diff --git a/Codes/Function_Plot_Conditional_Incidence_Quantiles.R b/Codes/Function_Plot_Conditional_Incidence_Quantiles.R new file mode 100644 index 0000000000000000000000000000000000000000..d94b97c4816b9183494666b8c6b460b079d7fc06 --- /dev/null +++ b/Codes/Function_Plot_Conditional_Incidence_Quantiles.R @@ -0,0 +1,496 @@ +# The code does look at how the risk of Campylobacter in humans depends on environmental variables + +# The code does look at how the risk of Campylobacter in humans depends on environmental variables +# Analysis was done following an quantiles division of the range of the environmental variables, independently of the number of observations +# This is used for the reconstruction + +Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars) +{ + + with(as.list(c(Data_frame_1, Pars)), { + + # Pars is the list of 3 variables of interest + # Select the variables of study: + + variable_x<-Pars[1] + variable_y<-Pars[2] + variable_z<-Pars[3] + + # Select the file with relevant information: + Conditional_incidence_quantiles <- Data_frame_1[[1]] + + + #Conditional_incidence_quantiles<-Conditional_incidence_quantiles[,-1] + Conditional_incidence_quantiles$incidence<-Conditional_incidence_quantiles$counts/Conditional_incidence_quantiles$residents_tot + # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles) + #For visual purposes, we are removing cases when the counts were too low resulting in exceptional large incidence + #Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles, Conditional_incidence_quantiles$counts>100) + + + #number_days<-as.Date(last_day)-as.Date(first_day) + #number_days<-as.numeric(number_days) + #number_year<-number_days/365 + + norm<-1/(1e6) + + + + ################### Choose a specific day-length ################### + + + #Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles) + ############################# General variables ########################### + if (variable_x=="Relative_humidity"){variable_x_char<-"Relative humidity (%)"} + if (variable_y=="Relative_humidity"){variable_y_char<-"Relative humidity (%)"} + if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"} + if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"} + if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"} + if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"} + if (variable_x=="Mean_Precipitation"){variable_x_char<-"Mean Precipitation (mm)"} + if (variable_y=="Mean_Precipitation"){variable_y_char<-"Mean Precipitation (mm)"} + if (variable_x=="daylength"){variable_x_char<-"Day-Length (hours)"} + if (variable_y=="daylength"){variable_y_char<-"Day-Length (hours)"} + if (variable_x=="Minimum_air_temperature"){variable_x_char<-expression("Minimum Air Temperature"*~degree*C)} + if (variable_y=="Minimum_air_temperature"){variable_y_char<-expression("Minimum Air Temperature"*~degree*C)} + if (variable_x=="Maximum_air_temperature"){variable_x_char<-expression("Maximum Air Temperature"*~degree*C)} + if (variable_y=="Maximum_air_temperature"){variable_y_char<-expression("Maximum Air Temperature"*~degree*C)} + + + labelling_char<-c() + + + + ############# 3 variable from here + if (variable_z=="daylength"){ + + + for (i_light in c(1:length(unique(Conditional_incidence_quantiles$daylength)))) { + + light_label<-round(as.numeric(unique(Conditional_incidence_quantiles$daylength))) + + if (i_light<length(light_label)){ + light_label_char<-paste("Day-length ",light_label[i_light],"-",light_label[i_light+1]," hours",sep="") + } else { + light_label_char<-paste("Day-length >",light_label[i_light]," hours",sep="") + } + + wt<-which(Conditional_incidence_quantiles$daylength==unique(Conditional_incidence_quantiles$daylength)[i_light]) + Conditional_incidence_df<-Conditional_incidence_quantiles[wt,] + + Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] + + conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm + conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm + Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm + + + Conditional_incidence_df$conf_minus<-conf_minus + Conditional_incidence_df$conf_plus<-conf_plus + #Conditional_incidence_df<-na.omit(Conditional_incidence_df) + + Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y]) + + + if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="Relative_humidity" & variable_y=="Maximum_air_temperature"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100)) + } + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="Mean_wind_speed" & variable_y=="Maximum_air_temperature"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Mean_wind_speed,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,15)) + + } + + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="Mean_Precipitation" & variable_y=="Maximum_air_temperature"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,5)) + } + + if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30)) + } + + + + + Conditional_incidence_plot <- Conditional_incidence_plot+theme_bw(20) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_colour_discrete(name =variable_y_char) + + Conditional_incidence_plot <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ") + Conditional_incidence_plot <- Conditional_incidence_plot+xlab(variable_x_char) + Conditional_incidence_plot <- Conditional_incidence_plot+ ggtitle(light_label_char) + + labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1]))) + n_labelling<-length(labelling) + + + for (j in c(1:(n_labelling-1))) { + + labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) ) + + } + labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling])) + + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_fill_discrete(name =variable_y_char, labels=labelling_char) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none") + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_line(size=1) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35) + + Conditional_incidence_plot <- Conditional_incidence_plot+ + theme(legend.position= c(0.25,0.75),legend.title = element_text( size = 11), + legend.text = element_text( size = 10),legend.background = element_blank(), + legend.key=element_rect(colour=NA)) + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15)) + + + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15)) + + print(Conditional_incidence_plot) + + + file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_", + round(unique(Conditional_incidence_quantiles$daylength)[i_light]),"_",time_lag_char,"_quantile.tiff", sep = "") + tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default") + + print(Conditional_incidence_plot) + + dev.off() + + } + + + } + + if (variable_z=="Relative_humidity"){ + + + for (i_light in c(1:length(unique(Conditional_incidence_quantiles$Relative_humidity)))) { + + light_label<-round(as.numeric(unique(Conditional_incidence_quantiles$Relative_humidity))) + + if (i_light<length(light_label)){ + light_label_char<-paste("Relative Humidity ",light_label[i_light],"-",light_label[i_light+1]," %",sep="") + } else { + light_label_char<-paste("Relative Humidity >",light_label[i_light]," %",sep="") + } + + wt<-which(Conditional_incidence_quantiles$Relative_humidity==unique(Conditional_incidence_quantiles$Relative_humidity)[i_light]) + Conditional_incidence_df<-Conditional_incidence_quantiles[wt,] + + Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] + + conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm + conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm + Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm + + + Conditional_incidence_df$conf_minus<-conf_minus + Conditional_incidence_df$conf_plus<-conf_plus + #Conditional_incidence_df<-na.omit(Conditional_incidence_df) + + Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y]) + + + if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="Relative_humidity" & variable_y=="Maximum_air_temperature"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100)) + } + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="Mean_wind_speed" & variable_y=="Maximum_air_temperature"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Mean_wind_speed,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,15)) + + } + + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="Mean_Precipitation" & variable_y=="Maximum_air_temperature"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,5)) + } + + if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="daylength" & variable_y=="Maximum_air_temperature"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=daylength,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(6,18)) + } + + + + + + Conditional_incidence_plot <- Conditional_incidence_plot+theme_bw(20) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_colour_discrete(name =variable_y_char) + + Conditional_incidence_plot <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ") + Conditional_incidence_plot <- Conditional_incidence_plot+xlab(variable_x_char) + Conditional_incidence_plot <- Conditional_incidence_plot+ ggtitle(light_label_char) + + labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1]))) + n_labelling<-length(labelling) + + + for (j in c(1:(n_labelling-1))) { + + labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) ) + + } + labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling])) + + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_fill_discrete(name =variable_y_char, labels=labelling_char) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none") + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_line(size=1) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35) + + Conditional_incidence_plot <- Conditional_incidence_plot+ + theme(legend.position= c(0.25,0.75),legend.title = element_text( size = 11), + legend.text = element_text( size = 10),legend.background = element_blank(), + legend.key=element_rect(colour=NA)) + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15)) + + + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15)) + + print(Conditional_incidence_plot) + + + file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_", + round(unique(Conditional_incidence_quantiles$Relative_humidity)[i_light]),"_",time_lag_char,"_quantile.tiff", sep = "") + tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default") + + print(Conditional_incidence_plot) + + dev.off() + + } + + + } + + }) +} + + + + +Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars) +{ + + with(as.list(c(Data_frame_1, Pars)), { + + # Pars is the list of 3 variables of interest + # Select the variables of study: + + variable_x<-Pars[1] + variable_y<-Pars[2] + variable_z<-Pars[3] + + # Select the file with relevant information: + Conditional_incidence_quantiles <- Data_frame_1[[1]] + + + #Conditional_incidence_quantiles<-Conditional_incidence_quantiles[,-1] + Conditional_incidence_quantiles$incidence<-Conditional_incidence_quantiles$counts/Conditional_incidence_quantiles$residents_tot + # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles) + #For visual purposes, we are removing cases when the counts were too low resulting in exceptional large incidence + #Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles, Conditional_incidence_quantiles$counts>100) + + + #number_days<-as.Date(last_day)-as.Date(first_day) + #number_days<-as.numeric(number_days) + #number_year<-number_days/365 + + norm<-1/(1e6) + + + + ################### Choose a specific day-length ################### + + + #Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles) + ############################# General variables ########################### + if (variable_x=="Relative_humidity"){variable_x_char<-"Relative humidity (%)"} + if (variable_y=="Relative_humidity"){variable_y_char<-"Relative humidity (%)"} + if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"} + if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"} + if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"} + if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"} + if (variable_x=="Mean_Precipitation"){variable_x_char<-"Mean Precipitation (mm)"} + if (variable_y=="Mean_Precipitation"){variable_y_char<-"Mean Precipitation (mm)"} + if (variable_x=="daylength"){variable_x_char<-"Day-Length (hours)"} + if (variable_y=="daylength"){variable_y_char<-"Day-Length (hours)"} + if (variable_x=="Minimum_air_temperature"){variable_x_char<-expression("Minimum Air Temperature"*~degree*C)} + if (variable_y=="Minimum_air_temperature"){variable_y_char<-expression("Minimum Air Temperature"*~degree*C)} + if (variable_x=="Maximum_air_temperature"){variable_x_char<-expression("Maximum Air Temperature"*~degree*C)} + if (variable_y=="Maximum_air_temperature"){variable_y_char<-expression("Maximum Air Temperature"*~degree*C)} + + + labelling_char<-c() + + + + ############# variables from here + + Conditional_incidence_df<-Conditional_incidence_quantiles + + Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] + + conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm + conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm + Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm + + + Conditional_incidence_df$conf_minus<-conf_minus + Conditional_incidence_df$conf_plus<-conf_plus + + Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y]) + + if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-5,30)) + + } + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-5,30)) + } + if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-5,30)) + } + + + if (variable_x=="Minimum_air_temperature" & variable_y=="Relative_humidity"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + } + if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_wind_speed"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + + } + if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_Precipitation"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + + } + if (variable_x=="Minimum_air_temperature" & variable_y=="daylength"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + + } + + Conditional_incidence_plot <- Conditional_incidence_plot+theme_bw(20) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_colour_discrete(name =variable_y_char) + + Conditional_incidence_plot <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ") + Conditional_incidence_plot <- Conditional_incidence_plot+xlab(variable_x_char) + + labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1]))) + n_labelling<-length(labelling) + + + for (j in c(1:(n_labelling-1))) { + + labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) ) + + } + labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling])) + + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_fill_discrete(name =variable_y_char, labels=labelling_char) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none") + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_line(size=1) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35) + + Conditional_incidence_plot <- Conditional_incidence_plot+ + theme(legend.position= c(0.25,0.75),legend.title = element_text( size = 11), + legend.text = element_text( size = 10),legend.background = element_blank(), + legend.key=element_rect(colour=NA)) + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15)) + + + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15)) + Conditional_incidence_plot + + + file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",time_lag_char,"_quantile.tiff", sep = "") + tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default") + + print(Conditional_incidence_plot) + + dev.off() + + + + + + }) +} + + + +