diff --git a/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables_quarter.Rout b/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables_quarter.Rout
deleted file mode 100644
index 032428c5c48177604c058d50756698f3cef6073a..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables_quarter.Rout
+++ /dev/null
@@ -1,1232 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> #library(Hmisc)
-> 
-> #list.of.packages <- c("xts")
-> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-> #if(length(new.packages)) install.packages(new.packages)
-> library(xts)
-Loading required package: zoo
-
-Attaching package: ‘zoo’
-
-The following object is masked from ‘package:timeSeries’:
-
-    time<-
-
-The following objects are masked from ‘package:base’:
-
-    as.Date, as.Date.numeric
-
-
-Attaching package: ‘xts’
-
-The following objects are masked from ‘package:pastecs’:
-
-    first, last
-
-> 
-> 
-> 
-> 
-> ## Varaible file
-> 
-> variable_int<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> width<-30
-> width_char<-paste(width)
-> 
-> 
-> 
-> variable<-"Maximum_air_temperature"
-> #variable<-"daylength"
-> variable_y<-"Mean_Precipitation"
-> variable_x<-"Relative_humidity"
-> 
-> #variable_y<-"Mean_Precipitation"
-> #variable<-"daylength"
-> #variable<-"Mean_Precipitation"
-> #"Maximum_air_temperature",
-> #"Minimum_air_temperature",
-> #"Mean_wind_speed",
-> #"Mean_Precipitation",
-> #"Relative_humidity",
-> #"daylength"
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> 
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 		
-> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-> colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-> 
-> 
-> quarter_year<-4
-> quarter_year_char<-paste("_",as.character(quarter_year),"-quarter_year",sep="")
-> 
-> if (quarter_year==1){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=1 & month(as.Date(Env_Campylobacter_data_all2$Date))<=3)
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=1 & month(as.Date(Env_laboratory_weekly$Date))<=3)
-+ }
-> 
-> if (quarter_year==2){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=4 & month(as.Date(Env_Campylobacter_data_all2$Date))<=6)
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=4 & month(as.Date(Env_laboratory_weekly$Date))<=6)
-+ }
-> 
-> if (quarter_year==3){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=7 & month(as.Date(Env_Campylobacter_data_all2$Date))<=9)
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=7 & month(as.Date(Env_laboratory_weekly$Date))<=9)
-+ }
-> 
-> if (quarter_year==4){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=10 & month(as.Date(Env_Campylobacter_data_all2$Date))<=12)
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=10 & month(as.Date(Env_laboratory_weekly$Date))<=12)
-+ }
-> 
-> 
-> 
-> #############  Not elegant but it works for the rest 
-> 
-> Env_laboratory_weekly_sub<-Env_laboratory_int1
-> Env_Campylobacter_data_all2_sub<-Env_Campylobacter_data_int1
-> 
-> 
-> 
-> 
-> for (quarter in c(1:4)){
-+ 
-+ quarter_char<-paste("_",as.character(quarter),"-quarter",sep="")
-+ 
-+   breaks_daylength<-(as.numeric(quantile(na.omit(Env_Campylobacter_data_all2_sub$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE)))
-+   breaks_daylength[length(breaks_daylength)]<-ceiling((as.numeric(quantile(na.omit(Env_Campylobacter_data_all2_sub$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE))))[length(breaks_daylength)]
-+   
-+   breaks_daylength[1]<-floor((as.numeric(quantile(na.omit(Env_Campylobacter_data_all2_sub$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE))))[1]
-+ 
-+ 
-+ 
-+ if (quarter==1){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2_sub,Env_Campylobacter_data_all2_sub$daylength<=breaks_daylength[2])
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly_sub,Env_laboratory_weekly_sub$daylength<=breaks_daylength[2])
-+ hours_char<-paste("_",as.character(round(breaks_daylength[2])),"-quarter",sep="")
-+ }
-+ 
-+ if (quarter==2){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2_sub,Env_Campylobacter_data_all2_sub$daylength>breaks_daylength[2] & Env_Campylobacter_data_all2_sub$daylength<=breaks_daylength[3])
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly_sub,Env_laboratory_weekly_sub$daylength>breaks_daylength[2] & Env_laboratory_weekly$daylength<=breaks_daylength[3])
-+ hours_char<-paste("_",as.character(round(breaks_daylength[3])),"-quarter",sep="")
-+ }
-+ 
-+ if (quarter==3){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2_sub,Env_Campylobacter_data_all2_sub$daylength>breaks_daylength[3] & Env_Campylobacter_data_all2_sub$daylength<=breaks_daylength[4])
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly_sub,Env_laboratory_weekly_sub$daylength>breaks_daylength[3] & Env_laboratory_weekly$daylength<=breaks_daylength[4])
-+ hours_char<-paste("_",as.character(round(breaks_daylength[4])),"-quarter",sep="")
-+ }
-+ 
-+ if (quarter==4){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2_sub,Env_Campylobacter_data_all2_sub$daylength>breaks_daylength[4])
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly_sub,Env_laboratory_weekly_sub$daylength>breaks_daylength[4])
-+ hours_char<-paste("_",as.character(round(breaks_daylength[5])),"-quarter",sep="")
-+ }
-+ 
-+ 
-+ 
-+ 
-+ ################### include latitude and longitude 
-+ Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-+ 
-+ 
-+ lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-+ colnames(lat_long_lab)<-c("PostCode","lat","long")
-+ 
-+ Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-+ Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-+ 
-+ Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-+ Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-+ 
-+ 
-+ 
-+ ######################## include daylength ################## 
-+ 
-+ PC_df<-data.frame(All_PC,as.Date(dates))
-+ colnames(PC_df)<-c("PostCode","Date")
-+ 
-+ 
-+ Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-+ 
-+ 
-+ daylength<-function(lat,day_year)
-+ {
-+   #Latitude measure in degrees
-+   P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-+   Denom<-cos(lat*pi/180)*cos(P) 
-+   Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-+   D<-24-(24/pi)*acos(Numer/Denom)
-+   return(D)
-+ }
-+ 
-+ latitude<-Post_Codes_df$lat
-+ day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-+ 
-+ daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-+ daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-+ colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-+ daylength_df$Date<-as.factor(daylength_df$Date)
-+ daylength_df$lat<-as.factor(daylength_df$lat)
-+ Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date)
-+ Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat)
-+ 
-+ #Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date"))
-+ #Env_laboratory<-data.frame(Env_laboratory_int4)
-+ Env_laboratory<-data.frame(Env_laboratory_int3)
-+ Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date)
-+ Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat)
-+ 
-+ 
-+ #Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date"))
-+ #Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4)
-+ Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3)
-+ 
-+ 
-+ 
-+ 
-+ 
-+ ################### Divide the domains of the variables in bins according to quantiles
-+ 
-+ 
-+ index_C<-which (names(Env_Campylobacter_data)==variable)
-+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-+ index_x_C<-which (names(Env_Campylobacter_data)==variable_x)
-+ 
-+ index_res_C<-which (names(Env_Campylobacter_data)=="residents")
-+ 
-+ 
-+ index<-which (names(Env_laboratory)==variable)
-+ index_y<-which (names(Env_laboratory)==variable_y)
-+ index_x<-which (names(Env_laboratory)==variable_x)
-+ index_res<-which (names(Env_laboratory)=="residents")
-+ 
-+ 
-+ #########################
-+ 
-+ 
-+ breaks_z_lab<-function(variable,by_z)
-+ {
-+   
-+   index<-which (names(Env_laboratory)==variable)
-+    
-+   
-+   breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-+   breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-+   breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
-+  
-+   
-+    return(breaks_z)
-+ 
-+ }
-+ 
-+ 
-+ 
-+ breaks_z<-function(variable,by_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+    
-+   breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-+   
-+   breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-+   breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
-+  
-+   
-+    return(breaks_z)
-+ 
-+ }
-+ 
-+ 
-+ 
-+ 
-+ breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+   
-+   index<-which (names(Env_laboratory)==variable)
-+   index_y<-which (names(Env_laboratory)==variable_y)
-+ 
-+   
-+   
-+   wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-+   
-+   wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_laboratory_some<-Env_laboratory[ww,]
-+   
-+   if (length(Env_Campylobacter_data_some[,1])!=0) {
-+     
-+     breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-+     breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-+     breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-+     
-+   }else{
-+     
-+     breaks_y<-c()
-+   }
-+   
-+   return(breaks_y)
-+   }
-+     
-+ 	
-+ 	
-+ breaks_y<-function(variable,variable_y,by_z,by_y,j_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+   index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-+ 
-+   
-+   
-+   wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-+   
-+   
-+   if (length(Env_Campylobacter_data_some[,1])!=0) {
-+     
-+     breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-+     breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-+     breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-+     
-+   }else{
-+     
-+     breaks_y<-c()
-+   }
-+   
-+   return(breaks_y)
-+   }
-+     
-+ 
-+ 
-+ breaks_x_lab<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)
-+ {
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+   index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-+   
-+   
-+   index<-which (names(Env_laboratory)==variable)
-+   index_y<-which (names(Env_laboratory)==variable_y)
-+   index_x<-which (names(Env_laboratory)==variable_x)
-+   
-+   if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){
-+     
-+       wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z)))
-+       ww<-which(wt==j_y)
-+       Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-+     
-+       if (length(Env_Campylobacter_data_some[,1])!=0) {
-+         
-+         wt<-(findInterval(Env_laboratory[,index_y],breaks_y(variable,variable_y,by_z,by_y,j_z)))
-+         ww<-which(wt==j_y)
-+         Env_laboratory_some<-Env_laboratory[ww,]
-+         
-+         
-+         breaks_x<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE))
-+         breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)]
-+         breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1]
-+         
-+       } else {
-+         
-+         breaks_x<-c()
-+       } } else {
-+         
-+         breaks_x<-c()
-+       
-+       }
-+     
-+     return(breaks_x)
-+   }
-+ 
-+ 
-+ breaks_x<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)
-+ {
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+   index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-+   index_x_C<-which (names(Env_Campylobacter_data)==variable_x)
-+   
-+   if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){
-+     
-+       wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z)))
-+       ww<-which(wt==j_y)
-+       Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-+     
-+       if (length(Env_Campylobacter_data_some[,1])!=0) {
-+         
-+         wt<-(findInterval(Env_Campylobacter_data_some[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z)))
-+         ww<-which(wt==j_y)
-+         Env_Campylobacter_data_some2<-Env_Campylobacter_data_some[ww,]
-+         
-+         
-+         breaks_x<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE))
-+         breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)]
-+         breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1]
-+         
-+       } else 
-+ 	  { breaks_x<-c() 
-+ 	  }
-+ 	  }  
-+ 	  else {
-+         
-+        breaks_x<-c()
-+       
-+       }
-+     
-+     return(breaks_x)
-+   }
-+ 
-+ 
-+ ################# 
-+ 
-+ 
-+ 
-+ 
-+ var_x_loc_df<-data.frame(character(), character(),character(),numeric(),numeric(),numeric())
-+ colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-+  
-+ residents_i_var<-0
-+ residents_universal<-0
-+ #i_var_max<-length(breaks_var)
-+ #i_var_min<-1
-+ #i_var_max_x<-length(breaks_var_x)
-+ #i_var_min_x<-1
-+ 
-+ 
-+ #####################
-+ by_z<-0.25
-+ by_y<-0.25
-+ by_x<-0.1
-+ 
-+ #i_var_min<-breaks_z(variable,by_z)[1]
-+ #i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))]
-+ j_z_min<-1
-+ j_z_max<-length(breaks_z(variable,by_z))-1
-+ 
-+ 
-+ 
-+ for (j_z in c(j_z_min:j_z_max))
-+ {
-+   
-+   if (length(Env_Campylobacter_data[,index_C])!=0){
-+   
-+   wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,]
-+     
-+   wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_laboratory_z<-Env_laboratory[ww,]
-+   
-+   if (length(Env_Campylobacter_data_z[,1])!=0){
-+   if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){
-+     
-+   j_y_min<-1
-+   j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1
-+   
-+   
-+     
-+   for (j_y in c(j_y_min:j_y_max))
-+   {
-+   
-+   wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-+   ww<-which(wt==j_y)
-+   Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,]
-+   
-+   wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-+   ww<-which(wt==j_y)
-+   Env_laboratory_y<-Env_laboratory_z[ww,]
-+   
-+   
-+     if (length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))!=0){
-+       
-+     j_x_min<-1
-+     j_x_max<- length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))-1
-+     for (j_x in c(j_x_min:j_x_max))
-+     {
-+       
-+     
-+       wt<-(findInterval((Env_Campylobacter_data_y[,index_x_C]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)))
-+       ww<-which(wt==j_x)
-+ 	    Yt1<-Env_Campylobacter_data_y[ww,c(1:3,index_C,index_y_C,index_x_C,index_res_C)]
-+ 	  
-+       wt<-(findInterval((Env_laboratory[,index_x]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)))
-+       ww<-which(wt==j_x)
-+       Y_tot<-Env_laboratory_y[ww,c(1:2,index,index_y,index_x,index_res)]
-+       
-+       Total_cases<-sum((as.numeric(na.omit(Yt1$Cases))))
-+       residents<-sum((as.numeric(na.omit(Yt1$residents))))
-+       residents_tot<-sum((as.numeric(na.omit(Y_tot$residents))))
-+         
-+       data_df<-data.frame(
-+         breaks_z(variable,by_z)[j_z],
-+         breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y],
-+         breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)[j_x],
-+         Total_cases,
-+         residents,
-+         residents_tot)
-+       
-+ 	 
-+ 	  
-+ 	  
-+ 	  
-+       colnames(data_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-+ 	 var_x_loc_df<-rbind(var_x_loc_df,data_df) 
-+      print(c(j_x,j_y,j_z, Total_cases))
-+     
-+     }}}
-+   }
-+     
-+  
-+        }}
-+ }
-+ 
-+ write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",variable_x,"_",width_char,hours_char,quarter_year_char,"_Simulated_for_rec_original_MEDMI_quantile.csv",sep=""))
-+ }
-[1]   1   1   1 641
-[1]   2   1   1 679
-[1]   3   1   1 513
-[1]   4   1   1 494
-[1]   5   1   1 387
-[1]   6   1   1 381
-[1]   7   1   1 355
-[1]   8   1   1 330
-[1]   9   1   1 389
-[1]  10   1   1 553
-[1]   1   2   1 422
-[1]   2   2   1 331
-[1]   3   2   1 285
-[1]   4   2   1 236
-[1]   5   2   1 227
-[1]   6   2   1 438
-[1]   7   2   1 553
-[1]   8   2   1 552
-[1]   9   2   1 752
-[1]   10    2    1 1070
-[1]   1   3   1 372
-[1]   2   3   1 317
-[1]   3   3   1 322
-[1]   4   3   1 494
-[1]   5   3   1 492
-[1]   6   3   1 374
-[1]   7   3   1 465
-[1]   8   3   1 444
-[1]   9   3   1 545
-[1]   10    3    1 1105
-[1]   1   4   1 465
-[1]   2   4   1 931
-[1]   3   4   1 951
-[1]   4   4   1 360
-[1]   5   4   1 279
-[1]   6   4   1 160
-[1]   7   4   1 233
-[1]   8   4   1 156
-[1]   9   4   1 211
-[1]   10    4    1 1218
-[1]   1   1   2 412
-[1]   2   1   2 471
-[1]   3   1   2 594
-[1]   4   1   2 533
-[1]   5   1   2 681
-[1]   6   1   2 590
-[1]   7   1   2 529
-[1]   8   1   2 510
-[1]   9   1   2 403
-[1]  10   1   2 211
-[1]   1   2   2 242
-[1]   2   2   2 624
-[1]   3   2   2 541
-[1]   4   2   2 557
-[1]   5   2   2 541
-[1]   6   2   2 493
-[1]   7   2   2 422
-[1]   8   2   2 541
-[1]   9   2   2 440
-[1]  10   2   2 448
-[1]   1   3   2 168
-[1]   2   3   2 789
-[1]   3   3   2 862
-[1]   4   3   2 730
-[1]   5   3   2 695
-[1]   6   3   2 467
-[1]   7   3   2 345
-[1]   8   3   2 341
-[1]   9   3   2 582
-[1]  10   3   2 334
-[1]   1   4   2 856
-[1]   2   4   2 291
-[1]   3   4   2 431
-[1]   4   4   2 604
-[1]   5   4   2 686
-[1]   6   4   2 604
-[1]   7   4   2 524
-[1]   8   4   2 306
-[1]   9   4   2 240
-[1]  10   4   2 458
-[1]   1   1   3 170
-[1]   2   1   3 413
-[1]   3   1   3 450
-[1]   4   1   3 436
-[1]   5   1   3 403
-[1]   6   1   3 455
-[1]   7   1   3 575
-[1]   8   1   3 602
-[1]   9   1   3 699
-[1]  10   1   3 459
-[1]   1   2   3 465
-[1]   2   2   3 571
-[1]   3   2   3 533
-[1]   4   2   3 489
-[1]   5   2   3 649
-[1]   6   2   3 846
-[1]   7   2   3 690
-[1]   8   2   3 667
-[1]   9   2   3 367
-[1] 10  2  3 81
-[1]   1   3   3 680
-[1]   2   3   3 483
-[1]   3   3   3 450
-[1]   4   3   3 583
-[1]   5   3   3 667
-[1]   6   3   3 781
-[1]   7   3   3 837
-[1]   8   3   3 422
-[1]   9   3   3 175
-[1] 10  3  3 78
-[1]   1   4   3 801
-[1]   2   4   3 221
-[1]   3   4   3 241
-[1]   4   4   3 656
-[1]   5   4   3 632
-[1]   6   4   3 578
-[1]   7   4   3 514
-[1]   8   4   3 402
-[1]   9   4   3 496
-[1]  10   4   3 625
-[1]    1    1    4 1158
-[1]   2   1   4 337
-[1]   3   1   4 453
-[1]   4   1   4 482
-[1]   5   1   4 560
-[1]   6   1   4 406
-[1]   7   1   4 443
-[1]   8   1   4 392
-[1]   9   1   4 404
-[1]  10   1   4 303
-[1]   1   2   4 457
-[1]   2   2   4 409
-[1]   3   2   4 396
-[1]   4   2   4 381
-[1]   5   2   4 228
-[1]   6   2   4 202
-[1]   7   2   4 542
-[1]   8   2   4 943
-[1]   9   2   4 992
-[1]  10   2   4 731
-[1]   1   3   4 120
-[1]   2   3   4 383
-[1]   3   3   4 531
-[1]   4   3   4 403
-[1]   5   3   4 384
-[1]   6   3   4 493
-[1]   7   3   4 635
-[1]   8   3   4 875
-[1]   9   3   4 925
-[1]  10   3   4 615
-[1]   1   4   4 160
-[1]   2   4   4 658
-[1]   3   4   4 428
-[1]   4   4   4 325
-[1]   5   4   4 555
-[1]   6   4   4 619
-[1]   7   4   4 646
-[1]   8   4   4 866
-[1]   9   4   4 728
-[1]  10   4   4 603
-[1]   1   1   1 596
-[1]   2   1   1 361
-[1]   3   1   1 286
-[1]   4   1   1 206
-[1]   5   1   1 283
-[1]   6   1   1 245
-[1]   7   1   1 339
-[1]   8   1   1 792
-[1]   9   1   1 834
-[1]  10   1   1 820
-[1]   1   2   1 573
-[1]   2   2   1 474
-[1]   3   2   1 353
-[1]   4   2   1 445
-[1]   5   2   1 493
-[1]   6   2   1 649
-[1]   7   2   1 512
-[1]   8   2   1 577
-[1]   9   2   1 839
-[1]  10   2   1 379
-[1]   1   3   1 515
-[1]   2   3   1 805
-[1]    3    3    1 1143
-[1]    4    3    1 1005
-[1]   5   3   1 776
-[1]   6   3   1 333
-[1]   7   3   1 165
-[1]   8   3   1 120
-[1]  9  3  1 71
-[1] 10  3  1 73
-[1]   1   4   1 349
-[1]   2   4   1 873
-[1]   3   4   1 872
-[1]   4   4   1 473
-[1]   5   4   1 559
-[1]   6   4   1 834
-[1]   7   4   1 850
-[1]   8   4   1 562
-[1]   9   4   1 212
-[1] 10  4  1 42
-[1]   1   1   2 299
-[1]   2   1   2 297
-[1]   3   1   2 408
-[1]   4   1   2 579
-[1]   5   1   2 551
-[1]   6   1   2 614
-[1]   7   1   2 585
-[1]   8   1   2 481
-[1]   9   1   2 701
-[1]  10   1   2 703
-[1]   1   2   2 454
-[1]   2   2   2 445
-[1]   3   2   2 406
-[1]   4   2   2 407
-[1]   5   2   2 490
-[1]   6   2   2 327
-[1]   7   2   2 300
-[1]   8   2   2 609
-[1]   9   2   2 765
-[1]  10   2   2 751
-[1]   1   3   2 367
-[1]   2   3   2 482
-[1]   3   3   2 219
-[1]   4   3   2 187
-[1]   5   3   2 284
-[1]   6   3   2 533
-[1]   7   3   2 750
-[1]   8   3   2 724
-[1]   9   3   2 697
-[1]   10    3    2 1369
-[1]   1   4   2 390
-[1]   2   4   2 717
-[1]   3   4   2 688
-[1]   4   4   2 792
-[1]   5   4   2 609
-[1]   6   4   2 530
-[1]   7   4   2 416
-[1]   8   4   2 547
-[1]   9   4   2 770
-[1]  10   4   2 693
-[1]   1   1   3 562
-[1]   2   1   3 690
-[1]   3   1   3 669
-[1]   4   1   3 606
-[1]   5   1   3 630
-[1]   6   1   3 682
-[1]   7   1   3 759
-[1]   8   1   3 451
-[1]   9   1   3 135
-[1]  10   1   3 160
-[1]   1   2   3 540
-[1]   2   2   3 536
-[1]   3   2   3 654
-[1]   4   2   3 563
-[1]   5   2   3 535
-[1]   6   2   3 600
-[1]   7   2   3 541
-[1]   8   2   3 452
-[1]   9   2   3 441
-[1]  10   2   3 624
-[1]   1   3   3 213
-[1]   2   3   3 330
-[1]   3   3   3 356
-[1]   4   3   3 463
-[1]   5   3   3 478
-[1]   6   3   3 533
-[1]   7   3   3 980
-[1]   8   3   3 938
-[1]   9   3   3 670
-[1]  10   3   3 431
-[1]   1   4   3 958
-[1]   2   4   3 456
-[1]   3   4   3 469
-[1]   4   4   3 464
-[1]   5   4   3 428
-[1]   6   4   3 476
-[1]   7   4   3 657
-[1]   8   4   3 709
-[1]   9   4   3 657
-[1]  10   4   3 812
-[1]   1   1   4 625
-[1]   2   1   4 847
-[1]   3   1   4 932
-[1]   4   1   4 945
-[1]   5   1   4 664
-[1]   6   1   4 561
-[1]   7   1   4 351
-[1]   8   1   4 307
-[1]   9   1   4 370
-[1]  10   1   4 136
-[1]   1   2   4 657
-[1]   2   2   4 323
-[1]   3   2   4 558
-[1]   4   2   4 619
-[1]   5   2   4 710
-[1]   6   2   4 794
-[1]   7   2   4 695
-[1]   8   2   4 351
-[1]   9   2   4 306
-[1]  10   2   4 457
-[1]   1   3   4 948
-[1]   2   3   4 353
-[1]   3   3   4 186
-[1]   4   3   4 225
-[1]   5   3   4 414
-[1]   6   3   4 749
-[1]   7   3   4 517
-[1]   8   3   4 585
-[1]   9   3   4 803
-[1]  10   3   4 824
-[1]   1   4   4 864
-[1]   2   4   4 373
-[1]   3   4   4 747
-[1]   4   4   4 475
-[1]   5   4   4 526
-[1]   6   4   4 458
-[1]   7   4   4 386
-[1]   8   4   4 413
-[1]   9   4   4 820
-[1]  10   4   4 705
-[1]   1   1   1 831
-[1]    2    1    1 1051
-[1]   3   1   1 733
-[1]   4   1   1 803
-[1]   5   1   1 775
-[1]   6   1   1 593
-[1]   7   1   1 338
-[1]  8  1  1 67
-[1]  9  1  1 84
-[1] 10  1  1 10
-[1]   1   2   1 483
-[1]   2   2   1 715
-[1]   3   2   1 656
-[1]   4   2   1 731
-[1]   5   2   1 580
-[1]   6   2   1 536
-[1]   7   2   1 486
-[1]   8   2   1 225
-[1]   9   2   1 528
-[1]  10   2   1 252
-[1]   1   3   1 413
-[1]   2   3   1 554
-[1]   3   3   1 736
-[1]   4   3   1 953
-[1]   5   3   1 634
-[1]   6   3   1 612
-[1]   7   3   1 558
-[1]   8   3   1 478
-[1]   9   3   1 210
-[1]  10   3   1 255
-[1]   1   4   1 570
-[1]   2   4   1 429
-[1]   3   4   1 511
-[1]   4   4   1 585
-[1]   5   4   1 762
-[1]   6   4   1 879
-[1]   7   4   1 881
-[1]   8   4   1 794
-[1]   9   4   1 462
-[1]  10   4   1 176
-[1]   1   1   2 532
-[1]   2   1   2 453
-[1]   3   1   2 109
-[1]   4   1   2 100
-[1]   5   1   2 180
-[1]   6   1   2 210
-[1]   7   1   2 512
-[1]    8    1    2 1154
-[1]    9    1    2 1434
-[1]   10    1    2 1316
-[1]   1   2   2 216
-[1]   2   2   2 348
-[1]   3   2   2 585
-[1]   4   2   2 566
-[1]   5   2   2 614
-[1]   6   2   2 579
-[1]   7   2   2 610
-[1]   8   2   2 704
-[1]   9   2   2 276
-[1]   10    2    2 1093
-[1]   1   3   2 395
-[1]   2   3   2 568
-[1]   3   3   2 714
-[1]   4   3   2 556
-[1]   5   3   2 659
-[1]   6   3   2 922
-[1]   7   3   2 730
-[1]   8   3   2 334
-[1]   9   3   2 229
-[1]  10   3   2 572
-[1]    1    4    2 1163
-[1]    2    4    2 1181
-[1]   3   4   2 841
-[1]   4   4   2 684
-[1]   5   4   2 759
-[1]   6   4   2 585
-[1]   7   4   2 375
-[1]   8   4   2 375
-[1]   9   4   2 117
-[1]  10   4   2 174
-[1]   1   1   3 646
-[1]   2   1   3 149
-[1]   3   1   3 415
-[1]   4   1   3 327
-[1]   5   1   3 486
-[1]   6   1   3 726
-[1]   7   1   3 998
-[1]    8    1    3 1417
-[1]   9   1   3 746
-[1] 10  1  3 93
-[1]   1   2   3 435
-[1]   2   2   3 680
-[1]   3   2   3 521
-[1]   4   2   3 355
-[1]   5   2   3 264
-[1]   6   2   3 469
-[1]   7   2   3 526
-[1]   8   2   3 516
-[1]    9    2    3 1267
-[1]  10   2   3 906
-[1]   1   3   3 716
-[1]   2   3   3 686
-[1]   3   3   3 752
-[1]   4   3   3 575
-[1]   5   3   3 673
-[1]   6   3   3 696
-[1]   7   3   3 370
-[1]   8   3   3 405
-[1]   9   3   3 738
-[1]  10   3   3 311
-[1]   1   4   3 777
-[1]   2   4   3 514
-[1]   3   4   3 993
-[1]   4   4   3 905
-[1]   5   4   3 581
-[1]   6   4   3 471
-[1]   7   4   3 668
-[1]   8   4   3 515
-[1]   9   4   3 223
-[1]  10   4   3 197
-[1]   1   1   4 126
-[1]   2   1   4 843
-[1]   3   1   4 565
-[1]   4   1   4 905
-[1]   5   1   4 812
-[1]   6   1   4 933
-[1]   7   1   4 867
-[1]   8   1   4 660
-[1]  9  1  4 37
-[1] 10  1  4  0
-[1]   1   2   4 786
-[1]   2   2   4 474
-[1]   3   2   4 489
-[1]   4   2   4 491
-[1]   5   2   4 500
-[1]   6   2   4 486
-[1]   7   2   4 657
-[1]   8   2   4 752
-[1]   9   2   4 538
-[1]  10   2   4 454
-[1]   1   3   4 401
-[1]   2   3   4 168
-[1]   3   3   4 153
-[1]   4   3   4 157
-[1]   5   3   4 228
-[1]   6   3   4 507
-[1]   7   3   4 717
-[1]    8    3    4 1067
-[1]    9    3    4 1431
-[1]   10    3    4 1245
-[1]  1  4  4 21
-[1]  2  4  4 20
-[1]  3  4  4 44
-[1]  4  4  4 50
-[1]   5   4   4 118
-[1]   6   4   4 176
-[1]   7   4   4 499
-[1]    8    4    4 1069
-[1]    9    4    4 1922
-[1]   10    4    4 2351
-[1]  1  1  1 83
-[1]   2   1   1 266
-[1]   3   1   1 169
-[1]   4   1   1 233
-[1]   5   1   1 561
-[1]   6   1   1 524
-[1]   7   1   1 600
-[1]   8   1   1 759
-[1]    9    1    1 1232
-[1]   10    1    1 1574
-[1]   1   2   1 102
-[1]   2   2   1 451
-[1]   3   2   1 559
-[1]   4   2   1 307
-[1]   5   2   1 309
-[1]   6   2   1 337
-[1]   7   2   1 451
-[1]   8   2   1 737
-[1]   9   2   1 947
-[1]   10    2    1 1521
-[1]   1   3   1 948
-[1]   2   3   1 861
-[1]   3   3   1 595
-[1]   4   3   1 607
-[1]   5   3   1 637
-[1]   6   3   1 367
-[1]   7   3   1 529
-[1]   8   3   1 620
-[1]   9   3   1 297
-[1] 10  3  1 77
-[1]   1   4   1 538
-[1]   2   4   1 151
-[1]   3   4   1 327
-[1]   4   4   1 307
-[1]   5   4   1 318
-[1]   6   4   1 396
-[1]   7   4   1 755
-[1]    8    4    1 1027
-[1]    9    4    1 1263
-[1]  10   4   1 831
-[1]   1   1   2 317
-[1]   2   1   2 609
-[1]   3   1   2 659
-[1]   4   1   2 466
-[1]   5   1   2 346
-[1]   6   1   2 440
-[1]   7   1   2 539
-[1]   8   1   2 757
-[1]    9    1    2 1155
-[1]   10    1    2 1082
-[1]   1   2   2 450
-[1]   2   2   2 434
-[1]   3   2   2 208
-[1]   4   2   2 198
-[1]   5   2   2 573
-[1]   6   2   2 824
-[1]    7    2    2 1087
-[1]    8    2    2 1054
-[1]    9    2    2 1030
-[1]  10   2   2 638
-[1]    1    3    2 1119
-[1]   2   3   2 482
-[1]   3   3   2 505
-[1]   4   3   2 414
-[1]   5   3   2 387
-[1]   6   3   2 639
-[1]   7   3   2 870
-[1]   8   3   2 552
-[1]   9   3   2 450
-[1]  10   3   2 278
-[1]   1   4   2 483
-[1]   2   4   2 550
-[1]   3   4   2 629
-[1]   4   4   2 568
-[1]   5   4   2 805
-[1]   6   4   2 900
-[1]   7   4   2 972
-[1]   8   4   2 587
-[1]   9   4   2 392
-[1]  10   4   2 230
-[1]   1   1   3 457
-[1]   2   1   3 721
-[1]   3   1   3 368
-[1]   4   1   3 395
-[1]   5   1   3 528
-[1]   6   1   3 584
-[1]   7   1   3 749
-[1]    8    1    3 1138
-[1]   9   1   3 872
-[1]  10   1   3 249
-[1]   1   2   3 713
-[1]   2   2   3 314
-[1]   3   2   3 268
-[1]   4   2   3 768
-[1]    5    2    3 1044
-[1]    6    2    3 1028
-[1]   7   2   3 794
-[1]   8   2   3 421
-[1]   9   2   3 341
-[1]  10   2   3 196
-[1]   1   3   3 450
-[1]   2   3   3 601
-[1]   3   3   3 734
-[1]    4    3    3 1046
-[1]   5   3   3 958
-[1]   6   3   3 542
-[1]   7   3   3 524
-[1]   8   3   3 415
-[1]   9   3   3 250
-[1]  10   3   3 537
-[1]   1   4   3 576
-[1]   2   4   3 996
-[1]   3   4   3 641
-[1]   4   4   3 634
-[1]   5   4   3 500
-[1]   6   4   3 529
-[1]   7   4   3 566
-[1]   8   4   3 399
-[1]   9   4   3 287
-[1]   10    4    3 1332
-[1]   1   1   4 865
-[1]   2   1   4 444
-[1]   3   1   4 674
-[1]    4    1    4 1021
-[1]   5   1   4 741
-[1]   6   1   4 861
-[1]   7   1   4 884
-[1]   8   1   4 356
-[1]   9   1   4 276
-[1]  10   1   4 143
-[1]   1   2   4 774
-[1]   2   2   4 695
-[1]   3   2   4 831
-[1]   4   2   4 943
-[1]   5   2   4 852
-[1]   6   2   4 792
-[1]   7   2   4 546
-[1]   8   2   4 230
-[1]   9   2   4 104
-[1] 10  2  4 10
-[1]   1   3   4 542
-[1]   2   3   4 799
-[1]   3   3   4 728
-[1]   4   3   4 410
-[1]   5   3   4 559
-[1]   6   3   4 528
-[1]   7   3   4 512
-[1]   8   3   4 559
-[1]   9   3   4 639
-[1]  10   3   4 732
-[1]   1   4   4 277
-[1]   2   4   4 194
-[1]    3    4    4 1117
-[1]    4    4    4 1053
-[1]   5   4   4 871
-[1]   6   4   4 654
-[1]   7   4   4 736
-[1]   8   4   4 705
-[1]   9   4   4 359
-[1]  10   4   4 471
-Warning messages:
-1: In Env_laboratory_weekly_sub$daylength > breaks_daylength[2] & Env_laboratory_weekly$daylength <=  :
-  longer object length is not a multiple of shorter object length
-2: In Env_laboratory_weekly_sub$daylength > breaks_daylength[3] & Env_laboratory_weekly$daylength <=  :
-  longer object length is not a multiple of shorter object length
-> 
-> proc.time()
-   user  system elapsed 
-466.305  17.408 483.745 
diff --git a/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.R b/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.R
deleted file mode 100644
index 3cab5a6ea5ee2db54d574097ae0bf3df8a922348..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.R
+++ /dev/null
@@ -1,490 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-#library(Hmisc)
-
-#list.of.packages <- c("xts")
-#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-#if(length(new.packages)) install.packages(new.packages)
-library(xts)
-
-
-
-
-## Varaible file
-
-variable_int<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-width<-30
-width_char<-paste(width)
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable<-"daylength"
-#variable_y<-"Mean_Precipitation"
-variable_y<-"Relative_humidity"
-
-#variable_y<-"Mean_Precipitation"
-#variable<-"daylength"
-#variable<-"Mean_Precipitation"
-#"Maximum_air_temperature",
-#"Minimum_air_temperature",
-#"Mean_wind_speed",
-#"Mean_Precipitation",
-#"Relative_humidity",
-#"daylength"
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-		
-Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-
-
-
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-
-quarter<-4
-quarter_char<-paste("_",as.character(quarter),"-quarter",sep="")
-
-if (quarter==1){
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=1 & month(as.Date(Env_Campylobacter_data_all2$Date))<=3)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=1 & month(as.Date(Env_laboratory_weekly$Date))<=3)
-}
-
-if (quarter==2){
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=4 & month(as.Date(Env_Campylobacter_data_all2$Date))<=6)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=4 & month(as.Date(Env_laboratory_weekly$Date))<=6)
-}
-
-if (quarter==3){
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=7 & month(as.Date(Env_Campylobacter_data_all2$Date))<=9)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=7 & month(as.Date(Env_laboratory_weekly$Date))<=9)
-}
-
-if (quarter==4){
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=10 & month(as.Date(Env_Campylobacter_data_all2$Date))<=12)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=10 & month(as.Date(Env_laboratory_weekly$Date))<=12)
-}
-
-
-
-
-################### include latitude and longitude 
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-
-
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-
-Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-
-Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-
-
-
-######################## include daylength ################## 
-
-PC_df<-data.frame(All_PC,as.Date(dates))
-colnames(PC_df)<-c("PostCode","Date")
-
-if (quarter==1){
-PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=1 & month(as.Date(PC_df$Date))<=3)
-}
-
-if (quarter==2}{
-PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=4 & month(as.Date(PC_df$Date))<=6)
-}
-
-if (quarter==3}{
-PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=7 & month(as.Date(PC_df$Date))<=9)
-}
-
-if (quarter==4}{
-PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=10 & month(as.Date(PC_df$Date))<=12)
-}
-
-Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Post_Codes_df$lat
-day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-daylength_df$Date<-as.factor(daylength_df$Date)
-daylength_df$lat<-as.factor(daylength_df$lat)
-Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date)
-Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat)
-
-#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date"))
-#Env_laboratory<-data.frame(Env_laboratory_int4)
-Env_laboratory<-data.frame(Env_laboratory_int3)
-Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date)
-Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat)
-
-
-#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date"))
-#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4)
-Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3)
-
-
-
-
-
-################### Divide the domains of the variables in bins according to quantiles
-
-
-index_C<-which (names(Env_Campylobacter_data)==variable)
-index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-index_x_C<-which (names(Env_Campylobacter_data)==variable_x)
-
-index_res_C<-which (names(Env_Campylobacter_data)=="residents")
-
-
-index<-which (names(Env_laboratory)==variable)
-index_y<-which (names(Env_laboratory)==variable_y)
-index_x<-which (names(Env_laboratory)==variable_x)
-index_res<-which (names(Env_laboratory)=="residents")
-
-
-#########################
-
-
-breaks_z_lab<-function(variable,by_z)
-{
-  
-  index<-which (names(Env_laboratory)==variable)
-   
-  
-  breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-
-breaks_z<-function(variable,by_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-
-
-breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  
-  index<-which (names(Env_laboratory)==variable)
-  index_y<-which (names(Env_laboratory)==variable_y)
-
-  
-  
-  wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-  
-  wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_some<-Env_laboratory[ww,]
-  
-  if (length(Env_Campylobacter_data_some[,1])!=0) {
-    
-    breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-    breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-    breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-    
-  }else{
-    
-    breaks_y<-c()
-  }
-  
-  return(breaks_y)
-  }
-    
-	
-	
-breaks_y<-function(variable,variable_y,by_z,by_y,j_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-
-  
-  
-  wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-  
-  
-  if (length(Env_Campylobacter_data_some[,1])!=0) {
-    
-    breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-    breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-    breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-    
-  }else{
-    
-    breaks_y<-c()
-  }
-  
-  return(breaks_y)
-  }
-    
-
-
-breaks_x_lab<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)
-{
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-  
-  
-  index<-which (names(Env_laboratory)==variable)
-  index_y<-which (names(Env_laboratory)==variable_y)
-  index_x<-which (names(Env_laboratory)==variable_x)
-  
-  if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){
-    
-      wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z)))
-      ww<-which(wt==j_y)
-      Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-    
-      if (length(Env_Campylobacter_data_some[,1])!=0) {
-        
-        wt<-(findInterval(Env_laboratory[,index_y],breaks_y(variable,variable_y,by_z,by_y,j_z)))
-        ww<-which(wt==j_y)
-        Env_laboratory_some<-Env_laboratory[ww,]
-        
-        
-        breaks_x<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE))
-        breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)]
-        breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1]
-        
-      } else {
-        
-        breaks_x<-c()
-      } } else {
-        
-        breaks_x<-c()
-      
-      }
-    
-    return(breaks_x)
-  }
-
-
-breaks_x<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)
-{
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-  index_x_C<-which (names(Env_Campylobacter_data)==variable_x)
-  
-  if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){
-    
-      wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z)))
-      ww<-which(wt==j_y)
-      Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-    
-      if (length(Env_Campylobacter_data_some[,1])!=0) {
-        
-        wt<-(findInterval(Env_Campylobacter_data_some[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z)))
-        ww<-which(wt==j_y)
-        Env_Campylobacter_data_some2<-Env_Campylobacter_data_some[ww,]
-        
-        
-        breaks_x<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE))
-        breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)]
-        breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1]
-        
-      } else 
-	  { breaks_x<-c() 
-	  }
-	  }  
-	  else {
-        
-       breaks_x<-c()
-      
-      }
-    
-    return(breaks_x)
-  }
-
-
-################# 
-
-
-
-
-var_x_loc_df<-data.frame(character(), character(),character(),numeric(),numeric(),numeric())
-colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
- 
-residents_i_var<-0
-residents_universal<-0
-#i_var_max<-length(breaks_var)
-#i_var_min<-1
-#i_var_max_x<-length(breaks_var_x)
-#i_var_min_x<-1
-
-
-#####################
-by_z<-0.25
-by_y<-0.25
-by_x<-0.1
-
-#i_var_min<-breaks_z(variable,by_z)[1]
-#i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))]
-j_z_min<-1
-j_z_max<-length(breaks_z(variable,by_z))-1
-
-
-
-for (j_z in c(j_z_min:j_z_max))
-{
-  
-  wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,]
-    
-  wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_z<-Env_laboratory[ww,]
-  
-  if (length(Env_Campylobacter_data_z[,1])!=0){
-  if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){
-    
-  j_y_min<-1
-  j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1
-  
-  
-    
-  for (j_y in c(j_y_min:j_y_max))
-  {
-  
-  wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-  ww<-which(wt==j_y)
-  Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,]
-  
-  wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-  ww<-which(wt==j_y)
-  Env_laboratory_y<-Env_laboratory_z[ww,]
-  
-  
-    if (length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))!=0){
-      
-    j_x_min<-1
-    j_x_max<- length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))-1
-    for (j_x in c(j_x_min:j_x_max))
-    {
-      
-    
-      wt<-(findInterval((Env_Campylobacter_data_y[,index_x_C]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)))
-      ww<-which(wt==j_x)
-	    Yt1<-Env_Campylobacter_data_y[ww,c(1:3,index_C,index_y_C,index_x_C,index_res_C)]
-	  
-      wt<-(findInterval((Env_laboratory[,index_x]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)))
-      ww<-which(wt==j_x)
-      Y_tot<-Env_laboratory_y[ww,c(1:2,index,index_y,index_x,index_res)]
-      
-      Total_cases<-sum((as.numeric(na.omit(Yt1$Cases))))
-      residents<-sum((as.numeric(na.omit(Yt1$residents))))
-      residents_tot<-sum((as.numeric(na.omit(Y_tot$residents))))
-        
-      data_df<-data.frame(
-        breaks_z(variable,by_z)[j_z],
-        breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y],
-        breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)[j_x],
-        Total_cases,
-        residents,
-        residents_tot)
-      
-	 
-	  
-	  
-	  
-      colnames(data_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-	 var_x_loc_df<-rbind(var_x_loc_df,data_df) 
-     print(c(j_x,j_y,j_z, Total_cases))
-    
-    }}}
-  }
-    
- 
-       }}
-
-
-write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",variable_x,"_",width_char,quarter_char,"_Simulated_for_rec_original_MEDMI_quantile.csv",sep=""))
diff --git a/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.Rout b/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.Rout
deleted file mode 100644
index 51b9eb0401f590db2da06ce35ddfb7363f13f540..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.Rout
+++ /dev/null
@@ -1,204 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> #library(Hmisc)
-> 
-> #list.of.packages <- c("xts")
-> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-> #if(length(new.packages)) install.packages(new.packages)
-> library(xts)
-Loading required package: zoo
-
-Attaching package: ‘zoo’
-
-The following object is masked from ‘package:timeSeries’:
-
-    time<-
-
-The following objects are masked from ‘package:base’:
-
-    as.Date, as.Date.numeric
-
-
-Attaching package: ‘xts’
-
-The following objects are masked from ‘package:pastecs’:
-
-    first, last
-
-> 
-> 
-> 
-> 
-> ## Varaible file
-> 
-> variable_int<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> width<-30
-> width_char<-paste(width)
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable<-"daylength"
-> #variable_y<-"Mean_Precipitation"
-> variable_y<-"Relative_humidity"
-> 
-> #variable_y<-"Mean_Precipitation"
-> #variable<-"daylength"
-> #variable<-"Mean_Precipitation"
-> #"Maximum_air_temperature",
-> #"Minimum_air_temperature",
-> #"Mean_wind_speed",
-> #"Mean_Precipitation",
-> #"Relative_humidity",
-> #"daylength"
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> 
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 		
-> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-> colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-> 
-> quarter<-4
-> quarter_char<-paste("_",as.character(quarter),"-quarter",sep="")
-> 
-> if (quarter==1){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=1 & month(as.Date(Env_Campylobacter_data_all2$Date))<=3)
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=1 & month(as.Date(Env_laboratory_weekly$Date))<=3)
-+ }
-> 
-> if (quarter==2){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=4 & month(as.Date(Env_Campylobacter_data_all2$Date))<=6)
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=4 & month(as.Date(Env_laboratory_weekly$Date))<=6)
-+ }
-> 
-> if (quarter==3){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=7 & month(as.Date(Env_Campylobacter_data_all2$Date))<=9)
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=7 & month(as.Date(Env_laboratory_weekly$Date))<=9)
-+ }
-> 
-> if (quarter==4){
-+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=10 & month(as.Date(Env_Campylobacter_data_all2$Date))<=12)
-+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=10 & month(as.Date(Env_laboratory_weekly$Date))<=12)
-+ }
-> 
-> 
-> 
-> 
-> ################### include latitude and longitude 
-> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-> 
-> 
-> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-> colnames(lat_long_lab)<-c("PostCode","lat","long")
-> 
-> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-> Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-> 
-> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-> Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-> 
-> 
-> 
-> ######################## include daylength ################## 
-> 
-> PC_df<-data.frame(All_PC,as.Date(dates))
-> colnames(PC_df)<-c("PostCode","Date")
-> 
-> if (quarter==1){
-+ PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=1 & month(as.Date(PC_df$Date))<=3)
-+ }
-> 
-> if (quarter==2}{
-Error: unexpected '}' in "if (quarter==2}"
-Execution halted
diff --git a/PAPER_Conditional_probability_quantile_original_one_variable_quantile.R b/PAPER_Conditional_probability_quantile_original_one_variable_quantile.R
deleted file mode 100644
index cf23dae1d24848ee25d6f01fc8bb2aafedb8eca5..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_one_variable_quantile.R
+++ /dev/null
@@ -1,251 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-#library(Hmisc)
-
-#list.of.packages <- c("xts")
-#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-#if(length(new.packages)) install.packages(new.packages)
-library(xts)
-
-
-
-
-## Variable file
-
-variable_int<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-width<-7
-width_char<-paste(width)
-
-
-
-variable<-"Mean_wind_speed"
-
-#variable<-"Maximum_air_temperature",
-#variable_y<-"Mean_Precipitation"
-#variable<-"daylength"
-#variable<-"Minimum_air_temperature"
-#variable<-"Relative_humidity",
-
-#variable<-"Mean_wind_speed",
-
-#variable_y<-"Cumul_Precipitation"
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-		
-Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-
-
-
-################### include latitude and longitude 
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-
-
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-
-Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-
-Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-
-
-
-######################## include daylength ################## 
-
-PC_df<-data.frame(All_PC,as.Date(dates))
-colnames(PC_df)<-c("PostCode","Date")
-
-Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Post_Codes_df$lat
-day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-daylength_df$Date<-as.factor(daylength_df$Date)
-daylength_df$lat<-as.factor(daylength_df$lat)
-Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date)
-Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat)
-
-#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date"))
-#Env_laboratory<-data.frame(Env_laboratory_int4)
-Env_laboratory<-data.frame(Env_laboratory_int3)
-Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date)
-Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat)
-
-
-#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date"))
-#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4)
-Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3)
-
-
-
-
-
-################### Divide the domains of the variables in bins according to quantiles
-
-
-index_C<-which (names(Env_Campylobacter_data)==variable)
-
-
-index<-which (names(Env_laboratory)==variable)
-
-
-#########################
-
-
-breaks_z_lab<-function(variable,by_z)
-{
-  
-  index<-which (names(Env_laboratory)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-breaks_z<-function(variable,by_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-
-################# 
-
-
-
-
-var_x_loc_df<-data.frame(character(),numeric(),numeric(),numeric())
-colnames(var_x_loc_df)<-c(variable,"counts","residents","residents_tot")
- 
-residents_i_var<-0
-residents_universal<-0
-#i_var_max<-length(breaks_var)
-#i_var_min<-1
-#i_var_max_x<-length(breaks_var_x)
-#i_var_min_x<-1
-
-
-#####################
-by_z<-0.05
-
-j_z_min<-1
-j_z_max<-length(breaks_z(variable,by_z))-1
-
-
-
-for (j_z in c(j_z_min:j_z_max))
-{
-  
-  wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,]
-    
-  wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_z<-Env_laboratory[ww,]
-  
-      
-      
-      Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_z$Cases))))
-      residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_z$residents))))
-      residents_tot<-sum((as.numeric(na.omit(Env_laboratory_z$residents))))
-        
-      data_df<-data.frame(
-        breaks_z(variable,by_z)[j_z],
-        Total_cases,
-        residents,
-        residents_tot)
-      
-	 
-	  
-	  
-	  
-      colnames(data_df)<-c(variable,"counts","residents","residents_tot")
-	 var_x_loc_df<-rbind(var_x_loc_df,data_df) 
-     print(c(j_z, Total_cases))
-    }
-
-
-write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.R b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.R
deleted file mode 100644
index 057e32acef8e219d9a846ecd416739b900526435..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.R
+++ /dev/null
@@ -1,364 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-#library(Hmisc)
-
-#list.of.packages <- c("xts")
-#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-#if(length(new.packages)) install.packages(new.packages)
-library(xts)
-
-
-
-
-## Varaible file
-
-variable_int<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-width<-30
-width_char<-paste(width)
-
-
-variable_y<-"Difference_air_temperature"
-#variable_y<-"Maximum_air_temperature"
-variable<-"daylength"
-#variable<-"Relative_humidity"
-#variable<-"Mean_Precipitation"
-#variable<-"Mean_wind_speed"
-
-#variable_y<-"Relative_humidity"
-#variable_y<-"Mean_Precipitation"
-#variable_y<-"Cumul_Precipitation"
-#variable_y<-"Mean_wind_speed"
-#variable_y<-"daylength"
-#variable_y<-"Minimum_air_temperature"
-#variable<-"Difference_air_temperature"
-
-#variable_y<-"Mean_Precipitation"
-#variable<-"daylength"
-#variable<-"Mean_Precipitation"
-#"Maximum_air_temperature",
-#"Minimum_air_temperature",
-#"Mean_wind_speed",
-#"Mean_Precipitation",
-#"Relative_humidity",
-#"daylength"
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-		
-Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-
-
-
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-
-
-################### include latitude and longitude 
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-
-
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-
-Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-
-Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-
-
-
-######################## include daylength ################## 
-
-PC_df<-data.frame(All_PC,as.Date(dates))
-colnames(PC_df)<-c("PostCode","Date")
-
-Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Post_Codes_df$lat
-day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-daylength_df$Date<-as.factor(daylength_df$Date)
-daylength_df$lat<-as.factor(daylength_df$lat)
-Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date)
-Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat)
-
-#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date"))
-#Env_laboratory<-data.frame(Env_laboratory_int4)
-Env_laboratory<-data.frame(Env_laboratory_int3)
-Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date)
-Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat)
-
-
-#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date"))
-#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4)
-Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3)
-
-
-
-Env_Campylobacter_data$Difference_air_temperature<-Env_Campylobacter_data$Maximum_air_temperature-Env_Campylobacter_data$Minimum_air_temperature
-Env_laboratory$Difference_air_temperature<-Env_laboratory$Maximum_air_temperature-Env_laboratory$Minimum_air_temperature
-
-
-
-################### Divide the domains of the variables in bins according to quantiles
-
-
-index_C<-which (names(Env_Campylobacter_data)==variable)
-index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-
-
-index<-which (names(Env_laboratory)==variable)
-index_y<-which (names(Env_laboratory)==variable_y)
-
-
-#########################
-
-
-breaks_z_lab<-function(variable,by_z)
-{
-  
-  index<-which (names(Env_laboratory)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-breaks_z<-function(variable,by_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  
-  index<-which (names(Env_laboratory)==variable)
-  index_y<-which (names(Env_laboratory)==variable_y)
-
-  
-  
-  wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-  
-  wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_some<-Env_laboratory[ww,]
-  
-  if (length(Env_Campylobacter_data_some[,1])!=0) {
-    
-    breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-    breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-    breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-    
-  }else{
-    
-    breaks_y<-c()
-  }
-  
-  return(breaks_y)
-  }
-    
-
-
-
-breaks_y<-function(variable,variable_y,by_z,by_y,j_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-
-  
-  
-  wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-  
-  
-  if (length(Env_Campylobacter_data_some[,1])!=0) {
-    
-    breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-    breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-    breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-    
-  }else{
-    
-    breaks_y<-c()
-  }
-  
-  return(breaks_y)
-  }
-    
-
-
-################# 
-
-
-
-
-var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric())
-colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot")
- 
-residents_i_var<-0
-residents_universal<-0
-#i_var_max<-length(breaks_var)
-#i_var_min<-1
-#i_var_max_x<-length(breaks_var_x)
-#i_var_min_x<-1
-
-
-#####################
-by_z<-0.2
-by_y<-0.05
-
-
-#i_var_min<-breaks_z(variable,by_z)[1]
-#i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))]
-j_z_min<-1
-j_z_max<-length(breaks_z(variable,by_z))-1
-
-
-
-for (j_z in c(j_z_min:j_z_max))
-{
-  
-  wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,]
-    
-  wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_z<-Env_laboratory[ww,]
-  
-  if (length(Env_Campylobacter_data_z[,1])!=0){
-  if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){
-    
-  j_y_min<-1
-  j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1
-  
-  
-    
-  for (j_y in c(j_y_min:j_y_max))
-  {
-  
-  wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-  ww<-which(wt==j_y)
-  Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,]
-  
-  wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-  ww<-which(wt==j_y)
-  Env_laboratory_y<-Env_laboratory_z[ww,]
-  
-  
-      
-     
-      Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases))))
-      residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents))))
-      residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents))))
-        
-      data_df<-data.frame(
-        breaks_z(variable,by_z)[j_z],
-        breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y],
-        Total_cases,
-        residents,
-        residents_tot)
-      
-	 
-	  
-	  
-	  
-      colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot")
-	 var_x_loc_df<-rbind(var_x_loc_df,data_df) 
-     print(c(j_y,j_z, Total_cases))
-    
-    }
-  }
-    
- 
-       }}
-
-
-write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.Rout b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.Rout
deleted file mode 100644
index c55b63a8b9f21fdb455144426ff7d32e52258c9d..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.Rout
+++ /dev/null
@@ -1,519 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> #library(Hmisc)
-> 
-> #list.of.packages <- c("xts")
-> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-> #if(length(new.packages)) install.packages(new.packages)
-> library(xts)
-Loading required package: zoo
-
-Attaching package: ‘zoo’
-
-The following object is masked from ‘package:timeSeries’:
-
-    time<-
-
-The following objects are masked from ‘package:base’:
-
-    as.Date, as.Date.numeric
-
-
-Attaching package: ‘xts’
-
-The following objects are masked from ‘package:pastecs’:
-
-    first, last
-
-> 
-> 
-> 
-> 
-> ## Varaible file
-> 
-> variable_int<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> width<-14
-> width_char<-paste(width)
-> 
-> 
-> 
-> #variable_x<-"Maximum_air_temperature"
-> #variable<-"daylength"
-> #variable_y<-"Relative_humidity"
-> 
-> #variable<-"Mean_Precipitation"
-> variable_y<-"Relative_humidity"
-> variable<-"Maximum_air_temperature"
-> 
-> #variable_y<-"Mean_Precipitation"
-> #variable<-"daylength"
-> #variable<-"Mean_Precipitation"
-> #"Maximum_air_temperature",
-> #"Minimum_air_temperature",
-> #"Mean_wind_speed",
-> #"Mean_Precipitation",
-> #"Relative_humidity",
-> #"daylength"
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> 
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> 		
-> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-> colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-> 
-> 
-> ################### include latitude and longitude 
-> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-> 
-> 
-> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-> colnames(lat_long_lab)<-c("PostCode","lat","long")
-> 
-> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-> Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-> 
-> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-> Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-> 
-> 
-> 
-> ######################## include daylength ################## 
-> 
-> PC_df<-data.frame(All_PC,as.Date(dates))
-> colnames(PC_df)<-c("PostCode","Date")
-> 
-> Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-> 
-> 
-> daylength<-function(lat,day_year)
-+ {
-+   #Latitude measure in degrees
-+   P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-+   Denom<-cos(lat*pi/180)*cos(P) 
-+   Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-+   D<-24-(24/pi)*acos(Numer/Denom)
-+   return(D)
-+ }
-> 
-> latitude<-Post_Codes_df$lat
-> day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> daylength_df$Date<-as.factor(daylength_df$Date)
-> daylength_df$lat<-as.factor(daylength_df$lat)
-> Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date)
-> Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat)
-> 
-> #Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date"))
-> #Env_laboratory<-data.frame(Env_laboratory_int4)
-> Env_laboratory<-data.frame(Env_laboratory_int3)
-> Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date)
-> Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat)
-> 
-> 
-> #Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date"))
-> #Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4)
-> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3)
-> 
-> 
-> 
-> 
-> 
-> 
-> ################### Divide the domains of the variables in bins according to quantiles
-> 
-> 
-> index_C<-which (names(Env_Campylobacter_data)==variable)
-> index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-> 
-> 
-> index<-which (names(Env_laboratory)==variable)
-> index_y<-which (names(Env_laboratory)==variable_y)
-> 
-> 
-> #########################
-> 
-> 
-> breaks_z_lab<-function(variable,by_z)
-+ {
-+   
-+   index<-which (names(Env_laboratory)==variable)
-+    
-+   breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-+   
-+   breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-+   breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
-+  
-+   
-+    return(breaks_z)
-+ 
-+ }
-> 
-> 
-> breaks_z<-function(variable,by_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+    
-+   breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-+   
-+   breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-+   breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
-+  
-+   
-+    return(breaks_z)
-+ 
-+ }
-> 
-> 
-> breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+   
-+   index<-which (names(Env_laboratory)==variable)
-+   index_y<-which (names(Env_laboratory)==variable_y)
-+ 
-+   
-+   
-+   wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-+   
-+   wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_laboratory_some<-Env_laboratory[ww,]
-+   
-+   if (length(Env_Campylobacter_data_some[,1])!=0) {
-+     
-+     breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-+     breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-+     breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-+     
-+   }else{
-+     
-+     breaks_y<-c()
-+   }
-+   
-+   return(breaks_y)
-+   }
->     
-> 
-> 
-> 
-> breaks_y<-function(variable,variable_y,by_z,by_y,j_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+   index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-+ 
-+   
-+   
-+   wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-+   
-+   
-+   if (length(Env_Campylobacter_data_some[,1])!=0) {
-+     
-+     breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-+     breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-+     breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-+     
-+   }else{
-+     
-+     breaks_y<-c()
-+   }
-+   
-+   return(breaks_y)
-+   }
->     
-> 
-> 
-> ################# 
-> 
-> 
-> 
-> 
-> var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric())
-> colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot")
->  
-> residents_i_var<-0
-> residents_universal<-0
-> #i_var_max<-length(breaks_var)
-> #i_var_min<-1
-> #i_var_max_x<-length(breaks_var_x)
-> #i_var_min_x<-1
-> 
-> 
-> #####################
-> by_z<-0.2
-> by_y<-0.05
-> 
-> 
-> #i_var_min<-breaks_z(variable,by_z)[1]
-> #i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))]
-> j_z_min<-1
-> j_z_max<-length(breaks_z(variable,by_z))-1
-> 
-> 
-> 
-> for (j_z in c(j_z_min:j_z_max))
-+ {
-+   
-+   wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,]
-+     
-+   wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_laboratory_z<-Env_laboratory[ww,]
-+   
-+   if (length(Env_Campylobacter_data_z[,1])!=0){
-+   if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){
-+     
-+   j_y_min<-1
-+   j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1
-+   
-+   
-+     
-+   for (j_y in c(j_y_min:j_y_max))
-+   {
-+   
-+   wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-+   ww<-which(wt==j_y)
-+   Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,]
-+   
-+   wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-+   ww<-which(wt==j_y)
-+   Env_laboratory_y<-Env_laboratory_z[ww,]
-+   
-+   
-+       
-+      
-+       Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases))))
-+       residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents))))
-+       residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents))))
-+         
-+       data_df<-data.frame(
-+         breaks_z(variable,by_z)[j_z],
-+         breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y],
-+         Total_cases,
-+         residents,
-+         residents_tot)
-+       
-+ 	 
-+ 	  
-+ 	  
-+ 	  
-+       colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot")
-+ 	 var_x_loc_df<-rbind(var_x_loc_df,data_df) 
-+      print(c(j_y,j_z, Total_cases))
-+     
-+     }
-+   }
-+     
-+  
-+        }}
-[1]     1     1 16381
-[1]     2     1 16399
-[1]     3     1 16202
-[1]     4     1 16108
-[1]     5     1 15977
-[1]     6     1 16167
-[1]     7     1 16365
-[1]     8     1 15732
-[1]     9     1 15786
-[1]    10     1 16207
-[1]    11     1 16208
-[1]    12     1 16134
-[1]    13     1 16176
-[1]    14     1 16066
-[1]    15     1 15923
-[1]    16     1 16236
-[1]    17     1 16493
-[1]    18     1 16615
-[1]    19     1 16278
-[1]    20     1 16586
-[1]     1     2 18580
-[1]     2     2 17952
-[1]     3     2 17855
-[1]     4     2 18326
-[1]     5     2 18528
-[1]     6     2 18022
-[1]     7     2 17874
-[1]     8     2 17693
-[1]     9     2 17809
-[1]    10     2 17369
-[1]    11     2 17669
-[1]    12     2 17439
-[1]    13     2 17376
-[1]    14     2 17360
-[1]    15     2 17411
-[1]    16     2 17294
-[1]    17     2 17636
-[1]    18     2 17410
-[1]    19     2 16777
-[1]    20     2 17470
-[1]     1     3 21174
-[1]     2     3 20936
-[1]     3     3 20726
-[1]     4     3 20464
-[1]     5     3 20644
-[1]     6     3 21448
-[1]     7     3 21934
-[1]     8     3 21392
-[1]     9     3 21352
-[1]    10     3 21420
-[1]    11     3 21164
-[1]    12     3 21344
-[1]    13     3 20579
-[1]    14     3 19855
-[1]    15     3 19713
-[1]    16     3 20119
-[1]    17     3 19859
-[1]    18     3 19670
-[1]    19     3 18852
-[1]    20     3 19512
-[1]     1     4 21076
-[1]     2     4 21371
-[1]     3     4 21879
-[1]     4     4 21538
-[1]     5     4 20647
-[1]     6     4 21140
-[1]     7     4 21444
-[1]     8     4 20787
-[1]     9     4 20884
-[1]    10     4 20758
-[1]    11     4 21532
-[1]    12     4 21201
-[1]    13     4 21238
-[1]    14     4 21551
-[1]    15     4 21133
-[1]    16     4 21052
-[1]    17     4 21660
-[1]    18     4 21317
-[1]    19     4 21938
-[1]    20     4 20876
-[1]     1     5 19650
-[1]     2     5 20738
-[1]     3     5 20128
-[1]     4     5 20236
-[1]     5     5 20638
-[1]     6     5 20986
-[1]     7     5 20437
-[1]     8     5 20657
-[1]     9     5 20647
-[1]    10     5 20995
-[1]    11     5 20447
-[1]    12     5 21241
-[1]    13     5 20869
-[1]    14     5 20794
-[1]    15     5 20673
-[1]    16     5 20808
-[1]    17     5 20312
-[1]    18     5 20619
-[1]    19     5 21206
-[1]    20     5 21335
-> 
-> 
-> write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> 
-> proc.time()
-   user  system elapsed 
-261.239  10.356 271.610 
diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.R b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.R
deleted file mode 100644
index 56e12fca96b98f488f58afd95ca3b52631aff364..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.R
+++ /dev/null
@@ -1,364 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-#library(Hmisc)
-
-#list.of.packages <- c("xts")
-#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-#if(length(new.packages)) install.packages(new.packages)
-library(xts)
-
-
-
-
-## Varaible file
-
-variable_int<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-width<-30
-width_char<-paste(width)
-
-
-#variable_y<-"Difference_air_temperature"
-variable_y<-"Maximum_air_temperature"
-#variable<-"daylength"
-variable<-"Relative_humidity"
-#variable<-"Mean_Precipitation"
-#variable<-"Mean_wind_speed"
-
-#variable_y<-"Relative_humidity"
-#variable_y<-"Mean_Precipitation"
-#variable_y<-"Cumul_Precipitation"
-#variable_y<-"Mean_wind_speed"
-#variable_y<-"daylength"
-#variable_y<-"Minimum_air_temperature"
-#variable<-"Difference_air_temperature"
-
-#variable_y<-"Mean_Precipitation"
-#variable<-"daylength"
-#variable<-"Mean_Precipitation"
-#"Maximum_air_temperature",
-#"Minimum_air_temperature",
-#"Mean_wind_speed",
-#"Mean_Precipitation",
-#"Relative_humidity",
-#"daylength"
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-		
-Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-
-
-
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-
-
-################### include latitude and longitude 
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-
-
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-
-Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-
-Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-
-
-
-######################## include daylength ################## 
-
-PC_df<-data.frame(All_PC,as.Date(dates))
-colnames(PC_df)<-c("PostCode","Date")
-
-Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Post_Codes_df$lat
-day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-daylength_df$Date<-as.factor(daylength_df$Date)
-daylength_df$lat<-as.factor(daylength_df$lat)
-Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date)
-Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat)
-
-#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date"))
-#Env_laboratory<-data.frame(Env_laboratory_int4)
-Env_laboratory<-data.frame(Env_laboratory_int3)
-Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date)
-Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat)
-
-
-#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date"))
-#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4)
-Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3)
-
-
-
-Env_Campylobacter_data$Difference_air_temperature<-Env_Campylobacter_data$Maximum_air_temperature-Env_Campylobacter_data$Minimum_air_temperature
-Env_laboratory$Difference_air_temperature<-Env_laboratory$Maximum_air_temperature-Env_laboratory$Minimum_air_temperature
-
-
-
-################### Divide the domains of the variables in bins according to quantiles
-
-
-index_C<-which (names(Env_Campylobacter_data)==variable)
-index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-
-
-index<-which (names(Env_laboratory)==variable)
-index_y<-which (names(Env_laboratory)==variable_y)
-
-
-#########################
-
-
-breaks_z_lab<-function(variable,by_z)
-{
-  
-  index<-which (names(Env_laboratory)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-breaks_z<-function(variable,by_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  
-  index<-which (names(Env_laboratory)==variable)
-  index_y<-which (names(Env_laboratory)==variable_y)
-
-  
-  
-  wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-  
-  wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_some<-Env_laboratory[ww,]
-  
-  if (length(Env_Campylobacter_data_some[,1])!=0) {
-    
-    breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-    breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-    breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-    
-  }else{
-    
-    breaks_y<-c()
-  }
-  
-  return(breaks_y)
-  }
-    
-
-
-
-breaks_y<-function(variable,variable_y,by_z,by_y,j_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-
-  
-  
-  wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-  
-  
-  if (length(Env_Campylobacter_data_some[,1])!=0) {
-    
-    breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-    breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-    breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-    
-  }else{
-    
-    breaks_y<-c()
-  }
-  
-  return(breaks_y)
-  }
-    
-
-
-################# 
-
-
-
-
-var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric())
-colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot")
- 
-residents_i_var<-0
-residents_universal<-0
-#i_var_max<-length(breaks_var)
-#i_var_min<-1
-#i_var_max_x<-length(breaks_var_x)
-#i_var_min_x<-1
-
-
-#####################
-by_z<-0.005
-by_y<-0.005
-
-
-#i_var_min<-breaks_z(variable,by_z)[1]
-#i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))]
-j_z_min<-1
-j_z_max<-length(breaks_z(variable,by_z))-1
-
-
-
-for (j_z in c(j_z_min:j_z_max))
-{
-  
-  wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,]
-    
-  wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_z<-Env_laboratory[ww,]
-  
-  if (length(Env_Campylobacter_data_z[,1])!=0){
-  if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){
-    
-  j_y_min<-1
-  j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1
-  
-  
-    
-  for (j_y in c(j_y_min:j_y_max))
-  {
-  
-  wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-  ww<-which(wt==j_y)
-  Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,]
-  
-  wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-  ww<-which(wt==j_y)
-  Env_laboratory_y<-Env_laboratory_z[ww,]
-  
-  
-      
-     
-      Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases))))
-      residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents))))
-      residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents))))
-        
-      data_df<-data.frame(
-        breaks_z(variable,by_z)[j_z],
-        breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y],
-        Total_cases,
-        residents,
-        residents_tot)
-      
-	 
-	  
-	  
-	  
-      colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot")
-	 var_x_loc_df<-rbind(var_x_loc_df,data_df) 
-     print(c(j_y,j_z, Total_cases))
-    
-    }
-  }
-    
- 
-       }}
-
-
-write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI_high_resolution.csv",sep=""))
diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.Rout b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.Rout
deleted file mode 100644
index 57e67f1b0467b21f08b440d402054a0cb1016e86..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.Rout
+++ /dev/null
@@ -1,40427 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> #library(Hmisc)
-> 
-> #list.of.packages <- c("xts")
-> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-> #if(length(new.packages)) install.packages(new.packages)
-> library(xts)
-Loading required package: zoo
-
-Attaching package: ‘zoo’
-
-The following object is masked from ‘package:timeSeries’:
-
-    time<-
-
-The following objects are masked from ‘package:base’:
-
-    as.Date, as.Date.numeric
-
-
-Attaching package: ‘xts’
-
-The following objects are masked from ‘package:pastecs’:
-
-    first, last
-
-> 
-> 
-> 
-> 
-> ## Varaible file
-> 
-> variable_int<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> width<-30
-> width_char<-paste(width)
-> 
-> 
-> #variable_y<-"Difference_air_temperature"
-> variable_y<-"Maximum_air_temperature"
-> #variable<-"daylength"
-> variable<-"Relative_humidity"
-> #variable<-"Mean_Precipitation"
-> #variable<-"Mean_wind_speed"
-> 
-> #variable_y<-"Relative_humidity"
-> #variable_y<-"Mean_Precipitation"
-> #variable_y<-"Cumul_Precipitation"
-> #variable_y<-"Mean_wind_speed"
-> #variable_y<-"daylength"
-> #variable_y<-"Minimum_air_temperature"
-> #variable<-"Difference_air_temperature"
-> 
-> #variable_y<-"Mean_Precipitation"
-> #variable<-"daylength"
-> #variable<-"Mean_Precipitation"
-> #"Maximum_air_temperature",
-> #"Minimum_air_temperature",
-> #"Mean_wind_speed",
-> #"Mean_Precipitation",
-> #"Relative_humidity",
-> #"daylength"
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> 
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> 		
-> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-> colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-> 
-> 
-> ################### include latitude and longitude 
-> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-> 
-> 
-> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-> colnames(lat_long_lab)<-c("PostCode","lat","long")
-> 
-> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-> Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-> 
-> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-> Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-> 
-> 
-> 
-> ######################## include daylength ################## 
-> 
-> PC_df<-data.frame(All_PC,as.Date(dates))
-> colnames(PC_df)<-c("PostCode","Date")
-> 
-> Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-> 
-> 
-> daylength<-function(lat,day_year)
-+ {
-+   #Latitude measure in degrees
-+   P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-+   Denom<-cos(lat*pi/180)*cos(P) 
-+   Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-+   D<-24-(24/pi)*acos(Numer/Denom)
-+   return(D)
-+ }
-> 
-> latitude<-Post_Codes_df$lat
-> day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> daylength_df$Date<-as.factor(daylength_df$Date)
-> daylength_df$lat<-as.factor(daylength_df$lat)
-> Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date)
-> Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat)
-> 
-> #Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date"))
-> #Env_laboratory<-data.frame(Env_laboratory_int4)
-> Env_laboratory<-data.frame(Env_laboratory_int3)
-> Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date)
-> Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat)
-> 
-> 
-> #Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date"))
-> #Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4)
-> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3)
-> 
-> 
-> 
-> Env_Campylobacter_data$Difference_air_temperature<-Env_Campylobacter_data$Maximum_air_temperature-Env_Campylobacter_data$Minimum_air_temperature
-> Env_laboratory$Difference_air_temperature<-Env_laboratory$Maximum_air_temperature-Env_laboratory$Minimum_air_temperature
-> 
-> 
-> 
-> ################### Divide the domains of the variables in bins according to quantiles
-> 
-> 
-> index_C<-which (names(Env_Campylobacter_data)==variable)
-> index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-> 
-> 
-> index<-which (names(Env_laboratory)==variable)
-> index_y<-which (names(Env_laboratory)==variable_y)
-> 
-> 
-> #########################
-> 
-> 
-> breaks_z_lab<-function(variable,by_z)
-+ {
-+   
-+   index<-which (names(Env_laboratory)==variable)
-+    
-+   breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-+   
-+   breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-+   breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
-+  
-+   
-+    return(breaks_z)
-+ 
-+ }
-> 
-> 
-> breaks_z<-function(variable,by_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+    
-+   breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-+   
-+   breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-+   breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
-+  
-+   
-+    return(breaks_z)
-+ 
-+ }
-> 
-> 
-> breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+   
-+   index<-which (names(Env_laboratory)==variable)
-+   index_y<-which (names(Env_laboratory)==variable_y)
-+ 
-+   
-+   
-+   wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-+   
-+   wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_laboratory_some<-Env_laboratory[ww,]
-+   
-+   if (length(Env_Campylobacter_data_some[,1])!=0) {
-+     
-+     breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-+     breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-+     breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-+     
-+   }else{
-+     
-+     breaks_y<-c()
-+   }
-+   
-+   return(breaks_y)
-+   }
->     
-> 
-> 
-> 
-> breaks_y<-function(variable,variable_y,by_z,by_y,j_z)
-+ {
-+   
-+   index_C<-which (names(Env_Campylobacter_data)==variable)
-+   index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-+ 
-+   
-+   
-+   wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-+   
-+   
-+   if (length(Env_Campylobacter_data_some[,1])!=0) {
-+     
-+     breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-+     breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-+     breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-+     
-+   }else{
-+     
-+     breaks_y<-c()
-+   }
-+   
-+   return(breaks_y)
-+   }
->     
-> 
-> 
-> ################# 
-> 
-> 
-> 
-> 
-> var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric())
-> colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot")
->  
-> residents_i_var<-0
-> residents_universal<-0
-> #i_var_max<-length(breaks_var)
-> #i_var_min<-1
-> #i_var_max_x<-length(breaks_var_x)
-> #i_var_min_x<-1
-> 
-> 
-> #####################
-> by_z<-0.005
-> by_y<-0.005
-> 
-> 
-> #i_var_min<-breaks_z(variable,by_z)[1]
-> #i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))]
-> j_z_min<-1
-> j_z_max<-length(breaks_z(variable,by_z))-1
-> 
-> 
-> 
-> for (j_z in c(j_z_min:j_z_max))
-+ {
-+   
-+   wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,]
-+     
-+   wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z)))
-+   ww<-which(wt==j_z)
-+   Env_laboratory_z<-Env_laboratory[ww,]
-+   
-+   if (length(Env_Campylobacter_data_z[,1])!=0){
-+   if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){
-+     
-+   j_y_min<-1
-+   j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1
-+   
-+   
-+     
-+   for (j_y in c(j_y_min:j_y_max))
-+   {
-+   
-+   wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-+   ww<-which(wt==j_y)
-+   Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,]
-+   
-+   wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z)))  
-+   ww<-which(wt==j_y)
-+   Env_laboratory_y<-Env_laboratory_z[ww,]
-+   
-+   
-+       
-+      
-+       Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases))))
-+       residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents))))
-+       residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents))))
-+         
-+       data_df<-data.frame(
-+         breaks_z(variable,by_z)[j_z],
-+         breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y],
-+         Total_cases,
-+         residents,
-+         residents_tot)
-+       
-+ 	 
-+ 	  
-+ 	  
-+ 	  
-+       colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot")
-+ 	 var_x_loc_df<-rbind(var_x_loc_df,data_df) 
-+      print(c(j_y,j_z, Total_cases))
-+     
-+     }
-+   }
-+     
-+  
-+        }}
-[1]  1  1 43
-[1]  2  1 65
-[1]   3   1 134
-[1]  4  1 54
-[1]  5  1 53
-[1]  6  1 63
-[1]  7  1 48
-[1]  8  1 51
-[1]  9  1 56
-[1]  10   1 117
-[1] 11  1 59
-[1] 12  1 42
-[1] 13  1 39
-[1] 14  1 38
-[1] 15  1 53
-[1] 16  1 40
-[1] 17  1 79
-[1] 18  1 49
-[1] 19  1 52
-[1] 20  1 43
-[1] 21  1 68
-[1] 22  1 32
-[1] 23  1 43
-[1] 24  1 50
-[1] 25  1 48
-[1] 26  1 46
-[1] 27  1 47
-[1] 28  1 40
-[1] 29  1 32
-[1] 30  1 45
-[1] 31  1 38
-[1] 32  1 63
-[1] 33  1 35
-[1] 34  1 67
-[1] 35  1 30
-[1] 36  1 37
-[1] 37  1 48
-[1] 38  1 43
-[1] 39  1 74
-[1] 40  1 46
-[1] 41  1 51
-[1]  42   1 108
-[1] 43  1 48
-[1] 44  1 32
-[1] 45  1 65
-[1] 46  1 30
-[1] 47  1 67
-[1] 48  1 32
-[1] 49  1 33
-[1] 50  1 50
-[1] 51  1 51
-[1] 52  1 39
-[1] 53  1 48
-[1] 54  1 37
-[1] 55  1 56
-[1] 56  1 53
-[1] 57  1 38
-[1] 58  1 88
-[1] 59  1 88
-[1] 60  1 33
-[1] 61  1 50
-[1] 62  1 64
-[1] 63  1 41
-[1] 64  1 36
-[1] 65  1 41
-[1] 66  1 40
-[1] 67  1 43
-[1] 68  1 45
-[1] 69  1 42
-[1] 70  1 52
-[1] 71  1 35
-[1] 72  1 43
-[1] 73  1 50
-[1] 74  1 69
-[1] 75  1 32
-[1] 76  1 59
-[1] 77  1 41
-[1] 78  1 44
-[1] 79  1 35
-[1] 80  1 62
-[1] 81  1 31
-[1] 82  1 50
-[1] 83  1 57
-[1] 84  1 51
-[1] 85  1 41
-[1] 86  1 44
-[1] 87  1 30
-[1] 88  1 41
-[1] 89  1 69
-[1] 90  1 46
-[1] 91  1 58
-[1] 92  1 42
-[1] 93  1 61
-[1] 94  1 36
-[1] 95  1 44
-[1] 96  1 34
-[1] 97  1 45
-[1] 98  1 44
-[1] 99  1 32
-[1] 100   1  40
-[1] 101   1  33
-[1] 102   1  40
-[1] 103   1  34
-[1] 104   1  39
-[1] 105   1  32
-[1] 106   1  53
-[1] 107   1  50
-[1] 108   1  43
-[1] 109   1  43
-[1] 110   1  30
-[1] 111   1  41
-[1] 112   1  46
-[1] 113   1  33
-[1] 114   1  38
-[1] 115   1  37
-[1] 116   1  44
-[1] 117   1  44
-[1] 118   1  50
-[1] 119   1  54
-[1] 120   1  36
-[1] 121   1  41
-[1] 122   1  66
-[1] 123   1  48
-[1] 124   1  59
-[1] 125   1  57
-[1] 126   1  44
-[1] 127   1  45
-[1] 128   1  35
-[1] 129   1  45
-[1] 130   1  50
-[1] 131   1  42
-[1] 132   1  65
-[1] 133   1  53
-[1] 134   1  52
-[1] 135   1  43
-[1] 136   1  33
-[1] 137   1  57
-[1] 138   1  52
-[1] 139   1  32
-[1] 140   1  47
-[1] 141   1  41
-[1] 142   1  50
-[1] 143   1  37
-[1] 144   1  36
-[1] 145   1  47
-[1] 146   1  44
-[1] 147   1  47
-[1] 148   1  44
-[1] 149   1  35
-[1] 150   1  44
-[1] 151   1  51
-[1] 152   1  39
-[1] 153   1  29
-[1] 154   1  58
-[1] 155   1  42
-[1] 156   1  35
-[1] 157   1  52
-[1] 158   1  36
-[1] 159   1  58
-[1] 160   1  28
