diff --git a/Codes/Function_Plot_Conditional_Incidence_Quantiles.R b/Codes/Function_Plot_Conditional_Incidence_Quantiles.R
new file mode 100644
index 0000000000000000000000000000000000000000..d94b97c4816b9183494666b8c6b460b079d7fc06
--- /dev/null
+++ b/Codes/Function_Plot_Conditional_Incidence_Quantiles.R
@@ -0,0 +1,496 @@
+# The code does look at how the risk of Campylobacter in humans depends on environmental variables
+
+# The code does look at how the risk of Campylobacter in humans depends on environmental variables
+# Analysis was done following an quantiles division of the range of the environmental variables, independently of the number of observations
+# This is used for the reconstruction
+
+Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars)
+{
+  
+  with(as.list(c(Data_frame_1, Pars)), {
+    
+    # Pars is the list of 3 variables of interest 
+    # Select the variables of study:
+    
+    variable_x<-Pars[1] 
+    variable_y<-Pars[2]
+    variable_z<-Pars[3]
+      
+    # Select the file with relevant information:
+    Conditional_incidence_quantiles <- Data_frame_1[[1]]
+    
+    
+    #Conditional_incidence_quantiles<-Conditional_incidence_quantiles[,-1]
+    Conditional_incidence_quantiles$incidence<-Conditional_incidence_quantiles$counts/Conditional_incidence_quantiles$residents_tot
+   # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles)
+    #For visual purposes, we are removing cases when the counts were too low resulting in exceptional large incidence
+    #Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles, Conditional_incidence_quantiles$counts>100) 
+    
+    
+    #number_days<-as.Date(last_day)-as.Date(first_day)
+    #number_days<-as.numeric(number_days)
+    #number_year<-number_days/365
+    
+    norm<-1/(1e6)
+    
+    
+    
+    ################### Choose a specific day-length  ###################
+    
+    
+    #Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles)
+    ############################# General variables ###########################
+    if (variable_x=="Relative_humidity"){variable_x_char<-"Relative humidity (%)"}
+    if (variable_y=="Relative_humidity"){variable_y_char<-"Relative humidity (%)"}
+    if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"}
+    if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"}
+    if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"}
+    if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"}
+    if (variable_x=="Mean_Precipitation"){variable_x_char<-"Mean Precipitation (mm)"}
+    if (variable_y=="Mean_Precipitation"){variable_y_char<-"Mean Precipitation (mm)"}
+    if (variable_x=="daylength"){variable_x_char<-"Day-Length (hours)"}
+    if (variable_y=="daylength"){variable_y_char<-"Day-Length (hours)"}
+    if (variable_x=="Minimum_air_temperature"){variable_x_char<-expression("Minimum Air Temperature"*~degree*C)}
+    if (variable_y=="Minimum_air_temperature"){variable_y_char<-expression("Minimum Air Temperature"*~degree*C)}
+    if (variable_x=="Maximum_air_temperature"){variable_x_char<-expression("Maximum Air Temperature"*~degree*C)}
+    if (variable_y=="Maximum_air_temperature"){variable_y_char<-expression("Maximum Air Temperature"*~degree*C)}
+    
+    
+    labelling_char<-c()
+    
+   
+        
+    ############# 3 variable  from  here 
+    if (variable_z=="daylength"){
+      
+      
+      for (i_light in c(1:length(unique(Conditional_incidence_quantiles$daylength))))      {
+        
+        light_label<-round(as.numeric(unique(Conditional_incidence_quantiles$daylength)))
+        
+        if (i_light<length(light_label)){ 
+          light_label_char<-paste("Day-length ",light_label[i_light],"-",light_label[i_light+1]," hours",sep="")
+        } else {
+          light_label_char<-paste("Day-length >",light_label[i_light]," hours",sep="")
+        }
+        
+        wt<-which(Conditional_incidence_quantiles$daylength==unique(Conditional_incidence_quantiles$daylength)[i_light])
+        Conditional_incidence_df<-Conditional_incidence_quantiles[wt,]
+        
+        Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] 
+        
+        conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
+        conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
+        Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm
+          
+          
+        Conditional_incidence_df$conf_minus<-conf_minus
+        Conditional_incidence_df$conf_plus<-conf_plus
+        #Conditional_incidence_df<-na.omit(Conditional_incidence_df)
+           
+        Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y])
+        
+        
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30))
+          }
+        if (variable_x=="Relative_humidity" & variable_y=="Maximum_air_temperature"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100))
+           }
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30))
+          }
+        if (variable_x=="Mean_wind_speed" & variable_y=="Maximum_air_temperature"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Mean_wind_speed,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,15))
+          
+          }
+        
+         if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30))
+          }
+        if (variable_x=="Mean_Precipitation" & variable_y=="Maximum_air_temperature"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,5))
+          }
+        
+        if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30))
+          }
+        
+        
+          
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+theme_bw(20)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_colour_discrete(name  =variable_y_char)
+          
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ")
+        Conditional_incidence_plot  <- Conditional_incidence_plot+xlab(variable_x_char)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ ggtitle(light_label_char) 
+          
+        labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1])))
+        n_labelling<-length(labelling)
+         
+          
