2504

Guanhua Wang

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

007: Low-Overhead Defense Against Spectre
Attacks via Program Analysis

, Sudipta Chattopadhyay ™, Ivan Gotovchits™, Tulika Mitra

Abstract—The Spectre vulnerability in modern processors has been widely reported. The key insight in this vulnerability is that
speculative execution in processors can be misused to access the secrets. Subsequently, even though the speculatively executed
instructions are squashed, the secret may linger in micro-architectural states such as cache, and can potentially be accessed by an
attacker via side channels. In this paper, we propose 007, a static analysis approach that can mitigate Spectre attacks by detecting
potentially vulnerable code snippets in program binaries and protecting them against the attack by patching them. Our key contribution
is to balance the concerns of effectiveness, analysis time and run-time overheads. We employ control flow extraction, taint analysis,
and address analysis to detect tainted conditional branches and speculative memory accesses. 007 can detect all fifteen purpose-built
Spectre-vulnerable code patterns [1], whereas Microsoft compiler with Spectre mitigation option can only detect two of them. We also
report the results of a large-scale study on applying 007 to over 500 program binaries (average binary size 261 KB) from different real-
world projects. We protect programs against Spectre attack by selectively inserting fences only at vulnerable conditional branches to

, and Abhik Roychoudhury

prevent speculative execution. Our approach is experimentally observed to incur around 5.9 percent performance overheads on

SPECint benchmarks.

Index Terms—Cache side-channel attacks, taint analysis, binary analysis, binary hardening, software security

1 INTRODUCTION

THE Spectre [2] wvulnerabilities in processors were
revealed in early 2018. The attacks that exploit these vul-
nerabilities can potentially affect almost all modern process-
ors irrespective of the vendor (Intel, AMD, ARM) and the
computer system (desktop, laptop, mobile) as long as the
processor performs speculative execution. Speculative exe-
cution [3] is an indispensable micro-architectural optimiza-
tions for performance enhancement, ubiquitous in almost
all modern processors except for the simplest micro-
controllers. It is an aggressive optimization where the
instructions are executed speculatively, but the temporary
results created by the speculatively executed instructions
are maintained in internal micro-architectural states that
cannot be accessed by software. The results are committed
to the programmer-visible architectural states (registers and
memory) only when the speculation is found to be correct;
otherwise, the internal micro-architectural states are
flushed. The most common example is that of the condi-
tional branches being predicted in hardware and the
instructions along the predicted branch path are executed

o G. Wang, T. Mitra, and A. Roychoudhury are with the National Univer-
sity of Singapore, Singapore 119077. E-mail: wangghge@gmail.com,
{tulika, abhik}@comp.nus.edu.sg.

o S. Chattopadhyay is with the Singapore University of Technology and
Design, Singapore 487372.

E-mail: sudipta_chattopadhyay@sutd.edu.sg.

o 1. Gotouchits is with Carnegie Mellon University, Pittsburgh, PA 15213

USA. E-mail: ivg@ieee.org.

Manuscript received 19 Mar. 2019; revised 11 July 2019; accepted 11 Nov.
2019. Date of publication 15 Nov. 2019; date of current version 12 Nov. 2021.
(Corresponding author: Abhik Roychoudhury.)

Recommended for acceptance by X. Zhang.

Digital Object Identifier no. 10.1109/TSE.2019.2953709

speculatively. Once the conditional branch direction is
resolved, the instructions along the speculative path are
squashed in case of wrong prediction.

Spectre attacks exploit speculation to deliberately target
the execution of certain “transient” instructions. These tran-
sient instructions are speculatively executed, and are tricked
to bring in secret data into the cache. These transient
instructions are subsequently squashed but the secret
remains, for example, in the cache. The attacker then care-
fully accesses the secret content (that is supposed to be hid-
den to the outside world) through different micro-
architectural covert channels, for example, cache side-chan-
nel [4]. The website [5] of Spectre states that “As [Spectre] is
not easy to fix, it will haunt us for a long time.”

We focus on identifying program binaries that are vul-
nerable to Spectre attack and patch those binaries as a miti-
gation technique with minimal performance overhead. We
present a comprehensive and scalable solution, called o007,
based on static program analysis. Our solution employs
control flow extraction, taint analysis and address analysis
at the binary level. Moreover, our analysis needs to model the
transient instructions along the speculative path that has never
been required in traditional program analysis dealing with only
programmer visible execution. We have successfully introduced
accurate modeling of speculative execution in 007.

Once vulnerable code snippets are detected by 007, we
introduce fence instructions at selected program points to
prevent speculative execution and thereby protect the code
from Spectre attack. We have validated the functional correct-
ness of our protection mechanism with all fifteen litmus test
codes from [1] on Intel Xeon platform. We note that the cur-
rent Spectre mitigation approach introduced by Microsoft C/
C++ compiler [6], detects and protects only 2 out of 15 litmus

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1393-5326
https://orcid.org/0000-0003-1393-5326
https://orcid.org/0000-0003-1393-5326
https://orcid.org/0000-0003-1393-5326
https://orcid.org/0000-0003-1393-5326
https://orcid.org/0000-0002-4843-5391
https://orcid.org/0000-0002-4843-5391
https://orcid.org/0000-0002-4843-5391
https://orcid.org/0000-0002-4843-5391
https://orcid.org/0000-0002-4843-5391
https://orcid.org/0000-0002-6787-236X
https://orcid.org/0000-0002-6787-236X
https://orcid.org/0000-0002-6787-236X
https://orcid.org/0000-0002-6787-236X
https://orcid.org/0000-0002-6787-236X
https://orcid.org/0000-0003-4136-4188
https://orcid.org/0000-0003-4136-4188
https://orcid.org/0000-0003-4136-4188
https://orcid.org/0000-0003-4136-4188
https://orcid.org/0000-0003-4136-4188
https://orcid.org/0000-0002-7127-1137
https://orcid.org/0000-0002-7127-1137
https://orcid.org/0000-0002-7127-1137
https://orcid.org/0000-0002-7127-1137
https://orcid.org/0000-0002-7127-1137
mailto:wangghge@gmail.com
mailto:tulika@comp.nus.edu.sg
mailto:abhik@comp.nus.edu.sg
mailto:sudipta_chattopadhyay@sutd.edu.sg
mailto:ivg@ieee.org

WANG ET AL.: OO7: LOW-OVERHEAD DEFENSE AGAINST SPECTRE ATTACKS VIA PROGRAM ANALYSIS

2505

TABLE 1
The Existing Speculative Execution Based Attacks and the Ability of 007 for Handling Them

Classification Exploit name

Public vulnerability name

007 capability

Vulnerability in victim Spectre variant 1

code Spectre variant 1.1
Spectre variant 1.2
Spectre-NG variant 4

BTB or RSB poisoning Spectre variant 2

Spectre RSB

Bounds Check Bypass (BCB)
Bounds Check Bypass Store (BCBS) Detect and patch vulnerable victim code
Read-only protection bypass (RPB) Detect and patch vulnerable victim code
Speculative Store Bypass (SSB)

Detect and patch vulnerable victim code

Potentially possible but not handled yet
by 007

Branch Target Injection (BTJ) -
Return Mispredict -

tests for Spectre vulnerabilities [1], whereas 007 can detect all
fifteen purpose-built Spectre-vulnerable code patterns. We
can launch successful Spectre attack to access arbitrary loca-
tions in the victim code prior to the insertion of fence inser-
tions by 007; but our attempts at Spectre attacks fail after 0o7-
directed automated identification and patching of the victim
code. We experimentally measure the performance over-
heads from our selective fence insertion and find that the
overheads are 5.9 percent on average on SPECint bench-
marks, thereby indicating the practicality of our approach.
We also report the results of a large-scale experimental study
on applying 007 to over 500 program binaries (average binary
size 261 KB) from different real-world projects.

We demonstrate that 007 can be tuned to defend against
multiple different variants of Spectre attack (see Table 1)
that exploit vulnerabilities in the victim code through spec-
ulative execution. We also note the limitations of our analy-
sis-based approach in defending against certain variants of
Spectre attacks. The variants that cannot be addressed by
007 have potential system-level solutions introduced by dif-
ferent vendors with reasonably low overhead [7], [8]. The
Spectre variants handled by 007 with low performance over-
head are either not amenable to system-level defense
mechanisms, incur high performance overhead or escape
detection with existing approaches. Thus 007 approach via
binary analysis is complementary to all other efforts in miti-
gating the impact of security vulnerabilities due to specula-
tive execution.

1.1 Contributions

The contributions of this paper can be summarized as fol-
lows. First, we present a program analysis based approach
called 007 for mitigating Spectre attacks. Our solution is
based on binary analysis and does not involve changes to
the underlying operating system and hardware. It uses taint
analysis, address analysis and speculation modeling to
check potentially vulnerable program binaries, and inserts a
small number of fences to mitigate the risks of Spectre
attack. Our approach is accurate in identifying all the litmus
tests for Spectre vulnerabilities [1], has low performance
overhead (average 5.9 percent overhead for SPECint bench-
mark suite), and is scalable as evidenced by our analysis of
over 500 large program binaries.

The main contribution of this work is in proposing
and demonstrating an efficient static analysis based appro-
ach to accurately locate potential Spectre vulnerability in
the code and then use well-established repair strategy
(fences) to fix these selected vulnerable code fragments. We

have successfully introduced accurate modeling of specula-
tive execution in taint analysis to achieve this. The existing
solutions cannot identify the vulnerable code fragments
and hence repair all conditional branches to prevent specu-
lative execution altogether resulting in significant perfor-
mance overhead.

We show that our program analysis based approach can
detect and mitigate certain variants of Spectre vulnerabil-
ities in the application code, but not all (see Table 1). Thus
our work provides an understanding of the class of attacks
for which an analysis based mitigation may be suitable, and
for which a system level solution is suitable.

So far, no Spectre attack has been found in the wild. We
hope that the search for zero day Spectre attack in the wild
can be substantially accelerated via community participa-
tion using our tool. Our tool is publicly available from
https://github.com/winter2020/007

2 SPECTRE VARIANTS

A number of Spectre vulnerabilities that all take advantage
of speculative execution in modern processors have been
disclosed recently. A summary of these variants appear in
Table 1. We classify the different vulnerabilities into three
categories:

(a) Vulnerability in victim code: Many Spectre attacks rely
on vulnerable code snippets inside the victim process and
trigger speculative execution of the code snippet to read
secret data by supplying carefully selected inputs to the vic-
tim process. We detect these vulnerabilities in 007 by identi-
fying the potentially susceptible code fragments via binary
analysis and then introducing fences at selected program
points to prevent speculative execution and thereby harden
the victim software against any such attacks.