-[1] 161   1  68
-[1] 162   1  50
-[1] 163   1  50
-[1] 164   1  44
-[1] 165   1  31
-[1] 166   1  52
-[1] 167   1  33
-[1] 168   1  45
-[1] 169   1  48
-[1] 170   1  59
-[1] 171   1  45
-[1] 172   1  64
-[1] 173   1  45
-[1] 174   1  51
-[1] 175   1  61
-[1] 176   1  34
-[1] 177   1  42
-[1] 178   1  26
-[1] 179   1  50
-[1] 180   1  55
-[1] 181   1  39
-[1] 182   1  36
-[1] 183   1  45
-[1] 184   1  47
-[1] 185   1  38
-[1] 186   1  42
-[1] 187   1  45
-[1] 188   1  51
-[1] 189   1  44
-[1] 190   1  53
-[1] 191   1  39
-[1] 192   1  48
-[1] 193   1  35
-[1] 194   1  46
-[1] 195   1  38
-[1] 196   1  57
-[1] 197   1  39
-[1] 198   1  67
-[1] 199   1  43
-[1] 200   1  36
-[1]  1  2 35
-[1]  2  2 53
-[1]  3  2 50
-[1]  4  2 35
-[1]  5  2 29
-[1]  6  2 55
-[1]  7  2 51
-[1]  8  2 87
-[1]  9  2 47
-[1] 10  2 38
-[1] 11  2 51
-[1] 12  2 50
-[1] 13  2 41
-[1] 14  2 45
-[1] 15  2 52
-[1] 16  2 60
-[1] 17  2 65
-[1] 18  2 39
-[1] 19  2 55
-[1] 20  2 48
-[1] 21  2 47
-[1] 22  2 76
-[1] 23  2 45
-[1] 24  2 76
-[1] 25  2 51
-[1] 26  2 36
-[1] 27  2 35
-[1] 28  2 44
-[1] 29  2 43
-[1] 30  2 35
-[1] 31  2 50
-[1] 32  2 37
-[1] 33  2 55
-[1] 34  2 72
-[1] 35  2 76
-[1] 36  2 28
-[1] 37  2 35
-[1] 38  2 41
-[1] 39  2 56
-[1] 40  2 45
-[1] 41  2 34
-[1] 42  2 45
-[1] 43  2 41
-[1] 44  2 46
-[1] 45  2 49
-[1] 46  2 58
-[1] 47  2 44
-[1] 48  2 49
-[1] 49  2 56
-[1] 50  2 43
-[1] 51  2 36
-[1] 52  2 46
-[1] 53  2 41
-[1] 54  2 64
-[1] 55  2 66
-[1] 56  2 33
-[1] 57  2 36
-[1] 58  2 39
-[1] 59  2 51
-[1] 60  2 60
-[1] 61  2 49
-[1] 62  2 52
-[1] 63  2 73
-[1] 64  2 34
-[1] 65  2 35
-[1] 66  2 48
-[1] 67  2 43
-[1] 68  2 30
-[1] 69  2 42
-[1] 70  2 35
-[1] 71  2 61
-[1] 72  2 50
-[1] 73  2 54
-[1] 74  2 54
-[1] 75  2 57
-[1] 76  2 32
-[1]  77   2 107
-[1] 78  2 49
-[1] 79  2 66
-[1] 80  2 52
-[1] 81  2 55
-[1]  82   2 112
-[1] 83  2 57
-[1] 84  2 51
-[1] 85  2 50
-[1] 86  2 49
-[1] 87  2 36
-[1] 88  2 45
-[1] 89  2 36
-[1] 90  2 55
-[1] 91  2 42
-[1] 92  2 41
-[1] 93  2 70
-[1] 94  2 32
-[1] 95  2 42
-[1] 96  2 60
-[1] 97  2 65
-[1] 98  2 46
-[1] 99  2 57
-[1] 100   2  36
-[1] 101   2  58
-[1] 102   2  44
-[1] 103   2  34
-[1] 104   2  61
-[1] 105   2  32
-[1] 106   2  33
-[1] 107   2  40
-[1] 108   2  45
-[1] 109   2  61
-[1] 110   2  68
-[1] 111   2  33
-[1] 112   2  37
-[1] 113   2  56
-[1] 114   2  57
-[1] 115   2  50
-[1] 116   2  88
-[1] 117   2  87
-[1] 118   2 117
-[1] 119   2  30
-[1] 120   2  27
-[1] 121   2  36
-[1] 122   2  47
-[1] 123   2  40
-[1] 124   2  35
-[1] 125   2  47
-[1] 126   2  64
-[1] 127   2  37
-[1] 128   2 100
-[1] 129   2  35
-[1] 130   2  60
-[1] 131   2  53
-[1] 132   2  35
-[1] 133   2  48
-[1] 134   2  26
-[1] 135   2  78
-[1] 136   2  31
-[1] 137   2  37
-[1] 138   2  43
-[1] 139   2  45
-[1] 140   2  46
-[1] 141   2  88
-[1] 142   2  41
-[1] 143   2  55
-[1] 144   2  64
-[1] 145   2  53
-[1] 146   2  47
-[1] 147   2  64
-[1] 148   2  38
-[1] 149   2  61
-[1] 150   2  32
-[1] 151   2  41
-[1] 152   2  36
-[1] 153   2  51
-[1] 154   2  60
-[1] 155   2  39
-[1] 156   2  32
-[1] 157   2  32
-[1] 158   2  34
-[1] 159   2  43
-[1] 160   2  58
-[1] 161   2  32
-[1] 162   2  29
-[1] 163   2  53
-[1] 164   2  45
-[1] 165   2  58
-[1] 166   2  46
-[1] 167   2  39
-[1] 168   2  41
-[1] 169   2  51
-[1] 170   2  65
-[1] 171   2  61
-[1] 172   2  76
-[1] 173   2  33
-[1] 174   2  39
-[1] 175   2  30
-[1] 176   2  49
-[1] 177   2  42
-[1] 178   2  35
-[1] 179   2  45
-[1] 180   2  46
-[1] 181   2  46
-[1] 182   2  57
-[1] 183   2  51
-[1] 184   2  73
-[1] 185   2  53
-[1] 186   2  54
-[1] 187   2  40
-[1] 188   2  49
-[1] 189   2  36
-[1] 190   2  41
-[1] 191   2  30
-[1] 192   2  55
-[1] 193   2  43
-[1] 194   2  36
-[1] 195   2  43
-[1] 196   2  42
-[1] 197   2  63
-[1] 198   2  37
-[1] 199   2  37
-[1] 200   2  46
-[1]  1  3 50
-[1]  2  3 48
-[1]  3  3 34
-[1]  4  3 45
-[1]  5  3 44
-[1]  6  3 47
-[1]  7  3 62
-[1]  8  3 29
-[1]  9  3 36
-[1] 10  3 49
-[1] 11  3 42
-[1] 12  3 55
-[1] 13  3 37
-[1] 14  3 46
-[1] 15  3 71
-[1] 16  3 40
-[1] 17  3 61
-[1] 18  3 49
-[1] 19  3 34
-[1] 20  3 49
-[1] 21  3 36
-[1] 22  3 45
-[1] 23  3 52
-[1] 24  3 48
-[1] 25  3 83
-[1] 26  3 63
-[1] 27  3 55
-[1] 28  3 31
-[1] 29  3 64
-[1] 30  3 40
-[1] 31  3 53
-[1] 32  3 32
-[1] 33  3 41
-[1] 34  3 61
-[1] 35  3 54
-[1] 36  3 45
-[1] 37  3 62
-[1] 38  3 49
-[1] 39  3 39
-[1] 40  3 46
-[1] 41  3 58
-[1] 42  3 43
-[1] 43  3 36
-[1] 44  3 53
-[1] 45  3 41
-[1] 46  3 38
-[1] 47  3 83
-[1] 48  3 46
-[1] 49  3 59
-[1] 50  3 38
-[1] 51  3 60
-[1] 52  3 48
-[1] 53  3 37
-[1] 54  3 42
-[1] 55  3 57
-[1] 56  3 48
-[1] 57  3 36
-[1] 58  3 54
-[1] 59  3 63
-[1] 60  3 37
-[1] 61  3 43
-[1] 62  3 43
-[1] 63  3 44
-[1] 64  3 44
-[1] 65  3 43
-[1] 66  3 32
-[1] 67  3 50
-[1]  68   3 106
-[1] 69  3 40
-[1] 70  3 54
-[1] 71  3 41
-[1] 72  3 80
-[1] 73  3 57
-[1] 74  3 44
-[1] 75  3 91
-[1] 76  3 67
-[1] 77  3 85
-[1] 78  3 48
-[1] 79  3 53
-[1] 80  3 44
-[1] 81  3 51
-[1] 82  3 46
-[1] 83  3 63
-[1] 84  3 91
-[1] 85  3 89
-[1] 86  3 51
-[1] 87  3 51
-[1] 88  3 86
-[1] 89  3 67
-[1] 90  3 51
-[1] 91  3 66
-[1] 92  3 53
-[1] 93  3 37
-[1] 94  3 52
-[1] 95  3 65
-[1] 96  3 34
-[1] 97  3 57
-[1] 98  3 41
-[1] 99  3 68
-[1] 100   3  54
-[1] 101   3  41
-[1] 102   3  31
-[1] 103   3  45
-[1] 104   3  68
-[1] 105   3  44
-[1] 106   3  52
-[1] 107   3  56
-[1] 108   3 116
-[1] 109   3  47
-[1] 110   3  32
-[1] 111   3  43
-[1] 112   3  58
-[1] 113   3  45
-[1] 114   3  41
-[1] 115   3  42
-[1] 116   3  38
-[1] 117   3  37
-[1] 118   3  43
-[1] 119   3  52
-[1] 120   3  38
-[1] 121   3  93
-[1] 122   3  58
-[1] 123   3  47
-[1] 124   3  69
-[1] 125   3  41
-[1] 126   3  65
-[1] 127   3  42
-[1] 128   3  52
-[1] 129   3  37
-[1] 130   3  60
-[1] 131   3  43
-[1] 132   3  48
-[1] 133   3  45
-[1] 134   3  43
-[1] 135   3  30
-[1] 136   3  47
-[1] 137   3  44
-[1] 138   3  49
-[1] 139   3  32
-[1] 140   3  60
-[1] 141   3  59
-[1] 142   3  41
-[1] 143   3  35
-[1] 144   3  31
-[1] 145   3  52
-[1] 146   3  53
-[1] 147   3  42
-[1] 148   3  46
-[1] 149   3  49
-[1] 150   3  49
-[1] 151   3  80
-[1] 152   3  45
-[1] 153   3  40
-[1] 154   3  36
-[1] 155   3  45
-[1] 156   3  38
-[1] 157   3  49
-[1] 158   3  50
-[1] 159   3  35
-[1] 160   3  42
-[1] 161   3  48
-[1] 162   3  32
-[1] 163   3  32
-[1] 164   3  56
-[1] 165   3  60
-[1] 166   3  44
-[1] 167   3  38
-[1] 168   3 112
-[1] 169   3  48
-[1] 170   3  85
-[1] 171   3  37
-[1] 172   3  40
-[1] 173   3  44
-[1] 174   3  36
-[1] 175   3  63
-[1] 176   3  57
-[1] 177   3  34
-[1] 178   3  69
-[1] 179   3  40
-[1] 180   3  51
-[1] 181   3  61
-[1] 182   3  31
-[1] 183   3  46
-[1] 184   3  57
-[1] 185   3  39
-[1] 186   3  58
-[1] 187   3  39
-[1] 188   3  47
-[1] 189   3  41
-[1] 190   3  40
-[1] 191   3  81
-[1] 192   3  81
-[1] 193   3  47
-[1] 194   3  38
-[1] 195   3  53
-[1] 196   3  42
-[1] 197   3  55
-[1] 198   3  55
-[1] 199   3  45
-[1] 200   3  56
-[1]  1  4 35
-[1]  2  4 39
-[1]  3  4 34
-[1]  4  4 63
-[1]  5  4 48
-[1]  6  4 39
-[1]  7  4 32
-[1]  8  4 43
-[1]  9  4 42
-[1] 10  4 47
-[1] 11  4 64
-[1] 12  4 51
-[1] 13  4 56
-[1] 14  4 40
-[1] 15  4 36
-[1] 16  4 48
-[1] 17  4 41
-[1] 18  4 57
-[1] 19  4 56
-[1] 20  4 75
-[1] 21  4 50
-[1] 22  4 48
-[1] 23  4 53
-[1] 24  4 47
-[1] 25  4 50
-[1] 26  4 71
-[1] 27  4 52
-[1] 28  4 67
-[1] 29  4 46
-[1] 30  4 40
-[1] 31  4 35
-[1] 32  4 37
-[1] 33  4 52
-[1] 34  4 41
-[1] 35  4 55
-[1]  36   4 150
-[1] 37  4 31
-[1] 38  4 37
-[1] 39  4 68
-[1] 40  4 46
-[1] 41  4 33
-[1] 42  4 52
-[1] 43  4 29
-[1] 44  4 54
-[1] 45  4 41
-[1] 46  4 50
-[1] 47  4 58
-[1] 48  4 62
-[1] 49  4 55
-[1] 50  4 54
-[1] 51  4 69
-[1] 52  4 52
-[1] 53  4 91
-[1] 54  4 52
-[1] 55  4 60
-[1] 56  4 63
-[1] 57  4 77
-[1] 58  4 50
-[1] 59  4 69
-[1] 60  4 45
-[1] 61  4 49
-[1] 62  4 53
-[1] 63  4 61
-[1] 64  4 42
-[1] 65  4 41
-[1] 66  4 60
-[1] 67  4 33
-[1] 68  4 83
-[1] 69  4 36
-[1] 70  4 41
-[1] 71  4 72
-[1] 72  4 69
-[1] 73  4 32
-[1] 74  4 39
-[1] 75  4 39
-[1] 76  4 54
-[1] 77  4 38
-[1] 78  4 60
-[1]  79   4 116
-[1] 80  4 38
-[1] 81  4 45
-[1] 82  4 60
-[1] 83  4 63
-[1] 84  4 35
-[1] 85  4 55
-[1] 86  4 32
-[1] 87  4 56
-[1] 88  4 35
-[1] 89  4 56
-[1] 90  4 50
-[1] 91  4 40
-[1] 92  4 46
-[1] 93  4 54
-[1] 94  4 61
-[1] 95  4 39
-[1] 96  4 43
-[1] 97  4 53
-[1] 98  4 36
-[1] 99  4 57
-[1] 100   4  65
-[1] 101   4  53
-[1] 102   4  28
-[1] 103   4  37
-[1] 104   4  50
-[1] 105   4  95
-[1] 106   4  47
-[1] 107   4  63
-[1] 108   4  51
-[1] 109   4  57
-[1] 110   4  68
-[1] 111   4  39
-[1] 112   4  39
-[1] 113   4  69
-[1] 114   4  44
-[1] 115   4  40
-[1] 116   4  67
-[1] 117   4  61
-[1] 118   4  32
-[1] 119   4  49
-[1] 120   4  35
-[1] 121   4  37
-[1] 122   4  39
-[1] 123   4  33
-[1] 124   4  44
-[1] 125   4  49
-[1] 126   4  56
-[1] 127   4  68
-[1] 128   4  51
-[1] 129   4  49
-[1] 130   4  39
-[1] 131   4  48
-[1] 132   4  42
-[1] 133   4  45
-[1] 134   4  47
-[1] 135   4  48
-[1] 136   4  42
-[1] 137   4  46
-[1] 138   4  62
-[1] 139   4  32
-[1] 140   4  54
-[1] 141   4  39
-[1] 142   4  31
-[1] 143   4  50
-[1] 144   4  48
-[1] 145   4  56
-[1] 146   4  41
-[1] 147   4  54
-[1] 148   4  29
-[1] 149   4  38
-[1] 150   4  66
-[1] 151   4  47
-[1] 152   4  48
-[1] 153   4  42
-[1] 154   4  47
-[1] 155   4  60
-[1] 156   4  44
-[1] 157   4  34
-[1] 158   4  63
-[1] 159   4  48
-[1] 160   4  43
-[1] 161   4  32
-[1] 162   4  42
-[1] 163   4  46
-[1] 164   4  47
-[1] 165   4  43
-[1] 166   4  44
-[1] 167   4  54
-[1] 168   4  46
-[1] 169   4  38
-[1] 170   4  43
-[1] 171   4  39
-[1] 172   4  38
-[1] 173   4  49
-[1] 174   4  48
-[1] 175   4  45
-[1] 176   4  78
-[1] 177   4  53
-[1] 178   4  43
-[1] 179   4  44
-[1] 180   4  51
-[1] 181   4  45
-[1] 182   4  97
-[1] 183   4  50
-[1] 184   4  62
-[1] 185   4  39
-[1] 186   4  42
-[1] 187   4  52
-[1] 188   4  59
-[1] 189   4  37
-[1] 190   4  69
-[1] 191   4  64
-[1] 192   4  36
-[1] 193   4  59
-[1] 194   4  50
-[1] 195   4  39
-[1] 196   4  70
-[1] 197   4  39
-[1] 198   4  36
-[1] 199   4  48
-[1] 200   4  60
-[1]  1  5 27
-[1]  2  5 69
-[1]  3  5 37
-[1]  4  5 44
-[1]  5  5 30
-[1]  6  5 43
-[1]  7  5 43
-[1]  8  5 35
-[1]  9  5 54
-[1] 10  5 34
-[1] 11  5 51
-[1] 12  5 35
-[1] 13  5 46
-[1] 14  5 43
-[1] 15  5 94
-[1] 16  5 45
-[1] 17  5 38
-[1] 18  5 67
-[1] 19  5 48
-[1] 20  5 33
-[1] 21  5 41
-[1] 22  5 42
-[1] 23  5 53
-[1] 24  5 36
-[1] 25  5 50
-[1] 26  5 68
-[1] 27  5 43
-[1] 28  5 36
-[1] 29  5 48
-[1] 30  5 55
-[1] 31  5 40
-[1] 32  5 43
-[1] 33  5 42
-[1] 34  5 57
-[1] 35  5 63
-[1] 36  5 55
-[1] 37  5 49
-[1] 38  5 48
-[1] 39  5 54
-[1] 40  5 50
-[1] 41  5 30
-[1] 42  5 96
-[1] 43  5 36
-[1] 44  5 41
-[1] 45  5 54
-[1] 46  5 50
-[1] 47  5 61
-[1] 48  5 64
-[1] 49  5 54
-[1] 50  5 38
-[1] 51  5 53
-[1] 52  5 47
-[1] 53  5 98
-[1] 54  5 59
-[1] 55  5 77
-[1] 56  5 43
-[1] 57  5 92
-[1] 58  5 70
-[1] 59  5 43
-[1] 60  5 62
-[1] 61  5 47
-[1] 62  5 32
-[1] 63  5 50
-[1] 64  5 53
-[1] 65  5 45
-[1] 66  5 52
-[1] 67  5 65
-[1] 68  5 71
-[1] 69  5 53
-[1] 70  5 49
-[1] 71  5 55
-[1] 72  5 55
-[1] 73  5 37
-[1] 74  5 34
-[1] 75  5 48
-[1] 76  5 41
-[1] 77  5 63
-[1] 78  5 64
-[1] 79  5 46
-[1] 80  5 86
-[1] 81  5 69
-[1] 82  5 76
-[1] 83  5 44
-[1] 84  5 45
-[1] 85  5 43
-[1] 86  5 54
-[1] 87  5 79
-[1] 88  5 42
-[1] 89  5 36
-[1] 90  5 78
-[1] 91  5 67
-[1]  92   5 109
-[1] 93  5 39
-[1] 94  5 53
-[1] 95  5 28
-[1] 96  5 65
-[1] 97  5 52
-[1] 98  5 59
-[1] 99  5 32
-[1] 100   5  63
-[1] 101   5  60
-[1] 102   5  67
-[1] 103   5  39
-[1] 104   5  52
-[1] 105   5  37
-[1] 106   5  46
-[1] 107   5  71
-[1] 108   5  32
-[1] 109   5  47
-[1] 110   5  60
-[1] 111   5  71
-[1] 112   5  63
-[1] 113   5  47
-[1] 114   5  77
-[1] 115   5  66
-[1] 116   5  57
-[1] 117   5  46
-[1] 118   5  57
-[1] 119   5  50
-[1] 120   5  37
-[1] 121   5  38
-[1] 122   5  46
-[1] 123   5  67
-[1] 124   5  42
-[1] 125   5  31
-[1] 126   5  57
-[1] 127   5  49
-[1] 128   5  51
-[1] 129   5  54
-[1] 130   5  58
-[1] 131   5  51
-[1] 132   5  40
-[1] 133   5  51
-[1] 134   5  39
-[1] 135   5  29
-[1] 136   5  56
-[1] 137   5  52
-[1] 138   5  33
-[1] 139   5  60
-[1] 140   5  97
-[1] 141   5  45
-[1] 142   5  41
-[1] 143   5  48
-[1] 144   5  34
-[1] 145   5  40
-[1] 146   5  53
-[1] 147   5  33
-[1] 148   5  41
-[1] 149   5  38
-[1] 150   5  58
-[1] 151   5  37
-[1] 152   5  51
-[1] 153   5  38
-[1] 154   5  37
-[1] 155   5  35
-[1] 156   5  60
-[1] 157   5  35
-[1] 158   5  47
-[1] 159   5  42
-[1] 160   5  36
-[1] 161   5  45
-[1] 162   5  43
-[1] 163   5  54
-[1] 164   5  37
-[1] 165   5  33
-[1] 166   5  54
-[1] 167   5  83
-[1] 168   5  39
-[1] 169   5  40
-[1] 170   5  36
-[1] 171   5  63
-[1] 172   5  43
-[1] 173   5  46
-[1] 174   5  34
-[1] 175   5  45
-[1] 176   5  37
-[1] 177   5  38
-[1] 178   5  39
-[1] 179   5  32
-[1] 180   5  49
-[1] 181   5  52
-[1] 182   5  51
-[1] 183   5  39
-[1] 184   5  34
-[1] 185   5  45
-[1] 186   5  68
-[1] 187   5  47
-[1] 188   5  56
-[1] 189   5  63
-[1] 190   5  34
-[1] 191   5  58
-[1] 192   5 103
-[1] 193   5  45
-[1] 194   5  36
-[1] 195   5  92
-[1] 196   5  42
-[1] 197   5  41
-[1] 198   5  61
-[1] 199   5  71
-[1] 200   5  66
-[1]  1  6 35
-[1]  2  6 40
-[1]  3  6 37
-[1]  4  6 53
-[1]  5  6 38
-[1]  6  6 27
-[1]  7  6 62
-[1]  8  6 63
-[1]  9  6 30
-[1] 10  6 41
-[1] 11  6 41
-[1] 12  6 42
-[1] 13  6 51
-[1] 14  6 37
-[1] 15  6 44
-[1] 16  6 33
-[1] 17  6 56
-[1] 18  6 40
-[1] 19  6 33
-[1]  20   6 113
-[1] 21  6 32
-[1] 22  6 52
-[1] 23  6 61
-[1] 24  6 47
-[1] 25  6 54
-[1] 26  6 57
-[1] 27  6 44
-[1] 28  6 49
-[1] 29  6 47
-[1] 30  6 52
-[1] 31  6 55
-[1] 32  6 60
-[1] 33  6 44
-[1] 34  6 55
-[1] 35  6 57
-[1] 36  6 42
-[1] 37  6 47
-[1] 38  6 76
-[1] 39  6 37
-[1] 40  6 40
-[1] 41  6 45
-[1] 42  6 43
-[1] 43  6 51
-[1] 44  6 44
-[1] 45  6 54
-[1] 46  6 57
-[1] 47  6 52
-[1] 48  6 46
-[1] 49  6 56
-[1] 50  6 50
-[1] 51  6 46
-[1] 52  6 65
-[1] 53  6 67
-[1] 54  6 49
-[1] 55  6 60
-[1] 56  6 65
-[1] 57  6 62
-[1] 58  6 37
-[1] 59  6 43
-[1] 60  6 52
-[1] 61  6 42
-[1] 62  6 46
-[1] 63  6 77
-[1] 64  6 47
-[1] 65  6 39
-[1] 66  6 72
-[1] 67  6 39
-[1] 68  6 31
-[1] 69  6 44
-[1] 70  6 53
-[1] 71  6 48
-[1] 72  6 37
-[1] 73  6 41
-[1] 74  6 46
-[1] 75  6 42
-[1] 76  6 65
-[1] 77  6 53
-[1] 78  6 86
-[1] 79  6 92
-[1] 80  6 59
-[1] 81  6 25
-[1]  82   6 102
-[1] 83  6 49
-[1] 84  6 86
-[1] 85  6 67
-[1] 86  6 44
-[1] 87  6 41
-[1] 88  6 42
-[1] 89  6 75
-[1] 90  6 61
-[1] 91  6 54
-[1] 92  6 44
-[1]  93   6 117
-[1] 94  6 44
-[1] 95  6 44
-[1] 96  6 82
-[1] 97  6 89
-[1] 98  6 39
-[1] 99  6 47
-[1] 100   6  58
-[1] 101   6  70
-[1] 102   6  34
-[1] 103   6  49
-[1] 104   6  66
-[1] 105   6  46
-[1] 106   6  30
-[1] 107   6  80
-[1] 108   6  52
-[1] 109   6  51
-[1] 110   6  37
-[1] 111   6  50
-[1] 112   6  69
-[1] 113   6  38
-[1] 114   6  73
-[1] 115   6  49
-[1] 116   6  52
-[1] 117   6  40
-[1] 118   6  57
-[1] 119   6  53
-[1] 120   6  44
-[1] 121   6  46
-[1] 122   6  39
-[1] 123   6  44
-[1] 124   6  39
-[1] 125   6  27
-[1] 126   6  51
-[1] 127   6  58
-[1] 128   6  53
-[1] 129   6  32
-[1] 130   6  72
-[1] 131   6  43
-[1] 132   6  53
-[1] 133   6  56
-[1] 134   6  77
-[1] 135   6  44
-[1] 136   6  40
-[1] 137   6  54
-[1] 138   6  52
-[1] 139   6  49
-[1] 140   6  38
-[1] 141   6  38
-[1] 142   6  42
-[1] 143   6  44
-[1] 144   6  33
-[1] 145   6  50
-[1] 146   6  52
-[1] 147   6  61
-[1] 148   6  49
-[1] 149   6  86
-[1] 150   6  84
-[1] 151   6  38
-[1] 152   6  44
-[1] 153   6  40
-[1] 154   6  79
-[1] 155   6  79
-[1] 156   6  39
-[1] 157   6  48
-[1] 158   6  60
-[1] 159   6  49
-[1] 160   6  62
-[1] 161   6  65
-[1] 162   6  34
-[1] 163   6  51
-[1] 164   6  47
-[1] 165   6  44
-[1] 166   6  67
-[1] 167   6  46
-[1] 168   6  47
-[1] 169   6  68
-[1] 170   6  64
-[1] 171   6  49
-[1] 172   6  43
-[1] 173   6  43
-[1] 174   6  48
-[1] 175   6  75
-[1] 176   6  58
-[1] 177   6  43
-[1] 178   6  44
-[1] 179   6  38
-[1] 180   6  41
-[1] 181   6  59
-[1] 182   6  48
-[1] 183   6  69
-[1] 184   6  49
-[1] 185   6  46
-[1] 186   6  55
-[1] 187   6  34
-[1] 188   6  47
-[1] 189   6  40
-[1] 190   6  66
-[1] 191   6  40
-[1] 192   6  59
-[1] 193   6  48
-[1] 194   6  35
-[1] 195   6  54
-[1] 196   6  52
-[1] 197   6  47
-[1] 198   6  83
-[1] 199   6  40
-[1] 200   6  57
-[1]  1  7 37
-[1]  2  7 49
-[1]  3  7 36
-[1]  4  7 35
-[1]  5  7 56
-[1]  6  7 33
-[1]  7  7 48
-[1]  8  7 41
-[1]  9  7 55
-[1] 10  7 34
-[1] 11  7 47
-[1] 12  7 42
-[1] 13  7 43
-[1] 14  7 62
-[1] 15  7 31
-[1] 16  7 69
-[1] 17  7 35
-[1] 18  7 61
-[1] 19  7 37
-[1] 20  7 54
-[1] 21  7 45
-[1] 22  7 47
-[1] 23  7 53
-[1] 24  7 64
-[1] 25  7 30
-[1] 26  7 49
-[1] 27  7 45
-[1] 28  7 50
-[1] 29  7 29
-[1] 30  7 42
-[1] 31  7 40
-[1] 32  7 56
-[1] 33  7 62
-[1] 34  7 50
-[1] 35  7 65
-[1] 36  7 36
-[1] 37  7 41
-[1] 38  7 47
-[1] 39  7 53
-[1] 40  7 49
-[1] 41  7 50
-[1] 42  7 48
-[1] 43  7 55
-[1] 44  7 33
-[1] 45  7 42
-[1] 46  7 48
-[1] 47  7 39
-[1] 48  7 37
-[1] 49  7 72
-[1] 50  7 57
-[1] 51  7 66
-[1] 52  7 37
-[1] 53  7 25
-[1] 54  7 98
-[1] 55  7 38
-[1] 56  7 52
-[1] 57  7 59
-[1] 58  7 42
-[1] 59  7 54
-[1] 60  7 44
-[1] 61  7 41
-[1] 62  7 41
-[1] 63  7 40
-[1] 64  7 53
-[1] 65  7 37
-[1] 66  7 48
-[1] 67  7 54
-[1] 68  7 39
-[1] 69  7 43
-[1] 70  7 44
-[1] 71  7 35
-[1] 72  7 49
-[1] 73  7 46
-[1] 74  7 44
-[1] 75  7 52
-[1] 76  7 34
-[1] 77  7 98
-[1] 78  7 43
-[1] 79  7 54
-[1] 80  7 47
-[1] 81  7 37
-[1] 82  7 45
-[1] 83  7 53
-[1] 84  7 47
-[1]  85   7 102
-[1] 86  7 35
-[1] 87  7 47
-[1] 88  7 68
-[1] 89  7 46
-[1] 90  7 55
-[1] 91  7 33
-[1] 92  7 52
-[1] 93  7 55
-[1] 94  7 32
-[1] 95  7 48
-[1] 96  7 48
-[1] 97  7 54
-[1] 98  7 63
-[1] 99  7 44
-[1] 100   7  42
-[1] 101   7  34
-[1] 102   7  43
-[1] 103   7  63
-[1] 104   7  47
-[1] 105   7  75
-[1] 106   7  36
-[1] 107   7  72
-[1] 108   7  52
-[1] 109   7  44
-[1] 110   7  71
-[1] 111   7  61
-[1] 112   7  92
-[1] 113   7  43
-[1] 114   7  47
-[1] 115   7  47
-[1] 116   7  36
-[1] 117   7  44
-[1] 118   7  38
-[1] 119   7  55
-[1] 120   7  86
-[1] 121   7  45
-[1] 122   7  47
-[1] 123   7  53
-[1] 124   7  54
-[1] 125   7  38
-[1] 126   7  38
-[1] 127   7  60
-[1] 128   7  60
-[1] 129   7  50
-[1] 130   7  41
-[1] 131   7  65
-[1] 132   7  78
-[1] 133   7  46
-[1] 134   7  45
-[1] 135   7  54
-[1] 136   7  53
-[1] 137   7  49
-[1] 138   7  40
-[1] 139   7  42
-[1] 140   7  60
-[1] 141   7  64
-[1] 142   7  83
-[1] 143   7  47
-[1] 144   7  43
-[1] 145   7  41
-[1] 146   7  53
-[1] 147   7  63
-[1] 148   7  42
-[1] 149   7  52
-[1] 150   7  40
-[1] 151   7  32
-[1] 152   7  44
-[1] 153   7  39
-[1] 154   7  51
-[1] 155   7  37
-[1] 156   7  52
-[1] 157   7  39
-[1] 158   7  43
-[1] 159   7  56
-[1] 160   7  48
-[1] 161   7  38
-[1] 162   7  48
-[1] 163   7  32
-[1] 164   7  35
-[1] 165   7  36
-[1] 166   7  50
-[1] 167   7  57
-[1] 168   7  52
-[1] 169   7  40
-[1] 170   7  52
-[1] 171   7  39
-[1] 172   7  54
-[1] 173   7  36
-[1] 174   7  60
-[1] 175   7  37
-[1] 176   7  51
-[1] 177   7  39
-[1] 178   7  50
-[1] 179   7  45
-[1] 180   7  36
-[1] 181   7  56
-[1] 182   7  39
-[1] 183   7  73
-[1] 184   7  37
-[1] 185   7  50
-[1] 186   7  61
-[1] 187   7  48
-[1] 188   7  39
-[1] 189   7  31
-[1] 190   7  52
-[1] 191   7  48
-[1] 192   7  49
-[1] 193   7  59
-[1] 194   7  54
-[1] 195   7  47
-[1] 196   7  31
-[1] 197   7  63
-[1] 198   7 115
-[1] 199   7  47
-[1] 200   7  51
-[1]  1  8 37
-[1]  2  8 49
-[1]  3  8 34
-[1]  4  8 35
-[1]  5  8 34
-[1]  6  8 33
-[1]  7  8 40
-[1]  8  8 46
-[1]  9  8 38
-[1] 10  8 36
-[1] 11  8 58
-[1] 12  8 35
-[1] 13  8 46
-[1] 14  8 51
-[1] 15  8 47
-[1] 16  8 44
-[1] 17  8 81
-[1] 18  8 33
-[1] 19  8 44
-[1] 20  8 47
-[1] 21  8 44
-[1] 22  8 45
-[1] 23  8 55
-[1] 24  8 54
-[1] 25  8 64
-[1] 26  8 51
-[1] 27  8 53
-[1] 28  8 70
-[1] 29  8 48
-[1] 30  8 42
-[1] 31  8 48
-[1] 32  8 50
-[1] 33  8 32
-[1] 34  8 54
-[1] 35  8 44
-[1] 36  8 55
-[1] 37  8 50
-[1] 38  8 40
-[1] 39  8 49
-[1] 40  8 40
-[1] 41  8 42
-[1] 42  8 71
-[1] 43  8 43
-[1] 44  8 47
-[1] 45  8 47
-[1] 46  8 37
-[1] 47  8 53
-[1] 48  8 39
-[1] 49  8 39
-[1] 50  8 48
-[1] 51  8 41
-[1] 52  8 44
-[1] 53  8 45
-[1] 54  8 35
-[1] 55  8 49
-[1] 56  8 50
-[1] 57  8 47
-[1]  58   8 100
-[1] 59  8 65
-[1] 60  8 33
-[1] 61  8 64
-[1] 62  8 39
-[1] 63  8 49
-[1] 64  8 49
-[1] 65  8 73
-[1] 66  8 41
-[1] 67  8 47
-[1] 68  8 62
-[1] 69  8 36
-[1] 70  8 61
-[1] 71  8 44
-[1] 72  8 61
-[1] 73  8 86
-[1] 74  8 30
-[1] 75  8 49
-[1] 76  8 38
-[1] 77  8 42
-[1] 78  8 37
-[1] 79  8 54
-[1] 80  8 50
-[1] 81  8 60
-[1] 82  8 50
-[1] 83  8 74
-[1] 84  8 79
-[1] 85  8 53
-[1] 86  8 42
-[1] 87  8 34
-[1] 88  8 57
-[1] 89  8 52
-[1] 90  8 69
-[1] 91  8 48
-[1] 92  8 57
-[1] 93  8 40
-[1] 94  8 53
-[1] 95  8 89
-[1] 96  8 34
-[1] 97  8 53
-[1] 98  8 34
-[1] 99  8 46
-[1] 100   8  41
-[1] 101   8  59
-[1] 102   8  49
-[1] 103   8  38
-[1] 104   8  65
-[1] 105   8  66
-[1] 106   8  47
-[1] 107   8  38
-[1] 108   8  70
-[1] 109   8  46
-[1] 110   8  46
-[1] 111   8  35
-[1] 112   8  37
-[1] 113   8  42
-[1] 114   8  38
-[1] 115   8  40
-[1] 116   8  40
-[1] 117   8  66
-[1] 118   8  73
-[1] 119   8  58
-[1] 120   8  50
-[1] 121   8  45
-[1] 122   8  22
-[1] 123   8 148
-[1] 124   8  75
-[1] 125   8  47
-[1] 126   8  79
-[1] 127   8  45
-[1] 128   8  34
-[1] 129   8  52
-[1] 130   8  39
-[1] 131   8  41
-[1] 132   8  48
-[1] 133   8  43
-[1] 134   8  52
-[1] 135   8  48
-[1] 136   8  42
-[1] 137   8  65
-[1] 138   8  50
-[1] 139   8  57
-[1] 140   8  68
-[1] 141   8  32
-[1] 142   8  49
-[1] 143   8  67
-[1] 144   8  56
-[1] 145   8  47
-[1] 146   8  32
-[1] 147   8  36
-[1] 148   8  49
-[1] 149   8  33
-[1] 150   8  29
-[1] 151   8  50
-[1] 152   8  45
-[1] 153   8  50
-[1] 154   8  55
-[1] 155   8  30
-[1] 156   8  42
-[1] 157   8  48
-[1] 158   8  43
-[1] 159   8  36
-[1] 160   8  30
-[1] 161   8  35
-[1] 162   8  36
-[1] 163   8  56
-[1] 164   8  41
-[1] 165   8  49
-[1] 166   8  52
-[1] 167   8  45
-[1] 168   8  46
-[1] 169   8  61
-[1] 170   8  53
-[1] 171   8  76
-[1] 172   8  55
-[1] 173   8  47
-[1] 174   8  41
-[1] 175   8  35
-[1] 176   8  43
-[1] 177   8  67
-[1] 178   8  51
-[1] 179   8  41
-[1] 180   8  51
-[1] 181   8  43
-[1] 182   8  58
-[1] 183   8  37
-[1] 184   8  47
-[1] 185   8  49
-[1] 186   8  54
-[1] 187   8  44
-[1] 188   8  34
-[1] 189   8  41
-[1] 190   8  57
-[1] 191   8  38
-[1] 192   8  45
-[1] 193   8  41
-[1] 194   8  38
-[1] 195   8  39
-[1] 196   8  40
-[1] 197   8  40
-[1] 198   8  38
-[1] 199   8  80
-[1] 200   8  47
-[1]  1  9 55
-[1]  2  9 50
-[1]  3  9 45
-[1]  4  9 32
-[1]  5  9 47
-[1]  6  9 39
-[1]  7  9 47
-[1]  8  9 38
-[1]  9  9 41
-[1] 10  9 40
-[1] 11  9 33
-[1] 12  9 42
-[1] 13  9 53
-[1] 14  9 33
-[1] 15  9 40
-[1] 16  9 97
-[1] 17  9 48
-[1] 18  9 39
-[1] 19  9 36
-[1] 20  9 71
-[1] 21  9 45
-[1] 22  9 48
-[1] 23  9 36
-[1] 24  9 70
-[1] 25  9 83
-[1] 26  9 91
-[1] 27  9 43
-[1]  28   9 107
-[1] 29  9 68
-[1] 30  9 46
-[1] 31  9 61
-[1] 32  9 41
-[1] 33  9 46
-[1] 34  9 45
-[1] 35  9 29
-[1] 36  9 86
-[1] 37  9 52
-[1] 38  9 55
-[1] 39  9 38
-[1] 40  9 51
-[1] 41  9 54
-[1] 42  9 53
-[1] 43  9 55
-[1] 44  9 50
-[1] 45  9 59
-[1] 46  9 45
-[1] 47  9 42
-[1] 48  9 44
-[1] 49  9 35
-[1] 50  9 66
-[1] 51  9 51
-[1] 52  9 63
-[1] 53  9 47
-[1] 54  9 54
-[1] 55  9 56
-[1] 56  9 43
-[1] 57  9 37
-[1]  58   9 101
-[1] 59  9 66
-[1] 60  9 56
-[1] 61  9 41
-[1] 62  9 66
-[1] 63  9 41
-[1] 64  9 56
-[1] 65  9 80
-[1] 66  9 51
-[1] 67  9 59
-[1] 68  9 47
-[1] 69  9 44
-[1] 70  9 57
-[1] 71  9 58
-[1] 72  9 61
-[1] 73  9 47
-[1] 74  9 48
-[1] 75  9 35
-[1]  76   9 114
-[1] 77  9 77
-[1] 78  9 50
-[1] 79  9 53
-[1] 80  9 65
-[1] 81  9 46
-[1] 82  9 62
-[1] 83  9 43
-[1]  84   9 116
-[1] 85  9 48
-[1] 86  9 77
-[1] 87  9 55
-[1] 88  9 39
-[1] 89  9 64
-[1] 90  9 57
-[1] 91  9 38
-[1] 92  9 43
-[1] 93  9 33
-[1] 94  9 44
-[1] 95  9 38
-[1] 96  9 38
-[1] 97  9 51
-[1] 98  9 40
-[1] 99  9 52
-[1] 100   9  42
-[1] 101   9  35
-[1] 102   9  59
-[1] 103   9  40
-[1] 104   9  51
-[1] 105   9  36
-[1] 106   9  47
-[1] 107   9  60
-[1] 108   9  48
-[1] 109   9  81
-[1] 110   9  39
-[1] 111   9  79
-[1] 112   9  40
-[1] 113   9  47
-[1] 114   9  39
-[1] 115   9  76
-[1] 116   9  38
-[1] 117   9  59
-[1] 118   9  49
-[1] 119   9  52
-[1] 120   9  45
-[1] 121   9  34
-[1] 122   9  59
-[1] 123   9  44
-[1] 124   9  41
-[1] 125   9  46
-[1] 126   9  55
-[1] 127   9  38
-[1] 128   9  81
-[1] 129   9  45
-[1] 130   9  46
-[1] 131   9  64
-[1] 132   9  49
-[1] 133   9  51
-[1] 134   9  64
-[1] 135   9  46
-[1] 136   9  52
-[1] 137   9  60
-[1] 138   9  39
-[1] 139   9  38
-[1] 140   9  48
-[1] 141   9  33
-[1] 142   9  61
-[1] 143   9  48
-[1] 144   9  67
-[1] 145   9  32
-[1] 146   9 101
-[1] 147   9  89
-[1] 148   9  54
-[1] 149   9  45
-[1] 150   9  42
-[1] 151   9  47
-[1] 152   9  36
-[1] 153   9  56
-[1] 154   9  55
-[1] 155   9  47
-[1] 156   9  49
-[1] 157   9  42
-[1] 158   9  47
-[1] 159   9  51
-[1] 160   9  54
-[1] 161   9  47
-[1] 162   9  48
-[1] 163   9  61
-[1] 164   9  50
-[1] 165   9  35
-[1] 166   9  54
-[1] 167   9  49
-[1] 168   9  71
-[1] 169   9  52
-[1] 170   9  34
-[1] 171   9  52
-[1] 172   9  45
-[1] 173   9  37
-[1] 174   9  46
-[1] 175   9  71
-[1] 176   9  43
-[1] 177   9  42
-[1] 178   9  45
-[1] 179   9  33
-[1] 180   9  66
-[1] 181   9  45
-[1] 182   9  66
-[1] 183   9  43
-[1] 184   9  63
-[1] 185   9  60
-[1] 186   9  44
-[1] 187   9  59
-[1] 188   9  36
-[1] 189   9  39
-[1] 190   9  35
-[1] 191   9  70
-[1] 192   9  51
-[1] 193   9  57
-[1] 194   9  61
-[1] 195   9  72
-[1] 196   9  60
-[1] 197   9  67
-[1] 198   9  66
-[1] 199   9  39
-[1] 200   9  71
-[1]  1 10 33
-[1]  2 10 39
-[1]  3 10 40
-[1]  4 10 87
-[1]  5 10 42
-[1]  6 10 37
-[1]  7 10 27
-[1]  8 10 54
-[1]  9 10 40
-[1] 10 10 44
-[1] 11 10 42
-[1] 12 10 34
-[1] 13 10 39
-[1] 14 10 34
-[1] 15 10 27
-[1] 16 10 30
-[1] 17 10 56
-[1] 18 10 53
-[1] 19 10 41
-[1] 20 10 33
-[1] 21 10 46
-[1] 22 10 42
-[1] 23 10 65
-[1] 24 10 81
-[1] 25 10 52
-[1] 26 10 46
-[1] 27 10 43
-[1] 28 10 42
-[1] 29 10 62
-[1] 30 10 57
-[1] 31 10 42
-[1] 32 10 27
-[1] 33 10 77
-[1] 34 10 45
-[1] 35 10 87
-[1] 36 10 64
-[1] 37 10 32
-[1] 38 10 64
-[1] 39 10 44
-[1] 40 10 42
-[1] 41 10 49
-[1] 42 10 57
-[1] 43 10 39
-[1] 44 10 54
-[1] 45 10 30
-[1] 46 10 49
-[1] 47 10 34
-[1] 48 10 56
-[1] 49 10 57
-[1] 50 10 45
-[1] 51 10 53
-[1] 52 10 50
-[1] 53 10 43
-[1] 54 10 58
-[1] 55 10 47
-[1] 56 10 51
-[1] 57 10 48
-[1] 58 10 39
-[1] 59 10 46
-[1] 60 10 49
-[1] 61 10 40
-[1] 62 10 66
-[1] 63 10 64
-[1] 64 10 50
-[1] 65 10 37
-[1] 66 10 44
-[1] 67 10 46
-[1] 68 10 47
-[1] 69 10 71
-[1] 70 10 40
-[1] 71 10 59
-[1] 72 10 46
-[1] 73 10 50
-[1] 74 10 64
-[1] 75 10 46
-[1] 76 10 43
-[1] 77 10 68
-[1] 78 10 48
-[1] 79 10 39
-[1] 80 10 57
-[1] 81 10 32
-[1] 82 10 40
-[1] 83 10 50
-[1] 84 10 34
-[1] 85 10 43
-[1] 86 10 78
-[1] 87 10 41
-[1] 88 10 62
-[1] 89 10 87
-[1] 90 10 42
-[1] 91 10 67
-[1] 92 10 30
-[1]  93  10 100
-[1] 94 10 45
-[1] 95 10 56
-[1] 96 10 50
-[1] 97 10 38
-[1] 98 10 49
-[1] 99 10 37
-[1] 100  10  45
-[1] 101  10  60
-[1] 102  10  54
-[1] 103  10  40
-[1] 104  10  70
-[1] 105  10  35
-[1] 106  10  45
-[1] 107  10  41
-[1] 108  10  30
-[1] 109  10  57
-[1] 110  10  39
-[1] 111  10  42
-[1] 112  10  63
-[1] 113  10  57
-[1] 114  10  42
-[1] 115  10  43
-[1] 116  10  64
-[1] 117  10  31
-[1] 118  10  74
-[1] 119  10  37
-[1] 120  10  39
-[1] 121  10  56
-[1] 122  10  36
-[1] 123  10  51
-[1] 124  10  44
-[1] 125  10  60
-[1] 126  10  54
-[1] 127  10  40
-[1] 128  10  52
-[1] 129  10  45
-[1] 130  10  49
-[1] 131  10  34
-[1] 132  10  48
-[1] 133  10  47
-[1] 134  10  35
-[1] 135  10  72
-[1] 136  10  51
-[1] 137  10  53
-[1] 138  10  41
-[1] 139  10  63
-[1] 140  10  61
-[1] 141  10  53
-[1] 142  10 106
-[1] 143  10  55
-[1] 144  10  48
-[1] 145  10  41
-[1] 146  10  41
-[1] 147  10  36
-[1] 148  10  64
-[1] 149  10  40
-[1] 150  10  75
-[1] 151  10  39
-[1] 152  10  73
-[1] 153  10  35
-[1] 154  10  62
-[1] 155  10  49
-[1] 156  10  32
-[1] 157  10  83
-[1] 158  10  28
-[1] 159  10  48
-[1] 160  10  71
-[1] 161  10  50
-[1] 162  10  63
-[1] 163  10  43
-[1] 164  10  59
-[1] 165  10  31
-[1] 166  10  59
-[1] 167  10  49
-[1] 168  10  70
-[1] 169  10  38
-[1] 170  10  60
-[1] 171  10  43
-[1] 172  10  49
-[1] 173  10  48
-[1] 174  10  44
-[1] 175  10  46
-[1] 176  10  48
-[1] 177  10  49
-[1] 178  10  44
-[1] 179  10  78
-[1] 180  10  75
-[1] 181  10  66
-[1] 182  10  45
-[1] 183  10  65
-[1] 184  10  52
-[1] 185  10  40
-[1] 186  10  43
-[1] 187  10  28
-[1] 188  10  55
-[1] 189  10  58
-[1] 190  10  78
-[1] 191  10  45
-[1] 192  10  36
-[1] 193  10  48
-[1] 194  10  32
-[1] 195  10  45
-[1] 196  10  54
-[1] 197  10  41
-[1] 198  10  33
-[1] 199  10  70
-[1] 200  10  43
-[1]  1 11 68
-[1]  2 11 56
-[1]  3 11 48
-[1]  4 11 61
-[1]  5 11 69
-[1]  6 11 68
-[1]  7 11 47
-[1]  8 11 43
-[1]  9 11 52
-[1] 10 11 60
-[1] 11 11 57
-[1] 12 11 80
-[1] 13 11 45
-[1] 14 11 50
-[1] 15 11 64
-[1] 16 11 38
-[1] 17 11 46
-[1] 18 11 35
-[1] 19 11 44
-[1] 20 11 53
-[1] 21 11 32
-[1] 22 11 43
-[1] 23 11 56
-[1] 24 11 35
-[1] 25 11 45
-[1] 26 11 44
-[1] 27 11 43
-[1] 28 11 48
-[1] 29 11 59
-[1] 30 11 30
-[1] 31 11 43
-[1] 32 11 52
-[1] 33 11 45
-[1] 34 11 43
-[1] 35 11 29
-[1] 36 11 60
-[1] 37 11 54
-[1] 38 11 58
-[1] 39 11 54
-[1] 40 11 37
-[1] 41 11 64
-[1] 42 11 46
-[1] 43 11 53
-[1] 44 11 62
-[1] 45 11 82
-[1] 46 11 49
-[1] 47 11 41
-[1] 48 11 67
-[1] 49 11 48
-[1] 50 11 51
-[1] 51 11 42
-[1] 52 11 57
-[1] 53 11 36
-[1] 54 11 63
-[1] 55 11 43
-[1] 56 11 54
-[1] 57 11 37
-[1] 58 11 67
-[1] 59 11 66
-[1] 60 11 37
-[1] 61 11 78
-[1] 62 11 55
-[1] 63 11 43
-[1] 64 11 54
-[1] 65 11 37
-[1] 66 11 60
-[1] 67 11 34
-[1] 68 11 30
-[1] 69 11 91
-[1] 70 11 52
-[1] 71 11 50
-[1] 72 11 96
-[1] 73 11 57
-[1] 74 11 35
-[1] 75 11 43
-[1] 76 11 45
-[1] 77 11 49
-[1] 78 11 40
-[1] 79 11 45
-[1]  80  11 133
-[1] 81 11 41
-[1] 82 11 52
-[1] 83 11 80
-[1] 84 11 46
-[1] 85 11 62
-[1] 86 11 94
-[1] 87 11 75
-[1] 88 11 55
-[1] 89 11 46
-[1] 90 11 44
-[1] 91 11 35
-[1] 92 11 56
-[1] 93 11 38
-[1] 94 11 54
-[1] 95 11 48
-[1] 96 11 41
-[1] 97 11 54
-[1] 98 11 53
-[1] 99 11 54
-[1] 100  11  46
-[1] 101  11  33
-[1] 102  11  47
-[1] 103  11  45
-[1] 104  11  38
-[1] 105  11  38
-[1] 106  11  51
-[1] 107  11  73
-[1] 108  11  55
-[1] 109  11  38
-[1] 110  11  47
-[1] 111  11  38
-[1] 112  11  47
-[1] 113  11  68
-[1] 114  11  47
-[1] 115  11  31
-[1] 116  11  50
-[1] 117  11  35
-[1] 118  11  34
-[1] 119  11  51
-[1] 120  11  45
-[1] 121  11  47
-[1] 122  11  70
-[1] 123  11  54
-[1] 124  11  83
-[1] 125  11  35
-[1] 126  11  58
-[1] 127  11  66
-[1] 128  11  54
-[1] 129  11  49
-[1] 130  11  53
-[1] 131  11  51
-[1] 132  11  38
-[1] 133  11  55
-[1] 134  11  60
-[1] 135  11  45
-[1] 136  11  45
-[1] 137  11  51
-[1] 138  11  61
-[1] 139  11  55
-[1] 140  11  44
-[1] 141  11  52
-[1] 142  11  51
-[1] 143  11  42
-[1] 144  11  70
-[1] 145  11  45
-[1] 146  11  49
-[1] 147  11  40
-[1] 148  11  86
-[1] 149  11  51
-[1] 150  11  64
-[1] 151  11  46
-[1] 152  11  53
-[1] 153  11  33
-[1] 154  11  41
-[1] 155  11  28
-[1] 156  11  43
-[1] 157  11  72
-[1] 158  11  45
-[1] 159  11  46
-[1] 160  11  40
-[1] 161  11  40
-[1] 162  11  38
-[1] 163  11  58
-[1] 164  11  39
-[1] 165  11  41
-[1] 166  11  53
-[1] 167  11  39
-[1] 168  11  43
-[1] 169  11  35
-[1] 170  11  43
-[1] 171  11  56
-[1] 172  11  53
-[1] 173  11  64
-[1] 174  11  40
-[1] 175  11  49
-[1] 176  11  47
-[1] 177  11  50
-[1] 178  11  37
-[1] 179  11  41
-[1] 180  11  45
-[1] 181  11  64
-[1] 182  11  40
-[1] 183  11  60
-[1] 184  11  43
-[1] 185  11  64
-[1] 186  11  68
-[1] 187  11  37
-[1] 188  11  55
-[1] 189  11  44
-[1] 190  11  37
-[1] 191  11  37
-[1] 192  11  45
-[1] 193  11  39
-[1] 194  11  46
-[1] 195  11  42
-[1] 196  11  55
-[1] 197  11  39
-[1] 198  11  47
-[1] 199  11  52
-[1] 200  11  49
-[1]  1 12 30
-[1]  2 12 36
-[1]  3 12 36
-[1]  4 12 61
-[1]  5 12 50
-[1]  6 12 49
-[1]  7 12 72
-[1]  8 12 45
-[1]  9 12 35
-[1] 10 12 61
-[1] 11 12 33
-[1] 12 12 33
-[1] 13 12 39
-[1] 14 12 32
-[1] 15 12 61
-[1] 16 12 28
-[1] 17 12 40
-[1] 18 12 56
-[1] 19 12 38
-[1] 20 12 43
-[1] 21 12 46
-[1] 22 12 43
-[1] 23 12 35
-[1] 24 12 58
-[1] 25 12 42
-[1] 26 12 41
-[1] 27 12 39
-[1] 28 12 29
-[1] 29 12 58
-[1] 30 12 42
-[1] 31 12 67
-[1] 32 12 88
-[1] 33 12 47
-[1] 34 12 62
-[1] 35 12 56
-[1] 36 12 54
-[1] 37 12 90
-[1] 38 12 53
-[1] 39 12 55
-[1] 40 12 66
-[1] 41 12 35
-[1] 42 12 50
-[1] 43 12 32
-[1] 44 12 84
-[1] 45 12 66
-[1] 46 12 49
-[1] 47 12 68
-[1] 48 12 42
-[1] 49 12 41
-[1] 50 12 48
-[1] 51 12 47
-[1] 52 12 41
-[1] 53 12 52
-[1] 54 12 43
-[1] 55 12 36
-[1] 56 12 59
-[1] 57 12 69
-[1] 58 12 56
-[1] 59 12 38
-[1] 60 12 82
-[1] 61 12 63
-[1] 62 12 51
-[1] 63 12 47
-[1] 64 12 58
-[1] 65 12 51
-[1] 66 12 54
-[1] 67 12 43
-[1] 68 12 51
-[1] 69 12 87
-[1] 70 12 82
-[1] 71 12 54
-[1] 72 12 39
-[1] 73 12 60
-[1] 74 12 63
-[1] 75 12 70
-[1] 76 12 42
-[1] 77 12 34
-[1]  78  12 107
-[1] 79 12 47
-[1] 80 12 55
-[1] 81 12 63
-[1] 82 12 58
-[1] 83 12 49
-[1] 84 12 50
-[1] 85 12 64
-[1] 86 12 50
-[1] 87 12 50
-[1] 88 12 34
-[1] 89 12 51
-[1] 90 12 59
-[1] 91 12 42
-[1] 92 12 69
-[1] 93 12 52
-[1] 94 12 61
-[1] 95 12 45
-[1] 96 12 44
-[1] 97 12 45
-[1] 98 12 49
-[1]  99  12 108
-[1] 100  12  38
-[1] 101  12  45
-[1] 102  12  68
-[1] 103  12  38
-[1] 104  12  38
-[1] 105  12  88
-[1] 106  12  58
-[1] 107  12  51
-[1] 108  12  53
-[1] 109  12  48
-[1] 110  12  49
-[1] 111  12  43
-[1] 112  12  48
-[1] 113  12  37
-[1] 114  12  49
-[1] 115  12  62
-[1] 116  12  38
-[1] 117  12  33
-[1] 118  12  49
-[1] 119  12  45
-[1] 120  12  46
-[1] 121  12  58
-[1] 122  12  40
-[1] 123  12  45
-[1] 124  12  45
-[1] 125  12  67
-[1] 126  12  97
-[1] 127  12  90
-[1] 128  12  44
-[1] 129  12  47
-[1] 130  12  44
-[1] 131  12  40
-[1] 132  12  55
-[1] 133  12  45
-[1] 134  12  40
-[1] 135  12  49
-[1] 136  12  31
-[1] 137  12 116
-[1] 138  12  62
-[1] 139  12  45
-[1] 140  12  63
-[1] 141  12  28
-[1] 142  12  41
-[1] 143  12  72
-[1] 144  12  68
-[1] 145  12  45
-[1] 146  12  37
-[1] 147  12  41
-[1] 148  12  72
-[1] 149  12  62
-[1] 150  12  40
-[1] 151  12  48
-[1] 152  12  48
-[1] 153  12  37
-[1] 154  12  61
-[1] 155  12  37
-[1] 156  12  40
-[1] 157  12  29
-[1] 158  12  82
-[1] 159  12  49
-[1] 160  12  48
-[1] 161  12  34
-[1] 162  12  59
-[1] 163  12  63
-[1] 164  12  36
-[1] 165  12  45
-[1] 166  12  35
-[1] 167  12  54
-[1] 168  12  36
-[1] 169  12  47
-[1] 170  12 119
-[1] 171  12  40
-[1] 172  12  49
-[1] 173  12  44
-[1] 174  12  41
-[1] 175  12  63
-[1] 176  12  40
-[1] 177  12  45
-[1] 178  12  34
-[1] 179  12  54
-[1] 180  12  76
-[1] 181  12  44
-[1] 182  12  50
-[1] 183  12  50
-[1] 184  12  56
-[1] 185  12  83
-[1] 186  12  68
-[1] 187  12  44
-[1] 188  12  67
-[1] 189  12  52
-[1] 190  12  39
-[1] 191  12  46
-[1] 192  12  56
-[1] 193  12  56
-[1] 194  12  41
-[1] 195  12  46
-[1] 196  12  30
-[1] 197  12  57
-[1] 198  12  39
-[1] 199  12  54
-[1] 200  12  41
-[1]  1 13 35
-[1]  2 13 44
-[1]  3 13 49
-[1]  4 13 51
-[1]  5 13 40
-[1]  6 13 31
-[1]  7 13 33
-[1]  8 13 38
-[1]  9 13 41
-[1] 10 13 61
-[1] 11 13 44
-[1] 12 13 39
-[1] 13 13 67
-[1] 14 13 40
-[1] 15 13 38
-[1] 16 13 48
-[1] 17 13 39
-[1] 18 13 36
-[1] 19 13 46
-[1] 20 13 81
-[1] 21 13 56
-[1] 22 13 70
-[1] 23 13 46
-[1] 24 13 45
-[1] 25 13 49
-[1] 26 13 57
-[1] 27 13 65
-[1] 28 13 43
-[1] 29 13 33
-[1] 30 13 34
-[1] 31 13 37
-[1] 32 13 64
-[1] 33 13 25
-[1] 34 13 67
-[1] 35 13 48
-[1] 36 13 73
-[1] 37 13 36
-[1] 38 13 45
-[1] 39 13 72
-[1] 40 13 65
-[1] 41 13 44
-[1] 42 13 39
-[1] 43 13 60
-[1] 44 13 36
-[1] 45 13 47
-[1] 46 13 39
-[1] 47 13 50
-[1] 48 13 51
-[1] 49 13 47
-[1] 50 13 70
-[1] 51 13 43
-[1] 52 13 63
-[1] 53 13 34
-[1] 54 13 44
-[1] 55 13 63
-[1] 56 13 39
-[1] 57 13 36
-[1] 58 13 53
-[1] 59 13 41
-[1] 60 13 64
-[1] 61 13 42
-[1] 62 13 35
-[1] 63 13 47
-[1] 64 13 33
-[1] 65 13 44
-[1] 66 13 48
-[1] 67 13 51
-[1] 68 13 71
-[1] 69 13 74
-[1] 70 13 44
-[1] 71 13 65
-[1] 72 13 64
-[1] 73 13 49
-[1] 74 13 49
-[1] 75 13 76
-[1] 76 13 41
-[1] 77 13 44
-[1] 78 13 60
-[1] 79 13 94
-[1] 80 13 46
-[1] 81 13 47
-[1] 82 13 76
-[1] 83 13 36
-[1] 84 13 35
-[1] 85 13 38
-[1] 86 13 50
-[1] 87 13 43
-[1] 88 13 56
-[1] 89 13 68
-[1] 90 13 82
-[1] 91 13 57
-[1] 92 13 69
-[1] 93 13 37
-[1] 94 13 72
-[1] 95 13 39
-[1] 96 13 66
-[1] 97 13 55
-[1] 98 13 43
-[1] 99 13 40
-[1] 100  13  54
-[1] 101  13  52
-[1] 102  13  42
-[1] 103  13  48
-[1] 104  13  44
-[1] 105  13  54
-[1] 106  13  51
-[1] 107  13  43
-[1] 108  13  53
-[1] 109  13  45
-[1] 110  13  64
-[1] 111  13  33
-[1] 112  13  60
-[1] 113  13  69
-[1] 114  13  74
-[1] 115  13  47
-[1] 116  13  36
-[1] 117  13  43
-[1] 118  13  31
-[1] 119  13  54
-[1] 120  13  67
-[1] 121  13  40
-[1] 122  13  47
-[1] 123  13  59
-[1] 124  13  42
-[1] 125  13  56
-[1] 126  13  46
-[1] 127  13  57
-[1] 128  13  49
-[1] 129  13  49
-[1] 130  13  47
-[1] 131  13  41
-[1] 132  13  63
-[1] 133  13  65
-[1] 134  13  35
-[1] 135  13  48
-[1] 136  13  34
-[1] 137  13  51
-[1] 138  13  37
-[1] 139  13  42
-[1] 140  13  41
-[1] 141  13  33
-[1] 142  13  49
-[1] 143  13  66
-[1] 144  13  36
-[1] 145  13  65
-[1] 146  13  40
-[1] 147  13  67
-[1] 148  13  42
-[1] 149  13  39
-[1] 150  13  38
-[1] 151  13  45
-[1] 152  13  39
-[1] 153  13  61
-[1] 154  13  62
-[1] 155  13  51
-[1] 156  13  53
-[1] 157  13  46
-[1] 158  13  65
-[1] 159  13  56
-[1] 160  13  36
-[1] 161  13  58
-[1] 162  13  50
-[1] 163  13  33
-[1] 164  13  62
-[1] 165  13  56
-[1] 166  13  38
-[1] 167  13  59
-[1] 168  13  53
-[1] 169  13  48
-[1] 170  13  69
-[1] 171  13  49
-[1] 172  13  55
-[1] 173  13  59
-[1] 174  13  53
-[1] 175  13  38
-[1] 176  13  71
-[1] 177  13  64
-[1] 178  13  53
-[1] 179  13  53
-[1] 180  13  53
-[1] 181  13  45
-[1] 182  13  41
-[1] 183  13  56
-[1] 184  13  50
-[1] 185  13  54
-[1] 186  13  43
-[1] 187  13  44
-[1] 188  13  68
-[1] 189  13  63
-[1] 190  13  41
-[1] 191  13  48
-[1] 192  13  51
-[1] 193  13  45
-[1] 194  13  40
-[1] 195  13  57
-[1] 196  13  46
-[1] 197  13  49
-[1] 198  13  52
-[1] 199  13  33
-[1] 200  13  55
-[1]  1 14 32
-[1]  2 14 39
-[1]  3 14 68
-[1]  4 14 78
-[1]  5 14 50
-[1]  6 14 53
-[1]  7 14 33
-[1]  8 14 29
-[1]  9 14 34
-[1] 10 14 44
-[1] 11 14 43
-[1] 12 14 40
-[1] 13 14 43
-[1] 14 14 36
-[1] 15 14 43
-[1] 16 14 38
-[1] 17 14 59
-[1] 18 14 35
-[1] 19 14 50
-[1] 20 14 29
-[1]  21  14 114
-[1] 22 14 51
-[1] 23 14 56
-[1] 24 14 55
-[1] 25 14 48
-[1] 26 14 47
-[1] 27 14 52
-[1] 28 14 49
-[1]  29  14 103
-[1] 30 14 50
-[1] 31 14 45
-[1] 32 14 31
-[1] 33 14 38
-[1] 34 14 56
-[1] 35 14 53
-[1] 36 14 37
-[1] 37 14 48
-[1] 38 14 45
-[1] 39 14 68
-[1] 40 14 51
-[1] 41 14 61
-[1] 42 14 58
-[1] 43 14 70
-[1] 44 14 43
-[1] 45 14 76
-[1] 46 14 40
-[1] 47 14 62
-[1] 48 14 34
-[1] 49 14 60
-[1] 50 14 41
-[1] 51 14 47
-[1] 52 14 80
-[1] 53 14 48
-[1] 54 14 62
-[1] 55 14 58
-[1] 56 14 53
-[1] 57 14 38
-[1] 58 14 45
-[1] 59 14 64
-[1] 60 14 70
-[1] 61 14 65
-[1] 62 14 49
-[1] 63 14 31
-[1] 64 14 44
-[1] 65 14 72
-[1] 66 14 55
-[1] 67 14 56
-[1] 68 14 61
-[1] 69 14 69
-[1] 70 14 30
-[1] 71 14 68
-[1] 72 14 47
-[1] 73 14 55
-[1] 74 14 55
-[1] 75 14 34
-[1] 76 14 46
-[1] 77 14 43
-[1] 78 14 55
-[1] 79 14 37
-[1] 80 14 52
-[1] 81 14 60
-[1] 82 14 47
-[1] 83 14 52
-[1] 84 14 83
-[1] 85 14 43
-[1] 86 14 43
-[1] 87 14 46
-[1] 88 14 54
-[1] 89 14 57
-[1] 90 14 41
-[1] 91 14 48
-[1] 92 14 61
-[1] 93 14 50
-[1] 94 14 42
-[1] 95 14 68
-[1] 96 14 54
-[1] 97 14 38
-[1] 98 14 89
-[1] 99 14 33
-[1] 100  14  64
-[1] 101  14  72
-[1] 102  14  51
-[1] 103  14  84
-[1] 104  14  52
-[1] 105  14  36
-[1] 106  14  35
-[1] 107  14  82
-[1] 108  14  43
-[1] 109  14  57
-[1] 110  14  54
-[1] 111  14  49
-[1] 112  14  60
-[1] 113  14  59
-[1] 114  14  36
-[1] 115  14  37
-[1] 116  14  36
-[1] 117  14  31
-[1] 118  14  45
-[1] 119  14  46
-[1] 120  14  44
-[1] 121  14  43
-[1] 122  14  54
-[1] 123  14  37
-[1] 124  14  42
-[1] 125  14  55
-[1] 126  14  44
-[1] 127  14  43
-[1] 128  14  61
-[1] 129  14  46
-[1] 130  14  52
-[1] 131  14  45
-[1] 132  14  47
-[1] 133  14  56
-[1] 134  14  44
-[1] 135  14  79
-[1] 136  14  30
-[1] 137  14  31
-[1] 138  14  50
-[1] 139  14  66
-[1] 140  14  39
-[1] 141  14 153
-[1] 142  14  38
-[1] 143  14  60
-[1] 144  14  60
-[1] 145  14  52
-[1] 146  14  56
-[1] 147  14  58
-[1] 148  14  57
-[1] 149  14  38
-[1] 150  14  81
-[1] 151  14  42
-[1] 152  14  46
-[1] 153  14  59
-[1] 154  14  65
-[1] 155  14  63
-[1] 156  14  40
-[1] 157  14  47
-[1] 158  14  30
-[1] 159  14  29
-[1] 160  14  76
-[1] 161  14  37
-[1] 162  14  40
-[1] 163  14  61
-[1] 164  14  44
-[1] 165  14  46
-[1] 166  14  75
-[1] 167  14  43
-[1] 168  14  47
-[1] 169  14  40
-[1] 170  14  64
-[1] 171  14  45
-[1] 172  14  49
-[1] 173  14  38
-[1] 174  14  46
-[1] 175  14  44
-[1] 176  14  48
-[1] 177  14  39
-[1] 178  14  36
-[1] 179  14  36
-[1] 180  14  49
-[1] 181  14  55
-[1] 182  14  44
-[1] 183  14  39
-[1] 184  14  33
-[1] 185  14  46
-[1] 186  14  37
-[1] 187  14  39
-[1] 188  14  45
-[1] 189  14  43
-[1] 190  14  95
-[1] 191  14  35
-[1] 192  14  37
-[1] 193  14  55
-[1] 194  14  46
-[1] 195  14  46
-[1] 196  14  63
-[1] 197  14  48
-[1] 198  14  32
-[1] 199  14  51
-[1] 200  14  41
-[1]  1 15 41
-[1]  2 15 47
-[1]  3 15 40
-[1]  4 15 37
-[1]  5 15 50
-[1]  6 15 43
-[1]  7 15 44
-[1]  8 15 51
-[1]  9 15 31
-[1] 10 15 35
-[1] 11 15 40
-[1] 12 15 33
-[1] 13 15 43
-[1] 14 15 39
-[1] 15 15 40
-[1] 16 15 37
-[1] 17 15 62
-[1] 18 15 60
-[1] 19 15 60
-[1] 20 15 47
-[1] 21 15 54
-[1] 22 15 69
-[1] 23 15 40
-[1] 24 15 39
-[1] 25 15 73
-[1] 26 15 38
-[1] 27 15 51
-[1] 28 15 35
-[1] 29 15 67
-[1] 30 15 54
-[1] 31 15 60
-[1] 32 15 70
-[1] 33 15 44
-[1] 34 15 62
-[1] 35 15 52
-[1] 36 15 46
-[1] 37 15 41
-[1] 38 15 43
-[1] 39 15 38
-[1] 40 15 43
-[1] 41 15 59
-[1] 42 15 53
-[1] 43 15 53
-[1] 44 15 63
-[1] 45 15 30
-[1] 46 15 67
-[1] 47 15 47
-[1] 48 15 59
-[1] 49 15 74
-[1] 50 15 42
-[1] 51 15 51
-[1] 52 15 57
-[1] 53 15 55
-[1] 54 15 44
-[1] 55 15 60
-[1] 56 15 49
-[1] 57 15 58
-[1] 58 15 35
-[1] 59 15 69
-[1] 60 15 51
-[1] 61 15 58
-[1] 62 15 48
-[1] 63 15 41
-[1] 64 15 42
-[1] 65 15 73
-[1] 66 15 50
-[1] 67 15 46
-[1] 68 15 40
-[1] 69 15 45
-[1] 70 15 66
-[1] 71 15 42
-[1] 72 15 68
-[1] 73 15 75
-[1] 74 15 52
-[1] 75 15 49
-[1] 76 15 36
-[1] 77 15 51
-[1] 78 15 51
-[1] 79 15 45
-[1] 80 15 44
-[1] 81 15 28
-[1] 82 15 39
-[1] 83 15 57
-[1] 84 15 74
-[1] 85 15 41
-[1] 86 15 61
-[1] 87 15 67
-[1] 88 15 59
-[1] 89 15 62
-[1] 90 15 50
-[1] 91 15 58
-[1] 92 15 61
-[1] 93 15 54
-[1] 94 15 59
-[1] 95 15 55
-[1] 96 15 63
-[1] 97 15 71
-[1] 98 15 53
-[1] 99 15 78
-[1] 100  15  42
-[1] 101  15  42
-[1] 102  15  56
-[1] 103  15  51
-[1] 104  15  41
-[1] 105  15  59
-[1] 106  15  32
-[1] 107  15 116
-[1] 108  15  46
-[1] 109  15  48
-[1] 110  15 108
-[1] 111  15  38
-[1] 112  15  57
-[1] 113  15  53
-[1] 114  15  78
-[1] 115  15  57
-[1] 116  15  57
-[1] 117  15  52
-[1] 118  15  92
-[1] 119  15  47
-[1] 120  15  73
-[1] 121  15  43
-[1] 122  15  70
-[1] 123  15  44
-[1] 124  15  45
-[1] 125  15  62
-[1] 126  15  57
-[1] 127  15  35
-[1] 128  15  57
-[1] 129  15  37
-[1] 130  15  51
-[1] 131  15  99
-[1] 132  15  42
-[1] 133  15  62
-[1] 134  15  48
-[1] 135  15  66
-[1] 136  15  33
-[1] 137  15  86
-[1] 138  15  45
-[1] 139  15  29
-[1] 140  15  92
-[1] 141  15  62
-[1] 142  15  39
-[1] 143  15  38
-[1] 144  15  34
-[1] 145  15  91
-[1] 146  15  48
-[1] 147  15  44
-[1] 148  15  21
-[1] 149  15  86
-[1] 150  15  89
-[1] 151  15  86
-[1] 152  15  51
-[1] 153  15  48
-[1] 154  15  51
-[1] 155  15  40
-[1] 156  15  49
-[1] 157  15  38
-[1] 158  15  53
-[1] 159  15  46
-[1] 160  15  36
-[1] 161  15  74
-[1] 162  15  33
-[1] 163  15  29
-[1] 164  15  53
-[1] 165  15  49
-[1] 166  15  38
-[1] 167  15  47
-[1] 168  15  63
-[1] 169  15  56
-[1] 170  15  47
-[1] 171  15  29
-[1] 172  15  50
-[1] 173  15  34
-[1] 174  15  57
-[1] 175  15  43
-[1] 176  15  46
-[1] 177  15  37
-[1] 178  15  90
-[1] 179  15  63
-[1] 180  15  40
-[1] 181  15  49
-[1] 182  15  34
-[1] 183  15  51
-[1] 184  15  61
-[1] 185  15  44
-[1] 186  15  54
-[1] 187  15  40
-[1] 188  15  56
-[1] 189  15  57
-[1] 190  15  48
-[1] 191  15  45
-[1] 192  15  50
-[1] 193  15  49
-[1] 194  15  35
-[1] 195  15  52
-[1] 196  15  46
-[1] 197  15  35
-[1] 198  15  27
-[1] 199  15  64
-[1] 200  15  53
-[1]  1 16 33
-[1]  2 16 41
-[1]  3 16 44
-[1]  4 16 43
-[1]  5 16 38
-[1]  6 16 67
-[1]  7 16 38
-[1]  8 16 41
-[1]  9 16 29
-[1] 10 16 34
-[1] 11 16 44
-[1] 12 16 45
-[1] 13 16 48
-[1] 14 16 38
-[1] 15 16 40
-[1] 16 16 50
-[1] 17 16 44
-[1] 18 16 42
-[1] 19 16 70
-[1] 20 16 43
-[1] 21 16 33
-[1] 22 16 45
-[1] 23 16 48
-[1] 24 16 48
-[1] 25 16 52
-[1] 26 16 63
-[1] 27 16 45
-[1] 28 16 63
-[1] 29 16 62
-[1] 30 16 64
-[1] 31 16 49
-[1] 32 16 36
-[1] 33 16 53
-[1] 34 16 53
-[1] 35 16 40
-[1] 36 16 46
-[1] 37 16 42
-[1] 38 16 38
-[1] 39 16 39
-[1] 40 16 62
-[1] 41 16 74
-[1] 42 16 40
-[1] 43 16 60
-[1] 44 16 82
-[1] 45 16 69
-[1] 46 16 32
-[1] 47 16 65
-[1] 48 16 45
-[1] 49 16 88
-[1] 50 16 26
-[1] 51 16 59
-[1] 52 16 41
-[1] 53 16 44
-[1] 54 16 50
-[1] 55 16 41
-[1] 56 16 30
-[1] 57 16 40
-[1] 58 16 56
-[1] 59 16 48
-[1] 60 16 49
-[1] 61 16 55
-[1] 62 16 45
-[1] 63 16 60
-[1] 64 16 50
-[1] 65 16 75
-[1] 66 16 58
-[1] 67 16 47
-[1] 68 16 53
-[1] 69 16 36
-[1] 70 16 82
-[1] 71 16 42
-[1] 72 16 42
-[1] 73 16 51
-[1] 74 16 49
-[1] 75 16 47
-[1] 76 16 33
-[1] 77 16 61
-[1] 78 16 72
-[1] 79 16 43
-[1] 80 16 46
-[1] 81 16 51
-[1] 82 16 43
-[1] 83 16 54
-[1] 84 16 44
-[1] 85 16 28
-[1] 86 16 62
-[1] 87 16 54
-[1] 88 16 64
-[1] 89 16 41
-[1] 90 16 53
-[1] 91 16 60
-[1] 92 16 62
-[1] 93 16 64
-[1] 94 16 65
-[1] 95 16 39
-[1] 96 16 74
-[1] 97 16 58
-[1] 98 16 60
-[1] 99 16 39
-[1] 100  16  74
-[1] 101  16  37
-[1] 102  16  51
-[1] 103  16  38
-[1] 104  16  71
-[1] 105  16  64
-[1] 106  16  45
-[1] 107  16  65
-[1] 108  16  47
-[1] 109  16  50
-[1] 110  16  42
-[1] 111  16  47
-[1] 112  16  72
-[1] 113  16  68
-[1] 114  16  51
-[1] 115  16  33
-[1] 116  16  75
-[1] 117  16  56
-[1] 118  16  35
-[1] 119  16  38
-[1] 120  16  35
-[1] 121  16  52
-[1] 122  16  39
-[1] 123  16  40
-[1] 124  16  44
-[1] 125  16  42
-[1] 126  16  64
-[1] 127  16  49
-[1] 128  16  38
-[1] 129  16  45
-[1] 130  16  41
-[1] 131  16  44
-[1] 132  16  49
-[1] 133  16  52
-[1] 134  16  52
-[1] 135  16  43
-[1] 136  16  42
-[1] 137  16  45
-[1] 138  16  45
-[1] 139  16  36
-[1] 140  16  38
-[1] 141  16  63
-[1] 142  16  51
-[1] 143  16 113
-[1] 144  16  56
-[1] 145  16  49
-[1] 146  16  30
-[1] 147  16  55
-[1] 148  16  36
-[1] 149  16  65
-[1] 150  16  60
-[1] 151  16  43
-[1] 152  16  67
-[1] 153  16  54
-[1] 154  16  49
-[1] 155  16  42
-[1] 156  16  41
-[1] 157  16  46
-[1] 158  16  32
-[1] 159  16  62
-[1] 160  16  52
-[1] 161  16  36
-[1] 162  16  47
-[1] 163  16  58
-[1] 164  16  49
-[1] 165  16  40
-[1] 166  16  39
-[1] 167  16  59
-[1] 168  16  40
-[1] 169  16  39
-[1] 170  16  41
-[1] 171  16  40
-[1] 172  16  34
-[1] 173  16  40
-[1] 174  16  43
-[1] 175  16  31
-[1] 176  16  51
-[1] 177  16  45
-[1] 178  16  42
-[1] 179  16  37
-[1] 180  16  48
-[1] 181  16  38
-[1] 182  16  59
-[1] 183  16  38
-[1] 184  16  42
-[1] 185  16  48
-[1] 186  16  63
-[1] 187  16  40
-[1] 188  16  48
-[1] 189  16  59
-[1] 190  16  59
-[1] 191  16  46
-[1] 192  16  35
-[1] 193  16  69
-[1] 194  16  45
-[1] 195  16  79
-[1] 196  16  43
-[1] 197  16  57
-[1] 198  16  47
-[1] 199  16  46
-[1] 200  16  45
-[1]  1 17 41
-[1]  2 17 46
-[1]  3 17 36
-[1]  4 17 44
-[1]  5 17 35
-[1]  6 17 32
-[1]  7 17 41
-[1]  8 17 68
-[1]  9 17 63
-[1] 10 17 43
-[1] 11 17 37
-[1] 12 17 37
-[1] 13 17 41
-[1] 14 17 42
-[1] 15 17 41
-[1] 16 17 47
-[1] 17 17 44
-[1] 18 17 36
-[1] 19 17 51
-[1] 20 17 45
-[1] 21 17 50
-[1] 22 17 49
-[1] 23 17 40
-[1] 24 17 51
-[1] 25 17 43
-[1] 26 17 66
-[1] 27 17 51
-[1] 28 17 50
-[1] 29 17 43
-[1] 30 17 44
-[1] 31 17 48
-[1] 32 17 51
-[1] 33 17 27
-[1] 34 17 41
-[1] 35 17 66
-[1] 36 17 39
-[1] 37 17 57
-[1] 38 17 51
-[1] 39 17 57
-[1] 40 17 39
-[1] 41 17 42
-[1] 42 17 31
-[1] 43 17 58
-[1] 44 17 37
-[1] 45 17 57
-[1] 46 17 41
-[1] 47 17 44
-[1] 48 17 71
-[1] 49 17 36
-[1] 50 17 44
-[1] 51 17 63
-[1] 52 17 63
-[1] 53 17 37
-[1] 54 17 51
-[1] 55 17 62
-[1] 56 17 61
-[1] 57 17 44
-[1] 58 17 53
-[1] 59 17 98
-[1] 60 17 39
-[1] 61 17 44
-[1] 62 17 44
-[1] 63 17 59
-[1] 64 17 78
-[1] 65 17 25
-[1] 66 17 71
-[1] 67 17 61
-[1] 68 17 46
-[1] 69 17 44
-[1]  70  17 115
-[1] 71 17 47
-[1] 72 17 96
-[1] 73 17 38
-[1] 74 17 51
-[1] 75 17 56
-[1] 76 17 45
-[1] 77 17 53
-[1] 78 17 37
-[1] 79 17 41
-[1] 80 17 58
-[1] 81 17 46
-[1] 82 17 72
-[1] 83 17 57
-[1] 84 17 89
-[1] 85 17 52
-[1] 86 17 46
-[1] 87 17 41
-[1] 88 17 55
-[1] 89 17 44
-[1] 90 17 51
-[1] 91 17 43
-[1] 92 17 32
-[1] 93 17 47
-[1] 94 17 40
-[1] 95 17 50
-[1] 96 17 43
-[1] 97 17 46
-[1] 98 17 55
-[1] 99 17 36
-[1] 100  17  55
-[1] 101  17  52
-[1] 102  17  38
-[1] 103  17  44
-[1] 104  17  48
-[1] 105  17  52
-[1] 106  17  72
-[1] 107  17  37
-[1] 108  17  71
-[1] 109  17  58
-[1] 110  17  43
-[1] 111  17  38
-[1] 112  17  42
-[1] 113  17  51
-[1] 114  17 138
-[1] 115  17  47
-[1] 116  17  40
-[1] 117  17  39
-[1] 118  17  33
-[1] 119  17  44
-[1] 120  17  79
-[1] 121  17  32
-[1] 122  17  61
-[1] 123  17  52
-[1] 124  17  44
-[1] 125  17  41
-[1] 126  17  66
-[1] 127  17  64
-[1] 128  17  40
-[1] 129  17  52
-[1] 130  17  36
-[1] 131  17  70
-[1] 132  17  44
-[1] 133  17  40
-[1] 134  17  47
-[1] 135  17  37
-[1] 136  17  47
-[1] 137  17  56
-[1] 138  17  62
-[1] 139  17 108
-[1] 140  17  50
-[1] 141  17  52
-[1] 142  17  47
-[1] 143  17  37
-[1] 144  17  55
-[1] 145  17  40
-[1] 146  17  70
-[1] 147  17  37
-[1] 148  17  85
-[1] 149  17  70
-[1] 150  17  64
-[1] 151  17  37
-[1] 152  17  62
-[1] 153  17  41
-[1] 154  17  53
-[1] 155  17  47
-[1] 156  17  34
-[1] 157  17  47
-[1] 158  17  38
-[1] 159  17  31
-[1] 160  17  76
-[1] 161  17  39
-[1] 162  17  44
-[1] 163  17  42
-[1] 164  17  36
-[1] 165  17  46
-[1] 166  17  32
-[1] 167  17  39
-[1] 168  17  39
-[1] 169  17  53
-[1] 170  17  38
-[1] 171  17  35
-[1] 172  17  48
-[1] 173  17  36
-[1] 174  17  53
-[1] 175  17  32
-[1] 176  17  35
-[1] 177  17  39
-[1] 178  17  46
-[1] 179  17  52
-[1] 180  17  35
-[1] 181  17  64
-[1] 182  17  43
-[1] 183  17  53
-[1] 184  17  49
-[1] 185  17  26
-[1] 186  17  62
-[1] 187  17  43
-[1] 188  17  34
-[1] 189  17  39
-[1] 190  17  37
-[1] 191  17  43
-[1] 192  17  47
-[1] 193  17  54
-[1] 194  17  38
-[1] 195  17  37
-[1] 196  17  38
-[1] 197  17  52
-[1] 198  17  44
-[1] 199  17  42
-[1] 200  17  39
-[1]  1 18 35
-[1]  2 18 53
-[1]  3 18 45
-[1]  4 18 40
-[1]  5 18 44
-[1]  6 18 39
-[1]  7 18 58
-[1]  8 18 45
-[1]  9 18 27
-[1] 10 18 43
-[1] 11 18 36
-[1] 12 18 27
-[1] 13 18 43
-[1] 14 18 33
-[1] 15 18 47
-[1] 16 18 36
-[1] 17 18 49
-[1] 18 18 62
-[1] 19 18 40
-[1] 20 18 48
-[1] 21 18 45
-[1] 22 18 42
-[1] 23 18 39
-[1] 24 18 44
-[1] 25 18 36
-[1] 26 18 59
-[1] 27 18 50
-[1] 28 18 57
-[1] 29 18 55
-[1] 30 18 64
-[1] 31 18 86
-[1] 32 18 65
-[1] 33 18 42
-[1] 34 18 50
-[1] 35 18 85
-[1] 36 18 54
-[1] 37 18 47
-[1] 38 18 54
-[1] 39 18 46
-[1] 40 18 36
-[1] 41 18 51
-[1] 42 18 51
-[1] 43 18 51
-[1] 44 18 44
-[1] 45 18 55
-[1] 46 18 52
-[1] 47 18 53
-[1] 48 18 46
-[1] 49 18 38
-[1] 50 18 47
-[1] 51 18 48
-[1] 52 18 54
-[1] 53 18 46
-[1] 54 18 48
-[1] 55 18 45
-[1] 56 18 39
-[1] 57 18 52
-[1] 58 18 51
-[1] 59 18 47
-[1] 60 18 37
-[1] 61 18 44
-[1] 62 18 50
-[1] 63 18 49
-[1] 64 18 38
-[1] 65 18 49
-[1] 66 18 64
-[1] 67 18 65
-[1] 68 18 47
-[1] 69 18 40
-[1] 70 18 93
-[1] 71 18 64
-[1] 72 18 42
-[1] 73 18 55
-[1] 74 18 49
-[1] 75 18 36
-[1] 76 18 63
-[1] 77 18 59
-[1] 78 18 36
-[1] 79 18 55
-[1] 80 18 48
-[1] 81 18 41
-[1] 82 18 64
-[1] 83 18 49
-[1] 84 18 55
-[1] 85 18 55
-[1] 86 18 54
-[1] 87 18 74
-[1] 88 18 47
-[1] 89 18 34
-[1] 90 18 46
-[1] 91 18 44
-[1] 92 18 51
-[1] 93 18 58
-[1] 94 18 43
-[1] 95 18 76
-[1] 96 18 62
-[1] 97 18 51
-[1] 98 18 55
-[1] 99 18 56
-[1] 100  18  46
-[1] 101  18  67
-[1] 102  18  37
-[1] 103  18  39
-[1] 104  18  59
-[1] 105  18  40
-[1] 106  18  42
-[1] 107  18  58
-[1] 108  18  35
-[1] 109  18  60
-[1] 110  18  49
-[1] 111  18  57
-[1] 112  18  60
-[1] 113  18  48
-[1] 114  18  49
-[1] 115  18  39
-[1] 116  18  51
-[1] 117  18  39
-[1] 118  18  52
-[1] 119  18  62
-[1] 120  18  49
-[1] 121  18  38
-[1] 122  18  55
-[1] 123  18  52
-[1] 124  18  38
-[1] 125  18  45
-[1] 126  18  59
-[1] 127  18  37
-[1] 128  18  52
-[1] 129  18  38
-[1] 130  18  77
-[1] 131  18  47
-[1] 132  18  60
-[1] 133  18  29
-[1] 134  18  52
-[1] 135  18  49
-[1] 136  18  38
-[1] 137  18  51
-[1] 138  18  48
-[1] 139  18  47
-[1] 140  18  37
-[1] 141  18  33
-[1] 142  18  96
-[1] 143  18  31
-[1] 144  18  74
-[1] 145  18  35
-[1] 146  18  55
-[1] 147  18  58
-[1] 148  18  48
-[1] 149  18  39
-[1] 150  18  54
-[1] 151  18  68
-[1] 152  18  42
-[1] 153  18  34
-[1] 154  18  42
-[1] 155  18  41
-[1] 156  18  53
-[1] 157  18  44
-[1] 158  18  33
-[1] 159  18  54
-[1] 160  18  48
-[1] 161  18  41
-[1] 162  18  43
-[1] 163  18  54
-[1] 164  18  79
-[1] 165  18  49
-[1] 166  18  46
-[1] 167  18  44
-[1] 168  18  52
-[1] 169  18  32
-[1] 170  18  39
-[1] 171  18  34
-[1] 172  18  39
-[1] 173  18  45
-[1] 174  18  74
-[1] 175  18  29
-[1] 176  18  39
-[1] 177  18  38
-[1] 178  18  41
-[1] 179  18  40
-[1] 180  18  41
-[1] 181  18  56
-[1] 182  18  50
-[1] 183  18  45
-[1] 184  18  45
-[1] 185  18  36
-[1] 186  18  35
-[1] 187  18  43
-[1] 188  18  62
-[1] 189  18  54
-[1] 190  18  39
-[1] 191  18  54
-[1] 192  18  49
-[1] 193  18  46
-[1] 194  18  51
-[1] 195  18  44
-[1] 196  18  47
-[1] 197  18  42
-[1] 198  18  51
-[1] 199  18  32
-[1] 200  18  46
-[1]  1 19 25
-[1]  2 19 37
-[1]  3 19 59
-[1]  4 19 59
-[1]  5 19 57
-[1]  6 19 69
-[1]  7 19 38
-[1]  8 19 30
-[1]  9 19 59
-[1] 10 19 53
-[1] 11 19 46
-[1] 12 19 37
-[1] 13 19 55
-[1] 14 19 40
-[1] 15 19 50
-[1] 16 19 29
-[1] 17 19 35
-[1] 18 19 38
-[1] 19 19 52
-[1] 20 19 62
-[1] 21 19 50
-[1] 22 19 43
-[1] 23 19 57
-[1] 24 19 44
-[1] 25 19 50
-[1] 26 19 68
-[1] 27 19 34
-[1] 28 19 59
-[1] 29 19 66
-[1] 30 19 58
-[1] 31 19 43
-[1] 32 19 62
-[1] 33 19 61
-[1] 34 19 42
-[1] 35 19 54
-[1] 36 19 60
-[1] 37 19 61
-[1] 38 19 41
-[1] 39 19 68
-[1] 40 19 53
-[1] 41 19 47
-[1] 42 19 51
-[1] 43 19 51
-[1] 44 19 47
-[1] 45 19 78
-[1] 46 19 44
-[1] 47 19 46
-[1] 48 19 51
-[1] 49 19 33
-[1] 50 19 55
-[1] 51 19 52
-[1] 52 19 51
-[1] 53 19 46
-[1] 54 19 41
-[1] 55 19 52
-[1] 56 19 57
-[1] 57 19 35
-[1] 58 19 63
-[1] 59 19 54
-[1] 60 19 68
-[1] 61 19 48
-[1] 62 19 65
-[1] 63 19 45
-[1] 64 19 64
-[1] 65 19 39
-[1] 66 19 50
-[1] 67 19 42
-[1] 68 19 63
-[1] 69 19 63
-[1] 70 19 65
-[1] 71 19 51
-[1] 72 19 36
-[1] 73 19 34
-[1] 74 19 45
-[1] 75 19 42
-[1] 76 19 57
-[1] 77 19 41
-[1] 78 19 66
-[1] 79 19 43
-[1] 80 19 41
-[1] 81 19 47
-[1] 82 19 45
-[1] 83 19 48
-[1] 84 19 54
-[1] 85 19 51
-[1] 86 19 53
-[1] 87 19 49
-[1] 88 19 51
-[1] 89 19 79
-[1] 90 19 44
-[1] 91 19 52
-[1] 92 19 46
-[1] 93 19 49
-[1] 94 19 50
-[1] 95 19 45
-[1] 96 19 57
-[1] 97 19 53
-[1] 98 19 73
-[1] 99 19 52
-[1] 100  19  52
-[1] 101  19  42
-[1] 102  19  59
-[1] 103  19  41
-[1] 104  19  49
-[1] 105  19  42
-[1] 106  19  49
-[1] 107  19  48
-[1] 108  19  39
-[1] 109  19  51
-[1] 110  19  58
-[1] 111  19  30
-[1] 112  19  33
-[1] 113  19  54
-[1] 114  19  64
-[1] 115  19  70
-[1] 116  19  42
-[1] 117  19  47
-[1] 118  19  71
-[1] 119  19  38
-[1] 120  19  39
-[1] 121  19  48
-[1] 122  19  43
-[1] 123  19  38
-[1] 124  19  41
-[1] 125  19  67
-[1] 126  19  51
-[1] 127  19  52
-[1] 128  19  44
-[1] 129  19  71
-[1] 130  19  50
-[1] 131  19  43
-[1] 132  19  42
-[1] 133  19  65
-[1] 134  19  37
-[1] 135  19  66
-[1] 136  19  33
-[1] 137  19  66
-[1] 138  19  45
-[1] 139  19  52
-[1] 140  19  41
-[1] 141  19  58
-[1] 142  19  43
-[1] 143  19  46
-[1] 144  19  37
-[1] 145  19  43
-[1] 146  19  60
-[1] 147  19  59
-[1] 148  19  45
-[1] 149  19  52
-[1] 150  19  51
-[1] 151  19  38
-[1] 152  19  49
-[1] 153  19  40
-[1] 154  19  50
-[1] 155  19  39
-[1] 156  19  59
-[1] 157  19  30
-[1] 158  19  44
-[1] 159  19  62
-[1] 160  19  65
-[1] 161  19  72
-[1] 162  19  33
-[1] 163  19  58
-[1] 164  19  48
-[1] 165  19  43
-[1] 166  19  36
-[1] 167  19  45
-[1] 168  19  53
-[1] 169  19  33
-[1] 170  19  46
-[1] 171  19  60
-[1] 172  19  53
-[1] 173  19  40
-[1] 174  19  41
-[1] 175  19  54
-[1] 176  19  33
-[1] 177  19  41
-[1] 178  19  32
-[1] 179  19  40
-[1] 180  19  55
-[1] 181  19  65
-[1] 182  19  46
-[1] 183  19  57
-[1] 184  19  45
-[1] 185  19  34
-[1] 186  19  55
-[1] 187  19  38
-[1] 188  19  50
-[1] 189  19  48
-[1] 190  19  48
-[1] 191  19  59
-[1] 192  19  45
-[1] 193  19  48
-[1] 194  19  50
-[1] 195  19  31
-[1] 196  19  52
-[1] 197  19  37
-[1] 198  19  50
-[1] 199  19  47
-[1] 200  19  41
-[1]  1 20 31
-[1]  2 20 45
-[1]  3 20 56
-[1]  4 20 33
-[1]  5 20 45
-[1]  6 20 42
-[1]  7 20 34
-[1]  8 20 37
-[1]  9 20 53
-[1] 10 20 37
-[1] 11 20 35
-[1] 12 20 49
-[1] 13 20 49
-[1] 14 20 46
-[1] 15 20 39
-[1] 16 20 50
-[1] 17 20 59
-[1] 18 20 51
-[1] 19 20 40
-[1] 20 20 50
-[1] 21 20 57
-[1] 22 20 34
-[1] 23 20 63
-[1] 24 20 57
-[1] 25 20 34
-[1] 26 20 45
-[1] 27 20 49
-[1] 28 20 40
-[1] 29 20 70
-[1] 30 20 71
-[1] 31 20 45
-[1] 32 20 43
-[1] 33 20 60
-[1] 34 20 75
-[1] 35 20 40
-[1] 36 20 53
-[1] 37 20 44
-[1] 38 20 75
-[1] 39 20 44
-[1] 40 20 73
-[1] 41 20 68
-[1] 42 20 75
-[1] 43 20 56
-[1] 44 20 53
-[1] 45 20 46
-[1] 46 20 41
-[1] 47 20 43
-[1] 48 20 44
-[1]  49  20 111
-[1] 50 20 32
-[1] 51 20 51
-[1] 52 20 44
-[1] 53 20 36
-[1] 54 20 54
-[1] 55 20 32
-[1] 56 20 68
-[1] 57 20 34
-[1] 58 20 40
-[1] 59 20 35
-[1] 60 20 49
-[1] 61 20 53
-[1] 62 20 44
-[1] 63 20 58
-[1] 64 20 39
-[1] 65 20 65
-[1] 66 20 49
-[1] 67 20 61
-[1] 68 20 39
-[1] 69 20 34
-[1] 70 20 43
-[1] 71 20 35
-[1] 72 20 78
-[1] 73 20 36
-[1] 74 20 45
-[1] 75 20 42
-[1] 76 20 45
-[1] 77 20 39
-[1] 78 20 47
-[1] 79 20 84
-[1] 80 20 40
-[1] 81 20 47
-[1] 82 20 54
-[1] 83 20 41
-[1] 84 20 27
-[1] 85 20 97
-[1] 86 20 86
-[1] 87 20 55
-[1] 88 20 52
-[1] 89 20 56
-[1] 90 20 49
-[1] 91 20 52
-[1] 92 20 61
-[1] 93 20 45
-[1] 94 20 50
-[1] 95 20 74
-[1] 96 20 49
-[1] 97 20 55
-[1] 98 20 44
-[1] 99 20 49
-[1] 100  20  50
-[1] 101  20  63
-[1] 102  20  39
-[1] 103  20  37
-[1] 104  20  58
-[1] 105  20  82
-[1] 106  20  42
-[1] 107  20  39
-[1] 108  20  34
-[1] 109  20  55
-[1] 110  20  55
-[1] 111  20  45
-[1] 112  20  45
-[1] 113  20  45
-[1] 114  20  44
-[1] 115  20  48
-[1] 116  20  48
-[1] 117  20  57
-[1] 118  20  51
-[1] 119  20  28
-[1] 120  20  75
-[1] 121  20  67
-[1] 122  20  52
-[1] 123  20  58
-[1] 124  20  39
-[1] 125  20  38
-[1] 126  20  40
-[1] 127  20  43
-[1] 128  20  52
-[1] 129  20  36
-[1] 130  20  36
-[1] 131  20  48
-[1] 132  20  53
-[1] 133  20  62
-[1] 134  20  37
-[1] 135  20  63
-[1] 136  20  39
-[1] 137  20  47
-[1] 138  20  72
-[1] 139  20  52
-[1] 140  20  58
-[1] 141  20  59
-[1] 142  20  43
-[1] 143  20  43
-[1] 144  20  44
-[1] 145  20  49
-[1] 146  20  34
-[1] 147  20  32
-[1] 148  20  55
-[1] 149  20  43
-[1] 150  20  33
-[1] 151  20  58
-[1] 152  20  53
-[1] 153  20  32
-[1] 154  20  53
-[1] 155  20  40
-[1] 156  20  49
-[1] 157  20  37
-[1] 158  20  62
-[1] 159  20  67
-[1] 160  20  87
-[1] 161  20  57
-[1] 162  20  33
-[1] 163  20  35
-[1] 164  20  80
-[1] 165  20  41
-[1] 166  20  32
-[1] 167  20  39
-[1] 168  20  44
-[1] 169  20  31
-[1] 170  20  53
-[1] 171  20  30
-[1] 172  20  55
-[1] 173  20  50
-[1] 174  20  40
-[1] 175  20  49
-[1] 176  20  47
-[1] 177  20  53
-[1] 178  20  58
-[1] 179  20  48
-[1] 180  20  47
-[1] 181  20  35
-[1] 182  20  66
-[1] 183  20  47
-[1] 184  20  68
-[1] 185  20  49
-[1] 186  20  35
-[1] 187  20  64
-[1] 188  20  49
-[1] 189  20  44
-[1] 190  20  52
-[1] 191  20  35
-[1] 192  20  41
-[1] 193  20  53
-[1] 194  20  48
-[1] 195  20  37
-[1] 196  20  46
-[1] 197  20  30
-[1] 198  20  47
-[1] 199  20  28
-[1] 200  20  44
-[1]  1 21 33
-[1]  2 21 55
-[1]  3 21 60
-[1]  4 21 49
-[1]  5 21 51
-[1]  6 21 33
-[1]  7 21 42
-[1]  8 21 40
-[1]  9 21 42
-[1] 10 21 47
-[1] 11 21 39
-[1] 12 21 52
-[1] 13 21 57
-[1] 14 21 52
-[1] 15 21 37
-[1] 16 21 56
-[1] 17 21 44
-[1] 18 21 36
-[1] 19 21 63
-[1] 20 21 45
-[1] 21 21 37
-[1] 22 21 65
-[1] 23 21 31
-[1] 24 21 62
-[1] 25 21 70
-[1] 26 21 33
-[1] 27 21 45
-[1] 28 21 46
-[1] 29 21 53
-[1] 30 21 76
-[1] 31 21 52
-[1] 32 21 49
-[1] 33 21 53
-[1] 34 21 56
-[1] 35 21 41
-[1] 36 21 57
-[1] 37 21 36
-[1] 38 21 69
-[1] 39 21 79
-[1] 40 21 65
-[1] 41 21 69
-[1] 42 21 65
-[1] 43 21 67
-[1] 44 21 55
-[1] 45 21 72
-[1] 46 21 33
-[1] 47 21 52
-[1] 48 21 64
-[1] 49 21 85
-[1] 50 21 60
-[1] 51 21 42
-[1] 52 21 43
-[1] 53 21 49
-[1] 54 21 59
-[1] 55 21 62
-[1] 56 21 52
-[1] 57 21 52
-[1] 58 21 52
-[1] 59 21 53
-[1] 60 21 52
-[1] 61 21 47
-[1] 62 21 48
-[1] 63 21 79
-[1] 64 21 40
-[1] 65 21 59
-[1] 66 21 54
-[1] 67 21 48
-[1] 68 21 46
-[1] 69 21 55
-[1] 70 21 51
-[1] 71 21 53
-[1] 72 21 51
-[1] 73 21 45
-[1] 74 21 46
-[1] 75 21 51
-[1] 76 21 58
-[1] 77 21 43
-[1] 78 21 34
-[1] 79 21 41
-[1] 80 21 42
-[1] 81 21 54
-[1] 82 21 43
-[1] 83 21 79
-[1] 84 21 50
-[1] 85 21 57
-[1] 86 21 60
-[1] 87 21 85
-[1] 88 21 49
-[1] 89 21 32
-[1] 90 21 64
-[1] 91 21 87
-[1] 92 21 63
-[1] 93 21 85
-[1] 94 21 52
-[1] 95 21 41
-[1] 96 21 58
-[1] 97 21 39
-[1] 98 21 47
-[1] 99 21 45
-[1] 100  21  49
-[1] 101  21  70
-[1] 102  21  48
-[1] 103  21  82
-[1] 104  21  88
-[1] 105  21  58
-[1] 106  21  42
-[1] 107  21  40
-[1] 108  21  93
-[1] 109  21  33
-[1] 110  21  44
-[1] 111  21  49
-[1] 112  21  39
-[1] 113  21  56
-[1] 114  21  58
-[1] 115  21  44
-[1] 116  21  51
-[1] 117  21  35
-[1] 118  21  33
-[1] 119  21  37
-[1] 120  21  62
-[1] 121  21  50
-[1] 122  21  49
-[1] 123  21  44
-[1] 124  21  61
-[1] 125  21  58
-[1] 126  21  49
-[1] 127  21  37
-[1] 128  21  44
-[1] 129  21  27
-[1] 130  21  31
-[1] 131  21  48
-[1] 132  21  40
-[1] 133  21  41
-[1] 134  21  37
-[1] 135  21  48
-[1] 136  21  59
-[1] 137  21  36
-[1] 138  21  72
-[1] 139  21  60
-[1] 140  21  48
-[1] 141  21  52
-[1] 142  21  43
-[1] 143  21  55
-[1] 144  21  34
-[1] 145  21  49
-[1] 146  21  69
-[1] 147  21  36
-[1] 148  21  52
-[1] 149  21  41
-[1] 150  21  35
-[1] 151  21  52
-[1] 152  21  65
-[1] 153  21  30
-[1] 154  21  33
-[1] 155  21  40
-[1] 156  21  46
-[1] 157  21  65
-[1] 158  21  46
-[1] 159  21  65
-[1] 160  21  52
-[1] 161  21  40
-[1] 162  21  60
-[1] 163  21  54
-[1] 164  21  47
-[1] 165  21  41
-[1] 166  21  45
-[1] 167  21  64
-[1] 168  21  36
-[1] 169  21  38
-[1] 170  21  44
-[1] 171  21  35
-[1] 172  21  44
-[1] 173  21  64
-[1] 174  21  42
-[1] 175  21  48
-[1] 176  21  35
-[1] 177  21  35
-[1] 178  21  47
-[1] 179  21  45
-[1] 180  21  40
-[1] 181  21  63
-[1] 182  21  56
-[1] 183  21  45
-[1] 184  21  67
-[1] 185  21  42
-[1] 186  21  41
-[1] 187  21  54
-[1] 188  21  47
-[1] 189  21  70
-[1] 190  21  48
-[1] 191  21  32
-[1] 192  21  70
-[1] 193  21  41
-[1] 194  21  30
-[1] 195  21  39
-[1] 196  21  41
-[1] 197  21  40
-[1] 198  21  62
-[1] 199  21  49
-[1] 200  21  43
-[1]  1 22 41
-[1]  2 22 29
-[1]  3 22 60
-[1]  4 22 41
-[1]  5 22 58
-[1]  6 22 41
-[1]  7 22 36
-[1]  8 22 43
-[1]  9 22 42
-[1] 10 22 41
-[1] 11 22 44
-[1] 12 22 43
-[1] 13 22 37
-[1] 14 22 70
-[1] 15 22 45
-[1] 16 22 36
-[1] 17 22 67
-[1] 18 22 39
-[1] 19 22 45
-[1] 20 22 67
-[1] 21 22 51
-[1] 22 22 41
-[1] 23 22 37
-[1] 24 22 47
-[1] 25 22 40
-[1] 26 22 44
-[1] 27 22 54
-[1] 28 22 36
-[1]  29  22 113
-[1] 30 22 37
-[1] 31 22 44
-[1] 32 22 49
-[1] 33 22 43
-[1] 34 22 52
-[1] 35 22 67
-[1] 36 22 72
-[1] 37 22 55
-[1] 38 22 40
-[1] 39 22 51
-[1] 40 22 40
-[1] 41 22 46
-[1] 42 22 69
-[1] 43 22 63
-[1] 44 22 61
-[1] 45 22 48
-[1] 46 22 70
-[1] 47 22 48
-[1] 48 22 44
-[1] 49 22 34
-[1] 50 22 42
-[1] 51 22 47
-[1] 52 22 57
-[1] 53 22 41
-[1] 54 22 56
-[1] 55 22 65
-[1] 56 22 43
-[1] 57 22 81
-[1] 58 22 51
-[1] 59 22 35
-[1] 60 22 48
-[1] 61 22 43
-[1] 62 22 60
-[1] 63 22 73
-[1] 64 22 65
-[1] 65 22 60
-[1] 66 22 45
-[1] 67 22 56
-[1] 68 22 69
-[1] 69 22 44
-[1] 70 22 63
-[1] 71 22 57
-[1] 72 22 42
-[1] 73 22 60
-[1] 74 22 69
-[1] 75 22 45
-[1] 76 22 44
-[1] 77 22 42
-[1] 78 22 41
-[1] 79 22 58
-[1] 80 22 41
-[1] 81 22 59
-[1] 82 22 68
-[1] 83 22 38
-[1] 84 22 43
-[1] 85 22 56
-[1] 86 22 43
-[1] 87 22 57
-[1] 88 22 43
-[1] 89 22 49
-[1] 90 22 56
-[1] 91 22 57
-[1] 92 22 51
-[1] 93 22 99
-[1] 94 22 53
-[1] 95 22 55
-[1] 96 22 45
-[1] 97 22 50
-[1]  98  22 110
-[1] 99 22 52
-[1] 100  22  55
-[1] 101  22  48
-[1] 102  22  81
-[1] 103  22 111
-[1] 104  22  37
-[1] 105  22  60
-[1] 106  22  53
-[1] 107  22  46
-[1] 108  22  57
-[1] 109  22  32
-[1] 110  22  69
-[1] 111  22  33
-[1] 112  22 108
-[1] 113  22  49
-[1] 114  22  38
-[1] 115  22  47
-[1] 116  22  48
-[1] 117  22  43
-[1] 118  22  56
-[1] 119  22  59
-[1] 120  22  70
-[1] 121  22  61
-[1] 122  22  57
-[1] 123  22  36
-[1] 124  22  33
-[1] 125  22  30
-[1] 126  22  41
-[1] 127  22  62
-[1] 128  22  33
-[1] 129  22  35
-[1] 130  22  35
-[1] 131  22  42
-[1] 132  22  41
-[1] 133  22  84
-[1] 134  22  40
-[1] 135  22  56
-[1] 136  22  57
-[1] 137  22  55
-[1] 138  22  21
-[1] 139  22  53
-[1] 140  22  53
-[1] 141  22  49
-[1] 142  22  73
-[1] 143  22  46
-[1] 144  22  65
-[1] 145  22  35
-[1] 146  22  44
-[1] 147  22  47
-[1] 148  22  42
-[1] 149  22  58
-[1] 150  22  51
-[1] 151  22  51
-[1] 152  22  42
-[1] 153  22  51
-[1] 154  22  58
-[1] 155  22  43
-[1] 156  22  76
-[1] 157  22  46
-[1] 158  22  51
-[1] 159  22  44
-[1] 160  22  74
-[1] 161  22  38
-[1] 162  22  31
-[1] 163  22  66
-[1] 164  22  51
-[1] 165  22  60
-[1] 166  22  52
-[1] 167  22  47
-[1] 168  22  50
-[1] 169  22  40
-[1] 170  22  60
-[1] 171  22  54
-[1] 172  22  31
-[1] 173  22  37
-[1] 174  22  58
-[1] 175  22  43
-[1] 176  22  42
-[1] 177  22  51
-[1] 178  22  34
-[1] 179  22  44
-[1] 180  22  59
-[1] 181  22  56
-[1] 182  22  41
-[1] 183  22  61
-[1] 184  22  37
-[1] 185  22  28
-[1] 186  22  47
-[1] 187  22  62
-[1] 188  22  47
-[1] 189  22  36
-[1] 190  22  41
-[1] 191  22  37
-[1] 192  22  57
-[1] 193  22  46
-[1] 194  22  59
-[1] 195  22  42
-[1] 196  22  56
-[1] 197  22  45
-[1] 198  22  48
-[1] 199  22  51
-[1] 200  22  47
-[1]  1 23 33
-[1]  2 23 47
-[1]  3 23 46
-[1]  4 23 52
-[1]  5 23 35
-[1]  6 23 45
-[1]  7 23 49
-[1]  8 23 52
-[1]  9 23 35
-[1] 10 23 44
-[1] 11 23 47
-[1] 12 23 44
-[1] 13 23 59
-[1] 14 23 26
-[1] 15 23 38
-[1] 16 23 52
-[1] 17 23 44
-[1] 18 23 26
-[1] 19 23 74
-[1] 20 23 77
-[1] 21 23 59
-[1] 22 23 33
-[1] 23 23 57
-[1] 24 23 40
-[1] 25 23 48
-[1] 26 23 59
-[1] 27 23 48
-[1] 28 23 34
-[1] 29 23 33
-[1] 30 23 37
-[1] 31 23 63
-[1] 32 23 63
-[1] 33 23 55
-[1] 34 23 49
-[1] 35 23 73
-[1] 36 23 41
-[1] 37 23 53
-[1] 38 23 42
-[1] 39 23 44
-[1] 40 23 47
-[1] 41 23 37
-[1] 42 23 32
-[1] 43 23 64
-[1] 44 23 44
-[1] 45 23 35
-[1] 46 23 52
-[1] 47 23 36
-[1] 48 23 43
-[1] 49 23 59
-[1] 50 23 44
-[1] 51 23 38
-[1] 52 23 55
-[1] 53 23 49
-[1] 54 23 42
-[1] 55 23 68
-[1] 56 23 56
-[1] 57 23 63
-[1] 58 23 65
-[1] 59 23 42
-[1] 60 23 52
-[1] 61 23 56
-[1] 62 23 96
-[1] 63 23 54
-[1] 64 23 44
-[1] 65 23 75
-[1] 66 23 37
-[1] 67 23 72
-[1] 68 23 82
-[1] 69 23 39
-[1] 70 23 65
-[1] 71 23 48
-[1] 72 23 45
-[1] 73 23 42
-[1] 74 23 50
-[1] 75 23 55
-[1] 76 23 35
-[1] 77 23 30
-[1] 78 23 46
-[1] 79 23 54
-[1] 80 23 43
-[1] 81 23 47
-[1] 82 23 50
-[1] 83 23 79
-[1] 84 23 47
-[1] 85 23 68
-[1] 86 23 50
-[1] 87 23 72
-[1] 88 23 40
-[1] 89 23 45
-[1] 90 23 68
-[1] 91 23 70
-[1] 92 23 48
-[1] 93 23 87
-[1] 94 23 55
-[1] 95 23 48
-[1] 96 23 63
-[1] 97 23 54
-[1] 98 23 36
-[1] 99 23 51
-[1] 100  23  32
-[1] 101  23  30
-[1] 102  23  48
-[1] 103  23  34
-[1] 104  23  49
-[1] 105  23  58
-[1] 106  23  43
-[1] 107  23  44
-[1] 108  23  51
-[1] 109  23  41
-[1] 110  23  34
-[1] 111  23  75
-[1] 112  23  30
-[1] 113  23  39
-[1] 114  23  60
-[1] 115  23  53
-[1] 116  23  59
-[1] 117  23  36
-[1] 118  23  51
-[1] 119  23  56
-[1] 120  23  37
-[1] 121  23  44
-[1] 122  23  65
-[1] 123  23  41
-[1] 124  23  65
-[1] 125  23  40
-[1] 126  23  74
-[1] 127  23  43
-[1] 128  23  40
-[1] 129  23  43
-[1] 130  23  50
-[1] 131  23  42
-[1] 132  23  33
-[1] 133  23  53
-[1] 134  23  53
-[1] 135  23  47
-[1] 136  23  36
-[1] 137  23  65
-[1] 138  23  45
-[1] 139  23  36
-[1] 140  23  50
-[1] 141  23  63
-[1] 142  23  58
-[1] 143  23  43
-[1] 144  23  43
-[1] 145  23  44
-[1] 146  23  44
-[1] 147  23  52
-[1] 148  23  76
-[1] 149  23  42
-[1] 150  23  63
-[1] 151  23  49
-[1] 152  23  52
-[1] 153  23  59
-[1] 154  23  28
-[1] 155  23  55
-[1] 156  23  35
-[1] 157  23  68
-[1] 158  23  47
-[1] 159  23  52
-[1] 160  23  51
-[1] 161  23  57
-[1] 162  23  61
-[1] 163  23  33
-[1] 164  23  43
-[1] 165  23  63
-[1] 166  23  50
-[1] 167  23  39
-[1] 168  23  52
-[1] 169  23  47
-[1] 170  23  48
-[1] 171  23  39
-[1] 172  23  57
-[1] 173  23  30
-[1] 174  23  59
-[1] 175  23  42
-[1] 176  23  42
-[1] 177  23  49
-[1] 178  23  48
-[1] 179  23  44
-[1] 180  23  49
-[1] 181  23  52
-[1] 182  23  37
-[1] 183  23  47
-[1] 184  23  49
-[1] 185  23  48
-[1] 186  23  62
-[1] 187  23  44
-[1] 188  23  58
-[1] 189  23  39
-[1] 190  23  45
-[1] 191  23  44
-[1] 192  23  66
-[1] 193  23  36
-[1] 194  23  52
-[1] 195  23  33
-[1] 196  23  54
-[1] 197  23  75
-[1] 198  23  31
-[1] 199  23  56
-[1] 200  23  45
-[1]  1 24 30
-[1]  2 24 56
-[1]  3 24 48
-[1]  4 24 38
-[1]  5 24 57
-[1]  6 24 51
-[1]  7 24 38
-[1]  8 24 25
-[1]  9 24 50
-[1] 10 24 36
-[1] 11 24 49
-[1] 12 24 45
-[1] 13 24 54
-[1] 14 24 55
-[1] 15 24 41
-[1] 16 24 62
-[1] 17 24 55
-[1] 18 24 36
-[1] 19 24 47
-[1] 20 24 34
-[1] 21 24 58
-[1] 22 24 45
-[1] 23 24 57
-[1] 24 24 51
-[1] 25 24 51
-[1] 26 24 46
-[1] 27 24 66
-[1] 28 24 33
-[1] 29 24 60
-[1] 30 24 68
-[1] 31 24 51
-[1] 32 24 42
-[1] 33 24 69
-[1] 34 24 45
-[1] 35 24 37
-[1] 36 24 66
-[1] 37 24 77
-[1] 38 24 37
-[1] 39 24 95
-[1] 40 24 59
-[1] 41 24 61
-[1] 42 24 54
-[1] 43 24 45
-[1] 44 24 50
-[1] 45 24 42
-[1] 46 24 50
-[1] 47 24 49
-[1] 48 24 48
-[1] 49 24 46
-[1] 50 24 63
-[1] 51 24 50
-[1] 52 24 55
-[1] 53 24 54
-[1] 54 24 55
-[1] 55 24 43
-[1] 56 24 83
-[1] 57 24 76
-[1] 58 24 37
-[1] 59 24 44
-[1] 60 24 43
-[1] 61 24 40
-[1] 62 24 54
-[1] 63 24 51
-[1] 64 24 46
-[1] 65 24 37
-[1] 66 24 60
-[1] 67 24 53
-[1] 68 24 29
-[1] 69 24 50
-[1] 70 24 37
-[1] 71 24 26
-[1] 72 24 51
-[1] 73 24 53
-[1] 74 24 40
-[1] 75 24 49
-[1] 76 24 43
-[1] 77 24 45
-[1] 78 24 55
-[1] 79 24 43
-[1] 80 24 44
-[1] 81 24 57
-[1] 82 24 37
-[1] 83 24 47
-[1] 84 24 37
-[1] 85 24 51
-[1] 86 24 62
-[1] 87 24 42
-[1] 88 24 40
-[1] 89 24 42
-[1] 90 24 66
-[1] 91 24 51
-[1] 92 24 73
-[1] 93 24 33
-[1] 94 24 56
-[1] 95 24 40
-[1] 96 24 62
-[1] 97 24 40
-[1] 98 24 75
-[1] 99 24 51
-[1] 100  24  33
-[1] 101  24  36
-[1] 102  24  96
-[1] 103  24  47
-[1] 104  24  46
-[1] 105  24  56
-[1] 106  24  35
-[1] 107  24  50
-[1] 108  24  42
-[1] 109  24  48
-[1] 110  24  55
-[1] 111  24  65
-[1] 112  24  51
-[1] 113  24  33
-[1] 114  24  41
-[1] 115  24  45
-[1] 116  24  59
-[1] 117  24  34
-[1] 118  24  45
-[1] 119  24  34
-[1] 120  24  53
-[1] 121  24  63
-[1] 122  24  43
-[1] 123  24  44
-[1] 124  24  36
-[1] 125  24  64
-[1] 126  24  40
-[1] 127  24  52
-[1] 128  24  40
-[1] 129  24  38
-[1] 130  24  45
-[1] 131  24  31
-[1] 132  24  34
-[1] 133  24  37
-[1] 134  24  75
-[1] 135  24  56
-[1] 136  24  37
-[1] 137  24  35
-[1] 138  24  60
-[1] 139  24  62
-[1] 140  24  50
-[1] 141  24  61
-[1] 142  24  49
-[1] 143  24  40
-[1] 144  24  43
-[1] 145  24  51
-[1] 146  24  35
-[1] 147  24  52
-[1] 148  24  39
-[1] 149  24  72
-[1] 150  24  39
-[1] 151  24  58
-[1] 152  24  57
-[1] 153  24  64
-[1] 154  24  56
-[1] 155  24  39
-[1] 156  24  69
-[1] 157  24  40
-[1] 158  24  46
-[1] 159  24  44
-[1] 160  24  31
-[1] 161  24  73
-[1] 162  24  41
-[1] 163  24  61
-[1] 164  24  48
-[1] 165  24  52
-[1] 166  24  42
-[1] 167  24  68
-[1] 168  24  52
-[1] 169  24  45
-[1] 170  24  36
-[1] 171  24  47
-[1] 172  24  45
-[1] 173  24  76
-[1] 174  24  50
-[1] 175  24  45
-[1] 176  24  42
-[1] 177  24  71
-[1] 178  24  52
-[1] 179  24  41
-[1] 180  24  38
-[1] 181  24  47
-[1] 182  24  32
-[1] 183  24  39
-[1] 184  24  53
-[1] 185  24  48
-[1] 186  24  47
-[1] 187  24  42
-[1] 188  24  37
-[1] 189  24  47
-[1] 190  24  62
-[1] 191  24  50
-[1] 192  24  52
-[1] 193  24  36
-[1] 194  24  53
-[1] 195  24  49
-[1] 196  24  51
-[1] 197  24  43
-[1] 198  24  41
-[1] 199  24  50
-[1] 200  24  55
-[1]  1 25 33
-[1]  2 25 47
-[1]  3 25 33
-[1]  4 25 62
-[1]  5 25 86
-[1]  6 25 45
-[1]  7 25 45
-[1]  8 25 38
-[1]  9 25 35
-[1] 10 25 38
-[1] 11 25 31
-[1] 12 25 62
-[1] 13 25 37
-[1] 14 25 57
-[1] 15 25 30
-[1] 16 25 37
-[1] 17 25 65
-[1] 18 25 72
-[1] 19 25 39
-[1] 20 25 84
-[1] 21 25 53
-[1] 22 25 52
-[1] 23 25 46
-[1] 24 25 51
-[1] 25 25 39
-[1] 26 25 54
-[1] 27 25 63
-[1] 28 25 57
-[1] 29 25 44
-[1] 30 25 51
-[1] 31 25 54
-[1] 32 25 38
-[1] 33 25 56
-[1] 34 25 47
-[1] 35 25 39
-[1] 36 25 55
-[1] 37 25 34
-[1] 38 25 47
-[1] 39 25 53
-[1] 40 25 56
-[1]  41  25 106
-[1] 42 25 49
-[1] 43 25 57
-[1] 44 25 61
-[1] 45 25 72
-[1] 46 25 43
-[1] 47 25 43
-[1] 48 25 52
-[1] 49 25 64
-[1] 50 25 61
-[1] 51 25 58
-[1] 52 25 73
-[1] 53 25 56
-[1] 54 25 72
-[1] 55 25 53
-[1] 56 25 81
-[1] 57 25 85
-[1] 58 25 87
-[1] 59 25 47
-[1] 60 25 50
-[1] 61 25 49
-[1] 62 25 48
-[1] 63 25 43
-[1] 64 25 31
-[1] 65 25 48
-[1] 66 25 41
-[1] 67 25 52
-[1] 68 25 49
-[1] 69 25 74
-[1] 70 25 56
-[1] 71 25 97
-[1] 72 25 35
-[1] 73 25 28
-[1] 74 25 34
-[1] 75 25 99
-[1] 76 25 72
-[1] 77 25 43
-[1] 78 25 53
-[1] 79 25 75
-[1] 80 25 56
-[1] 81 25 57
-[1] 82 25 46
-[1] 83 25 40
-[1] 84 25 56
-[1] 85 25 36
-[1] 86 25 47
-[1] 87 25 53
-[1] 88 25 46
-[1] 89 25 46
-[1] 90 25 50
-[1] 91 25 72
-[1] 92 25 48
-[1] 93 25 93
-[1] 94 25 50
-[1] 95 25 44
-[1] 96 25 74
-[1] 97 25 69
-[1] 98 25 62
-[1] 99 25 51
-[1] 100  25  47
-[1] 101  25  50
-[1] 102  25  32
-[1] 103  25  87
-[1] 104  25  56
-[1] 105  25  53
-[1] 106  25  60
-[1] 107  25  50
-[1] 108  25  58
-[1] 109  25  54
-[1] 110  25  39
-[1] 111  25  54
-[1] 112  25  63
-[1] 113  25  41
-[1] 114  25  44
-[1] 115  25  33
-[1] 116  25  50
-[1] 117  25  43
-[1] 118  25  46
-[1] 119  25  47
-[1] 120  25  54
-[1] 121  25  43
-[1] 122  25  53
-[1] 123  25  42
-[1] 124  25  60
-[1] 125  25 123
-[1] 126  25  86
-[1] 127  25  63
-[1] 128  25  61
-[1] 129  25  40
-[1] 130  25  53
-[1] 131  25  31
-[1] 132  25  41
-[1] 133  25  56
-[1] 134  25  32
-[1] 135  25  49
-[1] 136  25  41
-[1] 137  25  48
-[1] 138  25  37
-[1] 139  25  44
-[1] 140  25  45
-[1] 141  25  35
-[1] 142  25  70
-[1] 143  25  61
-[1] 144  25  49
-[1] 145  25  64
-[1] 146  25  56
-[1] 147  25  43
-[1] 148  25  42
-[1] 149  25  43
-[1] 150  25  34
-[1] 151  25  31
-[1] 152  25  57
-[1] 153  25  48
-[1] 154  25  41
-[1] 155  25  82
-[1] 156  25  51
-[1] 157  25  39
-[1] 158  25  50
-[1] 159  25  60
-[1] 160  25  49
-[1] 161  25  46
-[1] 162  25  56
-[1] 163  25  66
-[1] 164  25  63
-[1] 165  25  38
-[1] 166  25  51
-[1] 167  25  47
-[1] 168  25  43
-[1] 169  25  68
-[1] 170  25  40
-[1] 171  25  81
-[1] 172  25  43
-[1] 173  25  60
-[1] 174  25  41
-[1] 175  25  32
-[1] 176  25  91
-[1] 177  25  43
-[1] 178  25  60
-[1] 179  25  43
-[1] 180  25  57
-[1] 181  25  61
-[1] 182  25  51
-[1] 183  25  30
-[1] 184  25  78
-[1] 185  25  56
-[1] 186  25  43
-[1] 187  25  40
-[1] 188  25  30
-[1] 189  25  54
-[1] 190  25  43
-[1] 191  25  41
-[1] 192  25  38
-[1] 193  25  46
-[1] 194  25  78
-[1] 195  25  36
-[1] 196  25  63
-[1] 197  25  91
-[1] 198  25  37
-[1] 199  25  47
-[1] 200  25  48
-[1]  1 26 31
-[1]  2 26 45
-[1]  3 26 40
-[1]  4 26 32
-[1]  5 26 41
-[1]  6 26 53
-[1]  7 26 31
-[1]  8 26 38
-[1]  9 26 33
-[1] 10 26 58
-[1] 11 26 53
-[1] 12 26 72
-[1] 13 26 39
-[1] 14 26 46
-[1] 15 26 60
-[1] 16 26 53
-[1] 17 26 53
-[1] 18 26 51
-[1] 19 26 45
-[1] 20 26 70
-[1] 21 26 50
-[1] 22 26 40
-[1] 23 26 49
-[1] 24 26 51
-[1] 25 26 82
-[1] 26 26 35
-[1] 27 26 40
-[1] 28 26 43
-[1] 29 26 45
-[1] 30 26 38
-[1] 31 26 53
-[1] 32 26 40
-[1]  33  26 100
-[1] 34 26 40
-[1] 35 26 47
-[1] 36 26 38
-[1] 37 26 39
-[1] 38 26 52
-[1] 39 26 39
-[1] 40 26 70
-[1] 41 26 38
-[1] 42 26 40
-[1] 43 26 69
-[1] 44 26 61
-[1] 45 26 75
-[1] 46 26 37
-[1] 47 26 46
-[1] 48 26 58
-[1] 49 26 49
-[1] 50 26 50
-[1] 51 26 61
-[1] 52 26 35
-[1] 53 26 33
-[1] 54 26 43
-[1] 55 26 45
-[1] 56 26 42
-[1] 57 26 57
-[1] 58 26 45
-[1] 59 26 64
-[1] 60 26 61
-[1] 61 26 45
-[1] 62 26 46
-[1] 63 26 51
-[1] 64 26 64
-[1] 65 26 65
-[1] 66 26 50
-[1] 67 26 64
-[1] 68 26 54
-[1] 69 26 48
-[1] 70 26 35
-[1] 71 26 52
-[1] 72 26 45
-[1] 73 26 68
-[1] 74 26 55
-[1] 75 26 53
-[1] 76 26 60
-[1] 77 26 35
-[1] 78 26 45
-[1] 79 26 66
-[1] 80 26 38
-[1] 81 26 61
-[1] 82 26 58
-[1] 83 26 61
-[1] 84 26 45
-[1] 85 26 48
-[1] 86 26 53
-[1] 87 26 45
-[1] 88 26 46
-[1] 89 26 53
-[1] 90 26 43
-[1] 91 26 61
-[1] 92 26 66
-[1] 93 26 58
-[1] 94 26 43
-[1] 95 26 62
-[1] 96 26 38
-[1] 97 26 57
-[1] 98 26 59
-[1] 99 26 61
-[1] 100  26  59
-[1] 101  26  49
-[1] 102  26  36
-[1] 103  26  42
-[1] 104  26  36
-[1] 105  26  68
-[1] 106  26  71
-[1] 107  26  32
-[1] 108  26  72
-[1] 109  26  40
-[1] 110  26  42
-[1] 111  26  48
-[1] 112  26  67
-[1] 113  26  67
-[1] 114  26  48
-[1] 115  26 129
-[1] 116  26  44
-[1] 117  26  63
-[1] 118  26  29
-[1] 119  26  80
-[1] 120  26  52
-[1] 121  26  75
-[1] 122  26  35
-[1] 123  26  54
-[1] 124  26  52
-[1] 125  26  41
-[1] 126  26  63
-[1] 127  26  43
-[1] 128  26  33
-[1] 129  26  58
-[1] 130  26  48
-[1] 131  26  43
-[1] 132  26  50
-[1] 133  26  49
-[1] 134  26  41
-[1] 135  26  56
-[1] 136  26  45
-[1] 137  26  60
-[1] 138  26  42
-[1] 139  26  60
-[1] 140  26  34
-[1] 141  26  42
-[1] 142  26  38
-[1] 143  26  48
-[1] 144  26  43
-[1] 145  26  52
-[1] 146  26  53
-[1] 147  26  38
-[1] 148  26  38
-[1] 149  26  69
-[1] 150  26  33
-[1] 151  26  48
-[1] 152  26  46
-[1] 153  26  47
-[1] 154  26  37
-[1] 155  26  40
-[1] 156  26  85
-[1] 157  26  52
-[1] 158  26  49
-[1] 159  26  79
-[1] 160  26  39
-[1] 161  26  44
-[1] 162  26  26
-[1] 163  26  96
-[1] 164  26  47
-[1] 165  26  33
-[1] 166  26  58
-[1] 167  26  44
-[1] 168  26  40
-[1] 169  26  60
-[1] 170  26  31
-[1] 171  26  44
-[1] 172  26  59
-[1] 173  26  65
-[1] 174  26  64
-[1] 175  26  50
-[1] 176  26  47
-[1] 177  26  40
-[1] 178  26  45
-[1] 179  26  44
-[1] 180  26  57
-[1] 181  26  41
-[1] 182  26  38
-[1] 183  26  63
-[1] 184  26  48
-[1] 185  26  43
-[1] 186  26  41
-[1] 187  26  42
-[1] 188  26  36
-[1] 189  26  40
-[1] 190  26  55
-[1] 191  26  51
-[1] 192  26  66
-[1] 193  26  50
-[1] 194  26  39
-[1] 195  26  45
-[1] 196  26  55
-[1] 197  26  35
-[1] 198  26  36
-[1] 199  26  40
-[1] 200  26  66
-[1]  1 27 35
-[1]  2 27 33
-[1]  3 27 44
-[1]  4 27 38
-[1]  5 27 43
-[1]  6 27 49
-[1]  7 27 54
-[1]  8 27 79
-[1]  9 27 56
-[1] 10 27 31
-[1] 11 27 47
-[1] 12 27 60
-[1] 13 27 53
-[1] 14 27 38
-[1] 15 27 41
-[1] 16 27 65
-[1] 17 27 44
-[1] 18 27 71
-[1] 19 27 64
-[1] 20 27 45
-[1] 21 27 80
-[1] 22 27 35
-[1] 23 27 61
-[1] 24 27 90
-[1] 25 27 47
-[1] 26 27 68
-[1] 27 27 48
-[1] 28 27 81
-[1] 29 27 45
-[1] 30 27 48
-[1] 31 27 49
-[1] 32 27 45
-[1] 33 27 44
-[1] 34 27 70
-[1] 35 27 37
-[1] 36 27 35
-[1] 37 27 68
-[1] 38 27 35
-[1] 39 27 40
-[1] 40 27 54
-[1] 41 27 39
-[1] 42 27 43
-[1] 43 27 54
-[1] 44 27 37
-[1] 45 27 68
-[1] 46 27 80
-[1] 47 27 44
-[1] 48 27 34
-[1] 49 27 55
-[1] 50 27 37
-[1] 51 27 80
-[1] 52 27 42
-[1] 53 27 53
-[1] 54 27 60
-[1] 55 27 63
-[1] 56 27 46
-[1] 57 27 67
-[1] 58 27 69
-[1] 59 27 60
-[1] 60 27 71
-[1] 61 27 45
-[1] 62 27 44
-[1] 63 27 79
-[1] 64 27 64
-[1] 65 27 85
-[1] 66 27 34
-[1] 67 27 62
-[1] 68 27 43
-[1] 69 27 47
-[1] 70 27 53
-[1] 71 27 58
-[1] 72 27 54
-[1] 73 27 47
-[1] 74 27 51
-[1] 75 27 79
-[1] 76 27 74
-[1] 77 27 42
-[1] 78 27 45
-[1] 79 27 56
-[1] 80 27 48
-[1] 81 27 41
-[1] 82 27 50
-[1] 83 27 40
-[1] 84 27 46
-[1] 85 27 82
-[1] 86 27 61
-[1] 87 27 59
-[1] 88 27 38
-[1] 89 27 59
-[1] 90 27 79
-[1] 91 27 64
-[1] 92 27 53
-[1] 93 27 52
-[1]  94  27 101
-[1] 95 27 52
-[1] 96 27 44
-[1] 97 27 61
-[1] 98 27 46
-[1] 99 27 67
-[1] 100  27  57
-[1] 101  27  56
-[1] 102  27  47
-[1] 103  27  47
-[1] 104  27  56
-[1] 105  27  47
-[1] 106  27  32
-[1] 107  27  65
-[1] 108  27  66
-[1] 109  27  41
-[1] 110  27  70
-[1] 111  27  65
-[1] 112  27  53
-[1] 113  27  36
-[1] 114  27  58
-[1] 115  27  49
-[1] 116  27  53
-[1] 117  27  61
-[1] 118  27  60
-[1] 119  27  53
-[1] 120  27  56
-[1] 121  27  57
-[1] 122  27  49
-[1] 123  27  45
-[1] 124  27  48
-[1] 125  27  54
-[1] 126  27  44
-[1] 127  27  51
-[1] 128  27  53
-[1] 129  27  43
-[1] 130  27  66
-[1] 131  27  96
-[1] 132  27  53
-[1] 133  27  44
-[1] 134  27  37
-[1] 135  27  32
-[1] 136  27  45
-[1] 137  27  64
-[1] 138  27  47
-[1] 139  27  47
-[1] 140  27  49
-[1] 141  27  48
-[1] 142  27  48
-[1] 143  27  55
-[1] 144  27  86
-[1] 145  27  51
-[1] 146  27  73
-[1] 147  27  42
-[1] 148  27  63
-[1] 149  27  40
-[1] 150  27  48
-[1] 151  27  44
-[1] 152  27  50
-[1] 153  27  54
-[1] 154  27  39
-[1] 155  27  61
-[1] 156  27  41
-[1] 157  27  41
-[1] 158  27  51
-[1] 159  27  51
-[1] 160  27  33
-[1] 161  27  96
-[1] 162  27  46
-[1] 163  27  68
-[1] 164  27  52
-[1] 165  27  54
-[1] 166  27  42
-[1] 167  27  38
-[1] 168  27  72
-[1] 169  27  50
-[1] 170  27  52
-[1] 171  27  46
-[1] 172  27  44
-[1] 173  27  60
-[1] 174  27  47
-[1] 175  27  41
-[1] 176  27  44
-[1] 177  27  38
-[1] 178  27  49
-[1] 179  27  46
-[1] 180  27  39
-[1] 181  27  37
-[1] 182  27  33
-[1] 183  27  46
-[1] 184  27  57
-[1] 185  27  52
-[1] 186  27  73
-[1] 187  27  60
-[1] 188  27  51
-[1] 189  27  28
-[1] 190  27  47
-[1] 191  27  39
-[1] 192  27  50
-[1] 193  27  48
-[1] 194  27  43
-[1] 195  27  49
-[1] 196  27  54
-[1] 197  27  41
-[1] 198  27  42
-[1] 199  27  33
-[1] 200  27  49
-[1]  1 28 36
-[1]  2 28 44
-[1]  3 28 44
-[1]  4 28 31
-[1]  5 28 61
-[1]  6 28 56
-[1]  7 28 44
-[1]  8 28 37
-[1]  9 28 45
-[1] 10 28 32
-[1] 11 28 44
-[1] 12 28 50
-[1] 13 28 76
-[1] 14 28 51
-[1] 15 28 71
-[1] 16 28 41
-[1] 17 28 43
-[1] 18 28 56
-[1] 19 28 37
-[1] 20 28 67
-[1] 21 28 95
-[1] 22 28 56
-[1] 23 28 38
-[1] 24 28 83
-[1] 25 28 44
-[1] 26 28 47
-[1] 27 28 95
-[1] 28 28 40
-[1]  29  28 115
-[1] 30 28 46
-[1] 31 28 49
-[1] 32 28 66
-[1] 33 28 58
-[1] 34 28 32
-[1] 35 28 50
-[1] 36 28 36
-[1] 37 28 51
-[1] 38 28 39
-[1] 39 28 52
-[1] 40 28 42
-[1] 41 28 69
-[1] 42 28 49
-[1] 43 28 56
-[1] 44 28 48
-[1] 45 28 40
-[1] 46 28 54
-[1] 47 28 40
-[1] 48 28 58
-[1] 49 28 56
-[1] 50 28 48
-[1] 51 28 52
-[1] 52 28 46
-[1] 53 28 70
-[1] 54 28 39
-[1] 55 28 70
-[1] 56 28 81
-[1] 57 28 34
-[1] 58 28 67
-[1] 59 28 53
-[1] 60 28 36
-[1] 61 28 55
-[1] 62 28 64
-[1] 63 28 54
-[1] 64 28 47
-[1] 65 28 47
-[1] 66 28 39
-[1] 67 28 77
-[1] 68 28 72
-[1] 69 28 66
-[1] 70 28 33
-[1] 71 28 46
-[1] 72 28 44
-[1] 73 28 57
-[1] 74 28 54
-[1] 75 28 53
-[1] 76 28 32
-[1] 77 28 48
-[1] 78 28 41
-[1] 79 28 80
-[1] 80 28 42
-[1] 81 28 37
-[1] 82 28 39
-[1] 83 28 66
-[1] 84 28 95
-[1] 85 28 68
