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Abstract—Transient execution attacks like Spectre, Meltdown
and Foreshadow have shown that combinations of microarchi-
tectural side-channels can be exploited to create side-channel
leaks that are greater than the sum of their parts. While both
hardware and software mitigations have been proposed against
these attacks, provable security has remained elusive.

This paper introduces a formal methodology for enabling
secure speculative execution on modern processors. We propose
a new class of information flow security properties called trace
property-dependent observational determinism (TPOD). We use
this class to formulate a secure speculation property. Our prop-
erty formulation and associated adversary models help formalize
the class of transient execution vulnerabilities. We demonstrate
applicability of our methodology by verifying secure speculation
for several illustrative programs.

I. INTRODUCTION

Recently discovered transient execution attacks like Spectre,

Meltdown and Foreshadow [1–13] have shown that side chan-

nel vulnerabilities are more exploitable than was previously

believed. While caches or branch predictors leaking informa-

tion is not exactly news [14–20] in 2019, Spectre is interesting

because it combines side channels to produce a leak that is

“greater than the sum of its parts.” A number of mitigations

have been proposed to these vulnerabilities [9–12, 21–25] and

many of these have been adopted into widely-used software

like the Linux kernel [26, 27], Microsoft Windows [28, 29]

and the Microsoft Visual Studio compilers and associated

libraries [23]. However, these mitigations are not provably

secure and in fact some, e.g. Spectre mitigations in Microsoft

Visual Studio, are known to be incomplete [30].

Transient execution attacks exploit microarchitectural side-

channels present in modern high-performance processors.

High-performance processors contain several microarchitec-

tural optimizations — e.g., branch prediction, data and instruc-

tion caching, out-of-order execution, and speculative memory

address disambiguation, to name just a few — in order to

execute programs more efficiently [31, 32]. Many of these

optimizations rely on the technique of speculation [33–36].

The processor uses a prediction structure to guess whether a

particular execution is likely to occur before its results are

available and speculatively executes as per the prediction. If

the prediction turns out to be wrong, architectural state –

which consists of register and memory values – is restored

to its value before speculative execution started and execution

restarts along the correct path. In many cases, it is possible

to build predictors that mostly guess correctly and speculation

leads to huge performance and power benefits.

It is important to emphasize that when misspeculation is

resolved, only architectural state is restored while microarchi-
tectural state, such as cache and branch predictor state, is not.
Transient execution attacks exploit this fact by mistraining a

prediction structure to speculatively execute vulnerable wrong-

path instructions and exfiltrate confidential information by ex-

amining the microarchitectural side-effects of misspeculation.

The above leads to two obvious templates for preventing

these vulnerabilities: (i) do not speculate, or (ii) do not leak

information through microarchitectural side channels. Many

mitigations do indeed take the first approach by turning off

speculation in a targeted manner [9, 10, 21, 24, 26–29].

While most of these mitigations were developed through

careful manual analysis of known exploitable vulnerabilities,

automated tools for Spectre mitigation also take this ap-

proach [23]. Unfortunately, the latter have been found to be

incomplete [30] while the former do not come with provable

security guarantees. The larger point here is that there is

no formal methodology for reasoning about the security of

mitigations to transient execution vulnerabilities.

Some research has also taken the second approach of

attempting to close the exfiltration side-channel by ensur-

ing it does not leak any information at all. For instance

the Dynamically Allocated Way Guard (DAWG) closes the

cache side-channel by partitioning between protection do-

mains [37]. However, other side-channels (prefetchers, DRAM

row buffers, load store queues, etc.) potentially remain ex-

ploitable with these solutions and partitioning comes with a

significant performance penalty. Here too, it remains unclear

whether partitioning a few exfiltration channels is sufficient to

prevent all transient execution vulnerabilities.

Besides the lack of provable security, another problem

with current approaches are their large performance penalties.

In this context, it is noteworthy that recent versions of the

Linux Kernel have turned off certain Spectre mitigations by

default because performance slowdowns of up to 50% [38, 39]

were observed for certain workloads. We believe these high

overheads are a result of being unable to reason about se-

curity of the mitigations. If we could systematically reason

about security, it will be possible to develop more aggressive

mitigations that disable speculation in a very targeted manner

and have a much lower performance overhead.

All of the above points to the need for verification tech-

niques for secure speculation. This problem is most closely

related to the secure information flow problem, which has been

studied by a rich body of literature [40–46]. Unfortunately,

existing work on secure information flow is not sufficient to
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precisely capture the class of transient execution vulnerabili-

ties. Specifically, it is important to note that traditional notions

of information flow security like non-interference [41] and ob-

servational determinism [42–44] are only satisfied when there

is no information flow from confidential state to adversary

observable state. In the context of Spectre, this would imply

no information flow from confidential memory locations to

microarchitectural side channels. For most programs of inter-

est, e.g., the Linux kernel and Microsoft Windows operating

system, all modern commercial processors do leak information

about confidential operating system state through microarchi-

tectural side channels like caches, prefetchers, DRAM row

buffers, etc. Therefore, traditional formulations of secure infor-

mation flow are always violated for such programs regardless

of whether they are vulnerable to transient execution attacks.

The above points to one of the key challenges in the

verification of secure speculation: formulating the right prop-
erty. We need a way of precisely capturing only the new
leaks introduced by the interaction of microarchitectural side

channels with speculation. These new leaks stand in contrast

to the previously known side-channel leaks which are already

captured via traditional notions of secure information flow

such as noninterference/observational determinism.

A second important challenge is coming up with a general

system and adversary model that can be used to reason about

the category of transient execution attacks, as opposed to

pattern-matching known vulnerabilities. Thirdly, we need a

verification methodology that can be used to prove that specific

programs satisfy secure speculation.

In this paper, we address each of the above challenges.

We introduce a formal methodology for reasoning about

security against transient execution attacks. Our approach is

based on the formulation of a new class of information flow

security properties called trace property-dependent observa-
tional determinism (TPOD). These properties, an extension of

observational determinism, are defined with respect to a trace

property and intuitively TPOD captures the following notion

of security: does violation of the trace property introduce new
counterexamples to observational determinism?

We use TPOD to reason about the security of software-

based Spectre mitigations. For this, we present an assembly

intermediate representation (AIR) into which machine code

can be lifted and introduce speculative operational semantics

for this AIR. We introduce a general adversary that captures

transient execution attacks, and define a secure speculation

property against this adversary as an instance of TPOD. We

verify secure speculation using bounded model checking and

induction using the UCLID5 verification tool [47, 48] on a

suite of small but illustrative benchmarks, several of which

are from the literature on Spectre mitigations [30].

A. Contributions

This paper’s contributions are the following.

• We introduce a novel methodology for reasoning about

the security of microarchitectural speculation mecha-

nisms. Our methodology can ensure that a program is

secure against transient execution vulnerabilities.

• We introduce a new class of information-flow security

properties called trace property-dependent observational

determinism. This class of properties allows us to reason

about information leaks that occur due to interactions

between microarchitectural mechanisms.

• We introduce a speculative operational semantics for an

assembly intermediate representation, an adversary model

for transient execution attacks over this representation and

a secure speculation property. Violations of the property

correspond to transient execution vulnerabilities.

• We demonstrate viability of our methodology by proving

secure speculation for a suite of small programs.

The rest of this paper is organized as follows. Section II

presents an overview of transient execution attacks. Sec-

tion III reviews observational determinism and introduces trace

property-dependent observational determinism. Section IV de-

scribes the assembly intermediate representation and specula-

tive operational semantics for it. The adversary model and

the secure speculation property are described in Section V.

Sections VI and VII present our verification approach and

case studies. Section VIII reviews related work and section IX

provides some concluding remarks.

II. OVERVIEW

In this section, we present an overview of transient execu-

tion vulnerabilities as exemplified by Spectre and review the

verification challenges posed by these vulnerabilities.

A. Introduction to Transient Execution Attacks

Transient execution attacks involve two components: an

untrusted component (the attacker) who interacts with a trusted

component (the victim) over some communication interface.

