/mAeBxOZh8Zs4xjhARETnI2bE78Vf+jWDRaoKFXxDatgHMIAT9BLd8TnDL54CBK3swsefcYndckSbH6XDQJyuFzzbtYV1BKaZl4TBaV99SFbNEviG0ezO1Hz6DWVoMZuiI+1lV0c32zJp9h9sLq7ocq7occ08BAM5OPaKKWVUv/BrMIEZ8CkZcCo6E1KjilyM+FSMhBcPV+uZBt0aWaYJBpHeE5a8hkLccq3Y/lq8KR3wbHCldcKSkh8+ZVvZL62QIFq4imPcxAM6up+LqPtzmRE3fpxt3U7AjXPwbPzSDlES9P4mIyIlxJLTF02csnj5jsfw1BLetCxe2Clcf6F9pYXxjZFaw+EtwunB26qkPg6XVy81O5bNNe6isCVC4c3+kKXxroWKWtDqWZWHt33NwxNXeLcRO/NXB+fnuWMy9W6IPionH2T77wL8cHB2ycXyjiWXshF+ArwqzqgyrqvTg18rwV6uqDLOqFCP+4NKplhnCqi4HyzwwKqSQI5XPEq55GCMmHgCzqozAxqUHpzPWFb205HGTFty+AauyFKu2MlycivyrxKqpCH/1VRH//RkYSR0AsAK1+D586vAP6InFkdIFZ0oXHKnpuPuereLWCbJ8VdR+8GT4hicW7xnX6jU8hkDQZM6SzQAkxrmZOCzT5kQiItLcGZ5Y3Nmn4c4+Dcs0Ce3OI7jli6g+WwC+T+dg7i2EmPjw9MXMAbgy+mF44uwJLmKjQxfeWVtQqmKWSEtjVpdj7i4gtCdcvArtKQBfVfQ+JUU4O4abFzvadMLZpS+O1PRw8apDDkZi+2P+gWsYBngTcHoToG3GEfezLOuQJw7hGXRhdPGrqqxePlwxcMgvabNsG/7PXq3/4G5vZESXEZ9KRfe+kH76wecOBcHh1B/r35FZVYZZsTtciKr5RlGq7vua/XgGXYCn95jIcb6Png+P+DsGq3Y/HChmGd5D+hA5XRAKHrztr8HclYe5Kw8jPhVP7jmRu4I7vyKYtzw8iis1HWdKl+jHEiD8/oA7PKrIe/oVOOJT7A3UDLz7+Vb27qsF4KJR2cTG6FJCREQajuFw4OrUE1ennlHbzdr9mCUHrqN8VQTzPg6PrDacONNOiTSRdyS2tyG1SONrm+ylc9s4dpRUsy6/hO+NyLI7UqPSFai0KJZlRi3tWz1/JqGi1Uc+wOHEkZqBFQpENhmGg7jzfn3SMh5aSDJcHmIGX1hvHyvgi4zksqrKsIK+qOPqevvUE6jFLN8O5dsBqDb8OA8pZvlWzCaw/j2MhG9MYzx0OmN8KoY3oVUskWyFgljVZQdGRn2zKFUR2e5I6YL3zGsjxwXWLca/6q1jP35VWdTtqGKS4Qi/zt7EA/8SMGKTIl8juzndxF/59/CxTjdWTQVm2bbwv9Lw11DZVhwpaVHPFdq+kcD6d6OfPzYJR2r6gWmKB0d0teYRfc6ULsRf/CcCXy3D1esMu+M0eVW1AeZ+tAWATqlxnHFq2tEPEBERaSAObyIJP/xHuM9W0arwlMNALVghQtvWEdq2Dt9Hz+Fol0ncRX/QNERpFXKz27KjpJrN2yuo8QVb1YeMrecnlRbHCvoI7S3CPGTElatLX7yjro7s40hoe8i0PQNHm8446qYLdsjGkZrRJJf/NdwxGG064WjT6bD3u3uMwJV9WrgX1xGmM1pVZbiS23PIOLBwcSXkx9q3i9C+XUd8/pgzro0aUeRfPQ+crqjilxGbjOFoOgUvyzSxfJX1p+19Yzpf7Lm3RXKHdm+m5s2/HMdjB6NuH3aEk9t7sCh1oEDl+MYIPe+oa8LHxyaCJ/a4C4aOhINTU4245HBz8i59DuazLAj6og8KBcIj+g7ZbtVUENq2ntC29ZFtnsGTowqqwa3rMA5MXzTcraMPkuHy4Olzlt0xmoW5H22hqjb8/8OlY7rhcjad9wAREWn5DG8C7p4jcfcciRUKENqxieCWLwgWfhHpZ2t44qIKWaHd+Vg1FTi79GmS1/0i30VuTiqLVhYTMi02FJYxqGfrGZmoYpY0C5YZxCzddmBVwXxCuwswy7aBZUbtF3JHjzBx5QzBkdguXMBql9WiRqAYLg9GUgccB6ajHU7bdgns3VsZue3KHowRn3JwWmNlaaRn16G+OdXK98UbkeWTDwZwYMS1wUhIDffuik8l5rTJGG4vcKCROSaG49u9zVgBX3QhqiZ6Gp+7z1k422VF9q986qbwp3PH4q+GA8WoI067i4yaCo+UcqR0ibrblXVauBB66Kiq47g4OlJx8rsyDAMOvO51YoZcjOe0yViVJeHRW6WHjOYq3x4udkG9EV21H8zC2r83/LiJ7XGkpOE8ZDSXo03nFnEhGMhbjqtrf/XYOAF7ymt457OtAPRMT2ZAj3Y2JxIRkdbMcLpxpefiSs/FGvkDzJIigkWrcCRHX2/51y4kmLccnB5c6X1xZg7A1XWAVi6WFqFnRhtcTgfBkMnaglIVs0TsZFkm5r6dOJI6RUbQmHuLqH7t7iMeY8QmhQtWHXtEbXel9Ya03ic1b1P2zd5Y7m7DcHcbFrXNMk2smn0HRnSFR3c52nY9eH/QB8EA9VjmgZFgpYRLYQYxQy+N3G3uLaD6tXsw4pKjR3TFp+KIS8YK+rFq9+NIScOdfVrkuNqlTxL4+iMI+Y/6szk794oqZhkx8VhHKmYdMmrKCvqpe1UcCW2JOfNHOLx10/vCxaljjZpyJLXHkdT0f1EYhiNckEpsj6vrgMh2yzTDiyCUbY36f8YK1EYKWUB4n/17oqfqGgZGUgfiL/pDZEECywwSNQSwiQtu30jtu//BiE/BO+4mXJ16HPsg4eX3NxMMhf9DXza2h3rviYhIk2EYBs52mTjbRS9KYlkmoW0bwjdCfoKF4VFcPgwcHXJwZQ7ElTkQR0qafq9JsxTjdtIrI5l1W8pYm1+CZVmt5lxWMUtsZVkWVlUpod35mAemCob2bIFADXGX3IMzNR0gPF3L4QQzBG5vZGVBR12D9vjUVvM/bUMzHA6M+BSIT+FwnQUMVwwJ1z0aHhVVVYpVeXAa46FfMU0M58G3FLOyFLCwqsvD0yH3FBz2+V3dTo8qZmFw9ELWgVFT3xxN5hlwHpih+j2oYuKPOJLIcHvxnDL6yM/VQhkOB0ZyRxzJHaPvcHqIu/TPmGVbI/24zLJtmPt2HXy9LQurtjJqQYLQ9k3UzPs7vradsZLSDjSdD/fkMpI6NKmeFVbQR+3SJ8Lf11bhiG1dq758WwU7KlixYTcAQ3t3ICdNr5uIiDR9huEg/vszCG5bR3DLKkJFq8IL7WBh7t6Mf/dm/J/OwUhsT9wFv9VCMNIs9c1uy7otZezdV8uusho6pbaOmQcqZkmjC+78itC2DYT2hAtYR2pmbu4piBSzDKeb2HNuOfAHeKdW0Zy8KTEMR7gpeWwSHDIa6mgcbTrXX6mxsrTeVMBvjqZypuceGEl1SO+pugLVUXpNefqM/dY/n4QZDgfOlDScKWmQc3C7FQpglu88ME1xKxD9iY9ZthWsEIG9W2Hv1ugHdbrCvepSuuDKGoQ7Z2jj/DBH4Pv0FayKcFEmZsjF9Qt6Uo9lWbz4bh4ALqfBxaO72ZxIRETk+BluL+6swbizBmOZJubuzQdGaK0Kt14ACAUwDpl2aFbsJrQ7H1dGv8hIdJGmKjcnlZfeC3+/Nr9ExSyR78ry1xDaWwiAK+2UyPbAhvcJfr2s/gGGgSMl/eCIq0OOAXBlDjypeaVhOVPTI8XIQ1n+mnCfLrf3sKOm3NmnRY/UEtsZTjfOthk4v9HQvo6zfQ7u/hNxVe2idlchVmXJwTtDQcySYsySYoy4lKhilm/FHMzqMpwp6ZHRXCdzlGVoVx6BLxcC4OjYHXfuOSfleVqaVV/v5avicgDGDkqnfZuW03tQRERaF8PhwNmpB85OPYgZdhnmvp0EC1eFR/4f8mFpIO9j/CtfBcOJs3PPA9MRBxy1V62IXbq0iyclMYay/T7WFpRy9mmHv2ZvaWwvZs2dO5d///vfFBcX06VLF37yk59w0UUXHXH/qqoq7r//fhYuXEh1dTWnnXYav/vd78jKyorsEwwGeeihh3j11VcpLy+nb9++3HHHHfTv3z/qsZ566imeffZZdu3aRbdu3fjFL37B6NGtb8pRQ7BCAcySYkIHVhY09xRglu0ALJyde+FKmxbZ19k+m+DXyzCSOh6cLtghG2fbzFazelprZnhiW1QjfiFyUdi+fSJ79uzH8tdglm8nVLoVs2w7ZulWzLJtOFOjG+kHCz/HLNtO1FqR7tgDTee7RJrOOzv1wHB9t/cGK+in9v3HAQucLryjf9ykVuNsqoIhk9lLNgMQ73Vx/ogsewOJiIg0IEdyJzz9z623PbLysxUitH0Doe0b8H38fHikeV1hq0OOZotIk2AYBn2zUvnwyx1sLCojEDRxu1r+uWlrMevtt99m6tSpXHPNNYwaNYrFixdz++234/V6Offc+m8qAL/85S/58ssv+c1vfkN8fDwPPfQQV199NW+99RaJiYkATJ8+nVdffZWpU6eSlpbGrFmzuPbaa3n99dfJyAhXKR977DH+/ve/c8stt9C3b19efvllbrrpJp577jkGDBjQWC9Bs2ZWl+P//I1w8aqkKNzP6jBCewuxTDPyh6O75wjcPYZryK5IC2V4YnF26IazQ/R0NMuyor434lMxavYf6F1xQKAGc/dmzN2bI5viL78X48DKRFaglsBXHx4YyZWOw5t4XJn8n7+BWb4DAM/gyTjbpB3jCAH4YPV2dpZWA3D+iCwSYt02JxIRETn5Yif9mtCOTZGG8XWjzs2ybfjLtuFfNRcjNonY8bfi7Njd5rQi4amGH365A3/AJG9rOb2zUu2OdNLZWsyaOXMmEydOZNq08KidM844g3379vHggw8etpi1cuVK3n//ff773/9y5plnAnDaaacxbtw4XnjhBW688Ua2bt3Kiy++yP/93/9xxRVXADBq1CgmTJjAY489xl133UV1dTX/+c9/+PGPf8xNN90EwJlnnsn3v/99HnroIR577LFGegWaPsuywiuaHWjO7uk3IdIY0XB5CKx/t/5BMfE422UdHHHVPidqBIThaR1zeEUk2qHTBw3DIG7SVADMmooD/bi2hZvPl4VHdeGvBqcbI/HgkH6zdCu+Zc8efJzYpMgIrroClzMlLapYHtqzBf/qtwFwtMs67CewUl+NL8jrH4YXbmiX7GXsoPrThkVERFoiw+nCld4XV3pfrBFXYZZujRS26hY1smorcRz4sA3CrTQCmz8Jj9qKa2NTcmmt+mSlYhhgWbC2oFTFrJOpuLiYoqIibrvttqjtEyZMYN68eRQXF0dGUdVZtmwZ8fHxjBw5MrItNTWVIUOGsHTpUm688UaWL19OKBRiwoQJkX08Hg9jxoxhyZIlAKxevZr9+/czfvz4yD6GYXDOOecwc+ZM/H4/Hs/hVz9r6cwDq87VFa/M3QVYvsrI/c4OOTgO9LwxPHE42mViOD04OuREpgwaSR20sqCIHDdHbFJ4VcG03pFtlnVgJcz9e6OK4aGybVHHWjUVhGoqCG3fELXdlTWY2PE/B6D2o2fDqzE6nHjHXNekVldsyuZ9UkhFdQCAi0d3axXD1UVERL7JMIxI79CYQRdgVpURLFodvkbxJkT2C279Et8HT+L7ABztc3BlDsCVORBHarr+NpKTLiHWTXbnJPK3V7C2oJRLz7I70clnWzErPz8fgOzs7KjtmZmZABQUFNQrZuXn55OZmYnTGf2HSNeuXZk3b15kn+TkZFJToyuRmZmZbN++ndra2shz5+Tk1NsnGAxSXFxMt26ta7Um/+q38a9djFVVeuSdDCdWZVnUprjJd+rNWUQanGEYGPEp8I0lst29zsTVpS9m2TZCpdvCI7rKtmGWbYeQ/+Dxh6xIFHvWT6j9YBbOTr1wpraOhpjfVdl+HwtXFAOQ3TmJob3V8FZERATAEZ+Cp/eYetsjfbYAc08+/j35+Fe+gpHQltjxP8d5nCuCi3xbudmp5G+voHh3JfsqfSQntOx+1LYVs/bvD/dISUhIiNoeHx+eGlJZWVnvmMrKynr71x1Tt//R9oFwA/m6feu2HW6f1sYyzW8UsgwcbTqFVxVsnx0ekZWaUW/lORWyRKQxGYaBkdgOR2I7XF1PjWy3TBOrcu+BpvPbcLY/+EGJI6k9sZN+HR6dJcfly/wS/MHw63X52O56rxcRETmGmFFX4+45imDhqvB0xAOjya2qchyJ7W1OJ61BbnZb3li2BYBte6tUzDpZDm0EfDiOw6wydbRj6vY/1uMahnFc+5yItm3rF8+Opn3742tY3Jhq+wxk3/6txHTuTkxad2I6d8MRo95WLUFTPN+k5bL1fOuYDK1sVO3JctbQTL4sKKVvTltGDmq6o9n0/iaNSeebNCadb81Uh4GQOxD4EYGynVR/vZLg/lLapnc65qF20vnWMrRrl8BFxeXsLa/htNw04pvowj0Ndb7ZVsyqW3nwm6Og6kZN1d1/qISEBLZu3Vpve1VVVWQ0VkJCwmFHVtU9bkJCQtRzHzqK62jPfTQlJZWY5tELZHXqlq5vcmK64DjzpwSAAFBZEQKaYE45IU32fJMWSedby3LzRbkATfa/qc43aUw636Qx6XxrKeIhezTQdH+Xgs63luaC4eG2TdWVtVRX1tqcpr4TOd8cDuOoA4ds6+Za1yurqKgoanthYWHU/d88pri4uN7IqsLCwsj+OTk5lJeXs2/fvnr7pKen4/F4jvrcHo+HtDQt2S4iIiIiIiIi0hTZVszKzMwkPT2d+fPnR21fuHAhWVlZhy0ojRo1ioqKCj766KPIttLSUlauXMmIESMAIl8XLFgQ2cfv97NkyZLIfQMHDiQuLi5qH8uyWLRoEUOGDGm1KxmKiIiIiIiIiDR1tk0zBLj55puZNm0aycnJjBkzhnfeeYd58+Yxc+ZMIFyoKioqonv37iQkJDBkyBCGDh3KbbfdxtSpU2nTpg3//Oc/SUxM5IorrgCgS5cuTJ48mXvuuYfq6moyMzOZNWsWFRUVXH/99QDExsby4x//mH/96184nU5OPfVUXn75ZdatW8fTTz9t2+shIiIiIiIiIiJHZ2sxa8qUKfj9fp544glmz55NRkYGM2bMYNKkSQAsWbKEadOm8fTTTzNs2DAAHnroIe69917uu+8+TNNk8ODBPPDAAyQnH1yG/e677yYpKYlHH32U6upq+vbty6xZs8jMzIzsc/PNN+N0OnnppZd47LHH6N69O//6178YPHhw474IIiIiIiIiIiJy3AzrWEv7yTG1iAbw0iLpfJPGpPNNGpPON2lMOt+kMel8k8ak800aU4toAC8iIiIiIiIiInKiVMwSEREREREREZFmQ8UsERERERERERFpNlTMEhERERERERGRZkPFLBERERERERERaTZUzBIRERERERERkWZDxSwREREREREREWk2VMwSEREREREREZFmQ8UsERERERERERFpNlTMEhERERERERGRZkPFLBERERERERERaTZUzBIRERERERERkWZDxSwREREREREREWk2VMwSEREREREREZFmQ8UsERERERERERFpNlTMEhERERERERGRZsNld4CWwOEwTur+It+FzjdpTDrfpDHpfJPGpPNNGpPON2lMOt+kMR3v+Xas/QzLsqyGCCQiIiIiIiIiInKyaZqhiIiIiIiIiIg0GypmiYiIiIiIiIhIs6FiloiIiIiIiIiINBsqZomIiIiIiIiISLOhYpaIiIiIiIiIiDQbKmaJiIiIiIiIiEizoWKWiIiIiIiIiIg0GypmiYiIiIiIiIhIs6FiloiIiIiIiIiINBsqZtlg9+7dTJ06leHDhzNo0CBuuukmCgsL7Y4lLdSePXv4/e9/z1lnncXAgQOZMmUK8+bNszuWtAIzZszg2muvtTuGtDBz587lvPPOo3///kycOJHXXnvN7kjSCmzYsIG+ffuyc+dOu6NIC2WaJi+88ALf+973GDhwIGeffTZ/+ctfqKystDuatECWZfHkk08yYcIE+vfvzwUXXMCbb75pdyxpJW655RbOOeec7/w4rgbIIifA5/Nx/fXX4/P5+MMf/oDX6+Xhhx/mBz/4AW+99RZJSUl2R5QWxO/3c/3117N//35uvfVWOnTowIIFC/jFL35BKBTi/PPPtzuitFDPPPMMTzzxBMOHD7c7irQgb7/9NlOnTuWaa65h1KhRLF68mNtvvx2v18u5555rdzxpoTZv3sxPfvITgsGg3VGkBXvsscd44IEHuO666xg+fDgFBQX84x//IC8vj8cff9zueNLCPPLII/zjH//g5z//OQMGDGDp0qVMnToVp9PJpEmT7I4nLdjrr7/OokWL6Nq163d+LBWzGtl7773Hpk2bePnll8nNzQWgR48ejBs3jgULFnDppZfanFBakqVLl7Jx40Zmz55N//79ARg5ciTbt2/nv//9r4pZ0uB27drFfffdx9tvv01iYqLdcaSFmTlzJhMnTmTatGkAnHHGGezbt48HH3xQxSxpcMFgkBdffJG//e1vuN1uu+NIC2ZZFo899hiXX345v/rVrwAYMWIEKSkp/PKXv2TDhg307t3b5pTSUgQCAZ544gmuuOIKfvaznwEwfPhw1q5dy7PPPqtilpw0u3btYvr06XTq1KlBHk/TDBvZqFGjeOGFFyKFLCBygeT3++2KJS1UfHw8l19+Of369YvanpOTQ1FRkU2ppCWbOXMm69evZ9asWbrwlgZVXFxMUVER48ePj9o+YcIE8vPzKS4utimZtFSfffYZ999/Pz/+8Y+ZOnWq3XGkBauqquKCCy6o9yFjTk4OgK7ZpEE5nU6eeeYZbrzxxqjtbrcbn89nUyppDX7/+98zcuTIBpu5oZFZjSwhIYFBgwYB4ar45s2bmTFjBikpKQ0yb1TkUMOHD6/3ZhEIBHj//ffp0aOHTamkJbv++uvJycnB4XDw8MMP2x1HWpD8/HwAsrOzo7ZnZmYCUFBQQEZGRqPnkparW7duLF68mLZt2/LKK6/YHUdasISEBH7/+9/X27548WIAunfv3tiRpAVzOBz06tULCI8KLCkp4ZVXXuGjjz7i7rvvtjmdtFSzZ89m3bp1zJ07l/vuu69BHlPFrAYUDAaZPXv2Ee/v0KED48aNi9z++c9/znvvvYfD4WD69Ol06NChMWJKC3Gi51udv/71r2zZskWFBjkhx3u+6YJbTpb9+/cD4T/6DhUfHw+gJsnS4Nq1a2d3BGnFVq9ezaOPPsrZZ59Nt27d7I4jLdTChQu59dZbARgzZgwXXHCBzYmkJdq2bRt/+ctf+Mtf/kJqamqDPa6KWQ3I5/Nx5513HvH+oUOHRhUXbrjhBq655hreeOONSP+PKVOmnOyY0kKc6PlmWRZ//etfeeqpp7juuus4++yzGyGltBQner6JNDTLso56v8Ohzgki0jJ89tln/PSnPyU9PZ177rnH7jjSgvXp04dnn32WTZs28eCDD3LjjTfy1FNPYRiG3dGkhbAsi9/+9reMHj2aCRMmNOhjq5jVgOLj49m0adNx7z948GAgPBVs27ZtPPLIIypmyXE7kfPN7/dzxx138NZbb3Hdddfxm9/85iSnk5bmRN/fRBpa3YICVVVVUdvrRmRpwQERaQnefvtt7rjjDrKysnjsscdISUmxO5K0YBkZGWRkZDBkyBASEhK4/fbb+eKLLyJtcUS+q+eee45Nmzbx5ptvRlYFrvuAMhgM4nQ6v3XxVB9jNrL169fz1ltv1dvet29fdu/ebUMiaekqKyv50Y9+xLx58/jtb3+rQpaINEt1vbK+2Qi5sLAw6n4RkeZq1qxZ3HbbbQwYMIDnnntOLUjkpCgvL+e1115j165dUdv79OkDoL9JpUEtWLCAsrIyRo0aRd++fenbty+vvfYaRUVF9O3bl1dfffVbP7ZGZjWy5cuXc99999GvXz+6du0KQCgUYvny5fTs2dPmdNLShEIhfvazn7F69WpmzpyppetFpNnKzMwkPT2d+fPnRy2YsnDhQrKyskhLS7MxnYjIdzN79mzuvfdeJk2axIwZM/B4PHZHkhbKNE3uuOMObrrppki/LIBly5YB6G9SaVB33XVXvVH1Dz/8MBs2bOChhx4iPT39Wz+2ilmNbMqUKTzzzDP87Gc/4+c//zler5fnnnuOr776iieeeMLueNLC/O9//2PFihVcfvnldOrUiVWrVkXuMwyDU0891b5wIiIn6Oabb2batGkkJyczZswY3nnnHebNm8fMmTPtjiYi8q2VlJQwffp0unTpwlVXXcX69euj7u/atWuDNk2W1i01NZUrr7ySRx99FK/XS79+/fjss8945JFHuPTSS8nJybE7orQghzuf2rRpg8fjoV+/ft/psVXMamRt2rTh2Wef5f777+fuu++mqqqK/v3789RTT3HaaafZHU9amAULFgDw4osv8uKLL0bd53Q6610siYg0ZVOmTMHv9/PEE08we/ZsMjIymDFjBpMmTbI7mojIt/bBBx9QU1PDtm3buOqqq+rdf99993HhhRfakExaqmnTptG5c2fmzJnDP//5Tzp16sStt97KddddZ3c0keNmWMdaHkhERERERERERKSJUAN4ERERERERERFpNlTMEhERERERERGRZkPFLBERERERERERaTZUzBIRERERERERkWZDxSwREREREREREWk2VMwSEREREREREZFmQ8UsERERERERERFpNlTMEhERERERERGRZkPFLBEREWlVPvnkE3r16sUrr7xid5QT8tVXX9GnTx+WLVtmd5TvZOzYsfzwhz886c+zePFicnNz2bJly0l/LhEREWlcKmaJiIiINAP33nsvgwYNYuTIkVHbKysrOeWUU+jVq1fk38CBA7nwwgt58cUXGy3f3XffzRlnnIFlWY32nEdz9tln07NnT+6//367o4iIiEgDc9kdQERERESO7osvvmDZsmU8/PDD9e5bt24dlmUxadIkxowZA8Du3bt59tln+cMf/oBhGFx22WUnNZ9lWSxevJhx48ZhGMZJfa4TcfXVV3P77bfz9ddf06NHD7vjiIiISAPRyCwRERGRJu75558nJSWF0aNH17tv/fr1AFx44YWRfzfccAMPPvggAPPnzz/p+b788kt27drF2WeffdKf60Scc845xMbG8r///c/uKCIiItKAVMwSERERAUpLS7nrrrsYPXo0ubm5jB49mrvuuouysrJ6+27dupWf//znDBo0iEGDBvGzn/2M4uLik9IPKhgMsnjxYkaMGIHb7a53/9q1awHIzc2N2t6pUycgPA3xZFu0aBFJSUkMGzYssm3Hjh38v//3/xg8eDCDBg3ipz/9KUVFRfWOraysZObMmVx66aUMGzaM3NxczjnnHO6//35qamqinqNXr1689NJLh81w3nnncc4550RNc4yPj2fw4MEsWLCgAX9aERERsZumGYqIiEirt3//fq644goKCwu5+OKL6dOnDxs2bOCFF15g+fLlzJ49m4SEBADKysq46qqrKCkp4fvf/z45OTl89tlnXHPNNVRXVzd4tnXr1lFdXU3//v0Pe//69evp3Lkz7dq1i9r+wQcfABzxuIa0aNEizjzzzEixraKigquuuoqdO3fy/e9/n27duvHpp59y9dVXU1tbG3Xsrl27mDNnDuPHj+f888/H5XKxYsUKHnvsMTZs2MDjjz8OwFlnnUX79u15+eWX602bXLVqFXl5efzyl7+sN81x4MCBfPjhh2zevJlu3bqdxFdBREREGouKWSIiItLqPfbYY2zZsoU//OEPXHXVVZHtvXv35u677+axxx7jF7/4BQD//e9/2blzJ3/961+54IILALjyyiu57777IoWXhpSXlwdARkZGvfuqqqrYsmULo0aNorS0FAiPMPvwww/5xz/+QWpqKtdff32DZzrU5s2bKSgoiLw+EH49t23bxp///GcuvvhiAK666iqmT5/O008/HXV8RkYGS5YsiRp1dtVVV/HAAw/w73//mzVr1tC/f39cLhdTpkzhkUceIS8vj+7du0f2nzNnDk6nk8mTJ9fLV/e65eXlqZglIiLSQmiaoYiIiLR6ixYtIjU1lcsvvzxq++WXX05qaiqLFy+ObHvvvfdo3749559/ftS+11133UnJVlekSk5Ornffhg0bME2TpUuXMnz4cIYPH855553Hfffdx9ChQ/nf//4XmW54osaOHXtc/bYWL15MTEwMZ5xxRtS2du3acdFFF0Xte8MNN9Q73uPxRApZwWCQffv2UVpayogRIwBYvXp1ZN9LL70UwzCYM2dOZFt1dTVvv/02Z555Jh07dqz3+G3atAGgpKTkmD+LiIiINA8amSUiIiKt3tatW8nNzcXlir40crlcZGVlRZqs1+3bv39/HI7ozwTbtm1LUlJS1La3336bZ555ho0bN5KSksK7774bdX8wGOTee+/ljTfewDRNxo8fzx//+EdiYmIi+xxtdcB169YB8Nvf/pYePXpgGAYJCQlkZ2dHpkWebIsWLWLEiBHEx8dHthUXF9OvXz+cTmfUvh06dKj3GgE899xz/O9//yMvLw/TNKPu27dvX+T7jIwMRowYweuvv86vfvUr3G438+bNo6qqiksuueSoOZvSKosiIiLy3WhkloiIiMhJkpyczA9+8IOoKXiH+s9//sMnn3zCm2++ycKFC9m8eTN//etfo/ZJTU0FoLy8vN7xdUW2Cy64gBEjRjB8+HD69ev3nQpZlmURDAaPa9+dO3eydu1axo0b962fb9asWdx999106NCBu+++m0cffZRZs2Zx7733RvIc6rLLLqO0tDRSGJwzZw7t27dnzJgxh338utet7nUUERGR5k/FLBEREWn1MjIyKCgoqFfECQaDbNmyJapfVZcuXSgsLKw3gqikpISKioqobSNHjuS8886jS5cuh33eOXPm8NOf/pSOHTuSmprKLbfcwiuvvEIoFIrs06NHDwAKCwvrHb9u3To6dOhASkrKMX/GkpISfvGLXzB8+HDOPPNMpk+fjs/nA8JTCv/1r3/x/e9/nwEDBkRWSMzPz+fiiy9m4MCB/PCHP6y3GuHixYsxDKNeMSsjI4PCwsKonwNg9+7d9V6j119/nS5duvDf//6XSy+9lNGjRzNixAjatm172J9j3LhxtG3bljlz5pCfn8/nn3/ORRddVG9UXZ26zHWvo4iIiDR/KmaJiIhIq3f22WdTWlrK7Nmzo7a/9NJLlJaWcvbZZ0e2nXXWWezZs4e5c+dG7Xuizd8rKirYsWMHp5xySmRb3759qaqqYtu2bZFtffr0ISEhIap3FEBNTQ35+fn06tXruJ7vtttuA8LTAmfPns3nn3/O3//+98j9r732GtOnT+fzzz+nT58+AMyePZt7772Xjz/+mJycHG655ZaokVKLFi1i8ODB9UY9jRs3jr179/Laa69Fbf/vf/9bL5fD4cAwjKjHDQaDh90XwO12M3nyZD788EMefvhhgKNOMVy1ahXt2rUjJyfniPuIiIhI86KeWSIiItLqXX/99cyfP5+7776b9evX07t3bzZs2MCcOXPIzs6OWhHwhhtuYO7cufz2t79lzZo15OTk8Nlnn/HFF18c1wipOlVVVQBRPaQSExOj7gNwOp2MHz+exYsX4/f78Xg8AGzcuJFQKHRcxaxdu3axfPlyli5dSkJCAgkJCdx66638+te/Ztq0aUC42X3dan91va4uv/zyyIim3/zmNwwdOpSNGzfSu3dvysvLWblyJb/+9a8P+3rOnTuX//u//2PdunV0796dFStWsGrVqnqv0bnnnsvf/vY3brjhBs455xwqKyuZO3fuEUdaQXiq4eOPP87cuXMZOnQoWVlZh92vqqqKzz77LLKiooiIiLQMGpklIiIirV5iYiIvvPACl19+Oe+//z7Tp0/n/fff5/vf/z7PP/98VA+q1NRUnn/+ecaMGcPLL7/M/fffT3V1NU899RSWZeH1eo/rOesapu/fvz+yre77Q5upA1xxxRVUVFTw3nvvRbbV9cs6nmLWzp07cblcUav9paens2/fPmpqagDo3LlzvePS0tKi8rZp04Zdu3YBsGTJEoLBYNSotTrJyck899xznH322bz22mvcf//91NbW8vTTTxMXFxe173XXXcdtt91GcXEx06dP5/nnn2fkyJHcd999R/x5MjMzGTZsGMBRC1ULFy6kpqam3iqVIiIi0rxpZJaIiIi0KsOGDWPTpk31tqempnLnnXdy5513HvMxMjIyeOihh6K2lZWVUV5eftii0OEkJSXRuXNnNm7cGJkCt379euLj4+v12Orfvz+jRo3iqaeeYsKECQBcddVVXHXVVcf1XJ06dSIYDLJr165IQWvbtm0kJycTGxsLUG91RoDt27dHvq+qqqK8vDxy/KJFizjllFNIT08/7HOmpaXxj3/8o972b67o6HQ6+clPfsJPfvKTevse7r9THY/HQ1JSEueee+4R93n66ac555xz6Nmz5xH3ERERkeZHI7NERERETlBtbW29bY8++igQbvpeJxQK4fP5CAQCWJaFz+fD7/dH7r/kkkt45JFH2LVrF6WlpTz00ENMmTIlMs3vUHfccQerVq3iww8/POG8HTt2ZNiwYcyYMYPKykp2797NP//5Ty666KKjHvfSSy+Rl5eHz+fjb3/7Gzk5OZGRYAMGDIj04WpshYWFfPjhh1xwwQVHHAm3ePFivv76a6ZOndrI6URERORkM6xvrncsIiIiIkf1wx/+kC5dutCnTx9M02T58uW89957DBw4kOeeey5SjHrllVciPanqdOnSJTI6KRgMcu+99/L6669jmiYTJkzgD3/4w3FPVTwRe/bs4U9/+hMrVqzA7XYzYcIEfvWrXxEbG8vYsWP5zW9+EzXKaezYsVx88cW8++675Ofn07dvX+65554j9qdqDKtXr2bz5s0888wzbN68mbfffvuII8NERESk5VIxS0REROQEPfHEE7z22mts27YNn89Hx44dGT9+PDfffHNUfy1pWHfccQevvfYaGRkZ/PrXv2b8+PF2RxIREREbqJglIiIiIiIiIiLNhnpmiYiIiIiIiIhIs6FiloiIiIiIiIiINBsqZomIiIiIiIiISLOhYpaIiIiIiIiIiDQbKmaJiIiIiIiIiEizoWKWiIiIiIiIiIg0GypmiYiIiIiIiIhIs6FiloiIiIiIiIiINBv/HxesgLjAIH3fAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1440x720 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# make a plot of the distributions\n", + "import seaborn as sns\n", + "import pandas as pd\n", + "import copy\n", + "pd.set_option(\"display.max_rows\", None, \"display.max_columns\", None)\n", + "from binarycpython.utils.functions import pad_output_distribution\n", + "\n", + "# set up seaborn for use in the notebook\n", + "sns.set(rc={'figure.figsize':(20,10)})\n", + "sns.set_context(\"notebook\",\n", + " font_scale=1.5,\n", + " rc={\"lines.linewidth\":2.5})\n", + "\n", + "pd.set_option(\"display.max_rows\", None, \"display.max_columns\", None)\n", + "\n", + "# remove the merged objects\n", + "probability = { \"merged\" : 0.0, \"unmerged\" : 0.0}\n", + "\n", + "# copy the results so we can change the copy\n", + "results = copy.deepcopy(population.grid_results)\n", + "\n", + "for distribution in ['post']: \n", + " for logper in population.grid_results[distribution]:\n", + " dprob = results[distribution][logper]\n", + " if logper < -90:\n", + " # merged system\n", + " probability[\"merged\"] += dprob\n", + " del results[distribution][logper]\n", + " else:\n", + " # unmerged system\n", + " probability[\"unmerged\"] += dprob\n", + "print(probability)\n", + " \n", + "# pad the final distribution with zero\n", + "for distribution in population.grid_results: \n", + " pad_output_distribution(results[distribution],\n", + " binwidth)\n", + " \n", + "# make pandas dataframe \n", + "plot_data = pd.DataFrame.from_dict(results, orient='columns')\n", + "\n", + "# make the plot\n", + "p = sns.lineplot(data=plot_data)\n", + "p.set_xlabel(\"$\\log_{10} (P_\\mathrm{orb} / \\mathrm{day})$\")\n", + "p.set_ylabel(\"Number of stars\")\n", + "#p.set(xlim=(-5,5)) # might be necessary?