-[1] 86 28 51
-[1] 87 28 40
-[1] 88 28 72
-[1] 89 28 50
-[1] 90 28 42
-[1] 91 28 45
-[1] 92 28 39
-[1] 93 28 71
-[1] 94 28 46
-[1] 95 28 62
-[1] 96 28 49
-[1] 97 28 64
-[1] 98 28 44
-[1] 99 28 46
-[1] 100  28  38
-[1] 101  28  65
-[1] 102  28  51
-[1] 103  28  53
-[1] 104  28  37
-[1] 105  28  64
-[1] 106  28  41
-[1] 107  28  47
-[1] 108  28  62
-[1] 109  28  44
-[1] 110  28  63
-[1] 111  28  51
-[1] 112  28  70
-[1] 113  28  61
-[1] 114  28  52
-[1] 115  28  37
-[1] 116  28  44
-[1] 117  28  65
-[1] 118  28  67
-[1] 119  28  32
-[1] 120  28  62
-[1] 121  28  45
-[1] 122  28  47
-[1] 123  28  81
-[1] 124  28  47
-[1] 125  28  54
-[1] 126  28  42
-[1] 127  28  61
-[1] 128  28  70
-[1] 129  28  55
-[1] 130  28  46
-[1] 131  28  75
-[1] 132  28  42
-[1] 133  28  34
-[1] 134  28  36
-[1] 135  28  54
-[1] 136  28  40
-[1] 137  28  53
-[1] 138  28  53
-[1] 139  28  44
-[1] 140  28  42
-[1] 141  28  55
-[1] 142  28  60
-[1] 143  28  50
-[1] 144  28  60
-[1] 145  28  55
-[1] 146  28  47
-[1] 147  28  42
-[1] 148  28  41
-[1] 149  28  46
-[1] 150  28  32
-[1] 151  28  43
-[1] 152  28  37
-[1] 153  28  29
-[1] 154  28  52
-[1] 155  28  44
-[1] 156  28  47
-[1] 157  28  31
-[1] 158  28  83
-[1] 159  28  52
-[1] 160  28  48
-[1] 161  28  42
-[1] 162  28  62
-[1] 163  28  66
-[1] 164  28  38
-[1] 165  28  65
-[1] 166  28  58
-[1] 167  28  86
-[1] 168  28  37
-[1] 169  28  49
-[1] 170  28  58
-[1] 171  28  40
-[1] 172  28  62
-[1] 173  28  52
-[1] 174  28  43
-[1] 175  28  50
-[1] 176  28  56
-[1] 177  28  36
-[1] 178  28  40
-[1] 179  28  58
-[1] 180  28  47
-[1] 181  28  38
-[1] 182  28  42
-[1] 183  28  49
-[1] 184  28  36
-[1] 185  28  70
-[1] 186  28  45
-[1] 187  28  51
-[1] 188  28  42
-[1] 189  28  45
-[1] 190  28  68
-[1] 191  28  31
-[1] 192  28  50
-[1] 193  28  49
-[1] 194  28  85
-[1] 195  28  61
-[1] 196  28  37
-[1] 197  28  41
-[1] 198  28  40
-[1] 199  28  47
-[1] 200  28  57
-[1]  1 29 37
-[1]  2 29 39
-[1]  3 29 33
-[1]  4 29 46
-[1]  5 29 41
-[1]  6 29 32
-[1]  7 29 54
-[1]  8 29 43
-[1]  9 29 33
-[1] 10 29 58
-[1] 11 29 31
-[1] 12 29 32
-[1] 13 29 37
-[1] 14 29 36
-[1] 15 29 57
-[1] 16 29 48
-[1] 17 29 82
-[1] 18 29 35
-[1] 19 29 40
-[1] 20 29 50
-[1] 21 29 36
-[1] 22 29 59
-[1] 23 29 52
-[1] 24 29 39
-[1] 25 29 40
-[1] 26 29 65
-[1] 27 29 48
-[1] 28 29 45
-[1] 29 29 85
-[1] 30 29 56
-[1] 31 29 39
-[1] 32 29 66
-[1] 33 29 39
-[1] 34 29 42
-[1] 35 29 69
-[1] 36 29 55
-[1] 37 29 46
-[1] 38 29 66
-[1] 39 29 43
-[1] 40 29 41
-[1] 41 29 35
-[1] 42 29 63
-[1] 43 29 48
-[1] 44 29 78
-[1] 45 29 42
-[1] 46 29 46
-[1] 47 29 39
-[1] 48 29 44
-[1] 49 29 44
-[1] 50 29 54
-[1] 51 29 65
-[1] 52 29 40
-[1] 53 29 53
-[1] 54 29 64
-[1] 55 29 71
-[1] 56 29 49
-[1] 57 29 50
-[1] 58 29 51
-[1] 59 29 50
-[1] 60 29 71
-[1] 61 29 58
-[1] 62 29 57
-[1] 63 29 84
-[1] 64 29 50
-[1] 65 29 56
-[1] 66 29 56
-[1] 67 29 63
-[1] 68 29 46
-[1] 69 29 55
-[1] 70 29 69
-[1] 71 29 54
-[1] 72 29 48
-[1] 73 29 73
-[1] 74 29 41
-[1] 75 29 40
-[1] 76 29 74
-[1] 77 29 31
-[1] 78 29 55
-[1] 79 29 51
-[1] 80 29 64
-[1] 81 29 50
-[1] 82 29 68
-[1] 83 29 62
-[1] 84 29 65
-[1] 85 29 48
-[1] 86 29 57
-[1] 87 29 82
-[1] 88 29 31
-[1] 89 29 66
-[1] 90 29 73
-[1] 91 29 37
-[1] 92 29 64
-[1] 93 29 50
-[1] 94 29 50
-[1] 95 29 62
-[1] 96 29 62
-[1] 97 29 52
-[1] 98 29 48
-[1] 99 29 63
-[1] 100  29  50
-[1] 101  29  58
-[1] 102  29  41
-[1] 103  29  40
-[1] 104  29  55
-[1] 105  29  46
-[1] 106  29  53
-[1] 107  29 100
-[1] 108  29  56
-[1] 109  29  49
-[1] 110  29  55
-[1] 111  29  44
-[1] 112  29  31
-[1] 113  29  50
-[1] 114  29  48
-[1] 115  29  41
-[1] 116  29  59
-[1] 117  29  65
-[1] 118  29  37
-[1] 119  29  54
-[1] 120  29  48
-[1] 121  29  79
-[1] 122  29  54
-[1] 123  29  39
-[1] 124  29  42
-[1] 125  29  53
-[1] 126  29  35
-[1] 127  29  46
-[1] 128  29  38
-[1] 129  29  35
-[1] 130  29  45
-[1] 131  29  50
-[1] 132  29  36
-[1] 133  29  64
-[1] 134  29  56
-[1] 135  29  57
-[1] 136  29  67
-[1] 137  29  54
-[1] 138  29  50
-[1] 139  29  61
-[1] 140  29  40
-[1] 141  29  37
-[1] 142  29  37
-[1] 143  29  68
-[1] 144  29  40
-[1] 145  29  63
-[1] 146  29  57
-[1] 147  29  38
-[1] 148  29  41
-[1] 149  29  35
-[1] 150  29  53
-[1] 151  29  55
-[1] 152  29  55
-[1] 153  29  40
-[1] 154  29  47
-[1] 155  29  36
-[1] 156  29  43
-[1] 157  29  49
-[1] 158  29  40
-[1] 159  29  51
-[1] 160  29  60
-[1] 161  29  41
-[1] 162  29  62
-[1] 163  29  47
-[1] 164  29  61
-[1] 165  29  46
-[1] 166  29  94
-[1] 167  29  72
-[1] 168  29  54
-[1] 169  29  54
-[1] 170  29  41
-[1] 171  29  68
-[1] 172  29  32
-[1] 173  29  37
-[1] 174  29  60
-[1] 175  29  44
-[1] 176  29  42
-[1] 177  29  41
-[1] 178  29  44
-[1] 179  29  41
-[1] 180  29  33
-[1] 181  29  61
-[1] 182  29  56
-[1] 183  29  42
-[1] 184  29  65
-[1] 185  29  58
-[1] 186  29  51
-[1] 187  29  40
-[1] 188  29  51
-[1] 189  29  42
-[1] 190  29  45
-[1] 191  29  41
-[1] 192  29  33
-[1] 193  29  48
-[1] 194  29  40
-[1] 195  29  81
-[1] 196  29  84
-[1] 197  29  59
-[1] 198  29  77
-[1] 199  29  74
-[1] 200  29  37
-[1]  1 30 31
-[1]  2 30 41
-[1]  3 30 40
-[1]  4 30 35
-[1]  5 30 44
-[1]  6 30 30
-[1]  7 30 53
-[1]  8 30 45
-[1]  9 30 32
-[1] 10 30 41
-[1] 11 30 40
-[1] 12 30 51
-[1] 13 30 45
-[1] 14 30 36
-[1] 15 30 37
-[1] 16 30 49
-[1] 17 30 51
-[1] 18 30 74
-[1] 19 30 48
-[1] 20 30 65
-[1] 21 30 51
-[1] 22 30 63
-[1] 23 30 67
-[1] 24 30 59
-[1] 25 30 56
-[1] 26 30 71
-[1] 27 30 43
-[1] 28 30 84
-[1] 29 30 38
-[1] 30 30 38
-[1] 31 30 36
-[1] 32 30 64
-[1] 33 30 46
-[1] 34 30 36
-[1] 35 30 67
-[1] 36 30 61
-[1] 37 30 60
-[1] 38 30 46
-[1] 39 30 47
-[1] 40 30 40
-[1] 41 30 66
-[1] 42 30 32
-[1] 43 30 52
-[1] 44 30 55
-[1] 45 30 47
-[1] 46 30 38
-[1] 47 30 65
-[1] 48 30 55
-[1] 49 30 69
-[1] 50 30 57
-[1] 51 30 45
-[1] 52 30 55
-[1] 53 30 53
-[1] 54 30 73
-[1] 55 30 57
-[1] 56 30 50
-[1] 57 30 49
-[1] 58 30 39
-[1] 59 30 58
-[1] 60 30 39
-[1] 61 30 66
-[1] 62 30 58
-[1] 63 30 50
-[1] 64 30 42
-[1] 65 30 53
-[1] 66 30 46
-[1] 67 30 55
-[1] 68 30 38
-[1] 69 30 61
-[1] 70 30 47
-[1]  71  30 112
-[1] 72 30 87
-[1] 73 30 66
-[1] 74 30 38
-[1] 75 30 69
-[1] 76 30 51
-[1] 77 30 44
-[1] 78 30 57
-[1] 79 30 42
-[1] 80 30 47
-[1] 81 30 90
-[1] 82 30 49
-[1] 83 30 46
-[1] 84 30 81
-[1] 85 30 91
-[1] 86 30 77
-[1] 87 30 62
-[1] 88 30 39
-[1] 89 30 56
-[1] 90 30 46
-[1] 91 30 75
-[1] 92 30 47
-[1] 93 30 59
-[1] 94 30 46
-[1] 95 30 46
-[1] 96 30 52
-[1] 97 30 47
-[1] 98 30 54
-[1] 99 30 49
-[1] 100  30  48
-[1] 101  30  72
-[1] 102  30  38
-[1] 103  30  64
-[1] 104  30  74
-[1] 105  30  47
-[1] 106  30  59
-[1] 107  30  34
-[1] 108  30  60
-[1] 109  30  37
-[1] 110  30  58
-[1] 111  30  43
-[1] 112  30  39
-[1] 113  30  55
-[1] 114  30  60
-[1] 115  30  55
-[1] 116  30  50
-[1] 117  30  42
-[1] 118  30  64
-[1] 119  30  39
-[1] 120  30  41
-[1] 121  30  59
-[1] 122  30  39
-[1] 123  30  60
-[1] 124  30  33
-[1] 125  30  44
-[1] 126  30  43
-[1] 127  30  61
-[1] 128  30  52
-[1] 129  30  46
-[1] 130  30  41
-[1] 131  30  44
-[1] 132  30  34
-[1] 133  30  55
-[1] 134  30  81
-[1] 135  30  44
-[1] 136  30  32
-[1] 137  30  73
-[1] 138  30  47
-[1] 139  30  75
-[1] 140  30  36
-[1] 141  30  41
-[1] 142  30  42
-[1] 143  30  76
-[1] 144  30  49
-[1] 145  30  56
-[1] 146  30  49
-[1] 147  30  53
-[1] 148  30  50
-[1] 149  30  42
-[1] 150  30  49
-[1] 151  30  43
-[1] 152  30  53
-[1] 153  30  50
-[1] 154  30  42
-[1] 155  30  34
-[1] 156  30  65
-[1] 157  30  51
-[1] 158  30  51
-[1] 159  30  53
-[1] 160  30  60
-[1] 161  30  40
-[1] 162  30  44
-[1] 163  30  48
-[1] 164  30  46
-[1] 165  30  53
-[1] 166  30  58
-[1] 167  30  59
-[1] 168  30  36
-[1] 169  30  63
-[1] 170  30  58
-[1] 171  30  55
-[1] 172  30  37
-[1] 173  30  46
-[1] 174  30  38
-[1] 175  30  95
-[1] 176  30  35
-[1] 177  30  44
-[1] 178  30  43
-[1] 179  30  58
-[1] 180  30  54
-[1] 181  30  39
-[1] 182  30  42
-[1] 183  30  51
-[1] 184  30  57
-[1] 185  30  50
-[1] 186  30  35
-[1] 187  30  46
-[1] 188  30  47
-[1] 189  30  39
-[1] 190  30  54
-[1] 191  30  47
-[1] 192  30  46
-[1] 193  30  58
-[1] 194  30  61
-[1] 195  30  47
-[1] 196  30  32
-[1] 197  30  45
-[1] 198  30  50
-[1] 199  30  42
-[1] 200  30  56
-[1]  1 31 27
-[1]  2 31 35
-[1]  3 31 38
-[1]  4 31 52
-[1]  5 31 55
-[1]  6 31 48
-[1]  7 31 44
-[1]  8 31 34
-[1]  9 31 51
-[1] 10 31 44
-[1] 11 31 26
-[1] 12 31 57
-[1] 13 31 43
-[1] 14 31 41
-[1] 15 31 62
-[1] 16 31 37
-[1] 17 31 46
-[1] 18 31 42
-[1] 19 31 51
-[1] 20 31 47
-[1] 21 31 73
-[1] 22 31 67
-[1] 23 31 43
-[1] 24 31 48
-[1] 25 31 41
-[1] 26 31 64
-[1] 27 31 62
-[1] 28 31 50
-[1] 29 31 43
-[1] 30 31 43
-[1] 31 31 56
-[1] 32 31 49
-[1] 33 31 53
-[1] 34 31 40
-[1] 35 31 61
-[1] 36 31 40
-[1] 37 31 97
-[1] 38 31 47
-[1] 39 31 52
-[1] 40 31 51
-[1] 41 31 46
-[1] 42 31 83
-[1] 43 31 46
-[1] 44 31 69
-[1] 45 31 36
-[1] 46 31 55
-[1] 47 31 63
-[1] 48 31 39
-[1] 49 31 33
-[1] 50 31 49
-[1] 51 31 36
-[1] 52 31 44
-[1] 53 31 43
-[1] 54 31 35
-[1] 55 31 49
-[1] 56 31 55
-[1] 57 31 52
-[1] 58 31 49
-[1] 59 31 50
-[1] 60 31 39
-[1] 61 31 39
-[1] 62 31 85
-[1] 63 31 47
-[1] 64 31 65
-[1] 65 31 74
-[1] 66 31 58
-[1] 67 31 37
-[1]  68  31 142
-[1] 69 31 49
-[1] 70 31 37
-[1] 71 31 84
-[1] 72 31 63
-[1] 73 31 41
-[1] 74 31 60
-[1] 75 31 54
-[1] 76 31 41
-[1] 77 31 65
-[1] 78 31 59
-[1] 79 31 72
-[1] 80 31 35
-[1] 81 31 72
-[1] 82 31 53
-[1] 83 31 56
-[1] 84 31 61
-[1] 85 31 44
-[1] 86 31 65
-[1] 87 31 98
-[1] 88 31 56
-[1] 89 31 62
-[1] 90 31 74
-[1] 91 31 79
-[1] 92 31 43
-[1] 93 31 79
-[1] 94 31 48
-[1] 95 31 42
-[1] 96 31 46
-[1] 97 31 59
-[1] 98 31 53
-[1] 99 31 39
-[1] 100  31  51
-[1] 101  31  56
-[1] 102  31  58
-[1] 103  31  56
-[1] 104  31  43
-[1] 105  31  59
-[1] 106  31  35
-[1] 107  31  50
-[1] 108  31  45
-[1] 109  31  59
-[1] 110  31  52
-[1] 111  31  48
-[1] 112  31  53
-[1] 113  31  39
-[1] 114  31  42
-[1] 115  31  53
-[1] 116  31  50
-[1] 117  31  35
-[1] 118  31  54
-[1] 119  31  43
-[1] 120  31  45
-[1] 121  31  42
-[1] 122  31  53
-[1] 123  31  38
-[1] 124  31  45
-[1] 125  31  41
-[1] 126  31  48
-[1] 127  31  46
-[1] 128  31  45
-[1] 129  31  67
-[1] 130  31  55
-[1] 131  31  42
-[1] 132  31  39
-[1] 133  31  46
-[1] 134  31  41
-[1] 135  31  35
-[1] 136  31  42
-[1] 137  31  52
-[1] 138  31  47
-[1] 139  31  42
-[1] 140  31  37
-[1] 141  31  47
-[1] 142  31  52
-[1] 143  31  34
-[1] 144  31  70
-[1] 145  31  32
-[1] 146  31  45
-[1] 147  31  44
-[1] 148  31  41
-[1] 149  31  45
-[1] 150  31  73
-[1] 151  31  46
-[1] 152  31  46
-[1] 153  31  40
-[1] 154  31  56
-[1] 155  31  42
-[1] 156  31  48
-[1] 157  31  51
-[1] 158  31  61
-[1] 159  31  55
-[1] 160  31  47
-[1] 161  31  58
-[1] 162  31  66
-[1] 163  31  73
-[1] 164  31  61
-[1] 165  31  90
-[1] 166  31  55
-[1] 167  31  39
-[1] 168  31  54
-[1] 169  31  53
-[1] 170  31  44
-[1] 171  31  31
-[1] 172  31  32
-[1] 173  31  36
-[1] 174  31  65
-[1] 175  31  49
-[1] 176  31  43
-[1] 177  31  86
-[1] 178  31  40
-[1] 179  31  54
-[1] 180  31  47
-[1] 181  31  51
-[1] 182  31  75
-[1] 183  31  42
-[1] 184  31  52
-[1] 185  31  33
-[1] 186  31  56
-[1] 187  31  52
-[1] 188  31  52
-[1] 189  31  49
-[1] 190  31  47
-[1] 191  31  44
-[1] 192  31  44
-[1] 193  31  44
-[1] 194  31  51
-[1] 195  31  58
-[1] 196  31  34
-[1] 197  31  41
-[1] 198  31  48
-[1] 199  31  40
-[1] 200  31  50
-[1]  1 32 41
-[1]  2 32 33
-[1]  3 32 36
-[1]  4 32 53
-[1]  5 32 28
-[1]  6 32 36
-[1]  7 32 56
-[1]  8 32 65
-[1]  9 32 44
-[1] 10 32 44
-[1] 11 32 47
-[1] 12 32 49
-[1] 13 32 51
-[1] 14 32 39
-[1] 15 32 36
-[1] 16 32 47
-[1] 17 32 53
-[1] 18 32 39
-[1] 19 32 39
-[1] 20 32 40
-[1] 21 32 48
-[1] 22 32 38
-[1] 23 32 55
-[1] 24 32 53
-[1] 25 32 42
-[1] 26 32 35
-[1] 27 32 54
-[1] 28 32 63
-[1] 29 32 55
-[1] 30 32 54
-[1] 31 32 95
-[1] 32 32 39
-[1] 33 32 42
-[1] 34 32 47
-[1] 35 32 44
-[1] 36 32 83
-[1] 37 32 70
-[1] 38 32 45
-[1] 39 32 62
-[1] 40 32 42
-[1] 41 32 30
-[1] 42 32 72
-[1] 43 32 55
-[1] 44 32 44
-[1] 45 32 50
-[1] 46 32 37
-[1] 47 32 47
-[1] 48 32 50
-[1] 49 32 81
-[1] 50 32 66
-[1] 51 32 59
-[1] 52 32 72
-[1] 53 32 47
-[1] 54 32 39
-[1] 55 32 46
-[1] 56 32 58
-[1] 57 32 56
-[1] 58 32 68
-[1] 59 32 77
-[1] 60 32 39
-[1]  61  32 108
-[1] 62 32 32
-[1] 63 32 41
-[1] 64 32 52
-[1] 65 32 51
-[1] 66 32 34
-[1] 67 32 47
-[1] 68 32 60
-[1]  69  32 100
-[1] 70 32 56
-[1] 71 32 59
-[1] 72 32 58
-[1] 73 32 52
-[1] 74 32 75
-[1] 75 32 58
-[1] 76 32 53
-[1] 77 32 49
-[1] 78 32 42
-[1]  79  32 119
-[1] 80 32 41
-[1] 81 32 54
-[1] 82 32 42
-[1] 83 32 39
-[1] 84 32 47
-[1] 85 32 46
-[1] 86 32 65
-[1] 87 32 53
-[1] 88 32 52
-[1] 89 32 97
-[1] 90 32 47
-[1] 91 32 45
-[1] 92 32 50
-[1] 93 32 74
-[1] 94 32 70
-[1] 95 32 47
-[1] 96 32 52
-[1] 97 32 61
-[1] 98 32 41
-[1] 99 32 65
-[1] 100  32  62
-[1] 101  32  58
-[1] 102  32  59
-[1] 103  32  41
-[1] 104  32  52
-[1] 105  32  41
-[1] 106  32 142
-[1] 107  32  48
-[1] 108  32  53
-[1] 109  32  42
-[1] 110  32  66
-[1] 111  32  58
-[1] 112  32  36
-[1] 113  32  54
-[1] 114  32  39
-[1] 115  32  38
-[1] 116  32  58
-[1] 117  32  69
-[1] 118  32  74
-[1] 119  32  65
-[1] 120  32  52
-[1] 121  32  54
-[1] 122  32  44
-[1] 123  32  31
-[1] 124  32  63
-[1] 125  32  53
-[1] 126  32  46
-[1] 127  32  50
-[1] 128  32  81
-[1] 129  32  46
-[1] 130  32  43
-[1] 131  32  56
-[1] 132  32  53
-[1] 133  32  44
-[1] 134  32  56
-[1] 135  32  32
-[1] 136  32  38
-[1] 137  32  43
-[1] 138  32  75
-[1] 139  32  35
-[1] 140  32  60
-[1] 141  32  34
-[1] 142  32  39
-[1] 143  32  45
-[1] 144  32  57
-[1] 145  32  48
-[1] 146  32  33
-[1] 147  32  40
-[1] 148  32  54
-[1] 149  32  35
-[1] 150  32  41
-[1] 151  32  45
-[1] 152  32  56
-[1] 153  32  62
-[1] 154  32  65
-[1] 155  32  54
-[1] 156  32  37
-[1] 157  32  56
-[1] 158  32  44
-[1] 159  32  53
-[1] 160  32  51
-[1] 161  32  39
-[1] 162  32  36
-[1] 163  32  82
-[1] 164  32  63
-[1] 165  32  78
-[1] 166  32  57
-[1] 167  32  34
-[1] 168  32  64
-[1] 169  32 100
-[1] 170  32  65
-[1] 171  32  78
-[1] 172  32  37
-[1] 173  32  42
-[1] 174  32  43
-[1] 175  32  44
-[1] 176  32  87
-[1] 177  32  39
-[1] 178  32  39
-[1] 179  32  42
-[1] 180  32  66
-[1] 181  32  39
-[1] 182  32  52
-[1] 183  32  37
-[1] 184  32  45
-[1] 185  32  31
-[1] 186  32  44
-[1] 187  32  57
-[1] 188  32  50
-[1] 189  32  34
-[1] 190  32  44
-[1] 191  32  39
-[1] 192  32  36
-[1] 193  32  60
-[1] 194  32  45
-[1] 195  32  64
-[1] 196  32  40
-[1] 197  32  59
-[1] 198  32  36
-[1] 199  32  57
-[1] 200  32 107
-[1]  1 33 37
-[1]  2 33 35
-[1]  3 33 34
-[1]  4 33 51
-[1]  5 33 34
-[1]  6 33 41
-[1]  7 33 50
-[1]  8 33 31
-[1]  9 33 40
-[1] 10 33 37
-[1] 11 33 41
-[1] 12 33 40
-[1] 13 33 29
-[1] 14 33 46
-[1] 15 33 35
-[1] 16 33 34
-[1] 17 33 32
-[1] 18 33 37
-[1] 19 33 45
-[1] 20 33 32
-[1] 21 33 57
-[1] 22 33 41
-[1] 23 33 38
-[1] 24 33 34
-[1] 25 33 35
-[1] 26 33 59
-[1] 27 33 34
-[1] 28 33 49
-[1] 29 33 66
-[1] 30 33 57
-[1] 31 33 42
-[1] 32 33 81
-[1] 33 33 51
-[1] 34 33 47
-[1] 35 33 61
-[1] 36 33 44
-[1] 37 33 45
-[1] 38 33 39
-[1] 39 33 80
-[1] 40 33 45
-[1] 41 33 50
-[1] 42 33 45
-[1] 43 33 51
-[1] 44 33 46
-[1] 45 33 49
-[1] 46 33 30
-[1] 47 33 61
-[1] 48 33 70
-[1] 49 33 39
-[1] 50 33 41
-[1] 51 33 50
-[1] 52 33 57
-[1] 53 33 44
-[1] 54 33 73
-[1] 55 33 44
-[1] 56 33 69
-[1] 57 33 54
-[1] 58 33 46
-[1] 59 33 45
-[1] 60 33 49
-[1] 61 33 59
-[1] 62 33 50
-[1] 63 33 39
-[1] 64 33 46
-[1] 65 33 41
-[1] 66 33 60
-[1] 67 33 41
-[1] 68 33 38
-[1] 69 33 42
-[1] 70 33 55
-[1] 71 33 46
-[1] 72 33 74
-[1] 73 33 61
-[1] 74 33 43
-[1] 75 33 95
-[1] 76 33 61
-[1] 77 33 57
-[1] 78 33 46
-[1] 79 33 50
-[1] 80 33 59
-[1] 81 33 42
-[1] 82 33 82
-[1] 83 33 52
-[1] 84 33 50
-[1] 85 33 48
-[1] 86 33 94
-[1] 87 33 55
-[1] 88 33 67
-[1] 89 33 67
-[1] 90 33 50
-[1] 91 33 63
-[1] 92 33 46
-[1] 93 33 71
-[1] 94 33 64
-[1] 95 33 70
-[1] 96 33 57
-[1] 97 33 47
-[1]  98  33 104
-[1] 99 33 47
-[1] 100  33  66
-[1] 101  33  43
-[1] 102  33  47
-[1] 103  33  94
-[1] 104  33  57
-[1] 105  33  41
-[1] 106  33  58
-[1] 107  33  45
-[1] 108  33  49
-[1] 109  33  39
-[1] 110  33  45
-[1] 111  33  47
-[1] 112  33  46
-[1] 113  33  51
-[1] 114  33  44
-[1] 115  33  65
-[1] 116  33  43
-[1] 117  33  51
-[1] 118  33  69
-[1] 119  33  58
-[1] 120  33  57
-[1] 121  33  75
-[1] 122  33  40
-[1] 123  33  51
-[1] 124  33  39
-[1] 125  33  64
-[1] 126  33  46
-[1] 127  33  57
-[1] 128  33  35
-[1] 129  33  59
-[1] 130  33  72
-[1] 131  33  38
-[1] 132  33  47
-[1] 133  33  49
-[1] 134  33  70
-[1] 135  33  32
-[1] 136  33  42
-[1] 137  33  40
-[1] 138  33  50
-[1] 139  33  50
-[1] 140  33  36
-[1] 141  33  66
-[1] 142  33  88
-[1] 143  33  79
-[1] 144  33  42
-[1] 145  33  65
-[1] 146  33  56
-[1] 147  33  55
-[1] 148  33  58
-[1] 149  33  33
-[1] 150  33  48
-[1] 151  33  37
-[1] 152  33  40
-[1] 153  33  34
-[1] 154  33  72
-[1] 155  33  25
-[1] 156  33  35
-[1] 157  33  35
-[1] 158  33  37
-[1] 159  33  48
-[1] 160  33  45
-[1] 161  33  50
-[1] 162  33  53
-[1] 163  33  52
-[1] 164  33  63
-[1] 165  33  51
-[1] 166  33  38
-[1] 167  33  65
-[1] 168  33  50
-[1] 169  33  41
-[1] 170  33  73
-[1] 171  33  56
-[1] 172  33  42
-[1] 173  33  45
-[1] 174  33  44
-[1] 175  33  39
-[1] 176  33  72
-[1] 177  33  53
-[1] 178  33  53
-[1] 179  33  56
-[1] 180  33  46
-[1] 181  33  81
-[1] 182  33  39
-[1] 183  33  78
-[1] 184  33  34
-[1] 185  33  45
-[1] 186  33  51
-[1] 187  33  37
-[1] 188  33  38
-[1] 189  33  55
-[1] 190  33  40
-[1] 191  33  58
-[1] 192  33  49
-[1] 193  33  51
-[1] 194  33  54
-[1] 195  33  37
-[1] 196  33  52
-[1] 197  33  53
-[1] 198  33  65
-[1] 199  33  71
-[1] 200  33  60
-[1]  1 34 34
-[1]  2 34 44
-[1]  3 34 36
-[1]  4 34 44
-[1]  5 34 62
-[1]  6 34 49
-[1]  7 34 38
-[1]  8 34 35
-[1]  9 34 43
-[1] 10 34 39
-[1] 11 34 48
-[1] 12 34 29
-[1] 13 34 31
-[1] 14 34 30
-[1] 15 34 49
-[1] 16 34 43
-[1] 17 34 60
-[1] 18 34 43
-[1] 19 34 31
-[1] 20 34 60
-[1] 21 34 42
-[1] 22 34 61
-[1] 23 34 45
-[1] 24 34 48
-[1] 25 34 37
-[1] 26 34 54
-[1] 27 34 52
-[1] 28 34 52
-[1] 29 34 43
-[1] 30 34 46
-[1] 31 34 66
-[1] 32 34 37
-[1] 33 34 55
-[1] 34 34 40
-[1] 35 34 65
-[1] 36 34 60
-[1] 37 34 36
-[1] 38 34 59
-[1] 39 34 35
-[1] 40 34 49
-[1] 41 34 44
-[1] 42 34 51
-[1] 43 34 38
-[1] 44 34 48
-[1] 45 34 41
-[1] 46 34 60
-[1] 47 34 55
-[1] 48 34 59
-[1] 49 34 47
-[1] 50 34 68
-[1] 51 34 55
-[1] 52 34 67
-[1] 53 34 62
-[1] 54 34 57
-[1] 55 34 75
-[1] 56 34 52
-[1] 57 34 32
-[1] 58 34 47
-[1] 59 34 43
-[1] 60 34 52
-[1] 61 34 35
-[1] 62 34 48
-[1] 63 34 73
-[1] 64 34 37
-[1] 65 34 50
-[1] 66 34 48
-[1] 67 34 47
-[1] 68 34 76
-[1] 69 34 49
-[1] 70 34 66
-[1] 71 34 64
-[1] 72 34 62
-[1] 73 34 40
-[1] 74 34 37
-[1] 75 34 41
-[1] 76 34 65
-[1] 77 34 56
-[1] 78 34 35
-[1] 79 34 40
-[1] 80 34 48
-[1] 81 34 49
-[1] 82 34 49
-[1] 83 34 50
-[1] 84 34 65
-[1] 85 34 53
-[1] 86 34 52
-[1] 87 34 57
-[1] 88 34 52
-[1] 89 34 63
-[1] 90 34 43
-[1]  91  34 110
-[1] 92 34 54
-[1] 93 34 83
-[1] 94 34 33
-[1] 95 34 26
-[1] 96 34 43
-[1] 97 34 60
-[1] 98 34 85
-[1] 99 34 35
-[1] 100  34  58
-[1] 101  34  77
-[1] 102  34  36
-[1] 103  34  65
-[1] 104  34  70
-[1] 105  34  55
-[1] 106  34  50
-[1] 107  34  41
-[1] 108  34  42
-[1] 109  34  65
-[1] 110  34  67
-[1] 111  34  54
-[1] 112  34  40
-[1] 113  34  42
-[1] 114  34  45
-[1] 115  34  37
-[1] 116  34  93
-[1] 117  34  46
-[1] 118  34  63
-[1] 119  34  49
-[1] 120  34  71
-[1] 121  34  64
-[1] 122  34  38
-[1] 123  34  76
-[1] 124  34  56
-[1] 125  34  61
-[1] 126  34  36
-[1] 127  34  71
-[1] 128  34  60
-[1] 129  34  61
-[1] 130  34  56
-[1] 131  34  39
-[1] 132  34  33
-[1] 133  34  34
-[1] 134  34  71
-[1] 135  34  48
-[1] 136  34  50
-[1] 137  34  37
-[1] 138  34  43
-[1] 139  34  34
-[1] 140  34  47
-[1] 141  34  37
-[1] 142  34  44
-[1] 143  34  48
-[1] 144  34  59
-[1] 145  34  37
-[1] 146  34  44
-[1] 147  34  49
-[1] 148  34  55
-[1] 149  34  42
-[1] 150  34  41
-[1] 151  34  49
-[1] 152  34  40
-[1] 153  34  45
-[1] 154  34  52
-[1] 155  34  43
-[1] 156  34  42
-[1] 157  34  55
-[1] 158  34  32
-[1] 159  34  45
-[1] 160  34  41
-[1] 161  34  76
-[1] 162  34  38
-[1] 163  34  75
-[1] 164  34  40
-[1] 165  34  59
-[1] 166  34  45
-[1] 167  34  33
-[1] 168  34  40
-[1] 169  34  55
-[1] 170  34  41
-[1] 171  34  50
-[1] 172  34  46
-[1] 173  34  82
-[1] 174  34  53
-[1] 175  34  79
-[1] 176  34  54
-[1] 177  34  50
-[1] 178  34  76
-[1] 179  34  38
-[1] 180  34  62
-[1] 181  34  36
-[1] 182  34  57
-[1] 183  34  52
-[1] 184  34  40
-[1] 185  34  65
-[1] 186  34  41
-[1] 187  34  66
-[1] 188  34  51
-[1] 189  34  66
-[1] 190  34  47
-[1] 191  34  48
-[1] 192  34  38
-[1] 193  34  71
-[1] 194  34  57
-[1] 195  34  69
-[1] 196  34  38
-[1] 197  34  53
-[1] 198  34  38
-[1] 199  34  42
-[1] 200  34  50
-[1]  1 35 44
-[1]  2 35 48
-[1]  3 35 42
-[1]  4 35 55
-[1]  5 35 56
-[1]  6 35 48
-[1]  7 35 53
-[1]  8 35 59
-[1]  9 35 60
-[1] 10 35 43
-[1] 11 35 51
-[1] 12 35 66
-[1] 13 35 55
-[1] 14 35 41
-[1] 15 35 35
-[1] 16 35 45
-[1] 17 35 49
-[1] 18 35 32
-[1] 19 35 99
-[1] 20 35 47
-[1] 21 35 62
-[1] 22 35 41
-[1] 23 35 35
-[1] 24 35 49
-[1] 25 35 37
-[1] 26 35 33
-[1] 27 35 39
-[1] 28 35 33
-[1] 29 35 50
-[1] 30 35 38
-[1] 31 35 59
-[1] 32 35 64
-[1] 33 35 47
-[1] 34 35 56
-[1] 35 35 67
-[1] 36 35 61
-[1] 37 35 41
-[1] 38 35 42
-[1] 39 35 45
-[1] 40 35 68
-[1] 41 35 48
-[1] 42 35 25
-[1] 43 35 91
-[1] 44 35 56
-[1] 45 35 43
-[1] 46 35 46
-[1] 47 35 69
-[1] 48 35 54
-[1] 49 35 50
-[1] 50 35 43
-[1] 51 35 32
-[1] 52 35 81
-[1] 53 35 59
-[1] 54 35 42
-[1] 55 35 63
-[1] 56 35 49
-[1] 57 35 44
-[1] 58 35 47
-[1] 59 35 44
-[1] 60 35 62
-[1] 61 35 69
-[1] 62 35 57
-[1] 63 35 37
-[1] 64 35 52
-[1] 65 35 51
-[1] 66 35 54
-[1] 67 35 53
-[1] 68 35 36
-[1] 69 35 53
-[1] 70 35 38
-[1] 71 35 43
-[1] 72 35 55
-[1] 73 35 54
-[1] 74 35 65
-[1] 75 35 43
-[1] 76 35 45
-[1] 77 35 62
-[1] 78 35 49
-[1] 79 35 49
-[1] 80 35 59
-[1] 81 35 39
-[1] 82 35 33
-[1] 83 35 38
-[1] 84 35 56
-[1] 85 35 59
-[1] 86 35 61
-[1] 87 35 88
-[1] 88 35 51
-[1] 89 35 58
-[1] 90 35 47
-[1] 91 35 59
-[1] 92 35 46
-[1] 93 35 65
-[1] 94 35 56
-[1] 95 35 92
-[1] 96 35 44
-[1] 97 35 55
-[1] 98 35 50
-[1] 99 35 40
-[1] 100  35  36
-[1] 101  35  87
-[1] 102  35  94
-[1] 103  35  57
-[1] 104  35  58
-[1] 105  35  47
-[1] 106  35  53
-[1] 107  35  36
-[1] 108  35  66
-[1] 109  35  65
-[1] 110  35  47
-[1] 111  35  49
-[1] 112  35  56
-[1] 113  35  37
-[1] 114  35  50
-[1] 115  35  39
-[1] 116  35  28
-[1] 117  35 111
-[1] 118  35  49
-[1] 119  35  35
-[1] 120  35  57
-[1] 121  35  48
-[1] 122  35  72
-[1] 123  35  44
-[1] 124  35  43
-[1] 125  35  37
-[1] 126  35  50
-[1] 127  35  48
-[1] 128  35  51
-[1] 129  35  41
-[1] 130  35  34
-[1] 131  35  49
-[1] 132  35  42
-[1] 133  35  28
-[1] 134  35  72
-[1] 135  35  42
-[1] 136  35  53
-[1] 137  35  44
-[1] 138  35  38
-[1] 139  35  34
-[1] 140  35  36
-[1] 141  35  43
-[1] 142  35  39
-[1] 143  35  74
-[1] 144  35  46
-[1] 145  35  67
-[1] 146  35  52
-[1] 147  35  69
-[1] 148  35  46
-[1] 149  35  38
-[1] 150  35  45
-[1] 151  35  49
-[1] 152  35  34
-[1] 153  35  50
-[1] 154  35  52
-[1] 155  35  44
-[1] 156  35  61
-[1] 157  35  46
-[1] 158  35  40
-[1] 159  35  80
-[1] 160  35  38
-[1] 161  35  40
-[1] 162  35  53
-[1] 163  35  24
-[1] 164  35  72
-[1] 165  35  84
-[1] 166  35  54
-[1] 167  35  48
-[1] 168  35  55
-[1] 169  35  92
-[1] 170  35  54
-[1] 171  35  39
-[1] 172  35  68
-[1] 173  35  48
-[1] 174  35  59
-[1] 175  35  44
-[1] 176  35  77
-[1] 177  35  57
-[1] 178  35  38
-[1] 179  35  55
-[1] 180  35  38
-[1] 181  35  51
-[1] 182  35  34
-[1] 183  35  53
-[1] 184  35  83
-[1] 185  35  51
-[1] 186  35  59
-[1] 187  35  61
-[1] 188  35  59
-[1] 189  35  74
-[1] 190  35  44
-[1] 191  35  42
-[1] 192  35  42
-[1] 193  35  43
-[1] 194  35  50
-[1] 195  35  42
-[1] 196  35  49
-[1] 197  35  60
-[1] 198  35  49
-[1] 199  35  67
-[1] 200  35  47
-[1]  1 36 27
-[1]  2 36 35
-[1]  3 36 45
-[1]  4 36 73
-[1]  5 36 41
-[1]  6 36 58
-[1]  7 36 35
-[1]  8 36 35
-[1]  9 36 42
-[1] 10 36 50
-[1] 11 36 36
-[1] 12 36 35
-[1] 13 36 66
-[1] 14 36 29
-[1] 15 36 58
-[1] 16 36 35
-[1] 17 36 40
-[1] 18 36 30
-[1] 19 36 60
-[1] 20 36 38
-[1] 21 36 58
-[1] 22 36 41
-[1] 23 36 32
-[1] 24 36 51
-[1] 25 36 48
-[1] 26 36 34
-[1] 27 36 55
-[1] 28 36 43
-[1] 29 36 50
-[1] 30 36 37
-[1] 31 36 29
-[1] 32 36 52
-[1] 33 36 34
-[1] 34 36 48
-[1] 35 36 61
-[1] 36 36 54
-[1] 37 36 74
-[1] 38 36 42
-[1] 39 36 48
-[1] 40 36 45
-[1] 41 36 67
-[1] 42 36 38
-[1] 43 36 59
-[1] 44 36 55
-[1] 45 36 57
-[1] 46 36 48
-[1] 47 36 36
-[1] 48 36 46
-[1] 49 36 80
-[1] 50 36 45
-[1] 51 36 59
-[1] 52 36 52
-[1] 53 36 58
-[1] 54 36 44
-[1] 55 36 55
-[1] 56 36 32
-[1] 57 36 65
-[1] 58 36 42
-[1] 59 36 55
-[1] 60 36 47
-[1] 61 36 44
-[1] 62 36 61
-[1] 63 36 52
-[1] 64 36 75
-[1] 65 36 48
-[1] 66 36 83
-[1] 67 36 50
-[1] 68 36 43
-[1] 69 36 36
-[1] 70 36 43
-[1] 71 36 51
-[1] 72 36 54
-[1] 73 36 46
-[1] 74 36 46
-[1] 75 36 39
-[1] 76 36 69
-[1] 77 36 31
-[1] 78 36 66
-[1] 79 36 51
-[1] 80 36 43
-[1] 81 36 52
-[1] 82 36 59
-[1] 83 36 62
-[1] 84 36 49
-[1] 85 36 38
-[1] 86 36 32
-[1] 87 36 76
-[1] 88 36 55
-[1]  89  36 108
-[1] 90 36 60
-[1] 91 36 47
-[1] 92 36 82
-[1] 93 36 64
-[1] 94 36 69
-[1] 95 36 42
-[1] 96 36 66
-[1] 97 36 48
-[1] 98 36 44
-[1] 99 36 49
-[1] 100  36  34
-[1] 101  36  69
-[1] 102  36  34
-[1] 103  36  61
-[1] 104  36  40
-[1] 105  36  49
-[1] 106  36  83
-[1] 107  36  57
-[1] 108  36  50
-[1] 109  36  39
-[1] 110  36  48
-[1] 111  36  62
-[1] 112  36  49
-[1] 113  36  88
-[1] 114  36  55
-[1] 115  36  50
-[1] 116  36  49
-[1] 117  36  58
-[1] 118  36  51
-[1] 119  36  55
-[1] 120  36  38
-[1] 121  36  37
-[1] 122  36  59
-[1] 123  36  32
-[1] 124  36  87
-[1] 125  36  40
-[1] 126  36  53
-[1] 127  36  48
-[1] 128  36  59
-[1] 129  36  45
-[1] 130  36  58
-[1] 131  36  45
-[1] 132  36  64
-[1] 133  36  53
-[1] 134  36  37
-[1] 135  36  80
-[1] 136  36  51
-[1] 137  36  65
-[1] 138  36  47
-[1] 139  36  44
-[1] 140  36  56
-[1] 141  36  50
-[1] 142  36  46
-[1] 143  36  95
-[1] 144  36  54
-[1] 145  36  58
-[1] 146  36  40
-[1] 147  36  93
-[1] 148  36  36
-[1] 149  36  40
-[1] 150  36  39
-[1] 151  36  57
-[1] 152  36  53
-[1] 153  36  47
-[1] 154  36  43
-[1] 155  36  51
-[1] 156  36  30
-[1] 157  36  63
-[1] 158  36  42
-[1] 159  36  41
-[1] 160  36  48
-[1] 161  36  76
-[1] 162  36  68
-[1] 163  36  70
-[1] 164  36  79
-[1] 165  36  41
-[1] 166  36  57
-[1] 167  36  54
-[1] 168  36  80
-[1] 169  36  80
-[1] 170  36  47
-[1] 171  36  36
-[1] 172  36  35
-[1] 173  36  37
-[1] 174  36  60
-[1] 175  36  39
-[1] 176  36  36
-[1] 177  36  69
-[1] 178  36  45
-[1] 179  36  42
-[1] 180  36  42
-[1] 181  36  47
-[1] 182  36  35
-[1] 183  36  74
-[1] 184  36  43
-[1] 185  36  42
-[1] 186  36  41
-[1] 187  36  56
-[1] 188  36  49
-[1] 189  36  49
-[1] 190  36  53
-[1] 191  36  42
-[1] 192  36  40
-[1] 193  36  55
-[1] 194  36  30
-[1] 195  36  45
-[1] 196  36  60
-[1] 197  36  37
-[1] 198  36  37
-[1] 199  36  43
-[1] 200  36  86
-[1]  1 37 36
-[1]  2 37 42
-[1]  3 37 39
-[1]  4 37 51
-[1]  5 37 28
-[1]  6 37 64
-[1]  7 37 48
-[1]  8 37 51
-[1]  9 37 51
-[1] 10 37 42
-[1] 11 37 58
-[1] 12 37 49
-[1] 13 37 33
-[1] 14 37 32
-[1] 15 37 53
-[1] 16 37 35
-[1] 17 37 38
-[1] 18 37 64
-[1] 19 37 48
-[1] 20 37 46
-[1] 21 37 50
-[1] 22 37 49
-[1] 23 37 45
-[1] 24 37 45
-[1] 25 37 36
-[1] 26 37 38
-[1] 27 37 51
-[1] 28 37 46
-[1] 29 37 42
-[1] 30 37 84
-[1] 31 37 54
-[1] 32 37 57
-[1] 33 37 58
-[1] 34 37 47
-[1] 35 37 42
-[1] 36 37 40
-[1] 37 37 68
-[1] 38 37 62
-[1] 39 37 49
-[1] 40 37 59
-[1] 41 37 72
-[1] 42 37 65
-[1] 43 37 52
-[1] 44 37 44
-[1] 45 37 52
-[1] 46 37 60
-[1] 47 37 46
-[1] 48 37 71
-[1] 49 37 55
-[1] 50 37 39
-[1] 51 37 44
-[1] 52 37 58
-[1] 53 37 49
-[1] 54 37 35
-[1] 55 37 39
-[1] 56 37 66
-[1] 57 37 46
-[1] 58 37 55
-[1] 59 37 40
-[1] 60 37 43
-[1] 61 37 91
-[1] 62 37 66
-[1] 63 37 59
-[1] 64 37 39
-[1] 65 37 66
-[1] 66 37 50
-[1] 67 37 61
-[1] 68 37 60
-[1] 69 37 72
-[1] 70 37 57
-[1]  71  37 123
-[1] 72 37 50
-[1] 73 37 49
-[1] 74 37 51
-[1] 75 37 64
-[1] 76 37 55
-[1] 77 37 75
-[1] 78 37 49
-[1] 79 37 52
-[1] 80 37 42
-[1] 81 37 63
-[1] 82 37 49
-[1] 83 37 41
-[1] 84 37 44
-[1] 85 37 69
-[1] 86 37 52
-[1] 87 37 54
-[1] 88 37 62
-[1] 89 37 63
-[1] 90 37 43
-[1] 91 37 38
-[1] 92 37 90
-[1] 93 37 52
-[1] 94 37 62
-[1] 95 37 41
-[1] 96 37 39
-[1] 97 37 46
-[1] 98 37 71
-[1]  99  37 127
-[1] 100  37  62
-[1] 101  37  42
-[1] 102  37  69
-[1] 103  37  43
-[1] 104  37  62
-[1] 105  37  41
-[1] 106  37  42
-[1] 107  37  67
-[1] 108  37  39
-[1] 109  37  50
-[1] 110  37  55
-[1] 111  37  36
-[1] 112  37  51
-[1] 113  37  31
-[1] 114  37  36
-[1] 115  37  65
-[1] 116  37  35
-[1] 117  37  40
-[1] 118  37  51
-[1] 119  37  55
-[1] 120  37  33
-[1] 121  37  52
-[1] 122  37  51
-[1] 123  37  65
-[1] 124  37  37
-[1] 125  37  36
-[1] 126  37  57
-[1] 127  37  47
-[1] 128  37  46
-[1] 129  37  40
-[1] 130  37  79
-[1] 131  37  57
-[1] 132  37  37
-[1] 133  37  55
-[1] 134  37  57
-[1] 135  37 117
-[1] 136  37  39
-[1] 137  37  47
-[1] 138  37  44
-[1] 139  37  48
-[1] 140  37  49
-[1] 141  37  42
-[1] 142  37  37
-[1] 143  37  55
-[1] 144  37  39
-[1] 145  37  36
-[1] 146  37  64
-[1] 147  37  56
-[1] 148  37  41
-[1] 149  37  97
-[1] 150  37  40
-[1] 151  37  77
-[1] 152  37  47
-[1] 153  37  48
-[1] 154  37  33
-[1] 155  37  57
-[1] 156  37  48
-[1] 157  37  41
-[1] 158  37  48
-[1] 159  37  49
-[1] 160  37  78
-[1] 161  37  57
-[1] 162  37  39
-[1] 163  37  43
-[1] 164  37  76
-[1] 165  37  42
-[1] 166  37  62
-[1] 167  37  76
-[1] 168  37  56
-[1] 169  37  52
-[1] 170  37  47
-[1] 171  37  71
-[1] 172  37  78
-[1] 173  37  37
-[1] 174  37  26
-[1] 175  37  59
-[1] 176  37  34
-[1] 177  37  45
-[1] 178  37  40
-[1] 179  37  69
-[1] 180  37  83
-[1] 181  37  43
-[1] 182  37  47
-[1] 183  37  53
-[1] 184  37  56
-[1] 185  37  45
-[1] 186  37  90
-[1] 187  37  43
-[1] 188  37  50
-[1] 189  37  42
-[1] 190  37  61
-[1] 191  37  38
-[1] 192  37  43
-[1] 193  37  92
-[1] 194  37  47
-[1] 195  37  47
-[1] 196  37  45
-[1] 197  37  34
-[1] 198  37  49
-[1] 199  37  48
-[1] 200  37  75
-[1]  1 38 29
-[1]  2 38 29
-[1]  3 38 33
-[1]  4 38 45
-[1]  5 38 31
-[1]  6 38 39
-[1]  7 38 36
-[1]  8 38 44
-[1]  9 38 53
-[1] 10 38 45
-[1] 11 38 46
-[1] 12 38 40
-[1] 13 38 31
-[1] 14 38 44
-[1] 15 38 52
-[1] 16 38 32
-[1] 17 38 65
-[1] 18 38 58
-[1] 19 38 43
-[1] 20 38 39
-[1] 21 38 37
-[1] 22 38 52
-[1] 23 38 53
-[1] 24 38 56
-[1] 25 38 50
-[1] 26 38 71
-[1] 27 38 49
-[1] 28 38 39
-[1] 29 38 69
-[1] 30 38 59
-[1] 31 38 43
-[1] 32 38 27
-[1] 33 38 93
-[1] 34 38 78
-[1] 35 38 43
-[1] 36 38 64
-[1] 37 38 38
-[1] 38 38 44
-[1] 39 38 47
-[1] 40 38 67
-[1] 41 38 42
-[1] 42 38 39
-[1] 43 38 36
-[1] 44 38 57
-[1] 45 38 40
-[1] 46 38 55
-[1] 47 38 41
-[1] 48 38 38
-[1] 49 38 53
-[1] 50 38 41
-[1] 51 38 43
-[1] 52 38 48
-[1] 53 38 25
-[1] 54 38 58
-[1] 55 38 35
-[1] 56 38 48
-[1] 57 38 42
-[1] 58 38 43
-[1] 59 38 41
-[1] 60 38 42
-[1] 61 38 44
-[1] 62 38 30
-[1]  63  38 116
-[1] 64 38 56
-[1] 65 38 61
-[1] 66 38 41
-[1] 67 38 84
-[1] 68 38 44
-[1] 69 38 48
-[1] 70 38 58
-[1] 71 38 33
-[1] 72 38 87
-[1] 73 38 57
-[1] 74 38 48
-[1] 75 38 54
-[1] 76 38 54
-[1] 77 38 53
-[1] 78 38 37
-[1] 79 38 47
-[1] 80 38 52
-[1] 81 38 63
-[1] 82 38 64
-[1] 83 38 60
-[1] 84 38 43
-[1] 85 38 48
-[1] 86 38 35
-[1] 87 38 49
-[1] 88 38 50
-[1] 89 38 64
-[1] 90 38 33
-[1] 91 38 72
-[1] 92 38 80
-[1] 93 38 47
-[1] 94 38 73
-[1] 95 38 73
-[1] 96 38 55
-[1] 97 38 82
-[1] 98 38 72
-[1] 99 38 67
-[1] 100  38  59
-[1] 101  38  50
-[1] 102  38  37
-[1] 103  38  64
-[1] 104  38  49
-[1] 105  38  42
-[1] 106  38  74
-[1] 107  38  49
-[1] 108  38  37
-[1] 109  38  39
-[1] 110  38  75
-[1] 111  38  59
-[1] 112  38  55
-[1] 113  38  40
-[1] 114  38  49
-[1] 115  38  38
-[1] 116  38  34
-[1] 117  38  80
-[1] 118  38  47
-[1] 119  38  44
-[1] 120  38 127
-[1] 121  38  43
-[1] 122  38  44
-[1] 123  38  60
-[1] 124  38  57
-[1] 125  38  43
-[1] 126  38  74
-[1] 127  38  53
-[1] 128  38  51
-[1] 129  38  35
-[1] 130  38  42
-[1] 131  38  60
-[1] 132  38  64
-[1] 133  38  47
-[1] 134  38  43
-[1] 135  38  46
-[1] 136  38  41
-[1] 137  38  35
-[1] 138  38  60
-[1] 139  38  40
-[1] 140  38  37
-[1] 141  38  44
-[1] 142  38  45
-[1] 143  38  34
-[1] 144  38  71
-[1] 145  38  41
-[1] 146  38  43
-[1] 147  38  86
-[1] 148  38  58
-[1] 149  38  40
-[1] 150  38  41
-[1] 151  38  48
-[1] 152  38  79
-[1] 153  38  61
-[1] 154  38  43
-[1] 155  38  50
-[1] 156  38  45
-[1] 157  38  54
-[1] 158  38  60
-[1] 159  38  44
-[1] 160  38  35
-[1] 161  38  55
-[1] 162  38  44
-[1] 163  38  40
-[1] 164  38  38
-[1] 165  38  40
-[1] 166  38  53
-[1] 167  38  41
-[1] 168  38  44
-[1] 169  38  48
-[1] 170  38  63
-[1] 171  38  53
-[1] 172  38  48
-[1] 173  38  86
-[1] 174  38  45
-[1] 175  38  51
-[1] 176  38  45
-[1] 177  38  51
-[1] 178  38  60
-[1] 179  38  42
-[1] 180  38  41
-[1] 181  38  47
-[1] 182  38  45
-[1] 183  38  79
-[1] 184  38  68
-[1] 185  38  50
-[1] 186  38  36
-[1] 187  38  51
-[1] 188  38  42
-[1] 189  38  69
-[1] 190  38  35
-[1] 191  38  52
-[1] 192  38  62
-[1] 193  38  38
-[1] 194  38  42
-[1] 195  38  41
-[1] 196  38  87
-[1] 197  38  68
-[1] 198  38  70
-[1] 199  38  45
-[1] 200  38  41
-[1]  1 39 39
-[1]  2 39 47
-[1]  3 39 38
-[1]  4 39 35
-[1]  5 39 32
-[1]  6 39 51
-[1]  7 39 46
-[1]  8 39 39
-[1]  9 39 80
-[1] 10 39 39
-[1] 11 39 46
-[1] 12 39 55
-[1] 13 39 47
-[1] 14 39 35
-[1] 15 39 40
-[1] 16 39 38
-[1] 17 39 50
-[1] 18 39 40
-[1] 19 39 48
-[1] 20 39 51
-[1] 21 39 34
-[1] 22 39 35
-[1] 23 39 47
-[1] 24 39 61
-[1] 25 39 57
-[1] 26 39 41
-[1] 27 39 55
-[1] 28 39 65
-[1] 29 39 59
-[1] 30 39 47
-[1] 31 39 55
-[1] 32 39 42
-[1] 33 39 41
-[1] 34 39 71
-[1] 35 39 32
-[1] 36 39 63
-[1] 37 39 42
-[1] 38 39 41
-[1] 39 39 31
-[1] 40 39 76
-[1] 41 39 41
-[1] 42 39 37
-[1] 43 39 55
-[1]  44  39 143
-[1] 45 39 76
-[1] 46 39 42
-[1] 47 39 46
-[1] 48 39 32
-[1] 49 39 49
-[1] 50 39 64
-[1] 51 39 43
-[1] 52 39 45
-[1] 53 39 56
-[1] 54 39 71
-[1] 55 39 34
-[1] 56 39 71
-[1] 57 39 44
-[1] 58 39 46
-[1] 59 39 56
-[1] 60 39 54
-[1] 61 39 55
-[1] 62 39 48
-[1] 63 39 67
-[1] 64 39 40
-[1] 65 39 42
-[1] 66 39 65
-[1] 67 39 48
-[1] 68 39 63
-[1] 69 39 61
-[1] 70 39 54
-[1] 71 39 42
-[1] 72 39 77
-[1] 73 39 57
-[1] 74 39 46
-[1] 75 39 53
-[1] 76 39 57
-[1] 77 39 42
-[1] 78 39 77
-[1] 79 39 30
-[1] 80 39 57
-[1] 81 39 37
-[1] 82 39 48
-[1] 83 39 53
-[1] 84 39 47
-[1] 85 39 48
-[1] 86 39 45
-[1] 87 39 44
-[1] 88 39 60
-[1] 89 39 61
-[1] 90 39 45
-[1] 91 39 50
-[1] 92 39 69
-[1] 93 39 56
-[1] 94 39 43
-[1] 95 39 50
-[1] 96 39 70
-[1] 97 39 41
-[1] 98 39 41
-[1] 99 39 63
-[1] 100  39  40
-[1] 101  39  73
-[1] 102  39  37
-[1] 103  39  42
-[1] 104  39  69
-[1] 105  39  46
-[1] 106  39  63
-[1] 107  39  31
-[1] 108  39  69
-[1] 109  39  45
-[1] 110  39  51
-[1] 111  39  38
-[1] 112  39  47
-[1] 113  39  43
-[1] 114  39  44
-[1] 115  39  40
-[1] 116  39  37
-[1] 117  39  46
-[1] 118  39  74
-[1] 119  39  36
-[1] 120  39  49
-[1] 121  39  66
-[1] 122  39  35
-[1] 123  39  54
-[1] 124  39  35
-[1] 125  39  44
-[1] 126  39  67
-[1] 127  39  34
-[1] 128  39  57
-[1] 129  39  37
-[1] 130  39  50
-[1] 131  39  45
-[1] 132  39  50
-[1] 133  39  49
-[1] 134  39  41
-[1] 135  39  44
-[1] 136  39  51
-[1] 137  39  52
-[1] 138  39  51
-[1] 139  39  36
-[1] 140  39  29
-[1] 141  39  66
-[1] 142  39  51
-[1] 143  39  41
-[1] 144  39  42
-[1] 145  39  71
-[1] 146  39  26
-[1] 147  39  35
-[1] 148  39  46
-[1] 149  39  51
-[1] 150  39  54
-[1] 151  39  43
-[1] 152  39  41
-[1] 153  39  44
-[1] 154  39  59
-[1] 155  39  48
-[1] 156  39  40
-[1] 157  39  47
-[1] 158  39  59
-[1] 159  39  41
-[1] 160  39  48
-[1] 161  39  71
-[1] 162  39  45
-[1] 163  39  66
-[1] 164  39  52
-[1] 165  39  48
-[1] 166  39  59
-[1] 167  39  51
-[1] 168  39  45
-[1] 169  39  67
-[1] 170  39  55
-[1] 171  39  49
-[1] 172  39  45
-[1] 173  39  52
-[1] 174  39  59
-[1] 175  39  70
-[1] 176  39  49
-[1] 177  39  55
-[1] 178  39  50
-[1] 179  39  52
-[1] 180  39  37
-[1] 181  39  71
-[1] 182  39  72
-[1] 183  39  57
-[1] 184  39  49
-[1] 185  39  34
-[1] 186  39  42
-[1] 187  39  65
-[1] 188  39  53
-[1] 189  39  40
-[1] 190  39  47
-[1] 191  39  46
-[1] 192  39  43
-[1] 193  39  55
-[1] 194  39  35
-[1] 195  39 106
-[1] 196  39  38
-[1] 197  39  49
-[1] 198  39  36
-[1] 199  39  44
-[1] 200  39  72
-[1]  1 40 45
-[1]  2 40 33
-[1]  3 40 28
-[1]  4 40 43
-[1]  5 40 36
-[1]  6 40 41
-[1]  7 40 42
-[1]  8 40 45
-[1]  9 40 45
-[1] 10 40 46
-[1] 11 40 47
-[1] 12 40 40
-[1] 13 40 49
-[1] 14 40 30
-[1] 15 40 84
-[1] 16 40 46
-[1] 17 40 64
-[1] 18 40 50
-[1] 19 40 41
-[1] 20 40 40
-[1] 21 40 34
-[1] 22 40 42
-[1] 23 40 46
-[1] 24 40 45
-[1] 25 40 49
-[1] 26 40 48
-[1] 27 40 58
-[1] 28 40 37
-[1] 29 40 35
-[1] 30 40 39
-[1] 31 40 61
-[1] 32 40 51
-[1] 33 40 51
-[1] 34 40 38
-[1] 35 40 67
-[1] 36 40 53
-[1] 37 40 40
-[1] 38 40 58
-[1] 39 40 54
-[1] 40 40 45
-[1] 41 40 59
-[1] 42 40 27
-[1] 43 40 58
-[1] 44 40 44
-[1] 45 40 81
-[1] 46 40 49
-[1] 47 40 46
-[1] 48 40 78
-[1] 49 40 44
-[1] 50 40 48
-[1] 51 40 63
-[1] 52 40 71
-[1] 53 40 54
-[1] 54 40 48
-[1] 55 40 69
-[1] 56 40 79
-[1] 57 40 39
-[1] 58 40 55
-[1] 59 40 46
-[1] 60 40 45
-[1] 61 40 57
-[1] 62 40 35
-[1] 63 40 47
-[1] 64 40 66
-[1] 65 40 62
-[1] 66 40 50
-[1] 67 40 63
-[1] 68 40 45
-[1] 69 40 52
-[1] 70 40 37
-[1] 71 40 39
-[1] 72 40 52
-[1] 73 40 46
-[1] 74 40 71
-[1] 75 40 75
-[1] 76 40 58
-[1] 77 40 67
-[1] 78 40 57
-[1] 79 40 43
-[1] 80 40 65
-[1] 81 40 47
-[1] 82 40 54
-[1] 83 40 57
-[1] 84 40 42
-[1] 85 40 47
-[1] 86 40 55
-[1] 87 40 38
-[1] 88 40 33
-[1] 89 40 34
-[1] 90 40 36
-[1] 91 40 44
-[1] 92 40 36
-[1] 93 40 71
-[1] 94 40 33
-[1] 95 40 44
-[1] 96 40 37
-[1] 97 40 87
-[1] 98 40 67
-[1] 99 40 41
-[1] 100  40  50
-[1] 101  40  71
-[1] 102  40  36
-[1] 103  40  89
-[1] 104  40  43
-[1] 105  40  39
-[1] 106  40  60
-[1] 107  40  79
-[1] 108  40  58
-[1] 109  40  37
-[1] 110  40  40
-[1] 111  40  86
-[1] 112  40  43
-[1] 113  40  63
-[1] 114  40  35
-[1] 115  40  44
-[1] 116  40  40
-[1] 117  40  75
-[1] 118  40  38
-[1] 119  40  49
-[1] 120  40  46
-[1] 121  40  55
-[1] 122  40  39
-[1] 123  40  47
-[1] 124  40  45
-[1] 125  40  29
-[1] 126  40  89
-[1] 127  40  60
-[1] 128  40  48
-[1] 129  40  51
-[1] 130  40  69
-[1] 131  40  41
-[1] 132  40  46
-[1] 133  40  77
-[1] 134  40  48
-[1] 135  40  40
-[1] 136  40  46
-[1] 137  40  37
-[1] 138  40  53
-[1] 139  40  71
-[1] 140  40  55
-[1] 141  40  50
-[1] 142  40  51
-[1] 143  40  46
-[1] 144  40  49
-[1] 145  40  48
-[1] 146  40  53
-[1] 147  40  38
-[1] 148  40  41
-[1] 149  40  38
-[1] 150  40  33
-[1] 151  40  47
-[1] 152  40  35
-[1] 153  40  41
-[1] 154  40  37
-[1] 155  40  43
-[1] 156  40  34
-[1] 157  40  47
-[1] 158  40  49
-[1] 159  40  47
-[1] 160  40 123
-[1] 161  40  32
-[1] 162  40  72
-[1] 163  40  50
-[1] 164  40  42
-[1] 165  40  55
-[1] 166  40  39
-[1] 167  40  58
-[1] 168  40  51
-[1] 169  40  70
-[1] 170  40  48
-[1] 171  40  66
-[1] 172  40  57
-[1] 173  40  70
-[1] 174  40  42
-[1] 175  40  55
-[1] 176  40  51
-[1] 177  40  65
-[1] 178  40  72
-[1] 179  40  43
-[1] 180  40  44
-[1] 181  40  98
-[1] 182  40  48
-[1] 183  40  45
-[1] 184  40  62
-[1] 185  40  71
-[1] 186  40  63
-[1] 187  40  46
-[1] 188  40  31
-[1] 189  40  53
-[1] 190  40  38
-[1] 191  40  45
-[1] 192  40  34
-[1] 193  40  46
-[1] 194  40  57
-[1] 195  40  58
-[1] 196  40  35
-[1] 197  40  30
-[1] 198  40  96
-[1] 199  40  46
-[1] 200  40  59
-[1]  1 41 41
-[1]  2 41 31
-[1]  3 41 42
-[1]  4 41 45
-[1]  5 41 42
-[1]  6 41 41
-[1]  7 41 49
-[1]  8 41 38
-[1]  9 41 35
-[1] 10 41 55
-[1] 11 41 57
-[1] 12 41 33
-[1] 13 41 34
-[1] 14 41 53
-[1] 15 41 37
-[1] 16 41 60
-[1] 17 41 37
-[1] 18 41 49
-[1] 19 41 72
-[1] 20 41 61
-[1] 21 41 40
-[1] 22 41 75
-[1] 23 41 30
-[1] 24 41 43
-[1] 25 41 71
-[1] 26 41 36
-[1] 27 41 50
-[1] 28 41 82
-[1] 29 41 69
-[1] 30 41 51
-[1] 31 41 41
-[1] 32 41 43
-[1] 33 41 50
-[1] 34 41 59
-[1] 35 41 58
-[1] 36 41 36
-[1] 37 41 42
-[1] 38 41 56
-[1] 39 41 52
-[1] 40 41 43
-[1] 41 41 62
-[1] 42 41 40
-[1] 43 41 49
-[1] 44 41 49
-[1] 45 41 73
-[1] 46 41 56
-[1] 47 41 40
-[1] 48 41 45
-[1] 49 41 53
-[1] 50 41 47
-[1] 51 41 41
-[1] 52 41 35
-[1] 53 41 57
-[1] 54 41 46
-[1]  55  41 105
-[1] 56 41 56
-[1] 57 41 79
-[1] 58 41 55
-[1] 59 41 53
-[1] 60 41 50
-[1] 61 41 80
-[1] 62 41 64
-[1] 63 41 40
-[1] 64 41 53
-[1] 65 41 48
-[1] 66 41 57
-[1] 67 41 74
-[1] 68 41 45
-[1] 69 41 69
-[1] 70 41 80
-[1] 71 41 46
-[1] 72 41 52
-[1] 73 41 42
-[1] 74 41 45
-[1] 75 41 48
-[1] 76 41 32
-[1] 77 41 53
-[1] 78 41 57
-[1] 79 41 64
-[1] 80 41 41
-[1] 81 41 52
-[1] 82 41 69
-[1] 83 41 38
-[1] 84 41 61
-[1] 85 41 83
-[1] 86 41 42
-[1] 87 41 58
-[1] 88 41 50
-[1] 89 41 43
-[1] 90 41 47
-[1] 91 41 51
-[1] 92 41 52
-[1] 93 41 54
-[1] 94 41 48
-[1] 95 41 41
-[1] 96 41 52
-[1] 97 41 61
-[1] 98 41 43
-[1] 99 41 81
-[1] 100  41  41
-[1] 101  41  61
-[1] 102  41  40
-[1] 103  41  56
-[1] 104  41  73
-[1] 105  41  40
-[1] 106  41  44
-[1] 107  41  37
-[1] 108  41  50
-[1] 109  41  67
-[1] 110  41  58
-[1] 111  41  42
-[1] 112  41  68
-[1] 113  41  34
-[1] 114  41  62
-[1] 115  41  74
-[1] 116  41  31
-[1] 117  41  80
-[1] 118  41  69
-[1] 119  41  41
-[1] 120  41  56
-[1] 121  41  65
-[1] 122  41  46
-[1] 123  41  54
-[1] 124  41  50
-[1] 125  41  42
-[1] 126  41  66
-[1] 127  41  50
-[1] 128  41  48
-[1] 129  41  35
-[1] 130  41  37
-[1] 131  41  64
-[1] 132  41  48
-[1] 133  41  63
-[1] 134  41  36
-[1] 135  41  45
-[1] 136  41  31
-[1] 137  41  52
-[1] 138  41  40
-[1] 139  41  33
-[1] 140  41  51
-[1] 141  41  50
-[1] 142  41  46
-[1] 143  41  45
-[1] 144  41  39
-[1] 145  41  39
-[1] 146  41  52
-[1] 147  41  64
-[1] 148  41  55
-[1] 149  41  84
-[1] 150  41  57
-[1] 151  41  45
-[1] 152  41  50
-[1] 153  41  39
-[1] 154  41  46
-[1] 155  41  87
-[1] 156  41  99
-[1] 157  41  40
-[1] 158  41  31
-[1] 159  41  34
-[1] 160  41  51
-[1] 161  41  60
-[1] 162  41  49
-[1] 163  41  47
-[1] 164  41  45
-[1] 165  41  36
-[1] 166  41  46
-[1] 167  41  67
-[1] 168  41  44
-[1] 169  41  62
-[1] 170  41  51
-[1] 171  41  31
-[1] 172  41  72
-[1] 173  41  39
-[1] 174  41  36
-[1] 175  41  86
-[1] 176  41  47
-[1] 177  41  58
-[1] 178  41  59
-[1] 179  41  85
-[1] 180  41  71
-[1] 181  41  35
-[1] 182  41  58
-[1] 183  41  55
-[1] 184  41  45
-[1] 185  41  54
-[1] 186  41  64
-[1] 187  41  39
-[1] 188  41  45
-[1] 189  41  31
-[1] 190  41  60
-[1] 191  41  56
-[1] 192  41  47
-[1] 193  41  35
-[1] 194  41  39
-[1] 195  41  46
-[1] 196  41  30
-[1] 197  41  52
-[1] 198  41  37
-[1] 199  41  47
-[1] 200  41  67
-[1]  1 42 33
-[1]  2 42 29
-[1]  3 42 32
-[1]  4 42 27
-[1]  5 42 35
-[1]  6 42 40
-[1]  7 42 35
-[1]  8 42 44
-[1]  9 42 46
-[1] 10 42 51
-[1] 11 42 38
-[1] 12 42 43
-[1] 13 42 58
-[1] 14 42 52
-[1] 15 42 53
-[1] 16 42 43
-[1] 17 42 45
-[1] 18 42 36
-[1] 19 42 36
-[1] 20 42 44
-[1] 21 42 48
-[1] 22 42 53
-[1] 23 42 33
-[1]  24  42 106
-[1] 25 42 54
-[1] 26 42 56
-[1] 27 42 70
-[1] 28 42 58
-[1] 29 42 33
-[1] 30 42 35
-[1] 31 42 70
-[1] 32 42 54
-[1] 33 42 53
-[1] 34 42 51
-[1] 35 42 43
-[1] 36 42 53
-[1] 37 42 39
-[1] 38 42 63
-[1] 39 42 52
-[1] 40 42 38
-[1] 41 42 59
-[1] 42 42 69
-[1] 43 42 38
-[1] 44 42 50
-[1] 45 42 54
-[1] 46 42 43
-[1] 47 42 42
-[1] 48 42 48
-[1] 49 42 49
-[1] 50 42 42
-[1] 51 42 57
-[1] 52 42 44
-[1] 53 42 49
-[1] 54 42 41
-[1] 55 42 50
-[1] 56 42 61
-[1] 57 42 36
-[1] 58 42 41
-[1] 59 42 46
-[1] 60 42 43
-[1] 61 42 73
-[1] 62 42 52
-[1] 63 42 38
-[1] 64 42 49
-[1] 65 42 41
-[1] 66 42 42
-[1] 67 42 59
-[1] 68 42 77
-[1] 69 42 52
-[1] 70 42 46
-[1] 71 42 68
-[1] 72 42 41
-[1] 73 42 97
-[1] 74 42 73
-[1] 75 42 44
-[1] 76 42 43
-[1] 77 42 58
-[1] 78 42 40
-[1] 79 42 74
-[1] 80 42 36
-[1] 81 42 98
-[1] 82 42 51
-[1] 83 42 87
-[1] 84 42 40
-[1] 85 42 41
-[1] 86 42 44
-[1] 87 42 53
-[1] 88 42 89
-[1] 89 42 49
-[1] 90 42 56
-[1] 91 42 61
-[1] 92 42 81
-[1] 93 42 48
-[1] 94 42 78
-[1] 95 42 40
-[1] 96 42 68
-[1] 97 42 51
-[1] 98 42 74
-[1] 99 42 61
-[1] 100  42  53
-[1] 101  42  48
-[1] 102  42  53
-[1] 103  42  69
-[1] 104  42  42
-[1] 105  42  47
-[1] 106  42  38
-[1] 107  42  47
-[1] 108  42  56
-[1] 109  42  60
-[1] 110  42  52
-[1] 111  42  54
-[1] 112  42  67
-[1] 113  42  57
-[1] 114  42  52
-[1] 115  42  59
-[1] 116  42  40
-[1] 117  42  44
-[1] 118  42  89
-[1] 119  42  46
-[1] 120  42  47
-[1] 121  42  37
-[1] 122  42  56
-[1] 123  42  49
-[1] 124  42  50
-[1] 125  42  66
-[1] 126  42  48
-[1] 127  42  51
-[1] 128  42  66
-[1] 129  42  58
-[1] 130  42  69
-[1] 131  42  66
-[1] 132  42  44
-[1] 133  42  69
-[1] 134  42  33
-[1] 135  42  29
-[1] 136  42  46
-[1] 137  42  45
-[1] 138  42  46
-[1] 139  42  47
-[1] 140  42  57
-[1] 141  42  54
-[1] 142  42  50
-[1] 143  42  44
-[1] 144  42  40
-[1] 145  42  35
-[1] 146  42  50
-[1] 147  42  40
-[1] 148  42  63
-[1] 149  42  45
-[1] 150  42  46
-[1] 151  42  41
-[1] 152  42  95
-[1] 153  42  78
-[1] 154  42  58
-[1] 155  42  58
-[1] 156  42  35
-[1] 157  42  45
-[1] 158  42  38
-[1] 159  42  45
-[1] 160  42  58
-[1] 161  42  66
-[1] 162  42  47
-[1] 163  42  49
-[1] 164  42  47
-[1] 165  42  42
-[1] 166  42  43
-[1] 167  42  47
-[1] 168  42  58
-[1] 169  42  40
-[1] 170  42  91
-[1] 171  42  42
-[1] 172  42  59
-[1] 173  42  76
-[1] 174  42  86
-[1] 175  42  58
-[1] 176  42  48
-[1] 177  42  65
-[1] 178  42  59
-[1] 179  42  86
-[1] 180  42  48
-[1] 181  42  96
-[1] 182  42  62
-[1] 183  42  36
-[1] 184  42  33
-[1] 185  42  40
-[1] 186  42  34
-[1] 187  42  59
-[1] 188  42  36
-[1] 189  42  43
-[1] 190  42  46
-[1] 191  42  45
-[1] 192  42  57
-[1] 193  42  43
-[1] 194  42  39
-[1] 195  42  52
-[1] 196  42  38
-[1] 197  42  37
-[1] 198  42  44
-[1] 199  42  33
-[1] 200  42  39
-[1]  1 43 46
-[1]  2 43 44
-[1]  3 43 29
-[1]  4 43 40
-[1]  5 43 54
-[1]  6 43 47
-[1]  7 43 30
-[1]  8 43 29
-[1]  9 43 66
-[1] 10 43 41
-[1] 11 43 49
-[1] 12 43 43
-[1] 13 43 38
-[1] 14 43 32
-[1] 15 43 48
-[1] 16 43 49
-[1] 17 43 64
-[1] 18 43 54
-[1] 19 43 36
-[1] 20 43 39
-[1] 21 43 34
-[1] 22 43 43
-[1] 23 43 72
-[1] 24 43 47
-[1] 25 43 46
-[1] 26 43 53
-[1] 27 43 39
-[1] 28 43 45
-[1] 29 43 85
-[1] 30 43 61
-[1] 31 43 43
-[1] 32 43 37
-[1] 33 43 39
-[1] 34 43 72
-[1] 35 43 41
-[1] 36 43 45
-[1] 37 43 49
-[1] 38 43 55
-[1] 39 43 67
-[1] 40 43 44
-[1] 41 43 41
-[1] 42 43 52
-[1] 43 43 38
-[1] 44 43 51
-[1] 45 43 47
-[1] 46 43 58
-[1] 47 43 58
-[1] 48 43 50
-[1] 49 43 56
-[1] 50 43 57
-[1] 51 43 70
-[1] 52 43 55
-[1] 53 43 48
-[1] 54 43 49
-[1] 55 43 51
-[1] 56 43 47
-[1] 57 43 58
-[1] 58 43 53
-[1] 59 43 57
-[1] 60 43 59
-[1] 61 43 43
-[1] 62 43 44
-[1] 63 43 63
-[1] 64 43 52
-[1] 65 43 39
-[1] 66 43 45
-[1] 67 43 66
-[1] 68 43 51
-[1] 69 43 68
-[1] 70 43 57
-[1] 71 43 63
-[1] 72 43 76
-[1] 73 43 52
-[1] 74 43 38
-[1] 75 43 74
-[1] 76 43 86
-[1] 77 43 62
-[1] 78 43 47
-[1] 79 43 35
-[1] 80 43 55
-[1] 81 43 52
-[1] 82 43 58
-[1] 83 43 49
-[1] 84 43 32
-[1] 85 43 64
-[1] 86 43 49
-[1] 87 43 55
-[1] 88 43 53
-[1] 89 43 43
-[1] 90 43 54
-[1] 91 43 52
-[1] 92 43 51
-[1] 93 43 63
-[1] 94 43 38
-[1] 95 43 38
-[1] 96 43 59
-[1] 97 43 73
-[1] 98 43 70
-[1] 99 43 49
-[1] 100  43  51
-[1] 101  43  65
-[1] 102  43  47
-[1] 103  43  50
-[1] 104  43  33
-[1] 105  43  82
-[1] 106  43  42
-[1] 107  43  37
-[1] 108  43  78
-[1] 109  43  56
-[1] 110  43  51
-[1] 111  43  51
-[1] 112  43  39
-[1] 113  43  46
-[1] 114  43  33
-[1] 115  43  45
-[1] 116  43  54
-[1] 117  43  57
-[1] 118  43  32
-[1] 119  43  56
-[1] 120  43  45
-[1] 121  43  42
-[1] 122  43  49
-[1] 123  43  35
-[1] 124  43  93
-[1] 125  43  58
-[1] 126  43  46
-[1] 127  43  43
-[1] 128  43  35
-[1] 129  43  38
-[1] 130  43  77
-[1] 131  43  63
-[1] 132  43  45
-[1] 133  43  70
-[1] 134  43  42
-[1] 135  43  66
-[1] 136  43  39
-[1] 137  43  35
-[1] 138  43  42
-[1] 139  43  69
-[1] 140  43  38
-[1] 141  43  51
-[1] 142  43  43
-[1] 143  43  54
-[1] 144  43  61
-[1] 145  43  43
-[1] 146  43  61
-[1] 147  43  36
-[1] 148  43  84
-[1] 149  43  41
-[1] 150  43  49
-[1] 151  43 100
-[1] 152  43  56
-[1] 153  43  63
-[1] 154  43  42
-[1] 155  43  45
-[1] 156  43  49
-[1] 157  43  33
-[1] 158  43  48
-[1] 159  43  40
-[1] 160  43  51
-[1] 161  43  60
-[1] 162  43  41
-[1] 163  43  39
-[1] 164  43  36
-[1] 165  43  62
-[1] 166  43  43
-[1] 167  43  59
-[1] 168  43  59
-[1] 169  43  42
-[1] 170  43  47
-[1] 171  43  43
-[1] 172  43  65
-[1] 173  43  45
-[1] 174  43  51
-[1] 175  43  40
-[1] 176  43  55
-[1] 177  43  43
-[1] 178  43  44
-[1] 179  43  40
-[1] 180  43  67
-[1] 181  43  69
-[1] 182  43  36
-[1] 183  43  43
-[1] 184  43  36
-[1] 185  43  61
-[1] 186  43  39
-[1] 187  43  41
-[1] 188  43  44
-[1] 189  43  40
-[1] 190  43  43
-[1] 191  43  38
-[1] 192  43  75
-[1] 193  43  96
-[1] 194  43  49
-[1] 195  43  43
-[1] 196  43  61
-[1] 197  43  59
-[1] 198  43  47
-[1] 199  43  55
-[1] 200  43  65
-[1]  1 44 49
-[1]  2 44 39
-[1]  3 44 37
-[1]  4 44 40
-[1]  5 44 38
-[1]  6 44 48
-[1]  7 44 43
-[1]  8 44 40
-[1]  9 44 35
-[1] 10 44 37
-[1] 11 44 65
-[1] 12 44 36
-[1] 13 44 40
-[1] 14 44 64
-[1] 15 44 54
-[1] 16 44 64
-[1] 17 44 42
-[1] 18 44 50
-[1] 19 44 52
-[1] 20 44 55
-[1] 21 44 35
-[1] 22 44 81
-[1] 23 44 41
-[1] 24 44 47
-[1] 25 44 34
-[1] 26 44 65
-[1] 27 44 49
-[1] 28 44 48
-[1] 29 44 48
-[1] 30 44 32
-[1] 31 44 64
-[1] 32 44 58
-[1] 33 44 52
-[1] 34 44 34
-[1] 35 44 43
-[1] 36 44 45
-[1] 37 44 37
-[1] 38 44 55
-[1] 39 44 42
-[1] 40 44 55
-[1] 41 44 56
-[1] 42 44 67
-[1] 43 44 38
-[1] 44 44 38
-[1] 45 44 62
-[1] 46 44 47
-[1] 47 44 54
-[1] 48 44 50
-[1] 49 44 59
-[1] 50 44 96
-[1] 51 44 39
-[1] 52 44 58
-[1] 53 44 89
-[1] 54 44 68
-[1] 55 44 59
-[1] 56 44 43
-[1] 57 44 43
-[1] 58 44 64
-[1] 59 44 42
-[1] 60 44 55
-[1] 61 44 48
-[1] 62 44 43
-[1] 63 44 42
-[1] 64 44 38
-[1] 65 44 48
-[1] 66 44 72
-[1] 67 44 45
-[1] 68 44 38
-[1] 69 44 45
-[1] 70 44 42
-[1] 71 44 51
-[1] 72 44 39
-[1] 73 44 51
-[1] 74 44 68
-[1] 75 44 99
-[1] 76 44 39
-[1] 77 44 95
-[1] 78 44 42
-[1] 79 44 61
-[1] 80 44 72
-[1] 81 44 40
-[1] 82 44 85
-[1] 83 44 53
-[1] 84 44 45
-[1] 85 44 52
-[1] 86 44 29
-[1] 87 44 99
-[1] 88 44 44
-[1] 89 44 28
-[1] 90 44 52
-[1] 91 44 58
-[1] 92 44 39
-[1] 93 44 36
-[1] 94 44 43
-[1] 95 44 62
-[1] 96 44 30
-[1] 97 44 67
-[1] 98 44 53
-[1] 99 44 53
-[1] 100  44  45
-[1] 101  44  83
-[1] 102  44  77
-[1] 103  44  43
-[1] 104  44  80
-[1] 105  44  55
-[1] 106  44  66
-[1] 107  44  42
-[1] 108  44  51
-[1] 109  44  42
-[1] 110  44  74
-[1] 111  44  66
-[1] 112  44  61
-[1] 113  44  54
-[1] 114  44  55
-[1] 115  44  42
-[1] 116  44  66
-[1] 117  44  36
-[1] 118  44 112
-[1] 119  44  36
-[1] 120  44  99
-[1] 121  44  47
-[1] 122  44  45
-[1] 123  44  50
-[1] 124  44  55
-[1] 125  44  48
-[1] 126  44  57
-[1] 127  44  50
-[1] 128  44  47
-[1] 129  44  54
-[1] 130  44  45
-[1] 131  44  46
-[1] 132  44  43
-[1] 133  44  82
-[1] 134  44  43
-[1] 135  44  26
-[1] 136  44  43
-[1] 137  44  49
-[1] 138  44  37
-[1] 139  44  56
-[1] 140  44  34
-[1] 141  44  46
-[1] 142  44  39
-[1] 143  44  45
-[1] 144  44  43
-[1] 145  44  66
-[1] 146  44  26
-[1] 147  44  50
-[1] 148  44  52
-[1] 149  44  34
-[1] 150  44  49
-[1] 151  44  50
-[1] 152  44  37
-[1] 153  44  69
-[1] 154  44  35
-[1] 155  44  94
-[1] 156  44  62
-[1] 157  44  66
-[1] 158  44  60
-[1] 159  44  60
-[1] 160  44  56
-[1] 161  44  49
-[1] 162  44  38
-[1] 163  44  50
-[1] 164  44  86
-[1] 165  44  40
-[1] 166  44  87
-[1] 167  44  53
-[1] 168  44  58
-[1] 169  44  59
-[1] 170  44  61
-[1] 171  44  45
-[1] 172  44  67
-[1] 173  44  41
-[1] 174  44  35
-[1] 175  44  57
-[1] 176  44  49
-[1] 177  44  67
-[1] 178  44  46
-[1] 179  44  53
-[1] 180  44  78
-[1] 181  44  43
-[1] 182  44  44
-[1] 183  44  91
-[1] 184  44  51
-[1] 185  44  40
-[1] 186  44  39
-[1] 187  44  44
-[1] 188  44  76
-[1] 189  44  73
-[1] 190  44  36
-[1] 191  44  52
-[1] 192  44  40
-[1] 193  44  41
-[1] 194  44  56
-[1] 195  44  39
-[1] 196  44  36
-[1] 197  44  36
-[1] 198  44  38
-[1] 199  44  52
-[1] 200  44  55
-[1]  1 45 32
-[1]  2 45 36
-[1]  3 45 36
-[1]  4 45 39
-[1]  5 45 38
-[1]  6 45 43
-[1]  7 45 32
-[1]  8 45 45
-[1]  9 45 34
-[1] 10 45 56
-[1] 11 45 52
-[1] 12 45 64
-[1] 13 45 45
-[1] 14 45 38
-[1] 15 45 57
-[1] 16 45 33
-[1] 17 45 38
-[1] 18 45 57
-[1] 19 45 40
-[1] 20 45 49
-[1] 21 45 70
-[1] 22 45 43
-[1] 23 45 50
-[1] 24 45 62
-[1] 25 45 37
-[1] 26 45 48
-[1] 27 45 54
-[1] 28 45 52
-[1] 29 45 38
-[1] 30 45 38
-[1] 31 45 49
-[1] 32 45 46
-[1] 33 45 54
-[1] 34 45 64
-[1] 35 45 43
-[1] 36 45 48
-[1] 37 45 44
-[1] 38 45 58
-[1] 39 45 39
-[1] 40 45 47
-[1] 41 45 56
-[1] 42 45 55
-[1] 43 45 48
-[1] 44 45 44
-[1] 45 45 54
-[1] 46 45 47
-[1] 47 45 63
-[1] 48 45 54
-[1] 49 45 51
-[1] 50 45 39
-[1] 51 45 44
-[1] 52 45 54
-[1] 53 45 67
-[1] 54 45 48
-[1]  55  45 101
-[1] 56 45 49
-[1] 57 45 60
-[1] 58 45 55
-[1] 59 45 28
-[1] 60 45 49
-[1] 61 45 71
-[1] 62 45 61
-[1] 63 45 56
-[1] 64 45 69
-[1] 65 45 58
-[1] 66 45 34
-[1] 67 45 91
-[1] 68 45 38
-[1] 69 45 34
-[1] 70 45 83
-[1] 71 45 57
-[1] 72 45 55
-[1] 73 45 79
-[1] 74 45 58
-[1] 75 45 58
-[1] 76 45 99
-[1] 77 45 41
-[1] 78 45 50
-[1] 79 45 63
-[1] 80 45 53
-[1] 81 45 41
-[1] 82 45 38
-[1] 83 45 50
-[1] 84 45 53
-[1] 85 45 45
-[1] 86 45 38
-[1] 87 45 87
-[1] 88 45 82
-[1] 89 45 67
-[1] 90 45 44
-[1] 91 45 45
-[1] 92 45 66
-[1] 93 45 57
-[1] 94 45 40
-[1] 95 45 55
-[1] 96 45 46
-[1] 97 45 51
-[1] 98 45 45
-[1] 99 45 66
-[1] 100  45  50
-[1] 101  45  39
-[1] 102  45  52
-[1] 103  45  41
-[1] 104  45  40
-[1] 105  45  40
-[1] 106  45  41
-[1] 107  45  88
-[1] 108  45  46
-[1] 109  45  57
-[1] 110  45 125
-[1] 111  45  40
-[1] 112  45  39
-[1] 113  45  40
-[1] 114  45  40
-[1] 115  45 125
-[1] 116  45  51
-[1] 117  45  53
-[1] 118  45  46
-[1] 119  45  49
-[1] 120  45  37
-[1] 121  45  62
-[1] 122  45  64
-[1] 123  45  38
-[1] 124  45  52
-[1] 125  45  64
-[1] 126  45  65
-[1] 127  45  53
-[1] 128  45  54
-[1] 129  45  96
-[1] 130  45  47
-[1] 131  45  38
-[1] 132  45  43
-[1] 133  45  46
-[1] 134  45  54
-[1] 135  45  56
-[1] 136  45  30
-[1] 137  45  55
-[1] 138  45  32
-[1] 139  45  51
-[1] 140  45  49
-[1] 141  45  54
-[1] 142  45  70
-[1] 143  45  38
-[1] 144  45  51
-[1] 145  45  35
-[1] 146  45  73
-[1] 147  45  46
-[1] 148  45  47
-[1] 149  45  54
-[1] 150  45  49
-[1] 151  45  33
-[1] 152  45  34
-[1] 153  45  41
-[1] 154  45  41
-[1] 155  45  39
-[1] 156  45  36
-[1] 157  45  66
-[1] 158  45  53
-[1] 159  45  42
-[1] 160  45  54
-[1] 161  45  38
-[1] 162  45  59
-[1] 163  45  50
-[1] 164  45  44
-[1] 165  45  51
-[1] 166  45  52
-[1] 167  45  45
-[1] 168  45  66
-[1] 169  45  67
-[1] 170  45  51
-[1] 171  45  43
-[1] 172  45  45
-[1] 173  45  48
-[1] 174  45  61
-[1] 175  45  37
-[1] 176  45  45
-[1] 177  45  38
-[1] 178  45  34
-[1] 179  45  54
-[1] 180  45  52
-[1] 181  45  71
-[1] 182  45  47
-[1] 183  45  50
-[1] 184  45  32
-[1] 185  45  44
-[1] 186  45  41
-[1] 187  45  64
-[1] 188  45  45
-[1] 189  45  63
-[1] 190  45  57
-[1] 191  45  42
-[1] 192  45  71
-[1] 193  45  35
-[1] 194  45  47
-[1] 195  45  46
-[1] 196  45  31
-[1] 197  45  52
-[1] 198  45  51
-[1] 199  45  62
-[1] 200  45  45
-[1]  1 46 35
-[1]  2 46 36
-[1]  3 46 33
-[1]  4 46 44
-[1]  5 46 41
-[1]  6 46 65
-[1]  7 46 86
-[1]  8 46 38
-[1]  9 46 46
-[1] 10 46 46
-[1] 11 46 28
-[1] 12 46 49
-[1] 13 46 50
-[1] 14 46 37
-[1] 15 46 75
-[1] 16 46 53
-[1] 17 46 60
-[1] 18 46 38
-[1] 19 46 55
-[1] 20 46 47
-[1] 21 46 38
-[1] 22 46 47
-[1] 23 46 51
-[1] 24 46 45
-[1] 25 46 37
-[1] 26 46 55
-[1] 27 46 51
-[1] 28 46 48
-[1] 29 46 41
-[1] 30 46 56
-[1] 31 46 27
-[1]  32  46 120
-[1] 33 46 72
-[1] 34 46 47
-[1] 35 46 61
-[1] 36 46 42
-[1] 37 46 49
-[1] 38 46 39
-[1] 39 46 58
-[1] 40 46 53
-[1] 41 46 62
-[1] 42 46 42
-[1] 43 46 39
-[1] 44 46 45
-[1] 45 46 39
-[1] 46 46 60
-[1] 47 46 49
-[1] 48 46 49
-[1] 49 46 64
-[1] 50 46 54
-[1] 51 46 54
-[1] 52 46 58
-[1] 53 46 68
-[1] 54 46 82
-[1] 55 46 38
-[1] 56 46 48
-[1] 57 46 44
-[1] 58 46 75
-[1] 59 46 82
-[1] 60 46 67
-[1] 61 46 46
-[1] 62 46 70
-[1] 63 46 36
-[1] 64 46 52
-[1] 65 46 44
-[1] 66 46 56
-[1] 67 46 60
-[1] 68 46 39
-[1] 69 46 70
-[1] 70 46 36
-[1] 71 46 79
-[1] 72 46 40
-[1] 73 46 41
-[1] 74 46 42
-[1] 75 46 53
-[1] 76 46 62
-[1] 77 46 76
-[1] 78 46 49
-[1] 79 46 97
-[1] 80 46 42
-[1] 81 46 40
-[1]  82  46 118
-[1] 83 46 32
-[1] 84 46 37
-[1] 85 46 33
-[1] 86 46 47
-[1] 87 46 45
-[1] 88 46 49
-[1] 89 46 53
-[1] 90 46 46
-[1] 91 46 49
-[1] 92 46 39
-[1] 93 46 29
-[1] 94 46 41
-[1] 95 46 46
-[1] 96 46 50
-[1] 97 46 40
-[1] 98 46 43
-[1] 99 46 36
-[1] 100  46  95
-[1] 101  46  85
-[1] 102  46  40
-[1] 103  46  36
-[1] 104  46  33
-[1] 105  46  60
-[1] 106  46  70
-[1] 107  46  49
-[1] 108  46  53
-[1] 109  46  53
-[1] 110  46  83
-[1] 111  46  59
-[1] 112  46  63
-[1] 113  46  60
-[1] 114  46  47
-[1] 115  46  47
-[1] 116  46  40
-[1] 117  46  70
-[1] 118  46  52
-[1] 119  46  41
-[1] 120  46  90
-[1] 121  46  39
-[1] 122  46  39
-[1] 123  46  66
-[1] 124  46  73
-[1] 125  46  65
-[1] 126  46  75
-[1] 127  46  53
-[1] 128  46  64
-[1] 129  46  49
-[1] 130  46  57
-[1] 131  46  40
-[1] 132  46  44
-[1] 133  46  69
-[1] 134  46  60
-[1] 135  46  57
-[1] 136  46  70
-[1] 137  46  78
-[1] 138  46  52
-[1] 139  46  42
-[1] 140  46  55
-[1] 141  46  48
-[1] 142  46  41
-[1] 143  46  53
-[1] 144  46  30
-[1] 145  46  64
-[1] 146  46  52
-[1] 147  46  84
-[1] 148  46  40
-[1] 149  46  69
-[1] 150  46  40
-[1] 151  46  67
-[1] 152  46  35
-[1] 153  46  70
-[1] 154  46  47
-[1] 155  46  51
-[1] 156  46  38
-[1] 157  46  41
-[1] 158  46  36
-[1] 159  46  43
-[1] 160  46  34
-[1] 161  46  48
-[1] 162  46  33
-[1] 163  46  53
-[1] 164  46  70
-[1] 165  46  53
-[1] 166  46  63
-[1] 167  46  36
-[1] 168  46  47
-[1] 169  46  80
-[1] 170  46  33
-[1] 171  46  67
-[1] 172  46  52
-[1] 173  46  62
-[1] 174  46  53
-[1] 175  46  47
-[1] 176  46  68
-[1] 177  46  40
-[1] 178  46 123
-[1] 179  46  64
-[1] 180  46  55
-[1] 181  46  44
-[1] 182  46  48
-[1] 183  46  42
-[1] 184  46  57
-[1] 185  46  34
-[1] 186  46  37
-[1] 187  46  62
-[1] 188  46  54
-[1] 189  46  48
-[1] 190  46  65
-[1] 191  46  45
-[1] 192  46  49
-[1] 193  46  43
-[1] 194  46  54
-[1] 195  46  45
-[1] 196  46  44
-[1] 197  46  45
-[1] 198  46  53
-[1] 199  46  56
-[1] 200  46  45
-[1]  1 47 51
-[1]  2 47 32
-[1]  3 47 31
-[1]  4 47 36
-[1]  5 47 36
-[1]  6 47 42
-[1]  7 47 56
-[1]  8 47 67
-[1]  9 47 33
-[1] 10 47 54
-[1] 11 47 37
-[1] 12 47 50
-[1] 13 47 43
-[1] 14 47 66
-[1] 15 47 46
-[1] 16 47 59
-[1] 17 47 51
-[1] 18 47 39
-[1] 19 47 34
-[1] 20 47 35
-[1] 21 47 38
-[1] 22 47 49
-[1] 23 47 42
-[1] 24 47 43
-[1] 25 47 44
-[1] 26 47 45
-[1] 27 47 41
-[1] 28 47 44
-[1] 29 47 49
-[1] 30 47 51
-[1] 31 47 62
-[1] 32 47 42
-[1] 33 47 47
-[1] 34 47 43
-[1] 35 47 62
-[1] 36 47 68
-[1] 37 47 51
-[1] 38 47 45
-[1] 39 47 66
-[1] 40 47 73
-[1] 41 47 38
-[1] 42 47 63
-[1] 43 47 40
-[1]  44  47 163
-[1] 45 47 38
-[1] 46 47 43
-[1] 47 47 61
-[1] 48 47 50
-[1] 49 47 46
-[1] 50 47 49
-[1] 51 47 59
-[1] 52 47 45
-[1] 53 47 30
-[1] 54 47 55
-[1] 55 47 65
-[1] 56 47 65
-[1] 57 47 65
-[1] 58 47 43
-[1] 59 47 42
-[1] 60 47 51
-[1] 61 47 43
-[1] 62 47 44
-[1] 63 47 28
-[1] 64 47 40
-[1] 65 47 90
-[1] 66 47 62
-[1]  67  47 117
-[1] 68 47 31
-[1] 69 47 59
-[1] 70 47 42
-[1] 71 47 58
-[1] 72 47 48
-[1] 73 47 74
-[1] 74 47 52
-[1] 75 47 60
-[1] 76 47 32
-[1] 77 47 44
-[1] 78 47 62
-[1] 79 47 35
-[1] 80 47 62
-[1] 81 47 45
-[1] 82 47 71
-[1] 83 47 46
-[1] 84 47 69
-[1] 85 47 46
-[1] 86 47 45
-[1] 87 47 44
-[1] 88 47 41
-[1] 89 47 53
-[1]  90  47 104
-[1] 91 47 50
-[1] 92 47 44
-[1] 93 47 58
-[1] 94 47 42
-[1] 95 47 37
-[1] 96 47 36
-[1] 97 47 62
-[1] 98 47 45
-[1] 99 47 94
-[1] 100  47  48
-[1] 101  47  91
-[1] 102  47  43
-[1] 103  47  45
-[1] 104  47  54
-[1] 105  47  53
-[1] 106  47  63
-[1] 107  47  37
-[1] 108  47  38
-[1] 109  47  39
-[1] 110  47 101
-[1] 111  47  90
-[1] 112  47  48
-[1] 113  47  69
-[1] 114  47  72
-[1] 115  47  55
-[1] 116  47  80
-[1] 117  47  48
-[1] 118  47  54
-[1] 119  47  70
-[1] 120  47  51
-[1] 121  47  51
-[1] 122  47  46
-[1] 123  47  46
-[1] 124  47  36
-[1] 125  47  65
-[1] 126  47  52
-[1] 127  47  56
-[1] 128  47  38
-[1] 129  47  47
-[1] 130  47  47
-[1] 131  47  54
-[1] 132  47  45
-[1] 133  47  58
-[1] 134  47  61
-[1] 135  47  44
-[1] 136  47  57
-[1] 137  47  48
-[1] 138  47  71
-[1] 139  47  34
-[1] 140  47  47
-[1] 141  47  35
-[1] 142  47  55
-[1] 143  47  42
-[1] 144  47  40
-[1] 145  47  46
-[1] 146  47  44
-[1] 147  47  44
-[1] 148  47  37
-[1] 149  47  48
-[1] 150  47  57
-[1] 151  47  50
-[1] 152  47  47
-[1] 153  47  55
-[1] 154  47  36
-[1] 155  47  43
-[1] 156  47  65
-[1] 157  47  49
-[1] 158  47  41
-[1] 159  47  85
-[1] 160  47  42
-[1] 161  47  53
-[1] 162  47  42
-[1] 163  47  51
-[1] 164  47  62
-[1] 165  47  52
-[1] 166  47  45
-[1] 167  47  36
-[1] 168  47  76
-[1] 169  47  59
-[1] 170  47  50
-[1] 171  47  48
-[1] 172  47  34
-[1] 173  47  69
-[1] 174  47  44
-[1] 175  47 105
-[1] 176  47  57
-[1] 177  47  45
-[1] 178  47  78
-[1] 179  47  45
-[1] 180  47  56
-[1] 181  47  60
-[1] 182  47  51
-[1] 183  47  57
-[1] 184  47  37
-[1] 185  47  76
-[1] 186  47  46
-[1] 187  47  31
-[1] 188  47  68
-[1] 189  47  40
-[1] 190  47  52
-[1] 191  47  52
-[1] 192  47  46
-[1] 193  47  64
-[1] 194  47  42
-[1] 195  47  45
-[1] 196  47  46
-[1] 197  47  40
-[1] 198  47  51
-[1] 199  47  45
-[1] 200  47  39
-[1]  1 48 45
-[1]  2 48 35
-[1]  3 48 30
-[1]  4 48 31
-[1]  5 48 44
-[1]  6 48 45
-[1]  7 48 31
-[1]  8 48 36
-[1]  9 48 75
-[1] 10 48 50
-[1] 11 48 57
-[1] 12 48 42
-[1] 13 48 49
-[1] 14 48 36
-[1] 15 48 41
-[1] 16 48 32
-[1] 17 48 42
-[1]  18  48 100
-[1] 19 48 36
-[1] 20 48 59
-[1] 21 48 34
-[1] 22 48 34
-[1] 23 48 28
-[1] 24 48 52
-[1] 25 48 88
-[1] 26 48 37
-[1] 27 48 43
-[1] 28 48 46
-[1] 29 48 49
-[1] 30 48 71
-[1] 31 48 54
-[1] 32 48 36
-[1] 33 48 49
-[1] 34 48 45
-[1] 35 48 36
-[1] 36 48 35
-[1] 37 48 46
-[1] 38 48 50
-[1] 39 48 52
-[1] 40 48 54
-[1] 41 48 38
-[1] 42 48 88
-[1] 43 48 62
-[1] 44 48 36
-[1] 45 48 45
-[1] 46 48 88
-[1] 47 48 49
-[1] 48 48 60
-[1] 49 48 77
-[1] 50 48 51
-[1] 51 48 62
-[1] 52 48 88
-[1] 53 48 55
-[1] 54 48 77
-[1] 55 48 37
-[1] 56 48 37
-[1] 57 48 78
-[1] 58 48 39
-[1] 59 48 64
-[1] 60 48 40
-[1] 61 48 33
-[1] 62 48 42
-[1] 63 48 74
-[1] 64 48 52
-[1] 65 48 44
-[1] 66 48 69
-[1] 67 48 49
-[1] 68 48 45
-[1] 69 48 50
-[1] 70 48 85
-[1] 71 48 39
-[1] 72 48 73
-[1] 73 48 55
-[1] 74 48 41
-[1] 75 48 69
-[1] 76 48 49
-[1] 77 48 47
-[1] 78 48 32
-[1] 79 48 53
-[1] 80 48 61
-[1] 81 48 72
-[1] 82 48 43
-[1] 83 48 44
-[1] 84 48 91
-[1] 85 48 43
-[1] 86 48 58
-[1] 87 48 31
-[1] 88 48 63
-[1] 89 48 56
-[1] 90 48 60
-[1] 91 48 55
-[1] 92 48 32
-[1] 93 48 65
-[1] 94 48 47
-[1] 95 48 48
-[1] 96 48 61
-[1] 97 48 50
-[1] 98 48 82
-[1] 99 48 49
-[1] 100  48  54
-[1] 101  48  82
-[1] 102  48  33
-[1] 103  48  44
-[1] 104  48  42
-[1] 105  48  39
-[1] 106  48  50
-[1] 107  48  45
-[1] 108  48  36
-[1] 109  48  73
-[1] 110  48  36
-[1] 111  48  51
-[1] 112  48  65
-[1] 113  48  98
-[1] 114  48  67
-[1] 115  48  50
-[1] 116  48  35
-[1] 117  48  40
-[1] 118  48  93
-[1] 119  48  35
-[1] 120  48  72
-[1] 121  48  60
-[1] 122  48  55
-[1] 123  48  47
-[1] 124  48  65
-[1] 125  48  52
-[1] 126  48  45
-[1] 127  48  49
-[1] 128  48  53
-[1] 129  48  65
-[1] 130  48  63
-[1] 131  48  43
-[1] 132  48  57
-[1] 133  48  46
-[1] 134  48  44
-[1] 135  48  47
-[1] 136  48  72
-[1] 137  48  36
-[1] 138  48  43
-[1] 139  48  62
-[1] 140  48  42
-[1] 141  48  37
-[1] 142  48  56
-[1] 143  48  39
-[1] 144  48  50
-[1] 145  48  42
-[1] 146  48  68
-[1] 147  48  82
-[1] 148  48  34
-[1] 149  48  39
-[1] 150  48  46
-[1] 151  48  48
-[1] 152  48  62
-[1] 153  48  60
-[1] 154  48  46
-[1] 155  48  38
-[1] 156  48  53
-[1] 157  48  28
-[1] 158  48  90
-[1] 159  48  58
-[1] 160  48  89
-[1] 161  48  64
-[1] 162  48  53
-[1] 163  48  57
-[1] 164  48  56
-[1] 165  48  92
-[1] 166  48  50
-[1] 167  48  48
-[1] 168  48  42
-[1] 169  48  67
-[1] 170  48  39
-[1] 171  48  54
-[1] 172  48  51
-[1] 173  48  42
-[1] 174  48  41
-[1] 175  48  66
-[1] 176  48  50
-[1] 177  48  39
-[1] 178  48  35
-[1] 179  48  39
-[1] 180  48  40
-[1] 181  48  60
-[1] 182  48  47
-[1] 183  48  49
-[1] 184  48  42
-[1] 185  48  45
-[1] 186  48  69
-[1] 187  48  46
-[1] 188  48  51
-[1] 189  48  50
-[1] 190  48  41
-[1] 191  48  41
-[1] 192  48  38
-[1] 193  48  84
-[1] 194  48  41
-[1] 195  48  48
-[1] 196  48  59
-[1] 197  48  52
-[1] 198  48  45
-[1] 199  48  67
-[1] 200  48  71
-[1]  1 49 41
-[1]  2 49 57
-[1]  3 49 30
-[1]  4 49 44
-[1]  5 49 45
-[1]  6 49 25
-[1]  7 49 38
-[1]  8 49 34
-[1]  9 49 54
-[1] 10 49 32
-[1] 11 49 55
-[1] 12 49 48
-[1] 13 49 33
-[1] 14 49 44
-[1] 15 49 45
-[1] 16 49 56
-[1] 17 49 31
-[1] 18 49 33
-[1] 19 49 34
-[1] 20 49 37
-[1] 21 49 36
-[1] 22 49 37
-[1] 23 49 51
-[1] 24 49 44
-[1] 25 49 44
-[1] 26 49 29
-[1] 27 49 43
-[1] 28 49 50
-[1] 29 49 41
-[1] 30 49 37
-[1] 31 49 45
-[1] 32 49 49
-[1] 33 49 43
-[1] 34 49 53
-[1] 35 49 36
-[1] 36 49 43
-[1] 37 49 50
-[1] 38 49 55
-[1] 39 49 33
-[1] 40 49 48
-[1] 41 49 52
-[1] 42 49 45
-[1] 43 49 50
-[1] 44 49 45
-[1] 45 49 40
-[1] 46 49 57
-[1] 47 49 52
-[1] 48 49 42
-[1] 49 49 62
-[1] 50 49 45
-[1] 51 49 80
-[1] 52 49 56
-[1] 53 49 95
-[1] 54 49 61
-[1] 55 49 84
-[1] 56 49 46
-[1] 57 49 58
-[1]  58  49 104
-[1] 59 49 65
-[1] 60 49 57
-[1] 61 49 53
-[1] 62 49 41
-[1] 63 49 44
-[1] 64 49 45
-[1] 65 49 73
-[1] 66 49 48
-[1] 67 49 49
-[1] 68 49 96
-[1] 69 49 53
-[1] 70 49 77
-[1] 71 49 33
-[1] 72 49 38
-[1] 73 49 49
-[1] 74 49 33
-[1] 75 49 69
-[1] 76 49 50
-[1] 77 49 46
-[1] 78 49 30
-[1] 79 49 87
-[1] 80 49 41
-[1] 81 49 79
-[1] 82 49 50
-[1] 83 49 55
-[1] 84 49 36
-[1] 85 49 62
-[1] 86 49 45
-[1] 87 49 50
-[1] 88 49 39
-[1] 89 49 32
-[1] 90 49 65
-[1] 91 49 56
-[1] 92 49 41
-[1] 93 49 34
-[1] 94 49 69
-[1] 95 49 87
-[1] 96 49 47
-[1] 97 49 41
-[1] 98 49 63
-[1] 99 49 59
-[1] 100  49  48
-[1] 101  49  51
-[1] 102  49  59
-[1] 103  49  49
-[1] 104  49  84
-[1] 105  49  42
-[1] 106  49  71
-[1] 107  49  34
-[1] 108  49  78
-[1] 109  49  42
-[1] 110  49  85
-[1] 111  49  56
-[1] 112  49  70
-[1] 113  49  41
-[1] 114  49  38
-[1] 115  49  41
-[1] 116  49  56
-[1] 117  49  44
-[1] 118  49  62
-[1] 119  49  50
-[1] 120  49  55
-[1] 121  49  42
-[1] 122  49  57
-[1] 123  49  67
-[1] 124  49  44
-[1] 125  49  39
-[1] 126  49  43
-[1] 127  49  78
-[1] 128  49  76
-[1] 129  49  65
-[1] 130  49  47
-[1] 131  49  84
-[1] 132  49  39
-[1] 133  49  66
-[1] 134  49  55
-[1] 135  49  76
-[1] 136  49  47
-[1] 137  49  34
-[1] 138  49  48
-[1] 139  49  48
-[1] 140  49  45
-[1] 141  49  75
-[1] 142  49  43
-[1] 143  49  29
-[1] 144  49  37
-[1] 145  49  50
-[1] 146  49  62
-[1] 147  49  48
-[1] 148  49  37
-[1] 149  49  41
-[1] 150  49  58
-[1] 151  49  63
-[1] 152  49  40
-[1] 153  49  59
-[1] 154  49  40
-[1] 155  49  39
-[1] 156  49  35
-[1] 157  49  73
-[1] 158  49  43
-[1] 159  49  46
-[1] 160  49  68
-[1] 161  49  65
-[1] 162  49  40
-[1] 163  49  65
-[1] 164  49  39
-[1] 165  49  54
-[1] 166  49  42
-[1] 167  49  90
-[1] 168  49  68
-[1] 169  49  37
-[1] 170  49  75
-[1] 171  49  36
-[1] 172  49  59
-[1] 173  49  49
-[1] 174  49  45
-[1] 175  49  29
-[1] 176  49  40
-[1] 177  49  33
-[1] 178  49  71
-[1] 179  49  57
-[1] 180  49  45
-[1] 181  49  58
-[1] 182  49  49
-[1] 183  49  55
-[1] 184  49  57
-[1] 185  49  36
-[1] 186  49  67
-[1] 187  49  37
-[1] 188  49  44
-[1] 189  49  62
-[1] 190  49  41
-[1] 191  49  48
-[1] 192  49  44
-[1] 193  49  57
-[1] 194  49  52
-[1] 195  49  60
-[1] 196  49  34
-[1] 197  49  57
-[1] 198  49  57
-[1] 199  49  65
-[1] 200  49  80
-[1]  1 50 42
-[1]  2 50 39
-[1]  3 50 39
-[1]  4 50 40
-[1]  5 50 38
-[1]  6 50 45
-[1]  7 50 45
-[1]  8 50 57
-[1]  9 50 28
-[1] 10 50 57
-[1] 11 50 33
-[1] 12 50 42
-[1] 13 50 43
-[1] 14 50 44
-[1] 15 50 63
-[1] 16 50 44
-[1] 17 50 47
-[1] 18 50 39
-[1] 19 50 42
-[1] 20 50 31
-[1] 21 50 48
-[1] 22 50 49
-[1] 23 50 34
-[1] 24 50 37
-[1] 25 50 32
-[1] 26 50 37
-[1] 27 50 28
-[1] 28 50 53
-[1] 29 50 33
-[1] 30 50 48
-[1] 31 50 45
-[1] 32 50 56
-[1] 33 50 37
-[1] 34 50 44
-[1] 35 50 41
-[1] 36 50 45
-[1] 37 50 49
-[1] 38 50 61
-[1] 39 50 47
-[1] 40 50 61
-[1] 41 50 48
-[1] 42 50 65
-[1] 43 50 83
-[1] 44 50 46
-[1] 45 50 64
-[1] 46 50 53
-[1] 47 50 44
-[1] 48 50 90
-[1] 49 50 65
-[1] 50 50 54
-[1]  51  50 112
-[1] 52 50 44
-[1] 53 50 73
-[1] 54 50 42
-[1] 55 50 59
-[1] 56 50 50
-[1] 57 50 50
-[1] 58 50 52
-[1] 59 50 38
-[1] 60 50 51
-[1] 61 50 53
-[1] 62 50 64
-[1] 63 50 52
-[1] 64 50 57
-[1] 65 50 49
-[1] 66 50 63
-[1] 67 50 74
-[1] 68 50 44
-[1] 69 50 29
-[1] 70 50 45
-[1] 71 50 64
-[1] 72 50 78
-[1] 73 50 42
-[1] 74 50 58
-[1] 75 50 49
-[1] 76 50 45
-[1] 77 50 45
-[1] 78 50 89
-[1] 79 50 42
-[1] 80 50 52
-[1] 81 50 45
-[1] 82 50 99
-[1] 83 50 38
-[1] 84 50 67
-[1] 85 50 54
-[1] 86 50 58
-[1] 87 50 25
-[1] 88 50 70
-[1] 89 50 74
-[1] 90 50 39
-[1] 91 50 52
-[1] 92 50 39
-[1] 93 50 46
-[1] 94 50 47
-[1] 95 50 37
-[1] 96 50 59
-[1] 97 50 48
-[1] 98 50 54
-[1] 99 50 52
-[1] 100  50  37
-[1] 101  50  56
-[1] 102  50  86
-[1] 103  50  56
-[1] 104  50  28
-[1] 105  50  55
-[1] 106  50  35
-[1] 107  50  74
-[1] 108  50 100
-[1] 109  50  55
-[1] 110  50  50
-[1] 111  50  83
-[1] 112  50  38
-[1] 113  50  39
-[1] 114  50  53
-[1] 115  50  46
-[1] 116  50  47
-[1] 117  50  44
-[1] 118  50  78
-[1] 119  50  52
-[1] 120  50  46
-[1] 121  50  79
-[1] 122  50  51
-[1] 123  50  50
-[1] 124  50  42
-[1] 125  50  49
-[1] 126  50  48
-[1] 127  50  51
-[1] 128  50  49
-[1] 129  50  39
-[1] 130  50  39
-[1] 131  50  61
-[1] 132  50  67
-[1] 133  50  53
-[1] 134  50 103
-[1] 135  50  42
-[1] 136  50  52
-[1] 137  50  58
-[1] 138  50  67
-[1] 139  50  65
-[1] 140  50  44
-[1] 141  50  43
-[1] 142  50  48
-[1] 143  50  70
-[1] 144  50  78
-[1] 145  50  65
-[1] 146  50  47
-[1] 147  50  63
-[1] 148  50  43
-[1] 149  50  52
-[1] 150  50  49
-[1] 151  50  36
-[1] 152  50  41
-[1] 153  50  48
-[1] 154  50  53
-[1] 155  50  73
-[1] 156  50  44
-[1] 157  50  43
-[1] 158  50  52
-[1] 159  50  42
-[1] 160  50  57
-[1] 161  50  43
-[1] 162  50  41
-[1] 163  50  56
-[1] 164  50  81
-[1] 165  50  53
-[1] 166  50  57
-[1] 167  50  41
-[1] 168  50  39
-[1] 169  50  50
-[1] 170  50  59
-[1] 171  50  60
-[1] 172  50  43
-[1] 173  50  88
-[1] 174  50  44
-[1] 175  50  64
-[1] 176  50  48
-[1] 177  50  53
-[1] 178  50  48
-[1] 179  50  57
-[1] 180  50  77
-[1] 181  50  50
-[1] 182  50  46
-[1] 183  50  66
-[1] 184  50  56
-[1] 185  50  58
-[1] 186  50  47
-[1] 187  50  34
-[1] 188  50  47
-[1] 189  50  50
-[1] 190  50  60
-[1] 191  50  52
-[1] 192  50  42
-[1] 193  50  53
-[1] 194  50  43
-[1] 195  50  64
-[1] 196  50  40
-[1] 197  50  59
-[1] 198  50  36
-[1] 199  50  48
-[1] 200  50  50
-[1]  1 51 45
-[1]  2 51 27
-[1]  3 51 55
-[1]  4 51 38
-[1]  5 51 36
-[1]  6 51 38
-[1]  7 51 33
-[1]  8 51 45
-[1]  9 51 41
-[1] 10 51 48
-[1] 11 51 38
-[1] 12 51 33
-[1] 13 51 37
-[1] 14 51 34
-[1] 15 51 44
-[1] 16 51 40
-[1] 17 51 90
-[1] 18 51 72
-[1] 19 51 41
-[1] 20 51 41
-[1] 21 51 46
-[1] 22 51 55
-[1] 23 51 37
-[1] 24 51 51
-[1] 25 51 37
-[1] 26 51 71
-[1] 27 51 35
-[1] 28 51 40
-[1] 29 51 83
-[1] 30 51 36
-[1] 31 51 51
-[1] 32 51 52
-[1] 33 51 38
-[1] 34 51 59
-[1] 35 51 53
-[1] 36 51 57
-[1] 37 51 30
-[1] 38 51 52
-[1] 39 51 37
-[1] 40 51 35
-[1] 41 51 53
-[1] 42 51 54
-[1] 43 51 43
-[1] 44 51 36
-[1] 45 51 39
-[1] 46 51 92
-[1] 47 51 79
-[1] 48 51 32
-[1] 49 51 53
-[1] 50 51 54
-[1] 51 51 91
-[1] 52 51 42
-[1] 53 51 73
-[1] 54 51 54
-[1] 55 51 53
-[1] 56 51 44
-[1] 57 51 50
-[1] 58 51 60
-[1] 59 51 56
-[1] 60 51 35
-[1] 61 51 75
-[1] 62 51 40
-[1] 63 51 42
-[1] 64 51 45
-[1]  65  51 101
-[1] 66 51 48
-[1] 67 51 61
-[1] 68 51 38
-[1] 69 51 38
-[1] 70 51 44
-[1] 71 51 38
-[1] 72 51 43
-[1] 73 51 44
-[1] 74 51 39
-[1] 75 51 48
-[1] 76 51 42
-[1]  77  51 106
-[1] 78 51 60
-[1] 79 51 75
-[1] 80 51 60
-[1] 81 51 39
-[1] 82 51 50
-[1] 83 51 27
-[1] 84 51 55
-[1] 85 51 35
-[1] 86 51 63
-[1] 87 51 51
-[1] 88 51 47
-[1] 89 51 37
-[1] 90 51 42
-[1] 91 51 44
-[1] 92 51 91
-[1] 93 51 43
-[1] 94 51 64
-[1] 95 51 53
-[1] 96 51 64
-[1] 97 51 69
-[1] 98 51 46
-[1] 99 51 40
-[1] 100  51  52
-[1] 101  51  60
-[1] 102  51  45
-[1] 103  51  45
-[1] 104  51  44
-[1] 105  51  56
-[1] 106  51  39
-[1] 107  51  50
-[1] 108  51  39
-[1] 109  51  39
-[1] 110  51  50
-[1] 111  51  59
-[1] 112  51  40
-[1] 113  51  72
-[1] 114  51  45
-[1] 115  51  43
-[1] 116  51  78
-[1] 117  51  43
-[1] 118  51  45
-[1] 119  51  63
-[1] 120  51  62
-[1] 121  51  42
-[1] 122  51  49
-[1] 123  51  42
-[1] 124  51  60
-[1] 125  51  43
-[1] 126  51  37
-[1] 127  51  74
-[1] 128  51  57
-[1] 129  51  49
-[1] 130  51  62
-[1] 131  51  49
-[1] 132  51  46
-[1] 133  51  36
-[1] 134  51  58
-[1] 135  51  58
-[1] 136  51  45
-[1] 137  51  34
-[1] 138  51  63
-[1] 139  51  36
-[1] 140  51  61
-[1] 141  51  46
-[1] 142  51  81
-[1] 143  51  52
-[1] 144  51  47
-[1] 145  51  51
-[1] 146  51  42
-[1] 147  51  45
-[1] 148  51  47
-[1] 149  51  48
-[1] 150  51  44
-[1] 151  51  55
-[1] 152  51  61
-[1] 153  51  33
-[1] 154  51  61
-[1] 155  51  55
-[1] 156  51  37
-[1] 157  51  46
-[1] 158  51  57
-[1] 159  51  39
-[1] 160  51  47
-[1] 161  51  48
-[1] 162  51  33
-[1] 163  51  52
-[1] 164  51  58
-[1] 165  51  79
-[1] 166  51  50
-[1] 167  51  45
-[1] 168  51  73
-[1] 169  51  50
-[1] 170  51  57
-[1] 171  51  45
-[1] 172  51  70
-[1] 173  51  56
-[1] 174  51  46
-[1] 175  51  67
-[1] 176  51  45
-[1] 177  51  58
-[1] 178  51  63
-[1] 179  51  63
-[1] 180  51  43
-[1] 181  51  53
-[1] 182  51  68
-[1] 183  51  53
-[1] 184  51  47
-[1] 185  51  46
-[1] 186  51  42
-[1] 187  51  54
-[1] 188  51  53
-[1] 189  51  36
-[1] 190  51  43
-[1] 191  51  52
-[1] 192  51  49
-[1] 193  51  37
-[1] 194  51  49
-[1] 195  51  70
-[1] 196  51  56
-[1] 197  51  57
-[1] 198  51  59
-[1] 199  51  38
-[1] 200  51  47
-[1]  1 52 37
-[1]  2 52 35
-[1]  3 52 36
-[1]  4 52 43
-[1]  5 52 46
-[1]  6 52 38
-[1]  7 52 41
-[1]  8 52 57
-[1]  9 52 31
-[1] 10 52 50
-[1] 11 52 47
-[1] 12 52 38
-[1] 13 52 39
-[1] 14 52 41
-[1] 15 52 48
-[1] 16 52 42
-[1] 17 52 68
-[1] 18 52 38
-[1] 19 52 38
-[1] 20 52 42
-[1] 21 52 40
-[1] 22 52 50
-[1] 23 52 54
-[1] 24 52 40
-[1] 25 52 56
-[1] 26 52 25
-[1] 27 52 52
-[1] 28 52 64
-[1] 29 52 47
-[1] 30 52 34
-[1] 31 52 53
-[1] 32 52 42
-[1]  33  52 109
-[1] 34 52 39
-[1] 35 52 64
-[1] 36 52 33
-[1] 37 52 32
-[1] 38 52 71
-[1] 39 52 59
-[1] 40 52 34
-[1] 41 52 41
-[1] 42 52 71
-[1] 43 52 59
-[1] 44 52 49
-[1] 45 52 56
-[1] 46 52 56
-[1] 47 52 63
-[1] 48 52 51
-[1] 49 52 83
-[1] 50 52 59
-[1] 51 52 34
-[1] 52 52 53
-[1] 53 52 42
-[1] 54 52 59
-[1] 55 52 59
-[1] 56 52 42
-[1] 57 52 57
-[1] 58 52 39
-[1]  59  52 106
-[1] 60 52 62
-[1] 61 52 54
-[1] 62 52 62
-[1] 63 52 42
-[1] 64 52 64
-[1] 65 52 77
-[1] 66 52 52
-[1] 67 52 48
-[1] 68 52 62
-[1] 69 52 72
-[1] 70 52 41
-[1]  71  52 133
-[1] 72 52 48
-[1] 73 52 43
-[1] 74 52 54
-[1] 75 52 38
-[1] 76 52 61
-[1] 77 52 53
-[1] 78 52 55
-[1] 79 52 52
-[1] 80 52 73
-[1] 81 52 41
-[1] 82 52 60
-[1] 83 52 62
-[1] 84 52 45
-[1] 85 52 50
-[1] 86 52 55
-[1] 87 52 49
-[1] 88 52 72
-[1] 89 52 41
-[1] 90 52 48
-[1] 91 52 61
-[1] 92 52 53
-[1] 93 52 46
-[1] 94 52 47
-[1] 95 52 45
-[1] 96 52 32
-[1] 97 52 44
-[1] 98 52 43
-[1] 99 52 37
-[1] 100  52  94
-[1] 101  52  43
-[1] 102  52  70
-[1] 103  52  38
-[1] 104  52  57
-[1] 105  52  44
-[1] 106  52  45
-[1] 107  52  49
-[1] 108  52  52
-[1] 109  52  61
-[1] 110  52  74
-[1] 111  52  47
-[1] 112  52  41
-[1] 113  52  62
-[1] 114  52  52
-[1] 115  52  91
-[1] 116  52  49
-[1] 117  52  73
-[1] 118  52  66
-[1] 119  52  39
-[1] 120  52  46
-[1] 121  52  73
-[1] 122  52  74
-[1] 123  52  87
-[1] 124  52  58
-[1] 125  52  63
-[1] 126  52  63
-[1] 127  52  52
-[1] 128  52  46
-[1] 129  52  56
-[1] 130  52  57
-[1] 131  52  29
-[1] 132  52  53
-[1] 133  52  56
-[1] 134  52  71
-[1] 135  52  41
-[1] 136  52  44
-[1] 137  52  63
-[1] 138  52  42
-[1] 139  52  45
-[1] 140  52  54
-[1] 141  52  37
-[1] 142  52  37
-[1] 143  52  40
-[1] 144  52  48
-[1] 145  52  87
-[1] 146  52  39
-[1] 147  52  45
-[1] 148  52  36
-[1] 149  52  49
-[1] 150  52  52
-[1] 151  52  83
-[1] 152  52  49
-[1] 153  52  46
-[1] 154  52  37
-[1] 155  52  56
-[1] 156  52  43
-[1] 157  52  40
-[1] 158  52  38
-[1] 159  52  56
-[1] 160  52  43
-[1] 161  52  64
-[1] 162  52  33
-[1] 163  52  60
-[1] 164  52  54
-[1] 165  52  45
-[1] 166  52  73
-[1] 167  52  56
-[1] 168  52  56
-[1] 169  52  65
-[1] 170  52  33
-[1] 171  52  42
-[1] 172  52  71
-[1] 173  52  62
-[1] 174  52  46
-[1] 175  52  54
-[1] 176  52  58
-[1] 177  52  46
-[1] 178  52  58
-[1] 179  52  44
-[1] 180  52  48
-[1] 181  52  45
-[1] 182  52  56
-[1] 183  52  43
-[1] 184  52  64
-[1] 185  52  55
-[1] 186  52  51
-[1] 187  52  44
-[1] 188  52  39
-[1] 189  52  46
-[1] 190  52  49
-[1] 191  52  53
-[1] 192  52  56
-[1] 193  52  26
-[1] 194  52  63
-[1] 195  52  49
-[1] 196  52  76
-[1] 197  52  40
-[1] 198  52  35
-[1] 199  52  56
-[1] 200  52  68
-[1]  1 53 30
-[1]  2 53 50
-[1]  3 53 38
-[1]  4 53 29
-[1]  5 53 54
-[1]  6 53 41
-[1]  7 53 58
-[1]  8 53 33
-[1]  9 53 36
-[1] 10 53 50
-[1] 11 53 42
-[1] 12 53 28
-[1] 13 53 31
-[1] 14 53 34
-[1] 15 53 53
-[1] 16 53 55
-[1] 17 53 40
-[1] 18 53 38
-[1] 19 53 45
-[1] 20 53 34
-[1] 21 53 28
-[1] 22 53 31
-[1] 23 53 43
-[1] 24 53 47
-[1] 25 53 48
-[1] 26 53 69
-[1] 27 53 38
-[1] 28 53 53
-[1] 29 53 44
-[1] 30 53 47
-[1] 31 53 43
-[1] 32 53 49
-[1] 33 53 41
-[1] 34 53 51
-[1] 35 53 83
-[1] 36 53 37
-[1] 37 53 46
-[1] 38 53 37
-[1] 39 53 46
-[1] 40 53 47
-[1] 41 53 35
-[1] 42 53 69
-[1] 43 53 85
-[1] 44 53 52
-[1] 45 53 63
-[1] 46 53 53
-[1] 47 53 98
-[1] 48 53 53
-[1] 49 53 36
-[1] 50 53 91
-[1] 51 53 43
-[1] 52 53 80
-[1]  53  53 107
-[1] 54 53 36
-[1] 55 53 69
-[1] 56 53 59
-[1] 57 53 62
-[1] 58 53 48
-[1] 59 53 59
-[1] 60 53 57
-[1] 61 53 50
-[1] 62 53 50
-[1] 63 53 45
-[1] 64 53 59
-[1] 65 53 46
-[1] 66 53 47
-[1] 67 53 48
-[1] 68 53 52
-[1] 69 53 37
-[1] 70 53 57
-[1] 71 53 64
-[1] 72 53 59
-[1] 73 53 41
-[1] 74 53 39
-[1] 75 53 96
-[1] 76 53 54
-[1] 77 53 55
-[1] 78 53 70
-[1] 79 53 67
-[1] 80 53 27
-[1] 81 53 62
-[1] 82 53 53
-[1] 83 53 43
-[1] 84 53 51
-[1] 85 53 46
-[1] 86 53 38
-[1] 87 53 48
-[1] 88 53 48
-[1] 89 53 59
-[1] 90 53 60
-[1] 91 53 43
-[1] 92 53 53
-[1] 93 53 47
-[1] 94 53 62
-[1] 95 53 43
-[1] 96 53 53
-[1] 97 53 48
-[1] 98 53 44
-[1] 99 53 61
-[1] 100  53  84
-[1] 101  53  51
-[1] 102  53  67
-[1] 103  53  54
-[1] 104  53  65
-[1] 105  53  60
-[1] 106  53  33
-[1] 107  53  53
-[1] 108  53  52
-[1] 109  53  66
-[1] 110  53  58
-[1] 111  53  51
-[1] 112  53  63
-[1] 113  53  52
-[1] 114  53  38
-[1] 115  53  74
-[1] 116  53  47
-[1] 117  53  74
-[1] 118  53  57
-[1] 119  53  44
-[1] 120  53  39
-[1] 121  53  80
-[1] 122  53  50
-[1] 123  53  55
-[1] 124  53  52
-[1] 125  53  43
-[1] 126  53  54
-[1] 127  53  60
-[1] 128  53  52
-[1] 129  53  40
-[1] 130  53  71
-[1] 131  53  47
-[1] 132  53  61
-[1] 133  53  64
-[1] 134  53  48
-[1] 135  53  41
-[1] 136  53  32
-[1] 137  53  40
-[1] 138  53  65
-[1] 139  53  57
-[1] 140  53  44
-[1] 141  53  52
-[1] 142  53  46
-[1] 143  53  38
-[1] 144  53  55
-[1] 145  53  58
-[1] 146  53  45
-[1] 147  53  50
-[1] 148  53  42
-[1] 149  53  61
-[1] 150  53  44
-[1] 151  53  90
-[1] 152  53  48
-[1] 153  53  58
-[1] 154  53  53
-[1] 155  53  53
-[1] 156  53  52
-[1] 157  53  43
-[1] 158  53  48
-[1] 159  53  35
-[1] 160  53  37
-[1] 161  53  52
-[1] 162  53  51
-[1] 163  53  50
-[1] 164  53  61
-[1] 165  53  43
-[1] 166  53  49
-[1] 167  53  79
-[1] 168  53  35
-[1] 169  53  47
-[1] 170  53  52
-[1] 171  53  31
-[1] 172  53  73
-[1] 173  53  73
-[1] 174  53  43
-[1] 175  53  93
-[1] 176  53  36
-[1] 177  53  81
-[1] 178  53  48
-[1] 179  53  32
-[1] 180  53  73
-[1] 181  53  42
-[1] 182  53  60
-[1] 183  53  56
-[1] 184  53  53
-[1] 185  53  86
-[1] 186  53  53
-[1] 187  53  34
-[1] 188  53  59
-[1] 189  53  40
-[1] 190  53  41
-[1] 191  53  41
-[1] 192  53  64
-[1] 193  53  39
-[1] 194  53  39
-[1] 195  53  63
-[1] 196  53  43
-[1] 197  53  44
-[1] 198  53  59
-[1] 199  53  51
-[1] 200  53  53
-[1]  1 54 39
-[1]  2 54 45
-[1]  3 54 31
-[1]  4 54 40
-[1]  5 54 32
-[1]  6 54 60
-[1]  7 54 33
-[1]  8 54 39
-[1]  9 54 32
-[1] 10 54 43
-[1] 11 54 51
-[1] 12 54 40
-[1] 13 54 51
-[1] 14 54 31
-[1] 15 54 50
-[1] 16 54 37
-[1] 17 54 53
-[1] 18 54 53
-[1] 19 54 29
-[1] 20 54 38
-[1] 21 54 64
-[1] 22 54 36
-[1] 23 54 65
-[1] 24 54 77
-[1] 25 54 37
-[1] 26 54 51
-[1] 27 54 46
-[1] 28 54 31
-[1] 29 54 44
-[1] 30 54 33
-[1] 31 54 76
-[1] 32 54 54
-[1] 33 54 48
-[1] 34 54 46
-[1] 35 54 55
-[1] 36 54 27
-[1] 37 54 65
-[1] 38 54 46
-[1] 39 54 54
-[1] 40 54 39
-[1] 41 54 55
-[1] 42 54 45
-[1] 43 54 39
-[1] 44 54 57
-[1] 45 54 45
-[1] 46 54 89
-[1] 47 54 60
-[1] 48 54 66
-[1] 49 54 49
-[1] 50 54 58
-[1] 51 54 34
-[1] 52 54 38
-[1] 53 54 93
-[1] 54 54 53
-[1] 55 54 75
-[1] 56 54 85
-[1] 57 54 42
-[1] 58 54 65
-[1] 59 54 58
-[1] 60 54 44
-[1] 61 54 50
-[1] 62 54 88
-[1] 63 54 35
-[1] 64 54 74
-[1] 65 54 42
-[1] 66 54 34
-[1]  67  54 102
-[1] 68 54 77
-[1] 69 54 42
-[1] 70 54 56
-[1] 71 54 51
-[1] 72 54 64
-[1] 73 54 53
-[1] 74 54 47
-[1] 75 54 52
-[1] 76 54 37
-[1] 77 54 48
-[1] 78 54 43
-[1] 79 54 53
-[1] 80 54 40
-[1] 81 54 48
-[1] 82 54 63
-[1] 83 54 51
-[1] 84 54 38
-[1] 85 54 67
-[1] 86 54 34
-[1] 87 54 41
-[1] 88 54 50
-[1] 89 54 37
-[1] 90 54 62
-[1] 91 54 75
-[1] 92 54 65
-[1] 93 54 51
-[1] 94 54 44
-[1] 95 54 61
-[1] 96 54 43
-[1] 97 54 43
-[1] 98 54 47
-[1] 99 54 50
-[1] 100  54  41
-[1] 101  54  47
-[1] 102  54  52
-[1] 103  54  47
-[1] 104  54  42
-[1] 105  54  62
-[1] 106  54  55
-[1] 107  54  61
-[1] 108  54  46
-[1] 109  54  35
-[1] 110  54  47
-[1] 111  54  46
-[1] 112  54  57
-[1] 113  54  32
-[1] 114  54  47
-[1] 115  54  45
-[1] 116  54  44
-[1] 117  54 110
-[1] 118  54  49
-[1] 119  54  87
-[1] 120  54  68
-[1] 121  54  69
-[1] 122  54  49
-[1] 123  54  73
-[1] 124  54  52
-[1] 125  54  94
-[1] 126  54  46
-[1] 127  54  51
-[1] 128  54  40
-[1] 129  54  47
-[1] 130  54  55
-[1] 131  54  40
-[1] 132  54  31
-[1] 133  54  44
-[1] 134  54  65
-[1] 135  54  44
-[1] 136  54  41
-[1] 137  54  53
-[1] 138  54  52
-[1] 139  54  45
-[1] 140  54  55
-[1] 141  54 107
-[1] 142  54  45
-[1] 143  54  53
-[1] 144  54  58
-[1] 145  54  63
-[1] 146  54  35
-[1] 147  54  53
-[1] 148  54  52
-[1] 149  54  52
-[1] 150  54  53
-[1] 151  54  72
-[1] 152  54  40
-[1] 153  54  59
-[1] 154  54  58
-[1] 155  54  58
-[1] 156  54  50
-[1] 157  54  51
-[1] 158  54  77
-[1] 159  54  54
-[1] 160  54  58
-[1] 161  54  53
-[1] 162  54  34
-[1] 163  54  45
-[1] 164  54  53
-[1] 165  54  79
-[1] 166  54  49
-[1] 167  54  64
-[1] 168  54  82
-[1] 169  54  64
-[1] 170  54  41
-[1] 171  54  50
-[1] 172  54  39
-[1] 173  54  49
-[1] 174  54  42
-[1] 175  54  32
-[1] 176  54  41
-[1] 177  54  40
-[1] 178  54  41
-[1] 179  54  61
-[1] 180  54  44
-[1] 181  54  65
-[1] 182  54  58
-[1] 183  54  55
-[1] 184  54  41
-[1] 185  54  66
-[1] 186  54  45
-[1] 187  54  45
-[1] 188  54  53
-[1] 189  54  42
-[1] 190  54  70
-[1] 191  54  31
-[1] 192  54  42
-[1] 193  54  63
-[1] 194  54  41
-[1] 195  54  82
-[1] 196  54  49
-[1] 197  54  92
-[1] 198  54  42