The attacker exfiltrates confidential information from the vic-

tim by exploiting microarchitectural artifacts of misspeculation

in high-performance processors. As shown in Figure 1, a

transient execution attack has four stages. We explain these

four stages using the code snippet shown in Figure 3(a), which

is vulnerable to Spectre variant 1.

(S1) Prepare: In the first stage, the attacker prepares the

exfiltration side channel and mistrains the branch predictor in

order to bring the system into a vulnerable state. A commonly

S1: prepare exfiltration

channel, branch predictors

S2: invocation of victim

(trusted) code

S3: attacker triggered

misspeculation

S4: extract secret from

exfiltration channel

Figure 1: Four Stages of a Speculative Execution Attack.

Execution of untrusted code is shown in red, while trusted

code is in blue. We show the attacker-triggered misspeculation

in the trusted code in the violet dotted box.
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used exfiltration side channel is the cache. In this context,

preparation refers to priming the cache by executing load/store

instructions with effective addresses that are stored in the

same cache sets as the victim data. One way to mistrain the

branch predictor is to repeatedly execute the victim code with

carefully chosen input arguments so that predictor learns that

a particular branch should always be taken (or not taken).

(S2) Invocation: In the second stage, the attacker invokes

victim code with carefully chosen input arguments to trigger

misspeculation. This invocation occurs over some commu-

nication interface between the untrusted and trusted code.

One such interface is through system calls and returns; here

the attacker is an untrusted user-mode process while the

victim is the operating system kernel. Another example in the

context of browser-based sandboxing, e.g. Native Client [49],

would be function calls and returns. The attacker is untrusted

code running within the sandbox while the victim is NaCl’s

trusted API. Many other vulnerable interfaces exist: hypercalls,

enclave entry, software interrupts, etc. The victim may not

even be explicitly invoked: implicit invocation is possible by

mistraining the branch predictor or by causing a hardware

interrupt to occur! For simplicity, this paper focuses on a

function call/return interface but our techniques are easily

generalized to other interfaces.

(S3) Exploitable Misspeculation: The victim code now

executes. At some point it will misspeculate in an attacker-

controlled manner resulting in the execution of “wrong path”

instructions. These wrong path instructions update specula-

tive architectural state – register and memory values – and

microarchitectural state including caches, branch predictors

and prefetchers. Eventually the wrong path is resolved and its

instructions are flushed. Speculative updates to architectural

state (registers and memory) are flushed, but microarchitec-

tural state (e.g., cache updates) is not restored.

While many past attacks have exploited microarchitectural

side channels to extract confidential data [14–20], the differ-

ence with transient execution vulnerabilities is that the latter

only manifest due to misspeculation in the processor. Even
programs whose architectural (non-speculative) execution is
carefully designed to not have any side-channel leaks could
be vulnerable to transient execution attacks.

(S4) Exfiltration: Finally, control returns to the attacker who

examines microarchitectural side-channel state to exfiltrate

confidential data from the victim. In cache-based attacks, this

involves probing the cache in order to infer secrets.

B. Spectre Variants and Associated Verification Challenges

We now describe the Spectre variant 1 vulnerability and

a few modifications to it as exemplars of transient execution

attacks. We use this discussion to motivate the research chal-

lenges posed by transient execution attacks. While we focus on

Spectre variant 1 for ease of exposition, the research questions

raised here apply to all other transient execution attacks.

We discuss the four code snippets shown in Figure 3. In

each of the snippets, the vulnerable victim function is foo.

This function is trusted but is invoked by an untrusted attacker

with an arbitrary attacker chosen argument i. foo has access

to two arrays: a1 and a2. Note that any architectural execution

of these functions should never see accesses to a1[i] for i
≥ N. Therefore, one might expect that no information could

possibly leak about these values in the array through any side-

channel. As we will see, the Spectre attack shows how these

values can be inferred by a clever attacker.

Attacker primes cache, mistrains branch predictor(S1)

A . . . . . . B . . .

Invoke victim code: call foo(N+ 2)(S2)

A . . . . . . B . . .

Exploitable misspeculation: predict taken on if(i < N)(S3)

A . . . . . . B . . .

load v = a1[i]

A a1[i] . . . B . . .

load a2[v ∗ S]

a2[0] a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

v == 0? v == 1?

Squash misprediction

(note cache unchanged)

Exploitable misspeculation: predict taken on if(i < N)(S3)

A . . . . . . B . . .

load v = a1[i]

A a1[i] . . . B . . .

load a2[v ∗ S]

a2[0] a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

v == 0? v == 1?

a2[0] a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

Return to caller (attacker)

a2[0] a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

Attacker probes A and B in cache to infer a1[N+ 2](S4)

Figure 2: Cache state evolution in Spectre variant 1. The rect-

angular boxes show the addresses that are cached. Untrusted

accesses are red while accesses by trusted code are blue. For

simplicity, we show the attack on a direct-mapped cache.

1) Spectre Variant 1: Figure 3a shows a snippet of code that

demonstrates vulnerability to the Spectre variant 1 attack [2,

3]. To help explain the vulnerability, we show how cache state

evolves during each stage of the attack in Figure 2.

S1 First, the attacker sets up (“primes”) the cache by bring-

ing two addresses A and B into the cache. These addresses

are carefully chosen so as to reside in the same cache

set as the subsequently-accessed addresses a2[0] and

a2[S] respectively. Next, the attack mistrains the pre-

dictor to speculate that the branch on line 4 will be taken.

Now, the attack is ready to be launched.

S2 The attacker invokes foo with an argument i = N+ 2.
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1 uint8_t a1[M];
2 uint8_t a2[P];
3 uint8_t foo(unsigned i) {
4 if (i < N) {
5 uint8_t v = a1[i];
6 return a2[v*S];
7 }
8 return 0;
9 }

(a) Spectre v1 vulnerability.

1 uint8_t a1[M];
2 uint8_t a2[P];
3 uint8_t foo(unsigned i) {
4 if (i < N) {
5 _mm_lfence();
6 return a2[a1[i]*S];
7 }
8 return 0;
9 }

(b) Fix for Spectre v1.

1 uint8_t a1[M];
2 uint8_t a2[P];
3 uint8_t foo(unsigned i) {
4 if (i < N) {
5 uint8_t v = a1[0];
6 return a2[v*S]+i;
7 }
8 return 0;
9 }

(c) Conditionally vulnerable variant.

1 uint8_t a1[M], a2[P];
2 uint8_t foo(unsigned i) {
3 if (i < N) {
4 uint8_t v = a1[i];
5 _mm_lfence();
6 return a2[v*S];
7 }
8 return 0;
9 }

(d) Another fix for Spectre v1.

Figure 3: Illustrative examples for verification of secure speculation. In all code snippets assume that M > N and that argument

i is an untrusted (low-security) input to the trusted (high-security) function foo.

S3 The argument i = N + 2 along with branch predictor

mistraining in S1 triggers a misspeculation on line 4.

This results in a1[N+2] and a2[a1[N+2]*S] being

speculatively brought into the cache. Eventually, the

processor realizes that the branch prediction was incorrect

and “undoes” modifications to architectural state, but

cache state is not restored.

S4 In the final stage, the attacker exploits the fact that the

address brought into the cache on line 6 depends on the

value (not address) of a1[N+2]. The attacker determines

this address by loading A and B. One of these will miss

in the cache and this timing channel allows the attacker

to infer the value of a1[N+2].

2) Fixes to Spectre Variant 1: As the leaks in Spectre are

due to interactions between the branch predictor and the cache,

a straightforward fix is to prevent speculation. We can make

the code in Figure 3a secure by inserting a load fence [9, 22] as

shown in Figures 3b and 3d. Figure 3b is easy to understand:

the load fence on line 5 ensures that no memory accesses are

made until the processor is sure that the branch will be taken.

Figure 3d is slightly more involved. The load fence executes

after the first load and before the second load. At first glance,

it may appear to be insecure, because a1[i] can still be

brought into the cache speculatively. However i is attacker-

chosen while the base address of a1 can also be inferred by

the attacker. Therefore, bringing a1[i] into the cache leaks

no additional information. Figure 3d is secure.