\n" + ] + }, + { + "cell_type": "markdown", + "id": "c4740c93-d01e-4ca1-8766-c2fb4ddca2e4", + "metadata": {}, + "source": [ + "You can see that common-envelope evolution shrinks stellar orbits, just as we expect. Pre-CEE, most orbits are in the range $10$ to $1000\\text{ }\\mathrm{d}$, while after CEE the distribution peaks at about $1\\text{ }\\mathrm{d}$. Some of these orbits are very short: $\\log_{10}(-2) = 0.01\\text{ }\\mathrm{d}\\sim10\\text{ }\\mathrm{minutes}$. Such systems are prime candidates for exciting astrophysics: novae, type Ia supernovae and gravitational wave sources." + ] + }, + { + "cell_type": "markdown", + "id": "57faf043-3809-427a-b378-2355ce8c2691", + "metadata": {}, + "source": [ + "Things to try:\n", + "* Extend the logging to output more data than just the orbital period.\n", + "* What are the stellar types of the post-common envelope systems? Are they likely to undergo novae or a type-Ia supernova?\n", + "* What are the lifetimes of the systems in close ($<1\\text{ }\\mathrm{d}$) binaries? Are they likely to merge in the life of the Universe?\n", + "* How much mass is lost in common-envelope interactions?\n", + "* Extend the grid to massive stars. Do you see many NS and BH compact binaries?\n", + "* Try different $\\alpha_\\mathrm{CE}$ and $\\lambda_\\mathrm{CE}$ options...\n", + "* ... and perhaps increased resolution to obtain smoother curves.\n", + "* Why do long-period systems not reach common envelope evolution?" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/notebook_luminosity_function_binaries.ipynb b/examples/notebook_luminosity_function_binaries.ipynb index 901b2e6c41ba78728952059ef3b6cef82f284c31..c6b5f1e64cc36c684fdf5cefe0fae4b450a1c936 100644 --- a/examples/notebook_luminosity_function_binaries.ipynb +++ b/examples/notebook_luminosity_function_binaries.ipynb @@ -661,37 +661,20 @@ "Weirdly, in some places the primary distribution may exceed the unresolved distribution. This is a bit unphysical, but in this case is usually caused by limited resolution. If you increase the number of stars in the grid, this problem should go away (at a cost of more CPU time). " ] }, - { - "cell_type": "markdown", - "id": "44586e42-b7cb-4a55-be0a-330b98b20de4", - "metadata": {}, - "source": [ - "## " - ] - }, - { - "cell_type": "markdown", - "id": "29c6588b-078d-42ec-9b07-63278320ca9c", - "metadata": {}, - "source": [ - "## " - ] - }, { "cell_type": "code", "execution_count": null, "id": "99e25a72-54e6-4826-b0e5-4a02460b857d", "metadata": {}, "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fe84d2dd-5e5f-4eaa-a09e-2bfb7559b70b", - "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "Things to try:\n", + "* Massive stars: can you see the effects of wind mass loss and rejuvenation in these stars?\n", + "* Alter the metallicity, does this make much of a difference?\n", + "* Change the binary fraction. Here we assume a 100% binary fraction, but a real population is a mixture of single and binary stars.\n", + "* How might you go about comparing these computed observations to real stars?\n", + "* What about evolved stars? Here we consider only the *zero-age* main sequnece. What about other main-sequence stars? What about stars in later phases of stellar evolution?" + ] } ], "metadata": { diff --git a/examples/notebook_luminosity_function_single.ipynb b/examples/notebook_luminosity_function_single.ipynb index 6c246d58b298e7acf706cb8648fd052f07d3a6e8..acab6b2d0fdbf914eaae70a47b9250c8b6b0977f 100644 --- a/examples/notebook_luminosity_function_single.ipynb +++ b/examples/notebook_luminosity_function_single.ipynb @@ -321,7 +321,7 @@ "Total starcount for this run will be: 40\n", "Generating grid code\n", "Constructing/adding: M_1\n", - "Population-a52d8236ee1b47ba961a2f27de27dc2f finished! The total probability was: 1.0000000000000002. It took a total of 2.339865207672119s to run 40 systems on 2 cores\n", + "Population-e6c082aabe0849a0811761a06e50476b finished! The total probability was: 1.0000000000000002. It took a total of 2.3021209239959717s to run 40 systems on 2 cores\n", "There were no errors found in this run.\n" ] } @@ -360,7 +360,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'population_name': 'a52d8236ee1b47ba961a2f27de27dc2f', 'evolution_type': 'grid', 'failed_count': 0, 'failed_prob': 0, 'failed_systems_error_codes': [], 'errors_exceeded': False, 'errors_found': False, 'total_probability': 1.0000000000000002, 'total_count': 40, 'start_timestamp': 1631299536.3816578, 'end_timestamp': 1631299538.721523, 'total_mass_run': 2001.4, 'total_probability_weighted_mass_run': 50.035000000000004, 'zero_prob_stars_skipped': 0}\n" + "{'population_name': 'e6c082aabe0849a0811761a06e50476b', 'evolution_type': 'grid', 'failed_count': 0, 'failed_prob': 0, 'failed_systems_error_codes': [], 'errors_exceeded': False, 'errors_found': False, 'total_probability': 1.0000000000000002, 'total_count': 40, 'start_timestamp': 1631461389.3681686, 'end_timestamp': 1631461391.6702895, 'total_mass_run': 2001.4, 'total_probability_weighted_mass_run': 50.035000000000004, 'zero_prob_stars_skipped': 0}\n" ] } ], @@ -459,7 +459,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 13, "id": "6f4463e8-1935-45f2-8c5f-e7b215f8dc47", "metadata": {}, "outputs": [ @@ -468,13 +468,13 @@ "output_type": "stream", "text": [ "Generating grid code\n", - "Constructing/adding: lnM_1\n", + "Constructing/adding: M_1\n", "Grid has handled 40 stars\n", - "with a total probability of 0.9956307907476224\n", + "with a total probability of 0.2182216189410787\n", "Total starcount for this run will be: 40\n", "Generating grid code\n", - "Constructing/adding: lnM_1\n", - "Population-e63d32a82acb49e7b4a4761f21aba24c finished! The total probability was: 0.9956307907476223. It took a total of 1.4513490200042725s to run 40 systems on 2 cores\n", + "Constructing/adding: M_1\n", + "Population-1bc714cffdb344589ea01692f7e1ebd1 finished! The total probability was: 0.21822161894107872. It took a total of 2.335742950439453s to run 40 systems on 2 cores\n", "There were no errors found in this run.\n" ] } @@ -490,7 +490,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, "id": "cfe45a9e-1121-43b6-b6b6-4de6f8946a18", "metadata": {}, "outputs": [ @@ -500,13 +500,13 @@ "[None]" ] }, - "execution_count": 20, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKsAAAJgCAYAAABFgeDFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACaK0lEQVR4nOzdd3hUZd7G8Xtm0nvvAULohB5QmnQEsSBrBcXe3dVddV07dn3XumvvHdsqKAIqXRCkl0BCIAmk94T0Mpl5/whGIyABkpyU7+e6uHY5ZzJzT/BAcud5fsdkt9vtAgAAAAAAANoAs9EBAAAAAAAAgF9RVgEAAAAAAKDNoKwCAAAAAABAm0FZBQAAAAAAgDaDsgoAAAAAAABtBmUVAAAAAAAA2gzKKgAAAAAAALQZDkYHaA+Kispls9lb/HX8/T1UUFDW4q8DtFVcA+jsuAbQ2XENAFwHANdA52A2m+Tr637M85RVTWCz2VulrPr1tYDOjGsAnR3XADo7rgGA6wDgGgDbAAEAAAAAANBmUFYBAAAAAACgzaCsAgAAAAAAQJtBWQUAAAAAAIA2g7IKAAAAAAAAbQZ3AwQAAAAANEltbY1KS4tltdbIZqszOg46oNxcs2w2m9ExcJLMZoscHJzk6ekjR0enk34eyioAAAAAwHFVVpartLRIHh7ecnb2k9lskclkMjoWOhgHB7OsVsqq9shut8tmq1N1daWKinLl6ekrV1f3k3ouyioAAAAAwHGVlR2Sj0+AnJxcjI4CoA0ymUyyWBzk5uYpBwdHlZQUnnRZxcwqAAAAAMBx1dXVytHR2egYANoBR0dnWa21J/3xlFUAAAAAgCZh2x+ApjjVvysoqwAAAAAAANBmUFYBAAAAAIB2yW63Gx3hmIzOZvTrnwrKKgAAAABApzVmTOyf/nr77deP+JiXXnpBY8bE6rXXXjrqcz7++DyNGROrv/zl7GO+7qOPPqAxY2L1+OPzGh3fsWO7/vnPv2vGjEmaMGGkZs2aoSeffEQZGel/+j4WL/5WY8bEKjc35/hv+hTdeuv1uu22m1v8df7oj+/xwIEU3XzzNS3yWo8/Pk8XXzyz4fcXXHCOnnrq0SZ//Lp1P+mxxx5q8dc5lqN9bsaMidV77711ys/dGrgbIAAAAACg03rttXePevzVV/+jnTu3a+DAQY2OW61W/fDDEkVH99Dixd/q2mtvlIPDkd9am0wm5eRka8+eOPXrF9PoXHV1tX76ac0RH7Nx4wbddddtGj9+kv71rwfk7u6hjIx0ffLJB7r++iv0xhvvKzw84hTebfO4445/GTK/bOTIMXrttXfl6+snSVq1arl27drZKq/9xBP/lru7R5Mf//nn81VXZz3u46688lpVVJSfSrSjOtrn5rXX3lVwcHCzv1ZLoKwCAAAAAHRaMTEDjjj21VdfaMeObZo792oNH356o3MbNqxTUVGhHn30ad1yy7Vas2aVJk6cfMRzhIaGqaamRqtWLT+irNqw4WdZLBYFB4c0Ov7RR+9pwIBBevjhJxqODR0aq5EjR+uii2bq008/1h133H0qb7dZREV1N+R1fX195evra8hr9+rVp0WetzXLx6P9t95WsQ0QAAAAAIDD4uN367//fU7Dhg3XtdfeeMT57777Vr1799WgQYPVr1+MFi786qjPYzKZNH78JK1cueKIcytW/KBx4yYcsSKrsLBQNpvtiMcHBATqH/+4S8OHn9bk93G0rXpbt27WmDGx2rFjuyTp7bdf1+WXX6QVK5Zp9uy/aOLEUbrhhquUmnpA69b9pMsvv0iTJo3W9ddfqX379h7zuceMidWCBf/TE088rGnTJmjKlDP0wAP/UlFRYaPXX7r0O1199RxNnjxG559/ll566QVVV1c1nC8qKtKDD96nc889UxMnjtaVV87WkiWLGs7/fhvg22+/rrfeeq3h9d9++3Xdf//duuCCc46Y1fTQQ/fq2mvnHvNzVVJSoieeeFjTp0/UtGkT9Mor/zniz+GP2/N+/HGprrjiUk2cOFpnnz1FjzzygPLz8xo+P1u2bNT27Vs1Zkystm7d3PC5X7jwK82aNUNnnjlO27dvPWIboCTV1tbomWee1JlnjtOMGZP0zDNPNVp9dbStgsf73Pz6/3+/DTA3N0ePPvqgZs6crkmTRuuWW67Ttm1bGs5nZWVqzJhYrV69Qvfee5emTBmr6dMn6umnH1dVVZVaEmUVAAAAAACSSktL9eCD98jb20fz5j0us7nxt8xFRUVav36tzjzzLEnSWWedra1bNyk9Pe2ozzdx4mRlZWUoISG+4VhVVZV+/nmtJk2aesTjTz99lHbu3K7bbrtJixd/q8zMjIZzZ589U2ecMb4Z3mVj2dlZeuONV3TttTfpgQceUXp6qu6663b997/Pae7cq/Xww08oJydLjz764J8+z2uv/VeS9OijT+rmm/+mdet+0ksvPd9w/u23X9fjj8/T4MFD9cQTz+jii2dr4cKv9M9//qOhXHr00Qd04ECy7rzzHj3zzIvq1au3Hn98nrZu3XzE651zzkydd96sw6/9rs45Z6ZmzDhH2dlZ2rFjW8PjysvL9NNPqzV9+tHnh9lsNt1xx1+1fv063Xrr7br//nnatWuHli//4ZjvdefO7XrssYc0fvxEPfvsf/TXv/5dW7Zs1MMP3y+pfptk37791KtXb7322rvq3fu3VVnvvfeWbrvtDt1++11HrLj71bJlP+jAgRQ9+OBjuuqq6/T994v14IP3HDNPUz43f5Sfn6/rrpurPXvidPPNt+nhh5+Us7OLbr/9Zm3ZsqnRY5966jGFhYXrySef1ezZl2vRogX68MOjb59tLmwDBAAAAACctOTMEn27LkVVNXWG5nBxsuic0VHqHuZ10s/xxBPzlJubo//85/WGuUi/98MPiyVJU6ZMkyRNmnSm/vOf5/XNN1/p5ptvO+LxAwYMUmBgkFatWq4+ffpKkn7+ea1cXFw1dGjsEY+//vqbVV5ersWLv2koDIKCgjVy5GhdfPFsdenS7aTf27FUVlbqn/+8tyHP9u1b9b//fa4XX3xVw4YNlySlpaXp5ZdfUEVFhdzc3I76PD169NK999YPFB8+vH6F2po1qyRJJSWH9PHH7+v88y/Q3/52hyRpxIjTFRgYrIceukfr16/TqFFjtH37Vl199XUNpdzgwUPl7e0jR0fHI14vKChYgYFBkn7b3ubvH6DAwCB9//1iDR48VJK0YsUySXZNmXLmUXNv2PCz4uN369ln/6vTThspSRo2bIQuvPCcY37OduzYLmdnF82Zc4WcnJwkSV5e3kpI2CO73a6oqO5yc/NQXZ31iK13s2ZdpHHjJh7zuSXJx8dHzz77Hzk7u0iSHBwc9MwzT2nfvr3q2bP3n36sdPTPzR999tnHKi0t0xtvvN+wHXXUqDG68spL9eqr/9Vbb33Q8NjRo8fq1ltvlyTFxo7Qpk2/6Oeff9J119103Cwni7IKAAAAAHDSftycph1JBUbHkCS5Ojvo+nP7n9THfvrpR/rpp9W6+ebbNGjQ4KM+ZvHibzV8+GmyWCwqLS2VVL8aavHiRbruupuPKFV+3Qq4atVy3XjjrZLqtwCOHz9JFovliOd3cnLS3Xffp2uvvUHr169r2D62cOFXWrz4Wz3yyJMaO3b8Sb2/P9O//28rfH4t6X6/6sfb21uSVFZWesyyasCAxoPog4KCVVVVKUnavTtONTU1mjy5cWE0YcIkPfaYo7Zt26JRo8ZoyJBYvfnm60pISNDpp4/U6aeP0S23HFkCHovFYtG0aTP09ddf6u9//6ecnJy0ZMkijRo1Vl5e3kf9mB07tsnJybmhqJIkV1dXnX76aO3ateOoHzNkyFC9+eYrmjv3Yo0fP0kjR47WiBGna+TI0cfN2LNnr+M+ZuTIMQ1FlSSNGTNezzzzlHbu3N6ksqoptm/fqoEDBzWam2Y2mzVp0lS99dZrjbYd/vHPNjAwSLm5uc2S41goqwAAAAAAJ21KbKSqqq1tYmXVlOGRJ/WxcXG79NprL+mMMyZo9uzLj/qYhIR4JSXtV1LSfk2fPuGI86tXrziijJHqtwJ+8cV87du3V+HhkVq/fp2ee+6lP83j7x+gs88+T2effZ6k+llTjzzygJ555imNGTOuWe/EZ7FYGhUjv3J1dT2h53F2dm70e5PJ1LC9r7S0RFL9+/o9s9ksHx9flZWVSZIefvgJffTRu1q27AetWrVcZrNZsbGn6Z//vFchIaFNynHWWefoww/f1bp1a9SrVx/t2rVD//d/zx/z8SUlJfLx8Tni+B+z/l5MzED9+98v6rPPPtZnn32sjz56T35+/po79ypdcMElf5rP1fXoZd/v/XFV36/5fv08NYfS0hJ16dLliON+fv6y2+2qqKhoOObi0vi/D7PZLLv9yNlqzYmyCsAx2e12peWWaVNCruIPFsnT1VFRoV7qFuqpbqFe8nJzMjoiAAAADNY9zEu3XTjo+A9so0pKDumhh+5RSEhowza2o1m8+Bu5u7vrySefPeLcI488oIULvzpqWRUTM1BBQcFauXK5oqK6y8vLWwMHDj7icbt3x+lf//qHHnzwkSPuQDh0aKxmz75c//nPcyotLTnmKqHfM5lMstkaF4iVlZXH/biW4OnpKUkqKMhvdPc7m82moqLChjLGw8NDt956m2688a9KTT2gn35arffee0vPPfd/f1o4/V5kZBcNHDhYK1YsU0ZGuvz8/DVixMhjPt7Hx0fFxUWy2+2NSsCSkkN/+jqnnTZSp502UlVVVdqyZZO++GK+XnjhGcXEDGrY8nmyfl2196tfB9X/WmLV/9k2LosqKyt0Ijw9PVVQcOSKyIKCfEn12xp//f9GoKwCcISMvDJtjM/VpoRcZRc2/kvv90u8/b2c1S3US91CPOtLrBBPubkcuZ8cAAAAaIvsdrsee+whFRUV6fXX35GHh8dRH1dTU6Mff/xeY8eOP+qsqSlTpmn+/A+VmnrgiLlS9VsBJ2r16hU6eDBFEydOPurKqMjILqqsrNAXX3yqYcNGHDHcPTX1oAIDg5pUVEmSu7u7UlKSGx3buXN7kz62ufXvP0BOTk5atuz7RkXdypXLZbVaNXDgIOXm5ujGG6/W7bffoTPOmKguXbppzpxuiovbpayszKM+79G2UkrSjBnn6oUXnlFGRrrOPHP6MR8nScOGDdeHH76rtWtXN2yxrK2t1caNG464W+OvXnnlP9q2bbPeeON9ubi4aPTosQoKCtZVV81Wbm6O+vTpK4vFrLqTXGy4efNG1dXVNeReuXKZJDXM4XJzc1dOTk6jj/njn+2fvef65xqm//3vc+Xm5igoKFhSfXm4YsWP6tu3X8MsLqNQVgGQJGUVlGtTfK42JuQqM7/8iPNdgz1VWW1VbvFvP40pKKlWQUmetuzNazgW7OuqbqFeigqpX33VJdhDLk78VQMAAIC258svP9PPP6/VBRdcourqGsXF7TriMe7u7kpOTlJpaclRV05J0rRpMzR//odauPBr/fWvfz/i/MSJU/T55/OVkZGul19+66jP4eXlpZtvvk3PPfe0brnlWp1zzvkKCwtXWVmZ1qxZqaVLv9O8eU80+b2NGjVWa9eu0X//+7xGjx6rnTu3a+nS75r88c3Jy8tbl156uT744B05ODho5MjRSklJ1ttvv67Bg4fqtNNGyWw2KyQkVM89938qKSlVeHiEEhLitWHDOl1xxTVHfV4Pj/oVWz/+uFQxMQMVGhomSZowYbJeeOEZJSYm6IEHHvnTbLGxIzRixEg98cQjuuGGAgUHB+uLLz5VcXGRAgICj/oxw4eP0Pz5H+rxx+fpzDOnq7bWqk8++UA+Pj4aMmRYQ7YdO7Zpy5ZNJzxnKi8vRw89dI9mzrxA+/Yl6s03X9VZZ52jLl26SqofhP7RR+/pww/fU//+MVq7drW2bGl8x8RjfW5+dfHFc7R06Xe67babdPXV18vNzV1ff/2FDh48oH//+8UTytsS+A4S6MRyiirqC6r4XKXnHbn/uWuIp0b0DdLw3kEK8Knfs15WWauD2aU6kF2ilKz6/y0sqf7dc1Yqp6hSv+ypb/pNJinM313dDpdX3UI91SXIQ44Of970AwAAAC0tMTFBkvTll5/qyy8/PepjBg8eKmdnF/n4+Cg2dsRRHxMd3UM9e/bS0qWLdMMNtxxxvn//AQoODpHZbGk0zPyPZs26UF26dNWXX36q119/SYcOHZKbm7v69euvF198taEIaYoZM85VRka6lixZpAULvtTgwcP02GNP66abjl78tLTrrrtJfn5++t//PtfXX38pX18/nXfeLF199Q0Nq8gef/z/9PrrL+mtt17ToUPFCgoK1tVXX685c6446nOOHTteixd/o8cfn6dzzz1f//jH3ZIkNzc3DRkyVEVFRYqK6n7cbE888W+9+up/9NZbr6q6ukaTJk3RuefO0s8//3TUxw8ffrrmzXtcH3/8ge69958ymUwaNGiw/vOf1xq2PJ5//gXavXuX7rzzb7r//oePenfJY5k58wKVlpbonnvukLOziy688JJGd96bO/dqFRcX65NPPpDVatWoUaP1r389oH/96x/H/dz8KiAgQK+++rZeffU/euaZJ2Wz2dSnTz89//zLR1092NpM9l8nnuGYCgrKZLO1/KcpMNBTeXmlx38gcAryiiu1OaG+oDqYc+R/b5FBHvUFVZ8gBfkef/ifJB0qr9GBrBKlZJXoQHapDmSVqKSi9piPt5hNCg90b9g6GBXqpbAAd4WGeHMNoFPj3wF0dlwDQNu+DrKzDyokpKvRMdDBOTiYZbWe2vDuiooKnX/+dN1yy+0699zzmykZTtSf/Z1hNpvk73/0bbcSK6uATqGwpKphBlVKVskR58MD3TW8T31BFervfsLP7+3upEE9AjSoR/0dM+x2u4pKqxtWXh04XGKVV1klSXU2u1JzypSaU6bVh5/DwWJWdLi3IgLcGwa4h/q5yWxuvjudAAAAAOi4srIytXTpd9qw4We5uLho6tTpRkfCSaKsAjqootLq+hVUCTlKyjiyoArxc2tYQRUeeOxG+2SYTCb5ebnIz8tFw3rX7/O22+3KK65sKLBSskp1MKdU1YdvcWyts2lvapH2phY1PI+zk0Vdgz1/G+Ae6qkgH9dmvVUvAAAAgI7BZDLriy8+lbu7ux566HG5uLgYHQknibIK6EAOlddoc0KuNsXnaF/6If1x82qQj6uG9w3SiL7Bigh0b9XSx2QyKcjXTUG+bjqt3693m7Aru7CiYftgen65kjMOqfbwst/qmjolphUrMa244XncnB3qV16FeCnq8P/6eTlTYAEAAACdXEhIiBYvXm50DDQDyiqgnSupqNHWvXnaGJ+jvWnF+uMUugBvl/qCqk+wugR7tKlSx2w2KSzAXWEB7ho9IFSBgZ7Kyj6kzPzyhtlXKVmlSs8rU93huXEV1VbtOVCkPQd+W4Hl5eZYP7z98BD3qFAvebsbe6tVAAAAAMDJoawC2qGyylptTczTpvgcxR8slu0PDZWfl/PhGVTBigr1bFMF1fE4WMzqEuypLsGeOmNQ/e1Va611SsstP7x9sH4VVmZ+eUMxV1JRq51JBdqZVNDwPL6ezo22D3YL8ZKHq6MRbwkAAAAAcAIoq4B2oqKqVtv25WtjfK72HChsWGn0Kx8PJ8X2qd/i1z3MS+Z2VFAdj6ODRd3DvNQ9zKvhWFWNVak5ZQ3D21OyS5VTWNFwvqi0WkWl1dq2L7/hWHS4l64+q+9JDZEHAABA/RzS9vSDUADGsP9xy88JoqwC2rDKaqu278vXpoRcxaUUyFrX+IL3cndSbO9AjegbrB4R3h2qoDoeFycH9Yr0Ua9In4ZjFVW1Oni4uPp1C2FBSVXD+aSMEj3y3mZdMa23Tu8fYkBqAACA9sticVRtbbWcnBhaDeDP1dZWy8Hh5He2UFYBbUxVjVU79hdoY3yOdiUXylpna3Tew9VRsb0DNbxvsHpH+shs7jwF1fG4uTiqbzc/9e3m13CspKJGB7JKtTMpXyu2Zqi6tk5vfLtHCanFmj25p5wcLQYmBgAAaD88PLxVXJwvd3dvubi4ymy2sMoKQAO73S6brU5VVZUqLz8kT0/fk34uyiqgDaiurdOupPqCamdSgWqsjQsqdxcHDe1Vv4KqT1cfWcxmg5K2P15uThoY7X/4V4DeWrRHZZW1WrMjU8mZJbr5/BiF+LkZHRMAAKDNc3V1l4ODo8rKilVefkg2W53RkdABmc1m2Wy24z8QbZLZbJGjo5N8fYPk6HjyN70y2U91I2EnUFBQJput5T9NgYGeyssrbfHXQdtQa63TruRCbYzP0Y79BaqubfyPvauzg4b2CtDwPsHq181XDpaOX1C1xjVQWFKl177Zrf3phyRJzk4WXTmtj07rF9yirws0Bf8OoLPjGgC4DgCugc7BbDbJ39/jmOdZWQW0olqrTbtTCrUpIUfb9uWrqqZxQeXiZNGQnvUFVf8oPzk6dPyCqrX5ebnon5cO0dc/JWvJhlRV19Tp9W92a29asS6d1EOODmwLBAAAAAAjUVYBrSCroFyLNxzU1sR8VVZbG51zdrRoUA9/jegbrAHd/ShLWoGDxawLx/dQrwgfvbVoj8qrrFq1LUPJGYd008wYBbMtEAAAAAAMQ1kFtIJXF+xWel5Zw++dHMwaGH24oIr2lzNDvg0xqEeAHr56hF5dGKekjBKl5pbp4fc26crpfTSiL9sCAQAAAMAIlFVAKygpr5YkhQW465xR3TSoh79cnLj82gI/LxfdPXuovlqTrKW/pKqqpk6vLazfFnjJRLYFAgAAAEBrYyAO0Ip6RfrotH7BFFVtjIPFrIsm9NDf/jJQ7i71fzYrt2boiQ+3KreowuB0AAAAANC5UFYBwGGDewbooauGq3uYlyTpYE6pHn5vkzYn5BqcDAAAAAA6D8oqAPidAG9X/WvOUE0dHilJqqyu0ysL4vTxD4mqtdoMTgcAAAAAHR9lFQD8gYPFrEsm9dRfZw2Qm3P9tsDlW9P1xEdblFtcaXA6AAAAAOjYKKsA4BiG9ArUvKuGKyr08LbA7FI9/O4mbdnLtkAAAAAAaCmUVQDwJwJ8XHXPZUM1JfbXbYFWvfx1nD75MVHWOrYFAgAAAEBzo6wCgONwsJh16eSeunXWALke3ha4bEu6nvxoi/LYFggAAAAAzYqyCgCaaOjhbYHdQjwlSSlZ9dsCtybmGZwMAAAAADoOyioAOAGBPq6657JhmjwsQpJUUW3VS1/t0qfL97EtEAAAAACaAWUV0ArsRgdAs3J0MGv2lF665fyYhm2BP2xK01Mfb1X+IbYFAgAAAMCpoKwCgJM0rHeQHrpquLoe3haYnFmiee9s0rZ9bAsEAAAAgJNFWQW0IpPRAdDsgnxcde9lwzRp6G/bAv/7v136bAXbAgEAAADgZFBWAcApcnQwa87UXrp5ZoxcnS2SpO83punpj7eq4FCVwekAAAAAoH2hrAKAZhLbJ0gPXjlcXYI9JElJmSWa9+5Gbd+fb3AyAAAAAGg/KKsAoBkF+7rpvsuHacLQcElSeZVV//lypz5fuZ9tgQAAAADQBJRVANDMHB0sunxqb914Xn+5ONVvC1z6S6r+75NtKixhWyAAAAAA/BnKKgBoISP6BuuhK4erS1D9tsD9GYc0791N2pnEtkAAAAAAOBbKKgBoQcF+brpv7jCNH1K/LbCsslYvfLFTX6zarzob2wIBAAAA4I8oqwCghTk6WDT3zN66/tx+cj68LXDJBrYFAgAAAMDRUFYBQCs5vV+IHrpyuCIC67cF7kuv3xa4K7nA4GQAAAAA0HZQVgFAKwrxc9P9c4dp3OAwSfXbAp//fIf+tzqJbYEAAAAAIMoqoFXY7UYnQFvi5GjRFdP66Lpz+snZsX5b4HfrD+rf87erqLTa4HQAAAAAYCzKKqA1mYwOgLZkZP8QPXhlrMID3SVJiWnFmvfuRsWlsC0QAAAAQOdFWQUABgr1d9f9c2M1dmCoJKm0olbPf7ZDX61Jls3GkjwAAAAAnQ9lFQAYzNnRoqvO6qtrz+4rJ0ez7JIW/XxAz3y6TcVlbAsEAAAA0LlQVgFAGzEqJlQPXjFc4QH12wITUos1752N2n2g0OBkAAAAANB6KKsAoA0JC3DX/VfEasyA+m2BJRW1eu7T7VrwE9sCAQAAAHQOlFUA0MY4O1p09Yy+umbGb9sCv1lXvy0wt7jS6HgAAAAA0KIoqwCgjRo9IFQPXDFcYb/bFnjfGxs0f9k+lVXWGpwOAAAAAFoGZRUAtGHhAe56YG6szhhUvy2wzmbXj5vTdPdr67Xkl4OqtdYZnBAAAAAAmhdlFQC0cc5OFl05va8euCJWfbr4SJIqq636YmWS7n3jF63fnS2bnXlWAAAAADqGTlVW1dTU6KqrrtLKlSuNjgIAJywq1Et3XTpEt10wUKH+bpKkgpIqvfntHj36/mbFHywyOCEAAAAAnLpOU1YlJCRozpw52rp1q9FRAOCkmUwmDeoRoEeuGaG503rLy91JknQwu1T/nr9NL3yxQxn55QanBAAAAICT12nKqvnz5+vmm2/WwIEDjY4CAKfMYjZr/OBwPXXD6Tp3dDc5Odb/db4zqUAPvv2L3l+aoOKyaoNTAgAAAMCJ6zBl1YIFC9SvX78jfpWWlkqSHn74YU2YMMHglOjsTEYHQIfj4uSgmWO766kbRuqMQWEymSS7XVq9PVP3vL5BC9emqKrGanRMAAAAAGgyB6MDNJeZM2dq5syZRscAAEP4eDjryul9NCU2Ql+sStLOpAJV19Zp4doUrdqWoZljozRmYKgs5g7zMwoAAAAAHRTftQBABxIe6KHbLxykuy4doq7BnpKkQ+U1en/pXj30zibt2J8vO3cOBAAAANCGUVYBQAfUt6uvHrgyVted00/+Xs6SpMz8cr345U79e/42HcwuNTghAAAAABxdmyur4uPj1b9/f2VnZx9xbtGiRZoxY4YGDhyo6dOna8GCBa0fEADaCbPJpJH9Q/TE9afrwgnRcnWu3/mdkFqsh9/bpDe+3a38Q5UGpwQAAACAxtrUzKqkpCTdcMMNslqPHAa8ePFi3Xnnnbriiis0ZswYLVu2THfffbdcXFw0bdq0Jr/Ghx9+2JyRAaDNc3SwaPppXTV2YJi+WZeilVszVGeza8PuHG1OyNPk2AidPbKr3FwcjY4KAAAAADLZ28DwEqvVqs8++0zPPvusHB0dVVxcrNWrVyskJKThMVOmTFFMTIyef/75hmO333679u7dqyVLlhgRG2iy2Q8sUWlFjWaMjtKNswYaHQedXFZ+ud5fvEfrdmQ2HPN0c9TFU3rrrFFRcnRoc4tuAQAAAHQibWJl1ZYtW/TMM8/ommuuUXBwsO6///5G59PS0pSamqp//OMfjY6feeaZWrJkidLS0hQZGdli+QoKymSztXynFxjoqbw85sh0RL92wpWVNfwZ/wmugdbhIOma6X00fmCoPlu5X/vTD6m0olZvLYzTwtX79Zdx0RreJ0gmk8noqJ0O1wA6O64BgOsA4BroHMxmk/z9PY59vhWzHFN0dLSWLVumW2+9VRaL5YjzycnJkqSoqKhGx7t27SpJSklJafmQANDBRId76545Q3XL+QMU7OsqScorrtJrC3fr8Q+3KDGt2NiAAAAAADqlNrGyKiAg4E/Pl5bWt6oeHo1bN3d3d0lSWVlZywQDmkkb2G0LHJXJZNKw3oEa1MNfq7dnauHaFJVV1io5s0RPfbxVQ3sF6oLx0QrxczM6KgAAAIBOok2UVcdzvG/0zeY2sUAMANotB4tZk4ZFaFRMiBZvOKgfNqWp1mrT1sQ87difr3GDw3TumCh5uTkZHRUAAABAB9cuWh5PT09JUnl5eaPjv66o+vU80NaZxAwgtG2uzg76y7hoPXn96Ro9IEQmSXU2u1ZszdC/XluvRT8fUHVtndExAQAAAHRg7aKs+nVWVWpqaqPjBw8ebHQeANA8/LxcdM2MfnroquHqH+UnSaqqqdNXa5J17xsbtHZnVqvceAIAAABA59MuyqquXbsqIiJCS5cubXT8hx9+ULdu3RQWFmZQMgDo2LoEe+qOiwfrHxcPUkRg/dzAotJqvbM4XvPe3aS4lAKDEwIAAADoaNrFzCpJuuWWW3TPPffI29tb48eP1/Lly7VkyRI9//zzRkcDgA4vJspf/a7y089x2fpqTZKKy2qUnlem5z7bof5RfrpoQg9FBh371rMAAAAA0FTtpqyaNWuWampq9M477+iLL75QZGSknn76aZ111llGRwOATsFsNmnMwFAN7xukHzalacmGg6qqqdPulELNS9moUQNCdP7Y7vLzcjE6KgAAAIB2zGQ/3q32oIKCslaZzRIY6Km8vNIWfx20vr++sEblVVZNGhqhOVN7GR2nzeIaaF9Kymu0cF2KVm/LlO3wPyVODmZNGR6ps07vKlfndvPzkDaDawCdHdcAwHUAcA10DmazSf7+x96Z0S5mVgEA2h4vdyddPrW3Hr12hIb0DJAk1Vht+m79Qf3r9fVasTVd1jqbwSkBAAAAtDeUVQCAUxLq766//mWg/jVnqLqHeUmSSitq9dEPiXrg7Y3ampgnFvECAAAAaCrKKgBAs+gV6aP7Lh+mG8/rr0Cf+rlVOYUVeumrXXrq461KyjxkcEIAAAAA7QFlFQCg2ZhMJo3oG6zHrj1dl0zqKXeX+rlV+9IP6fEPtuh/q5MMTggAAACgraOsAgA0O0cHs6YOj9RTN47UtNO6yMFikiR9t/6gNsbnGJwOAAAAQFtGWQW0JpPRAYDW5e7iqIsm9NAj15zWsMrqvSUJyimsMDgZAAAAgLaKsgoA0OJC/Nx07dn9JElVNXV6ZUGcamrrDE4FAAAAoC2irAIAtIpBPQI0/fQukqS03DJ9smyfwYkAAAAAtEWUVQCAVjPrjO7qFeEtSVqzI1M/x2UZnAgAAABAW0NZBQBoNRazWTecFyNPN0dJ0gff71VGfrnBqQAAAAC0JZRVAIBW5evprOvO6SeTpJpam15dEKfqGuZXAQAAAKhHWQUAaHUxUf46Z3Q3SVJmfrk++H6v7Ha7saEAAAAAtAmUVQAAQ5w7Okp9u/pKktbvztZPO5lfBQAAAICyCgBgELPZpOvP6SdvdydJ0sc/Jiott8zgVAAAAACMRlkFtAJ2NwFH5+3hrBvO7S+TSaq12vTK17tUWW01OhYAAAAAA1FWAQAM1aerr2aO7S5Jyimq1PtLE5hfBQAAAHRilFVAKzIZHQBoo2aM7KqYKD9J0sb4XK3almFwIgAAAABGoawCABjObDLpunP6ydfTWZI0f/k+HcguMTgVAAAAACNQVgEA2gRPNyfdeF5/mU0mWevseuXrOFVU1RodCwAAAEAro6wCALQZPSN8dMH4aElS/qEqvbOY+VUAAABAZ0NZBQBoU84cEanBPQIkSVsT8/Tj5nSDEwEAAABoTZRVAIA2xWQy6Zqz+8rfy0WS9MXK/UrKOGRwKgAAAACthbIKANDmuLs46qaZMbKYTaqz2fXqwjiVVTK/CgAAAOgMKKsAAG1S9zAvXTyxhySpsKRaby3aIxvzqwAAAIAOj7IKANBmTRoWodjegZKknUkFWvpLqsGJAAAAALQ0yiqgFbAWBDg5JpNJV07vqyAfV0nSV6uTlZhWbGwoAAAAAC2KsgoA0Ka5uTjoppkxcrCYZbPb9drCOJWU1xgdCwAAAEALoawCWpPJ6ABA+9Q1xFOzp/SUJBWX1eiNb3fLZmPNIgAAANARUVYBANqFcYPCdHq/YEnSngNFWvTzAWMDAQAAAGgRlFUAgHbBZDJp7rTeCvV3kyQtXJuiPQcKDU4FAAAAoLlRVgEA2g0Xp/r5VU4OZtklvfHNbhWXVRsdCwAAAEAzoqwCALQrEYEeumxqb0lSSUWtXl+4W3U2m8GpAAAAADQXyioAQLszZmCoxgwIlSTtTSvWwrUpBicCAAAA0FwoqwAA7dKcqb0UHuguSVr080HtTCowOBEAAACA5kBZBQBol5wdLbp5ZoycHS2SpLcW7VFhSZXBqQAAAACcKsoqAEC7Fervrium1c+vKqus1asL42StY34VAAAA0J5RVgEA2rXT+4do/JBwSVJSRom+Wp1scCIAAAAAp4KyCmgVdqMDAB3apZN6qEuwhyRp6cZUbUvMMzgRAAAAgJNFWQW0IpNMRkcAOiRHB4tumhkjV+f6+VVvfxevvOJKg1MBAAAAOBmUVQCADiHY101XTe8rSaqotuq1hXGqtTK/CgAAAGhvKKsAAB1GbJ8gTR4WIUlKySrV5yv3G5wIAAAAwImirAIAdCgXTeyhqFAvSdLyLenalJBrcCIAAAAAJ4KyCgDQoThYzLrpvP5yd3GQJL27OF45RRUGpwIAAADQVJRVAIAOJ8DHVdfM6CdJqqqp06tfx6mmts7gVAAAAACagrIKANAhDe4ZoGmndZEkpeaWaf7yfQYnAgAAANAUlFUAgA5r1hnd1SPCW5K0enum1u/ONjgRAAAAgOOhrAIAdFgOFrNuPLe/PFwdJUkfLN2rzPxyg1MBAAAA+DOUVQCADs3Py0XXndNPJknVtXV6dUGcqmuYXwUAAAC0VZRVQCuw241OAHRuA7r7a8aobpKkjPxyffTDXmMDAQAAADgmyiqgFZlMRicAOq+ZY6LUp4uPJGldXLZ+2plpbCAAAAAAR0VZBQDoFMxmk244t7+83J0kSR/9kKi03DKDUwEAAAD4I8oqAECn4e3hrBvO7S+TSaq12vTKgjhVVluNjgUAAADgdyirAACdSt+uvpo5JkqSlFNYofeXJsjOYDkAAACgzaCsAgB0OjNGdVP/KD9J0sb4XK3azvwqAAAAoK2grAIAdDpmk0nXndNPvp7OkqT5yxJ1MLvU4FQAAAAAJMoqAEAn5eXmpBvO7S+zySRrnV2vLNiliirmVwEAAABGo6wCAHRavSJ99Jdx3SVJecVVendxPPOrAAAAAINRVgEAOrUzT+uiQdH+kqQtiXlatjnd4EQAAABA50ZZBQDo1Mwmk645u5/8vernV32+cr+SMg8ZnAoAAADovCirgFbApiKgbfNwddSNM2NkMZtUZ7PrtQVxKqusNToWAAAA0ClRVgEAICk6zFsXTeghSSooqdbbi/bIxvyqNqGsslZLfjmo5z/fobjkAqPjAAAAoIU5GB0AAIC2YnJshBLTirUlMU87kgr0/S+pmn56V6NjdVoZ+eVavjlNP+/OVk2tTZK0N61ID1wxXOEB7ganAwAAQEuhrAIA4DCTyaSrzuqr1NxS5RVX6X+rkxUd7q1ekT5GR+s0bHa7diUVaNmWdO1OKTzifE2tTa98vUsPXjFczk4WAxICAACgpbENEACA33FzcdDNMwfIwWKSzW7XawvjVFJRY3SsDq+y2qplm9N03xsb9OKXOxsVVQOj/XXHxYN1zqhukqSsggp98P1e2dmmCQAA0CGxsgoAgD/oGuKpSyf30off71VxWY3e/HaP/n7RIJlNJqOjdTi5xZVasSVdP+3MVGV1XcNxZyeLxgwI1eRhEQr2c5Mk9e3qq/0ZhxR/sEjrd2erdxcfnTEozKjoAAAAaCGUVQAAHMX4wWHam1qkjfG52p1SqO9+PqBzRkcZHatDsNvtSkgt1rLNadq+L7/RHVMDfVw0aVikxgwIlZtL4y9TzGaTrj+3v+a9s1GHymv08Y+J6hbiqS7Bnq37BgAAANCiKKsAADgKk8mkK6b10cGcMuUUVmjB2hT1CPdW325+Rkdrt2pq67RhT46WbU5Tel55o3N9u/pqcmyEBkUHyGw+9go2b3cn3Xhef/3f/G2qtdr06oI4PXjlcLk68yUNAABAR8FXdgAAHIOrs4NumRmjRz/YrFqrTc9/sUN9uvpqUHSABkX7K8DH1eiI7UJRabVWbE3X6u2ZKqusbTju6GDWyP7BmjwsUhFBHk1+vt5dfHX+2O76ak2ycooq9f7SBN1wbn+Z2KYJAADQIVBWAQDwJyKCPHTZ1F56d3GCrHV2xSUXKi65UB//KIUHuGtgD38Nig5QdLiXLGbuW/J7SRmH9OPmNG3Zm6c622+b/Xw9nTVxaLjOGBQmTzenk3rus0Z2VWJ6seKSC7UxPle9In00cWhEc0UHAACAgSirAAA4jrEDwxTk46pf9uRoR1KBikqrJUkZ+eXKyC/Xkg2pcndx0IDu/hrYw18xUf7ycHU0OLUxrHU2bU7I1Y+b05WSVdLoXHS4l6bERmpor0A5WE6t2DObTLru7H6a9+4mFZVW69Pl+xQV6qWoUK9Tel4AAAAYj7IKaA3cXR1o93p38VXvLr6y2+1Kyy3TjqQC7dyfr+TMEtkllVdZtWFPjjbsyZHZZFKPcC8N6hGggT0CFObv1uG3qJVU1Gj1tgyt2JahQ2U1DcctZpOG9w3SlNjIZi+SPN2cdNN5MXr6k62y1tn16oI4zbtquNxcOmdRCAAA0FFQVgEAcAJMJpO6BNffge6cUd1UUl6jXckF2pFUoN0pBaqsrpPNbldi+iElph/SF6uSFODtUj/nqoe/enfxkaODxei30WxSc0q1bHO6NuzJkbXO1nDc081R4weHa/yQcPl6OrfY6/eI8NZfxkXr85X7lX+oSm9/F69bZw3o8OUgAABAR0ZZBbQivncCOh4vdyeNHhCq0QNCZa2zaV9asXYk1ZdXOYUVkqT8Q1VavjVdy7emy9nRon7dfOtXXUX7y8ej5YqclmKz2bVtX76WbU7T3rTiRue6BHlocmykTusX1Gql3JkjIrUvvVjb9uVr2758/bgpTVNHdGmV1wYAAEDzo6wCAKCZOFjM6tvNT327+emSST2VXVihnfvztSOpQIlpxaqz2VVdW9dQqkhS1xBPDYr216AeAfL3b/od8YxQUVWrNTuytGJruvIPVTUcN5mkIT0DNSU2Qr0ifVp9VZPJZNLVM/rq4Xc3Kf9Qlb5YlaTocG9Fh3u3ag4AAAA0D8oqAABaSIifm0JGdNHUEV1UUWXV7gOFDeVVWWWtJOlgdqkOZpfqm3UH5OPprJgoPw2KDlC/br5ydW4b/0xnFZRr2ZZ0/bwrW9W1dQ3HXZ0ddMagUE0aGqEAH1cDE0ruLo66aWaMnvhwi+psdr26ME7zrhrRaQfdAwAAtGdt46tgAAA6ODcXBw3vE6ThfYJks9mVklWiHUn52rm/QKm5ZZKk4tJqrd2ZpbU7s+RgMal3pI8G9gjQoB4BCmrlMshmt2t3SqF+3JymuOTCRudC/Nw0OTZCo2JC5OLUdr6UiAr10iWTeurjHxNVWFKttxbt0d8uGCgze7ABAADalbbzFSYAAJ2E2Wxq2KY264xoFZZUaWdSgeLTirUjMU81VpusdXbtPlCk3QeKNH/ZPoX6uzUMaY8O95aDxdwi2apqrPo5LlvLNqcr+/DMrV/FdPfTlNhI9Y/ya7MF0MSh4dqbVqzNCbnamVSgJRsOasbIbkbHAgAAwAmgrAIAwGB+Xi4aPyRcF07to4zMYiWkFmnH/gLtSMpXYUm1JCmroEJZBalaujFVbs4Oiulev11wQLR/s2x1yy+u1PKt6VqzI0uV1daG486OFo0aEKLJwyIU6u9+yq/T0kwmk66c1kepOaXKLarU12tS1CPcW727+BodDQAAAE1EWQUAQBvi5GjRwOgADYwO0GX2XsrIK9eOpHzt2F+gpIxDskuqqLZqY3yuNsbnymSSosO964e0RwcoPNC9yQPO7Xa7EtOK9ePmdG3blye7/bdzAd4umjg0QmcMCpWbS/ua++Tm4qCbZ8bosQ+2yFpn02vf7NbDV42Ql7uT0dEAAADQBJRVAAC0USaTSRFBHooI8tCMkd1UWlGjXckF2plUoF3Jhaqstspul/anH9L+9EP63+pk+Xs518+5ig5Qny4+cnK0HPG8tdY6bdiTo2Wb05V2eF7Wr3pH+mhybKSG9AyQ2dw2t/o1RZdgT82e0lMfLN2rQ2U1euPb3frHRYPb9XsCAADoLCirAABoJzzdnDQqJlSjYkJlrbNpf/qhhlVXv86XKiip1sqtGVq5NUNODmb16+angT3qV11J0sptGVq9PUOlFbUNz+tgMev0fsGaHBuhLsGehry3ljBuUJgS04q1YXeO9hwo0rc/H9B5Y6KMjgUAAIDjoKwCWoFd9uM/CABOgIPFrD5dfdWnq68unthTOUUV2nl4ztXe1GLV2eyqsdq0fX++tu/Pl7RXZpNJtt/t9fP2cNLEIeEaNyRcXm4db4ucyWTS3DN762B2qbIKKvTN2hT1jPBWv25+RkcDAADAn6CsAgCgAwj2ddOU4W6aMjxSldVW7TlQqB37C7QzKV8lh1dR/VpURYV6aUpshGL7BLXYXQXbChen+vlVj76/WTVWm974ZrceumqEfD2djY4GAACAY6CsAlqRScxKAdDyXJ0dNKx3kIb1DpLNbteBrFLtTMpXZXWdRvQNUnS4t9ERW1V4oIcuP7O33v4uXiUVtXr9m92669LBspg7dlEHAADQXlFWAQDQgZlNJnUP81L3MC+joxhq9IBQ7U0r1tqdWUpMK9aCn1L0l3HRRscCAADAUfAjRQAA0CnMmdJLEYHukqTv1h/UzqQCgxMBAADgaCirAABAp+DsaNFNM2Pk7GSRJL357W4VllQZnAoAAAB/RFkFAAA6jVB/d10xrbckqbzKqlcXxslaZzM4FQAAAH6PsgoAAHQqp/cL0YQh4ZKkpIwS/W91ksGJAAAA8HuUVQAAoNO5ZFIPdQn2kCR9vzFN2xLzDE4EAACAX1FWAQCATsfRwaKbZ8bI1bl+ftVb38Urr7jS4FQAAACQKKsAAEAnFeTrpqvP6itJqqy26tUFcaq1Mr8KAADAaJRVQGuwGx0AAHA0w3oHaUpspCTpQHapPl+x3+BEAAAAoKwCAACd2oUTohUV6iVJWr41XRvjcwxOBAAA0LlRVgGtyWR0AADAHzlYzLppZn+5uzhIkt5bkqCcwgqDUwEAAHRelFUAAKDTC/B21TVn95MkVdXU6ZUFcaqprTM4FQAAQOdEWQUAACBpcI8ATT+tiyQpLbdMnyzbZ3AiAACAzomyCgAA4LDzz+iunhHekqQ1OzK1Pi7b4EQAAACdD2UVAADAYQ4Ws248L0Yero6SpPe/T1BGfrnBqQAAADoXyioAAIDf8fV01vXn9pNJUk2tTa8uiFN1DfOrAAAAWgtlFQAAwB/ERPnr7FHdJEmZ+eX68Ie9stvtxoYCAADoJCirAAAAjuK8MVHq08VHkvRzXLbW7swyNhAAAEAnQVkFAABwFGazSTec21/e7k6SpI9+TFRabpnBqQAAADo+yioAAIBj8PZw1g3n9pfJJNVabXplQZwqq61Gx2pVNrtd2/fn6/nPd+jR9zdrx/58oyMBAIAOzsHoAEBnwJQTAGi/+nT11cyx3fX1mmTlFFbo/aUJhwssk9HRWlRltVXrdmVp2ZZ05RZVNhx/8cudGhjtr0sn91Swr5uBCQEAQEdFWQW0oo79bQ0AdFwzRnbVvrRixaUUamN8rnpH+mjC0AijY7WI3KIKLd+SobW7MlVZ/dtdEF2cLDKZTKqstmpnUoH2HCjUmSO66OyR3eTsZDEwMQAA6GgoqwAAAI7DbDLpunP6ad67m1RUWq35y/cpKsxL3UK8jI7WLOx2uxIOFunHzenasT+/0YrgIB9XTRoWoTEDQ1Vrtel/q5P0084sWevs+m79Qf0cl61LJvVUbO/ADr/aDAAAtA7KKgAAgCbwdHPSjef119Mfb5O1zq5XF8TpoSuHy83F0ehoJ62mtk4b9uTox81pysgrb3Sub1dfTYmN1MBof5nN9SWUq7N01Vl9NW5wuD7+ca9SskpVVFqtVxfEqU8XH82Z0kvhgR5GvBUAANCBUFYBAAA0Uc8IH10wPlqfr9yvvOIqvbM4QbecH9PuVhQVllRp5bYMrd6eqbLK2objjg5mjewfosmxEYr4k9Kpe5iX7psbq7U7s/TlqiSVVdYqIbVYD72zSZOGRei8MVFyc+HLTAAAcHL4KgIAAOAEnDkiUolpxdq+P19bE/P04+Z0TR0eaXSs47Lb7UrKLNGyzWnanJAnm/23zX6+ns6aODRc4waHy8O1aSvFzCaTzhgUpmG9A7XgpxSt2Joum92uHzen6Zc92bpgfA+NGhAiczsr8gAAgPEoqwAAAE6AyWTS1TP66uF3N6mgpEpfrNyv6DAvRYd7Gx3tqKx1Nm1KyNWyzWlKySptdK5HuLcmx0ZoaK9AOVjMJ/X87i6OmjOll84YFKaPf0xUYlqxSipq9c7ieK3enqE5U3t1mNleAACgdVBWAQAAnCAPV0fdNDNGT360RXU2u15bGKeHrhrR5FVJraGkvEartmdo5bYMHSqraThuMZs0om+QJsdGKiq0+UqkyCAP3T17iH6Jz9HnK/aruKxGSZklevS9zTpjcJhmndFdnm5OzfZ6AACg46KsAgAAOAndw7x08cQe+mTZPhWUVOutRXv0twsGGr7tLTWn9PBWvFxZ62wNx73cHDV+SLjGDwmXj4dzi7y2yWTS6f1CNLhHgL79+YB+2JimOptdq7dnanNCrs4/o7vGDw5vGNgOAABwNJRVAAAAJ2nSsAglphVr89487Uwq0NJfUnXW6V1bPYfNZte2ffXzsxLTihud6xLsoSmxkRrRN0iODpZWyePi5KALx/fQmAGhmr98n+KSC1VeZdVHPyRqzfZMzZ7SS70ifVolCwAAaH8oqwAAAE6SyWTSldP7KjWnTLnFlfpqdbJ6hHu3WhFTXlWrn3ZkafmWdBWUVP0ulzS0V6CmxEaqZ4S3YXcrDPV3198vHKTt+/M1f9k+5R+qUmpumZ76eKtG9g/WhRN6tNgqLwAA0H5RVgGt4Hc3XAIAdDBuLg66aWaMHv9wi6x1Nr22ME7zrhohL/eWm8+UVVCuZZvTtS4uSzW1v231c3N20BmDwzRxaLgCvF1b7PVPhMlk0pCegerfzU9Lf0nVdxsOqtZq0/rdOdq6L1/njY7S5NiIkx7wDgAAOp4TLqsqKyvl6lr/xU9RUZEWL14ss9ms6dOny8fHp7nzAR0LIzoAoEPqGuKp2ZN76oPv96q4rEZvfrtbf79ocLPOZrLZ7YpLLtSyzWmKSylsdC7U302Th0VoVEyonJ1aZ6vfiXJytOjcMVEaFROiz1bs15bEPFXX1Onzlfu1ZkemZk/pqQmBnkbHBAAAbUCTy6qSkhL9/e9/V0lJib744guVlZXpL3/5i7KysmS32/XKK6/ok08+UWRkZEvmBQAAaJPGDQ5TYlqxNuzJ0e4DRVq0/oDOHR11ys9bVWPVul3ZWr4lXdmFFY3ODYz21+RhEeoX5Wf4YPemCvBx1S2zBmh3SqE+WZaorIIKZRdW6LnPdmj9nlydP7qbAnzaxqowAABgjCavt37hhRf0yy+/aOzYsZKkL7/8UpmZmbrrrrv0wQcfyGw264UXXmipnAAAAG2ayWTS3Gm9FervJkla+FOK9hwoPM5HHVtecaU+Xb5Pd7z8sz7+MbGhqHJ2tGjS0Ag9cf3puv3CQYrp7t9uiqrf6x/lp4evHqGLJvRoWA22fleW7nvrFy1cm6Ka2jqDEwIAAKM0eWXVihUrdNlll+lvf/ubJGnZsmXy9/fX1VdfLUmaM2eO3n333ZZJeQree+89ffnllzKZTOrSpYsee+wx+fr6Gh0LAAB0QC5O9fOrHnt/s2qsNr3xzW7Nu3pEk4eI2+12JaYV64dNadq+P7/RzMMAbxdNGhahsQND5ebi2ELvoHU5WMyadloXnd4/WF+sTNL63dmqtdq0cG2K1u3K0qWTempwzwDDBsQDAABjNHllVUFBgXr27ClJKi0t1fbt2zV69OiG876+vqqsrGz+hKdgy5Yt+vLLL/XZZ5/p22+/Vffu3fXss88aHQsAAHRgEYEeumxqb0lSSUWtXl+4W3U2259+TK21Tj/tzNS8dzfp6U+2adu+34qqPl18dOusAXrqhpE6c0SXDlNU/Z6Ph7OuO6efnr51jLoEeUiS8g9V6b9f7dLzn+9QVkG5wQkBAEBravLKquDgYKWlpUmqX1VVV1en8ePHN5zfunWrQkNDmz3gqfDx8dGDDz4od3d3SVK/fv30+eefG5wKAAB0dGMGhioxrVhrd2Vpb1qxFq5N0awzoo94XFFptVZuy9Dq7RkqrahtOO5gMev0/sGaPCxCXYI7z9DxflH+evDK4Vq9PUNfrUlWeZVVcSmFevDtjZo6PFJnj+omV2duZg0AQEfX5H/tJ0yYoPfff19lZWX67rvv5O3trYkTJyonJ0dvvvmmFi5cqJtvvrklsx7VggULdO+99x5x/JdfflF0dLSio+u/MCwrK9Mrr7yi2bNnt3ZEAADQCc2Z2ksp2SXKyCvXop8Pqke4jwZG+0uSkjNLtGxzmjYl5KrO9ttePx8PJ00YGqFxg8Pk5eZkVHRDmc0mTRgaodg+Qfp6TbJWb89Unc2uJb+kav3ubF00oYdO6xfM1kAAADqwJpdVd911lyorK/Xll18qODhY8+bNk4uLixITE/Xxxx/r3HPP1fXXX9+SWY9q5syZmjlz5p8+JicnRzfddJOGDh2qSy+9tHWCAQCATs3Z0aKbZ8bokfc2q7q2Tm8t2qO/jOuutTuzlJRZ0uix3cO8NDk2QrG9g+RgafKUhg7N081Jc6f10RmDw/TxD4lKyixRcVmN3vh2j1Zty9Ccqb0VeXjLIAAA6FhMdvvvR3ce2759+9SjR48jfopVU1Oj4uJiBQUFtUjAU5WQkKAbb7xRF1100Umv/CooKJPN1qRP0ykJDPRUXl5pi78OWt/1/14la51N00/vogvH9zA6TpvFNYDOjmugY9qwO1tvfLvniOMWs0mxfYI0OTZC0WHeBiRre451Ddjsdq2Py9YXq5JUUl4jSTKZpIlDIjTzjCi5d8A5Xui8+LcAnR3XQOdgNpvk73/sHzo1eWXVlVdeqfPPP1933nlno+NOTk5ttqjKyMjQlVdeqQceeEAzZswwOg4AAOiETu8fosT0Q1q1LUOS5OHqqPFDwjRhSIR8PZt2l8DOzmwyafSAUA3pGahv1qVo2eZ02ex2Ld+arl/ic3TB+GiNGRgqM1sDAQDoEJpcVlVUVCgiIqLFgsTHx+uCCy7Q8uXLFRIS0ujcokWL9OqrryotLU3h4eG64YYbjrv1T5Lee+89VVZW6o033tAbb7whSerRowd3BIQBWn5lHgCg7Zo9uafCA9zl6mxRbO8gOTlajI7ULrm5OOiSST01dmCoPlm2T/EHi1RWWav3liQc3hrYi1VqAAB0AE0uq6644gq9++676t+/vwYMGNCsIZKSknTDDTfIarUecW7x4sW68847dcUVV2jMmDFatmyZ7r77brm4uGjatGl/+rz33Xef7rvvvmbNCpwKk/iJLwB0Rg4WsyYNa7kf+nU24YEeuvOSwdqyN0+frtinwpJqHcgu1eMfbNGYAaG6YHy0vNw754B6AAA6gibPrLr22mu1ZcsWVVVVycXFRT4+PjKbGw8ANZlMWrZsWZNf3Gq16rPPPtOzzz4rR0dHFRcXa/Xq1Y1WVk2ZMkUxMTF6/vnnG47dfvvt2rt3r5YsWdLk1wKMdP4/v5W1zqYLJvbUFTP6GR0HAIAOo6raqi9W7NNXK/fLWmeTJLm7OGj2mX00Y3SULAysBwCg3Wnyyqrq6mrFxMQ064tv2bJFzzzzjK655hoFBwfr/vvvb3Q+LS1Nqamp+sc//tHo+JlnnqklS5YoLS1NkZGRzZrpaBiwjlNX/99PRUUNf8Z/gmsAnR3XADq7k70GpsVGaEi0nz5dtk87kgpUXmXVmwvjtPjnFM2Z3Et9uvq2QFqgZfBvATo7roHOodkGrH/44YfNEuj3oqOjtWzZMvn7++urr7464nxycrIkKSoqqtHxrl27SpJSUlJapawCAABA2xbs66bbLhykHfvzNX/5PuUWVSojr1z/N3+bRvQN0kUTesjPy8XomAAAoAmadV30nj1H3pb5zwQEBMjf3/+Y50tL69tUD4/GbZu7u7skqays7AQTAgAAoCMb1CNAj15zmv4yrrucHOu/1N0Yn6t739yg79YfaNgqCAAA2q4mr6yqqanRf/7zH/3000+qqKiQzfbbP/R1dXUqLy9XWVmZ4uPjmy3c8cZp/XFmFgAAAODoYNaMkd00sn+IPl+5Xxvjc1VTa9P/VifrQHapbp4ZI5OJm54AANBWNbntefHFF/XWW2/p0KFDcnV1VUZGhkJDQ+Xg4KDs7GzV1tY2+533PD09JUnl5eWNjv+6ourX8wAAAMAf+Xm56MbzYnTXpUMUFlC/Mn/L3jz9uDnd4GQAAODPNLmsWrp0qUaMGKEVK1bozTfflCQ9+OCD+v777/X666/LarXK0dGxWcP9OqsqNTW10fGDBw82Og8AAAAcS9+uvvrXnKHyPzyz6ouV+5WUccjgVAAA4FiaXFbl5ORo6tSpMpvNCg4Olr+/v7Zt2yZJGjdunM4//3x9/vnnzRqua9euioiI0NKlSxsd/+GHH9StWzeFhYU16+sBAACgY/JwddSNM/vLYjapzmbXawvjVFZZa3QsAABwFE0uq1xcXBqtnOrSpYsSExMbfj9w4EClpaU1bzpJt9xyixYtWqRHHnlEa9as0UMPPaQlS5botttua/bXAgAAQMcVHeatiyb2kCQVlFTrrUV7ZDvOjFQAAND6mlxW9e3bV2vWrGn4fffu3RtWVkn1K69aYlDlrFmz9PDDD2vt2rW65ZZbtGnTJj399NM666yzmv21gJbC18EAALQNk4dFaFjvQEnSzqQCLf0l9TgfAQAAWluT7wY4e/Zs/f3vf9fs2bP1xhtvaMaMGfrf//6ne+65R927d9d7772nwYMHn3SQWbNmadasWUc9d8kll+iSSy456ecGAAAAJMlkMumq6X2VmlOqvOIqfbU6WT3CvdUr0sfoaAAA4LAmr6yaPn26Hn30URUXF8vV1VWjRo3SnDlz9PXXX+vZZ5+Vl5eX/vWvf7VkVqDd4y7ZAAAYz83FQTfPHCAHi1k2e/38qpLyGqNjAQCAw5pcVknShRdeqMWLF8tisUiSHnjgAa1YsUJff/21li5dqh49erRISAAAAKA5dQ3x1OzJPSVJxWU1evPb3bLZ2LcPAEBb0OSyau7cuVq/fv0Rx8PCwtS3b1+tXbtWM2bMaNZwAAAAQEsZNzhMp/ULliTtPlCkResPGBsIAABI+pOZVZWVlSoqKmr4/caNGzVlyhR17dr1iMfabDatWbNG6enpLZMSAAAAaGYmk0lzz+ytg9mlyi6s0MKfUtQj3Fv9uvkZHQ0AgE7tT8uqmTNnqrS0VFL9P+ZPPPGEnnjiiaM+3m63a/To0S2TEgAAAGgBrs4OunlmjB77YLNqrDa98c1uzbt6hHw8nI2OBgBAp3XMssrPz0///ve/tWvXLtntdr388suaMmWKevfufcRjzWaz/Pz82AYIAACAdiciyENzpvbSu4sTVFJRq9cX7tadlw6WxXxC410BAEAzOWZZJUnjxo3TuHHjJEmZmZm65JJLNGjQoFYJBgAAALSWsQPDlJhWrHW7srU3rVgL16Zo1hnRRscCAKBTavKPi5588smjFlX79u1TUlJSs4YCAAAAWttlU3srPNBdkrTo54PamVRgcCIAADqnE1rb/MYbb+iee+6RVD9U/frrr9e5556rs88+W9dcc43Ky8tbJCQAAADQ0pwdLbp5ZoycHS2SpLcW7VFhSZXBqQAA6HyaXFa99dZbeu6555Sfny9JWrJkidasWaOpU6fqlltu0ebNm/Xyyy+3WFAAAACgpYX6u+uKafUzWssqa/Xawt2y1tkMTgUAQOfS5LLq66+/1pQpU/Tmm29KkhYvXixXV1c9/fTTuvXWWzV79mwtXbq0xYICAAAAreH0/iEaPzhMkrQ/45C+Wp1scCIAADqXJpdVaWlpOuOMMyRJtbW1Wr9+vUaMGCEXFxdJUnR0dMOqKwAAAKA9u3RyT3UJ8pAkLd2Yqm378gxOBABA59HkssrLy0tlZWWSpF9++UUVFRUN5ZUkpaamKiAgoPkTAgAAAK3M0cGim86PkYtT/fyqtxfFK7+40uBUAAB0Dk0uq4YMGaKPPvpIP/zwg5577jk5ODho6tSpqq2t1Q8//KD58+frtNNOa8msAAAAQKsJ9nXT1Wf1lSRVVFv16sI41VqZXwUAQEtrcll17733ytnZWX/7298UHx+vO+64Q4GBgdq6dav+9re/KTAwULfddltLZgUAAABaVWyfIE0eFiFJSskq1ecr9xucCACAjs+hqQ8MDQ3VN998oz179ig4OFjBwcGSpD59+ui5557ThAkT5Orq2mJBAQAAACNcNLGHkjIPKSWrVMu3pKtXpI+G9wkyOhYAAB1Wk1dWSZKDg4MGDhzYUFRJkre3t8466yyKKgAAAHRIDhazbjovRm7O9T/nfXdxvHKKKgxOBQBAx3VCZRUAAADQGQX4uOqas+vnV1XV1OnVr+NUU1tncCoAADomyioAAACgCYb0DNS0EV0kSam5ZZq/fJ/BiQAA6JgoqwAAAIAmmjWuu3qEe0uSVm/P1Prd2QYnAgCg4zlmWbVq1Srl5+e3Zhagw7LbjU4AAACag4PFrBvP6y8PV0dJ0gdL9yozv9zgVAAAdCzHLKvuvPNOrVq1quH3c+fO1fr161sjEwAAANBm+Xm56Lpz+kmSqmvr9OqCOFXXML8KAIDmcsyyym63a8uWLaqsrJQkbdy4UQUFBa0WDOiITCajEwAAgOYwoLu/zh7VVZKUkV+uj37ca3AiAAA6DodjnZg6daq+/vprLViwoOHYXXfdpbvuuuuYT2YymbRnz55mDQgAAAC0ReeNidL+9ENKSC3Wul3Z6hXpo7EDw4yOBQBAu3fMsurhhx9W//79lZiYqJqaGi1cuFDDhg1TZGRka+YDAAAA2iSL2azrz+2vee9uUkl5jT76IVHdQrwUGeRhdDQAANq1Y5ZVTk5Ouuyyyxp+v2DBAl188cU655xzWiUYAAAA0Nb5eDjrhnP66ZnPtqvWatMrC+L04BWxcnU+5pfZAADgOI45s+qPEhISGoqq/Px87dy5U/Hx8SosLGyxcAAAAEBb17ebn84bEyVJyims0PtLE2TnVsAAAJy0E/qRT1xcnB555BHt2rWr0fFBgwbpvvvu04ABA5o1HAAAANAenD2qm/alH9LulEJtjM9V7y6+mjAk3OhYAAC0S00uq/bu3avLL79cknTRRRcpOjpaNptNycnJ+vbbbzV37lx9/vnn6tmzZ4uFBQAAANois8mk687pp3nvbFRxWY3mL0tU91AvdQ3xNDoaAADtTpPLqhdeeEHu7u767LPPFB7e+KdEN998sy644AK99NJLevHFF5s9JAAAANDWebk56cbzYvR/n2yTtc6uVxbs0kNXjpCbC/OrAAA4EU2eWbV582bNnj37iKJKkkJCQnTppZfql19+adZwAAAAQHvSK9JHfxnXXZKUV1yldxfHM78KAIAT1OSyqqamRu7u7sc87+HhoaqqqmYJBXQ0dvFFKgAAncWZp3XRwGh/SdKWxDwt25xucCIAANqXJpdVffv21aJFi2S1Wo84V1tbq2+//Va9evVq1nAAAABAe2M2mXTt2f3k7+UsSfp85X4lZR4yOBUAAO1Hk8uqa6+9Vrt27dJll12m77//Xnv37tXevXu1ZMkSXXbZZdq9e7euvvrqlswKdAAmowMAAIBW4OHqqBtnxshiNqnOZtdrC+JUVllrdCwAANqFJk97nDx5sh544AE988wzuv322xuO2+12OTs76+6779a0adNaIiMAAADQ7kSHeeuiCT00f/k+FZRU6+1Fe/TXCwbKbOKHVwAA/JkTujXJnDlzNGPGDK1fv17p6emy2+2KiIjQqFGj5OPj00IRAQAAgPZpcmyEEtOKtSUxTzuSCvT9L6mafnpXo2O1Orvdrn3ph1RjrVP/bn4yUdgBAP7ECd9H18fHR9OnT2+JLAAAAECHYjKZdNVZfZSaW6q84ir9b3WyosO91SvSx+horaKmtk7rd2dr2ZZ0ZeSVS5J6RXhr9pRe6hLsaXA6AEBb1eSZVQAAAABOnJuLo26eOUAOFpNsdrteWxinkooao2O1qMKSKn25Kkl3vLxO7y/d21BUSVJi+iE9/N4mffTDXuZ4AQCOirIKAAAAaGFdQzx16aSekqTishq9+e0e2ex2g1M1L7vdrv0Zh/Tawjj989X1WrzhoMqr6u8k7uvprL+M666pwyNlNplkt0srtmbo3jc2aPX2DNlsHetzAQA4NSe8DRAAAADAiRs/JFx704q1MT5Xu1MK9d3PB3TO6CijY50ya51NmxJytWxzmlKyShud6xHurcmxERraK1AOlvqfk48dFKZPfkxU/MEilVXW6v2le7V6e6bmTO2l6DBvI94CAKCNaXJZZbPZZDazEAsAAAA4GSaTSVdM66ODOWXKKazQgrUp6hHurb7d/IyOdlJKymu0anuGVm7L0KGy37Y1WswmjegbpMmxkYoK9Tri48ID3HXnJYO1ZW+ePl2xT4Ul1TqQXarHP9iiMQNC9Zfx0fJ2d2rNtwIAaGOaXFadd955uuCCC3TFFVe0ZB4AAACgw3J1dtDNM2P02AebVWu16fVv9+jhq4bL28PZ6GhNlppTqh83p+mXPTmy1v22fc/LzVHjh4Rr/JBw+Rzn/ZhMJsX2CdKA7v76bsNBLf0lVdY6m9buytKWxFzNHNNdE4eFy8IPywGgU2pyWXXgwAG5urq2ZBYAAACgw4sM8tBlU3rp3SUJKimv0evf7NadlwyR2WwyOtox2Wx2bduXpx83pysxrbjRuS7BHpoSG6kRfYPl6HBi5ZKzk0WzzuiuMQNC9Ony/dq+P1+V1XWav3yf1uzM1JzJvdSnq28zvhMAQHvQ5LJqzJgx+uGHHzRz5kw5ObEsFzghzAwFAAC/M2ZgqBLTirUuLlsJqcVasDZFs87obnSsI5RX1eqnHVlaviVdBSVVDcdNJmlor0BNiY1UzwhvmUynVrQF+brpbxcM1M6kfH2ybJ9yiyqVkVeu/5u/TSP6BumiCT3k5+Vyqm8HANBONLms6tOnj95//32NHTtWAwYMkL+//xEzrEwmk5544olmDwl0FG3356UAAKA1mUwmXTa1t1KyS5WZX65FPx9QzwhvDejub3Q0SVJWQbmWbU7Xurgs1dTaGo67OTvojMFhmjg0XAHezb/rYmB0gPp29dMPm1L17c8HVFNr08b4XG3fn69zRnXT1OFdTnj1FgCg/THZ7U27Z26fPn2O/2Qmk+Lj4085VFtTUFDWKrfTDQz0VF5e6fEfiHbnmqdWyC7pnFHddH4b/KlpW8E1gM6OawCdXWe8BjLzy/XI+5tUU2uTh6uj5l013LAVRDa7XXHJhVq2OU1xKYWNzoX6u2lybKRG9Q+Rs5OlVfIUllTp85X7tTE+t+FYkK+rZk/uqYHRAa2SwQid8ToAfo9roHMwm03y9/c45vkmr6xKSEholkAAAAAA6oUFuOuKM/vozUV7VFZZq9e+2a1/XjpEDpbWWz1UVWPVul3ZWr4lXdmFFY3ODYz21+TYCPXv5nfKW/1OlJ+Xi248L0bjBhfpk2WJysgrV25RpV74YqcGRfvr0sk9FeTr1qqZAACto8ll1e/ZbDYVFhbKy8uL+VUAAADAKRgZE6LE9GKt3p6p/emH9NWaZF00oUeLv25ecaWWb0nXTzuzVFltbTju7GjRmAGhmhQboRA/48ugvl19Ne+q4VqxNUMLfkpWZXWddiQVaPeBQk07rYtmnN6t1VZ7AQBaxwmVVQcPHtQzzzyjtWvXqqqqSu+8844k6bnnntPdd9+t2NjYFgkJAAAAdGSXTuqp5MwSpeWWaekvqeoV4aPBPZt/q5vdbtfe1GL9uDlN2/fn6/cDQQK8XTR5WITGDAyVm4tjs7/2qbCYzQ13HPzfqiSt3ZUla51di34+qJ/jsnXxxJ6K7R3Y6qu/AAAto8nriw8cOKALL7xQGzdu1NixYxuOWywWJScn6+qrr9b27dtbIiMAAADQoTk5WnTzzBi5HF4h9PZ3e5RfXNlsz19rrdNPOzI1791N+r/527Rt329FVZ8uPvrrrAF66oaRmjqiS5srqn7P291JV8/oq/vmDlO3EE9JUmFJtV5dEKdnPt2ujPxygxMCAJpDk8uq5557Ti4uLlq8eLHmzZunX+eyjxgxQosXL1ZAQIBeeumlFgsKAAAAdGTBfm666qy+kqTyKqteXRgna53tOB/154pKq/XVmiTd8fLPendJgtJyyyRJDhazxgwM1cNXj9A/Zw/VkF6BMpvbz6qk6DBv3X9FrK6c3kcervXlWvzBIs17Z6M+Xb5PFVXW4zwDAKAta/I2wA0bNuiqq66Sv7+/ioqKGp0LDg7W7Nmz9dZbbzV7QAAAAKCzGN4nSIlDI7R8a7pSskr1+Yr9mj2l1wk/T3JmiZZtTtOmhFzV/e6u1j4eTpowNELjBofJy619z541m0w6Y1CYhvUO1II1KVqxLV11Nrt+2JSmDXtydOH4aI2MCZGZrYEA0O40uayqqamRl5fXMc87Ojqqurq6WUIBAAAAndVFE3soKfOQDmSXatmWdPWK9FFsn6Djfpy1zqYte/O0bHOakjJLGp3rHualybERiu0d1Kp3GmwN7i6OmjO1l8YOCtUnPyYqMf2QSspr9PZ38Vq1PUOXTemtroe3DAIA2ocml1V9+vTRihUrNGfOnCPOWa1WffPNN+rdu3ezhgMAAAA6G0cHs26aGaOH392kimqr3l0Sr8hgDwX7Hv3OfKUVNVq9PVMrtqaruKym4bjFbFJsnyBNjo1QdJh3a8U3TJdgT909Z6h+2ZOjz1fuV3FZjZIySvTIe5s0bnCYZo2LbtgyCABo25pcVt1www26+eabdeedd2rSpEmSpIyMDC1fvlxvv/229uzZoxdeeKGlcgLtmv34DwEAAGgQ6OOqa2b01X+/2qXK6jq9+nWc7ps7TI4OlobHpOeW6cfN9Vveaq2/zbbycHXU+CFhmjAkQr6ezkbEN4zJZNLp/UM0qEeAFv18QD9sSlOdza5V2zO1KSFXs87ornGDw9vVfC4A6IxMdru9yd9Hf/XVV3riiSdUXl4uu90uk8kku90uZ2dn/f3vf9eVV17ZglGNU1BQJput5euGwEBP5eWVtvjroPVd/dQKSdK5o7tp5tjuBqdpu7gG0NlxDaCz4xo40mcr9un7jWmSpPGDw3TZ1N7asT9fP25OU0JqcaPHRgR6aEpshE7rFywnR8tRnq3zySoo1yfL9ml3SmHDsS5BHpoztZd6RvgYF+xPcB2gs+Ma6BzMZpP8/T2Oeb7JK6skadasWZo6darWrVuntLQ02Ww2hYeHa9SoUfL19T3lsAAAAAB+85dx0dqfcUhJGSVatT1TO5IKVFT625xYk6TBPQM0JTZSvbv4yMQw8UZC/d31j4sGadu+fH26fJ/yD1UpNbdMT360VSP7h+jCCdHy8ehcq88AoD04obJKkjw8PDR16lQVFhbKbDZTUgEAAAAtxMFi1k3nxWjeu5tUVlnbUFS5Ojto7MBQTRoWoUAfV4NTtm0mk0lDewUqJspPS35J1eINB1VrtWn97mxt25enc0dHaXJsRIcbPA8A7dkJlVVJSUl68cUXtXbtWlVWVkqSPD09NWnSJN12220KCQlpkZAAAABAZ+Xn5aIbzuuvV7+Ok7eHkyYOjdDoASFycTrhnzt3ak6OFp03JkqjY0L06Yr92pqYp6qaOn2+cr9+2pmp2ZN7qX+Un9ExAQA6gbJq165dmjt3rmpra3XGGWeoS5custvtSklJ0TfffKM1a9Zo/vz56tKlS0vmBQAAADqd/t389N/bx7LNrxkE+Ljq1lkDFJdSoE9+3KfswgplFVTo2c+2a1jvQF08sYcCvFmtBgBGanJZ9cwzz8jDw0Mff/zxEYVUYmKi5s6dq6efflovv/xys4cEAAAAOjuKquYVE+WvR67x1bLN6Vq4LkXVNXXasjdPu5IKdNbpXTXttC4MqgcAgzR5Y/aOHTs0d+7co66c6tWrl+bOnav169c3azgAAAAAaCkOFrOmndZFT1x3uk7vHyxJqrHatGBtiu5/6xdt25enE7h5OgCgmTS5rPLy8lJdXd0xz7u7u8vFxaVZQgEAAABAa/H1dNb15/TXv+YMVWRQ/a3U8w9V6b//26Xnv9ih7MIKgxMCQOfS5LJqzpw5eu+997R///4jzuXk5OjDDz/URRdd1KzhAAAAAKC19Ir00YNXxuqyqb3k7lI/MSUuuVAPvPWLvli1X1U1VoMTAkDncMyZVffcc88Rx6qrqzVz5kyNHTtWUVFRMplMysjI0Jo1a+Ts7NyiQQEAAACgpVnMZk0cGqHhfYL01ZpkrdmeqTqbXUs2pOrnuGwN6Rmo6DAvdQ/zUrCfm8zMEgOAZmeyH2MTdp8+fU78yUwmxcfHn3KotqagoEw2W8vvVQ8M9FReXmmLvw5a39VPrZAknTu6m2aO7W5wmraLawCdHdcAOjuuAbRFKVkl+vjHRCVnlhxxzs3ZQd0PF1fdw7zVPcxLHq6Op/R6XAfo7LgGOgez2SR/f49jnj/myqqEhIQWCQQAAAAA7UVUqJfuvXyY1sdl66edWTqQXaKaWpskqaLaqriUQsWlFDY8PtjXtaG4ig73UkSghxwsTZ6+AgDQn5RVAAAAAADJbDJp9IBQjR4QqjqbTRl55UrOLFFS5iElZ5Yoq+C3Aew5RZXKKarU+t3ZkiRHB7O6hniqe6iXosO9FR3mJV9PZ5nYPggAx3RCZdWCBQu0bt065eXlyWazHXHeZDLp/fffb7ZwAAAAANCWWMxmdQn2VJdgT40fEi5JqqiqVXJWiZIzf/tVVlkrSaq12rQ//ZD2px+SNqVJkrw9nBQd5t0w+6pbiJecnSyGvScAaGuaXFY9//zzev311+Xo6Ch/f3+ZzSxlBQAAAAA3F0fFRPkrJspfkmS325VbXKnkjJKGFVhpuWWqOzwH91BZjbYm5mlrYp6k+pVb4YHuig7z0qDewQr0dFKIP8PbAXReTS6rvv76a40ZM0b//e9/5erq2pKZAAAAAKDdMplMCvZ1U7Cvm0bGhEiSamrrlJpT1rB1MDnzkApKqiVJNrtdabllSsst06rtmZIkV2cHdQ/1bJh/1T3MS55uToa9JwBoTU0uq8rKynTmmWdSVAEAAADACXJytKhHhLd6RHg3HCsuq25YeZWSWaKUrFJV19ZJkiqrrdp9oEi7DxQ1PD7I17V+cPvhAisyiOHtADqmJpdVY8eO1YYNG3ThhRe2ZB4AAAAA6BR8PJw1tFeghvYKlCTV2WyqrJM2786q30KYVaLM/PKGx+cWVSq3qFIbdudIkhwsZnUL8WxYedU9zEv+Xi4MbwfQ7jW5rHrggQd01VVX6Y477tDkyZPl7+9/1L8Ehw8f3qwBAQAAAKAzsJjNigr2lIejWeMH/za8PSWrVMmZh5T0h+Ht1jqb9mcc0v6MQw3P4e3u1FBcRYd5q1uop1ycuAk8gPalyX9rZWZmqrS0VN99950WL158xHm73S6TyaT4+PhmDQgAAAAAnZWbi6P6R/mpf5SfpPrvu/KKKxuKq+TMQ0rN+d3w9vIabduXr2378iVJJpMUHuBxuLzyUmyfILk6U14BaNua/LfUI488opKSEl1zzTXq1q2bHBz4Cw4AAAAAWpPJZFKQr5uCfN00sn/98PZaa50O5pQpOeOQkrNKlJRRooKSKkmS3S6l55UpPa9Ma3ZkatH6A7p/bizD2gG0aU1unPbt26dbb71V1113XUvmATocu91udAQAAAB0YI4OFvUI91aP8N+Gtx9qGN5ev/rq1+HtecVVev2b3fr7RYNkMTOcHUDb1OSyKiQkRGb+MgMAAACANs/bw1lDegVqyOHh7TabXW98u1sb43O150CRvlqdrAsn9DA4JQAcXZPbp2uvvVbvv/++9u/f35J5gA6NO7MAAADACGazSVdN76vwQHdJ0pJfUrUpIdfgVABwdE1eWZWQkCCTyaRzzz1XkZGRCggIkMViafQYk8mk999/v9lDAgAAAABOjbOTRbfOGqBH3tusymqr3vkuXmH+bgoP9DA6GgA00uSVVStXrpTFYlFISIhqa2uVlZWl9PT0Rr/S0tJaMisAAAAA4BQE+7rp+nP6ySSpurZOL321SxVVtUbHAoBGmryyasWKFS2ZAwAAAADQCgb1CNB5Y6K0YG2Kcooq9ea3e/TXCwbKzMgKAG0EE9MBAAAAoJM5e3Q3De4RIEnakVSgResOGBsIAH6nySur5s6d26THffDBBycdBgAAAADQ8swmk649u58efX+TcooqtXBtirqGeGrQ4QILAIzU5LIqPT39iGM2m01FRUWqrq5WeHi4evbs2azhAAAAAAAtw83FQbfOGqDHPtii6to6vfHtHj14RayC/dyMjgagkzvlmVV1dXVavny57r//fl1zzTXNFgwAAAAA0LLCAz10zYy+emVBnCqrrXrp61267/JhcnFq8reKANDsTnlmlcVi0dSpU3XhhRfqmWeeaY5MAAAAAIBWEtsnSNNP7yJJysgr17uLE2S32w1OBaAza7YB6926dVNCQkJzPR3QYfDPPAAAANq6v5wRrX7dfCVJmxJy9f3GNIMTAejMmqWsqqmp0TfffCN/f//meDoAAAAAQCsym0268bwY+Xu5SJK+WLVfew4UGpwKQGd1yncDrKmpUUpKikpKSvTXv/612YIBHZHJ6AAAAADAMXi4OurWWQP0xEdbVGu16bWFu/XglbEK8HY1OhqATuaU7gYo1c+s6t69u84++2zNnj272YIBAAAAAFpX1xBPXTGtt95aFK+yylq9/HWc7pkzVE6OFqOjAehETvlugAAAAACAjmNUTKhSskq1fEu6DmaX6sMf9urqs/rKZGKfAIDW0WwD1gEAAAAAHcPFE3uoZ4S3JGndrmyt3JZhcCIAnckxV1a99NJLJ/WEt95660mHAQAAAAAYz8Fi1s0zY/Twe5tUXFaj+cv2qUuQp3ocLrAAoCWdcln1x6WglFUAAAAA0P55ezjr5vMH6OmPt6rOZtfLX+/SQ1cNl4+Hs9HRAHRwxyyrli9fftwPLisr0/PPP69Vq1bJwcHhmHcMBAAAAAC0Pz3CvTVnSi998P1eHSqv0Stfx+mfs4fIwcJEGQAt55hlVXh4+J9+4OLFi/XUU08pNzdXQ4cO1bx589SrV69mDwgAAAAAMM64wWFKzirR2p1Z2p9xSJ8u36fLpvY2OhaADqzJdwP8VVpamh5++GGtW7dO3t7eeuyxx3TBBRe0RDYAAAAAgMFMJpMun9pLGXllSskq1YqtGYoK9dLoAaFGRwPQQTV57WZtba1efvllnXPOOVq3bp3OP/98LVmyhKIKOB670QEAAACAU+PoYNEt5w+Qp5ujJOn9pXt1ILvE4FQAOqomlVUbNmzQueeeq//+97+KjIzUhx9+qCeeeEK+vr4tnQ8AAAAA0Ab4ebnoxvNiZDaZZK2z6eWvdqmkosboWAA6oD8tqwoLC3XnnXfqqquuUnZ2tu644w59/fXXio2Nba18QMdiOv5DAAAAgLaqb1dfXTghWpJUUFKt1xfuVp3NZnAqAB3NMcuq+fPna/r06fruu+80ceJELV68WNddd50cHE54zBUAAAAAoIOYOjxSI/oGSZLiDxbpf6uTDU4EoKM5ZvP08MMPN/z/FStWaMWKFcd9MpPJpD179jRPMgAAAABAm2MymXTV9L7KzK9Qel6Zlv6Sqm4hnhrRN9joaAA6iGOWVTNnzpTJxJ4lAAAAAEBjzk4W3TorRo+8t1kV1Va9uzhBYQHuigj0MDoagA7gmGXVU0891Zo5AAAAAADtSJCvm64/t79e/GKHqmvr9NJXu/TgFbFyc3E0OhqAdq5JdwMEAAAAAOCPBkb7a+bYKElSblGl3vx2j2x2u8GpALR3lFUAAAAAgJM2Y1Q3DekZIEnakVSgb9amGJwIQHtHWQUAAAAAOGlmk0nXnt1PwX5ukqRv1h3Q9n35BqcC0J5RVgEAAAAATomrs4P+OmuAnJ0skqQ3F+1WTmGFwakAtFeUVQAAAACAUxYW4K5rZ/SVJFVW1+m/X+1SVY3V4FQA2iPKKqCF2cWASQAAAHQOw3oHacbIrpKkzPxyvfNdvOwMXAdwgiirgFZkMjoAAAAA0MLOH9td/aP8JEmb9+Zp6cZUgxMBaG8oqwAAAAAAzcZsNumGc/srwNtFkvTlqiTtPlBocCoA7QllFQAAAACgWXm4OurWWQPk5GCW3S69vnC38osrjY4FoJ2grAIAAAAANLsuwZ66YnofSVJZZa1e+nqXamrrDE4FoD2grAIAAAAAtIiR/UM0OTZCkpSaU6YPvt/LwHUAx0VZBQAAAABoMRdN6KFekT6SpJ/jsrVia4axgQC0eZRVAAAAAIAW42Ax66aZMfL1dJYkfbp8nxLTio0NBaBNo6wCAAAAALQob3cn3Xx+jBwsJtXZ7Hp1QZyKSquNjgWgjerwZdWLL76o6dOn66yzztJTTz0lm81mdCQAAAAA6HSiw7w1Z0ovSdKh8hq9smCXrHV8fwbgSB26rFq9erXWrVunb775Rt9++622b9+u5cuXGx0LAAAAADqlcYPDdcagUElSUkaJ5i/bZ3AiAG1Rhy6rxo0bp48//liOjo46dOiQSktL5e3tbXQsdDLc7AQAAAD4zZwpvRUV6iVJWrktQz/tzDQ4EYC2pt2XVQsWLFC/fv2O+FVaWipJcnR01JtvvqlJkyYpICBAgwcPNjYwOjeTyegEAAAAgKEcHcy65fwYebk5SpI+/D5RKVklBqcC0Ja0+7Jq5syZ2rNnzxG/PD09Gx5z3XXXaePGjQoICNC///1vA9MCAAAAAPy8XHTTzBiZTSZZ62x6+etdKqmoMToWgDai3ZdVfyYxMVF79uyRVL/C6uyzz1ZCQoLBqQAAAAAAvbv46qKJPSRJhSXVen3hbtVxQywA6uBlVXJysu6//37V1NSorq5Oixcv1vDhw42OBQAAAACQNCU2Qqf3C5YkxR8s0perkgxOBKAtaDNlVXx8vPr376/s7Owjzi1atEgzZszQwIEDNX36dC1YsKBJzzlt2jSNGzdOM2fO1MyZM+Xh4aEbb7yxmZMDAAAAAE6GyWTSFdP7KDLIQ5L0/cY0bYzPMTgVAKM5GB1AkpKSknTDDTfIarUecW7x4sW68847dcUVV2jMmDFatmyZ7r77brm4uGjatGnHfe7bbrtNt912W0vEBgAAAACcImdHi26ZNUCPvrdJ5VVWvbM4XmH+7oo4XGAB6HxMdrvdbtSLW61WffbZZ3r22Wfl6Oio4uJirV69WiEhIQ2PmTJlimJiYvT88883HLv99tu1d+9eLVmyxIjYwAmx1tl0/j+/lSRdNr2PLp7c2+BEAAAAQNuzJSFHD7+1QXa7FOrvruduP0Mebk5GxwJgAENXVm3ZskXPPPOMrrnmGgUHB+v+++9vdD4tLU2pqan6xz/+0ej4mWeeqSVLligtLU2RkZEtnrOgoEw2W8t3eoGBnsrLK23x10Hrstb9NiSyvLyGP+M/wTWAzo5rAJ0d1wDQua+DLv5uOn9sd321JllZBeV68r2N+tsFA2U2mYyOhlbUma+BzsRsNsnf/9irJw2dWRUdHa1ly5bp1ltvlcViOeJ8cnKyJCkqKqrR8a5du0qSUlJSWj4kAAAAAKBVzBjZVUN7BUqSdiYV6Ju1fM8HdEaGllUBAQHy9/c/5vnS0vo21cOjcdvm7u4uSSorK2u5cAAAAACAVmUymXTNjL4K9XeTJH2z7oC27cszOBWA1tZm7gZ4NMcbp2U2t+n4AAAAAIAT5OrsoFtnDZCLU/3um7cW7VFWQbnBqQC0pjbd9nh6ekqSyssb/8X064qqX88D7QW77QEAAIDjC/V317Vn95MkVVbX6eWv41RZfeTd4wF0TG26rPp1VlVqamqj4wcPHmx0HgAAAADQsQztFaizR9XPK87ML9e7i+OPu/sGQMfQpsuqrl27KiIiQkuXLm10/IcfflC3bt0UFhZmUDIAAAAAQEubOaa7YqL8JEmb9+bpm3UHVFNbZ3AqAC3NwegAx3PLLbfonnvukbe3t8aPH6/ly5dryZIlev75542OBgAAAABoQWazSdef21+Pvr9JecVVWrg2RYt+PqCIIA9Fh3kpOsxb3cO8FOTrKpOJoRtAR9Hmy6pZs2appqZG77zzjr744gtFRkbq6aef1llnnWV0NAAAAABAC/NwddQt5w/Qv+dvU3mVVXU2uw5ml+pgdqlWbM1oeExUqJeiw7zUPdxL3UO95ObiaHByACfLZGfT73EVFJTJZmv5T1NgoKfy8kpb/HXQuqx1Nl3/71WSpFlndNfZo7oZmqct4xpAZ8c1gM6OawDgOvgzZZW1SjhYpKTMQ0rOLNGB7FLVWm3HfHyov5u6h3qpe7i3osO8FB7oLgt3lG/zuAY6B7PZJH9/j2Oeb/MrqwAAAAAA8HB1VGyfIMX2CZJU/0Ph9LwyJWeWKCmjRMlZJcoprGh4fFZBhbIKKrQuLluS5ORoVrcQL3UPO7wCK8xbvp7OhrwXAH+OsgoAAAAA0O44WOrLp24hXpo4tP5YWWWtkjNLlHx49VVyZokqqq2SpJpamxLTipWYVtzwHL6ezg3FVfcwL3UL8ZSTo8WAdwPg9yirAAAAAAAdgoerowZG+2tgtL8kyWa3K6ewoqG4Sso8pPTcctkOT8MpKq3W5r152rw3T5JkMZsUEeih7uG/rb4KZng70OooqwAAAAAAHZLZZFKov7tC/d01ekCoJKm6tk4Hs0sbZl8lZ5aoqLRakuqHt+eU6mBOqVYeHt7u7uKgqMN3HowO81JUmJfcGd4OtCjKKqCFcQsDAAAAoO1wdrSoV6SPekX6NBwrLKmqL66ySpSccUgHsktVc3h4e3mVVXHJhYpLLmx4fIifW6PZVxFBDG8HmhNlFdCKWD0MAAAAtD1+Xi7y83JpNLw9I6+8YfZVUmaJsn83vD27sELZhRX6+dfh7Q5mdQvxbJh9FR3O8HbgVFBWAQAAAADwOw4Ws7qGeKpriKcmHB7eXl5Vq5TDxdWvQ9zLqw4Pb7falJh+SInphxqew9fTWd3Dfr37oLe6hnjKmeHtQJNQVgEAAAAAcBzuLo6K6e6vmO71w9vtdrtyiiqVnHmoocBKzy1Tne234e1b9uZpy+Hh7WaTSd1CPXXJxJ7qEeFt2PsA2gPKKgAAAAAATpDJZFKIn5tC/Nw0Kqbx8PZfV14lZ5WosKR+eLvNbldyZon+/ek2XX9Ofw3rHWhkfKBNo6wCAAAAAKAZHG14e1FptZIzDykx7ZCWb0lXrdWmV77epdlTemnSsAjjwgJtGLcrAAAAAACghfh6OmtY7yBdOrmnbrtwoJwdLbJL+vjHRH2xar9s3D4cOAJlFQAAAAAArWBAd3/dPWeIvNwcJUlLNqTqrUV7ZK2zGZwMaFsoqwAAAAAAaCXdQrx079xYBfu6SpI27M7R85/vUGW11eBkQNtBWQUAAAAAQCsK8nHVvZcPU3SYlyQp/mCRnvp4q4pKqw1OBrQNlFUAAAAAALQyTzcn3XnpEA3uESBJSsst0xMfblZGfrnByQDjUVYBLY6BiQAAAACO5Oxo0S2zYjR+SLgkqaCkWk9+uEWJacXGBgMMRlkFAAAAAIBBLGazLp/aS7PO6C5Jqqi26plPt2tzQq7ByQDjUFYBAAAAAGAgk8mks0d10zUz+spiNslaZ9OrC+L04+Y0o6MBhqCsAgAAAACgDRg9IFS3XThQzk4W2SXNX7ZPn6/cL5ud0SLoXCirAAAAAABoI2Ki/PWv2UPl7e4kSVr6S6re/HaPaq02g5MBrYeyCgAAAACANqRriKfuu3yYQvzcJEm/7MnR859vV0WV1eBkQOugrAIAAAAAoI0J8HHVvZcPU49wb0lSQmqxnvp4i4pKqw1OBrQ8yioAAAAAANogD1dH3XnJYA3pGSBJSs8r1+MfblZGXpnByYCWRVkFAAAAAEAb5eRo0S3nD9CEoeGSpMKSaj350VbtTS0yOBnQciirAAAAAABow8xmky6b0kt/GdddklRRbdWzn23XpoRcg5MBLYOyCgAAAACANs5kMmnGyG669uy+sphNstbZ9dqCOP2wKc3oaECzo6wCWpjdbnQCAAAAAB3FqJhQ3X7hILk4WWSX9OnyffpsxT7Z+MYDHQhlFQAAAAAA7Uj/KD/9a85Qebs7SZK+35imN77ZrVqrzeBkQPOgrAJakclkMjoCAAAAgA6gS7Cn7ps7TKH+bpKkjfG5ev7z7aqoqjU4GXDqKKsAAAAAAGiHArxddc9lw9QjwluSlJBarCc/3qrCkiqDkwGnhrIKAAAAAIB2ysPVUXdePFjDegVKkjLyyvX4h1uUnldmcDLg5FFWAQAAAADQjjk5WnTTzBhNGhYhSSoqrdaTH21VwsEig5MBJ4eyCgAAAACAds5sNmn25J66cEK0JKmy2qrnPt+ujfE5BicDThxlFQAAAAAAHYDJZNL007rq+nP6yWI2yVpn12sLd+v7jalGRwNOCGUVAAAAAAAdyOn9Q/T3iwbJ1dkiSfpsxX7NX7ZPNrvd4GRA01BWAQAAAADQwfTr5qd/zRkmHw8nSdKPm9P0+sLdqrXWGZwMOD7KKgAAAAAAOqDIIA/dd3msQv3dJEmbEnL17Gc7VF5Va3Ay4M9RVgEAAAAA0EH5e7vo3suHqVeEtyQpMa1YT320VYUlVQYnA46NsgpoYewKBwAAAGAkdxdH3XHJYMX2DpQkZeSX67EPNistt8zgZMDRUVYBrchkdAAAAAAAnZKjg0U3zozR5NgISVJxWY2e+niL4g8WGZwMOBJlFQAAAAAAnYDZZNKlk3rqogk9JEmV1XX/396dR1Vd538cf10EFEERcEcEsYYQNREVEZ3MHdTskP7UrOOUdbCxZhzzmJiTtnjUtDEr01zapnIcyME0tzR/LW6TuMxPWUplT80BITRFgfv7AyFuuKBy7/fCfT7O8RzO53sv98Wlr8mL9/fz1d/WHda+5NMGJwMsUVYBAAAAAOAgTCaThoW3V+wDIWrgZFJpmVkrP0vW1v1ZMpvZxAT2gbIKAAAAAAAHE96plaaN7Sa3hg0kSf/cdVxrd/ygsjIKKxiPsgoAAAAAAAcU7O+luAlh8mrSUJK0IylHyzcc1ZWSUoOTwdFRVgEAAAAA4KDatfTQ84+Gybe5uyQpKe2sXvvHYZ2/eMXgZHBklFUAAAAAADgw76aNFPdIdwX5NZMkfZ9TqPkfJSmv8JKxweCwKKsAAAAAAHBwjRu5aNrYbup5T0tJ0qm8X/TK3w8o60yRwcngiCirAAAAAACAXJydFDsqREN6+kmSCs9f1oKPDyo5I9/gZHA0lFUAAAAAAECS5GQyadzAuzVuwF2SpEuXS7Xkn0e099hpg5PBkVBWAdbGnV8BAAAA1DFDerXX5FEhcm5gUmmZWas2JmvzvkyZzfyAA+ujrAJsyWR0AAAAAAComV7BrTTtf7rJraGzJCnhf0/oX9+cNDgVHAFlFQAAAAAAuKZ7/L0U90h3eTVpKEnavDdLZ879YnAq1HeUVQAAAAAA4LratfDQn0d3lSSVmc3atDvD2ECo9yirAAAAAADADbVv1URhQS0kSXuPnWG6ClZFWQUAAAAAAG7qgcgOksqnqzYyXQUroqwCAAAAAAA35dfSQz0qp6tO60w+01WwDsoqAAAAAABQIxXTVWaz9BnTVbASyioAAAAAAFAj7Vp6qMc9LSVJ+5JP6zTTVbACyioAAAAAAFBjD0QGyKTy6aqNu9ONjoN6iLIKAAAAAADUWLsWVaerzuhU3gWDE6G+oawCrMwss9ERAAAAAKBWVZ2u2rQnw+g4qGcoqwAbMslkdAQAAAAAuGO+LTzUM5jpKlgHZRUAAAAAALhlIyM7/Lp3FdNVqEWUVQAAAAAA4Jb5NnevnK7az3QVahFlFQAAAAAAuC0W01W7M4yOg3qCsgoAAAAAANwW3+bu6tWplaTy6aof/8t0Fe4cZRUAAAAAALhtI/tcvTOg2LsKtYOyCgAAAAAA3La2zd0VfnW66t/JZ5TLdBXuEGUVAAAAAAC4IyMjA2QyXZ2u2p1udBzUcZRVAAAAAADgjrTx+XW66ruUn5R79rzBiVCXUVYBAAAAAIA7NrJPlekq9q7CHaCsAqzMbDY6AQAAAABYXxsfd/Vmugq1gLIKAAAAAADUipGRHSqnqz7bnWF0HNRRlFUAAAAAAKBWtPZurN6dWkuSDqT+pBymq3AbKKsAAAAAAECtqXpnQKarcDsoqwAAAAAAQK1p7d1YESFVpqt+YroKt4ayCgAAAAAA1KqRfQLkZDJJkj7bnW5wGtQ1lFUAAAAAAKBWtfJurIiQ8jsDHkg7q2ymq3ALKKsAAAAAAECtGxHJdBVuD2UVAAAAAACoda28Giuic/l0VVLaWWWdKTI4EeoKyioAAAAAAGAVVfeu2sidAVFDlFUAAAAAAMAqWno1Vp/O5XcGTPqe6SrUDGUVAAAAAACwmhF9/KvsXZVhbBjUCZRVgA1d/fsZAAAAABxG1emqg0xXoQYoqwAAAAAAgFVVvTPghm+5MyBujLIKAAAAAABYVctmburTpXy66tAP/1XmaaarcH2UVQAAAAAAwOpG9AlQA6eKvauYrsL1UVYBAAAAAACra9nMrXLvKqarcCOUVQAAAAAAwCaqTlexdxWuh7IKAAAAAADYRItmboq8unfV4eP/Vcbpnw1OBHtEWQUAAAAAAGxmRESVvau+zTA2DOwSZRUAAAAAALCZ5s3cFNmljaTy6ar0U0xXwRJlFQAAAAAAsKkRffyrTFexdxUsUVYBVmY2G50AAAAAAOxLc0839e1aPl115EQe01WwQFkFAAAAAABsbniEP3cGxDVRVgE2ZDI6AAAAAADYieaebup3dbrqPyfydPJHpqtQjrIKAAAAAAAYYnjVOwPuZroK5SirAAAAAACAIXw8G6nfvW0llU9XpWXmG5wI9oCyCgAAAAAAGGZElb2r1m5PMzgN7AFlFQAAAAAAMIx300b6/dXpqqTUn3Qit9DgRDAaZRUAAAAAADDU8Ah/OTe4emdA9q5yeJRVAAAAAADAUN5Nf9276ujJfB1nusqhUVYBAAAAAADDDe/tL+cG5TXFZ98yXeXIKKsAAAAAAIDhvJs20tDe/pKko+lMVzkyyioAAAAAAGAXxgy8+9e9q5iucliUVYDVmY0OAAAAAAB1go+nm+6711eSdCw9X8dzmK5yRJRVgC2ZTEYnAAAAAAC7Fh3x695VG749aXAaGIGyCgAAAAAA2A2vJg11X7fyOwMeyzinH3IKjA0Em6OsAgAAAAAAdiW6d9XpKvaucjSUVQAAAAAAwK54NWmo/lenq5Izzun77AJjA8GmKKsAAAAAAIDdiY7wl4sz01WOiLIKAAAAAADYnWYev+5dlZLJdJUjoawCAAAAAAB2Kbo301WOiLIKAAAAAADYpWYeDdW/m6+k8umqtKxzBieCLVBWAQAAAAAAuxXduz3TVQ6GsgoAAAAAANgtT4+Guj+0fLoqNauA6SoHQFkFWJnZ6AAAAAAAUMdFhbeXK9NVDoOyCrAhk9EBAAAAAKAO8vRoqP5VpqtSM5muqs8oqwAAAAAAgN2L6u3PdJWDoKwCAAAAAAB2z9PdVfd3L5+uSstmuqo+c5iy6sMPP1RMTIzRMQAAAAAAwG0aFv7rdFXit+kym9kluD5yiLIqOTlZq1atMjoGAAAAAAC4A57urhrQvZ0k6fvsAqVmFRgbCFZR78uqCxcu6IUXXtC0adOMjgIAAAAAAO7QsPD2cnW5unfVNyeZrqqH6nxZlZiYqE6dOlX7U1RUJEmaO3euHn/8cbVt29bgpAAAAAAA4E41rTpdlVPI3lX1kLPRAe7Ugw8+qAcffPCax9avXy8XFxdFR0dr//79tg0GAAAAAACsYliv9vryYI4uXylT4rfpusffSyaTyehYqCV1frLqRjZu3KgjR45o1KhRmj17tk6cOKE//OEPRscCAAAAAAB3oKm7qwZena76IadQKUxX1St1frLqRt57773Kj/fv36+FCxfq/fffNy4QAAAAAACoFUPD2+vLg7kqvlKqxG/TFcx0Vb1hN5NVKSkpCgkJ0enTp6sd27Rpk4YPH66uXbsqKipKiYmJtg8I3Cb2+gMAAACA2te0sasGhPlKko7nFCqZ6ap6wy7KqhMnTig2NlYlJSXVjm3evFnTp09X3759tWzZMvXq1UvPPfectm7dekuvER4ervXr19dWZOD2UPIDAAAAQK0Z1qu9Gro0kCRt+CadOwPWE4ZeBlhSUqJ169bptddek4uLyzUfs2TJEkVFRSkuLk6S1K9fPxUWFmrp0qUaNmyYTXL6+HjY5HUkqUWLJjZ7LdhGo18uV37s4dGQ7/FN8P7A0XEOwNFxDgCcB8CtnAMtJI3sF6iEL3/Q8dxC5Z67pNCgltYLB5swtKxKSkrS4sWLNWnSJLVq1UqzZ8+2OJ6dna2srCxNmzbNYn3o0KHasmWLsrOz5efnZ/WceXnnVVZm/Xa2RYsmOnu2yOqvA9s6f/HKrx+fL+Z7fAOcA3B0nANwdJwDAOcBcDvnQL/OrbTx25MqvlyqDz4/Jl+vRuxdZeecnEw3HAwy9DLAjh07aseOHXr66afVoEGDasdPnjwpSerQoYPFur+/vyQpPT3d+iEBAAAAAIDdatLYVYPCyu8MeCL3Zx3LyDc4Ee6UoWVV8+bN5ePjc93jRUXlbaqHh2Xb5u7uLkk6f/689cIBAAAAAIA6YWiv9mroyt5V9YVdbLB+PTf7j8vJya7jAwAAAAAAG/Bwc/l1uurHn3Usnemqusyu254mTco3Vbtw4YLFesVEVcVxAAAAAADg2Ib2aq9GV6erEr9luqous+uyqmKvqqysLIv1zMxMi+MAAAAAAMCxebi5aFCP8umqkz/+rKNMV9VZdl1W+fv7q127dtq6davF+vbt2xUQEKC2bdsalAwAAAAAANibIT2rTFexd1Wd5Wx0gJuZMmWK4uLi5Onpqf79+2vnzp3asmWLlixZYnQ0AAAAAABgR8qnq/y0aU+G0k/9rP87ma+uHa9/YzfYJ7svq2JiYnT58mW9++67io+Pl5+fnxYuXKjo6GijowEAAAAAADszpKefdiZl62JxqTZ8e1JdAr1lMpmMjoVbYDdlVUxMjGJiYq55bNy4cRo3bpyNEwG1j78eAQAAAMC6yu8M6KeNezKUfqpI/3cyT107Njc6Fm6BXe9ZBQAAAAAAcKuG9PKTW0P2rqqrKKsAAAAAAEC94t7IRYN7+EmSMk4X6T8n8gxOhFtBWQUAAAAAAOqdwT395NawfPejDd8yXVWXUFYBAAAAAIB6p3y6qp2k8umqI0xX1RmUVQAAAAAAoF4awnRVnURZBQAAAAAA6qXGjVw0pGf53lWZp4t05DjTVXUBZRUAAAAAAKi3Bvdox3RVHUNZBQAAAAAA6i2L6aozRfox7xeDE+FmKKsAAAAAAEC95t+6SeXHl6+UGpgENUFZBVgZI6YAAAAAANQcZRVgQyaTyegIAAAAAADYNcoqAAAAAAAA2A3KKgAAAAAAANgNyioAAAAAAADYDcoqAAAAAAAA2A3KKgAAAAAAANgNyioAAAAAAADYDcoqAAAAAAAA2A3KKgAAAAAAANgNyioAAAAAAADYDcoqwMrMRgcAAAAAAAdnMjoAbgllFQAAAAAAAOwGZRUAAAAAAADsBmUVAAAAAAAA7AZlFQAAAAAAAOwGZRUAAAAAAADsBmUVAAAAAAAA7AZlFQAAAAAAAOwGZRUAAAAAAADsBmUVAAAAAAAA7AZlFQAAAAAAAOyGs9EB6gInJ1O9fC3YhnMDJ7X0cpMkubu58D2+Cd4fODrOATg6zgGA8wCwxjnQqKFz5c9lLs4NOM8MdrP332Q2m802ygIAAAAAAADcEJcBAgAAAAAAwG5QVgEAAAAAAMBuUFYBAAAAAADAblBWAQAAAAAAwG5QVgEAAAAAAMBuUFYBAAAAAADAblBWAQAAAAAAwG5QVgEAAAAAAMBuUFYBAAAAAADAblBW2bFTp04pLCxMb7/9ttFRAJs5e/asZs+erfvvv1+hoaGKiYnRli1bjI4FWNWmTZs0fPhwde3aVVFRUUpMTDQ6EmAzZWVlWrt2rUaOHKnQ0FANGjRI8+fP1/nz542OBhji6aef1uDBg42OAdjcd999p/Hjx+vee+9V37599fLLL+vChQtGx4JBnI0OgGszm82aNWsW/1CDQ7l8+bKeeOIJFRUV6U9/+pNatmypbdu2aerUqSotLdWIESOMjgjUus2bN2v69OmaOHGi+vbtqx07dui5555To0aNNGzYMKPjAVa3evVqvf7665o0aZIiIiKUnp6uN954Q8ePH9eaNWuMjgfY1IYNG/TFF1+offv2RkcBbOrw4cN67LHHNGDAAC1fvlyZmZn629/+pvz8fC1ZssToeDAAZZWd+uSTT3Ty5EmjYwA29fXXXys1NVXx8fHq2rWrJCkyMlI//vijVq1aRVmFemnJkiWKiopSXFycJKlfv34qLCzU0qVLKatQ75nNZq1evVpjx47Vs88+K0nq06ePvLy89Je//EUpKSkKDg42OCVgG2fOnNG8efPUunVro6MANrd48WJ169ZNS5culclkUp8+fVRWVqb33ntPFy9elJubm9ERYWNcBmiHsrOztXjxYr388stGRwFsyt3dXWPHjlWXLl0s1gMDA5WVlWVQKsB6srOzlZWVpSFDhlisDx06VCdPnlR2drZByQDbuHDhgh544IFqv4wIDAyUJP7uh0OZPXu2IiMjFRERYXQUwKby8/N14MABjR8/XiaTqXJ9woQJ2rFjB0WVg6KssjNlZWWaOXOmoqKi9Pvf/97oOIBNRURE6KWXXrL4n9SVK1f01Vdf6e677zYwGWAdFRO0HTp0sFj39/eXJKWnp9s8E2BLHh4emj17tsLCwizWd+zYIUm66667jIgF2Fx8fLyOHTumv/71r0ZHAWzu+++/l9lslqenp6ZOnapu3bopLCxMc+bM0aVLl4yOB4NwGaCNlJSUKD4+/rrHW7ZsqYEDB+qDDz5QTk6OVqxYYcN0gPXV9Bz4rUWLFikjI0PLli2zZjzAEEVFRZLKf2Cvyt3dXZLYtxAO6ciRI1q5cqUGDRqkjh07Gh0HsLrc3FzNnz9f8+fPl7e3t9FxAJvLz8+XJM2cOVODBw/W8uXLlZaWptdff13FxcVasGCBwQlhBMoqGykuLtbcuXOve7xXr14KCAjQ66+/rjfeeENNmjSxXTjABmpyDlQtq8xmsxYtWqQPPvhAkyZN0qBBg2yQErAts9l8w+NOTgxAw7EkJSVp8uTJateunV555RWj4wBWV3FTpfvuu09Dhw41Og5giCtXrkiSunfvrjlz5kgqv+LCbDZr4cKFmjJlivz8/IyMCANQVtmIu7u70tLSrnu8tLRU48eP17BhwxQZGamSkpLKY2VlZSopKZGzM98u1F03Owequnz5smbOnKnPP/9ckyZN0owZM6ycDjBGxS8mfntb5oqJKn5xAUeyefNmzZw5UwEBAVq9erW8vLyMjgRY3ccff6y0tDRt3Lix8t//Fb/IKCkpUYMGDSy2RwDqo4qJ8t9ug9O3b18tWLBAaWlplFUOiPbDTpw6dUpHjhzRkSNHlJiYaHHszTff1JtvvlnjH/SBuuz8+fOKjY3VwYMHNWvWLE2cONHoSIDVVOxVlZWVpaCgoMr1zMxMi+NAfffee+9p4cKF6tWrl5YtW0ZRC4exbds2nTt3Tn379q12LCQkRPPnz1dMTIwByQDbCQgIkFT+C+uqKiauKGwdE2WVnWjZsqUSEhKqrY8ePVrjx4/XQw89ZEAqwLZKS0v11FNP6ciRI1qyZImGDRtmdCTAqvz9/dWuXTtt3bpVgwcPrlzfvn27AgIC1LZtWwPTAbYRHx+vBQsWKDo6WgsXLpSrq6vRkQCbefHFF6tN1y5btkwpKSl666231K5dO4OSAbbTsWNH+fr6avPmzXr44Ycr13ft2iVnZ2eFhoYamA5GoayyE66ururSpcs1j7Vs2fK6x4D65B//+If+/e9/a+zYsWrdurUOHz5cecxkMunee+81LhxgJVOmTFFcXJw8PT3Vv39/7dy5U1u2bNGSJUuMjgZYXV5enubNmydfX19NmDBBycnJFsfbt2/PhtOo1wIDA6utNWvW7IY/GwD1jclk0vTp0zVt2jRNnz5dMTExOnr0qJYvX65HHnmE/w84KMoqAHZj27ZtkqR169Zp3bp1FscaNGhQ7YcYoD6IiYnR5cuX9e677yo+Pl5+fn5auHChoqOjjY4GWN0333yjixcvKjc3VxMmTKh2/NVXX9WoUaMMSAYAsKXo6Gi5urpq2bJlio2NlY+Pj6ZMmaLY2Fijo8EgJvPNbkUEAAAAAAAA2Aj3xAYAAAAAAIDdoKwCAAAAAACA3aCsAgAAAAAAgN2grAIAAAAAAIDdoKwCAAAAAACA3aCsAgAAAAAAgN2grAIAAAAAAIDdoKwCAAAAAACA3aCsAgAAdcr+/fsVFBSk9evXGx3ljp05c0bh4eHKzs42OorVrFu3TgMHDrzu8ZkzZyooKEg5OTm1+rrPP/+85s+fX6ufEwAA2AZlFQAAgEHmzZun4cOHy8/Pr3KtoKBAQUFBeuKJJwxMVnt2796tPn362Px1p0yZonXr1ik1NdXmrw0AAO4MZRUAAIABvvvuO+3cuVNPPvmkxXpycrIkKSQkxIhYtaqsrEz79+9XRESEzV+7bdu2Gj58ONNVAADUQZRVAAAABnj//fcVFhamNm3aWKwfO3ZMktSpUycjYtWq5ORkFRYWGlJWSdKYMWO0b98+pqsAAKhjKKsAAEC9kJ+frxdffFH33XefOnfurPvuu08vvviizp07V+2xOTk5euaZZ9S9e3d1795dTz31lLKzszVgwAA9+uijVs966tQp7dq1S4MGDap2rGKyqj6UVXv27FFwcLC8vLwMef1u3bqpdevW+vjjjw15fQAAcHucjQ4AAABwp4qKijR+/HhlZmbqoYceUqdOnZSSkqK1a9dq3759io+Pl4eHhyTp3LlzmjBhgvLy8jRu3DgFBgYqKSlJEydO1C+//GKTvN98841KS0vVv3//aseSk5Pl6elpsY9VXbVnzx7Dpqoq9OzZU19//bWhGQAAwK2hrAIAAHXe6tWrlZGRoRdeeEETJkyoXA8ODtZLL72k1atXa+rUqZKkVatW6fTp01q0aJEeeOABSdLDDz+sV199VWvWrLFJ3qSkJDVu3LhaIXX+/HllZmYqPDzcJjmsqbi4WAcPHjR8o/jf/e532rhxo7Kzs+tFAQgAgCPgMkAAAFDnffHFF/L29tbYsWMt1seOHStvb2/t2LGjcm3Xrl1q0aKFRowYYfHYSZMm2SSrJGVnZ8vX11cmk8liPSUlRWazuV5cApiUlCSz2awePXrU6uc9e/asVq1apbi4OC1evFhHjx694eMrCqqcnJxazQEAAKyHsgoAANR5OTk56tChg5ydLYfGnZ2dFRAQoOzsbIvH+vv7y8nJ8p9BPj4+atq0qcXa5s2bNX78eIWGhmrAgAHVXrekpESvvPKKevXqpR49emjWrFkqLi6+ad6CgoLKyxKrqthc/UZ3Ajxw4IBCQ0Or/encubOCg4MtHjt37lwFBQXp0KFD1T7Po48+qqCgIH311VfVvuagoCDFxsZWrqWnp+uPf/yjevfurdDQUA0ePPimd9nbvXu3QkND1ahRoxs+7lZs27ZNb7/9tvr06aM5c+Zo/Pjx2r17t1577TWZzeZrPqfq5Z8AAKBuoKwCAAC4Dk9PTz3yyCOVlxD+1ooVK7R//35t3LhR27dv14kTJ7Ro0aKbfl4nJyeVlZVVW6/JnQB79OihQ4cOWfzZunWrmjVrpj//+c+Vj7t06ZI2bdqkZs2aKT4+/pqfKzAwUJ9++qnFWkJCggIDAy3WYmNj1aFDB+3cuVNJSUlatWqVgoKCbvg17t27V3369LnhY27F999/r9zcXM2ZM0chISFq1KiRfH19FRsbq4EDB2rt2rXXfF7F+9ygQYNaywIAAKyLsgoAANR5fn5+Sk9PV0lJicV6SUmJMjIyLPYq8vX1VWZmZrWyKC8vTz///LPFWmRkpIYPHy5fX99rvm5CQoImT56sVq1aydvbW08//bTWr1+v0tLSG+b18fFRQUFBtfXk5GQ1btxYHTp0uOHzq7p8+bKeeeYZhYWFafLkyZXrW7dulZOTk+Li4rRlyxZduHCh2nOjoqK0b98+5efnS5Jyc3OVkpJicZfC/Px8ZWZmaty4cXJ3d5eTk5MCAgIUExNz3Uznzp1TSkpKrZZV27dv12OPPXbNY926ddO5c+eqff8lVb7PPj4+tZYFAABYF2UVAACo8wYNGqT8/PxqE0T//Oc/lZ+fb1G+3H///Tp79qw2bdpk8dhb3Vz9559/1qlTp3TPPfdUroWEhOjChQvKzc294XPbtm2rn376yaLUunjxotLT0xUcHFxtL6sbmTNnjoqLi7VgwQKL9fj4eEVHRys6OlouLi7avHlztee6u7tr0KBBSkxMlFRevo0YMUKurq6Vj/H29lbHjh01a9Ysff7558rKyrpppr1798rDw0OdO3eu8ddxM25ubpXvy6FDhxQeHq6333678njnzp2VkZFR7XlnzpyRVP6eAwCAuoG7AQIAgDrviSee0NatW/XSSy8pOTlZwcHBSklJUUJCgjp06GBxR7onn3xSmzZt0qxZs/Sf//xHgYGBSkpK0qFDh+Tl5VXj16yYVKq6z1WTJk0sjl1P7969tX79ev3www+VZVdqaqpKS0tVXFyslStXVntO48aN9cgjj1isffjhh9q1a5cSEhLk5uZWuZ6enq4DBw5oxowZcnV1VXR0tBISEjRmzJhqn3f06NGaPXu2Jk6cqH/961965513tH37dovH/P3vf9eaNWu0YsUKnThxQm3atNGzzz6r6Ojoa359e/fuVXh4eLV9wW5kyZIlcnd3r7YeFRWliIgIi7XU1FQVFBTo4MGDlWvu7u7XfN8PHz4sf39/yioAAOoQyioAAFDnNWnSRGvXrtUbb7yhL7/8UuvXr5ePj4/GjRunZ555xmIzc29vb33yySdauHChPv30U5lMJoWHh+uDDz7Q6NGja7wheEWxUlRUpBYtWlR+XPXY9fTr109OTk46cOBAZVmVnJwsSTp69Og173DXs2dPi7Jq3759Wrx4sVatWqV27dpZPDY+Pl6BgYG69957JUkxMTEaM2aMfvjhB919990Wj+3evbvMZrPefPNNNW/eXEFBQdXKKh8fH82YMUMzZszQ+fPntW7dOk2fPl1BQUHq2LFjtax79uzR448/fsP34Ld+O+lWITAwUBEREbp06VLl2pgxY9SiRQuFhoZWrqWlpWn48OEWzy0rK9Phw4evW6oBAAD7RFkFAADqlPDwcKWlpVVb9/b21ty5czV37tybfg4/Pz+99dZbFmvnzp1TQUGB2rRpU6McTZs2VZs2bZSamlq5IXlycrLc3d2vu8dV1awDBgzQ559/XllATZgwQRMmTKjRa+fk5Gjq1KmaMWOGwsPDLY5duXJFGzZsUFFRkSIjIy2OJSQkKC4urtrnGz16tBYtWlSj987Dw0OTJk3SypUrdfz48WuWVTt37qzR1yFJCxYsqHYJ47X4+vrq4MGD6t69u5ydnS0u7SwqKlJOTo6aNWtm8Zy9e/cqLy9Po0ePrnEeAABgPMoqAADgcC5dulRtgqri0ruqBU9paalKSkp05coVmc1mFRcXy2QyVe7pNHr0aL3zzjsKCwuTi4uL3nrrLcXExNToznOPP/64Hn74YWVlZal9+/Y1zn7x4kVNmTJFAwYMqHZZoCTt2rVLhYWFSkxMlKenZ+X6Z599plWrVunZZ5+12JNKksaOHavg4GCLSaUKhYWFWrNmjUaOHKmAgACZzWatX79eFy9eVEhISI1z36lRo0Zp3rx5unjxosX3KDs7W0uXLr1mCZeYmKjIyEiLfcUAAID9o6wCAAAO58knn5Svr686deqksrIy7du3T7t27VJoaKjFxM6GDRssSpCuXbvK19dXX375pSRp8uTJKigo0IgRI1RWVqahQ4dq+vTpNcoQFham+++/XytXrtQrr7xS4+zbtm1TamqqMjIytGXLlmrHu3TpohEjRuiuu+6yWB83bpxWrFihHTt2VLsszsPD47p37nNxcdHZs2f11FNPKS8vT66urrrrrru0fPnyapcfWpPJZNKsWbP00UcfKT4+Xk5OTiorK1OLFi30/PPPV9tvLDs7W9u2bdNHH31ks4wAAKB2mMxms9noEAAAALb07rvvKjExUbm5uSouLlarVq00ZMgQTZkyxWJ/K2s7deqURo0apYSEhFuarsLNxcXFycPDQ88//7zRUQAAwC2irAIAAAAAAIDdqPn9hAEAAAAAAAAro6wCAAAAAACA3aCsAgAAAAAAgN2grAIAAAAAAIDdoKwCAAAAAACA3aCsAgAAAAAAgN2grAIAAAAAAIDdoKwCAAAAAACA3fh/8kriZejj0vMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKsAAAJgCAYAAABFgeDFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB6SklEQVR4nOzdd1iV9f/H8dc5bNlLQETcW3OXe++G0XKUDSsrW7+2bdt+s2zvYcPMtLSlZq7cVjhyTxREURRkKeNwzu8PkiIcRxn3feD5uC6uC+/7Pue8gPtCePG537fF4XA4BAAAAAAAAJiA1egAAAAAAAAAwEmUVQAAAAAAADANyioAAAAAAACYBmUVAAAAAAAATIOyCgAAAAAAAKZBWQUAAAAAAADToKwCAAAAAACAabgbHcAVpKfnyG53GB2jygkN9dPRo9lGx4AL4xxCWXEOoaw4h1BWnEMoK84hlBXnEMrifM8fq9Wi4GDf0+6nrHKC3e6grKogfF5RVpxDKCvOIZQV5xDKinMIZcU5hLLiHEJZVMT5w2WAAAAAAAAAMA3KKgAAAAAAAJgGZRUAAAAAAABMg7IKAAAAAAAApkFZBQAAAAAAANPgboAAAAAAAKcUFOQrK+uYbLZ82e2FRsdBOTh82Cq73W50DLio/54/Vqub3N095e8fJA8Pz/N+XsoqAAAAAMBZnTiRo6ysdPn5BcrLK0RWq5ssFovRsVBG7u5W2WyUVTg//z5/HA6H7PZC5eWdUHr6Yfn7B8vHx/f8nrc8QwIAAAAAqqbs7AwFBYXJ09Pb6CgATMhiscjNzV01avjL3d1DmZlp511WMbMKAAAAAHBWhYUF8vDwMjoGABfg4eElm63gvB9PWQUAAAAAcAqX/QFwRlm/V1BWAQAAAAAAwDQoqwAAAAAAgEtyOBxGRzgto7MZ/fplQVkFAAAAAKi2unXrcMa3jz9+v9Rj3nrrNXXr1kHvvffWKZ/z+eefVrduHXTFFRef9nWfffYJdevWQc8//3SJ7Rs2rNdDD/2fhg7tq969OysubqhefPEZJSfvP+PHMWfOj+rWrYMOHz509g+6jO6881bdc88dFf46//Xfj3Hv3gTdcceYCnmt559/WtdcM6z431deeYleeulZpx+/YsUyPffcUxX+Oqdzqs9Nt24dNGXKR2V+7srA3QABAAAAANXWe+99esrt7777hv76a71at76gxHabzab58+eqQYOGmjPnR918821ydy/9q7XFYtGhQynasmWTmjdvWWJfXl6eli1bWuoxv/++Wg8+eI969eqrRx55Qr6+fkpO3q+vvvpct956vT744DNFR9cuw0dbPu6//xFD5pd17txN7733qYKDQyRJS5Ys1MaNf1XKa7/wwsvy9fVz+vhvvpmmwkLbWY+74Yabdfx4TlmindKpPjfvvfepIiIiyv21KgJlFQAAAACg2mrZslWpbd99N0MbNqzT6NE3qWPHi0rsW716hdLT0/TssxM1btzNWrp0ifr06VfqOaKiaik/P19LliwsVVatXr1Sbm5uioiILLH9yy+nqFWrCzRhwgvF29q166DOnbvq6quH6euvp+r++x8uy4dbLurVq2/I6wYHBys4ONiQ127cuGmFPG9llo+nOtfNissAAQAAAAD429atm/Xmm6+qffuOuvnm20rt//nnH9WkSTNdcEEbNW/eUt9//90pn8disahXr75avHhRqX2LFs1Xz569S63ISktLk91uL3V8WFi47rvvQXXseKHTH8epLtVbu/ZPdevWQRs2rJckffzx+xo58iotWrRAI0deoT59umjs2BuVmLhXK1Ys03XXXa2+fbvq1ltv0M6d20/73N26ddDs2d/qhRcmaNCg3urfv4eeeOIRpaenlXj9efN+1k03jVK/ft10+eVD9NZbrykvL7d4f3p6uiZMeFyXXjpQffp01Q03jNTcuT8V7//3ZYAff/y+PvroveLX//jj9/X44w/ryisvKTWr6amnHtXNN48+7ecqMzNTL7wwQYMH99GgQb31zjtvlPo6/PfyvF9/nafrrx+hPn266uKL++uZZ57QkSOpxZ+f+PjftX79WnXr1kFr1/5Z/Ln//vvvFBc3VAMH9tT69WtLXQYoSQUF+Zo06UUNHNhTQ4f21aRJL5VYfXWqSwXP9rk5+f6/LwM8fPiQnn32SQ0bNlh9+3bVuHG3aN26+OL9Bw8eULduHfTbb4v06KMPqn//7ho8uI8mTnxeubm5qkiUVQAAAAAASMrKytKTT45XYGCQnn76eVmtJX9lTk9P16pVyzVw4BBJ0pAhF2vt2j+0f3/SKZ+vT59+OngwWdu2bS3elpubq5Url6tv3wGljr/ooi7666/1uuee2zVnzo86cCC5eN/FFw9Tjx69yuGjLOngwQP64IN3dPPNt+uJJ57R/v2JevDBe/Xmm69q9OibNGHCCzp06KCeffbJMz7Pe++9KUl69tkXdccdd2vFimV6663Jxfs//vh9Pf/802rTpp1eeGGSrrlmpL7//js99NB9xeXSs88+ob179+iBB8Zr0qTX1bhxEz3//NNau/bPUq93ySXDdNllcX+/9qe65JJhGjr0EqWkHNSGDeuKj8vJydayZb9p8OBTzw+z2+26//67tGrVCt155716/PGntXHjBi1cOP+0H+tff63Xc889pV69+uiVV97QXXf9n+Ljf9eECY9LKrpMslmz5mrcuInee+9TNWnyz6qsKVM+0j333K97732w1Iq7kxYsmK+9exP05JPP6cYbb9Evv8zRk0+OP20eZz43/3XkyBHdcstobdmySXfccY8mTHhRXl7euvfeOxQf/0eJY1966TnVqhWtF198RSNHXqeffpqtL7449eWz5YXLAAEAAAAA523PgUz9uCJBufmFhubw9nTTJV3rqX6tgPN+jhdeeFqHDx/SG2+8XzwX6d/mz58jSerff5AkqW/fgXrjjcn64YfvdMcd95Q6vlWrCxQeXlNLlixU06bNJEkrVy6Xt7eP2rXrUOr4W2+9Qzk5OZoz54fiwqBmzQh17txV11wzUnXq1D3vj+10Tpw4oYceerQ4z/r1a/Xtt9/o9dffVfv2HSVJSUlJevvt13T8+HHVqFHjlM/TsGFjPfpo0UDxjh2LVqgtXbpEkpSZmaGpUz/T5Zdfqbvvvl+S1KnTRQoPj9BTT43XqlUr1KVLN61fv1Y33HBzcSnXpk07BQYGycPDo9Tr1awZofDwmpL+ubwtNDRM4eE19csvc9SmTTtJ0qJFCyQ51L//wFPmXr16pbZu3axXXnlTF17YWZLUvn0nXXXVJaf9nG3YsF5eXt4aNep6eXp6SpICAgK1bdsWORwO1atXXzVq+Kmw0Fbq0ru4uKvVs2ef0z63JAUFBemVV96Ql5e3JMnd3V2TJr2knTu3q1GjJmd8rHTqz81/TZ8+VVlZ2frgg8+KL0ft0qWbbrhhhN5990199NHnxcd27dpdd955rySpQ4dO+uOPNVq5cpluueX2s2Y5X5RVAAAAAIDz9uufSdqw+6jRMSRJPl7uuvXSFuf12K+//lLLlv2mO+64Rxdc0OaUx8yZ86M6drxQbm5uysrKklS0GmrOnJ90yy13lCpVTl4KuGTJQt12252Sii4B7NWrr9zc3Eo9v6enpx5++DHdfPNYrVq1ovjyse+//05z5vyoZ555Ud279zqvj+9MWrT4Z4XPyZLu36t+AgMDJUnZ2VmnLatatSo5iL5mzQjl5p6QJG3evEn5+fnq169kYdS7d18995yH1q2LV5cu3dS2bdElazt2bNdFF3XWRRd107hxpUvA03Fzc9OgQUM1a9ZM/d//PSRPT0/NnfuTunTproCAwFM+ZsOGdfL09CouqiTJx8dHF13UVRs3bjjlY9q2bacPP3xHo0dfo169+qpz567q1Okide7c9awZGzVqfNZjOnfuVlxUSVK3br00adJL+uuv9U6VVc5Yv36tWre+oMTcNKvVqr59B+ijj94rcdnhf7+24eE1dfjw4XLJcTqUVQAAAACA89a/Q4xy82ymWFnVv2PMeT1206aNeu+9t9SjR2+NHHndKY/Ztm2rdu/epd27d2nw4N6l9v/226JSZYxUdCngjBnTtHPndkVHx2jVqhV69dW3zpgnNDRMF198mS6++DJJRbOmnnnmCU2a9JK6detZrnfic3NzK1GMnOTj43NOz+Pl5VXi3xaLpfjyvqysTElFH9e/Wa1WBQUFKzs7W5I0YcIL+vzzT7Ro0a9asmShrFarOnS4UA899KgiI6OcyjFkyCX64otPtWLFUjVu3FQbN27Q//43+bTHZ2ZmKigoqNT2/2b9t5YtW+vll1/X9OlTNX36VH355RSFhIRq9OgbdeWVw8+Yz8fn1GXfv/13Vd/JfCc/T+UhKytTderUKbU9JCRUDodDx48fL97m7V3y/LBarXI4Ss9WK0+UVYCkH1fu1Z7kDN04tJkCangaHQcAAABwGfVrBeieqy44+4EmlZmZoaeeGq/IyKjiy9hOZc6cH+Tr66sXX3yl1L5nnnlC33//3SnLqpYtW6tmzQgtXrxQ9erVV0BAoFq3blPquM2bN+mRR+7Tk08+U+oOhO3addDIkdfpjTdeVVZW5mlXCf2bxWKR3V6yQDxx4sRZH1cR/P39JUlHjx4pcfc7u92u9PS04jLGz89Pd9xxt+64424lJu7VsmW/acqUj/Tqq/87Y+H0bzExddS6dRstWrRAycn7FRISqk6dOp/2+KCgIB07li6Hw1GiBMzMzDjj61x4YWddeGFn5ebmKj7+D82YMU2vvTZJLVteUHzJ5/k6uWrvpJOD6k+WWEVf25Jl0YkTx3Uu/P39dfRo6RWRR48ekVR0WePJ943AgHVUe5nH8zVr6R5t2H1UU+fvMDoOAAAAgEricDj03HNPKT09Xc8++5L8/PxOeVx+fr5+/fUXde/eS+3adSj11r//IK1bF6/ExL2lHlt0KWAf/fbbIi1ZslB9+vQ75cqomJg6OnHiuGbM+PqUdwRMTNyn8PCaThVVkuTr66vDhw+V2PbXX+udemx5a9GilTw9PbVgwS8lti9evFA2m02tW1+gw4cPKS5uqBYvXiBJqlOnrkaNul4dOlxY6uM46VSXUkrS0KGXavXqlVq0aIEGDhx82uMkqX37jsrPz9fy5b8VbysoKNDvv68+7WPeeecN3XLLaDkcDnl7e6tr1+4aN+5eSSrO6uZ2/nXLn3/+rsLCf4rGk5+Tk3O4atTw1aFDZ/7anuljLnqu9vrrrw0lPrd2u12LFv2qZs2aF8/iMgorq1Dt5f1ruXLCwUwDkwAAAACoTDNnTtfKlct15ZXDlZeXr02bNpY6xtfXV3v27FZWVuYpV05J0qBBQzVt2hf6/vtZuuuu/yu1v0+f/vrmm2lKTt6vt9/+6JTPERAQoDvuuEevvjpR48bdrEsuuVy1akUrOztbS5cu1rx5P+vpp19w+mPr0qW7li9fqjffnKyuXbvrr7/Wa968n51+fHkKCAjUiBHX6fPPP5G7u7s6d+6qhIQ9+vjj99WmTTtdeGEXWa1WRUZG6bXXJiknJ0fR0bW1bdtWrV69QtdfP+aUz+vnV7Ri69df56lly9aKiqolSerdu59ee22SduzYpieeeOaM2Tp06KROnTrrhRee0dixRxUREaEZM77WsWPpCgsLP+VjOnbspGnTvtDzzz+tgQMHq6DApq+++lxBQUFq27Z9cbYNG9YpPv6Pc54zlZp6SE89NV7Dhl2pnTt36MMP39WQIZeoTp1YSUWD0L/8coq++GKKWrRoqeXLf1N8fMk7Jp7uc3PSNdeM0rx5P+uee27XTTfdqho1fDVr1gzt27dXL7/8+jnlrQiUVQAAAACAamnHjm2SpJkzv9bMmV+f8pg2bdrJy8tbQUFB6tCh0ymPadCgoRo1aqx5837S2LHjSu1v0aKVIiIiZbW6lRhm/l9xcVepTp1YzZz5td5//y1lZGSoRg1fNW/eQq+//m5xEeKMoUMvVXLyfs2d+5Nmz56pNm3a67nnJur2209d/FS0W265XSEhIfr22280a9ZMBQeH6LLL4nTTTWNltRatQnr++f/9fSe695SRcUw1a0bopptu1ahR15/yObt376U5c37Q888/rUsvvVz33fewJKlGjRpq27ad0tPTVa9e/bNme+GFl/Xuu2/oo4/eVV5evvr27a9LL43TypXLTnl8x44X6emnn9fUqZ/r0UcfksVi0QUXtNEbb7xXfMnj5Zdfqc2bN+qBB+7W449POOXdJU9n2LArlZWVqfHj75eXl7euump4iTvvjR59k44dO6avvvpcNptNXbp01SOPPKFHHrnvrJ+bk8LCwvTuux/r3Xff0KRJL8put6tp0+aaPPntU96psrJZHCcnnuG0jh7Nlt3Op6m8hYf7KzU16+wHVrDUYyf08HurJElhgd763+1dDE4EZ5nlHILr4hxCWXEOoaw4h1BWlXkOpaTsU2RkbKW8FiqPu7tVNlvFDsuubMePH9fllw/WuHH36tJLLzc6TpV2pvPnTN8zrFaLQkNPfdmtxMoqAAAAAABQBRw8eEDz5v2s1atXytvbWwMGDDY6Es4TZRUAAAAAAHB5FotVM2Z8LV9fXz311PPy9vY2OhLOE2UVAAAAAABweZGRkZozZ6HRMVAOzv9eigAAAAAAAEA5o6wCAAAAAACAaVBWAQAAAACcws3kATijrN8rKKsAAAAAAGfl5uahgoI8o2MAcAEFBXlyd/c478dTVgEAAAAAzsrPL1DHjh1RTk6WCgttrLICUILD4VBhoU05OVk6duyIfH0Dz/u5uBsgAAAAAOCsfHx85e7uoezsY8rJyZDdXmh0JJQDq9Uqu91udAy4qP+eP1armzw8PBUcXFMeHp7n/byUVQAAAAAAp5z8JRRVR3i4v1JTs4yOARdVUecPlwECAAAAAADANCirAAAAAAAAYBqUVQAAAAAAADANyioAAAAAAACYBmUVAAAAAAAATIOyCgAAAAAAAKZBWQUAAAAAAADToKwCAAAAAACAaVBWAQAAAAAAwDQoqwAAAAAAAGAalFUAAAAAAAAwDcoqAAAAAAAAmAZlFQAAAAAAAEyDsgoAAAAAAACmQVkFAAAAAAAA06CsAgAAAAAAgGlUq7IqPz9fN954oxYvXmx0FAAAAAAAAJxCtSmrtm3bplGjRmnt2rVGRwEAAAAAAMBpVJuyatq0abrjjjvUunVro6MAAAAAAADgNKpMWTV79mw1b9681FtWVpYkacKECerdu7fBKQEAAAAAAHAm7kYHKC/Dhg3TsGHDjI4BAAAAAACAMqgyK6sAAAAAAADg+iirAAAAAAAAYBqmK6u2bt2qFi1aKCUlpdS+n376SUOHDlXr1q01ePBgzZ49u/IDAgAAAAAAoMKYambV7t27NXbsWNlstlL75syZowceeEDXX3+9unXrpgULFujhhx+Wt7e3Bg0a5PRrfPHFF+UZGQAAAAAAAOXIFGWVzWbT9OnT9corr8jDw+OUx0yePFmDBw/W+PHjJUndu3dXRkaGXn/99XMqq85HaKhfhT5/dRYe7m90BBVa/1lgaHWzmiITnMfXC2XFOYSy4hxCWXEOoaw4h1BWnEMoi4o4f0xRVsXHx2vSpEkaM2aMIiIi9Pjjj5fYn5SUpMTERN13330ltg8cOFBz585VUlKSYmJiKizf0aPZstsdFfb81VV4uL9SU7OMjqG0YyeK37cX2k2RCc4xyzkE18U5hLLiHEJZcQ6hrDiHUFacQyiL8z1/rFbLGRcGmWJmVYMGDbRgwQLdeeedcnNzK7V/z549kqR69eqV2B4bGytJSkhIqPiQAAAAAAAAqHCmWFkVFhZ2xv1ZWUUtnZ9fydbN19dXkpSdnV0xwQAAAAAAAFCpTLGy6mwcjjNfgme1usSHAQAAAAAAgLNwiZbH379oWFdOTk6J7SdXVJ3cD5wPppEBAAAAAGAeLlFWnZxVlZiYWGL7vn37SuwHAAAAAACAa3OJsio2Nla1a9fWvHnzSmyfP3++6tatq1q1ahmUDFWBxegAAAAAAACgmCkGrDtj3LhxGj9+vAIDA9WrVy8tXLhQc+fO1eTJk42OBgAAAAAAgHLiMmVVXFyc8vPz9cknn2jGjBmKiYnRxIkTNWTIEKOjAQAAAAAAoJyYrqyKi4tTXFzcKfcNHz5cw4cPr+REAAAAAAAAqCwuMbMKAAAAAAAA1QNlFQAAAAAAAEyDsgrVnsPoAAAAAAAAoBhlFQAAAAAAAEyDsgrVnsXoAAAAAAAAoBhlFQAAAAAAAEyDsgoAAAAAAACmQVkFAAAAAAAA06CsAgAAAAAAgGlQVqHacxgdAAAAAAAAFKOsAgAAAAAAgGlQVqHasxgdAAAAAAAAFKOsAgAAAAAAgGlQVgEAAAAAAMA0KKsAAAAAAABgGpRVAAAAAAAAMA3KKgAAAAAAAJgGZRWqPYfRAQAAAAAAQDHKKgAAAAAAAJgGZRWqPYvRAQAAAAAAQDHKKgAAAAAAAJgGZRUAAAAAAABMg7IKAAAAAAAApkFZBQAAAAAAANOgrEK15zA6AAAAAAAAKEZZBQAAAAAAANOgrEK1ZzE6AAAAAAAAKEZZBQAAAAAAANOgrAIAAAAAAIBpUFYBAAAAAADANCirAAAAAAAAYBqUVaj2HEYHAAAAAAAAxSirAAAAAAAAYBqUVQAAAAAAADANyipUexajAwAAAAAAgGKUVQAAAAAAADANyioAAAAAAACYBmUVAAAAAAAATIOyCgAAAAAAAKZBWYVqz2F0AAAAAAAAUIyyCgAAAAAAAKZBWYVqz2J0AAAAAAAAUIyyCgAAAAAAAKZBWQUAAAAAAADToKwCAAAAAACAaVBWAQAAAAAAwDQoq1DtOYwOAAAAAAAAilFWAQAAAAAAwDQoqwAAAAAAAGAalFWo9ixGBwAAAAAAAMUoqwAAAAAAAGAalFUAAAAAAAAwDcoqAAAAAAAAmAZlFQAAAAAAAEyDsgrVnsPoAAAAAAAAoBhlFQAAAAAAAEyDsgrVnsXoAAAAAAAAoBhlFQAAAAAAAEyDsgoAAAAAAACmQVkFAAAAAAAA06CsAgAAAAAAgGlQVqHacxgdAAAAAAAAFKOsAgAAAAAAgGlQVgEAAAAAAMA0KKtQ7VmMDgAAAAAAAIpRVgEAAAAAAMA0KKsAAAAAAABgGpRVAAAAAAAAMA3KKlR7DqMDAAAAAACAYpRVAAAAAAAAMA3KKgAAAAAAAJgGZRWqPYvRAQAAAAAAQDHKKgAAAAAAAJgGZRUAAAAAAABMg7IKAAAAAAAApkFZBQAAAAAAANOgrEK15zA6AAAAAAAAKEZZBQAAAAAAANOgrAIAAAAAAIBpUFYBAAAAAADANCirAAAAAAAAYBqUVQAAAAAAADANyioAAAAAAACYBmUV4HAYnQAAAAAAAPyNsgoAAAAAAACmQVkFAAAAAAAA06CsAgAAAAAAgGlQVgEAAAAAAMA0KKsAAAAAAABgGpRVAAAAAAAAMA3KKgAAAAAAAJgGZRWqPYfRAQAAAAAAQDHKKgAAAAAAAJgGZRUAAAAAAABMg7IKAAAAAAAApkFZBQAAAAAAANOgrAIAwAT2H87W7uQMo2MAAAAAhqOsAgDAYOlZeXryk9/1/Bfx2nMg0+g4AAAAgKEoqwCH0QEAVHcb9xwtfn/J+mQDkwAAAADGo6wCAAAAAACAaVBWAQAAAAAAwDQoqwAAAAAAAGAalFUAAAAAAAAwDcoqAAAAAAAAmAZlFQAAAAAAAEyDsgrVnsPoAAAAAAAAoBhlFQAAAAAAAEyDsgoAAAAAAACmQVkFAAAAAAAA06CsAgAAAAAAgGlQVgEAAAAAAMA0KKsAAAAAAABgGpRVAAAAAAAAMA3KKlR7DofD6AgAAAAAAOBvlFUAAAAAAAAwDcoqAAAAAAAAmAZlFQAAAAAAAEyDsgoAAAAAAACmQVkFAAAAAAAA03A3OkBFmzJlimbOnCmLxaI6deroueeeU3BwsNGxAAAAAAAAcApVemVVfHy8Zs6cqenTp+vHH39U/fr19corrxgdCwAAAAAAAKdRpcuqoKAgPfnkk/L19ZUkNW/eXMnJyQanAgAAAAAAwOm4/GWAs2fP1qOPPlpq+5o1a9SgQQM1aNBAkpSdna133nlHI0eOrOyIAAAAAAAAcJLLl1XDhg3TsGHDznjMoUOHdPvtt6tdu3YaMWJE5QQDAAAAAADAOavSlwFK0rZt23TNNdeoX79+mjBhgtFxAAAAAAAAcAYuv7LqTJKTk3XDDTfoiSee0NChQ42OAwAAAAAAgLMwzcqqrVu3qkWLFkpJSSm176efftLQoUPVunVrDR48WLNnz3bqOadMmaITJ07ogw8+0GWXXabLLrtM999/fzknBwAAAAAAQHkxxcqq3bt3a+zYsbLZbKX2zZkzRw888ICuv/56devWTQsWLNDDDz8sb29vDRo06IzP+9hjj+mxxx6rqNgAAAAAAAAoZ4aWVTabTdOnT9crr7wiDw+PUx4zefJkDR48WOPHj5ckde/eXRkZGXr99dfPWlaVl9BQv0p5neooPNzf6AjKtf/zvtXNaopMcB5fL5SVGc4hPz/v4vd9vD1MkQnO4+uFsuIcQllxDqGsOIdQFhVx/hhaVsXHx2vSpEkaM2aMIiIi9Pjjj5fYn5SUpMTERN13330ltg8cOFBz585VUlKSYmJiKjzn0aPZstsdFf461U14uL9SU7OMjqG0tJzi9+2FdlNkgnPMcg7BdZnlHMrOzi1+/0RugSkywTlmOYfgujiHUFacQygrziGUxfmeP1ar5YwLgwydWdWgQQMtWLBAd955p9zc3Ert37NnjySpXr16JbbHxsZKkhISEio+JAAAAAAAACqNoSurwsLCzrg/K6uonfPzK9m2+fr6SpKys7MrJhgAAAAAAAAMYZq7AZ6Kw3HmS++sVlPHBwAAAAAAwDkyddvj7180pCsnJ6fE9pMrqk7uBwAAAAAAQNVg6rLq5KyqxMTEEtv37dtXYj8AAAAAAACqhnMuq06cOFH8fnp6uqZOnapp06bp2LFj5ZlLUtEg9dq1a2vevHklts+fP19169ZVrVq1yv01Uf1wn0cAAAAAAMzD6QHrmZmZ+r//+z9lZmZqxowZys7O1hVXXKGDBw/K4XDonXfe0VdffaWYmJhyDThu3DiNHz9egYGB6tWrlxYuXKi5c+dq8uTJ5fo6AAAAAAAAMJ7TK6tee+01rVmzRt27d5ckzZw5UwcOHNCDDz6ozz//XFarVa+99lq5B4yLi9OECRO0fPlyjRs3Tn/88YcmTpyoIUOGlPtrAQAAAAAAwFhOr6xatGiRrr32Wt19992SpAULFig0NFQ33XSTJGnUqFH69NNPzztIXFyc4uLiTrlv+PDhGj58+Hk/NwAAAAAAAFyD0yurjh49qkaNGkmSsrKytH79enXt2rV4f3BwcIl5VgAAAAAAAMC5crqsioiIUFJSkqSiVVWFhYXq1atX8f61a9cqKiqq3AMCAAAAAACg+nD6MsDevXvrs88+U3Z2tn7++WcFBgaqT58+OnTokD788EN9//33uuOOOyoyKwAAAAAAAKo4p8uqBx98UCdOnNDMmTMVERGhp59+Wt7e3tqxY4emTp2qSy+9VLfeemtFZgUAAAAAAEAV53RZtW/fPj377LN67rnnSmxv2rSpfvvtN9WsWbPcwwGVwuEwOgEAAAAAAPib0zOrbrjhBr3yyiultnt6elJUAQAAAAAAoFw4XVYdP35ctWvXrsgsAAAAAAAAqOacLquuv/56ffrpp9q4cWNF5gEAAAAAAEA15vTMqk2bNunw4cO6+uqr5e3traCgIFmtJbsui8WiBQsWlHtIAAAAAAAAVA9Ol1V5eXlq2bJlRWYBAAAAAABANed0WfXFF19UZA4AAAAAAADA+ZlVztiyZUt5Ph1QKRxGBwAAAAAAAMWcXlmVn5+vN954Q8uWLdPx48dlt9uL9xUWFionJ0fZ2dnaunVrhQQFAAAAAABA1ef0yqrXX39dH330kTIyMuTj46Pk5GRFRUXJ3d1dKSkpKigo0GOPPVaRWQEAAAAAAFDFOV1WzZs3T506ddKiRYv04YcfSpKefPJJ/fLLL3r//fdls9nk4eFRYUEBAAAAAABQ9TldVh06dEgDBgyQ1WpVRESEQkNDtW7dOklSz549dfnll+ubb76psKAAAAAAAACo+pwuq7y9vUusnKpTp4527NhR/O/WrVsrKSmpfNMBAAAAAACgWnG6rGrWrJmWLl1a/O/69esXr6ySilZeWSyW8k0HAAAAAACAasXpsmrkyJFauHChRo4cqezsbA0dOlRbtmzR+PHj9eGHH2rKlClq1apVRWYFKobD6AAAAAAAAOAkd2cPHDx4sLKzs/Xpp5/Kx8dHXbp00ahRozR16lRJUq1atfTII49UWFAAAAAAAABUfU6XVZJ01VVX6aqrrir+9xNPPKExY8YoIyNDDRo0kKenZ7kHBAAAAAAAQPXh9GWAo0eP1qpVq0ptr1Wrlpo1a6bly5dr6NCh5RoOAAAAAAAA1ctpV1adOHFC6enpxf/+/fff1b9/f8XGxpY61m63a+nSpdq/f3/FpAQAAAAAAEC1cMayatiwYcrKypIkWSwWvfDCC3rhhRdOebzD4VDXrl0rJiUAAAAAAACqhdOWVSEhIXr55Ze1ceNGORwOvf322+rfv7+aNGlS6lir1aqQkBAuAwQAAAAAAECZnHHAes+ePdWzZ09J0oEDBzR8+HBdcMEFlRIMAAAAAAAA1Y/TdwN88cUXT7l9586dslqtatCgQbmFAiqTw+gAAPAvFqMDAAAAAAZzuqySpA8++EAJCQl68cUXZbfbddttt2nZsmWSpC5duuiNN96Qr69vhQQFAKA6oEDH+XA4HFq95ZCycvLVpE6wYiL8ZLVQfQIAANfkdFn10Ucf6dVXX1X37t0lSXPnztXSpUs1cOBANWrUSB9++KHefvttPfTQQxUWFgAAAKUlHc7Whz9uKf63n4+HmtcNVvO6IWoeG6ywIB8D0wEAAJwbp8uqWbNmqX///nrzzTclSXPmzJGPj48mTpwob29v5eTkaN68eZRVAAAAlSz7REGpf/++9bB+33pYklQzyKe4vGoaGyw/Hw8jYgIAADjF6bIqKSlJN9xwgySpoKBAq1atUqdOneTt7S1JatCggY4cOVIhIQEAAOCcfu1r61hOvrbuTVNOrk2SdPjYCR1ef0JL1h+QRVJspH/Rqqu6wWpUO1Ae7m7GhgYAAPgXp8uqgIAAZWdnS5LWrFmj48ePq0ePHsX7ExMTFRYWVv4JAQAA4LQOTWuqcUyQ7A6Hkg5la8veNG3Zm6Yd+zNUYLPLIWlvSpb2pmRpzup98nC3qlHtQLWoG6LmdUOYdwUAAAzndFnVtm1bffnll4qOjtZ7770nd3d3DRgwQAUFBVq8eLGmTZumfv36VWRWAAAAOMlqsSg20l+xkf4afFGsCmyF2rU/Q5v3pmvL3jTtS8mSQ1KBza4te9O1ZW+6pN3y8/FQ09jg4ssGazLvCgAAVDKny6pHH31UY8aM0d133y2LxaKHHnpI4eHhWrNmje6++27