-[1] 199  54  48
-[1] 200  54  50
-[1]  1 55 41
-[1]  2 55 45
-[1]  3 55 28
-[1]  4 55 29
-[1]  5 55 59
-[1]  6 55 50
-[1]  7 55 38
-[1]  8 55 45
-[1]  9 55 43
-[1] 10 55 51
-[1] 11 55 48
-[1] 12 55 30
-[1] 13 55 50
-[1] 14 55 45
-[1] 15 55 42
-[1] 16 55 48
-[1] 17 55 31
-[1] 18 55 43
-[1] 19 55 41
-[1] 20 55 55
-[1] 21 55 40
-[1] 22 55 43
-[1] 23 55 46
-[1] 24 55 31
-[1] 25 55 32
-[1] 26 55 41
-[1] 27 55 53
-[1] 28 55 54
-[1] 29 55 47
-[1] 30 55 49
-[1] 31 55 47
-[1] 32 55 68
-[1] 33 55 42
-[1] 34 55 45
-[1] 35 55 37
-[1] 36 55 58
-[1] 37 55 89
-[1]  38  55 196
-[1] 39 55 43
-[1] 40 55 36
-[1] 41 55 65
-[1] 42 55 46
-[1] 43 55 55
-[1] 44 55 34
-[1] 45 55 36
-[1] 46 55 55
-[1] 47 55 59
-[1] 48 55 57
-[1] 49 55 44
-[1] 50 55 71
-[1] 51 55 46
-[1] 52 55 63
-[1] 53 55 68
-[1] 54 55 44
-[1] 55 55 52
-[1] 56 55 48
-[1] 57 55 73
-[1] 58 55 32
-[1] 59 55 33
-[1] 60 55 36
-[1] 61 55 51
-[1] 62 55 67
-[1] 63 55 44
-[1] 64 55 55
-[1] 65 55 62
-[1] 66 55 70
-[1] 67 55 41
-[1] 68 55 65
-[1] 69 55 54
-[1] 70 55 46
-[1] 71 55 67
-[1] 72 55 59
-[1] 73 55 34
-[1] 74 55 59
-[1] 75 55 43
-[1] 76 55 40
-[1] 77 55 67
-[1] 78 55 67
-[1] 79 55 38
-[1] 80 55 61
-[1] 81 55 61
-[1] 82 55 82
-[1] 83 55 37
-[1] 84 55 41
-[1] 85 55 63
-[1] 86 55 33
-[1] 87 55 64
-[1] 88 55 45
-[1] 89 55 37
-[1] 90 55 54
-[1] 91 55 73
-[1] 92 55 38
-[1] 93 55 50
-[1] 94 55 53
-[1] 95 55 59
-[1] 96 55 53
-[1] 97 55 29
-[1] 98 55 88
-[1] 99 55 56
-[1] 100  55  72
-[1] 101  55  73
-[1] 102  55  47
-[1] 103  55  77
-[1] 104  55  69
-[1] 105  55  52
-[1] 106  55  58
-[1] 107  55  44
-[1] 108  55  39
-[1] 109  55  43
-[1] 110  55  39
-[1] 111  55  60
-[1] 112  55  58
-[1] 113  55  54
-[1] 114  55  66
-[1] 115  55  44
-[1] 116  55  65
-[1] 117  55  57
-[1] 118  55  40
-[1] 119  55  30
-[1] 120  55  55
-[1] 121  55  75
-[1] 122  55  42
-[1] 123  55  51
-[1] 124  55  57
-[1] 125  55  34
-[1] 126  55  71
-[1] 127  55  46
-[1] 128  55  49
-[1] 129  55  74
-[1] 130  55  33
-[1] 131  55  47
-[1] 132  55  54
-[1] 133  55  46
-[1] 134  55  45
-[1] 135  55  53
-[1] 136  55  44
-[1] 137  55  44
-[1] 138  55  79
-[1] 139  55  42
-[1] 140  55  54
-[1] 141  55  50
-[1] 142  55  85
-[1] 143  55  38
-[1] 144  55  43
-[1] 145  55  46
-[1] 146  55  34
-[1] 147  55  76
-[1] 148  55  32
-[1] 149  55 111
-[1] 150  55  40
-[1] 151  55  45
-[1] 152  55  47
-[1] 153  55  69
-[1] 154  55  58
-[1] 155  55  62
-[1] 156  55  39
-[1] 157  55  48
-[1] 158  55  77
-[1] 159  55  39
-[1] 160  55  44
-[1] 161  55  34
-[1] 162  55  37
-[1] 163  55  37
-[1] 164  55  44
-[1] 165  55  49
-[1] 166  55  52
-[1] 167  55  41
-[1] 168  55  43
-[1] 169  55  40
-[1] 170  55  51
-[1] 171  55  66
-[1] 172  55  61
-[1] 173  55  37
-[1] 174  55  43
-[1] 175  55  63
-[1] 176  55  73
-[1] 177  55  47
-[1] 178  55  49
-[1] 179  55  54
-[1] 180  55  70
-[1] 181  55  61
-[1] 182  55  47
-[1] 183  55  47
-[1] 184  55  51
-[1] 185  55  64
-[1] 186  55  46
-[1] 187  55  43
-[1] 188  55  66
-[1] 189  55  45
-[1] 190  55  42
-[1] 191  55  39
-[1] 192  55  57
-[1] 193  55  50
-[1] 194  55  32
-[1] 195  55  57
-[1] 196  55  44
-[1] 197  55  35
-[1] 198  55  33
-[1] 199  55  76
-[1] 200  55  45
-[1]  1 56 54
-[1]  2 56 34
-[1]  3 56 42
-[1]  4 56 45
-[1]  5 56 37
-[1]  6 56 39
-[1]  7 56 40
-[1]  8 56 40
-[1]  9 56 37
-[1] 10 56 42
-[1] 11 56 43
-[1] 12 56 24
-[1] 13 56 35
-[1] 14 56 38
-[1] 15 56 39
-[1] 16 56 53
-[1] 17 56 36
-[1] 18 56 37
-[1] 19 56 38
-[1] 20 56 94
-[1] 21 56 41
-[1] 22 56 30
-[1] 23 56 37
-[1] 24 56 49
-[1] 25 56 41
-[1] 26 56 75
-[1] 27 56 70
-[1] 28 56 46
-[1] 29 56 30
-[1] 30 56 40
-[1] 31 56 37
-[1] 32 56 46
-[1] 33 56 52
-[1] 34 56 50
-[1] 35 56 46
-[1] 36 56 54
-[1] 37 56 29
-[1] 38 56 54
-[1] 39 56 81
-[1] 40 56 44
-[1] 41 56 36
-[1] 42 56 67
-[1] 43 56 73
-[1] 44 56 32
-[1] 45 56 39
-[1] 46 56 34
-[1] 47 56 84
-[1] 48 56 50
-[1] 49 56 71
-[1] 50 56 54
-[1] 51 56 41
-[1] 52 56 88
-[1] 53 56 50
-[1] 54 56 56
-[1] 55 56 55
-[1] 56 56 52
-[1] 57 56 55
-[1] 58 56 48
-[1] 59 56 48
-[1] 60 56 67
-[1] 61 56 88
-[1] 62 56 52
-[1] 63 56 55
-[1] 64 56 57
-[1] 65 56 50
-[1] 66 56 42
-[1] 67 56 75
-[1] 68 56 43
-[1] 69 56 52
-[1] 70 56 59
-[1] 71 56 79
-[1] 72 56 83
-[1] 73 56 61
-[1] 74 56 77
-[1] 75 56 48
-[1] 76 56 43
-[1] 77 56 38
-[1] 78 56 51
-[1] 79 56 30
-[1] 80 56 50
-[1] 81 56 35
-[1] 82 56 76
-[1] 83 56 33
-[1] 84 56 49
-[1] 85 56 64
-[1] 86 56 42
-[1] 87 56 38
-[1] 88 56 39
-[1] 89 56 41
-[1] 90 56 56
-[1] 91 56 67
-[1] 92 56 64
-[1] 93 56 51
-[1] 94 56 43
-[1] 95 56 78
-[1] 96 56 35
-[1] 97 56 46
-[1] 98 56 67
-[1] 99 56 32
-[1] 100  56  42
-[1] 101  56  60
-[1] 102  56  50
-[1] 103  56  81
-[1] 104  56  67
-[1] 105  56  49
-[1] 106  56  49
-[1] 107  56  59
-[1] 108  56  71
-[1] 109  56  48
-[1] 110  56  61
-[1] 111  56  43
-[1] 112  56  56
-[1] 113  56  45
-[1] 114  56  58
-[1] 115  56  60
-[1] 116  56  40
-[1] 117  56  76
-[1] 118  56  51
-[1] 119  56  37
-[1] 120  56  65
-[1] 121  56  43
-[1] 122  56  27
-[1] 123  56  66
-[1] 124  56  55
-[1] 125  56  59
-[1] 126  56  59
-[1] 127  56  60
-[1] 128  56  42
-[1] 129  56  44
-[1] 130  56  33
-[1] 131  56  69
-[1] 132  56  43
-[1] 133  56  33
-[1] 134  56 111
-[1] 135  56  38
-[1] 136  56  55
-[1] 137  56  65
-[1] 138  56  48
-[1] 139  56  38
-[1] 140  56  54
-[1] 141  56  55
-[1] 142  56  53
-[1] 143  56  52
-[1] 144  56  55
-[1] 145  56  45
-[1] 146  56  34
-[1] 147  56  62
-[1] 148  56  48
-[1] 149  56  49
-[1] 150  56  46
-[1] 151  56  52
-[1] 152  56  47
-[1] 153  56  55
-[1] 154  56  43
-[1] 155  56  42
-[1] 156  56  75
-[1] 157  56  36
-[1] 158  56  39
-[1] 159  56  42
-[1] 160  56  49
-[1] 161  56  49
-[1] 162  56  98
-[1] 163  56  59
-[1] 164  56  52
-[1] 165  56  45
-[1] 166  56  46
-[1] 167  56  39
-[1] 168  56  43
-[1] 169  56  46
-[1] 170  56  48
-[1] 171  56  59
-[1] 172  56  42
-[1] 173  56  61
-[1] 174  56  43
-[1] 175  56  41
-[1] 176  56  88
-[1] 177  56  38
-[1] 178  56  65
-[1] 179  56  91
-[1] 180  56  62
-[1] 181  56  32
-[1] 182  56  67
-[1] 183  56  70
-[1] 184  56  49
-[1] 185  56  67
-[1] 186  56  44
-[1] 187  56  64
-[1] 188  56  34
-[1] 189  56  73
-[1] 190  56  57
-[1] 191  56  53
-[1] 192  56  48
-[1] 193  56  64
-[1] 194  56  55
-[1] 195  56  42
-[1] 196  56  39
-[1] 197  56  43
-[1] 198  56  41
-[1] 199  56  64
-[1] 200  56  62
-[1]  1 57 35
-[1]  2 57 37
-[1]  3 57 36
-[1]  4 57 43
-[1]  5 57 42
-[1]  6 57 36
-[1]  7 57 37
-[1]  8 57 35
-[1]  9 57 43
-[1] 10 57 37
-[1] 11 57 57
-[1] 12 57 45
-[1] 13 57 37
-[1] 14 57 30
-[1] 15 57 41
-[1] 16 57 32
-[1] 17 57 45
-[1] 18 57 40
-[1] 19 57 54
-[1] 20 57 63
-[1] 21 57 36
-[1] 22 57 40
-[1] 23 57 54
-[1] 24 57 44
-[1] 25 57 41
-[1] 26 57 47
-[1] 27 57 47
-[1] 28 57 34
-[1] 29 57 67
-[1] 30 57 48
-[1] 31 57 38
-[1] 32 57 63
-[1] 33 57 31
-[1] 34 57 63
-[1] 35 57 58
-[1] 36 57 36
-[1] 37 57 59
-[1] 38 57 51
-[1] 39 57 35
-[1] 40 57 72
-[1] 41 57 49
-[1] 42 57 46
-[1] 43 57 63
-[1] 44 57 40
-[1] 45 57 36
-[1]  46  57 103
-[1] 47 57 67
-[1] 48 57 78
-[1] 49 57 48
-[1] 50 57 59
-[1] 51 57 41
-[1] 52 57 40
-[1] 53 57 43
-[1] 54 57 62
-[1] 55 57 59
-[1] 56 57 44
-[1] 57 57 73
-[1] 58 57 40
-[1] 59 57 53
-[1] 60 57 42
-[1] 61 57 54
-[1] 62 57 52
-[1] 63 57 49
-[1] 64 57 55
-[1] 65 57 41
-[1] 66 57 60
-[1] 67 57 59
-[1] 68 57 45
-[1] 69 57 65
-[1] 70 57 90
-[1] 71 57 65
-[1] 72 57 68
-[1] 73 57 34
-[1] 74 57 70
-[1] 75 57 82
-[1] 76 57 75
-[1]  77  57 103
-[1] 78 57 48
-[1] 79 57 46
-[1] 80 57 37
-[1] 81 57 47
-[1] 82 57 42
-[1] 83 57 55
-[1] 84 57 53
-[1] 85 57 58
-[1] 86 57 85
-[1] 87 57 44
-[1] 88 57 70
-[1] 89 57 63
-[1] 90 57 51
-[1] 91 57 68
-[1] 92 57 47
-[1] 93 57 43
-[1] 94 57 86
-[1] 95 57 57
-[1] 96 57 85
-[1] 97 57 80
-[1] 98 57 55
-[1] 99 57 84
-[1] 100  57  40
-[1] 101  57  36
-[1] 102  57  68
-[1] 103  57  46
-[1] 104  57  40
-[1] 105  57  70
-[1] 106  57  61
-[1] 107  57  73
-[1] 108  57  42
-[1] 109  57  40
-[1] 110  57  52
-[1] 111  57  46
-[1] 112  57  72
-[1] 113  57  52
-[1] 114  57  40
-[1] 115  57  55
-[1] 116  57  45
-[1] 117  57  57
-[1] 118  57  55
-[1] 119  57  63
-[1] 120  57  53
-[1] 121  57  36
-[1] 122  57  65
-[1] 123  57  50
-[1] 124  57  77
-[1] 125  57  42
-[1] 126  57  41
-[1] 127  57  45
-[1] 128  57  47
-[1] 129  57  50
-[1] 130  57 105
-[1] 131  57  54
-[1] 132  57  46
-[1] 133  57  40
-[1] 134  57  52
-[1] 135  57  66
-[1] 136  57  46
-[1] 137  57  36
-[1] 138  57  73
-[1] 139  57  51
-[1] 140  57  55
-[1] 141  57  37
-[1] 142  57  53
-[1] 143  57  46
-[1] 144  57  74
-[1] 145  57  52
-[1] 146  57  69
-[1] 147  57  45
-[1] 148  57  44
-[1] 149  57  63
-[1] 150  57  54
-[1] 151  57  47
-[1] 152  57  53
-[1] 153  57  46
-[1] 154  57  43
-[1] 155  57  53
-[1] 156  57  39
-[1] 157  57  55
-[1] 158  57  44
-[1] 159  57  36
-[1] 160  57  45
-[1] 161  57  42
-[1] 162  57  39
-[1] 163  57  62
-[1] 164  57  53
-[1] 165  57  64
-[1] 166  57  34
-[1] 167  57  61
-[1] 168  57  88
-[1] 169  57  73
-[1] 170  57  50
-[1] 171  57  82
-[1] 172  57  45
-[1] 173  57  57
-[1] 174  57  45
-[1] 175  57  45
-[1] 176  57  44
-[1] 177  57  49
-[1] 178  57  45
-[1] 179  57  39
-[1] 180  57  33
-[1] 181  57  45
-[1] 182  57  64
-[1] 183  57  42
-[1] 184  57  40
-[1] 185  57  44
-[1] 186  57  39
-[1] 187  57  74
-[1] 188  57  61
-[1] 189  57  48
-[1] 190  57  72
-[1] 191  57  46
-[1] 192  57  34
-[1] 193  57  49
-[1] 194  57  58
-[1] 195  57  65
-[1] 196  57  30
-[1] 197  57  51
-[1] 198  57  30
-[1] 199  57  43
-[1] 200  57  33
-[1]  1 58 26
-[1]  2 58 60
-[1]  3 58 29
-[1]  4 58 44
-[1]  5 58 32
-[1]  6 58 35
-[1]  7 58 39
-[1]  8 58 50
-[1]  9 58 38
-[1] 10 58 43
-[1] 11 58 43
-[1] 12 58 50
-[1] 13 58 47
-[1] 14 58 36
-[1] 15 58 50
-[1] 16 58 42
-[1] 17 58 40
-[1]  18  58 116
-[1] 19 58 69
-[1] 20 58 40
-[1] 21 58 71
-[1] 22 58 43
-[1] 23 58 46
-[1] 24 58 40
-[1] 25 58 36
-[1] 26 58 39
-[1] 27 58 75
-[1] 28 58 45
-[1] 29 58 45
-[1] 30 58 37
-[1] 31 58 86
-[1] 32 58 52
-[1] 33 58 41
-[1] 34 58 37
-[1] 35 58 44
-[1] 36 58 43
-[1]  37  58 122
-[1] 38 58 51
-[1] 39 58 31
-[1] 40 58 46
-[1] 41 58 46
-[1] 42 58 59
-[1] 43 58 44
-[1] 44 58 76
-[1] 45 58 36
-[1] 46 58 48
-[1] 47 58 64
-[1] 48 58 79
-[1] 49 58 48
-[1] 50 58 51
-[1] 51 58 43
-[1] 52 58 65
-[1] 53 58 44
-[1] 54 58 51
-[1] 55 58 52
-[1] 56 58 38
-[1] 57 58 42
-[1] 58 58 68
-[1] 59 58 41
-[1] 60 58 51
-[1]  61  58 107
-[1] 62 58 51
-[1] 63 58 53
-[1] 64 58 64
-[1] 65 58 32
-[1] 66 58 52
-[1] 67 58 58
-[1] 68 58 34
-[1] 69 58 61
-[1] 70 58 73
-[1] 71 58 84
-[1] 72 58 47
-[1] 73 58 57
-[1] 74 58 59
-[1] 75 58 73
-[1] 76 58 49
-[1] 77 58 48
-[1] 78 58 27
-[1] 79 58 58
-[1] 80 58 45
-[1] 81 58 44
-[1] 82 58 39
-[1] 83 58 45
-[1] 84 58 44
-[1] 85 58 87
-[1] 86 58 44
-[1] 87 58 47
-[1] 88 58 47
-[1] 89 58 48
-[1] 90 58 56
-[1] 91 58 57
-[1] 92 58 37
-[1] 93 58 63
-[1] 94 58 60
-[1] 95 58 52
-[1] 96 58 57
-[1] 97 58 40
-[1] 98 58 68
-[1] 99 58 55
-[1] 100  58  41
-[1] 101  58  55
-[1] 102  58  66
-[1] 103  58  53
-[1] 104  58  35
-[1] 105  58  60
-[1] 106  58  45
-[1] 107  58  42
-[1] 108  58  58
-[1] 109  58  51
-[1] 110  58  65
-[1] 111  58  29
-[1] 112  58  77
-[1] 113  58  59
-[1] 114  58  59
-[1] 115  58  46
-[1] 116  58  31
-[1] 117  58  68
-[1] 118  58  32
-[1] 119  58  90
-[1] 120  58  38
-[1] 121  58  55
-[1] 122  58  51
-[1] 123  58  60
-[1] 124  58  68
-[1] 125  58  41
-[1] 126  58  48
-[1] 127  58  43
-[1] 128  58  29
-[1] 129  58  48
-[1] 130  58  42
-[1] 131  58  61
-[1] 132  58  33
-[1] 133  58  56
-[1] 134  58  59
-[1] 135  58  56
-[1] 136  58  52
-[1] 137  58 101
-[1] 138  58  64
-[1] 139  58  36
-[1] 140  58  67
-[1] 141  58  45
-[1] 142  58  50
-[1] 143  58  52
-[1] 144  58  62
-[1] 145  58  35
-[1] 146  58  43
-[1] 147  58  36
-[1] 148  58  67
-[1] 149  58  53
-[1] 150  58  45
-[1] 151  58  65
-[1] 152  58  35
-[1] 153  58  46
-[1] 154  58  59
-[1] 155  58  41
-[1] 156  58  48
-[1] 157  58  46
-[1] 158  58  57
-[1] 159  58  31
-[1] 160  58  34
-[1] 161  58  55
-[1] 162  58  24
-[1] 163  58 103
-[1] 164  58  47
-[1] 165  58  58
-[1] 166  58  39
-[1] 167  58  42
-[1] 168  58  37
-[1] 169  58  42
-[1] 170  58  51
-[1] 171  58  56
-[1] 172  58  71
-[1] 173  58  51
-[1] 174  58  39
-[1] 175  58  54
-[1] 176  58  37
-[1] 177  58  47
-[1] 178  58  52
-[1] 179  58  51
-[1] 180  58  63
-[1] 181  58  44
-[1] 182  58  62
-[1] 183  58  33
-[1] 184  58  60
-[1] 185  58  58
-[1] 186  58  55
-[1] 187  58  44
-[1] 188  58  42
-[1] 189  58  69
-[1] 190  58  38
-[1] 191  58  44
-[1] 192  58  86
-[1] 193  58 101
-[1] 194  58  52
-[1] 195  58  43
-[1] 196  58  30
-[1] 197  58  32
-[1] 198  58  49
-[1] 199  58  67
-[1] 200  58  33
-[1]  1 59 25
-[1]  2 59 67
-[1]  3 59 30
-[1]  4 59 51
-[1]  5 59 40
-[1]  6 59 41
-[1]  7 59 48
-[1]  8 59 48
-[1]  9 59 43
-[1] 10 59 37
-[1] 11 59 41
-[1] 12 59 38
-[1] 13 59 50
-[1] 14 59 51
-[1] 15 59 35
-[1] 16 59 34
-[1] 17 59 34
-[1] 18 59 42
-[1] 19 59 56
-[1] 20 59 50
-[1] 21 59 44
-[1] 22 59 70
-[1] 23 59 53
-[1] 24 59 48
-[1] 25 59 35
-[1] 26 59 34
-[1] 27 59 41
-[1] 28 59 34
-[1] 29 59 48
-[1] 30 59 33
-[1] 31 59 69
-[1] 32 59 50
-[1] 33 59 50
-[1] 34 59 44
-[1] 35 59 35
-[1] 36 59 40
-[1] 37 59 50
-[1] 38 59 34
-[1] 39 59 67
-[1] 40 59 54
-[1] 41 59 61
-[1] 42 59 50
-[1] 43 59 45
-[1] 44 59 79
-[1] 45 59 57
-[1] 46 59 52
-[1] 47 59 67
-[1] 48 59 58
-[1] 49 59 59
-[1] 50 59 48
-[1] 51 59 38
-[1] 52 59 58
-[1] 53 59 49
-[1] 54 59 80
-[1] 55 59 65
-[1] 56 59 80
-[1] 57 59 54
-[1] 58 59 51
-[1] 59 59 81
-[1] 60 59 49
-[1]  61  59 104
-[1] 62 59 58
-[1] 63 59 57
-[1] 64 59 44
-[1] 65 59 45
-[1] 66 59 56
-[1] 67 59 43
-[1] 68 59 48
-[1] 69 59 34
-[1] 70 59 65
-[1] 71 59 55
-[1] 72 59 52
-[1] 73 59 53
-[1] 74 59 44
-[1] 75 59 55
-[1] 76 59 48
-[1] 77 59 75
-[1] 78 59 49
-[1] 79 59 31
-[1] 80 59 69
-[1] 81 59 48
-[1] 82 59 57
-[1] 83 59 62
-[1] 84 59 64
-[1] 85 59 56
-[1] 86 59 70
-[1] 87 59 49
-[1] 88 59 58
-[1] 89 59 68
-[1] 90 59 65
-[1] 91 59 83
-[1] 92 59 48
-[1] 93 59 47
-[1] 94 59 32
-[1] 95 59 43
-[1] 96 59 49
-[1] 97 59 46
-[1] 98 59 36
-[1] 99 59 99
-[1] 100  59  42
-[1] 101  59  72
-[1] 102  59  50
-[1] 103  59  41
-[1] 104  59  48
-[1] 105  59  50
-[1] 106  59  38
-[1] 107  59  61
-[1] 108  59  55
-[1] 109  59  63
-[1] 110  59 109
-[1] 111  59  48
-[1] 112  59  90
-[1] 113  59  39
-[1] 114  59  76
-[1] 115  59  57
-[1] 116  59  44
-[1] 117  59  51
-[1] 118  59  95
-[1] 119  59  39
-[1] 120  59  61
-[1] 121  59  57
-[1] 122  59  41
-[1] 123  59  52
-[1] 124  59  67
-[1] 125  59  40
-[1] 126  59  43
-[1] 127  59  73
-[1] 128  59 108
-[1] 129  59  30
-[1] 130  59  45
-[1] 131  59  42
-[1] 132  59  41
-[1] 133  59  97
-[1] 134  59  44
-[1] 135  59  36
-[1] 136  59  70
-[1] 137  59  68
-[1] 138  59  27
-[1] 139  59  89
-[1] 140  59  56
-[1] 141  59  65
-[1] 142  59  47
-[1] 143  59  44
-[1] 144  59  40
-[1] 145  59  53
-[1] 146  59  36
-[1] 147  59  50
-[1] 148  59  47
-[1] 149  59  41
-[1] 150  59  41
-[1] 151  59  76
-[1] 152  59  38
-[1] 153  59 137
-[1] 154  59  45
-[1] 155  59  42
-[1] 156  59  37
-[1] 157  59  34
-[1] 158  59  42
-[1] 159  59  66
-[1] 160  59  64
-[1] 161  59  43
-[1] 162  59  49
-[1] 163  59  51
-[1] 164  59  42
-[1] 165  59  68
-[1] 166  59  52
-[1] 167  59  57
-[1] 168  59  51
-[1] 169  59  43
-[1] 170  59  60
-[1] 171  59  46
-[1] 172  59  57
-[1] 173  59  52
-[1] 174  59  51
-[1] 175  59  54
-[1] 176  59  50
-[1] 177  59  60
-[1] 178  59  50
-[1] 179  59  57
-[1] 180  59  50
-[1] 181  59  57
-[1] 182  59  50
-[1] 183  59  54
-[1] 184  59  49
-[1] 185  59  55
-[1] 186  59  37
-[1] 187  59  66
-[1] 188  59  45
-[1] 189  59  58
-[1] 190  59  54
-[1] 191  59  43
-[1] 192  59  50
-[1] 193  59  58
-[1] 194  59  45
-[1] 195  59  76
-[1] 196  59  55
-[1] 197  59  76
-[1] 198  59  64
-[1] 199  59  44
-[1] 200  59  50
-[1]  1 60 35
-[1]  2 60 29
-[1]  3 60 39
-[1]  4 60 52
-[1]  5 60 43
-[1]  6 60 78
-[1]  7 60 34
-[1]  8 60 39
-[1]  9 60 51
-[1] 10 60 38
-[1] 11 60 45
-[1] 12 60 32
-[1] 13 60 57
-[1] 14 60 27
-[1] 15 60 72
-[1] 16 60 38
-[1] 17 60 36
-[1] 18 60 44
-[1] 19 60 80
-[1] 20 60 41
-[1] 21 60 42
-[1] 22 60 31
-[1] 23 60 56
-[1] 24 60 53
-[1] 25 60 55
-[1] 26 60 38
-[1] 27 60 38
-[1] 28 60 35
-[1] 29 60 79
-[1] 30 60 32
-[1] 31 60 45
-[1] 32 60 46
-[1] 33 60 45
-[1] 34 60 41
-[1] 35 60 33
-[1] 36 60 45
-[1] 37 60 59
-[1] 38 60 52
-[1] 39 60 40
-[1] 40 60 48
-[1] 41 60 67
-[1] 42 60 44
-[1] 43 60 41
-[1] 44 60 59
-[1] 45 60 35
-[1] 46 60 99
-[1] 47 60 57
-[1] 48 60 51
-[1] 49 60 50
-[1] 50 60 61
-[1] 51 60 98
-[1] 52 60 73
-[1]  53  60 117
-[1] 54 60 55
-[1] 55 60 66
-[1] 56 60 60
-[1] 57 60 36
-[1] 58 60 51
-[1] 59 60 45
-[1] 60 60 44
-[1] 61 60 36
-[1] 62 60 80
-[1] 63 60 54
-[1] 64 60 47
-[1] 65 60 46
-[1] 66 60 47
-[1] 67 60 39
-[1] 68 60 48
-[1] 69 60 46
-[1] 70 60 64
-[1] 71 60 50
-[1] 72 60 42
-[1] 73 60 59
-[1] 74 60 58
-[1] 75 60 41
-[1] 76 60 48
-[1] 77 60 35
-[1] 78 60 71
-[1] 79 60 47
-[1] 80 60 38
-[1] 81 60 43
-[1] 82 60 36
-[1] 83 60 66
-[1] 84 60 37
-[1] 85 60 77
-[1] 86 60 35
-[1] 87 60 49
-[1] 88 60 40
-[1] 89 60 58
-[1] 90 60 44
-[1] 91 60 43
-[1] 92 60 51
-[1] 93 60 65
-[1] 94 60 48
-[1] 95 60 42
-[1] 96 60 45
-[1] 97 60 54
-[1] 98 60 65
-[1] 99 60 36
-[1] 100  60  63
-[1] 101  60  51
-[1] 102  60  38
-[1] 103  60  64
-[1] 104  60  56
-[1] 105  60  70
-[1] 106  60  53
-[1] 107  60  44
-[1] 108  60  39
-[1] 109  60  78
-[1] 110  60  41
-[1] 111  60  60
-[1] 112  60  67
-[1] 113  60  48
-[1] 114  60  53
-[1] 115  60  34
-[1] 116  60  35
-[1] 117  60  48
-[1] 118  60  61
-[1] 119  60  79
-[1] 120  60  45
-[1] 121  60  52
-[1] 122  60  46
-[1] 123  60  85
-[1] 124  60  54
-[1] 125  60  49
-[1] 126  60  65
-[1] 127  60  36
-[1] 128  60  48
-[1] 129  60  46
-[1] 130  60  60
-[1] 131  60  65
-[1] 132  60  62
-[1] 133  60  73
-[1] 134  60  52
-[1] 135  60  45
-[1] 136  60  36
-[1] 137  60  64
-[1] 138  60  44
-[1] 139  60  50
-[1] 140  60  71
-[1] 141  60  41
-[1] 142  60  47
-[1] 143  60  97
-[1] 144  60  47
-[1] 145  60  55
-[1] 146  60  44
-[1] 147  60  61
-[1] 148  60  42
-[1] 149  60  55
-[1] 150  60  52
-[1] 151  60  67
-[1] 152  60  42
-[1] 153  60  59
-[1] 154  60  71
-[1] 155  60  45
-[1] 156  60  51
-[1] 157  60  59
-[1] 158  60  56
-[1] 159  60  51
-[1] 160  60  57
-[1] 161  60  64
-[1] 162  60  43
-[1] 163  60  65
-[1] 164  60  47
-[1] 165  60  50
-[1] 166  60  56
-[1] 167  60  46
-[1] 168  60  47
-[1] 169  60  61
-[1] 170  60  53
-[1] 171  60  43
-[1] 172  60  49
-[1] 173  60  39
-[1] 174  60  39
-[1] 175  60  41
-[1] 176  60  66
-[1] 177  60  91
-[1] 178  60  64
-[1] 179  60  31
-[1] 180  60  80
-[1] 181  60  40
-[1] 182  60  91
-[1] 183  60  79
-[1] 184  60  50
-[1] 185  60  55
-[1] 186  60  73
-[1] 187  60  52
-[1] 188  60  45
-[1] 189  60  30
-[1] 190  60  69
-[1] 191  60  44
-[1] 192  60  39
-[1] 193  60  64
-[1] 194  60  37
-[1] 195  60  57
-[1] 196  60  32
-[1] 197  60  36
-[1] 198  60  36
-[1] 199  60  54
-[1] 200  60  63
-[1]  1 61 37
-[1]  2 61 32
-[1]  3 61 49
-[1]  4 61 33
-[1]  5 61 34
-[1]  6 61 32
-[1]  7 61 39
-[1]  8 61 46
-[1]  9 61 39
-[1] 10 61 44
-[1] 11 61 48
-[1] 12 61 52
-[1] 13 61 45
-[1] 14 61 40
-[1] 15 61 54
-[1] 16 61 49
-[1] 17 61 41
-[1] 18 61 42
-[1] 19 61 31
-[1] 20 61 33
-[1] 21 61 42
-[1] 22 61 81
-[1] 23 61 44
-[1] 24 61 50
-[1] 25 61 41
-[1] 26 61 39
-[1] 27 61 38
-[1] 28 61 49
-[1] 29 61 41
-[1] 30 61 32
-[1] 31 61 49
-[1] 32 61 39
-[1] 33 61 60
-[1] 34 61 51
-[1] 35 61 55
-[1] 36 61 47
-[1]  37  61 156
-[1] 38 61 48
-[1] 39 61 52
-[1] 40 61 61
-[1] 41 61 32
-[1] 42 61 41
-[1] 43 61 34
-[1] 44 61 59
-[1] 45 61 53
-[1] 46 61 53
-[1] 47 61 51
-[1] 48 61 53
-[1] 49 61 51
-[1] 50 61 40
-[1] 51 61 70
-[1] 52 61 42
-[1] 53 61 37
-[1] 54 61 87
-[1] 55 61 53
-[1] 56 61 49
-[1] 57 61 37
-[1] 58 61 60
-[1] 59 61 49
-[1] 60 61 51
-[1] 61 61 39
-[1] 62 61 79
-[1] 63 61 36
-[1] 64 61 39
-[1] 65 61 61
-[1] 66 61 60
-[1] 67 61 77
-[1] 68 61 70
-[1] 69 61 56
-[1] 70 61 70
-[1] 71 61 44
-[1] 72 61 42
-[1] 73 61 55
-[1] 74 61 52
-[1] 75 61 73
-[1] 76 61 65
-[1] 77 61 52
-[1] 78 61 60
-[1] 79 61 47
-[1] 80 61 39
-[1] 81 61 68
-[1] 82 61 51
-[1] 83 61 50
-[1] 84 61 65
-[1] 85 61 45
-[1] 86 61 36
-[1] 87 61 78
-[1] 88 61 28
-[1] 89 61 51
-[1] 90 61 51
-[1] 91 61 51
-[1] 92 61 57
-[1] 93 61 47
-[1] 94 61 85
-[1] 95 61 45
-[1] 96 61 53
-[1] 97 61 58
-[1] 98 61 57
-[1] 99 61 54
-[1] 100  61  29
-[1] 101  61  66
-[1] 102  61  45
-[1] 103  61  49
-[1] 104  61  44
-[1] 105  61  60
-[1] 106  61  44
-[1] 107  61  38
-[1] 108  61  55
-[1] 109  61  50
-[1] 110  61  83
-[1] 111  61  34
-[1] 112  61  58
-[1] 113  61  60
-[1] 114  61  42
-[1] 115  61  47
-[1] 116  61  66
-[1] 117  61  40
-[1] 118  61  57
-[1] 119  61  55
-[1] 120  61  58
-[1] 121  61  45
-[1] 122  61  54
-[1] 123  61  47
-[1] 124  61  34
-[1] 125  61  61
-[1] 126  61  35
-[1] 127  61  63
-[1] 128  61  74
-[1] 129  61  64
-[1] 130  61  45
-[1] 131  61  58
-[1] 132  61  54
-[1] 133  61  56
-[1] 134  61  60
-[1] 135  61  99
-[1] 136  61  50
-[1] 137  61  39
-[1] 138  61  46
-[1] 139  61  38
-[1] 140  61  66
-[1] 141  61  43
-[1] 142  61  41
-[1] 143  61  35
-[1] 144  61  44
-[1] 145  61  57
-[1] 146  61  47
-[1] 147  61  50
-[1] 148  61  45
-[1] 149  61  54
-[1] 150  61  73
-[1] 151  61  72
-[1] 152  61  95
-[1] 153  61  54
-[1] 154  61  61
-[1] 155  61  37
-[1] 156  61  60
-[1] 157  61  51
-[1] 158  61  80
-[1] 159  61  43
-[1] 160  61  59
-[1] 161  61  52
-[1] 162  61  82
-[1] 163  61  42
-[1] 164  61  56
-[1] 165  61  41
-[1] 166  61  44
-[1] 167  61  55
-[1] 168  61  84
-[1] 169  61  54
-[1] 170  61  43
-[1] 171  61  50
-[1] 172  61  61
-[1] 173  61  53
-[1] 174  61  66
-[1] 175  61  61
-[1] 176  61  44
-[1] 177  61  35
-[1] 178  61  54
-[1] 179  61  55
-[1] 180  61  35
-[1] 181  61  62
-[1] 182  61  50
-[1] 183  61  49
-[1] 184  61  47
-[1] 185  61  64
-[1] 186  61  39
-[1] 187  61  40
-[1] 188  61  34
-[1] 189  61  42
-[1] 190  61  28
-[1] 191  61  83
-[1] 192  61  37
-[1] 193  61  54
-[1] 194  61  68
-[1] 195  61  40
-[1] 196  61  53
-[1] 197  61  65
-[1] 198  61  44
-[1] 199  61  43
-[1] 200  61  43
-[1]  1 62 41
-[1]  2 62 27
-[1]  3 62 42
-[1]  4 62 32
-[1]  5 62 39
-[1]  6 62 49
-[1]  7 62 29
-[1]  8 62 48
-[1]  9 62 35
-[1] 10 62 38
-[1] 11 62 29
-[1] 12 62 34
-[1] 13 62 40
-[1] 14 62 53
-[1] 15 62 57
-[1] 16 62 41
-[1] 17 62 40
-[1] 18 62 64
-[1] 19 62 37
-[1] 20 62 45
-[1] 21 62 34
-[1] 22 62 52
-[1] 23 62 51
-[1] 24 62 69
-[1] 25 62 43
-[1] 26 62 40
-[1] 27 62 26
-[1] 28 62 48
-[1] 29 62 53
-[1] 30 62 41
-[1] 31 62 60
-[1] 32 62 72
-[1] 33 62 65
-[1] 34 62 56
-[1] 35 62 43
-[1] 36 62 55
-[1] 37 62 43
-[1] 38 62 80
-[1] 39 62 61
-[1] 40 62 65
-[1] 41 62 67
-[1] 42 62 38
-[1] 43 62 51
-[1] 44 62 58
-[1] 45 62 48
-[1] 46 62 55
-[1] 47 62 37
-[1] 48 62 40
-[1] 49 62 81
-[1] 50 62 81
-[1] 51 62 39
-[1] 52 62 60
-[1] 53 62 62
-[1] 54 62 65
-[1] 55 62 62
-[1] 56 62 40
-[1]  57  62 116
-[1] 58 62 41
-[1] 59 62 52
-[1] 60 62 44
-[1] 61 62 51
-[1] 62 62 41
-[1] 63 62 46
-[1] 64 62 56
-[1] 65 62 44
-[1] 66 62 48
-[1] 67 62 46
-[1] 68 62 49
-[1] 69 62 48
-[1] 70 62 37
-[1] 71 62 34
-[1] 72 62 49
-[1] 73 62 47
-[1] 74 62 37
-[1] 75 62 82
-[1] 76 62 35
-[1] 77 62 58
-[1] 78 62 43
-[1] 79 62 45
-[1] 80 62 66
-[1] 81 62 50
-[1] 82 62 36
-[1] 83 62 51
-[1] 84 62 52
-[1] 85 62 63
-[1] 86 62 41
-[1] 87 62 53
-[1] 88 62 55
-[1] 89 62 73
-[1] 90 62 45
-[1] 91 62 93
-[1] 92 62 42
-[1] 93 62 39
-[1] 94 62 49
-[1] 95 62 66
-[1] 96 62 51
-[1] 97 62 54
-[1] 98 62 70
-[1] 99 62 46
-[1] 100  62  54
-[1] 101  62  63
-[1] 102  62  50
-[1] 103  62  49
-[1] 104  62  43
-[1] 105  62  54
-[1] 106  62  35
-[1] 107  62  58
-[1] 108  62  63
-[1] 109  62  62
-[1] 110  62  70
-[1] 111  62  78
-[1] 112  62  76
-[1] 113  62  52
-[1] 114  62  51
-[1] 115  62  49
-[1] 116  62  69
-[1] 117  62  64
-[1] 118  62  22
-[1] 119  62  48
-[1] 120  62  41
-[1] 121  62  48
-[1] 122  62  47
-[1] 123  62  71
-[1] 124  62  70
-[1] 125  62  61
-[1] 126  62  43
-[1] 127  62  38
-[1] 128  62  67
-[1] 129  62  53
-[1] 130  62  64
-[1] 131  62  55
-[1] 132  62  52
-[1] 133  62  59
-[1] 134  62  59
-[1] 135  62  46
-[1] 136  62  41
-[1] 137  62  84
-[1] 138  62  51
-[1] 139  62  54
-[1] 140  62  47
-[1] 141  62  40
-[1] 142  62  61
-[1] 143  62  58
-[1] 144  62  43
-[1] 145  62  60
-[1] 146  62  46
-[1] 147  62  68
-[1] 148  62  50
-[1] 149  62  45
-[1] 150  62  30
-[1] 151  62  51
-[1] 152  62  72
-[1] 153  62  53
-[1] 154  62  44
-[1] 155  62  39
-[1] 156  62  36
-[1] 157  62  42
-[1] 158  62  57
-[1] 159  62  45
-[1] 160  62  61
-[1] 161  62  40
-[1] 162  62  39
-[1] 163  62  45
-[1] 164  62  38
-[1] 165  62  53
-[1] 166  62  64
-[1] 167  62  73
-[1] 168  62  45
-[1] 169  62  69
-[1] 170  62  44
-[1] 171  62  73
-[1] 172  62  48
-[1] 173  62  47
-[1] 174  62  33
-[1] 175  62  84
-[1] 176  62  62
-[1] 177  62  53
-[1] 178  62  49
-[1] 179  62  57
-[1] 180  62  43
-[1] 181  62  53
-[1] 182  62  34
-[1] 183  62  71
-[1] 184  62  66
-[1] 185  62  47
-[1] 186  62  55
-[1] 187  62  55
-[1] 188  62  55
-[1] 189  62  53
-[1] 190  62  38
-[1] 191  62  66
-[1] 192  62  40
-[1] 193  62  43
-[1] 194  62  36
-[1] 195  62  33
-[1] 196  62 104
-[1] 197  62  57
-[1] 198  62  68
-[1] 199  62  47
-[1] 200  62  49
-[1]  1 63 36
-[1]  2 63 40
-[1]  3 63 33
-[1]  4 63 60
-[1]  5 63 34
-[1]  6 63 36
-[1]  7 63 39
-[1]  8 63 52
-[1]  9 63 50
-[1] 10 63 45
-[1] 11 63 81
-[1] 12 63 53
-[1] 13 63 51
-[1] 14 63 35
-[1] 15 63 58
-[1] 16 63 30
-[1] 17 63 33
-[1] 18 63 41
-[1] 19 63 37
-[1] 20 63 44
-[1] 21 63 42
-[1]  22  63 109
-[1] 23 63 47
-[1] 24 63 54
-[1] 25 63 34
-[1] 26 63 54
-[1] 27 63 32
-[1] 28 63 48
-[1] 29 63 55
-[1] 30 63 56
-[1] 31 63 99
-[1] 32 63 51
-[1] 33 63 47
-[1] 34 63 87
-[1] 35 63 69
-[1] 36 63 49
-[1] 37 63 47
-[1] 38 63 42
-[1] 39 63 52
-[1] 40 63 82
-[1] 41 63 55
-[1] 42 63 55
-[1] 43 63 41
-[1] 44 63 37
-[1] 45 63 52
-[1] 46 63 56
-[1] 47 63 43
-[1] 48 63 58
-[1] 49 63 55
-[1] 50 63 37
-[1] 51 63 59
-[1] 52 63 56
-[1] 53 63 48
-[1] 54 63 40
-[1] 55 63 49
-[1] 56 63 81
-[1] 57 63 41
-[1]  58  63 102
-[1] 59 63 33
-[1] 60 63 38
-[1] 61 63 61
-[1] 62 63 38
-[1] 63 63 51
-[1] 64 63 54
-[1] 65 63 46
-[1] 66 63 57
-[1] 67 63 68
-[1] 68 63 38
-[1] 69 63 50
-[1] 70 63 45
-[1] 71 63 41
-[1] 72 63 66
-[1] 73 63 36
-[1]  74  63 115
-[1] 75 63 46
-[1] 76 63 75
-[1] 77 63 59
-[1] 78 63 64
-[1] 79 63 49
-[1] 80 63 37
-[1] 81 63 60
-[1] 82 63 49
-[1] 83 63 44
-[1] 84 63 40
-[1] 85 63 49
-[1] 86 63 71
-[1] 87 63 59
-[1] 88 63 51
-[1] 89 63 47
-[1] 90 63 93
-[1] 91 63 37
-[1] 92 63 46
-[1] 93 63 51
-[1] 94 63 46
-[1] 95 63 49
-[1] 96 63 60
-[1] 97 63 55
-[1] 98 63 43
-[1] 99 63 60
-[1] 100  63  73
-[1] 101  63  50
-[1] 102  63  49
-[1] 103  63  66
-[1] 104  63 103
-[1] 105  63  40
-[1] 106  63  93
-[1] 107  63  40
-[1] 108  63  45
-[1] 109  63  70
-[1] 110  63  60
-[1] 111  63  46
-[1] 112  63  49
-[1] 113  63  66
-[1] 114  63  65
-[1] 115  63  61
-[1] 116  63  39
-[1] 117  63  38
-[1] 118  63  43
-[1] 119  63  41
-[1] 120  63  46
-[1] 121  63  59
-[1] 122  63  37
-[1] 123  63  41
-[1] 124  63  50
-[1] 125  63  42
-[1] 126  63  43
-[1] 127  63  36
-[1] 128  63  52
-[1] 129  63  45
-[1] 130  63  57
-[1] 131  63  37
-[1] 132  63  54
-[1] 133  63  55
-[1] 134  63  39
-[1] 135  63  77
-[1] 136  63  66
-[1] 137  63  41
-[1] 138  63  60
-[1] 139  63  52
-[1] 140  63  49
-[1] 141  63  48
-[1] 142  63  35
-[1] 143  63  37
-[1] 144  63  61
-[1] 145  63  62
-[1] 146  63  50
-[1] 147  63  87
-[1] 148  63  44
-[1] 149  63  60
-[1] 150  63  53
-[1] 151  63  39
-[1] 152  63  43
-[1] 153  63  52
-[1] 154  63  50
-[1] 155  63  60
-[1] 156  63  50
-[1] 157  63  46
-[1] 158  63  56
-[1] 159  63  65
-[1] 160  63  61
-[1] 161  63  53
-[1] 162  63  40
-[1] 163  63  31
-[1] 164  63  42
-[1] 165  63  35
-[1] 166  63  62
-[1] 167  63  54
-[1] 168  63  40
-[1] 169  63  44
-[1] 170  63  41
-[1] 171  63  51
-[1] 172  63  56
-[1] 173  63  40
-[1] 174  63  35
-[1] 175  63  66
-[1] 176  63  37
-[1] 177  63  43
-[1] 178  63  40
-[1] 179  63  58
-[1] 180  63  53
-[1] 181  63  39
-[1] 182  63  43
-[1] 183  63  52
-[1] 184  63  45
-[1] 185  63  72
-[1] 186  63  52
-[1] 187  63  38
-[1] 188  63  59
-[1] 189  63  57
-[1] 190  63  62
-[1] 191  63  39
-[1] 192  63  53
-[1] 193  63  63
-[1] 194  63  48
-[1] 195  63  49
-[1] 196  63  48
-[1] 197  63  55
-[1] 198  63  74
-[1] 199  63  55
-[1] 200  63  45
-[1]  1 64 35
-[1]  2 64 37
-[1]  3 64 36
-[1]  4 64 35
-[1]  5 64 44
-[1]  6 64 33
-[1]  7 64 50
-[1]  8 64 37
-[1]  9 64 45
-[1] 10 64 50
-[1] 11 64 30
-[1] 12 64 32
-[1] 13 64 64
-[1] 14 64 56
-[1] 15 64 38
-[1] 16 64 35
-[1] 17 64 57
-[1] 18 64 38
-[1] 19 64 45
-[1] 20 64 34
-[1] 21 64 73
-[1] 22 64 37
-[1] 23 64 62
-[1] 24 64 57
-[1] 25 64 34
-[1] 26 64 62
-[1] 27 64 52
-[1] 28 64 48
-[1] 29 64 33
-[1] 30 64 52
-[1] 31 64 62
-[1] 32 64 75
-[1] 33 64 33
-[1] 34 64 34
-[1] 35 64 37
-[1] 36 64 42
-[1] 37 64 48
-[1] 38 64 44
-[1] 39 64 46
-[1] 40 64 42
-[1] 41 64 78
-[1] 42 64 47
-[1] 43 64 40
-[1] 44 64 46
-[1] 45 64 66
-[1] 46 64 40
-[1] 47 64 87
-[1] 48 64 64
-[1] 49 64 43
-[1] 50 64 65
-[1] 51 64 66
-[1] 52 64 55
-[1] 53 64 62
-[1] 54 64 68
-[1]  55  64 110
-[1] 56 64 57
-[1] 57 64 70
-[1] 58 64 53
-[1] 59 64 61
-[1] 60 64 53
-[1] 61 64 47
-[1] 62 64 35
-[1] 63 64 72
-[1] 64 64 51
-[1] 65 64 58
-[1] 66 64 61
-[1] 67 64 32
-[1] 68 64 47
-[1] 69 64 54
-[1] 70 64 40
-[1] 71 64 60
-[1] 72 64 66
-[1] 73 64 58
-[1] 74 64 45
-[1] 75 64 35
-[1] 76 64 49
-[1] 77 64 46
-[1] 78 64 94
-[1] 79 64 46
-[1] 80 64 59
-[1] 81 64 43
-[1] 82 64 38
-[1] 83 64 62
-[1] 84 64 59
-[1] 85 64 49
-[1] 86 64 44
-[1] 87 64 65
-[1] 88 64 44
-[1] 89 64 81
-[1] 90 64 61
-[1] 91 64 44
-[1] 92 64 62
-[1] 93 64 58
-[1] 94 64 72
-[1] 95 64 54
-[1] 96 64 55
-[1] 97 64 46
-[1] 98 64 37
-[1] 99 64 48
-[1] 100  64  35
-[1] 101  64  59
-[1] 102  64  49
-[1] 103  64  60
-[1] 104  64  48
-[1] 105  64  85
-[1] 106  64  56
-[1] 107  64  63
-[1] 108  64  62
-[1] 109  64  39
-[1] 110  64  52
-[1] 111  64  49
-[1] 112  64  44
-[1] 113  64  42
-[1] 114  64  51
-[1] 115  64 107
-[1] 116  64  42
-[1] 117  64  53
-[1] 118  64  69
-[1] 119  64  29
-[1] 120  64  82
-[1] 121  64  90
-[1] 122  64  47
-[1] 123  64  47
-[1] 124  64  62
-[1] 125  64  89
-[1] 126  64  44
-[1] 127  64  40
-[1] 128  64  57
-[1] 129  64  87
-[1] 130  64  42
-[1] 131  64  48
-[1] 132  64  49
-[1] 133  64  55
-[1] 134  64  41
-[1] 135  64  63
-[1] 136  64  53
-[1] 137  64  53
-[1] 138  64  50
-[1] 139  64  41
-[1] 140  64  45
-[1] 141  64  46
-[1] 142  64  52
-[1] 143  64  45
-[1] 144  64  48
-[1] 145  64  85
-[1] 146  64  43
-[1] 147  64  58
-[1] 148  64  50
-[1] 149  64  52
-[1] 150  64  40
-[1] 151  64  37
-[1] 152  64  46
-[1] 153  64  34
-[1] 154  64  45
-[1] 155  64  37
-[1] 156  64  54
-[1] 157  64  88
-[1] 158  64  72
-[1] 159  64  36
-[1] 160  64  75
-[1] 161  64  46
-[1] 162  64  33
-[1] 163  64  62
-[1] 164  64  57
-[1] 165  64  28
-[1] 166  64 127
-[1] 167  64  63
-[1] 168  64  44
-[1] 169  64  61
-[1] 170  64  72
-[1] 171  64  39
-[1] 172  64  84
-[1] 173  64  41
-[1] 174  64  60
-[1] 175  64  35
-[1] 176  64  55
-[1] 177  64  44
-[1] 178  64  37
-[1] 179  64  40
-[1] 180  64  62
-[1] 181  64  55
-[1] 182  64  55
-[1] 183  64  48
-[1] 184  64  81
-[1] 185  64  48
-[1] 186  64  34
-[1] 187  64  43
-[1] 188  64  43
-[1] 189  64  47
-[1] 190  64  51
-[1] 191  64  68
-[1] 192  64  60
-[1] 193  64  37
-[1] 194  64  60
-[1] 195  64  47
-[1] 196  64  34
-[1] 197  64  61
-[1] 198  64  36
-[1] 199  64  51
-[1] 200  64  37
-[1]  1 65 49
-[1]  2 65 41
-[1]  3 65 36
-[1]  4 65 35
-[1]  5 65 33
-[1]  6 65 44
-[1]  7 65 34
-[1]  8 65 34
-[1]  9 65 39
-[1] 10 65 64
-[1] 11 65 44
-[1] 12 65 46
-[1] 13 65 47
-[1] 14 65 29
-[1] 15 65 58
-[1] 16 65 41
-[1] 17 65 35
-[1] 18 65 48
-[1] 19 65 72
-[1] 20 65 34
-[1] 21 65 77
-[1] 22 65 64
-[1] 23 65 47
-[1] 24 65 59
-[1] 25 65 33
-[1] 26 65 52
-[1] 27 65 44
-[1] 28 65 27
-[1] 29 65 47
-[1] 30 65 39
-[1] 31 65 37
-[1] 32 65 56
-[1] 33 65 40
-[1] 34 65 61
-[1] 35 65 61
-[1] 36 65 51
-[1] 37 65 55
-[1] 38 65 39
-[1] 39 65 53
-[1] 40 65 68
-[1] 41 65 41
-[1] 42 65 38
-[1] 43 65 55
-[1] 44 65 42
-[1] 45 65 77
-[1] 46 65 57
-[1] 47 65 43
-[1] 48 65 50
-[1] 49 65 57
-[1] 50 65 62
-[1] 51 65 54
-[1] 52 65 62
-[1] 53 65 47
-[1] 54 65 58
-[1] 55 65 46
-[1] 56 65 34
-[1] 57 65 55
-[1] 58 65 48
-[1] 59 65 75
-[1] 60 65 35
-[1] 61 65 58
-[1] 62 65 38
-[1] 63 65 61
-[1] 64 65 41
-[1] 65 65 59
-[1] 66 65 74
-[1] 67 65 66
-[1] 68 65 59
-[1] 69 65 42
-[1] 70 65 51
-[1] 71 65 59
-[1] 72 65 59
-[1] 73 65 39
-[1] 74 65 46
-[1] 75 65 88
-[1] 76 65 51
-[1] 77 65 76
-[1] 78 65 37
-[1] 79 65 60
-[1] 80 65 36
-[1] 81 65 41
-[1] 82 65 55
-[1] 83 65 52
-[1] 84 65 51
-[1] 85 65 59
-[1] 86 65 57
-[1] 87 65 64
-[1] 88 65 40
-[1] 89 65 73
-[1] 90 65 49
-[1] 91 65 61
-[1] 92 65 46
-[1] 93 65 62
-[1] 94 65 79
-[1] 95 65 68
-[1] 96 65 51
-[1] 97 65 55
-[1] 98 65 52
-[1] 99 65 43
-[1] 100  65  59
-[1] 101  65  65
-[1] 102  65  39
-[1] 103  65  43
-[1] 104  65  38
-[1] 105  65  45
-[1] 106  65  60
-[1] 107  65  46
-[1] 108  65 103
-[1] 109  65  55
-[1] 110  65  49
-[1] 111  65  42
-[1] 112  65  49
-[1] 113  65  48
-[1] 114  65  52
-[1] 115  65  43
-[1] 116  65  85
-[1] 117  65  57
-[1] 118  65  47
-[1] 119  65  57
-[1] 120  65  39
-[1] 121  65  43
-[1] 122  65  38
-[1] 123  65  45
-[1] 124  65  45
-[1] 125  65  49
-[1] 126  65  43
-[1] 127  65  42
-[1] 128  65  69
-[1] 129  65  43
-[1] 130  65  73
-[1] 131  65  63
-[1] 132  65  40
-[1] 133  65  37
-[1] 134  65 116
-[1] 135  65  49
-[1] 136  65  34
-[1] 137  65  37
-[1] 138  65  30
-[1] 139  65 110
-[1] 140  65  62
-[1] 141  65  58
-[1] 142  65  41
-[1] 143  65  52
-[1] 144  65  38
-[1] 145  65  55
-[1] 146  65  71
-[1] 147  65  50
-[1] 148  65  38
-[1] 149  65  63
-[1] 150  65  37
-[1] 151  65  49
-[1] 152  65  37
-[1] 153  65  65
-[1] 154  65  70
-[1] 155  65  49
-[1] 156  65  64
-[1] 157  65  65
-[1] 158  65  72
-[1] 159  65  31
-[1] 160  65  57
-[1] 161  65  61
-[1] 162  65  36
-[1] 163  65  54
-[1] 164  65  90
-[1] 165  65  73
-[1] 166  65  35
-[1] 167  65  48
-[1] 168  65  40
-[1] 169  65  37
-[1] 170  65  51
-[1] 171  65  42
-[1] 172  65  38
-[1] 173  65  55
-[1] 174  65  38
-[1] 175  65  47
-[1] 176  65  51
-[1] 177  65  47
-[1] 178  65  46
-[1] 179  65  40
-[1] 180  65  51
-[1] 181  65  61
-[1] 182  65  35
-[1] 183  65  39
-[1] 184  65  75
-[1] 185  65  39
-[1] 186  65  51
-[1] 187  65  32
-[1] 188  65  51
-[1] 189  65  68
-[1] 190  65  64
-[1] 191  65  39
-[1] 192  65  51
-[1] 193  65  57
-[1] 194  65  36
-[1] 195  65  43
-[1] 196  65  37
-[1] 197  65  46
-[1] 198  65  74
-[1] 199  65  49
-[1] 200  65  51
-[1]  1 66 37
-[1]  2 66 31
-[1]  3 66 34
-[1]  4 66 42
-[1]  5 66 49
-[1]  6 66 42
-[1]  7 66 55
-[1]  8 66 42
-[1]  9 66 50
-[1] 10 66 33
-[1] 11 66 46
-[1] 12 66 36
-[1] 13 66 34
-[1] 14 66 37
-[1] 15 66 49
-[1] 16 66 57
-[1] 17 66 38
-[1] 18 66 55
-[1] 19 66 32
-[1] 20 66 45
-[1] 21 66 42
-[1] 22 66 45
-[1] 23 66 52
-[1] 24 66 44
-[1] 25 66 46
-[1] 26 66 34
-[1] 27 66 55
-[1] 28 66 43
-[1] 29 66 55
-[1] 30 66 58
-[1] 31 66 88
-[1] 32 66 44
-[1] 33 66 51
-[1] 34 66 41
-[1] 35 66 46
-[1] 36 66 31
-[1] 37 66 50
-[1] 38 66 32
-[1] 39 66 56
-[1] 40 66 58
-[1] 41 66 63
-[1] 42 66 55
-[1] 43 66 60
-[1] 44 66 51
-[1] 45 66 54
-[1] 46 66 58
-[1] 47 66 85
-[1] 48 66 57
-[1] 49 66 94
-[1] 50 66 53
-[1] 51 66 55
-[1] 52 66 66
-[1] 53 66 37
-[1] 54 66 40
-[1] 55 66 41
-[1] 56 66 60
-[1] 57 66 47
-[1] 58 66 50
-[1] 59 66 67
-[1] 60 66 36
-[1] 61 66 58
-[1] 62 66 64
-[1] 63 66 42
-[1] 64 66 59
-[1] 65 66 46
-[1] 66 66 54
-[1] 67 66 55
-[1] 68 66 56
-[1] 69 66 58
-[1] 70 66 87
-[1] 71 66 44
-[1] 72 66 46
-[1] 73 66 28
-[1] 74 66 39
-[1] 75 66 55
-[1] 76 66 84
-[1] 77 66 52
-[1] 78 66 43
-[1] 79 66 55
-[1] 80 66 65
-[1] 81 66 50
-[1] 82 66 71
-[1] 83 66 48
-[1] 84 66 52
-[1] 85 66 46
-[1] 86 66 60
-[1] 87 66 29
-[1] 88 66 71
-[1] 89 66 45
-[1] 90 66 83
-[1] 91 66 51
-[1] 92 66 40
-[1] 93 66 66
-[1] 94 66 42
-[1] 95 66 36
-[1] 96 66 57
-[1] 97 66 35
-[1] 98 66 49
-[1] 99 66 49
-[1] 100  66  47
-[1] 101  66  59
-[1] 102  66  51
-[1] 103  66  48
-[1] 104  66  58
-[1] 105  66  64
-[1] 106  66  57
-[1] 107  66  79
-[1] 108  66  47
-[1] 109  66  49
-[1] 110  66  37
-[1] 111  66  68
-[1] 112  66  56
-[1] 113  66  44
-[1] 114  66  55
-[1] 115  66  52
-[1] 116  66  38
-[1] 117  66  45
-[1] 118  66  54
-[1] 119  66  78
-[1] 120  66  48
-[1] 121  66  55
-[1] 122  66  39
-[1] 123  66  38
-[1] 124  66  43
-[1] 125  66  48
-[1] 126  66  90
-[1] 127  66  44
-[1] 128  66  62
-[1] 129  66  41
-[1] 130  66  47
-[1] 131  66  66
-[1] 132  66  34
-[1] 133  66  42
-[1] 134  66  37
-[1] 135  66  77
-[1] 136  66  39
-[1] 137  66  55
-[1] 138  66  59
-[1] 139  66  44
-[1] 140  66  64
-[1] 141  66  35
-[1] 142  66  42
-[1] 143  66  68
-[1] 144  66  47
-[1] 145  66  53
-[1] 146  66  34
-[1] 147  66  47
-[1] 148  66  51
-[1] 149  66  46
-[1] 150  66  54
-[1] 151  66  39
-[1] 152  66  51
-[1] 153  66  62
-[1] 154  66  73
-[1] 155  66  44
-[1] 156  66  41
-[1] 157  66  90
-[1] 158  66  41
-[1] 159  66  50
-[1] 160  66  55
-[1] 161  66  33
-[1] 162  66  62
-[1] 163  66  30
-[1] 164  66  57
-[1] 165  66  64
-[1] 166  66  43
-[1] 167  66  58
-[1] 168  66  85
-[1] 169  66  42
-[1] 170  66  54
-[1] 171  66  45
-[1] 172  66  42
-[1] 173  66  46
-[1] 174  66  45
-[1] 175  66  44
-[1] 176  66  41
-[1] 177  66  53
-[1] 178  66  70
-[1] 179  66  79
-[1] 180  66  61
-[1] 181  66  52
-[1] 182  66  71
-[1] 183  66  64
-[1] 184  66  56
-[1] 185  66  33
-[1] 186  66  51
-[1] 187  66  50
-[1] 188  66  67
-[1] 189  66  35
-[1] 190  66  90
-[1] 191  66  42
-[1] 192  66  37
-[1] 193  66  34
-[1] 194  66  43
-[1] 195  66  73
-[1] 196  66  48
-[1] 197  66  41
-[1] 198  66  44
-[1] 199  66  99
-[1] 200  66  55
-[1]  1 67 44
-[1]  2 67 37
-[1]  3 67 39
-[1]  4 67 35
-[1]  5 67 37
-[1]  6 67 50
-[1]  7 67 46
-[1]  8 67 55
-[1]  9 67 35
-[1] 10 67 41
-[1] 11 67 41
-[1] 12 67 47
-[1] 13 67 32
-[1] 14 67 46
-[1] 15 67 44
-[1] 16 67 36
-[1] 17 67 54
-[1] 18 67 37
-[1] 19 67 37
-[1] 20 67 38
-[1] 21 67 47
-[1] 22 67 57
-[1] 23 67 33
-[1] 24 67 41
-[1] 25 67 41
-[1] 26 67 41
-[1] 27 67 46
-[1] 28 67 46
-[1] 29 67 58
-[1] 30 67 28
-[1] 31 67 63
-[1] 32 67 38
-[1] 33 67 66
-[1] 34 67 43
-[1] 35 67 54
-[1] 36 67 49
-[1] 37 67 59
-[1] 38 67 39
-[1] 39 67 38
-[1] 40 67 66
-[1] 41 67 39
-[1] 42 67 45
-[1] 43 67 43
-[1] 44 67 40
-[1] 45 67 49
-[1] 46 67 32
-[1] 47 67 43
-[1] 48 67 89
-[1] 49 67 37
-[1] 50 67 58
-[1] 51 67 37
-[1] 52 67 74
-[1] 53 67 65
-[1] 54 67 71
-[1] 55 67 43
-[1] 56 67 47
-[1] 57 67 41
-[1] 58 67 64
-[1] 59 67 67
-[1] 60 67 38
-[1] 61 67 44
-[1] 62 67 46
-[1] 63 67 68
-[1] 64 67 65
-[1] 65 67 66
-[1] 66 67 42
-[1] 67 67 35
-[1] 68 67 59
-[1] 69 67 67
-[1] 70 67 50
-[1] 71 67 42
-[1] 72 67 61
-[1] 73 67 62
-[1] 74 67 47
-[1] 75 67 53
-[1] 76 67 51
-[1] 77 67 54
-[1] 78 67 45
-[1] 79 67 66
-[1] 80 67 44
-[1] 81 67 55
-[1] 82 67 62
-[1] 83 67 43
-[1] 84 67 60
-[1] 85 67 55
-[1] 86 67 77
-[1] 87 67 54
-[1] 88 67 78
-[1] 89 67 61
-[1] 90 67 63
-[1] 91 67 50
-[1]  92  67 105
-[1] 93 67 61
-[1] 94 67 30
-[1] 95 67 43
-[1] 96 67 62
-[1] 97 67 34
-[1] 98 67 50
-[1] 99 67 39
-[1] 100  67  51
-[1] 101  67  63
-[1] 102  67  30
-[1] 103  67  55
-[1] 104  67  92
-[1] 105  67  73
-[1] 106  67  59
-[1] 107  67  82
-[1] 108  67  51
-[1] 109  67  43
-[1] 110  67  40
-[1] 111  67  75
-[1] 112  67  37
-[1] 113  67  80
-[1] 114  67  42
-[1] 115  67  45
-[1] 116  67  52
-[1] 117  67 125
-[1] 118  67  68
-[1] 119  67  37
-[1] 120  67  79
-[1] 121  67  55
-[1] 122  67  80
-[1] 123  67  70
-[1] 124  67  59
-[1] 125  67  46
-[1] 126  67  60
-[1] 127  67  38
-[1] 128  67  38
-[1] 129  67  38
-[1] 130  67  49
-[1] 131  67  63
-[1] 132  67  58
-[1] 133  67  39
-[1] 134  67  47
-[1] 135  67  33
-[1] 136  67  46
-[1] 137  67  71
-[1] 138  67  44
-[1] 139  67  48
-[1] 140  67  80
-[1] 141  67  41
-[1] 142  67  49
-[1] 143  67  79
-[1] 144  67  35
-[1] 145  67  38
-[1] 146  67  50
-[1] 147  67  41
-[1] 148  67  34
-[1] 149  67  46
-[1] 150  67  35
-[1] 151  67  73
-[1] 152  67  67
-[1] 153  67  41
-[1] 154  67  38
-[1] 155  67  56
-[1] 156  67  57
-[1] 157  67  42
-[1] 158  67  87
-[1] 159  67  33
-[1] 160  67  42
-[1] 161  67  48
-[1] 162  67  41
-[1] 163  67  56
-[1] 164  67  94
-[1] 165  67  38
-[1] 166  67  36
-[1] 167  67  55
-[1] 168  67  48
-[1] 169  67  55
-[1] 170  67  43
-[1] 171  67  46
-[1] 172  67  65
-[1] 173  67  56
-[1] 174  67  45
-[1] 175  67  42
-[1] 176  67  50
-[1] 177  67  45
-[1] 178  67  63
-[1] 179  67  46
-[1] 180  67  59
-[1] 181  67  47
-[1] 182  67  43
-[1] 183  67  72
-[1] 184  67  46
-[1] 185  67  45
-[1] 186  67  59
-[1] 187  67  42
-[1] 188  67  49
-[1] 189  67  48
-[1] 190  67  47
-[1] 191  67  58
-[1] 192  67  81
-[1] 193  67  42
-[1] 194  67  67
-[1] 195  67  56
-[1] 196  67  39
-[1] 197  67  37
-[1] 198  67  63
-[1] 199  67  60
-[1] 200  67  47
-[1]  1 68 33
-[1]  2 68 35
-[1]  3 68 50
-[1]  4 68 47
-[1]  5 68 32
-[1]  6 68 51
-[1]  7 68 40
-[1]  8 68 43
-[1]  9 68 40
-[1] 10 68 51
-[1] 11 68 84
-[1] 12 68 34
-[1] 13 68 46
-[1] 14 68 34
-[1] 15 68 41
-[1] 16 68 40
-[1] 17 68 40
-[1] 18 68 42
-[1] 19 68 44
-[1] 20 68 37
-[1] 21 68 52
-[1] 22 68 37
-[1] 23 68 41
-[1] 24 68 55
-[1] 25 68 36
-[1] 26 68 92
-[1] 27 68 39
-[1] 28 68 43
-[1] 29 68 32
-[1] 30 68 45
-[1] 31 68 55
-[1] 32 68 47
-[1] 33 68 72
-[1] 34 68 40
-[1] 35 68 46
-[1] 36 68 55
-[1] 37 68 41
-[1] 38 68 45
-[1] 39 68 63
-[1] 40 68 31
-[1] 41 68 34
-[1] 42 68 63
-[1] 43 68 43
-[1] 44 68 48
-[1] 45 68 35
-[1] 46 68 70
-[1] 47 68 46
-[1] 48 68 80
-[1] 49 68 67
-[1] 50 68 37
-[1] 51 68 45
-[1] 52 68 69
-[1] 53 68 34
-[1] 54 68 85
-[1] 55 68 45
-[1] 56 68 78
-[1] 57 68 61
-[1] 58 68 58
-[1] 59 68 52
-[1] 60 68 47
-[1] 61 68 63
-[1] 62 68 46
-[1] 63 68 55
-[1] 64 68 56
-[1] 65 68 73
-[1] 66 68 60
-[1] 67 68 55
-[1] 68 68 45
-[1] 69 68 39
-[1] 70 68 66
-[1] 71 68 40
-[1] 72 68 69
-[1] 73 68 36
-[1] 74 68 45
-[1] 75 68 70
-[1] 76 68 55
-[1] 77 68 49
-[1] 78 68 35
-[1] 79 68 36
-[1] 80 68 36
-[1] 81 68 41
-[1] 82 68 38
-[1] 83 68 71
-[1] 84 68 45
-[1] 85 68 50
-[1] 86 68 46
-[1] 87 68 95
-[1] 88 68 41
-[1] 89 68 48
-[1] 90 68 87
-[1] 91 68 61
-[1] 92 68 37
-[1] 93 68 57
-[1] 94 68 49
-[1] 95 68 43
-[1] 96 68 54
-[1] 97 68 62
-[1] 98 68 47
-[1] 99 68 55
-[1] 100  68  52
-[1] 101  68  71
-[1] 102  68  51
-[1] 103  68  42
-[1] 104  68  73
-[1] 105  68  61
-[1] 106  68  54
-[1] 107  68  44
-[1] 108  68  61
-[1] 109  68  43
-[1] 110  68  54
-[1] 111  68  57
-[1] 112  68  54
-[1] 113  68  30
-[1] 114  68  58
-[1] 115  68  43
-[1] 116  68  48
-[1] 117  68  60
-[1] 118  68  48
-[1] 119  68  57
-[1] 120  68  59
-[1] 121  68  71
-[1] 122  68  50
-[1] 123  68  62
-[1] 124  68  44
-[1] 125  68  52
-[1] 126  68  76
-[1] 127  68  47
-[1] 128  68  64
-[1] 129  68  53
-[1] 130  68  64
-[1] 131  68  47
-[1] 132  68  39
-[1] 133  68  51
-[1] 134  68  46
-[1] 135  68  44
-[1] 136  68  38
-[1] 137  68  73
-[1] 138  68  35
-[1] 139  68  84
-[1] 140  68  58
-[1] 141  68  31
-[1] 142  68  42
-[1] 143  68  70
-[1] 144  68  35
-[1] 145  68  41
-[1] 146  68  47
-[1] 147  68  45
-[1] 148  68  42
-[1] 149  68  37
-[1] 150  68  25
-[1] 151  68  78
-[1] 152  68  41
-[1] 153  68  38
-[1] 154  68  59
-[1] 155  68  38
-[1] 156  68  67
-[1] 157  68  75
-[1] 158  68  40
-[1] 159  68  38
-[1] 160  68  40
-[1] 161  68  48
-[1] 162  68  84
-[1] 163  68  36
-[1] 164  68  57
-[1] 165  68  42
-[1] 166  68  57
-[1] 167  68  55
-[1] 168  68  48
-[1] 169  68  45
-[1] 170  68  45
-[1] 171  68  35
-[1] 172  68  48
-[1] 173  68  60
-[1] 174  68  51
-[1] 175  68  42
-[1] 176  68  38
-[1] 177  68  46
-[1] 178  68  47
-[1] 179  68  41
-[1] 180  68  47
-[1] 181  68  30
-[1] 182  68  81
-[1] 183  68  71
-[1] 184  68  57
-[1] 185  68  48
-[1] 186  68  39
-[1] 187  68  46
-[1] 188  68  56
-[1] 189  68  46
-[1] 190  68  63
-[1] 191  68  53
-[1] 192  68  39
-[1] 193  68  44
-[1] 194  68  47
-[1] 195  68  63
-[1] 196  68  31
-[1] 197  68  50
-[1] 198  68  46
-[1] 199  68  50
-[1] 200  68  62
-[1]  1 69 43
-[1]  2 69 34
-[1]  3 69 39
-[1]  4 69 73
-[1]  5 69 32
-[1]  6 69 39
-[1]  7 69 39
-[1]  8 69 47
-[1]  9 69 52
-[1] 10 69 33
-[1] 11 69 58
-[1] 12 69 60
-[1] 13 69 55
-[1] 14 69 54
-[1] 15 69 44
-[1] 16 69 47
-[1] 17 69 34
-[1] 18 69 46
-[1] 19 69 32
-[1] 20 69 43
-[1] 21 69 64
-[1] 22 69 68
-[1] 23 69 41
-[1] 24 69 48
-[1] 25 69 63
-[1] 26 69 31
-[1] 27 69 39
-[1] 28 69 32
-[1] 29 69 51
-[1] 30 69 43
-[1] 31 69 48
-[1] 32 69 42
-[1] 33 69 47
-[1] 34 69 30
-[1] 35 69 57
-[1] 36 69 37
-[1] 37 69 32
-[1] 38 69 57
-[1] 39 69 51
-[1] 40 69 47
-[1] 41 69 57
-[1] 42 69 58
-[1] 43 69 47
-[1] 44 69 49
-[1] 45 69 71
-[1] 46 69 48
-[1] 47 69 52
-[1] 48 69 78
-[1] 49 69 70
-[1] 50 69 54
-[1] 51 69 49
-[1] 52 69 61
-[1] 53 69 88
-[1] 54 69 67
-[1] 55 69 38
-[1] 56 69 59
-[1] 57 69 51
-[1] 58 69 44
-[1] 59 69 45
-[1] 60 69 62
-[1] 61 69 44
-[1] 62 69 53
-[1] 63 69 68
-[1] 64 69 41
-[1] 65 69 87
-[1] 66 69 32
-[1] 67 69 37
-[1] 68 69 47
-[1] 69 69 62
-[1] 70 69 53
-[1] 71 69 66
-[1] 72 69 55
-[1] 73 69 44
-[1] 74 69 30
-[1] 75 69 44
-[1] 76 69 53
-[1] 77 69 68
-[1] 78 69 54
-[1] 79 69 47
-[1] 80 69 48
-[1] 81 69 55
-[1] 82 69 42
-[1] 83 69 45
-[1] 84 69 85
-[1] 85 69 48
-[1] 86 69 66
-[1] 87 69 91
-[1] 88 69 73
-[1] 89 69 46
-[1] 90 69 40
-[1] 91 69 46
-[1] 92 69 70
-[1] 93 69 45
-[1] 94 69 50
-[1] 95 69 45
-[1] 96 69 72
-[1] 97 69 33
-[1] 98 69 82
-[1] 99 69 49
-[1] 100  69  53
-[1] 101  69  58
-[1] 102  69  81
-[1] 103  69  39
-[1] 104  69  61
-[1] 105  69  42
-[1] 106  69  66
-[1] 107  69  42
-[1] 108  69  56
-[1] 109  69  54
-[1] 110  69  67
-[1] 111  69  48
-[1] 112  69  72
-[1] 113  69  57
-[1] 114  69  36
-[1] 115  69  42
-[1] 116  69  40
-[1] 117  69  76
-[1] 118  69  41
-[1] 119  69  54
-[1] 120  69  50
-[1] 121  69  59
-[1] 122  69  45
-[1] 123  69  50
-[1] 124  69  37
-[1] 125  69  36
-[1] 126  69  49
-[1] 127  69  61
-[1] 128  69  52
-[1] 129  69  63
-[1] 130  69  43
-[1] 131  69  48
-[1] 132  69  49
-[1] 133  69  53
-[1] 134  69  52
-[1] 135  69  80
-[1] 136  69  51
-[1] 137  69  57
-[1] 138  69  47
-[1] 139  69  69
-[1] 140  69  51
-[1] 141  69  63
-[1] 142  69  42
-[1] 143  69  68
-[1] 144  69  35
-[1] 145  69  69
-[1] 146  69  50
-[1] 147  69  69
-[1] 148  69  58
-[1] 149  69  51
-[1] 150  69  50
-[1] 151  69  59
-[1] 152  69  53
-[1] 153  69  46
-[1] 154  69  45
-[1] 155  69  47
-[1] 156  69  44
-[1] 157  69  64
-[1] 158  69  51
-[1] 159  69  52
-[1] 160  69  39
-[1] 161  69  43
-[1] 162  69  76
-[1] 163  69  31
-[1] 164  69  60
-[1] 165  69  50
-[1] 166  69  38
-[1] 167  69  44
-[1] 168  69  57
-[1] 169  69  44
-[1] 170  69  45
-[1] 171  69  47
-[1] 172  69  48
-[1] 173  69  33
-[1] 174  69  52
-[1] 175  69  50
-[1] 176  69  47
-[1] 177  69  40
-[1] 178  69  38
-[1] 179  69  56
-[1] 180  69  48
-[1] 181  69  44
-[1] 182  69  63
-[1] 183  69  51
-[1] 184  69  45
-[1] 185  69  48
-[1] 186  69  52
-[1] 187  69  45
-[1] 188  69  67
-[1] 189  69  40
-[1] 190  69  53
-[1] 191  69  68
-[1] 192  69  47
-[1] 193  69  56
-[1] 194  69  43
-[1] 195  69  37
-[1] 196  69  40
-[1] 197  69  55
-[1] 198  69  84
-[1] 199  69  55
-[1] 200  69  47
-[1]  1 70 33
-[1]  2 70 33
-[1]  3 70 47
-[1]  4 70 53
-[1]  5 70 56
-[1]  6 70 44
-[1]  7 70 38
-[1]  8 70 36
-[1]  9 70 50
-[1] 10 70 58
-[1] 11 70 73
-[1] 12 70 37
-[1] 13 70 32
-[1] 14 70 44
-[1] 15 70 35
-[1] 16 70 31
-[1] 17 70 44
-[1] 18 70 52
-[1] 19 70 33
-[1] 20 70 29
-[1] 21 70 40
-[1] 22 70 49
-[1] 23 70 50
-[1] 24 70 43
-[1] 25 70 48
-[1] 26 70 27
-[1] 27 70 41
-[1] 28 70 52
-[1] 29 70 49
-[1] 30 70 44
-[1] 31 70 59
-[1] 32 70 46
-[1] 33 70 48
-[1] 34 70 37
-[1] 35 70 53
-[1] 36 70 59
-[1] 37 70 43
-[1] 38 70 76
-[1] 39 70 56
-[1] 40 70 41
-[1] 41 70 50
-[1] 42 70 61
-[1] 43 70 65
-[1] 44 70 46
-[1] 45 70 42
-[1] 46 70 47
-[1] 47 70 71
-[1] 48 70 33
-[1] 49 70 76
-[1] 50 70 64
-[1] 51 70 66
-[1] 52 70 57
-[1] 53 70 41
-[1] 54 70 60
-[1] 55 70 42
-[1] 56 70 47
-[1] 57 70 63
-[1] 58 70 50
-[1] 59 70 53
-[1] 60 70 41
-[1] 61 70 86
-[1] 62 70 74
-[1] 63 70 68
-[1] 64 70 44
-[1] 65 70 28
-[1] 66 70 75
-[1] 67 70 65
-[1] 68 70 50
-[1] 69 70 71
-[1] 70 70 63
-[1] 71 70 42
-[1] 72 70 56
-[1] 73 70 45
-[1] 74 70 51
-[1] 75 70 40
-[1] 76 70 59
-[1] 77 70 40
-[1] 78 70 37
-[1] 79 70 52
-[1] 80 70 67
-[1] 81 70 42
-[1] 82 70 51
-[1] 83 70 59
-[1] 84 70 84
-[1] 85 70 53
-[1] 86 70 62
-[1] 87 70 52
-[1] 88 70 48
-[1] 89 70 53
-[1] 90 70 69
-[1] 91 70 47
-[1] 92 70 77
-[1] 93 70 74
-[1] 94 70 82
-[1] 95 70 43
-[1] 96 70 62
-[1] 97 70 71
-[1] 98 70 69
-[1] 99 70 54
-[1] 100  70  51
-[1] 101  70  40
-[1] 102  70  99
-[1] 103  70  55
-[1] 104  70  68
-[1] 105  70  45
-[1] 106  70  61
-[1] 107  70  56
-[1] 108  70  49
-[1] 109  70  71
-[1] 110  70  54
-[1] 111  70  70
-[1] 112  70  51
-[1] 113  70  41
-[1] 114  70  50
-[1] 115  70  43
-[1] 116  70  55
-[1] 117  70  77
-[1] 118  70  71
-[1] 119  70  39
-[1] 120  70  58
-[1] 121  70  55
-[1] 122  70  40
-[1] 123  70  45
-[1] 124  70  43
-[1] 125  70  76
-[1] 126  70  50
-[1] 127  70  45
-[1] 128  70  37
-[1] 129  70  62
-[1] 130  70  53
-[1] 131  70  52
-[1] 132  70  73
-[1] 133  70  28
-[1] 134  70  58
-[1] 135  70  61
-[1] 136  70  67
-[1] 137  70  61
-[1] 138  70  44
-[1] 139  70  46
-[1] 140  70  57
-[1] 141  70  48
-[1] 142  70  53
-[1] 143  70  89
-[1] 144  70  67
-[1] 145  70  46
-[1] 146  70  47
-[1] 147  70  60
-[1] 148  70  33
-[1] 149  70  38
-[1] 150  70  41
-[1] 151  70  46
-[1] 152  70  46
-[1] 153  70 113
-[1] 154  70  35
-[1] 155  70  44
-[1] 156  70  40
-[1] 157  70  35
-[1] 158  70  51
-[1] 159  70  50
-[1] 160  70  54
-[1] 161  70  44
-[1] 162  70  60
-[1] 163  70  81
-[1] 164  70  52
-[1] 165  70  77
-[1] 166  70  39
-[1] 167  70  50
-[1] 168  70  37
-[1] 169  70  58
-[1] 170  70  43
-[1] 171  70  45
-[1] 172  70  53
-[1] 173  70  54
-[1] 174  70  42
-[1] 175  70  35
-[1] 176  70  48
-[1] 177  70  49
-[1] 178  70  54
-[1] 179  70  49
-[1] 180  70  54
-[1] 181  70  41
-[1] 182  70  39
-[1] 183  70  29
-[1] 184  70  63
-[1] 185  70  42
-[1] 186  70  60
-[1] 187  70  79
-[1] 188  70  81
-[1] 189  70  48
-[1] 190  70 100
-[1] 191  70  47
-[1] 192  70  34
-[1] 193  70  63
-[1] 194  70  40
-[1] 195  70  49
-[1] 196  70  61
-[1] 197  70  52
-[1] 198  70  81
-[1] 199  70  60
-[1] 200  70  59
-[1]  1 71 45
-[1]  2 71 41
-[1]  3 71 28
-[1]  4 71 35
-[1]  5 71 36
-[1]  6 71 31
-[1]  7 71 47
-[1]  8 71 40
-[1]  9 71 45
-[1] 10 71 44
-[1] 11 71 41
-[1] 12 71 52
-[1] 13 71 43
-[1] 14 71 42
-[1] 15 71 41
-[1] 16 71 36
-[1] 17 71 61
-[1] 18 71 60
-[1] 19 71 37
-[1] 20 71 55
-[1] 21 71 35
-[1] 22 71 59
-[1] 23 71 63
-[1] 24 71 39
-[1] 25 71 42
-[1] 26 71 37
-[1] 27 71 30
-[1] 28 71 57
-[1] 29 71 34
-[1] 30 71 56
-[1] 31 71 66
-[1] 32 71 42
-[1] 33 71 49
-[1] 34 71 38
-[1] 35 71 50
-[1] 36 71 56
-[1] 37 71 36
-[1] 38 71 43
-[1] 39 71 38
-[1] 40 71 37
-[1] 41 71 50
-[1] 42 71 53
-[1] 43 71 52
-[1] 44 71 49
-[1] 45 71 42
-[1] 46 71 76
-[1] 47 71 46
-[1] 48 71 44
-[1] 49 71 41
-[1] 50 71 56
-[1] 51 71 69
-[1] 52 71 34
-[1] 53 71 63
-[1] 54 71 42
-[1] 55 71 63
-[1] 56 71 36
-[1] 57 71 43
-[1] 58 71 65
-[1] 59 71 39
-[1] 60 71 48
-[1] 61 71 46
-[1] 62 71 65
-[1] 63 71 76
-[1] 64 71 47
-[1] 65 71 76
-[1] 66 71 39
-[1] 67 71 87
-[1] 68 71 56
-[1] 69 71 43
-[1] 70 71 50
-[1] 71 71 69
-[1] 72 71 60
-[1] 73 71 81
-[1] 74 71 33
-[1] 75 71 88
-[1] 76 71 39
-[1] 77 71 66
-[1] 78 71 54
-[1] 79 71 55
-[1] 80 71 42
-[1] 81 71 43
-[1] 82 71 61
-[1] 83 71 81
-[1] 84 71 50
-[1] 85 71 66
-[1] 86 71 81
-[1] 87 71 57
-[1] 88 71 62
-[1] 89 71 47
-[1] 90 71 56
-[1] 91 71 48
-[1] 92 71 75
-[1] 93 71 49
-[1] 94 71 43
-[1] 95 71 58
-[1] 96 71 59
-[1] 97 71 46
-[1] 98 71 50
-[1] 99 71 59
-[1] 100  71  37
-[1] 101  71  64
-[1] 102  71  50
-[1] 103  71  52
-[1] 104  71  43
-[1] 105  71  92
-[1] 106  71  39
-[1] 107  71  56
-[1] 108  71  50
-[1] 109  71  37
-[1] 110  71  51
-[1] 111  71  42
-[1] 112  71  35
-[1] 113  71  34
-[1] 114  71  68
-[1] 115  71  51
-[1] 116  71  61
-[1] 117  71  35
-[1] 118  71  50
-[1] 119  71  43
-[1] 120  71  47
-[1] 121  71  44
-[1] 122  71  47
-[1] 123  71  53
-[1] 124  71  44
-[1] 125  71  56
-[1] 126  71  38
-[1] 127  71  81
-[1] 128  71  54
-[1] 129  71  59
-[1] 130  71  63
-[1] 131  71  62
-[1] 132  71  57
-[1] 133  71  52
-[1] 134  71  51
-[1] 135  71  57
-[1] 136  71  32
-[1] 137  71  42
-[1] 138  71  55
-[1] 139  71  48
-[1] 140  71  67
-[1] 141  71  53
-[1] 142  71  44
-[1] 143  71  51
-[1] 144  71  49
-[1] 145  71  36
-[1] 146  71  52
-[1] 147  71  47
-[1] 148  71  94
-[1] 149  71  62
-[1] 150  71  36
-[1] 151  71  59
-[1] 152  71  44
-[1] 153  71  48
-[1] 154  71  63
-[1] 155  71  51
-[1] 156  71  54
-[1] 157  71  51
-[1] 158  71  58
-[1] 159  71  53
-[1] 160  71  52
-[1] 161  71  57
-[1] 162  71  36
-[1] 163  71  59
-[1] 164  71  43
-[1] 165  71  53
-[1] 166  71  54
-[1] 167  71  31
-[1] 168  71  71
-[1] 169  71  59
-[1] 170  71  43
-[1] 171  71  50
-[1] 172  71  48
-[1] 173  71  41
-[1] 174  71  48
-[1] 175  71  55
-[1] 176  71  42
-[1] 177  71  58
-[1] 178  71  51
-[1] 179  71  63
-[1] 180  71  56
-[1] 181  71  41
-[1] 182  71  50
-[1] 183  71  44
-[1] 184  71  49
-[1] 185  71  52
-[1] 186  71  45
-[1] 187  71  38
-[1] 188  71  46
-[1] 189  71  87
-[1] 190  71  69
-[1] 191  71  62
-[1] 192  71  41
-[1] 193  71  75
-[1] 194  71  52
-[1] 195  71  46
-[1] 196  71  43
-[1] 197  71  33
-[1] 198  71  49
-[1] 199  71  46
-[1] 200  71  41
-[1]  1 72 39
-[1]  2 72 35
-[1]  3 72 36
-[1]  4 72 35
-[1]  5 72 30
-[1]  6 72 39
-[1]  7 72 24
-[1]  8 72 34
-[1]  9 72 40
-[1] 10 72 42
-[1] 11 72 39
-[1] 12 72 68
-[1] 13 72 42
-[1] 14 72 28
-[1] 15 72 39
-[1] 16 72 50
-[1] 17 72 38
-[1] 18 72 45
-[1] 19 72 31
-[1] 20 72 68
-[1] 21 72 29
-[1] 22 72 43
-[1] 23 72 43
-[1] 24 72 38
-[1] 25 72 48
-[1] 26 72 34
-[1] 27 72 36
-[1] 28 72 53
-[1] 29 72 67
-[1] 30 72 32
-[1] 31 72 60
-[1] 32 72 48
-[1] 33 72 52
-[1] 34 72 37
-[1] 35 72 44
-[1] 36 72 33
-[1] 37 72 59
-[1] 38 72 44
-[1] 39 72 41
-[1] 40 72 64
-[1] 41 72 35
-[1] 42 72 54
-[1] 43 72 97
-[1] 44 72 53
-[1] 45 72 34
-[1] 46 72 59
-[1] 47 72 60
-[1] 48 72 59
-[1]  49  72 132
-[1] 50 72 93
-[1] 51 72 65
-[1] 52 72 36
-[1] 53 72 49
-[1] 54 72 37
-[1] 55 72 58
-[1] 56 72 38
-[1] 57 72 52
-[1] 58 72 46
-[1] 59 72 70
-[1] 60 72 57
-[1] 61 72 40
-[1] 62 72 47
-[1] 63 72 38
-[1] 64 72 65
-[1] 65 72 39
-[1] 66 72 46
-[1] 67 72 57
-[1] 68 72 52
-[1] 69 72 83
-[1] 70 72 31
-[1] 71 72 72
-[1]  72  72 101
-[1] 73 72 35
-[1] 74 72 53
-[1] 75 72 46
-[1] 76 72 49
-[1] 77 72 55
-[1] 78 72 51
-[1] 79 72 47
-[1] 80 72 43
-[1] 81 72 39
-[1] 82 72 71
-[1] 83 72 60
-[1] 84 72 43
-[1] 85 72 72
-[1] 86 72 58
-[1] 87 72 44
-[1] 88 72 64
-[1] 89 72 33
-[1] 90 72 51
-[1] 91 72 40
-[1] 92 72 45
-[1] 93 72 37
-[1] 94 72 46
-[1] 95 72 45
-[1] 96 72 39
-[1] 97 72 72
-[1] 98 72 56
-[1] 99 72 53
-[1] 100  72  46
-[1] 101  72  51
-[1] 102  72  95
-[1] 103  72  76
-[1] 104  72  47
-[1] 105  72  46
-[1] 106  72  94
-[1] 107  72  63
-[1] 108  72  34
-[1] 109  72  59
-[1] 110  72  45
-[1] 111  72  47
-[1] 112  72  43
-[1] 113  72  54
-[1] 114  72  38
-[1] 115  72  74
-[1] 116  72  38
-[1] 117  72  48
-[1] 118  72  45
-[1] 119  72  54
-[1] 120  72  39
-[1] 121  72  49
-[1] 122  72  51
-[1] 123  72  58
-[1] 124  72  43
-[1] 125  72  60
-[1] 126  72  41
-[1] 127  72  62
-[1] 128  72  58
-[1] 129  72  79
-[1] 130  72  46
-[1] 131  72  39
-[1] 132  72  46
-[1] 133  72  35
-[1] 134  72  57
-[1] 135  72  48
-[1] 136  72  49
-[1] 137  72  41
-[1] 138  72  68
-[1] 139  72  67
-[1] 140  72  46
-[1] 141  72  75
-[1] 142  72  58
-[1] 143  72  42
-[1] 144  72  45
-[1] 145  72  65
-[1] 146  72  42
-[1] 147  72  38
-[1] 148  72  52
-[1] 149  72  58
-[1] 150  72  55
-[1] 151  72  45
-[1] 152  72  53
-[1] 153  72  52
-[1] 154  72  69
-[1] 155  72  71
-[1] 156  72  44
-[1] 157  72  60
-[1] 158  72  41
-[1] 159  72  50
-[1] 160  72  45
-[1] 161  72  43
-[1] 162  72  55
-[1] 163  72  59
-[1] 164  72  48
-[1] 165  72  63
-[1] 166  72  42
-[1] 167  72  46
-[1] 168  72  50
-[1] 169  72  33
-[1] 170  72  61
-[1] 171  72  56
-[1] 172  72  65
-[1] 173  72  30
-[1] 174  72  41
-[1] 175  72  53
-[1] 176  72  46
-[1] 177  72  58
-[1] 178  72  41
-[1] 179  72  60
-[1] 180  72  38
-[1] 181  72  66
-[1] 182  72  53
-[1] 183  72  72
-[1] 184  72  36
-[1] 185  72  80
-[1] 186  72  62
-[1] 187  72  51
-[1] 188  72  82
-[1] 189  72  50
-[1] 190  72  34
-[1] 191  72  64
-[1] 192  72  51
-[1] 193  72  51
-[1] 194  72  57
-[1] 195  72  49
-[1] 196  72  39
-[1] 197  72  57
-[1] 198  72  42
-[1] 199  72  52
-[1] 200  72  67
-[1]  1 73 53
-[1]  2 73 33
-[1]  3 73 36
-[1]  4 73 45
-[1]  5 73 32
-[1]  6 73 27
-[1]  7 73 34
-[1]  8 73 39
-[1]  9 73 40
-[1] 10 73 35
-[1] 11 73 41
-[1] 12 73 36
-[1] 13 73 71
-[1] 14 73 47
-[1] 15 73 49
-[1] 16 73 43
-[1] 17 73 55
-[1] 18 73 49
-[1] 19 73 35
-[1] 20 73 44
-[1] 21 73 52
-[1] 22 73 67
-[1] 23 73 37
-[1] 24 73 44
-[1] 25 73 41
-[1] 26 73 31
-[1] 27 73 55
-[1] 28 73 59
-[1] 29 73 54
-[1] 30 73 35
-[1] 31 73 34
-[1] 32 73 44
-[1] 33 73 71
-[1] 34 73 61
-[1] 35 73 35
-[1] 36 73 33
-[1] 37 73 60
-[1] 38 73 49
-[1] 39 73 37
-[1] 40 73 47
-[1] 41 73 51
-[1] 42 73 33
-[1] 43 73 62
-[1] 44 73 49
-[1] 45 73 30
-[1] 46 73 57
-[1] 47 73 63
-[1] 48 73 41
-[1] 49 73 80
-[1] 50 73 35
-[1] 51 73 61
-[1] 52 73 51
-[1] 53 73 37
-[1] 54 73 48
-[1] 55 73 65
-[1] 56 73 52
-[1] 57 73 57
-[1] 58 73 69
-[1] 59 73 49
-[1] 60 73 59
-[1] 61 73 49
-[1] 62 73 97
-[1] 63 73 52
-[1] 64 73 84
-[1] 65 73 89
-[1] 66 73 65
-[1] 67 73 55
-[1] 68 73 76
-[1] 69 73 52
-[1] 70 73 33
-[1] 71 73 42
-[1] 72 73 51
-[1] 73 73 43
-[1] 74 73 45
-[1] 75 73 45
-[1] 76 73 43
-[1] 77 73 45
-[1] 78 73 59
-[1] 79 73 64
-[1] 80 73 68
-[1] 81 73 65
-[1] 82 73 63
-[1] 83 73 52
-[1] 84 73 59
-[1] 85 73 51
-[1] 86 73 42
-[1] 87 73 44
-[1] 88 73 53
-[1] 89 73 53
-[1] 90 73 58
-[1] 91 73 47
-[1] 92 73 54
-[1] 93 73 35
-[1] 94 73 66
-[1] 95 73 41
-[1] 96 73 41
-[1] 97 73 30
-[1] 98 73 45
-[1] 99 73 51
-[1] 100  73  56
-[1] 101  73  59
-[1] 102  73  44
-[1] 103  73  76
-[1] 104  73  87
-[1] 105  73  52
-[1] 106  73  49
-[1] 107  73  79
-[1] 108  73  42
-[1] 109  73  31
-[1] 110  73  45
-[1] 111  73  63
-[1] 112  73  57
-[1] 113  73  59
-[1] 114  73  58
-[1] 115  73  63
-[1] 116  73  46
-[1] 117  73  30
-[1] 118  73  82
-[1] 119  73  42
-[1] 120  73  64
-[1] 121  73  48
-[1] 122  73  63
-[1] 123  73  54
-[1] 124  73  78
-[1] 125  73  71
-[1] 126  73  44
-[1] 127  73  67
-[1] 128  73  57
-[1] 129  73  44
-[1] 130  73  79
-[1] 131  73  54
-[1] 132  73  61
-[1] 133  73  41
-[1] 134  73  53
-[1] 135  73  61
-[1] 136  73  63
-[1] 137  73  49
-[1] 138  73  82
-[1] 139  73  40
-[1] 140  73  71
-[1] 141  73  75
-[1] 142  73  42
-[1] 143  73  46
-[1] 144  73  51
-[1] 145  73  39
-[1] 146  73  55
-[1] 147  73  60
-[1] 148  73  51
-[1] 149  73  56
-[1] 150  73  32
-[1] 151  73  63
-[1] 152  73  56
-[1] 153  73  47
-[1] 154  73  49
-[1] 155  73  49
-[1] 156  73  38
-[1] 157  73  48
-[1] 158  73  58
-[1] 159  73  52
-[1] 160  73  38
-[1] 161  73  93
-[1] 162  73  84
-[1] 163  73  59
-[1] 164  73  65
-[1] 165  73  51
-[1] 166  73  45
-[1] 167  73  41
-[1] 168  73  61
-[1] 169  73  66
-[1] 170  73  45
-[1] 171  73  82
-[1] 172  73  43
-[1] 173  73  49
-[1] 174  73  40
-[1] 175  73  63
-[1] 176  73  58
-[1] 177  73  49
-[1] 178  73  36
-[1] 179  73  63
-[1] 180  73  46
-[1] 181  73  44
-[1] 182  73  62
-[1] 183  73  35
-[1] 184  73  57
-[1] 185  73  53
-[1] 186  73  42
-[1] 187  73  49
-[1] 188  73  41
-[1] 189  73  57
-[1] 190  73  44
-[1] 191  73  34
-[1] 192  73  51
-[1] 193  73  56
-[1] 194  73  71
-[1] 195  73  55
-[1] 196  73  42
-[1] 197  73  57
-[1] 198  73  48
-[1] 199  73  47
-[1] 200  73  51
-[1]  1 74 35
-[1]  2 74 43
-[1]  3 74 30
-[1]  4 74 41
-[1]  5 74 46
-[1]  6 74 30
-[1]  7 74 54
-[1]  8 74 40
-[1]  9 74 58
-[1] 10 74 60
-[1] 11 74 64
-[1] 12 74 30
-[1] 13 74 64
-[1] 14 74 39
-[1] 15 74 63
-[1] 16 74 33
-[1] 17 74 51
-[1] 18 74 42
-[1] 19 74 32
-[1] 20 74 36
-[1] 21 74 33
-[1] 22 74 65
-[1] 23 74 51
-[1] 24 74 64
-[1] 25 74 40
-[1] 26 74 57
-[1] 27 74 43
-[1] 28 74 42
-[1] 29 74 29
-[1] 30 74 46
-[1] 31 74 51
-[1] 32 74 32
-[1] 33 74 46
-[1] 34 74 32
-[1] 35 74 88
-[1] 36 74 61
-[1] 37 74 40
-[1] 38 74 36
-[1] 39 74 41
-[1] 40 74 52
-[1] 41 74 54
-[1] 42 74 37
-[1] 43 74 37
-[1] 44 74 55
-[1] 45 74 52
-[1] 46 74 61
-[1] 47 74 40
-[1] 48 74 40
-[1] 49 74 52
-[1] 50 74 53
-[1] 51 74 45
-[1] 52 74 86
-[1] 53 74 52
-[1] 54 74 63
-[1] 55 74 83
-[1] 56 74 47
-[1] 57 74 82
-[1] 58 74 54
-[1] 59 74 47
-[1] 60 74 59
-[1] 61 74 32
-[1] 62 74 51
-[1] 63 74 70
-[1] 64 74 43
-[1] 65 74 55
-[1] 66 74 39
-[1] 67 74 66
-[1] 68 74 64
-[1] 69 74 58
-[1] 70 74 60
-[1] 71 74 53
-[1] 72 74 72
-[1] 73 74 47
-[1] 74 74 47
-[1] 75 74 67
-[1] 76 74 40
-[1] 77 74 43
-[1] 78 74 57
-[1] 79 74 42
-[1] 80 74 53
-[1] 81 74 48
-[1] 82 74 43
-[1] 83 74 62
-[1] 84 74 41
-[1] 85 74 67
-[1] 86 74 56
-[1] 87 74 35
-[1] 88 74 58
-[1] 89 74 65
-[1] 90 74 67
-[1] 91 74 76
-[1] 92 74 88
-[1] 93 74 57
-[1] 94 74 45
-[1] 95 74 36
-[1] 96 74 70
-[1] 97 74 43
-[1] 98 74 52
-[1] 99 74 46
-[1] 100  74  76
-[1] 101  74  82
-[1] 102  74  55
-[1] 103  74  43
-[1] 104  74  82
-[1] 105  74  41
-[1] 106  74  65
-[1] 107  74  40
-[1] 108  74  39
-[1] 109  74  42
-[1] 110  74  48
-[1] 111  74  57
-[1] 112  74  51
-[1] 113  74  38
-[1] 114  74  51
-[1] 115  74  73
-[1] 116  74  57
-[1] 117  74  54
-[1] 118  74  36
-[1] 119  74  49
-[1] 120  74  37
-[1] 121  74  60
-[1] 122  74  35
-[1] 123  74 102
-[1] 124  74  53
-[1] 125  74  50
-[1] 126  74  62
-[1] 127  74  53
-[1] 128  74  49
-[1] 129  74  48
-[1] 130  74  50
-[1] 131  74  42
-[1] 132  74  57
-[1] 133  74  70
-[1] 134  74  37
-[1] 135  74  75
-[1] 136  74  38
-[1] 137  74  45
-[1] 138  74  73
-[1] 139  74  75
-[1] 140  74  40
-[1] 141  74  45
-[1] 142  74  59
-[1] 143  74  41
-[1] 144  74  40
-[1] 145  74  80
-[1] 146  74  95
-[1] 147  74  43
-[1] 148  74  37
-[1] 149  74  50
-[1] 150  74  50
-[1] 151  74  55
-[1] 152  74  43
-[1] 153  74  58
-[1] 154  74  49
-[1] 155  74  34
-[1] 156  74  43
-[1] 157  74  38
-[1] 158  74  85
-[1] 159  74  54
-[1] 160  74  49
-[1] 161  74  87
-[1] 162  74  66
-[1] 163  74  61
-[1] 164  74  28
-[1] 165  74  49
-[1] 166  74  38
-[1] 167  74  56
-[1] 168  74  55
-[1] 169  74  49
-[1] 170  74  54
-[1] 171  74  57
-[1] 172  74  38
-[1] 173  74  69
-[1] 174  74  43
-[1] 175  74  42
-[1] 176  74  42
-[1] 177  74  38
-[1] 178  74  44
-[1] 179  74  63
-[1] 180  74  47
-[1] 181  74  34
-[1] 182  74  44
-[1] 183  74  67
-[1] 184  74  66
-[1] 185  74  40
-[1] 186  74  42
-[1] 187  74  58
-[1] 188  74  39
-[1] 189  74  58
-[1] 190  74  43
-[1] 191  74  47
-[1] 192  74  54
-[1] 193  74  41
-[1] 194  74  52
-[1] 195  74  61
-[1] 196  74  66
-[1] 197  74  39
-[1] 198  74  43
-[1] 199  74  38
-[1] 200  74  45
-[1]  1 75 39
-[1]  2 75 31
-[1]  3 75 32
-[1]  4 75 39
-[1]  5 75 44
-[1]  6 75 47
-[1]  7 75 40
-[1]  8 75 41
-[1]  9 75 43
-[1] 10 75 45
-[1] 11 75 40
-[1] 12 75 37
-[1] 13 75 45
-[1] 14 75 47
-[1] 15 75 41
-[1] 16 75 38
-[1] 17 75 37
-[1] 18 75 57
-[1] 19 75 33
-[1] 20 75 50
-[1] 21 75 54
-[1] 22 75 61
-[1] 23 75 43
-[1] 24 75 56
-[1] 25 75 57
-[1] 26 75 40
-[1] 27 75 53
-[1] 28 75 54
-[1] 29 75 39
-[1] 30 75 33
-[1] 31 75 52
-[1] 32 75 58
-[1] 33 75 67
-[1] 34 75 40
-[1] 35 75 63
-[1] 36 75 49
-[1] 37 75 40
-[1] 38 75 37
-[1] 39 75 38
-[1] 40 75 49
-[1] 41 75 42
-[1] 42 75 34
-[1] 43 75 57
-[1] 44 75 42
-[1] 45 75 78
-[1] 46 75 48
-[1] 47 75 45
-[1] 48 75 38
-[1] 49 75 49
-[1] 50 75 40
-[1] 51 75 36
-[1] 52 75 71
-[1] 53 75 75
-[1] 54 75 35
-[1] 55 75 76
-[1] 56 75 53
-[1] 57 75 66
-[1] 58 75 55
-[1] 59 75 77
-[1] 60 75 48
-[1] 61 75 47
-[1] 62 75 48
-[1] 63 75 32
-[1] 64 75 44
-[1] 65 75 58
-[1] 66 75 46
-[1] 67 75 35
-[1] 68 75 63
-[1] 69 75 41
-[1]  70  75 104
-[1] 71 75 78
-[1] 72 75 44
-[1] 73 75 40
-[1] 74 75 36
-[1] 75 75 58
-[1] 76 75 79
-[1] 77 75 61
-[1] 78 75 44
-[1] 79 75 53
-[1] 80 75 46
-[1] 81 75 46
-[1] 82 75 49
-[1] 83 75 49
-[1] 84 75 41
-[1] 85 75 60
-[1] 86 75 47
-[1] 87 75 68
-[1] 88 75 50
-[1] 89 75 56
-[1] 90 75 74
-[1] 91 75 48
-[1] 92 75 56
-[1] 93 75 46
-[1] 94 75 37
-[1] 95 75 47
-[1] 96 75 43
-[1] 97 75 81
-[1] 98 75 45
-[1] 99 75 48
-[1] 100  75  40
-[1] 101  75  58
-[1] 102  75  61
-[1] 103  75  49
-[1] 104  75  54
-[1] 105  75  68
-[1] 106  75  62
-[1] 107  75  64
-[1] 108  75  68
-[1] 109  75  45
-[1] 110  75  53
-[1] 111  75  99
-[1] 112  75  56
-[1] 113  75  44
-[1] 114  75  37
-[1] 115  75  59
-[1] 116  75  52
-[1] 117  75  52
-[1] 118  75  63
-[1] 119  75  50
-[1] 120  75  45
-[1] 121  75  37
-[1] 122  75  44
-[1] 123  75  56
-[1] 124  75  43
-[1] 125  75  45
-[1] 126  75  91
-[1] 127  75  41
-[1] 128  75  50
-[1] 129  75  37
-[1] 130  75  39
-[1] 131  75  93
-[1] 132  75  56
-[1] 133  75  42
-[1] 134  75  45
-[1] 135  75  46
-[1] 136  75  61
-[1] 137  75  33
-[1] 138  75  58
-[1] 139  75  50
-[1] 140  75  55
-[1] 141  75  45
-[1] 142  75  38
-[1] 143  75 103
-[1] 144  75  41
-[1] 145  75  61
-[1] 146  75  62
-[1] 147  75  54
-[1] 148  75  36
-[1] 149  75  55
-[1] 150  75  39
-[1] 151  75  40
-[1] 152  75  45
-[1] 153  75  58
-[1] 154  75  65
-[1] 155  75  38
-[1] 156  75  53
-[1] 157  75  44
-[1] 158  75  71
-[1] 159  75  34
-[1] 160  75  45
-[1] 161  75  37
-[1] 162  75  57
-[1] 163  75  44
-[1] 164  75  41
-[1] 165  75  74
-[1] 166  75  33
-[1] 167  75  66
-[1] 168  75  48
-[1] 169  75  58
-[1] 170  75  54
-[1] 171  75  56
-[1] 172  75  33
-[1] 173  75  46
-[1] 174  75  60
-[1] 175  75  44
-[1] 176  75  64
-[1] 177  75  49
-[1] 178  75  35
-[1] 179  75  49
-[1] 180  75  67
-[1] 181  75  29
-[1] 182  75  42
-[1] 183  75  93
-[1] 184  75  58
-[1] 185  75  60
-[1] 186  75  56
-[1] 187  75  48
-[1] 188  75  33
-[1] 189  75  58
-[1] 190  75  52
-[1] 191  75  62
-[1] 192  75  42
-[1] 193  75  59
-[1] 194  75  58
-[1] 195  75  47
-[1] 196  75  44
-[1] 197  75  67
-[1] 198  75  46
-[1] 199  75  92
-[1] 200  75  58
-[1]  1 76 25
-[1]  2 76 35
-[1]  3 76 34
-[1]  4 76 33
-[1]  5 76 34
-[1]  6 76 41
-[1]  7 76 37
-[1]  8 76 52
-[1]  9 76 42
-[1] 10 76 44
-[1] 11 76 70
-[1] 12 76 40
-[1] 13 76 43
-[1] 14 76 65
-[1] 15 76 41
-[1] 16 76 41
-[1] 17 76 64
-[1] 18 76 44
-[1] 19 76 45
-[1] 20 76 34
-[1] 21 76 32
-[1] 22 76 67
-[1] 23 76 64
-[1] 24 76 51
-[1] 25 76 36
-[1] 26 76 55
-[1] 27 76 32
-[1] 28 76 63
-[1] 29 76 68
-[1] 30 76 55
-[1] 31 76 38
-[1] 32 76 40
-[1] 33 76 60
-[1] 34 76 47
-[1] 35 76 49
-[1] 36 76 50
-[1] 37 76 54
-[1] 38 76 41
-[1] 39 76 40
-[1] 40 76 52
-[1] 41 76 59
-[1] 42 76 49
-[1] 43 76 57
-[1] 44 76 52
-[1] 45 76 70
-[1] 46 76 52
-[1] 47 76 50
-[1] 48 76 45
-[1] 49 76 56
-[1] 50 76 46
-[1] 51 76 45
-[1] 52 76 52
-[1] 53 76 47
-[1] 54 76 57
-[1] 55 76 88
-[1] 56 76 39
-[1] 57 76 64
-[1] 58 76 39
-[1] 59 76 54
-[1] 60 76 71
-[1] 61 76 40
-[1] 62 76 39
-[1] 63 76 60
-[1] 64 76 43
-[1] 65 76 63
-[1] 66 76 38
-[1] 67 76 35
-[1] 68 76 48
-[1] 69 76 41
-[1]  70  76 113
-[1] 71 76 54
-[1] 72 76 42
-[1] 73 76 44
-[1] 74 76 84
-[1] 75 76 64
-[1] 76 76 54
-[1] 77 76 49
-[1] 78 76 53
-[1] 79 76 43
-[1] 80 76 70
-[1] 81 76 50
-[1] 82 76 47
-[1] 83 76 41
-[1] 84 76 36
-[1] 85 76 73
-[1] 86 76 42
-[1] 87 76 77
-[1] 88 76 48
-[1] 89 76 49
-[1] 90 76 44
-[1] 91 76 41
-[1] 92 76 39
-[1] 93 76 40
-[1] 94 76 46
-[1] 95 76 64
-[1] 96 76 77
-[1] 97 76 61
-[1] 98 76 83
-[1] 99 76 47
-[1] 100  76  52
-[1] 101  76  80
-[1] 102  76  54
-[1] 103  76  42
-[1] 104  76  74
-[1] 105  76  77
-[1] 106  76  46
-[1] 107  76  33
-[1] 108  76  34
-[1] 109  76  50
-[1] 110  76  64
-[1] 111  76  32
-[1] 112  76  68
-[1] 113  76  66
-[1] 114  76  48
-[1] 115  76  68
-[1] 116  76  50
-[1] 117  76  43
-[1] 118  76  46
-[1] 119  76  48
-[1] 120  76  43
-[1] 121  76  58
-[1] 122  76  50
-[1] 123  76  53
-[1] 124  76  92
-[1] 125  76  74
-[1] 126  76  41
-[1] 127  76  71
-[1] 128  76  57
-[1] 129  76  42
-[1] 130  76  87
-[1] 131  76  52
-[1] 132  76  88
-[1] 133  76  60
-[1] 134  76  46
-[1] 135  76  34
-[1] 136  76  40
-[1] 137  76  48
-[1] 138  76  54
-[1] 139  76  56
-[1] 140  76  53
-[1] 141  76  50
-[1] 142  76  56
-[1] 143  76  46
-[1] 144  76  56
-[1] 145  76  38
-[1] 146  76  60
-[1] 147  76  42
-[1] 148  76  36
-[1] 149  76  48
-[1] 150  76  65
-[1] 151  76  51
-[1] 152  76  37
-[1] 153  76  50
-[1] 154  76 101
-[1] 155  76  47
-[1] 156  76  54
-[1] 157  76  32
-[1] 158  76  59
-[1] 159  76  77
-[1] 160  76  38
-[1] 161  76  67
-[1] 162  76  61
-[1] 163  76  54
-[1] 164  76  42
-[1] 165  76  45
-[1] 166  76  49
-[1] 167  76  50
-[1] 168  76  36
-[1] 169  76  43
-[1] 170  76  69
-[1] 171  76  46
-[1] 172  76  39
-[1] 173  76  57
-[1] 174  76  45
-[1] 175  76  49
-[1] 176  76  37
-[1] 177  76  64
-[1] 178  76  57
-[1] 179  76  35
-[1] 180  76  47
-[1] 181  76  84
-[1] 182  76  53
-[1] 183  76  53
-[1] 184  76  74
-[1] 185  76  66
-[1] 186  76  38
-[1] 187  76  67
-[1] 188  76  39
-[1] 189  76  28
-[1] 190  76  61
-[1] 191  76  35
-[1] 192  76  35
-[1] 193  76  48
-[1] 194  76  35
-[1] 195  76  43
-[1] 196  76  50
-[1] 197  76  58
-[1] 198  76  35
-[1] 199  76  44
-[1] 200  76  47
-[1]  1 77 43
-[1]  2 77 54
-[1]  3 77 34
-[1]  4 77 48
-[1]  5 77 33
-[1]  6 77 42
-[1]  7 77 30
-[1]  8 77 33
-[1]  9 77 42
-[1] 10 77 35
-[1] 11 77 31
-[1] 12 77 32
-[1] 13 77 61
-[1] 14 77 42
-[1] 15 77 43
-[1] 16 77 32
-[1] 17 77 41
-[1] 18 77 37
-[1] 19 77 48
-[1] 20 77 43
-[1] 21 77 35
-[1] 22 77 43
-[1] 23 77 28
-[1] 24 77 53
-[1] 25 77 34
-[1] 26 77 38
-[1] 27 77 39
-[1] 28 77 39
-[1] 29 77 46
-[1] 30 77 52
-[1] 31 77 43
-[1] 32 77 43
-[1] 33 77 36
-[1] 34 77 56
-[1] 35 77 63
-[1] 36 77 45
-[1] 37 77 70
-[1] 38 77 51
-[1] 39 77 55
-[1] 40 77 56
-[1] 41 77 42
-[1] 42 77 54
-[1] 43 77 43
-[1] 44 77 63
-[1] 45 77 57
-[1] 46 77 37
-[1] 47 77 80
-[1] 48 77 33
-[1] 49 77 40
-[1] 50 77 43
-[1] 51 77 57
-[1] 52 77 51
-[1] 53 77 69
-[1] 54 77 57
-[1] 55 77 42
-[1] 56 77 61
-[1] 57 77 77
-[1] 58 77 50
-[1] 59 77 61
-[1] 60 77 47
-[1] 61 77 49
-[1] 62 77 49
-[1] 63 77 45
-[1] 64 77 78
-[1]  65  77 155
-[1] 66 77 63
-[1] 67 77 36
-[1] 68 77 67
-[1] 69 77 42
-[1] 70 77 33
-[1] 71 77 43
-[1] 72 77 54
-[1] 73 77 58
-[1] 74 77 55
-[1] 75 77 55
-[1] 76 77 35
-[1] 77 77 54
-[1] 78 77 58
-[1] 79 77 37
-[1] 80 77 65
-[1] 81 77 39
-[1] 82 77 37
-[1] 83 77 65
-[1] 84 77 63
-[1] 85 77 63
-[1] 86 77 68
-[1] 87 77 61
-[1] 88 77 30
-[1] 89 77 51
-[1] 90 77 60
-[1] 91 77 93
-[1] 92 77 39
-[1] 93 77 49
-[1] 94 77 36
-[1] 95 77 38
-[1] 96 77 34
-[1] 97 77 67
-[1] 98 77 53
-[1] 99 77 44
-[1] 100  77  69
-[1] 101  77  70
-[1] 102  77  47
-[1] 103  77  57
-[1] 104  77  43
-[1] 105  77  35
-[1] 106  77  65
-[1] 107  77  42
-[1] 108  77  44
-[1] 109  77  72
-[1] 110  77  39
-[1] 111  77  81
-[1] 112  77  66
-[1] 113  77  64
-[1] 114  77  37
-[1] 115  77  32
-[1] 116  77  46
-[1] 117  77  56
-[1] 118  77  50
-[1] 119  77  41
-[1] 120  77  60
-[1] 121  77  49
-[1] 122  77  58
-[1] 123  77  47
-[1] 124  77  41
-[1] 125  77  48
-[1] 126  77  47
-[1] 127  77  35
-[1] 128  77  70
-[1] 129  77  48
-[1] 130  77  73
-[1] 131  77  46
-[1] 132  77  33
-[1] 133  77  55
-[1] 134  77  46
-[1] 135  77  47
-[1] 136  77  48
-[1] 137  77  52
-[1] 138  77  51
-[1] 139  77  67
-[1] 140  77  43
-[1] 141  77  30
-[1] 142  77  73
-[1] 143  77  33
-[1] 144  77  51
-[1] 145  77  49
-[1] 146  77  33
-[1] 147  77  37
-[1] 148  77  38
-[1] 149  77  55
-[1] 150  77  60
-[1] 151  77  47
-[1] 152  77  56
-[1] 153  77  45
-[1] 154  77  43
-[1] 155  77  48
-[1] 156  77  35
-[1] 157  77  56
-[1] 158  77  53
-[1] 159  77  36
-[1] 160  77  57
-[1] 161  77  55
-[1] 162  77  38
-[1] 163  77  73
-[1] 164  77  35
-[1] 165  77  61
-[1] 166  77  40
-[1] 167  77  76
-[1] 168  77  58
-[1] 169  77  89
-[1] 170  77  30
-[1] 171  77  49
-[1] 172  77  50
-[1] 173  77  49
-[1] 174  77  47
-[1] 175  77  66
-[1] 176  77  46
-[1] 177  77  36
-[1] 178  77  96
-[1] 179  77  57
-[1] 180  77  50
-[1] 181  77  49
-[1] 182  77  56
-[1] 183  77  47
-[1] 184  77  42
-[1] 185  77  37
-[1] 186  77  47
-[1] 187  77  56
-[1] 188  77  51
-[1] 189  77  74
-[1] 190  77  65
-[1] 191  77  56
-[1] 192  77  47
-[1] 193  77  42
-[1] 194  77  70
-[1] 195  77  43
-[1] 196  77  51
-[1] 197  77  67
-[1] 198  77  54
-[1] 199  77  45
-[1] 200  77  61
-[1]  1 78 39
-[1]  2 78 50
-[1]  3 78 43
-[1]  4 78 32
-[1]  5 78 44
-[1]  6 78 39
-[1]  7 78 41
-[1]  8 78 39
-[1]  9 78 33
-[1] 10 78 46
-[1] 11 78 47
-[1] 12 78 54
-[1] 13 78 39
-[1] 14 78 45
-[1] 15 78 50
-[1] 16 78 42
-[1] 17 78 33
-[1] 18 78 34
-[1] 19 78 45
-[1] 20 78 63
-[1] 21 78 56
-[1] 22 78 38
-[1] 23 78 37
-[1] 24 78 47
-[1] 25 78 65
-[1] 26 78 35
-[1] 27 78 54
-[1] 28 78 32
-[1] 29 78 44
-[1] 30 78 63
-[1] 31 78 48
-[1] 32 78 69
-[1] 33 78 43
-[1] 34 78 63
-[1] 35 78 48
-[1] 36 78 29
-[1] 37 78 30
-[1] 38 78 36
-[1] 39 78 41
-[1] 40 78 33
-[1] 41 78 52
-[1] 42 78 45
-[1] 43 78 39
-[1] 44 78 35
-[1] 45 78 68
-[1] 46 78 44
-[1] 47 78 51
-[1] 48 78 51
-[1] 49 78 41
-[1] 50 78 43
-[1] 51 78 88
-[1] 52 78 51
-[1] 53 78 66
-[1] 54 78 47
-[1] 55 78 75
-[1] 56 78 57
-[1] 57 78 64
-[1] 58 78 53
-[1] 59 78 63
-[1] 60 78 65
-[1] 61 78 63
-[1] 62 78 81
-[1] 63 78 79
-[1] 64 78 51
-[1] 65 78 72
-[1] 66 78 47
-[1] 67 78 65
-[1] 68 78 62
-[1] 69 78 50
-[1] 70 78 63
-[1] 71 78 38
-[1] 72 78 37
-[1] 73 78 52
-[1] 74 78 57
-[1] 75 78 40
-[1] 76 78 33
-[1] 77 78 53
-[1] 78 78 35
-[1] 79 78 49
-[1] 80 78 34
-[1] 81 78 64
-[1] 82 78 77
-[1] 83 78 62
-[1] 84 78 47
-[1] 85 78 60
-[1] 86 78 62
-[1] 87 78 38
-[1] 88 78 44
-[1] 89 78 54
-[1] 90 78 51
-[1] 91 78 58
-[1] 92 78 51
-[1] 93 78 54
-[1]  94  78 111
-[1] 95 78 44
-[1] 96 78 63
-[1] 97 78 73
-[1] 98 78 48
-[1] 99 78 43
-[1] 100  78  44
-[1] 101  78  63
-[1] 102  78  36
-[1] 103  78  45
-[1] 104  78  54
-[1] 105  78  55
-[1] 106  78  51
-[1] 107  78  62
-[1] 108  78  55
-[1] 109  78  50
-[1] 110  78  43
-[1] 111  78  41
-[1] 112  78  36
-[1] 113  78  61
-[1] 114  78  44
-[1] 115  78  58
-[1] 116  78  53
-[1] 117  78  54
-[1] 118  78  46
-[1] 119  78  54
-[1] 120  78  57
-[1] 121  78  54
-[1] 122  78  80
-[1] 123  78  71
-[1] 124  78  57
-[1] 125  78  44
-[1] 126  78  55
-[1] 127  78  65
-[1] 128  78  52
-[1] 129  78  63
-[1] 130  78  61
-[1] 131  78  52
-[1] 132  78  37
-[1] 133  78  45
-[1] 134  78  67
-[1] 135  78  38
-[1] 136  78  56
-[1] 137  78  62
-[1] 138  78  62
-[1] 139  78  67
-[1] 140  78  73
-[1] 141  78  56
-[1] 142  78  41
-[1] 143  78  34
-[1] 144  78  37
-[1] 145  78  69
-[1] 146  78  49
-[1] 147  78  60
-[1] 148  78  37
-[1] 149  78  82
-[1] 150  78  58
-[1] 151  78  47
-[1] 152  78  43
-[1] 153  78  66
-[1] 154  78  49
-[1] 155  78  62
-[1] 156  78  55
-[1] 157  78  28
-[1] 158  78  55
-[1] 159  78  43
-[1] 160  78  56
-[1] 161  78  59
-[1] 162  78  44
-[1] 163  78  51
-[1] 164  78  39
-[1] 165  78  38
-[1] 166  78  44
-[1] 167  78  57
-[1] 168  78  77
-[1] 169  78  59
-[1] 170  78  41
-[1] 171  78  63
-[1] 172  78  55
-[1] 173  78  36
-[1] 174  78  51
-[1] 175  78  44
-[1] 176  78  47
-[1] 177  78  48
-[1] 178  78  47
-[1] 179  78  44
-[1] 180  78  55
-[1] 181  78  36
-[1] 182  78  29
-[1] 183  78  37
-[1] 184  78  42
-[1] 185  78  40
-[1] 186  78  57
-[1] 187  78  70
-[1] 188  78  58
-[1] 189  78  38
-[1] 190  78  51
-[1] 191  78  55
-[1] 192  78  61
-[1] 193  78  46
-[1] 194  78  58
-[1] 195  78  37
-[1] 196  78  37
-[1] 197  78  46
-[1] 198  78  50
-[1] 199  78  53
-[1] 200  78  75
-[1]  1 79 60
-[1]  2 79 38
-[1]  3 79 34
-[1]  4 79 35
-[1]  5 79 28
-[1]  6 79 37
-[1]  7 79 35
-[1]  8 79 46
-[1]  9 79 54
-[1] 10 79 26
-[1] 11 79 46
-[1] 12 79 56
-[1] 13 79 41
-[1] 14 79 48
-[1] 15 79 41
-[1] 16 79 48
-[1] 17 79 34
-[1] 18 79 47
-[1] 19 79 57
-[1] 20 79 61
-[1] 21 79 42
-[1] 22 79 37
-[1] 23 79 32
-[1] 24 79 69
-[1] 25 79 35
-[1] 26 79 95
-[1] 27 79 53
-[1] 28 79 37
-[1] 29 79 55
-[1] 30 79 91
-[1] 31 79 68
-[1] 32 79 70
-[1] 33 79 75
-[1] 34 79 52
-[1] 35 79 53
-[1] 36 79 42
-[1] 37 79 48
-[1] 38 79 44
-[1] 39 79 55
-[1] 40 79 44
-[1] 41 79 56
-[1] 42 79 52
-[1] 43 79 80
-[1] 44 79 56
-[1] 45 79 54
-[1] 46 79 41
-[1] 47 79 59
-[1] 48 79 33
-[1] 49 79 44
-[1] 50 79 49
-[1] 51 79 51
-[1] 52 79 48
-[1] 53 79 42
-[1] 54 79 76
-[1] 55 79 44
-[1] 56 79 56
-[1] 57 79 51
-[1] 58 79 48
-[1] 59 79 85
-[1] 60 79 58
-[1]  61  79 185
-[1] 62 79 40
-[1] 63 79 40
-[1] 64 79 52
-[1] 65 79 48
-[1] 66 79 46
-[1] 67 79 44
-[1] 68 79 65
-[1] 69 79 47
-[1] 70 79 36
-[1] 71 79 82
-[1] 72 79 51
-[1] 73 79 51
-[1] 74 79 55
-[1] 75 79 96
-[1] 76 79 63
-[1] 77 79 54
-[1] 78 79 57
-[1] 79 79 45
-[1] 80 79 52
-[1] 81 79 63
-[1] 82 79 58
-[1] 83 79 47
-[1] 84 79 66
-[1] 85 79 63
-[1] 86 79 45
-[1] 87 79 72
-[1] 88 79 52
-[1] 89 79 47
-[1] 90 79 64
-[1] 91 79 43
-[1] 92 79 61
-[1] 93 79 47
-[1] 94 79 42
-[1] 95 79 48
-[1] 96 79 84
-[1] 97 79 43
-[1] 98 79 58
-[1] 99 79 67
-[1] 100  79  52
-[1] 101  79  43
-[1] 102  79  57
-[1] 103  79  53
-[1] 104  79  54
-[1] 105  79  37
-[1] 106  79  85
-[1] 107  79  52
-[1] 108  79  44
-[1] 109  79  43
-[1] 110  79  71
-[1] 111  79  47
-[1] 112  79  72
-[1] 113  79  49
-[1] 114  79  58
-[1] 115  79  50
-[1] 116  79  67
-[1] 117  79  48
-[1] 118  79  63
-[1] 119  79  41
-[1] 120  79  35
-[1] 121  79  57
-[1] 122  79  49
-[1] 123  79  37
-[1] 124  79  70
-[1] 125  79  55
-[1] 126  79  25
-[1] 127  79  64
-[1] 128  79  42
-[1] 129  79  95
-[1] 130  79  37
-[1] 131  79  69
-[1] 132  79  46
-[1] 133  79  94
-[1] 134  79  47
-[1] 135  79  72
-[1] 136  79  55
-[1] 137  79  64
-[1] 138  79  50
-[1] 139  79  52
-[1] 140  79  42
-[1] 141  79  67
-[1] 142  79  46
-[1] 143  79  55
-[1] 144  79  35
-[1] 145  79  61
-[1] 146  79  88
-[1] 147  79  61
-[1] 148  79  52
-[1] 149  79  45
-[1] 150  79  72
-[1] 151  79  62
-[1] 152  79  53
-[1] 153  79  64
-[1] 154  79  37
-[1] 155  79  47
-[1] 156  79  32
-[1] 157  79  49
-[1] 158  79  41
-[1] 159  79  50
-[1] 160  79  44
-[1] 161  79  57
-[1] 162  79  54
-[1] 163  79  47
-[1] 164  79  45
-[1] 165  79  42
-[1] 166  79  59
-[1] 167  79  40
-[1] 168  79  53
-[1] 169  79  37
-[1] 170  79  78
-[1] 171  79  46
-[1] 172  79  39
-[1] 173  79  73
-[1] 174  79  42
-[1] 175  79  51
-[1] 176  79  29
-[1] 177  79  50
-[1] 178  79  28
-[1] 179  79  39
-[1] 180  79  39
-[1] 181  79  50
-[1] 182  79  34
-[1] 183  79  42
-[1] 184  79  54
-[1] 185  79  50
-[1] 186  79  45
-[1] 187  79  40
-[1] 188  79  41
-[1] 189  79  56
-[1] 190  79  53
-[1] 191  79  48
-[1] 192  79  51
-[1] 193  79  50
-[1] 194  79  44
-[1] 195  79  48
-[1] 196  79  46
-[1] 197  79  53
-[1] 198  79  52
-[1] 199  79  49
-[1] 200  79  49
-[1]  1 80 35
-[1]  2 80 28
-[1]  3 80 32
-[1]  4 80 36
-[1]  5 80 50
-[1]  6 80 31
-[1]  7 80 42
-[1]  8 80 37
-[1]  9 80 33
-[1] 10 80 36
-[1] 11 80 40
-[1] 12 80 41
-[1] 13 80 37
-[1] 14 80 47
-[1] 15 80 38
-[1] 16 80 44
-[1] 17 80 25
-[1]  18  80 125
-[1] 19 80 58
-[1] 20 80 65
-[1] 21 80 49
-[1] 22 80 36
-[1] 23 80 40
-[1] 24 80 45
-[1]  25  80 121
-[1] 26 80 52
-[1] 27 80 43
-[1] 28 80 32
-[1] 29 80 35
-[1] 30 80 36
-[1] 31 80 63
-[1] 32 80 48
-[1] 33 80 45
-[1] 34 80 41
-[1] 35 80 47
-[1] 36 80 50
-[1] 37 80 29
-[1] 38 80 42
-[1] 39 80 35
-[1] 40 80 88
-[1] 41 80 33
-[1] 42 80 53
-[1] 43 80 39
-[1]  44  80 100
-[1] 45 80 45
-[1] 46 80 42
-[1] 47 80 57
-[1] 48 80 65
-[1] 49 80 40
-[1] 50 80 54
-[1] 51 80 72
-[1] 52 80 54
-[1] 53 80 51
-[1] 54 80 68
-[1] 55 80 91
-[1] 56 80 51
-[1] 57 80 38
-[1] 58 80 72
-[1] 59 80 60
-[1] 60 80 56
-[1] 61 80 44
-[1] 62 80 59
-[1] 63 80 47
-[1] 64 80 39
-[1] 65 80 62
-[1] 66 80 42
-[1] 67 80 62
-[1] 68 80 76
-[1] 69 80 34
-[1] 70 80 47
-[1] 71 80 53
-[1] 72 80 39
-[1] 73 80 36
-[1] 74 80 77
-[1] 75 80 53
-[1] 76 80 47
-[1] 77 80 78
-[1] 78 80 73
-[1] 79 80 75
-[1] 80 80 40
-[1] 81 80 69
-[1] 82 80 42
-[1] 83 80 61
-[1] 84 80 71
-[1] 85 80 44
-[1] 86 80 69
-[1] 87 80 44
-[1] 88 80 51
-[1] 89 80 75
-[1] 90 80 54
-[1] 91 80 48
-[1] 92 80 63
-[1] 93 80 57
-[1] 94 80 52
-[1] 95 80 47
-[1] 96 80 51
-[1] 97 80 90
-[1] 98 80 68
-[1] 99 80 55
-[1] 100  80  42
-[1] 101  80  53
-[1] 102  80  35
-[1] 103  80  47
-[1] 104  80  53
-[1] 105  80  75
-[1] 106  80  49
-[1] 107  80  46
-[1] 108  80  81
-[1] 109  80  63
-[1] 110  80  54
-[1] 111  80  55
-[1] 112  80  52
-[1] 113  80  60
-[1] 114  80  33
-[1] 115  80  89
-[1] 116  80  47
-[1] 117  80  74
-[1] 118  80  75
-[1] 119  80  44
-[1] 120  80  60
-[1] 121  80  50
-[1] 122  80  53
-[1] 123  80  46
-[1] 124  80  82
-[1] 125  80  27
-[1] 126  80  56
-[1] 127  80  69
-[1] 128  80  74
-[1] 129  80  39
-[1] 130  80  48
-[1] 131  80  57
-[1] 132  80  50
-[1] 133  80  59
-[1] 134  80  71
-[1] 135  80  48
-[1] 136  80  46
-[1] 137  80  38
-[1] 138  80  41
-[1] 139  80  49
-[1] 140  80  38
-[1] 141  80  65
-[1] 142  80  27
-[1] 143  80  73
-[1] 144  80  42
-[1] 145  80  45
-[1] 146  80  52
-[1] 147  80  45
-[1] 148  80  62
-[1] 149  80  78
-[1] 150  80  40
-[1] 151  80  53
-[1] 152  80  50
-[1] 153  80  49
-[1] 154  80  40
-[1] 155  80  32
-[1] 156  80  41
-[1] 157  80  48
-[1] 158  80  46
-[1] 159  80  56
-[1] 160  80  49
-[1] 161  80  71
-[1] 162  80  45
-[1] 163  80  69
-[1] 164  80  70
-[1] 165  80  53
-[1] 166  80  40
-[1] 167  80  41
-[1] 168  80  87
-[1] 169  80  53
-[1] 170  80  39
-[1] 171  80  39
-[1] 172  80  45
-[1] 173  80  50
-[1] 174  80  38
-[1] 175  80  91
-[1] 176  80  42
-[1] 177  80  57
-[1] 178  80  50
-[1] 179  80  34
-[1] 180  80  44
-[1] 181  80  43
-[1] 182  80  38
-[1] 183  80  50
-[1] 184  80  45
-[1] 185  80  57
-[1] 186  80  30
-[1] 187  80  56
-[1] 188  80  45
-[1] 189  80  50
-[1] 190  80  42
-[1] 191  80  78
-[1] 192  80  48
-[1] 193  80  41
-[1] 194  80  47
-[1] 195  80  44
-[1] 196  80  52
-[1] 197  80  40
-[1] 198  80  79
-[1] 199  80  50
-[1] 200  80  45
-[1]  1 81 43
-[1]  2 81 37
-[1]  3 81 36
-[1]  4 81 31
-[1]  5 81 36
-[1]  6 81 54
-[1]  7 81 37
-[1]  8 81 40
-[1]  9 81 40
-[1] 10 81 32
-[1] 11 81 38
-[1] 12 81 43
-[1] 13 81 37
-[1] 14 81 47
-[1] 15 81 37
-[1] 16 81 51
-[1] 17 81 42
-[1] 18 81 48
-[1] 19 81 46
-[1] 20 81 36
-[1] 21 81 59
-[1] 22 81 36
-[1] 23 81 44
-[1] 24 81 98
-[1] 25 81 54
-[1] 26 81 40
-[1] 27 81 34
-[1] 28 81 39
-[1] 29 81 42
-[1] 30 81 48
-[1] 31 81 45
-[1] 32 81 33
-[1] 33 81 62
-[1] 34 81 60
-[1] 35 81 40
-[1] 36 81 55
-[1] 37 81 53
-[1] 38 81 33
-[1] 39 81 50
-[1] 40 81 47
-[1] 41 81 44
-[1] 42 81 47
-[1] 43 81 40
-[1] 44 81 56
-[1] 45 81 57
-[1] 46 81 98
-[1] 47 81 42
-[1] 48 81 38
-[1] 49 81 43
-[1] 50 81 46
-[1] 51 81 55
-[1] 52 81 35
-[1] 53 81 36
-[1]  54  81 139
-[1] 55 81 54
-[1] 56 81 57
-[1] 57 81 90
-[1] 58 81 67
-[1] 59 81 68
-[1] 60 81 60
-[1] 61 81 39
-[1] 62 81 49
-[1] 63 81 36
-[1] 64 81 47
-[1] 65 81 57
-[1] 66 81 39
-[1] 67 81 50
-[1] 68 81 37
-[1] 69 81 52
-[1] 70 81 58
-[1] 71 81 65
-[1] 72 81 29
-[1] 73 81 54
-[1] 74 81 54
-[1] 75 81 44
-[1] 76 81 70
-[1] 77 81 50
-[1] 78 81 36
-[1] 79 81 51
-[1] 80 81 51
-[1] 81 81 70
-[1] 82 81 38
-[1] 83 81 70
-[1] 84 81 48
-[1] 85 81 39
-[1] 86 81 58
-[1] 87 81 51
-[1] 88 81 50
-[1] 89 81 51
-[1] 90 81 33
-[1] 91 81 50
-[1]  92  81 105
-[1] 93 81 56
-[1] 94 81 43
-[1] 95 81 52
-[1] 96 81 43
-[1] 97 81 40
-[1] 98 81 73
-[1] 99 81 45
-[1] 100  81  62
-[1] 101  81  57
-[1] 102  81  48
-[1] 103  81  67
-[1] 104  81  42
-[1] 105  81  46
-[1] 106  81  36
-[1] 107  81  46
-[1] 108  81  38
-[1] 109  81  47
-[1] 110  81  58
-[1] 111  81  41
-[1] 112  81  65
-[1] 113  81  35
-[1] 114  81  45
-[1] 115  81  45
-[1] 116  81  55
-[1] 117  81  48
-[1] 118  81  65
-[1] 119  81  34
-[1] 120  81  43
-[1] 121  81  40
-[1] 122  81  48
-[1] 123  81  46
-[1] 124  81  66
-[1] 125  81  42
-[1] 126  81  45
-[1] 127  81  37