3) Conditional Vulnerability: Figure 3c presents an inter-

esting variation of Figure 3a. In this case, the first memory load

always accesses a1[0]. Since this value is leaked through the

cache (when i < N) even without misspeculation, it would

seem that this code is not vulnerable to transient execution

attacks. However, if N = 0, then a1[0] should not be

accessed. But the attacker can mistrain the branch predictor

to predict that the branch on line 4 is taken1 and then infer

the value of a1[0]. This code exhibits transient execution

vulnerabilities when N = 0 but not when N > 0!

4) Verification Challenges: In Figure 3a, information about

a1[i] leaked when i = N + 2. For this value of i,

foo should not have performed any memory/cache accesses.

This points to one challenge in verifying secure speculation:

the verification model needs to capture interactions between

microarchitectural side-channels to detect leaks.

Another challenge is demonstrated by Figures 3b, 3c and

3d. Identifying the vulnerability requires precise semantic

analysis of program behavior. Simply matching vulnerable

code patterns (e.g., branches followed by dependent loads)

results in both false positives and negatives.

Finally, it is important to note that the secure versions foo
in Figures 3b and 3d do not satisfy traditional notions of

information flow security [40]: noninterference [41] or ob-

servational determinism [42–44] because there is information

flow from a1 to the cache side-channel even if the function

is executed on a processor without a branch predictor.

III. SPECIFICATION USING TRACE PROPERTY-DEPENDENT

OBSERVATIONAL DETERMINISM

To address the challenges raised in § II-B4, this paper

formulates a secure speculation property that precisely cap-

tures transient execution vulnerabilities. Toward this end, in

this section we first review observational determinism [42–

44], a class of security properties that can capture certain

1One way to do this might be to exploit aliasing in branch predictor indexing
by training a different branch which maps to the same predictor index.
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Figure 4: Illustrating observational determinism: low instructions are labelled L, while high instructions are labelled H1 and

H2, proof obligations are shown in green and assumptions are shown in blue.

notions of confidentiality. We then motivate and describe trace

property-dependent observational determinism: a novel class

of information flow properties that includes secure speculation.

A. Preliminaries

We model system behavior using traces which are a se-

quence of system states. The definition of system states is left

abstract for now. We refer to traces using π, π1, π2, etc. and

states by s, s0, s1, etc. The notation πi refers the ith element

of the trace; e.g., if π = 〈s0, s1, s2, s3, s4, . . .〉, then π3 = s3.

We consider concurrent systems consisting of two com-

ponents: an untrusted low-security component and a trusted

high-security component. These components interact via some

interface (e.g., system calls and returns) which prompt tran-

sitions from the low component to the high component or

vice versa. A typical confidentiality requirement is that the

low component must not be able to distinguish between secret

states of the high component.

1) Low-Equivalence of States: The above notion of indis-

tinguishability is expressed via low-equivalence of states. We

say that two states s and s′ are low-equivalent if they are

indistinguishable to the low component. This is denoted by

s ≈L s′. Like system states, the definition of low-equivalence

is left abstract for now. Low-equivalence is extended to traces

in the obvious way. Two traces are low-equivalent if all their

states are low-equivalent: π1 ≈L π2 if ∀i. πi
1 ≈L πi

2.

2) Modeling Computation: The system computes by iden-

tifying an operation to execute and transitioning to the next

state based on its transition relation �. If system state si can

transition to state sj , then (si, sj) ∈ �, which we write as

si � sj . As with states, we leave � abstract for now.

The operation executed by the low component in a particular

state s is denoted by opL(s); opL(s) is ⊥ if the low compo-

nent is not being executed in state s. Similarly, the operation

executed by the high component in the state s is denoted by

opH(s). We will overload notation and refer to opL(π) and

opH(π) to denote the trace of operations executed by the low

and high components respectively in π.

B. Observational Determinism

A system satisfies observational determinism if for every

pair of traces of the system such that: (i) the two traces’ initial

states are low-equivalent, and (ii) the low operations executed

at every step of the two traces are identical, then the two traces

are also low-equivalent. Equation 1 shows this definition.

∀π1, π2. (1)
(
π0
1 ≈L π0

2 ∧ opL(π1) = opL(π2)
)

=⇒
(
π1 ≈L π2

)

Observational determinism is shown pictorially in Figure 4.

The figure shows a pair of traces with their initial states being

low-equivalent. In subsequent steps, the low operations are

identical and this is denoted by labelling low transitions as L.

However, high operations may differ between the traces, so we

label its transitions as H1 and H2. Observational determinism

holds if every corresponding pair of states in these two traces

are low-equivalent. A violation of observational determinism is

some sequence of low operations that can distinguish between

some two secret states of the high component.

1) Limitations of Observation Determinism for Secure
Speculation: As a strawman proposal, consider an observa-

tional determinism property that attempts to capture secure

speculation by requiring that the trace of memory accesses

by function foo in Figure 3a be identical for all pairs of

invocations where the untrusted argument i is equal.

Two such pairs of traces are shown in Figure 6. N=4 in both

pairs; in (a), i=0 and the program does not misspeculate while

in (b), i=5 and the program misspeculates. The values v1 and

v2 correspond to the confidential data stored at the location

a1[i]. We see that the property is violated in (b) as the

traces of memory addresses differ if v1 �= v2. This violation is

due to the transient execution vulnerability. It is also violated

in (a) because the program leaks a1[i] even though there

is no misspeculation. The larger point is that observational

determinism can capture transient execution vulnerabilities

only if the program satisfies the observational determinism

property – has zero violations of the property – in the absence

of misspeculation. Most programs of interest (e.g., the Linux

kernel) do not satisfy such a property. Applying the strawman

methodology to these programs results in a flood of coun-

terexamples to observational determinism that are completely

unrelated to speculation, rendering the methodology useless.

We wish isolate violations of observational determinism

solely caused by the satisfaction/violation of a particular

property of the trace (e.g., misspeculation). As noted above,

observational determinism does not allow us to do this gen-

erally for different programs.2 In the following, we capture

this security requirement in the form of a 4-safety property to

isolate these trace property-dependent violations.

2We explain this further in Section VI.
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Figure 5: Illustrating trace property-dependent observational determinism. As in Figure 4 low instructions are labelled L, while

high instructions are labelled H1 and H2, proof obligations are shown in green and assumptions are shown in blue.
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Figure 6: Illustrating the strawman observational determinism

property for Figure 3a. Numbers within each state refer to

program counter values (shown as line numbers). Labels above

each state indicates the data memory address accessed (if any).

C. Trace Property-Dependent Observational Determinism

In a processor that never misspeculates – either because

it does not have a branch predictor or because the branch

predictor is perfect – there is no information leakage due

to transient execution. Therefore, finding transient execution

vulnerabilities is equivalent to finding information leaks that

would not have occurred in the absence of misspeculation.

1) Definition of TPOD: To formulate the above notion

of information leakage, we introduce a class of information

flow properties called trace property-dependent observational

determinism (TPOD), a hyperproperty over four traces that is

defined with respect to a trace property. Let the four traces be

π1, π2, π3, π4, and the trace property T .

Suppose the following assumptions hold:

1) traces π1 and π2 satisfy the trace property T ,

2) traces π3 and π4 do not satisfy the trace property T ,

3) all four traces execute the same low operations,

4) traces π3 and π4 execute execute the same high opera-

tions as π1 and π2 respectively,

5) traces π1 and π2 are low-equivalent and the initial states

of π3 and π4 are low-equivalent.

Then, TPOD is satisfied if π3 and π4 are low-equivalent. High

operations in π1, π3 and π2, π4 respectively must be identical;

they are not necessarily identical in π1, π2 or π3, π4.

∀π1, π2, π3, π4.

π1 ∈ T ∧ π2 ∈ T ∧ π3 �∈ T ∧ π4 �∈ T =⇒
opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π0

3 ≈L π0
4 =⇒

π3 ≈L π4 (2)

TPOD is shown in Equation 2 and depicted in Figure 5.3

A violation of TPOD corresponds to a sequence of low

operations that were unable to distinguish between high states

when the trace property T was satisfied, but are able to

distinguish between high states when T is not satisfied. In

other words, violation of the trace property T introduced a

new counterexample to observational determinism.