(b) BTB or RSB poisoning: In these Spectre variants, the
attacker poisons the Branch Target Buffer (BTB) or Return
Stack Buffer (RSB) in the micro-architecture. The victim pro-
cess, while using the poisoned BTB or the RSB for specula-
tive execution, is then mislead to branch or return to a
gadget that leaks the sensitive data. Any indirect branch or
return instruction in the victim code is vulnerable to this
attack and hence we do not attempt to mitigate these attacks
in 0o07. There exist potential solutions such as Retpoline [9]
or RSB refilling [10] for these vulnerabilities.

(c) Transient out-of order execution: These attacks can be
directly launched by a malicious code (malware) without
the requirement of any specific vulnerable code fragment or
pattern in the victim process. Since the objective of 007 is to

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

https://github.com/winter2020/oo7

2506

detect and repair vulnerable code fragments in general soft-
ware, the detection of malware is orthogonal to the objective
of 007. Thus, we do not consider the detection of Spectre-
style malicious code fragments in this work.

Unlike the first class of attacks where the defense mecha-
nism is to harden the victim software, here 007 performs
malware detection, i.e., it looks for malicious code patterns
within a binary.

2.1 Vulnerability in Victim Code
Spectre Variant 1. The following victim code fragment exhib-
its Spectre vulnerability Variant 1.

voidvictim_function_v01l (size_t x) {
if (x <arrayl_size) { //TB: Tainted Branch
y =arrayl[x]; //RS: Read Secrety
temp &= array2 [y * 25617 ;
//LS: Leak Secrety
}

}

In this example, the parameter x is under the attacker
control in the sense that x can be influenced by external
input. Hence we consider the conditional branch as a
Tainted Branch (TB). The attacker first trains the branch pre-
dictor to expect that the branch will be true (i.e., the array
bound check will pass). The attacker then invokes the code
with an input x value outside the bound of arrayl. The
branch predictor expects the branch condition to be true
and the CPU speculatively reads y using malicious value x
outside the array bound. We call this action Read Secret (RS)
because y can be a potential secret that is not legitimately
accessible through malicious input without speculation.
This is followed by the CPU speculatively accessing
array?2 using an address that is dependent on the secret y
leading to cache state change. We call this action Leak Secret
(LS) because the change in the cache state lingers even after
the CPU realizes that the branch prediction was wrong and
squashes the speculatively executed instructions. The
attacker can now launch cache side-channel attack [4] to
detect this change in cache state and discover the secret y.
Specifically, for Prime+Probe side-channel attack, the
attacker ensures that array2 was not cached before the
memory access LS by evicting the cache line through prim-
ing the cache set. Then the attacker triggers LS action to leak
the secret to the cache side channel. Finally, the attacker per-
forms the probe phase to get the timing of the memory
accesses for array?2 and discovers the value of y. The multi-
plier 256 in array2 [y*256] guarantees that different val-
ues of y lead to different cache line access, and normally,
this value is greater than or equal to the cache line size.

Spectre Variant 1.1. The idea behind the Spectre Variant
1.1, also known as Bounds Check Bypass Store (BCBS), is
to bypass bound check and execute a store instruction
speculatively [11]. In the following example, x can poten-
tially be under attacker control, hence, the conditional x <
arrayl_size is a Tainted Branch. However, unlike the
Read Secret in Spectre Variant 1, this variant uses a Specula-
tive Write (SW) to modify arbitrary memory location. For
instance, the example modifies an arbitrary memory

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

location pointed to by arrayl([x] when the conditional
branch is mispredicted for a value z > arrayl_size.
Although this speculative store is squashed upon resolving
the branch outcome, it can leak secret values from the pro-
gram. For instance, arrayl [x] may overwrite the return
address and transfer control to a gadget that leaks arbitrary
secret value via a side-channel (similar to LS in Spectre
Variant 1).

voidvictim_function_vl.1l(size_tx,vy) {
if (x<arrayl_size) { //TB: Tainted Branch
arrayl[x] =y; //SW: speculativeWrite
}
}

Spectre Variant v1.2. This vulnerability bypasses the protec-
tion enforced by read-only memory, e.g., code pointers [11].
Consider the victim_function_vl.1 where the valuation
of the conditional captures whether x points outside the read-
only memory. If x is under attacker control, then the write to a
read-only memory can be speculatively executed and modify
crucial data structures such as code pointers in the cache. As a
result, like Spectre Variant 1.1, the program control may trans-
fer to arbitrary location to execute attacker chosen code. Like
Spectre Variant 1.1, this variant also requires the presence of
TBand SW.

Spectre-NG Variant 4. Spectre Variant 4, also called Specu-
lative Store Bypass (SSB), is based on the fact that the pro-
cessor may execute a load instruction speculatively even
when a prior store instruction in program order is pending
because the address for the store is not yet known. Thus a
speculative load may read a stale value that should have
been modified by a prior store instruction if they access the
same memory address; in that case, the speculative load
should be squashed after the store address is known.

007 can detect and patch victim binary code with poten-
tial Spectre variant 1, 1.1. and 1.2 vulnerabilities. 007 can
potentially handle Spectre variant 4 by identifying the vul-
nerable code pattern but requires precise address analysis
(that the load and the store are accessing the same memory
address) that is not supported yet in our framework.

2.2 BTB or RSB Poisoning’

Spectre Variant 2. Most architectures support indirect
branches in the form of “jmp [r1]”. For such jump instruc-
tions, the program control is diverted to a location stored in
the register r1. For improving program performance, the
processor leverage Branch Target Buffer to store the fre-
quently used target locations of branch instructions, includ-
ing indirect branches. An attacker can poison the Branch
Target Buffer to include its preferred target locations. When
the victim executes an indirect branch instruction, it con-
sults this poisoned BTB and the speculative execution can
potentially be misled to a target location chosen by the
attacker. Any indirect branch is vulnerable to this attack.
The indirect branches can be easily identified by static anal-
ysis and mitigated by Retpoline [9] approach.

1. Even though these are considered as Spectre variants, they are
very different from the vulnerability in victim code.

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: OO7: LOW-OVERHEAD DEFENSE AGAINST SPECTRE ATTACKS VIA PROGRAM ANALYSIS

SpectreRSB. SpectreRSB vulnerability [10] is similar to the
Spectre Variant 2. Instead of poisoning the BTB with attacker
chosen location, the SpectreRSB vulnerability manipulates the
return stack buffer, which is used by the processor to predict
the return address. As a result of a successful exploit, a func-
tion may return to an attacker controlled location due to the
mis-prediction of the return address inflicted by an attacker.
Subsequently, the program may execute arbitrary code in the
attacker-controlled location until the return address is finally
resolved. All return instructions are potentially vulnerable to
such exploit. RSB refilling is a potential approach to mitigate
SpectreRSB [10].

Our proposed o007 approach focuses on identifying vul-
nerable code fragments (e.g., attacker controlled branch
instructions) that can be fixed by the insertion of memory
fence instructions. This is to prevent speculative execution
with the objective to prevent the attack. Since Spectre Vari-
ant 2 and Spectre RSB need different solutions than patch-
ing fences, our 007 approach does not target fixing these
subset of Spectre vulnerabilities.

3 RELATED WORK

3.1 Mitigation in the Future Processors

Intel has reportedly developed hardware fixes [12] in the
form of improved process and privilege-level separation for
only Spectre Variant 2. Three capabilities: Indirect Branch
Restricted Speculation, Single Thread Indirect Branch Pre-
dictors, Indirect Branche Predictor Barrier will be supported
in future products to mitigate the branch target injection
attack. Vladimir et al. [13] proposed DAWG, which is a
generic mechanism to isolate the cache side-channel by par-
titioning the cache ways to limit the data leakage across dif-
ferent secure domains. InvisiSpec [14] is another new
architecture design to defend against Spectre-like attacks.
InvisiSpec uses a Speculative Buffer (SB) to temporarily
hold the data during speculative execution instead of
directly loading the data to the cache. The data in SB will be
finally visible to the cache hierarchy when the speculative
load is safe to be committed. InvisiSpec slows down the exe-
cution by 21 percent. Obviously, both DAWG and InvisiS-
pec cannot be used in the legacy systems.

3.2 Mitigation in Legacy Systems

Several approaches have been applied to mitigate Spectre
attacks in legacy system. Microsoft Visual C/C++ com-
piler [15] provides a compiling option Qspectre to enable the
mitigation of Spectre Variant 1 by inserting 1fence serializ-
ing instruction in the potential vulnerable code locations.
However, the mitigation technique can detect only 2 out of
the 15 litmus tests proposed by Paul Kocher [1]. Speculative
Load hardening [16] mitigates Spectre Variant 1 by inserting
hardening instruction sequences that zeros out the pointers
that have data dependency with the branch conditions. As it
inserts hardening instructions at all conditional branches, the
technique involves 36.4 percent performance overhead. Olek-
senko et al. [17] propose the introduction of artificial data
dependencies to protect from Spectre attacks. This solution is
coarse-grained and will effectively disable speculation
between any conditional branch and subsequent load instruc-
tions. Moreover, the authors explicitly acknowledge the

2507

absence of precise taint tracking and leaves it to the developer
to examine whether the potential vulnerable locations
reported by the tool can be controlled by the attacker. Micro-
soft has developed Windows patches [18] through CPU
microcode update for Spectre Variant 2 (but not for Variant 1).
Moreover, this update has been reported to cause perfor-
mance overhead (specially on older platforms) and system
instability. Google Chrome has developed “Site isolation”
mechanism that sandboxes the memory pages associated
with each website to a separate process [19] at the cost of 10—
13 percent memory overhead. In contrast, 007 does not require
either operating system or processor changes. Retpoline [20]
has been proposed for the gcc and LLVM compiler to mitigate
Spectre version 2. Retpoline replaces vulnerable indirect
branches with non-vulnerable instruction sequence that
forces the CPU to jump to the real destination instead of the
predicted target suggested by the BTB. Recently [21] has pro-
posed the use of symbolic execution and SMT solver for
detecting Spectre Variant 1. This is a higher overhead and less
scalable approach than ours. Moreover, no mitigation is pro-
posed, as we do by inserting fence instructions.

Compared with all existing approaches for mitigation in
the legacy system, 007 introduces the lowest performance
overhead (around 5.9 percent on SPECint) as 007 only hard-
ens a small number of branches in repairing Spectre-like
vulnerabilities. Moreover, 007 is a flexible approach that can
be tuned to defend against different variants of Spectre (as
shown in this work) as well as detect malicious code frag-
ments for Spectre-NG variant 3a and Spectre-NG LazyFP.