+          for (j in c(1:(n_labelling-1)))      {
+            
+            labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) )
+            
+          }
+          labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling]))
+          
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_fill_discrete(name  =variable_y_char, labels=labelling_char)          
+         Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none")
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_line(size=1)
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35)
+          
+          Conditional_incidence_plot  <- Conditional_incidence_plot+
+            theme(legend.position= c(0.25,0.75),legend.title =  element_text( size = 11),
+                  legend.text = element_text( size = 10),legend.background = element_blank(),
+                  legend.key=element_rect(colour=NA))
+              
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15))
+          
+          
+          
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15))
+         
+          print(Conditional_incidence_plot)   
+            
+          
+          file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_",
+                           round(unique(Conditional_incidence_quantiles$daylength)[i_light]),"_",time_lag_char,"_quantile.tiff", sep = "")
+          tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default")
+          
+          print(Conditional_incidence_plot)  
+          
+          dev.off()
+          
+      }  
+    
+    
+ }
+    
+    if (variable_z=="Relative_humidity"){
+      
+      
+      for (i_light in c(1:length(unique(Conditional_incidence_quantiles$Relative_humidity))))      {
+        
+        light_label<-round(as.numeric(unique(Conditional_incidence_quantiles$Relative_humidity)))
+        
+        if (i_light<length(light_label)){ 
+          light_label_char<-paste("Relative Humidity ",light_label[i_light],"-",light_label[i_light+1]," %",sep="")
+        } else {
+          light_label_char<-paste("Relative Humidity >",light_label[i_light]," %",sep="")
+        }
+        
+        wt<-which(Conditional_incidence_quantiles$Relative_humidity==unique(Conditional_incidence_quantiles$Relative_humidity)[i_light])
+        Conditional_incidence_df<-Conditional_incidence_quantiles[wt,]
+        
+        Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] 
+        
+        conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
+        conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
+        Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm
+        
+        
+        Conditional_incidence_df$conf_minus<-conf_minus
+        Conditional_incidence_df$conf_plus<-conf_plus
+        #Conditional_incidence_df<-na.omit(Conditional_incidence_df)
+        
+        Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y])
+        
+        
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30))
+        }
+        if (variable_x=="Relative_humidity" & variable_y=="Maximum_air_temperature"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100))
+        }
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30))
+        }
+        if (variable_x=="Mean_wind_speed" & variable_y=="Maximum_air_temperature"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Mean_wind_speed,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,15))
+          
+        }
+        
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30))
+        }
+        if (variable_x=="Mean_Precipitation" & variable_y=="Maximum_air_temperature"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,5))
+        }
+        
+        if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30))
+        }
+        if (variable_x=="daylength" & variable_y=="Maximum_air_temperature"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=daylength,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(6,18))
+        }
+        
+        
+        
+        
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+theme_bw(20)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_colour_discrete(name  =variable_y_char)
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ")
+        Conditional_incidence_plot  <- Conditional_incidence_plot+xlab(variable_x_char)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ ggtitle(light_label_char) 
+        
+        labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1])))
+        n_labelling<-length(labelling)
+        
+        
+        for (j in c(1:(n_labelling-1)))      {
+          
+          labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) )
+          
+        }
+        labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling]))
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_fill_discrete(name  =variable_y_char, labels=labelling_char)          
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none")
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_line(size=1)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35)
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+
+          theme(legend.position= c(0.25,0.75),legend.title =  element_text( size = 11),
+                legend.text = element_text( size = 10),legend.background = element_blank(),
+                legend.key=element_rect(colour=NA))
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15))
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15))
+        
+        
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15))
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15))
+        
+        print(Conditional_incidence_plot)   
+        
+        
+        file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_",
+                         round(unique(Conditional_incidence_quantiles$Relative_humidity)[i_light]),"_",time_lag_char,"_quantile.tiff", sep = "")
+        tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default")
+        
+        print(Conditional_incidence_plot)  
+        
+        dev.off()
+        
+      }  
+      
+      
+    }
+    
+    })
+}