2) Refinement and TPOD: In general, hyperproperties may

not be preserved by refinement [43]. However, as we show

below TPOD is subset-closed: if any set of traces satisfies

TPOD, then every subset of this set also satisfies TPOD.

Lemma 1: Trace property-dependent observational deter-

minism is a subset-closed hyperproperty.

Subset-closed hyperproperties are important because they

are preserved by refinement [40]. This means that one can

prove TPOD on an abstract system, and through iterative

refinement show that TPOD holds on a concrete system that

is a refinement of the abstract system. Therefore, TPOD can

potentially be scalably verified on complex systems.

Corollary 1: Trace property-dependent observational deter-

minism is preserved by refinement.

A minor extension to template shown in Equation 2 is to

consider an antecedent trace property U that must be satisfied

by all traces. The trace property U may be used to model

constraints on valid executions.

3We follow the convention that the implication operator is right-associative.
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∀π1, π2, π3, π4.

π1 ∈ U ∧ π2 ∈ U ∧ π3 ∈ U ∧ π4 ∈ U =⇒
π1 ∈ T ∧ π2 ∈ T ∧ π3 �∈ T ∧ π4 �∈ T =⇒
opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π0

3 ≈L π0
4 =⇒

π3 ≈L π4 (3)

This version of TPOD is shown in Equation 3. This exten-

sion is also subset-closed and preserved by refinement

IV. FORMAL MODELING OF SPECULATION

We now turn to the problem of formulating and reasoning

about secure speculation. This requires the construction of a

system model that captures speculative execution. Toward this

end, this section describes an assembly intermediate represen-

tation and introduces speculative operational semantics for it.

A. System Model

Reasoning about secure speculation must be done using

assembly language instructions, not in a high-level language

because compiler optimizations may introduce branches where

none exist in the source program, or may eliminate branches

in the source program by turning them into conditional

moves. That said, reasoning about a specific instruction set

architecture (ISA) is cumbersome and gives little additional

insight into the fundamental causes of transient execution

vulnerabilities. Therefore, we present an assembly interme-

diate representation (AIR) that ISAs can be lifted into. We

model speculation over the AIR by introducing a speculative

operational semantics for it.4

〈program〉 ::= 〈instr〉*
〈instr〉 ::= 〈reg〉 := 〈exp〉

| 〈reg〉 := mem[〈exp〉]
| mem := mem[〈exp〉 → 〈exp〉]
| if 〈exp〉 goto 〈const〉
| goto 〈const〉
| specfence

〈exp〉 ::= 〈const〉 | 〈reg〉 | ♦u〈exp〉 | 〈exp〉 ♦b〈exp〉
Figure 7: The Assembly Intermediate Representation (AIR).

♦u and ♦b are typical unary and binary operators respectively.

1) Assembly Intermediate Representation (AIR): The AIR

shown in Figure 7. A program is a list of instructions.

Instructions are one of the following types:

• updates to registers,

• loads from memory,

• stores to memory,

4The AIR itself is based on the binary analysis platform (BAP) intermediate
language (IL) [50]; speculative operational semantics for it are novel. “Lifters”
from x86 and ARM binaries to BAP can be found at [51].

• conditional and unconditional jumps,

• speculation fences.

The first five types of instructions are standard. We introduce

a speculation fence instruction which causes the processor to

not fetch any more instructions until all outstanding branches

are resolved. The load fence instructions in Figures 3b and 3d

are modelled as speculation fences because the relevant aspect

of these fences for this paper is that they stop speculation.

Note that jump targets must be constants in AIR. This is

intentional and precludes the verification of programs using

indirect jumps and returns in the current version of our veri-

fication tool. We do this to simplify the operational semantics

for speculative execution. Modeling speculative execution of

indirect jumps and returns requires modeling indirect branch

predictors, branch target buffers and the return address stack.

Introducing these structures into our operation semantics is

conceptually straightforward but runs into scalability limita-

tions during verification. We plan to extend the operational

semantics to include these instructions while addressing scal-

ability in future work.5

CONST
Δ, n 
 c ⇓ c

REG
Δ[n, r ] = v

Δ, n 
 r ⇓ v

UNOP
Δ, n 
 e ⇓ v′ ♦uv′ = v

Δ, n 
 ♦ue ⇓ v

BINOP
Δ, n 
 e1 ⇓ v1 Δ, n 
 e2 ⇓ v2 v1♦bv2 = v

Δ, n 
 e1♦be2 ⇓ v

Figure 8: Semantics of expression evaluation

“Flattening” indirect jumps and returns into a sequence of

direct jumps is similar in principle to control-flow integrity

(CFI) checks [52, 53]. Since secure programs will likely

be implementing CFI anyway, we assert compilers can be

modified in straightforward ways to produce code without

indirect jumps and returns (with some performance cost).

2) Operational Semantics for AIR: In Figures 8 and 9,

we introduce operational semantics for speculative in-order
processors. We model speculation in the branch predictor for

direct conditional branches. Other sources of misspeculation

such as value prediction and memory address disambiguation

are not considered in this model. Extending the semantics to

include these is conceptually straightforward. However, this

could result in models that are difficult to analyze using auto-

mated verification tools because the verification engine would

need to explore exponentially more instruction orderings.

Machine state s is the tuple 〈Π,Δ, μ, pc, ω, β, n, ι〉. Π is

the program memory: a map from program counter values to

instructions. Δ and μ are the state of the registers and data

memory respectively while pc contains the program counter.

ω is the trace of program and data addresses accessed so far.

5It is important to note that our exclusion of indirect jumps does not mean
our verifier leaves programs vulnerable to Spectre variant 2. In programs
without indirect branches, all indirect branch mispredictions will be redirected
at decode, long before execution or memory access.

294

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 28,2023 at 13:51:17 UTC from IEEE Xplore.  Restrictions apply. 



REGISTERUPDATE

Δ, n 
 e ⇓ v Δ′ = Δ[(n, r)→ v] ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ,⊥〉 ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, r := e � Π,Δ′, μ, pc′, ω′, β, n, ι′

LOAD

Δ, n 
 e ⇓ a μ[n, a] = v Δ′ = Δ[(n, r)→ v] ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ, a〉 ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, r := mem[e] � Π,Δ′, μ, pc′, ω′, β, n, ι′

STORE

Δ, n 
 e1 ⇓ a Δ, n 
 e2 ⇓ v μ′ = μ[(n, a)→ v] ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ, a〉 ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, mem := mem[e1 → e2] � Π,Δ, μ′, pc′, ω′, β, n, ι′

T-PRED

Δ, n 
 e ⇓ true mispred(n, β, pc) = false ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ c]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ,⊥〉 β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, if e goto c � Π,Δ, μ, pc′, ω′, β′, n, ι′

T-MISPRED

Δ, n 
 e ⇓ true mispred(n, β, pc) = true ρ = pc[n] ι = Π[ρ] n′ = n+ 1
∀m, r. Δ′[m, r] = ITE(m = n′,Δ(n, r),Δ(m, r)) ∀m, a. μ′[m, r] = ITE(m = n′, μ(n, r),Δ(m, r))
pc′ = pc[n′ → ρ+ 1, n→ c] ρ′ = pc′[n′] ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, if e goto c � Π,Δ′, μ′, pc′, ω′, β′, n′, ι′

NT-PRED

Δ, n 
 e ⇓ false mispred(n, β, pc) = false ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ,⊥〉 β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, if e goto c � Π,Δ, μ, pc′, ω′, β′, n, ι′

NT-MISPRED

Δ, n 
 e ⇓ false mispred(n, β, pc) = true ρ = pc[n] ι = Π[ρ] n′ = n+ 1
∀m, r. Δ′[m, r] = ITE(m = n′,Δ(n, r),Δ(m, r)) ∀m, a. μ′[m, r] = ITE(m = n′, μ(n, r),Δ(m, r))
pc′ = pc[n′ → c, n→ ρ+ 1] ρ′ = pc′[n′] ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, if e goto c � Π,Δ′, μ′, pc′, ω′, β′, n′, ι′

GOTO

ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ c] ρ′ = pc′[n]
ι′ = Π[ρ′] ω′ = ω.〈ρ,⊥〉 β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, goto c � Π,Δ, μ, pc′, ω′, β′, n, ι′

SPECFENCE
n′ = 0 ρ′ = pc[n′] ι′ = Π[ρ′] ¬resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, ι � Π,Δ, μ, pc, ω, β, n′, ι′

RESOLVE
n′ = n− 1 ρ′ = pc[n′] ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) resolve(n, β, pc)

Π,Δ, μ, pc, ω, β, n, ι � Π,Δ, μ, pc, ω, β′, n′, ι′

HAVOC

n = 0 ρ �∈ Tρ pc′[n] = ρ ι = Π[ρ] ∀a. a �∈ Uwr
μ =⇒ μ′[0, a] = μ[0, a]

Π,Δ, μ, pc, ω, β, n, havoc (Δ, mem[Uwr
μ ], β) � Π,Δ′, μ′, pc′, ω, β′, n, ι

Figure 9: Operational Semantics for Statements in AIR.