4 BRIEF OVERVIEW OF OUR APPROACH

Our approach to identify vulnerable code fragments for Spec-
tre variants 1, 1.1, 1.2 or malicious code fragments for Spectre-
NG variant 3a and Spectre-NG LazyFP proceeds via static
taint analysis of program binaries. All input sources including
files are initially marked as tainted. Taint propagation across
instructions proceeds by usual computation of forward data
and control dependencies. Thus, for data dependency based
taint propagation, if any of the operands of an instruction is
tainted, the result of the instruction is tainted. For control
dependency based taint propagation (also called as implicit
flows in taint analysis literature), the decision taken by a
branch, and hence the instructions conditionally executed
owing to the decision are tainted; the identifiers (memory/
registers) written by such tainted instructions are also treated
as tainted. Details of the formal treatment of taint propagation
policies appear in Section 5.

One of the novel aspects of our analysis is in considering
speculative execution paths while capturing taint propaga-
tion. Conceptually this is handled by considering both pos-
sibilities in a branch b, and checking which instructions fall
inside the speculative execution window of a branch mean-
ing they can be speculatively executed prior to a branch’s
outcome being known. There is no need to explicitly main-
tain the speculatively executed paths as a separate set of
bounded length paths, as long as we consider both direc-
tions of a branch in our analysis. An instruction 4 can be
speculatively executed pending the outcome of a branch b,
only if the distance between i and b is less than the speculative exe-
cution window set by the processor.

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

2508

To check Spectre attack scenarios such as Spectre variant 1,
we then need to look for a tainted branch instruction (TB), a
load-like instruction which reads secret (RS) with the memory
address read by RS being tainted, and RS being potentially
speculatively executed owing to TB being un-resolved. Note
that once the occurrence of TB and RS are established, the
secret data has already been speculatively accessed and can
be potentially ex-filtrated via various side channels. To detect
an instance of potential Spectre variant 1 vulnerability that is
consummated via a cache side-channel attack, we need to also
locate an instruction LS to leak the secret, where the memory
address accessed by LS is dependent on the output of RS.
Once again, the detailed treatment of the condition for check-
ing Spectre variant is deferred to the next section.

For forward taint propagation along all possible paths,
we use the Binary analysis Platform (BAP) tool [22]. As BAP
is based on conservative analysis, it can report false posi-
tives. BAP leverages a set of techniques to construct the con-
trol flow graph for a binary. As is well known in binary
analysis literature, accurate construction of control flow
graph is a notoriously difficult problem owing to indirect
branches. Tools like BAP use forced execution [23] and
other techniques to construct a control flow graph. Forced
execution (i.e., execution of both branch directions) is lever-
aged to construct all possible control flow edges of a branch.
As the control flow paths are constructed, taint is propa-
gated along the paths as per the taint sources and taint poli-
cies set in our approach (please see next section for details).

On the Challenges of Binary Analysis. During the trans-
lation of source code to the binary representation, optimiz-
ing compilers usually forfeit such properties as type
preservation and control flow integrity, thus not only open-
ing a possibility to a wide range of security vulnerabilities,
such as buffer-overflow and control-flow hijacking but also
complicating the task of reverse engineering and making
sound static analysis of binary code merely impossible. The
problem of control flow reconstruction is especially hard
due to indirect branches where the branch targets are diffi-
cult to determine at compile-time. Therefore, any analysis
of the binary code is doomed to be an approximation and a
lot of care [24] should be taken to preserve the correctness
of any analysis, and especially if that analysis involves a
fixed point computation on the control flow graph, such as
data flow analysis. In 007 we leverage Primus, a Microexe-
cution framework that tries to preserve the program behav-
ior of the binary, while extracting control flow graph from
the binary.

On False Negatives. Our taint propagation policies and
rules (see Section 5) avoid under-tainting, thus, in their own
merit, they do not introduce any false negatives. Nonethe-
less, as our approach is based on the control flow graph con-
structed by the underlying tools, we cannot guarantee zero
false negatives, if the control flow graph constructed by
BAP does not capture all possible flows. In other words, the
completeness of our taint analysis is modulo the complete-
ness of the control flow graph extraction in BAP. Also, in
BAP, loops are unrolled to track the program dependencies
across loop iterations and might be a source of false nega-
tives in BAP analysis if the unrolling depth is low. How-
ever, with correctly provided loop bounds, this problem
can be alleviated.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

TABLE 2

Symbols Used in Describing oo7
Symbol Interpretation
br(inst) inst is a branch instruction
time(inst) inst is an timing instruction, e.g., rdtsc
mem/(inst) inst is a memory access instruction
load(inst) inst is a load instruction
addr(inst) the data memory address accessed by a

memory-related instruction inst
reg(inst) set of registers accessed by instruction inst
set(addr) cache set accessed by memory address addr
T(inst) instruction inst is tainted

7(x) instruction operand z is tainted where =
could be a register, memory location or the
value located in a memory location
minimum no. of instructions executed to
reach inst2 from inst1. If inst2 is unreachable
from inst1, then A(instl, inst2) = oco.

x is data-dependent on instruction inst

A(instl, inst2)

Dep(inst, z)

CDep(inst) set of instructions control-dependent on inst
val(x) value located at memory address =
SEW Speculative Execution Window = 2n, where n

is the size of re-order buffer in the processor

On taint analysis and symbolic execution: In identifying
vulnerable code susceptible to many Spectre attack variants,
the key is to find attacker controlled branches, and memory
locations that can be speculatively read /written pending out-
come of attacker controlled branches. For this reason, we have
employed static taint analysis and considered read/write
instructions that may be speculatively executed within the
speculative execution window. It is possible to take a differ-
ent, albeit higher-overhead approach. For example, instead of
capturing the taint propagation along paths, one may summa-
rize the execution behavior in a more fine grained fashion
using symbolic execution, where the memory locations
accessed by a read /write is captured as symbolic expressions
over (tainted) input, instead of simply maintaining that the
location accessed by a read/write is tainted. This leads to
additional overhead of constraint accumulation and solving.
In this way, higher overhead detection approaches can be con-
structed such as the recent work of [21] that handles Spectre
variant 1 and potentially variant 1.1. This work [21] only
reports results for different variants of the Spectre litmus tests
with few lines of code. As is shown by our experiments, even
a low overhead approach like ours consumes high analysis
times on a few real-life programs from SPECint and OSS-
Fuzz. Hence we feel higher overhead approaches are not scal-
able enough for possible real-life usage. Furthermore, for any
Spectre attack detection approach, it is not enough to detect
leaks, the analysis needs to suggest a small number of fences
to plug the leak. This is done in our approach. On the other
hand, symbolic approaches like [21] simply detect leaks with-
out suggesting concrete fence instructions to harden Spectre
vulnerable code.

5 SPECTRE VULNERABILITY DETECTION

To describe our analysis, we use the notations in Table 2.
We say that an instruction inst is tainted, i.e., t(inst) is true,
if and only if the instruction operates on some tainted oper-
ands. We first discuss the checker for Spectre Variant 1.

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: OO7: LOW-OVERHEAD DEFENSE AGAINST SPECTRE ATTACKS VIA PROGRAM ANALYSIS

5.1 Detecting Spectre Variant 1

An important concept that we need for our analysis is the
Speculative Execution Window, abbreviated SEW. We posit
that information about SEW needs to be exposed by proces-
sor designers for the sake of detecting Spectre attacks. By
default, it seems that SEW can be set to the size of the re-
order buffer in an out-of-order processor. However, if the
size of the re-order buffer is n, it is not sufficient to have a
lookahead of n instructions from a tainted conditional
branch 7B, in our search for memory access RS, in order to
detect Spectre attacks. For processor execution, each instruc-
tion is decoded to a sequence of micro-ops. Each micro-op
will occupy one slot of the re-order buffer during execution.
However, micro-ops can be fused [25] both within an
instruction as well as across instruction. When micro-ops
are fused across instructions (also called macro-fusion), the
micro-ops of at most two instructions can be fused into a
single micro-op. For this reason, if the size of the re-order
buffer is n, we conservatively set the Speculative Execution
Window to 2n in our analysis, so as to avoid any false nega-
tives in our analysis.

Dypectre = br(TB) Aload(RS) A mem(LS)A
7(TB) A t(addr(RS)) A t(addr(LS))A
Dep(RS, addr(LS)) A (A(TB, RS) < SEW) A (A(TB, LS) < SEW).

@

We now elaborate the checking condition for detecting
Spectre. 007 locates TB, RS and LS by checking ®,cce-
Intuitively, the first two lines of @, capture the presence
of tainted branch instructions 7B and tainted memory-
access instructions RS and LS. The last line shows that RS
and LS are located within the speculation window of TB,
and they are data-dependent. @, reflects Spectre variant
1. Later we show that @, can easily be modified to
detect other Spectre variants, for example, variant 1.1.

5.2 Taint Analysis

We use taint analysis [22] to determine whether conditional
branch instructions (e.g., 75) and the memory-access
instructions (e.g., RS and LS) can be controlled via
untrusted inputs. In the following, we outline the taint
propagation policies and rules used to detect Spectre vul-
nerabilities. To illustrate our taint propagation policy, we
use the following instructions.

e 2=z op y: Binary operation on register 2 and regis-
ter y. The operation op can be either arithmetic oper-
ation (e.g., addition or subtraction) or a logical
operation (e.g., a logical comparison).

e y=op z: Unary operation on register x. The opera-
tion op can either be arithmetic (e.g., unary minus)
or a logical one (e.g., logical negation).

e y=1load(z): Loads value from memory address = to

register y.

e y=store(z) : Stores value from register = to mem-
ory address y.

e Dbranch(L,x) : Branch to label L if the logical formula
x is true.

Taint Propagation Policies. Initially, all variables that read
value from un-trusted sources (e.g., files, network) are tainted.

2509

The taints from these variables are then propagated via a well-
defined set of rules shown in the following; for each rule, the
premises appear on the top of the horizontal bar and the con-
clusions appear below the horizontal bar. Our taint propaga-
tion tracks both data dependencies and control dependencies
(also known as implicit flows in taint analysis). Typically such
implicit flows come in the form of the tainted data enabling or
disabling a branch condition b, and the outcome of b affecting
the computation of a variable that would not be tainted other-
wise purely by tracking of data dependencies.

