diff --git a/vitookit/datasets/ffcv_transform.py b/vitookit/datasets/ffcv_transform.py index bee28cc2028b11f16de8e58e31cbb9fe61bc1ef2..1d2a722ed187050abe050c35baee589cc0db47d5 100644 --- a/vitookit/datasets/ffcv_transform.py +++ b/vitookit/datasets/ffcv_transform.py @@ -55,7 +55,17 @@ class DynamicResolution: dict(res=160,lower_scale=0.08, upper_scale=0.4624), dict(res=192,lower_scale=0.08, upper_scale=0.7056), dict(res=224,lower_scale=0.08, upper_scale=1), - ] + ], + 4:[ + dict(res=160,lower_scale=0.20, upper_scale=0.634), + dict(res=192,lower_scale=0.137, upper_scale=0.81), + dict(res=224,lower_scale=0.08, upper_scale=1), + ], + 5: [ + dict(res=160,lower_scale=0.20, upper_scale=1), + dict(res=192,lower_scale=0.137, upper_scale=1), + dict(res=224,lower_scale=0.08, upper_scale=1), + ], } self.scheme = schemes[scheme] diff --git a/vitookit/evaluation/eval_image_retrieval.py b/vitookit/evaluation/eval_image_retrieval.py index e7f60c7208560995268de76b37a4016485f99351..3a4c0b247e4ca88e4bc2c8f05c6f45ae53251db0 100644 --- a/vitookit/evaluation/eval_image_retrieval.py +++ b/vitookit/evaluation/eval_image_retrieval.py @@ -20,13 +20,14 @@ import torch.distributed as dist import torch.backends.cudnn as cudnn import numpy as np from vitookit.utils.helper import load_pretrained_weights -import vitookit.utils +from vitookit.utils.metric import compute_map +import vitookit.utils.misc as misc from vitookit.models import vision_transformer as vits, vision_transformer_rel as vits_rel from torch import nn from PIL import Image, ImageFile -from torchvision import vitookit.models as torchvision_models + from torchvision import transforms as pth_transforms from eval_knn import extract_features, ReturnIndexDatasetWrap @@ -91,10 +92,10 @@ if __name__ == '__main__': parser.add_argument('--data_location', default='/path/to/revisited_paris_oxford/', type=str) parser.add_argument('--bn', default=False, action='store_true') parser.add_argument('--data_set', default='roxford5k', type=str, choices=['roxford5k', 'rparis6k']) - parser.add_argument('--multiscale', default=False, type=utils.bool_flag) + parser.add_argument('--multiscale', default=False, action='store_true') parser.add_argument('--imsize', default=224, type=int, help='Image size') parser.add_argument('-w', '--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.") - parser.add_argument('--use_cuda', default=True, type=utils.bool_flag) + parser.add_argument('--use_cuda', default=True, action='store_true') parser.add_argument('--arch', default='vit_small', type=str, choices=['vit_tiny', 'vit_small', 'vit_base', 'vit_large'], help='Architecture.') parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.') @@ -110,7 +111,7 @@ if __name__ == '__main__': args = parser.parse_args() misc.init_distributed_mode(args) - print("git:\n {}\n".format(utils.get_sha())) + print("git:\n {}\n".format(misc.get_sha())) print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))) cudnn.benchmark = True @@ -194,7 +195,7 @@ if __name__ == '__main__': g['ok'] = np.concatenate([gnd[i]['easy'], gnd[i]['hard']]) g['junk'] = np.concatenate([gnd[i]['junk']]) gnd_t.append(g) - mapM, apsM, mprM, prsM = misc.compute_map(ranks, gnd_t, ks) + mapM, apsM, mprM, prsM = compute_map(ranks, gnd_t, ks) # search for hard gnd_t = [] for i in range(len(gnd)): @@ -202,7 +203,7 @@ if __name__ == '__main__': g['ok'] = np.concatenate([gnd[i]['hard']]) g['junk'] = np.concatenate([gnd[i]['junk'], gnd[i]['easy']]) gnd_t.append(g) - mapH, apsH, mprH, prsH = misc.compute_map(ranks, gnd_t, ks) + mapH, apsH, mprH, prsH = compute_map(ranks, gnd_t, ks) print('>> {}: mAP M: {}, H: {}'.format(args.data_set, np.around(mapM*100, decimals=2), np.around(mapH*100, decimals=2))) print('>> {}: mP@k{} M: {}, H: {}'.format(args.data_set, np.array(ks), np.around(mprM*100, decimals=2), np.around(mprH*100, decimals=2))) log_stats = {