-[1] 128  81  47
-[1] 129  81  41
-[1] 130  81  50
-[1] 131  81  38
-[1] 132  81  39
-[1] 133  81  64
-[1] 134  81  71
-[1] 135  81  38
-[1] 136  81  69
-[1] 137  81  41
-[1] 138  81  89
-[1] 139  81  42
-[1] 140  81  66
-[1] 141  81  35
-[1] 142  81  56
-[1] 143  81  41
-[1] 144  81  41
-[1] 145  81  47
-[1] 146  81  92
-[1] 147  81  47
-[1] 148  81  63
-[1] 149  81  54
-[1] 150  81  68
-[1] 151  81  42
-[1] 152  81  46
-[1] 153  81  64
-[1] 154  81 118
-[1] 155  81  32
-[1] 156  81  59
-[1] 157  81  43
-[1] 158  81  58
-[1] 159  81  44
-[1] 160  81  37
-[1] 161  81  48
-[1] 162  81  48
-[1] 163  81  59
-[1] 164  81  47
-[1] 165  81  36
-[1] 166  81  38
-[1] 167  81  47
-[1] 168  81  44
-[1] 169  81  38
-[1] 170  81  49
-[1] 171  81  54
-[1] 172  81  49
-[1] 173  81  35
-[1] 174  81  39
-[1] 175  81  49
-[1] 176  81  57
-[1] 177  81  43
-[1] 178  81  76
-[1] 179  81  31
-[1] 180  81  52
-[1] 181  81  37
-[1] 182  81  50
-[1] 183  81  49
-[1] 184  81  45
-[1] 185  81  53
-[1] 186  81  59
-[1] 187  81  63
-[1] 188  81  57
-[1] 189  81  41
-[1] 190  81  69
-[1] 191  81  38
-[1] 192  81  50
-[1] 193  81  45
-[1] 194  81  45
-[1] 195  81  43
-[1] 196  81  80
-[1] 197  81  73
-[1] 198  81  48
-[1] 199  81  54
-[1] 200  81  35
-[1]  1 82 43
-[1]  2 82 37
-[1]  3 82 46
-[1]  4 82 40
-[1]  5 82 49
-[1]  6 82 41
-[1]  7 82 32
-[1]  8 82 43
-[1]  9 82 41
-[1] 10 82 32
-[1] 11 82 37
-[1] 12 82 80
-[1] 13 82 35
-[1] 14 82 30
-[1] 15 82 55
-[1] 16 82 47
-[1] 17 82 36
-[1] 18 82 42
-[1] 19 82 34
-[1] 20 82 49
-[1] 21 82 47
-[1] 22 82 33
-[1] 23 82 37
-[1] 24 82 66
-[1] 25 82 39
-[1] 26 82 46
-[1] 27 82 50
-[1] 28 82 41
-[1] 29 82 45
-[1] 30 82 38
-[1] 31 82 41
-[1] 32 82 60
-[1] 33 82 51
-[1] 34 82 61
-[1] 35 82 40
-[1] 36 82 63
-[1] 37 82 36
-[1] 38 82 31
-[1] 39 82 43
-[1] 40 82 28
-[1] 41 82 59
-[1] 42 82 46
-[1] 43 82 45
-[1] 44 82 53
-[1] 45 82 48
-[1] 46 82 74
-[1] 47 82 51
-[1] 48 82 73
-[1] 49 82 42
-[1] 50 82 41
-[1] 51 82 67
-[1] 52 82 40
-[1] 53 82 71
-[1] 54 82 66
-[1] 55 82 41
-[1] 56 82 48
-[1] 57 82 35
-[1] 58 82 70
-[1] 59 82 45
-[1] 60 82 63
-[1] 61 82 48
-[1] 62 82 36
-[1] 63 82 91
-[1] 64 82 81
-[1] 65 82 68
-[1] 66 82 34
-[1] 67 82 48
-[1] 68 82 66
-[1] 69 82 38
-[1] 70 82 50
-[1] 71 82 48
-[1] 72 82 54
-[1] 73 82 37
-[1] 74 82 52
-[1] 75 82 44
-[1] 76 82 45
-[1] 77 82 40
-[1] 78 82 38
-[1] 79 82 50
-[1] 80 82 55
-[1] 81 82 48
-[1] 82 82 46
-[1] 83 82 49
-[1] 84 82 39
-[1] 85 82 38
-[1] 86 82 39
-[1] 87 82 46
-[1] 88 82 59
-[1] 89 82 49
-[1] 90 82 54
-[1] 91 82 55
-[1] 92 82 66
-[1] 93 82 39
-[1] 94 82 69
-[1] 95 82 57
-[1] 96 82 73
-[1] 97 82 42
-[1] 98 82 81
-[1] 99 82 77
-[1] 100  82  42
-[1] 101  82  70
-[1] 102  82  75
-[1] 103  82  48
-[1] 104  82  49
-[1] 105  82  52
-[1] 106  82  43
-[1] 107  82  52
-[1] 108  82  65
-[1] 109  82  33
-[1] 110  82  54
-[1] 111  82  31
-[1] 112  82  93
-[1] 113  82  33
-[1] 114  82  71
-[1] 115  82  70
-[1] 116  82  53
-[1] 117  82  41
-[1] 118  82  40
-[1] 119  82  59
-[1] 120  82  33
-[1] 121  82  56
-[1] 122  82  32
-[1] 123  82  57
-[1] 124  82  45
-[1] 125  82  84
-[1] 126  82  45
-[1] 127  82  39
-[1] 128  82  56
-[1] 129  82  68
-[1] 130  82  46
-[1] 131  82  56
-[1] 132  82  40
-[1] 133  82  41
-[1] 134  82  70
-[1] 135  82  47
-[1] 136  82  36
-[1] 137  82  93
-[1] 138  82  46
-[1] 139  82  31
-[1] 140  82  61
-[1] 141  82  42
-[1] 142  82  34
-[1] 143  82  53
-[1] 144  82  57
-[1] 145  82  48
-[1] 146  82  51
-[1] 147  82  37
-[1] 148  82  39
-[1] 149  82  35
-[1] 150  82  53
-[1] 151  82  61
-[1] 152  82  46
-[1] 153  82  43
-[1] 154  82  49
-[1] 155  82  28
-[1] 156  82  46
-[1] 157  82  59
-[1] 158  82  60
-[1] 159  82  54
-[1] 160  82  53
-[1] 161  82  62
-[1] 162  82  44
-[1] 163  82  40
-[1] 164  82  72
-[1] 165  82  50
-[1] 166  82  43
-[1] 167  82  55
-[1] 168  82  49
-[1] 169  82  49
-[1] 170  82  47
-[1] 171  82  46
-[1] 172  82  38
-[1] 173  82  59
-[1] 174  82  55
-[1] 175  82  34
-[1] 176  82  56
-[1] 177  82  98
-[1] 178  82  52
-[1] 179  82  39
-[1] 180  82  33
-[1] 181  82  54
-[1] 182  82  37
-[1] 183  82  64
-[1] 184  82  66
-[1] 185  82  55
-[1] 186  82  63
-[1] 187  82  44
-[1] 188  82  55
-[1] 189  82  52
-[1] 190  82  79
-[1] 191  82  51
-[1] 192  82  72
-[1] 193  82  45
-[1] 194  82  40
-[1] 195  82  65
-[1] 196  82  39
-[1] 197  82  72
-[1] 198  82  62
-[1] 199  82  53
-[1] 200  82  49
-[1]  1 83 32
-[1]  2 83 36
-[1]  3 83 32
-[1]  4 83 44
-[1]  5 83 30
-[1]  6 83 40
-[1]  7 83 33
-[1]  8 83 44
-[1]  9 83 49
-[1] 10 83 38
-[1] 11 83 49
-[1] 12 83 40
-[1] 13 83 39
-[1] 14 83 50
-[1] 15 83 28
-[1] 16 83 57
-[1] 17 83 75
-[1] 18 83 49
-[1] 19 83 32
-[1] 20 83 47
-[1] 21 83 39
-[1] 22 83 51
-[1] 23 83 34
-[1] 24 83 60
-[1] 25 83 32
-[1] 26 83 37
-[1] 27 83 38
-[1] 28 83 61
-[1] 29 83 33
-[1] 30 83 47
-[1] 31 83 40
-[1] 32 83 37
-[1] 33 83 60
-[1] 34 83 37
-[1] 35 83 42
-[1] 36 83 47
-[1] 37 83 44
-[1] 38 83 49
-[1] 39 83 55
-[1] 40 83 56
-[1] 41 83 37
-[1] 42 83 50
-[1] 43 83 49
-[1] 44 83 47
-[1] 45 83 44
-[1] 46 83 42
-[1] 47 83 60
-[1] 48 83 47
-[1] 49 83 43
-[1] 50 83 40
-[1] 51 83 50
-[1] 52 83 80
-[1] 53 83 40
-[1] 54 83 46
-[1] 55 83 69
-[1] 56 83 51
-[1] 57 83 60
-[1] 58 83 49
-[1] 59 83 73
-[1] 60 83 42
-[1] 61 83 55
-[1] 62 83 48
-[1] 63 83 69
-[1] 64 83 73
-[1] 65 83 63
-[1] 66 83 53
-[1] 67 83 44
-[1] 68 83 74
-[1] 69 83 40
-[1] 70 83 51
-[1] 71 83 62
-[1] 72 83 32
-[1] 73 83 53
-[1] 74 83 43
-[1] 75 83 44
-[1] 76 83 61
-[1] 77 83 57
-[1] 78 83 34
-[1] 79 83 81
-[1] 80 83 50
-[1] 81 83 55
-[1] 82 83 52
-[1] 83 83 58
-[1] 84 83 52
-[1] 85 83 72
-[1] 86 83 88
-[1] 87 83 61
-[1] 88 83 46
-[1] 89 83 53
-[1] 90 83 62
-[1] 91 83 58
-[1] 92 83 45
-[1] 93 83 74
-[1] 94 83 49
-[1] 95 83 42
-[1] 96 83 59
-[1] 97 83 58
-[1] 98 83 58
-[1] 99 83 63
-[1] 100  83  44
-[1] 101  83  47
-[1] 102  83  51
-[1] 103  83  48
-[1] 104  83  76
-[1] 105  83  67
-[1] 106  83  49
-[1] 107  83  50
-[1] 108  83  94
-[1] 109  83  44
-[1] 110  83  50
-[1] 111  83  41
-[1] 112  83  51
-[1] 113  83  39
-[1] 114  83  58
-[1] 115  83  45
-[1] 116  83  37
-[1] 117  83  45
-[1] 118  83  50
-[1] 119  83  95
-[1] 120  83  55
-[1] 121  83  50
-[1] 122  83  55
-[1] 123  83  43
-[1] 124  83  86
-[1] 125  83  33
-[1] 126  83  50
-[1] 127  83  30
-[1] 128  83  53
-[1] 129  83  42
-[1] 130  83  63
-[1] 131  83  38
-[1] 132  83  29
-[1] 133  83  39
-[1] 134  83  34
-[1] 135  83  72
-[1] 136  83  52
-[1] 137  83  54
-[1] 138  83  48
-[1] 139  83  49
-[1] 140  83  77
-[1] 141  83  35
-[1] 142  83  40
-[1] 143  83  42
-[1] 144  83  60
-[1] 145  83  43
-[1] 146  83  56
-[1] 147  83  40
-[1] 148  83  39
-[1] 149  83  71
-[1] 150  83  49
-[1] 151  83  49
-[1] 152  83  67
-[1] 153  83  60
-[1] 154  83  55
-[1] 155  83  40
-[1] 156  83  71
-[1] 157  83  46
-[1] 158  83  41
-[1] 159  83  45
-[1] 160  83  62
-[1] 161  83  53
-[1] 162  83  32
-[1] 163  83  81
-[1] 164  83  44
-[1] 165  83  53
-[1] 166  83  41
-[1] 167  83  48
-[1] 168  83  41
-[1] 169  83  52
-[1] 170  83  52
-[1] 171  83  33
-[1] 172  83  57
-[1] 173  83  32
-[1] 174  83  43
-[1] 175  83  32
-[1] 176  83  58
-[1] 177  83  80
-[1] 178  83  34
-[1] 179  83  57
-[1] 180  83  68
-[1] 181  83  51
-[1] 182  83  40
-[1] 183  83  47
-[1] 184  83  53
-[1] 185  83  42
-[1] 186  83  47
-[1] 187  83  48
-[1] 188  83  51
-[1] 189  83  40
-[1] 190  83  39
-[1] 191  83  42
-[1] 192  83  42
-[1] 193  83  63
-[1] 194  83  53
-[1] 195  83  55
-[1] 196  83  85
-[1] 197  83  50
-[1] 198  83  35
-[1] 199  83  52
-[1] 200  83  43
-[1]  1 84 33
-[1]  2 84 43
-[1]  3 84 34
-[1]  4 84 49
-[1]  5 84 34
-[1]  6 84 35
-[1]  7 84 48
-[1]  8 84 33
-[1]  9 84 26
-[1] 10 84 43
-[1] 11 84 32
-[1] 12 84 35
-[1] 13 84 59
-[1] 14 84 38
-[1] 15 84 44
-[1] 16 84 59
-[1] 17 84 33
-[1] 18 84 47
-[1] 19 84 25
-[1] 20 84 86
-[1] 21 84 56
-[1] 22 84 30
-[1] 23 84 36
-[1] 24 84 70
-[1] 25 84 21
-[1] 26 84 72
-[1] 27 84 53
-[1] 28 84 33
-[1] 29 84 68
-[1] 30 84 33
-[1] 31 84 58
-[1] 32 84 58
-[1] 33 84 43
-[1] 34 84 95
-[1] 35 84 28
-[1] 36 84 34
-[1] 37 84 62
-[1] 38 84 46
-[1] 39 84 36
-[1] 40 84 53
-[1] 41 84 58
-[1] 42 84 41
-[1] 43 84 51
-[1] 44 84 44
-[1] 45 84 39
-[1] 46 84 50
-[1] 47 84 61
-[1] 48 84 74
-[1] 49 84 45
-[1] 50 84 46
-[1] 51 84 53
-[1] 52 84 56
-[1] 53 84 45
-[1] 54 84 48
-[1] 55 84 45
-[1] 56 84 48
-[1] 57 84 40
-[1] 58 84 75
-[1] 59 84 76
-[1] 60 84 65
-[1] 61 84 75
-[1] 62 84 79
-[1] 63 84 52
-[1] 64 84 36
-[1] 65 84 41
-[1] 66 84 49
-[1] 67 84 47
-[1] 68 84 54
-[1] 69 84 53
-[1] 70 84 41
-[1] 71 84 40
-[1] 72 84 59
-[1] 73 84 54
-[1] 74 84 62
-[1] 75 84 31
-[1] 76 84 55
-[1] 77 84 72
-[1] 78 84 61
-[1] 79 84 42
-[1] 80 84 47
-[1] 81 84 78
-[1] 82 84 47
-[1] 83 84 80
-[1] 84 84 40
-[1] 85 84 50
-[1] 86 84 63
-[1] 87 84 62
-[1] 88 84 49
-[1] 89 84 52
-[1] 90 84 68
-[1] 91 84 65
-[1] 92 84 38
-[1] 93 84 54
-[1] 94 84 46
-[1] 95 84 49
-[1] 96 84 45
-[1] 97 84 67
-[1] 98 84 64
-[1] 99 84 42
-[1] 100  84  75
-[1] 101  84  54
-[1] 102  84  72
-[1] 103  84  47
-[1] 104  84  37
-[1] 105  84  42
-[1] 106  84  36
-[1] 107  84  42
-[1] 108  84  76
-[1] 109  84  52
-[1] 110  84  50
-[1] 111  84  66
-[1] 112  84  64
-[1] 113  84  47
-[1] 114  84  58
-[1] 115  84  59
-[1] 116  84  68
-[1] 117  84  59
-[1] 118  84  56
-[1] 119  84  63
-[1] 120  84  67
-[1] 121  84  51
-[1] 122  84  29
-[1] 123  84  75
-[1] 124  84  63
-[1] 125  84  50
-[1] 126  84  43
-[1] 127  84  50
-[1] 128  84  93
-[1] 129  84  40
-[1] 130  84  39
-[1] 131  84  43
-[1] 132  84  42
-[1] 133  84  45
-[1] 134  84  38
-[1] 135  84  57
-[1] 136  84  31
-[1] 137  84  56
-[1] 138  84  42
-[1] 139  84  65
-[1] 140  84  42
-[1] 141  84  42
-[1] 142  84  59
-[1] 143  84  52
-[1] 144  84  44
-[1] 145  84  50
-[1] 146  84  47
-[1] 147  84  49
-[1] 148  84  40
-[1] 149  84  55
-[1] 150  84  52
-[1] 151  84  61
-[1] 152  84  42
-[1] 153  84  44
-[1] 154  84  86
-[1] 155  84  40
-[1] 156  84  67
-[1] 157  84  50
-[1] 158  84  57
-[1] 159  84  39
-[1] 160  84  50
-[1] 161  84  35
-[1] 162  84  54
-[1] 163  84  43
-[1] 164  84  32
-[1] 165  84  59
-[1] 166  84  58
-[1] 167  84  58
-[1] 168  84  53
-[1] 169  84  49
-[1] 170  84  55
-[1] 171  84  50
-[1] 172  84  41
-[1] 173  84  94
-[1] 174  84  33
-[1] 175  84  52
-[1] 176  84  55
-[1] 177  84  54
-[1] 178  84  58
-[1] 179  84  60
-[1] 180  84  76
-[1] 181  84  45
-[1] 182  84  86
-[1] 183  84  47
-[1] 184  84  49
-[1] 185  84  52
-[1] 186  84  49
-[1] 187  84  40
-[1] 188  84  61
-[1] 189  84  52
-[1] 190  84  54
-[1] 191  84  49
-[1] 192  84  52
-[1] 193  84  41
-[1] 194  84  62
-[1] 195  84  50
-[1] 196  84  62
-[1] 197  84  36
-[1] 198  84  49
-[1] 199  84  39
-[1] 200  84  43
-[1]  1 85 33
-[1]  2 85 39
-[1]  3 85 36
-[1]  4 85 53
-[1]  5 85 74
-[1]  6 85 65
-[1]  7 85 52
-[1]  8 85 33
-[1]  9 85 34
-[1] 10 85 39
-[1] 11 85 39
-[1] 12 85 39
-[1] 13 85 34
-[1] 14 85 42
-[1] 15 85 37
-[1] 16 85 70
-[1] 17 85 41
-[1] 18 85 30
-[1] 19 85 35
-[1] 20 85 45
-[1] 21 85 42
-[1] 22 85 53
-[1] 23 85 30
-[1] 24 85 82
-[1] 25 85 49
-[1] 26 85 53
-[1] 27 85 52
-[1] 28 85 47
-[1] 29 85 47
-[1] 30 85 34
-[1] 31 85 35
-[1] 32 85 38
-[1] 33 85 51
-[1] 34 85 56
-[1] 35 85 55
-[1] 36 85 40
-[1]  37  85 101
-[1] 38 85 37
-[1] 39 85 51
-[1] 40 85 40
-[1] 41 85 65
-[1] 42 85 72
-[1] 43 85 88
-[1] 44 85 37
-[1] 45 85 55
-[1] 46 85 51
-[1] 47 85 51
-[1] 48 85 51
-[1] 49 85 61
-[1] 50 85 64
-[1]  51  85 131
-[1] 52 85 65
-[1] 53 85 76
-[1] 54 85 39
-[1] 55 85 80
-[1] 56 85 46
-[1] 57 85 60
-[1] 58 85 85
-[1] 59 85 73
-[1] 60 85 50
-[1] 61 85 45
-[1] 62 85 35
-[1]  63  85 118
-[1] 64 85 52
-[1] 65 85 50
-[1] 66 85 45
-[1] 67 85 51
-[1] 68 85 72
-[1] 69 85 73
-[1] 70 85 40
-[1] 71 85 59
-[1] 72 85 69
-[1] 73 85 66
-[1] 74 85 46
-[1] 75 85 40
-[1] 76 85 60
-[1] 77 85 69
-[1] 78 85 78
-[1] 79 85 66
-[1] 80 85 45
-[1] 81 85 37
-[1] 82 85 78
-[1] 83 85 88
-[1] 84 85 74
-[1] 85 85 38
-[1] 86 85 51
-[1] 87 85 50
-[1] 88 85 43
-[1] 89 85 58
-[1] 90 85 62
-[1] 91 85 41
-[1] 92 85 77
-[1] 93 85 57
-[1] 94 85 36
-[1] 95 85 69
-[1] 96 85 36
-[1] 97 85 45
-[1] 98 85 44
-[1] 99 85 49
-[1] 100  85  52
-[1] 101  85  45
-[1] 102  85  41
-[1] 103  85  43
-[1] 104  85  85
-[1] 105  85  67
-[1] 106  85  70
-[1] 107  85  48
-[1] 108  85  96
-[1] 109  85  66
-[1] 110  85  57
-[1] 111  85  77
-[1] 112  85  66
-[1] 113  85  34
-[1] 114  85  48
-[1] 115  85  70
-[1] 116  85  54
-[1] 117  85 121
-[1] 118  85  57
-[1] 119  85  48
-[1] 120  85  31
-[1] 121  85  59
-[1] 122  85  50
-[1] 123  85  44
-[1] 124  85  39
-[1] 125  85  39
-[1] 126  85  67
-[1] 127  85  45
-[1] 128  85  52
-[1] 129  85  26
-[1] 130  85  96
-[1] 131  85  53
-[1] 132  85  28
-[1] 133  85  50
-[1] 134  85  42
-[1] 135  85  50
-[1] 136  85  45
-[1] 137  85  35
-[1] 138  85  48
-[1] 139  85  48
-[1] 140  85  80
-[1] 141  85  56
-[1] 142  85  43
-[1] 143  85  90
-[1] 144  85  68
-[1] 145  85  45
-[1] 146  85  77
-[1] 147  85  55
-[1] 148  85  72
-[1] 149  85  42
-[1] 150  85  43
-[1] 151  85  60
-[1] 152  85  46
-[1] 153  85  38
-[1] 154  85  40
-[1] 155  85  52
-[1] 156  85  62
-[1] 157  85  39
-[1] 158  85  52
-[1] 159  85  53
-[1] 160  85  50
-[1] 161  85  48
-[1] 162  85  48
-[1] 163  85  56
-[1] 164  85  32
-[1] 165  85  59
-[1] 166  85  55
-[1] 167  85  43
-[1] 168  85  43
-[1] 169  85  59
-[1] 170  85  46
-[1] 171  85  70
-[1] 172  85  66
-[1] 173  85  43
-[1] 174  85  78
-[1] 175  85  52
-[1] 176  85  43
-[1] 177  85  45
-[1] 178  85  40
-[1] 179  85  43
-[1] 180  85  44
-[1] 181  85  36
-[1] 182  85  98
-[1] 183  85  51
-[1] 184  85  47
-[1] 185  85  48
-[1] 186  85  60
-[1] 187  85  62
-[1] 188  85  53
-[1] 189  85  43
-[1] 190  85  69
-[1] 191  85  75
-[1] 192  85  61
-[1] 193  85  72
-[1] 194  85  63
-[1] 195  85  45
-[1] 196  85  44
-[1] 197  85  97
-[1] 198  85  51
-[1] 199  85  68
-[1] 200  85  41
-[1]  1 86 51
-[1]  2 86 28
-[1]  3 86 41
-[1]  4 86 31
-[1]  5 86 54
-[1]  6 86 45
-[1]  7 86 36
-[1]  8 86 51
-[1]  9 86 35
-[1] 10 86 44
-[1] 11 86 52
-[1] 12 86 41
-[1] 13 86 78
-[1] 14 86 37
-[1] 15 86 37
-[1] 16 86 33
-[1] 17 86 66
-[1] 18 86 34
-[1] 19 86 49
-[1] 20 86 34
-[1] 21 86 33
-[1] 22 86 47
-[1] 23 86 57
-[1] 24 86 98
-[1] 25 86 44
-[1] 26 86 41
-[1] 27 86 75
-[1] 28 86 54
-[1] 29 86 33
-[1] 30 86 42
-[1] 31 86 40
-[1] 32 86 41
-[1] 33 86 75
-[1] 34 86 39
-[1] 35 86 36
-[1] 36 86 58
-[1] 37 86 49
-[1] 38 86 33
-[1] 39 86 46
-[1] 40 86 45
-[1] 41 86 38
-[1] 42 86 56
-[1] 43 86 48
-[1] 44 86 28
-[1] 45 86 39
-[1] 46 86 33
-[1] 47 86 89
-[1] 48 86 61
-[1] 49 86 57
-[1] 50 86 79
-[1] 51 86 46
-[1] 52 86 59
-[1] 53 86 33
-[1] 54 86 42
-[1] 55 86 46
-[1] 56 86 37
-[1] 57 86 63
-[1] 58 86 62
-[1] 59 86 36
-[1] 60 86 57
-[1] 61 86 51
-[1] 62 86 39
-[1] 63 86 46
-[1] 64 86 48
-[1] 65 86 49
-[1] 66 86 46
-[1] 67 86 60
-[1] 68 86 62
-[1] 69 86 48
-[1] 70 86 57
-[1] 71 86 50
-[1] 72 86 53
-[1] 73 86 48
-[1] 74 86 53
-[1] 75 86 40
-[1] 76 86 52
-[1] 77 86 68
-[1] 78 86 57
-[1] 79 86 52
-[1] 80 86 57
-[1] 81 86 54
-[1] 82 86 56
-[1] 83 86 45
-[1] 84 86 58
-[1] 85 86 73
-[1] 86 86 54
-[1] 87 86 62
-[1] 88 86 64
-[1] 89 86 54
-[1] 90 86 84
-[1] 91 86 57
-[1] 92 86 59
-[1] 93 86 38
-[1] 94 86 55
-[1] 95 86 45
-[1] 96 86 40
-[1] 97 86 36
-[1] 98 86 83
-[1] 99 86 43
-[1] 100  86  42
-[1] 101  86  39
-[1] 102  86  49
-[1] 103  86  64
-[1] 104  86  77
-[1] 105  86  64
-[1] 106  86  52
-[1] 107  86  43
-[1] 108  86  51
-[1] 109  86  39
-[1] 110  86  88
-[1] 111  86  91
-[1] 112  86  78
-[1] 113  86  40
-[1] 114  86  65
-[1] 115  86  48
-[1] 116  86  69
-[1] 117  86  47
-[1] 118  86  41
-[1] 119  86  52
-[1] 120  86  47
-[1] 121  86  58
-[1] 122  86  43
-[1] 123  86  55
-[1] 124  86  52
-[1] 125  86  68
-[1] 126  86  61
-[1] 127  86  41
-[1] 128  86  48
-[1] 129  86  65
-[1] 130  86  52
-[1] 131  86  57
-[1] 132  86  42
-[1] 133  86  40
-[1] 134  86  47
-[1] 135  86  45
-[1] 136  86  55
-[1] 137  86  32
-[1] 138  86  75
-[1] 139  86  58
-[1] 140  86  41
-[1] 141  86  61
-[1] 142  86  64
-[1] 143  86  33
-[1] 144  86  48
-[1] 145  86  39
-[1] 146  86  58
-[1] 147  86  31
-[1] 148  86  90
-[1] 149  86  51
-[1] 150  86  41
-[1] 151  86  67
-[1] 152  86  51
-[1] 153  86  49
-[1] 154  86  55
-[1] 155  86  38
-[1] 156  86  51
-[1] 157  86  42
-[1] 158  86  41
-[1] 159  86  69
-[1] 160  86  50
-[1] 161  86  62
-[1] 162  86  65
-[1] 163  86  48
-[1] 164  86  37
-[1] 165  86  45
-[1] 166  86  48
-[1] 167  86  57
-[1] 168  86  43
-[1] 169  86  47
-[1] 170  86  58
-[1] 171  86  42
-[1] 172  86  39
-[1] 173  86  36
-[1] 174  86  53
-[1] 175  86  38
-[1] 176  86  63
-[1] 177  86  54
-[1] 178  86  43
-[1] 179  86  41
-[1] 180  86  35
-[1] 181  86  86
-[1] 182  86  41
-[1] 183  86  58
-[1] 184  86  55
-[1] 185  86  58
-[1] 186  86  56
-[1] 187  86  43
-[1] 188  86  51
-[1] 189  86  50
-[1] 190  86  46
-[1] 191  86  41
-[1] 192  86  41
-[1] 193  86  44
-[1] 194  86  43
-[1] 195  86  47
-[1] 196  86  30
-[1] 197  86  51
-[1] 198  86  39
-[1] 199  86  52
-[1] 200  86  43
-[1]  1 87 43
-[1]  2 87 30
-[1]  3 87 29
-[1]  4 87 53
-[1]  5 87 32
-[1]  6 87 32
-[1]  7 87 45
-[1]  8 87 47
-[1]  9 87 47
-[1] 10 87 31
-[1] 11 87 56
-[1] 12 87 30
-[1] 13 87 65
-[1] 14 87 31
-[1] 15 87 56
-[1] 16 87 31
-[1] 17 87 48
-[1] 18 87 46
-[1] 19 87 49
-[1] 20 87 47
-[1] 21 87 47
-[1] 22 87 44
-[1] 23 87 36
-[1] 24 87 49
-[1] 25 87 37
-[1] 26 87 62
-[1] 27 87 38
-[1] 28 87 41
-[1] 29 87 47
-[1] 30 87 30
-[1] 31 87 53
-[1] 32 87 41
-[1] 33 87 34
-[1] 34 87 41
-[1] 35 87 49
-[1] 36 87 46
-[1] 37 87 44
-[1] 38 87 76
-[1] 39 87 72
-[1] 40 87 30
-[1]  41  87 111
-[1] 42 87 42
-[1] 43 87 45
-[1] 44 87 47
-[1] 45 87 48
-[1] 46 87 28
-[1] 47 87 95
-[1] 48 87 52
-[1] 49 87 51
-[1] 50 87 45
-[1] 51 87 80
-[1] 52 87 48
-[1] 53 87 35
-[1] 54 87 59
-[1] 55 87 71
-[1] 56 87 47
-[1] 57 87 60
-[1] 58 87 74
-[1] 59 87 56
-[1] 60 87 39
-[1] 61 87 54
-[1] 62 87 54
-[1] 63 87 62
-[1] 64 87 53
-[1] 65 87 47
-[1] 66 87 88
-[1] 67 87 38
-[1] 68 87 39
-[1] 69 87 70
-[1] 70 87 62
-[1] 71 87 42
-[1] 72 87 34
-[1] 73 87 42
-[1] 74 87 59
-[1] 75 87 39
-[1] 76 87 36
-[1] 77 87 47
-[1] 78 87 45
-[1] 79 87 45
-[1] 80 87 43
-[1] 81 87 46
-[1] 82 87 47
-[1] 83 87 51
-[1] 84 87 56
-[1] 85 87 80
-[1] 86 87 52
-[1] 87 87 52
-[1] 88 87 54
-[1] 89 87 68
-[1] 90 87 59
-[1] 91 87 88
-[1] 92 87 60
-[1] 93 87 50
-[1] 94 87 94
-[1] 95 87 61
-[1] 96 87 56
-[1] 97 87 40
-[1] 98 87 64
-[1] 99 87 41
-[1] 100  87  45
-[1] 101  87  48
-[1] 102  87  54
-[1] 103  87  63
-[1] 104  87  43
-[1] 105  87  57
-[1] 106  87  36
-[1] 107  87  66
-[1] 108  87  44
-[1] 109  87  52
-[1] 110  87  43
-[1] 111  87  47
-[1] 112  87  74
-[1] 113  87  59
-[1] 114  87  56
-[1] 115  87  40
-[1] 116  87  49
-[1] 117  87  53
-[1] 118  87  46
-[1] 119  87  42
-[1] 120  87  44
-[1] 121  87  80
-[1] 122  87  50
-[1] 123  87  65
-[1] 124  87  33
-[1] 125  87  48
-[1] 126  87  59
-[1] 127  87  40
-[1] 128  87  76
-[1] 129  87  45
-[1] 130  87  51
-[1] 131  87  37
-[1] 132  87  41
-[1] 133  87  50
-[1] 134  87  42
-[1] 135  87  53
-[1] 136  87  44
-[1] 137  87  45
-[1] 138  87  50
-[1] 139  87  36
-[1] 140  87  52
-[1] 141  87  28
-[1] 142  87  73
-[1] 143  87  88
-[1] 144  87  43
-[1] 145  87  29
-[1] 146  87  43
-[1] 147  87  43
-[1] 148  87  45
-[1] 149  87  25
-[1] 150  87  68
-[1] 151  87  41
-[1] 152  87  56
-[1] 153  87  55
-[1] 154  87  43
-[1] 155  87  56
-[1] 156  87  47
-[1] 157  87  47
-[1] 158  87  71
-[1] 159  87  33
-[1] 160  87  61
-[1] 161  87  39
-[1] 162  87  52
-[1] 163  87  60
-[1] 164  87  46
-[1] 165  87  52
-[1] 166  87  66
-[1] 167  87  71
-[1] 168  87  66
-[1] 169  87  61
-[1] 170  87  50
-[1] 171  87  47
-[1] 172  87  73
-[1] 173  87  72
-[1] 174  87  49
-[1] 175  87  52
-[1] 176  87  65
-[1] 177  87  53
-[1] 178  87  40
-[1] 179  87  47
-[1] 180  87  49
-[1] 181  87  33
-[1] 182  87  53
-[1] 183  87  34
-[1] 184  87  59
-[1] 185  87  49
-[1] 186  87  55
-[1] 187  87  54
-[1] 188  87  43
-[1] 189  87  38
-[1] 190  87  68
-[1] 191  87  39
-[1] 192  87  52
-[1] 193  87  55
-[1] 194  87  35
-[1] 195  87  48
-[1] 196  87  39
-[1] 197  87  35
-[1] 198  87  41
-[1] 199  87  95
-[1] 200  87  44
-[1]  1 88 32
-[1]  2 88 44
-[1]  3 88 29
-[1]  4 88 51
-[1]  5 88 39
-[1]  6 88 63
-[1]  7 88 34
-[1]  8 88 27
-[1]  9 88 46
-[1] 10 88 36
-[1] 11 88 41
-[1] 12 88 67
-[1] 13 88 45
-[1] 14 88 46
-[1] 15 88 34
-[1] 16 88 47
-[1] 17 88 55
-[1] 18 88 46
-[1] 19 88 67
-[1] 20 88 39
-[1] 21 88 52
-[1] 22 88 33
-[1] 23 88 42
-[1] 24 88 37
-[1] 25 88 72
-[1] 26 88 39
-[1] 27 88 47
-[1] 28 88 56
-[1] 29 88 48
-[1] 30 88 45
-[1] 31 88 49
-[1] 32 88 41
-[1] 33 88 50
-[1] 34 88 60
-[1] 35 88 71
-[1] 36 88 30
-[1] 37 88 39
-[1] 38 88 47
-[1] 39 88 40
-[1] 40 88 47
-[1] 41 88 49
-[1] 42 88 70
-[1] 43 88 66
-[1] 44 88 43
-[1] 45 88 50
-[1] 46 88 39
-[1] 47 88 65
-[1] 48 88 45
-[1] 49 88 59
-[1] 50 88 62
-[1] 51 88 57
-[1] 52 88 33
-[1] 53 88 50
-[1] 54 88 63
-[1] 55 88 71
-[1] 56 88 47
-[1] 57 88 52
-[1] 58 88 49
-[1] 59 88 52
-[1] 60 88 59
-[1] 61 88 55
-[1] 62 88 66
-[1] 63 88 34
-[1] 64 88 49
-[1] 65 88 49
-[1] 66 88 44
-[1] 67 88 45
-[1] 68 88 53
-[1] 69 88 66
-[1] 70 88 54
-[1] 71 88 42
-[1] 72 88 66
-[1] 73 88 47
-[1] 74 88 45
-[1] 75 88 37
-[1] 76 88 71
-[1] 77 88 42
-[1] 78 88 55
-[1] 79 88 86
-[1] 80 88 59
-[1] 81 88 40
-[1] 82 88 57
-[1] 83 88 30
-[1]  84  88 116
-[1] 85 88 44
-[1] 86 88 74
-[1] 87 88 51
-[1] 88 88 90
-[1] 89 88 70
-[1] 90 88 64
-[1] 91 88 52
-[1] 92 88 42
-[1] 93 88 67
-[1] 94 88 89
-[1] 95 88 41
-[1] 96 88 47
-[1] 97 88 41
-[1] 98 88 91
-[1] 99 88 64
-[1] 100  88  47
-[1] 101  88  55
-[1] 102  88  42
-[1] 103  88  40
-[1] 104  88  40
-[1] 105  88  56
-[1] 106  88  48
-[1] 107  88  47
-[1] 108  88  66
-[1] 109  88  43
-[1] 110  88  54
-[1] 111  88  71
-[1] 112  88  32
-[1] 113  88  67
-[1] 114  88  50
-[1] 115  88  77
-[1] 116  88  59
-[1] 117  88  64
-[1] 118  88  79
-[1] 119  88  61
-[1] 120  88  46
-[1] 121  88  46
-[1] 122  88  57
-[1] 123  88  44
-[1] 124  88  61
-[1] 125  88  33
-[1] 126  88  52
-[1] 127  88  60
-[1] 128  88  40
-[1] 129  88  64
-[1] 130  88  47
-[1] 131  88  56
-[1] 132  88  53
-[1] 133  88  70
-[1] 134  88  73
-[1] 135  88  47
-[1] 136  88  52
-[1] 137  88  50
-[1] 138  88  67
-[1] 139  88  42
-[1] 140  88  50
-[1] 141  88  45
-[1] 142  88  39
-[1] 143  88  43
-[1] 144  88  44
-[1] 145  88  43
-[1] 146  88  56
-[1] 147  88  35
-[1] 148  88  35
-[1] 149  88  95
-[1] 150  88  45
-[1] 151  88  42
-[1] 152  88  48
-[1] 153  88  86
-[1] 154  88  43
-[1] 155  88  39
-[1] 156  88  42
-[1] 157  88  39
-[1] 158  88  45
-[1] 159  88  40
-[1] 160  88  52
-[1] 161  88  53
-[1] 162  88  48
-[1] 163  88  40
-[1] 164  88  50
-[1] 165  88  37
-[1] 166  88  65
-[1] 167  88  37
-[1] 168  88  49
-[1] 169  88  58
-[1] 170  88  33
-[1] 171  88 104
-[1] 172  88  45
-[1] 173  88  37
-[1] 174  88  42
-[1] 175  88  56
-[1] 176  88  64
-[1] 177  88  81
-[1] 178  88  71
-[1] 179  88  41
-[1] 180  88  50
-[1] 181  88  97
-[1] 182  88  49
-[1] 183  88  46
-[1] 184  88  49
-[1] 185  88  40
-[1] 186  88  41
-[1] 187  88  40
-[1] 188  88  40
-[1] 189  88  83
-[1] 190  88  39
-[1] 191  88  53
-[1] 192  88  38
-[1] 193  88  76
-[1] 194  88  52
-[1] 195  88  60
-[1] 196  88  46
-[1] 197  88  35
-[1] 198  88  48
-[1] 199  88  47
-[1] 200  88  45
-[1]  1 89 37
-[1]  2 89 45
-[1]  3 89 46
-[1]  4 89 60
-[1]  5 89 31
-[1]  6 89 43
-[1]  7 89 38
-[1]  8 89 37
-[1]  9 89 42
-[1] 10 89 40
-[1] 11 89 44
-[1] 12 89 32
-[1] 13 89 35
-[1] 14 89 36
-[1] 15 89 45
-[1] 16 89 28
-[1] 17 89 50
-[1] 18 89 39
-[1] 19 89 63
-[1] 20 89 35
-[1] 21 89 54
-[1] 22 89 54
-[1] 23 89 37
-[1] 24 89 51
-[1] 25 89 35
-[1] 26 89 50
-[1] 27 89 43
-[1] 28 89 32
-[1] 29 89 51
-[1] 30 89 55
-[1] 31 89 44
-[1] 32 89 30
-[1] 33 89 44
-[1] 34 89 48
-[1] 35 89 31
-[1] 36 89 27
-[1] 37 89 47
-[1] 38 89 68
-[1] 39 89 35
-[1] 40 89 57
-[1] 41 89 60
-[1] 42 89 55
-[1] 43 89 47
-[1] 44 89 52
-[1] 45 89 56
-[1] 46 89 38
-[1] 47 89 56
-[1] 48 89 38
-[1] 49 89 51
-[1] 50 89 54
-[1] 51 89 60
-[1] 52 89 73
-[1] 53 89 51
-[1] 54 89 51
-[1]  55  89 101
-[1] 56 89 66
-[1] 57 89 34
-[1] 58 89 48
-[1] 59 89 51
-[1] 60 89 56
-[1] 61 89 50
-[1] 62 89 52
-[1] 63 89 47
-[1] 64 89 85
-[1] 65 89 43
-[1] 66 89 77
-[1] 67 89 71
-[1] 68 89 48
-[1] 69 89 37
-[1] 70 89 57
-[1] 71 89 36
-[1] 72 89 45
-[1] 73 89 37
-[1] 74 89 55
-[1] 75 89 46
-[1] 76 89 49
-[1] 77 89 47
-[1] 78 89 46
-[1] 79 89 47
-[1] 80 89 87
-[1] 81 89 45
-[1] 82 89 49
-[1] 83 89 74
-[1] 84 89 57
-[1] 85 89 51
-[1]  86  89 109
-[1] 87 89 70
-[1] 88 89 92
-[1] 89 89 53
-[1] 90 89 51
-[1] 91 89 56
-[1] 92 89 56
-[1] 93 89 44
-[1] 94 89 45
-[1] 95 89 63
-[1] 96 89 74
-[1] 97 89 70
-[1] 98 89 45
-[1] 99 89 39
-[1] 100  89  54
-[1] 101  89  39
-[1] 102  89  49
-[1] 103  89  74
-[1] 104  89  47
-[1] 105  89  86
-[1] 106  89  42
-[1] 107  89  49
-[1] 108  89  49
-[1] 109  89  38
-[1] 110  89  69
-[1] 111  89  46
-[1] 112  89  45
-[1] 113  89  64
-[1] 114  89  59
-[1] 115  89  90
-[1] 116  89  70
-[1] 117  89  54
-[1] 118  89  71
-[1] 119  89  46
-[1] 120  89  54
-[1] 121  89  47
-[1] 122  89  48
-[1] 123  89  58
-[1] 124  89  62
-[1] 125  89  38
-[1] 126  89  47
-[1] 127  89  65
-[1] 128  89  56
-[1] 129  89  31
-[1] 130  89  45
-[1] 131  89  43
-[1] 132  89  49
-[1] 133  89  57
-[1] 134  89  73
-[1] 135  89  51
-[1] 136  89  62
-[1] 137  89  42
-[1] 138  89  45
-[1] 139  89  34
-[1] 140  89  57
-[1] 141  89  54
-[1] 142  89  47
-[1] 143  89  50
-[1] 144  89  56
-[1] 145  89  45
-[1] 146  89  50
-[1] 147  89  79
-[1] 148  89  41
-[1] 149  89  81
-[1] 150  89  29
-[1] 151  89  74
-[1] 152  89  39
-[1] 153  89  33
-[1] 154  89  47
-[1] 155  89  41
-[1] 156  89  41
-[1] 157  89  58
-[1] 158  89  81
-[1] 159  89  65
-[1] 160  89  40
-[1] 161  89  51
-[1] 162  89  38
-[1] 163  89  43
-[1] 164  89  42
-[1] 165  89  47
-[1] 166  89  49
-[1] 167  89  48
-[1] 168  89  51
-[1] 169  89  54
-[1] 170  89  52
-[1] 171  89  55
-[1] 172  89  59
-[1] 173  89  68
-[1] 174  89  33
-[1] 175  89  60
-[1] 176  89  45
-[1] 177  89  41
-[1] 178  89  32
-[1] 179  89  43
-[1] 180  89  32
-[1] 181  89  53
-[1] 182  89  40
-[1] 183  89  51
-[1] 184  89  59
-[1] 185  89  36
-[1] 186  89  63
-[1] 187  89  73
-[1] 188  89  48
-[1] 189  89  32
-[1] 190  89  54
-[1] 191  89  53
-[1] 192  89  62
-[1] 193  89  84
-[1] 194  89  52
-[1] 195  89  50
-[1] 196  89  46
-[1] 197  89  37
-[1] 198  89  61
-[1] 199  89  48
-[1] 200  89  54
-[1]  1 90 33
-[1]  2 90 36
-[1]  3 90 29
-[1]  4 90 61
-[1]  5 90 52
-[1]  6 90 45
-[1]  7 90 33
-[1]  8 90 42
-[1]  9 90 47
-[1] 10 90 34
-[1] 11 90 49
-[1] 12 90 39
-[1] 13 90 40
-[1] 14 90 37
-[1] 15 90 54
-[1] 16 90 65
-[1] 17 90 31
-[1] 18 90 39
-[1] 19 90 71
-[1] 20 90 42
-[1] 21 90 51
-[1] 22 90 64
-[1] 23 90 78
-[1] 24 90 65
-[1] 25 90 41
-[1] 26 90 36
-[1] 27 90 46
-[1] 28 90 53
-[1] 29 90 50
-[1] 30 90 67
-[1] 31 90 40
-[1] 32 90 50
-[1] 33 90 51
-[1] 34 90 49
-[1] 35 90 33
-[1] 36 90 46
-[1] 37 90 45
-[1] 38 90 52
-[1] 39 90 41
-[1] 40 90 38
-[1] 41 90 45
-[1] 42 90 42
-[1] 43 90 45
-[1] 44 90 32
-[1] 45 90 49
-[1] 46 90 44
-[1] 47 90 65
-[1] 48 90 69
-[1] 49 90 60
-[1] 50 90 49
-[1] 51 90 63
-[1] 52 90 66
-[1] 53 90 39
-[1] 54 90 35
-[1] 55 90 46
-[1] 56 90 32
-[1] 57 90 95
-[1] 58 90 42
-[1]  59  90 117
-[1] 60 90 39
-[1] 61 90 40
-[1]  62  90 107
-[1] 63 90 54
-[1] 64 90 43
-[1] 65 90 48
-[1] 66 90 73
-[1] 67 90 50
-[1] 68 90 71
-[1] 69 90 43
-[1] 70 90 56
-[1] 71 90 47
-[1] 72 90 53
-[1] 73 90 42
-[1] 74 90 41
-[1] 75 90 82
-[1] 76 90 47
-[1] 77 90 64
-[1] 78 90 47
-[1] 79 90 40
-[1] 80 90 47
-[1] 81 90 57
-[1] 82 90 55
-[1] 83 90 74
-[1] 84 90 55
-[1] 85 90 48
-[1] 86 90 63
-[1] 87 90 44
-[1] 88 90 92
-[1] 89 90 55
-[1] 90 90 71
-[1] 91 90 38
-[1] 92 90 78
-[1] 93 90 70
-[1] 94 90 70
-[1] 95 90 81
-[1] 96 90 90
-[1] 97 90 47
-[1] 98 90 50
-[1] 99 90 45
-[1] 100  90  33
-[1] 101  90  64
-[1] 102  90  47
-[1] 103  90  37
-[1] 104  90  57
-[1] 105  90  64
-[1] 106  90  49
-[1] 107  90  45
-[1] 108  90  66
-[1] 109  90  64
-[1] 110  90  49
-[1] 111  90  68
-[1] 112  90  45
-[1] 113  90  61
-[1] 114  90  51
-[1] 115  90  48
-[1] 116  90  77
-[1] 117  90  43
-[1] 118  90  41
-[1] 119  90  45
-[1] 120  90  45
-[1] 121  90  51
-[1] 122  90  47
-[1] 123  90  51
-[1] 124  90  62
-[1] 125  90  34
-[1] 126  90  41
-[1] 127  90  73
-[1] 128  90  70
-[1] 129  90  48
-[1] 130  90  58
-[1] 131  90  54
-[1] 132  90  41
-[1] 133  90  42
-[1] 134  90  57
-[1] 135  90  42
-[1] 136  90  51
-[1] 137  90  61
-[1] 138  90  38
-[1] 139  90  41
-[1] 140  90  47
-[1] 141  90  40
-[1] 142  90  40
-[1] 143  90  59
-[1] 144  90  59
-[1] 145  90  45
-[1] 146  90  50
-[1] 147  90  35
-[1] 148  90  54
-[1] 149  90  40
-[1] 150  90  38
-[1] 151  90  58
-[1] 152  90  63
-[1] 153  90  58
-[1] 154  90  38
-[1] 155  90  55
-[1] 156  90 118
-[1] 157  90  37
-[1] 158  90  42
-[1] 159  90  45
-[1] 160  90  56
-[1] 161  90  65
-[1] 162  90  42
-[1] 163  90  43
-[1] 164  90  50
-[1] 165  90  64
-[1] 166  90  50
-[1] 167  90  97
-[1] 168  90  40
-[1] 169  90  48
-[1] 170  90  59
-[1] 171  90  47
-[1] 172  90  71
-[1] 173  90  40
-[1] 174  90  57
-[1] 175  90  72
-[1] 176  90  64
-[1] 177  90  38
-[1] 178  90  48
-[1] 179  90  51
-[1] 180  90  46
-[1] 181  90  47
-[1] 182  90  60
-[1] 183  90  55
-[1] 184  90  44
-[1] 185  90  50
-[1] 186  90  66
-[1] 187  90  46
-[1] 188  90  49
-[1] 189  90  71
-[1] 190  90  66
-[1] 191  90  48
-[1] 192  90  51
-[1] 193  90  38
-[1] 194  90  38
-[1] 195  90  42
-[1] 196  90  87
-[1] 197  90  42
-[1] 198  90  38
-[1] 199  90  51
-[1] 200  90  47
-[1]  1 91 51
-[1]  2 91 45
-[1]  3 91 60
-[1]  4 91 39
-[1]  5 91 60
-[1]  6 91 34
-[1]  7 91 43
-[1]  8 91 31
-[1]  9 91 27
-[1] 10 91 29
-[1] 11 91 38
-[1] 12 91 48
-[1] 13 91 34
-[1] 14 91 70
-[1] 15 91 48
-[1] 16 91 36
-[1] 17 91 42
-[1] 18 91 34
-[1] 19 91 42
-[1] 20 91 46
-[1] 21 91 53
-[1] 22 91 39
-[1] 23 91 30
-[1] 24 91 33
-[1] 25 91 48
-[1] 26 91 51
-[1] 27 91 32
-[1] 28 91 45
-[1] 29 91 67
-[1] 30 91 48
-[1] 31 91 41
-[1] 32 91 68
-[1] 33 91 39
-[1] 34 91 47
-[1] 35 91 38
-[1] 36 91 40
-[1] 37 91 28
-[1] 38 91 43
-[1] 39 91 34
-[1] 40 91 50
-[1] 41 91 44
-[1] 42 91 36
-[1] 43 91 52
-[1] 44 91 33
-[1] 45 91 36
-[1] 46 91 32
-[1] 47 91 41
-[1] 48 91 44
-[1] 49 91 49
-[1] 50 91 44
-[1] 51 91 97
-[1] 52 91 61
-[1] 53 91 35
-[1] 54 91 41
-[1] 55 91 75
-[1] 56 91 57
-[1] 57 91 44
-[1] 58 91 53
-[1] 59 91 57
-[1] 60 91 51
-[1] 61 91 72
-[1] 62 91 46
-[1] 63 91 45
-[1] 64 91 31
-[1] 65 91 64
-[1] 66 91 53
-[1] 67 91 70
-[1] 68 91 57
-[1] 69 91 37
-[1] 70 91 58
-[1] 71 91 56
-[1] 72 91 63
-[1] 73 91 51
-[1] 74 91 52
-[1] 75 91 34
-[1] 76 91 63
-[1] 77 91 75
-[1]  78  91 100
-[1] 79 91 50
-[1] 80 91 67
-[1] 81 91 39
-[1] 82 91 43
-[1] 83 91 47
-[1] 84 91 49
-[1] 85 91 60
-[1] 86 91 57
-[1] 87 91 70
-[1] 88 91 73
-[1] 89 91 54
-[1] 90 91 64
-[1] 91 91 55
-[1] 92 91 64
-[1] 93 91 85
-[1] 94 91 40
-[1] 95 91 43
-[1] 96 91 84
-[1] 97 91 41
-[1] 98 91 65
-[1] 99 91 64
-[1] 100  91  33
-[1] 101  91  47
-[1] 102  91  68
-[1] 103  91  38
-[1] 104  91  85
-[1] 105  91  45
-[1] 106  91  42
-[1] 107  91  79
-[1] 108  91  42
-[1] 109  91  99
-[1] 110  91  43
-[1] 111  91  64
-[1] 112  91  56
-[1] 113  91  67
-[1] 114  91  52
-[1] 115  91  48
-[1] 116  91  48
-[1] 117  91  56
-[1] 118  91  45
-[1] 119  91  45
-[1] 120  91  57
-[1] 121  91  73
-[1] 122  91  47
-[1] 123  91  46
-[1] 124  91  85
-[1] 125  91  36
-[1] 126  91  40
-[1] 127  91  76
-[1] 128  91  47
-[1] 129  91  52
-[1] 130  91  60
-[1] 131  91  38
-[1] 132  91  57
-[1] 133  91  71
-[1] 134  91  75
-[1] 135  91  48
-[1] 136  91  32
-[1] 137  91  99
-[1] 138  91  71
-[1] 139  91  48
-[1] 140  91  45
-[1] 141  91  35
-[1] 142  91  32
-[1] 143  91  81
-[1] 144  91  52
-[1] 145  91  51
-[1] 146  91  49
-[1] 147  91  74
-[1] 148  91  34
-[1] 149  91  51
-[1] 150  91  30
-[1] 151  91  51
-[1] 152  91  60
-[1] 153  91  55
-[1] 154  91  48
-[1] 155  91  40
-[1] 156  91  58
-[1] 157  91  70
-[1] 158  91  49
-[1] 159  91  45
-[1] 160  91  53
-[1] 161  91  82
-[1] 162  91  49
-[1] 163  91  49
-[1] 164  91  55
-[1] 165  91  95
-[1] 166  91  32
-[1] 167  91  51
-[1] 168  91  73
-[1] 169  91  45
-[1] 170  91  66
-[1] 171  91  46
-[1] 172  91  38
-[1] 173  91  63
-[1] 174  91  47
-[1] 175  91  67
-[1] 176  91  52
-[1] 177  91  63
-[1] 178  91  52
-[1] 179  91  37
-[1] 180  91  46
-[1] 181  91  45
-[1] 182  91  65
-[1] 183  91  62
-[1] 184  91  37
-[1] 185  91  36
-[1] 186  91  92
-[1] 187  91  45
-[1] 188  91  37
-[1] 189  91  62
-[1] 190  91  34
-[1] 191  91  51
-[1] 192  91  54
-[1] 193  91  60
-[1] 194  91  53
-[1] 195  91  59
-[1] 196  91  47
-[1] 197  91  45
-[1] 198  91  35
-[1] 199  91  48
-[1] 200  91  47
-[1]  1 92 32
-[1]  2 92 42
-[1]  3 92 41
-[1]  4 92 48
-[1]  5 92 53
-[1]  6 92 38
-[1]  7 92 31
-[1]  8 92 52
-[1]  9 92 40
-[1] 10 92 46
-[1] 11 92 38
-[1] 12 92 36
-[1] 13 92 35
-[1] 14 92 32
-[1] 15 92 41
-[1] 16 92 29
-[1] 17 92 32
-[1] 18 92 44
-[1] 19 92 43
-[1] 20 92 45
-[1] 21 92 50
-[1] 22 92 45
-[1] 23 92 49
-[1] 24 92 56
-[1] 25 92 36
-[1] 26 92 62
-[1] 27 92 43
-[1] 28 92 41
-[1] 29 92 48
-[1] 30 92 43
-[1] 31 92 36
-[1] 32 92 46
-[1] 33 92 43
-[1] 34 92 47
-[1] 35 92 47
-[1] 36 92 36
-[1] 37 92 38
-[1] 38 92 47
-[1] 39 92 46
-[1] 40 92 82
-[1] 41 92 43
-[1] 42 92 72
-[1] 43 92 37
-[1] 44 92 81
-[1] 45 92 67
-[1] 46 92 47
-[1] 47 92 45
-[1] 48 92 78
-[1] 49 92 56
-[1] 50 92 51
-[1] 51 92 57
-[1] 52 92 49
-[1] 53 92 58
-[1] 54 92 40
-[1] 55 92 47
-[1] 56 92 37
-[1] 57 92 42
-[1] 58 92 43
-[1] 59 92 50
-[1] 60 92 63
-[1] 61 92 50
-[1] 62 92 72
-[1] 63 92 65
-[1]  64  92 107
-[1] 65 92 77
-[1] 66 92 63
-[1] 67 92 48
-[1] 68 92 68
-[1] 69 92 79
-[1] 70 92 53
-[1]  71  92 122
-[1] 72 92 41
-[1] 73 92 48
-[1] 74 92 49
-[1] 75 92 42
-[1] 76 92 94
-[1] 77 92 53
-[1] 78 92 56
-[1] 79 92 45
-[1] 80 92 81
-[1] 81 92 47
-[1] 82 92 58
-[1] 83 92 29
-[1] 84 92 51
-[1] 85 92 59
-[1] 86 92 37
-[1] 87 92 39
-[1] 88 92 60
-[1] 89 92 51
-[1] 90 92 59
-[1] 91 92 63
-[1] 92 92 54
-[1] 93 92 46
-[1] 94 92 46
-[1] 95 92 56
-[1] 96 92 70
-[1] 97 92 80
-[1] 98 92 56
-[1] 99 92 75
-[1] 100  92  69
-[1] 101  92  43
-[1] 102  92  54
-[1] 103  92  54
-[1] 104  92  49
-[1] 105  92  36
-[1] 106  92  58
-[1] 107  92  50
-[1] 108  92  46
-[1] 109  92 101
-[1] 110  92  47
-[1] 111  92  89
-[1] 112  92  54
-[1] 113  92  77
-[1] 114  92  87
-[1] 115  92  49
-[1] 116  92  60
-[1] 117  92  47
-[1] 118  92  51
-[1] 119  92  45
-[1] 120  92  58
-[1] 121  92  47
-[1] 122  92  52
-[1] 123  92  42
-[1] 124  92  47
-[1] 125  92  46
-[1] 126  92  42
-[1] 127  92  80
-[1] 128  92  49
-[1] 129  92  36
-[1] 130  92  43
-[1] 131  92  28
-[1] 132  92  59
-[1] 133  92  66
-[1] 134  92  63
-[1] 135  92  56
-[1] 136  92  57
-[1] 137  92  62
-[1] 138  92  46
-[1] 139  92  66
-[1] 140  92  58
-[1] 141  92  96
-[1] 142  92  83
-[1] 143  92  42
-[1] 144  92  92
-[1] 145  92  46
-[1] 146  92  48
-[1] 147  92  67
-[1] 148  92  41
-[1] 149  92  66
-[1] 150  92  31
-[1] 151  92  65
-[1] 152  92  68
-[1] 153  92  42
-[1] 154  92  59
-[1] 155  92  24
-[1] 156  92  73
-[1] 157  92  56
-[1] 158  92  49
-[1] 159  92  59
-[1] 160  92  49
-[1] 161  92  51
-[1] 162  92  49
-[1] 163  92  48
-[1] 164  92  55
-[1] 165  92  46
-[1] 166  92  46
-[1] 167  92  87
-[1] 168  92  56
-[1] 169  92  56
-[1] 170  92  79
-[1] 171  92  52
-[1] 172  92  34
-[1] 173  92  76
-[1] 174  92  45
-[1] 175  92  54
-[1] 176  92  46
-[1] 177  92  39
-[1] 178  92  41
-[1] 179  92  53
-[1] 180  92  45
-[1] 181  92  55
-[1] 182  92  59
-[1] 183  92  38
-[1] 184  92  43
-[1] 185  92  56
-[1] 186  92  59
-[1] 187  92  47
-[1] 188  92  58
-[1] 189  92  68
-[1] 190  92  57
-[1] 191  92  42
-[1] 192  92  53
-[1] 193  92  53
-[1] 194  92  38
-[1] 195  92  53
-[1] 196  92  45
-[1] 197  92  68
-[1] 198  92  54
-[1] 199  92  48
-[1] 200  92  46
-[1]  1 93 55
-[1]  2 93 41
-[1]  3 93 37
-[1]  4 93 38
-[1]  5 93 42
-[1]  6 93 35
-[1]  7 93 48
-[1]  8 93 40
-[1]  9 93 52
-[1] 10 93 36
-[1] 11 93 44
-[1] 12 93 51
-[1] 13 93 40
-[1] 14 93 45
-[1] 15 93 35
-[1] 16 93 35
-[1] 17 93 52
-[1] 18 93 41
-[1] 19 93 52
-[1] 20 93 33
-[1] 21 93 70
-[1] 22 93 48
-[1] 23 93 33
-[1] 24 93 56
-[1] 25 93 46
-[1] 26 93 29
-[1] 27 93 72
-[1] 28 93 52
-[1] 29 93 44
-[1] 30 93 37
-[1] 31 93 71
-[1] 32 93 35
-[1] 33 93 48
-[1] 34 93 39
-[1] 35 93 48
-[1] 36 93 35
-[1] 37 93 39
-[1] 38 93 49
-[1] 39 93 56
-[1] 40 93 40
-[1] 41 93 59
-[1] 42 93 46
-[1] 43 93 42
-[1] 44 93 65
-[1] 45 93 36
-[1] 46 93 46
-[1] 47 93 66
-[1] 48 93 73
-[1] 49 93 49
-[1] 50 93 47
-[1] 51 93 41
-[1] 52 93 85
-[1] 53 93 36
-[1] 54 93 39
-[1] 55 93 89
-[1] 56 93 49
-[1] 57 93 84
-[1] 58 93 40
-[1] 59 93 45
-[1] 60 93 51
-[1] 61 93 46
-[1] 62 93 53
-[1] 63 93 52
-[1] 64 93 48
-[1] 65 93 41
-[1] 66 93 36
-[1]  67  93 103
-[1] 68 93 45
-[1] 69 93 41
-[1] 70 93 48
-[1] 71 93 61
-[1] 72 93 58
-[1] 73 93 58
-[1] 74 93 34
-[1] 75 93 34
-[1] 76 93 60
-[1] 77 93 65
-[1] 78 93 39
-[1] 79 93 40
-[1] 80 93 59
-[1] 81 93 70
-[1] 82 93 59
-[1] 83 93 46
-[1] 84 93 53
-[1] 85 93 53
-[1] 86 93 44
-[1] 87 93 91
-[1] 88 93 65
-[1]  89  93 113
-[1] 90 93 94
-[1] 91 93 60
-[1] 92 93 38
-[1] 93 93 81
-[1] 94 93 92
-[1] 95 93 54
-[1] 96 93 45
-[1] 97 93 55
-[1] 98 93 50
-[1] 99 93 39
-[1] 100  93  35
-[1] 101  93  63
-[1] 102  93  41
-[1] 103  93  56
-[1] 104  93  48
-[1] 105  93  49
-[1] 106  93  34
-[1] 107  93  53
-[1] 108  93  51
-[1] 109  93  66
-[1] 110  93  35
-[1] 111  93  66
-[1] 112  93  49
-[1] 113  93  40
-[1] 114  93  49
-[1] 115  93  72
-[1] 116  93  46
-[1] 117  93  36
-[1] 118  93  24
-[1] 119  93  66
-[1] 120  93  57
-[1] 121  93  48
-[1] 122  93  53
-[1] 123  93  33
-[1] 124  93  39
-[1] 125  93  33
-[1] 126  93  50
-[1] 127  93  48
-[1] 128  93  59
-[1] 129  93  51
-[1] 130  93  60
-[1] 131  93  61
-[1] 132  93  36
-[1] 133  93  51
-[1] 134  93  33
-[1] 135  93  56
-[1] 136  93  62
-[1] 137  93  44
-[1] 138  93  59
-[1] 139  93  59
-[1] 140  93  47
-[1] 141  93  80
-[1] 142  93  43
-[1] 143  93  48
-[1] 144  93  45
-[1] 145  93  44
-[1] 146  93  43
-[1] 147  93  39
-[1] 148  93  46
-[1] 149  93  51
-[1] 150  93  49
-[1] 151  93  58
-[1] 152  93  46
-[1] 153  93  50
-[1] 154  93  38
-[1] 155  93  98
-[1] 156  93  81
-[1] 157  93  42
-[1] 158  93  50
-[1] 159  93  99
-[1] 160  93  51
-[1] 161  93  50
-[1] 162  93  64
-[1] 163  93  79
-[1] 164  93  42
-[1] 165  93  45
-[1] 166  93  40
-[1] 167  93  62
-[1] 168  93  37
-[1] 169  93  37
-[1] 170  93  72
-[1] 171  93  48
-[1] 172  93  42
-[1] 173  93  61
-[1] 174  93  53
-[1] 175  93  34
-[1] 176  93  33
-[1] 177  93  57
-[1] 178  93  52
-[1] 179  93  95
-[1] 180  93  36
-[1] 181  93  62
-[1] 182  93  59
-[1] 183  93  55
-[1] 184  93  42
-[1] 185  93  49
-[1] 186  93  46
-[1] 187  93  57
-[1] 188  93  75
-[1] 189  93  48
-[1] 190  93  61
-[1] 191  93  36
-[1] 192  93  57
-[1] 193  93  56
-[1] 194  93  45
-[1] 195  93  44
-[1] 196  93  42
-[1] 197  93  52
-[1] 198  93  55
-[1] 199  93  54
-[1] 200  93  41
-[1]  1 94 71
-[1]  2 94 37
-[1]  3 94 41
-[1]  4 94 48
-[1]  5 94 32
-[1]  6 94 40
-[1]  7 94 49
-[1]  8 94 52
-[1]  9 94 39
-[1] 10 94 41
-[1] 11 94 43
-[1] 12 94 57
-[1] 13 94 42
-[1] 14 94 28
-[1] 15 94 39
-[1] 16 94 28
-[1] 17 94 37
-[1] 18 94 40
-[1] 19 94 40
-[1] 20 94 48
-[1] 21 94 40
-[1] 22 94 43
-[1] 23 94 48
-[1] 24 94 79
-[1] 25 94 52
-[1] 26 94 43
-[1] 27 94 54
-[1] 28 94 39
-[1] 29 94 37
-[1] 30 94 62
-[1] 31 94 48
-[1] 32 94 65
-[1] 33 94 38
-[1] 34 94 41
-[1] 35 94 65
-[1] 36 94 40
-[1] 37 94 39
-[1] 38 94 61
-[1] 39 94 40
-[1] 40 94 35
-[1] 41 94 98
-[1] 42 94 51
-[1] 43 94 40
-[1] 44 94 30
-[1] 45 94 50
-[1] 46 94 36
-[1] 47 94 45
-[1] 48 94 55
-[1] 49 94 51
-[1] 50 94 61
-[1] 51 94 58
-[1] 52 94 55
-[1] 53 94 43
-[1] 54 94 46
-[1] 55 94 53
-[1] 56 94 57
-[1] 57 94 74
-[1] 58 94 53
-[1] 59 94 39
-[1] 60 94 50
-[1] 61 94 64
-[1] 62 94 40
-[1] 63 94 51
-[1] 64 94 45
-[1] 65 94 62
-[1] 66 94 62
-[1] 67 94 61
-[1] 68 94 56
-[1] 69 94 54
-[1] 70 94 74
-[1] 71 94 84
-[1] 72 94 63
-[1] 73 94 51
-[1] 74 94 53
-[1] 75 94 34
-[1] 76 94 41
-[1]  77  94 116
-[1] 78 94 69
-[1] 79 94 42
-[1] 80 94 72
-[1] 81 94 40
-[1] 82 94 56
-[1] 83 94 41
-[1] 84 94 66
-[1] 85 94 57
-[1] 86 94 45
-[1] 87 94 87
-[1] 88 94 72
-[1] 89 94 62
-[1] 90 94 41
-[1] 91 94 76
-[1] 92 94 65
-[1] 93 94 49
-[1] 94 94 57
-[1] 95 94 48
-[1] 96 94 82
-[1] 97 94 49
-[1] 98 94 44
-[1] 99 94 72
-[1] 100  94  63
-[1] 101  94  43
-[1] 102  94  62
-[1] 103  94  57
-[1] 104  94  46
-[1] 105  94  66
-[1] 106  94  50
-[1] 107  94  42
-[1] 108  94  56
-[1] 109  94  35
-[1] 110  94  55
-[1] 111  94  55
-[1] 112  94  64
-[1] 113  94  78
-[1] 114  94  63
-[1] 115  94  57
-[1] 116  94  60
-[1] 117  94  56
-[1] 118  94  73
-[1] 119  94  45
-[1] 120  94  38
-[1] 121  94  50
-[1] 122  94  51
-[1] 123  94  51
-[1] 124  94  55
-[1] 125  94  47
-[1] 126  94  61
-[1] 127  94  59
-[1] 128  94  47
-[1] 129  94  38
-[1] 130  94  33
-[1] 131  94  45
-[1] 132  94  47
-[1] 133  94  50
-[1] 134  94  60
-[1] 135  94  45
-[1] 136  94  58
-[1] 137  94  61
-[1] 138  94  38
-[1] 139  94  57
-[1] 140  94  50
-[1] 141  94 108
-[1] 142  94  65
-[1] 143  94  63
-[1] 144  94  49
-[1] 145  94  52
-[1] 146  94  50
-[1] 147  94  50
-[1] 148  94  58
-[1] 149  94  48
-[1] 150  94  54
-[1] 151  94  63
-[1] 152  94  65
-[1] 153  94  44
-[1] 154  94  53
-[1] 155  94  31
-[1] 156  94  40
-[1] 157  94  43
-[1] 158  94  36
-[1] 159  94  51
-[1] 160  94  40
-[1] 161  94  39
-[1] 162  94  73
-[1] 163  94  56
-[1] 164  94  45
-[1] 165  94  37
-[1] 166  94  42
-[1] 167  94  34
-[1] 168  94  28
-[1] 169  94  50
-[1] 170  94  73
-[1] 171  94  65
-[1] 172  94  38
-[1] 173  94  62
-[1] 174  94  56
-[1] 175  94  81
-[1] 176  94  76
-[1] 177  94  45
-[1] 178  94  53
-[1] 179  94  58
-[1] 180  94  66
-[1] 181  94  84
-[1] 182  94  63
-[1] 183  94  57
-[1] 184  94  46
-[1] 185  94  51
-[1] 186  94  41
-[1] 187  94  76
-[1] 188  94  55
-[1] 189  94  48
-[1] 190  94  49
-[1] 191  94  75
-[1] 192  94  62
-[1] 193  94  63
-[1] 194  94  42
-[1] 195  94  77
-[1] 196  94  32
-[1] 197  94  47
-[1] 198  94  33
-[1] 199  94  48
-[1] 200  94  43
-[1]  1 95 43
-[1]  2 95 31
-[1]  3 95 28
-[1]  4 95 39
-[1]  5 95 32
-[1]  6 95 34
-[1]  7 95 67
-[1]  8 95 37
-[1]  9 95 52
-[1] 10 95 33
-[1] 11 95 61
-[1] 12 95 32
-[1] 13 95 43
-[1] 14 95 40
-[1] 15 95 37
-[1] 16 95 30
-[1] 17 95 29
-[1] 18 95 29
-[1] 19 95 40
-[1] 20 95 44
-[1] 21 95 41
-[1] 22 95 38
-[1] 23 95 81
-[1] 24 95 47
-[1] 25 95 30
-[1] 26 95 42
-[1] 27 95 53
-[1] 28 95 47
-[1] 29 95 39
-[1] 30 95 50
-[1] 31 95 39
-[1] 32 95 46
-[1] 33 95 45
-[1] 34 95 52
-[1] 35 95 45
-[1] 36 95 50
-[1] 37 95 45
-[1] 38 95 39
-[1] 39 95 37
-[1]  40  95 117
-[1] 41 95 44
-[1] 42 95 61
-[1] 43 95 46
-[1] 44 95 36
-[1] 45 95 46
-[1] 46 95 47
-[1] 47 95 49
-[1] 48 95 50
-[1] 49 95 54
-[1] 50 95 48
-[1] 51 95 44
-[1] 52 95 61
-[1] 53 95 82
-[1] 54 95 34
-[1] 55 95 47
-[1] 56 95 36
-[1] 57 95 43
-[1] 58 95 89
-[1] 59 95 44
-[1] 60 95 49
-[1] 61 95 81
-[1] 62 95 62
-[1] 63 95 56
-[1] 64 95 75
-[1] 65 95 34
-[1] 66 95 63
-[1] 67 95 61
-[1] 68 95 42
-[1] 69 95 41
-[1] 70 95 30
-[1] 71 95 76
-[1] 72 95 79
-[1] 73 95 66
-[1] 74 95 71
-[1] 75 95 45
-[1] 76 95 46
-[1] 77 95 61
-[1] 78 95 41
-[1] 79 95 60
-[1] 80 95 42
-[1] 81 95 43
-[1] 82 95 27
-[1] 83 95 75
-[1] 84 95 34
-[1] 85 95 43
-[1] 86 95 86
-[1] 87 95 48
-[1] 88 95 55
-[1] 89 95 36
-[1] 90 95 49
-[1] 91 95 53
-[1] 92 95 45
-[1] 93 95 55
-[1] 94 95 82
-[1] 95 95 46
-[1] 96 95 32
-[1]  97  95 110
-[1] 98 95 54
-[1] 99 95 54
-[1] 100  95  57
-[1] 101  95  45
-[1] 102  95  60
-[1] 103  95  46
-[1] 104  95  41
-[1] 105  95  51
-[1] 106  95  39
-[1] 107  95  78
-[1] 108  95  41
-[1] 109  95  50
-[1] 110  95  46
-[1] 111  95  45
-[1] 112  95  33
-[1] 113  95  42
-[1] 114  95  36
-[1] 115  95  51
-[1] 116  95  48
-[1] 117  95  44
-[1] 118  95  76
-[1] 119  95  63
-[1] 120  95  30
-[1] 121  95  87
-[1] 122  95  41
-[1] 123  95  58
-[1] 124  95  38
-[1] 125  95  58
-[1] 126  95  61
-[1] 127  95  47
-[1] 128  95  41
-[1] 129  95  35
-[1] 130  95  66
-[1] 131  95  37
-[1] 132  95  40
-[1] 133  95  50
-[1] 134  95  37
-[1] 135  95  50
-[1] 136  95  50
-[1] 137  95  83
-[1] 138  95  34
-[1] 139  95  53
-[1] 140  95  50
-[1] 141  95  46
-[1] 142  95  46
-[1] 143  95  44
-[1] 144  95  46
-[1] 145  95  44
-[1] 146  95  37
-[1] 147  95  56
-[1] 148  95  52
-[1] 149  95  39
-[1] 150  95  45
-[1] 151  95  64
-[1] 152  95  55
-[1] 153  95  50
-[1] 154  95  65
-[1] 155  95  33
-[1] 156  95  58
-[1] 157  95  45
-[1] 158  95  47
-[1] 159  95  94
-[1] 160  95  88
-[1] 161  95  47
-[1] 162  95  36
-[1] 163  95  38
-[1] 164  95  69
-[1] 165  95  51
-[1] 166  95  35
-[1] 167  95  49
-[1] 168  95  44
-[1] 169  95  36
-[1] 170  95  65
-[1] 171  95  65
-[1] 172  95  56
-[1] 173  95  51
-[1] 174  95  51
-[1] 175  95  64
-[1] 176  95  54
-[1] 177  95  61
-[1] 178  95  70
-[1] 179  95  32
-[1] 180  95  73
-[1] 181  95  77
-[1] 182  95  44
-[1] 183  95  43
-[1] 184  95  34
-[1] 185  95  45
-[1] 186  95  50
-[1] 187  95  41
-[1] 188  95  55
-[1] 189  95  49
-[1] 190  95  90
-[1] 191  95  69
-[1] 192  95  52
-[1] 193  95  37
-[1] 194  95  58
-[1] 195  95  55
-[1] 196  95  58
-[1] 197  95  59
-[1] 198  95  37
-[1] 199  95  32
-[1] 200  95  47
-[1]  1 96 44
-[1]  2 96 36
-[1]  3 96 31
-[1]  4 96 31
-[1]  5 96 43
-[1]  6 96 47
-[1]  7 96 42
-[1]  8 96 39
-[1]  9 96 51
-[1] 10 96 32
-[1] 11 96 43
-[1] 12 96 44
-[1] 13 96 49
-[1] 14 96 33
-[1] 15 96 60
-[1] 16 96 41
-[1] 17 96 50
-[1] 18 96 33
-[1] 19 96 63
-[1] 20 96 46
-[1] 21 96 50
-[1] 22 96 33
-[1] 23 96 65
-[1] 24 96 48
-[1] 25 96 33
-[1] 26 96 54
-[1] 27 96 42
-[1] 28 96 57
-[1] 29 96 37
-[1] 30 96 42
-[1] 31 96 40
-[1] 32 96 50
-[1] 33 96 40
-[1] 34 96 45
-[1] 35 96 44
-[1] 36 96 25
-[1] 37 96 71
-[1] 38 96 46
-[1] 39 96 71
-[1] 40 96 49
-[1] 41 96 38
-[1] 42 96 33
-[1] 43 96 40
-[1] 44 96 40
-[1] 45 96 46
-[1] 46 96 57
-[1] 47 96 54
-[1] 48 96 54
-[1] 49 96 61
-[1] 50 96 36
-[1] 51 96 58
-[1] 52 96 59
-[1] 53 96 44
-[1] 54 96 48
-[1] 55 96 44
-[1] 56 96 39
-[1] 57 96 54
-[1] 58 96 61
-[1] 59 96 68
-[1] 60 96 74
-[1] 61 96 45
-[1] 62 96 33
-[1] 63 96 55
-[1] 64 96 59
-[1] 65 96 45
-[1] 66 96 51
-[1] 67 96 42
-[1] 68 96 57
-[1] 69 96 52
-[1] 70 96 69
-[1] 71 96 47
-[1] 72 96 54
-[1] 73 96 52
-[1] 74 96 45
-[1] 75 96 42
-[1] 76 96 47
-[1] 77 96 43
-[1] 78 96 39
-[1] 79 96 50
-[1] 80 96 41
-[1] 81 96 34
-[1] 82 96 60
-[1] 83 96 46
-[1] 84 96 54
-[1] 85 96 44
-[1] 86 96 47
-[1] 87 96 48
-[1] 88 96 53
-[1] 89 96 51
-[1] 90 96 37
-[1]  91  96 112
-[1] 92 96 37
-[1] 93 96 50
-[1] 94 96 68
-[1] 95 96 95
-[1] 96 96 59
-[1] 97 96 62
-[1] 98 96 51
-[1] 99 96 45
-[1] 100  96  74
-[1] 101  96  83
-[1] 102  96  58
-[1] 103  96  51
-[1] 104  96  50
-[1] 105  96  50
-[1] 106  96  46
-[1] 107  96  50
-[1] 108  96  55
-[1] 109  96  78
-[1] 110  96  48
-[1] 111  96  39
-[1] 112  96  64
-[1] 113  96  57
-[1] 114  96  60
-[1] 115  96  40
-[1] 116  96  61
-[1] 117  96  38
-[1] 118  96  48
-[1] 119  96  49
-[1] 120  96  43
-[1] 121  96  66
-[1] 122  96  56
-[1] 123  96  32
-[1] 124  96  33
-[1] 125  96  57
-[1] 126  96  55
-[1] 127  96  33
-[1] 128  96  43
-[1] 129  96  48
-[1] 130  96  50
-[1] 131  96  40
-[1] 132  96  79
-[1] 133  96  43
-[1] 134  96  50
-[1] 135  96  37
-[1] 136  96  43
-[1] 137  96  56
-[1] 138  96  43
-[1] 139  96  53
-[1] 140  96  47
-[1] 141  96  31
-[1] 142  96  43
-[1] 143  96  40
-[1] 144  96  45
-[1] 145  96  46
-[1] 146  96  31
-[1] 147  96  60
-[1] 148  96  39
-[1] 149  96  46
-[1] 150  96  63
-[1] 151  96  61
-[1] 152  96  82
-[1] 153  96  49
-[1] 154  96  41
-[1] 155  96  84
-[1] 156  96  55
-[1] 157  96  36
-[1] 158  96  45
-[1] 159  96  36
-[1] 160  96  49
-[1] 161  96  39
-[1] 162  96  66
-[1] 163  96  41
-[1] 164  96  43
-[1] 165  96  78
-[1] 166  96  56
-[1] 167  96  73
-[1] 168  96  46
-[1] 169  96  38
-[1] 170  96  35
-[1] 171  96  45
-[1] 172  96  39
-[1] 173  96  38
-[1] 174  96  35
-[1] 175  96  37
-[1] 176  96  46
-[1] 177  96  54
-[1] 178  96  46
-[1] 179  96  58
-[1] 180  96  52
-[1] 181  96  77
-[1] 182  96  46
-[1] 183  96  39
-[1] 184  96  38
-[1] 185  96  73
-[1] 186  96  34
-[1] 187  96  66
-[1] 188  96  66
-[1] 189  96  53
-[1] 190  96  93
-[1] 191  96  43
-[1] 192  96  65
-[1] 193  96  63
-[1] 194  96  50
-[1] 195  96  48
-[1] 196  96  53
-[1] 197  96  57
-[1] 198  96  48
-[1] 199  96  43
-[1] 200  96  39
-[1]  1 97 26
-[1]  2 97 32
-[1]  3 97 37
-[1]  4 97 54
-[1]  5 97 27
-[1]  6 97 48
-[1]  7 97 31
-[1]  8 97 46
-[1]  9 97 35
-[1] 10 97 42
-[1] 11 97 53
-[1] 12 97 34
-[1] 13 97 36
-[1] 14 97 51
-[1] 15 97 37
-[1] 16 97 30
-[1] 17 97 43
-[1] 18 97 31
-[1] 19 97 32
-[1] 20 97 42
-[1] 21 97 35
-[1] 22 97 55
-[1] 23 97 60
-[1] 24 97 39
-[1] 25 97 44
-[1] 26 97 44
-[1] 27 97 34
-[1] 28 97 42
-[1] 29 97 56
-[1] 30 97 39
-[1] 31 97 48
-[1] 32 97 51
-[1] 33 97 65
-[1] 34 97 36
-[1] 35 97 45
-[1] 36 97 38
-[1] 37 97 47
-[1] 38 97 40
-[1] 39 97 53
-[1] 40 97 35
-[1] 41 97 44
-[1] 42 97 35
-[1] 43 97 39
-[1] 44 97 76
-[1] 45 97 40
-[1] 46 97 41
-[1] 47 97 38
-[1] 48 97 59
-[1] 49 97 52
-[1] 50 97 53
-[1] 51 97 45
-[1] 52 97 31
-[1]  53  97 100
-[1] 54 97 38
-[1] 55 97 47
-[1] 56 97 65
-[1] 57 97 39
-[1] 58 97 67
-[1] 59 97 43
-[1] 60 97 56
-[1] 61 97 39
-[1] 62 97 39
-[1] 63 97 55
-[1] 64 97 58
-[1] 65 97 45
-[1] 66 97 65
-[1] 67 97 95
-[1] 68 97 39
-[1] 69 97 52
-[1] 70 97 89
-[1] 71 97 49
-[1] 72 97 49
-[1] 73 97 32
-[1] 74 97 44
-[1] 75 97 55
-[1] 76 97 44
-[1] 77 97 88
-[1] 78 97 64
-[1] 79 97 46
-[1] 80 97 54
-[1] 81 97 55
-[1] 82 97 51
-[1] 83 97 40
-[1] 84 97 41
-[1] 85 97 32
-[1] 86 97 40
-[1] 87 97 36
-[1] 88 97 44
-[1] 89 97 40
-[1] 90 97 59
-[1] 91 97 40
-[1] 92 97 66
-[1] 93 97 52
-[1] 94 97 44
-[1] 95 97 39
-[1] 96 97 55
-[1] 97 97 42
-[1] 98 97 50
-[1] 99 97 45
-[1] 100  97  40
-[1] 101  97  53
-[1] 102  97  83
-[1] 103  97  84
-[1] 104  97  41
-[1] 105  97  42
-[1] 106  97  65
-[1] 107  97  42
-[1] 108  97  58
-[1] 109  97  49
-[1] 110  97  43
-[1] 111  97  38
-[1] 112  97  83
-[1] 113  97  75
-[1] 114  97  64
-[1] 115  97  77
-[1] 116  97  36
-[1] 117  97  45
-[1] 118  97  52
-[1] 119  97  55
-[1] 120  97  53
-[1] 121  97  51
-[1] 122  97  64
-[1] 123  97  62
-[1] 124  97  45
-[1] 125  97  40
-[1] 126  97  40
-[1] 127  97  71
-[1] 128  97  41
-[1] 129  97  28
-[1] 130  97  87
-[1] 131  97  67
-[1] 132  97  49
-[1] 133  97  60
-[1] 134  97  40
-[1] 135  97  69
-[1] 136  97  38
-[1] 137  97  49
-[1] 138  97  38
-[1] 139  97  49
-[1] 140  97  48
-[1] 141  97  38
-[1] 142  97  69
-[1] 143  97  47
-[1] 144  97  55
-[1] 145  97  42
-[1] 146  97  42
-[1] 147  97  41
-[1] 148  97  35
-[1] 149  97  94
-[1] 150  97  45
-[1] 151  97  49
-[1] 152  97  72
-[1] 153  97  48
-[1] 154  97  38
-[1] 155  97  90
-[1] 156  97  30
-[1] 157  97  43
-[1] 158  97  48
-[1] 159  97  57
-[1] 160  97  48
-[1] 161  97  33
-[1] 162  97  29
-[1] 163  97  43
-[1] 164  97  60
-[1] 165  97  40
-[1] 166  97  54
-[1] 167  97  43
-[1] 168  97  62
-[1] 169  97  45
-[1] 170  97  47
-[1] 171  97  50
-[1] 172  97  53
-[1] 173  97  37
-[1] 174  97  34
-[1] 175  97  43
-[1] 176  97  66
-[1] 177  97  43
-[1] 178  97  56
-[1] 179  97  41
-[1] 180  97  58
-[1] 181  97  49
-[1] 182  97  57
-[1] 183  97  42
-[1] 184  97  85
-[1] 185  97  52
-[1] 186  97  47
-[1] 187  97  46
-[1] 188  97  41
-[1] 189  97  57
-[1] 190  97  56
-[1] 191  97 135
-[1] 192  97  46
-[1] 193  97  49
-[1] 194  97  56
-[1] 195  97  36
-[1] 196  97  46
-[1] 197  97  69
-[1] 198  97  45
-[1] 199  97  33
-[1] 200  97  57
-[1]  1 98 35
-[1]  2 98 39
-[1]  3 98 34
-[1]  4 98 40
-[1]  5 98 37
-[1]  6 98 37
-[1]  7 98 38
-[1]  8 98 39
-[1]  9 98 47
-[1] 10 98 34
-[1] 11 98 32
-[1] 12 98 31
-[1] 13 98 43
-[1] 14 98 42
-[1] 15 98 31
-[1] 16 98 32
-[1] 17 98 43
-[1] 18 98 39
-[1] 19 98 28
-[1] 20 98 55
-[1] 21 98 53
-[1] 22 98 36
-[1] 23 98 65
-[1] 24 98 46
-[1] 25 98 47
-[1] 26 98 34
-[1] 27 98 41
-[1] 28 98 38
-[1] 29 98 42
-[1] 30 98 40
-[1] 31 98 35
-[1] 32 98 47
-[1] 33 98 65
-[1] 34 98 41
-[1] 35 98 46
-[1] 36 98 39
-[1] 37 98 45
-[1] 38 98 44
-[1] 39 98 33
-[1] 40 98 60
-[1] 41 98 37
-[1] 42 98 48
-[1] 43 98 41
-[1] 44 98 43
-[1] 45 98 64
-[1] 46 98 47
-[1] 47 98 42
-[1] 48 98 45
-[1] 49 98 38
-[1] 50 98 54
-[1] 51 98 46
-[1] 52 98 59
-[1] 53 98 59
-[1] 54 98 81
-[1] 55 98 35
-[1] 56 98 47
-[1] 57 98 52
-[1] 58 98 42
-[1] 59 98 51
-[1] 60 98 57
-[1] 61 98 58
-[1] 62 98 37
-[1] 63 98 70
-[1] 64 98 53
-[1] 65 98 45
-[1] 66 98 56
-[1] 67 98 51
-[1] 68 98 48
-[1] 69 98 59
-[1] 70 98 55
-[1] 71 98 48
-[1] 72 98 52
-[1] 73 98 48
-[1] 74 98 57
-[1] 75 98 47
-[1] 76 98 48
-[1] 77 98 53
-[1] 78 98 43
-[1] 79 98 47
-[1] 80 98 54
-[1] 81 98 41
-[1] 82 98 52
-[1] 83 98 51
-[1] 84 98 56
-[1] 85 98 61
-[1] 86 98 37
-[1] 87 98 48
-[1] 88 98 41
-[1]  89  98 138
-[1] 90 98 48
-[1] 91 98 56
-[1] 92 98 54
-[1] 93 98 47
-[1] 94 98 54
-[1] 95 98 55
-[1] 96 98 70
-[1] 97 98 41
-[1] 98 98 42
-[1] 99 98 96
-[1] 100  98  56
-[1] 101  98  36
-[1] 102  98  67
-[1] 103  98  44
-[1] 104  98  58
-[1] 105  98  70
-[1] 106  98  44
-[1] 107  98  46
-[1] 108  98  34
-[1] 109  98  66
-[1] 110  98  62
-[1] 111  98  41
-[1] 112  98  52
-[1] 113  98  34
-[1] 114  98  53
-[1] 115  98  52
-[1] 116  98  56
-[1] 117  98  50
-[1] 118  98  39
-[1] 119  98  43
-[1] 120  98  54
-[1] 121  98  38
-[1] 122  98  39
-[1] 123  98  49
-[1] 124  98  39
-[1] 125  98  46
-[1] 126  98  54
-[1] 127  98  39
-[1] 128  98  32
-[1] 129  98  63
-[1] 130  98  61
-[1] 131  98  29
-[1] 132  98  68
-[1] 133  98  46
-[1] 134  98  51
-[1] 135  98  44
-[1] 136  98  41
-[1] 137  98  32
-[1] 138  98  65
-[1] 139  98  40
-[1] 140  98  47
-[1] 141  98  55
-[1] 142  98  65
-[1] 143  98  48
-[1] 144  98  43
-[1] 145  98  34
-[1] 146  98  39
-[1] 147  98  60
-[1] 148  98  55
-[1] 149  98  43
-[1] 150  98  43
-[1] 151  98  48
-[1] 152  98  42
-[1] 153  98  51
-[1] 154  98  39
-[1] 155  98  54
-[1] 156  98  43
-[1] 157  98  72
-[1] 158  98  41
-[1] 159  98  44
-[1] 160  98  48
-[1] 161  98  49
-[1] 162  98  43
-[1] 163  98  58
-[1] 164  98  48
-[1] 165  98  47
-[1] 166  98  44
-[1] 167  98  68
-[1] 168  98  54
-[1] 169  98  39
-[1] 170  98  38
-[1] 171  98  77
-[1] 172  98  39
-[1] 173  98  64
-[1] 174  98  53
-[1] 175  98  38
-[1] 176  98  45
-[1] 177  98  55
-[1] 178  98  52
-[1] 179  98  75
-[1] 180  98  28
-[1] 181  98  62
-[1] 182  98  56
-[1] 183  98  66
-[1] 184  98  86
-[1] 185  98  51
-[1] 186  98  59
-[1] 187  98  60
-[1] 188  98  49
-[1] 189  98  44
-[1] 190  98  52
-[1] 191  98  87
-[1] 192  98  82
-[1] 193  98  60
-[1] 194  98  50
-[1] 195  98  47
-[1] 196  98  48
-[1] 197  98  43
-[1] 198  98  54
-[1] 199  98  48
-[1] 200  98  60
-[1]  1 99 28
-[1]  2 99 44
-[1]  3 99 32
-[1]  4 99 35
-[1]  5 99 44
-[1]  6 99 61
-[1]  7 99 38
-[1]  8 99 28
-[1]  9 99 39
-[1] 10 99 33
-[1] 11 99 45
-[1] 12 99 36
-[1] 13 99 45
-[1] 14 99 38
-[1] 15 99 35
-[1] 16 99 30
-[1] 17 99 30
-[1] 18 99 37
-[1] 19 99 45
-[1] 20 99 36
-[1] 21 99 65
-[1] 22 99 59
-[1] 23 99 37
-[1] 24 99 68
-[1] 25 99 25
-[1] 26 99 68
-[1] 27 99 37
-[1] 28 99 48
-[1] 29 99 48
-[1] 30 99 33
-[1] 31 99 75
-[1] 32 99 55
-[1] 33 99 64
-[1] 34 99 48
-[1] 35 99 43
-[1] 36 99 36
-[1] 37 99 39
-[1] 38 99 41
-[1] 39 99 52
-[1] 40 99 39
-[1] 41 99 44
-[1] 42 99 37
-[1] 43 99 44
-[1] 44 99 51
-[1] 45 99 54
-[1] 46 99 57
-[1] 47 99 48
-[1] 48 99 39
-[1] 49 99 45
-[1] 50 99 45
-[1] 51 99 54
-[1] 52 99 56
-[1] 53 99 44
-[1] 54 99 61
-[1] 55 99 43
-[1] 56 99 53
-[1] 57 99 56
-[1] 58 99 50
-[1] 59 99 95
-[1] 60 99 56
-[1] 61 99 47
-[1] 62 99 51
-[1] 63 99 36
-[1] 64 99 55
-[1] 65 99 50
-[1] 66 99 61
-[1] 67 99 78
-[1] 68 99 70
-[1] 69 99 63
-[1] 70 99 42
-[1] 71 99 44
-[1] 72 99 62
-[1] 73 99 81
-[1] 74 99 50
-[1] 75 99 57
-[1] 76 99 51
-[1] 77 99 88
-[1] 78 99 55
-[1] 79 99 46
-[1] 80 99 63
-[1] 81 99 42
-[1] 82 99 43
-[1] 83 99 49
-[1] 84 99 60
-[1] 85 99 37
-[1] 86 99 53
-[1] 87 99 67
-[1] 88 99 77
-[1] 89 99 46
-[1] 90 99 49
-[1] 91 99 46
-[1] 92 99 58
-[1] 93 99 40
-[1] 94 99 40
-[1] 95 99 61
-[1] 96 99 42
-[1] 97 99 49
-[1]  98  99 104
-[1] 99 99 57
-[1] 100  99  71
-[1] 101  99  54
-[1] 102  99  48
-[1] 103  99  36
-[1] 104  99  54
-[1] 105  99  48
-[1] 106  99  71
-[1] 107  99  64
-[1] 108  99  61
-[1] 109  99  64
-[1] 110  99  40
-[1] 111  99  90
-[1] 112  99  52
-[1] 113  99  76
-[1] 114  99  52
-[1] 115  99  42
-[1] 116  99  68
-[1] 117  99  55
-[1] 118  99  38
-[1] 119  99  57
-[1] 120  99  36
-[1] 121  99  39
-[1] 122  99  61
-[1] 123  99  52
-[1] 124  99  62
-[1] 125  99  40
-[1] 126  99  64
-[1] 127  99  56
-[1] 128  99  37
-[1] 129  99  34
-[1] 130  99  65
-[1] 131  99  63
-[1] 132  99  44
-[1] 133  99  74
-[1] 134  99  51
-[1] 135  99  41
-[1] 136  99  56
-[1] 137  99  44
-[1] 138  99  58
-[1] 139  99  50
-[1] 140  99  48
-[1] 141  99  56
-[1] 142  99  52
-[1] 143  99  60
-[1] 144  99  55
-[1] 145  99  42
-[1] 146  99  37
-[1] 147  99  40
-[1] 148  99  47
-[1] 149  99  46
-[1] 150  99  81
-[1] 151  99  49
-[1] 152  99  44
-[1] 153  99  55
-[1] 154  99  48
-[1] 155  99  42
-[1] 156  99  55
-[1] 157  99  89
-[1] 158  99  50
-[1] 159  99  34
-[1] 160  99  37
-[1] 161  99  63
-[1] 162  99  60
-[1] 163  99  65
-[1] 164  99  53
-[1] 165  99  57
-[1] 166  99  44
-[1] 167  99  37
-[1] 168  99  47
-[1] 169  99  35
-[1] 170  99  37
-[1] 171  99  46
-[1] 172  99  40
-[1] 173  99  82
-[1] 174  99  45
-[1] 175  99  54
-[1] 176  99  46
-[1] 177  99  47
-[1] 178  99  48
-[1] 179  99  75
-[1] 180  99  36
-[1] 181  99  50
-[1] 182  99  56
-[1] 183  99  64
-[1] 184  99  73
-[1] 185  99  34
-[1] 186  99  59
-[1] 187  99  49
-[1] 188  99  60
-[1] 189  99  77
-[1] 190  99  46
-[1] 191  99  36
-[1] 192  99  59
-[1] 193  99  46
-[1] 194  99  59
-[1] 195  99  58
-[1] 196  99  57
-[1] 197  99  37
-[1] 198  99  54
-[1] 199  99  54
-[1] 200  99  50
-[1]   1 100  35
-[1]   2 100  45
-[1]   3 100  27
-[1]   4 100  41
-[1]   5 100  31
-[1]   6 100  35
-[1]   7 100  64
-[1]   8 100  59
-[1]   9 100  35
-[1]  10 100  40
-[1]  11 100  60
-[1]  12 100  55
-[1]  13 100  45
-[1]  14 100  38
-[1]  15 100  33
-[1]  16 100  55
-[1]  17 100  38
-[1]  18 100  35
-[1]  19 100  36
-[1]  20 100  37
-[1]  21 100  34
-[1]  22 100  53
-[1]  23 100  34
-[1]  24 100  45
-[1]  25 100  63
-[1]  26 100  44
-[1]  27 100  40
-[1]  28 100  47
-[1]  29 100  34
-[1]  30 100  74
-[1]  31 100  40
-[1]  32 100  47
-[1]  33 100  52
-[1]  34 100  37
-[1]  35 100  42
-[1]  36 100  37
-[1]  37 100  29
-[1]  38 100  71
-[1]  39 100  31
-[1]  40 100  55
-[1]  41 100  60
-[1]  42 100  47
-[1]  43 100  34
-[1]  44 100  44
-[1]  45 100  43
-[1]  46 100  39
-[1]  47 100  38
-[1]  48 100  46
-[1]  49 100  44
-[1]  50 100  42
-[1]  51 100  37
-[1]  52 100  54
-[1]  53 100  74
-[1]  54 100  48
-[1]  55 100  81
-[1]  56 100  55
-[1]  57 100  43
-[1]  58 100  62
-[1]  59 100  38
-[1]  60 100  60
-[1]  61 100  53
-[1]  62 100  44
-[1]  63 100  69
-[1]  64 100  77
-[1]  65 100  45
-[1]  66 100  94
-[1]  67 100  39
-[1]  68 100  53
-[1]  69 100  53
-[1]  70 100  39
-[1]  71 100  68
-[1]  72 100  62
-[1]  73 100  47
-[1]  74 100  65
-[1]  75 100  47
-[1]  76 100  35
-[1]  77 100  50
-[1]  78 100  87
-[1]  79 100  55
-[1]  80 100  72
-[1]  81 100  41
-[1]  82 100  60
-[1]  83 100  47
-[1]  84 100  46
-[1]  85 100  48
-[1]  86 100  35
-[1]  87 100  43
-[1]  88 100  27
-[1]  89 100  84
-[1]  90 100  45
-[1]  91 100  48
-[1]  92 100  51
-[1]  93 100  54
-[1]  94 100  81
-[1]  95 100  61
-[1]  96 100  70
-[1]  97 100  76
-[1]  98 100  55
-[1]  99 100  55
-[1] 100 100  36
-[1] 101 100  48
-[1] 102 100  54
-[1] 103 100  44
-[1] 104 100  51
-[1] 105 100  47
-[1] 106 100  58
-[1] 107 100  52
-[1] 108 100  55
-[1] 109 100  44
-[1] 110 100 139
-[1] 111 100  59
-[1] 112 100  56
-[1] 113 100  36
-[1] 114 100  61
-[1] 115 100  41
-[1] 116 100  65
-[1] 117 100  57
-[1] 118 100  38
-[1] 119 100  72
-[1] 120 100  37
-[1] 121 100  40
-[1] 122 100  54
-[1] 123 100  57
-[1] 124 100  38
-[1] 125 100  58
-[1] 126 100  52
-[1] 127 100  75
-[1] 128 100  38
-[1] 129 100  37
-[1] 130 100  40
-[1] 131 100  38
-[1] 132 100  56
-[1] 133 100  58
-[1] 134 100  41
-[1] 135 100  50
-[1] 136 100  49
-[1] 137 100  41
-[1] 138 100  43
-[1] 139 100  50
-[1] 140 100  45
-[1] 141 100  62
-[1] 142 100  80
-[1] 143 100  41
-[1] 144 100  49
-[1] 145 100  50
-[1] 146 100  54
-[1] 147 100  57
-[1] 148 100  38
-[1] 149 100  43
-[1] 150 100  52
-[1] 151 100  43
-[1] 152 100  61
-[1] 153 100  53
-[1] 154 100  40
-[1] 155 100  39
-[1] 156 100  44
-[1] 157 100  51
-[1] 158 100  35
-[1] 159 100  40
-[1] 160 100  57
-[1] 161 100  60
-[1] 162 100  51
-[1] 163 100  31
-[1] 164 100  74
-[1] 165 100  31
-[1] 166 100  31
-[1] 167 100  58
-[1] 168 100  54
-[1] 169 100  57
-[1] 170 100  39
-[1] 171 100  76
-[1] 172 100  45
-[1] 173 100  34
-[1] 174 100  87
-[1] 175 100  40
-[1] 176 100  61
-[1] 177 100  43
-[1] 178 100  49
-[1] 179 100  99
-[1] 180 100  57
-[1] 181 100  55
-[1] 182 100  38
-[1] 183 100  31
-[1] 184 100  45
-[1] 185 100  44
-[1] 186 100  39
-[1] 187 100  50
-[1] 188 100  44
-[1] 189 100  55
-[1] 190 100  73
-[1] 191 100  44
-[1] 192 100  63
-[1] 193 100  45
-[1] 194 100  40
-[1] 195 100  49
-[1] 196 100  66
-[1] 197 100  61
-[1] 198 100  53
-[1] 199 100  53
-[1] 200 100  44
-[1]   1 101  43
-[1]   2 101  28
-[1]   3 101  35
-[1]   4 101  31
-[1]   5 101  33
-[1]   6 101  60
-[1]   7 101  28
-[1]   8 101  37
-[1]   9 101  33
-[1]  10 101  40
-[1]  11 101  31
-[1]  12 101  50
-[1]  13 101  49
-[1]  14 101  35
-[1]  15 101  35
-[1]  16 101  55
-[1]  17 101  33
-[1]  18 101  47
-[1]  19 101  34
-[1]  20 101  49
-[1]  21 101  46
-[1]  22 101  49
-[1]  23 101  58
-[1]  24 101  44
-[1]  25 101  53
-[1]  26 101  33
-[1]  27 101  55
-[1]  28 101  28
-[1]  29 101  47
-[1]  30 101  53
-[1]  31 101  75
-[1]  32 101  65
-[1]  33 101  51
-[1]  34 101  45
-[1]  35 101  47
-[1]  36 101  44
-[1]  37 101  35
-[1]  38 101  38
-[1]  39 101  50
-[1]  40 101  56
-[1]  41 101  37
-[1]  42 101  35
-[1]  43 101  32
-[1]  44 101  53
-[1]  45 101  75
-[1]  46 101  44
-[1]  47 101  47
-[1]  48 101  38
-[1]  49 101  40
-[1]  50 101  48
-[1]  51 101  46
-[1]  52 101  41
-[1]  53 101  49
-[1]  54 101  58
-[1]  55 101  51
-[1]  56 101  48
-[1]  57 101  56
-[1]  58 101  38
-[1]  59 101  70
-[1]  60 101  47
-[1]  61 101  71
-[1]  62 101  42
-[1]  63 101  47
-[1]  64 101  75
-[1]  65 101  45
-[1]  66 101  39
-[1]  67 101 110
-[1]  68 101  47
-[1]  69 101  49
-[1]  70 101  48
-[1]  71 101  32
-[1]  72 101  43
-[1]  73 101  52
-[1]  74 101  79
-[1]  75 101  44
-[1]  76 101  53
-[1]  77 101  40
-[1]  78 101  49
-[1]  79 101  59
-[1]  80 101  48
-[1]  81 101  41
-[1]  82 101  56
-[1]  83 101  83
-[1]  84 101  41
-[1]  85 101  63
-[1]  86 101  58
-[1]  87 101  36
-[1]  88 101  56
-[1]  89 101  43
-[1]  90 101  63
-[1]  91 101  50
-[1]  92 101  56
-[1]  93 101  70
-[1]  94 101  54
-[1]  95 101  47
-[1]  96 101  46
-[1]  97 101  61
-[1]  98 101  53
-[1]  99 101  49
-[1] 100 101  54
-[1] 101 101  94
-[1] 102 101  51
-[1] 103 101  72
-[1] 104 101  45
-[1] 105 101  40
-[1] 106 101  56
-[1] 107 101  37
-[1] 108 101  91
-[1] 109 101  90
-[1] 110 101  39
-[1] 111 101  45
-[1] 112 101  29
-[1] 113 101  33
-[1] 114 101  57
-[1] 115 101  59
-[1] 116 101  41
-[1] 117 101  73
-[1] 118 101  54
-[1] 119 101  36
-[1] 120 101  41
-[1] 121 101  31
-[1] 122 101  52
-[1] 123 101  54
-[1] 124 101  49
-[1] 125 101  37
-[1] 126 101  49
-[1] 127 101  70
-[1] 128 101  57
-[1] 129 101  53
-[1] 130 101  65
-[1] 131 101  43
-[1] 132 101  50
-[1] 133 101  71
-[1] 134 101  47
-[1] 135 101  50
-[1] 136 101  47
-[1] 137 101  48
-[1] 138 101  57
-[1] 139 101  38
-[1] 140 101  39
-[1] 141 101  35
-[1] 142 101  56
-[1] 143 101  39
-[1] 144 101  49
-[1] 145 101  41
-[1] 146 101  49
-[1] 147 101  49
-[1] 148 101  78
-[1] 149 101  47
-[1] 150 101  50
-[1] 151 101  42
-[1] 152 101  59
-[1] 153 101  31
-[1] 154 101  48
-[1] 155 101  53
-[1] 156 101  37
-[1] 157 101  55
-[1] 158 101  66
-[1] 159 101  43
-[1] 160 101  60
-[1] 161 101  52
-[1] 162 101  62
-[1] 163 101  40
-[1] 164 101  51
-[1] 165 101 100
-[1] 166 101  33
-[1] 167 101  62
-[1] 168 101  38
-[1] 169 101  55
-[1] 170 101  37
-[1] 171 101  72
-[1] 172 101  41
-[1] 173 101  58
-[1] 174 101  55
-[1] 175 101  46
-[1] 176 101  45
-[1] 177 101  61
-[1] 178 101  38
-[1] 179 101  45
-[1] 180 101  57
-[1] 181 101  52
-[1] 182 101  48
-[1] 183 101  51
-[1] 184 101  41
-[1] 185 101  55
-[1] 186 101  43
-[1] 187 101  35
-[1] 188 101  49
-[1] 189 101  62
-[1] 190 101  37
-[1] 191 101  65
-[1] 192 101  56
-[1] 193 101  37
-[1] 194 101  48
-[1] 195 101  46
-[1] 196 101  72
-[1] 197 101  55
-[1] 198 101  65
-[1] 199 101  53
-[1] 200 101  49
-[1]   1 102  35
-[1]   2 102  38
-[1]   3 102  35
-[1]   4 102  37
-[1]   5 102  43
-[1]   6 102  49
-[1]   7 102  30
-[1]   8 102  36
-[1]   9 102  43
-[1]  10 102  38
-[1]  11 102  39
-[1]  12 102  36
-[1]  13 102  35
-[1]  14 102  34
-[1]  15 102  41
-[1]  16 102  40
-[1]  17 102  57
-[1]  18 102  36
-[1]  19 102  39
-[1]  20 102  39
-[1]  21 102  44
-[1]  22 102  35
-[1]  23 102  48
-[1]  24 102  59
-[1]  25 102  42
-[1]  26 102  45
-[1]  27 102  45
-[1]  28 102  42
-[1]  29 102  55
-[1]  30 102  44
-[1]  31 102  43
-[1]  32 102  42
-[1]  33 102  47
-[1]  34 102  55
-[1]  35 102  32
-[1]  36 102  38
-[1]  37 102  52
-[1]  38 102  76
-[1]  39 102  36
-[1]  40 102  39
-[1]  41 102  42
-[1]  42 102  47
-[1]  43 102  51
-[1]  44 102  88
-[1]  45 102  71
-[1]  46 102  44
-[1]  47 102  57
-[1]  48 102  50
-[1]  49 102  45
-[1]  50 102  28
-[1]  51 102  60
-[1]  52 102 100
-[1]  53 102  54
-[1]  54 102  38
-[1]  55 102  49
-[1]  56 102  37
-[1]  57 102  34
-[1]  58 102  51
-[1]  59 102  55
-[1]  60 102  36
-[1]  61 102  67
-[1]  62 102  43
-[1]  63 102  74
-[1]  64 102  38
-[1]  65 102  45
-[1]  66 102  58
-[1]  67 102  48
-[1]  68 102  55
-[1]  69 102  57
-[1]  70 102  87
-[1]  71 102  42
-[1]  72 102  71
-[1]  73 102  42
-[1]  74 102  48
-[1]  75 102  49
-[1]  76 102  38
-[1]  77 102 216
-[1]  78 102  54
-[1]  79 102  31
-[1]  80 102  56
-[1]  81 102  35
-[1]  82 102  38
-[1]  83 102  61
-[1]  84 102  68
-[1]  85 102  62
-[1]  86 102  64
-[1]  87 102  61
-[1]  88 102  35
-[1]  89 102  55
-[1]  90 102  61
-[1]  91 102  53
-[1]  92 102  45
-[1]  93 102  60
-[1]  94 102  57
-[1]  95 102  37
-[1]  96 102  68
-[1]  97 102  54
-[1]  98 102  57
-[1]  99 102  64
-[1] 100 102  78
-[1] 101 102  48
-[1] 102 102  63
-[1] 103 102  44
-[1] 104 102  63
-[1] 105 102  44
-[1] 106 102  45
-[1] 107 102  56
-[1] 108 102  45
-[1] 109 102  44
-[1] 110 102  58
-[1] 111 102  51
-[1] 112 102  42
-[1] 113 102  58
-[1] 114 102  65
-[1] 115 102  45
-[1] 116 102  60
-[1] 117 102  35
-[1] 118 102  57
-[1] 119 102  51
-[1] 120 102  46
-[1] 121 102  44
-[1] 122 102  67
-[1] 123 102  48
-[1] 124 102  57
-[1] 125 102  54
-[1] 126 102  53
-[1] 127 102  31
-[1] 128 102  50
-[1] 129 102  46
-[1] 130 102  61
-[1] 131 102  47
-[1] 132 102  68
-[1] 133 102  51
-[1] 134 102  37
-[1] 135 102  55
-[1] 136 102  70
-[1] 137 102  56
-[1] 138 102  55
-[1] 139 102  44
-[1] 140 102  37
-[1] 141 102  37
-[1] 142 102  66
-[1] 143 102  39
-[1] 144 102  52
-[1] 145 102  41
-[1] 146 102  54
-[1] 147 102  38
-[1] 148 102  65
-[1] 149 102  49
-[1] 150 102 110
-[1] 151 102  42
-[1] 152 102  45
-[1] 153 102  43
-[1] 154 102  59
-[1] 155 102  39
-[1] 156 102  60
-[1] 157 102  58
-[1] 158 102  58
-[1] 159 102  44
-[1] 160 102  62
-[1] 161 102  51
-[1] 162 102  66
-[1] 163 102  63
-[1] 164 102  46
-[1] 165 102  37
-[1] 166 102  52
-[1] 167 102  35
-[1] 168 102  60
-[1] 169 102  63
-[1] 170 102  67
-[1] 171 102  58
-[1] 172 102  51
-[1] 173 102  52
-[1] 174 102  69
-[1] 175 102  36
-[1] 176 102  99
-[1] 177 102  59
-[1] 178 102  36
-[1] 179 102  45
-[1] 180 102  57
-[1] 181 102  60
-[1] 182 102  64
-[1] 183 102  73
-[1] 184 102  45
-[1] 185 102  48
-[1] 186 102  35
-[1] 187 102  63
-[1] 188 102  72
-[1] 189 102  37
-[1] 190 102  46
-[1] 191 102  39
-[1] 192 102  52
-[1] 193 102  43
-[1] 194 102  56
-[1] 195 102  43
-[1] 196 102  80
-[1] 197 102  37
-[1] 198 102  52
-[1] 199 102  59
-[1] 200 102  53
-[1]   1 103  57
-[1]   2 103  39
-[1]   3 103  28
-[1]   4 103  27
-[1]   5 103  42
-[1]   6 103  43
-[1]   7 103  28
-[1]   8 103  54
-[1]   9 103  90
-[1]  10 103  28
-[1]  11 103  36
-[1]  12 103  39
-[1]  13 103  39
-[1]  14 103  40
-[1]  15 103  33
-[1]  16 103  70
-[1]  17 103  31
-[1]  18 103  37
-[1]  19 103  38
-[1]  20 103  55
-[1]  21 103  32
-[1]  22 103  36
-[1]  23 103  26
-[1]  24 103  46
-[1]  25 103  42
-[1]  26 103  44
-[1]  27 103  60
-[1]  28 103  62
-[1]  29 103  41
-[1]  30 103  32
-[1]  31 103  59
-[1]  32 103  32
-[1]  33 103  45
-[1]  34 103  41
-[1]  35 103  53
-[1]  36 103  50
-[1]  37 103  42
-[1]  38 103  56
-[1]  39 103  53
-[1]  40 103  37
-[1]  41 103  49
-[1]  42 103  56
-[1]  43 103  43
-[1]  44 103  35
-[1]  45 103  41
-[1]  46 103  55
-[1]  47 103  45
-[1]  48 103  37
-[1]  49 103  44
-[1]  50 103  36
-[1]  51 103  47
-[1]  52 103  47
-[1]  53 103  52
-[1]  54 103  49
-[1]  55 103  42
-[1]  56 103  57
-[1]  57 103  64
-[1]  58 103  47
-[1]  59 103  39
-[1]  60 103  42
-[1]  61 103  39
-[1]  62 103  36
-[1]  63 103  57
-[1]  64 103  44
-[1]  65 103  49
-[1]  66 103  48
-[1]  67 103  57
-[1]  68 103  63
-[1]  69 103  47
-[1]  70 103  60
-[1]  71 103  82
-[1]  72 103  46
-[1]  73 103  49
-[1]  74 103  36
-[1]  75 103  99
-[1]  76 103  34
-[1]  77 103  54
-[1]  78 103  30
-[1]  79 103  49
-[1]  80 103  37
-[1]  81 103  76
-[1]  82 103  38
-[1]  83 103  65
-[1]  84 103  69
-[1]  85 103  35
-[1]  86 103  58
-[1]  87 103  37
-[1]  88 103  54
-[1]  89 103  54
-[1]  90 103  54
-[1]  91 103  80
-[1]  92 103  80
-[1]  93 103  48
-[1]  94 103  51
-[1]  95 103  37
-[1]  96 103 101
-[1]  97 103  46
-[1]  98 103  64
-[1]  99 103  55
-[1] 100 103  37
-[1] 101 103  44
-[1] 102 103  89
-[1] 103 103  44
-[1] 104 103  45
-[1] 105 103  60
-[1] 106 103  46
-[1] 107 103  64
-[1] 108 103  70
-[1] 109 103  44
-[1] 110 103  63
-[1] 111 103  62
-[1] 112 103  50
-[1] 113 103  92
-[1] 114 103  44
-[1] 115 103  58
-[1] 116 103  38
-[1] 117 103  50
-[1] 118 103  76
-[1] 119 103  47
-[1] 120 103  43
-[1] 121 103  44
-[1] 122 103  99
-[1] 123 103  37
-[1] 124 103  45
-[1] 125 103  38
-[1] 126 103 101
-[1] 127 103  47
-[1] 128 103  49
-[1] 129 103  49
-[1] 130 103  68
-[1] 131 103  38
-[1] 132 103  73
-[1] 133 103  56
-[1] 134 103  38
-[1] 135 103  57
-[1] 136 103  68
-[1] 137 103  55
-[1] 138 103  68
-[1] 139 103  63
-[1] 140 103  56
-[1] 141 103  39
-[1] 142 103  36
-[1] 143 103  33
-[1] 144 103  32
-[1] 145 103  39
-[1] 146 103  31
-[1] 147 103  50
-[1] 148 103  55
-[1] 149 103  44
-[1] 150 103  60
-[1] 151 103  56
-[1] 152 103  42
-[1] 153 103  60
-[1] 154 103  59
-[1] 155 103  59
-[1] 156 103  46
-[1] 157 103  57
-[1] 158 103  42
-[1] 159 103  45
-[1] 160 103  40
-[1] 161 103  37
-[1] 162 103  60
-[1] 163 103  33
-[1] 164 103  53
-[1] 165 103  72
-[1] 166 103  35
-[1] 167 103  41
-[1] 168 103  55
-[1] 169 103  55
-[1] 170 103  36
-[1] 171 103  40
-[1] 172 103  46
-[1] 173 103  39
-[1] 174 103  35
-[1] 175 103  41
-[1] 176 103  51
-[1] 177 103  46
-[1] 178 103  66
-[1] 179 103  73
-[1] 180 103  73
-[1] 181 103  43
-[1] 182 103  54
-[1] 183 103  34
-[1] 184 103  60
-[1] 185 103  33
-[1] 186 103  67
-[1] 187 103  47
-[1] 188 103  46
-[1] 189 103  43
-[1] 190 103  61
-[1] 191 103  40
-[1] 192 103  59
-[1] 193 103  42
-[1] 194 103  45
-[1] 195 103  59
-[1] 196 103  44
-[1] 197 103  47
-[1] 198 103  44
-[1] 199 103  37
-[1] 200 103  47
-[1]   1 104  35
-[1]   2 104  33
-[1]   3 104  38
-[1]   4 104  35
-[1]   5 104  29
-[1]   6 104  44
-[1]   7 104  40
-[1]   8 104  47
-[1]   9 104  37
-[1]  10 104  52
-[1]  11 104  40
-[1]  12 104  47
-[1]  13 104  27
-[1]  14 104  44
-[1]  15 104  32
-[1]  16 104  39
-[1]  17 104  43
-[1]  18 104  33
-[1]  19 104  56
-[1]  20 104  31
-[1]  21 104  43
-[1]  22 104  44
-[1]  23 104  42
-[1]  24 104  45
-[1]  25 104  44
-[1]  26 104  36
-[1]  27 104  46
-[1]  28 104  36
-[1]  29 104  40
-[1]  30 104  51
-[1]  31 104  61
-[1]  32 104  60
-[1]  33 104  47
-[1]  34 104  43
-[1]  35 104  42
-[1]  36 104  40
-[1]  37 104  53
-[1]  38 104  43
-[1]  39 104  42
-[1]  40 104  52
-[1]  41 104  45
-[1]  42 104  29
-[1]  43 104  33
-[1]  44 104  46
-[1]  45 104  39
-[1]  46 104  36
-[1]  47 104  71
-[1]  48 104  38
-[1]  49 104  39
-[1]  50 104  88
-[1]  51 104  57
-[1]  52 104  56
-[1]  53 104  60
-[1]  54 104  67
-[1]  55 104  40
-[1]  56 104  40
-[1]  57 104  49
-[1]  58 104  75
-[1]  59 104  34
-[1]  60 104  56
-[1]  61 104  60
-[1]  62 104  36
-[1]  63 104  52
-[1]  64 104  59
-[1]  65 104  48
-[1]  66 104  65
-[1]  67 104  52
-[1]  68 104  54
-[1]  69 104  57
-[1]  70 104  33
-[1]  71 104  44
-[1]  72 104  59
-[1]  73 104  68
-[1]  74 104  69
-[1]  75 104  55
-[1]  76 104  54
-[1]  77 104  42
-[1]  78 104  69
-[1]  79 104  61
-[1]  80 104  29
-[1]  81 104  88
-[1]  82 104  40
-[1]  83 104  45
-[1]  84 104  58
-[1]  85 104  55
-[1]  86 104  58
-[1]  87 104  66
-[1]  88 104  78
-[1]  89 104  44
-[1]  90 104  52
-[1]  91 104  52
-[1]  92 104  78
-[1]  93 104  41
-[1]  94 104  54
-[1]  95 104  41
-[1]  96 104  90
-[1]  97 104  47
-[1]  98 104  83
-[1]  99 104  96
-[1] 100 104  51
-[1] 101 104  64
-[1] 102 104  37
-[1] 103 104  47
-[1] 104 104  39
-[1] 105 104  93
-[1] 106 104  56
-[1] 107 104  57
-[1] 108 104  87
-[1] 109 104  45
-[1] 110 104  50
-[1] 111 104  71
-[1] 112 104  42
-[1] 113 104  67
-[1] 114 104  54
-[1] 115 104  45
-[1] 116 104  36
-[1] 117 104  63
-[1] 118 104  49
-[1] 119 104  38
-[1] 120 104  46
-[1] 121 104  67
-[1] 122 104  55
-[1] 123 104  60
-[1] 124 104  34
-[1] 125 104  77
-[1] 126 104  49
-[1] 127 104  51
-[1] 128 104  43
-[1] 129 104  61
-[1] 130 104  48
-[1] 131 104  38
-[1] 132 104  64
-[1] 133 104  34
-[1] 134 104  66
-[1] 135 104  32
-[1] 136 104  65
-[1] 137 104  37
-[1] 138 104  94
-[1] 139 104  37
-[1] 140 104  53
-[1] 141 104  46
-[1] 142 104  61
-[1] 143 104  62
-[1] 144 104  88
-[1] 145 104  63
-[1] 146 104  50
-[1] 147 104  51
-[1] 148 104  55
-[1] 149 104  51
-[1] 150 104  45
-[1] 151 104 103
-[1] 152 104  35
-[1] 153 104  53
-[1] 154 104  44
-[1] 155 104  40
-[1] 156 104  51
-[1] 157 104  45
-[1] 158 104  58
-[1] 159 104  48
-[1] 160 104  47
-[1] 161 104  59
-[1] 162 104  58
-[1] 163 104  42
-[1] 164 104  49
-[1] 165 104  43
-[1] 166 104  54
-[1] 167 104  57
-[1] 168 104  43
-[1] 169 104  44
-[1] 170 104  79
-[1] 171 104  32
-[1] 172 104  52
-[1] 173 104  47
-[1] 174 104  37
-[1] 175 104  62
-[1] 176 104  39
-[1] 177 104  77
-[1] 178 104  37
-[1] 179 104  70
-[1] 180 104  50
-[1] 181 104  43
-[1] 182 104  48
-[1] 183 104  67
-[1] 184 104  29
-[1] 185 104  69
-[1] 186 104  42
-[1] 187 104  62
-[1] 188 104  49
-[1] 189 104  43
-[1] 190 104  51
-[1] 191 104  53
-[1] 192 104  61
-[1] 193 104  42
-[1] 194 104  45
-[1] 195 104  57
-[1] 196 104  53
-[1] 197 104  79
-[1] 198 104  52
-[1] 199 104  45
-[1] 200 104  40
-[1]   1 105  53
-[1]   2 105  43
-[1]   3 105  34
-[1]   4 105  28
-[1]   5 105  37
-[1]   6 105  68
-[1]   7 105  58
-[1]   8 105  36
-[1]   9 105  32
-[1]  10 105  38
-[1]  11 105  60
-[1]  12 105  37
-[1]  13 105  40
-[1]  14 105  30
-[1]  15 105  37
-[1]  16 105  39
-[1]  17 105  44
-[1]  18 105  50
-[1]  19 105  43
-[1]  20 105  30
-[1]  21 105  29
-[1]  22 105  68
-[1]  23 105  35
-[1]  24 105  41
-[1]  25 105  56
-[1]  26 105  33
-[1]  27 105  34
-[1]  28 105  63
-[1]  29 105  34
-[1]  30 105  31
-[1]  31 105  42
-[1]  32 105  49
-[1]  33 105  32
-[1]  34 105  37
-[1]  35 105  41
-[1]  36 105  50
-[1]  37 105  66
-[1]  38 105  35
-[1]  39 105  61
-[1]  40 105  54
-[1]  41 105  63
-[1]  42 105  39
-[1]  43 105  48
-[1]  44 105  56
-[1]  45 105  35
-[1]  46 105  55
-[1]  47 105  50
-[1]  48 105  61
-[1]  49 105  52
-[1]  50 105  44
-[1]  51 105  65
-[1]  52 105  34
-[1]  53 105  44
-[1]  54 105  56
-[1]  55 105  70
-[1]  56 105  52
-[1]  57 105  60
-[1]  58 105  48
-[1]  59 105  42
-[1]  60 105  61
-[1]  61 105  65
-[1]  62 105  46
-[1]  63 105  42
-[1]  64 105  53
-[1]  65 105  47
-[1]  66 105  48
-[1]  67 105  65
-[1]  68 105  32
-[1]  69 105  55
-[1]  70 105  29
-[1]  71 105  60
-[1]  72 105  58
-[1]  73 105  41
-[1]  74 105  79
-[1]  75 105  56
-[1]  76 105  42
-[1]  77 105  57
-[1]  78 105  47
-[1]  79 105  83
-[1]  80 105  60
-[1]  81 105  51
-[1]  82 105  40
-[1]  83 105  35
-[1]  84 105  42
-[1]  85 105  51
-[1]  86 105  60
-[1]  87 105  75
-[1]  88 105  59
-[1]  89 105  37
-[1]  90 105  48
-[1]  91 105  58
-[1]  92 105  61
-[1]  93 105  45
-[1]  94 105  49
-[1]  95 105  48
-[1]  96 105  50
-[1]  97 105  68
-[1]  98 105  56
-[1]  99 105  42
-[1] 100 105  66
-[1] 101 105  59
-[1] 102 105  40
-[1] 103 105  58
-[1] 104 105  54
-[1] 105 105  72
-[1] 106 105  35
-[1] 107 105  58
-[1] 108 105  50
-[1] 109 105  62
-[1] 110 105  47
-[1] 111 105  47
-[1] 112 105  34
-[1] 113 105  46
-[1] 114 105  48
-[1] 115 105  45
-[1] 116 105  94
-[1] 117 105  40
-[1] 118 105  47
-[1] 119 105  50
-[1] 120 105  74
-[1] 121 105  40
-[1] 122 105  84
-[1] 123 105  45
-[1] 124 105  51
-[1] 125 105  38
-[1] 126 105  58
-[1] 127 105  41
-[1] 128 105  52
-[1] 129 105  41
-[1] 130 105  50
-[1] 131 105  33
-[1] 132 105  38
-[1] 133 105  44
-[1] 134 105  63
-[1] 135 105  53
-[1] 136 105  55
-[1] 137 105  56
-[1] 138 105  36
-[1] 139 105  45
-[1] 140 105  41
-[1] 141 105  44
-[1] 142 105  37
-[1] 143 105  56
-[1] 144 105  72
-[1] 145 105  50
-[1] 146 105  44
-[1] 147 105  38
-[1] 148 105  71
-[1] 149 105  50
-[1] 150 105  51
-[1] 151 105 105
-[1] 152 105  38
-[1] 153 105  83
-[1] 154 105  45
-[1] 155 105  41
-[1] 156 105  60
-[1] 157 105  52
-[1] 158 105  29
-[1] 159 105  54
-[1] 160 105  55
-[1] 161 105  40
-[1] 162 105  33
-[1] 163 105 103
-[1] 164 105  51
-[1] 165 105  47
-[1] 166 105  52
-[1] 167 105  73
-[1] 168 105  44
-[1] 169 105  58
-[1] 170 105  43
-[1] 171 105  45
-[1] 172 105  47
-[1] 173 105  69
-[1] 174 105  68
-[1] 175 105  46
-[1] 176 105  43
-[1] 177 105  69
-[1] 178 105  43
-[1] 179 105  52
-[1] 180 105  56
-[1] 181 105  46
-[1] 182 105  89
-[1] 183 105  47
-[1] 184 105  58
-[1] 185 105  67
-[1] 186 105  48
-[1] 187 105  59
-[1] 188 105  45
-[1] 189 105  61
-[1] 190 105  46
-[1] 191 105  57
-[1] 192 105  50
-[1] 193 105  36
-[1] 194 105  61
-[1] 195 105  45
-[1] 196 105  61
-[1] 197 105  44
-[1] 198 105  48
-[1] 199 105  45
-[1] 200 105  47
-[1]   1 106  27
-[1]   2 106  45
-[1]   3 106  34
-[1]   4 106  45
-[1]   5 106  30
-[1]   6 106  37
-[1]   7 106  54
-[1]   8 106  39
-[1]   9 106  37
-[1]  10 106  38
-[1]  11 106  53
-[1]  12 106  40
-[1]  13 106  45
-[1]  14 106  44
-[1]  15 106  31
-[1]  16 106  46
-[1]  17 106  40
-[1]  18 106  42
-[1]  19 106  34
-[1]  20 106  39
-[1]  21 106  32
-[1]  22 106  45
-[1]  23 106  41
-[1]  24 106  50
-[1]  25 106  27
-[1]  26 106  35
-[1]  27 106  54
-[1]  28 106  44
-[1]  29 106  50
-[1]  30 106  49
-[1]  31 106  35
-[1]  32 106  32
-[1]  33 106  51
-[1]  34 106  53
-[1]  35 106  60
-[1]  36 106  53
-[1]  37 106  45
-[1]  38 106  52
-[1]  39 106  44
-[1]  40 106  36
-[1]  41 106  56
-[1]  42 106  40
-[1]  43 106  44
-[1]  44 106  38
-[1]  45 106  62
-[1]  46 106  34
-[1]  47 106  50
-[1]  48 106  52
-[1]  49 106  36
-[1]  50 106  71
-[1]  51 106  53
-[1]  52 106  46
-[1]  53 106  41
-[1]  54 106  48
-[1]  55 106  39
-[1]  56 106  55
-[1]  57 106  44
-[1]  58 106  40
-[1]  59 106  56
-[1]  60 106  48
-[1]  61 106  46
-[1]  62 106  49
-[1]  63 106  54
-[1]  64 106  39
-[1]  65 106  35
-[1]  66 106  34
-[1]  67 106  39
-[1]  68 106  64
-[1]  69 106  51
-[1]  70 106  46
-[1]  71 106  48
-[1]  72 106  58
-[1]  73 106  58
-[1]  74 106 112
-[1]  75 106  48
-[1]  76 106  56
-[1]  77 106  48
-[1]  78 106  39
-[1]  79 106  75
-[1]  80 106  36
-[1]  81 106  82
-[1]  82 106  47
-[1]  83 106  43
-[1]  84 106  48
-[1]  85 106  35
-[1]  86 106  43
-[1]  87 106  50
-[1]  88 106  27
-[1]  89 106  67
-[1]  90 106  66
-[1]  91 106  48
-[1]  92 106  64
-[1]  93 106  46
-[1]  94 106  48
-[1]  95 106  41
-[1]  96 106  60
-[1]  97 106  47
-[1]  98 106  39
-[1]  99 106  54
-[1] 100 106  56
-[1] 101 106  49
-[1] 102 106  49
-[1] 103 106  54
-[1] 104 106  85
-[1] 105 106  41
-[1] 106 106  60
-[1] 107 106  48
-[1] 108 106  50
-[1] 109 106  66
-[1] 110 106  38
-[1] 111 106  67
-[1] 112 106  55
-[1] 113 106  39
-[1] 114 106  40
-[1] 115 106  56
-[1] 116 106  47
-[1] 117 106  60
-[1] 118 106  47
-[1] 119 106  52
-[1] 120 106  71
-[1] 121 106  32
-[1] 122 106  63
-[1] 123 106  40
-[1] 124 106 106
-[1] 125 106  75
-[1] 126 106  43
-[1] 127 106  55
-[1] 128 106  48
-[1] 129 106  33
-[1] 130 106  49
-[1] 131 106  54
-[1] 132 106  55
-[1] 133 106  37
-[1] 134 106  48
-[1] 135 106  47
-[1] 136 106  36
-[1] 137 106  48
-[1] 138 106  51
-[1] 139 106  39
-[1] 140 106  35
-[1] 141 106  46
-[1] 142 106  42
-[1] 143 106  68
-[1] 144 106  45
-[1] 145 106  79
-[1] 146 106  57
-[1] 147 106  38
-[1] 148 106  61
-[1] 149 106  50
-[1] 150 106  71
-[1] 151 106  39
-[1] 152 106  48
-[1] 153 106  69
-[1] 154 106  50
-[1] 155 106  48
-[1] 156 106  57
-[1] 157 106  59
-[1] 158 106  29
-[1] 159 106  54
-[1] 160 106  60
-[1] 161 106  46
-[1] 162 106  61
-[1] 163 106  47
-[1] 164 106  97
-[1] 165 106  51
-[1] 166 106  48
-[1] 167 106  55
-[1] 168 106  38
-[1] 169 106  37
-[1] 170 106  52
-[1] 171 106  40
-[1] 172 106  31
-[1] 173 106  85
-[1] 174 106  73
-[1] 175 106  37
-[1] 176 106  52
-[1] 177 106  46
-[1] 178 106  41
-[1] 179 106  39
-[1] 180 106  52
-[1] 181 106  47
-[1] 182 106  36
-[1] 183 106  58
-[1] 184 106  41
-[1] 185 106  45
-[1] 186 106  41
-[1] 187 106  34
-[1] 188 106  55
-[1] 189 106  59
-[1] 190 106  54
-[1] 191 106  42
-[1] 192 106  42
-[1] 193 106  77
-[1] 194 106  60
-[1] 195 106  70
-[1] 196 106  58
-[1] 197 106  61
-[1] 198 106  68
-[1] 199 106  30
-[1] 200 106  44
-[1]   1 107  29
-[1]   2 107  31
-[1]   3 107  32
-[1]   4 107  40
-[1]   5 107  44
-[1]   6 107  41
-[1]   7 107  47
-[1]   8 107  58
-[1]   9 107  45
-[1]  10 107  44
-[1]  11 107  54
-[1]  12 107  42
-[1]  13 107  34
-[1]  14 107  51
-[1]  15 107  39
-[1]  16 107  42
-[1]  17 107  39
-[1]  18 107  40
-[1]  19 107  79
-[1]  20 107  36
-[1]  21 107  43
-[1]  22 107  29
-[1]  23 107  34
-[1]  24 107  37
-[1]  25 107  38
-[1]  26 107  47
-[1]  27 107  50
-[1]  28 107  57
-[1]  29 107  32
-[1]  30 107  48
-[1]  31 107  37
-[1]  32 107  40
-[1]  33 107  42
-[1]  34 107  33
-[1]  35 107  56
-[1]  36 107  40
-[1]  37 107 101
-[1]  38 107  51
-[1]  39 107  34
-[1]  40 107  35
-[1]  41 107  52
-[1]  42 107  43
-[1]  43 107  48
-[1]  44 107  50
-[1]  45 107  51
-[1]  46 107  53
-[1]  47 107  59
-[1]  48 107  36
-[1]  49 107  53
-[1]  50 107  56
-[1]  51 107 111
-[1]  52 107  49
-[1]  53 107  54
-[1]  54 107  53
-[1]  55 107  59
-[1]  56 107  49
-[1]  57 107  47
-[1]  58 107  33
-[1]  59 107  74
-[1]  60 107  52
-[1]  61 107  47
-[1]  62 107  47
-[1]  63 107  44
-[1]  64 107  44
-[1]  65 107  49
-[1]  66 107  73
-[1]  67 107  57
-[1]  68 107  54
-[1]  69 107  63
-[1]  70 107  62
-[1]  71 107  77
-[1]  72 107  72
-[1]  73 107  91
-[1]  74 107  49
-[1]  75 107  52
-[1]  76 107  43
-[1]  77 107  38
-[1]  78 107  61
-[1]  79 107  52
-[1]  80 107  47
-[1]  81 107  46
-[1]  82 107  39
-[1]  83 107  49
-[1]  84 107  62
-[1]  85 107  66
-[1]  86 107  59
-[1]  87 107  65
-[1]  88 107  51
-[1]  89 107  40
-[1]  90 107  35
-[1]  91 107  53
-[1]  92 107  84
-[1]  93 107  37
-[1]  94 107  94
-[1]  95 107  38
-[1]  96 107  44
-[1]  97 107  68
-[1]  98 107  54
-[1]  99 107  36