Taint Propagation Rules

=xopy t(x)V1(y)

[Bi tion] =
mary operation
yop () A tlinst)

. . y=opxw 7(x)
U t —_—
[Unary operation]) A 2inst)

y = load(x) t(val(z))
7(y) A t(inst)

[Memory load]

y = load(x) 7(x)
7(y) A t(inst)

[Memory load]

y = store(z) 7(x)
t(val(y)) A t(inst)

[Memory store]

br(inst) (x)
[branch(L,z)] (i)
[branch(L, z)] t(z) Tinst = CDep(inst)

vt € Tinst. ©(t) A Vw € Write(Tinst). t(w)

Taint Propagation Rules. Based on the discussions in the
preceding paragraphs, the taint propagation rules are
shown. In the taint propagation rules, we assume that inst
captures the current instruction for which the taint propaga-
tion is being computed. Write(Tinst) captures the set of
operands written by a set of instructions 7inst. In the fol-
lowing, we discuss a few salient features of our taint propa-
gation rules:

Computation. For instructions involving computations
(e.g., addition, subtraction and multiplication), we consider
them tainted if and only if they operate on tainted operands.
Moreover, the result computed by such tainted instructions
are also marked tainted. This is because the outcome of
these instructions can be controlled by an attacker if they
operate on tainted operands. As 007 operates at the binary
code level, most computations can be captured via either
binary or unary operations, as shown in our taint propaga-
tion rules.

Memory Load. Accounting taint propagation through
memory load instruction is crucial for the effectiveness of
007. To this end, we need to consider two different

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

2510

scenarios: (i) taint propagation through the value being
loaded, and (ii) taint propagation through the accessed
memory address for the load. In both cases, the loaded reg-
ister can be controlled by an attacker, as either the accessed
address or the value located therein can be manipulated to
load an attacker controlled value. To model these taint prop-
agation rules, we need to accurately track the tainted status
of the accessed memory regions and this, in turn, involves a
conservative analysis of possible aliases in the program.

Memory Store. We note that a tainted value can be stored
in an arbitrary memory address y. For such an operation,
we conclude that the value located in address y can be
tainted, as captured by the predicate r(val(y)). Such a store
operation, however, does not conclude anything about z(y),
as the store operation “y = store(x)” cannot control the
address y via the tainted operand z.

Conditional Branch. Conditional branches are involved in
accounting for both the explicit and implicit (i.e., taints
through control dependencies) propagation of taints. For
example, the outcome of a conditional branch can be con-
trolled by an attacker (ie., tainted) if the variable z in
branch(L,) is tainted. Moreover, we discover the set of
instructions Tinst that are control dependent on a branch
instruction. If the branch is tainted, then the value of any
variable written by instructions in Tinst is indirectly (.e.,
implicitly) controlled by the attacker. Consequently, we
mark all such values tainted, as captured by our taint propa-
gation rules.

For the sake of brevity, the aforementioned taint propa-
gation rules are described based on a simplified syntax of
low-level binary code. The taint propagation rules avoid
any under-tainting. However, these taint propagation rules
may lead to over-tainting as described in the following.

Sources of Over-Tainting. Over-tainting in 007 may lead to
some instruction inst or data element (i.e., a value or an
address) = to be tainted (i.e., t(inst) or t(z) holds, respec-
tively) even in the absence of any feasible execution where
7(inst) or t(z) is true. Such a phenomenon may occur due
to the following scenarios:

1) Conservative extraction of CFG: It is often challenging
to extract an accurate control flow graph from the
binary code. This is primarily due to the difficulty in
precisely identifying the branch targets, such as the
targets of indirect branches and calls. This, in turn,
leads to conservative approximation of control flow
edges in the extracted CFG. As our taint propagation
rules walk the CFG and leverage control dependency
graph (CDG) to compute implicit taint propagation,
the method might lead to over-tainting due to the
additional edges in the CFG and CDG.

2) Conservative alias analysis: As our taint propagation
rules involve taint tracking through both the mem-
ory addresses and the values in these memory
addresses, 007 may over-taint due to a conservative
alias analysis. For example, two memory addresses x
and y might be considered aliases even if x and y do
not point to the same memory address in any feasi-
ble execution. Nonetheless, our taint propagation
rules will conservatively assume that all values in
memory locations pointed by y are tainted, given

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

that the values in memory locations pointed by x can
be attacker controlled.

3) Approximate memory model: An accurate taint tracking
requires the tainted status of each possible memory
address that can be accessed by a program. This
might often be expensive and the static analysis may
resort to conservative approximation for scalability.
For instance, even if a particular data element in an
aggregate (e.g., a structure) is tainted, to speed up
the analysis, 007 might conservatively assume values
in all the memory addresses occupied by the aggre-
gate data structure to be tainted.

4) Non-analyzable function calls: The return values from
non-analyzable function calls are conservatively con-
sidered to be tainted. These function calls might be
libraries or other third-party software that cannot be
analyzed.

Properties. In summary, oo7 guarantees the following cru-

cial property via its taint propagation rules:

Property 1. For a given program P, consider an arbitrary regis-
ter or memory location x p that can be controlled by an attacker.
Moreover, let the outcome of instruction instp may also be con-
trolled by an attacker. The taint propagation rules of 007 guar-
antee that t(xp) and t(instp) hold.

We consider all inputs arriving from external sources
(e.g., network, files, command lines) are tainted initially.
These are called taint sources. Our taint propagation rules
then avoid any under-tainting, by considering the forward
transitive closure of all control and data dependencies from
the taint sources.

5.3 Detecting Other Spectre Variants

In the preceding section, we discussed the detection of Spec-
tre variant 1 [2]. Note that Spectre variant 1 can leak the
secret data in other ways instead of performing the LS
action. Such variants can be detected via simple manipula-
tion of @ pectre:

@ueeh . = br(TB) Aload(RS) A t(TB) A t(addr(RS))A
(A(TB, RS) < SEW).

2)

Our o007 approach can be fine tuned to detect other
Spectre variants. For instance, consider Spectre Variant 1.1
(cf. Table 1). Such a variant can easily be detected by the
following condition:

q)i,l)gim = br(TB) A store(SW) A t(TB) A t(addr(SW))A
(A(TB, SW) < SEW).

(3)

where store(SW) captures the presence of a speculative
write instruction, as needed to exploit Spectre Variant 1.1.

Spectre Variant 1.2 (read-only protection bypass) needs
exactly the same condition CD;’;‘Elme to be satisfied, except
that the speculative write (SW) happens to be in read-only
memory. For the rest of the paper, we do not distinguish
between Spectre Variant 1.1 and 1.2, as 007 uses the same
condition to detect both the variants.

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: OO7: LOW-OVERHEAD DEFENSE AGAINST SPECTRE ATTACKS VIA PROGRAM ANALYSIS

Taint
Source
list

2511

2
Forced Taint Vulnerability 75 15> = :if'
execution analysis checker e o070
R t
Vulnerability Detection epor
objdump Disassembly |_
=> code (.asm)
(VY \ C — N
epaire ew
source] | | =p| Compile Assembly Code Code —p| Assemble !
code P => code (.s) Matcher repair |:> 2;22"22;" & link I=> Binary
\C y,)
Code Repair

Fig. 1. Overview of oo7framework. The components in grey represent the core modules of 007, vulnerability detection module and code repair module.

To detect Spectre Variant 4, we need to check whether a
load instruction (RS) follows a store (IWR) to the same
address, yet RS can speculatively load a value not yet writ-
ten by WR. Checking for this condition requires accurate
address analysis, more accurate than what we can currently
support. We are currently working in this direction.

5.4 Code Repair

Our repair strategy is based on systematically inserting
memory fences after each tainted branch (i.e., 7'B) in vulner-
able code fragments for Spectre variants 1, 1.1 and 1.2. The
original article describing Spectre attacks [2] suggests inser-
tion of memory fences following each conditional branch.
However, using our analysis, we can obtain the exact
sequence (TB,RS,LS) (for Variant 1) or the sequence
(I'B,SW) (for Variant 1.1 and Variant 1.2) vulnerable to
Spectre attacks. As a result, we can accurately locate the pro-
gram point where the memory fence should be inserted. In
particular, we insert memory fences following 7B instruc-
tion and immediately before the execution of RS and SW,
respectively, for Spectre Variant 1 and Variant 1.1, 1.2. This
prevents execution from loading the secret value into the
cache (for Variant 1) and writing to an attacker-controlled
location (for Variant 1.1, 1.2) speculatively.

Nevertheless, inserting memory fences may affect the
overall program performance. 007 inserts memory fences
only for the branches identified as 7B (for variants 1, 1.1
and 1.2). This has less overhead than inserting fences after
each conditional branch, or after each tainted conditional
branch. We show empirically that such a strategy has
acceptable performance overheads of average 5.9 percent
for SPECint benchmarks. When selecting the fence instruc-
tion, we observed in experiments that cpuid [26], 1fence
and mfence are able to prevent Spectre attacks (while
sfence cannot). However, if cpuid is used for repairing
Spectre vulnerability in the assembly code, then it modifies
the general-purpose registers. Specifically, the return value
of cpuid is stored in registers such as EAX, EBX, ECX or
EDX. Thus, additional instructions are required to store and
restore the impacted register(s) before and after invoking
cpuid, which introduces additional performance overhead.
On the other hand, 1fence is officially confirmed and

recommended by Intel [8] to mitigate Spectre attack. There-
fore, in this work, we use only the 1fence instruction to
repair vulnerable code.

6 IMPLEMENTATION

Fig. 1 provides an overview of 007 tool. 007 contains two
main modules: a vulnerability detection module for detect-
ing the Spectre vulnerabilities, and a code repair module to
fix the Spectre vulnerabilities.

Vulnerability Detection Module. The vulnerability detec-
tion module of 007 is supported by three major technologies:
forced execution, taint analysis and vulnerability checker.

Forced execution [23], [27], as its name suggests, forces the
program to execute along all possible paths by predicting
the branch outcomes to both true and false. The capability
of forced execution is in exploring the different execution
paths and simulating the execution to expose the behavior
of a given program. Forced execution satisfies the semantics
of speculative execution, because speculative execution
may lead the processor to execute the instructions on both
outcomes of a branch when the branch prediction is wrong.
Forced execution engine explores all possible paths by
maintaining a pool of execution paths that may be explored
in future by switching more predicates. A predicate is repre-
sented as a tuple (I, Iss1) where I, and I, denote the
source instruction and forced execution target (the branch
outcomes), respectively. New predicates are added when a
branch instruction is evaluated. As forced execution is a
well-known technique, for details of forced execution tech-
nique, we refer the readers to relevant previous works [23],
[27], [28], [29].

