binary_ c-python

Jeff Andrews, Robert I1zzard, David Hendriks

Nov 30, 2019

CONTENTS:

1 Python module for binary_c

1.1 Requirements o v it et e e e e e e e e e e e e e e e e e
1.2 Environment variables e e e e e e e e e e e
1.3 BuildinstrucCtionS. e e e e e e e e e
L4 USAZENOLES .« & v v v v v e

2 examples

3 Dbinaryc_python_utils
3.1 custom_logging_functionsmodule Lo
32 functionsmodule e

4 Indices and tables
Python Module Index

Index

DO = = =

11

CHAPTER
ONE

PYTHON MODULE FOR BINARY_C

Based on a original work by Jeff Andrews (can be found in old_solution/ directory) updated and extended for Python3
by Robert Izzard, David hendriks

Warning : THIS CODE IS EXPERIMENTAL!
r.izzard @surrey.ac.uk http://personal.ph.surrey.ac.uk/~ri0005/binary_c.html 09/06/2019

1.1 Requirements

* Python3
* binary_c version 2.1+

* requirements.txt (no?)

1.2 Environment variables

Before compilation you should set the following environment variables:
* required: BINARY_ C should point to the root directory of your binary_c installation

e recommended: LD_LIBRARY_PATH should include $BINARY_C/src and whatever directories are required to
run binary_c (e.g. locations of libgsl, libmemoize, librinterpolate, etc.)

e recommended: LIBRARY_PATH should include whatever directories are required to build binary_c (e.g. loca-
tions of libgsl, libmemoize, librinterpolate, etc.)

1.3 Build instructions

To build the module, make sure you have built binary_c (with make in the binary_c root directory), its shared library
(with make libbinary_c.so in the binary_c root directory), and set environment variables as described above,
then run the following code in t:

make clean
make

Then to test the Python module:

python3 ./python_API_test.py

mailto:r.izzard@surrey.ac.uk
http://personal.ph.surrey.ac.uk/~ri0005/binary_c.html

binary_c-python

You will require whatever libraries with which binary_c was compiled, as well as the compiler with which Python was
built (usually gcc, which is easily installed on most systems).

If you want to be able to import the binary_c module correctly for child directories (or anywhere for that matter),
execute or put the following code in your .bashrc/.zshrc:

export LD_LIBRARY_PATH=<full path to directory containing libbinary_c_api.so>:$LD_
—LIBRARY_PATH
export PYTHONPATH=<full path to directory containing libbinary_c_api.so>:$PYTHONPATH

1.4 Usage notes

When running a jupyter notebook and importing binary_c, it might happen that the module binary_c cannot be found.
I experienced this when I executed Jupyter Notebook from a virtual environment which didnt use the same python
(version/binary/shim) as the one I built this library with. Make sure jupyter does use the same underlying python
version/binary/shim. That resolved the issue for me.

Also: I figured that having binaryc output the log like “ t=10e4 ...” (i.e. printing the parameter names as well as their
values) would be useful because in that way one can easily have python read that out automatically instead of having
to manually copy the list of parameter names.

See examples/ dir for some working examples

2 Chapter 1. Python module for binary_c

CHAPTER
TWO

EXAMPLES

This chapter serves to document several of the example usages

examples.examples.run_example_binary ()
Function to run a binary system. Very basic approach which directly adresses the run_binary(..) python-c
wrapper function.

examples.examples.run_example binary with_custom_ logging ()
Function that will use a automatically generated piece of logging code. Compile it, load it into memory and run
a binary system. See run_system on how several things are done in the background here.

examples.examples.run_example binary with_run_system()
This function serves as an example on the function run_system and parse_output. There is more functionality
with this method and several tasks are done behind the scene.

Requires pandas, numpy to run.

run_system: mostly just makes passing arguments to the function easier. It also loads all the necessary defaults
in the background parse_output: Takes the raw output of binary_c and selects those lines that start with the given
header. Note, if you dont use the custom_logging functionality binary_c should be configured to have output
that starts with that given header

The parsing of the output only works correctly if either all of the values are described inline like
‘mass=<number>’ or none of them are.

examples.examples.run_example binary with writing logfile()
Same as above but when giving the log_filename argument the log filename will be written

binary_c-python

4 Chapter 2. examples

CHAPTER
THREE

BINARYC_PYTHON_UTILS

3.1 custom_logging_functions module

custom_logging_functions.autogen_C_logging_code (logging_dict)
Function that autogenerates PRINTF statements for binaryc. intput is a dictionary where the key is the header
of that logging line and items which are lists of parameters that will be put in that logging line