-[1] 100 107  61
-[1] 101 107  90
-[1] 102 107  48
-[1] 103 107  58
-[1] 104 107  51
-[1] 105 107  73
-[1] 106 107  57
-[1] 107 107  43
-[1] 108 107  68
-[1] 109 107  37
-[1] 110 107  49
-[1] 111 107  42
-[1] 112 107  37
-[1] 113 107  38
-[1] 114 107  38
-[1] 115 107  61
-[1] 116 107  51
-[1] 117 107  76
-[1] 118 107  43
-[1] 119 107  55
-[1] 120 107  34
-[1] 121 107  73
-[1] 122 107  57
-[1] 123 107  42
-[1] 124 107  58
-[1] 125 107  35
-[1] 126 107  51
-[1] 127 107  52
-[1] 128 107  49
-[1] 129 107  31
-[1] 130 107  62
-[1] 131 107  33
-[1] 132 107  54
-[1] 133 107  48
-[1] 134 107  45
-[1] 135 107  32
-[1] 136 107  53
-[1] 137 107  47
-[1] 138 107  41
-[1] 139 107  39
-[1] 140 107  33
-[1] 141 107  39
-[1] 142 107  54
-[1] 143 107  51
-[1] 144 107  51
-[1] 145 107  48
-[1] 146 107  72
-[1] 147 107  37
-[1] 148 107  51
-[1] 149 107  39
-[1] 150 107  44
-[1] 151 107  52
-[1] 152 107  44
-[1] 153 107  39
-[1] 154 107  35
-[1] 155 107  51
-[1] 156 107  59
-[1] 157 107  40
-[1] 158 107  46
-[1] 159 107  47
-[1] 160 107  49
-[1] 161 107  52
-[1] 162 107  45
-[1] 163 107  72
-[1] 164 107  31
-[1] 165 107  68
-[1] 166 107  49
-[1] 167 107  44
-[1] 168 107  70
-[1] 169 107  47
-[1] 170 107  35
-[1] 171 107  47
-[1] 172 107  50
-[1] 173 107  45
-[1] 174 107  40
-[1] 175 107  59
-[1] 176 107  34
-[1] 177 107  50
-[1] 178 107  47
-[1] 179 107  37
-[1] 180 107  41
-[1] 181 107  41
-[1] 182 107  55
-[1] 183 107  46
-[1] 184 107  35
-[1] 185 107  45
-[1] 186 107  87
-[1] 187 107  49
-[1] 188 107  68
-[1] 189 107  62
-[1] 190 107  65
-[1] 191 107  59
-[1] 192 107  46
-[1] 193 107  49
-[1] 194 107  56
-[1] 195 107  69
-[1] 196 107  34
-[1] 197 107  62
-[1] 198 107  44
-[1] 199 107  52
-[1] 200 107  33
-[1]   1 108  59
-[1]   2 108  37
-[1]   3 108  42
-[1]   4 108  46
-[1]   5 108  35
-[1]   6 108  40
-[1]   7 108  43
-[1]   8 108  33
-[1]   9 108  39
-[1]  10 108  27
-[1]  11 108  50
-[1]  12 108  40
-[1]  13 108  46
-[1]  14 108  37
-[1]  15 108  30
-[1]  16 108  39
-[1]  17 108  41
-[1]  18 108  51
-[1]  19 108  34
-[1]  20 108  55
-[1]  21 108  46
-[1]  22 108  38
-[1]  23 108  42
-[1]  24 108  39
-[1]  25 108  42
-[1]  26 108  60
-[1]  27 108  37
-[1]  28 108  86
-[1]  29 108  41
-[1]  30 108  32
-[1]  31 108  49
-[1]  32 108  48
-[1]  33 108  31
-[1]  34 108  45
-[1]  35 108  49
-[1]  36 108  64
-[1]  37 108  38
-[1]  38 108  34
-[1]  39 108  51
-[1]  40 108  70
-[1]  41 108  45
-[1]  42 108  34
-[1]  43 108  62
-[1]  44 108  54
-[1]  45 108  55
-[1]  46 108  47
-[1]  47 108  45
-[1]  48 108  59
-[1]  49 108  53
-[1]  50 108  46
-[1]  51 108  65
-[1]  52 108  52
-[1]  53 108  43
-[1]  54 108  32
-[1]  55 108  55
-[1]  56 108  45
-[1]  57 108  33
-[1]  58 108  60
-[1]  59 108  43
-[1]  60 108  63
-[1]  61 108  44
-[1]  62 108  49
-[1]  63 108  82
-[1]  64 108  44
-[1]  65 108  55
-[1]  66 108  92
-[1]  67 108  57
-[1]  68 108  40
-[1]  69 108  51
-[1]  70 108  37
-[1]  71 108  35
-[1]  72 108  56
-[1]  73 108  38
-[1]  74 108  70
-[1]  75 108  47
-[1]  76 108  49
-[1]  77 108  69
-[1]  78 108  63
-[1]  79 108  56
-[1]  80 108  51
-[1]  81 108  57
-[1]  82 108  50
-[1]  83 108  62
-[1]  84 108  37
-[1]  85 108  40
-[1]  86 108  57
-[1]  87 108  85
-[1]  88 108  80
-[1]  89 108  41
-[1]  90 108  77
-[1]  91 108  48
-[1]  92 108  42
-[1]  93 108  35
-[1]  94 108  42
-[1]  95 108  69
-[1]  96 108  39
-[1]  97 108  72
-[1]  98 108  55
-[1]  99 108  56
-[1] 100 108  42
-[1] 101 108  51
-[1] 102 108  49
-[1] 103 108  78
-[1] 104 108  63
-[1] 105 108  58
-[1] 106 108  59
-[1] 107 108  33
-[1] 108 108  70
-[1] 109 108  38
-[1] 110 108  49
-[1] 111 108  49
-[1] 112 108  62
-[1] 113 108  53
-[1] 114 108  72
-[1] 115 108  74
-[1] 116 108  47
-[1] 117 108  53
-[1] 118 108  57
-[1] 119 108  58
-[1] 120 108  53
-[1] 121 108  62
-[1] 122 108  33
-[1] 123 108  56
-[1] 124 108  77
-[1] 125 108  50
-[1] 126 108  53
-[1] 127 108  55
-[1] 128 108  38
-[1] 129 108  65
-[1] 130 108  50
-[1] 131 108  57
-[1] 132 108  41
-[1] 133 108  51
-[1] 134 108  60
-[1] 135 108  40
-[1] 136 108  61
-[1] 137 108  58
-[1] 138 108  59
-[1] 139 108  48
-[1] 140 108  55
-[1] 141 108  40
-[1] 142 108  29
-[1] 143 108  69
-[1] 144 108  64
-[1] 145 108  47
-[1] 146 108  66
-[1] 147 108  43
-[1] 148 108  68
-[1] 149 108  55
-[1] 150 108  45
-[1] 151 108  56
-[1] 152 108  43
-[1] 153 108  26
-[1] 154 108 102
-[1] 155 108  55
-[1] 156 108  42
-[1] 157 108  43
-[1] 158 108  38
-[1] 159 108  59
-[1] 160 108  31
-[1] 161 108  55
-[1] 162 108  40
-[1] 163 108  67
-[1] 164 108  38
-[1] 165 108  47
-[1] 166 108  38
-[1] 167 108  38
-[1] 168 108  58
-[1] 169 108  40
-[1] 170 108  51
-[1] 171 108  56
-[1] 172 108  50
-[1] 173 108  73
-[1] 174 108  49
-[1] 175 108  34
-[1] 176 108  48
-[1] 177 108  76
-[1] 178 108  48
-[1] 179 108  62
-[1] 180 108  41
-[1] 181 108  57
-[1] 182 108  50
-[1] 183 108  99
-[1] 184 108  43
-[1] 185 108  49
-[1] 186 108  50
-[1] 187 108  41
-[1] 188 108  58
-[1] 189 108  40
-[1] 190 108  63
-[1] 191 108  33
-[1] 192 108  58
-[1] 193 108  53
-[1] 194 108  58
-[1] 195 108  75
-[1] 196 108  47
-[1] 197 108  68
-[1] 198 108  37
-[1] 199 108 106
-[1] 200 108  41
-[1]   1 109  25
-[1]   2 109  29
-[1]   3 109  29
-[1]   4 109  38
-[1]   5 109  42
-[1]   6 109  33
-[1]   7 109  38
-[1]   8 109  43
-[1]   9 109  44
-[1]  10 109  55
-[1]  11 109  33
-[1]  12 109  40
-[1]  13 109  41
-[1]  14 109  36
-[1]  15 109  61
-[1]  16 109  45
-[1]  17 109  33
-[1]  18 109  56
-[1]  19 109  30
-[1]  20 109  62
-[1]  21 109  75
-[1]  22 109  39
-[1]  23 109  40
-[1]  24 109  39
-[1]  25 109  41
-[1]  26 109  40
-[1]  27 109  57
-[1]  28 109  40
-[1]  29 109  49
-[1]  30 109  33
-[1]  31 109 100
-[1]  32 109  53
-[1]  33 109  59
-[1]  34 109  42
-[1]  35 109  33
-[1]  36 109  38
-[1]  37 109  62
-[1]  38 109  44
-[1]  39 109  64
-[1]  40 109  42
-[1]  41 109  39
-[1]  42 109  52
-[1]  43 109  45
-[1]  44 109  48
-[1]  45 109  35
-[1]  46 109  44
-[1]  47 109  44
-[1]  48 109  36
-[1]  49 109  35
-[1]  50 109  38
-[1]  51 109  35
-[1]  52 109  38
-[1]  53 109  65
-[1]  54 109  50
-[1]  55 109  56
-[1]  56 109  47
-[1]  57 109  35
-[1]  58 109  38
-[1]  59 109  54
-[1]  60 109  49
-[1]  61 109  34
-[1]  62 109  49
-[1]  63 109  59
-[1]  64 109  61
-[1]  65 109  31
-[1]  66 109  44
-[1]  67 109  40
-[1]  68 109  42
-[1]  69 109  66
-[1]  70 109  62
-[1]  71 109  50
-[1]  72 109  49
-[1]  73 109  54
-[1]  74 109  63
-[1]  75 109  68
-[1]  76 109  47
-[1]  77 109  48
-[1]  78 109  72
-[1]  79 109  76
-[1]  80 109  51
-[1]  81 109  42
-[1]  82 109  63
-[1]  83 109  40
-[1]  84 109  48
-[1]  85 109  52
-[1]  86 109  53
-[1]  87 109  55
-[1]  88 109  46
-[1]  89 109  49
-[1]  90 109  75
-[1]  91 109  63
-[1]  92 109  56
-[1]  93 109  69
-[1]  94 109  42
-[1]  95 109  40
-[1]  96 109  40
-[1]  97 109  63
-[1]  98 109  55
-[1]  99 109  55
-[1] 100 109  72
-[1] 101 109  58
-[1] 102 109  39
-[1] 103 109  41
-[1] 104 109  68
-[1] 105 109  60
-[1] 106 109  39
-[1] 107 109  76
-[1] 108 109  49
-[1] 109 109  64
-[1] 110 109  43
-[1] 111 109  38
-[1] 112 109  59
-[1] 113 109  36
-[1] 114 109  47
-[1] 115 109  46
-[1] 116 109  39
-[1] 117 109  58
-[1] 118 109  41
-[1] 119 109  71
-[1] 120 109  32
-[1] 121 109  61
-[1] 122 109  38
-[1] 123 109  43
-[1] 124 109  30
-[1] 125 109  45
-[1] 126 109  53
-[1] 127 109  47
-[1] 128 109  46
-[1] 129 109  43
-[1] 130 109  60
-[1] 131 109  59
-[1] 132 109  48
-[1] 133 109  76
-[1] 134 109  58
-[1] 135 109  48
-[1] 136 109  64
-[1] 137 109  72
-[1] 138 109  44
-[1] 139 109  39
-[1] 140 109  62
-[1] 141 109  52
-[1] 142 109  40
-[1] 143 109  55
-[1] 144 109  54
-[1] 145 109  47
-[1] 146 109  53
-[1] 147 109  39
-[1] 148 109  29
-[1] 149 109  64
-[1] 150 109  56
-[1] 151 109  43
-[1] 152 109  44
-[1] 153 109  76
-[1] 154 109  52
-[1] 155 109  60
-[1] 156 109  77
-[1] 157 109  40
-[1] 158 109  45
-[1] 159 109  56
-[1] 160 109  53
-[1] 161 109  40
-[1] 162 109  51
-[1] 163 109 101
-[1] 164 109  35
-[1] 165 109  38
-[1] 166 109  45
-[1] 167 109  38
-[1] 168 109  39
-[1] 169 109  60
-[1] 170 109  47
-[1] 171 109  44
-[1] 172 109  47
-[1] 173 109  43
-[1] 174 109  41
-[1] 175 109  67
-[1] 176 109  37
-[1] 177 109  53
-[1] 178 109  60
-[1] 179 109  51
-[1] 180 109  48
-[1] 181 109  43
-[1] 182 109  61
-[1] 183 109  54
-[1] 184 109  48
-[1] 185 109  47
-[1] 186 109  47
-[1] 187 109  42
-[1] 188 109  43
-[1] 189 109  71
-[1] 190 109  39
-[1] 191 109  38
-[1] 192 109  69
-[1] 193 109  66
-[1] 194 109  62
-[1] 195 109  44
-[1] 196 109  61
-[1] 197 109  49
-[1] 198 109  44
-[1] 199 109  49
-[1] 200 109  43
-[1]   1 110  41
-[1]   2 110  38
-[1]   3 110  35
-[1]   4 110  35
-[1]   5 110  52
-[1]   6 110  39
-[1]   7 110  46
-[1]   8 110  33
-[1]   9 110  41
-[1]  10 110  48
-[1]  11 110  37
-[1]  12 110  26
-[1]  13 110  57
-[1]  14 110  41
-[1]  15 110  62
-[1]  16 110  32
-[1]  17 110  35
-[1]  18 110  41
-[1]  19 110  54
-[1]  20 110  39
-[1]  21 110  32
-[1]  22 110  43
-[1]  23 110  32
-[1]  24 110  45
-[1]  25 110  37
-[1]  26 110  31
-[1]  27 110  50
-[1]  28 110  36
-[1]  29 110  39
-[1]  30 110  36
-[1]  31 110  39
-[1]  32 110  34
-[1]  33 110  29
-[1]  34 110  50
-[1]  35 110  40
-[1]  36 110  53
-[1]  37 110  69
-[1]  38 110  45
-[1]  39 110  40
-[1]  40 110  71
-[1]  41 110  41
-[1]  42 110  40
-[1]  43 110  37
-[1]  44 110  48
-[1]  45 110  37
-[1]  46 110  48
-[1]  47 110  33
-[1]  48 110  46
-[1]  49 110  45
-[1]  50 110  36
-[1]  51 110  37
-[1]  52 110  51
-[1]  53 110  70
-[1]  54 110  43
-[1]  55 110  32
-[1]  56 110  44
-[1]  57 110  42
-[1]  58 110  48
-[1]  59 110  55
-[1]  60 110  30
-[1]  61 110  57
-[1]  62 110  41
-[1]  63 110  43
-[1]  64 110  45
-[1]  65 110  57
-[1]  66 110  64
-[1]  67 110  51
-[1]  68 110  39
-[1]  69 110  52
-[1]  70 110  39
-[1]  71 110  42
-[1]  72 110  55
-[1]  73 110  66
-[1]  74 110  51
-[1]  75 110  56
-[1]  76 110  57
-[1]  77 110  51
-[1]  78 110 112
-[1]  79 110  83
-[1]  80 110  72
-[1]  81 110  49
-[1]  82 110  54
-[1]  83 110  61
-[1]  84 110  49
-[1]  85 110  59
-[1]  86 110  41
-[1]  87 110  60
-[1]  88 110  51
-[1]  89 110  44
-[1]  90 110  42
-[1]  91 110  35
-[1]  92 110  94
-[1]  93 110  51
-[1]  94 110  38
-[1]  95 110  83
-[1]  96 110  48
-[1]  97 110  51
-[1]  98 110  62
-[1]  99 110  42
-[1] 100 110  47
-[1] 101 110  64
-[1] 102 110  46
-[1] 103 110  46
-[1] 104 110  44
-[1] 105 110  79
-[1] 106 110  47
-[1] 107 110  48
-[1] 108 110  57
-[1] 109 110  59
-[1] 110 110  34
-[1] 111 110  46
-[1] 112 110  33
-[1] 113 110  74
-[1] 114 110  69
-[1] 115 110  36
-[1] 116 110  77
-[1] 117 110  55
-[1] 118 110  53
-[1] 119 110  50
-[1] 120 110  69
-[1] 121 110  54
-[1] 122 110  39
-[1] 123 110  78
-[1] 124 110  67
-[1] 125 110  64
-[1] 126 110  44
-[1] 127 110  50
-[1] 128 110  50
-[1] 129 110  81
-[1] 130 110  54
-[1] 131 110  71
-[1] 132 110  45
-[1] 133 110  70
-[1] 134 110  59
-[1] 135 110  48
-[1] 136 110  49
-[1] 137 110  64
-[1] 138 110  35
-[1] 139 110  72
-[1] 140 110  39
-[1] 141 110  40
-[1] 142 110  42
-[1] 143 110  84
-[1] 144 110  40
-[1] 145 110  53
-[1] 146 110  48
-[1] 147 110  68
-[1] 148 110  53
-[1] 149 110  59
-[1] 150 110  57
-[1] 151 110  46
-[1] 152 110  57
-[1] 153 110  49
-[1] 154 110  70
-[1] 155 110  47
-[1] 156 110  58
-[1] 157 110  56
-[1] 158 110  55
-[1] 159 110  35
-[1] 160 110  47
-[1] 161 110  66
-[1] 162 110  40
-[1] 163 110  33
-[1] 164 110  60
-[1] 165 110  47
-[1] 166 110  32
-[1] 167 110  95
-[1] 168 110  39
-[1] 169 110  38
-[1] 170 110  49
-[1] 171 110  41
-[1] 172 110  45
-[1] 173 110  51
-[1] 174 110  44
-[1] 175 110  56
-[1] 176 110  37
-[1] 177 110  47
-[1] 178 110  62
-[1] 179 110  46
-[1] 180 110  38
-[1] 181 110  45
-[1] 182 110  39
-[1] 183 110  44
-[1] 184 110  43
-[1] 185 110  40
-[1] 186 110  43
-[1] 187 110  41
-[1] 188 110  56
-[1] 189 110  55
-[1] 190 110  32
-[1] 191 110  75
-[1] 192 110  58
-[1] 193 110  73
-[1] 194 110  48
-[1] 195 110  50
-[1] 196 110  51
-[1] 197 110  50
-[1] 198 110  89
-[1] 199 110  39
-[1] 200 110  51
-[1]   1 111  35
-[1]   2 111  26
-[1]   3 111  33
-[1]   4 111  39
-[1]   5 111  32
-[1]   6 111  25
-[1]   7 111  48
-[1]   8 111  45
-[1]   9 111  52
-[1]  10 111  50
-[1]  11 111  46
-[1]  12 111  34
-[1]  13 111  31
-[1]  14 111  33
-[1]  15 111  34
-[1]  16 111  32
-[1]  17 111  32
-[1]  18 111  70
-[1]  19 111  42
-[1]  20 111  36
-[1]  21 111  59
-[1]  22 111  43
-[1]  23 111  32
-[1]  24 111  39
-[1]  25 111  42
-[1]  26 111  31
-[1]  27 111  41
-[1]  28 111  42
-[1]  29 111  37
-[1]  30 111  36
-[1]  31 111  58
-[1]  32 111  57
-[1]  33 111  31
-[1]  34 111  63
-[1]  35 111  54
-[1]  36 111  33
-[1]  37 111  36
-[1]  38 111  52
-[1]  39 111  46
-[1]  40 111  32
-[1]  41 111  37
-[1]  42 111  64
-[1]  43 111  49
-[1]  44 111  38
-[1]  45 111  39
-[1]  46 111  28
-[1]  47 111  69
-[1]  48 111  76
-[1]  49 111  51
-[1]  50 111  52
-[1]  51 111  49
-[1]  52 111  63
-[1]  53 111  30
-[1]  54 111  39
-[1]  55 111  40
-[1]  56 111  51
-[1]  57 111  58
-[1]  58 111  66
-[1]  59 111  29
-[1]  60 111  51
-[1]  61 111  49
-[1]  62 111  79
-[1]  63 111  47
-[1]  64 111  39
-[1]  65 111  51
-[1]  66 111  74
-[1]  67 111  43
-[1]  68 111  45
-[1]  69 111  35
-[1]  70 111  76
-[1]  71 111  56
-[1]  72 111  73
-[1]  73 111  59
-[1]  74 111  66
-[1]  75 111  51
-[1]  76 111  85
-[1]  77 111  55
-[1]  78 111  51
-[1]  79 111  37
-[1]  80 111  53
-[1]  81 111  66
-[1]  82 111  52
-[1]  83 111  49
-[1]  84 111  60
-[1]  85 111  57
-[1]  86 111  41
-[1]  87 111  46
-[1]  88 111  51
-[1]  89 111  54
-[1]  90 111  43
-[1]  91 111  52
-[1]  92 111  77
-[1]  93 111  41
-[1]  94 111  92
-[1]  95 111  56
-[1]  96 111  37
-[1]  97 111  49
-[1]  98 111  60
-[1]  99 111  40
-[1] 100 111  65
-[1] 101 111  52
-[1] 102 111  54
-[1] 103 111  95
-[1] 104 111  51
-[1] 105 111  71
-[1] 106 111  51
-[1] 107 111  62
-[1] 108 111  55
-[1] 109 111  59
-[1] 110 111  36
-[1] 111 111  49
-[1] 112 111  73
-[1] 113 111  41
-[1] 114 111  53
-[1] 115 111  49
-[1] 116 111  33
-[1] 117 111  96
-[1] 118 111  51
-[1] 119 111  42
-[1] 120 111  44
-[1] 121 111  55
-[1] 122 111  39
-[1] 123 111  54
-[1] 124 111  55
-[1] 125 111  46
-[1] 126 111  53
-[1] 127 111  59
-[1] 128 111  54
-[1] 129 111  40
-[1] 130 111  42
-[1] 131 111  70
-[1] 132 111  42
-[1] 133 111  61
-[1] 134 111  31
-[1] 135 111  52
-[1] 136 111  59
-[1] 137 111  55
-[1] 138 111  43
-[1] 139 111  62
-[1] 140 111  52
-[1] 141 111  46
-[1] 142 111  51
-[1] 143 111  33
-[1] 144 111  52
-[1] 145 111  61
-[1] 146 111 114
-[1] 147 111  79
-[1] 148 111  43
-[1] 149 111  57
-[1] 150 111  59
-[1] 151 111  57
-[1] 152 111  47
-[1] 153 111  55
-[1] 154 111  50
-[1] 155 111  45
-[1] 156 111  55
-[1] 157 111  43
-[1] 158 111 129
-[1] 159 111  49
-[1] 160 111  37
-[1] 161 111  46
-[1] 162 111  54
-[1] 163 111  55
-[1] 164 111  74
-[1] 165 111  43
-[1] 166 111  53
-[1] 167 111  45
-[1] 168 111  59
-[1] 169 111  40
-[1] 170 111  46
-[1] 171 111  34
-[1] 172 111  39
-[1] 173 111  52
-[1] 174 111  47
-[1] 175 111  26
-[1] 176 111  65
-[1] 177 111  35
-[1] 178 111  80
-[1] 179 111  41
-[1] 180 111  50
-[1] 181 111  41
-[1] 182 111  42
-[1] 183 111  53
-[1] 184 111  49
-[1] 185 111  50
-[1] 186 111  26
-[1] 187 111  81
-[1] 188 111  50
-[1] 189 111  47
-[1] 190 111  55
-[1] 191 111  32
-[1] 192 111  68
-[1] 193 111  43
-[1] 194 111  59
-[1] 195 111  61
-[1] 196 111  54
-[1] 197 111  54
-[1] 198 111  49
-[1] 199 111  63
-[1] 200 111  49
-[1]   1 112  35
-[1]   2 112  39
-[1]   3 112  31
-[1]   4 112  38
-[1]   5 112  44
-[1]   6 112  35
-[1]   7 112  68
-[1]   8 112  33
-[1]   9 112  32
-[1]  10 112  55
-[1]  11 112  39
-[1]  12 112  49
-[1]  13 112  38
-[1]  14 112  34
-[1]  15 112  28
-[1]  16 112  45
-[1]  17 112  38
-[1]  18 112  43
-[1]  19 112  41
-[1]  20 112  38
-[1]  21 112  32
-[1]  22 112  34
-[1]  23 112  46
-[1]  24 112  32
-[1]  25 112  41
-[1]  26 112  35
-[1]  27 112  36
-[1]  28 112  41
-[1]  29 112  40
-[1]  30 112  36
-[1]  31 112  39
-[1]  32 112  31
-[1]  33 112  34
-[1]  34 112  45
-[1]  35 112  39
-[1]  36 112  40
-[1]  37 112  34
-[1]  38 112  61
-[1]  39 112  35
-[1]  40 112  56
-[1]  41 112  47
-[1]  42 112  33
-[1]  43 112  32
-[1]  44 112  35
-[1]  45 112  52
-[1]  46 112  44
-[1]  47 112  58
-[1]  48 112  40
-[1]  49 112  52
-[1]  50 112  36
-[1]  51 112  79
-[1]  52 112  65
-[1]  53 112  39
-[1]  54 112  44
-[1]  55 112  41
-[1]  56 112  50
-[1]  57 112  65
-[1]  58 112  46
-[1]  59 112  43
-[1]  60 112  44
-[1]  61 112  39
-[1]  62 112  36
-[1]  63 112  59
-[1]  64 112  71
-[1]  65 112  39
-[1]  66 112  63
-[1]  67 112  47
-[1]  68 112  64
-[1]  69 112  57
-[1]  70 112  47
-[1]  71 112  35
-[1]  72 112  49
-[1]  73 112  50
-[1]  74 112  61
-[1]  75 112  95
-[1]  76 112  61
-[1]  77 112  40
-[1]  78 112  61
-[1]  79 112  77
-[1]  80 112  46
-[1]  81 112  30
-[1]  82 112  56
-[1]  83 112  39
-[1]  84 112  52
-[1]  85 112  62
-[1]  86 112  69
-[1]  87 112  54
-[1]  88 112  86
-[1]  89 112  43
-[1]  90 112  57
-[1]  91 112  47
-[1]  92 112  56
-[1]  93 112  50
-[1]  94 112  85
-[1]  95 112  43
-[1]  96 112  76
-[1]  97 112  37
-[1]  98 112  51
-[1]  99 112  34
-[1] 100 112  74
-[1] 101 112  78
-[1] 102 112  70
-[1] 103 112  42
-[1] 104 112  47
-[1] 105 112  50
-[1] 106 112  50
-[1] 107 112  43
-[1] 108 112  29
-[1] 109 112  53
-[1] 110 112  84
-[1] 111 112  63
-[1] 112 112  52
-[1] 113 112  51
-[1] 114 112  56
-[1] 115 112  45
-[1] 116 112  46
-[1] 117 112  87
-[1] 118 112  42
-[1] 119 112  55
-[1] 120 112  44
-[1] 121 112  37
-[1] 122 112  91
-[1] 123 112  52
-[1] 124 112  36
-[1] 125 112  43
-[1] 126 112  70
-[1] 127 112  44
-[1] 128 112  56
-[1] 129 112 102
-[1] 130 112  45
-[1] 131 112  43
-[1] 132 112  46
-[1] 133 112  42
-[1] 134 112  43
-[1] 135 112  57
-[1] 136 112  46
-[1] 137 112  39
-[1] 138 112  56
-[1] 139 112  39
-[1] 140 112  42
-[1] 141 112  37
-[1] 142 112  41
-[1] 143 112  84
-[1] 144 112  42
-[1] 145 112  43
-[1] 146 112  49
-[1] 147 112  54
-[1] 148 112  43
-[1] 149 112  60
-[1] 150 112  39
-[1] 151 112  46
-[1] 152 112  37
-[1] 153 112  52
-[1] 154 112  51
-[1] 155 112  62
-[1] 156 112  47
-[1] 157 112  39
-[1] 158 112  48
-[1] 159 112  29
-[1] 160 112  33
-[1] 161 112  48
-[1] 162 112  85
-[1] 163 112  40
-[1] 164 112  49
-[1] 165 112  38
-[1] 166 112  65
-[1] 167 112  36
-[1] 168 112  47
-[1] 169 112  48
-[1] 170 112  55
-[1] 171 112  60
-[1] 172 112  41
-[1] 173 112  57
-[1] 174 112 126
-[1] 175 112  46
-[1] 176 112  45
-[1] 177 112  54
-[1] 178 112  41
-[1] 179 112  43
-[1] 180 112  50
-[1] 181 112  63
-[1] 182 112  35
-[1] 183 112  38
-[1] 184 112  47
-[1] 185 112  37
-[1] 186 112  48
-[1] 187 112  57
-[1] 188 112  47
-[1] 189 112  49
-[1] 190 112  45
-[1] 191 112  35
-[1] 192 112  62
-[1] 193 112  50
-[1] 194 112  55
-[1] 195 112  73
-[1] 196 112  60
-[1] 197 112  53
-[1] 198 112  47
-[1] 199 112  46
-[1] 200 112  55
-[1]   1 113  41
-[1]   2 113  43
-[1]   3 113  42
-[1]   4 113  43
-[1]   5 113  32
-[1]   6 113  49
-[1]   7 113  40
-[1]   8 113  31
-[1]   9 113  83
-[1]  10 113  42
-[1]  11 113  35
-[1]  12 113  36
-[1]  13 113  41
-[1]  14 113  56
-[1]  15 113  45
-[1]  16 113  37
-[1]  17 113  36
-[1]  18 113  44
-[1]  19 113  39
-[1]  20 113  37
-[1]  21 113  36
-[1]  22 113  30
-[1]  23 113  49
-[1]  24 113  33
-[1]  25 113  30
-[1]  26 113  33
-[1]  27 113  49
-[1]  28 113  36
-[1]  29 113  35
-[1]  30 113  55
-[1]  31 113  50
-[1]  32 113  45
-[1]  33 113  34
-[1]  34 113  42
-[1]  35 113  43
-[1]  36 113  57
-[1]  37 113  47
-[1]  38 113  40
-[1]  39 113  31
-[1]  40 113  36
-[1]  41 113  31
-[1]  42 113  58
-[1]  43 113  54
-[1]  44 113  68
-[1]  45 113  54
-[1]  46 113  32
-[1]  47 113  71
-[1]  48 113  31
-[1]  49 113  52
-[1]  50 113  50
-[1]  51 113  34
-[1]  52 113  40
-[1]  53 113  41
-[1]  54 113  44
-[1]  55 113  59
-[1]  56 113  52
-[1]  57 113  43
-[1]  58 113  71
-[1]  59 113  44
-[1]  60 113  65
-[1]  61 113  60
-[1]  62 113  57
-[1]  63 113  37
-[1]  64 113  49
-[1]  65 113  51
-[1]  66 113  48
-[1]  67 113  43
-[1]  68 113  53
-[1]  69 113  40
-[1]  70 113  59
-[1]  71 113  63
-[1]  72 113  78
-[1]  73 113  37
-[1]  74 113  37
-[1]  75 113  33
-[1]  76 113  50
-[1]  77 113  35
-[1]  78 113  44
-[1]  79 113  41
-[1]  80 113  79
-[1]  81 113  32
-[1]  82 113  40
-[1]  83 113  41
-[1]  84 113  36
-[1]  85 113  60
-[1]  86 113  54
-[1]  87 113  40
-[1]  88 113  51
-[1]  89 113  41
-[1]  90 113  48
-[1]  91 113  50
-[1]  92 113  38
-[1]  93 113  56
-[1]  94 113  41
-[1]  95 113  45
-[1]  96 113  47
-[1]  97 113  56
-[1]  98 113  55
-[1]  99 113  71
-[1] 100 113  42
-[1] 101 113  53
-[1] 102 113  51
-[1] 103 113  29
-[1] 104 113  86
-[1] 105 113  62
-[1] 106 113  43
-[1] 107 113  65
-[1] 108 113  56
-[1] 109 113  59
-[1] 110 113  31
-[1] 111 113  54
-[1] 112 113  36
-[1] 113 113  57
-[1] 114 113  31
-[1] 115 113  62
-[1] 116 113  33
-[1] 117 113  91
-[1] 118 113  60
-[1] 119 113  36
-[1] 120 113  49
-[1] 121 113  84
-[1] 122 113  58
-[1] 123 113  32
-[1] 124 113  33
-[1] 125 113  48
-[1] 126 113  55
-[1] 127 113  40
-[1] 128 113  53
-[1] 129 113  65
-[1] 130 113  58
-[1] 131 113  50
-[1] 132 113  53
-[1] 133 113  66
-[1] 134 113  69
-[1] 135 113  57
-[1] 136 113  36
-[1] 137 113  69
-[1] 138 113  46
-[1] 139 113  63
-[1] 140 113  50
-[1] 141 113  47
-[1] 142 113  80
-[1] 143 113  45
-[1] 144 113  31
-[1] 145 113  70
-[1] 146 113  41
-[1] 147 113  38
-[1] 148 113  39
-[1] 149 113  53
-[1] 150 113  44
-[1] 151 113  41
-[1] 152 113  48
-[1] 153 113  47
-[1] 154 113  36
-[1] 155 113  37
-[1] 156 113  36
-[1] 157 113  55
-[1] 158 113  37
-[1] 159 113  47
-[1] 160 113  44
-[1] 161 113  48
-[1] 162 113  48
-[1] 163 113  39
-[1] 164 113  39
-[1] 165 113  33
-[1] 166 113  60
-[1] 167 113  36
-[1] 168 113  63
-[1] 169 113  42
-[1] 170 113  36
-[1] 171 113  47
-[1] 172 113  50
-[1] 173 113  41
-[1] 174 113  50
-[1] 175 113  54
-[1] 176 113  96
-[1] 177 113  61
-[1] 178 113  36
-[1] 179 113 108
-[1] 180 113  74
-[1] 181 113  48
-[1] 182 113  52
-[1] 183 113  57
-[1] 184 113  75
-[1] 185 113  38
-[1] 186 113 110
-[1] 187 113  42
-[1] 188 113  80
-[1] 189 113  49
-[1] 190 113  37
-[1] 191 113  45
-[1] 192 113  46
-[1] 193 113  43
-[1] 194 113  92
-[1] 195 113  51
-[1] 196 113  79
-[1] 197 113  50
-[1] 198 113  50
-[1] 199 113  34
-[1] 200 113  42
-[1]   1 114  36
-[1]   2 114  42
-[1]   3 114  34
-[1]   4 114  31
-[1]   5 114  41
-[1]   6 114  31
-[1]   7 114  49
-[1]   8 114  47
-[1]   9 114  29
-[1]  10 114  33
-[1]  11 114  36
-[1]  12 114  62
-[1]  13 114  53
-[1]  14 114  32
-[1]  15 114  33
-[1]  16 114  40
-[1]  17 114  33
-[1]  18 114  33
-[1]  19 114  44
-[1]  20 114  53
-[1]  21 114  43
-[1]  22 114  42
-[1]  23 114  26
-[1]  24 114  33
-[1]  25 114  47
-[1]  26 114  30
-[1]  27 114  29
-[1]  28 114  30
-[1]  29 114  34
-[1]  30 114  49
-[1]  31 114  35
-[1]  32 114  35
-[1]  33 114  44
-[1]  34 114  61
-[1]  35 114  34
-[1]  36 114  44
-[1]  37 114  55
-[1]  38 114  29
-[1]  39 114  37
-[1]  40 114  40
-[1]  41 114  31
-[1]  42 114  68
-[1]  43 114  33
-[1]  44 114  30
-[1]  45 114  45
-[1]  46 114  38
-[1]  47 114  55
-[1]  48 114  38
-[1]  49 114  53
-[1]  50 114  44
-[1]  51 114  39
-[1]  52 114  29
-[1]  53 114  98
-[1]  54 114  57
-[1]  55 114  38
-[1]  56 114  37
-[1]  57 114  66
-[1]  58 114  57
-[1]  59 114  57
-[1]  60 114  36
-[1]  61 114  45
-[1]  62 114  45
-[1]  63 114  38
-[1]  64 114  62
-[1]  65 114  48
-[1]  66 114  41
-[1]  67 114  50
-[1]  68 114  63
-[1]  69 114  87
-[1]  70 114  51
-[1]  71 114  81
-[1]  72 114  54
-[1]  73 114  37
-[1]  74 114  42
-[1]  75 114  66
-[1]  76 114  95
-[1]  77 114  94
-[1]  78 114  73
-[1]  79 114  55
-[1]  80 114  58
-[1]  81 114  59
-[1]  82 114  42
-[1]  83 114  60
-[1]  84 114  58
-[1]  85 114  38
-[1]  86 114  45
-[1]  87 114  41
-[1]  88 114  37
-[1]  89 114  44
-[1]  90 114  40
-[1]  91 114  53
-[1]  92 114  48
-[1]  93 114  75
-[1]  94 114  82
-[1]  95 114  56
-[1]  96 114  49
-[1]  97 114  40
-[1]  98 114  65
-[1]  99 114  54
-[1] 100 114  47
-[1] 101 114  83
-[1] 102 114  53
-[1] 103 114  58
-[1] 104 114  50
-[1] 105 114  85
-[1] 106 114  36
-[1] 107 114  61
-[1] 108 114  48
-[1] 109 114  55
-[1] 110 114  42
-[1] 111 114  91
-[1] 112 114  36
-[1] 113 114  74
-[1] 114 114  49
-[1] 115 114  92
-[1] 116 114  44
-[1] 117 114  37
-[1] 118 114  42
-[1] 119 114  71
-[1] 120 114  69
-[1] 121 114  64
-[1] 122 114  49
-[1] 123 114  68
-[1] 124 114  55
-[1] 125 114  44
-[1] 126 114  37
-[1] 127 114  53
-[1] 128 114  48
-[1] 129 114  45
-[1] 130 114  32
-[1] 131 114  54
-[1] 132 114  69
-[1] 133 114  49
-[1] 134 114  36
-[1] 135 114  60
-[1] 136 114  52
-[1] 137 114  46
-[1] 138 114  69
-[1] 139 114  50
-[1] 140 114  40
-[1] 141 114  52
-[1] 142 114  56
-[1] 143 114  47
-[1] 144 114  42
-[1] 145 114  43
-[1] 146 114  44
-[1] 147 114  58
-[1] 148 114  47
-[1] 149 114  91
-[1] 150 114  48
-[1] 151 114  37
-[1] 152 114  50
-[1] 153 114  61
-[1] 154 114  53
-[1] 155 114  88
-[1] 156 114  49
-[1] 157 114  56
-[1] 158 114  55
-[1] 159 114  45
-[1] 160 114  44
-[1] 161 114  43
-[1] 162 114  46
-[1] 163 114  45
-[1] 164 114  47
-[1] 165 114  50
-[1] 166 114  52
-[1] 167 114  46
-[1] 168 114  54
-[1] 169 114  47
-[1] 170 114  76
-[1] 171 114  44
-[1] 172 114  67
-[1] 173 114  44
-[1] 174 114  35
-[1] 175 114  35
-[1] 176 114  44
-[1] 177 114  47
-[1] 178 114  39
-[1] 179 114  54
-[1] 180 114  62
-[1] 181 114  48
-[1] 182 114  86
-[1] 183 114  49
-[1] 184 114  54
-[1] 185 114  49
-[1] 186 114  84
-[1] 187 114  50
-[1] 188 114  41
-[1] 189 114  55
-[1] 190 114  78
-[1] 191 114  61
-[1] 192 114  59
-[1] 193 114  47
-[1] 194 114  59
-[1] 195 114  51
-[1] 196 114  49
-[1] 197 114  50
-[1] 198 114  58
-[1] 199 114  45
-[1] 200 114  47
-[1]   1 115  27
-[1]   2 115  30
-[1]   3 115  44
-[1]   4 115  38
-[1]   5 115  27
-[1]   6 115  68
-[1]   7 115  30
-[1]   8 115  37
-[1]   9 115  29
-[1]  10 115  40
-[1]  11 115  62
-[1]  12 115  35
-[1]  13 115  31
-[1]  14 115  34
-[1]  15 115  41
-[1]  16 115  46
-[1]  17 115  51
-[1]  18 115  50
-[1]  19 115  45
-[1]  20 115  53
-[1]  21 115  51
-[1]  22 115  45
-[1]  23 115  48
-[1]  24 115  51
-[1]  25 115  47
-[1]  26 115  39
-[1]  27 115  53
-[1]  28 115  38
-[1]  29 115  46
-[1]  30 115  40
-[1]  31 115  34
-[1]  32 115  40
-[1]  33 115  34
-[1]  34 115  70
-[1]  35 115  56
-[1]  36 115  33
-[1]  37 115  42
-[1]  38 115  56
-[1]  39 115  35
-[1]  40 115  35
-[1]  41 115  57
-[1]  42 115  89
-[1]  43 115  54
-[1]  44 115  48
-[1]  45 115  39
-[1]  46 115  47
-[1]  47 115  37
-[1]  48 115  61
-[1]  49 115  33
-[1]  50 115  39
-[1]  51 115  56
-[1]  52 115  45
-[1]  53 115  38
-[1]  54 115  43
-[1]  55 115  43
-[1]  56 115  38
-[1]  57 115  62
-[1]  58 115  37
-[1]  59 115  50
-[1]  60 115  77
-[1]  61 115  59
-[1]  62 115  48
-[1]  63 115  47
-[1]  64 115  42
-[1]  65 115  57
-[1]  66 115  72
-[1]  67 115  40
-[1]  68 115  46
-[1]  69 115  46
-[1]  70 115  40
-[1]  71 115  52
-[1]  72 115  46
-[1]  73 115  38
-[1]  74 115  53
-[1]  75 115  54
-[1]  76 115  41
-[1]  77 115  66
-[1]  78 115  55
-[1]  79 115  42
-[1]  80 115  81
-[1]  81 115  37
-[1]  82 115  58
-[1]  83 115  53
-[1]  84 115  60
-[1]  85 115  61
-[1]  86 115  57
-[1]  87 115  50
-[1]  88 115  28
-[1]  89 115  55
-[1]  90 115  47
-[1]  91 115  47
-[1]  92 115  82
-[1]  93 115  63
-[1]  94 115  38
-[1]  95 115  52
-[1]  96 115  43
-[1]  97 115  47
-[1]  98 115  32
-[1]  99 115  86
-[1] 100 115  36
-[1] 101 115  53
-[1] 102 115  56
-[1] 103 115  74
-[1] 104 115  55
-[1] 105 115  47
-[1] 106 115  70
-[1] 107 115  40
-[1] 108 115  42
-[1] 109 115  51
-[1] 110 115  43
-[1] 111 115  75
-[1] 112 115  29
-[1] 113 115  64
-[1] 114 115  50
-[1] 115 115  53
-[1] 116 115  37
-[1] 117 115  45
-[1] 118 115  46
-[1] 119 115  37
-[1] 120 115  96
-[1] 121 115  39
-[1] 122 115  69
-[1] 123 115  39
-[1] 124 115  43
-[1] 125 115  56
-[1] 126 115  41
-[1] 127 115  45
-[1] 128 115  44
-[1] 129 115  43
-[1] 130 115  52
-[1] 131 115  39
-[1] 132 115  62
-[1] 133 115  91
-[1] 134 115  87
-[1] 135 115  45
-[1] 136 115  46
-[1] 137 115  42
-[1] 138 115  56
-[1] 139 115  45
-[1] 140 115  51
-[1] 141 115  50
-[1] 142 115  43
-[1] 143 115  65
-[1] 144 115  62
-[1] 145 115  51
-[1] 146 115  44
-[1] 147 115  41
-[1] 148 115  47
-[1] 149 115  55
-[1] 150 115  45
-[1] 151 115  32
-[1] 152 115  54
-[1] 153 115  44
-[1] 154 115  37
-[1] 155 115  40
-[1] 156 115  50
-[1] 157 115  54
-[1] 158 115  66
-[1] 159 115  47
-[1] 160 115  42
-[1] 161 115  48
-[1] 162 115  39
-[1] 163 115  49
-[1] 164 115  45
-[1] 165 115  34
-[1] 166 115  46
-[1] 167 115  64
-[1] 168 115  53
-[1] 169 115  58
-[1] 170 115  30
-[1] 171 115  44
-[1] 172 115  49
-[1] 173 115  52
-[1] 174 115  65
-[1] 175 115  48
-[1] 176 115  37
-[1] 177 115  43
-[1] 178 115  54
-[1] 179 115  69
-[1] 180 115  30
-[1] 181 115  42
-[1] 182 115  56
-[1] 183 115  56
-[1] 184 115  41
-[1] 185 115  40
-[1] 186 115  49
-[1] 187 115  50
-[1] 188 115  61
-[1] 189 115  35
-[1] 190 115  63
-[1] 191 115  60
-[1] 192 115  40
-[1] 193 115  46
-[1] 194 115  69
-[1] 195 115  65
-[1] 196 115  56
-[1] 197 115  31
-[1] 198 115  69
-[1] 199 115  44
-[1] 200 115  41
-[1]   1 116  38
-[1]   2 116  38
-[1]   3 116  40
-[1]   4 116  36
-[1]   5 116  53
-[1]   6 116  30
-[1]   7 116  31
-[1]   8 116  28
-[1]   9 116  46
-[1]  10 116  52
-[1]  11 116  49
-[1]  12 116  40
-[1]  13 116  35
-[1]  14 116  35
-[1]  15 116  44
-[1]  16 116  48
-[1]  17 116  31
-[1]  18 116  33
-[1]  19 116  54
-[1]  20 116  45
-[1]  21 116  32
-[1]  22 116  31
-[1]  23 116  33
-[1]  24 116  76
-[1]  25 116  50
-[1]  26 116  32
-[1]  27 116  45
-[1]  28 116  33
-[1]  29 116  45
-[1]  30 116  38
-[1]  31 116  46
-[1]  32 116  35
-[1]  33 116  36
-[1]  34 116  46
-[1]  35 116  66
-[1]  36 116  51
-[1]  37 116  44
-[1]  38 116  50
-[1]  39 116  41
-[1]  40 116  51
-[1]  41 116  53
-[1]  42 116  64
-[1]  43 116  35
-[1]  44 116  34
-[1]  45 116  47
-[1]  46 116  51
-[1]  47 116  44
-[1]  48 116  34
-[1]  49 116  62
-[1]  50 116  53
-[1]  51 116  46
-[1]  52 116  60
-[1]  53 116  54
-[1]  54 116  55
-[1]  55 116  44
-[1]  56 116  33
-[1]  57 116  48
-[1]  58 116  58
-[1]  59 116  47
-[1]  60 116  86
-[1]  61 116  71
-[1]  62 116  47
-[1]  63 116  51
-[1]  64 116  48
-[1]  65 116  49
-[1]  66 116  42
-[1]  67 116  62
-[1]  68 116  69
-[1]  69 116  63
-[1]  70 116  51
-[1]  71 116  34
-[1]  72 116  62
-[1]  73 116  47
-[1]  74 116  52
-[1]  75 116  67
-[1]  76 116  61
-[1]  77 116  33
-[1]  78 116  52
-[1]  79 116  83
-[1]  80 116  68
-[1]  81 116  56
-[1]  82 116  47
-[1]  83 116  57
-[1]  84 116  35
-[1]  85 116  58
-[1]  86 116  50
-[1]  87 116  50
-[1]  88 116  44
-[1]  89 116  67
-[1]  90 116  46
-[1]  91 116  46
-[1]  92 116  33
-[1]  93 116  53
-[1]  94 116  34
-[1]  95 116  53
-[1]  96 116  33
-[1]  97 116  57
-[1]  98 116  46
-[1]  99 116  54
-[1] 100 116  55
-[1] 101 116  49
-[1] 102 116  60
-[1] 103 116  36
-[1] 104 116  59
-[1] 105 116  67
-[1] 106 116  74
-[1] 107 116  86
-[1] 108 116  39
-[1] 109 116  51
-[1] 110 116  63
-[1] 111 116  60
-[1] 112 116  46
-[1] 113 116  41
-[1] 114 116  44
-[1] 115 116 152
-[1] 116 116  59
-[1] 117 116  51
-[1] 118 116  47
-[1] 119 116  39
-[1] 120 116  68
-[1] 121 116  38
-[1] 122 116  38
-[1] 123 116  57
-[1] 124 116  41
-[1] 125 116 124
-[1] 126 116  61
-[1] 127 116  91
-[1] 128 116  53
-[1] 129 116  42
-[1] 130 116  42
-[1] 131 116  41
-[1] 132 116  34
-[1] 133 116  51
-[1] 134 116  45
-[1] 135 116  50
-[1] 136 116  39
-[1] 137 116  72
-[1] 138 116  40
-[1] 139 116  39
-[1] 140 116  53
-[1] 141 116  41
-[1] 142 116  45
-[1] 143 116  75
-[1] 144 116  66
-[1] 145 116  55
-[1] 146 116  89
-[1] 147 116  56
-[1] 148 116  49
-[1] 149 116  91
-[1] 150 116  82
-[1] 151 116  65
-[1] 152 116  55
-[1] 153 116  50
-[1] 154 116  59
-[1] 155 116  39
-[1] 156 116  55
-[1] 157 116  39
-[1] 158 116  45
-[1] 159 116  55
-[1] 160 116  35
-[1] 161 116  55
-[1] 162 116  37
-[1] 163 116  54
-[1] 164 116  57
-[1] 165 116  39
-[1] 166 116  44
-[1] 167 116  43
-[1] 168 116  40
-[1] 169 116  47
-[1] 170 116  67
-[1] 171 116  42
-[1] 172 116  49
-[1] 173 116  42
-[1] 174 116  50
-[1] 175 116  53
-[1] 176 116  57
-[1] 177 116  51
-[1] 178 116  48
-[1] 179 116  51
-[1] 180 116  67
-[1] 181 116  54
-[1] 182 116  76
-[1] 183 116  37
-[1] 184 116  49
-[1] 185 116  86
-[1] 186 116  45
-[1] 187 116  39
-[1] 188 116  82
-[1] 189 116  80
-[1] 190 116  57
-[1] 191 116  43
-[1] 192 116  78
-[1] 193 116  41
-[1] 194 116  52
-[1] 195 116  48
-[1] 196 116  70
-[1] 197 116  46
-[1] 198 116  33
-[1] 199 116  75
-[1] 200 116  58
-[1]   1 117  31
-[1]   2 117  32
-[1]   3 117  59
-[1]   4 117  45
-[1]   5 117  35
-[1]   6 117  38
-[1]   7 117  33
-[1]   8 117  33
-[1]   9 117  46
-[1]  10 117  41
-[1]  11 117  54
-[1]  12 117  40
-[1]  13 117  57
-[1]  14 117  25
-[1]  15 117  34
-[1]  16 117  38
-[1]  17 117  47
-[1]  18 117  55
-[1]  19 117  40
-[1]  20 117  42
-[1]  21 117  39
-[1]  22 117  34
-[1]  23 117  49
-[1]  24 117  32
-[1]  25 117  39
-[1]  26 117  35
-[1]  27 117  39
-[1]  28 117  39
-[1]  29 117  60
-[1]  30 117  42
-[1]  31 117  45
-[1]  32 117  36
-[1]  33 117  34
-[1]  34 117  42
-[1]  35 117  48
-[1]  36 117  38
-[1]  37 117  62
-[1]  38 117  46
-[1]  39 117  33
-[1]  40 117  64
-[1]  41 117  32
-[1]  42 117  33
-[1]  43 117  37
-[1]  44 117  28
-[1]  45 117  53
-[1]  46 117  36
-[1]  47 117  33
-[1]  48 117  58
-[1]  49 117  55
-[1]  50 117  47
-[1]  51 117  53
-[1]  52 117  41
-[1]  53 117  98
-[1]  54 117  50
-[1]  55 117  48
-[1]  56 117  32
-[1]  57 117  53
-[1]  58 117  41
-[1]  59 117  27
-[1]  60 117  56
-[1]  61 117  39
-[1]  62 117  42
-[1]  63 117  46
-[1]  64 117  51
-[1]  65 117  56
-[1]  66 117  55
-[1]  67 117  56
-[1]  68 117  52
-[1]  69 117  40
-[1]  70 117  48
-[1]  71 117  47
-[1]  72 117  79
-[1]  73 117  50
-[1]  74 117  48
-[1]  75 117  59
-[1]  76 117  50
-[1]  77 117  54
-[1]  78 117  52
-[1]  79 117  47
-[1]  80 117  46
-[1]  81 117  69
-[1]  82 117  36
-[1]  83 117  45
-[1]  84 117  35
-[1]  85 117  46
-[1]  86 117  45
-[1]  87 117  53
-[1]  88 117  64
-[1]  89 117  49
-[1]  90 117  50
-[1]  91 117  52
-[1]  92 117  32
-[1]  93 117  38
-[1]  94 117  72
-[1]  95 117  49
-[1]  96 117  37
-[1]  97 117  74
-[1]  98 117  46
-[1]  99 117  45
-[1] 100 117  44
-[1] 101 117  53
-[1] 102 117  66
-[1] 103 117  55
-[1] 104 117  46
-[1] 105 117  47
-[1] 106 117  75
-[1] 107 117  27
-[1] 108 117 116
-[1] 109 117  59
-[1] 110 117  48
-[1] 111 117  63
-[1] 112 117  48
-[1] 113 117  71
-[1] 114 117  41
-[1] 115 117  45
-[1] 116 117  42
-[1] 117 117  45
-[1] 118 117  52
-[1] 119 117  46
-[1] 120 117  32
-[1] 121 117  55
-[1] 122 117  43
-[1] 123 117  42
-[1] 124 117  24
-[1] 125 117  81
-[1] 126 117  43
-[1] 127 117  59
-[1] 128 117  73
-[1] 129 117  52
-[1] 130 117  39
-[1] 131 117  42
-[1] 132 117  32
-[1] 133 117  53
-[1] 134 117  40
-[1] 135 117  53
-[1] 136 117  34
-[1] 137 117  43
-[1] 138 117  76
-[1] 139 117  53
-[1] 140 117  57
-[1] 141 117  40
-[1] 142 117  34
-[1] 143 117  68
-[1] 144 117  33
-[1] 145 117  74
-[1] 146 117  38
-[1] 147 117  55
-[1] 148 117  36
-[1] 149 117  58
-[1] 150 117  69
-[1] 151 117  57
-[1] 152 117  55
-[1] 153 117  58
-[1] 154 117  40
-[1] 155 117  51
-[1] 156 117  49
-[1] 157 117  54
-[1] 158 117  46
-[1] 159 117  86
-[1] 160 117  40
-[1] 161 117  55
-[1] 162 117  53
-[1] 163 117  69
-[1] 164 117  71
-[1] 165 117  46
-[1] 166 117  61
-[1] 167 117  53
-[1] 168 117  47
-[1] 169 117  69
-[1] 170 117  53
-[1] 171 117  83
-[1] 172 117  84
-[1] 173 117  63
-[1] 174 117  50
-[1] 175 117  91
-[1] 176 117  51
-[1] 177 117  61
-[1] 178 117  58
-[1] 179 117  46
-[1] 180 117  59
-[1] 181 117  77
-[1] 182 117  60
-[1] 183 117  63
-[1] 184 117 122
-[1] 185 117  58
-[1] 186 117  53
-[1] 187 117  41
-[1] 188 117  83
-[1] 189 117  48
-[1] 190 117  55
-[1] 191 117  54
-[1] 192 117  55
-[1] 193 117  38
-[1] 194 117  51
-[1] 195 117  42
-[1] 196 117  69
-[1] 197 117  45
-[1] 198 117  69
-[1] 199 117  46
-[1] 200 117  33
-[1]   1 118  35
-[1]   2 118  33
-[1]   3 118  25
-[1]   4 118  32
-[1]   5 118  26
-[1]   6 118  31
-[1]   7 118  40
-[1]   8 118  37
-[1]   9 118  41
-[1]  10 118  41
-[1]  11 118  36
-[1]  12 118  48
-[1]  13 118  61
-[1]  14 118  28
-[1]  15 118  51
-[1]  16 118  30
-[1]  17 118  36
-[1]  18 118  30
-[1]  19 118  30
-[1]  20 118  41
-[1]  21 118  34
-[1]  22 118  54
-[1]  23 118  34
-[1]  24 118  48
-[1]  25 118  31
-[1]  26 118  42
-[1]  27 118  42
-[1]  28 118  33
-[1]  29 118  35
-[1]  30 118  49
-[1]  31 118  50
-[1]  32 118  34
-[1]  33 118  43
-[1]  34 118  49
-[1]  35 118  48
-[1]  36 118  41
-[1]  37 118  39
-[1]  38 118  42
-[1]  39 118  34
-[1]  40 118  37
-[1]  41 118  47
-[1]  42 118  54
-[1]  43 118  39
-[1]  44 118  38
-[1]  45 118  40
-[1]  46 118  57
-[1]  47 118  33
-[1]  48 118  50
-[1]  49 118  35
-[1]  50 118  46
-[1]  51 118  47
-[1]  52 118  51
-[1]  53 118  39
-[1]  54 118  53
-[1]  55 118  55
-[1]  56 118  77
-[1]  57 118  42
-[1]  58 118  52
-[1]  59 118  46
-[1]  60 118  34
-[1]  61 118  48
-[1]  62 118  43
-[1]  63 118  36
-[1]  64 118  35
-[1]  65 118  46
-[1]  66 118  59
-[1]  67 118  63
-[1]  68 118  39
-[1]  69 118  88
-[1]  70 118  57
-[1]  71 118  44
-[1]  72 118  53
-[1]  73 118  44
-[1]  74 118  49
-[1]  75 118  38
-[1]  76 118  49
-[1]  77 118  41
-[1]  78 118  58
-[1]  79 118  45
-[1]  80 118  94
-[1]  81 118  35
-[1]  82 118  42
-[1]  83 118  63
-[1]  84 118  62
-[1]  85 118  54
-[1]  86 118  66
-[1]  87 118  55
-[1]  88 118  50
-[1]  89 118  40
-[1]  90 118  58
-[1]  91 118  37
-[1]  92 118  50
-[1]  93 118  85
-[1]  94 118  35
-[1]  95 118  49
-[1]  96 118  38
-[1]  97 118  40
-[1]  98 118  58
-[1]  99 118  48
-[1] 100 118  33
-[1] 101 118 156
-[1] 102 118  61
-[1] 103 118 122
-[1] 104 118  50
-[1] 105 118  51
-[1] 106 118  62
-[1] 107 118  54
-[1] 108 118  76
-[1] 109 118  46
-[1] 110 118  35
-[1] 111 118  67
-[1] 112 118  49
-[1] 113 118  76
-[1] 114 118  36
-[1] 115 118  61
-[1] 116 118  58
-[1] 117 118  57
-[1] 118 118  37
-[1] 119 118  61
-[1] 120 118  38
-[1] 121 118  42
-[1] 122 118  51
-[1] 123 118  68
-[1] 124 118  76
-[1] 125 118  52
-[1] 126 118  52
-[1] 127 118  53
-[1] 128 118  78
-[1] 129 118  57
-[1] 130 118  60
-[1] 131 118  51
-[1] 132 118  54
-[1] 133 118  37
-[1] 134 118  48
-[1] 135 118  55
-[1] 136 118  77
-[1] 137 118  43
-[1] 138 118  60
-[1] 139 118  48
-[1] 140 118  49
-[1] 141 118  37
-[1] 142 118  44
-[1] 143 118  45
-[1] 144 118  36
-[1] 145 118  50
-[1] 146 118  55
-[1] 147 118  81
-[1] 148 118  64
-[1] 149 118  61
-[1] 150 118  77
-[1] 151 118  76
-[1] 152 118  45
-[1] 153 118  65
-[1] 154 118  45
-[1] 155 118  51
-[1] 156 118  38
-[1] 157 118  45
-[1] 158 118  64
-[1] 159 118  84
-[1] 160 118  45
-[1] 161 118  63
-[1] 162 118  67
-[1] 163 118  46
-[1] 164 118  48
-[1] 165 118  62
-[1] 166 118  40
-[1] 167 118  61
-[1] 168 118  45
-[1] 169 118  48
-[1] 170 118  48
-[1] 171 118  56
-[1] 172 118  44
-[1] 173 118  58
-[1] 174 118  53
-[1] 175 118  41
-[1] 176 118  53
-[1] 177 118  44
-[1] 178 118  37
-[1] 179 118  62
-[1] 180 118  61
-[1] 181 118  54
-[1] 182 118  46
-[1] 183 118  53
-[1] 184 118  73
-[1] 185 118  48
-[1] 186 118  37
-[1] 187 118  35
-[1] 188 118  64
-[1] 189 118  40
-[1] 190 118  44
-[1] 191 118  55
-[1] 192 118  56
-[1] 193 118  54
-[1] 194 118  40
-[1] 195 118  52
-[1] 196 118  56
-[1] 197 118  46
-[1] 198 118  38
-[1] 199 118  67
-[1] 200 118  43
-[1]   1 119  39
-[1]   2 119  29
-[1]   3 119  45
-[1]   4 119  30
-[1]   5 119  31
-[1]   6 119  42
-[1]   7 119  27
-[1]   8 119  43
-[1]   9 119  40
-[1]  10 119  50
-[1]  11 119  49
-[1]  12 119  34
-[1]  13 119  45
-[1]  14 119  80
-[1]  15 119  39
-[1]  16 119  32
-[1]  17 119  38
-[1]  18 119  46
-[1]  19 119  40
-[1]  20 119  39
-[1]  21 119  30
-[1]  22 119  35
-[1]  23 119  34
-[1]  24 119  35
-[1]  25 119  38
-[1]  26 119  35
-[1]  27 119  43
-[1]  28 119  44
-[1]  29 119  30
-[1]  30 119  38
-[1]  31 119  49
-[1]  32 119  45
-[1]  33 119  43
-[1]  34 119  37
-[1]  35 119  31
-[1]  36 119  46
-[1]  37 119  40
-[1]  38 119  51
-[1]  39 119  51
-[1]  40 119  48
-[1]  41 119  46
-[1]  42 119  37
-[1]  43 119  47
-[1]  44 119  36
-[1]  45 119  57
-[1]  46 119  40
-[1]  47 119  35
-[1]  48 119  44
-[1]  49 119  44
-[1]  50 119  62
-[1]  51 119  54
-[1]  52 119  35
-[1]  53 119  40
-[1]  54 119  51
-[1]  55 119  60
-[1]  56 119  33
-[1]  57 119  37
-[1]  58 119  40
-[1]  59 119  37
-[1]  60 119  32
-[1]  61 119  53
-[1]  62 119  88
-[1]  63 119  93
-[1]  64 119  44
-[1]  65 119  53
-[1]  66 119  34
-[1]  67 119  55
-[1]  68 119  49
-[1]  69 119  35
-[1]  70 119  58
-[1]  71 119  40
-[1]  72 119  49
-[1]  73 119  40
-[1]  74 119  37
-[1]  75 119  45
-[1]  76 119  52
-[1]  77 119  41
-[1]  78 119  58
-[1]  79 119  56
-[1]  80 119  43
-[1]  81 119  45
-[1]  82 119  51
-[1]  83 119  45
-[1]  84 119  52
-[1]  85 119  44
-[1]  86 119  37
-[1]  87 119  64
-[1]  88 119  40
-[1]  89 119  61
-[1]  90 119  55
-[1]  91 119  78
-[1]  92 119  47
-[1]  93 119  45
-[1]  94 119  33
-[1]  95 119  48
-[1]  96 119  31
-[1]  97 119  64
-[1]  98 119  40
-[1]  99 119  36
-[1] 100 119  57
-[1] 101 119  37
-[1] 102 119  40
-[1] 103 119  68
-[1] 104 119  38
-[1] 105 119  28
-[1] 106 119  71
-[1] 107 119  92
-[1] 108 119  41
-[1] 109 119  42
-[1] 110 119  47
-[1] 111 119  45
-[1] 112 119  62
-[1] 113 119  52
-[1] 114 119  44
-[1] 115 119  60
-[1] 116 119  66
-[1] 117 119  45
-[1] 118 119  39
-[1] 119 119  50
-[1] 120 119  63
-[1] 121 119  39
-[1] 122 119  59
-[1] 123 119  48
-[1] 124 119  56
-[1] 125 119 110
-[1] 126 119  44
-[1] 127 119  49
-[1] 128 119  37
-[1] 129 119  42
-[1] 130 119  54
-[1] 131 119  44
-[1] 132 119  38
-[1] 133 119  67
-[1] 134 119  36
-[1] 135 119  53
-[1] 136 119 122
-[1] 137 119  35
-[1] 138 119  56
-[1] 139 119  71
-[1] 140 119  41
-[1] 141 119  54
-[1] 142 119  52
-[1] 143 119  65
-[1] 144 119  59
-[1] 145 119  37
-[1] 146 119 123
-[1] 147 119  46
-[1] 148 119  30
-[1] 149 119  63
-[1] 150 119  55
-[1] 151 119  43
-[1] 152 119  64
-[1] 153 119  32
-[1] 154 119  63
-[1] 155 119  44
-[1] 156 119  35
-[1] 157 119  45
-[1] 158 119  59
-[1] 159 119  48
-[1] 160 119  58
-[1] 161 119  53
-[1] 162 119  44
-[1] 163 119  47
-[1] 164 119  50
-[1] 165 119  54
-[1] 166 119  51
-[1] 167 119  51
-[1] 168 119  50
-[1] 169 119  41
-[1] 170 119  37
-[1] 171 119  51
-[1] 172 119  47
-[1] 173 119  47
-[1] 174 119  35
-[1] 175 119  70
-[1] 176 119  47
-[1] 177 119  35
-[1] 178 119  32
-[1] 179 119  41
-[1] 180 119  33
-[1] 181 119  56
-[1] 182 119  55
-[1] 183 119  44
-[1] 184 119  43
-[1] 185 119  41
-[1] 186 119  54
-[1] 187 119  49
-[1] 188 119  43
-[1] 189 119  48
-[1] 190 119  47
-[1] 191 119  45
-[1] 192 119  45
-[1] 193 119  40
-[1] 194 119  37
-[1] 195 119  45
-[1] 196 119  36
-[1] 197 119  68
-[1] 198 119  63
-[1] 199 119  42
-[1] 200 119  54
-[1]   1 120  29
-[1]   2 120  39
-[1]   3 120  36
-[1]   4 120  39
-[1]   5 120  35
-[1]   6 120  50
-[1]   7 120  42
-[1]   8 120  29
-[1]   9 120  37
-[1]  10 120  49
-[1]  11 120  56
-[1]  12 120  56
-[1]  13 120  47
-[1]  14 120  44
-[1]  15 120  67
-[1]  16 120  51
-[1]  17 120  42
-[1]  18 120  28
-[1]  19 120  49
-[1]  20 120  29
-[1]  21 120  42
-[1]  22 120  33
-[1]  23 120  38
-[1]  24 120  46
-[1]  25 120  37
-[1]  26 120  29
-[1]  27 120  40
-[1]  28 120  47
-[1]  29 120  30
-[1]  30 120  41
-[1]  31 120  43
-[1]  32 120  27
-[1]  33 120  51
-[1]  34 120  35
-[1]  35 120  35
-[1]  36 120  50
-[1]  37 120  45
-[1]  38 120  38
-[1]  39 120  33
-[1]  40 120  35
-[1]  41 120  40
-[1]  42 120  28
-[1]  43 120  67
-[1]  44 120  44
-[1]  45 120  63
-[1]  46 120  35
-[1]  47 120  30
-[1]  48 120  57
-[1]  49 120  38
-[1]  50 120  35
-[1]  51 120  66
-[1]  52 120  73
-[1]  53 120  45
-[1]  54 120  22
-[1]  55 120  48
-[1]  56 120  84
-[1]  57 120  40
-[1]  58 120  45
-[1]  59 120  55
-[1]  60 120  47
-[1]  61 120  50
-[1]  62 120  50
-[1]  63 120  34
-[1]  64 120  61
-[1]  65 120  51
-[1]  66 120  44
-[1]  67 120  46
-[1]  68 120  53
-[1]  69 120  54
-[1]  70 120  51
-[1]  71 120  39
-[1]  72 120  42
-[1]  73 120  61
-[1]  74 120  46
-[1]  75 120  43
-[1]  76 120  52
-[1]  77 120  81
-[1]  78 120  37
-[1]  79 120  42
-[1]  80 120  37
-[1]  81 120  50
-[1]  82 120  47
-[1]  83 120  38
-[1]  84 120  49
-[1]  85 120  36
-[1]  86 120  99
-[1]  87 120  55
-[1]  88 120  41
-[1]  89 120  58
-[1]  90 120  58
-[1]  91 120  43
-[1]  92 120  37
-[1]  93 120  38
-[1]  94 120  33
-[1]  95 120  51
-[1]  96 120  61
-[1]  97 120  44
-[1]  98 120  51
-[1]  99 120  44
-[1] 100 120  43
-[1] 101 120  45
-[1] 102 120  45
-[1] 103 120  70
-[1] 104 120  31
-[1] 105 120  39
-[1] 106 120  54
-[1] 107 120  66
-[1] 108 120  48
-[1] 109 120  56
-[1] 110 120  70
-[1] 111 120  75
-[1] 112 120  43
-[1] 113 120  79
-[1] 114 120  59
-[1] 115 120  45
-[1] 116 120  37
-[1] 117 120  84
-[1] 118 120  42
-[1] 119 120  53
-[1] 120 120  47
-[1] 121 120  56
-[1] 122 120  69
-[1] 123 120  32
-[1] 124 120  73
-[1] 125 120  68
-[1] 126 120  35
-[1] 127 120  35
-[1] 128 120  68
-[1] 129 120  33
-[1] 130 120  56
-[1] 131 120  65
-[1] 132 120  49
-[1] 133 120  44
-[1] 134 120  48
-[1] 135 120  37
-[1] 136 120  34
-[1] 137 120  34
-[1] 138 120  37
-[1] 139 120  61
-[1] 140 120  40
-[1] 141 120  70
-[1] 142 120  34
-[1] 143 120  48
-[1] 144 120  39
-[1] 145 120  58
-[1] 146 120  53
-[1] 147 120  55
-[1] 148 120  61
-[1] 149 120  55
-[1] 150 120  60
-[1] 151 120  90
-[1] 152 120  48
-[1] 153 120  42
-[1] 154 120  48
-[1] 155 120  46
-[1] 156 120  38
-[1] 157 120  50
-[1] 158 120  78
-[1] 159 120  64
-[1] 160 120  53
-[1] 161 120  62
-[1] 162 120  70
-[1] 163 120  79
-[1] 164 120  53
-[1] 165 120  56
-[1] 166 120  53
-[1] 167 120  48
-[1] 168 120  39
-[1] 169 120  48
-[1] 170 120  47
-[1] 171 120  49
-[1] 172 120  31
-[1] 173 120  56
-[1] 174 120  46
-[1] 175 120  47
-[1] 176 120  35
-[1] 177 120  48
-[1] 178 120  39
-[1] 179 120  38
-[1] 180 120  50
-[1] 181 120  47
-[1] 182 120  46
-[1] 183 120  55
-[1] 184 120  37
-[1] 185 120  39
-[1] 186 120  44
-[1] 187 120  29
-[1] 188 120  37
-[1] 189 120  53
-[1] 190 120  58
-[1] 191 120  42
-[1] 192 120  42
-[1] 193 120  63
-[1] 194 120  33
-[1] 195 120  71
-[1] 196 120  39
-[1] 197 120  45
-[1] 198 120  52
-[1] 199 120  67
-[1] 200 120  63
-[1]   1 121  33
-[1]   2 121  33
-[1]   3 121  40
-[1]   4 121  43
-[1]   5 121  28
-[1]   6 121  37
-[1]   7 121  37
-[1]   8 121  69
-[1]   9 121  28
-[1]  10 121  56
-[1]  11 121  37
-[1]  12 121  36
-[1]  13 121  31
-[1]  14 121  37
-[1]  15 121  46
-[1]  16 121  32
-[1]  17 121  45
-[1]  18 121  30
-[1]  19 121  45
-[1]  20 121  33
-[1]  21 121  35
-[1]  22 121  43
-[1]  23 121  35
-[1]  24 121  57
-[1]  25 121  47
-[1]  26 121  32
-[1]  27 121  49
-[1]  28 121  36
-[1]  29 121  37
-[1]  30 121  44
-[1]  31 121  70
-[1]  32 121  38
-[1]  33 121  34
-[1]  34 121  34
-[1]  35 121  33
-[1]  36 121  37
-[1]  37 121  30
-[1]  38 121  36
-[1]  39 121  29
-[1]  40 121  65
-[1]  41 121  40
-[1]  42 121  42
-[1]  43 121  38
-[1]  44 121  69
-[1]  45 121  54
-[1]  46 121  42
-[1]  47 121  37
-[1]  48 121  35
-[1]  49 121  38
-[1]  50 121  69
-[1]  51 121  60
-[1]  52 121  47
-[1]  53 121  52
-[1]  54 121  40
-[1]  55 121  44
-[1]  56 121  40
-[1]  57 121  67
-[1]  58 121  44
-[1]  59 121  42
-[1]  60 121  57
-[1]  61 121  62
-[1]  62 121  66
-[1]  63 121  32
-[1]  64 121  41
-[1]  65 121  36
-[1]  66 121  35
-[1]  67 121  56
-[1]  68 121  41
-[1]  69 121  44
-[1]  70 121  65
-[1]  71 121  37
-[1]  72 121  40
-[1]  73 121  31
-[1]  74 121  34
-[1]  75 121  36
-[1]  76 121  79
-[1]  77 121  39
-[1]  78 121  39
-[1]  79 121  46
-[1]  80 121  45
-[1]  81 121  36
-[1]  82 121  73
-[1]  83 121  54
-[1]  84 121  59
-[1]  85 121  31
-[1]  86 121  44
-[1]  87 121  55
-[1]  88 121  42
-[1]  89 121  41
-[1]  90 121  36
-[1]  91 121  72
-[1]  92 121  45
-[1]  93 121  45
-[1]  94 121  57
-[1]  95 121  84
-[1]  96 121  33
-[1]  97 121  41
-[1]  98 121  52
-[1]  99 121  35
-[1] 100 121  70
-[1] 101 121  61
-[1] 102 121  73
-[1] 103 121  54
-[1] 104 121  64
-[1] 105 121  53
-[1] 106 121  50
-[1] 107 121  47
-[1] 108 121  67
-[1] 109 121  70
-[1] 110 121  42
-[1] 111 121  74
-[1] 112 121  48
-[1] 113 121  36
-[1] 114 121  38
-[1] 115 121  47
-[1] 116 121  35
-[1] 117 121  36
-[1] 118 121  55
-[1] 119 121  72
-[1] 120 121  42
-[1] 121 121  60
-[1] 122 121  42
-[1] 123 121  40
-[1] 124 121  69
-[1] 125 121  45
-[1] 126 121  55
-[1] 127 121  58
-[1] 128 121  34
-[1] 129 121  45
-[1] 130 121  37
-[1] 131 121  57
-[1] 132 121  44
-[1] 133 121  95
-[1] 134 121  27
-[1] 135 121 102
-[1] 136 121  50
-[1] 137 121  52
-[1] 138 121  53
-[1] 139 121  71
-[1] 140 121  42
-[1] 141 121  43
-[1] 142 121  36
-[1] 143 121  45
-[1] 144 121  33
-[1] 145 121  62
-[1] 146 121  68
-[1] 147 121  61
-[1] 148 121  65
-[1] 149 121  65
-[1] 150 121  27
-[1] 151 121  56
-[1] 152 121  50
-[1] 153 121  41
-[1] 154 121  53
-[1] 155 121  53
-[1] 156 121  72
-[1] 157 121  39
-[1] 158 121  66
-[1] 159 121  54
-[1] 160 121  47
-[1] 161 121  40
-[1] 162 121  52
-[1] 163 121  60
-[1] 164 121  58
-[1] 165 121  43
-[1] 166 121  50
-[1] 167 121  42
-[1] 168 121  65
-[1] 169 121  56
-[1] 170 121  44
-[1] 171 121  56
-[1] 172 121  43
-[1] 173 121  30
-[1] 174 121  63
-[1] 175 121  50
-[1] 176 121  45
-[1] 177 121  57
-[1] 178 121  92
-[1] 179 121  47
-[1] 180 121  44
-[1] 181 121  39
-[1] 182 121  50
-[1] 183 121  43
-[1] 184 121  38
-[1] 185 121  46
-[1] 186 121  60
-[1] 187 121  56
-[1] 188 121  47
-[1] 189 121  74
-[1] 190 121  47
-[1] 191 121  40
-[1] 192 121  47
-[1] 193 121  47
-[1] 194 121  58
-[1] 195 121  43
-[1] 196 121  44
-[1] 197 121  49
-[1] 198 121  33
-[1] 199 121  40
-[1] 200 121  55
-[1]   1 122  45
-[1]   2 122  41
-[1]   3 122  32
-[1]   4 122  29
-[1]   5 122  34
-[1]   6 122  52
-[1]   7 122  31
-[1]   8 122  29
-[1]   9 122  35
-[1]  10 122  40
-[1]  11 122  46
-[1]  12 122  39
-[1]  13 122  39
-[1]  14 122  30
-[1]  15 122  37
-[1]  16 122  34
-[1]  17 122  35
-[1]  18 122  54
-[1]  19 122  31
-[1]  20 122  61
-[1]  21 122  44
-[1]  22 122  51
-[1]  23 122  42
-[1]  24 122  30
-[1]  25 122  45
-[1]  26 122  41
-[1]  27 122  33
-[1]  28 122  34
-[1]  29 122  35
-[1]  30 122  45
-[1]  31 122  40
-[1]  32 122  40
-[1]  33 122  47
-[1]  34 122  39
-[1]  35 122  44
-[1]  36 122  33
-[1]  37 122  43
-[1]  38 122  40
-[1]  39 122  50
-[1]  40 122  54
-[1]  41 122  57
-[1]  42 122  38
-[1]  43 122  52
-[1]  44 122  47
-[1]  45 122  52
-[1]  46 122  44
-[1]  47 122  30
-[1]  48 122  43
-[1]  49 122  48
-[1]  50 122  61
-[1]  51 122  37
-[1]  52 122  47
-[1]  53 122  36
-[1]  54 122  47
-[1]  55 122  61
-[1]  56 122  56
-[1]  57 122  38
-[1]  58 122  48
-[1]  59 122  41
-[1]  60 122  77
-[1]  61 122  47
-[1]  62 122  38
-[1]  63 122  38
-[1]  64 122  29
-[1]  65 122  57
-[1]  66 122  54
-[1]  67 122  34
-[1]  68 122  48
-[1]  69 122  33
-[1]  70 122  67
-[1]  71 122  41
-[1]  72 122  47
-[1]  73 122  36
-[1]  74 122  53
-[1]  75 122  57
-[1]  76 122  54
-[1]  77 122  31
-[1]  78 122  58
-[1]  79 122  47
-[1]  80 122  74
-[1]  81 122  51
-[1]  82 122  52
-[1]  83 122  67
-[1]  84 122  69
-[1]  85 122  52
-[1]  86 122  30
-[1]  87 122  61
-[1]  88 122  47
-[1]  89 122  41
-[1]  90 122  46
-[1]  91 122  34
-[1]  92 122  33
-[1]  93 122  39
-[1]  94 122  58
-[1]  95 122  44
-[1]  96 122  43
-[1]  97 122  53
-[1]  98 122  42
-[1]  99 122  51
-[1] 100 122  80
-[1] 101 122  29
-[1] 102 122  51
-[1] 103 122  70
-[1] 104 122  49
-[1] 105 122  61
-[1] 106 122  39
-[1] 107 122  59
-[1] 108 122  38
-[1] 109 122  62
-[1] 110 122  34
-[1] 111 122  51
-[1] 112 122  38
-[1] 113 122  30
-[1] 114 122  49
-[1] 115 122  39
-[1] 116 122  54
-[1] 117 122  36
-[1] 118 122  76
-[1] 119 122  35
-[1] 120 122  98
-[1] 121 122  63
-[1] 122 122  42
-[1] 123 122  82
-[1] 124 122  36
-[1] 125 122  55
-[1] 126 122  62
-[1] 127 122  44
-[1] 128 122  48
-[1] 129 122  44
-[1] 130 122  37
-[1] 131 122  47
-[1] 132 122  62
-[1] 133 122  49
-[1] 134 122  55
-[1] 135 122  41
-[1] 136 122  56
-[1] 137 122  54
-[1] 138 122  54
-[1] 139 122  39
-[1] 140 122  65
-[1] 141 122  68
-[1] 142 122  41
-[1] 143 122  59
-[1] 144 122  64
-[1] 145 122  68
-[1] 146 122  43
-[1] 147 122  45
-[1] 148 122  76
-[1] 149 122  67
-[1] 150 122  36
-[1] 151 122  61
-[1] 152 122  47
-[1] 153 122  82
-[1] 154 122  73
-[1] 155 122  47
-[1] 156 122  56
-[1] 157 122  56
-[1] 158 122  53
-[1] 159 122  43
-[1] 160 122  44
-[1] 161 122  45
-[1] 162 122  59
-[1] 163 122  34
-[1] 164 122  50
-[1] 165 122  49
-[1] 166 122  46
-[1] 167 122  45
-[1] 168 122  41
-[1] 169 122  52
-[1] 170 122  42
-[1] 171 122  92
-[1] 172 122  38
-[1] 173 122  44
-[1] 174 122  47
-[1] 175 122  52
-[1] 176 122  47
-[1] 177 122  45
-[1] 178 122  51
-[1] 179 122  48
-[1] 180 122  44
-[1] 181 122  37
-[1] 182 122  49
-[1] 183 122  50
-[1] 184 122  57
-[1] 185 122  53
-[1] 186 122  54
-[1] 187 122  41
-[1] 188 122  61
-[1] 189 122  50
-[1] 190 122  62
-[1] 191 122  54
-[1] 192 122  49
-[1] 193 122  37
-[1] 194 122  62
-[1] 195 122  58
-[1] 196 122  53
-[1] 197 122  42
-[1] 198 122  41
-[1] 199 122  49
-[1] 200 122  43
-[1]   1 123  28
-[1]   2 123  44
-[1]   3 123  30
-[1]   4 123  35
-[1]   5 123  33
-[1]   6 123  66
-[1]   7 123  33
-[1]   8 123  45
-[1]   9 123  45
-[1]  10 123  48
-[1]  11 123  36
-[1]  12 123  37
-[1]  13 123  44
-[1]  14 123  34
-[1]  15 123  39
-[1]  16 123  33
-[1]  17 123  42
-[1]  18 123  42
-[1]  19 123  39
-[1]  20 123  41
-[1]  21 123  36
-[1]  22 123  47
-[1]  23 123  38
-[1]  24 123  39
-[1]  25 123  44
-[1]  26 123  49
-[1]  27 123  40
-[1]  28 123  41
-[1]  29 123  29
-[1]  30 123  52
-[1]  31 123  69
-[1]  32 123  40
-[1]  33 123  39
-[1]  34 123  44
-[1]  35 123  33
-[1]  36 123  48
-[1]  37 123  45
-[1]  38 123  35
-[1]  39 123  42
-[1]  40 123  32
-[1]  41 123  39
-[1]  42 123  38
-[1]  43 123  43
-[1]  44 123  41
-[1]  45 123  46
-[1]  46 123  49
-[1]  47 123  36
-[1]  48 123  53
-[1]  49 123  43
-[1]  50 123  50
-[1]  51 123  55
-[1]  52 123  52
-[1]  53 123  61
-[1]  54 123  42
-[1]  55 123  41
-[1]  56 123  51
-[1]  57 123  60
-[1]  58 123  41
-[1]  59 123  53
-[1]  60 123  51
-[1]  61 123  38
-[1]  62 123  46
-[1]  63 123  62
-[1]  64 123  33
-[1]  65 123  43
-[1]  66 123  33
-[1]  67 123  52
-[1]  68 123  42
-[1]  69 123  55
-[1]  70 123  42
-[1]  71 123  51
-[1]  72 123  46
-[1]  73 123  47
-[1]  74 123  57
-[1]  75 123  76
-[1]  76 123  58
-[1]  77 123  47
-[1]  78 123  63
-[1]  79 123  58
-[1]  80 123  29
-[1]  81 123  78
-[1]  82 123  51
-[1]  83 123  41
-[1]  84 123  50
-[1]  85 123  59
-[1]  86 123  54
-[1]  87 123  47
-[1]  88 123  42
-[1]  89 123  43
-[1]  90 123  48
-[1]  91 123  67
-[1]  92 123  38
-[1]  93 123  71
-[1]  94 123  33
-[1]  95 123  32
-[1]  96 123  49
-[1]  97 123  86
-[1]  98 123  34
-[1]  99 123  39
-[1] 100 123  35
-[1] 101 123  72
-[1] 102 123  57
-[1] 103 123  41
-[1] 104 123  40
-[1] 105 123  61
-[1] 106 123  32
-[1] 107 123  41
-[1] 108 123  58
-[1] 109 123  50
-[1] 110 123  62
-[1] 111 123  41
-[1] 112 123  34
-[1] 113 123  64
-[1] 114 123  41
-[1] 115 123  53
-[1] 116 123  62
-[1] 117 123  36
-[1] 118 123  41
-[1] 119 123  57
-[1] 120 123  46
-[1] 121 123  53
-[1] 122 123  36
-[1] 123 123  62
-[1] 124 123  45
-[1] 125 123  50
-[1] 126 123  57
-[1] 127 123  63
-[1] 128 123  52
-[1] 129 123  45
-[1] 130 123  47
-[1] 131 123  38
-[1] 132 123  83
-[1] 133 123  50
-[1] 134 123  43
-[1] 135 123  50
-[1] 136 123  39
-[1] 137 123  41
-[1] 138 123  42
-[1] 139 123  61
-[1] 140 123  52
-[1] 141 123  61
-[1] 142 123  33
-[1] 143 123  78
-[1] 144 123  64
-[1] 145 123  40
-[1] 146 123  52
-[1] 147 123  55
-[1] 148 123  38
-[1] 149 123  38
-[1] 150 123  69
-[1] 151 123  42
-[1] 152 123  63
-[1] 153 123  38
-[1] 154 123  37
-[1] 155 123  55
-[1] 156 123  46
-[1] 157 123  37
-[1] 158 123  64
-[1] 159 123  61
-[1] 160 123  47
-[1] 161 123  60
-[1] 162 123  63
-[1] 163 123  49
-[1] 164 123  74
-[1] 165 123  51
-[1] 166 123  64
-[1] 167 123  42
-[1] 168 123  51
-[1] 169 123  60
-[1] 170 123  65
-[1] 171 123  62
-[1] 172 123  67
-[1] 173 123  38
-[1] 174 123  49
-[1] 175 123  43
-[1] 176 123  49
-[1] 177 123  40
-[1] 178 123  48
-[1] 179 123  59
-[1] 180 123  39
-[1] 181 123  78
-[1] 182 123  46
-[1] 183 123  39
-[1] 184 123  63
-[1] 185 123  36
-[1] 186 123  41
-[1] 187 123  57
-[1] 188 123  44
-[1] 189 123  44
-[1] 190 123  46
-[1] 191 123  49
-[1] 192 123  43
-[1] 193 123  46
-[1] 194 123  69
-[1] 195 123  49
-[1] 196 123  40
-[1] 197 123  43
-[1] 198 123  47
-[1] 199 123  58
-[1] 200 123  43
-[1]   1 124  31
-[1]   2 124  33
-[1]   3 124  35
-[1]   4 124  50
-[1]   5 124  42
-[1]   6 124  36
-[1]   7 124  43
-[1]   8 124  30
-[1]   9 124  36
-[1]  10 124  56
-[1]  11 124  46
-[1]  12 124  41
-[1]  13 124  41
-[1]  14 124  46
-[1]  15 124  36
-[1]  16 124  51
-[1]  17 124  39
-[1]  18 124  35
-[1]  19 124  36
-[1]  20 124  47
-[1]  21 124  46
-[1]  22 124  39
-[1]  23 124  62
-[1]  24 124  48
-[1]  25 124  36
-[1]  26 124  37
-[1]  27 124  38
-[1]  28 124  32
-[1]  29 124  30
-[1]  30 124  32
-[1]  31 124  42
-[1]  32 124  35
-[1]  33 124  30
-[1]  34 124  44
-[1]  35 124  53
-[1]  36 124  33
-[1]  37 124  39
-[1]  38 124  54
-[1]  39 124  62
-[1]  40 124  43
-[1]  41 124  51
-[1]  42 124  32
-[1]  43 124  53
-[1]  44 124  48
-[1]  45 124  38
-[1]  46 124  47
-[1]  47 124  37
-[1]  48 124  32
-[1]  49 124  69
-[1]  50 124  52
-[1]  51 124  37
-[1]  52 124  49
-[1]  53 124  38
-[1]  54 124  38
-[1]  55 124  36
-[1]  56 124  32
-[1]  57 124  57
-[1]  58 124  30
-[1]  59 124  65
-[1]  60 124  25
-[1]  61 124  56
-[1]  62 124  41
-[1]  63 124  36
-[1]  64 124  33
-[1]  65 124  40
-[1]  66 124  53
-[1]  67 124  28
-[1]  68 124  49
-[1]  69 124  44
-[1]  70 124  59
-[1]  71 124  83
-[1]  72 124  46
-[1]  73 124  35
-[1]  74 124  64
-[1]  75 124  47
-[1]  76 124  41
-[1]  77 124  51
-[1]  78 124  44
-[1]  79 124  34
-[1]  80 124  40
-[1]  81 124  49
-[1]  82 124  47
-[1]  83 124  42
-[1]  84 124  51
-[1]  85 124  47
-[1]  86 124  62
-[1]  87 124  40
-[1]  88 124  49
-[1]  89 124  53
-[1]  90 124  38
-[1]  91 124  41
-[1]  92 124  40
-[1]  93 124  51
-[1]  94 124  71
-[1]  95 124  50
-[1]  96 124  38
-[1]  97 124 113
-[1]  98 124  39
-[1]  99 124  54
-[1] 100 124  41
-[1] 101 124 107
-[1] 102 124  38
-[1] 103 124  46
-[1] 104 124  42
-[1] 105 124  66
-[1] 106 124  58
-[1] 107 124  51
-[1] 108 124  59
-[1] 109 124  36
-[1] 110 124  34
-[1] 111 124  45
-[1] 112 124  49
-[1] 113 124  34
-[1] 114 124  42
-[1] 115 124  79
-[1] 116 124  47
-[1] 117 124  61
-[1] 118 124  98
-[1] 119 124  67
-[1] 120 124  92
-[1] 121 124  43
-[1] 122 124  49
-[1] 123 124  66
-[1] 124 124  49
-[1] 125 124  30
-[1] 126 124  39
-[1] 127 124  38
-[1] 128 124  77
-[1] 129 124  54
-[1] 130 124  56
-[1] 131 124  48
-[1] 132 124  42
-[1] 133 124  47
-[1] 134 124  50
-[1] 135 124  47
-[1] 136 124  54
-[1] 137 124  55
-[1] 138 124  62
-[1] 139 124  40
-[1] 140 124  88
-[1] 141 124  46
-[1] 142 124  77
-[1] 143 124  35
-[1] 144 124  56
-[1] 145 124  58
-[1] 146 124  52
-[1] 147 124  50
-[1] 148 124  66
-[1] 149 124  48
-[1] 150 124  47
-[1] 151 124  62
-[1] 152 124  65
-[1] 153 124  37
-[1] 154 124  49
-[1] 155 124  33
-[1] 156 124  62
-[1] 157 124  45
-[1] 158 124  54
-[1] 159 124  35
-[1] 160 124  51
-[1] 161 124  67
-[1] 162 124  41
-[1] 163 124  57
-[1] 164 124  30
-[1] 165 124  43
-[1] 166 124  48
-[1] 167 124  49
-[1] 168 124 104
-[1] 169 124  54
-[1] 170 124  60
-[1] 171 124  30
-[1] 172 124  59
-[1] 173 124  42
-[1] 174 124  53
-[1] 175 124  46
-[1] 176 124  59
-[1] 177 124  45
-[1] 178 124  56
-[1] 179 124  42
-[1] 180 124  47
-[1] 181 124  65
-[1] 182 124  39
-[1] 183 124  64
-[1] 184 124  60
-[1] 185 124  57
-[1] 186 124  54
-[1] 187 124  58
-[1] 188 124  49
-[1] 189 124  49
-[1] 190 124  43
-[1] 191 124  75
-[1] 192 124  37
-[1] 193 124  54
-[1] 194 124  76
-[1] 195 124  48
-[1] 196 124  45
-[1] 197 124  55
-[1] 198 124  37
-[1] 199 124  87
-[1] 200 124  56
-[1]   1 125  55
-[1]   2 125  39
-[1]   3 125  32
-[1]   4 125  34
-[1]   5 125  36
-[1]   6 125  53
-[1]   7 125  44
-[1]   8 125  38
-[1]   9 125  37
-[1]  10 125  86
-[1]  11 125  40
-[1]  12 125  65
-[1]  13 125  58
-[1]  14 125  41
-[1]  15 125  43
-[1]  16 125  44
-[1]  17 125  44
-[1]  18 125  40
-[1]  19 125  42
-[1]  20 125  32
-[1]  21 125  37
-[1]  22 125  40
-[1]  23 125  41
-[1]  24 125  40
-[1]  25 125  42
-[1]  26 125  76
-[1]  27 125  33
-[1]  28 125  54
-[1]  29 125  32
-[1]  30 125  39
-[1]  31 125  39
-[1]  32 125  34
-[1]  33 125  42
-[1]  34 125  42
-[1]  35 125  41
-[1]  36 125  71
-[1]  37 125  65
-[1]  38 125  37
-[1]  39 125  38
-[1]  40 125  48
-[1]  41 125  42
-[1]  42 125  48
-[1]  43 125  39
-[1]  44 125  40
-[1]  45 125  35
-[1]  46 125  44
-[1]  47 125  37
-[1]  48 125  44
-[1]  49 125  37
-[1]  50 125  34
-[1]  51 125  67
-[1]  52 125  35
-[1]  53 125  56
-[1]  54 125  50
-[1]  55 125  91
-[1]  56 125  41
-[1]  57 125  44
-[1]  58 125  45
-[1]  59 125  45
-[1]  60 125  47
-[1]  61 125  46
-[1]  62 125  32
-[1]  63 125  40
-[1]  64 125  54
-[1]  65 125  88
-[1]  66 125  28
-[1]  67 125  51
-[1]  68 125  41
-[1]  69 125  38
-[1]  70 125  53
-[1]  71 125  54
-[1]  72 125  38
-[1]  73 125  40
-[1]  74 125  62
-[1]  75 125  39
-[1]  76 125  40
-[1]  77 125  61
-[1]  78 125  47
-[1]  79 125  78
-[1]  80 125  33
-[1]  81 125  56
-[1]  82 125  42
-[1]  83 125  39
-[1]  84 125  70
-[1]  85 125  46
-[1]  86 125  37
-[1]  87 125  47
-[1]  88 125  45
-[1]  89 125  44
-[1]  90 125  59
-[1]  91 125  58
-[1]  92 125  37
-[1]  93 125  51
-[1]  94 125  48
-[1]  95 125  60
-[1]  96 125  47
-[1]  97 125  43
-[1]  98 125  74
-[1]  99 125  42
-[1] 100 125  47
-[1] 101 125  47
-[1] 102 125  41
-[1] 103 125  36
-[1] 104 125  44
-[1] 105 125  45
-[1] 106 125  44
-[1] 107 125  93
-[1] 108 125  46
-[1] 109 125  92
-[1] 110 125  49
-[1] 111 125  42
-[1] 112 125  56
-[1] 113 125  51
-[1] 114 125  38
-[1] 115 125  44
-[1] 116 125  61
-[1] 117 125  40
-[1] 118 125  55
-[1] 119 125  45
-[1] 120 125  35
-[1] 121 125  36
-[1] 122 125  53
-[1] 123 125  44
-[1] 124 125  59
-[1] 125 125  52
-[1] 126 125  39
-[1] 127 125  51
-[1] 128 125  34
-[1] 129 125  41
-[1] 130 125  46
-[1] 131 125  53
-[1] 132 125  42
-[1] 133 125  39
-[1] 134 125  46
-[1] 135 125  64
-[1] 136 125  51
-[1] 137 125  65
-[1] 138 125  53
-[1] 139 125  42
-[1] 140 125  45
-[1] 141 125  44
-[1] 142 125  80
-[1] 143 125  38
-[1] 144 125  45
-[1] 145 125  57
-[1] 146 125  64
-[1] 147 125  48
-[1] 148 125  54
-[1] 149 125  67
-[1] 150 125  47
-[1] 151 125  42
-[1] 152 125  63
-[1] 153 125  42
-[1] 154 125  28
-[1] 155 125  71
-[1] 156 125  75
-[1] 157 125  45
-[1] 158 125  44
-[1] 159 125  58
-[1] 160 125  43
-[1] 161 125  61
-[1] 162 125  48
-[1] 163 125  50
-[1] 164 125  59
-[1] 165 125  56
-[1] 166 125  42
-[1] 167 125  44
-[1] 168 125  81
-[1] 169 125  26
-[1] 170 125  90
-[1] 171 125  61
-[1] 172 125  62
-[1] 173 125  41
-[1] 174 125  39
-[1] 175 125  44
-[1] 176 125  53
-[1] 177 125  47
-[1] 178 125  64
-[1] 179 125  43
-[1] 180 125  44
-[1] 181 125  56
-[1] 182 125  53
-[1] 183 125  33
-[1] 184 125  65
-[1] 185 125  34
-[1] 186 125  67
-[1] 187 125  52
-[1] 188 125  41
-[1] 189 125  60
-[1] 190 125  43
-[1] 191 125  52
-[1] 192 125  50
-[1] 193 125  48
-[1] 194 125  60
-[1] 195 125  41
-[1] 196 125  58
-[1] 197 125  56
-[1] 198 125  45
-[1] 199 125  38
-[1] 200 125  42
-[1]   1 126  35
-[1]   2 126  37
-[1]   3 126  42
-[1]   4 126  33
-[1]   5 126  38
-[1]   6 126  28
-[1]   7 126  37
-[1]   8 126  33
-[1]   9 126  33
-[1]  10 126  29
-[1]  11 126  46
-[1]  12 126  46
-[1]  13 126  31
-[1]  14 126  49
-[1]  15 126  52
-[1]  16 126  32
-[1]  17 126  39
-[1]  18 126  38
-[1]  19 126  33
-[1]  20 126  33
-[1]  21 126  33
-[1]  22 126  40
-[1]  23 126  48
-[1]  24 126  40
-[1]  25 126  37
-[1]  26 126  73
-[1]  27 126  43
-[1]  28 126  46
-[1]  29 126  37
-[1]  30 126  36
-[1]  31 126  31
-[1]  32 126  48
-[1]  33 126  33
-[1]  34 126  47
-[1]  35 126  40
-[1]  36 126  33
-[1]  37 126  32
-[1]  38 126  41
-[1]  39 126  32
-[1]  40 126  68
-[1]  41 126  43
-[1]  42 126  61
-[1]  43 126  43
-[1]  44 126  49
-[1]  45 126  50
-[1]  46 126  30
-[1]  47 126  30
-[1]  48 126  40
-[1]  49 126  36
-[1]  50 126  38
-[1]  51 126  49
-[1]  52 126  50
-[1]  53 126  33
-[1]  54 126  49
-[1]  55 126  36
-[1]  56 126  47
-[1]  57 126  56
-[1]  58 126  49
-[1]  59 126  38
-[1]  60 126  38
-[1]  61 126  47
-[1]  62 126  75
-[1]  63 126  37
-[1]  64 126  68
-[1]  65 126  31
-[1]  66 126  46
-[1]  67 126  43
-[1]  68 126  39
-[1]  69 126  34
-[1]  70 126  27
-[1]  71 126  44
-[1]  72 126  59
-[1]  73 126  37
-[1]  74 126  48
-[1]  75 126  45
-[1]  76 126  36
-[1]  77 126  49
-[1]  78 126  52
-[1]  79 126  44
-[1]  80 126  39
-[1]  81 126  37
-[1]  82 126  44
-[1]  83 126  39
-[1]  84 126  50
-[1]  85 126  53
-[1]  86 126  37
-[1]  87 126  40
-[1]  88 126  56
-[1]  89 126  45
-[1]  90 126  31
-[1]  91 126  38
-[1]  92 126  41
-[1]  93 126  43
-[1]  94 126  38
-[1]  95 126  37
-[1]  96 126  37
-[1]  97 126  53
-[1]  98 126  53
-[1]  99 126  55
-[1] 100 126  35
-[1] 101 126  61
-[1] 102 126  53
-[1] 103 126  49
-[1] 104 126  41
-[1] 105 126  82
-[1] 106 126  73
-[1] 107 126  81
-[1] 108 126  42
-[1] 109 126  36
-[1] 110 126  42
-[1] 111 126  58
-[1] 112 126  34
-[1] 113 126  41
-[1] 114 126  40
-[1] 115 126  51
-[1] 116 126  66
-[1] 117 126  35
-[1] 118 126  57
-[1] 119 126  32
-[1] 120 126  48
-[1] 121 126  67
-[1] 122 126  39
-[1] 123 126  80
-[1] 124 126  40
-[1] 125 126  53
-[1] 126 126  45
-[1] 127 126  53
-[1] 128 126  78
-[1] 129 126  50
-[1] 130 126  79
-[1] 131 126  41
-[1] 132 126  39
-[1] 133 126  58
-[1] 134 126  55
-[1] 135 126  42
-[1] 136 126  69
-[1] 137 126  62
-[1] 138 126  44
-[1] 139 126  61
-[1] 140 126  54
-[1] 141 126  61
-[1] 142 126  41
-[1] 143 126  52
-[1] 144 126  51
-[1] 145 126  47
-[1] 146 126  62
-[1] 147 126  52
-[1] 148 126  51
-[1] 149 126  39
-[1] 150 126  41
-[1] 151 126  50
-[1] 152 126  61
-[1] 153 126  42
-[1] 154 126  63
-[1] 155 126  49
-[1] 156 126  53
-[1] 157 126  36
-[1] 158 126  84
-[1] 159 126  45
-[1] 160 126  58
-[1] 161 126  31
-[1] 162 126  76
-[1] 163 126  73
-[1] 164 126  60
-[1] 165 126  55
-[1] 166 126  41
-[1] 167 126  52
-[1] 168 126  45
-[1] 169 126  47
-[1] 170 126  59
-[1] 171 126  53
-[1] 172 126  50
-[1] 173 126  63
-[1] 174 126  77
-[1] 175 126  38
-[1] 176 126  56
-[1] 177 126  46
-[1] 178 126  44
-[1] 179 126  45
-[1] 180 126  44
-[1] 181 126  39
-[1] 182 126  40
-[1] 183 126  40
-[1] 184 126  36
-[1] 185 126  52
-[1] 186 126  43
-[1] 187 126  44
-[1] 188 126  51
-[1] 189 126  34
-[1] 190 126  45
-[1] 191 126  38
-[1] 192 126  55
-[1] 193 126  45
-[1] 194 126  58
-[1] 195 126  71
-[1] 196 126  52
-[1] 197 126  44
-[1] 198 126  39
-[1] 199 126  36
-[1] 200 126  90
-[1]   1 127  31
-[1]   2 127  37
-[1]   3 127  26
-[1]   4 127  31
-[1]   5 127  32
-[1]   6 127  51
-[1]   7 127  33
-[1]   8 127  64
-[1]   9 127  33
-[1]  10 127  48
-[1]  11 127  43
-[1]  12 127  46
-[1]  13 127  37
-[1]  14 127  44
-[1]  15 127  45
-[1]  16 127  32
-[1]  17 127  57
-[1]  18 127  58
-[1]  19 127  33
-[1]  20 127  41
-[1]  21 127  30
-[1]  22 127  49
-[1]  23 127  42
-[1]  24 127  41
-[1]  25 127  44
-[1]  26 127  33
-[1]  27 127  77
-[1]  28 127  48
-[1]  29 127  47
-[1]  30 127  30
-[1]  31 127  38
-[1]  32 127  52
-[1]  33 127  56
-[1]  34 127  36
-[1]  35 127  46
-[1]  36 127  55
-[1]  37 127  37
-[1]  38 127  51
-[1]  39 127  44
-[1]  40 127  33
-[1]  41 127  42
-[1]  42 127  31
-[1]  43 127  42
-[1]  44 127  49
-[1]  45 127  38
-[1]  46 127  40
-[1]  47 127  50
-[1]  48 127  44
-[1]  49 127  47
-[1]  50 127  41
-[1]  51 127  40
-[1]  52 127  46
-[1]  53 127  55
-[1]  54 127  42
-[1]  55 127  43
-[1]  56 127  43
-[1]  57 127  50
-[1]  58 127  33
-[1]  59 127  62
-[1]  60 127  43
-[1]  61 127  82
-[1]  62 127  47
-[1]  63 127  42
-[1]  64 127  33
-[1]  65 127  63
-[1]  66 127  53
-[1]  67 127  46
-[1]  68 127  36
-[1]  69 127  83
-[1]  70 127  40
-[1]  71 127  39
-[1]  72 127  85
-[1]  73 127  36
-[1]  74 127  50
-[1]  75 127  51
-[1]  76 127  37
-[1]  77 127  42
-[1]  78 127  55
-[1]  79 127  32
-[1]  80 127  56
-[1]  81 127  53
-[1]  82 127  42
-[1]  83 127  48
-[1]  84 127  34
-[1]  85 127  41
-[1]  86 127  52
-[1]  87 127  65
-[1]  88 127  55
-[1]  89 127  31
-[1]  90 127  48
-[1]  91 127  46
-[1]  92 127  43
-[1]  93 127  48
-[1]  94 127  67
-[1]  95 127  34
-[1]  96 127  37
-[1]  97 127  30
-[1]  98 127  41
-[1]  99 127  56
-[1] 100 127  61
-[1] 101 127  34
-[1] 102 127  37
-[1] 103 127  45
-[1] 104 127  52
-[1] 105 127  37
-[1] 106 127  44
-[1] 107 127  51
-[1] 108 127  44
-[1] 109 127  56
-[1] 110 127  44
-[1] 111 127  54
-[1] 112 127  66
-[1] 113 127  50
-[1] 114 127  56
-[1] 115 127  50
-[1] 116 127  47
-[1] 117 127  60
-[1] 118 127  61
-[1] 119 127  31
-[1] 120 127 100
-[1] 121 127  98
-[1] 122 127  55
-[1] 123 127  33
-[1] 124 127  46
-[1] 125 127  43
-[1] 126 127  45
-[1] 127 127  54
-[1] 128 127  43
-[1] 129 127  52
-[1] 130 127  55
-[1] 131 127  50
-[1] 132 127  35
-[1] 133 127  65
-[1] 134 127  59
-[1] 135 127  45
-[1] 136 127  35
-[1] 137 127  40
-[1] 138 127  45
-[1] 139 127  52
-[1] 140 127  43
-[1] 141 127  45
-[1] 142 127  44
-[1] 143 127  42
-[1] 144 127  43
-[1] 145 127  46
-[1] 146 127  44
-[1] 147 127  53
-[1] 148 127  64
-[1] 149 127  54
-[1] 150 127  47
-[1] 151 127  42
-[1] 152 127  59
-[1] 153 127  48
-[1] 154 127  46
-[1] 155 127  64
-[1] 156 127  40
-[1] 157 127  43
-[1] 158 127  40
-[1] 159 127  62
-[1] 160 127  75
-[1] 161 127  46
-[1] 162 127  44
-[1] 163 127  93
-[1] 164 127  64
-[1] 165 127  71
-[1] 166 127  47
-[1] 167 127  73
-[1] 168 127  53
-[1] 169 127  52
-[1] 170 127  58
-[1] 171 127  48
-[1] 172 127  61
-[1] 173 127  61
-[1] 174 127  63
-[1] 175 127  33
-[1] 176 127  44
-[1] 177 127  39
-[1] 178 127  68
-[1] 179 127  53
-[1] 180 127  51
-[1] 181 127  75
-[1] 182 127  45
-[1] 183 127  47
-[1] 184 127  48
-[1] 185 127  49
-[1] 186 127  53
-[1] 187 127  46
-[1] 188 127  35
-[1] 189 127  80
-[1] 190 127  49
-[1] 191 127  69
-[1] 192 127  60
-[1] 193 127  67
-[1] 194 127  36
-[1] 195 127  38
-[1] 196 127  87
-[1] 197 127  57
-[1] 198 127  54
-[1] 199 127  71
-[1] 200 127  47
-[1]   1 128  28
-[1]   2 128  47
-[1]   3 128  36
-[1]   4 128  50
-[1]   5 128  32
-[1]   6 128  33
-[1]   7 128  26
-[1]   8 128  31
-[1]   9 128  31
-[1]  10 128  30
-[1]  11 128  31
-[1]  12 128  31
-[1]  13 128  46
-[1]  14 128  43
-[1]  15 128  50
-[1]  16 128  55
-[1]  17 128  30
-[1]  18 128  25
-[1]  19 128  38
-[1]  20 128  45
-[1]  21 128  28
-[1]  22 128  56
-[1]  23 128  36
-[1]  24 128  54
-[1]  25 128  37
-[1]  26 128  34
-[1]  27 128  65
-[1]  28 128  36
-[1]  29 128  41
-[1]  30 128  36
-[1]  31 128  31
-[1]  32 128  37
-[1]  33 128  36
-[1]  34 128  31
-[1]  35 128  44
-[1]  36 128  47
-[1]  37 128  32
-[1]  38 128  40
-[1]  39 128  44
-[1]  40 128  25
-[1]  41 128  35
-[1]  42 128  35
-[1]  43 128  33
-[1]  44 128  34
-[1]  45 128  35
-[1]  46 128  52
-[1]  47 128  45
-[1]  48 128  33
-[1]  49 128  62
-[1]  50 128  39
-[1]  51 128  37
-[1]  52 128  37
-[1]  53 128  47
-[1]  54 128  42
-[1]  55 128  36
-[1]  56 128  50
-[1]  57 128  49
-[1]  58 128  52
-[1]  59 128  67
-[1]  60 128  32
-[1]  61 128  38
-[1]  62 128  50
-[1]  63 128  54
-[1]  64 128  45
-[1]  65 128  40
-[1]  66 128  44
-[1]  67 128  59
-[1]  68 128  39
-[1]  69 128  55
-[1]  70 128  38
-[1]  71 128  37
-[1]  72 128  30
-[1]  73 128  34
-[1]  74 128  52
-[1]  75 128  41
-[1]  76 128  50
-[1]  77 128  50
-[1]  78 128  44
-[1]  79 128  52
-[1]  80 128  46
-[1]  81 128  36
-[1]  82 128  46
-[1]  83 128  54
-[1]  84 128  44
-[1]  85 128  51
-[1]  86 128  58
-[1]  87 128  47
-[1]  88 128  39
-[1]  89 128  42
-[1]  90 128  54
-[1]  91 128  49
-[1]  92 128  40
-[1]  93 128  27
-[1]  94 128 125
-[1]  95 128  49
-[1]  96 128  58
-[1]  97 128  36
-[1]  98 128  28
-[1]  99 128  83
-[1] 100 128  55
-[1] 101 128  55
-[1] 102 128  26
-[1] 103 128  41
-[1] 104 128  42
-[1] 105 128  47
-[1] 106 128  35
-[1] 107 128  61
-[1] 108 128  61
-[1] 109 128  41
-[1] 110 128  43
-[1] 111 128  71
-[1] 112 128  52
-[1] 113 128  34
-[1] 114 128  37
-[1] 115 128  74
-[1] 116 128  51
-[1] 117 128  74
-[1] 118 128  55
-[1] 119 128  95
-[1] 120 128  58
-[1] 121 128  63
-[1] 122 128  37
-[1] 123 128  48
-[1] 124 128  55
-[1] 125 128  36
-[1] 126 128  39
-[1] 127 128  62
-[1] 128 128  68
-[1] 129 128  53
-[1] 130 128  54
-[1] 131 128  44
-[1] 132 128  42
-[1] 133 128  45
-[1] 134 128  40
-[1] 135 128  45
-[1] 136 128  50
-[1] 137 128  39
-[1] 138 128  28
-[1] 139 128  38
-[1] 140 128  68
-[1] 141 128  40
-[1] 142 128  44
-[1] 143 128  51
-[1] 144 128  35
-[1] 145 128  38
-[1] 146 128  69
-[1] 147 128  46
-[1] 148 128  49
-[1] 149 128  61
-[1] 150 128  47
-[1] 151 128  45
-[1] 152 128  45
-[1] 153 128  56
-[1] 154 128  84
-[1] 155 128  48
-[1] 156 128  55
-[1] 157 128  30
-[1] 158 128  62
-[1] 159 128  47
-[1] 160 128  55
-[1] 161 128  39
-[1] 162 128  47
-[1] 163 128  64
-[1] 164 128  50
-[1] 165 128  69
-[1] 166 128  52
-[1] 167 128  43
-[1] 168 128  48
-[1] 169 128  33
-[1] 170 128  69
-[1] 171 128  43
-[1] 172 128  43
-[1] 173 128  97
-[1] 174 128  40
-[1] 175 128  48
-[1] 176 128  46
-[1] 177 128  45
-[1] 178 128  54
-[1] 179 128  53
-[1] 180 128  50
-[1] 181 128  50
-[1] 182 128  52
-[1] 183 128  36
-[1] 184 128  46
-[1] 185 128  56
-[1] 186 128  34
-[1] 187 128  36
-[1] 188 128  41
-[1] 189 128  65
-[1] 190 128  82
-[1] 191 128  81
-[1] 192 128  60
-[1] 193 128  49
-[1] 194 128  36
-[1] 195 128  82
-[1] 196 128  43
-[1] 197 128  43
-[1] 198 128  40
-[1] 199 128  51
-[1] 200 128  51
-[1]   1 129  30
-[1]   2 129  60
-[1]   3 129  32
-[1]   4 129  33
-[1]   5 129  40
-[1]   6 129  38
-[1]   7 129  41
-[1]   8 129  39
-[1]   9 129  29
-[1]  10 129  30
-[1]  11 129  41
-[1]  12 129  32
-[1]  13 129 103
-[1]  14 129  38
-[1]  15 129  48
-[1]  16 129  85
-[1]  17 129  49
-[1]  18 129  31
-[1]  19 129  33
-[1]  20 129  44
-[1]  21 129  36
-[1]  22 129  39
-[1]  23 129  28
-[1]  24 129  39
-[1]  25 129  50
-[1]  26 129  31
-[1]  27 129  35
-[1]  28 129  48
-[1]  29 129  33
-[1]  30 129  56
-[1]  31 129  63
-[1]  32 129  34
-[1]  33 129  35
-[1]  34 129  65
-[1]  35 129  36
-[1]  36 129  37
-[1]  37 129  48
-[1]  38 129  38
-[1]  39 129  33
-[1]  40 129  39
-[1]  41 129  33
-[1]  42 129  44
-[1]  43 129  55
-[1]  44 129  42
-[1]  45 129  47
-[1]  46 129  28
-[1]  47 129  45
-[1]  48 129  58
-[1]  49 129  43
-[1]  50 129  42
-[1]  51 129  43
-[1]  52 129  52
-[1]  53 129  49
-[1]  54 129  51
-[1]  55 129  40
-[1]  56 129  45
-[1]  57 129  54
-[1]  58 129  45
-[1]  59 129  39
-[1]  60 129  59
-[1]  61 129  58
-[1]  62 129  32
-[1]  63 129  34
-[1]  64 129  37
-[1]  65 129  52
-[1]  66 129  39
-[1]  67 129  75
-[1]  68 129  37
-[1]  69 129  44
-[1]  70 129  29
-[1]  71 129  48
-[1]  72 129  75
-[1]  73 129  40
-[1]  74 129  41
-[1]  75 129  51
-[1]  76 129  36
-[1]  77 129  47
-[1]  78 129  44
-[1]  79 129  31
-[1]  80 129  60
-[1]  81 129  41
-[1]  82 129  71
-[1]  83 129  56
-[1]  84 129  30
-[1]  85 129  71
-[1]  86 129  47
-[1]  87 129  78
-[1]  88 129  55
-[1]  89 129  52
-[1]  90 129  43
-[1]  91 129  58
-[1]  92 129  37
-[1]  93 129  43
-[1]  94 129  36
-[1]  95 129  42
-[1]  96 129  43
-[1]  97 129  40
-[1]  98 129  37
-[1]  99 129  37
-[1] 100 129  40
-[1] 101 129  41
-[1] 102 129  37
-[1] 103 129  67
-[1] 104 129  40
-[1] 105 129  31
-[1] 106 129  52
-[1] 107 129  28
-[1] 108 129  63
-[1] 109 129  36
-[1] 110 129  44
-[1] 111 129  36
-[1] 112 129  51
-[1] 113 129  44
-[1] 114 129  66
-[1] 115 129  71
-[1] 116 129  63
-[1] 117 129  42
-[1] 118 129  49
-[1] 119 129  60
-[1] 120 129  59
-[1] 121 129  38
-[1] 122 129  37
-[1] 123 129  87
-[1] 124 129  30
-[1] 125 129  46
-[1] 126 129  45
-[1] 127 129  35
-[1] 128 129  33
-[1] 129 129  62
-[1] 130 129  32
-[1] 131 129  45
-[1] 132 129  63
-[1] 133 129  40
-[1] 134 129  41
-[1] 135 129  60
-[1] 136 129  59
-[1] 137 129  38
-[1] 138 129  35
-[1] 139 129  26
-[1] 140 129  64
-[1] 141 129  43
-[1] 142 129  45
-[1] 143 129  38
-[1] 144 129  33
-[1] 145 129  81
-[1] 146 129  32
-[1] 147 129  34
-[1] 148 129  53
-[1] 149 129  55
-[1] 150 129  42
-[1] 151 129  55
-[1] 152 129  47
-[1] 153 129  42
-[1] 154 129  61
-[1] 155 129  54
-[1] 156 129  46
-[1] 157 129  59
-[1] 158 129  47
-[1] 159 129  41
-[1] 160 129  64
-[1] 161 129  45
-[1] 162 129  79
-[1] 163 129  46
-[1] 164 129  41
-[1] 165 129  58
-[1] 166 129  54
-[1] 167 129  37
-[1] 168 129  50
-[1] 169 129  51
-[1] 170 129  77
-[1] 171 129  42
-[1] 172 129  44
-[1] 173 129  83
-[1] 174 129  45
-[1] 175 129  54
-[1] 176 129  37
-[1] 177 129  43
-[1] 178 129  46
-[1] 179 129  41
-[1] 180 129  45
-[1] 181 129  51
-[1] 182 129  53
-[1] 183 129  37
-[1] 184 129  37
-[1] 185 129  53
-[1] 186 129  37
-[1] 187 129  39
-[1] 188 129  44
-[1] 189 129  59
-[1] 190 129  46
-[1] 191 129  56
-[1] 192 129  50
-[1] 193 129  34
-[1] 194 129  43
-[1] 195 129  65
-[1] 196 129  50
-[1] 197 129  43
-[1] 198 129  46
-[1] 199 129  51
-[1] 200 129  43
-[1]   1 130  49
-[1]   2 130  35
-[1]   3 130  34
-[1]   4 130  47
-[1]   5 130  30
-[1]   6 130  27
-[1]   7 130  26
-[1]   8 130  37
-[1]   9 130  34
-[1]  10 130  45
-[1]  11 130  35
-[1]  12 130  42
-[1]  13 130  41
-[1]  14 130  31
-[1]  15 130  35
-[1]  16 130  34
-[1]  17 130  38
-[1]  18 130  51
-[1]  19 130  34
-[1]  20 130  47
-[1]  21 130  35
-[1]  22 130  74
-[1]  23 130  41
-[1]  24 130  31
-[1]  25 130  35
-[1]  26 130  35
-[1]  27 130  31
-[1]  28 130  46
-[1]  29 130  44
-[1]  30 130  33
-[1]  31 130  37
-[1]  32 130  24
-[1]  33 130  61
-[1]  34 130  45
-[1]  35 130  46
-[1]  36 130  39
-[1]  37 130  38
-[1]  38 130  43
-[1]  39 130  32
-[1]  40 130  45
-[1]  41 130  49
-[1]  42 130  76
-[1]  43 130  31
-[1]  44 130  40
-[1]  45 130  40
-[1]  46 130  55
-[1]  47 130  41
-[1]  48 130  35
-[1]  49 130  44
-[1]  50 130  38
-[1]  51 130  44
-[1]  52 130  38
-[1]  53 130  43
-[1]  54 130  36
-[1]  55 130  56
-[1]  56 130  49
-[1]  57 130  32
-[1]  58 130  73
-[1]  59 130  41
-[1]  60 130  38
-[1]  61 130  53
-[1]  62 130  60
-[1]  63 130  43
-[1]  64 130  37
-[1]  65 130  49
-[1]  66 130  56
-[1]  67 130  41
-[1]  68 130  40
-[1]  69 130  58
-[1]  70 130  39
-[1]  71 130  40
-[1]  72 130  41
-[1]  73 130  24
-[1]  74 130  51
-[1]  75 130  46
-[1]  76 130  57
-[1]  77 130  45
-[1]  78 130  46
-[1]  79 130  47
-[1]  80 130  46
-[1]  81 130  39
-[1]  82 130  48
-[1]  83 130  41
-[1]  84 130  77
-[1]  85 130  30
-[1]  86 130  41
-[1]  87 130  34
-[1]  88 130  39
-[1]  89 130  34
-[1]  90 130  44
-[1]  91 130  50
-[1]  92 130  58
-[1]  93 130  50
-[1]  94 130  36
-[1]  95 130  38
-[1]  96 130  54
-[1]  97 130  37
-[1]  98 130  38
-[1]  99 130  50
-[1] 100 130  49
-[1] 101 130  51
-[1] 102 130  41
-[1] 103 130  41
-[1] 104 130  42
-[1] 105 130  35
-[1] 106 130  36
-[1] 107 130  60
-[1] 108 130  49
-[1] 109 130  29
-[1] 110 130  52
-[1] 111 130  59
-[1] 112 130  33
-[1] 113 130  41
-[1] 114 130  35
-[1] 115 130  41
-[1] 116 130  42
-[1] 117 130  38
-[1] 118 130  56
-[1] 119 130  46
-[1] 120 130  65
-[1] 121 130  46
-[1] 122 130  65
-[1] 123 130  36
-[1] 124 130  70
-[1] 125 130  48
-[1] 126 130  59
-[1] 127 130  37
-[1] 128 130 107
-[1] 129 130  43
-[1] 130 130  44
-[1] 131 130  39
-[1] 132 130  40
-[1] 133 130  45
-[1] 134 130  29
-[1] 135 130  36
-[1] 136 130  36
-[1] 137 130  38
-[1] 138 130  57
-[1] 139 130  45
-[1] 140 130  60
-[1] 141 130  35
-[1] 142 130  43
-[1] 143 130  61
-[1] 144 130  54
-[1] 145 130  39
-[1] 146 130  33
-[1] 147 130  41
-[1] 148 130  45
-[1] 149 130  46
-[1] 150 130  49
-[1] 151 130  65
-[1] 152 130  47
-[1] 153 130  34
-[1] 154 130  70
-[1] 155 130  53
-[1] 156 130  53
-[1] 157 130  50
-[1] 158 130  44
-[1] 159 130  53
-[1] 160 130  63
-[1] 161 130  71
-[1] 162 130  50
-[1] 163 130  42
-[1] 164 130  63
-[1] 165 130  73
-[1] 166 130  44
-[1] 167 130  34
-[1] 168 130  62
-[1] 169 130  24
-[1] 170 130  44
-[1] 171 130  56
-[1] 172 130  38
-[1] 173 130  35
-[1] 174 130  60
-[1] 175 130  40
-[1] 176 130  43
-[1] 177 130  53
-[1] 178 130  62
-[1] 179 130  54
-[1] 180 130 101
-[1] 181 130  87
-[1] 182 130  58
-[1] 183 130  34
-[1] 184 130  50
-[1] 185 130  68
-[1] 186 130  51
-[1] 187 130  50
-[1] 188 130  48
-[1] 189 130  57
-[1] 190 130  61
-[1] 191 130  50
-[1] 192 130  63
-[1] 193 130  63
-[1] 194 130  56
-[1] 195 130  39
-[1] 196 130  51
-[1] 197 130  42
-[1] 198 130  46
-[1] 199 130  47
-[1] 200 130  55
-[1]   1 131  42
-[1]   2 131  46
-[1]   3 131  36
-[1]   4 131  33
-[1]   5 131  25
-[1]   6 131  39
-[1]   7 131  48
-[1]   8 131  44
-[1]   9 131  41
-[1]  10 131  25
-[1]  11 131  32
-[1]  12 131  48
-[1]  13 131  33
-[1]  14 131  26
-[1]  15 131  47
-[1]  16 131  48
-[1]  17 131  34
-[1]  18 131  38
-[1]  19 131  54
-[1]  20 131  43
-[1]  21 131  64
-[1]  22 131  33
-[1]  23 131  30
-[1]  24 131  31
-[1]  25 131  28
-[1]  26 131  52
-[1]  27 131  46
-[1]  28 131  53
-[1]  29 131  68
-[1]  30 131  39
-[1]  31 131  54
-[1]  32 131  45
-[1]  33 131  82
-[1]  34 131  42
-[1]  35 131  45
-[1]  36 131  39
-[1]  37 131  36
-[1]  38 131  33
-[1]  39 131  31
-[1]  40 131  54
-[1]  41 131  27
-[1]  42 131  42
-[1]  43 131  44
-[1]  44 131  31
-[1]  45 131  48
-[1]  46 131  71
-[1]  47 131  43
-[1]  48 131  32
-[1]  49 131  49
-[1]  50 131  40
-[1]  51 131  37
-[1]  52 131  30
-[1]  53 131  83
-[1]  54 131  29
-[1]  55 131  33
-[1]  56 131  34
-[1]  57 131  24
-[1]  58 131  59
-[1]  59 131  36
-[1]  60 131  59
-[1]  61 131  40
-[1]  62 131  49
-[1]  63 131  57
-[1]  64 131  42
-[1]  65 131  34
-[1]  66 131  49
-[1]  67 131  53
-[1]  68 131  35
-[1]  69 131  52
-[1]  70 131  52
-[1]  71 131  67
-[1]  72 131  47
-[1]  73 131  40
-[1]  74 131  37
-[1]  75 131  46
-[1]  76 131  61
-[1]  77 131  34
-[1]  78 131  51
-[1]  79 131  41
-[1]  80 131  48
-[1]  81 131  34
-[1]  82 131  35
-[1]  83 131  76
-[1]  84 131  38
-[1]  85 131  35
-[1]  86 131  44
-[1]  87 131  56
-[1]  88 131  39
-[1]  89 131  40
-[1]  90 131  45
-[1]  91 131  88
-[1]  92 131  33
-[1]  93 131  42
-[1]  94 131  49
-[1]  95 131  30
-[1]  96 131  49
-[1]  97 131  36
-[1]  98 131  38
-[1]  99 131  49
-[1] 100 131  39
-[1] 101 131  43
-[1] 102 131  53
-[1] 103 131  34
-[1] 104 131  53
-[1] 105 131  40
-[1] 106 131  37
-[1] 107 131  50
-[1] 108 131  39
-[1] 109 131  53
-[1] 110 131  46
-[1] 111 131  34
-[1] 112 131  41
-[1] 113 131  36
-[1] 114 131  70
-[1] 115 131  54
-[1] 116 131  40
-[1] 117 131  38
-[1] 118 131  80
-[1] 119 131  37
-[1] 120 131  56
-[1] 121 131  60
-[1] 122 131  54
-[1] 123 131  52
-[1] 124 131  36
-[1] 125 131  43
-[1] 126 131  44
-[1] 127 131  52
-[1] 128 131  41
-[1] 129 131 111
-[1] 130 131  34
-[1] 131 131  66
-[1] 132 131  39
-[1] 133 131  35
-[1] 134 131  44
-[1] 135 131  55
-[1] 136 131  57
-[1] 137 131  32
-[1] 138 131  41
-[1] 139 131  64
-[1] 140 131  87
-[1] 141 131  46
-[1] 142 131  61
-[1] 143 131  38
-[1] 144 131  42
-[1] 145 131  64
-[1] 146 131  39
-[1] 147 131  52
-[1] 148 131  34
-[1] 149 131  57
-[1] 150 131  50
-[1] 151 131  38
-[1] 152 131  58
-[1] 153 131  42
-[1] 154 131  65
-[1] 155 131  56
-[1] 156 131  70
-[1] 157 131  54
-[1] 158 131  53
-[1] 159 131  52
-[1] 160 131  36