Taint analysis performed by the taint propagation engine
tracks the data and instruction that can be controlled by the
attacker. The taint analysis works along with the forced execu-
tion engine. When forced execution engine evaluates a call
instruction, it checks if the destination of the call is in the
taint source list. The taint source list is a set of APIs which can
import the data to the program from the un-trusted channels
such as network, user input, file reader. In the implementa-
tion, we consider all interfaces (e.g., fgetc (), recv()) in
the commonly used libraries (e.g., glibc) which import data

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

2512

from outside of program as the taint sources. If the destination
of a call instruction executed by the forced execution engine
is in the taint source list, the taint propagation engine marks
the imported data as a tainted object. After the tainted object
is imported from the taint source, the taint engine propagates
this tainted object during the execution by applying the taint
propagation rules explained in Section 5.2.

Vulnerability checker detects whether the current state sat-
isfies the conditions of arbitrary vulnerabilities presented in
Section 5.3. The vulnerability checker works after the taint
engine taints an instruction. When the taint engine taints a
new conditional branch instruction, the vulnerability
checker records this tainted branch and sets up a Specula-
tive Execution Windows (SEW) for it. SEW is decremented
by one at the end of the evaluation of each instruction along
the execution path. The vulnerability checker reviews
whether a memory instruction satisfies the condition for RS
or LS before the SEW is decremented to zero. The vulnera-
bility checker records down 75, RS and LS as a potentially
vulnerable code fragment for the final report.

We adopt BAP [22] as our primary analysis platform.
BAP provides a toolkit for implementing automated binary
analysis and it supports multiple architectures such as x86,
x86-64, ARM, PowerPC, and MIPS. BAP lifts binary code
into RISC-like intermediate representation (IR) named BAP
Instruction Language (BIL). Program analysis is performed
using the BIL representation and it is architecture indepen-
dent. BAP contains a microexecution framework named Pri-
mus performs forced execution and taint analysis. BAP
provides several interfaces to export crucial information to
other analysis modules during the analysis. We implement
the vulnerability checker bases on these interfaces.

Vulnerability Repair Module. Once a vulnerable code frag-
ment is detected in the binary, we locate the corresponding
assembly code for repair. To this end, we first mark the
address(es) of Spectre vulnerable code, as obtained during
the detection stage of 007. Concurrently, we obtain the disas-
sembled code from the binary and the assembly code from
the source (via “~S” option in gcc compiler). As most opti-
mizations are employed during the compilation stage rather
than assembler stage, there is no substantial difference
between the assembly code and the respective disassembled
code. This allows us to easily map the disassembled code
back to the assembly code and locate the instructions vul-
nerable to Spectre attack.

Finally, our repair module directly modifies the assembly
code by inserting memory fence instructions in the appro-
priate location (e.g., inserting 1fence before RS or SW for
mitigating Spectre Variants).

7 EVALUATION SETUP

In this section, we present the details of our evaluation setup.
We first describe the programs used in our experiment. Then
we introduce the platform used for the evaluation.

7.1 Subject Programs
We conduct evaluation on three sets of subject programs.

e We first apply 007 on 15 code examples purpose-
built to demonstrate different variations of Spectre

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

vulnerabilities from Paul Kocher’s blog post [1]. We
call these Litmus Tests.

e Next, we conduct evaluation on SPECint bench-
marks, which have been well-studied by the com-
puter architecture community. These are detailed in
Table 4. We concentrate on complete analysis of the
SPECint (integer) benchmark suite because it
includes more control-intensive code compared to
SPECfp (floating point) and Spectre exploits vulnera-
bility through conditional branches. SPECint bench-
mark suite contains 18.31 percent branches in the
instruction mix compared to only 5.75 percent for
SPECfp [30].

e Last but not the least, we conduct evaluation with a
large number of software projects from Google OSS-
Fuzz repository [31] and GitHub. The program bina-
ries in these project include the main application and
miscellaneous support tools. Table 6 summarizes the
characteristics of these projects consisting of a total
of 507 program binaries with size ranging from 8.5
KB to 21.8 MB (average size 261.4 KB).

7.2 Evaluation Platform

We conduct experimental evaluation on Intel Xeon Gold
6126 [32] running at 2.6 GHz with 192 GB memory. The
underlying micro-architecture is Skylake with 224-entry
reorder buffer (ROB) [33]. Due to the potential expansion of
instructions into micro-operations and subsequent fusion in
x86 micro-architectures (Section 5), we conservatively set
the speculative window to twice the effective ROB size, i.e.,
SEW = 448. Intel Xeon Gold 6126 is equipped with 12 cores
and 19.25 MB non-inclusive shared last-level cache (LLC)
with 64 byte line size. The LLC cache miss penalty is about
200 cycles. Non-inclusive LLC is more secure than the inclu-
sive cache and can thwart certain LLC based side-channel
attacks (e.g., Flush+Flush, Prime+Probe). However, it
is still vulnerable to Flush+Reload attack. Thus the Spec-
tre and Meltdown attacks can potentially be carried out in
this platform.

8 EVALUATION RESULTS

Our evaluation investigates three different aspects:

1) Effectiveness: How effective is 007 in detecting Spectre
vulnerabilities in program binaries?

2) Analysis Time: How long is 007 analysis time to detect
Spectre vulnerabilities?

3) Performance Overhead: How much is the performance
overhead introduced by 007 to protect vulnerable
code fragments?

8.1 Evaluation on Litmus Tests
007 can correctly identify all code snippets purpose-built
with different variations of Spectre vulnerabilities [1] as
potential victim code fragments. 14 code examples are iden-
tified with taint propagation only along data dependencies.
The remaining code example is detected with taint propaga-
tion along program (both control and data) dependencies.
The latest Microsoft Visual C++ compiler [6] has inte-
grated /Qspectre switch for mitigating a limited set of

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: OO7: LOW-OVERHEAD DEFENSE AGAINST SPECTRE ATTACKS VIA PROGRAM ANALYSIS

TABLE 3
bzip2 Randomly Inserted With o Vulnerable Functions
o 10% 20% 30% 40% 50% 60% 70% 80%
VF_source 12 26 45 70 105 158 245 420
VF_oo07 12 26 45 70 105 158 245 420

Analysis time 25.18 26.15 28.43 30.5 32.03 32.6 33.53 43.6
(Minutes)

VF_source: number of functions inserted in the source code; VF_oo7: number
of vulnerable functions identified by 007. Analysis time: Minutes spent by
007 to complete analysis.

potentially vulnerable code patterns related to Spectre vul-
nerabilities. Specifically, after compiling an application with
/Qspectre enabled, Visual C++ compiler attempts to
insert an 1fence instruction upon detecting Spectre code
patterns. Paul Kocher [1] has evaluated the Microsoft com-
piler using 15 litmus tests. The blog post [1] mentions that
only two of the micro-benchmarks are identified and pro-
tected by Visual C++ compiler. In contrast, 007 can correctly
detect all 15 code examples as potential victims.

The example (v13 [1]) that requires taint propagation
along both control and data dependencies is given below.

__inlineint is_x_safe(size_t x) {
if (x<arrayl_size) returnl; elsereturnO;
}
voidvictim_function_vl3(size_t x) {
if (is_x_safe(x)) temp &=array2 [arrayl[x]*512];

The branch in the victim function victim_func-
tion_v13 is tainted as the return value of is_x_safe (x)
is controlled via untrusted input x. However, the return
value of is_x_safe(x) is control-dependent and not
data-dependent on x. Thus 007 can detect this code pattern
as potential vulnerability only if both data- and control-
dependent taint propagation are applied.

8.2 Validation of Patching

We design an attacker process to steal secrets via cache side-
channel from the victim process (litmus test example [1])
once the secret data is brought into the cache through Spec-
tre attack. We successfully extracted data from arbitrary
memory locations in the victim process on our platform for
10 out of 15 litmus tests. We then allow 007 to automatically
insert 1fence instructions at appropriate program loca-
tions to prevent speculation in vulnerable code fragments.
We verify that the attacker process can no longer extract
data from the victim processes running with the 007 fix for
all 10 litmus tests even though we had successfully
extracted secret data from all of them before patching.

For further evaluating the effectiveness of 007, we design
an experiment to check whether 007 can detect all poten-
tially vulnerable code. We select the program bzip2 from
SPECint CPU benchmark suite [34], and insert several vul-
nerable functions to the source code of bzip2. The vulnera-
ble functions are randomly chosen from the Spectre v1
variants suggested by Kocher [1]. Assume that bzip2 has P
functions, we use o to represent the ratio of inserted

EEE Vulnerable bzip2 EZZZ 007 patched bzip2 —@=—Overhead

5.0%
4.5%
4.0%
3.5%
3.0%
2.5%
2.0%
1.5%
1.0%
0.5%
0.0%

Execution time (s)
Performance overhead (%)

10% 20% 30% 40% 50% 60% 70% 80%

Modified program with © of vulnerable functions

Fig. 2. Execution time and performance overhead comparison between
vulnerable bzip2 with ratio o vulnerable functions inserted, and the
patched program repaired by o0o7.

vulnerable functions, where 0 = N/(N + P) and N is the
number of inserted vulnerable functions. We use different
values for o to evaluate the effectiveness of 0o7. The invoca-
tion to each vulnerable function is inserted in random loca-
tions of the bzip2 source code. Besides, each vulnerable
function contains a taint source to guarantee the vulnerable
code can be controlled by the attacker.

Table 3 presents the number of functions inserted in the
source code of bzip2 (VF_source), and the number of vul-
nerable functions identified by 007 (VF_007) in the modi-
fied program with o ranging from 10 to 80 percent.
Program bzip2 contains P = 105 functions, so we insert
[0 x 105/(1 — 0)] vulnerable functions. For example, we
insert 12 randomly picked vulnerable functions in the
bzip2 code when o = 10%. As observed in Table 3, our
analysis can identify all the vulnerable code fragments
over the varying range of o (i.e., [10, 80 percent]). More-
over, as shown in Table 3, the analysis time increases from
25.18 minutes with o = 10% to 43.6 minutes with o = 80%.

Fig. 2 show the execution time of the modified vulnerable
bzip2 and the patched version by 007 along with the per-
formance overhead introduced by patching. The absolute
execution time in Fig. 2 are shown by bars, and the perfor-
mance overhead is shown by the line with markers. As
shown in Fig. 2, the execution time is higher when o is
increased, for example, the test with o = 10% can finish in
379 seconds, but the test with o = 80% finished in 445 sec-
onds. We use fence instructions to repair the program. We
note that fence instructions introduce extra runtime over-
head, as they prevent speculative execution. We can see
from Fig. 2 that the repaired program with o = 10% takes
only one second more than the vulnerable program, but the
repaired program with o = 80% takes 20 seconds more than
the vulnerable program. Moreover, the repaired program
has negligible performance overhead. Specifically, the mini-
mum overhead is 0.26 percent (when o = 10%) and the max-
imum overhead is about 4.49 percent (wWhen o = 80%).

