diff --git a/Taylor_Simulated_Campylobacter_environment_light_hum_min_for_rec_delay_original_modified.Rout b/Taylor_Simulated_Campylobacter_environment_light_hum_min_for_rec_delay_original_modified.Rout deleted file mode 100644 index 09a000653f324a74b750857fb44182f831d0f187..0000000000000000000000000000000000000000 --- a/Taylor_Simulated_Campylobacter_environment_light_hum_min_for_rec_delay_original_modified.Rout +++ /dev/null @@ -1,973 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # this to calculate delay -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> n_seas<-1 -> width<-14 -> width_char<-paste(width) -> ## Varaible file -> -> -> variable_x<-"Minimum_air_temperature" -> variable_y<-"Relative_humidity" -> variable_z<-"daylength" -> -> variable_x2<-"min_air_temp" -> variable_y2<-"humidity" -> variable_z2<-"light" -> -> -> ## Varaible file -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2015-12-31"), by = "day") -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> Env_laboratory$Date<-as.Date(Env_laboratory$Date) -> -> -> -> #Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> Env_laboratory_PHE<-Env_laboratory -> #All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> #All_residents<-sum(All_residents_lab$tot) -> -> ######################## include daylength ################## -> -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode") -> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data,lat_long_lab,by="PostCode") -> #Env_laboratory_int2<-Env_laboratory_int2[,-c(16,17)] -> #names(Env_laboratory_int2)[10]<-"lat" -> #names(Env_laboratory_int2)[11]<-"long" -> #names(Env_laboratory_int2)[14]<-"Date2" -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Env_laboratory_int2$lat -> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> -> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) -> -> ### repeat for the data only #### -> -> latitude<-Env_Campylobacter_data_int2$lat -> day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> #daylength_df$lat<-as.factor(daylength_df$lat) -> #daylength_df$Date<-as.factor(daylength_df$Date) -> #Env_Lyme_data_int2$lat<-as.factor(Env_Lyme_data_int2$lat) -> #Env_Lyme_data_int2$Date<-as.factor(Env_Lyme_data_int2$Date) -> -> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df) -> -> -> -> -> ######################## -> -> -> -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> ################### -> -> -> delta_light<-1 -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> -> breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp) -> breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -> breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light) -> -> -> i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity)))) -> i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity)))) -> -> i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) -> i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) -> -> i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) -> i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) -> -> i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) -> i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) -> -> i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) -> i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) -> -> i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) -> i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) -> -> -> i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength)))) -> i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength)))) -> -> ############## from here '################### -> -> -> if (variable_z=="Maximum_air_temperature"){ -+ -+ breaks_var<-breaks_max_temp -+ i_var_min<-i_max_temp_min -+ i_var_max<-i_max_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature -+ Env_laboratory_var<-Env_laboratory$Maximum_air_temperature -+ } -> if (variable_x=="Maximum_air_temperature"){ -+ -+ i_var_x_min<-i_max_temp_min -+ i_var_x_max<-i_max_temp_max -+ breaks_var_x<-breaks_max_temp -+ } -> -> if (variable_y=="Maximum_air_temperature"){ -+ -+ i_var_y_min<-i_max_temp_min -+ i_var_y_max<-i_max_temp_max -+ breaks_var_y<-breaks_max_temp -+ } -> -> if (variable_z=="Minimum_air_temperature"){ -+ -+ breaks_var<-breaks_min_temp -+ i_var_min<-i_min_temp_min -+ i_var_max<-i_min_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$min_temp -+ Env_laboratory_var<-Env_laboratory$min_temp -+ } -> if (variable_x=="Minimum_air_temperature"){ -+ -+ i_var_x_min<-i_min_temp_min -+ i_var_x_max<-i_min_temp_max -+ breaks_var_x<-breaks_min_temp -+ } -> -> if (variable_y=="Minimum_air_temperature"){ -+ -+ i_var_y_min<-i_min_temp_min -+ i_var_y_max<-i_min_temp_max -+ breaks_var_y<-breaks_min_temp -+ } -> -> if (variable_z=="Relative_humidity"){ -+ -+ breaks_var<-breaks_hum -+ i_var_min<-i_hum_min -+ i_var_max<-i_hum_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity -+ Env_laboratory_var<-Env_laboratory$Relative_humidity -+ } -> if (variable_x=="Relative_humidity"){ -+ -+ i_var_x_min<-i_hum_min -+ i_var_x_max<-i_hum_max -+ breaks_var_x<-breaks_hum -+ } -> -> if (variable_y=="Relative_humidity"){ -+ -+ i_var_y_min<-i_hum_min -+ i_var_y_max<-i_hum_max -+ breaks_var_y<-breaks_hum -+ } -> -> -> if (variable_z=="mean_temp"){ -+ -+ breaks_var<-breaks_mean_temp -+ i_var_min<-i_mean_temp_min -+ i_var_max<-i_mean_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp -+ Env_laboratory_var<-Env_laboratory$mean_temp -+ } -> if (variable_x=="mean_temp"){ -+ -+ i_var_x_min<-i_mean_temp_min -+ i_var_x_max<-i_mean_temp_max -+ breaks_var_x<-breaks_mean_temp -+ } -> -> if (variable_y=="mean_temp"){ -+ -+ i_var_y_min<-i_mean_temp_min -+ i_var_y_max<-i_mean_temp_max -+ breaks_var_y<-breaks_mean_temp -+ } -> -> if (variable_z=="Mean_Precipitation"){ -+ -+ breaks_var<-breaks_rain -+ i_var_min<-i_rain_min -+ i_var_max<-i_rain_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation -+ Env_laboratory_var<-Env_laboratory$Mean_Precipitation -+ } -> if (variable_x=="Mean_Precipitation"){ -+ -+ i_var_x_min<-i_rain_min -+ i_var_x_max<-i_rain_max -+ breaks_var_x<-breaks_rain -+ } -> -> if (variable_y=="Mean_Precipitation"){ -+ -+ i_var_y_min<-i_rain_min -+ i_var_y_max<-i_rain_max -+ breaks_var_y<-breaks_rain -+ } -> -> if (variable_z=="Cumul_Precipitation"){ -+ -+ breaks_var<-breaks_cum_rain -+ i_var_min<-i_cum_rain_min -+ i_var_max<-i_cum_rain_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation -+ Env_laboratory_var<-Env_laboratory$Cumul_Precipitation -+ } -> if (variable_x=="Cumul_Precipitation"){ -+ -+ i_var_x_min<-i_cum_rain_min -+ i_var_x_max<-i_cum_rain_max -+ breaks_var_x<-breaks_cum_rain -+ } -> -> if (variable_y=="Cumul_Precipitation"){ -+ -+ i_var_y_min<-i_cum_rain_min -+ i_var_y_max<-i_cum_rain_max -+ breaks_var_y<-breaks_cum_rain -+ } -> -> -> if (variable_z=="Mean_wind_speed"){ -+ -+ breaks_var<-breaks_wind -+ i_var_min<-i_wind_min -+ i_var_max<-i_wind_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed -+ Env_laboratory_var<-Env_laboratory$Mean_wind_speed -+ } -> if (variable_x=="Mean_wind_speed"){ -+ -+ i_var_x_min<-i_wind_min -+ i_var_x_max<-i_wind_max -+ breaks_var_x<-breaks_wind -+ } -> -> if (variable_y=="Mean_wind_speed"){ -+ -+ i_var_y_min<-i_wind_min -+ i_var_y_max<-i_wind_max -+ breaks_var_y<-breaks_wind -+ } -> -> -> -> -> if (variable_z=="daylength"){ -+ -+ breaks_var<-breaks_light -+ i_var_min<-i_light_min -+ i_var_max<-i_light_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength -+ Env_laboratory_var<-Env_laboratory$daylength -+ } -> if (variable_x=="daylength"){ -+ -+ i_var_x_min<-i_light_min -+ i_var_x_max<-i_light_max -+ breaks_var_x<-breaks_light -+ } -> -> if (variable_y=="daylength"){ -+ -+ i_var_y_min<-i_light_min -+ i_var_y_max<-i_light_max -+ breaks_var_y<-breaks_light -+ } -> -> -> -> -> D_eta_var_x<-function(i_var,i_var_y,i_var_x) -+ { -+ -+ -+ -+ -+ #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab -+ var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab #All_residents_lab[,2] this change by postcode only -+ -+ if(is.na(breaks_var[i_var+1])==TRUE) -+ { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var]) -+ } else { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1]) -+ } -+ -+ -+ if(is.na(breaks_var_y[i_var_y+1])==TRUE) -+ { -+ Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y]) -+ } else { -+ Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1]) -+ } -+ -+ -+ -+ if(is.na(breaks_var_x[i_var_x+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Minimum_air_temperature>=breaks_var_x[i_var_x]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Minimum_air_temperature>=breaks_var_x[i_var_x] & Yt1$Minimum_air_temperature<breaks_var_x[i_var_x+1]) -+ } -+ -+ -+ if(is.na(breaks_var_x[i_var_x+2])==TRUE) -+ { -+ Yt3<-subset(Yt1,Yt1$Minimum_air_temperature>=breaks_var_x[i_var_x+1]) -+ } else { -+ Yt3<-subset(Yt1,Yt1$Minimum_air_temperature>=breaks_var_x[i_var_x+1] & Yt1$Minimum_air_temperature<breaks_var_x[i_var_x+2]) -+ } -+ -+ if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ -+ D_eta_D_x<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) -+ } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ -+ D_eta_D_x<- 0.5*mean(Yt3$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ -+ D_eta_D_x<- 0.5*mean(Yt2$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ -+ D_eta_D_x<-NA -+ } -+ -+ return(D_eta_D_x) -+ } -> -> -> -> -> D_eta_var_y<-function(i_var,i_var_y,i_var_x) -+ { -+ -+ -+ #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab -+ var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab -+ -+ -+ if(is.na(breaks_var[i_var+1])==TRUE) -+ { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var]) -+ } else { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1]) -+ } -+ -+ -+ if(is.na(breaks_var_x[i_var_x+1])==TRUE) -+ { -+ Yt1<-subset(Yt0,Yt0$Minimum_air_temperature>=breaks_var_x[i_var_x]) -+ } else { -+ Yt1<-subset(Yt0,Yt0$Minimum_air_temperature>=breaks_var_x[i_var_x] & Yt0$Minimum_air_temperature<breaks_var_x[i_var_x+1]) -+ } -+ -+ -+ -+ if(is.na(breaks_var_y[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y] & Yt1$Relative_humidity<breaks_var_y[i_var_y+1]) -+ } -+ -+ -+ if(is.na(breaks_var_y[i_var_y+2])==TRUE) -+ { -+ Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1]) -+ } else { -+ Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1] & Yt1$Relative_humidity<breaks_var_y[i_var_y+2]) -+ } -+ -+ if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ -+ D_eta_D_y<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) -+ } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ -+ D_eta_D_y<- 0.5*mean(Yt3$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ -+ D_eta_D_y<- 0.5*mean(Yt2$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ -+ D_eta_D_y<-NA -+ } -+ -+ return(D_eta_D_y) -+ } -> -> -> -> -> D_eta_var<-function(i_var,i_var_y,i_var_x) -+ { -+ -+ -+ #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab -+ var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab -+ -+ if(is.na(breaks_var_x[i_var_x+1])==TRUE) -+ { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$Minimum_air_temperature>=breaks_var_x[i_var_x]) -+ } else { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$Minimum_air_temperature>=breaks_var_x[i_var_x] & var_x_loc_df$Minimum_air_temperature<breaks_var_x[i_var_x+1]) -+ } -+ -+ if(is.na(breaks_var_y[i_var_y+1])==TRUE) -+ { -+ Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y]) -+ } else { -+ Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1]) -+ } -+ -+ -+ if(is.na(breaks_var[i_var+1])==TRUE) -+ { -+ Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var]) -+ } else { -+ Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var] & Yt1$daylength<breaks_var[i_var+1]) -+ } -+ -+ if(is.na(breaks_var[i_var+2])==TRUE) -+ { -+ Yt3<-subset( Yt1, Yt1$daylength>=breaks_var[i_var+1]) -+ } else { -+ Yt3<-subset( Yt1, Yt1$Relative_humiditylight>=breaks_var[i_var+1] & Yt1$daylength<breaks_var[i_var+2]) -+ } -+ -+ -+ -+ if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ -+ D_eta_D_v<- mean(Yt3$eta- Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) -+ } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ -+ D_eta_D_v<- 0.5*mean(Yt3$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ -+ D_eta_D_v<- 0.5*mean(Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ -+ D_eta_D_v<-NA -+ } -+ -+ return(D_eta_D_v) -+ } -> -> -> -> -> -> df_all_1<-c() -> #i_var<-seq(i_var_min,i_var_max) -> #i_var_x<-seq(i_var_x_min,i_var_x_max) -> -> for (j in c(1: length(All_PC_s))){ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[j]) -+ -+ All_residents_lab<-ddply(variable_df,~PostCode,summarise,tot=mean(residents)) -+ for (i_var in c(seq(i_var_min,i_var_max))){ -+ for (i_var_y in c(seq(i_var_y_min,i_var_y_max))){ -+ for (i_var_x in c(seq(i_var_x_min,i_var_x_max))){ -+ -+ -+ #df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x)))) -+ #df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x)))) -+ -+ df1<-data.frame(breaks_light[i_var],breaks_hum[i_var_y],breaks_min_temp[i_var_x],D_eta_var_x(i_var,i_var_y,i_var_x),D_eta_var_y(i_var,i_var_y,i_var_x),D_eta_var(i_var,i_var_y,i_var_x),All_PC_s[j] ) -+ colnames(df1)<-c("daylength","Relative_humidity","Minimum_air_temperature","D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light","PostCode") -+ df_all_1<-rbind(df_all_1,df1) -+ #mapply(D_eta_var_x,i_var, MoreArgs =list(i_var_x)) -+ } -+ } -+ -+ } -+ } -> -> #df_all<-ddply(df_all_1,~PostCode,summarise,tot=mean()) -> df_all<-df_all_1 -> -> time_series<-c() -> -> for (i in c(1: length(All_PC_s))){ -+ #for (i in c(1: 15)){ -+ -+ -+ -+ #for (j in c(1: n_seas)){ -+ -+ # n_months<-12/n_seas -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ if (length(variable_df[,1])!=0){ -+ -+ -+ -+ Delta_T<-diff(variable_df$Minimum_air_temperature) -+ Delta_RH<-diff(variable_df$Relative_humidity) -+ Delta_L<-diff(variable_df$daylength) -+ Delta_var<-data.frame(variable_df$Date[-1],Delta_T,Delta_RH,Delta_L) -+ colnames(Delta_var)<-c("dates","diff_max_temp","diff_humidity","diff_light") -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Minimum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_1_dis<-data.frame(variable_df$Date,variable_df$Relative_humidity) -+ variable_df_2_dis<-data.frame(variable_df$Date,variable_df$Minimum_air_temperature) -+ variable_df_3_dis<-data.frame(variable_df$Date,variable_df$daylength) -+ -+ colnames(variable_df_1_dis)<-c("dates","Relative_humidity") -+ colnames(variable_df_2_dis)<-c("dates","Minimum_air_temperature") -+ colnames(variable_df_3_dis)<-c("dates","daylength") -+ -+ variable_df_1_dis$dates<-as.Date(as.character((variable_df_1_dis$dates))) -+ variable_df_2_dis$dates<-as.Date(as.character((variable_df_2_dis$dates))) -+ variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates))) -+ -+ variable_df_1_dis<-subset(variable_df_1_dis,year(variable_df_1_dis$dates)>=1990 & year(variable_df_1_dis$dates)<=2015) -+ variable_df_2_dis<-subset(variable_df_2_dis,year(variable_df_2_dis$dates)>=1990 & year(variable_df_2_dis$dates)<=2015) -+ variable_df_3_dis<-subset(variable_df_3_dis,year(variable_df_3_dis$dates)>=1990 & year(variable_df_3_dis$dates)<=2015) -+ -+ variable_df_1_dis$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_2_dis$Minimum_air_temperature<-(breaks_min_temp[findInterval(y, breaks_min_temp)]) -+ variable_df_3_dis$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ # var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j) -+ # var_x_loc_df$Relative_humidity<-floor(var_x_loc_df$Relative_humidity) -+ # var_x_loc_df$Minimum_air_temperature<-floor(var_x_loc_df$breaks) -+ #df<-subset(df_all,df_all$month==j) -+ df<-subset(df_all,df_all$PostCode==All_PC_s[i]) -+ -+ variable_df_4_dis<-merge(variable_df_1_dis,df, by="Relative_humidity") -+ variable_df_5_dis<-merge(variable_df_2_dis,df, by="Minimum_air_temperature") -+ variable_df_6_dis<-merge(variable_df_3_dis,df, by="daylength") -+ -+ -+ -+ variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates))) -+ variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),] -+ variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates))) -+ variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),] -+ variable_df_6_dis$dates<-as.Date(as.character((variable_df_6_dis$dates))) -+ variable_df_6_dis<-variable_df_6_dis[order(variable_df_6_dis$dates),] -+ -+ -+ variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates) -+ variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates) -+ variable_df_6_dis$dates<-as.factor(variable_df_6_dis$dates) -+ -+ variable_df_dis0<-merge(variable_df_4_dis,variable_df_5_dis, by=c("dates","Minimum_air_temperature","Relative_humidity","daylength") ) -+ variable_df_dis<-merge(variable_df_dis0,variable_df_6_dis, by=c("dates","Minimum_air_temperature","Relative_humidity","daylength")) -+ -+ variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ variable_df_dis$dates<-as.factor(variable_df_dis$dates) -+ Delta_var$dates<-as.factor(Delta_var$dates) -+ variable_df_Taylor<-merge(variable_df_dis,Delta_var, by=c("dates")) -+ -+ variable_df_Taylor<-variable_df_Taylor[,c(1:7,17:19)] -+ colnames(variable_df_Taylor)<-c("dates",variable_x, variable_y, variable_z,"D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light", -+ "diff_max_temp","diff_humidity","diff_light") -+ -+ -+ lambda_temp<-variable_df_Taylor$D_eta_D_max_temp*variable_df_Taylor$diff_max_temp -+ lambda_hum<-variable_df_Taylor$D_eta_D_hum*variable_df_Taylor$diff_humidity -+ lambda_light<-variable_df_Taylor$D_eta_D_light*variable_df_Taylor$diff_light -+ -+ -+ -+ time_series_1<- -+ data.frame(variable_df_Taylor$dates, -+ lambda_temp,lambda_hum,lambda_light, -+ rep(All_PC_s[i],times=length(variable_df_Taylor$dates)), -+ variable_df_Taylor$D_eta_D_max_temp,variable_df_Taylor$diff_max_temp, -+ variable_df_Taylor$D_eta_D_hum,variable_df_Taylor$diff_humidity, -+ variable_df_Taylor$D_eta_D_light,variable_df_Taylor$diff_light) -+ colnames(time_series_1)<-c("Date","Contr_temp","Contr_hum","Contr_light", -+ "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light") -+ time_series<-rbind(time_series,time_series_1) -+ -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ } -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> #time_series1<-subset(time_series,time_series$Lab=="B152TG") -> #time_series1$Date<-as.Date(as.character(time_series1$Date)) -> #time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date)))) -> #time_series1<-subset(time_series1,time_series1$year=="2005") -> -> #time_series1<-na.omit(time_series1) -> ##temp_contr<-cumsum(time_series1$Contr_temp) -> #temp_hum<-cumsum(time_series1$Contr_hum) -> # -> #df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum) -> #colnames(df2)<-c("Date","contr","humidity") -> #temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp)) -> #time_series<-na.omit(time_series) -> #time_series$temp_contr<-cumsum(time_series$Contr_temp) -> #time_series$temp_hum<-cumsum(time_series$Contr_hum) -> #time_series$yday<-yday(time_series$Date) -> #time_series$week<-week(time_series$Date) -> #time_series$month<-month(time_series$Date) -> #time_series$Lab<-as.factor(time_series$Lab) -> -> #time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp)) -> #time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp)) -> -> #time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp)) -> #time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum)) -> -> #time_series_lab<-ddply(time_series,~month,summarise,tot=mean(Contr_temp)) -> #time_series_lab2<-ddply(time_series,~month,summarise,tot=mean(Contr_hum)) -> #time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum)) -> -> write.table(time_series,paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> proc.time() - user system elapsed -30780.04 1294.12 32076.90