-[1] 161 131  34
-[1] 162 131  41
-[1] 163 131  37
-[1] 164 131  54
-[1] 165 131  55
-[1] 166 131  46
-[1] 167 131  35
-[1] 168 131  76
-[1] 169 131  59
-[1] 170 131  78
-[1] 171 131  45
-[1] 172 131 138
-[1] 173 131  78
-[1] 174 131  84
-[1] 175 131  37
-[1] 176 131  69
-[1] 177 131  50
-[1] 178 131  36
-[1] 179 131  64
-[1] 180 131  54
-[1] 181 131  44
-[1] 182 131  46
-[1] 183 131  69
-[1] 184 131  31
-[1] 185 131  44
-[1] 186 131  35
-[1] 187 131  36
-[1] 188 131  39
-[1] 189 131  56
-[1] 190 131  77
-[1] 191 131  41
-[1] 192 131  59
-[1] 193 131  46
-[1] 194 131  52
-[1] 195 131  43
-[1] 196 131  69
-[1] 197 131  38
-[1] 198 131  42
-[1] 199 131  40
-[1] 200 131  42
-[1]   1 132  43
-[1]   2 132  35
-[1]   3 132  46
-[1]   4 132  47
-[1]   5 132  32
-[1]   6 132  39
-[1]   7 132  31
-[1]   8 132  46
-[1]   9 132  53
-[1]  10 132  49
-[1]  11 132  39
-[1]  12 132  43
-[1]  13 132  37
-[1]  14 132  34
-[1]  15 132  33
-[1]  16 132  44
-[1]  17 132  45
-[1]  18 132  31
-[1]  19 132  35
-[1]  20 132  58
-[1]  21 132  28
-[1]  22 132  41
-[1]  23 132  35
-[1]  24 132  38
-[1]  25 132  32
-[1]  26 132  29
-[1]  27 132  38
-[1]  28 132  37
-[1]  29 132  71
-[1]  30 132  44
-[1]  31 132  43
-[1]  32 132  30
-[1]  33 132  38
-[1]  34 132  72
-[1]  35 132  32
-[1]  36 132  66
-[1]  37 132  49
-[1]  38 132  29
-[1]  39 132  40
-[1]  40 132  53
-[1]  41 132  28
-[1]  42 132  49
-[1]  43 132  55
-[1]  44 132  42
-[1]  45 132  31
-[1]  46 132  37
-[1]  47 132  40
-[1]  48 132  44
-[1]  49 132  33
-[1]  50 132  52
-[1]  51 132  47
-[1]  52 132  39
-[1]  53 132  36
-[1]  54 132  45
-[1]  55 132  45
-[1]  56 132  37
-[1]  57 132  51
-[1]  58 132  42
-[1]  59 132  39
-[1]  60 132  68
-[1]  61 132  42
-[1]  62 132  56
-[1]  63 132  49
-[1]  64 132  60
-[1]  65 132  45
-[1]  66 132  34
-[1]  67 132  45
-[1]  68 132  53
-[1]  69 132  34
-[1]  70 132  41
-[1]  71 132  62
-[1]  72 132  43
-[1]  73 132  56
-[1]  74 132  35
-[1]  75 132  32
-[1]  76 132  41
-[1]  77 132  57
-[1]  78 132  64
-[1]  79 132  37
-[1]  80 132  34
-[1]  81 132  37
-[1]  82 132  32
-[1]  83 132  39
-[1]  84 132  43
-[1]  85 132  40
-[1]  86 132  69
-[1]  87 132  34
-[1]  88 132  57
-[1]  89 132  46
-[1]  90 132  40
-[1]  91 132  53
-[1]  92 132  45
-[1]  93 132  45
-[1]  94 132  42
-[1]  95 132  39
-[1]  96 132  32
-[1]  97 132  44
-[1]  98 132  43
-[1]  99 132  39
-[1] 100 132  40
-[1] 101 132  33
-[1] 102 132  37
-[1] 103 132  36
-[1] 104 132  46
-[1] 105 132  33
-[1] 106 132  43
-[1] 107 132  45
-[1] 108 132  60
-[1] 109 132  45
-[1] 110 132  31
-[1] 111 132  30
-[1] 112 132  48
-[1] 113 132  30
-[1] 114 132  42
-[1] 115 132  61
-[1] 116 132  39
-[1] 117 132  43
-[1] 118 132  35
-[1] 119 132  48
-[1] 120 132  61
-[1] 121 132  36
-[1] 122 132  53
-[1] 123 132  54
-[1] 124 132  51
-[1] 125 132  72
-[1] 126 132  47
-[1] 127 132  87
-[1] 128 132  40
-[1] 129 132  53
-[1] 130 132  42
-[1] 131 132  37
-[1] 132 132  60
-[1] 133 132  69
-[1] 134 132  47
-[1] 135 132  50
-[1] 136 132  37
-[1] 137 132  56
-[1] 138 132  48
-[1] 139 132  51
-[1] 140 132  39
-[1] 141 132  42
-[1] 142 132 105
-[1] 143 132  35
-[1] 144 132  54
-[1] 145 132  52
-[1] 146 132  64
-[1] 147 132 118
-[1] 148 132  43
-[1] 149 132 102
-[1] 150 132  40
-[1] 151 132  35
-[1] 152 132  42
-[1] 153 132  38
-[1] 154 132  48
-[1] 155 132  50
-[1] 156 132  63
-[1] 157 132  70
-[1] 158 132  57
-[1] 159 132  57
-[1] 160 132  44
-[1] 161 132  82
-[1] 162 132  52
-[1] 163 132  54
-[1] 164 132  43
-[1] 165 132  50
-[1] 166 132  61
-[1] 167 132  48
-[1] 168 132  67
-[1] 169 132  42
-[1] 170 132  52
-[1] 171 132  51
-[1] 172 132  54
-[1] 173 132  55
-[1] 174 132  55
-[1] 175 132  46
-[1] 176 132  43
-[1] 177 132  49
-[1] 178 132  37
-[1] 179 132  45
-[1] 180 132  51
-[1] 181 132  76
-[1] 182 132  76
-[1] 183 132  37
-[1] 184 132  76
-[1] 185 132  36
-[1] 186 132  35
-[1] 187 132  41
-[1] 188 132  61
-[1] 189 132  59
-[1] 190 132  63
-[1] 191 132  47
-[1] 192 132  42
-[1] 193 132  52
-[1] 194 132  39
-[1] 195 132  61
-[1] 196 132  68
-[1] 197 132  45
-[1] 198 132  38
-[1] 199 132  53
-[1] 200 132  43
-[1]   1 133  30
-[1]   2 133  36
-[1]   3 133  34
-[1]   4 133  31
-[1]   5 133  34
-[1]   6 133  28
-[1]   7 133  39
-[1]   8 133  41
-[1]   9 133  29
-[1]  10 133  40
-[1]  11 133  33
-[1]  12 133  34
-[1]  13 133  29
-[1]  14 133  44
-[1]  15 133  31
-[1]  16 133  34
-[1]  17 133  38
-[1]  18 133  39
-[1]  19 133  47
-[1]  20 133  41
-[1]  21 133  36
-[1]  22 133  35
-[1]  23 133  28
-[1]  24 133  33
-[1]  25 133  39
-[1]  26 133  35
-[1]  27 133  43
-[1]  28 133  31
-[1]  29 133  37
-[1]  30 133  42
-[1]  31 133  68
-[1]  32 133  55
-[1]  33 133  57
-[1]  34 133  24
-[1]  35 133  51
-[1]  36 133  38
-[1]  37 133  33
-[1]  38 133  32
-[1]  39 133  46
-[1]  40 133  44
-[1]  41 133  42
-[1]  42 133  41
-[1]  43 133  43
-[1]  44 133  36
-[1]  45 133  40
-[1]  46 133  37
-[1]  47 133  37
-[1]  48 133  45
-[1]  49 133  50
-[1]  50 133  38
-[1]  51 133  31
-[1]  52 133  44
-[1]  53 133  43
-[1]  54 133  52
-[1]  55 133  42
-[1]  56 133  50
-[1]  57 133  46
-[1]  58 133  35
-[1]  59 133  31
-[1]  60 133  63
-[1]  61 133  47
-[1]  62 133  37
-[1]  63 133  34
-[1]  64 133  43
-[1]  65 133  67
-[1]  66 133  46
-[1]  67 133  46
-[1]  68 133  35
-[1]  69 133  39
-[1]  70 133  44
-[1]  71 133  57
-[1]  72 133  47
-[1]  73 133  42
-[1]  74 133  45
-[1]  75 133  38
-[1]  76 133  50
-[1]  77 133  42
-[1]  78 133  46
-[1]  79 133  40
-[1]  80 133  33
-[1]  81 133  36
-[1]  82 133  35
-[1]  83 133  55
-[1]  84 133  34
-[1]  85 133  66
-[1]  86 133  51
-[1]  87 133  43
-[1]  88 133  41
-[1]  89 133  54
-[1]  90 133  37
-[1]  91 133  60
-[1]  92 133  35
-[1]  93 133  44
-[1]  94 133  50
-[1]  95 133  47
-[1]  96 133  45
-[1]  97 133  36
-[1]  98 133  44
-[1]  99 133  47
-[1] 100 133  40
-[1] 101 133  84
-[1] 102 133  57
-[1] 103 133  46
-[1] 104 133  34
-[1] 105 133  48
-[1] 106 133  45
-[1] 107 133  33
-[1] 108 133  44
-[1] 109 133  41
-[1] 110 133  32
-[1] 111 133  44
-[1] 112 133  37
-[1] 113 133  40
-[1] 114 133  50
-[1] 115 133  63
-[1] 116 133  48
-[1] 117 133  36
-[1] 118 133  53
-[1] 119 133  41
-[1] 120 133  27
-[1] 121 133  45
-[1] 122 133  46
-[1] 123 133  72
-[1] 124 133  37
-[1] 125 133  42
-[1] 126 133  32
-[1] 127 133  77
-[1] 128 133  30
-[1] 129 133  99
-[1] 130 133  31
-[1] 131 133  50
-[1] 132 133  37
-[1] 133 133  50
-[1] 134 133  41
-[1] 135 133  46
-[1] 136 133  54
-[1] 137 133  60
-[1] 138 133  60
-[1] 139 133  65
-[1] 140 133  48
-[1] 141 133  86
-[1] 142 133  47
-[1] 143 133  65
-[1] 144 133  33
-[1] 145 133  38
-[1] 146 133  68
-[1] 147 133  41
-[1] 148 133  28
-[1] 149 133 101
-[1] 150 133  34
-[1] 151 133  57
-[1] 152 133  72
-[1] 153 133  55
-[1] 154 133  44
-[1] 155 133  64
-[1] 156 133  40
-[1] 157 133  45
-[1] 158 133  52
-[1] 159 133  45
-[1] 160 133  36
-[1] 161 133  64
-[1] 162 133  61
-[1] 163 133  45
-[1] 164 133  39
-[1] 165 133  86
-[1] 166 133  57
-[1] 167 133  30
-[1] 168 133  60
-[1] 169 133  44
-[1] 170 133  47
-[1] 171 133  75
-[1] 172 133  67
-[1] 173 133  68
-[1] 174 133  46
-[1] 175 133  46
-[1] 176 133  74
-[1] 177 133  73
-[1] 178 133  46
-[1] 179 133  44
-[1] 180 133  44
-[1] 181 133  46
-[1] 182 133  67
-[1] 183 133  54
-[1] 184 133  46
-[1] 185 133  45
-[1] 186 133  50
-[1] 187 133  47
-[1] 188 133  45
-[1] 189 133  48
-[1] 190 133  42
-[1] 191 133  38
-[1] 192 133  51
-[1] 193 133  58
-[1] 194 133  51
-[1] 195 133  43
-[1] 196 133  46
-[1] 197 133  47
-[1] 198 133  51
-[1] 199 133  59
-[1] 200 133  39
-[1]   1 134  35
-[1]   2 134  37
-[1]   3 134  42
-[1]   4 134  29
-[1]   5 134  32
-[1]   6 134  33
-[1]   7 134  36
-[1]   8 134  43
-[1]   9 134  39
-[1]  10 134  29
-[1]  11 134  41
-[1]  12 134  37
-[1]  13 134  39
-[1]  14 134  32
-[1]  15 134  41
-[1]  16 134  34
-[1]  17 134  69
-[1]  18 134  40
-[1]  19 134  27
-[1]  20 134  33
-[1]  21 134  55
-[1]  22 134  38
-[1]  23 134  34
-[1]  24 134  51
-[1]  25 134  42
-[1]  26 134  52
-[1]  27 134  39
-[1]  28 134  39
-[1]  29 134  45
-[1]  30 134  43
-[1]  31 134  52
-[1]  32 134  39
-[1]  33 134  30
-[1]  34 134  56
-[1]  35 134  36
-[1]  36 134  60
-[1]  37 134  26
-[1]  38 134  30
-[1]  39 134  59
-[1]  40 134  44
-[1]  41 134  59
-[1]  42 134  36
-[1]  43 134  38
-[1]  44 134  46
-[1]  45 134  41
-[1]  46 134  45
-[1]  47 134  42
-[1]  48 134  40
-[1]  49 134  37
-[1]  50 134  30
-[1]  51 134  39
-[1]  52 134  53
-[1]  53 134  34
-[1]  54 134  47
-[1]  55 134  54
-[1]  56 134  41
-[1]  57 134  35
-[1]  58 134  71
-[1]  59 134  52
-[1]  60 134  34
-[1]  61 134  51
-[1]  62 134  34
-[1]  63 134  55
-[1]  64 134  28
-[1]  65 134  49
-[1]  66 134  34
-[1]  67 134  53
-[1]  68 134  32
-[1]  69 134  37
-[1]  70 134  64
-[1]  71 134  48
-[1]  72 134  33
-[1]  73 134  61
-[1]  74 134  41
-[1]  75 134  36
-[1]  76 134  43
-[1]  77 134  32
-[1]  78 134  52
-[1]  79 134  62
-[1]  80 134  36
-[1]  81 134  43
-[1]  82 134  31
-[1]  83 134  38
-[1]  84 134  31
-[1]  85 134  35
-[1]  86 134  39
-[1]  87 134  49
-[1]  88 134  37
-[1]  89 134  58
-[1]  90 134  34
-[1]  91 134  52
-[1]  92 134  45
-[1]  93 134  28
-[1]  94 134  62
-[1]  95 134  57
-[1]  96 134  28
-[1]  97 134  42
-[1]  98 134  55
-[1]  99 134  63
-[1] 100 134  36
-[1] 101 134  34
-[1] 102 134  60
-[1] 103 134  42
-[1] 104 134  41
-[1] 105 134  42
-[1] 106 134  61
-[1] 107 134  37
-[1] 108 134  52
-[1] 109 134  35
-[1] 110 134  50
-[1] 111 134  28
-[1] 112 134  35
-[1] 113 134  39
-[1] 114 134  42
-[1] 115 134  31
-[1] 116 134  36
-[1] 117 134  47
-[1] 118 134  44
-[1] 119 134  44
-[1] 120 134  42
-[1] 121 134  36
-[1] 122 134  35
-[1] 123 134  34
-[1] 124 134  51
-[1] 125 134  46
-[1] 126 134  33
-[1] 127 134  42
-[1] 128 134  45
-[1] 129 134  47
-[1] 130 134  51
-[1] 131 134  44
-[1] 132 134  38
-[1] 133 134  47
-[1] 134 134  47
-[1] 135 134  38
-[1] 136 134  53
-[1] 137 134  48
-[1] 138 134  55
-[1] 139 134  49
-[1] 140 134  64
-[1] 141 134  42
-[1] 142 134  54
-[1] 143 134  43
-[1] 144 134  53
-[1] 145 134  37
-[1] 146 134  55
-[1] 147 134  58
-[1] 148 134  46
-[1] 149 134  39
-[1] 150 134  37
-[1] 151 134  56
-[1] 152 134  60
-[1] 153 134  47
-[1] 154 134  40
-[1] 155 134  69
-[1] 156 134  39
-[1] 157 134  48
-[1] 158 134  48
-[1] 159 134  82
-[1] 160 134  46
-[1] 161 134  59
-[1] 162 134  58
-[1] 163 134  68
-[1] 164 134  59
-[1] 165 134  37
-[1] 166 134  52
-[1] 167 134  79
-[1] 168 134  52
-[1] 169 134  57
-[1] 170 134  51
-[1] 171 134  48
-[1] 172 134  63
-[1] 173 134  68
-[1] 174 134  57
-[1] 175 134  42
-[1] 176 134  57
-[1] 177 134  49
-[1] 178 134  68
-[1] 179 134  35
-[1] 180 134  46
-[1] 181 134  79
-[1] 182 134  67
-[1] 183 134  64
-[1] 184 134  39
-[1] 185 134  44
-[1] 186 134  45
-[1] 187 134  48
-[1] 188 134  50
-[1] 189 134  45
-[1] 190 134  36
-[1] 191 134  41
-[1] 192 134  47
-[1] 193 134  75
-[1] 194 134  70
-[1] 195 134  59
-[1] 196 134  64
-[1] 197 134  39
-[1] 198 134  40
-[1] 199 134  52
-[1] 200 134  48
-[1]   1 135  39
-[1]   2 135  31
-[1]   3 135  38
-[1]   4 135  42
-[1]   5 135  42
-[1]   6 135  42
-[1]   7 135  30
-[1]   8 135  41
-[1]   9 135  51
-[1]  10 135  35
-[1]  11 135  39
-[1]  12 135  36
-[1]  13 135  42
-[1]  14 135  32
-[1]  15 135  35
-[1]  16 135  39
-[1]  17 135  50
-[1]  18 135  31
-[1]  19 135  46
-[1]  20 135  37
-[1]  21 135  48
-[1]  22 135  33
-[1]  23 135  31
-[1]  24 135  44
-[1]  25 135  28
-[1]  26 135  35
-[1]  27 135  39
-[1]  28 135  28
-[1]  29 135  33
-[1]  30 135  38
-[1]  31 135  53
-[1]  32 135  35
-[1]  33 135  68
-[1]  34 135  37
-[1]  35 135  38
-[1]  36 135  32
-[1]  37 135  39
-[1]  38 135  45
-[1]  39 135  32
-[1]  40 135  32
-[1]  41 135  48
-[1]  42 135  38
-[1]  43 135  45
-[1]  44 135  27
-[1]  45 135  48
-[1]  46 135  33
-[1]  47 135  56
-[1]  48 135  54
-[1]  49 135  37
-[1]  50 135  59
-[1]  51 135  39
-[1]  52 135  56
-[1]  53 135  40
-[1]  54 135  29
-[1]  55 135  48
-[1]  56 135  39
-[1]  57 135  32
-[1]  58 135  42
-[1]  59 135  46
-[1]  60 135  50
-[1]  61 135  55
-[1]  62 135  29
-[1]  63 135  41
-[1]  64 135  49
-[1]  65 135  45
-[1]  66 135  34
-[1]  67 135  41
-[1]  68 135  52
-[1]  69 135  51
-[1]  70 135  46
-[1]  71 135  44
-[1]  72 135  32
-[1]  73 135  60
-[1]  74 135  50
-[1]  75 135  26
-[1]  76 135  64
-[1]  77 135  35
-[1]  78 135  59
-[1]  79 135  37
-[1]  80 135  40
-[1]  81 135  41
-[1]  82 135  49
-[1]  83 135  43
-[1]  84 135  41
-[1]  85 135  39
-[1]  86 135  36
-[1]  87 135  44
-[1]  88 135  58
-[1]  89 135  69
-[1]  90 135  38
-[1]  91 135  57
-[1]  92 135  28
-[1]  93 135  44
-[1]  94 135  50
-[1]  95 135  45
-[1]  96 135  39
-[1]  97 135  50
-[1]  98 135  64
-[1]  99 135  52
-[1] 100 135  58
-[1] 101 135  53
-[1] 102 135  37
-[1] 103 135  42
-[1] 104 135  44
-[1] 105 135  40
-[1] 106 135  73
-[1] 107 135  52
-[1] 108 135  37
-[1] 109 135  45
-[1] 110 135  40
-[1] 111 135  65
-[1] 112 135  44
-[1] 113 135  37
-[1] 114 135  45
-[1] 115 135  32
-[1] 116 135  85
-[1] 117 135  34
-[1] 118 135  52
-[1] 119 135  34
-[1] 120 135  52
-[1] 121 135  32
-[1] 122 135  67
-[1] 123 135  50
-[1] 124 135  31
-[1] 125 135  54
-[1] 126 135  35
-[1] 127 135  37
-[1] 128 135  54
-[1] 129 135  41
-[1] 130 135  44
-[1] 131 135  56
-[1] 132 135  49
-[1] 133 135  41
-[1] 134 135  53
-[1] 135 135  58
-[1] 136 135  30
-[1] 137 135  57
-[1] 138 135  62
-[1] 139 135  47
-[1] 140 135  57
-[1] 141 135  44
-[1] 142 135  34
-[1] 143 135  58
-[1] 144 135  46
-[1] 145 135  59
-[1] 146 135  48
-[1] 147 135  33
-[1] 148 135  62
-[1] 149 135  45
-[1] 150 135  40
-[1] 151 135  71
-[1] 152 135  43
-[1] 153 135  58
-[1] 154 135  55
-[1] 155 135  40
-[1] 156 135  55
-[1] 157 135  55
-[1] 158 135  51
-[1] 159 135  64
-[1] 160 135  46
-[1] 161 135  43
-[1] 162 135  50
-[1] 163 135  53
-[1] 164 135  77
-[1] 165 135  54
-[1] 166 135  33
-[1] 167 135  94
-[1] 168 135  37
-[1] 169 135  68
-[1] 170 135  45
-[1] 171 135  69
-[1] 172 135  56
-[1] 173 135  43
-[1] 174 135  49
-[1] 175 135  40
-[1] 176 135  44
-[1] 177 135  47
-[1] 178 135  48
-[1] 179 135  57
-[1] 180 135  52
-[1] 181 135  49
-[1] 182 135  56
-[1] 183 135  44
-[1] 184 135  68
-[1] 185 135  36
-[1] 186 135  61
-[1] 187 135  42
-[1] 188 135  41
-[1] 189 135  48
-[1] 190 135  36
-[1] 191 135  63
-[1] 192 135  37
-[1] 193 135  53
-[1] 194 135  40
-[1] 195 135  45
-[1] 196 135  40
-[1] 197 135  51
-[1] 198 135  60
-[1] 199 135  51
-[1] 200 135  47
-[1]   1 136  39
-[1]   2 136  55
-[1]   3 136  42
-[1]   4 136  40
-[1]   5 136  39
-[1]   6 136  23
-[1]   7 136  48
-[1]   8 136  39
-[1]   9 136  52
-[1]  10 136  47
-[1]  11 136  64
-[1]  12 136  39
-[1]  13 136  34
-[1]  14 136  43
-[1]  15 136  79
-[1]  16 136  28
-[1]  17 136  32
-[1]  18 136  36
-[1]  19 136  30
-[1]  20 136  53
-[1]  21 136  32
-[1]  22 136  34
-[1]  23 136  27
-[1]  24 136  45
-[1]  25 136  38
-[1]  26 136  43
-[1]  27 136  36
-[1]  28 136  44
-[1]  29 136  50
-[1]  30 136  56
-[1]  31 136  31
-[1]  32 136  43
-[1]  33 136  53
-[1]  34 136  49
-[1]  35 136  45
-[1]  36 136  37
-[1]  37 136  34
-[1]  38 136  45
-[1]  39 136  34
-[1]  40 136  41
-[1]  41 136  44
-[1]  42 136  31
-[1]  43 136  63
-[1]  44 136  40
-[1]  45 136  51
-[1]  46 136  36
-[1]  47 136  34
-[1]  48 136  39
-[1]  49 136  41
-[1]  50 136  36
-[1]  51 136  42
-[1]  52 136  48
-[1]  53 136  33
-[1]  54 136  38
-[1]  55 136  66
-[1]  56 136  32
-[1]  57 136  45
-[1]  58 136  39
-[1]  59 136  47
-[1]  60 136  28
-[1]  61 136  38
-[1]  62 136  65
-[1]  63 136  32
-[1]  64 136  45
-[1]  65 136  40
-[1]  66 136  31
-[1]  67 136  33
-[1]  68 136  39
-[1]  69 136  46
-[1]  70 136  97
-[1]  71 136  33
-[1]  72 136  48
-[1]  73 136  40
-[1]  74 136  32
-[1]  75 136  53
-[1]  76 136  34
-[1]  77 136  52
-[1]  78 136  53
-[1]  79 136  45
-[1]  80 136  49
-[1]  81 136  31
-[1]  82 136  40
-[1]  83 136  51
-[1]  84 136  43
-[1]  85 136  38
-[1]  86 136  36
-[1]  87 136  85
-[1]  88 136  35
-[1]  89 136  40
-[1]  90 136  46
-[1]  91 136  64
-[1]  92 136  59
-[1]  93 136  42
-[1]  94 136  34
-[1]  95 136  39
-[1]  96 136  54
-[1]  97 136  37
-[1]  98 136  34
-[1]  99 136  37
-[1] 100 136  37
-[1] 101 136  36
-[1] 102 136  31
-[1] 103 136  57
-[1] 104 136  58
-[1] 105 136  54
-[1] 106 136  48
-[1] 107 136  43
-[1] 108 136  73
-[1] 109 136  45
-[1] 110 136  44
-[1] 111 136  31
-[1] 112 136  53
-[1] 113 136  44
-[1] 114 136  48
-[1] 115 136  81
-[1] 116 136  34
-[1] 117 136  44
-[1] 118 136  66
-[1] 119 136  38
-[1] 120 136  41
-[1] 121 136  36
-[1] 122 136  33
-[1] 123 136  70
-[1] 124 136  44
-[1] 125 136  54
-[1] 126 136  52
-[1] 127 136  40
-[1] 128 136  77
-[1] 129 136  33
-[1] 130 136  31
-[1] 131 136  54
-[1] 132 136  30
-[1] 133 136  63
-[1] 134 136  44
-[1] 135 136  47
-[1] 136 136  60
-[1] 137 136  45
-[1] 138 136  47
-[1] 139 136  50
-[1] 140 136  46
-[1] 141 136  37
-[1] 142 136  33
-[1] 143 136  46
-[1] 144 136  51
-[1] 145 136  46
-[1] 146 136  44
-[1] 147 136  42
-[1] 148 136  36
-[1] 149 136  71
-[1] 150 136  41
-[1] 151 136  58
-[1] 152 136  45
-[1] 153 136  56
-[1] 154 136  39
-[1] 155 136 125
-[1] 156 136  43
-[1] 157 136  43
-[1] 158 136  51
-[1] 159 136  45
-[1] 160 136  58
-[1] 161 136  67
-[1] 162 136  46
-[1] 163 136  47
-[1] 164 136  67
-[1] 165 136  72
-[1] 166 136  34
-[1] 167 136  33
-[1] 168 136  89
-[1] 169 136  54
-[1] 170 136  39
-[1] 171 136  35
-[1] 172 136  68
-[1] 173 136  68
-[1] 174 136  65
-[1] 175 136  43
-[1] 176 136  45
-[1] 177 136  43
-[1] 178 136  69
-[1] 179 136  49
-[1] 180 136  82
-[1] 181 136  50
-[1] 182 136  59
-[1] 183 136  40
-[1] 184 136  47
-[1] 185 136  49
-[1] 186 136  59
-[1] 187 136  54
-[1] 188 136  51
-[1] 189 136  33
-[1] 190 136  44
-[1] 191 136  56
-[1] 192 136  53
-[1] 193 136  36
-[1] 194 136  45
-[1] 195 136  39
-[1] 196 136  35
-[1] 197 136  55
-[1] 198 136  73
-[1] 199 136  35
-[1] 200 136  41
-[1]   1 137  33
-[1]   2 137  43
-[1]   3 137  34
-[1]   4 137  33
-[1]   5 137  32
-[1]   6 137  43
-[1]   7 137  40
-[1]   8 137  34
-[1]   9 137  33
-[1]  10 137  50
-[1]  11 137  58
-[1]  12 137  38
-[1]  13 137  37
-[1]  14 137  33
-[1]  15 137  38
-[1]  16 137  40
-[1]  17 137  34
-[1]  18 137  49
-[1]  19 137  43
-[1]  20 137  47
-[1]  21 137  38
-[1]  22 137  51
-[1]  23 137  44
-[1]  24 137  25
-[1]  25 137  40
-[1]  26 137  56
-[1]  27 137  49
-[1]  28 137  33
-[1]  29 137  46
-[1]  30 137  30
-[1]  31 137  31
-[1]  32 137  33
-[1]  33 137  39
-[1]  34 137  30
-[1]  35 137  31
-[1]  36 137  38
-[1]  37 137  51
-[1]  38 137  29
-[1]  39 137  35
-[1]  40 137  41
-[1]  41 137  43
-[1]  42 137  61
-[1]  43 137  44
-[1]  44 137  37
-[1]  45 137  44
-[1]  46 137  31
-[1]  47 137  47
-[1]  48 137  45
-[1]  49 137  29
-[1]  50 137  42
-[1]  51 137  46
-[1]  52 137  42
-[1]  53 137  34
-[1]  54 137  35
-[1]  55 137  43
-[1]  56 137  33
-[1]  57 137  30
-[1]  58 137  29
-[1]  59 137  66
-[1]  60 137  39
-[1]  61 137  37
-[1]  62 137  39
-[1]  63 137  47
-[1]  64 137  51
-[1]  65 137  83
-[1]  66 137  38
-[1]  67 137  41
-[1]  68 137  44
-[1]  69 137  36
-[1]  70 137  55
-[1]  71 137  44
-[1]  72 137  37
-[1]  73 137  36
-[1]  74 137  43
-[1]  75 137  47
-[1]  76 137  38
-[1]  77 137  31
-[1]  78 137  48
-[1]  79 137  49
-[1]  80 137  55
-[1]  81 137  56
-[1]  82 137  45
-[1]  83 137  45
-[1]  84 137  26
-[1]  85 137  52
-[1]  86 137  99
-[1]  87 137  51
-[1]  88 137  32
-[1]  89 137  35
-[1]  90 137  43
-[1]  91 137  50
-[1]  92 137  35
-[1]  93 137  40
-[1]  94 137  49
-[1]  95 137  32
-[1]  96 137  49
-[1]  97 137  40
-[1]  98 137  56
-[1]  99 137 112
-[1] 100 137  51
-[1] 101 137  47
-[1] 102 137  45
-[1] 103 137  45
-[1] 104 137  44
-[1] 105 137  38
-[1] 106 137  49
-[1] 107 137  43
-[1] 108 137  48
-[1] 109 137  45
-[1] 110 137  37
-[1] 111 137  35
-[1] 112 137  34
-[1] 113 137  72
-[1] 114 137  55
-[1] 115 137  48
-[1] 116 137  39
-[1] 117 137  30
-[1] 118 137  39
-[1] 119 137  53
-[1] 120 137  36
-[1] 121 137  43
-[1] 122 137  52
-[1] 123 137  51
-[1] 124 137  38
-[1] 125 137  41
-[1] 126 137  36
-[1] 127 137  67
-[1] 128 137  72
-[1] 129 137  55
-[1] 130 137  71
-[1] 131 137  31
-[1] 132 137  46
-[1] 133 137  32
-[1] 134 137  51
-[1] 135 137  36
-[1] 136 137  47
-[1] 137 137  52
-[1] 138 137  47
-[1] 139 137  52
-[1] 140 137  39
-[1] 141 137  49
-[1] 142 137  49
-[1] 143 137  63
-[1] 144 137  41
-[1] 145 137  57
-[1] 146 137  59
-[1] 147 137  33
-[1] 148 137  55
-[1] 149 137  43
-[1] 150 137  47
-[1] 151 137  28
-[1] 152 137  78
-[1] 153 137  63
-[1] 154 137  47
-[1] 155 137  27
-[1] 156 137  66
-[1] 157 137  58
-[1] 158 137  48
-[1] 159 137  56
-[1] 160 137  42
-[1] 161 137  39
-[1] 162 137  40
-[1] 163 137  51
-[1] 164 137  62
-[1] 165 137  51
-[1] 166 137  59
-[1] 167 137  44
-[1] 168 137  55
-[1] 169 137  74
-[1] 170 137  47
-[1] 171 137  68
-[1] 172 137  46
-[1] 173 137  62
-[1] 174 137  54
-[1] 175 137  48
-[1] 176 137  62
-[1] 177 137  48
-[1] 178 137  47
-[1] 179 137  66
-[1] 180 137  37
-[1] 181 137  60
-[1] 182 137  68
-[1] 183 137  55
-[1] 184 137  59
-[1] 185 137  52
-[1] 186 137  44
-[1] 187 137  47
-[1] 188 137  50
-[1] 189 137  36
-[1] 190 137  67
-[1] 191 137  53
-[1] 192 137  34
-[1] 193 137  90
-[1] 194 137  40
-[1] 195 137  49
-[1] 196 137  28
-[1] 197 137  66
-[1] 198 137  40
-[1] 199 137 110
-[1] 200 137  51
-[1]   1 138  69
-[1]   2 138  43
-[1]   3 138  32
-[1]   4 138  41
-[1]   5 138  28
-[1]   6 138  29
-[1]   7 138  38
-[1]   8 138  37
-[1]   9 138  28
-[1]  10 138  44
-[1]  11 138  40
-[1]  12 138  36
-[1]  13 138  31
-[1]  14 138  28
-[1]  15 138  35
-[1]  16 138  35
-[1]  17 138  46
-[1]  18 138  39
-[1]  19 138  34
-[1]  20 138  40
-[1]  21 138  41
-[1]  22 138  55
-[1]  23 138  44
-[1]  24 138  42
-[1]  25 138  31
-[1]  26 138  47
-[1]  27 138  35
-[1]  28 138  36
-[1]  29 138  45
-[1]  30 138  34
-[1]  31 138  35
-[1]  32 138  33
-[1]  33 138  42
-[1]  34 138  29
-[1]  35 138  36
-[1]  36 138  43
-[1]  37 138  30
-[1]  38 138  33
-[1]  39 138  35
-[1]  40 138  30
-[1]  41 138  39
-[1]  42 138  52
-[1]  43 138  33
-[1]  44 138  34
-[1]  45 138  33
-[1]  46 138  48
-[1]  47 138  63
-[1]  48 138  41
-[1]  49 138  40
-[1]  50 138  36
-[1]  51 138  37
-[1]  52 138  57
-[1]  53 138  34
-[1]  54 138  32
-[1]  55 138  36
-[1]  56 138  48
-[1]  57 138  40
-[1]  58 138  36
-[1]  59 138  46
-[1]  60 138  28
-[1]  61 138  40
-[1]  62 138  56
-[1]  63 138  42
-[1]  64 138  37
-[1]  65 138  46
-[1]  66 138  41
-[1]  67 138  56
-[1]  68 138  51
-[1]  69 138  48
-[1]  70 138  35
-[1]  71 138  37
-[1]  72 138  38
-[1]  73 138  41
-[1]  74 138  38
-[1]  75 138  33
-[1]  76 138  49
-[1]  77 138  34
-[1]  78 138  53
-[1]  79 138  42
-[1]  80 138  39
-[1]  81 138  24
-[1]  82 138  33
-[1]  83 138  38
-[1]  84 138  58
-[1]  85 138  38
-[1]  86 138  36
-[1]  87 138  36
-[1]  88 138  41
-[1]  89 138  55
-[1]  90 138  51
-[1]  91 138  37
-[1]  92 138  45
-[1]  93 138  54
-[1]  94 138  52
-[1]  95 138  56
-[1]  96 138  31
-[1]  97 138  58
-[1]  98 138  51
-[1]  99 138  32
-[1] 100 138  41
-[1] 101 138  39
-[1] 102 138  42
-[1] 103 138  45
-[1] 104 138  48
-[1] 105 138  47
-[1] 106 138  30
-[1] 107 138  55
-[1] 108 138  45
-[1] 109 138  58
-[1] 110 138  44
-[1] 111 138  82
-[1] 112 138  42
-[1] 113 138  30
-[1] 114 138  44
-[1] 115 138  31
-[1] 116 138  61
-[1] 117 138  26
-[1] 118 138  43
-[1] 119 138  39
-[1] 120 138  44
-[1] 121 138  61
-[1] 122 138  56
-[1] 123 138  41
-[1] 124 138  41
-[1] 125 138  39
-[1] 126 138  64
-[1] 127 138  49
-[1] 128 138  51
-[1] 129 138  43
-[1] 130 138  47
-[1] 131 138  39
-[1] 132 138  32
-[1] 133 138  33
-[1] 134 138  68
-[1] 135 138  56
-[1] 136 138  41
-[1] 137 138  39
-[1] 138 138  46
-[1] 139 138  53
-[1] 140 138  57
-[1] 141 138  37
-[1] 142 138  52
-[1] 143 138  38
-[1] 144 138  81
-[1] 145 138  59
-[1] 146 138  77
-[1] 147 138  52
-[1] 148 138  48
-[1] 149 138  43
-[1] 150 138  66
-[1] 151 138  47
-[1] 152 138  43
-[1] 153 138  42
-[1] 154 138  51
-[1] 155 138  46
-[1] 156 138  33
-[1] 157 138  62
-[1] 158 138  40
-[1] 159 138  67
-[1] 160 138  63
-[1] 161 138  34
-[1] 162 138  47
-[1] 163 138  75
-[1] 164 138  34
-[1] 165 138  56
-[1] 166 138  57
-[1] 167 138  52
-[1] 168 138  56
-[1] 169 138  60
-[1] 170 138  77
-[1] 171 138  43
-[1] 172 138  64
-[1] 173 138  44
-[1] 174 138  38
-[1] 175 138  61
-[1] 176 138  67
-[1] 177 138  54
-[1] 178 138  45
-[1] 179 138  40
-[1] 180 138  45
-[1] 181 138  45
-[1] 182 138  55
-[1] 183 138  59
-[1] 184 138  69
-[1] 185 138  41
-[1] 186 138  41
-[1] 187 138  41
-[1] 188 138  58
-[1] 189 138  42
-[1] 190 138  55
-[1] 191 138  46
-[1] 192 138  33
-[1] 193 138  65
-[1] 194 138  69
-[1] 195 138  73
-[1] 196 138  46
-[1] 197 138  48
-[1] 198 138  78
-[1] 199 138  84
-[1] 200 138  44
-[1]   1 139  33
-[1]   2 139  33
-[1]   3 139  35
-[1]   4 139  46
-[1]   5 139  43
-[1]   6 139  38
-[1]   7 139  32
-[1]   8 139  37
-[1]   9 139  30
-[1]  10 139  45
-[1]  11 139  29
-[1]  12 139  50
-[1]  13 139  35
-[1]  14 139  30
-[1]  15 139  44
-[1]  16 139  33
-[1]  17 139  39
-[1]  18 139  36
-[1]  19 139  31
-[1]  20 139  36
-[1]  21 139  41
-[1]  22 139  29
-[1]  23 139  46
-[1]  24 139  31
-[1]  25 139  90
-[1]  26 139  37
-[1]  27 139  36
-[1]  28 139  45
-[1]  29 139  34
-[1]  30 139  42
-[1]  31 139  49
-[1]  32 139  41
-[1]  33 139  46
-[1]  34 139  35
-[1]  35 139  29
-[1]  36 139  40
-[1]  37 139  48
-[1]  38 139  40
-[1]  39 139  38
-[1]  40 139  46
-[1]  41 139  39
-[1]  42 139  28
-[1]  43 139  41
-[1]  44 139  34
-[1]  45 139  33
-[1]  46 139  33
-[1]  47 139  46
-[1]  48 139  36
-[1]  49 139  43
-[1]  50 139  40
-[1]  51 139  35
-[1]  52 139  31
-[1]  53 139  52
-[1]  54 139  31
-[1]  55 139  64
-[1]  56 139  55
-[1]  57 139  50
-[1]  58 139  34
-[1]  59 139  59
-[1]  60 139  39
-[1]  61 139  29
-[1]  62 139  36
-[1]  63 139  45
-[1]  64 139  40
-[1]  65 139  41
-[1]  66 139  42
-[1]  67 139  33
-[1]  68 139  27
-[1]  69 139  39
-[1]  70 139  39
-[1]  71 139  41
-[1]  72 139  34
-[1]  73 139  57
-[1]  74 139  32
-[1]  75 139  60
-[1]  76 139  36
-[1]  77 139  42
-[1]  78 139  59
-[1]  79 139  38
-[1]  80 139  34
-[1]  81 139  51
-[1]  82 139  37
-[1]  83 139  36
-[1]  84 139  35
-[1]  85 139  24
-[1]  86 139  39
-[1]  87 139  57
-[1]  88 139  56
-[1]  89 139  39
-[1]  90 139  48
-[1]  91 139  39
-[1]  92 139  36
-[1]  93 139  60
-[1]  94 139  33
-[1]  95 139  32
-[1]  96 139  41
-[1]  97 139  40
-[1]  98 139  51
-[1]  99 139  48
-[1] 100 139  45
-[1] 101 139  55
-[1] 102 139  46
-[1] 103 139  47
-[1] 104 139  53
-[1] 105 139  47
-[1] 106 139  36
-[1] 107 139  36
-[1] 108 139  37
-[1] 109 139  86
-[1] 110 139  37
-[1] 111 139  34
-[1] 112 139  41
-[1] 113 139  36
-[1] 114 139  57
-[1] 115 139  81
-[1] 116 139  82
-[1] 117 139  43
-[1] 118 139  44
-[1] 119 139  41
-[1] 120 139  31
-[1] 121 139 100
-[1] 122 139  60
-[1] 123 139  61
-[1] 124 139  40
-[1] 125 139  38
-[1] 126 139  61
-[1] 127 139  39
-[1] 128 139  31
-[1] 129 139  30
-[1] 130 139  69
-[1] 131 139  44
-[1] 132 139  37
-[1] 133 139  38
-[1] 134 139  45
-[1] 135 139  43
-[1] 136 139  52
-[1] 137 139  42
-[1] 138 139  35
-[1] 139 139  40
-[1] 140 139  33
-[1] 141 139  63
-[1] 142 139  35
-[1] 143 139  62
-[1] 144 139  37
-[1] 145 139  57
-[1] 146 139  39
-[1] 147 139  66
-[1] 148 139  42
-[1] 149 139  52
-[1] 150 139  42
-[1] 151 139  74
-[1] 152 139  52
-[1] 153 139  36
-[1] 154 139  49
-[1] 155 139  34
-[1] 156 139  38
-[1] 157 139  49
-[1] 158 139  58
-[1] 159 139  75
-[1] 160 139  41
-[1] 161 139  67
-[1] 162 139  62
-[1] 163 139  35
-[1] 164 139  68
-[1] 165 139  39
-[1] 166 139  43
-[1] 167 139  49
-[1] 168 139  67
-[1] 169 139  57
-[1] 170 139  36
-[1] 171 139  60
-[1] 172 139  65
-[1] 173 139  53
-[1] 174 139  76
-[1] 175 139  69
-[1] 176 139  55
-[1] 177 139  43
-[1] 178 139 116
-[1] 179 139  54
-[1] 180 139  57
-[1] 181 139  50
-[1] 182 139  53
-[1] 183 139  47
-[1] 184 139  64
-[1] 185 139  39
-[1] 186 139  60
-[1] 187 139  52
-[1] 188 139  45
-[1] 189 139  43
-[1] 190 139  46
-[1] 191 139  41
-[1] 192 139  52
-[1] 193 139  62
-[1] 194 139  49
-[1] 195 139  83
-[1] 196 139  34
-[1] 197 139  38
-[1] 198 139  47
-[1] 199 139  53
-[1] 200 139  45
-[1]   1 140  35
-[1]   2 140  35
-[1]   3 140  38
-[1]   4 140  38
-[1]   5 140  45
-[1]   6 140  31
-[1]   7 140  49
-[1]   8 140  30
-[1]   9 140  41
-[1]  10 140  34
-[1]  11 140  31
-[1]  12 140  40
-[1]  13 140  33
-[1]  14 140  37
-[1]  15 140  42
-[1]  16 140  33
-[1]  17 140  34
-[1]  18 140  39
-[1]  19 140  30
-[1]  20 140  34
-[1]  21 140  39
-[1]  22 140  37
-[1]  23 140  27
-[1]  24 140  32
-[1]  25 140  31
-[1]  26 140  36
-[1]  27 140  35
-[1]  28 140  33
-[1]  29 140  40
-[1]  30 140  52
-[1]  31 140  39
-[1]  32 140  29
-[1]  33 140  54
-[1]  34 140  47
-[1]  35 140  45
-[1]  36 140  32
-[1]  37 140  29
-[1]  38 140  36
-[1]  39 140  41
-[1]  40 140  38
-[1]  41 140  45
-[1]  42 140  35
-[1]  43 140  34
-[1]  44 140  41
-[1]  45 140  42
-[1]  46 140  45
-[1]  47 140  39
-[1]  48 140  44
-[1]  49 140  45
-[1]  50 140  42
-[1]  51 140  39
-[1]  52 140  38
-[1]  53 140  85
-[1]  54 140  31
-[1]  55 140  25
-[1]  56 140  57
-[1]  57 140  37
-[1]  58 140  35
-[1]  59 140  53
-[1]  60 140  36
-[1]  61 140  28
-[1]  62 140  51
-[1]  63 140  49
-[1]  64 140  36
-[1]  65 140  29
-[1]  66 140  31
-[1]  67 140  66
-[1]  68 140  36
-[1]  69 140  49
-[1]  70 140  33
-[1]  71 140  35
-[1]  72 140  51
-[1]  73 140  47
-[1]  74 140  35
-[1]  75 140  29
-[1]  76 140  30
-[1]  77 140  34
-[1]  78 140  43
-[1]  79 140  49
-[1]  80 140  32
-[1]  81 140  42
-[1]  82 140  36
-[1]  83 140  40
-[1]  84 140  51
-[1]  85 140  44
-[1]  86 140  45
-[1]  87 140  40
-[1]  88 140  47
-[1]  89 140  36
-[1]  90 140  31
-[1]  91 140  47
-[1]  92 140  52
-[1]  93 140  47
-[1]  94 140  37
-[1]  95 140  33
-[1]  96 140  36
-[1]  97 140  61
-[1]  98 140  50
-[1]  99 140  44
-[1] 100 140  47
-[1] 101 140  43
-[1] 102 140  34
-[1] 103 140  51
-[1] 104 140  40
-[1] 105 140  37
-[1] 106 140  40
-[1] 107 140  47
-[1] 108 140  35
-[1] 109 140  48
-[1] 110 140  42
-[1] 111 140  49
-[1] 112 140  41
-[1] 113 140  47
-[1] 114 140  62
-[1] 115 140  36
-[1] 116 140  41
-[1] 117 140  61
-[1] 118 140  40
-[1] 119 140  30
-[1] 120 140  35
-[1] 121 140  35
-[1] 122 140  55
-[1] 123 140  44
-[1] 124 140  55
-[1] 125 140  38
-[1] 126 140  39
-[1] 127 140  50
-[1] 128 140  45
-[1] 129 140  35
-[1] 130 140  32
-[1] 131 140  43
-[1] 132 140  43
-[1] 133 140  52
-[1] 134 140  33
-[1] 135 140  37
-[1] 136 140  52
-[1] 137 140  45
-[1] 138 140  40
-[1] 139 140  46
-[1] 140 140  40
-[1] 141 140  46
-[1] 142 140  62
-[1] 143 140  61
-[1] 144 140  31
-[1] 145 140  72
-[1] 146 140  44
-[1] 147 140  75
-[1] 148 140  67
-[1] 149 140  38
-[1] 150 140  43
-[1] 151 140  77
-[1] 152 140  46
-[1] 153 140  38
-[1] 154 140  52
-[1] 155 140  48
-[1] 156 140  61
-[1] 157 140  78
-[1] 158 140  42
-[1] 159 140  63
-[1] 160 140  37
-[1] 161 140  65
-[1] 162 140  35
-[1] 163 140  69
-[1] 164 140  35
-[1] 165 140  60
-[1] 166 140  28
-[1] 167 140  51
-[1] 168 140  38
-[1] 169 140  58
-[1] 170 140  45
-[1] 171 140  60
-[1] 172 140  49
-[1] 173 140  44
-[1] 174 140  51
-[1] 175 140  46
-[1] 176 140  82
-[1] 177 140  55
-[1] 178 140  42
-[1] 179 140  45
-[1] 180 140  65
-[1] 181 140  45
-[1] 182 140  48
-[1] 183 140  44
-[1] 184 140  65
-[1] 185 140  39
-[1] 186 140  74
-[1] 187 140  74
-[1] 188 140  46
-[1] 189 140  37
-[1] 190 140  60
-[1] 191 140  72
-[1] 192 140  47
-[1] 193 140  50
-[1] 194 140  41
-[1] 195 140  50
-[1] 196 140  62
-[1] 197 140  52
-[1] 198 140  44
-[1] 199 140  71
-[1] 200 140  41
-[1]   1 141  46
-[1]   2 141  34
-[1]   3 141  44
-[1]   4 141  29
-[1]   5 141  44
-[1]   6 141  45
-[1]   7 141  51
-[1]   8 141  58
-[1]   9 141  27
-[1]  10 141  34
-[1]  11 141  41
-[1]  12 141  34
-[1]  13 141  38
-[1]  14 141  58
-[1]  15 141  46
-[1]  16 141  60
-[1]  17 141  41
-[1]  18 141  41
-[1]  19 141  45
-[1]  20 141  59
-[1]  21 141  48
-[1]  22 141  40
-[1]  23 141  36
-[1]  24 141  33
-[1]  25 141  43
-[1]  26 141  32
-[1]  27 141  49
-[1]  28 141  46
-[1]  29 141  33
-[1]  30 141  35
-[1]  31 141  48
-[1]  32 141  51
-[1]  33 141  42
-[1]  34 141  48
-[1]  35 141  55
-[1]  36 141  32
-[1]  37 141  97
-[1]  38 141  49
-[1]  39 141  65
-[1]  40 141  34
-[1]  41 141  45
-[1]  42 141  42
-[1]  43 141  30
-[1]  44 141  31
-[1]  45 141  53
-[1]  46 141  36
-[1]  47 141  63
-[1]  48 141  35
-[1]  49 141  40
-[1]  50 141  45
-[1]  51 141  41
-[1]  52 141  52
-[1]  53 141  38
-[1]  54 141  32
-[1]  55 141  43
-[1]  56 141  31
-[1]  57 141  37
-[1]  58 141  33
-[1]  59 141  42
-[1]  60 141  36
-[1]  61 141  45
-[1]  62 141  35
-[1]  63 141  32
-[1]  64 141  45
-[1]  65 141  29
-[1]  66 141  68
-[1]  67 141  38
-[1]  68 141  36
-[1]  69 141  48
-[1]  70 141  45
-[1]  71 141  40
-[1]  72 141  64
-[1]  73 141  33
-[1]  74 141  44
-[1]  75 141  38
-[1]  76 141  51
-[1]  77 141  37
-[1]  78 141  43
-[1]  79 141  37
-[1]  80 141  61
-[1]  81 141  40
-[1]  82 141  40
-[1]  83 141  47
-[1]  84 141  47
-[1]  85 141  40
-[1]  86 141  32
-[1]  87 141  49
-[1]  88 141  45
-[1]  89 141  38
-[1]  90 141  44
-[1]  91 141  35
-[1]  92 141  36
-[1]  93 141  45
-[1]  94 141  39
-[1]  95 141  58
-[1]  96 141  63
-[1]  97 141  39
-[1]  98 141  56
-[1]  99 141  46
-[1] 100 141  33
-[1] 101 141  30
-[1] 102 141  35
-[1] 103 141  43
-[1] 104 141  42
-[1] 105 141  33
-[1] 106 141  39
-[1] 107 141  39
-[1] 108 141  48
-[1] 109 141  46
-[1] 110 141  75
-[1] 111 141  37
-[1] 112 141  42
-[1] 113 141  47
-[1] 114 141  72
-[1] 115 141  32
-[1] 116 141  53
-[1] 117 141  36
-[1] 118 141  41
-[1] 119 141  44
-[1] 120 141  37
-[1] 121 141  31
-[1] 122 141  40
-[1] 123 141  51
-[1] 124 141  41
-[1] 125 141  30
-[1] 126 141  61
-[1] 127 141  28
-[1] 128 141  51
-[1] 129 141  28
-[1] 130 141  41
-[1] 131 141  35
-[1] 132 141  34
-[1] 133 141  38
-[1] 134 141  40
-[1] 135 141  75
-[1] 136 141  55
-[1] 137 141  81
-[1] 138 141  56
-[1] 139 141  37
-[1] 140 141  56
-[1] 141 141  96
-[1] 142 141  76
-[1] 143 141  32
-[1] 144 141  62
-[1] 145 141  92
-[1] 146 141  62
-[1] 147 141  41
-[1] 148 141  46
-[1] 149 141  49
-[1] 150 141  34
-[1] 151 141  43
-[1] 152 141  41
-[1] 153 141  58
-[1] 154 141  57
-[1] 155 141  42
-[1] 156 141  71
-[1] 157 141  52
-[1] 158 141  43
-[1] 159 141  36
-[1] 160 141  43
-[1] 161 141  39
-[1] 162 141  47
-[1] 163 141  54
-[1] 164 141  40
-[1] 165 141  75
-[1] 166 141  76
-[1] 167 141  35
-[1] 168 141  50
-[1] 169 141  52
-[1] 170 141  56
-[1] 171 141  84
-[1] 172 141  55
-[1] 173 141  47
-[1] 174 141  67
-[1] 175 141  39
-[1] 176 141  66
-[1] 177 141  52
-[1] 178 141  43
-[1] 179 141  36
-[1] 180 141  75
-[1] 181 141  95
-[1] 182 141  59
-[1] 183 141  34
-[1] 184 141  62
-[1] 185 141  60
-[1] 186 141  61
-[1] 187 141  73
-[1] 188 141  56
-[1] 189 141  40
-[1] 190 141  49
-[1] 191 141  56
-[1] 192 141  27
-[1] 193 141  32
-[1] 194 141  69
-[1] 195 141  42
-[1] 196 141  43
-[1] 197 141  43
-[1] 198 141  68
-[1] 199 141  41
-[1] 200 141  67
-[1]   1 142  46
-[1]   2 142  72
-[1]   3 142  40
-[1]   4 142  49
-[1]   5 142  42
-[1]   6 142  41
-[1]   7 142  40
-[1]   8 142  33
-[1]   9 142  39
-[1]  10 142  36
-[1]  11 142  29
-[1]  12 142  30
-[1]  13 142  38
-[1]  14 142  59
-[1]  15 142  41
-[1]  16 142  32
-[1]  17 142  33
-[1]  18 142  34
-[1]  19 142  35
-[1]  20 142  27
-[1]  21 142  40
-[1]  22 142  29
-[1]  23 142  27
-[1]  24 142  45
-[1]  25 142  31
-[1]  26 142  33
-[1]  27 142  42
-[1]  28 142  45
-[1]  29 142  33
-[1]  30 142  31
-[1]  31 142  44
-[1]  32 142  40
-[1]  33 142  54
-[1]  34 142  72
-[1]  35 142  40
-[1]  36 142  51
-[1]  37 142  47
-[1]  38 142  36
-[1]  39 142  72
-[1]  40 142  39
-[1]  41 142  42
-[1]  42 142  48
-[1]  43 142  40
-[1]  44 142  26
-[1]  45 142  37
-[1]  46 142  40
-[1]  47 142  37
-[1]  48 142  36
-[1]  49 142  43
-[1]  50 142  32
-[1]  51 142  37
-[1]  52 142  31
-[1]  53 142  32
-[1]  54 142  41
-[1]  55 142  46
-[1]  56 142  34
-[1]  57 142  41
-[1]  58 142  37
-[1]  59 142  37
-[1]  60 142  47
-[1]  61 142  42
-[1]  62 142  32
-[1]  63 142  29
-[1]  64 142  54
-[1]  65 142  59
-[1]  66 142  36
-[1]  67 142  43
-[1]  68 142  43
-[1]  69 142  32
-[1]  70 142  39
-[1]  71 142  23
-[1]  72 142  37
-[1]  73 142  40
-[1]  74 142  52
-[1]  75 142  48
-[1]  76 142  31
-[1]  77 142  35
-[1]  78 142  39
-[1]  79 142  44
-[1]  80 142  32
-[1]  81 142  31
-[1]  82 142  34
-[1]  83 142  57
-[1]  84 142  30
-[1]  85 142  51
-[1]  86 142  41
-[1]  87 142  56
-[1]  88 142  46
-[1]  89 142  48
-[1]  90 142  36
-[1]  91 142  50
-[1]  92 142  49
-[1]  93 142  31
-[1]  94 142  39
-[1]  95 142  52
-[1]  96 142  29
-[1]  97 142  40
-[1]  98 142  40
-[1]  99 142  43
-[1] 100 142  26
-[1] 101 142  41
-[1] 102 142  31
-[1] 103 142  40
-[1] 104 142  38
-[1] 105 142  65
-[1] 106 142  43
-[1] 107 142  47
-[1] 108 142  49
-[1] 109 142  38
-[1] 110 142  56
-[1] 111 142  37
-[1] 112 142  32
-[1] 113 142  49
-[1] 114 142  30
-[1] 115 142  32
-[1] 116 142  61
-[1] 117 142  41
-[1] 118 142  35
-[1] 119 142  32
-[1] 120 142  30
-[1] 121 142  39
-[1] 122 142  69
-[1] 123 142  42
-[1] 124 142  45
-[1] 125 142  35
-[1] 126 142  44
-[1] 127 142  39
-[1] 128 142  42
-[1] 129 142  55
-[1] 130 142  78
-[1] 131 142  40
-[1] 132 142  45
-[1] 133 142  39
-[1] 134 142  41
-[1] 135 142  40
-[1] 136 142  39
-[1] 137 142  40
-[1] 138 142  44
-[1] 139 142  33
-[1] 140 142  39
-[1] 141 142 105
-[1] 142 142  38
-[1] 143 142  47
-[1] 144 142  38
-[1] 145 142  57
-[1] 146 142  54
-[1] 147 142  49
-[1] 148 142  44
-[1] 149 142  46
-[1] 150 142  37
-[1] 151 142  57
-[1] 152 142  63
-[1] 153 142  38
-[1] 154 142  33
-[1] 155 142  37
-[1] 156 142  46
-[1] 157 142  63
-[1] 158 142  43
-[1] 159 142  46
-[1] 160 142  37
-[1] 161 142  47
-[1] 162 142  63
-[1] 163 142  32
-[1] 164 142  69
-[1] 165 142  55
-[1] 166 142  48
-[1] 167 142  49
-[1] 168 142  61
-[1] 169 142  38
-[1] 170 142  75
-[1] 171 142  57
-[1] 172 142  53
-[1] 173 142  42
-[1] 174 142  51
-[1] 175 142  77
-[1] 176 142  34
-[1] 177 142  43
-[1] 178 142 134
-[1] 179 142  70
-[1] 180 142  56
-[1] 181 142  56
-[1] 182 142  56
-[1] 183 142  76
-[1] 184 142  37
-[1] 185 142  48
-[1] 186 142  60
-[1] 187 142  55
-[1] 188 142  60
-[1] 189 142  50
-[1] 190 142  42
-[1] 191 142  58
-[1] 192 142  53
-[1] 193 142  45
-[1] 194 142  55
-[1] 195 142  38
-[1] 196 142  30
-[1] 197 142  29
-[1] 198 142  42
-[1] 199 142  60
-[1] 200 142  32
-[1]   1 143  38
-[1]   2 143  54
-[1]   3 143  32
-[1]   4 143  39
-[1]   5 143  38
-[1]   6 143  33
-[1]   7 143  38
-[1]   8 143  47
-[1]   9 143  28
-[1]  10 143  29
-[1]  11 143  39
-[1]  12 143  29
-[1]  13 143  33
-[1]  14 143  29
-[1]  15 143  59
-[1]  16 143  36
-[1]  17 143  41
-[1]  18 143  36
-[1]  19 143  27
-[1]  20 143  36
-[1]  21 143  39
-[1]  22 143  35
-[1]  23 143  48
-[1]  24 143  49
-[1]  25 143  27
-[1]  26 143  45
-[1]  27 143  34
-[1]  28 143  39
-[1]  29 143  52
-[1]  30 143  42
-[1]  31 143  49
-[1]  32 143  28
-[1]  33 143  37
-[1]  34 143  57
-[1]  35 143  40
-[1]  36 143  39
-[1]  37 143  34
-[1]  38 143  27
-[1]  39 143  38
-[1]  40 143  79
-[1]  41 143  44
-[1]  42 143  31
-[1]  43 143  39
-[1]  44 143  42
-[1]  45 143  48
-[1]  46 143  38
-[1]  47 143  38
-[1]  48 143  54
-[1]  49 143  32
-[1]  50 143  61
-[1]  51 143  35
-[1]  52 143  45
-[1]  53 143  38
-[1]  54 143  39
-[1]  55 143  36
-[1]  56 143  31
-[1]  57 143  32
-[1]  58 143  27
-[1]  59 143  47
-[1]  60 143  38
-[1]  61 143  41
-[1]  62 143  32
-[1]  63 143  37
-[1]  64 143  51
-[1]  65 143  48
-[1]  66 143  40
-[1]  67 143  47
-[1]  68 143  45
-[1]  69 143  39
-[1]  70 143  42
-[1]  71 143  50
-[1]  72 143  29
-[1]  73 143  54
-[1]  74 143  33
-[1]  75 143  42
-[1]  76 143  43
-[1]  77 143  45
-[1]  78 143  42
-[1]  79 143  36
-[1]  80 143  46
-[1]  81 143  44
-[1]  82 143  34
-[1]  83 143  35
-[1]  84 143  46
-[1]  85 143  30
-[1]  86 143  60
-[1]  87 143  28
-[1]  88 143  57
-[1]  89 143  44
-[1]  90 143  43
-[1]  91 143  36
-[1]  92 143  52
-[1]  93 143  42
-[1]  94 143  51
-[1]  95 143  43
-[1]  96 143  35
-[1]  97 143  53
-[1]  98 143  48
-[1]  99 143  50
-[1] 100 143  34
-[1] 101 143  51
-[1] 102 143  35
-[1] 103 143  41
-[1] 104 143  48
-[1] 105 143  37
-[1] 106 143  43
-[1] 107 143  36
-[1] 108 143  41
-[1] 109 143  35
-[1] 110 143  39
-[1] 111 143  50
-[1] 112 143  44
-[1] 113 143  37
-[1] 114 143  44
-[1] 115 143  44
-[1] 116 143  71
-[1] 117 143  49
-[1] 118 143  46
-[1] 119 143  45
-[1] 120 143  41
-[1] 121 143  34
-[1] 122 143  49
-[1] 123 143  44
-[1] 124 143  40
-[1] 125 143  39
-[1] 126 143  28
-[1] 127 143  52
-[1] 128 143  54
-[1] 129 143  31
-[1] 130 143  40
-[1] 131 143  35
-[1] 132 143  38
-[1] 133 143  39
-[1] 134 143  66
-[1] 135 143  41
-[1] 136 143  55
-[1] 137 143  33
-[1] 138 143  40
-[1] 139 143  42
-[1] 140 143  66
-[1] 141 143  67
-[1] 142 143  48
-[1] 143 143  75
-[1] 144 143  52
-[1] 145 143  44
-[1] 146 143  41
-[1] 147 143  42
-[1] 148 143  68
-[1] 149 143  51
-[1] 150 143  40
-[1] 151 143  53
-[1] 152 143  59
-[1] 153 143  66
-[1] 154 143  62
-[1] 155 143  73
-[1] 156 143  65
-[1] 157 143  29
-[1] 158 143  56
-[1] 159 143  36
-[1] 160 143  53
-[1] 161 143  39
-[1] 162 143  80
-[1] 163 143  37
-[1] 164 143  54
-[1] 165 143  49
-[1] 166 143  44
-[1] 167 143  52
-[1] 168 143  63
-[1] 169 143  49
-[1] 170 143  42
-[1] 171 143  53
-[1] 172 143  67
-[1] 173 143  36
-[1] 174 143  66
-[1] 175 143  38
-[1] 176 143  57
-[1] 177 143  56
-[1] 178 143  42
-[1] 179 143  50
-[1] 180 143  76
-[1] 181 143  44
-[1] 182 143  58
-[1] 183 143  85
-[1] 184 143  41
-[1] 185 143  54
-[1] 186 143  52
-[1] 187 143  49
-[1] 188 143  48
-[1] 189 143  65
-[1] 190 143  45
-[1] 191 143  48
-[1] 192 143  75
-[1] 193 143  49
-[1] 194 143  36
-[1] 195 143  45
-[1] 196 143  46
-[1] 197 143  68
-[1] 198 143  45
-[1] 199 143  59
-[1] 200 143  47
-[1]   1 144  33
-[1]   2 144  35
-[1]   3 144  26
-[1]   4 144  41
-[1]   5 144  36
-[1]   6 144  29
-[1]   7 144  50
-[1]   8 144  43
-[1]   9 144  29
-[1]  10 144  46
-[1]  11 144  33
-[1]  12 144  30
-[1]  13 144  31
-[1]  14 144  38
-[1]  15 144  49
-[1]  16 144  42
-[1]  17 144  41
-[1]  18 144  31
-[1]  19 144  40
-[1]  20 144  35
-[1]  21 144  37
-[1]  22 144  39
-[1]  23 144  41
-[1]  24 144  37
-[1]  25 144  31
-[1]  26 144  50
-[1]  27 144  33
-[1]  28 144  36
-[1]  29 144  37
-[1]  30 144  28
-[1]  31 144  45
-[1]  32 144  40
-[1]  33 144  35
-[1]  34 144  39
-[1]  35 144  56
-[1]  36 144  53
-[1]  37 144  36
-[1]  38 144  45
-[1]  39 144  32
-[1]  40 144  41
-[1]  41 144  43
-[1]  42 144  41
-[1]  43 144  40
-[1]  44 144  36
-[1]  45 144  41
-[1]  46 144  28
-[1]  47 144  30
-[1]  48 144  33
-[1]  49 144  52
-[1]  50 144  39
-[1]  51 144  56
-[1]  52 144  32
-[1]  53 144  32
-[1]  54 144  32
-[1]  55 144  29
-[1]  56 144  51
-[1]  57 144  28
-[1]  58 144  41
-[1]  59 144  43
-[1]  60 144  30
-[1]  61 144  48
-[1]  62 144  63
-[1]  63 144  34
-[1]  64 144  56
-[1]  65 144  38
-[1]  66 144  33
-[1]  67 144  38
-[1]  68 144  55
-[1]  69 144  30
-[1]  70 144  59
-[1]  71 144  50
-[1]  72 144  46
-[1]  73 144  46
-[1]  74 144  74
-[1]  75 144  46
-[1]  76 144  31
-[1]  77 144  37
-[1]  78 144  31
-[1]  79 144  48
-[1]  80 144  30
-[1]  81 144  44
-[1]  82 144  55
-[1]  83 144  55
-[1]  84 144  36
-[1]  85 144  47
-[1]  86 144  39
-[1]  87 144  35
-[1]  88 144  52
-[1]  89 144  30
-[1]  90 144  55
-[1]  91 144  29
-[1]  92 144  58
-[1]  93 144  37
-[1]  94 144  58
-[1]  95 144  40
-[1]  96 144  40
-[1]  97 144  48
-[1]  98 144  38
-[1]  99 144  37
-[1] 100 144  52
-[1] 101 144  43
-[1] 102 144  57
-[1] 103 144  40
-[1] 104 144  39
-[1] 105 144  54
-[1] 106 144  45
-[1] 107 144  47
-[1] 108 144  46
-[1] 109 144  55
-[1] 110 144  25
-[1] 111 144  38
-[1] 112 144  56
-[1] 113 144  46
-[1] 114 144  39
-[1] 115 144  31
-[1] 116 144  91
-[1] 117 144  34
-[1] 118 144  39
-[1] 119 144  64
-[1] 120 144  41
-[1] 121 144  26
-[1] 122 144  53
-[1] 123 144  34
-[1] 124 144  53
-[1] 125 144  38
-[1] 126 144  49
-[1] 127 144  44
-[1] 128 144  65
-[1] 129 144  35
-[1] 130 144  29
-[1] 131 144  45
-[1] 132 144  67
-[1] 133 144  75
-[1] 134 144  38
-[1] 135 144  47
-[1] 136 144  55
-[1] 137 144  42
-[1] 138 144  49
-[1] 139 144  42
-[1] 140 144  42
-[1] 141 144  75
-[1] 142 144  48
-[1] 143 144  51
-[1] 144 144  48
-[1] 145 144  52
-[1] 146 144  43
-[1] 147 144  62
-[1] 148 144  38
-[1] 149 144  50
-[1] 150 144  53
-[1] 151 144  30
-[1] 152 144 104
-[1] 153 144  48
-[1] 154 144  45
-[1] 155 144  82
-[1] 156 144  57
-[1] 157 144  31
-[1] 158 144  66
-[1] 159 144  47
-[1] 160 144  32
-[1] 161 144  37
-[1] 162 144  38
-[1] 163 144  39
-[1] 164 144  54
-[1] 165 144  67
-[1] 166 144  42
-[1] 167 144  43
-[1] 168 144  60
-[1] 169 144  53
-[1] 170 144  54
-[1] 171 144  43
-[1] 172 144  45
-[1] 173 144  66
-[1] 174 144  38
-[1] 175 144  51
-[1] 176 144  61
-[1] 177 144  41
-[1] 178 144  70
-[1] 179 144  44
-[1] 180 144  48
-[1] 181 144  45
-[1] 182 144  48
-[1] 183 144  78
-[1] 184 144  61
-[1] 185 144  61
-[1] 186 144  71
-[1] 187 144  42
-[1] 188 144  50
-[1] 189 144  48
-[1] 190 144  55
-[1] 191 144  64
-[1] 192 144  45
-[1] 193 144  40
-[1] 194 144  44
-[1] 195 144  52
-[1] 196 144  45
-[1] 197 144  76
-[1] 198 144  74
-[1] 199 144  63
-[1] 200 144  95
-[1]   1 145  62
-[1]   2 145  46
-[1]   3 145  34
-[1]   4 145  31
-[1]   5 145  34
-[1]   6 145  28
-[1]   7 145  49
-[1]   8 145  37
-[1]   9 145  43
-[1]  10 145  34
-[1]  11 145  39
-[1]  12 145  48
-[1]  13 145  30
-[1]  14 145  29
-[1]  15 145  45
-[1]  16 145  36
-[1]  17 145  42
-[1]  18 145  33
-[1]  19 145  38
-[1]  20 145  48
-[1]  21 145  28
-[1]  22 145  33
-[1]  23 145  32
-[1]  24 145  51
-[1]  25 145  48
-[1]  26 145  36
-[1]  27 145  40
-[1]  28 145  38
-[1]  29 145  47
-[1]  30 145  40
-[1]  31 145  53
-[1]  32 145  23
-[1]  33 145  36
-[1]  34 145  48
-[1]  35 145  39
-[1]  36 145  42
-[1]  37 145  39
-[1]  38 145  49
-[1]  39 145  32
-[1]  40 145  31
-[1]  41 145  36
-[1]  42 145  32
-[1]  43 145  38
-[1]  44 145  28
-[1]  45 145  53
-[1]  46 145  37
-[1]  47 145  70
-[1]  48 145  31
-[1]  49 145  42
-[1]  50 145  36
-[1]  51 145  34
-[1]  52 145  40
-[1]  53 145  38
-[1]  54 145  35
-[1]  55 145  48
-[1]  56 145  31
-[1]  57 145  43
-[1]  58 145  38
-[1]  59 145  45
-[1]  60 145  31
-[1]  61 145  48
-[1]  62 145  50
-[1]  63 145  31
-[1]  64 145  34
-[1]  65 145  35
-[1]  66 145  25
-[1]  67 145  66
-[1]  68 145  27
-[1]  69 145  48
-[1]  70 145  49
-[1]  71 145  42
-[1]  72 145  43
-[1]  73 145  39
-[1]  74 145  50
-[1]  75 145  42
-[1]  76 145  39
-[1]  77 145  40
-[1]  78 145  48
-[1]  79 145  60
-[1]  80 145  27
-[1]  81 145  50
-[1]  82 145  36
-[1]  83 145  40
-[1]  84 145  45
-[1]  85 145  64
-[1]  86 145  31
-[1]  87 145  61
-[1]  88 145  35
-[1]  89 145  48
-[1]  90 145  51
-[1]  91 145  48
-[1]  92 145  52
-[1]  93 145  54
-[1]  94 145  34
-[1]  95 145  67
-[1]  96 145  46
-[1]  97 145  38
-[1]  98 145  40
-[1]  99 145  40
-[1] 100 145  43
-[1] 101 145  56
-[1] 102 145  50
-[1] 103 145  36
-[1] 104 145  43
-[1] 105 145  49
-[1] 106 145  29
-[1] 107 145  44
-[1] 108 145  34
-[1] 109 145  48
-[1] 110 145  30
-[1] 111 145  44
-[1] 112 145  54
-[1] 113 145  50
-[1] 114 145  33
-[1] 115 145  44
-[1] 116 145  32
-[1] 117 145  30
-[1] 118 145  46
-[1] 119 145  33
-[1] 120 145  41
-[1] 121 145  38
-[1] 122 145  45
-[1] 123 145  39
-[1] 124 145  44
-[1] 125 145  45
-[1] 126 145  38
-[1] 127 145  42
-[1] 128 145  38
-[1] 129 145  47
-[1] 130 145  40
-[1] 131 145  51
-[1] 132 145  29
-[1] 133 145  40
-[1] 134 145  47
-[1] 135 145  44
-[1] 136 145  53
-[1] 137 145  46
-[1] 138 145  41
-[1] 139 145  40
-[1] 140 145  63
-[1] 141 145  49
-[1] 142 145  72
-[1] 143 145  32
-[1] 144 145  51
-[1] 145 145  39
-[1] 146 145  54
-[1] 147 145  51
-[1] 148 145  48
-[1] 149 145  42
-[1] 150 145  73
-[1] 151 145  34
-[1] 152 145  51
-[1] 153 145  44
-[1] 154 145  66
-[1] 155 145  35
-[1] 156 145  56
-[1] 157 145  45
-[1] 158 145  56
-[1] 159 145  47
-[1] 160 145  93
-[1] 161 145  38
-[1] 162 145  51
-[1] 163 145  58
-[1] 164 145  54
-[1] 165 145  47
-[1] 166 145  66
-[1] 167 145  58
-[1] 168 145  62
-[1] 169 145  46
-[1] 170 145  75
-[1] 171 145  82
-[1] 172 145  49
-[1] 173 145  59
-[1] 174 145  90
-[1] 175 145  36
-[1] 176 145  59
-[1] 177 145  45
-[1] 178 145  52
-[1] 179 145  99
-[1] 180 145  86
-[1] 181 145  73
-[1] 182 145  42
-[1] 183 145  54
-[1] 184 145  55
-[1] 185 145  52
-[1] 186 145  45
-[1] 187 145  67
-[1] 188 145  34
-[1] 189 145  44
-[1] 190 145  79
-[1] 191 145  84
-[1] 192 145  65
-[1] 193 145  47
-[1] 194 145  47
-[1] 195 145  55
-[1] 196 145  36
-[1] 197 145  47
-[1] 198 145  77
-[1] 199 145  42
-[1] 200 145  77
-[1]   1 146  37
-[1]   2 146  39
-[1]   3 146  28
-[1]   4 146  27
-[1]   5 146  34
-[1]   6 146  37
-[1]   7 146  30
-[1]   8 146  35
-[1]   9 146  51
-[1]  10 146  46
-[1]  11 146  26
-[1]  12 146  39
-[1]  13 146  39
-[1]  14 146  38
-[1]  15 146  41
-[1]  16 146  48
-[1]  17 146  37
-[1]  18 146  53
-[1]  19 146  33
-[1]  20 146  58
-[1]  21 146  43
-[1]  22 146  36
-[1]  23 146  28
-[1]  24 146  30
-[1]  25 146  51
-[1]  26 146  40
-[1]  27 146  56
-[1]  28 146  48
-[1]  29 146  39
-[1]  30 146  24
-[1]  31 146  37
-[1]  32 146  42
-[1]  33 146  35
-[1]  34 146  29
-[1]  35 146  27
-[1]  36 146  44
-[1]  37 146  37
-[1]  38 146  44
-[1]  39 146  62
-[1]  40 146  50
-[1]  41 146  47
-[1]  42 146  58
-[1]  43 146  62
-[1]  44 146  34
-[1]  45 146  47
-[1]  46 146  44
-[1]  47 146  41
-[1]  48 146  40
-[1]  49 146  37
-[1]  50 146  29
-[1]  51 146  39
-[1]  52 146  39
-[1]  53 146  36
-[1]  54 146  36
-[1]  55 146  43
-[1]  56 146  48
-[1]  57 146  36
-[1]  58 146  27
-[1]  59 146  36
-[1]  60 146  37
-[1]  61 146  35
-[1]  62 146  40
-[1]  63 146  40
-[1]  64 146  31
-[1]  65 146  40
-[1]  66 146  36
-[1]  67 146  36
-[1]  68 146  36
-[1]  69 146  48
-[1]  70 146  42
-[1]  71 146  42
-[1]  72 146  38
-[1]  73 146  39
-[1]  74 146  57
-[1]  75 146  40
-[1]  76 146  33
-[1]  77 146  40
-[1]  78 146  35
-[1]  79 146  34
-[1]  80 146  67
-[1]  81 146  39
-[1]  82 146  35
-[1]  83 146  34
-[1]  84 146  27
-[1]  85 146  66
-[1]  86 146  26
-[1]  87 146  30
-[1]  88 146  42
-[1]  89 146  41
-[1]  90 146  37
-[1]  91 146  32
-[1]  92 146  40
-[1]  93 146  47
-[1]  94 146  36
-[1]  95 146  30
-[1]  96 146  67
-[1]  97 146  65
-[1]  98 146  34
-[1]  99 146  51
-[1] 100 146  20
-[1] 101 146  71
-[1] 102 146  53
-[1] 103 146  38
-[1] 104 146  39
-[1] 105 146  39
-[1] 106 146  44
-[1] 107 146  54
-[1] 108 146  43
-[1] 109 146  74
-[1] 110 146  41
-[1] 111 146  49
-[1] 112 146  64
-[1] 113 146  45
-[1] 114 146  25
-[1] 115 146  40
-[1] 116 146  32
-[1] 117 146  45
-[1] 118 146  35
-[1] 119 146  60
-[1] 120 146  51
-[1] 121 146  40
-[1] 122 146  33
-[1] 123 146  50
-[1] 124 146  25
-[1] 125 146  82
-[1] 126 146  29
-[1] 127 146  35
-[1] 128 146  41
-[1] 129 146  48
-[1] 130 146  31
-[1] 131 146  46
-[1] 132 146  29
-[1] 133 146  51
-[1] 134 146  37
-[1] 135 146  35
-[1] 136 146  51
-[1] 137 146  66
-[1] 138 146  33
-[1] 139 146  60
-[1] 140 146  37
-[1] 141 146  34
-[1] 142 146  30
-[1] 143 146  60
-[1] 144 146  27
-[1] 145 146  69
-[1] 146 146  63
-[1] 147 146  61
-[1] 148 146  50
-[1] 149 146  67
-[1] 150 146  36
-[1] 151 146  34
-[1] 152 146  36
-[1] 153 146  46
-[1] 154 146  35
-[1] 155 146  42
-[1] 156 146  43
-[1] 157 146  48
-[1] 158 146  41
-[1] 159 146  61
-[1] 160 146  46
-[1] 161 146  63
-[1] 162 146  37
-[1] 163 146  55
-[1] 164 146  61
-[1] 165 146  40
-[1] 166 146  75
-[1] 167 146  37
-[1] 168 146  61
-[1] 169 146  48
-[1] 170 146  40
-[1] 171 146  58
-[1] 172 146  62
-[1] 173 146  68
-[1] 174 146  60
-[1] 175 146  49
-[1] 176 146  71
-[1] 177 146  51
-[1] 178 146  51
-[1] 179 146  79
-[1] 180 146  50
-[1] 181 146  57
-[1] 182 146  46
-[1] 183 146  60
-[1] 184 146  59
-[1] 185 146  52
-[1] 186 146  63
-[1] 187 146  40
-[1] 188 146  60
-[1] 189 146  42
-[1] 190 146  86
-[1] 191 146  40
-[1] 192 146  47
-[1] 193 146  29
-[1] 194 146  54
-[1] 195 146  70
-[1] 196 146  43
-[1] 197 146  47
-[1] 198 146  32
-[1] 199 146 106
-[1] 200 146  60
-[1]   1 147  27
-[1]   2 147  35
-[1]   3 147  33
-[1]   4 147  40
-[1]   5 147  32
-[1]   6 147  35
-[1]   7 147  39
-[1]   8 147  51
-[1]   9 147  35
-[1]  10 147  29
-[1]  11 147  31
-[1]  12 147  37
-[1]  13 147  38
-[1]  14 147  37
-[1]  15 147  44
-[1]  16 147  33
-[1]  17 147  64
-[1]  18 147  30
-[1]  19 147  31
-[1]  20 147  50
-[1]  21 147  37
-[1]  22 147  52
-[1]  23 147  42
-[1]  24 147  40
-[1]  25 147  46
-[1]  26 147  49
-[1]  27 147  31
-[1]  28 147  45
-[1]  29 147  32
-[1]  30 147  31
-[1]  31 147  58
-[1]  32 147  36
-[1]  33 147  71
-[1]  34 147  62
-[1]  35 147  34
-[1]  36 147  39
-[1]  37 147  36
-[1]  38 147  53
-[1]  39 147  48
-[1]  40 147  40
-[1]  41 147  34
-[1]  42 147  37
-[1]  43 147  60
-[1]  44 147  42
-[1]  45 147  59
-[1]  46 147  51
-[1]  47 147  57
-[1]  48 147  40
-[1]  49 147  37
-[1]  50 147  30
-[1]  51 147  49
-[1]  52 147  30
-[1]  53 147  43
-[1]  54 147  24
-[1]  55 147  35
-[1]  56 147  29
-[1]  57 147  35
-[1]  58 147  42
-[1]  59 147  28
-[1]  60 147  31
-[1]  61 147  29
-[1]  62 147  74
-[1]  63 147  30
-[1]  64 147  39
-[1]  65 147  38
-[1]  66 147  39
-[1]  67 147  49
-[1]  68 147  38
-[1]  69 147  35
-[1]  70 147  28
-[1]  71 147  43
-[1]  72 147  35
-[1]  73 147  37
-[1]  74 147  58
-[1]  75 147  38
-[1]  76 147  31
-[1]  77 147  42
-[1]  78 147  43
-[1]  79 147  30
-[1]  80 147  69
-[1]  81 147  36
-[1]  82 147  45
-[1]  83 147  36
-[1]  84 147  65
-[1]  85 147  43
-[1]  86 147  42
-[1]  87 147  47
-[1]  88 147  30
-[1]  89 147  51
-[1]  90 147  32
-[1]  91 147  45
-[1]  92 147  35
-[1]  93 147  42
-[1]  94 147  33
-[1]  95 147  60
-[1]  96 147  41
-[1]  97 147  34
-[1]  98 147  56
-[1]  99 147  42
-[1] 100 147  56
-[1] 101 147  43
-[1] 102 147  40
-[1] 103 147  59
-[1] 104 147  28
-[1] 105 147  79
-[1] 106 147  48
-[1] 107 147  73
-[1] 108 147  67
-[1] 109 147  40
-[1] 110 147  32
-[1] 111 147  47
-[1] 112 147  55
-[1] 113 147  40
-[1] 114 147  57
-[1] 115 147  42
-[1] 116 147  51
-[1] 117 147  40
-[1] 118 147  36
-[1] 119 147  49
-[1] 120 147  50
-[1] 121 147  64
-[1] 122 147  45
-[1] 123 147  50
-[1] 124 147  74
-[1] 125 147  49
-[1] 126 147  26
-[1] 127 147  57
-[1] 128 147  37
-[1] 129 147  69
-[1] 130 147  56
-[1] 131 147  64
-[1] 132 147  43
-[1] 133 147  58
-[1] 134 147  37
-[1] 135 147  30
-[1] 136 147  47
-[1] 137 147  69
-[1] 138 147  39
-[1] 139 147  70
-[1] 140 147  30
-[1] 141 147  28
-[1] 142 147  66
-[1] 143 147  44
-[1] 144 147  49
-[1] 145 147  54
-[1] 146 147  56
-[1] 147 147  48
-[1] 148 147  43
-[1] 149 147  51
-[1] 150 147  43
-[1] 151 147  77
-[1] 152 147  92
-[1] 153 147  44
-[1] 154 147  43
-[1] 155 147  42
-[1] 156 147  48
-[1] 157 147  46
-[1] 158 147  50
-[1] 159 147  44
-[1] 160 147  69
-[1] 161 147  46
-[1] 162 147  92
-[1] 163 147  46
-[1] 164 147  31
-[1] 165 147  80
-[1] 166 147  56
-[1] 167 147  71
-[1] 168 147  53
-[1] 169 147  45
-[1] 170 147  72
-[1] 171 147  40
-[1] 172 147  78
-[1] 173 147  58
-[1] 174 147  46
-[1] 175 147  57
-[1] 176 147  52
-[1] 177 147  69
-[1] 178 147  72
-[1] 179 147  68
-[1] 180 147  49
-[1] 181 147  41
-[1] 182 147  66
-[1] 183 147  55
-[1] 184 147  50
-[1] 185 147  63
-[1] 186 147  71
-[1] 187 147  40
-[1] 188 147  51
-[1] 189 147  42
-[1] 190 147  36
-[1] 191 147 114
-[1] 192 147  37
-[1] 193 147  53
-[1] 194 147  41
-[1] 195 147  51
-[1] 196 147  37
-[1] 197 147  54
-[1] 198 147  56
-[1] 199 147  72
-[1] 200 147  72
-[1]   1 148  41
-[1]   2 148  33
-[1]   3 148  46
-[1]   4 148  36
-[1]   5 148  41
-[1]   6 148  38
-[1]   7 148  43
-[1]   8 148  31
-[1]   9 148  26
-[1]  10 148  32
-[1]  11 148  34
-[1]  12 148  26
-[1]  13 148  31
-[1]  14 148  67
-[1]  15 148  39
-[1]  16 148  51
-[1]  17 148  31
-[1]  18 148  60
-[1]  19 148  49
-[1]  20 148  30
-[1]  21 148  49
-[1]  22 148  33
-[1]  23 148  36
-[1]  24 148  39
-[1]  25 148  47
-[1]  26 148  28
-[1]  27 148  37
-[1]  28 148  46
-[1]  29 148  63
-[1]  30 148  28
-[1]  31 148  30
-[1]  32 148  33
-[1]  33 148  36
-[1]  34 148  38
-[1]  35 148  53
-[1]  36 148  33
-[1]  37 148  37
-[1]  38 148  37
-[1]  39 148  42
-[1]  40 148  43
-[1]  41 148  36
-[1]  42 148  28
-[1]  43 148  57
-[1]  44 148  44
-[1]  45 148  37
-[1]  46 148  47
-[1]  47 148  49
-[1]  48 148  50
-[1]  49 148  33
-[1]  50 148  49
-[1]  51 148  50
-[1]  52 148  38
-[1]  53 148  35
-[1]  54 148  30
-[1]  55 148  35
-[1]  56 148  49
-[1]  57 148  38
-[1]  58 148  43
-[1]  59 148  36
-[1]  60 148  49
-[1]  61 148  42
-[1]  62 148  41
-[1]  63 148  39
-[1]  64 148  30
-[1]  65 148  33
-[1]  66 148  37
-[1]  67 148  31
-[1]  68 148  49
-[1]  69 148  40
-[1]  70 148  29
-[1]  71 148  37
-[1]  72 148  30
-[1]  73 148  36
-[1]  74 148  50
-[1]  75 148  29
-[1]  76 148  44
-[1]  77 148  48
-[1]  78 148  30
-[1]  79 148  53
-[1]  80 148  45
-[1]  81 148  35
-[1]  82 148  46
-[1]  83 148  37
-[1]  84 148  33
-[1]  85 148  52
-[1]  86 148  37
-[1]  87 148  50
-[1]  88 148  29
-[1]  89 148  37
-[1]  90 148  49
-[1]  91 148  34
-[1]  92 148  39
-[1]  93 148  49
-[1]  94 148  43
-[1]  95 148  41
-[1]  96 148  39
-[1]  97 148  49
-[1]  98 148  29
-[1]  99 148  44
-[1] 100 148  33
-[1] 101 148  53
-[1] 102 148  38
-[1] 103 148  53
-[1] 104 148  28
-[1] 105 148  53
-[1] 106 148  43
-[1] 107 148  42
-[1] 108 148  35
-[1] 109 148  58
-[1] 110 148  67
-[1] 111 148  32
-[1] 112 148  37
-[1] 113 148  30
-[1] 114 148  43
-[1] 115 148  56
-[1] 116 148  41
-[1] 117 148  38
-[1] 118 148  39
-[1] 119 148  51
-[1] 120 148  28
-[1] 121 148  36
-[1] 122 148  36
-[1] 123 148  62
-[1] 124 148  26
-[1] 125 148  35
-[1] 126 148  41
-[1] 127 148  47
-[1] 128 148  50
-[1] 129 148  30
-[1] 130 148  37
-[1] 131 148  52
-[1] 132 148  51
-[1] 133 148  32
-[1] 134 148  59
-[1] 135 148  51
-[1] 136 148  58
-[1] 137 148  29
-[1] 138 148  49
-[1] 139 148  50
-[1] 140 148  60
-[1] 141 148  34
-[1] 142 148  40
-[1] 143 148  84
-[1] 144 148  41
-[1] 145 148  52
-[1] 146 148  45
-[1] 147 148  63
-[1] 148 148  36
-[1] 149 148  52
-[1] 150 148  37
-[1] 151 148  32
-[1] 152 148  68
-[1] 153 148  51
-[1] 154 148  53
-[1] 155 148  43
-[1] 156 148  44
-[1] 157 148  57
-[1] 158 148  39
-[1] 159 148  36
-[1] 160 148  52
-[1] 161 148  67
-[1] 162 148  37
-[1] 163 148  36
-[1] 164 148  39
-[1] 165 148  43
-[1] 166 148  88
-[1] 167 148  76
-[1] 168 148  51
-[1] 169 148  49
-[1] 170 148  93
-[1] 171 148  43
-[1] 172 148  59
-[1] 173 148  33
-[1] 174 148  59
-[1] 175 148  57
-[1] 176 148  65
-[1] 177 148  35
-[1] 178 148  77
-[1] 179 148  58
-[1] 180 148  70
-[1] 181 148  47
-[1] 182 148  50
-[1] 183 148  42
-[1] 184 148  60
-[1] 185 148  64
-[1] 186 148  55
-[1] 187 148  54
-[1] 188 148  65
-[1] 189 148  46
-[1] 190 148  66
-[1] 191 148 104
-[1] 192 148  38
-[1] 193 148  65
-[1] 194 148  44
-[1] 195 148  47
-[1] 196 148  39
-[1] 197 148  48
-[1] 198 148  40
-[1] 199 148  37
-[1] 200 148  49
-[1]   1 149  49
-[1]   2 149  26
-[1]   3 149  31
-[1]   4 149  39
-[1]   5 149  30
-[1]   6 149  32
-[1]   7 149  59
-[1]   8 149  43
-[1]   9 149  43
-[1]  10 149  40
-[1]  11 149  49
-[1]  12 149  24
-[1]  13 149  34
-[1]  14 149  43
-[1]  15 149  43
-[1]  16 149  34
-[1]  17 149  45
-[1]  18 149  65
-[1]  19 149  34
-[1]  20 149  31
-[1]  21 149  38
-[1]  22 149  33
-[1]  23 149  36
-[1]  24 149  30
-[1]  25 149  29
-[1]  26 149  47
-[1]  27 149  52
-[1]  28 149  28
-[1]  29 149  72
-[1]  30 149  30
-[1]  31 149  37
-[1]  32 149  36
-[1]  33 149  41
-[1]  34 149  43
-[1]  35 149  38
-[1]  36 149  41
-[1]  37 149  46
-[1]  38 149  49
-[1]  39 149  50
-[1]  40 149  43
-[1]  41 149  36
-[1]  42 149  43
-[1]  43 149  27
-[1]  44 149  40
-[1]  45 149  45
-[1]  46 149  42
-[1]  47 149  37
-[1]  48 149  52
-[1]  49 149  37
-[1]  50 149  35
-[1]  51 149  52
-[1]  52 149  49
-[1]  53 149  54
-[1]  54 149  41
-[1]  55 149  30
-[1]  56 149  33
-[1]  57 149  32
-[1]  58 149  40
-[1]  59 149  36
-[1]  60 149  43
-[1]  61 149  38
-[1]  62 149  38
-[1]  63 149  45
-[1]  64 149  39
-[1]  65 149  46
-[1]  66 149  48
-[1]  67 149  42
-[1]  68 149  65
-[1]  69 149  45
-[1]  70 149  41
-[1]  71 149  40
-[1]  72 149  40
-[1]  73 149  28
-[1]  74 149  44
-[1]  75 149  48
-[1]  76 149  35
-[1]  77 149  33
-[1]  78 149  50
-[1]  79 149  41
-[1]  80 149  44
-[1]  81 149  36
-[1]  82 149  32
-[1]  83 149  65
-[1]  84 149  40
-[1]  85 149  45
-[1]  86 149  44
-[1]  87 149  56
-[1]  88 149  33
-[1]  89 149  50
-[1]  90 149  49
-[1]  91 149  33
-[1]  92 149  54
-[1]  93 149  40
-[1]  94 149  49
-[1]  95 149  27
-[1]  96 149  46
-[1]  97 149  39
-[1]  98 149  54
-[1]  99 149  43
-[1] 100 149  26
-[1] 101 149  41
-[1] 102 149  37
-[1] 103 149  32
-[1] 104 149  73
-[1] 105 149  44
-[1] 106 149  46
-[1] 107 149  45
-[1] 108 149  47
-[1] 109 149  33
-[1] 110 149  32
-[1] 111 149  35
-[1] 112 149  36
-[1] 113 149  40
-[1] 114 149  34
-[1] 115 149  54
-[1] 116 149  40
-[1] 117 149  40
-[1] 118 149  50
-[1] 119 149  44
-[1] 120 149  43
-[1] 121 149  44
-[1] 122 149  53
-[1] 123 149  33
-[1] 124 149  50
-[1] 125 149  40
-[1] 126 149  46
-[1] 127 149  52
-[1] 128 149  38
-[1] 129 149  57
-[1] 130 149  33
-[1] 131 149  53
-[1] 132 149  45
-[1] 133 149  55
-[1] 134 149  43
-[1] 135 149  33
-[1] 136 149  45
-[1] 137 149  43
-[1] 138 149  65
-[1] 139 149  29
-[1] 140 149  56
-[1] 141 149  47
-[1] 142 149  54
-[1] 143 149  49
-[1] 144 149  44
-[1] 145 149  51
-[1] 146 149  42
-[1] 147 149  38
-[1] 148 149  61
-[1] 149 149  73
-[1] 150 149  42
-[1] 151 149  42
-[1] 152 149 101
-[1] 153 149  48
-[1] 154 149  38
-[1] 155 149  63
-[1] 156 149  73
-[1] 157 149  40
-[1] 158 149  48
-[1] 159 149  35
-[1] 160 149  35
-[1] 161 149  74
-[1] 162 149  44
-[1] 163 149  41
-[1] 164 149  46
-[1] 165 149  69
-[1] 166 149  34
-[1] 167 149  40
-[1] 168 149  42
-[1] 169 149  49
-[1] 170 149  93
-[1] 171 149  61
-[1] 172 149  71
-[1] 173 149  52
-[1] 174 149  42
-[1] 175 149  53
-[1] 176 149  51
-[1] 177 149  89
-[1] 178 149  43
-[1] 179 149  67
-[1] 180 149  45
-[1] 181 149  43
-[1] 182 149  48
-[1] 183 149  45
-[1] 184 149  51
-[1] 185 149  50
-[1] 186 149  77
-[1] 187 149  40
-[1] 188 149  78
-[1] 189 149  84
-[1] 190 149  46
-[1] 191 149  50
-[1] 192 149  51
-[1] 193 149  51
-[1] 194 149  50
-[1] 195 149  54
-[1] 196 149  37
-[1] 197 149  39
-[1] 198 149  42
-[1] 199 149  55
-[1] 200 149  49
-[1]   1 150  33
-[1]   2 150  39
-[1]   3 150  24
-[1]   4 150  40
-[1]   5 150  33
-[1]   6 150  57
-[1]   7 150  40
-[1]   8 150  33
-[1]   9 150  34
-[1]  10 150  33
-[1]  11 150  52
-[1]  12 150  41
-[1]  13 150  63
-[1]  14 150  38
-[1]  15 150  37
-[1]  16 150  33
-[1]  17 150  31
-[1]  18 150  36
-[1]  19 150  40
-[1]  20 150  27
-[1]  21 150  36
-[1]  22 150  41
-[1]  23 150  46
-[1]  24 150  45
-[1]  25 150  47
-[1]  26 150  42
-[1]  27 150  57
-[1]  28 150  32
-[1]  29 150  31
-[1]  30 150  28
-[1]  31 150  34
-[1]  32 150  52
-[1]  33 150  42
-[1]  34 150  43
-[1]  35 150  52
-[1]  36 150  48
-[1]  37 150  37
-[1]  38 150  49
-[1]  39 150  35
-[1]  40 150  52
-[1]  41 150  45
-[1]  42 150  56
-[1]  43 150  43
-[1]  44 150  37
-[1]  45 150  54
-[1]  46 150  28
-[1]  47 150  34
-[1]  48 150  44
-[1]  49 150  48
-[1]  50 150  53
-[1]  51 150  44
-[1]  52 150  36
-[1]  53 150  39
-[1]  54 150  39
-[1]  55 150  37
-[1]  56 150  30
-[1]  57 150  49
-[1]  58 150  34
-[1]  59 150  31
-[1]  60 150  36
-[1]  61 150  39
-[1]  62 150  49
-[1]  63 150  43
-[1]  64 150  31
-[1]  65 150  33
-[1]  66 150  44
-[1]  67 150  30
-[1]  68 150  38
-[1]  69 150  71
-[1]  70 150  36
-[1]  71 150  43
-[1]  72 150  40
-[1]  73 150  28
-[1]  74 150  52
-[1]  75 150  56
-[1]  76 150  33
-[1]  77 150  51
-[1]  78 150  47
-[1]  79 150  57
-[1]  80 150  43
-[1]  81 150  40
-[1]  82 150  37
-[1]  83 150  42
-[1]  84 150  37
-[1]  85 150  35
-[1]  86 150  38
-[1]  87 150  45
-[1]  88 150  64
-[1]  89 150  59
-[1]  90 150  39
-[1]  91 150  48
-[1]  92 150  47
-[1]  93 150  36
-[1]  94 150  34
-[1]  95 150  37
-[1]  96 150  48
-[1]  97 150  61
-[1]  98 150  40
-[1]  99 150  70
-[1] 100 150  38
-[1] 101 150  35
-[1] 102 150  43
-[1] 103 150  49
-[1] 104 150  49
-[1] 105 150  33
-[1] 106 150  36
-[1] 107 150  41
-[1] 108 150  37
-[1] 109 150  41
-[1] 110 150  44
-[1] 111 150  46
-[1] 112 150  53
-[1] 113 150  64
-[1] 114 150  39
-[1] 115 150  38
-[1] 116 150  89
-[1] 117 150  45
-[1] 118 150  43
-[1] 119 150  48
-[1] 120 150  42
-[1] 121 150  42
-[1] 122 150  38
-[1] 123 150  37
-[1] 124 150  88
-[1] 125 150  42
-[1] 126 150  37
-[1] 127 150  31
-[1] 128 150  52
-[1] 129 150  34
-[1] 130 150  61
-[1] 131 150  43
-[1] 132 150  47
-[1] 133 150  56
-[1] 134 150  37
-[1] 135 150  42
-[1] 136 150  40
-[1] 137 150  39
-[1] 138 150  47
-[1] 139 150  56
-[1] 140 150  59
-[1] 141 150  52
-[1] 142 150  68
-[1] 143 150  43
-[1] 144 150  47
-[1] 145 150  30
-[1] 146 150  55
-[1] 147 150  39
-[1] 148 150  44
-[1] 149 150  48
-[1] 150 150  73
-[1] 151 150  63
-[1] 152 150  56
-[1] 153 150  37
-[1] 154 150  31
-[1] 155 150  51
-[1] 156 150  42
-[1] 157 150  30
-[1] 158 150  40
-[1] 159 150  45
-[1] 160 150  49
-[1] 161 150  43
-[1] 162 150  46
-[1] 163 150  65
-[1] 164 150  58
-[1] 165 150  51
-[1] 166 150  27
-[1] 167 150 124
-[1] 168 150  52
-[1] 169 150  43
-[1] 170 150  51
-[1] 171 150  70
-[1] 172 150  69
-[1] 173 150  48
-[1] 174 150  47
-[1] 175 150  42
-[1] 176 150  40
-[1] 177 150  43
-[1] 178 150  62
-[1] 179 150  50
-[1] 180 150  72
-[1] 181 150  59
-[1] 182 150  36
-[1] 183 150  46
-[1] 184 150  45
-[1] 185 150  39
-[1] 186 150  54
-[1] 187 150  68
-[1] 188 150  50
-[1] 189 150  54
-[1] 190 150  77
-[1] 191 150  47
-[1] 192 150  76
-[1] 193 150  60
-[1] 194 150  63
-[1] 195 150  51
-[1] 196 150  55
-[1] 197 150  56
-[1] 198 150  36
-[1] 199 150  46
-[1] 200 150  56
-[1]   1 151  31
-[1]   2 151  37
-[1]   3 151  32
-[1]   4 151  36
-[1]   5 151  31
-[1]   6 151  40
-[1]   7 151  45
-[1]   8 151  43
-[1]   9 151  46
-[1]  10 151  39
-[1]  11 151  37
-[1]  12 151  24
-[1]  13 151  37
-[1]  14 151  44
-[1]  15 151  59
-[1]  16 151  31
-[1]  17 151  42
-[1]  18 151  32
-[1]  19 151  39
-[1]  20 151  38
-[1]  21 151  29
-[1]  22 151  43
-[1]  23 151  40
-[1]  24 151  27
-[1]  25 151  34
-[1]  26 151  63
-[1]  27 151  42
-[1]  28 151  44
-[1]  29 151  36
-[1]  30 151  37
-[1]  31 151  40
-[1]  32 151  33
-[1]  33 151  64
-[1]  34 151  39
-[1]  35 151  52
-[1]  36 151  48
-[1]  37 151  59
-[1]  38 151  50
-[1]  39 151  33
-[1]  40 151  44
-[1]  41 151  39
-[1]  42 151  51
-[1]  43 151  34
-[1]  44 151  41
-[1]  45 151  38
-[1]  46 151  37
-[1]  47 151  30
-[1]  48 151  34
-[1]  49 151  47
-[1]  50 151  39
-[1]  51 151  33
-[1]  52 151  30
-[1]  53 151  39
-[1]  54 151  40
-[1]  55 151  29
-[1]  56 151  34
-[1]  57 151  65
-[1]  58 151  40
-[1]  59 151  53
-[1]  60 151  31
-[1]  61 151  48
-[1]  62 151  55
-[1]  63 151  40
-[1]  64 151  35
-[1]  65 151  25
-[1]  66 151  36
-[1]  67 151  46
-[1]  68 151  43
-[1]  69 151  36
-[1]  70 151  37
-[1]  71 151  52
-[1]  72 151  35
-[1]  73 151  33
-[1]  74 151  39
-[1]  75 151  52
-[1]  76 151  40
-[1]  77 151  33
-[1]  78 151  42
-[1]  79 151  56
-[1]  80 151  37
-[1]  81 151  32
-[1]  82 151  45
-[1]  83 151  51
-[1]  84 151  47
-[1]  85 151  58
-[1]  86 151  43
-[1]  87 151  38
-[1]  88 151  43
-[1]  89 151  49
-[1]  90 151  48
-[1]  91 151  35
-[1]  92 151  33
-[1]  93 151  37
-[1]  94 151  45
-[1]  95 151  37
-[1]  96 151  35
-[1]  97 151  39
-[1]  98 151  55
-[1]  99 151  43
-[1] 100 151  33
-[1] 101 151  55
-[1] 102 151  42
-[1] 103 151  33
-[1] 104 151  40
-[1] 105 151  52
-[1] 106 151  33
-[1] 107 151  29
-[1] 108 151  44
-[1] 109 151  39
-[1] 110 151  50
-[1] 111 151  43
-[1] 112 151  34
-[1] 113 151  41
-[1] 114 151  34
-[1] 115 151  41
-[1] 116 151  74
-[1] 117 151  61
-[1] 118 151  52
-[1] 119 151  47
-[1] 120 151  40
-[1] 121 151  57
-[1] 122 151  38
-[1] 123 151  34
-[1] 124 151  36
-[1] 125 151  42
-[1] 126 151  36
-[1] 127 151  39
-[1] 128 151  46
-[1] 129 151  47
-[1] 130 151  32
-[1] 131 151  48
-[1] 132 151  64
-[1] 133 151  39
-[1] 134 151  40
-[1] 135 151  37
-[1] 136 151  60
-[1] 137 151  48
-[1] 138 151  59
-[1] 139 151  55
-[1] 140 151  50
-[1] 141 151  40
-[1] 142 151  58
-[1] 143 151  58
-[1] 144 151  27
-[1] 145 151  36
-[1] 146 151  38
-[1] 147 151  69
-[1] 148 151  55
-[1] 149 151  44
-[1] 150 151  52
-[1] 151 151  28
-[1] 152 151  43
-[1] 153 151  56
-[1] 154 151  39
-[1] 155 151  49
-[1] 156 151 101
-[1] 157 151  62
-[1] 158 151  41
-[1] 159 151  40
-[1] 160 151  39
-[1] 161 151  39
-[1] 162 151  39
-[1] 163 151  62
-[1] 164 151  63
-[1] 165 151  32
-[1] 166 151  45
-[1] 167 151  36
-[1] 168 151  55
-[1] 169 151  35
-[1] 170 151  62
-[1] 171 151  45
-[1] 172 151  37
-[1] 173 151  50
-[1] 174 151  40
-[1] 175 151  47
-[1] 176 151  35
-[1] 177 151  48
-[1] 178 151  49
-[1] 179 151  44
-[1] 180 151  45
-[1] 181 151  50
-[1] 182 151  57
-[1] 183 151  39
-[1] 184 151  70
-[1] 185 151  53
-[1] 186 151  92
-[1] 187 151  34
-[1] 188 151  38
-[1] 189 151  41
-[1] 190 151  53
-[1] 191 151  39
-[1] 192 151  40
-[1] 193 151  44
-[1] 194 151  58
-[1] 195 151  62
-[1] 196 151  51
-[1] 197 151  57
-[1] 198 151  58
-[1] 199 151  56
-[1] 200 151  77
-[1]   1 152  31
-[1]   2 152  34
-[1]   3 152  28
-[1]   4 152  52
-[1]   5 152  39
-[1]   6 152  60
-[1]   7 152  40
-[1]   8 152  25
-[1]   9 152  37
-[1]  10 152  80
-[1]  11 152  45
-[1]  12 152  29
-[1]  13 152  41
-[1]  14 152  37
-[1]  15 152  35
-[1]  16 152  39
-[1]  17 152  38
-[1]  18 152  43
-[1]  19 152  42
-[1]  20 152  52
-[1]  21 152  41
-[1]  22 152  31
-[1]  23 152  26
-[1]  24 152  33
-[1]  25 152  64
-[1]  26 152  47
-[1]  27 152  35
-[1]  28 152  34
-[1]  29 152  35
-[1]  30 152  63
-[1]  31 152  46
-[1]  32 152  50
-[1]  33 152  37
-[1]  34 152  41
-[1]  35 152  38
-[1]  36 152  45
-[1]  37 152  26
-[1]  38 152  34
-[1]  39 152  50
-[1]  40 152  38
-[1]  41 152  60
-[1]  42 152  39
-[1]  43 152  37
-[1]  44 152  43
-[1]  45 152  39
-[1]  46 152  49
-[1]  47 152  33
-[1]  48 152  47
-[1]  49 152  28
-[1]  50 152  41
-[1]  51 152  30
-[1]  52 152  44
-[1]  53 152  37
-[1]  54 152  40
-[1]  55 152  96
-[1]  56 152  44
-[1]  57 152  47
-[1]  58 152  24
-[1]  59 152  55
-[1]  60 152  34
-[1]  61 152  53
-[1]  62 152  29
-[1]  63 152  49
-[1]  64 152  50
-[1]  65 152  27
-[1]  66 152  47
-[1]  67 152  33
-[1]  68 152  33
-[1]  69 152  52
-[1]  70 152  35
-[1]  71 152  44
-[1]  72 152  55
-[1]  73 152  62
-[1]  74 152  46
-[1]  75 152  46
-[1]  76 152  28
-[1]  77 152  34
-[1]  78 152  47
-[1]  79 152  43
-[1]  80 152  35
-[1]  81 152  44
-[1]  82 152  37
-[1]  83 152  44
-[1]  84 152  45
-[1]  85 152  53
-[1]  86 152  46
-[1]  87 152  53
-[1]  88 152  34
-[1]  89 152  44
-[1]  90 152  49
-[1]  91 152  63
-[1]  92 152  46
-[1]  93 152  43
-[1]  94 152  39
-[1]  95 152  42
-[1]  96 152  35
-[1]  97 152  48
-[1]  98 152  40
-[1]  99 152  47
-[1] 100 152  40
-[1] 101 152  31
-[1] 102 152  49
-[1] 103 152  53
-[1] 104 152  38
-[1] 105 152  47
-[1] 106 152  44
-[1] 107 152  27
-[1] 108 152  45
-[1] 109 152  39
-[1] 110 152  40
-[1] 111 152  29
-[1] 112 152  41
-[1] 113 152  43
-[1] 114 152  54
-[1] 115 152  35
-[1] 116 152  43
-[1] 117 152  43
-[1] 118 152  32
-[1] 119 152  33
-[1] 120 152  46
-[1] 121 152  43
-[1] 122 152  38
-[1] 123 152  53
-[1] 124 152  49
-[1] 125 152  41
-[1] 126 152  41
-[1] 127 152  51
-[1] 128 152  34
-[1] 129 152  47
-[1] 130 152  45
-[1] 131 152  43
-[1] 132 152  36
-[1] 133 152  43
-[1] 134 152  30
-[1] 135 152  41
-[1] 136 152  42
-[1] 137 152  41
-[1] 138 152  48
-[1] 139 152  43
-[1] 140 152  51
-[1] 141 152  34
-[1] 142 152  41
-[1] 143 152  40
-[1] 144 152  93
-[1] 145 152  62
-[1] 146 152  39
-[1] 147 152  42
-[1] 148 152  43
-[1] 149 152  34
-[1] 150 152  43
-[1] 151 152  64
-[1] 152 152  53
-[1] 153 152  56
-[1] 154 152  37
-[1] 155 152  30
-[1] 156 152  60
-[1] 157 152  40
-[1] 158 152  27
-[1] 159 152  70
-[1] 160 152  37
-[1] 161 152  54
-[1] 162 152  49
-[1] 163 152  58
-[1] 164 152  59
-[1] 165 152  57
-[1] 166 152  26
-[1] 167 152  63
-[1] 168 152  80
-[1] 169 152  59
-[1] 170 152  76
-[1] 171 152  51
-[1] 172 152  37
-[1] 173 152  32
-[1] 174 152  53
-[1] 175 152  38
-[1] 176 152  51
-[1] 177 152  61
-[1] 178 152  43
-[1] 179 152  46
-[1] 180 152  50
-[1] 181 152  51
-[1] 182 152  48
-[1] 183 152  59
-[1] 184 152  46
-[1] 185 152  80
-[1] 186 152  46
-[1] 187 152  64
-[1] 188 152  39
-[1] 189 152  38
-[1] 190 152  53
-[1] 191 152  32
-[1] 192 152  62
-[1] 193 152  54
-[1] 194 152  45
-[1] 195 152  72
-[1] 196 152  40
-[1] 197 152  40
-[1] 198 152  37
-[1] 199 152  67
-[1] 200 152  53
-[1]   1 153  29
-[1]   2 153  31
-[1]   3 153  30
-[1]   4 153  28
-[1]   5 153  43
-[1]   6 153  32
-[1]   7 153  37
-[1]   8 153  33
-[1]   9 153  45
-[1]  10 153  38
-[1]  11 153  37
-[1]  12 153  34
-[1]  13 153  43
-[1]  14 153  36
-[1]  15 153  51
-[1]  16 153  51
-[1]  17 153  40
-[1]  18 153  37
-[1]  19 153  33
-[1]  20 153  38
-[1]  21 153  40
-[1]  22 153  46
-[1]  23 153  31
-[1]  24 153  32
-[1]  25 153  28
-[1]  26 153  36
-[1]  27 153  44
-[1]  28 153  47
-[1]  29 153  35
-[1]  30 153  52
-[1]  31 153  39
-[1]  32 153  27
-[1]  33 153  29
-[1]  34 153  54
-[1]  35 153  30
-[1]  36 153  57
-[1]  37 153  32
-[1]  38 153  40
-[1]  39 153  58
-[1]  40 153  39
-[1]  41 153  33
-[1]  42 153  34
-[1]  43 153  40
-[1]  44 153  30
-[1]  45 153  41
-[1]  46 153  37
-[1]  47 153  45
-[1]  48 153  40
-[1]  49 153  48
-[1]  50 153  41
-[1]  51 153  50
-[1]  52 153  43
-[1]  53 153  55
-[1]  54 153  70
-[1]  55 153  37
-[1]  56 153  34
-[1]  57 153  50
-[1]  58 153  30
-[1]  59 153  31
-[1]  60 153  26
-[1]  61 153  31
-[1]  62 153  30
-[1]  63 153  30
-[1]  64 153  91
-[1]  65 153  30
-[1]  66 153  43
-[1]  67 153  27
-[1]  68 153  33
-[1]  69 153  46
-[1]  70 153  68
-[1]  71 153  45
-[1]  72 153  40
-[1]  73 153  27
-[1]  74 153  45
-[1]  75 153  44
-[1]  76 153  32
-[1]  77 153  31
-[1]  78 153  43
-[1]  79 153  30
-[1]  80 153  31
-[1]  81 153  30
-[1]  82 153  29
-[1]  83 153  36
-[1]  84 153  68
-[1]  85 153  64
-[1]  86 153  48
-[1]  87 153  35
-[1]  88 153  36
-[1]  89 153  33
-[1]  90 153  34
-[1]  91 153  39
-[1]  92 153  40
-[1]  93 153  35
-[1]  94 153  36
-[1]  95 153  31
-[1]  96 153  25
-[1]  97 153  44
-[1]  98 153  53
-[1]  99 153  54
-[1] 100 153  39
-[1] 101 153  33
-[1] 102 153  50
-[1] 103 153  39
-[1] 104 153  48
-[1] 105 153  32
-[1] 106 153  26
-[1] 107 153  45
-[1] 108 153  36
-[1] 109 153  38
-[1] 110 153  35
-[1] 111 153  44
-[1] 112 153  45
-[1] 113 153  30
-[1] 114 153  44
-[1] 115 153  59
-[1] 116 153  41
-[1] 117 153  41
-[1] 118 153  27
-[1] 119 153  39
-[1] 120 153  42
-[1] 121 153  56
-[1] 122 153  46
-[1] 123 153  40
-[1] 124 153  40
-[1] 125 153  27
-[1] 126 153  59
-[1] 127 153  29
-[1] 128 153  57
-[1] 129 153  47
-[1] 130 153  38
-[1] 131 153  39
-[1] 132 153  40
-[1] 133 153  39
-[1] 134 153  44
-[1] 135 153  53
-[1] 136 153  39
-[1] 137 153  48
-[1] 138 153  40
-[1] 139 153  49
-[1] 140 153  47
-[1] 141 153  34
-[1] 142 153  43
-[1] 143 153  37
-[1] 144 153  70
-[1] 145 153  42
-[1] 146 153  41
-[1] 147 153  32
-[1] 148 153  40
-[1] 149 153  50
-[1] 150 153  41
-[1] 151 153  51
-[1] 152 153  37
-[1] 153 153  34
-[1] 154 153  80
-[1] 155 153  40
-[1] 156 153  47
-[1] 157 153  46
-[1] 158 153  32
-[1] 159 153  36
-[1] 160 153  75
-[1] 161 153  39
-[1] 162 153  38
-[1] 163 153  48
-[1] 164 153  56
-[1] 165 153  37
-[1] 166 153  39
-[1] 167 153  58
-[1] 168 153  56
-[1] 169 153  39
-[1] 170 153  60
-[1] 171 153  50
-[1] 172 153  58
-[1] 173 153  43
-[1] 174 153  54
-[1] 175 153  56
-[1] 176 153  39
-[1] 177 153  62
-[1] 178 153  57
-[1] 179 153  37
-[1] 180 153  48
-[1] 181 153  69
-[1] 182 153  50
-[1] 183 153  58
-[1] 184 153  73
-[1] 185 153  29
-[1] 186 153  49
-[1] 187 153  47
-[1] 188 153 104
-[1] 189 153  37
-[1] 190 153  55
-[1] 191 153  71
-[1] 192 153  57
-[1] 193 153  55
-[1] 194 153  39
-[1] 195 153  48
-[1] 196 153  35
-[1] 197 153  47
-[1] 198 153  53
-[1] 199 153  63
-[1] 200 153  43
-[1]   1 154  37
-[1]   2 154  33
-[1]   3 154  36
-[1]   4 154  37
-[1]   5 154  22
-[1]   6 154  55
-[1]   7 154  49
-[1]   8 154  38
-[1]   9 154  40
-[1]  10 154  41
-[1]  11 154  31
-[1]  12 154  36
-[1]  13 154  43
-[1]  14 154  32
-[1]  15 154  45
-[1]  16 154  51
-[1]  17 154  48
-[1]  18 154  38
-[1]  19 154  29
-[1]  20 154  35
-[1]  21 154  44
-[1]  22 154  55
-[1]  23 154  39
-[1]  24 154  33
-[1]  25 154  41
-[1]  26 154  35
-[1]  27 154  48
-[1]  28 154  47
-[1]  29 154  49
-[1]  30 154  29
-[1]  31 154  56
-[1]  32 154  39
-[1]  33 154  36
-[1]  34 154  37
-[1]  35 154  46
-[1]  36 154  40
-[1]  37 154  41
-[1]  38 154  33
-[1]  39 154  32
-[1]  40 154  28
-[1]  41 154  35
-[1]  42 154  44
-[1]  43 154  35
-[1]  44 154  40
-[1]  45 154  29
-[1]  46 154  29
-[1]  47 154  30
-[1]  48 154  40
-[1]  49 154  46
-[1]  50 154  33
-[1]  51 154  44
-[1]  52 154  62
-[1]  53 154  35
-[1]  54 154  46
-[1]  55 154  35
-[1]  56 154  39
-[1]  57 154  45
-[1]  58 154  62
-[1]  59 154  39
-[1]  60 154  73
-[1]  61 154  43
-[1]  62 154  41
-[1]  63 154  32
-[1]  64 154  73
-[1]  65 154  49
-[1]  66 154  44
-[1]  67 154  37
-[1]  68 154  34
-[1]  69 154  51
-[1]  70 154  28
-[1]  71 154  30
-[1]  72 154  47
-[1]  73 154  32
-[1]  74 154  54
-[1]  75 154  39
-[1]  76 154  58
-[1]  77 154  44
-[1]  78 154  57
-[1]  79 154  38
-[1]  80 154  55
-[1]  81 154  41
-[1]  82 154  47
-[1]  83 154  35
-[1]  84 154  39
-[1]  85 154  41
-[1]  86 154  42
-[1]  87 154  42
-[1]  88 154  53
-[1]  89 154  38
-[1]  90 154  53
-[1]  91 154  39
-[1]  92 154  38
-[1]  93 154  44
-[1]  94 154  65
-[1]  95 154  55
-[1]  96 154  51
-[1]  97 154  46
-[1]  98 154  33
-[1]  99 154  32
-[1] 100 154  51
-[1] 101 154  43
-[1] 102 154  42
-[1] 103 154  39
-[1] 104 154  36
-[1] 105 154  37
-[1] 106 154  44
-[1] 107 154  47
-[1] 108 154  34
-[1] 109 154  43
-[1] 110 154  42
-[1] 111 154  47
-[1] 112 154  38
-[1] 113 154  31
-[1] 114 154  37
-[1] 115 154  41
-[1] 116 154  42
-[1] 117 154  36
-[1] 118 154  53
-[1] 119 154  40
-[1] 120 154  59
-[1] 121 154  59
-[1] 122 154  30
-[1] 123 154  59
-[1] 124 154  38
-[1] 125 154  45
-[1] 126 154  48
-[1] 127 154  57
-[1] 128 154  35
-[1] 129 154  42
-[1] 130 154  33
-[1] 131 154  28
-[1] 132 154  40
-[1] 133 154  47
-[1] 134 154  41
-[1] 135 154  50
-[1] 136 154  37
-[1] 137 154  47
-[1] 138 154  35
-[1] 139 154  48
-[1] 140 154  35
-[1] 141 154  64
-[1] 142 154  68
-[1] 143 154  30
-[1] 144 154  45
-[1] 145 154  47
-[1] 146 154  37
-[1] 147 154  38
-[1] 148 154  37
-[1] 149 154  34
-[1] 150 154  44
-[1] 151 154  69
-[1] 152 154  41
-[1] 153 154  46
-[1] 154 154  51
-[1] 155 154  36
-[1] 156 154  43
-[1] 157 154  37
-[1] 158 154  38
-[1] 159 154  45
-[1] 160 154  36
-[1] 161 154  39
-[1] 162 154  44
-[1] 163 154  61
-[1] 164 154  41
-[1] 165 154  58
-[1] 166 154  45
-[1] 167 154  46
-[1] 168 154  91
-[1] 169 154  50
-[1] 170 154  59
-[1] 171 154  56
-[1] 172 154  40
-[1] 173 154  68
-[1] 174 154  48
-[1] 175 154  49
-[1] 176 154  54
-[1] 177 154  38
-[1] 178 154  49
-[1] 179 154  31
-[1] 180 154 106
-[1] 181 154  48
-[1] 182 154  48
-[1] 183 154  42
-[1] 184 154  53
-[1] 185 154  46
-[1] 186 154  41
-[1] 187 154  31
-[1] 188 154  58
-[1] 189 154  34
-[1] 190 154  77
-[1] 191 154  32
-[1] 192 154  71
-[1] 193 154  62
-[1] 194 154  55
-[1] 195 154  49
-[1] 196 154  38
-[1] 197 154  77
-[1] 198 154  43
-[1] 199 154  61
-[1] 200 154  60
-[1]   1 155  27
-[1]   2 155  30
-[1]   3 155  45
-[1]   4 155  35
-[1]   5 155  35
-[1]   6 155  42
-[1]   7 155  36
-[1]   8 155  28
-[1]   9 155  44
-[1]  10 155  28
-[1]  11 155  28
-[1]  12 155  33
-[1]  13 155  51
-[1]  14 155  32
-[1]  15 155  37
-[1]  16 155  41
-[1]  17 155  38
-[1]  18 155  39
-[1]  19 155  43
-[1]  20 155  38
-[1]  21 155  40
-[1]  22 155  59
-[1]  23 155  30
-[1]  24 155  35
-[1]  25 155  36
-[1]  26 155  39
-[1]  27 155  32
-[1]  28 155  41
-[1]  29 155  31
-[1]  30 155  40
-[1]  31 155  38
-[1]  32 155  48
-[1]  33 155  34
-[1]  34 155  39
-[1]  35 155  25
-[1]  36 155  40
-[1]  37 155  54
-[1]  38 155  33
-[1]  39 155  36
-[1]  40 155  53
-[1]  41 155  25
-[1]  42 155  41
-[1]  43 155  34
-[1]  44 155  52
-[1]  45 155  38
-[1]  46 155  45
-[1]  47 155  39
-[1]  48 155  37
-[1]  49 155  36
-[1]  50 155  32
-[1]  51 155  48
-[1]  52 155  48
-[1]  53 155  31
-[1]  54 155  52
-[1]  55 155  40
-[1]  56 155  39
-[1]  57 155  43
-[1]  58 155  36
-[1]  59 155  36
-[1]  60 155  39
-[1]  61 155  39
-[1]  62 155  32
-[1]  63 155  46
-[1]  64 155  48
-[1]  65 155  50
-[1]  66 155  37
-[1]  67 155  42
-[1]  68 155  35
-[1]  69 155  28
-[1]  70 155  43
-[1]  71 155  45
-[1]  72 155  40
-[1]  73 155  43
-[1]  74 155  38
-[1]  75 155  27
-[1]  76 155  39
-[1]  77 155  38
-[1]  78 155  65
-[1]  79 155  28
-[1]  80 155  42
-[1]  81 155  44
-[1]  82 155  33
-[1]  83 155  44
-[1]  84 155  35
-[1]  85 155  48
-[1]  86 155  42
-[1]  87 155  35
-[1]  88 155  38
-[1]  89 155  31
-[1]  90 155  52
-[1]  91 155  37
-[1]  92 155  36
-[1]  93 155  48
-[1]  94 155  33
-[1]  95 155  53
-[1]  96 155  36
-[1]  97 155  61
-[1]  98 155  38
-[1]  99 155  37
-[1] 100 155  50
-[1] 101 155  37
-[1] 102 155  34
-[1] 103 155  36
-[1] 104 155  39
-[1] 105 155  50
-[1] 106 155  32
-[1] 107 155  35
-[1] 108 155  61
-[1] 109 155  48
-[1] 110 155  37
-[1] 111 155  34
-[1] 112 155  43
-[1] 113 155  38
-[1] 114 155  37
-[1] 115 155  48
-[1] 116 155  45
-[1] 117 155  40
-[1] 118 155  33
-[1] 119 155  32
-[1] 120 155  33
-[1] 121 155  45
-[1] 122 155  29
-[1] 123 155  44
-[1] 124 155  35
-[1] 125 155  38
-[1] 126 155  38
-[1] 127 155  39
-[1] 128 155  45
-[1] 129 155  31
-[1] 130 155  48
-[1] 131 155  39
-[1] 132 155  44
-[1] 133 155  40
-[1] 134 155  39
-[1] 135 155  49
-[1] 136 155  30
-[1] 137 155  40
-[1] 138 155  44
-[1] 139 155  59
-[1] 140 155  56
-[1] 141 155  40
-[1] 142 155  33
-[1] 143 155  42
-[1] 144 155  41
-[1] 145 155  56
-[1] 146 155  41
-[1] 147 155  46
-[1] 148 155  38
-[1] 149 155  65
-[1] 150 155  83
-[1] 151 155  27
-[1] 152 155  48
-[1] 153 155  29
-[1] 154 155  55
-[1] 155 155  34
-[1] 156 155  51
-[1] 157 155  42
-[1] 158 155  79
-[1] 159 155  49
-[1] 160 155  40
-[1] 161 155  49
-[1] 162 155  77
-[1] 163 155  44
-[1] 164 155  36
-[1] 165 155  53
-[1] 166 155  36
-[1] 167 155  33
-[1] 168 155  48
-[1] 169 155  45
-[1] 170 155  53
-[1] 171 155  56
-[1] 172 155  46
-[1] 173 155  38
-[1] 174 155  50
-[1] 175 155  46
-[1] 176 155  43
-[1] 177 155  71
-[1] 178 155  42
-[1] 179 155  47
-[1] 180 155  59
-[1] 181 155  70
-[1] 182 155  49
-[1] 183 155  62
-[1] 184 155  58
-[1] 185 155  43
-[1] 186 155  41
-[1] 187 155  36
-[1] 188 155  55
-[1] 189 155  51
-[1] 190 155  52
-[1] 191 155  44
-[1] 192 155  42
-[1] 193 155  49
-[1] 194 155  73
-[1] 195 155  43
-[1] 196 155  43
-[1] 197 155  69
-[1] 198 155  33
-[1] 199 155  51
-[1] 200 155  47
-[1]   1 156  32
-[1]   2 156  48
-[1]   3 156  40
-[1]   4 156  31
-[1]   5 156  30
-[1]   6 156  36
-[1]   7 156  35
-[1]   8 156  37
-[1]   9 156  41
-[1]  10 156  42
-[1]  11 156  39
-[1]  12 156  32
-[1]  13 156  39
-[1]  14 156  29
-[1]  15 156  36
-[1]  16 156  30
-[1]  17 156  37
-[1]  18 156  33
-[1]  19 156  34
-[1]  20 156  41
-[1]  21 156  31
-[1]  22 156  40