8.3 Evaluation on Specint Benchmarks

We use SPECint CPU benchmark suite [34] to quantify the

performance overhead of 007 protection mechanism as well

as for evaluating the efficacy of our detection and repair.
SPECint benchmark suite contains twelve programs in C

and C++. Table 4 outlines the salient features of these pro-

gram: the binary size, analysis and repair time, the number of

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

2514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021
TABLE 4
Results for the Detection of Spectre Vulnerable Code Fragments in SPECint
Program Binary Size LoC Analysis time Repair time (s) #Conditional # (IB) # (I'B, RS) #(TB, SW)
(h—m) branches
perlbench 1.2 MB 97,314 125h 5 21,972 60 18 5
bzip2 69 KB 5,115 27.4m 1 942 102 81 5
gcc 3.6 MB 365,844 > 150h 11 59,614 103 8 2
mcf 23 KB 1,370 3.5m 4 202 42 0 0
gobmk 3.9 MB 154,170 19.2h 1 11,549 57 13 0
hmmer 319 KB 19,267 3.67h 1 4,468 49 15 0
sjeng 153 KB 10,147 2.6h 1 2,146 18 3 0
libquantum 51 KB 2,212 1.35h 1 444 30 0 0
h264ref 577 KB 32,623 25.3h 1 6,743 16 0 0
omnetpp 768 KB 22,603 21h 2 4,812 90 26 3
astar 52 KB 3,003 21.2m 1 541 19 0 0
xalancbmk 5.8 MB 186,997 > 150h 15 62,209 72 47 2

#(T'B) denotes the tainted conditional branches detected by 007. (TB, RS) satisfies Spectre Variant 1 condition, while (T'B, SW) satisfies Spectre Variant 1.1,1.2

conditions as detected by 007.

conditional branches, the number of tainted branches 1B, the
number of (TB, RS) pairs as well as the number of (B, SW)
pairs. We run 007 on the programs in SPECint benchmark
suite for at most 150 hours; only gcc and xalancbmk do not
complete in 150 hours. This is because gcc and xalancbmk
have higher number of conditional branches.

In this set of experiments, we treat any APIs from the
standard library that can import data to the program as
potential taint sources. Table 5 lists the taint sources identi-
fied by 007 in SPECInt benchmark suite. Most of the pro-
grams in SPECint read the input from one or more files; so
the file reading functions from standard C library are taint
sources in these programs. For example, in gcc benchmark,
fread(), read (), getcwd (), getenv () and _IO_getc
() from glibc are used in the code and are marked as
taint sources.

We note that eight out of twelve programs from Specint
benchmark exhibit the vulnerability pattern of Spectre variant
1 as evidenced by the presence of (B, RS) pattern in perl-
bench, bzip2, gcc, gobmk, hmmer, sjeng, omnetpp,
xalancbmk. By looking for the (TB, RS) pattern, we conser-
vatively assume the strictest security requirement of reading
secret data. The subsequent mechanism to leak the secret data
can vary with the most common mechanism being the cache

TABLE 5
Detected Taint Sources for Programs From SPECint

Program Taint source list

perlbench getpid(), getgid(), getuid(), geteuid(), getegid(),
read(), fgetc(), getcwd(), getenv(),
gettimeofday(), fread()

bzip2 read()

gce fread(), read(), getcwd(), getenv(), _10_getc()

mcf fgets()

gobmk fgets(), getenv() _I0_getc()

hmmer fread(), _ fread_chk(), fgets(), getenv()

sjeng fgets(), _IO_getc()

libquantum fgetc(), fread(), getenv()

h264ref fread(), read(), isoc99 fscanf(),

omnetpp fgets(), getenv(), _10_getc()

astar read(), fscanf()

xalancbmk getcwd(), fread(), getenv()

side-channel with (7B, RS,LS) code pattern. Five of the
benchmarks (perlbench, bzip2, gcd, omnetpp,
xalancbmk) are vulnerable to Spectre variant 1.1, 1.2 as evi-
denced by the presence of (T'B, SWW) pattern. The analysis time
varies from 3.5 minutes (mc£) to 150 hours (gcc). The analysis
time not only depends on the binary size but also the complex-
ity of the program logic, more specifically, the number of
branches, for example gcc and xalancbmk contain 59,614
and 62,209 branches in there binary. Since gcc and
xalancbmk contain more branches than other programs,
there are more execution paths to explore. Therefore our analy-
sis times out after 150 hours. Our repair works on the assembly
code and can complete in 15 seconds for these benchmarks.

We evaluate the runtime overhead due to fence insertion
by executing each modified program ten times and report
the average values. Fig. 3 shows the normalized execution
time. The average performance overhead is 430 percent
when fences are inserted naively at both paths of all condi-
tional branches. This is the safest strategy in the absence of
an accurate program analyzer such as o0o7. In contrast,
007 only inserts fences at detected conditional branches
covering Spectre Variants 1, 1.1, 1.2 and hence incurs only
5.9 percent overhead on an average.

8.4 Evaluation on Interactive Program

lighttpd is a lightweight web server which allows pro-
grams to interact with it by sending HTTP requests. We run
007 on 1ighttpd to evaluate its effectiveness on interactive
programs. We identified nine taint sources in lighttpd,
detected 129 tainted branches and 40 Read Secret (RS). In
the identified taint sources, recv () is a critical interface
that receives data from arbitrary clients through the net-
work, which poses potential threats for data leakage in the
server caused by deliberately constructed data from the
attacker. Moreover, we evaluate the performance of
repaired 1ighttpd by sending 10000 HTTP requests to the
lighttpd server; the experiment shows our repaired code
only slows down 1ighttpd by 5.6 percent.

Fig. 4 shows a typical Spectre variant 1 vulnerability
detected in function buffer_append_base64_decode ()
within file lighttpl.4/src/base64.c of lighttpd
project. buffer_append_base64_decode () is called to

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: OO7: LOW-OVERHEAD DEFENSE AGAINST SPECTRE ATTACKS VIA PROGRAM ANALYSIS

2515

B Baseline Fence at all conditional branches Odoo7 fences (Spectre variant 1, 1.1, 1.2)

8
[
E7
r=}
c 6
25
3
24
33
2
N
=B
Eo] i
§ perlbench bzip2 gce mcf gobmk hmmer sjeng libguantum h264ref omnetpp astar xalancbmk Avg.

Programs from SPECint2006

Fig. 3. Runtime overhead due to protection against Spectre Variant 1, 1.1, 1.2 compared to original code in SPECint. All denotes the overhead from
inserting fence at all conditional branches. The overheads from fences introduced by 007 to protect against Spectre variants 1, 1.1, 1.2 are plotted.

decode the base64 string after recv () receives data from
the network. The code extracts a sequence of characters to
variable ¢ from the input buffer in and checks whether c is
less than 128 (TB). If ¢ < 128, then the value of c is used to
index the table base64_reverse_table. The attacker can
first train the branch “if (¢ >=128)” by using values of ¢
to be less than 128. Then the attacker can pass a value of ¢ to
be 128. This results in accessing bytes outside of the array
base64_reverse_table[] beingread to variable ch. This
happens when the branch “if (¢ >=128)" is mispredicted
for ¢ = 128 and during the speculative execution of the array
access base64_reverse_table[]. The attacker can infer
whether the leaked data is equal to -3 by probing the cache
line impacted by the following if statement. Moreover, the
type of ¢ is unsigned char with a value range 0 to 255.
Therefore this vulnerable code can at most leak 128 bytes out-
side of array base64_reverse_table[].

8.5 Evaluation on Various Software Projects

We observe that the detection of Spectre Variant 1 (as
opposed to variants 1.1, 1.2) takes the longest time from our
experiments with SPECint benchmarks. So we evaluate the
scalability of Spectre variant 1 detection on real-world pro-
grams. In the evaluation, we select 507 binaries from OSS-
fuzz repository of Google and other open-source projects;
most of the selected binaries receive input data from the
outside world through network interface. We apply 007 on
the program binaries from selected projects as shown in
Table 6. The analysis are performed for at most 24 hours to

unsigned char*

buffer append base64 decode(..., char*in, ...) {

for (i = 0; i < in length; i++) {
unsigned char e = (unsigned char)
int ch;

in[i];

/* TB */
/* RS */

if (¢ >= 128) return NULL;
ch = base64_reverse_ table[c];
if (-3 == ch) {
if (group < 2)
break;
} else if (-2 == ch) {
continue;
} else if (ch < 0) {
return NULL;

return NULL;

}

Fig. 4. Potential Spectre vulnerability in base. c within project lighttpd.
in is tainted from a taint source recv(). TB, RS are highlighted.

detect potential Spectre variant 1 code snippets to demon-
strate the scalability of our analysis.

The column “# of vulnerable binaries” in Table 6 shows
the number of program binaries in each project with poten-
tial vulnerabilities. We identify a program as vulnerable if it
has at least one (I'B, RS) pattern in the code that can poten-
tially be exploited by the attacker to read secret data, i.e., we
conservatively assume the strictest security requirement. As
mentioned earlier, the subsequent mechanism to leak the
secret data can vary with the most common mechanism
being the cache side-channel with (TB, RS, LS) code pat-
tern. For each project, we report the number of vulnerable
programs, the average number of (7'B) and the average
number of (IB, RS) patterns under two different taint prop-
agation strategies: data dependencies and program (data &
control) dependencies. For example, in project samba, out of
total 230 programs, oo/ detects 62 and 91 binaries as poten-
tial victims under data- and program-dependence taint
propagations, respectively. Program-dependence based
taint propagation identifies additional vulnerable code frag-
ments compared to data-dependence only. Altogether, 233
(or 290) out of 507 programs are labeled as potential victims
by 007 under data- (or program-) dependence taint propaga-
tion. Table 6 also show the analysis time in hours for
detecting (1B, RS) patterns using data dependencies, and
program dependencies.