β is the branch predictor state, which we leave abstract in this

paper and ι is the instruction that will be executed next.

The main novelty in these semantics is modeling misspec-

ulation. n is an integer that represents speculation level: it

is incremented each time we misspeculate on a branch and

decremented when a branch is resolved. Speculation level 0

corresponds to architectural (non-speculative) execution. Δ, μ
and pc – registers, memory and program counter respectively

– are also indexed by the speculation level. Δ[n, r] refers to

the value of the register r at speculation level n. Δ[(n, r)→ v]
refers to a register state which is identical to Δ except that

register r at speculation level n has been assigned value v. We

adopt similar notation for μ and pc.

Expression Semantics are shown in Figure 8. Expressions

are defined over the register state Δ. Notation Δ, n 
 e ⇓ v
means that the expression e evaluates to value v given register

state Δ at speculation level n. These are standard except for

the additional wrinkle of the speculation level.

Statement Semantics are shown in Figure 9. A transition

from the machine state s = 〈Π,Δ, μ, pc, ω, β, n, ι〉 to the

machine state s′ = 〈Π′,Δ′, μ′, pc′, ω′, β′, n′, ι′〉 is written as

〈Π,Δ, μ, pc, ω, β, n, ι〉 � 〈Π′,Δ′, μ′, pc′, ω′, β′, n′, ι′〉. We
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now briefly describe the rules shown in Figure 9.

The REGISTERUPDATE rule models the execution of state-

ments of the form r := e, expression e is written to the

register r. This involves: (i) updating the value of register r
at speculation level n to have the value of the expression e:

Δ′ = Δ[(n, r) → v], (ii) incrementing the pc at speculation

level n: pc′ = pc[n → ρ + 1] and (iii) appending 〈ρ,⊥〉
to the trace of memory addresses accessed by the program:

ω′ = ω.〈pc,⊥〉. The ⊥ in the second element of the tuple

indicates that no data memory access is performed by this

instruction. This rule is only executed when a branch is not

being resolved: ¬resolve(n, β, pc) and the next instruction to

be executed is ι′ = Π[ρ′] where ρ′ = pc[n].
The LOAD and STORE rules are similar. LOAD updates

the register state with value stored at memory location a
at speculation level n: v = μ[n, a] while STORE leaves

register state Δ unchanged and updates memory address a
at speculation level n: μ′ = μ[(n, a) → v]. Both LOAD

and STORE append 〈ρ, a〉 to the trace of memory addresses

signifying accesses to program address ρ and data address a.

As with REGISTERUPDATE, these rules only apply when a

branch is not being resolved in this step: ¬resolve(n, β, pc).
The T-PRED rule applies when a conditional jump

if e goto c should be taken and is also predicted taken. In the

semantics, we model misspeculation through an uninterpreted

function mispred(n, β, pc) where β is the branch predictor

state (left abstract in our model), n is the speculation level

and pc is a map from speculation levels to program counter

values. This rule only applies when mispred evaluates false.

The rule sets the program counter at speculation level n to c:
pc′ = pc[n → c] and updates the branch predictor state β′

using the uninterpreted function update. Just like the other

rules discussed so far, this applies only when the predicate

resolve does not hold.

The T-MISPRED rule applies when a conditional jump

if e goto c should be taken but is predicted not taken

(mispred evaluates to true). This rule changes system state in

the following ways. First, the speculation level is incremented:

n′ = n+ 1. Second, the state of the registers at level n in Δ
is now copied over to level n′ in Δ′ while all other levels

are identical between Δ and Δ′. The memory state μ is also

modified in a similar way. The program counter at level n gets

the correct target c, while the program counter at level n′ gets

the mispredicted fall-through target ρ+1. Execution continues

at speculation level n′.
NT-PRED, NT-MISPRED handle the case when the condi-

tional branch should not be taken. These are similar to T-

PRED and T-MISPRED. GOTO applies to direct jumps. Note

we do not consider misprediction of direct jumps as they have

constant targets and will be redirected at decode.

The rule SPECFENCE resolves all outstanding speculative

branches by setting the speculation level back to zero. Note

that pc, Δ and μ at level zero already have the “correct” values,

so nothing further needs to be done.

The rule RESOLVE applies when a mispredicted branch is

resolved. Resolution occurs when the uninterpreted predicate

resolve(n, β, pc) holds. At the time of resolution, branch

predictor state β′ is updated using the uninterpreted function

update and the speculation level n′ is decremented. As in

SPECFENCE, nothing else need be done as the other state

variables have the correct values at the decremented level.

Rule HAVOC will be described in § V-D.

V. FORMULATING SECURE SPECULATION

This section formulates the secure speculation property.

First, we formalize an adversary model that captures arbi-

trary transient execution attacks. Next, we present the secure

speculation property. Violations of this property correspond to

transient execution vulnerabilities.

A. Adversary Model

Recall system state s is the tuple 〈Π,Δ, μ, pc, ω, β, n, ι〉6
and evolves according to the transition relation � from

Figure 9. As discussed in § III, the system has an untrusted

low-security component and a trusted high-security component

that execute concurrently. Our verification objective is to

prove that confidential states of a specified trusted program

are indistinguishable to an arbitrary untrusted program. This

verification task requires the definition of: (i) the trusted

program to be verified and the family of untrusted adversary

programs, (ii) confidential states of the trusted program, (iii)

how the adversary tampers with system state, and (iv) what

parts of state are adversary observable.

1) The Trusted and Untrusted Programs: We assume that

the trusted program resides in the set of instruction memory

addresses denoted by Tρ. The trusted program itself is defined

by Π[ρ] for each ρ ∈ Tρ. Every address ρ �∈ Tρ is part of

the untrusted component and Π[ρ] is unconstrained for these

addresses to model all possible adversarial programs.

We assume that untrusted code can invoke trusted code

only by jumping to a specific entrypoint address EP ∈ Tρ.

Tρ, EP and instructions Π[ρ] for all ρ ∈ Tρ are known

to the adversary. Note that the adversary may speculatively

attempt to invoke addresses other than the entrypoint, only

the non-speculative invocations are restricted. Without such

an assumption, the adversary may be able to jump past

defensively placed instructions.

In the example shown in Figure 3b, Tρ contains all instruc-

tion addresses that are part of the function foo. The entrypoint

EP is the address of the first instruction in foo. Note that if

the adversary can directly jump to line 6 (i.e., skip the fence on

line 5), the program is vulnerable – this is why the restriction

on invocation of only the entrypoint is required.

Such restrictions are implemented in all typical scenarios:

system calls, software fault isolation, etc. To consider another

example, if we are verifying secure speculation for system

calls in an operating system kernel, Tρ contains all kernel text

addresses and the entrypoint EP is the syscall trap address.

Given the above definitions, the low operation executed in

a state s = 〈Π,Δ, μ, pc, ω, β, n, ι〉 is opL(s)
.
= Π[pc[0]] if

6Note: We will use the notation s.field to refer to elements of the tuple.
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pc[0] �∈ Tρ and ⊥ otherwise. This definition refers to the non-

speculative state – we are looking at pc[0], not higher specula-

tion levels. The instruction being speculatively executed may

be different, and may in fact be from the trusted component.

