diff --git a/README.md b/README.md index 83ad8a62185f13252135de78006fa801a0c98d0c..43e2b1a5250097ac9d1938af14bc7267ea98626c 100644 --- a/README.md +++ b/README.md @@ -14,41 +14,36 @@ git clone -b noetic-devel https://github.com/ROBOTIS-GIT/open_manipulator_simula git clone https://github.com/ROBOTIS-GIT/open_manipulator_dependencies.git ``` +To run MediaPipe's models, the model has to be downloaded from their website. + ## Getting started -In order to run the project run the following commands (*in the future, once the pipeline is complete, the roslaunch files will be all run from one file*): +In order to run the project run the following commands: ``` cd catkin_ws catkin_make source devel/setup.bash roscore -roslaunch open_manipulator_gazebo open_manipulator_gazebo.launch -roslaunch open_manipulator_controller open_manipulator_controller.launch use_platform:=false ``` -It is important to run the two roslaunch commands as the former runs Gazebo simulation with the robotic arm, and the latter allows for control of the arm. -**IMPORTANT**: Before running the following scripts, it is important to press play at the bottom of Gazebo, otherwise the arm will not move. -## Roslaunch -There is two `roslaunch` files to run currently. The first one `keypoint_collection.launch` runs the collection of data points from pose estimation. This data is being used to train the data. It outputs a pickle file. The second one is `training_data.launch` which uses the output of the first launch file, and converts the keypoints into a training dataset. The labels are obtained by calculating the inverse kinematics of the end-effector. This is also used to visualize and test the data in RVIZ and Gazebo. -## Files -At the moment, there are currently three files that can be run - in the future the functionality will be combined. The first one (1) runs the video capture of the keypoints in real time and moving the robotic arm in Gazebo [*It is currently being debugged due to new functionality being added*]. The second one (2) is a keypoint capture program which saves the keypoints into a pickle file. Finally, (3) loads the saved keypoints (hence 2 and 3 have to be run in order for 3 to work) and visualizes them in RVIZ and calculates the manipulator keypoints. Currently, 1 and 3 use different approaches. The accuracy is currently being tested. +## Roslaunch +The following roslaunch files can be run: -1. Arm Keypoint Capture + Pose Estimation Control +1. Arm Keypoint Capture + Control ``` -roslaunch pose_estimation pose_estimation.launch +roslaunch open_manipulator_cv_controller keypoint_collection_control.launch ``` -2. Capture Keypoints +2. Convert and Visualize Keypoints ``` -roscd pose_estimation -python3 capture_keypoints.py +roslaunch open_manipulator_cv_controller training_data.launch ``` -3. Visualize Keypoints +3. Training and Evaluation ``` -rviz -roscd pose_estimation -python3 visualize_keypoints.py +roslaunch open_manipulator_cv_controller train_evaluate.launch ``` +Global variables for each can be viewed with `--ros-args`. + diff --git a/pose_estimation/CMakeLists.txt b/open_manipulator_cv_controller/CMakeLists.txt similarity index 79% rename from pose_estimation/CMakeLists.txt rename to open_manipulator_cv_controller/CMakeLists.txt index 8a75491b941b34c959fac7ba1f0f6213074816ff..b36094501a90ee1624edb9f59ff64b51b44abfe4 100644 --- a/pose_estimation/CMakeLists.txt +++ b/open_manipulator_cv_controller/CMakeLists.txt @@ -1,5 +1,5 @@ cmake_minimum_required(VERSION 3.0.2) -project(pose_estimation) +project(open_manipulator_cv_controller) find_package(catkin REQUIRED COMPONENTS roscpp @@ -19,13 +19,14 @@ find_package(catkin REQUIRED COMPONENTS ## Generate messages in the 'msg' folder add_message_files( FILES - # Keypoint.msg - # Keypoints.msg - SphericalCoordinates.msg JointAngle.msg JointPositions.msg + Joints.msg + ManipulatorPoses.msg ) +catkin_python_setup() + ## Generate added messages and services with any dependencies listed here generate_messages( DEPENDENCIES @@ -65,11 +66,11 @@ include_directories( ## Mark executable scripts (Python etc.) for installation ## in contrast to setup.py, you can choose the destination catkin_install_python(PROGRAMS - scripts/pose_estimation_control.py scripts/arm_keypoint_capture.py - scripts/data_collection.py scripts/training_data.py + scripts/keypoint_collection_control.py + scripts/training_data.py + scripts/training.py DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} ) - -add_executable(inverse_kinematics_solver src/inverse_kinematics_solver.cpp) -target_link_libraries(inverse_kinematics_solver ${catkin_LIBRARIES}) +add_executable(kinematics_solver src/kinematics_solver.cpp) +target_link_libraries(kinematics_solver ${catkin_LIBRARIES}) diff --git a/open_manipulator_cv_controller/data/models/joint_predict_demo.pt b/open_manipulator_cv_controller/data/models/joint_predict_demo.pt new file mode 100644 index 0000000000000000000000000000000000000000..6601b23b78ef8da975437e68825cbf26984ddc1b Binary files /dev/null and b/open_manipulator_cv_controller/data/models/joint_predict_demo.pt differ diff --git a/pose_estimation/include/pose_estimation/kinematics_solver.h b/open_manipulator_cv_controller/include/open_manipulator_cv_controller/kinematics_solver.h similarity index 66% rename from pose_estimation/include/pose_estimation/kinematics_solver.h rename to open_manipulator_cv_controller/include/open_manipulator_cv_controller/kinematics_solver.h index c62bdc490462ebd12ae4e9e2f9372a614cd6a27d..b53c0710fa8d2b0ab1aa7c42708f11b31dec2f63 100644 --- a/pose_estimation/include/pose_estimation/kinematics_solver.h +++ b/open_manipulator_cv_controller/include/open_manipulator_cv_controller/kinematics_solver.h @@ -4,8 +4,9 @@ #include "open_manipulator_libs/open_manipulator.h" #include "open_manipulator_msgs/GetKinematicsPose.h" #include "open_manipulator_msgs/SetKinematicsPose.h" -#include "pose_estimation/JointPositions.h" -#include "pose_estimation/Joints.h" +#include "open_manipulator_cv_controller/JointPositions.h" +#include "open_manipulator_cv_controller/Joints.h" +#include "open_manipulator_cv_controller/ManipulatorPoses.h" #include <robotis_manipulator/robotis_manipulator.h> #include "ros/ros.h" @@ -14,8 +15,8 @@ class KinematicsSolver public: KinematicsSolver(bool using_platform, std::string usb_port, std::string baud_rate, double control_period); - void keypointsInverseCallback(const open_manipulator_msgs::KinematicsPose &msg); - void keypointsForwardCallback(const pose_estimation::Joints &msg); + void keypointsInverseCallback(const open_manipulator_cv_controller::ManipulatorPoses &msg); + void keypointsForwardCallback(const open_manipulator_cv_controller::Joints &msg); ros::NodeHandle getNodeHandle() const { return n_; } @@ -29,5 +30,5 @@ private: robotis_manipulator::Kinematics *kinematics_; void solveIK(Pose target_pose, const open_manipulator_msgs::KinematicsPose& manipulator_pose); - void solveFK(const pose_estimation::Joints &msg); + void solveFK(const open_manipulator_cv_controller::Joints &msg); }; \ No newline at end of file diff --git a/pose_estimation/launch/keypoint_collection.launch b/open_manipulator_cv_controller/launch/keypoint_collection_control.launch similarity index 87% rename from pose_estimation/launch/keypoint_collection.launch rename to open_manipulator_cv_controller/launch/keypoint_collection_control.launch index 4bd9a1c312f3086e82b03834879196a9cdb485ba..5c82400e951542f236a7897601f0cca2fbb4daf5 100644 --- a/pose_estimation/launch/keypoint_collection.launch +++ b/open_manipulator_cv_controller/launch/keypoint_collection_control.launch @@ -6,8 +6,8 @@ <arg name="manipulator_control" doc="Control or Collection?" default="false" /> <arg name="ik_model" doc="Name trained model. Located in `data/models`" default="joint_predict.pt" /> + <!-- Running Gazebo Simulation with Open Manipulator-X if control is on --> <group if="$(eval arg('manipulator_control') == true)"> - <!-- Running Gazebo Simulation with Open Manipulator-X if control is on --> <include file="$(find open_manipulator_gazebo)/launch/open_manipulator_gazebo.launch"> <arg name="paused" value="false"/> </include> @@ -17,7 +17,6 @@ <arg name="control_period" default="0.010"/> <arg name="use_platform" default="false"/> - <!-- Running the Manipulator Controller if control is on --> <node name="open_manipulator_controller" pkg="open_manipulator_controller" type="open_manipulator_controller" output="log" args="$(arg usb_port) $(arg baud_rate)"> <param name="control_period" value="$(arg control_period)"/> @@ -25,7 +24,7 @@ </node> </group> - <node name="keypoint_collection" pkg="pose_estimation" type="data_collection.py" output="screen"> + <node name="keypoint_collection_control" pkg="open_manipulator_cv_controller" type="keypoint_collection_control.py" output="screen"> <param name="gesture_model" value="$(arg gesture_model)"/> <param name="filename" value="$(arg output_file)"/> <param name="video_save" value="$(arg video_save)"/> diff --git a/pose_estimation/launch/train_evaluate.launch b/open_manipulator_cv_controller/launch/train_evaluate.launch similarity index 80% rename from pose_estimation/launch/train_evaluate.launch rename to open_manipulator_cv_controller/launch/train_evaluate.launch index 00ebce37d729809bc53b138f6a05e76e87eb3463..bd775406aaee70091188215c11f780cb17c978fe 100644 --- a/pose_estimation/launch/train_evaluate.launch +++ b/open_manipulator_cv_controller/launch/train_evaluate.launch @@ -3,21 +3,20 @@ <arg name = "plot" doc = "Plot training loss {boolean}" default = "false" /> <arg name = "model" doc = "The name of the model to be saved in data/models/ {string}" default = "joint_predict.pt" /> - <arg name = "dataset" doc = "The name of the dataset saved in data/ {string}" default = "keypoint_dataset.pickle" /> + <arg name = "dataset" doc = "The name of the dataset saved in data/ {string}" default = "training_data.pickle" /> <arg name = "loss" doc = "[huber (default), mse] {string}" default = "huber" /> <arg name = "scheduler" doc = "[None (default)] {string}" default = "None" /> <arg name = "initial_lr" doc = "Initial learning rate for training the model {float}" default = "1e-1" /> <arg name = "epochs" doc = "Number of epochs the model will be trained for {integer}" default = "100" /> - <arg name = "validate" doc = "Run validation with positional loss {boolean}" default = "false" /> - + <arg name = "NAS" doc = "Run Neural Architecture Search {boolean}" default = "false" /> <arg name = "NAS_iter" doc = "Number of variations to run NAS [10] {int}" default = "10"/> <!-- Running Kinematics Solver Node --> - <node name="kinematics_solver" pkg="pose_estimation" type="kinematics_solver" output="screen" /> + <node name="kinematics_solver" pkg="open_manipulator_cv_controller" type="kinematics_solver" output="screen" /> <!-- Running the training loop --> - <node name="training" pkg="pose_estimation" type="training.py" output="screen"> + <node name="training" pkg="open_manipulator_cv_controller" type="training.py" output="screen"> <param name = "model" value = "$(arg model)"/> <param name = "dataset" value = "$(arg dataset)"/> <param name = "loss" value = "$(arg loss)"/> @@ -27,7 +26,6 @@ <param name = "plot" value = "$(arg plot)"/> <param name = "evaluate" value = "$(arg evaluate)"/> <param name = "epochs" value = "$(arg epochs)"/> - <param name = "validate" value = "$(arg validate)"/> <param name = "NAS" value = "$(arg NAS)"/> <param name = "NAS_iter" value = "$(arg NAS_iter)"/> </node> diff --git a/pose_estimation/launch/training_data.launch b/open_manipulator_cv_controller/launch/training_data.launch similarity index 80% rename from pose_estimation/launch/training_data.launch rename to open_manipulator_cv_controller/launch/training_data.launch index 28dac4b2ded3a9790890220d5636e2436eb25298..994ef2c0e820dac0ed0d88e80c0441883a4f3fc5 100644 --- a/pose_estimation/launch/training_data.launch +++ b/open_manipulator_cv_controller/launch/training_data.launch @@ -1,6 +1,6 @@ <launch> <arg name="input_keypoint_file" doc="Name of the input file with keypoints (from data_collection)" default="collected_data.pickle" /> - <arg name="training_file" doc="Name of the file where the training data will be saved" default="keypoint_dataset.pickle" /> + <arg name="training_file" doc="Name of the file where the training data will be saved" default="training_data.pickle" /> <arg name="simulate" doc="Simulate the motion in Gazebo?" default="false"/> <arg name="show_video" doc="Show the input video" default="false" /> @@ -22,12 +22,12 @@ <!-- Running rviz with the TF graph setup --> - <node type="rviz" name="rviz" pkg="rviz" args="-d $(find pose_estimation)/rviz/keypoint_tf_frame.rviz" /> + <node type="rviz" name="rviz" pkg="rviz" args="-d $(find open_manipulator_cv_controller)/rviz/keypoint_tf_frame.rviz" /> <!-- Running Inverse Kinematics Solver Node --> - <node name="kinematics_solver" pkg="pose_estimation" type="kinematics_solver" output="screen" /> + <node name="kinematics_solver" pkg="open_manipulator_cv_controller" type="kinematics_solver" output="screen" /> - <node name="training_data" pkg="pose_estimation" type="training_data.py" output="screen"> + <node name="training_data" pkg="open_manipulator_cv_controller" type="training_data.py" output="screen"> <param name="input_keypoint_file" value="$(arg input_keypoint_file)"/> <param name="training_file" value="$(arg training_file)"/> <param name="simulate" value="$(arg simulate)"/> diff --git a/pose_estimation/msg/JointAngle.msg b/open_manipulator_cv_controller/msg/JointAngle.msg similarity index 100% rename from pose_estimation/msg/JointAngle.msg rename to open_manipulator_cv_controller/msg/JointAngle.msg diff --git a/pose_estimation/msg/JointPositions.msg b/open_manipulator_cv_controller/msg/JointPositions.msg similarity index 100% rename from pose_estimation/msg/JointPositions.msg rename to open_manipulator_cv_controller/msg/JointPositions.msg diff --git a/pose_estimation/msg/Joints.msg b/open_manipulator_cv_controller/msg/Joints.msg similarity index 100% rename from pose_estimation/msg/Joints.msg rename to open_manipulator_cv_controller/msg/Joints.msg diff --git a/open_manipulator_cv_controller/msg/ManipulatorPoses.msg b/open_manipulator_cv_controller/msg/ManipulatorPoses.msg new file mode 100644 index 0000000000000000000000000000000000000000..17bde958e7c5ccbdf339475466f65926b97805da --- /dev/null +++ b/open_manipulator_cv_controller/msg/ManipulatorPoses.msg @@ -0,0 +1,2 @@ +open_manipulator_msgs/KinematicsPose originalManipulatorPose +open_manipulator_msgs/KinematicsPose processedManipulatorPose \ No newline at end of file diff --git a/open_manipulator_cv_controller/notebooks/.ipynb_checkpoints/evaluation_metrics-Copy1-checkpoint.ipynb b/open_manipulator_cv_controller/notebooks/.ipynb_checkpoints/evaluation_metrics-Copy1-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f1aae3e81f0c3909eede2fefbf489bc09dd4faa4 --- /dev/null +++ b/open_manipulator_cv_controller/notebooks/.ipynb_checkpoints/evaluation_metrics-Copy1-checkpoint.ipynb @@ -0,0 +1,603 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import os\n", + "import math\n", + "import json\n", + "import torch\n", + "import random\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from matplotlib import cm, colors\n", + "from mpl_toolkits.mplot3d import Axes3D" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "## TODO:\n", + "# FILENAME = \"_test_metrics.json\"\n", + "FILENAME = \"metrics.json\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "with open(FILENAME, \"rb\") as handle:\n", + " metrics = json.load(handle)\n", + " metrics = json.loads(metrics)\n", + " MAX_DIST = metrics['max_dist']" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.2586145463665413" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "MAX_DIST" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def workspace_surface():\n", + " \n", + " half_pi = math.pi / 2.\n", + " u, v = np.mgrid[-half_pi:half_pi:100j, 0.0:math.pi:100j]\n", + " \n", + " xline = MAX_DIST * np.cos(u) * np.sin(v)\n", + " yline = MAX_DIST * np.sin(u) * np.sin(v)\n", + " zline = MAX_DIST * np.cos(v)\n", + " \n", + " return xline, yline, zline\n", + "\n", + "def plane():\n", + " u, v = np.mgrid[-0.6:0.6:100j, 0:0.7:100j]\n", + " \n", + " xline = u\n", + " yline = v\n", + " zline = np.zeros_like(u)\n", + " \n", + " return xline, yline, zline\n", + "\n", + "class Visualizer():\n", + " def __init__(self, angle1 = 20, angle2 = 90):\n", + " self.angle1 = angle1\n", + " self.angle2 = angle2\n", + " \n", + " self.title = None\n", + " self.x_axis = \"x-axis\"\n", + " self.y_axis = \"y-axis\"\n", + " self.z_axis = \"z-axis\"\n", + " \n", + " def set_axis(self, title = None, x = 'x-axis', y = 'y-axis', z = 'z-axis'):\n", + " self.title = title\n", + " self.x_axis = x\n", + " self.y_axis = y\n", + " self.z_axis = z\n", + " \n", + " def get_axis(self, dim = 3):\n", + " plt.clf()\n", + " \n", + " if dim == 3:\n", + " ax = plt.axes(projection='3d')\n", + " ax.set_zlabel(self.z_axis)\n", + " ax.view_init(self.angle1, self.angle2)\n", + "\n", + " else:\n", + " fig, ax = plt.subplots()\n", + " \n", + " if self.title is not None:\n", + " ax.set_title(self.title)\n", + " \n", + " ax.set_xlabel(self.x_axis)\n", + " ax.set_ylabel(self.y_axis)\n", + " \n", + " return ax\n", + " \n", + " def plot_test_spread(self, actual, pred):\n", + " ax = self.get_axis()\n", + " \n", + " # Data for three-dimensional scattered points\n", + " ax.scatter3D(actual[:,0], actual[:,1], actual[:,2], color = 'red', label = \"Test Values\")\n", + " ax.scatter3D(pred[:,0], pred[:,1], pred[:,2], color = 'blue', alpha = 0.5, label = \"Predicted Values\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_trajectory(self, traj, pred):\n", + " ax = self.get_axis()\n", + "\n", + " ax.plot3D(traj[:,0], traj[:,1], traj[:,2], color = 'blue', label = \"Actual Trajectory [frame 1]\")\n", + " ax.scatter3D(pred[:,0], pred[:,1], pred[:,2], color = 'red', label = \"Predicted Values [frame 2]\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_orientation_trajectory(self, traj, pred):\n", + " ax = self.get_axis(2)\n", + "\n", + " ax.plot(traj, color = 'blue', label = \"Actual Trajectory\")\n", + " ax.scatter(range(len(pred)), pred, color = 'red', label = \"Predicted Values\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_workspace(self, predictions):\n", + " ax = self.get_axis()\n", + "\n", + " pl = plane()\n", + " sphere = workspace_surface()\n", + " \n", + " ax.plot_surface(pl[0], pl[1], pl[2], rstride = 1, cstride = 1, color = 'w', alpha = 0.1, linewidth = 0)\n", + " ax.plot_surface(sphere[0], sphere[1], sphere[2], rstride = 1, cstride = 1, color = 'c', alpha = 0.2, linewidth = 0)\n", + " ax.plot_wireframe(sphere[0], sphere[1], sphere[2], rstride = 5, cstride = 5, color = 'black', alpha = 0.2, linewidth = 0.5)\n", + " \n", + " within_range = []\n", + " outside_range = []\n", + " for point in predictions:\n", + " dist = np.linalg.norm(np.array(point))\n", + " if dist <= MAX_DIST:\n", + " within_range.append(point)\n", + " else:\n", + " outside_range.append(point)\n", + " \n", + " within_range, outside_range = np.array(within_range), np.array(outside_range)\n", + " \n", + " if outside_range.shape[0] != 0:\n", + " ax.scatter(outside_range[:,0], outside_range[:,1], outside_range[:,2],color=\"red\", s = 20, label = \"Predictions out of Workspace\") \n", + " \n", + " if within_range.shape[0] != 0:\n", + " ax.scatter(within_range[:,0], within_range[:,1], within_range[:,2], color=\"black\", s = 20, label = \"Predictions within Workspace\")\n", + " \n", + " ax.set_xlim([0,0.6])\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + "visualizer = Visualizer()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test Set" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "test_outputs, test_set = metrics['test_set'][0], metrics['test_set'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAPklEQVR4nO2dd3wU1fr/PzOzNT0hIQVCCqGELi1GQRCjYLuggIgoRS62i3hFvJafgu1arujFzpWvNK8N9IodhGhQeu8kJBAIIb0nm2ybOb8/lhl2N5sQkplsJnver9e+kszOnj0zmTmfec5znudhCCEEFAqFQqEAYL3dAQqFQqF0HKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkVC4+0OUChqRxAEWK1Wb3eD4uNotVpwHNfmdqgoUChtwGq1Ijc3F4IgeLsrFApCQkIQFRUFhmFa3QYVBQqllRBCUFhYCI7jEBsbC5als7EU70AIQX19PUpKSgAA0dHRrW6LigKF0krsdjvq6+sRExMDPz8/b3eH4uMYjUYAQElJCbp27drqqST6aEOhtBKe5wEAOp3Oyz2hUByIDyc2m63VbVBRoFDaSFvmbykUOZHjWqSiQKFQKBQJKgoUCoVCkaCiQKFQVMXZs2fBMAwOHTrk7a50SqgoUCg+BMMwzb5eeOGFNrW9YcOGJt8vLi6GVqvFl19+6fH9uXPnYujQoa3+foo8UFGgUDoCp04Bv/wCZGcr+jWFhYXSa9myZQgKCnLZtmjRIsW+OzIyErfeeitWrlzZ6D2TyYR169Zh7ty5in0/pWVQUaBQvElFBTBhAtCnD3DLLUDv3o6/KysV+bqoqCjpFRwcDIZhXLZ9+eWXSE5OhsFgQN++ffHhhx9Kn7VarZg/fz6io6NhMBgQFxeH1157DQAQHx8PALjjjjvAMIz0tztz585Feno68vLyXLavX78edrsdM2bMwMaNGzFq1CiEhISgS5cuuO2223D69Okmj2n16tUICQlx2bZhw4ZGK3G+++47DB06FAaDAYmJiXjxxRdht9sBOIK/XnjhBfTo0QN6vR4xMTFYsGBBS05pp4OKAoXiTe65B9iyxXXbli3A9Ont3pXPPvsMixcvxj//+U+cPHkSr776Kp5//nmsWbMGAPDuu+/i+++/x7p165CVlYXPPvtMGvz37t0LAFi1ahUKCwulv9255ZZbEBkZidWrV7tsX7VqFe68806EhITAZDJh4cKF2LdvH9LT08GyLO644442pRL5888/MXPmTDz22GM4ceIE/vOf/2D16tX45z//CQD45ptv8O9//xv/+c9/kJ2djQ0bNmDgwIGt/j5VQygUSqtoaGggJ06cIA0NDa1rICuLEKDp16lT8nbYjVWrVpHg4GDp7549e5LPP//cZZ+XX36ZpKamEkIIefTRR8m4ceOIIAge2wNAvv3228t+79NPP00SEhKkdnJycgjDMGTLli0e9y8tLSUAyNGjRwkhhOTm5hIA5ODBgx6PgxBCvv32W+I8vN1www3k1Vdfddnn008/JdHR0YQQQt566y3Su3dvYrVaL9v/jkybr0lCCLUUKBRv0cyUCAAgJ6d9+gHHnP7p06cxd+5cBAQESK9XXnlFmrqZPXs2Dh06hD59+mDBggX49ddfW/Vd999/P3Jzc/H7778DcFgJ8fHxGDduHAAgOzsb06dPR2JiIoKCgiRrxH3K6Uo4fPgwXnrpJZdjmzdvHgoLC1FfX4+pU6eioaEBiYmJmDdvHr799ltpasnXoLmPKBRv0bNn8+8nJbVPPwDU1dUBAFasWIGUlBSX98QcOkOHDkVubi5++eUXbNmyBXfddRfS0tLw9ddfX9F39erVC6NHj8aqVaswduxYrF27FvPmzZN8ALfffjvi4uKwYsUKxMTEQBAEDBgwoMn05CzLghDiss09zUNdXR1efPFF3HnnnY0+bzAYEBsbi6ysLGzZsgWbN2/GI488gjfffBNbt26FVqu9ouNTO1QUKBRv0bs3MH68w4dwMY8SAIDjgLQ0oFevdutKZGQkYmJicObMGcyYMaPJ/YKCgjBt2jRMmzYNU6ZMwYQJE1BRUYGwsDBotVopH9TlmDt3Lh5++GH85S9/wYULFzB79mwAQHl5ObKysrBixQqMHj0aALBt27Zm24qIiEBtbS1MJhP8/f0BoFEMw9ChQ5GVlYWkZoTWaDTi9ttvx+23346//e1v6Nu3L44ePepzy2SpKFAo3uSLLxxO5U2bLm1LS3Nsb2defPFFLFiwAMHBwZgwYQIsFgv27duHyspKLFy4EG+//Taio6Nx1VVXgWVZrF+/HlFRUdLKn/j4eKSnp+Paa6+FXq9HaGhok981depULFiwAA8++CBuuukmxMbGAgBCQ0PRpUsXfPzxx4iOjkZeXh6efvrpZvudkpICPz8/PPvss1iwYAF2797dyJG9ePFi3HbbbejRowemTJkClmVx+PBhHDt2DK+88gpWr14Nnueltv773//CaDQiLi6uTedUlcjn4qBQfAs5nHoSp04R8vPPijuXnfHkoP3ss8/IkCFDiE6nI6GhoeS6664j//vf/wghhHz88cdkyJAhxN/fnwQFBZEbbriBHDhwQPrs999/T5KSkohGoyFxcXGX/f4HHniAACDr1q1z2b5582aSnJxM9Ho9GTRoEMnIyHBxYrs7mglxOJaTkpKI0Wgkt912G/n444+J+/C2ceNGcs011xCj0UiCgoLIyJEjyccffyx9PiUlhQQFBRF/f39y9dVXN+n47sjIcU0yhLhNxlEolBZhNpuRm5uLhIQEGAwGb3eHQpHlmqSrjygUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUimLMnj0bkyZNkv4eO3Ys/v73v7d7PzIyMsAwDKqqqhT9nsuVJFUDVBQoFB9j9uzZUk1mnU6HpKQkvPTSS+2SKvp///sfXn755Rbt214DudVqRXh4OF5//XWP77/88suIjIxslHm1s0JFgULxQSZMmIDCwkJkZ2fjiSeewAsvvIA333zT475NpaxuDWFhYQgMDJStPTnQ6XS49957sWrVqkbvEUKwevVqzJw502dSaFNRoFA6AOXlQHa242d7oNfrERUVhbi4ODz88MNIS0vD999/D+DSlM8///lPxMTEoE+fPgCA8+fP46677kJISAjCwsIwceJEnD17VmqT53ksXLhQqq38j3/8o1GdA/fpI4vFgqeeegqxsbHQ6/VISkrCJ598grNnz+L6668H4MicyjCMlF5bEAS89tprSEhIgNFoxODBgxvVdPj555/Ru3dvGI1GXH/99S799MTcuXNx6tSpRmm6t27dijNnzmDu3LnYu3cvbrzxRoSHhyM4OBhjxozBgQMHmmzTk6Vz6NAhMAzj0p9t27Zh9OjRMBqNiI2NxYIFC2AymaT3P/zwQ/Tq1QsGgwGRkZGYMmVKs8fSVqgoUChepKEBWLMGeOYZYMkSx881axzb2xOj0ehiEaSnpyMrKwubN2/Gjz/+CJvNhvHjxyMwMBB//vkntm/fjoCAAEyYMEH63FtvvYXVq1dj5cqV2LZtGyoqKvDtt982+70zZ87EF198gXfffRcnT57Ef/7zHwQEBCA2NhbffPMNACArKwuFhYV45513AACvvfYa1q5di+XLl+P48eN4/PHHce+992Lr1q0AHOJ155134vbbb8ehQ4fw17/+9bLptwcOHIgRI0Zg5cqVLttXrVqFa665Bn379kVtbS1mzZqFbdu2YdeuXejVqxduueUW1NbWXtnJduL06dOYMGECJk+ejCNHjuCrr77Ctm3bMH/+fADAvn37sGDBArz00kvIysrCxo0bcd1117X6+1qETBlbKRSfQ440xatXE3LHHYQ89BAhTz3l+HnHHY7tSjFr1iwyceJEQgghgiCQzZs3E71eTxYtWiS9HxkZSSwWi/SZTz/9lPTp08elPrPFYiFGo5Fs2rSJEEJIdHQ0+de//iW9b7PZSPfu3aXvIoSQMWPGkMcee4wQQkhWVhYBQDZv3uyxn7///jsBQCorK6VtZrOZ+Pn5kR07drjsO3fuXDJ9+nRCCCHPPPMM6devn8v7Tz31VKO23Fm+fDkJCAggtbW1hBBCampqiJ+fH/m///s/j/vzPE8CAwPJDz/8IG2DU4pvT/0/ePAgAUByc3Olfj/wwAMu7f7555+EZVnS0NBAvvnmGxIUFERqamqa7LcztEYzhaJiysuB7duByEjHy2C49Pv27cpOJf34448ICAiAwWDAzTffjGnTpuGFF16Q3h84cCB0Op309+HDh5GTk4PAwECpxnFYWBjMZjNOnz6N6upqFBYWupTy1Gg0GD58eJN9OHToEDiOw5gxY1rc75ycHNTX1+PGG290qbe8du1aqZb0yZMnG5UUTU1NvWzb06dPB8/zWLduHQDgq6++AsuymDZtGgCguLgY8+bNQ69evRAcHIygoCDU1dW1uXb06tWrXY5l/PjxEAQBubm5uPHGGxEXF4fExETcd999+Oyzz1BfX9/q72sJtPIaheIlKiqAujqgRw/X7cHBQF6e4/0uXZT57uuvvx4fffQRdDodYmJioNG4DgViWUuRuro6DBs2DJ999lmjtiIiIlrVB6PReMWfEWtJ//TTT+jWrZvLe3q9vlX9EAkKCsKUKVOwatUq3H///Vi1ahXuuusuBAQEAABmzZqF8vJyvPPOO4iLi4Ner0dqamqztaMBuPhVPNWOfvDBB7FgwYJGn+/Rowd0Oh0OHDiAjIwM/Prrr1i8eDFeeOEF7N27V6p4JzdUFCgULxEWBgQEANXVDitBpLrasT0sTLnv9vf3b7ZesTtDhw7FV199ha5duyIoKMjjPtHR0di9e7c0522327F///4maxwPHDgQgiBg69atSEtLa/S+aKk4133u168f9Ho98vLymrQwkpOTJae5yK5duy5/kHA4nMeOHYsff/wRO3bscFmRtX37dnz44Ye45ZZbADh8F2VlZU22JYplYWGhVJrUU+3oEydONPu/0Gg0SEtLQ1paGpYsWYKQkBD89ttvuPPOO1t0TFcKnT6iULxEly7AtdcCxcWOl9l86fdrr1XOSmgNM2bMQHh4OCZOnIg///wTubm5yMjIwIIFC5Cfnw8AeOyxx/D6669jw4YNyMzMxCOPPNJsjEF8fDxmzZqF+++/Hxs2bJDaFKdv4uLiwDAMfvzxR5SWlqKurg6BgYFYtGgRHn/8caxZswanT5/GgQMH8N5772HNmjUAgIceegjZ2dl48sknkZWVhc8//7xRzeamuO6665CUlISZM2eib9++uOaaa6T3evXqhU8//RQnT57E7t27MWPGjGatnaSkJMTGxuKFF15AdnY2fvrpJ7z11lsu+zz11FPYsWMH5s+fj0OHDiE7Oxvfffed5Gj+8ccf8e677+LQoUM4d+4c1q5dC0EQpBVhSkBFgULxInfdBUycCPC8Y8qI5x1/33WXt3vmip+fH/744w/06NEDd955J5KTkzF37lyYzWbJcnjiiSdw3333YdasWUhNTUVgYCDuuOOOZtv96KOPMGXKFDzyyCPo27cv5s2bJy3H7NatG1588UU8/fTTiIyMlAbKl19+Gc8//zxee+01JCcnY8KECfjpp5+QkJAAwDHt8s0332DDhg0YPHgwli9fjldffbVFx8kwDO6//35UVlbi/vvvd3nvk08+QWVlJYYOHYr77rsPCxYsQNeuXZtsS6vV4osvvkBmZiYGDRqEN954A6+88orLPoMGDcLWrVtx6tQpjB49GldddRUWL16MmJgYAEBISAj+97//Ydy4cUhOTsby5cvxxRdfoH///i06ntZAazRTKK1EzhrN5eUOH0JYWMeyECjqQo5rkvoUKJQOQJcuVAwoHQM6fUShUCgUCSoKFAqFQpGgokChUCgUCSoKFAqFQpGgokChtBG6gI/SURAEoc1t0NVHFEor0Wq1YBgGpaWliIiIAMMw3u4SxUchhMBqtaK0tBQsy7rkrbpSaJwChdIG6urqkJ+fT60FSofAz88P0dHRVBQoFG/C87zPlGqkdFw4joNGo2mzxUpFgUKhUCgS1NFMoVAoFAkqChQKhUKRoKJAoVAoFAm6JFUBCCF0NQqF0oFgGIYuGW4hVBRkxmQyISwsDCdOnEAXmdJems1m1NTUNJu7vaNSUVEBrVaLwMBAb3flirlw4QIiIyMblars6NTX18NkMrW6TKY3KS8vh8FgaFQOtC0QQuDv79+mZZq+hLqudhWg1WphtVphs9lkezKpr6/HuXPnEBkZKUt77UlxcTH8/f2bLOHYkcnJyUF4eDi0Wq23u3JF1NXV4cKFC6p8iCgoKECXLl2kushywPM8zGazFGxIaR4qCjLDcRwAR31asXC3XG3K1V57IvZZjX0HHNMOauu7OFWitn6LsCwra9/r6uqQlZWFG2+8UbY2OzPqvGo6MAzDQKvVwm63y9qmHDlNKL4BIUS1T8SEENnFTDwf9B5qGVQUFECr1coa4cowjGod12ruu5pRsyjI3XdRaOh12DKoKMiMaClQUaB4CzVfK4IgKCIK1FJoOVQUFEB0NsuFmkVBzX1XM9RScG2TWgoth4qCAlBL4RJqHZzUjFqvFUAZURCtD0EQVH1u2gsqCgqg0WioKDih5r6rFbWKsVJOctF5Ta/Fy0NFQQGUWH2k1otZrYOTmlHrtQIoaymI7VOah4qCzDAMA51OJ6tPQe3zoWruuxpR+5JUJX0K1Nl8eagoKIBS00dqHFzVOjipHbWed6UsBZZlYTKZUFpaKmvbnREqCgqgxPSRmlGjmKkZNZ9vJYPXysvLce7cOVWfn/aAioICKLH6CIAqTV+1C5paUet5V2r6SLS21T4V2x5QUVAApURBrRezWvutVtR8vpWcPnIWB0rTUFFQALkdzWoWBbU+saodtZ53JS0FZ3GgNA0VBQVQyqeg1otZrf1WK2o+30qvPqLpLi4PFQUFUGL1EaDOm52a696BWgqN23QWBXpNNg0VBQWgPoVLqHVwUjNqvE5ElEiIJ04b0emjlkFFQQGUEAU1P3Grtd9qRa3Ba+J10h6rj+gUUtPQymsKoNPpZBUFoANNw9jtYLOywBQUAAEB4AcMAJqpv6zGwYniHZQSBWdLQSyt2iHupQ4KFQUFkNtSADqIKNTWQrtyJbiDBwGrFWAYcN27w37//RD69GnyY17vt49BLYXG7Yq+BIZhUFVVBY7jVFnzvD2g00cKIPfqI6BjiILml1/A7dwJISoKQr9+EHr1AnvhAjRr1gANDR4/o8bBqTOgxvOupCiI00Ysy6K4uBiFhYWyfkdngoqCAnRKS8FsBrd7N0hYGBAQ4Nim0UBITAR7/jzYzMwmP+ptMfM11Hq+xX4rlebC009KY6goKIDcwWsAvL++2moFzGZAr3fdrtUCPA/GbPb4MXrzeQdqKVzC0+ojugqpaagoKECntBQCAyHEx4MpKQGc+sGUlwNBQRBiYz1+TI2Dk9pR62DXHquPnH0LdAWSZ6ijWQE0Gk3n8ykwDPgJE8Dm5oI9edIxjdTQAMZigf2WW0C6dWvyo2odpNSMGsVYqUHaU5oLr99PHRgqCgqg0+k6nygAEAYOhO3RR8Ft2QL2zBmQ8HDYR48Gf911QBODkBoHJ7Wj5tVHYkyOnHgSA3E6idKYTj999MEHHyA+Ph4GgwEpKSnYs2dPk/seP34ckydPRnx8PBiGwbJlyxrt88ILL0gXrvjq27evyz5yp7kAOk71NSE5GbZHH4Vl6VJYlywBf8MNDr9CM3SEfvsaahYFJdp19ik4iwS9NhvTqUXhq6++wsKFC7FkyRIcOHAAgwcPxvjx41FSUuJx//r6eiQmJuL1119HVFRUk+32798fhYWF0mvbtm0u7yvlaO5QFzDHNWkdOKPGwUntdKjr5ApQShREH4KnyGa1nisl6dSi8Pbbb2PevHmYM2cO+vXrh+XLl8PPzw8rV670uP+IESPw5ptv4u6774befZWNExqNBlFRUdIrPDzc5f3OGqfQWtTabzWjRjFW0lJw9ik451ei12ZjOq1PwWq1Yv/+/XjmmWekbSzLIi0tDTt37mxT29nZ2YiJiYHBYEBqaipee+01xMbGora2FgDA8zwSExNx5MgRAIC/v3+bL3aLxYKioiLpO9RCbW0t6uvrcebMGW93pVXk5eVJqRHUQnV1NTiOU905t1gsEARB9n5bLJZGqbNZloXNZgPDMOA4TtbvUzudVhTKysrA83yjUPbIyEhkNhNodTlSUlKwevVq9OnTB4WFhXjxxRcxevRo7NixA927d3fZ9/333wcA/PbbbwgQA77agM1mk31aSml4nocgCKrrt4jNZlPd06ToQFXbORf9cHL2mxACm80mXYfOcQqnTp2C0WhE//79Zfu+zkCnFQWluPnmm6XfBw0ahJSUFMTFxeGXX35BdXU1AGDt2rX473//i2+++QYAEBgY2GZL4cCBA4iOjkZ0dHSb2mlvRL+LuzNeDRQUFKBnz54wGo3e7soVcfLkSej1eiQmJnq7K1dEVVUVamtrZb9WCgsLYTabPcYrAOpdraUUnVYUwsPDwXEciouLXbYXFxc360S+UkJCQtC7d2+cPn0aQUFBAIDg4GAQQqS/5UDNPgVK+6LWQU6pfjMMg4aGBo+rj5xFguKg0zqadTodhg0bhvT0dGmbIAhIT09HamqqbN9TV1eH06dPuzzBd9Y4hdag1n5T2h9xWkduGIZBfX19k5HN9Pp0pdNaCgCwcOFCzJo1C8OHD8fIkSOxbNkymEwmzJkzBwAwc+ZMdOvWDa+99hoAx1zmiRMnpN8vXLiAQ4cOISAgAElJSQCARYsW4fbbb0dcXBwKCgqwZMkScByH6dOnS9+rRJwCvXgpLUWtT75Krj6qr6+nOZBaSKcWhWnTpqG0tBSLFy9GUVERhgwZgo0bN0rO57y8PJcnk4KCAlx11VXS30uXLsXSpUsxZswYZGRkAADy8/Mxffp0lJeXIyIiAqNGjcKuXbsQEREhfa5T5j5qJWrtt9qhouBKfX09ALhYCDQHkmc6tSgAwPz58zF//nyP74kDvUh8fPxlB7Avv/zyst/ZqSuvXSFqHJzUjhqvE0CZ+szApfPhXleBWgqe6bQ+BW8iioKcF5uaL1619lvNqFGMlbAUxGvPz88PQGNLQZxOotfoJagoKACdPrqEGgcntaPG6wRQVhT8/f0BwKOl4LwfhYqCItA0F66otd9qRo1irIQoiP4CMXjUk6XgvB+FioIiaDSazp8Qr4WocXBSO2q8TgDvWQplZWWoqKiQ9XvVDBUFBdDr9YpYCmp9mlHrIKVW1LwkVYn6zMAlS4HneZdU2gzDoKioqMnMyb4IFQUFoD6FS6hxcOoMqPG8Kzl9JCY1NJlMAC7dT3QVUmOoKCgAFYVLqLXfakat51up6SPnam5ilmFnS4GW53SFioICaLVaEELA87xsbar5olVrv9UMtRRc2xQthrq6OgCulgJNd+EKFQUF0Ol0ABx53OVCrRetGgcntaPG6wRQJnjN3RpwtxTo9FFjqCgogCgKck4hqVUUAPUOUmpGjWKslKXgLADuPgWa7qIxVBQUQHRqybkCSa2ioMbBSe2o8ToBlJ0+EsVBfFBzj2imkc2XoKKgAKIoyGkpqNm8VWu/1YwaxVip1UfigM9xHAwGgyQS7oIhbvN1qCgogBKiQC0FSktR43UCKG8pMAwDPz8/l3vJ3dGs1nMnJ50+S6o3YBhG9poKzYlCTQ1w8CCHwkIGgYHA4ME8unfvOBc3vdHaFzUHryntU/Dz80NlZaXkPxDvK47jpP19HSoKCiF3+uymRKGkhMHy5VqcOiXmcAE2beJw7702jBwpgBAgP5/BhQss9HqCvn0FtGfJYbVaOGqHioID99VHYr1tT5ZCVVUVWJaVtVyvGqGioABKWQqeVkf89BOHzEwWffoI0GoBQoDcXAbr12uQlGTFL79osG2bBrW1AMcBsbEC7rvPjj592melhRoHJ7WjVhFWKs2Fs6VgNBpBCJEWgTgvSS0pKQEhBJGRkT593VKfgkLIHdXs6YnbZAIOH+YQEUFw0Y0BhgF69CAoKmKxbp0WGzdqYDQSJCcLSEgQkJfHYs0ah0i0F2odpNSMGgc1pUTB2VIQl4u7V2ITxUGN501uqCgohFarlTVTqidR4HnHdNHF6VAJlnVYDAcPsjAYCMLDCRgG0OmApCQB58+zOH7c7UMKQW+y9ketIqz06iNnq6C2tlZKf+FpFZIvQ0VBIdrDUggMBPr2FVBUxMB5ZqmwkEFYGIFGg0b+A43GIRgXY3jaBV+/ybyBGsW4PVYfiU5lk8kkfZezcNAgNioKiiF3oR1PTzAMA9x8sx3duws4eZJFbi6DkydZWK0MbrvNjn79BFRWMnD+WF2dw2KIjm6fgVqNg5PaUasIK5Hmwt2nIP6sq6tzKbDjHuHsy1BHswIwDNMulgIAJCQQPP64DTt3cjhzhkVYGI/hwwUMHCigRw+CkydZZGayiIggsFiAykoG11zDt5ujGVDvIKVm1CjG7WUpaDQa1NfXS9/lLhy+fr36hKXwwQcfID4+HgaDASkpKdizZ0+T+x4/fhyTJ09GfHw8GIbBsmXLWtVme8YpREcT3HmnHYsWWXH//XYMGiSAYRxTSw89ZMOQITzsdsDPj2DKFDtmz7Y18kMohRoHJ7Wj1kGtPXwKgiBAo9HAYrG4TB+5Z01V6zmUg05vKXz11VdYuHAhli9fjpSUFCxbtgzjx49HVlYWunbt2mj/+vp6JCYmYurUqXj88cdb3WZ7WQqXY8AAAf37C9K0kV4vW5dajC/fYN5CjWLcnpaCmHXAPV5BnFLy5ZVInd5SePvttzFv3jzMmTMH/fr1w/Lly+Hn54eVK1d63H/EiBF48803cffdd0PfxAjakjbbK3itZZ91OKW9IQi+emN5E7WKsNL1FDzFK4j+A0+i4Kt0akvBarVi//79eOaZZ6RtLMsiLS0NO3fulL3NP//8E4888ggAwGAwwGq1IicnB4CjRmxbLniTyQSbzYbi4uJWt+ENrFYrCCGq67dIWVmZtLZdLdjtdlRVVcle/U9pLBYLamtrZb1WamtrwXFcI4vBaDSivr5eGvydp48AKgqdlrKyMvA8j8jISJftkZGRyMzMlLXNkJAQrF27FsHBwdK2P/74Q/r9hx9+gL+/f6u+E3AUHLfb7Th//nyr2/AG4s2ltn6LFBYWyh5QpTR2ux2lpaWoqKjwdleuCLPZDEEQpOpoclBXV4fg4GAYjUYXa0Cv1zdpKYhVEzWaTj08Nolqj/rs2bNISEhotH3MmDHIyMho9/7odDoMGzYMv/32GwBg0qRJuPHGGzFz5kwAQGBgYJssherqahw9ehTDhw+Xpb/thcViwfbt2zFs2DDVTSX99ttvGDhwoJQvRy1s374dffr0QUhIiLe7ckXs378f3bp1kzX30J49e2C32xtZCnq9HjzPSyVznd+7cOECiouLce2116rumpUD1YpCbGwsCgsLpb+LioqQlpaG6667TtoWHh4OjuMamaPFxcWtvvCaarOkpATdunVDUFAQAMf0Ecdx0t9tRe2J5XzZcecN1HiulUhzodFoJAvEucqaOCVoNpsBeE534avXrLrsYic4jkNUVBSioqIQEhKChx56CKmpqXjhhRekfcSn9/T0dGmbIAhIT09Hampqq763pW12JEezN/HFm8rbqPE6AZR5cBBXATqnsGBZFgzDSEFsNN2FK6q1FJy5//77UVtbi82bNzd60li4cCFmzZqF4cOHY+TIkVi2bBlMJhPmzJkDAJg5cya6deuG1157DYDDMXrixAnp9wsXLuDQoUMICAhAUlJSi9oE5I9oVqsoiKi572pEjWKshChwHCf547RabaN4BffIZndLwRdRvSi88sor2LRpE/bs2YPAwMBG70+bNg2lpaVYvHgxioqKMGTIEGzcuFFyFOfl5bkISUFBAa666irp76VLl2Lp0qUuvorLtQnIH6eg1icXNQ5OakeN1wmgjCgwDAOO42Cz2eDn59coXsFkMjUSBeefvoiqReGbb77BSy+9hF9++QU9e/Zscr/58+dj/vz5Ht9zd0rHx8e36KZqrk1A/iypubkabN7cHXv26BATIyAlhUevXuq5+dU6UKkVNYqxUrmPdDodrFar5DfgOA6CIECr1bokxvMU0+CLfgXVisKxY8cwc+ZMPPXUU+jfvz+KiooAOObyw8LCvNw7eaePDhxgsWKFH06fjkR8PIPDhzXYtYvD7Nk2DB/esZ9mfO2G6gioVYCVCl7T6/WwWq2Npoa0Wi2qq6ulIFVPabZ9EdU6mvft24f6+nq88soriI6Oll533nmnt7sGQD5Hs9UKfP+9BvX1LHr0qEF8PEG/fgLq6xl8/70GMhojiuKrN5i3UKMYKykKNputkRWg0WgkpzPQ2Kcgft7XUK0ozJ49G4SQRi9vxCh4Qq6EeBcuMMjPZxEdzYNhxBsHiIkRcOECi/PnO/bN78s3l7dQ67lWKiGe0WgEz/ONLAWO42A0GiXfgfv0kXNwmy+hWlHo6MhlKXCco5IazzvqIog3vFhxrb2ynbYWNT6xdgbUeN6VshQMBoPkH3AvqCPmQAJcLQW1RbHLiWp9Ch0duSyFhgagvBzYuVMHgyECPM8iLg44f55Fv34CYmPV8VSo1qdXNaLWc63EYCxOEzEMA4vF0igWwWAwoLKy0iUHknNiPF/Ed49cYfR6fZsdzdnZDD76SAeeB/z9CcrLjdi+XYNff+UQHS1gypT2q4vQWtT4xKp21LpiRilLgWVZcBwHi8XSyFLQ6/UQBMFjDiQ1nkM5oJaCQshhKWzZokFZGYMRIwQ0NACHDpWDZbtCEDhMnWqnS1IpTaLGAU1JUWBZtpGlwHGclBjPYrEAQCNHsxrPY1uhloJCtDV4zWYDsrNZdOnicCz7+QHR0SYMG2ZHSAhBXZ06LlZfvKm8jVoFWClHs5jGQhQFZ2tAfNXW1gKg00cAFQXFaKsocBxgNBJczNcFwHHB8ryjaI7KEneqdqBSK2oTY3H1oFJFdliWRUNDQ6PEeKLPQRQFmuaCioJitHX1EcsC117Lo66OQXW1YxvPM8jNZREdLaBfP16mniqP2gYoNaPWgczZ0Ssnzk/9drvdZWmqew4k8ft93VKgPgWFkCP30fXX88jPZ7FnD4cLF4CysgAkJwuYOVOATBm52wVffuryFmoTYqVEwdn60Ol0kiiIloIY2eyeA0lt509OqCgohBxpLoxG4K9/tWHsWB75+Qyyss5i4sRExMS0voKbt6Ci0D6o9TwrKQqiCBiNRpjNZpclqWL21IqKikaRzb4KFQWFkCtLKssCvXsL6N0b0GqrEBiovghLX37q8hZqO+dKTh+JIuDn5ydZBM7bdTpdo/rMonNabedRDnxXDhVG7iI7wKX5TjWi1idYtaHW89weloK/v7+LGDivQnIuuerrloLvHrnCyBXR7Ixa5+Z98WnLWyg1uCpNe1gKzqLgntLCz8/PpS9UFCiyo5SloEZRANT7BKtWqChcatfZUgAAnucbLU01GAwuOZDUdv7khPoUFELucpwArb5GuTxqvD4A13l8udsVf2q1WgCA2Wx2qcPMcZxUqhOg00e+e+QKI1Z7kvMmpZYCpaWoTYiVClzzlLKivr6+0TSSaCnY7Xafnz6iloJCyF2jGWhCFAgBe/gw2L17wZaVQYiPB3/11SAJCbJ+d1tQ2wClZtQqvkqJgjPiQN/Q0OAyrSTWcWYYBiaTiU4febsDnZWWTh+ZTEB9PYOQEIKL1m2TeBIFLiMDmm++Aex2wN8f3Jkz4A4fhm32bAh9+7bhCORFrYOVWlHboKZU3iMAzVoK7tNItbW1LtNHajuPckBFQSEuZynU1wM//6zBzp0cGhoYREQISEvjMWqUo8KaJxqJQlUVNJs3A0YjSLdu0mb25ElwmzZB6N3bEejgZXzxxvIWahVfJZ7Onf0JzphMJnAc1yheQRQFtaYelwvvjxjtxAcffID4+HgYDAakpKRgz549ze6/fv169O3bFwaDAQMHDsTPP//s8v7s2bNdAlwYhsGECROk93U6XZOWAiHAZ59p8b//OWosBwYKKChgsHq1Bjt2NF0gwT1Ogc3PB1NWBhIV5bKfEB0N9vx5oLKy2WNsT9Q6WKkVtQ1qSk4fubdrt9s9xitotVpJFHzZp+ATR/7VV19h4cKFWLJkCQ4cOIDBgwdj/PjxKCkp8bj/jh07MH36dMydOxcHDx7EpEmTMGnSJBw7dsxlvwkTJqCwsFB6ffHFF9J7Wq0WVqvVY/vnzjHYt49D9+4CoqMJgoOBhARHiuwtWzg0NevUyFLQakE0Grh/gLHZAI0Gl52PaifU7CBXG2o9z0pOH7lbDGJdZufgNUJIo2ypvopPHPnbb7+NefPmYc6cOejXrx+WL18OPz8/rFy50uP+77zzDiZMmIAnn3wSycnJePnllzF06FC8//77Lvvp9XpERUVJr9DQUOm95qaPSkoYmExAcLDr9rAwgpISBjU1no/DfXAVEhJAYmPB5OYC/MWsqVYrmKIi8AMGQFVZ8yiyoObgNaWS4bm37R7ZLFrgSsQWqZFO71OwWq3Yv38/nnnmGWkby7JIS0vDzp07PX5m586dWLhwocu28ePHY8OGDS7bMjIy0LVrV4SGhmLcuHF4+eWXodPpAAAWiwWDBg3CoUOHwDAM/P39pQuzqsoAiyUShYVWGAyXBvmiIi38/QUUFhagoqLxE19DQwNKSkpQX18vbdOPGIGwwkJo9+51bGAYmBMTUd6nD/icnJafKAWx2+24cOECysvLvd2VK+bcuXPQaNRzm4hTljkd5H/fUsxmM+x2u6z9Fs+F8xQRAAQGBqKsrMzFUnBOd9HQ0ODTloJ6rvZWUlZWBp7nERkZ6bI9MjISmZmZHj9TVFTkcf+ioiLp7wkTJuDOO+9EQkICTp8+jWeffRbjx4/HgQMHXD43ZswYAMDvv/+OgIAAAEC3bibExTXg1Ck/dO9ugcEgoLpag9paDqNGVUGjsUsP/s4QQsDzPHinN+tjY2G57z4Yc3LA1dfDHhqK+p49QQwGeGzESwiC4NJvtcDzvKqeusVzrLZzrUS/TSYTCCEuAz8A6T50dzSzLAt/f380NDT4bDI8wAdEQSnuvvtu6feBAwdi0KBB6NmzJ7777juMHTsWFRUVSEhIwIkTJxAUFITAwECXi2zRIgZr12qQlRWAmhrHTM+UKXbcdVck9PpIT18Ji8WC0NBQxMbGNn5zxAjZj1EuKisr0a1bN3Tp0sXbXbkiLly4gMTERJdkaR2d+vp6lJaWok+fPt7uyhVRVlYGi8Uia78LCwtRXV3tMo0kDvwi7onx/P39UVZW5tM1mju9KISHh4PjOBQXF7tsLy4uRpTbqh2RqKioK9ofABITExEeHo7CwkIEOc3lGwwGl78vfQfBE0/YcOaMHbW1DKKiCKKjSZPLUQGa5oJyedR4fQDK+BQMBgMAx8OUs/9ATH4nrkJythjE93z5mu30E2c6nQ7Dhg1Denq6tE0QBKSnpyM1NdXjZ1JTU132B4DNmzc3uT8A5Ofno7y8HNHR0QAg5VlpznHFcUCvXgRDhwqIiWleEAB1r+JRa7/ViBoHNCVEwTlYzdkaELc7Ry+7Z0tVa4p6Oej0ogAACxcuxIoVK7BmzRqcPHkSDz/8MEwmE+bMmQMAmDlzposj+rHHHsPGjRvx1ltvITMzEy+88AL27duH+fPnAwDq6urw5JNPYteuXTh79izS09MxceJEJCUlYfz48QAgOZzlXM2gVlFQ4yClVtR4fQDKBa+xLCv5CJyjlwGHWLhPH4n3bX19vc9et51++ggApk2bhtLSUixevBhFRUUYMmQINm7cKDmT8/LyXFYbXHPNNfj888/x3HPP4dlnn0WvXr2wYcMGDBgwAADAcRyOHDmCNWvWoKqqCjExMbjpppvw8ssvQ6/XA3AMhBqNRtZMqU2KgtXqiIi7+N0dEbUOVmpEjYOZUnEKoig4TxGJVoC7peD8s66uzuO0ry/gE6IAAPPnz5ee9N3JyMhotG3q1KmYOnWqx/2NRiM2bdp02e9sLoCtNTQShYoKaH7/HezBg2AEAXy/fuCvv94l5UVHQK0WjhpR63lWKk6B4ziYzeZGK40Ah8XvbimIf4tBbL6IT0wfeQPRUpB7+kia6zSZoF2zBpqff3ZEMAPgfv8d2k8+AVNaKtt3yoEan1zVjBrPt5Ki4D595Gwp8DwviYFzKu26ujpZ+6ImqCgoiNzps52fcthjx8CePAmhTx+Q6GiQrl1B+vcHe+4cWDGQrQOh1idYtaHW86ykKIj3oLtTWayd4CwGgiBIifHUKK5yQEVBQeQOm3cRhcJCMIQAFx1jjo0siL8/2NOnZftOOfDVm8tbqPF8K+VT4DgOHMdJBXecB34/P79GS1Kdp5x8NeUFFQUFUWL6SEruZTQCnpbNWa0g7kmVOgBqfYJVG2o9z0pZCuKKIkEQGjmVxchm96kljUYDvV7vs1NIVBQURMnpI6F/f5AuXcCcPetIZyEIYIqKAK0WwlVXyfadcqDGJ1c1o8bzraQo6PV6CILQyKnsnu7C2WIICAhATVOZKTs5VBQUgmEYRUWBdO8O25QpgL8/mKwsMCdPAoIA++23Q7i4dLYjodYnWLWh1vOsRA0DUWi0Wi14nm82etl99VFMTIwkGr6GzyxJ9QZyi4J7mgth5EhYevcGm5MDCAJIfDxI166yfZ9c0CWp7Ydaq4YpGacgxgs1lQPJeUpJXI0UFRUlZSXwNagoKEhL6zS3iLo6BP3xBwLOnYPm1CnYr7sOCAsDQkIgDB/emuawcyeHw4dZMAwwZIiA1FQeFx+eKJR2Rcl6CqKlIA74oqUg5kayWq0uloIaRVVOqCgoiFzBa0xeHvTPPovI48cdxUC+/x7atWthefFFCAMHXnF7JhPwn/9oceAAB4PBEQx98CCH48dZPPCADRfvFdmglkL7odZBTck0FxznKHHrnBjPPQeS+9JUX8a3j15hZJk+IgS6d98Fe/IkbDExaOjeHUJ8PJjz56F74w2gFe3v28fh4EEOPXsK6NlTQFKSgIQEAXv3OrbLjRoHKTWjxvOt1PSRKAJarbZRZLMYxFZXV9eo2I4v49tHrzByiAJTUAD2wAGHr0Cc49RoIHTrBjY3F+zRo1fc5smTLDgOLhaBWDLg1CllBhTZLQWbDUx5OZqsXeqjqNUiU7ocp2i1e4psFkXB2bdAi+xQFEEWS6GhAYzdDiEgAHCehtFqAbsdjNl8xU3qdMRjiAMhl3RHTmS9uQgBe+oU2MOHwVRVgWi1IAkJ4IcPB3x0tYg7ahzMlFp9JA7+Wq0WFosFRqOx0UojTzmQfBnfPnqFkcPRTHr0gBAdDbaszGU7U1YGEhoKoRWVqgYMEMBxQFXVpW0VFQx0OoL+/ZXJIy/XEyxz5gy4338HamshRESAGI1gDx0Ct21bhyo/6i2opXAJ56d/vV4vWQrO00csy7rkQKKiQEVBUWRxNOt0sM2eDeh00J07B215OdjcXDBWK+x33w3SihKXQ4cKGDfOjrIyFsePO16VlQxuuonHgAHyi4JsNzshYE+eBAFAYmIc81/BwRDi4hznxK1anq+iVktBKUezIAhSyhn3ugri++6ps9UqrnJAp48URK4lqfzNN8MSGAjrp5+CZGZCSE6GbeJE8BMmtKo9jQaYMcOOoUMFZGc7lqT27i2gb18BSj0kyXKT2e1gqqqAwEDX7QaDw8dQVwffvZUdqHUwU9qnYDAYQAhxSXch5kDS6XQu1dnE1Uq+ChUFBZEzeI0fNQrlvXsjLy8Pw1sRl+AOxzmmkZSwDNyR7WbXaECCgsAUFjpiNEQsFsd7NMhCtUtSlQxe8xTE5hyTEBAQgLq6Ohf/gy9Dp48URMksqWpDln4zDITkZDA878jzZLUCdXVgz56F0KMHyMX62L6OWkVBqTQXYttigkp3n4KnyGZfhloKCiJrRDMAxmZD+J9/Qv/ll4DJBGHYMNhvu63DD4ZyihlJSgJvNoM9ehRsQQGITgehf3/wKSkO88fHUfNDg1I+BbFtURQ8WQqAa2I8uiSVogjNOZqZnBxwe/eCsVrB9+0LYdgwx2R/U/A8Qj76CF1+/hlcQACIRgPuyBFwf/4Jy2uvdbgSnIrBMBAGDoTQqxeY6moQrRYIDQV89Ab2hBoHMyV9CuJAz7Jss5aCUv1QG1QUFKSpegqa//0P2lWrwFwMvNJoteBHj4b1H/+4FEXmBnvwIPy2bkVtSAiMPXoAAIjdDjY7G5oNG2D729+UO5A2osi0l8EAInc+jk4AtRQu4Z4VVaPRwGQyNfI16PV6AI40GO51nH0Rn/EpfPDBB4iPj4fBYEBKSgr27NnT7P7r169H3759YTAYMHDgQPz8888u7xNCsHjxYkRHR8NoNCItLQ3Z2dku+3jyKTA5OdCuWgUIAoTevR3lNLt2heb336H56acm+8MdPw7GaoXN2Zmq0YAEBoLbubOFZ4HiC6jxSVep3EfuuY54nofdbvfoP6ivr6dxCvARUfjqq6+wcOFCLFmyBAcOHMDgwYMxfvx4lJSUeNx/x44dmD59OubOnYuDBw9i0qRJmDRpEo4dOybt869//Qvvvvsuli9fjt27d8Pf3x/jx4+H2SnC2JNPgduzB0xNjWOdvXhBBgSAaLXgMjKaPAYiTi25P8HwvGtJzg6Irz95tSdqPc9KB6+JPgKNRgOr1epiKYjnzDmy2ZfxiaN/++23MW/ePMyZMwf9+vXD8uXL4efnh5UrV3rc/5133sGECRPw5JNPIjk5GS+//DKGDh2K999/H4DjAl62bBmee+45TJw4EYMGDcLatWtRUFCADRs2SO14tBREH4P7DaDVgjGZmjwGYcQIkMBA6CorLwlDQwMYsxn2ceOu7IS0M2p8clUzajzfSgeviT/1er0UxOaeGE+cWlLj+ZOTTu9TsFqt2L9/P5555hlpG8uySEtLw84mpl127tyJhQsXumwbP368NODn5uaiqKgIaWlp0vvBwcFISUnBjh07cMsttwCAlMO9vLwcABAQEAChZ09wGg2EmppLuXp4HmxNDaw339x0BHRcHMjkyWBWrwaTleXYptHAmpKChptvBpEhRbdSiCa7HGnE2xubzaaqYCbRkaq2cy3eK3L2271GghjEJmZLdRcNMVaBrj7q5JSVlYHneURGRrpsj4yMRGZmpsfPFBUVedy/qKhIel/c5r5Pfn4+goODXbavW7cOAPD555/DX69H3x49EHH4MASNBoJGA019PUzR0TjetSvM27Y1fTC9eiHogQcQdvIkWJsNtbGxKO/fH8Lhw5c/ER2A/Px8b3fhitm3b5+3u9AqtjV3HXVQsrKykCU+8MiEGMEsDv7+/v6ora11cUCLolFXV4eAgACfnz7q9KLQ3mi1WlRXVwMA3nvvPWzbtg0ff/wxACAwMNDx9JGaCu0vv4D7/XcwDQ3ghw8Hd/vtuLp792bbNplM2M9xGDp7ttKHISunTp0Cx3Ho2bOnt7tyRWRkZCAlJQXGJlaEdUQuXLiA8vJyDBo0yNtduSL27t2LhIQEhIeHy9ZmRkaGVFXN2VIQHc3uq5AIIeB53mctBJFOLwrh4eHgOA7FbsnSiouLERUV5fEzUVFRze4v/iwuLka0U+BYcXExhgwZgqCgIABAUFAQBEFASEiI6xcEBICfOhX81KnSJubiqznEaQy1PcmI5rja+g1Amk5QC+K0h5r6LMJxnKz9ZlkWFovFZZrIz89P8iG4p9A2GAywWCyqPHdy0umPXqfTYdiwYUhPT5e2CYKA9PR0pKamevxMamqqy/4AsHnzZmn/hIQEREVFuexTU1OD3bt3u7QprnSQi6ZW8dTXA3/8wWH5ci3+7/+02L2bvVSQraEB3MaN0L3xBrTLljmWr3oqpqAwal0Vo0bU+KSrhKOZYRhJFJyL7TAM42JBiOIQEBBAl6TCBywFAFi4cCFmzZqF4cOHY+TIkVi2bBlMJhPmzJkDAJg5cya6deuG1157DQDw2GOPYcyYMXjrrbdw66234ssvv8S+ffukaSCGYfD3v/8dr7zyCnr16oWEhAQ8//zziImJwaRJk6TvlT3NxcUL2/kGqq8HPv5Yi337OHCcY2HStm0cxoyx4747q+H/0mJwu3Y5lq4SAnz7LWx33AHbggVQLCVqE/2mKI9az7NSq37MZrPLNJFojYgLCJx9CwEBASguLlalqMqJT4jCtGnTUFpaisWLF6OoqAhDhgzBxo0bJUdxXl6ey9PBNddcg88//xzPPfccnn32WfTq1QsbNmzAgAEDpH3+8Y9/wGQy4YEHHkBVVRVGjRqFjRs3wuAUZStnllTA8xPg7t0c9u3jkJgoSOU1a2qAP/7Q4KbSn9Frxw4I3btLkdJMZSW0GzaAv+YaCCNHyta3y/VbrYOVGlHjoKaUpWA2mxvVSuA4DhaLBQaDwWX6KDAwkFoK8BFRAID58+dj/vz5Ht/L8BA0NnXqVEx1mvN3h2EYvPTSS3jppZea3EdcEy0X4k3jnPP9yBEWWq1rveWgIOD8eYDJ+MORG8jJUUpCQ8GUloLbt6/dRAFo/gmWECAvj0F2tuNm7N1bQGwsoemMWoFaxVepnENiMKmzQ1n0Nej1epftYmI88RyqUVzlwGdEwRs0lfuotYgXqfONzzCNg5xFWN7mOVEcIe3qV2ju5hIE4PvvNdi0SYOLqaAQHAzcfLMdt91mp8LQCtQ4mCkV0Sw6ld0jm93zHDEMI60yU1uMh9z4tp2kMEpNHzmLwuDBAux2h2+Bs1uQePZ39N39KVIqN4FNHQ7GYnHUHRCprQV0OghDhjj+FoSmVUVGmnqCPXaMxQ8/aKDTEfTrJ6BfPwEaDcH332tw4gS9PK8Uaim4Ik7nuqfFFkXBfTsANDQ0yN4PNUEtBQVRwtEMuN74I0fyOHqURc7WIkw+9hTiq4+CYQj8/YFAQ3cI8fFgz54FtFrJOrDfeCOELl2ge/NNsAcPAkYj7OPGwT5x4qUoaxlp7mY/fJiFxQL07HnpmKKiCE6cYHDkCIv+/dt/pZSaUWvqZ6UsBaPRCLPZ7LH+ss1m85gDqb6+XtZ+qA0qCgoi5j6S64L3JApGIzBvng31e95AoPUA6rrHwi/UgECDxVGRLDkZ1vnzwe3bB6LXQxg9GnxSEvT//CeY/HyQLl0AkwnalSvBZmXB+vzzDgGRmaaeYE0mxmMZCZYFfPyBzaeQWxTE681oNKKysrLR4G8wGKQcSM51FwAqClQUFESJcpxA4wHWUHYBoXl7QHqGIzBED4AA0IFERzuEYdAg2O+9V9pf+847YPLzISQnS8tSickEbs8ecPv3g7/6atn6LPa7KVHo1UvAn39ysNkuaZHV6lhBm5iozqkQb0IthUvtAYCfW91u8Vr09/eXciC5WwqmZhJT+gJ00lZBlPApeBpgmbo6wGZrnEJbrwdsNsf7TrBHjoCEhLjGKfj7A3Y7mNOnZetvSxg+nEe/fgIyM1mcP8/g/HkGWVksBgwQMGwY3659oXgH99gbORCf+t1FQRQBo9HYpKXQ0NCgWt+MHFBLQUHkXn0EeH7qFmJjQcLDwZSWgjjdBExFBUhQEIRevVwbCQwEU1gIl1ZEh7PbTaRUn0WCg4GHHrJi61YN9u1ziNRNN/EYO9aOwEDZu9LpUaulAMibvkW83kRHM887HjDEa9HPzw88z0uBbKJYiP0wmUyNBMVXoKKgIDqdTlZHM9DEAOvnB9t990H39ttgzp4FAgMBkwkgBPbZs0EiIlx258eNA3v8OFBV5RiVCQGTlwfSpQv4ESNk7W9L6NIFuPNOO+64w/G34mNaZSX0b74Jzbp1YKxW2G+6CZannwZJSlL4iymeaGggOHQoArt3G2G3azBokIBRo+zo0qX1bYr3iO6i9Sz6CZyzpYpC4V6C09/fH3V1dYhwu298BSoKCiL39BHQ9FO3ffJkED8/aNetA5ufDyEhAfY77oB98uTG+44fDyY7G5qMDKCwEGAYkPBw2ObNA7lMplY5+9x4P9m/ujH19fAbPx5sdjaYi4OC5ptvoNm4EaatW0FUlsnVHbVZCjYbsHq1Fps2xSEmRgOtlsGJExocPszib3+ztloYnOMTgEt+AmefAuCwINzrKgQEBKDObcrVl6CioCByO5qBZgZYhgF/yy3gb74ZsFgc/oSmBge9HrbHHwc/fjzYU6dADAYIw4aBuNWHkLPPHQXtF1+Azcx0yUjL8DyIyQTdW2/B8uGHXuubXHSk8305jh9nsWsXh4iIevTs6RiU7XaCzEwWO3ZocPvtrbO03VNbOK8oIoRAo9G4JMZzz4Ekpr/3RagoKIhWq4UgCOB5HhpP6y5bgbNDrIkdXHNeNAXLQhgwAIJTPicl6SiOOy4jw2MYOMPz0GzZAotXeiUfHeU8t5SzZx0ZfQMCLtUx0GiAgACCY8dY3H5769p1j1aur693EUsxvbiYKlvcl2VZxMbGIj4+XoajUyd09ZGCiPOZ7ZE+2x2z2REtfPAgi4oK2b7eBUIcsQSXM4Y61JOrn1/T2WE7iWOxQ53vy6DROK4j90vaZmOg17de4JxXFImi4O5Mdk6Y5zx9JHddB7VBLQUF0V5ceC/3stTLicLx4yy++EKD8+dZ8DzQpQvBLbfYcdNNvGzz9tnZDH79VYPsbBY6HUFqqoC0tKZXDHWUJ1jb5MnQfvFFo+2EZWG7+24v9EheOsp5binJyTwCAxlUVBiQkOC4OGtqALsdGD689dHs7gN9Q0ODi5UtCqfZbIZer4dWq1WdP0YpfFcO2wHRUpBzBZJzkI0nyssZrF6txfnzLOLjBfTp48iNtH69BgcOyPPvPn2awYcf6rBzpyNTa10dg/XrNVi1SgtPh9qRbjT+xhthvVhHg2g0IBezzfLDhsH66KPe7JpsdKTzfTkSEwluvdUMnmdw/DiL48dZlJSwGDOGR0pK6+NUnH0KHMdJZTbFe8fdUnAutgOo6xzKDbUUFES0FNpz+ujQIRYFBQySkwXU1zPIz2dgtwMVFQy2beMwbFjbcwllZGhQUsKgXz9BsjxCQwkOHuRw8iSPgQMbf0eHeYJlGFiWLYP9jjug+fZbMGYz7GlpsE+apEh6j/ZGbU+7DAPceKMFZnMOgoMjYLMxSEwU0Lev4DH9SUtxL7UpPqC5Z0212+2w2+0uVoWvQ0VBQcQLsT2nj2prGTAMUFjI4OhRDiaT48Yzm4Fff+UwZ44NF0tIt5qsLAahoa71Dvz9Hb6FCxcYDBzYuM8dCoYBP3Ys+LFjvd0TRehw5/uyEERHN2DMGPki2N2f/g0GgxSpLGYGABwPblar1cXR7OvQM6AgYpUnJUpyNkVkJIHNBhw+7Mgn1LUrQXg4gVYLVFUxSE9v3XNAeTmwe7dj+aBOBzQ0uA48F5f8N+mr7TCWQidHjedZqQypoqXAMAz0ej0IIS5lPwVBgJ+fn4uloD5BlR9qKSiMEvmPmrvxBw3iERKiwcGDDCIjBTQ0ODKRBgYSxMUJ2LWLxV/+AlycSr8shABbt3LYsEGDsjLROefwI4SEMAgLI+B5IDeXRXQ0wYABjZ/2aDnO9kNt00eAMn32ZCmIOZZEa0AUhaqqKjp95AQVBYVRQhSai1Pw9wduucWOY8dYAA5/QmQkQa9eAnjesdRPEFouCjk5DL76yrEyo29fx/fm5zOormZQUMCguNgxXRUTI2DGDDvCwmQ4SEqboKJwafWR2LZOp3OxFJxTWpSVlXmst+CrUFFQEIZhpDlLOdu83EU7ZIiAgQMJNBoBISEERqPjif/ECRY33MBfkT/14EEONTVA//6XvrNHD4LaWoKUFB5DhwrQ6QiSk4Uml6PSG639UON5Vmr6yNlS0Ol0EATBZaoIAAICAqTEeOJPQH3CKidUFBSmvaePAMegff31dvzyiwYmkyMIqKaGQffujliCK6GmxnMRHJ3OEXg0atTlnYO+fIN5A7WdbyXm8t0tBTGjgHMVNsAhCqJA0OkjB1QUFEbu9NktEQWGAaZMsSM2lmD3bhY1NQyuv57HqFE8unW7sifJuDgBv/3GwW6HJA4870ivlJDQ8uWtanyCVSNqPM/t4VMAAI7jGkU2i6m1LRaLy6okX4aKgsIoUae5JTc+xwHXXMPjmmvatsxv+HAe27dzOHmSRUSEYxlqaSmDnj0FjBzZsrbpjda+qO18K+lTcJ5G4jjOpdoa4AhiY1kWVqsVWq1WCmpT2zmUE2orKYjo4JLTp3C5iGa5CQ0FHnrIhgkT7OA4R9qgG2+04+GHbZfSGvM8PIYyO6HGJ1g1osbzrKRPwXkaSaPRNJo+EhPjmc1muiT1ItRSUBhvTB/JTVQUwaxZdtx1l2PgNxov9qW8HNq1a8Ft3gzYbOCvvhq2mTNB3Cq90RutfVHb+b5SUWAKCsCUlYGEh4PExDTZprNPQRAESRQ0Go0kAM45kPz8/KhPAVQUFEd8ChGrPMkBz/OyttdSxBLQPA/AZILfokXgDh0CCQgAWBaaH38Ee+AAGt57D0JcnPQ5QRBACPFKn9uKmPpcLXS4c00ImNJSwGoFiYqCp1ULYl6iy/a5rg661auh2bULjMkE4u8Pe2oqrLNmAQEBHtt0DmLTaDQwmUwIDAxsFL0sWgpUFKgoKM6ZM2ewc+dO3N7axPBudJSbXpeeDvbIEfDdujkK+gBAWBjY3FxwX38N29//Lu3bUfoMAJpt22BYsQKazEzw8fEw338/bOPHN7m/twS4tYhr8TtCn9mCAui++gqaY8cAnofQvTuskybBPny4y34tvT4Ma9ZA+8sv4CMjHTXJa2qg+flnCAwDy4MPuuzrnABPFAedTudSgtN5+an44EaXT1NRkB1CCGprawE4Lrz4+HjcdNNNOHPmDPz9/dts2tfV1YHjOJSUlMjR3VbTZf9+6KxWWBkGcPKZaLRa8Lt3u/SvuroaPM97vc9BP/2E6OeekxL4a86fR8C2bShZuBCV993n8TNlZWVSDis1YLVaUVNT4/VzzZhMiHj3XZCcHDR07Qqi10Nz4gRw9iyqH34YFqcpxoaGBjQ0NDTbZ660FFEZGagPCgJvNDoSbRmN4IKCwPz+O8qvuw68U+3O2tpaGAwGl6pqHMeB4zhJhJzTXQCOHGWGlhSo6uRQUZCZ2tpaBAcHu2ybMmUKAODXX3+VasO2FqvVCovFgsrKyja101b0LItAQYDNanUp+8mZzWgwGFz619DQAJ7nvdpnxmpF4r/+5Xhi1ekA5mJkt82KLu+/j3NjxoD3EH1XU1MDrqXh3x0Am80Gm83m9esjaP9+sFlZqI2NBRGjJaOjYczNBbNlCyrDw6V9RcumoqKiyYcmY14e+JoaWCIjQSyX6uMxWi30lZUwnTuHBqepH5ZlER4ejurqaheHs3MOJOepIqPRCKvVCr9OUmipLVBRkJnAwECpvuuOHTtw33334ciRI2AYBoGBgW2yFAghSE9Px4ABA2AUvb1egtHpoPvjD+hNJsdcMcMAVVVgjEZw99yDIUOGSPuePn0aDQ0NGNBOpT89we7bB11NDaDXgwEHqw2AQEB4Fto6E+LeWoOQxY9AuOoqSeQ2b96Mfv36ef1cXwkd4VwDAJeVBU1gIALcHMGMxYIAsxmRTteHeF336dOn6UG5WzfovvkGgQwDEhFxqb3iYiAmBn1GjwbchIZhGFRVVUnWgZhhwGazeUyM5xyroDZnvZxQr4rMMAyDoKAgBAUFoaCgAL1790ZwcDCCgoLafKFZLBYQQqAX5/C9COnXD/ZHHwXR6cDk5oI5cwYwm2GfMgX8Lbe47Gu322WrUd1ayMXvJwK5KAgCdHwDtMQKhhCwO3aA/9sT4L75xqv9bCtyx8W0FhIS4vjF3U9gMoFER7tsErOYms3mphuMiAB//fVgysrAFBUBDQ1giorAlJeDv/56F0Fwxn1pquhXcF6dRAiBv7+/lALD16GWgoJkZ2ejZ8+esrUnlg7sKBcuf9ddEFJTwe7YAdhsEK66CqRfP5fpJMAhCm0RMqGqBqf+ewDndpeg1BYC9uphGHlbOJKSWu4QJIMGgcTFgZw5C4Fw0MMKhjgGLDunx+nAq5BYW4DwTz4BP2YM4PQ0qiY0Gk2HEAVh+HAI3buDyc4GiYsDNBowhYWAXg/h+usb7W8wGJoXBQD8jBkAy4L7/XewhYUggYGwT50K/p57Gu0rCoE4+IsDvkajAc/zHhPj2Wy2DnNveRMqCgqSk5Mjqxnf0NDQ4RxhJDYW/LRpze5jt9tb7UthLlzA+QXvgRzKQRwIEjig+HA3rN/zCP7y/5JdEvU1C8vC+t57wB13Q2uuByfYQMCAsCwuRA0Bw3Io10cjvDwH7MGDEG66qVX99TYdRRTQpQvs8+dDs2oVmLNnAbsdJCIC/B13QBgxotHuRqPxsqIAoxH8/feDv+MOMOXlIF26OKIrm8A5K6ogCNBqtdL5cXZAA5cS44mf82WoKCgEIQQ5OTmYOHGibG2azeYOJwotwW63S6VJrwhCUP/JV7AdPYXSLn1hDNICREBs2SmMOLoam354Ff36se6GSZMIo0bhz6XbUf/WCtxYsBZ2jREl4X1h0QeBrwb8jACcgs8vLlJSFU2KAiFgDh0Cu3Mn2OJiCLGxEFJTQfr3V6wvpF8/2F59FcypU4DNBpKQALgtwhBpiaUgERoK0owYAJD8As7pLkRLAUCjdBf+/v4dZtm0t6GioBCEEJw+fRpJSUmytWk2m1Xl9BRptU+hrAz2/cdRxHWDIfCiqDAsKkPiEFuWhz1HclBV1bu5h8VGJN8ahzdPvAHmF2Bk5SbUs/5oqAX0eoKufAEQHo7CmKuQ/jmH774bgN9+88OoUSzGjuXd46M6JE2JAvvHH+DWr3eoXGAg2P37wZ44AX7GDAjDhinXIa22RcJjMBhQU1Mj61eLg7x7rQRP6S7EvEdyZh9QK3QCTSGKiopQW1sru09BrZaCiygIApgzZ8BkZjrSrTYBY7eDBQ/CcXCuKySwGoC3QwsrrjSEIDwcePBBO/Im3I8iYwK6lOWgh+00ktlM6I0syqbOw7tfxOD77zk0NHAoKWHw2WccVqzQNNfVDoMoCi5TILW14LZsAYxGkN69QaKjQfr2Bex2sFu2ONb8e5krshRaiLulIP6t1WobWQpiDiSLGv7JCkMtBYU4deoUYmJiZF333BlEgcnKguY//wF76hTA8yAxMbDfdx+EsWMbfY507Qr//j0QczoTOZVBCA1jwLBAQHUBShCJ2LEJaI2rIjGRIP71RJRMfxfajE0ILc4C0zUc1uuvx+bc4cjJYdC/P8HZs2b06CHAZiM4cIDF0aMshg9vebpwb6DRaKS5dDG+gikqAsrLQRITXfYlkZGOFTxlZY1WBMlCRQXY/fvB1NSAREdDGDoUaOL6NRgMaGhokD05niiOzuKg0+lgsVikcyVONYnZUn19SSoVBYXIyclBz549Zb24lBCFkhLgzz85HD3KwmgkGDlSwDXXCLjSxUKEAPX1jvxI7u4DSRTKyqB99VUweXmORGYaDZjz56H5979hCwkBcVq7DgDgODB33Yno7A/AHDuOyvOB0PP1qNcYUTzmDtw0pfWBgCwLRF0VBVw1C86zyMd/ZBAY6Fqu1M/PkQQ2L4+BW4aGDocovna7/VLQnfhPsVhc/zlWq2N6R4GIbebYMWg++ADshQsAAMKyEPr3h/2xx4CuXRvtL0Yf22w22SLInXMfOVsKOp0OJpMJWq3WJYiNWgoOqCgoxKlTp5Do9mTWFmw2G+x2u6yiUFwMvPeeFtnZDIKCALudwZEjLE6f5jFnDt/iOs7HjjHYtInD2bMMjEbgmmsE3HQTDz8/xzpxMUMlt20bmHPnQHr3lkZdkpgIJisL3KZNsLuLAgAyZAj8X3sKMT9lwLj/LGr8o6EZdS1unzwYegWMpoAAwGZz9S6LDucOEB5yWcT6AM7LgEn37iCJiWCPH4fQu7ckEGxBAfhRowCn9BBXAiEOoayoAEJCgPh4R70NmM3QfPIJmMJCCH36OP7XZjPYw4eh+fpr2B95pFFbGo1GmuuXM62Ie5yCIAjQ6/WorKyU4hTccyD5OlQUZMI55xEAnD17Ftdddx32798PAG3OeySatWfOnGlzX0V++SUEBw+GomfPBkkA6upY/PKLFtHRxUhKuvwNkpNjwOefR6CujkNoqB1lZQz+7/84HDpUh2nTykAuxgLk5uYi4tgxhJnNMNfVubShBWA9fBjns7Ka/qIJox0vAAyAs+dOteaQL0tkpD+qqiJw+rQNhAAVFZUoKdGDZQE/vyJkZXl//r0lnD592iU2RHvVVQjLz4du/34whICwLMzx8ajo0wd8c+e9CerqWPzwQxhOnvRDfT0Ho5FHnz4NmDixAl3zjyH6+HFYu3UDcXIeawwGID0d50eOhOAhpQjDMDh9+rRsU66EEDQ0NDSyGAwGg+R3ca+hYLfbYbPZOkSAqLegoiATnnIerV+/Xvr9jz/+QEAblq/wPC97VPCpU0YEBrpaBAEBAoqKGFy4oLusKBAC7NwZiNpaDomJZmlpaEAAj2PH/HH11bXo3t0hAAzDwB4aCgIAguCYv7kI29AAa1SUrMfWWgYPNiE/X4d9+4JQXh4Eg8GA0FABN91UiZgYdQiCp0JMtshIlMyYAUNuLrjaWvAhITAnJLR66ujXX0Oxd28goqOtiI62wmRiceBAADQagvuTrQ5/kdv1SrRasA0NYG02ePLMcBwn65JQhmEQGRmJkJAQ5OXluTiaRYFwnj4S3zOZTG26V9UOFQWZcM55JAgCYmJi8NNPPyE5OVl6vy2Wwvnz50EIQZ8+fWTpLwDExGhgsbAID780gBACFBUxiIszok+fJpyPlZVgMzNh41nYynsgPj4AERGXbqLwcMBkYqDX+yE2thJlZWWOfoeFQbdzJ4wXLoB07+7wGRQVgUREQHPvvQiR8djaQnIycOYMg6+/zsKQIf0xeLAG0dHqSZRWVVWFqKgoREZGNn7TwxTdlVJWBuTn69CrF0FEhMOvExEBBAUBhYUB0E8eC//Yn+FvtV5yYBMCprgYwsCB6JmS4vJQICJO5fTu3bvNfRThed4lTkH8qdVqpXQX4n1JCIHBYIDJZJLt+9UIFQWZEHMeAUBeXh7MZjMGDRokW1yBEk7mlBQBx4+zqKtzzKUTAuTnMwgNhUuksGMaBWBAEL5nEzSffwamtBQaMJhVEoNN3eeiPnKMtL/N5rjn/f3dlqNGRMD2zDPQfPQR2DNnHE+TUVGwz5jhWJkiEzwPZGYyKChg4O8PDBgg4OK/pkWwLJCURDBsWAlGjeoNo1Fdt4nc1f7cqa1lUF8PdOvmut3f3yEYVbpIRN96K7gvvwSTnQ34+YGprgYJDQV/550eBQFQJlbBOYjN2bcg5ohythTExHh1dXV09ZEvUlFRgUcffRQ//PADWJbF5MmT8c477zRrNn788cf4/PPPceDAAdTW1qKyshIhYuKvi8THx+PcuXMAgPCLSbpefPFFLFq0qE39bWhoQKCHedi2MHq0gJwcATt3stJS9ZAQYPJkO7p3d4hCbi6D777jcOoUi9iKw5iV/QkiuwowXMyH3732PG448T5+joiBPaEXbDbg9GkGsbEE/foJMJlco5lJ//6wvfMOmJwcRzWupKRL9T1loK4OWLVKg/37WanMQ2wswezZdiQnqyw8uZUoneoiPJwgJISgooJBt26XzmllJRAURBARQcBPngwSGQk2IwNMSQmE4cPBp6U1G8hmMBgUqQPhnCpb9CFoNBpYrVYXnwIhBH5+fi6+QV/EZ0VhxowZKCwsxObNm2Gz2TBnzhw88MAD+Pzzz5v8TH19PSZMmIAJEybgmWeeaXK/2267DeXl5fjvf/8LALIM5mazGREyJ2kzGIB58+xITWVw7hwLnY6gf3+CHj0cN3pxMfDRRxqcP88gOppgQNlWmEtqcUjbH0NsAgxGIGRoPGK3nkC33J34paE3WBbo0cNR0zkgAKiu9hDNzHEgck0V1dU5nkIjIwGNBps2cdi+nUVCAkFAgGMpaU4O8OmnGjz3nA2+kC5faVEIDASuv17AunUceJ5BSAhBdTWDmhpg8mT+YoQ5C+G66yBcd12L2xVjFeREtA7cVyFpNBrU19e7rD4SBAH+/v4oKiqStQ9qwydF4eTJk9i4cSP27t2L4RcXnr/33nu45ZZbsHTpUsQ0UQz87xdLTGZkZDTbfm1tLZKTkxElo/NUqRQXGg0wZAjBkCGNHXx79nDIy3MEcrEs0JUphS5Ij5paoKSEQY84Ak7DILIbh4kjipFwkx1GI5CcLEiDr2Jps6uroX35ZXD/+x8YqxWka1eYH34UO07OQ1jYpZK9Gg2QmOiwXjIzWQwd2rGDz+TgikWB58FkZjqSzIWEgCQnNw42ceOWW3jodAS//86hqopBUBDBbbcJGD++9Y5ig8EgPb3Lna3UPbKZ4zjYbDbJ5wA4RCEkJARXX321rN+tNnxSFHbu3ImQkBBJEAAgLS0NLMti9+7duOOOO9rU/q5du7Bnzx7s27cPd911Fx599NE2DYyCIMBisbR7NHNeHgO9/tIUcHloEuLP/wmNRkBd3cU5V54HY+cRNCgO114rXEpOZ7WCPXYMhhMnEBgUBAwc2ORc8hVDCHTz5oHbuhVEowHRaMAUFMCw+FmkDOCwc8Bcl921WoefwVeWoGs0mpY/cVdUQPPJJ2CPHnU4gzQaCH37wv7XvwKeHNXSdwATJggYO1ZATY3DemjrM4ter5diBeSugOZuKXAcB0KItNRbXK0l+ht8GZ8UhaKiInR1i6rUaDQICwtrs+n46KOP4t1338X8+fOh1+uxZMkSFBUV4Y033mh1m2JFqPauFdylC4HV6nA0MwxwOmEcep5NR7fCk/DvGgmUCTDlFCOXTcSnm6+HMUuDMWMEXNsjD7r33wWTlYUu1dUI0+uhOXIE9kcfbTJL5pXA7tkDbts2EKNRiigjBgOY6mrcemoZfoyYjS5dOEmgyssdK2NiY33Dp6DVals8L86tWwd2715HCgx/f6ChAeyhQ9D897+wL1zYqDaGOwZDk5krrhiGYaQcSHKJghij0NIcSLSeQidLiPf000+7lNPz9MrMzFS0D4899hhKSkowbtw4/PWvf8Wrr76K5cuXtyl83lvFdYYPFxASApw9y8BuB8qN3fFpj2dxpvsodPG3oKLIhs3CDVgR+f9Qo49ATg6LT1awyH/qI7DHjoF0746GxETwXbqA27YNmmb8NVcCc+KE49HfTSSJXo9Qawl66Ipw4gSDoiLH0tKSEgajR/OS87yz0+Lpo9JScIcOOVKOiEmkjEaQuDiwJ06AOX9e2Y56QInEeMAlS8HZ4azT6SRRcLYUfJ1OZSk88cQTmD17drP7JCYmIioqqtEqB7vdjoqKijb7Ac6fPw+r1SqluBgxYgTsdjvOnTvX6vXX3iquk5REcN99dnzzDYfsbMcTY3RCHwQueh5Cj1K886YOudVdkHgxEWxkJIFwLBOWg1mwXNsDWqMRgskEBAaCaDRgd+4Epk93LHFqC2LpRZ53zGOI2O1gjXrc96g/tuwSkJPDIDZWwKhRAsaMES730NtpaKkoMPX1jnxI7rnHjUbHKgMvrNdXOluq89JUMTGemANJ3JcmxOtEREREtGiFTmpqKqqqqrB//34Mu5hL/rfffoMgCEhJSWlTH7Kzs9GjRw9pqufIkSNgWbZNK4e8mR31mmsEDBok4PRpx02SlETg7w+cPx+Bs7VadI10ffqODqwDLBbU8n4Iw8UnNJYFMRrBVFaCMZku1e9tJXxaGkhMDJiCApCAAEduHYsFjN0O+/Tp6DPMH32G2cHzDjeGr93fLRUF0rUrSJcuYEpLHSUzL8KUloKEhiqTOfUyKGUpiGLgbCno9XrU1NRAr9fT6SMnOpUotJTk5GRMmDAB8+bNw/Lly2Gz2TB//nzcfffd0sqjCxcu4IYbbsDatWsxcuRIAA5fRFFREXJycgAAR48eRUBAAEJDQxEWFoY9e/bg/fffR//+/bF161YcPnwYS5cuxaRJk2C1WlFcXNyq/lZWVkKj0bT683IgGlB1dY5XbS0Lng9DZaUAOCUtqOe7YLgmCJFlF1DvHw673Q67zQZrcTH4iAiU87zjKbSN6N58ExELF0Jz0QdEOA4NKSkoffBBkFa2X1jIYf9+Pc6f16JLFx7+/oEoLS2DXt++vpy20tDQ0OLrzZiSgoD164Fjx8AHB4OtrQVjs8H0l7+g3mKR5X91JVitVlRXV8t6rYu1mt0tBoPBgLKyMkksfN1CEPFJUQCAzz77DPPnz8cNN9wgBa+9++670vs2mw1ZWVmor6+Xti1fvhwvvvii9Pd1zazB/umnnwAAM2fOxD333IOzZ8+2uq9imt+OlMGRECAy0oIDB0LRvXs99HoBNhuD8/lhGJwwAn2qvoHVUgH24sqgBpbFhRtvREVhocf2eB4oL9eDYYCwMMvlM7QGBiLn/fcRtm8ftJWVMCUmoiY52RF6XVFxxceTl2fEhg3dUVbGQq+3wmplodEkwWIpxdCh8kbZtgZNbS0CMzPBmc0wR0WhrmfPJldzCYIAnudbds3FxiI4LQ2h+/ZBV1kJW1AQqoYNQ2VSEtCGa7a12O12mM3mNt0vnggNDZWmiUQREBPjOUc8UwCG+HqV6jbinh11ypQpuPbaa/Hggw8CaHvOIwDYsWMHevfuLUVIdxRKS4FPPtHgxAkWPO+YpklKEjBvthk9Dv8EdtMmlJ4+jeC+fcFNnAjh+us9zuWcPMng22855OY6BrmEBAGTJ/Po06d9Lk1CgLfe0uDAARb9+hGpizt2FCIpKQKvvEIgczD5FcEeOADNe++BKSiQcnjzqamO2gQeqgxZrVZs3boV48aNu1RT4XIIAtDQ4FhK1NLPKEBdXR12796NcePGyTZIi5YCx3FIT09Hamoqjh49iri4OBw9ehRdu3ZFUlKS9L0sy9IsqZTW45zziBCCc+fO4cEHH5S2tRVCSIetuBYRASxcaMeJEwzKyhiEhDjyDBkMGvDxE2G/+WYc+uUXjBw3Dn5NjKoFBQw+/liD0tJLKROOH2dRVsbgySdtaI9p7fJy4PRpFjExxEWzwsMbUFLC4swZAYMHe+nZqaYGmvffB4qKICQlORzrtbXgfvsNpEcP8Pfe2+gjHgvtXA4xWZWXUbLYDuAar8BxnJQYzz2Fti/jc16ViooKzJgxA0FBQQgJCcHcuXNR55bf352PP/4YY8eORVBQEBiGQVVVlcd277nnHpw6dQqzZ8/Gww8/fNl2W4LdbgfP8x1SFADHqtAhQwjS0gQMHy64rFkXOA42Pz9omnnq2rOHRWEhg759CYKCHPEEffsSFBQw2Lu3fZ5YRWe04BbsLMZneNP3yB44AObCBUccgbjSKjAQJCgI3G+/OfJ4uH/GqdBOUxQVAdu3s9i5k0V5uVK9v3I0Go1iU6ViVlT3HEhibQXqZHbgc2dhxowZOH78ODZv3owff/wRf/zxBx544IFmPyPmPHr22WebbffQoUNgWRbr1q3D9u3bMX/+/Db3t6GhQapKpTbEQam5vhcUOOLPnB/SWNYhNk24H2QnNBTo109AQQEDMZ0/IUBxsT9iYgQkJXlxhrWhwaFW7k/8BoPjvSayoTa1AokQ4OefWbz8sg7vv6/Be+9p8OKLWvzxR8cZCpRclur8u5gDyT1bqq9bDB3nSmgHxJxH//d//4eUlBSMGjUK7733Hr788ksUFBQ0+bm///3vePrpp5vMiSK2+9BDDyE+Ph7XXXcdli5diq+//hqFbRzZlMp51B7Y7XbpqbUpIiMdS+WdPVuEOMoHeyjlqwgMA0yaxKNnT4LMTAYnTjA4doyBn58NU6ZY5UziesWQhATHtI6zdUoImLIyR2nNJizIpkThyBEGX3/tEOl+/QiSkwnMZgZffKHBmTMdYzBUclkqAJe6CmKacepovoRPicLlch61tV0ASEpKAsMwksNq7969bepzR/UntISWJMMbPlxAeDhBdrbjwbe+HsjOBrp2JRg+vP2S13XvTrBokQ3332/HzTfzuPdeHnfddcpjosD2hPTpA/6668AWFYE5dw5McTHYzExHbYI77mgyCKMpUdi3j4XFAsTEOJIcilltKyuBQ4c6xnCglKUgVnVzDmJjWbZRYjxfR31zEm1AqZxHYrvZ2dno2bOn1G5oaGib11t3dlGIiyOYO9eO//1Pg/x8xwDXowfB5Mn2ds9VFBoKpKVdEqLNmzvAEmCGgf2RR0Di4sBt3gzU1oIfPRr8X/4CMnhwkx9rqtBOTQ3jnh0EDOOYneooBceUKLYDwGX6SLQUOI6DIAiwWq1UFC7SKUTh6aefvmzCuZMnTyrej5ycHNx4442ytmk2m2VbydTetDRt9lVXEfTrZ0NenkMU4uJIo4HLpzEYwE+e7KhaZrdfNq010LSl0LMnwa5djrgQ0U1hszncFh0lYaDBYFAkUNM5atl5ukij0cBsNtPpo4t0ClHwds4jsV1BEPDwww9L7VZWVnquk3sFmM3mRtaNWrDZbC12kOv1QK9eHWNQ6rAwTIsEAWhaFK6+msfOnSyOH2fQtSsBIQxKS4H+/QUMG9Yxak0oNX3knN/IPTFeQ0ODS2I8X6ZTiIK3cx6J7dbW1krTRxkZGRAEASNGjGh1u4D3kuHJgWIFdiiXpSlR6NoVmD/fjk2bWBw+zIJhCG6/3VEcx5sBes4oVWzHvcqaKAJ6vR4Wi4WuPrqIT92xcuY8CgwMRI8ePRAWFobk5GSMHj0a27ZtQ2lpKYqLi/HEE09gypQpiG5D9JU410lFgXKlNFdop1s3gvvv52E289Ly346EUsV2nPMfOSfIMxgMqKur8+koZmd87o6VM+fRhx9+iBkzZgBw5DgqLCzELbfcApZlMWbMGMybNw8HDx5sdV/F1RLt4Q9Rgrq6OjAM06Zz4G2OHz+uSgdkQ0MDbDabas89wzA4duyYrFXQxCXS7r4FvV6P8vJy1S79lhua+6iV1NTUILiZKmL79u1DgFgouJWYTCYUFRVJU1Jqo6CgADqdrsPlbGopmZmZ6NmzpyrLM1ZXV6OqqgpxTimx1cS5c+cQEhLS7D12pYiZUSMiIrBlyxaMGzcO+/fvR0xMDE6ePImuXbti8ODB0Gq1qvyfy4XPWQpyERgYiOrqaunvxx9/HBqNRrIo5EiEV1BQgLq6OsTGxrapHW9RXl6OsLAw1fY/MzMTMTExqpy+0+v1qr52qqurYTQaZe2/OG3kbCmI00fOmVJ93aegPru4lbQm55HZbMbf/vY3dOnSBQEBAZg8ebK0VE5MhBccHIzg4GCsXLkSH3/8MaKjo7Fp0yZZLiw1O5kB6lPwJi0uydlBUTKq2X36iGVZKTEexYdEoTU5jx5//HH88MMPWL9+PbZu3YqCggLceeedjfZbuXIlYmNjsXbtWpw+fRq33367LH1Wc+AaQEXBm1BRaIxoBXhamkpF4RI+cceKuYn27t0rpbh47733cMstt2Dp0qXSyiNnqqur8cknn+Dzzz/HuHHjAACrVq1CcnIydu3a5ZIHyd/fHxcuXMDw4cPbXOPZGbPZLOucantDRcF7OGf/VON0iJKWAs/zLgLhni3V1/EJS6E1OY/2798Pm82GtLQ0aVvfvn3Ro0cP7Ny502XfRx99FIIg4N5778WaNWtku7DUnAwPoKLgTTQajctUidoQRUHuQdpZCAA0ypZK8RFLoTU5j4qKiqDT6aREdyKRkZEun3nppZeg0WiwYsUKTJo0CY8//jhMJhMeeeSRNvW5IxfXaQmEECoKXqRVhXY6EEajUfZiOyKegtiayhXli6jaUnj66aclM7CpV2ZmpqJ9eP7556HRaNC/f3888cQTePzxx7Fs2bI2t2uz2aSVEWpEEAQQQqgoeImWFNrpyIhV0ZTKlupsKTAMIyXGE2s2+zKqvmOVzHkUFRUFq9WKqqoqF2uhuLi40WdycnKQmJgIABgxYgRef/11WCyWNkVINjQ0QKvVqvIpD4D01EVFwXuofUpEnEKSOyGkc/oM5985joPJZIJ/ByhL6k1UfccqmfNo2LBh0Gq1SE9Px+TJkwEAWVlZyMvLQ2pqqsu+2dnZuOOOOwAAR44cQWhoaJtD5tU8dQRcmrZQYzRwZ6GziILcODvfnVNf6HQ6l0wGvopP3LHOOY/27Nkjlcp0z3nUt29f7NmzBwAQHByMuXPnYuHChfj999+xf/9+zJkzB6mpqdLKox9++AErVqzAyZMn4efnhxUrVuDNN9/EQw891OY+Uyczpa10BlFoKn9Ta3EuxSkGszlnSzV1lKISXsRn7trW5Dz697//Le1rsVgwfvx4fPjhh9L7Wq0W77//PoqKirBgwQL07NkTr7/+OubMmdPm/nYGS4GKgndRu/PUYDC4ZA2QC3H1kXtks16vp6IAmvuoVRBCUFtbC8CRMO21117DggULwDAM/Pz8ZHFUVVVVQavVqnZ+02w2o76+HmFhYd7uSqspLi5GeHi4av06neEaMplM6NKli+zt8jyPq6++Glu2bMENN9yAw4cPw2g0orKyEmPHjlXt/1wO6KNcK6itrW0UVPbDDz8AAHbv3t3mRHiA44YODAyUpS1vQAiBzWZTbdU4wCEKgYGBqrV4GhoaoNFoVPs/0Ol0qKurk73/4n3lXLNZXOlXX1/v8wFs6rzavYxzMry3334be/bswcqVK6X35LAUzp49i9jYWNVGNJ89exYMwyA+Pt7bXWkVhBBkZ2eje/fuqp3Gs1gsIISo9n9gsVhw/vx5xMbGyvrkLvoSRFEQ/QwGgwFhYWHgeV61DwJy0OkczR988AHi4+NhMBiQkpIiOY6bYv369ejbty8MBgMGDhyIn3/+2eV9QggWL16M6OhoGI1GpKWlIScnB0FBQQgKCsL58+fRt29f6W85BIHnedhsNupoprQJtTuadTodGIaBxWKRvW3naG/nHEhDhw716bTZQCcTha+++goLFy7EkiVLcODAAQwePBjjx49vFKMgsmPHDkyfPh1z587FwYMHMWnSJEyaNAnHjh2T9vnXv/6Fd999F8uXL8fu3bvh7++P8ePHS0vlcnJykJSUJOtxmM1mKUmXWqGi4H20Wq2qRYFhGMWWpQKXYhScRYHSyUTh7bffxrx58zBnzhz069cPy5cvh5+fnzS1484777yDCRMm4Mknn0RycjJefvllDB06FO+//z4Ax9PEsmXL8Nxzz2HixIkYNGgQ1q5di4KCAmzYsAGEEOTk5MheBEdceaTmyEoqCt5H7ZYCoHy2VPd4BUonEgWr1Yr9+/e7JLBjWRZpaWmNEtiJ7Ny502V/ABg/fry0f25uLoqKilz2CQ4ORkpKCnbu3AmTyYSCggJFLAW1zmOL2Gw2KgpeprOIgtyxCsClbKmeIpt9nU5zFsrKysDzPCIjI122uyewc6aoqKjZ/cWfTe1z6tQpBAQENHq/rai9uA7gsBTUPP3VGegsoqDE9JH7lBEVhUvQs9AGsrOzkZiYKLvZ2RksBTp95H2oKDQPnT7yTKcRBTHISCyXKeIpgZ1IVFRUs/uLP5vaR/QnUFFoDBUF79MZCscYjUZFLQXx3nW2FHxdHDqNKOh0OgwbNgzp6enSNkEQkJ6e3iiBnUhqaqrL/gCwefNmaf+EhARERUW57FNTU4Pdu3cjNTUV2dnZsvsTAPXnPQKoKHQE1F5oB1Cu2A7QdLZUX6dTnYWFCxdixYoVWLNmDU6ePImHH34YJpNJykU0c+ZMPPPMM9L+jz32GDZu3Ii33noLmZmZeOGFF7Bv3z7Mnz8fgOOJ4e9//zteeeUVfP/99zh69ChmzpyJmJgYTJo0SZGVR2ovrgPQAjsdBedCO2rFYDBIxXbkxDkxHkCnj5zpVHfttGnTUFpaisWLF6OoqAhDhgzBxo0bJUdwXl6ey9PANddcg88//xzPPfccnn32WfTq1QsbNmzAgAEDpH3+8Y9/wGQy4YEHHkBVVRVGjRqFjRs3Qq/XKxKjYLVaQQhpc+ptbyJGilJR8C7OhXbUej05F9uRuwKbOH0kWlPUUnDQ6e7a+fPnS0/67mRkZDTaNnXqVEydOrXJ9hiGwUsvvYSXXnrJJRFefn4+7HY7goKCcOHCBQQEBMjypFFbWwuNRqPqbI1iBGp9fb1qn77E6Yra2lpYrVYv96b1sCyL6upqSajViFarRXl5ueztiten+L9W67UqNzRL6hVQU1PTZC6i9evXw8/Pr83fIQgCBEFQ9VO2OH2k9iWpNputUxyDRqNR9YBnt9slq0duunbtin79+mHz5s0YO3YsdDqd6gNH24p6Rx4v4JwIb926dXj//fexceNG6T25EuFVV1dj8ODBbW7LW1RVVeHIkSO47rrrvN2VVkMIwZYtW3D11Ver2r+ze/duxMfHyx5L055kZmaCYRj06dNH1nZFB7xztlRfFgORTjOJJncivNmzZ0vh8OLr5ptvlhLfFRQUoHfv3rImwgM6x8ojGs3ccaCxCk3jHKMAgC5JvUinEAUlEuEBwIQJE1BYWCi9vvjiC+m97Oxs2VceATRGgSIvaq++BigXqwCgUQptSgcWhbVr16JLly6N0uZOmjQJ9913n8s2uRPhiej1ekRFRUmv0NBQ6T0llqMCnUcU1D4X31mglkLTOAeuibMBlA4sClOnTgXP8/j++++lbSUlJfjpp59w//33S9uUSIQnkpGRga5du6JPnz54+OGHpRUQYnZUJQLXOkveI2opdAw6iyhYrVbFVlA5xyhQYejAomA0GnHPPfdg1apV0rb//ve/6NGjB8aOHSttUyIRHuCYOlq7di3S09PxxhtvYOvWrbj55pvB8zyqqqpQVlYmuyjY7XbY7XYqChTZ6AyiIBbbUWoKyTlbKqWDrz6aN28eRowYgQsXLqBbt25YvXq15ABWmrvvvlv6feDAgRg0aBB69uyJjIwM+Pv7IywszGU6SQ46Q3EdgIpCR0Kr1UqxNWrFudiOv7+/7G1TUXClQ9+5V111FQYPHoy1a9fipptuwvHjx/HTTz+57KNEIjxPJCYmIjw8HDk5OfDz81MsEZ7RaFS9CdsZrJ3OQmewFABls6XS6SNXOrw8/vWvf8Xq1auxatUqpKWlITY21uV9JRLheSI/Px/l5eWIjo6mK48uA7UUOg5UFJqHluJsTIc/E/fccw/y8/OxYsUKFwezM3Inwqurq8OTTz6JXbt24ezZs0hPT8fEiRORlJSE8ePH05VHl4GKQseBisLlcU6hTVGBKAQHB2Py5MkICAjApEmTPO4zbdo0LF26FIsXL8aQIUNw6NChRonwCgsLpf3FRHgff/wxBg8ejK+//tolER7HcThy5Aj+8pe/oHfv3pg7dy6GDRuGP//8U0qER0WhaagodByoKDSPe7ZUSgf3KYhcuHABM2bMaDbTo5yJ8IxGIzZt2uTxPaWXo4aFhcnebntDRaHj4FxoR81Pw0oGsFFLwZUOfedWVlYiIyMDGRkZ+PDDD73SB+fMqIBjCWxAQAAMBgNyc3Nly44KACaTCRaLBWVlZbK05y2sVitqa2tVnZlTTH1QUVEhe8rm9sRms4EQgtLSUlU/DZvNZjQ0NKC0tFT2AbympgYsy6q6Qp2cdOgsqfHx8aisrMTzzz+PRYsWeaUPzWVGBYDvvvtOlmVyhBCYTCb4+fmp+ualx9Gx6GzH4e/vL7soEEIQHh6O3r17Q6vVqn5JeFvp0JbC2bNnvd0Fl8yoAPDZZ59h5cqV+OGHH6T35bhIzWYz/vzzT6Smpqr65rXZbMjIyEBKSoqqp5DELKnDhg1TvZ8nPT0dQ4YMkX2Nf3uTkZGB/v37N/uQ1hrUXK5UCdQ7+uDKMqMeP34ckydPRnx8PBiGwbJly1rU5t69e6VMqEFBQcjPz0efPn0UyY6q1+tVLQjApdKPHMd5uScUEepsbh7qT3BFtSPQlWZGra+vR2JiIl5//fUmg9Ra0qZSK486Q84j4JKTmd5oHQcqCpeHEEJ9ChdRrShcaWbUESNG4M0338Tdd9/d5Cqmy7Uprjyiy1Gbhq486nhQUWge97opvo4qRaE1mVHlaJMQgtOnTyuyHLUzFNcBqCh0RDqLKChdV4FaCg5UKQqtyYwqR5slJSWorq6mlkIzUFHoeHQWUVBy+ohaCJdQpSh4i1OnTiEqKgoBAQGyt01FgaIUVBQoV4IqRaE1mVHlaFNMhKfEUwUVBYpSdCZRULLYDsWBKkWhNZlR5WgzOzsbiYmJbeu8B6qqqvDLL7+oOnJWZN++fcjMzPR2N9qMIAjYvHkzTCaTt7vSZs6cOYMdO3Z4uxttRqfTYevWrcjPz5e9bTp9dAnVPtItXLgQs2bNwvDhwzFy5EgsW7asUWbUbt264bXXXgPgcCSfOHFC+v3ChQs4dOgQAgICJMfx5drMyclB7969UVFRIeuxHD58GCtXrsQ//vEP1Q9CGzZsQHBwMG644QZvd6VN2O12fPDBB5gxY4bqB4ydO3di9+7dmDhxore70ma++uorDBgwAIGBgYq07+fnh9DQUNX/z9sEUTHvvfce6dGjB9HpdGTkyJFk165d0ntjxowhs2bNkv7Ozc0lABq9xowZ0+I233vvPY9t0Bd90VfneVVXVys9dHVoOnTuo44GcUuOJxcrVqzAr7/+ivXr18vednszefJk3HrrrU3WvlALPM8jLCwMmZmZiI6O9nZ32sT333+Pt956C1u3bvV2V9rMI488gtjYWJf6KHIjV+oatUJFoQNQX1+PmpqaVjvJOxIlJSUwGAwICgrydlfaBCEEeXl56Natm+od5yaTCTU1NaoXN8BxfRmNRsWmjyhUFCgUCoXihCpXH1EoFApFGVQpCnJnR33hhRca5T/p27evgkdAoVAoHRPViYIS2VEBoH///igsLJRe27ZtU+oQKBQKpcOiOlFQIjsq4Ij6jIqKkl7h4eFKHQKFQqF0WFQlCkpkRxXJzs5GTEwMEhMTMWPGDOTl5bW1uxQKhaI6VCUKSmRHBYCUlBSsXr0aGzduxEcffYTc3FyMHj1akZgECoVC6cioewG2TNx8883S74MGDUJKSgri4uKwbt06zJ0714s9o1AolPZFVZaCEtlRPRESEoLevXsjJydHtjYpFApFDahKFJTIjuqJuro6nD59ulNEgFIoFMqVoLrpIyWyoy5atAi333474uLiUFBQgCVLloDjOEyfPt07B0mhUCheQnWiMG3aNJSWlmLx4sUoKirCkCFDsHHjRsn5nJeXB5a9ZAAVFBTgqquukv5eunQpli5dijFjxiAjIwMAkJ+fj+nTp6O8vBwREREYNWoUdu3ahYiIiHY9NgqFQvE2NPcRhUKhUCRU5VOgUCgUirJQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFBbiScqErVqzA6NGjERoaitDQUKSlpTXanxCCxYsXIzo6GkajEWlpacjOzlb6MAB0rtKnch/LlbYpJ1f6vevXr0ffvn1hMBgwcOBA/Pzzzy7vz549u9H/ZcKECUoegoTcx+LN+6VTQCiy8uWXXxKdTkdWrlxJjh8/TubNm0dCQkJIcXGxx/3vuece8sEHH5CDBw+SkydPktmzZ5Pg4GCSn58v7fP666+T4OBgsmHDBnL48GHyl7/8hSQkJJCGhoYOdSx79uwhixYtIl988QWJiooi//73vxvts2TJEtK/f39SWFgovUpLSxU9DkKUOZYrbdNbx7J9+3bCcRz517/+RU6cOEGee+45otVqydGjR6V9Zs2aRSZMmODyf6moqFD0OJQ6Fm/dL50FKgoyM3LkSPK3v/1N+pvneRITE0Nee+21Fn3ebreTwMBAsmbNGkIIIYIgkKioKPLmm29K+1RVVRG9Xk+++OILeTvvRluOJS4urklRGDx4sIy9bBlKHEtb/9et5Uq/96677iK33nqry7aUlBTy4IMPSn/PmjWLTJw4UZH+Nofcx+LN+6WzQKePZESOcqH19fWw2WwICwsDAOTm5qKoqMilzeDgYKSkpLS5BGlzdKbSp0oci5LnR+7v3blzp8v+ADB+/PhG+2dkZKBr167o06cPHn74YZSXl8t/AE4ocSzeul86E1QUZESOcqFPPfUUYmJipIta/JzcJUgvR2cqfarEsSh1fpT43qKiosvuP2HCBKxduxbp6el44403sHXrVtx8883geV7+g7iIEsfirfulM6G61Nmdmddffx1ffvklMjIyYDAYvN0dRaClTzsmd999t/T7wIEDMWjQIPTs2RMZGRm44YYbvNgzSntDLQUZaUu50KVLl+L111/Hr7/+ikGDBknbxc8pXYLUnc5U+lSJY2mv8yPH90ZFRV1xPxMTExEeHt7h/i+XOxZv3S+dCSoKMtLacqH/+te/8PLLL2Pjxo0YPny4y3sJCQmIiopyabOmpga7d++WtQSpO52p9KkSx9Je50eO701NTXXZHwA2b97cbD/z8/NRXl7e4f4vlzsWb90vnQpve7o7G19++SXR6/Vk9erV5MSJE+SBBx4gISEhpKioiBBCyH333Ueefvppaf/XX3+d6HQ68vXXX7ssB6ytrXXZJyQkhHz33XfkyJEjZOLEie22JPVKjsVisZCDBw+SgwcPkujoaLJo0SJy8OBBkp2dLe3zxBNPkIyMDJKbm0u2b99O0tLSSHh4OCkpKVHdsVyuzY5yLNu3bycajYYsXbqUnDx5kixZssRlGWdtbS1ZtGgR2blzJ8nNzSVbtmwhQ4cOJb169SJms1lVx0KI9+6XzgIVBQV47733SI8ePYhOpyMjR44ku3btkt4bM2YMmTVrlvR3XFwcAdDotWTJEmkfQRDI888/TyIjI4leryc33HADycrK6nDHkpub6/FYxowZI+0zbdo0Eh0dTXQ6HenWrRuZNm0aycnJUeWxXK7NjnIshBCybt060rt3b6LT6Uj//v3JTz/9JL1XX19PbrrpJhIREUG0Wi2Ji4sj8+bNU1zclDgWQrx7v3QGaDlOCoVCoUhQnwKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUChOlJaWIioqCq+++qq0bceOHdDpdI1SNlMonRGaEI9CcePnn3/GpEmTsGPHDvTp0wdDhgzBxIkT8fbbb3u7axSK4lBRoFA88Le//Q1btmzB8OHDcfToUezduxd6vd7b3aJQFIeKAoXigYaGBgwYMADnz5/H/v37MXDgQG93iUJpF6hPgULxwOnTp1FQUABBEHD27Flvd4dCaTeopUChuGG1WjFy5EgMGTIEffr0wbJly3D06FF07drV212jUBSHigKF4saTTz6Jr7/+GocPH0ZAQADGjBmD4OBg/Pjjj97uGoWiOHT6iEJxIiMjA8uWLcOnn36KoKAgsCyLTz/9FH/++Sc++ugjb3ePQlEcailQKBQKRYJaChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKR+P8xpzAWsXFDhAAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.angle1 = 20\n", + "visualizer.angle2 = 90\n", + "visualizer.plot_test_spread(np.array(test_set), np.array(test_outputs))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g3fRbkqaNHup" + }, + "source": [ + "## Position" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "traj_pred, traj_actual = metrics['pos_traj'][0], metrics['pos_traj'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbhklEQVR4nO3dd1xT5/4H8M9JIGEGUGQoyy1WBZXixYlKlWur0lprW61bf62l7l5bq2LFXXfrqBbB2tZxrfXeuqpScYELwcFQQRRBAg4Ewsh8fn9EzjUKysgA/b5fr7w0Jyfn+5yQ5JtnnOfhGGMMhBBCCACBqQtACCGk7qCkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4ZqYuAKn7NBoNFAqFqYtBCHkBc3NzCIXCWh+HkgJ5IYVCgYyMDGg0GlMXhRDyEvb29nBxcQHHcTU+BiUFUinGGHJyciAUCuHu7g6BgFobCamLGGMoKSlBXl4eAMDV1bXGx6KkQCqlUqlQUlKCxo0bw8rKytTFIYS8gKWlJQAgLy8PTk5ONW5Kop9+pFJqtRoAIBKJTFwSQkhVlP94UyqVNT4GJQXyUrVpnySEGI8+PquUFAghhPAoKRBiZBzHYd++fUaNGRgYiKlTpxo1piFFRUWB4zhwHKdzXiUlJRgyZAgkEgk4jsPjx49NVkZ9un37Nn++vr6+Bo1FSYG8suLi4iAUCvH2229X+7leXl5Ys2aN/gv1EuUf/Mpu8+fPr9Fx9+7di/DwcL2Vsy4kGYlEgpycHJ3z2rZtG06dOoXY2Fjk5OTAzs7OhCWsukWLFqFr166wsrKCvb39c4+7u7sjJycHM2bMMHhZaPQReWVFRETgiy++QEREBO7du4fGjRubukgvlZOTw/9/165dmDdvHq5fv85vs7Gx4f/PGINarYaZ2cs/xg0aNNBvQfVEoVDUeCADx3FwcXHR2Zaeng5vb2+0a9fOIDENRaFQYOjQoQgICEBERMRzjwuFQri4uOj8/Q2FagrklSSTybBr1y589tlnePvttxEVFfXcPn/++SfefPNNWFhYwNHREe+++y4A7a/gO3fuYNq0afwvdACYP3/+c1X3NWvWwMvLi79/4cIFvPXWW3B0dISdnR169eqFS5cuVbncLi4u/M3Ozo7/4nNxcUFqaipsbW1x6NAhdO7cGWKxGKdPn0Z6ejoGDx4MZ2dn2NjY4M0338SxY8d0jvvsL3u5XI6ZM2eiSZMmsLa2RpcuXRATE6PznDNnziAwMBBWVlZwcHBA//79kZ+fj9GjR+PEiRNYu3Yt//rcvn0bAHDixAn4+/tDLBbD1dUVX331FVQqlU45QkNDMXXqVDg6OqJ///4YO3Ys3nnnHZ3YSqUSTk5OFX5BViYwMBArV67EyZMnwXEcAgMDAWhrfeHh4Rg5ciQkEgkmTpwIAJg1axZatWoFKysrNGvWDHPnztUZtVP+9966dSs8PDxgY2ODSZMmQa1WY/ny5XBxcYGTkxMWLVqkU47Hjx9j/PjxaNSoESQSCfr06YPLly+/sOzffvstpk2bhvbt21f5fA2FkgKpMsaA4mLT3BirXll3796NNm3aoHXr1hgxYgS2bt0K9tRBDhw4gHfffRcDBgxAQkICoqOj4e/vD0Db1OLm5oYFCxYgJydH59f7yxQVFWHUqFE4ffo0zp49i5YtW2LAgAEoKiqq3gm8wFdffYWlS5ciJSUFHTp0gEwmw4ABAxAdHY2EhAQEBwdj4MCByMzMrPQYoaGhiIuLw86dO3HlyhUMHToUwcHBuHnzJgAgMTERffv2Rdu2bREXF4fTp09j4MCBUKvVWLt2LQICAjBhwgT+9XF3d0d2djYGDBiAN998E5cvX8bGjRsRERGBhQsX6sTetm0bRCIRzpw5g02bNmH8+PE4fPiwzuu8f/9+lJSUYNiwYVV+Xfbu3YsJEyYgICAAOTk52Lt3L//YihUr4OPjg4SEBMydOxcAYGtri6ioKCQnJ2Pt2rXYsmULVq9erXPM9PR0HDp0CIcPH8aOHTsQERGBt99+G1lZWThx4gSWLVuGOXPm4Ny5c/xzhg4diry8PBw6dAjx8fHo1KkT+vbti0ePHlX5XEyKEVKJ0tJSlpyczEpLSxljjMlkjGm/no1/k8mqV/auXbuyNWvWMMYYUyqVzNHRkR0/fpx/PCAggA0fPrzS53t6erLVq1frbAsLC2M+Pj4621avXs08PT0rPY5arWa2trbszz//5LcBYH/88cdLzyEyMpLZ2dnx948fP84AsH379r30uW+88Qb7/vvv+fu9evViU6ZMYYwxdufOHSYUCll2drbOc/r27cu+/vprxhhjH330EevWrVulx3/6eOVmz57NWrduzTQaDb9t/fr1zMbGhqnVav55HTt2fO54bdu2ZcuWLePvDxw4kI0ePbrS+M++NuWmTJnCevXqpbPN09OThYSEVHqsct999x3r3Lkzfz8sLIxZWVmxwsJCflv//v2Zl5cXfz6MMda6dWu2ZMkSxhhjp06dYhKJhJWVlekcu3nz5uzHH398aRkqO6+ny/Tse/Bpz35ma4JqCuSVc/36dZw/fx4fffQRAMDMzAzDhg3TaYoo/yWsb7m5uZgwYQJatmwJOzs7SCQSyGSyF/5qry4/Pz+d+zKZDDNnzoS3tzfs7e1hY2ODlJSUSmNevXoVarUarVq1go2NDX87ceIE0tPTAdTs9UlJSUFAQIDOWPlu3bpBJpMhKyuL39a5c+fnnjt+/HhERkYC0L6Ghw4dwtixY6sV/0Wefc0AbZ9Nt27d+Lb6OXPmPPeaeXl5wdbWlr/v7OyMtm3b6kz54uzszE8vcfnyZchkMjRs2FDntc3IyOBf27qOOppJlVlZATKZ6WJXVUREBFQqlU7HMmMMYrEYP/zwA+zs7PgpAapDIBDoNEEBz185OmrUKDx8+BBr166Fp6cnxGIxAgIC9DrLrLW1tc79mTNn4ujRo1ixYgVatGgBS0tLvP/++5XGlMlkEAqFiI+Pf24qhPKOzJq8PlX1bPkBYOTIkfjqq68QFxeH2NhYNG3aFD169DBYzLi4OAwfPhzffvst+vfvDzs7O+zcuRMrV67U2c/c3FznPsdxFW4rnzBSJpPB1dX1uf4ZABWOKqqLKCmQKuM4oILPc52iUqnw888/Y+XKlejXr5/OYyEhIdixYwc+/fRTdOjQAdHR0RgzZkyFxxGJRPw0H+UaNWoEqVQKxhj/azgxMVFnnzNnzmDDhg0YMGAAAODu3bt48OCBns6uYmfOnMHo0aP5jnKZTMZ3/FakY8eOUKvVyMvLq/SLt/z1+fbbbyt8vKLXx9vbG7///rvO63PmzBnY2trCzc3thefQsGFDhISEIDIyEnFxcZX+XfQlNjYWnp6e+Oabb/htd+7cqfVxO3XqBKlUCjMzM50BCPUJNR+RV8r+/fuRn5+PcePGoV27djq3IUOG8E1IYWFh2LFjB8LCwpCSkoKrV69i2bJl/HG8vLxw8uRJZGdn81/qgYGBuH//PpYvX4709HSsX78ehw4d0onfsmVLbN++HSkpKTh37hyGDx9u0F/d5TH37t2LxMREXL58GR9//PELpzpv1aoVhg8fjpEjR2Lv3r3IyMjA+fPnsWTJEhw4cAAA8PXXX+PChQuYNGkSrly5gtTUVGzcuJF/Lby8vHDu3Dncvn0bDx48gEajwaRJk3D37l188cUXSE1NxX/+8x+EhYVh+vTpVZphd/z48di2bRtSUlIwatQo/bw4lWjZsiUyMzOxc+dOpKenY926dfjjjz9qfdygoCAEBAQgJCQER44cwe3btxEbG4tvvvkGFy9erPR5mZmZSExMRGZmJtRqNRITE5GYmAiZCarmlBTIKyUiIgJBQUEVXrQ0ZMgQXLx4EVeuXEFgYCD+/e9/47///S98fX3Rp08fnD9/nt93wYIFuH37Npo3b45GjRoB0P4S3rBhA9avXw8fHx+cP38eM2fOfC5+fn4+OnXqhE8++QSTJ0+Gk5OTQc951apVcHBwQNeuXTFw4ED0798fnTp1euFzIiMjMXLkSMyYMQOtW7dGSEgILly4AA8PDwDaxHHkyBFcvnwZ/v7+CAgIwH/+8x/+moiZM2dCKBSibdu2aNSoETIzM9GkSRMcPHgQ58+fh4+PDz799FOMGzcOc+bMqdJ5BAUFwdXVFf379zf4NSWDBg3CtGnTEBoaCl9fX8TGxvKjkmqD4zgcPHgQPXv2xJgxY9CqVSt8+OGHuHPnDpydnSt93rx589CxY0eEhYVBJpOhY8eO6Nix4wsTiaFw7NlGUkKeKCsrQ0ZGBpo2bQoLCwtTF4fUQkBAAPr27fvc8NC6RCaToUmTJoiMjMR77733wn2joqIwderUV2Yai6qaP38+9u3b91yzZTl9fGappkDIK0wul+PixYtISkrCG2+8YeriVEij0SAvLw/h4eGwt7fHoEGDqvS8goIC2NjYYNasWQYuoellZmbCxsYGixcvNngs6mgm5BV26NAhjBw5EoMGDcL7779v6uJUKDMzE02bNoWbmxuioqKqNG3HkCFD0L17dwD1Z1RPbTRu3JivHYjFYoPGouYjUilqPiKkfqHmI0IIIXpFSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIgpBZGjx6NkJAQ/r6pFrSPiYkBx3EGn/aB4zjs27fPoDFeJCoqil8C9OnXuaSkBEOGDIFEIjHK62As5X9XjuN03meGREmBvHJGjx7Nf5BEIhFatGiBBQsW6KwVbCh79+5FeHh4lfY11he5QqGAo6Mjli5dWuHj4eHhcHZ2fm5tiLpKIpEgJydH53Xetm0bTp06hdjYWOTk5FQ4IWJdc/v2bYwbNw5NmzaFpaUlmjdvjrCwMJ11MLp27YqcnBx88MEHRisXJQViHDduAIcOAU/WADa04OBg5OTk4ObNm5gxYwbmz5+P7777rsJ99bkAToMGDXRW6qoLRCIRRowYwa9s9jTGGKKiojBy5MjnFo+pqziOg4uLi87rnJ6eDm9vb7Rr1w4uLi46q7+V0+ffWR9SU1Oh0Wjw448/IikpCatXr8amTZswe/Zsfh+RSAQXFxeDT7/+NEoKxLAePQKCg4HWrYEBA4BWrbT38/MNGlYsFsPFxQWenp747LPPEBQUhP/+978A/tfks2jRIjRu3BitW7cGoF0Q54MPPoC9vT0aNGiAwYMH6yxWo1arMX36dNjb26Nhw4b417/+9dxKbM82H8nlcsyaNQvu7u4Qi8Vo0aIFIiIicPv2bfTu3RsA4ODgAI7jMHr0aADaCeKWLFnC/4L08fHBnj17dOIcPHgQrVq1gqWlJXr37v3CRXUAYNy4cbhx4wZOnz6ts/3EiRO4desWxo0bhwsXLuCtt96Co6Mj7Ozs0KtXL1y6dKnSY1ZU00lMTATHcTrlOX36NHr06AFLS0u4u7tj8uTJKC4u5h/fsGEDWrZsCQsLCzg7O1d7jqbAwECsXLkSJ0+eBMdxCAwMBKBd8yE8PBwjR46ERCLBxIkTAQCzZs1Cq1atYGVlhWbNmmHu3Lk6taT58+fD19cXW7duhYeHB2xsbDBp0iSo1WosX74cLi4ucHJywqJFi3TK8fjxY4wfPx6NGjWCRCJBnz59cPny5UrLHRwcjMjISPTr1w/NmjXDoEGDMHPmTOzdu7da569vlBSIYX38MXDsmO62Y8eAJ+snG4ulpaXOL8Xo6Ghcv34dR48exf79+6FUKtG/f3/Y2tri1KlTOHPmDGxsbBAcHMw/b+XKlYiKisLWrVtx+vRpPHr06KULs4wcORI7duzAunXrkJKSgh9//BE2NjZwd3fH77//DkC7pnROTg7Wrl0LAFiyZAl+/vlnbNq0CUlJSZg2bRpGjBiBEydOANAmr/feew8DBw5EYmIixo8fj6+++uqF5Wjfvj3efPNNbN26VWd7ZGQkunbtijZt2qCoqAijRo3C6dOncfbsWbRs2RIDBgxAUVFR9V7sp6SnpyM4OBhDhgzBlStXsGvXLpw+fRqhoaEAgIsXL2Ly5MlYsGABrl+/jsOHD6Nnz57VirF3715MmDABAQEByMnJ0flSXbFiBXx8fJCQkMCvl2Bra4uoqCgkJydj7dq12LJlC1avXv1cuQ8dOoTDhw9jx44diIiIwNtvv42srCycOHECy5Ytw5w5c3Du3Dn+OUOHDkVeXh4OHTqE+Ph4dOrUCX379sWjR4+qfC4FBQVo0KBBtc5f7xghlSgtLWXJycmstLS0Zge4fp0xoPLbjRv6LfATo0aNYoMHD2aMMabRaNjRo0eZWCxmM2fO5B93dnZmcrmcf8727dtZ69atmUaj4bfJ5XJmaWnJ/vrrL8YYY66urmz58uX840qlkrm5ufGxGGOsV69ebMqUKU9O/zoDwI4ePVphOY8fP84AsPz8fH5bWVkZs7KyYrGxsTr7jhs3jn300UeMMca+/vpr1rZtW53HZ82a9dyxnrVp0yZmY2PDioqKGGOMFRYWMisrK/bTTz9VuL9arWa2trbszz//5LcBYH/88Uel5U9ISGAAWEZGBl/uiRMn6hz31KlTTCAQsNLSUvb7778ziUTCCgsLKy330yIjI5mdnd1z26dMmcJ69eqls83T05OFhIS89Jjfffcd69y5M38/LCyMWVlZ6ZSpf//+zMvLi6nVan5b69at2ZIlS/hzkkgkrKysTOfYzZs3Zz/++GNVTo3dvHmTSSQStnnz5ucee/o9/SK1/swyxmjqbGI46ekvfjwtDWjZ0iCh9+/fDxsbGyiVSmg0Gnz88ceYP38+/3j79u0hEon4+5cvX0ZaWtpz/QFlZWVIT09HQUEBcnJy0KVLF/4xMzMz+Pn5PdeEVC4xMRFCoRC9evWqcrnT0tJQUlKCt956S2e7QqFAx44dAQApKSk65QC0i+i8zEcffYRp06Zh9+7dGDt2LHbt2gWBQIBhw4YBAHJzczFnzhzExMQgLy8ParUaJSUlyMzMrHL5n3X58mVcuXIFv/76K7+NMQaNRoOMjAy89dZb8PT0RLNmzRAcHIzg4GC8++67sLKyqnHMp/n5+T23bdeuXVi3bh3S09Mhk8mgUqkgkUh09vHy8tJ5Lzg7O0MoFOosK+rs7Iy8vDz+PGUyGRo2bKhznNLSUqS/7HMAIDs7G8HBwRg6dCgmTJhQrXPUN0oKxHCaN3/x4y1aGCx07969sXHjRohEIjRu3Pi5Ofqtra117stkMnTu3Fnny6tc+XKc1VWTzsHyNXkPHDiAJk2a6DxW23n0JRIJ3n//fURGRmLs2LGIjIzEBx98ABsbGwDAqFGj8PDhQ6xduxaenp4Qi8UICAiotIO2/Avy6aT47AgmmUyG//u//8PkyZOfe76HhwdEIhEuXbqEmJgYHDlyBPPmzcP8+fNx4cIFvayT8OzfOS4uDsOHD8e3336L/v37w87ODjt37sTKlSt19nu2053juAq3la+FLZPJ4OrqipiYmOfK8LLzuHfvHnr37o2uXbti8+bNVTwzw6GkQAynVSugf39tH4Ja/b/tQiEQFGSwWgKg/TJoUY2k06lTJ+zatQtOTk7P/Wos5+rqinPnzvFt3iqVim87rkj79u2h0Whw4sQJBAUFPfd4eU1F/dRr07ZtW4jFYmRmZlZaw/D29uY7zcudPXv25ScJbYdzYGAg9u/fj9jYWJ0RWWfOnMGGDRswYMAAANq+iwcPHlR6rPJkmZOTAwcHBwB4bpnITp06ITk5+YV/CzMzMwQFBSEoKAhhYWGwt7fH33///dIlOWsiNjYWnp6e+Oabb/htd+7cqfVxO3XqBKlUCjMzM3h5eVX5ednZ2ejduzc6d+6MyMhInZqIqZi+BOTVtmOHNgE8LShIu70OGT58OBwdHTF48GCcOnUKGRkZiImJweTJk5GVlQUAmDJlCpYuXYp9+/YhNTUVkyZNeuE1Bl5eXhg1ahTGjh2Lffv28cfcvXs3AMDT0xMcx2H//v24f/8+ZDIZbG1tMXPmTEybNg3btm1Deno6Ll26hO+//x7btm0DAHz66ae4efMmvvzyS1y/fh2//fYboqKiqnSePXv2RIsWLTBy5Ei0adMGXbt25R9r2bIltm/fjpSUFJw7dw7Dhw9/YW2nRYsWcHd3x/z583Hz5k0cOHDguV/cs2bNQmxsLEJDQ5GYmIibN2/iP//5D9/RvH//fqxbtw6JiYm4c+cOfv75Z2g0Gn5EmL61bNkSmZmZ2LlzJ9LT07Fu3bqXDhaoiqCgIAQEBCAkJARHjhzB7du3ERsbi2+++QYXL16s8DnZ2dkIDAyEh4cHVqxYgfv370MqlUIqlda6PLVBSYEYloMDcPiw9jqFgwe1/x4+rN1eh1hZWeHkyZPw8PDAe++9B29vb4wbNw5lZWV8zWHGjBn45JNPMGrUKAQEBMDW1hbvvvvuC4+7ceNGvP/++5g0aRLatGmDCRMm8MMxmzRpgm+//RZfffUVnJ2d+S/K8PBwzJ07F0uWLIG3tzeCg4Nx4MABNG3aFIC22eX333/Hvn374OPjg02bNlV57V6O4zB27Fjk5+dj7NixOo9FREQgPz8fnTp1wieffILJkyfDycmp0mOZm5tjx44dSE1NRYcOHbBs2TIsXLhQZ58OHTrgxIkTuHHjBnr06IGOHTti3rx5aNy4MQBt08revXvRp08feHt7Y9OmTdixY4fB1pMeNGgQpk2bhtDQUPj6+iI2NpYflVQbHMfh4MGD6NmzJ8aMGYNWrVrhww8/xJ07d+Ds7Fzhc44ePYq0tDRER0fDzc0Nrq6u/M2UaDlOUilajpPUNVFRUZg6deorM41FVY0ePRqPHz9+6RQjtBwnIeS1U1BQABsbG8yaNcvURTG4U6dOwcbGpsIBEIZCHc2EkHpjyJAh6N69O4CXj+p5Ffj5+fGd9+WjxAyNkgIhpN6wtbWtc3NLGZKlpWW1RtHpAzUfEUII4VFSIC9FYxEIqR/KL6arDWo+IpUyNzcHx3G4f/8+GjVqVOF0xIQQ02OMQaFQ4P79+xAIBDpTuFQXDUklLySTyZCVlUW1BULqASsrK7i6ulJSIIalVqvrzapchLyuhEIhzMzMal2jp6RACCGERx3NhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkUAWMMTDGTF0MQggxOEoKL6HRaCCXy6FSqSgxEEJeeWamLkBdxxiDRqPh/zU3N4dAQLmUEPJqom+3KuI4DhqNBgqFAmq1mmoNhJBXEiWFauA4Dmq1GsnJyZDL5ZQYCCGvHEoK1cBxHADg1q1bUCqVUCgU0Gg0Ji4VIYToDyWFGuI4DiqVCsnJyVAoFFRrIIS8Eigp1BDHcWCMIT09nUYnEUJeGZQUaqG8OQkAFAoFkpKSoFQqTVgiQgipHUoKeiAQCHRqDTQ6iRBSX1FS0JPyWgNjDAqFgpqTCCH1El28pmcCgQAajQapqalo0aIFxGIxJQdCTIAxBplMBjs7O52mXvJilBQM5NatW2jWrBmKioqqNWyVMYbTp0/D398fYrHYgCXUSkxMhJubGxwdHQ0eKz09HQKBAE2bNjV4rLy8PEilUnTo0MHgsUpLSxEfH4/u3bsbPBYAnD17Fu3atYONjY3BYyUlJcHBwQGNGzc2eKzMzEyUlZWhVatWejleYWEhvLy8UFBQAIlEopdjvg4oKRiYRqMBx3FV/qVSPvmeQCAwynQajDFwHGfUqTuMEat8dJgxYpX3KRnrNTTm38zY7w99vo40HU3NUFIwgup8qMqbmoyVFIDqla+2cYwZCzBeAjJWrHLGen8Y+2+mz1iUFGqGXjVCCCE8SgqEEEJ4lBQIIYTwKCkQQgxi924zfP65GPv3U9dlfUJJgRBiEHFxQmzfLsLly/Q1U5/QX4sQYhCPHmlHZTVsSBdv1ieUFAghBpGTo00Kjo6UFOoTSgqEEL1TKIDLl4UAgPbtaSGq+oSSAiFE7xISBCgt5eDgwNCyJSWF+oSSAiFE73btMgcA9O2rAl1YXL/Qn6sKaJZTQqqutBTYs0ebFEaMoEWn6hsaQFwFV65cgUgkQsuWLSEUCk1dHELqtC1bzPH4MQcvLw169VKbujikmqimUAUtWrSAQqHAyZMncevWLVMXh5A6q6AAWLlSO+X7rFly0G+o+oeSQhVYW1ujY8eO8PPzw4MHDwAA2dnZ1KxEyDPmzxcjP59Dq1ZqDBumMnVxSA1QUqgGBwcHvPnmmwCA27dv49y5cwCoz4EQADh5UoiICBEAYMUKOcyocbpeoqRQTeVz5wcEBPCrUSUkJKCoqMiUxSLEpB4+BCZNsgAAjBmjQGAg9SXUV5QUakggEMDDwwMAYGtriwsXLgAAysrKTFksQoxOrQbGjrVEZqYATZtqEB4uN3WRSC1QUtCDli1bIiAgAAAQGxuLtLQ0E5eIEOOZP1+M48fNYGXF8NtvpaDlkOs3avXTE0tLSwBA586dcfPmTQDAnTt3IBKJqrVGc7mHDx/C3Nxc7+V8lkqlQmFhYbXLVxOlpaXgOA737983eKyioiIolUqjxJLL5WCMGSUWoF33Oz8/3yi1UoVCAZlMVum5RUZKsHatLQBg8eI8ODkVo6YvQ3FxMRQKRa1fR8YYZDIZysrKwHEcCgsLdR63tbU1yvu9vqKkoGd2dnbo3LkzoqOjcf/+fSiVyhq9Ae/evWuUN65cLkdeXh4ePXpklFiAcZrYVCoVFAoFMjIyDB5Lo9FO42CMWACgVqtx7949o6xBXFpaCoVC8dwXKwBERztjyZJmAIBx49LQrt0d1OYlUCgU0Gg0tX4di4uLMXjwYP6+u7u7zuMFBQWQUHWmUpQUDKD8y9zPzw8KhaJai6wzxnD8+HH4+vpCLBYbspgAgAsXLsDT0xNOTk4Gj3Xjxg0IBAK0aNHC4LGkUimys7PRuXNng8cqKSnBuXPn4O/vb/BYAHDq1Cm88cYbsLW1NXisy5cvo2HDhnBzc9PZvmePGZYv13Ysf/qpAsuWOYPjnGsVKyMjA6WlpWjbtm2tjsMYQ1ZWFoqKiuDt7Y27d+/qJAFjvG71GfUpEEKqZfduM4wfbwG1msPw4UosXSpHXWqN4TgOEomE//KXSCQ6t2dr4OvXr4eXlxcsLCzQpUsXnD9/vtJj7927F35+frC3t4e1tTV8fX2xfft2g56PsVFSIIRUWVSUOSZOtIBGw2HkSAXWry+r1xPe7dq1C9OnT0dYWBguXboEHx8f9O/fH3l5eRXu36BBA3zzzTeIi4vDlStXMGbMGIwZMwZ//fWXkUtuOPX4z0kIMRbGgOXLRZg8WZsQxoxRYN06eb1OCACwatUqTJgwAWPGjEHbtm2xadMmWFlZYevWrRXuHxgYiHfffRfe3t5o3rw5pkyZgg4dOuD06dNGLrnh1PM/KSHE0FQqYMYMMRYu1PZxzZwpx5o19T8hKBQKxMfHIygoiN8mEAgQFBSEuLi4lz6fMYbo6Ghcv34dPXv2NGRRjYo6mgkhlZLJhPj6a3ecPi0CxzEsWybHp5++GtNhP3jwAGq1Gs7Ouh3kzs7OSE1NrfR5BQUFaNKkCeRyOYRCITZs2IC33nrL0MU1GkoKhJAK3bnDYdKkDsjIsIalJcPmzWUYPJgmubO1tUViYiJkMhmio6Mxffp0NGvWDIGBgaYuml5QUiCEPOfECSFGjbLAo0cCNGqkxJ49CnTs+Gotq+no6AihUIjc3Fyd7bm5uXBxcan0eU8Pq/b19UVKSgqWLFnyyiSFet4qSAjRJ8aA9evNERJiiUePBGjVSoZdu26/cgkBAEQiEX+haTmNRoPo6Gh+2pqq0Gg0/IWZrwKqKRBCAADFxcCUKRbYvVs7vcqHHyoxfvwVuLg4mLhkhjN9+nSMGjUKfn5+8Pf3x5o1a1BcXIwxY8YAAEaOHIkmTZpgyZIlAIAlS5bAz88PzZs3h1wux8GDB7F9+3Zs3LjRlKehV5QUCCG4eZPDiBGWSEkRQihkWLxY26F85cqrV0N42rBhw3D//n3MmzcPUqkUvr6+OHz4MN/5nJmZqTMbQXFxMSZNmoSsrCxYWlqiTZs2+OWXXzBs2DBTnYLeUVIg5DW3d68ZQkMtIJNxcHbWICqqDN26vT7rIYSGhiI0NLTCx2JiYnTuL1y4EAsXLjRCqUyHkgIhr6myMuDrr8X8amk9eqiwdWsZnJ1pJcHXGSUFQl5DN29yGD3aElevCgEA06fLMWeOgpbQJJQUCHnd7NplhmnTtM1FDRtqsGVLGYKCXp/mIvJilBQIeU3IZMDMmRb47Tft6KLu3VWIiCiDqys1F5H/oaRAyGvgyhUBRo+2RFqaAAIBw6xZCnz5JTUXkefRW4KQVxhjwKZN5pg7VwyFgkPjxhpERLxeo4tI9VBSIOQV9eABh88+s8Bff2k/5gMGKLF+fRkaNjRxwUidRkmBkFdQTIwQEydaQCoVQCxmWLRIjgkTlHVqhTRSN1FSIOQVolQCixeLsGqVCIxxaN1ajcjIMrRr92pfmUz0h5ICIa+I27c5jBtniQsXtNcejBmjwJIlclhZmbhgpF6hpEDIK+CPP8zwxRcWKCzkYG/PsG5dGUJCaO0DUn2UFAipx0pKtFNVREZqp6ro0kWNiIhSeHjQtQekZigpEFJPXb8uwMiRFkhJEYLjGGbMUGD2bLr2gNQOvX0IqYf27LHE119boaSEg5OTdqqK3r3p2gNSe5QUCKlHSkuBtWvb48gR7cI3gYEq/PRTGZycqLmI6Actx0lIPZGezqFvXyscOeIOjmOYPVuOP/4opYRA9IpqCoTUAwcOmOH//q98dJEcP/5YhH/+U2zqYpFXECWFKkhOTkZpaSkaNmwIOzs7UxeHvEbUamDhQhFWrtQmgH/8Q4VJk06je3dvAJQUiP5R81EVeHp6wtnZGUVFRbhy5QoA4NKlS7h16xYAQKOhq0WJ/uXnA0OHWvIJ4bPPFDhwoBQNG8pNXDLyKqOaQhVYW1vD1tYWnp6eUCqViI6OhpOTE/Lz8wFo13G1t7cHADx+/BgSicSEpSWvghs3BBg2zBLp6QJYWjL88EMZhg6li9GI4VFSqCbuyYxibm5ucHNzQ25uLrp06YL8/Hw8evQIV65cgUql/fCmp6eD4zj+VhWMaTsNs7OzYWaEAecKhQIPHjxAWVmZwWMVFRWB4zhkZmYaJZZcLjdKLIVCAcaY3mKdPm2DmTPdIJMJ4OqqwLp1d+HtXYbyw6vVakilUv5HiSGVlpbi0aNHRqkNFxQUQKlU1vp1ZIyhuLgYZWVl4DgOhYWFOo/b2tpW+fP4OqKkoAfW1tawtrZGamoqevTogeLiYpw9exalpaVQq9XILM7EvdJ7cLNyg7u1e5WOWVRUBKFQaOCSa79gSkpKjPKhVygUFX5IDaGsrAxqtdooscp/BOgj1t69zli1ygMaDQcfn0IsWnQdDRqo8PShGWOQyWSQyw3fjKRSqVBWVmaU11Eul+vlb1ZcXIy33nqLv+/urvuZKygooNr8C1BS0DOO42BjYwMAaNy8MUb/ORp/Z/7NP97Xsy+2vr0VDhYOFT6fMYa8vDy0adMGYrHhOxIvXLgADw8PODk5GTzWjRs3IBAI0KJFC4PHkkqlyM7ORrt27Qweq6SkBOfOnatVLLUamDtXjB9+0E5XMXy4EmvXchCJ2jy376lTp9CiRQvY2trWOF5VXb58GQ0bNoSbm5vBY2VkZKC0tBRt27at1XEYY8jKykJRURG8vb1x9+5dnSRgjNetPqOOZgMae2AsTtw9obMtJjMGYw+MNVGJSF0klwNjx1rwCWHePDk2bCiDSGTigtVTHMdBIpHwX/4SiUTn9mzT0fr16+Hl5QULCwt06dIF58+fr/TYW7ZsQY8ePeDg4AAHBwcEBQW9cP/6iJKCgWSXZePY7WNQM92pB9RMjeg70UjLTzNRyUhdIpMBH3xgiT/+MIe5OUNERClmzlTQYjhGsmvXLkyfPh1hYWG4dOkSfHx80L9/f+Tl5VW4f0xMDD766CMcP34ccXFxcHd3R79+/ZCdnW3kkhsOJQUDkSqkL3z81uNbRioJqavy84FBg6xw/LgZrK0Z/v3vUhphZGSrVq3ChAkTMGbMGLRt2xabNm2ClZUVtm7dWuH+v/76KyZNmgRfX1+0adMGP/30EzQaDaKjo41ccsOhpGAgLiKXFz7ezL6ZkUpC6qL8fGDwYCtcvCiEgwPDn3+WoE8fmtDOmBQKBeLj4xEUFMRvEwgECAoKQlxcXJWOUVJSAqVSiQYNGhiqmEZHScFAmlg0QZBXEISc7ggiISdEX8++aOFg+M5WUjeVJ4TERCEcHTU4fLgEfn50AaSxPXjwAGq1Gs7OzjrbnZ2dIZW+uKZfbtasWWjcuLFOYqnvKCkYUOQ7kejl3ktnW6BHILa+XXHVlLz6ZDIgJOR/CeHAgVJ4e1NCqI+WLl2KnTt34o8//oCFhYWpi6M3NCTVgBwsHLAnZA8yCjKQUZiBZvbNqIbwGlMogBEjLJGQIETDhpQQTM3R0RFCoRC5ubk623Nzc+Hi8uLm3xUrVmDp0qU4duwYOnToYMhiGh3VFIyguUNz9GvajxLCa4wx4PPPLfD332awstJ2KlNCMC2RSITOnTvrdBKXdxoHBARU+rzly5cjPDwchw8fhp+fnzGKalRUUyDECFauFGHXLnOYmTFs315KfQh1xPTp0zFq1Cj4+fnB398fa9asQXFxMcaMGQMAGDlyJJo0aYIlS5YAAJYtW4Z58+bht99+g5eXF9/3YGNjw1+0Wt9RUiDEwI4eFSI8XHsl2sqVcrz1Fo0yqiuGDRuG+/fvY968eZBKpfD19cXhw4f5zufMzEwIBP9rUNm4cSMUCgXef/99neOEhYVh/vz5xiy6wVBSIMSA7t7lMG6cJRjjMHq0AmPGKE1dJPKM0NBQhIaGVvhYTEyMzv3bt28bvkAmRn0KhBiIRgNMmmSBx485dO6sxnff0ToIpO6jpECIgWzZYo4TJ7Qdy1u2lMII8xsSUmuUFAgxgJwcDmFh2iywYIEcLVowE5eIkKqhpECIAYSHi1FSwsHfX43x46kfgdQflBQI0bNr1wT49VftGI7Fi8sgoE8ZqUfo7UqInq1dKwJjHN59Vwl/f7oegdQvlBQI0SOplMPevdpawpQpChOXhpDqo6RAiB798os5lEoOXbqo0akT1RJI/UNJgRA9OnBAW0sYPpw6l0n9REmBED3JzeUQH69dPyM4mFZQI/UTJQVC9OTcOW1C6NBBDRcXui6B1E+UFAjRk5QU7cepXTvqSyD1FyUFQvTkxg3tx6l1a0oKRNft27fBcdxzt8DAQFMX7Tk0SyohelJUxAEAGjakpiOiy93dHTk5Ofx9qVSKoKAg9OzZ04SlqhglBUL0RP5kElSRiJIC0SUUCvklPsvKyhASEoKAgIA6uQYDJQVC9KR8OgsVDTwiLzB27FgUFRXh6NGjOgv41BWUFAjRk8aNtX0J9+7VvQ86qRsWLlyIv/76C+fPn4etra2pi1MhSgqE6Enjxtpmo8xMzsQlIXXR77//jgULFuDQoUNo3ry5qYtTKUoKhOiJr6+2pnD2rNDEJSF1zbVr1zBy5EjMmjULb7zxBqRSKQBAJBKhQYMGJi6dLqrnEqInAQEqcBzDjRtC5OZSbYH8z8WLF1FSUoKFCxfC1dWVv7333numLtpzqKZQDYwxqNVqAEBJSQn//wcPHkD1pHfxzp07/PaUlBRoNNpfjxxXvS+JtLQ0CIWG/8VZVlaG7OxsPHr0yOCxCgoKwHEcUlNTDR6rtLQUpaWlRomlUqnAGENeXiratGmLlBRrbNr0EMOG5Rkknlqtxu3bt2Fubm6Q4z9NJpNBpVJBJpMZPFZRURFUKlWt/2aMMRQXF0OlUkEgEKCwsFDncVtb22p/Hmtr9OjRGD16tFFj1hQlhSpISUmBVCqFWq0GY9p247i4OP5L++bNmzAz076UBQUF/HZzc3Oo1Wr+QpXqMDc3N0pS4DgOZmZmRvmCEQgE4DjOKLEUCoXRYpX/bc3NzTFoUD5SUqyxf38jjBiRb7CYxvybCYVCo8USCAS1jiWTydCnTx/+vru7u87jBQUFkEgktYrxKqOkUAUeHh5wd3fn36wnT55Enz59wHEcjh07hoCAAADAsWPH0KFDBwBATk4OWrRoAYVCwb/Zq4Ixhjt37sDT0xNiI6z0/ujRIzg7O8PJycngsdRqNQQCgVE62aRSKZRKpVFilZSU4N69e2jevDk++wxYvZrh+nUrSKWt0K2bWu/x7t27Bzc3N6OMXpHJZGjYsCHc3NwMHisjIwOlpaW1/psxxpCVlYWioiJ4e3vj7t27Okmgro76qSuoT6EKrK2tIZFIYGVlBZFIBKD6zUHk9dCgATBihHba7IULRWB0HZvRcRwHiUTCf/lLJBKd27Of3fXr18PLywsWFhbo0qULzp8/X+mxk5KSMGTIEHh5eYHjOKxZs8aQp2ISlBQI0bOZMxUQiRjOnDHD0aM0Eqku27VrF6ZPn46wsDBcunQJPj4+6N+/P/LyKu4PKikpQbNmzbB06VL+CuVXDSUFQvTMzY1h4kRtbWHGDAsUF5u4QKRSq1atwoQJEzBmzBi0bdsWmzZtgpWVFbZu3Vrh/m+++Sa+++47fPjhh0Zp3jUFSgqEGMDs2XK4u2tw544A4eGv5pdHfadQKBAfH4+goCB+m0AgQFBQEOLi4kxYMtOipECIAdjYAKtXlwEANmwQ4a+/qBmprnnw4AHUajWcnZ11tjs7O/MXl72OKCkQYiD9+qkxYYICADBxoiXu3qXBCaTuo6RAiAEtXixHx45q5Odz+PhjSxjhGjBSRY6OjhAKhcjNzdXZnpub+8p2IlcFJQVCDEgsBn7+uRSOjhpcvizE6NGWNLV2HSESidC5c2dER0fz2zQaDaKjo/lrj15HdPEaIQbm6cmwa1cp3nnHCkeOmGHKFDG+/16OOjiVfvWoVBBeuADBpUuATAaNry/UvXsDT67lqQ+mT5+OUaNGwc/PD/7+/lizZg2Ki4sxZswYAMDIkSPRpEkTLFmyBIC2czo5OZn/f3Z2NhITE2FjY4MWLVqY7Dz0iZICIUbw5psaRESUYcQIC2zfLoJYDKxcKUe9vQZSpYL5+vUw370bnFQKrrQUTKMB8/JC2fLl0PTogfpwcsOGDcP9+/cxb948SKVS+Pr64vDhw3znc2Zmps5sBPfu3UPHjh35+ytWrMCKFSvQq1cvxMTEGLv4BkFJgRAjeecdFTZsKMNnn1ngp59EEImAJUvqZ2IQnj8Psz17wN27ByiVgFwOTq0Gl5wMq5AQMFdXqP75TyiHD4fmqS/Ruig0NBShoaEVPvbsF72Xlxc//9mrqr5XYAmpVz7+WIXvv9cu5rxhgwhTp4qh1v/0SAYnuHQJAqkUUKnAyeWARqOzHimXlQXzbdtg9c47sHj/fZj98QegUJi20KRKqKZAiJGNHKm92vmLL8SIjBShoIDD5s1l9akpXrsQdWmptolIrQaEQm2N4WlyOSCXw+zoUZidPg2NmxtU778P1cCB0LzxhmnKTV6KagqEmMDIkUpERZXB3Jxh715zDB1qiYICU5eq6jS+voC5OXSGUj3drFL+f6FQ+/+SEghu3IDou+9g1acPLMaOheDqVaOWmVQNJQVCTOTdd1XYubMU1tYMx4+bITjYCllZ9aODQR0QAHVAgDYpaDSocJwtx+G5aWKVSqC0FGZ79sCqZ09Yvv02uPv3jVNoUiWUFAgxobfeUuPgwRI4O2uQlCREnz5WiI+vBx9LsRhlmzZB9e672osxKup8FQi0CaP8/8/SaCA8fRpWXbrAbP/+io9BjK4evPsIebV17KjB33+XwNtbDalUgH/+0wq7d9eD7j6JBPLNm1H8119Qvv8+NI0ba5uUylcMLE8Iz/6/HGMAY+AePIDF8OFwmz+fEkMdQEmBkDrA3Z3h6NESBAerUFbGYfx4S8ybJ6oXI5OYry/kEREouXQJJQcPQjFtGpiTk/YiNrMqJjfG4LBvH5z27DFsYclLUVIgpI6QSIAdO0oxY4Z2yOqaNWK8954lHj6sH/0MsLKCpksXKObNQ3F8PBTffAN127baxFDF9ca9Vq6E8O+/DVxQ8iKUFAipQ4RCICxMgcjIUlhZaTuge/SwwsWL9eyjamcHxdSpKD19GiUnT0L19tsvrTWUpz6LMWPomgYTqmfvNEJeD0OGqHD8eAmaN9cgK0uA4GArbN5sXi+b3DXt2qHsl18gy8iA6v33K5z+gnvqXy4/H+IpU4xaRvI/lBQIqaO8vTWIiSnGwIFKKBQcZs60wOjRFigurged0BWxs0PZ1q0oOXhQO2IJT5LAM7txAMx//RVcSoqxS0hASYGQOs3ODvjllzIsXlwGMzOGP/4wx9Sp3XD1qrmpi1Zjmm7dUHLgwAv34QBYfPqpcQpEdFBSIKSO4zggNFSJw4dL4O6uwb171hg0yBEbN9bP5iQA0Pj7Qzl+/Av3ESYk0FXPJkBJgZB6wt9fg1OnivGPf0ihUHCYNcsCH31kgYcPTV2ympF/9x2YjQ0qy2scAItJk4xZJAJKCoTUKw0aAHPmXEJ4eAFEIoaDB83Rvbs1zpyp2pDPOkUoRNmaNc/1KQAAe3ITXL6MejUp1CuAkgIh9QzHAWPHFuPYMe3opOxsAd5+2xKLF4vq3VKfqqFDwQQCPgngqX/Lme3bZ9xCveYoKRBST/n6apuThg9XQqPhsHSpGO+8Y4m7d+vwxW6MAVIphL//DvG4cbDy9NSZAqOipiTuwQPjlY/QegqE1Gc2NsDGjWXo3VuFadMsEBtrhm7drPH992UYPNi01QYuPR3mmzdDcPcuNA0aQJicDEFSErjS0modRzVokIFKSCpCSYGQV8AHH6jw5pvFGDvWEvHxQnzyiSXGjlVgyRI5LC2NXx6zrVsh/uYbcMXFtTuQuTlYy5b6KRSpEmo+IuQV0bQpw5EjJZg2TTt30tatIgQGWiElxbgfc+72bYhnz659QgBQEhVV+wKRaqGaggEonszbkpiYCNWTnj+uiquzly8Kfu3aNQgqmoNez0pKSpCRkYHs7GyjxAKAoqIig8eSy+WQy+VISEgweCy1Wg3GmFFiAYBKpUJqairMKplLKCQEcHOzx6JFrZGSIkaPHhb44otbGDgwp6IZJl6oqKgIJSUluF+NhXA8N2yA9ZO/dW088vNDkpsbUM3XlTGGkpISqFQqCIVCFBYW6jxua2tb5c/j64iSgp6on8xxnJiYiIdPBo47ODiA4zgIBIJqJYXHjx/Dycmp0g+9PpWWlsLe3h4SicTgsaRSKTiOg7Ozs8FjFRQUID8/Hy4uLgaPpVAoUFhYaJRYAFBYWAhHR0dYWFhUus877wABAVn4179ccPq0NVaubInkZBeEh+fC1raCtQ0qoVAoYGNjgwYNGlT5OQ1yc6u8b2XK2rXDw19/RU1eUZlMhsDAQP6+u7u7zuMFBQVGeb/XV5QUakHzZNTEtWvX+F9SdnZ2aNWqFWJjY+Hp6QmFQgGBQFDlX/2MMaSmpsLJyQniJ/PDGFJWVhYcHBzg5ORk8FhFRUUQCARwdXU1eCyO41BcXGyUWCUlJbh165ZRYgFAWloaHB0dYWtr+8L9XF2B/fs1+OGHMsyfL8ahQ7ZITbVGVFQpOnasWmLIy8uDnZ1dtc5N1KwZEBNT5f2fpZg4EaoVK1DTV5MxhqysLBQVFcHb2xt3797VSQLPvm7r16/Hd999B6lUCh8fH3z//ffw9/ev9Pj//ve/MXfuXNy+fRstW7bEsmXLMGDAgBqWtu6hPoVqKm/eSU1NxalTpwAAYrEYfn5+AICmTZvCysrKZOUj5GkCATB5snaKDA8PDTIyBAgKssKPPxpuigzlpElg5tWbm4mJRCjs2ROXDhyAYsWKWsXnOA4SiYT/8pdIJDq3p2vtu3btwvTp0xEWFoZLly7Bx8cH/fv3R15eXoXHjo2NxUcffYRx48YhISEBISEhCAkJwbVr12pV5rqEkkIVyWQy3LhxA2fOnAGgTQ4dOnQAALRs2fKlv9oIMaXyKTLeeUcJpZLDl19aYMwYCxiie4e1agXFxIkv3geARiSCxs4OzN4erFEjCIqL0eDoUUAPzU9VtWrVKkyYMAFjxoxB27ZtsWnTJlhZWWHr1q0V7r927VoEBwfjyy+/hLe3N8LDw9GpUyf88MMPRiuzoVFSqIKkpCTExcWhpKQErVu3BgB4e3vDwcHBxCUjpOocHIBffy3DkiXaGVf37jU32Ogk5ZIlKAsPB7Ox4beVX7XMhELA2hpc+XKdAgGg0UB07x6c9uyBeMoUCPfsAeRyvZfraQqFAvHx8QgKCuK3CQQCBAUFIS4ursLnxMXF6ewPAP379690//qIkkIVeHl5oXfv3vD19UWjRo1MXRxCaozjgM8/V+LQoRI0aaLBzZtC9OljhT/+0H/3omrKFBQnJEAxcSI0TZpo11AwM9P+KxQC5ubg1GqwJ/1tnFoNgVIJwdWrEK1cCdE330CQmqr3cpV78OAB1Gr1cwMfnJ2dIZVKK3yOVCqt1v71ESWFKrC2tjbKSCBCjKVLFw1OnSpBYKAKxcUcRo2yxLx5IjwZRKc/zs5QrFiBkpMnIf/Xv6Bp1gwQi8HMzcGEQm1CeDL3ERgDp9Fo/330CGaHDkE0bRrMduwweK2B/A8lBUJeU46ODHv3lmLKFO11NWvWiDFkiCUePzZAsEaNoPryS5Tt2AHle++BNWqkrS2IxWBmZuAAaABwGg2fGKBUQnDzJsyXL4f53Ll672twdHSEUChE7jPHzc3NrXR4sYuLS7X2r48oKRDyGjMzA8LD5YiMLIWVFcPff5uhb18rpKUZ5uIu1rIlFCtWQLFwIVQ9e4I9GaDBOA4cnkyIp1Bo/1WptLWGwkKY79sH8bRp4JKT9VYWkUiEzp07Izo6mt+m0WgQHR2NgICACp8TEBCgsz8AHD16tNL96yNKCoQQDBmiwl9/Pd3PYI2TJw20RoNQCHW/flCsWwfFnDlgHTuCE4u1HR5PmpM4pVJ7X6UC1GpAoYAwLg7imTPBnT+vt6JMnz4dW7ZswbZt25CSkoLPPvsMxcXFGDNmDABg5MiR+Prrr/n9p0yZgsOHD2PlypVITU3F/PnzcfHiRYSGhuqtTKZGSYEQAgDw8dEgJqYEfn5qPH7M4d13LXHkiAEHVlhbQx0SgrJ166AYOxZKV1dtsxFj2oSgVGr/r1JpbwoFBJcvw2LWLHB6mlJk2LBhWLFiBebNmwdfX18kJibi8OHDfGdyZmYmcnJy+P27du2K3377DZs3b4aPjw/27NmDffv2oV27dnopT11AvaeEEJ6zM8PBgyX49FML7N1rjvDw1iguzkNYGKo9b1KVNWoE1ZQpkHp5we6XX9AgORmcTPa/moJGo60tPCkAl5IC0b/+Bfm2bUDjxrUOHxoaWukv/ZgKrsweOnQohg4dWuu4dRXVFAghOiwsgK1byxAaqu2AXrXKCV99JX56LRyDKO3QAXe+/BLKcePAHB21iYAx7b/ltyed0MKkJJgvXQqDXZb9GqOkQAh5jkAALF4sR2joLQDAxo0iTJki1v+Q1WdobGygmjoV8vnzwZo21SaBp26cWg1OrQZUKpj9/Te4V2h6ibqCkgIhpFLDht3D4sX3IBAwbNsmwsSJFoZfB1oggGbgQMiXLgVzdwdUKu1Q1fKawpPEIHj8GMIn084Q/aGkQAh5oZCQAmzdqp0a49//Nsenn1oYvMYAAJpu3SBfsAAQif7XAV1ea1CrAbkcglu3DF+Q1wwlBULIS733ngrbt2sTw+7d5pg2TWyU5nxNp07aWgIAvp+7PDmo1YAeVncjuigpEEKq5O23VdiypQwCAUNUlAhz5hh4vY/8fFgOHw7uyUqGAHSTg0ajnUeJ6BUlBUJIlQ0ZosIPP5QBAL7/XoQtW6q3bkJ1mO3bB+FLOpI1Hh4Gi/+6oqRACKmWESNUmDdPO0Hdl1+KceSIYa58Fl64AFZ+fcLTNzypLYhEUHftapDYrzNKCoSQapsxQ4Hhw5XQaDiMGWNpkLmSmI2NdtI8ofC5pAAAmhYtwJ6seEj0h5ICIaTaOA5Yu7YMXbuqUFTEYfRoS5SV6TeG+p//BCQS3WTwpHeb2dhAPneu9oIKolf0ihJCakQk0l757OiowZUrQnz9tX47fdU9e0I5ahSYg4N2zYUnE+axhg1RtmoVNP/8p17jES2a+4gQUmONGzNs2VKG996zRESECIMGqdC7t54uYhAKoZg9G6r+/WH255/gcnOhfuMNqEaM0K4tSgyCkgIhpFb69lVjwgQlNm8WYcoUC8TFFcPaWk8H5zho/PygoL4Do6HmI0JIrYWFyeHmpsHt2wIsWyYydXFILVBSIITUmq0tsHKltqd540YRsrMNNc82MTRKCoQQvQgOVqNrVxXkco5qC/UYJQVCiF5wHDB/vnZKiu3bzam2UE9RUiCE6M0//qFG9+4qqNUcoqIMNwUGMRxKCoQQvRo3TgkA2LbNHEqliQtDqo2SAiFErwYOVKFhQw2kUgHOnDHMvEjEcCgpEEL0SiQC+vfXXsB29ChdClXf0F/MgOLi4qBUKsFx1e9wu3DhQo2eV10KhQKpqam4efOmwWOpnqzjmJuba/BYarUaarUaZ4ywXCNjDIwxo8QCAKVSicTERAiMMO+PUqlEQUEB7ty5U63neXq6APDFvn0KDBhQtddFpVKBMYb8/PwalPR/GGMoKSkBYwxmZmYoLCzUedzW1tYon636ipKCnikUCly/fh0A4O7uDrFYDIFAUOUPMGMMly5dQuvWrSESGX5YX0pKClxcXOBghGkDMjMzIRAI4ObmZvBYDx8+xP3799GmTRuDxyorK0NSUhLatWtn8FgAkJiYiObNm8Nab5cNV+7mzZuws7ODk5NTtZ7n6irAkiXA3bs2aNasPaysXr5M27179yCXy9G0adOaFhcAUFRUhLZt2/L33d3ddR4vKCiARCKpVYxXGSUFPWFPZm+Mi4uDvb09AMDNzQ0KhaLaSQEAJBIJxEZYVUooFMLKygp2dnYGj1WeII0Rq7S0FGZmZkaJZW5uDo7jjBILAAQCAWxtbWFra2vwWObm5rC0tKz2udnZAY6OGjx4IIBUao+OHTUvfc6jR4/AGKv16yiRSJCVlYWioiJ4e3vj7t27OkngZa/bo0eP8MUXX+DPP/+EQCDAkCFDsHbtWtjY2FT6nM2bN+O3337DpUuXUFRUhPz8fP57oL6hPgU9kMvluHLlCgCgTZs26NChg4lLRIjptWmjTQSpqcb9muE4DhKJhP/yl0gkOreXNR0NHz4cSUlJOHr0KPbv34+TJ09i4sSJL3xOSUkJgoODMXv2bL2dh6lQTaEWnq4dODo6AgCcnZ1NWSRC6oxOnTQoKVHDwsLUJam6lJQUHD58GBcuXIDfk0n4vv/+ewwYMAArVqxA48aNK3ze1KlTAQAxMTFGKqnhUFKoodLSUqSkpAAA3njjDTRq1AhSqdTEpSKk7li4UG7qIlRbefOv31OzsgYFBUEgEODcuXN49913TVg646Dmo2oqrx2cPXsWFk9+AjVq1MiURSKE6IlUKn2uU93MzAwNGjR4bX70UVKohuLiYsTHxwMAOnTooDPCgRBSd3311VfgOO6Ft9TUVFMXs06g5qMqYIwhIyMD6enpaNy4MR4/foyGDRuauliEkCqaMWMGRo8e/cJ9mjVrBhcXF+Tl5elsV6lUePToEVxcXAxYwrqDkkIVXL58GcXFxfDz84OtrS3u3r1r6iIRQqqhUaNGVWrmDQgIwOPHjxEfH4/OnTsDAP7++29oNBp06dLF0MWsEygpVEHz5s1hY2MDMzMz/qrcqtBoNGCM8f9WRfl+5VfkGoNGozFKrPLXwhixNBrtcMhXLVY5Y70/yq/Wro+xanLlvLe3N4KDgzFhwgRs2rQJSqUSoaGh+PDDD/mRR9nZ2ejbty9+/vln+Pv7A9D2RUilUqSlpQEArl69CltbW3h4eKBBgwZ6OR9joaRQBba2ttWaUqD8S0Iul4PjuGolhOzsbD6WoT+IpaWlKCkpgVAoNMqHvri4GHZ2dkaJpVKpwHGc0ZICY4yPaWhCoRClpaWwsrIyeCwzMzPk5+fDycnJ4OdWHksmk8HS0rLWx/vll18AaAeF9OvXr8rP+/XXXxEaGoq+ffvyF6+tW7eOf1ypVOL69esoKSnht23atAnffvstf79nz54AgMjIyJc2W9U1lBT0TK1WQ/lkvuDyuVeqkhQ0Gg3S09Px8OFD+Pj4GHyKC6VSieTkZKNNcVFYWIjCwkK0adPGKHP2FBcXw9ra2iixykehKRQKvXyZvYyLiwvu3btnlFFvTZs2xaVLlyCVStGkSRODxnJ1dYVcLsfly5fRvn37Wl+xPXv2bFhbW2PYsGGYNm0aJk+erPN+qGwOpAYNGuC3336r9LheXl7Pfabnz5+P+fPn16q8dQXHqvoz9jWlVqshl8shEAjAcRxUKhWOHTuGoKAgAOD/r9Fo8Pfff6N79+7gOA5nzpzhawyEEOMrKSnBxx9/XOnjNAdSxaimoAcajYavHahUKojFYnTv3r1KNYTS0lIkJydDJBLB29sbZmaG/ZMwxnDz5k0UFRXBx8fH4PEAID8/H8nJyfD394e5ueFX49JoNDhz5gw6d+5slCYWALhy5QqcnJyMNkIlLS0NSqUS3t7eRomXlZWFrKwsdOrUySgTNebm5uLmzZto1apVtSfjK1c+ahDQTpI3a9YspKSkYOXKlfD39wdjDIWFhTRr6jOopvASVakpUO2AkLrtRbUGqjHooppCDT09iqa6tQMAuH//Pq5fvw4vLy80adLEKL9UHj58iJSUFPj4+Bhlhk0AePDgAW7evAl/f38IhcZZhUsqlSI3Nxc+Pj5GiQcAd+7cQWlpqVGm6i6XlJQES0tLNGvWzCjxVCoVEhIS0KhRI3h5eRklZmFhIa5du4YmTZrAw8Ojxp+Tp2sNSUlJ+OKLL9CiRQssX76crzGUe91rDlRTeInKago9evQAAKodEFLPUF/Di1FNoZrKawcajQZisRiBgYFVrh1oNBrcuHEDDx48QIcOHYz2xpPL5YiPj0fjxo2N9gsP0P5iv3XrFv7xj38YZRRQufJzdXV1NVrM/Px8pKSkoGvXrkaLCWjPtVGjRvDw8DBaTKlUihs3buDNN980ymgrQNv3duXKFVhZWeGNN96o1fuJMYa7d++CMYaff/4ZixYtwqxZszBlyhR+rYrXGc19VEWMMSiVSr5DuXxbVROCUqnElStXUFhYiM6dOxstIajValy7dg12dnbw9PQ0SkxAmwAzMjLg5eVl1ITAGENRUZHRP9gWFhaQy+VGrzW6u7sjKyvLqHFdXFzg4uKCa9euGe2CPUtLS3Ts2BEKhQJXrlyp1kWkzypfb8HOzg6hoaH4/fffsX37dnz44Yd4+PAhioqK+CHUr2NDCjUfvYRarUZZWRnUajU0Gg0/soWajAip/6gp6XmUFF5CqVQiNzcXarWaX1azOtNWJCQkYM+ePZg4cWKtOspqYt26dXB2dsZ7771nlKGg5crKyjBz5kzMnDnTqM1VAPDXX38hKSkJ06dPN2pcAJg3bx4GDx7Mz5ljLJcvX8Yvv/yC5cuXG/X9pVAosHXrVtjb2+PDDz80WlyNRoNbt25hw4YNmDp1aq2azhhjkMlk/P1ff/0Vq1evxtSpUzFr1izY2dm9dp3OlBReoqCgoNZrrTo6OuLBgwf6KVA1cByHBg0a4OHDh0aPXd15ovTJ3Nxcp5nPWIw1XcizzM3N+ZqssTVo0ACPHj0yelwAsLOzQ0FBgcGO/zrWEgBKCi9V3kZdm+eb6peGKWOT14ep3mflX12Giv26Dk2lpEAIIYRHo48IIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEJe4NGjRxg+fDgkEgns7e0xbtw4nWsbKtr/iy++QOvWrWFpaQkPDw9MnjzZoMNn9YmSAiGEvMDw4cORlJSEo0ePYv/+/Th58iQmTpxY6f737t3DvXv3sGLFCly7dg1RUVE4fPgwxo0bZ8RS1wIjhBBSoTlz5jAATCQSMX9/f3bu3Dl26NAhxnEcy87Ofm7/3bt3s9atWzOxWMzatWvHDhw4wG8XiURMqVQa+xSqjWoKhBBSgV27dmHp0qWwtLREQkICfHx80L9/f3To0AECgQDnzp3T2T82NhYfffQRxo0bh4SEBISEhCAkJATXrl3jr442xkqHtUUXrxFCSAW6dOkCjuOQn5+P69evQ6PRwN3dHV988QVWrVqFb7/9Fp999hm//7Bhw1BcXIz9+/fz2/7xj3+gTZs2OH78OEaMGIFFixaZ4lSqhWoKhJDXzldffQWO4154i4+PR4sWLfjnCAQCuLm5YcGCBbh//z6WL1+O8+fP84/HxcXxy/QCwJYtW5CdnY1t27bh3r17OHv2rM7+dRUlBULIa2fGjBlISUmp9HbixAmo1Wp4eHggLy8PgLY5KT4+Hs7OzhAIBGjZsiX69+/PPy6VSuHs7MzHOHr0KEpLS2FmZoaLFy/Cw8MD/fr1Q3Z2tknOuaooKRBCXjuNGjVCmzZtKr2V1xDat2+Px48fIz4+HqtWrUKHDh0gFovBGEPPnj1RVFSEJk2aoEuXLjqz1BYWFuLu3btwcHCAg4MDfHx88NNPP0Gj0WDRokXgOA4hISEmOvsXo6RACCHPcHR0hFAohKWlJYKDgzFu3DjEx8cDALKyshAQEIDw8HB06dIF/v7+fJ9DWloaCgsL0a9fPxQXFyM4OBiNGjWCVCpFRkYG5HI5du/eza/xXhdRRzMhhFSg/Av/22+/xdixY/Gf//wHANC5c2dwHIcuXbrAysoKR44cweXLlyESidCsWTNs3LgRvXv3rvCYIpEIa9euxdmzZ/H48WPs27fPiGdUNVRTIISQCkyfPh1btmzBn3/+iWnTpgEAbGxs8McffyAhIQHXrl3DyZMn+eakPn364Pr164iPj0dKSgrCwsJgbm6Oq1evYsmSJbCwsEC3bt3w6aefmvjMXqzuD5olhBATGDZsGO7fv4958+YhJycHADB37lx+hb2CggIUFRXhjTfeAKDtf0hLS8PmzZsxe/ZstGzZEvv27cPhw4excOFCSCQS7N6925SnVCVUU6il9evXw8vLCxYWFujSpctLh5ytWbOGnxPF3d0d06ZNQ1lZmcFjBwYGVjjs7u233zZ4bAB4/PgxPv/8c7i6ukIsFqNVq1Y4ePCgwWNHRUU9d84WFhY1ilvd2E/buXNnrTsXqxN779698PPzg729PaytreHr64vt27cbJfaWLVvQo0cPvpM1KCioVkMxqxM7KSkJQ4YMgZeXFziOw5o1a2ocFwBCQ0Nx584dKBQK+Pv74+7du/xjP/zwA8rKyhAQEMBva9CgAa5fvw65XI5r167h2rVrWLBgASQSCaKiouDo6Fir8hiFKS+nru927tzJRCIR27p1K0tKSmITJkxg9vb2LDc3t8L9f/31VyYWi9mvv/7KMjIy2F9//cVcXV3ZtGnTDB774cOHLCcnh79du3aNCYVCFhkZafDYcrmc+fn5sQEDBrDTp0+zjIwMFhMTwxITEw0eOzIykkkkEp1zl0ql1Y5bk9jlMjIyWJMmTViPHj3Y4MGDjRL7+PHjbO/evSw5OZmlpaWxNWvWMKFQyA4fPmzw2B9//DFbv349S0hIYCkpKWz06NHMzs6OZWVlGTz2+fPn2cyZM9mOHTuYi4sLW716dbVjvqgsYrGY/fTTT0woFLJ+/foxe3t7/v3UrFkz1qJFC37/pUuXMpFIxL777jsGgAmFQv7GcRzjOI4JhUKWlpamtzLqAyWFWvD392eff/45f1+tVrPGjRuzJUuWVLj/559/zvr06aOzbfr06axbt24Gj/2s1atXM1tbWyaTyQwee+PGjaxZs2ZMoVBUO1ZtY0dGRjI7O7tax61JbMYYU6lUrGvXruynn35io0aNqnFSqO3fmzHGOnbsyObMmWP02CqVitna2rJt27YZNbanp6dekwJjjH3//ffMw8ODcRzHnJyc2NmzZ/lyiUQi1qlTJ534AJ67ffbZZ2zw4MGsT58+7OrVq0wul+u1jLVFzUc1pFAoEB8fr3MFo0AgQFBQEOLi4ip8TteuXREfH89Xf2/duoWDBw9iwIABBo/9rIiICHz44YewtrY2eOz//ve/CAgIwOeffw5nZ2e0a9cOixcvhlqtNnhsAJDJZPD09IS7uzsGDx6MpKSkasWtTewFCxbAycmpVjNk1vbvzRhDdHQ0rl+/jp49exo1NgCUlJRAqVSiQYMGRo+tb+XNSTt27EBBQQFSU1ORkpKCzz77DFZWVnyT6MiRI/HRRx+BaX9469w2bNgAe3t72Nraol27dhCJRCY5l8pQR3MNPXjwAGq1WucKRgBwdnZGampqhc/5+OOP8eDBA3Tv3h2MMahUKnz66aeYPXu2wWM/7fz587h27RoiIiKqFbemsW/duoW///4bw4cPx8GDB5GWloZJkyZBqVQiLCzMoLFbt26NrVu3okOHDigoKMCKFSvQtWtXJCUlwc3NzaCxT58+jYiICCQmJlY5jr5iA0BBQQGaNGkCuVwOoVCIDRs24K233jJK7KfNmjULjRs31vlyN1ZsQ3m6E1oqlcLX1xeHDx/my5qZmQmBoOa/uX/++WdMmzYN9+7dg1gs5reHhITA1ta2Vv1DL0NJwYhiYmKwePFibNiwAV26dEFaWhqmTJmC8PBwzJ0712jliIiIQPv27eHv72+UeBqNBk5OTti8eTOEQiE6d+6M7OxsfPfdd9VKCjUREBCg0xHYtWtXeHt748cff0R4eLjB4hYVFeGTTz7Bli1bTNa5aGtri8TERMhkMkRHR2P69Olo1qwZAgMDjVaGpUuXYufOnYiJialVB39dFBoaitDQ0Aofi4mJeeFzo6KiXvj40KFDMXnyZPz3v//F0KFDAQB5eXk4cOAAjhw5UpPiVhklhRoqv+IxNzdXZ3tubi5cXFwqfM7cuXPxySefYPz48QC0Q9iKi4sxceJEfPPNN1X+ZVGT2OWKi4uxc+dOLFiwoEqx9BHb1dUV5ubmEAqF/DZvb29IpVIoFIoqV59rc97lzM3N0bFjR6SlpVVp/5rGTk9Px+3btzFw4EB+W/k0CGZmZrh+/TqaN29ukNjlBAIBP12Dr68vUlJSsGTJkmolhdq85itWrMDSpUtx7NgxdOjQocox9RG7vrO0tMTHH3+MyMhIPin88ssv8PDwMHhSpz6FGhKJROjcuTOio6P5bRqNBtHR0Tq/TJ9WUlLy3Bd/+Rclq8aF5TWJXe7f//435HI5RowYUeV4tY3drVs3pKWl6cwNc+PGDbi6ularPbU2511OrVbj6tWrcHV1rXLcmsRu06YNrl69isTERP42aNAg9O7dG4mJiXB3dzdY7MpoNBrI5fIq71+b2MuXL0d4eDgOHz4MPz+/asWsbexXxYQJE3DkyBF+Ar2oqCiMHj0aHMcZNrDp+rjrv/IhalFRUSw5OZlNnDhRZ4jaJ598wr766it+/7CwMGZra8t27NjBbt26xY4cOcKaN2/OPvjgA4PHLte9e3c2bNiwGp5xzWJnZmYyW1tbFhoayq5fv87279/PnJyc2MKFCw0e+9tvv2V//fUXS09PZ/Hx8ezDDz9kFhYWLCkpyeCxn1Wb0UfVjb148WJ25MgRlp6ezpKTk9mKFSuYmZkZ27Jli8Fjlw/F3LNnj85Q4KKiIoPHlsvlLCEhgSUkJDBXV1c2c+ZMlpCQwG7evFnt2HVBp06d2OLFi9nFixeZQCBgmZmZBo9JSaGWyoeolS/XVz5EjTHGevXqxUaNGsXfVyqVbP78+ax58+bMwsKCubu7s0mTJrH8/HyDx2aMsdTUVAaAHTlypEbxahM7NjaWdenShYnFYtasWTO2aNEiplKpDB576tSp/L7Ozs5swIAB7NKlSzWKW93Yz6pNUqhu7G+++Ya1aNGCWVhYMAcHBxYQEMB27txplNiVDcUMCwszeOyMjIwKY/fq1atGsU1tw4YNrFWrVuzzzz9n/fr1M0pMmhCPEELqqIKCAjRu3BgqlQo///wzhg0bZvCY1KdACCF1lJ2dHYYMGQIbGxujrb9ASYEQQuqw7OxsDB8+XOd6BUOi5iNCCKmD8vPzERMTg/fffx/Jyclo3bq1UeLSdQqEEFIHdezYEfn5+Vi2bJnREgJAzUeE6Lh//z5cXFywePFifltsbCxEIpHOeHlCDO327dsoKCjAzJkzjRqXmo8IecbBgwcREhKC2NhYtG7dGr6+vhg8eDBWrVpl6qIRYnCUFAipwOeff45jx47Bz88PV69exYULF4zW0UeIKVFSIKQCpaWlaNeuHe7evYv4+Hi0b9/e1EUixCioT4GQCqSnp+PevXvQaDS4ffu2qYtDiNFQTYGQZ5Svx+vr64vWrVtjzZo1uHr1KpycnExdNEIMjpICIc/48ssvsWfPHly+fBk2Njbo1asX7OzssH//flMXjRCDo+YjQp4SExODNWvWYPv27ZBIJBAIBNi+fTtOnTqFjRs3mrp4hBgc1RQIIYTwqKZACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPD+H8cciyUs5Kd0AAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.angle1 = 0\n", + "visualizer.angle2 = 90\n", + "visualizer.plot_trajectory(np.array(traj_actual), np.array(traj_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zV1tmbQ1NJyk" + }, + "source": [ + "## Orientation" + ] + }, + { + "cell_type": "code", + "execution_count": 934, + "metadata": {}, + "outputs": [], + "source": [ + "or_pred, or_traj = metrics['or_traj'][0], metrics['or_traj'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 935, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<Figure size 640x480 with 0 