Potential Spectre Vulnerability in Large-scale Code. We show
one example of a Spectre vulnerability unearthed by 007 in
Fig. 5. This code snippet is identified by 007 in a program
(src/lib/util/trie.c) within the project freeradius.
Note that 007 identifies the vulnerability at binary level. For
the sake of exposition and brevity, we show only the portions
corresponding to the Spectre vulnerability pattern at source
code level. As comments, we highlight the code fragments
detected as 7B, RS and LS. The argument argv is a tainted
array read from an external file through the taint source gets
(). The conditional check in the function command_1lcp is
therefore a tainted branch (7'B). Taint is propagated to the
function fr_trie_path_lcp via the parameter keylen?2.
Consequently, the array load lcp_end_bit may use the
value of e2 (potentially controlled by the attacker through
argv[3]) during speculative execution. This speculative exe-
cution may take place due to the misprediction of the condi-
tional branch in command_1cp that reflects a bound check.
Finally, the array access xor21cp may reveal information out
of the boundary of array lcp_end_bit[] via cache side
channel. Though the pattern (7B, RS, LS) is found in the wild

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

2516

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

TABLE 6
Software Projects Used From Github and OSS-Fuzz and the Detected Spectre v1 Vulnerabilities
. . P # of Avg. Data-dependenc Program-dependenc;
Project Project Description binaries bingary #of Avg. # of 5 Avg.)i; of Avg. #of Avg. #gof & Avg. # }(,)f Avg.
size vulnerable | (T'B) (TB, RS) ‘ analysis | vulnerable | (7TB) (TB, RS) ‘ analysis
binaries per binary | per binary time(h) binaries per binary | per binary time(h)
samba SMB/CIFS networking protocol 230 124.0KB 62 16 9 0.76 91 32 46 12
coreutils GNU O file, shell and text manipulation utilities 114 125.3KB 78 14 4 0.22 84 83 57 1.3
cups Common UNIX Printing System 52 134.3KB 30 40 31 1.07 46 141 122 3.09
freeradius Popular open-source RADIUS server 47 49.9KB 18 13 24 0.21 25 82 25 0.45
openldap Lightweight Directory Access Protocol 31 1.3MB 28 291 98 8.05 25 580 484 20.59
openssh Network utilities based on SSH protocol 11 791.9KB 4 21 4 21.13 6 72 15 >24
xrdp Remote desktop protocol (rdp) server 10 107.3KB 5 23 2 0.59 5 48 22 3.04
PPP PPP daemon and associated utilities 4 322.0KB 2 56 41 5.11 2 77 60 6.16
dropbear Small SSH server and client 4 1.2MB 2 148 20 > 24 2 172 44 > 24
netdata Distributed real-time performance monitoring 2 1.9MB 2 109 45 12.05 2 198 175 12.41
wget Content retrieval from web servers 1 937.2KB 1 134 25 16.1 1 542 430 >24
darknet Convolutional Neural Networks 1 663.9KB 1 76 42 3.17 1 183 195 6.8
Total - 507 - 233 - - - 290 - - -

by o007, the vulnerable code fragment is executed only once at
run-time, making it impossible for the adversary to poison the
branch and launch an attack. The distance between 7B and
RS is 145 Intel x86 instructions. The example illustrates that
Spectre vulnerability in real-world may span over multiple
functions requiring inter-procedural program analysis.

Sensitivity to Speculative Execution Window Size. We set the
speculative execution window size SEW = 448 as twice the
effective ROB size in our platform. This is a conservative
assumption to take care of micro-operations generated from
the instructions and processed within the micro-architec-
ture. We investigate the sensitivity of our analysis on SEW
value. Fig. 6 shows the distance in instructions between TB
and RS (A(TB, RS)) for vulnerable code fragments across all
507 binaries. The results show that 82 and 79 percent of the
tainted memory accesses (RS) occur within 100 instructions
from the tainted branch for data-and program-dependence
based taint propagation, respectively.

Analysis and Repair Time of 007. The analysis time depends
on the size and complexity of the binary. Fig. 7 shows the
distribution of analysis time across all the binaries. Under
data-dependence based taint propagation, the analysis time
is less than 20 minutes for 72 percent of the binaries. Pro-
gram-dependence based taint propagation increases the
analysis time; still the analysis completes within 20 minutes
for 52 percent of the binaries. Only 3 and 9 percent of the

static int command lcp(..
{
keylen2 = atoi(argv[3]);
if ((keylen2 < 0) ||
(keylen2 > (int)

.,char **argv,...)
/* TB */
BITSOF (strlen(argv[2]))))
return -1;
}

lcp = fr trie path lcp(.., keylen2,..);
}

static int fr_ trie path lcp(..,
{

int keylen2, .)

if (end_bit > keylen2) end bit = keylen2;
e2 = end bit;
xXor <<= s2;

xor |= lcp_end bit[e2 - s2]; /* RS */
lcp = xor2lcp[xor]; /* LS */

}

Fig. 5. Potential Spectre vulnerability in trie.c within project freera-
dius. argv is tainted from a taint source gets(). The triplet (TB, RS, LS)
is highlighted.

analysis across 507 binaries did not complete in 24 hours.
The repair time is minimal; for all of the 507 binaries, it is
within 30 seconds.

Quantitative Analysis of Vulnerabilities. Our analysis shows
that on an average only 7.3 percent (variance 0.3 percent) of
conditional branches are tainted across 290 programs with
at least one tainted branch. Moreover, 217 out of 507 bina-
ries do not have any tainted branch at all.

Next we check the percentage of conditional branches in
these program binaries that are tainted (TB) and are fol-
lowed by tainted memory access (RS) within speculative
execution window. If we want to ensure strict security
requirements, then 1fence instruction should be inserted
after all these tainted branches. On an average, our analysis
shows only 3.72 percent (variance 0.3 percent) of conditional
branches satisfy this criteria leading to very low overhead in
fixing Spectre vulnerability.

=t Data-dependency taint = Program-dependency taint

1.2

1.00

: e
0 L
=

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 >150
N: Distance between TB and RS

0.97

and RS less than N

Proportion of vulnerable code
fragments with distance between TB

Fig. 6. Cumulative distribution of distance (#instructions) between TB
and RS for binaries in Table 6 under data- and program dependence
based taint propagation.

== Data-dependency taint ——Program-dependency taint

1.2

[}

= 1 0.97
i

o8 P — o
£ 508 /‘,/./0/

8 £

S 206

S% —

5 <

o g 0.4

= c

® 502

S <

€

S 0

(@]

10m 20m 30m 40m 50m 60m 12h 24h Timeout

Analysis time in minutes(m) and hours(h)

Fig. 7. Cumulative distribution of analysis time for binaries in Table 6
under data- and program dependence based taint propagation.

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: OO7: LOW-OVERHEAD DEFENSE AGAINST SPECTRE ATTACKS VIA PROGRAM ANALYSIS

Finally, we check the percentage of conditional branches
in these program binaries that are tainted (TB) and are fol-
lowed by tainted memory access (RS) within speculative
execution window and a subsequent tainted memory access
(LS) to leak the data to the cache. This is denoted as TB+RS
+LS. If we assume cache side-channel attack as the only
mechanism to leak the secret brought into the cache, then
007 only needs to add lfence instruction after these
branches. On an average, only 2.32 percent of conditional
branches (variance 0.1 percent) satisfy this criteria. This
strongly indicates that the performance overhead from
inserting fences suggested by our technique will be low.
However we could not collect the exact performance over-
head for all of these 507 binaries because it will involve run-
ning each binary against many inputs and averaging the
performance overhead across inputs. Furthermore, for
some of the binaries such as coreutils, a large set of
inputs (each input being a command) is possible. For this
reason, we meaured performance overheads on SPECint
benchmarks instead, which is a standard benchmark suite
with inputs specified for performance analysis.

Higher Vulnerable Code Fragment Percentage in Program-
Dependency Enabled Analysis. As shown in Table 6, 007 detects
more vulnerable code fragments with program-dependency
analysis (that considers both data dependency and control
dependency) compared to only data-dependency analysis.
For example, in samba project, 007 detects on an average 16
tainted branches per binary when considering only data-
dependency. In contrast, with program-dependency analysis,
the number of tainted branches detected increases to 32
branches on average per binary. The reason is that if a condi-
tional branch is tainted, all the instructions that have control-
dependency with the conditional branch are also marked as
tainted. Thus, analysis with program-dependency enabled
inevitably causes over-tainting.

9 LIMITATIONS OF OUR APPROACH

007 relies on BAP, which, in turn incorporates a taint analy-
sis engine. The taint analysis statically interprets the code
by unrolling the loops up to a certain depth. In order to
ensure that our approach does not introduce false negatives
we need to pay attention to the following three issues.

e First of all, optimistic loop unrolling may introduce
false negatives (missing vulnerabilities) in 007. How-
ever, with correct or worst-case loop bounds being
supplied to BAP, such a limitation can be mitigated.

e Second, taint sources are provided to the taint analy-
sis engine, and if taint sources are under-specified
then the taint analysis may not identify all the
branches that can be controlled by the attacker. We
thus conservatively assume all user inputs via con-
sole, file, and network as taint sources.

e Finally, the completeness of the control-flow extrac-
tion also plays a role to decide whether our analysis
will introduce false negatives. If the branch targets of
register indirect jumps are not identified, the control
flow graph extracted from the binary will not be
complete, and as a result the taint analysis results
may miss tainted branches. Thus, our approach

2517

always depends on the control flow graph being as
complete as possible, in trying to ensure that we do
not have false negatives in our analysis.

007 finds tainted memory accesses following a tainted
conditional branch within a fixed speculation window.
Incorrect setting of this speculation window size may lead
to false positives (window size too big) or false negatives
(window size too small). We conservatively set the window
length to twice the size of the of the reorder buffer, as
explained earlier.

007 works on native code for program binaries. We have
not investigated Spectre detection on interpreted code.

We also assume that all memory references in the victim
code have been protected with appropriate checks to pre-
vent overflow and underflow (e.g., array bound overflow).
Thus, there does not exist any overflow/underflow error in
normal (i.e., non-speculative) execution traces.

The taint analysis capability gives 007 the flexibility to
adapt to Spectre variants. We have discussed in detail (Sec-
tion 2) the class of Spectre variants that we can handle and
the ones that cannot be handled. In addition, new variants
are constantly being found, we could face some variants in
future that 007 cannot be adapted to handle.

The underlying technology used by 007 is forced execu-
tion, which is able to handle the obfuscated or self-modify-
ing code [23]. Thus, 007 can potentially analyze obfuscated
or self-modifying code. Moreover, code obfuscation and
self-modifying code are common evasive techniques used
by malware, while 007 focuses on identifying and repairing
vulnerabilities in the general software instead of detecting
malware.

007 is based on program analysis. As a result it can detect
(and patch) vulnerable code patterns that can be exploited
by malicious program inputs. It cannot detect scenarios
where an external process affects micro-architectural states
(e.g., flushing dynamic branch predictor) and thereby intro-
duce vulnerabilities in another program (e.g., by exploiting
the default static branch predictor as the dynamic branch
predictor has been flushed). Such scenarios cannot be
detected by our analysis.