This is important because we use opL to constrain adversary

actions to be identical across traces, and these constraints can

only refer to non-speculative state.

Finally, the trusted program must start off in some well-

defined initial state. For instance, global variables may need to

be initialized to specific values. We use the predicate initT (s)
to refer to a valid initial state of the trusted program.

2) Confidential States: The secret states that need to be

protected from an adversary are the values stored in memory

addresses a that belong to the set ST . For Figure 3, ST
contains all addresses that are part of the arrays a1 and a2.

All other addresses are public state. We will use PT to

denote the projection of the values stored at these public

addresses: PT (μ)
.
= λa. ITE(a �∈ ST , μ[0, a],⊥).

The high instruction executed in a state is denoted instT (s)
and has the value s.Π[s.pc[0]] when pc[0] ∈ Tρ and ⊥
otherwise. The high operation executed in state s is defined

as a tuple of the high instruction and the public memory:

opH(s)
.
= 〈instT (s),PT (s.μ)〉. We include the values of

public memory in this tuple because the high-program may

be non-deterministic and we need to constrain the non-

determinism to be identical across certain traces.

3) General Adversary Tampering (G): The adversary G
tampers with system state by executing an unbounded number

of instructions to modify architectural and microarchitectural

state. Adversary tampering is constrained in only two ways.

1) (Conformant Store Addresses) For every non-

speculative state in which an untrusted store is executed,

the target address of the store must belong to the set of

adversary-writeable addresses: Uwr
μ . We denote a trace π

where every state satisfies this condition by the predicate

conformantStoreAddrs(π), defined as follows.

∀i. πi.n = 0 ∧ πi.pc[0] �∈ Tρ =⇒
πi.ι = mem := mem[e1 → e2] ∧ πi.Δ[0, e1] ⇓ a =⇒
a ∈ Uwr

μ

Constraining adversary stores is necessary in order to

prevent the adversary from changing the trusted pro-

gram’s architectural (non-speculative) state arbitrarily.

2) (Conformant Entrypoints) Non-speculative adversary

jumps to trusted code must target the entrypoint EP . A

trace π where every transition from untrusted to trusted

code satisfies this condition is denoted by the predicate

conformantEntrypoints(π). This is defined as follows:

∀i, j. i < j ∧ πi.n = πj .n = 0 =⇒
(∀k. i < k < j =⇒ πk.n �= 0) =⇒
πi.pc[0] �∈ Tρ ∧ πj .pc[0] ∈ Tρ =⇒
πj .pc[0] = EP

The above constraints says that if πi and πj are non-

speculative states, all states between πi and πj are

speculative, and πi is part of the untrusted component

while πj is part the trusted component, then πj must

necessarily be at the entrypoint. Note this does not pre-

clude speculative execution of “gadgets” in the trusted

code that do not begin at the entrypoint.

The condition conformant store addresses captures the fact

that the adversary cannot write to arbitrary memory locations.

Conformant entrypoints ensures that execution of the trusted

code starts at the entrypoint.

4) Conformant Traces: A trace π where: (i) π0 is a non-

speculative state and the trusted component has been initial-

ized: π0.n = 0 ∧ initT (π0), (ii) every state πi satisfies the

conformant stores condition and (iii) every pair of states πi and

πj , where i < j, satisfy the conformant entrypoints condition

is called a conformant trace, denoted by conformant(π).

conformant(π)
.
= π0.n = 0 ∧ initT (π

0) ∧
conformantStoreAddrs(π) ∧
conformantEntrypoints(π) (4)

5) Adversary Observations: We model an adversary who

can observe all architectural state and most microarchitectural

state when executing; i.e. when n = 0 and pc[0] �∈ Tρ.

Specifically, the adversary can observe the following:

1) non-speculative register values: Δ[0, r] for all r.

2) non-speculative values stored at all memory addresses

in the set Urd
μ : μ[0, a] for all a ∈ Urd

μ .

3) the trace of instruction and data memory accesses: ω.

4) the branch predictor state β.

The above implies that two states s =
〈Π,Δ, μ, pc, ω, β, n, ι〉 and s′ = 〈Π,Δ′, μ′, pc′, ω′, β′, n′, ι′〉
are low-equivalent, denoted s ≈L s′, iff (n = 0 ∧ pc[0] �∈
Tρ) =⇒ (∀r. Δ[0, r] = Δ′[0, r]) ∧ (∀a. a ∈ Urd

μ =⇒
μ[0, a] = μ′[0, a]) ∧ ω = ω′ ∧ β = β′.

We do not allow the adversary to observe Δ[n, r] and μ[n, a]
for n > 0 because there is no way to “output” speculative

state except through a microarchitectural side-channel. These

side-channels are captured by the trace of memory accesses

ω which models leaks via caches, prefetches, DRAM and

well as other structures in the memory subsystem. The branch

predictor state β captures all leaks caused by the branch

predictor side-channel. Note that the adversary can observe

the non-speculative values stored in memory for the addresses

in the range Urd
μ , and non-speculative values of the registers

when adversary code is being executed.

B. Formalization of the Security Property

Using the above definitions, we are now ready to formalize

the secure speculation property, shown in Equation 5.
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∀π1, π2, π3, π4.

conformant(π1) ∧ conformant(π2) =⇒
conformant(π3) ∧ conformant(π4) =⇒
∀i. ¬mispred(πi

1.n, π
i
1.β, π

i
1.pc) =⇒

∀i. ¬mispred(πi
2.n, π

i
2.β, π

i
2.pc) =⇒

∃i. mispred(πi
3.n, π

i
3.β, π

i
3.pc) =⇒

∃i. mispred(πi
4.n, π

i
4.β, π

i
4.pc) =⇒

opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π0

3 ≈L π0
4 =⇒

π3 ≈L π4 (5)

This an instantiation of the TPOD property shown in Equa-

tion 3. The trace property T is satisfied when no misspecula-

tion occurs: π ∈ T ⇐⇒ ∀i. ¬mispred(πi.n, πi.β, πi.pc).7

The trace property U requires that all traces be conformant

as defined in Equation 4. This ensures we only search for

violations among traces representing valid executions of our

system/adversary model.

A violation of Equation 5 occurs when there exists a

sequence of adversary instructions such that traces π1 and π2

are low-equivalent, but π3 and π4 are not low-equivalent. In

other words, we have an information leak that only occurs on

a speculative processor; i.e. a transient execution vulnerability.

C. Illustrating Violation/Satisfaction of Secure Speculation

Let us consider the conditionally vulnerable Spectre variant

shown in Figure 3c. A quadruple of traces for this program

is shown in Figure 10a. Two calls to foo are made with

arguments i = 0 and i = 1. The two non-speculative

traces π1 and π2 do not execute the if statement and so

they have the same adversary observations (i.e., are low-

equivalent). However, traces π3 and π4 speculatively execute

the if statement and the adversary can observe differences

in the memory addresses corresponding to the second array

access: a2[v1 ∗ S] and a2[v2 ∗ S]. All traces have the same

adversary operations with one pair low-equivalent and non-

speculative while the other pair is not low-equivalent and

speculative. This is a violation of secure speculation.

Now consider the scenario when N > 0, say N = 1. This is

shown in Figure 10b. The key difference here is that the non-

speculative traces also make the second array access when

i = 0. The second memory access reads from the addresses

a2 + v1 ∗ S and a2 + v2 ∗ S in traces π1 and π2 respectively.

There are two scenarios possible. Either v1 = v2 or v1 �= v2.

Suppose v1 = v2, then traces π1 and π2 are low-equivalent,

but so are traces π3 and π4! Conversely, if v1 �= v2, then the

π1 and π2 are not low-equivalent and the secure speculation

property holds vacuously.

7Or equivalently in linear temporal logic: π |= �¬mispred.

D. Adversary Reduction Lemma

The general adversary’s tampering described in § V-A3

allows the adversary to execute an unbounded number of

arbitrary instructions. While this is fully general, it makes

automated reasoning unscalable. To address this problem, we

introduce a simpler “havocing adversary” H and prove that

this adversary is as powerful as the general adversary G.