Vr19f99xzT0VmBSqEw8G9twAAVZ+Hu5ua1Q1Rs7ohkhoo+0SBtu1L15Z9ReXV4fQTkormXf257bD+3FY07yo8yPvvSwZD1Ix5VwAAoBI4XVZFRUXphx9+0JYtWxQREaGIiAhJUtOmTfXqq6+qd+/e8vHhL28AAACuwM/HQx2a1lSHpjUlSUeOnSgurrbsTS8e2p56LFe/rT+g3/6ed1Unwr941VWj2oHy9GDeFQAAKF9Ol1WS5O7urtatW5fYFhgYqCFDhpRrKAAAAFSusCAf9QjyUY8LasnucGj/4Wxt2ZuuzXvTtDPpmPL/nne171CW9h3K0tw1iXJ3K5p3dbK8io3wl9XKvCsAAFA251RWAQAAwHzK+4J2q8WiOhH+qhPhr0EX1imad5WcWbzqam9KphwOyVZo19Z96dq6L13f/rZHvt7uahob/Pew9mCFB/nIwrB2AABwjiirAAAAcEYe7m5qFhusZrHBuqKnlJP797yrv4e1H/p73lVOrk3x21MVvz1VkhQW6F286qppbLACanga+WEAAAAXQVkFAACAc+Lr7aH2TWqqfZO/511lnNDWvf8Ma886XvD39lwt3XBQSzcclCTVqemn5vWKVl01qh0kL+ZdAQCAUzhtWbVkyRK1bNlSYWFhlZkHAAAALiYs0EfdL/BR9//Mu9qyL007ko4pv8AuSUo8nK3Ew9matyZR7m4WNYwOLL7TYN1I5l0BAIAipy2rHnjgAT3yyCO68sorJUmjR4/W7bffrs6dO1daOAAAALiW0vOu7NpzIEOb/75kMOHgyXlXDm1LPKZticf03dI9quHlrmaxwcWXDdYMZt4VAADV1WnLKofDofj4eA0dOlQ+Pj76/fffdfXVV1dmNgAAqh1+NUdV4+FuVZM6wWpSJ1hxPerreG6BtiUeKx7WnpJ2XJJ0PM+m+B2pit9RNO8qNMBLzf4e1N48NkQBvsy7AgCgujhtWTVgwADNmjVLs2fPLt724IMP6sEHHzztk1ksFm3ZsqVcAwIAUJ2U913dALOp4e2hdo3D1a5xuCQpLTNXm/emFc282pumzL/nXR3NzNPyvw5q+V9F865iavoVr7pqXDtIXp7MuwIAoKo6bVk1YcIEtWjRQjt27FB+fr6+//57tW/fXjExMZWZDwAAAGfjwi1nSIC3ureupe6ta8nhcCg5Nado1dW+dG1PPKa8gkJJUtLhbCUdztYvvyfJzXpy3lWwmtcrmnflZrUa/JEAAIDyctqyytPTU9dee23xv2fPnq1rrrlGl1xySaUEAwAAQPVisVhUu6afatf004BOdWQrtGt3ckbxsPaEA1myOxwqtDu0PemYticd06xlCfLxclfTOkF/D2sPVmRIDeZdAQDgwk5bVv3Xtm3bit8/cuSIDhw4IA8PD0VERCgkJKRCwgEAAKD6cnf7Z97V5aqv47k2bU9KLyqv9qbp4NGieVcn8mxat/OI1u08IkkKCfBS89ii4qpZ3RAFMu8KAACX4nRZJUmbNm3SM888o40bN5bYfsEFF+ixxx5Tq1atyjUcAAAAzk1VXlBUw9tdbRuFq22jf+Zdbd2XXjysPSMn/+/teVq+8aCWbyyad1U73PfvVVchalkvRFZrFf4kAQBQBThdVm3fvl3XXXedJOnqq69WgwYNZLfbtWfPHv34448aPXq0vvnmGzVq1KjCwgIAAAAnhQR4q2urKHVtFSWHw6EDR3K0+e9VV/+ed7U/NUf7U3M0/48kNa4dqNsvb8VqKwAATMzpsuq1116Tr6+vpk+frujo6BL77rjjDl155ZV666239Prrr5d7SKAiOVx4KC2Aqof1HsD5sVgsig73U3S4nwZ0jJGt0K49BzKLh7XvSc6U3eHQjv0ZembKH7ozrpXqRQUYHRsAAJyC07dN+fPPPzVy5MhSRZUkRUZGasSIEVqzZk25hgMAoLqhPwfKh7ubVY1jgjSse309em17vXFPd3VuESlJSs/K04tfrtXyvw4anBIAAJyK02VVfn6+fH19T7vfz89Pubm55RIKAAAAKE81vN1188XNNKJfI1ktFtkK7fpkzlZ9OX+7bIV2o+MBAIB/cbqsatasmX766SfZbLZS+woKCvTjjz+qcePG5RoOAAAAZ+dgTZ5TLBaL+neI0YMj2si/hockadHaZE2atq54ODsAADCe02XVzTffrI0bN+raa6/VL7/8ou3bt2v79u2aO3eurr32Wm3evFk33XRTRWYFAAAAyqxJnWA9eX1HxUb6S1LxHKs9BzINTgYAAKRzGLDer18/PfHEE5o0aZLuvffe4u0Oh0NeXl56+OGHNWjQoIrICAAAACdZGNPvlNBAb40f1U5f/LJdKzalKD0rTy9Njdd1A5qo+wW1jI4HAEC15nRZJUmjRo3S0KFDtWrVKu3fv18Oh0O1a9dWly5dFBQUVEERAQAAgPLn6eGmm4Y2U92oAH29cKdshQ59Oneb9qZkaUS/RnJ3c/oiBAAAUI7OqaySpKCgIA0ePLgisgAAAACVymKxqG/72qod7qt3Zm9S1vECLV6XrP2p2bpjWEsF+nkZHREAgGqHPxcBAGAiXMAFGKNJnWA9dUNH1f17jtXO/RmaMOUP7T6QYXAyAACqH8oqAABMhHu6AcYJCfDW+GvbqWurSEnSsex8TZy6Vks3HDA4GQAA1QtlFQAAgKuj5Sw3Hu5uumlIM43q31huVotshQ5NmbtNn/+yXbZCu9HxAACoFpwuq+x2/nMGAABA1XdyjtWDI9oqoIaHJGnJumT976t1OpadZ3A6AACqPqfLqssuu0yfffZZRWYBAAAATKNxTJCevKGj6kUVzbHalZyhZ6b8od3JzLECAKAiOV1W7d27Vz4+PhWZBQAAAGXFlP5yFRLgrUdGtVO3VlGSiuZYvTR1rX5bn2xwMgAAqi6ny6pu3bpp/vz5ys/Pr8g8AAAAgKl4uLvpxiFNde2AojlWhXaHPpu3XZ/P26YCG6MyAAAob+7OHti0aVN99tln6t69u1q1aqXQ0FBZrSW7LovFohdeeKHcQwIVycFUWgAmwqIYwJwsFov6tKut2uF+emf2JmXm5GvJ+gNKSs3WuMtbKcjPy+iIAABUGU6XVe+++27x+8uXLz/lMZRVAACUDfU5YG6NY4L01A0d9fasjdpzIFO7kzM1YcofGjeslRrWDjQ6HgAAVYLTZdW2bdsqMgcAAADgEoL9vfTwyHb6cv52LfvroDKy8zXxq7UaNaCxerWJNjoeAAAuz+mZVf9mt9t15MgR5lcBAACYACvyKp+Hu1U3DG6q6wY2KZ5j9fm87ZoylzlWAACU1TmVVfv27dNdd92l9u3bq3v37oqPj9eqVat01VVX6c8//6yojAAAAIDpWCwW9W4brYdGtlWgr6ckaemGA/rfV2uVnpVncDoAAFyX02XV3r17ddVVV+n3339X9+7di7e7ublpz549uummm7R+/fqKyAgAAAAnMaS/8jWqHaQnb+ioBrUCJEm7D2TqmSl/aOf+Y8YGAwDARTldVr366qvy9vbWnDlz9PTTT8vhKFpw3qlTJ82ZM0dhYWF66623KiwoAAAAYFbB/l56aGQ79bigliQpIydf//tqnRavSy7+uRkAADjH6bJq9erVGjFihEJDQ2WxlPybXUREhEaOHKlNmzaVe0CgovHzIwAAKA8n51iNHvTPHKsvftmuz+YxxwoAgHPhdFmVn5+vgICA0+738PBQXh7X5gMAUBZcwgW4vl5tovXwyHb/mmN1UBOZYwUAgNOcLquaNm2qRYsWnXKfzWbTDz/8oCZNmpRbMAAAqiMWewJVQ8PagUVzrKKL/ti750CmJkz5QzuSjhkbDAAAF+B0WTV27FitXLlSDzzwgFavXi1JSk5O1sKFCzV69Ght2bJFN954Y4UFBQAAwKlxSbs5Bft76aER7dSrTdEcq8ycfL08bZ0Wr93PHCsAAM7A3dkDe/fureeff14vvPCCfv75Z0nSE088IYfDIS8vLz388MMaOHBghQUFAAAAXI2Hu1WjBzVVbKS/vpy/o2iO1fwdSkjJ0nUDGhsdDwAAU3K6rJKkuLg4DRgwQCtWrFBSUpLsdruio6PVpUsXBQcHV1RGAAAAwKX1bBOt6HA/vT1rozKy87X8r4NKTs3RkzdfZHQ0AABM55zKKkny8/PTgAEDlJaWJqvVSkkFAABgJkzpN62G0YF66oaOemfWJu1KzlDCwUz93+TfdNtlLdQ4JsjoeAAAmIbTM6skaffu3br77rvVvn17devWTV26dFGnTp00fvx4paSkVFRGAAAAoEoI8vPSQyPbqnfbaEnSsew8vTxtnRbGM8cKAICTnF5ZtXHjRo0ePVoFBQXq0aOH6tSpI4fDoYSEBP3www9aunSppk2bpjp16lRkXgAAqjQWxQBVn7ubVdcNbFI8x8pWaNfUX3doX0qWrhvYWB7ubkZHBADAUE6XVZMmTZKfn5+mTp1aqpDasWOHRo8erYkTJ+rtt98u95AAAABAVdPjglpq0Shcz3+yRsey87V840ElH8nWuMtbKSTA2+h4AAAYxunLADds2KDRo0efcuVU48aNNXr0aK1atapcwwEAUN1wERBQvTSNDdFTN3RUw9qBkqSEg1l6Zsof2p6YbnAyAACM43RZFRAQoMLCwtPu9/X1lbc3fwECAACofNScrizQz0sPjfhnjlXm8QJN+no9c6wAANWW02XVqFGjNGXKFO3atavUvkOHDumLL77Q1VdfXa7hAAAAgOrg5ByrGwY3lbubRYV2h6b+ukOf/LxVBbbT/8EYAICq6LQzq8aPH19qW15enoYNG6bu3burXr16slgsSk5O1tKlS+Xl5VWhQQEAAHB2Fsb0u7QeF9RS7XA/vT1ro9Kz8rRiU4qSj+TozjjmWAEAqo/TllWzZs067YMWL16sxYsXl9h2/Phxvf/++7r33nvLLRwAAABQ3dSvFaAnr++gd2Zv0s79GdqbkqUJU/7QHcNaqkmdYKPjAQBQ4U5bVm3btq0ycwCGYRQEAAAwm0A/Lz04oq2+XrhTi9YmK+t4gV6etl7X9G2ofu1ry2JhBR0AoOpyemYVAACoePz6CeAkdzerrh3QRDcOaSp3N6vsDoemLdipj3/eqvwC5lgBAKqu066sOpXZs2drxYoVSk1Nld1uL7XfYrHos88+K7dwAABUNyz2BPBf3VsXzbF667uiOVYrT86xuryVQgOZYwUAqHqcLqsmT56s999/Xx4eHgoNDZXVyqIsAAAAM+CS9qqvXlSAnryho96dvUk7ko5p37/mWDWNZY4VAKBqcbqsmjVrlrp166Y333xTPj4+FZkJAAAAwH8E+nrqgeFtNH3RLi2M36/sEwWa9PV6XdOnofp1YI4VAKDqcHp5VHZ2tgYOHEhRBQAAABjE3c2qUf0ba8zQZv/MsVq4Ux/9xBwrAEDV4XRZ1b17d61evboiswAAAKCMWFxTPXRtFaXx17ZTsL+XJGnV5hS98GW8jmScMDgZAABl5/RlgE888YRuvPFG3X///erXr59CQ0NPudS4Y8eO5RoQqGgOxhkDAAAXVC8qQE/9Pcdqe9IxJR7K1jNT/tTtw1qqGXOsAAAuzOmy6sCBA8rKytLPP/+sOXPmlNrvcDhksVi0devWcg0IAEB1wqIYAOciwNdT9w9vo28W7dKCv+dYvfL1el3du4H6d4xhjhUAwCU5XVY988wzyszM1JgxY1S3bl25uzv9UAAAAAAVxN3NqpH9Gys20l+f/7JdBTa7vl60S3sPZen6QU3l5eFmdEQAAM6J043Tzp07deedd+qWW26pyDwAAFRrXJgM4Hx1bRWl6HBfvfXdRqVl5mn15kM6kJqjO+NaKSyImyQBAFyH0wPWIyMjZbU6fTgAAAAqCSUnTqobGaAnb+iopnWCJEmJh7P1zGd/asveNGODAQBwDpxun26++WZ99tln2rVrV0XmAQAAAFAGATWK5lj17xAjSUVzrKav1y+/J8rhoNoEAJif05cBbtu2TRaLRZdeeqliYmIUFhYmN7eS179bLBZ99tln5R4SAAAAgPPcrFaN6NdIdSP9NWXeNhXY7Jq+aJf2pmTphsHMsQIAmJvTZdXixYvl5uamyMhIFRQU6ODBgxWZCwAAAEAZdW4ZqVphvnrru790NDNPa7Yc0oEjRXOswpljBQAwKafLqkWLFlVkDsA4rIYHYCLcZB5AeYuN9NcTN3TUe7M3aVviMSUdztYzU/7QbcNaqkXdEKPjAQBQChPTAQAAgCru5ByrAR2L5ljl5Nr06vT1mreGOVYAAPNxemXV6NGjnTru888/P+8wAABUd/zKCKCiuFmtGt63kWIj/TVlbtEcq28W79K+Q8yxAgCYi9Nl1f79+0tts9vtSk9PV15enqKjo9WoUaNyDQcAAACgfHVuEalaob5667uNOpqZyxwrAIDplHlmVWFhoRYuXKjHH39cY8aMKbdgAAAAcBJL8nCOYiP99eQNHfTe95u1dV968RyrUf0bq2HtQIUGeMtiYYoeAMAYTpdVp+Pm5qYBAwZow4YNmjRpkqZPn14euQAAAABUIP8anrrvmgs0c8lu/fJ7knJybfrgxy2SJG9PN9UK81WtMF9Fn3wL91OQnyclFgCgwpW5rDqpbt26+vLLL8vr6QAAAHAe6BFwLtysVl3Tp2iO1WdztyuvoFCSlJtfqD0HMrXnQGaJ43283BX9rxKrVrivaof5KsCXEgsAUH7KpazKz8/XDz/8oNDQ0PJ4OqBSceUEAACo7i5qHqnW9cOUeChLyUdydOBIjpKP5Cg5NVs5ubbi407k2bQrOUO7kjNKPN7X++8SK9yveCVWrXBfBdTwrOwPBQBQBZT5boD5+flKSEhQZmam7rrrrnILBgBAdcS6BABGqeHtrqaxwWoaG1y8zeFwKDMnv6i4KlFi5ehE3j8lVk6uTTv2Z2jH/pIlln8Nj39WYv1dZNUK85Wfj0elfVwAANdTprsBSkUzq+rXr6+LL75YI0eOLLdgAAAAAIxlsVgU6OelQD8vNa8bUrzd4XDoWHa+ko9k60BqTokyKze/sPi4rOMF2pZ4TNsSj5V43kBfz3/mYYX7KjrMT7XCfFXDu9ymlAAAXFiZ7wYIAADKD5cmA3AFFotFwf5eCvb3Ust6/4wCcTgcSsvM+2cVVmp20ftHc5RfYC8+LiMnXxk5+dq6L73E8wb7e5UY6l4r3Fe1Qn3l40WJBQDVCd/1AQAAXJyDmhMmYbFYFBrordBAb7Vu8E+JZXc4dDQjt3gO1snLCQ8ePa4C2z8lVnpWntKz8rQ5Ia3E84YGeCk63O+fwe5hRSWWl6dbpX1sAIDKc9qy6q233jqvJ7zzzjvPOwwAAACAqsdqsSg8yEfhQT5q0zCseLvd7lBqxgklp/5rJlZqjlLScmQr/KeEPZqZp6OZefpr99HibRZJYUHexZcQniyxokJryNODEgsAXFmZy6r/3qKWsgoAAMA4Fsb0w4VYrRZFBNdQRHANtWscXry90G7X4fSiEuvAv+ZhpaQdV6G9qMRySEo9lqvUY7lav+tI8WMtFqlmkM/fQ93/Hu4e5qfIkBrycLdW9ocIADgPpy2rFi5ceNYHZ2dna/LkyVqyZInc3d1Pe8dAAAAAAHCWm9WqqFBfRYX6lthuK7TrUNrxEncmPHAkR4fSTsju+LvEckiH0k/oUPoJrdv5T4lltVgUEeJTYhVWdLifIoJ95O5GiQUAZnLasio6OvqMD5wzZ45eeuklHT58WO3atdPTTz+txo0bl3tAoMIx5gOAibAmBgBOz93NquhwP0WH+5XYXmCzKyXteNHdCf++lPDAkRwdTj9R/KOe3eHQwaPHdfDoccVvTy1+rJvVosiQGv8psXxVM9hHblZKLAAwwjkPWE9KStKECRO0YsUKBQYG6rnnntOVV15ZEdkAAAAA4Kw83K2KqemnmJolS6z8gkIdPHq8xCqs/anZOpKRW3xMod1RNPj9SI7++Ndj3d0sigz551LC2mG+ql3TT+FBPpX0UQFA9eV0WVVQUKAPPvhAH374ofLy8nT55ZfrwQcfVHBwcEXmAwCgWmGxJwCUH08PN8VG+is20r/E9rz8Qh04+s+lhEUrsbJ1NDOv+BhboUP7U7O1PzW7xGNjavqpa8tIXdQiUgG+npXycQBAdeNUWbV69WpNmDBBCQkJatSokZ566il16NChorMBAAAAQLnz8nRTvagA1YsKKLH9RJ6tqMT6++6EJ1djpWf9U2IlHc7W14t26ZvFu9W6Qai6tIzUBQ3DGN4OAOXojGVVWlqaXnjhBf3888/y9vbW/fffrxtvvFHu7ud89aBhXn/9dc2bN08Wi0U9evTQQw89JCvXngMAgKqEJXlAufDxcleDWoFqUCuwxPbjuQU6cOS4tu5L04pNKTqcXjTQff2uI1q/64h8vd3VqXmEurWKUt1I/1J3TAcAnJvTtk7Tpk3Ta6+9pszMTPXp00ePP/64oqKiKjNbmf32229asWKFfvjhB1mtVo0aNUoLFy5U//79jY4GAAAAwEXU8PZQw9qBalg7UBd3qavdyZlavvGg/th2SCfyCpWTa9PitclavDZZUaE11LVVlDq3iFSwv5fR0QHAJZ22rJowYULx+4sWLdKiRYvO+mQWi0Vbtmwpn2TloGfPnurSpYs8PDyUlpamrKwsBQYGnv2BAAAAAHAKFouluLga2a+R1u08ohWbDmpzQpocDung0eOauWS3vv1tt1rUDVGXVpFq1yhcnh5uRkcHAJdx2rJq2LBhLrF8dfbs2Xr00UdLbV+zZo38/f3l4eGhDz/8UO+8845at26tNm3aVH5ImJqDaycAAABwHjw93HRh8whd2DxC6Vl5Wr05RSs2pejAkRw5HNKmhDRtSkiTj5ebOjatqS4to9SodqBL/J4FAEY6bVn10ksvVWaO8zZs2DANGzbsjMfccsstuuGGG/TII4/o5Zdf1mOPPVY54QAAOEf8+gIArinY30uDL4rVoAvraG9KllZsPKg1Ww4pJ9emE3mFWrrhoJZuOKiawT7q0jJSXVpGKizQx+jYAGBKrjMp/Tzs2LFDNptNzZs3l4eHhy6++GJ98sknRscCAAAAUEVZLJbiOw1e06eR/tp9RCs2pmjjnqMqtDt0OP2EZi9L0OxlCWpaJ0hdW0WpfZNweXtW6V/NAOCcVOnviHv27NEHH3ygr7/+Wm5ubpozZ446duxodCwAAE6LC5MBoOrwcLeqfZOaat+kpjJz8rV6yyGt3HhQiYezJUnbEo9pW+IxfTl/h9o3CVfXlpFqEhssK5cJAqjmTFNWbd26VVdeeaUWLlyoyMjIEvt++uknvfvuu0pKSlJ0dLTGjh171kv/JGnQoEHavn27hg0bJjc3N3Xo0EG33XZbBX0EAAAAxqDkBMwvwNdTAzrGaEDHGCUeytLKTSlavTlFmccLlFdQqJWbUrRyU4pCA7zUuWWUuraMVERIDaNjA4AhTFFW7d69W2PHjpXNZiu1b86cOXrggQd0/fXXq1u3blqwYIEefvhheXt7a9CgQWd97nvuuUf33HNPRcQGAAAAgHNWJ8JfdSL8dWWvBtqUkKaVGw9q/a4jshU6dDQzTz+t3KufVu5Vw+hAdWkVqU5Na6qGt4fRsQGg0hhaVtlsNk2fPl2vvPKKPDxO/c138uTJGjx4sMaPHy9J6t69uzIyMvT66687VVaVh9BQv0p5neooPNzf6AhKzc4vft/qZjVFJjiPrxfKygznkL+/d/H7Pt4epsgE55nh6xWQkl38fkiIrykywXl8vaq3qMhA9e9cT1nH87V0XbIW/ZmoHYnHJEm7kjO0KzlDXy/YqYtaRqlPxxi1aVxTbtaSlwlyDqGsOIdQFhVx/hhaVsXHx2vSpEkaM2aMIiIi9Pjjj5fYn5SUpMTERN13330ltg8cOFBz585VUlKSYmJiKjzn0aPZsttZYF/ewsP9lZqaZXQMpacfL37fXmg3RSY4xyznEFyXWc6hrKzc4vdP5BaYIhOcY5ZzKDPzRPH76ek5SvW0GpgG58Is5xDMoVPjMHVqHKYDR3L+vizwoI5l5yvfZtfS9clauj5ZgX6e6tIiUl1aRSk6zJdzCGXGOYSyON/zx2q1nHFhkKFlVYMGDbRgwQKFhobqu+++K7V/z549kqR69eqV2B4bGytJSkhIqJSyCgCAysJIXQBArTBfXdmrgeJ61NeWfWlauTFF8TtSVWCzKyM7X3PXJGrumkTVjfTXwM511aJOkPx8uEwQQNVhaFkVFhZ2xv1ZWUXtnJ9fybbN19dXkpSdnV3qMQAAAABQFVitFrWsF6qW9UJ1PNemP7cf1oqNB7Vzf4YkaW9Klt6ftVFuVovaNAxTl1aRalU/VO5urK4E4NpMMWD9dByOM196Z7XyTRgAAABA1VfD2109LqilHhfU0uH041q5KUUrNqboaGauCu0Oxe9IVfyOVPnX8NCFzSPUrVWU6kQwhwiAazJ1WeXvX/TNNScnp8T2kyuqTu4HAKCqYEIiAOBsagbX0LDu9XVpt3o6nJmvn5fv1p/bUpVXUKis4wVa8Od+Lfhzv2qH+6lrq0hd1CJSgb6eRscGAKeZuqw6OasqMTFRTZo0Kd6+b9++EvsBAACqs7MsRgdQRVktFrVqGKbIQC+N6m9T/PZUrdyUom370uWQtD81W9MX7dKMxbvVqn6IuraK0gUNw+ThzhUqAMzN1GVVbGysateurXnz5ql///7F2+fPn6+6deuqVq1aBqYDAAAAAHPw9nRX11ZR6toqSkczcrVyc4pWbDyow+knZHc4tGH3UW3YfVS+3u7q1CxCXVtFqV6UvywWbu0BwHxMXVZJ0rhx4zR+/HgFBgaqV69eWrhwoebOnavJkycbHQ0AAAAATCc00FuXdKmrizvHandyplZsOqjftx7WiTybcnJtWrwuWYvXJSsqtIa6tIxUl5ZRCvb3Mjo2ABQzfVkVFxen/Px8ffLJJ5oxY4ZiYmI0ceJEDRkyxOhoAAAAAGBaFotFDWsHqmHtQI3o20jrdx3R8o0HtTkhTQ6HdPDocX372x5999seNa8Xoq4tI9W2cbi8PNyMjg6gmjNNWRUXF6e4uLhT7hs+fLiGDx9eyYkAAKh8XIwBAKgInh5u6tQsQp2aRSg9K0+rt6Ro5cYUJR/JkUPS5oQ0bU5Ik7enmzo2ramuraLUqHYglwkCMIRpyioAAAAAQMUL9vfS4AtjNahTHe1NydLKjSlavSVFObk25eYXatlfB7Xsr4MKD/JW15ZR6tIyUmFBPkbHBlCNUFYBAGAi3NQNAFBZLBaL6kUFqF5UgK7p21Abdh3Vio0HtXHPURXaHUo9lqvZyxM0e3mCmsQEqWurKLVvEi4fL36NBFCx+C4DAADg8qg5AZSNu5tV7ZuEq32TcGXm5GvNlkNasemgEg9lS5K2Jx3T9qRj+vLX7WrfuKa6topU09hgWblMEEAFoKwCAAAAABQL8PVU/44x6t8xRkmHs7Vi40Gt3nJImTn5yi+wa9XmFK3anKLQAC91bhmpri2jFBFSw+jYAKoQyioAAIAqhGHIAMpTTE0/De/bSFf1bqBNe9K0YuNBrd91RLZCh45m5umnlfv008p9ahAdoK4to9SpWYRqePNrJoCy4bsIqj2Hg0snAAAAgDNxs1p1QcMwXdAwTNknCvTH1kNasSlFew5kSpJ2J2dqd3KmZizZpUGd6qh/xxh5e/LrJoDzw3cPAABMhDUxAACz8/PxUO92tdW7XW0dPJqjFRuLLgtMz8rTibxCzVqWoIXx+zW0S131ahMtD3er0ZEBuBjKKgAAAADAeYkK9dWVvRoorkd9bdh9RLOWJmh/arYyjxdo2oKdmv97ki7rVk9dWkbKauVPMgCcQ1kFAAAAACgTq9Wito3CdUHDMP2+9ZBmL03Q4WMndDQzV5/M2aq5a/bp8u711b5JOLP1AJwVZRUAACbCFD0AgCuzWiy6qHmkOjSpqeV/HdQPKxJ0LDtfB48e1zuzN6lupL+u6NlAzesGU1oBOC3KKgAAABfHvUIAmI27m1W92karS8tILVqbrJ9X7VVOrk17U7L0yvT1alonSFf0bKAG0YFGRwVgQky6AwAAAABUCE8PNw26sI4m3tZFl3SpKy8PN0nStsRjev6LeL357V/an5ptcEoAZsPKKgAAgCqEi2oAmFENb3dd3qO++ravrZ9W7dWSdcmyFTq0bucRrd95RBe1iNBl3eurZpCP0VEBmABlFQAAJkLRAACoygJ8PTWyX2MN6BijH1bs1YqNB+VwSKs2H9LvWw+rR5tauqRLXQX5eRkdFYCBuAwQAAAAAFCpwgJ9dNOQZnru5gvVoUm4JKnQ7tDitcl65L1Vmrlkt3JyCwxOCcAorKwCAAAAABgiKtRXd1zeSntTMvXdb3u0KSFN+Ta75qzep8XrkjX4wjrq3yFGXp5uRkcFUIlYWQUAgIlwUzcAQHVUNzJA913TRg+PbKsG0QGSpBN5Nn23dI8efn+VFsbvl63QbnBKAJWFsgoAAAAAYApN6gTr0Wvb6+4rWqt2uK8kKTMnX1N/3aFHP1itFRsPym7nTztAVcdlgAAAAAAA07BYLGrTKEytG4ZqzZZDmr1sj1KP5epIRq4+/nmr5q1J1OU96qttozBZLNyaBKiKKKsAAACqEn5vA1BFWC0WdW4RqY5Na2rZXwf1w4oEZWTnK/lIjt76bqPqRQXoip711bxuiNFRAZQzyipUew5WEQMAAACm5e5mVe+20erSMlKL4vdrzup9ysm1KeFgpiZ9vV7NYoN1Rc8Gql8rwOioAMoJM6sAADARFsUAAHBqXh5uGnxRrCbe1lkXd4mVl0fRHQK37kvXc5//qbe+26jkIzkGpwRQHlhZBQAAAABwGTW8PRTXo4H6to/Rzyv3asn6ZNkKHVq7I1Xrdqaqc4tIDetWT2FBPkZHBXCeKKsAAAAAAC4n0NdTI/s31oBOMfp+eYJWbkqRwyGt3JSiNVsOqVebaF3cta4CfT2NjgrgHHEZIAAAJsIYPQAAzk1YoI/GDG2uZ8ZcqPaNwyVJhXaHFq7dr4ffW6lvf9ut47kFBqcEcC5YWQUAAODiKDkBQIoO89W4uFZKOJip737brc1705VfYNfPq/ZpybpkDb4oVn3b1y6edQXAvFhZBQAAAACoMupFBej+4W314Ii2xXcIzMm1aeaS3XrkvVVatHa/bIV2g1MCOBPKKgAAgCqEO0oCQJFmscF67Lr2uiuulaLDfCVJGTn5+nL+Dj324Wqt2pQiu521qYAZcRkgqj3+ewJgJhQNAACUH4vForaNw3VBwzCt3pKi2csSdCQjV6nHcvXhT1s0Z80+xfWorzYNw2Sx8L8wYBaUVQAAAACAKs1qtahLyyh1ahahpRsO6McVe5WRk6/k1By9+e1GNagVoLieDdQsNtjoqABEWQUAAAAAqCbc3azq0662uraM0oL4JM1dnajjeTbtPpCpl6etU4u6wYrr2UD1ogKMjgpUa5RVAACYCJcmAwBQ8bw83TS0c131ahuteWsS9eufScovsGvz3nRt3vun2jcO1+U96qvW37OuAFQuyioAAAAX53BQcwLA+fD19tAVPRuoX/va+mnlPi1Zn6xCu0PxO1K1dmequrSM1GXd6iks0MfoqEC1QlkFAAAAAKjWAv28NGpAYw3oFKPvlydo1aYUORzSio0pWrPlkHq1idbFXeoqwNfT6KhAtWA1OgAAAADKEXezAoDzFh7ko5svbq5nxnRSu8bhkiRboUML4vfr4fdW6bulu3U812ZwSqDqY2UVwKUTAAAAAP4lOtxPd8a10p4Dmfr2t93aui9deQWF+mnlPi1em6whF8WqT/va8vJwMzoqUCWxsgoAABNhTQwAAOZRv1aAHhzRVg8Mb1N8h8CcXJtmLNmtR95fpcXrkmUrtBucEqh6WFkFAAAAAMAZNK8bomaxwVq744hmLdujA0dylJGdry9+2a5f1iRqWPd66tQ8QlYuxQbKBWUVAAAAAABnYbFY1L5JuNo2CtOqzSn6fnmCjmTk6vCxE/rgxy2as3qf4no00AUNQ2WhtALKhLIKAAATYYoeAADmZrVa1LVVlDo1i9DSDQf048q9yszJ1/7UHL3x7V9qGB2oK3rWV5M6wUZHBVwWM6sAAAAAADhHHu5W9W1fWxPHdlZcj/ry8SpaC7IrOUMTv1qnV6ev176ULINTAq6JlVUAAAAAAJwnL083Xdylrnq3i9bc1Yla8GeS8m12bUpI06aENHVoEq7Le9RXVKiv0VEBl0FZhWqPS24AAFUJU1IAwBi+3h66slcD9etQWz+u3Kul6w+o0O7Qn9tTFb8jVV1bRemyrvUUGuhtdFTA9LgMEAAAE6FoAADAtQX5eem6AU30/K0XqXOLCFkkORzS8r8OavwHq/XX7iNGRwRMj7IKAAAAAIByVjPIR7dc0kITbuqkto3CJEm2QrumzN2m3HybwekAc6OsAgAAAACggtSu6ae7rmit0QObSJKOZefrx5V7jQ0FmBxlFQAAAAAAFaxHm1qqXytAkjT/9ySlpB03OBFgXpRVAACYCDd9wPlwcOIAgOlZLRaN6t9YFkmFdoe+WrBDDr6BA6dEWQUAAAAAQCWoFxWg7hfUkiRt2pOm9bsYtg6cCmUVAABAFWLhlpIAYGpxPeurhpe7JGnagp3KLyg0OBFgPpRVqPZYeAvATOgZAACo2gJqeOryHvUlSUcycjVvTaLBiQDzoawCAAAAAKAS9WpbSzE1/SRJP6/epyPHThicCDAXyioAAAAAACqRm9WqUf0bS5IKbHZNX7TL4ESAuVBWAQAAAABQyRrHBOmiFhGSpPgdqdqckGZwIsA8KKsAADAR5ugBAFB9XNWrobw83SRJXy3YIVuh3eBEgDlQVgEAALg4BzUnALikYH8vXdq1riTp4NHjWvDnfmMDASZBWQUAAAAAgEH6d4hRZEgNSdL3KxJ0LDvP4ESA8SirAP4YDQAAAMAg7m5WjezfSJKUl1+oGYsZtg5QVgEAYCIWowMAAIBK17JeqNo1Dpckrdp8SDuSjhkbCDAYZRUAAAAAAAYb3qehPNyLfkWf+usO2e1cAoLqi7IKAAAAAACDhQX5aMhFsZKkpMPZWrI+2eBEgHEoqwAAAAAAMIHBF9ZRWKC3JGnW0j3KOp5vcCLAGJRVAACYCAv+cV44cQCgSvD0cNOIvkXD1nNybfpu6R6DEwHGoKwCAAAAAMAk2jQKU8t6IZKkpesPKOFgpsGJgMpHWQUAAFCFWCzcUxIAXJnFYtGIfo3kZrXIIemrX3fI7mAJLaoXyipUew6unQBgItQMAAAgKtRXAzrGSJJ2H8jUyo0pBicCKhdlFQAAAAAAJnNxl7oK8vOUJM1cskvHc20GJwIqD2UVAAAAAAAm4+Plrqv7NJQkZR4v0PfLEwxOBFQeyioAAAAAAEzowmYRahwTJElaGL9f+1OzjQ0EVBLKKgAATIQpegAA4CSLxaJR/RvLYpHsDoe++nWHHAxbRzVAWQUAAODi+LUFAKqumJp+6tOutiRpW+Ix/bHtsMGJgIpHWQUAAAAAgIkN615Pfj4ekqTpi3YpL7/Q4ERAxaKsAvhzNACgCrEYHQAAUO58vT10Za8GkqT0rDz9tGqvsYGACkZZBQCAiVA0AACAU+nWOkr1ovwlSb/8nqhDaccNTgRUHMoqAAAAAABMzmqxaFT/JpIkW6FD0xbuNDgRUHEoqwAAAAAAcAH1awWoe+soSdJfu49q/a4jBicCKgZlFQAAAAAALuKKng3k4+UuSZq2YIcKbAxbR9VDWQUAgIlwzwcAAHAmAb6eurx7PUlS6rFczfs9yeBEQPmjrAIAAHB1tJwAUK30bhet2uG+kqSfV+7V0YxcgxMB5YuyCtUeP98DAKoUbikJAFWem9WqUf0bS5LybXZNX8SwdVQtlFUAAJgIPQMAAHBGkzrBurB5hCTpz+2p2rI3zeBEQPmhrAIAAAAAwAVd3buhvDzcJElTf90hW6Hd4ERA+aCsAgAAAADABQX7e+mSrnUlSQePHtei+P3GBgLKCWUVAAAAAAAuqn+HGEWE1JAkzV6eoIzsPIMTAWVHWQUAgIlw0wcAAHAuPNytGtmvkSQpN79QM5bsNjgRUHaUVQAAAC7OQc0JANVaq/qhatsoTJK0clOKdu3PMDgRUDaUVQAAAAAAuLjhfRvJ3a3oV/wvf90uu50/ZMB1UVah2nPwPRwAUIVYjA4AADBEeJCPhlxUR5KUeChbv204YHAi4PxRVgEAYCIUDQAA4HwNvihWoQHekqTvftut7BMFBicCzg9lFQAAAAAAVYCXh5uG920oScrJtem7pXsMTgScH8oqAAAAAACqiHaNw9WibrAk6bd1ydqXkmVwIuDcUVYBAAAAAFBFWCwWjezfWG5Wixz6e9g6g3rhYiirAAAwEX6UBAAAZRUV6qv+HWIkSbuTM7VqU4rBiYBzQ1kFAADg4viDOQDgvy7pWleBfp6SpBlLdutEns3gRIDzKKsA1jEAAKoSC/eUBABIPl7uurp30bD1zJx8fb88weBEgPMoqwAAMBFqBgAAUF4uah6hRrUDJUkL4/cr+UiOwYkA51BWAQAAAABQBVksFo3q31gWi1Rod+irX3fIwbXjcAGUVQAAAAAAVFF1IvzVq220JGnrvnTFb081OBFwdpRVAAAAAABUYZd3ry8/Hw9J0teLdiqvoNDgRMCZUVYBAAAAAFCF+fl46Iqe9SVJaZl5+nnVPoMTAWdGWQUAgIkwRQIAAFSE7q1rKTbSX5I0b80+HU4/bnAi4PQoqwAAAAAAqOKsVouu7d9YkmQrdOjrhbsMTgScHmUVqj1uhgHATCxGB4DL4xwCAJxOg+hAdWsVJUlav+uINuw6YnAi4NQoqwAAAAAAqCau6NVAPl5ukqRpC3eqwMawdZgPZRUAAAAAANVEoK+nhnUrGrZ+OP2EZv+22+BEQGmUVQAAAAAAVCO920UrOsxXkjR9wQ6lZeYanAgoibIKAAAAAIBqxN3NqpF/D1vPyy/UN4sZtg5zoawCAMBEuOcDAACoDM1ig9WpWU1J0u9bD2vrvnSDEwH/oKwCAABwcdzZFgBwPq7u3VBenkXD1r/6dYdshXaDEwFFKKtQ7fHzPQCgKrEYHQAA4DJCArx1Tb+iywGTj+Ro8dpkgxMBRSirAAAwEYoGAABQmYb1bKCawT6SpNnL9ygjJ9/gRABlFQAAAAAA1ZaHu5tG9mskSTqRV6hvl+w2OBFAWQUAAAAAQLXWukGY2jQMkyQt33hQu5MzDE6E6o6yCgAAAACAam5434ZydyuqCL78dYfsdqb7wjiUVQAAAAAAVHM1g2to0IV1JEn7UrK07K8DBidCdUZZBQCAifA3TJwPB2cOAKAcDO0cq9AAL0nSt7/tUfaJAoMTobqirAL4+R4AAAAA5OXhpmv6FA1bzz5RoFnL9hicCNUVZRUAACZiMToAXB8nEQCgDNo3CVez2GBJ0pJ1yUo8lGVwIlRHlFUAAAAAAECSZLFYNLJ/Y7lZLXI4pKm/7pDDweUoqFzVpqz6/PPPFRcXZ3QMAAAAAABMLTrMV33b15Yk7dyfodVbDhmcCNVNtSirtmzZog8//NDoGAAAAAAAuITLutVTgK+nJOmbRbt0Is9mcCJUJ1W+rMrJydGTTz6p++67z+goAAAAAAC4BB8vd13Vq4EkKSMnXz+u2GtsIFQrLl9WzZ49W82bNy/1lpVVNATu6aef1k033aRatWoZnBQAgLNjIgQAADCLzi0j1TA6UJL0659JOng0x+BEqC5cvqwaNmyYtmzZUurN399f3333nTw8PDRkyBCjYwIAAFQcWk4AQAWwWiwa1b+xLJIK7Q6GraPSuHxZdSY//vijNmzYoMsuu0yPP/64du/erRtuuMHoWDAZBz/hAwCqEIssRkcAAFQhsZH+6tk2WpK0ZW+61u5INTgRqgN3owNUpE8//bT4/TVr1mjixImaMmWKcYEAADgLagYAAGA2cT3q64+th5STa9PXC3epZf1QeXm4GR0LVZhpVlZt3bpVLVq0UEpKSql9P/30k4YOHarWrVtr8ODBmj17duUHBAAAAACgGvLz8dAVPYuGrR/NzNXc1fsMToSqzhRl1e7duzV27FjZbKVvhTlnzhw98MAD6tatm95++2116tRJDz/8sObNm3dOr3HhhRfqu+++K6/IAAAAAABUGz0uqKXYCH9J0pzViTp87ITBiVCVGXoZoM1m0/Tp0/XKK6/Iw8PjlMdMnjxZgwcP1vjx4yVJ3bt3V0ZGhl5//XUNGjSoUnKGhvpVyutUR+Hh/kZHUOCh7OL33dyspsgE5/H1QlmZ4Rzy8/Muft/b28MUmeA8M3y9/P3/OYdCQn0VHlzDwDQ4V2Y4h+DaOIdQVs6eQ+OuaqOH3lomW6Fds5Yl6PGbLqzgZHAFFfE9yNCyKj4+XpMmTdKYMWMUERGhxx9/vMT+pKQkJSYm6r777iuxfeDAgZo7d66SkpIUExNT4TmPHs2W3c4Q7vIWHu6v1NQso2MoI/OfvwgUFtpNkQnOMcs5BNdllnMoOzu3+P3c3AJTZIJzzHIOZWX9cw6lHc2RxVZoYBqcC7OcQ3BdnEMoq3M5h8L8PNSlZaRWbkrRms0pWrRmr1rVD63ghDCz8/0eZLVazrgwyNDLABs0aKAFCxbozjvvlJtb6eFse/bskSTVq1evxPbY2FhJUkJCQsWHBACgEvGnEZwPzhsAQGW5qlcDeXsW/f7+1a87VGCzG5wIVZGhZVVYWJhCQ0/fwmZlFbVzfn4l2zZfX19JUnZ2dqnHAOeMn/ABAAAAwCmBfl4a1q1oQcmh9BP69c8kgxOhKjLFgPXTcTjO3CJYraaODwDAObMYHQAuz8JJBACoYH3a11atsKJFJD+u2Kv0rDyDE6GqMXXb4+9fNKQrJyenxPaTK6pO7gcAAAAAAJXD3c2qkf0aSZLyCgr1zeJdBidCVWPqsurkrKrExMQS2/ft21diPwAAAAAAqDzN64aoQ9OakqQ1Ww5pe2K6wYlQlZi6rIqNjVXt2rU1b968Etvnz5+vunXrqlatWgYlAwAAAACgerumd0N5uhfVClN/3aFCO8PWUT7cjQ5wNuPGjdP48eMVGBioXr16aeHChZo7d64mT55sdDQAAAAAAKqt0EBvDe1SV7OW7tH+1BwtXpusfh1ijI6FKsD0ZVVcXJzy8/P1ySefaMaMGYqJidHEiRM1ZMgQo6MBAFDuuEEpAABwJYM6xWj5XweUeixXs5YlqFOzCAX4ehodCy7ONGVVXFyc4uLiTrlv+PDhGj58eCUnAgAAAAAAZ+Lh7qYR/RrrjZl/6USeTd/+tls3DmlmdCy4OFPPrAIqA6sYAAAAAOD8tWkYptYNQiVJy/46qD0HMg1OBFdHWQUAgIlYjA4AAABwHkb0ayR3t6KfZKb+ul12B8sCcP4oqwAAAAAAQJlEBNfQwE51JEkJB7O0/K+DBieCK6OsAgAAAAAAZXZx57oK9veSJM1csls5uQUGJ4KroqwCAAAAAABl5uXppmv6NJQkZZ8o0OxlCQYngquirAIAAAAAAOWiY9OaalonSJK0aO1+JR3ONjYQXBJlFQAAJsIoUpwPB0NsAQAmYbFYNKp/Y1ktFjkc0tT52/l/CueMsgrVHt83AQAAAKD8RIf7qW/72pKkHfsztGbrIYMTwdVQVgEAYCIWowPA5VksnEUAAONd1q2eAmp4SJK+WbRLufk2gxPBlVBWAQAAAACAclXD211X9ioatn4sO18/rtxrbCC4FMoqAAAAAABQ7rq0ilSDWgGSpPm/J+ng0RyDE8FVUFYBAAAAAIByZ7VYNGpAY1kkFdodmrZgJ8PW4RTKKgAAAAAAUCHqRgaoR5takqRNCWlav/OIwYngCiirAAAAAABAhYnrUV++3u6SpGkLdyq/oNDgRDA7yipALEMFALg2/icDAJiZfw1PXd6jviTpSEau5q5JNDgRzI6yCgAAAAAAVKhebaJVp6afJGnO6n06cuyEwYlgZpRVAAAAAACgQlmtRcPWJanAZtfXi3YZnAhmRlkFAAAAAAAqXKPaQercIkKStHZHqjYlHDU4EcyKsgoAAAAAAFSKq3o3lJenmyTpq193ylZoNzgRzIiyCgAAAAAAVIogPy9d1rWeJCkl7bh+/TPJ4EQwI8oqAAAAAABQafp1qK2o0BqSpB9W7FV6Vp7BiWA2lFUAAJiIw+gAcE2cOAAAF+LuZtXIfkXD1vPyCzVjCcPWURJlFao9Bz/gAwAAAEClalEvRO0bh0uSVm8+pB1Jx4wNBFOhrAIAwEQsRgeAy7NwEgEAXMQ1fRvKw72olvhy/g4V2hm2jiKUVQAAAAAAoNKFBfpoaOdYSdL+1GwtWXfA4EQwC8oqAAAAAABgiMEX1lFYoLckadbSPco8nm9wIpgBZRUAAAAAADCEh7ubRvRrJEk6nmfTd7/tMTgRzICyCgAAAAAAGKZNwzC1rB8iSVqx8aBshcyuqu4oqwAAAAAAgGEsFouaxxaVVYV2B2UVKKsAAABcncPoAAAAAOWIsgoAAKAKsRgdAAAAoIwoqwAAAAAAAGAalFUAAAAAAAAwDcoqAAAAAAAAmAZlFQAAAAAAAEyDsgoAAAAAAJiGg9vcVnuUVQAAmAg/m+G88FM9AACoQiirUO3x4z0AAAAAAOZBWQUAgIlYjA4A12fhLAIAAK6NsgoAAAAAAACmQVkFAAAAAAAA06CsAgAAAAAAgGlQVgEAAAAAAMA0KKsAAAAAAABgGpRVqPYcDofREQAAKBP+JwMAuDpuZot/o6wCAACoQvhZHwAAuDrKKgAAAAAAAJgGZRUAAAAAAABMg7IKAAAAAAAApkFZBQAAAAAAANOgrAIAAAAAAIBpuBsdwBVYrdxXp6KY4XPr4+WumsE+kqRgfy9TZILz+HqhrMxwDtXw/uf7kL+vpykywXlm+HrV8PYoPofc3a2myATn8fVCWXEOoazMcA75+vzzf5nVyv9lruR8vlZne4zF4XA4zjcQAAAAAAAAUJ64DBAAAAAAAACmQVkFAAAAAAAA06CsAgAAAAAAgGlQVgEAAAAAAMA0KKsAAAAAAABgGpRVAAAAAAAAMA3KKgAAAAAAAJgGZRUAAAAAAABMg7IKAAAAAAAApkFZhUr3008/aejQoWrdurUGDx6s2bNnGx0JLmrr1q1q0aKFUlJSjI4CF2K32zVt2jRdcsklatu2rfr166cXX3xR2dnZRkeDi3A4HJoyZYoGDhyo1q1b69JLL9WPP/5odCy4qDvvvFP9+/c3OgZcjM1mU+vWrdWkSZMSb23btjU6GlzIH3/8oREjRuiCCy5Qt27d9OyzzyonJ8foWHABa9asKfX9599vs2bNKvNruJdDTsBpc+bM0QMPPKDrr79e3bp104IFC/Twww/L29tbgwYNMjoeXMju3bs1duxY2Ww2o6PAxXz00Ud67bXXNGbMGHXu3FkJCQl64403tGvXLn388cdGx4MLeP/99/XGG2/orrvuUps2bbR06VI98MADcnNz05AhQ4yOBxfy/fff69dff1WdOnWMjgIXk5CQoLy8PE2cOFF169Yt3m61shYBzlm/fr1uvPFG9enTR++++6727dunV199VWlpaZo8ebLR8WByLVq00PTp00tsczgceuyxx3T8+HH17NmzzK9BWYVKNXnyZA0ePFjjx4+XJHXv3l0ZGRl6/fXXKavgFJvNpunTp+uVV16Rh4eH0XHgYhwOhz766CNdc801uv/++yVJXbp0UXBwsP7v//5PW7duVbNmzQxOCTMrKCjQJ598ohEjRuj222+XJHXu3FmbNm3Sl19+SVkFpx06dEjPP/+8IiMjjY4CF7Rt2zZZrVYNHDhQPj4+RseBC5o0aZLatGmj119/XRaLRV26dJHdbtenn36qEydOcF7hjPz8/NSmTZsS2z777DMlJCTo66+/VkhISJlfg+odlSYpKUmJiYkaMGBAie0DBw7Unj17lJSUZFAyuJL4+HhNmjRJN910kx544AGj48DF5OTk6NJLL9XFF19cYnv9+vUlSYmJiUbEggtxc3PTF198oVtvvbXEdg8PD+Xl5RmUCq7o8ccfV9euXdW5c2ejo8AFbd26VXXq1KFQwHlJS0vTn3/+qREjRshisRRvHzVqlBYsWMB5hXOWmpqq119/vfiy0vJAWYVKs2fPHklSvXr1SmyPjY2VVLScGTibBg0aaMGCBbrzzjvl5uZmdBy4GD8/Pz3++ONq3759ie0LFiyQJDVs2NCIWHAhVqtVTZo0UUREhBwOh44cOaIPPvhAK1eu1DXXXGN0PLiIGTNmaPPmzXriiSeMjgIXtX37dnl6emrMmDFq27atOnbsqCeffJL5i3DKjh075HA4FBgYqHvvvVdt2rRR+/bt9dRTTyk3N9foeHBBb775pqxWq+69995ye04uA0SlycrKklT0y+K/+fr6ShL/ucIpYWFhRkdAFbNhwwZ98MEH6tevnxo0aGB0HLiQ+fPn6+6775Yk9erVS5deeqnBieAKkpOT9eKLL+rFF18sl8skUD1t27ZN2dnZuuqqq3Tbbbdp06ZNevPNN5WQkKDPP/+8xGoZ4L/S0tIkSY888oj69++vd999V9u3b9drr72mvLw8vfTSSwYnhCs5evSoZs+erZtuukkBAQHl9ryUVag0DofjjPsZCAmgssXHx+u2225T7dq19dxzzxkdBy6mefPm+vLLL7V9+3a9/vrruvXWW/XZZ5/xSyJOy+Fw6NFHH1XPnj01cOBAo+PAhU2ePFmBgYFq0qSJJKljx44KDQ3Vgw8+qJUrV6pr164GJ4SZFRQUSJLatWunp556SlLR/EWHw6GJEydq3LhxiomJMTIiXMiMGTNkt9s1evTocn1e2gFUGn9/f0kqdTvUkyuqTu4HgMowZ84c3XjjjYqKitKUKVMUHBxsdCS4mJiYGHXs2FHXXnutHnvsMa1Zs0br1q0zOhZMbOrUqdq+fbseffRR2Ww22Wy24j/m/ft94Gw6depUXFSd1KtXL0lFq66AMzl5ZUuPHj1KbO/WrZscDoe2b99uRCy4qF9++UXdu3cv99XClFWoNCdnVf13gPG+fftK7AeAivbpp5/qvvvuU5s2bTR16lTVrFnT6EhwEceOHdPs2bN16NChEtubN28uSTp8+LARseAifvnlF6Wnp6tbt25q0aKFWrRoodmzZysxMVEtWrTQrFmzjI4IF3D06FHNmDGj1M2JTs4a4o8vOJu6detKkvLz80tsP7niihXCcNahQ4e0ZcsWDR48uNyfm7IKlSY2Nla1a9fWvHnzSmyfP3++6tatq1q1ahmUDEB1MmPGDL300ksaPHiwPvroI1Z14pzY7XY98sgjmj59eontK1askCQ1btzYiFhwERMmTNDMmTNLvPXu3VuRkZHF7wNnY7FY9OSTT+rLL78ssX3OnDlyc3MrdRMR4L8aNGig6OhozZkzp8T2xYsXy93dXW3btjUoGVzNhg0bJKlCvu8wswqVaty4cRo/frwCAwPVq1cvLVy4UHPnztXkyZONjgagGjh69Kief/55RUdHa9SoUdqyZUuJ/XXq1GHgMc4oJCREI0eO1AcffCBvb2+1atVK8fHxev/993XVVVepfv36RkeEiZ3q/AgKCpKnp6datWplQCK4opCQEI0aNUpffPGF/Pz81KFDB8XHx+u9997TqFGjiu+0DZyOxWLRAw88oPvuu08PPPCA4uLitGnTJr377ru69tpr+VkITtuxY4d8fHwUHR1d7s9NWYVKFRcXp/z8fH3yySeaMWOGYmJiNHHiRA0ZMsToaACqgWXLlunEiRNKTk7WqFGjSu3/3//+p8suu8yAZHAl48ePV1RUlGbOnKk333xTkZGRuvvuuzVmzBijowGoJh5++GFFRETo22+/1QcffKCIiAjdfffduvnmm42OBhcxZMgQeXp66u2339bYsWMVGhqqcePGaezYsUZHgws5cuRIud4B8N8sDiY5AgAAAAAAwCSYWQUAAAAAAADToKwCAAAAAACAaVBWAQAAAAAAwDQoqwAAAAAAAGAalFUAAAAAAAAwDcoqAAAAAAAAmAZlFQAAAAAAAEyDsgoAAAAAAACmQVkFAABcypo1a9SkSRN99913Rkcps0OHDunCCy9UUlKS0VEqzPTp09W3b9/T7n/kkUfUpEkT7d+/v1xf97HHHtOLL75Yrs8JAAAqB2UVAACAQZ5//nkNHTpUMTExxduOHTumJk2a6OabbzYwWflZsWKFunTpUumvO27cOE2fPl3btm2r9NcGAABlQ1kFAABggD/++EMLFy7ULbfcUmL7li1bJEktWrQwIla5stvtWrNmjTp37lzpr12rVi0NHTqU1VUAALggyioAAAADTJkyRe3bt1dUVFSJ7Zs3b5YkNW/e3IhY5WrLli3KyMgwpKySpKuuukqrV69mdRUAAC6GsgoAAFQJaWlpmjBhgnr27KmWLVuqZ8+emjBhgtLT00sdu3//ft11111q166d2rVrp9tvv11JSUnq06ePrrvuugrPevDgQS1evFj9+vUrte/kyqqqUFatXLlSzZo1U3BwsCGv36ZNG0VGRmrq1KmGvD4AADg/7kYHAAAAKKusrCyNGDFC+/bt0xVXXKHmzZtr69atmjZtmlavXq0ZM2bIz89PkpSenq5Ro0bp6NGjGj58uOrXr6/4+Hhdf/31On78eKXkXbZsmQoLC9WrV69S+7Zs2aLAwMASc6xc1cqVKw1bVXVSx44dtXTpUkMzAACAc0NZBQAAXN5HH32kvXv36sknn9SoUaOKtzdr1kzPPPOMPvroI917772SpA8//FApKSl6+eWXdemll0qSRo4cqf/973/6+OOPKyVvfHy8atSoUaqQys7O1r59+3ThhRdWSo6KlJeXp7Vr1xo+KL5x48b68ccflZSUVCUKQAAAqgMuAwQAAC7v119/VUhIiK655poS26+55hqFhIRowYIFxdsWL16s8PBwXXzxxSWOHTNmTKVklaSkpCRFR0fLYrGU2L5161Y5HI4qcQlgfHy8HA6HOnToUK7Pm5qaqg8//FDjx4/XpEmTtGnTpjMef7Kg2r9/f7nmAAAAFYeyCgAAuLz9+/erXr16cncvuWjc3d1ddevWVVJSUoljY2NjZbWW/DEoNDRUAQEBJbbNmTNHI0aMUNu2bdWnT59Sr2uz2fTcc8+pU6dO6tChgx599FHl5eWdNe+xY8eKL0v8t5PD1c90J8A///xTbdu2LfXWsmVLNWvWrMSxTz/9tJo0aaJ169aVep7rrrtOTZo00W+//VbqY27SpInGjh1bvC0hIUF33HGHLrroIrVt21b9+/c/6132VqxYobZt28rb2/uMx52LX375Re+88466dOmip556SiNGjNCKFSv0yiuvyOFwnPIx/778EwAAuAbKKgAAgNMIDAzUtddeW3wJ4X+99957WrNmjX788UfNnz9fu3fv1ssvv3zW57VarbLb7aW2O3MnwA4dOmjdunUl3ubNm6egoCDdc889xcfl5ubqp59+UlBQkGbMmHHK56pfv76+/fbbEttmzpyp+vXrl9g2duxY1atXTwsXLlR8fLw+/PBDNWnS5Iwf46pVq9SlS5czHnMuduzYoeTkZD311FNq0aKFvL29FR0drbFjx6pv376aNm3aKR938vPs5uZWblkAAEDFoqwCAAAuLyYmRgkJCbLZbCW222w27d27t8SsoujoaO3bt69UWXT06FFlZmaW2Na1a1cNHTpU0dHRp3zdmTNn6rbbblNERIRCQkJ055136rvvvlNhYeEZ84aGhurYsWOltm/ZskU1atRQvXr1zvj4f8vPz9ddd92l9u3b67bbbivePm/ePFmtVo0fP15z585VTk5OqccOHjxYq1evVlpamiQpOTlZW7duLXGXwrS0NO3bt0/Dhw+Xr6+vrFar6tatq7i4uNNmSk9P19atW8u1rJo/f75uvPHGU+5r06aN0tPTS339JRV/nkNDQ8stCwAAqFiUVQAAwOX169dPaWlppVYQffPNN0pLSytRvvTu3Vupqan66aefShx7rsPVMzMzdfDgQTVt2rR4W4sWLZSTk6Pk5OQzPrZWrVo6fPhwiVLrxIkTSkhIULNmzUrNsjqTp556Snl5eXrppZdKbJ8xY4aGDBmiIUOGyMPDQ3PmzCn1WF9fX/Xr10+zZ8+WVFS+XXzxxfL09Cw+JiQkRA0aNNCjjz6qn3/+WYmJiWfNtGrVKvn5+ally5ZOfxxn4+PjU/x5WbdunS688EK98847xftbtmypvXv3lnrcoUOHJBV9zgEAgGvgboAAAMDl3XzzzZo3b56eeeYZbdmyRc2aNdPWrf/f3v2FNLnHcRz/TFKozf5oI8b6a4ZUVKjEEukiL4rMEGQjySAwhEKCQBmoXXhRUBREJaQTg0qKcK0ZRRjl7tILM4nwTCyKNLoIaWIwh7mdK0fPmZ6zwzmdFuf9uhrf58++e3b34ff7Pr/J6/Vqw4YNhjfS1dTU6OHDh2psbNSrV6+Uk5OjFy9e6OXLl1qxYkXS3zm3Uun7OVeZmZmGYwvZtWuXfD6fRkdH42FXMBjU7OysIpGIPB5PwjVLlizRkSNHDLWbN28qEAjI6/Vq8eLF8fq7d+80MDAgt9utjIwMlZaWyuv1yuVyJdzX6XTq9OnTOnr0qO7fv6+2tjY9efLEcM6tW7fU0dGh1tZWvX37VjabTXV1dSotLZ339/X19cnhcCTMBfszly5dktlsTqjv379fRUVFhlowGFQoFNLg4GC8Zjab533uQ0NDWrduHWEVAAC/EMIqAADwy8vMzNSdO3d05coV9fb2yufzKTs7W5WVlTp58qRhmHlWVpZu376t8+fP6969ezKZTHI4HLpx44acTmfSA8HngpWpqSlZrdb45++PLWT37t1KS0vTwMBAPKwaHh6WJL1+/XreN9zt3LnTEFb19/fr4sWLam9v1+rVqw3ndnV1KScnRzt27JAkVVRUyOVyaXR0VJs2bTKcW1BQoFgspqtXr2rlypXKy8tLCKuys7Pldrvldrv19etX3b17V/X19crLy9PGjRsTen3+/Lmqq6v/9Bn80R9Xus3JyclRUVGRpqen4zWXyyWr1ar8/Px4bWRkRAcOHDBcG41GNTQ0tGCoBgAAUhNhFQAA+KU4HA6NjIwk1LOystTc3Kzm5ua/vMeaNWvU0tJiqH358kWhUEg2my2pPpYuXSqbzaZgMBgfSD48PCyz2bzgjKvvey0pKdGjR4/iAVRVVZWqqqqS+u7x8XGdOnVKbrdbDofDcGxmZkbd3d2amppScXGx4ZjX61VDQ0PC/ZxOpy5cuJDUs7NYLDp27Jg8Ho/evHkzb1j17NmzpH6HJJ07dy5hC+N87Ha7BgcHVVBQoEWLFhm2dk5NTWl8fFzLly83XNPX16eJiQk5nc6k+wEAAD8fYRUAAPjfmZ6eTlhBNbf17vuAZ3Z2Vt++fdPMzIxisZgikYhMJlN8ppPT6VRbW5sKCwuVnp6ulpYWVVRUJPXmuerqah0+fFgfPnzQ2rVrk+49HA6rtrZWJSUlCdsCJSkQCGhyclJ+v1/Lli2L1x88eKD29nbV1dUZZlJJ0qFDh7R582bDSqU5k5OT6ujo0MGDB7V+/XrFYjH5fD6Fw2Ft3bo16b7/qfLycp09e1bhcNjwH42Njeny5cvzhnB+v1/FxcWGuWIAACD1EVYBAID/nZqaGtntdm3ZskXRaFT9/f0KBALKz883rNjp7u42hCDbt2+X3W5Xb2+vJOn48eMKhUIqKytTNBrVvn37VF9fn1QPhYWF2rNnjzwej86cOZN07z09PQoGg3r//r0eP36ccHzbtm0qKytTbm6uoV5ZWanW1lY9ffo0YVucxWJZ8M196enp+vz5s06cOKGJiQllZGQoNzdX165dS9h++COZTCY1Njaqs7NTXV1dSktLUzQaldVqVVNTU8K8sbGxMfX09Kizs/M/6xEAAPw7TLFYLPazmwAAAPgvXb9+XX6/Xx8/flQkEtGqVau0d+9e1dbWGuZb/WifPn1SeXm5vF7v31pdhb/W0NAgi8Wipqamn90KAAD4mwirAAAAAAAAkDKSf58wAAAAAAAA8IMRVgEAAAAAACBlEFYBAAAAAAAgZRBWAQAAAAAAIGUQVgEAAAAAACBlEFYBAAAAAAAgZRBWAQAAAAAAIGUQVgEAAAAAACBl/A4xkHKhZ+CmQQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1440x720 with 1 Axes>" ] @@ -616,7 +616,7 @@ "Total starcount for this run will be: 40\n", "Generating grid code\n", "Constructing/adding: lnM_1\n", - "Population-ae3a664d29f7487ba9db8c5495fa41d1 finished! The total probability was: 0.9956307907476223. It took a total of 1.5960824489593506s to run 40 systems on 2 cores\n", + "Population-4f3ee0143c0548338494d2f1fbacc915 finished! The total probability was: 0.9956307907476225. It took a total of 1.5107016563415527s to run 40 systems on 2 cores\n", "There were no errors found in this run.\n" ] } @@ -685,6 +685,20 @@ " \n", "Remember you can play with the binwidth too. If you want a very accurate distribution you need a narrow binwidth, but then you'll also need high resolution (lots of stars) so lots of CPU time, hence cost, CO<sub>2</sub>, etc." ] + }, + { + "cell_type": "markdown", + "id": "ba032bd8-b4a2-4558-9fd9-8e1e03d7d162", + "metadata": {}, + "source": [ + "Things to try:\n", + "* Change the resolution to make the distributions smoother: what about error bars, how would you do that?\n", + "* Different initial distributions: the Kroupa distribution isn't the only one out there\n", + "* Change the metallicity and mass ranges\n", + "* What about a non-constant star formation rate? This is more of a challenge!\n", + "* What about evolved stars? Here we consider only the *zero-age* main sequnece. What about other main-sequence stars? What about stars in later phases of stellar evolution?\n", + "* Binary stars! (see notebook_luminosity_function_binaries.ipynb)" + ] } ], "metadata": {