10 DISCUSSION

We have built 007 for detecting Spectre vulnerabilities in
binary code and protecting against the attack with minimal
overhead. Our approach is employed post-compilation on
binary code to take into account all the compiler optimiza-
tions. No change to the operating system or the processor is
needed as the approach proceeds by program analysis. We
demonstrate that systematic analysis is useful both for detect-
ing Spectre vulnerabilities and to repair them with minimal
performance overhead. Our work also provides an under-
standing of the class of Spectre attacks for which an analysis
based mitigation may be suitable, and for which classes of
attacks a system level solution is suitable. Our tool is publicly
available from https://github.com/winter2020/007

ACKNOWLEDGMENTS

This research was partially supported by a grant from
the National Research Foundation, Prime Ministers

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

https://github.com/winter2020/oo7

2518

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Office, Singapore under its National Cybersecurity R&D
Program (TSUNAMi project, No. NRF2014NCRNCRO001-

21) and administered by the National Cybersecurity
R&D Directorate.

REFERENCES

[1] P. Kocher, “Spectre mitigations in microsoft’'s C/C++

[2]
[3]
[4]

[5]
[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

compiler.” 2018, [Online]. Available: https://www.paulkocher.
com/doc/MicrosoftCompilerSpectreMitigation.html

P. Kocher et al., “Spectre attacks: Exploiting speculative exe-
cution,” in Proc. 40th IEEE Symp. Security Privacy, 2019, pp. 1-19.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. New York, NY, USA: Elsevier, 2017.

Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low
noise, 13 cache side-channel attack,” in Proc. Usenix Security Symp.,
2014, pp. 719-732.

M. Lipp, “Meltdown and Spectre.” 2018. [Online]. Available:
https:/ /meltdownattack.com/

M. community, “C++ developer guidance for speculative execu-
tion side channels,” 2018. [Online]. Available: https://docs.
microsoft.com/en-us/cpp/security /developer-guidance-
speculative-execution

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “KASLR is dead: Long live KASLR,” in Proc. Int.
Symp. Eng. Secure Softw. Syst., 2017, pp. 161-176.

Intel, “Intel analysis of speculative execution side channels.” 2018.
[Online]. Available: https://newsroom.intel.com/wp-content/
uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-
Side-Channels.pdf

Intel, “Retpoline: A branch target injection mitigation.” 2018.
[Online]. Available: https://software.intel.com/security-software-
guidance/api-app/sites/default/files /Retpoline-A-Branch-Target-
Injection-Mitigation.pdf

E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh ,
“Spectre returns! Speculation attacks using the return stack buffer,”
in Proc. 12th USENIX Workshop Offensive Technol., 2018, pp. 13-14.

V. Kiriansky and C. Waldspurger, “Speculative buffer overflows:
Attacks and defenses,” 2018, arXiv:1807.03757.

T. Warren, “Intel processors are being redesigned to protect against
spectre.” 2018. [Online]. Available: https:/ /www.theverge.com/
2018/3/15/17123610/intel-new-processors-protection-spectre-
vulnerability

V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative
execution processors,” in Proc. 51st Annu. IEEE[/ACM Int. Symp.
Microarchitecture, 2018, pp. 974-987

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “InvisiSpec: Making speculative execution invisible in
the cache hierarchy,” in Proc. 51th Int. Symp. Microarchitecture,
2018, pp. 428-441.

Microsoft, “Spectre mitigations in MSVC.” 2018. [Online]. Available:
https:/ /blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-
mitigations-in-msve/

C. Carruth, “Speculative load hardening.” 2018. [Online]. Available:
https:/ /docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGu
oITT_6le_Ko3TmoCS3uXLcJRO/ edit#heading=h.phdehs44eom6

O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer,
“You shall not bypass: Employing data dependencies to prevent
bounds check bypass,” 2018, arXiv: 1805.08506. [Online]. Avail-
able: https:/ /arxiv.org/abs/1805.08506

Microsoft, “Protect your windows devices against spectre and
meltdown.” 2018. [Online].Available: https://support.microsoft.
com/en-us/help /4073757 / protect-your-windows-devices-against-
spectre-meltdown

C. Reis, “Mitigating spectre with site isolation in chrome.” 2018.
[Online]. Available: https://security.googleblog.com/2018/07/
mitigating-spectre-with-site-isolation.html

P. Turner, “Retpoline: A software construct for preventing
branch-target-injection,” 2018.

M. Guarneri, B. Kopf,]J. Morales, J. Reineke, and A. Sanchez,
“SPECTECTOR: Principled detection of speculative information
flows,” 2018, arXiv: 1812.08639. [Online]. Available: https://arxiv.
org/abs/1812.08639

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

D. Brumley, 1. Jager, T. Avgerinos, and E. J. Schwartz, “BAP:
A binary analysis platform,” in Proc. Int. Conf. Comput. Aided Veri-
fication, 2011, pp. 463—469.

F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force:
Force-executing binary programs for security applications,” in
Proc. USENIX Security Symp., 2014, pp. 829-844.

M. Maurer, “Holmes: Binary analysis integration through datalog,”
Oct. 2018. [Online]. Available: https://kilthub.cmu.edu/articles/
Holmes Binary Analysis Integration Through Datalog/7571519
wikichip, “Macro-operation fusion,” 2018. [Online]. Available:
https:/ /en.wikichip.org/wiki/macro-operation_fusion

“Cpuid.” 2019. [Online]. Available: https://c9x.me/x86/html/
file. module x86 id 45.html

Y. Shoshitaishvili et al., “SOK: (State of) The art of war: Offensive
techniques in binary analysis,” in Proc. IEEE Symp. Security
Privacy, 2016, pp. 138-157.

K. Kim et al., “J-force: Forced execution on javascript,” in Proc.
26th Int. Conf. World Wide Web, 2017, pp. 897-906. [Online].
Available: https://doi.org/10.1145/3038912.3052674

L. Xu, F. Sun, and Z. Su, “Constructing precise control flow graphs
from binaries,” University of California, Davis, 2009.

A. Kejariwal et al., “Comparative architectural characterization of
spec cpu2000 and cpu2006 benchmarks on the Intel® core 2 duo
processor,” in Proc. Int. Conf. Embedded Comput. Syst.: Architectures,
Model., Simul., 2008, pp. 132-141.

Google, “oss-fuzz,” 2018. [Online]. Available: https://github.
com/google/oss-fuzz/tree/master/projects

“Intel Xeon Gold 6126 processor,” 2017. [Online]. Available:
https:/ /ark.intel.com/products /120483 /Intel-Xeon-Gold-6126-
Processor-19-25M-Cache-2-60-GHz-

“Skylake (client) - microarchitectures - intel.” 2015. [Online]. Avail-
able: https://en.wikichip.org/wiki/intel/microarchitectures/
skylake_ (client)

J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

Guanhua Wang received the ME degree in com-
puter science from Shandong University, Jinan,
China, in 2014. He is currently working toward
the PhD degree in the Department of Computer Sci-
ence, School of Computing, National University
of Singapore, Singapore. His research interests
include CPU architecture and architecture security.

Sudipta Chattopadhyay received the PhD
degree in computer science from the National
University of Singapore, Singapore, in 2013. He
is an assistant professor with the Information
Systems Technology and Design Pillar, Singa-
pore University of Technology and Design, Sin-
gapore. His research interests include program
analysis, embedded systems, and compilers.

lvan Gotovchits received the MS degree in elec-
trical engineering from Moscow Technological
University, in 2006 and worked as an engineer
developing mission-critical highly automated sys-
tems. He is a chief developer with CyLab, Carne-
gie Mellon University.

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://meltdownattack.com/
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://www.theverge.com/2018/3/15/17123610/intel-new-processors-protection-spectre-vulnerability
https://www.theverge.com/2018/3/15/17123610/intel-new-processors-protection-spectre-vulnerability
https://www.theverge.com/2018/3/15/17123610/intel-new-processors-protection-spectre-vulnerability
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://arxiv.org/abs/1805.08506
https://support.microsoft.com/en-us/help/4073757/protect-your-windows-devices-against-spectre-meltdown
https://support.microsoft.com/en-us/help/4073757/protect-your-windows-devices-against-spectre-meltdown
https://support.microsoft.com/en-us/help/4073757/protect-your-windows-devices-against-spectre-meltdown
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://arxiv.org/abs/1812.08639
https://arxiv.org/abs/1812.08639
https://kilthub.cmu.edu/articles/Holmes_Binary_Analysis_Integration_Through_Datalog/7571519
https://kilthub.cmu.edu/articles/Holmes_Binary_Analysis_Integration_Through_Datalog/7571519
https://en.wikichip.org/wiki/macro-operation_fusion
https://c9x.me/x86/html/file_module_x86_id_45.html
https://c9x.me/x86/html/file_module_x86_id_45.html
https://doi.org/10.1145/3038912.3052674
https://github.com/google/oss-fuzz/tree/master/projects
https://github.com/google/oss-fuzz/tree/master/projects
https://ark.intel.com/products/120483/Intel-Xeon-Gold-6126-Processor-19-25M-Cache-2-60-GHz-
https://ark.intel.com/products/120483/Intel-Xeon-Gold-6126-Processor-19-25M-Cache-2-60-GHz-
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

WANG ET AL.: OO7: LOW-OVERHEAD DEFENSE AGAINST SPECTRE ATTACKS VIA PROGRAM ANALYSIS 2519

Tulika Mitra received the BE degree in computer
science from Jadavpur University, Kolkata, India,
in 1995, the ME degree in computer science from
the Indian Institute of Science, Bengaluru, India,
in 1997, and the PhD degree from the State Uni-
versity of New York, Stony Brook, New York, in
2000. She is currently a professor of computer
science with the School of Computing, National
University of Singapore, Singapore. Her research
interests include the design automation of embed-
ded real-time systems with particular emphasis
on software timing analysis/optimizations, application-specific process-
ors, energy-efficient computing, and heterogeneous computing.

Abhik Roychoudhury received the PhD degree
in computer science from the State University of
New York at Stony Brook, Stony Brook, New York,
in 2000. He is currently a professor of computer sci-
ence with the National University of Singapore,
Singapore. He is the director of the National
Satellite of Excellence in Trustworthy Software
Systems, based in Singapore. His research
interests include software testing and analysis,
software security, and trustworthy software con-
struction. He is also the lead principal investigator
of the Singapore Cyber Security Consortium. He has served as an associ-
ate editor of the IEEE Transactions on Software Engineering from 2014 to
2018, and is currently serving as an associate editor of the /[EEE Transac-
tions on Dependable and Secure Computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Surrey. Downloaded on February 27,2023 at 23:38:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