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChz0lEQVR4nOzdd1zU9R/A8dexUQQ0VFRIXJl74Mj6kZoDR7nLVbhNy9yaNpw5cq/MLLdppqKV5krR1ExLQytHDhy4FyAOkOPz++MLJ8fywDuOg/fz8bgHx/f7ue+978u4932+n8/7o1NKKYQQQgghRKrsrB2AEEIIIUR2JsmSEEIIIUQ6JFkSQgghhEiHJEtCCCGEEOmQZEkIIYQQIh2SLAkhhBBCpEOSJSGEEEKIdEiyJIQQQgiRDkmWhBBCCCHSIcmSEM+oa9eu+Pn5mf24U6dOpWTJktjb21O1alUA4uLiGD58OL6+vtjZ2dGqVSuzP29OoNPpGDNmjLXDyLQxY8ag0+msHYZVpPba/fz86Nq1q9mew1J/syLnkmRJ5EhLly5Fp9Olefv999+zPKbz58+nG9PkyZMNbbdv387w4cN55ZVXWLJkCRMnTgRg8eLFTJ06lXbt2rFs2TIGDRpk9jhXrVrFrFmzzH7cp3n8+DFz5syhZs2a5MuXDzc3N2rWrMmcOXN4/PhxlsfzNM96nh48eMCYMWPYvXu32WIyh6S/k3Z2dhQtWpTGjRtnuzif5sqVK4wZM4bQ0FBrhyJyAAdrByCEJY0bN44SJUqk2F66dGkrRKPp2LEjzZo1S7G9WrVqhvu7du3Czs6ORYsW4eTkZLS9WLFizJw502LxrVq1in/++YeBAwda7DmSu3//Ps2bN2fPnj28/vrrdO3aFTs7O7Zu3cqAAQMIDg5m8+bN5M2b16TjPXz4EAcHy/57e9bz9ODBA8aOHQtAvXr1jPZ98sknjBgx4hkjzLxGjRoRFBSEUoqwsDDmz5/Pa6+9xubNm2natGmWx3Pq1Cns7DL22f7KlSuMHTsWPz8/Q89soq+//pr4+HgzRihyOkmWRI7WtGlTatSoYe0wjFSvXp2333473TY3btzA1dXVKFFK3O7p6WnB6CwjLi6O+Pj4FK8n0eDBg9mzZw9z586lX79+hu19+/bliy++oF+/fgwdOpQvv/wyzeeIj48nNjYWFxcXXFxczP4aspKDg4PFk730vPDCC0a/o61bt6Zy5crMmjUrzWTp0aNHODk5ZTipMYWzs7NZj+fo6GjW44mcTy7DiVwt8dLYtGnTWLhwIaVKlcLZ2ZmaNWvyxx9/pGi/ceNGKlasiIuLCxUrVmTDhg1mj0mn07FkyRLu379vuBySeFkxJCSEf//917A98dJIfHw8s2bNokKFCri4uFC4cGHeffdd7t69m+L4W7ZsoW7duuTLlw93d3dq1qzJqlWrAK2HY/PmzVy4cMHwHEnHdty4cYMePXpQuHBhXFxcqFKlCsuWLTM6ftJzOmvWLMM5PX78eKqvNzw8nEWLFvHaa68ZJUqJ3n//ferXr88333xDeHi40Xnq168f3377LRUqVMDZ2ZmtW7ca9iUfs3T58mW6d+9O4cKFcXZ2pkKFCixevNioze7du9HpdHz//fdMmDABHx8fXFxcaNCgAWfOnDG0S+88xcbGMmrUKPz9/fHw8CBv3rwEBAQQEhJidI4KFiwIwNixYw3HSIw5tXE7cXFxjB8/3nA+/fz8+Oijj4iJiTFq5+fnx+uvv86+ffuoVasWLi4ulCxZkuXLl6d6/k1RqVIlvLy8CAsLMzpP3333HZ988gnFihUjT548REVFAXDw4EGaNGmCh4cHefLkoW7duuzfvz/Fcfft20fNmjVxcXGhVKlSfPXVV6k+f2pjliIiIhg0aBB+fn44Ozvj4+NDUFAQt27dYvfu3dSsWROAbt26Gf0dQepjlu7fv8+QIUPw9fXF2dmZsmXLMm3aNJRSRu0Sf+8S/xck/i4l/u4lunfvHgMHDjTEV6hQIRo1asSRI0dMOucie5GeJZGjRUZGcuvWLaNtOp2O5557zmjbqlWruHfvHu+++y46nY4pU6bQpk0bzp07Z/gUun37dtq2bUv58uWZNGkSt2/fplu3bvj4+GQopgcPHqSICcDT0xMHBwdWrFjBwoULOXToEN988w2gXaJbsWIFEyZMIDo6mkmTJgFQrlw5AN59912WLl1Kt27d6N+/P2FhYcybN4+//vqL/fv3G17D0qVL6d69OxUqVGDkyJF4enry119/sXXrVjp16sTHH39MZGQk4eHhhkt9bm5ugHZpq169epw5c4Z+/fpRokQJ1q5dS9euXYmIiGDAgAFGr2fJkiU8evSI3r174+zsTIECBVI9H1u2bEGv1xMUFJTmOQsKCiIkJIStW7fSs2dPw/Zdu3bx/fff069fP7y8vNIctHv9+nVeeuklwxtdwYIF2bJlCz169CAqKirFpbTJkydjZ2fH0KFDiYyMZMqUKXTu3JmDBw8CpHueoqKi+Oabb+jYsSO9evXi3r17LFq0iMDAQA4dOkTVqlUpWLAgX375JX379qV169a0adMGgMqVK6d5Dnr27MmyZcto164dQ4YM4eDBg0yaNIkTJ06kSNrPnDlDu3bt6NGjB126dGHx4sV07doVf39/KlSokOZzpOXu3bvcvXs3xeXr8ePH4+TkxNChQ4mJicHJyYldu3bRtGlT/P39GT16NHZ2dixZsoTXXnuNvXv3UqtWLQD+/vtvGjduTMGCBRkzZgxxcXGMHj2awoULPzWe6OhoAgICOHHiBN27d6d69ercunWLH3/8kfDwcMqVK8e4ceMYNWoUvXv3JiAgAICXX3451eMppWjRogUhISH06NGDqlWrsm3bNoYNG8bly5dTXPbet28fwcHBvPfee+TLl485c+bQtm1bLl68aPjf0qdPH9atW0e/fv0oX748t2/fZt++fZw4cYLq1atn+GcgrEwJkQMtWbJEAanenJ2dDe3CwsIUoJ577jl1584dw/YffvhBAeqnn34ybKtataoqUqSIioiIMGzbvn27AlTx4sWfGlPic6V1O3DggKFtly5dVN68eVMco27duqpChQpG2/bu3asA9e233xpt37p1q9H2iIgIlS9fPlW7dm318OFDo7bx8fGG+82bN0/19cyaNUsBauXKlYZtsbGxqk6dOsrNzU1FRUUZvU53d3d148aNp56XgQMHKkD99ddfabY5cuSIAtTgwYMN2wBlZ2en/v333xTtATV69GjD9z169FBFihRRt27dMmrXoUMH5eHhoR48eKCUUiokJEQBqly5ciomJsbQbvbs2QpQf//9t2FbWucpLi7O6LFKKXX37l1VuHBh1b17d8O2mzdvpogz0ejRo1XSf8+hoaEKUD179jRqN3ToUAWoXbt2GbYVL15cAerXX381bLtx44ZydnZWQ4YMSfFcyQGqR48e6ubNm+rGjRvq4MGDqkGDBgpQ06dPV0o9OU8lS5Y0nDultN+jMmXKqMDAQKPfqQcPHqgSJUqoRo0aGba1atVKubi4qAsXLhi2HT9+XNnb2xu99sTX1KVLF8P3o0aNUoAKDg5OEX/i8/7xxx8KUEuWLEnRpkuXLkY/u40bNypAffbZZ0bt2rVrp3Q6nTpz5ozR+XFycjLadvToUQWouXPnGrZ5eHio999/P8VzC9skl+FEjvbFF1+wY8cOo9uWLVtStGvfvj358+c3fJ/4SfTcuXMAXL16ldDQULp06YKHh4ehXaNGjShfvnyGYurdu3eKmHbs2JHh4yRau3YtHh4eNGrUiFu3bhlu/v7+uLm5GS7/7Nixg3v37jFixIgUY3pMmab+888/4+3tTceOHQ3bHB0d6d+/P9HR0ezZs8eofdu2bQ2XmtJz7949APLly5dmm8R9iZd5EtWtW/ep500pxfr163njjTdQShmdo8DAQCIjI1NcGunWrZvR+Krkvw/psbe3Nzw2Pj6eO3fuEBcXR40aNTJ9Cebnn38GtLFdSQ0ZMgSAzZs3G20vX768IWaAggULUrZsWZPiB1i0aBEFCxakUKFC1K5dm/379zN48OAUPXBdunTB1dXV8H1oaCinT5+mU6dO3L5923Ce79+/T4MGDfj111+Jj49Hr9ezbds2WrVqxfPPP294fLly5QgMDHxqfOvXr6dKlSq0bt06xb7MlFz4+eefsbe3p3///kbbhwwZglIqxf+Mhg0bUqpUKcP3lStXxt3d3ej8enp6cvDgQa5cuZLheET2I5fhRI5Wq1YtkwZ4J/2HDRgSp8QxPxcuXACgTJkyKR5btmxZozfBmzdvotfrDd+7ubkZLtEkHqNhw4YZeBXpO336NJGRkRQqVCjV/Tdu3ADg7NmzAFSsWDFTz3PhwgXKlCmTYgBv4qXAxHOUKLVZiKlJTIQSk6bUpJVQmfIcN2/eJCIigoULF7Jw4cJU2ySeo0RP+314mmXLljF9+nROnjxpVPbA1HOS3IULF7Czs0txGczb2xtPT88U5z55/KC9BlPjb9myJf369UOn05EvXz4qVKiQ6kzE5K/n9OnTgJZEpSUyMpKYmBgePnyY5t9TYnKYlrNnz9K2bVtTXopJLly4QNGiRVP8fqX1u23K+Z0yZQpdunTB19cXf39/mjVrRlBQECVLljRb3CLrSLIkBFpvQGpUssGdpqhZs6bRP9fRo0dbtEBifHw8hQoV4ttvv011vym9O5aQtMchPYlvSMeOHUsxxTvRsWPHAFL0IpnyHIlTxN9+++0038STjxV6lt+HlStX0rVrV1q1asWwYcMoVKgQ9vb2TJo0yZCwZpapvSbP+vvs4+NjUkKf/PwnnuupU6em+bN0c3NLMSjd1phyft966y0CAgLYsGED27dvZ+rUqXz++ecEBwdbpfyCeDaSLAlhguLFiwNPPjknderUKaPvv/32Wx4+fGj43tKfJEuVKsUvv/zCK6+8km7ykHjZ4J9//km3zlRab8jFixfn2LFjxMfHG/UunTx50rA/M5o2bYq9vT0rVqxIc5D38uXLcXBwoEmTJhk+fsGCBcmXLx96vd6sPXppnad169ZRsmRJgoODjdqMHj3apMenpnjx4sTHx3P69GlDcgnawPWIiIhMn3tzS/wdc3d3T/dcFyxYEFdXV5P+ntJ6nn/++SfdNhk9v7/88gv37t0z6l161t/tIkWK8N577/Hee+9x48YNqlevzoQJEyRZskEyZkkIExQpUoSqVauybNkyIiMjDdt37NiRYkr8K6+8QsOGDQ03SydLb731Fnq9nvHjx6fYFxcXR0REBACNGzcmX758TJo0iUePHhm1S/qJOG/evEavMVGzZs24du0aa9asMTr+3LlzcXNzo27dupmK39fXl27duvHLL7+kWkdpwYIF7Nq1ix49emR45iFovQBt27Zl/fr1qb7B3rx5M1Nxp3WeEnsdkp7TgwcPcuDAAaN2efLkATD8fNKTWMQ0ecXwGTNmANC8eXOT47Ykf39/SpUqxbRp04iOjk6xP/Fc29vbExgYyMaNG7l48aJh/4kTJ9i2bdtTn6dt27YcPXo01dIdiec98bKhqedXr9czb948o+0zZ85Ep9NlOLnR6/UpfjcKFSpE0aJFbb5XLbeSniWRo23ZssXw6TCpl19+OcNJzKRJk2jevDn/+9//6N69O3fu3GHu3LlUqFAh1TeGtBw5coSVK1em2F6qVCnq1KmToZhAG+T87rvvMmnSJEJDQ2ncuDGOjo6cPn2atWvXMnv2bNq1a4e7uzszZ86kZ8+e1KxZk06dOpE/f36OHj3KgwcPDPWS/P39WbNmDYMHD6ZmzZq4ubnxxhtv0Lt3b7766iu6du3K4cOH8fPzY926dezfv59Zs2alO0D7aWbOnMnJkyd577332Lp1q6EHadu2bfzwww/UrVuX6dOnZ/r4kydPJiQkhNq1a9OrVy/Kly/PnTt3OHLkCL/88gt37tzJ8DHTOk+vv/46wcHBtG7dmubNmxMWFsaCBQsoX7680e+Jq6sr5cuXZ82aNbzwwgsUKFCAihUrpjqmrEqVKnTp0oWFCxcSERFB3bp1OXToEMuWLaNVq1bUr18/0+fGnOzs7Pjmm29o2rQpFSpUoFu3bhQrVozLly8TEhKCu7s7P/30E6DVl9q6dSsBAQG89957hsS7QoUKhsuuaRk2bBjr1q3jzTffpHv37vj7+3Pnzh1+/PFHFixYQJUqVShVqhSenp4sWLCAfPnykTdvXmrXrp3quLE33niD+vXr8/HHH3P+/HmqVKnC9u3b+eGHHxg4cKDRYG5T3Lt3Dx8fH9q1a0eVKlVwc3Pjl19+4Y8//nim32NhRdaahieEJaVXOoAk04kTp7lPnTo1xTFIZVr3+vXrVbly5ZSzs7MqX768Cg4OTjENOS1PKx2QdGp0RkoHJFq4cKHy9/dXrq6uKl++fKpSpUpq+PDh6sqVK0btfvzxR/Xyyy8rV1dX5e7urmrVqqVWr15t2B8dHa06deqkPD09U5RFuH79uurWrZvy8vJSTk5OqlKlSimmZqd3TtMTExOjZs6cqfz9/VXevHlVnjx5VPXq1dWsWbNUbGxsivZAmlOzU/vZXb9+Xb3//vvK19dXOTo6Km9vb9WgQQO1cOFCQ5vEKfFr165N9TUlfa1pnaf4+Hg1ceJEVbx4ceXs7KyqVaumNm3alOrvyW+//ab8/f2Vk5OTUczJSwcopdTjx4/V2LFjVYkSJZSjo6Py9fVVI0eOVI8ePTJqV7x4cdW8efMU56Ru3bqqbt26qZ6v5OfuaVPe0zpPif766y/Vpk0b9dxzzylnZ2dVvHhx9dZbb6mdO3catduzZ4/h9ZcsWVItWLAg1deevHSAUkrdvn1b9evXTxUrVkw5OTkpHx8f1aVLF6PyED/88IMqX768cnBwMPr5pfazuHfvnho0aJAqWrSocnR0VGXKlFFTp041KoGQ3vlJGmNMTIwaNmyYqlKlisqXL5/KmzevqlKlipo/f35ap1RkczqlMjGCVQghhBAil5AxS0IIIYQQ6ZBkSQghhBAiHZIsCSGEEEKkQ5IlIYQQQoh0SLIkhBBCCJEOSZaEEEIIIdIhRSnNID4+nitXrpAvX75MrXgthBBCiKynlOLevXsULVo0xSLhSUmyZAZXrlzB19fX2mEIIYQQIhMuXbqU7nJKkiyZQeIyD5cuXcLd3d3K0QghhBDCFFFRUfj6+j51uSZJlswg8dKbu7u7JEtCCCGEjXnaEBoZ4C2EEEIIkQ5JloQQQggh0iHJkhBCCCFEOmTMUhaJj48nNjbW2mEIAYCjoyP29vbWDkMIIWyCJEtZIDY2lrCwMOLj460dihAGnp6eeHt7S20wIYR4CkmWLEwpxdWrV7G3t8fX1zfdoldCZAWlFA8ePODGjRsAFClSxMoRCSFE9ibJkoXFxcXx4MEDihYtSp48eawdjhAAuLq6AnDjxg0KFSokl+SEECId0s1hYXq9HgAnJycrRyKEscTk/fHjx1aORAghsjdJlrKIjAsR2Y38TgohhGnkMpwQQojcQa+HvXvh6lUoUgQCAkAuQQsT2FTP0q+//sobb7xB0aJF0el0bNy48amP2b17N9WrV8fZ2ZnSpUuzdOnSFG2++OIL/Pz8cHFxoXbt2hw6dMj8wQuzMvXnb0716tVj4MCBWfqcQogM0uth925YvVr7mjAUguBg8POD+vWhUyftq5+ftj29xwmBjSVL9+/fp0qVKnzxxRcmtQ8LC6N58+bUr1+f0NBQBg4cSM+ePdm2bZuhzZo1axg8eDCjR4/myJEjVKlShcDAQMNModzuwIED2Nvb07x58ww/1s/Pj1mzZpk/qKfQ6XTp3saMGZOp4wYHBzN+/HizxSnJlxBmllZCNHw4tGsH4eHG7S9f1rYPH55+IiVyPZu6DNe0aVOaNm1qcvsFCxZQokQJpk+fDkC5cuXYt28fM2fOJDAwEIAZM2bQq1cvunXrZnjM5s2bWbx4MSNGjDD/i7AxixYt4oMPPmDRokVcuXKFokWLWjukp7p69arh/po1axg1ahSnTp0ybHNzczPcV0qh1+txcHj6n0KBAgXMG6iZxMbGygQCIYKDtcRHKePt4eEwdarh2yjyEYMzBbiDvUqofZdkv0FiIrVuHbRpI5fwcjmb6lnKqAMHDtCwYUOjbYGBgRw4cADQ3mQOHz5s1MbOzo6GDRsa2qQmJiaGqKgoo1tOFB0dzZo1a+jbty/NmzdP9RLmTz/9RM2aNXFxccHLy4vWrVsDWq/JhQsXGDRokKFHB2DMmDFUrVrV6BizZs3Cz8/P8P0ff/xBo0aN8PLywsPDg7p163LkyBGT4/b29jbcPDw80Ol0hu9PnjxJvnz52LJlC/7+/jg7O7Nv3z7Onj1Ly5YtKVy4MG5ubtSsWZNffvnF6LjJe4JiYmIYOnQoxYoVI2/evNSuXZvdu3cbPWb//v3Uq1ePPHnykD9/fgIDA7l79y5du3Zlz549zJ4923B+zp8/D8CePXuoVasWzs7OFClShBEjRhAXF2cUR79+/Rg4cCBeXl4EBgbSvXt3Xn/9daPnfvz4MYUKFWLRokUmnzshsr3ULpfp9TBggCFRuk8e/qIq3/MmE/iIrizhFfZRiOt4EEUhbuJELN5cpTJHacgOOrOSQcxgJgM5SdknSdfAgVrCJD1PuZpN9Sxl1LVr1yhcuLDRtsKFCxMVFcXDhw+5e/cuer0+1TYnT55M87iTJk1i7NixmYpJKXjwIFMPfWZ58kBGJkB9//33vPjii5QtW5a3336bgQMHMnLkSEPis3nzZlq3bs3HH3/M8uXLiY2N5eeffwa0S1ZVqlShd+/e9OrVK0Nx3rt3jy5dujB37lyUUkyfPp1mzZpx+vRp8uXLl6FjpWXEiBFMmzaNkiVLkj9/fi5dukSzZs2YMGECzs7OLF++nDfeeINTp07x/PPPp3qMfv36cfz4cb777juKFi3Khg0baNKkCX///TdlypQhNDSUBg0a0L17d2bPno2DgwMhISHo9Xpmz57Nf//9R8WKFRk3bhwABQsW5PLlyzRr1oyuXbuyfPlyTp48Sa9evXBxcTG6fLhs2TL69u3L/v37Abh9+zavvvoqV69eNRSZ3LRpEw8ePKB9+/ZmOWdCWF1wsJYUJb2c5uMDvXrxOPwaW3iDpXRlE6/zmPR7W+Ox5zreXMc7xb7BzORFTtBabaD1pQ3UePNNUvzrTN7zJHK0HJ0sWcrIkSMZPHiw4fuoqCh8fX1NeuyDB5DkKlCWio6GvHlNb79o0SLefvttAJo0aUJkZCR79uyhXr16AEyYMIEOHToYJY5VqlQBtEtW9vb25MuXD2/vlP+M0vPaa68Zfb9w4UI8PT3Zs2dPit6TzBo3bhyNGjUyfF+gQAFD7ADjx49nw4YN/Pjjj/Tr1y/F4y9evMiSJUu4ePGi4dLk0KFD2bp1K0uWLGHixIlMmTKFGjVqMH/+fMPjKlSoYLjv5OREnjx5jM7P/Pnz8fX1Zd68eeh0Ol588UWuXLnChx9+yKhRowwV4MuUKcOUKVOMYipbtiwrVqxg+PDhACxZsoQ333zT6LKjEDYrjctsoeFeLBudj2+5zE0KGbZ7cZMynE5xK80ZXHnILby4QSGuU5gbFDLcP0oVdvEaJynHJMoxiY/w4RKt2UBrNlCXPdihtDh0Oq3nqWVLuSSXw+XoZMnb25vr168bbbt+/Tru7u64urpib2+Pvb19qm3Se4N3dnbG2dnZIjFnF6dOneLQoUNs2LABAAcHB9q3b8+iRYsMyVJoaGiGe41Mcf36dT755BN2797NjRs30Ov1PHjwgIsXL5rtOWrUqGH0fXR0NGPGjGHz5s1cvXqVuLg4Hj58mOZz/v333+j1el544QWj7TExMTz33HOAdn7efPPNDMV14sQJ6tSpY1QD6ZVXXiE6Oprw8HBDL5e/v3+Kx/bs2ZOFCxcyfPhwrl+/zpYtW9i1a1eGnl+IbCnZZbZ7uLGIHiylK0epamhWmGu8zUq6sIxK/JPuIYtwjSJcS3VfJO5spjkbaM0WmhKOL3Ppz1z6U5W/+JwPacwOLZ5Ll7TLgfb2Mp4pB8vRyVKdOnUMl4US7dixgzp16gDaJ3t/f3927txJq1atAIiPj2fnzp2p9iaYQ548Wg+PNWRktZVFixYRFxdnNKBbKYWzszPz5s3Dw8PDsGRGRtjZ2aGSfTJMXkG6S5cu3L59m9mzZ1O8eHGcnZ2pU6cOsbGxGX6+tORN1sU2dOhQduzYwbRp0yhdujSurq60a9cuzeeMjo7G3t6ew4cPp1gqJLEnJzPnx1TJ4wcICgpixIgRHDhwgN9++40SJUoQEBBgsRiEsJjkg6n1eggPRwHf0YGhTOMKxQBwIoYW/EgXlhHINhyJS/u4Ol3KAeCp8CCKTqymE6t5iAu/0JANtGY9bQmlGoFspyE7mMJwqhEKb70Fd+48OYCPD8yeLZfnchCbGuAdHR1NaGgooaGhgFYaIDQ01PDpf+TIkQQFBRna9+nTh3PnzjF8+HBOnjzJ/Pnz+f777xk0aJChzeDBg/n6669ZtmwZJ06coG/fvty/f98wO87cdDrtUpg1bqaOV4qLi2P58uVMnz7dcL5DQ0M5evQoRYsWZfXq1QBUrlyZnTt3pnkcJycnw3IviQoWLMi1a9eMEqbEn2ei/fv3079/f5o1a0aFChVwdnbm1q1bpgWfSfv376dr1660bt2aSpUq4e3tbRhwnZpq1aqh1+u5ceMGpUuXNrol9kpm5vyUK1eOAwcOGJ2f/fv3ky9fPnx8fNJ9Dc899xytWrViyZIlLF261GK/w0JYVGrT/996i38pz2vsohOruUIxSnGGebzPFYqylrd4nc1aopT8H51Op92GDYNixYz3+fpq2xPbJH8c4Moj3mATi+nBWUoxkJk4EssvNKI6f9GZlYTdcTd+bOJ4JhkAnnMoGxISEqKAFLcuXboopZTq0qWLqlu3borHVK1aVTk5OamSJUuqJUuWpDju3Llz1fPPP6+cnJxUrVq11O+//56huCIjIxWgIiMjU+x7+PChOn78uHr48GGGjmlNGzZsUE5OTioiIiLFvuHDh6saNWoopbRza2dnp0aNGqWOHz+ujh07piZPnmxo26hRI9WiRQsVHh6ubt68qZRS6vjx40qn06nJkyerM2fOqHnz5qn8+fOr4sWLGx5XrVo11ahRI3X8+HH1+++/q4CAAOXq6qpmzpxpaAOoDRs2PPW1LFmyRHl4eBi+T/wdunv3rlG71q1bq6pVq6q//vpLhYaGqjfeeEPly5dPDRgwwNCmbt26Rt937txZ+fn5qfXr16tz586pgwcPqokTJ6pNmzYppZQ6deqUcnJyUn379lVHjx5VJ06cUPPnzzeci169eqmaNWuqsLAwdfPmTaXX61V4eLjKkyePev/999WJEyfUxo0blZeXlxo9enSacSS1fft25eTkpOzt7dXly5fTPTe2+Lspcrj165XS6VTCiCClQEWSTw1mmnIgVoFSrtxX4/lYPcTZqJ0CpcaOVcrHx3ibr692XKWUiotTKiREqVWrtK9xcU+eN7XHff+9tj1ZTOfwU51YadjkxCM1iOnqFgWetNPptGMkPofIltJ7/07KppKl7CqnJUuvv/66atasWar7Dh48qAB19OhRpZRS69evNySjXl5eqk2bNoa2Bw4cUJUrV1bOzs4qaV7+5ZdfKl9fX5U3b14VFBSkJkyYYJQsHTlyRNWoUUO5uLioMmXKqLVr16rixYtbNFkKCwtT9evXV66ursrX11fNmzcvRVKS/PvY2Fg1atQo5efnpxwdHVWRIkVU69at1bFjxwxtdu/erV5++WXl7OysPD09VWBgoOG5T506pV566SXl6uqqABUWFmZ4TM2aNZWTk5Py9vZWH374oXr8+HGacSQVHx+vihcvnubPLylb/N0UOVhcnFHCEg/qWzqqIlw25B+tCFZhFE+ZJCVNTNJKiEx5/rQSKZ0uRcKkQB2mmmrADsOmIlxWewgwbhcSYomzJcxEkqUslNOSJZG6l156SX388cfWDiNd9+7dU+7u7mp94ifpdMjvpshWQkIMCcYdPFVTNhvyjdL8p7YQmDJJSkyUdLonvUeWkFrPU4EChqRuK43VixxXoJQ9j9XnDFPxie1WrbJcXOKZmZos2dSYJSGsISYmhj///JN///3XaOp/dhIfH8+NGzcYP348np6etGjRwtohCZExCZX3T1KW2hxkC81w4SGf8TH/UJEmJCxTlbySvo+P5WsdtWkD589DSAisWqV9/f57AHRAINv5kxp0ZiV6HPiQKbRiI3fxhEKFZM25HCBHz4YTwhy2bNlCUFAQLVq0oF27dtYOJ1UXL16kRIkS+Pj4sHTpUpOWbxHCqpLPeCtUiJ9pSkdWE4UHz3OBH2hJVY4aP+77760zTd/eHhLKphji9/HRBnMrRV4esIJ3CGAv/ZnDj7TE3+4v1nXqS/UbW588TmbK2SSdUibMoxTpioqKwsPDg8jISNzdjWdFPHr0iLCwMEqUKIGLi4uVIhQiJfndFFaTrBK3Aqa5j+fDqI9Q2PE/9rKethTi5pPH6HRaohEWln1qGCUWygSjkgSH8edNvieMkjjziDn0pxdfa1XAE2fdSeXvbCG99++k5DKcEEKIrJOYYCQkSg9xIYjlDI/6BIUdvVjIThqmTJQAZs3KPokSaMnOunUpShL4+1zncP5GtOAHYnDhXRbSlaXE4mi85pxckrMZkiwJIYTIGskqcV+mKHXZw0rewZ445tGPrwp8hJNPIePHZcW4pMxKbTzT0qXkv3uOjbTic4ZjTxzL6UI71hGD05PK33v3Wjt6YSIZ2CCEECJr7N1r6FE6TWnqsZsrFKMAt1nLm7xGCNwBvv/FtpYPST6eKaFwrw4YzlSqcJRWbOQnWtCaDQTTBhdiDIPaRfYnPUtCCCGyRkJyEIYfr7GLKxSjHMf5g5paopToxg0t+ejYUfuanROl1BQpYvRtINvZTHPycJ8tNKMFP/IA1xTtRPYlyZIQQoisUaQIF/HlNXYRji8vcoLd1KMkYSna2bSAAO3SYZIlVF4jhC00JS/R7KAxrzvv4H51WbvRVkiyJIQQIktcKRVAA4c9nKcEpTnNThqkHMjt66slG7bM3l4rDwBGCdOr7GUbTchHFCExr9D0dXvu3bNSjCJDJFkSVte1a1datWpl+L5evXoMHDgwy+PYvXs3Op2OiIgIiz6PTqdj48aNFn0OIbIFvd5QkPF68H4aNLbjTFwJ/AhjFw0oSpIxO9l1xltmpTFT7hXfi+yYdBgPD20IV2CdSCIXrZOCldmcJEsiVV27dkWn06HT6XBycqJ06dKMGzeOuLg4iz93cHAw48ePN6ltViU4sbGxeHl5MXny5FT3jx8/nsKFC/P48WOLxiGEzQgOBj8/qF+fW50+oGFbd06e1OHr9YBd80/h65OsxF92nvGWWanNlAsLo/aI+vzy0S7y6yI48K8HjXo+T0T9Vtr5Cg62ctAiNZIs2Yokn9Cy6hNIkyZNuHr1KqdPn2bIkCGMGTOGqVOnpto2NjbWbM9boEAB8uXLZ7bjmYOTkxNvv/02S5YsSbFPKcXSpUsJCgrC0dHRCtEJkc0kqaUUgQeN2c4/VKIIV9h5qyolCj9INYnIUYlSosSZckkHqwcHU2NEQ3apejzHLf6gFm+ylsfh17XzJglTtiPJki1I8gmNTp20r1nwCcTZ2Rlvb2+KFy9O3759adiwIT/++CPw5NLZhAkTKFq0KGXLlgXg0qVLvPXWW3h6elKgQAFatmzJ+fPnDcfU6/UMHjwYT09PnnvuOYYPH07yIvLJL8PFxMTw4Ycf4uvri7OzM6VLl2bRokWcP3+e+vXrA5A/f350Oh1du3YFtLXSJk2aRIkSJXB1daVKlSqsW7fO6Hl+/vlnXnjhBVxdXalfv75RnKnp0aMH//33H/v27TPavmfPHs6dO0ePHj34448/aNSoEV5eXnh4eFC3bl2OHDmS5jFT6xkLDQ1Fp9MZxbNv3z4CAgJwdXXF19eX/v37c//+fcP++fPnU6ZMGVxcXChcuHC2XZZF5AJJaindw40mbOUvqlOQG+ykAWV0Z7SCjGDbM94yK8n5qcpRdtCIvETzC434gDlaCSopWJntSLKU3SWrdmtw+XKWfwJxdXU16kHauXMnp06dYseOHWzatInHjx8TGBhIvnz52Lt3L/v378fNzY0mTZoYHjd9+nSWLl3K4sWL2bdvH3fu3GHDhg3pPm9QUBCrV69mzpw5nDhxgq+++go3Nzd8fX1Zv349AKdOneLq1avMThhUOWnSJJYvX86CBQv4999/GTRoEG+//TZ79uwBtKSuTZs2vPHGG4SGhtKzZ09GjBiRbhyVKlWiZs2aLF682Gj7kiVLePnll3nxxRe5d+8eXbp0Yd++ffz++++UKVOGZs2ace8ZRnGePXuWJk2a0LZtW44dO8aaNWvYt28f/fr1A+DPP/+kf//+jBs3jlOnTrF161ZeffXVTD+fEM8koZZSPDo68y0HeYkC3OYXGlKOk1KQMUmtKYBqhLKKTuiI5yv6MJv+ufv8ZFdKPLPIyEgFqMjIyBT7Hj58qI4fP64ePnyY8QPHxSnl46OU9u8l5U2nU8rXV2tnZl26dFEtW7ZUSikVHx+vduzYoZydndXQoUMN+wsXLqxiYmIMj1mxYoUqW7asio+PN2yLiYlRrq6uatu2bUoppYoUKaKmTJli2P/48WPl4+NjeC6llKpbt64aMGCAUkqpU6dOKUDt2LEj1ThDQkIUoO7evWvY9ujRI5UnTx7122+/GbXt0aOH6tixo1JKqZEjR6ry5csb7f/www9THCu5BQsWKDc3N3Xv3j2llFJRUVEqT5486ptvvkm1vV6vV/ny5VM//fSTYRugNmzYkGb8f/31lwJUWFiYIe7evXsbHXfv3r3Kzs5OPXz4UK1fv165u7urqKioNONOzTP9bgqRllWrlAL1KWMVKOXMQ/U7tVL+/1q1ytqRWkfC+Ul+m8Zg7d86evUTzXPv+cli6b1/JyU9S9lZsk8gKVj4E9qmTZtwc3PDxcWFpk2b0r59e8aMGWPYX6lSJZycnAzfHz16lDNnzpAvXz7c3Nxwc3OjQIECPHr0iLNnzxIZGcnVq1epXbu24TEODg7UqFEjzRhCQ0Oxt7enbt26Jsd95swZHjx4QKNGjQxxuLm5sXz5cs6ePQvAiRMnjOIAqFOnzlOP3bFjR/R6Pd9//z0Aa9aswc7Ojvbt2wNw/fp1evXqRZkyZfDw8MDd3Z3o6GguXrxocvzJHT16lKVLlxq9lsDAQOLj4wkLC6NRo0YUL16ckiVL8s477/Dtt9/y4MGDTD+fEM+kSBHW0ZbxjAJgIb2pzaFU2+VKabzuwcygFwtR2NGR1Rx7UDqLAxPpkeVOsjNTS+FbqGR+/fr1+fLLL3FycqJo0aI4OBj/uuTNm9fo++joaPz9/fn2229THKtgwYKZisHV1TXDj4mOjgZg8+bNFEs2bdfZ2TlTcSRyd3enXbt2LFmyhO7du7NkyRLeeust3NzcAOjSpQu3b99m9uzZFC9eHGdnZ+rUqZPmAHg7O+3zikoybiv5jLro6Gjeffdd+vfvn+Lxzz//PE5OThw5coTdu3ezfft2Ro0axZgxY/jjjz/w9PR8ptcrREYd8wigi64WKBjEDIJYYdxAp9Nmvtl6LaXMSixYefnyk0V10ZZG+YL3OUspdtGA18fW4FBz8Pa2XqjiCelZys5M/eRloU9oefPmpXTp0jz//PMpEqXUVK9endOnT1OoUCFKly5tdPPw8MDDw4MiRYpw8OBBw2Pi4uI4fPhwmsesVKkS8fHxhrFGySX2bOmTDIYsX748zs7OXLx4MUUcvr6+AJQrV45Dh4w/7f7+++9PfY2gDfTet28fmzZt4rfffqNHjx6Gffv376d///40a9aMChUq4OzszK1bt9I8VmISeTVJwhsaGmrUpnr16hw/fjzFayldurTh9Ts4ONCwYUOmTJnCsWPHOH/+PLt27TLp9QhhLrduQcs29jxQeWjIDqbwoXGDnFZLKTPSKFgJ4KjTs443eaHoPS5d0tGyJTx8aIUYRQqSLGVnqZTMN5LNqt127twZLy8vWrZsyd69ewkLC2P37t3079+f8ITLiQMGDGDy5Mls3LiRkydP8t5776VbI8nPz48uXbrQvXt3Nm7caDhm4mWw4sWLo9Pp2LRpEzdv3iQ6Opp8+fIxdOhQBg0axLJlyzh79ixHjhxh7ty5LFu2DIA+ffpw+vRphg0bxqlTp1i1ahVLly416XW++uqrlC5dmqCgIF588UVefvllw74yZcqwYsUKTpw4wcGDB+ncuXO6vWOJCdyYMWM4ffo0mzdvZvr06UZtPvzwQ3777Tf69etHaGgop0+f5ocffjAM8N60aRNz5swhNDSUCxcusHz5cuLj4w0zFIWwmCQlTR7/soe33lScPw8lS8KapY9w8EnWLZITayllRhoFK/HxIf/6b9i0Ox8FCsChQ9C12Q3iv826kjEiDVkzhCpns9gAb6WUWr9eG8it06Uc3K3TafstIOkA74zsv3r1qgoKClJeXl7K2dlZlSxZUvXq1ctwbh4/fqwGDBig3N3dlaenpxo8eLAKCgpKc4C3Uto5HDRokCpSpIhycnJSpUuXVosXLzbsHzdunPL29lY6nU516dJFKaUNSp81a5YqW7ascnR0VAULFlSBgYFqz549hsf99NNPqnTp0srZ2VkFBASoxYsXP3WAd6KJEycqwGiwulJKHTlyRNWoUUO5uLioMmXKqLVr16rixYurmTNnGtqQZIC3Ukrt27dPVapUSbm4uKiAgAC1du1aowHeSil16NAh1ahRI+Xm5qby5s2rKleurCZMmKCU0gZ7161bV+XPn1+5urqqypUrqzVr1jz1NcgAb/FM1q83moDSn1kKlHJziVX//JPQJi5OqZAQbbBySIhFJqPYtHTOz+5xe5QjMQqUGsun2nn28bHY//zcytQB3jqlkhW5ERkWFRWFh4cHkZGRuLu7G+179OgRYWFhlChRAhcXl8w9QXCwVpcj6WBvX1+tKzu3f0ITmWaW302ROyWWNEl4+1hMN3qgldTYQGtarX9H/jc9i4Tzu0R1oTtLsEPPLl6jri5hMo/0zplNeu/fSUmyZAYWT5ZA637du1cbzF2kiHbpLbde8xdmIcmSyBS9XiuKm/Dh7XdqU5c9xOLMWEYxSveZdrktLEz+R2VGsvPbnUUsoTs+XCKUqjynuyvn14xMTZZkzJKtSK1kvhBCZLUkJU0icacD3xGLM21Yzyd8JkUnn1WykjFz6M8LnCIcX3ryjTZzVs5vlpNkSQghhOmSzNz8gLlcwI+SnGUpXbFDpdpOZECy8+bGfb6jA07EsJHWfEnfVNsJy5JkSQghhOkSSpWs4S1WEIQdelbyNvmITrWdyKBUzls1Qvk8oQzDYGbwNxXl/GYxSZayiAwNE9mN/E6KTAkI4JJ3TfqwAIBP+Iw6JKlRls1KmticNErGDGA2zdhMDC50cFjPA385v1lJkiULs08YW5RWBWchrCVxSRRHR0crRyJsSbzOni5em4ggP7U4qI1TSiRFJ59dGkUrdcBSuuHNVY7HvcDgYXJ+s5Isd2JhDg4O5MmTh5s3b+Lo6GhY3kIIa1FK8eDBA27cuIGnp6choRfCFDNmQMg/hcjjHMdKz6E4Xo97stPHR0qamENi0cpkJWMK+rqwsvsZGo0rwldfQaNG0LatFePMRaR0gBk8bephbGwsYWFhxMfHWyE6IVLn6emJt7c3urQqxAsBRmVLjt4vTc33avD4sY6FC6FXdylpYlFplIwZORImTwZPTwgNheLFrR2o7ZI6S1nIlJMdHx8vl+JEtuHo6Cg9SuLpkhTEfYgLNfmDf6lIy5pX2HCwaJorMQnLevwY/vc/bTmU//1PWwlF/pwzx9RkyeaWO5k3b54qXry4cnZ2VrVq1VIHDx5Ms23dunUVkOLWrFkzQ5suXbqk2B8YGJihmEwtly6EEDYjcamlZMuZFOaqukFBWXbDys7+F6fy5XmsQKm5/f+TpWQyydT3b5saQLNmzRoGDx7M6NGjOXLkCFWqVCEwMJAbN26k2j44OJirV68abv/88w/29va8+eabRu2aNGli1G716tVZ8XKEECJ70uu1HqWECw/baMwcBgCwhG4U1N2CgQNlYVdrCQ6m5Gt+TH7QH4CRc7y56POy1hMoLMKmkqUZM2bQq1cvunXrRvny5VmwYAF58uRh8eLFqbYvUKAA3t7ehtuOHTvIkydPimTJ2dnZqF3+/Pmz4uUIIUT2lKxKd/eEdd/eZx5N2SpVuq0pcV2+8HD6sID/sZdo8tHn2mhU23aSMFmIzSRLsbGxHD58mIYNGxq22dnZ0bBhQw4cOGDSMRYtWkSHDh3Imzev0fbdu3dTqFAhypYtS9++fbl9+3a6x4mJiSEqKsroJoQQOUaS6tAfM4ErFKM0p5nC8DTbiSyQrMfPDsXX9MKJGLbQjFV0kh4/C7GZZOnWrVvo9XoKFy5stL1w4cJcu3btqY8/dOgQ//zzDz179jTa3qRJE5YvX87OnTv5/PPP2bNnD02bNkWfzi/bpEmT8PDwMNx8fX0z96KEECI7SqgOfZBazOc9ABbQhzw8TLWdyCLJ1o0DeJFTfMp4AAYwi5uXHkqPnwXYTLL0rBYtWkSlSpWoVauW0fYOHTrQokULKlWqRKtWrdi0aRN//PEHu3fvTvNYI0eOJDIy0nC7dOmShaMXQogsFBDA42J+9GYhCjveYTkN2PVkv1Tpto40evKGM4VKHOM2XgxklvT4WYDNJEteXl7Y29tz/fp1o+3Xr1/H29s73cfev3+f7777jh49ejz1eUqWLImXlxdnzpxJs42zszPu7u5GNyGEyDHs7Zn12o8cowoFuM10hjzZJ1W6rSeNnjwnHrOIHtihZxWd+flChSwOLOezmWTJyckJf39/du7cadgWHx/Pzp07qVOnTrqPXbt2LTExMbz99ttPfZ7w8HBu375NEeleFkLkUufPw+h1lQCYln8iBbn1ZKePj1ZdWqp0Z7001o0DqMmfDERbJqXP/Ercu5fVweVsNpMsAQwePJivv/6aZcuWceLECfr27cv9+/fp1q0bAEFBQYwcOTLF4xYtWkSrVq147rnnjLZHR0czbNgwfv/9d86fP8/OnTtp2bIlpUuXJjAwMEtekxBCZCdKwXvvwcOHULcudL0xBUJCYNUq7WtYmCRK1pLGunGJ349jFCUK3efSJR0ffZT14eVkNrU2XPv27bl58yajRo3i2rVrVK1ala1btxoGfV+8eDHF2munTp1i3759bN++PcXx7O3tOXbsGMuWLSMiIoKiRYvSuHFjxo8fj7Ozc5a8JiGEsLoky2qsPVmZLVsq4OQEX30FOgd7qFfP2hGKRGmsG4ePD3lnzWKhe14aNYIvvoCOHeHll60Xak4iy52Ygcnl0oUQIrtJsqRJBB6U4wTXKMKY9scZ/V15a0cn0pLGunEA3brB0qXw4ova2nHy2T9tpr5/29RlOCGEEGaUpMAhwEgmcY0ilOUkI9ZUlwKH2Zl9Qo9fx47a1ySD7adPh8KF4eRJbRy+eHaSLAkhRG6UrMDhb9RhAX0B+Ip3cdbFSoFDG1WgAEyZot3/7DOpJGAOkiwJIURulKTA4WMceJevAOjGYuryqyxpYsv0et722U3t0reIjoYRH8ZbOyKbJ8mSEELkRkm6G+bzHv9QCS9uMpVhabYTNiA4GPz8sGtQnzlnmgGwfIUdv08OsXJgtk2SJSGEyI0SasndpgBjGAPARD7iOe6k2k7YgGRj0GrxB90SFkHuPzIv8etkDFpmSbIkhBC5UUKBwzGMJYL8VOYo3RPeWAFZ0sTWJBuDlmgiH5GPKP6gFst675cxaJkkyZIQQuRG9vYcH7qYL+kDwCwGYk/C2BZZ0sT2pLLILoA31xnFOABG3h1G1NbfsjqyHEGSJSGEyKWGbG2EHgdauWylPruf7JAlTWxPOmPL+jOHFzjFdbwZ/6VXFgaVc9hUBW8hhBDmsWULbN0Kjo4wNbQRXA1JtcChsBHpjC1z4jGzGEgztjB7W1l6/QcvvJCFseUA0rMkhBC5zOPHMHiwdn/AAChdNu0Ch8JGpLPILkBT3Taau+zkcZwdgwZlcWw5gCRLQgiRyyxYoFV3LlgQPvnE2tEIs3jKIrsAM6fG4egIP/8MmzdncXw2TpIlIYTIRe7cgdGjtfvjx4OHh3XjEWaUuMhusWLG2xPGoJXpF8jAgdqmQYMgNjbLI7RZspCuGchCukKIbC9h4dUBk4swZ1tZKlVSHDmiw0FGruY86SyyGxWljVe6fh2mTYMhQ6wcq5XJQrpCCCE0CVWdT9TvyxfbSgEw82pHHH6UIoU5UjqL7Lq7w8SJ2v0JEyAiwhoB2h5JloQQIidLUtV5KNPQ40ALfqDB7e+17cGSMOU2XbpAhQpw9+6TBXdF+uQynBnIZTghRLak14OfH4SHs51GBLIdR2L5lwqU4Yw28NfHB8LCZAZcLvPjj9CyJbi6wpkzULSotSOyDrkMJ4QQuV1CVed4dHzI5wC8zxdaogTa0hiXLmntRK7yxhvwyivw8CGMHWvtaLI/SZaEECKnSqjqvJY3CaUa+YjiYyak2U7kAno97N6N7rvVfN7+CACLFsGpU1aOK5uTZEkIIXKqIkV4jAOfMh6AoUzDi9upthO5QMJAf+rXh06deKW/Py1ctqPXw8cfWzu47E2SJSGEyKkCAljqOYjTvEBBbjCImcb7dTrw9dWmloucLclA/6QmPhqMHXrWr4eDB60Umw2QZEkIIXKoh7H2jLXTBqR8xCTyEf1kZ2KV51mzZHB3TqfXa+vapDKfqwL/0oXlAHw4XKXWRCDJkhBC5Fjz58PlO674ej2gT7GfjHcmVHWmTRvrBCeyTsJA/7SMZRTOPGLPrzq2bs3CuGyIJEtCCJEDRUXBpEna/TGf58HlwikICYFVq7SvYWGSKOUWTxnA70s4HzAXgBEjID4+K4KyLZIsCSFEDjR9Oty+DS++CEFBpFvVWeRwJgzgH8kkPPLGceyYlk8LY5IsCSFEDnPzJsyYod3/7DNk/bfcLiBAu+yaOE4tOZ2OAr5ujPhISwk++QRiYrIwPhsgyZIQQuQwEydCdDTUqCFX2gRaL+Ls2dr95AlTkoH+/QfaUbQoXLgAX36ZtSFmd5IsCSFETpBQbPDi3B+Y/4U26GTixLQ7E0Qu06aNNqC/WDHj7UkG+ufJA2PGaJsnToT797M8ymxLkiUhhLB1SYoNju1/i9jHdtR33k/DKFkkVyTRpg2cP5/uQP+uXaFkSe1SrvQuPSEL6ZqBLKQrhLCaxGKDSnGSslTgX+Kx5wB1eEl3UMoDiAxbuhS6dYOCBbVcKm9ea0dkObKQrhBC5HTJig2OYhzx2NOSjbzE71qbgQO1dkKY6O23oVQprXfpiy+sHU32IMmSEELYqiTFBv+hAmt5C4DP+ETbrxRcuqS1E8JEDg7w6afa/alTtckCuZ3NJUtffPEFfn5+uLi4ULt2bQ4dOpRm26VLl6LT6YxuLi4uRm2UUowaNYoiRYrg6upKw4YNOX36tKVfhhBCPLskxQbHo727tWMtFfk3zXZCmKJzZyhTBm7dkt4lsLFkac2aNQwePJjRo0dz5MgRqlSpQmBgIDdu3EjzMe7u7ly9etVwu3DhgtH+KVOmMGfOHBYsWMDBgwfJmzcvgYGBPHr0yNIvRwghnk1CscHjlGMtbwLapbi02glhquS9S/fuWTcea7OpZGnGjBn06tWLbt26Ub58eRYsWECePHlYvHhxmo/R6XR4e3sbboULFzbsU0oxa9YsPvnkE1q2bEnlypVZvnw5V65cYePGjVnwioQQ4hkkFBscz6co7GjDeirxz5P9Oh34+mrthDBFQgkKVq+mY9E9lCmjuH0b5s2zdmDWZTPJUmxsLIcPH6Zhw4aGbXZ2djRs2JADBw6k+bjo6GiKFy+Or68vLVu25N9/n3RPh4WFce3aNaNjenh4ULt27XSPGRMTQ1RUlNFNCCGynL09J4YtZg3tgWS9SkmKDcrSJsIkSUpQ0KkTDg3rMerWAACmTdPWG8ytbCZZunXrFnq93qhnCKBw4cJcu3Yt1ceULVuWxYsX88MPP7By5Uri4+N5+eWXCU8YEJn4uIwcE2DSpEl4eHgYbr6+vs/y0oQQItM+O9gIhR2tXLZShWNPdiQpNijEUyWWoEh4f0zU8e58XuAUd+7k7t4lm0mWMqNOnToEBQVRtWpV6tatS3BwMAULFuSrr756puOOHDmSyMhIw+3SpUtmilgIIUx36hR89512f9TeRukWGxQiTclKUCRlj55RjAdg2jSVa3uXbCZZ8vLywt7enuvXrxttv379Ot7e3iYdw9HRkWrVqnHmzBkAw+MyekxnZ2fc3d2NbkIIkdUmTID4eGjRAqrVsId69aBjR+2rXHoTpkpSgiI1HVjNi5zg7l0dc+ZkYVzZiM0kS05OTvj7+7Nz507Dtvj4eHbu3EmdOnVMOoZer+fvv/+mSMLMkBIlSuDt7W10zKioKA4ePGjyMYUQwhpOn4Zvv9Xujxpl3ViEjXtKaQl74g3j4WbMgMjIrAgqe7GZZAlg8ODBfP311yxbtowTJ07Qt29f7t+/T7du3QAICgpi5MiRhvbjxo1j+/btnDt3jiNHjvD2229z4cIFevbsCWgz5QYOHMhnn33Gjz/+yN9//01QUBBFixalVatW1niJQghhksRepebNwd/f2tEIm2ZCaYm3+J5yxe9z9y65snfJwdoBZET79u25efMmo0aN4tq1a1StWpWtW7caBmhfvHgRO7sn+d/du3fp1asX165dI3/+/Pj7+/Pbb79Rvnx5Q5vhw4dz//59evfuTUREBP/73//YunVriuKVQghhdXo97N3L2dB7rFzxOqBj9GhrByVsXkIJCi5fTnXcEjod9j7FGDXRlY6dtd6lAQMgN41AkYV0zUAW0hVCWFxwsPYOFR5OdxaxhO40ddnFz99GyEBu8ewSZ8OBccKUWIJi3Tr0LdtQsSKcPAmTJ8OHH2Z9mOYmC+kKIUROkWRa9zlKsJwgAEY/+kjbHhxs5QCFzWvTRis1UayY8fYkJSjs7SFxpMuMGfDwYdaHaS3Ss2QG0rMkhLAYvV4rFJgwW6knX7OIngSyla001T75+/hopQJkBpx4VgmXerl6VRvLFBBg9Hv1+LG2ZtyFC1rdpffft2KsZiA9S0IIkRMkmdZ9EV+W0QWA0YzV9isFly5p7YR4Vvbpl6BwdIThw7X7U6ZoyVNuIMmSEEJkZ0mmdU9jKHE48ho7qcPvabYTwpK6dYPCheHixSflK3I6SZaEECI7S5jWfRMvvkErezKSSWm2E8LSXF1h8GDt/uTJ2pW7nE6SJSGEyM4SpnXPYQAPyYM/f9KAJ4V00enA11drJ0QW6dsXPD21JXc2bLB2NJYnyZIQQmRn9vZETfqCeWgjaUcyCV3ivsRp3bNmyeBukaXy5YP+/bX7EyemXp4pJ5FkSQghsrmvrrYggvyUdThDa5J8jE8yrVsIi9PrYfduWL0adu+m//t68uaFv/6CbdusHZxl2VQFbyGEyG0ePdJq2gB8uKAkdqV2pTmtWwiLSVIUNdFzPj68+9ouZvxUhokToUkTK8ZnYVJnyQykzpIQwlIWLoR339U6kc6eBScna0ckcp3EoqjJ0wWdjsuqKCUdLhAbZ8+vv9re0DmpsySEEDYuLk6rZQMwZIgkSsIK9HqtRym1fhWlKKa7Qlfn7wCYlMokzZxCkiUhhMim1q3TepOeew569bJ2NCJXSlIUNVVKMfz+KOzsFFu2aOOXciJJloQQIhtSSqthA9qso7x5rRuPyKVMKHZainN0eOkCoM2My4kkWRJCiGxo61Y4ehTc3KBfP2tHI3ItE4udjuhxE4D16+HkSUsGZB2SLAkhRHaSMD170uAbALzbK54CBawck8i9EoqiGmp6JZdQFLVSl+q0aKH1iE6fnrUhZgVJloQQIrsIDgY/P/bX/5i9JwvhSCyDvqutbRfCGuztYfZs7X7yhClZUdTEBXaXL4dr17IswiwhyZIQQmQHidOzw8OZxEgAurCMYtcOa9slYRLW0qaNNtugWDHj7cmKor7yCtSpA7GxMGeOFeK0IKmzZAZSZ0kI8Uz0evDzg/Bw/qYilfkbO/Sc5EXKcEb7BO/jA2FhUoRSWI9er82OS6co6oYNWu7k6QkXL2rLomRnUmdJCCFsRZLp2dMYCkBb1muJEmgDQS5d0toJYS329lCvHnTsqH1NJXFv0QJeeAEiImDRoqwO0HIkWRJCCGtLmJ4dTjFW0QmAYUxNs50Q2ZW9vVZAFbRleh4/tm485iLJkhBCWFvC9Oy5fEAcjrzKHmryZ5rthMjOgoKgUCGtM/T7760djXmYNGapQAbnrep0Oo4cOULx4sUzHZgtkTFLQohnotcT9XxFfK/8ThQe/MTrvM7mJ/tlzJKwMRMmwCefQJUqWlXvtCoPWJup798OphwsIiKCWbNm4eHh8dS2Sinee+899Hq96dEKIURuZm/PN43WELXMgxc5QTN+frIv2fRsIWxB377aWnFHj8KOHdC4sbUjejYmJUsAHTp0oFChQia1/eCDDzIdkBBC5DaPH8OsXZUBGJJ/MXZ3k3T4+/hoiVLC9GwhbEGBAtCjh1ZCYOpU20+WpHSAGchlOCHEs/j2W3j7bShcGM6f1ePyR/rTs4WwBefPQ+nSWsWBI0egWjVrR5SSWS/DCSGEsAylYNo07f4HH4BL3oTp2ULYklRqMPn52fPWW7B6tfY7/u231g4y80zqWfrxxx9NPmCLFi2eKSBbJD1LQojM2rkTGjaEPHm0In7PPWftiITIoOBgGDDAUCsM0C4fz57NXyXaUL261jl69ixkt3lfZu1ZatWqldH3Op2OpDmWLskwdxnYLYQQppuaUE6pe3dJlIQNSlymJ3m/y+XL0K4d1dato0GDNuzcCTNnasPvbJFJdZbi4+MNt+3bt1O1alW2bNlCREQEERER/Pzzz1SvXp2tW7daOl4hhMgxjh2DbdvAzg4GDbJ2NEJkkF6v9SildoEqcdvAgQwfonWifPMN3LmThfGZUYaLUg4cOJDZs2cTGBiIu7s77u7uBAYGMmPGDPr372+JGIUQIkeaMUP72rYtlCxp3ViEyLAky/SkKmGZnkYue6lSBe7fhy+/zLrwzCnDydLZs2fx9PRMsd3Dw4Pz58+bISQhhMjB9HrYvZvLX2xk1bfxAAwdauWYhMgME5ff0V27avgdnzcPYmIsGJOFZDhZqlmzJoMHD+b69euGbdevX2fYsGHUqlXLrMGl5osvvsDPzw8XFxdq167NoUOH0mz79ddfExAQQP78+cmfPz8NGzZM0b5r167odDqjW5MmTSz9MoQQuVFwMPj5Qf36zOl3isdxdrzq9Du1woOtHZkQGWfq8jtFivDWW1C0KFy7BmvWWDYsS8hwsrR48WKuXr3K888/T+nSpSldujTPP/88ly9fZpGFlxhes2YNgwcPZvTo0Rw5coQqVaoQGBjIjRs3Um2/e/duOnbsSEhICAcOHMDX15fGjRtz+fJlo3ZNmjTh6tWrhtvq1ast+jqEELlQ4kDY8HCiyMcC+gAwNHaitj1YEiZhYwICtFlvaa1lotOBry8EBODkpJXGAO3ys61VeMxUUUqlFDt27ODkyZMAlCtXjoYNGxrNirOE2rVrU7NmTebNmwdoA899fX354IMPGDFixFMfr9fryZ8/P/PmzSMoKAjQepYiIiLYuHFjpuOS0gFCiHTp9VqPUsL4jpkMZDAzeZET/EsF7HTI2m/CNiV+CADjDCgxH1i3zlB9/s4dLXd68EArmfHaa1kcaypMff/OcM8SaKUCGjduTP/+/enfvz+NGjWyeKIUGxvL4cOHadiwoWGbnZ0dDRs25MCBAyYd48GDBzx+/DjFwsC7d++mUKFClC1blr59+3L79u10jxMTE0NUVJTRTQgh0pRkIGwc9sxmAACDmYEdyjAQlr17rRmlEBnXpo2WEBUrZrzdx8coUQJtCZRu3bT7iZMbbEWmKnjfv3+fPXv2cPHiRWJjY432WWpG3K1bt9Dr9RQuXNhoe+HChQ09XE/z4YcfUrRoUaOEq0mTJrRp04YSJUpw9uxZPvroI5o2bcqBAwewT+MT3qRJkxg7dmzmX4wQIndJMhB2A625gB9e3ORtVqbZTgib0aYNtGyZooJ3ar2kAwbA/PmweTOcPAkvvmiFeDMhw8nSX3/9RbNmzXjw4AH379+nQIEC3Lp1izx58lCoUKFsWz5g8uTJfPfdd+zevRsXFxfD9g4dOhjuV6pUicqVK1OqVCl2795NgwYNUj3WyJEjGTx4sOH7qKgofH19LRe8EMK2JRkIOxOtoFJfvsSVR2m2E8Km2Ju2TE+ZMtCiBfzwg1agcsECi0dmFhm+DDdo0CDeeOMN7t69i6urK7///jsXLlzA39+faYkLHFmAl5cX9vb2RrPwQJuJ5+3tne5jp02bxuTJk9m+fTuVK1dOt23JkiXx8vLizJkzabZxdnY21JhKvAkhRJoSBsIepDYHeBknYniP+U/2JxkIK0ROl9jXsGwZ3Lpl3VhMleFkKTQ0lCFDhmBnZ4e9vT0xMTH4+voyZcoUPvroI0vECICTkxP+/v7s3LnTsC0+Pp6dO3dSp06dNB83ZcoUxo8fz9atW6lRo8ZTnyc8PJzbt29TRD7hCSHMxd4eZs9mJgMB6MhqvEn44Jc43nPWLBncLXKFgADw94dHj3Jwz5KjoyN2dtrDChUqxMWLFwGtKOWlS5fMG10ygwcP5uuvv2bZsmWcOHGCvn37cv/+fboljBgLCgpi5MiRhvaff/45n376KYsXL8bPz49r165x7do1oqOjAYiOjmbYsGH8/vvvnD9/np07d9KyZUtKly5NYGCgRV+LECJ3uVijDevs3gJgEDOf7EhlIKwQOZlO96R3yVaKVGZ4zFK1atX4448/KFOmDHXr1mXUqFHcunWLFStWULFiRUvEaNC+fXtu3rzJqFGjuHbtGlWrVmXr1q2GQd8XL140JHIAX375JbGxsbRLnNaYYPTo0YwZMwZ7e3uOHTvGsmXLiIiIoGjRojRu3Jjx48fj7Oxs0dcihMhd5s4Ffbwdr9VXVBk1+6kDYYXIyd58E4YP19bbXb0auna1dkTpy3CdpT///JN79+5Rv359bty4QVBQEL/99htlypRh8eLFVKlSxVKxZltSZ0kIkZ7oaK0DKTISfvoJXn/d2hEJYX1TpsCHH0KlSnD0aNq1LS3J1PfvDCVLSikuXbpEoUKFjGaU5XaSLAkh0jN3LvTvDy+8ACdOgF2mKtwJkbPcvavNa7h/H3bsgCRVfbKMRYpSKqUoXbq0xccmCSFETqHXa2O3AQYOlERJ5FIJC0izerX2Va8nf37o3l3bnd2LVGboz9bOzo4yZco8tcK1EEIIzU8/wblzkD8/JKyyJETukmQBaTp10r76+UFwMAMGaJfftmzRel2zqwx/xpk8eTLDhg3jn3/+sUQ8QgiRo8xMmPjWpw/kzWvdWITIckkWkDZy+TK0a0epo8G0aqVtmjkzxaOzjQwP8M6fPz8PHjwgLi4OJycnXF1djfbfuXPHrAHaAhmzJIQwotfD3r0c3v+IGp80wcFBcf68LsXyWULkaMkWkE5BpwMfH/YuD+PV+va4uGhLJHp5ZV2Ipr5/Z7h0wKzEi+9CCCFSCg7WFsAKD2cmKwBo77SBYgeRWkoid0mygHSqEhaQ/p/ai79/PQ4fhoULwYL1rTMtwz1LIiXpWRJCAE8uOSjFZYrix3nicORPauCvOyLFJ0Xusnq1NkbpaVatYqW+I++8A0WLQlgYODlZPjww82y4qKioDD35vXv3MtReCCFsnl6v9SglfP78gveJw5FX2YM/h7U2Awdq7YTIDUxdNqxIEd56C7y94coV7TNFdmNSspQ/f35u3Lhh8kGLFSvGuXPnMh2UEELYnCSXHB7gyle8CyRZ2iThkgN791orQiGyVsIC0mlWm0yygLSTE7z3nrZ51izDZ45sw6QxS0opvvnmG9zc3Ew66OPHj58pKCGEsDlXrxruruRt7vAcJTjHG/yUZjshcrSEBaRp105LjJJmQKksIP3uuzBhAvzxB/z+O9Spk/Uhp8WkZOn555/n66+/Nvmg3t7eODo6ZjooIYSwOQmXHBQwmwEA9GcO9sSn2k6IXKFNG+26WsKkBwMfHy1RSjKGr1Ah6NwZFi/WdmWnZEkGeJuBDPAWQiROk94RXo7GbMeNe4TjgwcJYz4TpkkTFiYL54rcJ6GcxtMWkD52DKpU0XadOwfPP2/ZsCyy3IkQQog0JFxymJXQq9SdxcaJEhhdchAiV7G3h3r1oGNH7WsafweVK8Nrr2m51RdfZGmE6ZJkSQghzOS/im34meboiOcD5j7Z4eMjZQOEMNEA7fMGCxdqi+xmBxkuSimEECJ1c+ZoX19/XUfpId889ZKDECKl5s2hVCk4exaWL4e+fa0dkfQsCSGEWUREwNKl2v0BA3UmXXIQQqRkbw/9+2v358yB+Pj022cFSZaEEMIMFi3SLhlUrKiNuRBCZF63buDuDidPwvbt1o4mk5fhIiIiOHToEDdu3CA+WcoXFBRklsCEEMJWxMXB3IQhSgMGpF2DTwhhmnz5oEcPmDlTmxfRpIl148lw6YCffvqJzp07Ex0djbu7O7ok/xV0Oh137twxe5DZnZQOECJ3Cw6Gtm3huee0It2urtaOSAjbd+4clC6t1bL8918oX978z2Gx0gFDhgyhe/fuREdHExERwd27dw233JgoCSHE7Nna13fflURJCHMpWRJattTuJ06esJYM9yzlzZuXv//+m5IlS1oqJpsjPUtC5F5//QXVq4ODA5w/D8WKWTsiIWxMOgUr9+zR5ki4umq9ts89Z96ntljPUmBgIH/++eczBSeEEDZPr4fdu5k9UFs0/M128ZIoCZFRwcHg5wf160OnTtpXPz9tO/Dqq1C1KuTJA//8Y70wMzzAu3nz5gwbNozjx49TqVKlFGvAtWjRwmzBCSFEthQcDAMGcD08ltVcBGDAzpYQ3E0KTwphquBgbZHd5Be4Ll/Wtq9bh65NG77/Xqvras1L3Bm+DGdnl3ZnlE6nQ6/XP3NQtkYuwwmRiyT5Bz+WUYxhLC9xgAO6V7T9UqlbiKdLWEvRaHHdpLJoLUWLXYaLj49P85YbEyUhRC6i12u1AZQiBifm8x4AA5j95NPxwIFaOyFE2vbuTTtRAu3v6dIlrV02IEUphRDCVEn+wa+hPTcoTDHCact6bX82+wcvRLZ19ap521lYppKlPXv28MYbb1C6dGlKly5NixYt2Cv/HIQQOV3CP24FzEZb7fM95uNIXKrthBBpKFLEvO0sLMPJ0sqVK2nYsCF58uShf//+9O/fH1dXVxo0aMCqVassEaMQQmQPCf+49/MKR/DHhYf0ZmGa7YQQaQgI0MYkpVXuXqcDX1+tXTaQ4QHe5cqVo3fv3gwaNMho+4wZM/j66685ceKEWQO0BTLAW4hcImFQ6pvhM1jHm/TgG76h15P9WTQoVYgcIXGyBBjPiEtMoLJgsoTFBnifO3eON954I8X2Fi1aEBYWltHDCSGE7bC35+InC9lAayBhYHeixH/ws2ZJoiSEKdq00RKi5AXKfHyy3azSDNdZ8vX1ZefOnZQuXdpo+y+//IKvr6/ZAhNCiOzoi3NN0QP1nfdTKSZJlTwfHy1Rykb/4IXI9tq00dY0SaOCd3aRqbXh+vfvT9++fVmxYgUrVqygT58+DBw4kKFDh1oiRiNffPEFfn5+uLi4ULt2bQ4dOpRu+7Vr1/Liiy/i4uJCpUqV+Pnnn432K6UYNWoURYoUwdXVlYYNG3L69GlLvgQhhI168AC+/lq7P2D1SxASAqtWaV/DwiRREiIz7O21NU06dtS+ZrNECQCVCcHBweqVV15RBQoUUAUKFFCvvPKK2rhxY2YOlSHfffedcnJyUosXL1b//vuv6tWrl/L09FTXr19Ptf3+/fuVvb29mjJlijp+/Lj65JNPlKOjo/r7778NbSZPnqw8PDzUxo0b1dGjR1WLFi1UiRIl1MOHD02OKzIyUgEqMjLymV+jECL7+uorpUCpEiWUiouzdjRCiGdl6vt3hgd4W1Pt2rWpWbMm8+bNA7QCmb6+vnzwwQeMGDEiRfv27dtz//59Nm3aZNj20ksvUbVqVRYsWIBSiqJFizJkyBBDr1hkZCSFCxdm6dKldOjQwaS4LDXAW6+H33+HV14x2yGFEJmkFFSqBP/+C9Onw+DB1o5ICPGsLDbA21piY2M5fPgwDRs2NGyzs7OjYcOGHDhwINXHHDhwwKg9aAsBJ7YPCwvj2rVrRm08PDyoXbt2mscEiImJISoqyuhmbvfvQ5ky8L//gVwVFML6du7UEqW8eaF7d2tHI4TISiYlSwUKFODWrVsA5M+fnwIFCqR5s5Rbt26h1+spXLiw0fbChQtz7dq1VB9z7dq1dNsnfs3IMQEmTZqEh4eH4WaJge1580L58tr9uXPNfnghRAbNTpj41rUreHpaMxIhRFYzaTbczJkzyZcvn+G+Lq0iUrnEyJEjGZykDz4qKsoiCdOAAbB5MyxZAuPHg4eH2Z9CCGGCM2e0v0WADz6wbixCiKxnUrLUpUsXw/2uXbtaKpZ0eXl5YW9vz/Xr1422X79+HW9v71Qf4+3tnW77xK/Xr1+nSJKKu9evX6dq1appxuLs7Iyzs3NmXkaGNGyo9S4dP64lTAMHWvwphRBJ6fWwdy/zPi+CUmVp2kRRtmzu/rAoRG6U4TFL9vb23LhxI8X227dvY2/B6X5OTk74+/uzc+dOw7b4+Hh27txJnTp1Un1MnTp1jNoD7Nixw9C+RIkSeHt7G7WJiori4MGDaR4zK+l00L+/dn/uXFnIXIgsFRwMfn5E1W/B4q3ah6kBf76jbRdC5C4ZnWan0+lSnap/+fJl5eLiktHDZch3332nnJ2d1dKlS9Xx48dV7969laenp7p27ZpSSql33nlHjRgxwtB+//79ysHBQU2bNk2dOHFCjR49OtXSAZ6enuqHH35Qx44dUy1btsxWpQPu31cqf35tuvIPP5j98EKI1Kxfr5ROpxSo2XygQKkXOa7i0Wnb16+3doRC5A5xcUqFhCi1apX21cw1O0x9/za5gvecOXMA0Ol0fPPNN7i5uRn26fV6fv31V1588UVz53JG2rdvz82bNxk1ahTXrl2jatWqbN261TBA++LFi9jZPekse/nll1m1ahWffPIJH330EWXKlGHjxo1UrFjR0Gb48OHcv3+f3r17ExERwf/+9z+2bt2Ki4uLRV+LqfLkgV69YMoUbYBpixbWjkiIHE6v1wYMKkU8OuaiDVL6gLnoUIBOuybesmX2LJ4nRE4RHKz9LYaHP9nm46O9GWZxAViT6yyVKFECgAsXLuDj42N0yc3JyQk/Pz/GjRtH7dq1LRNpNmbphXQvXoSSJbX/4ceOabVehBAWsns31K8PwCaa8wab8CCCcHxw4/6TdiEhWrVhIYT5JS6ymzxFMfMiu6a+f5vcs5S4SG79+vUJDg4mf/78zxykMM3zz0Pr1trvxpw5T5ZbEEJYwNWrhruzGQBAT74xTpSStRNCmFGS3t0UlNISpizu3c3wAO+QkBBJlKxggPY/m5UrIaHklRDCEhJmxv5LeX6hEXbo6ce8NNsJIcxs717jS2/JKQWXLmntsojJPUtJhYeH8+OPP3Lx4kViY2ON9s2YMcMsgQljr7wC1avDkSNaz9LIkdaOSIgcKiAAfHyYHT4QgFZsxI8LT/brdNq4iYAA68QnRE5naq9tFvbuZjhZ2rlzJy1atKBkyZKcPHmSihUrcv78eZRSVK9e3RIxCrT/zwMGQJcu8MUXMHQoODpaOyohciB7e25/9iUrujYAYACzn+xLHC8xa5YM7hbCUkzttc3C3t0MX4YbOXIkQ4cO5e+//8bFxYX169dz6dIl6taty5tvvmmJGEWC9u2hcGG4fFlKvQhhSV9ffZ1HuFLV8R8CSNLV7+NjtoGlQog0JPTuktZqITod+Ppmae9uhpOlEydOEBQUBICDgwMPHz7Ezc2NcePG8fnnn5s9QPGEszP06aPdnz07/bZCiMx5/BjmJQxRGvhVeXQhIbBqlTb7LSxMEiUhLM3e/smbXPKEyUq9uxlOlvLmzWsYp1SkSBHOnj1r2HdLRh5bXJ8+2uW3Awfgjz+sHY0QOU9wsNZ7W6gQdOhkp5UH6NhR+yqX3oTIGm3aaL24xYoZb7dS726Gxyy99NJL7Nu3j3LlytGsWTOGDBnC33//TXBwMC+99JIlYhRJeHtDhw6wYoWWeK9cae2IhMhZEj/Q9umj9eYKIaykTRutPMDevdpg7iJFtEtvVvjQYnJRykTnzp0jOjqaypUrc//+fYYMGcJvv/1GmTJlmDFjBsWLF7dUrNmWpYtSJnf4MNSoofUwXbggM5iFMJdDh6B2be1v6+JF7cOJECLnMntRykQlS5Y03M+bNy8LFizIXIQi0/z94eWX4bff4MsvYdw4a0ckRM6Q2KvUoYMkSkKIJzI8ZqlkyZLcvn07xfaIiAijREpY1sCB2tcvv4RHj6waihA5wpUr8P332v3EIrBCCAGZSJbOnz+PXq9PsT0mJobLly+bJSjxdK1ba8ug3LqlTdQRQjybL7+EuDitAKy/v7WjEUJkJyZfhvvxxx8N97dt24aHh4fhe71ez86dO/Hz8zNrcCJtDg7wwQcwbJg2g7Jbt7RLUggh0qDXw969PLpwnQVzWwNOhl5bIYRIZPIAbzs7rRNKp9OR/CGOjo74+fkxffp0Xn/9dfNHmc1l9QDvRHfvanW57t+HnTvhtdey7KmFsH3Bwdr1tvBwFtONHizmeftwzq7+A4c3W1s7OiFEFjD1/dvky3Dx8fHEx8fz/PPPc+PGDcP38fHxxMTEcOrUqVyZKFlT/vzQtat2f9Ysa0YihI0JDoZ27SA8HAXMRhuk9L5+Lg7t20qJfCGEkQyXDhApWatnCeC//6BsWe0S3KlTUKZMlj69ELZHrwc/P8Oq5rupS312k4f7XMKXAroIrfBdWJgUoRQih7NY6QDQFtPduXOnoYcpqcWLF2fmkCKTXngBmjeHzZth7lyYM8faEQmRze3da0iUAGYxEIAgllOAu6CAS5e0dvXqWSVEIUT2kuHZcGPHjqVx48bs3LmTW7ducffuXaObyHqJA1IXL4aICGtGIoQNuHrVcPcMpfiRFgD0Z06a7YQQuVuGe5YWLFjA0qVLeeeddywRj8iEBg2gYkX45x8tYRo82NoRCZGNJSl5P4f+KOxoys+U42Sa7YQQuVuGe5ZiY2N5+eWXLRGLyCSd7knv0pw5Wq0YIUQaAgLAx4cIPFlMdwAGMfPJfp1Om2YaEGClAIUQ2U2Gk6WePXuySqogZjudOoGXl7ZWXJKSWEKI5OztYfZsvqEn93GjIn/TkF+0fYnFymbNksHdQgiDDF+Ge/ToEQsXLuSXX36hcuXKODo6Gu2fMWOG2YITpnN11VZJ/+wz7f98mzbWjkiI7CuuRRvmejWBWzCQWRjqufr4yB+QECKFDJcOqF+/ftoH0+nYtWvXMwdla6xZOiCpK1e0GdGPH8Off8qSDUKk5fvvoX178PJSXFy5F9c7l7UxSgEB0qMkRC5isdIBISEhzxSYsJyiRbU3gJUrtQ/HK1ZYOyIhsqeZCUOU+vbV4Rr4qnWDEUJkexkes5TozJkzbNu2jYcPHwKkWAJFWEfiQO81a7SeJiGEsd9/125OTvDee9aORghhCzKcLN2+fZsGDRrwwgsv0KxZM64m1CLp0aMHQ4YMMXuAImP8/eF//9Muxc2fb+1ohMh+EpcG6tgRvL2tGooQwkZkOFkaNGgQjo6OXLx4kTx58hi2t2/fnq1bt5o1OJE5gwZpXxcsgISOPyEEcPEirFun3U/8OxFCiKfJcLK0fft2Pv/8c3x8fIy2lylThgsXLpgtMJF5LVtCiRJw+zYsX27taITIPubN05aGq18fqlSxdjRCCFuR4WTp/v37Rj1Kie7cuYOzs7NZghLPxt7+ydilmTMh2fJ9QuQuej3s3k30krUsnK9VbJVeJSFERmQ4WQoICGB5ku4KnU5HfHw8U6ZMSbesgMha3bqBhwecOgU//2ztaISwkuBgrZ5G/fos7b6HyPsOlHE4R/OYYGtHJoSwIRlOlqZMmcLChQtp2rQpsbGxDB8+nIoVK/Lrr7/y+eefWyJGkQn58kHv3tp9qRMqcqXgYGjXDsLDiUfHbAYAMCBuBnZvtdP2CyGECTKcLFWsWJH//vuP//3vf7Rs2ZL79+/Tpk0b/vrrL0qVKmWJGAHtMl/nzp1xd3fH09OTHj16EB0dnW77Dz74gLJly+Lq6srzzz9P//79iYyMNGqn0+lS3L777juLvY6s1L8/ODhASAj89Ze1oxEiC+n1MGAAJJQ02cTrnKEMntylC0u1NgMHau2EEOIpMlyUEsDDw4OPP/7Y3LGkq3Pnzly9epUdO3bw+PFjunXrRu/evdNcp+7KlStcuXKFadOmUb58eS5cuECfPn24cuUK6xKnwyRYsmQJTZo0MXzv6elpyZeSZXx84K23YNUqrXdJilSKXGPvXggPN3w7E22QUm8W4sZ9UMClS1q7evWsE6MQwmaYtNzJsWPHqFixInZ2dhw7dizdtpUrVzZbcIlOnDhB+fLl+eOPP6hRowYAW7dupVmzZoSHh1O0aFGTjrN27Vrefvtt7t+/j4ODlifqdDo2bNhAq1atMh1fdlnuJDWHD0ONGloP0/nzUKyYtSMSIgusXq2tLg0coRr+HMGeOMIogS9PkihWrdIKLgkhciVT379NugxXtWpVbt26ZbhfrVo1qlatmuJWrVo180SfzIEDB/D09DQkSgANGzbEzs6OgwcPmnycxJORmCglev/99/Hy8qJWrVosXrz4qdXIY2JiiIqKMrplV/7+ULcuxMXB3LnWjkaILFKkiOHudLRiuR34zjhRStZOCCHSYtJluLCwMAoWLGi4n9WuXbtGoUKFjLY5ODhQoEABrl27ZtIxbt26xfjx4+mdOOo5wbhx43jttdfIkycP27dv57333iM6Opr+/funeaxJkyYxduzYjL+QjNDrtUsEV68+8wKfgwfDnj3w1VfwySfg5mbmWIXIbgICwMeHi+F2rKE9AEOY/mS/Tqddpw4IsFKAQgibojIgNjZWdevWTZ07dy4jD0vThx9+qNBGD6R5O3HihJowYYJ64YUXUjy+YMGCav78+U99nsjISFWrVi3VpEkTFRsbm27bTz/9VPn4+KTb5tGjRyoyMtJwu3TpkgJUZGTkU2Mxyfr1Svn4KKUNT9VuPj7a9kzQ65UqU0Y7zNy55glRiGxv/Xo1mOkKlHqNX578Lel02i2Tf09CiJwjMjLSpPdvk8YsJeXh4UFoaCglSpR45kTt5s2b3L59O902JUuWZOXKlQwZMoS7d+8atsfFxeHi4sLatWtp3bp1mo+/d+8egYGB5MmTh02bNuHi4pLu823evJnXX3+dR48emVxk06xjlhKnOyf/seh02td166BNmwwf9ssvtUVDS5aE//7LdCeVEDYjMhJ8izzm3kNHfqYpTUlYjsnXV1sgLhN/R0KInMXU9+8Mz4Zr1aoVGzduZJAZSuAWLFjQcHkvPXXq1CEiIoLDhw/j7+8PwK5du4iPj6d27dppPi4qKorAwECcnZ358ccfn5ooAYSGhpI/f37rVCNPNt3ZiFJawjRwoLaeSQaznaAg7RLcuXPw44+QTn4pRI7w9ddw76Ej5csrmsz7EK4FPfMlbSFE7pThZKlMmTKMGzeO/fv34+/vT968eY32pzfWJ7PKlStHkyZN6NWrFwsWLODx48f069ePDh06GGbCXb58mQYNGrB8+XJq1apFVFQUjRs35sGDB6xcudJoIHbBggWxt7fnp59+4vr167z00ku4uLiwY8cOJk6cyNChQ83+GkySbLpzCkplerpz3rzQpw9MnAjTp0uyJHK22Fit8whgyBAduvr1rBeMEMLmZThZWrRoEZ6enhw+fJjDhw8b7dPpdBZJlgC+/fZb+vXrR4MGDbCzs6Nt27bMmTPHsP/x48ecOnWKBw8eAHDkyBHDTLnSpUsbHSssLAw/Pz8cHR354osvGDRoEEopSpcuzYwZM+jVq5dFXsNTXb1q3nbJ9OsHU6fC/v1w8CCk0yknhE37/nu4fBkKF4bOna0djRDC1mV4zJJIyWxjlnbv1pZDf5qQkEwX0uvaFZYtg/btIYcUKhfCiFJQrRocPQoTJsBHH1k7IiFEdmXWOkupuXXrlqH2kjCThOnOhsHcyel02uDUZ5junDjUbN06sEIVCCEsbtcuLVHKk0e79CyEEM8qQ8lSRESEoYBj4cKFKVy4MF5eXvTr14+IiAgLhZiL2NvD7Nna/eQJU+L3s2Y90+DUKlWgUSNtLPnMmZk+jBDZ1rRp2tfu3aFAAevGIoTIGUy+DHfnzh3q1KnD5cuX6dy5M+XKlQPg+PHjrFq1Cl9fX3777Tfy589v0YCzI7MvdxIcrM2KSzrY24zTnX/5RUuYXF3h4kXw8nrmQwphXQlFXP859IBKHzbDzk7x3386LLi2txAiBzB76YBx48bh5OTE2bNnKVy4cIp9jRs3Zty4ccyU7opn16aNVh7ATBW8k2vQQBvT8ddfMH8+jBpllsMKYR1JPlxMZzEAbZw3U+poLJSSWkpCiGdncs+Sn58fX331FYGBganu37p1K3369OH8+fPmjM8mZOeFdNOyZg106KD1Kl24oI3vEMLmJCniehVvinOBxzhxgDq8pDuY6SKuQojcwewDvK9evUqFChXS3F+xYkWT12kT1te2LZQoAbduwdKl1o5GiExIVsR1Lh/wGCdeYR8v8bvWZuBArZ0QQjwDk5MlLy+vdHuNwsLCKCCjKbOGXq+VGVi9WvuaiTcDBwcYoi3GzvTpEBdn1giFsLwkRVyjycuX9AVgKAkjvJMWcRVCiGdgcrIUGBjIxx9/TGxsbIp9MTExfPrppzRp0sSswYlUBAeDn59Wj6lTJ+2rn5+2PYO6dYPnntOWQMnEw4WwriTFWb+hJxHkpzSneYOf0mwnhBCZkaEB3jVq1KBMmTK8//77vPjiiyilOHHiBPPnzycmJoYVK1ZYMlaR1iK7ly9r2zM4PiNPHvjgAxgzBqZMgTffTLvEkxDZTpEiAMTiyHS0btLhTMGe+FTbCSFEZmWogndYWBjvvfce27dvJ/FhOp2ORo0aMW/evBTLiuQWWTLAW6/XepDSWjtOp9MKWoaFZWjW3K1b8Pzz8PAh7NwJr71mnnCFsLiEv4ml4Q3pxhKKcIUwSuBMQu93Jv8mhBC5h0UqeJcoUYItW7Zw69Ytfv/9d37//Xdu3rzJ1q1bc22ilGUysshuBnh5QY8e2v0pU54hPiGymr098TNn8znDARjETONECZ65iKsQQkAmlzvJnz8/tWrVolatWjKoO6tYcJHdwYPBzg62bdOWiRDCVvzo0IaTlMNDF8m7fPVkh4+PlA0QQphNpteGE1nM1HEXmRifUaIEvPWWdn/q1Aw/XAirUAomTdLuv/9hPtxDfoRVq7SFpsPCJFESQphNhsYsidRl6Zily5dTDvCGZx6fceQI+PtrDz17FooXf/aQhbCk3bu1yaDOzlph1WQLCwghxFNZZMySsCILL7JbvTo0bCgL7ArbMXmy9rV7d0mUhBCWJcmSLWnTRhuHUayY8XYzjc8Yro2T5euv4fbtZzqUEBb111/aGDs7Oxg61NrRCCFyOkmWbE2bNnD+vDYuw8zjMxo2hKpV4cEDmDfvmQ8nhMV8/rn2tX17KFnSurEIIXI+GbNkBra4kG5avv9eewPKn18bB5Ivn7UjEsLY2bPwwgsQHw+hoVClirUjEkLYKhmzJDKlbVsoWxbu3oUFC6wdjRBJJKyJOO3d08THQ9MmShIlIUSWkGQpJ3qGhXbt7WHECO3+9OlaZW8hrC5hTcRr9TuwZKcvACMOvymLGgohsoQkSzmNGRba7dxZKx1w/TosXmyxSIUwTeKaiOHhzGYAMbhQh98IuJmwXRImIYSFSbKUkyR5UzGSuNCuiW8qjo5PZsZNmQKxsWaOUwhT6fUwYAAoRSTuzOc9AEYwGR0Jwy0HDsxQ76kQQmSUJEs5RZI3lRRUxt9UuncHb2+4eBFWrjRfmEJkSJI1EefzHlF4UJ5/eZ1N2v5MrokohBAZIclSTmHmhXZdXGDIEO3+5MnywV1YScJah9HkZQaDAa1XyQ6VajshhLAESZZyCgsstNunDxQoAKdPw9q1mYxLiGeRsNbhAvpwi4KU4gwdWZ1mOyGEsARJlnIKCyy06+amXbkDmDhRq2sjRJYKCOBB0dJMQyvT/TETcCBJN6dOB76+EBBgpQCFELmBJEs5RUCAtuxJ8nXjEmXyTaVfP60w5d9/w6ZNZohTiIywt+frwHVcxxs/wnibJAPozLAmohBCmEKSpZzCQgvt5s8P77+v3Z8wIfXx40JYyqNH8PlWrfLkSM8FOBL3ZKeZ1kQUQoinkWQpJ7HQQruDBoGrKxw6BDt3miFOIUy0eLE2zM7XF7pcnmiRNRGFEOJpZG04M8h2a8Pp9dqst6tXtTFKAQHPfJliwACYMwfq1dPep4SwtJgYKF1am+T5xRfw3nvWjkgIkdOY+v4tyZIZZLtkyQLCw7XV3R8/hn374JVXrB2RyOkWLoR339Xy/XPntHIWQghhTjluId07d+7QuXNn3N3d8fT0pEePHkRHR6f7mHr16qHT6Yxuffr0MWpz8eJFmjdvTp48eShUqBDDhg0jLi4ujSPmAJlcN87HB7p00e6PG2ex6IQAtKR80iTt/ocfSqIkhLAum0mWOnfuzL///suOHTvYtGkTv/76K717937q43r16sXVq1cNtylTphj26fV6mjdvTmxsLL/99hvLli1j6dKljBo1ypIvxXqecd24jz4CBwfYvh3277dopCKXW7kSzp+HwoWhVy9rRyOEyPWUDTh+/LgC1B9//GHYtmXLFqXT6dTly5fTfFzdunXVgAED0tz/888/Kzs7O3Xt2jXDti+//FK5u7urmJgYk+OLjIxUgIqMjDT5MVlu/XqldDqltAltT246nXZbv96kw/TurT2sQQMLxytyn7g4pUJC1OMVq1Wpog8UKDVtmrWDEkLkZKa+f9tEz9KBAwfw9PSkRo0ahm0NGzbEzs6OgwcPpvvYb7/9Fi8vLypWrMjIkSN58OCB0XErVapE4cKFDdsCAwOJiori33//TfOYMTExREVFGd2yNTOuG/fxx9pCuzt3wp495g1T5GJJej1Xv7OZs1dc8bK7TZ8iP1g7MiGEsI3LcNeuXaNQoUJG2xwcHChQoADXrl1L83GdOnVi5cqVhISEMHLkSFasWMHbb79tdNykiRJg+D69406aNAkPDw/DzdfXNzMvK+uYcd24559/cllk1CipuyTMIDgY2rWD8HD02DGBjwEYEj+NvG+3NvkysRBCWIpVk6URI0akGICd/Hby5MlMH793794EBgZSqVIlOnfuzPLly9mwYQNnz559prhHjhxJZGSk4Xbp0qVnOp7FmXnduJEjwdkZfv0Vdu16hriESNbruZY3OcWLFOA27zNPa2Nir6cQQliKgzWffMiQIXTt2jXdNiVLlsTb25sbN24YbY+Li+POnTt4e3ub/Hy1a9cG4MyZM5QqVQpvb28OHTpk1Ob69esA6R7X2dkZZ2dnk5/X6sy8bpyPjzale84crXfptdfSXmVFiHQl6fXUY8c4tMkVg5hJPqJB8aTXs14968UphMjVrJosFSxYkIIFCz61XZ06dYiIiODw4cP4+/sDsGvXLuLj4w0JkClCQ0MBKJKQFNSpU4cJEyZw48YNw2W+HTt24O7uTvny5TP4arKxxHXjLl9O/bqZTqftz8C6cSNGaHVwfvtNmx0XGGjGeEXukaQ381s6c4LyFOA2HzA3zXZCCJHVbGLMUrly5WjSpAm9evXi0KFD7N+/n379+tGhQweKFi0KwOXLl3nxxRcNPUVnz55l/PjxHD58mPPnz/Pjjz8SFBTEq6++SuXKlQFo3Lgx5cuX55133uHo0aNs27aNTz75hPfff9+2eo6exgLrxhUp8qSisoxdEpmW8MElFkdGMxaAD/kcD6JSbSeEEFaRRbPzntnt27dVx44dlZubm3J3d1fdunVT9+7dM+wPCwtTgAoJCVFKKXXx4kX16quvqgIFCihnZ2dVunRpNWzYsBTTA8+fP6+aNm2qXF1dlZeXlxoyZIh6/PhxhmKzidIBSmnlAXx8jEsH+PqaXDYguWvXlMqTRzvMpk1mjlXkDnFxSvn4qPn0VaCUN1fUfVyNS1v4+mrthBDCzEx9/5blTszAppY7MfO6cR9+CFOmQPXq8OefMnZJZNyD1T9QulNNrlKUebzP+8zXdiT+Mj3DItBCCJEeWRsuC9lUsmRmt25BiRIQHQ0bN0LLltaOSNiaqVNh+HDws7/IKX1pnHis7fD11S4PS6IkhLAQU9+/rTrAW2Qzmeh18vKC/v1h4kQYPRreeAPsbGIknMgOoqJg8mTt/uiFPjiV3G62Xk8hhDAXSZaEJjhYq3eTtHilj482MPwpn+yHDIG5c+HoUdiwAdq2tXCsIseYMQPu3IEXX4S3g+zAoZ61QxJCiBSkD0AYVVA2cvmytv0pFZQLFIBBg7T7o0ZJ/UBhmlu3tGQJYNw4bZFmIYTIjiRZyu3MtG7coEGQPz8cPw7Llpk/TJHzfP453LsH1apJb6QQInuTZCm3M9O6cZ6e2iK7oPUuJVmvWIgn9HrYvZsr8zcyb46WgH/2mYxzE0Jkb/IvKrcz47px778PxYtrV+/mzHnGuETOExwMfn5Qvz6fvX+FR7H2vOJ0iKYPZaFcIUT2JslSbmfGdeNcXLReAtBmON2+/QxxiZwlybi4c5Tga3oBMCF2OLo3nz4uTgghrEmSpdwucd24tKpJ6nRavRsT143r1AmqVoXISJgwwXxhChuWbFzcWEYThyON2UZd9mhtTBgXJ4QQ1iLJUm5n5nXj7Oy0gbsA8+ZBWJh5whQ2LMm4uGNUYgXvAPAZn2j7TRwXJ4QQ1iLJktDqKK1bB8WKGW/38cnUUhONG0OjRvD4MXzyiRnjFLYpYbybAgYzA4Udb/I9Nfkz1XZCCJHdSLIkNG3awPnzEBICq1ZpX8PCMr3URGLv0qpVcOSI+cIUNihhvNvPNGMnDXEihs/5MM12QgiR3UgZOPGEvT3Uq5f2/gwsh1KtGnTuDN9+qy22u2OHZUIWNiAggMfF/Bh6eRoAA5lFCc4/2a/Tab2YJo6LE0KIrCY9S8I0SaZ906mT9tXPL91ZTJ99Bk5O8MsvsH17lkUqsht7exY23cBJyuHFTT5i4pN9mRgXJ4QQWU2SJfF0mVwOxc9Pq70E2qry8fGWDVNkTxERMHpDVQDGec7Eg6gnOzM5Lk4IIbKSTqnU1rkQGREVFYWHhweRkZG4u7tbOxzz0uu1rCetKt+Jl1DCwlLtGbh9G0qV0koJLF8O77xj2XBF9jN8OEydCuXKwbG/9DgcMO1SrhBCWJqp79/SsyTS94zLoTz3HIwcqd3/5BN49MgCMYps69y5J5Uppk8HB+eEcXEdO2pfJVESQtgASZZE+sywHEr//lrn08WLWg+DyOES1n9j9WpGdL9BbKxWTqJJE2sHJoQQmSPJkkifGZZDcXWFadpEKCZNggsXzBCXyJ6STATY32kea/cUwg4905r8kmaReCGEyO4kWRLpM9NyKG+9pV11efgQhgwxf5giG0gyESAeHYOZAUAPFlNpSGNZ/00IYbMkWRLpM9NyKDodzJmjNVu/XisnIHKQZOu/fUcHDlEbN+4xjk+1NrL+mxDCRkmyJJ7OTMuhVKr0pJTABx9AbKyZ4xTWk2QiwENcGMFkAEYyCW+uy/pvQgibJsmSMM3TlkNJMqiX3bvT7EEYOxYKFoSTJ2Hu3KwKXlhckgH+kxjJJZ7Hl4sMYmaa7YQQwlZIsiRMZ5/GtO8MVPf29ITJWqcDY8fKe2eOkTDA/xQvGNZ9m8kgXHmUajshhLAlkiyJZ5OJ6t5du0KtWnDvnrZunMgBAgJQxXx4j/nE4kwzNtOGJD97EycCCCFEdiTJksi8ZIN6jSRuS2VQr50dzJunvX+uWAH791s+VGFh9vasahfMLhrgwkPm0Q/DdABZ/00IYeMkWRKZ9wzVvWvWhO7dtfv9+skkKVt39y4MXl0TgE/d51CC8092yvpvQggbJ8mSyLxnrO49aZI2hik0FBYuNFtUwgo++ghu3NDWfxt6bWjaEwGEEMIGSbIkMu8Zq3sXLAjjxmn3P/4Ybt0yU1wiSx08CF99pd3/8ktwcpX134QQOYskSyLzzFDdu29frf7S3btS2dtmJCkTEbdzD336KJSCoCCoW9fawQkhhPlJsiQyzwzVvR0ctF4JnQ6WL4eff7ZMqMJMkpWJmNdwA6GhOvK7xcoiyUKIHMtmkqU7d+7QuXNn3N3d8fT0pEePHkRHR6fZ/vz58+h0ulRva9euNbRLbf93332XFS8pZzCluvdTClbWqaNNmgN4912IisqKwEWGJSsTEU4xPmU8AJ9H96PQPln7TQiRM+mUSm3ed/bTtGlTrl69yldffcXjx4/p1q0bNWvWZNWqVam21+v13Lx502jbwoULmTp1KlevXsXNzQ3QkqUlS5bQpEkTQztPT09cXFxMji0qKgoPDw8iIyNxd3fPxKvLAfR6bdbb1avaGKWAAK1HKThYKy+QdNacj4/WI5Vk0O+DB1C5Mpw9qyVMCxZY4TWItOn1Wo9Skp9jO9aynnbU4Tf2EYCdbzFtMLeMURJC2AhT379tIlk6ceIE5cuX548//qBGjRoAbN26lWbNmhEeHk7RokVNOk61atWoXr06ixYtMmzT6XRs2LCBVq1aZTo+SZbSkNgTkfxXLPESXbLp5Lt3a1d3AHbuhNdey5owhQmS/nCAzTTjdTZjTxxHqE5l/tZ2hIRog7qFEMIGmPr+bROX4Q4cOICnp6chUQJo2LAhdnZ2HDx40KRjHD58mNDQUHr06JFi3/vvv4+Xlxe1atVi8eLFPC1/jImJISoqyugmkslEwcp69bQB3wA9e8L9+xaPUpgqSfmHO+SnN1qth4HMepIoJWsnhBA5hU0kS9euXaNQoUJG2xwcHChQoADXrl0z6RiLFi2iXLlyvPzyy0bbx40bx/fff8+OHTto27Yt7733HnOfssLrpEmT8PDwMNx8fX0z9oJyg0wWrPz8c3j+ee1qzscfWzhGYbok5R/e5wuuUIyynGQco9JsJ4QQOYVVk6URI0akOQg78Xby5Mlnfp6HDx+yatWqVHuVPv30U1555RWqVavGhx9+yPDhw5n6lGk9I0eOJDIy0nC7dOnSM8eY42SyYGW+fE8KVM6ZI0uhZBsJZSK+owPf0RF74lhOEHl4qO2Xtd+EEDmYgzWffMiQIXTt2jXdNiVLlsTb25sbN24YbY+Li+POnTt4e3s/9XnWrVvHgwcPCAoKemrb2rVrM378eGJiYnB2dk61jbOzc5r7RIJnKFgZGAjdusGSJdqSKKGh4Opq3vBEBtnbc3nUV7zX+yUAPmYCtfhD2ydrvwkhcjirJksFCxakYMGCT21Xp04dIiIiOHz4MP7+/gDs2rWL+Ph4ateu/dTHL1q0iBYtWpj0XKGhoeTPn1+SoWeVWLDy8uXUxy3pdNr+NHoipk+HLVvgv/9g7FiYPNnC8Yp0KQU91jfjLuDveIxPHn/2ZKePj5YoyZImQogcyibGLJUrV44mTZrQq1cvDh06xP79++nXrx8dOnQwzIS7fPkyL774IocOHTJ67JkzZ/j111/p2bNniuP+9NNPfPPNN/zzzz+cOXOGL7/8kokTJ/LBBx9kyevK0Z6xYGX+/E/KB0ydCn/8YZkwhWm++gq2bQMXF1hxpAKOITtk7TchRO6hbMTt27dVx44dlZubm3J3d1fdunVT9+7dM+wPCwtTgAoJCTF63MiRI5Wvr6/S6/UpjrllyxZVtWpV5ebmpvLmzauqVKmiFixYkGrb9ERGRipARUZGZuq15Wjr1yvl46OU1jmh3Xx9te1KKRUXp1RIiFKrVmlf4+KMHt6hg/aQsmWVSvLjFpaW5Ofy34rfVZ488QqUmjXL2oEJIYT5mPr+bRN1lrI7qbP0FM9QsPLWLahaVbua9847sGxZ2kvRCTNJ8nOJw55X+ZUDvMxrlW6wI7QQdjbRHy2EEE+Xo+osCRtnn8oq9MmWzjC4fFnbHqwtneHlpa2SYmcHK1bA0qVZHXwuk+znMoXhHOBl3Ilkyd81sdsoS5oIIXIf6VkyA+lZyqBUls4wkjj4O8nSGRMmwCefaLPi/vwTypfPunBzjWQ/l7+oSi0OEYcjywgiSLcyxc9FCCFsmfQsiewrEwUrR46ERo3g4UN46y1tLTlhZkl+LvdwozPfEocjrQnmHVakWUhUCCFyOkmWRNbLRMHKxMtw3t7w77/Qv7+FYsvNEs63ArqxhBOUpyiX+Yp30aXSTgghcgtJlkTWy2TBysKF4dtvtat0ixZp94UZJZzvKQxnPe1wJJb1tKUgt1JtJ4QQuYUkSyLrJRasTGtaW9KlM/R6bcX71ath925eq6tnVMJyZO++C6dOZVnUOV9AADu8OvIREwGYRz9eIslC1bKkiRAil5JkSWQ9UwtW/vCDNuC4fn3o1En76ufHpxWCqVcP7t/Xxi89fJiFsedg5y/Z0+HREuKxpweL6MXXT3bKkiZCiFxMkiVhHW3awLp1UKyY8XYfH207pFlawL59O77t/DMFC8KxYzBwYJZEnPMk6bV7uO1X2rRR3Il2pmbpO8wrNsl4nFLiz0UqdQshciEpHWAGUjrgGaRWsBJMKi2wbUEYTZprvRyzZml1FIWJkhSeVEAXlrGCIAq6P+LwPy74Fk2jkKgQQuQgpr5/S7JkBpIsmdnu3dolt6cJCWHKoXp8+KGWP61fD61bWzw625dYeDLhT38e7/MB87Anjh00pv76ftKDJITIFaTOkrBdGSgtMGwY9Omjve936gQHDz79YbmaXq/1KCUkSvt4hUHMBLRZcPV1u7Xrmnq99WIUQohsRpIlkf1koLSATgdz50KzZvDoEbzxBpw7Z9nwbFqSwpPnKEE71hGHIx1YrSVNUnhSCCFSkGRJZD+mlhZ4+WXYvRuHtatZ028v1aopbt7UEqc7d7I2ZJuR0Gt3maI05Beu401ljvINPaXwpBBCpEGSJZH9mFJaoEMHKFXKUFbArdmrbLpWE1+vB5w6Ba1aaT1NIpkiRbjFczRmO2GUpBRn2EYgeXmQop0QQgiNJEsie0qvtMDQoTBtWorZckWvHeHnW7Vxz/OYvXuhWzeIj8/CmLOjZEU9oyq+TBPHXRynAsUI5xca4s31J+2l8KQQQqTgYO0AhEhTmzbQsqXxFPaXX9Z6lFKbxKkUFXX/Epw3iCaxq/juOx0lSsDEiVkferaQpDwAwENceMMphMOPX8KLm/xCI/y48KS9FJ4UQohUSc+SyN7s7aFePejYUfv6229p118CUIoGN7/jmyEnAZg0CcaNSz23ytESywMknKtYHGnHOn6NfQl3ItkWtIoXfaKNHyOFJ4UQIlXSsyRsi4kDj7tUCeXa5HKMGAGjR0NUFEydmvaY8RwlWXkAPXYEsZyfaY4rD9jEG1QPOQ9nz2rJpxSeFEKIdEmyJGyLqQOPCxXiwyK7cQ3Kx4Dl/kyfriVMX36ZC/KBJOUBFNCXL1lDBxyJJZg2BLAXLqElSvXqWTNSIYSwCZIsCduSWFbg8uXUr63pdFCgAHTtCuHh9Afy0ZWefMPXX9sTFQUrVoCjY1YHnoUSet9icKIn37CSd7BDz7d0pgnbUrQTQgiRPhmzJGzL08oKKAW3bxuNa+rGUr6jI47EsmaNNiTn4cMsjDmrFSnCbQrQiB2s5B3siWMx3XmTdSnaCSGEeDpJloTtSausQLFi8NxzqT7kTdbyA61w0T1i0yZo3hzu3cuCWC0tWWkA9Hr+KxzASw5/spdXcSeSLTSlC8ufPEbKAwghRIbIQrpmIAvpWoleb1xWQK+Hhg3TfcivBPB6nl3ce+BArVK32Dz9FF6vv2SbA5mSlQYA2FOwHW0eruROtDPFOc9mXqcC/z55TGJvnMx6E0IIWUhX5ALJywrcuPHUh7zKXnY5BFKA2xw660WVVn7s9u6gJR62JFlpAIDlvEOjm99yJ9qZ2mXucHDRv1TwiTR+nJQHEEKIDJNkSeQcJo7BqRG1i70EUJaTXKEYr91aw6dtjxO3doOFAzSTZKUBFDCKsXRhOY9xoh1rCXlQm8JdmsD58xASAqtWaV/DwiRREkKIDJLLcGYgl+GyCb0e/PzSnimXzH3yMIDZLKInAC87/cmqE9UoXjKbX5LbvVtbEw+4wPP05Uu20AyAEUxiAh9jh9KSIykNIIQQaZLLcCL3SW+mXCry8oBv6MV3tMedSH6LrUHVKvGs+z7loGmrSj6I+/Jl9NgxiwFU4F+20AwnYviGHkziIy1RAikNIIQQZiLJkshZ0popV6BAmg9pz/eEUpXa/E5EtCNvtrfn3fqneNCph9aD4+dnvTFNwcHa89evD506Qf36HO33NXU4wCBmcR83AviVo1ShB4uNHyulAYQQwizkMpwZyGW4bCgTM+Ue48BoxjKZESjsKEY4HzOB7izBWRerJWHJF/a15BIhiYO4E/5EH+LCOEYxlWHoccCDCKYwnJ5886Q3CbReNR8fbXySLc7yE0KILGLq+7ckS2YgyZINMGU8k7096PXs5DW6sYRLPA+ALxf5hAl0LfAjTnkcjBfy9fHRLv0966Dp5Mndyy9DqVIQHk48On6mGYOYyRnKANCWdczlA4rorhu/HikNIIQQJpNkKQtJsmQjEntqIGWCkezP4BHOfENPJjGSK2iX9Ipznk8ZT9D/27v3qCjO8w/g3wXcBVwEFeSuIRUEVBBB6UatNmBAIvF+iymLt1aFKiq22BPEHE3R1ORE8/OaWtSmCebmNcHEIG4rLioKikpUDIoXkBiVixfU3ff3B2HqCixoCQvy/Zwzx533fWf22UfO7HPemZ3BVrTDo/9uCzRu1unJgqimv477JcHeHjduCKRgCtZjJn7ArwAArriCNYjBCOyqHufgAPz443+3c3cH3n+fhRIRUSM0+vtbtBLLli0TKpVKWFlZCVtb20Zto9frRWJionBychKWlpYiJCREnDt3zmDMTz/9JF5//XVhY2MjbG1txdSpU0VFRcVTxVZWViYAiLKysqfajkzgiy+EcHMToro8ql7c3YWIizNs+3m5B4VYhT8KJ1yTml9Egfg/zBYX0bW6QSYTonPn2vt1c6t+v/re181NiIULq7f/uU0PiEyoxBvYKhS4Jw21xS0Rj3dEGWwM9/HRR0JkZAjx8cfV/z56ZMrsEhG1Ko39/m41M0tJSUmws7PDlStXsGnTJty+fbvBbVasWIHk5GRs2bIFHh4eSExMRF5eHs6cOQNLS0sAwLBhw1BcXIwNGzbg4cOHmDJlCvr164ePP/640bFxZqmVqWuG5z//kX6OX5d7sMR6zMRyJKAUjlJ7D3yPcOxFGL7BYGhgjcceOlcz6xQfD6xcWe/pvwookYfeOIp+SMEUnEAfqS8Q2ZiFdZiIVLTH3dob8/YARETP7Lk9Dbd582bExcU1WCwJIeDi4oIFCxYgPj4eAFBWVgZHR0ds3rwZEydORH5+Pnx9fXH06FEEBQUBAPbu3YuIiAhcuXIFLi4ujYqJxdJzoJH3aLoDa3yIGfgCY6CFCjpYSH0K3Mcg/AeDoUEn3IQSlbBBBZRm96DUl0GJSrTDQ3wPb5yAv7TUnGKrYYl7mIhUzMZa9EN23YHwIm4iov9ZY7+/LertaeUKCwtRUlKC0Md+AWVra4vg4GBotVpMnDgRWq0WdnZ2UqEEAKGhoTAzM8Phw4cxatSoOvddVVWFqqoqab28vPyX+yDUPGru0TR2bJ3XMNVoj7uIwyrEYRXK0AHpCME3CMM3CMMlvIDvMBTfYajhRvqG394FV+GPExiKfVBjCzrhVv2Da2as3n+fhRIRUTN4boulkpISAICjo6NBu6Ojo9RXUlKCLl26GPRbWFigU6dO0pi6JCcn46233mriiMnkau7R9OTF1m5uwL17wM2bBkWULcoxGtsxGtshAJyDF/YiHDkIQCWUqIQSFbCRXldCiXuwwq9wQZpX8sNJ+OME7PFT/XE9eRG3mxsv4iYiakYmLZYSEhKwYsUKo2Py8/Ph7e3dTBE1zqJFizB//nxpvby8HO7u7iaMiJrM6NF1/6pt506js04yAD1wDj1wruliqTnVVlAAHDrUPPd2IiKiWkxaLC1YsADR0dFGx7z44ovPtG8nJycAwPXr1+H82J2Mr1+/jj59+khjSp94Uv2jR49w8+ZNafu6KBQKKBSKZ4qLWgFz89oXTT/lrFOt/en1xp9X92QR9vipNrmcF3ETEZmQSR934uDgAG9vb6OLXC5/pn17eHjAyckJ6enpUlt5eTkOHz4MlUoFAFCpVLh9+zaOHTsmjdm/fz/0ej2Cg4P/tw9Hz5/Ro4GLF6t/gfbxx9X/XrwIbNxY3f/k8+hksuqlZhayvv6FC2s/nsXNjTeWJCJqIVrNs+GKioqQm5uLoqIi6HQ65ObmIjc3F5WVldIYb29vbN++HQAgk8kQFxeHZcuWYdeuXcjLy0NUVBRcXFwwcuRIAICPjw/Cw8MxY8YMHDlyBJmZmYiNjcXEiRMb/Us4amNqZp0mTar+19y8/ufR1RQ877zTcP+TRVhhIQslIqIWotXcOiA6Ohpbtmyp1Z6RkYEhP5+ikMlkSElJkU7tCSGQlJSEjRs34vbt2xg4cCDWrl0LLy8vafubN28iNjYWu3fvhpmZGcaMGYPVq1dDqVQ2OjbeOoAA1H+H7sb2ExFRs3pu77PUErFYIiIian0a+/3dak7DEREREZkCiyUiIiIiI1gsERERERnBYomIiIjICBZLREREREawWCIiIiIygsUSERERkREsloiIiIiMYLFEREREZISFqQN4HtTcBL28vNzEkRAREVFj1XxvN/QwExZLTaCiogIA4O7ubuJIiIiI6GlVVFTA1ta23n4+G64J6PV6XLt2DTY2NpDJZE223/Lycri7u+Py5ct85lw9mKOGMUfGMT8NY44axhw1rCXmSAiBiooKuLi4wMys/iuTOLPUBMzMzODm5vaL7b9Dhw4t5g+rpWKOGsYcGcf8NIw5ahhz1LCWliNjM0o1eIE3ERERkREsloiIiIiMYLHUgikUCiQlJUGhUJg6lBaLOWoYc2Qc89Mw5qhhzFHDWnOOeIE3ERERkRGcWSIiIiIygsUSERERkREsloiIiIiMYLFEREREZASLpRZszZo1eOGFF2BpaYng4GAcOXLE1CGZzL///W9ERkbCxcUFMpkMO3bsMOgXQmDx4sVwdnaGlZUVQkNDcf78edMEawLJycno168fbGxs0KVLF4wcORJnz541GHP//n3ExMSgc+fOUCqVGDNmDK5fv26iiJvfunXr4OfnJ90QT6VSIS0tTepv6/l50vLlyyGTyRAXFye1tfUcLVmyBDKZzGDx9vaW+tt6fmpcvXoVb7zxBjp37gwrKyv07t0b2dnZUn9rPF6zWGqhtm3bhvnz5yMpKQnHjx+Hv78/wsLCUFpaaurQTOLOnTvw9/fHmjVr6ux/5513sHr1aqxfvx6HDx9G+/btERYWhvv37zdzpKah0WgQExODrKws7Nu3Dw8fPsQrr7yCO3fuSGPmzZuH3bt347PPPoNGo8G1a9cwevRoE0bdvNzc3LB8+XIcO3YM2dnZePnllzFixAicPn0aAPPzuKNHj2LDhg3w8/MzaGeOgJ49e6K4uFhaDh48KPUxP8CtW7cwYMAAtGvXDmlpaThz5gzeffdddOzYURrTKo/Xglqk/v37i5iYGGldp9MJFxcXkZycbMKoWgYAYvv27dK6Xq8XTk5O4m9/+5vUdvv2baFQKMQnn3xigghNr7S0VAAQGo1GCFGdj3bt2onPPvtMGpOfny8ACK1Wa6owTa5jx47i73//O/PzmIqKCuHp6Sn27dsnBg8eLObOnSuE4N+QEEIkJSUJf3//OvuYn2p//vOfxcCBA+vtb63Ha84stUAPHjzAsWPHEBoaKrWZmZkhNDQUWq3WhJG1TIWFhSgpKTHIl62tLYKDg9tsvsrKygAAnTp1AgAcO3YMDx8+NMiRt7c3unbt2iZzpNPpkJqaijt37kClUjE/j4mJicGrr75qkAuAf0M1zp8/DxcXF7z44ouYPHkyioqKADA/NXbt2oWgoCCMGzcOXbp0QUBAAD788EOpv7Uer1kstUA3btyATqeDo6OjQbujoyNKSkpMFFXLVZMT5quaXq9HXFwcBgwYgF69egGozpFcLoednZ3B2LaWo7y8PCiVSigUCsycORPbt2+Hr68v8/Oz1NRUHD9+HMnJybX6mCMgODgYmzdvxt69e7Fu3ToUFhZi0KBBqKioYH5+9sMPP2DdunXw9PTEN998g1mzZmHOnDnYsmULgNZ7vLYwdQBE1LRiYmJw6tQpg2spqFqPHj2Qm5uLsrIyfP7551Cr1dBoNKYOq0W4fPky5s6di3379sHS0tLU4bRIw4YNk177+fkhODgY3bp1w6effgorKysTRtZy6PV6BAUF4a9//SsAICAgAKdOncL69euhVqtNHN2z48xSC2Rvbw9zc/Nav6K4fv06nJycTBRVy1WTE+YLiI2NxZ49e5CRkQE3Nzep3cnJCQ8ePMDt27cNxre1HMnlcnTv3h2BgYFITk6Gv78/Vq1axfyg+jRSaWkp+vbtCwsLC1hYWECj0WD16tWwsLCAo6Njm8/Rk+zs7ODl5YWCggL+Df3M2dkZvr6+Bm0+Pj7S6crWerxmsdQCyeVyBAYGIj09XWrT6/VIT0+HSqUyYWQtk4eHB5ycnAzyVV5ejsOHD7eZfAkhEBsbi+3bt2P//v3w8PAw6A8MDES7du0McnT27FkUFRW1mRzVRa/Xo6qqivkBEBISgry8POTm5kpLUFAQJk+eLL1u6zl6UmVlJS5cuABnZ2f+Df1swIABtW5bcu7cOXTr1g1AKz5em/oKc6pbamqqUCgUYvPmzeLMmTPi97//vbCzsxMlJSWmDs0kKioqRE5OjsjJyREAxHvvvSdycnLEpUuXhBBCLF++XNjZ2YmdO3eKkydPihEjRggPDw9x7949E0fePGbNmiVsbW3FgQMHRHFxsbTcvXtXGjNz5kzRtWtXsX//fpGdnS1UKpVQqVQmjLp5JSQkCI1GIwoLC8XJkydFQkKCkMlk4ttvvxVCMD91efzXcEIwRwsWLBAHDhwQhYWFIjMzU4SGhgp7e3tRWloqhGB+hBDiyJEjwsLCQrz99tvi/Pnz4l//+pewtrYWH330kTSmNR6vWSy1YB988IHo2rWrkMvlon///iIrK8vUIZlMRkaGAFBrUavVQojqn6MmJiYKR0dHoVAoREhIiDh79qxpg25GdeUGgEhJSZHG3Lt3T8yePVt07NhRWFtbi1GjRoni4mLTBd3Mpk6dKrp16ybkcrlwcHAQISEhUqEkBPNTlyeLpbaeowkTJghnZ2chl8uFq6urmDBhgigoKJD623p+auzevVv06tVLKBQK4e3tLTZu3GjQ3xqP1zIhhDDNnBYRERFRy8drloiIiIiMYLFEREREZASLJSIiIiIjWCwRERERGcFiiYiIiMgIFktERERERrBYIiIiIjKCxRIRNashQ4YgLi7O1GG0GdHR0Rg5cqSpwyBq1VgsEVGdZDKZ0WXJkiXPtN8vv/wSS5cubbI4W0Lx9eGHH8Lf3x9KpRJ2dnYICAhAcnKySWMioqZjYeoAiKhlKi4ull5v27YNixcvNnhAplKplF4LIaDT6WBh0fAhpVOnTk0baBN58OAB5HL5U2/3j3/8A3FxcVi9ejUGDx6MqqoqnDx5EqdOnfoFoiQiU+DMEhHVycnJSVpsbW0hk8mk9e+//x42NjZIS0tDYGAgFAoFDh48iAsXLmDEiBFwdHSEUqlEv3798N133xns98mZoKqqKsTHx8PV1RXt27dHcHAwDhw4YLBNZmYmhgwZAmtra3Ts2BFhYWG4desWoqOjodFosGrVKmnG6+LFiwAAjUaD/v37Q6FQwNnZGQkJCXj06JFBHLGxsYiLi4O9vT3CwsIwdepUDB8+3OC9Hz58iC5dumDTpk115mnXrl0YP348pk2bhu7du6Nnz56YNGkS3n77bWnM0aNHMXToUNjb28PW1haDBw/G8ePHDfYjk8mwYcMGDB8+HNbW1vDx8YFWq0VBQQGGDBmC9u3b46WXXsKFCxekbZYsWYI+ffpgw4YNcHd3h7W1NcaPH4+ysrJ6/1/1ej2Sk5Ph4eEBKysr+Pv74/PPP5f6b926hcmTJ8PBwQFWVlbw9PRESkpKvfsjagtYLBHRM0tISMDy5cuRn58PPz8/VFZWIiIiAunp6cjJyUF4eDgiIyNRVFRU7z5iY2Oh1WqRmpqKkydPYty4cQgPD8f58+cBALm5uQgJCYGvry+0Wi0OHjyIyMhI6HQ6rFq1CiqVCjNmzEBxcTGKi4vh7u6Oq1evIiIiAv369cOJEyewbt06bNq0CcuWLTN47y1btkAulyMzMxPr16/H9OnTsXfvXoNZtT179uDu3buYMGFCnfE7OTkhKysLly5dqvczVlRUQK1W4+DBg8jKyoKnpyciIiJQUVFhMG7p0qWIiopCbm4uvL298frrr+MPf/gDFi1ahOzsbAghEBsba7BNQUEBPv30U+zevRt79+5FTk4OZs+eXW8sycnJ2Lp1K9avX4/Tp09j3rx5eOONN6DRaAAAiYmJOHPmDNLS0pCfn49169bB3t6+3v0RtQmmfY4vEbUGKSkpwtbWVlrPyMgQAMSOHTsa3LZnz57igw8+kNYff5L9pUuXhLm5ubh69arBNiEhIWLRokVCCCEmTZokBgwYUO/+H99fjb/85S+iR48eQq/XS21r1qwRSqVS6HQ6abuAgIBa+/P19RUrVqyQ1iMjI0V0dHS973/t2jXx61//WgAQXl5eQq1Wi23btknvUxedTidsbGzE7t27pTYA4s0335TWtVqtACA2bdoktX3yySfC0tJSWk9KShLm5ubiypUrUltaWpowMzOTnnavVqvFiBEjhBBC3L9/X1hbW4tDhw4ZxDNt2jQxadIk6fNOmTKl3tiJ2iLOLBHRMwsKCjJYr6ysRHx8PHx8fGBnZwelUon8/Px6Z5by8vKg0+ng5eUFpVIpLRqNRjrdVDOz9DTy8/OhUqkgk8mktgEDBqCyshJXrlyR2gIDA2ttO336dOm00/Xr15GWloapU6fW+17Ozs7QarXIy8vD3Llz8ejRI6jVaoSHh0Ov10v7mTFjBjw9PWFra4sOHTqgsrKyVl78/Pyk146OjgCA3r17G7Tdv38f5eXlUlvXrl3h6uoqratUKuj1eoPry2oUFBTg7t27GDp0qEG+t27dKuV71qxZSE1NRZ8+ffCnP/0Jhw4dqvezE7UVvMCbiJ5Z+/btDdbj4+Oxb98+rFy5Et27d4eVlRXGjh2LBw8e1Ll9ZWUlzM3NcezYMZibmxv01VxAbmVl9csEj9rxA0BUVBQSEhKg1Wpx6NAheHh4YNCgQQ3uq1evXujVqxdmz56NmTNnYtCgQdBoNPjtb38LtVqNn376CatWrUK3bt2gUCigUqlq5aVdu3bS65pCr662miLsaVVWVgIAvvrqK4MCCwAUCgUAYNiwYbh06RK+/vpr7Nu3DyEhIYiJicHKlSuf6T2JngcsloioyWRmZiI6OhqjRo0CUP3lXHPBdV0CAgKg0+lQWlpab0Hi5+eH9PR0vPXWW3X2y+Vy6HQ6gzYfHx988cUXEEJIBUZmZiZsbGzg5uZm9DN07twZI0eOREpKCrRaLaZMmWJ0fF18fX0BAHfu3JHee+3atYiIiAAAXL58GTdu3Hjq/dalqKgI165dg4uLCwAgKysLZmZm6NGjR51xKRQKFBUVYfDgwfXu08HBAWq1Gmq1GoMGDcLChQtZLFGbxmKJiJqMp6cnvvzyS0RGRkImkyExMdHoLIiXlxcmT56MqKgovPvuuwgICMCPP/6I9PR0+Pn54dVXX8WiRYvQu3dvacZGLpcjIyMD48aNg729PV544QUcPnwYFy9ehFKpRKdOnTB79my8//77+OMf/4jY2FicPXsWSUlJmD9/PszMGr76YPr06Rg+fDh0Oh3UarXRsbNmzYKLiwtefvlluLm5obi4GMuWLYODgwNUKpWUl3/+858ICgpCeXk5Fi5c2GQzZpaWllCr1Vi5ciXKy8sxZ84cjB8/Hk5OTrXG2tjYID4+HvPmzYNer8fAgQNRVlaGzMxMdOjQAWq1GosXL0ZgYCB69uyJqqoq7NmzBz4+Pk0SK1FrxWuWiKjJvPfee+jYsSNeeuklREZGIiwsDH379jW6TUpKCqKiorBgwQL06NEDI0eOxNGjR9G1a1cA1QXVt99+ixMnTqB///5QqVTYuXOndE+n+Ph4mJubw9fXFw4ODigqKoKrqyu+/vprHDlyBP7+/pg5cyamTZuGN998s1GfIzQ0FM7OzggLC5NmbIyNzcrKwrhx4+Dl5YUxY8bA0tIS6enp6Ny5MwBg06ZNuHXrFvr27Yvf/e53mDNnDrp06dKoWBrSvXt3jB49GhEREXjllVfg5+eHtWvX1jt+6dKlSExMRHJyMnx8fBAeHo6vvvoKHh4eAKpn6hYtWgQ/Pz/85je/gbm5OVJTU5skVqLWSiaEEKYOgojaDpVKhZCQkFo/429JKisr4erqipSUFIwePdrU4dRryZIl2LFjB3Jzc00dCtFzjTNLRNQsqqqqkJ2djdOnT6Nnz56mDqdOer0epaWlWLp0Kezs7PDaa6+ZOiQiagF4zRIRNYu0tDRERUXhtddew9ixY00dTp2Kiorg4eEBNzc3bN68uVGPbyGi5x9PwxEREREZwdNwREREREawWCIiIiIygsUSERERkREsloiIiIiMYLFEREREZASLJSIiIiIjWCwRERERGcFiiYiIiMgIFktERERERvw/IT3RZL6AX64AAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(title = \"End-Effector Orientation Predictions\", x = \"Trajectory Samples\", y = \"Orientation [rad]\")\n", + "visualizer.plot_orientation_trajectory(np.sin(or_traj), np.sin(or_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BTJFV6jTY_kd" + }, + "source": [ + "## Workspace" + ] + }, + { + "cell_type": "code", + "execution_count": 936, + "metadata": {}, + "outputs": [], + "source": [ + "### TODO distance of each point to origin. \n", + "# If smaller than max range then within " + ] + }, + { + "cell_type": "code", + "execution_count": 937, + "metadata": {}, + "outputs": [], + "source": [ + "ws_pred, ws_traj = metrics['workspace'][0], metrics['workspace'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 938, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAGFCAYAAABQYJzfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZglZ3XniX9iufu+5r7UrlJpl9C+gWVk++dusHHbbbsHGffY/Rh4sBvsBqanGYYej8GAR7aHxt09DbgxBuw2tmkwkoWs0oZYJCSVSrVXZVZV7vfm3fLuS8Tvj4g3MvLWzVpzKaXi+zz5ZGbce+N9I27E+41zzvecI+m6ruPAgQMHDhxsIuTNnoADBw4cOHDgkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0qJs9AQdvXGiaRrPZ3OxpOHDgYB3hcrlQFGXdx3HIyMFlodlsMjExgaZpmz0VBw4crDOi0Sj9/f1IkrRuYzhk5OCSoes6s7OzKIrCyMgIsux4ex042IrQdZ1qtcrCwgIAAwMD6zaWQ0YOLhntdptqtcrg4CB+v3+zp+PAgYN1hM/nA2BhYYF0Or1uLjvnkdbBJaPT6QDgdrs3eSYOHDjYCIiHzlartW5jOGTk4LKxnv5jBw4cXD3YiHvdISMHDhw4cLDpcMjIgYN1wK/92q/xzne+0/r/wQcf5Hd+53euaJ9rsY+NxMXM90tf+hLRaPS87+k+l1c7LuaYHJwLh4wcvGnwa7/2a0iShCRJuN1udu7cySc+8Qna7fa6j/2Nb3yD//gf/+NFvXf//v1IkkShULjsfVwN6J7v+Pg4jz766CXv54//+I/50pe+dNnzeOyxx5Akibm5uRXbBwYGGB8fX7FtcnISSZJ48sknL3s8B5cHh4wcvKnwUz/1U8zOznL8+HE+9KEP8fGPf5xPf/rTPd+7lgm98XicUCi06fvYSKzVfCORyBVZGvfeey+qqrJ//35r2+HDh6nVauTzeSYnJ63tTz31FB6Ph3vuueeyxlrPAP9Wh0NGDjYVx44d4zvf+Q7Hjx/fkPE8Hg/9/f2MjY3xW7/1Wzz00EN885vfBJbdQb//+7/P4OAge/bsAeDs2bP84i/+ItFolHg8zjve8Y4VC1in0+GDH/wg0WiURCLBv/t3/w5d11eM2+2yajQafPjDH2ZkZASPx8POnTv5b//tvzE5Oclb3/pWAGKxGJIk8Wu/9ms995HP53n3u99NLBbD7/fz0z/90yvOo3AXPf744+zdu5dgMGiRscD+/fu5/fbbCQQCRKNR7rnnHk6fPt3z3P3CL/wC73//+63/f+d3fgdJkjhy5AhgkHcgEOC73/3uOfN98MEHOX36NP/23/5byzq143xz7OXy/MAHPsC/+3f/jng8Tn9/Px//+Md7zhkgGAzylre8ZQUZ7d+/n3vvvZd77rnnnO133nknXq8XTdP4xCc+wfDwMB6Ph5tuuonHHnvMeq+wor7+9a/zwAMP4PV6+cpXvnLO+JlMhttuu42f+7mfo9FokM/n+dVf/VVSqRQ+n49du3bxxS9+ccU+v/a1r3H33Xfj9Xq57rrrePrpp639dTod/vW//tds27YNn8/Hnj17+OM//uNzxv3CF77Avn378Hg8DAwMrPjuCoUC/+v/+r+SSqUIh8O87W1v49VXX131HG4EHDJysCnI5XL81E/9FHv27OFnfuZn2L17Nz/1Uz9FPp/f0Hn4fL4VFtCTTz7J0aNHeeKJJ/jWt75Fq9Xi4YcfJhQK8eyzz/L8889bC6b43Gc/+1m+9KUv8YUvfIHnnnuOXC7H3/7t35533He/+9189atf5U/+5E84fPgw//k//2eCwSAjIyP8zd/8DQBHjx5ldna250IDxiL94osv8s1vfpMXXngBXdf5mZ/5mRVP59Vqlc985jN8+ctf5plnnuHMmTP87u/+LmDki73zne/kgQce4MCBA7zwwgv85m/+5qrKqQceeGDFwv3000+TTCatbT/60Y9otVrcfffd53z2G9/4BsPDw3ziE59gdnZ2Bdmcb46r4c///M8JBAL84Ac/4A//8A/5xCc+wRNPPLHq+9/61rfy1FNPWf8/9dRTPPjggzzwwAMrtu/fv996GPjjP/5jPvvZz/KZz3yGAwcO8PDDD/PP//k/P+fB6SMf+Qi//du/zeHDh3n44YdXvHb27Fnuu+8+rrvuOv7H//gfeDwe/sN/+A8cOnSI73znOxw+fJjPf/7zJJPJFZ/7vd/7PT70oQ/x8ssvc9ddd/HP/tk/Y3FxETDKcA0PD/PXf/3XHDp0iI997GP8b//b/8Zf/dVfWZ///Oc/z/ve9z5+8zd/k9dee41vfvOb7Ny503r9X/yLf8HCwgLf+c53eOmll7jlllv4iZ/4CXK53HnP+7pCd+DgElGr1fRDhw7ptVrtsvfx8MMP64qi6ID1oyiK/vDDD6/hTFfikUce0d/xjnfouq7rmqbpTzzxhO7xePTf/d3ftV7v6+vTG42G9Zkvf/nL+p49e3RN06xtjUZD9/l8+uOPP67ruq4PDAzof/iHf2i93mq19OHhYWssXdf1Bx54QP/t3/5tXdd1/ejRozqgP/HEEz3n+dRTT+mAns/nV2y37+PYsWM6oD///PPW69lsVvf5fPpf/dVf6bqu61/84hd1QD9x4oT1ns997nN6X1+fruu6vri4qAP6/v37L3TqdF3X9QMHDuiSJOkLCwt6LpfT3W63/h//43/Uf+mXfknXdV3/v/6v/0u/++67e85X13V9bGxM/3/+n/9nxT4vNEddX/m9if3ee++9K/bzlre8Rf/whz+86tyfeOIJHdBnZmZ0Xdf1dDqt//CHP9S/973v6WNjY7qu6/rJkyd1QH/66ad1Xdf1wcFB/fd///fPGee9732vruu6PjExoQP6o48+es4xRSIR/ciRI/rIyIj+gQ98YMX188/+2T/T3/Oe9/Scp9jnJz/5SWubuJ4+9alPrXp873vf+/R3vetd1v+Dg4P6v//3/77ne5999lk9HA7r9Xp9xfYdO3bo//k//+een1mLe/5CcCowONhwHDt2jMcff/yc7Z1Oh8cff5zjx4+za9eudRn7W9/6FsFgkFarhaZp/Mqv/MoKF8/111+/Ipn31Vdf5cSJE+fEPur1OidPnqRYLDI7O8sdd9xhvaaqKrfddts5rjqBV155BUVReOCBBy77OA4fPoyqqivGTSQS7Nmzh8OHD1vb/H4/O3bssP4fGBiwSrvE43F+7dd+jYcffpif/Mmf5KGHHuIXf/EXVy35ct111xGPx3n66adxu93cfPPN/OzP/iyf+9znAMNSevDBBy/5WM43x9Vwww03rPj/Qp+5++67cbvd7N+/nxtvvJFarcYtt9yCpmlkMhkmJibYv38/Pp+PO++8k1KpxMzMzDmxo3vuueccd9Ztt912zni1Wo377ruPX/mVXzlHtPFbv/VbvOtd7+LHP/4xb3/723nnO995jjV51113WX+L68n+vX7uc5/jC1/4AmfOnKFWq9FsNrnpppsAo1LCzMwMP/ETP9HzXLz66quUy2USicQ5cz558mTvE7gBcMjIwYbjQhf8iRMn1o2M3vrWt/L5z38et9vN4OAgqrryFggEAiv+L5fL3HrrrT1jAalU6rLmIMqrbARcLteK/yVJWkGSX/ziF/nABz7AY489xte//nX+9//9f+eJJ57gzjvvPGdfkiRx//33s3//fjweDw8++CA33HADjUaDgwcP8r3vfe+C7rXLmePFfuZ8RXv9fj+33347Tz31FLlcjnvvvRdFUVAUhbvvvpunnnqKp556invuuQe32029Xr/o+XdfM2DEJh966CG+9a1v8Xu/93sMDQ1Zr/30T/80p0+f5h/+4R944okn+Imf+Ane97738ZnPfOaixvva177G7/7u7/LZz36Wu+66i1AoxKc//Wl+8IMfABe+vsrlMgMDAytcrgKbKUl3YkYONhz2p+BesPu21xqBQICdO3cyOjp6DhH1wi233MLx48dJp9Ps3LlzxU8kEiESiTAwMGAtBGDEYl566aVV93n99dejadqKoLQdwjITZZd6Ye/evbTb7RXjLi4ucvToUa699toLHpcdN998Mx/96Ef53ve+x3XXXcdf/uVfrvpeETfav38/Dz74ILIsc//99/PpT3+aRqNxXhWa2+0+7zGtN9761reumLuAINinn37aiheFw2EGBwd5/vnnV+zj+eefv6jzK8syX/7yl7n11lt561vfyszMzIrXU6kUjzzyCH/xF3/Bo48+yn/5L/9lxevf//73rb/F9bR3715rDnfffTfvfe97ufnmm9m5c+eKB7xQKMT4+Piq8vRbbrmFubk5VFU955rujl1tJBwycrDh2L17Nw8//PA5BRcVReHhhx9eN6vocvCrv/qrJJNJ3vGOd/Dss89a7pwPfOADTE1NAfDbv/3bfPKTn+Tv/u7vOHLkCO9973vPyRGyY3x8nEceeYRf//Vf5+/+7u+sfYoA9NjYGJIk8a1vfYtMJkO5XD5nH7t27eId73gHv/Ebv8Fzzz3Hq6++yr/6V/+KoaEh3vGOd1zUsU1MTPDRj36UF154gdOnT/OP//iPHD9+3Fr0euHBBx/k0KFDvP7669x7773Wtq985SvcdtttPa0E+3E/88wzTE9Pk81mL2qOa4m3vvWtHD9+nMcff3yFi/SBBx7g7/7u7zh79qxFRmCICD71qU/x9a9/naNHj/KRj3yEV155hd/+7d++qPEUReErX/kKN954I29729usPKePfexj/P3f/z0nTpzg9ddf51vf+tY55/xzn/scf/u3f8uRI0d43/veRz6f59d//dcB47t/8cUXefzxxzl27Bj/4T/8B370ox+t+PzHP/5xPvvZz/Inf/InHD9+nB//+Mf86Z/+KQAPPfQQd911F+985zv5x3/8RyYnJ/ne977Hv//3/54XX3zx0k/sGsEhIwebgq9+9as89NBDK7Y99NBDfPWrX92kGfWG3+/nmWeeYXR0lJ//+Z9n7969/Ot//a+p1+uEw2EAPvShD/G//C//C4888ojlNvm5n/u58+7385//PL/wC7/Ae9/7Xq655hp+4zd+g0qlAsDQ0BD/5//5f/KRj3yEvr6+FZJcO774xS9y66238rM/+7Pcdddd6LrOP/zDP5zjwjrfsR05coR3vetd7N69m9/8zd/kfe97H//m3/ybVT9z/fXXE41GuemmmwgGg4BBRp1O54Lxok984hNMTk6yY8eOy3ZxXgnuuusuPB4Puq5z6623WtvvuOMOWq2WJQEX+MAHPsAHP/hBPvShD3H99dfz2GOP8c1vfvOSHpZUVeWrX/0q+/bt421vexsLCwu43W4++tGPcsMNN3D//fejKApf+9rXVnzuk5/8JJ/85Ce58cYbee655/jmN79pWS3/5t/8G37+53+eX/qlX+KOO+5gcXGR9773vSs+/8gjj/Doo4/yn/7Tf2Lfvn387M/+rKUClCSJf/iHf+D+++/nPe95D7t37+Zf/st/yenTp+nr67vk87pWkPQLOWcdOOhCvV5nYmKCbdu24fV6r2hfx48f58SJE+zcufOqsogcONgMTE5Osm3bNl5++WVLkHA1YC3v+dXgCBgcbCp27drlkJADBw4cN50DBw4cONh8OJaRAwcOHFwlGB8fv6CsfavCsYwcOHDgwMGmwyEjBw4cOHCw6XDIyMFl483qTnDg4M2G81W3WCs4MSMHlwyXy4UkSWQyGVKp1KpVnh04cPDGhq7rNJtNMpkMsiyvqNu41nDyjBxcFsrlMlNTU4515MDBmwB+v5+BgQGHjBxcneh0Ok5nSwcOtjgURUFV1XX3gDhk5MCBAwcONh2OgMGBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcOHDhwsOlwyMiBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcOHDhwsOlwyMiBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcONhC6rtNut9E0zal47sCBDU4/IwcO1hmaptFut2m327RaLXRdx+12I8syiqIgyzKyLDt9oRy8qeGQkQMHawxd1+l0OhYBtdttDh8+zMDAANFoFEmSkCTJspJ0XUeSpHOIySEnB28mOGTkwMEVQtd1NE2zCKjValluOEmSkGWZSqUCGL1hxDb75+0EJojIbjk5xORgq8MhIwcOLgPCqhE/nU4HTdMALBK5WAKxW0EijiT23+l0VuzTsZocbFU4ZOTAwUVAWD92Auq2ftaiG6b4fDc5Ccur22oS/zvk5OCNDoeMHDhYBYIAWq3WCisFsGI8696K2UZO3VZTu93mzJkzjIyM4PF4LJJyiMnBGxEOGTlwYELEbewEJOI59oV+sxb7bqup0+lw9OhR+vv7rRiUmKcjhHDwRoNDRg7etBBEY5dd211vG2X9XC7EvATx2I/HTlyOfNzBGwEOGTl4U0FYP8LyWVhYoNVqkU6n3/DWxGpCiFarZW135OMOrlY4ZORgS8MuuxYEJFRvAEtLSzSbTYaGhjZxlmuPXkIIRz7u4GqGQ0YOthx65fysJru25/tsZTjycQdXOxwycvCGRy/hgSCfi5Fdv1FrxIl5XyppXIp83HHpOdgoOGTk4A2JC8mu1yLn582C88nHu0USjhDCwXrBISMHbwj0qvdmtwwu9+ndWVRX4nxWk1Aair/9fr9jNTlYMzhk5OCqxMXUe1urJ/SNctOt9TgbMe9e5LSwsMDExAR33HHHCgm8YzU5uBI4ZOTgqoE95yefz+NyuVAUBVgOroNjzWwm7OWHhPjDkY87WAs4ZORg03C+em+HDx9mbGyMdDq9rovZVlgoN/oYuoUTlyIf34z5OnhjwCEjBxuKbtdbp9OxFrdexT83YuF6o6rpNgvCVdoNRz7u4ErgkJGDdcXFyK57LUrOInV140LfjyMfd3CpcMjIwZqju812d723i5Fd22XG64k38uJ3uXlGazXupWA1l54jH3cg4JCRgyvGesmu36gqtzcD1qJv0/nk472IySGnrQ2HjBxcMjZCdu0sPFcvVosZXS6cOnoOwCEjBxeJi2mzDWtLIo6b7urEen8v5xNCnDhxgkQiQTQadYQQWwwOGTnoiV6y65MnTxKNRonFYmvWZns1bFTMCN64pLeZ7sWNWvy7rab5+XkCgYDThn0LwiEjBxZWk12Lm3tpaYlgMIiqrv9l4ywmF4/LPVeNRoNsNst0JkMmnyebzVKuVEim00iahqwoBFSVVCxGOBxm9+7dwNq76S4F9njSheTj9nilg6sfDhm9iXGpbbY30lrZymo6e3xtozE3N8fz3/seR7JZvKrKElBpNgFQFQUZOHHsGAv5PJmFBSanpjgzNQVzc7z/gx/k5+6/n3g4vOHzFrCftwvV0ROvOUKINwYcMnqT4UKy6/O12d5IMoKtpabTNM2wQqanyefzKIpCMpkklUqRTCZxu93rNnaxWGT/c8/x9KFD1NptoqkUaZ+PxVoNDQhIEi6g0ulQbrXQ2m08qspQfz+jw8MkYzFGUiki8TiHMxlKhw8TVlXGxsdJxOMburifj8QvRj7u1NG7euGQ0RaHvc22cMGJm/RSnxY32jJ6I0PTNIrFItlslsXFRarVKrIs09/fz65duwDIZDJMTk7y2muvEYlESKVSpFIpQqHQRR3/+fKMNE3j9ddf569eeIFjCwtEAgG2JxKEo1E6nQ61SgV3p0MoHKZeLKIEAkQ0jYCmIYfD+Pr78fr9BINBvD4fituNLEkMDgwwoSgUcjmeP3GCEHDrNdcQiUTW9Pyd75gv9to4nxBC7Mepo3f1wCGjLYbV2myvhex6K1pGa7n4NBoNFhcXWVxcJJfLoSgKiUSC7du3MzExwfbt20kmk0iShMvlIhqNsmvXLur1Otlslkwmw6lTp1BV1SKmRCJxSTG6RqPBP/7TP/H1H/2IxXabiM/HjUNDpOJxVJ+PTrWKFAggqSqNahVvIEAoHkdrNlHcbhRZxut2o7pcyLKMx+0mGA5TLJVQFYV6vU4xn6fVapHP56l6PLx45gz9Xi97tm1b93ji5bo3Hfn41Q+HjLYALkZ2vRY31la1jC73mHRdZ2lpybJ+yuUyoVCIRCLB2NjYCgtncnJy1f14vV6Gh4cZHh5G0zTy+TwLCwscPXqUWq1GPB63yCkQCPTcR7FY5K+//W0eO3qUiq6zbXCQUY+HHQMDuBTFECTIMgQCaLKMJxol6PeztLREs15HcblQ2m1UlwtN1+mUy0SjUWamp4k1GlTKZeLxOI1mk9HRUc5MTXHDDTdQLJVoNBoUVZUXXn+dG8bH19VKWqtYm1NH7+qDQ0ZvQNhl18L91m39rIfseisKGC4VrVaLXC5nWUC6rhOPxxkeHiaRSFxx7EeWZRKJBIlEgr1791KpVMhkMmQyGY4ePYrP51tBTIVCgc9+8Yu8tLBAU1UZGB4mFo8T1jSGIhHcfj8apgoNkCUJCaPNg+7zEY3HkQCXqtJut/H5/TSqVaKRCKVajaHhYRrNJqlEgnAkwtT0NJIkEQqFyC0ukkqnKRYKFAsF+vr6eOn0aXbE44wND6/B2T4X6yH8uJQ6eo58fP3gkNEbBL3abM/Pz7OwsMANN9ywZtbP+fBmdNPpuk6lUrHIp1gs4vf7SSQSXHfddUQiEas1wnogEAgQCAQYHx+n3W6Ty+VYWFjg2Wef5X9+//ucWFpiYNcuBvr7kSSJeDKJp1pl5/CwMS9dRxP1AE3XlMvlotVs4gsEqFUqRGMxlsplYtEorVYLr9+P1+cjVyjg8/molMsEg0FkSQJdB0kiEgpRbzRot1qEolE6uk42myWZSnF2aYml48e5dseONT83G6FC7KUe1XWd6elpcrkc1157rSMfXwc4ZHSV4nyya7tUVdd1q/rBemOrWkbd43Q6HfL5vEVAzWaTWCxGX18fe/fuxefzbci8uqGqKj6fj2d/9COeW1jAPz5OLJcj7HIxXyxSXlri+kaD7Tt3orhceFwuWq0Wfo+HWq1GwO+n3m6DJBGNxSgWiwwMDjI/P08sGkVRVYqlEiPDw2QzGUsp12y18Ho86IDL5aJaq6ED8USCTDbLQH8/8WiU+UyGmelpXKrKzNIS5WqVt1x33ZpenxstibcTU7vdpl6vI0mSIx9fBzhkdJXALkO9WNm1LMvWDbER2KoxI4BarWaRTz6fx+12k0wm2bNnj1V6ZjOhaRqPffe7/NUrr+AJBtmxZw+LuRwet5tUfz99ikJhcpJEKMT09DTNkyfp6+/H5/MRDodJJJPkczniiQSNWo1yuczgwABz8/NEo1ECfj+nz55leGgITdOoVCrEk0kA9E4HWZLQAY/HQ7FYBElCVRQK+Ty6abXrQKlUYmBggD27d1Or1fjxkSPcvGfPmgkbroaE2+54k7hvgRX3qiMfvzQ4ZLSJuJDw4EJPWRvtNttKbjohvV5YWKBYLPL973+fSCRCMplk586d+P3+q2YRmZyc5HOPPcZcp8PQyAjNVotcNks8kaDVbpNKJumUStz3kz/JmclJfB4Pbo+HzMICHU1jemYGRVHYsWMH2bk5AsEgQ4ODTE9PEwoGCQaDzM3NkYjHUVSVUrFIMBhEwiCiVrtNqVKh1WxSLBQ4e/q0QXKhENFIhFanw/DwMBKg6TpTU1OEw2G8Xi814KXDh7l17941IaTNJCNN084ZezUhhNOG/dLhkNEG4mJk15ciPLCXRNkIbIZ7ZC3RbDZZXFwkm81a0mufz4fX6+W2227bkDJHl4Jms8lffec7fOvYMQI+H+l43HC/qSrj27YhyTLzCwvIrRY7+vpo1evccP31zM7N0Ww2GRkZYX5ujlQyiUtVOfjaa7TbbUvtFo/HcblcTE1PU8jlkIDS0hJT09P0p9OUKxUkSaJYKBAOhfB4PAwMDpJZXCQaiTDQ3w+SxJkzZ4zr0BRHpNNpZufmGB0exufx0ABePXqUm/fuveIY0tVgGa0GRz5+Zbi67r4tiItts305EL7rjcIbzTLqll4vLS0ZLiub9Hpubo7Z2dmrjogmJib4L9/5DsdKJVLRKKPj46iyzFKlwti2bVSWllAlCUXXiUoS8UQCSddZmJujL5VCVRRm5+a4/oYbcLndnDlzhrvvvhuv18vU1BQLCwuUKxVePXCAVqPBzl278Hq9uD0etE6HoeFh0HXarRYuVSWVTFqEg5CJA7qmEQmFKBaLxKJRkCS8Hg9en4/FXI54PI7H66Xa6XDw+HGu3737ihbgzSajSxnbkY9fGq6uO3AL4HLbbF8OtrKb7nLHEoozQUAXkl5fbTd/q9XiK3//9zw7N0dH0xgdGGD3NdeQz+fpaBp9fX3UKxUSiQTzs7OopRLX791LNpej024zNDJCtVolu7jI4OAgsqIwPT1NOpUiGAxSrVbx+/3cd999AExPTxu5Rs0mrx86RK1epz+dJhgMEg6HabZaqKpKR1jvQkQDlrIuHIkwNTVFNBpF0nUkWSaVSHD27FmCoRBulwu/309xaYlTp0+zY3z8ss/PZrvpLteyuxT5+JvVpeeQ0RpA5Pw0Gg3L8rELD9ar1cJmuOk2yhK72POl67qx+JrkcznS66sln2l2dpZPfuMbVDWNVDKJqqpE4nE0c34er5eg30+92eTUiRMojQbbR0aYnpkhEg4TMUUK1XqdwaEhZGBqaopEPI4vEKDZapHJZBg0RQriwWnPNdcYEvBOh0OHDuFxuzl+/DgdU7gQTyQImm66DoAk0W61AAxSMitK1Gs1vD4faBqartOXTrMwN8fg4CC1Wo1avc6LZ88SCgRIp1KXfH7OV/5oI7CWRLiafPzN3IbdIaPLgN0PbG+zffDgQespfCOearaym+58Y60mvU6n05sqvb5caJrGt//xH/mbw4cZHhkhqqqGVdJo4HK7WZifJxgM4lFVTp85g6yqxGIxBiSJg6++Sl86jdvjYX5hAcAim6mpKZKJBF6/H3Sd+bk5+vr6UBUFHZifmzPKEwFIEp1Oh2QqxUB/v1G/rl7n1MmTLOZyZObn8fr9xGIx0HVanQ6asJAkiWg0SqFQwOf1ogP1RoNquUw+l6NSqZBIJgmHw6RSKV6fmiIYCOD3+y/pPG02GfUSMKwFzmc1vZnasDtkdBGwCw/O12ZbyH/XMwnSjq3spoOVFksv6XUikbhi6fVm39DlcpnP/cVfcKzZZPc116DIMu1Oh3A4DLLM955/nnQqRSqRoFyrMTA0RNDvZ/H0adRQiFQ6jcvlYmZ6Gr/PRzQaBV1ndnqaaCyG1+dD1zTyi4uEgkE8brdBJs0mnXbbIg90nUKxSCgcRgejl1EgQDKdJplIAFAoFMjn8yyVSlTKZVRVJRqNEgyFaDebzM7O0m420QGvz4fP72fvtdcyMzNDIh435OG6TiiZ5NUTJ7jjuusu6V7ZbDK6kIBhrbCaEKJer/PSSy9x++23oyjKlpOPO2S0Ci6m3husvDE2erHeDDfdRo5Xr9c5ceKEVfV6vaTXm+Wmm56e5tFvfIOaqrLvhhto1Gq02m2SiQTzc3MsLS1x3XXXIUuSoU4bGSEUCHD29Gl2RyL09/czOzPD7PQ0wVCISCSCDszNzhIMBgkFAiBJ1Go1Gs3mct4QkF1cJJVKWYIECWjW6yQTCWSWXVKddhvVFNnE43ECgQC5fJ5iPk8hl+PM5CTNdptoJILH60X1eEinUkaujSTR0XXC4TA5M8dJ0nVcikIzEODYxATX7Nhx0efrzUJG3RBWkK7rlEol677favJxh4xM2Ou9iZ9LlV1v5STUjRhPSK8XFxfJZDJIkkQ6nWbbtm3E4/F1Ubxt5E1rP3evHjjAf9m/H1ckwr5du8guLlKuVEin04YKLZEgFArh9nrptNvsvfZayuUyr732GoFWi+DAAOWlJeYXFrj+hhuIhMNouk4+l0NRVUu+rbXbZDMZhoaHDXEBxnnWdX1ZzCFJtFotdAwBRdUU3rRaLRYWFqwyQrIs4/J48LjdhMJhbr/jDiRJotFoWMVdX/rRj0ilUsQTCaLRKJFIhEg4bAgczPidDvj9fmYyGdL5PPFY7JLO32a66Vwu16aMLcYXa5HAxcjHYfM9ABeDNzUZrbXsejPI6I1MfkJ6LXJ/lpaWCIVCVpsFRVG45ppr1my8qwXPfP/7fPWll4jG42zbto3jp07hdrnYsWMH5UqFkdFRcouLhvtMkkgkk2iaRqPRoD+V4pahIWRJ4tixY6BpLJVKlAoFlioVatWqkeczMwNAJpslGAySMeNJaBozc3NEo1GmzpwxcoMkiXyhgEtVyefzuFwuVJfLqEAejzM8MoKOIeOWZJmlUolmo4FkXgsut5t0Xx/9/f1EIhFCwSClUonTExM0Gw1C0Shut5vp6WlGR0aMZFpdJxKP8/rp09wdDl+Um3WzyWgzlXzQW813KfJxu5r3asSbiozOV+9tLWTXW81SWY/x7NLrXC5Hp9MhkUicI70+efKkVWJlvbGRNfD+5/79PHHoEOFIhHAsxvz8PH3pNPFolGqtxkB/P/lSiUKxyLaxMdxeL+12m8VMhmg8jqtSIej3c3ZmhuGRESrVqlFZu16HTIZrdu82rHyT6KPRKOm+PuP6BlrtNm1NY2hoyJqXIIfB/n4k82la5BQpimJZVB37udJ1NDBeEzEOXcfn8+H2ehmLxxnfto1qtWrFmg6//jpz8/MkEwni8TjhSARXKMTxycmLctdtNhmtl4DhYnEhMryQEEK8drUKIbY8GV1Jm+1LxUZbRlbi4QY9sV0OGQnptbB+7NLrffv2nVd6fTVU7V4raJrG3z75JKdaLSrtNqPpND6fDz0QwOV209Y00qkUjWaT6clJ9lx7LW5VpW3KsROJBOVSietSKaZnZ4mY+TuKJKF3OszNzzM8NLRMJLpOuVRiZHTUqLataSBJLJqxIsk2LySzrYTpBhXXsCZq0om4kiQZ1pAgBYz4k2SeR03XCYdCFEslQn4/uq7j9XoZHBxkcHCQoaEhMpkMaBrHjh2j3ekQj0Zp1uvEQyHS6fR5z+Fmk9FmxYwELjXPaTUhxNXahn3LkdFqsmtY+6TTbsiyvGFP87B8kWmatiGFPC+WjDqdDoVCwcr9uRzp9UZbfeuJdrvNN3/8YxY1jXAsxuDAAKlUilq9Tr1WIxQKEQmHqdVqnJqcZNv27bhVlXqjwdmzZwn4/RSKRdRKhZrPh8/nIxQKUTerZ0/PzNCXThuSbfOcLSwsEI3F0IGOpiFLEq12m1a7jcfjsQgFSaJSreLz+SwLSbSKaHU6VhsK3fw+dEwCMv+XZNkgNk1DB9weD81Gw+ihBMvJsUA0EmGpVKKvv594MsmiaEpYrfKXf/d3vGXfPqtXUzQaPecevRrI6Gpz010KzufSuxrk41uGjF544QWmpqZ4+9vfjqZpHDx4kHQ6TX9//4Yx/mbEcGDj3EznI4jVpNe7d+8mFotdMllulrBgrdFqtfj8X/0Vx0olto+M0DcwgKZpNDWNfC7H6NgYHq+Xcq1GLpu1hAhT09OUSiUGh4YsogpoGoopp8Z0xZVKJQKBAB6zQ6uk69RN2XYoGASWz2XBFAtonY6VWyRLEpVKhVAoZFVZEBZPu902RCMmQQlCQjd7IrXbuF0uMLeLhVJRFFpmGSEkiXanQ71ep1Ius7S0RGlpicGBAUZGR9m2fTuyabEFdN2o9P3jHwOQTCZJpVIkk0ncbvcbngyupvFXs5p6CSFUVd2Q494yZPTcc8/x7LPP8pM/+ZNGF0ubEGGjsJluuo2AnYxE1WtBQEJ6nUgk1kx6/UZ30zUaDT7753/OoqIw3NeHx+MhlU6jtVq88vLL3Hbnnfi8XsqVCpmFBSrVKvF43LB0ZZk9u3cjm2RQymToi8WMGnGm26xaqdBqtYyacCZ0SSKzsECfWcRUM+M9uq5Tq9dJpVKGEEGSLCun2WjgM+XYgCVMaLfbKKpqvM+0ioSbTpFlOu02mK49kaskSRJut5uZ2Vm8Ho8hPwZ8Xi+hcJhkKsX01BSRaNQiRHSdaDzOUibD3TfcgCRJFItFMpkMExMTvPbaa0QiEYOE2TwLZbNjRutJhuezmjaqfcqWISOfz0ej0bBOnKIoG0oMsHlVtDdqzI75hHvw4EFyuRySJJFIJNi2bRuxWGxNZa9vdDddtVrlj/78z6lEo4wND3P40CGuGRxEBk6dPs31N95IdmGBarVKu92mr78ffzBIIhYjm82SSqeNGI6mUa3VUGo1BvftAwxC6AC5XM6oiMCye61YKOD1evGYJKGahFQoFgkGAhZhiM/Y66LpmoZuCh10DFm4y+wQK8kyms1Np5iWkavTod5oUKvVaNbrBmHJMtWlJQbSaVwejzGesLp0Hb/fT9ksWiv2qQBKIMCZ6Wm2jY4Si8WIxWLs3r2ber1OJpNhdnYWXdd5+umnSSaTpNPpdZP898IbLWZ0ubAT7kbeg1uGjNxuN/V63fp/o60U2Dw33XqNaZdeLy4uUiqVUBSFdDrN6OgooVBo3Z4U38huumq1yp/+xV+wFAyya8cOpqemGB4aQpJlps6exW/WiQODLMLxOMV8nv6BAbKLiySTSVymdd/WNGZnZrhn584VgoHZmRkSiQSLuZylfOtoGsVSieHhYSNmY3uSLy8tMTA4aL0XQJYkqrUaQbNckCANzVx0250OLo8HJKPba6PRoNlosLiwQLPdhk7HmKvHY1RrSCQsS0czY1NivqK+ng5EolHm5uaIhMMrxA8+v58zmQzDAwMrHmy8Xi8jIyNEo1G+//3vc91115HJZDhy5Ai1Wo14PE4qlSKdTl9yiaFLwWa7CTdj/I2MG20ZMvJ6vTQaDev/zSCjzbCM1tqCENJrQUCdTod4PM7Q0BD9/f3Mz8+zffv2NRvvfHgjuuna7Tb/7X/8D7JuN9dcey2TExNcu3cvh48e5ezZswBs37YNyUygHhkeptnpoLXbTJ89iz8YJJfP4/V4cLndFPJ5ksGgkcRqno98sYjH48Hn9yOzLM1ezOWIhsOWFFs8HNUbDVSXy6pJp5uvI+JF4bCVZ9doNmm3WrTabWZnZohEIhRcLhRFweV24/F4CEUiuD0eIuEw6XTacAWasSbzpOLxeqnV63i9XouIZAw3oktRUCSJerNpxYIwj8MdCnF6epqdPSp7C8skmUySTCbZu3cvlUqFTCZDJpPh6NGj+Hw+i5hisdiaWhJbKWa0FhBVIFqtFoFA4Ir3t2XIyOfzveksIzHmlSzavaTXPp+PZDJ5jvR6YWFhQ+NTbzTous7Xv/MdjpfL3HzHHZyZmmL72BiL+Twz09OMj48zODxMp9WiVioxPDICus5SLocuy4xv22ZUXOh0aDQazMzMIEsSrnqdqakpa7HPZrMMDQ2Rz+VYKpcpFItouk52YYHh4WGWKhVj4TKtpdnZWcLhMPPz82idDh1besPMzAwDAwMG2agqqsuF2+MhGAzSabVI9/dbbjDdLBukqiouVaXd6Syr8mwuPFmS8Pv9VKtVfF4vsGwdCUIJRyKUCgWDzFi+dzxeL1OZDGNDQ+e4fXtZBoFAgEAgwPj4uJGPZVbvOHDgAO12e4UIwmvO5Uq+360aM7pY2AlIuHjXCluGjDweD81m0/p/syyjNwIBCum1IKCLlV5vZBxnI8daq3Gef/VV9p86xZ133MHC/DxuVSVfKNDudBgZHqa8tMSZiQkW83li8TjlapVwMEgmk2HX9u24fT70TgdFktDabWKxGG5VZbfZW0jXdU6fPs34tm2oqoqm66iKgixJZDIZw8Jpt1FMObaGQQKyLBOPxZBkGUWWUVTVIipd1xkeHl6RLyQsJ93cv2ScJKsihI6Rk9RptxFnzr4oSRgPh8VicVn4YLrvhNTb7/eTW1ykI1yJ5kIvSxKuQICzMzNsHxs753s63+Knqip9fX309fVZLuZMJsPU1BSvv/46oVDIko5HIpFLXki3soDhQuPaq9RAb8HDlWLLkJEQMNirKWx1Nx1c/KJdr9ct8hElX5LJ5CVLrzfy+N5IbrrDJ0/yrZdeYueuXcwtLrJULJLu6yO7sIDqdlOuVAgFg7jcbu6+6y4URaFUKnHs5Elq1SqTZ88SDoeJhsO4PR4KxSL+QIDS/DyB/n7DgjJl3NFwGN10i3nNvCOvx8Pw4OAK60TXNArFIulUCr/fb7V8EIt/tV7H4/UigyUkECQkzrxQyZkny0qQFRW47a+J/WssP5hJXfsU8SFZkgxvhtnsTxCnhiE+OnL2LGPDwyuuy0uxTCRJIhwOEw6H2bFjB81mk2w2SyaT4aWXXgKwiCmZTF6U+ObNImCAZQuo2WyetxPtWlqLW4aMvF7vOW66jUxAhc1x061GgOeTXu/YsYNAIHDJF9FGW0ZvFMzNzfHV738fTzTKiYkJ/D4fbpeLqbNnDaFHOGw0rfN42LZ9O6osI6kqXq+XkN/P9tFRJqemWMxmkSSJfD7P8MgI/apKPBAwrBjTmh2x1YkTpJPNZonH4xaZAJabrlwuMzAwYEm8NZNAhHjB7/OhgSU8wFS82UUOYl/CYtLMsWFZUCH2Kdkk4C5Vpd5s4vV4jIW8630hs5q31+ejUq1SLZdpmvlJit/P7Pw8w4OD1nm+koXP7XZblSDEvZHJZDh16hQHDhwgGo1a5BQMBnuOczW46dZzfFGrs7tOp8vlWraYzeuhO09pLbBlyMjj8VwVAobNjBnZq17bpdfj4+PE4/Erll47brpzP5fJZPjjv/kbpms10HUi0SiJeBy/309/fz9ur5dMNku73SYSiRhP+rqO1moxt7DAkaNH+c53vkO1WkWVZSKJBG998EHi0SiZTIZqqYTaaKBpGkPmwmxXUbbMKiMB0/Kxv95stZAlyXLbwbJFo+s6jVqNRCxmkY/d0hHvEdezlV9m/IOMUavO7toT8nKxaPm8Xpr1Ol6PxxpD1LOrNRpUKxWmpqbotFp4/X7CZhsKYSGdnp9naGBghTtoLRY/WZZXSMdrtZplNZ08eRKXy2URk106vtkxm/WwzOzl0uyl0mDlPWj/3atq+Fpgy5DRm1FNJy6E6elpjh8/TqlUMiotJxLrIr3e6Nyfq9FNp2ka+XyebDbL/Pw833zpJeY1jeHBQXbt3s3ZqSncHg+pVAq3243W6bA4P08sFjPK8GgaLV3n0IEDPLV/PxOTkwSDQQaHhvB4vczPzfGDH/yAX/2VXyHg8zHq8XDg1Vc5fPgwXq+X0dFR9uzZQzKRQMJozhePxZYtD/PJVZFllpaWCJrXgN31BliqOkEQ4rOW0s48N6I0kFVlgZVuPE3XUYT7zq6q03W8Ph/5fJ5gKESj0aBeq1GpVNB1o31FIBhk27ZteNxuK+dILHMK0FQUCoXCilyq9bAMfD4fIyMjjIyM0Ol0rEK+R44coV6vW9LxrRIzEgQkYuz2+8xuAV2IgNa6ZNCWIqM3g5quW3rdbDap1WoMDg5y/fXXGwveOmGruukudEzC4hSVxlVVJZVKcTafRw8GuXZggFRfnxG4N3Nr2q0WmtfL2bNnicfjlIpFGvU6mUaD4ydO8KOXXuLEqVMgGc3vThw/TjKZZHR4mLn5eU5PTpLy+3nmhRd48aWXrNbhc7OzLC0tGW0dNI1mo0Gj0cDj9RpFf8GK31QrFaMFub4s9Ra/W62WIX5YPgnGL/N1EagWAgOp6xwpkoQky+hmoVUrn0jTaHc6NOp1KrUaU2fO0Gm1cLvdeP1++gcGUGXZiA3JMh6Ph4WFBcKhkJVHJdyPwXCYU9PT3LrOZLTiuBTFsoquueYaKpUK2WyWhYUFms0mr7zyCv39/aRSqTWXjl8IV0JGdhFCtzUjzqvdIrKK5doI2P6+brfdWmBLkZHo4SFqKW0FN51der24uEihUMDn81lVr48ePcr4+DgJszX0emIrWkaroVqtWq6bUqlEMBgkmUwyPj5OMBjkwOuv8+O5OaJ9fURjMUKBAKdOnSISi5FIJCgVi5yZmKBYLhPfvp3TU1O4zJI4ZycnKRUKuFUVt5m7U65WyefzDA4MgK5TqdWoz83xyoEDDA8PG9YPsJjNcnpigrvvvptSsUitWmXi1ClarRbhSIR4IrFsKcmy4TZbPqGGFSRJVGo1PF7vCuGBiPeIhFlVlhHyAQno6GbBVPNvVVGsB8BarWZ4Jkwryuf3EwwE6O/vZ2BoCMWs4GDVxDPHUBQFXdPomC4+ANl0FyqKQtFMtvWYcaeNfEiRJIlgMEgwGGR8fJwnnniC8fFxyuXyukjHL4RLJSO7C86uguu2hHqVAZJl2ZJu2y2hXlaTYxl1QciR6/W6FYB8o7rpekmvRYD1mmuuWSG93kjS3YoxI/uNWCwWyWazZLNZ6vU6sViM/v5+rrvuuhUWZy6X4yv799O3cyeqLBOLRCjk8yBJJGMxJMDj9ZIvFtE1jez8PB63G5/XS7VcJpPNGoVJWy1KS0vIimJUEKlUyC4u4nK5CAaDnDpwABkMN5VpnSSTSY6fOMGZs2eJR6MEQiFuuuUWGvU6ucVF5ufnOWX2gkqn09SqVTzm9SIsI13XjaZ3oZAlKLAvMjLQaLeRFMUqjipyn1qmldhsNFBlmWA4TCQcxuf3k4jHwaziLVR4bo+HVrOJ6vGsqLYg2awpr89HrVolGAgYrwnikiQ8gQDTc3NsHxvbdAEBYD2Q2KXjZ8+e5eDBg4TD4SuSjl8IF9NptjsGZCew7ljQ+X7DMil1W0KCnNa6OsOWISPxVNJoNAgGg5tSm+5KCFBIr4X44GKl11uRIMRY6412u00+n6fZbPLcc88BxmKzY8cOYrFYz5pnmqbxX7/xDQZ276ZYLnPNnj3omsbU9DTX7N1Lu9OhsLhotHCIRhkbG0MGnty/n1d//GOCkQhL5TISkEilqNRqVKtVPF4v7U6HpXKZt7zlLaQTCY7X6/hM9xxg/ZaAytISo8PDFPJ5FEnC7/PhGx5meHiYRqPBoUOH0DodXnn1VdwuF7F4nGQiQSAYRJZlKxYilHmapqGZFRg67TaFYpFyuUyr0bCqe7u9XqMCQzDIQH8/Lrcbl8tFOBSySgjZY05IEh6Ph1qttlwayGYBiespGAySz+etUj66GfPSdaMf0mwux7bR0U0no+6FvZd0fGFhgdOnTyNJ0iVLxy9m/F7Hb3fBCRGCfZ6W+MSc/4Xca+L93UTU/ZoQuDiWURcEGQm3wdUuYNA0jVKpZFk/dun19u3bL1p6vZGiia3gpqvX65b1k8/n8ZiFPG+44QbC4fAFz/l39u+nEY9TLZXYMTaGIsucnJykr6+PYqFgPY0KUtB1ne888QTPPP00mm60XqjXarQ1jWuiUeLRKMVCgVq1iupy8ZZbb+W+e++lVioxNDTEwYMHjRpxZjuGglkKKBwKEbBJkO0uMEmWSaVS9PX10Wy1KBYKZLJZzpw5Q7vVIhgKUa1U6LTbqOZDji5JeFQVxeUyxAWBAH6/36gSjinxNhcx1ZT6ulTViBnZyFKIIsSC5/F6KeTzVr6Rfa5iv263m1azaYklNGzycUmiZYoxNpOM7NZAL/SSji8sLHDy5MmLlo5fCHYy7HbB9bJiutFNRN1V/3sJGeyEY7eYulV3a4EtQ0aKoqCqqqWo20w33WoX7XpIrzfyON+IVpiu65TLZYuAyuUykUjEsjpbrRYHDx40ar9dAEtLS/zT668ztGcPGuD1+1nM562YUjgcptNuU2000HSdQCjEsaNH+f7zzyPLMulUCpeqkltcZGFxkdmZGVSPh0gsRr/Hw30PPMC+fftot9sszM+zd+9eMgsLvP7aa4blZEq19157LS5VZX52lmw2a9W8E9dcsVhEVVUjb0mWcblcjAwPMzY6alyDuRxLpRLT09OEIxES8TjRWMzoPGteu21NQxbqOZMkJLBaSEiAJMu0Go3lnCObGk7Mxe1y0Wm3VxCQgGjcJ2HkstTNWnaC3AQ5+QIBzszNEb/MRXwtIK7Fi31AFNLxPXv2UKvVrPp53dLxRCJx0QnnnU4HTdOoVqvnVEKwz6vb5SbIpBeBdL/WTTii0d5q58Fx060Cu6Jus9R0sNx51b4QLi4uGlLbYJBEIsHIyMhFPYlfzJhbyXW2FmPZ5ddZM8dHnPNEIrGC9EXJmovB1/7pn0iMj5PL5bj++utZLBQ4MzlJ38AAqWQSTdfJ5XIMDAwwMztLNBzm8JEjNFot4pGIZbkEQiHC9bpR/+/66/EHAuzYto1QKESlUqHdahFQVa6//nrGx8c5fPgwp0+fxu3xsHvXLkLBIKl0mmajQbFYZGh42LJcwFjwB/r7V/b1kiSrBpzP57OqMhQKBRZzOU5PTuLz+YjGYiTicbR2G8XtNsQMtrgSLC9IiqKgi/pk5uKlS8uJr7L9Kd0ULYg7UteNRoDC2goEAlQqFbxu9wpFoAS02m1Oz88THh/fdDK6HDWbz+djdHSU0dFRSzqeyWQ4fPgwjUbDko6nzO/EDrsF1Gg08Jq1C4FzCEj8tntL7K45+z67CchuCQl0b+8moLVed7YMGUmmf1qQ0Wb1MwLIZDLk8/kVVa8HBwdJJBJrLr123HQGWq2WRT5Cfp1MJrnmmmvWRIL72vHjzLXblGs1RkdGmJ2fp1ou0z8wQDqdBlkmMz9PPJEwqlGbMZJ8Po/icoGZ7CrrOnQ6KKpKLJHg7jvvpFKrGW27NY10MslcJsPI8DCSrhMOBhkaGqJaqVDI58ksLNBptRgZGqLZaCw/zeo6CobKDV233G/2hzJh1YhFzef14unrY6C/33DnFYss5nK8fugQ5XKZdF8fw4ODhCMR5C4ZuGTGkdqaZlV1wLY4yqZYQsK4F9utFrLLtUxsXe/zBwLMzswQi8fRNY3y0pJBzO02Xq8X1e9naWlp08noSse3S8d1Xbeqjs/Pz3PkyBH8fj+JRIJYLGYITFi2dDqdjiHf70EGlvjEth7YY0f2fXTfC9376d4GK11862UdbRkygpVVGDbKfWWXXmezWQAmJiZIJpNce+21RKPRdc1FeCO6ztZqrAvJry/mJrmY97RaLb794ovEBgeZN4UBbkUh2N9vNHSUZcpLS3g9HjwuF4uFAn4z1WBocJDJiQk6rRa4XLR1nWa7Ta1Woy+dpqNpJBMJ6xppt9u0ajXig4N0dJ1jR4/y3e9+l3Klgtfj4cevvEI6lSIajeL1+5mfn+fY0aMEgkEG+/spm7XeRFKr3TUmfjebTaslhTh6IZgRFt4pUy4+MTFBwyykG4vFlssOSUZlB63TWU6YZbm+nG4jKLfbTaNex+1yLSfRmhB16pqNBrlcznhN1/EHg6SSSRQzPtVqtZg5c4aY2Up9oyHWkrW8l+3S8bGxsRXuvDNnzlgPsolEgmQy2ZMMurd1y797kYp9ey+3nf2z3eo6+9zFNoeMesBehWE93XR26fXi4iKNRsMKUBYKBW655ZZ1TT61YzNiRhsRSO61/0uRX68lHvvBD/DG48xMT5My80laZg2vcCBgqOAqFfr7+tCAVqNBNBwms7DAnXfeycTkJBMTE9RqNTRNo9ZqsWPbNu67/35Cfr9VNQFJolgqEfD78ZvX8vdeeIG2+X5dkvCaRVSffOopPC4Xhw4f5uzp0yguF+NjY+zatYuhoSGDZGTZUK+JckCmq048YQvZNvrK6gxgtGaIx+O4XS6qtZoR5zJl45Isk81mcXs8aKarzXLjmWQjm+Pruo7H66VpxtEEGo0GlUqFRr1Op9PB4/USjUSIxeMETDK1VHeAS1Up1eubTkZred13y7ABq1eTkI7ncjlmZmY4cuSIFRf3+/1EIpEVFlD3vKzvuIt0epGQECkIdMe+7ce+nmvAliEjSZJ6xozW6qStJr3etWvXCun1iRMnNrzb61aMGYFx44iKEyLuBljFXleTX1/OOKuhUCjw8tmztCWJSCjEyPg4Rw4fZueuXRTzedyxGJlMhlQ8DpJEu9UypNflslUV4eGHHuK7//RPZHM5FFnmxu3b+f/99E/j9/vpmEVIwQxQt1r4zL5Cc7OzLGazDA4NGaqyVguP10va7eaVl1+mL50mkUgwNj5OvdHg2PHj1Ot1xsbHl2M4YOUWWU/SPY7fih1gWFCaplntI0S5nKHhYdrtNgcOHKDRaHDw4EEKhQLNZpN4LGbEQM3PC4KVJQmXy8Wi6TWoVSpokoRbVfH5/UT6+qzKEZVqlXqtZihJbfMXllRTklZUWdlIrJWbrrsUT/f+7WOEw2FCoRDj4+M0Gg1eeuklms0mBw4csMRP4kdV1RXfcbe7zk4+q1k6vbb3ikHZz8FaPvRvGTKClW66bl/ppcIuvV5cXKRSqRAOhy8ovd5oFd9Gx4xg/cuyNBoNFhcXqdfrPPvss1azv+uvv37NkwkvtK+/f/55au02ff39BPx+yktLjI2OsjA3h6qqVCsVXC4XqssFus6JEyf4/ve/z9TZs8RiMXbu2kV2YYHp2VncqkooHObOO+4w6gZiKNIkDHfV0tIS/mAQuVYzSFaSVny/9WqVQDDI/Pw8lUqFVDptLM6mKCESiTAzM0O9Xsfv9a50iUkSiiTRaLWs+I/lxpOkFZUYNEDrdFbEgIRLz+1y4VJVhoaGiEajHDlyhE6nw/ETJwy3UixGIBjE7/PRNFsQSEAxnycejxMbGjIsNhsximRYv99P3myjvkL9pRuJsF6vl8VCYc2++0tBt9rsUtDpdKw8oF777PVbvC4We4/Hg6IojI6OEovFLKvp9OnTHDp0iFAoZFlVouuqnUC799t9TN3iBTvsIojzxY6uFFuOjOyWEVxaCY1ms2k9hdul12NjYxctvd6M1uMb6aaDtVfR9JJf+/1+ZFnmLW95yzkKo43C5NQUr549y/D4OIqq4vF6KS4tkU6laJo1viZOnWKb2Yb90KFDfOlLX6Jer+Nyu8ktLnLg4EG8Ph/xaNSKxXzjG9/gPb/+68SiUSsnp6PrNOp1opEIjWoVGehPp0mmUszNzDAyOmp9z5lMhoDfTzgcpl6rGefQzG8CaDWbaKJPEcuWUUfXqdXrRgFX8xitxd7mqhMWkmJzkwErrCxZlpFkGb/fTzyRIBwMUigUyOfznD17Fq3TIZFK0W+WS9KBYDC4ohWF2Leo5I19/8ZElsfVdVxuN4vV6tp9wZeASy3Fcz4CEjif/LrbRWZPZlVVlWg0SjQaZdu2bdTrdate5cTEhOW1icfjxOPxFWKu81k13cTUTcCrWU4OGfVAt5sOOO9CbV8E10p6vdGW0Wa46dZivAvJr5eWljh69OiGEFGv49E0ja9997skBgaIxmLUajUKxSKpRAJJNxqPeT0exsbHKVcqTJ4+zd994xuGVDeZxGN2edWqVdrNJrVqlWqthtbpcPz4cR77h3/gl3/5l42CoUClUjGqLUgSqvmdut1u7r/vPv7xH/+Rw4cPI8syi4uLjI2NoZuJlSJGgySxmM0yvm0bQTOuYh2XubjrQLvZxGe2aRBEhPhb04w4j5lwKqp5a7pOp92m3mjQajRYzGZRVZVKpULJrKodiUZJptNGl1qg2WiQNV3ak5OTljIumUjgN3s0rYgxSRK6JOHyeGjU68s5T8tfEug6HVm2atVtJC5m0e10OlY/oF7X1PksoW6Lo9fr9lpx9rn4/X68Xi+Dg4Pouk6hUCCbzXLixAkrnp1Op4nH49Z5vVDsyC757hY3dHudHDddD/Ry03WfKFECRhDQWkuvNzq/abPcdJeDS5FfbxTJrrbAvHTgAEVgJBIxXE2Kgs/lQlFVms0mqixTrlRwu1yoqkoiHmepUjGeQtttmpJEw6wq0Gw0KLTbVvmcWqPBD3/4Q66/7jquveEGNF2nUi7Tl06jt9u4bfLdbWNj/OIv/AI/+MEPcHs8JGIxduzcyfETJ3j2mWcoFIvEolGWSiUkSeLGG24wSumARTQihqPrOvVGg6ApGbbcL2ah0mazaeWzCGWoODuqquLyePD6fESiUQYHB4madfgi0ajVhE+SZWRNw+vxMDQ4yNDQEK1WixMnT7K0tMT83JzRBj0eJ55IEAmHQZLomON4vV5qtRper3el8ELXjQriLheFYpG+dHodrobVsVrZG7sF1Evl1t2I7nyWEKxc4Lvvbcsi7XKX28lJnNtEImElyC6a5amOHTtmFVmOx+PEYrGe97S91I/9tV5KPDGntcCWIiO7mk4wuvhCBPnYq16vh/R6M9x0VzMZiXOfzWYpFouXJb/eaLTbbb77yiuE4nEisRjZbBYJiKfT6EChWGR+ft7IB0kkUBWFYrGIpuuobjdeUz3WbDbRTDdNB3Cb+1dlGV2SeO7559m3bx8Ns8WCLMs0Wi0CLteKRnmhcJh911/P0NCQleNz/Q03oGsaz33ve0jA0PAwAwMDbNu27ZxqB612G63dptVuUzAfAjrtNu1Ox7CGJEOmragqLlXFZfYXGhwcXK62LRYeM44FrKzAbQtwW+48DPeaqigM9vUhKwrBYJBiqUQul+PUyZM0Wy2i0ahBTrEYAZ+PhaUly0XX7cILBALMLi5uOBnZF11BQHYVnJ1wRC5Pt8VjJ6BuUYBAr5iMfQ5CKNXtRutlpciyTCAQIBgMMjIygqZplgDr0KFDaJpGLBYjmUySSCRwu90riLC7vFA3CdnntRbYkmTUarUolUoAvPzyy7TMCz6ZTLJnz551df1shptOZGRvxFhw/otP11fKr2u1GvF4nL6+Pq699tqLLrO/kSTbPc6R48cpaBrj4TCdVotWs0k8kUCSJEqlErPT0/QNDNDf12epxiKRCMl4nJmZGZZkmUI+T6vdXk4GFU+aplggFokYtctOnaLVbhMIBMgtLlIuldgVieDSl3sQLZVKhpw6k1mxoAVDIXbv2sV1115LoVRCVVWmp6dXquUkCVVRDGWcoqAoCoFAwMj5UZRV3UPFYtH425yDPVHVEj6Y561tFjYFVsSC7NeLapb7QZKIRiJEIhG2b9tGtVoll88zPz/PxMmT+INBms0m4WiUoN+PxHJdPN20vMqboKgTpXjK5bJ1THYCslsyQlLdS4zQi2hETKd7e/d30m1l9XLZdVsv9rElSSKdTpNOp60QRS6XY3p6mqNHjxIIBKycppCtKWMvabd9nXNiRl2YmppienqaY8eO8ad/+qd86UtfQpIkQ5I6NHTR9Z+uFBvtptvIRVuge7zV5Nfbt29f0bb5UrBRFlP3OLqu8+zrr+P2eonF4ywuLqIqCoosMz87SyAUwu3xkE4mjQXZJJh6vc59993Hd77zHWampw2LQxCR+dOoVgmGwwyNjOAye275AwEKuRx+v9/ILxkcZExViUWjdMygdbVaJd3XZ1VVEFaHrCjEYzH6TYVaMpkkn8tRqVbxe70k02ncppUlHlpqtRo+n2/ZrdZl9UhmzMeKJYGVSyRyf4TbT8R6MBdiTTxBm/Ozx6NcbrdBqqwkLJ/fz0ggwNDQEJ12m8VcjqNHjnDglVeM3KNYjHgsRigcptlqsbS0BO32ch27dYTdAiqXy5aIQBzTaqIDu8XT7aIT23tVz+7e3uv9q1VY6EV8YrvY1r1dSMdHR0dptVrkcjlyuRyvvPIKslls99prr+2ZRNtNrmuBNzwZffWrX+VTn/oUBw8eJJlMcsstt/DpT3+a2267jRdeeIFwOLxhRAQb76bb6JiRuOhFXEFUv/Z6vWsqv94MkgUMa6VUYthMHM3lcgSDQarVKn39/WSzWSPmoijWoivpOqVSiUg4bFhDgKQoyKpqWK2dDsgysqoyODyMYlpOt956K7KiMDI+TjAQAN3ozupxu5FNK6ajabhUFb/PZwkOhLXiqtVQFAVZkqiWy3zv6FHOTk0ZCY+yzODgIHfccQfhcBhdN0QIblW12oIjSVbiq2RaH7KIzYhFzHyvJOI3GM3vJPPzkiTR0TQU/dzEWWEd6bqOS1Vpt9vGWGIRM/ctFjZFVUmn08iyjM/no9FoMDs7y8njx2k0Gvj9fkKRCPFUilKptC5k1CsGhHkcvVxu4jXxv327eDBdbbv9tzgHq20XlbnFeN3v7xY7dG8X4/YSLkiSUUqtv7+fgYEBq+p4rVZbcR/3Ip61vE/f8GQ0ODjIhz/8YR5++GE+/vGP02w2uf3224Gt23p8M8YTZj3AgQMHrJYXIvF3PVyfm+Gm+/Hp08iSkfNSLJUo5POMjo7iM7ui5nI5xsbHDdWYpiEBtUYDWZI4cuQItaUlZFVFlWWLUFpmgqOmaeQWFwkGg+y7/np++md+hlKxSMh0R1kdVhXFsliq5TIBm/pMEJJ9IW+325w4eZLZuTmGhoaslgxTU1O4XC7uu/9+JKDeaKC63VapICTJsuzEPiXJlHXLsiGv1o3ip7BMvJqw+DCss46mLVf3NiHeI5rlYV+89eXq3sYGyapv1+50aDabZDIZQqEQ6XSa7du30+l0OHXqFI1Gg9cPHSJ76hR33nZbz+Kilwq7BWSPjUBvlRmcG9uxK88udvtq+1nNpafr+qrJrRf6fPfvbjdetygiGo0SDAatYz+f+2+tcMVk9LnPfY5Pf/rTzM3NceONN/Knf/qnFhl047/+1//Kf//v/52DBw8CcOutt/J//9//96rvvxg88MAD1t9er9cw401sVk+jreKm6yW/1nWdvr4+hoaG1qRh2GrYDDdduVzm4MwM6b4+FhcXyRcK7Nm715JcV82meG7RAtv8fLlYxBsIUCgUUF0uPBg5a8gymnnOkCTSySTbd+wgl8+zmMnwxHe/y769ey2lG5KEZJKDIIylcplkMgksWymCFJAkK5aUyWTw+/3MzMwY3V29XoKBADOzsxQLBeKxGJ1mE4/PtzKHx+ZaA4MQ22bCq6jyjUkUwpoSi6tsvq5rmqGGs7n2rPMLxjHZzrUOlutQCIxE23JFlnF7PITDYaOskTk/RZYJh0LIkQjpvj7mJiZYWFjgyJEjBINBKxZysekYog+QuKZ7udTscmpRiV+8vpoazm4J9fJarFY7rtd2u2ut2yrq5aK7lO3dQgf7/AR6Ha99v93brxRXREZf//rX+eAHP8if/dmfcccdd/Doo4/y8MMPc/ToUaOScRf279/PL//yL3P33Xfj9Xr51Kc+xdvf/nZef/11Qyl0hRCmvcBmkdEb2U3XarWsoq+Li4vnyK+fe+65NetceSFstJvu9YkJStUqA+EwdcmIA4WDQas0TalYJBSJGDevpll16GQM11UikUDHkEHXKhU6rRayqoJu1GcLhsOcPX0aTZapVCrMz80xPTVFKp0mFg5bZKMIFROgtdt43IYOT1hHgkxE/KVSLlOpVDhz+jTNVstQy3U6qKpKLBYzOoDquqHUM8cRZNp9hnXdEArIpvuP7vfZXVJiToJszNdl05rSNc1oKWFbvJrNJk0z76rZaiFJRvWIcDiMx+OxWl1MT00tx5fMeWi6jiIZZb/i6TS33HQTmqZZHVZ/9KMfWVWx02apJLuLvlsFt5olIdYMuyoOlhfqXjEf+37s51L8FgRu324c2rkxJfG//f32Bnr2tJVud5t9fuJ3t9WzWgJv9/bVCMsO+7hXiisioz/6oz/iN37jN3jPe94DwJ/92Z/x7W9/my984Qt85CMfOef9X/nKV1b8///9f/8ff/M3f8OTTz7Ju9/97iuZCrAyzwgcN93FYjX59djY2Dny642K5WxkzEi4uo7Oz1M3W2TLqko6mSS7uEgyHqfZ6aADPrcbzKdl2XRdBiIRqpUK9XqdYi5nWR10OmiyjNfj4Zrduzlx6tRy7ob5u9Zs8uwzz/C2t74Vr2i7DVatNrfHs8JFJF4T0m9N11FUlXK5TL5QYNzW82dqagrJdDmCYQ2IenOwUvEmxtU0zbAGzL8tsYS8XDxT05dlxYotliSsNmH5yLJMo16nUa9TqVZZmJ+nXq8TiUQM8rHFfCz3o2T0Q7II0NynEEcIywxFoVqtEgqFGBgYsGId+XyehYUFDh8+TNOsNp5IJIhGo7jMFhbiO7er3y4kIuh0OrjMCuK9XGL2a6nXdvvr3dt1/dxqB93bxed6WUZi3qsRqz12ZY8p9XIZivd3N+/rPm/itavCMmo2m7z00kt89KMftbbJssxDDz3ECy+8cFH7qFartFot4vH45U5jBex5RmI+W90yupxFW9d7y6/T6fQF5dcbSUYbATHO/MICr589SzKdxh8OM3nqFAPDw3jcbjLZLLV6nVA4jMuMHekY7qxmq4Vaq/Haa6/xzLPPItkqJSNJYCZV15tNqtUq4VAIt8uFDtRqNWrlMhMTE0yMj4Ms49Z1Rrxe3MmkES8ya9hZQgLxJCwOQDfEJMFgEL/XSy6Xw+vx0Gw2cSkKwUCAerVK0Cw+aneVSZK0IodInI8VCw5YVRmEpWIJE0yXYttUDjZbLWr1upFj1WiAbpTw8fl8JJJJPF4vLpfLeMCxzUEci2g9oes6sqLQbrcN1aFJVHaXk+p2U1xasnr+GNOUSSQSRCIRtm3bRrFYJJPJMDk5SblcJhQKWd1VA4GAtRD3yguC5QW+e0G+GJdVLzFC9/bumJI9ybR7/3ZLTuxntRjUpRKQ/X7unmf3+3qJJdZqPbhsMspms3Q6Hfr6+lZs7+vr48iRIxe1jw9/+MMMDg7y0EMPXe40VsBeDgjeHJbRxV4MovJEJpO5Yvn1RlosG4XvHzlCo15nbHSUWrWKLBntGtwuF4lkkjNnzpCZmyPd3290I5Ukpmdm0DSNcCBgBdcRuUWKYkm6Z6anyefzyBjWO5KE1m4T8PuN7YrCvn37WCqXmTt9mlOnTjFx6hTNZpNrrrkGn8djLApdT+S6ZlSAdrtc1gJbKpWoVipEolESsRjIskEmqxy3BFZSqRAh2BcrTNIRuT7CYmo0GkbX0sVFms0mS8EgLlXF7fUSCoeNJF6bJadjtIHQ2u1lebjYn65blcuFfNzjctFsNFAFuZuEJMtGWwyf18tiscjw4CCA5X4T7ixd1/H7/YyOjlpVr0UlgomJCTwej5VTE41GVzz5G4e9kiBapksRzu0I0L3d/nmxvXvf3UTSa+Hvfr07htOtlhP7txOKfbv1nXdZOr3eIyyjbsvHvrat9QPjpqnpPvnJT/K1r32N/fv3r5lEs5ebbqPjDpshYFhtvPWQX281ywiM9iAH5+dJ9/UhyzKVchmfz2cshMBSuczg0BBFkzgmJidpNhp02m3SAwPMLSwwOztrSbgBg5BsSrV6o4GsKFQrFbw+H5qmWQtKMpEAMAL0AwPcODxMuVzm2LFjnDl7lpMnThjkYnM3gbFwN5tNK6l4cmKCvXv3AsZ1ODU1RV8iQSwaNawYUyFnP7PCOtF13bJMOp0Osmkx1FstGvU6rWaTRqsFuk5ucZH+dJpoPE4kGkWSJKOck0lY1lM1y1aUpmkoqkq9XrdITUAs3DKG+1KTzBp1ppzbrhwUlpqk65RrNepmP6ReZGJfyN1uN/39/QwODtJutykUCmQyGV5//XUA4vG4VVxUuPPsVossy9YD22quNjFuN+yW0WpEsFpCbLeLvPv9Yv+r3Ze9rKfVLLvVLK9e59W+ba1w2WSUTCZRFIX5+fkV2+fn5+nv7z/vZz/zmc/wyU9+ku9+97vccMMNlzuFc+Dz+c6xjDaqOoF9zM1y0+n6udWvw+EwqVSKnTt3WqXl12q89cRGjjM5NUXD46EvkTCC6uaiLcsyHU2jUasRi0SYrVZpNBpG64hqlXw+T7vdxhcILC9O4sFAli3LSCykLlU1xA1mwVSXy0UoGGTf3r1W4F4sAC6Xi107dxKLx6nXamSzWeZmZzl14gQhs5WJbMrGfT4f1193HeVymTOnTxty606HRDzODTfeiCzL1BsNIwEWLFm1pmk0Wy067TaNZpN2q0Wr1aJQKCDLMpFaDdXlwu12E4pESLjdKLLM9MwMiVSKQCBApVKx2kToYtG1XY/CAgIsYYVkzsGeJCuSasX58ng81CoVw2Kyu7A0jXazSafdplqrGWNL5wblV8uzEfMQJXAAlpaWLHfeoUOHrGotqVQKr9drEbSwuMSx9SKO7u3dqjp72+/u+FD3++37tltG3XPoPs5u8rO/t3tbtzVl34f4vxfBrsfD4mWTkdvt5tZbb+XJJ5/kne98J2AcwJNPPsn73//+VT/3h3/4h/z+7/8+jz/+OLfddtvlDt8Tb0YBAxguhKNHj1ry63g8zvDwsFVvai2xkWS7UeOcnJ8numcPgUCApXIZr9tt+enLS0tWQ7NcLkc6nSYQCBDw+dh9551WPa9mrbYcyF8+AMs6UhXF6ODq8y13MZVldu3cybYdO1jM52nW67TNbrDlctmwXgGP12s1t2s1m2SyWbKLixSLRSqVCguZDMlEggcffJDp6WmWSiVcbjd96TQ+n498Pk+pVKJuyqcFZElCVhQ8bjeKy4XPjOl4fb6esZ0V7jLxeeGyAiRZXuFys4+j6zpuW+Kr5Q7sep+Aqqo0222DpMxq2O1GA93tptNqoUkSmmSo80Svn15P+N1P9r1eC4VChMNhduzYYbX+FlWvA4EAyWSSdru9InZkFxHYLTCx39WECPbuq6sF/+3vF+OJh+pe8xcuQ0EoYoxu114vXOz2XlbchfZxqbgiN90HP/hBHnnkEW677TZuv/12Hn30USqViqWue/e7383Q0BB/8Ad/AMCnPvUpPvaxj/GXf/mXjI+PMzc3B2D1gb9S9BIwbEU3nV1+nc1mrWO85ppriEaj615xYiPddCviF+uAdrvNYrtNyu3G5XbTzudRfT6ajQal2VkOHT5M0OdjYGCAcDjMyOgo6DrZXA6/12uU7BEuMFU1mtIJa1x8D7qRzLnv2mtRXC4mJybweb0Mjoywe8cOps6exe/34/Z4aLVazM/NsbCwgKZpFMyF20o2NeXS0UgErd1m8tQpTp08ySs//jFuj8fqYRMKBlHMBEm3243H4yESiVgVtrsXbivIbS6EinBRwQo3mWX1SD3ED4KsxPcnFt0eVgTYyMducYDlrtPbbVqmp0OUJNLM42+1WpSWlqwK36stjt1xnW6y6rZkvCbxDw8Po2lGYdGMmccFRs+qdDpt3We9gvndFo1dXt0tl7YTmZ1Qul1q4rVeOUfCOhLHI17rJTNf8X1dgKjPJ6joZdVdKa6IjH7pl36JTCbDxz72Mebm5rjpppt47LHHLFHDmTNnVpyQz3/+8zSbTX7hF35hxX7+j//j/+DjH//4lUwFWM4zsn9Bm6Gma5slYdYSq8mvI5EIU1NT7NmzZ83H7IWtFjNayGapaRpuVSWzsGBYEadP4/Z4QNMYHxlh586dtFotqtUqsiyzVCwS8PmMygOyTKvdZsf27UzPzCCpqiXbRizekgSaxjPPPssjjzzCTTfcQCqdJhyJEPD70TF6GrU1jZqiEIvH6XQ6RmBd03CZ1peEYX2AsZC7PR4y2Sz333+/JWsWi2chnyeWSJAwe9icPn2acqUCupEPNTQ0ZNWow9y3rhtlfgS5iuMQlpGAICUZswGfzcIR1k73FSLEEZacvMuDoJvjivJJOixXxZYMwUO90bCaCKqqijcQoFqvE11lceyO7XS7wqB3fo+dwPr6+kin00xMTFAsFlFVlWPHjlmy8VQqZeXddbu9dF1fYaXYSal7nnZ3W/e87QKHbvLsRardxNHtihOwqwW7t/WSilvfZQ9rcC1wxQKG97///au65fbv37/i/8nJySsd7rzopaZbD2I4H9bqC9J1o96ZcBnUajVisdg58utcLnfFY10KNoqMBNbTMmq1Wrx4+DCSojA1O4sMDA4N0e50SCaTeMx2EJIk0Wq3kRUFdJ1arUYylVqeH3DnPfdw+NgxMgsLRjUCYR2JGIp5TXz5y1/mDz/1KULhMIcPH2ZyYgJJltm+bRu7r7kGXVFYXFzk5ZdfZmJigk6nw/i2bdx5xx0rEsN1XTfUZqpquH9k2YpzaJpRWyyzsMDhQ4eYnpnh5PHjRONxwuEwx48fZ2BwkDtuv51AILDcXVWyxa3McQQJir+x/a2ZVpuI91jWkCRZzfyEm1LsV8zdWiRNAtJMebiGUYqobX7vxVKJZqNBq92mUq0SNuunAXQ0jUq1et5F105Aghi6q2Sv9rTfbfl4vV527tzJzp07qVQqLC4uMj09zZEjR4hEIpY6z+/3n3OsYl+WBdqDCFa71u3k2MtysR+zfbsgv9WsMvv7u+Nq9gf57nNkl453XxdXgjd8bTo73G73pseMrsQ12Ol0rOrXornZheTXb4S8pssdZz3QaDQst0uhUOC148fxqCpjo6PGzaYo+H0+Bvr7mZmdJRaLGTXXbMmAspn7oum61ZU1Fg7zvt/6LX7/93+fTrNpuOjsLSSENdBuc/ToUWbn5jhx8qQlJjjy+uucnJjgvttv55uPPcbps2eJx2KoqsqLP/whZ8+c4Vd++ZcNr4M5ZqPRWJHIKdxi9Xqds2fOcGpigkq5zGnTQ+F2u6mUy3h9Pk4cP07SFDigL8d5RE6PleXf5d6xehfZ3i+k34BFbOIKkaRleTeY7rdOh46IB4l9mQtds1ajasa28vk8kiwTjcVwu90US6VldZ1kxF9qZoytOyG0O+bSHavpJiz7Z8S8uy034SbTNM0KLYyOjtJsNi23+cTEhKVaTaVShMPhcwQGsDKJuJtE7feYGLfdbqOq6gqBQy/S7bZkelVpsI+5mguum9C6338+Bd/lYkuR0dVQDuhSLaNu+bXH4yGVSnH99ddbF/Jajnel2GgyWouxKpWKZWEuLS0RiURIpVJs27aN7y8sEARKpRKKLBv10HSj66nH5TKIyHSzqC4X1UoFv9cLsowCVpsHgLNnz6LpOoFgkIqokSiISHxHmsbk6dNMnT1L2mzxIOk6tXqdo0eP4lEUJk+eZNfu3fg8HnRJIh6Pc+LkSV5++WUe/qmfshb2drttVQUQc2i32/zgBz/gxPHjhMJhKuUyc3NzRCMR+vv6UFWVpaUl8rkcTz/zjKUsi8ZieD2e5Y6qXQ8DggCE9WOXiNvdUCsWN1aSULPZROt0qJrVxsGwTuv1OtVKxSig6nIRDAQIR6P4fD4kU2AByy5BodCTJImWtjLB037tdC+83UTTbekZX89KolotrmJfuD0eD0NDQwwODqJpGrlcjsXFRV577TUAK6E8Zj5ciP0I4ugeezVXm51o7Nu7j7tXcmv3ubCje5vdZWh/vdcD4lo+NG4pMhJuus2OGZ1vTF3vLb9OJpOXJb/eaLfZZrjpLuczQq6byWSo1+vEYjEGBwdJJpOWwnBmbg5cLpAkSoUCg4ODljquUqkY8RzdiKN0Oh08Xi+lYpH+vr7lhcAcr95oMD01BbpRnsdyz9mtFmEdmYuFR1UN95Vk1FvTOx1OnzlDp93G5/VayajoOsFAgImJiWULRJKMhFe3e7litq4zNTvL5OSkUb3b4wFdJxqNUqlUmJufZ+eOHXhM16OsKESiUavJXygYJJ5I0Go2jardtsVfZ9nisf+ssMxNC0kCOuY5Ez/CBajpOvnFRcPN2Grh8Xjw+XxW3MXu+nGrKo122yByWaZlk0WL303Txdcdx+jlejvfIt3r/d2fVWzt4O3XZbfFI2Tje/bsoVQqsbi4yKlTp6hWq0SjUasKhHC1d8eZehGNruuWZdQdM+p+IO0VlxJ/97Km7OcTWJG3Zd/navfiWq0HW4qMfD4fuq4v36RXiZtO0zQKhQLZbJZMJrOm8mvHTWfAipOYBNRut0kkEmzbto1EItHTxXl0agq/10t5aYnxbdsIR6PMzc7i9nqp1WpGS3pdt5rNtUXcSFquRlCr1SgWCtTrdbZv347L7aZiCgXQ9eUkWBs5PfPMMyQTCQYGBw1rw74oqKrlhrNcXbJMo9EgHImsVKaJJ2aWqxiUSiUjydPjASAYCuHz+SiVSuTzeTBJorS0xG233srI8DDDQ0OWW2xxcZGJyUkWczlSqRTxeBy/37+CBHXdUNtZOUBCdgxGO3NTeKCZ1lCtWqVZr6ObJB+JRonF47gUBU0y4ktWkqxYXNttJEWhXa9b504RcxDiCkFwNgLrzuvpRRq9hADne4/9tW4XoH2MXkQmGtht376darVqVYE4fvy41Vk1lUoRCoVWJRrd/M5WizHZrSb7a9Y1dQGxhl2JJ/4X4/WyvOzkt1qc63KwpchIPGnUarVNIyPxRZ2v+vVayq+3qmV0MW66TqdjlTgSMbZUKmVVGL+Qi/NsJkOj1UJ1uQh4vYSCQTqaxtz0NC6fz1i4Wc6TaTUahqABqFerLJVKeH0+kqkU2WyWSDTKbbfcwtP79y9bRJq2XIlBkown/Hqd2elpVJeLPbt2oUuS4bpSVXbu3MlMocDZs2cZHBxEURRLpHLtvn3LcmnTWhBEJpYDj2kNoRktun1eL8PDw0Y79KUlzk5Noek642NjjG/bZsWE3B4P/QMD9PX3EwoG8Zj5SbMzM7hcLuKxGPFEwmgCCJaVI37q9TrNep1arUaz0aCt68iahsfrxevzEY/H0YFSsYgky1bXWkUsiGZfJCQjBiUpCqopmxcuwrathpwiSXTMhbBpJv6K6+Z81kWvhbX7OusmJHG+7YKAbrddrxiN2Id43efzMTQ0xPDwsJFSYCofX375ZRRFseJMEVEZvgvd8Rv7XO2ijNWOr9vN1702drsfxZi94kXd468FtiQZibjRRpNRtVoll8uxtLTEc889ZyXM9ap+vVbYqjEjge6x2u225eJcXFzE5XJZMbZLLXF0dmEBXyqFqihGzyJdRwWCkQiKJDE7N4ff5zM6u0oStUaDoKpa1lMyncYlG1Ua6rUa0UiEf/nLv8wPf/hDatWqoahTFKs+HKZiTFhMZ8+cwefxWE34rr/uOvbs2sWecJhXf/xjTk9Oous6wWCQ++69lxuuv96ymprNJi5VpWWmMgiRQF9fH9FolNm5OfrM8kYul4vR0VFuvukmKx1AuCQxP6eDpYCTZZl0KkXaVOYVCgXy+TyHjxxBNt2DszMzeDweWo0Gc3NzaKY3wuXxEA8Gl1tQmOQi5icUiZKug1hATUtHkgyxgyLLhqrO5bI6rkqyjCIWUpal47o5H+gdF7Evrr2smdVUbeKzvWJG51vUe11/vcrvKIpCf38/fX19llWfzWY5cuQI7XabWCxGMpm03Moi6bYXoXbPqXtM+7Gs5pK0z1XsczV33/kswivBliIjj+maEPLu9SYjXT9Xfh0IBFBVlVtvvXVd2iJ3Y6tbRoDV+TOTyZDP5/H7/aRSqSsi+UajQa5S4bqdO+l0Org9HjqmS67dbNJntgevVqvkFhfJ5nIslUqMjY2RTKetkkFC1tyo1y0Z+A379vGDH/1oOU4kZN7if/HUq+uMjo7SPzDA2NgY28xE8PEdO7j9ttsMaXe7zcDAAH19fctFR01rwGXKugV0IOD3c8ftt/Piiy8yZcawVJeL22+/nfvuvXdFwquwisS3uUJ+bZ6HRqtltM7w+ejv66OYzzM/N8dEo4EsyyRSKdxeL6lUarlcjXlsOqDoy51hdd3o1dRoNo2cI+Ga01cmjLaFDFtcByZ5Wfeyvtx9FvNcwLmLY7cbCs5NIu22mlaLM3VbRueLP9nRvd/uOUmSEduOxWJEo1F27txp5RROT09z9OhRQqEQqqouKxx7CEx6Kfa60e26tJ8v8VkxhnDT2c+nGPtixrocbCkykiRpRUmg9SCjbvm1ruskk0lLfl0oFDh58uSGEBGsrMy7HpZXNzZiDDBcrWC0OF8yWwWkUil27969Ji3OT50+TSgcpm0+mdsrDqDruBSFjq4TCASMatCtFlHTYlpYWMDjcuHxevG43Uaiq7ngarrOz7/rXfzgxReXVXT2uJH9epQkDh85wj333EO6r498Pk++UCCiacQDAfZde60hCDBjJmJ+GoYKzW2KL4QbUMRchoeHiScSZDMZWqbizmq1YCejToeWWY+u1WrRajZptdvMzc0hSUYJI9nlQlUUouEwsqKQTqUolErceOONtFot8vk8EydPUq1UCEcixCMRQpGIMTeM+nOY1hCm5SPIR8JQI0pgueAwXXa6bsTAJH05ZmcnJzCIWVUUmqbVYLzt3K6m59sOqzfL636fwGpWw2qurfO9LrbbLZtAIEAgEGBsbIx6vU4+n2dycpJGo8ELL7xgJdraPQG9iEa8JpKEu+cr5tJ9XN1k1/3+1eJtV4otSUZrbRn1kl8nk0muu+66c/y7myEogJWFFNd7vPU4Pl3XLQl2JpMxRABgVRkXVu9a4djp08SiUVpmfFEDJE2zcnc0DGunkM8TNhfYcDBILBYDoNlq0ajVKJZKVKtVyktLZLNZ3C4XXr+f6667joMHDqwkINM9Z1lIus70mTP8wR/8AR/+8IdJJJOcPXOGF15/Hb957Pfdey833Xyz4bqyPY23mk0mJid56aWXePFHP2JgcJAbrr+eoaEhY3FVFFLpNM1mk5xZx04UaNXBEhd4XC4CoZBRDNV0r2maZrQ614xutsByCwnTzajKMh6/n6DfjyrLRKJRo7FdJsOp06eJhMMGOUWjuG0dXFVFoWpLcrW7rQSh66L6ua6j2R4QdDG+SWoAkqIYltYqrji7BbQaMfXK+elGt7igm5B6JZ1eyPrqXvy7LRUwLFKPx2P1fksmk2QyGQ4ePIiu65YAQlQb7+UytDcPtJOeLJ/b40gQs73HU685r7WLDrYYGcHK+nSXS0b2hfFS5debEcOBtZNXXsx4azWWcHMuLCyQyWRoNpskEglGR0dJJBI8++yz9Pf3rzkRAcwuLuIfGKBYKuEyW4MjSdSbTVSXi1wuh2b265IVhfm5OTwej/XE7na5UFWVoCShuFx0Oh2S8TiNRoN2u834tm0cfPVVI/FVkizyEU/1FkGpKs1Gg/1PP00wEODo0aOEJYmg38/k5CRnz5xhqVzmun37EPXLNF3nn558kgOvvcbS0hIDAwOcOHGCl196iYceeojR0VFk2Wh5sJjLcfToUSRJYnBwkJ07dlCr13n94EHmFxaQJYmh4WH27duHW1VpmWo4IRwQ1opQD3ZMQu2YhCcIxO/zGfeFTZlXKBaZnprC7/MRjkaJRaMopmtR0o0EY03TDHen6Cwqy5b1BCwr7AQZmfGkRq1GqVSi2WziTyZX3Hf2B8JeVkgva6LXdgF7aZ/u/XTHasRr3du7rbJesZ1eMS87SQiRQzKZBIzcOJFo+/rrr6+QjQtlsX1OvZSG3fGy1Y6lG+ux7mw5Mrpcy8guv85ms1YH2kuVX2+0aMLuptsIXCnZihpqgujFU/iuXbuIx+Pn3PDrdVz5SoVRr5dMNovXRjK1Wg0JGOjvN0QNYATgxdO46TaSJaMEj97p0KrXDXedLOP1+dA1jbHRUVweDy0znoH52V5Sbzodnt2/n2Q6zc6dO/F0OkQ9HqKRCGfPnuXlH/+Y2265BVlRUBWF0tISExMTVjKlKI8zMTHB5OnT3HHHHejAqZMneeGFF5ibmyMSiTA5OclrBw8abRhaLRKJBJqmcfTwYUr5PPfed5+RRGser9bpLIsapGU5u97pICsKkp2QWJZnu8zeQem+PrROh2wuR6lYZG52FpfLRafdxuPxEDIf6nRp5dO1YlpRwApXXq1aZSGToWz2mxJ9oCQzL6Z7Ie1ladhbOHTHceykYF9sNU1b0Ya7e//dVsVqpYbsv7vHNi6J3j2ExLkVfazEZ0T79h07dvSUjQviCoVCKywh+3HYrUS7mKPb4ullFXWfjyvFliIjSZIuyTLqll8rikIqlWLPnj2XLb/eLDfdRpLRpaLdbpPL5awus+I8X3vttUYuz3kk2Ot1XE1No4MRpJfN4qb1Wo1CLmdUP/D5jBwjc5FxmRW5RbFP3SQSDcNaUF0uo4upoiDLMnuvuYZUKsXMzMxKabctxoOmLXeElWWy8/PEEwnG0mkUcz+JZJJCoYAG+E2BRC6Xo1KpsK2vjyVR6cF02czOzrK0tITb7eaHP/whWqfD8PCwVXT1Rz/8IZqmcd9991kVEgJeL9Ozs8zMzjI2NmZZQ4otdgPLDyKSLBvFTEV5GpOoZfGgIiwDRUERyrxEgo6uUygWOXXyJMePHzdiUdEo0WiUUDhsfEZfltM3mk2WKhWaU1O4zfMfj8eJR6Mriq62zZ5G3dZGt9hAHIP43YuE7NednSREcL9bACHQyw0m/u9GNwn1mksvIrW75LutLLtsvNVqWffb2bNnV8jG7dXGuy2jXlZT9xy63ZO9xBSXiy1FRnBhy6i7+rV4ghgdHSUUCl3xid0sN91GjXmx1kqr1bKSfHO5HF5TcXXTTTdd9Hley6eubihuN5VSyVJ6VWo1mvU6UZt1Jha8arVqVUiwlF82lZUiGcH+VruNT1Wp1uuUSyV+5qd/mr//n/+TzPz8MvnY847AygkCQNM4dvQoI/39VsXsWrVKOBzG5/VaSjhFllHMBnrYnnRF/TJZlplfWKBQKDA8MkKpVLKUa16vl2KxSLvVstR4iqqiyEaHW6tbq1gUzXlLphWoi9wf2WgeKAsXnvk+WVGWz43ZqluXDBGGAqSSSVqtFv19fUYibqHAqVOn0IBIOIzf60VxuWibAg2Py0VfOo3b7WZ2YcE4PnOfxikzzmcvd1cv0riYhdW+XSzQ3S7A1UhO7Me+sPdyC9pJq3vN6I4/SZLRdVdcl70eeO2k4nK5LNm4ruuWx6eXbNxe27B7Tt3nqVe8qJcVdbnYkmRkt4zElyEsoGq12rP69Vpho9103U9ZGzHeamPV63VLgCDaXKRSKXbs2HHZXWbX47h0M17RwZCNN5tNmrUaoWjUKi8Dy8qtZquF1+ulbS6uHVvwvdVs4nK7URSFpaUlioUCqstFLBrl9jvvZO/evXzn8cd55umnDQmyUNfZyUjkIZnjZfJ5osEg5XqdarXK2972NiMIbZ6LVDpNX18fs7OzlkquaVr5d9xxBz6/Hy2bXbZoxOKqG91mre7HtkWybcrbLVecIEzTOpRNS0cTsRPzNSE3RzcreJs5P4qirFApIlx/JvlKkkQ4HMbtdhMMBCgUCkYFjfl5JNMidHk8httT7E83hBOir5Elde7xFN9tba8WB1ktpiNgD+SLBwC78KHXvroX7F5Wkt3Ksh+Lnfjsc+nl1rsYktN13ZKN79q1i0qlskI2LjpBJxIJq9q43nV+VzvGtcaWIyOv10upVOKf/umfrL5KBw4cIJlMsm3btlWrX68V7Mqc9Xyyt2MzyciugBPdSYUL7kqJfr2Oq9VqgSwTCYU4XirRbLeJJRLUazWjNbdJNuIJv2XKurOLiwYJGZMzKjE0GnTabYqFAsgyI0NDyzJrXScSDvPWBx/kphtv5B++/W2OHjtGp9Vazj0S14jNYjp69CitYJDhdJr77ruP+++9l3arxTPPPsuJ48dRVZX+gQGazSbTU1M06nUkWWb3zp3cdsstNOt1/B4PWqfDkcOHiUWjBMNhiwRisRjzc3M02m1q1SqtZpPBoSEG+vuX20UImbUpVpCADsbCL1qHS5K0IqdIBkOgYFpLwIpyPZpmtHAvFIvWveHxegmaNfEEYdbqdQq5HJmFBTJzc8RTKcOiMpWA9h5MkiTR6no6717AxbbzxTy6LR0Bu2UkSdIK1333fd7Lmuhe1MVrwtIR7xMk121prGbFifPZ/d7VEl8F+QUCAfx+P2NjYzSbTStEcfLkSXxmpQxRnqib1M6Xr7UW2DJkNDMzw7e+9S1OnjzJhz70IXbu3MmXv/xlAO4020NvBHrdCBsx5kZaY/V6nZMnT1pFSOPxOENDQyuKkK4F1uv8NZtNdFmmWi4TCAbRKxUKuRyyquLxeNBarRXyYXR9RZUA8f/S0hLzMzOk+/sZHBqikM+vaKNttzwkoFgsEgmHyeXzK+XepqtQiBsatRqHZ2YoZbMcOnyYL37hC1SqVUNxJhlJnhIQi8e57ZZbuP/++0nG4wyPjKAqCj/44Q957rnnyGYyhvS8XMbv9xMIBhkeGWFkeJgDr71mNQt0u90Ew2GjOGwgANKyWEEQkbCAZEHG2K5x24Il3Isypvy90aBWrxv9oDAeFv1+P339/RaZWQuaabH6fT78Q0P0Dw4Si8Wo12rkCgUkXWdycpJkIkE4FjMIF1bU9rsQAXW71uxWsJ0IesWSVru37W657jhM9xgC9nbgwuqyo5swu8URsFK8tBrR2ufc7a50u90MDg7S39+PruuWsOjgwYMA3HPPPZYbr9s12N0Tai2wJcjod37nd/h//9//lzvvvJNoNMp73vMePvzhDwMwNTW1YVYDLF8g9iei9cZ6W0b2IqRzc3NomkY6nT5vn6W1wnocV92sSp3NZkmlUkYdNLebmZkZRoaHjad6kyA084lVfJNtTaPZaFAsFPB4vURjMWKxmLFwmzJua9Exn4BlRaHZatHqdHC7XEQjEQq53LJVJK4Tcay6DqrK9MxM98lAxHhcqkqjWuW5Z56hWCrxe7/7u3Q0jW9/61s8+dRT1KtVZFWlWi5bhUs9Hg8nT57k9YMH8fp8jAwPMzIyQigUYnZ2lldeeYWffPvbjTwf0524ok+RphkuStOlKInFUZZpNZs0mk1D2t5sGvEkRcHn8RCNRq1Yj2ZaPrputKGwuyt13VAWamAVYg14vUQiEXw+Hy/++MdEYzGKZo09r8dDPJHA16UEWz5dq8unxd+9iovar7nuffR6yOzlahPbe82pF6l1j91t4QjXavd2sW3lZdK7Np94rduFKPYpqo1LksTS0hKq6dLtVXGh+xjXAmuyWn7uc59jfHwcr9fLHXfcwQ9/+MNV3/v666/zrne9i/HxcSRJ4tFHH73i8X/rt36L2dlZnnvuOa699lpDCSXLltm7laXWYsy1Hq/T6ZDJZDh06BDPP/88r7/+OpqmEY/HGRwcZN++faTT6XUlovW0jMqmKMHldqO12wT9fuLxOFqnw+zsLOVyGU3TaLXbVoxE0zQWMxmq1SqpdNpIeDYtA01YT2BZOzqGdeBSFFyKQsDvp1Au4wsErOrclnuu01mZh6Qo1jap0zHq57ndBPx+vG63VadN03UOHjjAn/7Jn/DMs8/ywx/9iHazieJykVlYoLi0RK1ep1qrMTM7iyLL1Gs1XJJkCHkyGRRVJRGPMz8/T6lYNMQB5nGJNt86WLEtrdGgZD6cLMzOMjc3R7FYpNNuEwgESPX10d/fTzKZJBwOG0RknhfhwpMkQ4Sgm6RvX9ysuJC+rGaUTPJKxuPs2b2bG2+8kYGhIaq1GseOHeP73/8+J0+eJJ/PL3eOtV1H9oVZrA129BIEdH/+fHEd8Z5uJV8vgoOV6rvucYUF1B2fsTcINL4O+aKUe91j2edmPyfit67rVoy3l4tR/O7edqW44pXk61//Oh/84Af5sz/7M+644w4effRRHn74YY4ePUo6nT7n/dVqle3bt/Mv/sW/4N/+2397pcMDsGfPHutvu7QbNkdQABunbhNjrsUFIYqQCgVcryKkJ0+e3LBW7utl8TU7HZqNhlHORwTtzSfxWDRKvdFAkiSyCws0mk3cbje5xUVq5TKp/n7CZt5GR6jKMOIYqqLQabWQXS46uk6tWmV2dpbK0hIut5tbb72Vf3rySRq1GrFolEVhHcnysrDBJCRJVVFdLlSTeAR0SVoWJIBVMeFHP/whS6USgVCISrVKsVQyLBxzUW9oGoppwUiyjKQo+Hw+FubnGRweNs43RlkeXdfROh3anY5h6bRaxjnBIPJavY6iKPj9fiMvCaMjsfmlrWhjDhjiBbGQSxKKOZb4AdBl2ZLOd5fnESWR2mbMCF3H5XaTjMVIJBIMxuNsGxwkm83y2muvoSiKFfuIxWLnuMSsc2mzQrphX2yFZdLtfrNbKHaRQy9xRLdbrxfsxNEdn+klKDifSKLborN/RsxzNatttYfA7vhRL/fjleCKyeiP/uiP+I3f+A3e8573APBnf/ZnfPvb3+YLX/gCH/nIR855/1ve8hbe8pa3APR8/UohGuwJbLRltFlkdLnjiVJHogipkLqPj4/3LEK63i7BbqzHWOVKxWq1IGTa1tM6hrsgGAwSDASYmZ0ll8sR8PtRXC5KhYJRCsfrtTqtghFTUd1uFnM5w61pyql1SWJ0bIxCocAdb3kL0UiE5597jkKxSCKZpFIuUzf7H0m60UBNVVUUnw+9WjXmZAobZNscRYKpbrrSdF3n2IkTjI+NUa1W0TQN1SQqS2Sg61QrFYOUWi08bjf5SoViPk+1XCY9MEC9Xie3sICiKKiqisvlwhcIEEskjHJJrRZzCwsEg0HrfGqY1bhNF5vd2pFgudKCIBbbgme5RFl+Yhf5SoLUOkK6jU25Z1oOkiShqirpdJqUrcp4Npvl2LFjVu8wUc1ctRWX7V7Uu6+37sW5O0bTq6yOQLc78EICBfG3fZG3f76XWKGXhdM9rt1i6y5/1CumJv5vmx6BXvuCla7Pq8IyajabvPTSS3z0ox+1tsmyzEMPPcQLL7xwxZO7HNil3WI+G00MG534eqnjiVyrTCZDqVSy5J179uyx+sKsho0ko/Vy0zVM1ZxuLmQdTaMj3HG6jqyqtExXXqVSYfv27YbsudNhYWGBdqdDJZejWq3SabUolUo06nWWymWazSbDIyMMDw4SCAZZzOUIh0JGHx9J4vbbb2fbtm243G6ajQaVpSX+6I/+CBmjbptYyNF1JJcLqdOxcnpEfEaUhrEWElPY0O50mDx9Gs18irerAoUFValWjQrbLhezMzN0NI1sLsfgwAB333UXfX19KJJEXzpt5QwBlnQbXUdVFEvJJsjOimkIQrcTCkZbCFHJomOSP8JikCSrP5FwPUqYVqBpaUmybLhBTXcouk6n1aJYKCA3m9ZiK8syiUSCWCzG7t27rZI5J0+epNFoWGrPVCpltWwXWC22ZHeZ9Yrp2ImpW0Ag9mmXgXeTiyAr+3fafe13V4DoJsBeRNXt0usV/7LP1W7B2eNp3QTXvW2tcEVklM1m6Zj1u+zo6+vjyJEjVzSxy4XX613OSmfjyQg2xxo734Wh60arc1GCp1KpEIvF6O/v57rrrrvk2m9vdMtI15fbZ7tU1Sjp025bxTxlWWZmdtbIz4hE8LrdxgJr9h0KBIPIkmS47hoNXI0GAZ+PQbPWndvlolqpUK1UWMzl0Dsd8oUCmiRZZXFGRkfx+3ws1moMpNNkczl0UccO0wJwuazEUXTd6ohqLfSahiYZcmO93UZWVToi0VQzGtTpgKSqRrVvTUN1u7nxxhtRFIXJ06cZ6O/nzrvuYtv4OOFIxBhHkqyYlDhfwoKE5cXZKqJqWmeCeACDIBXFkquLmJpmzkuSDIFDu922at5pupHLJFyWQh6vY9auM91lmWyWRqOBKssEw2FcZiNNuxtKLJqi0+q2bduo1WpkMhlmZ2c5fvw4kUjEcueJOHM3Wdj/7yV2ON8Dk52kxP92N1f3vnu53exj2NuOi/Pey8KxE4b9/eIhpnuM7mPrJdY4X/zrqnHTXW3weDwsLi5a/28GGW1GSaDuY9R1fUUbblFrb3R0lGQyednCg422jNZjLL/PZyxu5lN+R1+uBt1oNlkqFPCFQoTDYRaqVautd6VcZn5uzippBDA+OkokGjViMxiElUomLWm4Lkn4AwE6rRbNep1IMslgfz9enw9ZknCZ8ZuBwUHmZ2Ysa0aTJCSzQZ1mngutezHDvNYEidm22917kq6jqCper5ddO3YYSbySxIMPPMDdd92Fz0x2lMDI5TGtF9EIT5CJgCzL51bZNt1pspmcKuJgujkP2RQlyCI2pGlWp1bxo+j6inYY4ry3Gw2q1Sr5QoFCsUg8kSAWjy+7WMvl8z65i/2L/JrR0VGazSYLCwtGm/WJCUN4YbZm8Pv955DIakmg4vVugulFjL3cguJ82sfqRVarqem615peLjcx/gprugcxin2e776zH89VZRklk0kURWF+fn7F9vn5efr7+69oYpcLn8+3Imb0ZrKMNK13EdLdu3evCOReCTaSaNfLTRcNh41EUXEcuiHBbjWb1Ot1BoeGDEum06FcLtNst1kqlZBloxBqIpEgEYuxmMvhCwQsl5Ks60Y5KrM9eaVcJp/JoEoSkVCIWDxOKBBABjzmvrbv2kV/Xx9TU1P0DQwwOzW1vBh4POhLS5ZIQlhIEoalIIGRyCr6KZnbkZfbkSOsJFnmZ37mZ3jnO9/JUrlMwO8nKiTpXQuQcJ3p7bYRkzIXfTEPJMnoAyUZDfIsAhQxFLH4CmvKdENh7lcWbiuWCUdYQJIs02m1qNXrRkWLYpFAMEgiHicWjdLf17e8qGIsiKISeDcRrBbjkGUZr9fLyMgIIyMjNJtNq0LL6dOncbvdpNNpEomE1SJmtTiPgN1tdiGraTU5eS+yE+47u2u2+z3dxynGWM3KE7/t1STs87UfX7eYxE6yvSpWXAmuiIzcpkLoySef5J3vfCdgTP7JJ5/k/e9//1rM75Kx2TGjjR6z3W7T6XQ4e/Yshw8fRlVVUqkU+/btO6fX0lpgK1hGAb8f1eWiWq1abqlKtUqj0WBsbIxKpcLMzAzZxUWru+vY2Bg+n49Gs0m9VrMWZLeoY2ferC63m8z8PG5Fwe31Eg+HCYZCLBWLRkVrwOf1Uq5U8Pp8KJLETz/8MH/9139NrlCwhAbCUkOSrARZsQCLcyOsIV1YFIpi5EyZLS1ERYRINIrX7eaeu+8mHIkQiUSWhQOmi03GqLCA3V1kWkbWYiZEAyznhAjXm6jurXcTgDFZK1dLA4tELJeeplFpNKhVq0bJJFnG7/PRl07j9XpxezyoooaanRhM1567x2LYKy5j3w7LloLH42FgYICBgYEVzTMPHDiAoihWdfPVxhB/98ozsl8bvWI5Ar3Uad3xZ7uVs9q+ehGK3fq0v6Z0Xbu99tVr/eiOaa3VPXrFbroPfvCDPPLII9x2223cfvvtPProo1QqFUtd9+53v5uhoSH+4A/+ADBED4cOHbL+np6e5pVXXiEYDLJz584rnY6xYFwFZLSeC7Yo45HNZsnlcoBx3DfffPOaFHu9EN7oMSNFUYhHoyxks4yOjKBpGjPT04TDYY4eOYLL7cbj9TI8PEy5VGKgr89aZN1uN4VCwZiXvpxbpLfbFEslGtUqrXqdvtFRJEki32yiiIUcaEuGaAJbW+e+gQHe9a53MTU7y9//zd/Q0XVarRayLNN2u5EaDcN1ZV+IAK3dxi361uhG5fB2q2WRhuxyMTAwQDgSodloWJXAdW250ra5w2WSMCXgwj0HRtxGiAjsLcQlzLbrpisR8ZTPcosNCSwryorV6TrVep1apUKr1ULvdHCb/ZASyaRlXeliPiLOYc5LB4t8dc2oqN7tNoOVT+zdFtNqFoN4mLMr8zKZDJIk8eKLL5JIJEin00SjUUsAcT7xQPfvXtUa7HPqdunZ591dbdvuYuu2sHq5B3v9Fuege17C02KPMdn3ZT+va4UrJqNf+qVfIpPJ8LGPfYy5uTluuukmHnvsMUvUcObMmRXsOjMzw80332z9/5nPfIbPfOYzPPDAA+zfv/9Kp4Pb7d6SbrrzFSE9duwYqVSKcDi8pmP2wkZbRusBVVUJejzMA6+8+qrV1tzr9dLf14fL7Tbk0boZUAdroRU5P51OB73Tod1osFQu06hUcPn9xNNpFBGz7HRQMK0AyciVEW0pMNtle1QVDfD6fNx+22006nUef/xxOp2OEVMxlXQ6BikIAQOSIVxIp1JWhYelpSXaZp06RZKIx2KEIxEWFhboS6fRdZ1ioUAgEDAWHtMi0sCybCSTNIVLENvrlqrMRlSY85JM95sgK6GyE+RXqddpNBo063UWMhlcHg9+v5+4Wb9Qlo0aeJhjCaITd5FFsGJe5kNAu9PB5fOtWEzPF9jvjrP0+i0WYWEVRSIRZmZmuPbaa8nn85YyT4gfRJdVAbsbrJd10U2W3fPt9V6R29eL/OzEcyHZNqxeV068LtZMtYvke5Fbt+T8SrAmAob3v//9q7rluglmfHx8XRezzU56FWOuxTF2FyGNRqM9q41vdBznjWoZiaTeubk5Jk+epFit0j84iMfjwev1Ek8kcJn5R16vl7xZa04HK39GardxqyrlYpFWuUy23cbt9ZJMp+noRj8et9tNpVLB7/WC2dNHNsmrpeuWq65Rq+EKBg0Bgkk6991/P6FAgO9973vMLyygKQoVM44k1HztTsdqo9DRNG6++WZOnDiBrOu4ZJlGq0UgECAUDLJUKpFOp/m5d70Lt9vNyZMnkSSjWGo0FiNiVv0W7b01G6kIObaAIBxJvFcIFuTl6tmarlslgaq1mkUiXp8Pv89niD0kiUQigWzOXxC2FUcS15huyNKF5H0FmbDs7vN5POckm/ayLMQxdC+k3STVHegXf8fMJNudO3dSLpfJZrOcOXOGI0eO9JSM2+XcYl72mm7dMabV5gjGPS7IoZsE7PGqXgKEbitJ/H0+16P9nPSao/h7LdeeLaemuxrcdJdrGem6ztLSkkVAogjp8PCw1XtktfG2IhmtxVjdfZV8Ph/pdJq9u3ZxaHraqBIiSTQbDbILC5BM4g+HUSSJdquFIstoZlxOWDgeVWXq7FkUSSI5OIjLdB8ppnDAFwxSXFxEM4vGdjQN3czNUTFiM26Ph+LiIpJJBuKJXwZuvvlmbr7lFjRdZ3FhgS999rNMT01ZSjtBkNFQiE6nw7ve9S4qS0vMZ7OGqysa5eChQ2QWFgiGQuzbt48dO3YgA4PDw1TKZXK5HKdOnkSSZSLhMIl43Cgaa8Z5ROsHyTwmMaYonCpQN4UGllWk66huNx6Ph1gsZlS4WOXp2bKc7CQiy9BuI6mq1acIsCwtRV7ON9LN71cU8+y1iIvrqBfEwtzt7upeZO1JqOK1UChEKBRifHzckoxnMhlOnDhBOBwmkUiQTCZXlYx3V0awu2C7RQPtdnvFe8Tr3TGxXq601QQIq71/tfPTPU9xDGu5Fmw5MnqjCRjsfmmRt5VIJNi+fTuJROKiFHDr4RY831hXu5tOENDCwoJRPSEQIJ1Or+irdGh2lsaxY4Z826woEIvFAMjOzqK63ci6TrNWM6TIGE/ixVKJZr1O0O83mtKZLrMOoAh3nM3nLplP+5gLStt0NQnnSEfTjKZ9LLf2rtVq1KpV6HRweTz86iOP8J/++I+p12pGEVFZJplK0Wo2iUWjxONxkskkY9u2GedM0xgcHrYebkScRlg/4VCIcDDI2NgYS6US+XyeyclJWu02oVAIVVWt4q86RqXutq7TrNcpFYsUczlmZ2dBN8rySEA0HselKJZlZXfzySZZd0yytb5fzei2KwqmWsIGu9Ku07FibOJ9Qn0HoIBVKb7bpbQixma7bs/nwuqOJ9nf06sWnCStlIyLiia5XI5Tp07h9/stZZ69okm32MGO1ciq1zF1E0+3lddtLfUiGPFZpcsCFdu73Z9XbczoaoNw04mTejW66YRiRxCQLMskk0muueYaYrHYJSvg3mjWyqXgYscSoo6FhQXy+TzBYJB0Os2uXbvw+/3nvD/i8SApCu1WC1lR8JiutXQyic/tptFoUGi3mV9YwOv3G3GZahVfMEjE7FK6VChYCZuKeVMquk4bcHm91MzK2cByDTuwXFEev9/oIut20+l0jARZU5QQjcdxybIRT9I03va2t/HC975nNPKTZZpmxYg777rLIkShXFuhiMOmyjJzVSyXIxCORAiFQoyOjlIql5mdnWVicpKps2fxB4OEgkGCwSCqLOP2eHCpKsFIhP6BAfEFGcVgXS5ksFxtVszIJBxJHDfLKjvNNmfLHQXLZK0oVr2+lq5bxyjJZg6TrtNut3tKjLuf5O3bey3aAvZKDvbrb7UYVDeJeb1ehoaGGBoaot1us7i4yOLiImfOnMHtdpNIJEilUlatRwH7ON3HIyyQXrGlXvGfbjKzE5j4jH2sbkvwfDEo+7m173MtsOXI6GrNM2qZnTgzmQyLi4t4PB5SqRQ33ngj4XD4ip4wtmrM6EJjNZtNo3K02WI7FAqRTqcvqqxRJBDA7/NRWVqCeh1fLGaRi24+8SdTKUqm3DqfzeLx+WhWKrRM+XGlVgPZaKctFti2+T0GfD7mSyV8JhHqYLiwzA6zLkWh4/EwPz1tdBDVdfr6+/G6XMZ7xWIA6IrCr/zyL5NOpXj22WcpVyoMDQ1xzz33MDY2ZpCPpi0nmpqf04TrDKxgeqfTod1u02q3aTabdNptOmYVBF2SCJuup0gkQrlUolQuU56bIxKJkPB68Xi9VtdVyfwtKnLbSUWQoPhbF/Jv080mvl90Hd3WUhtMhR7LLcXBsKLEI5quGeWbypUKxULBaAm/ioXRyz3VK2gv0KvQqT0fp5d11b1/AZfLRV9fH319fXQ6HSsH8GKKua7mHoNzKyZ0u++63XBi3nYLT2yzk1b3e7stoF5W5Fpiy5FRLzed1WZ5gyAIsFcR0lQqxbZt2wgEAmv2Zb6Z3HSNRsMioGKxaNXVu+aaay5IQGDcsO12m4DbjVdVqVQqVu5Ks9lcvmExFs5qvU6n1WJ4bMwik3qjQbPVolIus2gmfKuKAqpqiBUUBcUMNutmUzkwnuhbZumhYj5vubGiiQStVssKUGsmwXV0U0TgdlNtNPjn73gHP/n2t5NdXGRkeJhsNks+lzPk0brROlzrdGi2WmD+XyoUkBSFarlsfHeShFuWUdxu/H4/qqIYsUjTxdio11FVlWQiQer/z96bh8dRXWnjb/W+75taki3vGxgbGxuzJ0AMJMxAEuIJBoPBJoaQIUMmvyErmfBlIcPkIysG25AAcSCQhEAgDHwmZAI4NmBWW94XSb2pW73vS9Xvj6p7XSp1y1q7JdHv8/iR1eque6u66p57znnPe+x2cAAvaxSLoaurC2ylggrLoi8Wg9lk4hdv4dz67ag5nglHlRuEsemzKBgxFqBEBoaEOAUPiOSHKkKIsSTQ57PZLOQyGVQaDeyChyFeIMX1OtJdfrXaI3JfVPOWpGGuWvI+0uNJDYRcLqcKDxzHIR6Po6+vj4q5Wq1WuFwuyswTP2NixXCx4ahWtCo1imLDJTZCtUJ/YtRSnCCvMQwDpVJZM5c9XEw5YyRV7ZbJeIXieiGbzSKXyyGZTOLIkSPDEiEdKSaStzLW4DiuqgGqxiqsBWKASJM5ADAajdCyLLLZLBiWhVposJfP56HValHhOCQiERgNBsjVahqGq7AsfQAdDgdUOh2Mej2fTC8W+Z+VCkr5PCrlMgKxGCoch3gshkIuh7BcDjnDwGA2QymEgwI+H5QqFe+hMCeJAGAYKo9zJBYDWywiXywik04jGAwiFovxOZ++PsiF/kgquRwqpRJKhQIyuRwqlQoyhoHRYKB6b/TaklonkccgE2qRyPgcy0IntKpua21FJBxGV3c3An4/Thw/DrPJhEKpRDu3Cl8aFVVlZLz8D/WGAEpNp+FCYnwEg8WI8hX5fB6JZBLxvj5kMxkwDMPT2RkGnEyGSjrNH1e0oIr/L46MSFUMqi3U4mNIPQepIaoWkZBuDAl7TvwZALAKTRlnzZqFdDqN3t5eHD9+HJ2dnbDZbDScRxZ6MatN6uFJjaPYKEqZdtIQYDVDJB5H/B4ClUoFpVI5JoouYkxJY1RPAgPHnRQhDQuN15RKJYxGIxYsWFCXdudTMUyXz+dRLBZx7NgxdHZ2wmw2w+VyYdGiRUMSdq1mgMjrDMNAq9VCI5cjzfK6XxzDQKNQIJ/LQa3RIN7XxyecAVTyebDCYi4Xci8sALVKhVIuB0YwRhqNBhwAdaUCRqGAVqNBuVSCTvi7Vq+Hy+3mm83J+FqgCssiGAhAYzDAbDLRBUXO8AoPcrmcJzXIZHC43WDLZSRTKdiFDrsyhQJOoaavn2fBnSxklclk1AAQeR6A92aI8gIDQRla/KyQz4i+b7VOB7VajUWLFiGXyyEWj8N36BD2ZLOwWCywWCywms1ghHAjI5A4wPI9jUrlcr8wHc1zQSBzMAzyAoEjl88jm8nA6XDA5XYjnkzCZDTSnBhbLkMt0Khr5XJq5VrI+NJ7RupNkdBmrWNXy6VUC6lVy7EQw0GYebNmzUI2mx0g5irNeVY7H7GhI+NKX5fmkgikz7PUABMjrlKp+rXgGGtMSWNEwi3iizmW4LiBIqR2ux3Tp0+Hw+HA4cOHoVQq62KIgPqH6cYLhCLb29uLVCoFuVwOh8OBZcuWDelakg6fpVJpgLQKgTjG397aiuChQygKdTtKQcEgHg5DbzJBo9UinUpBKejNaTUaMCyLshA+U8hkkKlUVIuOhKSIZ5HL5ZBKp2FMpWAxmWA0m6ES2GdgBIUBmQwKIUymkJ0sRAUAhWAMZAwDpUaDZCoFg1YLTmhlThr6EcUEoobQz6sCv8hXOA4KCHI83Mk2DazICyJsNZlMRg0XIR1QnTkhTAcAOp0OOr0ecoaB1WZDn1DDdezYMVjMZlgsFtisVsgE1XCZEJojrTogeIHlYhHpTAaFfB7gOKi1WugNBugNBmiFMXK5HM09ceC9q1KpBJvBMGChlxoHaeiqlkGpZbTI305170vDXwTVQn/ieYrvTb3ghU6fPh2FQgF9fX3w+/2oVCp488034XQ6YbfbKStUPD/xWNIQ3GDEjGpzI+8nBmisZcWqYcoZIxIKy+fzVH13LBZqluVFSHt7exGJRACgpghpPT0VYHLnjHK5HHp7e9Hb24t0Og2r1YqWlhYsXrwYe/fuhcViGdQQVSoVmpQXX4NqiwqZP9npLezowK6DB5FKp6khyReLfGtvtZrK5ugMBsT7+qDTalGGqDcPx0Gn0yGbSvHemuCRpHI55FMpKJRKtLa10ZYInEDjrjAMVEolWI6DkmWh1emQSCTAWiz9eggxOCkiKlOr0ZdKwaDXg5HLad0T+ckKYzAcXyjKKBS0jgeicJVMMDIKganHMCeliliWpf84weCWxV6BYKSUZEEDgHKZ14dTqdDq9cLb1oZsJoN4PI5Qby+6enpg0Otht9lgMptRrlRQFnpA5fJ5sJUKlEolNDodLBbLyYWVYZDNZk/SwglrjiyoHM/iMwqLcjXvSEpLrib/I75fyE8pLbqWB0TeL/U+Bkv+Sz8jDSuKX9doNPB6vdBqtejs7ER7ezsN52k0GjgcDjidThiFzsPAQK9JvCmvlfeRgoThdDrduG4+pZhyxojkEMbCGBFqJmHAEd2q0047bVAR0noaB4C/AevZCny055bNZtHb20uVJWw2G1pbW/vFyMlY1QyfNAQnDY2Qz1abO3lvpVLhVaAtFgRDIWSTSZQqFeiEYkuaS1Eq+cVbqaQUZpZlaXJdIZeDE0gDMgDpeBxytRo2pxMcgFQsBigUPAVZyIkoANpiu8Iw0Gi1CIdCdExa1IiToSwVwyBZKoEtl8EKCzMH0FwWWcDBCSw30d9I0zrSwI4RVBxoiEzwikgzO7rQAtRoAXyOiROF/wCgwggyRySkV6nwHpNOB6/Xi3yhgFAohCNHjyKVTkMGPl83a/Zs2O12KITrSLwd0nKC4zgUCwV6P1BqOHeyyysqFWi12qo5DqlBqnZPVMsLic+/1melNUC1Np9SAyY9Xq2wYLX7WaFQwOPxwO12o1wuIxaLoa+vD++99x4UCgVsNhtcLhdMJlO/9jDi9U+aVxOfh1KppF2Gq4Xy6oEpZ4yIZ0TyRsM1RqRehTDgtFotHA7HsERI62kcgMnhGWUyGWqAMpnMkJUlCAYzQNKHrNrDLV2sSMjCajTCaDIhFo8jl8+jvaODGheVUDtTLBahNxqRSSb5tgvEyxB+6oxGBAMBmPR6GG02vqUBx1EZIYPBAF93N1i7nTc2MhlPXhDCVCzD8HVO2SxPNBAazJF24qRYlFMqEU0k+P+zLPVoOFFYTuxNceTacDwhguUvJBjmpIgpJ7q+INeHXHSOQ1m0kJECXkYIHRICgkx0zVmOQz6dRr5QQL5QgIxhoNfpcNqiRZDJZPD19CCRTuPIkSN8czuhgaFMLgejUIAVQqYAb0TVgtwQC1CjxzAMLcZVqVT9vtfB8kLiBVhKXpAu2OLFmNQyST0gcs+JQ3PVvCepNyb2Vk5e6oFkAfJaWSC2kN/lcjlcLhccDgfmzZuHeDyO3t5edHZ2gmXZfpp5JMQmNrBkDNJWfjzzQMPBlDNG5OITRt1QjFEul6MGKJFIwGg0wul01iyYPBXq7RmNdehsrMYixI7e3l7kcrlhN/fjOF69OpPJVI37AwMZUWTBILTXarte8bEWTJ+Of+zbB5bj0NrSgr7eXljNZiTicTjtdihVKpQrFajlcqQrFRSKRT7vw/Dq2+lkEsViEUqGgcli4Q0RQBvJEVVpluPraWQyXhCUk8lQZFnKXtPq9chnMjAZDEClAk4mo5/JZrMo5nKAXI5IPg+3UMlPF0bupNoDvQ4sX5czIB9CwoDCgt7v78RbAqjRIUaLFTwSwvQjOnTZbBbJRIKG9xQKBVRKJbR6PcwWC9WVI3N1ulzwtrVBIZcjGo2iNxzGiRMnoDMY4LDZYLZaefFYjm+qp7ZYIOdvhn56eCzHQSPq8FrrPpX+PFXyX5p3Isci11vszZBrLb5fa81DDCnRoFYuS/yauN2DNLxns9lgtVrBcRySySTC4TCOHj2Kzs5OqmdJnjnxv8HyQI0wTlPOGAH9GXXVblZOeIhI/kcsQjpUttZgqHehbb3ZdLXAcRz1gHp7e5HP5/sRO4ZigEgOqFQqoVgs9qv9ERsgskBIJUyq7XqrxfDJz2keD+SVCiqFArQGAzgAOqMRPcePQ8YwUGm1qBQK4AwG6I1GZDMZqFQqsBzHF8TK5WhpaUGpXEYqHofFbuclboRFn+zgdXo9f58JsjkywdPgACoXpNRokMnloFWrkclmkctkAABanQ42txvgOGQSCeQLBT6PIkjksPyJ8teG/yJOsuqEf6zgXYmbtcmEEKN4SeL4C0PJBRzH8bVFHIdCPo9ELIZ4NAp/IEC7uqo1Gj7EqlLxzf34L4kfR1jEybUoVSpQMQxUajU8LS3wtrQgXyggGo8j0teHE93dMOr1sFityBUKkMv4OqMyScwLebFyqQSDRK271j1QLYxH7ldpuEx6j5C8nPh1EuaVFshKF3exxyS+b8nfxPcneY0cR/w+8Voi9a6k52qxWGA2myllPBKJwOfz4dChQ7Db7WhpaYHL5aoLIWG4mHLGiGEYvtumxDMS7xoikciQRUhHgkYQGBrlGXEcR+skiLirw+HAjBkz+JzAMA0QOSYZq9rv1arkqxUzVvOkxOA4DlqtFkalEoxCgVwqBQaARq3G9BkzkEilUBEkgcBxUAntynO5HDLJJPQmE20op5LLkQVQKZf5mh9ReK0sk9GFmixs/XbqDAPI5VBrNPB1d8NsMkEtqIiD4etuCJlCqdEgFg5jOvH0yHkJxkcmk/UjTBDCAukFJL4KxJvicJJhl8/nkU4m+RCdEBIlRl+pVEKt08Fss6HV6+XzOqUSEokEzZ3JhBAjq1DwBkS8WArnQTxFhuOlk9RqNdwuF7xuN/LFImLRKOLxOLp7eniP2mo9adw5DqVKBdFYDO0zZ/YzJkD1eiEqNSTamEhDe2KQz4g9EnG9EPld/H4yHiHHSMeThuXE8xN7O9LPSM+rmncnDe2JPSan0wmFQkGJQoFAAJ2dnTCZTFQdQszMaySmnDECTnpGLMsinU4jn8/j9ddfB8uywxYhHQkaEaarZ86IZVkkk0lqgIrF4rCvK2HAEUXiamNUywWIH1Txgyd+iKU7ZfFxpeNwHIeZLhf2x2JghFxPTqBqyxIJmPR6lO12PmeUzyOVzeLosWOYJYiSFnI5MCYTKgAMZjMSsRhsdjsqDF8rBI6DrFIBw3EwGo1IxWIwms20CysHnmwTi0bByGQwGgwwWq3QkFwIxwuHyhieqadSq9EntGYgxoXmhQDeEBCjI+ywSe+lCsez0iqFAkrlMkqlEsqC50k9NIYBW6lAq9PxZCCOo4YMMhm4WIwnHQC01QPNGcn4AldiDIlmnkz03ZXLZV6hgoQJcZKUwMrlUKpU8LS0wOF0wmgyQalQIBaPIxaLoVIqYe/evTAZjXzhsBCulHo+YkjDXdXyPtU2WOLjivNJ1XI64mNIW4OTe7PasaUhRDHExkeqwCD16MRzkcvlNBcknqtOp0NHRwc6OjpoEXkoFMKhQ4eg1+vhdrspAaLas1IPTDljlM1mYTAY8L3vfQ8qlQp33HEHAGDhwoWwWCx1cU+nomdEPEtS8/DOO+/A4XBg9uzZsNlswzJApVJpQHxcalzIbpx4EtJwTK2doTQsVy1nIE1WT/N6sc/ng06nQywSASOX8x6T1YpEPM57OuAlgswGA8xGIy+AyvFhSUU4zIejAKRzObB9fbR1ABhBZohlUSgWEQmHIQsG+VCdSgWFXA6rzQaT0QiH1YpCuYxkPA6lw8Gz5YTrpmB45h3DMKio1UhmMnyHVZZFUejuWq5UqG5bsVwGW6mgUCggk07zxaYcB7mQL5ArFNDr9VCZzTwxQMhllUslxOVyXipIuFasYGiIZ1IRvg+QaymT0fblEM6Z6MuhUqHXhjDi5II3RhTIOZbla5EEI1pheSktlVIJlVoNo8mEUrHIt25nGPRGImBKJYTDYdqmQQzpAi2+D6oVoNbKGYk7q4pzNtJ8UbXNlPi+Hqoxk35G/JpcLh+wuRIbVWKAhrK+qdVqtLW1oa2tDeVymRqm3bt3Q6lUUoHhetVJEkwZY/T0009j+/btePHFFwEAixYtwk033YQlS5bgnXfegc1mq9tcpkrOiBggkgOqVCqwWCxgGAbnn3/+kG58cR0Q2WWK49y1aKTSXWs141UtBFfLSEmPKf6bXC5Hi92ObDoNjV6PXCYDo9EIuULBF4vK5Yj29UGtUsFss4GrVNDX1weX241SoQCbw0E7nOoKBUTCYV5UNZ9Hb28vMoKmm0qthkGvRzqTgUyhQD6TQQVAOBoFymWkczmYDAYkk0mUymWqGQcSehM8oEwmg30HD8KgUiEn5HFI4z2ZQgGFULcjF1hosb4+miegoTnB6yJ0aggLsoyw/FgWJcE4cMK5cQxDc0wcf7H5YlbwRoa22hAt/OLvkCPvEb4bhSiXhEoFkMl4oyMQX1RKJWx2Oxx2O08akcuxaMEC5AsFZIX+VEePHqWaj06nE3q9vqoHJF7kxUZE6lmJPyMmwQADDZrUAwL69xoSH6ualy7NJVX7jNgzE9/THMdRSZ6hhMJrQaFQoKWlBS0tLWBZFn19fQiFQuMWNRp0LnUfcZzw7rvvYunSpfjud7+La6+9Ftdccw0uuugivn10HQ0DMLnDdBzHq0uQEFylUqFCpFarlVaFD2aIiPEhigjVcjfSn+KdoPh3qXERLw5S4yQ+B+lOU7rjlM7p/CVL8PSuXVi0aBH6wmEAfJ2O2WyG3+dDuVKBx+vl8xxyOTQ6HWKJBOQyXvtQoVJBznFgBbFUX1cXZHI5FEolXCYTuFIJap0OMo6DXqeD2WKhYaZcLoeenh7ks1kU8nloBX1Fl9MJCDVDHMdBwTCUrKCSy2ECX8rgcLshI54IBEMhGJ2KwJCjRA+BNQemP7mBXHNSk8QwPJOOXj+Aki6IJ8VyHC2KBUDrmziRh8MwDPV4GJmMp60L7yHjEj3HYrEIhUIBvcEAk9A5VSmX80ZY8JA5hldemD9vHlxOJ1XDJ8WgpHmiy+WiHpP4XiX/r3YfiO8tKYlAfO9UY8ARI1UtxyO9v8UbK7FRkm4qxXMk3x/J3Y0HHVsmk1FK+KQ2Rr/4xS/wX//1XwgGgzjjjDPws5/9DCtWrKj5/qeeegrf+ta3cPz4ccyZMwf33nsvrrjiihGP/3/+z/+h/xe3kRATGOoVB51sYTqO42itQjgcBsdxNfsriR8+8fWUKiHUqn6XPtTS91TbrYrnWa1wUJr0reVJAei3ayWf4TgOHo8HDpUK6UQCeoMB8UgEdrebHxN8ywewLCrCZ01GI6KRCGRKJa/8nckgnUwim89Do1ZDpVbD5fFAq9GgLxxGKBqFXa2G0+OBjGEQj0Sg12rByWTQajRwezx04U0lk+jx+ZCMx+FwufieQ3r9SakfABqtFr3BIOx6Pa0pAgRKOfF2hGtUFkJ4NE8jIgMQHTu50MBOTr5rluXriETfOyu8BsGrIrI+VCpInIQHH2IUvgBwHEcJDblcDrl8HoV8HgwAtVYLi8kEuSDqyrEskokE7zmR75Bh+OsDgC2XYRJUB0gxqMfjoW3lw+Ewurq6oNFoKK3ZYDD0W9xrhdikXpPY0FTbgElDduLXxONI/yaG9JmSrlMcx9dT6fX6urHgJm3O6Mknn8Sdd96JzZs3Y+XKlbj//vuxevVqHDhwgG/rLMEbb7yBz3/+8/jBD36AT33qU9i+fTuuuuoq7NmzB6eddtqo5yNW7pbeXPXAZAjTsezJDrO9vb0AAKfTecrcWi0DRGRpyFwI+2iwvI7U4IiNkHQsqTGpZnRqeV0EtY5Lfr/q4ovx0PPPY+7cuejp7obJZkMyGoXX60X3iRMo5vNQCLI/ZUHws+vECZSKRThsNhjNZjg9HiiVSr6BYl8fCkSfzmSCTq+nhaZ6sxnRRAIOmw0VloVKLkdB6LSq02phczoR7OmBjOPg9/mASgVmiwV6g4EPv7EsMuUyjKUSVWKokOtOvAjhdxnZWZNw08mT5+cjeFAcTgpsgnhBQogOguEi+nUQPkPakBOaNzGCnBBeLJdKKJVKyOXzSKdSSCWTUAhSM1arlb/2gkEjRbRlofCVCrlyJ+uawHHQyOXQaDQnDaRwPygUCrjdbng8HpRKJdrA8sSJE9AI9HO32w2tVlv1niFMOGlrBvJ3aSiv2u/V7sta+U7xZ8S/k/GILpxKaL44EenYY4kxMUY//vGPsXHjRqxfvx4AsHnzZjz//PN4+OGHcddddw14/09+8hNcdtll+OpXvwoAuOeee/Dyyy/j5z//OTZv3jzq+UjrjICBDanGE40I0w3FGLEsSxt8hcNhMAxD5Y1ILmgox6hUKrw3gP7CjGIjXC0XJDY80jBZtQe1mncj9ZyqoVrYDhhY0yG+fgzDwOvxYIbdjlQsBrZSQSgY5MVNFQo4XC70BAKwO53IJpNIp9NQKBR8C4VcDq0dHbznIRw3XyyikM9DaTDAYjbzPXiIQWX48oNMNsu3rNBowKnVSOdyVJVBzjAwWa2QMQxaWlqQKxSQjMcR8PmQyuWgFhryKQoFzBdySgzDUCYb+Z14M6xgNEjIjYTnCKONhuJkfF2PmO5Nwm7AydAboY0TQ0RyP+VKBcVCAdlcDqVymafEq1R8DkuhgMlk4lUs+C/hpLisMB4j49VLZKRQmHxHwhwLhQJsRmPV75ks2MRjItRlIuvV29uLt956i+q6uVwuGAwGem9Ic0JkDPFxpV6+1IhUIxhIN4vVyBLkWCQERwgL5JiN8FTqjVEbo2KxiLfffhtf+9rX6GsymQyXXHIJdu7cWfUzO3fuxJ133tnvtdWrV+OZZ54Z7XQA9G+wJzZG9UIjwnS1zo8YIBKCk8lkcLlcOP300we0Pq4FMQ27WCxST0guJM2lY0srzIGBIQupAapWuCg1TOLzrPUZMaSLlfQ94vHJcS9duRJPv/YaWlpb8c4772Dp4sXIZDLIJpPo6u5GPpeD0+lES3s7tEolFEolDh0+jEIuR1tIJPr6oNBo0DZtGuLRKACgIHgwFY6DXDgfm8WCaDgMpcvFM9GEEKdCYLaZDQaEQyGoNRpoNBpUTCbIFQrI43HkBdWHUDqNo4cPw+Px0K6yEBZxIp0jFzwahmH4glzRIk8YcVQ+SPhHtOYYhgFTqfC5K47rZ7gq5TISqRTkDIN0Ok09NK1WC4PRCLVaTQ2kjGEQjcV4+R5CWhCOL8PJhblSLiOXzcKg01FZIADUAyvmcnC3tQ0I38pksn6MN/E9IZPJ+hmmWCyGUCiEPXv20I7LRHBUDPGmp5onI33GpZuoWkZLHG4m8xssD0Q83HqhWqiwHhi1MYpEIqhUKnALPVUI3G439u/fX/UzwWCw6vuDweBopwOgv2ck3l3UC/UO00kfDJZleakVQWGCaFkNp8W5lIRAQGLn4oepmgcknhv5KU3iio2JePdJFQKqGHXp8cSvVzNg4utTK6Qnnn+LxwObVotcoQCVQoG9+/ZBo9XCarVi9syZkDEMrBYL5CoVGGHX7HC50BsMosXrRTKRgNlqpUw4q80Gf3c3yoUCX/Apl6PEcVAJYxqtVsT6+uBwOvmaHIi6o8pk0BgM6OnuhlGrhVKrhd1uh9VqRTKRQIVlEVMqEY5GkUgkIJPJ6N91hFUmsPBILgmcSOiU4wtPiUdHCA8QGXxCwa7k88gVCohGo4iFwwiZzfz5F4vQW61811eFAhzL0voikO+IYVAWwm9alYo20SPHr7AsGLmcN5hyObL5PExmM50DA95rkglhOxJmkxaKknuiGiONfO9E7NjhcKBcLlOyzrvvvksbJrpcLp5NKdloVXtuqt33UiMkNZxSD+hUhoZl2TEtyp+omDJsOjHEOSNp+KgeqHeYjpwfyf9EIhFaLzASA1StM67UgyDjSh9AKcQPpjgUQsarFsqQVsxLjwVU36HWYiyR38U/yf/FnlY8HkckEoFLo8ELb78Nu8vFi3k6HFAplUjG44jHYsjlcmhta+N3/jIZ9BoNYgB6TpxAx6xZdFGWMQxYhoHF4cCJri54WltRERZr0pZbIVCWU+k03xpCWEwLhQLSqRQAQKfRQGc0Qq/T0VxMRTg3nVYLrV6P+W1tyGQyiPT1IdjZCbVKBZvNBpvdftIQMUIXVeZkrojDSd05juV7QaWzWSiiUboZYcAv4mqNBlqdDpzTiRa3G+VKBbG+PpgMBiiUSloIywK86gNzMh8kZxiUikUoFQreEEFQ6QaoEeTIJkQYj4QKc6USn9/s7cXc9vYBoTExarHlxEZLbBAcDgfsdjvmzZuHaDSKSCRClbAJ+UFcdCpFNSMo/bv4viNdgofj6dQzxdBIjNoYORwOyOVyhEKhfq+HQiF4PJ6qn/F4PMN6/3AhDtMBk4NQMBJUhHoXn8+HQqGAQ4cOweVyDUthvJoSQq2wFwAqMU9i6WJtOGlMHTgZiycPlNQAAf0fWGmeiCSoxQWI4jGkY4kXIXLMajtT8tl0Oo1CoYCDBw+CYRjY7XasWL4crFqNvd3d0KvVKGYyUJrNcLndAMP3IgoFgzDodIBMxncmzeXQ0tKCVDrN7+rJOcvl0Gk0UKpUSCeTMJtMAMczyxRCoafdakUkHAYjlyMWjwOVCpSCMZExDIosi0QkArVaTZv60dwQAIXBgEBvLzra2mA1m8FyHGKxGOLxOD748EOUBcUFp6APWCqXwZZKyAstKUgIjAO/WLKVCnRaLdQazcnWEIKHks/lkM/nwTB8nRDLnSQqkIZ/DPkuSN0RCQEKnyE1SpzgESsUCjACMy9fKEClViOXyyGdyaCUz0MphClNJhM62tsHhHylecBqpAIxpHVCxBsn/YHmzp2LWCyGSCSCDz/8ECzLQqvVIhqNUkFS8f0qvc+kRlAsTjqS8Fe9jVE9UwxijNoYqVQqLFu2DDt27MBVV10FgL94O3bswO233171M6tWrcKOHTvw5S9/mb728ssvY9WqVaOdDgD006YDGhM2G6/xiAEiHpBarYbZbIZCocCqVauGdLOTHa80BCf1LKRhL6D/g16L2TYY1bpaoWstD6tamI3ModoiUM0AVXuwMpkMQqEQIpEIPX+v14t2YdfNcRw+tmIF3j1wADK7HXKlEplEgioCyBQKmIVGeAz4PIfdauXVtfN5JFMpGHU6Wo8jVyig0miQz+WQTqdhNBqhlMtRLJdpLY9ao8Hx48dhsVjQ0trKM+YE70ktl8NgMiEej8NGFkOGz8UQDymUyUDf1weVQkFJBkaDARq1Gj3d3eg6ehQHDhyATmCVOZxOGAwGKBUKXk+OXDuBQKDT6fjXmJN0ckofFzYIAF/EqhTUKDjh/mT4L4EaJvI8sDjZ4pwRxiKtKFiWRTabRcDv570ngO966nBABqC7WIRGUIYg3yu5n6SeUq3NiHSDVS2ETDZLNpuNNs/88MMPkc/n8eGHH9JaHKfT2a+nmXQOpBh1LLqkNgkMw8Cdd96JG264AcuXL8eKFStw//33I5PJUHbdunXr0Nraih/84AcAgDvuuAMXXngh/vu//xuf/OQn8cQTT+Ctt97CQw89NBbTgVarRV9fH/19sntGYjZQX18frZ9Yvnw59Ho9H56JRAa9YaUGSGooyLzFD2at94jptOJzJsclIQjpfMhxyN+lXoz4M1L2Ua3rKTVSwEllavFrRE2c5DitVivmzJkDk8mE999/nxagkjkolUpcuGQJXt+7Fya7HVabDfG+PtjsdkT7+mB3ueD3+VDhOHiF6vVEIoGWlhbEolEolEpoNRqeUSZ4HpVKBb1+PzI6HTQCi6tYKCAjdIU1m0wIBoN8sSY5X2IMOA6JTAa5bBYarRbxeJyXGapUeNUBhQLdwSBmt7dDrVRCLhgZhVwOvdEIpUARTiSTiEQiOHzkCIxGI+xWK6w2Gx9mEwwcOI6G9qjOHbkXhO9P3IqCFUKSwMmW4oSGTVq0F4tFvuWD8H2XOQ5sPo9sLserkzMMVIIH1Nbaysst8TcJWJkMmUwGTouln5dQi34t3TxJjRZ5r9SrFv8Ub55Ijc+MGTOox7Rv3z5wHEdDeaTbszgXNFaot2dUKyQ53hgTY7RmzRqEw2F8+9vfRjAYxJIlS/Diiy9SkkJXV1e/i3nOOedg+/bt+OY3v4mvf/3rmDNnDp555pkxqTECeM+oWCzS3xtljKqFCIYKUsDX29uLaDRKK8tnzJhB6agE0gWdQEpCkD580pBVtb+JwxlkrGqFfOK8ELnW0oefjEPeLzYy0t2s+FhiL0fssUkNkZQQQQQhI5EICoUCrFYrZs6cST3JWiDHWrF0KQ4eO4ZoOg21SgWVRoN4PA6ZQoFMJsMnnxlee06j0fD5GABWux2xvj6+dbNWCwaAxWQCy3FonzYNiWgUWp0OuUwGKrUabo+HhrjAcYBcDpfNhmKlAoXQu4cBYK5UkIhEeFVvlQqJRAJgGDisVpQ5Dtl0GuVKBRaTiVcMF4yJSug0q9Dp4BRyJGylgkgkgmgshmMnTsBsNlPDxAheDfG+IDvZRZYV6NqcyAAR1l5FEEEl1HQwDFQAykIuSqZUIplMopjPo1AqQaFQQKvR0EJgDkC5WKSK44zwGlepAOUy7DZbP/LMYKFY8X1U7fkQ38fVvGjxvStm5dntdtjtdsyZM4dKZR08eBAAaPGt3W6veW+NBNKw5FTFmBEYbr/99pphuVdffXXAa9dccw2uueaasRq+H8RsOqAxYToANNcxVJRKpX4GiGhuzZo1a1CZd3FYsBYLDkC/vIs0sSpVJBA/wNK6C2kYUmqAxDurarRvaby+mgdFfop3ttK/S0OJJNRDaqlyuRysViva29thsVhozL6aNyY9Z/Lzqk98AtueeQZ9kQhmzJqFJH9S8Hd3o72jAxqNBr2hEGQANAYDEkJeyGy3IxaJQC6T8cw7spizLJRaLXxdXWhtb4dOpztZ0wPAYrWiWCggnkjAZDLx7Dbh+ihlMphsNiTicRhNJhQLBag1Gp6QIHikB3t6YCL5QiIho1AgJ6gdQBhLIZfD09ICj9uNYrmMWDSKvmgUx7u7UcnnIVcoYBGaBRKvCMxJijjAs+A4Yd4y4ZgQGbFiuYxSsYhsLodwKAS90QiTyQS90QiHRkPJGmRe8WQSep1uwPdaLJVg1ev75SfF926tzU8tanW18LL4cwRioydm1slkMlrH1Nrays89HkcwGMTevXtRLpfhcrl4VQ+HY0zCdPUyRtLNZz0x5dl0QGM8I2BoicCSoD4cFoQfDQbDsLrMkiR/uVymHVHFRlBsOMQPn/RBJg9cNW+pWh6HfEb8/mqfqeXJVKsRkobbZLKT7dtJLF96LJZlUSwW0dfXR1uam0wmtLS0wG6396PESo2gdFGSGmmZTAaTyYSrP/5xbH/5Zezfvx+nnXYaIuEwSpUKUKlAxnFwOJ3oC4VgttuRSaX447EsbHY7+sJhmM1mcBwHrUbDtyc3mTBj5kwkolGoVSooyBw5Dmqhs2yxWEQ6k+EXZ/D1SRBCZDq9Hql0GhXB4+iLRsGWSpArldDZbAhGImhraQGEc1QoFHyrCPCGCAKJgGNZQKANu10utLjdyBUK2L9/PyKRCI4dPQqL1cq3BhfIFEQiiEoOCYYQMhnyhQIKhQLyuRxKgvyQRqg5KhUK8Hi9vMKBEN6D+F4CkM1k4PZ4eC09huGNHcOgkMnALVrUq22GxPdNtc0Keb3WRkT6f2nuE8CgXVKtViusVivmz5+PRCKBYDCIffv2UcPkdrsp2Wu4aLLpJjGknpH05h1v1PIKCIrFIjVAsVgMBoOByrYP1wCRcJQ4nCU9X+nOT0ooEC/sYi9EbIBqeTK1/lYtNFKNqCCeg/iY4r9JFxWGYagXGYlEkEwmYTabafxeRXoBSSBeXMQblGo7a/HnO9rasPqss/CXN9/E/n37+F47RiN6QyFM6+iATCaDw+lEuLcXSqUSyVSKeic2hwPxWAzpdBrFYhE6rZaXW2IYGs4zWq28h8OyUKvVSCWTsLlciAoyTQadjoqkymUy6LRaJOJxBAIBOOx2eL1eyJVKuoD3JhKwpFK8Ny0YVRaoqtbNSeRvlCoV3C4X3B4PSoUCeqNRBEIhHDtxAlaRTFSxVEIul0MiHqffu0KphE6thsls5lUlBAMKADFxPhK8IZQLDfkYmYwXXAWgZHhZowrHU8KLxSJsRiNkkg2LePMj3szUCmlVy4NIN2bkfVJDJxfkh4bybDIMA4vFAovFgnnz5iGZTCIYDGL//v0oFovUMDmdziEbpqYxmsRoNJtOXOtAQAxQb28v4vE4jEYjXC4X5s2bN6AfSzUQA1QqlXhdNJFRIYssWVSqxdOreSXkuNUMULVwnTSEIT6+eJ7k9Wo1HwTVPCGpoZR6dURvrLe3F8lkEkajkTKe1Gr1AEMn9brE34f0eog/J71uAHDG/PmIp1J489AhxGIxqIUW4X6/Hx6PBwzDwOF2IxqJIC1sMMiCq9PpEIvF0NHRAZ1ej0IuB7VOB7lcDovTiVhfH/QsCx1ZwAUD4XS5eNUM8MKoHMchm8uhkErBYDDwPYfElfsMr7ZgNJtxrLcXCzs6eLFSkRfCQChiZYXusXI5lAwDTiY7aaSEvkgqjQYetxt2qxWpdBqhYBC94TBfXxSNwuFwQKPToaWl5aSXyV9QWkvEACgUClAS7TrwRpHlODCsoCzOcUgmEjCazWAZnoGXzWSQzWaRjEbxiQsuQHd3d1WPplr4VnpPSe/Xavey+Jkg3iRhxJHfhwuG4VXfzWYz5s6di1QqhWAwiIMHD+KDDz6A0+mkobzBjl9vNl01w10PTEljJPWMqknWjCfIl1koFGgOKCHkAFwuFxYsWMB30RwCOI5DSRCbJL8DGOD5VFvIxQ9nNYNca9En49SKpQ8WhhQv7NKcU7X8kPjYYhUGstBUKhXaTymRSECn01EvkohlischY4sNkXQe0tBjteshDVcqFAqcv2wZktks3jl4EHPnzYPT6cS+zk7kczlY7XZotFqYbTZkAwHEIhE4XC5kMhnks1m0trXxdTeVCrLZLLQGA8pCi3Kr1Yp4PA6OZaHTaqHTapHNZqEwGGCxWnnPKpUCI5NBq9XCLhCDHDYb+qJRFEslqNVq/voxgtqCTocunw8z29p475ITGHIAJR6QIlMoFLygabGIUrGIaCIBkL8xfF2VRq3GnLlzYbHbkUunodVo0BuJICV4RjaLBUaT6aQIq8gw5XM5qARDy4i+A3IPyRkG+WwWer0e4UgE5WIRckEkdN7MmdBoNP1Cz9Xye7VyisTQiI1StWcDqN0ltZa3NRwwDAOTyQSTyYQ5c+YgnU4jGAzi0KFDeP/996lhIm3CxWh6RpMYjQzTFQoF9Pb2guM4vP3227BYLHA6nVi0aBHUavWwj8cwvHqvXC5HqVSi6tjS0JXUOElfl+ZvgIHsoWox92phNPIeqXdTy/hJvaxq3pfUkyJU9pxQUOp0OjF79myqdyb1gqTHq8YOFO+Apeck3UlXyzMolUpcds456EulcOT4ccyfOxenLVyIHr8f5VIJeYYBWypBo1Si2+9HMpmERquF2+1GNpeDwWCATKFAOBiExWaDUsjRKRQKOG02hONxsJUKDAYDspEIOIMBhXyeJwMUCrDYbDAYjZR1p9FooFYqkYrFILNaoVKrqQqCWqVCPJ9HVCBUMDIZUoJkUKlYRIXlO8TKZDIqw6NSKCAXaMxOl4uncJNrJIwpA6BQKtE2bRpPc4/FwLIsjp84AZbjYLVYYLPbYRDaHTAcX8hqtVqpIZIJyuIceEHZvkiEbxmhVkNvMEBrt0MmkyEVi2Hm9On97jvxPSW+P8XkAqnXK81fSjchRBWh1oJfaxM1UjAMA6PRCKPRiNmzZ1PDdOTIEXzwwQdwOBzweDxwuVy8EsUYGMPJgI+EMRrvMF1e6OgZDodp/kImk2Hx4sVj1mGWaFhxHEcVE8SU02o5EGnNBPlbtQdLesNLF3TxAk48FunxquWPxLvTwYoOS6US1QmLx+O80rNQd7Jo0aIB86rl6YnnUS3MKDaa1XJSUq9ICo1GgzUXX4wHnnoKge5uuLxe2BwOFPJ5VPJ52J1OMHI5lFotjh05AjPDINbXh1g8jnKlAqPBAIVajQ8//BDt06ZBLngekMlg1OuRSqWQzWRQKpfh7+qCwWKB0WaDlWEQjUSQLxR45QeGQb5YRL5UglKjgb+7GwazuX+hKsNgz/79mO3x8AKkhQJsFgu0Oh31AMh7OYD2O8qk05TlVhE8F9oniSzs4CnbJpMJJqMR7e3tSKfTiMdiOHr4MMDwahZmiwVlQVGCYxiUSyXk0mnkcjmUKxWolUqUy2XMnTuXb3ch3OPZdBrTXC4olcp+njJ5Bsj3R75Xqfct/ozYkyffqZiMcCqMp2ciNkzEYwqFQjh27Bg1TKVSqa6RnUZhShojrVaLQqHQL6cy1l9mLpejOaBUKgWLxQKPx4PTTz8dKpUKr7322qjaAdcCwzB0J0dIDEB/z6Ta7l78eWkuRQxxiItA6m2IPycN60nzZdLWzWKUy2Ukk0nKJCSCru3t7dBqtQgEArRVBTk+0QmT7oSlc5eGWcRzlYYnidckvkbi40l3xkajEeuuuAIPP/ss4pEITDYb5BwHjcGASCgEi80GVCo8ocJuRzqVglajgcVigdlkgtVmQ28ohJzgOcmExn2lSgUyuRzRWAzxWAwOux3lcpkP0bEs5BoNckITP6vdDkbI+TAMA6fXi0QsBpvVCoVQXMrIZDCZzejt68PCGTOQz+dhMploTQ/I/cGfNFUVJ94QA0BBGJbC/UUYdADAlctQimjrRpMJRpMJ7dOmIZVKIRqNorOzE0mh0Fan08FoNPKhRqHQlnhpSpWKFsuyLAs5x6HF46mZQyQQ16JJDYa05GCksjxj7RkNBoPBAIPBgFmzZiGTySAYDCIcDuOtt96C3W6nHpNKparLfOqJKWmMxovanc1mqQFKp9OwWq3wer2UwSVGPUKDpDpcpVLVFF+UhsWk9FjxAl3NayKxemloS7rAk/dKjZR0gahUKkin07SWimEYGsbUC7UkYqMiDQ9KcwO1Qm/V8kTS70Q6V6nhkYYpxSGhlpYW3PDJT+LR55+HTC6HWq1GNpWCxWZDPJFALpOBp70dyUgE9pYWhATShVnIqzhdLqRSKShVKhRzOdjtdpRYFoloFK2trZg9cyYOHToEtVIJk6A3xwBgTSYU83mk02modTpYhHnptVqoVSrEolGYzGYUyuWTygZaLbpCIZi12pOtyTleGaFSqQCCF8QwDORCXqdSLoMRNlNE1od+B8KmoFypQKtQUMYew/K1RcVSCYViESq1GlahvbpSoaDXxWq38wQBhQJ9sRgsZjN/nwkkilQigSVz5gwI9Uo3UtL7oloOczA69lBRbwIBgV6vx6xZs3DkyBGceeaZSCaT6Orqwt69e2Gz2eDxeOB2u8fFMDXifKekMVKpVGMWpstmszSBnslkYLPZ0NbWBofDMaise70ZfHK5HCqVClqttl8YD6he1EnmKJ2zeNEVL74cd1LmpxYtWlwHJAbL8oKk4XAYfX194Di+rfmCBQuoorg0sSweTzxmtTCfdMEi75X+JJ8h41QznlJPr1qYj/y9tbUVX/jsZ/HQ009Da7VCpVQiEg7DbLejVKkgFY9DrtUikUjw7DeNBn2RCMxmMzSC9ptGo4FWrYbP50OFZdHW1ka14pweD7LpNAq5HKw2Gx/qAt+mW65U4vCRI1AL5ANOWMxlcjmOHTkCh8MBm91OO7Dm83l09fTA43bTWiGWO9m9lWNZnsnGMFRFgZHJqIgqIT8QD0khl6NQLEJbqaCQSCBfKPD0bI7j+xkZDFCrVGAAuD0eGg5MJJOI9fWh88ABgOOgVCj4vlrgw36ZVArtDgeMQlvxWkxH6fchvSfGUpankTkbcp/q9Xo4HA7MnDkT2WwWoVAIPT092LdvH2w2G+3XNJK89ETBlDRGJExHIJPJqrZFqAWiY0aKKO12O9rb209pgMSotVMbL4gXdGkYT6zILX6v+PfB/i5dEKrtSqUGAQBSqRStBWJZFlarFfPmzYNZ1KtG+lMaApQmqqWkA2nCWjqHWqG5WjmhWjmuajkzuVwOm82Gf7vhBjzy1FOI53JQKBRIJpNonz4dMrkcmVQKuWwW5VIJSrMZJpMJiWQSmUwGRrMZqUQCer0eGrUacrUa0UgEZpsNSqUSVrMZfcUijCYTYrEYlGo1TAYDwDBQKhSwWiyIRaNIRKO8bI9cDp1Wi7nz5yMaifBj6PXgZDJoNBrEBGLFtNZWqtJNfnIyGW1rIZPJaOty4q2A41AolZBMpVAoFKBWqxEJh+kGyGK18qKrDENrmirChojkmiCTwWwywWa1oqNSwcGDB8ExDN577z0AfEiw3elE+2mn9bsnqm0MpN8ZgKpdUscC9QzTVRsb6O+p6HQ6zJgxAzNmzEAul0MoFILf70dnZyesVisN5Q2VsTtRMCWN0XDDdBzH9TNAuVwONpsN06ZNO2UNQC3UI0wnHa9aSIuE8cStIsTvr7XQS6vPyWtioyN+jfwku7a+vj5UKhXYbDYqSCo2ANIFRhpiqxY+FD+Y1UgM0mOKw33ina3U0IiPQ3JS0gWIGKBq81Wr1bjl2mvxwiuv4GAwiHyphHfffRennXYazBYL5EolPnjvPRj0ejAmE4wGA2QMg0Q0ilQ2i0wyiekzZ/LegV7P07zlcliNRqjUalRYFg67HZlsFn3RKEwmE1RKJWTgjQXpojpt2jS+3gqA3W5HIpVCJBqF3WZDheOgNZkQSCYhl8vRKnSX5cj3R3JBwgYmmUohnU7zslLkPFUqgGFgNJngdrvBcRycDgf1elj+ywHD8jVM2UwGesF4QvD2SH4slU5DqVZDq9HAbDIhn88j2dcHrlTCnj174HK56IJKvkvphol8DyqBBj5eBqOR1GopGUkKrVaLjo4OdHR0IJ/PIxQKIRAIoLOzk+ax3W73sEpJGoUpa4zI4ksom1LDwHEcDR319vYin8/Dbrejo6MDdiGmPRrU2zM61XiEjUfqUcTFs1JIH3rxa2KSAnmdkDnC4TDK5TKsVitmzZoFs9k8IEwizcGIQ4FSL0caSpPOo9aOVer5SAkP0iJHaU2U1ACKFz5xLkscvpHL5fjUJZdgzwcf4H/few+MxYLjXV2wGAzQarUwmkw4dPQof33sdl6JwW5HKp9HOpXiteiMRsgVCthsNhQKBb63EcPX4KidTt6D0moRTyRQLBQQCYeh1ekwffZsREIhpLNZ5HI5/rrLZDAbDCiUSugLh2G12aDTapEslRDMZJA9fhxugSBRrlRQLpX4awaebq1QKuGw2/mFnnjGDIN0LseH9fiLxV8b8J4QEYqFcJxUKgWny8VfW4avu8tkMsjmcoj19WH6jBl8PoxlkYnFcOnZZ0Mul1Na/xFBWdztdg/og0W8oHoYiYngGQ3lPDUaDaZPn47p06dThi9RfzCbzdQwDaXIvhGYksaIXOx8Pt/PGBEDRHJAxWIRdrsdM2fOhN1uH1PZ94ngGdWCmCZOapeqJfalxycgBqi7uxvhcBiFQgEWiwUdHR28uGaNFhLkNakxEDPuxCFBsbDrYKE6AAM8n1qhP7F3Q+ZD6L9S5pb4uko9OvH5ieezbPFitHs8ePTPfwYrKCmUSyWYBEWGbp8PfdEoDFotrQdyulzoPnECBoMBRqMROoMBSrkcJpMJpUIB4XgcxVIJbo+HD0EJY8vlcr7ZnWAgZPzJo6urC2q1mq/JAsBVKjh8+DBUSiWKlQrsFguOJxJIpFJYMGcOTCoVX/Mk45v25fJ55HI5qDUaKuDKCLklhuNQAVAulahEEUOuiyikV65UUGFZ5LNZpHM5cOUyVBoNDHo9KpUKZs2eDZ3BAAZAvK8PS+fOhUajgUwmQ0tLC1paWlAqlRAKhWjBc7FYhFarhdfrrSubrFEEBjI2MDRjJIZGo8G0adMwbdo0FAoFhEIhhEIhHDhwACaTiRqmahJHjTrXKWmMiEtaKBRgMBj4Fs7pNHbu3IlSqQSHw4HZs2fDZrONqQESo94EhpEYP4Zh6ENN8ksktybNlzAMg3w+j76+PuRyOXR1dcFisaCtrQ02m62fJ0kW8GrxbvHficGpVg9Va/EXGyfp+8ReVrUkt5hkIQ39VVtwqo0t/ps0REnOyWKx4NY1a/D088/jWDgMu9MJm90OrVaLYqGAaDyOfKmEZCKB9vZ2qHU6tLjdyBcKKOXzCCQSUCuVtOeRwWikEkjZXA4Omw0GwfvhKhWEgkG+0R7Lwu3xwO1yIZPNIpfPw2AwwG6xwNXSgnAkgmPHjsGo16Nt2jRwAHzhMDpaWgClkq8hEkJp/fJxEg9VLhgbhVJJ65kYnNSry+fz6ItEoBYMrtvp5PsTVSrI5HJgZDIYDAa+I21fH86YPRsmk6mfx8lxfDFwR0cHZs+ejbfffhtqtRrBYBAHDhyAzWZDS0sL3G73kPO4I0UjCQxi4s1IoVarqWEqFovUMB08eBBGo5G2vhAbpkYYpClpjFQqFZxOJ772ta/B5XLh0ksvhVwux/z588fVAIkx0cJ0Q/k8yS8RAdZyuUwljcLhMNLpNMxmM5RKJbxeL1pbWwfklYD+Wl8k11KtoFYs0zTYoi99vda5io2M+DUxxMc7lTcpzXHVGkvcsJD8Ta1WY9011+C9Dz7AS//4B+KJBKZNnw69kO/J5nIwmc28px4OUxKD1mqFu6UF2Xwe+VwO4DjoDQbMMBpx4sQJLFiwAIViEWVBAshkNMLT0gKW49Dd1YVkIgGz2Qyr1QqFTIZUOg2/z4dioQCr3Y5Zs2Yhm8nQ2jhOLkfniROY4/VCS1QTCBNT8HJICI5heCFWuVyOQjYLTiZDMplEPp9HWXhdo1LBaDKhXCrBK7RXAMMre5c4DtF4HB6PB+FIBOlEAucvW0ZVzamxq9IlVSaTweFwoK2tDblcDsFgkNKcHQ4HWlpaqGLBWKORYTryLI3V+CqVCu3t7Whvb0exWERvby9CoRAOHTpE9TLb2toaQn6YMsaI4zi88cYbePrpp/H0008jFoshGo3i6quvxrx58+Dz+eB0Ous2n4kcpjsVWJZFJBJBMBikquJutxsLFiyASqXC3r17B/R3GUyJQeqNVGPekd/Fr4vzU7XGIu8Xj1PN8xFfJ3HeR+phiY8p9Xyk5yVOrJOxiadHxjlzyRLMmzMHL/3tb3j7wAFo9HrMnDUL2nweBw8exJy5c8HI5chlswgFgzhx4gQcDgc6ZsyA1Wrla3aExLRSLkcunYbDbgcnk+FEOo1YPA6lRgO9RoPW9nYkYjFwAGKxGDiWb6+h0ethtlhQyGYBju9vpBcYenKFAnq9HgeCQTh0OngF1QPCpmPAt1XP5/MolkqIxWJ8aE2hgMfthk6rhdFo5IkJ4MN48WQSOoOBek0cx1PLjx47BqPRCL/fD4NSiY+ffTbdjTMMMygdW/xdabVayiYjhaFHjx7Fhx9+CKfTiZaWlmGpYp8KjSYwjJchVKlUaGtrQ1tbG0qlEs0xeTyecRnvVJgyxohhGHzta1/D3Llz8eCDD2LNmjX47ne/i0WLFiEcDtfVMACNo3aPFKSvUm9vL2KxGBV1Pe2006BWq/vRxMVjAgNbZUgT/8DA3A1BNYMgXvyl9UEk5yOdg9TwiD0f6bWpNQ+pARJ7dORYRBtQfD5kJ18rlKfX63H1FVfgwmgUf9qxA+++9RYMFgusFgvfRFGng1arxdy5c1EulXDsxAm8u2cPtAYD7HY7jHo97DYb9AYDAn4/soUCdFotWIaB0WCAzWJBLp9HIpFAMpOBgeOg1miQTaf51hSlEgqVCjQ6HRi5HHGfDzKGb/OtUCiQTCQAAIFKBV1dXWhvbUU6meS/W/BFrkq1mi/ANRqh1migENQyxHkiDkCpUkEmnYbH40GhUEAyk0E2k0E8HkdbezvkAFwmE2YJrTeGKstTyzshhaGzZs1COp1GIBDAoUOH8MEHH9AGd06nc1TGZCJ4RuMNpVKJ1tZWqsDeCIybMYpGo/jSl76E5557DjKZDJ/5zGfwk5/8ZEDLbDEeeughbN++HXv27EEqlUIsFoPFYhnymP/7v/8LgL95xPp09c7fAJPDMyKtzUOhEG3s53a7MX/+/AFuujiMp1Kp+i3SYqNUzUsiEC/41XJDZBxpaIIYIUI0kHpZ1fJH1Qwh+b80NChlB4rPmbxfXKtFDE81OrF4LuI8kkwmg81mw02f+xzC4TD+8ve/42BPD7K5HC8OqtPxzLJSCW6nE0WjkW/DXSjgg2PHYDAaYbdYYDKbkU2lkMvlkE4modZoEIlGIWMYKDQatOh08Pv9SCWTMJnNAMtCplTyzevSaZTKZb6dSW8vdDod8rkcWI5DvlRCKZ+HzmBAtqcHsmIR7dOmwSCQDMj1CPf1nTxHwRBxQs6oXCrhRHc3GACBUAgarZaG2lq9XmjlcsydNg02oY5qOHTsoRgEg8GAOXPmYPbs2UilUggEAti/fz81TKTh4nAX20Z6Ro3MV9Ub42aM1q5di0AggJdffhmlUgnr16/HLbfcgu3bt9f8TDabxWWXXYbLLrsMX/va10Y1vrinUSOMUb3HHKonVqlU0NfXR2uBxC0ZhtI8DOBj+kqlEnq9vl9+SeyJ1AqRAf0LGaV/k7aRkBow6RhinCqnJCU4iI8n/hsAqmAhPqZMJqNhOOnxxcZVSi0niwl5j8PhwPVXX42+vj68/MYb+FCgfPfFYjDodFDL5VBrNIhGo8gUCrx+nUwGfzCIUk8PyqUSMuk0XB4PVEJhLSOTgUsmUalUEAwGoVSpUCgW+T5CSiVQKoFRKMByHLQ6HRKJBORyOYxmM0KRCLRKJXRKJcoAIokEYj4fjnV1oZLLQaNQ4JrPf56/P9iTCuLZXA6FXA7ZQgGs0J1WqVSi1esFI5Oh69gxBHt74TCZsLC9HbNnzx5UHXswDMc7YZiT7Rrmzp1LO69++OGHYFkWbrcbLS0tsNlspzxmLRJOvdAIQ9iocx0XY9TZ2YkXX3wRb775JpYvXw4A+NnPfoYrrrgC9913H7xeb9XPffnLXwYAvPrqq6OeQ6M9o4kUpmPZky0ZIpEI1Go1XC4XZs6cyXcDHcFYZHEgag8cx1E2ntgbqEbNrqVwUI3tJs7tDJZfIvMir9VavMQ5Hun5iCWUyOtiAwQMpNhWM77SGqZqbEGAb1X9L1deiXQ6jZdfeQUfnjiBuEDVNuj1cHs8yGQy6OnqQjabhcVshlmpBAMgbTLx6t56PSxqNRRCp9h4IoG2tjZwDAO2XIbZbEapWIRMrQbLcbSVt1wmQyadRiqbhVqjQaFUQqFQQKlQQDQcRqxSwQGfD/loFEwmg0K5jI7Zs2mjvGltbXC4XDDodHCbTMjncgiGQihXKtj91lsoplKYPWMGPnvZZfB4PKMmFow0VMYw/TuvxoUOue+99x4YhqGGyWKx1LxfgOFTq8cKjfTK6o1xMUY7d+6ExWKhhggALrnkEshkMuzatQtXX331eAxLQdhMjfSMGh2mY1kWsVgMoVAI4XAYSqUSbrcbZ555Jh96GcXup5bXQwxTNbUH8edqeVDi/I7YMEnHI69LDVE1j6dWfkn83bBCol/slZEQEpGWEZMuxEan1nWpVcgrnQ/L8rpjV115JT5ZKmFfZyf+9tZbOPT++0jk87DY7XC73Uglk5DJZLBaLFDrdHCzLPL5PLq7u9EXjUKr0cBoNAIcB5VeD7Vajd5UChWWhVqppArZcrkc5UoFcoYvYM0mk5ALbRxKuRzyQrsCPcNgqdkM16xZMNls0KrVyHMcAn19KObzKMrl6M1kUM7nEertRSIahcfhwMz2dlx+7rmYMWMGVETRewwwFnkbhmFgtVphtVqxYMECRKNRBAIB7NmzB3K5HB6PBy0tLVQthIxLPtsINI3RKBEMBuFyufoPJFSWB4PB8RhyANRqdcM9I9Lzp17jsSxL23KHw2HIZDK4XC4sXboURqNxzB6oU+WnpGoP4vol8nlxoavU6xGH7KRUbHEtSjUjJ52jNGwm/jy5J2w2G06cOIFwOEwT3iRnVs3LIvOuRksnn6lG6hDPQ2rQSFPGcqmEM+fOxYXLliGdyWDfsWPoCgTAchwi4TBiQm7ParXyuZiWFmQzGSSzWaSE+qWe7m60tLZCp9EgKzQnVKtUqABgy2UwAHL5PEr5PLKlErLd3QDHQSF0OLW53VArlSiVy/B4veBKJchIvrCvDyzL8tTzdBpWnQ4fX7YM565YAavVOqBL6lhhrEkEDMP3W7Lb7Vi4cCH6+voQCATw5ptvQqlUoqWlBR6PhwqPflSMUT2jOVIMyxjddddduPfeewd9T2dn56gmNFYQ69M1yhiJmWfjBY7jkEgkkBEYSzKZDG63G6effjqvhjwOD9FwyBLEMJH6JZJjktZOSPM5xDMSG6NqHka1h1XqyZCfUiVzkgdqbW1Fa2srotEoQqEQurq6YDAYBrSBruVxiXNO4rlV89bEcy4UCjR8mkgkYLVaqSI8mdu555wDgKdq7zt4EIeOH8eRnh4c8vvBMgxMZjN0ej3USiXSQohUoVDg2OHDKJZK0JtM0CqVYORy6AwGaIXF1Ww0oqTTQW82o1wowKDX80QEhuHp3wBiiQSvYiKTQQOglEjArlRi6ZlnYtXy5TCbzVCr1SPOAw0H48lok8lkcDqdcDqdqFQqiEQiCAQC2LVrFzVG2WwWJpNpXMYfDI1Qf5gUOaOvfOUruPHGGwd9z8yZM+HxeNDb29vv9XK5jGg0WjcOuzRnBNR3lzGeYTqO45BKpahUSqVSgUKhgNvtxrx588b9ZhqOMRJ/RhzGIx5TtTAIWdzFskLVFvNq36c0/EfGIschxyQ7eLGH4nQ6aWfNcDhMiwEdDgdcLteAgmkx60+a+5L+Tfx6X18fwuEwIpEI9Ho9XC4X5s+fT9UwxPMix7VarTh/1Sqcd/bZvGeSzSIQCGDfoUPwhUJIJBJQAVAqFChxHCpaLVRaLfK5HFKxGMrFIjiOg9ZohEaj4RmRwjjFUgm9gQAMej10KhWsFgscNhtOnzEDJr0eC2fPhlarhVqtxt69e2GxWNDS0jIuBaa1UC96tVwup+0YyuUy/H4/9u3bh3/84x/Q6/U0lDdUss9o0QzT1QDZPZwKq1atQjwex9tvv41ly5YBAF555RWwLIuVK1eObKbDhDRMB9T3ix1rb4zjTurqhUIhlEolOJ1OzJ8/H1arFZ2dndBqtXXb1YzGnZd6S8RgSHeB4pCaeEzxYk9eF4fgxB4p8VjEbDgxqoXcSM1Fa2srstksLao8ePAgnE4n3G43X+hZhaJOfkpZe8lksmr4dLBSB+kCLE6mGwwGzJ07F3Pnzu1HlsgJYblisYhsNotUJoNsPo90JoNkIoGkEMozm0xo83rhcbtpAzzCkqxGuSa1QITaX09DBDSm1kehUMDhcIBhGHz84x9Hb28vAoEADh8+DKPRSEN54yk82qR2jxILFizAZZddho0bN2Lz5s0olUq4/fbb8S//8i+USefz+XDxxRfj0UcfxYoVKwDwuaZgMIjDhw8DAD744AMYjUZME2oThgNpmA4YWJw5nhgrNl0mk6EeUKFQgMPhwJw5cwbs0utJmBhLpiBZ5IgXQ4RbSRgNGLiJqMaaqybJA5z0gKSGazCSg/g4Op2OSvSn02mEQiHs3bsXDMNQCRqdTtfveOQ4RNI/FAqhUqnQjraknxOBNG8mNq7kdyIaS45N8lLkb+QaGQwG6PX6qiww8vlMJoNAIIC+vj7EolEo5HK+yZ+wqBKavkKhoN6s9F6rNxphjMTjKhQKeL1eeL1eKuAaCARw8OBBmM3mATmmsUK9PSNp/raeGLftzW9+8xvcfvvtuPjii2nR609/+lP691KphAMHDiCbzdLXNm/ejP/8z/+kv19wwQUAgEceeeSU4UEpqoXpJgrV+lQQd5fNZrNDUhYfSehspBiPscgDr1AoaJGpuLOseEyxsZAaIOL9kP9LPydlt0mNF9mJSkkOAF9UaTKZMGPGDMpUfOutt2AwGOByuWiPHyKrks1m+4nySkN2Ug+PjE/eI85BVbuXxEW51c5HahzJP1IcOmvWLCQSCfT29uLDDz+kjEuPxwOj0dgvV1Yul+teriBGo4xRtZyNUqmkMjpEEZsU2JLmdh6PZ0yUxZthujGAzWYbtMC1o6NjwI39ne98B9/5znfGZHwxtZs8hI1gtw0VpP9IKBRCOp0ednO/ei4U4234iNqDRqOhoSPy3RGGnbT+SKoJJw7viUNn0vlLz0VKIZd6PCzLC4I6HA6aXwoGg/D7/Th69Cg4joNer6eK0tXaaYhzX+RntQVHfH7SvJP4b9L3iyE1StLzI1TnefPm0VDiu+++2+8cVCoVzXWl02lYrdaqLMjxRCM9o8GMgVgRO5/P03uhs7MTdrudtmoYqbJ4k003BTDcbq9jjaEs2ITOS9oDWK1WtLa2wul0DvvmradnBNTnpiWLHWFrlYQGcOQBFf+rlruRhtzEeRzyf+l5SEOA4nMVj8NxHKLRKFU012g0aBVUqvv6+nDs2DGk02m4XC5eHXuQsKA0PCf2jMSGRxyWrPZ9VzMOtTwv8n5xl1SDwUDDUCQ/cvDgQWg0Ghq6I6FJ4imJQ6DjaSwaHaYbCjQaDQ3pSpXFnU4nbQc+nHxbI9h0jcKUNUZizwhoTEuHasavWCxSplZCkPv3eDw4/fTTR+XW1zNnVI+xCKmgUqkgn8/T5DkxPmJGHpmT1BsSh9yA/jTvarkj8jnpT7FXJG7OyDB8rcrixYv5glPh/TNnzkQqlUIwGMS+ffv6MbRIfkk8N6lBIqjWeqOW5yb1mMixpIa6WnsGKcQsRBI+JTmwfD6PZDIJu91OPVRpkbL4+o0VGhmmG4lnMlbK4s0w3RSARqNBUlAeBhqrFVcqlaggaSwWo62UFy1aNGYJz3obo/Ew7GQxJT8JBXn37t1wuVzwer0090IeYqnag3jREl8PQgCoFraqFW4iC0E2m0UkEunXnn7evHmwWq0DvBoCs9kMk8mE2bNn0/olcX7J6XT2++7FC7p0TtJcl5TcIJVWIiDvl8lOqmPXWvxYlqX1NeFwGCaTCa2trf1CTOl0GsFgEAcPHkSpVKKq2FarlRowAP0M01gZkMngGdWCWFmcbFIOHjzYT8CV1JZJ0SQwTAFotVpKYADqr4hAJGbef/999PX10UVo3rx540IFrVeRLTD2xqgaE45Qv88++2xkMhn4/X58+OGHkMlOtqXW6/X91B6I0oNUf05KRKjlFZGxgZMbiGAwiFQqBZvNhvb2djgcDrqgSxlrUmNBFmW73U7zS0Sk9ujRo7BardQwiZmD0nCe1Kuvxr6Tjg+AsuBqqSJwHE85DwQCCAaDkMvlaGlpqSmaazAYMHv2bEp8CAaD+OCDDyCTyWhuxGg0UsIDmctYGKaJRGAYDYxGI4xGYz9l8X379qFcLlPyiFhZnLAlPwqYssaoEWE6sSJ2JBIBALo7Hu8iucnmGZHwjlQRgYSExLtBo9GIefPmYc6cOejr64Pf78fOnTthMpkopZbUxxCauFTtQTrfaotbuVxGLBZDb28v+vr6aOfLRYsWUTFYsYdCFlmpLJD4/+JxxTIzhPbd1dWFQ4cOwel0wuVy9VPNqGWQap2L2AgNFobL5/MIBAIIBALI5/Nwu91YvHhxP09vMDDMSfHRuXPnIhqNIhgM4u2334ZGo6GGSavVDggdjtQwTVQCw0jBMAOVxQOBAFUWJ4y8SqUy7m3VCcRh7kZgyhojMbUbGL8wHWEZSRWxHQ4Hjh07ho6OjjEfsxrqSWAY6VjVDBBhwZF/g0Es2yJmsZFiVHG/GlIfw7IsSqVSP2086ZwSiQQNwymVSrhcLsyYMQN6vb6q11SNcCCGlCQgHY9hGGg0GsrCInmozs5OKufkcrkGjE+OLfXEyPkSL7EaKpUKent74ff7EYvFYLPZMGPGDLhcrlHtvGUyGWUWkjFIfoRsFlxC91hxrg5AVaZhLUzmMN2pIDbu8+fPRywWQzAYxHvvvYdyuQyj0QiHw1FTWXyqYMoao2qe0ViF6Vj2pCJ2JBKBQqGAy+Xqp4idSCQmZZHtUDAcY1TLAyL1QCPddSqVSrS3t6O9vZ12+Ozs7ATHcTSMR1QS1Gp1P9HWcrmMTCZDiQgsy8Jut+O0006rqtgsJTeIr4O0xkeck6pmrMR/I+curl+Kx+MIhUJ4++23odfrqWFSqVQDwnFib7AaOI5DLBZDIBBAKBSCRqOB1+vFokWLBjRPHAuQMF9LSwuKxSJCoRCCwSAOHDgAm81GcyMkfye+PoMx8mpd/3qgETkbm80Gm82G+fPn48033wTLsoMqi08VTFljVM0zGs1izXEcXSjC4TAYhu+FcsYZZ1S9MerN3ptInhEJzYiN/1gYoFoQd/iMRqPw+/3YvXs39Ho9vF4vLUAsl8vUmyL1MrNnz6YK2AzTv625eLEkf5MW0kpJBuLzFbPwxJ6SuKhWXLgqk/HdYK1WK+bOnUtZl0eOHIHdbqf0YDEduxqIwkIgEEClUoHH48Hy5cvHVLn9VFCpVHSzQGjOx44dw759+yjxgaiqnIqR10hj1CiPDDhZb2e1WjFt2jSqLL57926o1WpqmEbbEkaMJoFhHFCNwDBcT4UkeIkcD8dxcLlcQ1LEbkRdUyNzRlImHHkfyQPVY3fJMCfbApTLZYRCIfh8Phw4cABKpRKlUok+2CR0RNQeiKJ3Ldkh8e5dGluvFmIUe4LSB1xMsJAuduR3hUJB8wbFYpHmIk+cOEEZWOJOpUSixu/3I5lMwul0Yt68eTVZWvUEoTkTSaVgMIjOzk6wLEuT9mazuSYj76PkGdUaXxyiFiuL/+Mf/4BGo6G5yMG0Dic6pqwxEgulAkM3Dhw3UBHb6XRi4cKFsFgsQ74x62kcyHiN8IxqMeHEkjz1BgmjRqNRpFIp6HQ6aDQaZLNZpNNppFIpGhoju0+VStUvjCcNI4lrfqQ5IeJNiVlwYo+pWnivGklB+j4ShjMYDLDZbJg9ezbS6TRlFgI8hbxSqSAej9Oi1SVLloyJFM1Yg2GYfmwykht59913oVAoqOKDwWDox8irF0u0GhrpGQHVjaFUWTwcDtM8HVHO8Hg8dVMWHytMWWM0HAUGjuP6CZIWi0W6s7TZbCNaUMWhmHrczPUOCxLqOjA4E65ekNKUCQV8xYoVtCCVhFr9fj9lfpEwHpEeEtPExfVLtTwm8d+qFZyK/1YtPCc2YCzLUgNEjLkYZDH3er3gOI6KnbIsC51OB7fbDafTOSENkRTS3Aih0e/evRs6nY6Gn/r6+hAMBqHX6wGgn/JDPZ6rieIZ1QIx4i0tLTQaEAwGcejQIZhMJhrKG48c4VhjyhojEqYTh1ikxogksUOhEPL5fD9Ry9Fy+6stUOOJ8fbExEQElUqFeDyOzs5OWkle75YCBKTFQyAQQLFYhMvlqklTZpiTbafnz59P2WWHDx+GzWaD1+ulVfFimnipVOrnLYmPJ851SMcSe0zScJOUUVirdQNBoVCgeaBsNkvp2DabjbLYSHsDq9VKWWyN+l6GA5mMb6nhcrmQy+Vw5MgRHD16FJVKBSqVCh6PBx0dHfS6jZSRNxJMRM+oFhQKBW19UiwW+0k6WSwWGvYda2XxscLEv1NHiFphulwuRz0goog9Y8aMfsWMY4Faie3xwniE6Wox4RwOB1atWkXbfRw4cAAtLS1obW2tS8yaMLUCgQCSySTdRAznOxQzv0jdzZEjR9DZ2Qm32w2v10vzgiSMR2ji4qaA0gJYoL8wa7VNAjFAxAMajI4dDofh9/sRjUZhtVoxffr0AUZG3N6AiHWeOHECnZ2d/fJLjc4d1QLHcZR40tvbC6PRiLlz58JqtdKk/d///nc4HI5+9H3x5kDshY6l8Wi0NtxI1w+VSjWosrhYBFeKJoFhjCGmdufzeWQyGWSzWXR1ddFq+vHc0Ys9o3pgrMJ0Q2XCKZVKzJo1CzNnzkQsFoPf78euXbto3oIUoo4VxEnbSCRCa1jGIj+i0Whogp0UH77zzjtQKpXwer1oaWmBVqsdQBMnvZeklG6gP4VbnBMiXlAtA0RCiYSOrVKp4PV6sWDBgiEpd4jFOsUV/hzH0ZBNPVl1gyGbzcLv9yMQCIBlWbS0tGDlypX9NjR6vR7Tpk2j+m6HDx/G3r17KfHBarUCOJm7rMXIGynGq+h1OOOP9hyqKYv39PRg3759sNvtE8aLZrhGltyOI/73f/8XN998M7RaLT72sY/hiiuugEajwemnn16XimaWZfHqq6/i3HPPrYtbHIlEcPToUdqocDgYKyacmNGVSqUG6MkNF+I6md7eXqhUqrolZ4nx8/v96Ovrg8VigdfrHfDQStUeqp0DCfkNFobL5XJ0YS6VSvB4PPB6vWNST0I8D3IdCfuqEbmESqVC75F4PA6Hw4HW1tZ+EjiDgeQGSSNOAFTxwWQy0feIjdJo8ktHjhxBJpPB4sWLR/T50eJ///d/sWjRItjt9jE/NglxB4NBpNNpOBwOzJgxA263uyGblSnlGRUKBTz22GN44okn8Le//Q06nQ7/+q//irVr16JYLCKfz9dNWkMcpqvXeMMdi6hijxUTTtx0TMz6kslkNIw0lN092dEHg0EqjXLmmWfWtdBPzFgqFAo09LV//35qZEleSqz2ICY9nEodmySc/X4/EokE7eIr1qobC4gp7+L80pEjR2gzOLfbPW47Y47jkEgk4PP5EAqFoNVq4fV6sXjx4mF7tQzDwGw2w2w295Mi2rNnD629IZsVad+nkRAfJjqBYTTQ6XSYOXMmZs6cSfUfG4kp5RmVy2X80z/9Ey699FJccMEFWL58OcLhMNRqNY4fP45MJoNFixbVbT6vvvoqVqxYUReKZTQaxYEDB7Bq1apB31ctD0TqWsaDCUfkknw+HyKRCPUwxI3nANDwAUnQT8RcB6H9EyKBOO9E2F5DOQbJg/T29g4ozK0niJENBALIZDIDJJVGC5KL8/v9KBaLY+rtSSEN4xqNRhp+IuoVYkM0VMNEFMrruW6I8corr2DZsmUDWtWPB8iaoNFopqZnFI1G8aUvfQnPPfccZDK+/fhPfvKTmonuaDSKu+++Gy+99BK6urrgdDpx1VVX4Z577jnlF6JQKPDCCy8AAGKxGAA+/KFWqyGXy+ta9wPUt9ZosJxRLSKCWBduPOdFivWKxSICgQCOHz9OPQy1Wo1EIoF4PA6bzVY1QT9RwDAnxS3nzJlDFz8i2kqMbDXvm3iKgUAAAKrmR+oNtVqN6dOnY/r06QMkldxu94hkZ1iWRTgchs/nQzQahc1mw6xZs4bUu2c0EHuyJFxMWjWQhD2Zw3A08iYrgWGkmNIKDGvXrkUgEMDLL7+MUqmE9evX45ZbbqnZktzv98Pv9+O+++7DwoULceLECWzatAl+vx9PP/30kMcleRrCqKu3IgIZs56FqOLzGy9NuNGASMRotVp0d3fThVmlUqGjowPt7e0TlnYqhZiOTNh9RO3B6XTC6/XCYDBQ+ngmk6EK4BPJ2yMQSyqRPB2pxSJ5usFCrMlkEn6/H8FgkLL7Fi5c2JD6FnG4WMouJJJK4hwMCauKa7uk9WKNQqONYT0xrmG6zs5OLFy4EG+++SaWL18OAHjxxRdxxRVXoKenB16vd0jHeeqpp3Ddddchk8kMecdcqVSgUCjwwQcfYPr06fD7/QiFQli6dOmIz2e4eO2116h00HgjmUzivffewznnnFM3TbihguQMCEOMhLfIAidWk7bb7WhtbZ0QMjYjQTKZxNGjR2kxqlqtRmtrK6ZPnz4hvb3BQKjlpLjWYrH0U+EuFosIBoPw+XzI5XKUEj9R1aWJFFEgEOjXP8hisQBA1fzSvn37oFAoMG/evIbM+cUXX8QFF1xQl1C/WFG+ERjXp2Pnzp2wWCzUEAHAJZdcAplMhl27duHqq68e0nESiQRMJtOwHmZyURvtGY33mGImHElO2+12WsfSyAWd0HEJQ4wIy0oXK5J3IYyygwcPYt++fWhpaYHX66UKChMVhOFFPAOlUomOjg5oNBpEo1EcP34c4XC4YbmhkYKoRHs8Hlqr0tXVhc7OTqhUKhSLRZjNZkybNm1cCRBjBWlzwEAggPfff5+ep7Q5IKlLNJlMDSl+lSp81AON3ESM690TDAbhcrn6D6hQwGazUVrmqRCJRHDPPffglltuGdbYDMP0K3xtRM5oPMN0UiacTqfDtGnTcPToURw5cgRerxetra1116ciu+VAIIBUKgWn04m5c+cOydPRarUDapd27949brVLowVRoyYJerfbjaVLl/YT0W1tbaU5DFIN73A44PV6J5X3Vy6XUSgUUCwWoVQqodFoqIyWWOtvInpEUjDMyf5B8+bNo5JDb775JrRaLaxWK9V8I3VbJNpQbykiMuZHASMyRnfddRfuvffeQd/T2dk5ogmJkUwm8clPfhILFy7Ed77znWF/XqxPV08yAcFYj1mrOR2JdZOYP2GvvfHGG7BYLGhtbR11E7XBIG6q1tfXB7PZjNbW1prJ/FNBrFs2b948Sn8+ePDgqGuXRotyuUzDioR0caoEvTiHQQo9Dxw4gH379lGG2UQpRBVD3HKDbCxIzQsp6iX5pT179tA6MFIkPBlACDYWiwVGoxHd3d3o6ekBwHtSZENHSA9iD2m8DVMjjNGk84y+8pWv4MYbbxz0PTNnzoTH40Fvb2+/18vlMqLRKDwez6CfT6VSuOyyy2A0GvHHP/5xRIuaWIVhshIYhsuEYxiGdt4kemZHjx7F/v37qWTPWIS9ahVSzp8/f0wXosFql0gYb7y9P/G5hkIhKuR5+umnD5twodPpaKiILORvvfUWtFotXcgbSeIgBobkWPV6PVpbW7F06dIBz6BU7JTkl44ePQqz2UwlZyaSNyuG9FyNRiNmzpwJt9sNlmX7ebN2ux0ej4fWgIl7UIlLIsZaighoekaDglB1T4VVq1YhHo/j7bffxrJlywDwvHmWZbFy5cqan0smk1i9ejXUajWeffbZESXUpDmjRoXpRjKmVJJnpEw4tVqNjo4OTJ8+HfF4HD6fj4a9Wltb4fF4hhXnF9fZiKvf69W4zWAwYO7cuVW9v2q1S6MFKQQMBAJUTkesAj4aSBdysvBVE22tB8QKEOVyeYDi+akgzi+JiQ0HDhygmnITJSxZKBQoa7dUKtWk2ZPmgESp4NixY1Tvj0gREW9pPKSIxBvQjwLGvej18ssvRygUwubNmym1e/ny5ZTa7fP5cPHFF+PRRx/FihUrkEwm8YlPfALZbBZ//OMf+xUTDvfhPP300/H1r38dn/rUpyjb7Pzzzx/zc6yFPXv20N3uqVCv7qilUokuFJlMBh6PB62trYM2CyS5kUAggHw+X7W5W6NAapf8fj9yuRwNe52q+eFgxyNhwXQ6PeaFoKdCLpejRbUkDzWa8xkMJLw6nkxGaddZUr80HuczGDiOo/JO4XAYVquVhq+Heq5kM0YkdIg6iMfjGSBFNBaGKZPJ4LXXXsPq1auH/dmRgGVZyOXyhhFsxp3+8pvf/Aa33347Lr74Ylr0+tOf/pT+vVQq4cCBA8hmswD4BXzXrl0AgNmzZ/c71rFjx9DR0THksScCm24wW9+I7qhKpZLu+AgD7J133qEU5JaWFqhUqn5J90QiQdXNxzP3NBKoVCpMnz4d06ZNG3A+ROT0VGEvlmVpAWs4HIbJZBpVzms00Gq1mDlzJmbMmIFEIkHPZ6zyMYRmT0JT5Dqddtpp4xIe1Ov1NCxJBGCJCC05n/EMs+ZyOfh8Pip14/V6MXfu3BFdQ2nRMwmzkvMhhkmv1/drDjhSjbx6F7w2WoxnSskBSXH++edj7dq1WLt2LbLZLHbt2oWPfexjdRv//fffh81mQ1tbW7/Xq2nCEQ9oPCR5TgWyQ+7p6UE8HodarUaxWKSSKm63e9IUowJD2/GTXS6hY49E2qdekNb7iFsADHVjQPKHfr8fhUIBbrcbra2tDWHA1VJgHyu2JMuy6O3thc/nQywWG7YY60jGE5+PXq+nVHHCOhQXzw6V+JBMJvHmm2/i4osvHvM5V0OlUqE6i43AxC4MGCXE1O56d14F+rPpTsWEa2RBajKZRCwWQzqdhlqthkajoZ1cS6VSw3dMw4XYsJCwF6ldIm1D+vr6kM/naZO6as34Jgqk9T6BQICKtpKwV7X5k0XS5/NRIzYRvFuxdI+4N5U4vzQSsdh0Og2fz4dAIEAbzY2XxyeGWI2jVCpRZilpdEiID9XaigxmmBot0lpvTGljJA3TASfjovUAw/DdPqXtueuhCXcqiKvRSSxfXCMjXsiOHTsGm82G1tbWMVeUHm9otVpMnz4dGo0G3d3dNFxDapq8Xu+EZXtVg5iUQjw7UrhJ2IWVSoWSEUhb6rFmOY4ViEQUIQoEAgEcOnQI+/btG1K+jCif+3w+pFKphm8ulEol7baaz+cRCoXQ3d2N/fv3w+FwUCmioTDyPkq6dMBHwBiJqd3A+BsjMRFBoVAgEAhAJpPRdr+NXMirqTTPmzevasJavNvL5/O0zkdMEZ9o4SwxxDUwoVCIUs/POOMMyOVySlI4fPgwnE4nWltbJwQhY6gQ5y/mzp1L9deOHTsGADCbzVi4cCHdkU8G6HQ6WvQsbXJIwngkH5NMJuHz+RAMBqHVatHW1laVft5IaDQaKkRL1EiIoSUkIIvFUpORV6lUJtXGb7SY0jmjtWvXoqOjA3fddde4NrurxoQjCwBh8KRSqSEx18YapEgzGAwiGo0O0BcbDki9jc/nQ29vb7/i1olCahB3D61UKrS7aa3ciFhNu561S2MB0o6CMMSMRmO/GhkizkrYgJPFKIkhzseQejZCDhDXzU2WcyOGlGySGIahoVZCLSdhvEAggK6uLpx77rkAxp/izbIslEplw2SdprxnRMJ0Y93sbqhMOFKwmUql0NPTgz179tCd3HjJ27As268glRRpjlZFWdykTdwO4sCBA9TQEoprPSHuMJtMJgf1+KSQ1i75/f5xrV0aCxC6tN/vB8dx8Hq9OPvss/t5qjNmzKCGdu/evWAYhubRGtm2YrggvbbEuRWZTIZCoYBCoYBcLge9Xj/hvqNaqNUc8K233oJGo6FU83A4jHQ6jRkzZqBcLo9J19pTodF+yZT2jG677TbIZDL84Ac/AMA3uzvrrLNGFV4aTBFhKESESqVCe9Cn02l4PB60tbWNmtVUbcdFvILxFBqVdvHU6XS0oHY8QyakaR+hYxP9OrfbPeo6ibGuXRoLSLvCkjYVQ2GIkc0J8aAMBgMNe01U0VbSmM/n86FcLlOtRfLskvySWISXhL0mi5ckRiKRwOHDhxGLxcBxHDQaDdra2uD1emlzwNF2rT0VKpUKVCpVwzyjKW2MvvKVryCZTOLHP/4xAL6f/NKlS4e9OI/WANUC8ZYCgcCIvSVSHR4IBChltxa7arwh1TIj9OGxXCDEdOzx3u1L1bhVKhWtxaoH1Z3jOMTjcVoTpNPpRq38Xc2LnCjqCFL231BIM7Xak0xEir4UlUoFoVAIPT09/cL4Wq2WUvkTiQRsNhv9jkhzQLEhGivD1Ogw3ZQ2Rl//+tfR09ODX/ziFwCG11+oVnvu8egNRBZxn883JG9JTIdNJpOw2+39OllOBBCjEQgEKMNopIs4IV74/X5ks1lqcOtJOKhWu0Qke8Z6ESeEEb/fj3K5TBepsfZwpeoIZBGvdw6G5Pl8Ph9kMhm8Xi+8Xu+w2X/Sep+J6gGm02m6CVWr1Whra0NLS0vVTShRPwkGg8hms3TzQO59cZuJ0WrksSwLlUrVsDVkShuje+65Bx988AG2bdsGAHjjjTewYMECWK3Wqu+vpgk3XgaoFpLJJHp6ehAMBmnIq6WlBQzDVC0UHIuw1HiCFGySAkQSXnI4HIM+MNUau3m93gnRkpzULhFjMRZ9l8j5+v1+RKPRcTV2UogFQ3t7e6HVaqkHNl4eoNS4E0bjWBEtqimINHLDJi4sTyaTI4oaiKWISDmGx+MZsLkeiRQRyX+r1eqmMRoP/OhHP8Lrr7+Oxx9/HADwj3/8A3PmzOnXcrgWEYEUpDYqdFEulymbJpfLAUC/MNFkYHtJQXbAYmkWEpYABkrVTPSWBLUUrocaaq0WBiQSRo3qtiltkUGMIgkRjRapVIoWppL7meRFxgtSvT/CMKxHKDuTyVAviCjQE8mtkYKEbwlBiRRFk9DkSPJLTWM0zvjpT3+KF154AU899RQAYPfu3ZgxYwbsdntNJhwxQo0E2QEFAgGwLAubzUYT9nq9nuaWGu0hjBTkXHw+H/Xy1Go1UqkUSqUSfbAaSRgYLqr1/qlVuzQRCRLVIPYAR/O9SMPQ45FLHArEJB8iAUXOaSxzjkSOqKenB4lEAi6XC62treNi/KREHsKclUoRnUojr2mMxhkPPvggfvvb3+K5554DALz11ls0FAA0XhNOjHw+Tw1QNpulMvVithR5qHt6epDNZvvlliYbxJXziUSCPiherxdtbW2Tin4sBWk94ff76Tl5PB7qGUYikQlNHZeimsd6Kg+uUSzLoUK6iOv1eppfGmloMpvNoqenB36/n+ZJx9vrE0NaU0h6SpGawsE8JvK3RhbmT2lj9Otf/xqbN2/GCy+8AJZl0dnZiWw2S28SpVLZUANEFuRgMIhYLEYFMIeSF5HmliaDt0SKNEl4Qa/X92snHovFaEGt0WikBbUT+ZwGA8uy6OnpoaFWmUwGu92O2bNnT1pjK81tWa1WmsuTy+XU6/P5fCgUCjSfNpE3TERPLhAI0O695Dk81UaBZVmEw2H09PQgFovB5XKhra2t4VqHhUKBri3JZJJKERHWZDVGHoCmMRovfPvb38b//b//Fz/96U/xyU9+EgqFglJHM5kMWlpa0NbWNq51OFLU2pERt3q4mAzeUjqdpjF7juP6sbaqoVQq0QWNhLEapTA9EpCeUaQnEpFVImGvXC5HQ1UTLTQ3HBBv3ufzIZ/PQ6VSoVAowGw2o62treGCrCOBtHcXIQlIw63ZbJa2ppDL5VSPbiKSiUhNVjAYRKFQgMvlgtFopJvAeDyOJ554Atu3b8dLL70Eh8PRkHlOaWP0wQcf4P7778eOHTtQKBRw4403Yv369Whtbe3nWZhMJrS1tcHtdo/LrqBaLcR4xKpJWCQYDPZLpjfCsyDdPv1+fz9ZGpvNNqxmZlINMkLgmAihHjGIVBJhpJEiXGlYaiKSFkYKQkH3+XyoVCrQaDTI5XJ161U0npB2NSZF5Gq1Gn19fYhGo3A6nWhra5s0mobic7rvvvvwwgsvYO7cuXj//fexaNEibNq0Cdddd13D7sMpbYwIyuUyXnjhBTzwwAN45ZVXsHr1atxyyy246KKLqMJxT08PSqUSWltb0dbWNibsLSKOWO8qccLE8/l8dfWWSMiC0M9JzHosmtSRAkGfz4dkMjmuSeHhQKyFx7IsDUsNZZPRSDr3SCEtTJX2iiJ/J7kxs9lMc2OTNdyayWRw5MgRhMNhWotDZL4mU58vgN9A/OEPf8C2bdsQjUahUChw4sQJtLS0YO3atfj2t7/dDNPVAxzH4ciRI3jwwQfxyCOPwGaz4eabb8Z1110Hi8WCaDSKnp4ehMNh2O12tLW1nbIeRgriEQQCAcqqIrHaeocsyC6ceIAGg2HMvSXxTj8UCtGWBeO5Kyaaa36/n/atqadnQQwjoT+PRfO28ahdGkuISRkymYzmXQe75tW8Y6/XOyk8CWJUe3p6EI1G4XA40NbWBrPZTDdcsVhsWPmlRoHjOBw/fhzbtm3DY489BqvViltuuQXr16+H3W5HPp/H888/jz179uB73/tew+b5kTJGYuRyOTz11FPYvHkz3n33XVxzzTXYuHEjli5dikKhAJ/PB5/PB4Zh0NbWNmg8mBS0BYNB9PX1jalHMFYg3lJPTw9yudyo82VEO8zv96NYLDZEG4x4Yj6fj3oW0o6uYwUpO4wUho62ZqTaOKOpXRpLkPva5/MhHo9Tb3QkxkSsjk5knLxe74ST7Mnn8/2efVILV83oihmwuVyuXyh6IhjbcrmMl156Cdu2bcOOHTtwxRVX4LbbbsMll1wyIT3vj6wxIuA4Dnv27MHmzZvx29/+FgsWLMDNN9+Mz372s9BoNAOYMu3t7bBYLADQTxmb9MvxeDwTskCToJq3RJh4p9rZEeqoeFdIwkqN3hXmcjm6c2dZli4io/XOpEaX1ATVg0xRrXaJiKOO59jiwlS1Wk09z7EwurUEbhtJ+eY4jnpBJPQ4nKgIx3HU2IrzS+MtUlwL4XAYjz76KB5++GHk83ncdNNNuOWWWzBt2rQJYSRr4SNvjMSIxWJ49NFHsXnzZoRCIVx33XXYsGEDZs2ahWw2i66uLhqmAECb5jVCz2ssQFhfg3lLJDFPjK5Wq6VhuIkYLyf0cZ/Ph3A4DIvFgtbW1mGFUaQe10QwutVql8ay7xK5FwjTtB69t6qJtg5ViXwsQLwg0oqDMOJGE+6t1b7F4/GMaxiZZVns2rULW7ZswTPPPIOVK1fi1ltvxac//ekJyfCrhqYxqgLSiO+Xv/wlnnvuOSxfvhwdHR14/fXX8cUvfhFnnXUWSqUS8vk8Wlpa0N7ePmFi+yOB1FsyGo1wOBy0DqqRIpqjQbFYpGyvYrHYrxlbNYhZyRtGhQAALL5JREFUbgqFgi74E4nlRjwL0g5iNA0OiawMCT2OR05xqBCLtrIsSz3QsX6uyGalp6cHkUgENpuNekFjbQClkYTh1BEOFalUCk8++SS2bt2KEydO4LrrrsOtt96KRYsWTZrnlKBpjGognU7jt7/9LbZt24Y333yTekCf+MQnsGHDBrjd7gELeHt7+4ROZJ4KpVIJPp8P3d3dyOfzYBgGNpsNs2bNGpLS+UTFYIsuy7LUIyD1P16vd1L0xZHKCg21dmm4RrqekObMSNuM0YYJxXlglmWpF1SvkHo1hZXhljoQcByHzs5ObN26Fb/97W/R0dFBadkT4TscKZrGqAYCgQCuvvpqXHvttVizZg1sNhueffZZPPDAA/j73/+OK6+8Ehs3bsS5556LSqWCQCCA7u5uSg8fi3xFPSCW3Q+Hw/3UwElhHzG2ZAGfrMYWOBmOOnHiBBWgNRgMmDZt2qSlH5P6EUIQqFa7JA1fSpUTJiJqibYOlfpOQsyEITuU/kj1gLh+ieO4IYf6i8Uinn32WWzduhW7d+/GZz7zGdx6660455xzJiQhYbhoGqNhguM4HDhwAA888AAee+wxeDwebNiwAZ///OdhMpkQi8XQ3d1Nb/729vZh08PHG+LFiwhGDtaQTKyIQEKTE2UnPRxI8y52u50a47FO1DcK0toli8UCpVKJRCJBW5RPlo2SGNVEW2sRSYrFIvWCKpXKhD1naT6WkKCkm4ienh488sgj+PWvfw2NRoNbbrkFN998M1wuV4PPYGzRNEajQCaTwRNPPIEHHngABw4cwOc+9znccsstOO2006rSw71eb0OT/iRU4Pf7qdTJcKT0Cb25p6cHoVAIRqORKldM5N31qRhpUgrzZKusl4IQMLq7uxGLxfqJ0E7GTYQY4vYJoVAIarWaEgRyuRx6enrQ29sLq9WKtra2hntBQwW5BwOBAHbs2IFnn30W5513Hg4ePIgdO3bgkksuwa233oorrrhiwj5ro0XTGI0BOI7Drl27sHnzZvzud7/DkiVLsGHDBlx11VVQqVSIRCJ0YRDTw+ux0Ilv8mrCliMF8ZZ6enqoIOZEUdseTa2OtLhzsDqTiYZMJkPZYeJiYLVaPeB6kDDeRKmDGwmIekpXVxey2Sz1dmfPnj1pDW40GsWWLVvwl7/8BYcOHUI6ncZll12GTZs2YfXq1ZMyjDxUNI3RGCMSieCRRx7BQw89hHg8jnXr1uHmm2/G9OnT+0nMq9VqtLe3o6WlZcxvMLJ7JItPNfd/LMeaKN4SqTUKBAKjVjGQyt5MlHyDFMOVSWpU7dJYgmw2iMK72WyGy+Wi50a8/slCROE4Dm+//Ta2bNmC3//+91i6dCm+8IUv4JprrsGRI0fw+OOP46mnnsLu3bv7NQadamgao3FCpVLByy+/jAceeAB/+ctfcPHFF2Pjxo249NJLAQChUAjd3d20pmMs6OFEnZcsxiQxWi+160Z4S9L21eOhwkAEQf1+P6W5t7a2Nkw9gOT8CLlEo9FQz284+a7xrl0aa5RKpQEswLa2tn7fg7SBHpGn8nq9E64YPZvN4umnn8aWLVtw8OBBfP7zn8emTZuwdOnSqs3vJrpRHS2axmicwXEcurq68NBDD2Hbtm3QarW4+eabcf3118PpdCKZTKK7u3vE9HBSOBgIBJBIJOBwOGib6Ebt4KXekslkGnEtzGDHJ56fWq2mYafxzMmRhDNhpI31eZ0K4sJUIoA7Fq01atUujWU9zEghpeUThf3h9Boiwr0Wi4UyRRt1XhzH4dChQ9i2bRsef/xxtLS0YNOmTVi3bh1VdvmoommM6ohisYjf//732Lx5M3bv3o2rrroKGzduxIoVK4ZFD68mqUKSuBONCSb1lkgOZiTeUqFQoIyqQqFA62oa0eeIiICS8xIbhrGENP813k0HyXmJ664a0XdprL1sqWgrIe/Ui6RSKpXwwgsvYOvWrXjttdfwz//8z7j11ltx4YUXTqiwbyPRNEYNAMdx+PDDD/HAAw/gN7/5DTo6OrBhwwasWbMGer2+Jj1cqn9F8kATgTRwKlTb4Q7Fq5DmbiZafYy059JYtdcuFAo0hFYqlWhosF7f9VBql8ZjzHrkH8VlDeMp2spxHILBIH71q1/hkUceAcMw2LBhAzZs2ACv1zvlw27DRdMYNRjJZBKPP/44Nm/ejK6uLnz+85/Hhg0bMH/+fBQKBXR2diIWi4FlWQCY9LRjAANaU1fzlsQLoVwup/mMiRb3F4PIJ/l8PqRSKZpEHyp1nni8Pp8PkUgEVquVhssauXse775LYo3EetaxSSMMRqORRhhGs5FgWRavvfYaHnroITz//PO44IILsGnTJvzTP/3TpGYvjjeaxmiCgGVZvP7663jggQfw+9//HnPmzIFarcb+/fvx+9//Hi6XC+l0mkr5t7W1Nbyx3GhBvCVSG2IwGKDX65FOp2koZTiL+URCOp2mytdKpZIa02o5rVwuRynZAKhxnoiGV0zmICSZkRiO0ajHjweIQRT3IWtpaRmWaGsikcD27duxdetWhEIhrFu3Drfeeivmzp076e7fRqBpjCYQ9u7di5/97Gd44oknoFAo0NbWhkwmg8985jNYv3492traBtDD29raJnW9iFS4kmEYGjqZNm3ahOt3M1ywLEsLamOxGG3EZ7VaafhR/Hq9FKtHC2nYldQunSpvSejXPT09yGazo+6rNR4gLMNAIEDlemqVCHAch/fffx9btmzB7373OyxYsACbNm3Cv/zLv0z6e7feaBqjCYS//OUvePbZZ7Fu3TqcffbZqFQqeOGFF7B582bs2LGjX7t0juPGhR5eLxCVZiLfL6YVi2tIhsOemujIZrM4fvw4gsEgKpUK3XBMmzZtQrbjGCpIeLJaKwjiEYi9IJ1OR72gRrP1BoNYrocYXJ/Ph7PPPht2u522737vvfewZs0abNq0CStWrGh6QSNE0xhNAnAch6NHj2Lz5s20XfpNN92E6667DjabbQA9fKJK9IgXrUQiccr+NSS31NPTQ5P40rqSyQBpLsnlcsFgMCAej1NSxkTIDY0FxLVLAGAymZDP55HL5fr1SJpsIN/hhg0b8MYbb8BgMECr1eJf//VfsXHjxilZjPqLX/wC//Vf/4VgMIgzzjgDP/vZz7BixYqa73/qqafwrW99C8ePH8ecOXNw77334oorrhjyeE1jNMlQrV36hg0bcOaZZ9LW4oQe7vV60dbW1tAiRqkaBGkJMBwaerWKe8LEm6iLt5Rlp9VqqTcgDqkS1pzP56OqEfVkzY0HUqkUuru7EQgEIJPJUC6XYTabqYc7kb2haiDtu7du3YpXXnkFV1xxBYxGI9544w3E43F885vfxL/92781eppjiieffBLr1q3D5s2bsXLlStx///146qmncODAgaoCrW+88QYuuOAC/OAHP8CnPvUpbN++Hffeey/27NmD0047bUhjNo3RJIW0Xfr8+fOxYcMGfPazn4VWqx1ADyeikfUKIVRLdBOV5dFA3IuHGNxGqiFIIVY4J91zSYJ/sGtf73qisUalUqH1SalUCh6PB21tbTCZTP2KdSdTz6je3l48+uijeOSRR5DP53HzzTfjlltuQXt7OxiGAcdxeO2111AqlfDxj3+80dMdU6xcuRJnnXUWfv7znwPgc5/t7e340pe+hLvuumvA+9esWYNMJoM///nP9LWzzz4bS5YswebNm4c0ZtMYTQHE43H8+te/pu3S165diw0bNmD27NlUTr+npwcMw9Bi2vHIUYw3BVgMsngTJp7FYqE773p7S1LPbbTKDNJ28GOltDAeSKfT6OnpQSAQoLJEtQg1jahdGi6mQvvu0aJYLEKn0+Hpp5/GVVddRV+/4YYbEI/H8ac//WnAZ6ZNm4Y777wTX/7yl+lrd999N5555hm89957Qxp34m+5mjglLBYL7rjjDnzpS1/C3/72N/zyl7/EihUrcP7552PDhg24/PLL0dHRgUgkgp6eHhw9enTM6OEkHEWKCMkCs3DhwnFdYEgXWpvNRr2lw4cPY//+/XXzlvL5PPWCyuUyvF4vzj777FGPq1Qq0d7ejra2NqpBt2fPnhFr0I01iDhrT08PradaunTpKVUaGIaByWSCyWTCnDlz6MblyJEjDReirda++6233pqU7btHi0gkgkqlArfb3e91t9uN/fv3V/1MMBis+v5gMDjkcZvGaApBJpPhYx/7GC666CL4/X5s2bIFX/3qV/HVr34V69evx4033oilS5fSDq7vvffeiOnh1VpeD2VBGg+oVCp0dHRg+vTp1FvauXPnuHhL1dS858yZMy6LqHjxnjt3LiVBHDp0CE6nE62trXUtfia1U+KygqVLl46orEAul8Pj8cDj8dCQ7qFDh9DZ2Tni2qXholr77ttuuw1r166dNKzUqYSmMZqCIOG473znO/jGN75B26Xfe++9uPLKK7Fhwwacd955mDVrFt3hHj58+JT0cLIQ+/1+Kjw5ffr0CcPcO5W3NBoyBzHg4j5H8+fPr1thqliFgvQt+uCDD6BQKOjr4+GJsixL7xHSomLJkiVjmu/RaDSYOXMmZsyYQckuu3fvHnLt0nBRrX33888/P2Xad48WDocDcrkcoVCo3+uhUAgej6fqZzwez7DeXw1TOmcUjUbxpS99Cc899xxkMhk+85nP4Cc/+UlNplI0GsXdd9+Nl156CV1dXXA6nbjqqqtwzz33TEo6qhikXfrmzZvx6KOP9muXbjabaR1IIBAYQA8nmniEHUW0vCZqqwExxErbpAPoUGnU1TrAksLUiRC6IarUPp+P5ujGqn2GuFGfUqmk3nO9woNDqV0aDkj77ocffhi//vWvodVqp2z77rHAypUrsWLFCvzsZz8DwN9r06ZNw+23316TwJDNZvHcc8/R18455xwsXry4SWAAgMsvvxyBQAAPPvggSqUS1q9fj7POOgvbt2+v+v4PP/wQd999N2688UYsXLgQJ06cwKZNm7B48WI8/fTTdZ79+KFau/SNGzfi9NNP70cPz+fzUCgUKJfLcLlc8Hq9k1oTT0qjrqWMTvI0JMne2toKr9c7oRPYpLGg3+8Hy7I0bzacDQNRi+jp6ZlQslPSvkvDETatVCp49dVX8dBDD+F//ud/cOmll2LTpk1Tun33WODJJ5/EDTfcgAcffBArVqzA/fffj9/97nfYv38/3G431q1bh9bWVvzgBz8AwFO7L7zwQvzwhz/EJz/5STzxxBP4/ve/36R2A0BnZycWLlyIN998E8uXLwcAvPjii7jiiivQ09MDr9c7pOM89dRTuO6665DJZCYFxXY4kLZLX7x4Mc4//3y89957sNvtuOmmmyCXy5FKpWC32+tODx8vVPOWWlpaaBvrdDpNWydMdPqxFEReifRcslgs1BOstfiSEKTP56OqEBPR+Fbru+T1eqvS36PRKB577DFs27YNiUQC69evxxe+8AXMnDlzUn2fjcTPf/5zWvS6ZMkS/PSnP8XKlSsBABdddBE6Ojrwq1/9ir7/qaeewje/+U1a9PqjH/2oWfQKAA8//DC+8pWvIBaL0dfK5TI0Gg2eeuopXH311UM6ztatW/G1r30N4XB4vKbacBw5cgQPPPAAtm3bhlwuh/nz52PVqlW4/fbb0dHRUVd6eD3BcRwikQiOHDmCVCoFhmFgtVoxZ86cMe9L1AiQvBnp/ySueSIhvp6eHsRisUmnBi/tu/SXv/wFH//4x2G327Ft2zbavnvTpk209q6JiY0pm60LBoMDYsEKhQI2m23IdMNIJIJ77rkHt9xyy3hMccLgc5/7HI4ePYpHH30U8XgcP/zhDxEIBLB06VJ89rOfxV//+ldMnz4d5513HubNm4d4PI6///3veP/99xGNRjHZ9jPFYhEnTpzAzp078eGHH8JisWDFihVYunQpFAoFdu/ejbfffhuhUIi27piMICzDVatWYenSpahUKti1axf+9re/4dVXX8XBgwdhs9lw/vnn44wzzpgwubChQKVSYdq0aVi1ahUWLFiAI0eO4MYbb8Sll16KAwcO4I9//CNee+01XH/99VPSEP3iF79AR0cHNBoNVq5cid27d9d87969e/GZz3wGHR0dYBgG999/f/0mOgxMurjTXXfdhXvvvXfQ93R2do56nGQyiU9+8pNYuHAhvvOd74z6eBMZu3bt6hfmuOyyy7B69WraLv22227r1y79zDPPpAnu999/HyqVasKrh0tDcxaLBTNmzBgQvrLb7TS3dOjQoX51S5OBsFENHMehWCyiUCgAANRqNSqVCnK5HLLZLHK5HFQq1aQxRED19t3/+Z//CZvNhieffBJXXnklfvSjH/UrwpwqePLJJ3HnnXf2k+pZvXp1TamebDaLmTNn4pprrpnQskWTLkwXDofR19c36HtmzpyJxx9/fMRhulQqhdWrV0On0+HPf/7zhKkObxTE7dJ37dqFq6++mrZLJ+rhpACSiJlOlDAXqWHx+Xw0sT/U5DcxYD09PVRWqZGFmcMF6ZPk8/kgk8koEYPcz2KihlqtptdmouWKxBhq+25CUpk+fXoDZzs+GK5UjxgdHR348pe/PCGN9KQzRkMFITC89dZbWLZsGQDgpZdewmWXXTYogSGZTGL16tVQq9V44YUXJu1ueDwgbZc+ffp0bNy4EWvWrIHBYBiUHl5PSAtTx4LyTLylnp4eatTa2tomXAiIJPl7enrQ19dH+yQ5HI6ans9Ep7A323efxEikesRoGqMG4fLLL0coFMLmzZsptXv58uWU2u3z+XDxxRfj0UcfxYoVK5BMJvGJT3wC2WwWf/zjH/vtnp1OZ5MKKkIymcRvfvMbbN68GcePH6ft0hcsWEDp4T09PSgWi3VTDxdTgKt5AmMBKVttonhL+XyeekEAKMlkuOcuvYaNbPderX33rbfeiiuvvHLChoPHG36/H62trXjjjTewatUq+vr/9//9f/jb3/6GXbt2Dfr5iWyMJl3OaDj4zW9+g9tvvx0XX3wxLXr96U9/Sv9eKpVw4MABZLNZAMCePXvolzl79ux+xzp27Bg6OjrqNveJDpPJhFtvvRVf+MIX8Prrr2Pz5s0477zzsGLFCmzcuBFXXnkl2tvbqTzPG2+8QdXDx6Iok4DopPl8PiQSCbhcLpx22mnjxgpjGAYOhwMOhwOFQgE+nw8HDx7E/v37qQGo18JN2IA+nw+RSAR2ux0LFiwYVbdYvV6POXPmYNasWfTYx44dq6vRjcfj2L59O7Zt24ZQKIQbbrgB77//frN99xTHlPaMmqgvQqEQtm3bhi1btiCfz+OGG26g7dIJPdzn84HjOLS1tY2KHi7uFaRWq6ladCPyHdLW6eNhdMWQ5sHG2whK24GMhxCttH33woUL8YUvfKHZvluCZpiuiSaGAdIu/YEHHqDt0jdu3IiPfexjAEDVw6PR6LCq/MV9cUirddI5dKLsmMfLUFQLD46nwas1B8JIDIfDo26VAfDX6w9/+AO2bt2K999/v9m+ewgYrlSPGE1jNIVR79a8kwnidum/+tWvYLFYcPPNN9N26dlsFj09PfD7/TXp4aRTrM/nQygUgsFgoG0UJrIixlh5S2IJo0qlMmGIE+Ki03w+309p+1RGhOM4HD9+HNu2bcOjjz4Km82GW265BevXr5+S7bvHGsOV6ikWi9i3bx8A4IorrsDatWuxdu1aGAyGAemIRqJpjEaBRrTmnayQtkv/7Gc/i40bN+LMM8/spwxN6OFut5tSj4vFYj/1gMkGsbfEcRwNc9UyKFJKudVqpVJME41SLm2vrtPp6GZBSjIQt+/+61//issvvxy33XYbLrnkkgl3XhMdw5HqOX78OGbMmDHgGBdeeCFeffXVOs56cDSN0SjQiNa8kx0cx+Gdd97B5s2bsX379n7t0lUqFZ577jk4HA7k83nI5XK0tLRg1qxZE7r2ZaioRjgQU86JfE9PT8+gQq4TFURpm7QeJ6SDZcuW4fHHH6/ZvruJJoCmMRoxGtWadyqBtEv/+c9/Dp/PB51OB47j8Ic//IHKDtWbHl4viKnYLMtCpVIhm802tH36WCKZTOLf//3f8ac//QnlchktLS34j//4D6xfv35KbCwGw3BC91u2bMGjjz6KDz/8EACwbNkyfP/73x801D9VMXnv9gZjsNa8tbTvxqI171TC4cOH8Ze//AUnTpzA0qVLsXz5cmQyGdxzzz149dVX0dLSglWrVmHx4sXI5/N44403sGfPHvT29k5qzTiA78qrUCggl8vBsixYlgXHcZDL5ZO6ni2VSmHr1q34xCc+gT//+c+47rrr8N3vfhezZ88ekkLAZAeR6rn77ruxZ88enHHGGVi9ejV6e3urvv/VV1/F5z//efz1r3/Fzp070d7ejk984hO0XuyjhImbAW5iykMul+PCCy/Eww8/DK/XC47j4Pf7sXXr1gHt0k8//XRKDz9w4AD2798/anp4vUHIGD09Pejt7YXJZMLMmTOpPh7xloi24kgLV+sN0r57y5YteOKJJ6q27/7qV7+KY8eOwe/3N3i244sf//jH2LhxI9avXw8A2Lx5M55//nk8/PDDVQ3xb37zm36/b926Fb///e+xY8cOrFu3ri5znihoGqMRolGteacSli5diqVLl9LfSXuKu+++G1//+tf7tUv/1Kc+hY0bN+K8885DR0cHpYcfPXp0wjSBq4VSqUQVKQqFArxeL1auXDmg47BGo8GsWbMwY8YMysQ7duwY7SU1mKRPIzDc9t0zZsyomkifKigWi3j77bfxta99jb4mk8lwySWXYOfOnUM6RjabRalUgs1mG69pTlg0jdEIoVKpsGzZMuzYsYPmjFiWxY4dO3D77bdX/cyqVauwY8eOfjmjl19+uZ+sRxM8lEolPvOZz+DTn/40bZd+7bXXwuPx4Oabb8a1116LM888k9LDJ5p6OMdxSCQS6OnpQSgUgslkQkdHx5BqcmQyGZxOJ5xO54Tzlmq173766ac/8u27Bwvd79+/f0jH+I//+A94vV5ccskl4zHFCY2mMRoF7rzzTtxwww1Yvnw55ftnMhnqokv5/nfccQcuvPBC/Pd//zdtzfvWW2/hoYceauRpTGgwDIP58+fj/vvvx/e+9z088cQT2Lx5M+6++26sWbOGtkufNWsWpYcfOnSoYerhxAsi9TctLS1VvaChQuwtieV56u0tVSoV/PWvf8WWLVto++6tW7fi8ssvn9Q5romEH/7wh3jiiSfw6quvTvjQ7HigaYxGgTVr1iAcDuPb3/425fu/+OKLdGfU1dXVL1xxzjnnYPv27fjmN7+Jr3/965gzZw6eeeaZKV9jNFbQ6/W4+eabcdNNN9F26R//+MdxxhlnYMOGDbj66qvh9XqRSqXQ3d2NN998sy7q4aTWpqenB8FgEEajEdOmTYPH4xmzMWUyGVwuF1wuF3K5HPx+Pzo7O8EwDK1bGo8FTNq++6abbsJPfvITzJgxY0KFDCcCRhK6J7jvvvvwwx/+EP/v//0/LF68eDynOWHRpHY3ManR19eHRx55BA899BBisRjWrVuHm266CR0dHeOuHi4+fi6Xo95YvQpzpa0yhtIuYijgOA5vv/02tmzZ0mzfPUyMRKrnRz/6Eb73ve/hf/7nf3D22WfXc7oTCk1j1MSUAMuyePnll/HAAw/ghRdewMUXX4yNGzfi0ksvhUwmo+rhvb29sFqtaG9vH7GuWyKRoIoDer1+QsgTkUZ6fr+fEkGG2z4jm83iqaeewtatW3Hw4EFce+212LRpE5YsWdL0goaI4Ur13Hvvvfj2t7+N7du349xzz6XHMRgMIw7tTlY0jVETUwocx9F26du2bYNWq8VNN92EdevWwel00rYPw1UPL5fLCAaD6OnpQTabhcfjmVAdbQmIt0SEaB0OB9ra2mo2yqvWvnvTpk1Yt24dLBZL/U9gCmA4Uj0dHR04ceLEgGPcfffd+M53vlPHWTceTWM0SdGs8j41isUi/vCHP+CBBx7Arl27cNVVV2Hjxo1YuXIlGIZBOBw+pXq4OBek0+nQ1tbWcC9oqJC2HXe5XFCpVJgxYwZt371lyxa8/vrr+Od//mfcdtttuOCCCya18kMTkxfNu24SolnlPTSoVCr8y7/8C1599VW89dZbsNvt+PSnP41zzjkHDz/8MHQ6Hc4880ycc8450Gg0eP/997Fz504cP34cXV1d2LVrF958801wHIdly5Zh5cqVaGtrmxSGCAC0Wi1mz56N888/H/PmzcPOnTuxZMkSnHvuuZg1axa++tWv4qKLLsKxY8fw5JNP4qKLLprShugXv/gFOjo6oNFosHLlSuzevbvme//whz9g+fLlsFgs0Ov1WLJkCR577LE6zvajh6ZnNAkxXIFWKSqVCqxWK37+859/5Kq8U6kUHn/88art0nft2oVwOEzzLGazGbNnz570BYji9t1vvPEGPB4PTpw4AYvFgo0bN2LTpk2T/hxPheEq7L/66quIxWKYP38+VCoV/vznP+MrX/kKnn/+eaxevboBZzD1MXW3QVMUpMpbXBTXrPIeOoxGI2699Va88847eP755xGLxbBq1SrMmzcPl19+Ofbu3YuzzjqL1ga9++672LVrF/x+PyqVSqOnPyzE43H88pe/xFlnnYVrr70W06dPx9/+9je888476O3txX//93/j73//O3K5XKOnOu4Qy/QsXLgQmzdvhk6nw8MPP1z1/RdddBGuvvpqLFiwALNmzcIdd9yBxYsX47XXXqvzzD86mBzxhiYomlXeY4NSqYSnnnoKL730EmbOnIkFCxZQfbVisYj169djwYIFmDNnDgKBAI4fP44DBw5QevhEbYVdrX33v//7vw9o361UKvHpT38an/70pxs42/pgtDI9HMfhlVdewYEDB3DvvfeO51Q/0mgao48YPupV3gQqlQo6nQ7PPfcczj33XDAM069d+umnn47Vq1fjlltuwUUXXYT29nbE43F0d3dj586do6aHjzWqte/esWNHs303Rr6BSyQSaG1tRaFQgFwuxy9/+Utceuml4z3djyyaxmiSoVnlPTZgGIbWehDI5XJceeWV+NSnPoWjR4/iwQcfxE033QSLxYKbbroJ119/PRYvXkxbgRP18EbpxXEch2PHjmHbtm147LHHYLPZ8IUvfAHPP/98s333GMBoNOLdd99FOp3Gjh07cOedd2LmzJm46KKLGj21KYnGb+maGBbEAq0ERKB1MMHVH/3oR7jnnnvw4osvYvny5fWY6qQFwzCYNWsWfvSjH6Grqwvf+ta38Oc//xlz587Fpk2b8OGHH6KjowPnnXceFixYgEQigddeew3vvfceotEoxpsTVC6X8fzzz+Mzn/kMli1bhuPHj2P79u3Yv38/vvKVrzQNkQQj3cDJZDLMnj0bS5YswVe+8hV89rOfHbCBaWLs0DRGkxB33nkntmzZgl//+tfo7OzErbfeOkCgVRwfv/fee/Gtb30LDz/8MDo6OhAMBhEMBpFOpxt1CpMGWq0W69atw2uvvYbXXnsNGo0GV1xxBS644AI89thj0Ov1lB6u0+koPbyrqwulUmlM59Lb24v77rsPixcvxh133IHly5fj0KFD+MMf/oBPfOITEyJcOBEx0g2cFCzLolAojMcUmwAArolJiZ/97GfctGnTOJVKxa1YsYL7xz/+Qf924YUXcjfccAP9ffr06RyAAf/uvvvu+k98CiAWi3E/+clPuAULFnAWi4W7/fbbuXfffZdLp9NcMpnkDh8+zP31r3/lnn32WW737t1cIBDgMpnMiP6lUinu5Zdf5j73uc9xarWau/DCC7knnniCKxQKjb4MkwpPPPEEp1aruV/96lfcvn37uFtuuYWzWCxcMBjkOI7jrr/+eu6uu+6i7//+97/PvfTSS9yRI0e4ffv2cffddx+nUCi4LVu2NOoUpjyadUZNNDFCsCyLv/3tb/jlL3+JZ599Fueddx42btyIyy+/HEqlkqqHEw279vb2IauHp1IpPPnkk9i6dSu6urqwdu1a3HrrrVi0aNFHnpAwUgxHpueb3/wmnnzySfT09ECr1WL+/Pm44447sGbNmgaewdRG0xg10cQowYnapW/duhUAcOONN2L9+vVwu91U1667u5t2eq1GD+ck7btnzJiBTZs29Wvf3UQTUxXNIHMTw8JwJFXEeOKJJ8AwDO2KO5Ugbpd+9OhR3H///fjHP/6BBQsWYN26ddi5cydaW1uxatUqLFmyBIVCATt37sSvfvUrPPbYY0in03jqqadw+eWX47zzzkMmk8ELL7yAPXv2YNOmTVPaEDXvpyYoGhkjbGJy4YknnuBUKhX38MMPc3v37uU2btzIWSwWLhQKDfq5Y8eOca2trdz555/P/fM//3N9JttgsCzL7d+/n7vjjjs4q9XKzZ8/n7vvvvs4v9/PZTIZrq+vj/vP//xPzuFwcHq9nrNYLNxdd911yms5ldC8n5oQoxmma2LIGIkmXqVSwQUXXICbbroJf//73xGPx/HMM8/UcdaNRyaToe3SOzs7cf755yOfz+P111/HpZdeijPPPBNvvvkm/vrXv+Kqq67C9u3bPxKtvJv3UxNiNMN0TQwJI9XE++53vwuXy4Wbb765HtOckCDt0nfv3o0dO3YgEAjAZDJh//79+POf/0zrvzo7O7F69eqPhCFq3k9NSNFUYGhiSBiJpMprr72Gbdu24d13363DDCc+GIbBypUra16PmTNnYubMmfWdVIPQvJ+akKLpGTUxLkilUrj++uuxZcsWOByORk+niUmO5v009dH0jJoYEoYrqXLkyBEcP34cV155JX2NZVkAgEKhwIEDBzBr1qzxnXQTExbN+6kJKZqe0QTDo48+CrvdPkB25KqrrsL111/foFkNX1Jl/vz5+OCDD/Duu+/Sf//0T/+Ej33sY3j33XfR3t5ez+k3McEwle6ncDgMj8eD73//+/S1N954AyqVqt/5NXEKNJrO10R/ZLNZzmw2c7/73e/oa6FQiFMoFNwrr7zSwJkNX1JFihtuuKFJxW2CYirdT88//zynVCq5N998k0smk9zMmTO5f/u3f2v0tCYVmmG6CQatVotrr70WjzzyCK655hoAwOOPP45p06Y1XLp+zZo1CIfD+Pa3v00lVV588UWahO7q6mqKdTYxZEyl++mKK67Axo0bsXbtWixfvhx6vb6p8D1MNOuMJiDeeecdnHXWWThx4gRaW1uxePFiXHPNNfjWt77V6Kk10UQTNZDL5XDaaaehu7sbb7/9Nk4//fRGT2lSYXJsOz5iWLp0Kc444ww8+uijePvtt7F3717ceOONjZ5WE000MQiOHDkCv98PlmVx/PjxRk9n0qFpjCYoNmzYgF/96ld45JFHcMkllzQT/k3UDcPRi/vVr34FhmH6/fsotrMvFou47rrrsGbNGtxzzz3YsGEDent7Gz2tSYWmMZqguPbaa9HT04MtW7bgpptuavR0mviI4Mknn8Sdd96Ju+++G3v27MEZZ5yB1atXD7qwmkwmBAIB+u/EiRN1nPHEwDe+8Q0kEgn89Kc/xX/8x39g7ty5zed2uGg0g6KJ2rj++us5m83G5fP5Rk9lQuDnP/85N336dE6tVnMrVqzgdu3aNej7Y7EYd9ttt3Eej4dTqVTcnDlzuOeff75Os52cWLFiBffFL36R/l6pVDiv18v94Ac/qPr+Rx55hDObzXWa3cTEX//6V06hUHB///vf6WvHjh3jTCYT98tf/rKBM5tcaLLpJjB8Ph/Wrl0LtVrd6Kk0HGTHvnnzZqxcuRL3338/Vq9ejQMHDsDlcg14f7FYxKWXXgqXy4Wnn34ara2tOHHiBCwWS/0nP0lA9OLELeuHoheXTqcxffp0sCyLM888E9///vexaNGiekx5QuCiiy4a0GK+o6MDiUSiQTOanGiG6SYgYrEY/vjHP+LVV1/FF7/4xUZPZ0Lgxz/+MTZu3Ij169dj4cKF2Lx5M3Q6HR5++OGq73/44YcRjUbxzDPP4Nxzz0VHRwcuvPBCnHHGGXWe+eTBYHpxwWCw6mfmzZuHhx9+GH/605/w+OOPg2VZnHPOOejp6anHlJuYQmgaowmIpUuX4sYbb8S9996LefPmNXo6DcdIFJ6fffZZrFq1Cl/84hfhdrtx2mmn4fvf/z4qlUq9pv2RwKpVq7Bu3TosWbIEF154If7whz/A6XTiwQcfbPTUmphkaIbpJiCatND+GInC89GjR/HKK69g7dq1eOGFF3D48GHcdtttKJVKuPvuu+sx7UmH4erFVYNSqcTSpUtx+PDh8ZhiE1MYTc+oiSkJlmXhcrnw0EMPYdmyZVizZg2+8Y1vYPPmzY2e2oTFcPXiqqFSqeCDDz5AS0vLeE2ziSmKpmfUxITHSHbsLS0tUCqV/RrVLViwAMFgEMViESqValznPFlx55134oYbbsDy5cuxYsUK3H///chkMli/fj0AYN26dWhtbaVSN9/97ndx9tlnY/bs2YjH4/iv//ovnDhxAhs2bGjkaTQxCdH0jJqY8BjJjv3cc8/F4cOHaZsBADh48CBaWlqahmgQrFmzBvfddx++/e1vY8mSJXj33XcH6MUFAgH6/lgsho0bN2LBggW44oorkEwm8cYbb2DhwoWNOoUmJima2nRNTAo8+eSTuOGGG/Dggw/SHfvvfvc77N+/H263e8COvbu7G4sWLcINN9yAL33pSzh06BBuuukm/Ou//iu+8Y1vNPhsmmiiCSmaYbomJgWGq/Dc3t6O//mf/8G//dv/394do6gORQEYPiCuQsQdaCHqHtxJCgljo2Bvk0ZQQbByA3auRbEXrIJLeMVrBoYZGAbm3vfyfXWKpPq5Nzcnb9Hv96PT6URZlrFYLFI9AvAFKyPI2H6/j6qq4vl8xmAwiO12G+Px+NPrX69XrFarOJ/PUdd19Hq92Gw2MZ1Of/Gu4fusjCBTpk7QJFZGkKnJZBKj0Sh2u11E/D200e12YzabxXK5/HD94XCIqqridrtFu93+7duFH3GaDjJk6gRNY5sOMmTqBE0jRvCfeD91otVqxXA4jMfjEVVViRHZEyPIkKkTNI13RpAhUydoGjGCTM3n8zgej3E6neJ6vUZRFB/mxL3/EV5RFFHXdZRlGff7PS6XS6zXa//E4p9gmw4yZeoETeI7IwCSs00HQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByfwC44Z9LrEnaIQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.angle1 = 20\n", + "visualizer.angle2 = 45\n", + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.plot_workspace(np.array(ws_pred))" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "3_mYGXhmjnhg" + ], + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "1c0f293c6f03438bb4f19276ec49a419": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad8026a2dd49407fb30677e5cf96d004": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_cursor": "default", + "_data_url": "", + "_dom_classes": [], + "_figure_label": "Figure 17", + "_image_mode": "diff", + "_message": "", + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "MPLCanvasModel", + "_rubberband_height": 0, + "_rubberband_width": 0, + "_rubberband_x": 0, + "_rubberband_y": 0, + "_size": [ + 640, + 480 + ], + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "MPLCanvasView", + "capture_scroll": false, + "footer_visible": true, + "header_visible": true, + "layout": "IPY_MODEL_1c0f293c6f03438bb4f19276ec49a419", + "pan_zoom_throttle": 33, + "resizable": true, + "toolbar": "IPY_MODEL_eb0420e848554f6592e94d4423567f9c", + "toolbar_position": "left", + "toolbar_visible": "fade-in-fade-out" + } + }, + "e37f9f52ff7349cc974e863821254ee7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb0420e848554f6592e94d4423567f9c": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", + "state": { + "_current_action": "", + "_dom_classes": [], + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "ToolbarModel", + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "ToolbarView", + "button_style": "", + "collapsed": true, + "layout": "IPY_MODEL_e37f9f52ff7349cc974e863821254ee7", + "orientation": "vertical", + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" + ], + [ + "Pan", + "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", + "arrows", + "pan" + ], + [ + "Zoom", + "Zoom to rectangle\nx/y fixes axis", + "square-o", + "zoom" + ], + [ + "Download", + "Download plot", + "floppy-o", + "save_figure" + ] + ] + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/open_manipulator_cv_controller/notebooks/.ipynb_checkpoints/evaluation_metrics-checkpoint.ipynb b/open_manipulator_cv_controller/notebooks/.ipynb_checkpoints/evaluation_metrics-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f1aae3e81f0c3909eede2fefbf489bc09dd4faa4 --- /dev/null +++ b/open_manipulator_cv_controller/notebooks/.ipynb_checkpoints/evaluation_metrics-checkpoint.ipynb @@ -0,0 +1,603 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import os\n", + "import math\n", + "import json\n", + "import torch\n", + "import random\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from matplotlib import cm, colors\n", + "from mpl_toolkits.mplot3d import Axes3D" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "## TODO:\n", + "# FILENAME = \"_test_metrics.json\"\n", + "FILENAME = \"metrics.json\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "with open(FILENAME, \"rb\") as handle:\n", + " metrics = json.load(handle)\n", + " metrics = json.loads(metrics)\n", + " MAX_DIST = metrics['max_dist']" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.2586145463665413" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "MAX_DIST" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def workspace_surface():\n", + " \n", + " half_pi = math.pi / 2.\n", + " u, v = np.mgrid[-half_pi:half_pi:100j, 0.0:math.pi:100j]\n", + " \n", + " xline = MAX_DIST * np.cos(u) * np.sin(v)\n", + " yline = MAX_DIST * np.sin(u) * np.sin(v)\n", + " zline = MAX_DIST * np.cos(v)\n", + " \n", + " return xline, yline, zline\n", + "\n", + "def plane():\n", + " u, v = np.mgrid[-0.6:0.6:100j, 0:0.7:100j]\n", + " \n", + " xline = u\n", + " yline = v\n", + " zline = np.zeros_like(u)\n", + " \n", + " return xline, yline, zline\n", + "\n", + "class Visualizer():\n", + " def __init__(self, angle1 = 20, angle2 = 90):\n", + " self.angle1 = angle1\n", + " self.angle2 = angle2\n", + " \n", + " self.title = None\n", + " self.x_axis = \"x-axis\"\n", + " self.y_axis = \"y-axis\"\n", + " self.z_axis = \"z-axis\"\n", + " \n", + " def set_axis(self, title = None, x = 'x-axis', y = 'y-axis', z = 'z-axis'):\n", + " self.title = title\n", + " self.x_axis = x\n", + " self.y_axis = y\n", + " self.z_axis = z\n", + " \n", + " def get_axis(self, dim = 3):\n", + " plt.clf()\n", + " \n", + " if dim == 3:\n", + " ax = plt.axes(projection='3d')\n", + " ax.set_zlabel(self.z_axis)\n", + " ax.view_init(self.angle1, self.angle2)\n", + "\n", + " else:\n", + " fig, ax = plt.subplots()\n", + " \n", + " if self.title is not None:\n", + " ax.set_title(self.title)\n", + " \n", + " ax.set_xlabel(self.x_axis)\n", + " ax.set_ylabel(self.y_axis)\n", + " \n", + " return ax\n", + " \n", + " def plot_test_spread(self, actual, pred):\n", + " ax = self.get_axis()\n", + " \n", + " # Data for three-dimensional scattered points\n", + " ax.scatter3D(actual[:,0], actual[:,1], actual[:,2], color = 'red', label = \"Test Values\")\n", + " ax.scatter3D(pred[:,0], pred[:,1], pred[:,2], color = 'blue', alpha = 0.5, label = \"Predicted Values\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_trajectory(self, traj, pred):\n", + " ax = self.get_axis()\n", + "\n", + " ax.plot3D(traj[:,0], traj[:,1], traj[:,2], color = 'blue', label = \"Actual Trajectory [frame 1]\")\n", + " ax.scatter3D(pred[:,0], pred[:,1], pred[:,2], color = 'red', label = \"Predicted Values [frame 2]\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_orientation_trajectory(self, traj, pred):\n", + " ax = self.get_axis(2)\n", + "\n", + " ax.plot(traj, color = 'blue', label = \"Actual Trajectory\")\n", + " ax.scatter(range(len(pred)), pred, color = 'red', label = \"Predicted Values\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_workspace(self, predictions):\n", + " ax = self.get_axis()\n", + "\n", + " pl = plane()\n", + " sphere = workspace_surface()\n", + " \n", + " ax.plot_surface(pl[0], pl[1], pl[2], rstride = 1, cstride = 1, color = 'w', alpha = 0.1, linewidth = 0)\n", + " ax.plot_surface(sphere[0], sphere[1], sphere[2], rstride = 1, cstride = 1, color = 'c', alpha = 0.2, linewidth = 0)\n", + " ax.plot_wireframe(sphere[0], sphere[1], sphere[2], rstride = 5, cstride = 5, color = 'black', alpha = 0.2, linewidth = 0.5)\n", + " \n", + " within_range = []\n", + " outside_range = []\n", + " for point in predictions:\n", + " dist = np.linalg.norm(np.array(point))\n", + " if dist <= MAX_DIST:\n", + " within_range.append(point)\n", + " else:\n", + " outside_range.append(point)\n", + " \n", + " within_range, outside_range = np.array(within_range), np.array(outside_range)\n", + " \n", + " if outside_range.shape[0] != 0:\n", + " ax.scatter(outside_range[:,0], outside_range[:,1], outside_range[:,2],color=\"red\", s = 20, label = \"Predictions out of Workspace\") \n", + " \n", + " if within_range.shape[0] != 0:\n", + " ax.scatter(within_range[:,0], within_range[:,1], within_range[:,2], color=\"black\", s = 20, label = \"Predictions within Workspace\")\n", + " \n", + " ax.set_xlim([0,0.6])\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + "visualizer = Visualizer()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test Set" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "test_outputs, test_set = metrics['test_set'][0], metrics['test_set'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAPklEQVR4nO2dd3wU1fr/PzOzNT0hIQVCCqGELi1GQRCjYLuggIgoRS62i3hFvJafgu1arujFzpWvNK8N9IodhGhQeu8kJBAIIb0nm2ybOb8/lhl2N5sQkplsJnver9e+kszOnj0zmTmfec5znudhCCEEFAqFQqEAYL3dAQqFQqF0HKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkVC4+0OUChqRxAEWK1Wb3eD4uNotVpwHNfmdqgoUChtwGq1Ijc3F4IgeLsrFApCQkIQFRUFhmFa3QYVBQqllRBCUFhYCI7jEBsbC5als7EU70AIQX19PUpKSgAA0dHRrW6LigKF0krsdjvq6+sRExMDPz8/b3eH4uMYjUYAQElJCbp27drqqST6aEOhtBKe5wEAOp3Oyz2hUByIDyc2m63VbVBRoFDaSFvmbykUOZHjWqSiQKFQKBQJKgoUCoVCkaCiQKFQVMXZs2fBMAwOHTrk7a50SqgoUCg+BMMwzb5eeOGFNrW9YcOGJt8vLi6GVqvFl19+6fH9uXPnYujQoa3+foo8UFGgUDoCp04Bv/wCZGcr+jWFhYXSa9myZQgKCnLZtmjRIsW+OzIyErfeeitWrlzZ6D2TyYR169Zh7ty5in0/pWVQUaBQvElFBTBhAtCnD3DLLUDv3o6/KysV+bqoqCjpFRwcDIZhXLZ9+eWXSE5OhsFgQN++ffHhhx9Kn7VarZg/fz6io6NhMBgQFxeH1157DQAQHx8PALjjjjvAMIz0tztz585Feno68vLyXLavX78edrsdM2bMwMaNGzFq1CiEhISgS5cuuO2223D69Okmj2n16tUICQlx2bZhw4ZGK3G+++47DB06FAaDAYmJiXjxxRdht9sBOIK/XnjhBfTo0QN6vR4xMTFYsGBBS05pp4OKAoXiTe65B9iyxXXbli3A9Ont3pXPPvsMixcvxj//+U+cPHkSr776Kp5//nmsWbMGAPDuu+/i+++/x7p165CVlYXPPvtMGvz37t0LAFi1ahUKCwulv9255ZZbEBkZidWrV7tsX7VqFe68806EhITAZDJh4cKF2LdvH9LT08GyLO644442pRL5888/MXPmTDz22GM4ceIE/vOf/2D16tX45z//CQD45ptv8O9//xv/+c9/kJ2djQ0bNmDgwIGt/j5VQygUSqtoaGggJ06cIA0NDa1rICuLEKDp16lT8nbYjVWrVpHg4GDp7549e5LPP//cZZ+XX36ZpKamEkIIefTRR8m4ceOIIAge2wNAvv3228t+79NPP00SEhKkdnJycgjDMGTLli0e9y8tLSUAyNGjRwkhhOTm5hIA5ODBgx6PgxBCvv32W+I8vN1www3k1Vdfddnn008/JdHR0YQQQt566y3Su3dvYrVaL9v/jkybr0lCCLUUKBRv0cyUCAAgJ6d9+gHHnP7p06cxd+5cBAQESK9XXnlFmrqZPXs2Dh06hD59+mDBggX49ddfW/Vd999/P3Jzc/H7778DcFgJ8fHxGDduHAAgOzsb06dPR2JiIoKCgiRrxH3K6Uo4fPgwXnrpJZdjmzdvHgoLC1FfX4+pU6eioaEBiYmJmDdvHr799ltpasnXoLmPKBRv0bNn8+8nJbVPPwDU1dUBAFasWIGUlBSX98QcOkOHDkVubi5++eUXbNmyBXfddRfS0tLw9ddfX9F39erVC6NHj8aqVaswduxYrF27FvPmzZN8ALfffjvi4uKwYsUKxMTEQBAEDBgwoMn05CzLghDiss09zUNdXR1efPFF3HnnnY0+bzAYEBsbi6ysLGzZsgWbN2/GI488gjfffBNbt26FVqu9ouNTO1QUKBRv0bs3MH68w4dwMY8SAIDjgLQ0oFevdutKZGQkYmJicObMGcyYMaPJ/YKCgjBt2jRMmzYNU6ZMwYQJE1BRUYGwsDBotVopH9TlmDt3Lh5++GH85S9/wYULFzB79mwAQHl5ObKysrBixQqMHj0aALBt27Zm24qIiEBtbS1MJhP8/f0BoFEMw9ChQ5GVlYWkZoTWaDTi9ttvx+23346//e1v6Nu3L44ePepzy2SpKFAo3uSLLxxO5U2bLm1LS3Nsb2defPFFLFiwAMHBwZgwYQIsFgv27duHyspKLFy4EG+//Taio6Nx1VVXgWVZrF+/HlFRUdLKn/j4eKSnp+Paa6+FXq9HaGhok981depULFiwAA8++CBuuukmxMbGAgBCQ0PRpUsXfPzxx4iOjkZeXh6efvrpZvudkpICPz8/PPvss1iwYAF2797dyJG9ePFi3HbbbejRowemTJkClmVx+PBhHDt2DK+88gpWr14Nnueltv773//CaDQiLi6uTedUlcjn4qBQfAs5nHoSp04R8vPPijuXnfHkoP3ss8/IkCFDiE6nI6GhoeS6664j//vf/wghhHz88cdkyJAhxN/fnwQFBZEbbriBHDhwQPrs999/T5KSkohGoyFxcXGX/f4HHniAACDr1q1z2b5582aSnJxM9Ho9GTRoEMnIyHBxYrs7mglxOJaTkpKI0Wgkt912G/n444+J+/C2ceNGcs011xCj0UiCgoLIyJEjyccffyx9PiUlhQQFBRF/f39y9dVXN+n47sjIcU0yhLhNxlEolBZhNpuRm5uLhIQEGAwGb3eHQpHlmqSrjygUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUimLMnj0bkyZNkv4eO3Ys/v73v7d7PzIyMsAwDKqqqhT9nsuVJFUDVBQoFB9j9uzZUk1mnU6HpKQkvPTSS+2SKvp///sfXn755Rbt214DudVqRXh4OF5//XWP77/88suIjIxslHm1s0JFgULxQSZMmIDCwkJkZ2fjiSeewAsvvIA333zT475NpaxuDWFhYQgMDJStPTnQ6XS49957sWrVqkbvEUKwevVqzJw502dSaFNRoFA6AOXlQHa242d7oNfrERUVhbi4ODz88MNIS0vD999/D+DSlM8///lPxMTEoE+fPgCA8+fP46677kJISAjCwsIwceJEnD17VmqT53ksXLhQqq38j3/8o1GdA/fpI4vFgqeeegqxsbHQ6/VISkrCJ598grNnz+L6668H4MicyjCMlF5bEAS89tprSEhIgNFoxODBgxvVdPj555/Ru3dvGI1GXH/99S799MTcuXNx6tSpRmm6t27dijNnzmDu3LnYu3cvbrzxRoSHhyM4OBhjxozBgQMHmmzTk6Vz6NAhMAzj0p9t27Zh9OjRMBqNiI2NxYIFC2AymaT3P/zwQ/Tq1QsGgwGRkZGYMmVKs8fSVqgoUChepKEBWLMGeOYZYMkSx881axzb2xOj0ehiEaSnpyMrKwubN2/Gjz/+CJvNhvHjxyMwMBB//vkntm/fjoCAAEyYMEH63FtvvYXVq1dj5cqV2LZtGyoqKvDtt982+70zZ87EF198gXfffRcnT57Ef/7zHwQEBCA2NhbffPMNACArKwuFhYV45513AACvvfYa1q5di+XLl+P48eN4/PHHce+992Lr1q0AHOJ155134vbbb8ehQ4fw17/+9bLptwcOHIgRI0Zg5cqVLttXrVqFa665Bn379kVtbS1mzZqFbdu2YdeuXejVqxduueUW1NbWXtnJduL06dOYMGECJk+ejCNHjuCrr77Ctm3bMH/+fADAvn37sGDBArz00kvIysrCxo0bcd1117X6+1qETBlbKRSfQ440xatXE3LHHYQ89BAhTz3l+HnHHY7tSjFr1iwyceJEQgghgiCQzZs3E71eTxYtWiS9HxkZSSwWi/SZTz/9lPTp08elPrPFYiFGo5Fs2rSJEEJIdHQ0+de//iW9b7PZSPfu3aXvIoSQMWPGkMcee4wQQkhWVhYBQDZv3uyxn7///jsBQCorK6VtZrOZ+Pn5kR07drjsO3fuXDJ9+nRCCCHPPPMM6devn8v7Tz31VKO23Fm+fDkJCAggtbW1hBBCampqiJ+fH/m///s/j/vzPE8CAwPJDz/8IG2DU4pvT/0/ePAgAUByc3Olfj/wwAMu7f7555+EZVnS0NBAvvnmGxIUFERqamqa7LcztEYzhaJiysuB7duByEjHy2C49Pv27cpOJf34448ICAiAwWDAzTffjGnTpuGFF16Q3h84cCB0Op309+HDh5GTk4PAwECpxnFYWBjMZjNOnz6N6upqFBYWupTy1Gg0GD58eJN9OHToEDiOw5gxY1rc75ycHNTX1+PGG290qbe8du1aqZb0yZMnG5UUTU1NvWzb06dPB8/zWLduHQDgq6++AsuymDZtGgCguLgY8+bNQ69evRAcHIygoCDU1dW1uXb06tWrXY5l/PjxEAQBubm5uPHGGxEXF4fExETcd999+Oyzz1BfX9/q72sJtPIaheIlKiqAujqgRw/X7cHBQF6e4/0uXZT57uuvvx4fffQRdDodYmJioNG4DgViWUuRuro6DBs2DJ999lmjtiIiIlrVB6PReMWfEWtJ//TTT+jWrZvLe3q9vlX9EAkKCsKUKVOwatUq3H///Vi1ahXuuusuBAQEAABmzZqF8vJyvPPOO4iLi4Ner0dqamqztaMBuPhVPNWOfvDBB7FgwYJGn+/Rowd0Oh0OHDiAjIwM/Prrr1i8eDFeeOEF7N27V6p4JzdUFCgULxEWBgQEANXVDitBpLrasT0sTLnv9vf3b7ZesTtDhw7FV199ha5duyIoKMjjPtHR0di9e7c0522327F///4maxwPHDgQgiBg69atSEtLa/S+aKk4133u168f9Ho98vLymrQwkpOTJae5yK5duy5/kHA4nMeOHYsff/wRO3bscFmRtX37dnz44Ye45ZZbADh8F2VlZU22JYplYWGhVJrUU+3oEydONPu/0Gg0SEtLQ1paGpYsWYKQkBD89ttvuPPOO1t0TFcKnT6iULxEly7AtdcCxcWOl9l86fdrr1XOSmgNM2bMQHh4OCZOnIg///wTubm5yMjIwIIFC5Cfnw8AeOyxx/D6669jw4YNyMzMxCOPPNJsjEF8fDxmzZqF+++/Hxs2bJDaFKdv4uLiwDAMfvzxR5SWlqKurg6BgYFYtGgRHn/8caxZswanT5/GgQMH8N5772HNmjUAgIceegjZ2dl48sknkZWVhc8//7xRzeamuO6665CUlISZM2eib9++uOaaa6T3evXqhU8//RQnT57E7t27MWPGjGatnaSkJMTGxuKFF15AdnY2fvrpJ7z11lsu+zz11FPYsWMH5s+fj0OHDiE7Oxvfffed5Gj+8ccf8e677+LQoUM4d+4c1q5dC0EQpBVhSkBFgULxInfdBUycCPC8Y8qI5x1/33WXt3vmip+fH/744w/06NEDd955J5KTkzF37lyYzWbJcnjiiSdw3333YdasWUhNTUVgYCDuuOOOZtv96KOPMGXKFDzyyCPo27cv5s2bJy3H7NatG1588UU8/fTTiIyMlAbKl19+Gc8//zxee+01JCcnY8KECfjpp5+QkJAAwDHt8s0332DDhg0YPHgwli9fjldffbVFx8kwDO6//35UVlbi/vvvd3nvk08+QWVlJYYOHYr77rsPCxYsQNeuXZtsS6vV4osvvkBmZiYGDRqEN954A6+88orLPoMGDcLWrVtx6tQpjB49GldddRUWL16MmJgYAEBISAj+97//Ydy4cUhOTsby5cvxxRdfoH///i06ntZAazRTKK1EzhrN5eUOH0JYWMeyECjqQo5rkvoUKJQOQJcuVAwoHQM6fUShUCgUCSoKFAqFQpGgokChUCgUCSoKFAqFQpGgokChtBG6gI/SURAEoc1t0NVHFEor0Wq1YBgGpaWliIiIAMMw3u4SxUchhMBqtaK0tBQsy7rkrbpSaJwChdIG6urqkJ+fT60FSofAz88P0dHRVBQoFG/C87zPlGqkdFw4joNGo2mzxUpFgUKhUCgS1NFMoVAoFAkqChQKhUKRoKJAoVAoFAm6JFUBCCF0NQqF0oFgGIYuGW4hVBRkxmQyISwsDCdOnEAXmdJems1m1NTUNJu7vaNSUVEBrVaLwMBAb3flirlw4QIiIyMblars6NTX18NkMrW6TKY3KS8vh8FgaFQOtC0QQuDv79+mZZq+hLqudhWg1WphtVphs9lkezKpr6/HuXPnEBkZKUt77UlxcTH8/f2bLOHYkcnJyUF4eDi0Wq23u3JF1NXV4cKFC6p8iCgoKECXLl2kushywPM8zGazFGxIaR4qCjLDcRwAR31asXC3XG3K1V57IvZZjX0HHNMOauu7OFWitn6LsCwra9/r6uqQlZWFG2+8UbY2OzPqvGo6MAzDQKvVwm63y9qmHDlNKL4BIUS1T8SEENnFTDwf9B5qGVQUFECr1coa4cowjGod12ruu5pRsyjI3XdRaOh12DKoKMiMaClQUaB4CzVfK4IgKCIK1FJoOVQUFEB0NsuFmkVBzX1XM9RScG2TWgoth4qCAlBL4RJqHZzUjFqvFUAZURCtD0EQVH1u2gsqCgqg0WioKDih5r6rFbWKsVJOctF5Ta/Fy0NFQQGUWH2k1otZrYOTmlHrtQIoaymI7VOah4qCzDAMA51OJ6tPQe3zoWruuxpR+5JUJX0K1Nl8eagoKIBS00dqHFzVOjipHbWed6UsBZZlYTKZUFpaKmvbnREqCgqgxPSRmlGjmKkZNZ9vJYPXysvLce7cOVWfn/aAioICKLH6CIAqTV+1C5paUet5V2r6SLS21T4V2x5QUVAApURBrRezWvutVtR8vpWcPnIWB0rTUFFQALkdzWoWBbU+saodtZ53JS0FZ3GgNA0VBQVQyqeg1otZrf1WK2o+30qvPqLpLi4PFQUFUGL1EaDOm52a696BWgqN23QWBXpNNg0VBQWgPoVLqHVwUjNqvE5ElEiIJ04b0emjlkFFQQGUEAU1P3Grtd9qRa3Ba+J10h6rj+gUUtPQymsKoNPpZBUFoANNw9jtYLOywBQUAAEB4AcMAJqpv6zGwYniHZQSBWdLQSyt2iHupQ4KFQUFkNtSADqIKNTWQrtyJbiDBwGrFWAYcN27w37//RD69GnyY17vt49BLYXG7Yq+BIZhUFVVBY7jVFnzvD2g00cKIPfqI6BjiILml1/A7dwJISoKQr9+EHr1AnvhAjRr1gANDR4/o8bBqTOgxvOupCiI00Ysy6K4uBiFhYWyfkdngoqCAnRKS8FsBrd7N0hYGBAQ4Nim0UBITAR7/jzYzMwmP+ptMfM11Hq+xX4rlebC009KY6goKIDcwWsAvL++2moFzGZAr3fdrtUCPA/GbPb4MXrzeQdqKVzC0+ojugqpaagoKECntBQCAyHEx4MpKQGc+sGUlwNBQRBiYz1+TI2Dk9pR62DXHquPnH0LdAWSZ6ijWQE0Gk3n8ykwDPgJE8Dm5oI9edIxjdTQAMZigf2WW0C6dWvyo2odpNSMGsVYqUHaU5oLr99PHRgqCgqg0+k6nygAEAYOhO3RR8Ft2QL2zBmQ8HDYR48Gf911QBODkBoHJ7Wj5tVHYkyOnHgSA3E6idKYTj999MEHHyA+Ph4GgwEpKSnYs2dPk/seP34ckydPRnx8PBiGwbJlyxrt88ILL0gXrvjq27evyz5yp7kAOk71NSE5GbZHH4Vl6VJYlywBf8MNDr9CM3SEfvsaahYFJdp19ik4iwS9NhvTqUXhq6++wsKFC7FkyRIcOHAAgwcPxvjx41FSUuJx//r6eiQmJuL1119HVFRUk+32798fhYWF0mvbtm0u7yvlaO5QFzDHNWkdOKPGwUntdKjr5ApQShREH4KnyGa1nisl6dSi8Pbbb2PevHmYM2cO+vXrh+XLl8PPzw8rV670uP+IESPw5ptv4u6774befZWNExqNBlFRUdIrPDzc5f3OGqfQWtTabzWjRjFW0lJw9ik451ei12ZjOq1PwWq1Yv/+/XjmmWekbSzLIi0tDTt37mxT29nZ2YiJiYHBYEBqaipee+01xMbGora2FgDA8zwSExNx5MgRAIC/v3+bL3aLxYKioiLpO9RCbW0t6uvrcebMGW93pVXk5eVJqRHUQnV1NTiOU905t1gsEARB9n5bLJZGqbNZloXNZgPDMOA4TtbvUzudVhTKysrA83yjUPbIyEhkNhNodTlSUlKwevVq9OnTB4WFhXjxxRcxevRo7NixA927d3fZ9/333wcA/PbbbwgQA77agM1mk31aSml4nocgCKrrt4jNZlPd06ToQFXbORf9cHL2mxACm80mXYfOcQqnTp2C0WhE//79Zfu+zkCnFQWluPnmm6XfBw0ahJSUFMTFxeGXX35BdXU1AGDt2rX473//i2+++QYAEBgY2GZL4cCBA4iOjkZ0dHSb2mlvRL+LuzNeDRQUFKBnz54wGo3e7soVcfLkSej1eiQmJnq7K1dEVVUVamtrZb9WCgsLYTabPcYrAOpdraUUnVYUwsPDwXEciouLXbYXFxc360S+UkJCQtC7d2+cPn0aQUFBAIDg4GAQQqS/5UDNPgVK+6LWQU6pfjMMg4aGBo+rj5xFguKg0zqadTodhg0bhvT0dGmbIAhIT09HamqqbN9TV1eH06dPuzzBd9Y4hdag1n5T2h9xWkduGIZBfX19k5HN9Pp0pdNaCgCwcOFCzJo1C8OHD8fIkSOxbNkymEwmzJkzBwAwc+ZMdOvWDa+99hoAx1zmiRMnpN8vXLiAQ4cOISAgAElJSQCARYsW4fbbb0dcXBwKCgqwZMkScByH6dOnS9+rRJwCvXgpLUWtT75Krj6qr6+nOZBaSKcWhWnTpqG0tBSLFy9GUVERhgwZgo0bN0rO57y8PJcnk4KCAlx11VXS30uXLsXSpUsxZswYZGRkAADy8/Mxffp0lJeXIyIiAqNGjcKuXbsQEREhfa5T5j5qJWrtt9qhouBKfX09ALhYCDQHkmc6tSgAwPz58zF//nyP74kDvUh8fPxlB7Avv/zyst/ZqSuvXSFqHJzUjhqvE0CZ+szApfPhXleBWgqe6bQ+BW8iioKcF5uaL1619lvNqFGMlbAUxGvPz88PQGNLQZxOotfoJagoKACdPrqEGgcntaPG6wRQVhT8/f0BwKOl4LwfhYqCItA0F66otd9qRo1irIQoiP4CMXjUk6XgvB+FioIiaDSazp8Qr4WocXBSO2q8TgDvWQplZWWoqKiQ9XvVDBUFBdDr9YpYCmp9mlHrIKVW1LwkVYn6zMAlS4HneZdU2gzDoKioqMnMyb4IFQUFoD6FS6hxcOoMqPG8Kzl9JCY1NJlMAC7dT3QVUmOoKCgAFYVLqLXfakat51up6SPnam5ilmFnS4GW53SFioICaLVaEELA87xsbar5olVrv9UMtRRc2xQthrq6OgCulgJNd+EKFQUF0Ol0ABx53OVCrRetGgcntaPG6wRQJnjN3RpwtxTo9FFjqCgogCgKck4hqVUUAPUOUmpGjWKslKXgLADuPgWa7qIxVBQUQHRqybkCSa2ioMbBSe2o8ToBlJ0+EsVBfFBzj2imkc2XoKKgAKIoyGkpqNm8VWu/1YwaxVip1UfigM9xHAwGgyQS7oIhbvN1qCgogBKiQC0FSktR43UCKG8pMAwDPz8/l3vJ3dGs1nMnJ50+S6o3YBhG9poKzYlCTQ1w8CCHwkIGgYHA4ME8unfvOBc3vdHaFzUHryntU/Dz80NlZaXkPxDvK47jpP19HSoKCiF3+uymRKGkhMHy5VqcOiXmcAE2beJw7702jBwpgBAgP5/BhQss9HqCvn0FtGfJYbVaOGqHioID99VHYr1tT5ZCVVUVWJaVtVyvGqGioABKWQqeVkf89BOHzEwWffoI0GoBQoDcXAbr12uQlGTFL79osG2bBrW1AMcBsbEC7rvPjj592melhRoHJ7WjVhFWKs2Fs6VgNBpBCJEWgTgvSS0pKQEhBJGRkT593VKfgkLIHdXs6YnbZAIOH+YQEUFw0Y0BhgF69CAoKmKxbp0WGzdqYDQSJCcLSEgQkJfHYs0ah0i0F2odpNSMGgc1pUTB2VIQl4u7V2ITxUGN501uqCgohFarlTVTqidR4HnHdNHF6VAJlnVYDAcPsjAYCMLDCRgG0OmApCQB58+zOH7c7UMKQW+y9ketIqz06iNnq6C2tlZKf+FpFZIvQ0VBIdrDUggMBPr2FVBUxMB5ZqmwkEFYGIFGg0b+A43GIRgXY3jaBV+/ybyBGsW4PVYfiU5lk8kkfZezcNAgNioKiiF3oR1PTzAMA9x8sx3duws4eZJFbi6DkydZWK0MbrvNjn79BFRWMnD+WF2dw2KIjm6fgVqNg5PaUasIK5Hmwt2nIP6sq6tzKbDjHuHsy1BHswIwDNMulgIAJCQQPP64DTt3cjhzhkVYGI/hwwUMHCigRw+CkydZZGayiIggsFiAykoG11zDt5ujGVDvIKVm1CjG7WUpaDQa1NfXS9/lLhy+fr36hKXwwQcfID4+HgaDASkpKdizZ0+T+x4/fhyTJ09GfHw8GIbBsmXLWtVme8YpREcT3HmnHYsWWXH//XYMGiSAYRxTSw89ZMOQITzsdsDPj2DKFDtmz7Y18kMohRoHJ7Wj1kGtPXwKgiBAo9HAYrG4TB+5Z01V6zmUg05vKXz11VdYuHAhli9fjpSUFCxbtgzjx49HVlYWunbt2mj/+vp6JCYmYurUqXj88cdb3WZ7WQqXY8AAAf37C9K0kV4vW5dajC/fYN5CjWLcnpaCmHXAPV5BnFLy5ZVInd5SePvttzFv3jzMmTMH/fr1w/Lly+Hn54eVK1d63H/EiBF48803cffdd0PfxAjakjbbK3itZZ91OKW9IQi+emN5E7WKsNL1FDzFK4j+A0+i4Kt0akvBarVi//79eOaZZ6RtLMsiLS0NO3fulL3NP//8E4888ggAwGAwwGq1IicnB4CjRmxbLniTyQSbzYbi4uJWt+ENrFYrCCGq67dIWVmZtLZdLdjtdlRVVcle/U9pLBYLamtrZb1WamtrwXFcI4vBaDSivr5eGvydp48AKgqdlrKyMvA8j8jISJftkZGRyMzMlLXNkJAQrF27FsHBwdK2P/74Q/r9hx9+gL+/f6u+E3AUHLfb7Th//nyr2/AG4s2ltn6LFBYWyh5QpTR2ux2lpaWoqKjwdleuCLPZDEEQpOpoclBXV4fg4GAYjUYXa0Cv1zdpKYhVEzWaTj08Nolqj/rs2bNISEhotH3MmDHIyMho9/7odDoMGzYMv/32GwBg0qRJuPHGGzFz5kwAQGBgYJssherqahw9ehTDhw+Xpb/thcViwfbt2zFs2DDVTSX99ttvGDhwoJQvRy1s374dffr0QUhIiLe7ckXs378f3bp1kzX30J49e2C32xtZCnq9HjzPSyVznd+7cOECiouLce2116rumpUD1YpCbGwsCgsLpb+LioqQlpaG6667TtoWHh4OjuMamaPFxcWtvvCaarOkpATdunVDUFAQAMf0Ecdx0t9tRe2J5XzZcecN1HiulUhzodFoJAvEucqaOCVoNpsBeE534avXrLrsYic4jkNUVBSioqIQEhKChx56CKmpqXjhhRekfcSn9/T0dGmbIAhIT09Hampqq763pW12JEezN/HFm8rbqPE6AZR5cBBXATqnsGBZFgzDSEFsNN2FK6q1FJy5//77UVtbi82bNzd60li4cCFmzZqF4cOHY+TIkVi2bBlMJhPmzJkDAJg5cya6deuG1157DYDDMXrixAnp9wsXLuDQoUMICAhAUlJSi9oE5I9oVqsoiKi572pEjWKshChwHCf547RabaN4BffIZndLwRdRvSi88sor2LRpE/bs2YPAwMBG70+bNg2lpaVYvHgxioqKMGTIEGzcuFFyFOfl5bkISUFBAa666irp76VLl2Lp0qUuvorLtQnIH6eg1icXNQ5OakeN1wmgjCgwDAOO42Cz2eDn59coXsFkMjUSBeefvoiqReGbb77BSy+9hF9++QU9e/Zscr/58+dj/vz5Ht9zd0rHx8e36KZqrk1A/iypubkabN7cHXv26BATIyAlhUevXuq5+dU6UKkVNYqxUrmPdDodrFar5DfgOA6CIECr1bokxvMU0+CLfgXVisKxY8cwc+ZMPPXUU+jfvz+KiooAOObyw8LCvNw7eaePDhxgsWKFH06fjkR8PIPDhzXYtYvD7Nk2DB/esZ9mfO2G6gioVYCVCl7T6/WwWq2Npoa0Wi2qq6ulIFVPabZ9EdU6mvft24f6+nq88soriI6Oll533nmnt7sGQD5Hs9UKfP+9BvX1LHr0qEF8PEG/fgLq6xl8/70GMhojiuKrN5i3UKMYKykKNputkRWg0WgkpzPQ2Kcgft7XUK0ozJ49G4SQRi9vxCh4Qq6EeBcuMMjPZxEdzYNhxBsHiIkRcOECi/PnO/bN78s3l7dQ67lWKiGe0WgEz/ONLAWO42A0GiXfgfv0kXNwmy+hWlHo6MhlKXCco5IazzvqIog3vFhxrb2ynbYWNT6xdgbUeN6VshQMBoPkH3AvqCPmQAJcLQW1RbHLiWp9Ch0duSyFhgagvBzYuVMHgyECPM8iLg44f55Fv34CYmPV8VSo1qdXNaLWc63EYCxOEzEMA4vF0igWwWAwoLKy0iUHknNiPF/Ed49cYfR6fZsdzdnZDD76SAeeB/z9CcrLjdi+XYNff+UQHS1gypT2q4vQWtT4xKp21LpiRilLgWVZcBwHi8XSyFLQ6/UQBMFjDiQ1nkM5oJaCQshhKWzZokFZGYMRIwQ0NACHDpWDZbtCEDhMnWqnS1IpTaLGAU1JUWBZtpGlwHGclBjPYrEAQCNHsxrPY1uhloJCtDV4zWYDsrNZdOnicCz7+QHR0SYMG2ZHSAhBXZ06LlZfvKm8jVoFWClHs5jGQhQFZ2tAfNXW1gKg00cAFQXFaKsocBxgNBJczNcFwHHB8ryjaI7KEneqdqBSK2oTY3H1oFJFdliWRUNDQ6PEeKLPQRQFmuaCioJitHX1EcsC117Lo66OQXW1YxvPM8jNZREdLaBfP16mniqP2gYoNaPWgczZ0Ssnzk/9drvdZWmqew4k8ft93VKgPgWFkCP30fXX88jPZ7FnD4cLF4CysgAkJwuYOVOATBm52wVffuryFmoTYqVEwdn60Ol0kiiIloIY2eyeA0lt509OqCgohBxpLoxG4K9/tWHsWB75+Qyyss5i4sRExMS0voKbt6Ci0D6o9TwrKQqiCBiNRpjNZpclqWL21IqKikaRzb4KFQWFkCtLKssCvXsL6N0b0GqrEBiovghLX37q8hZqO+dKTh+JIuDn5ydZBM7bdTpdo/rMonNabedRDnxXDhVG7iI7wKX5TjWi1idYtaHW89weloK/v7+LGDivQnIuuerrloLvHrnCyBXR7Ixa5+Z98WnLWyg1uCpNe1gKzqLgntLCz8/PpS9UFCiyo5SloEZRANT7BKtWqChcatfZUgAAnucbLU01GAwuOZDUdv7khPoUFELucpwArb5GuTxqvD4A13l8udsVf2q1WgCA2Wx2qcPMcZxUqhOg00e+e+QKI1Z7kvMmpZYCpaWoTYiVClzzlLKivr6+0TSSaCnY7Xafnz6iloJCyF2jGWhCFAgBe/gw2L17wZaVQYiPB3/11SAJCbJ+d1tQ2wClZtQqvkqJgjPiQN/Q0OAyrSTWcWYYBiaTiU4febsDnZWWTh+ZTEB9PYOQEIKL1m2TeBIFLiMDmm++Aex2wN8f3Jkz4A4fhm32bAh9+7bhCORFrYOVWlHboKZU3iMAzVoK7tNItbW1LtNHajuPckBFQSEuZynU1wM//6zBzp0cGhoYREQISEvjMWqUo8KaJxqJQlUVNJs3A0YjSLdu0mb25ElwmzZB6N3bEejgZXzxxvIWahVfJZ7Onf0JzphMJnAc1yheQRQFtaYelwvvjxjtxAcffID4+HgYDAakpKRgz549ze6/fv169O3bFwaDAQMHDsTPP//s8v7s2bNdAlwYhsGECROk93U6XZOWAiHAZ59p8b//OWosBwYKKChgsHq1Bjt2NF0gwT1Ogc3PB1NWBhIV5bKfEB0N9vx5oLKy2WNsT9Q6WKkVtQ1qSk4fubdrt9s9xitotVpJFHzZp+ATR/7VV19h4cKFWLJkCQ4cOIDBgwdj/PjxKCkp8bj/jh07MH36dMydOxcHDx7EpEmTMGnSJBw7dsxlvwkTJqCwsFB6ffHFF9J7Wq0WVqvVY/vnzjHYt49D9+4CoqMJgoOBhARHiuwtWzg0NevUyFLQakE0Grh/gLHZAI0Gl52PaifU7CBXG2o9z0pOH7lbDGJdZufgNUJIo2ypvopPHPnbb7+NefPmYc6cOejXrx+WL18OPz8/rFy50uP+77zzDiZMmIAnn3wSycnJePnllzF06FC8//77Lvvp9XpERUVJr9DQUOm95qaPSkoYmExAcLDr9rAwgpISBjU1no/DfXAVEhJAYmPB5OYC/MWsqVYrmKIi8AMGQFVZ8yiyoObgNaWS4bm37R7ZLFrgSsQWqZFO71OwWq3Yv38/nnnmGWkby7JIS0vDzp07PX5m586dWLhwocu28ePHY8OGDS7bMjIy0LVrV4SGhmLcuHF4+eWXodPpAAAWiwWDBg3CoUOHwDAM/P39pQuzqsoAiyUShYVWGAyXBvmiIi38/QUUFhagoqLxE19DQwNKSkpQX18vbdOPGIGwwkJo9+51bGAYmBMTUd6nD/icnJafKAWx2+24cOECysvLvd2VK+bcuXPQaNRzm4hTljkd5H/fUsxmM+x2u6z9Fs+F8xQRAAQGBqKsrMzFUnBOd9HQ0ODTloJ6rvZWUlZWBp7nERkZ6bI9MjISmZmZHj9TVFTkcf+ioiLp7wkTJuDOO+9EQkICTp8+jWeffRbjx4/HgQMHXD43ZswYAMDvv/+OgIAAAEC3bibExTXg1Ck/dO9ugcEgoLpag9paDqNGVUGjsUsP/s4QQsDzPHinN+tjY2G57z4Yc3LA1dfDHhqK+p49QQwGeGzESwiC4NJvtcDzvKqeusVzrLZzrUS/TSYTCCEuAz8A6T50dzSzLAt/f380NDT4bDI8wAdEQSnuvvtu6feBAwdi0KBB6NmzJ7777juMHTsWFRUVSEhIwIkTJxAUFITAwECXi2zRIgZr12qQlRWAmhrHTM+UKXbcdVck9PpIT18Ji8WC0NBQxMbGNn5zxAjZj1EuKisr0a1bN3Tp0sXbXbkiLly4gMTERJdkaR2d+vp6lJaWok+fPt7uyhVRVlYGi8Uia78LCwtRXV3tMo0kDvwi7onx/P39UVZW5tM1mju9KISHh4PjOBQXF7tsLy4uRpTbqh2RqKioK9ofABITExEeHo7CwkIEOc3lGwwGl78vfQfBE0/YcOaMHbW1DKKiCKKjSZPLUQGa5oJyedR4fQDK+BQMBgMAx8OUs/9ATH4nrkJythjE93z5mu30E2c6nQ7Dhg1Denq6tE0QBKSnpyM1NdXjZ1JTU132B4DNmzc3uT8A5Ofno7y8HNHR0QAg5VlpznHFcUCvXgRDhwqIiWleEAB1r+JRa7/ViBoHNCVEwTlYzdkaELc7Ry+7Z0tVa4p6Oej0ogAACxcuxIoVK7BmzRqcPHkSDz/8MEwmE+bMmQMAmDlzposj+rHHHsPGjRvx1ltvITMzEy+88AL27duH+fPnAwDq6urw5JNPYteuXTh79izS09MxceJEJCUlYfz48QAgOZzlXM2gVlFQ4yClVtR4fQDKBa+xLCv5CJyjlwGHWLhPH4n3bX19vc9et51++ggApk2bhtLSUixevBhFRUUYMmQINm7cKDmT8/LyXFYbXHPNNfj888/x3HPP4dlnn0WvXr2wYcMGDBgwAADAcRyOHDmCNWvWoKqqCjExMbjpppvw8ssvQ6/XA3AMhBqNRtZMqU2KgtXqiIi7+N0dEbUOVmpEjYOZUnEKoig4TxGJVoC7peD8s66uzuO0ry/gE6IAAPPnz5ee9N3JyMhotG3q1KmYOnWqx/2NRiM2bdp02e9sLoCtNTQShYoKaH7/HezBg2AEAXy/fuCvv94l5UVHQK0WjhpR63lWKk6B4ziYzeZGK40Ah8XvbimIf4tBbL6IT0wfeQPRUpB7+kia6zSZoF2zBpqff3ZEMAPgfv8d2k8+AVNaKtt3yoEan1zVjBrPt5Ki4D595Gwp8DwviYFzKu26ujpZ+6ImqCgoiNzps52fcthjx8CePAmhTx+Q6GiQrl1B+vcHe+4cWDGQrQOh1idYtaHW86ykKIj3oLtTWayd4CwGgiBIifHUKK5yQEVBQeQOm3cRhcJCMIQAFx1jjo0siL8/2NOnZftOOfDVm8tbqPF8K+VT4DgOHMdJBXecB34/P79GS1Kdp5x8NeUFFQUFUWL6SEruZTQCnpbNWa0g7kmVOgBqfYJVG2o9z0pZCuKKIkEQGjmVxchm96kljUYDvV7vs1NIVBQURMnpI6F/f5AuXcCcPetIZyEIYIqKAK0WwlVXyfadcqDGJ1c1o8bzraQo6PV6CILQyKnsnu7C2WIICAhATVOZKTs5VBQUgmEYRUWBdO8O25QpgL8/mKwsMCdPAoIA++23Q7i4dLYjodYnWLWh1vOsRA0DUWi0Wi14nm82etl99VFMTIwkGr6GzyxJ9QZyi4J7mgth5EhYevcGm5MDCAJIfDxI166yfZ9c0CWp7Ydaq4YpGacgxgs1lQPJeUpJXI0UFRUlZSXwNagoKEhL6zS3iLo6BP3xBwLOnYPm1CnYr7sOCAsDQkIgDB/emuawcyeHw4dZMAwwZIiA1FQeFx+eKJR2Rcl6CqKlIA74oqUg5kayWq0uloIaRVVOqCgoiFzBa0xeHvTPPovI48cdxUC+/x7atWthefFFCAMHXnF7JhPwn/9oceAAB4PBEQx98CCH48dZPPCADRfvFdmglkL7odZBTck0FxznKHHrnBjPPQeS+9JUX8a3j15hZJk+IgS6d98Fe/IkbDExaOjeHUJ8PJjz56F74w2gFe3v28fh4EEOPXsK6NlTQFKSgIQEAXv3OrbLjRoHKTWjxvOt1PSRKAJarbZRZLMYxFZXV9eo2I4v49tHrzByiAJTUAD2wAGHr0Cc49RoIHTrBjY3F+zRo1fc5smTLDgOLhaBWDLg1CllBhTZLQWbDUx5OZqsXeqjqNUiU7ocp2i1e4psFkXB2bdAi+xQFEEWS6GhAYzdDiEgAHCehtFqAbsdjNl8xU3qdMRjiAMhl3RHTmS9uQgBe+oU2MOHwVRVgWi1IAkJ4IcPB3x0tYg7ahzMlFp9JA7+Wq0WFosFRqOx0UojTzmQfBnfPnqFkcPRTHr0gBAdDbaszGU7U1YGEhoKoRWVqgYMEMBxQFXVpW0VFQx0OoL+/ZXJIy/XEyxz5gy4338HamshRESAGI1gDx0Ct21bhyo/6i2opXAJ56d/vV4vWQrO00csy7rkQKKiQEVBUWRxNOt0sM2eDeh00J07B215OdjcXDBWK+x33w3SihKXQ4cKGDfOjrIyFsePO16VlQxuuonHgAHyi4JsNzshYE+eBAFAYmIc81/BwRDi4hznxK1anq+iVktBKUezIAhSyhn3ugri++6ps9UqrnJAp48URK4lqfzNN8MSGAjrp5+CZGZCSE6GbeJE8BMmtKo9jQaYMcOOoUMFZGc7lqT27i2gb18BSj0kyXKT2e1gqqqAwEDX7QaDw8dQVwffvZUdqHUwU9qnYDAYQAhxSXch5kDS6XQu1dnE1Uq+ChUFBZEzeI0fNQrlvXsjLy8Pw1sRl+AOxzmmkZSwDNyR7WbXaECCgsAUFjpiNEQsFsd7NMhCtUtSlQxe8xTE5hyTEBAQgLq6Ohf/gy9Dp48URMksqWpDln4zDITkZDA878jzZLUCdXVgz56F0KMHyMX62L6OWkVBqTQXYttigkp3n4KnyGZfhloKCiJrRDMAxmZD+J9/Qv/ll4DJBGHYMNhvu63DD4ZyihlJSgJvNoM9ehRsQQGITgehf3/wKSkO88fHUfNDg1I+BbFtURQ8WQqAa2I8uiSVogjNOZqZnBxwe/eCsVrB9+0LYdgwx2R/U/A8Qj76CF1+/hlcQACIRgPuyBFwf/4Jy2uvdbgSnIrBMBAGDoTQqxeY6moQrRYIDQV89Ab2hBoHMyV9CuJAz7Jss5aCUv1QG1QUFKSpegqa//0P2lWrwFwMvNJoteBHj4b1H/+4FEXmBnvwIPy2bkVtSAiMPXoAAIjdDjY7G5oNG2D729+UO5A2osi0l8EAInc+jk4AtRQu4Z4VVaPRwGQyNfI16PV6AI40GO51nH0Rn/EpfPDBB4iPj4fBYEBKSgr27NnT7P7r169H3759YTAYMHDgQPz8888u7xNCsHjxYkRHR8NoNCItLQ3Z2dku+3jyKTA5OdCuWgUIAoTevR3lNLt2heb336H56acm+8MdPw7GaoXN2Zmq0YAEBoLbubOFZ4HiC6jxSVep3EfuuY54nofdbvfoP6ivr6dxCvARUfjqq6+wcOFCLFmyBAcOHMDgwYMxfvx4lJSUeNx/x44dmD59OubOnYuDBw9i0qRJmDRpEo4dOybt869//Qvvvvsuli9fjt27d8Pf3x/jx4+H2SnC2JNPgduzB0xNjWOdvXhBBgSAaLXgMjKaPAYiTi25P8HwvGtJzg6Irz95tSdqPc9KB6+JPgKNRgOr1epiKYjnzDmy2ZfxiaN/++23MW/ePMyZMwf9+vXD8uXL4efnh5UrV3rc/5133sGECRPw5JNPIjk5GS+//DKGDh2K999/H4DjAl62bBmee+45TJw4EYMGDcLatWtRUFCADRs2SO14tBREH4P7DaDVgjGZmjwGYcQIkMBA6CorLwlDQwMYsxn2ceOu7IS0M2p8clUzajzfSgeviT/1er0UxOaeGE+cWlLj+ZOTTu9TsFqt2L9/P5555hlpG8uySEtLw84mpl127tyJhQsXumwbP368NODn5uaiqKgIaWlp0vvBwcFISUnBjh07cMsttwCAlMO9vLwcABAQEAChZ09wGg2EmppLuXp4HmxNDaw339x0BHRcHMjkyWBWrwaTleXYptHAmpKChptvBpEhRbdSiCa7HGnE2xubzaaqYCbRkaq2cy3eK3L2271GghjEJmZLdRcNMVaBrj7q5JSVlYHneURGRrpsj4yMRGZmpsfPFBUVedy/qKhIel/c5r5Pfn4+goODXbavW7cOAPD555/DX69H3x49EHH4MASNBoJGA019PUzR0TjetSvM27Y1fTC9eiHogQcQdvIkWJsNtbGxKO/fH8Lhw5c/ER2A/Px8b3fhitm3b5+3u9AqtjV3HXVQsrKykCU+8MiEGMEsDv7+/v6ora11cUCLolFXV4eAgACfnz7q9KLQ3mi1WlRXVwMA3nvvPWzbtg0ff/wxACAwMNDx9JGaCu0vv4D7/XcwDQ3ghw8Hd/vtuLp792bbNplM2M9xGDp7ttKHISunTp0Cx3Ho2bOnt7tyRWRkZCAlJQXGJlaEdUQuXLiA8vJyDBo0yNtduSL27t2LhIQEhIeHy9ZmRkaGVFXN2VIQHc3uq5AIIeB53mctBJFOLwrh4eHgOA7FbsnSiouLERUV5fEzUVFRze4v/iwuLka0U+BYcXExhgwZgqCgIABAUFAQBEFASEiI6xcEBICfOhX81KnSJubiqznEaQy1PcmI5rja+g1Amk5QC+K0h5r6LMJxnKz9ZlkWFovFZZrIz89P8iG4p9A2GAywWCyqPHdy0umPXqfTYdiwYUhPT5e2CYKA9PR0pKamevxMamqqy/4AsHnzZmn/hIQEREVFuexTU1OD3bt3u7QprnSQi6ZW8dTXA3/8wWH5ci3+7/+02L2bvVSQraEB3MaN0L3xBrTLljmWr3oqpqAwal0Vo0bU+KSrhKOZYRhJFJyL7TAM42JBiOIQEBBAl6TCBywFAFi4cCFmzZqF4cOHY+TIkVi2bBlMJhPmzJkDAJg5cya6deuG1157DQDw2GOPYcyYMXjrrbdw66234ssvv8S+ffukaSCGYfD3v/8dr7zyCnr16oWEhAQ8//zziImJwaRJk6TvlT3NxcUL2/kGqq8HPv5Yi337OHCcY2HStm0cxoyx4747q+H/0mJwu3Y5lq4SAnz7LWx33AHbggVQLCVqE/2mKI9az7NSq37MZrPLNJFojYgLCJx9CwEBASguLlalqMqJT4jCtGnTUFpaisWLF6OoqAhDhgzBxo0bJUdxXl6ey9PBNddcg88//xzPPfccnn32WfTq1QsbNmzAgAEDpH3+8Y9/wGQy4YEHHkBVVRVGjRqFjRs3wuAUZStnllTA8xPg7t0c9u3jkJgoSOU1a2qAP/7Q4KbSn9Frxw4I3btLkdJMZSW0GzaAv+YaCCNHyta3y/VbrYOVGlHjoKaUpWA2mxvVSuA4DhaLBQaDwWX6KDAwkFoK8BFRAID58+dj/vz5Ht/L8BA0NnXqVEx1mvN3h2EYvPTSS3jppZea3EdcEy0X4k3jnPP9yBEWWq1rveWgIOD8eYDJ+MORG8jJUUpCQ8GUloLbt6/dRAFo/gmWECAvj0F2tuNm7N1bQGwsoemMWoFaxVepnENiMKmzQ1n0Nej1epftYmI88RyqUVzlwGdEwRs0lfuotYgXqfONzzCNg5xFWN7mOVEcIe3qV2ju5hIE4PvvNdi0SYOLqaAQHAzcfLMdt91mp8LQCtQ4mCkV0Sw6ld0jm93zHDEMI60yU1uMh9z4tp2kMEpNHzmLwuDBAux2h2+Bs1uQePZ39N39KVIqN4FNHQ7GYnHUHRCprQV0OghDhjj+FoSmVUVGmnqCPXaMxQ8/aKDTEfTrJ6BfPwEaDcH332tw4gS9PK8Uaim4Ik7nuqfFFkXBfTsANDQ0yN4PNUEtBQVRwtEMuN74I0fyOHqURc7WIkw+9hTiq4+CYQj8/YFAQ3cI8fFgz54FtFrJOrDfeCOELl2ge/NNsAcPAkYj7OPGwT5x4qUoaxlp7mY/fJiFxQL07HnpmKKiCE6cYHDkCIv+/dt/pZSaUWvqZ6UsBaPRCLPZ7LH+ss1m85gDqb6+XtZ+qA0qCgoi5j6S64L3JApGIzBvng31e95AoPUA6rrHwi/UgECDxVGRLDkZ1vnzwe3bB6LXQxg9GnxSEvT//CeY/HyQLl0AkwnalSvBZmXB+vzzDgGRmaaeYE0mxmMZCZYFfPyBzaeQWxTE681oNKKysrLR4G8wGKQcSM51FwAqClQUFESJcpxA4wHWUHYBoXl7QHqGIzBED4AA0IFERzuEYdAg2O+9V9pf+847YPLzISQnS8tSickEbs8ecPv3g7/6atn6LPa7KVHo1UvAn39ysNkuaZHV6lhBm5iozqkQb0IthUvtAYCfW91u8Vr09/eXciC5WwqmZhJT+gJ00lZBlPApeBpgmbo6wGZrnEJbrwdsNsf7TrBHjoCEhLjGKfj7A3Y7mNOnZetvSxg+nEe/fgIyM1mcP8/g/HkGWVksBgwQMGwY3659oXgH99gbORCf+t1FQRQBo9HYpKXQ0NCgWt+MHFBLQUHkXn0EeH7qFmJjQcLDwZSWgjjdBExFBUhQEIRevVwbCQwEU1gIl1ZEh7PbTaRUn0WCg4GHHrJi61YN9u1ziNRNN/EYO9aOwEDZu9LpUaulAMibvkW83kRHM887HjDEa9HPzw88z0uBbKJYiP0wmUyNBMVXoKKgIDqdTlZHM9DEAOvnB9t990H39ttgzp4FAgMBkwkgBPbZs0EiIlx258eNA3v8OFBV5RiVCQGTlwfSpQv4ESNk7W9L6NIFuPNOO+64w/G34mNaZSX0b74Jzbp1YKxW2G+6CZannwZJSlL4iymeaGggOHQoArt3G2G3azBokIBRo+zo0qX1bYr3iO6i9Sz6CZyzpYpC4V6C09/fH3V1dYhwu298BSoKCiL39BHQ9FO3ffJkED8/aNetA5ufDyEhAfY77oB98uTG+44fDyY7G5qMDKCwEGAYkPBw2ObNA7lMplY5+9x4P9m/ujH19fAbPx5sdjaYi4OC5ptvoNm4EaatW0FUlsnVHbVZCjYbsHq1Fps2xSEmRgOtlsGJExocPszib3+ztloYnOMTgEt+AmefAuCwINzrKgQEBKDObcrVl6CioCByO5qBZgZYhgF/yy3gb74ZsFgc/oSmBge9HrbHHwc/fjzYU6dADAYIw4aBuNWHkLPPHQXtF1+Azcx0yUjL8DyIyQTdW2/B8uGHXuubXHSk8305jh9nsWsXh4iIevTs6RiU7XaCzEwWO3ZocPvtrbO03VNbOK8oIoRAo9G4JMZzz4Ekpr/3RagoKIhWq4UgCOB5HhpP6y5bgbNDrIkdXHNeNAXLQhgwAIJTPicl6SiOOy4jw2MYOMPz0GzZAotXeiUfHeU8t5SzZx0ZfQMCLtUx0GiAgACCY8dY3H5769p1j1aur693EUsxvbiYKlvcl2VZxMbGIj4+XoajUyd09ZGCiPOZ7ZE+2x2z2REtfPAgi4oK2b7eBUIcsQSXM4Y61JOrn1/T2WE7iWOxQ53vy6DROK4j90vaZmOg17de4JxXFImi4O5Mdk6Y5zx9JHddB7VBLQUF0V5ceC/3stTLicLx4yy++EKD8+dZ8DzQpQvBLbfYcdNNvGzz9tnZDH79VYPsbBY6HUFqqoC0tKZXDHWUJ1jb5MnQfvFFo+2EZWG7+24v9EheOsp5binJyTwCAxlUVBiQkOC4OGtqALsdGD689dHs7gN9Q0ODi5UtCqfZbIZer4dWq1WdP0YpfFcO2wHRUpBzBZJzkI0nyssZrF6txfnzLOLjBfTp48iNtH69BgcOyPPvPn2awYcf6rBzpyNTa10dg/XrNVi1SgtPh9qRbjT+xhthvVhHg2g0IBezzfLDhsH66KPe7JpsdKTzfTkSEwluvdUMnmdw/DiL48dZlJSwGDOGR0pK6+NUnH0KHMdJZTbFe8fdUnAutgOo6xzKDbUUFES0FNpz+ujQIRYFBQySkwXU1zPIz2dgtwMVFQy2beMwbFjbcwllZGhQUsKgXz9BsjxCQwkOHuRw8iSPgQMbf0eHeYJlGFiWLYP9jjug+fZbMGYz7GlpsE+apEh6j/ZGbU+7DAPceKMFZnMOgoMjYLMxSEwU0Lev4DH9SUtxL7UpPqC5Z0212+2w2+0uVoWvQ0VBQcQLsT2nj2prGTAMUFjI4OhRDiaT48Yzm4Fff+UwZ44NF0tIt5qsLAahoa71Dvz9Hb6FCxcYDBzYuM8dCoYBP3Ys+LFjvd0TRehw5/uyEERHN2DMGPki2N2f/g0GgxSpLGYGABwPblar1cXR7OvQM6AgYpUnJUpyNkVkJIHNBhw+7Mgn1LUrQXg4gVYLVFUxSE9v3XNAeTmwe7dj+aBOBzQ0uA48F5f8N+mr7TCWQidHjedZqQypoqXAMAz0ej0IIS5lPwVBgJ+fn4uloD5BlR9qKSiMEvmPmrvxBw3iERKiwcGDDCIjBTQ0ODKRBgYSxMUJ2LWLxV/+AlycSr8shABbt3LYsEGDsjLROefwI4SEMAgLI+B5IDeXRXQ0wYABjZ/2aDnO9kNt00eAMn32ZCmIOZZEa0AUhaqqKjp95AQVBYVRQhSai1Pw9wduucWOY8dYAA5/QmQkQa9eAnjesdRPEFouCjk5DL76yrEyo29fx/fm5zOormZQUMCguNgxXRUTI2DGDDvCwmQ4SEqboKJwafWR2LZOp3OxFJxTWpSVlXmst+CrUFFQEIZhpDlLOdu83EU7ZIiAgQMJNBoBISEERqPjif/ECRY33MBfkT/14EEONTVA//6XvrNHD4LaWoKUFB5DhwrQ6QiSk4Uml6PSG639UON5Vmr6yNlS0Ol0EATBZaoIAAICAqTEeOJPQH3CKidUFBSmvaePAMegff31dvzyiwYmkyMIqKaGQffujliCK6GmxnMRHJ3OEXg0atTlnYO+fIN5A7WdbyXm8t0tBTGjgHMVNsAhCqJA0OkjB1QUFEbu9NktEQWGAaZMsSM2lmD3bhY1NQyuv57HqFE8unW7sifJuDgBv/3GwW6HJA4870ivlJDQ8uWtanyCVSNqPM/t4VMAAI7jGkU2i6m1LRaLy6okX4aKgsIoUae5JTc+xwHXXMPjmmvatsxv+HAe27dzOHmSRUSEYxlqaSmDnj0FjBzZsrbpjda+qO18K+lTcJ5G4jjOpdoa4AhiY1kWVqsVWq1WCmpT2zmUE2orKYjo4JLTp3C5iGa5CQ0FHnrIhgkT7OA4R9qgG2+04+GHbZfSGvM8PIYyO6HGJ1g1osbzrKRPwXkaSaPRNJo+EhPjmc1muiT1ItRSUBhvTB/JTVQUwaxZdtx1l2PgNxov9qW8HNq1a8Ft3gzYbOCvvhq2mTNB3Cq90RutfVHb+b5SUWAKCsCUlYGEh4PExDTZprNPQRAESRQ0Go0kAM45kPz8/KhPAVQUFEd8ChGrPMkBz/OyttdSxBLQPA/AZILfokXgDh0CCQgAWBaaH38Ee+AAGt57D0JcnPQ5QRBACPFKn9uKmPpcLXS4c00ImNJSwGoFiYqCp1ULYl6iy/a5rg661auh2bULjMkE4u8Pe2oqrLNmAQEBHtt0DmLTaDQwmUwIDAxsFL0sWgpUFKgoKM6ZM2ewc+dO3N7axPBudJSbXpeeDvbIEfDdujkK+gBAWBjY3FxwX38N29//Lu3bUfoMAJpt22BYsQKazEzw8fEw338/bOPHN7m/twS4tYhr8TtCn9mCAui++gqaY8cAnofQvTuskybBPny4y34tvT4Ma9ZA+8sv4CMjHTXJa2qg+flnCAwDy4MPuuzrnABPFAedTudSgtN5+an44EaXT1NRkB1CCGprawE4Lrz4+HjcdNNNOHPmDPz9/dts2tfV1YHjOJSUlMjR3VbTZf9+6KxWWBkGcPKZaLRa8Lt3u/SvuroaPM97vc9BP/2E6OeekxL4a86fR8C2bShZuBCV993n8TNlZWVSDis1YLVaUVNT4/VzzZhMiHj3XZCcHDR07Qqi10Nz4gRw9iyqH34YFqcpxoaGBjQ0NDTbZ660FFEZGagPCgJvNDoSbRmN4IKCwPz+O8qvuw68U+3O2tpaGAwGl6pqHMeB4zhJhJzTXQCOHGWGlhSo6uRQUZCZ2tpaBAcHu2ybMmUKAODXX3+VasO2FqvVCovFgsrKyja101b0LItAQYDNanUp+8mZzWgwGFz619DQAJ7nvdpnxmpF4r/+5Xhi1ekA5mJkt82KLu+/j3NjxoD3EH1XU1MDrqXh3x0Am80Gm83m9esjaP9+sFlZqI2NBRGjJaOjYczNBbNlCyrDw6V9RcumoqKiyYcmY14e+JoaWCIjQSyX6uMxWi30lZUwnTuHBqepH5ZlER4ejurqaheHs3MOJOepIqPRCKvVCr9OUmipLVBRkJnAwECpvuuOHTtw33334ciRI2AYBoGBgW2yFAghSE9Px4ABA2AUvb1egtHpoPvjD+hNJsdcMcMAVVVgjEZw99yDIUOGSPuePn0aDQ0NGNBOpT89we7bB11NDaDXgwEHqw2AQEB4Fto6E+LeWoOQxY9AuOoqSeQ2b96Mfv36ef1cXwkd4VwDAJeVBU1gIALcHMGMxYIAsxmRTteHeF336dOn6UG5WzfovvkGgQwDEhFxqb3iYiAmBn1GjwbchIZhGFRVVUnWgZhhwGazeUyM5xyroDZnvZxQr4rMMAyDoKAgBAUFoaCgAL1790ZwcDCCgoLafKFZLBYQQqAX5/C9COnXD/ZHHwXR6cDk5oI5cwYwm2GfMgX8Lbe47Gu322WrUd1ayMXvJwK5KAgCdHwDtMQKhhCwO3aA/9sT4L75xqv9bCtyx8W0FhIS4vjF3U9gMoFER7tsErOYms3mphuMiAB//fVgysrAFBUBDQ1giorAlJeDv/56F0Fwxn1pquhXcF6dRAiBv7+/lALD16GWgoJkZ2ejZ8+esrUnlg7sKBcuf9ddEFJTwe7YAdhsEK66CqRfP5fpJMAhCm0RMqGqBqf+ewDndpeg1BYC9uphGHlbOJKSWu4QJIMGgcTFgZw5C4Fw0MMKhjgGLDunx+nAq5BYW4DwTz4BP2YM4PQ0qiY0Gk2HEAVh+HAI3buDyc4GiYsDNBowhYWAXg/h+usb7W8wGJoXBQD8jBkAy4L7/XewhYUggYGwT50K/p57Gu0rCoE4+IsDvkajAc/zHhPj2Wy2DnNveRMqCgqSk5Mjqxnf0NDQ4RxhJDYW/LRpze5jt9tb7UthLlzA+QXvgRzKQRwIEjig+HA3rN/zCP7y/5JdEvU1C8vC+t57wB13Q2uuByfYQMCAsCwuRA0Bw3Io10cjvDwH7MGDEG66qVX99TYdRRTQpQvs8+dDs2oVmLNnAbsdJCIC/B13QBgxotHuRqPxsqIAoxH8/feDv+MOMOXlIF26OKIrm8A5K6ogCNBqtdL5cXZAA5cS44mf82WoKCgEIQQ5OTmYOHGibG2azeYOJwotwW63S6VJrwhCUP/JV7AdPYXSLn1hDNICREBs2SmMOLoam354Ff36se6GSZMIo0bhz6XbUf/WCtxYsBZ2jREl4X1h0QeBrwb8jACcgs8vLlJSFU2KAiFgDh0Cu3Mn2OJiCLGxEFJTQfr3V6wvpF8/2F59FcypU4DNBpKQALgtwhBpiaUgERoK0owYAJD8As7pLkRLAUCjdBf+/v4dZtm0t6GioBCEEJw+fRpJSUmytWk2m1Xl9BRptU+hrAz2/cdRxHWDIfCiqDAsKkPiEFuWhz1HclBV1bu5h8VGJN8ahzdPvAHmF2Bk5SbUs/5oqAX0eoKufAEQHo7CmKuQ/jmH774bgN9+88OoUSzGjuXd46M6JE2JAvvHH+DWr3eoXGAg2P37wZ44AX7GDAjDhinXIa22RcJjMBhQU1Mj61eLg7x7rQRP6S7EvEdyZh9QK3QCTSGKiopQW1sru09BrZaCiygIApgzZ8BkZjrSrTYBY7eDBQ/CcXCuKySwGoC3QwsrrjSEIDwcePBBO/Im3I8iYwK6lOWgh+00ktlM6I0syqbOw7tfxOD77zk0NHAoKWHw2WccVqzQNNfVDoMoCi5TILW14LZsAYxGkN69QaKjQfr2Bex2sFu2ONb8e5krshRaiLulIP6t1WobWQpiDiSLGv7JCkMtBYU4deoUYmJiZF333BlEgcnKguY//wF76hTA8yAxMbDfdx+EsWMbfY507Qr//j0QczoTOZVBCA1jwLBAQHUBShCJ2LEJaI2rIjGRIP71RJRMfxfajE0ILc4C0zUc1uuvx+bc4cjJYdC/P8HZs2b06CHAZiM4cIDF0aMshg9vebpwb6DRaKS5dDG+gikqAsrLQRITXfYlkZGOFTxlZY1WBMlCRQXY/fvB1NSAREdDGDoUaOL6NRgMaGhokD05niiOzuKg0+lgsVikcyVONYnZUn19SSoVBYXIyclBz549Zb24lBCFkhLgzz85HD3KwmgkGDlSwDXXCLjSxUKEAPX1jvxI7u4DSRTKyqB99VUweXmORGYaDZjz56H5979hCwkBcVq7DgDgODB33Yno7A/AHDuOyvOB0PP1qNcYUTzmDtw0pfWBgCwLRF0VBVw1C86zyMd/ZBAY6Fqu1M/PkQQ2L4+BW4aGDocovna7/VLQnfhPsVhc/zlWq2N6R4GIbebYMWg++ADshQsAAMKyEPr3h/2xx4CuXRvtL0Yf22w22SLInXMfOVsKOp0OJpMJWq3WJYiNWgoOqCgoxKlTp5Do9mTWFmw2G+x2u6yiUFwMvPeeFtnZDIKCALudwZEjLE6f5jFnDt/iOs7HjjHYtInD2bMMjEbgmmsE3HQTDz8/xzpxMUMlt20bmHPnQHr3lkZdkpgIJisL3KZNsLuLAgAyZAj8X3sKMT9lwLj/LGr8o6EZdS1unzwYegWMpoAAwGZz9S6LDucOEB5yWcT6AM7LgEn37iCJiWCPH4fQu7ckEGxBAfhRowCn9BBXAiEOoayoAEJCgPh4R70NmM3QfPIJmMJCCH36OP7XZjPYw4eh+fpr2B95pFFbGo1GmuuXM62Ie5yCIAjQ6/WorKyU4hTccyD5OlQUZMI55xEAnD17Ftdddx32798PAG3OeySatWfOnGlzX0V++SUEBw+GomfPBkkA6upY/PKLFtHRxUhKuvwNkpNjwOefR6CujkNoqB1lZQz+7/84HDpUh2nTykAuxgLk5uYi4tgxhJnNMNfVubShBWA9fBjns7Ka/qIJox0vAAyAs+dOteaQL0tkpD+qqiJw+rQNhAAVFZUoKdGDZQE/vyJkZXl//r0lnD592iU2RHvVVQjLz4du/34whICwLMzx8ajo0wd8c+e9CerqWPzwQxhOnvRDfT0Ho5FHnz4NmDixAl3zjyH6+HFYu3UDcXIeawwGID0d50eOhOAhpQjDMDh9+rRsU66EEDQ0NDSyGAwGg+R3ca+hYLfbYbPZOkSAqLegoiATnnIerV+/Xvr9jz/+QEAblq/wPC97VPCpU0YEBrpaBAEBAoqKGFy4oLusKBAC7NwZiNpaDomJZmlpaEAAj2PH/HH11bXo3t0hAAzDwB4aCgIAguCYv7kI29AAa1SUrMfWWgYPNiE/X4d9+4JQXh4Eg8GA0FABN91UiZgYdQiCp0JMtshIlMyYAUNuLrjaWvAhITAnJLR66ujXX0Oxd28goqOtiI62wmRiceBAADQagvuTrQ5/kdv1SrRasA0NYG02ePLMcBwn65JQhmEQGRmJkJAQ5OXluTiaRYFwnj4S3zOZTG26V9UOFQWZcM55JAgCYmJi8NNPPyE5OVl6vy2Wwvnz50EIQZ8+fWTpLwDExGhgsbAID780gBACFBUxiIszok+fJpyPlZVgMzNh41nYynsgPj4AERGXbqLwcMBkYqDX+yE2thJlZWWOfoeFQbdzJ4wXLoB07+7wGRQVgUREQHPvvQiR8djaQnIycOYMg6+/zsKQIf0xeLAG0dHqSZRWVVWFqKgoREZGNn7TwxTdlVJWBuTn69CrF0FEhMOvExEBBAUBhYUB0E8eC//Yn+FvtV5yYBMCprgYwsCB6JmS4vJQICJO5fTu3bvNfRThed4lTkH8qdVqpXQX4n1JCIHBYIDJZJLt+9UIFQWZEHMeAUBeXh7MZjMGDRokW1yBEk7mlBQBx4+zqKtzzKUTAuTnMwgNhUuksGMaBWBAEL5nEzSffwamtBQaMJhVEoNN3eeiPnKMtL/N5rjn/f3dlqNGRMD2zDPQfPQR2DNnHE+TUVGwz5jhWJkiEzwPZGYyKChg4O8PDBgg4OK/pkWwLJCURDBsWAlGjeoNo1Fdt4nc1f7cqa1lUF8PdOvmut3f3yEYVbpIRN96K7gvvwSTnQ34+YGprgYJDQV/550eBQFQJlbBOYjN2bcg5ohythTExHh1dXV09ZEvUlFRgUcffRQ//PADWJbF5MmT8c477zRrNn788cf4/PPPceDAAdTW1qKyshIhYuKvi8THx+PcuXMAgPCLSbpefPFFLFq0qE39bWhoQKCHedi2MHq0gJwcATt3stJS9ZAQYPJkO7p3d4hCbi6D777jcOoUi9iKw5iV/QkiuwowXMyH3732PG448T5+joiBPaEXbDbg9GkGsbEE/foJMJlco5lJ//6wvfMOmJwcRzWupKRL9T1loK4OWLVKg/37WanMQ2wswezZdiQnqyw8uZUoneoiPJwgJISgooJBt26XzmllJRAURBARQcBPngwSGQk2IwNMSQmE4cPBp6U1G8hmMBgUqQPhnCpb9CFoNBpYrVYXnwIhBH5+fi6+QV/EZ0VhxowZKCwsxObNm2Gz2TBnzhw88MAD+Pzzz5v8TH19PSZMmIAJEybgmWeeaXK/2267DeXl5fjvf/8LALIM5mazGREyJ2kzGIB58+xITWVw7hwLnY6gf3+CHj0cN3pxMfDRRxqcP88gOppgQNlWmEtqcUjbH0NsAgxGIGRoPGK3nkC33J34paE3WBbo0cNR0zkgAKiu9hDNzHEgck0V1dU5nkIjIwGNBps2cdi+nUVCAkFAgGMpaU4O8OmnGjz3nA2+kC5faVEIDASuv17AunUceJ5BSAhBdTWDmhpg8mT+YoQ5C+G66yBcd12L2xVjFeREtA7cVyFpNBrU19e7rD4SBAH+/v4oKiqStQ9qwydF4eTJk9i4cSP27t2L4RcXnr/33nu45ZZbsHTpUsQ0UQz87xdLTGZkZDTbfm1tLZKTkxElo/NUqRQXGg0wZAjBkCGNHXx79nDIy3MEcrEs0JUphS5Ij5paoKSEQY84Ak7DILIbh4kjipFwkx1GI5CcLEiDr2Jps6uroX35ZXD/+x8YqxWka1eYH34UO07OQ1jYpZK9Gg2QmOiwXjIzWQwd2rGDz+TgikWB58FkZjqSzIWEgCQnNw42ceOWW3jodAS//86hqopBUBDBbbcJGD++9Y5ig8EgPb3Lna3UPbKZ4zjYbDbJ5wA4RCEkJARXX321rN+tNnxSFHbu3ImQkBBJEAAgLS0NLMti9+7duOOOO9rU/q5du7Bnzx7s27cPd911Fx599NE2DYyCIMBisbR7NHNeHgO9/tIUcHloEuLP/wmNRkBd3cU5V54HY+cRNCgO114rXEpOZ7WCPXYMhhMnEBgUBAwc2ORc8hVDCHTz5oHbuhVEowHRaMAUFMCw+FmkDOCwc8Bcl921WoefwVeWoGs0mpY/cVdUQPPJJ2CPHnU4gzQaCH37wv7XvwKeHNXSdwATJggYO1ZATY3DemjrM4ter5diBeSugOZuKXAcB0KItNRbXK0l+ht8GZ8UhaKiInR1i6rUaDQICwtrs+n46KOP4t1338X8+fOh1+uxZMkSFBUV4Y033mh1m2JFqPauFdylC4HV6nA0MwxwOmEcep5NR7fCk/DvGgmUCTDlFCOXTcSnm6+HMUuDMWMEXNsjD7r33wWTlYUu1dUI0+uhOXIE9kcfbTJL5pXA7tkDbts2EKNRiigjBgOY6mrcemoZfoyYjS5dOEmgyssdK2NiY33Dp6DVals8L86tWwd2715HCgx/f6ChAeyhQ9D897+wL1zYqDaGOwZDk5krrhiGYaQcSHKJghij0NIcSLSeQidLiPf000+7lNPz9MrMzFS0D4899hhKSkowbtw4/PWvf8Wrr76K5cuXtyl83lvFdYYPFxASApw9y8BuB8qN3fFpj2dxpvsodPG3oKLIhs3CDVgR+f9Qo49ATg6LT1awyH/qI7DHjoF0746GxETwXbqA27YNmmb8NVcCc+KE49HfTSSJXo9Qawl66Ipw4gSDoiLH0tKSEgajR/OS87yz0+Lpo9JScIcOOVKOiEmkjEaQuDiwJ06AOX9e2Y56QInEeMAlS8HZ4azT6SRRcLYUfJ1OZSk88cQTmD17drP7JCYmIioqqtEqB7vdjoqKijb7Ac6fPw+r1SqluBgxYgTsdjvOnTvX6vXX3iquk5REcN99dnzzDYfsbMcTY3RCHwQueh5Cj1K886YOudVdkHgxEWxkJIFwLBOWg1mwXNsDWqMRgskEBAaCaDRgd+4Epk93LHFqC2LpRZ53zGOI2O1gjXrc96g/tuwSkJPDIDZWwKhRAsaMES730NtpaKkoMPX1jnxI7rnHjUbHKgMvrNdXOluq89JUMTGemANJ3JcmxOtEREREtGiFTmpqKqqqqrB//34Mu5hL/rfffoMgCEhJSWlTH7Kzs9GjRw9pqufIkSNgWbZNK4e8mR31mmsEDBok4PRpx02SlETg7w+cPx+Bs7VadI10ffqODqwDLBbU8n4Iw8UnNJYFMRrBVFaCMZku1e9tJXxaGkhMDJiCApCAAEduHYsFjN0O+/Tp6DPMH32G2cHzDjeGr93fLRUF0rUrSJcuYEpLHSUzL8KUloKEhiqTOfUyKGUpiGLgbCno9XrU1NRAr9fT6SMnOpUotJTk5GRMmDAB8+bNw/Lly2Gz2TB//nzcfffd0sqjCxcu4IYbbsDatWsxcuRIAA5fRFFREXJycgAAR48eRUBAAEJDQxEWFoY9e/bg/fffR//+/bF161YcPnwYS5cuxaRJk2C1WlFcXNyq/lZWVkKj0bT683IgGlB1dY5XbS0Lng9DZaUAOCUtqOe7YLgmCJFlF1DvHw673Q67zQZrcTH4iAiU87zjKbSN6N58ExELF0Jz0QdEOA4NKSkoffBBkFa2X1jIYf9+Pc6f16JLFx7+/oEoLS2DXt++vpy20tDQ0OLrzZiSgoD164Fjx8AHB4OtrQVjs8H0l7+g3mKR5X91JVitVlRXV8t6rYu1mt0tBoPBgLKyMkksfN1CEPFJUQCAzz77DPPnz8cNN9wgBa+9++670vs2mw1ZWVmor6+Xti1fvhwvvvii9Pd1zazB/umnnwAAM2fOxD333IOzZ8+2uq9imt+OlMGRECAy0oIDB0LRvXs99HoBNhuD8/lhGJwwAn2qvoHVUgH24sqgBpbFhRtvREVhocf2eB4oL9eDYYCwMMvlM7QGBiLn/fcRtm8ftJWVMCUmoiY52RF6XVFxxceTl2fEhg3dUVbGQq+3wmplodEkwWIpxdCh8kbZtgZNbS0CMzPBmc0wR0WhrmfPJldzCYIAnudbds3FxiI4LQ2h+/ZBV1kJW1AQqoYNQ2VSEtCGa7a12O12mM3mNt0vnggNDZWmiUQREBPjOUc8UwCG+HqV6jbinh11ypQpuPbaa/Hggw8CaHvOIwDYsWMHevfuLUVIdxRKS4FPPtHgxAkWPO+YpklKEjBvthk9Dv8EdtMmlJ4+jeC+fcFNnAjh+us9zuWcPMng22855OY6BrmEBAGTJ/Po06d9Lk1CgLfe0uDAARb9+hGpizt2FCIpKQKvvEIgczD5FcEeOADNe++BKSiQcnjzqamO2gQeqgxZrVZs3boV48aNu1RT4XIIAtDQ4FhK1NLPKEBdXR12796NcePGyTZIi5YCx3FIT09Hamoqjh49iri4OBw9ehRdu3ZFUlKS9L0sy9IsqZTW45zziBCCc+fO4cEHH5S2tRVCSIetuBYRASxcaMeJEwzKyhiEhDjyDBkMGvDxE2G/+WYc+uUXjBw3Dn5NjKoFBQw+/liD0tJLKROOH2dRVsbgySdtaI9p7fJy4PRpFjExxEWzwsMbUFLC4swZAYMHe+nZqaYGmvffB4qKICQlORzrtbXgfvsNpEcP8Pfe2+gjHgvtXA4xWZWXUbLYDuAar8BxnJQYzz2Fti/jc16ViooKzJgxA0FBQQgJCcHcuXNR55bf352PP/4YY8eORVBQEBiGQVVVlcd277nnHpw6dQqzZ8/Gww8/fNl2W4LdbgfP8x1SFADHqtAhQwjS0gQMHy64rFkXOA42Pz9omnnq2rOHRWEhg759CYKCHPEEffsSFBQw2Lu3fZ5YRWe04BbsLMZneNP3yB44AObCBUccgbjSKjAQJCgI3G+/OfJ4uH/GqdBOUxQVAdu3s9i5k0V5uVK9v3I0Go1iU6ViVlT3HEhibQXqZHbgc2dhxowZOH78ODZv3owff/wRf/zxBx544IFmPyPmPHr22WebbffQoUNgWRbr1q3D9u3bMX/+/Db3t6GhQapKpTbEQam5vhcUOOLPnB/SWNYhNk24H2QnNBTo109AQQEDMZ0/IUBxsT9iYgQkJXlxhrWhwaFW7k/8BoPjvSayoTa1AokQ4OefWbz8sg7vv6/Be+9p8OKLWvzxR8cZCpRclur8u5gDyT1bqq9bDB3nSmgHxJxH//d//4eUlBSMGjUK7733Hr788ksUFBQ0+bm///3vePrpp5vMiSK2+9BDDyE+Ph7XXXcdli5diq+//hqFbRzZlMp51B7Y7XbpqbUpIiMdS+WdPVuEOMoHeyjlqwgMA0yaxKNnT4LMTAYnTjA4doyBn58NU6ZY5UziesWQhATHtI6zdUoImLIyR2nNJizIpkThyBEGX3/tEOl+/QiSkwnMZgZffKHBmTMdYzBUclkqAJe6CmKacepovoRPicLlch61tV0ASEpKAsMwksNq7969bepzR/UntISWJMMbPlxAeDhBdrbjwbe+HsjOBrp2JRg+vP2S13XvTrBokQ3332/HzTfzuPdeHnfddcpjosD2hPTpA/6668AWFYE5dw5McTHYzExHbYI77mgyCKMpUdi3j4XFAsTEOJIcilltKyuBQ4c6xnCglKUgVnVzDmJjWbZRYjxfR31zEm1AqZxHYrvZ2dno2bOn1G5oaGib11t3dlGIiyOYO9eO//1Pg/x8xwDXowfB5Mn2ds9VFBoKpKVdEqLNmzvAEmCGgf2RR0Di4sBt3gzU1oIfPRr8X/4CMnhwkx9rqtBOTQ3jnh0EDOOYneooBceUKLYDwGX6SLQUOI6DIAiwWq1UFC7SKUTh6aefvmzCuZMnTyrej5ycHNx4442ytmk2m2VbydTetDRt9lVXEfTrZ0NenkMU4uJIo4HLpzEYwE+e7KhaZrdfNq010LSl0LMnwa5djrgQ0U1hszncFh0lYaDBYFAkUNM5atl5ukij0cBsNtPpo4t0ClHwds4jsV1BEPDwww9L7VZWVnquk3sFmM3mRtaNWrDZbC12kOv1QK9eHWNQ6rAwTIsEAWhaFK6+msfOnSyOH2fQtSsBIQxKS4H+/QUMG9Yxak0oNX3knN/IPTFeQ0ODS2I8X6ZTiIK3cx6J7dbW1krTRxkZGRAEASNGjGh1u4D3kuHJgWIFdiiXpSlR6NoVmD/fjk2bWBw+zIJhCG6/3VEcx5sBes4oVWzHvcqaKAJ6vR4Wi4WuPrqIT92xcuY8CgwMRI8ePRAWFobk5GSMHj0a27ZtQ2lpKYqLi/HEE09gypQpiG5D9JU410lFgXKlNFdop1s3gvvv52E289Ly346EUsV2nPMfOSfIMxgMqKur8+koZmd87o6VM+fRhx9+iBkzZgBw5DgqLCzELbfcApZlMWbMGMybNw8HDx5sdV/F1RLt4Q9Rgrq6OjAM06Zz4G2OHz+uSgdkQ0MDbDabas89wzA4duyYrFXQxCXS7r4FvV6P8vJy1S79lhua+6iV1NTUILiZKmL79u1DgFgouJWYTCYUFRVJU1Jqo6CgADqdrsPlbGopmZmZ6NmzpyrLM1ZXV6OqqgpxTimx1cS5c+cQEhLS7D12pYiZUSMiIrBlyxaMGzcO+/fvR0xMDE6ePImuXbti8ODB0Gq1qvyfy4XPWQpyERgYiOrqaunvxx9/HBqNRrIo5EiEV1BQgLq6OsTGxrapHW9RXl6OsLAw1fY/MzMTMTExqpy+0+v1qr52qqurYTQaZe2/OG3kbCmI00fOmVJ93aegPru4lbQm55HZbMbf/vY3dOnSBQEBAZg8ebK0VE5MhBccHIzg4GCsXLkSH3/8MaKjo7Fp0yZZLiw1O5kB6lPwJi0uydlBUTKq2X36iGVZKTEexYdEoTU5jx5//HH88MMPWL9+PbZu3YqCggLceeedjfZbuXIlYmNjsXbtWpw+fRq33367LH1Wc+AaQEXBm1BRaIxoBXhamkpF4RI+cceKuYn27t0rpbh47733cMstt2Dp0qXSyiNnqqur8cknn+Dzzz/HuHHjAACrVq1CcnIydu3a5ZIHyd/fHxcuXMDw4cPbXOPZGbPZLOucantDRcF7OGf/VON0iJKWAs/zLgLhni3V1/EJS6E1OY/2798Pm82GtLQ0aVvfvn3Ro0cP7Ny502XfRx99FIIg4N5778WaNWtku7DUnAwPoKLgTTQajctUidoQRUHuQdpZCAA0ypZK8RFLoTU5j4qKiqDT6aREdyKRkZEun3nppZeg0WiwYsUKTJo0CY8//jhMJhMeeeSRNvW5IxfXaQmEECoKXqRVhXY6EEajUfZiOyKegtiayhXli6jaUnj66aclM7CpV2ZmpqJ9eP7556HRaNC/f3888cQTePzxx7Fs2bI2t2uz2aSVEWpEEAQQQqgoeImWFNrpyIhV0ZTKlupsKTAMIyXGE2s2+zKqvmOVzHkUFRUFq9WKqqoqF2uhuLi40WdycnKQmJgIABgxYgRef/11WCyWNkVINjQ0QKvVqvIpD4D01EVFwXuofUpEnEKSOyGkc/oM5985joPJZIJ/ByhL6k1UfccqmfNo2LBh0Gq1SE9Px+TJkwEAWVlZyMvLQ2pqqsu+2dnZuOOOOwAAR44cQWhoaJtD5tU8dQRcmrZQYzRwZ6GziILcODvfnVNf6HQ6l0wGvopP3LHOOY/27Nkjlcp0z3nUt29f7NmzBwAQHByMuXPnYuHChfj999+xf/9+zJkzB6mpqdLKox9++AErVqzAyZMn4efnhxUrVuDNN9/EQw891OY+Uyczpa10BlFoKn9Ta3EuxSkGszlnSzV1lKISXsRn7trW5Dz697//Le1rsVgwfvx4fPjhh9L7Wq0W77//PoqKirBgwQL07NkTr7/+OubMmdPm/nYGS4GKgndRu/PUYDC4ZA2QC3H1kXtks16vp6IAmvuoVRBCUFtbC8CRMO21117DggULwDAM/Pz8ZHFUVVVVQavVqnZ+02w2o76+HmFhYd7uSqspLi5GeHi4av06neEaMplM6NKli+zt8jyPq6++Glu2bMENN9yAw4cPw2g0orKyEmPHjlXt/1wO6KNcK6itrW0UVPbDDz8AAHbv3t3mRHiA44YODAyUpS1vQAiBzWZTbdU4wCEKgYGBqrV4GhoaoNFoVPs/0Ol0qKurk73/4n3lXLNZXOlXX1/v8wFs6rzavYxzMry3334be/bswcqVK6X35LAUzp49i9jYWNVGNJ89exYMwyA+Pt7bXWkVhBBkZ2eje/fuqp3Gs1gsIISo9n9gsVhw/vx5xMbGyvrkLvoSRFEQ/QwGgwFhYWHgeV61DwJy0OkczR988AHi4+NhMBiQkpIiOY6bYv369ejbty8MBgMGDhyIn3/+2eV9QggWL16M6OhoGI1GpKWlIScnB0FBQQgKCsL58+fRt29f6W85BIHnedhsNupoprQJtTuadTodGIaBxWKRvW3naG/nHEhDhw716bTZQCcTha+++goLFy7EkiVLcODAAQwePBjjx49vFKMgsmPHDkyfPh1z587FwYMHMWnSJEyaNAnHjh2T9vnXv/6Fd999F8uXL8fu3bvh7++P8ePHS0vlcnJykJSUJOtxmM1mKUmXWqGi4H20Wq2qRYFhGMWWpQKXYhScRYHSyUTh7bffxrx58zBnzhz069cPy5cvh5+fnzS1484777yDCRMm4Mknn0RycjJefvllDB06FO+//z4Ax9PEsmXL8Nxzz2HixIkYNGgQ1q5di4KCAmzYsAGEEOTk5MheBEdceaTmyEoqCt5H7ZYCoHy2VPd4BUonEgWr1Yr9+/e7JLBjWRZpaWmNEtiJ7Ny502V/ABg/fry0f25uLoqKilz2CQ4ORkpKCnbu3AmTyYSCggJFLAW1zmOL2Gw2KgpeprOIgtyxCsClbKmeIpt9nU5zFsrKysDzPCIjI122uyewc6aoqKjZ/cWfTe1z6tQpBAQENHq/rai9uA7gsBTUPP3VGegsoqDE9JH7lBEVhUvQs9AGsrOzkZiYKLvZ2RksBTp95H2oKDQPnT7yTKcRBTHISCyXKeIpgZ1IVFRUs/uLP5vaR/QnUFFoDBUF79MZCscYjUZFLQXx3nW2FHxdHDqNKOh0OgwbNgzp6enSNkEQkJ6e3iiBnUhqaqrL/gCwefNmaf+EhARERUW57FNTU4Pdu3cjNTUV2dnZsvsTAPXnPQKoKHQE1F5oB1Cu2A7QdLZUX6dTnYWFCxdixYoVWLNmDU6ePImHH34YJpNJykU0c+ZMPPPMM9L+jz32GDZu3Ii33noLmZmZeOGFF7Bv3z7Mnz8fgOOJ4e9//zteeeUVfP/99zh69ChmzpyJmJgYTJo0SZGVR2ovrgPQAjsdBedCO2rFYDBIxXbkxDkxHkCnj5zpVHfttGnTUFpaisWLF6OoqAhDhgzBxo0bJUdwXl6ey9PANddcg88//xzPPfccnn32WfTq1QsbNmzAgAEDpH3+8Y9/wGQy4YEHHkBVVRVGjRqFjRs3Qq/XKxKjYLVaQQhpc+ptbyJGilJR8C7OhXbUej05F9uRuwKbOH0kWlPUUnDQ6e7a+fPnS0/67mRkZDTaNnXqVEydOrXJ9hiGwUsvvYSXXnrJJRFefn4+7HY7goKCcOHCBQQEBMjypFFbWwuNRqPqbI1iBGp9fb1qn77E6Yra2lpYrVYv96b1sCyL6upqSajViFarRXl5ueztiten+L9W67UqNzRL6hVQU1PTZC6i9evXw8/Pr83fIQgCBEFQ9VO2OH2k9iWpNputUxyDRqNR9YBnt9slq0duunbtin79+mHz5s0YO3YsdDqd6gNH24p6Rx4v4JwIb926dXj//fexceNG6T25EuFVV1dj8ODBbW7LW1RVVeHIkSO47rrrvN2VVkMIwZYtW3D11Ver2r+ze/duxMfHyx5L055kZmaCYRj06dNH1nZFB7xztlRfFgORTjOJJncivNmzZ0vh8OLr5ptvlhLfFRQUoHfv3rImwgM6x8ojGs3ccaCxCk3jHKMAgC5JvUinEAUlEuEBwIQJE1BYWCi9vvjiC+m97Oxs2VceATRGgSIvaq++BigXqwCgUQptSgcWhbVr16JLly6N0uZOmjQJ9913n8s2uRPhiej1ekRFRUmv0NBQ6T0llqMCnUcU1D4X31mglkLTOAeuibMBlA4sClOnTgXP8/j++++lbSUlJfjpp59w//33S9uUSIQnkpGRga5du6JPnz54+OGHpRUQYnZUJQLXOkveI2opdAw6iyhYrVbFVlA5xyhQYejAomA0GnHPPfdg1apV0rb//ve/6NGjB8aOHSttUyIRHuCYOlq7di3S09PxxhtvYOvWrbj55pvB8zyqqqpQVlYmuyjY7XbY7XYqChTZ6AyiIBbbUWoKyTlbKqWDrz6aN28eRowYgQsXLqBbt25YvXq15ABWmrvvvlv6feDAgRg0aBB69uyJjIwM+Pv7IywszGU6SQ46Q3EdgIpCR0Kr1UqxNWrFudiOv7+/7G1TUXClQ9+5V111FQYPHoy1a9fipptuwvHjx/HTTz+57KNEIjxPJCYmIjw8HDk5OfDz81MsEZ7RaFS9CdsZrJ3OQmewFABls6XS6SNXOrw8/vWvf8Xq1auxatUqpKWlITY21uV9JRLheSI/Px/l5eWIjo6mK48uA7UUOg5UFJqHluJsTIc/E/fccw/y8/OxYsUKFwezM3Inwqurq8OTTz6JXbt24ezZs0hPT8fEiRORlJSE8ePH05VHl4GKQseBisLlcU6hTVGBKAQHB2Py5MkICAjApEmTPO4zbdo0LF26FIsXL8aQIUNw6NChRonwCgsLpf3FRHgff/wxBg8ejK+//tolER7HcThy5Aj+8pe/oHfv3pg7dy6GDRuGP//8U0qER0WhaagodByoKDSPe7ZUSgf3KYhcuHABM2bMaDbTo5yJ8IxGIzZt2uTxPaWXo4aFhcnebntDRaHj4FxoR81Pw0oGsFFLwZUOfedWVlYiIyMDGRkZ+PDDD73SB+fMqIBjCWxAQAAMBgNyc3Nly44KACaTCRaLBWVlZbK05y2sVitqa2tVnZlTTH1QUVEhe8rm9sRms4EQgtLSUlU/DZvNZjQ0NKC0tFT2AbympgYsy6q6Qp2cdOgsqfHx8aisrMTzzz+PRYsWeaUPzWVGBYDvvvtOlmVyhBCYTCb4+fmp+ualx9Gx6GzH4e/vL7soEEIQHh6O3r17Q6vVqn5JeFvp0JbC2bNnvd0Fl8yoAPDZZ59h5cqV+OGHH6T35bhIzWYz/vzzT6Smpqr65rXZbMjIyEBKSoqqp5DELKnDhg1TvZ8nPT0dQ4YMkX2Nf3uTkZGB/v37N/uQ1hrUXK5UCdQ7+uDKMqMeP34ckydPRnx8PBiGwbJly1rU5t69e6VMqEFBQcjPz0efPn0UyY6q1+tVLQjApdKPHMd5uScUEepsbh7qT3BFtSPQlWZGra+vR2JiIl5//fUmg9Ra0qZSK486Q84j4JKTmd5oHQcqCpeHEEJ9ChdRrShcaWbUESNG4M0338Tdd9/d5Cqmy7Uprjyiy1Gbhq486nhQUWge97opvo4qRaE1mVHlaJMQgtOnTyuyHLUzFNcBqCh0RDqLKChdV4FaCg5UKQqtyYwqR5slJSWorq6mlkIzUFHoeHQWUVBy+ohaCJdQpSh4i1OnTiEqKgoBAQGyt01FgaIUVBQoV4IqRaE1mVHlaFNMhKfEUwUVBYpSdCZRULLYDsWBKkWhNZlR5WgzOzsbiYmJbeu8B6qqqvDLL7+oOnJWZN++fcjMzPR2N9qMIAjYvHkzTCaTt7vSZs6cOYMdO3Z4uxttRqfTYevWrcjPz5e9bTp9dAnVPtItXLgQs2bNwvDhwzFy5EgsW7asUWbUbt264bXXXgPgcCSfOHFC+v3ChQs4dOgQAgICJMfx5drMyclB7969UVFRIeuxHD58GCtXrsQ//vEP1Q9CGzZsQHBwMG644QZvd6VN2O12fPDBB5gxY4bqB4ydO3di9+7dmDhxore70ma++uorDBgwAIGBgYq07+fnh9DQUNX/z9sEUTHvvfce6dGjB9HpdGTkyJFk165d0ntjxowhs2bNkv7Ozc0lABq9xowZ0+I233vvPY9t0Bd90VfneVVXVys9dHVoOnTuo44GcUuOJxcrVqzAr7/+ivXr18vednszefJk3HrrrU3WvlALPM8jLCwMmZmZiI6O9nZ32sT333+Pt956C1u3bvV2V9rMI488gtjYWJf6KHIjV+oatUJFoQNQX1+PmpqaVjvJOxIlJSUwGAwICgrydlfaBCEEeXl56Natm+od5yaTCTU1NaoXN8BxfRmNRsWmjyhUFCgUCoXihCpXH1EoFApFGVQpCnJnR33hhRca5T/p27evgkdAoVAoHRPViYIS2VEBoH///igsLJRe27ZtU+oQKBQKpcOiOlFQIjsq4Ij6jIqKkl7h4eFKHQKFQqF0WFQlCkpkRxXJzs5GTEwMEhMTMWPGDOTl5bW1uxQKhaI6VCUKSmRHBYCUlBSsXr0aGzduxEcffYTc3FyMHj1akZgECoVC6cioewG2TNx8883S74MGDUJKSgri4uKwbt06zJ0714s9o1AolPZFVZaCEtlRPRESEoLevXsjJydHtjYpFApFDahKFJTIjuqJuro6nD59ulNEgFIoFMqVoLrpIyWyoy5atAi333474uLiUFBQgCVLloDjOEyfPt07B0mhUCheQnWiMG3aNJSWlmLx4sUoKirCkCFDsHHjRsn5nJeXB5a9ZAAVFBTgqquukv5eunQpli5dijFjxiAjIwMAkJ+fj+nTp6O8vBwREREYNWoUdu3ahYiIiHY9NgqFQvE2NPcRhUKhUCRU5VOgUCgUirJQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFBbiScqErVqzA6NGjERoaitDQUKSlpTXanxCCxYsXIzo6GkajEWlpacjOzlb6MAB0rtKnch/LlbYpJ1f6vevXr0ffvn1hMBgwcOBA/Pzzzy7vz549u9H/ZcKECUoegoTcx+LN+6VTQCiy8uWXXxKdTkdWrlxJjh8/TubNm0dCQkJIcXGxx/3vuece8sEHH5CDBw+SkydPktmzZ5Pg4GCSn58v7fP666+T4OBgsmHDBnL48GHyl7/8hSQkJJCGhoYOdSx79uwhixYtIl988QWJiooi//73vxvts2TJEtK/f39SWFgovUpLSxU9DkKUOZYrbdNbx7J9+3bCcRz517/+RU6cOEGee+45otVqydGjR6V9Zs2aRSZMmODyf6moqFD0OJQ6Fm/dL50FKgoyM3LkSPK3v/1N+pvneRITE0Nee+21Fn3ebreTwMBAsmbNGkIIIYIgkKioKPLmm29K+1RVVRG9Xk+++OILeTvvRluOJS4urklRGDx4sIy9bBlKHEtb/9et5Uq/96677iK33nqry7aUlBTy4IMPSn/PmjWLTJw4UZH+Nofcx+LN+6WzQKePZESOcqH19fWw2WwICwsDAOTm5qKoqMilzeDgYKSkpLS5BGlzdKbSp0oci5LnR+7v3blzp8v+ADB+/PhG+2dkZKBr167o06cPHn74YZSXl8t/AE4ocSzeul86E1QUZESOcqFPPfUUYmJipIta/JzcJUgvR2cqfarEsSh1fpT43qKiosvuP2HCBKxduxbp6el44403sHXrVtx8883geV7+g7iIEsfirfulM6G61Nmdmddffx1ffvklMjIyYDAYvN0dRaClTzsmd999t/T7wIEDMWjQIPTs2RMZGRm44YYbvNgzSntDLQUZaUu50KVLl+L111/Hr7/+ikGDBknbxc8pXYLUnc5U+lSJY2mv8yPH90ZFRV1xPxMTExEeHt7h/i+XOxZv3S+dCSoKMtLacqH/+te/8PLLL2Pjxo0YPny4y3sJCQmIiopyabOmpga7d++WtQSpO52p9KkSx9Je50eO701NTXXZHwA2b97cbD/z8/NRXl7e4f4vlzsWb90vnQpve7o7G19++SXR6/Vk9erV5MSJE+SBBx4gISEhpKioiBBCyH333Ueefvppaf/XX3+d6HQ68vXXX7ssB6ytrXXZJyQkhHz33XfkyJEjZOLEie22JPVKjsVisZCDBw+SgwcPkujoaLJo0SJy8OBBkp2dLe3zxBNPkIyMDJKbm0u2b99O0tLSSHh4OCkpKVHdsVyuzY5yLNu3bycajYYsXbqUnDx5kixZssRlGWdtbS1ZtGgR2blzJ8nNzSVbtmwhQ4cOJb169SJms1lVx0KI9+6XzgIVBQV47733SI8ePYhOpyMjR44ku3btkt4bM2YMmTVrlvR3XFwcAdDotWTJEmkfQRDI888/TyIjI4leryc33HADycrK6nDHkpub6/FYxowZI+0zbdo0Eh0dTXQ6HenWrRuZNm0aycnJUeWxXK7NjnIshBCybt060rt3b6LT6Uj//v3JTz/9JL1XX19PbrrpJhIREUG0Wi2Ji4sj8+bNU1zclDgWQrx7v3QGaDlOCoVCoUhQnwKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUChOlJaWIioqCq+++qq0bceOHdDpdI1SNlMonRGaEI9CcePnn3/GpEmTsGPHDvTp0wdDhgzBxIkT8fbbb3u7axSK4lBRoFA88Le//Q1btmzB8OHDcfToUezduxd6vd7b3aJQFIeKAoXigYaGBgwYMADnz5/H/v37MXDgQG93iUJpF6hPgULxwOnTp1FQUABBEHD27Flvd4dCaTeopUChuGG1WjFy5EgMGTIEffr0wbJly3D06FF07drV212jUBSHigKF4saTTz6Jr7/+GocPH0ZAQADGjBmD4OBg/Pjjj97uGoWiOHT6iEJxIiMjA8uWLcOnn36KoKAgsCyLTz/9FH/++Sc++ugjb3ePQlEcailQKBQKRYJaChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKR+P8xpzAWsXFDhAAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.angle1 = 20\n", + "visualizer.angle2 = 90\n", + "visualizer.plot_test_spread(np.array(test_set), np.array(test_outputs))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g3fRbkqaNHup" + }, + "source": [ + "## Position" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "traj_pred, traj_actual = metrics['pos_traj'][0], metrics['pos_traj'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbhklEQVR4nO3dd1xT5/4H8M9JIGEGUGQoyy1WBZXixYlKlWur0lprW61bf62l7l5bq2LFXXfrqBbB2tZxrfXeuqpScYELwcFQQRRBAg4Ewsh8fn9EzjUKysgA/b5fr7w0Jyfn+5yQ5JtnnOfhGGMMhBBCCACBqQtACCGk7qCkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4ZqYuAKn7NBoNFAqFqYtBCHkBc3NzCIXCWh+HkgJ5IYVCgYyMDGg0GlMXhRDyEvb29nBxcQHHcTU+BiUFUinGGHJyciAUCuHu7g6BgFobCamLGGMoKSlBXl4eAMDV1bXGx6KkQCqlUqlQUlKCxo0bw8rKytTFIYS8gKWlJQAgLy8PTk5ONW5Kop9+pFJqtRoAIBKJTFwSQkhVlP94UyqVNT4GJQXyUrVpnySEGI8+PquUFAghhPAoKRBiZBzHYd++fUaNGRgYiKlTpxo1piFFRUWB4zhwHKdzXiUlJRgyZAgkEgk4jsPjx49NVkZ9un37Nn++vr6+Bo1FSYG8suLi4iAUCvH2229X+7leXl5Ys2aN/gv1EuUf/Mpu8+fPr9Fx9+7di/DwcL2Vsy4kGYlEgpycHJ3z2rZtG06dOoXY2Fjk5OTAzs7OhCWsukWLFqFr166wsrKCvb39c4+7u7sjJycHM2bMMHhZaPQReWVFRETgiy++QEREBO7du4fGjRubukgvlZOTw/9/165dmDdvHq5fv85vs7Gx4f/PGINarYaZ2cs/xg0aNNBvQfVEoVDUeCADx3FwcXHR2Zaeng5vb2+0a9fOIDENRaFQYOjQoQgICEBERMRzjwuFQri4uOj8/Q2FagrklSSTybBr1y589tlnePvttxEVFfXcPn/++SfefPNNWFhYwNHREe+++y4A7a/gO3fuYNq0afwvdACYP3/+c1X3NWvWwMvLi79/4cIFvPXWW3B0dISdnR169eqFS5cuVbncLi4u/M3Ozo7/4nNxcUFqaipsbW1x6NAhdO7cGWKxGKdPn0Z6ejoGDx4MZ2dn2NjY4M0338SxY8d0jvvsL3u5XI6ZM2eiSZMmsLa2RpcuXRATE6PznDNnziAwMBBWVlZwcHBA//79kZ+fj9GjR+PEiRNYu3Yt//rcvn0bAHDixAn4+/tDLBbD1dUVX331FVQqlU45QkNDMXXqVDg6OqJ///4YO3Ys3nnnHZ3YSqUSTk5OFX5BViYwMBArV67EyZMnwXEcAgMDAWhrfeHh4Rg5ciQkEgkmTpwIAJg1axZatWoFKysrNGvWDHPnztUZtVP+9966dSs8PDxgY2ODSZMmQa1WY/ny5XBxcYGTkxMWLVqkU47Hjx9j/PjxaNSoESQSCfr06YPLly+/sOzffvstpk2bhvbt21f5fA2FkgKpMsaA4mLT3BirXll3796NNm3aoHXr1hgxYgS2bt0K9tRBDhw4gHfffRcDBgxAQkICoqOj4e/vD0Db1OLm5oYFCxYgJydH59f7yxQVFWHUqFE4ffo0zp49i5YtW2LAgAEoKiqq3gm8wFdffYWlS5ciJSUFHTp0gEwmw4ABAxAdHY2EhAQEBwdj4MCByMzMrPQYoaGhiIuLw86dO3HlyhUMHToUwcHBuHnzJgAgMTERffv2Rdu2bREXF4fTp09j4MCBUKvVWLt2LQICAjBhwgT+9XF3d0d2djYGDBiAN998E5cvX8bGjRsRERGBhQsX6sTetm0bRCIRzpw5g02bNmH8+PE4fPiwzuu8f/9+lJSUYNiwYVV+Xfbu3YsJEyYgICAAOTk52Lt3L//YihUr4OPjg4SEBMydOxcAYGtri6ioKCQnJ2Pt2rXYsmULVq9erXPM9PR0HDp0CIcPH8aOHTsQERGBt99+G1lZWThx4gSWLVuGOXPm4Ny5c/xzhg4diry8PBw6dAjx8fHo1KkT+vbti0ePHlX5XEyKEVKJ0tJSlpyczEpLSxljjMlkjGm/no1/k8mqV/auXbuyNWvWMMYYUyqVzNHRkR0/fpx/PCAggA0fPrzS53t6erLVq1frbAsLC2M+Pj4621avXs08PT0rPY5arWa2trbszz//5LcBYH/88cdLzyEyMpLZ2dnx948fP84AsH379r30uW+88Qb7/vvv+fu9evViU6ZMYYwxdufOHSYUCll2drbOc/r27cu+/vprxhhjH330EevWrVulx3/6eOVmz57NWrduzTQaDb9t/fr1zMbGhqnVav55HTt2fO54bdu2ZcuWLePvDxw4kI0ePbrS+M++NuWmTJnCevXqpbPN09OThYSEVHqsct999x3r3Lkzfz8sLIxZWVmxwsJCflv//v2Zl5cXfz6MMda6dWu2ZMkSxhhjp06dYhKJhJWVlekcu3nz5uzHH398aRkqO6+ny/Tse/Bpz35ma4JqCuSVc/36dZw/fx4fffQRAMDMzAzDhg3TaYoo/yWsb7m5uZgwYQJatmwJOzs7SCQSyGSyF/5qry4/Pz+d+zKZDDNnzoS3tzfs7e1hY2ODlJSUSmNevXoVarUarVq1go2NDX87ceIE0tPTAdTs9UlJSUFAQIDOWPlu3bpBJpMhKyuL39a5c+fnnjt+/HhERkYC0L6Ghw4dwtixY6sV/0Wefc0AbZ9Nt27d+Lb6OXPmPPeaeXl5wdbWlr/v7OyMtm3b6kz54uzszE8vcfnyZchkMjRs2FDntc3IyOBf27qOOppJlVlZATKZ6WJXVUREBFQqlU7HMmMMYrEYP/zwA+zs7PgpAapDIBDoNEEBz185OmrUKDx8+BBr166Fp6cnxGIxAgIC9DrLrLW1tc79mTNn4ujRo1ixYgVatGgBS0tLvP/++5XGlMlkEAqFiI+Pf24qhPKOzJq8PlX1bPkBYOTIkfjqq68QFxeH2NhYNG3aFD169DBYzLi4OAwfPhzffvst+vfvDzs7O+zcuRMrV67U2c/c3FznPsdxFW4rnzBSJpPB1dX1uf4ZABWOKqqLKCmQKuM4oILPc52iUqnw888/Y+XKlejXr5/OYyEhIdixYwc+/fRTdOjQAdHR0RgzZkyFxxGJRPw0H+UaNWoEqVQKxhj/azgxMVFnnzNnzmDDhg0YMGAAAODu3bt48OCBns6uYmfOnMHo0aP5jnKZTMZ3/FakY8eOUKvVyMvLq/SLt/z1+fbbbyt8vKLXx9vbG7///rvO63PmzBnY2trCzc3thefQsGFDhISEIDIyEnFxcZX+XfQlNjYWnp6e+Oabb/htd+7cqfVxO3XqBKlUCjMzM50BCPUJNR+RV8r+/fuRn5+PcePGoV27djq3IUOG8E1IYWFh2LFjB8LCwpCSkoKrV69i2bJl/HG8vLxw8uRJZGdn81/qgYGBuH//PpYvX4709HSsX78ehw4d0onfsmVLbN++HSkpKTh37hyGDx9u0F/d5TH37t2LxMREXL58GR9//PELpzpv1aoVhg8fjpEjR2Lv3r3IyMjA+fPnsWTJEhw4cAAA8PXXX+PChQuYNGkSrly5gtTUVGzcuJF/Lby8vHDu3Dncvn0bDx48gEajwaRJk3D37l188cUXSE1NxX/+8x+EhYVh+vTpVZphd/z48di2bRtSUlIwatQo/bw4lWjZsiUyMzOxc+dOpKenY926dfjjjz9qfdygoCAEBAQgJCQER44cwe3btxEbG4tvvvkGFy9erPR5mZmZSExMRGZmJtRqNRITE5GYmAiZCarmlBTIKyUiIgJBQUEVXrQ0ZMgQXLx4EVeuXEFgYCD+/e9/47///S98fX3Rp08fnD9/nt93wYIFuH37Npo3b45GjRoB0P4S3rBhA9avXw8fHx+cP38eM2fOfC5+fn4+OnXqhE8++QSTJ0+Gk5OTQc951apVcHBwQNeuXTFw4ED0798fnTp1euFzIiMjMXLkSMyYMQOtW7dGSEgILly4AA8PDwDaxHHkyBFcvnwZ/v7+CAgIwH/+8x/+moiZM2dCKBSibdu2aNSoETIzM9GkSRMcPHgQ58+fh4+PDz799FOMGzcOc+bMqdJ5BAUFwdXVFf379zf4NSWDBg3CtGnTEBoaCl9fX8TGxvKjkmqD4zgcPHgQPXv2xJgxY9CqVSt8+OGHuHPnDpydnSt93rx589CxY0eEhYVBJpOhY8eO6Nix4wsTiaFw7NlGUkKeKCsrQ0ZGBpo2bQoLCwtTF4fUQkBAAPr27fvc8NC6RCaToUmTJoiMjMR77733wn2joqIwderUV2Yai6qaP38+9u3b91yzZTl9fGappkDIK0wul+PixYtISkrCG2+8YeriVEij0SAvLw/h4eGwt7fHoEGDqvS8goIC2NjYYNasWQYuoellZmbCxsYGixcvNngs6mgm5BV26NAhjBw5EoMGDcL7779v6uJUKDMzE02bNoWbmxuioqKqNG3HkCFD0L17dwD1Z1RPbTRu3JivHYjFYoPGouYjUilqPiKkfqHmI0IIIXpFSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIgpBZGjx6NkJAQ/r6pFrSPiYkBx3EGn/aB4zjs27fPoDFeJCoqil8C9OnXuaSkBEOGDIFEIjHK62As5X9XjuN03meGREmBvHJGjx7Nf5BEIhFatGiBBQsW6KwVbCh79+5FeHh4lfY11he5QqGAo6Mjli5dWuHj4eHhcHZ2fm5tiLpKIpEgJydH53Xetm0bTp06hdjYWOTk5FQ4IWJdc/v2bYwbNw5NmzaFpaUlmjdvjrCwMJ11MLp27YqcnBx88MEHRisXJQViHDduAIcOAU/WADa04OBg5OTk4ObNm5gxYwbmz5+P7777rsJ99bkAToMGDXRW6qoLRCIRRowYwa9s9jTGGKKiojBy5MjnFo+pqziOg4uLi87rnJ6eDm9vb7Rr1w4uLi46q7+V0+ffWR9SU1Oh0Wjw448/IikpCatXr8amTZswe/Zsfh+RSAQXFxeDT7/+NEoKxLAePQKCg4HWrYEBA4BWrbT38/MNGlYsFsPFxQWenp747LPPEBQUhP/+978A/tfks2jRIjRu3BitW7cGoF0Q54MPPoC9vT0aNGiAwYMH6yxWo1arMX36dNjb26Nhw4b417/+9dxKbM82H8nlcsyaNQvu7u4Qi8Vo0aIFIiIicPv2bfTu3RsA4ODgAI7jMHr0aADaCeKWLFnC/4L08fHBnj17dOIcPHgQrVq1gqWlJXr37v3CRXUAYNy4cbhx4wZOnz6ts/3EiRO4desWxo0bhwsXLuCtt96Co6Mj7Ozs0KtXL1y6dKnSY1ZU00lMTATHcTrlOX36NHr06AFLS0u4u7tj8uTJKC4u5h/fsGEDWrZsCQsLCzg7O1d7jqbAwECsXLkSJ0+eBMdxCAwMBKBd8yE8PBwjR46ERCLBxIkTAQCzZs1Cq1atYGVlhWbNmmHu3Lk6taT58+fD19cXW7duhYeHB2xsbDBp0iSo1WosX74cLi4ucHJywqJFi3TK8fjxY4wfPx6NGjWCRCJBnz59cPny5UrLHRwcjMjISPTr1w/NmjXDoEGDMHPmTOzdu7da569vlBSIYX38MXDsmO62Y8eAJ+snG4ulpaXOL8Xo6Ghcv34dR48exf79+6FUKtG/f3/Y2tri1KlTOHPmDGxsbBAcHMw/b+XKlYiKisLWrVtx+vRpPHr06KULs4wcORI7duzAunXrkJKSgh9//BE2NjZwd3fH77//DkC7pnROTg7Wrl0LAFiyZAl+/vlnbNq0CUlJSZg2bRpGjBiBEydOANAmr/feew8DBw5EYmIixo8fj6+++uqF5Wjfvj3efPNNbN26VWd7ZGQkunbtijZt2qCoqAijRo3C6dOncfbsWbRs2RIDBgxAUVFR9V7sp6SnpyM4OBhDhgzBlStXsGvXLpw+fRqhoaEAgIsXL2Ly5MlYsGABrl+/jsOHD6Nnz57VirF3715MmDABAQEByMnJ0flSXbFiBXx8fJCQkMCvl2Bra4uoqCgkJydj7dq12LJlC1avXv1cuQ8dOoTDhw9jx44diIiIwNtvv42srCycOHECy5Ytw5w5c3Du3Dn+OUOHDkVeXh4OHTqE+Ph4dOrUCX379sWjR4+qfC4FBQVo0KBBtc5f7xghlSgtLWXJycmstLS0Zge4fp0xoPLbjRv6LfATo0aNYoMHD2aMMabRaNjRo0eZWCxmM2fO5B93dnZmcrmcf8727dtZ69atmUaj4bfJ5XJmaWnJ/vrrL8YYY66urmz58uX840qlkrm5ufGxGGOsV69ebMqUKU9O/zoDwI4ePVphOY8fP84AsPz8fH5bWVkZs7KyYrGxsTr7jhs3jn300UeMMca+/vpr1rZtW53HZ82a9dyxnrVp0yZmY2PDioqKGGOMFRYWMisrK/bTTz9VuL9arWa2trbszz//5LcBYH/88Uel5U9ISGAAWEZGBl/uiRMn6hz31KlTTCAQsNLSUvb7778ziUTCCgsLKy330yIjI5mdnd1z26dMmcJ69eqls83T05OFhIS89Jjfffcd69y5M38/LCyMWVlZ6ZSpf//+zMvLi6nVan5b69at2ZIlS/hzkkgkrKysTOfYzZs3Zz/++GNVTo3dvHmTSSQStnnz5ucee/o9/SK1/swyxmjqbGI46ekvfjwtDWjZ0iCh9+/fDxsbGyiVSmg0Gnz88ceYP38+/3j79u0hEon4+5cvX0ZaWtpz/QFlZWVIT09HQUEBcnJy0KVLF/4xMzMz+Pn5PdeEVC4xMRFCoRC9evWqcrnT0tJQUlKCt956S2e7QqFAx44dAQApKSk65QC0i+i8zEcffYRp06Zh9+7dGDt2LHbt2gWBQIBhw4YBAHJzczFnzhzExMQgLy8ParUaJSUlyMzMrHL5n3X58mVcuXIFv/76K7+NMQaNRoOMjAy89dZb8PT0RLNmzRAcHIzg4GC8++67sLKyqnHMp/n5+T23bdeuXVi3bh3S09Mhk8mgUqkgkUh09vHy8tJ5Lzg7O0MoFOosK+rs7Iy8vDz+PGUyGRo2bKhznNLSUqS/7HMAIDs7G8HBwRg6dCgmTJhQrXPUN0oKxHCaN3/x4y1aGCx07969sXHjRohEIjRu3Pi5Ofqtra117stkMnTu3Fnny6tc+XKc1VWTzsHyNXkPHDiAJk2a6DxW23n0JRIJ3n//fURGRmLs2LGIjIzEBx98ABsbGwDAqFGj8PDhQ6xduxaenp4Qi8UICAiotIO2/Avy6aT47AgmmUyG//u//8PkyZOfe76HhwdEIhEuXbqEmJgYHDlyBPPmzcP8+fNx4cIFvayT8OzfOS4uDsOHD8e3336L/v37w87ODjt37sTKlSt19nu2053juAq3la+FLZPJ4OrqipiYmOfK8LLzuHfvHnr37o2uXbti8+bNVTwzw6GkQAynVSugf39tH4Ja/b/tQiEQFGSwWgKg/TJoUY2k06lTJ+zatQtOTk7P/Wos5+rqinPnzvFt3iqVim87rkj79u2h0Whw4sQJBAUFPfd4eU1F/dRr07ZtW4jFYmRmZlZaw/D29uY7zcudPXv25ScJbYdzYGAg9u/fj9jYWJ0RWWfOnMGGDRswYMAAANq+iwcPHlR6rPJkmZOTAwcHBwB4bpnITp06ITk5+YV/CzMzMwQFBSEoKAhhYWGwt7fH33///dIlOWsiNjYWnp6e+Oabb/htd+7cqfVxO3XqBKlUCjMzM3h5eVX5ednZ2ejduzc6d+6MyMhInZqIqZi+BOTVtmOHNgE8LShIu70OGT58OBwdHTF48GCcOnUKGRkZiImJweTJk5GVlQUAmDJlCpYuXYp9+/YhNTUVkyZNeuE1Bl5eXhg1ahTGjh2Lffv28cfcvXs3AMDT0xMcx2H//v24f/8+ZDIZbG1tMXPmTEybNg3btm1Deno6Ll26hO+//x7btm0DAHz66ae4efMmvvzyS1y/fh2//fYboqKiqnSePXv2RIsWLTBy5Ei0adMGXbt25R9r2bIltm/fjpSUFJw7dw7Dhw9/YW2nRYsWcHd3x/z583Hz5k0cOHDguV/cs2bNQmxsLEJDQ5GYmIibN2/iP//5D9/RvH//fqxbtw6JiYm4c+cOfv75Z2g0Gn5EmL61bNkSmZmZ2LlzJ9LT07Fu3bqXDhaoiqCgIAQEBCAkJARHjhzB7du3ERsbi2+++QYXL16s8DnZ2dkIDAyEh4cHVqxYgfv370MqlUIqlda6PLVBSYEYloMDcPiw9jqFgwe1/x4+rN1eh1hZWeHkyZPw8PDAe++9B29vb4wbNw5lZWV8zWHGjBn45JNPMGrUKAQEBMDW1hbvvvvuC4+7ceNGvP/++5g0aRLatGmDCRMm8MMxmzRpgm+//RZfffUVnJ2d+S/K8PBwzJ07F0uWLIG3tzeCg4Nx4MABNG3aFIC22eX333/Hvn374OPjg02bNlV57V6O4zB27Fjk5+dj7NixOo9FREQgPz8fnTp1wieffILJkyfDycmp0mOZm5tjx44dSE1NRYcOHbBs2TIsXLhQZ58OHTrgxIkTuHHjBnr06IGOHTti3rx5aNy4MQBt08revXvRp08feHt7Y9OmTdixY4fB1pMeNGgQpk2bhtDQUPj6+iI2NpYflVQbHMfh4MGD6NmzJ8aMGYNWrVrhww8/xJ07d+Ds7Fzhc44ePYq0tDRER0fDzc0Nrq6u/M2UaDlOUilajpPUNVFRUZg6deorM41FVY0ePRqPHz9+6RQjtBwnIeS1U1BQABsbG8yaNcvURTG4U6dOwcbGpsIBEIZCHc2EkHpjyJAh6N69O4CXj+p5Ffj5+fGd9+WjxAyNkgIhpN6wtbWtc3NLGZKlpWW1RtHpAzUfEUII4VFSIC9FYxEIqR/KL6arDWo+IpUyNzcHx3G4f/8+GjVqVOF0xIQQ02OMQaFQ4P79+xAIBDpTuFQXDUklLySTyZCVlUW1BULqASsrK7i6ulJSIIalVqvrzapchLyuhEIhzMzMal2jp6RACCGERx3NhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkUAWMMTDGTF0MQggxOEoKL6HRaCCXy6FSqSgxEEJeeWamLkBdxxiDRqPh/zU3N4dAQLmUEPJqom+3KuI4DhqNBgqFAmq1mmoNhJBXEiWFauA4Dmq1GsnJyZDL5ZQYCCGvHEoK1cBxHADg1q1bUCqVUCgU0Gg0Ji4VIYToDyWFGuI4DiqVCsnJyVAoFFRrIIS8Eigp1BDHcWCMIT09nUYnEUJeGZQUaqG8OQkAFAoFkpKSoFQqTVgiQgipHUoKeiAQCHRqDTQ6iRBSX1FS0JPyWgNjDAqFgpqTCCH1El28pmcCgQAajQapqalo0aIFxGIxJQdCTIAxBplMBjs7O52mXvJilBQM5NatW2jWrBmKioqqNWyVMYbTp0/D398fYrHYgCXUSkxMhJubGxwdHQ0eKz09HQKBAE2bNjV4rLy8PEilUnTo0MHgsUpLSxEfH4/u3bsbPBYAnD17Fu3atYONjY3BYyUlJcHBwQGNGzc2eKzMzEyUlZWhVatWejleYWEhvLy8UFBQAIlEopdjvg4oKRiYRqMBx3FV/qVSPvmeQCAwynQajDFwHGfUqTuMEat8dJgxYpX3KRnrNTTm38zY7w99vo40HU3NUFIwgup8qMqbmoyVFIDqla+2cYwZCzBeAjJWrHLGen8Y+2+mz1iUFGqGXjVCCCE8SgqEEEJ4lBQIIYTwKCkQQgxi924zfP65GPv3U9dlfUJJgRBiEHFxQmzfLsLly/Q1U5/QX4sQYhCPHmlHZTVsSBdv1ieUFAghBpGTo00Kjo6UFOoTSgqEEL1TKIDLl4UAgPbtaSGq+oSSAiFE7xISBCgt5eDgwNCyJSWF+oSSAiFE73btMgcA9O2rAl1YXL/Qn6sKaJZTQqqutBTYs0ebFEaMoEWn6hsaQFwFV65cgUgkQsuWLSEUCk1dHELqtC1bzPH4MQcvLw169VKbujikmqimUAUtWrSAQqHAyZMncevWLVMXh5A6q6AAWLlSO+X7rFly0G+o+oeSQhVYW1ujY8eO8PPzw4MHDwAA2dnZ1KxEyDPmzxcjP59Dq1ZqDBumMnVxSA1QUqgGBwcHvPnmmwCA27dv49y5cwCoz4EQADh5UoiICBEAYMUKOcyocbpeoqRQTeVz5wcEBPCrUSUkJKCoqMiUxSLEpB4+BCZNsgAAjBmjQGAg9SXUV5QUakggEMDDwwMAYGtriwsXLgAAysrKTFksQoxOrQbGjrVEZqYATZtqEB4uN3WRSC1QUtCDli1bIiAgAAAQGxuLtLQ0E5eIEOOZP1+M48fNYGXF8NtvpaDlkOs3avXTE0tLSwBA586dcfPmTQDAnTt3IBKJqrVGc7mHDx/C3Nxc7+V8lkqlQmFhYbXLVxOlpaXgOA737983eKyioiIolUqjxJLL5WCMGSUWoF33Oz8/3yi1UoVCAZlMVum5RUZKsHatLQBg8eI8ODkVo6YvQ3FxMRQKRa1fR8YYZDIZysrKwHEcCgsLdR63tbU1yvu9vqKkoGd2dnbo3LkzoqOjcf/+fSiVyhq9Ae/evWuUN65cLkdeXh4ePXpklFiAcZrYVCoVFAoFMjIyDB5Lo9FO42CMWACgVqtx7949o6xBXFpaCoVC8dwXKwBERztjyZJmAIBx49LQrt0d1OYlUCgU0Gg0tX4di4uLMXjwYP6+u7u7zuMFBQWQUHWmUpQUDKD8y9zPzw8KhaJai6wzxnD8+HH4+vpCLBYbspgAgAsXLsDT0xNOTk4Gj3Xjxg0IBAK0aNHC4LGkUimys7PRuXNng8cqKSnBuXPn4O/vb/BYAHDq1Cm88cYbsLW1NXisy5cvo2HDhnBzc9PZvmePGZYv13Ysf/qpAsuWOYPjnGsVKyMjA6WlpWjbtm2tjsMYQ1ZWFoqKiuDt7Y27d+/qJAFjvG71GfUpEEKqZfduM4wfbwG1msPw4UosXSpHXWqN4TgOEomE//KXSCQ6t2dr4OvXr4eXlxcsLCzQpUsXnD9/vtJj7927F35+frC3t4e1tTV8fX2xfft2g56PsVFSIIRUWVSUOSZOtIBGw2HkSAXWry+r1xPe7dq1C9OnT0dYWBguXboEHx8f9O/fH3l5eRXu36BBA3zzzTeIi4vDlStXMGbMGIwZMwZ//fWXkUtuOPX4z0kIMRbGgOXLRZg8WZsQxoxRYN06eb1OCACwatUqTJgwAWPGjEHbtm2xadMmWFlZYevWrRXuHxgYiHfffRfe3t5o3rw5pkyZgg4dOuD06dNGLrnh1PM/KSHE0FQqYMYMMRYu1PZxzZwpx5o19T8hKBQKxMfHIygoiN8mEAgQFBSEuLi4lz6fMYbo6Ghcv34dPXv2NGRRjYo6mgkhlZLJhPj6a3ecPi0CxzEsWybHp5++GtNhP3jwAGq1Gs7Ouh3kzs7OSE1NrfR5BQUFaNKkCeRyOYRCITZs2IC33nrL0MU1GkoKhJAK3bnDYdKkDsjIsIalJcPmzWUYPJgmubO1tUViYiJkMhmio6Mxffp0NGvWDIGBgaYuml5QUiCEPOfECSFGjbLAo0cCNGqkxJ49CnTs+Gotq+no6AihUIjc3Fyd7bm5uXBxcan0eU8Pq/b19UVKSgqWLFnyyiSFet4qSAjRJ8aA9evNERJiiUePBGjVSoZdu26/cgkBAEQiEX+haTmNRoPo6Gh+2pqq0Gg0/IWZrwKqKRBCAADFxcCUKRbYvVs7vcqHHyoxfvwVuLg4mLhkhjN9+nSMGjUKfn5+8Pf3x5o1a1BcXIwxY8YAAEaOHIkmTZpgyZIlAIAlS5bAz88PzZs3h1wux8GDB7F9+3Zs3LjRlKehV5QUCCG4eZPDiBGWSEkRQihkWLxY26F85cqrV0N42rBhw3D//n3MmzcPUqkUvr6+OHz4MN/5nJmZqTMbQXFxMSZNmoSsrCxYWlqiTZs2+OWXXzBs2DBTnYLeUVIg5DW3d68ZQkMtIJNxcHbWICqqDN26vT7rIYSGhiI0NLTCx2JiYnTuL1y4EAsXLjRCqUyHkgIhr6myMuDrr8X8amk9eqiwdWsZnJ1pJcHXGSUFQl5DN29yGD3aElevCgEA06fLMWeOgpbQJJQUCHnd7NplhmnTtM1FDRtqsGVLGYKCXp/mIvJilBQIeU3IZMDMmRb47Tft6KLu3VWIiCiDqys1F5H/oaRAyGvgyhUBRo+2RFqaAAIBw6xZCnz5JTUXkefRW4KQVxhjwKZN5pg7VwyFgkPjxhpERLxeo4tI9VBSIOQV9eABh88+s8Bff2k/5gMGKLF+fRkaNjRxwUidRkmBkFdQTIwQEydaQCoVQCxmWLRIjgkTlHVqhTRSN1FSIOQVolQCixeLsGqVCIxxaN1ajcjIMrRr92pfmUz0h5ICIa+I27c5jBtniQsXtNcejBmjwJIlclhZmbhgpF6hpEDIK+CPP8zwxRcWKCzkYG/PsG5dGUJCaO0DUn2UFAipx0pKtFNVREZqp6ro0kWNiIhSeHjQtQekZigpEFJPXb8uwMiRFkhJEYLjGGbMUGD2bLr2gNQOvX0IqYf27LHE119boaSEg5OTdqqK3r3p2gNSe5QUCKlHSkuBtWvb48gR7cI3gYEq/PRTGZycqLmI6Actx0lIPZGezqFvXyscOeIOjmOYPVuOP/4opYRA9IpqCoTUAwcOmOH//q98dJEcP/5YhH/+U2zqYpFXECWFKkhOTkZpaSkaNmwIOzs7UxeHvEbUamDhQhFWrtQmgH/8Q4VJk06je3dvAJQUiP5R81EVeHp6wtnZGUVFRbhy5QoA4NKlS7h16xYAQKOhq0WJ/uXnA0OHWvIJ4bPPFDhwoBQNG8pNXDLyKqOaQhVYW1vD1tYWnp6eUCqViI6OhpOTE/Lz8wFo13G1t7cHADx+/BgSicSEpSWvghs3BBg2zBLp6QJYWjL88EMZhg6li9GI4VFSqCbuyYxibm5ucHNzQ25uLrp06YL8/Hw8evQIV65cgUql/fCmp6eD4zj+VhWMaTsNs7OzYWaEAecKhQIPHjxAWVmZwWMVFRWB4zhkZmYaJZZcLjdKLIVCAcaY3mKdPm2DmTPdIJMJ4OqqwLp1d+HtXYbyw6vVakilUv5HiSGVlpbi0aNHRqkNFxQUQKlU1vp1ZIyhuLgYZWVl4DgOhYWFOo/b2tpW+fP4OqKkoAfW1tawtrZGamoqevTogeLiYpw9exalpaVQq9XILM7EvdJ7cLNyg7u1e5WOWVRUBKFQaOCSa79gSkpKjPKhVygUFX5IDaGsrAxqtdooscp/BOgj1t69zli1ygMaDQcfn0IsWnQdDRqo8PShGWOQyWSQyw3fjKRSqVBWVmaU11Eul+vlb1ZcXIy33nqLv+/urvuZKygooNr8C1BS0DOO42BjYwMAaNy8MUb/ORp/Z/7NP97Xsy+2vr0VDhYOFT6fMYa8vDy0adMGYrHhOxIvXLgADw8PODk5GTzWjRs3IBAI0KJFC4PHkkqlyM7ORrt27Qweq6SkBOfOnatVLLUamDtXjB9+0E5XMXy4EmvXchCJ2jy376lTp9CiRQvY2trWOF5VXb58GQ0bNoSbm5vBY2VkZKC0tBRt27at1XEYY8jKykJRURG8vb1x9+5dnSRgjNetPqOOZgMae2AsTtw9obMtJjMGYw+MNVGJSF0klwNjx1rwCWHePDk2bCiDSGTigtVTHMdBIpHwX/4SiUTn9mzT0fr16+Hl5QULCwt06dIF58+fr/TYW7ZsQY8ePeDg4AAHBwcEBQW9cP/6iJKCgWSXZePY7WNQM92pB9RMjeg70UjLTzNRyUhdIpMBH3xgiT/+MIe5OUNERClmzlTQYjhGsmvXLkyfPh1hYWG4dOkSfHx80L9/f+Tl5VW4f0xMDD766CMcP34ccXFxcHd3R79+/ZCdnW3kkhsOJQUDkSqkL3z81uNbRioJqavy84FBg6xw/LgZrK0Z/v3vUhphZGSrVq3ChAkTMGbMGLRt2xabNm2ClZUVtm7dWuH+v/76KyZNmgRfX1+0adMGP/30EzQaDaKjo41ccsOhpGAgLiKXFz7ezL6ZkUpC6qL8fGDwYCtcvCiEgwPDn3+WoE8fmtDOmBQKBeLj4xEUFMRvEwgECAoKQlxcXJWOUVJSAqVSiQYNGhiqmEZHScFAmlg0QZBXEISc7ggiISdEX8++aOFg+M5WUjeVJ4TERCEcHTU4fLgEfn50AaSxPXjwAGq1Gs7OzjrbnZ2dIZW+uKZfbtasWWjcuLFOYqnvKCkYUOQ7kejl3ktnW6BHILa+XXHVlLz6ZDIgJOR/CeHAgVJ4e1NCqI+WLl2KnTt34o8//oCFhYWpi6M3NCTVgBwsHLAnZA8yCjKQUZiBZvbNqIbwGlMogBEjLJGQIETDhpQQTM3R0RFCoRC5ubk623Nzc+Hi8uLm3xUrVmDp0qU4duwYOnToYMhiGh3VFIyguUNz9GvajxLCa4wx4PPPLfD332awstJ2KlNCMC2RSITOnTvrdBKXdxoHBARU+rzly5cjPDwchw8fhp+fnzGKalRUUyDECFauFGHXLnOYmTFs315KfQh1xPTp0zFq1Cj4+fnB398fa9asQXFxMcaMGQMAGDlyJJo0aYIlS5YAAJYtW4Z58+bht99+g5eXF9/3YGNjw1+0Wt9RUiDEwI4eFSI8XHsl2sqVcrz1Fo0yqiuGDRuG+/fvY968eZBKpfD19cXhw4f5zufMzEwIBP9rUNm4cSMUCgXef/99neOEhYVh/vz5xiy6wVBSIMSA7t7lMG6cJRjjMHq0AmPGKE1dJPKM0NBQhIaGVvhYTEyMzv3bt28bvkAmRn0KhBiIRgNMmmSBx485dO6sxnff0ToIpO6jpECIgWzZYo4TJ7Qdy1u2lMII8xsSUmuUFAgxgJwcDmFh2iywYIEcLVowE5eIkKqhpECIAYSHi1FSwsHfX43x46kfgdQflBQI0bNr1wT49VftGI7Fi8sgoE8ZqUfo7UqInq1dKwJjHN59Vwl/f7oegdQvlBQI0SOplMPevdpawpQpChOXhpDqo6RAiB798os5lEoOXbqo0akT1RJI/UNJgRA9OnBAW0sYPpw6l0n9REmBED3JzeUQH69dPyM4mFZQI/UTJQVC9OTcOW1C6NBBDRcXui6B1E+UFAjRk5QU7cepXTvqSyD1FyUFQvTkxg3tx6l1a0oKRNft27fBcdxzt8DAQFMX7Tk0SyohelJUxAEAGjakpiOiy93dHTk5Ofx9qVSKoKAg9OzZ04SlqhglBUL0RP5kElSRiJIC0SUUCvklPsvKyhASEoKAgIA6uQYDJQVC9KR8OgsVDTwiLzB27FgUFRXh6NGjOgv41BWUFAjRk8aNtX0J9+7VvQ86qRsWLlyIv/76C+fPn4etra2pi1MhSgqE6Enjxtpmo8xMzsQlIXXR77//jgULFuDQoUNo3ry5qYtTKUoKhOiJr6+2pnD2rNDEJSF1zbVr1zBy5EjMmjULb7zxBqRSKQBAJBKhQYMGJi6dLqrnEqInAQEqcBzDjRtC5OZSbYH8z8WLF1FSUoKFCxfC1dWVv7333numLtpzqKZQDYwxqNVqAEBJSQn//wcPHkD1pHfxzp07/PaUlBRoNNpfjxxXvS+JtLQ0CIWG/8VZVlaG7OxsPHr0yOCxCgoKwHEcUlNTDR6rtLQUpaWlRomlUqnAGENeXiratGmLlBRrbNr0EMOG5Rkknlqtxu3bt2Fubm6Q4z9NJpNBpVJBJpMZPFZRURFUKlWt/2aMMRQXF0OlUkEgEKCwsFDncVtb22p/Hmtr9OjRGD16tFFj1hQlhSpISUmBVCqFWq0GY9p247i4OP5L++bNmzAz076UBQUF/HZzc3Oo1Wr+QpXqMDc3N0pS4DgOZmZmRvmCEQgE4DjOKLEUCoXRYpX/bc3NzTFoUD5SUqyxf38jjBiRb7CYxvybCYVCo8USCAS1jiWTydCnTx/+vru7u87jBQUFkEgktYrxKqOkUAUeHh5wd3fn36wnT55Enz59wHEcjh07hoCAAADAsWPH0KFDBwBATk4OWrRoAYVCwb/Zq4Ixhjt37sDT0xNiI6z0/ujRIzg7O8PJycngsdRqNQQCgVE62aRSKZRKpVFilZSU4N69e2jevDk++wxYvZrh+nUrSKWt0K2bWu/x7t27Bzc3N6OMXpHJZGjYsCHc3NwMHisjIwOlpaW1/psxxpCVlYWioiJ4e3vj7t27Okmgro76qSuoT6EKrK2tIZFIYGVlBZFIBKD6zUHk9dCgATBihHba7IULRWB0HZvRcRwHiUTCf/lLJBKd27Of3fXr18PLywsWFhbo0qULzp8/X+mxk5KSMGTIEHh5eYHjOKxZs8aQp2ISlBQI0bOZMxUQiRjOnDHD0aM0Eqku27VrF6ZPn46wsDBcunQJPj4+6N+/P/LyKu4PKikpQbNmzbB06VL+CuVXDSUFQvTMzY1h4kRtbWHGDAsUF5u4QKRSq1atwoQJEzBmzBi0bdsWmzZtgpWVFbZu3Vrh/m+++Sa+++47fPjhh0Zp3jUFSgqEGMDs2XK4u2tw544A4eGv5pdHfadQKBAfH4+goCB+m0AgQFBQEOLi4kxYMtOipECIAdjYAKtXlwEANmwQ4a+/qBmprnnw4AHUajWcnZ11tjs7O/MXl72OKCkQYiD9+qkxYYICADBxoiXu3qXBCaTuo6RAiAEtXixHx45q5Odz+PhjSxjhGjBSRY6OjhAKhcjNzdXZnpub+8p2IlcFJQVCDEgsBn7+uRSOjhpcvizE6NGWNLV2HSESidC5c2dER0fz2zQaDaKjo/lrj15HdPEaIQbm6cmwa1cp3nnHCkeOmGHKFDG+/16OOjiVfvWoVBBeuADBpUuATAaNry/UvXsDT67lqQ+mT5+OUaNGwc/PD/7+/lizZg2Ki4sxZswYAMDIkSPRpEkTLFmyBIC2czo5OZn/f3Z2NhITE2FjY4MWLVqY7Dz0iZICIUbw5psaRESUYcQIC2zfLoJYDKxcKUe9vQZSpYL5+vUw370bnFQKrrQUTKMB8/JC2fLl0PTogfpwcsOGDcP9+/cxb948SKVS+Pr64vDhw3znc2Zmps5sBPfu3UPHjh35+ytWrMCKFSvQq1cvxMTEGLv4BkFJgRAjeecdFTZsKMNnn1ngp59EEImAJUvqZ2IQnj8Psz17wN27ByiVgFwOTq0Gl5wMq5AQMFdXqP75TyiHD4fmqS/Ruig0NBShoaEVPvbsF72Xlxc//9mrqr5XYAmpVz7+WIXvv9cu5rxhgwhTp4qh1v/0SAYnuHQJAqkUUKnAyeWARqOzHimXlQXzbdtg9c47sHj/fZj98QegUJi20KRKqKZAiJGNHKm92vmLL8SIjBShoIDD5s1l9akpXrsQdWmptolIrQaEQm2N4WlyOSCXw+zoUZidPg2NmxtU778P1cCB0LzxhmnKTV6KagqEmMDIkUpERZXB3Jxh715zDB1qiYICU5eq6jS+voC5OXSGUj3drFL+f6FQ+/+SEghu3IDou+9g1acPLMaOheDqVaOWmVQNJQVCTOTdd1XYubMU1tYMx4+bITjYCllZ9aODQR0QAHVAgDYpaDSocJwtx+G5aWKVSqC0FGZ79sCqZ09Yvv02uPv3jVNoUiWUFAgxobfeUuPgwRI4O2uQlCREnz5WiI+vBx9LsRhlmzZB9e672osxKup8FQi0CaP8/8/SaCA8fRpWXbrAbP/+io9BjK4evPsIebV17KjB33+XwNtbDalUgH/+0wq7d9eD7j6JBPLNm1H8119Qvv8+NI0ba5uUylcMLE8Iz/6/HGMAY+AePIDF8OFwmz+fEkMdQEmBkDrA3Z3h6NESBAerUFbGYfx4S8ybJ6oXI5OYry/kEREouXQJJQcPQjFtGpiTk/YiNrMqJjfG4LBvH5z27DFsYclLUVIgpI6QSIAdO0oxY4Z2yOqaNWK8954lHj6sH/0MsLKCpksXKObNQ3F8PBTffAN127baxFDF9ca9Vq6E8O+/DVxQ8iKUFAipQ4RCICxMgcjIUlhZaTuge/SwwsWL9eyjamcHxdSpKD19GiUnT0L19tsvrTWUpz6LMWPomgYTqmfvNEJeD0OGqHD8eAmaN9cgK0uA4GArbN5sXi+b3DXt2qHsl18gy8iA6v33K5z+gnvqXy4/H+IpU4xaRvI/lBQIqaO8vTWIiSnGwIFKKBQcZs60wOjRFigurged0BWxs0PZ1q0oOXhQO2IJT5LAM7txAMx//RVcSoqxS0hASYGQOs3ODvjllzIsXlwGMzOGP/4wx9Sp3XD1qrmpi1Zjmm7dUHLgwAv34QBYfPqpcQpEdFBSIKSO4zggNFSJw4dL4O6uwb171hg0yBEbN9bP5iQA0Pj7Qzl+/Av3ESYk0FXPJkBJgZB6wt9fg1OnivGPf0ihUHCYNcsCH31kgYcPTV2ympF/9x2YjQ0qy2scAItJk4xZJAJKCoTUKw0aAHPmXEJ4eAFEIoaDB83Rvbs1zpyp2pDPOkUoRNmaNc/1KQAAe3ITXL6MejUp1CuAkgIh9QzHAWPHFuPYMe3opOxsAd5+2xKLF4vq3VKfqqFDwQQCPgngqX/Lme3bZ9xCveYoKRBST/n6apuThg9XQqPhsHSpGO+8Y4m7d+vwxW6MAVIphL//DvG4cbDy9NSZAqOipiTuwQPjlY/QegqE1Gc2NsDGjWXo3VuFadMsEBtrhm7drPH992UYPNi01QYuPR3mmzdDcPcuNA0aQJicDEFSErjS0modRzVokIFKSCpCSYGQV8AHH6jw5pvFGDvWEvHxQnzyiSXGjlVgyRI5LC2NXx6zrVsh/uYbcMXFtTuQuTlYy5b6KRSpEmo+IuQV0bQpw5EjJZg2TTt30tatIgQGWiElxbgfc+72bYhnz659QgBQEhVV+wKRaqGaggEonszbkpiYCNWTnj+uiquzly8Kfu3aNQgqmoNez0pKSpCRkYHs7GyjxAKAoqIig8eSy+WQy+VISEgweCy1Wg3GmFFiAYBKpUJqairMKplLKCQEcHOzx6JFrZGSIkaPHhb44otbGDgwp6IZJl6oqKgIJSUluF+NhXA8N2yA9ZO/dW088vNDkpsbUM3XlTGGkpISqFQqCIVCFBYW6jxua2tb5c/j64iSgp6on8xxnJiYiIdPBo47ODiA4zgIBIJqJYXHjx/Dycmp0g+9PpWWlsLe3h4SicTgsaRSKTiOg7Ozs8FjFRQUID8/Hy4uLgaPpVAoUFhYaJRYAFBYWAhHR0dYWFhUus877wABAVn4179ccPq0NVaubInkZBeEh+fC1raCtQ0qoVAoYGNjgwYNGlT5OQ1yc6u8b2XK2rXDw19/RU1eUZlMhsDAQP6+u7u7zuMFBQVGeb/XV5QUakHzZNTEtWvX+F9SdnZ2aNWqFWJjY+Hp6QmFQgGBQFDlX/2MMaSmpsLJyQniJ/PDGFJWVhYcHBzg5ORk8FhFRUUQCARwdXU1eCyO41BcXGyUWCUlJbh165ZRYgFAWloaHB0dYWtr+8L9XF2B/fs1+OGHMsyfL8ahQ7ZITbVGVFQpOnasWmLIy8uDnZ1dtc5N1KwZEBNT5f2fpZg4EaoVK1DTV5MxhqysLBQVFcHb2xt3797VSQLPvm7r16/Hd999B6lUCh8fH3z//ffw9/ev9Pj//ve/MXfuXNy+fRstW7bEsmXLMGDAgBqWtu6hPoVqKm/eSU1NxalTpwAAYrEYfn5+AICmTZvCysrKZOUj5GkCATB5snaKDA8PDTIyBAgKssKPPxpuigzlpElg5tWbm4mJRCjs2ROXDhyAYsWKWsXnOA4SiYT/8pdIJDq3p2vtu3btwvTp0xEWFoZLly7Bx8cH/fv3R15eXoXHjo2NxUcffYRx48YhISEBISEhCAkJwbVr12pV5rqEkkIVyWQy3LhxA2fOnAGgTQ4dOnQAALRs2fKlv9oIMaXyKTLeeUcJpZLDl19aYMwYCxiie4e1agXFxIkv3geARiSCxs4OzN4erFEjCIqL0eDoUUAPzU9VtWrVKkyYMAFjxoxB27ZtsWnTJlhZWWHr1q0V7r927VoEBwfjyy+/hLe3N8LDw9GpUyf88MMPRiuzoVFSqIKkpCTExcWhpKQErVu3BgB4e3vDwcHBxCUjpOocHIBffy3DkiXaGVf37jU32Ogk5ZIlKAsPB7Ox4beVX7XMhELA2hpc+XKdAgGg0UB07x6c9uyBeMoUCPfsAeRyvZfraQqFAvHx8QgKCuK3CQQCBAUFIS4ursLnxMXF6ewPAP379690//qIkkIVeHl5oXfv3vD19UWjRo1MXRxCaozjgM8/V+LQoRI0aaLBzZtC9OljhT/+0H/3omrKFBQnJEAxcSI0TZpo11AwM9P+KxQC5ubg1GqwJ/1tnFoNgVIJwdWrEK1cCdE330CQmqr3cpV78OAB1Gr1cwMfnJ2dIZVKK3yOVCqt1v71ESWFKrC2tjbKSCBCjKVLFw1OnSpBYKAKxcUcRo2yxLx5IjwZRKc/zs5QrFiBkpMnIf/Xv6Bp1gwQi8HMzcGEQm1CeDL3ERgDp9Fo/330CGaHDkE0bRrMduwweK2B/A8lBUJeU46ODHv3lmLKFO11NWvWiDFkiCUePzZAsEaNoPryS5Tt2AHle++BNWqkrS2IxWBmZuAAaABwGg2fGKBUQnDzJsyXL4f53Ll672twdHSEUChE7jPHzc3NrXR4sYuLS7X2r48oKRDyGjMzA8LD5YiMLIWVFcPff5uhb18rpKUZ5uIu1rIlFCtWQLFwIVQ9e4I9GaDBOA4cnkyIp1Bo/1WptLWGwkKY79sH8bRp4JKT9VYWkUiEzp07Izo6mt+m0WgQHR2NgICACp8TEBCgsz8AHD16tNL96yNKCoQQDBmiwl9/Pd3PYI2TJw20RoNQCHW/flCsWwfFnDlgHTuCE4u1HR5PmpM4pVJ7X6UC1GpAoYAwLg7imTPBnT+vt6JMnz4dW7ZswbZt25CSkoLPPvsMxcXFGDNmDABg5MiR+Prrr/n9p0yZgsOHD2PlypVITU3F/PnzcfHiRYSGhuqtTKZGSYEQAgDw8dEgJqYEfn5qPH7M4d13LXHkiAEHVlhbQx0SgrJ166AYOxZKV1dtsxFj2oSgVGr/r1JpbwoFBJcvw2LWLHB6mlJk2LBhWLFiBebNmwdfX18kJibi8OHDfGdyZmYmcnJy+P27du2K3377DZs3b4aPjw/27NmDffv2oV27dnopT11AvaeEEJ6zM8PBgyX49FML7N1rjvDw1iguzkNYGKo9b1KVNWoE1ZQpkHp5we6XX9AgORmcTPa/moJGo60tPCkAl5IC0b/+Bfm2bUDjxrUOHxoaWukv/ZgKrsweOnQohg4dWuu4dRXVFAghOiwsgK1byxAaqu2AXrXKCV99JX56LRyDKO3QAXe+/BLKcePAHB21iYAx7b/ltyed0MKkJJgvXQqDXZb9GqOkQAh5jkAALF4sR2joLQDAxo0iTJki1v+Q1WdobGygmjoV8vnzwZo21SaBp26cWg1OrQZUKpj9/Te4V2h6ibqCkgIhpFLDht3D4sX3IBAwbNsmwsSJFoZfB1oggGbgQMiXLgVzdwdUKu1Q1fKawpPEIHj8GMIn084Q/aGkQAh5oZCQAmzdqp0a49//Nsenn1oYvMYAAJpu3SBfsAAQif7XAV1ea1CrAbkcglu3DF+Q1wwlBULIS733ngrbt2sTw+7d5pg2TWyU5nxNp07aWgIAvp+7PDmo1YAeVncjuigpEEKq5O23VdiypQwCAUNUlAhz5hh4vY/8fFgOHw7uyUqGAHSTg0ajnUeJ6BUlBUJIlQ0ZosIPP5QBAL7/XoQtW6q3bkJ1mO3bB+FLOpI1Hh4Gi/+6oqRACKmWESNUmDdPO0Hdl1+KceSIYa58Fl64AFZ+fcLTNzypLYhEUHftapDYrzNKCoSQapsxQ4Hhw5XQaDiMGWNpkLmSmI2NdtI8ofC5pAAAmhYtwJ6seEj0h5ICIaTaOA5Yu7YMXbuqUFTEYfRoS5SV6TeG+p//BCQS3WTwpHeb2dhAPneu9oIKolf0ihJCakQk0l757OiowZUrQnz9tX47fdU9e0I5ahSYg4N2zYUnE+axhg1RtmoVNP/8p17jES2a+4gQUmONGzNs2VKG996zRESECIMGqdC7t54uYhAKoZg9G6r+/WH255/gcnOhfuMNqEaM0K4tSgyCkgIhpFb69lVjwgQlNm8WYcoUC8TFFcPaWk8H5zho/PygoL4Do6HmI0JIrYWFyeHmpsHt2wIsWyYydXFILVBSIITUmq0tsHKltqd540YRsrMNNc82MTRKCoQQvQgOVqNrVxXkco5qC/UYJQVCiF5wHDB/vnZKiu3bzam2UE9RUiCE6M0//qFG9+4qqNUcoqIMNwUGMRxKCoQQvRo3TgkA2LbNHEqliQtDqo2SAiFErwYOVKFhQw2kUgHOnDHMvEjEcCgpEEL0SiQC+vfXXsB29ChdClXf0F/MgOLi4qBUKsFx1e9wu3DhQo2eV10KhQKpqam4efOmwWOpnqzjmJuba/BYarUaarUaZ4ywXCNjDIwxo8QCAKVSicTERAiMMO+PUqlEQUEB7ty5U63neXq6APDFvn0KDBhQtddFpVKBMYb8/PwalPR/GGMoKSkBYwxmZmYoLCzUedzW1tYon636ipKCnikUCly/fh0A4O7uDrFYDIFAUOUPMGMMly5dQuvWrSESGX5YX0pKClxcXOBghGkDMjMzIRAI4ObmZvBYDx8+xP3799GmTRuDxyorK0NSUhLatWtn8FgAkJiYiObNm8Nab5cNV+7mzZuws7ODk5NTtZ7n6irAkiXA3bs2aNasPaysXr5M27179yCXy9G0adOaFhcAUFRUhLZt2/L33d3ddR4vKCiARCKpVYxXGSUFPWFPZm+Mi4uDvb09AMDNzQ0KhaLaSQEAJBIJxEZYVUooFMLKygp2dnYGj1WeII0Rq7S0FGZmZkaJZW5uDo7jjBILAAQCAWxtbWFra2vwWObm5rC0tKz2udnZAY6OGjx4IIBUao+OHTUvfc6jR4/AGKv16yiRSJCVlYWioiJ4e3vj7t27OkngZa/bo0eP8MUXX+DPP/+EQCDAkCFDsHbtWtjY2FT6nM2bN+O3337DpUuXUFRUhPz8fP57oL6hPgU9kMvluHLlCgCgTZs26NChg4lLRIjptWmjTQSpqcb9muE4DhKJhP/yl0gkOreXNR0NHz4cSUlJOHr0KPbv34+TJ09i4sSJL3xOSUkJgoODMXv2bL2dh6lQTaEWnq4dODo6AgCcnZ1NWSRC6oxOnTQoKVHDwsLUJam6lJQUHD58GBcuXIDfk0n4vv/+ewwYMAArVqxA48aNK3ze1KlTAQAxMTFGKqnhUFKoodLSUqSkpAAA3njjDTRq1AhSqdTEpSKk7li4UG7qIlRbefOv31OzsgYFBUEgEODcuXN49913TVg646Dmo2oqrx2cPXsWFk9+AjVq1MiURSKE6IlUKn2uU93MzAwNGjR4bX70UVKohuLiYsTHxwMAOnTooDPCgRBSd3311VfgOO6Ft9TUVFMXs06g5qMqYIwhIyMD6enpaNy4MR4/foyGDRuauliEkCqaMWMGRo8e/cJ9mjVrBhcXF+Tl5elsV6lUePToEVxcXAxYwrqDkkIVXL58GcXFxfDz84OtrS3u3r1r6iIRQqqhUaNGVWrmDQgIwOPHjxEfH4/OnTsDAP7++29oNBp06dLF0MWsEygpVEHz5s1hY2MDMzMz/qrcqtBoNGCM8f9WRfl+5VfkGoNGozFKrPLXwhixNBrtcMhXLVY5Y70/yq/Wro+xanLlvLe3N4KDgzFhwgRs2rQJSqUSoaGh+PDDD/mRR9nZ2ejbty9+/vln+Pv7A9D2RUilUqSlpQEArl69CltbW3h4eKBBgwZ6OR9joaRQBba2ttWaUqD8S0Iul4PjuGolhOzsbD6WoT+IpaWlKCkpgVAoNMqHvri4GHZ2dkaJpVKpwHGc0ZICY4yPaWhCoRClpaWwsrIyeCwzMzPk5+fDycnJ4OdWHksmk8HS0rLWx/vll18AaAeF9OvXr8rP+/XXXxEaGoq+ffvyF6+tW7eOf1ypVOL69esoKSnht23atAnffvstf79nz54AgMjIyJc2W9U1lBT0TK1WQ/lkvuDyuVeqkhQ0Gg3S09Px8OFD+Pj4GHyKC6VSieTkZKNNcVFYWIjCwkK0adPGKHP2FBcXw9ra2iixykehKRQKvXyZvYyLiwvu3btnlFFvTZs2xaVLlyCVStGkSRODxnJ1dYVcLsfly5fRvn37Wl+xPXv2bFhbW2PYsGGYNm0aJk+erPN+qGwOpAYNGuC3336r9LheXl7Pfabnz5+P+fPn16q8dQXHqvoz9jWlVqshl8shEAjAcRxUKhWOHTuGoKAgAOD/r9Fo8Pfff6N79+7gOA5nzpzhawyEEOMrKSnBxx9/XOnjNAdSxaimoAcajYavHahUKojFYnTv3r1KNYTS0lIkJydDJBLB29sbZmaG/ZMwxnDz5k0UFRXBx8fH4PEAID8/H8nJyfD394e5ueFX49JoNDhz5gw6d+5slCYWALhy5QqcnJyMNkIlLS0NSqUS3t7eRomXlZWFrKwsdOrUySgTNebm5uLmzZto1apVtSfjK1c+ahDQTpI3a9YspKSkYOXKlfD39wdjDIWFhTRr6jOopvASVakpUO2AkLrtRbUGqjHooppCDT09iqa6tQMAuH//Pq5fvw4vLy80adLEKL9UHj58iJSUFPj4+Bhlhk0AePDgAW7evAl/f38IhcZZhUsqlSI3Nxc+Pj5GiQcAd+7cQWlpqVGm6i6XlJQES0tLNGvWzCjxVCoVEhIS0KhRI3h5eRklZmFhIa5du4YmTZrAw8Ojxp+Tp2sNSUlJ+OKLL9CiRQssX76crzGUe91rDlRTeInKago9evQAAKodEFLPUF/Di1FNoZrKawcajQZisRiBgYFVrh1oNBrcuHEDDx48QIcOHYz2xpPL5YiPj0fjxo2N9gsP0P5iv3XrFv7xj38YZRRQufJzdXV1NVrM/Px8pKSkoGvXrkaLCWjPtVGjRvDw8DBaTKlUihs3buDNN980ymgrQNv3duXKFVhZWeGNN96o1fuJMYa7d++CMYaff/4ZixYtwqxZszBlyhR+rYrXGc19VEWMMSiVSr5DuXxbVROCUqnElStXUFhYiM6dOxstIajValy7dg12dnbw9PQ0SkxAmwAzMjLg5eVl1ITAGENRUZHRP9gWFhaQy+VGrzW6u7sjKyvLqHFdXFzg4uKCa9euGe2CPUtLS3Ts2BEKhQJXrlyp1kWkzypfb8HOzg6hoaH4/fffsX37dnz44Yd4+PAhioqK+CHUr2NDCjUfvYRarUZZWRnUajU0Gg0/soWajAip/6gp6XmUFF5CqVQiNzcXarWaX1azOtNWJCQkYM+ePZg4cWKtOspqYt26dXB2dsZ7771nlKGg5crKyjBz5kzMnDnTqM1VAPDXX38hKSkJ06dPN2pcAJg3bx4GDx7Mz5ljLJcvX8Yvv/yC5cuXG/X9pVAosHXrVtjb2+PDDz80WlyNRoNbt25hw4YNmDp1aq2azhhjkMlk/P1ff/0Vq1evxtSpUzFr1izY2dm9dp3OlBReoqCgoNZrrTo6OuLBgwf6KVA1cByHBg0a4OHDh0aPXd15ovTJ3Nxcp5nPWIw1XcizzM3N+ZqssTVo0ACPHj0yelwAsLOzQ0FBgcGO/zrWEgBKCi9V3kZdm+eb6peGKWOT14ep3mflX12Giv26Dk2lpEAIIYRHo48IIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEJe4NGjRxg+fDgkEgns7e0xbtw4nWsbKtr/iy++QOvWrWFpaQkPDw9MnjzZoMNn9YmSAiGEvMDw4cORlJSEo0ePYv/+/Th58iQmTpxY6f737t3DvXv3sGLFCly7dg1RUVE4fPgwxo0bZ8RS1wIjhBBSoTlz5jAATCQSMX9/f3bu3Dl26NAhxnEcy87Ofm7/3bt3s9atWzOxWMzatWvHDhw4wG8XiURMqVQa+xSqjWoKhBBSgV27dmHp0qWwtLREQkICfHx80L9/f3To0AECgQDnzp3T2T82NhYfffQRxo0bh4SEBISEhCAkJATXrl3jr442xkqHtUUXrxFCSAW6dOkCjuOQn5+P69evQ6PRwN3dHV988QVWrVqFb7/9Fp999hm//7Bhw1BcXIz9+/fz2/7xj3+gTZs2OH78OEaMGIFFixaZ4lSqhWoKhJDXzldffQWO4154i4+PR4sWLfjnCAQCuLm5YcGCBbh//z6WL1+O8+fP84/HxcXxy/QCwJYtW5CdnY1t27bh3r17OHv2rM7+dRUlBULIa2fGjBlISUmp9HbixAmo1Wp4eHggLy8PgLY5KT4+Hs7OzhAIBGjZsiX69+/PPy6VSuHs7MzHOHr0KEpLS2FmZoaLFy/Cw8MD/fr1Q3Z2tknOuaooKRBCXjuNGjVCmzZtKr2V1xDat2+Px48fIz4+HqtWrUKHDh0gFovBGEPPnj1RVFSEJk2aoEuXLjqz1BYWFuLu3btwcHCAg4MDfHx88NNPP0Gj0WDRokXgOA4hISEmOvsXo6RACCHPcHR0hFAohKWlJYKDgzFu3DjEx8cDALKyshAQEIDw8HB06dIF/v7+fJ9DWloaCgsL0a9fPxQXFyM4OBiNGjWCVCpFRkYG5HI5du/eza/xXhdRRzMhhFSg/Av/22+/xdixY/Gf//wHANC5c2dwHIcuXbrAysoKR44cweXLlyESidCsWTNs3LgRvXv3rvCYIpEIa9euxdmzZ/H48WPs27fPiGdUNVRTIISQCkyfPh1btmzBn3/+iWnTpgEAbGxs8McffyAhIQHXrl3DyZMn+eakPn364Pr164iPj0dKSgrCwsJgbm6Oq1evYsmSJbCwsEC3bt3w6aefmvjMXqzuD5olhBATGDZsGO7fv4958+YhJycHADB37lx+hb2CggIUFRXhjTfeAKDtf0hLS8PmzZsxe/ZstGzZEvv27cPhw4excOFCSCQS7N6925SnVCVUU6il9evXw8vLCxYWFujSpctLh5ytWbOGnxPF3d0d06ZNQ1lZmcFjBwYGVjjs7u233zZ4bAB4/PgxPv/8c7i6ukIsFqNVq1Y4ePCgwWNHRUU9d84WFhY1ilvd2E/buXNnrTsXqxN779698PPzg729PaytreHr64vt27cbJfaWLVvQo0cPvpM1KCioVkMxqxM7KSkJQ4YMgZeXFziOw5o1a2ocFwBCQ0Nx584dKBQK+Pv74+7du/xjP/zwA8rKyhAQEMBva9CgAa5fvw65XI5r167h2rVrWLBgASQSCaKiouDo6Fir8hiFKS+nru927tzJRCIR27p1K0tKSmITJkxg9vb2LDc3t8L9f/31VyYWi9mvv/7KMjIy2F9//cVcXV3ZtGnTDB774cOHLCcnh79du3aNCYVCFhkZafDYcrmc+fn5sQEDBrDTp0+zjIwMFhMTwxITEw0eOzIykkkkEp1zl0ql1Y5bk9jlMjIyWJMmTViPHj3Y4MGDjRL7+PHjbO/evSw5OZmlpaWxNWvWMKFQyA4fPmzw2B9//DFbv349S0hIYCkpKWz06NHMzs6OZWVlGTz2+fPn2cyZM9mOHTuYi4sLW716dbVjvqgsYrGY/fTTT0woFLJ+/foxe3t7/v3UrFkz1qJFC37/pUuXMpFIxL777jsGgAmFQv7GcRzjOI4JhUKWlpamtzLqAyWFWvD392eff/45f1+tVrPGjRuzJUuWVLj/559/zvr06aOzbfr06axbt24Gj/2s1atXM1tbWyaTyQwee+PGjaxZs2ZMoVBUO1ZtY0dGRjI7O7tax61JbMYYU6lUrGvXruynn35io0aNqnFSqO3fmzHGOnbsyObMmWP02CqVitna2rJt27YZNbanp6dekwJjjH3//ffMw8ODcRzHnJyc2NmzZ/lyiUQi1qlTJ534AJ67ffbZZ2zw4MGsT58+7OrVq0wul+u1jLVFzUc1pFAoEB8fr3MFo0AgQFBQEOLi4ip8TteuXREfH89Xf2/duoWDBw9iwIABBo/9rIiICHz44YewtrY2eOz//ve/CAgIwOeffw5nZ2e0a9cOixcvhlqtNnhsAJDJZPD09IS7uzsGDx6MpKSkasWtTewFCxbAycmpVjNk1vbvzRhDdHQ0rl+/jp49exo1NgCUlJRAqVSiQYMGRo+tb+XNSTt27EBBQQFSU1ORkpKCzz77DFZWVnyT6MiRI/HRRx+BaX9469w2bNgAe3t72Nraol27dhCJRCY5l8pQR3MNPXjwAGq1WucKRgBwdnZGampqhc/5+OOP8eDBA3Tv3h2MMahUKnz66aeYPXu2wWM/7fz587h27RoiIiKqFbemsW/duoW///4bw4cPx8GDB5GWloZJkyZBqVQiLCzMoLFbt26NrVu3okOHDigoKMCKFSvQtWtXJCUlwc3NzaCxT58+jYiICCQmJlY5jr5iA0BBQQGaNGkCuVwOoVCIDRs24K233jJK7KfNmjULjRs31vlyN1ZsQ3m6E1oqlcLX1xeHDx/my5qZmQmBoOa/uX/++WdMmzYN9+7dg1gs5reHhITA1ta2Vv1DL0NJwYhiYmKwePFibNiwAV26dEFaWhqmTJmC8PBwzJ0712jliIiIQPv27eHv72+UeBqNBk5OTti8eTOEQiE6d+6M7OxsfPfdd9VKCjUREBCg0xHYtWtXeHt748cff0R4eLjB4hYVFeGTTz7Bli1bTNa5aGtri8TERMhkMkRHR2P69Olo1qwZAgMDjVaGpUuXYufOnYiJialVB39dFBoaitDQ0Aofi4mJeeFzo6KiXvj40KFDMXnyZPz3v//F0KFDAQB5eXk4cOAAjhw5UpPiVhklhRoqv+IxNzdXZ3tubi5cXFwqfM7cuXPxySefYPz48QC0Q9iKi4sxceJEfPPNN1X+ZVGT2OWKi4uxc+dOLFiwoEqx9BHb1dUV5ubmEAqF/DZvb29IpVIoFIoqV59rc97lzM3N0bFjR6SlpVVp/5rGTk9Px+3btzFw4EB+W/k0CGZmZrh+/TqaN29ukNjlBAIBP12Dr68vUlJSsGTJkmolhdq85itWrMDSpUtx7NgxdOjQocox9RG7vrO0tMTHH3+MyMhIPin88ssv8PDwMHhSpz6FGhKJROjcuTOio6P5bRqNBtHR0Tq/TJ9WUlLy3Bd/+Rclq8aF5TWJXe7f//435HI5RowYUeV4tY3drVs3pKWl6cwNc+PGDbi6ularPbU2511OrVbj6tWrcHV1rXLcmsRu06YNrl69isTERP42aNAg9O7dG4mJiXB3dzdY7MpoNBrI5fIq71+b2MuXL0d4eDgOHz4MPz+/asWsbexXxYQJE3DkyBF+Ar2oqCiMHj0aHMcZNrDp+rjrv/IhalFRUSw5OZlNnDhRZ4jaJ598wr766it+/7CwMGZra8t27NjBbt26xY4cOcKaN2/OPvjgA4PHLte9e3c2bNiwGp5xzWJnZmYyW1tbFhoayq5fv87279/PnJyc2MKFCw0e+9tvv2V//fUXS09PZ/Hx8ezDDz9kFhYWLCkpyeCxn1Wb0UfVjb148WJ25MgRlp6ezpKTk9mKFSuYmZkZ27Jli8Fjlw/F3LNnj85Q4KKiIoPHlsvlLCEhgSUkJDBXV1c2c+ZMlpCQwG7evFnt2HVBp06d2OLFi9nFixeZQCBgmZmZBo9JSaGWyoeolS/XVz5EjTHGevXqxUaNGsXfVyqVbP78+ax58+bMwsKCubu7s0mTJrH8/HyDx2aMsdTUVAaAHTlypEbxahM7NjaWdenShYnFYtasWTO2aNEiplKpDB576tSp/L7Ozs5swIAB7NKlSzWKW93Yz6pNUqhu7G+++Ya1aNGCWVhYMAcHBxYQEMB27txplNiVDcUMCwszeOyMjIwKY/fq1atGsU1tw4YNrFWrVuzzzz9n/fr1M0pMmhCPEELqqIKCAjRu3BgqlQo///wzhg0bZvCY1KdACCF1lJ2dHYYMGQIbGxujrb9ASYEQQuqw7OxsDB8+XOd6BUOi5iNCCKmD8vPzERMTg/fffx/Jyclo3bq1UeLSdQqEEFIHdezYEfn5+Vi2bJnREgJAzUeE6Lh//z5cXFywePFifltsbCxEIpHOeHlCDO327dsoKCjAzJkzjRqXmo8IecbBgwcREhKC2NhYtG7dGr6+vhg8eDBWrVpl6qIRYnCUFAipwOeff45jx47Bz88PV69exYULF4zW0UeIKVFSIKQCpaWlaNeuHe7evYv4+Hi0b9/e1EUixCioT4GQCqSnp+PevXvQaDS4ffu2qYtDiNFQTYGQZ5Svx+vr64vWrVtjzZo1uHr1KpycnExdNEIMjpICIc/48ssvsWfPHly+fBk2Njbo1asX7OzssH//flMXjRCDo+YjQp4SExODNWvWYPv27ZBIJBAIBNi+fTtOnTqFjRs3mrp4hBgc1RQIIYTwqKZACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPD+H8cciyUs5Kd0AAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.angle1 = 0\n", + "visualizer.angle2 = 90\n", + "visualizer.plot_trajectory(np.array(traj_actual), np.array(traj_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zV1tmbQ1NJyk" + }, + "source": [ + "## Orientation" + ] + }, + { + "cell_type": "code", + "execution_count": 934, + "metadata": {}, + "outputs": [], + "source": [ + "or_pred, or_traj = metrics['or_traj'][0], metrics['or_traj'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 935, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<Figure size 640x480 with 0 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChz0lEQVR4nOzdd1zU9R/A8dexUQQ0VFRIXJl74Mj6kZoDR7nLVbhNy9yaNpw5cq/MLLdppqKV5krR1ExLQytHDhy4FyAOkOPz++MLJ8fywDuOg/fz8bgHx/f7ue+978u4932+n8/7o1NKKYQQQgghRKrsrB2AEEIIIUR2JsmSEEIIIUQ6JFkSQgghhEiHJEtCCCGEEOmQZEkIIYQQIh2SLAkhhBBCpEOSJSGEEEKIdEiyJIQQQgiRDkmWhBBCCCHSIcmSEM+oa9eu+Pn5mf24U6dOpWTJktjb21O1alUA4uLiGD58OL6+vtjZ2dGqVSuzP29OoNPpGDNmjLXDyLQxY8ag0+msHYZVpPba/fz86Nq1q9mew1J/syLnkmRJ5EhLly5Fp9Olefv999+zPKbz58+nG9PkyZMNbbdv387w4cN55ZVXWLJkCRMnTgRg8eLFTJ06lXbt2rFs2TIGDRpk9jhXrVrFrFmzzH7cp3n8+DFz5syhZs2a5MuXDzc3N2rWrMmcOXN4/PhxlsfzNM96nh48eMCYMWPYvXu32WIyh6S/k3Z2dhQtWpTGjRtnuzif5sqVK4wZM4bQ0FBrhyJyAAdrByCEJY0bN44SJUqk2F66dGkrRKPp2LEjzZo1S7G9WrVqhvu7du3Czs6ORYsW4eTkZLS9WLFizJw502LxrVq1in/++YeBAwda7DmSu3//Ps2bN2fPnj28/vrrdO3aFTs7O7Zu3cqAAQMIDg5m8+bN5M2b16TjPXz4EAcHy/57e9bz9ODBA8aOHQtAvXr1jPZ98sknjBgx4hkjzLxGjRoRFBSEUoqwsDDmz5/Pa6+9xubNm2natGmWx3Pq1Cns7DL22f7KlSuMHTsWPz8/Q89soq+//pr4+HgzRihyOkmWRI7WtGlTatSoYe0wjFSvXp2333473TY3btzA1dXVKFFK3O7p6WnB6CwjLi6O+Pj4FK8n0eDBg9mzZw9z586lX79+hu19+/bliy++oF+/fgwdOpQvv/wyzeeIj48nNjYWFxcXXFxczP4aspKDg4PFk730vPDCC0a/o61bt6Zy5crMmjUrzWTp0aNHODk5ZTipMYWzs7NZj+fo6GjW44mcTy7DiVwt8dLYtGnTWLhwIaVKlcLZ2ZmaNWvyxx9/pGi/ceNGKlasiIuLCxUrVmTDhg1mj0mn07FkyRLu379vuBySeFkxJCSEf//917A98dJIfHw8s2bNokKFCri4uFC4cGHeffdd7t69m+L4W7ZsoW7duuTLlw93d3dq1qzJqlWrAK2HY/PmzVy4cMHwHEnHdty4cYMePXpQuHBhXFxcqFKlCsuWLTM6ftJzOmvWLMM5PX78eKqvNzw8nEWLFvHaa68ZJUqJ3n//ferXr88333xDeHi40Xnq168f3377LRUqVMDZ2ZmtW7ca9iUfs3T58mW6d+9O4cKFcXZ2pkKFCixevNioze7du9HpdHz//fdMmDABHx8fXFxcaNCgAWfOnDG0S+88xcbGMmrUKPz9/fHw8CBv3rwEBAQQEhJidI4KFiwIwNixYw3HSIw5tXE7cXFxjB8/3nA+/fz8+Oijj4iJiTFq5+fnx+uvv86+ffuoVasWLi4ulCxZkuXLl6d6/k1RqVIlvLy8CAsLMzpP3333HZ988gnFihUjT548REVFAXDw4EGaNGmCh4cHefLkoW7duuzfvz/Fcfft20fNmjVxcXGhVKlSfPXVV6k+f2pjliIiIhg0aBB+fn44Ozvj4+NDUFAQt27dYvfu3dSsWROAbt26Gf0dQepjlu7fv8+QIUPw9fXF2dmZsmXLMm3aNJRSRu0Sf+8S/xck/i4l/u4lunfvHgMHDjTEV6hQIRo1asSRI0dMOucie5GeJZGjRUZGcuvWLaNtOp2O5557zmjbqlWruHfvHu+++y46nY4pU6bQpk0bzp07Z/gUun37dtq2bUv58uWZNGkSt2/fplu3bvj4+GQopgcPHqSICcDT0xMHBwdWrFjBwoULOXToEN988w2gXaJbsWIFEyZMIDo6mkmTJgFQrlw5AN59912WLl1Kt27d6N+/P2FhYcybN4+//vqL/fv3G17D0qVL6d69OxUqVGDkyJF4enry119/sXXrVjp16sTHH39MZGQk4eHhhkt9bm5ugHZpq169epw5c4Z+/fpRokQJ1q5dS9euXYmIiGDAgAFGr2fJkiU8evSI3r174+zsTIECBVI9H1u2bEGv1xMUFJTmOQsKCiIkJIStW7fSs2dPw/Zdu3bx/fff069fP7y8vNIctHv9+nVeeuklwxtdwYIF2bJlCz169CAqKirFpbTJkydjZ2fH0KFDiYyMZMqUKXTu3JmDBw8CpHueoqKi+Oabb+jYsSO9evXi3r17LFq0iMDAQA4dOkTVqlUpWLAgX375JX379qV169a0adMGgMqVK6d5Dnr27MmyZcto164dQ4YM4eDBg0yaNIkTJ06kSNrPnDlDu3bt6NGjB126dGHx4sV07doVf39/KlSokOZzpOXu3bvcvXs3xeXr8ePH4+TkxNChQ4mJicHJyYldu3bRtGlT/P39GT16NHZ2dixZsoTXXnuNvXv3UqtWLQD+/vtvGjduTMGCBRkzZgxxcXGMHj2awoULPzWe6OhoAgICOHHiBN27d6d69ercunWLH3/8kfDwcMqVK8e4ceMYNWoUvXv3JiAgAICXX3451eMppWjRogUhISH06NGDqlWrsm3bNoYNG8bly5dTXPbet28fwcHBvPfee+TLl485c+bQtm1bLl68aPjf0qdPH9atW0e/fv0oX748t2/fZt++fZw4cYLq1atn+GcgrEwJkQMtWbJEAanenJ2dDe3CwsIUoJ577jl1584dw/YffvhBAeqnn34ybKtataoqUqSIioiIMGzbvn27AlTx4sWfGlPic6V1O3DggKFtly5dVN68eVMco27duqpChQpG2/bu3asA9e233xpt37p1q9H2iIgIlS9fPlW7dm318OFDo7bx8fGG+82bN0/19cyaNUsBauXKlYZtsbGxqk6dOsrNzU1FRUUZvU53d3d148aNp56XgQMHKkD99ddfabY5cuSIAtTgwYMN2wBlZ2en/v333xTtATV69GjD9z169FBFihRRt27dMmrXoUMH5eHhoR48eKCUUiokJEQBqly5ciomJsbQbvbs2QpQf//9t2FbWucpLi7O6LFKKXX37l1VuHBh1b17d8O2mzdvpogz0ejRo1XSf8+hoaEKUD179jRqN3ToUAWoXbt2GbYVL15cAerXX381bLtx44ZydnZWQ4YMSfFcyQGqR48e6ubNm+rGjRvq4MGDqkGDBgpQ06dPV0o9OU8lS5Y0nDultN+jMmXKqMDAQKPfqQcPHqgSJUqoRo0aGba1atVKubi4qAsXLhi2HT9+XNnb2xu99sTX1KVLF8P3o0aNUoAKDg5OEX/i8/7xxx8KUEuWLEnRpkuXLkY/u40bNypAffbZZ0bt2rVrp3Q6nTpz5ozR+XFycjLadvToUQWouXPnGrZ5eHio999/P8VzC9skl+FEjvbFF1+wY8cOo9uWLVtStGvfvj358+c3fJ/4SfTcuXMAXL16ldDQULp06YKHh4ehXaNGjShfvnyGYurdu3eKmHbs2JHh4yRau3YtHh4eNGrUiFu3bhlu/v7+uLm5GS7/7Nixg3v37jFixIgUY3pMmab+888/4+3tTceOHQ3bHB0d6d+/P9HR0ezZs8eofdu2bQ2XmtJz7949APLly5dmm8R9iZd5EtWtW/ep500pxfr163njjTdQShmdo8DAQCIjI1NcGunWrZvR+Krkvw/psbe3Nzw2Pj6eO3fuEBcXR40aNTJ9Cebnn38GtLFdSQ0ZMgSAzZs3G20vX768IWaAggULUrZsWZPiB1i0aBEFCxakUKFC1K5dm/379zN48OAUPXBdunTB1dXV8H1oaCinT5+mU6dO3L5923Ce79+/T4MGDfj111+Jj49Hr9ezbds2WrVqxfPPP294fLly5QgMDHxqfOvXr6dKlSq0bt06xb7MlFz4+eefsbe3p3///kbbhwwZglIqxf+Mhg0bUqpUKcP3lStXxt3d3ej8enp6cvDgQa5cuZLheET2I5fhRI5Wq1YtkwZ4J/2HDRgSp8QxPxcuXACgTJkyKR5btmxZozfBmzdvotfrDd+7ubkZLtEkHqNhw4YZeBXpO336NJGRkRQqVCjV/Tdu3ADg7NmzAFSsWDFTz3PhwgXKlCmTYgBv4qXAxHOUKLVZiKlJTIQSk6bUpJVQmfIcN2/eJCIigoULF7Jw4cJU2ySeo0RP+314mmXLljF9+nROnjxpVPbA1HOS3IULF7Czs0txGczb2xtPT88U5z55/KC9BlPjb9myJf369UOn05EvXz4qVKiQ6kzE5K/n9OnTgJZEpSUyMpKYmBgePnyY5t9TYnKYlrNnz9K2bVtTXopJLly4QNGiRVP8fqX1u23K+Z0yZQpdunTB19cXf39/mjVrRlBQECVLljRb3CLrSLIkBFpvQGpUssGdpqhZs6bRP9fRo0dbtEBifHw8hQoV4ttvv011vym9O5aQtMchPYlvSMeOHUsxxTvRsWPHAFL0IpnyHIlTxN9+++0038STjxV6lt+HlStX0rVrV1q1asWwYcMoVKgQ9vb2TJo0yZCwZpapvSbP+vvs4+NjUkKf/PwnnuupU6em+bN0c3NLMSjd1phyft966y0CAgLYsGED27dvZ+rUqXz++ecEBwdbpfyCeDaSLAlhguLFiwNPPjknderUKaPvv/32Wx4+fGj43tKfJEuVKsUvv/zCK6+8km7ykHjZ4J9//km3zlRab8jFixfn2LFjxMfHG/UunTx50rA/M5o2bYq9vT0rVqxIc5D38uXLcXBwoEmTJhk+fsGCBcmXLx96vd6sPXppnad169ZRsmRJgoODjdqMHj3apMenpnjx4sTHx3P69GlDcgnawPWIiIhMn3tzS/wdc3d3T/dcFyxYEFdXV5P+ntJ6nn/++SfdNhk9v7/88gv37t0z6l161t/tIkWK8N577/Hee+9x48YNqlevzoQJEyRZskEyZkkIExQpUoSqVauybNkyIiMjDdt37NiRYkr8K6+8QsOGDQ03SydLb731Fnq9nvHjx6fYFxcXR0REBACNGzcmX758TJo0iUePHhm1S/qJOG/evEavMVGzZs24du0aa9asMTr+3LlzcXNzo27dupmK39fXl27duvHLL7+kWkdpwYIF7Nq1ix49emR45iFovQBt27Zl/fr1qb7B3rx5M1Nxp3WeEnsdkp7TgwcPcuDAAaN2efLkATD8fNKTWMQ0ecXwGTNmANC8eXOT47Ykf39/SpUqxbRp04iOjk6xP/Fc29vbExgYyMaNG7l48aJh/4kTJ9i2bdtTn6dt27YcPXo01dIdiec98bKhqedXr9czb948o+0zZ85Ep9NlOLnR6/UpfjcKFSpE0aJFbb5XLbeSniWRo23ZssXw6TCpl19+OcNJzKRJk2jevDn/+9//6N69O3fu3GHu3LlUqFAh1TeGtBw5coSVK1em2F6qVCnq1KmToZhAG+T87rvvMmnSJEJDQ2ncuDGOjo6cPn2atWvXMnv2bNq1a4e7uzszZ86kZ8+e1KxZk06dOpE/f36OHj3KgwcPDPWS/P39WbNmDYMHD6ZmzZq4ubnxxhtv0Lt3b7766iu6du3K4cOH8fPzY926dezfv59Zs2alO0D7aWbOnMnJkyd577332Lp1q6EHadu2bfzwww/UrVuX6dOnZ/r4kydPJiQkhNq1a9OrVy/Kly/PnTt3OHLkCL/88gt37tzJ8DHTOk+vv/46wcHBtG7dmubNmxMWFsaCBQsoX7680e+Jq6sr5cuXZ82aNbzwwgsUKFCAihUrpjqmrEqVKnTp0oWFCxcSERFB3bp1OXToEMuWLaNVq1bUr18/0+fGnOzs7Pjmm29o2rQpFSpUoFu3bhQrVozLly8TEhKCu7s7P/30E6DVl9q6dSsBAQG89957hsS7QoUKhsuuaRk2bBjr1q3jzTffpHv37vj7+3Pnzh1+/PFHFixYQJUqVShVqhSenp4sWLCAfPnykTdvXmrXrp3quLE33niD+vXr8/HHH3P+/HmqVKnC9u3b+eGHHxg4cKDRYG5T3Lt3Dx8fH9q1a0eVKlVwc3Pjl19+4Y8//nim32NhRdaahieEJaVXOoAk04kTp7lPnTo1xTFIZVr3+vXrVbly5ZSzs7MqX768Cg4OTjENOS1PKx2QdGp0RkoHJFq4cKHy9/dXrq6uKl++fKpSpUpq+PDh6sqVK0btfvzxR/Xyyy8rV1dX5e7urmrVqqVWr15t2B8dHa06deqkPD09U5RFuH79uurWrZvy8vJSTk5OqlKlSimmZqd3TtMTExOjZs6cqfz9/VXevHlVnjx5VPXq1dWsWbNUbGxsivZAmlOzU/vZXb9+Xb3//vvK19dXOTo6Km9vb9WgQQO1cOFCQ5vEKfFr165N9TUlfa1pnaf4+Hg1ceJEVbx4ceXs7KyqVaumNm3alOrvyW+//ab8/f2Vk5OTUczJSwcopdTjx4/V2LFjVYkSJZSjo6Py9fVVI0eOVI8ePTJqV7x4cdW8efMU56Ru3bqqbt26qZ6v5OfuaVPe0zpPif766y/Vpk0b9dxzzylnZ2dVvHhx9dZbb6mdO3catduzZ4/h9ZcsWVItWLAg1deevHSAUkrdvn1b9evXTxUrVkw5OTkpHx8f1aVLF6PyED/88IMqX768cnBwMPr5pfazuHfvnho0aJAqWrSocnR0VGXKlFFTp041KoGQ3vlJGmNMTIwaNmyYqlKlisqXL5/KmzevqlKlipo/f35ap1RkczqlMjGCVQghhBAil5AxS0IIIYQQ6ZBkSQghhBAiHZIsCSGEEEKkQ5IlIYQQQoh0SLIkhBBCCJEOSZaEEEIIIdIhRSnNID4+nitXrpAvX75MrXgthBBCiKynlOLevXsULVo0xSLhSUmyZAZXrlzB19fX2mEIIYQQIhMuXbqU7nJKkiyZQeIyD5cuXcLd3d3K0QghhBDCFFFRUfj6+j51uSZJlswg8dKbu7u7JEtCCCGEjXnaEBoZ4C2EEEIIkQ5JloQQQggh0iHJkhBCCCFEOmTMUhaJj48nNjbW2mEIAYCjoyP29vbWDkMIIWyCJEtZIDY2lrCwMOLj460dihAGnp6eeHt7S20wIYR4CkmWLEwpxdWrV7G3t8fX1zfdoldCZAWlFA8ePODGjRsAFClSxMoRCSFE9ibJkoXFxcXx4MEDihYtSp48eawdjhAAuLq6AnDjxg0KFSokl+SEECId0s1hYXq9HgAnJycrRyKEscTk/fHjx1aORAghsjdJlrKIjAsR2Y38TgohhGnkMpwQQojcQa+HvXvh6lUoUgQCAkAuQQsT2FTP0q+//sobb7xB0aJF0el0bNy48amP2b17N9WrV8fZ2ZnSpUuzdOnSFG2++OIL/Pz8cHFxoXbt2hw6dMj8wQuzMvXnb0716tVj4MCBWfqcQogM0uth925YvVr7mjAUguBg8POD+vWhUyftq5+ftj29xwmBjSVL9+/fp0qVKnzxxRcmtQ8LC6N58+bUr1+f0NBQBg4cSM+ePdm2bZuhzZo1axg8eDCjR4/myJEjVKlShcDAQMNModzuwIED2Nvb07x58ww/1s/Pj1mzZpk/qKfQ6XTp3saMGZOp4wYHBzN+/HizxSnJlxBmllZCNHw4tGsH4eHG7S9f1rYPH55+IiVyPZu6DNe0aVOaNm1qcvsFCxZQokQJpk+fDkC5cuXYt28fM2fOJDAwEIAZM2bQq1cvunXrZnjM5s2bWbx4MSNGjDD/i7AxixYt4oMPPmDRokVcuXKFokWLWjukp7p69arh/po1axg1ahSnTp0ybHNzczPcV0qh1+txcHj6n0KBAgXMG6iZxMbGygQCIYKDtcRHKePt4eEwdarh2yjyEYMzBbiDvUqofZdkv0FiIrVuHbRpI5fwcjmb6lnKqAMHDtCwYUOjbYGBgRw4cADQ3mQOHz5s1MbOzo6GDRsa2qQmJiaGqKgoo1tOFB0dzZo1a+jbty/NmzdP9RLmTz/9RM2aNXFxccHLy4vWrVsDWq/JhQsXGDRokKFHB2DMmDFUrVrV6BizZs3Cz8/P8P0ff/xBo0aN8PLywsPDg7p163LkyBGT4/b29jbcPDw80Ol0hu9PnjxJvnz52LJlC/7+/jg7O7Nv3z7Onj1Ly5YtKVy4MG5ubtSsWZNffvnF6LjJe4JiYmIYOnQoxYoVI2/evNSuXZvdu3cbPWb//v3Uq1ePPHnykD9/fgIDA7l79y5du3Zlz549zJ4923B+zp8/D8CePXuoVasWzs7OFClShBEjRhAXF2cUR79+/Rg4cCBeXl4EBgbSvXt3Xn/9daPnfvz4MYUKFWLRokUmnzshsr3ULpfp9TBggCFRuk8e/qIq3/MmE/iIrizhFfZRiOt4EEUhbuJELN5cpTJHacgOOrOSQcxgJgM5SdknSdfAgVrCJD1PuZpN9Sxl1LVr1yhcuLDRtsKFCxMVFcXDhw+5e/cuer0+1TYnT55M87iTJk1i7NixmYpJKXjwIFMPfWZ58kBGJkB9//33vPjii5QtW5a3336bgQMHMnLkSEPis3nzZlq3bs3HH3/M8uXLiY2N5eeffwa0S1ZVqlShd+/e9OrVK0Nx3rt3jy5dujB37lyUUkyfPp1mzZpx+vRp8uXLl6FjpWXEiBFMmzaNkiVLkj9/fi5dukSzZs2YMGECzs7OLF++nDfeeINTp07x/PPPp3qMfv36cfz4cb777juKFi3Khg0baNKkCX///TdlypQhNDSUBg0a0L17d2bPno2DgwMhISHo9Xpmz57Nf//9R8WKFRk3bhwABQsW5PLlyzRr1oyuXbuyfPlyTp48Sa9evXBxcTG6fLhs2TL69u3L/v37Abh9+zavvvoqV69eNRSZ3LRpEw8ePKB9+/ZmOWdCWF1wsJYUJb2c5uMDvXrxOPwaW3iDpXRlE6/zmPR7W+Ox5zreXMc7xb7BzORFTtBabaD1pQ3UePNNUvzrTN7zJHK0HJ0sWcrIkSMZPHiw4fuoqCh8fX1NeuyDB5DkKlCWio6GvHlNb79o0SLefvttAJo0aUJkZCR79uyhXr16AEyYMIEOHToYJY5VqlQBtEtW9vb25MuXD2/vlP+M0vPaa68Zfb9w4UI8PT3Zs2dPit6TzBo3bhyNGjUyfF+gQAFD7ADjx49nw4YN/Pjjj/Tr1y/F4y9evMiSJUu4ePGi4dLk0KFD2bp1K0uWLGHixIlMmTKFGjVqMH/+fMPjKlSoYLjv5OREnjx5jM7P/Pnz8fX1Zd68eeh0Ol588UWuXLnChx9+yKhRowwV4MuUKcOUKVOMYipbtiwrVqxg+PDhACxZsoQ333zT6LKjEDYrjctsoeFeLBudj2+5zE0KGbZ7cZMynE5xK80ZXHnILby4QSGuU5gbFDLcP0oVdvEaJynHJMoxiY/w4RKt2UBrNlCXPdihtDh0Oq3nqWVLuSSXw+XoZMnb25vr168bbbt+/Tru7u64urpib2+Pvb19qm3Se4N3dnbG2dnZIjFnF6dOneLQoUNs2LABAAcHB9q3b8+iRYsMyVJoaGiGe41Mcf36dT755BN2797NjRs30Ov1PHjwgIsXL5rtOWrUqGH0fXR0NGPGjGHz5s1cvXqVuLg4Hj58mOZz/v333+j1el544QWj7TExMTz33HOAdn7efPPNDMV14sQJ6tSpY1QD6ZVXXiE6Oprw8HBDL5e/v3+Kx/bs2ZOFCxcyfPhwrl+/zpYtW9i1a1eGnl+IbCnZZbZ7uLGIHiylK0epamhWmGu8zUq6sIxK/JPuIYtwjSJcS3VfJO5spjkbaM0WmhKOL3Ppz1z6U5W/+JwPacwOLZ5Ll7TLgfb2Mp4pB8vRyVKdOnUMl4US7dixgzp16gDaJ3t/f3927txJq1atAIiPj2fnzp2p9iaYQ548Wg+PNWRktZVFixYRFxdnNKBbKYWzszPz5s3Dw8PDsGRGRtjZ2aGSfTJMXkG6S5cu3L59m9mzZ1O8eHGcnZ2pU6cOsbGxGX6+tORN1sU2dOhQduzYwbRp0yhdujSurq60a9cuzeeMjo7G3t6ew4cPp1gqJLEnJzPnx1TJ4wcICgpixIgRHDhwgN9++40SJUoQEBBgsRiEsJjkg6n1eggPRwHf0YGhTOMKxQBwIoYW/EgXlhHINhyJS/u4Ol3KAeCp8CCKTqymE6t5iAu/0JANtGY9bQmlGoFspyE7mMJwqhEKb70Fd+48OYCPD8yeLZfnchCbGuAdHR1NaGgooaGhgFYaIDQ01PDpf+TIkQQFBRna9+nTh3PnzjF8+HBOnjzJ/Pnz+f777xk0aJChzeDBg/n6669ZtmwZJ06coG/fvty/f98wO87cdDrtUpg1bqaOV4qLi2P58uVMnz7dcL5DQ0M5evQoRYsWZfXq1QBUrlyZnTt3pnkcJycnw3IviQoWLMi1a9eMEqbEn2ei/fv3079/f5o1a0aFChVwdnbm1q1bpgWfSfv376dr1660bt2aSpUq4e3tbRhwnZpq1aqh1+u5ceMGpUuXNrol9kpm5vyUK1eOAwcOGJ2f/fv3ky9fPnx8fNJ9Dc899xytWrViyZIlLF261GK/w0JYVGrT/996i38pz2vsohOruUIxSnGGebzPFYqylrd4nc1aopT8H51Op92GDYNixYz3+fpq2xPbJH8c4Moj3mATi+nBWUoxkJk4EssvNKI6f9GZlYTdcTd+bOJ4JhkAnnMoGxISEqKAFLcuXboopZTq0qWLqlu3borHVK1aVTk5OamSJUuqJUuWpDju3Llz1fPPP6+cnJxUrVq11O+//56huCIjIxWgIiMjU+x7+PChOn78uHr48GGGjmlNGzZsUE5OTioiIiLFvuHDh6saNWoopbRza2dnp0aNGqWOHz+ujh07piZPnmxo26hRI9WiRQsVHh6ubt68qZRS6vjx40qn06nJkyerM2fOqHnz5qn8+fOr4sWLGx5XrVo11ahRI3X8+HH1+++/q4CAAOXq6qpmzpxpaAOoDRs2PPW1LFmyRHl4eBi+T/wdunv3rlG71q1bq6pVq6q//vpLhYaGqjfeeEPly5dPDRgwwNCmbt26Rt937txZ+fn5qfXr16tz586pgwcPqokTJ6pNmzYppZQ6deqUcnJyUn379lVHjx5VJ06cUPPnzzeci169eqmaNWuqsLAwdfPmTaXX61V4eLjKkyePev/999WJEyfUxo0blZeXlxo9enSacSS1fft25eTkpOzt7dXly5fTPTe2+Lspcrj165XS6VTCiCClQEWSTw1mmnIgVoFSrtxX4/lYPcTZqJ0CpcaOVcrHx3ibr692XKWUiotTKiREqVWrtK9xcU+eN7XHff+9tj1ZTOfwU51YadjkxCM1iOnqFgWetNPptGMkPofIltJ7/07KppKl7CqnJUuvv/66atasWar7Dh48qAB19OhRpZRS69evNySjXl5eqk2bNoa2Bw4cUJUrV1bOzs4qaV7+5ZdfKl9fX5U3b14VFBSkJkyYYJQsHTlyRNWoUUO5uLioMmXKqLVr16rixYtbNFkKCwtT9evXV66ursrX11fNmzcvRVKS/PvY2Fg1atQo5efnpxwdHVWRIkVU69at1bFjxwxtdu/erV5++WXl7OysPD09VWBgoOG5T506pV566SXl6uqqABUWFmZ4TM2aNZWTk5Py9vZWH374oXr8+HGacSQVHx+vihcvnubPLylb/N0UOVhcnFHCEg/qWzqqIlw25B+tCFZhFE+ZJCVNTNJKiEx5/rQSKZ0uRcKkQB2mmmrADsOmIlxWewgwbhcSYomzJcxEkqUslNOSJZG6l156SX388cfWDiNd9+7dU+7u7mp94ifpdMjvpshWQkIMCcYdPFVTNhvyjdL8p7YQmDJJSkyUdLonvUeWkFrPU4EChqRuK43VixxXoJQ9j9XnDFPxie1WrbJcXOKZmZos2dSYJSGsISYmhj///JN///3XaOp/dhIfH8+NGzcYP348np6etGjRwtohCZExCZX3T1KW2hxkC81w4SGf8TH/UJEmJCxTlbySvo+P5WsdtWkD589DSAisWqV9/f57AHRAINv5kxp0ZiV6HPiQKbRiI3fxhEKFZM25HCBHz4YTwhy2bNlCUFAQLVq0oF27dtYOJ1UXL16kRIkS+Pj4sHTpUpOWbxHCqpLPeCtUiJ9pSkdWE4UHz3OBH2hJVY4aP+77760zTd/eHhLKphji9/HRBnMrRV4esIJ3CGAv/ZnDj7TE3+4v1nXqS/UbW588TmbK2SSdUibMoxTpioqKwsPDg8jISNzdjWdFPHr0iLCwMEqUKIGLi4uVIhQiJfndFFaTrBK3Aqa5j+fDqI9Q2PE/9rKethTi5pPH6HRaohEWln1qGCUWygSjkgSH8edNvieMkjjziDn0pxdfa1XAE2fdSeXvbCG99++k5DKcEEKIrJOYYCQkSg9xIYjlDI/6BIUdvVjIThqmTJQAZs3KPokSaMnOunUpShL4+1zncP5GtOAHYnDhXRbSlaXE4mi85pxckrMZkiwJIYTIGskqcV+mKHXZw0rewZ445tGPrwp8hJNPIePHZcW4pMxKbTzT0qXkv3uOjbTic4ZjTxzL6UI71hGD05PK33v3Wjt6YSIZ2CCEECJr7N1r6FE6TWnqsZsrFKMAt1nLm7xGCNwBvv/FtpYPST6eKaFwrw4YzlSqcJRWbOQnWtCaDQTTBhdiDIPaRfYnPUtCCCGyRkJyEIYfr7GLKxSjHMf5g5paopToxg0t+ejYUfuanROl1BQpYvRtINvZTHPycJ8tNKMFP/IA1xTtRPYlyZIQQoisUaQIF/HlNXYRji8vcoLd1KMkYSna2bSAAO3SYZIlVF4jhC00JS/R7KAxrzvv4H51WbvRVkiyJIQQIktcKRVAA4c9nKcEpTnNThqkHMjt66slG7bM3l4rDwBGCdOr7GUbTchHFCExr9D0dXvu3bNSjCJDJFkSVte1a1datWpl+L5evXoMHDgwy+PYvXs3Op2OiIgIiz6PTqdj48aNFn0OIbIFvd5QkPF68H4aNLbjTFwJ/AhjFw0oSpIxO9l1xltmpTFT7hXfi+yYdBgPD20IV2CdSCIXrZOCldmcJEsiVV27dkWn06HT6XBycqJ06dKMGzeOuLg4iz93cHAw48ePN6ltViU4sbGxeHl5MXny5FT3jx8/nsKFC/P48WOLxiGEzQgOBj8/qF+fW50+oGFbd06e1OHr9YBd80/h65OsxF92nvGWWanNlAsLo/aI+vzy0S7y6yI48K8HjXo+T0T9Vtr5Cg62ctAiNZIs2Yokn9Cy6hNIkyZNuHr1KqdPn2bIkCGMGTOGqVOnpto2NjbWbM9boEAB8uXLZ7bjmYOTkxNvv/02S5YsSbFPKcXSpUsJCgrC0dHRCtEJkc0kqaUUgQeN2c4/VKIIV9h5qyolCj9INYnIUYlSosSZckkHqwcHU2NEQ3apejzHLf6gFm+ylsfh17XzJglTtiPJki1I8gmNTp20r1nwCcTZ2Rlvb2+KFy9O3759adiwIT/++CPw5NLZhAkTKFq0KGXLlgXg0qVLvPXWW3h6elKgQAFatmzJ+fPnDcfU6/UMHjwYT09PnnvuOYYPH07yIvLJL8PFxMTw4Ycf4uvri7OzM6VLl2bRokWcP3+e+vXrA5A/f350Oh1du3YFtLXSJk2aRIkSJXB1daVKlSqsW7fO6Hl+/vlnXnjhBVxdXalfv75RnKnp0aMH//33H/v27TPavmfPHs6dO0ePHj34448/aNSoEV5eXnh4eFC3bl2OHDmS5jFT6xkLDQ1Fp9MZxbNv3z4CAgJwdXXF19eX/v37c//+fcP++fPnU6ZMGVxcXChcuHC2XZZF5AJJaindw40mbOUvqlOQG+ykAWV0Z7SCjGDbM94yK8n5qcpRdtCIvETzC434gDlaCSopWJntSLKU3SWrdmtw+XKWfwJxdXU16kHauXMnp06dYseOHWzatInHjx8TGBhIvnz52Lt3L/v378fNzY0mTZoYHjd9+nSWLl3K4sWL2bdvH3fu3GHDhg3pPm9QUBCrV69mzpw5nDhxgq+++go3Nzd8fX1Zv349AKdOneLq1avMThhUOWnSJJYvX86CBQv4999/GTRoEG+//TZ79uwBtKSuTZs2vPHGG4SGhtKzZ09GjBiRbhyVKlWiZs2aLF682Gj7kiVLePnll3nxxRe5d+8eXbp0Yd++ffz++++UKVOGZs2ace8ZRnGePXuWJk2a0LZtW44dO8aaNWvYt28f/fr1A+DPP/+kf//+jBs3jlOnTrF161ZeffXVTD+fEM8koZZSPDo68y0HeYkC3OYXGlKOk1KQMUmtKYBqhLKKTuiI5yv6MJv+ufv8ZFdKPLPIyEgFqMjIyBT7Hj58qI4fP64ePnyY8QPHxSnl46OU9u8l5U2nU8rXV2tnZl26dFEtW7ZUSikVHx+vduzYoZydndXQoUMN+wsXLqxiYmIMj1mxYoUqW7asio+PN2yLiYlRrq6uatu2bUoppYoUKaKmTJli2P/48WPl4+NjeC6llKpbt64aMGCAUkqpU6dOKUDt2LEj1ThDQkIUoO7evWvY9ujRI5UnTx7122+/GbXt0aOH6tixo1JKqZEjR6ry5csb7f/www9THCu5BQsWKDc3N3Xv3j2llFJRUVEqT5486ptvvkm1vV6vV/ny5VM//fSTYRugNmzYkGb8f/31lwJUWFiYIe7evXsbHXfv3r3Kzs5OPXz4UK1fv165u7urqKioNONOzTP9bgqRllWrlAL1KWMVKOXMQ/U7tVL+/1q1ytqRWkfC+Ul+m8Zg7d86evUTzXPv+cli6b1/JyU9S9lZsk8gKVj4E9qmTZtwc3PDxcWFpk2b0r59e8aMGWPYX6lSJZycnAzfHz16lDNnzpAvXz7c3Nxwc3OjQIECPHr0iLNnzxIZGcnVq1epXbu24TEODg7UqFEjzRhCQ0Oxt7enbt26Jsd95swZHjx4QKNGjQxxuLm5sXz5cs6ePQvAiRMnjOIAqFOnzlOP3bFjR/R6Pd9//z0Aa9aswc7Ojvbt2wNw/fp1evXqRZkyZfDw8MDd3Z3o6GguXrxocvzJHT16lKVLlxq9lsDAQOLj4wkLC6NRo0YUL16ckiVL8s477/Dtt9/y4MGDTD+fEM+kSBHW0ZbxjAJgIb2pzaFU2+VKabzuwcygFwtR2NGR1Rx7UDqLAxPpkeVOsjNTS+FbqGR+/fr1+fLLL3FycqJo0aI4OBj/uuTNm9fo++joaPz9/fn2229THKtgwYKZisHV1TXDj4mOjgZg8+bNFEs2bdfZ2TlTcSRyd3enXbt2LFmyhO7du7NkyRLeeust3NzcAOjSpQu3b99m9uzZFC9eHGdnZ+rUqZPmAHg7O+3zikoybiv5jLro6Gjeffdd+vfvn+Lxzz//PE5OThw5coTdu3ezfft2Ro0axZgxY/jjjz/w9PR8ptcrREYd8wigi64WKBjEDIJYYdxAp9Nmvtl6LaXMSixYefnyk0V10ZZG+YL3OUspdtGA18fW4FBz8Pa2XqjiCelZys5M/eRloU9oefPmpXTp0jz//PMpEqXUVK9endOnT1OoUCFKly5tdPPw8MDDw4MiRYpw8OBBw2Pi4uI4fPhwmsesVKkS8fHxhrFGySX2bOmTDIYsX748zs7OXLx4MUUcvr6+AJQrV45Dh4w/7f7+++9PfY2gDfTet28fmzZt4rfffqNHjx6Gffv376d///40a9aMChUq4OzszK1bt9I8VmISeTVJwhsaGmrUpnr16hw/fjzFayldurTh9Ts4ONCwYUOmTJnCsWPHOH/+PLt27TLp9QhhLrduQcs29jxQeWjIDqbwoXGDnFZLKTPSKFgJ4KjTs443eaHoPS5d0tGyJTx8aIUYRQqSLGVnqZTMN5LNqt127twZLy8vWrZsyd69ewkLC2P37t3079+f8ITLiQMGDGDy5Mls3LiRkydP8t5776VbI8nPz48uXbrQvXt3Nm7caDhm4mWw4sWLo9Pp2LRpEzdv3iQ6Opp8+fIxdOhQBg0axLJlyzh79ixHjhxh7ty5LFu2DIA+ffpw+vRphg0bxqlTp1i1ahVLly416XW++uqrlC5dmqCgIF588UVefvllw74yZcqwYsUKTpw4wcGDB+ncuXO6vWOJCdyYMWM4ffo0mzdvZvr06UZtPvzwQ3777Tf69etHaGgop0+f5ocffjAM8N60aRNz5swhNDSUCxcusHz5cuLj4w0zFIWwmCQlTR7/soe33lScPw8lS8KapY9w8EnWLZITayllRhoFK/HxIf/6b9i0Ox8FCsChQ9C12Q3iv826kjEiDVkzhCpns9gAb6WUWr9eG8it06Uc3K3TafstIOkA74zsv3r1qgoKClJeXl7K2dlZlSxZUvXq1ctwbh4/fqwGDBig3N3dlaenpxo8eLAKCgpKc4C3Uto5HDRokCpSpIhycnJSpUuXVosXLzbsHzdunPL29lY6nU516dJFKaUNSp81a5YqW7ascnR0VAULFlSBgYFqz549hsf99NNPqnTp0srZ2VkFBASoxYsXP3WAd6KJEycqwGiwulJKHTlyRNWoUUO5uLioMmXKqLVr16rixYurmTNnGtqQZIC3Ukrt27dPVapUSbm4uKiAgAC1du1aowHeSil16NAh1ahRI+Xm5qby5s2rKleurCZMmKCU0gZ7161bV+XPn1+5urqqypUrqzVr1jz1NcgAb/FM1q83moDSn1kKlHJziVX//JPQJi5OqZAQbbBySIhFJqPYtHTOz+5xe5QjMQqUGsun2nn28bHY//zcytQB3jqlkhW5ERkWFRWFh4cHkZGRuLu7G+179OgRYWFhlChRAhcXl8w9QXCwVpcj6WBvX1+tKzu3f0ITmWaW302ROyWWNEl4+1hMN3qgldTYQGtarX9H/jc9i4Tzu0R1oTtLsEPPLl6jri5hMo/0zplNeu/fSUmyZAYWT5ZA637du1cbzF2kiHbpLbde8xdmIcmSyBS9XiuKm/Dh7XdqU5c9xOLMWEYxSveZdrktLEz+R2VGsvPbnUUsoTs+XCKUqjynuyvn14xMTZZkzJKtSK1kvhBCZLUkJU0icacD3xGLM21Yzyd8JkUnn1WykjFz6M8LnCIcX3ryjTZzVs5vlpNkSQghhOmSzNz8gLlcwI+SnGUpXbFDpdpOZECy8+bGfb6jA07EsJHWfEnfVNsJy5JkSQghhOkSSpWs4S1WEIQdelbyNvmITrWdyKBUzls1Qvk8oQzDYGbwNxXl/GYxSZayiAwNE9mN/E6KTAkI4JJ3TfqwAIBP+Iw6JKlRls1KmticNErGDGA2zdhMDC50cFjPA385v1lJkiULs08YW5RWBWchrCVxSRRHR0crRyJsSbzOni5em4ggP7U4qI1TSiRFJ59dGkUrdcBSuuHNVY7HvcDgYXJ+s5Isd2JhDg4O5MmTh5s3b+Lo6GhY3kIIa1FK8eDBA27cuIGnp6choRfCFDNmQMg/hcjjHMdKz6E4Xo97stPHR0qamENi0cpkJWMK+rqwsvsZGo0rwldfQaNG0LatFePMRaR0gBk8bephbGwsYWFhxMfHWyE6IVLn6emJt7c3urQqxAsBRmVLjt4vTc33avD4sY6FC6FXdylpYlFplIwZORImTwZPTwgNheLFrR2o7ZI6S1nIlJMdHx8vl+JEtuHo6Cg9SuLpkhTEfYgLNfmDf6lIy5pX2HCwaJorMQnLevwY/vc/bTmU//1PWwlF/pwzx9RkyeaWO5k3b54qXry4cnZ2VrVq1VIHDx5Ms23dunUVkOLWrFkzQ5suXbqk2B8YGJihmEwtly6EEDYjcamlZMuZFOaqukFBWXbDys7+F6fy5XmsQKm5/f+TpWQyydT3b5saQLNmzRoGDx7M6NGjOXLkCFWqVCEwMJAbN26k2j44OJirV68abv/88w/29va8+eabRu2aNGli1G716tVZ8XKEECJ70uu1HqWECw/baMwcBgCwhG4U1N2CgQNlYVdrCQ6m5Gt+TH7QH4CRc7y56POy1hMoLMKmkqUZM2bQq1cvunXrRvny5VmwYAF58uRh8eLFqbYvUKAA3t7ehtuOHTvIkydPimTJ2dnZqF3+/Pmz4uUIIUT2lKxKd/eEdd/eZx5N2SpVuq0pcV2+8HD6sID/sZdo8tHn2mhU23aSMFmIzSRLsbGxHD58mIYNGxq22dnZ0bBhQw4cOGDSMRYtWkSHDh3Imzev0fbdu3dTqFAhypYtS9++fbl9+3a6x4mJiSEqKsroJoQQOUaS6tAfM4ErFKM0p5nC8DTbiSyQrMfPDsXX9MKJGLbQjFV0kh4/C7GZZOnWrVvo9XoKFy5stL1w4cJcu3btqY8/dOgQ//zzDz179jTa3qRJE5YvX87OnTv5/PPP2bNnD02bNkWfzi/bpEmT8PDwMNx8fX0z96KEECI7SqgOfZBazOc9ABbQhzw8TLWdyCLJ1o0DeJFTfMp4AAYwi5uXHkqPnwXYTLL0rBYtWkSlSpWoVauW0fYOHTrQokULKlWqRKtWrdi0aRN//PEHu3fvTvNYI0eOJDIy0nC7dOmShaMXQogsFBDA42J+9GYhCjveYTkN2PVkv1Tpto40evKGM4VKHOM2XgxklvT4WYDNJEteXl7Y29tz/fp1o+3Xr1/H29s73cfev3+f7777jh49ejz1eUqWLImXlxdnzpxJs42zszPu7u5GNyGEyDHs7Zn12o8cowoFuM10hjzZJ1W6rSeNnjwnHrOIHtihZxWd+flChSwOLOezmWTJyckJf39/du7cadgWHx/Pzp07qVOnTrqPXbt2LTExMbz99ttPfZ7w8HBu375NEeleFkLkUufPw+h1lQCYln8iBbn1ZKePj1ZdWqp0Z7001o0DqMmfDERbJqXP/Ercu5fVweVsNpMsAQwePJivv/6aZcuWceLECfr27cv9+/fp1q0bAEFBQYwcOTLF4xYtWkSrVq147rnnjLZHR0czbNgwfv/9d86fP8/OnTtp2bIlpUuXJjAwMEtekxBCZCdKwXvvwcOHULcudL0xBUJCYNUq7WtYmCRK1pLGunGJ349jFCUK3efSJR0ffZT14eVkNrU2XPv27bl58yajRo3i2rVrVK1ala1btxoGfV+8eDHF2munTp1i3759bN++PcXx7O3tOXbsGMuWLSMiIoKiRYvSuHFjxo8fj7Ozc5a8JiGEsLoky2qsPVmZLVsq4OQEX30FOgd7qFfP2hGKRGmsG4ePD3lnzWKhe14aNYIvvoCOHeHll60Xak4iy52Ygcnl0oUQIrtJsqRJBB6U4wTXKMKY9scZ/V15a0cn0pLGunEA3brB0qXw4ova2nHy2T9tpr5/29RlOCGEEGaUpMAhwEgmcY0ilOUkI9ZUlwKH2Zl9Qo9fx47a1ySD7adPh8KF4eRJbRy+eHaSLAkhRG6UrMDhb9RhAX0B+Ip3cdbFSoFDG1WgAEyZot3/7DOpJGAOkiwJIURulKTA4WMceJevAOjGYuryqyxpYsv0et722U3t0reIjoYRH8ZbOyKbJ8mSEELkRkm6G+bzHv9QCS9uMpVhabYTNiA4GPz8sGtQnzlnmgGwfIUdv08OsXJgtk2SJSGEyI0SasndpgBjGAPARD7iOe6k2k7YgGRj0GrxB90SFkHuPzIv8etkDFpmSbIkhBC5UUKBwzGMJYL8VOYo3RPeWAFZ0sTWJBuDlmgiH5GPKP6gFst675cxaJkkyZIQQuRG9vYcH7qYL+kDwCwGYk/C2BZZ0sT2pLLILoA31xnFOABG3h1G1NbfsjqyHEGSJSGEyKWGbG2EHgdauWylPruf7JAlTWxPOmPL+jOHFzjFdbwZ/6VXFgaVc9hUBW8hhBDmsWULbN0Kjo4wNbQRXA1JtcChsBHpjC1z4jGzGEgztjB7W1l6/QcvvJCFseUA0rMkhBC5zOPHMHiwdn/AAChdNu0Ch8JGpLPILkBT3Taau+zkcZwdgwZlcWw5gCRLQgiRyyxYoFV3LlgQPvnE2tEIs3jKIrsAM6fG4egIP/8MmzdncXw2TpIlIYTIRe7cgdGjtfvjx4OHh3XjEWaUuMhusWLG2xPGoJXpF8jAgdqmQYMgNjbLI7RZspCuGchCukKIbC9h4dUBk4swZ1tZKlVSHDmiw0FGruY86SyyGxWljVe6fh2mTYMhQ6wcq5XJQrpCCCE0CVWdT9TvyxfbSgEw82pHHH6UIoU5UjqL7Lq7w8SJ2v0JEyAiwhoB2h5JloQQIidLUtV5KNPQ40ALfqDB7e+17cGSMOU2XbpAhQpw9+6TBXdF+uQynBnIZTghRLak14OfH4SHs51GBLIdR2L5lwqU4Yw28NfHB8LCZAZcLvPjj9CyJbi6wpkzULSotSOyDrkMJ4QQuV1CVed4dHzI5wC8zxdaogTa0hiXLmntRK7yxhvwyivw8CGMHWvtaLI/SZaEECKnSqjqvJY3CaUa+YjiYyak2U7kAno97N6N7rvVfN7+CACLFsGpU1aOK5uTZEkIIXKqIkV4jAOfMh6AoUzDi9upthO5QMJAf+rXh06deKW/Py1ctqPXw8cfWzu47E2SJSGEyKkCAljqOYjTvEBBbjCImcb7dTrw9dWmloucLclA/6QmPhqMHXrWr4eDB60Umw2QZEkIIXKoh7H2jLXTBqR8xCTyEf1kZ2KV51mzZHB3TqfXa+vapDKfqwL/0oXlAHw4XKXWRCDJkhBC5Fjz58PlO674ej2gT7GfjHcmVHWmTRvrBCeyTsJA/7SMZRTOPGLPrzq2bs3CuGyIJEtCCJEDRUXBpEna/TGf58HlwikICYFVq7SvYWGSKOUWTxnA70s4HzAXgBEjID4+K4KyLZIsCSFEDjR9Oty+DS++CEFBpFvVWeRwJgzgH8kkPPLGceyYlk8LY5IsCSFEDnPzJsyYod3/7DNk/bfcLiBAu+yaOE4tOZ2OAr5ujPhISwk++QRiYrIwPhsgyZIQQuQwEydCdDTUqCFX2gRaL+Ls2dr95AlTkoH+/QfaUbQoXLgAX36ZtSFmd5IsCSFETpBQbPDi3B+Y/4U26GTixLQ7E0Qu06aNNqC/WDHj7UkG+ufJA2PGaJsnToT797M8ymxLkiUhhLB1SYoNju1/i9jHdtR33k/DKFkkVyTRpg2cP5/uQP+uXaFkSe1SrvQuPSEL6ZqBLKQrhLCaxGKDSnGSslTgX+Kx5wB1eEl3UMoDiAxbuhS6dYOCBbVcKm9ea0dkObKQrhBC5HTJig2OYhzx2NOSjbzE71qbgQO1dkKY6O23oVQprXfpiy+sHU32IMmSEELYqiTFBv+hAmt5C4DP+ETbrxRcuqS1E8JEDg7w6afa/alTtckCuZ3NJUtffPEFfn5+uLi4ULt2bQ4dOpRm26VLl6LT6YxuLi4uRm2UUowaNYoiRYrg6upKw4YNOX36tKVfhhBCPLskxQbHo727tWMtFfk3zXZCmKJzZyhTBm7dkt4lsLFkac2aNQwePJjRo0dz5MgRqlSpQmBgIDdu3EjzMe7u7ly9etVwu3DhgtH+KVOmMGfOHBYsWMDBgwfJmzcvgYGBPHr0yNIvRwghnk1CscHjlGMtbwLapbi02glhquS9S/fuWTcea7OpZGnGjBn06tWLbt26Ub58eRYsWECePHlYvHhxmo/R6XR4e3sbboULFzbsU0oxa9YsPvnkE1q2bEnlypVZvnw5V65cYePGjVnwioQQ4hkkFBscz6co7GjDeirxz5P9Oh34+mrthDBFQgkKVq+mY9E9lCmjuH0b5s2zdmDWZTPJUmxsLIcPH6Zhw4aGbXZ2djRs2JADBw6k+bjo6GiKFy+Or68vLVu25N9/n3RPh4WFce3aNaNjenh4ULt27XSPGRMTQ1RUlNFNCCGynL09J4YtZg3tgWS9SkmKDcrSJsIkSUpQ0KkTDg3rMerWAACmTdPWG8ytbCZZunXrFnq93qhnCKBw4cJcu3Yt1ceULVuWxYsX88MPP7By5Uri4+N5+eWXCU8YEJn4uIwcE2DSpEl4eHgYbr6+vs/y0oQQItM+O9gIhR2tXLZShWNPdiQpNijEUyWWoEh4f0zU8e58XuAUd+7k7t4lm0mWMqNOnToEBQVRtWpV6tatS3BwMAULFuSrr756puOOHDmSyMhIw+3SpUtmilgIIUx36hR89512f9TeRukWGxQiTclKUCRlj55RjAdg2jSVa3uXbCZZ8vLywt7enuvXrxttv379Ot7e3iYdw9HRkWrVqnHmzBkAw+MyekxnZ2fc3d2NbkIIkdUmTID4eGjRAqrVsId69aBjR+2rXHoTpkpSgiI1HVjNi5zg7l0dc+ZkYVzZiM0kS05OTvj7+7Nz507Dtvj4eHbu3EmdOnVMOoZer+fvv/+mSMLMkBIlSuDt7W10zKioKA4ePGjyMYUQwhpOn4Zvv9Xujxpl3ViEjXtKaQl74g3j4WbMgMjIrAgqe7GZZAlg8ODBfP311yxbtowTJ07Qt29f7t+/T7du3QAICgpi5MiRhvbjxo1j+/btnDt3jiNHjvD2229z4cIFevbsCWgz5QYOHMhnn33Gjz/+yN9//01QUBBFixalVatW1niJQghhksRepebNwd/f2tEIm2ZCaYm3+J5yxe9z9y65snfJwdoBZET79u25efMmo0aN4tq1a1StWpWtW7caBmhfvHgRO7sn+d/du3fp1asX165dI3/+/Pj7+/Pbb79Rvnx5Q5vhw4dz//59evfuTUREBP/73//YunVriuKVQghhdXo97N3L2dB7rFzxOqBj9GhrByVsXkIJCi5fTnXcEjod9j7FGDXRlY6dtd6lAQMgN41AkYV0zUAW0hVCWFxwsPYOFR5OdxaxhO40ddnFz99GyEBu8ewSZ8OBccKUWIJi3Tr0LdtQsSKcPAmTJ8OHH2Z9mOYmC+kKIUROkWRa9zlKsJwgAEY/+kjbHhxs5QCFzWvTRis1UayY8fYkJSjs7SFxpMuMGfDwYdaHaS3Ss2QG0rMkhLAYvV4rFJgwW6knX7OIngSyla001T75+/hopQJkBpx4VgmXerl6VRvLFBBg9Hv1+LG2ZtyFC1rdpffft2KsZiA9S0IIkRMkmdZ9EV+W0QWA0YzV9isFly5p7YR4Vvbpl6BwdIThw7X7U6ZoyVNuIMmSEEJkZ0mmdU9jKHE48ho7qcPvabYTwpK6dYPCheHixSflK3I6SZaEECI7S5jWfRMvvkErezKSSWm2E8LSXF1h8GDt/uTJ2pW7nE6SJSGEyM4SpnXPYQAPyYM/f9KAJ4V00enA11drJ0QW6dsXPD21JXc2bLB2NJYnyZIQQmRn9vZETfqCeWgjaUcyCV3ivsRp3bNmyeBukaXy5YP+/bX7EyemXp4pJ5FkSQghsrmvrrYggvyUdThDa5J8jE8yrVsIi9PrYfduWL0adu+m//t68uaFv/6CbdusHZxl2VQFbyGEyG0ePdJq2gB8uKAkdqV2pTmtWwiLSVIUNdFzPj68+9ouZvxUhokToUkTK8ZnYVJnyQykzpIQwlIWLoR339U6kc6eBScna0ckcp3EoqjJ0wWdjsuqKCUdLhAbZ8+vv9re0DmpsySEEDYuLk6rZQMwZIgkSsIK9HqtRym1fhWlKKa7Qlfn7wCYlMokzZxCkiUhhMim1q3TepOeew569bJ2NCJXSlIUNVVKMfz+KOzsFFu2aOOXciJJloQQIhtSSqthA9qso7x5rRuPyKVMKHZainN0eOkCoM2My4kkWRJCiGxo61Y4ehTc3KBfP2tHI3ItE4udjuhxE4D16+HkSUsGZB2SLAkhRHaSMD170uAbALzbK54CBawck8i9EoqiGmp6JZdQFLVSl+q0aKH1iE6fnrUhZgVJloQQIrsIDgY/P/bX/5i9JwvhSCyDvqutbRfCGuztYfZs7X7yhClZUdTEBXaXL4dr17IswiwhyZIQQmQHidOzw8OZxEgAurCMYtcOa9slYRLW0qaNNtugWDHj7cmKor7yCtSpA7GxMGeOFeK0IKmzZAZSZ0kI8Uz0evDzg/Bw/qYilfkbO/Sc5EXKcEb7BO/jA2FhUoRSWI9er82OS6co6oYNWu7k6QkXL2rLomRnUmdJCCFsRZLp2dMYCkBb1muJEmgDQS5d0toJYS329lCvHnTsqH1NJXFv0QJeeAEiImDRoqwO0HIkWRJCCGtLmJ4dTjFW0QmAYUxNs50Q2ZW9vVZAFbRleh4/tm485iLJkhBCWFvC9Oy5fEAcjrzKHmryZ5rthMjOgoKgUCGtM/T7760djXmYNGapQAbnrep0Oo4cOULx4sUzHZgtkTFLQohnotcT9XxFfK/8ThQe/MTrvM7mJ/tlzJKwMRMmwCefQJUqWlXvtCoPWJup798OphwsIiKCWbNm4eHh8dS2Sinee+899Hq96dEKIURuZm/PN43WELXMgxc5QTN+frIv2fRsIWxB377aWnFHj8KOHdC4sbUjejYmJUsAHTp0oFChQia1/eCDDzIdkBBC5DaPH8OsXZUBGJJ/MXZ3k3T4+/hoiVLC9GwhbEGBAtCjh1ZCYOpU20+WpHSAGchlOCHEs/j2W3j7bShcGM6f1ePyR/rTs4WwBefPQ+nSWsWBI0egWjVrR5SSWS/DCSGEsAylYNo07f4HH4BL3oTp2ULYklRqMPn52fPWW7B6tfY7/u231g4y80zqWfrxxx9NPmCLFi2eKSBbJD1LQojM2rkTGjaEPHm0In7PPWftiITIoOBgGDDAUCsM0C4fz57NXyXaUL261jl69ixkt3lfZu1ZatWqldH3Op2OpDmWLskwdxnYLYQQppuaUE6pe3dJlIQNSlymJ3m/y+XL0K4d1dato0GDNuzcCTNnasPvbJFJdZbi4+MNt+3bt1O1alW2bNlCREQEERER/Pzzz1SvXp2tW7daOl4hhMgxjh2DbdvAzg4GDbJ2NEJkkF6v9SildoEqcdvAgQwfonWifPMN3LmThfGZUYaLUg4cOJDZs2cTGBiIu7s77u7uBAYGMmPGDPr372+JGIUQIkeaMUP72rYtlCxp3ViEyLAky/SkKmGZnkYue6lSBe7fhy+/zLrwzCnDydLZs2fx9PRMsd3Dw4Pz58+bISQhhMjB9HrYvZvLX2xk1bfxAAwdauWYhMgME5ff0V27avgdnzcPYmIsGJOFZDhZqlmzJoMHD+b69euGbdevX2fYsGHUqlXLrMGl5osvvsDPzw8XFxdq167NoUOH0mz79ddfExAQQP78+cmfPz8NGzZM0b5r167odDqjW5MmTSz9MoQQuVFwMPj5Qf36zOl3isdxdrzq9Du1woOtHZkQGWfq8jtFivDWW1C0KFy7BmvWWDYsS8hwsrR48WKuXr3K888/T+nSpSldujTPP/88ly9fZpGFlxhes2YNgwcPZvTo0Rw5coQqVaoQGBjIjRs3Um2/e/duOnbsSEhICAcOHMDX15fGjRtz+fJlo3ZNmjTh6tWrhtvq1ast+jqEELlQ4kDY8HCiyMcC+gAwNHaitj1YEiZhYwICtFlvaa1lotOBry8EBODkpJXGAO3ys61VeMxUUUqlFDt27ODkyZMAlCtXjoYNGxrNirOE2rVrU7NmTebNmwdoA899fX354IMPGDFixFMfr9fryZ8/P/PmzSMoKAjQepYiIiLYuHFjpuOS0gFCiHTp9VqPUsL4jpkMZDAzeZET/EsF7HTI2m/CNiV+CADjDCgxH1i3zlB9/s4dLXd68EArmfHaa1kcaypMff/OcM8SaKUCGjduTP/+/enfvz+NGjWyeKIUGxvL4cOHadiwoWGbnZ0dDRs25MCBAyYd48GDBzx+/DjFwsC7d++mUKFClC1blr59+3L79u10jxMTE0NUVJTRTQgh0pRkIGwc9sxmAACDmYEdyjAQlr17rRmlEBnXpo2WEBUrZrzdx8coUQJtCZRu3bT7iZMbbEWmKnjfv3+fPXv2cPHiRWJjY432WWpG3K1bt9Dr9RQuXNhoe+HChQ09XE/z4YcfUrRoUaOEq0mTJrRp04YSJUpw9uxZPvroI5o2bcqBAwewT+MT3qRJkxg7dmzmX4wQIndJMhB2A625gB9e3ORtVqbZTgib0aYNtGyZooJ3ar2kAwbA/PmweTOcPAkvvmiFeDMhw8nSX3/9RbNmzXjw4AH379+nQIEC3Lp1izx58lCoUKFsWz5g8uTJfPfdd+zevRsXFxfD9g4dOhjuV6pUicqVK1OqVCl2795NgwYNUj3WyJEjGTx4sOH7qKgofH19LRe8EMK2JRkIOxOtoFJfvsSVR2m2E8Km2Ju2TE+ZMtCiBfzwg1agcsECi0dmFhm+DDdo0CDeeOMN7t69i6urK7///jsXLlzA39+faYkLHFmAl5cX9vb2RrPwQJuJ5+3tne5jp02bxuTJk9m+fTuVK1dOt23JkiXx8vLizJkzabZxdnY21JhKvAkhRJoSBsIepDYHeBknYniP+U/2JxkIK0ROl9jXsGwZ3Lpl3VhMleFkKTQ0lCFDhmBnZ4e9vT0xMTH4+voyZcoUPvroI0vECICTkxP+/v7s3LnTsC0+Pp6dO3dSp06dNB83ZcoUxo8fz9atW6lRo8ZTnyc8PJzbt29TRD7hCSHMxd4eZs9mJgMB6MhqvEn44Jc43nPWLBncLXKFgADw94dHj3Jwz5KjoyN2dtrDChUqxMWLFwGtKOWlS5fMG10ygwcP5uuvv2bZsmWcOHGCvn37cv/+fboljBgLCgpi5MiRhvaff/45n376KYsXL8bPz49r165x7do1oqOjAYiOjmbYsGH8/vvvnD9/np07d9KyZUtKly5NYGCgRV+LECJ3uVijDevs3gJgEDOf7EhlIKwQOZlO96R3yVaKVGZ4zFK1atX4448/KFOmDHXr1mXUqFHcunWLFStWULFiRUvEaNC+fXtu3rzJqFGjuHbtGlWrVmXr1q2GQd8XL140JHIAX375JbGxsbRLnNaYYPTo0YwZMwZ7e3uOHTvGsmXLiIiIoGjRojRu3Jjx48fj7Oxs0dcihMhd5s4Ffbwdr9VXVBk1+6kDYYXIyd58E4YP19bbXb0auna1dkTpy3CdpT///JN79+5Rv359bty4QVBQEL/99htlypRh8eLFVKlSxVKxZltSZ0kIkZ7oaK0DKTISfvoJXn/d2hEJYX1TpsCHH0KlSnD0aNq1LS3J1PfvDCVLSikuXbpEoUKFjGaU5XaSLAkh0jN3LvTvDy+8ACdOgF2mKtwJkbPcvavNa7h/H3bsgCRVfbKMRYpSKqUoXbq0xccmCSFETqHXa2O3AQYOlERJ5FIJC0izerX2Va8nf37o3l3bnd2LVGboz9bOzo4yZco8tcK1EEIIzU8/wblzkD8/JKyyJETukmQBaTp10r76+UFwMAMGaJfftmzRel2zqwx/xpk8eTLDhg3jn3/+sUQ8QgiRo8xMmPjWpw/kzWvdWITIckkWkDZy+TK0a0epo8G0aqVtmjkzxaOzjQwP8M6fPz8PHjwgLi4OJycnXF1djfbfuXPHrAHaAhmzJIQwotfD3r0c3v+IGp80wcFBcf68LsXyWULkaMkWkE5BpwMfH/YuD+PV+va4uGhLJHp5ZV2Ipr5/Z7h0wKzEi+9CCCFSCg7WFsAKD2cmKwBo77SBYgeRWkoid0mygHSqEhaQ/p/ai79/PQ4fhoULwYL1rTMtwz1LIiXpWRJCAE8uOSjFZYrix3nicORPauCvOyLFJ0Xusnq1NkbpaVatYqW+I++8A0WLQlgYODlZPjww82y4qKioDD35vXv3MtReCCFsnl6v9SglfP78gveJw5FX2YM/h7U2Awdq7YTIDUxdNqxIEd56C7y94coV7TNFdmNSspQ/f35u3Lhh8kGLFSvGuXPnMh2UEELYnCSXHB7gyle8CyRZ2iThkgN791orQiGyVsIC0mlWm0yygLSTE7z3nrZ51izDZ45sw6QxS0opvvnmG9zc3Ew66OPHj58pKCGEsDlXrxruruRt7vAcJTjHG/yUZjshcrSEBaRp105LjJJmQKksIP3uuzBhAvzxB/z+O9Spk/Uhp8WkZOn555/n66+/Nvmg3t7eODo6ZjooIYSwOQmXHBQwmwEA9GcO9sSn2k6IXKFNG+26WsKkBwMfHy1RSjKGr1Ah6NwZFi/WdmWnZEkGeJuBDPAWQiROk94RXo7GbMeNe4TjgwcJYz4TpkkTFiYL54rcJ6GcxtMWkD52DKpU0XadOwfPP2/ZsCyy3IkQQog0JFxymJXQq9SdxcaJEhhdchAiV7G3h3r1oGNH7WsafweVK8Nrr2m51RdfZGmE6ZJkSQghzOS/im34meboiOcD5j7Z4eMjZQOEMNEA7fMGCxdqi+xmBxkuSimEECJ1c+ZoX19/XUfpId889ZKDECKl5s2hVCk4exaWL4e+fa0dkfQsCSGEWUREwNKl2v0BA3UmXXIQQqRkbw/9+2v358yB+Pj022cFSZaEEMIMFi3SLhlUrKiNuRBCZF63buDuDidPwvbt1o4mk5fhIiIiOHToEDdu3CA+WcoXFBRklsCEEMJWxMXB3IQhSgMGpF2DTwhhmnz5oEcPmDlTmxfRpIl148lw6YCffvqJzp07Ex0djbu7O7ok/xV0Oh137twxe5DZnZQOECJ3Cw6Gtm3huee0It2urtaOSAjbd+4clC6t1bL8918oX978z2Gx0gFDhgyhe/fuREdHExERwd27dw233JgoCSHE7Nna13fflURJCHMpWRJattTuJ06esJYM9yzlzZuXv//+m5IlS1oqJpsjPUtC5F5//QXVq4ODA5w/D8WKWTsiIWxMOgUr9+zR5ki4umq9ts89Z96ntljPUmBgIH/++eczBSeEEDZPr4fdu5k9UFs0/M128ZIoCZFRwcHg5wf160OnTtpXPz9tO/Dqq1C1KuTJA//8Y70wMzzAu3nz5gwbNozjx49TqVKlFGvAtWjRwmzBCSFEthQcDAMGcD08ltVcBGDAzpYQ3E0KTwphquBgbZHd5Be4Ll/Wtq9bh65NG77/Xqvras1L3Bm+DGdnl3ZnlE6nQ6/XP3NQtkYuwwmRiyT5Bz+WUYxhLC9xgAO6V7T9UqlbiKdLWEvRaHHdpLJoLUWLXYaLj49P85YbEyUhRC6i12u1AZQiBifm8x4AA5j95NPxwIFaOyFE2vbuTTtRAu3v6dIlrV02IEUphRDCVEn+wa+hPTcoTDHCact6bX82+wcvRLZ19ap521lYppKlPXv28MYbb1C6dGlKly5NixYt2Cv/HIQQOV3CP24FzEZb7fM95uNIXKrthBBpKFLEvO0sLMPJ0sqVK2nYsCF58uShf//+9O/fH1dXVxo0aMCqVassEaMQQmQPCf+49/MKR/DHhYf0ZmGa7YQQaQgI0MYkpVXuXqcDX1+tXTaQ4QHe5cqVo3fv3gwaNMho+4wZM/j66685ceKEWQO0BTLAW4hcImFQ6pvhM1jHm/TgG76h15P9WTQoVYgcIXGyBBjPiEtMoLJgsoTFBnifO3eON954I8X2Fi1aEBYWltHDCSGE7bC35+InC9lAayBhYHeixH/ws2ZJoiSEKdq00RKi5AXKfHyy3azSDNdZ8vX1ZefOnZQuXdpo+y+//IKvr6/ZAhNCiOzoi3NN0QP1nfdTKSZJlTwfHy1Rykb/4IXI9tq00dY0SaOCd3aRqbXh+vfvT9++fVmxYgUrVqygT58+DBw4kKFDh1oiRiNffPEFfn5+uLi4ULt2bQ4dOpRu+7Vr1/Liiy/i4uJCpUqV+Pnnn432K6UYNWoURYoUwdXVlYYNG3L69GlLvgQhhI168AC+/lq7P2D1SxASAqtWaV/DwiRREiIz7O21NU06dtS+ZrNECQCVCcHBweqVV15RBQoUUAUKFFCvvPKK2rhxY2YOlSHfffedcnJyUosXL1b//vuv6tWrl/L09FTXr19Ptf3+/fuVvb29mjJlijp+/Lj65JNPlKOjo/r7778NbSZPnqw8PDzUxo0b1dGjR1WLFi1UiRIl1MOHD02OKzIyUgEqMjLymV+jECL7+uorpUCpEiWUiouzdjRCiGdl6vt3hgd4W1Pt2rWpWbMm8+bNA7QCmb6+vnzwwQeMGDEiRfv27dtz//59Nm3aZNj20ksvUbVqVRYsWIBSiqJFizJkyBBDr1hkZCSFCxdm6dKldOjQwaS4LDXAW6+H33+HV14x2yGFEJmkFFSqBP/+C9Onw+DB1o5ICPGsLDbA21piY2M5fPgwDRs2NGyzs7OjYcOGHDhwINXHHDhwwKg9aAsBJ7YPCwvj2rVrRm08PDyoXbt2mscEiImJISoqyuhmbvfvQ5ky8L//gVwVFML6du7UEqW8eaF7d2tHI4TISiYlSwUKFODWrVsA5M+fnwIFCqR5s5Rbt26h1+spXLiw0fbChQtz7dq1VB9z7dq1dNsnfs3IMQEmTZqEh4eH4WaJge1580L58tr9uXPNfnghRAbNTpj41rUreHpaMxIhRFYzaTbczJkzyZcvn+G+Lq0iUrnEyJEjGZykDz4qKsoiCdOAAbB5MyxZAuPHg4eH2Z9CCGGCM2e0v0WADz6wbixCiKxnUrLUpUsXw/2uXbtaKpZ0eXl5YW9vz/Xr1422X79+HW9v71Qf4+3tnW77xK/Xr1+nSJKKu9evX6dq1appxuLs7Iyzs3NmXkaGNGyo9S4dP64lTAMHWvwphRBJ6fWwdy/zPi+CUmVp2kRRtmzu/rAoRG6U4TFL9vb23LhxI8X227dvY2/B6X5OTk74+/uzc+dOw7b4+Hh27txJnTp1Un1MnTp1jNoD7Nixw9C+RIkSeHt7G7WJiori4MGDaR4zK+l00L+/dn/uXFnIXIgsFRwMfn5E1W/B4q3ah6kBf76jbRdC5C4ZnWan0+lSnap/+fJl5eLiktHDZch3332nnJ2d1dKlS9Xx48dV7969laenp7p27ZpSSql33nlHjRgxwtB+//79ysHBQU2bNk2dOHFCjR49OtXSAZ6enuqHH35Qx44dUy1btsxWpQPu31cqf35tuvIPP5j98EKI1Kxfr5ROpxSo2XygQKkXOa7i0Wnb16+3doRC5A5xcUqFhCi1apX21cw1O0x9/za5gvecOXMA0Ol0fPPNN7i5uRn26fV6fv31V1588UVz53JG2rdvz82bNxk1ahTXrl2jatWqbN261TBA++LFi9jZPekse/nll1m1ahWffPIJH330EWXKlGHjxo1UrFjR0Gb48OHcv3+f3r17ExERwf/+9z+2bt2Ki4uLRV+LqfLkgV69YMoUbYBpixbWjkiIHE6v1wYMKkU8OuaiDVL6gLnoUIBOuybesmX2LJ4nRE4RHKz9LYaHP9nm46O9GWZxAViT6yyVKFECgAsXLuDj42N0yc3JyQk/Pz/GjRtH7dq1LRNpNmbphXQvXoSSJbX/4ceOabVehBAWsns31K8PwCaa8wab8CCCcHxw4/6TdiEhWrVhIYT5JS6ymzxFMfMiu6a+f5vcs5S4SG79+vUJDg4mf/78zxykMM3zz0Pr1trvxpw5T5ZbEEJYwNWrhruzGQBAT74xTpSStRNCmFGS3t0UlNISpizu3c3wAO+QkBBJlKxggPY/m5UrIaHklRDCEhJmxv5LeX6hEXbo6ce8NNsJIcxs717jS2/JKQWXLmntsojJPUtJhYeH8+OPP3Lx4kViY2ON9s2YMcMsgQljr7wC1avDkSNaz9LIkdaOSIgcKiAAfHyYHT4QgFZsxI8LT/brdNq4iYAA68QnRE5naq9tFvbuZjhZ2rlzJy1atKBkyZKcPHmSihUrcv78eZRSVK9e3RIxCrT/zwMGQJcu8MUXMHQoODpaOyohciB7e25/9iUrujYAYACzn+xLHC8xa5YM7hbCUkzttc3C3t0MX4YbOXIkQ4cO5e+//8bFxYX169dz6dIl6taty5tvvmmJGEWC9u2hcGG4fFlKvQhhSV9ffZ1HuFLV8R8CSNLV7+NjtoGlQog0JPTuktZqITod+Ppmae9uhpOlEydOEBQUBICDgwMPHz7Ezc2NcePG8fnnn5s9QPGEszP06aPdnz07/bZCiMx5/BjmJQxRGvhVeXQhIbBqlTb7LSxMEiUhLM3e/smbXPKEyUq9uxlOlvLmzWsYp1SkSBHOnj1r2HdLRh5bXJ8+2uW3Awfgjz+sHY0QOU9wsNZ7W6gQdOhkp5UH6NhR+yqX3oTIGm3aaL24xYoZb7dS726Gxyy99NJL7Nu3j3LlytGsWTOGDBnC33//TXBwMC+99JIlYhRJeHtDhw6wYoWWeK9cae2IhMhZEj/Q9umj9eYKIaykTRutPMDevdpg7iJFtEtvVvjQYnJRykTnzp0jOjqaypUrc//+fYYMGcJvv/1GmTJlmDFjBsWLF7dUrNmWpYtSJnf4MNSoofUwXbggM5iFMJdDh6B2be1v6+JF7cOJECLnMntRykQlS5Y03M+bNy8LFizIXIQi0/z94eWX4bff4MsvYdw4a0ckRM6Q2KvUoYMkSkKIJzI8ZqlkyZLcvn07xfaIiAijREpY1sCB2tcvv4RHj6waihA5wpUr8P332v3EIrBCCAGZSJbOnz+PXq9PsT0mJobLly+bJSjxdK1ba8ug3LqlTdQRQjybL7+EuDitAKy/v7WjEUJkJyZfhvvxxx8N97dt24aHh4fhe71ez86dO/Hz8zNrcCJtDg7wwQcwbJg2g7Jbt7RLUggh0qDXw969PLpwnQVzWwNOhl5bIYRIZPIAbzs7rRNKp9OR/CGOjo74+fkxffp0Xn/9dfNHmc1l9QDvRHfvanW57t+HnTvhtdey7KmFsH3Bwdr1tvBwFtONHizmeftwzq7+A4c3W1s7OiFEFjD1/dvky3Dx8fHEx8fz/PPPc+PGDcP38fHxxMTEcOrUqVyZKFlT/vzQtat2f9Ysa0YihI0JDoZ27SA8HAXMRhuk9L5+Lg7t20qJfCGEkQyXDhApWatnCeC//6BsWe0S3KlTUKZMlj69ELZHrwc/P8Oq5rupS312k4f7XMKXAroIrfBdWJgUoRQih7NY6QDQFtPduXOnoYcpqcWLF2fmkCKTXngBmjeHzZth7lyYM8faEQmRze3da0iUAGYxEIAgllOAu6CAS5e0dvXqWSVEIUT2kuHZcGPHjqVx48bs3LmTW7ducffuXaObyHqJA1IXL4aICGtGIoQNuHrVcPcMpfiRFgD0Z06a7YQQuVuGe5YWLFjA0qVLeeeddywRj8iEBg2gYkX45x8tYRo82NoRCZGNJSl5P4f+KOxoys+U42Sa7YQQuVuGe5ZiY2N5+eWXLRGLyCSd7knv0pw5Wq0YIUQaAgLAx4cIPFlMdwAGMfPJfp1Om2YaEGClAIUQ2U2Gk6WePXuySqogZjudOoGXl7ZWXJKSWEKI5OztYfZsvqEn93GjIn/TkF+0fYnFymbNksHdQgiDDF+Ge/ToEQsXLuSXX36hcuXKODo6Gu2fMWOG2YITpnN11VZJ/+wz7f98mzbWjkiI7CuuRRvmejWBWzCQWRjqufr4yB+QECKFDJcOqF+/ftoH0+nYtWvXMwdla6xZOiCpK1e0GdGPH8Off8qSDUKk5fvvoX178PJSXFy5F9c7l7UxSgEB0qMkRC5isdIBISEhzxSYsJyiRbU3gJUrtQ/HK1ZYOyIhsqeZCUOU+vbV4Rr4qnWDEUJkexkes5TozJkzbNu2jYcPHwKkWAJFWEfiQO81a7SeJiGEsd9/125OTvDee9aORghhCzKcLN2+fZsGDRrwwgsv0KxZM64m1CLp0aMHQ4YMMXuAImP8/eF//9Muxc2fb+1ohMh+EpcG6tgRvL2tGooQwkZkOFkaNGgQjo6OXLx4kTx58hi2t2/fnq1bt5o1OJE5gwZpXxcsgISOPyEEcPEirFun3U/8OxFCiKfJcLK0fft2Pv/8c3x8fIy2lylThgsXLpgtMJF5LVtCiRJw+zYsX27taITIPubN05aGq18fqlSxdjRCCFuR4WTp/v37Rj1Kie7cuYOzs7NZghLPxt7+ydilmTMh2fJ9QuQuej3s3k30krUsnK9VbJVeJSFERmQ4WQoICGB5ku4KnU5HfHw8U6ZMSbesgMha3bqBhwecOgU//2ztaISwkuBgrZ5G/fos7b6HyPsOlHE4R/OYYGtHJoSwIRlOlqZMmcLChQtp2rQpsbGxDB8+nIoVK/Lrr7/y+eefWyJGkQn58kHv3tp9qRMqcqXgYGjXDsLDiUfHbAYAMCBuBnZvtdP2CyGECTKcLFWsWJH//vuP//3vf7Rs2ZL79+/Tpk0b/vrrL0qVKmWJGAHtMl/nzp1xd3fH09OTHj16EB0dnW77Dz74gLJly+Lq6srzzz9P//79iYyMNGqn0+lS3L777juLvY6s1L8/ODhASAj89Ze1oxEiC+n1MGAAJJQ02cTrnKEMntylC0u1NgMHau2EEOIpMlyUEsDDw4OPP/7Y3LGkq3Pnzly9epUdO3bw+PFjunXrRu/evdNcp+7KlStcuXKFadOmUb58eS5cuECfPn24cuUK6xKnwyRYsmQJTZo0MXzv6elpyZeSZXx84K23YNUqrXdJilSKXGPvXggPN3w7E22QUm8W4sZ9UMClS1q7evWsE6MQwmaYtNzJsWPHqFixInZ2dhw7dizdtpUrVzZbcIlOnDhB+fLl+eOPP6hRowYAW7dupVmzZoSHh1O0aFGTjrN27Vrefvtt7t+/j4ODlifqdDo2bNhAq1atMh1fdlnuJDWHD0ONGloP0/nzUKyYtSMSIgusXq2tLg0coRr+HMGeOMIogS9PkihWrdIKLgkhciVT379NugxXtWpVbt26ZbhfrVo1qlatmuJWrVo180SfzIEDB/D09DQkSgANGzbEzs6OgwcPmnycxJORmCglev/99/Hy8qJWrVosXrz4qdXIY2JiiIqKMrplV/7+ULcuxMXB3LnWjkaILFKkiOHudLRiuR34zjhRStZOCCHSYtJluLCwMAoWLGi4n9WuXbtGoUKFjLY5ODhQoEABrl27ZtIxbt26xfjx4+mdOOo5wbhx43jttdfIkycP27dv57333iM6Opr+/funeaxJkyYxduzYjL+QjNDrtUsEV68+8wKfgwfDnj3w1VfwySfg5mbmWIXIbgICwMeHi+F2rKE9AEOY/mS/Tqddpw4IsFKAQgibojIgNjZWdevWTZ07dy4jD0vThx9+qNBGD6R5O3HihJowYYJ64YUXUjy+YMGCav78+U99nsjISFWrVi3VpEkTFRsbm27bTz/9VPn4+KTb5tGjRyoyMtJwu3TpkgJUZGTkU2Mxyfr1Svn4KKUNT9VuPj7a9kzQ65UqU0Y7zNy55glRiGxv/Xo1mOkKlHqNX578Lel02i2Tf09CiJwjMjLSpPdvk8YsJeXh4UFoaCglSpR45kTt5s2b3L59O902JUuWZOXKlQwZMoS7d+8atsfFxeHi4sLatWtp3bp1mo+/d+8egYGB5MmTh02bNuHi4pLu823evJnXX3+dR48emVxk06xjlhKnOyf/seh02td166BNmwwf9ssvtUVDS5aE//7LdCeVEDYjMhJ8izzm3kNHfqYpTUlYjsnXV1sgLhN/R0KInMXU9+8Mz4Zr1aoVGzduZJAZSuAWLFjQcHkvPXXq1CEiIoLDhw/j7+8PwK5du4iPj6d27dppPi4qKorAwECcnZ358ccfn5ooAYSGhpI/f37rVCNPNt3ZiFJawjRwoLaeSQaznaAg7RLcuXPw44+QTn4pRI7w9ddw76Ej5csrmsz7EK4FPfMlbSFE7pThZKlMmTKMGzeO/fv34+/vT968eY32pzfWJ7PKlStHkyZN6NWrFwsWLODx48f069ePDh06GGbCXb58mQYNGrB8+XJq1apFVFQUjRs35sGDB6xcudJoIHbBggWxt7fnp59+4vr167z00ku4uLiwY8cOJk6cyNChQ83+GkySbLpzCkplerpz3rzQpw9MnAjTp0uyJHK22Fit8whgyBAduvr1rBeMEMLmZThZWrRoEZ6enhw+fJjDhw8b7dPpdBZJlgC+/fZb+vXrR4MGDbCzs6Nt27bMmTPHsP/x48ecOnWKBw8eAHDkyBHDTLnSpUsbHSssLAw/Pz8cHR354osvGDRoEEopSpcuzYwZM+jVq5dFXsNTXb1q3nbJ9OsHU6fC/v1w8CCk0yknhE37/nu4fBkKF4bOna0djRDC1mV4zJJIyWxjlnbv1pZDf5qQkEwX0uvaFZYtg/btIYcUKhfCiFJQrRocPQoTJsBHH1k7IiFEdmXWOkupuXXrlqH2kjCThOnOhsHcyel02uDUZ5junDjUbN06sEIVCCEsbtcuLVHKk0e79CyEEM8qQ8lSRESEoYBj4cKFKVy4MF5eXvTr14+IiAgLhZiL2NvD7Nna/eQJU+L3s2Y90+DUKlWgUSNtLPnMmZk+jBDZ1rRp2tfu3aFAAevGIoTIGUy+DHfnzh3q1KnD5cuX6dy5M+XKlQPg+PHjrFq1Cl9fX3777Tfy589v0YCzI7MvdxIcrM2KSzrY24zTnX/5RUuYXF3h4kXw8nrmQwphXQlFXP859IBKHzbDzk7x3386LLi2txAiBzB76YBx48bh5OTE2bNnKVy4cIp9jRs3Zty4ccyU7opn16aNVh7ATBW8k2vQQBvT8ddfMH8+jBpllsMKYR1JPlxMZzEAbZw3U+poLJSSWkpCiGdncs+Sn58fX331FYGBganu37p1K3369OH8+fPmjM8mZOeFdNOyZg106KD1Kl24oI3vEMLmJCniehVvinOBxzhxgDq8pDuY6SKuQojcwewDvK9evUqFChXS3F+xYkWT12kT1te2LZQoAbduwdKl1o5GiExIVsR1Lh/wGCdeYR8v8bvWZuBArZ0QQjwDk5MlLy+vdHuNwsLCKCCjKbOGXq+VGVi9WvuaiTcDBwcYoi3GzvTpEBdn1giFsLwkRVyjycuX9AVgKAkjvJMWcRVCiGdgcrIUGBjIxx9/TGxsbIp9MTExfPrppzRp0sSswYlUBAeDn59Wj6lTJ+2rn5+2PYO6dYPnntOWQMnEw4WwriTFWb+hJxHkpzSneYOf0mwnhBCZkaEB3jVq1KBMmTK8//77vPjiiyilOHHiBPPnzycmJoYVK1ZYMlaR1iK7ly9r2zM4PiNPHvjgAxgzBqZMgTffTLvEkxDZTpEiAMTiyHS0btLhTMGe+FTbCSFEZmWogndYWBjvvfce27dvJ/FhOp2ORo0aMW/evBTLiuQWWTLAW6/XepDSWjtOp9MKWoaFZWjW3K1b8Pzz8PAh7NwJr71mnnCFsLiEv4ml4Q3pxhKKcIUwSuBMQu93Jv8mhBC5h0UqeJcoUYItW7Zw69Ytfv/9d37//Xdu3rzJ1q1bc22ilGUysshuBnh5QY8e2v0pU54hPiGymr098TNn8znDARjETONECZ65iKsQQkAmlzvJnz8/tWrVolatWjKoO6tYcJHdwYPBzg62bdOWiRDCVvzo0IaTlMNDF8m7fPVkh4+PlA0QQphNpteGE1nM1HEXmRifUaIEvPWWdn/q1Aw/XAirUAomTdLuv/9hPtxDfoRVq7SFpsPCJFESQphNhsYsidRl6Zily5dTDvCGZx6fceQI+PtrDz17FooXf/aQhbCk3bu1yaDOzlph1WQLCwghxFNZZMySsCILL7JbvTo0bCgL7ArbMXmy9rV7d0mUhBCWJcmSLWnTRhuHUayY8XYzjc8Yro2T5euv4fbtZzqUEBb111/aGDs7Oxg61NrRCCFyOkmWbE2bNnD+vDYuw8zjMxo2hKpV4cEDmDfvmQ8nhMV8/rn2tX17KFnSurEIIXI+GbNkBra4kG5avv9eewPKn18bB5Ivn7UjEsLY2bPwwgsQHw+hoVClirUjEkLYKhmzJDKlbVsoWxbu3oUFC6wdjRBJJKyJOO3d08THQ9MmShIlIUSWkGQpJ3qGhXbt7WHECO3+9OlaZW8hrC5hTcRr9TuwZKcvACMOvymLGgohsoQkSzmNGRba7dxZKx1w/TosXmyxSIUwTeKaiOHhzGYAMbhQh98IuJmwXRImIYSFSbKUkyR5UzGSuNCuiW8qjo5PZsZNmQKxsWaOUwhT6fUwYAAoRSTuzOc9AEYwGR0Jwy0HDsxQ76kQQmSUJEs5RZI3lRRUxt9UuncHb2+4eBFWrjRfmEJkSJI1EefzHlF4UJ5/eZ1N2v5MrokohBAZIclSTmHmhXZdXGDIEO3+5MnywV1YScJah9HkZQaDAa1XyQ6VajshhLAESZZyCgsstNunDxQoAKdPw9q1mYxLiGeRsNbhAvpwi4KU4gwdWZ1mOyGEsARJlnIKCyy06+amXbkDmDhRq2sjRJYKCOBB0dJMQyvT/TETcCBJN6dOB76+EBBgpQCFELmBJEs5RUCAtuxJ8nXjEmXyTaVfP60w5d9/w6ZNZohTiIywt+frwHVcxxs/wnibJAPozLAmohBCmEKSpZzCQgvt5s8P77+v3Z8wIfXx40JYyqNH8PlWrfLkSM8FOBL3ZKeZ1kQUQoinkWQpJ7HQQruDBoGrKxw6BDt3miFOIUy0eLE2zM7XF7pcnmiRNRGFEOJpZG04M8h2a8Pp9dqst6tXtTFKAQHPfJliwACYMwfq1dPep4SwtJgYKF1am+T5xRfw3nvWjkgIkdOY+v4tyZIZZLtkyQLCw7XV3R8/hn374JVXrB2RyOkWLoR339Xy/XPntHIWQghhTjluId07d+7QuXNn3N3d8fT0pEePHkRHR6f7mHr16qHT6Yxuffr0MWpz8eJFmjdvTp48eShUqBDDhg0jLi4ujSPmAJlcN87HB7p00e6PG2ex6IQAtKR80iTt/ocfSqIkhLAum0mWOnfuzL///suOHTvYtGkTv/76K717937q43r16sXVq1cNtylTphj26fV6mjdvTmxsLL/99hvLli1j6dKljBo1ypIvxXqecd24jz4CBwfYvh3277dopCKXW7kSzp+HwoWhVy9rRyOEyPWUDTh+/LgC1B9//GHYtmXLFqXT6dTly5fTfFzdunXVgAED0tz/888/Kzs7O3Xt2jXDti+//FK5u7urmJgYk+OLjIxUgIqMjDT5MVlu/XqldDqltAltT246nXZbv96kw/TurT2sQQMLxytyn7g4pUJC1OMVq1Wpog8UKDVtmrWDEkLkZKa+f9tEz9KBAwfw9PSkRo0ahm0NGzbEzs6OgwcPpvvYb7/9Fi8vLypWrMjIkSN58OCB0XErVapE4cKFDdsCAwOJiori33//TfOYMTExREVFGd2yNTOuG/fxx9pCuzt3wp495g1T5GJJej1Xv7OZs1dc8bK7TZ8iP1g7MiGEsI3LcNeuXaNQoUJG2xwcHChQoADXrl1L83GdOnVi5cqVhISEMHLkSFasWMHbb79tdNykiRJg+D69406aNAkPDw/DzdfXNzMvK+uYcd24559/cllk1CipuyTMIDgY2rWD8HD02DGBjwEYEj+NvG+3NvkysRBCWIpVk6URI0akGICd/Hby5MlMH793794EBgZSqVIlOnfuzPLly9mwYQNnz559prhHjhxJZGSk4Xbp0qVnOp7FmXnduJEjwdkZfv0Vdu16hriESNbruZY3OcWLFOA27zNPa2Nir6cQQliKgzWffMiQIXTt2jXdNiVLlsTb25sbN24YbY+Li+POnTt4e3ub/Hy1a9cG4MyZM5QqVQpvb28OHTpk1Ob69esA6R7X2dkZZ2dnk5/X6sy8bpyPjzale84crXfptdfSXmVFiHQl6fXUY8c4tMkVg5hJPqJB8aTXs14968UphMjVrJosFSxYkIIFCz61XZ06dYiIiODw4cP4+/sDsGvXLuLj4w0JkClCQ0MBKJKQFNSpU4cJEyZw48YNw2W+HTt24O7uTvny5TP4arKxxHXjLl9O/bqZTqftz8C6cSNGaHVwfvtNmx0XGGjGeEXukaQ381s6c4LyFOA2HzA3zXZCCJHVbGLMUrly5WjSpAm9evXi0KFD7N+/n379+tGhQweKFi0KwOXLl3nxxRcNPUVnz55l/PjxHD58mPPnz/Pjjz8SFBTEq6++SuXKlQFo3Lgx5cuX55133uHo0aNs27aNTz75hPfff9+2eo6exgLrxhUp8qSisoxdEpmW8MElFkdGMxaAD/kcD6JSbSeEEFaRRbPzntnt27dVx44dlZubm3J3d1fdunVT9+7dM+wPCwtTgAoJCVFKKXXx4kX16quvqgIFCihnZ2dVunRpNWzYsBTTA8+fP6+aNm2qXF1dlZeXlxoyZIh6/PhxhmKzidIBSmnlAXx8jEsH+PqaXDYguWvXlMqTRzvMpk1mjlXkDnFxSvn4qPn0VaCUN1fUfVyNS1v4+mrthBDCzEx9/5blTszAppY7MfO6cR9+CFOmQPXq8OefMnZJZNyD1T9QulNNrlKUebzP+8zXdiT+Mj3DItBCCJEeWRsuC9lUsmRmt25BiRIQHQ0bN0LLltaOSNiaqVNh+HDws7/IKX1pnHis7fD11S4PS6IkhLAQU9+/rTrAW2Qzmeh18vKC/v1h4kQYPRreeAPsbGIknMgOoqJg8mTt/uiFPjiV3G62Xk8hhDAXSZaEJjhYq3eTtHilj482MPwpn+yHDIG5c+HoUdiwAdq2tXCsIseYMQPu3IEXX4S3g+zAoZ61QxJCiBSkD0AYVVA2cvmytv0pFZQLFIBBg7T7o0ZJ/UBhmlu3tGQJYNw4bZFmIYTIjiRZyu3MtG7coEGQPz8cPw7Llpk/TJHzfP453LsH1apJb6QQInuTZCm3M9O6cZ6e2iK7oPUuJVmvWIgn9HrYvZsr8zcyb46WgH/2mYxzE0Jkb/IvKrcz47px778PxYtrV+/mzHnGuETOExwMfn5Qvz6fvX+FR7H2vOJ0iKYPZaFcIUT2JslSbmfGdeNcXLReAtBmON2+/QxxiZwlybi4c5Tga3oBMCF2OLo3nz4uTgghrEmSpdwucd24tKpJ6nRavRsT143r1AmqVoXISJgwwXxhChuWbFzcWEYThyON2UZd9mhtTBgXJ4QQ1iLJUm5n5nXj7Oy0gbsA8+ZBWJh5whQ2LMm4uGNUYgXvAPAZn2j7TRwXJ4QQ1iLJktDqKK1bB8WKGW/38cnUUhONG0OjRvD4MXzyiRnjFLYpYbybAgYzA4Udb/I9Nfkz1XZCCJHdSLIkNG3awPnzEBICq1ZpX8PCMr3URGLv0qpVcOSI+cIUNihhvNvPNGMnDXEihs/5MM12QgiR3UgZOPGEvT3Uq5f2/gwsh1KtGnTuDN9+qy22u2OHZUIWNiAggMfF/Bh6eRoAA5lFCc4/2a/Tab2YJo6LE0KIrCY9S8I0SaZ906mT9tXPL91ZTJ99Bk5O8MsvsH17lkUqsht7exY23cBJyuHFTT5i4pN9mRgXJ4QQWU2SJfF0mVwOxc9Pq70E2qry8fGWDVNkTxERMHpDVQDGec7Eg6gnOzM5Lk4IIbKSTqnU1rkQGREVFYWHhweRkZG4u7tbOxzz0uu1rCetKt+Jl1DCwlLtGbh9G0qV0koJLF8O77xj2XBF9jN8OEydCuXKwbG/9DgcMO1SrhBCWJqp79/SsyTS94zLoTz3HIwcqd3/5BN49MgCMYps69y5J5Uppk8HB+eEcXEdO2pfJVESQtgASZZE+sywHEr//lrn08WLWg+DyOES1n9j9WpGdL9BbKxWTqJJE2sHJoQQmSPJkkifGZZDcXWFadpEKCZNggsXzBCXyJ6STATY32kea/cUwg4905r8kmaReCGEyO4kWRLpM9NyKG+9pV11efgQhgwxf5giG0gyESAeHYOZAUAPFlNpSGNZ/00IYbMkWRLpM9NyKDodzJmjNVu/XisnIHKQZOu/fUcHDlEbN+4xjk+1NrL+mxDCRkmyJJ7OTMuhVKr0pJTABx9AbKyZ4xTWk2QiwENcGMFkAEYyCW+uy/pvQgibJsmSMM3TlkNJMqiX3bvT7EEYOxYKFoSTJ2Hu3KwKXlhckgH+kxjJJZ7Hl4sMYmaa7YQQwlZIsiRMZ5/GtO8MVPf29ITJWqcDY8fKe2eOkTDA/xQvGNZ9m8kgXHmUajshhLAlkiyJZ5OJ6t5du0KtWnDvnrZunMgBAgJQxXx4j/nE4kwzNtOGJD97EycCCCFEdiTJksi8ZIN6jSRuS2VQr50dzJunvX+uWAH791s+VGFh9vasahfMLhrgwkPm0Q/DdABZ/00IYeMkWRKZ9wzVvWvWhO7dtfv9+skkKVt39y4MXl0TgE/d51CC8092yvpvQggbJ8mSyLxnrO49aZI2hik0FBYuNFtUwgo++ghu3NDWfxt6bWjaEwGEEMIGSbIkMu8Zq3sXLAjjxmn3P/4Ybt0yU1wiSx08CF99pd3/8ktwcpX134QQOYskSyLzzFDdu29frf7S3btS2dtmJCkTEbdzD336KJSCoCCoW9fawQkhhPlJsiQyzwzVvR0ctF4JnQ6WL4eff7ZMqMJMkpWJmNdwA6GhOvK7xcoiyUKIHMtmkqU7d+7QuXNn3N3d8fT0pEePHkRHR6fZ/vz58+h0ulRva9euNbRLbf93332XFS8pZzCluvdTClbWqaNNmgN4912IisqKwEWGJSsTEU4xPmU8AJ9H96PQPln7TQiRM+mUSm3ed/bTtGlTrl69yldffcXjx4/p1q0bNWvWZNWqVam21+v13Lx502jbwoULmTp1KlevXsXNzQ3QkqUlS5bQpEkTQztPT09cXFxMji0qKgoPDw8iIyNxd3fPxKvLAfR6bdbb1avaGKWAAK1HKThYKy+QdNacj4/WI5Vk0O+DB1C5Mpw9qyVMCxZY4TWItOn1Wo9Skp9jO9aynnbU4Tf2EYCdbzFtMLeMURJC2AhT379tIlk6ceIE5cuX548//qBGjRoAbN26lWbNmhEeHk7RokVNOk61atWoXr06ixYtMmzT6XRs2LCBVq1aZTo+SZbSkNgTkfxXLPESXbLp5Lt3a1d3AHbuhNdey5owhQmS/nCAzTTjdTZjTxxHqE5l/tZ2hIRog7qFEMIGmPr+bROX4Q4cOICnp6chUQJo2LAhdnZ2HDx40KRjHD58mNDQUHr06JFi3/vvv4+Xlxe1atVi8eLFPC1/jImJISoqyugmkslEwcp69bQB3wA9e8L9+xaPUpgqSfmHO+SnN1qth4HMepIoJWsnhBA5hU0kS9euXaNQoUJG2xwcHChQoADXrl0z6RiLFi2iXLlyvPzyy0bbx40bx/fff8+OHTto27Yt7733HnOfssLrpEmT8PDwMNx8fX0z9oJyg0wWrPz8c3j+ee1qzscfWzhGYbok5R/e5wuuUIyynGQco9JsJ4QQOYVVk6URI0akOQg78Xby5Mlnfp6HDx+yatWqVHuVPv30U1555RWqVavGhx9+yPDhw5n6lGk9I0eOJDIy0nC7dOnSM8eY42SyYGW+fE8KVM6ZI0uhZBsJZSK+owPf0RF74lhOEHl4qO2Xtd+EEDmYgzWffMiQIXTt2jXdNiVLlsTb25sbN24YbY+Li+POnTt4e3s/9XnWrVvHgwcPCAoKemrb2rVrM378eGJiYnB2dk61jbOzc5r7RIJnKFgZGAjdusGSJdqSKKGh4Opq3vBEBtnbc3nUV7zX+yUAPmYCtfhD2ydrvwkhcjirJksFCxakYMGCT21Xp04dIiIiOHz4MP7+/gDs2rWL+Ph4ateu/dTHL1q0iBYtWpj0XKGhoeTPn1+SoWeVWLDy8uXUxy3pdNr+NHoipk+HLVvgv/9g7FiYPNnC8Yp0KQU91jfjLuDveIxPHn/2ZKePj5YoyZImQogcyibGLJUrV44mTZrQq1cvDh06xP79++nXrx8dOnQwzIS7fPkyL774IocOHTJ67JkzZ/j111/p2bNniuP+9NNPfPPNN/zzzz+cOXOGL7/8kokTJ/LBBx9kyevK0Z6xYGX+/E/KB0ydCn/8YZkwhWm++gq2bQMXF1hxpAKOITtk7TchRO6hbMTt27dVx44dlZubm3J3d1fdunVT9+7dM+wPCwtTgAoJCTF63MiRI5Wvr6/S6/UpjrllyxZVtWpV5ebmpvLmzauqVKmiFixYkGrb9ERGRipARUZGZuq15Wjr1yvl46OU1jmh3Xx9te1KKRUXp1RIiFKrVmlf4+KMHt6hg/aQsmWVSvLjFpaW5Ofy34rfVZ488QqUmjXL2oEJIYT5mPr+bRN1lrI7qbP0FM9QsPLWLahaVbua9847sGxZ2kvRCTNJ8nOJw55X+ZUDvMxrlW6wI7QQdjbRHy2EEE+Xo+osCRtnn8oq9MmWzjC4fFnbHqwtneHlpa2SYmcHK1bA0qVZHXwuk+znMoXhHOBl3Ilkyd81sdsoS5oIIXIf6VkyA+lZyqBUls4wkjj4O8nSGRMmwCefaLPi/vwTypfPunBzjWQ/l7+oSi0OEYcjywgiSLcyxc9FCCFsmfQsiewrEwUrR46ERo3g4UN46y1tLTlhZkl+LvdwozPfEocjrQnmHVakWUhUCCFyOkmWRNbLRMHKxMtw3t7w77/Qv7+FYsvNEs63ArqxhBOUpyiX+Yp30aXSTgghcgtJlkTWy2TBysKF4dtvtat0ixZp94UZJZzvKQxnPe1wJJb1tKUgt1JtJ4QQuYUkSyLrJRasTGtaW9KlM/R6bcX71ath925eq6tnVMJyZO++C6dOZVnUOV9AADu8OvIREwGYRz9eIslC1bKkiRAil5JkSWQ9UwtW/vCDNuC4fn3o1En76ufHpxWCqVcP7t/Xxi89fJiFsedg5y/Z0+HREuKxpweL6MXXT3bKkiZCiFxMkiVhHW3awLp1UKyY8XYfH207pFlawL59O77t/DMFC8KxYzBwYJZEnPMk6bV7uO1X2rRR3Il2pmbpO8wrNsl4nFLiz0UqdQshciEpHWAGUjrgGaRWsBJMKi2wbUEYTZprvRyzZml1FIWJkhSeVEAXlrGCIAq6P+LwPy74Fk2jkKgQQuQgpr5/S7JkBpIsmdnu3dolt6cJCWHKoXp8+KGWP61fD61bWzw625dYeDLhT38e7/MB87Anjh00pv76ftKDJITIFaTOkrBdGSgtMGwY9Omjve936gQHDz79YbmaXq/1KCUkSvt4hUHMBLRZcPV1u7Xrmnq99WIUQohsRpIlkf1koLSATgdz50KzZvDoEbzxBpw7Z9nwbFqSwpPnKEE71hGHIx1YrSVNUnhSCCFSkGRJZD+mlhZ4+WXYvRuHtatZ028v1aopbt7UEqc7d7I2ZJuR0Gt3maI05Beu401ljvINPaXwpBBCpEGSJZH9mFJaoEMHKFXKUFbArdmrbLpWE1+vB5w6Ba1aaT1NIpkiRbjFczRmO2GUpBRn2EYgeXmQop0QQgiNJEsie0qvtMDQoTBtWorZckWvHeHnW7Vxz/OYvXuhWzeIj8/CmLOjZEU9oyq+TBPHXRynAsUI5xca4s31J+2l8KQQQqTgYO0AhEhTmzbQsqXxFPaXX9Z6lFKbxKkUFXX/Epw3iCaxq/juOx0lSsDEiVkferaQpDwAwENceMMphMOPX8KLm/xCI/y48KS9FJ4UQohUSc+SyN7s7aFePejYUfv6229p118CUIoGN7/jmyEnAZg0CcaNSz23ytESywMknKtYHGnHOn6NfQl3ItkWtIoXfaKNHyOFJ4UQIlXSsyRsi4kDj7tUCeXa5HKMGAGjR0NUFEydmvaY8RwlWXkAPXYEsZyfaY4rD9jEG1QPOQ9nz2rJpxSeFEKIdEmyJGyLqQOPCxXiwyK7cQ3Kx4Dl/kyfriVMX36ZC/KBJOUBFNCXL1lDBxyJJZg2BLAXLqElSvXqWTNSIYSwCZIsCduSWFbg8uXUr63pdFCgAHTtCuHh9Afy0ZWefMPXX9sTFQUrVoCjY1YHnoUSet9icKIn37CSd7BDz7d0pgnbUrQTQgiRPhmzJGzL08oKKAW3bxuNa+rGUr6jI47EsmaNNiTn4cMsjDmrFSnCbQrQiB2s5B3siWMx3XmTdSnaCSGEeDpJloTtSausQLFi8NxzqT7kTdbyA61w0T1i0yZo3hzu3cuCWC0tWWkA9Hr+KxzASw5/spdXcSeSLTSlC8ufPEbKAwghRIbIQrpmIAvpWoleb1xWQK+Hhg3TfcivBPB6nl3ce+BArVK32Dz9FF6vv2SbA5mSlQYA2FOwHW0eruROtDPFOc9mXqcC/z55TGJvnMx6E0IIWUhX5ALJywrcuPHUh7zKXnY5BFKA2xw660WVVn7s9u6gJR62JFlpAIDlvEOjm99yJ9qZ2mXucHDRv1TwiTR+nJQHEEKIDJNkSeQcJo7BqRG1i70EUJaTXKEYr91aw6dtjxO3doOFAzSTZKUBFDCKsXRhOY9xoh1rCXlQm8JdmsD58xASAqtWaV/DwiRREkKIDJLLcGYgl+GyCb0e/PzSnimXzH3yMIDZLKInAC87/cmqE9UoXjKbX5LbvVtbEw+4wPP05Uu20AyAEUxiAh9jh9KSIykNIIQQaZLLcCL3SW+mXCry8oBv6MV3tMedSH6LrUHVKvGs+z7loGmrSj6I+/Jl9NgxiwFU4F+20AwnYviGHkziIy1RAikNIIQQZiLJkshZ0popV6BAmg9pz/eEUpXa/E5EtCNvtrfn3fqneNCph9aD4+dnvTFNwcHa89evD506Qf36HO33NXU4wCBmcR83AviVo1ShB4uNHyulAYQQwizkMpwZyGW4bCgTM+Ue48BoxjKZESjsKEY4HzOB7izBWRerJWHJF/a15BIhiYO4E/5EH+LCOEYxlWHoccCDCKYwnJ5886Q3CbReNR8fbXySLc7yE0KILGLq+7ckS2YgyZINMGU8k7096PXs5DW6sYRLPA+ALxf5hAl0LfAjTnkcjBfy9fHRLv0966Dp5Mndyy9DqVIQHk48On6mGYOYyRnKANCWdczlA4rorhu/HikNIIQQJpNkKQtJsmQjEntqIGWCkezP4BHOfENPJjGSK2iX9Ipznk8ZT9D/27v3qCjO8w/g3wXcBVwEFeSuIRUEVBBB6UatNmBAIvF+iymLt1aFKiq22BPEHE3R1ORE8/OaWtSmCebmNcHEIG4rLioKikpUDIoXkBiVixfU3ff3B2HqCixoCQvy/Zwzx533fWf22UfO7HPemZ3BVrTDo/9uCzRu1unJgqimv477JcHeHjduCKRgCtZjJn7ArwAArriCNYjBCOyqHufgAPz443+3c3cH3n+fhRIRUSM0+vtbtBLLli0TKpVKWFlZCVtb20Zto9frRWJionBychKWlpYiJCREnDt3zmDMTz/9JF5//XVhY2MjbG1txdSpU0VFRcVTxVZWViYAiLKysqfajkzgiy+EcHMToro8ql7c3YWIizNs+3m5B4VYhT8KJ1yTml9Egfg/zBYX0bW6QSYTonPn2vt1c6t+v/re181NiIULq7f/uU0PiEyoxBvYKhS4Jw21xS0Rj3dEGWwM9/HRR0JkZAjx8cfV/z56ZMrsEhG1Ko39/m41M0tJSUmws7PDlStXsGnTJty+fbvBbVasWIHk5GRs2bIFHh4eSExMRF5eHs6cOQNLS0sAwLBhw1BcXIwNGzbg4cOHmDJlCvr164ePP/640bFxZqmVqWuG5z//kX6OX5d7sMR6zMRyJKAUjlJ7D3yPcOxFGL7BYGhgjcceOlcz6xQfD6xcWe/pvwookYfeOIp+SMEUnEAfqS8Q2ZiFdZiIVLTH3dob8/YARETP7Lk9Dbd582bExcU1WCwJIeDi4oIFCxYgPj4eAFBWVgZHR0ds3rwZEydORH5+Pnx9fXH06FEEBQUBAPbu3YuIiAhcuXIFLi4ujYqJxdJzoJH3aLoDa3yIGfgCY6CFCjpYSH0K3Mcg/AeDoUEn3IQSlbBBBZRm96DUl0GJSrTDQ3wPb5yAv7TUnGKrYYl7mIhUzMZa9EN23YHwIm4iov9ZY7+/LertaeUKCwtRUlKC0Md+AWVra4vg4GBotVpMnDgRWq0WdnZ2UqEEAKGhoTAzM8Phw4cxatSoOvddVVWFqqoqab28vPyX+yDUPGru0TR2bJ3XMNVoj7uIwyrEYRXK0AHpCME3CMM3CMMlvIDvMBTfYajhRvqG394FV+GPExiKfVBjCzrhVv2Da2as3n+fhRIRUTN4boulkpISAICjo6NBu6Ojo9RXUlKCLl26GPRbWFigU6dO0pi6JCcn46233mriiMnkau7R9OTF1m5uwL17wM2bBkWULcoxGtsxGtshAJyDF/YiHDkIQCWUqIQSFbCRXldCiXuwwq9wQZpX8sNJ+OME7PFT/XE9eRG3mxsv4iYiakYmLZYSEhKwYsUKo2Py8/Ph7e3dTBE1zqJFizB//nxpvby8HO7u7iaMiJrM6NF1/6pt506js04yAD1wDj1wruliqTnVVlAAHDrUPPd2IiKiWkxaLC1YsADR0dFGx7z44ovPtG8nJycAwPXr1+H82J2Mr1+/jj59+khjSp94Uv2jR49w8+ZNafu6KBQKKBSKZ4qLWgFz89oXTT/lrFOt/en1xp9X92QR9vipNrmcF3ETEZmQSR934uDgAG9vb6OLXC5/pn17eHjAyckJ6enpUlt5eTkOHz4MlUoFAFCpVLh9+zaOHTsmjdm/fz/0ej2Cg4P/tw9Hz5/Ro4GLF6t/gfbxx9X/XrwIbNxY3f/k8+hksuqlZhayvv6FC2s/nsXNjTeWJCJqIVrNs+GKioqQm5uLoqIi6HQ65ObmIjc3F5WVldIYb29vbN++HQAgk8kQFxeHZcuWYdeuXcjLy0NUVBRcXFwwcuRIAICPjw/Cw8MxY8YMHDlyBJmZmYiNjcXEiRMb/Us4amNqZp0mTar+19y8/ufR1RQ877zTcP+TRVhhIQslIqIWotXcOiA6Ohpbtmyp1Z6RkYEhP5+ikMlkSElJkU7tCSGQlJSEjRs34vbt2xg4cCDWrl0LLy8vafubN28iNjYWu3fvhpmZGcaMGYPVq1dDqVQ2OjbeOoAA1H+H7sb2ExFRs3pu77PUErFYIiIian0a+/3dak7DEREREZkCiyUiIiIiI1gsERERERnBYomIiIjICBZLREREREawWCIiIiIygsUSERERkREsloiIiIiMYLFEREREZISFqQN4HtTcBL28vNzEkRAREVFj1XxvN/QwExZLTaCiogIA4O7ubuJIiIiI6GlVVFTA1ta23n4+G64J6PV6XLt2DTY2NpDJZE223/Lycri7u+Py5ct85lw9mKOGMUfGMT8NY44axhw1rCXmSAiBiooKuLi4wMys/iuTOLPUBMzMzODm5vaL7b9Dhw4t5g+rpWKOGsYcGcf8NIw5ahhz1LCWliNjM0o1eIE3ERERkREsloiIiIiMYLHUgikUCiQlJUGhUJg6lBaLOWoYc2Qc89Mw5qhhzFHDWnOOeIE3ERERkRGcWSIiIiIygsUSERERkREsloiIiIiMYLFEREREZASLpRZszZo1eOGFF2BpaYng4GAcOXLE1CGZzL///W9ERkbCxcUFMpkMO3bsMOgXQmDx4sVwdnaGlZUVQkNDcf78edMEawLJycno168fbGxs0KVLF4wcORJnz541GHP//n3ExMSgc+fOUCqVGDNmDK5fv26iiJvfunXr4OfnJ90QT6VSIS0tTepv6/l50vLlyyGTyRAXFye1tfUcLVmyBDKZzGDx9vaW+tt6fmpcvXoVb7zxBjp37gwrKyv07t0b2dnZUn9rPF6zWGqhtm3bhvnz5yMpKQnHjx+Hv78/wsLCUFpaaurQTOLOnTvw9/fHmjVr6ux/5513sHr1aqxfvx6HDx9G+/btERYWhvv37zdzpKah0WgQExODrKws7Nu3Dw8fPsQrr7yCO3fuSGPmzZuH3bt347PPPoNGo8G1a9cwevRoE0bdvNzc3LB8+XIcO3YM2dnZePnllzFixAicPn0aAPPzuKNHj2LDhg3w8/MzaGeOgJ49e6K4uFhaDh48KPUxP8CtW7cwYMAAtGvXDmlpaThz5gzeffdddOzYURrTKo/Xglqk/v37i5iYGGldp9MJFxcXkZycbMKoWgYAYvv27dK6Xq8XTk5O4m9/+5vUdvv2baFQKMQnn3xigghNr7S0VAAQGo1GCFGdj3bt2onPPvtMGpOfny8ACK1Wa6owTa5jx47i73//O/PzmIqKCuHp6Sn27dsnBg8eLObOnSuE4N+QEEIkJSUJf3//OvuYn2p//vOfxcCBA+vtb63Ha84stUAPHjzAsWPHEBoaKrWZmZkhNDQUWq3WhJG1TIWFhSgpKTHIl62tLYKDg9tsvsrKygAAnTp1AgAcO3YMDx8+NMiRt7c3unbt2iZzpNPpkJqaijt37kClUjE/j4mJicGrr75qkAuAf0M1zp8/DxcXF7z44ouYPHkyioqKADA/NXbt2oWgoCCMGzcOXbp0QUBAAD788EOpv7Uer1kstUA3btyATqeDo6OjQbujoyNKSkpMFFXLVZMT5quaXq9HXFwcBgwYgF69egGozpFcLoednZ3B2LaWo7y8PCiVSigUCsycORPbt2+Hr68v8/Oz1NRUHD9+HMnJybX6mCMgODgYmzdvxt69e7Fu3ToUFhZi0KBBqKioYH5+9sMPP2DdunXw9PTEN998g1mzZmHOnDnYsmULgNZ7vLYwdQBE1LRiYmJw6tQpg2spqFqPHj2Qm5uLsrIyfP7551Cr1dBoNKYOq0W4fPky5s6di3379sHS0tLU4bRIw4YNk177+fkhODgY3bp1w6effgorKysTRtZy6PV6BAUF4a9//SsAICAgAKdOncL69euhVqtNHN2z48xSC2Rvbw9zc/Nav6K4fv06nJycTBRVy1WTE+YLiI2NxZ49e5CRkQE3Nzep3cnJCQ8ePMDt27cNxre1HMnlcnTv3h2BgYFITk6Gv78/Vq1axfyg+jRSaWkp+vbtCwsLC1hYWECj0WD16tWwsLCAo6Njm8/Rk+zs7ODl5YWCggL+Df3M2dkZvr6+Bm0+Pj7S6crWerxmsdQCyeVyBAYGIj09XWrT6/VIT0+HSqUyYWQtk4eHB5ycnAzyVV5ejsOHD7eZfAkhEBsbi+3bt2P//v3w8PAw6A8MDES7du0McnT27FkUFRW1mRzVRa/Xo6qqivkBEBISgry8POTm5kpLUFAQJk+eLL1u6zl6UmVlJS5cuABnZ2f+Df1swIABtW5bcu7cOXTr1g1AKz5em/oKc6pbamqqUCgUYvPmzeLMmTPi97//vbCzsxMlJSWmDs0kKioqRE5OjsjJyREAxHvvvSdycnLEpUuXhBBCLF++XNjZ2YmdO3eKkydPihEjRggPDw9x7949E0fePGbNmiVsbW3FgQMHRHFxsbTcvXtXGjNz5kzRtWtXsX//fpGdnS1UKpVQqVQmjLp5JSQkCI1GIwoLC8XJkydFQkKCkMlk4ttvvxVCMD91efzXcEIwRwsWLBAHDhwQhYWFIjMzU4SGhgp7e3tRWloqhGB+hBDiyJEjwsLCQrz99tvi/Pnz4l//+pewtrYWH330kTSmNR6vWSy1YB988IHo2rWrkMvlon///iIrK8vUIZlMRkaGAFBrUavVQojqn6MmJiYKR0dHoVAoREhIiDh79qxpg25GdeUGgEhJSZHG3Lt3T8yePVt07NhRWFtbi1GjRoni4mLTBd3Mpk6dKrp16ybkcrlwcHAQISEhUqEkBPNTlyeLpbaeowkTJghnZ2chl8uFq6urmDBhgigoKJD623p+auzevVv06tVLKBQK4e3tLTZu3GjQ3xqP1zIhhDDNnBYRERFRy8drloiIiIiMYLFEREREZASLJSIiIiIjWCwRERERGcFiiYiIiMgIFktERERERrBYIiIiIjKCxRIRNashQ4YgLi7O1GG0GdHR0Rg5cqSpwyBq1VgsEVGdZDKZ0WXJkiXPtN8vv/wSS5cubbI4W0Lx9eGHH8Lf3x9KpRJ2dnYICAhAcnKySWMioqZjYeoAiKhlKi4ull5v27YNixcvNnhAplKplF4LIaDT6WBh0fAhpVOnTk0baBN58OAB5HL5U2/3j3/8A3FxcVi9ejUGDx6MqqoqnDx5EqdOnfoFoiQiU+DMEhHVycnJSVpsbW0hk8mk9e+//x42NjZIS0tDYGAgFAoFDh48iAsXLmDEiBFwdHSEUqlEv3798N133xns98mZoKqqKsTHx8PV1RXt27dHcHAwDhw4YLBNZmYmhgwZAmtra3Ts2BFhYWG4desWoqOjodFosGrVKmnG6+LFiwAAjUaD/v37Q6FQwNnZGQkJCXj06JFBHLGxsYiLi4O9vT3CwsIwdepUDB8+3OC9Hz58iC5dumDTpk115mnXrl0YP348pk2bhu7du6Nnz56YNGkS3n77bWnM0aNHMXToUNjb28PW1haDBw/G8ePHDfYjk8mwYcMGDB8+HNbW1vDx8YFWq0VBQQGGDBmC9u3b46WXXsKFCxekbZYsWYI+ffpgw4YNcHd3h7W1NcaPH4+ysrJ6/1/1ej2Sk5Ph4eEBKysr+Pv74/PPP5f6b926hcmTJ8PBwQFWVlbw9PRESkpKvfsjagtYLBHRM0tISMDy5cuRn58PPz8/VFZWIiIiAunp6cjJyUF4eDgiIyNRVFRU7z5iY2Oh1WqRmpqKkydPYty4cQgPD8f58+cBALm5uQgJCYGvry+0Wi0OHjyIyMhI6HQ6rFq1CiqVCjNmzEBxcTGKi4vh7u6Oq1evIiIiAv369cOJEyewbt06bNq0CcuWLTN47y1btkAulyMzMxPr16/H9OnTsXfvXoNZtT179uDu3buYMGFCnfE7OTkhKysLly5dqvczVlRUQK1W4+DBg8jKyoKnpyciIiJQUVFhMG7p0qWIiopCbm4uvL298frrr+MPf/gDFi1ahOzsbAghEBsba7BNQUEBPv30U+zevRt79+5FTk4OZs+eXW8sycnJ2Lp1K9avX4/Tp09j3rx5eOONN6DRaAAAiYmJOHPmDNLS0pCfn49169bB3t6+3v0RtQmmfY4vEbUGKSkpwtbWVlrPyMgQAMSOHTsa3LZnz57igw8+kNYff5L9pUuXhLm5ubh69arBNiEhIWLRokVCCCEmTZokBgwYUO/+H99fjb/85S+iR48eQq/XS21r1qwRSqVS6HQ6abuAgIBa+/P19RUrVqyQ1iMjI0V0dHS973/t2jXx61//WgAQXl5eQq1Wi23btknvUxedTidsbGzE7t27pTYA4s0335TWtVqtACA2bdoktX3yySfC0tJSWk9KShLm5ubiypUrUltaWpowMzOTnnavVqvFiBEjhBBC3L9/X1hbW4tDhw4ZxDNt2jQxadIk6fNOmTKl3tiJ2iLOLBHRMwsKCjJYr6ysRHx8PHx8fGBnZwelUon8/Px6Z5by8vKg0+ng5eUFpVIpLRqNRjrdVDOz9DTy8/OhUqkgk8mktgEDBqCyshJXrlyR2gIDA2ttO336dOm00/Xr15GWloapU6fW+17Ozs7QarXIy8vD3Llz8ejRI6jVaoSHh0Ov10v7mTFjBjw9PWFra4sOHTqgsrKyVl78/Pyk146OjgCA3r17G7Tdv38f5eXlUlvXrl3h6uoqratUKuj1eoPry2oUFBTg7t27GDp0qEG+t27dKuV71qxZSE1NRZ8+ffCnP/0Jhw4dqvezE7UVvMCbiJ5Z+/btDdbj4+Oxb98+rFy5Et27d4eVlRXGjh2LBw8e1Ll9ZWUlzM3NcezYMZibmxv01VxAbmVl9csEj9rxA0BUVBQSEhKg1Wpx6NAheHh4YNCgQQ3uq1evXujVqxdmz56NmTNnYtCgQdBoNPjtb38LtVqNn376CatWrUK3bt2gUCigUqlq5aVdu3bS65pCr662miLsaVVWVgIAvvrqK4MCCwAUCgUAYNiwYbh06RK+/vpr7Nu3DyEhIYiJicHKlSuf6T2JngcsloioyWRmZiI6OhqjRo0CUP3lXHPBdV0CAgKg0+lQWlpab0Hi5+eH9PR0vPXWW3X2y+Vy6HQ6gzYfHx988cUXEEJIBUZmZiZsbGzg5uZm9DN07twZI0eOREpKCrRaLaZMmWJ0fF18fX0BAHfu3JHee+3atYiIiAAAXL58GTdu3Hjq/dalqKgI165dg4uLCwAgKysLZmZm6NGjR51xKRQKFBUVYfDgwfXu08HBAWq1Gmq1GoMGDcLChQtZLFGbxmKJiJqMp6cnvvzyS0RGRkImkyExMdHoLIiXlxcmT56MqKgovPvuuwgICMCPP/6I9PR0+Pn54dVXX8WiRYvQu3dvacZGLpcjIyMD48aNg729PV544QUcPnwYFy9ehFKpRKdOnTB79my8//77+OMf/4jY2FicPXsWSUlJmD9/PszMGr76YPr06Rg+fDh0Oh3UarXRsbNmzYKLiwtefvlluLm5obi4GMuWLYODgwNUKpWUl3/+858ICgpCeXk5Fi5c2GQzZpaWllCr1Vi5ciXKy8sxZ84cjB8/Hk5OTrXG2tjYID4+HvPmzYNer8fAgQNRVlaGzMxMdOjQAWq1GosXL0ZgYCB69uyJqqoq7NmzBz4+Pk0SK1FrxWuWiKjJvPfee+jYsSNeeuklREZGIiwsDH379jW6TUpKCqKiorBgwQL06NEDI0eOxNGjR9G1a1cA1QXVt99+ixMnTqB///5QqVTYuXOndE+n+Ph4mJubw9fXFw4ODigqKoKrqyu+/vprHDlyBP7+/pg5cyamTZuGN998s1GfIzQ0FM7OzggLC5NmbIyNzcrKwrhx4+Dl5YUxY8bA0tIS6enp6Ny5MwBg06ZNuHXrFvr27Yvf/e53mDNnDrp06dKoWBrSvXt3jB49GhEREXjllVfg5+eHtWvX1jt+6dKlSExMRHJyMnx8fBAeHo6vvvoKHh4eAKpn6hYtWgQ/Pz/85je/gbm5OVJTU5skVqLWSiaEEKYOgojaDpVKhZCQkFo/429JKisr4erqipSUFIwePdrU4dRryZIl2LFjB3Jzc00dCtFzjTNLRNQsqqqqkJ2djdOnT6Nnz56mDqdOer0epaWlWLp0Kezs7PDaa6+ZOiQiagF4zRIRNYu0tDRERUXhtddew9ixY00dTp2Kiorg4eEBNzc3bN68uVGPbyGi5x9PwxEREREZwdNwREREREawWCIiIiIygsUSERERkREsloiIiIiMYLFEREREZASLJSIiIiIjWCwRERERGcFiiYiIiMgIFktERERERvw/IT3RZL6AX64AAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(title = \"End-Effector Orientation Predictions\", x = \"Trajectory Samples\", y = \"Orientation [rad]\")\n", + "visualizer.plot_orientation_trajectory(np.sin(or_traj), np.sin(or_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BTJFV6jTY_kd" + }, + "source": [ + "## Workspace" + ] + }, + { + "cell_type": "code", + "execution_count": 936, + "metadata": {}, + "outputs": [], + "source": [ + "### TODO distance of each point to origin. \n", + "# If smaller than max range then within " + ] + }, + { + "cell_type": "code", + "execution_count": 937, + "metadata": {}, + "outputs": [], + "source": [ + "ws_pred, ws_traj = metrics['workspace'][0], metrics['workspace'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 938, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAGFCAYAAABQYJzfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZglZ3XniX9iufu+5r7UrlJpl9C+gWVk++dusHHbbbsHGffY/Rh4sBvsBqanGYYej8GAR7aHxt09DbgxBuw2tmkwkoWs0oZYJCSVSrVXZVZV7vfm3fLuS8Tvj4g3MvLWzVpzKaXi+zz5ZGbce+N9I27E+41zzvecI+m6ruPAgQMHDhxsIuTNnoADBw4cOHDgkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0qJs9AQdvXGiaRrPZ3OxpOHDgYB3hcrlQFGXdx3HIyMFlodlsMjExgaZpmz0VBw4crDOi0Sj9/f1IkrRuYzhk5OCSoes6s7OzKIrCyMgIsux4ex042IrQdZ1qtcrCwgIAAwMD6zaWQ0YOLhntdptqtcrg4CB+v3+zp+PAgYN1hM/nA2BhYYF0Or1uLjvnkdbBJaPT6QDgdrs3eSYOHDjYCIiHzlartW5jOGTk4LKxnv5jBw4cXD3YiHvdISMHDhw4cLDpcMjIgYN1wK/92q/xzne+0/r/wQcf5Hd+53euaJ9rsY+NxMXM90tf+hLRaPS87+k+l1c7LuaYHJwLh4wcvGnwa7/2a0iShCRJuN1udu7cySc+8Qna7fa6j/2Nb3yD//gf/+NFvXf//v1IkkShULjsfVwN6J7v+Pg4jz766CXv54//+I/50pe+dNnzeOyxx5Akibm5uRXbBwYGGB8fX7FtcnISSZJ48sknL3s8B5cHh4wcvKnwUz/1U8zOznL8+HE+9KEP8fGPf5xPf/rTPd+7lgm98XicUCi06fvYSKzVfCORyBVZGvfeey+qqrJ//35r2+HDh6nVauTzeSYnJ63tTz31FB6Ph3vuueeyxlrPAP9Wh0NGDjYVx44d4zvf+Q7Hjx/fkPE8Hg/9/f2MjY3xW7/1Wzz00EN885vfBJbdQb//+7/P4OAge/bsAeDs2bP84i/+ItFolHg8zjve8Y4VC1in0+GDH/wg0WiURCLBv/t3/w5d11eM2+2yajQafPjDH2ZkZASPx8POnTv5b//tvzE5Oclb3/pWAGKxGJIk8Wu/9ms995HP53n3u99NLBbD7/fz0z/90yvOo3AXPf744+zdu5dgMGiRscD+/fu5/fbbCQQCRKNR7rnnHk6fPt3z3P3CL/wC73//+63/f+d3fgdJkjhy5AhgkHcgEOC73/3uOfN98MEHOX36NP/23/5byzq143xz7OXy/MAHPsC/+3f/jng8Tn9/Px//+Md7zhkgGAzylre8ZQUZ7d+/n3vvvZd77rnnnO133nknXq8XTdP4xCc+wfDwMB6Ph5tuuonHHnvMeq+wor7+9a/zwAMP4PV6+cpXvnLO+JlMhttuu42f+7mfo9FokM/n+dVf/VVSqRQ+n49du3bxxS9+ccU+v/a1r3H33Xfj9Xq57rrrePrpp639dTod/vW//tds27YNn8/Hnj17+OM//uNzxv3CF77Avn378Hg8DAwMrPjuCoUC/+v/+r+SSqUIh8O87W1v49VXX131HG4EHDJysCnI5XL81E/9FHv27OFnfuZn2L17Nz/1Uz9FPp/f0Hn4fL4VFtCTTz7J0aNHeeKJJ/jWt75Fq9Xi4YcfJhQK8eyzz/L8889bC6b43Gc/+1m+9KUv8YUvfIHnnnuOXC7H3/7t35533He/+9189atf5U/+5E84fPgw//k//2eCwSAjIyP8zd/8DQBHjx5ldna250IDxiL94osv8s1vfpMXXngBXdf5mZ/5mRVP59Vqlc985jN8+ctf5plnnuHMmTP87u/+LmDki73zne/kgQce4MCBA7zwwgv85m/+5qrKqQceeGDFwv3000+TTCatbT/60Y9otVrcfffd53z2G9/4BsPDw3ziE59gdnZ2Bdmcb46r4c///M8JBAL84Ac/4A//8A/5xCc+wRNPPLHq+9/61rfy1FNPWf8/9dRTPPjggzzwwAMrtu/fv996GPjjP/5jPvvZz/KZz3yGAwcO8PDDD/PP//k/P+fB6SMf+Qi//du/zeHDh3n44YdXvHb27Fnuu+8+rrvuOv7H//gfeDwe/sN/+A8cOnSI73znOxw+fJjPf/7zJJPJFZ/7vd/7PT70oQ/x8ssvc9ddd/HP/tk/Y3FxETDKcA0PD/PXf/3XHDp0iI997GP8b//b/8Zf/dVfWZ///Oc/z/ve9z5+8zd/k9dee41vfvOb7Ny503r9X/yLf8HCwgLf+c53eOmll7jlllv4iZ/4CXK53HnP+7pCd+DgElGr1fRDhw7ptVrtsvfx8MMP64qi6ID1oyiK/vDDD6/hTFfikUce0d/xjnfouq7rmqbpTzzxhO7xePTf/d3ftV7v6+vTG42G9Zkvf/nL+p49e3RN06xtjUZD9/l8+uOPP67ruq4PDAzof/iHf2i93mq19OHhYWssXdf1Bx54QP/t3/5tXdd1/ejRozqgP/HEEz3n+dRTT+mAns/nV2y37+PYsWM6oD///PPW69lsVvf5fPpf/dVf6bqu61/84hd1QD9x4oT1ns997nN6X1+fruu6vri4qAP6/v37L3TqdF3X9QMHDuiSJOkLCwt6LpfT3W63/h//43/Uf+mXfknXdV3/v/6v/0u/++67e85X13V9bGxM/3/+n/9nxT4vNEddX/m9if3ee++9K/bzlre8Rf/whz+86tyfeOIJHdBnZmZ0Xdf1dDqt//CHP9S/973v6WNjY7qu6/rJkyd1QH/66ad1Xdf1wcFB/fd///fPGee9732vruu6PjExoQP6o48+es4xRSIR/ciRI/rIyIj+gQ98YMX188/+2T/T3/Oe9/Scp9jnJz/5SWubuJ4+9alPrXp873vf+/R3vetd1v+Dg4P6v//3/77ne5999lk9HA7r9Xp9xfYdO3bo//k//+een1mLe/5CcCowONhwHDt2jMcff/yc7Z1Oh8cff5zjx4+za9eudRn7W9/6FsFgkFarhaZp/Mqv/MoKF8/111+/Ipn31Vdf5cSJE+fEPur1OidPnqRYLDI7O8sdd9xhvaaqKrfddts5rjqBV155BUVReOCBBy77OA4fPoyqqivGTSQS7Nmzh8OHD1vb/H4/O3bssP4fGBiwSrvE43F+7dd+jYcffpif/Mmf5KGHHuIXf/EXVy35ct111xGPx3n66adxu93cfPPN/OzP/iyf+9znAMNSevDBBy/5WM43x9Vwww03rPj/Qp+5++67cbvd7N+/nxtvvJFarcYtt9yCpmlkMhkmJibYv38/Pp+PO++8k1KpxMzMzDmxo3vuueccd9Ztt912zni1Wo377ruPX/mVXzlHtPFbv/VbvOtd7+LHP/4xb3/723nnO995jjV51113WX+L68n+vX7uc5/jC1/4AmfOnKFWq9FsNrnpppsAo1LCzMwMP/ETP9HzXLz66quUy2USicQ5cz558mTvE7gBcMjIwYbjQhf8iRMn1o2M3vrWt/L5z38et9vN4OAgqrryFggEAiv+L5fL3HrrrT1jAalU6rLmIMqrbARcLteK/yVJWkGSX/ziF/nABz7AY489xte//nX+9//9f+eJJ57gzjvvPGdfkiRx//33s3//fjweDw8++CA33HADjUaDgwcP8r3vfe+C7rXLmePFfuZ8RXv9fj+33347Tz31FLlcjnvvvRdFUVAUhbvvvpunnnqKp556invuuQe32029Xr/o+XdfM2DEJh966CG+9a1v8Xu/93sMDQ1Zr/30T/80p0+f5h/+4R944okn+Imf+Ane97738ZnPfOaixvva177G7/7u7/LZz36Wu+66i1AoxKc//Wl+8IMfABe+vsrlMgMDAytcrgKbKUl3YkYONhz2p+BesPu21xqBQICdO3cyOjp6DhH1wi233MLx48dJp9Ps3LlzxU8kEiESiTAwMGAtBGDEYl566aVV93n99dejadqKoLQdwjITZZd6Ye/evbTb7RXjLi4ucvToUa699toLHpcdN998Mx/96Ef53ve+x3XXXcdf/uVfrvpeETfav38/Dz74ILIsc//99/PpT3+aRqNxXhWa2+0+7zGtN9761reumLuAINinn37aiheFw2EGBwd5/vnnV+zj+eefv6jzK8syX/7yl7n11lt561vfyszMzIrXU6kUjzzyCH/xF3/Bo48+yn/5L/9lxevf//73rb/F9bR3715rDnfffTfvfe97ufnmm9m5c+eKB7xQKMT4+Piq8vRbbrmFubk5VFU955rujl1tJBwycrDh2L17Nw8//PA5BRcVReHhhx9eN6vocvCrv/qrJJNJ3vGOd/Dss89a7pwPfOADTE1NAfDbv/3bfPKTn+Tv/u7vOHLkCO9973vPyRGyY3x8nEceeYRf//Vf5+/+7u+sfYoA9NjYGJIk8a1vfYtMJkO5XD5nH7t27eId73gHv/Ebv8Fzzz3Hq6++yr/6V/+KoaEh3vGOd1zUsU1MTPDRj36UF154gdOnT/OP//iPHD9+3Fr0euHBBx/k0KFDvP7669x7773Wtq985SvcdtttPa0E+3E/88wzTE9Pk81mL2qOa4m3vvWtHD9+nMcff3yFi/SBBx7g7/7u7zh79qxFRmCICD71qU/x9a9/naNHj/KRj3yEV155hd/+7d++qPEUReErX/kKN954I29729usPKePfexj/P3f/z0nTpzg9ddf51vf+tY55/xzn/scf/u3f8uRI0d43/veRz6f59d//dcB47t/8cUXefzxxzl27Bj/4T/8B370ox+t+PzHP/5xPvvZz/Inf/InHD9+nB//+Mf86Z/+KQAPPfQQd911F+985zv5x3/8RyYnJ/ne977Hv//3/54XX3zx0k/sGsEhIwebgq9+9as89NBDK7Y99NBDfPWrX92kGfWG3+/nmWeeYXR0lJ//+Z9n7969/Ot//a+p1+uEw2EAPvShD/G//C//C4888ojlNvm5n/u58+7385//PL/wC7/Ae9/7Xq655hp+4zd+g0qlAsDQ0BD/5//5f/KRj3yEvr6+FZJcO774xS9y66238rM/+7Pcdddd6LrOP/zDP5zjwjrfsR05coR3vetd7N69m9/8zd/kfe97H//m3/ybVT9z/fXXE41GuemmmwgGg4BBRp1O54Lxok984hNMTk6yY8eOy3ZxXgnuuusuPB4Puq5z6623WtvvuOMOWq2WJQEX+MAHPsAHP/hBPvShD3H99dfz2GOP8c1vfvOSHpZUVeWrX/0q+/bt421vexsLCwu43W4++tGPcsMNN3D//fejKApf+9rXVnzuk5/8JJ/85Ce58cYbee655/jmN79pWS3/5t/8G37+53+eX/qlX+KOO+5gcXGR9773vSs+/8gjj/Doo4/yn/7Tf2Lfvn387M/+rKUClCSJf/iHf+D+++/nPe95D7t37+Zf/st/yenTp+nr67vk87pWkPQLOWcdOOhCvV5nYmKCbdu24fV6r2hfx48f58SJE+zcufOqsogcONgMTE5Osm3bNl5++WVLkHA1YC3v+dXgCBgcbCp27drlkJADBw4cN50DBw4cONh8OJaRAwcOHFwlGB8fv6CsfavCsYwcOHDgwMGmwyEjBw4cOHCw6XDIyMFl483qTnDg4M2G81W3WCs4MSMHlwyXy4UkSWQyGVKp1KpVnh04cPDGhq7rNJtNMpkMsiyvqNu41nDyjBxcFsrlMlNTU4515MDBmwB+v5+BgQGHjBxcneh0Ok5nSwcOtjgURUFV1XX3gDhk5MCBAwcONh2OgMGBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcOHDhwsOlwyMiBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcOHDhwsOlwyMiBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcONhC6rtNut9E0zal47sCBDU4/IwcO1hmaptFut2m327RaLXRdx+12I8syiqIgyzKyLDt9oRy8qeGQkQMHawxd1+l0OhYBtdttDh8+zMDAANFoFEmSkCTJspJ0XUeSpHOIySEnB28mOGTkwMEVQtd1NE2zCKjValluOEmSkGWZSqUCGL1hxDb75+0EJojIbjk5xORgq8MhIwcOLgPCqhE/nU4HTdMALBK5WAKxW0EijiT23+l0VuzTsZocbFU4ZOTAwUVAWD92Auq2ftaiG6b4fDc5Ccur22oS/zvk5OCNDoeMHDhYBYIAWq3WCisFsGI8696K2UZO3VZTu93mzJkzjIyM4PF4LJJyiMnBGxEOGTlwYELEbewEJOI59oV+sxb7bqup0+lw9OhR+vv7rRiUmKcjhHDwRoNDRg7etBBEY5dd211vG2X9XC7EvATx2I/HTlyOfNzBGwEOGTl4U0FYP8LyWVhYoNVqkU6n3/DWxGpCiFarZW135OMOrlY4ZORgS8MuuxYEJFRvAEtLSzSbTYaGhjZxlmuPXkIIRz7u4GqGQ0YOthx65fysJru25/tsZTjycQdXOxwycvCGRy/hgSCfi5Fdv1FrxIl5XyppXIp83HHpOdgoOGTk4A2JC8mu1yLn582C88nHu0USjhDCwXrBISMHbwj0qvdmtwwu9+ndWVRX4nxWk1Aair/9fr9jNTlYMzhk5OCqxMXUe1urJ/SNctOt9TgbMe9e5LSwsMDExAR33HHHCgm8YzU5uBI4ZOTgqoE95yefz+NyuVAUBVgOroNjzWwm7OWHhPjDkY87WAs4ZORg03C+em+HDx9mbGyMdDq9rovZVlgoN/oYuoUTlyIf34z5OnhjwCEjBxuKbtdbp9OxFrdexT83YuF6o6rpNgvCVdoNRz7u4ErgkJGDdcXFyK57LUrOInV140LfjyMfd3CpcMjIwZqju812d723i5Fd22XG64k38uJ3uXlGazXupWA1l54jH3cg4JCRgyvGesmu36gqtzcD1qJv0/nk472IySGnrQ2HjBxcMjZCdu0sPFcvVosZXS6cOnoOwCEjBxeJi2mzDWtLIo6b7urEen8v5xNCnDhxgkQiQTQadYQQWwwOGTnoiV6y65MnTxKNRonFYmvWZns1bFTMCN64pLeZ7sWNWvy7rab5+XkCgYDThn0LwiEjBxZWk12Lm3tpaYlgMIiqrv9l4ywmF4/LPVeNRoNsNst0JkMmnyebzVKuVEim00iahqwoBFSVVCxGOBxm9+7dwNq76S4F9njSheTj9nilg6sfDhm9iXGpbbY30lrZymo6e3xtozE3N8fz3/seR7JZvKrKElBpNgFQFQUZOHHsGAv5PJmFBSanpjgzNQVzc7z/gx/k5+6/n3g4vOHzFrCftwvV0ROvOUKINwYcMnqT4UKy6/O12d5IMoKtpabTNM2wQqanyefzKIpCMpkklUqRTCZxu93rNnaxWGT/c8/x9KFD1NptoqkUaZ+PxVoNDQhIEi6g0ulQbrXQ2m08qspQfz+jw8MkYzFGUiki8TiHMxlKhw8TVlXGxsdJxOMburifj8QvRj7u1NG7euGQ0RaHvc22cMGJm/RSnxY32jJ6I0PTNIrFItlslsXFRarVKrIs09/fz65duwDIZDJMTk7y2muvEYlESKVSpFIpQqHQRR3/+fKMNE3j9ddf569eeIFjCwtEAgG2JxKEo1E6nQ61SgV3p0MoHKZeLKIEAkQ0jYCmIYfD+Pr78fr9BINBvD4fituNLEkMDgwwoSgUcjmeP3GCEHDrNdcQiUTW9Pyd75gv9to4nxBC7Mepo3f1wCGjLYbV2myvhex6K1pGa7n4NBoNFhcXWVxcJJfLoSgKiUSC7du3MzExwfbt20kmk0iShMvlIhqNsmvXLur1Otlslkwmw6lTp1BV1SKmRCJxSTG6RqPBP/7TP/H1H/2IxXabiM/HjUNDpOJxVJ+PTrWKFAggqSqNahVvIEAoHkdrNlHcbhRZxut2o7pcyLKMx+0mGA5TLJVQFYV6vU4xn6fVapHP56l6PLx45gz9Xi97tm1b93ji5bo3Hfn41Q+HjLYALkZ2vRY31la1jC73mHRdZ2lpybJ+yuUyoVCIRCLB2NjYCgtncnJy1f14vV6Gh4cZHh5G0zTy+TwLCwscPXqUWq1GPB63yCkQCPTcR7FY5K+//W0eO3qUiq6zbXCQUY+HHQMDuBTFECTIMgQCaLKMJxol6PeztLREs15HcblQ2m1UlwtN1+mUy0SjUWamp4k1GlTKZeLxOI1mk9HRUc5MTXHDDTdQLJVoNBoUVZUXXn+dG8bH19VKWqtYm1NH7+qDQ0ZvQNhl18L91m39rIfseisKGC4VrVaLXC5nWUC6rhOPxxkeHiaRSFxx7EeWZRKJBIlEgr1791KpVMhkMmQyGY4ePYrP51tBTIVCgc9+8Yu8tLBAU1UZGB4mFo8T1jSGIhHcfj8apgoNkCUJCaPNg+7zEY3HkQCXqtJut/H5/TSqVaKRCKVajaHhYRrNJqlEgnAkwtT0NJIkEQqFyC0ukkqnKRYKFAsF+vr6eOn0aXbE44wND6/B2T4X6yH8uJQ6eo58fP3gkNEbBL3abM/Pz7OwsMANN9ywZtbP+fBmdNPpuk6lUrHIp1gs4vf7SSQSXHfddUQiEas1wnogEAgQCAQYHx+n3W6Ty+VYWFjg2Wef5X9+//ucWFpiYNcuBvr7kSSJeDKJp1pl5/CwMS9dRxP1AE3XlMvlotVs4gsEqFUqRGMxlsplYtEorVYLr9+P1+cjVyjg8/molMsEg0FkSQJdB0kiEgpRbzRot1qEolE6uk42myWZSnF2aYml48e5dseONT83G6FC7KUe1XWd6elpcrkc1157rSMfXwc4ZHSV4nyya7tUVdd1q/rBemOrWkbd43Q6HfL5vEVAzWaTWCxGX18fe/fuxefzbci8uqGqKj6fj2d/9COeW1jAPz5OLJcj7HIxXyxSXlri+kaD7Tt3orhceFwuWq0Wfo+HWq1GwO+n3m6DJBGNxSgWiwwMDjI/P08sGkVRVYqlEiPDw2QzGUsp12y18Ho86IDL5aJaq6ED8USCTDbLQH8/8WiU+UyGmelpXKrKzNIS5WqVt1x33ZpenxstibcTU7vdpl6vI0mSIx9fBzhkdJXALkO9WNm1LMvWDbER2KoxI4BarWaRTz6fx+12k0wm2bNnj1V6ZjOhaRqPffe7/NUrr+AJBtmxZw+LuRwet5tUfz99ikJhcpJEKMT09DTNkyfp6+/H5/MRDodJJJPkczniiQSNWo1yuczgwABz8/NEo1ECfj+nz55leGgITdOoVCrEk0kA9E4HWZLQAY/HQ7FYBElCVRQK+Ty6abXrQKlUYmBggD27d1Or1fjxkSPcvGfPmgkbroaE2+54k7hvgRX3qiMfvzQ4ZLSJuJDw4EJPWRvtNttKbjohvV5YWKBYLPL973+fSCRCMplk586d+P3+q2YRmZyc5HOPPcZcp8PQyAjNVotcNks8kaDVbpNKJumUStz3kz/JmclJfB4Pbo+HzMICHU1jemYGRVHYsWMH2bk5AsEgQ4ODTE9PEwoGCQaDzM3NkYjHUVSVUrFIMBhEwiCiVrtNqVKh1WxSLBQ4e/q0QXKhENFIhFanw/DwMBKg6TpTU1OEw2G8Xi814KXDh7l17941IaTNJCNN084ZezUhhNOG/dLhkNEG4mJk15ciPLCXRNkIbIZ7ZC3RbDZZXFwkm81a0mufz4fX6+W2227bkDJHl4Jms8lffec7fOvYMQI+H+l43HC/qSrj27YhyTLzCwvIrRY7+vpo1evccP31zM7N0Ww2GRkZYX5ujlQyiUtVOfjaa7TbbUvtFo/HcblcTE1PU8jlkIDS0hJT09P0p9OUKxUkSaJYKBAOhfB4PAwMDpJZXCQaiTDQ3w+SxJkzZ4zr0BRHpNNpZufmGB0exufx0ABePXqUm/fuveIY0tVgGa0GRz5+Zbi67r4tiItts305EL7rjcIbzTLqll4vLS0ZLiub9Hpubo7Z2dmrjogmJib4L9/5DsdKJVLRKKPj46iyzFKlwti2bVSWllAlCUXXiUoS8UQCSddZmJujL5VCVRRm5+a4/oYbcLndnDlzhrvvvhuv18vU1BQLCwuUKxVePXCAVqPBzl278Hq9uD0etE6HoeFh0HXarRYuVSWVTFqEg5CJA7qmEQmFKBaLxKJRkCS8Hg9en4/FXI54PI7H66Xa6XDw+HGu3737ihbgzSajSxnbkY9fGq6uO3AL4HLbbF8OtrKb7nLHEoozQUAXkl5fbTd/q9XiK3//9zw7N0dH0xgdGGD3NdeQz+fpaBp9fX3UKxUSiQTzs7OopRLX791LNpej024zNDJCtVolu7jI4OAgsqIwPT1NOpUiGAxSrVbx+/3cd999AExPTxu5Rs0mrx86RK1epz+dJhgMEg6HabZaqKpKR1jvQkQDlrIuHIkwNTVFNBpF0nUkWSaVSHD27FmCoRBulwu/309xaYlTp0+zY3z8ss/PZrvpLteyuxT5+JvVpeeQ0RpA5Pw0Gg3L8rELD9ar1cJmuOk2yhK72POl67qx+JrkcznS66sln2l2dpZPfuMbVDWNVDKJqqpE4nE0c34er5eg30+92eTUiRMojQbbR0aYnpkhEg4TMUUK1XqdwaEhZGBqaopEPI4vEKDZapHJZBg0RQriwWnPNdcYEvBOh0OHDuFxuzl+/DgdU7gQTyQImm66DoAk0W61AAxSMitK1Gs1vD4faBqartOXTrMwN8fg4CC1Wo1avc6LZ88SCgRIp1KXfH7OV/5oI7CWRLiafPzN3IbdIaPLgN0PbG+zffDgQespfCOearaym+58Y60mvU6n05sqvb5caJrGt//xH/mbw4cZHhkhqqqGVdJo4HK7WZifJxgM4lFVTp85g6yqxGIxBiSJg6++Sl86jdvjYX5hAcAim6mpKZKJBF6/H3Sd+bk5+vr6UBUFHZifmzPKEwFIEp1Oh2QqxUB/v1G/rl7n1MmTLOZyZObn8fr9xGIx0HVanQ6asJAkiWg0SqFQwOf1ogP1RoNquUw+l6NSqZBIJgmHw6RSKV6fmiIYCOD3+y/pPG02GfUSMKwFzmc1vZnasDtkdBGwCw/O12ZbyH/XMwnSjq3spoOVFksv6XUikbhi6fVm39DlcpnP/cVfcKzZZPc116DIMu1Oh3A4DLLM955/nnQqRSqRoFyrMTA0RNDvZ/H0adRQiFQ6jcvlYmZ6Gr/PRzQaBV1ndnqaaCyG1+dD1zTyi4uEgkE8brdBJs0mnXbbIg90nUKxSCgcRgejl1EgQDKdJplIAFAoFMjn8yyVSlTKZVRVJRqNEgyFaDebzM7O0m420QGvz4fP72fvtdcyMzNDIh435OG6TiiZ5NUTJ7jjuusu6V7ZbDK6kIBhrbCaEKJer/PSSy9x++23oyjKlpOPO2S0Ci6m3husvDE2erHeDDfdRo5Xr9c5ceKEVfV6vaTXm+Wmm56e5tFvfIOaqrLvhhto1Gq02m2SiQTzc3MsLS1x3XXXIUuSoU4bGSEUCHD29Gl2RyL09/czOzPD7PQ0wVCISCSCDszNzhIMBgkFAiBJ1Go1Gs3mct4QkF1cJJVKWYIECWjW6yQTCWSWXVKddhvVFNnE43ECgQC5fJ5iPk8hl+PM5CTNdptoJILH60X1eEinUkaujSTR0XXC4TA5M8dJ0nVcikIzEODYxATX7Nhx0efrzUJG3RBWkK7rlEol677favJxh4xM2Ou9iZ9LlV1v5STUjRhPSK8XFxfJZDJIkkQ6nWbbtm3E4/F1Ubxt5E1rP3evHjjAf9m/H1ckwr5du8guLlKuVEin04YKLZEgFArh9nrptNvsvfZayuUyr732GoFWi+DAAOWlJeYXFrj+hhuIhMNouk4+l0NRVUu+rbXbZDMZhoaHDXEBxnnWdX1ZzCFJtFotdAwBRdUU3rRaLRYWFqwyQrIs4/J48LjdhMJhbr/jDiRJotFoWMVdX/rRj0ilUsQTCaLRKJFIhEg4bAgczPidDvj9fmYyGdL5PPFY7JLO32a66Vwu16aMLcYXa5HAxcjHYfM9ABeDNzUZrbXsejPI6I1MfkJ6LXJ/lpaWCIVCVpsFRVG45ppr1my8qwXPfP/7fPWll4jG42zbto3jp07hdrnYsWMH5UqFkdFRcouLhvtMkkgkk2iaRqPRoD+V4pahIWRJ4tixY6BpLJVKlAoFlioVatWqkeczMwNAJpslGAySMeNJaBozc3NEo1GmzpwxcoMkiXyhgEtVyefzuFwuVJfLqEAejzM8MoKOIeOWZJmlUolmo4FkXgsut5t0Xx/9/f1EIhFCwSClUonTExM0Gw1C0Shut5vp6WlGR0aMZFpdJxKP8/rp09wdDl+Um3WzyWgzlXzQW813KfJxu5r3asSbiozOV+9tLWTXW81SWY/x7NLrXC5Hp9MhkUicI70+efKkVWJlvbGRNfD+5/79PHHoEOFIhHAsxvz8PH3pNPFolGqtxkB/P/lSiUKxyLaxMdxeL+12m8VMhmg8jqtSIej3c3ZmhuGRESrVqlFZu16HTIZrdu82rHyT6KPRKOm+PuP6BlrtNm1NY2hoyJqXIIfB/n4k82la5BQpimJZVB37udJ1NDBeEzEOXcfn8+H2ehmLxxnfto1qtWrFmg6//jpz8/MkEwni8TjhSARXKMTxycmLctdtNhmtl4DhYnEhMryQEEK8drUKIbY8GV1Jm+1LxUZbRlbi4QY9sV0OGQnptbB+7NLrffv2nVd6fTVU7V4raJrG3z75JKdaLSrtNqPpND6fDz0QwOV209Y00qkUjWaT6clJ9lx7LW5VpW3KsROJBOVSietSKaZnZ4mY+TuKJKF3OszNzzM8NLRMJLpOuVRiZHTUqLataSBJLJqxIsk2LySzrYTpBhXXsCZq0om4kiQZ1pAgBYz4k2SeR03XCYdCFEslQn4/uq7j9XoZHBxkcHCQoaEhMpkMaBrHjh2j3ekQj0Zp1uvEQyHS6fR5z+Fmk9FmxYwELjXPaTUhxNXahn3LkdFqsmtY+6TTbsiyvGFP87B8kWmatiGFPC+WjDqdDoVCwcr9uRzp9UZbfeuJdrvNN3/8YxY1jXAsxuDAAKlUilq9Tr1WIxQKEQmHqdVqnJqcZNv27bhVlXqjwdmzZwn4/RSKRdRKhZrPh8/nIxQKUTerZ0/PzNCXThuSbfOcLSwsEI3F0IGOpiFLEq12m1a7jcfjsQgFSaJSreLz+SwLSbSKaHU6VhsK3fw+dEwCMv+XZNkgNk1DB9weD81Gw+ihBMvJsUA0EmGpVKKvv594MsmiaEpYrfKXf/d3vGXfPqtXUzQaPecevRrI6Gpz010KzufSuxrk41uGjF544QWmpqZ4+9vfjqZpHDx4kHQ6TX9//4Yx/mbEcGDj3EznI4jVpNe7d+8mFotdMllulrBgrdFqtfj8X/0Vx0olto+M0DcwgKZpNDWNfC7H6NgYHq+Xcq1GLpu1hAhT09OUSiUGh4YsogpoGoopp8Z0xZVKJQKBAB6zQ6uk69RN2XYoGASWz2XBFAtonY6VWyRLEpVKhVAoZFVZEBZPu902RCMmQQlCQjd7IrXbuF0uMLeLhVJRFFpmGSEkiXanQ71ep1Ius7S0RGlpicGBAUZGR9m2fTuyabEFdN2o9P3jHwOQTCZJpVIkk0ncbvcbngyupvFXs5p6CSFUVd2Q494yZPTcc8/x7LPP8pM/+ZNGF0ubEGGjsJluuo2AnYxE1WtBQEJ6nUgk1kx6/UZ30zUaDT7753/OoqIw3NeHx+MhlU6jtVq88vLL3Hbnnfi8XsqVCpmFBSrVKvF43LB0ZZk9u3cjm2RQymToi8WMGnGm26xaqdBqtYyacCZ0SSKzsECfWcRUM+M9uq5Tq9dJpVKGEEGSLCun2WjgM+XYgCVMaLfbKKpqvM+0ioSbTpFlOu02mK49kaskSRJut5uZ2Vm8Ho8hPwZ8Xi+hcJhkKsX01BSRaNQiRHSdaDzOUibD3TfcgCRJFItFMpkMExMTvPbaa0QiEYOE2TwLZbNjRutJhuezmjaqfcqWISOfz0ej0bBOnKIoG0oMsHlVtDdqzI75hHvw4EFyuRySJJFIJNi2bRuxWGxNZa9vdDddtVrlj/78z6lEo4wND3P40CGuGRxEBk6dPs31N95IdmGBarVKu92mr78ffzBIIhYjm82SSqeNGI6mUa3VUGo1BvftAwxC6AC5XM6oiMCye61YKOD1evGYJKGahFQoFgkGAhZhiM/Y66LpmoZuCh10DFm4y+wQK8kyms1Np5iWkavTod5oUKvVaNbrBmHJMtWlJQbSaVwejzGesLp0Hb/fT9ksWiv2qQBKIMCZ6Wm2jY4Si8WIxWLs3r2ber1OJpNhdnYWXdd5+umnSSaTpNPpdZP898IbLWZ0ubAT7kbeg1uGjNxuN/V63fp/o60U2Dw33XqNaZdeLy4uUiqVUBSFdDrN6OgooVBo3Z4U38huumq1yp/+xV+wFAyya8cOpqemGB4aQpJlps6exW/WiQODLMLxOMV8nv6BAbKLiySTSVymdd/WNGZnZrhn584VgoHZmRkSiQSLuZylfOtoGsVSieHhYSNmY3uSLy8tMTA4aL0XQJYkqrUaQbNckCANzVx0250OLo8HJKPba6PRoNlosLiwQLPdhk7HmKvHY1RrSCQsS0czY1NivqK+ng5EolHm5uaIhMMrxA8+v58zmQzDAwMrHmy8Xi8jIyNEo1G+//3vc91115HJZDhy5Ai1Wo14PE4qlSKdTl9yiaFLwWa7CTdj/I2MG20ZMvJ6vTQaDev/zSCjzbCM1tqCENJrQUCdTod4PM7Q0BD9/f3Mz8+zffv2NRvvfHgjuuna7Tb/7X/8D7JuN9dcey2TExNcu3cvh48e5ezZswBs37YNyUygHhkeptnpoLXbTJ89iz8YJJfP4/V4cLndFPJ5ksGgkcRqno98sYjH48Hn9yOzLM1ezOWIhsOWFFs8HNUbDVSXy6pJp5uvI+JF4bCVZ9doNmm3WrTabWZnZohEIhRcLhRFweV24/F4CEUiuD0eIuEw6XTacAWasSbzpOLxeqnV63i9XouIZAw3oktRUCSJerNpxYIwj8MdCnF6epqdPSp7C8skmUySTCbZu3cvlUqFTCZDJpPh6NGj+Hw+i5hisdiaWhJbKWa0FhBVIFqtFoFA4Ir3t2XIyOfzveksIzHmlSzavaTXPp+PZDJ5jvR6YWFhQ+NTbzTous7Xv/MdjpfL3HzHHZyZmmL72BiL+Twz09OMj48zODxMp9WiVioxPDICus5SLocuy4xv22ZUXOh0aDQazMzMIEsSrnqdqakpa7HPZrMMDQ2Rz+VYKpcpFItouk52YYHh4WGWKhVj4TKtpdnZWcLhMPPz82idDh1besPMzAwDAwMG2agqqsuF2+MhGAzSabVI9/dbbjDdLBukqiouVaXd6Syr8mwuPFmS8Pv9VKtVfF4vsGwdCUIJRyKUCgWDzFi+dzxeL1OZDGNDQ+e4fXtZBoFAgEAgwPj4uJGPZVbvOHDgAO12e4UIwmvO5Uq+360aM7pY2AlIuHjXCluGjDweD81m0/p/syyjNwIBCum1IKCLlV5vZBxnI8daq3Gef/VV9p86xZ133MHC/DxuVSVfKNDudBgZHqa8tMSZiQkW83li8TjlapVwMEgmk2HX9u24fT70TgdFktDabWKxGG5VZbfZW0jXdU6fPs34tm2oqoqm66iKgixJZDIZw8Jpt1FMObaGQQKyLBOPxZBkGUWWUVTVIipd1xkeHl6RLyQsJ93cv2ScJKsihI6Rk9RptxFnzr4oSRgPh8VicVn4YLrvhNTb7/eTW1ykI1yJ5kIvSxKuQICzMzNsHxs753s63+Knqip9fX309fVZLuZMJsPU1BSvv/46oVDIko5HIpFLXki3soDhQuPaq9RAb8HDlWLLkJEQMNirKWx1Nx1c/KJdr9ct8hElX5LJ5CVLrzfy+N5IbrrDJ0/yrZdeYueuXcwtLrJULJLu6yO7sIDqdlOuVAgFg7jcbu6+6y4URaFUKnHs5Elq1SqTZ88SDoeJhsO4PR4KxSL+QIDS/DyB/n7DgjJl3NFwGN10i3nNvCOvx8Pw4OAK60TXNArFIulUCr/fb7V8EIt/tV7H4/UigyUkECQkzrxQyZkny0qQFRW47a+J/WssP5hJXfsU8SFZkgxvhtnsTxCnhiE+OnL2LGPDwyuuy0uxTCRJIhwOEw6H2bFjB81mk2w2SyaT4aWXXgKwiCmZTF6U+ObNImCAZQuo2WyetxPtWlqLW4aMvF7vOW66jUxAhc1x061GgOeTXu/YsYNAIHDJF9FGW0ZvFMzNzfHV738fTzTKiYkJ/D4fbpeLqbNnDaFHOGw0rfN42LZ9O6osI6kqXq+XkN/P9tFRJqemWMxmkSSJfD7P8MgI/apKPBAwrBjTmh2x1YkTpJPNZonH4xaZAJabrlwuMzAwYEm8NZNAhHjB7/OhgSU8wFS82UUOYl/CYtLMsWFZUCH2Kdkk4C5Vpd5s4vV4jIW8630hs5q31+ejUq1SLZdpmvlJit/P7Pw8w4OD1nm+koXP7XZblSDEvZHJZDh16hQHDhwgGo1a5BQMBnuOczW46dZzfFGrs7tOp8vlWraYzeuhO09pLbBlyMjj8VwVAobNjBnZq17bpdfj4+PE4/Erll47brpzP5fJZPjjv/kbpms10HUi0SiJeBy/309/fz9ur5dMNku73SYSiRhP+rqO1moxt7DAkaNH+c53vkO1WkWVZSKJBG998EHi0SiZTIZqqYTaaKBpGkPmwmxXUbbMKiMB0/Kxv95stZAlyXLbwbJFo+s6jVqNRCxmkY/d0hHvEdezlV9m/IOMUavO7toT8nKxaPm8Xpr1Ol6PxxpD1LOrNRpUKxWmpqbotFp4/X7CZhsKYSGdnp9naGBghTtoLRY/WZZXSMdrtZplNZ08eRKXy2URk106vtkxm/WwzOzl0uyl0mDlPWj/3atq+Fpgy5DRm1FNJy6E6elpjh8/TqlUMiotJxLrIr3e6Nyfq9FNp2ka+XyebDbL/Pw833zpJeY1jeHBQXbt3s3ZqSncHg+pVAq3243W6bA4P08sFjPK8GgaLV3n0IEDPLV/PxOTkwSDQQaHhvB4vczPzfGDH/yAX/2VXyHg8zHq8XDg1Vc5fPgwXq+X0dFR9uzZQzKRQMJozhePxZYtD/PJVZFllpaWCJrXgN31BliqOkEQ4rOW0s48N6I0kFVlgZVuPE3XUYT7zq6q03W8Ph/5fJ5gKESj0aBeq1GpVNB1o31FIBhk27ZteNxuK+dILHMK0FQUCoXCilyq9bAMfD4fIyMjjIyM0Ol0rEK+R44coV6vW9LxrRIzEgQkYuz2+8xuAV2IgNa6ZNCWIqM3g5quW3rdbDap1WoMDg5y/fXXGwveOmGruukudEzC4hSVxlVVJZVKcTafRw8GuXZggFRfnxG4N3Nr2q0WmtfL2bNnicfjlIpFGvU6mUaD4ydO8KOXXuLEqVMgGc3vThw/TjKZZHR4mLn5eU5PTpLy+3nmhRd48aWXrNbhc7OzLC0tGW0dNI1mo0Gj0cDj9RpFf8GK31QrFaMFub4s9Ra/W62WIX5YPgnGL/N1EagWAgOp6xwpkoQky+hmoVUrn0jTaHc6NOp1KrUaU2fO0Gm1cLvdeP1++gcGUGXZiA3JMh6Ph4WFBcKhkJVHJdyPwXCYU9PT3LrOZLTiuBTFsoquueYaKpUK2WyWhYUFms0mr7zyCv39/aRSqTWXjl8IV0JGdhFCtzUjzqvdIrKK5doI2P6+brfdWmBLkZHo4SFqKW0FN51der24uEihUMDn81lVr48ePcr4+DgJszX0emIrWkaroVqtWq6bUqlEMBgkmUwyPj5OMBjkwOuv8+O5OaJ9fURjMUKBAKdOnSISi5FIJCgVi5yZmKBYLhPfvp3TU1O4zJI4ZycnKRUKuFUVt5m7U65WyefzDA4MgK5TqdWoz83xyoEDDA8PG9YPsJjNcnpigrvvvptSsUitWmXi1ClarRbhSIR4IrFsKcmy4TZbPqGGFSRJVGo1PF7vCuGBiPeIhFlVlhHyAQno6GbBVPNvVVGsB8BarWZ4Jkwryuf3EwwE6O/vZ2BoCMWs4GDVxDPHUBQFXdPomC4+ANl0FyqKQtFMtvWYcaeNfEiRJIlgMEgwGGR8fJwnnniC8fFxyuXyukjHL4RLJSO7C86uguu2hHqVAZJl2ZJu2y2hXlaTYxl1QciR6/W6FYB8o7rpekmvRYD1mmuuWSG93kjS3YoxI/uNWCwWyWazZLNZ6vU6sViM/v5+rrvuuhUWZy6X4yv799O3cyeqLBOLRCjk8yBJJGMxJMDj9ZIvFtE1jez8PB63G5/XS7VcJpPNGoVJWy1KS0vIimJUEKlUyC4u4nK5CAaDnDpwABkMN5VpnSSTSY6fOMGZs2eJR6MEQiFuuuUWGvU6ucVF5ufnOWX2gkqn09SqVTzm9SIsI13XjaZ3oZAlKLAvMjLQaLeRFMUqjipyn1qmldhsNFBlmWA4TCQcxuf3k4jHwaziLVR4bo+HVrOJ6vGsqLYg2awpr89HrVolGAgYrwnikiQ8gQDTc3NsHxvbdAEBYD2Q2KXjZ8+e5eDBg4TD4SuSjl8IF9NptjsGZCew7ljQ+X7DMil1W0KCnNa6OsOWISPxVNJoNAgGg5tSm+5KCFBIr4X44GKl11uRIMRY6412u00+n6fZbPLcc88BxmKzY8cOYrFYz5pnmqbxX7/xDQZ276ZYLnPNnj3omsbU9DTX7N1Lu9OhsLhotHCIRhkbG0MGnty/n1d//GOCkQhL5TISkEilqNRqVKtVPF4v7U6HpXKZt7zlLaQTCY7X6/hM9xxg/ZaAytISo8PDFPJ5FEnC7/PhGx5meHiYRqPBoUOH0DodXnn1VdwuF7F4nGQiQSAYRJZlKxYilHmapqGZFRg67TaFYpFyuUyr0bCqe7u9XqMCQzDIQH8/Lrcbl8tFOBSySgjZY05IEh6Ph1qttlwayGYBiespGAySz+etUj66GfPSdaMf0mwux7bR0U0no+6FvZd0fGFhgdOnTyNJ0iVLxy9m/F7Hb3fBCRGCfZ6W+MSc/4Xca+L93UTU/ZoQuDiWURcEGQm3wdUuYNA0jVKpZFk/dun19u3bL1p6vZGiia3gpqvX65b1k8/n8ZiFPG+44QbC4fAFz/l39u+nEY9TLZXYMTaGIsucnJykr6+PYqFgPY0KUtB1ne888QTPPP00mm60XqjXarQ1jWuiUeLRKMVCgVq1iupy8ZZbb+W+e++lVioxNDTEwYMHjRpxZjuGglkKKBwKEbBJkO0uMEmWSaVS9PX10Wy1KBYKZLJZzpw5Q7vVIhgKUa1U6LTbqOZDji5JeFQVxeUyxAWBAH6/36gSjinxNhcx1ZT6ulTViBnZyFKIIsSC5/F6KeTzVr6Rfa5iv263m1azaYklNGzycUmiZYoxNpOM7NZAL/SSji8sLHDy5MmLlo5fCHYy7HbB9bJiutFNRN1V/3sJGeyEY7eYulV3a4EtQ0aKoqCqqqWo20w33WoX7XpIrzfyON+IVpiu65TLZYuAyuUykUjEsjpbrRYHDx40ar9dAEtLS/zT668ztGcPGuD1+1nM562YUjgcptNuU2000HSdQCjEsaNH+f7zzyPLMulUCpeqkltcZGFxkdmZGVSPh0gsRr/Hw30PPMC+fftot9sszM+zd+9eMgsLvP7aa4blZEq19157LS5VZX52lmw2a9W8E9dcsVhEVVUjb0mWcblcjAwPMzY6alyDuRxLpRLT09OEIxES8TjRWMzoPGteu21NQxbqOZMkJLBaSEiAJMu0Go3lnCObGk7Mxe1y0Wm3VxCQgGjcJ2HkstTNWnaC3AQ5+QIBzszNEb/MRXwtIK7Fi31AFNLxPXv2UKvVrPp53dLxRCJx0QnnnU4HTdOoVqvnVEKwz6vb5SbIpBeBdL/WTTii0d5q58Fx060Cu6Jus9R0sNx51b4QLi4uGlLbYJBEIsHIyMhFPYlfzJhbyXW2FmPZ5ddZM8dHnPNEIrGC9EXJmovB1/7pn0iMj5PL5bj++utZLBQ4MzlJ38AAqWQSTdfJ5XIMDAwwMztLNBzm8JEjNFot4pGIZbkEQiHC9bpR/+/66/EHAuzYto1QKESlUqHdahFQVa6//nrGx8c5fPgwp0+fxu3xsHvXLkLBIKl0mmajQbFYZGh42LJcwFjwB/r7V/b1kiSrBpzP57OqMhQKBRZzOU5PTuLz+YjGYiTicbR2G8XtNsQMtrgSLC9IiqKgi/pk5uKlS8uJr7L9Kd0ULYg7UteNRoDC2goEAlQqFbxu9wpFoAS02m1Oz88THh/fdDK6HDWbz+djdHSU0dFRSzqeyWQ4fPgwjUbDko6nzO/EDrsF1Gg08Jq1C4FzCEj8tntL7K45+z67CchuCQl0b+8moLVed7YMGUmmf1qQ0Wb1MwLIZDLk8/kVVa8HBwdJJBJrLr123HQGWq2WRT5Cfp1MJrnmmmvWRIL72vHjzLXblGs1RkdGmJ2fp1ou0z8wQDqdBlkmMz9PPJEwqlGbMZJ8Po/icoGZ7CrrOnQ6KKpKLJHg7jvvpFKrGW27NY10MslcJsPI8DCSrhMOBhkaGqJaqVDI58ksLNBptRgZGqLZaCw/zeo6CobKDV233G/2hzJh1YhFzef14unrY6C/33DnFYss5nK8fugQ5XKZdF8fw4ODhCMR5C4ZuGTGkdqaZlV1wLY4yqZYQsK4F9utFrLLtUxsXe/zBwLMzswQi8fRNY3y0pJBzO02Xq8X1e9naWlp08noSse3S8d1Xbeqjs/Pz3PkyBH8fj+JRIJYLGYITFi2dDqdjiHf70EGlvjEth7YY0f2fXTfC9376d4GK11862UdbRkygpVVGDbKfWWXXmezWQAmJiZIJpNce+21RKPRdc1FeCO6ztZqrAvJry/mJrmY97RaLb794ovEBgeZN4UBbkUh2N9vNHSUZcpLS3g9HjwuF4uFAn4z1WBocJDJiQk6rRa4XLR1nWa7Ta1Woy+dpqNpJBMJ6xppt9u0ajXig4N0dJ1jR4/y3e9+l3Klgtfj4cevvEI6lSIajeL1+5mfn+fY0aMEgkEG+/spm7XeRFKr3TUmfjebTaslhTh6IZgRFt4pUy4+MTFBwyykG4vFlssOSUZlB63TWU6YZbm+nG4jKLfbTaNex+1yLSfRmhB16pqNBrlcznhN1/EHg6SSSRQzPtVqtZg5c4aY2Up9oyHWkrW8l+3S8bGxsRXuvDNnzlgPsolEgmQy2ZMMurd1y797kYp9ey+3nf2z3eo6+9zFNoeMesBehWE93XR26fXi4iKNRsMKUBYKBW655ZZ1TT61YzNiRhsRSO61/0uRX68lHvvBD/DG48xMT5My80laZg2vcCBgqOAqFfr7+tCAVqNBNBwms7DAnXfeycTkJBMTE9RqNTRNo9ZqsWPbNu67/35Cfr9VNQFJolgqEfD78ZvX8vdeeIG2+X5dkvCaRVSffOopPC4Xhw4f5uzp0yguF+NjY+zatYuhoSGDZGTZUK+JckCmq048YQvZNvrK6gxgtGaIx+O4XS6qtZoR5zJl45Isk81mcXs8aKarzXLjmWQjm+Pruo7H66VpxtEEGo0GlUqFRr1Op9PB4/USjUSIxeMETDK1VHeAS1Up1eubTkZred13y7ABq1eTkI7ncjlmZmY4cuSIFRf3+/1EIpEVFlD3vKzvuIt0epGQECkIdMe+7ce+nmvAliEjSZJ6xozW6qStJr3etWvXCun1iRMnNrzb61aMGYFx44iKEyLuBljFXleTX1/OOKuhUCjw8tmztCWJSCjEyPg4Rw4fZueuXRTzedyxGJlMhlQ8DpJEu9UypNflslUV4eGHHuK7//RPZHM5FFnmxu3b+f/99E/j9/vpmEVIwQxQt1r4zL5Cc7OzLGazDA4NGaqyVguP10va7eaVl1+mL50mkUgwNj5OvdHg2PHj1Ot1xsbHl2M4YOUWWU/SPY7fih1gWFCaplntI0S5nKHhYdrtNgcOHKDRaHDw4EEKhQLNZpN4LGbEQM3PC4KVJQmXy8Wi6TWoVSpokoRbVfH5/UT6+qzKEZVqlXqtZihJbfMXllRTklZUWdlIrJWbrrsUT/f+7WOEw2FCoRDj4+M0Gg1eeuklms0mBw4csMRP4kdV1RXfcbe7zk4+q1k6vbb3ikHZz8FaPvRvGTKClW66bl/ppcIuvV5cXKRSqRAOhy8ovd5oFd9Gx4xg/cuyNBoNFhcXqdfrPPvss1azv+uvv37NkwkvtK+/f/55au02ff39BPx+yktLjI2OsjA3h6qqVCsVXC4XqssFus6JEyf4/ve/z9TZs8RiMXbu2kV2YYHp2VncqkooHObOO+4w6gZiKNIkDHfV0tIS/mAQuVYzSFaSVny/9WqVQDDI/Pw8lUqFVDptLM6mKCESiTAzM0O9Xsfv9a50iUkSiiTRaLWs+I/lxpOkFZUYNEDrdFbEgIRLz+1y4VJVhoaGiEajHDlyhE6nw/ETJwy3UixGIBjE7/PRNFsQSEAxnycejxMbGjIsNhsximRYv99P3myjvkL9pRuJsF6vl8VCYc2++0tBt9rsUtDpdKw8oF777PVbvC4We4/Hg6IojI6OEovFLKvp9OnTHDp0iFAoZFlVouuqnUC799t9TN3iBTvsIojzxY6uFFuOjOyWEVxaCY1ms2k9hdul12NjYxctvd6M1uMb6aaDtVfR9JJf+/1+ZFnmLW95yzkKo43C5NQUr549y/D4OIqq4vF6KS4tkU6laJo1viZOnWKb2Yb90KFDfOlLX6Jer+Nyu8ktLnLg4EG8Ph/xaNSKxXzjG9/gPb/+68SiUSsnp6PrNOp1opEIjWoVGehPp0mmUszNzDAyOmp9z5lMhoDfTzgcpl6rGefQzG8CaDWbaKJPEcuWUUfXqdXrRgFX8xitxd7mqhMWkmJzkwErrCxZlpFkGb/fTzyRIBwMUigUyOfznD17Fq3TIZFK0W+WS9KBYDC4ohWF2Leo5I19/8ZElsfVdVxuN4vV6tp9wZeASy3Fcz4CEjif/LrbRWZPZlVVlWg0SjQaZdu2bdTrdate5cTEhOW1icfjxOPxFWKu81k13cTUTcCrWU4OGfVAt5sOOO9CbV8E10p6vdGW0Wa46dZivAvJr5eWljh69OiGEFGv49E0ja9997skBgaIxmLUajUKxSKpRAJJNxqPeT0exsbHKVcqTJ4+zd994xuGVDeZxGN2edWqVdrNJrVqlWqthtbpcPz4cR77h3/gl3/5l42CoUClUjGqLUgSqvmdut1u7r/vPv7xH/+Rw4cPI8syi4uLjI2NoZuJlSJGgySxmM0yvm0bQTOuYh2XubjrQLvZxGe2aRBEhPhb04w4j5lwKqp5a7pOp92m3mjQajRYzGZRVZVKpULJrKodiUZJptNGl1qg2WiQNV3ak5OTljIumUjgN3s0rYgxSRK6JOHyeGjU68s5T8tfEug6HVm2atVtJC5m0e10OlY/oF7X1PksoW6Lo9fr9lpx9rn4/X68Xi+Dg4Pouk6hUCCbzXLixAkrnp1Op4nH49Z5vVDsyC757hY3dHudHDddD/Ry03WfKFECRhDQWkuvNzq/abPcdJeDS5FfbxTJrrbAvHTgAEVgJBIxXE2Kgs/lQlFVms0mqixTrlRwu1yoqkoiHmepUjGeQtttmpJEw6wq0Gw0KLTbVvmcWqPBD3/4Q66/7jquveEGNF2nUi7Tl06jt9u4bfLdbWNj/OIv/AI/+MEPcHs8JGIxduzcyfETJ3j2mWcoFIvEolGWSiUkSeLGG24wSumARTQihqPrOvVGg6ApGbbcL2ah0mazaeWzCGWoODuqquLyePD6fESiUQYHB4madfgi0ajVhE+SZWRNw+vxMDQ4yNDQEK1WixMnT7K0tMT83JzRBj0eJ55IEAmHQZLomON4vV5qtRper3el8ELXjQriLheFYpG+dHodrobVsVrZG7sF1Evl1t2I7nyWEKxc4Lvvbcsi7XKX28lJnNtEImElyC6a5amOHTtmFVmOx+PEYrGe97S91I/9tV5KPDGntcCWIiO7mk4wuvhCBPnYq16vh/R6M9x0VzMZiXOfzWYpFouXJb/eaLTbbb77yiuE4nEisRjZbBYJiKfT6EChWGR+ft7IB0kkUBWFYrGIpuuobjdeUz3WbDbRTDdNB3Cb+1dlGV2SeO7559m3bx8Ns8WCLMs0Wi0CLteKRnmhcJh911/P0NCQleNz/Q03oGsaz33ve0jA0PAwAwMDbNu27ZxqB612G63dptVuUzAfAjrtNu1Ox7CGJEOmragqLlXFZfYXGhwcXK62LRYeM44FrKzAbQtwW+48DPeaqigM9vUhKwrBYJBiqUQul+PUyZM0Wy2i0ahBTrEYAZ+PhaUly0XX7cILBALMLi5uOBnZF11BQHYVnJ1wRC5Pt8VjJ6BuUYBAr5iMfQ5CKNXtRutlpciyTCAQIBgMMjIygqZplgDr0KFDaJpGLBYjmUySSCRwu90riLC7vFA3CdnntRbYkmTUarUolUoAvPzyy7TMCz6ZTLJnz551df1shptOZGRvxFhw/otP11fKr2u1GvF4nL6+Pq699tqLLrO/kSTbPc6R48cpaBrj4TCdVotWs0k8kUCSJEqlErPT0/QNDNDf12epxiKRCMl4nJmZGZZkmUI+T6vdXk4GFU+aplggFokYtctOnaLVbhMIBMgtLlIuldgVieDSl3sQLZVKhpw6k1mxoAVDIXbv2sV1115LoVRCVVWmp6dXquUkCVVRDGWcoqAoCoFAwMj5UZRV3UPFYtH425yDPVHVEj6Y561tFjYFVsSC7NeLapb7QZKIRiJEIhG2b9tGtVoll88zPz/PxMmT+INBms0m4WiUoN+PxHJdPN20vMqboKgTpXjK5bJ1THYCslsyQlLdS4zQi2hETKd7e/d30m1l9XLZdVsv9rElSSKdTpNOp60QRS6XY3p6mqNHjxIIBKycppCtKWMvabd9nXNiRl2YmppienqaY8eO8ad/+qd86UtfQpIkQ5I6NHTR9Z+uFBvtptvIRVuge7zV5Nfbt29f0bb5UrBRFlP3OLqu8+zrr+P2eonF4ywuLqIqCoosMz87SyAUwu3xkE4mjQXZJJh6vc59993Hd77zHWampw2LQxCR+dOoVgmGwwyNjOAye275AwEKuRx+v9/ILxkcZExViUWjdMygdbVaJd3XZ1VVEFaHrCjEYzH6TYVaMpkkn8tRqVbxe70k02ncppUlHlpqtRo+n2/ZrdZl9UhmzMeKJYGVSyRyf4TbT8R6MBdiTTxBm/Ozx6NcbrdBqqwkLJ/fz0ggwNDQEJ12m8VcjqNHjnDglVeM3KNYjHgsRigcptlqsbS0BO32ch27dYTdAiqXy5aIQBzTaqIDu8XT7aIT23tVz+7e3uv9q1VY6EV8YrvY1r1dSMdHR0dptVrkcjlyuRyvvPIKslls99prr+2ZRNtNrmuBNzwZffWrX+VTn/oUBw8eJJlMcsstt/DpT3+a2267jRdeeIFwOLxhRAQb76bb6JiRuOhFXEFUv/Z6vWsqv94MkgUMa6VUYthMHM3lcgSDQarVKn39/WSzWSPmoijWoivpOqVSiUg4bFhDgKQoyKpqWK2dDsgysqoyODyMYlpOt956K7KiMDI+TjAQAN3ozupxu5FNK6ajabhUFb/PZwkOhLXiqtVQFAVZkqiWy3zv6FHOTk0ZCY+yzODgIHfccQfhcBhdN0QIblW12oIjSVbiq2RaH7KIzYhFzHyvJOI3GM3vJPPzkiTR0TQU/dzEWWEd6bqOS1Vpt9vGWGIRM/ctFjZFVUmn08iyjM/no9FoMDs7y8njx2k0Gvj9fkKRCPFUilKptC5k1CsGhHkcvVxu4jXxv327eDBdbbv9tzgHq20XlbnFeN3v7xY7dG8X4/YSLkiSUUqtv7+fgYEBq+p4rVZbcR/3Ip61vE/f8GQ0ODjIhz/8YR5++GE+/vGP02w2uf3224Gt23p8M8YTZj3AgQMHrJYXIvF3PVyfm+Gm+/Hp08iSkfNSLJUo5POMjo7iM7ui5nI5xsbHDdWYpiEBtUYDWZI4cuQItaUlZFVFlWWLUFpmgqOmaeQWFwkGg+y7/np++md+hlKxSMh0R1kdVhXFsliq5TIBm/pMEJJ9IW+325w4eZLZuTmGhoaslgxTU1O4XC7uu/9+JKDeaKC63VapICTJsuzEPiXJlHXLsiGv1o3ip7BMvJqw+DCss46mLVf3NiHeI5rlYV+89eXq3sYGyapv1+50aDabZDIZQqEQ6XSa7du30+l0OHXqFI1Gg9cPHSJ76hR33nZbz+Kilwq7BWSPjUBvlRmcG9uxK88udvtq+1nNpafr+qrJrRf6fPfvbjdetygiGo0SDAatYz+f+2+tcMVk9LnPfY5Pf/rTzM3NceONN/Knf/qnFhl047/+1//Kf//v/52DBw8CcOutt/J//9//96rvvxg88MAD1t9er9cw401sVk+jreKm6yW/1nWdvr4+hoaG1qRh2GrYDDdduVzm4MwM6b4+FhcXyRcK7Nm715JcV82meG7RAtv8fLlYxBsIUCgUUF0uPBg5a8gymnnOkCTSySTbd+wgl8+zmMnwxHe/y769ey2lG5KEZJKDIIylcplkMgksWymCFJAkK5aUyWTw+/3MzMwY3V29XoKBADOzsxQLBeKxGJ1mE4/PtzKHx+ZaA4MQ22bCq6jyjUkUwpoSi6tsvq5rmqGGs7n2rPMLxjHZzrUOlutQCIxE23JFlnF7PITDYaOskTk/RZYJh0LIkQjpvj7mJiZYWFjgyJEjBINBKxZysekYog+QuKZ7udTscmpRiV+8vpoazm4J9fJarFY7rtd2u2ut2yrq5aK7lO3dQgf7/AR6Ha99v93brxRXREZf//rX+eAHP8if/dmfcccdd/Doo4/y8MMPc/ToUaOScRf279/PL//yL3P33Xfj9Xr51Kc+xdvf/nZef/11Qyl0hRCmvcBmkdEb2U3XarWsoq+Li4vnyK+fe+65NetceSFstJvu9YkJStUqA+EwdcmIA4WDQas0TalYJBSJGDevpll16GQM11UikUDHkEHXKhU6rRayqoJu1GcLhsOcPX0aTZapVCrMz80xPTVFKp0mFg5bZKMIFROgtdt43IYOT1hHgkxE/KVSLlOpVDhz+jTNVstQy3U6qKpKLBYzOoDquqHUM8cRZNp9hnXdEArIpvuP7vfZXVJiToJszNdl05rSNc1oKWFbvJrNJk0z76rZaiFJRvWIcDiMx+OxWl1MT00tx5fMeWi6jiIZZb/i6TS33HQTmqZZHVZ/9KMfWVWx02apJLuLvlsFt5olIdYMuyoOlhfqXjEf+37s51L8FgRu324c2rkxJfG//f32Bnr2tJVud5t9fuJ3t9WzWgJv9/bVCMsO+7hXiisioz/6oz/iN37jN3jPe94DwJ/92Z/x7W9/my984Qt85CMfOef9X/nKV1b8///9f/8ff/M3f8OTTz7Ju9/97iuZCrAyzwgcN93FYjX59djY2Dny642K5WxkzEi4uo7Oz1M3W2TLqko6mSS7uEgyHqfZ6aADPrcbzKdl2XRdBiIRqpUK9XqdYi5nWR10OmiyjNfj4Zrduzlx6tRy7ob5u9Zs8uwzz/C2t74Vr2i7DVatNrfHs8JFJF4T0m9N11FUlXK5TL5QYNzW82dqagrJdDmCYQ2IenOwUvEmxtU0zbAGzL8tsYS8XDxT05dlxYotliSsNmH5yLJMo16nUa9TqVZZmJ+nXq8TiUQM8rHFfCz3o2T0Q7II0NynEEcIywxFoVqtEgqFGBgYsGId+XyehYUFDh8+TNOsNp5IJIhGo7jMFhbiO7er3y4kIuh0OrjMCuK9XGL2a6nXdvvr3dt1/dxqB93bxed6WUZi3qsRqz12ZY8p9XIZivd3N+/rPm/itavCMmo2m7z00kt89KMftbbJssxDDz3ECy+8cFH7qFartFot4vH45U5jBex5RmI+W90yupxFW9d7y6/T6fQF5dcbSUYbATHO/MICr589SzKdxh8OM3nqFAPDw3jcbjLZLLV6nVA4jMuMHekY7qxmq4Vaq/Haa6/xzLPPItkqJSNJYCZV15tNqtUq4VAIt8uFDtRqNWrlMhMTE0yMj4Ms49Z1Rrxe3MmkES8ya9hZQgLxJCwOQDfEJMFgEL/XSy6Xw+vx0Gw2cSkKwUCAerVK0Cw+aneVSZK0IodInI8VCw5YVRmEpWIJE0yXYttUDjZbLWr1upFj1WiAbpTw8fl8JJJJPF4vLpfLeMCxzUEci2g9oes6sqLQbrcN1aFJVHaXk+p2U1xasnr+GNOUSSQSRCIRtm3bRrFYJJPJMDk5SblcJhQKWd1VA4GAtRD3yguC5QW+e0G+GJdVLzFC9/bumJI9ybR7/3ZLTuxntRjUpRKQ/X7unmf3+3qJJdZqPbhsMspms3Q6Hfr6+lZs7+vr48iRIxe1jw9/+MMMDg7y0EMPXe40VsBeDgjeHJbRxV4MovJEJpO5Yvn1RlosG4XvHzlCo15nbHSUWrWKLBntGtwuF4lkkjNnzpCZmyPd3290I5Ukpmdm0DSNcCBgBdcRuUWKYkm6Z6anyefzyBjWO5KE1m4T8PuN7YrCvn37WCqXmTt9mlOnTjFx6hTNZpNrrrkGn8djLApdT+S6ZlSAdrtc1gJbKpWoVipEolESsRjIskEmqxy3BFZSqRAh2BcrTNIRuT7CYmo0GkbX0sVFms0mS8EgLlXF7fUSCoeNJF6bJadjtIHQ2u1lebjYn65blcuFfNzjctFsNFAFuZuEJMtGWwyf18tiscjw4CCA5X4T7ixd1/H7/YyOjlpVr0UlgomJCTwej5VTE41GVzz5G4e9kiBapksRzu0I0L3d/nmxvXvf3UTSa+Hvfr07htOtlhP7txOKfbv1nXdZOr3eIyyjbsvHvrat9QPjpqnpPvnJT/K1r32N/fv3r5lEs5ebbqPjDpshYFhtvPWQX281ywiM9iAH5+dJ9/UhyzKVchmfz2cshMBSuczg0BBFkzgmJidpNhp02m3SAwPMLSwwOztrSbgBg5BsSrV6o4GsKFQrFbw+H5qmWQtKMpEAMAL0AwPcODxMuVzm2LFjnDl7lpMnThjkYnM3gbFwN5tNK6l4cmKCvXv3AsZ1ODU1RV8iQSwaNawYUyFnP7PCOtF13bJMOp0Osmkx1FstGvU6rWaTRqsFuk5ucZH+dJpoPE4kGkWSJKOck0lY1lM1y1aUpmkoqkq9XrdITUAs3DKG+1KTzBp1ppzbrhwUlpqk65RrNepmP6ReZGJfyN1uN/39/QwODtJutykUCmQyGV5//XUA4vG4VVxUuPPsVossy9YD22quNjFuN+yW0WpEsFpCbLeLvPv9Yv+r3Ze9rKfVLLvVLK9e59W+ba1w2WSUTCZRFIX5+fkV2+fn5+nv7z/vZz/zmc/wyU9+ku9+97vccMMNlzuFc+Dz+c6xjDaqOoF9zM1y0+n6udWvw+EwqVSKnTt3WqXl12q89cRGjjM5NUXD46EvkTCC6uaiLcsyHU2jUasRi0SYrVZpNBpG64hqlXw+T7vdxhcILC9O4sFAli3LSCykLlU1xA1mwVSXy0UoGGTf3r1W4F4sAC6Xi107dxKLx6nXamSzWeZmZzl14gQhs5WJbMrGfT4f1193HeVymTOnTxty606HRDzODTfeiCzL1BsNIwEWLFm1pmk0Wy067TaNZpN2q0Wr1aJQKCDLMpFaDdXlwu12E4pESLjdKLLM9MwMiVSKQCBApVKx2kToYtG1XY/CAgIsYYVkzsGeJCuSasX58ng81CoVw2Kyu7A0jXazSafdplqrGWNL5wblV8uzEfMQJXAAlpaWLHfeoUOHrGotqVQKr9drEbSwuMSx9SKO7u3dqjp72+/u+FD3++37tltG3XPoPs5u8rO/t3tbtzVl34f4vxfBrsfD4mWTkdvt5tZbb+XJJ5/kne98J2AcwJNPPsn73//+VT/3h3/4h/z+7/8+jz/+OLfddtvlDt8Tb0YBAxguhKNHj1ry63g8zvDwsFVvai2xkWS7UeOcnJ8numcPgUCApXIZr9tt+enLS0tWQ7NcLkc6nSYQCBDw+dh9551WPa9mrbYcyF8+AMs6UhXF6ODq8y13MZVldu3cybYdO1jM52nW67TNbrDlctmwXgGP12s1t2s1m2SyWbKLixSLRSqVCguZDMlEggcffJDp6WmWSiVcbjd96TQ+n498Pk+pVKJuyqcFZElCVhQ8bjeKy4XPjOl4fb6esZ0V7jLxeeGyAiRZXuFys4+j6zpuW+Kr5Q7sep+Aqqo0222DpMxq2O1GA93tptNqoUkSmmSo80Svn15P+N1P9r1eC4VChMNhduzYYbX+FlWvA4EAyWSSdru9InZkFxHYLTCx39WECPbuq6sF/+3vF+OJh+pe8xcuQ0EoYoxu114vXOz2XlbchfZxqbgiN90HP/hBHnnkEW677TZuv/12Hn30USqViqWue/e7383Q0BB/8Ad/AMCnPvUpPvaxj/GXf/mXjI+PMzc3B2D1gb9S9BIwbEU3nV1+nc1mrWO85ppriEaj615xYiPddCviF+uAdrvNYrtNyu3G5XbTzudRfT6ajQal2VkOHT5M0OdjYGCAcDjMyOgo6DrZXA6/12uU7BEuMFU1mtIJa1x8D7qRzLnv2mtRXC4mJybweb0Mjoywe8cOps6exe/34/Z4aLVazM/NsbCwgKZpFMyF20o2NeXS0UgErd1m8tQpTp08ySs//jFuj8fqYRMKBlHMBEm3243H4yESiVgVtrsXbivIbS6EinBRwQo3mWX1SD3ED4KsxPcnFt0eVgTYyMducYDlrtPbbVqmp0OUJNLM42+1WpSWlqwK36stjt1xnW6y6rZkvCbxDw8Po2lGYdGMmccFRs+qdDpt3We9gvndFo1dXt0tl7YTmZ1Qul1q4rVeOUfCOhLHI17rJTNf8X1dgKjPJ6joZdVdKa6IjH7pl36JTCbDxz72Mebm5rjpppt47LHHLFHDmTNnVpyQz3/+8zSbTX7hF35hxX7+j//j/+DjH//4lUwFWM4zsn9Bm6Gma5slYdYSq8mvI5EIU1NT7NmzZ83H7IWtFjNayGapaRpuVSWzsGBYEadP4/Z4QNMYHxlh586dtFotqtUqsiyzVCwS8PmMygOyTKvdZsf27UzPzCCpqiXbRizekgSaxjPPPssjjzzCTTfcQCqdJhyJEPD70TF6GrU1jZqiEIvH6XQ6RmBd03CZ1peEYX2AsZC7PR4y2Sz333+/JWsWi2chnyeWSJAwe9icPn2acqUCupEPNTQ0ZNWow9y3rhtlfgS5iuMQlpGAICUZswGfzcIR1k73FSLEEZacvMuDoJvjivJJOixXxZYMwUO90bCaCKqqijcQoFqvE11lceyO7XS7wqB3fo+dwPr6+kin00xMTFAsFlFVlWPHjlmy8VQqZeXddbu9dF1fYaXYSal7nnZ3W/e87QKHbvLsRardxNHtihOwqwW7t/WSilvfZQ9rcC1wxQKG97///au65fbv37/i/8nJySsd7rzopaZbD2I4H9bqC9J1o96ZcBnUajVisdg58utcLnfFY10KNoqMBNbTMmq1Wrx4+DCSojA1O4sMDA4N0e50SCaTeMx2EJIk0Wq3kRUFdJ1arUYylVqeH3DnPfdw+NgxMgsLRjUCYR2JGIp5TXz5y1/mDz/1KULhMIcPH2ZyYgJJltm+bRu7r7kGXVFYXFzk5ZdfZmJigk6nw/i2bdx5xx0rEsN1XTfUZqpquH9k2YpzaJpRWyyzsMDhQ4eYnpnh5PHjRONxwuEwx48fZ2BwkDtuv51AILDcXVWyxa3McQQJir+x/a2ZVpuI91jWkCRZzfyEm1LsV8zdWiRNAtJMebiGUYqobX7vxVKJZqNBq92mUq0SNuunAXQ0jUq1et5F105Aghi6q2Sv9rTfbfl4vV527tzJzp07qVQqLC4uMj09zZEjR4hEIpY6z+/3n3OsYl+WBdqDCFa71u3k2MtysR+zfbsgv9WsMvv7u+Nq9gf57nNkl453XxdXgjd8bTo73G73pseMrsQ12Ol0rOrXornZheTXb4S8pssdZz3QaDQst0uhUOC148fxqCpjo6PGzaYo+H0+Bvr7mZmdJRaLGTXXbMmAspn7oum61ZU1Fg7zvt/6LX7/93+fTrNpuOjsLSSENdBuc/ToUWbn5jhx8qQlJjjy+uucnJjgvttv55uPPcbps2eJx2KoqsqLP/whZ8+c4Vd++ZcNr4M5ZqPRWJHIKdxi9Xqds2fOcGpigkq5zGnTQ+F2u6mUy3h9Pk4cP07SFDigL8d5RE6PleXf5d6xehfZ3i+k34BFbOIKkaRleTeY7rdOh46IB4l9mQtds1ajasa28vk8kiwTjcVwu90US6VldZ1kxF9qZoytOyG0O+bSHavpJiz7Z8S8uy034SbTNM0KLYyOjtJsNi23+cTEhKVaTaVShMPhcwQGsDKJuJtE7feYGLfdbqOq6gqBQy/S7bZkelVpsI+5mguum9C6338+Bd/lYkuR0dVQDuhSLaNu+bXH4yGVSnH99ddbF/Jajnel2GgyWouxKpWKZWEuLS0RiURIpVJs27aN7y8sEARKpRKKLBv10HSj66nH5TKIyHSzqC4X1UoFv9cLsowCVpsHgLNnz6LpOoFgkIqokSiISHxHmsbk6dNMnT1L2mzxIOk6tXqdo0eP4lEUJk+eZNfu3fg8HnRJIh6Pc+LkSV5++WUe/qmfshb2drttVQUQc2i32/zgBz/gxPHjhMJhKuUyc3NzRCMR+vv6UFWVpaUl8rkcTz/zjKUsi8ZieD2e5Y6qXQ8DggCE9WOXiNvdUCsWN1aSULPZROt0qJrVxsGwTuv1OtVKxSig6nIRDAQIR6P4fD4kU2AByy5BodCTJImWtjLB037tdC+83UTTbekZX89KolotrmJfuD0eD0NDQwwODqJpGrlcjsXFRV577TUAK6E8Zj5ciP0I4ugeezVXm51o7Nu7j7tXcmv3ubCje5vdZWh/vdcD4lo+NG4pMhJuus2OGZ1vTF3vLb9OJpOXJb/eaLfZZrjpLuczQq6byWSo1+vEYjEGBwdJJpOWwnBmbg5cLpAkSoUCg4ODljquUqkY8RzdiKN0Oh08Xi+lYpH+vr7lhcAcr95oMD01BbpRnsdyz9mtFmEdmYuFR1UN95Vk1FvTOx1OnzlDp93G5/VayajoOsFAgImJiWULRJKMhFe3e7litq4zNTvL5OSkUb3b4wFdJxqNUqlUmJufZ+eOHXhM16OsKESiUavJXygYJJ5I0Go2jardtsVfZ9nisf+ssMxNC0kCOuY5Ez/CBajpOvnFRcPN2Grh8Xjw+XxW3MXu+nGrKo122yByWaZlk0WL303Txdcdx+jlejvfIt3r/d2fVWzt4O3XZbfFI2Tje/bsoVQqsbi4yKlTp6hWq0SjUasKhHC1d8eZehGNruuWZdQdM+p+IO0VlxJ/97Km7OcTWJG3Zd/navfiWq0HW4qMfD4fuq4v36RXiZtO0zQKhQLZbJZMJrOm8mvHTWfAipOYBNRut0kkEmzbto1EItHTxXl0agq/10t5aYnxbdsIR6PMzc7i9nqp1WpGS3pdt5rNtUXcSFquRlCr1SgWCtTrdbZv347L7aZiCgXQ9eUkWBs5PfPMMyQTCQYGBw1rw74oqKrlhrNcXbJMo9EgHImsVKaJJ2aWqxiUSiUjydPjASAYCuHz+SiVSuTzeTBJorS0xG233srI8DDDQ0OWW2xxcZGJyUkWczlSqRTxeBy/37+CBHXdUNtZOUBCdgxGO3NTeKCZ1lCtWqVZr6ObJB+JRonF47gUBU0y4ktWkqxYXNttJEWhXa9b504RcxDiCkFwNgLrzuvpRRq9hADne4/9tW4XoH2MXkQmGtht376darVqVYE4fvy41Vk1lUoRCoVWJRrd/M5WizHZrSb7a9Y1dQGxhl2JJ/4X4/WyvOzkt1qc63KwpchIPGnUarVNIyPxRZ2v+vVayq+3qmV0MW66TqdjlTgSMbZUKmVVGL+Qi/NsJkOj1UJ1uQh4vYSCQTqaxtz0NC6fz1i4Wc6TaTUahqABqFerLJVKeH0+kqkU2WyWSDTKbbfcwtP79y9bRJq2XIlBkown/Hqd2elpVJeLPbt2oUuS4bpSVXbu3MlMocDZs2cZHBxEURRLpHLtvn3LcmnTWhBEJpYDj2kNoRktun1eL8PDw0Y79KUlzk5Noek642NjjG/bZsWE3B4P/QMD9PX3EwoG8Zj5SbMzM7hcLuKxGPFEwmgCCJaVI37q9TrNep1arUaz0aCt68iahsfrxevzEY/H0YFSsYgky1bXWkUsiGZfJCQjBiUpCqopmxcuwrathpwiSXTMhbBpJv6K6+Z81kWvhbX7OusmJHG+7YKAbrddrxiN2Id43efzMTQ0xPDwsJFSYCofX375ZRRFseJMEVEZvgvd8Rv7XO2ijNWOr9vN1702drsfxZi94kXd468FtiQZibjRRpNRtVoll8uxtLTEc889ZyXM9ap+vVbYqjEjge6x2u225eJcXFzE5XJZMbZLLXF0dmEBXyqFqihGzyJdRwWCkQiKJDE7N4ff5zM6u0oStUaDoKpa1lMyncYlG1Ua6rUa0UiEf/nLv8wPf/hDatWqoahTFKs+HKZiTFhMZ8+cwefxWE34rr/uOvbs2sWecJhXf/xjTk9Oous6wWCQ++69lxuuv96ymprNJi5VpWWmMgiRQF9fH9FolNm5OfrM8kYul4vR0VFuvukmKx1AuCQxP6eDpYCTZZl0KkXaVOYVCgXy+TyHjxxBNt2DszMzeDweWo0Gc3NzaKY3wuXxEA8Gl1tQmOQi5icUiZKug1hATUtHkgyxgyLLhqrO5bI6rkqyjCIWUpal47o5H+gdF7Evrr2smdVUbeKzvWJG51vUe11/vcrvKIpCf38/fX19llWfzWY5cuQI7XabWCxGMpm03Moi6bYXoXbPqXtM+7Gs5pK0z1XsczV33/kswivBliIjj+maEPLu9SYjXT9Xfh0IBFBVlVtvvXVd2iJ3Y6tbRoDV+TOTyZDP5/H7/aRSqSsi+UajQa5S4bqdO+l0Org9HjqmS67dbNJntgevVqvkFhfJ5nIslUqMjY2RTKetkkFC1tyo1y0Z+A379vGDH/1oOU4kZN7if/HUq+uMjo7SPzDA2NgY28xE8PEdO7j9ttsMaXe7zcDAAH19fctFR01rwGXKugV0IOD3c8ftt/Piiy8yZcawVJeL22+/nfvuvXdFwquwisS3uUJ+bZ6HRqtltM7w+ejv66OYzzM/N8dEo4EsyyRSKdxeL6lUarlcjXlsOqDoy51hdd3o1dRoNo2cI+Ga01cmjLaFDFtcByZ5Wfeyvtx9FvNcwLmLY7cbCs5NIu22mlaLM3VbRueLP9nRvd/uOUmSEduOxWJEo1F27txp5RROT09z9OhRQqEQqqouKxx7CEx6Kfa60e26tJ8v8VkxhnDT2c+nGPtixrocbCkykiRpRUmg9SCjbvm1ruskk0lLfl0oFDh58uSGEBGsrMy7HpZXNzZiDDBcrWC0OF8yWwWkUil27969Ji3OT50+TSgcpm0+mdsrDqDruBSFjq4TCASMatCtFlHTYlpYWMDjcuHxevG43Uaiq7ngarrOz7/rXfzgxReXVXT2uJH9epQkDh85wj333EO6r498Pk++UCCiacQDAfZde60hCDBjJmJ+GoYKzW2KL4QbUMRchoeHiScSZDMZWqbizmq1YCejToeWWY+u1WrRajZptdvMzc0hSUYJI9nlQlUUouEwsqKQTqUolErceOONtFot8vk8EydPUq1UCEcixCMRQpGIMTeM+nOY1hCm5SPIR8JQI0pgueAwXXa6bsTAJH05ZmcnJzCIWVUUmqbVYLzt3K6m59sOqzfL636fwGpWw2qurfO9LrbbLZtAIEAgEGBsbIx6vU4+n2dycpJGo8ELL7xgJdraPQG9iEa8JpKEu+cr5tJ9XN1k1/3+1eJtV4otSUZrbRn1kl8nk0muu+66c/y7myEogJWFFNd7vPU4Pl3XLQl2JpMxRABgVRkXVu9a4djp08SiUVpmfFEDJE2zcnc0DGunkM8TNhfYcDBILBYDoNlq0ajVKJZKVKtVyktLZLNZ3C4XXr+f6667joMHDqwkINM9Z1lIus70mTP8wR/8AR/+8IdJJJOcPXOGF15/Hb957Pfdey833Xyz4bqyPY23mk0mJid56aWXePFHP2JgcJAbrr+eoaEhY3FVFFLpNM1mk5xZx04UaNXBEhd4XC4CoZBRDNV0r2maZrQ614xutsByCwnTzajKMh6/n6DfjyrLRKJRo7FdJsOp06eJhMMGOUWjuG0dXFVFoWpLcrW7rQSh66L6ua6j2R4QdDG+SWoAkqIYltYqrji7BbQaMfXK+elGt7igm5B6JZ1eyPrqXvy7LRUwLFKPx2P1fksmk2QyGQ4ePIiu65YAQlQb7+UytDcPtJOeLJ/b40gQs73HU685r7WLDrYYGcHK+nSXS0b2hfFS5debEcOBtZNXXsx4azWWcHMuLCyQyWRoNpskEglGR0dJJBI8++yz9Pf3rzkRAcwuLuIfGKBYKuEyW4MjSdSbTVSXi1wuh2b265IVhfm5OTwej/XE7na5UFWVoCShuFx0Oh2S8TiNRoN2u834tm0cfPVVI/FVkizyEU/1FkGpKs1Gg/1PP00wEODo0aOEJYmg38/k5CRnz5xhqVzmun37EPXLNF3nn558kgOvvcbS0hIDAwOcOHGCl196iYceeojR0VFk2Wh5sJjLcfToUSRJYnBwkJ07dlCr13n94EHmFxaQJYmh4WH27duHW1VpmWo4IRwQ1opQD3ZMQu2YhCcIxO/zGfeFTZlXKBaZnprC7/MRjkaJRaMopmtR0o0EY03TDHen6Cwqy5b1BCwr7AQZmfGkRq1GqVSi2WziTyZX3Hf2B8JeVkgva6LXdgF7aZ/u/XTHasRr3du7rbJesZ1eMS87SQiRQzKZBIzcOJFo+/rrr6+QjQtlsX1OvZSG3fGy1Y6lG+ux7mw5Mrpcy8guv85ms1YH2kuVX2+0aMLuptsIXCnZihpqgujFU/iuXbuIx+Pn3PDrdVz5SoVRr5dMNovXRjK1Wg0JGOjvN0QNYATgxdO46TaSJaMEj97p0KrXDXedLOP1+dA1jbHRUVweDy0znoH52V5Sbzodnt2/n2Q6zc6dO/F0OkQ9HqKRCGfPnuXlH/+Y2265BVlRUBWF0tISExMTVjKlKI8zMTHB5OnT3HHHHejAqZMneeGFF5ibmyMSiTA5OclrBw8abRhaLRKJBJqmcfTwYUr5PPfed5+RRGser9bpLIsapGU5u97pICsKkp2QWJZnu8zeQem+PrROh2wuR6lYZG52FpfLRafdxuPxEDIf6nRp5dO1YlpRwApXXq1aZSGToWz2mxJ9oCQzL6Z7Ie1ladhbOHTHceykYF9sNU1b0Ya7e//dVsVqpYbsv7vHNi6J3j2ExLkVfazEZ0T79h07dvSUjQviCoVCKywh+3HYrUS7mKPb4ullFXWfjyvFliIjSZIuyTLqll8rikIqlWLPnj2XLb/eLDfdRpLRpaLdbpPL5awus+I8X3vttUYuz3kk2Ot1XE1No4MRpJfN4qb1Wo1CLmdUP/D5jBwjc5FxmRW5RbFP3SQSDcNaUF0uo4upoiDLMnuvuYZUKsXMzMxKabctxoOmLXeElWWy8/PEEwnG0mkUcz+JZJJCoYAG+E2BRC6Xo1KpsK2vjyVR6cF02czOzrK0tITb7eaHP/whWqfD8PCwVXT1Rz/8IZqmcd9991kVEgJeL9Ozs8zMzjI2NmZZQ4otdgPLDyKSLBvFTEV5GpOoZfGgIiwDRUERyrxEgo6uUygWOXXyJMePHzdiUdEo0WiUUDhsfEZfltM3mk2WKhWaU1O4zfMfj8eJR6Mriq62zZ5G3dZGt9hAHIP43YuE7NednSREcL9bACHQyw0m/u9GNwn1mksvIrW75LutLLtsvNVqWffb2bNnV8jG7dXGuy2jXlZT9xy63ZO9xBSXiy1FRnBhy6i7+rV4ghgdHSUUCl3xid0sN91GjXmx1kqr1bKSfHO5HF5TcXXTTTdd9Hley6eubihuN5VSyVJ6VWo1mvU6UZt1Jha8arVqVUiwlF82lZUiGcH+VruNT1Wp1uuUSyV+5qd/mr//n/+TzPz8MvnY847AygkCQNM4dvQoI/39VsXsWrVKOBzG5/VaSjhFllHMBnrYnnRF/TJZlplfWKBQKDA8MkKpVLKUa16vl2KxSLvVstR4iqqiyEaHW6tbq1gUzXlLphWoi9wf2WgeKAsXnvk+WVGWz43ZqluXDBGGAqSSSVqtFv19fUYibqHAqVOn0IBIOIzf60VxuWibAg2Py0VfOo3b7WZ2YcE4PnOfxikzzmcvd1cv0riYhdW+XSzQ3S7A1UhO7Me+sPdyC9pJq3vN6I4/SZLRdVdcl70eeO2k4nK5LNm4ruuWx6eXbNxe27B7Tt3nqVe8qJcVdbnYkmRkt4zElyEsoGq12rP69Vpho9103U9ZGzHeamPV63VLgCDaXKRSKXbs2HHZXWbX47h0M17RwZCNN5tNmrUaoWjUKi8Dy8qtZquF1+ulbS6uHVvwvdVs4nK7URSFpaUlioUCqstFLBrl9jvvZO/evXzn8cd55umnDQmyUNfZyUjkIZnjZfJ5osEg5XqdarXK2972NiMIbZ6LVDpNX18fs7OzlkquaVr5d9xxBz6/Hy2bXbZoxOKqG91mre7HtkWybcrbLVecIEzTOpRNS0cTsRPzNSE3RzcreJs5P4qirFApIlx/JvlKkkQ4HMbtdhMMBCgUCkYFjfl5JNMidHk8httT7E83hBOir5Elde7xFN9tba8WB1ktpiNgD+SLBwC78KHXvroX7F5Wkt3Ksh+Lnfjsc+nl1rsYktN13ZKN79q1i0qlskI2LjpBJxIJq9q43nV+VzvGtcaWIyOv10upVOKf/umfrL5KBw4cIJlMsm3btlWrX68V7Mqc9Xyyt2MzyciugBPdSYUL7kqJfr2Oq9VqgSwTCYU4XirRbLeJJRLUazWjNbdJNuIJv2XKurOLiwYJGZMzKjE0GnTabYqFAsgyI0NDyzJrXScSDvPWBx/kphtv5B++/W2OHjtGp9Vazj0S14jNYjp69CitYJDhdJr77ruP+++9l3arxTPPPsuJ48dRVZX+gQGazSbTU1M06nUkWWb3zp3cdsstNOt1/B4PWqfDkcOHiUWjBMNhiwRisRjzc3M02m1q1SqtZpPBoSEG+vuX20UImbUpVpCADsbCL1qHS5K0IqdIBkOgYFpLwIpyPZpmtHAvFIvWveHxegmaNfEEYdbqdQq5HJmFBTJzc8RTKcOiMpWA9h5MkiTR6no6717AxbbzxTy6LR0Bu2UkSdIK1333fd7Lmuhe1MVrwtIR7xMk121prGbFifPZ/d7VEl8F+QUCAfx+P2NjYzSbTStEcfLkSXxmpQxRnqib1M6Xr7UW2DJkNDMzw7e+9S1OnjzJhz70IXbu3MmXv/xlAO4020NvBHrdCBsx5kZaY/V6nZMnT1pFSOPxOENDQyuKkK4F1uv8NZtNdFmmWi4TCAbRKxUKuRyyquLxeNBarRXyYXR9RZUA8f/S0hLzMzOk+/sZHBqikM+vaKNttzwkoFgsEgmHyeXzK+XepqtQiBsatRqHZ2YoZbMcOnyYL37hC1SqVUNxJhlJnhIQi8e57ZZbuP/++0nG4wyPjKAqCj/44Q957rnnyGYyhvS8XMbv9xMIBhkeGWFkeJgDr71mNQt0u90Ew2GjOGwgANKyWEEQkbCAZEHG2K5x24Il3Isypvy90aBWrxv9oDAeFv1+P339/RaZWQuaabH6fT78Q0P0Dw4Si8Wo12rkCgUkXWdycpJkIkE4FjMIF1bU9rsQAXW71uxWsJ0IesWSVru37W657jhM9xgC9nbgwuqyo5swu8URsFK8tBrR2ufc7a50u90MDg7S39+PruuWsOjgwYMA3HPPPZYbr9s12N0Tai2wJcjod37nd/h//9//lzvvvJNoNMp73vMePvzhDwMwNTW1YVYDLF8g9iei9cZ6W0b2IqRzc3NomkY6nT5vn6W1wnocV92sSp3NZkmlUkYdNLebmZkZRoaHjad6kyA084lVfJNtTaPZaFAsFPB4vURjMWKxmLFwmzJua9Exn4BlRaHZatHqdHC7XEQjEQq53LJVJK4Tcay6DqrK9MxM98lAxHhcqkqjWuW5Z56hWCrxe7/7u3Q0jW9/61s8+dRT1KtVZFWlWi5bhUs9Hg8nT57k9YMH8fp8jAwPMzIyQigUYnZ2lldeeYWffPvbjTwf0524ok+RphkuStOlKInFUZZpNZs0mk1D2t5sGvEkRcHn8RCNRq1Yj2ZaPrputKGwuyt13VAWamAVYg14vUQiEXw+Hy/++MdEYzGKZo09r8dDPJHA16UEWz5dq8unxd+9iovar7nuffR6yOzlahPbe82pF6l1j91t4QjXavd2sW3lZdK7Np94rduFKPYpqo1LksTS0hKq6dLtVXGh+xjXAmuyWn7uc59jfHwcr9fLHXfcwQ9/+MNV3/v666/zrne9i/HxcSRJ4tFHH73i8X/rt36L2dlZnnvuOa699lpDCSXLltm7laXWYsy1Hq/T6ZDJZDh06BDPP/88r7/+OpqmEY/HGRwcZN++faTT6XUlovW0jMqmKMHldqO12wT9fuLxOFqnw+zsLOVyGU3TaLXbVoxE0zQWMxmq1SqpdNpIeDYtA01YT2BZOzqGdeBSFFyKQsDvp1Au4wsErOrclnuu01mZh6Qo1jap0zHq57ndBPx+vG63VadN03UOHjjAn/7Jn/DMs8/ywx/9iHazieJykVlYoLi0RK1ep1qrMTM7iyLL1Gs1XJJkCHkyGRRVJRGPMz8/T6lYNMQB5nGJNt86WLEtrdGgZD6cLMzOMjc3R7FYpNNuEwgESPX10d/fTzKZJBwOG0RknhfhwpMkQ4Sgm6RvX9ysuJC+rGaUTPJKxuPs2b2bG2+8kYGhIaq1GseOHeP73/8+J0+eJJ/PL3eOtV1H9oVZrA129BIEdH/+fHEd8Z5uJV8vgoOV6rvucYUF1B2fsTcINL4O+aKUe91j2edmPyfit67rVoy3l4tR/O7edqW44pXk61//Oh/84Af5sz/7M+644w4effRRHn74YY4ePUo6nT7n/dVqle3bt/Mv/sW/4N/+2397pcMDsGfPHutvu7QbNkdQABunbhNjrsUFIYqQCgVcryKkJ0+e3LBW7utl8TU7HZqNhlHORwTtzSfxWDRKvdFAkiSyCws0mk3cbje5xUVq5TKp/n7CZt5GR6jKMOIYqqLQabWQXS46uk6tWmV2dpbK0hIut5tbb72Vf3rySRq1GrFolEVhHcnysrDBJCRJVVFdLlSTeAR0SVoWJIBVMeFHP/whS6USgVCISrVKsVQyLBxzUW9oGoppwUiyjKQo+Hw+FubnGRweNs43RlkeXdfROh3anY5h6bRaxjnBIPJavY6iKPj9fiMvCaMjsfmlrWhjDhjiBbGQSxKKOZb4AdBl2ZLOd5fnESWR2mbMCF3H5XaTjMVIJBIMxuNsGxwkm83y2muvoSiKFfuIxWLnuMSsc2mzQrphX2yFZdLtfrNbKHaRQy9xRLdbrxfsxNEdn+klKDifSKLborN/RsxzNatttYfA7vhRL/fjleCKyeiP/uiP+I3f+A3e8573APBnf/ZnfPvb3+YLX/gCH/nIR855/1ve8hbe8pa3APR8/UohGuwJbLRltFlkdLnjiVJHogipkLqPj4/3LEK63i7BbqzHWOVKxWq1IGTa1tM6hrsgGAwSDASYmZ0ll8sR8PtRXC5KhYJRCsfrtTqtghFTUd1uFnM5w61pyql1SWJ0bIxCocAdb3kL0UiE5597jkKxSCKZpFIuUzf7H0m60UBNVVUUnw+9WjXmZAobZNscRYKpbrrSdF3n2IkTjI+NUa1W0TQN1SQqS2Sg61QrFYOUWi08bjf5SoViPk+1XCY9MEC9Xie3sICiKKiqisvlwhcIEEskjHJJrRZzCwsEg0HrfGqY1bhNF5vd2pFgudKCIBbbgme5RFl+Yhf5SoLUOkK6jU25Z1oOkiShqirpdJqUrcp4Npvl2LFjVu8wUc1ctRWX7V7Uu6+37sW5O0bTq6yOQLc78EICBfG3fZG3f76XWKGXhdM9rt1i6y5/1CumJv5vmx6BXvuCla7Pq8IyajabvPTSS3z0ox+1tsmyzEMPPcQLL7xwxZO7HNil3WI+G00MG534eqnjiVyrTCZDqVSy5J179uyx+sKsho0ko/Vy0zVM1ZxuLmQdTaMj3HG6jqyqtExXXqVSYfv27YbsudNhYWGBdqdDJZejWq3SabUolUo06nWWymWazSbDIyMMDw4SCAZZzOUIh0JGHx9J4vbbb2fbtm243G6ajQaVpSX+6I/+CBmjbptYyNF1JJcLqdOxcnpEfEaUhrEWElPY0O50mDx9Gs18irerAoUFValWjQrbLhezMzN0NI1sLsfgwAB333UXfX19KJJEXzpt5QwBlnQbXUdVFEvJJsjOimkIQrcTCkZbCFHJomOSP8JikCSrP5FwPUqYVqBpaUmybLhBTXcouk6n1aJYKCA3m9ZiK8syiUSCWCzG7t27rZI5J0+epNFoWGrPVCpltWwXWC22ZHeZ9Yrp2ImpW0Ag9mmXgXeTiyAr+3fafe13V4DoJsBeRNXt0usV/7LP1W7B2eNp3QTXvW2tcEVklM1m6Zj1u+zo6+vjyJEjVzSxy4XX613OSmfjyQg2xxo734Wh60arc1GCp1KpEIvF6O/v57rrrrvk2m9vdMtI15fbZ7tU1Sjp025bxTxlWWZmdtbIz4hE8LrdxgJr9h0KBIPIkmS47hoNXI0GAZ+PQbPWndvlolqpUK1UWMzl0Dsd8oUCmiRZZXFGRkfx+3ws1moMpNNkczl0UccO0wJwuazEUXTd6ohqLfSahiYZcmO93UZWVToi0VQzGtTpgKSqRrVvTUN1u7nxxhtRFIXJ06cZ6O/nzrvuYtv4OOFIxBhHkqyYlDhfwoKE5cXZKqJqWmeCeACDIBXFkquLmJpmzkuSDIFDu922at5pupHLJFyWQh6vY9auM91lmWyWRqOBKssEw2FcZiNNuxtKLJqi0+q2bduo1WpkMhlmZ2c5fvw4kUjEcueJOHM3Wdj/7yV2ON8Dk52kxP92N1f3vnu53exj2NuOi/Pey8KxE4b9/eIhpnuM7mPrJdY4X/zrqnHTXW3weDwsLi5a/28GGW1GSaDuY9R1fUUbblFrb3R0lGQyednCg422jNZjLL/PZyxu5lN+R1+uBt1oNlkqFPCFQoTDYRaqVautd6VcZn5uzippBDA+OkokGjViMxiElUomLWm4Lkn4AwE6rRbNep1IMslgfz9enw9ZknCZ8ZuBwUHmZ2Ysa0aTJCSzQZ1mngutezHDvNYEidm22917kq6jqCper5ddO3YYSbySxIMPPMDdd92Fz0x2lMDI5TGtF9EIT5CJgCzL51bZNt1pspmcKuJgujkP2RQlyCI2pGlWp1bxo+j6inYY4ry3Gw2q1Sr5QoFCsUg8kSAWjy+7WMvl8z65i/2L/JrR0VGazSYLCwtGm/WJCUN4YbZm8Pv955DIakmg4vVugulFjL3cguJ82sfqRVarqem615peLjcx/gprugcxin2e776zH89VZRklk0kURWF+fn7F9vn5efr7+69oYpcLn8+3Imb0ZrKMNK13EdLdu3evCOReCTaSaNfLTRcNh41EUXEcuiHBbjWb1Ot1BoeGDEum06FcLtNst1kqlZBloxBqIpEgEYuxmMvhCwQsl5Ks60Y5KrM9eaVcJp/JoEoSkVCIWDxOKBBABjzmvrbv2kV/Xx9TU1P0DQwwOzW1vBh4POhLS5ZIQlhIEoalIIGRyCr6KZnbkZfbkSOsJFnmZ37mZ3jnO9/JUrlMwO8nKiTpXQuQcJ3p7bYRkzIXfTEPJMnoAyUZDfIsAhQxFLH4CmvKdENh7lcWbiuWCUdYQJIs02m1qNXrRkWLYpFAMEgiHicWjdLf17e8qGIsiKISeDcRrBbjkGUZr9fLyMgIIyMjNJtNq0LL6dOncbvdpNNpEomE1SJmtTiPgN1tdiGraTU5eS+yE+47u2u2+z3dxynGWM3KE7/t1STs87UfX7eYxE6yvSpWXAmuiIzcpkLoySef5J3vfCdgTP7JJ5/k/e9//1rM75Kx2TGjjR6z3W7T6XQ4e/Yshw8fRlVVUqkU+/btO6fX0lpgK1hGAb8f1eWiWq1abqlKtUqj0WBsbIxKpcLMzAzZxUWru+vY2Bg+n49Gs0m9VrMWZLeoY2ferC63m8z8PG5Fwe31Eg+HCYZCLBWLRkVrwOf1Uq5U8Pp8KJLETz/8MH/9139NrlCwhAbCUkOSrARZsQCLcyOsIV1YFIpi5EyZLS1ERYRINIrX7eaeu+8mHIkQiUSWhQOmi03GqLCA3V1kWkbWYiZEAyznhAjXm6jurXcTgDFZK1dLA4tELJeeplFpNKhVq0bJJFnG7/PRl07j9XpxezyoooaanRhM1567x2LYKy5j3w7LloLH42FgYICBgYEVzTMPHDiAoihWdfPVxhB/98ozsl8bvWI5Ar3Uad3xZ7uVs9q+ehGK3fq0v6Z0Xbu99tVr/eiOaa3VPXrFbroPfvCDPPLII9x2223cfvvtPProo1QqFUtd9+53v5uhoSH+4A/+ADBED4cOHbL+np6e5pVXXiEYDLJz584rnY6xYFwFZLSeC7Yo45HNZsnlcoBx3DfffPOaFHu9EN7oMSNFUYhHoyxks4yOjKBpGjPT04TDYY4eOYLL7cbj9TI8PEy5VGKgr89aZN1uN4VCwZiXvpxbpLfbFEslGtUqrXqdvtFRJEki32yiiIUcaEuGaAJbW+e+gQHe9a53MTU7y9//zd/Q0XVarRayLNN2u5EaDcN1ZV+IAK3dxi361uhG5fB2q2WRhuxyMTAwQDgSodloWJXAdW250ra5w2WSMCXgwj0HRtxGiAjsLcQlzLbrpisR8ZTPcosNCSwryorV6TrVep1apUKr1ULvdHCb/ZASyaRlXeliPiLOYc5LB4t8dc2oqN7tNoOVT+zdFtNqFoN4mLMr8zKZDJIk8eKLL5JIJEin00SjUUsAcT7xQPfvXtUa7HPqdunZ591dbdvuYuu2sHq5B3v9Fuege17C02KPMdn3ZT+va4UrJqNf+qVfIpPJ8LGPfYy5uTluuukmHnvsMUvUcObMmRXsOjMzw80332z9/5nPfIbPfOYzPPDAA+zfv/9Kp4Pb7d6SbrrzFSE9duwYqVSKcDi8pmP2wkZbRusBVVUJejzMA6+8+qrV1tzr9dLf14fL7Tbk0boZUAdroRU5P51OB73Tod1osFQu06hUcPn9xNNpFBGz7HRQMK0AyciVEW0pMNtle1QVDfD6fNx+22006nUef/xxOp2OEVMxlXQ6BikIAQOSIVxIp1JWhYelpSXaZp06RZKIx2KEIxEWFhboS6fRdZ1ioUAgEDAWHtMi0sCybCSTNIVLENvrlqrMRlSY85JM95sgK6GyE+RXqddpNBo063UWMhlcHg9+v5+4Wb9Qlo0aeJhjCaITd5FFsGJe5kNAu9PB5fOtWEzPF9jvjrP0+i0WYWEVRSIRZmZmuPbaa8nn85YyT4gfRJdVAbsbrJd10U2W3fPt9V6R29eL/OzEcyHZNqxeV068LtZMtYvke5Fbt+T8SrAmAob3v//9q7rluglmfHx8XRezzU56FWOuxTF2FyGNRqM9q41vdBznjWoZiaTeubk5Jk+epFit0j84iMfjwev1Ek8kcJn5R16vl7xZa04HK39GardxqyrlYpFWuUy23cbt9ZJMp+noRj8et9tNpVLB7/WC2dNHNsmrpeuWq65Rq+EKBg0Bgkk6991/P6FAgO9973vMLyygKQoVM44k1HztTsdqo9DRNG6++WZOnDiBrOu4ZJlGq0UgECAUDLJUKpFOp/m5d70Lt9vNyZMnkSSjWGo0FiNiVv0W7b01G6kIObaAIBxJvFcIFuTl6tmarlslgaq1mkUiXp8Pv89niD0kiUQigWzOXxC2FUcS15huyNKF5H0FmbDs7vN5POckm/ayLMQxdC+k3STVHegXf8fMJNudO3dSLpfJZrOcOXOGI0eO9JSM2+XcYl72mm7dMabV5gjGPS7IoZsE7PGqXgKEbitJ/H0+16P9nPSao/h7LdeeLaemuxrcdJdrGem6ztLSkkVAogjp8PCw1XtktfG2IhmtxVjdfZV8Ph/pdJq9u3ZxaHraqBIiSTQbDbILC5BM4g+HUSSJdquFIstoZlxOWDgeVWXq7FkUSSI5OIjLdB8ppnDAFwxSXFxEM4vGdjQN3czNUTFiM26Ph+LiIpJJBuKJXwZuvvlmbr7lFjRdZ3FhgS999rNMT01ZSjtBkNFQiE6nw7ve9S4qS0vMZ7OGqysa5eChQ2QWFgiGQuzbt48dO3YgA4PDw1TKZXK5HKdOnkSSZSLhMIl43Cgaa8Z5ROsHyTwmMaYonCpQN4UGllWk66huNx6Ph1gsZlS4WOXp2bKc7CQiy9BuI6mq1acIsCwtRV7ON9LN71cU8+y1iIvrqBfEwtzt7upeZO1JqOK1UChEKBRifHzckoxnMhlOnDhBOBwmkUiQTCZXlYx3V0awu2C7RQPtdnvFe8Tr3TGxXq601QQIq71/tfPTPU9xDGu5Fmw5MnqjCRjsfmmRt5VIJNi+fTuJROKiFHDr4RY831hXu5tOENDCwoJRPSEQIJ1Or+irdGh2lsaxY4Z826woEIvFAMjOzqK63ci6TrNWM6TIGE/ixVKJZr1O0O83mtKZLrMOoAh3nM3nLplP+5gLStt0NQnnSEfTjKZ9LLf2rtVq1KpV6HRweTz86iOP8J/++I+p12pGEVFZJplK0Wo2iUWjxONxkskkY9u2GedM0xgcHrYebkScRlg/4VCIcDDI2NgYS6US+XyeyclJWu02oVAIVVWt4q86RqXutq7TrNcpFYsUczlmZ2dBN8rySEA0HselKJZlZXfzySZZd0yytb5fzei2KwqmWsIGu9Ku07FibOJ9Qn0HoIBVKb7bpbQixma7bs/nwuqOJ9nf06sWnCStlIyLiia5XI5Tp07h9/stZZ69okm32MGO1ciq1zF1E0+3lddtLfUiGPFZpcsCFdu73Z9XbczoaoNw04mTejW66YRiRxCQLMskk0muueYaYrHYJSvg3mjWyqXgYscSoo6FhQXy+TzBYJB0Os2uXbvw+/3nvD/i8SApCu1WC1lR8JiutXQyic/tptFoUGi3mV9YwOv3G3GZahVfMEjE7FK6VChYCZuKeVMquk4bcHm91MzK2cByDTuwXFEev9/oIut20+l0jARZU5QQjcdxybIRT9I03va2t/HC975nNPKTZZpmxYg777rLIkShXFuhiMOmyjJzVSyXIxCORAiFQoyOjlIql5mdnWVicpKps2fxB4OEgkGCwSCqLOP2eHCpKsFIhP6BAfEFGcVgXS5ksFxtVszIJBxJHDfLKjvNNmfLHQXLZK0oVr2+lq5bxyjJZg6TrtNut3tKjLuf5O3bey3aAvZKDvbrb7UYVDeJeb1ehoaGGBoaot1us7i4yOLiImfOnMHtdpNIJEilUlatRwH7ON3HIyyQXrGlXvGfbjKzE5j4jH2sbkvwfDEo+7m173MtsOXI6GrNM2qZnTgzmQyLi4t4PB5SqRQ33ngj4XD4ip4wtmrM6EJjNZtNo3K02WI7FAqRTqcvqqxRJBDA7/NRWVqCeh1fLGaRi24+8SdTKUqm3DqfzeLx+WhWKrRM+XGlVgPZaKctFti2+T0GfD7mSyV8JhHqYLiwzA6zLkWh4/EwPz1tdBDVdfr6+/G6XMZ7xWIA6IrCr/zyL5NOpXj22WcpVyoMDQ1xzz33MDY2ZpCPpi0nmpqf04TrDKxgeqfTod1u02q3aTabdNptOmYVBF2SCJuup0gkQrlUolQuU56bIxKJkPB68Xi9VtdVyfwtKnLbSUWQoPhbF/Jv080mvl90Hd3WUhtMhR7LLcXBsKLEI5quGeWbypUKxULBaAm/ioXRyz3VK2gv0KvQqT0fp5d11b1/AZfLRV9fH319fXQ6HSsH8GKKua7mHoNzKyZ0u++63XBi3nYLT2yzk1b3e7stoF5W5Fpiy5FRLzed1WZ5gyAIsFcR0lQqxbZt2wgEAmv2Zb6Z3HSNRsMioGKxaNXVu+aaay5IQGDcsO12m4DbjVdVqVQqVu5Ks9lcvmExFs5qvU6n1WJ4bMwik3qjQbPVolIus2gmfKuKAqpqiBUUBcUMNutmUzkwnuhbZumhYj5vubGiiQStVssKUGsmwXV0U0TgdlNtNPjn73gHP/n2t5NdXGRkeJhsNks+lzPk0brROlzrdGi2WmD+XyoUkBSFarlsfHeShFuWUdxu/H4/qqIYsUjTxdio11FVlWQiQer/z96bh8dRXWnjb/W+75taki3vGxgbGxuzJ0AMJMxAEuIJBoPBJoaQIUMmvyErmfBlIcPkIysG25AAcSCQhEAgDHwmZAI4NmBWW94XSb2pW73vS9Xvj6p7XSp1y1q7JdHv8/iR1eque6u66p57znnPe+x2cAAvaxSLoaurC2ylggrLoi8Wg9lk4hdv4dz67ag5nglHlRuEsemzKBgxFqBEBoaEOAUPiOSHKkKIsSTQ57PZLOQyGVQaDeyChyFeIMX1OtJdfrXaI3JfVPOWpGGuWvI+0uNJDYRcLqcKDxzHIR6Po6+vj4q5Wq1WuFwuyswTP2NixXCx4ahWtCo1imLDJTZCtUJ/YtRSnCCvMQwDpVJZM5c9XEw5YyRV7ZbJeIXieiGbzSKXyyGZTOLIkSPDEiEdKSaStzLW4DiuqgGqxiqsBWKASJM5ADAajdCyLLLZLBiWhVposJfP56HValHhOCQiERgNBsjVahqGq7AsfQAdDgdUOh2Mej2fTC8W+Z+VCkr5PCrlMgKxGCoch3gshkIuh7BcDjnDwGA2QymEgwI+H5QqFe+hMCeJAGAYKo9zJBYDWywiXywik04jGAwiFovxOZ++PsiF/kgquRwqpRJKhQIyuRwqlQoyhoHRYKB6b/TaklonkccgE2qRyPgcy0IntKpua21FJBxGV3c3An4/Thw/DrPJhEKpRDu3Cl8aFVVlZLz8D/WGAEpNp+FCYnwEg8WI8hX5fB6JZBLxvj5kMxkwDMPT2RkGnEyGSjrNH1e0oIr/L46MSFUMqi3U4mNIPQepIaoWkZBuDAl7TvwZALAKTRlnzZqFdDqN3t5eHD9+HJ2dnbDZbDScRxZ6MatN6uFJjaPYKEqZdtIQYDVDJB5H/B4ClUoFpVI5JoouYkxJY1RPAgPHnRQhDQuN15RKJYxGIxYsWFCXdudTMUyXz+dRLBZx7NgxdHZ2wmw2w+VyYdGiRUMSdq1mgMjrDMNAq9VCI5cjzfK6XxzDQKNQIJ/LQa3RIN7XxyecAVTyebDCYi4Xci8sALVKhVIuB0YwRhqNBhwAdaUCRqGAVqNBuVSCTvi7Vq+Hy+3mm83J+FqgCssiGAhAYzDAbDLRBUXO8AoPcrmcJzXIZHC43WDLZSRTKdiFDrsyhQJOoaavn2fBnSxklclk1AAQeR6A92aI8gIDQRla/KyQz4i+b7VOB7VajUWLFiGXyyEWj8N36BD2ZLOwWCywWCywms1ghHAjI5A4wPI9jUrlcr8wHc1zQSBzMAzyAoEjl88jm8nA6XDA5XYjnkzCZDTSnBhbLkMt0Khr5XJq5VrI+NJ7RupNkdBmrWNXy6VUC6lVy7EQw0GYebNmzUI2mx0g5irNeVY7H7GhI+NKX5fmkgikz7PUABMjrlKp+rXgGGtMSWNEwi3iizmW4LiBIqR2ux3Tp0+Hw+HA4cOHoVQq62KIgPqH6cYLhCLb29uLVCoFuVwOh8OBZcuWDelakg6fpVJpgLQKgTjG397aiuChQygKdTtKQcEgHg5DbzJBo9UinUpBKejNaTUaMCyLshA+U8hkkKlUVIuOhKSIZ5HL5ZBKp2FMpWAxmWA0m6ES2GdgBIUBmQwKIUymkJ0sRAUAhWAMZAwDpUaDZCoFg1YLTmhlThr6EcUEoobQz6sCv8hXOA4KCHI83Mk2DazICyJsNZlMRg0XIR1QnTkhTAcAOp0OOr0ecoaB1WZDn1DDdezYMVjMZlgsFtisVsgE1XCZEJojrTogeIHlYhHpTAaFfB7gOKi1WugNBugNBmiFMXK5HM09ceC9q1KpBJvBMGChlxoHaeiqlkGpZbTI305170vDXwTVQn/ieYrvTb3ghU6fPh2FQgF9fX3w+/2oVCp488034XQ6YbfbKStUPD/xWNIQ3GDEjGpzI+8nBmisZcWqYcoZIxIKy+fzVH13LBZqluVFSHt7exGJRACgpghpPT0VYHLnjHK5HHp7e9Hb24t0Og2r1YqWlhYsXrwYe/fuhcViGdQQVSoVmpQXX4NqiwqZP9npLezowK6DB5FKp6khyReLfGtvtZrK5ugMBsT7+qDTalGGqDcPx0Gn0yGbSvHemuCRpHI55FMpKJRKtLa10ZYInEDjrjAMVEolWI6DkmWh1emQSCTAWiz9eggxOCkiKlOr0ZdKwaDXg5HLad0T+ckKYzAcXyjKKBS0jgeicJVMMDIKganHMCeliliWpf84weCWxV6BYKSUZEEDgHKZ14dTqdDq9cLb1oZsJoN4PI5Qby+6enpg0Otht9lgMptRrlRQFnpA5fJ5sJUKlEolNDodLBbLyYWVYZDNZk/SwglrjiyoHM/iMwqLcjXvSEpLrib/I75fyE8pLbqWB0TeL/U+Bkv+Sz8jDSuKX9doNPB6vdBqtejs7ER7ezsN52k0GjgcDjidThiFzsPAQK9JvCmvlfeRgoThdDrduG4+pZhyxojkEMbCGBFqJmHAEd2q0047bVAR0noaB4C/AevZCny055bNZtHb20uVJWw2G1pbW/vFyMlY1QyfNAQnDY2Qz1abO3lvpVLhVaAtFgRDIWSTSZQqFeiEYkuaS1Eq+cVbqaQUZpZlaXJdIZeDE0gDMgDpeBxytRo2pxMcgFQsBigUPAVZyIkoANpiu8Iw0Gi1CIdCdExa1IiToSwVwyBZKoEtl8EKCzMH0FwWWcDBCSw30d9I0zrSwI4RVBxoiEzwikgzO7rQAtRoAXyOiROF/wCgwggyRySkV6nwHpNOB6/Xi3yhgFAohCNHjyKVTkMGPl83a/Zs2O12KITrSLwd0nKC4zgUCwV6P1BqOHeyyysqFWi12qo5DqlBqnZPVMsLic+/1melNUC1Np9SAyY9Xq2wYLX7WaFQwOPxwO12o1wuIxaLoa+vD++99x4UCgVsNhtcLhdMJlO/9jDi9U+aVxOfh1KppF2Gq4Xy6oEpZ4yIZ0TyRsM1RqRehTDgtFotHA7HsERI62kcgMnhGWUyGWqAMpnMkJUlCAYzQNKHrNrDLV2sSMjCajTCaDIhFo8jl8+jvaODGheVUDtTLBahNxqRSSb5tgvEyxB+6oxGBAMBmPR6GG02vqUBx1EZIYPBAF93N1i7nTc2MhlPXhDCVCzD8HVO2SxPNBAazJF24qRYlFMqEU0k+P+zLPVoOFFYTuxNceTacDwhguUvJBjmpIgpJ7q+INeHXHSOQ1m0kJECXkYIHRICgkx0zVmOQz6dRr5QQL5QgIxhoNfpcNqiRZDJZPD19CCRTuPIkSN8czuhgaFMLgejUIAVQqYAb0TVgtwQC1CjxzAMLcZVqVT9vtfB8kLiBVhKXpAu2OLFmNQyST0gcs+JQ3PVvCepNyb2Vk5e6oFkAfJaWSC2kN/lcjlcLhccDgfmzZuHeDyO3t5edHZ2gmXZfpp5JMQmNrBkDNJWfjzzQMPBlDNG5OITRt1QjFEul6MGKJFIwGg0wul01iyYPBXq7RmNdehsrMYixI7e3l7kcrlhN/fjOF69OpPJVI37AwMZUWTBILTXarte8bEWTJ+Of+zbB5bj0NrSgr7eXljNZiTicTjtdihVKpQrFajlcqQrFRSKRT7vw/Dq2+lkEsViEUqGgcli4Q0RQBvJEVVpluPraWQyXhCUk8lQZFnKXtPq9chnMjAZDEClAk4mo5/JZrMo5nKAXI5IPg+3UMlPF0bupNoDvQ4sX5czIB9CwoDCgt7v78RbAqjRIUaLFTwSwvQjOnTZbBbJRIKG9xQKBVRKJbR6PcwWC9WVI3N1ulzwtrVBIZcjGo2iNxzGiRMnoDMY4LDZYLZaefFYjm+qp7ZYIOdvhn56eCzHQSPq8FrrPpX+PFXyX5p3Isci11vszZBrLb5fa81DDCnRoFYuS/yauN2DNLxns9lgtVrBcRySySTC4TCOHj2Kzs5OqmdJnjnxv8HyQI0wTlPOGAH9GXXVblZOeIhI/kcsQjpUttZgqHehbb3ZdLXAcRz1gHp7e5HP5/sRO4ZigEgOqFQqoVgs9qv9ERsgskBIJUyq7XqrxfDJz2keD+SVCiqFArQGAzgAOqMRPcePQ8YwUGm1qBQK4AwG6I1GZDMZqFQqsBzHF8TK5WhpaUGpXEYqHofFbuclboRFn+zgdXo9f58JsjkywdPgACoXpNRokMnloFWrkclmkctkAABanQ42txvgOGQSCeQLBT6PIkjksPyJ8teG/yJOsuqEf6zgXYmbtcmEEKN4SeL4C0PJBRzH8bVFHIdCPo9ELIZ4NAp/IEC7uqo1Gj7EqlLxzf34L4kfR1jEybUoVSpQMQxUajU8LS3wtrQgXyggGo8j0teHE93dMOr1sFityBUKkMv4OqMyScwLebFyqQSDRK271j1QLYxH7ldpuEx6j5C8nPh1EuaVFshKF3exxyS+b8nfxPcneY0cR/w+8Voi9a6k52qxWGA2myllPBKJwOfz4dChQ7Db7WhpaYHL5aoLIWG4mHLGiGEYvtumxDMS7xoikciQRUhHgkYQGBrlGXEcR+skiLirw+HAjBkz+JzAMA0QOSYZq9rv1arkqxUzVvOkxOA4DlqtFkalEoxCgVwqBQaARq3G9BkzkEilUBEkgcBxUAntynO5HDLJJPQmE20op5LLkQVQKZf5mh9ReK0sk9GFmixs/XbqDAPI5VBrNPB1d8NsMkEtqIiD4etuCJlCqdEgFg5jOvH0yHkJxkcmk/UjTBDCAukFJL4KxJvicJJhl8/nkU4m+RCdEBIlRl+pVEKt08Fss6HV6+XzOqUSEokEzZ3JhBAjq1DwBkS8WArnQTxFhuOlk9RqNdwuF7xuN/LFImLRKOLxOLp7eniP2mo9adw5DqVKBdFYDO0zZ/YzJkD1eiEqNSTamEhDe2KQz4g9EnG9EPld/H4yHiHHSMeThuXE8xN7O9LPSM+rmncnDe2JPSan0wmFQkGJQoFAAJ2dnTCZTFQdQszMaySmnDECTnpGLMsinU4jn8/j9ddfB8uywxYhHQkaEaarZ86IZVkkk0lqgIrF4rCvK2HAEUXiamNUywWIH1Txgyd+iKU7ZfFxpeNwHIeZLhf2x2JghFxPTqBqyxIJmPR6lO12PmeUzyOVzeLosWOYJYiSFnI5MCYTKgAMZjMSsRhsdjsqDF8rBI6DrFIBw3EwGo1IxWIwms20CysHnmwTi0bByGQwGgwwWq3QkFwIxwuHyhieqadSq9EntGYgxoXmhQDeEBCjI+ywSe+lCsez0iqFAkrlMkqlEsqC50k9NIYBW6lAq9PxZCCOo4YMMhm4WIwnHQC01QPNGcn4AldiDIlmnkz03ZXLZV6hgoQJcZKUwMrlUKpU8LS0wOF0wmgyQalQIBaPIxaLoVIqYe/evTAZjXzhsBCulHo+YkjDXdXyPtU2WOLjivNJ1XI64mNIW4OTe7PasaUhRDHExkeqwCD16MRzkcvlNBcknqtOp0NHRwc6OjpoEXkoFMKhQ4eg1+vhdrspAaLas1IPTDljlM1mYTAY8L3vfQ8qlQp33HEHAGDhwoWwWCx1cU+nomdEPEtS8/DOO+/A4XBg9uzZsNlswzJApVJpQHxcalzIbpx4EtJwTK2doTQsVy1nIE1WT/N6sc/ng06nQywSASOX8x6T1YpEPM57OuAlgswGA8xGIy+AyvFhSUU4zIejAKRzObB9fbR1ABhBZohlUSgWEQmHIQsG+VCdSgWFXA6rzQaT0QiH1YpCuYxkPA6lw8Gz5YTrpmB45h3DMKio1UhmMnyHVZZFUejuWq5UqG5bsVwGW6mgUCggk07zxaYcB7mQL5ArFNDr9VCZzTwxQMhllUslxOVyXipIuFasYGiIZ1IRvg+QaymT0fblEM6Z6MuhUqHXhjDi5II3RhTIOZbla5EEI1pheSktlVIJlVoNo8mEUrHIt25nGPRGImBKJYTDYdqmQQzpAi2+D6oVoNbKGYk7q4pzNtJ8UbXNlPi+Hqoxk35G/JpcLh+wuRIbVWKAhrK+qdVqtLW1oa2tDeVymRqm3bt3Q6lUUoHhetVJEkwZY/T0009j+/btePHFFwEAixYtwk033YQlS5bgnXfegc1mq9tcpkrOiBggkgOqVCqwWCxgGAbnn3/+kG58cR0Q2WWK49y1aKTSXWs141UtBFfLSEmPKf6bXC5Hi92ObDoNjV6PXCYDo9EIuULBF4vK5Yj29UGtUsFss4GrVNDX1weX241SoQCbw0E7nOoKBUTCYV5UNZ9Hb28vMoKmm0qthkGvRzqTgUyhQD6TQQVAOBoFymWkczmYDAYkk0mUymWqGQcSehM8oEwmg30HD8KgUiEn5HFI4z2ZQgGFULcjF1hosb4+miegoTnB6yJ0aggLsoyw/FgWJcE4cMK5cQxDc0wcf7H5YlbwRoa22hAt/OLvkCPvEb4bhSiXhEoFkMl4oyMQX1RKJWx2Oxx2O08akcuxaMEC5AsFZIX+VEePHqWaj06nE3q9vqoHJF7kxUZE6lmJPyMmwQADDZrUAwL69xoSH6ualy7NJVX7jNgzE9/THMdRSZ6hhMJrQaFQoKWlBS0tLWBZFn19fQiFQuMWNRp0LnUfcZzw7rvvYunSpfjud7+La6+9Ftdccw0uuugivn10HQ0DMLnDdBzHq0uQEFylUqFCpFarlVaFD2aIiPEhigjVcjfSn+KdoPh3qXERLw5S4yQ+B+lOU7rjlM7p/CVL8PSuXVi0aBH6wmEAfJ2O2WyG3+dDuVKBx+vl8xxyOTQ6HWKJBOQyXvtQoVJBznFgBbFUX1cXZHI5FEolXCYTuFIJap0OMo6DXqeD2WKhYaZcLoeenh7ks1kU8nloBX1Fl9MJCDVDHMdBwTCUrKCSy2ECX8rgcLshI54IBEMhGJ2KwJCjRA+BNQemP7mBXHNSk8QwPJOOXj+Aki6IJ8VyHC2KBUDrmziRh8MwDPV4GJmMp60L7yHjEj3HYrEIhUIBvcEAk9A5VSmX80ZY8JA5hldemD9vHlxOJ1XDJ8WgpHmiy+WiHpP4XiX/r3YfiO8tKYlAfO9UY8ARI1UtxyO9v8UbK7FRkm4qxXMk3x/J3Y0HHVsmk1FK+KQ2Rr/4xS/wX//1XwgGgzjjjDPws5/9DCtWrKj5/qeeegrf+ta3cPz4ccyZMwf33nsvrrjiihGP/3/+z/+h/xe3kRATGOoVB51sYTqO42itQjgcBsdxNfsriR8+8fWUKiHUqn6XPtTS91TbrYrnWa1wUJr0reVJAei3ayWf4TgOHo8HDpUK6UQCeoMB8UgEdrebHxN8ywewLCrCZ01GI6KRCGRKJa/8nckgnUwim89Do1ZDpVbD5fFAq9GgLxxGKBqFXa2G0+OBjGEQj0Sg12rByWTQajRwezx04U0lk+jx+ZCMx+FwufieQ3r9SakfABqtFr3BIOx6Pa0pAgRKOfF2hGtUFkJ4NE8jIgMQHTu50MBOTr5rluXriETfOyu8BsGrIrI+VCpInIQHH2IUvgBwHEcJDblcDrl8HoV8HgwAtVYLi8kEuSDqyrEskokE7zmR75Bh+OsDgC2XYRJUB0gxqMfjoW3lw+Ewurq6oNFoKK3ZYDD0W9xrhdikXpPY0FTbgElDduLXxONI/yaG9JmSrlMcx9dT6fX6urHgJm3O6Mknn8Sdd96JzZs3Y+XKlbj//vuxevVqHDhwgG/rLMEbb7yBz3/+8/jBD36AT33qU9i+fTuuuuoq7NmzB6eddtqo5yNW7pbeXPXAZAjTsezJDrO9vb0AAKfTecrcWi0DRGRpyFwI+2iwvI7U4IiNkHQsqTGpZnRqeV0EtY5Lfr/q4ovx0PPPY+7cuejp7obJZkMyGoXX60X3iRMo5vNQCLI/ZUHws+vECZSKRThsNhjNZjg9HiiVSr6BYl8fCkSfzmSCTq+nhaZ6sxnRRAIOmw0VloVKLkdB6LSq02phczoR7OmBjOPg9/mASgVmiwV6g4EPv7EsMuUyjKUSVWKokOtOvAjhdxnZWZNw08mT5+cjeFAcTgpsgnhBQogOguEi+nUQPkPakBOaNzGCnBBeLJdKKJVKyOXzSKdSSCWTUAhSM1arlb/2gkEjRbRlofCVCrlyJ+uawHHQyOXQaDQnDaRwPygUCrjdbng8HpRKJdrA8sSJE9AI9HO32w2tVlv1niFMOGlrBvJ3aSiv2u/V7sta+U7xZ8S/k/GILpxKaL44EenYY4kxMUY//vGPsXHjRqxfvx4AsHnzZjz//PN4+OGHcddddw14/09+8hNcdtll+OpXvwoAuOeee/Dyyy/j5z//OTZv3jzq+UjrjICBDanGE40I0w3FGLEsSxt8hcNhMAxD5Y1ILmgox6hUKrw3gP7CjGIjXC0XJDY80jBZtQe1mncj9ZyqoVrYDhhY0yG+fgzDwOvxYIbdjlQsBrZSQSgY5MVNFQo4XC70BAKwO53IJpNIp9NQKBR8C4VcDq0dHbznIRw3XyyikM9DaTDAYjbzPXiIQWX48oNMNsu3rNBowKnVSOdyVJVBzjAwWa2QMQxaWlqQKxSQjMcR8PmQyuWgFhryKQoFzBdySgzDUCYb+Z14M6xgNEjIjYTnCKONhuJkfF2PmO5Nwm7AydAboY0TQ0RyP+VKBcVCAdlcDqVymafEq1R8DkuhgMlk4lUs+C/hpLisMB4j49VLZKRQmHxHwhwLhQJsRmPV75ks2MRjItRlIuvV29uLt956i+q6uVwuGAwGem9Ic0JkDPFxpV6+1IhUIxhIN4vVyBLkWCQERwgL5JiN8FTqjVEbo2KxiLfffhtf+9rX6GsymQyXXHIJdu7cWfUzO3fuxJ133tnvtdWrV+OZZ54Z7XQA9G+wJzZG9UIjwnS1zo8YIBKCk8lkcLlcOP300we0Pq4FMQ27WCxST0guJM2lY0srzIGBIQupAapWuCg1TOLzrPUZMaSLlfQ94vHJcS9duRJPv/YaWlpb8c4772Dp4sXIZDLIJpPo6u5GPpeD0+lES3s7tEolFEolDh0+jEIuR1tIJPr6oNBo0DZtGuLRKACgIHgwFY6DXDgfm8WCaDgMpcvFM9GEEKdCYLaZDQaEQyGoNRpoNBpUTCbIFQrI43HkBdWHUDqNo4cPw+Px0K6yEBZxIp0jFzwahmH4glzRIk8YcVQ+SPhHtOYYhgFTqfC5K47rZ7gq5TISqRTkDIN0Ok09NK1WC4PRCLVaTQ2kjGEQjcV4+R5CWhCOL8PJhblSLiOXzcKg01FZIADUAyvmcnC3tQ0I38pksn6MN/E9IZPJ+hmmWCyGUCiEPXv20I7LRHBUDPGmp5onI33GpZuoWkZLHG4m8xssD0Q83HqhWqiwHhi1MYpEIqhUKnALPVUI3G439u/fX/UzwWCw6vuDweBopwOgv2ck3l3UC/UO00kfDJZleakVQWGCaFkNp8W5lIRAQGLn4oepmgcknhv5KU3iio2JePdJFQKqGHXp8cSvVzNg4utTK6Qnnn+LxwObVotcoQCVQoG9+/ZBo9XCarVi9syZkDEMrBYL5CoVGGHX7HC50BsMosXrRTKRgNlqpUw4q80Gf3c3yoUCX/Apl6PEcVAJYxqtVsT6+uBwOvmaHIi6o8pk0BgM6OnuhlGrhVKrhd1uh9VqRTKRQIVlEVMqEY5GkUgkIJPJ6N91hFUmsPBILgmcSOiU4wtPiUdHCA8QGXxCwa7k88gVCohGo4iFwwiZzfz5F4vQW61811eFAhzL0voikO+IYVAWwm9alYo20SPHr7AsGLmcN5hyObL5PExmM50DA95rkglhOxJmkxaKknuiGiONfO9E7NjhcKBcLlOyzrvvvksbJrpcLp5NKdloVXtuqt33UiMkNZxSD+hUhoZl2TEtyp+omDJsOjHEOSNp+KgeqHeYjpwfyf9EIhFaLzASA1StM67UgyDjSh9AKcQPpjgUQsarFsqQVsxLjwVU36HWYiyR38U/yf/FnlY8HkckEoFLo8ELb78Nu8vFi3k6HFAplUjG44jHYsjlcmhta+N3/jIZ9BoNYgB6TpxAx6xZdFGWMQxYhoHF4cCJri54WltRERZr0pZbIVCWU+k03xpCWEwLhQLSqRQAQKfRQGc0Qq/T0VxMRTg3nVYLrV6P+W1tyGQyiPT1IdjZCbVKBZvNBpvdftIQMUIXVeZkrojDSd05juV7QaWzWSiiUboZYcAv4mqNBlqdDpzTiRa3G+VKBbG+PpgMBiiUSloIywK86gNzMh8kZxiUikUoFQreEEFQ6QaoEeTIJkQYj4QKc6USn9/s7cXc9vYBoTExarHlxEZLbBAcDgfsdjvmzZuHaDSKSCRClbAJ+UFcdCpFNSMo/bv4viNdgofj6dQzxdBIjNoYORwOyOVyhEKhfq+HQiF4PJ6qn/F4PMN6/3AhDtMBk4NQMBJUhHoXn8+HQqGAQ4cOweVyDUthvJoSQq2wFwAqMU9i6WJtOGlMHTgZiycPlNQAAf0fWGmeiCSoxQWI4jGkY4kXIXLMajtT8tl0Oo1CoYCDBw+CYRjY7XasWL4crFqNvd3d0KvVKGYyUJrNcLndAMP3IgoFgzDodIBMxncmzeXQ0tKCVDrN7+rJOcvl0Gk0UKpUSCeTMJtMAMczyxRCoafdakUkHAYjlyMWjwOVCpSCMZExDIosi0QkArVaTZv60dwQAIXBgEBvLzra2mA1m8FyHGKxGOLxOD748EOUBcUFp6APWCqXwZZKyAstKUgIjAO/WLKVCnRaLdQazcnWEIKHks/lkM/nwTB8nRDLnSQqkIZ/DPkuSN0RCQEKnyE1SpzgESsUCjACMy9fKEClViOXyyGdyaCUz0MphClNJhM62tsHhHylecBqpAIxpHVCxBsn/YHmzp2LWCyGSCSCDz/8ECzLQqvVIhqNUkFS8f0qvc+kRlAsTjqS8Fe9jVE9UwxijNoYqVQqLFu2DDt27MBVV10FgL94O3bswO233171M6tWrcKOHTvw5S9/mb728ssvY9WqVaOdDgD006YDGhM2G6/xiAEiHpBarYbZbIZCocCqVauGdLOTHa80BCf1LKRhL6D/g16L2TYY1bpaoWstD6tamI3ModoiUM0AVXuwMpkMQqEQIpEIPX+v14t2YdfNcRw+tmIF3j1wADK7HXKlEplEgioCyBQKmIVGeAz4PIfdauXVtfN5JFMpGHU6Wo8jVyig0miQz+WQTqdhNBqhlMtRLJdpLY9ao8Hx48dhsVjQ0trKM+YE70ktl8NgMiEej8NGFkOGz8UQDymUyUDf1weVQkFJBkaDARq1Gj3d3eg6ehQHDhyATmCVOZxOGAwGKBUKXk+OXDuBQKDT6fjXmJN0ckofFzYIAF/EqhTUKDjh/mT4L4EaJvI8sDjZ4pwRxiKtKFiWRTabRcDv570ngO966nBABqC7WIRGUIYg3yu5n6SeUq3NiHSDVS2ETDZLNpuNNs/88MMPkc/n8eGHH9JaHKfT2a+nmXQOpBh1LLqkNgkMw8Cdd96JG264AcuXL8eKFStw//33I5PJUHbdunXr0Nraih/84AcAgDvuuAMXXngh/vu//xuf/OQn8cQTT+Ctt97CQw89NBbTgVarRV9fH/19sntGYjZQX18frZ9Yvnw59Ho9H56JRAa9YaUGSGooyLzFD2at94jptOJzJsclIQjpfMhxyN+lXoz4M1L2Ua3rKTVSwEllavFrRE2c5DitVivmzJkDk8mE999/nxagkjkolUpcuGQJXt+7Fya7HVabDfG+PtjsdkT7+mB3ueD3+VDhOHiF6vVEIoGWlhbEolEolEpoNRqeUSZ4HpVKBb1+PzI6HTQCi6tYKCAjdIU1m0wIBoN8sSY5X2IMOA6JTAa5bBYarRbxeJyXGapUeNUBhQLdwSBmt7dDrVRCLhgZhVwOvdEIpUARTiSTiEQiOHzkCIxGI+xWK6w2Gx9mEwwcOI6G9qjOHbkXhO9P3IqCFUKSwMmW4oSGTVq0F4tFvuWD8H2XOQ5sPo9sLserkzMMVIIH1Nbaysst8TcJWJkMmUwGTouln5dQi34t3TxJjRZ5r9SrFv8Ub55Ijc+MGTOox7Rv3z5wHEdDeaTbszgXNFaot2dUKyQ53hgTY7RmzRqEw2F8+9vfRjAYxJIlS/Diiy9SkkJXV1e/i3nOOedg+/bt+OY3v4mvf/3rmDNnDp555pkxqTECeM+oWCzS3xtljKqFCIYKUsDX29uLaDRKK8tnzJhB6agE0gWdQEpCkD580pBVtb+JwxlkrGqFfOK8ELnW0oefjEPeLzYy0t2s+FhiL0fssUkNkZQQQQQhI5EICoUCrFYrZs6cST3JWiDHWrF0KQ4eO4ZoOg21SgWVRoN4PA6ZQoFMJsMnnxlee06j0fD5GABWux2xvj6+dbNWCwaAxWQCy3FonzYNiWgUWp0OuUwGKrUabo+HhrjAcYBcDpfNhmKlAoXQu4cBYK5UkIhEeFVvlQqJRAJgGDisVpQ5Dtl0GuVKBRaTiVcMF4yJSug0q9Dp4BRyJGylgkgkgmgshmMnTsBsNlPDxAheDfG+IDvZRZYV6NqcyAAR1l5FEEEl1HQwDFQAykIuSqZUIplMopjPo1AqQaFQQKvR0EJgDkC5WKSK44zwGlepAOUy7DZbP/LMYKFY8X1U7fkQ38fVvGjxvStm5dntdtjtdsyZM4dKZR08eBAAaPGt3W6veW+NBNKw5FTFmBEYbr/99pphuVdffXXAa9dccw2uueaasRq+H8RsOqAxYToANNcxVJRKpX4GiGhuzZo1a1CZd3FYsBYLDkC/vIs0sSpVJBA/wNK6C2kYUmqAxDurarRvaby+mgdFfop3ttK/S0OJJNRDaqlyuRysViva29thsVhozL6aNyY9Z/Lzqk98AtueeQZ9kQhmzJqFJH9S8Hd3o72jAxqNBr2hEGQANAYDEkJeyGy3IxaJQC6T8cw7spizLJRaLXxdXWhtb4dOpztZ0wPAYrWiWCggnkjAZDLx7Dbh+ihlMphsNiTicRhNJhQLBag1Gp6QIHikB3t6YCL5QiIho1AgJ6gdQBhLIZfD09ICj9uNYrmMWDSKvmgUx7u7UcnnIVcoYBGaBRKvCMxJijjAs+A4Yd4y4ZgQGbFiuYxSsYhsLodwKAS90QiTyQS90QiHRkPJGmRe8WQSep1uwPdaLJVg1ev75SfF926tzU8tanW18LL4cwRioydm1slkMlrH1Nrays89HkcwGMTevXtRLpfhcrl4VQ+HY0zCdPUyRtLNZz0x5dl0QGM8I2BoicCSoD4cFoQfDQbDsLrMkiR/uVymHVHFRlBsOMQPn/RBJg9cNW+pWh6HfEb8/mqfqeXJVKsRkobbZLKT7dtJLF96LJZlUSwW0dfXR1uam0wmtLS0wG6396PESo2gdFGSGmmZTAaTyYSrP/5xbH/5Zezfvx+nnXYaIuEwSpUKUKlAxnFwOJ3oC4VgttuRSaX447EsbHY7+sJhmM1mcBwHrUbDtyc3mTBj5kwkolGoVSooyBw5Dmqhs2yxWEQ6k+EXZ/D1SRBCZDq9Hql0GhXB4+iLRsGWSpArldDZbAhGImhraQGEc1QoFHyrCPCGCAKJgGNZQKANu10utLjdyBUK2L9/PyKRCI4dPQqL1cq3BhfIFEQiiEoOCYYQMhnyhQIKhQLyuRxKgvyQRqg5KhUK8Hi9vMKBEN6D+F4CkM1k4PZ4eC09huGNHcOgkMnALVrUq22GxPdNtc0Keb3WRkT6f2nuE8CgXVKtViusVivmz5+PRCKBYDCIffv2UcPkdrsp2Wu4aLLpJjGknpH05h1v1PIKCIrFIjVAsVgMBoOByrYP1wCRcJQ4nCU9X+nOT0ooEC/sYi9EbIBqeTK1/lYtNFKNqCCeg/iY4r9JFxWGYagXGYlEkEwmYTabafxeRXoBSSBeXMQblGo7a/HnO9rasPqss/CXN9/E/n37+F47RiN6QyFM6+iATCaDw+lEuLcXSqUSyVSKeic2hwPxWAzpdBrFYhE6rZaXW2IYGs4zWq28h8OyUKvVSCWTsLlciAoyTQadjoqkymUy6LRaJOJxBAIBOOx2eL1eyJVKuoD3JhKwpFK8Ny0YVRaoqtbNSeRvlCoV3C4X3B4PSoUCeqNRBEIhHDtxAlaRTFSxVEIul0MiHqffu0KphE6thsls5lUlBAMKADFxPhK8IZQLDfkYmYwXXAWgZHhZowrHU8KLxSJsRiNkkg2LePMj3szUCmlVy4NIN2bkfVJDJxfkh4bybDIMA4vFAovFgnnz5iGZTCIYDGL//v0oFovUMDmdziEbpqYxmsRoNJtOXOtAQAxQb28v4vE4jEYjXC4X5s2bN6AfSzUQA1QqlXhdNJFRIYssWVSqxdOreSXkuNUMULVwnTSEIT6+eJ7k9Wo1HwTVPCGpoZR6dURvrLe3F8lkEkajkTKe1Gr1AEMn9brE34f0eog/J71uAHDG/PmIp1J489AhxGIxqIUW4X6/Hx6PBwzDwOF2IxqJIC1sMMiCq9PpEIvF0NHRAZ1ej0IuB7VOB7lcDovTiVhfH/QsCx1ZwAUD4XS5eNUM8MKoHMchm8uhkErBYDDwPYfElfsMr7ZgNJtxrLcXCzs6eLFSkRfCQChiZYXusXI5lAwDTiY7aaSEvkgqjQYetxt2qxWpdBqhYBC94TBfXxSNwuFwQKPToaWl5aSXyV9QWkvEACgUClAS7TrwRpHlODCsoCzOcUgmEjCazWAZnoGXzWSQzWaRjEbxiQsuQHd3d1WPplr4VnpPSe/Xavey+Jkg3iRhxJHfhwuG4VXfzWYz5s6di1QqhWAwiIMHD+KDDz6A0+mkobzBjl9vNl01w10PTEljJPWMqknWjCfIl1koFGgOKCHkAFwuFxYsWMB30RwCOI5DSRCbJL8DGOD5VFvIxQ9nNYNca9En49SKpQ8WhhQv7NKcU7X8kPjYYhUGstBUKhXaTymRSECn01EvkohlischY4sNkXQe0tBjteshDVcqFAqcv2wZktks3jl4EHPnzYPT6cS+zk7kczlY7XZotFqYbTZkAwHEIhE4XC5kMhnks1m0trXxdTeVCrLZLLQGA8pCi3Kr1Yp4PA6OZaHTaqHTapHNZqEwGGCxWnnPKpUCI5NBq9XCLhCDHDYb+qJRFEslqNVq/voxgtqCTocunw8z29p475ITGHIAJR6QIlMoFLygabGIUrGIaCIBkL8xfF2VRq3GnLlzYbHbkUunodVo0BuJICV4RjaLBUaT6aQIq8gw5XM5qARDy4i+A3IPyRkG+WwWer0e4UgE5WIRckEkdN7MmdBoNP1Cz9Xye7VyisTQiI1StWcDqN0ltZa3NRwwDAOTyQSTyYQ5c+YgnU4jGAzi0KFDeP/996lhIm3CxWh6RpMYjQzTFQoF9Pb2guM4vP3227BYLHA6nVi0aBHUavWwj8cwvHqvXC5HqVSi6tjS0JXUOElfl+ZvgIHsoWox92phNPIeqXdTy/hJvaxq3pfUkyJU9pxQUOp0OjF79myqdyb1gqTHq8YOFO+Apeck3UlXyzMolUpcds456EulcOT4ccyfOxenLVyIHr8f5VIJeYYBWypBo1Si2+9HMpmERquF2+1GNpeDwWCATKFAOBiExWaDUsjRKRQKOG02hONxsJUKDAYDspEIOIMBhXyeJwMUCrDYbDAYjZR1p9FooFYqkYrFILNaoVKrqQqCWqVCPJ9HVCBUMDIZUoJkUKlYRIXlO8TKZDIqw6NSKCAXaMxOl4uncJNrJIwpA6BQKtE2bRpPc4/FwLIsjp84AZbjYLVYYLPbYRDaHTAcX8hqtVqpIZIJyuIceEHZvkiEbxmhVkNvMEBrt0MmkyEVi2Hm9On97jvxPSW+P8XkAqnXK81fSjchRBWh1oJfaxM1UjAMA6PRCKPRiNmzZ1PDdOTIEXzwwQdwOBzweDxwuVy8EsUYGMPJgI+EMRrvMF1e6OgZDodp/kImk2Hx4sVj1mGWaFhxHEcVE8SU02o5EGnNBPlbtQdLesNLF3TxAk48FunxquWPxLvTwYoOS6US1QmLx+O80rNQd7Jo0aIB86rl6YnnUS3MKDaa1XJSUq9ICo1GgzUXX4wHnnoKge5uuLxe2BwOFPJ5VPJ52J1OMHI5lFotjh05AjPDINbXh1g8jnKlAqPBAIVajQ8//BDt06ZBLngekMlg1OuRSqWQzWRQKpfh7+qCwWKB0WaDlWEQjUSQLxR45QeGQb5YRL5UglKjgb+7GwazuX+hKsNgz/79mO3x8AKkhQJsFgu0Oh31AMh7OYD2O8qk05TlVhE8F9oniSzs4CnbJpMJJqMR7e3tSKfTiMdiOHr4MMDwahZmiwVlQVGCYxiUSyXk0mnkcjmUKxWolUqUy2XMnTuXb3ch3OPZdBrTXC4olcp+njJ5Bsj3R75Xqfct/ozYkyffqZiMcCqMp2ciNkzEYwqFQjh27Bg1TKVSqa6RnUZhShojrVaLQqHQL6cy1l9mLpejOaBUKgWLxQKPx4PTTz8dKpUKr7322qjaAdcCwzB0J0dIDEB/z6Ta7l78eWkuRQxxiItA6m2IPycN60nzZdLWzWKUy2Ukk0nKJCSCru3t7dBqtQgEArRVBTk+0QmT7oSlc5eGWcRzlYYnidckvkbi40l3xkajEeuuuAIPP/ss4pEITDYb5BwHjcGASCgEi80GVCo8ocJuRzqVglajgcVigdlkgtVmQ28ohJzgOcmExn2lSgUyuRzRWAzxWAwOux3lcpkP0bEs5BoNckITP6vdDkbI+TAMA6fXi0QsBpvVCoVQXMrIZDCZzejt68PCGTOQz+dhMploTQ/I/cGfNFUVJ94QA0BBGJbC/UUYdADAlctQimjrRpMJRpMJ7dOmIZVKIRqNorOzE0mh0Fan08FoNPKhRqHQlnhpSpWKFsuyLAs5x6HF46mZQyQQ16JJDYa05GCksjxj7RkNBoPBAIPBgFmzZiGTySAYDCIcDuOtt96C3W6nHpNKparLfOqJKWmMxovanc1mqQFKp9OwWq3wer2UwSVGPUKDpDpcpVLVFF+UhsWk9FjxAl3NayKxemloS7rAk/dKjZR0gahUKkin07SWimEYGsbUC7UkYqMiDQ9KcwO1Qm/V8kTS70Q6V6nhkYYpxSGhlpYW3PDJT+LR55+HTC6HWq1GNpWCxWZDPJFALpOBp70dyUgE9pYWhATShVnIqzhdLqRSKShVKhRzOdjtdpRYFoloFK2trZg9cyYOHToEtVIJk6A3xwBgTSYU83mk02modTpYhHnptVqoVSrEolGYzGYUyuWTygZaLbpCIZi12pOtyTleGaFSqQCCF8QwDORCXqdSLoMRNlNE1od+B8KmoFypQKtQUMYew/K1RcVSCYViESq1GlahvbpSoaDXxWq38wQBhQJ9sRgsZjN/nwkkilQigSVz5gwI9Uo3UtL7oloOczA69lBRbwIBgV6vx6xZs3DkyBGceeaZSCaT6Orqwt69e2Gz2eDxeOB2u8fFMDXifKekMVKpVGMWpstmszSBnslkYLPZ0NbWBofDMaise70ZfHK5HCqVClqttl8YD6he1EnmKJ2zeNEVL74cd1LmpxYtWlwHJAbL8oKk4XAYfX194Di+rfmCBQuoorg0sSweTzxmtTCfdMEi75X+JJ8h41QznlJPr1qYj/y9tbUVX/jsZ/HQ009Da7VCpVQiEg7DbLejVKkgFY9DrtUikUjw7DeNBn2RCMxmMzSC9ptGo4FWrYbP50OFZdHW1ka14pweD7LpNAq5HKw2Gx/qAt+mW65U4vCRI1AL5ANOWMxlcjmOHTkCh8MBm91OO7Dm83l09fTA43bTWiGWO9m9lWNZnsnGMFRFgZHJqIgqIT8QD0khl6NQLEJbqaCQSCBfKPD0bI7j+xkZDFCrVGAAuD0eGg5MJJOI9fWh88ABgOOgVCj4vlrgw36ZVArtDgeMQlvxWkxH6fchvSfGUpankTkbcp/q9Xo4HA7MnDkT2WwWoVAIPT092LdvH2w2G+3XNJK89ETBlDRGJExHIJPJqrZFqAWiY0aKKO12O9rb209pgMSotVMbL4gXdGkYT6zILX6v+PfB/i5dEKrtSqUGAQBSqRStBWJZFlarFfPmzYNZ1KtG+lMaApQmqqWkA2nCWjqHWqG5WjmhWjmuajkzuVwOm82Gf7vhBjzy1FOI53JQKBRIJpNonz4dMrkcmVQKuWwW5VIJSrMZJpMJiWQSmUwGRrMZqUQCer0eGrUacrUa0UgEZpsNSqUSVrMZfcUijCYTYrEYlGo1TAYDwDBQKhSwWiyIRaNIRKO8bI9cDp1Wi7nz5yMaifBj6PXgZDJoNBrEBGLFtNZWqtJNfnIyGW1rIZPJaOty4q2A41AolZBMpVAoFKBWqxEJh+kGyGK18qKrDENrmirChojkmiCTwWwywWa1oqNSwcGDB8ExDN577z0AfEiw3elE+2mn9bsnqm0MpN8ZgKpdUscC9QzTVRsb6O+p6HQ6zJgxAzNmzEAul0MoFILf70dnZyesVisN5Q2VsTtRMCWN0XDDdBzH9TNAuVwONpsN06ZNO2UNQC3UI0wnHa9aSIuE8cStIsTvr7XQS6vPyWtioyN+jfwku7a+vj5UKhXYbDYqSCo2ANIFRhpiqxY+FD+Y1UgM0mOKw33ina3U0IiPQ3JS0gWIGKBq81Wr1bjl2mvxwiuv4GAwiHyphHfffRennXYazBYL5EolPnjvPRj0ejAmE4wGA2QMg0Q0ilQ2i0wyiekzZ/LegV7P07zlcliNRqjUalRYFg67HZlsFn3RKEwmE1RKJWTgjQXpojpt2jS+3gqA3W5HIpVCJBqF3WZDheOgNZkQSCYhl8vRKnSX5cj3R3JBwgYmmUohnU7zslLkPFUqgGFgNJngdrvBcRycDgf1elj+ywHD8jVM2UwGesF4QvD2SH4slU5DqVZDq9HAbDIhn88j2dcHrlTCnj174HK56IJKvkvphol8DyqBBj5eBqOR1GopGUkKrVaLjo4OdHR0IJ/PIxQKIRAIoLOzk+ax3W73sEpJGoUpa4zI4ksom1LDwHEcDR319vYin8/Dbrejo6MDdiGmPRrU2zM61XiEjUfqUcTFs1JIH3rxa2KSAnmdkDnC4TDK5TKsVitmzZoFs9k8IEwizcGIQ4FSL0caSpPOo9aOVer5SAkP0iJHaU2U1ACKFz5xLkscvpHL5fjUJZdgzwcf4H/few+MxYLjXV2wGAzQarUwmkw4dPQof33sdl6JwW5HKp9HOpXiteiMRsgVCthsNhQKBb63EcPX4KidTt6D0moRTyRQLBQQCYeh1ekwffZsREIhpLNZ5HI5/rrLZDAbDCiUSugLh2G12aDTapEslRDMZJA9fhxugSBRrlRQLpX4awaebq1QKuGw2/mFnnjGDIN0LseH9fiLxV8b8J4QEYqFcJxUKgWny8VfW4avu8tkMsjmcoj19WH6jBl8PoxlkYnFcOnZZ0Mul1Na/xFBWdztdg/og0W8oHoYiYngGQ3lPDUaDaZPn47p06dThi9RfzCbzdQwDaXIvhGYksaIXOx8Pt/PGBEDRHJAxWIRdrsdM2fOhN1uH1PZ94ngGdWCmCZOapeqJfalxycgBqi7uxvhcBiFQgEWiwUdHR28uGaNFhLkNakxEDPuxCFBsbDrYKE6AAM8n1qhP7F3Q+ZD6L9S5pb4uko9OvH5ieezbPFitHs8ePTPfwYrKCmUSyWYBEWGbp8PfdEoDFotrQdyulzoPnECBoMBRqMROoMBSrkcJpMJpUIB4XgcxVIJbo+HD0EJY8vlcr7ZnWAgZPzJo6urC2q1mq/JAsBVKjh8+DBUSiWKlQrsFguOJxJIpFJYMGcOTCoVX/Mk45v25fJ55HI5qDUaKuDKCLklhuNQAVAulahEEUOuiyikV65UUGFZ5LNZpHM5cOUyVBoNDHo9KpUKZs2eDZ3BAAZAvK8PS+fOhUajgUwmQ0tLC1paWlAqlRAKhWjBc7FYhFarhdfrrSubrFEEBjI2MDRjJIZGo8G0adMwbdo0FAoFhEIhhEIhHDhwACaTiRqmahJHjTrXKWmMiEtaKBRgMBj4Fs7pNHbu3IlSqQSHw4HZs2fDZrONqQESo94EhpEYP4Zh6ENN8ksktybNlzAMg3w+j76+PuRyOXR1dcFisaCtrQ02m62fJ0kW8GrxbvHficGpVg9Va/EXGyfp+8ReVrUkt5hkIQ39VVtwqo0t/ps0REnOyWKx4NY1a/D088/jWDgMu9MJm90OrVaLYqGAaDyOfKmEZCKB9vZ2qHU6tLjdyBcKKOXzCCQSUCuVtOeRwWikEkjZXA4Omw0GwfvhKhWEgkG+0R7Lwu3xwO1yIZPNIpfPw2AwwG6xwNXSgnAkgmPHjsGo16Nt2jRwAHzhMDpaWgClkq8hEkJp/fJxEg9VLhgbhVJJ65kYnNSry+fz6ItEoBYMrtvp5PsTVSrI5HJgZDIYDAa+I21fH86YPRsmk6mfx8lxfDFwR0cHZs+ejbfffhtqtRrBYBAHDhyAzWZDS0sL3G73kPO4I0UjCQxi4s1IoVarqWEqFovUMB08eBBGo5G2vhAbpkYYpClpjFQqFZxOJ772ta/B5XLh0ksvhVwux/z588fVAIkx0cJ0Q/k8yS8RAdZyuUwljcLhMNLpNMxmM5RKJbxeL1pbWwfklYD+Wl8k11KtoFYs0zTYoi99vda5io2M+DUxxMc7lTcpzXHVGkvcsJD8Ta1WY9011+C9Dz7AS//4B+KJBKZNnw69kO/J5nIwmc28px4OUxKD1mqFu6UF2Xwe+VwO4DjoDQbMMBpx4sQJLFiwAIViEWVBAshkNMLT0gKW49Dd1YVkIgGz2Qyr1QqFTIZUOg2/z4dioQCr3Y5Zs2Yhm8nQ2jhOLkfniROY4/VCS1QTCBNT8HJICI5heCFWuVyOQjYLTiZDMplEPp9HWXhdo1LBaDKhXCrBK7RXAMMre5c4DtF4HB6PB+FIBOlEAucvW0ZVzamxq9IlVSaTweFwoK2tDblcDsFgkNKcHQ4HWlpaqGLBWKORYTryLI3V+CqVCu3t7Whvb0exWERvby9CoRAOHTpE9TLb2toaQn6YMsaI4zi88cYbePrpp/H0008jFoshGo3i6quvxrx58+Dz+eB0Ous2n4kcpjsVWJZFJBJBMBikquJutxsLFiyASqXC3r17B/R3GUyJQeqNVGPekd/Fr4vzU7XGIu8Xj1PN8xFfJ3HeR+phiY8p9Xyk5yVOrJOxiadHxjlzyRLMmzMHL/3tb3j7wAFo9HrMnDUL2nweBw8exJy5c8HI5chlswgFgzhx4gQcDgc6ZsyA1Wrla3aExLRSLkcunYbDbgcnk+FEOo1YPA6lRgO9RoPW9nYkYjFwAGKxGDiWb6+h0ethtlhQyGYBju9vpBcYenKFAnq9HgeCQTh0OngF1QPCpmPAt1XP5/MolkqIxWJ8aE2hgMfthk6rhdFo5IkJ4MN48WQSOoOBek0cx1PLjx47BqPRCL/fD4NSiY+ffTbdjTMMMygdW/xdabVayiYjhaFHjx7Fhx9+CKfTiZaWlmGpYp8KjSYwjJchVKlUaGtrQ1tbG0qlEs0xeTyecRnvVJgyxohhGHzta1/D3Llz8eCDD2LNmjX47ne/i0WLFiEcDtfVMACNo3aPFKSvUm9vL2KxGBV1Pe2006BWq/vRxMVjAgNbZUgT/8DA3A1BNYMgXvyl9UEk5yOdg9TwiD0f6bWpNQ+pARJ7dORYRBtQfD5kJ18rlKfX63H1FVfgwmgUf9qxA+++9RYMFgusFgvfRFGng1arxdy5c1EulXDsxAm8u2cPtAYD7HY7jHo97DYb9AYDAn4/soUCdFotWIaB0WCAzWJBLp9HIpFAMpOBgeOg1miQTaf51hSlEgqVCjQ6HRi5HHGfDzKGb/OtUCiQTCQAAIFKBV1dXWhvbUU6meS/W/BFrkq1mi/ANRqh1migENQyxHkiDkCpUkEmnYbH40GhUEAyk0E2k0E8HkdbezvkAFwmE2YJrTeGKstTyzshhaGzZs1COp1GIBDAoUOH8MEHH9AGd06nc1TGZCJ4RuMNpVKJ1tZWqsDeCIybMYpGo/jSl76E5557DjKZDJ/5zGfwk5/8ZEDLbDEeeughbN++HXv27EEqlUIsFoPFYhnymP/7v/8LgL95xPp09c7fAJPDMyKtzUOhEG3s53a7MX/+/AFuujiMp1Kp+i3SYqNUzUsiEC/41XJDZBxpaIIYIUI0kHpZ1fJH1Qwh+b80NChlB4rPmbxfXKtFDE81OrF4LuI8kkwmg81mw02f+xzC4TD+8ve/42BPD7K5HC8OqtPxzLJSCW6nE0WjkW/DXSjgg2PHYDAaYbdYYDKbkU2lkMvlkE4modZoEIlGIWMYKDQatOh08Pv9SCWTMJnNAMtCplTyzevSaZTKZb6dSW8vdDod8rkcWI5DvlRCKZ+HzmBAtqcHsmIR7dOmwSCQDMj1CPf1nTxHwRBxQs6oXCrhRHc3GACBUAgarZaG2lq9XmjlcsydNg02oY5qOHTsoRgEg8GAOXPmYPbs2UilUggEAti/fz81TKTh4nAX20Z6Ro3MV9Ub42aM1q5di0AggJdffhmlUgnr16/HLbfcgu3bt9f8TDabxWWXXYbLLrsMX/va10Y1vrinUSOMUb3HHKonVqlU0NfXR2uBxC0ZhtI8DOBj+kqlEnq9vl9+SeyJ1AqRAf0LGaV/k7aRkBow6RhinCqnJCU4iI8n/hsAqmAhPqZMJqNhOOnxxcZVSi0niwl5j8PhwPVXX42+vj68/MYb+FCgfPfFYjDodFDL5VBrNIhGo8gUCrx+nUwGfzCIUk8PyqUSMuk0XB4PVEJhLSOTgUsmUalUEAwGoVSpUCgW+T5CSiVQKoFRKMByHLQ6HRKJBORyOYxmM0KRCLRKJXRKJcoAIokEYj4fjnV1oZLLQaNQ4JrPf56/P9iTCuLZXA6FXA7ZQgGs0J1WqVSi1esFI5Oh69gxBHt74TCZsLC9HbNnzx5UHXswDMc7YZiT7Rrmzp1LO69++OGHYFkWbrcbLS0tsNlspzxmLRJOvdAIQ9iocx0XY9TZ2YkXX3wRb775JpYvXw4A+NnPfoYrrrgC9913H7xeb9XPffnLXwYAvPrqq6OeQ6M9o4kUpmPZky0ZIpEI1Go1XC4XZs6cyXcDHcFYZHEgag8cx1E2ntgbqEbNrqVwUI3tJs7tDJZfIvMir9VavMQ5Hun5iCWUyOtiAwQMpNhWM77SGqZqbEGAb1X9L1deiXQ6jZdfeQUfnjiBuEDVNuj1cHs8yGQy6OnqQjabhcVshlmpBAMgbTLx6t56PSxqNRRCp9h4IoG2tjZwDAO2XIbZbEapWIRMrQbLcbSVt1wmQyadRiqbhVqjQaFUQqFQQKlQQDQcRqxSwQGfD/loFEwmg0K5jI7Zs2mjvGltbXC4XDDodHCbTMjncgiGQihXKtj91lsoplKYPWMGPnvZZfB4PKMmFow0VMYw/TuvxoUOue+99x4YhqGGyWKx1LxfgOFTq8cKjfTK6o1xMUY7d+6ExWKhhggALrnkEshkMuzatQtXX331eAxLQdhMjfSMGh2mY1kWsVgMoVAI4XAYSqUSbrcbZ555Jh96GcXup5bXQwxTNbUH8edqeVDi/I7YMEnHI69LDVE1j6dWfkn83bBCol/slZEQEpGWEZMuxEan1nWpVcgrnQ/L8rpjV115JT5ZKmFfZyf+9tZbOPT++0jk87DY7XC73Uglk5DJZLBaLFDrdHCzLPL5PLq7u9EXjUKr0cBoNAIcB5VeD7Vajd5UChWWhVqppArZcrkc5UoFcoYvYM0mk5ALbRxKuRzyQrsCPcNgqdkM16xZMNls0KrVyHMcAn19KObzKMrl6M1kUM7nEertRSIahcfhwMz2dlx+7rmYMWMGVETRewwwFnkbhmFgtVphtVqxYMECRKNRBAIB7NmzB3K5HB6PBy0tLVQthIxLPtsINI3RKBEMBuFyufoPJFSWB4PB8RhyANRqdcM9I9Lzp17jsSxL23KHw2HIZDK4XC4sXboURqNxzB6oU+WnpGoP4vol8nlxoavU6xGH7KRUbHEtSjUjJ52jNGwm/jy5J2w2G06cOIFwOEwT3iRnVs3LIvOuRksnn6lG6hDPQ2rQSFPGcqmEM+fOxYXLliGdyWDfsWPoCgTAchwi4TBiQm7ParXyuZiWFmQzGSSzWaSE+qWe7m60tLZCp9EgKzQnVKtUqABgy2UwAHL5PEr5PLKlErLd3QDHQSF0OLW53VArlSiVy/B4veBKJchIvrCvDyzL8tTzdBpWnQ4fX7YM565YAavVOqBL6lhhrEkEDMP3W7Lb7Vi4cCH6+voQCATw5ptvQqlUoqWlBR6PhwqPflSMUT2jOVIMyxjddddduPfeewd9T2dn56gmNFYQ69M1yhiJmWfjBY7jkEgkkBEYSzKZDG63G6effjqvhjwOD9FwyBLEMJH6JZJjktZOSPM5xDMSG6NqHka1h1XqyZCfUiVzkgdqbW1Fa2srotEoQqEQurq6YDAYBrSBruVxiXNO4rlV89bEcy4UCjR8mkgkYLVaqSI8mdu555wDgKdq7zt4EIeOH8eRnh4c8vvBMgxMZjN0ej3USiXSQohUoVDg2OHDKJZK0JtM0CqVYORy6AwGaIXF1Ww0oqTTQW82o1wowKDX80QEhuHp3wBiiQSvYiKTQQOglEjArlRi6ZlnYtXy5TCbzVCr1SPOAw0H48lok8lkcDqdcDqdqFQqiEQiCAQC2LVrFzVG2WwWJpNpXMYfDI1Qf5gUOaOvfOUruPHGGwd9z8yZM+HxeNDb29vv9XK5jGg0WjcOuzRnBNR3lzGeYTqO45BKpahUSqVSgUKhgNvtxrx588b9ZhqOMRJ/RhzGIx5TtTAIWdzFskLVFvNq36c0/EfGIschxyQ7eLGH4nQ6aWfNcDhMiwEdDgdcLteAgmkx60+a+5L+Tfx6X18fwuEwIpEI9Ho9XC4X5s+fT9UwxPMix7VarTh/1Sqcd/bZvGeSzSIQCGDfoUPwhUJIJBJQAVAqFChxHCpaLVRaLfK5HFKxGMrFIjiOg9ZohEaj4RmRwjjFUgm9gQAMej10KhWsFgscNhtOnzEDJr0eC2fPhlarhVqtxt69e2GxWNDS0jIuBaa1UC96tVwup+0YyuUy/H4/9u3bh3/84x/Q6/U0lDdUss9o0QzT1QDZPZwKq1atQjwex9tvv41ly5YBAF555RWwLIuVK1eObKbDhDRMB9T3ix1rb4zjTurqhUIhlEolOJ1OzJ8/H1arFZ2dndBqtXXb1YzGnZd6S8RgSHeB4pCaeEzxYk9eF4fgxB4p8VjEbDgxqoXcSM1Fa2srstksLao8ePAgnE4n3G43X+hZhaJOfkpZe8lksmr4dLBSB+kCLE6mGwwGzJ07F3Pnzu1HlsgJYblisYhsNotUJoNsPo90JoNkIoGkEMozm0xo83rhcbtpAzzCkqxGuSa1QITaX09DBDSm1kehUMDhcIBhGHz84x9Hb28vAoEADh8+DKPRSEN54yk82qR2jxILFizAZZddho0bN2Lz5s0olUq4/fbb8S//8i+USefz+XDxxRfj0UcfxYoVKwDwuaZgMIjDhw8DAD744AMYjUZME2oThgNpmA4YWJw5nhgrNl0mk6EeUKFQgMPhwJw5cwbs0utJmBhLpiBZ5IgXQ4RbSRgNGLiJqMaaqybJA5z0gKSGazCSg/g4Op2OSvSn02mEQiHs3bsXDMNQCRqdTtfveOQ4RNI/FAqhUqnQjraknxOBNG8mNq7kdyIaS45N8lLkb+QaGQwG6PX6qiww8vlMJoNAIIC+vj7EolEo5HK+yZ+wqBKavkKhoN6s9F6rNxphjMTjKhQKeL1eeL1eKuAaCARw8OBBmM3mATmmsUK9PSNp/raeGLftzW9+8xvcfvvtuPjii2nR609/+lP691KphAMHDiCbzdLXNm/ejP/8z/+kv19wwQUAgEceeeSU4UEpqoXpJgrV+lQQd5fNZrNDUhYfSehspBiPscgDr1AoaJGpuLOseEyxsZAaIOL9kP9LPydlt0mNF9mJSkkOAF9UaTKZMGPGDMpUfOutt2AwGOByuWiPHyKrks1m+4nySkN2Ug+PjE/eI85BVbuXxEW51c5HahzJP1IcOmvWLCQSCfT29uLDDz+kjEuPxwOj0dgvV1Yul+teriBGo4xRtZyNUqmkMjpEEZsU2JLmdh6PZ0yUxZthujGAzWYbtMC1o6NjwI39ne98B9/5znfGZHwxtZs8hI1gtw0VpP9IKBRCOp0ednO/ei4U4234iNqDRqOhoSPy3RGGnbT+SKoJJw7viUNn0vlLz0VKIZd6PCzLC4I6HA6aXwoGg/D7/Th69Cg4joNer6eK0tXaaYhzX+RntQVHfH7SvJP4b9L3iyE1StLzI1TnefPm0VDiu+++2+8cVCoVzXWl02lYrdaqLMjxRCM9o8GMgVgRO5/P03uhs7MTdrudtmoYqbJ4k003BTDcbq9jjaEs2ITOS9oDWK1WtLa2wul0DvvmradnBNTnpiWLHWFrlYQGcOQBFf+rlruRhtzEeRzyf+l5SEOA4nMVj8NxHKLRKFU012g0aBVUqvv6+nDs2DGk02m4XC5eHXuQsKA0PCf2jMSGRxyWrPZ9VzMOtTwv8n5xl1SDwUDDUCQ/cvDgQWg0Ghq6I6FJ4imJQ6DjaSwaHaYbCjQaDQ3pSpXFnU4nbQc+nHxbI9h0jcKUNUZizwhoTEuHasavWCxSplZCkPv3eDw4/fTTR+XW1zNnVI+xCKmgUqkgn8/T5DkxPmJGHpmT1BsSh9yA/jTvarkj8jnpT7FXJG7OyDB8rcrixYv5glPh/TNnzkQqlUIwGMS+ffv6MbRIfkk8N6lBIqjWeqOW5yb1mMixpIa6WnsGKcQsRBI+JTmwfD6PZDIJu91OPVRpkbL4+o0VGhmmG4lnMlbK4s0w3RSARqNBUlAeBhqrFVcqlaggaSwWo62UFy1aNGYJz3obo/Ew7GQxJT8JBXn37t1wuVzwer0090IeYqnag3jREl8PQgCoFraqFW4iC0E2m0UkEunXnn7evHmwWq0DvBoCs9kMk8mE2bNn0/olcX7J6XT2++7FC7p0TtJcl5TcIJVWIiDvl8lOqmPXWvxYlqX1NeFwGCaTCa2trf1CTOl0GsFgEAcPHkSpVKKq2FarlRowAP0M01gZkMngGdWCWFmcbFIOHjzYT8CV1JZJ0SQwTAFotVpKYADqr4hAJGbef/999PX10UVo3rx540IFrVeRLTD2xqgaE45Qv88++2xkMhn4/X58+OGHkMlOtqXW6/X91B6I0oNUf05KRKjlFZGxgZMbiGAwiFQqBZvNhvb2djgcDrqgSxlrUmNBFmW73U7zS0Sk9ujRo7BardQwiZmD0nCe1Kuvxr6Tjg+AsuBqqSJwHE85DwQCCAaDkMvlaGlpqSmaazAYMHv2bEp8CAaD+OCDDyCTyWhuxGg0UsIDmctYGKaJRGAYDYxGI4xGYz9l8X379qFcLlPyiFhZnLAlPwqYssaoEWE6sSJ2JBIBALo7Hu8iucnmGZHwjlQRgYSExLtBo9GIefPmYc6cOejr64Pf78fOnTthMpkopZbUxxCauFTtQTrfaotbuVxGLBZDb28v+vr6aOfLRYsWUTFYsYdCFlmpLJD4/+JxxTIzhPbd1dWFQ4cOwel0wuVy9VPNqGWQap2L2AgNFobL5/MIBAIIBALI5/Nwu91YvHhxP09vMDDMSfHRuXPnIhqNIhgM4u2334ZGo6GGSavVDggdjtQwTVQCw0jBMAOVxQOBAFUWJ4y8SqUy7m3VCcRh7kZgyhojMbUbGL8wHWEZSRWxHQ4Hjh07ho6OjjEfsxrqSWAY6VjVDBBhwZF/g0Es2yJmsZFiVHG/GlIfw7IsSqVSP2086ZwSiQQNwymVSrhcLsyYMQN6vb6q11SNcCCGlCQgHY9hGGg0GsrCInmozs5OKufkcrkGjE+OLfXEyPkSL7EaKpUKent74ff7EYvFYLPZMGPGDLhcrlHtvGUyGWUWkjFIfoRsFlxC91hxrg5AVaZhLUzmMN2pIDbu8+fPRywWQzAYxHvvvYdyuQyj0QiHw1FTWXyqYMoao2qe0ViF6Vj2pCJ2JBKBQqGAy+Xqp4idSCQmZZHtUDAcY1TLAyL1QCPddSqVSrS3t6O9vZ12+Ozs7ATHcTSMR1QS1Gp1P9HWcrmMTCZDiQgsy8Jut+O0006rqtgsJTeIr4O0xkeck6pmrMR/I+curl+Kx+MIhUJ4++23odfrqWFSqVQDwnFib7AaOI5DLBZDIBBAKBSCRqOB1+vFokWLBjRPHAuQMF9LSwuKxSJCoRCCwSAOHDgAm81GcyMkfye+PoMx8mpd/3qgETkbm80Gm82G+fPn48033wTLsoMqi08VTFljVM0zGs1izXEcXSjC4TAYhu+FcsYZZ1S9MerN3ptInhEJzYiN/1gYoFoQd/iMRqPw+/3YvXs39Ho9vF4vLUAsl8vUmyL1MrNnz6YK2AzTv625eLEkf5MW0kpJBuLzFbPwxJ6SuKhWXLgqk/HdYK1WK+bOnUtZl0eOHIHdbqf0YDEduxqIwkIgEEClUoHH48Hy5cvHVLn9VFCpVHSzQGjOx44dw759+yjxgaiqnIqR10hj1CiPDDhZb2e1WjFt2jSqLL57926o1WpqmEbbEkaMJoFhHFCNwDBcT4UkeIkcD8dxcLlcQ1LEbkRdUyNzRlImHHkfyQPVY3fJMCfbApTLZYRCIfh8Phw4cABKpRKlUok+2CR0RNQeiKJ3Ldkh8e5dGluvFmIUe4LSB1xMsJAuduR3hUJB8wbFYpHmIk+cOEEZWOJOpUSixu/3I5lMwul0Yt68eTVZWvUEoTkTSaVgMIjOzk6wLEuT9mazuSYj76PkGdUaXxyiFiuL/+Mf/4BGo6G5yMG0Dic6pqwxEgulAkM3Dhw3UBHb6XRi4cKFsFgsQ74x62kcyHiN8IxqMeHEkjz1BgmjRqNRpFIp6HQ6aDQaZLNZpNNppFIpGhoju0+VStUvjCcNI4lrfqQ5IeJNiVlwYo+pWnivGklB+j4ShjMYDLDZbJg9ezbS6TRlFgI8hbxSqSAej9Oi1SVLloyJFM1Yg2GYfmwykht59913oVAoqOKDwWDox8irF0u0GhrpGQHVjaFUWTwcDtM8HVHO8Hg8dVMWHytMWWM0HAUGjuP6CZIWi0W6s7TZbCNaUMWhmHrczPUOCxLqOjA4E65ekNKUCQV8xYoVtCCVhFr9fj9lfpEwHpEeEtPExfVLtTwm8d+qFZyK/1YtPCc2YCzLUgNEjLkYZDH3er3gOI6KnbIsC51OB7fbDafTOSENkRTS3Aih0e/evRs6nY6Gn/r6+hAMBqHX6wGgn/JDPZ6rieIZ1QIx4i0tLTQaEAwGcejQIZhMJhrKG48c4VhjyhojEqYTh1ikxogksUOhEPL5fD9Ry9Fy+6stUOOJ8fbExEQElUqFeDyOzs5OWkle75YCBKTFQyAQQLFYhMvlqklTZpiTbafnz59P2WWHDx+GzWaD1+ulVfFimnipVOrnLYmPJ851SMcSe0zScJOUUVirdQNBoVCgeaBsNkvp2DabjbLYSHsDq9VKWWyN+l6GA5mMb6nhcrmQy+Vw5MgRHD16FJVKBSqVCh6PBx0dHfS6jZSRNxJMRM+oFhQKBW19UiwW+0k6WSwWGvYda2XxscLEv1NHiFphulwuRz0goog9Y8aMfsWMY4Faie3xwniE6Wox4RwOB1atWkXbfRw4cAAtLS1obW2tS8yaMLUCgQCSySTdRAznOxQzv0jdzZEjR9DZ2Qm32w2v10vzgiSMR2ji4qaA0gJYoL8wa7VNAjFAxAMajI4dDofh9/sRjUZhtVoxffr0AUZG3N6AiHWeOHECnZ2d/fJLjc4d1QLHcZR40tvbC6PRiLlz58JqtdKk/d///nc4HI5+9H3x5kDshY6l8Wi0NtxI1w+VSjWosrhYBFeKJoFhjCGmdufzeWQyGWSzWXR1ddFq+vHc0Ys9o3pgrMJ0Q2XCKZVKzJo1CzNnzkQsFoPf78euXbto3oIUoo4VxEnbSCRCa1jGIj+i0Whogp0UH77zzjtQKpXwer1oaWmBVqsdQBMnvZeklG6gP4VbnBMiXlAtA0RCiYSOrVKp4PV6sWDBgiEpd4jFOsUV/hzH0ZBNPVl1gyGbzcLv9yMQCIBlWbS0tGDlypX9NjR6vR7Tpk2j+m6HDx/G3r17KfHBarUCOJm7rMXIGynGq+h1OOOP9hyqKYv39PRg3759sNvtE8aLZrhGltyOI/73f/8XN998M7RaLT72sY/hiiuugEajwemnn16XimaWZfHqq6/i3HPPrYtbHIlEcPToUdqocDgYKyacmNGVSqUG6MkNF+I6md7eXqhUqrolZ4nx8/v96Ovrg8VigdfrHfDQStUeqp0DCfkNFobL5XJ0YS6VSvB4PPB6vWNST0I8D3IdCfuqEbmESqVC75F4PA6Hw4HW1tZ+EjiDgeQGSSNOAFTxwWQy0feIjdJo8ktHjhxBJpPB4sWLR/T50eJ///d/sWjRItjt9jE/NglxB4NBpNNpOBwOzJgxA263uyGblSnlGRUKBTz22GN44okn8Le//Q06nQ7/+q//irVr16JYLCKfz9dNWkMcpqvXeMMdi6hijxUTTtx0TMz6kslkNIw0lN092dEHg0EqjXLmmWfWtdBPzFgqFAo09LV//35qZEleSqz2ICY9nEodmySc/X4/EokE7eIr1qobC4gp7+L80pEjR2gzOLfbPW47Y47jkEgk4PP5EAqFoNVq4fV6sXjx4mF7tQzDwGw2w2w295Mi2rNnD629IZsVad+nkRAfJjqBYTTQ6XSYOXMmZs6cSfUfG4kp5RmVy2X80z/9Ey699FJccMEFWL58OcLhMNRqNY4fP45MJoNFixbVbT6vvvoqVqxYUReKZTQaxYEDB7Bq1apB31ctD0TqWsaDCUfkknw+HyKRCPUwxI3nANDwAUnQT8RcB6H9EyKBOO9E2F5DOQbJg/T29g4ozK0niJENBALIZDIDJJVGC5KL8/v9KBaLY+rtSSEN4xqNRhp+IuoVYkM0VMNEFMrruW6I8corr2DZsmUDWtWPB8iaoNFopqZnFI1G8aUvfQnPPfccZDK+/fhPfvKTmonuaDSKu+++Gy+99BK6urrgdDpx1VVX4Z577jnlF6JQKPDCCy8AAGKxGAA+/KFWqyGXy+ta9wPUt9ZosJxRLSKCWBduPOdFivWKxSICgQCOHz9OPQy1Wo1EIoF4PA6bzVY1QT9RwDAnxS3nzJlDFz8i2kqMbDXvm3iKgUAAAKrmR+oNtVqN6dOnY/r06QMkldxu94hkZ1iWRTgchs/nQzQahc1mw6xZs4bUu2c0EHuyJFxMWjWQhD2Zw3A08iYrgWGkmNIKDGvXrkUgEMDLL7+MUqmE9evX45ZbbqnZktzv98Pv9+O+++7DwoULceLECWzatAl+vx9PP/30kMcleRrCqKu3IgIZs56FqOLzGy9NuNGASMRotVp0d3fThVmlUqGjowPt7e0TlnYqhZiOTNh9RO3B6XTC6/XCYDBQ+ngmk6EK4BPJ2yMQSyqRPB2pxSJ5usFCrMlkEn6/H8FgkLL7Fi5c2JD6FnG4WMouJJJK4hwMCauKa7uk9WKNQqONYT0xrmG6zs5OLFy4EG+++SaWL18OAHjxxRdxxRVXoKenB16vd0jHeeqpp3Ddddchk8kMecdcqVSgUCjwwQcfYPr06fD7/QiFQli6dOmIz2e4eO2116h00HgjmUzivffewznnnFM3TbihguQMCEOMhLfIAidWk7bb7WhtbZ0QMjYjQTKZxNGjR2kxqlqtRmtrK6ZPnz4hvb3BQKjlpLjWYrH0U+EuFosIBoPw+XzI5XKUEj9R1aWJFFEgEOjXP8hisQBA1fzSvn37oFAoMG/evIbM+cUXX8QFF1xQl1C/WFG+ERjXp2Pnzp2wWCzUEAHAJZdcAplMhl27duHqq68e0nESiQRMJtOwHmZyURvtGY33mGImHElO2+12WsfSyAWd0HEJQ4wIy0oXK5J3IYyygwcPYt++fWhpaYHX66UKChMVhOFFPAOlUomOjg5oNBpEo1EcP34c4XC4YbmhkYKoRHs8Hlqr0tXVhc7OTqhUKhSLRZjNZkybNm1cCRBjBWlzwEAggPfff5+ep7Q5IKlLNJlMDSl+lSp81AON3ESM690TDAbhcrn6D6hQwGazUVrmqRCJRHDPPffglltuGdbYDMP0K3xtRM5oPMN0UiacTqfDtGnTcPToURw5cgRerxetra1116ciu+VAIIBUKgWn04m5c+cOydPRarUDapd27949brVLowVRoyYJerfbjaVLl/YT0W1tbaU5DFIN73A44PV6J5X3Vy6XUSgUUCwWoVQqodFoqIyWWOtvInpEUjDMyf5B8+bNo5JDb775JrRaLaxWK9V8I3VbJNpQbykiMuZHASMyRnfddRfuvffeQd/T2dk5ogmJkUwm8clPfhILFy7Ed77znWF/XqxPV08yAcFYj1mrOR2JdZOYP2GvvfHGG7BYLGhtbR11E7XBIG6q1tfXB7PZjNbW1prJ/FNBrFs2b948Sn8+ePDgqGuXRotyuUzDioR0caoEvTiHQQo9Dxw4gH379lGG2UQpRBVD3HKDbCxIzQsp6iX5pT179tA6MFIkPBlACDYWiwVGoxHd3d3o6ekBwHtSZENHSA9iD2m8DVMjjNGk84y+8pWv4MYbbxz0PTNnzoTH40Fvb2+/18vlMqLRKDwez6CfT6VSuOyyy2A0GvHHP/5xRIuaWIVhshIYhsuEYxiGdt4kemZHjx7F/v37qWTPWIS9ahVSzp8/f0wXosFql0gYb7y9P/G5hkIhKuR5+umnD5twodPpaKiILORvvfUWtFotXcgbSeIgBobkWPV6PVpbW7F06dIBz6BU7JTkl44ePQqz2UwlZyaSNyuG9FyNRiNmzpwJt9sNlmX7ebN2ux0ej4fWgIl7UIlLIsZaighoekaDglB1T4VVq1YhHo/j7bffxrJlywDwvHmWZbFy5cqan0smk1i9ejXUajWeffbZESXUpDmjRoXpRjKmVJJnpEw4tVqNjo4OTJ8+HfF4HD6fj4a9Wltb4fF4hhXnF9fZiKvf69W4zWAwYO7cuVW9v2q1S6MFKQQMBAJUTkesAj4aSBdysvBVE22tB8QKEOVyeYDi+akgzi+JiQ0HDhygmnITJSxZKBQoa7dUKtWk2ZPmgESp4NixY1Tvj0gREW9pPKSIxBvQjwLGvej18ssvRygUwubNmym1e/ny5ZTa7fP5cPHFF+PRRx/FihUrkEwm8YlPfALZbBZ//OMf+xUTDvfhPP300/H1r38dn/rUpyjb7Pzzzx/zc6yFPXv20N3uqVCv7qilUokuFJlMBh6PB62trYM2CyS5kUAggHw+X7W5W6NAapf8fj9yuRwNe52q+eFgxyNhwXQ6PeaFoKdCLpejRbUkDzWa8xkMJLw6nkxGaddZUr80HuczGDiOo/JO4XAYVquVhq+Heq5kM0YkdIg6iMfjGSBFNBaGKZPJ4LXXXsPq1auH/dmRgGVZyOXyhhFsxp3+8pvf/Aa33347Lr74Ylr0+tOf/pT+vVQq4cCBA8hmswD4BXzXrl0AgNmzZ/c71rFjx9DR0THksScCm24wW9+I7qhKpZLu+AgD7J133qEU5JaWFqhUqn5J90QiQdXNxzP3NBKoVCpMnz4d06ZNG3A+ROT0VGEvlmVpAWs4HIbJZBpVzms00Gq1mDlzJmbMmIFEIkHPZ6zyMYRmT0JT5Dqddtpp4xIe1Ov1NCxJBGCJCC05n/EMs+ZyOfh8Pip14/V6MXfu3BFdQ2nRMwmzkvMhhkmv1/drDjhSjbx6F7w2WoxnSskBSXH++edj7dq1WLt2LbLZLHbt2oWPfexjdRv//fffh81mQ1tbW7/Xq2nCEQ9oPCR5TgWyQ+7p6UE8HodarUaxWKSSKm63e9IUowJD2/GTXS6hY49E2qdekNb7iFsADHVjQPKHfr8fhUIBbrcbra2tDWHA1VJgHyu2JMuy6O3thc/nQywWG7YY60jGE5+PXq+nVHHCOhQXzw6V+JBMJvHmm2/i4osvHvM5V0OlUqE6i43AxC4MGCXE1O56d14F+rPpTsWEa2RBajKZRCwWQzqdhlqthkajoZ1cS6VSw3dMw4XYsJCwF6ldIm1D+vr6kM/naZO6as34Jgqk9T6BQICKtpKwV7X5k0XS5/NRIzYRvFuxdI+4N5U4vzQSsdh0Og2fz4dAIEAbzY2XxyeGWI2jVCpRZilpdEiID9XaigxmmBot0lpvTGljJA3TASfjovUAw/DdPqXtueuhCXcqiKvRSSxfXCMjXsiOHTsGm82G1tbWMVeUHm9otVpMnz4dGo0G3d3dNFxDapq8Xu+EZXtVg5iUQjw7UrhJ2IWVSoWSEUhb6rFmOY4ViEQUIQoEAgEcOnQI+/btG1K+jCif+3w+pFKphm8ulEol7baaz+cRCoXQ3d2N/fv3w+FwUCmioTDyPkq6dMBHwBiJqd3A+BsjMRFBoVAgEAhAJpPRdr+NXMirqTTPmzevasJavNvL5/O0zkdMEZ9o4SwxxDUwoVCIUs/POOMMyOVySlI4fPgwnE4nWltbJwQhY6gQ5y/mzp1L9deOHTsGADCbzVi4cCHdkU8G6HQ6WvQsbXJIwngkH5NMJuHz+RAMBqHVatHW1laVft5IaDQaKkRL1EiIoSUkIIvFUpORV6lUJtXGb7SY0jmjtWvXoqOjA3fddde4NrurxoQjCwBh8KRSqSEx18YapEgzGAwiGo0O0BcbDki9jc/nQ29vb7/i1olCahB3D61UKrS7aa3ciFhNu561S2MB0o6CMMSMRmO/GhkizkrYgJPFKIkhzseQejZCDhDXzU2WcyOGlGySGIahoVZCLSdhvEAggK6uLpx77rkAxp/izbIslEplw2SdprxnRMJ0Y93sbqhMOFKwmUql0NPTgz179tCd3HjJ27As268glRRpjlZFWdykTdwO4sCBA9TQEoprPSHuMJtMJgf1+KSQ1i75/f5xrV0aCxC6tN/vB8dx8Hq9OPvss/t5qjNmzKCGdu/evWAYhubRGtm2YrggvbbEuRWZTIZCoYBCoYBcLge9Xj/hvqNaqNUc8K233oJGo6FU83A4jHQ6jRkzZqBcLo9J19pTodF+yZT2jG677TbIZDL84Ac/AMA3uzvrrLNGFV4aTBFhKESESqVCe9Cn02l4PB60tbWNmtVUbcdFvILxFBqVdvHU6XS0oHY8QyakaR+hYxP9OrfbPeo6ibGuXRoLSLvCkjYVQ2GIkc0J8aAMBgMNe01U0VbSmM/n86FcLlOtRfLskvySWISXhL0mi5ckRiKRwOHDhxGLxcBxHDQaDdra2uD1emlzwNF2rT0VKpUKVCpVwzyjKW2MvvKVryCZTOLHP/4xAL6f/NKlS4e9OI/WANUC8ZYCgcCIvSVSHR4IBChltxa7arwh1TIj9OGxXCDEdOzx3u1L1bhVKhWtxaoH1Z3jOMTjcVoTpNPpRq38Xc2LnCjqCFL231BIM7Xak0xEir4UlUoFoVAIPT09/cL4Wq2WUvkTiQRsNhv9jkhzQLEhGivD1Ogw3ZQ2Rl//+tfR09ODX/ziFwCG11+oVnvu8egNRBZxn883JG9JTIdNJpOw2+39OllOBBCjEQgEKMNopIs4IV74/X5ks1lqcOtJOKhWu0Qke8Z6ESeEEb/fj3K5TBepsfZwpeoIZBGvdw6G5Pl8Ph9kMhm8Xi+8Xu+w2X/Sep+J6gGm02m6CVWr1Whra0NLS0vVTShRPwkGg8hms3TzQO59cZuJ0WrksSwLlUrVsDVkShuje+65Bx988AG2bdsGAHjjjTewYMECWK3Wqu+vpgk3XgaoFpLJJHp6ehAMBmnIq6WlBQzDVC0UHIuw1HiCFGySAkQSXnI4HIM+MNUau3m93gnRkpzULhFjMRZ9l8j5+v1+RKPRcTV2UogFQ3t7e6HVaqkHNl4eoNS4E0bjWBEtqimINHLDJi4sTyaTI4oaiKWISDmGx+MZsLkeiRQRyX+r1eqmMRoP/OhHP8Lrr7+Oxx9/HADwj3/8A3PmzOnXcrgWEYEUpDYqdFEulymbJpfLAUC/MNFkYHtJQXbAYmkWEpYABkrVTPSWBLUUrocaaq0WBiQSRo3qtiltkUGMIgkRjRapVIoWppL7meRFxgtSvT/CMKxHKDuTyVAviCjQE8mtkYKEbwlBiRRFk9DkSPJLTWM0zvjpT3+KF154AU899RQAYPfu3ZgxYwbsdntNJhwxQo0E2QEFAgGwLAubzUYT9nq9nuaWGu0hjBTkXHw+H/Xy1Go1UqkUSqUSfbAaSRgYLqr1/qlVuzQRCRLVIPYAR/O9SMPQ45FLHArEJB8iAUXOaSxzjkSOqKenB4lEAi6XC62treNi/KREHsKclUoRnUojr2mMxhkPPvggfvvb3+K5554DALz11ls0FAA0XhNOjHw+Tw1QNpulMvVithR5qHt6epDNZvvlliYbxJXziUSCPiherxdtbW2Tin4sBWk94ff76Tl5PB7qGUYikQlNHZeimsd6Kg+uUSzLoUK6iOv1eppfGmloMpvNoqenB36/n+ZJx9vrE0NaU0h6SpGawsE8JvK3RhbmT2lj9Otf/xqbN2/GCy+8AJZl0dnZiWw2S28SpVLZUANEFuRgMIhYLEYFMIeSF5HmliaDt0SKNEl4Qa/X92snHovFaEGt0WikBbUT+ZwGA8uy6OnpoaFWmUwGu92O2bNnT1pjK81tWa1WmsuTy+XU6/P5fCgUCjSfNpE3TERPLhAI0O695Dk81UaBZVmEw2H09PQgFovB5XKhra2t4VqHhUKBri3JZJJKERHWZDVGHoCmMRovfPvb38b//b//Fz/96U/xyU9+EgqFglJHM5kMWlpa0NbWNq51OFLU2pERt3q4mAzeUjqdpjF7juP6sbaqoVQq0QWNhLEapTA9EpCeUaQnEpFVImGvXC5HQ1UTLTQ3HBBv3ufzIZ/PQ6VSoVAowGw2o62treGCrCOBtHcXIQlIw63ZbJa2ppDL5VSPbiKSiUhNVjAYRKFQgMvlgtFopJvAeDyOJ554Atu3b8dLL70Eh8PRkHlOaWP0wQcf4P7778eOHTtQKBRw4403Yv369Whtbe3nWZhMJrS1tcHtdo/LrqBaLcR4xKpJWCQYDPZLpjfCsyDdPv1+fz9ZGpvNNqxmZlINMkLgmAihHjGIVBJhpJEiXGlYaiKSFkYKQkH3+XyoVCrQaDTI5XJ161U0npB2NSZF5Gq1Gn19fYhGo3A6nWhra5s0mobic7rvvvvwwgsvYO7cuXj//fexaNEibNq0Cdddd13D7sMpbYwIyuUyXnjhBTzwwAN45ZVXsHr1atxyyy246KKLqMJxT08PSqUSWltb0dbWNibsLSKOWO8qccLE8/l8dfWWSMiC0M9JzHosmtSRAkGfz4dkMjmuSeHhQKyFx7IsDUsNZZPRSDr3SCEtTJX2iiJ/J7kxs9lMc2OTNdyayWRw5MgRhMNhWotDZL4mU58vgN9A/OEPf8C2bdsQjUahUChw4sQJtLS0YO3atfj2t7/dDNPVAxzH4ciRI3jwwQfxyCOPwGaz4eabb8Z1110Hi8WCaDSKnp4ehMNh2O12tLW1nbIeRgriEQQCAcqqIrHaeocsyC6ceIAGg2HMvSXxTj8UCtGWBeO5Kyaaa36/n/atqadnQQwjoT+PRfO28ahdGkuISRkymYzmXQe75tW8Y6/XOyk8CWJUe3p6EI1G4XA40NbWBrPZTDdcsVhsWPmlRoHjOBw/fhzbtm3DY489BqvViltuuQXr16+H3W5HPp/H888/jz179uB73/tew+b5kTJGYuRyOTz11FPYvHkz3n33XVxzzTXYuHEjli5dikKhAJ/PB5/PB4Zh0NbWNmg8mBS0BYNB9PX1jalHMFYg3lJPTw9yudyo82VEO8zv96NYLDZEG4x4Yj6fj3oW0o6uYwUpO4wUho62ZqTaOKOpXRpLkPva5/MhHo9Tb3QkxkSsjk5knLxe74ST7Mnn8/2efVILV83oihmwuVyuXyh6IhjbcrmMl156Cdu2bcOOHTtwxRVX4LbbbsMll1wyIT3vj6wxIuA4Dnv27MHmzZvx29/+FgsWLMDNN9+Mz372s9BoNAOYMu3t7bBYLADQTxmb9MvxeDwTskCToJq3RJh4p9rZEeqoeFdIwkqN3hXmcjm6c2dZli4io/XOpEaX1ATVg0xRrXaJiKOO59jiwlS1Wk09z7EwurUEbhtJ+eY4jnpBJPQ4nKgIx3HU2IrzS+MtUlwL4XAYjz76KB5++GHk83ncdNNNuOWWWzBt2rQJYSRr4SNvjMSIxWJ49NFHsXnzZoRCIVx33XXYsGEDZs2ahWw2i66uLhqmAECb5jVCz2ssQFhfg3lLJDFPjK5Wq6VhuIkYLyf0cZ/Ph3A4DIvFgtbW1mGFUaQe10QwutVql8ay7xK5FwjTtB69t6qJtg5ViXwsQLwg0oqDMOJGE+6t1b7F4/GMaxiZZVns2rULW7ZswTPPPIOVK1fi1ltvxac//ekJyfCrhqYxqgLSiO+Xv/wlnnvuOSxfvhwdHR14/fXX8cUvfhFnnXUWSqUS8vk8Wlpa0N7ePmFi+yOB1FsyGo1wOBy0DqqRIpqjQbFYpGyvYrHYrxlbNYhZyRtGhQAALL5JREFUbgqFgi74E4nlRjwL0g5iNA0OiawMCT2OR05xqBCLtrIsSz3QsX6uyGalp6cHkUgENpuNekFjbQClkYTh1BEOFalUCk8++SS2bt2KEydO4LrrrsOtt96KRYsWTZrnlKBpjGognU7jt7/9LbZt24Y333yTekCf+MQnsGHDBrjd7gELeHt7+4ROZJ4KpVIJPp8P3d3dyOfzYBgGNpsNs2bNGpLS+UTFYIsuy7LUIyD1P16vd1L0xZHKCg21dmm4RrqekObMSNuM0YYJxXlglmWpF1SvkHo1hZXhljoQcByHzs5ObN26Fb/97W/R0dFBadkT4TscKZrGqAYCgQCuvvpqXHvttVizZg1sNhueffZZPPDAA/j73/+OK6+8Ehs3bsS5556LSqWCQCCA7u5uSg8fi3xFPSCW3Q+Hw/3UwElhHzG2ZAGfrMYWOBmOOnHiBBWgNRgMmDZt2qSlH5P6EUIQqFa7JA1fSpUTJiJqibYOlfpOQsyEITuU/kj1gLh+ieO4IYf6i8Uinn32WWzduhW7d+/GZz7zGdx6660455xzJiQhYbhoGqNhguM4HDhwAA888AAee+wxeDwebNiwAZ///OdhMpkQi8XQ3d1Nb/729vZh08PHG+LFiwhGDtaQTKyIQEKTE2UnPRxI8y52u50a47FO1DcK0toli8UCpVKJRCJBW5RPlo2SGNVEW2sRSYrFIvWCKpXKhD1naT6WkKCkm4ienh488sgj+PWvfw2NRoNbbrkFN998M1wuV4PPYGzRNEajQCaTwRNPPIEHHngABw4cwOc+9znccsstOO2006rSw71eb0OT/iRU4Pf7qdTJcKT0Cb25p6cHoVAIRqORKldM5N31qRhpUgrzZKusl4IQMLq7uxGLxfqJ0E7GTYQY4vYJoVAIarWaEgRyuRx6enrQ29sLq9WKtra2hntBQwW5BwOBAHbs2IFnn30W5513Hg4ePIgdO3bgkksuwa233oorrrhiwj5ro0XTGI0BOI7Drl27sHnzZvzud7/DkiVLsGHDBlx11VVQqVSIRCJ0YRDTw+ux0Ilv8mrCliMF8ZZ6enqoIOZEUdseTa2OtLhzsDqTiYZMJkPZYeJiYLVaPeB6kDDeRKmDGwmIekpXVxey2Sz1dmfPnj1pDW40GsWWLVvwl7/8BYcOHUI6ncZll12GTZs2YfXq1ZMyjDxUNI3RGCMSieCRRx7BQw89hHg8jnXr1uHmm2/G9OnT+0nMq9VqtLe3o6WlZcxvMLJ7JItPNfd/LMeaKN4SqTUKBAKjVjGQyt5MlHyDFMOVSWpU7dJYgmw2iMK72WyGy+Wi50a8/slCROE4Dm+//Ta2bNmC3//+91i6dCm+8IUv4JprrsGRI0fw+OOP46mnnsLu3bv7NQadamgao3FCpVLByy+/jAceeAB/+ctfcPHFF2Pjxo249NJLAQChUAjd3d20pmMs6OFEnZcsxiQxWi+160Z4S9L21eOhwkAEQf1+P6W5t7a2Nkw9gOT8CLlEo9FQz284+a7xrl0aa5RKpQEswLa2tn7fg7SBHpGn8nq9E64YPZvN4umnn8aWLVtw8OBBfP7zn8emTZuwdOnSqs3vJrpRHS2axmicwXEcurq68NBDD2Hbtm3QarW4+eabcf3118PpdCKZTKK7u3vE9HBSOBgIBJBIJOBwOGib6Ebt4KXekslkGnEtzGDHJ56fWq2mYafxzMmRhDNhpI31eZ0K4sJUIoA7Fq01atUujWU9zEghpeUThf3h9Boiwr0Wi4UyRRt1XhzH4dChQ9i2bRsef/xxtLS0YNOmTVi3bh1VdvmoommM6ohisYjf//732Lx5M3bv3o2rrroKGzduxIoVK4ZFD68mqUKSuBONCSb1lkgOZiTeUqFQoIyqQqFA62oa0eeIiICS8xIbhrGENP813k0HyXmJ664a0XdprL1sqWgrIe/Ui6RSKpXwwgsvYOvWrXjttdfwz//8z7j11ltx4YUXTqiwbyPRNEYNAMdx+PDDD/HAAw/gN7/5DTo6OrBhwwasWbMGer2+Jj1cqn9F8kATgTRwKlTb4Q7Fq5DmbiZafYy059JYtdcuFAo0hFYqlWhosF7f9VBql8ZjzHrkH8VlDeMp2spxHILBIH71q1/hkUceAcMw2LBhAzZs2ACv1zvlw27DRdMYNRjJZBKPP/44Nm/ejK6uLnz+85/Hhg0bMH/+fBQKBXR2diIWi4FlWQCY9LRjAANaU1fzlsQLoVwup/mMiRb3F4PIJ/l8PqRSKZpEHyp1nni8Pp8PkUgEVquVhssauXse775LYo3EetaxSSMMRqORRhhGs5FgWRavvfYaHnroITz//PO44IILsGnTJvzTP/3TpGYvjjeaxmiCgGVZvP7663jggQfw+9//HnPmzIFarcb+/fvx+9//Hi6XC+l0mkr5t7W1Nbyx3GhBvCVSG2IwGKDX65FOp2koZTiL+URCOp2mytdKpZIa02o5rVwuRynZAKhxnoiGV0zmICSZkRiO0ajHjweIQRT3IWtpaRmWaGsikcD27duxdetWhEIhrFu3Drfeeivmzp076e7fRqBpjCYQ9u7di5/97Gd44oknoFAo0NbWhkwmg8985jNYv3492traBtDD29raJnW9iFS4kmEYGjqZNm3ahOt3M1ywLEsLamOxGG3EZ7VaafhR/Hq9FKtHC2nYldQunSpvSejXPT09yGazo+6rNR4gLMNAIEDlemqVCHAch/fffx9btmzB7373OyxYsACbNm3Cv/zLv0z6e7feaBqjCYS//OUvePbZZ7Fu3TqcffbZqFQqeOGFF7B582bs2LGjX7t0juPGhR5eLxCVZiLfL6YVi2tIhsOemujIZrM4fvw4gsEgKpUK3XBMmzZtQrbjGCpIeLJaKwjiEYi9IJ1OR72gRrP1BoNYrocYXJ/Ph7PPPht2u522737vvfewZs0abNq0CStWrGh6QSNE0xhNAnAch6NHj2Lz5s20XfpNN92E6667DjabbQA9fKJK9IgXrUQiccr+NSS31NPTQ5P40rqSyQBpLsnlcsFgMCAej1NSxkTIDY0FxLVLAGAymZDP55HL5fr1SJpsIN/hhg0b8MYbb8BgMECr1eJf//VfsXHjxilZjPqLX/wC//Vf/4VgMIgzzjgDP/vZz7BixYqa73/qqafwrW99C8ePH8ecOXNw77334oorrhjyeE1jNMlQrV36hg0bcOaZZ9LW4oQe7vV60dbW1tAiRqkaBGkJMBwaerWKe8LEm6iLt5Rlp9VqqTcgDqkS1pzP56OqEfVkzY0HUqkUuru7EQgEIJPJUC6XYTabqYc7kb2haiDtu7du3YpXXnkFV1xxBYxGI9544w3E43F885vfxL/92781eppjiieffBLr1q3D5s2bsXLlStx///146qmncODAgaoCrW+88QYuuOAC/OAHP8CnPvUpbN++Hffeey/27NmD0047bUhjNo3RJIW0Xfr8+fOxYcMGfPazn4VWqx1ADyeikfUKIVRLdBOV5dFA3IuHGNxGqiFIIVY4J91zSYJ/sGtf73qisUalUqH1SalUCh6PB21tbTCZTP2KdSdTz6je3l48+uijeOSRR5DP53HzzTfjlltuQXt7OxiGAcdxeO2111AqlfDxj3+80dMdU6xcuRJnnXUWfv7znwPgc5/t7e340pe+hLvuumvA+9esWYNMJoM///nP9LWzzz4bS5YswebNm4c0ZtMYTQHE43H8+te/pu3S165diw0bNmD27NlUTr+npwcMw9Bi2vHIUYw3BVgMsngTJp7FYqE773p7S1LPbbTKDNJ28GOltDAeSKfT6OnpQSAQoLJEtQg1jahdGi6mQvvu0aJYLEKn0+Hpp5/GVVddRV+/4YYbEI/H8ac//WnAZ6ZNm4Y777wTX/7yl+lrd999N5555hm89957Qxp34m+5mjglLBYL7rjjDnzpS1/C3/72N/zyl7/EihUrcP7552PDhg24/PLL0dHRgUgkgp6eHhw9enTM6OEkHEWKCMkCs3DhwnFdYEgXWpvNRr2lw4cPY//+/XXzlvL5PPWCyuUyvF4vzj777FGPq1Qq0d7ejra2NqpBt2fPnhFr0I01iDhrT08PradaunTpKVUaGIaByWSCyWTCnDlz6MblyJEjDReirda++6233pqU7btHi0gkgkqlArfb3e91t9uN/fv3V/1MMBis+v5gMDjkcZvGaApBJpPhYx/7GC666CL4/X5s2bIFX/3qV/HVr34V69evx4033oilS5fSDq7vvffeiOnh1VpeD2VBGg+oVCp0dHRg+vTp1FvauXPnuHhL1dS858yZMy6LqHjxnjt3LiVBHDp0CE6nE62trXUtfia1U+KygqVLl46orEAul8Pj8cDj8dCQ7qFDh9DZ2Tni2qXholr77ttuuw1r166dNKzUqYSmMZqCIOG473znO/jGN75B26Xfe++9uPLKK7Fhwwacd955mDVrFt3hHj58+JT0cLIQ+/1+Kjw5ffr0CcPcO5W3NBoyBzHg4j5H8+fPr1thqliFgvQt+uCDD6BQKOjr4+GJsixL7xHSomLJkiVjmu/RaDSYOXMmZsyYQckuu3fvHnLt0nBRrX33888/P2Xad48WDocDcrkcoVCo3+uhUAgej6fqZzwez7DeXw1TOmcUjUbxpS99Cc899xxkMhk+85nP4Cc/+UlNplI0GsXdd9+Nl156CV1dXXA6nbjqqqtwzz33TEo6qhikXfrmzZvx6KOP9muXbjabaR1IIBAYQA8nmniEHUW0vCZqqwExxErbpAPoUGnU1TrAksLUiRC6IarUPp+P5ujGqn2GuFGfUqmk3nO9woNDqV0aDkj77ocffhi//vWvodVqp2z77rHAypUrsWLFCvzsZz8DwN9r06ZNw+23316TwJDNZvHcc8/R18455xwsXry4SWAAgMsvvxyBQAAPPvggSqUS1q9fj7POOgvbt2+v+v4PP/wQd999N2688UYsXLgQJ06cwKZNm7B48WI8/fTTdZ79+KFau/SNGzfi9NNP70cPz+fzUCgUKJfLcLlc8Hq9k1oTT0qjrqWMTvI0JMne2toKr9c7oRPYpLGg3+8Hy7I0bzacDQNRi+jp6ZlQslPSvkvDETatVCp49dVX8dBDD+F//ud/cOmll2LTpk1Tun33WODJJ5/EDTfcgAcffBArVqzA/fffj9/97nfYv38/3G431q1bh9bWVvzgBz8AwFO7L7zwQvzwhz/EJz/5STzxxBP4/ve/36R2A0BnZycWLlyIN998E8uXLwcAvPjii7jiiivQ09MDr9c7pOM89dRTuO6665DJZCYFxXY4kLZLX7x4Mc4//3y89957sNvtuOmmmyCXy5FKpWC32+tODx8vVPOWWlpaaBvrdDpNWydMdPqxFEReifRcslgs1BOstfiSEKTP56OqEBPR+Fbru+T1eqvS36PRKB577DFs27YNiUQC69evxxe+8AXMnDlzUn2fjcTPf/5zWvS6ZMkS/PSnP8XKlSsBABdddBE6Ojrwq1/9ir7/qaeewje/+U1a9PqjH/2oWfQKAA8//DC+8pWvIBaL0dfK5TI0Gg2eeuopXH311UM6ztatW/G1r30N4XB4vKbacBw5cgQPPPAAtm3bhlwuh/nz52PVqlW4/fbb0dHRUVd6eD3BcRwikQiOHDmCVCoFhmFgtVoxZ86cMe9L1AiQvBnp/ySueSIhvp6eHsRisUmnBi/tu/SXv/wFH//4x2G327Ft2zbavnvTpk209q6JiY0pm60LBoMDYsEKhQI2m23IdMNIJIJ77rkHt9xyy3hMccLgc5/7HI4ePYpHH30U8XgcP/zhDxEIBLB06VJ89rOfxV//+ldMnz4d5513HubNm4d4PI6///3veP/99xGNRjHZ9jPFYhEnTpzAzp078eGHH8JisWDFihVYunQpFAoFdu/ejbfffhuhUIi27piMICzDVatWYenSpahUKti1axf+9re/4dVXX8XBgwdhs9lw/vnn44wzzpgwubChQKVSYdq0aVi1ahUWLFiAI0eO4MYbb8Sll16KAwcO4I9//CNee+01XH/99VPSEP3iF79AR0cHNBoNVq5cid27d9d87969e/GZz3wGHR0dYBgG999/f/0mOgxMurjTXXfdhXvvvXfQ93R2do56nGQyiU9+8pNYuHAhvvOd74z6eBMZu3bt6hfmuOyyy7B69WraLv22227r1y79zDPPpAnu999/HyqVasKrh0tDcxaLBTNmzBgQvrLb7TS3dOjQoX51S5OBsFENHMehWCyiUCgAANRqNSqVCnK5HLLZLHK5HFQq1aQxRED19t3/+Z//CZvNhieffBJXXnklfvSjH/UrwpwqePLJJ3HnnXf2k+pZvXp1TamebDaLmTNn4pprrpnQskWTLkwXDofR19c36HtmzpyJxx9/fMRhulQqhdWrV0On0+HPf/7zhKkObxTE7dJ37dqFq6++mrZLJ+rhpACSiJlOlDAXqWHx+Xw0sT/U5DcxYD09PVRWqZGFmcMF6ZPk8/kgk8koEYPcz2KihlqtptdmouWKxBhq+25CUpk+fXoDZzs+GK5UjxgdHR348pe/PCGN9KQzRkMFITC89dZbWLZsGQDgpZdewmWXXTYogSGZTGL16tVQq9V44YUXJu1ueDwgbZc+ffp0bNy4EWvWrIHBYBiUHl5PSAtTx4LyTLylnp4eatTa2tomXAiIJPl7enrQ19dH+yQ5HI6ans9Ep7A323efxEikesRoGqMG4fLLL0coFMLmzZsptXv58uWU2u3z+XDxxRfj0UcfxYoVK5BMJvGJT3wC2WwWf/zjH/vtnp1OZ5MKKkIymcRvfvMbbN68GcePH6ft0hcsWEDp4T09PSgWi3VTDxdTgKt5AmMBKVttonhL+XyeekEAKMlkuOcuvYaNbPderX33rbfeiiuvvHLChoPHG36/H62trXjjjTewatUq+vr/9//9f/jb3/6GXbt2Dfr5iWyMJl3OaDj4zW9+g9tvvx0XX3wxLXr96U9/Sv9eKpVw4MABZLNZAMCePXvolzl79ux+xzp27Bg6OjrqNveJDpPJhFtvvRVf+MIX8Prrr2Pz5s0477zzsGLFCmzcuBFXXnkl2tvbqTzPG2+8QdXDx6Iok4DopPl8PiQSCbhcLpx22mnjxgpjGAYOhwMOhwOFQgE+nw8HDx7E/v37qQGo18JN2IA+nw+RSAR2ux0LFiwYVbdYvV6POXPmYNasWfTYx44dq6vRjcfj2L59O7Zt24ZQKIQbbrgB77//frN99xTHlPaMmqgvQqEQtm3bhi1btiCfz+OGG26g7dIJPdzn84HjOLS1tY2KHi7uFaRWq6ladCPyHdLW6eNhdMWQ5sHG2whK24GMhxCttH33woUL8YUvfKHZvluCZpiuiSaGAdIu/YEHHqDt0jdu3IiPfexjAEDVw6PR6LCq/MV9cUirddI5dKLsmMfLUFQLD46nwas1B8JIDIfDo26VAfDX6w9/+AO2bt2K999/v9m+ewgYrlSPGE1jNIVR79a8kwnidum/+tWvYLFYcPPNN9N26dlsFj09PfD7/TXp4aRTrM/nQygUgsFgoG0UJrIixlh5S2IJo0qlMmGIE+Ki03w+309p+1RGhOM4HD9+HNu2bcOjjz4Km82GW265BevXr5+S7bvHGsOV6ikWi9i3bx8A4IorrsDatWuxdu1aGAyGAemIRqJpjEaBRrTmnayQtkv/7Gc/i40bN+LMM8/spwxN6OFut5tSj4vFYj/1gMkGsbfEcRwNc9UyKFJKudVqpVJME41SLm2vrtPp6GZBSjIQt+/+61//issvvxy33XYbLrnkkgl3XhMdw5HqOX78OGbMmDHgGBdeeCFeffXVOs56cDSN0SjQiNa8kx0cx+Gdd97B5s2bsX379n7t0lUqFZ577jk4HA7k83nI5XK0tLRg1qxZE7r2ZaioRjgQU86JfE9PT8+gQq4TFURpm7QeJ6SDZcuW4fHHH6/ZvruJJoCmMRoxGtWadyqBtEv/+c9/Dp/PB51OB47j8Ic//IHKDtWbHl4viKnYLMtCpVIhm802tH36WCKZTOLf//3f8ac//QnlchktLS34j//4D6xfv35KbCwGw3BC91u2bMGjjz6KDz/8EACwbNkyfP/73x801D9VMXnv9gZjsNa8tbTvxqI171TC4cOH8Ze//AUnTpzA0qVLsXz5cmQyGdxzzz149dVX0dLSglWrVmHx4sXI5/N44403sGfPHvT29k5qzTiA78qrUCggl8vBsixYlgXHcZDL5ZO6ni2VSmHr1q34xCc+gT//+c+47rrr8N3vfhezZ88ekkLAZAeR6rn77ruxZ88enHHGGVi9ejV6e3urvv/VV1/F5z//efz1r3/Fzp070d7ejk984hO0XuyjhImbAW5iykMul+PCCy/Eww8/DK/XC47j4Pf7sXXr1gHt0k8//XRKDz9w4AD2798/anp4vUHIGD09Pejt7YXJZMLMmTOpPh7xloi24kgLV+sN0r57y5YteOKJJ6q27/7qV7+KY8eOwe/3N3i244sf//jH2LhxI9avXw8A2Lx5M55//nk8/PDDVQ3xb37zm36/b926Fb///e+xY8cOrFu3ri5znihoGqMRolGteacSli5diqVLl9LfSXuKu+++G1//+tf7tUv/1Kc+hY0bN+K8885DR0cHpYcfPXp0wjSBq4VSqUQVKQqFArxeL1auXDmg47BGo8GsWbMwY8YMysQ7duwY7SU1mKRPIzDc9t0zZsyomkifKigWi3j77bfxta99jb4mk8lwySWXYOfOnUM6RjabRalUgs1mG69pTlg0jdEIoVKpsGzZMuzYsYPmjFiWxY4dO3D77bdX/cyqVauwY8eOfjmjl19+uZ+sRxM8lEolPvOZz+DTn/40bZd+7bXXwuPx4Oabb8a1116LM888k9LDJ5p6OMdxSCQS6OnpQSgUgslkQkdHx5BqcmQyGZxOJ5xO54Tzlmq173766ac/8u27Bwvd79+/f0jH+I//+A94vV5ccskl4zHFCY2mMRoF7rzzTtxwww1Yvnw55ftnMhnqokv5/nfccQcuvPBC/Pd//zdtzfvWW2/hoYceauRpTGgwDIP58+fj/vvvx/e+9z088cQT2Lx5M+6++26sWbOGtkufNWsWpYcfOnSoYerhxAsi9TctLS1VvaChQuwtieV56u0tVSoV/PWvf8WWLVto++6tW7fi8ssvn9Q5romEH/7wh3jiiSfw6quvTvjQ7HigaYxGgTVr1iAcDuPb3/425fu/+OKLdGfU1dXVL1xxzjnnYPv27fjmN7+Jr3/965gzZw6eeeaZKV9jNFbQ6/W4+eabcdNNN9F26R//+MdxxhlnYMOGDbj66qvh9XqRSqXQ3d2NN998sy7q4aTWpqenB8FgEEajEdOmTYPH4xmzMWUyGVwuF1wuF3K5HPx+Pzo7O8EwDK1bGo8FTNq++6abbsJPfvITzJgxY0KFDCcCRhK6J7jvvvvwwx/+EP/v//0/LF68eDynOWHRpHY3ManR19eHRx55BA899BBisRjWrVuHm266CR0dHeOuHi4+fi6Xo95YvQpzpa0yhtIuYijgOA5vv/02tmzZ0mzfPUyMRKrnRz/6Eb73ve/hf/7nf3D22WfXc7oTCk1j1MSUAMuyePnll/HAAw/ghRdewMUXX4yNGzfi0ksvhUwmo+rhvb29sFqtaG9vH7GuWyKRoIoDer1+QsgTkUZ6fr+fEkGG2z4jm83iqaeewtatW3Hw4EFce+212LRpE5YsWdL0goaI4Ur13Hvvvfj2t7+N7du349xzz6XHMRgMIw7tTlY0jVETUwocx9F26du2bYNWq8VNN92EdevWwel00rYPw1UPL5fLCAaD6OnpQTabhcfjmVAdbQmIt0SEaB0OB9ra2mo2yqvWvnvTpk1Yt24dLBZL/U9gCmA4Uj0dHR04ceLEgGPcfffd+M53vlPHWTceTWM0SdGs8j41isUi/vCHP+CBBx7Arl27cNVVV2Hjxo1YuXIlGIZBOBw+pXq4OBek0+nQ1tbWcC9oqJC2HXe5XFCpVJgxYwZt371lyxa8/vrr+Od//mfcdtttuOCCCya18kMTkxfNu24SolnlPTSoVCr8y7/8C1599VW89dZbsNvt+PSnP41zzjkHDz/8MHQ6Hc4880ycc8450Gg0eP/997Fz504cP34cXV1d2LVrF958801wHIdly5Zh5cqVaGtrmxSGCAC0Wi1mz56N888/H/PmzcPOnTuxZMkSnHvuuZg1axa++tWv4qKLLsKxY8fw5JNP4qKLLprShugXv/gFOjo6oNFosHLlSuzevbvme//whz9g+fLlsFgs0Ov1WLJkCR577LE6zvajh6ZnNAkxXIFWKSqVCqxWK37+859/5Kq8U6kUHn/88art0nft2oVwOEzzLGazGbNnz570BYji9t1vvPEGPB4PTpw4AYvFgo0bN2LTpk2T/hxPheEq7L/66quIxWKYP38+VCoV/vznP+MrX/kKnn/+eaxevboBZzD1MXW3QVMUpMpbXBTXrPIeOoxGI2699Va88847eP755xGLxbBq1SrMmzcPl19+Ofbu3YuzzjqL1ga9++672LVrF/x+PyqVSqOnPyzE43H88pe/xFlnnYVrr70W06dPx9/+9je888476O3txX//93/j73//O3K5XKOnOu4Qy/QsXLgQmzdvhk6nw8MPP1z1/RdddBGuvvpqLFiwALNmzcIdd9yBxYsX47XXXqvzzD86mBzxhiYomlXeY4NSqYSnnnoKL730EmbOnIkFCxZQfbVisYj169djwYIFmDNnDgKBAI4fP44DBw5QevhEbYVdrX33v//7vw9o361UKvHpT38an/70pxs42/pgtDI9HMfhlVdewYEDB3DvvfeO51Q/0mgao48YPupV3gQqlQo6nQ7PPfcczj33XDAM069d+umnn47Vq1fjlltuwUUXXYT29nbE43F0d3dj586do6aHjzWqte/esWNHs303Rr6BSyQSaG1tRaFQgFwuxy9/+Utceuml4z3djyyaxmiSoVnlPTZgGIbWehDI5XJceeWV+NSnPoWjR4/iwQcfxE033QSLxYKbbroJ119/PRYvXkxbgRP18EbpxXEch2PHjmHbtm147LHHYLPZ8IUvfAHPP/98s333GMBoNOLdd99FOp3Gjh07cOedd2LmzJm46KKLGj21KYnGb+maGBbEAq0ERKB1MMHVH/3oR7jnnnvw4osvYvny5fWY6qQFwzCYNWsWfvSjH6Grqwvf+ta38Oc//xlz587Fpk2b8OGHH6KjowPnnXceFixYgEQigddeew3vvfceotEoxpsTVC6X8fzzz+Mzn/kMli1bhuPHj2P79u3Yv38/vvKVrzQNkQQj3cDJZDLMnj0bS5YswVe+8hV89rOfHbCBaWLs0DRGkxB33nkntmzZgl//+tfo7OzErbfeOkCgVRwfv/fee/Gtb30LDz/8MDo6OhAMBhEMBpFOpxt1CpMGWq0W69atw2uvvYbXXnsNGo0GV1xxBS644AI89thj0Ov1lB6u0+koPbyrqwulUmlM59Lb24v77rsPixcvxh133IHly5fj0KFD+MMf/oBPfOITEyJcOBEx0g2cFCzLolAojMcUmwAArolJiZ/97GfctGnTOJVKxa1YsYL7xz/+Qf924YUXcjfccAP9ffr06RyAAf/uvvvu+k98CiAWi3E/+clPuAULFnAWi4W7/fbbuXfffZdLp9NcMpnkDh8+zP31r3/lnn32WW737t1cIBDgMpnMiP6lUinu5Zdf5j73uc9xarWau/DCC7knnniCKxQKjb4MkwpPPPEEp1aruV/96lfcvn37uFtuuYWzWCxcMBjkOI7jrr/+eu6uu+6i7//+97/PvfTSS9yRI0e4ffv2cffddx+nUCi4LVu2NOoUpjyadUZNNDFCsCyLv/3tb/jlL3+JZ599Fueddx42btyIyy+/HEqlkqqHEw279vb2IauHp1IpPPnkk9i6dSu6urqwdu1a3HrrrVi0aNFHnpAwUgxHpueb3/wmnnzySfT09ECr1WL+/Pm44447sGbNmgaewdRG0xg10cQowYnapW/duhUAcOONN2L9+vVwu91U1667u5t2eq1GD+ck7btnzJiBTZs29Wvf3UQTUxXNIHMTw8JwJFXEeOKJJ8AwDO2KO5Ugbpd+9OhR3H///fjHP/6BBQsWYN26ddi5cydaW1uxatUqLFmyBIVCATt37sSvfvUrPPbYY0in03jqqadw+eWX47zzzkMmk8ELL7yAPXv2YNOmTVPaEDXvpyYoGhkjbGJy4YknnuBUKhX38MMPc3v37uU2btzIWSwWLhQKDfq5Y8eOca2trdz555/P/fM//3N9JttgsCzL7d+/n7vjjjs4q9XKzZ8/n7vvvvs4v9/PZTIZrq+vj/vP//xPzuFwcHq9nrNYLNxdd911yms5ldC8n5oQoxmma2LIGIkmXqVSwQUXXICbbroJf//73xGPx/HMM8/UcdaNRyaToe3SOzs7cf755yOfz+P111/HpZdeijPPPBNvvvkm/vrXv+Kqq67C9u3bPxKtvJv3UxNiNMN0TQwJI9XE++53vwuXy4Wbb765HtOckCDt0nfv3o0dO3YgEAjAZDJh//79+POf/0zrvzo7O7F69eqPhCFq3k9NSNFUYGhiSBiJpMprr72Gbdu24d13363DDCc+GIbBypUra16PmTNnYubMmfWdVIPQvJ+akKLpGTUxLkilUrj++uuxZcsWOByORk+niUmO5v009dH0jJoYEoYrqXLkyBEcP34cV155JX2NZVkAgEKhwIEDBzBr1qzxnXQTExbN+6kJKZqe0QTDo48+CrvdPkB25KqrrsL111/foFkNX1Jl/vz5+OCDD/Duu+/Sf//0T/+Ej33sY3j33XfR3t5ez+k3McEwle6ncDgMj8eD73//+/S1N954AyqVqt/5NXEKNJrO10R/ZLNZzmw2c7/73e/oa6FQiFMoFNwrr7zSwJkNX1JFihtuuKFJxW2CYirdT88//zynVCq5N998k0smk9zMmTO5f/u3f2v0tCYVmmG6CQatVotrr70WjzzyCK655hoAwOOPP45p06Y1XLp+zZo1CIfD+Pa3v00lVV588UWahO7q6mqKdTYxZEyl++mKK67Axo0bsXbtWixfvhx6vb6p8D1MNOuMJiDeeecdnHXWWThx4gRaW1uxePFiXHPNNfjWt77V6Kk10UQTNZDL5XDaaaehu7sbb7/9Nk4//fRGT2lSYXJsOz5iWLp0Kc444ww8+uijePvtt7F3717ceOONjZ5WE000MQiOHDkCv98PlmVx/PjxRk9n0qFpjCYoNmzYgF/96ld45JFHcMkllzQT/k3UDcPRi/vVr34FhmH6/fsotrMvFou47rrrsGbNGtxzzz3YsGEDent7Gz2tSYWmMZqguPbaa9HT04MtW7bgpptuavR0mviI4Mknn8Sdd96Ju+++G3v27MEZZ5yB1atXD7qwmkwmBAIB+u/EiRN1nPHEwDe+8Q0kEgn89Kc/xX/8x39g7ty5zed2uGg0g6KJ2rj++us5m83G5fP5Rk9lQuDnP/85N336dE6tVnMrVqzgdu3aNej7Y7EYd9ttt3Eej4dTqVTcnDlzuOeff75Os52cWLFiBffFL36R/l6pVDiv18v94Ac/qPr+Rx55hDObzXWa3cTEX//6V06hUHB///vf6WvHjh3jTCYT98tf/rKBM5tcaLLpJjB8Ph/Wrl0LtVrd6Kk0HGTHvnnzZqxcuRL3338/Vq9ejQMHDsDlcg14f7FYxKWXXgqXy4Wnn34ara2tOHHiBCwWS/0nP0lA9OLELeuHoheXTqcxffp0sCyLM888E9///vexaNGiekx5QuCiiy4a0GK+o6MDiUSiQTOanGiG6SYgYrEY/vjHP+LVV1/FF7/4xUZPZ0Lgxz/+MTZu3Ij169dj4cKF2Lx5M3Q6HR5++OGq73/44YcRjUbxzDPP4Nxzz0VHRwcuvPBCnHHGGXWe+eTBYHpxwWCw6mfmzZuHhx9+GH/605/w+OOPg2VZnHPOOejp6anHlJuYQmgaowmIpUuX4sYbb8S9996LefPmNXo6DcdIFJ6fffZZrFq1Cl/84hfhdrtx2mmn4fvf/z4qlUq9pv2RwKpVq7Bu3TosWbIEF154If7whz/A6XTiwQcfbPTUmphkaIbpJiCatND+GInC89GjR/HKK69g7dq1eOGFF3D48GHcdtttKJVKuPvuu+sx7UmH4erFVYNSqcTSpUtx+PDh8ZhiE1MYTc+oiSkJlmXhcrnw0EMPYdmyZVizZg2+8Y1vYPPmzY2e2oTFcPXiqqFSqeCDDz5AS0vLeE2ziSmKpmfUxITHSHbsLS0tUCqV/RrVLViwAMFgEMViESqValznPFlx55134oYbbsDy5cuxYsUK3H///chkMli/fj0AYN26dWhtbaVSN9/97ndx9tlnY/bs2YjH4/iv//ovnDhxAhs2bGjkaTQxCdH0jJqY8BjJjv3cc8/F4cOHaZsBADh48CBaWlqahmgQrFmzBvfddx++/e1vY8mSJXj33XcH6MUFAgH6/lgsho0bN2LBggW44oorkEwm8cYbb2DhwoWNOoUmJima2nRNTAo8+eSTuOGGG/Dggw/SHfvvfvc77N+/H263e8COvbu7G4sWLcINN9yAL33pSzh06BBuuukm/Ou//iu+8Y1vNPhsmmiiCSmaYbomJgWGq/Dc3t6O//mf/8G//dv/394do6gORQEYPiCuQsQdaCHqHtxJCgljo2Bvk0ZQQbByA3auRbEXrIJLeMVrBoYZGAbm3vfyfXWKpPq5Nzcnb9Hv96PT6URZlrFYLFI9AvAFKyPI2H6/j6qq4vl8xmAwiO12G+Px+NPrX69XrFarOJ/PUdd19Hq92Gw2MZ1Of/Gu4fusjCBTpk7QJFZGkKnJZBKj0Sh2u11E/D200e12YzabxXK5/HD94XCIqqridrtFu93+7duFH3GaDjJk6gRNY5sOMmTqBE0jRvCfeD91otVqxXA4jMfjEVVViRHZEyPIkKkTNI13RpAhUydoGjGCTM3n8zgej3E6neJ6vUZRFB/mxL3/EV5RFFHXdZRlGff7PS6XS6zXa//E4p9gmw4yZeoETeI7IwCSs00HQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByfwC44Z9LrEnaIQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.angle1 = 20\n", + "visualizer.angle2 = 45\n", + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.plot_workspace(np.array(ws_pred))" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "3_mYGXhmjnhg" + ], + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "1c0f293c6f03438bb4f19276ec49a419": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad8026a2dd49407fb30677e5cf96d004": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_cursor": "default", + "_data_url": "", + "_dom_classes": [], + "_figure_label": "Figure 17", + "_image_mode": "diff", + "_message": "", + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "MPLCanvasModel", + "_rubberband_height": 0, + "_rubberband_width": 0, + "_rubberband_x": 0, + "_rubberband_y": 0, + "_size": [ + 640, + 480 + ], + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "MPLCanvasView", + "capture_scroll": false, + "footer_visible": true, + "header_visible": true, + "layout": "IPY_MODEL_1c0f293c6f03438bb4f19276ec49a419", + "pan_zoom_throttle": 33, + "resizable": true, + "toolbar": "IPY_MODEL_eb0420e848554f6592e94d4423567f9c", + "toolbar_position": "left", + "toolbar_visible": "fade-in-fade-out" + } + }, + "e37f9f52ff7349cc974e863821254ee7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb0420e848554f6592e94d4423567f9c": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", + "state": { + "_current_action": "", + "_dom_classes": [], + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "ToolbarModel", + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "ToolbarView", + "button_style": "", + "collapsed": true, + "layout": "IPY_MODEL_e37f9f52ff7349cc974e863821254ee7", + "orientation": "vertical", + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" + ], + [ + "Pan", + "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", + "arrows", + "pan" + ], + [ + "Zoom", + "Zoom to rectangle\nx/y fixes axis", + "square-o", + "zoom" + ], + [ + "Download", + "Download plot", + "floppy-o", + "save_figure" + ] + ] + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/open_manipulator_cv_controller/notebooks/evaluation_metrics.ipynb b/open_manipulator_cv_controller/notebooks/evaluation_metrics.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f1aae3e81f0c3909eede2fefbf489bc09dd4faa4 --- /dev/null +++ b/open_manipulator_cv_controller/notebooks/evaluation_metrics.ipynb @@ -0,0 +1,603 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import os\n", + "import math\n", + "import json\n", + "import torch\n", + "import random\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from matplotlib import cm, colors\n", + "from mpl_toolkits.mplot3d import Axes3D" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "## TODO:\n", + "# FILENAME = \"_test_metrics.json\"\n", + "FILENAME = \"metrics.json\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "with open(FILENAME, \"rb\") as handle:\n", + " metrics = json.load(handle)\n", + " metrics = json.loads(metrics)\n", + " MAX_DIST = metrics['max_dist']" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.2586145463665413" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "MAX_DIST" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def workspace_surface():\n", + " \n", + " half_pi = math.pi / 2.