
My Project

Generated by Doxygen 1.8.13

Contents

1 Python module for binary_c 1

Chapter 1

Python module for binary_c

Based on a original work by Jeff Andrews (can be found in old_solution/ directory) updated and extended for Python3
by Robert Izzard, David hendriks

Warning : THIS CODE IS EXPERIMENTAL!

r.izzard@surrey.ac.uk http://personal.ph.surrey.ac.uk/∼ri0005/binary_c.html
09/06/2019

Requirements

• Python3

• binary_c version 2.1+

• requirements.txt (no?)

Environment variables

Before compilation you should set the following environment variables:

• required: BINARY_C should point to the root directory of your binary_c installation

• recommended: LD_LIBRARY_PATH should include $BINARY_C/src and whatever directories are required
to run binary_c (e.g. locations of libgsl, libmemoize, librinterpolate, etc.)

• recommended: LIBRARY_PATH should include whatever directories are required to build binary_c (e.g.
locations of libgsl, libmemoize, librinterpolate, etc.)

mailto:r.izzard@surrey.ac.uk
http://personal.ph.surrey.ac.uk/~ri0005/binary_c.html

2 Python module for binary_c

Build instructions

To build the module, make sure you have built binary_c (with make in the binary_c root directory), its shared library
(with make libbinary_c.so in the binary_c root directory), and set environment variables as described above,
then run the following code in t:

make clean
make

Then to test the Python module:

python3 ./python_API_test.py

You will require whatever libraries with which binary_c was compiled, as well as the compiler with which Python was
built (usually gcc, which is easily installed on most systems).

If you want to be able to import the binary_c module correctly for child directories (or anywhere for that matter),
execute or put the following code in your .bashrc/.zshrc:

export LD_LIBRARY_PATH=<full path to directory containing libbinary_c_api.so>:$LD_LIBRARY_PATH
export PYTHONPATH=<full path to directory containing libbinary_c_api.so>:$PYTHONPATH

Usage notes

When running a jupyter notebook and importing binary_c, it might happen that the module binary_c cannot be
found. I experienced this when I executed Jupyter Notebook from a virtual environment which didnt use the same
python (version/binary/shim) as the one I built this library with. Make sure jupyter does use the same underlying
python version/binary/shim. That resolved the issue for me.

Also: I figured that having binaryc output the log like "<LOG HEADER> t=10e4 ..." (i.e. printing the parameter
names as well as their values) would be useful because in that way one can easily have python read that out
automatically instead of having to manually copy the list of parameter names.

See examples/ dir for some working examples

Generated by Doxygen

	1 Python module for binary_c