H executes only one instruction that modifies non-

speculative state: havoc (Δ, mem[Uwr
μ ], β). The semantics of

this instruction are shown in Figure 9; it sets the registers,

program counter, adversary writeable memory addresses and

branch predictor to unconstrained values (i.e. “havocs” them).

Lemma 2: Every sequence of si, . . . , sj with opL(sj) �= ⊥
and sj .n = 0 for every i ≤ j ≤ k can be simulated by a single

havoc (Δ, mem[Uwr
μ ], β) instruction.

The adversary reduction lemma lets us replace all sequences

of non-speculative instructions executed by the adversary with

havoc’s and helps scale verification. It is important to note

that we cannot replace instruction sequences which contain

speculative instructions because these may contain exploitable

transient execution gadgets.

E. Discussion and Limitations

An important implication of the secure speculation property

is that if a program satisfies Equation 5, then all observational

determinism properties where low-equivalence is defined over

ω, μ and β that hold for non-speculative execution of the

program also hold for speculative executions. For instance,

a tool like CacheAudit [54, 55] can be used to verify that

the cache accesses of a program are independent of some

secret. Note that even though a program’s non-speculative

execution may not leak information through cache (this is what

CacheAudit verifies) that does not mean that its speculation

execution will have the same properties. This is because

CacheAudit does not model speculative execution. However,

if we do prove Equation 5 for a program, then all properties

proven by tools like CacheAudit also apply to the program’s

speculative execution.

Our operational semantics are for in-order processors only.

Nevertheless, the secure speculation property can be used to

analyze out-of-order execution and other speculation (e.g.,

memory address disambiguation) in a conceptually straightfor-

ward way by extending the semantics to model these features.

Specific programs may need additional constraints on the

traces to avoid spurious counterexamples, especially if the set

of secrets ST is over-specified. For example, in Figure 3(b),

a tuple of traces where the i < N never occurs would cause

a violation of Equation 5 if ST also contained the addresses

that point to a1 and a2.

VI. VERIFICATION APPROACH

We have implemented an automated verifier to answer the

following question: Given a program (e.g., C code) as input,

does it satisfy the secure speculation property in Equation 5?

Our approach is fairly standard, based on the method of self-
composition (see, e.g., [56]). For lack of space, we present only
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(a) Violation of secure speculation when N=0 in Figure 3c.
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(b) Secure speculation satisfied when N=1 in Figure 3c.

Figure 10: Illustrating the secure speculation property for the code in Figure 3c. The numbers within each state refer to program

counter values (shown as line numbers from the figure). A label above each state indicates the data memory address accessed

by that instruction (if any). States shown in dotted circles are specuative states. Note the non-speculative traces “stutter” when

the other traces are speculating. The values v1 and v2 refer to the contents of memory address a1 in their respective traces.

Note that traces π1 and π2 do not speculate while traces π3 and π4 do.

the essential aspects. Given the input program, we translate it

into a transition system based on the adversary model and

operational semantics presented in the previous section. The

secure speculation property is a 4-safety property, meaning that

we can turn it into a safety property to be checked on a 4-

way self-composition of the transition system. We use a model

checker based on satisfiability modulo theories (SMT) solving

to check whether the safety property holds for this 4-way self-

composition. The model checker uses either bounded model

checking (to find violations of the property) or k-induction (to

prove the property).

The main new aspect of our verifier is the implementation of

the transformation of the program into a transition system. We

rely on two tools: the Binary Analysis Platform (BAP) [50] to

translate x86 binaries into an intermediate format called BIL,

and UCLID5 [47], an SMT-based model checking tool sup-

porting both bounded model checking (BMC) and k-induction.

BIL is an assembly-like intermediate language similar to AIR

(described in Sec. IV). Overall, our workflow for each input

program is as follows:

1) Compile C source code containing the victim function

into an x86 binary file.

2) Translate the x86 binary file using BAP into the BIL

intermediate language.

3) Translate the BIL into UCLID5 models and check the

secure speculation property via self-composition. For

each program, we first obtain a counterexample via

BMC demonstrating the vulnerability; then, we insert

an lfence at an appropriate point and prove the secure

speculation property via k-induction.

We note that this workflow may be abstracted to a more

general TPOD property.

The translation from BIL to UCLID5 implements the oper-

ational semantics given earlier, with the following key steps:

1) Datatypes in the BIL program such as addresses, memo-

ries, and words are converted to uninterpreted types for

more scalable analysis and to obtain a more portable

model that is not specific to 32-bit/64-bit architectures.

2) Each basic block of the BIL program is considered

an atomic step of the transition system in the UCLID5

model after which the safety property is checked on the

4-way self-composition. This suffices as the deviations

in behavior between the 4 traces happen at branch points.

3) At any speculative transition step, the program can

resolve a misspeculation as per the RESOLVE rule.

4) All state variables are initialized to symbolic constants

with the exception of the memory, where it is initialized

to have the same value at every address except the

program-specific secret address that stores the secret.

An example of the BIL to UCLID5 translation is provided

in the appendices of the extended version of this paper [57].

Given the model, the implication chain of the secure specu-

lation property is translated into a number of assumptions and

invariants. The invariants which we wish to check are whether

the speculative program traces diverge in control flow, branch

prediction or memory access observations, but only in the

cases that they do not for the non-speculative traces. Proofs by

induction require a few additional auxiliary invariants, whereas

bounded model checking does not.

For a particular proof of the secure speculation property

on one of the examples from section VII in UCLID5, we

first instantiate four programs as instances. In UCLID5, this

is a composition of four transition systems within the main

proof script. Next, we define a speculation flag that determines

if a program is allowed to speculate or not and instantiate

the program pairs t1, t2 and t3, t4 with their speculation

flags turned off and on respectively. For initialization, we

set the program counters, registers, and rollback states of
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the programs to be the same. We also set the memories of

the program pairs t1,t3 and t2, t4 to be the same except

for a confidential memory address represented by a symbolic

constant, which corresponds to the conformant conditions.

Note that only allowing one memory address to differ is

sufficient because it under-approximates the vulnerability. Ad-

ditionally, we make the assumption that the program counter

and observational states, such as prior memory read addresses

and the branch predictor state, are initially equal across the

non-speculating programs t1 and t2. During a transition step

of the main proof, we step both of the non-speculative traces

t1 and t2 only if t3 and t4 are not currently speculating

and they ”stutter” otherwise. This is to prevent any spurious

counter-examples from divergent observational states caused

by mismatching steps in the non-speculating and speculating

programs. At each of these program transitions, a basic block

of the program is executed. This abstraction is sound in the

sense that the traces considered are a strict subset of the

permissable traces of an out of order processor and if out of

order execution is the cause of the observational determinism

violation, then it should not be captured in our property. The

secure speculation property is then encoded as equality across

the program counter and observational states in the speculating

programs t3 and t4. This property was proven inductively

and through bounded model checking in all of our examples.

For inductive invariant checking, various auxiliary invariants

were required to constrain the attacker input, rollback states,

entry points, memories, and speculating states of the programs.

The scalability of the encoding is still retained despite the

four way composition of programs and prediction and resolve

operations due to our abstraction and encoding of the program.

One of our abstractions that allows the method to scale is

the execution of basic blocks at every transition step. In our

models, predictions and resolve operations can only execute

once every transition step and hence does not cause a blow-up.

We use only universally quantified LTL formulas.

As a remark on the formulation of the 4-safety property,

traces t1 and t2 are used to constrain which addresses are

public and private. This allows us to generalize over the

various examples for variant 1 of the spectre attack instead

of encoding this specifically for each program example. More

concretely, in the N > 0 case of Figure 3c, this constrains the

value at the confidential memory address to be the same.

VII. CASE STUDIES

We used our verifier for a proof-of-concept demonstration

to detect whether or not a snippet of C code is vulnerable to

the Spectre class of attacks. As benchmarks, we rely on Paul

Kocher’s list of 15 victim functions vulnerable to the Spectre

attack [30] in addition to the examples we presented earlier.