\n", + " u, v = np.mgrid[-half_pi:half_pi:100j, 0.0:math.pi:100j]\n", + " \n", + " xline = MAX_DIST * np.cos(u) * np.sin(v)\n", + " yline = MAX_DIST * np.sin(u) * np.sin(v)\n", + " zline = MAX_DIST * np.cos(v)\n", + " \n", + " return xline, yline, zline\n", + "\n", + "def plane():\n", + " u, v = np.mgrid[-0.6:0.6:100j, 0:0.7:100j]\n", + " \n", + " xline = u\n", + " yline = v\n", + " zline = np.zeros_like(u)\n", + " \n", + " return xline, yline, zline\n", + "\n", + "class Visualizer():\n", + " def __init__(self, angle1 = 20, angle2 = 90):\n", + " self.angle1 = angle1\n", + " self.angle2 = angle2\n", + " \n", + " self.title = None\n", + " self.x_axis = \"x-axis\"\n", + " self.y_axis = \"y-axis\"\n", + " self.z_axis = \"z-axis\"\n", + " \n", + " def set_axis(self, title = None, x = 'x-axis', y = 'y-axis', z = 'z-axis'):\n", + " self.title = title\n", + " self.x_axis = x\n", + " self.y_axis = y\n", + " self.z_axis = z\n", + " \n", + " def get_axis(self, dim = 3):\n", + " plt.clf()\n", + " \n", + " if dim == 3:\n", + " ax = plt.axes(projection='3d')\n", + " ax.set_zlabel(self.z_axis)\n", + " ax.view_init(self.angle1, self.angle2)\n", + "\n", + " else:\n", + " fig, ax = plt.subplots()\n", + " \n", + " if self.title is not None:\n", + " ax.set_title(self.title)\n", + " \n", + " ax.set_xlabel(self.x_axis)\n", + " ax.set_ylabel(self.y_axis)\n", + " \n", + " return ax\n", + " \n", + " def plot_test_spread(self, actual, pred):\n", + " ax = self.get_axis()\n", + " \n", + " # Data for three-dimensional scattered points\n", + " ax.scatter3D(actual[:,0], actual[:,1], actual[:,2], color = 'red', label = \"Test Values\")\n", + " ax.scatter3D(pred[:,0], pred[:,1], pred[:,2], color = 'blue', alpha = 0.5, label = \"Predicted Values\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_trajectory(self, traj, pred):\n", + " ax = self.get_axis()\n", + "\n", + " ax.plot3D(traj[:,0], traj[:,1], traj[:,2], color = 'blue', label = \"Actual Trajectory [frame 1]\")\n", + " ax.scatter3D(pred[:,0], pred[:,1], pred[:,2], color = 'red', label = \"Predicted Values [frame 2]\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_orientation_trajectory(self, traj, pred):\n", + " ax = self.get_axis(2)\n", + "\n", + " ax.plot(traj, color = 'blue', label = \"Actual Trajectory\")\n", + " ax.scatter(range(len(pred)), pred, color = 'red', label = \"Predicted Values\")\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + " def plot_workspace(self, predictions):\n", + " ax = self.get_axis()\n", + "\n", + " pl = plane()\n", + " sphere = workspace_surface()\n", + " \n", + " ax.plot_surface(pl[0], pl[1], pl[2], rstride = 1, cstride = 1, color = 'w', alpha = 0.1, linewidth = 0)\n", + " ax.plot_surface(sphere[0], sphere[1], sphere[2], rstride = 1, cstride = 1, color = 'c', alpha = 0.2, linewidth = 0)\n", + " ax.plot_wireframe(sphere[0], sphere[1], sphere[2], rstride = 5, cstride = 5, color = 'black', alpha = 0.2, linewidth = 0.5)\n", + " \n", + " within_range = []\n", + " outside_range = []\n", + " for point in predictions:\n", + " dist = np.linalg.norm(np.array(point))\n", + " if dist <= MAX_DIST:\n", + " within_range.append(point)\n", + " else:\n", + " outside_range.append(point)\n", + " \n", + " within_range, outside_range = np.array(within_range), np.array(outside_range)\n", + " \n", + " if outside_range.shape[0] != 0:\n", + " ax.scatter(outside_range[:,0], outside_range[:,1], outside_range[:,2],color=\"red\", s = 20, label = \"Predictions out of Workspace\") \n", + " \n", + " if within_range.shape[0] != 0:\n", + " ax.scatter(within_range[:,0], within_range[:,1], within_range[:,2], color=\"black\", s = 20, label = \"Predictions within Workspace\")\n", + " \n", + " ax.set_xlim([0,0.6])\n", + " \n", + " ax.legend()\n", + " plt.show()\n", + " \n", + "visualizer = Visualizer()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test Set" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "test_outputs, test_set = metrics['test_set'][0], metrics['test_set'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAPklEQVR4nO2dd3wU1fr/PzOzNT0hIQVCCqGELi1GQRCjYLuggIgoRS62i3hFvJafgu1arujFzpWvNK8N9IodhGhQeu8kJBAIIb0nm2ybOb8/lhl2N5sQkplsJnver9e+kszOnj0zmTmfec5znudhCCEEFAqFQqEAYL3dAQqFQqF0HKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkVC4+0OUChqRxAEWK1Wb3eD4uNotVpwHNfmdqgoUChtwGq1Ijc3F4IgeLsrFApCQkIQFRUFhmFa3QYVBQqllRBCUFhYCI7jEBsbC5als7EU70AIQX19PUpKSgAA0dHRrW6LigKF0krsdjvq6+sRExMDPz8/b3eH4uMYjUYAQElJCbp27drqqST6aEOhtBKe5wEAOp3Oyz2hUByIDyc2m63VbVBRoFDaSFvmbykUOZHjWqSiQKFQKBQJKgoUCoVCkaCiQKFQVMXZs2fBMAwOHTrk7a50SqgoUCg+BMMwzb5eeOGFNrW9YcOGJt8vLi6GVqvFl19+6fH9uXPnYujQoa3+foo8UFGgUDoCp04Bv/wCZGcr+jWFhYXSa9myZQgKCnLZtmjRIsW+OzIyErfeeitWrlzZ6D2TyYR169Zh7ty5in0/pWVQUaBQvElFBTBhAtCnD3DLLUDv3o6/KysV+bqoqCjpFRwcDIZhXLZ9+eWXSE5OhsFgQN++ffHhhx9Kn7VarZg/fz6io6NhMBgQFxeH1157DQAQHx8PALjjjjvAMIz0tztz585Feno68vLyXLavX78edrsdM2bMwMaNGzFq1CiEhISgS5cuuO2223D69Okmj2n16tUICQlx2bZhw4ZGK3G+++47DB06FAaDAYmJiXjxxRdht9sBOIK/XnjhBfTo0QN6vR4xMTFYsGBBS05pp4OKAoXiTe65B9iyxXXbli3A9Ont3pXPPvsMixcvxj//+U+cPHkSr776Kp5//nmsWbMGAPDuu+/i+++/x7p165CVlYXPPvtMGvz37t0LAFi1ahUKCwulv9255ZZbEBkZidWrV7tsX7VqFe68806EhITAZDJh4cKF2LdvH9LT08GyLO644442pRL5888/MXPmTDz22GM4ceIE/vOf/2D16tX45z//CQD45ptv8O9//xv/+c9/kJ2djQ0bNmDgwIGt/j5VQygUSqtoaGggJ06cIA0NDa1rICuLEKDp16lT8nbYjVWrVpHg4GDp7549e5LPP//cZZ+XX36ZpKamEkIIefTRR8m4ceOIIAge2wNAvv3228t+79NPP00SEhKkdnJycgjDMGTLli0e9y8tLSUAyNGjRwkhhOTm5hIA5ODBgx6PgxBCvv32W+I8vN1www3k1Vdfddnn008/JdHR0YQQQt566y3Su3dvYrVaL9v/jkybr0lCCLUUKBRv0cyUCAAgJ6d9+gHHnP7p06cxd+5cBAQESK9XXnlFmrqZPXs2Dh06hD59+mDBggX49ddfW/Vd999/P3Jzc/H7778DcFgJ8fHxGDduHAAgOzsb06dPR2JiIoKCgiRrxH3K6Uo4fPgwXnrpJZdjmzdvHgoLC1FfX4+pU6eioaEBiYmJmDdvHr799ltpasnXoLmPKBRv0bNn8+8nJbVPPwDU1dUBAFasWIGUlBSX98QcOkOHDkVubi5++eUXbNmyBXfddRfS0tLw9ddfX9F39erVC6NHj8aqVaswduxYrF27FvPmzZN8ALfffjvi4uKwYsUKxMTEQBAEDBgwoMn05CzLghDiss09zUNdXR1efPFF3HnnnY0+bzAYEBsbi6ysLGzZsgWbN2/GI488gjfffBNbt26FVqu9ouNTO1QUKBRv0bs3MH68w4dwMY8SAIDjgLQ0oFevdutKZGQkYmJicObMGcyYMaPJ/YKCgjBt2jRMmzYNU6ZMwYQJE1BRUYGwsDBotVopH9TlmDt3Lh5++GH85S9/wYULFzB79mwAQHl5ObKysrBixQqMHj0aALBt27Zm24qIiEBtbS1MJhP8/f0BoFEMw9ChQ5GVlYWkZoTWaDTi9ttvx+23346//e1v6Nu3L44ePepzy2SpKFAo3uSLLxxO5U2bLm1LS3Nsb2defPFFLFiwAMHBwZgwYQIsFgv27duHyspKLFy4EG+//Taio6Nx1VVXgWVZrF+/HlFRUdLKn/j4eKSnp+Paa6+FXq9HaGhok981depULFiwAA8++CBuuukmxMbGAgBCQ0PRpUsXfPzxx4iOjkZeXh6efvrpZvudkpICPz8/PPvss1iwYAF2797dyJG9ePFi3HbbbejRowemTJkClmVx+PBhHDt2DK+88gpWr14Nnueltv773//CaDQiLi6uTedUlcjn4qBQfAs5nHoSp04R8vPPijuXnfHkoP3ss8/IkCFDiE6nI6GhoeS6664j//vf/wghhHz88cdkyJAhxN/fnwQFBZEbbriBHDhwQPrs999/T5KSkohGoyFxcXGX/f4HHniAACDr1q1z2b5582aSnJxM9Ho9GTRoEMnIyHBxYrs7mglxOJaTkpKI0Wgkt912G/n444+J+/C2ceNGcs011xCj0UiCgoLIyJEjyccffyx9PiUlhQQFBRF/f39y9dVXN+n47sjIcU0yhLhNxlEolBZhNpuRm5uLhIQEGAwGb3eHQpHlmqSrjygUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUCoUiQUWBQqFQKBJUFCgUimLMnj0bkyZNkv4eO3Ys/v73v7d7PzIyMsAwDKqqqhT9nsuVJFUDVBQoFB9j9uzZUk1mnU6HpKQkvPTSS+2SKvp///sfXn755Rbt214DudVqRXh4OF5//XWP77/88suIjIxslHm1s0JFgULxQSZMmIDCwkJkZ2fjiSeewAsvvIA333zT475NpaxuDWFhYQgMDJStPTnQ6XS49957sWrVqkbvEUKwevVqzJw502dSaFNRoFA6AOXlQHa242d7oNfrERUVhbi4ODz88MNIS0vD999/D+DSlM8///lPxMTEoE+fPgCA8+fP46677kJISAjCwsIwceJEnD17VmqT53ksXLhQqq38j3/8o1GdA/fpI4vFgqeeegqxsbHQ6/VISkrCJ598grNnz+L6668H4MicyjCMlF5bEAS89tprSEhIgNFoxODBgxvVdPj555/Ru3dvGI1GXH/99S799MTcuXNx6tSpRmm6t27dijNnzmDu3LnYu3cvbrzxRoSHhyM4OBhjxozBgQMHmmzTk6Vz6NAhMAzj0p9t27Zh9OjRMBqNiI2NxYIFC2AymaT3P/zwQ/Tq1QsGgwGRkZGYMmVKs8fSVqgoUChepKEBWLMGeOYZYMkSx881axzb2xOj0ehiEaSnpyMrKwubN2/Gjz/+CJvNhvHjxyMwMBB//vkntm/fjoCAAEyYMEH63FtvvYXVq1dj5cqV2LZtGyoqKvDtt982+70zZ87EF198gXfffRcnT57Ef/7zHwQEBCA2NhbffPMNACArKwuFhYV45513AACvvfYa1q5di+XLl+P48eN4/PHHce+992Lr1q0AHOJ155134vbbb8ehQ4fw17/+9bLptwcOHIgRI0Zg5cqVLttXrVqFa665Bn379kVtbS1mzZqFbdu2YdeuXejVqxduueUW1NbWXtnJduL06dOYMGECJk+ejCNHjuCrr77Ctm3bMH/+fADAvn37sGDBArz00kvIysrCxo0bcd1117X6+1qETBlbKRSfQ440xatXE3LHHYQ89BAhTz3l+HnHHY7tSjFr1iwyceJEQgghgiCQzZs3E71eTxYtWiS9HxkZSSwWi/SZTz/9lPTp08elPrPFYiFGo5Fs2rSJEEJIdHQ0+de//iW9b7PZSPfu3aXvIoSQMWPGkMcee4wQQkhWVhYBQDZv3uyxn7///jsBQCorK6VtZrOZ+Pn5kR07drjsO3fuXDJ9+nRCCCHPPPMM6devn8v7Tz31VKO23Fm+fDkJCAggtbW1hBBCampqiJ+fH/m///s/j/vzPE8CAwPJDz/8IG2DU4pvT/0/ePAgAUByc3Olfj/wwAMu7f7555+EZVnS0NBAvvnmGxIUFERqamqa7LcztEYzhaJiysuB7duByEjHy2C49Pv27cpOJf34448ICAiAwWDAzTffjGnTpuGFF16Q3h84cCB0Op309+HDh5GTk4PAwECpxnFYWBjMZjNOnz6N6upqFBYWupTy1Gg0GD58eJN9OHToEDiOw5gxY1rc75ycHNTX1+PGG290qbe8du1aqZb0yZMnG5UUTU1NvWzb06dPB8/zWLduHQDgq6++AsuymDZtGgCguLgY8+bNQ69evRAcHIygoCDU1dW1uXb06tWrXY5l/PjxEAQBubm5uPHGGxEXF4fExETcd999+Oyzz1BfX9/q72sJtPIaheIlKiqAujqgRw/X7cHBQF6e4/0uXZT57uuvvx4fffQRdDodYmJioNG4DgViWUuRuro6DBs2DJ999lmjtiIiIlrVB6PReMWfEWtJ//TTT+jWrZvLe3q9vlX9EAkKCsKUKVOwatUq3H///Vi1ahXuuusuBAQEAABmzZqF8vJyvPPOO4iLi4Ner0dqamqztaMBuPhVPNWOfvDBB7FgwYJGn+/Rowd0Oh0OHDiAjIwM/Prrr1i8eDFeeOEF7N27V6p4JzdUFCgULxEWBgQEANXVDitBpLrasT0sTLnv9vf3b7ZesTtDhw7FV199ha5duyIoKMjjPtHR0di9e7c0522327F///4maxwPHDgQgiBg69atSEtLa/S+aKk4133u168f9Ho98vLymrQwkpOTJae5yK5duy5/kHA4nMeOHYsff/wRO3bscFmRtX37dnz44Ye45ZZbADh8F2VlZU22JYplYWGhVJrUU+3oEydONPu/0Gg0SEtLQ1paGpYsWYKQkBD89ttvuPPOO1t0TFcKnT6iULxEly7AtdcCxcWOl9l86fdrr1XOSmgNM2bMQHh4OCZOnIg///wTubm5yMjIwIIFC5Cfnw8AeOyxx/D6669jw4YNyMzMxCOPPNJsjEF8fDxmzZqF+++/Hxs2bJDaFKdv4uLiwDAMfvzxR5SWlqKurg6BgYFYtGgRHn/8caxZswanT5/GgQMH8N5772HNmjUAgIceegjZ2dl48sknkZWVhc8//7xRzeamuO6665CUlISZM2eib9++uOaaa6T3evXqhU8//RQnT57E7t27MWPGjGatnaSkJMTGxuKFF15AdnY2fvrpJ7z11lsu+zz11FPYsWMH5s+fj0OHDiE7Oxvfffed5Gj+8ccf8e677+LQoUM4d+4c1q5dC0EQpBVhSkBFgULxInfdBUycCPC8Y8qI5x1/33WXt3vmip+fH/744w/06NEDd955J5KTkzF37lyYzWbJcnjiiSdw3333YdasWUhNTUVgYCDuuOOOZtv96KOPMGXKFDzyyCPo27cv5s2bJy3H7NatG1588UU8/fTTiIyMlAbKl19+Gc8//zxee+01JCcnY8KECfjpp5+QkJAAwDHt8s0332DDhg0YPHgwli9fjldffbVFx8kwDO6//35UVlbi/vvvd3nvk08+QWVlJYYOHYr77rsPCxYsQNeuXZtsS6vV4osvvkBmZiYGDRqEN954A6+88orLPoMGDcLWrVtx6tQpjB49GldddRUWL16MmJgYAEBISAj+97//Ydy4cUhOTsby5cvxxRdfoH///i06ntZAazRTKK1EzhrN5eUOH0JYWMeyECjqQo5rkvoUKJQOQJcuVAwoHQM6fUShUCgUCSoKFAqFQpGgokChUCgUCSoKFAqFQpGgokChtBG6gI/SURAEoc1t0NVHFEor0Wq1YBgGpaWliIiIAMMw3u4SxUchhMBqtaK0tBQsy7rkrbpSaJwChdIG6urqkJ+fT60FSofAz88P0dHRVBQoFG/C87zPlGqkdFw4joNGo2mzxUpFgUKhUCgS1NFMoVAoFAkqChQKhUKRoKJAoVAoFAm6JFUBCCF0NQqF0oFgGIYuGW4hVBRkxmQyISwsDCdOnEAXmdJems1m1NTUNJu7vaNSUVEBrVaLwMBAb3flirlw4QIiIyMblars6NTX18NkMrW6TKY3KS8vh8FgaFQOtC0QQuDv79+mZZq+hLqudhWg1WphtVphs9lkezKpr6/HuXPnEBkZKUt77UlxcTH8/f2bLOHYkcnJyUF4eDi0Wq23u3JF1NXV4cKFC6p8iCgoKECXLl2kushywPM8zGazFGxIaR4qCjLDcRwAR31asXC3XG3K1V57IvZZjX0HHNMOauu7OFWitn6LsCwra9/r6uqQlZWFG2+8UbY2OzPqvGo6MAzDQKvVwm63y9qmHDlNKL4BIUS1T8SEENnFTDwf9B5qGVQUFECr1coa4cowjGod12ruu5pRsyjI3XdRaOh12DKoKMiMaClQUaB4CzVfK4IgKCIK1FJoOVQUFEB0NsuFmkVBzX1XM9RScG2TWgoth4qCAlBL4RJqHZzUjFqvFUAZURCtD0EQVH1u2gsqCgqg0WioKDih5r6rFbWKsVJOctF5Ta/Fy0NFQQGUWH2k1otZrYOTmlHrtQIoaymI7VOah4qCzDAMA51OJ6tPQe3zoWruuxpR+5JUJX0K1Nl8eagoKIBS00dqHFzVOjipHbWed6UsBZZlYTKZUFpaKmvbnREqCgqgxPSRmlGjmKkZNZ9vJYPXysvLce7cOVWfn/aAioICKLH6CIAqTV+1C5paUet5V2r6SLS21T4V2x5QUVAApURBrRezWvutVtR8vpWcPnIWB0rTUFFQALkdzWoWBbU+saodtZ53JS0FZ3GgNA0VBQVQyqeg1otZrf1WK2o+30qvPqLpLi4PFQUFUGL1EaDOm52a696BWgqN23QWBXpNNg0VBQWgPoVLqHVwUjNqvE5ElEiIJ04b0emjlkFFQQGUEAU1P3Grtd9qRa3Ba+J10h6rj+gUUtPQymsKoNPpZBUFoANNw9jtYLOywBQUAAEB4AcMAJqpv6zGwYniHZQSBWdLQSyt2iHupQ4KFQUFkNtSADqIKNTWQrtyJbiDBwGrFWAYcN27w37//RD69GnyY17vt49BLYXG7Yq+BIZhUFVVBY7jVFnzvD2g00cKIPfqI6BjiILml1/A7dwJISoKQr9+EHr1AnvhAjRr1gANDR4/o8bBqTOgxvOupCiI00Ysy6K4uBiFhYWyfkdngoqCAnRKS8FsBrd7N0hYGBAQ4Nim0UBITAR7/jzYzMwmP+ptMfM11Hq+xX4rlebC009KY6goKIDcwWsAvL++2moFzGZAr3fdrtUCPA/GbPb4MXrzeQdqKVzC0+ojugqpaagoKECntBQCAyHEx4MpKQGc+sGUlwNBQRBiYz1+TI2Dk9pR62DXHquPnH0LdAWSZ6ijWQE0Gk3n8ykwDPgJE8Dm5oI9edIxjdTQAMZigf2WW0C6dWvyo2odpNSMGsVYqUHaU5oLr99PHRgqCgqg0+k6nygAEAYOhO3RR8Ft2QL2zBmQ8HDYR48Gf911QBODkBoHJ7Wj5tVHYkyOnHgSA3E6idKYTj999MEHHyA+Ph4GgwEpKSnYs2dPk/seP34ckydPRnx8PBiGwbJlyxrt88ILL0gXrvjq27evyz5yp7kAOk71NSE5GbZHH4Vl6VJYlywBf8MNDr9CM3SEfvsaahYFJdp19ik4iwS9NhvTqUXhq6++wsKFC7FkyRIcOHAAgwcPxvjx41FSUuJx//r6eiQmJuL1119HVFRUk+32798fhYWF0mvbtm0u7yvlaO5QFzDHNWkdOKPGwUntdKjr5ApQShREH4KnyGa1nisl6dSi8Pbbb2PevHmYM2cO+vXrh+XLl8PPzw8rV670uP+IESPw5ptv4u6774befZWNExqNBlFRUdIrPDzc5f3OGqfQWtTabzWjRjFW0lJw9ik451ei12ZjOq1PwWq1Yv/+/XjmmWekbSzLIi0tDTt37mxT29nZ2YiJiYHBYEBqaipee+01xMbGora2FgDA8zwSExNx5MgRAIC/v3+bL3aLxYKioiLpO9RCbW0t6uvrcebMGW93pVXk5eVJqRHUQnV1NTiOU905t1gsEARB9n5bLJZGqbNZloXNZgPDMOA4TtbvUzudVhTKysrA83yjUPbIyEhkNhNodTlSUlKwevVq9OnTB4WFhXjxxRcxevRo7NixA927d3fZ9/333wcA/PbbbwgQA77agM1mk31aSml4nocgCKrrt4jNZlPd06ToQFXbORf9cHL2mxACm80mXYfOcQqnTp2C0WhE//79Zfu+zkCnFQWluPnmm6XfBw0ahJSUFMTFxeGXX35BdXU1AGDt2rX473//i2+++QYAEBgY2GZL4cCBA4iOjkZ0dHSb2mlvRL+LuzNeDRQUFKBnz54wGo3e7soVcfLkSej1eiQmJnq7K1dEVVUVamtrZb9WCgsLYTabPcYrAOpdraUUnVYUwsPDwXEciouLXbYXFxc360S+UkJCQtC7d2+cPn0aQUFBAIDg4GAQQqS/5UDNPgVK+6LWQU6pfjMMg4aGBo+rj5xFguKg0zqadTodhg0bhvT0dGmbIAhIT09HamqqbN9TV1eH06dPuzzBd9Y4hdag1n5T2h9xWkduGIZBfX19k5HN9Pp0pdNaCgCwcOFCzJo1C8OHD8fIkSOxbNkymEwmzJkzBwAwc+ZMdOvWDa+99hoAx1zmiRMnpN8vXLiAQ4cOISAgAElJSQCARYsW4fbbb0dcXBwKCgqwZMkScByH6dOnS9+rRJwCvXgpLUWtT75Krj6qr6+nOZBaSKcWhWnTpqG0tBSLFy9GUVERhgwZgo0bN0rO57y8PJcnk4KCAlx11VXS30uXLsXSpUsxZswYZGRkAADy8/Mxffp0lJeXIyIiAqNGjcKuXbsQEREhfa5T5j5qJWrtt9qhouBKfX09ALhYCDQHkmc6tSgAwPz58zF//nyP74kDvUh8fPxlB7Avv/zyst/ZqSuvXSFqHJzUjhqvE0CZ+szApfPhXleBWgqe6bQ+BW8iioKcF5uaL1619lvNqFGMlbAUxGvPz88PQGNLQZxOotfoJagoKACdPrqEGgcntaPG6wRQVhT8/f0BwKOl4LwfhYqCItA0F66otd9qRo1irIQoiP4CMXjUk6XgvB+FioIiaDSazp8Qr4WocXBSO2q8TgDvWQplZWWoqKiQ9XvVDBUFBdDr9YpYCmp9mlHrIKVW1LwkVYn6zMAlS4HneZdU2gzDoKioqMnMyb4IFQUFoD6FS6hxcOoMqPG8Kzl9JCY1NJlMAC7dT3QVUmOoKCgAFYVLqLXfakat51up6SPnam5ilmFnS4GW53SFioICaLVaEELA87xsbar5olVrv9UMtRRc2xQthrq6OgCulgJNd+EKFQUF0Ol0ABx53OVCrRetGgcntaPG6wRQJnjN3RpwtxTo9FFjqCgogCgKck4hqVUUAPUOUmpGjWKslKXgLADuPgWa7qIxVBQUQHRqybkCSa2ioMbBSe2o8ToBlJ0+EsVBfFBzj2imkc2XoKKgAKIoyGkpqNm8VWu/1YwaxVip1UfigM9xHAwGgyQS7oIhbvN1qCgogBKiQC0FSktR43UCKG8pMAwDPz8/l3vJ3dGs1nMnJ50+S6o3YBhG9poKzYlCTQ1w8CCHwkIGgYHA4ME8unfvOBc3vdHaFzUHryntU/Dz80NlZaXkPxDvK47jpP19HSoKCiF3+uymRKGkhMHy5VqcOiXmcAE2beJw7702jBwpgBAgP5/BhQss9HqCvn0FtGfJYbVaOGqHioID99VHYr1tT5ZCVVUVWJaVtVyvGqGioABKWQqeVkf89BOHzEwWffoI0GoBQoDcXAbr12uQlGTFL79osG2bBrW1AMcBsbEC7rvPjj592melhRoHJ7WjVhFWKs2Fs6VgNBpBCJEWgTgvSS0pKQEhBJGRkT593VKfgkLIHdXs6YnbZAIOH+YQEUFw0Y0BhgF69CAoKmKxbp0WGzdqYDQSJCcLSEgQkJfHYs0ah0i0F2odpNSMGgc1pUTB2VIQl4u7V2ITxUGN501uqCgohFarlTVTqidR4HnHdNHF6VAJlnVYDAcPsjAYCMLDCRgG0OmApCQB58+zOH7c7UMKQW+y9ketIqz06iNnq6C2tlZKf+FpFZIvQ0VBIdrDUggMBPr2FVBUxMB5ZqmwkEFYGIFGg0b+A43GIRgXY3jaBV+/ybyBGsW4PVYfiU5lk8kkfZezcNAgNioKiiF3oR1PTzAMA9x8sx3duws4eZJFbi6DkydZWK0MbrvNjn79BFRWMnD+WF2dw2KIjm6fgVqNg5PaUasIK5Hmwt2nIP6sq6tzKbDjHuHsy1BHswIwDNMulgIAJCQQPP64DTt3cjhzhkVYGI/hwwUMHCigRw+CkydZZGayiIggsFiAykoG11zDt5ujGVDvIKVm1CjG7WUpaDQa1NfXS9/lLhy+fr36hKXwwQcfID4+HgaDASkpKdizZ0+T+x4/fhyTJ09GfHw8GIbBsmXLWtVme8YpREcT3HmnHYsWWXH//XYMGiSAYRxTSw89ZMOQITzsdsDPj2DKFDtmz7Y18kMohRoHJ7Wj1kGtPXwKgiBAo9HAYrG4TB+5Z01V6zmUg05vKXz11VdYuHAhli9fjpSUFCxbtgzjx49HVlYWunbt2mj/+vp6JCYmYurUqXj88cdb3WZ7WQqXY8AAAf37C9K0kV4vW5dajC/fYN5CjWLcnpaCmHXAPV5BnFLy5ZVInd5SePvttzFv3jzMmTMH/fr1w/Lly+Hn54eVK1d63H/EiBF48803cffdd0PfxAjakjbbK3itZZ91OKW9IQi+emN5E7WKsNL1FDzFK4j+A0+i4Kt0akvBarVi//79eOaZZ6RtLMsiLS0NO3fulL3NP//8E4888ggAwGAwwGq1IicnB4CjRmxbLniTyQSbzYbi4uJWt+ENrFYrCCGq67dIWVmZtLZdLdjtdlRVVcle/U9pLBYLamtrZb1WamtrwXFcI4vBaDSivr5eGvydp48AKgqdlrKyMvA8j8jISJftkZGRyMzMlLXNkJAQrF27FsHBwdK2P/74Q/r9hx9+gL+/f6u+E3AUHLfb7Th//nyr2/AG4s2ltn6LFBYWyh5QpTR2ux2lpaWoqKjwdleuCLPZDEEQpOpoclBXV4fg4GAYjUYXa0Cv1zdpKYhVEzWaTj08Nolqj/rs2bNISEhotH3MmDHIyMho9/7odDoMGzYMv/32GwBg0qRJuPHGGzFz5kwAQGBgYJssherqahw9ehTDhw+Xpb/thcViwfbt2zFs2DDVTSX99ttvGDhwoJQvRy1s374dffr0QUhIiLe7ckXs378f3bp1kzX30J49e2C32xtZCnq9HjzPSyVznd+7cOECiouLce2116rumpUD1YpCbGwsCgsLpb+LioqQlpaG6667TtoWHh4OjuMamaPFxcWtvvCaarOkpATdunVDUFAQAMf0Ecdx0t9tRe2J5XzZcecN1HiulUhzodFoJAvEucqaOCVoNpsBeE534avXrLrsYic4jkNUVBSioqIQEhKChx56CKmpqXjhhRekfcSn9/T0dGmbIAhIT09Hampqq763pW12JEezN/HFm8rbqPE6AZR5cBBXATqnsGBZFgzDSEFsNN2FK6q1FJy5//77UVtbi82bNzd60li4cCFmzZqF4cOHY+TIkVi2bBlMJhPmzJkDAJg5cya6deuG1157DYDDMXrixAnp9wsXLuDQoUMICAhAUlJSi9oE5I9oVqsoiKi572pEjWKshChwHCf547RabaN4BffIZndLwRdRvSi88sor2LRpE/bs2YPAwMBG70+bNg2lpaVYvHgxioqKMGTIEGzcuFFyFOfl5bkISUFBAa666irp76VLl2Lp0qUuvorLtQnIH6eg1icXNQ5OakeN1wmgjCgwDAOO42Cz2eDn59coXsFkMjUSBeefvoiqReGbb77BSy+9hF9++QU9e/Zscr/58+dj/vz5Ht9zd0rHx8e36KZqrk1A/iypubkabN7cHXv26BATIyAlhUevXuq5+dU6UKkVNYqxUrmPdDodrFar5DfgOA6CIECr1bokxvMU0+CLfgXVisKxY8cwc+ZMPPXUU+jfvz+KiooAOObyw8LCvNw7eaePDhxgsWKFH06fjkR8PIPDhzXYtYvD7Nk2DB/esZ9mfO2G6gioVYCVCl7T6/WwWq2Npoa0Wi2qq6ulIFVPabZ9EdU6mvft24f6+nq88soriI6Oll533nmnt7sGQD5Hs9UKfP+9BvX1LHr0qEF8PEG/fgLq6xl8/70GMhojiuKrN5i3UKMYKykKNputkRWg0WgkpzPQ2Kcgft7XUK0ozJ49G4SQRi9vxCh4Qq6EeBcuMMjPZxEdzYNhxBsHiIkRcOECi/PnO/bN78s3l7dQ67lWKiGe0WgEz/ONLAWO42A0GiXfgfv0kXNwmy+hWlHo6MhlKXCco5IazzvqIog3vFhxrb2ynbYWNT6xdgbUeN6VshQMBoPkH3AvqCPmQAJcLQW1RbHLiWp9Ch0duSyFhgagvBzYuVMHgyECPM8iLg44f55Fv34CYmPV8VSo1qdXNaLWc63EYCxOEzEMA4vF0igWwWAwoLKy0iUHknNiPF/Ed49cYfR6fZsdzdnZDD76SAeeB/z9CcrLjdi+XYNff+UQHS1gypT2q4vQWtT4xKp21LpiRilLgWVZcBwHi8XSyFLQ6/UQBMFjDiQ1nkM5oJaCQshhKWzZokFZGYMRIwQ0NACHDpWDZbtCEDhMnWqnS1IpTaLGAU1JUWBZtpGlwHGclBjPYrEAQCNHsxrPY1uhloJCtDV4zWYDsrNZdOnicCz7+QHR0SYMG2ZHSAhBXZ06LlZfvKm8jVoFWClHs5jGQhQFZ2tAfNXW1gKg00cAFQXFaKsocBxgNBJczNcFwHHB8ryjaI7KEneqdqBSK2oTY3H1oFJFdliWRUNDQ6PEeKLPQRQFmuaCioJitHX1EcsC117Lo66OQXW1YxvPM8jNZREdLaBfP16mniqP2gYoNaPWgczZ0Ssnzk/9drvdZWmqew4k8ft93VKgPgWFkCP30fXX88jPZ7FnD4cLF4CysgAkJwuYOVOATBm52wVffuryFmoTYqVEwdn60Ol0kiiIloIY2eyeA0lt509OqCgohBxpLoxG4K9/tWHsWB75+Qyyss5i4sRExMS0voKbt6Ci0D6o9TwrKQqiCBiNRpjNZpclqWL21IqKikaRzb4KFQWFkCtLKssCvXsL6N0b0GqrEBiovghLX37q8hZqO+dKTh+JIuDn5ydZBM7bdTpdo/rMonNabedRDnxXDhVG7iI7wKX5TjWi1idYtaHW89weloK/v7+LGDivQnIuuerrloLvHrnCyBXR7Ixa5+Z98WnLWyg1uCpNe1gKzqLgntLCz8/PpS9UFCiyo5SloEZRANT7BKtWqChcatfZUgAAnucbLU01GAwuOZDUdv7khPoUFELucpwArb5GuTxqvD4A13l8udsVf2q1WgCA2Wx2qcPMcZxUqhOg00e+e+QKI1Z7kvMmpZYCpaWoTYiVClzzlLKivr6+0TSSaCnY7Xafnz6iloJCyF2jGWhCFAgBe/gw2L17wZaVQYiPB3/11SAJCbJ+d1tQ2wClZtQqvkqJgjPiQN/Q0OAyrSTWcWYYBiaTiU4febsDnZWWTh+ZTEB9PYOQEIKL1m2TeBIFLiMDmm++Aex2wN8f3Jkz4A4fhm32bAh9+7bhCORFrYOVWlHboKZU3iMAzVoK7tNItbW1LtNHajuPckBFQSEuZynU1wM//6zBzp0cGhoYREQISEvjMWqUo8KaJxqJQlUVNJs3A0YjSLdu0mb25ElwmzZB6N3bEejgZXzxxvIWahVfJZ7Onf0JzphMJnAc1yheQRQFtaYelwvvjxjtxAcffID4+HgYDAakpKRgz549ze6/fv169O3bFwaDAQMHDsTPP//s8v7s2bNdAlwYhsGECROk93U6XZOWAiHAZ59p8b//OWosBwYKKChgsHq1Bjt2NF0gwT1Ogc3PB1NWBhIV5bKfEB0N9vx5oLKy2WNsT9Q6WKkVtQ1qSk4fubdrt9s9xitotVpJFHzZp+ATR/7VV19h4cKFWLJkCQ4cOIDBgwdj/PjxKCkp8bj/jh07MH36dMydOxcHDx7EpEmTMGnSJBw7dsxlvwkTJqCwsFB6ffHFF9J7Wq0WVqvVY/vnzjHYt49D9+4CoqMJgoOBhARHiuwtWzg0NevUyFLQakE0Grh/gLHZAI0Gl52PaifU7CBXG2o9z0pOH7lbDGJdZufgNUJIo2ypvopPHPnbb7+NefPmYc6cOejXrx+WL18OPz8/rFy50uP+77zzDiZMmIAnn3wSycnJePnllzF06FC8//77Lvvp9XpERUVJr9DQUOm95qaPSkoYmExAcLDr9rAwgpISBjU1no/DfXAVEhJAYmPB5OYC/MWsqVYrmKIi8AMGQFVZ8yiyoObgNaWS4bm37R7ZLFrgSsQWqZFO71OwWq3Yv38/nnnmGWkby7JIS0vDzp07PX5m586dWLhwocu28ePHY8OGDS7bMjIy0LVrV4SGhmLcuHF4+eWXodPpAAAWiwWDBg3CoUOHwDAM/P39pQuzqsoAiyUShYVWGAyXBvmiIi38/QUUFhagoqLxE19DQwNKSkpQX18vbdOPGIGwwkJo9+51bGAYmBMTUd6nD/icnJafKAWx2+24cOECysvLvd2VK+bcuXPQaNRzm4hTljkd5H/fUsxmM+x2u6z9Fs+F8xQRAAQGBqKsrMzFUnBOd9HQ0ODTloJ6rvZWUlZWBp7nERkZ6bI9MjISmZmZHj9TVFTkcf+ioiLp7wkTJuDOO+9EQkICTp8+jWeffRbjx4/HgQMHXD43ZswYAMDvv/+OgIAAAEC3bibExTXg1Ck/dO9ugcEgoLpag9paDqNGVUGjsUsP/s4QQsDzPHinN+tjY2G57z4Yc3LA1dfDHhqK+p49QQwGeGzESwiC4NJvtcDzvKqeusVzrLZzrUS/TSYTCCEuAz8A6T50dzSzLAt/f380NDT4bDI8wAdEQSnuvvtu6feBAwdi0KBB6NmzJ7777juMHTsWFRUVSEhIwIkTJxAUFITAwECXi2zRIgZr12qQlRWAmhrHTM+UKXbcdVck9PpIT18Ji8WC0NBQxMbGNn5zxAjZj1EuKisr0a1bN3Tp0sXbXbkiLly4gMTERJdkaR2d+vp6lJaWok+fPt7uyhVRVlYGi8Uia78LCwtRXV3tMo0kDvwi7onx/P39UVZW5tM1mju9KISHh4PjOBQXF7tsLy4uRpTbqh2RqKioK9ofABITExEeHo7CwkIEOc3lGwwGl78vfQfBE0/YcOaMHbW1DKKiCKKjSZPLUQGa5oJyedR4fQDK+BQMBgMAx8OUs/9ATH4nrkJythjE93z5mu30E2c6nQ7Dhg1Denq6tE0QBKSnpyM1NdXjZ1JTU132B4DNmzc3uT8A5Ofno7y8HNHR0QAg5VlpznHFcUCvXgRDhwqIiWleEAB1r+JRa7/ViBoHNCVEwTlYzdkaELc7Ry+7Z0tVa4p6Oej0ogAACxcuxIoVK7BmzRqcPHkSDz/8MEwmE+bMmQMAmDlzposj+rHHHsPGjRvx1ltvITMzEy+88AL27duH+fPnAwDq6urw5JNPYteuXTh79izS09MxceJEJCUlYfz48QAgOZzlXM2gVlFQ4yClVtR4fQDKBa+xLCv5CJyjlwGHWLhPH4n3bX19vc9et51++ggApk2bhtLSUixevBhFRUUYMmQINm7cKDmT8/LyXFYbXHPNNfj888/x3HPP4dlnn0WvXr2wYcMGDBgwAADAcRyOHDmCNWvWoKqqCjExMbjpppvw8ssvQ6/XA3AMhBqNRtZMqU2KgtXqiIi7+N0dEbUOVmpEjYOZUnEKoig4TxGJVoC7peD8s66uzuO0ry/gE6IAAPPnz5ee9N3JyMhotG3q1KmYOnWqx/2NRiM2bdp02e9sLoCtNTQShYoKaH7/HezBg2AEAXy/fuCvv94l5UVHQK0WjhpR63lWKk6B4ziYzeZGK40Ah8XvbimIf4tBbL6IT0wfeQPRUpB7+kia6zSZoF2zBpqff3ZEMAPgfv8d2k8+AVNaKtt3yoEan1zVjBrPt5Ki4D595Gwp8DwviYFzKu26ujpZ+6ImqCgoiNzps52fcthjx8CePAmhTx+Q6GiQrl1B+vcHe+4cWDGQrQOh1idYtaHW86ykKIj3oLtTWayd4CwGgiBIifHUKK5yQEVBQeQOm3cRhcJCMIQAFx1jjo0siL8/2NOnZftOOfDVm8tbqPF8K+VT4DgOHMdJBXecB34/P79GS1Kdp5x8NeUFFQUFUWL6SEruZTQCnpbNWa0g7kmVOgBqfYJVG2o9z0pZCuKKIkEQGjmVxchm96kljUYDvV7vs1NIVBQURMnpI6F/f5AuXcCcPetIZyEIYIqKAK0WwlVXyfadcqDGJ1c1o8bzraQo6PV6CILQyKnsnu7C2WIICAhATVOZKTs5VBQUgmEYRUWBdO8O25QpgL8/mKwsMCdPAoIA++23Q7i4dLYjodYnWLWh1vOsRA0DUWi0Wi14nm82etl99VFMTIwkGr6GzyxJ9QZyi4J7mgth5EhYevcGm5MDCAJIfDxI166yfZ9c0CWp7Ydaq4YpGacgxgs1lQPJeUpJXI0UFRUlZSXwNagoKEhL6zS3iLo6BP3xBwLOnYPm1CnYr7sOCAsDQkIgDB/emuawcyeHw4dZMAwwZIiA1FQeFx+eKJR2Rcl6CqKlIA74oqUg5kayWq0uloIaRVVOqCgoiFzBa0xeHvTPPovI48cdxUC+/x7atWthefFFCAMHXnF7JhPwn/9oceAAB4PBEQx98CCH48dZPPCADRfvFdmglkL7odZBTck0FxznKHHrnBjPPQeS+9JUX8a3j15hZJk+IgS6d98Fe/IkbDExaOjeHUJ8PJjz56F74w2gFe3v28fh4EEOPXsK6NlTQFKSgIQEAXv3OrbLjRoHKTWjxvOt1PSRKAJarbZRZLMYxFZXV9eo2I4v49tHrzByiAJTUAD2wAGHr0Cc49RoIHTrBjY3F+zRo1fc5smTLDgOLhaBWDLg1CllBhTZLQWbDUx5OZqsXeqjqNUiU7ocp2i1e4psFkXB2bdAi+xQFEEWS6GhAYzdDiEgAHCehtFqAbsdjNl8xU3qdMRjiAMhl3RHTmS9uQgBe+oU2MOHwVRVgWi1IAkJ4IcPB3x0tYg7ahzMlFp9JA7+Wq0WFosFRqOx0UojTzmQfBnfPnqFkcPRTHr0gBAdDbaszGU7U1YGEhoKoRWVqgYMEMBxQFXVpW0VFQx0OoL+/ZXJIy/XEyxz5gy4338HamshRESAGI1gDx0Ct21bhyo/6i2opXAJ56d/vV4vWQrO00csy7rkQKKiQEVBUWRxNOt0sM2eDeh00J07B215OdjcXDBWK+x33w3SihKXQ4cKGDfOjrIyFsePO16VlQxuuonHgAHyi4JsNzshYE+eBAFAYmIc81/BwRDi4hznxK1anq+iVktBKUezIAhSyhn3ugri++6ps9UqrnJAp48URK4lqfzNN8MSGAjrp5+CZGZCSE6GbeJE8BMmtKo9jQaYMcOOoUMFZGc7lqT27i2gb18BSj0kyXKT2e1gqqqAwEDX7QaDw8dQVwffvZUdqHUwU9qnYDAYQAhxSXch5kDS6XQu1dnE1Uq+ChUFBZEzeI0fNQrlvXsjLy8Pw1sRl+AOxzmmkZSwDNyR7WbXaECCgsAUFjpiNEQsFsd7NMhCtUtSlQxe8xTE5hyTEBAQgLq6Ohf/gy9Dp48URMksqWpDln4zDITkZDA878jzZLUCdXVgz56F0KMHyMX62L6OWkVBqTQXYttigkp3n4KnyGZfhloKCiJrRDMAxmZD+J9/Qv/ll4DJBGHYMNhvu63DD4ZyihlJSgJvNoM9ehRsQQGITgehf3/wKSkO88fHUfNDg1I+BbFtURQ8WQqAa2I8uiSVogjNOZqZnBxwe/eCsVrB9+0LYdgwx2R/U/A8Qj76CF1+/hlcQACIRgPuyBFwf/4Jy2uvdbgSnIrBMBAGDoTQqxeY6moQrRYIDQV89Ab2hBoHMyV9CuJAz7Jss5aCUv1QG1QUFKSpegqa//0P2lWrwFwMvNJoteBHj4b1H/+4FEXmBnvwIPy2bkVtSAiMPXoAAIjdDjY7G5oNG2D729+UO5A2osi0l8EAInc+jk4AtRQu4Z4VVaPRwGQyNfI16PV6AI40GO51nH0Rn/EpfPDBB4iPj4fBYEBKSgr27NnT7P7r169H3759YTAYMHDgQPz8888u7xNCsHjxYkRHR8NoNCItLQ3Z2dku+3jyKTA5OdCuWgUIAoTevR3lNLt2heb336H56acm+8MdPw7GaoXN2Zmq0YAEBoLbubOFZ4HiC6jxSVep3EfuuY54nofdbvfoP6ivr6dxCvARUfjqq6+wcOFCLFmyBAcOHMDgwYMxfvx4lJSUeNx/x44dmD59OubOnYuDBw9i0qRJmDRpEo4dOybt869//Qvvvvsuli9fjt27d8Pf3x/jx4+H2SnC2JNPgduzB0xNjWOdvXhBBgSAaLXgMjKaPAYiTi25P8HwvGtJzg6Irz95tSdqPc9KB6+JPgKNRgOr1epiKYjnzDmy2ZfxiaN/++23MW/ePMyZMwf9+vXD8uXL4efnh5UrV3rc/5133sGECRPw5JNPIjk5GS+//DKGDh2K999/H4DjAl62bBmee+45TJw4EYMGDcLatWtRUFCADRs2SO14tBREH4P7DaDVgjGZmjwGYcQIkMBA6CorLwlDQwMYsxn2ceOu7IS0M2p8clUzajzfSgeviT/1er0UxOaeGE+cWlLj+ZOTTu9TsFqt2L9/P5555hlpG8uySEtLw84mpl127tyJhQsXumwbP368NODn5uaiqKgIaWlp0vvBwcFISUnBjh07cMsttwCAlMO9vLwcABAQEAChZ09wGg2EmppLuXp4HmxNDaw339x0BHRcHMjkyWBWrwaTleXYptHAmpKChptvBpEhRbdSiCa7HGnE2xubzaaqYCbRkaq2cy3eK3L2271GghjEJmZLdRcNMVaBrj7q5JSVlYHneURGRrpsj4yMRGZmpsfPFBUVedy/qKhIel/c5r5Pfn4+goODXbavW7cOAPD555/DX69H3x49EHH4MASNBoJGA019PUzR0TjetSvM27Y1fTC9eiHogQcQdvIkWJsNtbGxKO/fH8Lhw5c/ER2A/Px8b3fhitm3b5+3u9AqtjV3HXVQsrKykCU+8MiEGMEsDv7+/v6ora11cUCLolFXV4eAgACfnz7q9KLQ3mi1WlRXVwMA3nvvPWzbtg0ff/wxACAwMNDx9JGaCu0vv4D7/XcwDQ3ghw8Hd/vtuLp792bbNplM2M9xGDp7ttKHISunTp0Cx3Ho2bOnt7tyRWRkZCAlJQXGJlaEdUQuXLiA8vJyDBo0yNtduSL27t2LhIQEhIeHy9ZmRkaGVFXN2VIQHc3uq5AIIeB53mctBJFOLwrh4eHgOA7FbsnSiouLERUV5fEzUVFRze4v/iwuLka0U+BYcXExhgwZgqCgIABAUFAQBEFASEiI6xcEBICfOhX81KnSJubiqznEaQy1PcmI5rja+g1Amk5QC+K0h5r6LMJxnKz9ZlkWFovFZZrIz89P8iG4p9A2GAywWCyqPHdy0umPXqfTYdiwYUhPT5e2CYKA9PR0pKamevxMamqqy/4AsHnzZmn/hIQEREVFuexTU1OD3bt3u7QprnSQi6ZW8dTXA3/8wWH5ci3+7/+02L2bvVSQraEB3MaN0L3xBrTLljmWr3oqpqAwal0Vo0bU+KSrhKOZYRhJFJyL7TAM42JBiOIQEBBAl6TCBywFAFi4cCFmzZqF4cOHY+TIkVi2bBlMJhPmzJkDAJg5cya6deuG1157DQDw2GOPYcyYMXjrrbdw66234ssvv8S+ffukaSCGYfD3v/8dr7zyCnr16oWEhAQ8//zziImJwaRJk6TvlT3NxcUL2/kGqq8HPv5Yi337OHCcY2HStm0cxoyx4747q+H/0mJwu3Y5lq4SAnz7LWx33AHbggVQLCVqE/2mKI9az7NSq37MZrPLNJFojYgLCJx9CwEBASguLlalqMqJT4jCtGnTUFpaisWLF6OoqAhDhgzBxo0bJUdxXl6ey9PBNddcg88//xzPPfccnn32WfTq1QsbNmzAgAEDpH3+8Y9/wGQy4YEHHkBVVRVGjRqFjRs3wuAUZStnllTA8xPg7t0c9u3jkJgoSOU1a2qAP/7Q4KbSn9Frxw4I3btLkdJMZSW0GzaAv+YaCCNHyta3y/VbrYOVGlHjoKaUpWA2mxvVSuA4DhaLBQaDwWX6KDAwkFoK8BFRAID58+dj/vz5Ht/L8BA0NnXqVEx1mvN3h2EYvPTSS3jppZea3EdcEy0X4k3jnPP9yBEWWq1rveWgIOD8eYDJ+MORG8jJUUpCQ8GUloLbt6/dRAFo/gmWECAvj0F2tuNm7N1bQGwsoemMWoFaxVepnENiMKmzQ1n0Nej1epftYmI88RyqUVzlwGdEwRs0lfuotYgXqfONzzCNg5xFWN7mOVEcIe3qV2ju5hIE4PvvNdi0SYOLqaAQHAzcfLMdt91mp8LQCtQ4mCkV0Sw6ld0jm93zHDEMI60yU1uMh9z4tp2kMEpNHzmLwuDBAux2h2+Bs1uQePZ39N39KVIqN4FNHQ7GYnHUHRCprQV0OghDhjj+FoSmVUVGmnqCPXaMxQ8/aKDTEfTrJ6BfPwEaDcH332tw4gS9PK8Uaim4Ik7nuqfFFkXBfTsANDQ0yN4PNUEtBQVRwtEMuN74I0fyOHqURc7WIkw+9hTiq4+CYQj8/YFAQ3cI8fFgz54FtFrJOrDfeCOELl2ge/NNsAcPAkYj7OPGwT5x4qUoaxlp7mY/fJiFxQL07HnpmKKiCE6cYHDkCIv+/dt/pZSaUWvqZ6UsBaPRCLPZ7LH+ss1m85gDqb6+XtZ+qA0qCgoi5j6S64L3JApGIzBvng31e95AoPUA6rrHwi/UgECDxVGRLDkZ1vnzwe3bB6LXQxg9GnxSEvT//CeY/HyQLl0AkwnalSvBZmXB+vzzDgGRmaaeYE0mxmMZCZYFfPyBzaeQWxTE681oNKKysrLR4G8wGKQcSM51FwAqClQUFESJcpxA4wHWUHYBoXl7QHqGIzBED4AA0IFERzuEYdAg2O+9V9pf+847YPLzISQnS8tSickEbs8ecPv3g7/6atn6LPa7KVHo1UvAn39ysNkuaZHV6lhBm5iozqkQb0IthUvtAYCfW91u8Vr09/eXciC5WwqmZhJT+gJ00lZBlPApeBpgmbo6wGZrnEJbrwdsNsf7TrBHjoCEhLjGKfj7A3Y7mNOnZetvSxg+nEe/fgIyM1mcP8/g/HkGWVksBgwQMGwY3659oXgH99gbORCf+t1FQRQBo9HYpKXQ0NCgWt+MHFBLQUHkXn0EeH7qFmJjQcLDwZSWgjjdBExFBUhQEIRevVwbCQwEU1gIl1ZEh7PbTaRUn0WCg4GHHrJi61YN9u1ziNRNN/EYO9aOwEDZu9LpUaulAMibvkW83kRHM887HjDEa9HPzw88z0uBbKJYiP0wmUyNBMVXoKKgIDqdTlZHM9DEAOvnB9t990H39ttgzp4FAgMBkwkgBPbZs0EiIlx258eNA3v8OFBV5RiVCQGTlwfSpQv4ESNk7W9L6NIFuPNOO+64w/G34mNaZSX0b74Jzbp1YKxW2G+6CZannwZJSlL4iymeaGggOHQoArt3G2G3azBokIBRo+zo0qX1bYr3iO6i9Sz6CZyzpYpC4V6C09/fH3V1dYhwu298BSoKCiL39BHQ9FO3ffJkED8/aNetA5ufDyEhAfY77oB98uTG+44fDyY7G5qMDKCwEGAYkPBw2ObNA7lMplY5+9x4P9m/ujH19fAbPx5sdjaYi4OC5ptvoNm4EaatW0FUlsnVHbVZCjYbsHq1Fps2xSEmRgOtlsGJExocPszib3+ztloYnOMTgEt+AmefAuCwINzrKgQEBKDObcrVl6CioCByO5qBZgZYhgF/yy3gb74ZsFgc/oSmBge9HrbHHwc/fjzYU6dADAYIw4aBuNWHkLPPHQXtF1+Azcx0yUjL8DyIyQTdW2/B8uGHXuubXHSk8305jh9nsWsXh4iIevTs6RiU7XaCzEwWO3ZocPvtrbO03VNbOK8oIoRAo9G4JMZzz4Ekpr/3RagoKIhWq4UgCOB5HhpP6y5bgbNDrIkdXHNeNAXLQhgwAIJTPicl6SiOOy4jw2MYOMPz0GzZAotXeiUfHeU8t5SzZx0ZfQMCLtUx0GiAgACCY8dY3H5769p1j1aur693EUsxvbiYKlvcl2VZxMbGIj4+XoajUyd09ZGCiPOZ7ZE+2x2z2REtfPAgi4oK2b7eBUIcsQSXM4Y61JOrn1/T2WE7iWOxQ53vy6DROK4j90vaZmOg17de4JxXFImi4O5Mdk6Y5zx9JHddB7VBLQUF0V5ceC/3stTLicLx4yy++EKD8+dZ8DzQpQvBLbfYcdNNvGzz9tnZDH79VYPsbBY6HUFqqoC0tKZXDHWUJ1jb5MnQfvFFo+2EZWG7+24v9EheOsp5binJyTwCAxlUVBiQkOC4OGtqALsdGD689dHs7gN9Q0ODi5UtCqfZbIZer4dWq1WdP0YpfFcO2wHRUpBzBZJzkI0nyssZrF6txfnzLOLjBfTp48iNtH69BgcOyPPvPn2awYcf6rBzpyNTa10dg/XrNVi1SgtPh9qRbjT+xhthvVhHg2g0IBezzfLDhsH66KPe7JpsdKTzfTkSEwluvdUMnmdw/DiL48dZlJSwGDOGR0pK6+NUnH0KHMdJZTbFe8fdUnAutgOo6xzKDbUUFES0FNpz+ujQIRYFBQySkwXU1zPIz2dgtwMVFQy2beMwbFjbcwllZGhQUsKgXz9BsjxCQwkOHuRw8iSPgQMbf0eHeYJlGFiWLYP9jjug+fZbMGYz7GlpsE+apEh6j/ZGbU+7DAPceKMFZnMOgoMjYLMxSEwU0Lev4DH9SUtxL7UpPqC5Z0212+2w2+0uVoWvQ0VBQcQLsT2nj2prGTAMUFjI4OhRDiaT48Yzm4Fff+UwZ44NF0tIt5qsLAahoa71Dvz9Hb6FCxcYDBzYuM8dCoYBP3Ys+LFjvd0TRehw5/uyEERHN2DMGPki2N2f/g0GgxSpLGYGABwPblar1cXR7OvQM6AgYpUnJUpyNkVkJIHNBhw+7Mgn1LUrQXg4gVYLVFUxSE9v3XNAeTmwe7dj+aBOBzQ0uA48F5f8N+mr7TCWQidHjedZqQypoqXAMAz0ej0IIS5lPwVBgJ+fn4uloD5BlR9qKSiMEvmPmrvxBw3iERKiwcGDDCIjBTQ0ODKRBgYSxMUJ2LWLxV/+AlycSr8shABbt3LYsEGDsjLROefwI4SEMAgLI+B5IDeXRXQ0wYABjZ/2aDnO9kNt00eAMn32ZCmIOZZEa0AUhaqqKjp95AQVBYVRQhSai1Pw9wduucWOY8dYAA5/QmQkQa9eAnjesdRPEFouCjk5DL76yrEyo29fx/fm5zOormZQUMCguNgxXRUTI2DGDDvCwmQ4SEqboKJwafWR2LZOp3OxFJxTWpSVlXmst+CrUFFQEIZhpDlLOdu83EU7ZIiAgQMJNBoBISEERqPjif/ECRY33MBfkT/14EEONTVA//6XvrNHD4LaWoKUFB5DhwrQ6QiSk4Uml6PSG639UON5Vmr6yNlS0Ol0EATBZaoIAAICAqTEeOJPQH3CKidUFBSmvaePAMegff31dvzyiwYmkyMIqKaGQffujliCK6GmxnMRHJ3OEXg0atTlnYO+fIN5A7WdbyXm8t0tBTGjgHMVNsAhCqJA0OkjB1QUFEbu9NktEQWGAaZMsSM2lmD3bhY1NQyuv57HqFE8unW7sifJuDgBv/3GwW6HJA4870ivlJDQ8uWtanyCVSNqPM/t4VMAAI7jGkU2i6m1LRaLy6okX4aKgsIoUae5JTc+xwHXXMPjmmvatsxv+HAe27dzOHmSRUSEYxlqaSmDnj0FjBzZsrbpjda+qO18K+lTcJ5G4jjOpdoa4AhiY1kWVqsVWq1WCmpT2zmUE2orKYjo4JLTp3C5iGa5CQ0FHnrIhgkT7OA4R9qgG2+04+GHbZfSGvM8PIYyO6HGJ1g1osbzrKRPwXkaSaPRNJo+EhPjmc1muiT1ItRSUBhvTB/JTVQUwaxZdtx1l2PgNxov9qW8HNq1a8Ft3gzYbOCvvhq2mTNB3Cq90RutfVHb+b5SUWAKCsCUlYGEh4PExDTZprNPQRAESRQ0Go0kAM45kPz8/KhPAVQUFEd8ChGrPMkBz/OyttdSxBLQPA/AZILfokXgDh0CCQgAWBaaH38Ee+AAGt57D0JcnPQ5QRBACPFKn9uKmPpcLXS4c00ImNJSwGoFiYqCp1ULYl6iy/a5rg661auh2bULjMkE4u8Pe2oqrLNmAQEBHtt0DmLTaDQwmUwIDAxsFL0sWgpUFKgoKM6ZM2ewc+dO3N7axPBudJSbXpeeDvbIEfDdujkK+gBAWBjY3FxwX38N29//Lu3bUfoMAJpt22BYsQKazEzw8fEw338/bOPHN7m/twS4tYhr8TtCn9mCAui++gqaY8cAnofQvTuskybBPny4y34tvT4Ma9ZA+8sv4CMjHTXJa2qg+flnCAwDy4MPuuzrnABPFAedTudSgtN5+an44EaXT1NRkB1CCGprawE4Lrz4+HjcdNNNOHPmDPz9/dts2tfV1YHjOJSUlMjR3VbTZf9+6KxWWBkGcPKZaLRa8Lt3u/SvuroaPM97vc9BP/2E6OeekxL4a86fR8C2bShZuBCV993n8TNlZWVSDis1YLVaUVNT4/VzzZhMiHj3XZCcHDR07Qqi10Nz4gRw9iyqH34YFqcpxoaGBjQ0NDTbZ660FFEZGagPCgJvNDoSbRmN4IKCwPz+O8qvuw68U+3O2tpaGAwGl6pqHMeB4zhJhJzTXQCOHGWGlhSo6uRQUZCZ2tpaBAcHu2ybMmUKAODXX3+VasO2FqvVCovFgsrKyja101b0LItAQYDNanUp+8mZzWgwGFz619DQAJ7nvdpnxmpF4r/+5Xhi1ekA5mJkt82KLu+/j3NjxoD3EH1XU1MDrqXh3x0Am80Gm83m9esjaP9+sFlZqI2NBRGjJaOjYczNBbNlCyrDw6V9RcumoqKiyYcmY14e+JoaWCIjQSyX6uMxWi30lZUwnTuHBqepH5ZlER4ejurqaheHs3MOJOepIqPRCKvVCr9OUmipLVBRkJnAwECpvuuOHTtw33334ciRI2AYBoGBgW2yFAghSE9Px4ABA2AUvb1egtHpoPvjD+hNJsdcMcMAVVVgjEZw99yDIUOGSPuePn0aDQ0NGNBOpT89we7bB11NDaDXgwEHqw2AQEB4Fto6E+LeWoOQxY9AuOoqSeQ2b96Mfv36ef1cXwkd4VwDAJeVBU1gIALcHMGMxYIAsxmRTteHeF336dOn6UG5WzfovvkGgQwDEhFxqb3iYiAmBn1GjwbchIZhGFRVVUnWgZhhwGazeUyM5xyroDZnvZxQr4rMMAyDoKAgBAUFoaCgAL1790ZwcDCCgoLafKFZLBYQQqAX5/C9COnXD/ZHHwXR6cDk5oI5cwYwm2GfMgX8Lbe47Gu322WrUd1ayMXvJwK5KAgCdHwDtMQKhhCwO3aA/9sT4L75xqv9bCtyx8W0FhIS4vjF3U9gMoFER7tsErOYms3mphuMiAB//fVgysrAFBUBDQ1giorAlJeDv/56F0Fwxn1pquhXcF6dRAiBv7+/lALD16GWgoJkZ2ejZ8+esrUnlg7sKBcuf9ddEFJTwe7YAdhsEK66CqRfP5fpJMAhCm0RMqGqBqf+ewDndpeg1BYC9uphGHlbOJKSWu4QJIMGgcTFgZw5C4Fw0MMKhjgGLDunx+nAq5BYW4DwTz4BP2YM4PQ0qiY0Gk2HEAVh+HAI3buDyc4GiYsDNBowhYWAXg/h+usb7W8wGJoXBQD8jBkAy4L7/XewhYUggYGwT50K/p57Gu0rCoE4+IsDvkajAc/zHhPj2Wy2DnNveRMqCgqSk5Mjqxnf0NDQ4RxhJDYW/LRpze5jt9tb7UthLlzA+QXvgRzKQRwIEjig+HA3rN/zCP7y/5JdEvU1C8vC+t57wB13Q2uuByfYQMCAsCwuRA0Bw3Io10cjvDwH7MGDEG66qVX99TYdRRTQpQvs8+dDs2oVmLNnAbsdJCIC/B13QBgxotHuRqPxsqIAoxH8/feDv+MOMOXlIF26OKIrm8A5K6ogCNBqtdL5cXZAA5cS44mf82WoKCgEIQQ5OTmYOHGibG2azeYOJwotwW63S6VJrwhCUP/JV7AdPYXSLn1hDNICREBs2SmMOLoam354Ff36se6GSZMIo0bhz6XbUf/WCtxYsBZ2jREl4X1h0QeBrwb8jACcgs8vLlJSFU2KAiFgDh0Cu3Mn2OJiCLGxEFJTQfr3V6wvpF8/2F59FcypU4DNBpKQALgtwhBpiaUgERoK0owYAJD8As7pLkRLAUCjdBf+/v4dZtm0t6GioBCEEJw+fRpJSUmytWk2m1Xl9BRptU+hrAz2/cdRxHWDIfCiqDAsKkPiEFuWhz1HclBV1bu5h8VGJN8ahzdPvAHmF2Bk5SbUs/5oqAX0eoKufAEQHo7CmKuQ/jmH774bgN9+88OoUSzGjuXd46M6JE2JAvvHH+DWr3eoXGAg2P37wZ44AX7GDAjDhinXIa22RcJjMBhQU1Mj61eLg7x7rQRP6S7EvEdyZh9QK3QCTSGKiopQW1sru09BrZaCiygIApgzZ8BkZjrSrTYBY7eDBQ/CcXCuKySwGoC3QwsrrjSEIDwcePBBO/Im3I8iYwK6lOWgh+00ktlM6I0syqbOw7tfxOD77zk0NHAoKWHw2WccVqzQNNfVDoMoCi5TILW14LZsAYxGkN69QaKjQfr2Bex2sFu2ONb8e5krshRaiLulIP6t1WobWQpiDiSLGv7JCkMtBYU4deoUYmJiZF333BlEgcnKguY//wF76hTA8yAxMbDfdx+EsWMbfY507Qr//j0QczoTOZVBCA1jwLBAQHUBShCJ2LEJaI2rIjGRIP71RJRMfxfajE0ILc4C0zUc1uuvx+bc4cjJYdC/P8HZs2b06CHAZiM4cIDF0aMshg9vebpwb6DRaKS5dDG+gikqAsrLQRITXfYlkZGOFTxlZY1WBMlCRQXY/fvB1NSAREdDGDoUaOL6NRgMaGhokD05niiOzuKg0+lgsVikcyVONYnZUn19SSoVBYXIyclBz549Zb24lBCFkhLgzz85HD3KwmgkGDlSwDXXCLjSxUKEAPX1jvxI7u4DSRTKyqB99VUweXmORGYaDZjz56H5979hCwkBcVq7DgDgODB33Yno7A/AHDuOyvOB0PP1qNcYUTzmDtw0pfWBgCwLRF0VBVw1C86zyMd/ZBAY6Fqu1M/PkQQ2L4+BW4aGDocovna7/VLQnfhPsVhc/zlWq2N6R4GIbebYMWg++ADshQsAAMKyEPr3h/2xx4CuXRvtL0Yf22w22SLInXMfOVsKOp0OJpMJWq3WJYiNWgoOqCgoxKlTp5Do9mTWFmw2G+x2u6yiUFwMvPeeFtnZDIKCALudwZEjLE6f5jFnDt/iOs7HjjHYtInD2bMMjEbgmmsE3HQTDz8/xzpxMUMlt20bmHPnQHr3lkZdkpgIJisL3KZNsLuLAgAyZAj8X3sKMT9lwLj/LGr8o6EZdS1unzwYegWMpoAAwGZz9S6LDucOEB5yWcT6AM7LgEn37iCJiWCPH4fQu7ckEGxBAfhRowCn9BBXAiEOoayoAEJCgPh4R70NmM3QfPIJmMJCCH36OP7XZjPYw4eh+fpr2B95pFFbGo1GmuuXM62Ie5yCIAjQ6/WorKyU4hTccyD5OlQUZMI55xEAnD17Ftdddx32798PAG3OeySatWfOnGlzX0V++SUEBw+GomfPBkkA6upY/PKLFtHRxUhKuvwNkpNjwOefR6CujkNoqB1lZQz+7/84HDpUh2nTykAuxgLk5uYi4tgxhJnNMNfVubShBWA9fBjns7Ka/qIJox0vAAyAs+dOteaQL0tkpD+qqiJw+rQNhAAVFZUoKdGDZQE/vyJkZXl//r0lnD592iU2RHvVVQjLz4du/34whICwLMzx8ajo0wd8c+e9CerqWPzwQxhOnvRDfT0Ho5FHnz4NmDixAl3zjyH6+HFYu3UDcXIeawwGID0d50eOhOAhpQjDMDh9+rRsU66EEDQ0NDSyGAwGg+R3ca+hYLfbYbPZOkSAqLegoiATnnIerV+/Xvr9jz/+QEAblq/wPC97VPCpU0YEBrpaBAEBAoqKGFy4oLusKBAC7NwZiNpaDomJZmlpaEAAj2PH/HH11bXo3t0hAAzDwB4aCgIAguCYv7kI29AAa1SUrMfWWgYPNiE/X4d9+4JQXh4Eg8GA0FABN91UiZgYdQiCp0JMtshIlMyYAUNuLrjaWvAhITAnJLR66ujXX0Oxd28goqOtiI62wmRiceBAADQagvuTrQ5/kdv1SrRasA0NYG02ePLMcBwn65JQhmEQGRmJkJAQ5OXluTiaRYFwnj4S3zOZTG26V9UOFQWZcM55JAgCYmJi8NNPPyE5OVl6vy2Wwvnz50EIQZ8+fWTpLwDExGhgsbAID780gBACFBUxiIszok+fJpyPlZVgMzNh41nYynsgPj4AERGXbqLwcMBkYqDX+yE2thJlZWWOfoeFQbdzJ4wXLoB07+7wGRQVgUREQHPvvQiR8djaQnIycOYMg6+/zsKQIf0xeLAG0dHqSZRWVVWFqKgoREZGNn7TwxTdlVJWBuTn69CrF0FEhMOvExEBBAUBhYUB0E8eC//Yn+FvtV5yYBMCprgYwsCB6JmS4vJQICJO5fTu3bvNfRThed4lTkH8qdVqpXQX4n1JCIHBYIDJZJLt+9UIFQWZEHMeAUBeXh7MZjMGDRokW1yBEk7mlBQBx4+zqKtzzKUTAuTnMwgNhUuksGMaBWBAEL5nEzSffwamtBQaMJhVEoNN3eeiPnKMtL/N5rjn/f3dlqNGRMD2zDPQfPQR2DNnHE+TUVGwz5jhWJkiEzwPZGYyKChg4O8PDBgg4OK/pkWwLJCURDBsWAlGjeoNo1Fdt4nc1f7cqa1lUF8PdOvmut3f3yEYVbpIRN96K7gvvwSTnQ34+YGprgYJDQV/550eBQFQJlbBOYjN2bcg5ohythTExHh1dXV09ZEvUlFRgUcffRQ//PADWJbF5MmT8c477zRrNn788cf4/PPPceDAAdTW1qKyshIhYuKvi8THx+PcuXMAgPCLSbpefPFFLFq0qE39bWhoQKCHedi2MHq0gJwcATt3stJS9ZAQYPJkO7p3d4hCbi6D777jcOoUi9iKw5iV/QkiuwowXMyH3732PG448T5+joiBPaEXbDbg9GkGsbEE/foJMJlco5lJ//6wvfMOmJwcRzWupKRL9T1loK4OWLVKg/37WanMQ2wswezZdiQnqyw8uZUoneoiPJwgJISgooJBt26XzmllJRAURBARQcBPngwSGQk2IwNMSQmE4cPBp6U1G8hmMBgUqQPhnCpb9CFoNBpYrVYXnwIhBH5+fi6+QV/EZ0VhxowZKCwsxObNm2Gz2TBnzhw88MAD+Pzzz5v8TH19PSZMmIAJEybgmWeeaXK/2267DeXl5fjvf/8LALIM5mazGREyJ2kzGIB58+xITWVw7hwLnY6gf3+CHj0cN3pxMfDRRxqcP88gOppgQNlWmEtqcUjbH0NsAgxGIGRoPGK3nkC33J34paE3WBbo0cNR0zkgAKiu9hDNzHEgck0V1dU5nkIjIwGNBps2cdi+nUVCAkFAgGMpaU4O8OmnGjz3nA2+kC5faVEIDASuv17AunUceJ5BSAhBdTWDmhpg8mT+YoQ5C+G66yBcd12L2xVjFeREtA7cVyFpNBrU19e7rD4SBAH+/v4oKiqStQ9qwydF4eTJk9i4cSP27t2L4RcXnr/33nu45ZZbsHTpUsQ0UQz87xdLTGZkZDTbfm1tLZKTkxElo/NUqRQXGg0wZAjBkCGNHXx79nDIy3MEcrEs0JUphS5Ij5paoKSEQY84Ak7DILIbh4kjipFwkx1GI5CcLEiDr2Jps6uroX35ZXD/+x8YqxWka1eYH34UO07OQ1jYpZK9Gg2QmOiwXjIzWQwd2rGDz+TgikWB58FkZjqSzIWEgCQnNw42ceOWW3jodAS//86hqopBUBDBbbcJGD++9Y5ig8EgPb3Lna3UPbKZ4zjYbDbJ5wA4RCEkJARXX321rN+tNnxSFHbu3ImQkBBJEAAgLS0NLMti9+7duOOOO9rU/q5du7Bnzx7s27cPd911Fx599NE2DYyCIMBisbR7NHNeHgO9/tIUcHloEuLP/wmNRkBd3cU5V54HY+cRNCgO114rXEpOZ7WCPXYMhhMnEBgUBAwc2ORc8hVDCHTz5oHbuhVEowHRaMAUFMCw+FmkDOCwc8Bcl921WoefwVeWoGs0mpY/cVdUQPPJJ2CPHnU4gzQaCH37wv7XvwKeHNXSdwATJggYO1ZATY3DemjrM4ter5diBeSugOZuKXAcB0KItNRbXK0l+ht8GZ8UhaKiInR1i6rUaDQICwtrs+n46KOP4t1338X8+fOh1+uxZMkSFBUV4Y033mh1m2JFqPauFdylC4HV6nA0MwxwOmEcep5NR7fCk/DvGgmUCTDlFCOXTcSnm6+HMUuDMWMEXNsjD7r33wWTlYUu1dUI0+uhOXIE9kcfbTJL5pXA7tkDbts2EKNRiigjBgOY6mrcemoZfoyYjS5dOEmgyssdK2NiY33Dp6DVals8L86tWwd2715HCgx/f6ChAeyhQ9D897+wL1zYqDaGOwZDk5krrhiGYaQcSHKJghij0NIcSLSeQidLiPf000+7lNPz9MrMzFS0D4899hhKSkowbtw4/PWvf8Wrr76K5cuXtyl83lvFdYYPFxASApw9y8BuB8qN3fFpj2dxpvsodPG3oKLIhs3CDVgR+f9Qo49ATg6LT1awyH/qI7DHjoF0746GxETwXbqA27YNmmb8NVcCc+KE49HfTSSJXo9Qawl66Ipw4gSDoiLH0tKSEgajR/OS87yz0+Lpo9JScIcOOVKOiEmkjEaQuDiwJ06AOX9e2Y56QInEeMAlS8HZ4azT6SRRcLYUfJ1OZSk88cQTmD17drP7JCYmIioqqtEqB7vdjoqKijb7Ac6fPw+r1SqluBgxYgTsdjvOnTvX6vXX3iquk5REcN99dnzzDYfsbMcTY3RCHwQueh5Cj1K886YOudVdkHgxEWxkJIFwLBOWg1mwXNsDWqMRgskEBAaCaDRgd+4Epk93LHFqC2LpRZ53zGOI2O1gjXrc96g/tuwSkJPDIDZWwKhRAsaMES730NtpaKkoMPX1jnxI7rnHjUbHKgMvrNdXOluq89JUMTGemANJ3JcmxOtEREREtGiFTmpqKqqqqrB//34Mu5hL/rfffoMgCEhJSWlTH7Kzs9GjRw9pqufIkSNgWbZNK4e8mR31mmsEDBok4PRpx02SlETg7w+cPx+Bs7VadI10ffqODqwDLBbU8n4Iw8UnNJYFMRrBVFaCMZku1e9tJXxaGkhMDJiCApCAAEduHYsFjN0O+/Tp6DPMH32G2cHzDjeGr93fLRUF0rUrSJcuYEpLHSUzL8KUloKEhiqTOfUyKGUpiGLgbCno9XrU1NRAr9fT6SMnOpUotJTk5GRMmDAB8+bNw/Lly2Gz2TB//nzcfffd0sqjCxcu4IYbbsDatWsxcuRIAA5fRFFREXJycgAAR48eRUBAAEJDQxEWFoY9e/bg/fffR//+/bF161YcPnwYS5cuxaRJk2C1WlFcXNyq/lZWVkKj0bT683IgGlB1dY5XbS0Lng9DZaUAOCUtqOe7YLgmCJFlF1DvHw673Q67zQZrcTH4iAiU87zjKbSN6N58ExELF0Jz0QdEOA4NKSkoffBBkFa2X1jIYf9+Pc6f16JLFx7+/oEoLS2DXt++vpy20tDQ0OLrzZiSgoD164Fjx8AHB4OtrQVjs8H0l7+g3mKR5X91JVitVlRXV8t6rYu1mt0tBoPBgLKyMkksfN1CEPFJUQCAzz77DPPnz8cNN9wgBa+9++670vs2mw1ZWVmor6+Xti1fvhwvvvii9Pd1zazB/umnnwAAM2fOxD333IOzZ8+2uq9imt+OlMGRECAy0oIDB0LRvXs99HoBNhuD8/lhGJwwAn2qvoHVUgH24sqgBpbFhRtvREVhocf2eB4oL9eDYYCwMMvlM7QGBiLn/fcRtm8ftJWVMCUmoiY52RF6XVFxxceTl2fEhg3dUVbGQq+3wmplodEkwWIpxdCh8kbZtgZNbS0CMzPBmc0wR0WhrmfPJldzCYIAnudbds3FxiI4LQ2h+/ZBV1kJW1AQqoYNQ2VSEtCGa7a12O12mM3mNt0vnggNDZWmiUQREBPjOUc8UwCG+HqV6jbinh11ypQpuPbaa/Hggw8CaHvOIwDYsWMHevfuLUVIdxRKS4FPPtHgxAkWPO+YpklKEjBvthk9Dv8EdtMmlJ4+jeC+fcFNnAjh+us9zuWcPMng22855OY6BrmEBAGTJ/Po06d9Lk1CgLfe0uDAARb9+hGpizt2FCIpKQKvvEIgczD5FcEeOADNe++BKSiQcnjzqamO2gQeqgxZrVZs3boV48aNu1RT4XIIAtDQ4FhK1NLPKEBdXR12796NcePGyTZIi5YCx3FIT09Hamoqjh49iri4OBw9ehRdu3ZFUlKS9L0sy9IsqZTW45zziBCCc+fO4cEHH5S2tRVCSIetuBYRASxcaMeJEwzKyhiEhDjyDBkMGvDxE2G/+WYc+uUXjBw3Dn5NjKoFBQw+/liD0tJLKROOH2dRVsbgySdtaI9p7fJy4PRpFjExxEWzwsMbUFLC4swZAYMHe+nZqaYGmvffB4qKICQlORzrtbXgfvsNpEcP8Pfe2+gjHgvtXA4xWZWXUbLYDuAar8BxnJQYzz2Fti/jc16ViooKzJgxA0FBQQgJCcHcuXNR55bf352PP/4YY8eORVBQEBiGQVVVlcd277nnHpw6dQqzZ8/Gww8/fNl2W4LdbgfP8x1SFADHqtAhQwjS0gQMHy64rFkXOA42Pz9omnnq2rOHRWEhg759CYKCHPEEffsSFBQw2Lu3fZ5YRWe04BbsLMZneNP3yB44AObCBUccgbjSKjAQJCgI3G+/OfJ4uH/GqdBOUxQVAdu3s9i5k0V5uVK9v3I0Go1iU6ViVlT3HEhibQXqZHbgc2dhxowZOH78ODZv3owff/wRf/zxBx544IFmPyPmPHr22WebbffQoUNgWRbr1q3D9u3bMX/+/Db3t6GhQapKpTbEQam5vhcUOOLPnB/SWNYhNk24H2QnNBTo109AQQEDMZ0/IUBxsT9iYgQkJXlxhrWhwaFW7k/8BoPjvSayoTa1AokQ4OefWbz8sg7vv6/Be+9p8OKLWvzxR8cZCpRclur8u5gDyT1bqq9bDB3nSmgHxJxH//d//4eUlBSMGjUK7733Hr788ksUFBQ0+bm///3vePrpp5vMiSK2+9BDDyE+Ph7XXXcdli5diq+//hqFbRzZlMp51B7Y7XbpqbUpIiMdS+WdPVuEOMoHeyjlqwgMA0yaxKNnT4LMTAYnTjA4doyBn58NU6ZY5UziesWQhATHtI6zdUoImLIyR2nNJizIpkThyBEGX3/tEOl+/QiSkwnMZgZffKHBmTMdYzBUclkqAJe6CmKacepovoRPicLlch61tV0ASEpKAsMwksNq7969bepzR/UntISWJMMbPlxAeDhBdrbjwbe+HsjOBrp2JRg+vP2S13XvTrBokQ3332/HzTfzuPdeHnfddcpjosD2hPTpA/6668AWFYE5dw5McTHYzExHbYI77mgyCKMpUdi3j4XFAsTEOJIcilltKyuBQ4c6xnCglKUgVnVzDmJjWbZRYjxfR31zEm1AqZxHYrvZ2dno2bOn1G5oaGib11t3dlGIiyOYO9eO//1Pg/x8xwDXowfB5Mn2ds9VFBoKpKVdEqLNmzvAEmCGgf2RR0Di4sBt3gzU1oIfPRr8X/4CMnhwkx9rqtBOTQ3jnh0EDOOYneooBceUKLYDwGX6SLQUOI6DIAiwWq1UFC7SKUTh6aefvmzCuZMnTyrej5ycHNx4442ytmk2m2VbydTetDRt9lVXEfTrZ0NenkMU4uJIo4HLpzEYwE+e7KhaZrdfNq010LSl0LMnwa5djrgQ0U1hszncFh0lYaDBYFAkUNM5atl5ukij0cBsNtPpo4t0ClHwds4jsV1BEPDwww9L7VZWVnquk3sFmM3mRtaNWrDZbC12kOv1QK9eHWNQ6rAwTIsEAWhaFK6+msfOnSyOH2fQtSsBIQxKS4H+/QUMG9Yxak0oNX3knN/IPTFeQ0ODS2I8X6ZTiIK3cx6J7dbW1krTRxkZGRAEASNGjGh1u4D3kuHJgWIFdiiXpSlR6NoVmD/fjk2bWBw+zIJhCG6/3VEcx5sBes4oVWzHvcqaKAJ6vR4Wi4WuPrqIT92xcuY8CgwMRI8ePRAWFobk5GSMHj0a27ZtQ2lpKYqLi/HEE09gypQpiG5D9JU410lFgXKlNFdop1s3gvvv52E289Ly346EUsV2nPMfOSfIMxgMqKur8+koZmd87o6VM+fRhx9+iBkzZgBw5DgqLCzELbfcApZlMWbMGMybNw8HDx5sdV/F1RLt4Q9Rgrq6OjAM06Zz4G2OHz+uSgdkQ0MDbDabas89wzA4duyYrFXQxCXS7r4FvV6P8vJy1S79lhua+6iV1NTUILiZKmL79u1DgFgouJWYTCYUFRVJU1Jqo6CgADqdrsPlbGopmZmZ6NmzpyrLM1ZXV6OqqgpxTimx1cS5c+cQEhLS7D12pYiZUSMiIrBlyxaMGzcO+/fvR0xMDE6ePImuXbti8ODB0Gq1qvyfy4XPWQpyERgYiOrqaunvxx9/HBqNRrIo5EiEV1BQgLq6OsTGxrapHW9RXl6OsLAw1fY/MzMTMTExqpy+0+v1qr52qqurYTQaZe2/OG3kbCmI00fOmVJ93aegPru4lbQm55HZbMbf/vY3dOnSBQEBAZg8ebK0VE5MhBccHIzg4GCsXLkSH3/8MaKjo7Fp0yZZLiw1O5kB6lPwJi0uydlBUTKq2X36iGVZKTEexYdEoTU5jx5//HH88MMPWL9+PbZu3YqCggLceeedjfZbuXIlYmNjsXbtWpw+fRq33367LH1Wc+AaQEXBm1BRaIxoBXhamkpF4RI+cceKuYn27t0rpbh47733cMstt2Dp0qXSyiNnqqur8cknn+Dzzz/HuHHjAACrVq1CcnIydu3a5ZIHyd/fHxcuXMDw4cPbXOPZGbPZLOucantDRcF7OGf/VON0iJKWAs/zLgLhni3V1/EJS6E1OY/2798Pm82GtLQ0aVvfvn3Ro0cP7Ny502XfRx99FIIg4N5778WaNWtku7DUnAwPoKLgTTQajctUidoQRUHuQdpZCAA0ypZK8RFLoTU5j4qKiqDT6aREdyKRkZEun3nppZeg0WiwYsUKTJo0CY8//jhMJhMeeeSRNvW5IxfXaQmEECoKXqRVhXY6EEajUfZiOyKegtiayhXli6jaUnj66aclM7CpV2ZmpqJ9eP7556HRaNC/f3888cQTePzxx7Fs2bI2t2uz2aSVEWpEEAQQQqgoeImWFNrpyIhV0ZTKlupsKTAMIyXGE2s2+zKqvmOVzHkUFRUFq9WKqqoqF2uhuLi40WdycnKQmJgIABgxYgRef/11WCyWNkVINjQ0QKvVqvIpD4D01EVFwXuofUpEnEKSOyGkc/oM5985joPJZIJ/ByhL6k1UfccqmfNo2LBh0Gq1SE9Px+TJkwEAWVlZyMvLQ2pqqsu+2dnZuOOOOwAAR44cQWhoaJtD5tU8dQRcmrZQYzRwZ6GziILcODvfnVNf6HQ6l0wGvopP3LHOOY/27Nkjlcp0z3nUt29f7NmzBwAQHByMuXPnYuHChfj999+xf/9+zJkzB6mpqdLKox9++AErVqzAyZMn4efnhxUrVuDNN9/EQw891OY+Uyczpa10BlFoKn9Ta3EuxSkGszlnSzV1lKISXsRn7trW5Dz697//Le1rsVgwfvx4fPjhh9L7Wq0W77//PoqKirBgwQL07NkTr7/+OubMmdPm/nYGS4GKgndRu/PUYDC4ZA2QC3H1kXtks16vp6IAmvuoVRBCUFtbC8CRMO21117DggULwDAM/Pz8ZHFUVVVVQavVqnZ+02w2o76+HmFhYd7uSqspLi5GeHi4av06neEaMplM6NKli+zt8jyPq6++Glu2bMENN9yAw4cPw2g0orKyEmPHjlXt/1wO6KNcK6itrW0UVPbDDz8AAHbv3t3mRHiA44YODAyUpS1vQAiBzWZTbdU4wCEKgYGBqrV4GhoaoNFoVPs/0Ol0qKurk73/4n3lXLNZXOlXX1/v8wFs6rzavYxzMry3334be/bswcqVK6X35LAUzp49i9jYWNVGNJ89exYMwyA+Pt7bXWkVhBBkZ2eje/fuqp3Gs1gsIISo9n9gsVhw/vx5xMbGyvrkLvoSRFEQ/QwGgwFhYWHgeV61DwJy0OkczR988AHi4+NhMBiQkpIiOY6bYv369ejbty8MBgMGDhyIn3/+2eV9QggWL16M6OhoGI1GpKWlIScnB0FBQQgKCsL58+fRt29f6W85BIHnedhsNupoprQJtTuadTodGIaBxWKRvW3naG/nHEhDhw716bTZQCcTha+++goLFy7EkiVLcODAAQwePBjjx49vFKMgsmPHDkyfPh1z587FwYMHMWnSJEyaNAnHjh2T9vnXv/6Fd999F8uXL8fu3bvh7++P8ePHS0vlcnJykJSUJOtxmM1mKUmXWqGi4H20Wq2qRYFhGMWWpQKXYhScRYHSyUTh7bffxrx58zBnzhz069cPy5cvh5+fnzS1484777yDCRMm4Mknn0RycjJefvllDB06FO+//z4Ax9PEsmXL8Nxzz2HixIkYNGgQ1q5di4KCAmzYsAGEEOTk5MheBEdceaTmyEoqCt5H7ZYCoHy2VPd4BUonEgWr1Yr9+/e7JLBjWRZpaWmNEtiJ7Ny502V/ABg/fry0f25uLoqKilz2CQ4ORkpKCnbu3AmTyYSCggJFLAW1zmOL2Gw2KgpeprOIgtyxCsClbKmeIpt9nU5zFsrKysDzPCIjI122uyewc6aoqKjZ/cWfTe1z6tQpBAQENHq/rai9uA7gsBTUPP3VGegsoqDE9JH7lBEVhUvQs9AGsrOzkZiYKLvZ2RksBTp95H2oKDQPnT7yTKcRBTHISCyXKeIpgZ1IVFRUs/uLP5vaR/QnUFFoDBUF79MZCscYjUZFLQXx3nW2FHxdHDqNKOh0OgwbNgzp6enSNkEQkJ6e3iiBnUhqaqrL/gCwefNmaf+EhARERUW57FNTU4Pdu3cjNTUV2dnZsvsTAPXnPQKoKHQE1F5oB1Cu2A7QdLZUX6dTnYWFCxdixYoVWLNmDU6ePImHH34YJpNJykU0c+ZMPPPMM9L+jz32GDZu3Ii33noLmZmZeOGFF7Bv3z7Mnz8fgOOJ4e9//zteeeUVfP/99zh69ChmzpyJmJgYTJo0SZGVR2ovrgPQAjsdBedCO2rFYDBIxXbkxDkxHkCnj5zpVHfttGnTUFpaisWLF6OoqAhDhgzBxo0bJUdwXl6ey9PANddcg88//xzPPfccnn32WfTq1QsbNmzAgAEDpH3+8Y9/wGQy4YEHHkBVVRVGjRqFjRs3Qq/XKxKjYLVaQQhpc+ptbyJGilJR8C7OhXbUej05F9uRuwKbOH0kWlPUUnDQ6e7a+fPnS0/67mRkZDTaNnXqVEydOrXJ9hiGwUsvvYSXXnrJJRFefn4+7HY7goKCcOHCBQQEBMjypFFbWwuNRqPqbI1iBGp9fb1qn77E6Yra2lpYrVYv96b1sCyL6upqSajViFarRXl5ueztiten+L9W67UqNzRL6hVQU1PTZC6i9evXw8/Pr83fIQgCBEFQ9VO2OH2k9iWpNputUxyDRqNR9YBnt9slq0duunbtin79+mHz5s0YO3YsdDqd6gNH24p6Rx4v4JwIb926dXj//fexceNG6T25EuFVV1dj8ODBbW7LW1RVVeHIkSO47rrrvN2VVkMIwZYtW3D11Ver2r+ze/duxMfHyx5L055kZmaCYRj06dNH1nZFB7xztlRfFgORTjOJJncivNmzZ0vh8OLr5ptvlhLfFRQUoHfv3rImwgM6x8ojGs3ccaCxCk3jHKMAgC5JvUinEAUlEuEBwIQJE1BYWCi9vvjiC+m97Oxs2VceATRGgSIvaq++BigXqwCgUQptSgcWhbVr16JLly6N0uZOmjQJ9913n8s2uRPhiej1ekRFRUmv0NBQ6T0llqMCnUcU1D4X31mglkLTOAeuibMBlA4sClOnTgXP8/j++++lbSUlJfjpp59w//33S9uUSIQnkpGRga5du6JPnz54+OGHpRUQYnZUJQLXOkveI2opdAw6iyhYrVbFVlA5xyhQYejAomA0GnHPPfdg1apV0rb//ve/6NGjB8aOHSttUyIRHuCYOlq7di3S09PxxhtvYOvWrbj55pvB8zyqqqpQVlYmuyjY7XbY7XYqChTZ6AyiIBbbUWoKyTlbKqWDrz6aN28eRowYgQsXLqBbt25YvXq15ABWmrvvvlv6feDAgRg0aBB69uyJjIwM+Pv7IywszGU6SQ46Q3EdgIpCR0Kr1UqxNWrFudiOv7+/7G1TUXClQ9+5V111FQYPHoy1a9fipptuwvHjx/HTTz+57KNEIjxPJCYmIjw8HDk5OfDz81MsEZ7RaFS9CdsZrJ3OQmewFABls6XS6SNXOrw8/vWvf8Xq1auxatUqpKWlITY21uV9JRLheSI/Px/l5eWIjo6mK48uA7UUOg5UFJqHluJsTIc/E/fccw/y8/OxYsUKFwezM3Inwqurq8OTTz6JXbt24ezZs0hPT8fEiRORlJSE8ePH05VHl4GKQseBisLlcU6hTVGBKAQHB2Py5MkICAjApEmTPO4zbdo0LF26FIsXL8aQIUNw6NChRonwCgsLpf3FRHgff/wxBg8ejK+//tolER7HcThy5Aj+8pe/oHfv3pg7dy6GDRuGP//8U0qER0WhaagodByoKDSPe7ZUSgf3KYhcuHABM2bMaDbTo5yJ8IxGIzZt2uTxPaWXo4aFhcnebntDRaHj4FxoR81Pw0oGsFFLwZUOfedWVlYiIyMDGRkZ+PDDD73SB+fMqIBjCWxAQAAMBgNyc3Nly44KACaTCRaLBWVlZbK05y2sVitqa2tVnZlTTH1QUVEhe8rm9sRms4EQgtLSUlU/DZvNZjQ0NKC0tFT2AbympgYsy6q6Qp2cdOgsqfHx8aisrMTzzz+PRYsWeaUPzWVGBYDvvvtOlmVyhBCYTCb4+fmp+ualx9Gx6GzH4e/vL7soEEIQHh6O3r17Q6vVqn5JeFvp0JbC2bNnvd0Fl8yoAPDZZ59h5cqV+OGHH6T35bhIzWYz/vzzT6Smpqr65rXZbMjIyEBKSoqqp5DELKnDhg1TvZ8nPT0dQ4YMkX2Nf3uTkZGB/v37N/uQ1hrUXK5UCdQ7+uDKMqMeP34ckydPRnx8PBiGwbJly1rU5t69e6VMqEFBQcjPz0efPn0UyY6q1+tVLQjApdKPHMd5uScUEepsbh7qT3BFtSPQlWZGra+vR2JiIl5//fUmg9Ra0qZSK486Q84j4JKTmd5oHQcqCpeHEEJ9ChdRrShcaWbUESNG4M0338Tdd9/d5Cqmy7Uprjyiy1Gbhq486nhQUWge97opvo4qRaE1mVHlaJMQgtOnTyuyHLUzFNcBqCh0RDqLKChdV4FaCg5UKQqtyYwqR5slJSWorq6mlkIzUFHoeHQWUVBy+ohaCJdQpSh4i1OnTiEqKgoBAQGyt01FgaIUVBQoV4IqRaE1mVHlaFNMhKfEUwUVBYpSdCZRULLYDsWBKkWhNZlR5WgzOzsbiYmJbeu8B6qqqvDLL7+oOnJWZN++fcjMzPR2N9qMIAjYvHkzTCaTt7vSZs6cOYMdO3Z4uxttRqfTYevWrcjPz5e9bTp9dAnVPtItXLgQs2bNwvDhwzFy5EgsW7asUWbUbt264bXXXgPgcCSfOHFC+v3ChQs4dOgQAgICJMfx5drMyclB7969UVFRIeuxHD58GCtXrsQ//vEP1Q9CGzZsQHBwMG644QZvd6VN2O12fPDBB5gxY4bqB4ydO3di9+7dmDhxore70ma++uorDBgwAIGBgYq07+fnh9DQUNX/z9sEUTHvvfce6dGjB9HpdGTkyJFk165d0ntjxowhs2bNkv7Ozc0lABq9xowZ0+I233vvPY9t0Bd90VfneVVXVys9dHVoOnTuo44GcUuOJxcrVqzAr7/+ivXr18vednszefJk3HrrrU3WvlALPM8jLCwMmZmZiI6O9nZ32sT333+Pt956C1u3bvV2V9rMI488gtjYWJf6KHIjV+oatUJFoQNQX1+PmpqaVjvJOxIlJSUwGAwICgrydlfaBCEEeXl56Natm+od5yaTCTU1NaoXN8BxfRmNRsWmjyhUFCgUCoXihCpXH1EoFApFGVQpCnJnR33hhRca5T/p27evgkdAoVAoHRPViYIS2VEBoH///igsLJRe27ZtU+oQKBQKpcOiOlFQIjsq4Ij6jIqKkl7h4eFKHQKFQqF0WFQlCkpkRxXJzs5GTEwMEhMTMWPGDOTl5bW1uxQKhaI6VCUKSmRHBYCUlBSsXr0aGzduxEcffYTc3FyMHj1akZgECoVC6cioewG2TNx8883S74MGDUJKSgri4uKwbt06zJ0714s9o1AolPZFVZaCEtlRPRESEoLevXsjJydHtjYpFApFDahKFJTIjuqJuro6nD59ulNEgFIoFMqVoLrpIyWyoy5atAi333474uLiUFBQgCVLloDjOEyfPt07B0mhUCheQnWiMG3aNJSWlmLx4sUoKirCkCFDsHHjRsn5nJeXB5a9ZAAVFBTgqquukv5eunQpli5dijFjxiAjIwMAkJ+fj+nTp6O8vBwREREYNWoUdu3ahYiIiHY9NgqFQvE2NPcRhUKhUCRU5VOgUCgUirJQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFCoVCoUhQUaBQKBSKBBUFBbiScqErVqzA6NGjERoaitDQUKSlpTXanxCCxYsXIzo6GkajEWlpacjOzlb6MAB0rtKnch/LlbYpJ1f6vevXr0ffvn1hMBgwcOBA/Pzzzy7vz549u9H/ZcKECUoegoTcx+LN+6VTQCiy8uWXXxKdTkdWrlxJjh8/TubNm0dCQkJIcXGxx/3vuece8sEHH5CDBw+SkydPktmzZ5Pg4GCSn58v7fP666+T4OBgsmHDBnL48GHyl7/8hSQkJJCGhoYOdSx79uwhixYtIl988QWJiooi//73vxvts2TJEtK/f39SWFgovUpLSxU9DkKUOZYrbdNbx7J9+3bCcRz517/+RU6cOEGee+45otVqydGjR6V9Zs2aRSZMmODyf6moqFD0OJQ6Fm/dL50FKgoyM3LkSPK3v/1N+pvneRITE0Nee+21Fn3ebreTwMBAsmbNGkIIIYIgkKioKPLmm29K+1RVVRG9Xk+++OILeTvvRluOJS4urklRGDx4sIy9bBlKHEtb/9et5Uq/96677iK33nqry7aUlBTy4IMPSn/PmjWLTJw4UZH+Nofcx+LN+6WzQKePZESOcqH19fWw2WwICwsDAOTm5qKoqMilzeDgYKSkpLS5BGlzdKbSp0oci5LnR+7v3blzp8v+ADB+/PhG+2dkZKBr167o06cPHn74YZSXl8t/AE4ocSzeul86E1QUZESOcqFPPfUUYmJipIta/JzcJUgvR2cqfarEsSh1fpT43qKiosvuP2HCBKxduxbp6el44403sHXrVtx8883geV7+g7iIEsfirfulM6G61Nmdmddffx1ffvklMjIyYDAYvN0dRaClTzsmd999t/T7wIEDMWjQIPTs2RMZGRm44YYbvNgzSntDLQUZaUu50KVLl+L111/Hr7/+ikGDBknbxc8pXYLUnc5U+lSJY2mv8yPH90ZFRV1xPxMTExEeHt7h/i+XOxZv3S+dCSoKMtLacqH/+te/8PLLL2Pjxo0YPny4y3sJCQmIiopyabOmpga7d++WtQSpO52p9KkSx9Je50eO701NTXXZHwA2b97cbD/z8/NRXl7e4f4vlzsWb90vnQpve7o7G19++SXR6/Vk9erV5MSJE+SBBx4gISEhpKioiBBCyH333Ueefvppaf/XX3+d6HQ68vXXX7ssB6ytrXXZJyQkhHz33XfkyJEjZOLEie22JPVKjsVisZCDBw+SgwcPkujoaLJo0SJy8OBBkp2dLe3zxBNPkIyMDJKbm0u2b99O0tLSSHh4OCkpKVHdsVyuzY5yLNu3bycajYYsXbqUnDx5kixZssRlGWdtbS1ZtGgR2blzJ8nNzSVbtmwhQ4cOJb169SJms1lVx0KI9+6XzgIVBQV47733SI8ePYhOpyMjR44ku3btkt4bM2YMmTVrlvR3XFwcAdDotWTJEmkfQRDI888/TyIjI4leryc33HADycrK6nDHkpub6/FYxowZI+0zbdo0Eh0dTXQ6HenWrRuZNm0aycnJUeWxXK7NjnIshBCybt060rt3b6LT6Uj//v3JTz/9JL1XX19PbrrpJhIREUG0Wi2Ji4sj8+bNU1zclDgWQrx7v3QGaDlOCoVCoUhQnwKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUCgUCkWCigKFQqFQJKgoUChOlJaWIioqCq+++qq0bceOHdDpdI1SNlMonRGaEI9CcePnn3/GpEmTsGPHDvTp0wdDhgzBxIkT8fbbb3u7axSK4lBRoFA88Le//Q1btmzB8OHDcfToUezduxd6vd7b3aJQFIeKAoXigYaGBgwYMADnz5/H/v37MXDgQG93iUJpF6hPgULxwOnTp1FQUABBEHD27Flvd4dCaTeopUChuGG1WjFy5EgMGTIEffr0wbJly3D06FF07drV212jUBSHigKF4saTTz6Jr7/+GocPH0ZAQADGjBmD4OBg/Pjjj97uGoWiOHT6iEJxIiMjA8uWLcOnn36KoKAgsCyLTz/9FH/++Sc++ugjb3ePQlEcailQKBQKRYJaChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKRoKJAoVAoFAkqChQKhUKR+P8xpzAWsXFDhAAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.angle1 = 20\n", + "visualizer.angle2 = 90\n", + "visualizer.plot_test_spread(np.array(test_set), np.array(test_outputs))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g3fRbkqaNHup" + }, + "source": [ + "## Position" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "traj_pred, traj_actual = metrics['pos_traj'][0], metrics['pos_traj'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbhklEQVR4nO3dd1xT5/4H8M9JIGEGUGQoyy1WBZXixYlKlWur0lprW61bf62l7l5bq2LFXXfrqBbB2tZxrfXeuqpScYELwcFQQRRBAg4Ewsh8fn9EzjUKysgA/b5fr7w0Jyfn+5yQ5JtnnOfhGGMMhBBCCACBqQtACCGk7qCkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4ZqYuAKn7NBoNFAqFqYtBCHkBc3NzCIXCWh+HkgJ5IYVCgYyMDGg0GlMXhRDyEvb29nBxcQHHcTU+BiUFUinGGHJyciAUCuHu7g6BgFobCamLGGMoKSlBXl4eAMDV1bXGx6KkQCqlUqlQUlKCxo0bw8rKytTFIYS8gKWlJQAgLy8PTk5ONW5Kop9+pFJqtRoAIBKJTFwSQkhVlP94UyqVNT4GJQXyUrVpnySEGI8+PquUFAghhPAoKRBiZBzHYd++fUaNGRgYiKlTpxo1piFFRUWB4zhwHKdzXiUlJRgyZAgkEgk4jsPjx49NVkZ9un37Nn++vr6+Bo1FSYG8suLi4iAUCvH2229X+7leXl5Ys2aN/gv1EuUf/Mpu8+fPr9Fx9+7di/DwcL2Vsy4kGYlEgpycHJ3z2rZtG06dOoXY2Fjk5OTAzs7OhCWsukWLFqFr166wsrKCvb39c4+7u7sjJycHM2bMMHhZaPQReWVFRETgiy++QEREBO7du4fGjRubukgvlZOTw/9/165dmDdvHq5fv85vs7Gx4f/PGINarYaZ2cs/xg0aNNBvQfVEoVDUeCADx3FwcXHR2Zaeng5vb2+0a9fOIDENRaFQYOjQoQgICEBERMRzjwuFQri4uOj8/Q2FagrklSSTybBr1y589tlnePvttxEVFfXcPn/++SfefPNNWFhYwNHREe+++y4A7a/gO3fuYNq0afwvdACYP3/+c1X3NWvWwMvLi79/4cIFvPXWW3B0dISdnR169eqFS5cuVbncLi4u/M3Ozo7/4nNxcUFqaipsbW1x6NAhdO7cGWKxGKdPn0Z6ejoGDx4MZ2dn2NjY4M0338SxY8d0jvvsL3u5XI6ZM2eiSZMmsLa2RpcuXRATE6PznDNnziAwMBBWVlZwcHBA//79kZ+fj9GjR+PEiRNYu3Yt//rcvn0bAHDixAn4+/tDLBbD1dUVX331FVQqlU45QkNDMXXqVDg6OqJ///4YO3Ys3nnnHZ3YSqUSTk5OFX5BViYwMBArV67EyZMnwXEcAgMDAWhrfeHh4Rg5ciQkEgkmTpwIAJg1axZatWoFKysrNGvWDHPnztUZtVP+9966dSs8PDxgY2ODSZMmQa1WY/ny5XBxcYGTkxMWLVqkU47Hjx9j/PjxaNSoESQSCfr06YPLly+/sOzffvstpk2bhvbt21f5fA2FkgKpMsaA4mLT3BirXll3796NNm3aoHXr1hgxYgS2bt0K9tRBDhw4gHfffRcDBgxAQkICoqOj4e/vD0Db1OLm5oYFCxYgJydH59f7yxQVFWHUqFE4ffo0zp49i5YtW2LAgAEoKiqq3gm8wFdffYWlS5ciJSUFHTp0gEwmw4ABAxAdHY2EhAQEBwdj4MCByMzMrPQYoaGhiIuLw86dO3HlyhUMHToUwcHBuHnzJgAgMTERffv2Rdu2bREXF4fTp09j4MCBUKvVWLt2LQICAjBhwgT+9XF3d0d2djYGDBiAN998E5cvX8bGjRsRERGBhQsX6sTetm0bRCIRzpw5g02bNmH8+PE4fPiwzuu8f/9+lJSUYNiwYVV+Xfbu3YsJEyYgICAAOTk52Lt3L//YihUr4OPjg4SEBMydOxcAYGtri6ioKCQnJ2Pt2rXYsmULVq9erXPM9PR0HDp0CIcPH8aOHTsQERGBt99+G1lZWThx4gSWLVuGOXPm4Ny5c/xzhg4diry8PBw6dAjx8fHo1KkT+vbti0ePHlX5XEyKEVKJ0tJSlpyczEpLSxljjMlkjGm/no1/k8mqV/auXbuyNWvWMMYYUyqVzNHRkR0/fpx/PCAggA0fPrzS53t6erLVq1frbAsLC2M+Pj4621avXs08PT0rPY5arWa2trbszz//5LcBYH/88cdLzyEyMpLZ2dnx948fP84AsH379r30uW+88Qb7/vvv+fu9evViU6ZMYYwxdufOHSYUCll2drbOc/r27cu+/vprxhhjH330EevWrVulx3/6eOVmz57NWrduzTQaDb9t/fr1zMbGhqnVav55HTt2fO54bdu2ZcuWLePvDxw4kI0ePbrS+M++NuWmTJnCevXqpbPN09OThYSEVHqsct999x3r3Lkzfz8sLIxZWVmxwsJCflv//v2Zl5cXfz6MMda6dWu2ZMkSxhhjp06dYhKJhJWVlekcu3nz5uzHH398aRkqO6+ny/Tse/Bpz35ma4JqCuSVc/36dZw/fx4fffQRAMDMzAzDhg3TaYoo/yWsb7m5uZgwYQJatmwJOzs7SCQSyGSyF/5qry4/Pz+d+zKZDDNnzoS3tzfs7e1hY2ODlJSUSmNevXoVarUarVq1go2NDX87ceIE0tPTAdTs9UlJSUFAQIDOWPlu3bpBJpMhKyuL39a5c+fnnjt+/HhERkYC0L6Ghw4dwtixY6sV/0Wefc0AbZ9Nt27d+Lb6OXPmPPeaeXl5wdbWlr/v7OyMtm3b6kz54uzszE8vcfnyZchkMjRs2FDntc3IyOBf27qOOppJlVlZATKZ6WJXVUREBFQqlU7HMmMMYrEYP/zwA+zs7PgpAapDIBDoNEEBz185OmrUKDx8+BBr166Fp6cnxGIxAgIC9DrLrLW1tc79mTNn4ujRo1ixYgVatGgBS0tLvP/++5XGlMlkEAqFiI+Pf24qhPKOzJq8PlX1bPkBYOTIkfjqq68QFxeH2NhYNG3aFD169DBYzLi4OAwfPhzffvst+vfvDzs7O+zcuRMrV67U2c/c3FznPsdxFW4rnzBSJpPB1dX1uf4ZABWOKqqLKCmQKuM4oILPc52iUqnw888/Y+XKlejXr5/OYyEhIdixYwc+/fRTdOjQAdHR0RgzZkyFxxGJRPw0H+UaNWoEqVQKxhj/azgxMVFnnzNnzmDDhg0YMGAAAODu3bt48OCBns6uYmfOnMHo0aP5jnKZTMZ3/FakY8eOUKvVyMvLq/SLt/z1+fbbbyt8vKLXx9vbG7///rvO63PmzBnY2trCzc3thefQsGFDhISEIDIyEnFxcZX+XfQlNjYWnp6e+Oabb/htd+7cqfVxO3XqBKlUCjMzM50BCPUJNR+RV8r+/fuRn5+PcePGoV27djq3IUOG8E1IYWFh2LFjB8LCwpCSkoKrV69i2bJl/HG8vLxw8uRJZGdn81/qgYGBuH//PpYvX4709HSsX78ehw4d0onfsmVLbN++HSkpKTh37hyGDx9u0F/d5TH37t2LxMREXL58GR9//PELpzpv1aoVhg8fjpEjR2Lv3r3IyMjA+fPnsWTJEhw4cAAA8PXXX+PChQuYNGkSrly5gtTUVGzcuJF/Lby8vHDu3Dncvn0bDx48gEajwaRJk3D37l188cUXSE1NxX/+8x+EhYVh+vTpVZphd/z48di2bRtSUlIwatQo/bw4lWjZsiUyMzOxc+dOpKenY926dfjjjz9qfdygoCAEBAQgJCQER44cwe3btxEbG4tvvvkGFy9erPR5mZmZSExMRGZmJtRqNRITE5GYmAiZCarmlBTIKyUiIgJBQUEVXrQ0ZMgQXLx4EVeuXEFgYCD+/e9/47///S98fX3Rp08fnD9/nt93wYIFuH37Npo3b45GjRoB0P4S3rBhA9avXw8fHx+cP38eM2fOfC5+fn4+OnXqhE8++QSTJ0+Gk5OTQc951apVcHBwQNeuXTFw4ED0798fnTp1euFzIiMjMXLkSMyYMQOtW7dGSEgILly4AA8PDwDaxHHkyBFcvnwZ/v7+CAgIwH/+8x/+moiZM2dCKBSibdu2aNSoETIzM9GkSRMcPHgQ58+fh4+PDz799FOMGzcOc+bMqdJ5BAUFwdXVFf379zf4NSWDBg3CtGnTEBoaCl9fX8TGxvKjkmqD4zgcPHgQPXv2xJgxY9CqVSt8+OGHuHPnDpydnSt93rx589CxY0eEhYVBJpOhY8eO6Nix4wsTiaFw7NlGUkKeKCsrQ0ZGBpo2bQoLCwtTF4fUQkBAAPr27fvc8NC6RCaToUmTJoiMjMR77733wn2joqIwderUV2Yai6qaP38+9u3b91yzZTl9fGappkDIK0wul+PixYtISkrCG2+8YeriVEij0SAvLw/h4eGwt7fHoEGDqvS8goIC2NjYYNasWQYuoellZmbCxsYGixcvNngs6mgm5BV26NAhjBw5EoMGDcL7779v6uJUKDMzE02bNoWbmxuioqKqNG3HkCFD0L17dwD1Z1RPbTRu3JivHYjFYoPGouYjUilqPiKkfqHmI0IIIXpFSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIgpBZGjx6NkJAQ/r6pFrSPiYkBx3EGn/aB4zjs27fPoDFeJCoqil8C9OnXuaSkBEOGDIFEIjHK62As5X9XjuN03meGREmBvHJGjx7Nf5BEIhFatGiBBQsW6KwVbCh79+5FeHh4lfY11he5QqGAo6Mjli5dWuHj4eHhcHZ2fm5tiLpKIpEgJydH53Xetm0bTp06hdjYWOTk5FQ4IWJdc/v2bYwbNw5NmzaFpaUlmjdvjrCwMJ11MLp27YqcnBx88MEHRisXJQViHDduAIcOAU/WADa04OBg5OTk4ObNm5gxYwbmz5+P7777rsJ99bkAToMGDXRW6qoLRCIRRowYwa9s9jTGGKKiojBy5MjnFo+pqziOg4uLi87rnJ6eDm9vb7Rr1w4uLi46q7+V0+ffWR9SU1Oh0Wjw448/IikpCatXr8amTZswe/Zsfh+RSAQXFxeDT7/+NEoKxLAePQKCg4HWrYEBA4BWrbT38/MNGlYsFsPFxQWenp747LPPEBQUhP/+978A/tfks2jRIjRu3BitW7cGoF0Q54MPPoC9vT0aNGiAwYMH6yxWo1arMX36dNjb26Nhw4b417/+9dxKbM82H8nlcsyaNQvu7u4Qi8Vo0aIFIiIicPv2bfTu3RsA4ODgAI7jMHr0aADaCeKWLFnC/4L08fHBnj17dOIcPHgQrVq1gqWlJXr37v3CRXUAYNy4cbhx4wZOnz6ts/3EiRO4desWxo0bhwsXLuCtt96Co6Mj7Ozs0KtXL1y6dKnSY1ZU00lMTATHcTrlOX36NHr06AFLS0u4u7tj8uTJKC4u5h/fsGEDWrZsCQsLCzg7O1d7jqbAwECsXLkSJ0+eBMdxCAwMBKBd8yE8PBwjR46ERCLBxIkTAQCzZs1Cq1atYGVlhWbNmmHu3Lk6taT58+fD19cXW7duhYeHB2xsbDBp0iSo1WosX74cLi4ucHJywqJFi3TK8fjxY4wfPx6NGjWCRCJBnz59cPny5UrLHRwcjMjISPTr1w/NmjXDoEGDMHPmTOzdu7da569vlBSIYX38MXDsmO62Y8eAJ+snG4ulpaXOL8Xo6Ghcv34dR48exf79+6FUKtG/f3/Y2tri1KlTOHPmDGxsbBAcHMw/b+XKlYiKisLWrVtx+vRpPHr06KULs4wcORI7duzAunXrkJKSgh9//BE2NjZwd3fH77//DkC7pnROTg7Wrl0LAFiyZAl+/vlnbNq0CUlJSZg2bRpGjBiBEydOANAmr/feew8DBw5EYmIixo8fj6+++uqF5Wjfvj3efPNNbN26VWd7ZGQkunbtijZt2qCoqAijRo3C6dOncfbsWbRs2RIDBgxAUVFR9V7sp6SnpyM4OBhDhgzBlStXsGvXLpw+fRqhoaEAgIsXL2Ly5MlYsGABrl+/jsOHD6Nnz57VirF3715MmDABAQEByMnJ0flSXbFiBXx8fJCQkMCvl2Bra4uoqCgkJydj7dq12LJlC1avXv1cuQ8dOoTDhw9jx44diIiIwNtvv42srCycOHECy5Ytw5w5c3Du3Dn+OUOHDkVeXh4OHTqE+Ph4dOrUCX379sWjR4+qfC4FBQVo0KBBtc5f7xghlSgtLWXJycmstLS0Zge4fp0xoPLbjRv6LfATo0aNYoMHD2aMMabRaNjRo0eZWCxmM2fO5B93dnZmcrmcf8727dtZ69atmUaj4bfJ5XJmaWnJ/vrrL8YYY66urmz58uX840qlkrm5ufGxGGOsV69ebMqUKU9O/zoDwI4ePVphOY8fP84AsPz8fH5bWVkZs7KyYrGxsTr7jhs3jn300UeMMca+/vpr1rZtW53HZ82a9dyxnrVp0yZmY2PDioqKGGOMFRYWMisrK/bTTz9VuL9arWa2trbszz//5LcBYH/88Uel5U9ISGAAWEZGBl/uiRMn6hz31KlTTCAQsNLSUvb7778ziUTCCgsLKy330yIjI5mdnd1z26dMmcJ69eqls83T05OFhIS89Jjfffcd69y5M38/LCyMWVlZ6ZSpf//+zMvLi6nVan5b69at2ZIlS/hzkkgkrKysTOfYzZs3Zz/++GNVTo3dvHmTSSQStnnz5ucee/o9/SK1/swyxmjqbGI46ekvfjwtDWjZ0iCh9+/fDxsbGyiVSmg0Gnz88ceYP38+/3j79u0hEon4+5cvX0ZaWtpz/QFlZWVIT09HQUEBcnJy0KVLF/4xMzMz+Pn5PdeEVC4xMRFCoRC9evWqcrnT0tJQUlKCt956S2e7QqFAx44dAQApKSk65QC0i+i8zEcffYRp06Zh9+7dGDt2LHbt2gWBQIBhw4YBAHJzczFnzhzExMQgLy8ParUaJSUlyMzMrHL5n3X58mVcuXIFv/76K7+NMQaNRoOMjAy89dZb8PT0RLNmzRAcHIzg4GC8++67sLKyqnHMp/n5+T23bdeuXVi3bh3S09Mhk8mgUqkgkUh09vHy8tJ5Lzg7O0MoFOosK+rs7Iy8vDz+PGUyGRo2bKhznNLSUqS/7HMAIDs7G8HBwRg6dCgmTJhQrXPUN0oKxHCaN3/x4y1aGCx07969sXHjRohEIjRu3Pi5Ofqtra117stkMnTu3Fnny6tc+XKc1VWTzsHyNXkPHDiAJk2a6DxW23n0JRIJ3n//fURGRmLs2LGIjIzEBx98ABsbGwDAqFGj8PDhQ6xduxaenp4Qi8UICAiotIO2/Avy6aT47AgmmUyG//u//8PkyZOfe76HhwdEIhEuXbqEmJgYHDlyBPPmzcP8+fNx4cIFvayT8OzfOS4uDsOHD8e3336L/v37w87ODjt37sTKlSt19nu2053juAq3la+FLZPJ4OrqipiYmOfK8LLzuHfvHnr37o2uXbti8+bNVTwzw6GkQAynVSugf39tH4Ja/b/tQiEQFGSwWgKg/TJoUY2k06lTJ+zatQtOTk7P/Wos5+rqinPnzvFt3iqVim87rkj79u2h0Whw4sQJBAUFPfd4eU1F/dRr07ZtW4jFYmRmZlZaw/D29uY7zcudPXv25ScJbYdzYGAg9u/fj9jYWJ0RWWfOnMGGDRswYMAAANq+iwcPHlR6rPJkmZOTAwcHBwB4bpnITp06ITk5+YV/CzMzMwQFBSEoKAhhYWGwt7fH33///dIlOWsiNjYWnp6e+Oabb/htd+7cqfVxO3XqBKlUCjMzM3h5eVX5ednZ2ejduzc6d+6MyMhInZqIqZi+BOTVtmOHNgE8LShIu70OGT58OBwdHTF48GCcOnUKGRkZiImJweTJk5GVlQUAmDJlCpYuXYp9+/YhNTUVkyZNeuE1Bl5eXhg1ahTGjh2Lffv28cfcvXs3AMDT0xMcx2H//v24f/8+ZDIZbG1tMXPmTEybNg3btm1Deno6Ll26hO+//x7btm0DAHz66ae4efMmvvzyS1y/fh2//fYboqKiqnSePXv2RIsWLTBy5Ei0adMGXbt25R9r2bIltm/fjpSUFJw7dw7Dhw9/YW2nRYsWcHd3x/z583Hz5k0cOHDguV/cs2bNQmxsLEJDQ5GYmIibN2/iP//5D9/RvH//fqxbtw6JiYm4c+cOfv75Z2g0Gn5EmL61bNkSmZmZ2LlzJ9LT07Fu3bqXDhaoiqCgIAQEBCAkJARHjhzB7du3ERsbi2+++QYXL16s8DnZ2dkIDAyEh4cHVqxYgfv370MqlUIqlda6PLVBSYEYloMDcPiw9jqFgwe1/x4+rN1eh1hZWeHkyZPw8PDAe++9B29vb4wbNw5lZWV8zWHGjBn45JNPMGrUKAQEBMDW1hbvvvvuC4+7ceNGvP/++5g0aRLatGmDCRMm8MMxmzRpgm+//RZfffUVnJ2d+S/K8PBwzJ07F0uWLIG3tzeCg4Nx4MABNG3aFIC22eX333/Hvn374OPjg02bNlV57V6O4zB27Fjk5+dj7NixOo9FREQgPz8fnTp1wieffILJkyfDycmp0mOZm5tjx44dSE1NRYcOHbBs2TIsXLhQZ58OHTrgxIkTuHHjBnr06IGOHTti3rx5aNy4MQBt08revXvRp08feHt7Y9OmTdixY4fB1pMeNGgQpk2bhtDQUPj6+iI2NpYflVQbHMfh4MGD6NmzJ8aMGYNWrVrhww8/xJ07d+Ds7Fzhc44ePYq0tDRER0fDzc0Nrq6u/M2UaDlOUilajpPUNVFRUZg6deorM41FVY0ePRqPHz9+6RQjtBwnIeS1U1BQABsbG8yaNcvURTG4U6dOwcbGpsIBEIZCHc2EkHpjyJAh6N69O4CXj+p5Ffj5+fGd9+WjxAyNkgIhpN6wtbWtc3NLGZKlpWW1RtHpAzUfEUII4VFSIC9FYxEIqR/KL6arDWo+IpUyNzcHx3G4f/8+GjVqVOF0xIQQ02OMQaFQ4P79+xAIBDpTuFQXDUklLySTyZCVlUW1BULqASsrK7i6ulJSIIalVqvrzapchLyuhEIhzMzMal2jp6RACCGERx3NhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkUAWMMTDGTF0MQggxOEoKL6HRaCCXy6FSqSgxEEJeeWamLkBdxxiDRqPh/zU3N4dAQLmUEPJqom+3KuI4DhqNBgqFAmq1mmoNhJBXEiWFauA4Dmq1GsnJyZDL5ZQYCCGvHEoK1cBxHADg1q1bUCqVUCgU0Gg0Ji4VIYToDyWFGuI4DiqVCsnJyVAoFFRrIIS8Eigp1BDHcWCMIT09nUYnEUJeGZQUaqG8OQkAFAoFkpKSoFQqTVgiQgipHUoKeiAQCHRqDTQ6iRBSX1FS0JPyWgNjDAqFgpqTCCH1El28pmcCgQAajQapqalo0aIFxGIxJQdCTIAxBplMBjs7O52mXvJilBQM5NatW2jWrBmKioqqNWyVMYbTp0/D398fYrHYgCXUSkxMhJubGxwdHQ0eKz09HQKBAE2bNjV4rLy8PEilUnTo0MHgsUpLSxEfH4/u3bsbPBYAnD17Fu3atYONjY3BYyUlJcHBwQGNGzc2eKzMzEyUlZWhVatWejleYWEhvLy8UFBQAIlEopdjvg4oKRiYRqMBx3FV/qVSPvmeQCAwynQajDFwHGfUqTuMEat8dJgxYpX3KRnrNTTm38zY7w99vo40HU3NUFIwgup8qMqbmoyVFIDqla+2cYwZCzBeAjJWrHLGen8Y+2+mz1iUFGqGXjVCCCE8SgqEEEJ4lBQIIYTwKCkQQgxi924zfP65GPv3U9dlfUJJgRBiEHFxQmzfLsLly/Q1U5/QX4sQYhCPHmlHZTVsSBdv1ieUFAghBpGTo00Kjo6UFOoTSgqEEL1TKIDLl4UAgPbtaSGq+oSSAiFE7xISBCgt5eDgwNCyJSWF+oSSAiFE73btMgcA9O2rAl1YXL/Qn6sKaJZTQqqutBTYs0ebFEaMoEWn6hsaQFwFV65cgUgkQsuWLSEUCk1dHELqtC1bzPH4MQcvLw169VKbujikmqimUAUtWrSAQqHAyZMncevWLVMXh5A6q6AAWLlSO+X7rFly0G+o+oeSQhVYW1ujY8eO8PPzw4MHDwAA2dnZ1KxEyDPmzxcjP59Dq1ZqDBumMnVxSA1QUqgGBwcHvPnmmwCA27dv49y5cwCoz4EQADh5UoiICBEAYMUKOcyocbpeoqRQTeVz5wcEBPCrUSUkJKCoqMiUxSLEpB4+BCZNsgAAjBmjQGAg9SXUV5QUakggEMDDwwMAYGtriwsXLgAAysrKTFksQoxOrQbGjrVEZqYATZtqEB4uN3WRSC1QUtCDli1bIiAgAAAQGxuLtLQ0E5eIEOOZP1+M48fNYGXF8NtvpaDlkOs3avXTE0tLSwBA586dcfPmTQDAnTt3IBKJqrVGc7mHDx/C3Nxc7+V8lkqlQmFhYbXLVxOlpaXgOA737983eKyioiIolUqjxJLL5WCMGSUWoF33Oz8/3yi1UoVCAZlMVum5RUZKsHatLQBg8eI8ODkVo6YvQ3FxMRQKRa1fR8YYZDIZysrKwHEcCgsLdR63tbU1yvu9vqKkoGd2dnbo3LkzoqOjcf/+fSiVyhq9Ae/evWuUN65cLkdeXh4ePXpklFiAcZrYVCoVFAoFMjIyDB5Lo9FO42CMWACgVqtx7949o6xBXFpaCoVC8dwXKwBERztjyZJmAIBx49LQrt0d1OYlUCgU0Gg0tX4di4uLMXjwYP6+u7u7zuMFBQWQUHWmUpQUDKD8y9zPzw8KhaJai6wzxnD8+HH4+vpCLBYbspgAgAsXLsDT0xNOTk4Gj3Xjxg0IBAK0aNHC4LGkUimys7PRuXNng8cqKSnBuXPn4O/vb/BYAHDq1Cm88cYbsLW1NXisy5cvo2HDhnBzc9PZvmePGZYv13Ysf/qpAsuWOYPjnGsVKyMjA6WlpWjbtm2tjsMYQ1ZWFoqKiuDt7Y27d+/qJAFjvG71GfUpEEKqZfduM4wfbwG1msPw4UosXSpHXWqN4TgOEomE//KXSCQ6t2dr4OvXr4eXlxcsLCzQpUsXnD9/vtJj7927F35+frC3t4e1tTV8fX2xfft2g56PsVFSIIRUWVSUOSZOtIBGw2HkSAXWry+r1xPe7dq1C9OnT0dYWBguXboEHx8f9O/fH3l5eRXu36BBA3zzzTeIi4vDlStXMGbMGIwZMwZ//fWXkUtuOPX4z0kIMRbGgOXLRZg8WZsQxoxRYN06eb1OCACwatUqTJgwAWPGjEHbtm2xadMmWFlZYevWrRXuHxgYiHfffRfe3t5o3rw5pkyZgg4dOuD06dNGLrnh1PM/KSHE0FQqYMYMMRYu1PZxzZwpx5o19T8hKBQKxMfHIygoiN8mEAgQFBSEuLi4lz6fMYbo6Ghcv34dPXv2NGRRjYo6mgkhlZLJhPj6a3ecPi0CxzEsWybHp5++GtNhP3jwAGq1Gs7Ouh3kzs7OSE1NrfR5BQUFaNKkCeRyOYRCITZs2IC33nrL0MU1GkoKhJAK3bnDYdKkDsjIsIalJcPmzWUYPJgmubO1tUViYiJkMhmio6Mxffp0NGvWDIGBgaYuml5QUiCEPOfECSFGjbLAo0cCNGqkxJ49CnTs+Gotq+no6AihUIjc3Fyd7bm5uXBxcan0eU8Pq/b19UVKSgqWLFnyyiSFet4qSAjRJ8aA9evNERJiiUePBGjVSoZdu26/cgkBAEQiEX+haTmNRoPo6Gh+2pqq0Gg0/IWZrwKqKRBCAADFxcCUKRbYvVs7vcqHHyoxfvwVuLg4mLhkhjN9+nSMGjUKfn5+8Pf3x5o1a1BcXIwxY8YAAEaOHIkmTZpgyZIlAIAlS5bAz88PzZs3h1wux8GDB7F9+3Zs3LjRlKehV5QUCCG4eZPDiBGWSEkRQihkWLxY26F85cqrV0N42rBhw3D//n3MmzcPUqkUvr6+OHz4MN/5nJmZqTMbQXFxMSZNmoSsrCxYWlqiTZs2+OWXXzBs2DBTnYLeUVIg5DW3d68ZQkMtIJNxcHbWICqqDN26vT7rIYSGhiI0NLTCx2JiYnTuL1y4EAsXLjRCqUyHkgIhr6myMuDrr8X8amk9eqiwdWsZnJ1pJcHXGSUFQl5DN29yGD3aElevCgEA06fLMWeOgpbQJJQUCHnd7NplhmnTtM1FDRtqsGVLGYKCXp/mIvJilBQIeU3IZMDMmRb47Tft6KLu3VWIiCiDqys1F5H/oaRAyGvgyhUBRo+2RFqaAAIBw6xZCnz5JTUXkefRW4KQVxhjwKZN5pg7VwyFgkPjxhpERLxeo4tI9VBSIOQV9eABh88+s8Bff2k/5gMGKLF+fRkaNjRxwUidRkmBkFdQTIwQEydaQCoVQCxmWLRIjgkTlHVqhTRSN1FSIOQVolQCixeLsGqVCIxxaN1ajcjIMrRr92pfmUz0h5ICIa+I27c5jBtniQsXtNcejBmjwJIlclhZmbhgpF6hpEDIK+CPP8zwxRcWKCzkYG/PsG5dGUJCaO0DUn2UFAipx0pKtFNVREZqp6ro0kWNiIhSeHjQtQekZigpEFJPXb8uwMiRFkhJEYLjGGbMUGD2bLr2gNQOvX0IqYf27LHE119boaSEg5OTdqqK3r3p2gNSe5QUCKlHSkuBtWvb48gR7cI3gYEq/PRTGZycqLmI6Actx0lIPZGezqFvXyscOeIOjmOYPVuOP/4opYRA9IpqCoTUAwcOmOH//q98dJEcP/5YhH/+U2zqYpFXECWFKkhOTkZpaSkaNmwIOzs7UxeHvEbUamDhQhFWrtQmgH/8Q4VJk06je3dvAJQUiP5R81EVeHp6wtnZGUVFRbhy5QoA4NKlS7h16xYAQKOhq0WJ/uXnA0OHWvIJ4bPPFDhwoBQNG8pNXDLyKqOaQhVYW1vD1tYWnp6eUCqViI6OhpOTE/Lz8wFo13G1t7cHADx+/BgSicSEpSWvghs3BBg2zBLp6QJYWjL88EMZhg6li9GI4VFSqCbuyYxibm5ucHNzQ25uLrp06YL8/Hw8evQIV65cgUql/fCmp6eD4zj+VhWMaTsNs7OzYWaEAecKhQIPHjxAWVmZwWMVFRWB4zhkZmYaJZZcLjdKLIVCAcaY3mKdPm2DmTPdIJMJ4OqqwLp1d+HtXYbyw6vVakilUv5HiSGVlpbi0aNHRqkNFxQUQKlU1vp1ZIyhuLgYZWVl4DgOhYWFOo/b2tpW+fP4OqKkoAfW1tawtrZGamoqevTogeLiYpw9exalpaVQq9XILM7EvdJ7cLNyg7u1e5WOWVRUBKFQaOCSa79gSkpKjPKhVygUFX5IDaGsrAxqtdooscp/BOgj1t69zli1ygMaDQcfn0IsWnQdDRqo8PShGWOQyWSQyw3fjKRSqVBWVmaU11Eul+vlb1ZcXIy33nqLv+/urvuZKygooNr8C1BS0DOO42BjYwMAaNy8MUb/ORp/Z/7NP97Xsy+2vr0VDhYOFT6fMYa8vDy0adMGYrHhOxIvXLgADw8PODk5GTzWjRs3IBAI0KJFC4PHkkqlyM7ORrt27Qweq6SkBOfOnatVLLUamDtXjB9+0E5XMXy4EmvXchCJ2jy376lTp9CiRQvY2trWOF5VXb58GQ0bNoSbm5vBY2VkZKC0tBRt27at1XEYY8jKykJRURG8vb1x9+5dnSRgjNetPqOOZgMae2AsTtw9obMtJjMGYw+MNVGJSF0klwNjx1rwCWHePDk2bCiDSGTigtVTHMdBIpHwX/4SiUTn9mzT0fr16+Hl5QULCwt06dIF58+fr/TYW7ZsQY8ePeDg4AAHBwcEBQW9cP/6iJKCgWSXZePY7WNQM92pB9RMjeg70UjLTzNRyUhdIpMBH3xgiT/+MIe5OUNERClmzlTQYjhGsmvXLkyfPh1hYWG4dOkSfHx80L9/f+Tl5VW4f0xMDD766CMcP34ccXFxcHd3R79+/ZCdnW3kkhsOJQUDkSqkL3z81uNbRioJqavy84FBg6xw/LgZrK0Z/v3vUhphZGSrVq3ChAkTMGbMGLRt2xabNm2ClZUVtm7dWuH+v/76KyZNmgRfX1+0adMGP/30EzQaDaKjo41ccsOhpGAgLiKXFz7ezL6ZkUpC6qL8fGDwYCtcvCiEgwPDn3+WoE8fmtDOmBQKBeLj4xEUFMRvEwgECAoKQlxcXJWOUVJSAqVSiQYNGhiqmEZHScFAmlg0QZBXEISc7ggiISdEX8++aOFg+M5WUjeVJ4TERCEcHTU4fLgEfn50AaSxPXjwAGq1Gs7OzjrbnZ2dIZW+uKZfbtasWWjcuLFOYqnvKCkYUOQ7kejl3ktnW6BHILa+XXHVlLz6ZDIgJOR/CeHAgVJ4e1NCqI+WLl2KnTt34o8//oCFhYWpi6M3NCTVgBwsHLAnZA8yCjKQUZiBZvbNqIbwGlMogBEjLJGQIETDhpQQTM3R0RFCoRC5ubk623Nzc+Hi8uLm3xUrVmDp0qU4duwYOnToYMhiGh3VFIyguUNz9GvajxLCa4wx4PPPLfD332awstJ2KlNCMC2RSITOnTvrdBKXdxoHBARU+rzly5cjPDwchw8fhp+fnzGKalRUUyDECFauFGHXLnOYmTFs315KfQh1xPTp0zFq1Cj4+fnB398fa9asQXFxMcaMGQMAGDlyJJo0aYIlS5YAAJYtW4Z58+bht99+g5eXF9/3YGNjw1+0Wt9RUiDEwI4eFSI8XHsl2sqVcrz1Fo0yqiuGDRuG+/fvY968eZBKpfD19cXhw4f5zufMzEwIBP9rUNm4cSMUCgXef/99neOEhYVh/vz5xiy6wVBSIMSA7t7lMG6cJRjjMHq0AmPGKE1dJPKM0NBQhIaGVvhYTEyMzv3bt28bvkAmRn0KhBiIRgNMmmSBx485dO6sxnff0ToIpO6jpECIgWzZYo4TJ7Qdy1u2lMII8xsSUmuUFAgxgJwcDmFh2iywYIEcLVowE5eIkKqhpECIAYSHi1FSwsHfX43x46kfgdQflBQI0bNr1wT49VftGI7Fi8sgoE8ZqUfo7UqInq1dKwJjHN59Vwl/f7oegdQvlBQI0SOplMPevdpawpQpChOXhpDqo6RAiB798os5lEoOXbqo0akT1RJI/UNJgRA9OnBAW0sYPpw6l0n9REmBED3JzeUQH69dPyM4mFZQI/UTJQVC9OTcOW1C6NBBDRcXui6B1E+UFAjRk5QU7cepXTvqSyD1FyUFQvTkxg3tx6l1a0oKRNft27fBcdxzt8DAQFMX7Tk0SyohelJUxAEAGjakpiOiy93dHTk5Ofx9qVSKoKAg9OzZ04SlqhglBUL0RP5kElSRiJIC0SUUCvklPsvKyhASEoKAgIA6uQYDJQVC9KR8OgsVDTwiLzB27FgUFRXh6NGjOgv41BWUFAjRk8aNtX0J9+7VvQ86qRsWLlyIv/76C+fPn4etra2pi1MhSgqE6Enjxtpmo8xMzsQlIXXR77//jgULFuDQoUNo3ry5qYtTKUoKhOiJr6+2pnD2rNDEJSF1zbVr1zBy5EjMmjULb7zxBqRSKQBAJBKhQYMGJi6dLqrnEqInAQEqcBzDjRtC5OZSbYH8z8WLF1FSUoKFCxfC1dWVv7333numLtpzqKZQDYwxqNVqAEBJSQn//wcPHkD1pHfxzp07/PaUlBRoNNpfjxxXvS+JtLQ0CIWG/8VZVlaG7OxsPHr0yOCxCgoKwHEcUlNTDR6rtLQUpaWlRomlUqnAGENeXiratGmLlBRrbNr0EMOG5Rkknlqtxu3bt2Fubm6Q4z9NJpNBpVJBJpMZPFZRURFUKlWt/2aMMRQXF0OlUkEgEKCwsFDncVtb22p/Hmtr9OjRGD16tFFj1hQlhSpISUmBVCqFWq0GY9p247i4OP5L++bNmzAz076UBQUF/HZzc3Oo1Wr+QpXqMDc3N0pS4DgOZmZmRvmCEQgE4DjOKLEUCoXRYpX/bc3NzTFoUD5SUqyxf38jjBiRb7CYxvybCYVCo8USCAS1jiWTydCnTx/+vru7u87jBQUFkEgktYrxKqOkUAUeHh5wd3fn36wnT55Enz59wHEcjh07hoCAAADAsWPH0KFDBwBATk4OWrRoAYVCwb/Zq4Ixhjt37sDT0xNiI6z0/ujRIzg7O8PJycngsdRqNQQCgVE62aRSKZRKpVFilZSU4N69e2jevDk++wxYvZrh+nUrSKWt0K2bWu/x7t27Bzc3N6OMXpHJZGjYsCHc3NwMHisjIwOlpaW1/psxxpCVlYWioiJ4e3vj7t27Okmgro76qSuoT6EKrK2tIZFIYGVlBZFIBKD6zUHk9dCgATBihHba7IULRWB0HZvRcRwHiUTCf/lLJBKd27Of3fXr18PLywsWFhbo0qULzp8/X+mxk5KSMGTIEHh5eYHjOKxZs8aQp2ISlBQI0bOZMxUQiRjOnDHD0aM0Eqku27VrF6ZPn46wsDBcunQJPj4+6N+/P/LyKu4PKikpQbNmzbB06VL+CuVXDSUFQvTMzY1h4kRtbWHGDAsUF5u4QKRSq1atwoQJEzBmzBi0bdsWmzZtgpWVFbZu3Vrh/m+++Sa+++47fPjhh0Zp3jUFSgqEGMDs2XK4u2tw544A4eGv5pdHfadQKBAfH4+goCB+m0AgQFBQEOLi4kxYMtOipECIAdjYAKtXlwEANmwQ4a+/qBmprnnw4AHUajWcnZ11tjs7O/MXl72OKCkQYiD9+qkxYYICADBxoiXu3qXBCaTuo6RAiAEtXixHx45q5Odz+PhjSxjhGjBSRY6OjhAKhcjNzdXZnpub+8p2IlcFJQVCDEgsBn7+uRSOjhpcvizE6NGWNLV2HSESidC5c2dER0fz2zQaDaKjo/lrj15HdPEaIQbm6cmwa1cp3nnHCkeOmGHKFDG+/16OOjiVfvWoVBBeuADBpUuATAaNry/UvXsDT67lqQ+mT5+OUaNGwc/PD/7+/lizZg2Ki4sxZswYAMDIkSPRpEkTLFmyBIC2czo5OZn/f3Z2NhITE2FjY4MWLVqY7Dz0iZICIUbw5psaRESUYcQIC2zfLoJYDKxcKUe9vQZSpYL5+vUw370bnFQKrrQUTKMB8/JC2fLl0PTogfpwcsOGDcP9+/cxb948SKVS+Pr64vDhw3znc2Zmps5sBPfu3UPHjh35+ytWrMCKFSvQq1cvxMTEGLv4BkFJgRAjeecdFTZsKMNnn1ngp59EEImAJUvqZ2IQnj8Psz17wN27ByiVgFwOTq0Gl5wMq5AQMFdXqP75TyiHD4fmqS/Ruig0NBShoaEVPvbsF72Xlxc//9mrqr5XYAmpVz7+WIXvv9cu5rxhgwhTp4qh1v/0SAYnuHQJAqkUUKnAyeWARqOzHimXlQXzbdtg9c47sHj/fZj98QegUJi20KRKqKZAiJGNHKm92vmLL8SIjBShoIDD5s1l9akpXrsQdWmptolIrQaEQm2N4WlyOSCXw+zoUZidPg2NmxtU778P1cCB0LzxhmnKTV6KagqEmMDIkUpERZXB3Jxh715zDB1qiYICU5eq6jS+voC5OXSGUj3drFL+f6FQ+/+SEghu3IDou+9g1acPLMaOheDqVaOWmVQNJQVCTOTdd1XYubMU1tYMx4+bITjYCllZ9aODQR0QAHVAgDYpaDSocJwtx+G5aWKVSqC0FGZ79sCqZ09Yvv02uPv3jVNoUiWUFAgxobfeUuPgwRI4O2uQlCREnz5WiI+vBx9LsRhlmzZB9e672osxKup8FQi0CaP8/8/SaCA8fRpWXbrAbP/+io9BjK4evPsIebV17KjB33+XwNtbDalUgH/+0wq7d9eD7j6JBPLNm1H8119Qvv8+NI0ba5uUylcMLE8Iz/6/HGMAY+AePIDF8OFwmz+fEkMdQEmBkDrA3Z3h6NESBAerUFbGYfx4S8ybJ6oXI5OYry/kEREouXQJJQcPQjFtGpiTk/YiNrMqJjfG4LBvH5z27DFsYclLUVIgpI6QSIAdO0oxY4Z2yOqaNWK8954lHj6sH/0MsLKCpksXKObNQ3F8PBTffAN127baxFDF9ca9Vq6E8O+/DVxQ8iKUFAipQ4RCICxMgcjIUlhZaTuge/SwwsWL9eyjamcHxdSpKD19GiUnT0L19tsvrTWUpz6LMWPomgYTqmfvNEJeD0OGqHD8eAmaN9cgK0uA4GArbN5sXi+b3DXt2qHsl18gy8iA6v33K5z+gnvqXy4/H+IpU4xaRvI/lBQIqaO8vTWIiSnGwIFKKBQcZs60wOjRFigurged0BWxs0PZ1q0oOXhQO2IJT5LAM7txAMx//RVcSoqxS0hASYGQOs3ODvjllzIsXlwGMzOGP/4wx9Sp3XD1qrmpi1Zjmm7dUHLgwAv34QBYfPqpcQpEdFBSIKSO4zggNFSJw4dL4O6uwb171hg0yBEbN9bP5iQA0Pj7Qzl+/Av3ESYk0FXPJkBJgZB6wt9fg1OnivGPf0ihUHCYNcsCH31kgYcPTV2ympF/9x2YjQ0qy2scAItJk4xZJAJKCoTUKw0aAHPmXEJ4eAFEIoaDB83Rvbs1zpyp2pDPOkUoRNmaNc/1KQAAe3ITXL6MejUp1CuAkgIh9QzHAWPHFuPYMe3opOxsAd5+2xKLF4vq3VKfqqFDwQQCPgngqX/Lme3bZ9xCveYoKRBST/n6apuThg9XQqPhsHSpGO+8Y4m7d+vwxW6MAVIphL//DvG4cbDy9NSZAqOipiTuwQPjlY/QegqE1Gc2NsDGjWXo3VuFadMsEBtrhm7drPH992UYPNi01QYuPR3mmzdDcPcuNA0aQJicDEFSErjS0modRzVokIFKSCpCSYGQV8AHH6jw5pvFGDvWEvHxQnzyiSXGjlVgyRI5LC2NXx6zrVsh/uYbcMXFtTuQuTlYy5b6KRSpEmo+IuQV0bQpw5EjJZg2TTt30tatIgQGWiElxbgfc+72bYhnz659QgBQEhVV+wKRaqGaggEonszbkpiYCNWTnj+uiquzly8Kfu3aNQgqmoNez0pKSpCRkYHs7GyjxAKAoqIig8eSy+WQy+VISEgweCy1Wg3GmFFiAYBKpUJqairMKplLKCQEcHOzx6JFrZGSIkaPHhb44otbGDgwp6IZJl6oqKgIJSUluF+NhXA8N2yA9ZO/dW088vNDkpsbUM3XlTGGkpISqFQqCIVCFBYW6jxua2tb5c/j64iSgp6on8xxnJiYiIdPBo47ODiA4zgIBIJqJYXHjx/Dycmp0g+9PpWWlsLe3h4SicTgsaRSKTiOg7Ozs8FjFRQUID8/Hy4uLgaPpVAoUFhYaJRYAFBYWAhHR0dYWFhUus877wABAVn4179ccPq0NVaubInkZBeEh+fC1raCtQ0qoVAoYGNjgwYNGlT5OQ1yc6u8b2XK2rXDw19/RU1eUZlMhsDAQP6+u7u7zuMFBQVGeb/XV5QUakHzZNTEtWvX+F9SdnZ2aNWqFWJjY+Hp6QmFQgGBQFDlX/2MMaSmpsLJyQniJ/PDGFJWVhYcHBzg5ORk8FhFRUUQCARwdXU1eCyO41BcXGyUWCUlJbh165ZRYgFAWloaHB0dYWtr+8L9XF2B/fs1+OGHMsyfL8ahQ7ZITbVGVFQpOnasWmLIy8uDnZ1dtc5N1KwZEBNT5f2fpZg4EaoVK1DTV5MxhqysLBQVFcHb2xt3797VSQLPvm7r16/Hd999B6lUCh8fH3z//ffw9/ev9Pj//ve/MXfuXNy+fRstW7bEsmXLMGDAgBqWtu6hPoVqKm/eSU1NxalTpwAAYrEYfn5+AICmTZvCysrKZOUj5GkCATB5snaKDA8PDTIyBAgKssKPPxpuigzlpElg5tWbm4mJRCjs2ROXDhyAYsWKWsXnOA4SiYT/8pdIJDq3p2vtu3btwvTp0xEWFoZLly7Bx8cH/fv3R15eXoXHjo2NxUcffYRx48YhISEBISEhCAkJwbVr12pV5rqEkkIVyWQy3LhxA2fOnAGgTQ4dOnQAALRs2fKlv9oIMaXyKTLeeUcJpZLDl19aYMwYCxiie4e1agXFxIkv3geARiSCxs4OzN4erFEjCIqL0eDoUUAPzU9VtWrVKkyYMAFjxoxB27ZtsWnTJlhZWWHr1q0V7r927VoEBwfjyy+/hLe3N8LDw9GpUyf88MMPRiuzoVFSqIKkpCTExcWhpKQErVu3BgB4e3vDwcHBxCUjpOocHIBffy3DkiXaGVf37jU32Ogk5ZIlKAsPB7Ox4beVX7XMhELA2hpc+XKdAgGg0UB07x6c9uyBeMoUCPfsAeRyvZfraQqFAvHx8QgKCuK3CQQCBAUFIS4ursLnxMXF6ewPAP379690//qIkkIVeHl5oXfv3vD19UWjRo1MXRxCaozjgM8/V+LQoRI0aaLBzZtC9OljhT/+0H/3omrKFBQnJEAxcSI0TZpo11AwM9P+KxQC5ubg1GqwJ/1tnFoNgVIJwdWrEK1cCdE330CQmqr3cpV78OAB1Gr1cwMfnJ2dIZVKK3yOVCqt1v71ESWFKrC2tjbKSCBCjKVLFw1OnSpBYKAKxcUcRo2yxLx5IjwZRKc/zs5QrFiBkpMnIf/Xv6Bp1gwQi8HMzcGEQm1CeDL3ERgDp9Fo/330CGaHDkE0bRrMduwweK2B/A8lBUJeU46ODHv3lmLKFO11NWvWiDFkiCUePzZAsEaNoPryS5Tt2AHle++BNWqkrS2IxWBmZuAAaABwGg2fGKBUQnDzJsyXL4f53Ll672twdHSEUChE7jPHzc3NrXR4sYuLS7X2r48oKRDyGjMzA8LD5YiMLIWVFcPff5uhb18rpKUZ5uIu1rIlFCtWQLFwIVQ9e4I9GaDBOA4cnkyIp1Bo/1WptLWGwkKY79sH8bRp4JKT9VYWkUiEzp07Izo6mt+m0WgQHR2NgICACp8TEBCgsz8AHD16tNL96yNKCoQQDBmiwl9/Pd3PYI2TJw20RoNQCHW/flCsWwfFnDlgHTuCE4u1HR5PmpM4pVJ7X6UC1GpAoYAwLg7imTPBnT+vt6JMnz4dW7ZswbZt25CSkoLPPvsMxcXFGDNmDABg5MiR+Prrr/n9p0yZgsOHD2PlypVITU3F/PnzcfHiRYSGhuqtTKZGSYEQAgDw8dEgJqYEfn5qPH7M4d13LXHkiAEHVlhbQx0SgrJ166AYOxZKV1dtsxFj2oSgVGr/r1JpbwoFBJcvw2LWLHB6mlJk2LBhWLFiBebNmwdfX18kJibi8OHDfGdyZmYmcnJy+P27du2K3377DZs3b4aPjw/27NmDffv2oV27dnopT11AvaeEEJ6zM8PBgyX49FML7N1rjvDw1iguzkNYGKo9b1KVNWoE1ZQpkHp5we6XX9AgORmcTPa/moJGo60tPCkAl5IC0b/+Bfm2bUDjxrUOHxoaWukv/ZgKrsweOnQohg4dWuu4dRXVFAghOiwsgK1byxAaqu2AXrXKCV99JX56LRyDKO3QAXe+/BLKcePAHB21iYAx7b/ltyed0MKkJJgvXQqDXZb9GqOkQAh5jkAALF4sR2joLQDAxo0iTJki1v+Q1WdobGygmjoV8vnzwZo21SaBp26cWg1OrQZUKpj9/Te4V2h6ibqCkgIhpFLDht3D4sX3IBAwbNsmwsSJFoZfB1oggGbgQMiXLgVzdwdUKu1Q1fKawpPEIHj8GMIn084Q/aGkQAh5oZCQAmzdqp0a49//Nsenn1oYvMYAAJpu3SBfsAAQif7XAV1ea1CrAbkcglu3DF+Q1wwlBULIS733ngrbt2sTw+7d5pg2TWyU5nxNp07aWgIAvp+7PDmo1YAeVncjuigpEEKq5O23VdiypQwCAUNUlAhz5hh4vY/8fFgOHw7uyUqGAHSTg0ajnUeJ6BUlBUJIlQ0ZosIPP5QBAL7/XoQtW6q3bkJ1mO3bB+FLOpI1Hh4Gi/+6oqRACKmWESNUmDdPO0Hdl1+KceSIYa58Fl64AFZ+fcLTNzypLYhEUHftapDYrzNKCoSQapsxQ4Hhw5XQaDiMGWNpkLmSmI2NdtI8ofC5pAAAmhYtwJ6seEj0h5ICIaTaOA5Yu7YMXbuqUFTEYfRoS5SV6TeG+p//BCQS3WTwpHeb2dhAPneu9oIKolf0ihJCakQk0l757OiowZUrQnz9tX47fdU9e0I5ahSYg4N2zYUnE+axhg1RtmoVNP/8p17jES2a+4gQUmONGzNs2VKG996zRESECIMGqdC7t54uYhAKoZg9G6r+/WH255/gcnOhfuMNqEaM0K4tSgyCkgIhpFb69lVjwgQlNm8WYcoUC8TFFcPaWk8H5zho/PygoL4Do6HmI0JIrYWFyeHmpsHt2wIsWyYydXFILVBSIITUmq0tsHKltqd540YRsrMNNc82MTRKCoQQvQgOVqNrVxXkco5qC/UYJQVCiF5wHDB/vnZKiu3bzam2UE9RUiCE6M0//qFG9+4qqNUcoqIMNwUGMRxKCoQQvRo3TgkA2LbNHEqliQtDqo2SAiFErwYOVKFhQw2kUgHOnDHMvEjEcCgpEEL0SiQC+vfXXsB29ChdClXf0F/MgOLi4qBUKsFx1e9wu3DhQo2eV10KhQKpqam4efOmwWOpnqzjmJuba/BYarUaarUaZ4ywXCNjDIwxo8QCAKVSicTERAiMMO+PUqlEQUEB7ty5U63neXq6APDFvn0KDBhQtddFpVKBMYb8/PwalPR/GGMoKSkBYwxmZmYoLCzUedzW1tYon636ipKCnikUCly/fh0A4O7uDrFYDIFAUOUPMGMMly5dQuvWrSESGX5YX0pKClxcXOBghGkDMjMzIRAI4ObmZvBYDx8+xP3799GmTRuDxyorK0NSUhLatWtn8FgAkJiYiObNm8Nab5cNV+7mzZuws7ODk5NTtZ7n6irAkiXA3bs2aNasPaysXr5M27179yCXy9G0adOaFhcAUFRUhLZt2/L33d3ddR4vKCiARCKpVYxXGSUFPWFPZm+Mi4uDvb09AMDNzQ0KhaLaSQEAJBIJxEZYVUooFMLKygp2dnYGj1WeII0Rq7S0FGZmZkaJZW5uDo7jjBILAAQCAWxtbWFra2vwWObm5rC0tKz2udnZAY6OGjx4IIBUao+OHTUvfc6jR4/AGKv16yiRSJCVlYWioiJ4e3vj7t27OkngZa/bo0eP8MUXX+DPP/+EQCDAkCFDsHbtWtjY2FT6nM2bN+O3337DpUuXUFRUhPz8fP57oL6hPgU9kMvluHLlCgCgTZs26NChg4lLRIjptWmjTQSpqcb9muE4DhKJhP/yl0gkOreXNR0NHz4cSUlJOHr0KPbv34+TJ09i4sSJL3xOSUkJgoODMXv2bL2dh6lQTaEWnq4dODo6AgCcnZ1NWSRC6oxOnTQoKVHDwsLUJam6lJQUHD58GBcuXIDfk0n4vv/+ewwYMAArVqxA48aNK3ze1KlTAQAxMTFGKqnhUFKoodLSUqSkpAAA3njjDTRq1AhSqdTEpSKk7li4UG7qIlRbefOv31OzsgYFBUEgEODcuXN49913TVg646Dmo2oqrx2cPXsWFk9+AjVq1MiURSKE6IlUKn2uU93MzAwNGjR4bX70UVKohuLiYsTHxwMAOnTooDPCgRBSd3311VfgOO6Ft9TUVFMXs06g5qMqYIwhIyMD6enpaNy4MR4/foyGDRuauliEkCqaMWMGRo8e/cJ9mjVrBhcXF+Tl5elsV6lUePToEVxcXAxYwrqDkkIVXL58GcXFxfDz84OtrS3u3r1r6iIRQqqhUaNGVWrmDQgIwOPHjxEfH4/OnTsDAP7++29oNBp06dLF0MWsEygpVEHz5s1hY2MDMzMz/qrcqtBoNGCM8f9WRfl+5VfkGoNGozFKrPLXwhixNBrtcMhXLVY5Y70/yq/Wro+xanLlvLe3N4KDgzFhwgRs2rQJSqUSoaGh+PDDD/mRR9nZ2ejbty9+/vln+Pv7A9D2RUilUqSlpQEArl69CltbW3h4eKBBgwZ6OR9joaRQBba2ttWaUqD8S0Iul4PjuGolhOzsbD6WoT+IpaWlKCkpgVAoNMqHvri4GHZ2dkaJpVKpwHGc0ZICY4yPaWhCoRClpaWwsrIyeCwzMzPk5+fDycnJ4OdWHksmk8HS0rLWx/vll18AaAeF9OvXr8rP+/XXXxEaGoq+ffvyF6+tW7eOf1ypVOL69esoKSnht23atAnffvstf79nz54AgMjIyJc2W9U1lBT0TK1WQ/lkvuDyuVeqkhQ0Gg3S09Px8OFD+Pj4GHyKC6VSieTkZKNNcVFYWIjCwkK0adPGKHP2FBcXw9ra2iixykehKRQKvXyZvYyLiwvu3btnlFFvTZs2xaVLlyCVStGkSRODxnJ1dYVcLsfly5fRvn37Wl+xPXv2bFhbW2PYsGGYNm0aJk+erPN+qGwOpAYNGuC3336r9LheXl7Pfabnz5+P+fPn16q8dQXHqvoz9jWlVqshl8shEAjAcRxUKhWOHTuGoKAgAOD/r9Fo8Pfff6N79+7gOA5nzpzhawyEEOMrKSnBxx9/XOnjNAdSxaimoAcajYavHahUKojFYnTv3r1KNYTS0lIkJydDJBLB29sbZmaG/ZMwxnDz5k0UFRXBx8fH4PEAID8/H8nJyfD394e5ueFX49JoNDhz5gw6d+5slCYWALhy5QqcnJyMNkIlLS0NSqUS3t7eRomXlZWFrKwsdOrUySgTNebm5uLmzZto1apVtSfjK1c+ahDQTpI3a9YspKSkYOXKlfD39wdjDIWFhTRr6jOopvASVakpUO2AkLrtRbUGqjHooppCDT09iqa6tQMAuH//Pq5fvw4vLy80adLEKL9UHj58iJSUFPj4+Bhlhk0AePDgAW7evAl/f38IhcZZhUsqlSI3Nxc+Pj5GiQcAd+7cQWlpqVGm6i6XlJQES0tLNGvWzCjxVCoVEhIS0KhRI3h5eRklZmFhIa5du4YmTZrAw8Ojxp+Tp2sNSUlJ+OKLL9CiRQssX76crzGUe91rDlRTeInKago9evQAAKodEFLPUF/Di1FNoZrKawcajQZisRiBgYFVrh1oNBrcuHEDDx48QIcOHYz2xpPL5YiPj0fjxo2N9gsP0P5iv3XrFv7xj38YZRRQufJzdXV1NVrM/Px8pKSkoGvXrkaLCWjPtVGjRvDw8DBaTKlUihs3buDNN980ymgrQNv3duXKFVhZWeGNN96o1fuJMYa7d++CMYaff/4ZixYtwqxZszBlyhR+rYrXGc19VEWMMSiVSr5DuXxbVROCUqnElStXUFhYiM6dOxstIajValy7dg12dnbw9PQ0SkxAmwAzMjLg5eVl1ITAGENRUZHRP9gWFhaQy+VGrzW6u7sjKyvLqHFdXFzg4uKCa9euGe2CPUtLS3Ts2BEKhQJXrlyp1kWkzypfb8HOzg6hoaH4/fffsX37dnz44Yd4+PAhioqK+CHUr2NDCjUfvYRarUZZWRnUajU0Gg0/soWajAip/6gp6XmUFF5CqVQiNzcXarWaX1azOtNWJCQkYM+ePZg4cWKtOspqYt26dXB2dsZ7771nlKGg5crKyjBz5kzMnDnTqM1VAPDXX38hKSkJ06dPN2pcAJg3bx4GDx7Mz5ljLJcvX8Yvv/yC5cuXG/X9pVAosHXrVtjb2+PDDz80WlyNRoNbt25hw4YNmDp1aq2azhhjkMlk/P1ff/0Vq1evxtSpUzFr1izY2dm9dp3OlBReoqCgoNZrrTo6OuLBgwf6KVA1cByHBg0a4OHDh0aPXd15ovTJ3Nxcp5nPWIw1XcizzM3N+ZqssTVo0ACPHj0yelwAsLOzQ0FBgcGO/zrWEgBKCi9V3kZdm+eb6peGKWOT14ep3mflX12Giv26Dk2lpEAIIYRHo48IIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEJe4NGjRxg+fDgkEgns7e0xbtw4nWsbKtr/iy++QOvWrWFpaQkPDw9MnjzZoMNn9YmSAiGEvMDw4cORlJSEo0ePYv/+/Th58iQmTpxY6f737t3DvXv3sGLFCly7dg1RUVE4fPgwxo0bZ8RS1wIjhBBSoTlz5jAATCQSMX9/f3bu3Dl26NAhxnEcy87Ofm7/3bt3s9atWzOxWMzatWvHDhw4wG8XiURMqVQa+xSqjWoKhBBSgV27dmHp0qWwtLREQkICfHx80L9/f3To0AECgQDnzp3T2T82NhYfffQRxo0bh4SEBISEhCAkJATXrl3jr442xkqHtUUXrxFCSAW6dOkCjuOQn5+P69evQ6PRwN3dHV988QVWrVqFb7/9Fp999hm//7Bhw1BcXIz9+/fz2/7xj3+gTZs2OH78OEaMGIFFixaZ4lSqhWoKhJDXzldffQWO4154i4+PR4sWLfjnCAQCuLm5YcGCBbh//z6WL1+O8+fP84/HxcXxy/QCwJYtW5CdnY1t27bh3r17OHv2rM7+dRUlBULIa2fGjBlISUmp9HbixAmo1Wp4eHggLy8PgLY5KT4+Hs7OzhAIBGjZsiX69+/PPy6VSuHs7MzHOHr0KEpLS2FmZoaLFy/Cw8MD/fr1Q3Z2tknOuaooKRBCXjuNGjVCmzZtKr2V1xDat2+Px48fIz4+HqtWrUKHDh0gFovBGEPPnj1RVFSEJk2aoEuXLjqz1BYWFuLu3btwcHCAg4MDfHx88NNPP0Gj0WDRokXgOA4hISEmOvsXo6RACCHPcHR0hFAohKWlJYKDgzFu3DjEx8cDALKyshAQEIDw8HB06dIF/v7+fJ9DWloaCgsL0a9fPxQXFyM4OBiNGjWCVCpFRkYG5HI5du/eza/xXhdRRzMhhFSg/Av/22+/xdixY/Gf//wHANC5c2dwHIcuXbrAysoKR44cweXLlyESidCsWTNs3LgRvXv3rvCYIpEIa9euxdmzZ/H48WPs27fPiGdUNVRTIISQCkyfPh1btmzBn3/+iWnTpgEAbGxs8McffyAhIQHXrl3DyZMn+eakPn364Pr164iPj0dKSgrCwsJgbm6Oq1evYsmSJbCwsEC3bt3w6aefmvjMXqzuD5olhBATGDZsGO7fv4958+YhJycHADB37lx+hb2CggIUFRXhjTfeAKDtf0hLS8PmzZsxe/ZstGzZEvv27cPhw4excOFCSCQS7N6925SnVCVUU6il9evXw8vLCxYWFujSpctLh5ytWbOGnxPF3d0d06ZNQ1lZmcFjBwYGVjjs7u233zZ4bAB4/PgxPv/8c7i6ukIsFqNVq1Y4ePCgwWNHRUU9d84WFhY1ilvd2E/buXNnrTsXqxN779698PPzg729PaytreHr64vt27cbJfaWLVvQo0cPvpM1KCioVkMxqxM7KSkJQ4YMgZeXFziOw5o1a2ocFwBCQ0Nx584dKBQK+Pv74+7du/xjP/zwA8rKyhAQEMBva9CgAa5fvw65XI5r167h2rVrWLBgASQSCaKiouDo6Fir8hiFKS+nru927tzJRCIR27p1K0tKSmITJkxg9vb2LDc3t8L9f/31VyYWi9mvv/7KMjIy2F9//cVcXV3ZtGnTDB774cOHLCcnh79du3aNCYVCFhkZafDYcrmc+fn5sQEDBrDTp0+zjIwMFhMTwxITEw0eOzIykkkkEp1zl0ql1Y5bk9jlMjIyWJMmTViPHj3Y4MGDjRL7+PHjbO/evSw5OZmlpaWxNWvWMKFQyA4fPmzw2B9//DFbv349S0hIYCkpKWz06NHMzs6OZWVlGTz2+fPn2cyZM9mOHTuYi4sLW716dbVjvqgsYrGY/fTTT0woFLJ+/foxe3t7/v3UrFkz1qJFC37/pUuXMpFIxL777jsGgAmFQv7GcRzjOI4JhUKWlpamtzLqAyWFWvD392eff/45f1+tVrPGjRuzJUuWVLj/559/zvr06aOzbfr06axbt24Gj/2s1atXM1tbWyaTyQwee+PGjaxZs2ZMoVBUO1ZtY0dGRjI7O7tax61JbMYYU6lUrGvXruynn35io0aNqnFSqO3fmzHGOnbsyObMmWP02CqVitna2rJt27YZNbanp6dekwJjjH3//ffMw8ODcRzHnJyc2NmzZ/lyiUQi1qlTJ534AJ67ffbZZ2zw4MGsT58+7OrVq0wul+u1jLVFzUc1pFAoEB8fr3MFo0AgQFBQEOLi4ip8TteuXREfH89Xf2/duoWDBw9iwIABBo/9rIiICHz44YewtrY2eOz//ve/CAgIwOeffw5nZ2e0a9cOixcvhlqtNnhsAJDJZPD09IS7uzsGDx6MpKSkasWtTewFCxbAycmpVjNk1vbvzRhDdHQ0rl+/jp49exo1NgCUlJRAqVSiQYMGRo+tb+XNSTt27EBBQQFSU1ORkpKCzz77DFZWVnyT6MiRI/HRRx+BaX9469w2bNgAe3t72Nraol27dhCJRCY5l8pQR3MNPXjwAGq1WucKRgBwdnZGampqhc/5+OOP8eDBA3Tv3h2MMahUKnz66aeYPXu2wWM/7fz587h27RoiIiKqFbemsW/duoW///4bw4cPx8GDB5GWloZJkyZBqVQiLCzMoLFbt26NrVu3okOHDigoKMCKFSvQtWtXJCUlwc3NzaCxT58+jYiICCQmJlY5jr5iA0BBQQGaNGkCuVwOoVCIDRs24K233jJK7KfNmjULjRs31vlyN1ZsQ3m6E1oqlcLX1xeHDx/my5qZmQmBoOa/uX/++WdMmzYN9+7dg1gs5reHhITA1ta2Vv1DL0NJwYhiYmKwePFibNiwAV26dEFaWhqmTJmC8PBwzJ0712jliIiIQPv27eHv72+UeBqNBk5OTti8eTOEQiE6d+6M7OxsfPfdd9VKCjUREBCg0xHYtWtXeHt748cff0R4eLjB4hYVFeGTTz7Bli1bTNa5aGtri8TERMhkMkRHR2P69Olo1qwZAgMDjVaGpUuXYufOnYiJialVB39dFBoaitDQ0Aofi4mJeeFzo6KiXvj40KFDMXnyZPz3v//F0KFDAQB5eXk4cOAAjhw5UpPiVhklhRoqv+IxNzdXZ3tubi5cXFwqfM7cuXPxySefYPz48QC0Q9iKi4sxceJEfPPNN1X+ZVGT2OWKi4uxc+dOLFiwoEqx9BHb1dUV5ubmEAqF/DZvb29IpVIoFIoqV59rc97lzM3N0bFjR6SlpVVp/5rGTk9Px+3btzFw4EB+W/k0CGZmZrh+/TqaN29ukNjlBAIBP12Dr68vUlJSsGTJkmolhdq85itWrMDSpUtx7NgxdOjQocox9RG7vrO0tMTHH3+MyMhIPin88ssv8PDwMHhSpz6FGhKJROjcuTOio6P5bRqNBtHR0Tq/TJ9WUlLy3Bd/+Rclq8aF5TWJXe7f//435HI5RowYUeV4tY3drVs3pKWl6cwNc+PGDbi6ularPbU2511OrVbj6tWrcHV1rXLcmsRu06YNrl69isTERP42aNAg9O7dG4mJiXB3dzdY7MpoNBrI5fIq71+b2MuXL0d4eDgOHz4MPz+/asWsbexXxYQJE3DkyBF+Ar2oqCiMHj0aHMcZNrDp+rjrv/IhalFRUSw5OZlNnDhRZ4jaJ598wr766it+/7CwMGZra8t27NjBbt26xY4cOcKaN2/OPvjgA4PHLte9e3c2bNiwGp5xzWJnZmYyW1tbFhoayq5fv87279/PnJyc2MKFCw0e+9tvv2V//fUXS09PZ/Hx8ezDDz9kFhYWLCkpyeCxn1Wb0UfVjb148WJ25MgRlp6ezpKTk9mKFSuYmZkZ27Jli8Fjlw/F3LNnj85Q4KKiIoPHlsvlLCEhgSUkJDBXV1c2c+ZMlpCQwG7evFnt2HVBp06d2OLFi9nFixeZQCBgmZmZBo9JSaGWyoeolS/XVz5EjTHGevXqxUaNGsXfVyqVbP78+ax58+bMwsKCubu7s0mTJrH8/HyDx2aMsdTUVAaAHTlypEbxahM7NjaWdenShYnFYtasWTO2aNEiplKpDB576tSp/L7Ozs5swIAB7NKlSzWKW93Yz6pNUqhu7G+++Ya1aNGCWVhYMAcHBxYQEMB27txplNiVDcUMCwszeOyMjIwKY/fq1atGsU1tw4YNrFWrVuzzzz9n/fr1M0pMmhCPEELqqIKCAjRu3BgqlQo///wzhg0bZvCY1KdACCF1lJ2dHYYMGQIbGxujrb9ASYEQQuqw7OxsDB8+XOd6BUOi5iNCCKmD8vPzERMTg/fffx/Jyclo3bq1UeLSdQqEEFIHdezYEfn5+Vi2bJnREgJAzUeE6Lh//z5cXFywePFifltsbCxEIpHOeHlCDO327dsoKCjAzJkzjRqXmo8IecbBgwcREhKC2NhYtG7dGr6+vhg8eDBWrVpl6qIRYnCUFAipwOeff45jx47Bz88PV69exYULF4zW0UeIKVFSIKQCpaWlaNeuHe7evYv4+Hi0b9/e1EUixCioT4GQCqSnp+PevXvQaDS4ffu2qYtDiNFQTYGQZ5Svx+vr64vWrVtjzZo1uHr1KpycnExdNEIMjpICIc/48ssvsWfPHly+fBk2Njbo1asX7OzssH//flMXjRCDo+YjQp4SExODNWvWYPv27ZBIJBAIBNi+fTtOnTqFjRs3mrp4hBgc1RQIIYTwqKZACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPAoKRBCCOFRUiCEEMKjpEAIIYRHSYEQQgiPkgIhhBAeJQVCCCE8SgqEEEJ4lBQIIYTwKCkQQgjhUVIghBDCo6RACCGER0mBEEIIj5ICIYQQHiUFQgghPEoKhBBCeJQUCCGE8CgpEEII4VFSIIQQwqOkQAghhEdJgRBCCI+SAiGEEB4lBUIIITxKCoQQQniUFAghhPD+H8cciyUs5Kd0AAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.angle1 = 0\n", + "visualizer.angle2 = 90\n", + "visualizer.plot_trajectory(np.array(traj_actual), np.array(traj_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zV1tmbQ1NJyk" + }, + "source": [ + "## Orientation" + ] + }, + { + "cell_type": "code", + "execution_count": 934, + "metadata": {}, + "outputs": [], + "source": [ + "or_pred, or_traj = metrics['or_traj'][0], metrics['or_traj'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 935, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<Figure size 640x480 with 0 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChz0lEQVR4nOzdd1zU9R/A8dexUQQ0VFRIXJl74Mj6kZoDR7nLVbhNy9yaNpw5cq/MLLdppqKV5krR1ExLQytHDhy4FyAOkOPz++MLJ8fywDuOg/fz8bgHx/f7ue+978u4932+n8/7o1NKKYQQQgghRKrsrB2AEEIIIUR2JsmSEEIIIUQ6JFkSQgghhEiHJEtCCCGEEOmQZEkIIYQQIh2SLAkhhBBCpEOSJSGEEEKIdEiyJIQQQgiRDkmWhBBCCCHSIcmSEM+oa9eu+Pn5mf24U6dOpWTJktjb21O1alUA4uLiGD58OL6+vtjZ2dGqVSuzP29OoNPpGDNmjLXDyLQxY8ag0+msHYZVpPba/fz86Nq1q9mew1J/syLnkmRJ5EhLly5Fp9Olefv999+zPKbz58+nG9PkyZMNbbdv387w4cN55ZVXWLJkCRMnTgRg8eLFTJ06lXbt2rFs2TIGDRpk9jhXrVrFrFmzzH7cp3n8+DFz5syhZs2a5MuXDzc3N2rWrMmcOXN4/PhxlsfzNM96nh48eMCYMWPYvXu32WIyh6S/k3Z2dhQtWpTGjRtnuzif5sqVK4wZM4bQ0FBrhyJyAAdrByCEJY0bN44SJUqk2F66dGkrRKPp2LEjzZo1S7G9WrVqhvu7du3Czs6ORYsW4eTkZLS9WLFizJw502LxrVq1in/++YeBAwda7DmSu3//Ps2bN2fPnj28/vrrdO3aFTs7O7Zu3cqAAQMIDg5m8+bN5M2b16TjPXz4EAcHy/57e9bz9ODBA8aOHQtAvXr1jPZ98sknjBgx4hkjzLxGjRoRFBSEUoqwsDDmz5/Pa6+9xubNm2natGmWx3Pq1Cns7DL22f7KlSuMHTsWPz8/Q89soq+//pr4+HgzRihyOkmWRI7WtGlTatSoYe0wjFSvXp2333473TY3btzA1dXVKFFK3O7p6WnB6CwjLi6O+Pj4FK8n0eDBg9mzZw9z586lX79+hu19+/bliy++oF+/fgwdOpQvv/wyzeeIj48nNjYWFxcXXFxczP4aspKDg4PFk730vPDCC0a/o61bt6Zy5crMmjUrzWTp0aNHODk5ZTipMYWzs7NZj+fo6GjW44mcTy7DiVwt8dLYtGnTWLhwIaVKlcLZ2ZmaNWvyxx9/pGi/ceNGKlasiIuLCxUrVmTDhg1mj0mn07FkyRLu379vuBySeFkxJCSEf//917A98dJIfHw8s2bNokKFCri4uFC4cGHeffdd7t69m+L4W7ZsoW7duuTLlw93d3dq1qzJqlWrAK2HY/PmzVy4cMHwHEnHdty4cYMePXpQuHBhXFxcqFKlCsuWLTM6ftJzOmvWLMM5PX78eKqvNzw8nEWLFvHaa68ZJUqJ3n//ferXr88333xDeHi40Xnq168f3377LRUqVMDZ2ZmtW7ca9iUfs3T58mW6d+9O4cKFcXZ2pkKFCixevNioze7du9HpdHz//fdMmDABHx8fXFxcaNCgAWfOnDG0S+88xcbGMmrUKPz9/fHw8CBv3rwEBAQQEhJidI4KFiwIwNixYw3HSIw5tXE7cXFxjB8/3nA+/fz8+Oijj4iJiTFq5+fnx+uvv86+ffuoVasWLi4ulCxZkuXLl6d6/k1RqVIlvLy8CAsLMzpP3333HZ988gnFihUjT548REVFAXDw4EGaNGmCh4cHefLkoW7duuzfvz/Fcfft20fNmjVxcXGhVKlSfPXVV6k+f2pjliIiIhg0aBB+fn44Ozvj4+NDUFAQt27dYvfu3dSsWROAbt26Gf0dQepjlu7fv8+QIUPw9fXF2dmZsmXLMm3aNJRSRu0Sf+8S/xck/i4l/u4lunfvHgMHDjTEV6hQIRo1asSRI0dMOucie5GeJZGjRUZGcuvWLaNtOp2O5557zmjbqlWruHfvHu+++y46nY4pU6bQpk0bzp07Z/gUun37dtq2bUv58uWZNGkSt2/fplu3bvj4+GQopgcPHqSICcDT0xMHBwdWrFjBwoULOXToEN988w2gXaJbsWIFEyZMIDo6mkmTJgFQrlw5AN59912WLl1Kt27d6N+/P2FhYcybN4+//vqL/fv3G17D0qVL6d69OxUqVGDkyJF4enry119/sXXrVjp16sTHH39MZGQk4eHhhkt9bm5ugHZpq169epw5c4Z+/fpRokQJ1q5dS9euXYmIiGDAgAFGr2fJkiU8evSI3r174+zsTIECBVI9H1u2bEGv1xMUFJTmOQsKCiIkJIStW7fSs2dPw/Zdu3bx/fff069fP7y8vNIctHv9+nVeeuklwxtdwYIF2bJlCz169CAqKirFpbTJkydjZ2fH0KFDiYyMZMqUKXTu3JmDBw8CpHueoqKi+Oabb+jYsSO9evXi3r17LFq0iMDAQA4dOkTVqlUpWLAgX375JX379qV169a0adMGgMqVK6d5Dnr27MmyZcto164dQ4YM4eDBg0yaNIkTJ06kSNrPnDlDu3bt6NGjB126dGHx4sV07doVf39/KlSokOZzpOXu3bvcvXs3xeXr8ePH4+TkxNChQ4mJicHJyYldu3bRtGlT/P39GT16NHZ2dixZsoTXXnuNvXv3UqtWLQD+/vtvGjduTMGCBRkzZgxxcXGMHj2awoULPzWe6OhoAgICOHHiBN27d6d69ercunWLH3/8kfDwcMqVK8e4ceMYNWoUvXv3JiAgAICXX3451eMppWjRogUhISH06NGDqlWrsm3bNoYNG8bly5dTXPbet28fwcHBvPfee+TLl485c+bQtm1bLl68aPjf0qdPH9atW0e/fv0oX748t2/fZt++fZw4cYLq1atn+GcgrEwJkQMtWbJEAanenJ2dDe3CwsIUoJ577jl1584dw/YffvhBAeqnn34ybKtataoqUqSIioiIMGzbvn27AlTx4sWfGlPic6V1O3DggKFtly5dVN68eVMco27duqpChQpG2/bu3asA9e233xpt37p1q9H2iIgIlS9fPlW7dm318OFDo7bx8fGG+82bN0/19cyaNUsBauXKlYZtsbGxqk6dOsrNzU1FRUUZvU53d3d148aNp56XgQMHKkD99ddfabY5cuSIAtTgwYMN2wBlZ2en/v333xTtATV69GjD9z169FBFihRRt27dMmrXoUMH5eHhoR48eKCUUiokJEQBqly5ciomJsbQbvbs2QpQf//9t2FbWucpLi7O6LFKKXX37l1VuHBh1b17d8O2mzdvpogz0ejRo1XSf8+hoaEKUD179jRqN3ToUAWoXbt2GbYVL15cAerXX381bLtx44ZydnZWQ4YMSfFcyQGqR48e6ubNm+rGjRvq4MGDqkGDBgpQ06dPV0o9OU8lS5Y0nDultN+jMmXKqMDAQKPfqQcPHqgSJUqoRo0aGba1atVKubi4qAsXLhi2HT9+XNnb2xu99sTX1KVLF8P3o0aNUoAKDg5OEX/i8/7xxx8KUEuWLEnRpkuXLkY/u40bNypAffbZZ0bt2rVrp3Q6nTpz5ozR+XFycjLadvToUQWouXPnGrZ5eHio999/P8VzC9skl+FEjvbFF1+wY8cOo9uWLVtStGvfvj358+c3fJ/4SfTcuXMAXL16ldDQULp06YKHh4ehXaNGjShfvnyGYurdu3eKmHbs2JHh4yRau3YtHh4eNGrUiFu3bhlu/v7+uLm5GS7/7Nixg3v37jFixIgUY3pMmab+888/4+3tTceOHQ3bHB0d6d+/P9HR0ezZs8eofdu2bQ2XmtJz7949APLly5dmm8R9iZd5EtWtW/ep500pxfr163njjTdQShmdo8DAQCIjI1NcGunWrZvR+Krkvw/psbe3Nzw2Pj6eO3fuEBcXR40aNTJ9Cebnn38GtLFdSQ0ZMgSAzZs3G20vX768IWaAggULUrZsWZPiB1i0aBEFCxakUKFC1K5dm/379zN48OAUPXBdunTB1dXV8H1oaCinT5+mU6dO3L5923Ce79+/T4MGDfj111+Jj49Hr9ezbds2WrVqxfPPP294fLly5QgMDHxqfOvXr6dKlSq0bt06xb7MlFz4+eefsbe3p3///kbbhwwZglIqxf+Mhg0bUqpUKcP3lStXxt3d3ej8enp6cvDgQa5cuZLheET2I5fhRI5Wq1YtkwZ4J/2HDRgSp8QxPxcuXACgTJkyKR5btmxZozfBmzdvotfrDd+7ubkZLtEkHqNhw4YZeBXpO336NJGRkRQqVCjV/Tdu3ADg7NmzAFSsWDFTz3PhwgXKlCmTYgBv4qXAxHOUKLVZiKlJTIQSk6bUpJVQmfIcN2/eJCIigoULF7Jw4cJU2ySeo0RP+314mmXLljF9+nROnjxpVPbA1HOS3IULF7Czs0txGczb2xtPT88U5z55/KC9BlPjb9myJf369UOn05EvXz4qVKiQ6kzE5K/n9OnTgJZEpSUyMpKYmBgePnyY5t9TYnKYlrNnz9K2bVtTXopJLly4QNGiRVP8fqX1u23K+Z0yZQpdunTB19cXf39/mjVrRlBQECVLljRb3CLrSLIkBFpvQGpUssGdpqhZs6bRP9fRo0dbtEBifHw8hQoV4ttvv011vym9O5aQtMchPYlvSMeOHUsxxTvRsWPHAFL0IpnyHIlTxN9+++0038STjxV6lt+HlStX0rVrV1q1asWwYcMoVKgQ9vb2TJo0yZCwZpapvSbP+vvs4+NjUkKf/PwnnuupU6em+bN0c3NLMSjd1phyft966y0CAgLYsGED27dvZ+rUqXz++ecEBwdbpfyCeDaSLAlhguLFiwNPPjknderUKaPvv/32Wx4+fGj43tKfJEuVKsUvv/zCK6+8km7ykHjZ4J9//km3zlRab8jFixfn2LFjxMfHG/UunTx50rA/M5o2bYq9vT0rVqxIc5D38uXLcXBwoEmTJhk+fsGCBcmXLx96vd6sPXppnad169ZRsmRJgoODjdqMHj3apMenpnjx4sTHx3P69GlDcgnawPWIiIhMn3tzS/wdc3d3T/dcFyxYEFdXV5P+ntJ6nn/++SfdNhk9v7/88gv37t0z6l161t/tIkWK8N577/Hee+9x48YNqlevzoQJEyRZskEyZkkIExQpUoSqVauybNkyIiMjDdt37NiRYkr8K6+8QsOGDQ03SydLb731Fnq9nvHjx6fYFxcXR0REBACNGzcmX758TJo0iUePHhm1S/qJOG/evEavMVGzZs24du0aa9asMTr+3LlzcXNzo27dupmK39fXl27duvHLL7+kWkdpwYIF7Nq1ix49emR45iFovQBt27Zl/fr1qb7B3rx5M1Nxp3WeEnsdkp7TgwcPcuDAAaN2efLkATD8fNKTWMQ0ecXwGTNmANC8eXOT47Ykf39/SpUqxbRp04iOjk6xP/Fc29vbExgYyMaNG7l48aJh/4kTJ9i2bdtTn6dt27YcPXo01dIdiec98bKhqedXr9czb948o+0zZ85Ep9NlOLnR6/UpfjcKFSpE0aJFbb5XLbeSniWRo23ZssXw6TCpl19+OcNJzKRJk2jevDn/+9//6N69O3fu3GHu3LlUqFAh1TeGtBw5coSVK1em2F6qVCnq1KmToZhAG+T87rvvMmnSJEJDQ2ncuDGOjo6cPn2atWvXMnv2bNq1a4e7uzszZ86kZ8+e1KxZk06dOpE/f36OHj3KgwcPDPWS/P39WbNmDYMHD6ZmzZq4ubnxxhtv0Lt3b7766iu6du3K4cOH8fPzY926dezfv59Zs2alO0D7aWbOnMnJkyd577332Lp1q6EHadu2bfzwww/UrVuX6dOnZ/r4kydPJiQkhNq1a9OrVy/Kly/PnTt3OHLkCL/88gt37tzJ8DHTOk+vv/46wcHBtG7dmubNmxMWFsaCBQsoX7680e+Jq6sr5cuXZ82aNbzwwgsUKFCAihUrpjqmrEqVKnTp0oWFCxcSERFB3bp1OXToEMuWLaNVq1bUr18/0+fGnOzs7Pjmm29o2rQpFSpUoFu3bhQrVozLly8TEhKCu7s7P/30E6DVl9q6dSsBAQG89957hsS7QoUKhsuuaRk2bBjr1q3jzTffpHv37vj7+3Pnzh1+/PFHFixYQJUqVShVqhSenp4sWLCAfPnykTdvXmrXrp3quLE33niD+vXr8/HHH3P+/HmqVKnC9u3b+eGHHxg4cKDRYG5T3Lt3Dx8fH9q1a0eVKlVwc3Pjl19+4Y8//nim32NhRdaahieEJaVXOoAk04kTp7lPnTo1xTFIZVr3+vXrVbly5ZSzs7MqX768Cg4OTjENOS1PKx2QdGp0RkoHJFq4cKHy9/dXrq6uKl++fKpSpUpq+PDh6sqVK0btfvzxR/Xyyy8rV1dX5e7urmrVqqVWr15t2B8dHa06deqkPD09U5RFuH79uurWrZvy8vJSTk5OqlKlSimmZqd3TtMTExOjZs6cqfz9/VXevHlVnjx5VPXq1dWsWbNUbGxsivZAmlOzU/vZXb9+Xb3//vvK19dXOTo6Km9vb9WgQQO1cOFCQ5vEKfFr165N9TUlfa1pnaf4+Hg1ceJEVbx4ceXs7KyqVaumNm3alOrvyW+//ab8/f2Vk5OTUczJSwcopdTjx4/V2LFjVYkSJZSjo6Py9fVVI0eOVI8ePTJqV7x4cdW8efMU56Ru3bqqbt26qZ6v5OfuaVPe0zpPif766y/Vpk0b9dxzzylnZ2dVvHhx9dZbb6mdO3catduzZ4/h9ZcsWVItWLAg1deevHSAUkrdvn1b9evXTxUrVkw5OTkpHx8f1aVLF6PyED/88IMqX768cnBwMPr5pfazuHfvnho0aJAqWrSocnR0VGXKlFFTp041KoGQ3vlJGmNMTIwaNmyYqlKlisqXL5/KmzevqlKlipo/f35ap1RkczqlMjGCVQghhBAil5AxS0IIIYQQ6ZBkSQghhBAiHZIsCSGEEEKkQ5IlIYQQQoh0SLIkhBBCCJEOSZaEEEIIIdIhRSnNID4+nitXrpAvX75MrXgthBBCiKynlOLevXsULVo0xSLhSUmyZAZXrlzB19fX2mEIIYQQIhMuXbqU7nJKkiyZQeIyD5cuXcLd3d3K0QghhBDCFFFRUfj6+j51uSZJlswg8dKbu7u7JEtCCCGEjXnaEBoZ4C2EEEIIkQ5JloQQQggh0iHJkhBCCCFEOmTMUhaJj48nNjbW2mEIAYCjoyP29vbWDkMIIWyCJEtZIDY2lrCwMOLj460dihAGnp6eeHt7S20wIYR4CkmWLEwpxdWrV7G3t8fX1zfdoldCZAWlFA8ePODGjRsAFClSxMoRCSFE9ibJkoXFxcXx4MEDihYtSp48eawdjhAAuLq6AnDjxg0KFSokl+SEECId0s1hYXq9HgAnJycrRyKEscTk/fHjx1aORAghsjdJlrKIjAsR2Y38TgohhGnkMpwQQojcQa+HvXvh6lUoUgQCAkAuQQsT2FTP0q+//sobb7xB0aJF0el0bNy48amP2b17N9WrV8fZ2ZnSpUuzdOnSFG2++OIL/Pz8cHFxoXbt2hw6dMj8wQuzMvXnb0716tVj4MCBWfqcQogM0uth925YvVr7mjAUguBg8POD+vWhUyftq5+ftj29xwmBjSVL9+/fp0qVKnzxxRcmtQ8LC6N58+bUr1+f0NBQBg4cSM+ePdm2bZuhzZo1axg8eDCjR4/myJEjVKlShcDAQMNModzuwIED2Nvb07x58ww/1s/Pj1mzZpk/qKfQ6XTp3saMGZOp4wYHBzN+/HizxSnJlxBmllZCNHw4tGsH4eHG7S9f1rYPH55+IiVyPZu6DNe0aVOaNm1qcvsFCxZQokQJpk+fDkC5cuXYt28fM2fOJDAwEIAZM2bQq1cvunXrZnjM5s2bWbx4MSNGjDD/i7AxixYt4oMPPmDRokVcuXKFokWLWjukp7p69arh/po1axg1ahSnTp0ybHNzczPcV0qh1+txcHj6n0KBAgXMG6iZxMbGygQCIYKDtcRHKePt4eEwdarh2yjyEYMzBbiDvUqofZdkv0FiIrVuHbRpI5fwcjmb6lnKqAMHDtCwYUOjbYGBgRw4cADQ3mQOHz5s1MbOzo6GDRsa2qQmJiaGqKgoo1tOFB0dzZo1a+jbty/NmzdP9RLmTz/9RM2aNXFxccHLy4vWrVsDWq/JhQsXGDRokKFHB2DMmDFUrVrV6BizZs3Cz8/P8P0ff/xBo0aN8PLywsPDg7p163LkyBGT4/b29jbcPDw80Ol0hu9PnjxJvnz52LJlC/7+/jg7O7Nv3z7Onj1Ly5YtKVy4MG5ubtSsWZNffvnF6LjJe4JiYmIYOnQoxYoVI2/evNSuXZvdu3cbPWb//v3Uq1ePPHnykD9/fgIDA7l79y5du3Zlz549zJ4923B+zp8/D8CePXuoVasWzs7OFClShBEjRhAXF2cUR79+/Rg4cCBeXl4EBgbSvXt3Xn/9daPnfvz4MYUKFWLRokUmnzshsr3ULpfp9TBggCFRuk8e/qIq3/MmE/iIrizhFfZRiOt4EEUhbuJELN5cpTJHacgOOrOSQcxgJgM5SdknSdfAgVrCJD1PuZpN9Sxl1LVr1yhcuLDRtsKFCxMVFcXDhw+5e/cuer0+1TYnT55M87iTJk1i7NixmYpJKXjwIFMPfWZ58kBGJkB9//33vPjii5QtW5a3336bgQMHMnLkSEPis3nzZlq3bs3HH3/M8uXLiY2N5eeffwa0S1ZVqlShd+/e9OrVK0Nx3rt3jy5dujB37lyUUkyfPp1mzZpx+vRp8uXLl6FjpWXEiBFMmzaNkiVLkj9/fi5dukSzZs2YMGECzs7OLF++nDfeeINTp07x/PPPp3qMfv36cfz4cb777juKFi3Khg0baNKkCX///TdlypQhNDSUBg0a0L17d2bPno2DgwMhISHo9Xpmz57Nf//9R8WKFRk3bhwABQsW5PLlyzRr1oyuXbuyfPlyTp48Sa9evXBxcTG6fLhs2TL69u3L/v37Abh9+zavvvoqV69eNRSZ3LRpEw8ePKB9+/ZmOWdCWF1wsJYUJb2c5uMDvXrxOPwaW3iDpXRlE6/zmPR7W+Ox5zreXMc7xb7BzORFTtBabaD1pQ3UePNNUvzrTN7zJHK0HJ0sWcrIkSMZPHiw4fuoqCh8fX1NeuyDB5DkKlCWio6GvHlNb79o0SLefvttAJo0aUJkZCR79uyhXr16AEyYMIEOHToYJY5VqlQBtEtW9vb25MuXD2/vlP+M0vPaa68Zfb9w4UI8PT3Zs2dPit6TzBo3bhyNGjUyfF+gQAFD7ADjx49nw4YN/Pjjj/Tr1y/F4y9evMiSJUu4ePGi4dLk0KFD2bp1K0uWLGHixIlMmTKFGjVqMH/+fMPjKlSoYLjv5OREnjx5jM7P/Pnz8fX1Zd68eeh0Ol588UWuXLnChx9+yKhRowwV4MuUKcOUKVOMYipbtiwrVqxg+PDhACxZsoQ333zT6LKjEDYrjctsoeFeLBudj2+5zE0KGbZ7cZMynE5xK80ZXHnILby4QSGuU5gbFDLcP0oVdvEaJynHJMoxiY/w4RKt2UBrNlCXPdihtDh0Oq3nqWVLuSSXw+XoZMnb25vr168bbbt+/Tru7u64urpib2+Pvb19qm3Se4N3dnbG2dnZIjFnF6dOneLQoUNs2LABAAcHB9q3b8+iRYsMyVJoaGiGe41Mcf36dT755BN2797NjRs30Ov1PHjwgIsXL5rtOWrUqGH0fXR0NGPGjGHz5s1cvXqVuLg4Hj58mOZz/v333+j1el544QWj7TExMTz33HOAdn7efPPNDMV14sQJ6tSpY1QD6ZVXXiE6Oprw8HBDL5e/v3+Kx/bs2ZOFCxcyfPhwrl+/zpYtW9i1a1eGnl+IbCnZZbZ7uLGIHiylK0epamhWmGu8zUq6sIxK/JPuIYtwjSJcS3VfJO5spjkbaM0WmhKOL3Ppz1z6U5W/+JwPacwOLZ5Ll7TLgfb2Mp4pB8vRyVKdOnUMl4US7dixgzp16gDaJ3t/f3927txJq1atAIiPj2fnzp2p9iaYQ548Wg+PNWRktZVFixYRFxdnNKBbKYWzszPz5s3Dw8PDsGRGRtjZ2aGSfTJMXkG6S5cu3L59m9mzZ1O8eHGcnZ2pU6cOsbGxGX6+tORN1sU2dOhQduzYwbRp0yhdujSurq60a9cuzeeMjo7G3t6ew4cPp1gqJLEnJzPnx1TJ4wcICgpixIgRHDhwgN9++40SJUoQEBBgsRiEsJjkg6n1eggPRwHf0YGhTOMKxQBwIoYW/EgXlhHINhyJS/u4Ol3KAeCp8CCKTqymE6t5iAu/0JANtGY9bQmlGoFspyE7mMJwqhEKb70Fd+48OYCPD8yeLZfnchCbGuAdHR1NaGgooaGhgFYaIDQ01PDpf+TIkQQFBRna9+nTh3PnzjF8+HBOnjzJ/Pnz+f777xk0aJChzeDBg/n6669ZtmwZJ06coG/fvty/f98wO87cdDrtUpg1bqaOV4qLi2P58uVMnz7dcL5DQ0M5evQoRYsWZfXq1QBUrlyZnTt3pnkcJycnw3IviQoWLMi1a9eMEqbEn2ei/fv3079/f5o1a0aFChVwdnbm1q1bpgWfSfv376dr1660bt2aSpUq4e3tbRhwnZpq1aqh1+u5ceMGpUuXNrol9kpm5vyUK1eOAwcOGJ2f/fv3ky9fPnx8fNJ9Dc899xytWrViyZIlLF261GK/w0JYVGrT/996i38pz2vsohOruUIxSnGGebzPFYqylrd4nc1aopT8H51Op92GDYNixYz3+fpq2xPbJH8c4Moj3mATi+nBWUoxkJk4EssvNKI6f9GZlYTdcTd+bOJ4JhkAnnMoGxISEqKAFLcuXboopZTq0qWLqlu3borHVK1aVTk5OamSJUuqJUuWpDju3Llz1fPPP6+cnJxUrVq11O+//56huCIjIxWgIiMjU+x7+PChOn78uHr48GGGjmlNGzZsUE5OTioiIiLFvuHDh6saNWoopbRza2dnp0aNGqWOHz+ujh07piZPnmxo26hRI9WiRQsVHh6ubt68qZRS6vjx40qn06nJkyerM2fOqHnz5qn8+fOr4sWLGx5XrVo11ahRI3X8+HH1+++/q4CAAOXq6qpmzpxpaAOoDRs2PPW1LFmyRHl4eBi+T/wdunv3rlG71q1bq6pVq6q//vpLhYaGqjfeeEPly5dPDRgwwNCmbt26Rt937txZ+fn5qfXr16tz586pgwcPqokTJ6pNmzYppZQ6deqUcnJyUn379lVHjx5VJ06cUPPnzzeci169eqmaNWuqsLAwdfPmTaXX61V4eLjKkyePev/999WJEyfUxo0blZeXlxo9enSacSS1fft25eTkpOzt7dXly5fTPTe2+Lspcrj165XS6VTCiCClQEWSTw1mmnIgVoFSrtxX4/lYPcTZqJ0CpcaOVcrHx3ibr692XKWUiotTKiREqVWrtK9xcU+eN7XHff+9tj1ZTOfwU51YadjkxCM1iOnqFgWetNPptGMkPofIltJ7/07KppKl7CqnJUuvv/66atasWar7Dh48qAB19OhRpZRS69evNySjXl5eqk2bNoa2Bw4cUJUrV1bOzs4qaV7+5ZdfKl9fX5U3b14VFBSkJkyYYJQsHTlyRNWoUUO5uLioMmXKqLVr16rixYtbNFkKCwtT9evXV66ursrX11fNmzcvRVKS/PvY2Fg1atQo5efnpxwdHVWRIkVU69at1bFjxwxtdu/erV5++WXl7OysPD09VWBgoOG5T506pV566SXl6uqqABUWFmZ4TM2aNZWTk5Py9vZWH374oXr8+HGacSQVHx+vihcvnubPLylb/N0UOVhcnFHCEg/qWzqqIlw25B+tCFZhFE+ZJCVNTNJKiEx5/rQSKZ0uRcKkQB2mmmrADsOmIlxWewgwbhcSYomzJcxEkqUslNOSJZG6l156SX388cfWDiNd9+7dU+7u7mp94ifpdMjvpshWQkIMCcYdPFVTNhvyjdL8p7YQmDJJSkyUdLonvUeWkFrPU4EChqRuK43VixxXoJQ9j9XnDFPxie1WrbJcXOKZmZos2dSYJSGsISYmhj///JN///3XaOp/dhIfH8+NGzcYP348np6etGjRwtohCZExCZX3T1KW2hxkC81w4SGf8TH/UJEmJCxTlbySvo+P5WsdtWkD589DSAisWqV9/f57AHRAINv5kxp0ZiV6HPiQKbRiI3fxhEKFZM25HCBHz4YTwhy2bNlCUFAQLVq0oF27dtYOJ1UXL16kRIkS+Pj4sHTpUpOWbxHCqpLPeCtUiJ9pSkdWE4UHz3OBH2hJVY4aP+77760zTd/eHhLKphji9/HRBnMrRV4esIJ3CGAv/ZnDj7TE3+4v1nXqS/UbW588TmbK2SSdUibMoxTpioqKwsPDg8jISNzdjWdFPHr0iLCwMEqUKIGLi4uVIhQiJfndFFaTrBK3Aqa5j+fDqI9Q2PE/9rKethTi5pPH6HRaohEWln1qGCUWygSjkgSH8edNvieMkjjziDn0pxdfa1XAE2fdSeXvbCG99++k5DKcEEKIrJOYYCQkSg9xIYjlDI/6BIUdvVjIThqmTJQAZs3KPokSaMnOunUpShL4+1zncP5GtOAHYnDhXRbSlaXE4mi85pxckrMZkiwJIYTIGskqcV+mKHXZw0rewZ445tGPrwp8hJNPIePHZcW4pMxKbTzT0qXkv3uOjbTic4ZjTxzL6UI71hGD05PK33v3Wjt6YSIZ2CCEECJr7N1r6FE6TWnqsZsrFKMAt1nLm7xGCNwBvv/FtpYPST6eKaFwrw4YzlSqcJRWbOQnWtCaDQTTBhdiDIPaRfYnPUtCCCGyRkJyEIYfr7GLKxSjHMf5g5paopToxg0t+ejYUfuanROl1BQpYvRtINvZTHPycJ8tNKMFP/IA1xTtRPYlyZIQQoisUaQIF/HlNXYRji8vcoLd1KMkYSna2bSAAO3SYZIlVF4jhC00JS/R7KAxrzvv4H51WbvRVkiyJIQQIktcKRVAA4c9nKcEpTnNThqkHMjt66slG7bM3l4rDwBGCdOr7GUbTchHFCExr9D0dXvu3bNSjCJDJFkSVte1a1datWpl+L5evXoMHDgwy+PYvXs3Op2OiIgIiz6PTqdj48aNFn0OIbIFvd5QkPF68H4aNLbjTFwJ/AhjFw0oSpIxO9l1xltmpTFT7hXfi+yYdBgPD20IV2CdSCIXrZOCldmcJEsiVV27dkWn06HT6XBycqJ06dKMGzeOuLg4iz93cHAw48ePN6ltViU4sbGxeHl5MXny5FT3jx8/nsKFC/P48WOLxiGEzQgOBj8/qF+fW50+oGFbd06e1OHr9YBd80/h65OsxF92nvGWWanNlAsLo/aI+vzy0S7y6yI48K8HjXo+T0T9Vtr5Cg62ctAiNZIs2Yokn9Cy6hNIkyZNuHr1KqdPn2bIkCGMGTOGqVOnpto2NjbWbM9boEAB8uXLZ7bjmYOTkxNvv/02S5YsSbFPKcXSpUsJCgrC0dHRCtEJkc0kqaUUgQeN2c4/VKIIV9h5qyolCj9INYnIUYlSosSZckkHqwcHU2NEQ3apejzHLf6gFm+ylsfh17XzJglTtiPJki1I8gmNTp20r1nwCcTZ2Rlvb2+KFy9O3759adiwIT/++CPw5NLZhAkTKFq0KGXLlgXg0qVLvPXWW3h6elKgQAFatmzJ+fPnDcfU6/UMHjwYT09PnnvuOYYPH07yIvLJL8PFxMTw4Ycf4uvri7OzM6VLl2bRokWcP3+e+vXrA5A/f350Oh1du3YFtLXSJk2aRIkSJXB1daVKlSqsW7fO6Hl+/vlnXnjhBVxdXalfv75RnKnp0aMH//33H/v27TPavmfPHs6dO0ePHj34448/aNSoEV5eXnh4eFC3bl2OHDmS5jFT6xkLDQ1Fp9MZxbNv3z4CAgJwdXXF19eX/v37c//+fcP++fPnU6ZMGVxcXChcuHC2XZZF5AJJaindw40mbOUvqlOQG+ykAWV0Z7SCjGDbM94yK8n5qcpRdtCIvETzC434gDlaCSopWJntSLKU3SWrdmtw+XKWfwJxdXU16kHauXMnp06dYseOHWzatInHjx8TGBhIvnz52Lt3L/v378fNzY0mTZoYHjd9+nSWLl3K4sWL2bdvH3fu3GHDhg3pPm9QUBCrV69mzpw5nDhxgq+++go3Nzd8fX1Zv349AKdOneLq1avMThhUOWnSJJYvX86CBQv4999/GTRoEG+//TZ79uwBtKSuTZs2vPHGG4SGhtKzZ09GjBiRbhyVKlWiZs2aLF682Gj7kiVLePnll3nxxRe5d+8eXbp0Yd++ffz++++UKVOGZs2ace8ZRnGePXuWJk2a0LZtW44dO8aaNWvYt28f/fr1A+DPP/+kf//+jBs3jlOnTrF161ZeffXVTD+fEM8koZZSPDo68y0HeYkC3OYXGlKOk1KQMUmtKYBqhLKKTuiI5yv6MJv+ufv8ZFdKPLPIyEgFqMjIyBT7Hj58qI4fP64ePnyY8QPHxSnl46OU9u8l5U2nU8rXV2tnZl26dFEtW7ZUSikVHx+vduzYoZydndXQoUMN+wsXLqxiYmIMj1mxYoUqW7asio+PN2yLiYlRrq6uatu2bUoppYoUKaKmTJli2P/48WPl4+NjeC6llKpbt64aMGCAUkqpU6dOKUDt2LEj1ThDQkIUoO7evWvY9ujRI5UnTx7122+/GbXt0aOH6tixo1JKqZEjR6ry5csb7f/www9THCu5BQsWKDc3N3Xv3j2llFJRUVEqT5486ptvvkm1vV6vV/ny5VM//fSTYRugNmzYkGb8f/31lwJUWFiYIe7evXsbHXfv3r3Kzs5OPXz4UK1fv165u7urqKioNONOzTP9bgqRllWrlAL1KWMVKOXMQ/U7tVL+/1q1ytqRWkfC+Ul+m8Zg7d86evUTzXPv+cli6b1/JyU9S9lZsk8gKVj4E9qmTZtwc3PDxcWFpk2b0r59e8aMGWPYX6lSJZycnAzfHz16lDNnzpAvXz7c3Nxwc3OjQIECPHr0iLNnzxIZGcnVq1epXbu24TEODg7UqFEjzRhCQ0Oxt7enbt26Jsd95swZHjx4QKNGjQxxuLm5sXz5cs6ePQvAiRMnjOIAqFOnzlOP3bFjR/R6Pd9//z0Aa9aswc7Ojvbt2wNw/fp1evXqRZkyZfDw8MDd3Z3o6GguXrxocvzJHT16lKVLlxq9lsDAQOLj4wkLC6NRo0YUL16ckiVL8s477/Dtt9/y4MGDTD+fEM+kSBHW0ZbxjAJgIb2pzaFU2+VKabzuwcygFwtR2NGR1Rx7UDqLAxPpkeVOsjNTS+FbqGR+/fr1+fLLL3FycqJo0aI4OBj/uuTNm9fo++joaPz9/fn2229THKtgwYKZisHV1TXDj4mOjgZg8+bNFEs2bdfZ2TlTcSRyd3enXbt2LFmyhO7du7NkyRLeeust3NzcAOjSpQu3b99m9uzZFC9eHGdnZ+rUqZPmAHg7O+3zikoybiv5jLro6Gjeffdd+vfvn+Lxzz//PE5OThw5coTdu3ezfft2Ro0axZgxY/jjjz/w9PR8ptcrREYd8wigi64WKBjEDIJYYdxAp9Nmvtl6LaXMSixYefnyk0V10ZZG+YL3OUspdtGA18fW4FBz8Pa2XqjiCelZys5M/eRloU9oefPmpXTp0jz//PMpEqXUVK9endOnT1OoUCFKly5tdPPw8MDDw4MiRYpw8OBBw2Pi4uI4fPhwmsesVKkS8fHxhrFGySX2bOmTDIYsX748zs7OXLx4MUUcvr6+AJQrV45Dh4w/7f7+++9PfY2gDfTet28fmzZt4rfffqNHjx6Gffv376d///40a9aMChUq4OzszK1bt9I8VmISeTVJwhsaGmrUpnr16hw/fjzFayldurTh9Ts4ONCwYUOmTJnCsWPHOH/+PLt27TLp9QhhLrduQcs29jxQeWjIDqbwoXGDnFZLKTPSKFgJ4KjTs443eaHoPS5d0tGyJTx8aIUYRQqSLGVnqZTMN5LNqt127twZLy8vWrZsyd69ewkLC2P37t3079+f8ITLiQMGDGDy5Mls3LiRkydP8t5776VbI8nPz48uXbrQvXt3Nm7caDhm4mWw4sWLo9Pp2LRpEzdv3iQ6Opp8+fIxdOhQBg0axLJlyzh79ixHjhxh7ty5LFu2DIA+ffpw+vRphg0bxqlTp1i1ahVLly416XW++uqrlC5dmqCgIF588UVefvllw74yZcqwYsUKTpw4wcGDB+ncuXO6vWOJCdyYMWM4ffo0mzdvZvr06UZtPvzwQ3777Tf69etHaGgop0+f5ocffjAM8N60aRNz5swhNDSUCxcusHz5cuLj4w0zFIWwmCQlTR7/soe33lScPw8lS8KapY9w8EnWLZITayllRhoFK/HxIf/6b9i0Ox8FCsChQ9C12Q3iv826kjEiDVkzhCpns9gAb6WUWr9eG8it06Uc3K3TafstIOkA74zsv3r1qgoKClJeXl7K2dlZlSxZUvXq1ctwbh4/fqwGDBig3N3dlaenpxo8eLAKCgpKc4C3Uto5HDRokCpSpIhycnJSpUuXVosXLzbsHzdunPL29lY6nU516dJFKaUNSp81a5YqW7ascnR0VAULFlSBgYFqz549hsf99NNPqnTp0srZ2VkFBASoxYsXP3WAd6KJEycqwGiwulJKHTlyRNWoUUO5uLioMmXKqLVr16rixYurmTNnGtqQZIC3Ukrt27dPVapUSbm4uKiAgAC1du1aowHeSil16NAh1ahRI+Xm5qby5s2rKleurCZMmKCU0gZ7161bV+XPn1+5urqqypUrqzVr1jz1NcgAb/FM1q83moDSn1kKlHJziVX//JPQJi5OqZAQbbBySIhFJqPYtHTOz+5xe5QjMQqUGsun2nn28bHY//zcytQB3jqlkhW5ERkWFRWFh4cHkZGRuLu7G+179OgRYWFhlChRAhcXl8w9QXCwVpcj6WBvX1+tKzu3f0ITmWaW302ROyWWNEl4+1hMN3qgldTYQGtarX9H/jc9i4Tzu0R1oTtLsEPPLl6jri5hMo/0zplNeu/fSUmyZAYWT5ZA637du1cbzF2kiHbpLbde8xdmIcmSyBS9XiuKm/Dh7XdqU5c9xOLMWEYxSveZdrktLEz+R2VGsvPbnUUsoTs+XCKUqjynuyvn14xMTZZkzJKtSK1kvhBCZLUkJU0icacD3xGLM21Yzyd8JkUnn1WykjFz6M8LnCIcX3ryjTZzVs5vlpNkSQghhOmSzNz8gLlcwI+SnGUpXbFDpdpOZECy8+bGfb6jA07EsJHWfEnfVNsJy5JkSQghhOkSSpWs4S1WEIQdelbyNvmITrWdyKBUzls1Qvk8oQzDYGbwNxXl/GYxSZayiAwNE9mN/E6KTAkI4JJ3TfqwAIBP+Iw6JKlRls1KmticNErGDGA2zdhMDC50cFjPA385v1lJkiULs08YW5RWBWchrCVxSRRHR0crRyJsSbzOni5em4ggP7U4qI1TSiRFJ59dGkUrdcBSuuHNVY7HvcDgYXJ+s5Isd2JhDg4O5MmTh5s3b+Lo6GhY3kIIa1FK8eDBA27cuIGnp6choRfCFDNmQMg/hcjjHMdKz6E4Xo97stPHR0qamENi0cpkJWMK+rqwsvsZGo0rwldfQaNG0LatFePMRaR0gBk8bephbGwsYWFhxMfHWyE6IVLn6emJt7c3urQqxAsBRmVLjt4vTc33avD4sY6FC6FXdylpYlFplIwZORImTwZPTwgNheLFrR2o7ZI6S1nIlJMdHx8vl+JEtuHo6Cg9SuLpkhTEfYgLNfmDf6lIy5pX2HCwaJorMQnLevwY/vc/bTmU//1PWwlF/pwzx9RkyeaWO5k3b54qXry4cnZ2VrVq1VIHDx5Ms23dunUVkOLWrFkzQ5suXbqk2B8YGJihmEwtly6EEDYjcamlZMuZFOaqukFBWXbDys7+F6fy5XmsQKm5/f+TpWQyydT3b5saQLNmzRoGDx7M6NGjOXLkCFWqVCEwMJAbN26k2j44OJirV68abv/88w/29va8+eabRu2aNGli1G716tVZ8XKEECJ70uu1HqWECw/baMwcBgCwhG4U1N2CgQNlYVdrCQ6m5Gt+TH7QH4CRc7y56POy1hMoLMKmkqUZM2bQq1cvunXrRvny5VmwYAF58uRh8eLFqbYvUKAA3t7ehtuOHTvIkydPimTJ2dnZqF3+/Pmz4uUIIUT2lKxKd/eEdd/eZx5N2SpVuq0pcV2+8HD6sID/sZdo8tHn2mhU23aSMFmIzSRLsbGxHD58mIYNGxq22dnZ0bBhQw4cOGDSMRYtWkSHDh3Imzev0fbdu3dTqFAhypYtS9++fbl9+3a6x4mJiSEqKsroJoQQOUaS6tAfM4ErFKM0p5nC8DTbiSyQrMfPDsXX9MKJGLbQjFV0kh4/C7GZZOnWrVvo9XoKFy5stL1w4cJcu3btqY8/dOgQ//zzDz179jTa3qRJE5YvX87OnTv5/PPP2bNnD02bNkWfzi/bpEmT8PDwMNx8fX0z96KEECI7SqgOfZBazOc9ABbQhzw8TLWdyCLJ1o0DeJFTfMp4AAYwi5uXHkqPnwXYTLL0rBYtWkSlSpWoVauW0fYOHTrQokULKlWqRKtWrdi0aRN//PEHu3fvTvNYI0eOJDIy0nC7dOmShaMXQogsFBDA42J+9GYhCjveYTkN2PVkv1Tpto40evKGM4VKHOM2XgxklvT4WYDNJEteXl7Y29tz/fp1o+3Xr1/H29s73cfev3+f7777jh49ejz1eUqWLImXlxdnzpxJs42zszPu7u5GNyGEyDHs7Zn12o8cowoFuM10hjzZJ1W6rSeNnjwnHrOIHtihZxWd+flChSwOLOezmWTJyckJf39/du7cadgWHx/Pzp07qVOnTrqPXbt2LTExMbz99ttPfZ7w8HBu375NEeleFkLkUufPw+h1lQCYln8iBbn1ZKePj1ZdWqp0Z7001o0DqMmfDERbJqXP/Ercu5fVweVsNpMsAQwePJivv/6aZcuWceLECfr27cv9+/fp1q0bAEFBQYwcOTLF4xYtWkSrVq147rnnjLZHR0czbNgwfv/9d86fP8/OnTtp2bIlpUuXJjAwMEtekxBCZCdKwXvvwcOHULcudL0xBUJCYNUq7WtYmCRK1pLGunGJ349jFCUK3efSJR0ffZT14eVkNrU2XPv27bl58yajRo3i2rVrVK1ala1btxoGfV+8eDHF2munTp1i3759bN++PcXx7O3tOXbsGMuWLSMiIoKiRYvSuHFjxo8fj7Ozc5a8JiGEsLoky2qsPVmZLVsq4OQEX30FOgd7qFfP2hGKRGmsG4ePD3lnzWKhe14aNYIvvoCOHeHll60Xak4iy52Ygcnl0oUQIrtJsqRJBB6U4wTXKMKY9scZ/V15a0cn0pLGunEA3brB0qXw4ova2nHy2T9tpr5/29RlOCGEEGaUpMAhwEgmcY0ilOUkI9ZUlwKH2Zl9Qo9fx47a1ySD7adPh8KF4eRJbRy+eHaSLAkhRG6UrMDhb9RhAX0B+Ip3cdbFSoFDG1WgAEyZot3/7DOpJGAOkiwJIURulKTA4WMceJevAOjGYuryqyxpYsv0et722U3t0reIjoYRH8ZbOyKbJ8mSEELkRkm6G+bzHv9QCS9uMpVhabYTNiA4GPz8sGtQnzlnmgGwfIUdv08OsXJgtk2SJSGEyI0SasndpgBjGAPARD7iOe6k2k7YgGRj0GrxB90SFkHuPzIv8etkDFpmSbIkhBC5UUKBwzGMJYL8VOYo3RPeWAFZ0sTWJBuDlmgiH5GPKP6gFst675cxaJkkyZIQQuRG9vYcH7qYL+kDwCwGYk/C2BZZ0sT2pLLILoA31xnFOABG3h1G1NbfsjqyHEGSJSGEyKWGbG2EHgdauWylPruf7JAlTWxPOmPL+jOHFzjFdbwZ/6VXFgaVc9hUBW8hhBDmsWULbN0Kjo4wNbQRXA1JtcChsBHpjC1z4jGzGEgztjB7W1l6/QcvvJCFseUA0rMkhBC5zOPHMHiwdn/AAChdNu0Ch8JGpLPILkBT3Taau+zkcZwdgwZlcWw5gCRLQgiRyyxYoFV3LlgQPvnE2tEIs3jKIrsAM6fG4egIP/8MmzdncXw2TpIlIYTIRe7cgdGjtfvjx4OHh3XjEWaUuMhusWLG2xPGoJXpF8jAgdqmQYMgNjbLI7RZspCuGchCukKIbC9h4dUBk4swZ1tZKlVSHDmiw0FGruY86SyyGxWljVe6fh2mTYMhQ6wcq5XJQrpCCCE0CVWdT9TvyxfbSgEw82pHHH6UIoU5UjqL7Lq7w8SJ2v0JEyAiwhoB2h5JloQQIidLUtV5KNPQ40ALfqDB7e+17cGSMOU2XbpAhQpw9+6TBXdF+uQynBnIZTghRLak14OfH4SHs51GBLIdR2L5lwqU4Yw28NfHB8LCZAZcLvPjj9CyJbi6wpkzULSotSOyDrkMJ4QQuV1CVed4dHzI5wC8zxdaogTa0hiXLmntRK7yxhvwyivw8CGMHWvtaLI/SZaEECKnSqjqvJY3CaUa+YjiYyak2U7kAno97N6N7rvVfN7+CACLFsGpU1aOK5uTZEkIIXKqIkV4jAOfMh6AoUzDi9upthO5QMJAf+rXh06deKW/Py1ctqPXw8cfWzu47E2SJSGEyKkCAljqOYjTvEBBbjCImcb7dTrw9dWmloucLclA/6QmPhqMHXrWr4eDB60Umw2QZEkIIXKoh7H2jLXTBqR8xCTyEf1kZ2KV51mzZHB3TqfXa+vapDKfqwL/0oXlAHw4XKXWRCDJkhBC5Fjz58PlO674ej2gT7GfjHcmVHWmTRvrBCeyTsJA/7SMZRTOPGLPrzq2bs3CuGyIJEtCCJEDRUXBpEna/TGf58HlwikICYFVq7SvYWGSKOUWTxnA70s4HzAXgBEjID4+K4KyLZIsCSFEDjR9Oty+DS++CEFBpFvVWeRwJgzgH8kkPPLGceyYlk8LY5IsCSFEDnPzJsyYod3/7DNk/bfcLiBAu+yaOE4tOZ2OAr5ujPhISwk++QRiYrIwPhsgyZIQQuQwEydCdDTUqCFX2gRaL+Ls2dr95AlTkoH+/QfaUbQoXLgAX36ZtSFmd5IsCSFETpBQbPDi3B+Y/4U26GTixLQ7E0Qu06aNNqC/WDHj7UkG+ufJA2PGaJsnToT797M8ymxLkiUhhLB1SYoNju1/i9jHdtR33k/DKFkkVyTRpg2cP5/uQP+uXaFkSe1SrvQuPSEL6ZqBLKQrhLCaxGKDSnGSslTgX+Kx5wB1eEl3UMoDiAxbuhS6dYOCBbVcKm9ea0dkObKQrhBC5HTJig2OYhzx2NOSjbzE71qbgQO1dkKY6O23oVQprXfpiy+sHU32IMmSEELYqiTFBv+hAmt5C4DP+ETbrxRcuqS1E8JEDg7w6afa/alTtckCuZ3NJUtffPEFfn5+uLi4ULt2bQ4dOpRm26VLl6LT6YxuLi4uRm2UUowaNYoiRYrg6upKw4YNOX36tKVfhhBCPLskxQbHo727tWMtFfk3zXZCmKJzZyhTBm7dkt4lsLFkac2aNQwePJjRo0dz5MgRqlSpQmBgIDdu3EjzMe7u7ly9etVwu3DhgtH+KVOmMGfOHBYsWMDBgwfJmzcvgYGBPHr0yNIvRwghnk1CscHjlGMtbwLapbi02glhquS9S/fuWTcea7OpZGnGjBn06tWLbt26Ub58eRYsWECePHlYvHhxmo/R6XR4e3sbboULFzbsU0oxa9YsPvnkE1q2bEnlypVZvnw5V65cYePGjVnwioQQ4hkkFBscz6co7GjDeirxz5P9Oh34+mrthDBFQgkKVq+mY9E9lCmjuH0b5s2zdmDWZTPJUmxsLIcPH6Zhw4aGbXZ2djRs2JADBw6k+bjo6GiKFy+Or68vLVu25N9/n3RPh4WFce3aNaNjenh4ULt27XSPGRMTQ1RUlNFNCCGynL09J4YtZg3tgWS9SkmKDcrSJsIkSUpQ0KkTDg3rMerWAACmTdPWG8ytbCZZunXrFnq93qhnCKBw4cJcu3Yt1ceULVuWxYsX88MPP7By5Uri4+N5+eWXCU8YEJn4uIwcE2DSpEl4eHgYbr6+vs/y0oQQItM+O9gIhR2tXLZShWNPdiQpNijEUyWWoEh4f0zU8e58XuAUd+7k7t4lm0mWMqNOnToEBQVRtWpV6tatS3BwMAULFuSrr756puOOHDmSyMhIw+3SpUtmilgIIUx36hR89512f9TeRukWGxQiTclKUCRlj55RjAdg2jSVa3uXbCZZ8vLywt7enuvXrxttv379Ot7e3iYdw9HRkWrVqnHmzBkAw+MyekxnZ2fc3d2NbkIIkdUmTID4eGjRAqrVsId69aBjR+2rXHoTpkpSgiI1HVjNi5zg7l0dc+ZkYVzZiM0kS05OTvj7+7Nz507Dtvj4eHbu3EmdOnVMOoZer+fvv/+mSMLMkBIlSuDt7W10zKioKA4ePGjyMYUQwhpOn4Zvv9Xujxpl3ViEjXtKaQl74g3j4WbMgMjIrAgqe7GZZAlg8ODBfP311yxbtowTJ07Qt29f7t+/T7du3QAICgpi5MiRhvbjxo1j+/btnDt3jiNHjvD2229z4cIFevbsCWgz5QYOHMhnn33Gjz/+yN9//01QUBBFixalVatW1niJQghhksRepebNwd/f2tEIm2ZCaYm3+J5yxe9z9y65snfJwdoBZET79u25efMmo0aN4tq1a1StWpWtW7caBmhfvHgRO7sn+d/du3fp1asX165dI3/+/Pj7+/Pbb79Rvnx5Q5vhw4dz//59evfuTUREBP/73//YunVriuKVQghhdXo97N3L2dB7rFzxOqBj9GhrByVsXkIJCi5fTnXcEjod9j7FGDXRlY6dtd6lAQMgN41AkYV0zUAW0hVCWFxwsPYOFR5OdxaxhO40ddnFz99GyEBu8ewSZ8OBccKUWIJi3Tr0LdtQsSKcPAmTJ8OHH2Z9mOYmC+kKIUROkWRa9zlKsJwgAEY/+kjbHhxs5QCFzWvTRis1UayY8fYkJSjs7SFxpMuMGfDwYdaHaS3Ss2QG0rMkhLAYvV4rFJgwW6knX7OIngSyla001T75+/hopQJkBpx4VgmXerl6VRvLFBBg9Hv1+LG2ZtyFC1rdpffft2KsZiA9S0IIkRMkmdZ9EV+W0QWA0YzV9isFly5p7YR4Vvbpl6BwdIThw7X7U6ZoyVNuIMmSEEJkZ0mmdU9jKHE48ho7qcPvabYTwpK6dYPCheHixSflK3I6SZaEECI7S5jWfRMvvkErezKSSWm2E8LSXF1h8GDt/uTJ2pW7nE6SJSGEyM4SpnXPYQAPyYM/f9KAJ4V00enA11drJ0QW6dsXPD21JXc2bLB2NJYnyZIQQmRn9vZETfqCeWgjaUcyCV3ivsRp3bNmyeBukaXy5YP+/bX7EyemXp4pJ5FkSQghsrmvrrYggvyUdThDa5J8jE8yrVsIi9PrYfduWL0adu+m//t68uaFv/6CbdusHZxl2VQFbyGEyG0ePdJq2gB8uKAkdqV2pTmtWwiLSVIUNdFzPj68+9ouZvxUhokToUkTK8ZnYVJnyQykzpIQwlIWLoR339U6kc6eBScna0ckcp3EoqjJ0wWdjsuqKCUdLhAbZ8+vv9re0DmpsySEEDYuLk6rZQMwZIgkSsIK9HqtRym1fhWlKKa7Qlfn7wCYlMokzZxCkiUhhMim1q3TepOeew569bJ2NCJXSlIUNVVKMfz+KOzsFFu2aOOXciJJloQQIhtSSqthA9qso7x5rRuPyKVMKHZainN0eOkCoM2My4kkWRJCiGxo61Y4ehTc3KBfP2tHI3ItE4udjuhxE4D16+HkSUsGZB2SLAkhRHaSMD170uAbALzbK54CBawck8i9EoqiGmp6JZdQFLVSl+q0aKH1iE6fnrUhZgVJloQQIrsIDgY/P/bX/5i9JwvhSCyDvqutbRfCGuztYfZs7X7yhClZUdTEBXaXL4dr17IswiwhyZIQQmQHidOzw8OZxEgAurCMYtcOa9slYRLW0qaNNtugWDHj7cmKor7yCtSpA7GxMGeOFeK0IKmzZAZSZ0kI8Uz0evDzg/Bw/qYilfkbO/Sc5EXKcEb7BO/jA2FhUoRSWI9er82OS6co6oYNWu7k6QkXL2rLomRnUmdJCCFsRZLp2dMYCkBb1muJEmgDQS5d0toJYS329lCvHnTsqH1NJXFv0QJeeAEiImDRoqwO0HIkWRJCCGtLmJ4dTjFW0QmAYUxNs50Q2ZW9vVZAFbRleh4/tm485iLJkhBCWFvC9Oy5fEAcjrzKHmryZ5rthMjOgoKgUCGtM/T7760djXmYNGapQAbnrep0Oo4cOULx4sUzHZgtkTFLQohnotcT9XxFfK/8ThQe/MTrvM7mJ/tlzJKwMRMmwCefQJUqWlXvtCoPWJup798OphwsIiKCWbNm4eHh8dS2Sinee+899Hq96dEKIURuZm/PN43WELXMgxc5QTN+frIv2fRsIWxB377aWnFHj8KOHdC4sbUjejYmJUsAHTp0oFChQia1/eCDDzIdkBBC5DaPH8OsXZUBGJJ/MXZ3k3T4+/hoiVLC9GwhbEGBAtCjh1ZCYOpU20+WpHSAGchlOCHEs/j2W3j7bShcGM6f1ePyR/rTs4WwBefPQ+nSWsWBI0egWjVrR5SSWS/DCSGEsAylYNo07f4HH4BL3oTp2ULYklRqMPn52fPWW7B6tfY7/u231g4y80zqWfrxxx9NPmCLFi2eKSBbJD1LQojM2rkTGjaEPHm0In7PPWftiITIoOBgGDDAUCsM0C4fz57NXyXaUL261jl69ixkt3lfZu1ZatWqldH3Op2OpDmWLskwdxnYLYQQppuaUE6pe3dJlIQNSlymJ3m/y+XL0K4d1dato0GDNuzcCTNnasPvbJFJdZbi4+MNt+3bt1O1alW2bNlCREQEERER/Pzzz1SvXp2tW7daOl4hhMgxjh2DbdvAzg4GDbJ2NEJkkF6v9SildoEqcdvAgQwfonWifPMN3LmThfGZUYaLUg4cOJDZs2cTGBiIu7s77u7uBAYGMmPGDPr372+JGIUQIkeaMUP72rYtlCxp3ViEyLAky/SkKmGZnkYue6lSBe7fhy+/zLrwzCnDydLZs2fx9PRMsd3Dw4Pz58+bISQhhMjB9HrYvZvLX2xk1bfxAAwdauWYhMgME5ff0V27avgdnzcPYmIsGJOFZDhZqlmzJoMHD+b69euGbdevX2fYsGHUqlXLrMGl5osvvsDPzw8XFxdq167NoUOH0mz79ddfExAQQP78+cmfPz8NGzZM0b5r167odDqjW5MmTSz9MoQQuVFwMPj5Qf36zOl3isdxdrzq9Du1woOtHZkQGWfq8jtFivDWW1C0KFy7BmvWWDYsS8hwsrR48WKuXr3K888/T+nSpSldujTPP/88ly9fZpGFlxhes2YNgwcPZvTo0Rw5coQqVaoQGBjIjRs3Um2/e/duOnbsSEhICAcOHMDX15fGjRtz+fJlo3ZNmjTh6tWrhtvq1ast+jqEELlQ4kDY8HCiyMcC+gAwNHaitj1YEiZhYwICtFlvaa1lotOBry8EBODkpJXGAO3ys61VeMxUUUqlFDt27ODkyZMAlCtXjoYNGxrNirOE2rVrU7NmTebNmwdoA899fX354IMPGDFixFMfr9fryZ8/P/PmzSMoKAjQepYiIiLYuHFjpuOS0gFCiHTp9VqPUsL4jpkMZDAzeZET/EsF7HTI2m/CNiV+CADjDCgxH1i3zlB9/s4dLXd68EArmfHaa1kcaypMff/OcM8SaKUCGjduTP/+/enfvz+NGjWyeKIUGxvL4cOHadiwoWGbnZ0dDRs25MCBAyYd48GDBzx+/DjFwsC7d++mUKFClC1blr59+3L79u10jxMTE0NUVJTRTQgh0pRkIGwc9sxmAACDmYEdyjAQlr17rRmlEBnXpo2WEBUrZrzdx8coUQJtCZRu3bT7iZMbbEWmKnjfv3+fPXv2cPHiRWJjY432WWpG3K1bt9Dr9RQuXNhoe+HChQ09XE/z4YcfUrRoUaOEq0mTJrRp04YSJUpw9uxZPvroI5o2bcqBAwewT+MT3qRJkxg7dmzmX4wQIndJMhB2A625gB9e3ORtVqbZTgib0aYNtGyZooJ3ar2kAwbA/PmweTOcPAkvvmiFeDMhw8nSX3/9RbNmzXjw4AH379+nQIEC3Lp1izx58lCoUKFsWz5g8uTJfPfdd+zevRsXFxfD9g4dOhjuV6pUicqVK1OqVCl2795NgwYNUj3WyJEjGTx4sOH7qKgofH19LRe8EMK2JRkIOxOtoFJfvsSVR2m2E8Km2Ju2TE+ZMtCiBfzwg1agcsECi0dmFhm+DDdo0CDeeOMN7t69i6urK7///jsXLlzA39+faYkLHFmAl5cX9vb2RrPwQJuJ5+3tne5jp02bxuTJk9m+fTuVK1dOt23JkiXx8vLizJkzabZxdnY21JhKvAkhRJoSBsIepDYHeBknYniP+U/2JxkIK0ROl9jXsGwZ3Lpl3VhMleFkKTQ0lCFDhmBnZ4e9vT0xMTH4+voyZcoUPvroI0vECICTkxP+/v7s3LnTsC0+Pp6dO3dSp06dNB83ZcoUxo8fz9atW6lRo8ZTnyc8PJzbt29TRD7hCSHMxd4eZs9mJgMB6MhqvEn44Jc43nPWLBncLXKFgADw94dHj3Jwz5KjoyN2dtrDChUqxMWLFwGtKOWlS5fMG10ygwcP5uuvv2bZsmWcOHGCvn37cv/+fboljBgLCgpi5MiRhvaff/45n376KYsXL8bPz49r165x7do1oqOjAYiOjmbYsGH8/vvvnD9/np07d9KyZUtKly5NYGCgRV+LECJ3uVijDevs3gJgEDOf7EhlIKwQOZlO96R3yVaKVGZ4zFK1atX4448/KFOmDHXr1mXUqFHcunWLFStWULFiRUvEaNC+fXtu3rzJqFGjuHbtGlWrVmXr1q2GQd8XL140JHIAX375JbGxsbRLnNaYYPTo0YwZMwZ7e3uOHTvGsmXLiIiIoGjRojRu3Jjx48fj7Oxs0dcihMhd5s4Ffbwdr9VXVBk1+6kDYYXIyd58E4YP19bbXb0auna1dkTpy3CdpT///JN79+5Rv359bty4QVBQEL/99htlypRh8eLFVKlSxVKxZltSZ0kIkZ7oaK0DKTISfvoJXn/d2hEJYX1TpsCHH0KlSnD0aNq1LS3J1PfvDCVLSikuXbpEoUKFjGaU5XaSLAkh0jN3LvTvDy+8ACdOgF2mKtwJkbPcvavNa7h/H3bsgCRVfbKMRYpSKqUoXbq0xccmCSFETqHXa2O3AQYOlERJ5FIJC0izerX2Va8nf37o3l3bnd2LVGboz9bOzo4yZco8tcK1EEIIzU8/wblzkD8/JKyyJETukmQBaTp10r76+UFwMAMGaJfftmzRel2zqwx/xpk8eTLDhg3jn3/+sUQ8QgiRo8xMmPjWpw/kzWvdWITIckkWkDZy+TK0a0epo8G0aqVtmjkzxaOzjQwP8M6fPz8PHjwgLi4OJycnXF1djfbfuXPHrAHaAhmzJIQwotfD3r0c3v+IGp80wcFBcf68LsXyWULkaMkWkE5BpwMfH/YuD+PV+va4uGhLJHp5ZV2Ipr5/Z7h0wKzEi+9CCCFSCg7WFsAKD2cmKwBo77SBYgeRWkoid0mygHSqEhaQ/p/ai79/PQ4fhoULwYL1rTMtwz1LIiXpWRJCAE8uOSjFZYrix3nicORPauCvOyLFJ0Xusnq1NkbpaVatYqW+I++8A0WLQlgYODlZPjww82y4qKioDD35vXv3MtReCCFsnl6v9SglfP78gveJw5FX2YM/h7U2Awdq7YTIDUxdNqxIEd56C7y94coV7TNFdmNSspQ/f35u3Lhh8kGLFSvGuXPnMh2UEELYnCSXHB7gyle8CyRZ2iThkgN791orQiGyVsIC0mlWm0yygLSTE7z3nrZ51izDZ45sw6QxS0opvvnmG9zc3Ew66OPHj58pKCGEsDlXrxruruRt7vAcJTjHG/yUZjshcrSEBaRp105LjJJmQKksIP3uuzBhAvzxB/z+O9Spk/Uhp8WkZOn555/n66+/Nvmg3t7eODo6ZjooIYSwOQmXHBQwmwEA9GcO9sSn2k6IXKFNG+26WsKkBwMfHy1RSjKGr1Ah6NwZFi/WdmWnZEkGeJuBDPAWQiROk94RXo7GbMeNe4TjgwcJYz4TpkkTFiYL54rcJ6GcxtMWkD52DKpU0XadOwfPP2/ZsCyy3IkQQog0JFxymJXQq9SdxcaJEhhdchAiV7G3h3r1oGNH7WsafweVK8Nrr2m51RdfZGmE6ZJkSQghzOS/im34meboiOcD5j7Z4eMjZQOEMNEA7fMGCxdqi+xmBxkuSimEECJ1c+ZoX19/XUfpId889ZKDECKl5s2hVCk4exaWL4e+fa0dkfQsCSGEWUREwNKl2v0BA3UmXXIQQqRkbw/9+2v358yB+Pj022cFSZaEEMIMFi3SLhlUrKiNuRBCZF63buDuDidPwvbt1o4mk5fhIiIiOHToEDdu3CA+WcoXFBRklsCEEMJWxMXB3IQhSgMGpF2DTwhhmnz5oEcPmDlTmxfRpIl148lw6YCffvqJzp07Ex0djbu7O7ok/xV0Oh137twxe5DZnZQOECJ3Cw6Gtm3huee0It2urtaOSAjbd+4clC6t1bL8918oX978z2Gx0gFDhgyhe/fuREdHExERwd27dw233JgoCSHE7Nna13fflURJCHMpWRJattTuJ06esJYM9yzlzZuXv//+m5IlS1oqJpsjPUtC5F5//QXVq4ODA5w/D8WKWTsiIWxMOgUr9+zR5ki4umq9ts89Z96ntljPUmBgIH/++eczBSeEEDZPr4fdu5k9UFs0/M128ZIoCZFRwcHg5wf160OnTtpXPz9tO/Dqq1C1KuTJA//8Y70wMzzAu3nz5gwbNozjx49TqVKlFGvAtWjRwmzBCSFEthQcDAMGcD08ltVcBGDAzpYQ3E0KTwphquBgbZHd5Be4Ll/Wtq9bh65NG77/Xqvras1L3Bm+DGdnl3ZnlE6nQ6/XP3NQtkYuwwmRiyT5Bz+WUYxhLC9xgAO6V7T9UqlbiKdLWEvRaHHdpLJoLUWLXYaLj49P85YbEyUhRC6i12u1AZQiBifm8x4AA5j95NPxwIFaOyFE2vbuTTtRAu3v6dIlrV02IEUphRDCVEn+wa+hPTcoTDHCact6bX82+wcvRLZ19ap521lYppKlPXv28MYbb1C6dGlKly5NixYt2Cv/HIQQOV3CP24FzEZb7fM95uNIXKrthBBpKFLEvO0sLMPJ0sqVK2nYsCF58uShf//+9O/fH1dXVxo0aMCqVassEaMQQmQPCf+49/MKR/DHhYf0ZmGa7YQQaQgI0MYkpVXuXqcDX1+tXTaQ4QHe5cqVo3fv3gwaNMho+4wZM/j66685ceKEWQO0BTLAW4hcImFQ6pvhM1jHm/TgG76h15P9WTQoVYgcIXGyBBjPiEtMoLJgsoTFBnifO3eON954I8X2Fi1aEBYWltHDCSGE7bC35+InC9lAayBhYHeixH/ws2ZJoiSEKdq00RKi5AXKfHyy3azSDNdZ8vX1ZefOnZQuXdpo+y+//IKvr6/ZAhNCiOzoi3NN0QP1nfdTKSZJlTwfHy1Rykb/4IXI9tq00dY0SaOCd3aRqbXh+vfvT9++fVmxYgUrVqygT58+DBw4kKFDh1oiRiNffPEFfn5+uLi4ULt2bQ4dOpRu+7Vr1/Liiy/i4uJCpUqV+Pnnn432K6UYNWoURYoUwdXVlYYNG3L69GlLvgQhhI168AC+/lq7P2D1SxASAqtWaV/DwiRREiIz7O21NU06dtS+ZrNECQCVCcHBweqVV15RBQoUUAUKFFCvvPKK2rhxY2YOlSHfffedcnJyUosXL1b//vuv6tWrl/L09FTXr19Ptf3+/fuVvb29mjJlijp+/Lj65JNPlKOjo/r7778NbSZPnqw8PDzUxo0b1dGjR1WLFi1UiRIl1MOHD02OKzIyUgEqMjLymV+jECL7+uorpUCpEiWUiouzdjRCiGdl6vt3hgd4W1Pt2rWpWbMm8+bNA7QCmb6+vnzwwQeMGDEiRfv27dtz//59Nm3aZNj20ksvUbVqVRYsWIBSiqJFizJkyBBDr1hkZCSFCxdm6dKldOjQwaS4LDXAW6+H33+HV14x2yGFEJmkFFSqBP/+C9Onw+DB1o5ICPGsLDbA21piY2M5fPgwDRs2NGyzs7OjYcOGHDhwINXHHDhwwKg9aAsBJ7YPCwvj2rVrRm08PDyoXbt2mscEiImJISoqyuhmbvfvQ5ky8L//gVwVFML6du7UEqW8eaF7d2tHI4TISiYlSwUKFODWrVsA5M+fnwIFCqR5s5Rbt26h1+spXLiw0fbChQtz7dq1VB9z7dq1dNsnfs3IMQEmTZqEh4eH4WaJge1580L58tr9uXPNfnghRAbNTpj41rUreHpaMxIhRFYzaTbczJkzyZcvn+G+Lq0iUrnEyJEjGZykDz4qKsoiCdOAAbB5MyxZAuPHg4eH2Z9CCGGCM2e0v0WADz6wbixCiKxnUrLUpUsXw/2uXbtaKpZ0eXl5YW9vz/Xr1422X79+HW9v71Qf4+3tnW77xK/Xr1+nSJKKu9evX6dq1appxuLs7Iyzs3NmXkaGNGyo9S4dP64lTAMHWvwphRBJ6fWwdy/zPi+CUmVp2kRRtmzu/rAoRG6U4TFL9vb23LhxI8X227dvY2/B6X5OTk74+/uzc+dOw7b4+Hh27txJnTp1Un1MnTp1jNoD7Nixw9C+RIkSeHt7G7WJiori4MGDaR4zK+l00L+/dn/uXFnIXIgsFRwMfn5E1W/B4q3ah6kBf76jbRdC5C4ZnWan0+lSnap/+fJl5eLiktHDZch3332nnJ2d1dKlS9Xx48dV7969laenp7p27ZpSSql33nlHjRgxwtB+//79ysHBQU2bNk2dOHFCjR49OtXSAZ6enuqHH35Qx44dUy1btsxWpQPu31cqf35tuvIPP5j98EKI1Kxfr5ROpxSo2XygQKkXOa7i0Wnb16+3doRC5A5xcUqFhCi1apX21cw1O0x9/za5gvecOXMA0Ol0fPPNN7i5uRn26fV6fv31V1588UVz53JG2rdvz82bNxk1ahTXrl2jatWqbN261TBA++LFi9jZPekse/nll1m1ahWffPIJH330EWXKlGHjxo1UrFjR0Gb48OHcv3+f3r17ExERwf/+9z+2bt2Ki4uLRV+LqfLkgV69YMoUbYBpixbWjkiIHE6v1wYMKkU8OuaiDVL6gLnoUIBOuybesmX2LJ4nRE4RHKz9LYaHP9nm46O9GWZxAViT6yyVKFECgAsXLuDj42N0yc3JyQk/Pz/GjRtH7dq1LRNpNmbphXQvXoSSJbX/4ceOabVehBAWsns31K8PwCaa8wab8CCCcHxw4/6TdiEhWrVhIYT5JS6ymzxFMfMiu6a+f5vcs5S4SG79+vUJDg4mf/78zxykMM3zz0Pr1trvxpw5T5ZbEEJYwNWrhruzGQBAT74xTpSStRNCmFGS3t0UlNISpizu3c3wAO+QkBBJlKxggPY/m5UrIaHklRDCEhJmxv5LeX6hEXbo6ce8NNsJIcxs717jS2/JKQWXLmntsojJPUtJhYeH8+OPP3Lx4kViY2ON9s2YMcMsgQljr7wC1avDkSNaz9LIkdaOSIgcKiAAfHyYHT4QgFZsxI8LT/brdNq4iYAA68QnRE5naq9tFvbuZjhZ2rlzJy1atKBkyZKcPHmSihUrcv78eZRSVK9e3RIxCrT/zwMGQJcu8MUXMHQoODpaOyohciB7e25/9iUrujYAYACzn+xLHC8xa5YM7hbCUkzttc3C3t0MX4YbOXIkQ4cO5e+//8bFxYX169dz6dIl6taty5tvvmmJGEWC9u2hcGG4fFlKvQhhSV9ffZ1HuFLV8R8CSNLV7+NjtoGlQog0JPTuktZqITod+Ppmae9uhpOlEydOEBQUBICDgwMPHz7Ezc2NcePG8fnnn5s9QPGEszP06aPdnz07/bZCiMx5/BjmJQxRGvhVeXQhIbBqlTb7LSxMEiUhLM3e/smbXPKEyUq9uxlOlvLmzWsYp1SkSBHOnj1r2HdLRh5bXJ8+2uW3Awfgjz+sHY0QOU9wsNZ7W6gQdOhkp5UH6NhR+yqX3oTIGm3aaL24xYoZb7dS726Gxyy99NJL7Nu3j3LlytGsWTOGDBnC33//TXBwMC+99JIlYhRJeHtDhw6wYoWWeK9cae2IhMhZEj/Q9umj9eYKIaykTRutPMDevdpg7iJFtEtvVvjQYnJRykTnzp0jOjqaypUrc//+fYYMGcJvv/1GmTJlmDFjBsWLF7dUrNmWpYtSJnf4MNSoofUwXbggM5iFMJdDh6B2be1v6+JF7cOJECLnMntRykQlS5Y03M+bNy8LFizIXIQi0/z94eWX4bff4MsvYdw4a0ckRM6Q2KvUoYMkSkKIJzI8ZqlkyZLcvn07xfaIiAijREpY1sCB2tcvv4RHj6waihA5wpUr8P332v3EIrBCCAGZSJbOnz+PXq9PsT0mJobLly+bJSjxdK1ba8ug3LqlTdQRQjybL7+EuDitAKy/v7WjEUJkJyZfhvvxxx8N97dt24aHh4fhe71ez86dO/Hz8zNrcCJtDg7wwQcwbJg2g7Jbt7RLUggh0qDXw969PLpwnQVzWwNOhl5bIYRIZPIAbzs7rRNKp9OR/CGOjo74+fkxffp0Xn/9dfNHmc1l9QDvRHfvanW57t+HnTvhtdey7KmFsH3Bwdr1tvBwFtONHizmeftwzq7+A4c3W1s7OiFEFjD1/dvky3Dx8fHEx8fz/PPPc+PGDcP38fHxxMTEcOrUqVyZKFlT/vzQtat2f9Ysa0YihI0JDoZ27SA8HAXMRhuk9L5+Lg7t20qJfCGEkQyXDhApWatnCeC//6BsWe0S3KlTUKZMlj69ELZHrwc/P8Oq5rupS312k4f7XMKXAroIrfBdWJgUoRQih7NY6QDQFtPduXOnoYcpqcWLF2fmkCKTXngBmjeHzZth7lyYM8faEQmRze3da0iUAGYxEIAgllOAu6CAS5e0dvXqWSVEIUT2kuHZcGPHjqVx48bs3LmTW7ducffuXaObyHqJA1IXL4aICGtGIoQNuHrVcPcMpfiRFgD0Z06a7YQQuVuGe5YWLFjA0qVLeeeddywRj8iEBg2gYkX45x8tYRo82NoRCZGNJSl5P4f+KOxoys+U42Sa7YQQuVuGe5ZiY2N5+eWXLRGLyCSd7knv0pw5Wq0YIUQaAgLAx4cIPFlMdwAGMfPJfp1Om2YaEGClAIUQ2U2Gk6WePXuySqogZjudOoGXl7ZWXJKSWEKI5OztYfZsvqEn93GjIn/TkF+0fYnFymbNksHdQgiDDF+Ge/ToEQsXLuSXX36hcuXKODo6Gu2fMWOG2YITpnN11VZJ/+wz7f98mzbWjkiI7CuuRRvmejWBWzCQWRjqufr4yB+QECKFDJcOqF+/ftoH0+nYtWvXMwdla6xZOiCpK1e0GdGPH8Off8qSDUKk5fvvoX178PJSXFy5F9c7l7UxSgEB0qMkRC5isdIBISEhzxSYsJyiRbU3gJUrtQ/HK1ZYOyIhsqeZCUOU+vbV4Rr4qnWDEUJkexkes5TozJkzbNu2jYcPHwKkWAJFWEfiQO81a7SeJiGEsd9/125OTvDee9aORghhCzKcLN2+fZsGDRrwwgsv0KxZM64m1CLp0aMHQ4YMMXuAImP8/eF//9Muxc2fb+1ohMh+EpcG6tgRvL2tGooQwkZkOFkaNGgQjo6OXLx4kTx58hi2t2/fnq1bt5o1OJE5gwZpXxcsgISOPyEEcPEirFun3U/8OxFCiKfJcLK0fft2Pv/8c3x8fIy2lylThgsXLpgtMJF5LVtCiRJw+zYsX27taITIPubN05aGq18fqlSxdjRCCFuR4WTp/v37Rj1Kie7cuYOzs7NZghLPxt7+ydilmTMh2fJ9QuQuej3s3k30krUsnK9VbJVeJSFERmQ4WQoICGB5ku4KnU5HfHw8U6ZMSbesgMha3bqBhwecOgU//2ztaISwkuBgrZ5G/fos7b6HyPsOlHE4R/OYYGtHJoSwIRlOlqZMmcLChQtp2rQpsbGxDB8+nIoVK/Lrr7/y+eefWyJGkQn58kHv3tp9qRMqcqXgYGjXDsLDiUfHbAYAMCBuBnZvtdP2CyGECTKcLFWsWJH//vuP//3vf7Rs2ZL79+/Tpk0b/vrrL0qVKmWJGAHtMl/nzp1xd3fH09OTHj16EB0dnW77Dz74gLJly+Lq6srzzz9P//79iYyMNGqn0+lS3L777juLvY6s1L8/ODhASAj89Ze1oxEiC+n1MGAAJJQ02cTrnKEMntylC0u1NgMHau2EEOIpMlyUEsDDw4OPP/7Y3LGkq3Pnzly9epUdO3bw+PFjunXrRu/evdNcp+7KlStcuXKFadOmUb58eS5cuECfPn24cuUK6xKnwyRYsmQJTZo0MXzv6elpyZeSZXx84K23YNUqrXdJilSKXGPvXggPN3w7E22QUm8W4sZ9UMClS1q7evWsE6MQwmaYtNzJsWPHqFixInZ2dhw7dizdtpUrVzZbcIlOnDhB+fLl+eOPP6hRowYAW7dupVmzZoSHh1O0aFGTjrN27Vrefvtt7t+/j4ODlifqdDo2bNhAq1atMh1fdlnuJDWHD0ONGloP0/nzUKyYtSMSIgusXq2tLg0coRr+HMGeOMIogS9PkihWrdIKLgkhciVT379NugxXtWpVbt26ZbhfrVo1qlatmuJWrVo180SfzIEDB/D09DQkSgANGzbEzs6OgwcPmnycxJORmCglev/99/Hy8qJWrVosXrz4qdXIY2JiiIqKMrplV/7+ULcuxMXB3LnWjkaILFKkiOHudLRiuR34zjhRStZOCCHSYtJluLCwMAoWLGi4n9WuXbtGoUKFjLY5ODhQoEABrl27ZtIxbt26xfjx4+mdOOo5wbhx43jttdfIkycP27dv57333iM6Opr+/funeaxJkyYxduzYjL+QjNDrtUsEV68+8wKfgwfDnj3w1VfwySfg5mbmWIXIbgICwMeHi+F2rKE9AEOY/mS/Tqddpw4IsFKAQgibojIgNjZWdevWTZ07dy4jD0vThx9+qNBGD6R5O3HihJowYYJ64YUXUjy+YMGCav78+U99nsjISFWrVi3VpEkTFRsbm27bTz/9VPn4+KTb5tGjRyoyMtJwu3TpkgJUZGTkU2Mxyfr1Svn4KKUNT9VuPj7a9kzQ65UqU0Y7zNy55glRiGxv/Xo1mOkKlHqNX578Lel02i2Tf09CiJwjMjLSpPdvk8YsJeXh4UFoaCglSpR45kTt5s2b3L59O902JUuWZOXKlQwZMoS7d+8atsfFxeHi4sLatWtp3bp1mo+/d+8egYGB5MmTh02bNuHi4pLu823evJnXX3+dR48emVxk06xjlhKnOyf/seh02td166BNmwwf9ssvtUVDS5aE//7LdCeVEDYjMhJ8izzm3kNHfqYpTUlYjsnXV1sgLhN/R0KInMXU9+8Mz4Zr1aoVGzduZJAZSuAWLFjQcHkvPXXq1CEiIoLDhw/j7+8PwK5du4iPj6d27dppPi4qKorAwECcnZ358ccfn5ooAYSGhpI/f37rVCNPNt3ZiFJawjRwoLaeSQaznaAg7RLcuXPw44+QTn4pRI7w9ddw76Ej5csrmsz7EK4FPfMlbSFE7pThZKlMmTKMGzeO/fv34+/vT968eY32pzfWJ7PKlStHkyZN6NWrFwsWLODx48f069ePDh06GGbCXb58mQYNGrB8+XJq1apFVFQUjRs35sGDB6xcudJoIHbBggWxt7fnp59+4vr167z00ku4uLiwY8cOJk6cyNChQ83+GkySbLpzCkplerpz3rzQpw9MnAjTp0uyJHK22Fit8whgyBAduvr1rBeMEMLmZThZWrRoEZ6enhw+fJjDhw8b7dPpdBZJlgC+/fZb+vXrR4MGDbCzs6Nt27bMmTPHsP/x48ecOnWKBw8eAHDkyBHDTLnSpUsbHSssLAw/Pz8cHR354osvGDRoEEopSpcuzYwZM+jVq5dFXsNTXb1q3nbJ9OsHU6fC/v1w8CCk0yknhE37/nu4fBkKF4bOna0djRDC1mV4zJJIyWxjlnbv1pZDf5qQkEwX0uvaFZYtg/btIYcUKhfCiFJQrRocPQoTJsBHH1k7IiFEdmXWOkupuXXrlqH2kjCThOnOhsHcyel02uDUZ5junDjUbN06sEIVCCEsbtcuLVHKk0e79CyEEM8qQ8lSRESEoYBj4cKFKVy4MF5eXvTr14+IiAgLhZiL2NvD7Nna/eQJU+L3s2Y90+DUKlWgUSNtLPnMmZk+jBDZ1rRp2tfu3aFAAevGIoTIGUy+DHfnzh3q1KnD5cuX6dy5M+XKlQPg+PHjrFq1Cl9fX3777Tfy589v0YCzI7MvdxIcrM2KSzrY24zTnX/5RUuYXF3h4kXw8nrmQwphXQlFXP859IBKHzbDzk7x3386LLi2txAiBzB76YBx48bh5OTE2bNnKVy4cIp9jRs3Zty4ccyU7opn16aNVh7ATBW8k2vQQBvT8ddfMH8+jBpllsMKYR1JPlxMZzEAbZw3U+poLJSSWkpCiGdncs+Sn58fX331FYGBganu37p1K3369OH8+fPmjM8mZOeFdNOyZg106KD1Kl24oI3vEMLmJCniehVvinOBxzhxgDq8pDuY6SKuQojcwewDvK9evUqFChXS3F+xYkWT12kT1te2LZQoAbduwdKl1o5GiExIVsR1Lh/wGCdeYR8v8bvWZuBArZ0QQjwDk5MlLy+vdHuNwsLCKCCjKbOGXq+VGVi9WvuaiTcDBwcYoi3GzvTpEBdn1giFsLwkRVyjycuX9AVgKAkjvJMWcRVCiGdgcrIUGBjIxx9/TGxsbIp9MTExfPrppzRp0sSswYlUBAeDn59Wj6lTJ+2rn5+2PYO6dYPnntOWQMnEw4WwriTFWb+hJxHkpzSneYOf0mwnhBCZkaEB3jVq1KBMmTK8//77vPjiiyilOHHiBPPnzycmJoYVK1ZYMlaR1iK7ly9r2zM4PiNPHvjgAxgzBqZMgTffTLvEkxDZTpEiAMTiyHS0btLhTMGe+FTbCSFEZmWogndYWBjvvfce27dvJ/FhOp2ORo0aMW/evBTLiuQWWTLAW6/XepDSWjtOp9MKWoaFZWjW3K1b8Pzz8PAh7NwJr71mnnCFsLiEv4ml4Q3pxhKKcIUwSuBMQu93Jv8mhBC5h0UqeJcoUYItW7Zw69Ytfv/9d37//Xdu3rzJ1q1bc22ilGUysshuBnh5QY8e2v0pU54hPiGymr098TNn8znDARjETONECZ65iKsQQkAmlzvJnz8/tWrVolatWjKoO6tYcJHdwYPBzg62bdOWiRDCVvzo0IaTlMNDF8m7fPVkh4+PlA0QQphNpteGE1nM1HEXmRifUaIEvPWWdn/q1Aw/XAirUAomTdLuv/9hPtxDfoRVq7SFpsPCJFESQphNhsYsidRl6Zily5dTDvCGZx6fceQI+PtrDz17FooXf/aQhbCk3bu1yaDOzlph1WQLCwghxFNZZMySsCILL7JbvTo0bCgL7ArbMXmy9rV7d0mUhBCWJcmSLWnTRhuHUayY8XYzjc8Yro2T5euv4fbtZzqUEBb111/aGDs7Oxg61NrRCCFyOkmWbE2bNnD+vDYuw8zjMxo2hKpV4cEDmDfvmQ8nhMV8/rn2tX17KFnSurEIIXI+GbNkBra4kG5avv9eewPKn18bB5Ivn7UjEsLY2bPwwgsQHw+hoVClirUjEkLYKhmzJDKlbVsoWxbu3oUFC6wdjRBJJKyJOO3d08THQ9MmShIlIUSWkGQpJ3qGhXbt7WHECO3+9OlaZW8hrC5hTcRr9TuwZKcvACMOvymLGgohsoQkSzmNGRba7dxZKx1w/TosXmyxSIUwTeKaiOHhzGYAMbhQh98IuJmwXRImIYSFSbKUkyR5UzGSuNCuiW8qjo5PZsZNmQKxsWaOUwhT6fUwYAAoRSTuzOc9AEYwGR0Jwy0HDsxQ76kQQmSUJEs5RZI3lRRUxt9UuncHb2+4eBFWrjRfmEJkSJI1EefzHlF4UJ5/eZ1N2v5MrokohBAZIclSTmHmhXZdXGDIEO3+5MnywV1YScJah9HkZQaDAa1XyQ6VajshhLAESZZyCgsstNunDxQoAKdPw9q1mYxLiGeRsNbhAvpwi4KU4gwdWZ1mOyGEsARJlnIKCyy06+amXbkDmDhRq2sjRJYKCOBB0dJMQyvT/TETcCBJN6dOB76+EBBgpQCFELmBJEs5RUCAtuxJ8nXjEmXyTaVfP60w5d9/w6ZNZohTiIywt+frwHVcxxs/wnibJAPozLAmohBCmEKSpZzCQgvt5s8P77+v3Z8wIfXx40JYyqNH8PlWrfLkSM8FOBL3ZKeZ1kQUQoinkWQpJ7HQQruDBoGrKxw6BDt3miFOIUy0eLE2zM7XF7pcnmiRNRGFEOJpZG04M8h2a8Pp9dqst6tXtTFKAQHPfJliwACYMwfq1dPep4SwtJgYKF1am+T5xRfw3nvWjkgIkdOY+v4tyZIZZLtkyQLCw7XV3R8/hn374JVXrB2RyOkWLoR339Xy/XPntHIWQghhTjluId07d+7QuXNn3N3d8fT0pEePHkRHR6f7mHr16qHT6Yxuffr0MWpz8eJFmjdvTp48eShUqBDDhg0jLi4ujSPmAJlcN87HB7p00e6PG2ex6IQAtKR80iTt/ocfSqIkhLAum0mWOnfuzL///suOHTvYtGkTv/76K717937q43r16sXVq1cNtylTphj26fV6mjdvTmxsLL/99hvLli1j6dKljBo1ypIvxXqecd24jz4CBwfYvh3277dopCKXW7kSzp+HwoWhVy9rRyOEyPWUDTh+/LgC1B9//GHYtmXLFqXT6dTly5fTfFzdunXVgAED0tz/888/Kzs7O3Xt2jXDti+//FK5u7urmJgYk+OLjIxUgIqMjDT5MVlu/XqldDqltAltT246nXZbv96kw/TurT2sQQMLxytyn7g4pUJC1OMVq1Wpog8UKDVtmrWDEkLkZKa+f9tEz9KBAwfw9PSkRo0ahm0NGzbEzs6OgwcPpvvYb7/9Fi8vLypWrMjIkSN58OCB0XErVapE4cKFDdsCAwOJiori33//TfOYMTExREVFGd2yNTOuG/fxx9pCuzt3wp495g1T5GJJej1Xv7OZs1dc8bK7TZ8iP1g7MiGEsI3LcNeuXaNQoUJG2xwcHChQoADXrl1L83GdOnVi5cqVhISEMHLkSFasWMHbb79tdNykiRJg+D69406aNAkPDw/DzdfXNzMvK+uYcd24559/cllk1CipuyTMIDgY2rWD8HD02DGBjwEYEj+NvG+3NvkysRBCWIpVk6URI0akGICd/Hby5MlMH793794EBgZSqVIlOnfuzPLly9mwYQNnz559prhHjhxJZGSk4Xbp0qVnOp7FmXnduJEjwdkZfv0Vdu16hriESNbruZY3OcWLFOA27zNPa2Nir6cQQliKgzWffMiQIXTt2jXdNiVLlsTb25sbN24YbY+Li+POnTt4e3ub/Hy1a9cG4MyZM5QqVQpvb28OHTpk1Ob69esA6R7X2dkZZ2dnk5/X6sy8bpyPjzale84crXfptdfSXmVFiHQl6fXUY8c4tMkVg5hJPqJB8aTXs14968UphMjVrJosFSxYkIIFCz61XZ06dYiIiODw4cP4+/sDsGvXLuLj4w0JkClCQ0MBKJKQFNSpU4cJEyZw48YNw2W+HTt24O7uTvny5TP4arKxxHXjLl9O/bqZTqftz8C6cSNGaHVwfvtNmx0XGGjGeEXukaQ381s6c4LyFOA2HzA3zXZCCJHVbGLMUrly5WjSpAm9evXi0KFD7N+/n379+tGhQweKFi0KwOXLl3nxxRcNPUVnz55l/PjxHD58mPPnz/Pjjz8SFBTEq6++SuXKlQFo3Lgx5cuX55133uHo0aNs27aNTz75hPfff9+2eo6exgLrxhUp8qSisoxdEpmW8MElFkdGMxaAD/kcD6JSbSeEEFaRRbPzntnt27dVx44dlZubm3J3d1fdunVT9+7dM+wPCwtTgAoJCVFKKXXx4kX16quvqgIFCihnZ2dVunRpNWzYsBTTA8+fP6+aNm2qXF1dlZeXlxoyZIh6/PhxhmKzidIBSmnlAXx8jEsH+PqaXDYguWvXlMqTRzvMpk1mjlXkDnFxSvn4qPn0VaCUN1fUfVyNS1v4+mrthBDCzEx9/5blTszAppY7MfO6cR9+CFOmQPXq8OefMnZJZNyD1T9QulNNrlKUebzP+8zXdiT+Mj3DItBCCJEeWRsuC9lUsmRmt25BiRIQHQ0bN0LLltaOSNiaqVNh+HDws7/IKX1pnHis7fD11S4PS6IkhLAQU9+/rTrAW2Qzmeh18vKC/v1h4kQYPRreeAPsbGIknMgOoqJg8mTt/uiFPjiV3G62Xk8hhDAXSZaEJjhYq3eTtHilj482MPwpn+yHDIG5c+HoUdiwAdq2tXCsIseYMQPu3IEXX4S3g+zAoZ61QxJCiBSkD0AYVVA2cvmytv0pFZQLFIBBg7T7o0ZJ/UBhmlu3tGQJYNw4bZFmIYTIjiRZyu3MtG7coEGQPz8cPw7Llpk/TJHzfP453LsH1apJb6QQInuTZCm3M9O6cZ6e2iK7oPUuJVmvWIgn9HrYvZsr8zcyb46WgH/2mYxzE0Jkb/IvKrcz47px778PxYtrV+/mzHnGuETOExwMfn5Qvz6fvX+FR7H2vOJ0iKYPZaFcIUT2JslSbmfGdeNcXLReAtBmON2+/QxxiZwlybi4c5Tga3oBMCF2OLo3nz4uTgghrEmSpdwucd24tKpJ6nRavRsT143r1AmqVoXISJgwwXxhChuWbFzcWEYThyON2UZd9mhtTBgXJ4QQ1iLJUm5n5nXj7Oy0gbsA8+ZBWJh5whQ2LMm4uGNUYgXvAPAZn2j7TRwXJ4QQ1iLJktDqKK1bB8WKGW/38cnUUhONG0OjRvD4MXzyiRnjFLYpYbybAgYzA4Udb/I9Nfkz1XZCCJHdSLIkNG3awPnzEBICq1ZpX8PCMr3URGLv0qpVcOSI+cIUNihhvNvPNGMnDXEihs/5MM12QgiR3UgZOPGEvT3Uq5f2/gwsh1KtGnTuDN9+qy22u2OHZUIWNiAggMfF/Bh6eRoAA5lFCc4/2a/Tab2YJo6LE0KIrCY9S8I0SaZ906mT9tXPL91ZTJ99Bk5O8MsvsH17lkUqsht7exY23cBJyuHFTT5i4pN9mRgXJ4QQWU2SJfF0mVwOxc9Pq70E2qry8fGWDVNkTxERMHpDVQDGec7Eg6gnOzM5Lk4IIbKSTqnU1rkQGREVFYWHhweRkZG4u7tbOxzz0uu1rCetKt+Jl1DCwlLtGbh9G0qV0koJLF8O77xj2XBF9jN8OEydCuXKwbG/9DgcMO1SrhBCWJqp79/SsyTS94zLoTz3HIwcqd3/5BN49MgCMYps69y5J5Uppk8HB+eEcXEdO2pfJVESQtgASZZE+sywHEr//lrn08WLWg+DyOES1n9j9WpGdL9BbKxWTqJJE2sHJoQQmSPJkkifGZZDcXWFadpEKCZNggsXzBCXyJ6STATY32kea/cUwg4905r8kmaReCGEyO4kWRLpM9NyKG+9pV11efgQhgwxf5giG0gyESAeHYOZAUAPFlNpSGNZ/00IYbMkWRLpM9NyKDodzJmjNVu/XisnIHKQZOu/fUcHDlEbN+4xjk+1NrL+mxDCRkmyJJ7OTMuhVKr0pJTABx9AbKyZ4xTWk2QiwENcGMFkAEYyCW+uy/pvQgibJsmSMM3TlkNJMqiX3bvT7EEYOxYKFoSTJ2Hu3KwKXlhckgH+kxjJJZ7Hl4sMYmaa7YQQwlZIsiRMZ5/GtO8MVPf29ITJWqcDY8fKe2eOkTDA/xQvGNZ9m8kgXHmUajshhLAlkiyJZ5OJ6t5du0KtWnDvnrZunMgBAgJQxXx4j/nE4kwzNtOGJD97EycCCCFEdiTJksi8ZIN6jSRuS2VQr50dzJunvX+uWAH791s+VGFh9vasahfMLhrgwkPm0Q/DdABZ/00IYeMkWRKZ9wzVvWvWhO7dtfv9+skkKVt39y4MXl0TgE/d51CC8092yvpvQggbJ8mSyLxnrO49aZI2hik0FBYuNFtUwgo++ghu3NDWfxt6bWjaEwGEEMIGSbIkMu8Zq3sXLAjjxmn3P/4Ybt0yU1wiSx08CF99pd3/8ktwcpX134QQOYskSyLzzFDdu29frf7S3btS2dtmJCkTEbdzD336KJSCoCCoW9fawQkhhPlJsiQyzwzVvR0ctF4JnQ6WL4eff7ZMqMJMkpWJmNdwA6GhOvK7xcoiyUKIHMtmkqU7d+7QuXNn3N3d8fT0pEePHkRHR6fZ/vz58+h0ulRva9euNbRLbf93332XFS8pZzCluvdTClbWqaNNmgN4912IisqKwEWGJSsTEU4xPmU8AJ9H96PQPln7TQiRM+mUSm3ed/bTtGlTrl69yldffcXjx4/p1q0bNWvWZNWqVam21+v13Lx502jbwoULmTp1KlevXsXNzQ3QkqUlS5bQpEkTQztPT09cXFxMji0qKgoPDw8iIyNxd3fPxKvLAfR6bdbb1avaGKWAAK1HKThYKy+QdNacj4/WI5Vk0O+DB1C5Mpw9qyVMCxZY4TWItOn1Wo9Skp9jO9aynnbU4Tf2EYCdbzFtMLeMURJC2AhT379tIlk6ceIE5cuX548//qBGjRoAbN26lWbNmhEeHk7RokVNOk61atWoXr06ixYtMmzT6XRs2LCBVq1aZTo+SZbSkNgTkfxXLPESXbLp5Lt3a1d3AHbuhNdey5owhQmS/nCAzTTjdTZjTxxHqE5l/tZ2hIRog7qFEMIGmPr+bROX4Q4cOICnp6chUQJo2LAhdnZ2HDx40KRjHD58mNDQUHr06JFi3/vvv4+Xlxe1atVi8eLFPC1/jImJISoqyugmkslEwcp69bQB3wA9e8L9+xaPUpgqSfmHO+SnN1qth4HMepIoJWsnhBA5hU0kS9euXaNQoUJG2xwcHChQoADXrl0z6RiLFi2iXLlyvPzyy0bbx40bx/fff8+OHTto27Yt7733HnOfssLrpEmT8PDwMNx8fX0z9oJyg0wWrPz8c3j+ee1qzscfWzhGYbok5R/e5wuuUIyynGQco9JsJ4QQOYVVk6URI0akOQg78Xby5Mlnfp6HDx+yatWqVHuVPv30U1555RWqVavGhx9+yPDhw5n6lGk9I0eOJDIy0nC7dOnSM8eY42SyYGW+fE8KVM6ZI0uhZBsJZSK+owPf0RF74lhOEHl4qO2Xtd+EEDmYgzWffMiQIXTt2jXdNiVLlsTb25sbN24YbY+Li+POnTt4e3s/9XnWrVvHgwcPCAoKemrb2rVrM378eGJiYnB2dk61jbOzc5r7RIJnKFgZGAjdusGSJdqSKKGh4Opq3vBEBtnbc3nUV7zX+yUAPmYCtfhD2ydrvwkhcjirJksFCxakYMGCT21Xp04dIiIiOHz4MP7+/gDs2rWL+Ph4ateu/dTHL1q0iBYtWpj0XKGhoeTPn1+SoWeVWLDy8uXUxy3pdNr+NHoipk+HLVvgv/9g7FiYPNnC8Yp0KQU91jfjLuDveIxPHn/2ZKePj5YoyZImQogcyibGLJUrV44mTZrQq1cvDh06xP79++nXrx8dOnQwzIS7fPkyL774IocOHTJ67JkzZ/j111/p2bNniuP+9NNPfPPNN/zzzz+cOXOGL7/8kokTJ/LBBx9kyevK0Z6xYGX+/E/KB0ydCn/8YZkwhWm++gq2bQMXF1hxpAKOITtk7TchRO6hbMTt27dVx44dlZubm3J3d1fdunVT9+7dM+wPCwtTgAoJCTF63MiRI5Wvr6/S6/UpjrllyxZVtWpV5ebmpvLmzauqVKmiFixYkGrb9ERGRipARUZGZuq15Wjr1yvl46OU1jmh3Xx9te1KKRUXp1RIiFKrVmlf4+KMHt6hg/aQsmWVSvLjFpaW5Ofy34rfVZ488QqUmjXL2oEJIYT5mPr+bRN1lrI7qbP0FM9QsPLWLahaVbua9847sGxZ2kvRCTNJ8nOJw55X+ZUDvMxrlW6wI7QQdjbRHy2EEE+Xo+osCRtnn8oq9MmWzjC4fFnbHqwtneHlpa2SYmcHK1bA0qVZHXwuk+znMoXhHOBl3Ilkyd81sdsoS5oIIXIf6VkyA+lZyqBUls4wkjj4O8nSGRMmwCefaLPi/vwTypfPunBzjWQ/l7+oSi0OEYcjywgiSLcyxc9FCCFsmfQsiewrEwUrR46ERo3g4UN46y1tLTlhZkl+LvdwozPfEocjrQnmHVakWUhUCCFyOkmWRNbLRMHKxMtw3t7w77/Qv7+FYsvNEs63ArqxhBOUpyiX+Yp30aXSTgghcgtJlkTWy2TBysKF4dtvtat0ixZp94UZJZzvKQxnPe1wJJb1tKUgt1JtJ4QQuYUkSyLrJRasTGtaW9KlM/R6bcX71ath925eq6tnVMJyZO++C6dOZVnUOV9AADu8OvIREwGYRz9eIslC1bKkiRAil5JkSWQ9UwtW/vCDNuC4fn3o1En76ufHpxWCqVcP7t/Xxi89fJiFsedg5y/Z0+HREuKxpweL6MXXT3bKkiZCiFxMkiVhHW3awLp1UKyY8XYfH207pFlawL59O77t/DMFC8KxYzBwYJZEnPMk6bV7uO1X2rRR3Il2pmbpO8wrNsl4nFLiz0UqdQshciEpHWAGUjrgGaRWsBJMKi2wbUEYTZprvRyzZml1FIWJkhSeVEAXlrGCIAq6P+LwPy74Fk2jkKgQQuQgpr5/S7JkBpIsmdnu3dolt6cJCWHKoXp8+KGWP61fD61bWzw625dYeDLhT38e7/MB87Anjh00pv76ftKDJITIFaTOkrBdGSgtMGwY9Omjve936gQHDz79YbmaXq/1KCUkSvt4hUHMBLRZcPV1u7Xrmnq99WIUQohsRpIlkf1koLSATgdz50KzZvDoEbzxBpw7Z9nwbFqSwpPnKEE71hGHIx1YrSVNUnhSCCFSkGRJZD+mlhZ4+WXYvRuHtatZ028v1aopbt7UEqc7d7I2ZJuR0Gt3maI05Beu401ljvINPaXwpBBCpEGSJZH9mFJaoEMHKFXKUFbArdmrbLpWE1+vB5w6Ba1aaT1NIpkiRbjFczRmO2GUpBRn2EYgeXmQop0QQgiNJEsie0qvtMDQoTBtWorZckWvHeHnW7Vxz/OYvXuhWzeIj8/CmLOjZEU9oyq+TBPHXRynAsUI5xca4s31J+2l8KQQQqTgYO0AhEhTmzbQsqXxFPaXX9Z6lFKbxKkUFXX/Epw3iCaxq/juOx0lSsDEiVkferaQpDwAwENceMMphMOPX8KLm/xCI/y48KS9FJ4UQohUSc+SyN7s7aFePejYUfv6229p118CUIoGN7/jmyEnAZg0CcaNSz23ytESywMknKtYHGnHOn6NfQl3ItkWtIoXfaKNHyOFJ4UQIlXSsyRsi4kDj7tUCeXa5HKMGAGjR0NUFEydmvaY8RwlWXkAPXYEsZyfaY4rD9jEG1QPOQ9nz2rJpxSeFEKIdEmyJGyLqQOPCxXiwyK7cQ3Kx4Dl/kyfriVMX36ZC/KBJOUBFNCXL1lDBxyJJZg2BLAXLqElSvXqWTNSIYSwCZIsCduSWFbg8uXUr63pdFCgAHTtCuHh9Afy0ZWefMPXX9sTFQUrVoCjY1YHnoUSet9icKIn37CSd7BDz7d0pgnbUrQTQgiRPhmzJGzL08oKKAW3bxuNa+rGUr6jI47EsmaNNiTn4cMsjDmrFSnCbQrQiB2s5B3siWMx3XmTdSnaCSGEeDpJloTtSausQLFi8NxzqT7kTdbyA61w0T1i0yZo3hzu3cuCWC0tWWkA9Hr+KxzASw5/spdXcSeSLTSlC8ufPEbKAwghRIbIQrpmIAvpWoleb1xWQK+Hhg3TfcivBPB6nl3ce+BArVK32Dz9FF6vv2SbA5mSlQYA2FOwHW0eruROtDPFOc9mXqcC/z55TGJvnMx6E0IIWUhX5ALJywrcuPHUh7zKXnY5BFKA2xw660WVVn7s9u6gJR62JFlpAIDlvEOjm99yJ9qZ2mXucHDRv1TwiTR+nJQHEEKIDJNkSeQcJo7BqRG1i70EUJaTXKEYr91aw6dtjxO3doOFAzSTZKUBFDCKsXRhOY9xoh1rCXlQm8JdmsD58xASAqtWaV/DwiRREkKIDJLLcGYgl+GyCb0e/PzSnimXzH3yMIDZLKInAC87/cmqE9UoXjKbX5LbvVtbEw+4wPP05Uu20AyAEUxiAh9jh9KSIykNIIQQaZLLcCL3SW+mXCry8oBv6MV3tMedSH6LrUHVKvGs+z7loGmrSj6I+/Jl9NgxiwFU4F+20AwnYviGHkziIy1RAikNIIQQZiLJkshZ0popV6BAmg9pz/eEUpXa/E5EtCNvtrfn3fqneNCph9aD4+dnvTFNwcHa89evD506Qf36HO33NXU4wCBmcR83AviVo1ShB4uNHyulAYQQwizkMpwZyGW4bCgTM+Ue48BoxjKZESjsKEY4HzOB7izBWRerJWHJF/a15BIhiYO4E/5EH+LCOEYxlWHoccCDCKYwnJ5886Q3CbReNR8fbXySLc7yE0KILGLq+7ckS2YgyZINMGU8k7096PXs5DW6sYRLPA+ALxf5hAl0LfAjTnkcjBfy9fHRLv0966Dp5Mndyy9DqVIQHk48On6mGYOYyRnKANCWdczlA4rorhu/HikNIIQQJpNkKQtJsmQjEntqIGWCkezP4BHOfENPJjGSK2iX9Ipznk8ZT9D/27v3qCjO8w/g3wXcBVwEFeSuIRUEVBBB6UatNmBAIvF+iymLt1aFKiq22BPEHE3R1ORE8/OaWtSmCebmNcHEIG4rLioKikpUDIoXkBiVixfU3ff3B2HqCixoCQvy/Zwzx533fWf22UfO7HPemZ3BVrTDo/9uCzRu1unJgqimv477JcHeHjduCKRgCtZjJn7ArwAArriCNYjBCOyqHufgAPz443+3c3cH3n+fhRIRUSM0+vtbtBLLli0TKpVKWFlZCVtb20Zto9frRWJionBychKWlpYiJCREnDt3zmDMTz/9JF5//XVhY2MjbG1txdSpU0VFRcVTxVZWViYAiLKysqfajkzgiy+EcHMToro8ql7c3YWIizNs+3m5B4VYhT8KJ1yTml9Egfg/zBYX0bW6QSYTonPn2vt1c6t+v/re181NiIULq7f/uU0PiEyoxBvYKhS4Jw21xS0Rj3dEGWwM9/HRR0JkZAjx8cfV/z56ZMrsEhG1Ko39/m41M0tJSUmws7PDlStXsGnTJty+fbvBbVasWIHk5GRs2bIFHh4eSExMRF5eHs6cOQNLS0sAwLBhw1BcXIwNGzbg4cOHmDJlCvr164ePP/640bFxZqmVqWuG5z//kX6OX5d7sMR6zMRyJKAUjlJ7D3yPcOxFGL7BYGhgjcceOlcz6xQfD6xcWe/pvwookYfeOIp+SMEUnEAfqS8Q2ZiFdZiIVLTH3dob8/YARETP7Lk9Dbd582bExcU1WCwJIeDi4oIFCxYgPj4eAFBWVgZHR0ds3rwZEydORH5+Pnx9fXH06FEEBQUBAPbu3YuIiAhcuXIFLi4ujYqJxdJzoJH3aLoDa3yIGfgCY6CFCjpYSH0K3Mcg/AeDoUEn3IQSlbBBBZRm96DUl0GJSrTDQ3wPb5yAv7TUnGKrYYl7mIhUzMZa9EN23YHwIm4iov9ZY7+/LertaeUKCwtRUlKC0Md+AWVra4vg4GBotVpMnDgRWq0WdnZ2UqEEAKGhoTAzM8Phw4cxatSoOvddVVWFqqoqab28vPyX+yDUPGru0TR2bJ3XMNVoj7uIwyrEYRXK0AHpCME3CMM3CMMlvIDvMBTfYajhRvqG394FV+GPExiKfVBjCzrhVv2Da2as3n+fhRIRUTN4boulkpISAICjo6NBu6Ojo9RXUlKCLl26GPRbWFigU6dO0pi6JCcn46233mriiMnkau7R9OTF1m5uwL17wM2bBkWULcoxGtsxGtshAJyDF/YiHDkIQCWUqIQSFbCRXldCiXuwwq9wQZpX8sNJ+OME7PFT/XE9eRG3mxsv4iYiakYmLZYSEhKwYsUKo2Py8/Ph7e3dTBE1zqJFizB//nxpvby8HO7u7iaMiJrM6NF1/6pt506js04yAD1wDj1wruliqTnVVlAAHDrUPPd2IiKiWkxaLC1YsADR0dFGx7z44ovPtG8nJycAwPXr1+H82J2Mr1+/jj59+khjSp94Uv2jR49w8+ZNafu6KBQKKBSKZ4qLWgFz89oXTT/lrFOt/en1xp9X92QR9vipNrmcF3ETEZmQSR934uDgAG9vb6OLXC5/pn17eHjAyckJ6enpUlt5eTkOHz4MlUoFAFCpVLh9+zaOHTsmjdm/fz/0ej2Cg4P/tw9Hz5/Ro4GLF6t/gfbxx9X/XrwIbNxY3f/k8+hksuqlZhayvv6FC2s/nsXNjTeWJCJqIVrNs+GKioqQm5uLoqIi6HQ65ObmIjc3F5WVldIYb29vbN++HQAgk8kQFxeHZcuWYdeuXcjLy0NUVBRcXFwwcuRIAICPjw/Cw8MxY8YMHDlyBJmZmYiNjcXEiRMb/Us4amNqZp0mTar+19y8/ufR1RQ877zTcP+TRVhhIQslIqIWotXcOiA6Ohpbtmyp1Z6RkYEhP5+ikMlkSElJkU7tCSGQlJSEjRs34vbt2xg4cCDWrl0LLy8vafubN28iNjYWu3fvhpmZGcaMGYPVq1dDqVQ2OjbeOoAA1H+H7sb2ExFRs3pu77PUErFYIiIian0a+/3dak7DEREREZkCiyUiIiIiI1gsERERERnBYomIiIjICBZLREREREawWCIiIiIygsUSERERkREsloiIiIiMYLFEREREZISFqQN4HtTcBL28vNzEkRAREVFj1XxvN/QwExZLTaCiogIA4O7ubuJIiIiI6GlVVFTA1ta23n4+G64J6PV6XLt2DTY2NpDJZE223/Lycri7u+Py5ct85lw9mKOGMUfGMT8NY44axhw1rCXmSAiBiooKuLi4wMys/iuTOLPUBMzMzODm5vaL7b9Dhw4t5g+rpWKOGsYcGcf8NIw5ahhz1LCWliNjM0o1eIE3ERERkREsloiIiIiMYLHUgikUCiQlJUGhUJg6lBaLOWoYc2Qc89Mw5qhhzFHDWnOOeIE3ERERkRGcWSIiIiIygsUSERERkREsloiIiIiMYLFEREREZASLpRZszZo1eOGFF2BpaYng4GAcOXLE1CGZzL///W9ERkbCxcUFMpkMO3bsMOgXQmDx4sVwdnaGlZUVQkNDcf78edMEawLJycno168fbGxs0KVLF4wcORJnz541GHP//n3ExMSgc+fOUCqVGDNmDK5fv26iiJvfunXr4OfnJ90QT6VSIS0tTepv6/l50vLlyyGTyRAXFye1tfUcLVmyBDKZzGDx9vaW+tt6fmpcvXoVb7zxBjp37gwrKyv07t0b2dnZUn9rPF6zWGqhtm3bhvnz5yMpKQnHjx+Hv78/wsLCUFpaaurQTOLOnTvw9/fHmjVr6ux/5513sHr1aqxfvx6HDx9G+/btERYWhvv37zdzpKah0WgQExODrKws7Nu3Dw8fPsQrr7yCO3fuSGPmzZuH3bt347PPPoNGo8G1a9cwevRoE0bdvNzc3LB8+XIcO3YM2dnZePnllzFixAicPn0aAPPzuKNHj2LDhg3w8/MzaGeOgJ49e6K4uFhaDh48KPUxP8CtW7cwYMAAtGvXDmlpaThz5gzeffdddOzYURrTKo/Xglqk/v37i5iYGGldp9MJFxcXkZycbMKoWgYAYvv27dK6Xq8XTk5O4m9/+5vUdvv2baFQKMQnn3xigghNr7S0VAAQGo1GCFGdj3bt2onPPvtMGpOfny8ACK1Wa6owTa5jx47i73//O/PzmIqKCuHp6Sn27dsnBg8eLObOnSuE4N+QEEIkJSUJf3//OvuYn2p//vOfxcCBA+vtb63Ha84stUAPHjzAsWPHEBoaKrWZmZkhNDQUWq3WhJG1TIWFhSgpKTHIl62tLYKDg9tsvsrKygAAnTp1AgAcO3YMDx8+NMiRt7c3unbt2iZzpNPpkJqaijt37kClUjE/j4mJicGrr75qkAuAf0M1zp8/DxcXF7z44ouYPHkyioqKADA/NXbt2oWgoCCMGzcOXbp0QUBAAD788EOpv7Uer1kstUA3btyATqeDo6OjQbujoyNKSkpMFFXLVZMT5quaXq9HXFwcBgwYgF69egGozpFcLoednZ3B2LaWo7y8PCiVSigUCsycORPbt2+Hr68v8/Oz1NRUHD9+HMnJybX6mCMgODgYmzdvxt69e7Fu3ToUFhZi0KBBqKioYH5+9sMPP2DdunXw9PTEN998g1mzZmHOnDnYsmULgNZ7vLYwdQBE1LRiYmJw6tQpg2spqFqPHj2Qm5uLsrIyfP7551Cr1dBoNKYOq0W4fPky5s6di3379sHS0tLU4bRIw4YNk177+fkhODgY3bp1w6effgorKysTRtZy6PV6BAUF4a9//SsAICAgAKdOncL69euhVqtNHN2z48xSC2Rvbw9zc/Nav6K4fv06nJycTBRVy1WTE+YLiI2NxZ49e5CRkQE3Nzep3cnJCQ8ePMDt27cNxre1HMnlcnTv3h2BgYFITk6Gv78/Vq1axfyg+jRSaWkp+vbtCwsLC1hYWECj0WD16tWwsLCAo6Njm8/Rk+zs7ODl5YWCggL+Df3M2dkZvr6+Bm0+Pj7S6crWerxmsdQCyeVyBAYGIj09XWrT6/VIT0+HSqUyYWQtk4eHB5ycnAzyVV5ejsOHD7eZfAkhEBsbi+3bt2P//v3w8PAw6A8MDES7du0McnT27FkUFRW1mRzVRa/Xo6qqivkBEBISgry8POTm5kpLUFAQJk+eLL1u6zl6UmVlJS5cuABnZ2f+Df1swIABtW5bcu7cOXTr1g1AKz5em/oKc6pbamqqUCgUYvPmzeLMmTPi97//vbCzsxMlJSWmDs0kKioqRE5OjsjJyREAxHvvvSdycnLEpUuXhBBCLF++XNjZ2YmdO3eKkydPihEjRggPDw9x7949E0fePGbNmiVsbW3FgQMHRHFxsbTcvXtXGjNz5kzRtWtXsX//fpGdnS1UKpVQqVQmjLp5JSQkCI1GIwoLC8XJkydFQkKCkMlk4ttvvxVCMD91efzXcEIwRwsWLBAHDhwQhYWFIjMzU4SGhgp7e3tRWloqhGB+hBDiyJEjwsLCQrz99tvi/Pnz4l//+pewtrYWH330kTSmNR6vWSy1YB988IHo2rWrkMvlon///iIrK8vUIZlMRkaGAFBrUavVQojqn6MmJiYKR0dHoVAoREhIiDh79qxpg25GdeUGgEhJSZHG3Lt3T8yePVt07NhRWFtbi1GjRoni4mLTBd3Mpk6dKrp16ybkcrlwcHAQISEhUqEkBPNTlyeLpbaeowkTJghnZ2chl8uFq6urmDBhgigoKJD623p+auzevVv06tVLKBQK4e3tLTZu3GjQ3xqP1zIhhDDNnBYRERFRy8drloiIiIiMYLFEREREZASLJSIiIiIjWCwRERERGcFiiYiIiMgIFktERERERrBYIiIiIjKCxRIRNashQ4YgLi7O1GG0GdHR0Rg5cqSpwyBq1VgsEVGdZDKZ0WXJkiXPtN8vv/wSS5cubbI4W0Lx9eGHH8Lf3x9KpRJ2dnYICAhAcnKySWMioqZjYeoAiKhlKi4ull5v27YNixcvNnhAplKplF4LIaDT6WBh0fAhpVOnTk0baBN58OAB5HL5U2/3j3/8A3FxcVi9ejUGDx6MqqoqnDx5EqdOnfoFoiQiU+DMEhHVycnJSVpsbW0hk8mk9e+//x42NjZIS0tDYGAgFAoFDh48iAsXLmDEiBFwdHSEUqlEv3798N133xns98mZoKqqKsTHx8PV1RXt27dHcHAwDhw4YLBNZmYmhgwZAmtra3Ts2BFhYWG4desWoqOjodFosGrVKmnG6+LFiwAAjUaD/v37Q6FQwNnZGQkJCXj06JFBHLGxsYiLi4O9vT3CwsIwdepUDB8+3OC9Hz58iC5dumDTpk115mnXrl0YP348pk2bhu7du6Nnz56YNGkS3n77bWnM0aNHMXToUNjb28PW1haDBw/G8ePHDfYjk8mwYcMGDB8+HNbW1vDx8YFWq0VBQQGGDBmC9u3b46WXXsKFCxekbZYsWYI+ffpgw4YNcHd3h7W1NcaPH4+ysrJ6/1/1ej2Sk5Ph4eEBKysr+Pv74/PPP5f6b926hcmTJ8PBwQFWVlbw9PRESkpKvfsjagtYLBHRM0tISMDy5cuRn58PPz8/VFZWIiIiAunp6cjJyUF4eDgiIyNRVFRU7z5iY2Oh1WqRmpqKkydPYty4cQgPD8f58+cBALm5uQgJCYGvry+0Wi0OHjyIyMhI6HQ6rFq1CiqVCjNmzEBxcTGKi4vh7u6Oq1evIiIiAv369cOJEyewbt06bNq0CcuWLTN47y1btkAulyMzMxPr16/H9OnTsXfvXoNZtT179uDu3buYMGFCnfE7OTkhKysLly5dqvczVlRUQK1W4+DBg8jKyoKnpyciIiJQUVFhMG7p0qWIiopCbm4uvL298frrr+MPf/gDFi1ahOzsbAghEBsba7BNQUEBPv30U+zevRt79+5FTk4OZs+eXW8sycnJ2Lp1K9avX4/Tp09j3rx5eOONN6DRaAAAiYmJOHPmDNLS0pCfn49169bB3t6+3v0RtQmmfY4vEbUGKSkpwtbWVlrPyMgQAMSOHTsa3LZnz57igw8+kNYff5L9pUuXhLm5ubh69arBNiEhIWLRokVCCCEmTZokBgwYUO/+H99fjb/85S+iR48eQq/XS21r1qwRSqVS6HQ6abuAgIBa+/P19RUrVqyQ1iMjI0V0dHS973/t2jXx61//WgAQXl5eQq1Wi23btknvUxedTidsbGzE7t27pTYA4s0335TWtVqtACA2bdoktX3yySfC0tJSWk9KShLm5ubiypUrUltaWpowMzOTnnavVqvFiBEjhBBC3L9/X1hbW4tDhw4ZxDNt2jQxadIk6fNOmTKl3tiJ2iLOLBHRMwsKCjJYr6ysRHx8PHx8fGBnZwelUon8/Px6Z5by8vKg0+ng5eUFpVIpLRqNRjrdVDOz9DTy8/OhUqkgk8mktgEDBqCyshJXrlyR2gIDA2ttO336dOm00/Xr15GWloapU6fW+17Ozs7QarXIy8vD3Llz8ejRI6jVaoSHh0Ov10v7mTFjBjw9PWFra4sOHTqgsrKyVl78/Pyk146OjgCA3r17G7Tdv38f5eXlUlvXrl3h6uoqratUKuj1eoPry2oUFBTg7t27GDp0qEG+t27dKuV71qxZSE1NRZ8+ffCnP/0Jhw4dqvezE7UVvMCbiJ5Z+/btDdbj4+Oxb98+rFy5Et27d4eVlRXGjh2LBw8e1Ll9ZWUlzM3NcezYMZibmxv01VxAbmVl9csEj9rxA0BUVBQSEhKg1Wpx6NAheHh4YNCgQQ3uq1evXujVqxdmz56NmTNnYtCgQdBoNPjtb38LtVqNn376CatWrUK3bt2gUCigUqlq5aVdu3bS65pCr662miLsaVVWVgIAvvrqK4MCCwAUCgUAYNiwYbh06RK+/vpr7Nu3DyEhIYiJicHKlSuf6T2JngcsloioyWRmZiI6OhqjRo0CUP3lXHPBdV0CAgKg0+lQWlpab0Hi5+eH9PR0vPXWW3X2y+Vy6HQ6gzYfHx988cUXEEJIBUZmZiZsbGzg5uZm9DN07twZI0eOREpKCrRaLaZMmWJ0fF18fX0BAHfu3JHee+3atYiIiAAAXL58GTdu3Hjq/dalqKgI165dg4uLCwAgKysLZmZm6NGjR51xKRQKFBUVYfDgwfXu08HBAWq1Gmq1GoMGDcLChQtZLFGbxmKJiJqMp6cnvvzyS0RGRkImkyExMdHoLIiXlxcmT56MqKgovPvuuwgICMCPP/6I9PR0+Pn54dVXX8WiRYvQu3dvacZGLpcjIyMD48aNg729PV544QUcPnwYFy9ehFKpRKdOnTB79my8//77+OMf/4jY2FicPXsWSUlJmD9/PszMGr76YPr06Rg+fDh0Oh3UarXRsbNmzYKLiwtefvlluLm5obi4GMuWLYODgwNUKpWUl3/+858ICgpCeXk5Fi5c2GQzZpaWllCr1Vi5ciXKy8sxZ84cjB8/Hk5OTrXG2tjYID4+HvPmzYNer8fAgQNRVlaGzMxMdOjQAWq1GosXL0ZgYCB69uyJqqoq7NmzBz4+Pk0SK1FrxWuWiKjJvPfee+jYsSNeeuklREZGIiwsDH379jW6TUpKCqKiorBgwQL06NEDI0eOxNGjR9G1a1cA1QXVt99+ixMnTqB///5QqVTYuXOndE+n+Ph4mJubw9fXFw4ODigqKoKrqyu+/vprHDlyBP7+/pg5cyamTZuGN998s1GfIzQ0FM7OzggLC5NmbIyNzcrKwrhx4+Dl5YUxY8bA0tIS6enp6Ny5MwBg06ZNuHXrFvr27Yvf/e53mDNnDrp06dKoWBrSvXt3jB49GhEREXjllVfg5+eHtWvX1jt+6dKlSExMRHJyMnx8fBAeHo6vvvoKHh4eAKpn6hYtWgQ/Pz/85je/gbm5OVJTU5skVqLWSiaEEKYOgojaDpVKhZCQkFo/429JKisr4erqipSUFIwePdrU4dRryZIl2LFjB3Jzc00dCtFzjTNLRNQsqqqqkJ2djdOnT6Nnz56mDqdOer0epaWlWLp0Kezs7PDaa6+ZOiQiagF4zRIRNYu0tDRERUXhtddew9ixY00dTp2Kiorg4eEBNzc3bN68uVGPbyGi5x9PwxEREREZwdNwREREREawWCIiIiIygsUSERERkREsloiIiIiMYLFEREREZASLJSIiIiIjWCwRERERGcFiiYiIiMgIFktERERERvw/IT3RZL6AX64AAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.set_axis(title = \"End-Effector Orientation Predictions\", x = \"Trajectory Samples\", y = \"Orientation [rad]\")\n", + "visualizer.plot_orientation_trajectory(np.sin(or_traj), np.sin(or_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BTJFV6jTY_kd" + }, + "source": [ + "## Workspace" + ] + }, + { + "cell_type": "code", + "execution_count": 936, + "metadata": {}, + "outputs": [], + "source": [ + "### TODO distance of each point to origin. \n", + "# If smaller than max range then within " + ] + }, + { + "cell_type": "code", + "execution_count": 937, + "metadata": {}, + "outputs": [], + "source": [ + "ws_pred, ws_traj = metrics['workspace'][0], metrics['workspace'][1]" + ] + }, + { + "cell_type": "code", + "execution_count": 938, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAGFCAYAAABQYJzfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZglZ3XniX9iufu+5r7UrlJpl9C+gWVk++dusHHbbbsHGffY/Rh4sBvsBqanGYYej8GAR7aHxt09DbgxBuw2tmkwkoWs0oZYJCSVSrVXZVZV7vfm3fLuS8Tvj4g3MvLWzVpzKaXi+zz5ZGbce+N9I27E+41zzvecI+m6ruPAgQMHDhxsIuTNnoADBw4cOHDgkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0OGTkwIEDBw42HQ4ZOXDgwIGDTYdDRg4cOHDgYNPhkJEDBw4cONh0qJs9AQdvXGiaRrPZ3OxpOHDgYB3hcrlQFGXdx3HIyMFlodlsMjExgaZpmz0VBw4crDOi0Sj9/f1IkrRuYzhk5OCSoes6s7OzKIrCyMgIsux4ex042IrQdZ1qtcrCwgIAAwMD6zaWQ0YOLhntdptqtcrg4CB+v3+zp+PAgYN1hM/nA2BhYYF0Or1uLjvnkdbBJaPT6QDgdrs3eSYOHDjYCIiHzlartW5jOGTk4LKxnv5jBw4cXD3YiHvdISMHDhw4cLDpcMjIgYN1wK/92q/xzne+0/r/wQcf5Hd+53euaJ9rsY+NxMXM90tf+hLRaPS87+k+l1c7LuaYHJwLh4wcvGnwa7/2a0iShCRJuN1udu7cySc+8Qna7fa6j/2Nb3yD//gf/+NFvXf//v1IkkShULjsfVwN6J7v+Pg4jz766CXv54//+I/50pe+dNnzeOyxx5Akibm5uRXbBwYGGB8fX7FtcnISSZJ48sknL3s8B5cHh4wcvKnwUz/1U8zOznL8+HE+9KEP8fGPf5xPf/rTPd+7lgm98XicUCi06fvYSKzVfCORyBVZGvfeey+qqrJ//35r2+HDh6nVauTzeSYnJ63tTz31FB6Ph3vuueeyxlrPAP9Wh0NGDjYVx44d4zvf+Q7Hjx/fkPE8Hg/9/f2MjY3xW7/1Wzz00EN885vfBJbdQb//+7/P4OAge/bsAeDs2bP84i/+ItFolHg8zjve8Y4VC1in0+GDH/wg0WiURCLBv/t3/w5d11eM2+2yajQafPjDH2ZkZASPx8POnTv5b//tvzE5Oclb3/pWAGKxGJIk8Wu/9ms995HP53n3u99NLBbD7/fz0z/90yvOo3AXPf744+zdu5dgMGiRscD+/fu5/fbbCQQCRKNR7rnnHk6fPt3z3P3CL/wC73//+63/f+d3fgdJkjhy5AhgkHcgEOC73/3uOfN98MEHOX36NP/23/5byzq143xz7OXy/MAHPsC/+3f/jng8Tn9/Px//+Md7zhkgGAzylre8ZQUZ7d+/n3vvvZd77rnnnO133nknXq8XTdP4xCc+wfDwMB6Ph5tuuonHHnvMeq+wor7+9a/zwAMP4PV6+cpXvnLO+JlMhttuu42f+7mfo9FokM/n+dVf/VVSqRQ+n49du3bxxS9+ccU+v/a1r3H33Xfj9Xq57rrrePrpp639dTod/vW//tds27YNn8/Hnj17+OM//uNzxv3CF77Avn378Hg8DAwMrPjuCoUC/+v/+r+SSqUIh8O87W1v49VXX131HG4EHDJysCnI5XL81E/9FHv27OFnfuZn2L17Nz/1Uz9FPp/f0Hn4fL4VFtCTTz7J0aNHeeKJJ/jWt75Fq9Xi4YcfJhQK8eyzz/L8889bC6b43Gc/+1m+9KUv8YUvfIHnnnuOXC7H3/7t35533He/+9189atf5U/+5E84fPgw//k//2eCwSAjIyP8zd/8DQBHjx5ldna250IDxiL94osv8s1vfpMXXngBXdf5mZ/5mRVP59Vqlc985jN8+ctf5plnnuHMmTP87u/+LmDki73zne/kgQce4MCBA7zwwgv85m/+5qrKqQceeGDFwv3000+TTCatbT/60Y9otVrcfffd53z2G9/4BsPDw3ziE59gdnZ2Bdmcb46r4c///M8JBAL84Ac/4A//8A/5xCc+wRNPPLHq+9/61rfy1FNPWf8/9dRTPPjggzzwwAMrtu/fv996GPjjP/5jPvvZz/KZz3yGAwcO8PDDD/PP//k/P+fB6SMf+Qi//du/zeHDh3n44YdXvHb27Fnuu+8+rrvuOv7H//gfeDwe/sN/+A8cOnSI73znOxw+fJjPf/7zJJPJFZ/7vd/7PT70oQ/x8ssvc9ddd/HP/tk/Y3FxETDKcA0PD/PXf/3XHDp0iI997GP8b//b/8Zf/dVfWZ///Oc/z/ve9z5+8zd/k9dee41vfvOb7Ny503r9X/yLf8HCwgLf+c53eOmll7jlllv4iZ/4CXK53HnP+7pCd+DgElGr1fRDhw7ptVrtsvfx8MMP64qi6ID1oyiK/vDDD6/hTFfikUce0d/xjnfouq7rmqbpTzzxhO7xePTf/d3ftV7v6+vTG42G9Zkvf/nL+p49e3RN06xtjUZD9/l8+uOPP67ruq4PDAzof/iHf2i93mq19OHhYWssXdf1Bx54QP/t3/5tXdd1/ejRozqgP/HEEz3n+dRTT+mAns/nV2y37+PYsWM6oD///PPW69lsVvf5fPpf/dVf6bqu61/84hd1QD9x4oT1ns997nN6X1+fruu6vri4qAP6/v37L3TqdF3X9QMHDuiSJOkLCwt6LpfT3W63/h//43/Uf+mXfknXdV3/v/6v/0u/++67e85X13V9bGxM/3/+n/9nxT4vNEddX/m9if3ee++9K/bzlre8Rf/whz+86tyfeOIJHdBnZmZ0Xdf1dDqt//CHP9S/973v6WNjY7qu6/rJkyd1QH/66ad1Xdf1wcFB/fd///fPGee9732vruu6PjExoQP6o48+es4xRSIR/ciRI/rIyIj+gQ98YMX188/+2T/T3/Oe9/Scp9jnJz/5SWubuJ4+9alPrXp873vf+/R3vetd1v+Dg4P6v//3/77ne5999lk9HA7r9Xp9xfYdO3bo//k//+een1mLe/5CcCowONhwHDt2jMcff/yc7Z1Oh8cff5zjx4+za9eudRn7W9/6FsFgkFarhaZp/Mqv/MoKF8/111+/Ipn31Vdf5cSJE+fEPur1OidPnqRYLDI7O8sdd9xhvaaqKrfddts5rjqBV155BUVReOCBBy77OA4fPoyqqivGTSQS7Nmzh8OHD1vb/H4/O3bssP4fGBiwSrvE43F+7dd+jYcffpif/Mmf5KGHHuIXf/EXVy35ct111xGPx3n66adxu93cfPPN/OzP/iyf+9znAMNSevDBBy/5WM43x9Vwww03rPj/Qp+5++67cbvd7N+/nxtvvJFarcYtt9yCpmlkMhkmJibYv38/Pp+PO++8k1KpxMzMzDmxo3vuueccd9Ztt912zni1Wo377ruPX/mVXzlHtPFbv/VbvOtd7+LHP/4xb3/723nnO995jjV51113WX+L68n+vX7uc5/jC1/4AmfOnKFWq9FsNrnpppsAo1LCzMwMP/ETP9HzXLz66quUy2USicQ5cz558mTvE7gBcMjIwYbjQhf8iRMn1o2M3vrWt/L5z38et9vN4OAgqrryFggEAiv+L5fL3HrrrT1jAalU6rLmIMqrbARcLteK/yVJWkGSX/ziF/nABz7AY489xte//nX+9//9f+eJJ57gzjvvPGdfkiRx//33s3//fjweDw8++CA33HADjUaDgwcP8r3vfe+C7rXLmePFfuZ8RXv9fj+33347Tz31FLlcjnvvvRdFUVAUhbvvvpunnnqKp556invuuQe32029Xr/o+XdfM2DEJh966CG+9a1v8Xu/93sMDQ1Zr/30T/80p0+f5h/+4R944okn+Imf+Ane97738ZnPfOaixvva177G7/7u7/LZz36Wu+66i1AoxKc//Wl+8IMfABe+vsrlMgMDAytcrgKbKUl3YkYONhz2p+BesPu21xqBQICdO3cyOjp6DhH1wi233MLx48dJp9Ps3LlzxU8kEiESiTAwMGAtBGDEYl566aVV93n99dejadqKoLQdwjITZZd6Ye/evbTb7RXjLi4ucvToUa699toLHpcdN998Mx/96Ef53ve+x3XXXcdf/uVfrvpeETfav38/Dz74ILIsc//99/PpT3+aRqNxXhWa2+0+7zGtN9761reumLuAINinn37aiheFw2EGBwd5/vnnV+zj+eefv6jzK8syX/7yl7n11lt561vfyszMzIrXU6kUjzzyCH/xF3/Bo48+yn/5L/9lxevf//73rb/F9bR3715rDnfffTfvfe97ufnmm9m5c+eKB7xQKMT4+Piq8vRbbrmFubk5VFU955rujl1tJBwycrDh2L17Nw8//PA5BRcVReHhhx9eN6vocvCrv/qrJJNJ3vGOd/Dss89a7pwPfOADTE1NAfDbv/3bfPKTn+Tv/u7vOHLkCO9973vPyRGyY3x8nEceeYRf//Vf5+/+7u+sfYoA9NjYGJIk8a1vfYtMJkO5XD5nH7t27eId73gHv/Ebv8Fzzz3Hq6++yr/6V/+KoaEh3vGOd1zUsU1MTPDRj36UF154gdOnT/OP//iPHD9+3Fr0euHBBx/k0KFDvP7669x7773Wtq985SvcdtttPa0E+3E/88wzTE9Pk81mL2qOa4m3vvWtHD9+nMcff3yFi/SBBx7g7/7u7zh79qxFRmCICD71qU/x9a9/naNHj/KRj3yEV155hd/+7d++qPEUReErX/kKN954I29729usPKePfexj/P3f/z0nTpzg9ddf51vf+tY55/xzn/scf/u3f8uRI0d43/veRz6f59d//dcB47t/8cUXefzxxzl27Bj/4T/8B370ox+t+PzHP/5xPvvZz/Inf/InHD9+nB//+Mf86Z/+KQAPPfQQd911F+985zv5x3/8RyYnJ/ne977Hv//3/54XX3zx0k/sGsEhIwebgq9+9as89NBDK7Y99NBDfPWrX92kGfWG3+/nmWeeYXR0lJ//+Z9n7969/Ot//a+p1+uEw2EAPvShD/G//C//C4888ojlNvm5n/u58+7385//PL/wC7/Ae9/7Xq655hp+4zd+g0qlAsDQ0BD/5//5f/KRj3yEvr6+FZJcO774xS9y66238rM/+7Pcdddd6LrOP/zDP5zjwjrfsR05coR3vetd7N69m9/8zd/kfe97H//m3/ybVT9z/fXXE41GuemmmwgGg4BBRp1O54Lxok984hNMTk6yY8eOy3ZxXgnuuusuPB4Puq5z6623WtvvuOMOWq2WJQEX+MAHPsAHP/hBPvShD3H99dfz2GOP8c1vfvOSHpZUVeWrX/0q+/bt421vexsLCwu43W4++tGPcsMNN3D//fejKApf+9rXVnzuk5/8JJ/85Ce58cYbee655/jmN79pWS3/5t/8G37+53+eX/qlX+KOO+5gcXGR9773vSs+/8gjj/Doo4/yn/7Tf2Lfvn387M/+rKUClCSJf/iHf+D+++/nPe95D7t37+Zf/st/yenTp+nr67vk87pWkPQLOWcdOOhCvV5nYmKCbdu24fV6r2hfx48f58SJE+zcufOqsogcONgMTE5Osm3bNl5++WVLkHA1YC3v+dXgCBgcbCp27drlkJADBw4cN50DBw4cONh8OJaRAwcOHFwlGB8fv6CsfavCsYwcOHDgwMGmwyEjBw4cOHCw6XDIyMFl483qTnDg4M2G81W3WCs4MSMHlwyXy4UkSWQyGVKp1KpVnh04cPDGhq7rNJtNMpkMsiyvqNu41nDyjBxcFsrlMlNTU4515MDBmwB+v5+BgQGHjBxcneh0Ok5nSwcOtjgURUFV1XX3gDhk5MCBAwcONh2OgMGBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcOHDhwsOlwyMiBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcOHDhwsOlwyMiBAwcOHGw6HDJy4MCBAwebDoeMHDhw4MDBpsMhIwcONhC6rtNut9E0zal47sCBDU4/IwcO1hmaptFut2m327RaLXRdx+12I8syiqIgyzKyLDt9oRy8qeGQkQMHawxd1+l0OhYBtdttDh8+zMDAANFoFEmSkCTJspJ0XUeSpHOIySEnB28mOGTkwMEVQtd1NE2zCKjValluOEmSkGWZSqUCGL1hxDb75+0EJojIbjk5xORgq8MhIwcOLgPCqhE/nU4HTdMALBK5WAKxW0EijiT23+l0VuzTsZocbFU4ZOTAwUVAWD92Auq2ftaiG6b4fDc5Ccur22oS/zvk5OCNDoeMHDhYBYIAWq3WCisFsGI8696K2UZO3VZTu93mzJkzjIyM4PF4LJJyiMnBGxEOGTlwYELEbewEJOI59oV+sxb7bqup0+lw9OhR+vv7rRiUmKcjhHDwRoNDRg7etBBEY5dd211vG2X9XC7EvATx2I/HTlyOfNzBGwEOGTl4U0FYP8LyWVhYoNVqkU6n3/DWxGpCiFarZW135OMOrlY4ZORgS8MuuxYEJFRvAEtLSzSbTYaGhjZxlmuPXkIIRz7u4GqGQ0YOthx65fysJru25/tsZTjycQdXOxwycvCGRy/hgSCfi5Fdv1FrxIl5XyppXIp83HHpOdgoOGTk4A2JC8mu1yLn582C88nHu0USjhDCwXrBISMHbwj0qvdmtwwu9+ndWVRX4nxWk1Aair/9fr9jNTlYMzhk5OCqxMXUe1urJ/SNctOt9TgbMe9e5LSwsMDExAR33HHHCgm8YzU5uBI4ZOTgqoE95yefz+NyuVAUBVgOroNjzWwm7OWHhPjDkY87WAs4ZORg03C+em+HDx9mbGyMdDq9rovZVlgoN/oYuoUTlyIf34z5OnhjwCEjBxuKbtdbp9OxFrdexT83YuF6o6rpNgvCVdoNRz7u4ErgkJGDdcXFyK57LUrOInV140LfjyMfd3CpcMjIwZqju812d723i5Fd22XG64k38uJ3uXlGazXupWA1l54jH3cg4JCRgyvGesmu36gqtzcD1qJv0/nk472IySGnrQ2HjBxcMjZCdu0sPFcvVosZXS6cOnoOwCEjBxeJi2mzDWtLIo6b7urEen8v5xNCnDhxgkQiQTQadYQQWwwOGTnoiV6y65MnTxKNRonFYmvWZns1bFTMCN64pLeZ7sWNWvy7rab5+XkCgYDThn0LwiEjBxZWk12Lm3tpaYlgMIiqrv9l4ywmF4/LPVeNRoNsNst0JkMmnyebzVKuVEim00iahqwoBFSVVCxGOBxm9+7dwNq76S4F9njSheTj9nilg6sfDhm9iXGpbbY30lrZymo6e3xtozE3N8fz3/seR7JZvKrKElBpNgFQFQUZOHHsGAv5PJmFBSanpjgzNQVzc7z/gx/k5+6/n3g4vOHzFrCftwvV0ROvOUKINwYcMnqT4UKy6/O12d5IMoKtpabTNM2wQqanyefzKIpCMpkklUqRTCZxu93rNnaxWGT/c8/x9KFD1NptoqkUaZ+PxVoNDQhIEi6g0ulQbrXQ2m08qspQfz+jw8MkYzFGUiki8TiHMxlKhw8TVlXGxsdJxOMburifj8QvRj7u1NG7euGQ0RaHvc22cMGJm/RSnxY32jJ6I0PTNIrFItlslsXFRarVKrIs09/fz65duwDIZDJMTk7y2muvEYlESKVSpFIpQqHQRR3/+fKMNE3j9ddf569eeIFjCwtEAgG2JxKEo1E6nQ61SgV3p0MoHKZeLKIEAkQ0jYCmIYfD+Pr78fr9BINBvD4fituNLEkMDgwwoSgUcjmeP3GCEHDrNdcQiUTW9Pyd75gv9to4nxBC7Mepo3f1wCGjLYbV2myvhex6K1pGa7n4NBoNFhcXWVxcJJfLoSgKiUSC7du3MzExwfbt20kmk0iShMvlIhqNsmvXLur1Otlslkwmw6lTp1BV1SKmRCJxSTG6RqPBP/7TP/H1H/2IxXabiM/HjUNDpOJxVJ+PTrWKFAggqSqNahVvIEAoHkdrNlHcbhRZxut2o7pcyLKMx+0mGA5TLJVQFYV6vU4xn6fVapHP56l6PLx45gz9Xi97tm1b93ji5bo3Hfn41Q+HjLYALkZ2vRY31la1jC73mHRdZ2lpybJ+yuUyoVCIRCLB2NjYCgtncnJy1f14vV6Gh4cZHh5G0zTy+TwLCwscPXqUWq1GPB63yCkQCPTcR7FY5K+//W0eO3qUiq6zbXCQUY+HHQMDuBTFECTIMgQCaLKMJxol6PeztLREs15HcblQ2m1UlwtN1+mUy0SjUWamp4k1GlTKZeLxOI1mk9HRUc5MTXHDDTdQLJVoNBoUVZUXXn+dG8bH19VKWqtYm1NH7+qDQ0ZvQNhl18L91m39rIfseisKGC4VrVaLXC5nWUC6rhOPxxkeHiaRSFxx7EeWZRKJBIlEgr1791KpVMhkMmQyGY4ePYrP51tBTIVCgc9+8Yu8tLBAU1UZGB4mFo8T1jSGIhHcfj8apgoNkCUJCaPNg+7zEY3HkQCXqtJut/H5/TSqVaKRCKVajaHhYRrNJqlEgnAkwtT0NJIkEQqFyC0ukkqnKRYKFAsF+vr6eOn0aXbE44wND6/B2T4X6yH8uJQ6eo58fP3gkNEbBL3abM/Pz7OwsMANN9ywZtbP+fBmdNPpuk6lUrHIp1gs4vf7SSQSXHfddUQiEas1wnogEAgQCAQYHx+n3W6Ty+VYWFjg2Wef5X9+//ucWFpiYNcuBvr7kSSJeDKJp1pl5/CwMS9dRxP1AE3XlMvlotVs4gsEqFUqRGMxlsplYtEorVYLr9+P1+cjVyjg8/molMsEg0FkSQJdB0kiEgpRbzRot1qEolE6uk42myWZSnF2aYml48e5dseONT83G6FC7KUe1XWd6elpcrkc1157rSMfXwc4ZHSV4nyya7tUVdd1q/rBemOrWkbd43Q6HfL5vEVAzWaTWCxGX18fe/fuxefzbci8uqGqKj6fj2d/9COeW1jAPz5OLJcj7HIxXyxSXlri+kaD7Tt3orhceFwuWq0Wfo+HWq1GwO+n3m6DJBGNxSgWiwwMDjI/P08sGkVRVYqlEiPDw2QzGUsp12y18Ho86IDL5aJaq6ED8USCTDbLQH8/8WiU+UyGmelpXKrKzNIS5WqVt1x33ZpenxstibcTU7vdpl6vI0mSIx9fBzhkdJXALkO9WNm1LMvWDbER2KoxI4BarWaRTz6fx+12k0wm2bNnj1V6ZjOhaRqPffe7/NUrr+AJBtmxZw+LuRwet5tUfz99ikJhcpJEKMT09DTNkyfp6+/H5/MRDodJJJPkczniiQSNWo1yuczgwABz8/NEo1ECfj+nz55leGgITdOoVCrEk0kA9E4HWZLQAY/HQ7FYBElCVRQK+Ty6abXrQKlUYmBggD27d1Or1fjxkSPcvGfPmgkbroaE2+54k7hvgRX3qiMfvzQ4ZLSJuJDw4EJPWRvtNttKbjohvV5YWKBYLPL973+fSCRCMplk586d+P3+q2YRmZyc5HOPPcZcp8PQyAjNVotcNks8kaDVbpNKJumUStz3kz/JmclJfB4Pbo+HzMICHU1jemYGRVHYsWMH2bk5AsEgQ4ODTE9PEwoGCQaDzM3NkYjHUVSVUrFIMBhEwiCiVrtNqVKh1WxSLBQ4e/q0QXKhENFIhFanw/DwMBKg6TpTU1OEw2G8Xi814KXDh7l17941IaTNJCNN084ZezUhhNOG/dLhkNEG4mJk15ciPLCXRNkIbIZ7ZC3RbDZZXFwkm81a0mufz4fX6+W2227bkDJHl4Jms8lffec7fOvYMQI+H+l43HC/qSrj27YhyTLzCwvIrRY7+vpo1evccP31zM7N0Ww2GRkZYX5ujlQyiUtVOfjaa7TbbUvtFo/HcblcTE1PU8jlkIDS0hJT09P0p9OUKxUkSaJYKBAOhfB4PAwMDpJZXCQaiTDQ3w+SxJkzZ4zr0BRHpNNpZufmGB0exufx0ABePXqUm/fuveIY0tVgGa0GRz5+Zbi67r4tiItts305EL7rjcIbzTLqll4vLS0ZLiub9Hpubo7Z2dmrjogmJib4L9/5DsdKJVLRKKPj46iyzFKlwti2bVSWllAlCUXXiUoS8UQCSddZmJujL5VCVRRm5+a4/oYbcLndnDlzhrvvvhuv18vU1BQLCwuUKxVePXCAVqPBzl278Hq9uD0etE6HoeFh0HXarRYuVSWVTFqEg5CJA7qmEQmFKBaLxKJRkCS8Hg9en4/FXI54PI7H66Xa6XDw+HGu3737ihbgzSajSxnbkY9fGq6uO3AL4HLbbF8OtrKb7nLHEoozQUAXkl5fbTd/q9XiK3//9zw7N0dH0xgdGGD3NdeQz+fpaBp9fX3UKxUSiQTzs7OopRLX791LNpej024zNDJCtVolu7jI4OAgsqIwPT1NOpUiGAxSrVbx+/3cd999AExPTxu5Rs0mrx86RK1epz+dJhgMEg6HabZaqKpKR1jvQkQDlrIuHIkwNTVFNBpF0nUkWSaVSHD27FmCoRBulwu/309xaYlTp0+zY3z8ss/PZrvpLteyuxT5+JvVpeeQ0RpA5Pw0Gg3L8rELD9ar1cJmuOk2yhK72POl67qx+JrkcznS66sln2l2dpZPfuMbVDWNVDKJqqpE4nE0c34er5eg30+92eTUiRMojQbbR0aYnpkhEg4TMUUK1XqdwaEhZGBqaopEPI4vEKDZapHJZBg0RQriwWnPNdcYEvBOh0OHDuFxuzl+/DgdU7gQTyQImm66DoAk0W61AAxSMitK1Gs1vD4faBqartOXTrMwN8fg4CC1Wo1avc6LZ88SCgRIp1KXfH7OV/5oI7CWRLiafPzN3IbdIaPLgN0PbG+zffDgQespfCOearaym+58Y60mvU6n05sqvb5caJrGt//xH/mbw4cZHhkhqqqGVdJo4HK7WZifJxgM4lFVTp85g6yqxGIxBiSJg6++Sl86jdvjYX5hAcAim6mpKZKJBF6/H3Sd+bk5+vr6UBUFHZifmzPKEwFIEp1Oh2QqxUB/v1G/rl7n1MmTLOZyZObn8fr9xGIx0HVanQ6asJAkiWg0SqFQwOf1ogP1RoNquUw+l6NSqZBIJgmHw6RSKV6fmiIYCOD3+y/pPG02GfUSMKwFzmc1vZnasDtkdBGwCw/O12ZbyH/XMwnSjq3spoOVFksv6XUikbhi6fVm39DlcpnP/cVfcKzZZPc116DIMu1Oh3A4DLLM955/nnQqRSqRoFyrMTA0RNDvZ/H0adRQiFQ6jcvlYmZ6Gr/PRzQaBV1ndnqaaCyG1+dD1zTyi4uEgkE8brdBJs0mnXbbIg90nUKxSCgcRgejl1EgQDKdJplIAFAoFMjn8yyVSlTKZVRVJRqNEgyFaDebzM7O0m420QGvz4fP72fvtdcyMzNDIh435OG6TiiZ5NUTJ7jjuusu6V7ZbDK6kIBhrbCaEKJer/PSSy9x++23oyjKlpOPO2S0Ci6m3husvDE2erHeDDfdRo5Xr9c5ceKEVfV6vaTXm+Wmm56e5tFvfIOaqrLvhhto1Gq02m2SiQTzc3MsLS1x3XXXIUuSoU4bGSEUCHD29Gl2RyL09/czOzPD7PQ0wVCISCSCDszNzhIMBgkFAiBJ1Go1Gs3mct4QkF1cJJVKWYIECWjW6yQTCWSWXVKddhvVFNnE43ECgQC5fJ5iPk8hl+PM5CTNdptoJILH60X1eEinUkaujSTR0XXC4TA5M8dJ0nVcikIzEODYxATX7Nhx0efrzUJG3RBWkK7rlEol677favJxh4xM2Ou9iZ9LlV1v5STUjRhPSK8XFxfJZDJIkkQ6nWbbtm3E4/F1Ubxt5E1rP3evHjjAf9m/H1ckwr5du8guLlKuVEin04YKLZEgFArh9nrptNvsvfZayuUyr732GoFWi+DAAOWlJeYXFrj+hhuIhMNouk4+l0NRVUu+rbXbZDMZhoaHDXEBxnnWdX1ZzCFJtFotdAwBRdUU3rRaLRYWFqwyQrIs4/J48LjdhMJhbr/jDiRJotFoWMVdX/rRj0ilUsQTCaLRKJFIhEg4bAgczPidDvj9fmYyGdL5PPFY7JLO32a66Vwu16aMLcYXa5HAxcjHYfM9ABeDNzUZrbXsejPI6I1MfkJ6LXJ/lpaWCIVCVpsFRVG45ppr1my8qwXPfP/7fPWll4jG42zbto3jp07hdrnYsWMH5UqFkdFRcouLhvtMkkgkk2iaRqPRoD+V4pahIWRJ4tixY6BpLJVKlAoFlioVatWqkeczMwNAJpslGAySMeNJaBozc3NEo1GmzpwxcoMkiXyhgEtVyefzuFwuVJfLqEAejzM8MoKOIeOWZJmlUolmo4FkXgsut5t0Xx/9/f1EIhFCwSClUonTExM0Gw1C0Shut5vp6WlGR0aMZFpdJxKP8/rp09wdDl+Um3WzyWgzlXzQW813KfJxu5r3asSbiozOV+9tLWTXW81SWY/x7NLrXC5Hp9MhkUicI70+efKkVWJlvbGRNfD+5/79PHHoEOFIhHAsxvz8PH3pNPFolGqtxkB/P/lSiUKxyLaxMdxeL+12m8VMhmg8jqtSIej3c3ZmhuGRESrVqlFZu16HTIZrdu82rHyT6KPRKOm+PuP6BlrtNm1NY2hoyJqXIIfB/n4k82la5BQpimJZVB37udJ1NDBeEzEOXcfn8+H2ehmLxxnfto1qtWrFmg6//jpz8/MkEwni8TjhSARXKMTxycmLctdtNhmtl4DhYnEhMryQEEK8drUKIbY8GV1Jm+1LxUZbRlbi4QY9sV0OGQnptbB+7NLrffv2nVd6fTVU7V4raJrG3z75JKdaLSrtNqPpND6fDz0QwOV209Y00qkUjWaT6clJ9lx7LW5VpW3KsROJBOVSietSKaZnZ4mY+TuKJKF3OszNzzM8NLRMJLpOuVRiZHTUqLataSBJLJqxIsk2LySzrYTpBhXXsCZq0om4kiQZ1pAgBYz4k2SeR03XCYdCFEslQn4/uq7j9XoZHBxkcHCQoaEhMpkMaBrHjh2j3ekQj0Zp1uvEQyHS6fR5z+Fmk9FmxYwELjXPaTUhxNXahn3LkdFqsmtY+6TTbsiyvGFP87B8kWmatiGFPC+WjDqdDoVCwcr9uRzp9UZbfeuJdrvNN3/8YxY1jXAsxuDAAKlUilq9Tr1WIxQKEQmHqdVqnJqcZNv27bhVlXqjwdmzZwn4/RSKRdRKhZrPh8/nIxQKUTerZ0/PzNCXThuSbfOcLSwsEI3F0IGOpiFLEq12m1a7jcfjsQgFSaJSreLz+SwLSbSKaHU6VhsK3fw+dEwCMv+XZNkgNk1DB9weD81Gw+ihBMvJsUA0EmGpVKKvv594MsmiaEpYrfKXf/d3vGXfPqtXUzQaPecevRrI6Gpz010KzufSuxrk41uGjF544QWmpqZ4+9vfjqZpHDx4kHQ6TX9//4Yx/mbEcGDj3EznI4jVpNe7d+8mFotdMllulrBgrdFqtfj8X/0Vx0olto+M0DcwgKZpNDWNfC7H6NgYHq+Xcq1GLpu1hAhT09OUSiUGh4YsogpoGoopp8Z0xZVKJQKBAB6zQ6uk69RN2XYoGASWz2XBFAtonY6VWyRLEpVKhVAoZFVZEBZPu902RCMmQQlCQjd7IrXbuF0uMLeLhVJRFFpmGSEkiXanQ71ep1Ius7S0RGlpicGBAUZGR9m2fTuyabEFdN2o9P3jHwOQTCZJpVIkk0ncbvcbngyupvFXs5p6CSFUVd2Q494yZPTcc8/x7LPP8pM/+ZNGF0ubEGGjsJluuo2AnYxE1WtBQEJ6nUgk1kx6/UZ30zUaDT7753/OoqIw3NeHx+MhlU6jtVq88vLL3Hbnnfi8XsqVCpmFBSrVKvF43LB0ZZk9u3cjm2RQymToi8WMGnGm26xaqdBqtYyacCZ0SSKzsECfWcRUM+M9uq5Tq9dJpVKGEEGSLCun2WjgM+XYgCVMaLfbKKpqvM+0ioSbTpFlOu02mK49kaskSRJut5uZ2Vm8Ho8hPwZ8Xi+hcJhkKsX01BSRaNQiRHSdaDzOUibD3TfcgCRJFItFMpkMExMTvPbaa0QiEYOE2TwLZbNjRutJhuezmjaqfcqWISOfz0ej0bBOnKIoG0oMsHlVtDdqzI75hHvw4EFyuRySJJFIJNi2bRuxWGxNZa9vdDddtVrlj/78z6lEo4wND3P40CGuGRxEBk6dPs31N95IdmGBarVKu92mr78ffzBIIhYjm82SSqeNGI6mUa3VUGo1BvftAwxC6AC5XM6oiMCye61YKOD1evGYJKGahFQoFgkGAhZhiM/Y66LpmoZuCh10DFm4y+wQK8kyms1Np5iWkavTod5oUKvVaNbrBmHJMtWlJQbSaVwejzGesLp0Hb/fT9ksWiv2qQBKIMCZ6Wm2jY4Si8WIxWLs3r2ber1OJpNhdnYWXdd5+umnSSaTpNPpdZP898IbLWZ0ubAT7kbeg1uGjNxuN/V63fp/o60U2Dw33XqNaZdeLy4uUiqVUBSFdDrN6OgooVBo3Z4U38huumq1yp/+xV+wFAyya8cOpqemGB4aQpJlps6exW/WiQODLMLxOMV8nv6BAbKLiySTSVymdd/WNGZnZrhn584VgoHZmRkSiQSLuZylfOtoGsVSieHhYSNmY3uSLy8tMTA4aL0XQJYkqrUaQbNckCANzVx0250OLo8HJKPba6PRoNlosLiwQLPdhk7HmKvHY1RrSCQsS0czY1NivqK+ng5EolHm5uaIhMMrxA8+v58zmQzDAwMrHmy8Xi8jIyNEo1G+//3vc91115HJZDhy5Ai1Wo14PE4qlSKdTl9yiaFLwWa7CTdj/I2MG20ZMvJ6vTQaDev/zSCjzbCM1tqCENJrQUCdTod4PM7Q0BD9/f3Mz8+zffv2NRvvfHgjuuna7Tb/7X/8D7JuN9dcey2TExNcu3cvh48e5ezZswBs37YNyUygHhkeptnpoLXbTJ89iz8YJJfP4/V4cLndFPJ5ksGgkcRqno98sYjH48Hn9yOzLM1ezOWIhsOWFFs8HNUbDVSXy6pJp5uvI+JF4bCVZ9doNmm3WrTabWZnZohEIhRcLhRFweV24/F4CEUiuD0eIuEw6XTacAWasSbzpOLxeqnV63i9XouIZAw3oktRUCSJerNpxYIwj8MdCnF6epqdPSp7C8skmUySTCbZu3cvlUqFTCZDJpPh6NGj+Hw+i5hisdiaWhJbKWa0FhBVIFqtFoFA4Ir3t2XIyOfzveksIzHmlSzavaTXPp+PZDJ5jvR6YWFhQ+NTbzTous7Xv/MdjpfL3HzHHZyZmmL72BiL+Twz09OMj48zODxMp9WiVioxPDICus5SLocuy4xv22ZUXOh0aDQazMzMIEsSrnqdqakpa7HPZrMMDQ2Rz+VYKpcpFItouk52YYHh4WGWKhVj4TKtpdnZWcLhMPPz82idDh1besPMzAwDAwMG2agqqsuF2+MhGAzSabVI9/dbbjDdLBukqiouVaXd6Syr8mwuPFmS8Pv9VKtVfF4vsGwdCUIJRyKUCgWDzFi+dzxeL1OZDGNDQ+e4fXtZBoFAgEAgwPj4uJGPZVbvOHDgAO12e4UIwmvO5Uq+360aM7pY2AlIuHjXCluGjDweD81m0/p/syyjNwIBCum1IKCLlV5vZBxnI8daq3Gef/VV9p86xZ133MHC/DxuVSVfKNDudBgZHqa8tMSZiQkW83li8TjlapVwMEgmk2HX9u24fT70TgdFktDabWKxGG5VZbfZW0jXdU6fPs34tm2oqoqm66iKgixJZDIZw8Jpt1FMObaGQQKyLBOPxZBkGUWWUVTVIipd1xkeHl6RLyQsJ93cv2ScJKsihI6Rk9RptxFnzr4oSRgPh8VicVn4YLrvhNTb7/eTW1ykI1yJ5kIvSxKuQICzMzNsHxs753s63+Knqip9fX309fVZLuZMJsPU1BSvv/46oVDIko5HIpFLXki3soDhQuPaq9RAb8HDlWLLkJEQMNirKWx1Nx1c/KJdr9ct8hElX5LJ5CVLrzfy+N5IbrrDJ0/yrZdeYueuXcwtLrJULJLu6yO7sIDqdlOuVAgFg7jcbu6+6y4URaFUKnHs5Elq1SqTZ88SDoeJhsO4PR4KxSL+QIDS/DyB/n7DgjJl3NFwGN10i3nNvCOvx8Pw4OAK60TXNArFIulUCr/fb7V8EIt/tV7H4/UigyUkECQkzrxQyZkny0qQFRW47a+J/WssP5hJXfsU8SFZkgxvhtnsTxCnhiE+OnL2LGPDwyuuy0uxTCRJIhwOEw6H2bFjB81mk2w2SyaT4aWXXgKwiCmZTF6U+ObNImCAZQuo2WyetxPtWlqLW4aMvF7vOW66jUxAhc1x061GgOeTXu/YsYNAIHDJF9FGW0ZvFMzNzfHV738fTzTKiYkJ/D4fbpeLqbNnDaFHOGw0rfN42LZ9O6osI6kqXq+XkN/P9tFRJqemWMxmkSSJfD7P8MgI/apKPBAwrBjTmh2x1YkTpJPNZonH4xaZAJabrlwuMzAwYEm8NZNAhHjB7/OhgSU8wFS82UUOYl/CYtLMsWFZUCH2Kdkk4C5Vpd5s4vV4jIW8630hs5q31+ejUq1SLZdpmvlJit/P7Pw8w4OD1nm+koXP7XZblSDEvZHJZDh16hQHDhwgGo1a5BQMBnuOczW46dZzfFGrs7tOp8vlWraYzeuhO09pLbBlyMjj8VwVAobNjBnZq17bpdfj4+PE4/Erll47brpzP5fJZPjjv/kbpms10HUi0SiJeBy/309/fz9ur5dMNku73SYSiRhP+rqO1moxt7DAkaNH+c53vkO1WkWVZSKJBG998EHi0SiZTIZqqYTaaKBpGkPmwmxXUbbMKiMB0/Kxv95stZAlyXLbwbJFo+s6jVqNRCxmkY/d0hHvEdezlV9m/IOMUavO7toT8nKxaPm8Xpr1Ol6PxxpD1LOrNRpUKxWmpqbotFp4/X7CZhsKYSGdnp9naGBghTtoLRY/WZZXSMdrtZplNZ08eRKXy2URk106vtkxm/WwzOzl0uyl0mDlPWj/3atq+Fpgy5DRm1FNJy6E6elpjh8/TqlUMiotJxLrIr3e6Nyfq9FNp2ka+XyebDbL/Pw833zpJeY1jeHBQXbt3s3ZqSncHg+pVAq3243W6bA4P08sFjPK8GgaLV3n0IEDPLV/PxOTkwSDQQaHhvB4vczPzfGDH/yAX/2VXyHg8zHq8XDg1Vc5fPgwXq+X0dFR9uzZQzKRQMJozhePxZYtD/PJVZFllpaWCJrXgN31BliqOkEQ4rOW0s48N6I0kFVlgZVuPE3XUYT7zq6q03W8Ph/5fJ5gKESj0aBeq1GpVNB1o31FIBhk27ZteNxuK+dILHMK0FQUCoXCilyq9bAMfD4fIyMjjIyM0Ol0rEK+R44coV6vW9LxrRIzEgQkYuz2+8xuAV2IgNa6ZNCWIqM3g5quW3rdbDap1WoMDg5y/fXXGwveOmGruukudEzC4hSVxlVVJZVKcTafRw8GuXZggFRfnxG4N3Nr2q0WmtfL2bNnicfjlIpFGvU6mUaD4ydO8KOXXuLEqVMgGc3vThw/TjKZZHR4mLn5eU5PTpLy+3nmhRd48aWXrNbhc7OzLC0tGW0dNI1mo0Gj0cDj9RpFf8GK31QrFaMFub4s9Ra/W62WIX5YPgnGL/N1EagWAgOp6xwpkoQky+hmoVUrn0jTaHc6NOp1KrUaU2fO0Gm1cLvdeP1++gcGUGXZiA3JMh6Ph4WFBcKhkJVHJdyPwXCYU9PT3LrOZLTiuBTFsoquueYaKpUK2WyWhYUFms0mr7zyCv39/aRSqTWXjl8IV0JGdhFCtzUjzqvdIrKK5doI2P6+brfdWmBLkZHo4SFqKW0FN51der24uEihUMDn81lVr48ePcr4+DgJszX0emIrWkaroVqtWq6bUqlEMBgkmUwyPj5OMBjkwOuv8+O5OaJ9fURjMUKBAKdOnSISi5FIJCgVi5yZmKBYLhPfvp3TU1O4zJI4ZycnKRUKuFUVt5m7U65WyefzDA4MgK5TqdWoz83xyoEDDA8PG9YPsJjNcnpigrvvvptSsUitWmXi1ClarRbhSIR4IrFsKcmy4TZbPqGGFSRJVGo1PF7vCuGBiPeIhFlVlhHyAQno6GbBVPNvVVGsB8BarWZ4Jkwryuf3EwwE6O/vZ2BoCMWs4GDVxDPHUBQFXdPomC4+ANl0FyqKQtFMtvWYcaeNfEiRJIlgMEgwGGR8fJwnnniC8fFxyuXyukjHL4RLJSO7C86uguu2hHqVAZJl2ZJu2y2hXlaTYxl1QciR6/W6FYB8o7rpekmvRYD1mmuuWSG93kjS3YoxI/uNWCwWyWazZLNZ6vU6sViM/v5+rrvuuhUWZy6X4yv799O3cyeqLBOLRCjk8yBJJGMxJMDj9ZIvFtE1jez8PB63G5/XS7VcJpPNGoVJWy1KS0vIimJUEKlUyC4u4nK5CAaDnDpwABkMN5VpnSSTSY6fOMGZs2eJR6MEQiFuuuUWGvU6ucVF5ufnOWX2gkqn09SqVTzm9SIsI13XjaZ3oZAlKLAvMjLQaLeRFMUqjipyn1qmldhsNFBlmWA4TCQcxuf3k4jHwaziLVR4bo+HVrOJ6vGsqLYg2awpr89HrVolGAgYrwnikiQ8gQDTc3NsHxvbdAEBYD2Q2KXjZ8+e5eDBg4TD4SuSjl8IF9NptjsGZCew7ljQ+X7DMil1W0KCnNa6OsOWISPxVNJoNAgGg5tSm+5KCFBIr4X44GKl11uRIMRY6412u00+n6fZbPLcc88BxmKzY8cOYrFYz5pnmqbxX7/xDQZ276ZYLnPNnj3omsbU9DTX7N1Lu9OhsLhotHCIRhkbG0MGnty/n1d//GOCkQhL5TISkEilqNRqVKtVPF4v7U6HpXKZt7zlLaQTCY7X6/hM9xxg/ZaAytISo8PDFPJ5FEnC7/PhGx5meHiYRqPBoUOH0DodXnn1VdwuF7F4nGQiQSAYRJZlKxYilHmapqGZFRg67TaFYpFyuUyr0bCqe7u9XqMCQzDIQH8/Lrcbl8tFOBSySgjZY05IEh6Ph1qttlwayGYBiespGAySz+etUj66GfPSdaMf0mwux7bR0U0no+6FvZd0fGFhgdOnTyNJ0iVLxy9m/F7Hb3fBCRGCfZ6W+MSc/4Xca+L93UTU/ZoQuDiWURcEGQm3wdUuYNA0jVKpZFk/dun19u3bL1p6vZGiia3gpqvX65b1k8/n8ZiFPG+44QbC4fAFz/l39u+nEY9TLZXYMTaGIsucnJykr6+PYqFgPY0KUtB1ne888QTPPP00mm60XqjXarQ1jWuiUeLRKMVCgVq1iupy8ZZbb+W+e++lVioxNDTEwYMHjRpxZjuGglkKKBwKEbBJkO0uMEmWSaVS9PX10Wy1KBYKZLJZzpw5Q7vVIhgKUa1U6LTbqOZDji5JeFQVxeUyxAWBAH6/36gSjinxNhcx1ZT6ulTViBnZyFKIIsSC5/F6KeTzVr6Rfa5iv263m1azaYklNGzycUmiZYoxNpOM7NZAL/SSji8sLHDy5MmLlo5fCHYy7HbB9bJiutFNRN1V/3sJGeyEY7eYulV3a4EtQ0aKoqCqqqWo20w33WoX7XpIrzfyON+IVpiu65TLZYuAyuUykUjEsjpbrRYHDx40ar9dAEtLS/zT668ztGcPGuD1+1nM562YUjgcptNuU2000HSdQCjEsaNH+f7zzyPLMulUCpeqkltcZGFxkdmZGVSPh0gsRr/Hw30PPMC+fftot9sszM+zd+9eMgsLvP7aa4blZEq19157LS5VZX52lmw2a9W8E9dcsVhEVVUjb0mWcblcjAwPMzY6alyDuRxLpRLT09OEIxES8TjRWMzoPGteu21NQxbqOZMkJLBaSEiAJMu0Go3lnCObGk7Mxe1y0Wm3VxCQgGjcJ2HkstTNWnaC3AQ5+QIBzszNEb/MRXwtIK7Fi31AFNLxPXv2UKvVrPp53dLxRCJx0QnnnU4HTdOoVqvnVEKwz6vb5SbIpBeBdL/WTTii0d5q58Fx060Cu6Jus9R0sNx51b4QLi4uGlLbYJBEIsHIyMhFPYlfzJhbyXW2FmPZ5ddZM8dHnPNEIrGC9EXJmovB1/7pn0iMj5PL5bj++utZLBQ4MzlJ38AAqWQSTdfJ5XIMDAwwMztLNBzm8JEjNFot4pGIZbkEQiHC9bpR/+/66/EHAuzYto1QKESlUqHdahFQVa6//nrGx8c5fPgwp0+fxu3xsHvXLkLBIKl0mmajQbFYZGh42LJcwFjwB/r7V/b1kiSrBpzP57OqMhQKBRZzOU5PTuLz+YjGYiTicbR2G8XtNsQMtrgSLC9IiqKgi/pk5uKlS8uJr7L9Kd0ULYg7UteNRoDC2goEAlQqFbxu9wpFoAS02m1Oz88THh/fdDK6HDWbz+djdHSU0dFRSzqeyWQ4fPgwjUbDko6nzO/EDrsF1Gg08Jq1C4FzCEj8tntL7K45+z67CchuCQl0b+8moLVed7YMGUmmf1qQ0Wb1MwLIZDLk8/kVVa8HBwdJJBJrLr123HQGWq2WRT5Cfp1MJrnmmmvWRIL72vHjzLXblGs1RkdGmJ2fp1ou0z8wQDqdBlkmMz9PPJEwqlGbMZJ8Po/icoGZ7CrrOnQ6KKpKLJHg7jvvpFKrGW27NY10MslcJsPI8DCSrhMOBhkaGqJaqVDI58ksLNBptRgZGqLZaCw/zeo6CobKDV233G/2hzJh1YhFzef14unrY6C/33DnFYss5nK8fugQ5XKZdF8fw4ODhCMR5C4ZuGTGkdqaZlV1wLY4yqZYQsK4F9utFrLLtUxsXe/zBwLMzswQi8fRNY3y0pJBzO02Xq8X1e9naWlp08noSse3S8d1Xbeqjs/Pz3PkyBH8fj+JRIJYLGYITFi2dDqdjiHf70EGlvjEth7YY0f2fXTfC9376d4GK11862UdbRkygpVVGDbKfWWXXmezWQAmJiZIJpNce+21RKPRdc1FeCO6ztZqrAvJry/mJrmY97RaLb794ovEBgeZN4UBbkUh2N9vNHSUZcpLS3g9HjwuF4uFAn4z1WBocJDJiQk6rRa4XLR1nWa7Ta1Woy+dpqNpJBMJ6xppt9u0ajXig4N0dJ1jR4/y3e9+l3Klgtfj4cevvEI6lSIajeL1+5mfn+fY0aMEgkEG+/spm7XeRFKr3TUmfjebTaslhTh6IZgRFt4pUy4+MTFBwyykG4vFlssOSUZlB63TWU6YZbm+nG4jKLfbTaNex+1yLSfRmhB16pqNBrlcznhN1/EHg6SSSRQzPtVqtZg5c4aY2Up9oyHWkrW8l+3S8bGxsRXuvDNnzlgPsolEgmQy2ZMMurd1y797kYp9ey+3nf2z3eo6+9zFNoeMesBehWE93XR26fXi4iKNRsMKUBYKBW655ZZ1TT61YzNiRhsRSO61/0uRX68lHvvBD/DG48xMT5My80laZg2vcCBgqOAqFfr7+tCAVqNBNBwms7DAnXfeycTkJBMTE9RqNTRNo9ZqsWPbNu67/35Cfr9VNQFJolgqEfD78ZvX8vdeeIG2+X5dkvCaRVSffOopPC4Xhw4f5uzp0yguF+NjY+zatYuhoSGDZGTZUK+JckCmq048YQvZNvrK6gxgtGaIx+O4XS6qtZoR5zJl45Isk81mcXs8aKarzXLjmWQjm+Pruo7H66VpxtEEGo0GlUqFRr1Op9PB4/USjUSIxeMETDK1VHeAS1Up1eubTkZred13y7ABq1eTkI7ncjlmZmY4cuSIFRf3+/1EIpEVFlD3vKzvuIt0epGQECkIdMe+7ce+nmvAliEjSZJ6xozW6qStJr3etWvXCun1iRMnNrzb61aMGYFx44iKEyLuBljFXleTX1/OOKuhUCjw8tmztCWJSCjEyPg4Rw4fZueuXRTzedyxGJlMhlQ8DpJEu9UypNflslUV4eGHHuK7//RPZHM5FFnmxu3b+f/99E/j9/vpmEVIwQxQt1r4zL5Cc7OzLGazDA4NGaqyVguP10va7eaVl1+mL50mkUgwNj5OvdHg2PHj1Ot1xsbHl2M4YOUWWU/SPY7fih1gWFCaplntI0S5nKHhYdrtNgcOHKDRaHDw4EEKhQLNZpN4LGbEQM3PC4KVJQmXy8Wi6TWoVSpokoRbVfH5/UT6+qzKEZVqlXqtZihJbfMXllRTklZUWdlIrJWbrrsUT/f+7WOEw2FCoRDj4+M0Gg1eeuklms0mBw4csMRP4kdV1RXfcbe7zk4+q1k6vbb3ikHZz8FaPvRvGTKClW66bl/ppcIuvV5cXKRSqRAOhy8ovd5oFd9Gx4xg/cuyNBoNFhcXqdfrPPvss1azv+uvv37NkwkvtK+/f/55au02ff39BPx+yktLjI2OsjA3h6qqVCsVXC4XqssFus6JEyf4/ve/z9TZs8RiMXbu2kV2YYHp2VncqkooHObOO+4w6gZiKNIkDHfV0tIS/mAQuVYzSFaSVny/9WqVQDDI/Pw8lUqFVDptLM6mKCESiTAzM0O9Xsfv9a50iUkSiiTRaLWs+I/lxpOkFZUYNEDrdFbEgIRLz+1y4VJVhoaGiEajHDlyhE6nw/ETJwy3UixGIBjE7/PRNFsQSEAxnycejxMbGjIsNhsximRYv99P3myjvkL9pRuJsF6vl8VCYc2++0tBt9rsUtDpdKw8oF777PVbvC4We4/Hg6IojI6OEovFLKvp9OnTHDp0iFAoZFlVouuqnUC799t9TN3iBTvsIojzxY6uFFuOjOyWEVxaCY1ms2k9hdul12NjYxctvd6M1uMb6aaDtVfR9JJf+/1+ZFnmLW95yzkKo43C5NQUr549y/D4OIqq4vF6KS4tkU6laJo1viZOnWKb2Yb90KFDfOlLX6Jer+Nyu8ktLnLg4EG8Ph/xaNSKxXzjG9/gPb/+68SiUSsnp6PrNOp1opEIjWoVGehPp0mmUszNzDAyOmp9z5lMhoDfTzgcpl6rGefQzG8CaDWbaKJPEcuWUUfXqdXrRgFX8xitxd7mqhMWkmJzkwErrCxZlpFkGb/fTzyRIBwMUigUyOfznD17Fq3TIZFK0W+WS9KBYDC4ohWF2Leo5I19/8ZElsfVdVxuN4vV6tp9wZeASy3Fcz4CEjif/LrbRWZPZlVVlWg0SjQaZdu2bdTrdate5cTEhOW1icfjxOPxFWKu81k13cTUTcCrWU4OGfVAt5sOOO9CbV8E10p6vdGW0Wa46dZivAvJr5eWljh69OiGEFGv49E0ja9997skBgaIxmLUajUKxSKpRAJJNxqPeT0exsbHKVcqTJ4+zd994xuGVDeZxGN2edWqVdrNJrVqlWqthtbpcPz4cR77h3/gl3/5l42CoUClUjGqLUgSqvmdut1u7r/vPv7xH/+Rw4cPI8syi4uLjI2NoZuJlSJGgySxmM0yvm0bQTOuYh2XubjrQLvZxGe2aRBEhPhb04w4j5lwKqp5a7pOp92m3mjQajRYzGZRVZVKpULJrKodiUZJptNGl1qg2WiQNV3ak5OTljIumUjgN3s0rYgxSRK6JOHyeGjU68s5T8tfEug6HVm2atVtJC5m0e10OlY/oF7X1PksoW6Lo9fr9lpx9rn4/X68Xi+Dg4Pouk6hUCCbzXLixAkrnp1Op4nH49Z5vVDsyC757hY3dHudHDddD/Ry03WfKFECRhDQWkuvNzq/abPcdJeDS5FfbxTJrrbAvHTgAEVgJBIxXE2Kgs/lQlFVms0mqixTrlRwu1yoqkoiHmepUjGeQtttmpJEw6wq0Gw0KLTbVvmcWqPBD3/4Q66/7jquveEGNF2nUi7Tl06jt9u4bfLdbWNj/OIv/AI/+MEPcHs8JGIxduzcyfETJ3j2mWcoFIvEolGWSiUkSeLGG24wSumARTQihqPrOvVGg6ApGbbcL2ah0mazaeWzCGWoODuqquLyePD6fESiUQYHB4madfgi0ajVhE+SZWRNw+vxMDQ4yNDQEK1WixMnT7K0tMT83JzRBj0eJ55IEAmHQZLomON4vV5qtRper3el8ELXjQriLheFYpG+dHodrobVsVrZG7sF1Evl1t2I7nyWEKxc4Lvvbcsi7XKX28lJnNtEImElyC6a5amOHTtmFVmOx+PEYrGe97S91I/9tV5KPDGntcCWIiO7mk4wuvhCBPnYq16vh/R6M9x0VzMZiXOfzWYpFouXJb/eaLTbbb77yiuE4nEisRjZbBYJiKfT6EChWGR+ft7IB0kkUBWFYrGIpuuobjdeUz3WbDbRTDdNB3Cb+1dlGV2SeO7559m3bx8Ns8WCLMs0Wi0CLteKRnmhcJh911/P0NCQleNz/Q03oGsaz33ve0jA0PAwAwMDbNu27ZxqB612G63dptVuUzAfAjrtNu1Ox7CGJEOmragqLlXFZfYXGhwcXK62LRYeM44FrKzAbQtwW+48DPeaqigM9vUhKwrBYJBiqUQul+PUyZM0Wy2i0ahBTrEYAZ+PhaUly0XX7cILBALMLi5uOBnZF11BQHYVnJ1wRC5Pt8VjJ6BuUYBAr5iMfQ5CKNXtRutlpciyTCAQIBgMMjIygqZplgDr0KFDaJpGLBYjmUySSCRwu90riLC7vFA3CdnntRbYkmTUarUolUoAvPzyy7TMCz6ZTLJnz551df1shptOZGRvxFhw/otP11fKr2u1GvF4nL6+Pq699tqLLrO/kSTbPc6R48cpaBrj4TCdVotWs0k8kUCSJEqlErPT0/QNDNDf12epxiKRCMl4nJmZGZZkmUI+T6vdXk4GFU+aplggFokYtctOnaLVbhMIBMgtLlIuldgVieDSl3sQLZVKhpw6k1mxoAVDIXbv2sV1115LoVRCVVWmp6dXquUkCVVRDGWcoqAoCoFAwMj5UZRV3UPFYtH425yDPVHVEj6Y561tFjYFVsSC7NeLapb7QZKIRiJEIhG2b9tGtVoll88zPz/PxMmT+INBms0m4WiUoN+PxHJdPN20vMqboKgTpXjK5bJ1THYCslsyQlLdS4zQi2hETKd7e/d30m1l9XLZdVsv9rElSSKdTpNOp60QRS6XY3p6mqNHjxIIBKycppCtKWMvabd9nXNiRl2YmppienqaY8eO8ad/+qd86UtfQpIkQ5I6NHTR9Z+uFBvtptvIRVuge7zV5Nfbt29f0bb5UrBRFlP3OLqu8+zrr+P2eonF4ywuLqIqCoosMz87SyAUwu3xkE4mjQXZJJh6vc59993Hd77zHWampw2LQxCR+dOoVgmGwwyNjOAye275AwEKuRx+v9/ILxkcZExViUWjdMygdbVaJd3XZ1VVEFaHrCjEYzH6TYVaMpkkn8tRqVbxe70k02ncppUlHlpqtRo+n2/ZrdZl9UhmzMeKJYGVSyRyf4TbT8R6MBdiTTxBm/Ozx6NcbrdBqqwkLJ/fz0ggwNDQEJ12m8VcjqNHjnDglVeM3KNYjHgsRigcptlqsbS0BO32ch27dYTdAiqXy5aIQBzTaqIDu8XT7aIT23tVz+7e3uv9q1VY6EV8YrvY1r1dSMdHR0dptVrkcjlyuRyvvPIKslls99prr+2ZRNtNrmuBNzwZffWrX+VTn/oUBw8eJJlMcsstt/DpT3+a2267jRdeeIFwOLxhRAQb76bb6JiRuOhFXEFUv/Z6vWsqv94MkgUMa6VUYthMHM3lcgSDQarVKn39/WSzWSPmoijWoivpOqVSiUg4bFhDgKQoyKpqWK2dDsgysqoyODyMYlpOt956K7KiMDI+TjAQAN3ozupxu5FNK6ajabhUFb/PZwkOhLXiqtVQFAVZkqiWy3zv6FHOTk0ZCY+yzODgIHfccQfhcBhdN0QIblW12oIjSVbiq2RaH7KIzYhFzHyvJOI3GM3vJPPzkiTR0TQU/dzEWWEd6bqOS1Vpt9vGWGIRM/ctFjZFVUmn08iyjM/no9FoMDs7y8njx2k0Gvj9fkKRCPFUilKptC5k1CsGhHkcvVxu4jXxv327eDBdbbv9tzgHq20XlbnFeN3v7xY7dG8X4/YSLkiSUUqtv7+fgYEBq+p4rVZbcR/3Ip61vE/f8GQ0ODjIhz/8YR5++GE+/vGP02w2uf3224Gt23p8M8YTZj3AgQMHrJYXIvF3PVyfm+Gm+/Hp08iSkfNSLJUo5POMjo7iM7ui5nI5xsbHDdWYpiEBtUYDWZI4cuQItaUlZFVFlWWLUFpmgqOmaeQWFwkGg+y7/np++md+hlKxSMh0R1kdVhXFsliq5TIBm/pMEJJ9IW+325w4eZLZuTmGhoaslgxTU1O4XC7uu/9+JKDeaKC63VapICTJsuzEPiXJlHXLsiGv1o3ip7BMvJqw+DCss46mLVf3NiHeI5rlYV+89eXq3sYGyapv1+50aDabZDIZQqEQ6XSa7du30+l0OHXqFI1Gg9cPHSJ76hR33nZbz+Kilwq7BWSPjUBvlRmcG9uxK88udvtq+1nNpafr+qrJrRf6fPfvbjdetygiGo0SDAatYz+f+2+tcMVk9LnPfY5Pf/rTzM3NceONN/Knf/qnFhl047/+1//Kf//v/52DBw8CcOutt/J//9//96rvvxg88MAD1t9er9cw401sVk+jreKm6yW/1nWdvr4+hoaG1qRh2GrYDDdduVzm4MwM6b4+FhcXyRcK7Nm715JcV82meG7RAtv8fLlYxBsIUCgUUF0uPBg5a8gymnnOkCTSySTbd+wgl8+zmMnwxHe/y769ey2lG5KEZJKDIIylcplkMgksWymCFJAkK5aUyWTw+/3MzMwY3V29XoKBADOzsxQLBeKxGJ1mE4/PtzKHx+ZaA4MQ22bCq6jyjUkUwpoSi6tsvq5rmqGGs7n2rPMLxjHZzrUOlutQCIxE23JFlnF7PITDYaOskTk/RZYJh0LIkQjpvj7mJiZYWFjgyJEjBINBKxZysekYog+QuKZ7udTscmpRiV+8vpoazm4J9fJarFY7rtd2u2ut2yrq5aK7lO3dQgf7/AR6Ha99v93brxRXREZf//rX+eAHP8if/dmfcccdd/Doo4/y8MMPc/ToUaOScRf279/PL//yL3P33Xfj9Xr51Kc+xdvf/nZef/11Qyl0hRCmvcBmkdEb2U3XarWsoq+Li4vnyK+fe+65NetceSFstJvu9YkJStUqA+EwdcmIA4WDQas0TalYJBSJGDevpll16GQM11UikUDHkEHXKhU6rRayqoJu1GcLhsOcPX0aTZapVCrMz80xPTVFKp0mFg5bZKMIFROgtdt43IYOT1hHgkxE/KVSLlOpVDhz+jTNVstQy3U6qKpKLBYzOoDquqHUM8cRZNp9hnXdEArIpvuP7vfZXVJiToJszNdl05rSNc1oKWFbvJrNJk0z76rZaiFJRvWIcDiMx+OxWl1MT00tx5fMeWi6jiIZZb/i6TS33HQTmqZZHVZ/9KMfWVWx02apJLuLvlsFt5olIdYMuyoOlhfqXjEf+37s51L8FgRu324c2rkxJfG//f32Bnr2tJVud5t9fuJ3t9WzWgJv9/bVCMsO+7hXiisioz/6oz/iN37jN3jPe94DwJ/92Z/x7W9/my984Qt85CMfOef9X/nKV1b8///9f/8ff/M3f8OTTz7Ju9/97iuZCrAyzwgcN93FYjX59djY2Dny642K5WxkzEi4uo7Oz1M3W2TLqko6mSS7uEgyHqfZ6aADPrcbzKdl2XRdBiIRqpUK9XqdYi5nWR10OmiyjNfj4Zrduzlx6tRy7ob5u9Zs8uwzz/C2t74Vr2i7DVatNrfHs8JFJF4T0m9N11FUlXK5TL5QYNzW82dqagrJdDmCYQ2IenOwUvEmxtU0zbAGzL8tsYS8XDxT05dlxYotliSsNmH5yLJMo16nUa9TqVZZmJ+nXq8TiUQM8rHFfCz3o2T0Q7II0NynEEcIywxFoVqtEgqFGBgYsGId+XyehYUFDh8+TNOsNp5IJIhGo7jMFhbiO7er3y4kIuh0OrjMCuK9XGL2a6nXdvvr3dt1/dxqB93bxed6WUZi3qsRqz12ZY8p9XIZivd3N+/rPm/itavCMmo2m7z00kt89KMftbbJssxDDz3ECy+8cFH7qFartFot4vH45U5jBex5RmI+W90yupxFW9d7y6/T6fQF5dcbSUYbATHO/MICr589SzKdxh8OM3nqFAPDw3jcbjLZLLV6nVA4jMuMHekY7qxmq4Vaq/Haa6/xzLPPItkqJSNJYCZV15tNqtUq4VAIt8uFDtRqNWrlMhMTE0yMj4Ms49Z1Rrxe3MmkES8ya9hZQgLxJCwOQDfEJMFgEL/XSy6Xw+vx0Gw2cSkKwUCAerVK0Cw+aneVSZK0IodInI8VCw5YVRmEpWIJE0yXYttUDjZbLWr1upFj1WiAbpTw8fl8JJJJPF4vLpfLeMCxzUEci2g9oes6sqLQbrcN1aFJVHaXk+p2U1xasnr+GNOUSSQSRCIRtm3bRrFYJJPJMDk5SblcJhQKWd1VA4GAtRD3yguC5QW+e0G+GJdVLzFC9/bumJI9ybR7/3ZLTuxntRjUpRKQ/X7unmf3+3qJJdZqPbhsMspms3Q6Hfr6+lZs7+vr48iRIxe1jw9/+MMMDg7y0EMPXe40VsBeDgjeHJbRxV4MovJEJpO5Yvn1RlosG4XvHzlCo15nbHSUWrWKLBntGtwuF4lkkjNnzpCZmyPd3290I5Ukpmdm0DSNcCBgBdcRuUWKYkm6Z6anyefzyBjWO5KE1m4T8PuN7YrCvn37WCqXmTt9mlOnTjFx6hTNZpNrrrkGn8djLApdT+S6ZlSAdrtc1gJbKpWoVipEolESsRjIskEmqxy3BFZSqRAh2BcrTNIRuT7CYmo0GkbX0sVFms0mS8EgLlXF7fUSCoeNJF6bJadjtIHQ2u1lebjYn65blcuFfNzjctFsNFAFuZuEJMtGWwyf18tiscjw4CCA5X4T7ixd1/H7/YyOjlpVr0UlgomJCTwej5VTE41GVzz5G4e9kiBapksRzu0I0L3d/nmxvXvf3UTSa+Hvfr07htOtlhP7txOKfbv1nXdZOr3eIyyjbsvHvrat9QPjpqnpPvnJT/K1r32N/fv3r5lEs5ebbqPjDpshYFhtvPWQX281ywiM9iAH5+dJ9/UhyzKVchmfz2cshMBSuczg0BBFkzgmJidpNhp02m3SAwPMLSwwOztrSbgBg5BsSrV6o4GsKFQrFbw+H5qmWQtKMpEAMAL0AwPcODxMuVzm2LFjnDl7lpMnThjkYnM3gbFwN5tNK6l4cmKCvXv3AsZ1ODU1RV8iQSwaNawYUyFnP7PCOtF13bJMOp0Osmkx1FstGvU6rWaTRqsFuk5ucZH+dJpoPE4kGkWSJKOck0lY1lM1y1aUpmkoqkq9XrdITUAs3DKG+1KTzBp1ppzbrhwUlpqk65RrNepmP6ReZGJfyN1uN/39/QwODtJutykUCmQyGV5//XUA4vG4VVxUuPPsVossy9YD22quNjFuN+yW0WpEsFpCbLeLvPv9Yv+r3Ze9rKfVLLvVLK9e59W+ba1w2WSUTCZRFIX5+fkV2+fn5+nv7z/vZz/zmc/wyU9+ku9+97vccMMNlzuFc+Dz+c6xjDaqOoF9zM1y0+n6udWvw+EwqVSKnTt3WqXl12q89cRGjjM5NUXD46EvkTCC6uaiLcsyHU2jUasRi0SYrVZpNBpG64hqlXw+T7vdxhcILC9O4sFAli3LSCykLlU1xA1mwVSXy0UoGGTf3r1W4F4sAC6Xi107dxKLx6nXamSzWeZmZzl14gQhs5WJbMrGfT4f1193HeVymTOnTxty606HRDzODTfeiCzL1BsNIwEWLFm1pmk0Wy067TaNZpN2q0Wr1aJQKCDLMpFaDdXlwu12E4pESLjdKLLM9MwMiVSKQCBApVKx2kToYtG1XY/CAgIsYYVkzsGeJCuSasX58ng81CoVw2Kyu7A0jXazSafdplqrGWNL5wblV8uzEfMQJXAAlpaWLHfeoUOHrGotqVQKr9drEbSwuMSx9SKO7u3dqjp72+/u+FD3++37tltG3XPoPs5u8rO/t3tbtzVl34f4vxfBrsfD4mWTkdvt5tZbb+XJJ5/kne98J2AcwJNPPsn73//+VT/3h3/4h/z+7/8+jz/+OLfddtvlDt8Tb0YBAxguhKNHj1ry63g8zvDwsFVvai2xkWS7UeOcnJ8numcPgUCApXIZr9tt+enLS0tWQ7NcLkc6nSYQCBDw+dh9551WPa9mrbYcyF8+AMs6UhXF6ODq8y13MZVldu3cybYdO1jM52nW67TNbrDlctmwXgGP12s1t2s1m2SyWbKLixSLRSqVCguZDMlEggcffJDp6WmWSiVcbjd96TQ+n498Pk+pVKJuyqcFZElCVhQ8bjeKy4XPjOl4fb6esZ0V7jLxeeGyAiRZXuFys4+j6zpuW+Kr5Q7sep+Aqqo0222DpMxq2O1GA93tptNqoUkSmmSo80Svn15P+N1P9r1eC4VChMNhduzYYbX+FlWvA4EAyWSSdru9InZkFxHYLTCx39WECPbuq6sF/+3vF+OJh+pe8xcuQ0EoYoxu114vXOz2XlbchfZxqbgiN90HP/hBHnnkEW677TZuv/12Hn30USqViqWue/e7383Q0BB/8Ad/AMCnPvUpPvaxj/GXf/mXjI+PMzc3B2D1gb9S9BIwbEU3nV1+nc1mrWO85ppriEaj615xYiPddCviF+uAdrvNYrtNyu3G5XbTzudRfT6ajQal2VkOHT5M0OdjYGCAcDjMyOgo6DrZXA6/12uU7BEuMFU1mtIJa1x8D7qRzLnv2mtRXC4mJybweb0Mjoywe8cOps6exe/34/Z4aLVazM/NsbCwgKZpFMyF20o2NeXS0UgErd1m8tQpTp08ySs//jFuj8fqYRMKBlHMBEm3243H4yESiVgVtrsXbivIbS6EinBRwQo3mWX1SD3ED4KsxPcnFt0eVgTYyMducYDlrtPbbVqmp0OUJNLM42+1WpSWlqwK36stjt1xnW6y6rZkvCbxDw8Po2lGYdGMmccFRs+qdDpt3We9gvndFo1dXt0tl7YTmZ1Qul1q4rVeOUfCOhLHI17rJTNf8X1dgKjPJ6joZdVdKa6IjH7pl36JTCbDxz72Mebm5rjpppt47LHHLFHDmTNnVpyQz3/+8zSbTX7hF35hxX7+j//j/+DjH//4lUwFWM4zsn9Bm6Gma5slYdYSq8mvI5EIU1NT7NmzZ83H7IWtFjNayGapaRpuVSWzsGBYEadP4/Z4QNMYHxlh586dtFotqtUqsiyzVCwS8PmMygOyTKvdZsf27UzPzCCpqiXbRizekgSaxjPPPssjjzzCTTfcQCqdJhyJEPD70TF6GrU1jZqiEIvH6XQ6RmBd03CZ1peEYX2AsZC7PR4y2Sz333+/JWsWi2chnyeWSJAwe9icPn2acqUCupEPNTQ0ZNWow9y3rhtlfgS5iuMQlpGAICUZswGfzcIR1k73FSLEEZacvMuDoJvjivJJOixXxZYMwUO90bCaCKqqijcQoFqvE11lceyO7XS7wqB3fo+dwPr6+kin00xMTFAsFlFVlWPHjlmy8VQqZeXddbu9dF1fYaXYSal7nnZ3W/e87QKHbvLsRardxNHtihOwqwW7t/WSilvfZQ9rcC1wxQKG97///au65fbv37/i/8nJySsd7rzopaZbD2I4H9bqC9J1o96ZcBnUajVisdg58utcLnfFY10KNoqMBNbTMmq1Wrx4+DCSojA1O4sMDA4N0e50SCaTeMx2EJIk0Wq3kRUFdJ1arUYylVqeH3DnPfdw+NgxMgsLRjUCYR2JGIp5TXz5y1/mDz/1KULhMIcPH2ZyYgJJltm+bRu7r7kGXVFYXFzk5ZdfZmJigk6nw/i2bdx5xx0rEsN1XTfUZqpquH9k2YpzaJpRWyyzsMDhQ4eYnpnh5PHjRONxwuEwx48fZ2BwkDtuv51AILDcXVWyxa3McQQJir+x/a2ZVpuI91jWkCRZzfyEm1LsV8zdWiRNAtJMebiGUYqobX7vxVKJZqNBq92mUq0SNuunAXQ0jUq1et5F105Aghi6q2Sv9rTfbfl4vV527tzJzp07qVQqLC4uMj09zZEjR4hEIpY6z+/3n3OsYl+WBdqDCFa71u3k2MtysR+zfbsgv9WsMvv7u+Nq9gf57nNkl453XxdXgjd8bTo73G73pseMrsQ12Ol0rOrXornZheTXb4S8pssdZz3QaDQst0uhUOC148fxqCpjo6PGzaYo+H0+Bvr7mZmdJRaLGTXXbMmAspn7oum61ZU1Fg7zvt/6LX7/93+fTrNpuOjsLSSENdBuc/ToUWbn5jhx8qQlJjjy+uucnJjgvttv55uPPcbps2eJx2KoqsqLP/whZ8+c4Vd++ZcNr4M5ZqPRWJHIKdxi9Xqds2fOcGpigkq5zGnTQ+F2u6mUy3h9Pk4cP07SFDigL8d5RE6PleXf5d6xehfZ3i+k34BFbOIKkaRleTeY7rdOh46IB4l9mQtds1ajasa28vk8kiwTjcVwu90US6VldZ1kxF9qZoytOyG0O+bSHavpJiz7Z8S8uy034SbTNM0KLYyOjtJsNi23+cTEhKVaTaVShMPhcwQGsDKJuJtE7feYGLfdbqOq6gqBQy/S7bZkelVpsI+5mguum9C6338+Bd/lYkuR0dVQDuhSLaNu+bXH4yGVSnH99ddbF/Jajnel2GgyWouxKpWKZWEuLS0RiURIpVJs27aN7y8sEARKpRKKLBv10HSj66nH5TKIyHSzqC4X1UoFv9cLsowCVpsHgLNnz6LpOoFgkIqokSiISHxHmsbk6dNMnT1L2mzxIOk6tXqdo0eP4lEUJk+eZNfu3fg8HnRJIh6Pc+LkSV5++WUe/qmfshb2drttVQUQc2i32/zgBz/gxPHjhMJhKuUyc3NzRCMR+vv6UFWVpaUl8rkcTz/zjKUsi8ZieD2e5Y6qXQ8DggCE9WOXiNvdUCsWN1aSULPZROt0qJrVxsGwTuv1OtVKxSig6nIRDAQIR6P4fD4kU2AByy5BodCTJImWtjLB037tdC+83UTTbekZX89KolotrmJfuD0eD0NDQwwODqJpGrlcjsXFRV577TUAK6E8Zj5ciP0I4ugeezVXm51o7Nu7j7tXcmv3ubCje5vdZWh/vdcD4lo+NG4pMhJuus2OGZ1vTF3vLb9OJpOXJb/eaLfZZrjpLuczQq6byWSo1+vEYjEGBwdJJpOWwnBmbg5cLpAkSoUCg4ODljquUqkY8RzdiKN0Oh08Xi+lYpH+vr7lhcAcr95oMD01BbpRnsdyz9mtFmEdmYuFR1UN95Vk1FvTOx1OnzlDp93G5/VayajoOsFAgImJiWULRJKMhFe3e7litq4zNTvL5OSkUb3b4wFdJxqNUqlUmJufZ+eOHXhM16OsKESiUavJXygYJJ5I0Go2jardtsVfZ9nisf+ssMxNC0kCOuY5Ez/CBajpOvnFRcPN2Grh8Xjw+XxW3MXu+nGrKo122yByWaZlk0WL303Txdcdx+jlejvfIt3r/d2fVWzt4O3XZbfFI2Tje/bsoVQqsbi4yKlTp6hWq0SjUasKhHC1d8eZehGNruuWZdQdM+p+IO0VlxJ/97Km7OcTWJG3Zd/navfiWq0HW4qMfD4fuq4v36RXiZtO0zQKhQLZbJZMJrOm8mvHTWfAipOYBNRut0kkEmzbto1EItHTxXl0agq/10t5aYnxbdsIR6PMzc7i9nqp1WpGS3pdt5rNtUXcSFquRlCr1SgWCtTrdbZv347L7aZiCgXQ9eUkWBs5PfPMMyQTCQYGBw1rw74oqKrlhrNcXbJMo9EgHImsVKaJJ2aWqxiUSiUjydPjASAYCuHz+SiVSuTzeTBJorS0xG233srI8DDDQ0OWW2xxcZGJyUkWczlSqRTxeBy/37+CBHXdUNtZOUBCdgxGO3NTeKCZ1lCtWqVZr6ObJB+JRonF47gUBU0y4ktWkqxYXNttJEWhXa9b504RcxDiCkFwNgLrzuvpRRq9hADne4/9tW4XoH2MXkQmGtht376darVqVYE4fvy41Vk1lUoRCoVWJRrd/M5WizHZrSb7a9Y1dQGxhl2JJ/4X4/WyvOzkt1qc63KwpchIPGnUarVNIyPxRZ2v+vVayq+3qmV0MW66TqdjlTgSMbZUKmVVGL+Qi/NsJkOj1UJ1uQh4vYSCQTqaxtz0NC6fz1i4Wc6TaTUahqABqFerLJVKeH0+kqkU2WyWSDTKbbfcwtP79y9bRJq2XIlBkown/Hqd2elpVJeLPbt2oUuS4bpSVXbu3MlMocDZs2cZHBxEURRLpHLtvn3LcmnTWhBEJpYDj2kNoRktun1eL8PDw0Y79KUlzk5Noek642NjjG/bZsWE3B4P/QMD9PX3EwoG8Zj5SbMzM7hcLuKxGPFEwmgCCJaVI37q9TrNep1arUaz0aCt68iahsfrxevzEY/H0YFSsYgky1bXWkUsiGZfJCQjBiUpCqopmxcuwrathpwiSXTMhbBpJv6K6+Z81kWvhbX7OusmJHG+7YKAbrddrxiN2Id43efzMTQ0xPDwsJFSYCofX375ZRRFseJMEVEZvgvd8Rv7XO2ijNWOr9vN1702drsfxZi94kXd468FtiQZibjRRpNRtVoll8uxtLTEc889ZyXM9ap+vVbYqjEjge6x2u225eJcXFzE5XJZMbZLLXF0dmEBXyqFqihGzyJdRwWCkQiKJDE7N4ff5zM6u0oStUaDoKpa1lMyncYlG1Ua6rUa0UiEf/nLv8wPf/hDatWqoahTFKs+HKZiTFhMZ8+cwefxWE34rr/uOvbs2sWecJhXf/xjTk9Oous6wWCQ++69lxuuv96ymprNJi5VpWWmMgiRQF9fH9FolNm5OfrM8kYul4vR0VFuvukmKx1AuCQxP6eDpYCTZZl0KkXaVOYVCgXy+TyHjxxBNt2DszMzeDweWo0Gc3NzaKY3wuXxEA8Gl1tQmOQi5icUiZKug1hATUtHkgyxgyLLhqrO5bI6rkqyjCIWUpal47o5H+gdF7Evrr2smdVUbeKzvWJG51vUe11/vcrvKIpCf38/fX19llWfzWY5cuQI7XabWCxGMpm03Moi6bYXoXbPqXtM+7Gs5pK0z1XsczV33/kswivBliIjj+maEPLu9SYjXT9Xfh0IBFBVlVtvvXVd2iJ3Y6tbRoDV+TOTyZDP5/H7/aRSqSsi+UajQa5S4bqdO+l0Org9HjqmS67dbNJntgevVqvkFhfJ5nIslUqMjY2RTKetkkFC1tyo1y0Z+A379vGDH/1oOU4kZN7if/HUq+uMjo7SPzDA2NgY28xE8PEdO7j9ttsMaXe7zcDAAH19fctFR01rwGXKugV0IOD3c8ftt/Piiy8yZcawVJeL22+/nfvuvXdFwquwisS3uUJ+bZ6HRqtltM7w+ejv66OYzzM/N8dEo4EsyyRSKdxeL6lUarlcjXlsOqDoy51hdd3o1dRoNo2cI+Ga01cmjLaFDFtcByZ5Wfeyvtx9FvNcwLmLY7cbCs5NIu22mlaLM3VbRueLP9nRvd/uOUmSEduOxWJEo1F27txp5RROT09z9OhRQqEQqqouKxx7CEx6Kfa60e26tJ8v8VkxhnDT2c+nGPtixrocbCkykiRpRUmg9SCjbvm1ruskk0lLfl0oFDh58uSGEBGsrMy7HpZXNzZiDDBcrWC0OF8yWwWkUil27969Ji3OT50+TSgcpm0+mdsrDqDruBSFjq4TCASMatCtFlHTYlpYWMDjcuHxevG43Uaiq7ngarrOz7/rXfzgxReXVXT2uJH9epQkDh85wj333EO6r498Pk++UCCiacQDAfZde60hCDBjJmJ+GoYKzW2KL4QbUMRchoeHiScSZDMZWqbizmq1YCejToeWWY+u1WrRajZptdvMzc0hSUYJI9nlQlUUouEwsqKQTqUolErceOONtFot8vk8EydPUq1UCEcixCMRQpGIMTeM+nOY1hCm5SPIR8JQI0pgueAwXXa6bsTAJH05ZmcnJzCIWVUUmqbVYLzt3K6m59sOqzfL636fwGpWw2qurfO9LrbbLZtAIEAgEGBsbIx6vU4+n2dycpJGo8ELL7xgJdraPQG9iEa8JpKEu+cr5tJ9XN1k1/3+1eJtV4otSUZrbRn1kl8nk0muu+66c/y7myEogJWFFNd7vPU4Pl3XLQl2JpMxRABgVRkXVu9a4djp08SiUVpmfFEDJE2zcnc0DGunkM8TNhfYcDBILBYDoNlq0ajVKJZKVKtVyktLZLNZ3C4XXr+f6667joMHDqwkINM9Z1lIus70mTP8wR/8AR/+8IdJJJOcPXOGF15/Hb957Pfdey833Xyz4bqyPY23mk0mJid56aWXePFHP2JgcJAbrr+eoaEhY3FVFFLpNM1mk5xZx04UaNXBEhd4XC4CoZBRDNV0r2maZrQ614xutsByCwnTzajKMh6/n6DfjyrLRKJRo7FdJsOp06eJhMMGOUWjuG0dXFVFoWpLcrW7rQSh66L6ua6j2R4QdDG+SWoAkqIYltYqrji7BbQaMfXK+elGt7igm5B6JZ1eyPrqXvy7LRUwLFKPx2P1fksmk2QyGQ4ePIiu65YAQlQb7+UytDcPtJOeLJ/b40gQs73HU685r7WLDrYYGcHK+nSXS0b2hfFS5debEcOBtZNXXsx4azWWcHMuLCyQyWRoNpskEglGR0dJJBI8++yz9Pf3rzkRAcwuLuIfGKBYKuEyW4MjSdSbTVSXi1wuh2b265IVhfm5OTwej/XE7na5UFWVoCShuFx0Oh2S8TiNRoN2u834tm0cfPVVI/FVkizyEU/1FkGpKs1Gg/1PP00wEODo0aOEJYmg38/k5CRnz5xhqVzmun37EPXLNF3nn558kgOvvcbS0hIDAwOcOHGCl196iYceeojR0VFk2Wh5sJjLcfToUSRJYnBwkJ07dlCr13n94EHmFxaQJYmh4WH27duHW1VpmWo4IRwQ1opQD3ZMQu2YhCcIxO/zGfeFTZlXKBaZnprC7/MRjkaJRaMopmtR0o0EY03TDHen6Cwqy5b1BCwr7AQZmfGkRq1GqVSi2WziTyZX3Hf2B8JeVkgva6LXdgF7aZ/u/XTHasRr3du7rbJesZ1eMS87SQiRQzKZBIzcOJFo+/rrr6+QjQtlsX1OvZSG3fGy1Y6lG+ux7mw5Mrpcy8guv85ms1YH2kuVX2+0aMLuptsIXCnZihpqgujFU/iuXbuIx+Pn3PDrdVz5SoVRr5dMNovXRjK1Wg0JGOjvN0QNYATgxdO46TaSJaMEj97p0KrXDXedLOP1+dA1jbHRUVweDy0znoH52V5Sbzodnt2/n2Q6zc6dO/F0OkQ9HqKRCGfPnuXlH/+Y2265BVlRUBWF0tISExMTVjKlKI8zMTHB5OnT3HHHHejAqZMneeGFF5ibmyMSiTA5OclrBw8abRhaLRKJBJqmcfTwYUr5PPfed5+RRGser9bpLIsapGU5u97pICsKkp2QWJZnu8zeQem+PrROh2wuR6lYZG52FpfLRafdxuPxEDIf6nRp5dO1YlpRwApXXq1aZSGToWz2mxJ9oCQzL6Z7Ie1ladhbOHTHceykYF9sNU1b0Ya7e//dVsVqpYbsv7vHNi6J3j2ExLkVfazEZ0T79h07dvSUjQviCoVCKywh+3HYrUS7mKPb4ullFXWfjyvFliIjSZIuyTLqll8rikIqlWLPnj2XLb/eLDfdRpLRpaLdbpPL5awus+I8X3vttUYuz3kk2Ot1XE1No4MRpJfN4qb1Wo1CLmdUP/D5jBwjc5FxmRW5RbFP3SQSDcNaUF0uo4upoiDLMnuvuYZUKsXMzMxKabctxoOmLXeElWWy8/PEEwnG0mkUcz+JZJJCoYAG+E2BRC6Xo1KpsK2vjyVR6cF02czOzrK0tITb7eaHP/whWqfD8PCwVXT1Rz/8IZqmcd9991kVEgJeL9Ozs8zMzjI2NmZZQ4otdgPLDyKSLBvFTEV5GpOoZfGgIiwDRUERyrxEgo6uUygWOXXyJMePHzdiUdEo0WiUUDhsfEZfltM3mk2WKhWaU1O4zfMfj8eJR6Mriq62zZ5G3dZGt9hAHIP43YuE7NednSREcL9bACHQyw0m/u9GNwn1mksvIrW75LutLLtsvNVqWffb2bNnV8jG7dXGuy2jXlZT9xy63ZO9xBSXiy1FRnBhy6i7+rV4ghgdHSUUCl3xid0sN91GjXmx1kqr1bKSfHO5HF5TcXXTTTdd9Hley6eubihuN5VSyVJ6VWo1mvU6UZt1Jha8arVqVUiwlF82lZUiGcH+VruNT1Wp1uuUSyV+5qd/mr//n/+TzPz8MvnY847AygkCQNM4dvQoI/39VsXsWrVKOBzG5/VaSjhFllHMBnrYnnRF/TJZlplfWKBQKDA8MkKpVLKUa16vl2KxSLvVstR4iqqiyEaHW6tbq1gUzXlLphWoi9wf2WgeKAsXnvk+WVGWz43ZqluXDBGGAqSSSVqtFv19fUYibqHAqVOn0IBIOIzf60VxuWibAg2Py0VfOo3b7WZ2YcE4PnOfxikzzmcvd1cv0riYhdW+XSzQ3S7A1UhO7Me+sPdyC9pJq3vN6I4/SZLRdVdcl70eeO2k4nK5LNm4ruuWx6eXbNxe27B7Tt3nqVe8qJcVdbnYkmRkt4zElyEsoGq12rP69Vpho9103U9ZGzHeamPV63VLgCDaXKRSKXbs2HHZXWbX47h0M17RwZCNN5tNmrUaoWjUKi8Dy8qtZquF1+ulbS6uHVvwvdVs4nK7URSFpaUlioUCqstFLBrl9jvvZO/evXzn8cd55umnDQmyUNfZyUjkIZnjZfJ5osEg5XqdarXK2972NiMIbZ6LVDpNX18fs7OzlkquaVr5d9xxBz6/Hy2bXbZoxOKqG91mre7HtkWybcrbLVecIEzTOpRNS0cTsRPzNSE3RzcreJs5P4qirFApIlx/JvlKkkQ4HMbtdhMMBCgUCkYFjfl5JNMidHk8httT7E83hBOir5Elde7xFN9tba8WB1ktpiNgD+SLBwC78KHXvroX7F5Wkt3Ksh+Lnfjsc+nl1rsYktN13ZKN79q1i0qlskI2LjpBJxIJq9q43nV+VzvGtcaWIyOv10upVOKf/umfrL5KBw4cIJlMsm3btlWrX68V7Mqc9Xyyt2MzyciugBPdSYUL7kqJfr2Oq9VqgSwTCYU4XirRbLeJJRLUazWjNbdJNuIJv2XKurOLiwYJGZMzKjE0GnTabYqFAsgyI0NDyzJrXScSDvPWBx/kphtv5B++/W2OHjtGp9Vazj0S14jNYjp69CitYJDhdJr77ruP+++9l3arxTPPPsuJ48dRVZX+gQGazSbTU1M06nUkWWb3zp3cdsstNOt1/B4PWqfDkcOHiUWjBMNhiwRisRjzc3M02m1q1SqtZpPBoSEG+vuX20UImbUpVpCADsbCL1qHS5K0IqdIBkOgYFpLwIpyPZpmtHAvFIvWveHxegmaNfEEYdbqdQq5HJmFBTJzc8RTKcOiMpWA9h5MkiTR6no6717AxbbzxTy6LR0Bu2UkSdIK1333fd7Lmuhe1MVrwtIR7xMk121prGbFifPZ/d7VEl8F+QUCAfx+P2NjYzSbTStEcfLkSXxmpQxRnqib1M6Xr7UW2DJkNDMzw7e+9S1OnjzJhz70IXbu3MmXv/xlAO4020NvBHrdCBsx5kZaY/V6nZMnT1pFSOPxOENDQyuKkK4F1uv8NZtNdFmmWi4TCAbRKxUKuRyyquLxeNBarRXyYXR9RZUA8f/S0hLzMzOk+/sZHBqikM+vaKNttzwkoFgsEgmHyeXzK+XepqtQiBsatRqHZ2YoZbMcOnyYL37hC1SqVUNxJhlJnhIQi8e57ZZbuP/++0nG4wyPjKAqCj/44Q957rnnyGYyhvS8XMbv9xMIBhkeGWFkeJgDr71mNQt0u90Ew2GjOGwgANKyWEEQkbCAZEHG2K5x24Il3Isypvy90aBWrxv9oDAeFv1+P339/RaZWQuaabH6fT78Q0P0Dw4Si8Wo12rkCgUkXWdycpJkIkE4FjMIF1bU9rsQAXW71uxWsJ0IesWSVru37W657jhM9xgC9nbgwuqyo5swu8URsFK8tBrR2ufc7a50u90MDg7S39+PruuWsOjgwYMA3HPPPZYbr9s12N0Tai2wJcjod37nd/h//9//lzvvvJNoNMp73vMePvzhDwMwNTW1YVYDLF8g9iei9cZ6W0b2IqRzc3NomkY6nT5vn6W1wnocV92sSp3NZkmlUkYdNLebmZkZRoaHjad6kyA084lVfJNtTaPZaFAsFPB4vURjMWKxmLFwmzJua9Exn4BlRaHZatHqdHC7XEQjEQq53LJVJK4Tcay6DqrK9MxM98lAxHhcqkqjWuW5Z56hWCrxe7/7u3Q0jW9/61s8+dRT1KtVZFWlWi5bhUs9Hg8nT57k9YMH8fp8jAwPMzIyQigUYnZ2lldeeYWffPvbjTwf0524ok+RphkuStOlKInFUZZpNZs0mk1D2t5sGvEkRcHn8RCNRq1Yj2ZaPrputKGwuyt13VAWamAVYg14vUQiEXw+Hy/++MdEYzGKZo09r8dDPJHA16UEWz5dq8unxd+9iovar7nuffR6yOzlahPbe82pF6l1j91t4QjXavd2sW3lZdK7Np94rduFKPYpqo1LksTS0hKq6dLtVXGh+xjXAmuyWn7uc59jfHwcr9fLHXfcwQ9/+MNV3/v666/zrne9i/HxcSRJ4tFHH73i8X/rt36L2dlZnnvuOa699lpDCSXLltm7laXWYsy1Hq/T6ZDJZDh06BDPP/88r7/+OpqmEY/HGRwcZN++faTT6XUlovW0jMqmKMHldqO12wT9fuLxOFqnw+zsLOVyGU3TaLXbVoxE0zQWMxmq1SqpdNpIeDYtA01YT2BZOzqGdeBSFFyKQsDvp1Au4wsErOrclnuu01mZh6Qo1jap0zHq57ndBPx+vG63VadN03UOHjjAn/7Jn/DMs8/ywx/9iHazieJykVlYoLi0RK1ep1qrMTM7iyLL1Gs1XJJkCHkyGRRVJRGPMz8/T6lYNMQB5nGJNt86WLEtrdGgZD6cLMzOMjc3R7FYpNNuEwgESPX10d/fTzKZJBwOG0RknhfhwpMkQ4Sgm6RvX9ysuJC+rGaUTPJKxuPs2b2bG2+8kYGhIaq1GseOHeP73/8+J0+eJJ/PL3eOtV1H9oVZrA129BIEdH/+fHEd8Z5uJV8vgoOV6rvucYUF1B2fsTcINL4O+aKUe91j2edmPyfit67rVoy3l4tR/O7edqW44pXk61//Oh/84Af5sz/7M+644w4effRRHn74YY4ePUo6nT7n/dVqle3bt/Mv/sW/4N/+2397pcMDsGfPHutvu7QbNkdQABunbhNjrsUFIYqQCgVcryKkJ0+e3LBW7utl8TU7HZqNhlHORwTtzSfxWDRKvdFAkiSyCws0mk3cbje5xUVq5TKp/n7CZt5GR6jKMOIYqqLQabWQXS46uk6tWmV2dpbK0hIut5tbb72Vf3rySRq1GrFolEVhHcnysrDBJCRJVVFdLlSTeAR0SVoWJIBVMeFHP/whS6USgVCISrVKsVQyLBxzUW9oGoppwUiyjKQo+Hw+FubnGRweNs43RlkeXdfROh3anY5h6bRaxjnBIPJavY6iKPj9fiMvCaMjsfmlrWhjDhjiBbGQSxKKOZb4AdBl2ZLOd5fnESWR2mbMCF3H5XaTjMVIJBIMxuNsGxwkm83y2muvoSiKFfuIxWLnuMSsc2mzQrphX2yFZdLtfrNbKHaRQy9xRLdbrxfsxNEdn+klKDifSKLborN/RsxzNatttYfA7vhRL/fjleCKyeiP/uiP+I3f+A3e8573APBnf/ZnfPvb3+YLX/gCH/nIR855/1ve8hbe8pa3APR8/UohGuwJbLRltFlkdLnjiVJHogipkLqPj4/3LEK63i7BbqzHWOVKxWq1IGTa1tM6hrsgGAwSDASYmZ0ll8sR8PtRXC5KhYJRCsfrtTqtghFTUd1uFnM5w61pyql1SWJ0bIxCocAdb3kL0UiE5597jkKxSCKZpFIuUzf7H0m60UBNVVUUnw+9WjXmZAobZNscRYKpbrrSdF3n2IkTjI+NUa1W0TQN1SQqS2Sg61QrFYOUWi08bjf5SoViPk+1XCY9MEC9Xie3sICiKKiqisvlwhcIEEskjHJJrRZzCwsEg0HrfGqY1bhNF5vd2pFgudKCIBbbgme5RFl+Yhf5SoLUOkK6jU25Z1oOkiShqirpdJqUrcp4Npvl2LFjVu8wUc1ctRWX7V7Uu6+37sW5O0bTq6yOQLc78EICBfG3fZG3f76XWKGXhdM9rt1i6y5/1CumJv5vmx6BXvuCla7Pq8IyajabvPTSS3z0ox+1tsmyzEMPPcQLL7xwxZO7HNil3WI+G00MG534eqnjiVyrTCZDqVSy5J179uyx+sKsho0ko/Vy0zVM1ZxuLmQdTaMj3HG6jqyqtExXXqVSYfv27YbsudNhYWGBdqdDJZejWq3SabUolUo06nWWymWazSbDIyMMDw4SCAZZzOUIh0JGHx9J4vbbb2fbtm243G6ajQaVpSX+6I/+CBmjbptYyNF1JJcLqdOxcnpEfEaUhrEWElPY0O50mDx9Gs18irerAoUFValWjQrbLhezMzN0NI1sLsfgwAB333UXfX19KJJEXzpt5QwBlnQbXUdVFEvJJsjOimkIQrcTCkZbCFHJomOSP8JikCSrP5FwPUqYVqBpaUmybLhBTXcouk6n1aJYKCA3m9ZiK8syiUSCWCzG7t27rZI5J0+epNFoWGrPVCpltWwXWC22ZHeZ9Yrp2ImpW0Ag9mmXgXeTiyAr+3fafe13V4DoJsBeRNXt0usV/7LP1W7B2eNp3QTXvW2tcEVklM1m6Zj1u+zo6+vjyJEjVzSxy4XX613OSmfjyQg2xxo734Wh60arc1GCp1KpEIvF6O/v57rrrrvk2m9vdMtI15fbZ7tU1Sjp025bxTxlWWZmdtbIz4hE8LrdxgJr9h0KBIPIkmS47hoNXI0GAZ+PQbPWndvlolqpUK1UWMzl0Dsd8oUCmiRZZXFGRkfx+3ws1moMpNNkczl0UccO0wJwuazEUXTd6ohqLfSahiYZcmO93UZWVToi0VQzGtTpgKSqRrVvTUN1u7nxxhtRFIXJ06cZ6O/nzrvuYtv4OOFIxBhHkqyYlDhfwoKE5cXZKqJqWmeCeACDIBXFkquLmJpmzkuSDIFDu922at5pupHLJFyWQh6vY9auM91lmWyWRqOBKssEw2FcZiNNuxtKLJqi0+q2bduo1WpkMhlmZ2c5fvw4kUjEcueJOHM3Wdj/7yV2ON8Dk52kxP92N1f3vnu53exj2NuOi/Pey8KxE4b9/eIhpnuM7mPrJdY4X/zrqnHTXW3weDwsLi5a/28GGW1GSaDuY9R1fUUbblFrb3R0lGQyednCg422jNZjLL/PZyxu5lN+R1+uBt1oNlkqFPCFQoTDYRaqVautd6VcZn5uzippBDA+OkokGjViMxiElUomLWm4Lkn4AwE6rRbNep1IMslgfz9enw9ZknCZ8ZuBwUHmZ2Ysa0aTJCSzQZ1mngutezHDvNYEidm22917kq6jqCper5ddO3YYSbySxIMPPMDdd92Fz0x2lMDI5TGtF9EIT5CJgCzL51bZNt1pspmcKuJgujkP2RQlyCI2pGlWp1bxo+j6inYY4ry3Gw2q1Sr5QoFCsUg8kSAWjy+7WMvl8z65i/2L/JrR0VGazSYLCwtGm/WJCUN4YbZm8Pv955DIakmg4vVugulFjL3cguJ82sfqRVarqem615peLjcx/gprugcxin2e776zH89VZRklk0kURWF+fn7F9vn5efr7+69oYpcLn8+3Imb0ZrKMNK13EdLdu3evCOReCTaSaNfLTRcNh41EUXEcuiHBbjWb1Ot1BoeGDEum06FcLtNst1kqlZBloxBqIpEgEYuxmMvhCwQsl5Ks60Y5KrM9eaVcJp/JoEoSkVCIWDxOKBBABjzmvrbv2kV/Xx9TU1P0DQwwOzW1vBh4POhLS5ZIQlhIEoalIIGRyCr6KZnbkZfbkSOsJFnmZ37mZ3jnO9/JUrlMwO8nKiTpXQuQcJ3p7bYRkzIXfTEPJMnoAyUZDfIsAhQxFLH4CmvKdENh7lcWbiuWCUdYQJIs02m1qNXrRkWLYpFAMEgiHicWjdLf17e8qGIsiKISeDcRrBbjkGUZr9fLyMgIIyMjNJtNq0LL6dOncbvdpNNpEomE1SJmtTiPgN1tdiGraTU5eS+yE+47u2u2+z3dxynGWM3KE7/t1STs87UfX7eYxE6yvSpWXAmuiIzcpkLoySef5J3vfCdgTP7JJ5/k/e9//1rM75Kx2TGjjR6z3W7T6XQ4e/Yshw8fRlVVUqkU+/btO6fX0lpgK1hGAb8f1eWiWq1abqlKtUqj0WBsbIxKpcLMzAzZxUWru+vY2Bg+n49Gs0m9VrMWZLeoY2ferC63m8z8PG5Fwe31Eg+HCYZCLBWLRkVrwOf1Uq5U8Pp8KJLETz/8MH/9139NrlCwhAbCUkOSrARZsQCLcyOsIV1YFIpi5EyZLS1ERYRINIrX7eaeu+8mHIkQiUSWhQOmi03GqLCA3V1kWkbWYiZEAyznhAjXm6jurXcTgDFZK1dLA4tELJeeplFpNKhVq0bJJFnG7/PRl07j9XpxezyoooaanRhM1567x2LYKy5j3w7LloLH42FgYICBgYEVzTMPHDiAoihWdfPVxhB/98ozsl8bvWI5Ar3Uad3xZ7uVs9q+ehGK3fq0v6Z0Xbu99tVr/eiOaa3VPXrFbroPfvCDPPLII9x2223cfvvtPProo1QqFUtd9+53v5uhoSH+4A/+ADBED4cOHbL+np6e5pVXXiEYDLJz584rnY6xYFwFZLSeC7Yo45HNZsnlcoBx3DfffPOaFHu9EN7oMSNFUYhHoyxks4yOjKBpGjPT04TDYY4eOYLL7cbj9TI8PEy5VGKgr89aZN1uN4VCwZiXvpxbpLfbFEslGtUqrXqdvtFRJEki32yiiIUcaEuGaAJbW+e+gQHe9a53MTU7y9//zd/Q0XVarRayLNN2u5EaDcN1ZV+IAK3dxi361uhG5fB2q2WRhuxyMTAwQDgSodloWJXAdW250ra5w2WSMCXgwj0HRtxGiAjsLcQlzLbrpisR8ZTPcosNCSwryorV6TrVep1apUKr1ULvdHCb/ZASyaRlXeliPiLOYc5LB4t8dc2oqN7tNoOVT+zdFtNqFoN4mLMr8zKZDJIk8eKLL5JIJEin00SjUUsAcT7xQPfvXtUa7HPqdunZ591dbdvuYuu2sHq5B3v9Fuege17C02KPMdn3ZT+va4UrJqNf+qVfIpPJ8LGPfYy5uTluuukmHnvsMUvUcObMmRXsOjMzw80332z9/5nPfIbPfOYzPPDAA+zfv/9Kp4Pb7d6SbrrzFSE9duwYqVSKcDi8pmP2wkZbRusBVVUJejzMA6+8+qrV1tzr9dLf14fL7Tbk0boZUAdroRU5P51OB73Tod1osFQu06hUcPn9xNNpFBGz7HRQMK0AyciVEW0pMNtle1QVDfD6fNx+22006nUef/xxOp2OEVMxlXQ6BikIAQOSIVxIp1JWhYelpSXaZp06RZKIx2KEIxEWFhboS6fRdZ1ioUAgEDAWHtMi0sCybCSTNIVLENvrlqrMRlSY85JM95sgK6GyE+RXqddpNBo063UWMhlcHg9+v5+4Wb9Qlo0aeJhjCaITd5FFsGJe5kNAu9PB5fOtWEzPF9jvjrP0+i0WYWEVRSIRZmZmuPbaa8nn85YyT4gfRJdVAbsbrJd10U2W3fPt9V6R29eL/OzEcyHZNqxeV068LtZMtYvke5Fbt+T8SrAmAob3v//9q7rluglmfHx8XRezzU56FWOuxTF2FyGNRqM9q41vdBznjWoZiaTeubk5Jk+epFit0j84iMfjwev1Ek8kcJn5R16vl7xZa04HK39GardxqyrlYpFWuUy23cbt9ZJMp+noRj8et9tNpVLB7/WC2dNHNsmrpeuWq65Rq+EKBg0Bgkk6991/P6FAgO9973vMLyygKQoVM44k1HztTsdqo9DRNG6++WZOnDiBrOu4ZJlGq0UgECAUDLJUKpFOp/m5d70Lt9vNyZMnkSSjWGo0FiNiVv0W7b01G6kIObaAIBxJvFcIFuTl6tmarlslgaq1mkUiXp8Pv89niD0kiUQigWzOXxC2FUcS15huyNKF5H0FmbDs7vN5POckm/ayLMQxdC+k3STVHegXf8fMJNudO3dSLpfJZrOcOXOGI0eO9JSM2+XcYl72mm7dMabV5gjGPS7IoZsE7PGqXgKEbitJ/H0+16P9nPSao/h7LdeeLaemuxrcdJdrGem6ztLSkkVAogjp8PCw1XtktfG2IhmtxVjdfZV8Ph/pdJq9u3ZxaHraqBIiSTQbDbILC5BM4g+HUSSJdquFIstoZlxOWDgeVWXq7FkUSSI5OIjLdB8ppnDAFwxSXFxEM4vGdjQN3czNUTFiM26Ph+LiIpJJBuKJXwZuvvlmbr7lFjRdZ3FhgS999rNMT01ZSjtBkNFQiE6nw7ve9S4qS0vMZ7OGqysa5eChQ2QWFgiGQuzbt48dO3YgA4PDw1TKZXK5HKdOnkSSZSLhMIl43Cgaa8Z5ROsHyTwmMaYonCpQN4UGllWk66huNx6Ph1gsZlS4WOXp2bKc7CQiy9BuI6mq1acIsCwtRV7ON9LN71cU8+y1iIvrqBfEwtzt7upeZO1JqOK1UChEKBRifHzckoxnMhlOnDhBOBwmkUiQTCZXlYx3V0awu2C7RQPtdnvFe8Tr3TGxXq601QQIq71/tfPTPU9xDGu5Fmw5MnqjCRjsfmmRt5VIJNi+fTuJROKiFHDr4RY831hXu5tOENDCwoJRPSEQIJ1Or+irdGh2lsaxY4Z826woEIvFAMjOzqK63ci6TrNWM6TIGE/ixVKJZr1O0O83mtKZLrMOoAh3nM3nLplP+5gLStt0NQnnSEfTjKZ9LLf2rtVq1KpV6HRweTz86iOP8J/++I+p12pGEVFZJplK0Wo2iUWjxONxkskkY9u2GedM0xgcHrYebkScRlg/4VCIcDDI2NgYS6US+XyeyclJWu02oVAIVVWt4q86RqXutq7TrNcpFYsUczlmZ2dBN8rySEA0HselKJZlZXfzySZZd0yytb5fzei2KwqmWsIGu9Ku07FibOJ9Qn0HoIBVKb7bpbQixma7bs/nwuqOJ9nf06sWnCStlIyLiia5XI5Tp07h9/stZZ69okm32MGO1ciq1zF1E0+3lddtLfUiGPFZpcsCFdu73Z9XbczoaoNw04mTejW66YRiRxCQLMskk0muueYaYrHYJSvg3mjWyqXgYscSoo6FhQXy+TzBYJB0Os2uXbvw+/3nvD/i8SApCu1WC1lR8JiutXQyic/tptFoUGi3mV9YwOv3G3GZahVfMEjE7FK6VChYCZuKeVMquk4bcHm91MzK2cByDTuwXFEev9/oIut20+l0jARZU5QQjcdxybIRT9I03va2t/HC975nNPKTZZpmxYg777rLIkShXFuhiMOmyjJzVSyXIxCORAiFQoyOjlIql5mdnWVicpKps2fxB4OEgkGCwSCqLOP2eHCpKsFIhP6BAfEFGcVgXS5ksFxtVszIJBxJHDfLKjvNNmfLHQXLZK0oVr2+lq5bxyjJZg6TrtNut3tKjLuf5O3bey3aAvZKDvbrb7UYVDeJeb1ehoaGGBoaot1us7i4yOLiImfOnMHtdpNIJEilUlatRwH7ON3HIyyQXrGlXvGfbjKzE5j4jH2sbkvwfDEo+7m173MtsOXI6GrNM2qZnTgzmQyLi4t4PB5SqRQ33ngj4XD4ip4wtmrM6EJjNZtNo3K02WI7FAqRTqcvqqxRJBDA7/NRWVqCeh1fLGaRi24+8SdTKUqm3DqfzeLx+WhWKrRM+XGlVgPZaKctFti2+T0GfD7mSyV8JhHqYLiwzA6zLkWh4/EwPz1tdBDVdfr6+/G6XMZ7xWIA6IrCr/zyL5NOpXj22WcpVyoMDQ1xzz33MDY2ZpCPpi0nmpqf04TrDKxgeqfTod1u02q3aTabdNptOmYVBF2SCJuup0gkQrlUolQuU56bIxKJkPB68Xi9VtdVyfwtKnLbSUWQoPhbF/Jv080mvl90Hd3WUhtMhR7LLcXBsKLEI5quGeWbypUKxULBaAm/ioXRyz3VK2gv0KvQqT0fp5d11b1/AZfLRV9fH319fXQ6HSsH8GKKua7mHoNzKyZ0u++63XBi3nYLT2yzk1b3e7stoF5W5Fpiy5FRLzed1WZ5gyAIsFcR0lQqxbZt2wgEAmv2Zb6Z3HSNRsMioGKxaNXVu+aaay5IQGDcsO12m4DbjVdVqVQqVu5Ks9lcvmExFs5qvU6n1WJ4bMwik3qjQbPVolIus2gmfKuKAqpqiBUUBcUMNutmUzkwnuhbZumhYj5vubGiiQStVssKUGsmwXV0U0TgdlNtNPjn73gHP/n2t5NdXGRkeJhsNks+lzPk0brROlzrdGi2WmD+XyoUkBSFarlsfHeShFuWUdxu/H4/qqIYsUjTxdio11FVlWQiQer/z96bh8dRXWnjb/W+75taki3vGxgbGxuzJ0AMJMxAEuIJBoPBJoaQIUMmvyErmfBlIcPkIysG25AAcSCQhEAgDHwmZAI4NmBWW94XSb2pW73vS9Xvj6p7XSp1y1q7JdHv8/iR1eque6u66p57znnPe+x2cAAvaxSLoaurC2ylggrLoi8Wg9lk4hdv4dz67ag5nglHlRuEsemzKBgxFqBEBoaEOAUPiOSHKkKIsSTQ57PZLOQyGVQaDeyChyFeIMX1OtJdfrXaI3JfVPOWpGGuWvI+0uNJDYRcLqcKDxzHIR6Po6+vj4q5Wq1WuFwuyswTP2NixXCx4ahWtCo1imLDJTZCtUJ/YtRSnCCvMQwDpVJZM5c9XEw5YyRV7ZbJeIXieiGbzSKXyyGZTOLIkSPDEiEdKSaStzLW4DiuqgGqxiqsBWKASJM5ADAajdCyLLLZLBiWhVposJfP56HValHhOCQiERgNBsjVahqGq7AsfQAdDgdUOh2Mej2fTC8W+Z+VCkr5PCrlMgKxGCoch3gshkIuh7BcDjnDwGA2QymEgwI+H5QqFe+hMCeJAGAYKo9zJBYDWywiXywik04jGAwiFovxOZ++PsiF/kgquRwqpRJKhQIyuRwqlQoyhoHRYKB6b/TaklonkccgE2qRyPgcy0IntKpua21FJBxGV3c3An4/Thw/DrPJhEKpRDu3Cl8aFVVlZLz8D/WGAEpNp+FCYnwEg8WI8hX5fB6JZBLxvj5kMxkwDMPT2RkGnEyGSjrNH1e0oIr/L46MSFUMqi3U4mNIPQepIaoWkZBuDAl7TvwZALAKTRlnzZqFdDqN3t5eHD9+HJ2dnbDZbDScRxZ6MatN6uFJjaPYKEqZdtIQYDVDJB5H/B4ClUoFpVI5JoouYkxJY1RPAgPHnRQhDQuN15RKJYxGIxYsWFCXdudTMUyXz+dRLBZx7NgxdHZ2wmw2w+VyYdGiRUMSdq1mgMjrDMNAq9VCI5cjzfK6XxzDQKNQIJ/LQa3RIN7XxyecAVTyebDCYi4Xci8sALVKhVIuB0YwRhqNBhwAdaUCRqGAVqNBuVSCTvi7Vq+Hy+3mm83J+FqgCssiGAhAYzDAbDLRBUXO8AoPcrmcJzXIZHC43WDLZSRTKdiFDrsyhQJOoaavn2fBnSxklclk1AAQeR6A92aI8gIDQRla/KyQz4i+b7VOB7VajUWLFiGXyyEWj8N36BD2ZLOwWCywWCywms1ghHAjI5A4wPI9jUrlcr8wHc1zQSBzMAzyAoEjl88jm8nA6XDA5XYjnkzCZDTSnBhbLkMt0Khr5XJq5VrI+NJ7RupNkdBmrWNXy6VUC6lVy7EQw0GYebNmzUI2mx0g5irNeVY7H7GhI+NKX5fmkgikz7PUABMjrlKp+rXgGGtMSWNEwi3iizmW4LiBIqR2ux3Tp0+Hw+HA4cOHoVQq62KIgPqH6cYLhCLb29uLVCoFuVwOh8OBZcuWDelakg6fpVJpgLQKgTjG397aiuChQygKdTtKQcEgHg5DbzJBo9UinUpBKejNaTUaMCyLshA+U8hkkKlUVIuOhKSIZ5HL5ZBKp2FMpWAxmWA0m6ES2GdgBIUBmQwKIUymkJ0sRAUAhWAMZAwDpUaDZCoFg1YLTmhlThr6EcUEoobQz6sCv8hXOA4KCHI83Mk2DazICyJsNZlMRg0XIR1QnTkhTAcAOp0OOr0ecoaB1WZDn1DDdezYMVjMZlgsFtisVsgE1XCZEJojrTogeIHlYhHpTAaFfB7gOKi1WugNBugNBmiFMXK5HM09ceC9q1KpBJvBMGChlxoHaeiqlkGpZbTI305170vDXwTVQn/ieYrvTb3ghU6fPh2FQgF9fX3w+/2oVCp488034XQ6YbfbKStUPD/xWNIQ3GDEjGpzI+8nBmisZcWqYcoZIxIKy+fzVH13LBZqluVFSHt7exGJRACgpghpPT0VYHLnjHK5HHp7e9Hb24t0Og2r1YqWlhYsXrwYe/fuhcViGdQQVSoVmpQXX4NqiwqZP9npLezowK6DB5FKp6khyReLfGtvtZrK5ugMBsT7+qDTalGGqDcPx0Gn0yGbSvHemuCRpHI55FMpKJRKtLa10ZYInEDjrjAMVEolWI6DkmWh1emQSCTAWiz9eggxOCkiKlOr0ZdKwaDXg5HLad0T+ckKYzAcXyjKKBS0jgeicJVMMDIKganHMCeliliWpf84weCWxV6BYKSUZEEDgHKZ14dTqdDq9cLb1oZsJoN4PI5Qby+6enpg0Otht9lgMptRrlRQFnpA5fJ5sJUKlEolNDodLBbLyYWVYZDNZk/SwglrjiyoHM/iMwqLcjXvSEpLrib/I75fyE8pLbqWB0TeL/U+Bkv+Sz8jDSuKX9doNPB6vdBqtejs7ER7ezsN52k0GjgcDjidThiFzsPAQK9JvCmvlfeRgoThdDrduG4+pZhyxojkEMbCGBFqJmHAEd2q0047bVAR0noaB4C/AevZCny055bNZtHb20uVJWw2G1pbW/vFyMlY1QyfNAQnDY2Qz1abO3lvpVLhVaAtFgRDIWSTSZQqFeiEYkuaS1Eq+cVbqaQUZpZlaXJdIZeDE0gDMgDpeBxytRo2pxMcgFQsBigUPAVZyIkoANpiu8Iw0Gi1CIdCdExa1IiToSwVwyBZKoEtl8EKCzMH0FwWWcDBCSw30d9I0zrSwI4RVBxoiEzwikgzO7rQAtRoAXyOiROF/wCgwggyRySkV6nwHpNOB6/Xi3yhgFAohCNHjyKVTkMGPl83a/Zs2O12KITrSLwd0nKC4zgUCwV6P1BqOHeyyysqFWi12qo5DqlBqnZPVMsLic+/1melNUC1Np9SAyY9Xq2wYLX7WaFQwOPxwO12o1wuIxaLoa+vD++99x4UCgVsNhtcLhdMJlO/9jDi9U+aVxOfh1KppF2Gq4Xy6oEpZ4yIZ0TyRsM1RqRehTDgtFotHA7HsERI62kcgMnhGWUyGWqAMpnMkJUlCAYzQNKHrNrDLV2sSMjCajTCaDIhFo8jl8+jvaODGheVUDtTLBahNxqRSSb5tgvEyxB+6oxGBAMBmPR6GG02vqUBx1EZIYPBAF93N1i7nTc2MhlPXhDCVCzD8HVO2SxPNBAazJF24qRYlFMqEU0k+P+zLPVoOFFYTuxNceTacDwhguUvJBjmpIgpJ7q+INeHXHSOQ1m0kJECXkYIHRICgkx0zVmOQz6dRr5QQL5QgIxhoNfpcNqiRZDJZPD19CCRTuPIkSN8czuhgaFMLgejUIAVQqYAb0TVgtwQC1CjxzAMLcZVqVT9vtfB8kLiBVhKXpAu2OLFmNQyST0gcs+JQ3PVvCepNyb2Vk5e6oFkAfJaWSC2kN/lcjlcLhccDgfmzZuHeDyO3t5edHZ2gmXZfpp5JMQmNrBkDNJWfjzzQMPBlDNG5OITRt1QjFEul6MGKJFIwGg0wul01iyYPBXq7RmNdehsrMYixI7e3l7kcrlhN/fjOF69OpPJVI37AwMZUWTBILTXarte8bEWTJ+Of+zbB5bj0NrSgr7eXljNZiTicTjtdihVKpQrFajlcqQrFRSKRT7vw/Dq2+lkEsViEUqGgcli4Q0RQBvJEVVpluPraWQyXhCUk8lQZFnKXtPq9chnMjAZDEClAk4mo5/JZrMo5nKAXI5IPg+3UMlPF0bupNoDvQ4sX5czIB9CwoDCgt7v78RbAqjRIUaLFTwSwvQjOnTZbBbJRIKG9xQKBVRKJbR6PcwWC9WVI3N1ulzwtrVBIZcjGo2iNxzGiRMnoDMY4LDZYLZaefFYjm+qp7ZYIOdvhn56eCzHQSPq8FrrPpX+PFXyX5p3Isci11vszZBrLb5fa81DDCnRoFYuS/yauN2DNLxns9lgtVrBcRySySTC4TCOHj2Kzs5OqmdJnjnxv8HyQI0wTlPOGAH9GXXVblZOeIhI/kcsQjpUttZgqHehbb3ZdLXAcRz1gHp7e5HP5/sRO4ZigEgOqFQqoVgs9qv9ERsgskBIJUyq7XqrxfDJz2keD+SVCiqFArQGAzgAOqMRPcePQ8YwUGm1qBQK4AwG6I1GZDMZqFQqsBzHF8TK5WhpaUGpXEYqHofFbuclboRFn+zgdXo9f58JsjkywdPgACoXpNRokMnloFWrkclmkctkAABanQ42txvgOGQSCeQLBT6PIkjksPyJ8teG/yJOsuqEf6zgXYmbtcmEEKN4SeL4C0PJBRzH8bVFHIdCPo9ELIZ4NAp/IEC7uqo1Gj7EqlLxzf34L4kfR1jEybUoVSpQMQxUajU8LS3wtrQgXyggGo8j0teHE93dMOr1sFityBUKkMv4OqMyScwLebFyqQSDRK271j1QLYxH7ldpuEx6j5C8nPh1EuaVFshKF3exxyS+b8nfxPcneY0cR/w+8Voi9a6k52qxWGA2myllPBKJwOfz4dChQ7Db7WhpaYHL5aoLIWG4mHLGiGEYvtumxDMS7xoikciQRUhHgkYQGBrlGXEcR+skiLirw+HAjBkz+JzAMA0QOSYZq9rv1arkqxUzVvOkxOA4DlqtFkalEoxCgVwqBQaARq3G9BkzkEilUBEkgcBxUAntynO5HDLJJPQmE20op5LLkQVQKZf5mh9ReK0sk9GFmixs/XbqDAPI5VBrNPB1d8NsMkEtqIiD4etuCJlCqdEgFg5jOvH0yHkJxkcmk/UjTBDCAukFJL4KxJvicJJhl8/nkU4m+RCdEBIlRl+pVEKt08Fss6HV6+XzOqUSEokEzZ3JhBAjq1DwBkS8WArnQTxFhuOlk9RqNdwuF7xuN/LFImLRKOLxOLp7eniP2mo9adw5DqVKBdFYDO0zZ/YzJkD1eiEqNSTamEhDe2KQz4g9EnG9EPld/H4yHiHHSMeThuXE8xN7O9LPSM+rmncnDe2JPSan0wmFQkGJQoFAAJ2dnTCZTFQdQszMaySmnDECTnpGLMsinU4jn8/j9ddfB8uywxYhHQkaEaarZ86IZVkkk0lqgIrF4rCvK2HAEUXiamNUywWIH1Txgyd+iKU7ZfFxpeNwHIeZLhf2x2JghFxPTqBqyxIJmPR6lO12PmeUzyOVzeLosWOYJYiSFnI5MCYTKgAMZjMSsRhsdjsqDF8rBI6DrFIBw3EwGo1IxWIwms20CysHnmwTi0bByGQwGgwwWq3QkFwIxwuHyhieqadSq9EntGYgxoXmhQDeEBCjI+ywSe+lCsez0iqFAkrlMkqlEsqC50k9NIYBW6lAq9PxZCCOo4YMMhm4WIwnHQC01QPNGcn4AldiDIlmnkz03ZXLZV6hgoQJcZKUwMrlUKpU8LS0wOF0wmgyQalQIBaPIxaLoVIqYe/evTAZjXzhsBCulHo+YkjDXdXyPtU2WOLjivNJ1XI64mNIW4OTe7PasaUhRDHExkeqwCD16MRzkcvlNBcknqtOp0NHRwc6OjpoEXkoFMKhQ4eg1+vhdrspAaLas1IPTDljlM1mYTAY8L3vfQ8qlQp33HEHAGDhwoWwWCx1cU+nomdEPEtS8/DOO+/A4XBg9uzZsNlswzJApVJpQHxcalzIbpx4EtJwTK2doTQsVy1nIE1WT/N6sc/ng06nQywSASOX8x6T1YpEPM57OuAlgswGA8xGIy+AyvFhSUU4zIejAKRzObB9fbR1ABhBZohlUSgWEQmHIQsG+VCdSgWFXA6rzQaT0QiH1YpCuYxkPA6lw8Gz5YTrpmB45h3DMKio1UhmMnyHVZZFUejuWq5UqG5bsVwGW6mgUCggk07zxaYcB7mQL5ArFNDr9VCZzTwxQMhllUslxOVyXipIuFasYGiIZ1IRvg+QaymT0fblEM6Z6MuhUqHXhjDi5II3RhTIOZbla5EEI1pheSktlVIJlVoNo8mEUrHIt25nGPRGImBKJYTDYdqmQQzpAi2+D6oVoNbKGYk7q4pzNtJ8UbXNlPi+Hqoxk35G/JpcLh+wuRIbVWKAhrK+qdVqtLW1oa2tDeVymRqm3bt3Q6lUUoHhetVJEkwZY/T0009j+/btePHFFwEAixYtwk033YQlS5bgnXfegc1mq9tcpkrOiBggkgOqVCqwWCxgGAbnn3/+kG58cR0Q2WWK49y1aKTSXWs141UtBFfLSEmPKf6bXC5Hi92ObDoNjV6PXCYDo9EIuULBF4vK5Yj29UGtUsFss4GrVNDX1weX241SoQCbw0E7nOoKBUTCYV5UNZ9Hb28vMoKmm0qthkGvRzqTgUyhQD6TQQVAOBoFymWkczmYDAYkk0mUymWqGQcSehM8oEwmg30HD8KgUiEn5HFI4z2ZQgGFULcjF1hosb4+miegoTnB6yJ0aggLsoyw/FgWJcE4cMK5cQxDc0wcf7H5YlbwRoa22hAt/OLvkCPvEb4bhSiXhEoFkMl4oyMQX1RKJWx2Oxx2O08akcuxaMEC5AsFZIX+VEePHqWaj06nE3q9vqoHJF7kxUZE6lmJPyMmwQADDZrUAwL69xoSH6ualy7NJVX7jNgzE9/THMdRSZ6hhMJrQaFQoKWlBS0tLWBZFn19fQiFQuMWNRp0LnUfcZzw7rvvYunSpfjud7+La6+9Ftdccw0uuugivn10HQ0DMLnDdBzHq0uQEFylUqFCpFarlVaFD2aIiPEhigjVcjfSn+KdoPh3qXERLw5S4yQ+B+lOU7rjlM7p/CVL8PSuXVi0aBH6wmEAfJ2O2WyG3+dDuVKBx+vl8xxyOTQ6HWKJBOQyXvtQoVJBznFgBbFUX1cXZHI5FEolXCYTuFIJap0OMo6DXqeD2WKhYaZcLoeenh7ks1kU8nloBX1Fl9MJCDVDHMdBwTCUrKCSy2ECX8rgcLshI54IBEMhGJ2KwJCjRA+BNQemP7mBXHNSk8QwPJOOXj+Aki6IJ8VyHC2KBUDrmziRh8MwDPV4GJmMp60L7yHjEj3HYrEIhUIBvcEAk9A5VSmX80ZY8JA5hldemD9vHlxOJ1XDJ8WgpHmiy+WiHpP4XiX/r3YfiO8tKYlAfO9UY8ARI1UtxyO9v8UbK7FRkm4qxXMk3x/J3Y0HHVsmk1FK+KQ2Rr/4xS/wX//1XwgGgzjjjDPws5/9DCtWrKj5/qeeegrf+ta3cPz4ccyZMwf33nsvrrjiihGP/3/+z/+h/xe3kRATGOoVB51sYTqO42itQjgcBsdxNfsriR8+8fWUKiHUqn6XPtTS91TbrYrnWa1wUJr0reVJAei3ayWf4TgOHo8HDpUK6UQCeoMB8UgEdrebHxN8ywewLCrCZ01GI6KRCGRKJa/8nckgnUwim89Do1ZDpVbD5fFAq9GgLxxGKBqFXa2G0+OBjGEQj0Sg12rByWTQajRwezx04U0lk+jx+ZCMx+FwufieQ3r9SakfABqtFr3BIOx6Pa0pAgRKOfF2hGtUFkJ4NE8jIgMQHTu50MBOTr5rluXriETfOyu8BsGrIrI+VCpInIQHH2IUvgBwHEcJDblcDrl8HoV8HgwAtVYLi8kEuSDqyrEskokE7zmR75Bh+OsDgC2XYRJUB0gxqMfjoW3lw+Ewurq6oNFoKK3ZYDD0W9xrhdikXpPY0FTbgElDduLXxONI/yaG9JmSrlMcx9dT6fX6urHgJm3O6Mknn8Sdd96JzZs3Y+XKlbj//vuxevVqHDhwgG/rLMEbb7yBz3/+8/jBD36AT33qU9i+fTuuuuoq7NmzB6eddtqo5yNW7pbeXPXAZAjTsezJDrO9vb0AAKfTecrcWi0DRGRpyFwI+2iwvI7U4IiNkHQsqTGpZnRqeV0EtY5Lfr/q4ovx0PPPY+7cuejp7obJZkMyGoXX60X3iRMo5vNQCLI/ZUHws+vECZSKRThsNhjNZjg9HiiVSr6BYl8fCkSfzmSCTq+nhaZ6sxnRRAIOmw0VloVKLkdB6LSq02phczoR7OmBjOPg9/mASgVmiwV6g4EPv7EsMuUyjKUSVWKokOtOvAjhdxnZWZNw08mT5+cjeFAcTgpsgnhBQogOguEi+nUQPkPakBOaNzGCnBBeLJdKKJVKyOXzSKdSSCWTUAhSM1arlb/2gkEjRbRlofCVCrlyJ+uawHHQyOXQaDQnDaRwPygUCrjdbng8HpRKJdrA8sSJE9AI9HO32w2tVlv1niFMOGlrBvJ3aSiv2u/V7sta+U7xZ8S/k/GILpxKaL44EenYY4kxMUY//vGPsXHjRqxfvx4AsHnzZjz//PN4+OGHcddddw14/09+8hNcdtll+OpXvwoAuOeee/Dyyy/j5z//OTZv3jzq+UjrjICBDanGE40I0w3FGLEsSxt8hcNhMAxD5Y1ILmgox6hUKrw3gP7CjGIjXC0XJDY80jBZtQe1mncj9ZyqoVrYDhhY0yG+fgzDwOvxYIbdjlQsBrZSQSgY5MVNFQo4XC70BAKwO53IJpNIp9NQKBR8C4VcDq0dHbznIRw3XyyikM9DaTDAYjbzPXiIQWX48oNMNsu3rNBowKnVSOdyVJVBzjAwWa2QMQxaWlqQKxSQjMcR8PmQyuWgFhryKQoFzBdySgzDUCYb+Z14M6xgNEjIjYTnCKONhuJkfF2PmO5Nwm7AydAboY0TQ0RyP+VKBcVCAdlcDqVymafEq1R8DkuhgMlk4lUs+C/hpLisMB4j49VLZKRQmHxHwhwLhQJsRmPV75ks2MRjItRlIuvV29uLt956i+q6uVwuGAwGem9Ic0JkDPFxpV6+1IhUIxhIN4vVyBLkWCQERwgL5JiN8FTqjVEbo2KxiLfffhtf+9rX6GsymQyXXHIJdu7cWfUzO3fuxJ133tnvtdWrV+OZZ54Z7XQA9G+wJzZG9UIjwnS1zo8YIBKCk8lkcLlcOP300we0Pq4FMQ27WCxST0guJM2lY0srzIGBIQupAapWuCg1TOLzrPUZMaSLlfQ94vHJcS9duRJPv/YaWlpb8c4772Dp4sXIZDLIJpPo6u5GPpeD0+lES3s7tEolFEolDh0+jEIuR1tIJPr6oNBo0DZtGuLRKACgIHgwFY6DXDgfm8WCaDgMpcvFM9GEEKdCYLaZDQaEQyGoNRpoNBpUTCbIFQrI43HkBdWHUDqNo4cPw+Px0K6yEBZxIp0jFzwahmH4glzRIk8YcVQ+SPhHtOYYhgFTqfC5K47rZ7gq5TISqRTkDIN0Ok09NK1WC4PRCLVaTQ2kjGEQjcV4+R5CWhCOL8PJhblSLiOXzcKg01FZIADUAyvmcnC3tQ0I38pksn6MN/E9IZPJ+hmmWCyGUCiEPXv20I7LRHBUDPGmp5onI33GpZuoWkZLHG4m8xssD0Q83HqhWqiwHhi1MYpEIqhUKnALPVUI3G439u/fX/UzwWCw6vuDweBopwOgv2ck3l3UC/UO00kfDJZleakVQWGCaFkNp8W5lIRAQGLn4oepmgcknhv5KU3iio2JePdJFQKqGHXp8cSvVzNg4utTK6Qnnn+LxwObVotcoQCVQoG9+/ZBo9XCarVi9syZkDEMrBYL5CoVGGHX7HC50BsMosXrRTKRgNlqpUw4q80Gf3c3yoUCX/Apl6PEcVAJYxqtVsT6+uBwOvmaHIi6o8pk0BgM6OnuhlGrhVKrhd1uh9VqRTKRQIVlEVMqEY5GkUgkIJPJ6N91hFUmsPBILgmcSOiU4wtPiUdHCA8QGXxCwa7k88gVCohGo4iFwwiZzfz5F4vQW61811eFAhzL0voikO+IYVAWwm9alYo20SPHr7AsGLmcN5hyObL5PExmM50DA95rkglhOxJmkxaKknuiGiONfO9E7NjhcKBcLlOyzrvvvksbJrpcLp5NKdloVXtuqt33UiMkNZxSD+hUhoZl2TEtyp+omDJsOjHEOSNp+KgeqHeYjpwfyf9EIhFaLzASA1StM67UgyDjSh9AKcQPpjgUQsarFsqQVsxLjwVU36HWYiyR38U/yf/FnlY8HkckEoFLo8ELb78Nu8vFi3k6HFAplUjG44jHYsjlcmhta+N3/jIZ9BoNYgB6TpxAx6xZdFGWMQxYhoHF4cCJri54WltRERZr0pZbIVCWU+k03xpCWEwLhQLSqRQAQKfRQGc0Qq/T0VxMRTg3nVYLrV6P+W1tyGQyiPT1IdjZCbVKBZvNBpvdftIQMUIXVeZkrojDSd05juV7QaWzWSiiUboZYcAv4mqNBlqdDpzTiRa3G+VKBbG+PpgMBiiUSloIywK86gNzMh8kZxiUikUoFQreEEFQ6QaoEeTIJkQYj4QKc6USn9/s7cXc9vYBoTExarHlxEZLbBAcDgfsdjvmzZuHaDSKSCRClbAJ+UFcdCpFNSMo/bv4viNdgofj6dQzxdBIjNoYORwOyOVyhEKhfq+HQiF4PJ6qn/F4PMN6/3AhDtMBk4NQMBJUhHoXn8+HQqGAQ4cOweVyDUthvJoSQq2wFwAqMU9i6WJtOGlMHTgZiycPlNQAAf0fWGmeiCSoxQWI4jGkY4kXIXLMajtT8tl0Oo1CoYCDBw+CYRjY7XasWL4crFqNvd3d0KvVKGYyUJrNcLndAMP3IgoFgzDodIBMxncmzeXQ0tKCVDrN7+rJOcvl0Gk0UKpUSCeTMJtMAMczyxRCoafdakUkHAYjlyMWjwOVCpSCMZExDIosi0QkArVaTZv60dwQAIXBgEBvLzra2mA1m8FyHGKxGOLxOD748EOUBcUFp6APWCqXwZZKyAstKUgIjAO/WLKVCnRaLdQazcnWEIKHks/lkM/nwTB8nRDLnSQqkIZ/DPkuSN0RCQEKnyE1SpzgESsUCjACMy9fKEClViOXyyGdyaCUz0MphClNJhM62tsHhHylecBqpAIxpHVCxBsn/YHmzp2LWCyGSCSCDz/8ECzLQqvVIhqNUkFS8f0qvc+kRlAsTjqS8Fe9jVE9UwxijNoYqVQqLFu2DDt27MBVV10FgL94O3bswO233171M6tWrcKOHTvw5S9/mb728ssvY9WqVaOdDgD006YDGhM2G6/xiAEiHpBarYbZbIZCocCqVauGdLOTHa80BCf1LKRhL6D/g16L2TYY1bpaoWstD6tamI3ModoiUM0AVXuwMpkMQqEQIpEIPX+v14t2YdfNcRw+tmIF3j1wADK7HXKlEplEgioCyBQKmIVGeAz4PIfdauXVtfN5JFMpGHU6Wo8jVyig0miQz+WQTqdhNBqhlMtRLJdpLY9ao8Hx48dhsVjQ0trKM+YE70ktl8NgMiEej8NGFkOGz8UQDymUyUDf1weVQkFJBkaDARq1Gj3d3eg6ehQHDhyATmCVOZxOGAwGKBUKXk+OXDuBQKDT6fjXmJN0ckofFzYIAF/EqhTUKDjh/mT4L4EaJvI8sDjZ4pwRxiKtKFiWRTabRcDv570ngO966nBABqC7WIRGUIYg3yu5n6SeUq3NiHSDVS2ETDZLNpuNNs/88MMPkc/n8eGHH9JaHKfT2a+nmXQOpBh1LLqkNgkMw8Cdd96JG264AcuXL8eKFStw//33I5PJUHbdunXr0Nraih/84AcAgDvuuAMXXngh/vu//xuf/OQn8cQTT+Ctt97CQw89NBbTgVarRV9fH/19sntGYjZQX18frZ9Yvnw59Ho9H56JRAa9YaUGSGooyLzFD2at94jptOJzJsclIQjpfMhxyN+lXoz4M1L2Ua3rKTVSwEllavFrRE2c5DitVivmzJkDk8mE999/nxagkjkolUpcuGQJXt+7Fya7HVabDfG+PtjsdkT7+mB3ueD3+VDhOHiF6vVEIoGWlhbEolEolEpoNRqeUSZ4HpVKBb1+PzI6HTQCi6tYKCAjdIU1m0wIBoN8sSY5X2IMOA6JTAa5bBYarRbxeJyXGapUeNUBhQLdwSBmt7dDrVRCLhgZhVwOvdEIpUARTiSTiEQiOHzkCIxGI+xWK6w2Gx9mEwwcOI6G9qjOHbkXhO9P3IqCFUKSwMmW4oSGTVq0F4tFvuWD8H2XOQ5sPo9sLserkzMMVIIH1Nbaysst8TcJWJkMmUwGTouln5dQi34t3TxJjRZ5r9SrFv8Ub55Ijc+MGTOox7Rv3z5wHEdDeaTbszgXNFaot2dUKyQ53hgTY7RmzRqEw2F8+9vfRjAYxJIlS/Diiy9SkkJXV1e/i3nOOedg+/bt+OY3v4mvf/3rmDNnDp555pkxqTECeM+oWCzS3xtljKqFCIYKUsDX29uLaDRKK8tnzJhB6agE0gWdQEpCkD580pBVtb+JwxlkrGqFfOK8ELnW0oefjEPeLzYy0t2s+FhiL0fssUkNkZQQQQQhI5EICoUCrFYrZs6cST3JWiDHWrF0KQ4eO4ZoOg21SgWVRoN4PA6ZQoFMJsMnnxlee06j0fD5GABWux2xvj6+dbNWCwaAxWQCy3FonzYNiWgUWp0OuUwGKrUabo+HhrjAcYBcDpfNhmKlAoXQu4cBYK5UkIhEeFVvlQqJRAJgGDisVpQ5Dtl0GuVKBRaTiVcMF4yJSug0q9Dp4BRyJGylgkgkgmgshmMnTsBsNlPDxAheDfG+IDvZRZYV6NqcyAAR1l5FEEEl1HQwDFQAykIuSqZUIplMopjPo1AqQaFQQKvR0EJgDkC5WKSK44zwGlepAOUy7DZbP/LMYKFY8X1U7fkQ38fVvGjxvStm5dntdtjtdsyZM4dKZR08eBAAaPGt3W6veW+NBNKw5FTFmBEYbr/99pphuVdffXXAa9dccw2uueaasRq+H8RsOqAxYToANNcxVJRKpX4GiGhuzZo1a1CZd3FYsBYLDkC/vIs0sSpVJBA/wNK6C2kYUmqAxDurarRvaby+mgdFfop3ttK/S0OJJNRDaqlyuRysViva29thsVhozL6aNyY9Z/Lzqk98AtueeQZ9kQhmzJqFJH9S8Hd3o72jAxqNBr2hEGQANAYDEkJeyGy3IxaJQC6T8cw7spizLJRaLXxdXWhtb4dOpztZ0wPAYrWiWCggnkjAZDLx7Dbh+ihlMphsNiTicRhNJhQLBag1Gp6QIHikB3t6YCL5QiIho1AgJ6gdQBhLIZfD09ICj9uNYrmMWDSKvmgUx7u7UcnnIVcoYBGaBRKvCMxJijjAs+A4Yd4y4ZgQGbFiuYxSsYhsLodwKAS90QiTyQS90QiHRkPJGmRe8WQSep1uwPdaLJVg1ev75SfF926tzU8tanW18LL4cwRioydm1slkMlrH1Nrays89HkcwGMTevXtRLpfhcrl4VQ+HY0zCdPUyRtLNZz0x5dl0QGM8I2BoicCSoD4cFoQfDQbDsLrMkiR/uVymHVHFRlBsOMQPn/RBJg9cNW+pWh6HfEb8/mqfqeXJVKsRkobbZLKT7dtJLF96LJZlUSwW0dfXR1uam0wmtLS0wG6396PESo2gdFGSGmmZTAaTyYSrP/5xbH/5Zezfvx+nnXYaIuEwSpUKUKlAxnFwOJ3oC4VgttuRSaX447EsbHY7+sJhmM1mcBwHrUbDtyc3mTBj5kwkolGoVSooyBw5Dmqhs2yxWEQ6k+EXZ/D1SRBCZDq9Hql0GhXB4+iLRsGWSpArldDZbAhGImhraQGEc1QoFHyrCPCGCAKJgGNZQKANu10utLjdyBUK2L9/PyKRCI4dPQqL1cq3BhfIFEQiiEoOCYYQMhnyhQIKhQLyuRxKgvyQRqg5KhUK8Hi9vMKBEN6D+F4CkM1k4PZ4eC09huGNHcOgkMnALVrUq22GxPdNtc0Keb3WRkT6f2nuE8CgXVKtViusVivmz5+PRCKBYDCIffv2UcPkdrsp2Wu4aLLpJjGknpH05h1v1PIKCIrFIjVAsVgMBoOByrYP1wCRcJQ4nCU9X+nOT0ooEC/sYi9EbIBqeTK1/lYtNFKNqCCeg/iY4r9JFxWGYagXGYlEkEwmYTabafxeRXoBSSBeXMQblGo7a/HnO9rasPqss/CXN9/E/n37+F47RiN6QyFM6+iATCaDw+lEuLcXSqUSyVSKeic2hwPxWAzpdBrFYhE6rZaXW2IYGs4zWq28h8OyUKvVSCWTsLlciAoyTQadjoqkymUy6LRaJOJxBAIBOOx2eL1eyJVKuoD3JhKwpFK8Ny0YVRaoqtbNSeRvlCoV3C4X3B4PSoUCeqNRBEIhHDtxAlaRTFSxVEIul0MiHqffu0KphE6thsls5lUlBAMKADFxPhK8IZQLDfkYmYwXXAWgZHhZowrHU8KLxSJsRiNkkg2LePMj3szUCmlVy4NIN2bkfVJDJxfkh4bybDIMA4vFAovFgnnz5iGZTCIYDGL//v0oFovUMDmdziEbpqYxmsRoNJtOXOtAQAxQb28v4vE4jEYjXC4X5s2bN6AfSzUQA1QqlXhdNJFRIYssWVSqxdOreSXkuNUMULVwnTSEIT6+eJ7k9Wo1HwTVPCGpoZR6dURvrLe3F8lkEkajkTKe1Gr1AEMn9brE34f0eog/J71uAHDG/PmIp1J489AhxGIxqIUW4X6/Hx6PBwzDwOF2IxqJIC1sMMiCq9PpEIvF0NHRAZ1ej0IuB7VOB7lcDovTiVhfH/QsCx1ZwAUD4XS5eNUM8MKoHMchm8uhkErBYDDwPYfElfsMr7ZgNJtxrLcXCzs6eLFSkRfCQChiZYXusXI5lAwDTiY7aaSEvkgqjQYetxt2qxWpdBqhYBC94TBfXxSNwuFwQKPToaWl5aSXyV9QWkvEACgUClAS7TrwRpHlODCsoCzOcUgmEjCazWAZnoGXzWSQzWaRjEbxiQsuQHd3d1WPplr4VnpPSe/Xavey+Jkg3iRhxJHfhwuG4VXfzWYz5s6di1QqhWAwiIMHD+KDDz6A0+mkobzBjl9vNl01w10PTEljJPWMqknWjCfIl1koFGgOKCHkAFwuFxYsWMB30RwCOI5DSRCbJL8DGOD5VFvIxQ9nNYNca9En49SKpQ8WhhQv7NKcU7X8kPjYYhUGstBUKhXaTymRSECn01EvkohlischY4sNkXQe0tBjteshDVcqFAqcv2wZktks3jl4EHPnzYPT6cS+zk7kczlY7XZotFqYbTZkAwHEIhE4XC5kMhnks1m0trXxdTeVCrLZLLQGA8pCi3Kr1Yp4PA6OZaHTaqHTapHNZqEwGGCxWnnPKpUCI5NBq9XCLhCDHDYb+qJRFEslqNVq/voxgtqCTocunw8z29p475ITGHIAJR6QIlMoFLygabGIUrGIaCIBkL8xfF2VRq3GnLlzYbHbkUunodVo0BuJICV4RjaLBUaT6aQIq8gw5XM5qARDy4i+A3IPyRkG+WwWer0e4UgE5WIRckEkdN7MmdBoNP1Cz9Xye7VyisTQiI1StWcDqN0ltZa3NRwwDAOTyQSTyYQ5c+YgnU4jGAzi0KFDeP/996lhIm3CxWh6RpMYjQzTFQoF9Pb2guM4vP3227BYLHA6nVi0aBHUavWwj8cwvHqvXC5HqVSi6tjS0JXUOElfl+ZvgIHsoWox92phNPIeqXdTy/hJvaxq3pfUkyJU9pxQUOp0OjF79myqdyb1gqTHq8YOFO+Apeck3UlXyzMolUpcds456EulcOT4ccyfOxenLVyIHr8f5VIJeYYBWypBo1Si2+9HMpmERquF2+1GNpeDwWCATKFAOBiExWaDUsjRKRQKOG02hONxsJUKDAYDspEIOIMBhXyeJwMUCrDYbDAYjZR1p9FooFYqkYrFILNaoVKrqQqCWqVCPJ9HVCBUMDIZUoJkUKlYRIXlO8TKZDIqw6NSKCAXaMxOl4uncJNrJIwpA6BQKtE2bRpPc4/FwLIsjp84AZbjYLVYYLPbYRDaHTAcX8hqtVqpIZIJyuIceEHZvkiEbxmhVkNvMEBrt0MmkyEVi2Hm9On97jvxPSW+P8XkAqnXK81fSjchRBWh1oJfaxM1UjAMA6PRCKPRiNmzZ1PDdOTIEXzwwQdwOBzweDxwuVy8EsUYGMPJgI+EMRrvMF1e6OgZDodp/kImk2Hx4sVj1mGWaFhxHEcVE8SU02o5EGnNBPlbtQdLesNLF3TxAk48FunxquWPxLvTwYoOS6US1QmLx+O80rNQd7Jo0aIB86rl6YnnUS3MKDaa1XJSUq9ICo1GgzUXX4wHnnoKge5uuLxe2BwOFPJ5VPJ52J1OMHI5lFotjh05AjPDINbXh1g8jnKlAqPBAIVajQ8//BDt06ZBLngekMlg1OuRSqWQzWRQKpfh7+qCwWKB0WaDlWEQjUSQLxR45QeGQb5YRL5UglKjgb+7GwazuX+hKsNgz/79mO3x8AKkhQJsFgu0Oh31AMh7OYD2O8qk05TlVhE8F9oniSzs4CnbJpMJJqMR7e3tSKfTiMdiOHr4MMDwahZmiwVlQVGCYxiUSyXk0mnkcjmUKxWolUqUy2XMnTuXb3ch3OPZdBrTXC4olcp+njJ5Bsj3R75Xqfct/ozYkyffqZiMcCqMp2ciNkzEYwqFQjh27Bg1TKVSqa6RnUZhShojrVaLQqHQL6cy1l9mLpejOaBUKgWLxQKPx4PTTz8dKpUKr7322qjaAdcCwzB0J0dIDEB/z6Ta7l78eWkuRQxxiItA6m2IPycN60nzZdLWzWKUy2Ukk0nKJCSCru3t7dBqtQgEArRVBTk+0QmT7oSlc5eGWcRzlYYnidckvkbi40l3xkajEeuuuAIPP/ss4pEITDYb5BwHjcGASCgEi80GVCo8ocJuRzqVglajgcVigdlkgtVmQ28ohJzgOcmExn2lSgUyuRzRWAzxWAwOux3lcpkP0bEs5BoNckITP6vdDkbI+TAMA6fXi0QsBpvVCoVQXMrIZDCZzejt68PCGTOQz+dhMploTQ/I/cGfNFUVJ94QA0BBGJbC/UUYdADAlctQimjrRpMJRpMJ7dOmIZVKIRqNorOzE0mh0Fan08FoNPKhRqHQlnhpSpWKFsuyLAs5x6HF46mZQyQQ16JJDYa05GCksjxj7RkNBoPBAIPBgFmzZiGTySAYDCIcDuOtt96C3W6nHpNKparLfOqJKWmMxovanc1mqQFKp9OwWq3wer2UwSVGPUKDpDpcpVLVFF+UhsWk9FjxAl3NayKxemloS7rAk/dKjZR0gahUKkin07SWimEYGsbUC7UkYqMiDQ9KcwO1Qm/V8kTS70Q6V6nhkYYpxSGhlpYW3PDJT+LR55+HTC6HWq1GNpWCxWZDPJFALpOBp70dyUgE9pYWhATShVnIqzhdLqRSKShVKhRzOdjtdpRYFoloFK2trZg9cyYOHToEtVIJk6A3xwBgTSYU83mk02modTpYhHnptVqoVSrEolGYzGYUyuWTygZaLbpCIZi12pOtyTleGaFSqQCCF8QwDORCXqdSLoMRNlNE1od+B8KmoFypQKtQUMYew/K1RcVSCYViESq1GlahvbpSoaDXxWq38wQBhQJ9sRgsZjN/nwkkilQigSVz5gwI9Uo3UtL7oloOczA69lBRbwIBgV6vx6xZs3DkyBGceeaZSCaT6Orqwt69e2Gz2eDxeOB2u8fFMDXifKekMVKpVGMWpstmszSBnslkYLPZ0NbWBofDMaise70ZfHK5HCqVClqttl8YD6he1EnmKJ2zeNEVL74cd1LmpxYtWlwHJAbL8oKk4XAYfX194Di+rfmCBQuoorg0sSweTzxmtTCfdMEi75X+JJ8h41QznlJPr1qYj/y9tbUVX/jsZ/HQ009Da7VCpVQiEg7DbLejVKkgFY9DrtUikUjw7DeNBn2RCMxmMzSC9ptGo4FWrYbP50OFZdHW1ka14pweD7LpNAq5HKw2Gx/qAt+mW65U4vCRI1AL5ANOWMxlcjmOHTkCh8MBm91OO7Dm83l09fTA43bTWiGWO9m9lWNZnsnGMFRFgZHJqIgqIT8QD0khl6NQLEJbqaCQSCBfKPD0bI7j+xkZDFCrVGAAuD0eGg5MJJOI9fWh88ABgOOgVCj4vlrgw36ZVArtDgeMQlvxWkxH6fchvSfGUpankTkbcp/q9Xo4HA7MnDkT2WwWoVAIPT092LdvH2w2G+3XNJK89ETBlDRGJExHIJPJqrZFqAWiY0aKKO12O9rb209pgMSotVMbL4gXdGkYT6zILX6v+PfB/i5dEKrtSqUGAQBSqRStBWJZFlarFfPmzYNZ1KtG+lMaApQmqqWkA2nCWjqHWqG5WjmhWjmuajkzuVwOm82Gf7vhBjzy1FOI53JQKBRIJpNonz4dMrkcmVQKuWwW5VIJSrMZJpMJiWQSmUwGRrMZqUQCer0eGrUacrUa0UgEZpsNSqUSVrMZfcUijCYTYrEYlGo1TAYDwDBQKhSwWiyIRaNIRKO8bI9cDp1Wi7nz5yMaifBj6PXgZDJoNBrEBGLFtNZWqtJNfnIyGW1rIZPJaOty4q2A41AolZBMpVAoFKBWqxEJh+kGyGK18qKrDENrmirChojkmiCTwWwywWa1oqNSwcGDB8ExDN577z0AfEiw3elE+2mn9bsnqm0MpN8ZgKpdUscC9QzTVRsb6O+p6HQ6zJgxAzNmzEAul0MoFILf70dnZyesVisN5Q2VsTtRMCWN0XDDdBzH9TNAuVwONpsN06ZNO2UNQC3UI0wnHa9aSIuE8cStIsTvr7XQS6vPyWtioyN+jfwku7a+vj5UKhXYbDYqSCo2ANIFRhpiqxY+FD+Y1UgM0mOKw33ina3U0IiPQ3JS0gWIGKBq81Wr1bjl2mvxwiuv4GAwiHyphHfffRennXYazBYL5EolPnjvPRj0ejAmE4wGA2QMg0Q0ilQ2i0wyiekzZ/LegV7P07zlcliNRqjUalRYFg67HZlsFn3RKEwmE1RKJWTgjQXpojpt2jS+3gqA3W5HIpVCJBqF3WZDheOgNZkQSCYhl8vRKnSX5cj3R3JBwgYmmUohnU7zslLkPFUqgGFgNJngdrvBcRycDgf1elj+ywHD8jVM2UwGesF4QvD2SH4slU5DqVZDq9HAbDIhn88j2dcHrlTCnj174HK56IJKvkvphol8DyqBBj5eBqOR1GopGUkKrVaLjo4OdHR0IJ/PIxQKIRAIoLOzk+ax3W73sEpJGoUpa4zI4ksom1LDwHEcDR319vYin8/Dbrejo6MDdiGmPRrU2zM61XiEjUfqUcTFs1JIH3rxa2KSAnmdkDnC4TDK5TKsVitmzZoFs9k8IEwizcGIQ4FSL0caSpPOo9aOVer5SAkP0iJHaU2U1ACKFz5xLkscvpHL5fjUJZdgzwcf4H/few+MxYLjXV2wGAzQarUwmkw4dPQof33sdl6JwW5HKp9HOpXiteiMRsgVCthsNhQKBb63EcPX4KidTt6D0moRTyRQLBQQCYeh1ekwffZsREIhpLNZ5HI5/rrLZDAbDCiUSugLh2G12aDTapEslRDMZJA9fhxugSBRrlRQLpX4awaebq1QKuGw2/mFnnjGDIN0LseH9fiLxV8b8J4QEYqFcJxUKgWny8VfW4avu8tkMsjmcoj19WH6jBl8PoxlkYnFcOnZZ0Mul1Na/xFBWdztdg/og0W8oHoYiYngGQ3lPDUaDaZPn47p06dThi9RfzCbzdQwDaXIvhGYksaIXOx8Pt/PGBEDRHJAxWIRdrsdM2fOhN1uH1PZ94ngGdWCmCZOapeqJfalxycgBqi7uxvhcBiFQgEWiwUdHR28uGaNFhLkNakxEDPuxCFBsbDrYKE6AAM8n1qhP7F3Q+ZD6L9S5pb4uko9OvH5ieezbPFitHs8ePTPfwYrKCmUSyWYBEWGbp8PfdEoDFotrQdyulzoPnECBoMBRqMROoMBSrkcJpMJpUIB4XgcxVIJbo+HD0EJY8vlcr7ZnWAgZPzJo6urC2q1mq/JAsBVKjh8+DBUSiWKlQrsFguOJxJIpFJYMGcOTCoVX/Mk45v25fJ55HI5qDUaKuDKCLklhuNQAVAulahEEUOuiyikV65UUGFZ5LNZpHM5cOUyVBoNDHo9KpUKZs2eDZ3BAAZAvK8PS+fOhUajgUwmQ0tLC1paWlAqlRAKhWjBc7FYhFarhdfrrSubrFEEBjI2MDRjJIZGo8G0adMwbdo0FAoFhEIhhEIhHDhwACaTiRqmahJHjTrXKWmMiEtaKBRgMBj4Fs7pNHbu3IlSqQSHw4HZs2fDZrONqQESo94EhpEYP4Zh6ENN8ksktybNlzAMg3w+j76+PuRyOXR1dcFisaCtrQ02m62fJ0kW8GrxbvHficGpVg9Va/EXGyfp+8ReVrUkt5hkIQ39VVtwqo0t/ps0REnOyWKx4NY1a/D088/jWDgMu9MJm90OrVaLYqGAaDyOfKmEZCKB9vZ2qHU6tLjdyBcKKOXzCCQSUCuVtOeRwWikEkjZXA4Omw0GwfvhKhWEgkG+0R7Lwu3xwO1yIZPNIpfPw2AwwG6xwNXSgnAkgmPHjsGo16Nt2jRwAHzhMDpaWgClkq8hEkJp/fJxEg9VLhgbhVJJ65kYnNSry+fz6ItEoBYMrtvp5PsTVSrI5HJgZDIYDAa+I21fH86YPRsmk6mfx8lxfDFwR0cHZs+ejbfffhtqtRrBYBAHDhyAzWZDS0sL3G73kPO4I0UjCQxi4s1IoVarqWEqFovUMB08eBBGo5G2vhAbpkYYpClpjFQqFZxOJ772ta/B5XLh0ksvhVwux/z588fVAIkx0cJ0Q/k8yS8RAdZyuUwljcLhMNLpNMxmM5RKJbxeL1pbWwfklYD+Wl8k11KtoFYs0zTYoi99vda5io2M+DUxxMc7lTcpzXHVGkvcsJD8Ta1WY9011+C9Dz7AS//4B+KJBKZNnw69kO/J5nIwmc28px4OUxKD1mqFu6UF2Xwe+VwO4DjoDQbMMBpx4sQJLFiwAIViEWVBAshkNMLT0gKW49Dd1YVkIgGz2Qyr1QqFTIZUOg2/z4dioQCr3Y5Zs2Yhm8nQ2jhOLkfniROY4/VCS1QTCBNT8HJICI5heCFWuVyOQjYLTiZDMplEPp9HWXhdo1LBaDKhXCrBK7RXAMMre5c4DtF4HB6PB+FIBOlEAucvW0ZVzamxq9IlVSaTweFwoK2tDblcDsFgkNKcHQ4HWlpaqGLBWKORYTryLI3V+CqVCu3t7Whvb0exWERvby9CoRAOHTpE9TLb2toaQn6YMsaI4zi88cYbePrpp/H0008jFoshGo3i6quvxrx58+Dz+eB0Ous2n4kcpjsVWJZFJBJBMBikquJutxsLFiyASqXC3r17B/R3GUyJQeqNVGPekd/Fr4vzU7XGIu8Xj1PN8xFfJ3HeR+phiY8p9Xyk5yVOrJOxiadHxjlzyRLMmzMHL/3tb3j7wAFo9HrMnDUL2nweBw8exJy5c8HI5chlswgFgzhx4gQcDgc6ZsyA1Wrla3aExLRSLkcunYbDbgcnk+FEOo1YPA6lRgO9RoPW9nYkYjFwAGKxGDiWb6+h0ethtlhQyGYBju9vpBcYenKFAnq9HgeCQTh0OngF1QPCpmPAt1XP5/MolkqIxWJ8aE2hgMfthk6rhdFo5IkJ4MN48WQSOoOBek0cx1PLjx47BqPRCL/fD4NSiY+ffTbdjTMMMygdW/xdabVayiYjhaFHjx7Fhx9+CKfTiZaWlmGpYp8KjSYwjJchVKlUaGtrQ1tbG0qlEs0xeTyecRnvVJgyxohhGHzta1/D3Llz8eCDD2LNmjX47ne/i0WLFiEcDtfVMACNo3aPFKSvUm9vL2KxGBV1Pe2006BWq/vRxMVjAgNbZUgT/8DA3A1BNYMgXvyl9UEk5yOdg9TwiD0f6bWpNQ+pARJ7dORYRBtQfD5kJ18rlKfX63H1FVfgwmgUf9qxA+++9RYMFgusFgvfRFGng1arxdy5c1EulXDsxAm8u2cPtAYD7HY7jHo97DYb9AYDAn4/soUCdFotWIaB0WCAzWJBLp9HIpFAMpOBgeOg1miQTaf51hSlEgqVCjQ6HRi5HHGfDzKGb/OtUCiQTCQAAIFKBV1dXWhvbUU6meS/W/BFrkq1mi/ANRqh1migENQyxHkiDkCpUkEmnYbH40GhUEAyk0E2k0E8HkdbezvkAFwmE2YJrTeGKstTyzshhaGzZs1COp1GIBDAoUOH8MEHH9AGd06nc1TGZCJ4RuMNpVKJ1tZWqsDeCIybMYpGo/jSl76E5557DjKZDJ/5zGfwk5/8ZEDLbDEeeughbN++HXv27EEqlUIsFoPFYhnymP/7v/8LgL95xPp09c7fAJPDMyKtzUOhEG3s53a7MX/+/AFuujiMp1Kp+i3SYqNUzUsiEC/41XJDZBxpaIIYIUI0kHpZ1fJH1Qwh+b80NChlB4rPmbxfXKtFDE81OrF4LuI8kkwmg81mw02f+xzC4TD+8ve/42BPD7K5HC8OqtPxzLJSCW6nE0WjkW/DXSjgg2PHYDAaYbdYYDKbkU2lkMvlkE4modZoEIlGIWMYKDQatOh08Pv9SCWTMJnNAMtCplTyzevSaZTKZb6dSW8vdDod8rkcWI5DvlRCKZ+HzmBAtqcHsmIR7dOmwSCQDMj1CPf1nTxHwRBxQs6oXCrhRHc3GACBUAgarZaG2lq9XmjlcsydNg02oY5qOHTsoRgEg8GAOXPmYPbs2UilUggEAti/fz81TKTh4nAX20Z6Ro3MV9Ub42aM1q5di0AggJdffhmlUgnr16/HLbfcgu3bt9f8TDabxWWXXYbLLrsMX/va10Y1vrinUSOMUb3HHKonVqlU0NfXR2uBxC0ZhtI8DOBj+kqlEnq9vl9+SeyJ1AqRAf0LGaV/k7aRkBow6RhinCqnJCU4iI8n/hsAqmAhPqZMJqNhOOnxxcZVSi0niwl5j8PhwPVXX42+vj68/MYb+FCgfPfFYjDodFDL5VBrNIhGo8gUCrx+nUwGfzCIUk8PyqUSMuk0XB4PVEJhLSOTgUsmUalUEAwGoVSpUCgW+T5CSiVQKoFRKMByHLQ6HRKJBORyOYxmM0KRCLRKJXRKJcoAIokEYj4fjnV1oZLLQaNQ4JrPf56/P9iTCuLZXA6FXA7ZQgGs0J1WqVSi1esFI5Oh69gxBHt74TCZsLC9HbNnzx5UHXswDMc7YZiT7Rrmzp1LO69++OGHYFkWbrcbLS0tsNlspzxmLRJOvdAIQ9iocx0XY9TZ2YkXX3wRb775JpYvXw4A+NnPfoYrrrgC9913H7xeb9XPffnLXwYAvPrqq6OeQ6M9o4kUpmPZky0ZIpEI1Go1XC4XZs6cyXcDHcFYZHEgag8cx1E2ntgbqEbNrqVwUI3tJs7tDJZfIvMir9VavMQ5Hun5iCWUyOtiAwQMpNhWM77SGqZqbEGAb1X9L1deiXQ6jZdfeQUfnjiBuEDVNuj1cHs8yGQy6OnqQjabhcVshlmpBAMgbTLx6t56PSxqNRRCp9h4IoG2tjZwDAO2XIbZbEapWIRMrQbLcbSVt1wmQyadRiqbhVqjQaFUQqFQQKlQQDQcRqxSwQGfD/loFEwmg0K5jI7Zs2mjvGltbXC4XDDodHCbTMjncgiGQihXKtj91lsoplKYPWMGPnvZZfB4PKMmFow0VMYw/TuvxoUOue+99x4YhqGGyWKx1LxfgOFTq8cKjfTK6o1xMUY7d+6ExWKhhggALrnkEshkMuzatQtXX331eAxLQdhMjfSMGh2mY1kWsVgMoVAI4XAYSqUSbrcbZ555Jh96GcXup5bXQwxTNbUH8edqeVDi/I7YMEnHI69LDVE1j6dWfkn83bBCol/slZEQEpGWEZMuxEan1nWpVcgrnQ/L8rpjV115JT5ZKmFfZyf+9tZbOPT++0jk87DY7XC73Uglk5DJZLBaLFDrdHCzLPL5PLq7u9EXjUKr0cBoNAIcB5VeD7Vajd5UChWWhVqppArZcrkc5UoFcoYvYM0mk5ALbRxKuRzyQrsCPcNgqdkM16xZMNls0KrVyHMcAn19KObzKMrl6M1kUM7nEertRSIahcfhwMz2dlx+7rmYMWMGVETRewwwFnkbhmFgtVphtVqxYMECRKNRBAIB7NmzB3K5HB6PBy0tLVQthIxLPtsINI3RKBEMBuFyufoPJFSWB4PB8RhyANRqdcM9I9Lzp17jsSxL23KHw2HIZDK4XC4sXboURqNxzB6oU+WnpGoP4vol8nlxoavU6xGH7KRUbHEtSjUjJ52jNGwm/jy5J2w2G06cOIFwOEwT3iRnVs3LIvOuRksnn6lG6hDPQ2rQSFPGcqmEM+fOxYXLliGdyWDfsWPoCgTAchwi4TBiQm7ParXyuZiWFmQzGSSzWaSE+qWe7m60tLZCp9EgKzQnVKtUqABgy2UwAHL5PEr5PLKlErLd3QDHQSF0OLW53VArlSiVy/B4veBKJchIvrCvDyzL8tTzdBpWnQ4fX7YM565YAavVOqBL6lhhrEkEDMP3W7Lb7Vi4cCH6+voQCATw5ptvQqlUoqWlBR6PhwqPflSMUT2jOVIMyxjddddduPfeewd9T2dn56gmNFYQ69M1yhiJmWfjBY7jkEgkkBEYSzKZDG63G6effjqvhjwOD9FwyBLEMJH6JZJjktZOSPM5xDMSG6NqHka1h1XqyZCfUiVzkgdqbW1Fa2srotEoQqEQurq6YDAYBrSBruVxiXNO4rlV89bEcy4UCjR8mkgkYLVaqSI8mdu555wDgKdq7zt4EIeOH8eRnh4c8vvBMgxMZjN0ej3USiXSQohUoVDg2OHDKJZK0JtM0CqVYORy6AwGaIXF1Ww0oqTTQW82o1wowKDX80QEhuHp3wBiiQSvYiKTQQOglEjArlRi6ZlnYtXy5TCbzVCr1SPOAw0H48lok8lkcDqdcDqdqFQqiEQiCAQC2LVrFzVG2WwWJpNpXMYfDI1Qf5gUOaOvfOUruPHGGwd9z8yZM+HxeNDb29vv9XK5jGg0WjcOuzRnBNR3lzGeYTqO45BKpahUSqVSgUKhgNvtxrx588b9ZhqOMRJ/RhzGIx5TtTAIWdzFskLVFvNq36c0/EfGIschxyQ7eLGH4nQ6aWfNcDhMiwEdDgdcLteAgmkx60+a+5L+Tfx6X18fwuEwIpEI9Ho9XC4X5s+fT9UwxPMix7VarTh/1Sqcd/bZvGeSzSIQCGDfoUPwhUJIJBJQAVAqFChxHCpaLVRaLfK5HFKxGMrFIjiOg9ZohEaj4RmRwjjFUgm9gQAMej10KhWsFgscNhtOnzEDJr0eC2fPhlarhVqtxt69e2GxWNDS0jIuBaa1UC96tVwup+0YyuUy/H4/9u3bh3/84x/Q6/U0lDdUss9o0QzT1QDZPZwKq1atQjwex9tvv41ly5YBAF555RWwLIuVK1eObKbDhDRMB9T3ix1rb4zjTurqhUIhlEolOJ1OzJ8/H1arFZ2dndBqtXXb1YzGnZd6S8RgSHeB4pCaeEzxYk9eF4fgxB4p8VjEbDgxqoXcSM1Fa2srstksLao8ePAgnE4n3G43X+hZhaJOfkpZe8lksmr4dLBSB+kCLE6mGwwGzJ07F3Pnzu1HlsgJYblisYhsNotUJoNsPo90JoNkIoGkEMozm0xo83rhcbtpAzzCkqxGuSa1QITaX09DBDSm1kehUMDhcIBhGHz84x9Hb28vAoEADh8+DKPRSEN54yk82qR2jxILFizAZZddho0bN2Lz5s0olUq4/fbb8S//8i+USefz+XDxxRfj0UcfxYoVKwDwuaZgMIjDhw8DAD744AMYjUZME2oThgNpmA4YWJw5nhgrNl0mk6EeUKFQgMPhwJw5cwbs0utJmBhLpiBZ5IgXQ4RbSRgNGLiJqMaaqybJA5z0gKSGazCSg/g4Op2OSvSn02mEQiHs3bsXDMNQCRqdTtfveOQ4RNI/FAqhUqnQjraknxOBNG8mNq7kdyIaS45N8lLkb+QaGQwG6PX6qiww8vlMJoNAIIC+vj7EolEo5HK+yZ+wqBKavkKhoN6s9F6rNxphjMTjKhQKeL1eeL1eKuAaCARw8OBBmM3mATmmsUK9PSNp/raeGLftzW9+8xvcfvvtuPjii2nR609/+lP691KphAMHDiCbzdLXNm/ejP/8z/+kv19wwQUAgEceeeSU4UEpqoXpJgrV+lQQd5fNZrNDUhYfSehspBiPscgDr1AoaJGpuLOseEyxsZAaIOL9kP9LPydlt0mNF9mJSkkOAF9UaTKZMGPGDMpUfOutt2AwGOByuWiPHyKrks1m+4nySkN2Ug+PjE/eI85BVbuXxEW51c5HahzJP1IcOmvWLCQSCfT29uLDDz+kjEuPxwOj0dgvV1Yul+teriBGo4xRtZyNUqmkMjpEEZsU2JLmdh6PZ0yUxZthujGAzWYbtMC1o6NjwI39ne98B9/5znfGZHwxtZs8hI1gtw0VpP9IKBRCOp0ednO/ei4U4234iNqDRqOhoSPy3RGGnbT+SKoJJw7viUNn0vlLz0VKIZd6PCzLC4I6HA6aXwoGg/D7/Th69Cg4joNer6eK0tXaaYhzX+RntQVHfH7SvJP4b9L3iyE1StLzI1TnefPm0VDiu+++2+8cVCoVzXWl02lYrdaqLMjxRCM9o8GMgVgRO5/P03uhs7MTdrudtmoYqbJ4k003BTDcbq9jjaEs2ITOS9oDWK1WtLa2wul0DvvmradnBNTnpiWLHWFrlYQGcOQBFf+rlruRhtzEeRzyf+l5SEOA4nMVj8NxHKLRKFU012g0aBVUqvv6+nDs2DGk02m4XC5eHXuQsKA0PCf2jMSGRxyWrPZ9VzMOtTwv8n5xl1SDwUDDUCQ/cvDgQWg0Ghq6I6FJ4imJQ6DjaSwaHaYbCjQaDQ3pSpXFnU4nbQc+nHxbI9h0jcKUNUZizwhoTEuHasavWCxSplZCkPv3eDw4/fTTR+XW1zNnVI+xCKmgUqkgn8/T5DkxPmJGHpmT1BsSh9yA/jTvarkj8jnpT7FXJG7OyDB8rcrixYv5glPh/TNnzkQqlUIwGMS+ffv6MbRIfkk8N6lBIqjWeqOW5yb1mMixpIa6WnsGKcQsRBI+JTmwfD6PZDIJu91OPVRpkbL4+o0VGhmmG4lnMlbK4s0w3RSARqNBUlAeBhqrFVcqlaggaSwWo62UFy1aNGYJz3obo/Ew7GQxJT8JBXn37t1wuVzwer0090IeYqnag3jREl8PQgCoFraqFW4iC0E2m0UkEunXnn7evHmwWq0DvBoCs9kMk8mE2bNn0/olcX7J6XT2++7FC7p0TtJcl5TcIJVWIiDvl8lOqmPXWvxYlqX1NeFwGCaTCa2trf1CTOl0GsFgEAcPHkSpVKKq2FarlRowAP0M01gZkMngGdWCWFmcbFIOHjzYT8CV1JZJ0SQwTAFotVpKYADqr4hAJGbef/999PX10UVo3rx540IFrVeRLTD2xqgaE45Qv88++2xkMhn4/X58+OGHkMlOtqXW6/X91B6I0oNUf05KRKjlFZGxgZMbiGAwiFQqBZvNhvb2djgcDrqgSxlrUmNBFmW73U7zS0Sk9ujRo7BardQwiZmD0nCe1Kuvxr6Tjg+AsuBqqSJwHE85DwQCCAaDkMvlaGlpqSmaazAYMHv2bEp8CAaD+OCDDyCTyWhuxGg0UsIDmctYGKaJRGAYDYxGI4xGYz9l8X379qFcLlPyiFhZnLAlPwqYssaoEWE6sSJ2JBIBALo7Hu8iucnmGZHwjlQRgYSExLtBo9GIefPmYc6cOejr64Pf78fOnTthMpkopZbUxxCauFTtQTrfaotbuVxGLBZDb28v+vr6aOfLRYsWUTFYsYdCFlmpLJD4/+JxxTIzhPbd1dWFQ4cOwel0wuVy9VPNqGWQap2L2AgNFobL5/MIBAIIBALI5/Nwu91YvHhxP09vMDDMSfHRuXPnIhqNIhgM4u2334ZGo6GGSavVDggdjtQwTVQCw0jBMAOVxQOBAFUWJ4y8SqUy7m3VCcRh7kZgyhojMbUbGL8wHWEZSRWxHQ4Hjh07ho6OjjEfsxrqSWAY6VjVDBBhwZF/g0Es2yJmsZFiVHG/GlIfw7IsSqVSP2086ZwSiQQNwymVSrhcLsyYMQN6vb6q11SNcCCGlCQgHY9hGGg0GsrCInmozs5OKufkcrkGjE+OLfXEyPkSL7EaKpUKent74ff7EYvFYLPZMGPGDLhcrlHtvGUyGWUWkjFIfoRsFlxC91hxrg5AVaZhLUzmMN2pIDbu8+fPRywWQzAYxHvvvYdyuQyj0QiHw1FTWXyqYMoao2qe0ViF6Vj2pCJ2JBKBQqGAy+Xqp4idSCQmZZHtUDAcY1TLAyL1QCPddSqVSrS3t6O9vZ12+Ozs7ATHcTSMR1QS1Gp1P9HWcrmMTCZDiQgsy8Jut+O0006rqtgsJTeIr4O0xkeck6pmrMR/I+curl+Kx+MIhUJ4++23odfrqWFSqVQDwnFib7AaOI5DLBZDIBBAKBSCRqOB1+vFokWLBjRPHAuQMF9LSwuKxSJCoRCCwSAOHDgAm81GcyMkfye+PoMx8mpd/3qgETkbm80Gm82G+fPn48033wTLsoMqi08VTFljVM0zGs1izXEcXSjC4TAYhu+FcsYZZ1S9MerN3ptInhEJzYiN/1gYoFoQd/iMRqPw+/3YvXs39Ho9vF4vLUAsl8vUmyL1MrNnz6YK2AzTv625eLEkf5MW0kpJBuLzFbPwxJ6SuKhWXLgqk/HdYK1WK+bOnUtZl0eOHIHdbqf0YDEduxqIwkIgEEClUoHH48Hy5cvHVLn9VFCpVHSzQGjOx44dw759+yjxgaiqnIqR10hj1CiPDDhZb2e1WjFt2jSqLL57926o1WpqmEbbEkaMJoFhHFCNwDBcT4UkeIkcD8dxcLlcQ1LEbkRdUyNzRlImHHkfyQPVY3fJMCfbApTLZYRCIfh8Phw4cABKpRKlUok+2CR0RNQeiKJ3Ldkh8e5dGluvFmIUe4LSB1xMsJAuduR3hUJB8wbFYpHmIk+cOEEZWOJOpUSixu/3I5lMwul0Yt68eTVZWvUEoTkTSaVgMIjOzk6wLEuT9mazuSYj76PkGdUaXxyiFiuL/+Mf/4BGo6G5yMG0Dic6pqwxEgulAkM3Dhw3UBHb6XRi4cKFsFgsQ74x62kcyHiN8IxqMeHEkjz1BgmjRqNRpFIp6HQ6aDQaZLNZpNNppFIpGhoju0+VStUvjCcNI4lrfqQ5IeJNiVlwYo+pWnivGklB+j4ShjMYDLDZbJg9ezbS6TRlFgI8hbxSqSAej9Oi1SVLloyJFM1Yg2GYfmwykht59913oVAoqOKDwWDox8irF0u0GhrpGQHVjaFUWTwcDtM8HVHO8Hg8dVMWHytMWWM0HAUGjuP6CZIWi0W6s7TZbCNaUMWhmHrczPUOCxLqOjA4E65ekNKUCQV8xYoVtCCVhFr9fj9lfpEwHpEeEtPExfVLtTwm8d+qFZyK/1YtPCc2YCzLUgNEjLkYZDH3er3gOI6KnbIsC51OB7fbDafTOSENkRTS3Aih0e/evRs6nY6Gn/r6+hAMBqHX6wGgn/JDPZ6rieIZ1QIx4i0tLTQaEAwGcejQIZhMJhrKG48c4VhjyhojEqYTh1ikxogksUOhEPL5fD9Ry9Fy+6stUOOJ8fbExEQElUqFeDyOzs5OWkle75YCBKTFQyAQQLFYhMvlqklTZpiTbafnz59P2WWHDx+GzWaD1+ulVfFimnipVOrnLYmPJ851SMcSe0zScJOUUVirdQNBoVCgeaBsNkvp2DabjbLYSHsDq9VKWWyN+l6GA5mMb6nhcrmQy+Vw5MgRHD16FJVKBSqVCh6PBx0dHfS6jZSRNxJMRM+oFhQKBW19UiwW+0k6WSwWGvYda2XxscLEv1NHiFphulwuRz0goog9Y8aMfsWMY4Faie3xwniE6Wox4RwOB1atWkXbfRw4cAAtLS1obW2tS8yaMLUCgQCSySTdRAznOxQzv0jdzZEjR9DZ2Qm32w2v10vzgiSMR2ji4qaA0gJYoL8wa7VNAjFAxAMajI4dDofh9/sRjUZhtVoxffr0AUZG3N6AiHWeOHECnZ2d/fJLjc4d1QLHcZR40tvbC6PRiLlz58JqtdKk/d///nc4HI5+9H3x5kDshY6l8Wi0NtxI1w+VSjWosrhYBFeKJoFhjCGmdufzeWQyGWSzWXR1ddFq+vHc0Ys9o3pgrMJ0Q2XCKZVKzJo1CzNnzkQsFoPf78euXbto3oIUoo4VxEnbSCRCa1jGIj+i0Whogp0UH77zzjtQKpXwer1oaWmBVqsdQBMnvZeklG6gP4VbnBMiXlAtA0RCiYSOrVKp4PV6sWDBgiEpd4jFOsUV/hzH0ZBNPVl1gyGbzcLv9yMQCIBlWbS0tGDlypX9NjR6vR7Tpk2j+m6HDx/G3r17KfHBarUCOJm7rMXIGynGq+h1OOOP9hyqKYv39PRg3759sNvtE8aLZrhGltyOI/73f/8XN998M7RaLT72sY/hiiuugEajwemnn16XimaWZfHqq6/i3HPPrYtbHIlEcPToUdqocDgYKyacmNGVSqUG6MkNF+I6md7eXqhUqrolZ4nx8/v96Ovrg8VigdfrHfDQStUeqp0DCfkNFobL5XJ0YS6VSvB4PPB6vWNST0I8D3IdCfuqEbmESqVC75F4PA6Hw4HW1tZ+EjiDgeQGSSNOAFTxwWQy0feIjdJo8ktHjhxBJpPB4sWLR/T50eJ///d/sWjRItjt9jE/NglxB4NBpNNpOBwOzJgxA263uyGblSnlGRUKBTz22GN44okn8Le//Q06nQ7/+q//irVr16JYLCKfz9dNWkMcpqvXeMMdi6hijxUTTtx0TMz6kslkNIw0lN092dEHg0EqjXLmmWfWtdBPzFgqFAo09LV//35qZEleSqz2ICY9nEodmySc/X4/EokE7eIr1qobC4gp7+L80pEjR2gzOLfbPW47Y47jkEgk4PP5EAqFoNVq4fV6sXjx4mF7tQzDwGw2w2w295Mi2rNnD629IZsVad+nkRAfJjqBYTTQ6XSYOXMmZs6cSfUfG4kp5RmVy2X80z/9Ey699FJccMEFWL58OcLhMNRqNY4fP45MJoNFixbVbT6vvvoqVqxYUReKZTQaxYEDB7Bq1apB31ctD0TqWsaDCUfkknw+HyKRCPUwxI3nANDwAUnQT8RcB6H9EyKBOO9E2F5DOQbJg/T29g4ozK0niJENBALIZDIDJJVGC5KL8/v9KBaLY+rtSSEN4xqNRhp+IuoVYkM0VMNEFMrruW6I8corr2DZsmUDWtWPB8iaoNFopqZnFI1G8aUvfQnPPfccZDK+/fhPfvKTmonuaDSKu+++Gy+99BK6urrgdDpx1VVX4Z577jnlF6JQKPDCCy8AAGKxGAA+/KFWqyGXy+ta9wPUt9ZosJxRLSKCWBduPOdFivWKxSICgQCOHz9OPQy1Wo1EIoF4PA6bzVY1QT9RwDAnxS3nzJlDFz8i2kqMbDXvm3iKgUAAAKrmR+oNtVqN6dOnY/r06QMkldxu94hkZ1iWRTgchs/nQzQahc1mw6xZs4bUu2c0EHuyJFxMWjWQhD2Zw3A08iYrgWGkmNIKDGvXrkUgEMDLL7+MUqmE9evX45ZbbqnZktzv98Pv9+O+++7DwoULceLECWzatAl+vx9PP/30kMcleRrCqKu3IgIZs56FqOLzGy9NuNGASMRotVp0d3fThVmlUqGjowPt7e0TlnYqhZiOTNh9RO3B6XTC6/XCYDBQ+ngmk6EK4BPJ2yMQSyqRPB2pxSJ5usFCrMlkEn6/H8FgkLL7Fi5c2JD6FnG4WMouJJJK4hwMCauKa7uk9WKNQqONYT0xrmG6zs5OLFy4EG+++SaWL18OAHjxxRdxxRVXoKenB16vd0jHeeqpp3Ddddchk8kMecdcqVSgUCjwwQcfYPr06fD7/QiFQli6dOmIz2e4eO2116h00HgjmUzivffewznnnFM3TbihguQMCEOMhLfIAidWk7bb7WhtbZ0QMjYjQTKZxNGjR2kxqlqtRmtrK6ZPnz4hvb3BQKjlpLjWYrH0U+EuFosIBoPw+XzI5XKUEj9R1aWJFFEgEOjXP8hisQBA1fzSvn37oFAoMG/evIbM+cUXX8QFF1xQl1C/WFG+ERjXp2Pnzp2wWCzUEAHAJZdcAplMhl27duHqq68e0nESiQRMJtOwHmZyURvtGY33mGImHElO2+12WsfSyAWd0HEJQ4wIy0oXK5J3IYyygwcPYt++fWhpaYHX66UKChMVhOFFPAOlUomOjg5oNBpEo1EcP34c4XC4YbmhkYKoRHs8Hlqr0tXVhc7OTqhUKhSLRZjNZkybNm1cCRBjBWlzwEAggPfff5+ep7Q5IKlLNJlMDSl+lSp81AON3ESM690TDAbhcrn6D6hQwGazUVrmqRCJRHDPPffglltuGdbYDMP0K3xtRM5oPMN0UiacTqfDtGnTcPToURw5cgRerxetra1116ciu+VAIIBUKgWn04m5c+cOydPRarUDapd27949brVLowVRoyYJerfbjaVLl/YT0W1tbaU5DFIN73A44PV6J5X3Vy6XUSgUUCwWoVQqodFoqIyWWOtvInpEUjDMyf5B8+bNo5JDb775JrRaLaxWK9V8I3VbJNpQbykiMuZHASMyRnfddRfuvffeQd/T2dk5ogmJkUwm8clPfhILFy7Ed77znWF/XqxPV08yAcFYj1mrOR2JdZOYP2GvvfHGG7BYLGhtbR11E7XBIG6q1tfXB7PZjNbW1prJ/FNBrFs2b948Sn8+ePDgqGuXRotyuUzDioR0caoEvTiHQQo9Dxw4gH379lGG2UQpRBVD3HKDbCxIzQsp6iX5pT179tA6MFIkPBlACDYWiwVGoxHd3d3o6ekBwHtSZENHSA9iD2m8DVMjjNGk84y+8pWv4MYbbxz0PTNnzoTH40Fvb2+/18vlMqLRKDwez6CfT6VSuOyyy2A0GvHHP/5xRIuaWIVhshIYhsuEYxiGdt4kemZHjx7F/v37qWTPWIS9ahVSzp8/f0wXosFql0gYb7y9P/G5hkIhKuR5+umnD5twodPpaKiILORvvfUWtFotXcgbSeIgBobkWPV6PVpbW7F06dIBz6BU7JTkl44ePQqz2UwlZyaSNyuG9FyNRiNmzpwJt9sNlmX7ebN2ux0ej4fWgIl7UIlLIsZaighoekaDglB1T4VVq1YhHo/j7bffxrJlywDwvHmWZbFy5cqan0smk1i9ejXUajWeffbZESXUpDmjRoXpRjKmVJJnpEw4tVqNjo4OTJ8+HfF4HD6fj4a9Wltb4fF4hhXnF9fZiKvf69W4zWAwYO7cuVW9v2q1S6MFKQQMBAJUTkesAj4aSBdysvBVE22tB8QKEOVyeYDi+akgzi+JiQ0HDhygmnITJSxZKBQoa7dUKtWk2ZPmgESp4NixY1Tvj0gREW9pPKSIxBvQjwLGvej18ssvRygUwubNmym1e/ny5ZTa7fP5cPHFF+PRRx/FihUrkEwm8YlPfALZbBZ//OMf+xUTDvfhPP300/H1r38dn/rUpyjb7Pzzzx/zc6yFPXv20N3uqVCv7qilUokuFJlMBh6PB62trYM2CyS5kUAggHw+X7W5W6NAapf8fj9yuRwNe52q+eFgxyNhwXQ6PeaFoKdCLpejRbUkDzWa8xkMJLw6nkxGaddZUr80HuczGDiOo/JO4XAYVquVhq+Heq5kM0YkdIg6iMfjGSBFNBaGKZPJ4LXXXsPq1auH/dmRgGVZyOXyhhFsxp3+8pvf/Aa33347Lr74Ylr0+tOf/pT+vVQq4cCBA8hmswD4BXzXrl0AgNmzZ/c71rFjx9DR0THksScCm24wW9+I7qhKpZLu+AgD7J133qEU5JaWFqhUqn5J90QiQdXNxzP3NBKoVCpMnz4d06ZNG3A+ROT0VGEvlmVpAWs4HIbJZBpVzms00Gq1mDlzJmbMmIFEIkHPZ6zyMYRmT0JT5Dqddtpp4xIe1Ov1NCxJBGCJCC05n/EMs+ZyOfh8Pip14/V6MXfu3BFdQ2nRMwmzkvMhhkmv1/drDjhSjbx6F7w2WoxnSskBSXH++edj7dq1WLt2LbLZLHbt2oWPfexjdRv//fffh81mQ1tbW7/Xq2nCEQ9oPCR5TgWyQ+7p6UE8HodarUaxWKSSKm63e9IUowJD2/GTXS6hY49E2qdekNb7iFsADHVjQPKHfr8fhUIBbrcbra2tDWHA1VJgHyu2JMuy6O3thc/nQywWG7YY60jGE5+PXq+nVHHCOhQXzw6V+JBMJvHmm2/i4osvHvM5V0OlUqE6i43AxC4MGCXE1O56d14F+rPpTsWEa2RBajKZRCwWQzqdhlqthkajoZ1cS6VSw3dMw4XYsJCwF6ldIm1D+vr6kM/naZO6as34Jgqk9T6BQICKtpKwV7X5k0XS5/NRIzYRvFuxdI+4N5U4vzQSsdh0Og2fz4dAIEAbzY2XxyeGWI2jVCpRZilpdEiID9XaigxmmBot0lpvTGljJA3TASfjovUAw/DdPqXtueuhCXcqiKvRSSxfXCMjXsiOHTsGm82G1tbWMVeUHm9otVpMnz4dGo0G3d3dNFxDapq8Xu+EZXtVg5iUQjw7UrhJ2IWVSoWSEUhb6rFmOY4ViEQUIQoEAgEcOnQI+/btG1K+jCif+3w+pFKphm8ulEol7baaz+cRCoXQ3d2N/fv3w+FwUCmioTDyPkq6dMBHwBiJqd3A+BsjMRFBoVAgEAhAJpPRdr+NXMirqTTPmzevasJavNvL5/O0zkdMEZ9o4SwxxDUwoVCIUs/POOMMyOVySlI4fPgwnE4nWltbJwQhY6gQ5y/mzp1L9deOHTsGADCbzVi4cCHdkU8G6HQ6WvQsbXJIwngkH5NMJuHz+RAMBqHVatHW1laVft5IaDQaKkRL1EiIoSUkIIvFUpORV6lUJtXGb7SY0jmjtWvXoqOjA3fddde4NrurxoQjCwBh8KRSqSEx18YapEgzGAwiGo0O0BcbDki9jc/nQ29vb7/i1olCahB3D61UKrS7aa3ciFhNu561S2MB0o6CMMSMRmO/GhkizkrYgJPFKIkhzseQejZCDhDXzU2WcyOGlGySGIahoVZCLSdhvEAggK6uLpx77rkAxp/izbIslEplw2SdprxnRMJ0Y93sbqhMOFKwmUql0NPTgz179tCd3HjJ27As268glRRpjlZFWdykTdwO4sCBA9TQEoprPSHuMJtMJgf1+KSQ1i75/f5xrV0aCxC6tN/vB8dx8Hq9OPvss/t5qjNmzKCGdu/evWAYhubRGtm2YrggvbbEuRWZTIZCoYBCoYBcLge9Xj/hvqNaqNUc8K233oJGo6FU83A4jHQ6jRkzZqBcLo9J19pTodF+yZT2jG677TbIZDL84Ac/AMA3uzvrrLNGFV4aTBFhKESESqVCe9Cn02l4PB60tbWNmtVUbcdFvILxFBqVdvHU6XS0oHY8QyakaR+hYxP9OrfbPeo6ibGuXRoLSLvCkjYVQ2GIkc0J8aAMBgMNe01U0VbSmM/n86FcLlOtRfLskvySWISXhL0mi5ckRiKRwOHDhxGLxcBxHDQaDdra2uD1emlzwNF2rT0VKpUKVCpVwzyjKW2MvvKVryCZTOLHP/4xAL6f/NKlS4e9OI/WANUC8ZYCgcCIvSVSHR4IBChltxa7arwh1TIj9OGxXCDEdOzx3u1L1bhVKhWtxaoH1Z3jOMTjcVoTpNPpRq38Xc2LnCjqCFL231BIM7Xak0xEir4UlUoFoVAIPT09/cL4Wq2WUvkTiQRsNhv9jkhzQLEhGivD1Ogw3ZQ2Rl//+tfR09ODX/ziFwCG11+oVnvu8egNRBZxn883JG9JTIdNJpOw2+39OllOBBCjEQgEKMNopIs4IV74/X5ks1lqcOtJOKhWu0Qke8Z6ESeEEb/fj3K5TBepsfZwpeoIZBGvdw6G5Pl8Ph9kMhm8Xi+8Xu+w2X/Sep+J6gGm02m6CVWr1Whra0NLS0vVTShRPwkGg8hms3TzQO59cZuJ0WrksSwLlUrVsDVkShuje+65Bx988AG2bdsGAHjjjTewYMECWK3Wqu+vpgk3XgaoFpLJJHp6ehAMBmnIq6WlBQzDVC0UHIuw1HiCFGySAkQSXnI4HIM+MNUau3m93gnRkpzULhFjMRZ9l8j5+v1+RKPRcTV2UogFQ3t7e6HVaqkHNl4eoNS4E0bjWBEtqimINHLDJi4sTyaTI4oaiKWISDmGx+MZsLkeiRQRyX+r1eqmMRoP/OhHP8Lrr7+Oxx9/HADwj3/8A3PmzOnXcrgWEYEUpDYqdFEulymbJpfLAUC/MNFkYHtJQXbAYmkWEpYABkrVTPSWBLUUrocaaq0WBiQSRo3qtiltkUGMIgkRjRapVIoWppL7meRFxgtSvT/CMKxHKDuTyVAviCjQE8mtkYKEbwlBiRRFk9DkSPJLTWM0zvjpT3+KF154AU899RQAYPfu3ZgxYwbsdntNJhwxQo0E2QEFAgGwLAubzUYT9nq9nuaWGu0hjBTkXHw+H/Xy1Go1UqkUSqUSfbAaSRgYLqr1/qlVuzQRCRLVIPYAR/O9SMPQ45FLHArEJB8iAUXOaSxzjkSOqKenB4lEAi6XC62treNi/KREHsKclUoRnUojr2mMxhkPPvggfvvb3+K5554DALz11ls0FAA0XhNOjHw+Tw1QNpulMvVithR5qHt6epDNZvvlliYbxJXziUSCPiherxdtbW2Tin4sBWk94ff76Tl5PB7qGUYikQlNHZeimsd6Kg+uUSzLoUK6iOv1eppfGmloMpvNoqenB36/n+ZJx9vrE0NaU0h6SpGawsE8JvK3RhbmT2lj9Otf/xqbN2/GCy+8AJZl0dnZiWw2S28SpVLZUANEFuRgMIhYLEYFMIeSF5HmliaDt0SKNEl4Qa/X92snHovFaEGt0WikBbUT+ZwGA8uy6OnpoaFWmUwGu92O2bNnT1pjK81tWa1WmsuTy+XU6/P5fCgUCjSfNpE3TERPLhAI0O695Dk81UaBZVmEw2H09PQgFovB5XKhra2t4VqHhUKBri3JZJJKERHWZDVGHoCmMRovfPvb38b//b//Fz/96U/xyU9+EgqFglJHM5kMWlpa0NbWNq51OFLU2pERt3q4mAzeUjqdpjF7juP6sbaqoVQq0QWNhLEapTA9EpCeUaQnEpFVImGvXC5HQ1UTLTQ3HBBv3ufzIZ/PQ6VSoVAowGw2o62treGCrCOBtHcXIQlIw63ZbJa2ppDL5VSPbiKSiUhNVjAYRKFQgMvlgtFopJvAeDyOJ554Atu3b8dLL70Eh8PRkHlOaWP0wQcf4P7778eOHTtQKBRw4403Yv369Whtbe3nWZhMJrS1tcHtdo/LrqBaLcR4xKpJWCQYDPZLpjfCsyDdPv1+fz9ZGpvNNqxmZlINMkLgmAihHjGIVBJhpJEiXGlYaiKSFkYKQkH3+XyoVCrQaDTI5XJ161U0npB2NSZF5Gq1Gn19fYhGo3A6nWhra5s0mobic7rvvvvwwgsvYO7cuXj//fexaNEibNq0Cdddd13D7sMpbYwIyuUyXnjhBTzwwAN45ZVXsHr1atxyyy246KKLqMJxT08PSqUSWltb0dbWNibsLSKOWO8qccLE8/l8dfWWSMiC0M9JzHosmtSRAkGfz4dkMjmuSeHhQKyFx7IsDUsNZZPRSDr3SCEtTJX2iiJ/J7kxs9lMc2OTNdyayWRw5MgRhMNhWotDZL4mU58vgN9A/OEPf8C2bdsQjUahUChw4sQJtLS0YO3atfj2t7/dDNPVAxzH4ciRI3jwwQfxyCOPwGaz4eabb8Z1110Hi8WCaDSKnp4ehMNh2O12tLW1nbIeRgriEQQCAcqqIrHaeocsyC6ceIAGg2HMvSXxTj8UCtGWBeO5Kyaaa36/n/atqadnQQwjoT+PRfO28ahdGkuISRkymYzmXQe75tW8Y6/XOyk8CWJUe3p6EI1G4XA40NbWBrPZTDdcsVhsWPmlRoHjOBw/fhzbtm3DY489BqvViltuuQXr16+H3W5HPp/H888/jz179uB73/tew+b5kTJGYuRyOTz11FPYvHkz3n33XVxzzTXYuHEjli5dikKhAJ/PB5/PB4Zh0NbWNmg8mBS0BYNB9PX1jalHMFYg3lJPTw9yudyo82VEO8zv96NYLDZEG4x4Yj6fj3oW0o6uYwUpO4wUho62ZqTaOKOpXRpLkPva5/MhHo9Tb3QkxkSsjk5knLxe74ST7Mnn8/2efVILV83oihmwuVyuXyh6IhjbcrmMl156Cdu2bcOOHTtwxRVX4LbbbsMll1wyIT3vj6wxIuA4Dnv27MHmzZvx29/+FgsWLMDNN9+Mz372s9BoNAOYMu3t7bBYLADQTxmb9MvxeDwTskCToJq3RJh4p9rZEeqoeFdIwkqN3hXmcjm6c2dZli4io/XOpEaX1ATVg0xRrXaJiKOO59jiwlS1Wk09z7EwurUEbhtJ+eY4jnpBJPQ4nKgIx3HU2IrzS+MtUlwL4XAYjz76KB5++GHk83ncdNNNuOWWWzBt2rQJYSRr4SNvjMSIxWJ49NFHsXnzZoRCIVx33XXYsGEDZs2ahWw2i66uLhqmAECb5jVCz2ssQFhfg3lLJDFPjK5Wq6VhuIkYLyf0cZ/Ph3A4DIvFgtbW1mGFUaQe10QwutVql8ay7xK5FwjTtB69t6qJtg5ViXwsQLwg0oqDMOJGE+6t1b7F4/GMaxiZZVns2rULW7ZswTPPPIOVK1fi1ltvxac//ekJyfCrhqYxqgLSiO+Xv/wlnnvuOSxfvhwdHR14/fXX8cUvfhFnnXUWSqUS8vk8Wlpa0N7ePmFi+yOB1FsyGo1wOBy0DqqRIpqjQbFYpGyvYrHYrxlbNYhZyRtGhQAALL5JREFUbgqFgi74E4nlRjwL0g5iNA0OiawMCT2OR05xqBCLtrIsSz3QsX6uyGalp6cHkUgENpuNekFjbQClkYTh1BEOFalUCk8++SS2bt2KEydO4LrrrsOtt96KRYsWTZrnlKBpjGognU7jt7/9LbZt24Y333yTekCf+MQnsGHDBrjd7gELeHt7+4ROZJ4KpVIJPp8P3d3dyOfzYBgGNpsNs2bNGpLS+UTFYIsuy7LUIyD1P16vd1L0xZHKCg21dmm4RrqekObMSNuM0YYJxXlglmWpF1SvkHo1hZXhljoQcByHzs5ObN26Fb/97W/R0dFBadkT4TscKZrGqAYCgQCuvvpqXHvttVizZg1sNhueffZZPPDAA/j73/+OK6+8Ehs3bsS5556LSqWCQCCA7u5uSg8fi3xFPSCW3Q+Hw/3UwElhHzG2ZAGfrMYWOBmOOnHiBBWgNRgMmDZt2qSlH5P6EUIQqFa7JA1fSpUTJiJqibYOlfpOQsyEITuU/kj1gLh+ieO4IYf6i8Uinn32WWzduhW7d+/GZz7zGdx6660455xzJiQhYbhoGqNhguM4HDhwAA888AAee+wxeDwebNiwAZ///OdhMpkQi8XQ3d1Nb/729vZh08PHG+LFiwhGDtaQTKyIQEKTE2UnPRxI8y52u50a47FO1DcK0toli8UCpVKJRCJBW5RPlo2SGNVEW2sRSYrFIvWCKpXKhD1naT6WkKCkm4ienh488sgj+PWvfw2NRoNbbrkFN998M1wuV4PPYGzRNEajQCaTwRNPPIEHHngABw4cwOc+9znccsstOO2006rSw71eb0OT/iRU4Pf7qdTJcKT0Cb25p6cHoVAIRqORKldM5N31qRhpUgrzZKusl4IQMLq7uxGLxfqJ0E7GTYQY4vYJoVAIarWaEgRyuRx6enrQ29sLq9WKtra2hntBQwW5BwOBAHbs2IFnn30W5513Hg4ePIgdO3bgkksuwa233oorrrhiwj5ro0XTGI0BOI7Drl27sHnzZvzud7/DkiVLsGHDBlx11VVQqVSIRCJ0YRDTw+ux0Ilv8mrCliMF8ZZ6enqoIOZEUdseTa2OtLhzsDqTiYZMJkPZYeJiYLVaPeB6kDDeRKmDGwmIekpXVxey2Sz1dmfPnj1pDW40GsWWLVvwl7/8BYcOHUI6ncZll12GTZs2YfXq1ZMyjDxUNI3RGCMSieCRRx7BQw89hHg8jnXr1uHmm2/G9OnT+0nMq9VqtLe3o6WlZcxvMLJ7JItPNfd/LMeaKN4SqTUKBAKjVjGQyt5MlHyDFMOVSWpU7dJYgmw2iMK72WyGy+Wi50a8/slCROE4Dm+//Ta2bNmC3//+91i6dCm+8IUv4JprrsGRI0fw+OOP46mnnsLu3bv7NQadamgao3FCpVLByy+/jAceeAB/+ctfcPHFF2Pjxo249NJLAQChUAjd3d20pmMs6OFEnZcsxiQxWi+160Z4S9L21eOhwkAEQf1+P6W5t7a2Nkw9gOT8CLlEo9FQz284+a7xrl0aa5RKpQEswLa2tn7fg7SBHpGn8nq9E64YPZvN4umnn8aWLVtw8OBBfP7zn8emTZuwdOnSqs3vJrpRHS2axmicwXEcurq68NBDD2Hbtm3QarW4+eabcf3118PpdCKZTKK7u3vE9HBSOBgIBJBIJOBwOGib6Ebt4KXekslkGnEtzGDHJ56fWq2mYafxzMmRhDNhpI31eZ0K4sJUIoA7Fq01atUujWU9zEghpeUThf3h9Boiwr0Wi4UyRRt1XhzH4dChQ9i2bRsef/xxtLS0YNOmTVi3bh1VdvmoommM6ohisYjf//732Lx5M3bv3o2rrroKGzduxIoVK4ZFD68mqUKSuBONCSb1lkgOZiTeUqFQoIyqQqFA62oa0eeIiICS8xIbhrGENP813k0HyXmJ664a0XdprL1sqWgrIe/Ui6RSKpXwwgsvYOvWrXjttdfwz//8z7j11ltx4YUXTqiwbyPRNEYNAMdx+PDDD/HAAw/gN7/5DTo6OrBhwwasWbMGer2+Jj1cqn9F8kATgTRwKlTb4Q7Fq5DmbiZafYy059JYtdcuFAo0hFYqlWhosF7f9VBql8ZjzHrkH8VlDeMp2spxHILBIH71q1/hkUceAcMw2LBhAzZs2ACv1zvlw27DRdMYNRjJZBKPP/44Nm/ejK6uLnz+85/Hhg0bMH/+fBQKBXR2diIWi4FlWQCY9LRjAANaU1fzlsQLoVwup/mMiRb3F4PIJ/l8PqRSKZpEHyp1nni8Pp8PkUgEVquVhssauXse775LYo3EetaxSSMMRqORRhhGs5FgWRavvfYaHnroITz//PO44IILsGnTJvzTP/3TpGYvjjeaxmiCgGVZvP7663jggQfw+9//HnPmzIFarcb+/fvx+9//Hi6XC+l0mkr5t7W1Nbyx3GhBvCVSG2IwGKDX65FOp2koZTiL+URCOp2mytdKpZIa02o5rVwuRynZAKhxnoiGV0zmICSZkRiO0ajHjweIQRT3IWtpaRmWaGsikcD27duxdetWhEIhrFu3Drfeeivmzp076e7fRqBpjCYQ9u7di5/97Gd44oknoFAo0NbWhkwmg8985jNYv3492traBtDD29raJnW9iFS4kmEYGjqZNm3ahOt3M1ywLEsLamOxGG3EZ7VaafhR/Hq9FKtHC2nYldQunSpvSejXPT09yGazo+6rNR4gLMNAIEDlemqVCHAch/fffx9btmzB7373OyxYsACbNm3Cv/zLv0z6e7feaBqjCYS//OUvePbZZ7Fu3TqcffbZqFQqeOGFF7B582bs2LGjX7t0juPGhR5eLxCVZiLfL6YVi2tIhsOemujIZrM4fvw4gsEgKpUK3XBMmzZtQrbjGCpIeLJaKwjiEYi9IJ1OR72gRrP1BoNYrocYXJ/Ph7PPPht2u522737vvfewZs0abNq0CStWrGh6QSNE0xhNAnAch6NHj2Lz5s20XfpNN92E6667DjabbQA9fKJK9IgXrUQiccr+NSS31NPTQ5P40rqSyQBpLsnlcsFgMCAej1NSxkTIDY0FxLVLAGAymZDP55HL5fr1SJpsIN/hhg0b8MYbb8BgMECr1eJf//VfsXHjxilZjPqLX/wC//Vf/4VgMIgzzjgDP/vZz7BixYqa73/qqafwrW99C8ePH8ecOXNw77334oorrhjyeE1jNMlQrV36hg0bcOaZZ9LW4oQe7vV60dbW1tAiRqkaBGkJMBwaerWKe8LEm6iLt5Rlp9VqqTcgDqkS1pzP56OqEfVkzY0HUqkUuru7EQgEIJPJUC6XYTabqYc7kb2haiDtu7du3YpXXnkFV1xxBYxGI9544w3E43F885vfxL/92781eppjiieffBLr1q3D5s2bsXLlStx///146qmncODAgaoCrW+88QYuuOAC/OAHP8CnPvUpbN++Hffeey/27NmD0047bUhjNo3RJIW0Xfr8+fOxYcMGfPazn4VWqx1ADyeikfUKIVRLdBOV5dFA3IuHGNxGqiFIIVY4J91zSYJ/sGtf73qisUalUqH1SalUCh6PB21tbTCZTP2KdSdTz6je3l48+uijeOSRR5DP53HzzTfjlltuQXt7OxiGAcdxeO2111AqlfDxj3+80dMdU6xcuRJnnXUWfv7znwPgc5/t7e340pe+hLvuumvA+9esWYNMJoM///nP9LWzzz4bS5YswebNm4c0ZtMYTQHE43H8+te/pu3S165diw0bNmD27NlUTr+npwcMw9Bi2vHIUYw3BVgMsngTJp7FYqE773p7S1LPbbTKDNJ28GOltDAeSKfT6OnpQSAQoLJEtQg1jahdGi6mQvvu0aJYLEKn0+Hpp5/GVVddRV+/4YYbEI/H8ac//WnAZ6ZNm4Y777wTX/7yl+lrd999N5555hm89957Qxp34m+5mjglLBYL7rjjDnzpS1/C3/72N/zyl7/EihUrcP7552PDhg24/PLL0dHRgUgkgp6eHhw9enTM6OEkHEWKCMkCs3DhwnFdYEgXWpvNRr2lw4cPY//+/XXzlvL5PPWCyuUyvF4vzj777FGPq1Qq0d7ejra2NqpBt2fPnhFr0I01iDhrT08PradaunTpKVUaGIaByWSCyWTCnDlz6MblyJEjDReirda++6233pqU7btHi0gkgkqlArfb3e91t9uN/fv3V/1MMBis+v5gMDjkcZvGaApBJpPhYx/7GC666CL4/X5s2bIFX/3qV/HVr34V69evx4033oilS5fSDq7vvffeiOnh1VpeD2VBGg+oVCp0dHRg+vTp1FvauXPnuHhL1dS858yZMy6LqHjxnjt3LiVBHDp0CE6nE62trXUtfia1U+KygqVLl46orEAul8Pj8cDj8dCQ7qFDh9DZ2Tni2qXholr77ttuuw1r166dNKzUqYSmMZqCIOG473znO/jGN75B26Xfe++9uPLKK7Fhwwacd955mDVrFt3hHj58+JT0cLIQ+/1+Kjw5ffr0CcPcO5W3NBoyBzHg4j5H8+fPr1thqliFgvQt+uCDD6BQKOjr4+GJsixL7xHSomLJkiVjmu/RaDSYOXMmZsyYQckuu3fvHnLt0nBRrX33888/P2Xad48WDocDcrkcoVCo3+uhUAgej6fqZzwez7DeXw1TOmcUjUbxpS99Cc899xxkMhk+85nP4Cc/+UlNplI0GsXdd9+Nl156CV1dXXA6nbjqqqtwzz33TEo6qhikXfrmzZvx6KOP9muXbjabaR1IIBAYQA8nmniEHUW0vCZqqwExxErbpAPoUGnU1TrAksLUiRC6IarUPp+P5ujGqn2GuFGfUqmk3nO9woNDqV0aDkj77ocffhi//vWvodVqp2z77rHAypUrsWLFCvzsZz8DwN9r06ZNw+23316TwJDNZvHcc8/R18455xwsXry4SWAAgMsvvxyBQAAPPvggSqUS1q9fj7POOgvbt2+v+v4PP/wQd999N2688UYsXLgQJ06cwKZNm7B48WI8/fTTdZ79+KFau/SNGzfi9NNP70cPz+fzUCgUKJfLcLlc8Hq9k1oTT0qjrqWMTvI0JMne2toKr9c7oRPYpLGg3+8Hy7I0bzacDQNRi+jp6ZlQslPSvkvDETatVCp49dVX8dBDD+F//ud/cOmll2LTpk1Tun33WODJJ5/EDTfcgAcffBArVqzA/fffj9/97nfYv38/3G431q1bh9bWVvzgBz8AwFO7L7zwQvzwhz/EJz/5STzxxBP4/ve/36R2A0BnZycWLlyIN998E8uXLwcAvPjii7jiiivQ09MDr9c7pOM89dRTuO6665DJZCYFxXY4kLZLX7x4Mc4//3y89957sNvtuOmmmyCXy5FKpWC32+tODx8vVPOWWlpaaBvrdDpNWydMdPqxFEReifRcslgs1BOstfiSEKTP56OqEBPR+Fbru+T1eqvS36PRKB577DFs27YNiUQC69evxxe+8AXMnDlzUn2fjcTPf/5zWvS6ZMkS/PSnP8XKlSsBABdddBE6Ojrwq1/9ir7/qaeewje/+U1a9PqjH/2oWfQKAA8//DC+8pWvIBaL0dfK5TI0Gg2eeuopXH311UM6ztatW/G1r30N4XB4vKbacBw5cgQPPPAAtm3bhlwuh/nz52PVqlW4/fbb0dHRUVd6eD3BcRwikQiOHDmCVCoFhmFgtVoxZ86cMe9L1AiQvBnp/ySueSIhvp6eHsRisUmnBi/tu/SXv/wFH//4x2G327Ft2zbavnvTpk209q6JiY0pm60LBoMDYsEKhQI2m23IdMNIJIJ77rkHt9xyy3hMccLgc5/7HI4ePYpHH30U8XgcP/zhDxEIBLB06VJ89rOfxV//+ldMnz4d5513HubNm4d4PI6///3veP/99xGNRjHZ9jPFYhEnTpzAzp078eGHH8JisWDFihVYunQpFAoFdu/ejbfffhuhUIi27piMICzDVatWYenSpahUKti1axf+9re/4dVXX8XBgwdhs9lw/vnn44wzzpgwubChQKVSYdq0aVi1ahUWLFiAI0eO4MYbb8Sll16KAwcO4I9//CNee+01XH/99VPSEP3iF79AR0cHNBoNVq5cid27d9d87969e/GZz3wGHR0dYBgG999/f/0mOgxMurjTXXfdhXvvvXfQ93R2do56nGQyiU9+8pNYuHAhvvOd74z6eBMZu3bt6hfmuOyyy7B69WraLv22227r1y79zDPPpAnu999/HyqVasKrh0tDcxaLBTNmzBgQvrLb7TS3dOjQoX51S5OBsFENHMehWCyiUCgAANRqNSqVCnK5HLLZLHK5HFQq1aQxRED19t3/+Z//CZvNhieffBJXXnklfvSjH/UrwpwqePLJJ3HnnXf2k+pZvXp1TamebDaLmTNn4pprrpnQskWTLkwXDofR19c36HtmzpyJxx9/fMRhulQqhdWrV0On0+HPf/7zhKkObxTE7dJ37dqFq6++mrZLJ+rhpACSiJlOlDAXqWHx+Xw0sT/U5DcxYD09PVRWqZGFmcMF6ZPk8/kgk8koEYPcz2KihlqtptdmouWKxBhq+25CUpk+fXoDZzs+GK5UjxgdHR348pe/PCGN9KQzRkMFITC89dZbWLZsGQDgpZdewmWXXTYogSGZTGL16tVQq9V44YUXJu1ueDwgbZc+ffp0bNy4EWvWrIHBYBiUHl5PSAtTx4LyTLylnp4eatTa2tomXAiIJPl7enrQ19dH+yQ5HI6ans9Ep7A323efxEikesRoGqMG4fLLL0coFMLmzZsptXv58uWU2u3z+XDxxRfj0UcfxYoVK5BMJvGJT3wC2WwWf/zjH/vtnp1OZ5MKKkIymcRvfvMbbN68GcePH6ft0hcsWEDp4T09PSgWi3VTDxdTgKt5AmMBKVttonhL+XyeekEAKMlkuOcuvYaNbPderX33rbfeiiuvvHLChoPHG36/H62trXjjjTewatUq+vr/9//9f/jb3/6GXbt2Dfr5iWyMJl3OaDj4zW9+g9tvvx0XX3wxLXr96U9/Sv9eKpVw4MABZLNZAMCePXvolzl79ux+xzp27Bg6OjrqNveJDpPJhFtvvRVf+MIX8Prrr2Pz5s0477zzsGLFCmzcuBFXXnkl2tvbqTzPG2+8QdXDx6Iok4DopPl8PiQSCbhcLpx22mnjxgpjGAYOhwMOhwOFQgE+nw8HDx7E/v37qQGo18JN2IA+nw+RSAR2ux0LFiwYVbdYvV6POXPmYNasWfTYx44dq6vRjcfj2L59O7Zt24ZQKIQbbrgB77//frN99xTHlPaMmqgvQqEQtm3bhi1btiCfz+OGG26g7dIJPdzn84HjOLS1tY2KHi7uFaRWq6ladCPyHdLW6eNhdMWQ5sHG2whK24GMhxCttH33woUL8YUvfKHZvluCZpiuiSaGAdIu/YEHHqDt0jdu3IiPfexjAEDVw6PR6LCq/MV9cUirddI5dKLsmMfLUFQLD46nwas1B8JIDIfDo26VAfDX6w9/+AO2bt2K999/v9m+ewgYrlSPGE1jNIVR79a8kwnidum/+tWvYLFYcPPNN9N26dlsFj09PfD7/TXp4aRTrM/nQygUgsFgoG0UJrIixlh5S2IJo0qlMmGIE+Ki03w+309p+1RGhOM4HD9+HNu2bcOjjz4Km82GW265BevXr5+S7bvHGsOV6ikWi9i3bx8A4IorrsDatWuxdu1aGAyGAemIRqJpjEaBRrTmnayQtkv/7Gc/i40bN+LMM8/spwxN6OFut5tSj4vFYj/1gMkGsbfEcRwNc9UyKFJKudVqpVJME41SLm2vrtPp6GZBSjIQt+/+61//issvvxy33XYbLrnkkgl3XhMdw5HqOX78OGbMmDHgGBdeeCFeffXVOs56cDSN0SjQiNa8kx0cx+Gdd97B5s2bsX379n7t0lUqFZ577jk4HA7k83nI5XK0tLRg1qxZE7r2ZaioRjgQU86JfE9PT8+gQq4TFURpm7QeJ6SDZcuW4fHHH6/ZvruJJoCmMRoxGtWadyqBtEv/+c9/Dp/PB51OB47j8Ic//IHKDtWbHl4viKnYLMtCpVIhm802tH36WCKZTOLf//3f8ac//QnlchktLS34j//4D6xfv35KbCwGw3BC91u2bMGjjz6KDz/8EACwbNkyfP/73x801D9VMXnv9gZjsNa8tbTvxqI171TC4cOH8Ze//AUnTpzA0qVLsXz5cmQyGdxzzz149dVX0dLSglWrVmHx4sXI5/N44403sGfPHvT29k5qzTiA78qrUCggl8vBsixYlgXHcZDL5ZO6ni2VSmHr1q34xCc+gT//+c+47rrr8N3vfhezZ88ekkLAZAeR6rn77ruxZ88enHHGGVi9ejV6e3urvv/VV1/F5z//efz1r3/Fzp070d7ejk984hO0XuyjhImbAW5iykMul+PCCy/Eww8/DK/XC47j4Pf7sXXr1gHt0k8//XRKDz9w4AD2798/anp4vUHIGD09Pejt7YXJZMLMmTOpPh7xloi24kgLV+sN0r57y5YteOKJJ6q27/7qV7+KY8eOwe/3N3i244sf//jH2LhxI9avXw8A2Lx5M55//nk8/PDDVQ3xb37zm36/b926Fb///e+xY8cOrFu3ri5znihoGqMRolGteacSli5diqVLl9LfSXuKu+++G1//+tf7tUv/1Kc+hY0bN+K8885DR0cHpYcfPXp0wjSBq4VSqUQVKQqFArxeL1auXDmg47BGo8GsWbMwY8YMysQ7duwY7SU1mKRPIzDc9t0zZsyomkifKigWi3j77bfxta99jb4mk8lwySWXYOfOnUM6RjabRalUgs1mG69pTlg0jdEIoVKpsGzZMuzYsYPmjFiWxY4dO3D77bdX/cyqVauwY8eOfjmjl19+uZ+sRxM8lEolPvOZz+DTn/40bZd+7bXXwuPx4Oabb8a1116LM888k9LDJ5p6OMdxSCQS6OnpQSgUgslkQkdHx5BqcmQyGZxOJ5xO54Tzlmq173766ac/8u27Bwvd79+/f0jH+I//+A94vV5ccskl4zHFCY2mMRoF7rzzTtxwww1Yvnw55ftnMhnqokv5/nfccQcuvPBC/Pd//zdtzfvWW2/hoYceauRpTGgwDIP58+fj/vvvx/e+9z088cQT2Lx5M+6++26sWbOGtkufNWsWpYcfOnSoYerhxAsi9TctLS1VvaChQuwtieV56u0tVSoV/PWvf8WWLVto++6tW7fi8ssvn9Q5romEH/7wh3jiiSfw6quvTvjQ7HigaYxGgTVr1iAcDuPb3/425fu/+OKLdGfU1dXVL1xxzjnnYPv27fjmN7+Jr3/965gzZw6eeeaZKV9jNFbQ6/W4+eabcdNNN9F26R//+MdxxhlnYMOGDbj66qvh9XqRSqXQ3d2NN998sy7q4aTWpqenB8FgEEajEdOmTYPH4xmzMWUyGVwuF1wuF3K5HPx+Pzo7O8EwDK1bGo8FTNq++6abbsJPfvITzJgxY0KFDCcCRhK6J7jvvvvwwx/+EP/v//0/LF68eDynOWHRpHY3ManR19eHRx55BA899BBisRjWrVuHm266CR0dHeOuHi4+fi6Xo95YvQpzpa0yhtIuYijgOA5vv/02tmzZ0mzfPUyMRKrnRz/6Eb73ve/hf/7nf3D22WfXc7oTCk1j1MSUAMuyePnll/HAAw/ghRdewMUXX4yNGzfi0ksvhUwmo+rhvb29sFqtaG9vH7GuWyKRoIoDer1+QsgTkUZ6fr+fEkGG2z4jm83iqaeewtatW3Hw4EFce+212LRpE5YsWdL0goaI4Ur13Hvvvfj2t7+N7du349xzz6XHMRgMIw7tTlY0jVETUwocx9F26du2bYNWq8VNN92EdevWwel00rYPw1UPL5fLCAaD6OnpQTabhcfjmVAdbQmIt0SEaB0OB9ra2mo2yqvWvnvTpk1Yt24dLBZL/U9gCmA4Uj0dHR04ceLEgGPcfffd+M53vlPHWTceTWM0SdGs8j41isUi/vCHP+CBBx7Arl27cNVVV2Hjxo1YuXIlGIZBOBw+pXq4OBek0+nQ1tbWcC9oqJC2HXe5XFCpVJgxYwZt371lyxa8/vrr+Od//mfcdtttuOCCCya18kMTkxfNu24SolnlPTSoVCr8y7/8C1599VW89dZbsNvt+PSnP41zzjkHDz/8MHQ6Hc4880ycc8450Gg0eP/997Fz504cP34cXV1d2LVrF958801wHIdly5Zh5cqVaGtrmxSGCAC0Wi1mz56N888/H/PmzcPOnTuxZMkSnHvuuZg1axa++tWv4qKLLsKxY8fw5JNP4qKLLprShugXv/gFOjo6oNFosHLlSuzevbvme//whz9g+fLlsFgs0Ov1WLJkCR577LE6zvajh6ZnNAkxXIFWKSqVCqxWK37+859/5Kq8U6kUHn/88art0nft2oVwOEzzLGazGbNnz570BYji9t1vvPEGPB4PTpw4AYvFgo0bN2LTpk2T/hxPheEq7L/66quIxWKYP38+VCoV/vznP+MrX/kKnn/+eaxevboBZzD1MXW3QVMUpMpbXBTXrPIeOoxGI2699Va88847eP755xGLxbBq1SrMmzcPl19+Ofbu3YuzzjqL1ga9++672LVrF/x+PyqVSqOnPyzE43H88pe/xFlnnYVrr70W06dPx9/+9je888476O3txX//93/j73//O3K5XKOnOu4Qy/QsXLgQmzdvhk6nw8MPP1z1/RdddBGuvvpqLFiwALNmzcIdd9yBxYsX47XXXqvzzD86mBzxhiYomlXeY4NSqYSnnnoKL730EmbOnIkFCxZQfbVisYj169djwYIFmDNnDgKBAI4fP44DBw5QevhEbYVdrX33v//7vw9o361UKvHpT38an/70pxs42/pgtDI9HMfhlVdewYEDB3DvvfeO51Q/0mgao48YPupV3gQqlQo6nQ7PPfcczj33XDAM069d+umnn47Vq1fjlltuwUUXXYT29nbE43F0d3dj586do6aHjzWqte/esWNHs303Rr6BSyQSaG1tRaFQgFwuxy9/+Utceuml4z3djyyaxmiSoVnlPTZgGIbWehDI5XJceeWV+NSnPoWjR4/iwQcfxE033QSLxYKbbroJ119/PRYvXkxbgRP18EbpxXEch2PHjmHbtm147LHHYLPZ8IUvfAHPP/98s333GMBoNOLdd99FOp3Gjh07cOedd2LmzJm46KKLGj21KYnGb+maGBbEAq0ERKB1MMHVH/3oR7jnnnvw4osvYvny5fWY6qQFwzCYNWsWfvSjH6Grqwvf+ta38Oc//xlz587Fpk2b8OGHH6KjowPnnXceFixYgEQigddeew3vvfceotEoxpsTVC6X8fzzz+Mzn/kMli1bhuPHj2P79u3Yv38/vvKVrzQNkQQj3cDJZDLMnj0bS5YswVe+8hV89rOfHbCBaWLs0DRGkxB33nkntmzZgl//+tfo7OzErbfeOkCgVRwfv/fee/Gtb30LDz/8MDo6OhAMBhEMBpFOpxt1CpMGWq0W69atw2uvvYbXXnsNGo0GV1xxBS644AI89thj0Ov1lB6u0+koPbyrqwulUmlM59Lb24v77rsPixcvxh133IHly5fj0KFD+MMf/oBPfOITEyJcOBEx0g2cFCzLolAojMcUmwAArolJiZ/97GfctGnTOJVKxa1YsYL7xz/+Qf924YUXcjfccAP9ffr06RyAAf/uvvvu+k98CiAWi3E/+clPuAULFnAWi4W7/fbbuXfffZdLp9NcMpnkDh8+zP31r3/lnn32WW737t1cIBDgMpnMiP6lUinu5Zdf5j73uc9xarWau/DCC7knnniCKxQKjb4MkwpPPPEEp1aruV/96lfcvn37uFtuuYWzWCxcMBjkOI7jrr/+eu6uu+6i7//+97/PvfTSS9yRI0e4ffv2cffddx+nUCi4LVu2NOoUpjyadUZNNDFCsCyLv/3tb/jlL3+JZ599Fueddx42btyIyy+/HEqlkqqHEw279vb2IauHp1IpPPnkk9i6dSu6urqwdu1a3HrrrVi0aNFHnpAwUgxHpueb3/wmnnzySfT09ECr1WL+/Pm44447sGbNmgaewdRG0xg10cQowYnapW/duhUAcOONN2L9+vVwu91U1667u5t2eq1GD+ck7btnzJiBTZs29Wvf3UQTUxXNIHMTw8JwJFXEeOKJJ8AwDO2KO5Ugbpd+9OhR3H///fjHP/6BBQsWYN26ddi5cydaW1uxatUqLFmyBIVCATt37sSvfvUrPPbYY0in03jqqadw+eWX47zzzkMmk8ELL7yAPXv2YNOmTVPaEDXvpyYoGhkjbGJy4YknnuBUKhX38MMPc3v37uU2btzIWSwWLhQKDfq5Y8eOca2trdz555/P/fM//3N9JttgsCzL7d+/n7vjjjs4q9XKzZ8/n7vvvvs4v9/PZTIZrq+vj/vP//xPzuFwcHq9nrNYLNxdd911yms5ldC8n5oQoxmma2LIGIkmXqVSwQUXXICbbroJf//73xGPx/HMM8/UcdaNRyaToe3SOzs7cf755yOfz+P111/HpZdeijPPPBNvvvkm/vrXv+Kqq67C9u3bPxKtvJv3UxNiNMN0TQwJI9XE++53vwuXy4Wbb765HtOckCDt0nfv3o0dO3YgEAjAZDJh//79+POf/0zrvzo7O7F69eqPhCFq3k9NSNFUYGhiSBiJpMprr72Gbdu24d13363DDCc+GIbBypUra16PmTNnYubMmfWdVIPQvJ+akKLpGTUxLkilUrj++uuxZcsWOByORk+niUmO5v009dH0jJoYEoYrqXLkyBEcP34cV155JX2NZVkAgEKhwIEDBzBr1qzxnXQTExbN+6kJKZqe0QTDo48+CrvdPkB25KqrrsL111/foFkNX1Jl/vz5+OCDD/Duu+/Sf//0T/+Ej33sY3j33XfR3t5ez+k3McEwle6ncDgMj8eD73//+/S1N954AyqVqt/5NXEKNJrO10R/ZLNZzmw2c7/73e/oa6FQiFMoFNwrr7zSwJkNX1JFihtuuKFJxW2CYirdT88//zynVCq5N998k0smk9zMmTO5f/u3f2v0tCYVmmG6CQatVotrr70WjzzyCK655hoAwOOPP45p06Y1XLp+zZo1CIfD+Pa3v00lVV588UWahO7q6mqKdTYxZEyl++mKK67Axo0bsXbtWixfvhx6vb6p8D1MNOuMJiDeeecdnHXWWThx4gRaW1uxePFiXHPNNfjWt77V6Kk10UQTNZDL5XDaaaehu7sbb7/9Nk4//fRGT2lSYXJsOz5iWLp0Kc444ww8+uijePvtt7F3717ceOONjZ5WE000MQiOHDkCv98PlmVx/PjxRk9n0qFpjCYoNmzYgF/96ld45JFHcMkllzQT/k3UDcPRi/vVr34FhmH6/fsotrMvFou47rrrsGbNGtxzzz3YsGEDent7Gz2tSYWmMZqguPbaa9HT04MtW7bgpptuavR0mviI4Mknn8Sdd96Ju+++G3v27MEZZ5yB1atXD7qwmkwmBAIB+u/EiRN1nPHEwDe+8Q0kEgn89Kc/xX/8x39g7ty5zed2uGg0g6KJ2rj++us5m83G5fP5Rk9lQuDnP/85N336dE6tVnMrVqzgdu3aNej7Y7EYd9ttt3Eej4dTqVTcnDlzuOeff75Os52cWLFiBffFL36R/l6pVDiv18v94Ac/qPr+Rx55hDObzXWa3cTEX//6V06hUHB///vf6WvHjh3jTCYT98tf/rKBM5tcaLLpJjB8Ph/Wrl0LtVrd6Kk0HGTHvnnzZqxcuRL3338/Vq9ejQMHDsDlcg14f7FYxKWXXgqXy4Wnn34ara2tOHHiBCwWS/0nP0lA9OLELeuHoheXTqcxffp0sCyLM888E9///vexaNGiekx5QuCiiy4a0GK+o6MDiUSiQTOanGiG6SYgYrEY/vjHP+LVV1/FF7/4xUZPZ0Lgxz/+MTZu3Ij169dj4cKF2Lx5M3Q6HR5++OGq73/44YcRjUbxzDPP4Nxzz0VHRwcuvPBCnHHGGXWe+eTBYHpxwWCw6mfmzZuHhx9+GH/605/w+OOPg2VZnHPOOejp6anHlJuYQmgaowmIpUuX4sYbb8S9996LefPmNXo6DcdIFJ6fffZZrFq1Cl/84hfhdrtx2mmn4fvf/z4qlUq9pv2RwKpVq7Bu3TosWbIEF154If7whz/A6XTiwQcfbPTUmphkaIbpJiCatND+GInC89GjR/HKK69g7dq1eOGFF3D48GHcdtttKJVKuPvuu+sx7UmH4erFVYNSqcTSpUtx+PDh8ZhiE1MYTc+oiSkJlmXhcrnw0EMPYdmyZVizZg2+8Y1vYPPmzY2e2oTFcPXiqqFSqeCDDz5AS0vLeE2ziSmKpmfUxITHSHbsLS0tUCqV/RrVLViwAMFgEMViESqValznPFlx55134oYbbsDy5cuxYsUK3H///chkMli/fj0AYN26dWhtbaVSN9/97ndx9tlnY/bs2YjH4/iv//ovnDhxAhs2bGjkaTQxCdH0jJqY8BjJjv3cc8/F4cOHaZsBADh48CBaWlqahmgQrFmzBvfddx++/e1vY8mSJXj33XcH6MUFAgH6/lgsho0bN2LBggW44oorkEwm8cYbb2DhwoWNOoUmJima2nRNTAo8+eSTuOGGG/Dggw/SHfvvfvc77N+/H263e8COvbu7G4sWLcINN9yAL33pSzh06BBuuukm/Ou//iu+8Y1vNPhsmmiiCSmaYbomJgWGq/Dc3t6O//mf/8G//dv/394do6gORQEYPiCuQsQdaCHqHtxJCgljo2Bvk0ZQQbByA3auRbEXrIJLeMVrBoYZGAbm3vfyfXWKpPq5Nzcnb9Hv96PT6URZlrFYLFI9AvAFKyPI2H6/j6qq4vl8xmAwiO12G+Px+NPrX69XrFarOJ/PUdd19Hq92Gw2MZ1Of/Gu4fusjCBTpk7QJFZGkKnJZBKj0Sh2u11E/D200e12YzabxXK5/HD94XCIqqridrtFu93+7duFH3GaDjJk6gRNY5sOMmTqBE0jRvCfeD91otVqxXA4jMfjEVVViRHZEyPIkKkTNI13RpAhUydoGjGCTM3n8zgej3E6neJ6vUZRFB/mxL3/EV5RFFHXdZRlGff7PS6XS6zXa//E4p9gmw4yZeoETeI7IwCSs00HQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByYgRAcmIEQHJiBEByfwC44Z9LrEnaIQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualizer.angle1 = 20\n", + "visualizer.angle2 = 45\n", + "visualizer.set_axis(x = \"x\", y = \"y\", z = \"z\")\n", + "visualizer.plot_workspace(np.array(ws_pred))" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "3_mYGXhmjnhg" + ], + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "1c0f293c6f03438bb4f19276ec49a419": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad8026a2dd49407fb30677e5cf96d004": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_cursor": "default", + "_data_url": "", + "_dom_classes": [], + "_figure_label": "Figure 17", + "_image_mode": "diff", + "_message": "", + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "MPLCanvasModel", + "_rubberband_height": 0, + "_rubberband_width": 0, + "_rubberband_x": 0, + "_rubberband_y": 0, + "_size": [ + 640, + 480 + ], + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "MPLCanvasView", + "capture_scroll": false, + "footer_visible": true, + "header_visible": true, + "layout": "IPY_MODEL_1c0f293c6f03438bb4f19276ec49a419", + "pan_zoom_throttle": 33, + "resizable": true, + "toolbar": "IPY_MODEL_eb0420e848554f6592e94d4423567f9c", + "toolbar_position": "left", + "toolbar_visible": "fade-in-fade-out" + } + }, + "e37f9f52ff7349cc974e863821254ee7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb0420e848554f6592e94d4423567f9c": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", + "state": { + "_current_action": "", + "_dom_classes": [], + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "ToolbarModel", + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "ToolbarView", + "button_style": "", + "collapsed": true, + "layout": "IPY_MODEL_e37f9f52ff7349cc974e863821254ee7", + "orientation": "vertical", + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" + ], + [ + "Pan", + "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", + "arrows", + "pan" + ], + [ + "Zoom", + "Zoom to rectangle\nx/y fixes axis", + "square-o", + "zoom" + ], + [ + "Download", + "Download plot", + "floppy-o", + "save_figure" + ] + ] + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/pose_estimation/package.xml b/open_manipulator_cv_controller/package.xml similarity index 98% rename from pose_estimation/package.xml rename to open_manipulator_cv_controller/package.xml index 95a8c873710f1dfaa543326e73c7093f8223e374..b35b7bc616e1398cf3133e6f3067d6b6bcd0944a 100644 --- a/pose_estimation/package.xml +++ b/open_manipulator_cv_controller/package.xml @@ -1,6 +1,6 @@ <?xml version="1.0"?> <package format="2"> - <name>pose_estimation</name> + <name>open_manipulator_cv_controller</name> <version>0.0.0</version> <description>Package used to detect the arm keypoints with Mediapipe's pose estimation</description> diff --git a/open_manipulator_cv_controller/requirements.txt b/open_manipulator_cv_controller/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..20fdff7aef5f0e838244d9bf5fc091f26b91a191 --- /dev/null +++ b/open_manipulator_cv_controller/requirements.txt @@ -0,0 +1,21 @@ +catkin_pkg==0.5.2 +catkin_pkg_modules==0.5.2 +matplotlib==3.7.1 +matplotlib==3.1.2 +mediapipe==0.9.1.0 +numpy==1.24.2 +numpy==1.17.4 +opencv_contrib_python==4.6.0.66 +pandas==2.0.1 +Pillow==7.0.0 +Pillow==9.5.0 +pypareto==0.3.0 +rospy==1.15.14 +scikit_learn==1.2.2 +scipy==1.10.1 +seaborn==0.12.2 +sensor_msgs==1.13.1 +tf==1.13.2 +torch==2.0.0 +tqdm==4.64.1 +vg==2.0.0 diff --git a/pose_estimation/rviz/keypoint_tf_frame.rviz b/open_manipulator_cv_controller/rviz/keypoint_tf_frame.rviz similarity index 100% rename from pose_estimation/rviz/keypoint_tf_frame.rviz rename to open_manipulator_cv_controller/rviz/keypoint_tf_frame.rviz diff --git a/open_manipulator_cv_controller/scripts/helpers/__pycache__/training_help.cpython-38.pyc b/open_manipulator_cv_controller/scripts/helpers/__pycache__/training_help.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14f5222204ce1fabd9240a49972950ac1bf6de1a Binary files /dev/null and b/open_manipulator_cv_controller/scripts/helpers/__pycache__/training_help.cpython-38.pyc differ diff --git a/open_manipulator_cv_controller/scripts/helpers/training_help.py b/open_manipulator_cv_controller/scripts/helpers/training_help.py new file mode 100755 index 0000000000000000000000000000000000000000..4cfe7e15025e1fc0adfa7c56f090ded58f632b50 --- /dev/null +++ b/open_manipulator_cv_controller/scripts/helpers/training_help.py @@ -0,0 +1,31 @@ +import torch.nn as nn +import torch.nn.functional as F + +class Net(nn.Module): + def __init__(self, input_num, output_num): + super(Net, self).__init__() + self.l1 = nn.Linear(input_num, 16) + self.l2 = nn.Linear(16, 256) + self.l3 = nn.Linear(256, output_num) + self.drop1 = nn.Dropout(0.10, inplace = False) + self.drop2 = nn.Dropout(0.41, inplace = False) + + def forward(self, x): + x = self.drop1(self.l1(x)) + x = self.drop2(self.l2(x)) + return self.l3(x) + + +class Net2(nn.Module): + def __init__(self, input_num, output_num): + super(Net2, self).__init__() + self.l1 = nn.Linear(input_num, 128) + self.l2 = nn.Linear(128, 32) + self.l3 = nn.Linear(32, output_num) + self.drop1 = nn.Dropout(0.48, inplace = False) + self.drop2 = nn.Dropout(0.38, inplace = False) + + def forward(self, x): + x = nn.Sigmoid()(self.drop1(self.l1(x))) + x = nn.Sigmoid()(self.drop2(self.l2(x))) + return self.l3(x) diff --git a/pose_estimation/scripts/data_collection.py b/open_manipulator_cv_controller/scripts/keypoint_collection_control.py similarity index 87% rename from pose_estimation/scripts/data_collection.py rename to open_manipulator_cv_controller/scripts/keypoint_collection_control.py index 346a72c754eaab2d98b784955119d3a06f6eefae..8fbcd326bd96281bd6fd41dc88e50fde955d3025 100755 --- a/pose_estimation/scripts/data_collection.py +++ b/open_manipulator_cv_controller/scripts/keypoint_collection_control.py @@ -13,23 +13,24 @@ import tf from mediapipe.framework.formats import landmark_pb2 -from helpers.training_help import Net -CONTROL = rospy.get_param('/keypoint_collection/manipulator_control') +CONTROL = rospy.get_param('/keypoint_collection_control/manipulator_control') if not CONTROL: - FILENAME = rospy.get_param('/keypoint_collection/filename') - VIDEO_SAVE = rospy.get_param('/keypoint_collection/video_save') - save_file = os.path.expanduser(f"~/catkin_ws/src/pose_estimation/data/{FILENAME}") + FILENAME = rospy.get_param('/keypoint_collection_control/filename') + VIDEO_SAVE = rospy.get_param('/keypoint_collection_control/video_save') + save_file = os.path.expanduser(f"~/catkin_ws/src/open_manipulator_cv_controller/data/{FILENAME}") else: VIDEO_SAVE = False - ik_model = rospy.get_param('/keypoint_collection/ik_model') - CONTROL_MODEL = os.path.expanduser(f"~/catkin_ws/src/pose_estimation/data/models/{ik_model}") + ik_model = rospy.get_param('/keypoint_collection_control/ik_model') + CONTROL_MODEL = os.path.expanduser(f"~/catkin_ws/src/open_manipulator_cv_controller/data/models/{ik_model}") + +MODEL = rospy.get_param('/keypoint_collection_control/gesture_model') +model_file = os.path.expanduser(f"~/catkin_ws/src/open_manipulator_cv_controller/data/{MODEL}") + +ANGLE = None -MODEL = rospy.get_param('/keypoint_collection/gesture_model') -model_file = os.path.expanduser(f"~/catkin_ws/src/pose_estimation/data/{MODEL}") - # Dictionary of different modes/stages of data collection COLLECTION_MODES = { "Setup": 0, @@ -71,6 +72,9 @@ def create_file(): def save_dataset(data): rospy.loginfo("Saving the dataset...") + print(data['points']) + print(data['calib']) + if not os.path.exists(save_file): create_file() @@ -109,18 +113,22 @@ def gesture_recognition(recognizer, capture, frame_timestamp_ms, mode): # If the mode is set to setup, searching for a Thumbs up to start calibration if mode == COLLECTION_MODES["Setup"]: if verify_gesture(gesture, "Thumb_Up", score): + rospy.loginfo("Thumbs up detected...") rospy.loginfo("\n*** CALIBRATION MODE ***") return COLLECTION_MODES["Calibration"] # If the mode is set to collection, seraching for a Thumbs up or down to stop the collection elif mode == COLLECTION_MODES["Collection"]: if verify_gesture(gesture, "Thumb_Up", score): + rospy.loginfo("Thumbs up detected...") rospy.loginfo("\n*** Collection Over ***") return COLLECTION_MODES["Finished"] if verify_gesture(gesture, "Thumb_Down", score): + rospy.loginfo("Thumbs Down detected...") rospy.logwarn("\n***Program Terminated***") return COLLECTION_MODES["Terminate"] elif mode == COLLECTION_MODES["Control"]: if verify_gesture(gesture, "Thumb_Down", score): + rospy.loginfo("Thumbs Down detected...") rospy.logwarn("\n***Program Terminated***") return COLLECTION_MODES["Terminate"] @@ -137,13 +145,24 @@ def show_image(img, pose_landmarks = None): landmark_drawing_spec=mp_ds ) + img = cv2.flip(img, 1) + + if ANGLE is not None: + img = cv2.putText(img, f'Wrist: {round(ANGLE, 2)}', (0, 30), cv2.FONT_HERSHEY_SIMPLEX, + 0.5, (0, 0, 255), 1, cv2.LINE_AA) + + cv2.putText + # Displaying the current frame of the video - cv2.imshow("Pose Video", cv2.flip(img, 1)) + cv2.imshow("Pose Video", img) # TODO: Possibly add Visibility def get_landmarks(pose_result): + global ANGLE - if not pose_result.pose_world_landmarks or not pose_result.pose_world_landmarks.landmark: return None + verification = not pose_result.pose_world_landmarks + verification1 = not pose_result.pose_world_landmarks.landmark + if verification or verification1: return None landmarks = {} angle = None @@ -153,15 +172,18 @@ def get_landmarks(pose_result): landmarks[idx] = coordinates elbow, wrist = np.array(landmarks[elbow_keypoint]), np.array(landmarks[wrist_keypoint]) - wrist_vec = zero_out(wrist - elbow, 2) + wrist_vec = zero_out(wrist - elbow, 1) angle = vg.angle(wrist_vec, np.array([-1, 0, 0]), units="rad") - if wrist[1] < elbow[1]: + + if wrist_vec[2] < 0: angle = -angle - else: - angle = 0.0 + + angle = -angle landmarks['angle'] = angle + ANGLE = angle + return landmarks def test_path(model_path): @@ -219,9 +241,8 @@ def skeleton_estimation_pose(img, pose): except Exception as e: rospy.logerr(f"Exception: {e}") - # Displaying the video feed and the landmarks show_image(img, pose_landmarks) - + return results @@ -244,11 +265,12 @@ def calculate_calibration(pose_result): return MANIPULATOR_MAX_DIST / distance def get_model(path): - model = Net(7, 4) - model.load_state_dict(torch.load(path)['model_state_dict']) - model.eval() + model = torch.jit.load(path) return model + +GESTURE_CHECKPOINT = 15 + def video_capture(control = False): video = cv2.VideoCapture(0) video_fps = video.get(cv2.CAP_PROP_FPS) @@ -314,14 +336,14 @@ Important: Try moving the arm up and down whilst fully extended to capture most try: frame_ms = int((1000 * frame_idx) / video_fps) - MODE = gesture_recognition(recognizer, capture, frame_ms, MODE) + if frame_idx % GESTURE_CHECKPOINT == 0: + MODE = gesture_recognition(recognizer, capture, frame_ms, MODE) if MODE == COLLECTION_MODES["Setup"]: show_image(capture) - ### TODO: Max calibration rather than last elif MODE == COLLECTION_MODES['Calibration']: - counter += (1000 / video_fps) + counter += (1000 / video_fps) * 4 if counter <= threshold: results = skeleton_estimation_pose(capture, pose) if results is not None: @@ -361,9 +383,6 @@ Important: Try moving the arm up and down whilst fully extended to capture most if landmarks: data['points'].append(landmarks) - LANDMARKS += 1 - print(LANDMARKS) - elif MODE == COLLECTION_MODES["Control"]: pose_results = skeleton_estimation_pose(capture, pose) if not pose_results: continue @@ -383,7 +402,6 @@ Important: Try moving the arm up and down whilst fully extended to capture most return data -####################### TODO: CODE FROM training_data.py ######################## from open_manipulator_msgs.srv import SetJointPosition, SetJointPositionRequest PATH_TIME = 0.5 @@ -401,7 +419,7 @@ def set_wrist_angle(joint_angles): goal_request.joint_position.max_velocity_scaling_factor = 0.0 goal_request.path_time = PATH_TIME resp = set_joints(goal_request) - + rospy.sleep(PATH_TIME) if not resp.is_planned: @@ -412,29 +430,24 @@ def set_wrist_angle(joint_angles): def shift_keypoints(original, offset): return (np.array(original) - np.array(offset)) -############################################################################################################# -### TODO: Testing + def control_manipulator(landmarks, model, calib): - print("Controlling manipulator...") - ## Shifting the wrist to be relative to the shoulder at origin - wrist_point = shift_keypoints(landmarks[WRIST], landmarks[SHOULDER]) - wrist_point[2] = -wrist_point[2] + ## Shifting the wrist to be relative to the shoulder at origin and applying calibration + wrist_point = shift_keypoints(landmarks[WRIST], landmarks[SHOULDER]) * calib + wrist_point[0] = -wrist_point[0] - ## Calculating the calibrated point - wrist_point = wrist_point * calib + ## Concatenating the wrist point and angle to match the model input + model_input = np.concatenate((wrist_point, -landmarks['angle']), axis = None) - ## Converting the euler angle to a quaternion - angle = tf.transformations.quaternion_from_euler(0, landmarks['angle'], 0) - ## Concatenating the wrist point and angle to match the model input - model_input = np.concatenate((wrist_point, angle), axis = None) - ## Predicting the joints based on the wrist point and angle control_outputs = model(torch.Tensor(model_input)) + control_outputs = control_outputs.tolist() + ## Setting the manipulator's wrist angle - success = set_wrist_angle(control_outputs.tolist()) + _ = set_wrist_angle(control_outputs) def verify_params(): verified = test_path(model_file) @@ -447,8 +460,8 @@ def verify_params(): return verified if __name__ == '__main__': - rospy.init_node("keypoint_collection") - + rospy.init_node("keypoint_collection_control") + if verify_params(): rospy.loginfo("All the parameters were verified") @@ -459,4 +472,4 @@ if __name__ == '__main__': else: rospy.logfatal(f"Check if all the provided model names are correct or if they are in the correct directories") - rospy.loginfo("Finished") + rospy.loginfo("Finished") \ No newline at end of file diff --git a/open_manipulator_cv_controller/scripts/training.py b/open_manipulator_cv_controller/scripts/training.py new file mode 100644 index 0000000000000000000000000000000000000000..d39b01ee4427a08375584896dfca46194b33acdd --- /dev/null +++ b/open_manipulator_cv_controller/scripts/training.py @@ -0,0 +1,766 @@ +import os +import pickle +import rospy +import pypareto +import matplotlib +import torch +import tf +import math +import json + +import numpy as np +import pandas as pd +import seaborn as sns +import torch.nn as nn +import torch.optim as optim +import matplotlib.pyplot as plt + +from tqdm import tqdm +from random import choice, random, uniform +from open_manipulator_msgs.msg import KinematicsPose +from open_manipulator_cv_controller.msg import Joints + +from torch.utils.data import DataLoader +from sklearn.model_selection import train_test_split + + + +dataset_name = rospy.get_param('/training/dataset') +DATASET_PATH = os.path.expanduser(f"~/catkin_ws/src/open_manipulator_cv_controller/data/{dataset_name}") + +model_name = rospy.get_param('/training/model') +MODEL_SAVE_PATH = os.path.expanduser(f"~/catkin_ws/src/open_manipulator_cv_controller/data/models/{model_name}") + +criterion = rospy.get_param('/training/loss') +scheduler = rospy.get_param('/training/scheduler') +learning_rate = rospy.get_param('/training/initial_lr') +EPOCHS = rospy.get_param('/training/epochs') + +PLOT = rospy.get_param('/training/plot') +EVALUATE = rospy.get_param('/training/evaluate') + +RUN_NAS = rospy.get_param('/training/NAS') +NAS_iter = rospy.get_param('/training/NAS_iter') + +LEARNING_RATE = 1e-1 +CRITERION = None +SCHEDULER = None +CHECKPOINT_LOG = 0 + +INPUTS = 7 +OUTPUTS = 4 + +def validate_params(): + global CRITERION, SCHEDULER, LEARNING_RATE, CHECKPOINT_LOG, EVALUATE + + if type(EPOCHS) != int: + print(f"Epochs have to be of integer type") + return False + + if type(EVALUATE) != bool or type(PLOT) != bool: + print(f"`evaluate` and `plot` flags need to be booleans") + return False + try: + LEARNING_RATE = float(learning_rate) + except Exception as conversion_exp: + print(f"Learning rate incorrect. Exception when converting: {conversion_exp}") + return False + + if criterion == "mse": + CRITERION = nn.MSELoss() + elif criterion == "huber": + CRITERION = nn.HuberLoss() + else: + print(f"Given loss [{criterion}] not valid") + return False + + CHECKPOINT_LOG = 5 + + if scheduler == "None": + SCHEDULER = None + else: + print(f"Given scheduler [{scheduler}] not valid") + return False + + if RUN_NAS: + EVALUATE = False + + return True + + +def list_to_tensor(arr): + return torch.tensor(arr) + +def process_dataset(dataset): + inputs = [] + labels = [] + + + for data in dataset: + actual_values = [] + for joint in data['jointPositions']: + actual_values.append(joint.angle) + + labels.append(actual_values) + + man_pos = data['manipulatorPositions'] + man_angle = data['angle'] + + man_angle = tf.transformations.euler_from_quaternion([man_angle.x,man_angle.y, man_angle.z, man_angle.w]) + + x = [man_pos.x, man_pos.y, man_pos.z, man_angle[1]] + inputs.append(x) + + inputs, labels = remove_duplicates(inputs, labels) + + inputs = list_to_tensor(np.array(inputs).astype(np.float32)) + labels = list_to_tensor(np.array(labels).astype(np.float32)) + + X_train, X_test, y_train, y_test = train_test_split( + inputs, + labels, + test_size = 0.20, + shuffle = True, + random_state = 42, + ) + + train_data = [(X_train[i], y_train[i]) for i in range(len(y_train))] + test_data = [(X_test[i], y_test[i]) for i in range(len(y_test))] + + trainloader = DataLoader(train_data, shuffle=True, batch_size=5) + testloader = DataLoader(test_data, shuffle=True, batch_size=5) + + return trainloader, testloader + #return (X_train, y_train), (X_test, y_test) + +def remove_duplicates(inputs, labels): + processed_inputs, processed_labels = [], [] + + for i in range(len(inputs)): + + duplicates = [] + for j in range(i+1, len(inputs)): + duplicates.append(inputs[i] == inputs[j]) + + if np.array(duplicates).any() == False: + processed_inputs.append(inputs[i]) + processed_labels.append(labels[i]) + + print(f"{len(inputs) - len(processed_inputs)} duplicates have been removed") + return processed_inputs, processed_labels + + +def train(train_set, model, optimizer): + model.train() + + running_loss = 0.0 + for loader in train_set: + X, y = loader[0], loader[1] + + # zero the parameter gradients + optimizer.zero_grad() + + # forward pass + outputs = model(X) + + # calculate the errors + loss = CRITERION(outputs, y) + + loss.backward() + optimizer.step() + + running_loss += loss.item() + + return running_loss / len(train_set) + + +def test(test_set, model): + model.eval() + with torch.no_grad(): + + running_loss = 0.0 + for loader in test_set: + X, y = loader[0], loader[1] + + outputs = model(X) + + loss = CRITERION(outputs, y) + + running_loss += loss.item() + + return running_loss / len(test_set) + + +def save_model(model, path = MODEL_SAVE_PATH): + model_scripted = torch.jit.script(model) + model_scripted.save(path) + print(f"Best model has been saved: {path} \n") + + +def boxplots(abs_err): + df = pd.DataFrame(abs_err) + + axes = plt.figure().add_subplot(111) + sns.set_style("whitegrid") + + boxprops = dict(linestyle='-', linewidth=1.5, color='#00145A') + flierprops = dict(marker='o', markersize=1, + linestyle='none') + whiskerprops = dict(color='#00145A') + capprops = dict(color='#00145A') + medianprops = dict(linewidth=1.5, linestyle='-', color='#01FBEE') + + for row in df.transpose().iterrows(): + label = row[0] + val = row[1] + + axes.scatter([label + 1 for _ in range(val.shape[0])], val, alpha = 0.4) + + axes.boxplot(df, notch=False, boxprops=boxprops, whiskerprops=whiskerprops,capprops=capprops, flierprops=flierprops, medianprops=medianprops,showmeans=False) + + labels = [item.get_text() for item in axes.get_xticklabels()] + + for i in range(len(labels)): + labels[i] = f"joint_{i+1}" + + axes.set_xticklabels(labels) + + plt.xlabel("Joints") + plt.ylabel("Absolute Joint Error") + + plt.show() + +def per_joint_error(loader, predictions, loss_fn): + errors = {} + abs_err = {} + + labels = np.array([output.numpy() for data in loader for output in data[1]]) + predictions = np.array([prediction.numpy() for prediction in predictions]) + + joint_labels, joint_predictions = np.transpose(labels), np.transpose(predictions) + + for joint in range(joint_labels.shape[0]): + + abs_err[joint] = [] + for label, pred in zip(joint_labels[joint], joint_predictions[joint]): + abs_err[joint].append(pred - label) + + error = loss_fn(torch.Tensor(joint_labels[joint]), torch.Tensor(joint_predictions[joint])) + + print(error) + errors[f"joint{joint+1}"] = error.item() + + print("\n-------------------------------") + print(f"Per Joint Error: \n{errors}") + print("\n-------------------------------\n") + + if PLOT: + boxplots(abs_err) + +def plot_history(history): + print("Plotting the training...") + train_loss = history['train_loss'] + test_loss = history['test_loss'] + pos_loss = history['pos_test_loss'] + + axes = plt.figure().add_subplot(111) + + axes.plot(train_loss, "-b", label = "Training Joint Error") + axes.plot(test_loss, "-r", label = "Test Joint Error") + axes.plot(pos_loss, "--g", label = "Test Positional Error") + axes.legend(loc="upper left") + + plt.xlabel("Epochs") + plt.ylabel(f"{criterion.upper()} loss") + + locator = matplotlib.ticker.MultipleLocator(2) + plt.gca().xaxis.set_major_locator(locator) + formatter = matplotlib.ticker.StrMethodFormatter("{x:.0f}") + plt.gca().xaxis.set_major_formatter(formatter) + + labels = [item.get_text() for item in axes.get_xticklabels()] + + for idx, epoch in enumerate(range(0, EPOCHS, CHECKPOINT_LOG * 2)): + labels[idx+1] = epoch + + axes.set_xticklabels(labels) + + plt.show() + +def predict(model, loader): + + model.eval() + with torch.no_grad(): + inputs = [input for data in loader for input in data[0]] + return [model(input).detach() for input in inputs] + + +def positional_loss(prediction, labels): + predicted_position = solve_fk(prediction) + actual_position = solve_fk(labels) + + cost_fn = CRITERION + cost = cost_fn(actual_position, predicted_position) + + return cost + + +def dataset_pos_error(loader, model): + inputs = [input for data in loader for input in data[0]] + labels = [output for data in loader for output in data[1]] + + model.eval() + with torch.no_grad(): + + max_ = 0.0 + + counter = 0.0 + loss = 0.0 + for input, label in tqdm(zip(inputs, labels), total = len(inputs)): + prediction = model(input).detach() + + predicted_position = solve_fk(prediction) + actual_position = solve_fk(label) + + + dist = np.linalg.norm(actual_position.numpy()) + if max_ <= dist: + max_ = dist + + loss += CRITERION(actual_position, predicted_position) + counter += 1 + + return loss / counter + +MAX_DIST = 0.504 +A, B, C = (0.12, 0.277, 0.070) +DX, DY, DZ = (0.275, 0.0, -0.1) +R1, R2, R3 = MAX_DIST, MAX_DIST, MAX_DIST +SAVE_METRICS = os.path.expanduser("~/catkin_ws/src/open_manipulator_cv_controller/notebooks/") + + +def trajectory(t): + x = A * math.cos(t + math.pi) + DX + y = B * math.sin(t + math.pi) + DY + z = C * t + DZ + return (x,y,z) + +def workspace(u, v): + x = R1 * np.cos(u) * np.sin(v) + y = R2 * np.sin(u) * np.sin(v) + z = R3 * np.cos(v) + + return x,y,z + +def sample_eval_points(model, test_set, name): + + print("Sampling points for testing...") + + model.eval() + + ### Testing Trajectory Location ### + trajectory_loc = [trajectory(t) for t in np.arange(0, 2 * math.pi, 0.1)] + + trajectory_pred = [] + for (x,y,z) in tqdm(trajectory_loc): + # Input tensor to the model which will not have end-effector rotation + + input = torch.Tensor([x, y, z, 0.0]) + + # Getting the joint predictions from the model + pred = model(input).detach().numpy() + + # Using the FK to get the predicted locations + loc = solve_fk(pred).tolist() + + # Saving the locations + trajectory_pred.append(loc) + + ### Testing Predicted Orientation ### + + # Using a starting home position of the manipulator + starting_x, starting_y, starting_z = 0.286, 0.0, 0.204 + + # Getting the range of the end-effector rotation + orientation_loc = list(np.arange(-math.pi, math.pi, 0.1)) + + orientation_pred = [] + for orient in tqdm(orientation_loc): + # Getting the quaternion angle + # angle = tf.transformations.quaternion_from_euler(0.0, orient, 0.0) + + # Creating an input from the orientation and home position + input = torch.Tensor([starting_x, starting_y, starting_z, orient]) + + # Getting the prediction from the model for the end-effector joint and saving it + pred = model(input).detach().tolist()[-1] + orientation_pred.append(pred) + + ### Testing Maximum Workspace ### + + # Sampling points on the maximum range of motion + max_workspace = [workspace(u,v) + for u in np.arange(0, math.pi, 0.5) + for v in np.arange(0, math.pi, 0.25)] + + max_workspace_pred = [] + for (x,y,z) in tqdm(max_workspace): + # Input tensor to the model which will not have end-effector rotation + input = torch.Tensor([x,y,z,0.0]) + + # Getting the joint predictions from the model + pred = model(input).detach().numpy() + + # Using the FK to get the predicted locations + loc = solve_fk(pred).tolist() + + # Saving the locations + max_workspace_pred.append(loc) + + + #### Saving the points and predictions for the test set #### + predictions, ground_truth = [], [] + model.eval() + with torch.no_grad(): + test_inputs = [input for data in test_set for input in data[0]][:25] + test_labels = [output for data in test_set for output in data[1]][:25] + + for input, actual in tqdm(zip(test_inputs, test_labels), total = len(test_inputs)): + pred = model(input).detach() + ground_truth.append(solve_fk(actual).tolist()) + predictions.append(solve_fk(pred).tolist()) + + dist = max([np.linalg.norm(loc) for loc in ground_truth]) + + metrics = json.dumps({ + "pos_traj": ( + trajectory_pred, trajectory_loc + ), + "or_traj": ( + orientation_pred, orientation_loc + ), + "workspace": ( + max_workspace_pred, max_workspace + ), + "test_set": ( + predictions, ground_truth + ), + "max_dist": dist.item() + }) + + path = os.path.join(SAVE_METRICS, name) + with open(path, "w") as handle: + print(f"Saving the metrics: {path}") + json.dump(metrics, handle) + + print("Successfully saved the points") + + +def evaluate_model(model_dict, train_set, test_set, name = "metrics.json"): + print("Loading the best model...") + model = model_dict['model'] + model.eval() + + with torch.no_grad(): + predictions = predict(model, test_set) + + if not RUN_NAS: + + if PLOT: + history = model_dict['history'] + plot_history(history) + + print(f"""Best model was trained with {criterion.upper()}: + -> Average Joint Error (train): {model_dict['train_loss']} + -> Average Joint Error (test): {model_dict['test_loss']} + -> Average Positional Error (test): {model_dict['pos_err']}\n""") + + else: + print(f"""Best model was trained with {criterion.upper()}: + -> Average Joint Error (test): {model_dict['min_loss']} + -> Average Positional Error (test): {model_dict['pos_err']}\n""") + + per_joint_error(test_set, predictions, CRITERION) + + sample_eval_points(model, test_set, name = name) + + +def solve_fk(prediction: torch.Tensor): + global kinematics_pub + + msg = Joints() + joints = [val.item() for val in prediction] + + msg.angles = joints + + kinematics_pub.publish(msg) + + try: + return_msg = rospy.wait_for_message('/forward_kinematics_keypoints', KinematicsPose, timeout = rospy.Duration(5.0)) + position = return_msg.pose.position + position = torch.tensor([position.x, position.y, position.z]) + except Exception: + rospy.sleep(0.1) + return_msg = rospy.wait_for_message('/forward_kinematics_keypoints', KinematicsPose, timeout = rospy.Duration(5.0)) + position = return_msg.pose.position + position = torch.tensor([position.x, position.y, position.z]) + + + return position + +def create_model(input_size, output_size): + m_choices = [8, 16, 32, 64, 128] + n_choices = [8, 16, 32, 64, 128, 256] + l_choices = [8, 16, 32, 64, 128] + layer_prob = [0.9, 0.6, 0.6] + + activation_choices = [nn.Sigmoid(), nn.Tanh(), nn.ReLU(), None] + dropout_range = (0.0, 0.5) + + layers = [choice(m_choices), choice(n_choices), choice(l_choices)] + act_f = choice(activation_choices) + + modules = [] + prev = input_size + + for layer_num, layer in enumerate(layers): + + if random() <= layer_prob[layer_num]: + modules.append(nn.Linear(prev, layer)) + + dropout = round(uniform(dropout_range[0], dropout_range[1]), 2) + modules.append(nn.Dropout(dropout)) + + if act_f is not None: + modules.append(act_f) + + prev = layer + + modules.append(nn.Linear(prev, output_size)) + + if act_f is None and random() < 0.2: + act_f = choice([x for x in activation_choices if x is not None]) + + elif act_f is not None and random() <= 0.5: + modules.append(act_f) + + sequential = nn.Sequential(*modules) + + return sequential + +def optimal_pareto(history): + values = [] + + for idx, his in enumerate(history): + value = his['min_loss'], his['pos_err'] + values.append(value) + + chain = pypareto.Comparison(pypareto.by_value, pypareto.MaxMinList(pypareto.MaxMin.MIN, pypareto.MaxMin.MIN)).as_chain() + pareto_front = chain.split_by_pareto(values)[0] + + pareto_front_idx = [idx for idx, value in enumerate(values) if value in pareto_front] + + min_loss, min_pos = float('inf'), float('inf') + best_model_loss, best_model_pos = None, None + + for idx, model in enumerate(history): + if idx not in pareto_front_idx: continue + + if model['min_loss'] <= min_loss: + min_loss = model['min_loss'] + best_model_loss = model + + if model['pos_err'] <= min_pos: + min_pos = model['pos_err'] + best_model_pos = model + + print(f"Best Non-Dominated Positional Loss: {min_pos}") + save_model(best_model_pos['model'], path = f"{MODEL_SAVE_PATH[:-3]}_positional_pareto.pt") + + print(f"Best Non-Dominated Joint Loss: {min_loss}") + save_model(best_model_loss['model'], path = f"{MODEL_SAVE_PATH[:-3]}_joint_pareto.pt") + + if PLOT: + for idx in pareto_front_idx: + current = history[idx] + print(f"Model: {current['model']}\nJoint: {current['min_loss']}, Positional: {current['pos_err']}\n") + + plt.scatter([value[0] for value in values], + [value[1] for value in values], + c = ["red" if value in pareto_front else "blue" for value in values]) + + plt.xlabel("Joint Loss") + plt.ylabel("Positional Loss") + + plt.show() + + return best_model_loss, best_model_pos + +def run_nas(train_set, test_set): + global LEARNING_RATE + + HISTORY = [] + + lr_range = [1e-1, 5e-3, 1e-4, None] + + for iter in tqdm(range(NAS_iter)): + print(f"Iteration {iter}") + model = create_model(INPUTS, OUTPUTS) + + for initial_lr in lr_range: + # optimizer = torch.optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9) + + model = reinitialize_model(model) + + lr = initial_lr if initial_lr is not None else lr_range[0] + optimizer = torch.optim.Adam(model.parameters(), lr = lr) + scheduler = None if initial_lr is not None else optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1) + + best_loss = float('inf') + for _ in range(EPOCHS): + train(train_set, model, optimizer) + test_loss = test(test_set, model) + + if scheduler is not None: + scheduler.step() + + if test_loss <= best_loss: + best_loss = test_loss + + pos_err = dataset_pos_error(test_set, model) + + model_iter = { + "lr": initial_lr, + "min_loss": best_loss, + "pos_err": pos_err, + "model": model, + "model_state": model.state_dict() + } + + HISTORY.append(model_iter) + + rospy.sleep(0.5) + + model1, model2 = optimal_pareto(HISTORY) + + evaluate_model(model1, train_set, test_set, name = "metrics_joint.json") + evaluate_model(model2, train_set, test_set, name = "metrics_pos.json") + + +def reinitialize_model(model): + for layer in model.children(): + if hasattr(layer, 'reset_parameters'): + layer.reset_parameters() + + return model + + +def training_loop(train_set, test_set): + global SCHEDULER + + # if RUN_NAS: + # run_nas(train_set, test_set) + # return + + + model = nn.Sequential( + nn.Linear(4, 100), + nn.ReLU(), + nn.Linear(100, 4) + ) + + print(model) + + optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) + SCHEDULER = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) + + print("\nTraining Hyperparameters:") + print(f"-> Model create with 7 inputs and 4 outputs") + print(f"-> Training Epochs: {EPOCHS}") + print(f"-> Adam Optimizer (initial learning rate of {LEARNING_RATE})") + print(f"-> Cost Function based on {criterion} loss") + print(f"-> Scheduler: {SCHEDULER}\n") + + ### Re-randomize the weights if model architecture loaded + model = reinitialize_model(model) + + best_model = None + history = { + "train_loss": [], + "test_loss": [], + "pos_test_loss": [] + } + + for epoch in range(EPOCHS): + train_loss = train(train_set, model, optimizer) + test_loss = test(test_set, model) + + if epoch % CHECKPOINT_LOG == 0: + print(f"[Epoch {epoch} of {EPOCHS}]") + print(f"LR: {optimizer.param_groups[0]['lr']}") + print(f"Training Loss: {train_loss}, Test Loss: {test_loss}") + + + pos_err = dataset_pos_error(test_set, model) + + print(f"Positional Test Loss: {pos_err}") + print("-----------------------------------------\n") + + best_model = { + 'epoch': epoch, + 'train_loss': train_loss, + 'test_loss': test_loss, + 'pos_err': pos_err, + 'model': model + } + + history['train_loss'].append(train_loss) + history['test_loss'].append(test_loss) + history['pos_test_loss'].append(pos_err) + + if SCHEDULER: + SCHEDULER.step() + + best_model['history'] = history + save_model(best_model['model']) + + return best_model + +def load_model(path): + model = torch.jit.load(path) + return model + +# takes in a module and applies the specified weight initialization +def weights_init_uniform(m): + classname = m.__class__.__name__ + # for every Linear layer in a model.. + if classname.find('Linear') != -1: + # apply a uniform distribution to the weights and a bias=0 + m.weight.data.uniform_(0.0, 1.0) + m.bias.data.fill_(0) + +if __name__ == '__main__': + rospy.init_node("training") + kinematics_pub = rospy.Publisher("evaluation", Joints, queue_size = 10) + rospy.sleep(1) + + try: + if validate_params(): + dataset = {} + with open(DATASET_PATH, "rb") as input_file: + dataset = pickle.load(input_file) + print(f"There are {len(dataset)} points in the dataset") + + train_set, test_set = process_dataset(dataset) + + + print("Training starting...") + model_dict = training_loop(train_set, test_set) + + + if EVALUATE: + print("Evaluation starting...") + evaluate_model(model_dict, train_set, test_set) + + except rospy.ROSException as e: + rospy.logwarn(f"ROS Exception thrown: {e}") diff --git a/pose_estimation/scripts/training_data.py b/open_manipulator_cv_controller/scripts/training_data.py similarity index 74% rename from pose_estimation/scripts/training_data.py rename to open_manipulator_cv_controller/scripts/training_data.py index 40f85697165cd71b7201eccd076bb913cdf87532..8805ae9ecae05ee1137027911c6cdedf0fde6fcc 100755 --- a/pose_estimation/scripts/training_data.py +++ b/open_manipulator_cv_controller/scripts/training_data.py @@ -1,5 +1,6 @@ import pickle import rospy +import random import tf import cv2 import math @@ -14,7 +15,7 @@ from tqdm import tqdm from tf.transformations import quaternion_matrix, translation_matrix from geometry_msgs.msg import Point32 from geometry_msgs.msg import Pose -from pose_estimation.msg import JointPositions +from open_manipulator_cv_controller.msg import JointPositions, ManipulatorPoses from sensor_msgs.msg import PointCloud from open_manipulator_msgs.msg import KinematicsPose from open_manipulator_msgs.srv import SetKinematicsPose, SetJointPosition, SetJointPositionRequest @@ -27,11 +28,11 @@ TRAINING_FILE = rospy.get_param('/training_data/training_file') OUT_OF_RANGE_THRESHOLD = 0.1 THRESHOLD = 2 -NOISE = 0.03 +NOISE = 0.025 -input_file = os.path.expanduser(f"~/catkin_ws/src/pose_estimation/data/{FILENAME}") -training_file = os.path.expanduser(f"~/catkin_ws/src/pose_estimation/data/{TRAINING_FILE}") +input_file = os.path.expanduser(f"~/catkin_ws/src/open_manipulator_cv_controller/data/{FILENAME}") +training_file = os.path.expanduser(f"~/catkin_ws/src/open_manipulator_cv_controller/data/{TRAINING_FILE}") mp_pose = mp.solutions.pose @@ -285,23 +286,40 @@ def verify_inputs(): return verify +def create_kinematics_pose_msg(loc, angle): + pose = Pose() + pose.position.x, pose.position.y, pose.position.z = loc[0], loc[1], loc[2] + + orientation = tf.transformations.quaternion_from_euler(0, angle, 0) + pose.orientation.x, pose.orientation.y, pose.orientation.z, pose.orientation.w = orientation[0], orientation[1], orientation[2], orientation[3] + + kinematics_pose = KinematicsPose() + kinematics_pose.pose = pose + + return kinematics_pose + def data_gather(): # Reading the pickle file and saving its content as a dictionary - ### TODO: Function + ### TODO: Group Function rospy.loginfo("Reading the file...") + with open(input_file, 'rb') as handle: captured_keypoints = pickle.load(handle) + rospy.loginfo("File read successfully") - - kinematics_pub = rospy.Publisher('captured_keypoints', KinematicsPose, queue_size = 10) + + kinematics_pub = rospy.Publisher('captured_keypoints', ManipulatorPoses, queue_size = 10) for idx in captured_keypoints.keys(): rospy.loginfo(f"Processing video with {idx}") - points = captured_keypoints[idx]['points'] + if 'points' not in captured_keypoints[idx] or 'calib' not in captured_keypoints[idx]: + continue + + points = captured_keypoints[idx]['points'] + rospy.loginfo(f"There are {len(points)} points") - # TODO: Correct calibration ? Noise? - calib = 1.0 - captured_keypoints[idx]['calib'] + 0.025 + calib = captured_keypoints[idx]['calib'] for point_idx, point in enumerate(points): if VIDEO_SHOW: @@ -342,54 +360,71 @@ def data_gather(): # Getting the desired location desired_loc = point_to_np(relative_manipulator).flatten() + - pose = Pose() - pose.position.x = desired_loc[0] - pose.position.y = desired_loc[1] - pose.position.z = desired_loc[2] - + original_loc = shift_keypoints(point[WRIST], point[SHOULDER]) * calib + original_loc[0] = -original_loc[0] - orientation = tf.transformations.quaternion_from_euler(0, angle, 0) - pose.orientation.x = orientation[0] - pose.orientation.y = orientation[1] - pose.orientation.z = orientation[2] - pose.orientation.w = orientation[3] + manipualtor_data = ManipulatorPoses() + if random.random() < 0.75: + for i in range(2): + random_angle = random.uniform(-math.pi, math.pi) + manipualtor_data.originalManipulatorPose = create_kinematics_pose_msg(original_loc, random_angle) + manipualtor_data.processedManipulatorPose = create_kinematics_pose_msg(desired_loc, random_angle) - kinematics_pose = KinematicsPose() - kinematics_pose.pose = pose + lock.acquire() + kinematics_pub.publish(manipualtor_data) + + ## No angle + if random.random() < 0.5: + manipualtor_data.originalManipulatorPose = create_kinematics_pose_msg(original_loc, 0.0) + manipualtor_data.processedManipulatorPose = create_kinematics_pose_msg(desired_loc, 0.0) + lock.acquire() + kinematics_pub.publish(manipualtor_data) + + manipualtor_data.originalManipulatorPose = create_kinematics_pose_msg(original_loc, angle) + manipualtor_data.processedManipulatorPose = create_kinematics_pose_msg(desired_loc, angle) + # Won't unlock until received a message back lock.acquire() - kinematics_pub.publish(kinematics_pose) - ########################################### + kinematics_pub.publish(manipualtor_data) def vector_angle(v1, v2): - """ Angle between two 2D vectors """ - unit_v1 = v1 / np.linalg.norm(v1) - unit_v2 = v2 / np.linalg.norm(v2) - dot_product = np.dot(unit_v1, unit_v2) - angle = np.arccos(dot_product) + """ Angle between two 2D vectors """ + unit_v1 = v1 / np.linalg.norm(v1) + unit_v2 = v2 / np.linalg.norm(v2) + dot_product = np.dot(unit_v1, unit_v2) + angle = np.arccos(dot_product) + + if v2[1] > 0: + angle = -angle + + return angle - if v2[1] < 0: - angle = -angle +def process_joint_positions(joint_position): + save = True if joint_position.success and len(joint_position.jointPositions) != 0 else False - return angle + # print(f"Success: {joint_position.success}") -def process_joint_positions(joint_position): - save = True if joint_position.success or len(joint_position.jointPositions) != 0 else False - if save: position = joint_position.manipulatorPose.pose.position - position.y = vector_angle(np.array([1,0]), np.array([position.x, position.y])) - TRAINING_DATA.append({ - "jointPositions": joint_position.jointPositions, - "manipulatorPositions": position, - "angle": joint_position.manipulatorPose.pose.orientation - }) - else: - rospy.logerr(f"Point out of range: {joint_position.manipulatorPose.pose.position}") + if any([position.x, position.y, position.z]) != 0.0: + + joint_position.jointPositions[0].angle = vector_angle(np.array([1,0]), np.array([position.x, position.y])) + + orientation = joint_position.manipulatorPose.pose.orientation + joint_position.jointPositions[3].angle = tf.transformations.euler_from_quaternion([orientation.x, orientation.y, orientation.z, orientation.w])[1] + + TRAINING_DATA.append({ + "jointPositions": joint_position.jointPositions, + "manipulatorPositions": position, + "angle": orientation + }) + # else: + # rospy.logerr(f"Point out of range: {joint_position.manipulatorPose.pose.position}. DISTANCE: {dist}") lock.release() @@ -400,17 +435,21 @@ if __name__ == '__main__': rospy.init_node(node) rospy.Subscriber("inverse_kinematics_keypoints", JointPositions, process_joint_positions) - try: - # rospy.loginfo("Sleeping for 1 second") - # rospy.sleep(1) - if verify_inputs(): data_gather() - + try: + if verify_inputs(): + data_gather() except rospy.ROSInterruptException as e: rospy.logwarn(f"Exception: {e}") lock.acquire() - rospy.loginfo("Saving training dataset") - with open(training_file, 'wb') as handle: - pickle.dump(TRAINING_DATA, handle, protocol=pickle.HIGHEST_PROTOCOL) + + if len(TRAINING_DATA) != 0: + rospy.loginfo(f"Saving training dataset with {len(TRAINING_DATA)} data samples into `{training_file}`") + with open(training_file, 'wb') as handle: + pickle.dump(TRAINING_DATA, handle, protocol=pickle.HIGHEST_PROTOCOL) + + else: + rospy.logwarn(f"No training data") + lock.release() diff --git a/pose_estimation/setup.py b/open_manipulator_cv_controller/setup.py similarity index 100% rename from pose_estimation/setup.py rename to open_manipulator_cv_controller/setup.py diff --git a/pose_estimation/src/kinematics_solver.cpp b/open_manipulator_cv_controller/src/kinematics_solver.cpp similarity index 72% rename from pose_estimation/src/kinematics_solver.cpp rename to open_manipulator_cv_controller/src/kinematics_solver.cpp index b7e1a6db372c0218798a4cb633010bc6ca6e4107..0cb4f02b24658b7b6caea6b641330e0f5f8050fa 100755 --- a/pose_estimation/src/kinematics_solver.cpp +++ b/open_manipulator_cv_controller/src/kinematics_solver.cpp @@ -1,5 +1,5 @@ -#include "pose_estimation/kinematics_solver.h" +#include "open_manipulator_cv_controller/kinematics_solver.h" KinematicsSolver::KinematicsSolver(bool using_platform, std::string usb_port, std::string baud_rate, double control_period) { @@ -12,7 +12,7 @@ KinematicsSolver::KinematicsSolver(bool using_platform, std::string usb_port, st open_manipulator_.addKinematics(kinematics_); log::info("Kinematics Solver Set 'SolverUsingCRandSRPoisionOnlyJacobian'"); - ik_pub_ = n_.advertise<pose_estimation::JointPositions>("inverse_kinematics_keypoints", 1000); + ik_pub_ = n_.advertise<open_manipulator_cv_controller::JointPositions>("inverse_kinematics_keypoints", 1000); fk_pub_ = n_.advertise<open_manipulator_msgs::KinematicsPose>("forward_kinematics_keypoints", 1000); log::info("Completed setting up the Kinematics Solver"); @@ -20,52 +20,40 @@ KinematicsSolver::KinematicsSolver(bool using_platform, std::string usb_port, st void KinematicsSolver::solveIK(Pose target_pose, const open_manipulator_msgs::KinematicsPose &manipulator_pose) { - pose_estimation::JointPositions msg; + open_manipulator_cv_controller::JointPositions msg; bool solved = open_manipulator_.solveInverseKinematics("gripper", target_pose, goal_joint_value_); int idx = 0; auto names = open_manipulator_.getManipulator()->getAllActiveJointComponentName(); - std::cout << "Computed Joints:" << std::endl; - for (auto &point : *goal_joint_value_) { - pose_estimation::JointAngle joint; + open_manipulator_cv_controller::JointAngle joint; joint.angle = point.position; joint.name = names.at(idx); msg.jointPositions.push_back(joint); - std::cout << joint.angle << std::endl; + // std::cout << joint.angle << std::endl; idx++; } - - std::cout << "--------------------------" << std::endl; - - msg.success = solved; - msg.manipulatorPose = manipulator_pose; + msg.success = solved; ik_pub_.publish(msg); - log::info("Published the point"); } -void KinematicsSolver::keypointsInverseCallback(const open_manipulator_msgs::KinematicsPose &msg) +void KinematicsSolver::keypointsInverseCallback(const open_manipulator_cv_controller::ManipulatorPoses &msg) { Eigen::Vector3d position; - position[0] = msg.pose.position.x; - position[1] = 0.0; // TODO: msg.pose.position.y; ?? - position[2] = msg.pose.position.z; - - std::cout << "Received a position:" << std::endl; - std::cout << msg.pose.position.x << std::endl; - std::cout << msg.pose.position.y << std::endl; - std::cout << msg.pose.position.z << std::endl; + position[0] = msg.processedManipulatorPose.pose.position.x; + position[1] = 0.0; // TODO: msg.pose.position.y; + position[2] = msg.processedManipulatorPose.pose.position.z; Pose target_pose = {position}; - solveIK(target_pose, msg); + solveIK(target_pose, msg.originalManipulatorPose); } -void KinematicsSolver::solveFK(const pose_estimation::Joints &msg) +void KinematicsSolver::solveFK(const open_manipulator_cv_controller::Joints &msg) { open_manipulator_msgs::KinematicsPose pub_msg; @@ -80,7 +68,7 @@ void KinematicsSolver::solveFK(const pose_estimation::Joints &msg) fk_pub_.publish(pub_msg); } -void KinematicsSolver::keypointsForwardCallback(const pose_estimation::Joints &msg) +void KinematicsSolver::keypointsForwardCallback(const open_manipulator_cv_controller::Joints &msg) { ros::Duration(0.1).sleep(); solveFK(msg); diff --git a/pose_estimation/data/collected_data.pickle b/pose_estimation/data/collected_data.pickle deleted file mode 100644 index d0224b1b532ce84a296691231b5a1a718e3c725a..0000000000000000000000000000000000000000 Binary files a/pose_estimation/data/collected_data.pickle and /dev/null differ diff --git a/pose_estimation/data/gesture_recognizer.task b/pose_estimation/data/gesture_recognizer.task deleted file mode 100644 index 1c6adc8b497d3e6d6603dfc7c864136d75f66e88..0000000000000000000000000000000000000000 Binary files a/pose_estimation/data/gesture_recognizer.task and /dev/null differ diff --git a/pose_estimation/data/keypoint_dataset.pickle b/pose_estimation/data/keypoint_dataset.pickle deleted file mode 100644 index 7f5559578e526810010f2f533a970ed0b411b88c..0000000000000000000000000000000000000000 Binary files a/pose_estimation/data/keypoint_dataset.pickle and /dev/null differ diff --git a/pose_estimation/data/models/joint_predict.pt b/pose_estimation/data/models/joint_predict.pt deleted file mode 100644 index 13efa4648168af601e5153659e45ce22cafc5e7f..0000000000000000000000000000000000000000 Binary files a/pose_estimation/data/models/joint_predict.pt and /dev/null differ diff --git a/pose_estimation/include/pose_estimation/inverse_kinematics_solver.h b/pose_estimation/include/pose_estimation/inverse_kinematics_solver.h deleted file mode 100644 index ee92208e165a50c2ea2baa7e0206f5f30fdf41e8..0000000000000000000000000000000000000000 --- a/pose_estimation/include/pose_estimation/inverse_kinematics_solver.h +++ /dev/null @@ -1,29 +0,0 @@ -#pragma once - -#include "open_manipulator_libs/kinematics.h" -#include "open_manipulator_libs/open_manipulator.h" -#include "open_manipulator_msgs/GetKinematicsPose.h" -#include "open_manipulator_msgs/SetKinematicsPose.h" -#include "pose_estimation/JointPositions.h" -#include <robotis_manipulator/robotis_manipulator.h> -#include "ros/ros.h" - -class InverseKinematicsSolver -{ - public: - InverseKinematicsSolver(bool using_platform, std::string usb_port, std::string baud_rate, double control_period); - - void keypointsCallback(const open_manipulator_msgs::KinematicsPose& msg); - - ros::NodeHandle getNodeHandle() const { return n_; } - - private: - OpenManipulator open_manipulator_; - std::vector<JointValue>* goal_joint_value_; - - ros::NodeHandle n_; - ros::Publisher ik_pub_; - robotis_manipulator::Kinematics *kinematics_; - - void solveIK(Pose target_pose, const open_manipulator_msgs::KinematicsPose& manipulator_pose); -}; \ No newline at end of file diff --git a/pose_estimation/launch/pose_estimation.launch b/pose_estimation/launch/pose_estimation.launch deleted file mode 100644 index 083ab2efc072d6bae3344c18f4575adddddf7647..0000000000000000000000000000000000000000 --- a/pose_estimation/launch/pose_estimation.launch +++ /dev/null @@ -1,4 +0,0 @@ -<launch> - <node name="arm_keypoint_capture" pkg="pose_estimation" type="arm_keypoint_capture.py" output="screen"/> - <node name="pose_estimation_control" pkg="pose_estimation" type="pose_estimation_control.py" output="screen"/> -</launch> diff --git a/pose_estimation/msg/Keypoint.msg b/pose_estimation/msg/Keypoint.msg deleted file mode 100644 index a2918cdd3d9a555afe1590b321ed760e4bd5703a..0000000000000000000000000000000000000000 --- a/pose_estimation/msg/Keypoint.msg +++ /dev/null @@ -1,5 +0,0 @@ -int32 landmark -float64 x -float64 y -float64 z -float64 visibility \ No newline at end of file diff --git a/pose_estimation/msg/Keypoints.msg b/pose_estimation/msg/Keypoints.msg deleted file mode 100644 index e5f9f39c82415cd6c43c6e33b34c2aedebceff81..0000000000000000000000000000000000000000 --- a/pose_estimation/msg/Keypoints.msg +++ /dev/null @@ -1 +0,0 @@ -Keypoint[] keypoints \ No newline at end of file diff --git a/pose_estimation/msg/SphericalCoordinates.msg b/pose_estimation/msg/SphericalCoordinates.msg deleted file mode 100644 index 7e14a368a901bfbc4913ec75a16b0e1e2ac7e86e..0000000000000000000000000000000000000000 --- a/pose_estimation/msg/SphericalCoordinates.msg +++ /dev/null @@ -1,3 +0,0 @@ -float64 distance -float64 theta -float64 phi \ No newline at end of file diff --git a/pose_estimation/scripts/evaluate.py b/pose_estimation/scripts/evaluate.py deleted file mode 100644 index e3552206e20833703487661666903a16fb3d58c6..0000000000000000000000000000000000000000 --- a/pose_estimation/scripts/evaluate.py +++ /dev/null @@ -1,198 +0,0 @@ -import torch -import os -import pickle -import threading -import rospy - -import numpy as np -import matplotlib.pyplot as plt -import torch.nn as nn -import torch.nn.functional as F - -from open_manipulator_msgs.msg import KinematicsPose -from pose_estimation.msg import Joints -# from training import Net, process_dataset, list_to_tensor - - -#### TODO: Repeated code #### - -class Net(nn.Module): - - def __init__(self, input_num, output_num): - super(Net, self).__init__() - self.l1 = nn.Linear(input_num, 32) - # self.l2 = nn.Linear(32, 32) - self.output = nn.Linear(32, output_num) - # self.dropout = nn.Dropout(0.2) - - def forward(self, x): - x = F.tanh(self.l1(x)) - # x = F.tanh(self.dropout(self.l2(x))) - return self.output(x) - -def list_to_tensor(arr): - return torch.tensor(arr) - -def process_dataset(dataset): - inputs = [] - labels = [] - - for data in dataset: - actual_values = [] - for joint in data['jointPositions']: - actual_values.append(joint.angle) - - labels.append(actual_values) - - man_pos = data['manipulatorPositions'] - man_angle = data['angle'] - x = [man_pos.x, man_pos.y, man_pos.z, man_angle.x, man_angle.y, man_angle.z, man_angle.w] - - inputs.append(x) - - inputs, labels = remove_duplicates(inputs, labels) - - inputs = list_to_tensor(np.array(inputs).astype(np.float32)) - labels = list_to_tensor(labels) - - return (inputs, labels) - -def remove_duplicates(inputs, labels): - processed_inputs, processed_labels = [], [] - - for i in range(len(inputs)): - - duplicates = [] - for j in range(i+1, len(inputs)): - duplicates.append(inputs[i] == inputs[j]) - - if np.array(duplicates).any() == False: - processed_inputs.append(inputs[i]) - processed_labels.append(labels[i]) - - print(f"{len(inputs) - len(processed_inputs)} duplicates have been removed") - return processed_inputs, processed_labels - - -############################################ - - - - -model_path = os.path.expanduser("~/catkin_ws/src/pose_estimation/data/models/joint_predict_all.pt") -dataset_path = os.path.expanduser("~/catkin_ws/src/pose_estimation/data/keypoint_dataset.pickle") - -def plot_history(history): - if history: - plt.plot(history) - plt.show() - -def load_model(model_path, shape): - model_dict = torch.load(model_path) - - model = Net(shape[0], shape[1]) - model.load_state_dict(model_dict['model_state_dict']) - model.eval() - - loss = model_dict['loss'] - - print("Loading the model...") - print(f"Loaded model error: {loss}") - - history = None - if 'history' in model_dict: - history = model_dict['history'] - - return model, history - -def predict(model, inputs): - predictions = [] - - with torch.no_grad(): - for input in inputs: - pred = model(input) - predictions.append(pred.numpy()) - - return list_to_tensor(np.array(predictions).astype(np.float32)) - -def per_joint_error(labels, predictions, loss_fn = nn.MSELoss()): - errors = {} - joint_labels, joint_predictions = labels.transpose(1,0), predictions.transpose(1,0) - - for joint in range(joint_labels.shape[0]): - error = loss_fn(joint_labels[joint], joint_predictions[joint]) - errors[f"joint{joint+1}"] = error.item() - - print(f"\n-------------------------------\nPer Joint Error: \n{errors}") - print("-------------------------------\n") - - -from tqdm import tqdm - -def calcualte_fk(pub, predictions): - - for prediction in tqdm(predictions): - msg = Joints() - joints = [val.item() for val in prediction] - msg.angles = joints - - # lock.acquire() - pub.publish(msg) - rospy.sleep(0.2) - - rospy.sleep(5) - -def positional_error(actual, predicted): - print(actual, predicted) - - - - ## L2 loss between the two positions - # dist = 0.0 - # count = 0.0 - # for l_a, l_p in zip(actual, predicted): - # dist += np.linalg.norm(l_a[:3] - l_p) - # count += 1.0 - - # print(f"Average positional error (L2 loss between predicted and actual gripper position): {dist / count}") - - -def process_manipulator_positions(manipulator_pose): - position = manipulator_pose.pose.position - PREDICTED_POSITIONS.append([position.x, position.y, position.z]) - - -if __name__ == '__main__': - PREDICTED_POSITIONS = [] - # lock = threading.Lock() - rospy.init_node("evaluation") - rospy.Subscriber("forward_kinematics_keypoints", KinematicsPose, process_manipulator_positions) - - rospy.sleep(1) - - kinematics_pub = rospy.Publisher("evaluation", Joints, queue_size = 10) - - dataset = {} - with open(dataset_path, "rb") as input_file: - dataset = pickle.load(input_file) - - inputs, labels = process_dataset(dataset) - model, history = load_model(model_path, shape = (len(inputs[0]), len(labels[0]))) - predictions = predict(model, inputs) - - ## Plot Overall Loss Graph - plot_history(history) - - ## Calculate error for each joint - loss_fn = nn.HuberLoss() - per_joint_error(labels, predictions, loss_fn) - - ## Calculate error between the predicted and final position with the use of forward kinematics - calcualte_fk(kinematics_pub, predictions) - positional_error(inputs.numpy(), np.array(PREDICTED_POSITIONS)) - - - - - - \ No newline at end of file diff --git a/pose_estimation/scripts/helpers/training_help.py b/pose_estimation/scripts/helpers/training_help.py deleted file mode 100755 index b54b1e41b16f0860d5182bb5fc5b810432ef5a26..0000000000000000000000000000000000000000 --- a/pose_estimation/scripts/helpers/training_help.py +++ /dev/null @@ -1,15 +0,0 @@ -import torch.nn as nn -import torch.nn.functional as F - -class Net(nn.Module): - def __init__(self, input_num, output_num): - super(Net, self).__init__() - self.l1 = nn.Linear(input_num, 32) - # self.l2 = nn.Linear(32, 32) - self.output = nn.Linear(32, output_num) - # self.dropout = nn.Dropout(0.2) - - def forward(self, x): - x = F.tanh(self.l1(x)) - # x = F.tanh(self.dropout(self.l2(x))) - return self.output(x) \ No newline at end of file diff --git a/pose_estimation/scripts/training.py b/pose_estimation/scripts/training.py deleted file mode 100644 index 0fe00bfd28f028b7dcce7b7ebbdfe0f9a1fddc91..0000000000000000000000000000000000000000 --- a/pose_estimation/scripts/training.py +++ /dev/null @@ -1,449 +0,0 @@ -import pickle -import rospy -import os -import pypareto -import torch -import torch.nn as nn -import torch.optim as optim -import numpy as np -import matplotlib.pyplot as plt - -from tqdm import tqdm -from random import choice, random, uniform -from open_manipulator_msgs.msg import KinematicsPose -from pose_estimation.msg import Joints - -from helpers.training_help import Net - - -dataset_name = rospy.get_param('/training/dataset') -DATASET_PATH = os.path.expanduser(f"~/catkin_ws/src/pose_estimation/data/{dataset_name}") - -model_name = rospy.get_param('/training/model') -MODEL_SAVE_PATH = os.path.expanduser(f"~/catkin_ws/src/pose_estimation/data/models/{model_name}") - -criterion = rospy.get_param('/training/loss') -scheduler = rospy.get_param('/training/scheduler') -learning_rate = rospy.get_param('/training/initial_lr') -EPOCHS = rospy.get_param('/training/epochs') - -PLOT = rospy.get_param('/training/plot') -EVALUATE = rospy.get_param('/training/evaluate') -VALIDATE = rospy.get_param('/training/validate') - -RUN_NAS = rospy.get_param('/training/NAS') -NAS_iter = rospy.get_param('/training/NAS_iter') - -LEARNING_RATE = 1e-1 -CRITERION = None -SCHEDULER = None -CHECKPOINT_LOG = 1 - -def validate_params(): - global CRITERION, SCHEDULER, LEARNING_RATE, CHECKPOINT_LOG - - if type(EPOCHS) != int: - print(f"Epochs have to be of integer type") - return False - - if type(EVALUATE) != bool or type(PLOT) != bool or type(VALIDATE) != bool: - print(f"`evaluate`, `validate` and `plot` flags need to be booleans") - return False - try: - LEARNING_RATE = float(learning_rate) - except Exception as conversion_exp: - print(f"Learning rate incorrect. Exception when converting: {conversion_exp}") - return False - - if criterion == "mse": - CRITERION = nn.MSELoss() - elif criterion == "huber": - CRITERION = nn.HuberLoss() - else: - print(f"Given loss [{criterion}] not valid") - return False - - if VALIDATE: - CHECKPOINT_LOG = 1 - else: - CHECKPOINT_LOG = 5 - - if scheduler == "None": - SCHEDULER = None - # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=25, gamma=9e-1) - else: - print(f"Given scheduler [{scheduler}] not valid") - return False - - return True - - -def list_to_tensor(arr): - return torch.tensor(arr) - -def process_dataset(dataset): - inputs = [] - labels = [] - - for data in dataset: - actual_values = [] - for joint in data['jointPositions']: - actual_values.append(joint.angle) - - labels.append(actual_values) - - man_pos = data['manipulatorPositions'] - man_angle = data['angle'] - x = [man_pos.x, man_pos.y, man_pos.z, man_angle.x, man_angle.y, man_angle.z, man_angle.w] - - inputs.append(x) - - inputs, labels = remove_duplicates(inputs, labels) - - inputs = list_to_tensor(np.array(inputs).astype(np.float32)) - labels = list_to_tensor(labels) - - return (inputs, labels) - -def remove_duplicates(inputs, labels): - processed_inputs, processed_labels = [], [] - - for i in range(len(inputs)): - - duplicates = [] - for j in range(i+1, len(inputs)): - duplicates.append(inputs[i] == inputs[j]) - - if np.array(duplicates).any() == False: - processed_inputs.append(inputs[i]) - processed_labels.append(labels[i]) - - print(f"{len(inputs) - len(processed_inputs)} duplicates have been removed") - return processed_inputs, processed_labels - - -def train(inputs, labels, model, optimizer): - running_loss = 0.0 - running_pos_loss = 0.0 - count = 0 - - model.train() - - for i, data in enumerate(zip(inputs, labels)): - # get the inputs; data is a bath of inputs and labels - input, label = data - - # zero the parameter gradients - optimizer.zero_grad() - - # forward + backward + optimize - outputs = model(input) - loss = CRITERION(outputs, label) - loss.backward() - optimizer.step() - - running_loss += loss.item() - - if VALIDATE: - running_pos_loss += positional_loss(outputs, input).item() - - count += 1 - - train_loss = running_loss / count - valid_loss = running_pos_loss / count - - return train_loss, valid_loss - -def save_model(model_dict): - print(f"Best model has been saved: {MODEL_SAVE_PATH} \n") - print(f" -> Best Loss: {model_dict['train_loss']}") - torch.save(model_dict, MODEL_SAVE_PATH) - -def per_joint_error(labels, predictions, loss_fn = nn.MSELoss()): - errors = {} - joint_labels, joint_predictions = labels.transpose(1,0), predictions.transpose(1,0) - - for joint in range(joint_labels.shape[0]): - error = loss_fn(joint_labels[joint], joint_predictions[joint]) - errors[f"joint{joint+1}"] = error.item() - - print(f"\n-------------------------------\nPer Joint Error: \n{errors}") - print("-------------------------------\n") - -def plot_history(history): - train_loss = history['train_loss'] - plt.plot(train_loss) - plt.show() - - if VALIDATE: - valid_loss = history['valid_loss'] - plt.plot(valid_loss) - plt.show() - -def predict(model, inputs): - predictions = [] - - with torch.no_grad(): - for input in inputs: - pred = model(input) - predictions.append(pred.numpy()) - - return list_to_tensor(np.array(predictions).astype(np.float32)) - -def dataset_pos_error(predictions, inputs): - error = 0.0 - count = 0.0 - for prediction, input in zip(predictions, inputs): - error += positional_loss(prediction, input).item() - count += 1 - - print(f"\n-------------------------------\nPositional Mean Error: {error / count}") - print("-------------------------------\n") - return(error / count) - -def evaluate_model(model_dict, dataset): - inputs, labels = process_dataset(dataset) - - print("Loading the best model...") - # model = Net(len(inputs[0]), len(labels[0])) - # model.load_state_dict(model_dict['model_state_dict']) - - model = model_dict['model'] - model.eval() - - with torch.no_grad(): - predictions = predict(model, inputs) - - valid_loss = "" - if VALIDATE: - valid_loss = f"-> {model_dict['valid_loss']} positional error" - - print(f"""Best model was trained with: - -> {model_dict['train_loss']} per joint error - {valid_loss}""") - - history = model_dict['history'] - - if PLOT: plot_history(history) - - per_joint_error(labels, predictions, CRITERION) - - if not VALIDATE: - dataset_pos_error(inputs, predictions) - -def solve_fk(prediction): - global kinematics_pub - - msg = Joints() - joints = [val.item() for val in prediction] - msg.angles = joints - - kinematics_pub.publish(msg) - return_msg = rospy.wait_for_message('/forward_kinematics_keypoints', KinematicsPose) - position = return_msg.pose.position - - return torch.tensor([position.x, position.y, position.z]) - - -def positional_loss(prediction, inputs): - predicted_position = solve_fk(prediction) - actual_position = inputs[:3] - - cost_fn = nn.HuberLoss() - cost = cost_fn(actual_position, predicted_position) - - return cost - - -def create_model(input_size, output_size): - m_choices = [8, 16, 32, 64, 128] - n_choices = [8, 16, 32, 64, 128, 256] - l_choices = [8, 16, 32, 64, 128] - layer_prob = [0.9, 0.6, 0.6] - - activation_choices = [nn.Sigmoid(), nn.Tanh(), nn.ReLU(), nn.ELU(), None] - dropout_range = (0.0, 0.5) - - layers = [choice(m_choices), choice(n_choices), choice(l_choices)] - act_f = choice(activation_choices) - - modules = [] - prev = input_size - - for layer_num, layer in enumerate(layers): - - if random() <= layer_prob[layer_num]: - modules.append(nn.Linear(prev, layer)) - - dropout = round(uniform(dropout_range[0], dropout_range[1]), 2) - modules.append(nn.Dropout(dropout)) - if act_f is not None: - modules.append(act_f) - prev = layer - - modules.append(nn.Linear(prev, output_size)) - sequential = nn.Sequential(*modules) - - return sequential - -def optimal_pareto(history): - values = [] - - for idx, his in enumerate(history): - value = his['min_loss'], his['pos_err'] - values.append(value) - - chain = pypareto.Comparison(pypareto.by_value, pypareto.MaxMinList(pypareto.MaxMin.MIN, pypareto.MaxMin.MIN)).as_chain() - pareto_front = chain.split_by_pareto(values)[0] - - pareto_front_idx = [idx for idx, value in enumerate(values) if value in pareto_front] - mid = pareto_front_idx[int(round(len(pareto_front_idx) / 2, 0))] - - for idx in pareto_front_idx: - print(history[idx]) - - best_model = history[mid] - - if PLOT: - plt.scatter([value[0] for value in values], - [value[1] for value in values], - c = ["red" if value in pareto_front else "blue" for value in values]) - - plt.xlabel("Joint Loss") - plt.ylabel("Positional Loss") - - plt.show() - - return best_model - - - -def run_nas(inputs, labels): - global LEARNING_RATE - - HISTORY = [] - - lr_range = [1e-4, 5e-3, 1e-1] - - for iter in tqdm(range(NAS_iter)): - - best_model_iter = None - for initial_lr in lr_range: - model = create_model(inputs.shape[1], labels.shape[1]) - - local_history = [] - optimizer = torch.optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9) - - for epoch in range(EPOCHS): - loss, _ = train(inputs, labels, model, optimizer) - local_history.append(loss) - - - min_idx = 0 - for i in range(len(local_history)): - if local_history[i] <= local_history[min_idx]: - min_idx = i - - if best_model_iter is None or best_model_iter['min_loss'] >= local_history[min_idx]: - best_model_iter = { - "lr": initial_lr, - "min_loss": local_history[min_idx], - "best_epoch": min_idx, - "model": model - } - - ### Evaluate Positional Loss - predictions = predict(model, inputs) - pos_err = dataset_pos_error(inputs, predictions) - - best_model_iter['pos_err'] = pos_err - HISTORY.append(best_model_iter) - - best_model = optimal_pareto(HISTORY) - LEARNING_RATE = best_model['lr'] - return best_model['model'] - -def training_loop(dataset): - inputs, labels = process_dataset(dataset) - - if RUN_NAS: - model = run_nas(inputs, labels) - else: - model = Net(len(inputs[0]), len(labels[0])) - - print("\nTraining Hyperparameters:") - print(f"-> Model create with {len(inputs[0])} inputs and {len(labels[0])} outputs") - print(f"-> Training Epochs: {EPOCHS}") - print(f"-> Adam Optimizer (initial learning rate of {LEARNING_RATE})") - print(f"-> Cost Function based on {criterion} loss") - print(f"-> Scheduler: {SCHEDULER}\n") - - optimizer = optim.Adam(model.parameters(), lr = LEARNING_RATE) - - best_model = None - history = {"train_loss": []} - - if VALIDATE: - history['valid_loss'] = [] - - for epoch in range(EPOCHS): - - train_loss, val_loss = train(inputs, labels, model, optimizer) - - if epoch % CHECKPOINT_LOG == 0: - print(f'Epoch {epoch} loss: {train_loss}') - print(f"Learning Rate: {optimizer.param_groups[0]['lr']}") - if VALIDATE: - print(f"Positional Validation Loss: {val_loss}") - print("-----------------------------------------\n") - - if SCHEDULER: - SCHEDULER.step() - - loss_tag = "valid_loss" if VALIDATE else "train_loss" - loss = train_loss if not VALIDATE else val_loss - if best_model is None or loss <= best_model[loss_tag]: - best_model = { - 'epoch': epoch, - 'train_loss': train_loss, - 'model': model, - # 'model_state_dict': model.state_dict(), - 'optimizer_state_dict': optimizer.state_dict() - } - if VALIDATE: - best_model['valid_loss'] = val_loss - - history['train_loss'].append(train_loss) - - if VALIDATE: - history['valid_loss'].append(val_loss) - - best_model['history'] = history - - print('Finished Training') - save_model(best_model) - - return best_model - - -if __name__ == '__main__': - rospy.init_node("training") - kinematics_pub = rospy.Publisher("evaluation", Joints, queue_size = 10) - rospy.sleep(1) - - try: - if validate_params(): - dataset = {} - with open(DATASET_PATH, "rb") as input_file: - dataset = pickle.load(input_file) - print(f"There are {len(dataset)} points in the dataset") - - print("Training starting...") - model_dict = training_loop(dataset) - - if EVALUATE: - print("Evaluation starting...") - evaluate_model(model_dict, dataset) - - except Exception as e: - rospy.logwarn(f"Exception thrown: {e}") diff --git a/pose_estimation/src/inverse_kinematics_solver.cpp b/pose_estimation/src/inverse_kinematics_solver.cpp deleted file mode 100755 index 6e266aa06ba10cd3b0e6b4eb4bc65951e3ad1909..0000000000000000000000000000000000000000 --- a/pose_estimation/src/inverse_kinematics_solver.cpp +++ /dev/null @@ -1,72 +0,0 @@ - -#include "pose_estimation/inverse_kinematics_solver.h" - -InverseKinematicsSolver::InverseKinematicsSolver(bool using_platform, std::string usb_port, std::string baud_rate, double control_period) -{ - log::info("Setting up the IK Solver for Open Manipulator"); - - open_manipulator_.initOpenManipulator(using_platform, usb_port, baud_rate, control_period); - goal_joint_value_ = new std::vector<JointValue>(); - - kinematics_ = new kinematics::SolverUsingCRAndSRPositionOnlyJacobian(); - open_manipulator_.addKinematics(kinematics_); - log::info("Kinematics Solver Set 'SolverUsingCRandSRPoisionOnlyJacobian'"); - - ik_pub_ = n_.advertise<pose_estimation::JointPositions>("inverse_kinematics_keypoints", 1000); - - log::info("Completed setting up the IK Solver"); -} - -void InverseKinematicsSolver::solveIK(Pose target_pose, const open_manipulator_msgs::KinematicsPose& manipulator_pose) { - pose_estimation::JointPositions msg; - - // TODO: Debug Mode - // std::cout << target_pose.kinematic.position << std::endl; - bool solved = open_manipulator_.solveInverseKinematics("gripper", target_pose, goal_joint_value_); - - - // ? IF FAILED, CHECK THE CLOSEST POSITION - - - int idx = 0; - auto names = open_manipulator_.getManipulator()->getAllActiveJointComponentName(); - for(auto &point : *goal_joint_value_) { - pose_estimation::JointAngle joint; - joint.angle = point.position; - joint.name = names.at(idx); - msg.jointPositions.push_back(joint); - - idx++; - } - - msg.success = solved; - - msg.manipulatorPose = manipulator_pose; - ik_pub_.publish(msg); - log::info("Published the point"); - -} - -void InverseKinematicsSolver::keypointsCallback(const open_manipulator_msgs::KinematicsPose& msg) { - Eigen::Vector3d position; - position[0] = msg.pose.position.x; - position[1] = msg.pose.position.y; - position[2] = msg.pose.position.z; - - Pose target_pose = { position }; - solveIK(target_pose, msg); -} - - -int main(int argc, char **argv) -{ - ros::init(argc, argv, "inverse_kinematics_solver"); - - InverseKinematicsSolver ik_solver(false, "/dev/ttyUSB0", "1000000", 0.010); - - auto n = ik_solver.getNodeHandle(); - ros::Subscriber sub = n.subscribe("captured_keypoints", 100, &InverseKinematicsSolver::keypointsCallback, &ik_solver); - - ros::spin(); - return 0; -} \ No newline at end of file diff --git a/pose_estimation/test/test_movement.mp4 b/pose_estimation/test/test_movement.mp4 deleted file mode 100644 index 7bbdb2211eb91ccf2ff725a6f3481199dd756e24..0000000000000000000000000000000000000000 Binary files a/pose_estimation/test/test_movement.mp4 and /dev/null differ diff --git a/pose_estimation/test/test_movement_2.mp4 b/pose_estimation/test/test_movement_2.mp4 deleted file mode 100644 index 8fd7d20a6dfd5adf805242292b6ce509849dcba3..0000000000000000000000000000000000000000 Binary files a/pose_estimation/test/test_movement_2.mp4 and /dev/null differ