Example:

{'MY_STELLAR_DATA':
[
'model.time’',
'star[0] .mass"',
'model.probability"',
'model.dt"’

custom_logging_functions.binary_ c_log_code (code)
Function to construct the code to construct the custom logging function

custom_logging_functions.binary_c_write_log_code (code, filename)
Function to write the generated logging code to a file

custom_logging_functions.compile_shared_lib (code, sourcefile_name, outfile_name, ver-

bose=False)
Function to write the custom logging code to a file and then compile it.

custom_logging_functions.create_and load logging_ function (custom_logging_code)
Function to automatically compile the shared library with the given custom logging code and load it with ctypes

returns: memory adress of the custom logging function in a int type.

custom_logging_functions.from binary c_config (config_file, flag)
Function to run the binaryc_config command with flags

custom_logging_functions.return_compilation_dict (verbose=False)
Function to build the compile command for the shared library

inspired by binary_c_inline_config command in perl

TODO: this function still has some cleaning up to do wrt default values for the compile command # https:
/ldevelopers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/

returns:

* string containing the command to build the shared library

https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/

binary_c-python

custom_logging_functions.temp_custom_logging dir ()
Function to return the path the custom logging library shared object and script will be written to.

Makes use of os.makedirs exist_ok which requires python 3.2+

3.2 functions module

functions.create_arg_ string (arg_dict)
Function that creates the arg string

functions.get_arg_keys ()
Function that return the list of possible keys to give in the arg string

functions.get_defaults ()
Function that calls the binaryc get args function and cast it into a dictionary All the values are strings

functions.load_logfile (logfile)

functions.parse_output (output, selected_header)
Function that parses output of binary_c:

This function works in two cases: if the caught line contains output like ‘example_header time=12.32 mass=0.94
.. or if the line contains output like ‘example_header 12.32 0.94°

You can give a ‘selected_header’ to catch any line that starts with that. Then the values will be put into a
dictionary.

TODO: Think about exporting to numpy array or pandas instead of a defaultdict

functions.run_system (**kwargs)
Wrapper to run a system with settings

This function determines which underlying python-c api function will be called based upon the arguments that
are passed via kwargs.

* if custom_logging_code or custom_logging_dict is included in the kwargs then it will
o if
functions.run_system with_log (**kwargs)

Wrapper to run a system with settings AND logs the files to a designated place defined by the log_filename
parameter.

6 Chapter 3. binaryc_python_utils

CHAPTER
FOUR

INDICES AND TABLES

* genindex
¢ modindex

¢ search

binary_c-python

8 Chapter 4. Indices and tables

PYTHON MODULE INDEX

C

custom_logging_functions, 5

e

examples.examples, 3

f

functions, 6

binary_c-python

10 Python Module Index

INDEX

A run_example_binary_with_custom_logging ()
autogen_C_logging_code () (in module cus- (in module examples.examples), 3 .
tom_logging_functions), 5 run_example_binary_with_run_system() (in
module examples.examples), 3
B run_example_binary_with writing logfile ()
binary_c_log_code () (in module cus- (in modul'e examp les.exar.np les), 3
. . run_system () (in module functions), 6
tom_logging_functions), 5 ‘ ‘th 1 . dul . 6
binary_c_write_log_code () (in module cus- run_system_with_log () (in module functions),
tom_logging_functions), 5 T
C temp_custom_logging_dir () (in module cus-
compile_shared_lib () (in module cus- tom_logging_functions), 5

tom_logging_functions), 5
create_and_load_logging_function () (in
module custom_logging_functions), 5
create_arg_string () (in module functions), 6

custom_logging_functions (module), 5

E

examples.examples (module), 3

F

from_binary_c_config() (in module cus-
tom_logging_functions), 5
functions (module), 6

G

get_arg_keys () (in module functions), 6
get_defaults () (in module functions), 6

L

load_logfile () (in module functions), 6

P

parse_output () (in module functions), 6

R

return_compilation_dict () (in module cus-
tom_logging_functions), 5
run_example_binary () (in module exam-

ples.examples), 3

11

	Python module for binary_c
	Requirements
	Environment variables
	Build instructions
	Usage notes

	examples
	binaryc_python_utils
	custom_logging_functions module
	functions module

	Indices and tables
	Python Module Index
	Index