In particular, we show here results on Examples 1, 5, 7,

8, 10, 11, and 15 from Paul Kocher’s list, along with the

example from Figure 3 (c), and an example with nested if

statements. We chose these based on what we believe are

illustrative of a wide range of victim functions that are not

easily detectable using the current static analysis tools such

as Qspectre [58], which was only able to detect the first two

examples in Kocher’s list. We begin with a brief explanation

of some of the examples and then discuss the results from

applying bounded model checking and induction with our

secure speculation property on our UCLID5 models. Fig. 11

lists all benchmarks we discuss here.

Example 5 (Figure 11b): This example is similar to the

first variant but implemented within a for loop. The untrusted

argument x may be larger than the array size, which causes the

vulnerability, but if x is within bounds of the array, note that

condition i > 0 is also potentially vulnerable to the attack.8

Example 7 (Figure 11c): This example is interesting because

it depends on the value of a static variable updated from a

previous call of the function. Every call to the function should

not make the second array access unless x == last x.

Example 8 (Figure 11d): The ternary operator is interesting

because the program counter is allowed to jump to two

different basic blocks for the computation of the second array

memory access as opposed to one block as in Example 1.

Example 10 (Figure 11e): This is the first example where a

second load dependent on a secret is not required for a leak.

Knowing whether or not array2[0] was accessed is enough

to leak the secret at array1[x].

Example 11 (Figure 11f): This example uses a call to

memcpy to leak the secret, but because of the single byte

access, it gets optimized to a single load and store.

Example 15 (figure 11g): This example is interesting be-

cause it passes a pointer instead of an integer as the attacker

controlled input. We assume the value stored in the pointer is

constant across traces to ignore cases where the attacker forces

a secret dependent branch during non-speculative execution.

ex1 ex5 ex7 ex8 ex10 ex11 ex15 Fig. 3c NI

BMC 6.6 9.0 10.2 5.7 9.6 6.4 5.8 6.6 12.9

Ind 5.0 5.0 5.7 4.6 5.8 5.9 4.8 4.8 5.4

Table I: Runtime (sec.) of each example using 5 steps for

bounded model checking to find vulnerabilities and 1 step

induction to prove correctness after inserting a memory fence.

These experiments were run on a machine with an 2.20GHz

Intel(R) Core(TM) i7-2670QM CPU with 5737MiB of RAM.

Example NI (Figure 11h) In this example, nested if state-

ments cause the attack to occur without a second address load

dependent on a secret. If the programs speculatively choose

not to execute the second if statement, but only one program

eventually executes the second if as a result of a resolution,

then a leak can occur.

Table I lists the run-time (in seconds) required for each

verification task with the memory fences implemented. As can

be seen, the verifier is able to prove the correctness of these

programs within a few seconds. Although these programs are

small, this exercise gives us confidence that the method could

be useful on larger programs. We assert that with the use of a

8Kocher’s code has the condition x >= 0 which causes an infinite loop.
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1 void victim_function_v01(unsigned x) {
2 if (x < array1_size) {
3 __mm_lfence();
4 temp &= array2[array1[x] * 512];
5 }
6 }

(a) Example 1: Original Spectre BCB (bounds check bypass)
example.

1 void victim_function_v05(unsigned x) {
2 size_t i;
3 if (x < array1_size) {
4 for (i = x - 1; i > 0; i--)
5 _mm_lfence();
6 temp &= array2[array1[i] * 512];
7 }
8 }

(b) Example 5: BCB with a for loop.
1 void victim_function_v07(unsigned x) {
2 static unsigned last_x = 0;
3 if (x == last_x) {
4 _mm_lfence();
5 temp &= array2[array1[x] * 512];
6 }
7 if (x < array1_size)
8 last_x = x;
9 }

(c) Example 7: BCB with unsafe static variable check.

1 void victim_function_v08(unsigned x) {
2 result = (x < array1_size);
3 _mm_lfence();
4 temp &= array2[array1[result ? (x + 1) : 0] *

512];
5 }

(d) Example 8: BCB with the ternary conditional operator.

1 void victim_function_v10(unsigned x, unsigned k) {
2 if (x < array1_size) {
3 __mm_lfence();
4 if (array1[x] == k)
5 temp &= array2[0];
6 }
7 }

(e) Example 10: BCB using an additional attacker controlled
input.

1 void victim_function_v11(unsigned x) {
2 if (x < array1_size) {
3 _mm_lfence();
4 temp = memcmp(&temp, array2 + (array1[x]

* 512), 1);
5 }
6 }

(f) Example 11: BCB using the memory comparison function.

1 void victim_function_v15(unsigned *x) {
2 if (*x < array1_size) {
3 _mm_lfence();
4 temp &= array2[array1[*x] * 512];
5 }
6 }

(g) Example 15: BCB using attacker controlled pointer.

1 void victim_function_nested_ifs(unsigned x) {
2 unsigned val1, val2;
3 if (x < array1_size) {
4 val1 = array1[x];
5 if (val1 & 1) {
6 _mm_lfence();
7 val2 = array2[0];
8 }
9 }

10 }

(h) Example NI: BCB with nested if statements.

Figure 11: Examples that were verified for secure speculation with mm lfence() implemented. In all code snippets

assume that that arguments x and k are untrusted (low-security) inputs to the trusted (high-security) victim functions.

stronger software model checking engine and the development

of TPOD-specific abstractions, it will be possible to prove

secure speculation for larger programs.

VIII. RELATED WORK

The most closely related work to ours is CheckMate [59]

which uses happens-before graphs to analyze transient execu-

tion vulnerabilities. The insight in CheckMate is that happens-

before graphs encode information about the orders in which

instructions can be executed. By searching for patterns in

the graph where branches are followed by dependent loads,

an architectural model can be analyzed for susceptibility to

Spectre/Meltdown. A key difference between CheckMate and

our approach is that we are not matching patterns of vulnerable

instructions. Our verification is semantic, not pattern-based. In

particular, the example showing conditional vulnerability in

Figure 3(c) cannot be precisely captured by CheckMate.

Another closely related effort is by McIlroy et al. [60]

who introduce a formal model of speculative execution in

modern processors and analyze it for transient execution vul-

nerabilities. Similar to our work, they too introduce speculative

operational semantics and their model includes indirect jumps

and a timer. An important difference between their semantics

and ours is that their semantics are based on a microarchitec-

tural model of execution. In contrast, our semantics capture

an abstract notion of speculation that: (i) does not prescribe

any specific microarchitectural implementation and (ii) is more

amenable to verification due to its abstract nature. Further, they

do not present a automated verification approach for finding

transient execution vulnerabilities.

The Spectre vulnerability was discovered by Kocher et

al. [2, 3] while Meltdown was discovered by Lipp et al. [1].

Their public disclosure has triggered an avalanche of new

transient execution vulnerabilities, notable among which are

Foreshadow [4] which attacked enclave platforms and vir-

tual machine monitors, SpectreRSB [7] and Ret2Spec [6].

A thorough study of transient execution vulnerabilities was

done by Canella et al. [5]. These vulnerabilities build on the

rich literature of microarchitectural side-channel attacks [14–

20, 61–64]. Verification of mitigations to these “traditional”

side-channel attacks is well-studied [54, 55, 65–73].

TPOD in general and secure speculation in particular are
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examples of hyperproperties [40]. A large body of work

has studied hyperproperties that encode secure information

flow. Influential exemplars of this line of work include non-

interference [41], separability [74] and observational deter-

minism [42–44]. Our verification method is based on self-

composition which has been well-studied; see, for example,

Barthe et al. [45, 56]. While we take a straightforward

approach to using self-composition, more sophisticated ap-

proaches are also possible in some cases (e.g., [75]).

IX. CONCLUSION

This paper presented a formal approach for secure specu-

lative execution on modern processors, a key part of which

is a formal specification of secure speculation that abstracts

away from the particulars of specific vulnerabilities. Our

secure speculation formulation is an instance of trace property-

dependent observational determinism, a new class of infor-

mation flow security properties introduced by this work. We

introduced an adversary model and an automated approach to

verifying secure speculation and demonstrated the approach on

several programs that have been used to illustrate the Spectre

class of vulnerabilities. To the best of our knowledge, ours is

the first effort to guarantee provably secure speculation. In fu-

ture work, we plan to evaluate our approach on larger programs

and more complex platforms like out-of-order processors.
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