diff --git a/.gitignore b/.gitignore
index 5fdd7ec4cd446bd96cf06f220df574fa640e8188..f99d6555e83aa8b29f402fa27b461026b897cd2a 100644
--- a/.gitignore
+++ b/.gitignore
@@ -5,7 +5,7 @@
 outputs
 wandb
 results
-
+*.pth
 # Byte-compiled / optimized / DLL files
 __pycache__/
 *.py[cod]
diff --git a/EVALUATION.md b/EVALUATION.md
index 9ed4f0fe63b2a1b0869704b2541cf25643956a16..d3ba7c60c29b0c4a8a524c7a7f18e4a536d79254 100644
--- a/EVALUATION.md
+++ b/EVALUATION.md
@@ -48,14 +48,14 @@ Reference results for [MAE in linear probing](https://github.com/facebookresearc
 |:------------------:|:--------:|:---------:|:--------:|
 | paper (TF/TPU)     | 68.0     | 75.8      | 76.6     |
 |  MAE repo (PT/GPU) | 67.8     | 76.0      | 77.2     |
-|  Our repo (PT/GPU) | 67.8     | 76.0      | 77.2     |
+|  Our repo (PT/GPU) | [67.67](https://wandb.ai/dlib/EfficientSSL/runs/6r00w5jk) | -      | -     |
 
 
 To train a single classifier on frozen weights, run:
 ```
-submitit --module vitookit.evaluation.eval_linear_ffcv --train_path ~/data/ffcv/IN1K_train_500_95.ffcv --val_path ~/data/ffcv/IN1K_val_500_95.ffcv  -w ~/models/mae_pretrain_vit_base.pth --checkpoint_key=model  --gin VisionTransformer.global_pool='"avg"'  --fast_dir /raid/local_scratch/jxw30-hxc19/ --batch_size=128 --accum_iter=16 --blr=0.05
+submitit --module vitookit.evaluation.eval_linear_ffcv --train_path ~/data/ffcv/IN1K_train_500_95.ffcv --val_path ~/data/ffcv/IN1K_val_500_95.ffcv  -w ~/models/mae_pretrain_vit_base.pth --checkpoint_key=model  --gin VisionTransformer.global_pool='"avg"'  --fast_dir /raid/local_scratch/jxw30-hxc19/ --batch_size=128 --accum_iter=16 --blr=0.1
 ```
-Effective batch size is 16384 = 128 (batch_size per gpu) * 16 (accum_iter) * 8. Learning rate is 3.2 = 0.05 * 16384 / 256. 
+Effective batch size is 16384 = 128 (batch_size per gpu) * 16 (accum_iter) * 8. Learning rate is 6.4 = 0.05 * 16384 / 256. 
 
 
 
diff --git a/vitookit/utils/helper.py b/vitookit/utils/helper.py
index c5f664b8313c0845591f740548c6b0a218f18046..50749bbfdfc1c685d9dd5aefcae6f434ed53ac09 100644
--- a/vitookit/utils/helper.py
+++ b/vitookit/utils/helper.py
@@ -29,7 +29,8 @@ def aug_parse(parser: argparse.ArgumentParser):
     parser.add_argument('--gin', nargs='+', 
                         help='Overrides config values. e.g. --gin "section.option=value"')
    
-    args, _ = parser.parse_known_args()
+    args, unkowns = parser.parse_known_args()
+    print("warn! unknown args: ", unkowns)
     if args.output_dir:
         output_dir=Path(args.output_dir)
         output_dir.mkdir(parents=True, exist_ok=True)
@@ -165,7 +166,7 @@ def load_pretrained_weights(model, pretrained_weights,
         path = pretrained_weights.replace("artifact:","")
         import wandb
         api = wandb.Api()        
-        artifact = api.artifact(path+":v0", type='model')
+        artifact = api.artifact(path, type='model')
         artifact_dir = artifact.download(os.getenv("output_dir","/tmp/models"))
         print("Load pre-trained checkpoint from: %s" % (artifact_dir))
         pretrained_weights = os.path.join(artifact_dir, "weights.pth")
@@ -181,7 +182,7 @@ def load_pretrained_weights(model, pretrained_weights,
     elif os.path.isfile(pretrained_weights):
         state_dict = torch.load(pretrained_weights, map_location='cpu')
     else:
-        raise ValueError(f'load pretrained weights from {pretrained_weights} failed!')
+        raise ValueError(f'load pretrained weights from {pretrained_weights} failed!')    
     
     epoch = state_dict['epoch'] if 'epoch' in state_dict else -1
     print("Load pre-trained checkpoint from: %s[%s] at %d epoch" % (pretrained_weights, checkpoint_key, epoch))
diff --git a/vitookit/utils/submitit.py b/vitookit/utils/submitit.py
index b275a94343f37d363d34fbcd7c3fc69c7c5995e0..3dc5233bfd32814c52ebd9efe7751d378f99e556 100644
--- a/vitookit/utils/submitit.py
+++ b/vitookit/utils/submitit.py
@@ -90,9 +90,9 @@ class Trainer(object):
         import os
         import submitit
         job_env = submitit.JobEnvironment()
-        print("Requeuing ", self.args)
+        print("Requeuing ", self.args, self.module_args)
         
-        output_dir = Path(str(self.args.job_dir))
+        output_dir = self.module_args.output_dir
         
         checkpoint_file = os.path.join(output_dir, "checkpoint.pth")  
         self.args.dist_url = get_init_file(output_dir).as_uri()
@@ -107,7 +107,7 @@ class Trainer(object):
         import submitit
         module_args = self.module_args
         job_env = submitit.JobEnvironment()
-        output_dir = Path(str(self.args.job_dir).replace("%j", str(job_env.job_id)))
+        output_dir = str(self.args.job_dir).replace("%j", str(job_env.job_id))
         module_args.output_dir = output_dir
         
         module_args.gpu = job_env.local_rank
diff --git a/weights.pth b/weights.pth
deleted file mode 100644
index cb59d5a289ac86d135da3cd6e204e5869ed415a7..0000000000000000000000000000000000000000
Binary files a/weights.pth and /dev/null differ