+
+
+
+
+Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars)
+{
+  
+  with(as.list(c(Data_frame_1, Pars)), {
+    
+    # Pars is the list of 3 variables of interest 
+    # Select the variables of study:
+    
+    variable_x<-Pars[1] 
+    variable_y<-Pars[2]
+    variable_z<-Pars[3]
+    
+    # Select the file with relevant information:
+    Conditional_incidence_quantiles <- Data_frame_1[[1]]
+    
+    
+    #Conditional_incidence_quantiles<-Conditional_incidence_quantiles[,-1]
+    Conditional_incidence_quantiles$incidence<-Conditional_incidence_quantiles$counts/Conditional_incidence_quantiles$residents_tot
+    # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles)
+    #For visual purposes, we are removing cases when the counts were too low resulting in exceptional large incidence
+    #Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles, Conditional_incidence_quantiles$counts>100) 
+    
+    
+    #number_days<-as.Date(last_day)-as.Date(first_day)
+    #number_days<-as.numeric(number_days)
+    #number_year<-number_days/365
+    
+    norm<-1/(1e6)
+    
+    
+    
+    ################### Choose a specific day-length  ###################
+    
+    
+    #Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles)
+    ############################# General variables ###########################
+    if (variable_x=="Relative_humidity"){variable_x_char<-"Relative humidity (%)"}
+    if (variable_y=="Relative_humidity"){variable_y_char<-"Relative humidity (%)"}
+    if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"}
+    if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"}
+    if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"}
+    if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"}
+    if (variable_x=="Mean_Precipitation"){variable_x_char<-"Mean Precipitation (mm)"}
+    if (variable_y=="Mean_Precipitation"){variable_y_char<-"Mean Precipitation (mm)"}
+    if (variable_x=="daylength"){variable_x_char<-"Day-Length (hours)"}
+    if (variable_y=="daylength"){variable_y_char<-"Day-Length (hours)"}
+    if (variable_x=="Minimum_air_temperature"){variable_x_char<-expression("Minimum Air Temperature"*~degree*C)}
+    if (variable_y=="Minimum_air_temperature"){variable_y_char<-expression("Minimum Air Temperature"*~degree*C)}
+    if (variable_x=="Maximum_air_temperature"){variable_x_char<-expression("Maximum Air Temperature"*~degree*C)}
+    if (variable_y=="Maximum_air_temperature"){variable_y_char<-expression("Maximum Air Temperature"*~degree*C)}
+    
+    
+    labelling_char<-c()
+    
+    
+    
+    ############# variables  from  here 
+    
+        Conditional_incidence_df<-Conditional_incidence_quantiles
+        
+        Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] 
+        
+        conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
+        conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
+        Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm
+        
+        
+        Conditional_incidence_df$conf_minus<-conf_minus
+        Conditional_incidence_df$conf_plus<-conf_plus
+        
+        Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y])
+        
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-5,30))
+          
+          }
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-5,30))
+          }
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-5,30))
+          }
+        if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-5,30))
+          }
+        
+        
+        if (variable_x=="Minimum_air_temperature" & variable_y=="Relative_humidity"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+        }
+        if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_wind_speed"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+          
+           }
+        if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_Precipitation"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+          
+          }
+        if (variable_x=="Minimum_air_temperature" & variable_y=="daylength"){
+          Conditional_incidence_plot <-  
+            ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+          
+          }
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+theme_bw(20)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_colour_discrete(name  =variable_y_char)
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ")
+        Conditional_incidence_plot  <- Conditional_incidence_plot+xlab(variable_x_char)
+        
+        labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1])))
+        n_labelling<-length(labelling)
+        
+        
+        for (j in c(1:(n_labelling-1)))      {
+          
+          labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) )
+          
+        }
+        labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling]))
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_fill_discrete(name  =variable_y_char, labels=labelling_char)          
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none")
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_line(size=1)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35)
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+
+          theme(legend.position= c(0.25,0.75),legend.title =  element_text( size = 11),
+                legend.text = element_text( size = 10),legend.background = element_blank(),
+                legend.key=element_rect(colour=NA))
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15))
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15))
+        
+        
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15))
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15))
+            Conditional_incidence_plot  
+        
+        
+        file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",time_lag_char,"_quantile.tiff", sep = "")
+        tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default")
+        
+        print(Conditional_incidence_plot)  
+        
+        dev.off()
+        
+        
+      
+      
+    
+  })
+}
+
+
+
+