-[1]  23 156  37
-[1]  24 156  46
-[1]  25 156  39
-[1]  26 156  37
-[1]  27 156  26
-[1]  28 156  38
-[1]  29 156  29
-[1]  30 156  31
-[1]  31 156  44
-[1]  32 156  36
-[1]  33 156  37
-[1]  34 156  39
-[1]  35 156  36
-[1]  36 156  39
-[1]  37 156  46
-[1]  38 156  35
-[1]  39 156  38
-[1]  40 156  39
-[1]  41 156  34
-[1]  42 156  30
-[1]  43 156  74
-[1]  44 156  46
-[1]  45 156  50
-[1]  46 156  57
-[1]  47 156  39
-[1]  48 156  37
-[1]  49 156  42
-[1]  50 156  45
-[1]  51 156  37
-[1]  52 156  70
-[1]  53 156  51
-[1]  54 156  37
-[1]  55 156  47
-[1]  56 156  37
-[1]  57 156  27
-[1]  58 156  44
-[1]  59 156  56
-[1]  60 156  42
-[1]  61 156  42
-[1]  62 156  50
-[1]  63 156  59
-[1]  64 156  54
-[1]  65 156  38
-[1]  66 156  36
-[1]  67 156  38
-[1]  68 156  43
-[1]  69 156  58
-[1]  70 156  32
-[1]  71 156  45
-[1]  72 156  41
-[1]  73 156  38
-[1]  74 156  36
-[1]  75 156  43
-[1]  76 156  35
-[1]  77 156  33
-[1]  78 156  34
-[1]  79 156  33
-[1]  80 156  36
-[1]  81 156  41
-[1]  82 156  40
-[1]  83 156  35
-[1]  84 156  42
-[1]  85 156  38
-[1]  86 156  42
-[1]  87 156  54
-[1]  88 156  41
-[1]  89 156  39
-[1]  90 156  44
-[1]  91 156  36
-[1]  92 156  31
-[1]  93 156  59
-[1]  94 156  43
-[1]  95 156  54
-[1]  96 156  52
-[1]  97 156  44
-[1]  98 156  36
-[1]  99 156  54
-[1] 100 156  40
-[1] 101 156  48
-[1] 102 156  58
-[1] 103 156  61
-[1] 104 156  40
-[1] 105 156  36
-[1] 106 156  37
-[1] 107 156  62
-[1] 108 156  37
-[1] 109 156  39
-[1] 110 156  28
-[1] 111 156  49
-[1] 112 156  49
-[1] 113 156  64
-[1] 114 156  33
-[1] 115 156  40
-[1] 116 156  40
-[1] 117 156  63
-[1] 118 156  39
-[1] 119 156  59
-[1] 120 156  30
-[1] 121 156  32
-[1] 122 156  42
-[1] 123 156  55
-[1] 124 156  31
-[1] 125 156  27
-[1] 126 156  40
-[1] 127 156  35
-[1] 128 156  36
-[1] 129 156  39
-[1] 130 156  34
-[1] 131 156  57
-[1] 132 156  32
-[1] 133 156  47
-[1] 134 156  40
-[1] 135 156  37
-[1] 136 156  45
-[1] 137 156  36
-[1] 138 156  47
-[1] 139 156  36
-[1] 140 156  71
-[1] 141 156  36
-[1] 142 156  36
-[1] 143 156  46
-[1] 144 156  38
-[1] 145 156  39
-[1] 146 156  40
-[1] 147 156  43
-[1] 148 156  31
-[1] 149 156  47
-[1] 150 156  54
-[1] 151 156  52
-[1] 152 156  44
-[1] 153 156  73
-[1] 154 156  35
-[1] 155 156  41
-[1] 156 156  67
-[1] 157 156  37
-[1] 158 156  36
-[1] 159 156  38
-[1] 160 156  38
-[1] 161 156  42
-[1] 162 156  46
-[1] 163 156  79
-[1] 164 156  45
-[1] 165 156  61
-[1] 166 156  38
-[1] 167 156  51
-[1] 168 156  37
-[1] 169 156  58
-[1] 170 156  27
-[1] 171 156  54
-[1] 172 156  51
-[1] 173 156  41
-[1] 174 156  46
-[1] 175 156  42
-[1] 176 156  47
-[1] 177 156  53
-[1] 178 156  46
-[1] 179 156  32
-[1] 180 156  37
-[1] 181 156  43
-[1] 182 156  36
-[1] 183 156  39
-[1] 184 156  45
-[1] 185 156  31
-[1] 186 156  46
-[1] 187 156  32
-[1] 188 156  51
-[1] 189 156  33
-[1] 190 156  44
-[1] 191 156  42
-[1] 192 156  49
-[1] 193 156  48
-[1] 194 156  53
-[1] 195 156  37
-[1] 196 156  56
-[1] 197 156  50
-[1] 198 156  65
-[1] 199 156  54
-[1] 200 156  44
-[1]   1 157  27
-[1]   2 157  41
-[1]   3 157  25
-[1]   4 157  58
-[1]   5 157  29
-[1]   6 157  29
-[1]   7 157  43
-[1]   8 157  33
-[1]   9 157  57
-[1]  10 157  38
-[1]  11 157  43
-[1]  12 157  36
-[1]  13 157  33
-[1]  14 157  48
-[1]  15 157  35
-[1]  16 157  32
-[1]  17 157  39
-[1]  18 157  38
-[1]  19 157  63
-[1]  20 157  43
-[1]  21 157  36
-[1]  22 157  41
-[1]  23 157  28
-[1]  24 157  36
-[1]  25 157  29
-[1]  26 157  38
-[1]  27 157  54
-[1]  28 157  27
-[1]  29 157  50
-[1]  30 157  32
-[1]  31 157  37
-[1]  32 157  28
-[1]  33 157  31
-[1]  34 157  37
-[1]  35 157  33
-[1]  36 157  34
-[1]  37 157  42
-[1]  38 157  27
-[1]  39 157  36
-[1]  40 157  31
-[1]  41 157  34
-[1]  42 157  35
-[1]  43 157  40
-[1]  44 157  41
-[1]  45 157  40
-[1]  46 157  34
-[1]  47 157  52
-[1]  48 157  62
-[1]  49 157  41
-[1]  50 157  30
-[1]  51 157  31
-[1]  52 157  43
-[1]  53 157  33
-[1]  54 157  34
-[1]  55 157  54
-[1]  56 157  26
-[1]  57 157  48
-[1]  58 157  33
-[1]  59 157  50
-[1]  60 157  50
-[1]  61 157  28
-[1]  62 157  45
-[1]  63 157  25
-[1]  64 157  52
-[1]  65 157  35
-[1]  66 157  32
-[1]  67 157  73
-[1]  68 157  47
-[1]  69 157  32
-[1]  70 157  45
-[1]  71 157  31
-[1]  72 157  51
-[1]  73 157  37
-[1]  74 157  41
-[1]  75 157  24
-[1]  76 157  35
-[1]  77 157  38
-[1]  78 157  31
-[1]  79 157  29
-[1]  80 157  36
-[1]  81 157  36
-[1]  82 157  35
-[1]  83 157  33
-[1]  84 157  35
-[1]  85 157  32
-[1]  86 157  43
-[1]  87 157  42
-[1]  88 157  47
-[1]  89 157  40
-[1]  90 157  55
-[1]  91 157  74
-[1]  92 157  53
-[1]  93 157  31
-[1]  94 157  26
-[1]  95 157  43
-[1]  96 157  39
-[1]  97 157  50
-[1]  98 157  33
-[1]  99 157  38
-[1] 100 157  38
-[1] 101 157  48
-[1] 102 157  34
-[1] 103 157  38
-[1] 104 157  35
-[1] 105 157  40
-[1] 106 157  35
-[1] 107 157  36
-[1] 108 157  48
-[1] 109 157  39
-[1] 110 157  46
-[1] 111 157  38
-[1] 112 157  32
-[1] 113 157  63
-[1] 114 157  42
-[1] 115 157  33
-[1] 116 157  34
-[1] 117 157  29
-[1] 118 157  37
-[1] 119 157  37
-[1] 120 157  40
-[1] 121 157  48
-[1] 122 157  55
-[1] 123 157  43
-[1] 124 157  36
-[1] 125 157  42
-[1] 126 157  49
-[1] 127 157  39
-[1] 128 157  36
-[1] 129 157  55
-[1] 130 157  29
-[1] 131 157  48
-[1] 132 157  46
-[1] 133 157  49
-[1] 134 157  45
-[1] 135 157  56
-[1] 136 157  29
-[1] 137 157  44
-[1] 138 157  62
-[1] 139 157  40
-[1] 140 157  46
-[1] 141 157  44
-[1] 142 157  31
-[1] 143 157  63
-[1] 144 157  38
-[1] 145 157  46
-[1] 146 157  43
-[1] 147 157  57
-[1] 148 157  42
-[1] 149 157  53
-[1] 150 157  56
-[1] 151 157  33
-[1] 152 157  49
-[1] 153 157  42
-[1] 154 157  47
-[1] 155 157  52
-[1] 156 157  27
-[1] 157 157  38
-[1] 158 157  43
-[1] 159 157  44
-[1] 160 157  36
-[1] 161 157  39
-[1] 162 157  39
-[1] 163 157  53
-[1] 164 157  38
-[1] 165 157  31
-[1] 166 157  51
-[1] 167 157  50
-[1] 168 157  37
-[1] 169 157  50
-[1] 170 157  39
-[1] 171 157  36
-[1] 172 157  55
-[1] 173 157  38
-[1] 174 157  75
-[1] 175 157 111
-[1] 176 157  38
-[1] 177 157  47
-[1] 178 157  49
-[1] 179 157  54
-[1] 180 157  52
-[1] 181 157  38
-[1] 182 157  61
-[1] 183 157  66
-[1] 184 157  32
-[1] 185 157 102
-[1] 186 157  71
-[1] 187 157  44
-[1] 188 157  35
-[1] 189 157  56
-[1] 190 157  54
-[1] 191 157  67
-[1] 192 157  44
-[1] 193 157  35
-[1] 194 157  73
-[1] 195 157  68
-[1] 196 157  46
-[1] 197 157  45
-[1] 198 157  45
-[1] 199 157  73
-[1] 200 157  61
-[1]   1 158  29
-[1]   2 158  27
-[1]   3 158  32
-[1]   4 158  32
-[1]   5 158  49
-[1]   6 158  41
-[1]   7 158  28
-[1]   8 158  36
-[1]   9 158  32
-[1]  10 158  35
-[1]  11 158  51
-[1]  12 158  33
-[1]  13 158  33
-[1]  14 158  32
-[1]  15 158  39
-[1]  16 158  31
-[1]  17 158  50
-[1]  18 158  41
-[1]  19 158  26
-[1]  20 158  39
-[1]  21 158  54
-[1]  22 158  37
-[1]  23 158  26
-[1]  24 158  32
-[1]  25 158  42
-[1]  26 158  30
-[1]  27 158  31
-[1]  28 158  34
-[1]  29 158  35
-[1]  30 158  44
-[1]  31 158  39
-[1]  32 158  24
-[1]  33 158  44
-[1]  34 158  37
-[1]  35 158  41
-[1]  36 158  37
-[1]  37 158  38
-[1]  38 158  37
-[1]  39 158  38
-[1]  40 158  45
-[1]  41 158  46
-[1]  42 158  37
-[1]  43 158  31
-[1]  44 158  55
-[1]  45 158  50
-[1]  46 158  50
-[1]  47 158  35
-[1]  48 158  38
-[1]  49 158  34
-[1]  50 158  43
-[1]  51 158  50
-[1]  52 158  64
-[1]  53 158  30
-[1]  54 158  78
-[1]  55 158  79
-[1]  56 158  55
-[1]  57 158  53
-[1]  58 158  42
-[1]  59 158  46
-[1]  60 158  38
-[1]  61 158  53
-[1]  62 158  33
-[1]  63 158  43
-[1]  64 158  32
-[1]  65 158  75
-[1]  66 158  37
-[1]  67 158  40
-[1]  68 158  39
-[1]  69 158  36
-[1]  70 158  55
-[1]  71 158  28
-[1]  72 158  41
-[1]  73 158  44
-[1]  74 158  44
-[1]  75 158  47
-[1]  76 158  42
-[1]  77 158  34
-[1]  78 158  40
-[1]  79 158  35
-[1]  80 158  34
-[1]  81 158  51
-[1]  82 158  34
-[1]  83 158  38
-[1]  84 158  50
-[1]  85 158  34
-[1]  86 158  37
-[1]  87 158  29
-[1]  88 158  48
-[1]  89 158  46
-[1]  90 158  69
-[1]  91 158  36
-[1]  92 158  47
-[1]  93 158  45
-[1]  94 158  56
-[1]  95 158  40
-[1]  96 158  60
-[1]  97 158  38
-[1]  98 158  56
-[1]  99 158  35
-[1] 100 158  38
-[1] 101 158  31
-[1] 102 158  35
-[1] 103 158  54
-[1] 104 158  33
-[1] 105 158  60
-[1] 106 158  43
-[1] 107 158  64
-[1] 108 158  31
-[1] 109 158  41
-[1] 110 158  44
-[1] 111 158  47
-[1] 112 158  39
-[1] 113 158  49
-[1] 114 158  52
-[1] 115 158  44
-[1] 116 158  38
-[1] 117 158  39
-[1] 118 158  52
-[1] 119 158  45
-[1] 120 158  28
-[1] 121 158  43
-[1] 122 158  39
-[1] 123 158  60
-[1] 124 158  61
-[1] 125 158  37
-[1] 126 158  40
-[1] 127 158  49
-[1] 128 158  35
-[1] 129 158  48
-[1] 130 158  32
-[1] 131 158  57
-[1] 132 158  36
-[1] 133 158  40
-[1] 134 158  44
-[1] 135 158  42
-[1] 136 158  45
-[1] 137 158  42
-[1] 138 158  39
-[1] 139 158  37
-[1] 140 158  39
-[1] 141 158  53
-[1] 142 158  35
-[1] 143 158  41
-[1] 144 158  37
-[1] 145 158  45
-[1] 146 158  55
-[1] 147 158  40
-[1] 148 158  43
-[1] 149 158  35
-[1] 150 158  42
-[1] 151 158  32
-[1] 152 158  60
-[1] 153 158  32
-[1] 154 158  36
-[1] 155 158  47
-[1] 156 158  59
-[1] 157 158  42
-[1] 158 158  58
-[1] 159 158  47
-[1] 160 158  39
-[1] 161 158  39
-[1] 162 158  67
-[1] 163 158  51
-[1] 164 158  42
-[1] 165 158  63
-[1] 166 158  35
-[1] 167 158  43
-[1] 168 158  45
-[1] 169 158  38
-[1] 170 158  45
-[1] 171 158  47
-[1] 172 158  58
-[1] 173 158  50
-[1] 174 158  38
-[1] 175 158  55
-[1] 176 158  43
-[1] 177 158  45
-[1] 178 158  32
-[1] 179 158  46
-[1] 180 158  44
-[1] 181 158  40
-[1] 182 158  39
-[1] 183 158  62
-[1] 184 158  64
-[1] 185 158  55
-[1] 186 158  55
-[1] 187 158  55
-[1] 188 158  56
-[1] 189 158  34
-[1] 190 158  37
-[1] 191 158  41
-[1] 192 158  50
-[1] 193 158  56
-[1] 194 158  42
-[1] 195 158  42
-[1] 196 158  47
-[1] 197 158  64
-[1] 198 158  34
-[1] 199 158  45
-[1] 200 158  69
-[1]   1 159  30
-[1]   2 159  44
-[1]   3 159  39
-[1]   4 159  37
-[1]   5 159  37
-[1]   6 159  41
-[1]   7 159  44
-[1]   8 159  33
-[1]   9 159  35
-[1]  10 159  32
-[1]  11 159  27
-[1]  12 159  36
-[1]  13 159  29
-[1]  14 159  36
-[1]  15 159  31
-[1]  16 159  29
-[1]  17 159  38
-[1]  18 159  35
-[1]  19 159  28
-[1]  20 159  43
-[1]  21 159  37
-[1]  22 159  48
-[1]  23 159  42
-[1]  24 159  28
-[1]  25 159  37
-[1]  26 159  35
-[1]  27 159  25
-[1]  28 159  30
-[1]  29 159  35
-[1]  30 159  64
-[1]  31 159  45
-[1]  32 159  40
-[1]  33 159  31
-[1]  34 159  35
-[1]  35 159  26
-[1]  36 159  27
-[1]  37 159  38
-[1]  38 159  31
-[1]  39 159  29
-[1]  40 159  32
-[1]  41 159  43
-[1]  42 159  40
-[1]  43 159  49
-[1]  44 159  42
-[1]  45 159  41
-[1]  46 159  31
-[1]  47 159  46
-[1]  48 159  36
-[1]  49 159  31
-[1]  50 159  36
-[1]  51 159  55
-[1]  52 159  50
-[1]  53 159  39
-[1]  54 159  31
-[1]  55 159  36
-[1]  56 159  32
-[1]  57 159  63
-[1]  58 159  35
-[1]  59 159  41
-[1]  60 159  68
-[1]  61 159  39
-[1]  62 159  36
-[1]  63 159  45
-[1]  64 159  33
-[1]  65 159  42
-[1]  66 159  35
-[1]  67 159  42
-[1]  68 159  41
-[1]  69 159  32
-[1]  70 159  45
-[1]  71 159  38
-[1]  72 159  41
-[1]  73 159  44
-[1]  74 159  53
-[1]  75 159  32
-[1]  76 159  47
-[1]  77 159  37
-[1]  78 159  38
-[1]  79 159  39
-[1]  80 159  27
-[1]  81 159  42
-[1]  82 159  34
-[1]  83 159  39
-[1]  84 159  45
-[1]  85 159  44
-[1]  86 159  43
-[1]  87 159  33
-[1]  88 159  48
-[1]  89 159  44
-[1]  90 159  51
-[1]  91 159  28
-[1]  92 159  27
-[1]  93 159  65
-[1]  94 159  55
-[1]  95 159  48
-[1]  96 159  27
-[1]  97 159  54
-[1]  98 159  62
-[1]  99 159  53
-[1] 100 159  38
-[1] 101 159  39
-[1] 102 159  39
-[1] 103 159  58
-[1] 104 159  37
-[1] 105 159  32
-[1] 106 159  43
-[1] 107 159  32
-[1] 108 159  41
-[1] 109 159  43
-[1] 110 159  41
-[1] 111 159  48
-[1] 112 159  38
-[1] 113 159  37
-[1] 114 159  34
-[1] 115 159  39
-[1] 116 159  38
-[1] 117 159  43
-[1] 118 159  53
-[1] 119 159  38
-[1] 120 159  39
-[1] 121 159  48
-[1] 122 159  41
-[1] 123 159  46
-[1] 124 159  28
-[1] 125 159  39
-[1] 126 159  49
-[1] 127 159  37
-[1] 128 159  35
-[1] 129 159  41
-[1] 130 159  35
-[1] 131 159  31
-[1] 132 159  30
-[1] 133 159  33
-[1] 134 159  99
-[1] 135 159  38
-[1] 136 159  33
-[1] 137 159  43
-[1] 138 159  34
-[1] 139 159  47
-[1] 140 159  52
-[1] 141 159  44
-[1] 142 159  43
-[1] 143 159  35
-[1] 144 159  42
-[1] 145 159  37
-[1] 146 159  40
-[1] 147 159  42
-[1] 148 159  38
-[1] 149 159  46
-[1] 150 159  80
-[1] 151 159  39
-[1] 152 159  41
-[1] 153 159  34
-[1] 154 159  56
-[1] 155 159  38
-[1] 156 159  48
-[1] 157 159  36
-[1] 158 159  57
-[1] 159 159  53
-[1] 160 159  28
-[1] 161 159  61
-[1] 162 159  34
-[1] 163 159  29
-[1] 164 159  58
-[1] 165 159  43
-[1] 166 159  29
-[1] 167 159  50
-[1] 168 159  48
-[1] 169 159  48
-[1] 170 159  40
-[1] 171 159  36
-[1] 172 159  49
-[1] 173 159  32
-[1] 174 159  37
-[1] 175 159  43
-[1] 176 159  41
-[1] 177 159  66
-[1] 178 159  32
-[1] 179 159  55
-[1] 180 159  36
-[1] 181 159  52
-[1] 182 159  50
-[1] 183 159  55
-[1] 184 159  78
-[1] 185 159  44
-[1] 186 159  39
-[1] 187 159  64
-[1] 188 159  48
-[1] 189 159  49
-[1] 190 159  42
-[1] 191 159  64
-[1] 192 159  57
-[1] 193 159  58
-[1] 194 159  73
-[1] 195 159  44
-[1] 196 159  54
-[1] 197 159  57
-[1] 198 159  36
-[1] 199 159  74
-[1] 200 159  56
-[1]   1 160  34
-[1]   2 160  34
-[1]   3 160  26
-[1]   4 160  43
-[1]   5 160  36
-[1]   6 160  49
-[1]   7 160  28
-[1]   8 160  33
-[1]   9 160  46
-[1]  10 160  29
-[1]  11 160  47
-[1]  12 160  34
-[1]  13 160  31
-[1]  14 160  32
-[1]  15 160  35
-[1]  16 160  51
-[1]  17 160  29
-[1]  18 160  35
-[1]  19 160  39
-[1]  20 160  31
-[1]  21 160  40
-[1]  22 160  49
-[1]  23 160  44
-[1]  24 160  36
-[1]  25 160  33
-[1]  26 160  32
-[1]  27 160  35
-[1]  28 160  49
-[1]  29 160  41
-[1]  30 160  36
-[1]  31 160  36
-[1]  32 160  37
-[1]  33 160  39
-[1]  34 160  37
-[1]  35 160  38
-[1]  36 160  46
-[1]  37 160  32
-[1]  38 160  36
-[1]  39 160  34
-[1]  40 160  43
-[1]  41 160  42
-[1]  42 160  51
-[1]  43 160  33
-[1]  44 160  60
-[1]  45 160  33
-[1]  46 160  38
-[1]  47 160  35
-[1]  48 160  29
-[1]  49 160  44
-[1]  50 160  78
-[1]  51 160  39
-[1]  52 160  45
-[1]  53 160  45
-[1]  54 160  49
-[1]  55 160  37
-[1]  56 160  45
-[1]  57 160  40
-[1]  58 160  47
-[1]  59 160  40
-[1]  60 160  39
-[1]  61 160  42
-[1]  62 160  34
-[1]  63 160  33
-[1]  64 160  50
-[1]  65 160  54
-[1]  66 160  34
-[1]  67 160  33
-[1]  68 160  48
-[1]  69 160  46
-[1]  70 160  34
-[1]  71 160  37
-[1]  72 160  47
-[1]  73 160  40
-[1]  74 160  46
-[1]  75 160  36
-[1]  76 160  35
-[1]  77 160  34
-[1]  78 160  49
-[1]  79 160  42
-[1]  80 160  42
-[1]  81 160  45
-[1]  82 160  36
-[1]  83 160  36
-[1]  84 160  35
-[1]  85 160  50
-[1]  86 160  36
-[1]  87 160  35
-[1]  88 160  30
-[1]  89 160  35
-[1]  90 160  50
-[1]  91 160  41
-[1]  92 160  36
-[1]  93 160  43
-[1]  94 160  43
-[1]  95 160  38
-[1]  96 160  33
-[1]  97 160  28
-[1]  98 160  42
-[1]  99 160  43
-[1] 100 160  41
-[1] 101 160  49
-[1] 102 160  40
-[1] 103 160  41
-[1] 104 160  38
-[1] 105 160  33
-[1] 106 160  37
-[1] 107 160  70
-[1] 108 160  36
-[1] 109 160  38
-[1] 110 160  36
-[1] 111 160  52
-[1] 112 160  39
-[1] 113 160  36
-[1] 114 160  36
-[1] 115 160  41
-[1] 116 160  27
-[1] 117 160  48
-[1] 118 160  39
-[1] 119 160  41
-[1] 120 160  36
-[1] 121 160  44
-[1] 122 160  39
-[1] 123 160  41
-[1] 124 160  26
-[1] 125 160  43
-[1] 126 160  44
-[1] 127 160  35
-[1] 128 160  37
-[1] 129 160  58
-[1] 130 160  43
-[1] 131 160  32
-[1] 132 160  39
-[1] 133 160  44
-[1] 134 160  38
-[1] 135 160  37
-[1] 136 160  45
-[1] 137 160  53
-[1] 138 160  52
-[1] 139 160  41
-[1] 140 160  30
-[1] 141 160  49
-[1] 142 160  36
-[1] 143 160  62
-[1] 144 160  32
-[1] 145 160  96
-[1] 146 160  32
-[1] 147 160  51
-[1] 148 160  38
-[1] 149 160  75
-[1] 150 160  41
-[1] 151 160  25
-[1] 152 160  31
-[1] 153 160  53
-[1] 154 160  42
-[1] 155 160  52
-[1] 156 160  49
-[1] 157 160  45
-[1] 158 160  59
-[1] 159 160  55
-[1] 160 160  38
-[1] 161 160  38
-[1] 162 160  42
-[1] 163 160  46
-[1] 164 160  49
-[1] 165 160  56
-[1] 166 160  33
-[1] 167 160  48
-[1] 168 160  40
-[1] 169 160  71
-[1] 170 160  39
-[1] 171 160  72
-[1] 172 160  43
-[1] 173 160  57
-[1] 174 160  30
-[1] 175 160  63
-[1] 176 160  46
-[1] 177 160  45
-[1] 178 160  51
-[1] 179 160  55
-[1] 180 160  39
-[1] 181 160  55
-[1] 182 160  43
-[1] 183 160  45
-[1] 184 160  40
-[1] 185 160  56
-[1] 186 160 119
-[1] 187 160  47
-[1] 188 160  58
-[1] 189 160  86
-[1] 190 160  41
-[1] 191 160 105
-[1] 192 160  56
-[1] 193 160  47
-[1] 194 160  60
-[1] 195 160  37
-[1] 196 160  44
-[1] 197 160  75
-[1] 198 160  50
-[1] 199 160  75
-[1] 200 160  51
-[1]   1 161  37
-[1]   2 161  37
-[1]   3 161  52
-[1]   4 161  55
-[1]   5 161  29
-[1]   6 161  36
-[1]   7 161  34
-[1]   8 161  31
-[1]   9 161  35
-[1]  10 161  34
-[1]  11 161  27
-[1]  12 161  43
-[1]  13 161  40
-[1]  14 161  26
-[1]  15 161  35
-[1]  16 161  34
-[1]  17 161  31
-[1]  18 161  33
-[1]  19 161  29
-[1]  20 161  30
-[1]  21 161  27
-[1]  22 161  32
-[1]  23 161  40
-[1]  24 161  29
-[1]  25 161  40
-[1]  26 161  41
-[1]  27 161  41
-[1]  28 161  25
-[1]  29 161  52
-[1]  30 161  28
-[1]  31 161  35
-[1]  32 161  28
-[1]  33 161  30
-[1]  34 161  31
-[1]  35 161  39
-[1]  36 161  46
-[1]  37 161  42
-[1]  38 161  34
-[1]  39 161  54
-[1]  40 161  39
-[1]  41 161  34
-[1]  42 161  43
-[1]  43 161  37
-[1]  44 161  42
-[1]  45 161  47
-[1]  46 161  40
-[1]  47 161  28
-[1]  48 161  43
-[1]  49 161  31
-[1]  50 161  36
-[1]  51 161  40
-[1]  52 161  52
-[1]  53 161  50
-[1]  54 161  26
-[1]  55 161  59
-[1]  56 161  48
-[1]  57 161  52
-[1]  58 161  36
-[1]  59 161  41
-[1]  60 161  30
-[1]  61 161  33
-[1]  62 161  49
-[1]  63 161  44
-[1]  64 161  84
-[1]  65 161  29
-[1]  66 161  35
-[1]  67 161  42
-[1]  68 161  45
-[1]  69 161  42
-[1]  70 161  37
-[1]  71 161  32
-[1]  72 161  61
-[1]  73 161  49
-[1]  74 161  32
-[1]  75 161  56
-[1]  76 161  35
-[1]  77 161  39
-[1]  78 161  36
-[1]  79 161  30
-[1]  80 161  59
-[1]  81 161  47
-[1]  82 161  40
-[1]  83 161  54
-[1]  84 161  54
-[1]  85 161  38
-[1]  86 161  37
-[1]  87 161  27
-[1]  88 161  38
-[1]  89 161  34
-[1]  90 161  38
-[1]  91 161  35
-[1]  92 161  54
-[1]  93 161  37
-[1]  94 161  45
-[1]  95 161  41
-[1]  96 161  35
-[1]  97 161  42
-[1]  98 161  36
-[1]  99 161  47
-[1] 100 161  26
-[1] 101 161  69
-[1] 102 161  53
-[1] 103 161  46
-[1] 104 161  39
-[1] 105 161  38
-[1] 106 161  32
-[1] 107 161  35
-[1] 108 161  43
-[1] 109 161  31
-[1] 110 161  52
-[1] 111 161  57
-[1] 112 161  34
-[1] 113 161  51
-[1] 114 161  40
-[1] 115 161  34
-[1] 116 161  31
-[1] 117 161  53
-[1] 118 161  41
-[1] 119 161  44
-[1] 120 161  61
-[1] 121 161  35
-[1] 122 161  42
-[1] 123 161  50
-[1] 124 161  34
-[1] 125 161  44
-[1] 126 161  58
-[1] 127 161  31
-[1] 128 161  48
-[1] 129 161  43
-[1] 130 161  40
-[1] 131 161  37
-[1] 132 161  40
-[1] 133 161  52
-[1] 134 161  53
-[1] 135 161  40
-[1] 136 161  33
-[1] 137 161  47
-[1] 138 161  55
-[1] 139 161  44
-[1] 140 161  53
-[1] 141 161  33
-[1] 142 161  53
-[1] 143 161  48
-[1] 144 161  44
-[1] 145 161  30
-[1] 146 161  36
-[1] 147 161  44
-[1] 148 161  69
-[1] 149 161  56
-[1] 150 161  35
-[1] 151 161  32
-[1] 152 161  61
-[1] 153 161  30
-[1] 154 161  41
-[1] 155 161  47
-[1] 156 161  48
-[1] 157 161  56
-[1] 158 161  39
-[1] 159 161  53
-[1] 160 161  45
-[1] 161 161  75
-[1] 162 161  65
-[1] 163 161  43
-[1] 164 161  62
-[1] 165 161  49
-[1] 166 161  68
-[1] 167 161  49
-[1] 168 161  31
-[1] 169 161  33
-[1] 170 161  62
-[1] 171 161  76
-[1] 172 161  74
-[1] 173 161  34
-[1] 174 161  63
-[1] 175 161  35
-[1] 176 161  47
-[1] 177 161  75
-[1] 178 161  54
-[1] 179 161  43
-[1] 180 161  81
-[1] 181 161  61
-[1] 182 161  44
-[1] 183 161  80
-[1] 184 161  52
-[1] 185 161  41
-[1] 186 161  73
-[1] 187 161  42
-[1] 188 161  47
-[1] 189 161  45
-[1] 190 161  53
-[1] 191 161  69
-[1] 192 161  43
-[1] 193 161  73
-[1] 194 161  47
-[1] 195 161  60
-[1] 196 161  52
-[1] 197 161  51
-[1] 198 161  46
-[1] 199 161  60
-[1] 200 161  84
-[1]   1 162  47
-[1]   2 162  32
-[1]   3 162  33
-[1]   4 162  47
-[1]   5 162  42
-[1]   6 162  83
-[1]   7 162  41
-[1]   8 162  60
-[1]   9 162  33
-[1]  10 162  34
-[1]  11 162  37
-[1]  12 162  28
-[1]  13 162  33
-[1]  14 162  27
-[1]  15 162  49
-[1]  16 162  37
-[1]  17 162  35
-[1]  18 162  53
-[1]  19 162  34
-[1]  20 162  51
-[1]  21 162  36
-[1]  22 162  31
-[1]  23 162  34
-[1]  24 162  33
-[1]  25 162  36
-[1]  26 162  41
-[1]  27 162  39
-[1]  28 162  35
-[1]  29 162  44
-[1]  30 162  31
-[1]  31 162  44
-[1]  32 162  34
-[1]  33 162  35
-[1]  34 162  38
-[1]  35 162  53
-[1]  36 162  53
-[1]  37 162  34
-[1]  38 162  37
-[1]  39 162  30
-[1]  40 162  41
-[1]  41 162  74
-[1]  42 162  33
-[1]  43 162  33
-[1]  44 162  26
-[1]  45 162  33
-[1]  46 162  28
-[1]  47 162  25
-[1]  48 162  64
-[1]  49 162  37
-[1]  50 162  26
-[1]  51 162  35
-[1]  52 162  29
-[1]  53 162  50
-[1]  54 162  37
-[1]  55 162  50
-[1]  56 162  28
-[1]  57 162  41
-[1]  58 162  45
-[1]  59 162  43
-[1]  60 162  36
-[1]  61 162  33
-[1]  62 162  43
-[1]  63 162  64
-[1]  64 162  34
-[1]  65 162  30
-[1]  66 162  42
-[1]  67 162  54
-[1]  68 162  33
-[1]  69 162  66
-[1]  70 162  27
-[1]  71 162  44
-[1]  72 162  57
-[1]  73 162  28
-[1]  74 162  31
-[1]  75 162  28
-[1]  76 162  45
-[1]  77 162  32
-[1]  78 162  37
-[1]  79 162  30
-[1]  80 162  47
-[1]  81 162  41
-[1]  82 162  32
-[1]  83 162  37
-[1]  84 162  42
-[1]  85 162  77
-[1]  86 162  41
-[1]  87 162  29
-[1]  88 162  48
-[1]  89 162  32
-[1]  90 162  38
-[1]  91 162  39
-[1]  92 162  33
-[1]  93 162  27
-[1]  94 162  62
-[1]  95 162  48
-[1]  96 162  36
-[1]  97 162  48
-[1]  98 162  40
-[1]  99 162  45
-[1] 100 162  40
-[1] 101 162  31
-[1] 102 162  48
-[1] 103 162  47
-[1] 104 162  64
-[1] 105 162  45
-[1] 106 162  37
-[1] 107 162  56
-[1] 108 162  31
-[1] 109 162  27
-[1] 110 162  42
-[1] 111 162  33
-[1] 112 162  42
-[1] 113 162  41
-[1] 114 162  42
-[1] 115 162  50
-[1] 116 162  45
-[1] 117 162  73
-[1] 118 162  57
-[1] 119 162  34
-[1] 120 162  47
-[1] 121 162  38
-[1] 122 162  32
-[1] 123 162  47
-[1] 124 162  39
-[1] 125 162  42
-[1] 126 162  39
-[1] 127 162  48
-[1] 128 162  37
-[1] 129 162  37
-[1] 130 162  34
-[1] 131 162  67
-[1] 132 162  47
-[1] 133 162  38
-[1] 134 162  31
-[1] 135 162  53
-[1] 136 162  41
-[1] 137 162  73
-[1] 138 162  37
-[1] 139 162  32
-[1] 140 162  37
-[1] 141 162  46
-[1] 142 162  28
-[1] 143 162  40
-[1] 144 162  40
-[1] 145 162  33
-[1] 146 162  38
-[1] 147 162  47
-[1] 148 162  42
-[1] 149 162  35
-[1] 150 162  54
-[1] 151 162  33
-[1] 152 162  39
-[1] 153 162  40
-[1] 154 162  34
-[1] 155 162  83
-[1] 156 162  38
-[1] 157 162  45
-[1] 158 162  62
-[1] 159 162  35
-[1] 160 162  41
-[1] 161 162  38
-[1] 162 162  39
-[1] 163 162  91
-[1] 164 162  50
-[1] 165 162  37
-[1] 166 162  48
-[1] 167 162  48
-[1] 168 162  51
-[1] 169 162 103
-[1] 170 162  43
-[1] 171 162  46
-[1] 172 162  67
-[1] 173 162  43
-[1] 174 162  44
-[1] 175 162  41
-[1] 176 162  50
-[1] 177 162  39
-[1] 178 162  57
-[1] 179 162  52
-[1] 180 162  35
-[1] 181 162  50
-[1] 182 162  42
-[1] 183 162  59
-[1] 184 162  89
-[1] 185 162  46
-[1] 186 162  53
-[1] 187 162  46
-[1] 188 162  39
-[1] 189 162  61
-[1] 190 162  85
-[1] 191 162  49
-[1] 192 162  41
-[1] 193 162  45
-[1] 194 162  46
-[1] 195 162  47
-[1] 196 162  72
-[1] 197 162  51
-[1] 198 162  53
-[1] 199 162  82
-[1] 200 162  67
-[1]   1 163  33
-[1]   2 163  60
-[1]   3 163  45
-[1]   4 163  30
-[1]   5 163  47
-[1]   6 163  31
-[1]   7 163  40
-[1]   8 163  49
-[1]   9 163  28
-[1]  10 163  27
-[1]  11 163  31
-[1]  12 163  40
-[1]  13 163  36
-[1]  14 163  36
-[1]  15 163  50
-[1]  16 163  29
-[1]  17 163  40
-[1]  18 163  56
-[1]  19 163  49
-[1]  20 163  33
-[1]  21 163  32
-[1]  22 163  33
-[1]  23 163  36
-[1]  24 163  45
-[1]  25 163  40
-[1]  26 163  37
-[1]  27 163  46
-[1]  28 163  46
-[1]  29 163  52
-[1]  30 163  35
-[1]  31 163  40
-[1]  32 163  30
-[1]  33 163  32
-[1]  34 163  36
-[1]  35 163  34
-[1]  36 163  51
-[1]  37 163  37
-[1]  38 163  54
-[1]  39 163  52
-[1]  40 163  35
-[1]  41 163  30
-[1]  42 163  47
-[1]  43 163  32
-[1]  44 163  35
-[1]  45 163  27
-[1]  46 163  40
-[1]  47 163  34
-[1]  48 163  71
-[1]  49 163  31
-[1]  50 163  31
-[1]  51 163  57
-[1]  52 163  41
-[1]  53 163  59
-[1]  54 163  44
-[1]  55 163  45
-[1]  56 163  39
-[1]  57 163  36
-[1]  58 163  39
-[1]  59 163  34
-[1]  60 163  39
-[1]  61 163  30
-[1]  62 163  47
-[1]  63 163  34
-[1]  64 163  51
-[1]  65 163  39
-[1]  66 163  52
-[1]  67 163  37
-[1]  68 163  36
-[1]  69 163  37
-[1]  70 163  33
-[1]  71 163  67
-[1]  72 163  47
-[1]  73 163  29
-[1]  74 163  34
-[1]  75 163  43
-[1]  76 163  37
-[1]  77 163  46
-[1]  78 163  52
-[1]  79 163  49
-[1]  80 163  53
-[1]  81 163  40
-[1]  82 163  40
-[1]  83 163  34
-[1]  84 163  39
-[1]  85 163  68
-[1]  86 163  38
-[1]  87 163  39
-[1]  88 163  34
-[1]  89 163  30
-[1]  90 163  33
-[1]  91 163  31
-[1]  92 163  27
-[1]  93 163  36
-[1]  94 163  41
-[1]  95 163  50
-[1]  96 163  35
-[1]  97 163  34
-[1]  98 163  40
-[1]  99 163  47
-[1] 100 163  32
-[1] 101 163  34
-[1] 102 163  38
-[1] 103 163  32
-[1] 104 163  57
-[1] 105 163  61
-[1] 106 163  50
-[1] 107 163  47
-[1] 108 163  34
-[1] 109 163  41
-[1] 110 163  45
-[1] 111 163  49
-[1] 112 163  54
-[1] 113 163  52
-[1] 114 163  53
-[1] 115 163  38
-[1] 116 163  29
-[1] 117 163  28
-[1] 118 163  39
-[1] 119 163  26
-[1] 120 163  34
-[1] 121 163  44
-[1] 122 163  31
-[1] 123 163  34
-[1] 124 163  50
-[1] 125 163  47
-[1] 126 163  46
-[1] 127 163  51
-[1] 128 163  34
-[1] 129 163  37
-[1] 130 163  51
-[1] 131 163  38
-[1] 132 163  43
-[1] 133 163  46
-[1] 134 163  35
-[1] 135 163  48
-[1] 136 163  31
-[1] 137 163  29
-[1] 138 163  42
-[1] 139 163  39
-[1] 140 163  46
-[1] 141 163  31
-[1] 142 163  27
-[1] 143 163  80
-[1] 144 163  45
-[1] 145 163  52
-[1] 146 163  46
-[1] 147 163  38
-[1] 148 163  50
-[1] 149 163  38
-[1] 150 163  38
-[1] 151 163  39
-[1] 152 163  36
-[1] 153 163  36
-[1] 154 163  38
-[1] 155 163  55
-[1] 156 163  42
-[1] 157 163  43
-[1] 158 163  50
-[1] 159 163  41
-[1] 160 163  38
-[1] 161 163  34
-[1] 162 163  41
-[1] 163 163  43
-[1] 164 163  37
-[1] 165 163  32
-[1] 166 163  53
-[1] 167 163  37
-[1] 168 163  64
-[1] 169 163  41
-[1] 170 163  62
-[1] 171 163  56
-[1] 172 163  54
-[1] 173 163  54
-[1] 174 163  31
-[1] 175 163  68
-[1] 176 163  35
-[1] 177 163  75
-[1] 178 163  51
-[1] 179 163  42
-[1] 180 163  51
-[1] 181 163  35
-[1] 182 163  61
-[1] 183 163  41
-[1] 184 163  60
-[1] 185 163  38
-[1] 186 163  43
-[1] 187 163  36
-[1] 188 163  42
-[1] 189 163  65
-[1] 190 163  55
-[1] 191 163  81
-[1] 192 163  38
-[1] 193 163  44
-[1] 194 163  51
-[1] 195 163  63
-[1] 196 163  48
-[1] 197 163  79
-[1] 198 163  60
-[1] 199 163  33
-[1] 200 163  59
-[1]   1 164  43
-[1]   2 164  27
-[1]   3 164  40
-[1]   4 164  37
-[1]   5 164  40
-[1]   6 164  33
-[1]   7 164  26
-[1]   8 164  35
-[1]   9 164  41
-[1]  10 164  26
-[1]  11 164  39
-[1]  12 164  43
-[1]  13 164  38
-[1]  14 164  28
-[1]  15 164  31
-[1]  16 164  34
-[1]  17 164  41
-[1]  18 164  51
-[1]  19 164  34
-[1]  20 164  39
-[1]  21 164  56
-[1]  22 164  47
-[1]  23 164  44
-[1]  24 164  41
-[1]  25 164  36
-[1]  26 164  49
-[1]  27 164  29
-[1]  28 164  33
-[1]  29 164  30
-[1]  30 164  28
-[1]  31 164  29
-[1]  32 164  29
-[1]  33 164  42
-[1]  34 164  29
-[1]  35 164  34
-[1]  36 164  31
-[1]  37 164  37
-[1]  38 164  54
-[1]  39 164  36
-[1]  40 164  47
-[1]  41 164  34
-[1]  42 164  38
-[1]  43 164  28
-[1]  44 164  52
-[1]  45 164  45
-[1]  46 164  31
-[1]  47 164  37
-[1]  48 164  33
-[1]  49 164  31
-[1]  50 164  34
-[1]  51 164  37
-[1]  52 164  36
-[1]  53 164  41
-[1]  54 164  32
-[1]  55 164  43
-[1]  56 164  32
-[1]  57 164  34
-[1]  58 164  46
-[1]  59 164  45
-[1]  60 164  40
-[1]  61 164  29
-[1]  62 164  34
-[1]  63 164  47
-[1]  64 164  42
-[1]  65 164  46
-[1]  66 164  44
-[1]  67 164  36
-[1]  68 164  57
-[1]  69 164  58
-[1]  70 164  41
-[1]  71 164  50
-[1]  72 164  39
-[1]  73 164  34
-[1]  74 164  45
-[1]  75 164  34
-[1]  76 164  41
-[1]  77 164  33
-[1]  78 164  34
-[1]  79 164  38
-[1]  80 164  42
-[1]  81 164  58
-[1]  82 164  37
-[1]  83 164  45
-[1]  84 164  38
-[1]  85 164  36
-[1]  86 164  57
-[1]  87 164  42
-[1]  88 164  38
-[1]  89 164  38
-[1]  90 164  36
-[1]  91 164  34
-[1]  92 164  28
-[1]  93 164  36
-[1]  94 164  35
-[1]  95 164  37
-[1]  96 164  43
-[1]  97 164  53
-[1]  98 164  64
-[1]  99 164  37
-[1] 100 164  30
-[1] 101 164  39
-[1] 102 164  43
-[1] 103 164  40
-[1] 104 164  33
-[1] 105 164  44
-[1] 106 164  28
-[1] 107 164  29
-[1] 108 164 125
-[1] 109 164  59
-[1] 110 164  34
-[1] 111 164  47
-[1] 112 164  38
-[1] 113 164  35
-[1] 114 164  38
-[1] 115 164  36
-[1] 116 164  35
-[1] 117 164  62
-[1] 118 164  38
-[1] 119 164  48
-[1] 120 164  39
-[1] 121 164  34
-[1] 122 164  45
-[1] 123 164  30
-[1] 124 164  37
-[1] 125 164  28
-[1] 126 164  36
-[1] 127 164  35
-[1] 128 164  38
-[1] 129 164  56
-[1] 130 164  52
-[1] 131 164  45
-[1] 132 164  64
-[1] 133 164  47
-[1] 134 164  73
-[1] 135 164  57
-[1] 136 164  49
-[1] 137 164  37
-[1] 138 164  43
-[1] 139 164  34
-[1] 140 164  60
-[1] 141 164  53
-[1] 142 164  47
-[1] 143 164  55
-[1] 144 164  40
-[1] 145 164  55
-[1] 146 164  47
-[1] 147 164  38
-[1] 148 164  58
-[1] 149 164  36
-[1] 150 164  35
-[1] 151 164  43
-[1] 152 164  44
-[1] 153 164  63
-[1] 154 164  45
-[1] 155 164  50
-[1] 156 164  35
-[1] 157 164  42
-[1] 158 164  55
-[1] 159 164  49
-[1] 160 164  90
-[1] 161 164  43
-[1] 162 164  41
-[1] 163 164  38
-[1] 164 164  33
-[1] 165 164  66
-[1] 166 164  52
-[1] 167 164  44
-[1] 168 164  64
-[1] 169 164  58
-[1] 170 164  49
-[1] 171 164  48
-[1] 172 164  43
-[1] 173 164  48
-[1] 174 164  49
-[1] 175 164  64
-[1] 176 164  77
-[1] 177 164  37
-[1] 178 164  44
-[1] 179 164  46
-[1] 180 164  70
-[1] 181 164  38
-[1] 182 164  44
-[1] 183 164  39
-[1] 184 164  73
-[1] 185 164  42
-[1] 186 164  38
-[1] 187 164  53
-[1] 188 164  77
-[1] 189 164  37
-[1] 190 164  54
-[1] 191 164  48
-[1] 192 164  65
-[1] 193 164  63
-[1] 194 164  61
-[1] 195 164  72
-[1] 196 164  46
-[1] 197 164  65
-[1] 198 164  64
-[1] 199 164  59
-[1] 200 164  47
-[1]   1 165  33
-[1]   2 165  27
-[1]   3 165  48
-[1]   4 165  38
-[1]   5 165  59
-[1]   6 165  37
-[1]   7 165  36
-[1]   8 165  49
-[1]   9 165  38
-[1]  10 165  24
-[1]  11 165  29
-[1]  12 165  33
-[1]  13 165  36
-[1]  14 165  41
-[1]  15 165  35
-[1]  16 165  44
-[1]  17 165  29
-[1]  18 165  33
-[1]  19 165  39
-[1]  20 165  36
-[1]  21 165  44
-[1]  22 165  53
-[1]  23 165  58
-[1]  24 165  50
-[1]  25 165  35
-[1]  26 165  32
-[1]  27 165  36
-[1]  28 165  41
-[1]  29 165  45
-[1]  30 165  43
-[1]  31 165  32
-[1]  32 165  26
-[1]  33 165  45
-[1]  34 165  31
-[1]  35 165  46
-[1]  36 165  33
-[1]  37 165  23
-[1]  38 165  39
-[1]  39 165  35
-[1]  40 165  59
-[1]  41 165  32
-[1]  42 165  35
-[1]  43 165  30
-[1]  44 165  49
-[1]  45 165  38
-[1]  46 165  51
-[1]  47 165  28
-[1]  48 165  31
-[1]  49 165  39
-[1]  50 165  36
-[1]  51 165  41
-[1]  52 165  32
-[1]  53 165  40
-[1]  54 165  58
-[1]  55 165  36
-[1]  56 165  33
-[1]  57 165  33
-[1]  58 165  50
-[1]  59 165  32
-[1]  60 165  45
-[1]  61 165  35
-[1]  62 165  37
-[1]  63 165  41
-[1]  64 165  39
-[1]  65 165  58
-[1]  66 165  39
-[1]  67 165  42
-[1]  68 165  41
-[1]  69 165  26
-[1]  70 165  29
-[1]  71 165  38
-[1]  72 165  47
-[1]  73 165  45
-[1]  74 165  30
-[1]  75 165  34
-[1]  76 165  32
-[1]  77 165  34
-[1]  78 165  44
-[1]  79 165  41
-[1]  80 165  58
-[1]  81 165  35
-[1]  82 165  34
-[1]  83 165  33
-[1]  84 165  34
-[1]  85 165  58
-[1]  86 165  70
-[1]  87 165  50
-[1]  88 165  35
-[1]  89 165  40
-[1]  90 165  33
-[1]  91 165  34
-[1]  92 165  41
-[1]  93 165  38
-[1]  94 165  40
-[1]  95 165  41
-[1]  96 165  35
-[1]  97 165  40
-[1]  98 165  33
-[1]  99 165  34
-[1] 100 165  48
-[1] 101 165  67
-[1] 102 165  35
-[1] 103 165  51
-[1] 104 165  36
-[1] 105 165  43
-[1] 106 165  31
-[1] 107 165  52
-[1] 108 165  32
-[1] 109 165  33
-[1] 110 165  56
-[1] 111 165  37
-[1] 112 165  48
-[1] 113 165  29
-[1] 114 165  24
-[1] 115 165  30
-[1] 116 165  42
-[1] 117 165  42
-[1] 118 165  53
-[1] 119 165  39
-[1] 120 165  37
-[1] 121 165  39
-[1] 122 165  53
-[1] 123 165  33
-[1] 124 165  58
-[1] 125 165  42
-[1] 126 165  33
-[1] 127 165  51
-[1] 128 165  32
-[1] 129 165  30
-[1] 130 165  45
-[1] 131 165  65
-[1] 132 165  40
-[1] 133 165  43
-[1] 134 165  48
-[1] 135 165  44
-[1] 136 165  44
-[1] 137 165  46
-[1] 138 165  37
-[1] 139 165  54
-[1] 140 165  42
-[1] 141 165  49
-[1] 142 165  33
-[1] 143 165  38
-[1] 144 165  45
-[1] 145 165  37
-[1] 146 165  51
-[1] 147 165  53
-[1] 148 165  34
-[1] 149 165  46
-[1] 150 165  54
-[1] 151 165  39
-[1] 152 165  66
-[1] 153 165  38
-[1] 154 165  43
-[1] 155 165  38
-[1] 156 165  77
-[1] 157 165  35
-[1] 158 165  44
-[1] 159 165  29
-[1] 160 165  46
-[1] 161 165  31
-[1] 162 165  34
-[1] 163 165  41
-[1] 164 165  32
-[1] 165 165  25
-[1] 166 165  33
-[1] 167 165  54
-[1] 168 165  33
-[1] 169 165  38
-[1] 170 165  38
-[1] 171 165  77
-[1] 172 165  37
-[1] 173 165  47
-[1] 174 165  80
-[1] 175 165  38
-[1] 176 165  47
-[1] 177 165  51
-[1] 178 165  58
-[1] 179 165  94
-[1] 180 165  38
-[1] 181 165  43
-[1] 182 165  45
-[1] 183 165  53
-[1] 184 165  61
-[1] 185 165  41
-[1] 186 165  31
-[1] 187 165  41
-[1] 188 165  50
-[1] 189 165  64
-[1] 190 165  80
-[1] 191 165  61
-[1] 192 165  46
-[1] 193 165  37
-[1] 194 165  43
-[1] 195 165  49
-[1] 196 165  36
-[1] 197 165  34
-[1] 198 165  62
-[1] 199 165 100
-[1] 200 165  67
-[1]   1 166  37
-[1]   2 166  29
-[1]   3 166  42
-[1]   4 166  31
-[1]   5 166  36
-[1]   6 166  54
-[1]   7 166  38
-[1]   8 166  44
-[1]   9 166  37
-[1]  10 166  37
-[1]  11 166  44
-[1]  12 166  48
-[1]  13 166  29
-[1]  14 166  34
-[1]  15 166  37
-[1]  16 166  35
-[1]  17 166  30
-[1]  18 166  41
-[1]  19 166  33
-[1]  20 166  31
-[1]  21 166  46
-[1]  22 166  36
-[1]  23 166  31
-[1]  24 166  25
-[1]  25 166  44
-[1]  26 166  32
-[1]  27 166  30
-[1]  28 166  36
-[1]  29 166  32
-[1]  30 166  34
-[1]  31 166  41
-[1]  32 166  27
-[1]  33 166  41
-[1]  34 166  29
-[1]  35 166  46
-[1]  36 166  33
-[1]  37 166  58
-[1]  38 166  42
-[1]  39 166  57
-[1]  40 166  35
-[1]  41 166  33
-[1]  42 166  40
-[1]  43 166  28
-[1]  44 166  37
-[1]  45 166  33
-[1]  46 166  44
-[1]  47 166  45
-[1]  48 166  36
-[1]  49 166  37
-[1]  50 166  37
-[1]  51 166  36
-[1]  52 166  52
-[1]  53 166  44
-[1]  54 166  42
-[1]  55 166  44
-[1]  56 166  32
-[1]  57 166  44
-[1]  58 166  40
-[1]  59 166  32
-[1]  60 166  35
-[1]  61 166  32
-[1]  62 166  45
-[1]  63 166  59
-[1]  64 166  33
-[1]  65 166  47
-[1]  66 166  48
-[1]  67 166  32
-[1]  68 166  39
-[1]  69 166  29
-[1]  70 166  68
-[1]  71 166  27
-[1]  72 166  33
-[1]  73 166  44
-[1]  74 166  48
-[1]  75 166  47
-[1]  76 166  36
-[1]  77 166  49
-[1]  78 166  37
-[1]  79 166  40
-[1]  80 166  41
-[1]  81 166  35
-[1]  82 166  34
-[1]  83 166  36
-[1]  84 166  39
-[1]  85 166  35
-[1]  86 166  44
-[1]  87 166  39
-[1]  88 166  49
-[1]  89 166  40
-[1]  90 166  51
-[1]  91 166  40
-[1]  92 166  42
-[1]  93 166  45
-[1]  94 166  45
-[1]  95 166  25
-[1]  96 166  46
-[1]  97 166  50
-[1]  98 166  37
-[1]  99 166  43
-[1] 100 166  36
-[1] 101 166  73
-[1] 102 166  43
-[1] 103 166  52
-[1] 104 166  43
-[1] 105 166  40
-[1] 106 166  51
-[1] 107 166  25
-[1] 108 166  44
-[1] 109 166  35
-[1] 110 166  46
-[1] 111 166  36
-[1] 112 166  45
-[1] 113 166  33
-[1] 114 166  33
-[1] 115 166  33
-[1] 116 166  64
-[1] 117 166  29
-[1] 118 166  32
-[1] 119 166  45
-[1] 120 166  48
-[1] 121 166  33
-[1] 122 166  46
-[1] 123 166  35
-[1] 124 166  36
-[1] 125 166  46
-[1] 126 166  45
-[1] 127 166  41
-[1] 128 166  37
-[1] 129 166  38
-[1] 130 166  47
-[1] 131 166  32
-[1] 132 166  69
-[1] 133 166  43
-[1] 134 166  33
-[1] 135 166  46
-[1] 136 166  48
-[1] 137 166  59
-[1] 138 166  52
-[1] 139 166  51
-[1] 140 166  45
-[1] 141 166  50
-[1] 142 166  42
-[1] 143 166  34
-[1] 144 166  56
-[1] 145 166  41
-[1] 146 166  41
-[1] 147 166  54
-[1] 148 166  32
-[1] 149 166  52
-[1] 150 166  51
-[1] 151 166  56
-[1] 152 166  68
-[1] 153 166  46
-[1] 154 166  37
-[1] 155 166  34
-[1] 156 166  55
-[1] 157 166  30
-[1] 158 166  39
-[1] 159 166  38
-[1] 160 166  50
-[1] 161 166  34
-[1] 162 166  48
-[1] 163 166  27
-[1] 164 166  59
-[1] 165 166  37
-[1] 166 166  42
-[1] 167 166  97
-[1] 168 166  50
-[1] 169 166  36
-[1] 170 166  53
-[1] 171 166  30
-[1] 172 166  39
-[1] 173 166  66
-[1] 174 166  39
-[1] 175 166  44
-[1] 176 166  54
-[1] 177 166  43
-[1] 178 166  72
-[1] 179 166  36
-[1] 180 166  51
-[1] 181 166  41
-[1] 182 166  63
-[1] 183 166  48
-[1] 184 166  42
-[1] 185 166  55
-[1] 186 166  48
-[1] 187 166  47
-[1] 188 166  46
-[1] 189 166  50
-[1] 190 166  61
-[1] 191 166  43
-[1] 192 166  49
-[1] 193 166  36
-[1] 194 166  47
-[1] 195 166  59
-[1] 196 166  32
-[1] 197 166 100
-[1] 198 166  59
-[1] 199 166  79
-[1] 200 166  67
-[1]   1 167  29
-[1]   2 167  61
-[1]   3 167  40
-[1]   4 167  31
-[1]   5 167  44
-[1]   6 167  57
-[1]   7 167  36
-[1]   8 167  43
-[1]   9 167  39
-[1]  10 167  50
-[1]  11 167  27
-[1]  12 167  42
-[1]  13 167  35
-[1]  14 167  42
-[1]  15 167  39
-[1]  16 167  63
-[1]  17 167  42
-[1]  18 167  35
-[1]  19 167  34
-[1]  20 167  41
-[1]  21 167  28
-[1]  22 167  31
-[1]  23 167  39
-[1]  24 167  32
-[1]  25 167  31
-[1]  26 167  38
-[1]  27 167  35
-[1]  28 167  32
-[1]  29 167  27
-[1]  30 167  33
-[1]  31 167  41
-[1]  32 167  48
-[1]  33 167  28
-[1]  34 167  67
-[1]  35 167  38
-[1]  36 167  37
-[1]  37 167  35
-[1]  38 167  34
-[1]  39 167  73
-[1]  40 167  42
-[1]  41 167  36
-[1]  42 167  39
-[1]  43 167  41
-[1]  44 167  53
-[1]  45 167  47
-[1]  46 167  36
-[1]  47 167  37
-[1]  48 167  36
-[1]  49 167  28
-[1]  50 167  35
-[1]  51 167  51
-[1]  52 167  38
-[1]  53 167  39
-[1]  54 167  38
-[1]  55 167  39
-[1]  56 167  44
-[1]  57 167  34
-[1]  58 167  38
-[1]  59 167  46
-[1]  60 167  47
-[1]  61 167  30
-[1]  62 167  32
-[1]  63 167  43
-[1]  64 167  41
-[1]  65 167  45
-[1]  66 167  44
-[1]  67 167  35
-[1]  68 167  54
-[1]  69 167  43
-[1]  70 167  44
-[1]  71 167  51
-[1]  72 167  43
-[1]  73 167  40
-[1]  74 167  40
-[1]  75 167  37
-[1]  76 167  43
-[1]  77 167  35
-[1]  78 167  54
-[1]  79 167  35
-[1]  80 167  31
-[1]  81 167  52
-[1]  82 167  38
-[1]  83 167  39
-[1]  84 167  32
-[1]  85 167  47
-[1]  86 167  31
-[1]  87 167  38
-[1]  88 167  37
-[1]  89 167  34
-[1]  90 167  57
-[1]  91 167  38
-[1]  92 167  45
-[1]  93 167  41
-[1]  94 167  30
-[1]  95 167  27
-[1]  96 167  60
-[1]  97 167  48
-[1]  98 167  45
-[1]  99 167  35
-[1] 100 167  34
-[1] 101 167  31
-[1] 102 167  43
-[1] 103 167  28
-[1] 104 167  27
-[1] 105 167  52
-[1] 106 167  57
-[1] 107 167  32
-[1] 108 167  53
-[1] 109 167  47
-[1] 110 167  62
-[1] 111 167  53
-[1] 112 167  38
-[1] 113 167  31
-[1] 114 167  36
-[1] 115 167  37
-[1] 116 167  29
-[1] 117 167  50
-[1] 118 167  41
-[1] 119 167  38
-[1] 120 167  33
-[1] 121 167  48
-[1] 122 167  38
-[1] 123 167  38
-[1] 124 167  40
-[1] 125 167  36
-[1] 126 167  47
-[1] 127 167  37
-[1] 128 167  62
-[1] 129 167  45
-[1] 130 167  37
-[1] 131 167  58
-[1] 132 167  31
-[1] 133 167  30
-[1] 134 167  43
-[1] 135 167  42
-[1] 136 167  54
-[1] 137 167  49
-[1] 138 167  41
-[1] 139 167  34
-[1] 140 167  39
-[1] 141 167  52
-[1] 142 167  41
-[1] 143 167  47
-[1] 144 167  67
-[1] 145 167  54
-[1] 146 167  39
-[1] 147 167  39
-[1] 148 167  54
-[1] 149 167  44
-[1] 150 167  55
-[1] 151 167  38
-[1] 152 167  49
-[1] 153 167  31
-[1] 154 167  42
-[1] 155 167  35
-[1] 156 167  36
-[1] 157 167  33
-[1] 158 167  44
-[1] 159 167  38
-[1] 160 167  39
-[1] 161 167  37
-[1] 162 167  43
-[1] 163 167  62
-[1] 164 167  53
-[1] 165 167  44
-[1] 166 167  33
-[1] 167 167  41
-[1] 168 167  48
-[1] 169 167  42
-[1] 170 167  40
-[1] 171 167  47
-[1] 172 167  38
-[1] 173 167  41
-[1] 174 167  44
-[1] 175 167  46
-[1] 176 167  33
-[1] 177 167  46
-[1] 178 167  42
-[1] 179 167  74
-[1] 180 167  35
-[1] 181 167  46
-[1] 182 167  38
-[1] 183 167  37
-[1] 184 167  32
-[1] 185 167  35
-[1] 186 167  62
-[1] 187 167  44
-[1] 188 167  38
-[1] 189 167  36
-[1] 190 167  60
-[1] 191 167  43
-[1] 192 167  49
-[1] 193 167  41
-[1] 194 167  50
-[1] 195 167  57
-[1] 196 167  38
-[1] 197 167  47
-[1] 198 167  54
-[1] 199 167  52
-[1] 200 167  54
-[1]   1 168  27
-[1]   2 168  31
-[1]   3 168  37
-[1]   4 168  42
-[1]   5 168  44
-[1]   6 168  39
-[1]   7 168  38
-[1]   8 168  51
-[1]   9 168  41
-[1]  10 168  44
-[1]  11 168  29
-[1]  12 168  26
-[1]  13 168  35
-[1]  14 168  33
-[1]  15 168  35
-[1]  16 168  45
-[1]  17 168  29
-[1]  18 168  37
-[1]  19 168  34
-[1]  20 168  33
-[1]  21 168  42
-[1]  22 168  31
-[1]  23 168  45
-[1]  24 168  46
-[1]  25 168  34
-[1]  26 168  50
-[1]  27 168  62
-[1]  28 168  34
-[1]  29 168  37
-[1]  30 168  40
-[1]  31 168  28
-[1]  32 168  35
-[1]  33 168  43
-[1]  34 168  41
-[1]  35 168  44
-[1]  36 168  35
-[1]  37 168  33
-[1]  38 168  54
-[1]  39 168  29
-[1]  40 168  36
-[1]  41 168  40
-[1]  42 168  42
-[1]  43 168  32
-[1]  44 168  28
-[1]  45 168  31
-[1]  46 168  33
-[1]  47 168  48
-[1]  48 168  30
-[1]  49 168  69
-[1]  50 168  33
-[1]  51 168  42
-[1]  52 168  41
-[1]  53 168  33
-[1]  54 168  42
-[1]  55 168  48
-[1]  56 168  39
-[1]  57 168  31
-[1]  58 168  66
-[1]  59 168  34
-[1]  60 168  37
-[1]  61 168  35
-[1]  62 168  35
-[1]  63 168  40
-[1]  64 168  38
-[1]  65 168  43
-[1]  66 168  33
-[1]  67 168  40
-[1]  68 168  32
-[1]  69 168  33
-[1]  70 168  43
-[1]  71 168  24
-[1]  72 168  37
-[1]  73 168  32
-[1]  74 168  39
-[1]  75 168  35
-[1]  76 168  32
-[1]  77 168  45
-[1]  78 168  40
-[1]  79 168  45
-[1]  80 168  50
-[1]  81 168  32
-[1]  82 168  44
-[1]  83 168  48
-[1]  84 168  47
-[1]  85 168  28
-[1]  86 168  30
-[1]  87 168  38
-[1]  88 168  58
-[1]  89 168  36
-[1]  90 168  29
-[1]  91 168  44
-[1]  92 168  33
-[1]  93 168  49
-[1]  94 168  42
-[1]  95 168  57
-[1]  96 168  40
-[1]  97 168  40
-[1]  98 168  47
-[1]  99 168  29
-[1] 100 168  34
-[1] 101 168  41
-[1] 102 168  51
-[1] 103 168  46
-[1] 104 168  45
-[1] 105 168  32
-[1] 106 168  37
-[1] 107 168  38
-[1] 108 168  35
-[1] 109 168  41
-[1] 110 168  31
-[1] 111 168  46
-[1] 112 168  54
-[1] 113 168  39
-[1] 114 168  29
-[1] 115 168  40
-[1] 116 168  36
-[1] 117 168  39
-[1] 118 168  33
-[1] 119 168  28
-[1] 120 168  40
-[1] 121 168  35
-[1] 122 168  47
-[1] 123 168  41
-[1] 124 168  52
-[1] 125 168  48
-[1] 126 168  31
-[1] 127 168  53
-[1] 128 168  78
-[1] 129 168  39
-[1] 130 168  44
-[1] 131 168  55
-[1] 132 168  46
-[1] 133 168  37
-[1] 134 168  28
-[1] 135 168  47
-[1] 136 168  43
-[1] 137 168  44
-[1] 138 168  49
-[1] 139 168  52
-[1] 140 168  41
-[1] 141 168  38
-[1] 142 168  55
-[1] 143 168  35
-[1] 144 168  56
-[1] 145 168  49
-[1] 146 168  47
-[1] 147 168  38
-[1] 148 168  26
-[1] 149 168  64
-[1] 150 168  41
-[1] 151 168  37
-[1] 152 168  51
-[1] 153 168  48
-[1] 154 168  53
-[1] 155 168  32
-[1] 156 168  61
-[1] 157 168  30
-[1] 158 168  41
-[1] 159 168  41
-[1] 160 168  48
-[1] 161 168  35
-[1] 162 168  40
-[1] 163 168  40
-[1] 164 168  46
-[1] 165 168  57
-[1] 166 168  55
-[1] 167 168  45
-[1] 168 168  61
-[1] 169 168  51
-[1] 170 168  38
-[1] 171 168  30
-[1] 172 168  38
-[1] 173 168  51
-[1] 174 168  55
-[1] 175 168  68
-[1] 176 168  50
-[1] 177 168  44
-[1] 178 168  48
-[1] 179 168  48
-[1] 180 168  50
-[1] 181 168  48
-[1] 182 168  66
-[1] 183 168  51
-[1] 184 168  45
-[1] 185 168  46
-[1] 186 168  43
-[1] 187 168  44
-[1] 188 168  28
-[1] 189 168  41
-[1] 190 168  41
-[1] 191 168  51
-[1] 192 168  35
-[1] 193 168  41
-[1] 194 168  43
-[1] 195 168  65
-[1] 196 168  42
-[1] 197 168  54
-[1] 198 168  47
-[1] 199 168  64
-[1] 200 168  74
-[1]   1 169  27
-[1]   2 169  29
-[1]   3 169  32
-[1]   4 169  39
-[1]   5 169  44
-[1]   6 169  41
-[1]   7 169  24
-[1]   8 169  39
-[1]   9 169  31
-[1]  10 169  34
-[1]  11 169  31
-[1]  12 169  32
-[1]  13 169  38
-[1]  14 169  41
-[1]  15 169  39
-[1]  16 169  32
-[1]  17 169  35
-[1]  18 169  41
-[1]  19 169  34
-[1]  20 169  34
-[1]  21 169  35
-[1]  22 169  47
-[1]  23 169  36
-[1]  24 169  31
-[1]  25 169  32
-[1]  26 169  35
-[1]  27 169  43
-[1]  28 169  28
-[1]  29 169  57
-[1]  30 169  32
-[1]  31 169  45
-[1]  32 169  32
-[1]  33 169  33
-[1]  34 169  39
-[1]  35 169  25
-[1]  36 169  50
-[1]  37 169  40
-[1]  38 169  27
-[1]  39 169  42
-[1]  40 169  33
-[1]  41 169  28
-[1]  42 169  45
-[1]  43 169  49
-[1]  44 169  45
-[1]  45 169  31
-[1]  46 169  43
-[1]  47 169  45
-[1]  48 169  38
-[1]  49 169  31
-[1]  50 169  34
-[1]  51 169  43
-[1]  52 169  51
-[1]  53 169  36
-[1]  54 169  39
-[1]  55 169  36
-[1]  56 169  31
-[1]  57 169  57
-[1]  58 169  38
-[1]  59 169  55
-[1]  60 169  30
-[1]  61 169  45
-[1]  62 169  32
-[1]  63 169  39
-[1]  64 169  39
-[1]  65 169  48
-[1]  66 169  46
-[1]  67 169  37
-[1]  68 169  41
-[1]  69 169  40
-[1]  70 169  25
-[1]  71 169  24
-[1]  72 169  41
-[1]  73 169  34
-[1]  74 169  41
-[1]  75 169  32
-[1]  76 169  37
-[1]  77 169  44
-[1]  78 169  37
-[1]  79 169  59
-[1]  80 169  36
-[1]  81 169  47
-[1]  82 169  70
-[1]  83 169  51
-[1]  84 169  55
-[1]  85 169  32
-[1]  86 169  38
-[1]  87 169  32
-[1]  88 169  70
-[1]  89 169  52
-[1]  90 169  37
-[1]  91 169  32
-[1]  92 169  38
-[1]  93 169  58
-[1]  94 169  46
-[1]  95 169  45
-[1]  96 169  43
-[1]  97 169  36
-[1]  98 169  36
-[1]  99 169  57
-[1] 100 169  36
-[1] 101 169  51
-[1] 102 169  31
-[1] 103 169  45
-[1] 104 169  38
-[1] 105 169  66
-[1] 106 169  40
-[1] 107 169  49
-[1] 108 169  38
-[1] 109 169  46
-[1] 110 169  34
-[1] 111 169  55
-[1] 112 169  36
-[1] 113 169  41
-[1] 114 169  32
-[1] 115 169  41
-[1] 116 169  40
-[1] 117 169  39
-[1] 118 169  37
-[1] 119 169  47
-[1] 120 169  52
-[1] 121 169  31
-[1] 122 169  80
-[1] 123 169  48
-[1] 124 169  51
-[1] 125 169  30
-[1] 126 169  97
-[1] 127 169  45
-[1] 128 169  44
-[1] 129 169  44
-[1] 130 169  49
-[1] 131 169  40
-[1] 132 169  51
-[1] 133 169  37
-[1] 134 169  43
-[1] 135 169  46
-[1] 136 169  43
-[1] 137 169  47
-[1] 138 169  43
-[1] 139 169  55
-[1] 140 169  42
-[1] 141 169  49
-[1] 142 169  43
-[1] 143 169  32
-[1] 144 169  61
-[1] 145 169  53
-[1] 146 169  64
-[1] 147 169  49
-[1] 148 169  52
-[1] 149 169  41
-[1] 150 169  34
-[1] 151 169  35
-[1] 152 169  41
-[1] 153 169  44
-[1] 154 169  41
-[1] 155 169  36
-[1] 156 169  37
-[1] 157 169  36
-[1] 158 169  53
-[1] 159 169  45
-[1] 160 169  26
-[1] 161 169  39
-[1] 162 169  41
-[1] 163 169  52
-[1] 164 169  40
-[1] 165 169  55
-[1] 166 169  34
-[1] 167 169  36
-[1] 168 169  58
-[1] 169 169  76
-[1] 170 169  45
-[1] 171 169  35
-[1] 172 169  44
-[1] 173 169  34
-[1] 174 169  32
-[1] 175 169  55
-[1] 176 169  78
-[1] 177 169  56
-[1] 178 169  40
-[1] 179 169  39
-[1] 180 169  42
-[1] 181 169  37
-[1] 182 169  82
-[1] 183 169  32
-[1] 184 169  43
-[1] 185 169  46
-[1] 186 169  55
-[1] 187 169  61
-[1] 188 169  77
-[1] 189 169  27
-[1] 190 169  71
-[1] 191 169  54
-[1] 192 169  43
-[1] 193 169  62
-[1] 194 169  50
-[1] 195 169  47
-[1] 196 169  61
-[1] 197 169  39
-[1] 198 169  51
-[1] 199 169  51
-[1] 200 169  93
-[1]   1 170  35
-[1]   2 170  39
-[1]   3 170  35
-[1]   4 170  36
-[1]   5 170  28
-[1]   6 170  35
-[1]   7 170  34
-[1]   8 170  36
-[1]   9 170  37
-[1]  10 170  39
-[1]  11 170  35
-[1]  12 170  56
-[1]  13 170  36
-[1]  14 170  47
-[1]  15 170  29
-[1]  16 170  25
-[1]  17 170  37
-[1]  18 170  39
-[1]  19 170  33
-[1]  20 170  41
-[1]  21 170  32
-[1]  22 170  32
-[1]  23 170  35
-[1]  24 170  31
-[1]  25 170  56
-[1]  26 170  37
-[1]  27 170  30
-[1]  28 170  28
-[1]  29 170  40
-[1]  30 170  26
-[1]  31 170  37
-[1]  32 170  22
-[1]  33 170  54
-[1]  34 170  37
-[1]  35 170  31
-[1]  36 170  38
-[1]  37 170  51
-[1]  38 170  40
-[1]  39 170  63
-[1]  40 170  53
-[1]  41 170  26
-[1]  42 170  48
-[1]  43 170  31
-[1]  44 170  34
-[1]  45 170  37
-[1]  46 170  35
-[1]  47 170  33
-[1]  48 170  32
-[1]  49 170  34
-[1]  50 170  31
-[1]  51 170  33
-[1]  52 170  28
-[1]  53 170  49
-[1]  54 170  44
-[1]  55 170  55
-[1]  56 170  27
-[1]  57 170  30
-[1]  58 170  49
-[1]  59 170  30
-[1]  60 170  39
-[1]  61 170  56
-[1]  62 170  71
-[1]  63 170  32
-[1]  64 170  39
-[1]  65 170  35
-[1]  66 170  32
-[1]  67 170  61
-[1]  68 170  38
-[1]  69 170  37
-[1]  70 170  29
-[1]  71 170  42
-[1]  72 170  44
-[1]  73 170  40
-[1]  74 170  44
-[1]  75 170  30
-[1]  76 170  37
-[1]  77 170  32
-[1]  78 170  49
-[1]  79 170  36
-[1]  80 170  38
-[1]  81 170  47
-[1]  82 170  27
-[1]  83 170  33
-[1]  84 170  44
-[1]  85 170  29
-[1]  86 170  41
-[1]  87 170  34
-[1]  88 170  32
-[1]  89 170  35
-[1]  90 170  42
-[1]  91 170  43
-[1]  92 170  63
-[1]  93 170  38
-[1]  94 170  53
-[1]  95 170  40
-[1]  96 170  39
-[1]  97 170  38
-[1]  98 170  47
-[1]  99 170  40
-[1] 100 170  48
-[1] 101 170  48
-[1] 102 170  46
-[1] 103 170  60
-[1] 104 170  51
-[1] 105 170  37
-[1] 106 170  34
-[1] 107 170  46
-[1] 108 170  45
-[1] 109 170  36
-[1] 110 170  42
-[1] 111 170  55
-[1] 112 170  48
-[1] 113 170  32
-[1] 114 170  39
-[1] 115 170  38
-[1] 116 170  45
-[1] 117 170  32
-[1] 118 170  43
-[1] 119 170  55
-[1] 120 170  32
-[1] 121 170  37
-[1] 122 170  38
-[1] 123 170  37
-[1] 124 170  42
-[1] 125 170  29
-[1] 126 170  42
-[1] 127 170  37
-[1] 128 170  45
-[1] 129 170  36
-[1] 130 170  55
-[1] 131 170  49
-[1] 132 170  42
-[1] 133 170  61
-[1] 134 170  51
-[1] 135 170  45
-[1] 136 170  43
-[1] 137 170  26
-[1] 138 170  65
-[1] 139 170  53
-[1] 140 170  30
-[1] 141 170  43
-[1] 142 170  39
-[1] 143 170  52
-[1] 144 170  42
-[1] 145 170  31
-[1] 146 170  67
-[1] 147 170  47
-[1] 148 170  44
-[1] 149 170  38
-[1] 150 170  63
-[1] 151 170  44
-[1] 152 170  51
-[1] 153 170  47
-[1] 154 170  43
-[1] 155 170  62
-[1] 156 170  50
-[1] 157 170  37
-[1] 158 170  45
-[1] 159 170  42
-[1] 160 170  45
-[1] 161 170  47
-[1] 162 170  50
-[1] 163 170  39
-[1] 164 170  50
-[1] 165 170  49
-[1] 166 170  57
-[1] 167 170  53
-[1] 168 170  47
-[1] 169 170  40
-[1] 170 170  35
-[1] 171 170  46
-[1] 172 170  54
-[1] 173 170  47
-[1] 174 170  39
-[1] 175 170  47
-[1] 176 170  34
-[1] 177 170  55
-[1] 178 170  47
-[1] 179 170  43
-[1] 180 170  59
-[1] 181 170  45
-[1] 182 170  34
-[1] 183 170  59
-[1] 184 170  61
-[1] 185 170  62
-[1] 186 170  44
-[1] 187 170  34
-[1] 188 170  43
-[1] 189 170  66
-[1] 190 170  47
-[1] 191 170  48
-[1] 192 170  44
-[1] 193 170  55
-[1] 194 170  44
-[1] 195 170  45
-[1] 196 170  58
-[1] 197 170  53
-[1] 198 170  38
-[1] 199 170  38
-[1] 200 170  54
-[1]   1 171  30
-[1]   2 171  30
-[1]   3 171  50
-[1]   4 171  44
-[1]   5 171  38
-[1]   6 171  36
-[1]   7 171  40
-[1]   8 171  51
-[1]   9 171  30
-[1]  10 171  53
-[1]  11 171  55
-[1]  12 171  38
-[1]  13 171  37
-[1]  14 171  43
-[1]  15 171  36
-[1]  16 171  53
-[1]  17 171  28
-[1]  18 171  41
-[1]  19 171  37
-[1]  20 171  32
-[1]  21 171  37
-[1]  22 171  50
-[1]  23 171  40
-[1]  24 171  47
-[1]  25 171  33
-[1]  26 171  58
-[1]  27 171  41
-[1]  28 171  46
-[1]  29 171  31
-[1]  30 171  46
-[1]  31 171  31
-[1]  32 171  49
-[1]  33 171  23
-[1]  34 171  50
-[1]  35 171  56
-[1]  36 171  43
-[1]  37 171  40
-[1]  38 171  47
-[1]  39 171  41
-[1]  40 171  40
-[1]  41 171  45
-[1]  42 171  37
-[1]  43 171  35
-[1]  44 171  35
-[1]  45 171  58
-[1]  46 171  37
-[1]  47 171  29
-[1]  48 171  38
-[1]  49 171  43
-[1]  50 171  37
-[1]  51 171  28
-[1]  52 171  35
-[1]  53 171  32
-[1]  54 171  35
-[1]  55 171  73
-[1]  56 171  44
-[1]  57 171  29
-[1]  58 171  37
-[1]  59 171  36
-[1]  60 171  71
-[1]  61 171  32
-[1]  62 171  39
-[1]  63 171  36
-[1]  64 171  44
-[1]  65 171  35
-[1]  66 171  45
-[1]  67 171  46
-[1]  68 171  31
-[1]  69 171  36
-[1]  70 171  37
-[1]  71 171  29
-[1]  72 171  46
-[1]  73 171  35
-[1]  74 171  47
-[1]  75 171  33
-[1]  76 171  35
-[1]  77 171  53
-[1]  78 171  33
-[1]  79 171  36
-[1]  80 171  55
-[1]  81 171  32
-[1]  82 171  43
-[1]  83 171  35
-[1]  84 171  42
-[1]  85 171  31
-[1]  86 171  40
-[1]  87 171  35
-[1]  88 171  36
-[1]  89 171  45
-[1]  90 171  27
-[1]  91 171  36
-[1]  92 171  48
-[1]  93 171  33
-[1]  94 171  59
-[1]  95 171  36
-[1]  96 171  48
-[1]  97 171  51
-[1]  98 171  35
-[1]  99 171  33
-[1] 100 171  38
-[1] 101 171  37
-[1] 102 171  38
-[1] 103 171  37
-[1] 104 171  28
-[1] 105 171  59
-[1] 106 171  38
-[1] 107 171  47
-[1] 108 171  46
-[1] 109 171  45
-[1] 110 171  51
-[1] 111 171  36
-[1] 112 171  41
-[1] 113 171  48
-[1] 114 171  35
-[1] 115 171  44
-[1] 116 171  47
-[1] 117 171  34
-[1] 118 171  37
-[1] 119 171  39
-[1] 120 171  32
-[1] 121 171  47
-[1] 122 171  38
-[1] 123 171  39
-[1] 124 171  27
-[1] 125 171  32
-[1] 126 171  55
-[1] 127 171  36
-[1] 128 171  45
-[1] 129 171  34
-[1] 130 171  41
-[1] 131 171  35
-[1] 132 171  30
-[1] 133 171  53
-[1] 134 171  50
-[1] 135 171  69
-[1] 136 171  40
-[1] 137 171  51
-[1] 138 171  36
-[1] 139 171  40
-[1] 140 171  37
-[1] 141 171  44
-[1] 142 171  37
-[1] 143 171  43
-[1] 144 171  37
-[1] 145 171  48
-[1] 146 171  41
-[1] 147 171  31
-[1] 148 171  60
-[1] 149 171  37
-[1] 150 171  34
-[1] 151 171  37
-[1] 152 171  62
-[1] 153 171  43
-[1] 154 171  34
-[1] 155 171  40
-[1] 156 171  44
-[1] 157 171  44
-[1] 158 171  39
-[1] 159 171  32
-[1] 160 171  75
-[1] 161 171  36
-[1] 162 171  38
-[1] 163 171  46
-[1] 164 171  32
-[1] 165 171  34
-[1] 166 171  53
-[1] 167 171  55
-[1] 168 171  50
-[1] 169 171  35
-[1] 170 171  43
-[1] 171 171  31
-[1] 172 171  46
-[1] 173 171  46
-[1] 174 171  71
-[1] 175 171  50
-[1] 176 171  57
-[1] 177 171  34
-[1] 178 171  49
-[1] 179 171  67
-[1] 180 171  61
-[1] 181 171  61
-[1] 182 171  42
-[1] 183 171  35
-[1] 184 171  43
-[1] 185 171  81
-[1] 186 171  53
-[1] 187 171  33
-[1] 188 171  56
-[1] 189 171  72
-[1] 190 171  77
-[1] 191 171  60
-[1] 192 171  42
-[1] 193 171  56
-[1] 194 171  36
-[1] 195 171  51
-[1] 196 171  47
-[1] 197 171  46
-[1] 198 171  53
-[1] 199 171  50
-[1] 200 171  53
-[1]   1 172  39
-[1]   2 172  41
-[1]   3 172  42
-[1]   4 172  28
-[1]   5 172  48
-[1]   6 172  50
-[1]   7 172  36
-[1]   8 172  35
-[1]   9 172  41
-[1]  10 172  66
-[1]  11 172  37
-[1]  12 172  40
-[1]  13 172  57
-[1]  14 172  36
-[1]  15 172  33
-[1]  16 172  30
-[1]  17 172  39
-[1]  18 172  32
-[1]  19 172  36
-[1]  20 172  36
-[1]  21 172  36
-[1]  22 172  29
-[1]  23 172  25
-[1]  24 172  31
-[1]  25 172  47
-[1]  26 172  37
-[1]  27 172  38
-[1]  28 172  35
-[1]  29 172  35
-[1]  30 172  36
-[1]  31 172  35
-[1]  32 172  35
-[1]  33 172  36
-[1]  34 172  42
-[1]  35 172  37
-[1]  36 172  36
-[1]  37 172  40
-[1]  38 172  32
-[1]  39 172  44
-[1]  40 172  32
-[1]  41 172  49
-[1]  42 172  63
-[1]  43 172  36
-[1]  44 172  33
-[1]  45 172  27
-[1]  46 172  46
-[1]  47 172  42
-[1]  48 172  31
-[1]  49 172  35
-[1]  50 172  40
-[1]  51 172  35
-[1]  52 172  32
-[1]  53 172  30
-[1]  54 172  59
-[1]  55 172  41
-[1]  56 172  31
-[1]  57 172  36
-[1]  58 172  37
-[1]  59 172  40
-[1]  60 172  49
-[1]  61 172  26
-[1]  62 172  41
-[1]  63 172  33
-[1]  64 172  56
-[1]  65 172  42
-[1]  66 172  30
-[1]  67 172  38
-[1]  68 172  34
-[1]  69 172  33
-[1]  70 172  40
-[1]  71 172  31
-[1]  72 172  35
-[1]  73 172  40
-[1]  74 172  26
-[1]  75 172  65
-[1]  76 172  39
-[1]  77 172  38
-[1]  78 172  43
-[1]  79 172  26
-[1]  80 172  30
-[1]  81 172  43
-[1]  82 172  27
-[1]  83 172  45
-[1]  84 172  34
-[1]  85 172  45
-[1]  86 172  32
-[1]  87 172  41
-[1]  88 172  52
-[1]  89 172  49
-[1]  90 172  36
-[1]  91 172  32
-[1]  92 172  45
-[1]  93 172  37
-[1]  94 172  40
-[1]  95 172  31
-[1]  96 172  38
-[1]  97 172  45
-[1]  98 172  41
-[1]  99 172  46
-[1] 100 172  32
-[1] 101 172  42
-[1] 102 172  46
-[1] 103 172  41
-[1] 104 172  26
-[1] 105 172  49
-[1] 106 172  42
-[1] 107 172  32
-[1] 108 172  35
-[1] 109 172  27
-[1] 110 172  34
-[1] 111 172  53
-[1] 112 172  37
-[1] 113 172  52
-[1] 114 172  28
-[1] 115 172  54
-[1] 116 172  46
-[1] 117 172  40
-[1] 118 172  36
-[1] 119 172  60
-[1] 120 172  40
-[1] 121 172  39
-[1] 122 172  40
-[1] 123 172  45
-[1] 124 172  34
-[1] 125 172  33
-[1] 126 172  36
-[1] 127 172  73
-[1] 128 172  33
-[1] 129 172  30
-[1] 130 172  60
-[1] 131 172  46
-[1] 132 172  44
-[1] 133 172  33
-[1] 134 172  38
-[1] 135 172  34
-[1] 136 172  39
-[1] 137 172  32
-[1] 138 172  41
-[1] 139 172  33
-[1] 140 172  36
-[1] 141 172  55
-[1] 142 172  34
-[1] 143 172  35
-[1] 144 172  48
-[1] 145 172  39
-[1] 146 172  41
-[1] 147 172  32
-[1] 148 172  47
-[1] 149 172  48
-[1] 150 172  35
-[1] 151 172  51
-[1] 152 172  37
-[1] 153 172  41
-[1] 154 172  45
-[1] 155 172  33
-[1] 156 172  44
-[1] 157 172  46
-[1] 158 172  44
-[1] 159 172  64
-[1] 160 172  48
-[1] 161 172  66
-[1] 162 172  37
-[1] 163 172  38
-[1] 164 172  50
-[1] 165 172  54
-[1] 166 172  38
-[1] 167 172  41
-[1] 168 172  56
-[1] 169 172  36
-[1] 170 172  64
-[1] 171 172  42
-[1] 172 172  35
-[1] 173 172  59
-[1] 174 172  42
-[1] 175 172  41
-[1] 176 172  49
-[1] 177 172  49
-[1] 178 172  61
-[1] 179 172  34
-[1] 180 172  39
-[1] 181 172  43
-[1] 182 172  43
-[1] 183 172  54
-[1] 184 172  51
-[1] 185 172  40
-[1] 186 172  39
-[1] 187 172  64
-[1] 188 172  61
-[1] 189 172  33
-[1] 190 172 110
-[1] 191 172  40
-[1] 192 172  42
-[1] 193 172  76
-[1] 194 172  37
-[1] 195 172  52
-[1] 196 172  46
-[1] 197 172  43
-[1] 198 172  66
-[1] 199 172  47
-[1] 200 172  63
-[1]   1 173  36
-[1]   2 173  30
-[1]   3 173  30
-[1]   4 173  45
-[1]   5 173  25
-[1]   6 173  34
-[1]   7 173  32
-[1]   8 173  43
-[1]   9 173  38
-[1]  10 173  55
-[1]  11 173  27
-[1]  12 173  25
-[1]  13 173  48
-[1]  14 173  38
-[1]  15 173  26
-[1]  16 173  38
-[1]  17 173  34
-[1]  18 173  35
-[1]  19 173  44
-[1]  20 173  31
-[1]  21 173  20
-[1]  22 173  63
-[1]  23 173  42
-[1]  24 173  37
-[1]  25 173  51
-[1]  26 173  28
-[1]  27 173  37
-[1]  28 173  40
-[1]  29 173  49
-[1]  30 173  38
-[1]  31 173  35
-[1]  32 173  33
-[1]  33 173  33
-[1]  34 173  43
-[1]  35 173  44
-[1]  36 173  35
-[1]  37 173  47
-[1]  38 173  43
-[1]  39 173  37
-[1]  40 173  36
-[1]  41 173  35
-[1]  42 173  34
-[1]  43 173  51
-[1]  44 173  27
-[1]  45 173  41
-[1]  46 173  34
-[1]  47 173  36
-[1]  48 173  31
-[1]  49 173  28
-[1]  50 173  40
-[1]  51 173  41
-[1]  52 173  62
-[1]  53 173  41
-[1]  54 173  30
-[1]  55 173  50
-[1]  56 173  46
-[1]  57 173  28
-[1]  58 173  59
-[1]  59 173  39
-[1]  60 173  33
-[1]  61 173  36
-[1]  62 173  34
-[1]  63 173  41
-[1]  64 173  33
-[1]  65 173  34
-[1]  66 173  29
-[1]  67 173  38
-[1]  68 173  32
-[1]  69 173  45
-[1]  70 173  43
-[1]  71 173  37
-[1]  72 173  45
-[1]  73 173  30
-[1]  74 173  42
-[1]  75 173  47
-[1]  76 173  34
-[1]  77 173  33
-[1]  78 173  37
-[1]  79 173  35
-[1]  80 173  46
-[1]  81 173  60
-[1]  82 173  33
-[1]  83 173  30
-[1]  84 173  59
-[1]  85 173  26
-[1]  86 173  28
-[1]  87 173  50
-[1]  88 173  30
-[1]  89 173  43
-[1]  90 173  41
-[1]  91 173  40
-[1]  92 173  39
-[1]  93 173  36
-[1]  94 173  44
-[1]  95 173  38
-[1]  96 173  46
-[1]  97 173  40
-[1]  98 173  47
-[1]  99 173  32
-[1] 100 173  41
-[1] 101 173  55
-[1] 102 173  42
-[1] 103 173  37
-[1] 104 173  38
-[1] 105 173  36
-[1] 106 173  43
-[1] 107 173  37
-[1] 108 173  36
-[1] 109 173  39
-[1] 110 173  33
-[1] 111 173  26
-[1] 112 173  47
-[1] 113 173  34
-[1] 114 173  49
-[1] 115 173  54
-[1] 116 173  45
-[1] 117 173  59
-[1] 118 173  50
-[1] 119 173  51
-[1] 120 173  49
-[1] 121 173  40
-[1] 122 173  40
-[1] 123 173  49
-[1] 124 173  35
-[1] 125 173  36
-[1] 126 173  41
-[1] 127 173  32
-[1] 128 173  45
-[1] 129 173  40
-[1] 130 173  35
-[1] 131 173  37
-[1] 132 173  40
-[1] 133 173  57
-[1] 134 173  30
-[1] 135 173  35
-[1] 136 173  42
-[1] 137 173  35
-[1] 138 173  40
-[1] 139 173  43
-[1] 140 173  40
-[1] 141 173  66
-[1] 142 173  39
-[1] 143 173  29
-[1] 144 173  66
-[1] 145 173  38
-[1] 146 173  52
-[1] 147 173  61
-[1] 148 173  34
-[1] 149 173  35
-[1] 150 173  42
-[1] 151 173  57
-[1] 152 173  66
-[1] 153 173  41
-[1] 154 173  44
-[1] 155 173  55
-[1] 156 173  41
-[1] 157 173  25
-[1] 158 173  39
-[1] 159 173  44
-[1] 160 173  56
-[1] 161 173  42
-[1] 162 173  37
-[1] 163 173  39
-[1] 164 173  36
-[1] 165 173  59
-[1] 166 173  36
-[1] 167 173  33
-[1] 168 173  46
-[1] 169 173  35
-[1] 170 173  47
-[1] 171 173  36
-[1] 172 173  56
-[1] 173 173  45
-[1] 174 173  41
-[1] 175 173  32
-[1] 176 173  63
-[1] 177 173  48
-[1] 178 173  41
-[1] 179 173  47
-[1] 180 173  52
-[1] 181 173  41
-[1] 182 173  49
-[1] 183 173  58
-[1] 184 173  51
-[1] 185 173  62
-[1] 186 173  45
-[1] 187 173  53
-[1] 188 173  54
-[1] 189 173  55
-[1] 190 173  62
-[1] 191 173  33
-[1] 192 173  46
-[1] 193 173  37
-[1] 194 173  54
-[1] 195 173  39
-[1] 196 173  49
-[1] 197 173  46
-[1] 198 173  62
-[1] 199 173  78
-[1] 200 173  70
-[1]   1 174  39
-[1]   2 174  33
-[1]   3 174  50
-[1]   4 174  37
-[1]   5 174  34
-[1]   6 174  43
-[1]   7 174  29
-[1]   8 174  39
-[1]   9 174  41
-[1]  10 174  47
-[1]  11 174  47
-[1]  12 174  32
-[1]  13 174  30
-[1]  14 174  35
-[1]  15 174  35
-[1]  16 174  38
-[1]  17 174  30
-[1]  18 174  55
-[1]  19 174  43
-[1]  20 174  41
-[1]  21 174  30
-[1]  22 174  47
-[1]  23 174  34
-[1]  24 174  47
-[1]  25 174  29
-[1]  26 174  36
-[1]  27 174  26
-[1]  28 174  27
-[1]  29 174  33
-[1]  30 174  50
-[1]  31 174  39
-[1]  32 174  32
-[1]  33 174  40
-[1]  34 174  34
-[1]  35 174  42
-[1]  36 174  32
-[1]  37 174  51
-[1]  38 174  39
-[1]  39 174  38
-[1]  40 174  31
-[1]  41 174  32
-[1]  42 174  47
-[1]  43 174  32
-[1]  44 174  33
-[1]  45 174  34
-[1]  46 174  37
-[1]  47 174  41
-[1]  48 174  32
-[1]  49 174  41
-[1]  50 174  48
-[1]  51 174  34
-[1]  52 174  49
-[1]  53 174  22
-[1]  54 174  61
-[1]  55 174  43
-[1]  56 174  41
-[1]  57 174  48
-[1]  58 174  37
-[1]  59 174  44
-[1]  60 174  35
-[1]  61 174  30
-[1]  62 174  42
-[1]  63 174  35
-[1]  64 174  35
-[1]  65 174  38
-[1]  66 174  47
-[1]  67 174  31
-[1]  68 174  34
-[1]  69 174  45
-[1]  70 174  41
-[1]  71 174  32
-[1]  72 174  30
-[1]  73 174  37
-[1]  74 174  48
-[1]  75 174  65
-[1]  76 174  31
-[1]  77 174  27
-[1]  78 174  46
-[1]  79 174  43
-[1]  80 174  50
-[1]  81 174  49
-[1]  82 174  48
-[1]  83 174  47
-[1]  84 174  30
-[1]  85 174  35
-[1]  86 174  34
-[1]  87 174  41
-[1]  88 174  48
-[1]  89 174  31
-[1]  90 174  32
-[1]  91 174  50
-[1]  92 174  44
-[1]  93 174  33
-[1]  94 174  42
-[1]  95 174  38
-[1]  96 174  29
-[1]  97 174  58
-[1]  98 174  37
-[1]  99 174  50
-[1] 100 174  33
-[1] 101 174  37
-[1] 102 174  38
-[1] 103 174  41
-[1] 104 174  44
-[1] 105 174  28
-[1] 106 174  41
-[1] 107 174  37
-[1] 108 174  29
-[1] 109 174  38
-[1] 110 174  31
-[1] 111 174  42
-[1] 112 174  41
-[1] 113 174  31
-[1] 114 174  33
-[1] 115 174  39
-[1] 116 174  39
-[1] 117 174  52
-[1] 118 174  33
-[1] 119 174  45
-[1] 120 174  32
-[1] 121 174  55
-[1] 122 174  41
-[1] 123 174  44
-[1] 124 174  38
-[1] 125 174  33
-[1] 126 174  24
-[1] 127 174  47
-[1] 128 174  39
-[1] 129 174  61
-[1] 130 174  38
-[1] 131 174  30
-[1] 132 174  71
-[1] 133 174  42
-[1] 134 174  39
-[1] 135 174  44
-[1] 136 174  45
-[1] 137 174  67
-[1] 138 174  42
-[1] 139 174  39
-[1] 140 174  54
-[1] 141 174  35
-[1] 142 174  38
-[1] 143 174  31
-[1] 144 174  38
-[1] 145 174  49
-[1] 146 174  53
-[1] 147 174  40
-[1] 148 174  33
-[1] 149 174  42
-[1] 150 174  46
-[1] 151 174  41
-[1] 152 174  36
-[1] 153 174  55
-[1] 154 174  43
-[1] 155 174  39
-[1] 156 174  32
-[1] 157 174  39
-[1] 158 174  44
-[1] 159 174  33
-[1] 160 174  32
-[1] 161 174  43
-[1] 162 174  34
-[1] 163 174  45
-[1] 164 174  61
-[1] 165 174  50
-[1] 166 174  47
-[1] 167 174  48
-[1] 168 174  41
-[1] 169 174  43
-[1] 170 174  54
-[1] 171 174  43
-[1] 172 174  34
-[1] 173 174  51
-[1] 174 174  40
-[1] 175 174  35
-[1] 176 174 100
-[1] 177 174  41
-[1] 178 174  41
-[1] 179 174  50
-[1] 180 174  48
-[1] 181 174  51
-[1] 182 174  44
-[1] 183 174  47
-[1] 184 174  41
-[1] 185 174  37
-[1] 186 174  78
-[1] 187 174  74
-[1] 188 174  65
-[1] 189 174  62
-[1] 190 174  39
-[1] 191 174  38
-[1] 192 174  54
-[1] 193 174  43
-[1] 194 174  67
-[1] 195 174  37
-[1] 196 174  35
-[1] 197 174  74
-[1] 198 174  48
-[1] 199 174  75
-[1] 200 174  65
-[1]   1 175  32
-[1]   2 175  50
-[1]   3 175  28
-[1]   4 175  30
-[1]   5 175  33
-[1]   6 175  37
-[1]   7 175  32
-[1]   8 175  37
-[1]   9 175  32
-[1]  10 175  33
-[1]  11 175  29
-[1]  12 175  31
-[1]  13 175  29
-[1]  14 175  33
-[1]  15 175  45
-[1]  16 175  28
-[1]  17 175  43
-[1]  18 175  36
-[1]  19 175  33
-[1]  20 175  47
-[1]  21 175  47
-[1]  22 175  38
-[1]  23 175  34
-[1]  24 175  43
-[1]  25 175  40
-[1]  26 175  45
-[1]  27 175  33
-[1]  28 175  40
-[1]  29 175  31
-[1]  30 175  44
-[1]  31 175  37
-[1]  32 175  42
-[1]  33 175  35
-[1]  34 175  50
-[1]  35 175  39
-[1]  36 175  38
-[1]  37 175  42
-[1]  38 175  40
-[1]  39 175  39
-[1]  40 175  44
-[1]  41 175  34
-[1]  42 175  41
-[1]  43 175  30
-[1]  44 175  35
-[1]  45 175  27
-[1]  46 175  34
-[1]  47 175  36
-[1]  48 175  39
-[1]  49 175  45
-[1]  50 175  34
-[1]  51 175  42
-[1]  52 175  39
-[1]  53 175  47
-[1]  54 175  28
-[1]  55 175  48
-[1]  56 175  45
-[1]  57 175  33
-[1]  58 175  45
-[1]  59 175  32
-[1]  60 175  43
-[1]  61 175  28
-[1]  62 175  25
-[1]  63 175  38
-[1]  64 175  47
-[1]  65 175  53
-[1]  66 175  34
-[1]  67 175  45
-[1]  68 175  28
-[1]  69 175  45
-[1]  70 175  25
-[1]  71 175  48
-[1]  72 175  28
-[1]  73 175  24
-[1]  74 175  36
-[1]  75 175  27
-[1]  76 175  76
-[1]  77 175  40
-[1]  78 175  33
-[1]  79 175  46
-[1]  80 175  33
-[1]  81 175  42
-[1]  82 175  43
-[1]  83 175  41
-[1]  84 175  42
-[1]  85 175  43
-[1]  86 175  44
-[1]  87 175  31
-[1]  88 175  32
-[1]  89 175  56
-[1]  90 175  33
-[1]  91 175  67
-[1]  92 175  39
-[1]  93 175  28
-[1]  94 175  27
-[1]  95 175  45
-[1]  96 175  46
-[1]  97 175  37
-[1]  98 175  42
-[1]  99 175  36
-[1] 100 175  30
-[1] 101 175  42
-[1] 102 175  48
-[1] 103 175  45
-[1] 104 175  35
-[1] 105 175  50
-[1] 106 175  46
-[1] 107 175  33
-[1] 108 175  48
-[1] 109 175  37
-[1] 110 175  22
-[1] 111 175  68
-[1] 112 175  36
-[1] 113 175  40
-[1] 114 175  37
-[1] 115 175  42
-[1] 116 175  35
-[1] 117 175  36
-[1] 118 175  30
-[1] 119 175  45
-[1] 120 175  39
-[1] 121 175  45
-[1] 122 175  32
-[1] 123 175  43
-[1] 124 175  42
-[1] 125 175  35
-[1] 126 175  35
-[1] 127 175  54
-[1] 128 175  49
-[1] 129 175  40
-[1] 130 175  36
-[1] 131 175  39
-[1] 132 175  35
-[1] 133 175  36
-[1] 134 175  41
-[1] 135 175  38
-[1] 136 175  41
-[1] 137 175  42
-[1] 138 175  45
-[1] 139 175  39
-[1] 140 175  36
-[1] 141 175  37
-[1] 142 175  45
-[1] 143 175  47
-[1] 144 175  46
-[1] 145 175  46
-[1] 146 175  32
-[1] 147 175  49
-[1] 148 175  43
-[1] 149 175  39
-[1] 150 175  96
-[1] 151 175  36
-[1] 152 175  37
-[1] 153 175  38
-[1] 154 175  51
-[1] 155 175  39
-[1] 156 175  38
-[1] 157 175  35
-[1] 158 175  47
-[1] 159 175  44
-[1] 160 175  37
-[1] 161 175  56
-[1] 162 175  56
-[1] 163 175  43
-[1] 164 175  50
-[1] 165 175  37
-[1] 166 175  37
-[1] 167 175  49
-[1] 168 175  38
-[1] 169 175  48
-[1] 170 175  45
-[1] 171 175  62
-[1] 172 175  53
-[1] 173 175  43
-[1] 174 175  51
-[1] 175 175  54
-[1] 176 175  46
-[1] 177 175  36
-[1] 178 175  53
-[1] 179 175  41
-[1] 180 175  46
-[1] 181 175  41
-[1] 182 175  28
-[1] 183 175  51
-[1] 184 175  39
-[1] 185 175  46
-[1] 186 175  37
-[1] 187 175  40
-[1] 188 175  46
-[1] 189 175  49
-[1] 190 175  53
-[1] 191 175  59
-[1] 192 175  32
-[1] 193 175  41
-[1] 194 175  54
-[1] 195 175  57
-[1] 196 175  60
-[1] 197 175  36
-[1] 198 175  67
-[1] 199 175  85
-[1] 200 175  71
-[1]   1 176  35
-[1]   2 176  30
-[1]   3 176  29
-[1]   4 176  31
-[1]   5 176  35
-[1]   6 176  36
-[1]   7 176  32
-[1]   8 176  52
-[1]   9 176  47
-[1]  10 176  31
-[1]  11 176  41
-[1]  12 176  54
-[1]  13 176  41
-[1]  14 176  50
-[1]  15 176  37
-[1]  16 176  42
-[1]  17 176  61
-[1]  18 176  62
-[1]  19 176  27
-[1]  20 176  37
-[1]  21 176  46
-[1]  22 176  41
-[1]  23 176  30
-[1]  24 176  36
-[1]  25 176  31
-[1]  26 176  41
-[1]  27 176  40
-[1]  28 176  36
-[1]  29 176  57
-[1]  30 176  29
-[1]  31 176  33
-[1]  32 176  32
-[1]  33 176  41
-[1]  34 176  33
-[1]  35 176  36
-[1]  36 176  45
-[1]  37 176  36
-[1]  38 176  27
-[1]  39 176  54
-[1]  40 176  40
-[1]  41 176  47
-[1]  42 176  35
-[1]  43 176  32
-[1]  44 176  33
-[1]  45 176  30
-[1]  46 176  38
-[1]  47 176  34
-[1]  48 176  30
-[1]  49 176  36
-[1]  50 176  41
-[1]  51 176  38
-[1]  52 176  34
-[1]  53 176  38
-[1]  54 176  29
-[1]  55 176  46
-[1]  56 176  35
-[1]  57 176  35
-[1]  58 176  52
-[1]  59 176  31
-[1]  60 176  31
-[1]  61 176  57
-[1]  62 176  27
-[1]  63 176  46
-[1]  64 176  35
-[1]  65 176  45
-[1]  66 176  32
-[1]  67 176  31
-[1]  68 176  47
-[1]  69 176  46
-[1]  70 176  50
-[1]  71 176  43
-[1]  72 176  35
-[1]  73 176  52
-[1]  74 176  33
-[1]  75 176  47
-[1]  76 176  44
-[1]  77 176  28
-[1]  78 176  37
-[1]  79 176  38
-[1]  80 176  43
-[1]  81 176  50
-[1]  82 176  35
-[1]  83 176  28
-[1]  84 176  37
-[1]  85 176  47
-[1]  86 176  30
-[1]  87 176  37
-[1]  88 176  28
-[1]  89 176  35
-[1]  90 176  34
-[1]  91 176  29
-[1]  92 176  30
-[1]  93 176  44
-[1]  94 176  36
-[1]  95 176  32
-[1]  96 176  37
-[1]  97 176  45
-[1]  98 176  49
-[1]  99 176  39
-[1] 100 176  45
-[1] 101 176  47
-[1] 102 176  38
-[1] 103 176  53
-[1] 104 176  27
-[1] 105 176  52
-[1] 106 176  30
-[1] 107 176  37
-[1] 108 176  48
-[1] 109 176  53
-[1] 110 176  58
-[1] 111 176  33
-[1] 112 176  35
-[1] 113 176  39
-[1] 114 176  50
-[1] 115 176  34
-[1] 116 176  41
-[1] 117 176  40
-[1] 118 176  55
-[1] 119 176  43
-[1] 120 176  46
-[1] 121 176  31
-[1] 122 176  40
-[1] 123 176  57
-[1] 124 176  43
-[1] 125 176  40
-[1] 126 176  32
-[1] 127 176  57
-[1] 128 176  45
-[1] 129 176  32
-[1] 130 176  37
-[1] 131 176  52
-[1] 132 176  27
-[1] 133 176  68
-[1] 134 176  35
-[1] 135 176  42
-[1] 136 176  34
-[1] 137 176  56
-[1] 138 176  41
-[1] 139 176  34
-[1] 140 176  40
-[1] 141 176  41
-[1] 142 176  34
-[1] 143 176  65
-[1] 144 176  28
-[1] 145 176  72
-[1] 146 176  52
-[1] 147 176  34
-[1] 148 176  55
-[1] 149 176  68
-[1] 150 176  26
-[1] 151 176  43
-[1] 152 176  42
-[1] 153 176  46
-[1] 154 176  62
-[1] 155 176  33
-[1] 156 176  40
-[1] 157 176  43
-[1] 158 176  42
-[1] 159 176  44
-[1] 160 176  36
-[1] 161 176  58
-[1] 162 176  40
-[1] 163 176  66
-[1] 164 176  48
-[1] 165 176  50
-[1] 166 176  74
-[1] 167 176  57
-[1] 168 176  57
-[1] 169 176  70
-[1] 170 176  56
-[1] 171 176  64
-[1] 172 176  58
-[1] 173 176  47
-[1] 174 176  42
-[1] 175 176  30
-[1] 176 176  70
-[1] 177 176  52
-[1] 178 176  46
-[1] 179 176  49
-[1] 180 176  56
-[1] 181 176  42
-[1] 182 176  66
-[1] 183 176  46
-[1] 184 176  40
-[1] 185 176  31
-[1] 186 176  92
-[1] 187 176  37
-[1] 188 176  41
-[1] 189 176  56
-[1] 190 176  45
-[1] 191 176  61
-[1] 192 176  35
-[1] 193 176  49
-[1] 194 176  63
-[1] 195 176  41
-[1] 196 176  60
-[1] 197 176  49
-[1] 198 176  48
-[1] 199 176  45
-[1] 200 176  73
-[1]   1 177  55
-[1]   2 177  39
-[1]   3 177  29
-[1]   4 177  36
-[1]   5 177  41
-[1]   6 177  40
-[1]   7 177  30
-[1]   8 177  39
-[1]   9 177  49
-[1]  10 177  47
-[1]  11 177  52
-[1]  12 177  32
-[1]  13 177  29
-[1]  14 177  31
-[1]  15 177  33
-[1]  16 177  48
-[1]  17 177  26
-[1]  18 177  45
-[1]  19 177  36
-[1]  20 177  42
-[1]  21 177  51
-[1]  22 177  39
-[1]  23 177  33
-[1]  24 177  46
-[1]  25 177  42
-[1]  26 177  43
-[1]  27 177  47
-[1]  28 177  56
-[1]  29 177  33
-[1]  30 177  54
-[1]  31 177  49
-[1]  32 177  83
-[1]  33 177  35
-[1]  34 177  44
-[1]  35 177  39
-[1]  36 177  36
-[1]  37 177  30
-[1]  38 177  47
-[1]  39 177  37
-[1]  40 177  42
-[1]  41 177  53
-[1]  42 177  28
-[1]  43 177  37
-[1]  44 177  31
-[1]  45 177  58
-[1]  46 177  34
-[1]  47 177  35
-[1]  48 177  33
-[1]  49 177  33
-[1]  50 177  40
-[1]  51 177  34
-[1]  52 177  43
-[1]  53 177  42
-[1]  54 177  67
-[1]  55 177  41
-[1]  56 177  38
-[1]  57 177  35
-[1]  58 177  36
-[1]  59 177  45
-[1]  60 177  27
-[1]  61 177  40
-[1]  62 177  47
-[1]  63 177  34
-[1]  64 177  36
-[1]  65 177  49
-[1]  66 177  53
-[1]  67 177  28
-[1]  68 177  54
-[1]  69 177  31
-[1]  70 177  29
-[1]  71 177  31
-[1]  72 177  69
-[1]  73 177  39
-[1]  74 177  36
-[1]  75 177  68
-[1]  76 177  44
-[1]  77 177  33
-[1]  78 177  35
-[1]  79 177  38
-[1]  80 177  35
-[1]  81 177  73
-[1]  82 177  44
-[1]  83 177  35
-[1]  84 177  52
-[1]  85 177  43
-[1]  86 177  45
-[1]  87 177  35
-[1]  88 177  36
-[1]  89 177  60
-[1]  90 177  38
-[1]  91 177  39
-[1]  92 177  48
-[1]  93 177  38
-[1]  94 177  43
-[1]  95 177  45
-[1]  96 177  41
-[1]  97 177  34
-[1]  98 177  43
-[1]  99 177  28
-[1] 100 177  47
-[1] 101 177  29
-[1] 102 177  36
-[1] 103 177  43
-[1] 104 177  32
-[1] 105 177  35
-[1] 106 177  40
-[1] 107 177  41
-[1] 108 177  35
-[1] 109 177  40
-[1] 110 177  32
-[1] 111 177  36
-[1] 112 177  36
-[1] 113 177  40
-[1] 114 177  33
-[1] 115 177  43
-[1] 116 177  48
-[1] 117 177  35
-[1] 118 177  42
-[1] 119 177  45
-[1] 120 177  46
-[1] 121 177  35
-[1] 122 177  50
-[1] 123 177  35
-[1] 124 177  33
-[1] 125 177  40
-[1] 126 177  35
-[1] 127 177  41
-[1] 128 177  46
-[1] 129 177  34
-[1] 130 177  53
-[1] 131 177  37
-[1] 132 177  27
-[1] 133 177  46
-[1] 134 177  46
-[1] 135 177  37
-[1] 136 177  35
-[1] 137 177  31
-[1] 138 177  33
-[1] 139 177  39
-[1] 140 177  50
-[1] 141 177  41
-[1] 142 177  53
-[1] 143 177  42
-[1] 144 177  41
-[1] 145 177  38
-[1] 146 177  34
-[1] 147 177  66
-[1] 148 177  44
-[1] 149 177  32
-[1] 150 177  65
-[1] 151 177  31
-[1] 152 177  40
-[1] 153 177  37
-[1] 154 177  43
-[1] 155 177  34
-[1] 156 177  53
-[1] 157 177  39
-[1] 158 177  62
-[1] 159 177  42
-[1] 160 177  55
-[1] 161 177  36
-[1] 162 177  34
-[1] 163 177  37
-[1] 164 177  55
-[1] 165 177  58
-[1] 166 177  41
-[1] 167 177  44
-[1] 168 177  45
-[1] 169 177  49
-[1] 170 177  49
-[1] 171 177  34
-[1] 172 177  37
-[1] 173 177  50
-[1] 174 177  67
-[1] 175 177  54
-[1] 176 177  37
-[1] 177 177  49
-[1] 178 177  54
-[1] 179 177  36
-[1] 180 177  39
-[1] 181 177  55
-[1] 182 177  40
-[1] 183 177  35
-[1] 184 177  44
-[1] 185 177  38
-[1] 186 177  56
-[1] 187 177  29
-[1] 188 177  51
-[1] 189 177  47
-[1] 190 177  47
-[1] 191 177  54
-[1] 192 177  44
-[1] 193 177  74
-[1] 194 177  46
-[1] 195 177  43
-[1] 196 177  52
-[1] 197 177  37
-[1] 198 177  48
-[1] 199 177  42
-[1] 200 177  76
-[1]   1 178  37
-[1]   2 178  41
-[1]   3 178  34
-[1]   4 178  34
-[1]   5 178  32
-[1]   6 178  37
-[1]   7 178  34
-[1]   8 178  40
-[1]   9 178  41
-[1]  10 178  48
-[1]  11 178  37
-[1]  12 178  31
-[1]  13 178  26
-[1]  14 178  56
-[1]  15 178  49
-[1]  16 178  43
-[1]  17 178  29
-[1]  18 178  34
-[1]  19 178  27
-[1]  20 178  32
-[1]  21 178  30
-[1]  22 178  37
-[1]  23 178  36
-[1]  24 178  33
-[1]  25 178  41
-[1]  26 178  34
-[1]  27 178  38
-[1]  28 178  31
-[1]  29 178  43
-[1]  30 178  54
-[1]  31 178  45
-[1]  32 178  28
-[1]  33 178  45
-[1]  34 178  51
-[1]  35 178  58
-[1]  36 178  46
-[1]  37 178  31
-[1]  38 178  47
-[1]  39 178  53
-[1]  40 178  28
-[1]  41 178  63
-[1]  42 178  36
-[1]  43 178  61
-[1]  44 178  54
-[1]  45 178  39
-[1]  46 178  33
-[1]  47 178  37
-[1]  48 178  42
-[1]  49 178  42
-[1]  50 178  30
-[1]  51 178  31
-[1]  52 178  32
-[1]  53 178  63
-[1]  54 178  33
-[1]  55 178  43
-[1]  56 178  48
-[1]  57 178  34
-[1]  58 178  39
-[1]  59 178  45
-[1]  60 178  28
-[1]  61 178  29
-[1]  62 178  41
-[1]  63 178  36
-[1]  64 178  49
-[1]  65 178  34
-[1]  66 178  35
-[1]  67 178  32
-[1]  68 178  33
-[1]  69 178  27
-[1]  70 178  37
-[1]  71 178  39
-[1]  72 178  43
-[1]  73 178  35
-[1]  74 178  38
-[1]  75 178  77
-[1]  76 178  46
-[1]  77 178  45
-[1]  78 178  57
-[1]  79 178  30
-[1]  80 178  34
-[1]  81 178  31
-[1]  82 178  33
-[1]  83 178  38
-[1]  84 178  39
-[1]  85 178  45
-[1]  86 178  30
-[1]  87 178  35
-[1]  88 178  32
-[1]  89 178  35
-[1]  90 178  32
-[1]  91 178  66
-[1]  92 178  39
-[1]  93 178  43
-[1]  94 178  27
-[1]  95 178  32
-[1]  96 178  27
-[1]  97 178  43
-[1]  98 178  41
-[1]  99 178  40
-[1] 100 178  59
-[1] 101 178  32
-[1] 102 178  44
-[1] 103 178  33
-[1] 104 178  40
-[1] 105 178  44
-[1] 106 178  46
-[1] 107 178  39
-[1] 108 178  32
-[1] 109 178  44
-[1] 110 178  41
-[1] 111 178  43
-[1] 112 178  30
-[1] 113 178  27
-[1] 114 178  70
-[1] 115 178  45
-[1] 116 178  43
-[1] 117 178  32
-[1] 118 178  33
-[1] 119 178  50
-[1] 120 178  32
-[1] 121 178  35
-[1] 122 178  50
-[1] 123 178  28
-[1] 124 178  42
-[1] 125 178  32
-[1] 126 178  37
-[1] 127 178  36
-[1] 128 178  57
-[1] 129 178  32
-[1] 130 178  36
-[1] 131 178  36
-[1] 132 178  36
-[1] 133 178  51
-[1] 134 178  45
-[1] 135 178  59
-[1] 136 178  43
-[1] 137 178  40
-[1] 138 178  43
-[1] 139 178  29
-[1] 140 178  49
-[1] 141 178  50
-[1] 142 178  43
-[1] 143 178  38
-[1] 144 178  33
-[1] 145 178  40
-[1] 146 178  59
-[1] 147 178  37
-[1] 148 178  54
-[1] 149 178  61
-[1] 150 178  38
-[1] 151 178  34
-[1] 152 178  41
-[1] 153 178  49
-[1] 154 178  31
-[1] 155 178  28
-[1] 156 178  41
-[1] 157 178  38
-[1] 158 178  33
-[1] 159 178  37
-[1] 160 178  58
-[1] 161 178  47
-[1] 162 178  46
-[1] 163 178  45
-[1] 164 178  43
-[1] 165 178  38
-[1] 166 178  29
-[1] 167 178  49
-[1] 168 178  77
-[1] 169 178  49
-[1] 170 178  55
-[1] 171 178  36
-[1] 172 178  45
-[1] 173 178  38
-[1] 174 178  33
-[1] 175 178  49
-[1] 176 178  55
-[1] 177 178  64
-[1] 178 178  49
-[1] 179 178  50
-[1] 180 178  35
-[1] 181 178  48
-[1] 182 178  46
-[1] 183 178  57
-[1] 184 178  68
-[1] 185 178  37
-[1] 186 178  35
-[1] 187 178  74
-[1] 188 178  41
-[1] 189 178  58
-[1] 190 178  43
-[1] 191 178  47
-[1] 192 178  48
-[1] 193 178  37
-[1] 194 178  56
-[1] 195 178  44
-[1] 196 178  42
-[1] 197 178  56
-[1] 198 178  42
-[1] 199 178  61
-[1] 200 178  73
-[1]   1 179  39
-[1]   2 179  33
-[1]   3 179  46
-[1]   4 179  59
-[1]   5 179  30
-[1]   6 179  43
-[1]   7 179  44
-[1]   8 179  33
-[1]   9 179  51
-[1]  10 179  47
-[1]  11 179  34
-[1]  12 179  76
-[1]  13 179  31
-[1]  14 179  50
-[1]  15 179  35
-[1]  16 179  32
-[1]  17 179  37
-[1]  18 179  37
-[1]  19 179  50
-[1]  20 179  35
-[1]  21 179  34
-[1]  22 179  31
-[1]  23 179  36
-[1]  24 179  29
-[1]  25 179  42
-[1]  26 179  33
-[1]  27 179  35
-[1]  28 179  29
-[1]  29 179  36
-[1]  30 179  42
-[1]  31 179  33
-[1]  32 179  34
-[1]  33 179  30
-[1]  34 179  59
-[1]  35 179  41
-[1]  36 179  58
-[1]  37 179  43
-[1]  38 179  47
-[1]  39 179  36
-[1]  40 179  33
-[1]  41 179  52
-[1]  42 179  43
-[1]  43 179  27
-[1]  44 179  40
-[1]  45 179  43
-[1]  46 179  32
-[1]  47 179  43
-[1]  48 179  50
-[1]  49 179  33
-[1]  50 179  36
-[1]  51 179  47
-[1]  52 179  26
-[1]  53 179  41
-[1]  54 179  47
-[1]  55 179  48
-[1]  56 179  67
-[1]  57 179  42
-[1]  58 179  31
-[1]  59 179  41
-[1]  60 179  32
-[1]  61 179  39
-[1]  62 179  30
-[1]  63 179  31
-[1]  64 179  42
-[1]  65 179  43
-[1]  66 179  48
-[1]  67 179  43
-[1]  68 179  49
-[1]  69 179  68
-[1]  70 179  32
-[1]  71 179  41
-[1]  72 179  38
-[1]  73 179  33
-[1]  74 179  38
-[1]  75 179  35
-[1]  76 179  40
-[1]  77 179  36
-[1]  78 179  34
-[1]  79 179  29
-[1]  80 179  31
-[1]  81 179  45
-[1]  82 179  39
-[1]  83 179  51
-[1]  84 179  52
-[1]  85 179  42
-[1]  86 179  48
-[1]  87 179  44
-[1]  88 179  45
-[1]  89 179  43
-[1]  90 179  62
-[1]  91 179  46
-[1]  92 179  45
-[1]  93 179  31
-[1]  94 179  32
-[1]  95 179  35
-[1]  96 179  46
-[1]  97 179  58
-[1]  98 179  42
-[1]  99 179  36
-[1] 100 179  30
-[1] 101 179  29
-[1] 102 179  51
-[1] 103 179  54
-[1] 104 179  39
-[1] 105 179  26
-[1] 106 179  40
-[1] 107 179  33
-[1] 108 179  41
-[1] 109 179  32
-[1] 110 179  39
-[1] 111 179  83
-[1] 112 179  25
-[1] 113 179  42
-[1] 114 179  34
-[1] 115 179  44
-[1] 116 179  33
-[1] 117 179  31
-[1] 118 179  35
-[1] 119 179  48
-[1] 120 179  34
-[1] 121 179  37
-[1] 122 179  40
-[1] 123 179  59
-[1] 124 179  37
-[1] 125 179  35
-[1] 126 179  49
-[1] 127 179  40
-[1] 128 179  37
-[1] 129 179  60
-[1] 130 179  38
-[1] 131 179  49
-[1] 132 179  46
-[1] 133 179  61
-[1] 134 179  51
-[1] 135 179  40
-[1] 136 179  36
-[1] 137 179  33
-[1] 138 179  27
-[1] 139 179  34
-[1] 140 179  33
-[1] 141 179  38
-[1] 142 179  43
-[1] 143 179  36
-[1] 144 179  39
-[1] 145 179  35
-[1] 146 179  50
-[1] 147 179  38
-[1] 148 179  41
-[1] 149 179  34
-[1] 150 179  65
-[1] 151 179  49
-[1] 152 179  43
-[1] 153 179  48
-[1] 154 179  32
-[1] 155 179  40
-[1] 156 179  59
-[1] 157 179  41
-[1] 158 179  40
-[1] 159 179  62
-[1] 160 179  34
-[1] 161 179  61
-[1] 162 179  38
-[1] 163 179  63
-[1] 164 179  38
-[1] 165 179  37
-[1] 166 179  33
-[1] 167 179  48
-[1] 168 179  65
-[1] 169 179  46
-[1] 170 179  28
-[1] 171 179  61
-[1] 172 179  42
-[1] 173 179  43
-[1] 174 179  43
-[1] 175 179  38
-[1] 176 179  57
-[1] 177 179  41
-[1] 178 179  33
-[1] 179 179  40
-[1] 180 179  49
-[1] 181 179  49
-[1] 182 179  38
-[1] 183 179  36
-[1] 184 179  43
-[1] 185 179  42
-[1] 186 179  43
-[1] 187 179  42
-[1] 188 179  47
-[1] 189 179  46
-[1] 190 179  63
-[1] 191 179  44
-[1] 192 179  77
-[1] 193 179  41
-[1] 194 179  48
-[1] 195 179  45
-[1] 196 179  53
-[1] 197 179  44
-[1] 198 179  56
-[1] 199 179  42
-[1] 200 179  68
-[1]   1 180  36
-[1]   2 180  62
-[1]   3 180  32
-[1]   4 180  39
-[1]   5 180  34
-[1]   6 180  39
-[1]   7 180  34
-[1]   8 180  40
-[1]   9 180  40
-[1]  10 180  32
-[1]  11 180  41
-[1]  12 180  28
-[1]  13 180  39
-[1]  14 180  42
-[1]  15 180  37
-[1]  16 180  28
-[1]  17 180  45
-[1]  18 180  35
-[1]  19 180  34
-[1]  20 180  33
-[1]  21 180  40
-[1]  22 180  43
-[1]  23 180  35
-[1]  24 180  40
-[1]  25 180  30
-[1]  26 180  49
-[1]  27 180  40
-[1]  28 180  27
-[1]  29 180  50
-[1]  30 180  35
-[1]  31 180  47
-[1]  32 180  50
-[1]  33 180  61
-[1]  34 180  40
-[1]  35 180  34
-[1]  36 180  42
-[1]  37 180  30
-[1]  38 180  41
-[1]  39 180  28
-[1]  40 180  64
-[1]  41 180  35
-[1]  42 180  46
-[1]  43 180  42
-[1]  44 180  38
-[1]  45 180  45
-[1]  46 180  30
-[1]  47 180  49
-[1]  48 180  23
-[1]  49 180  38
-[1]  50 180  31
-[1]  51 180  37
-[1]  52 180  34
-[1]  53 180  33
-[1]  54 180  44
-[1]  55 180  30
-[1]  56 180  63
-[1]  57 180  35
-[1]  58 180  48
-[1]  59 180  41
-[1]  60 180  44
-[1]  61 180  83
-[1]  62 180  34
-[1]  63 180  37
-[1]  64 180  32
-[1]  65 180  35
-[1]  66 180  26
-[1]  67 180  40
-[1]  68 180  35
-[1]  69 180  47
-[1]  70 180  27
-[1]  71 180  27
-[1]  72 180  34
-[1]  73 180  58
-[1]  74 180  29
-[1]  75 180  35
-[1]  76 180  42
-[1]  77 180  31
-[1]  78 180  40
-[1]  79 180  35
-[1]  80 180  40
-[1]  81 180  33
-[1]  82 180  42
-[1]  83 180  39
-[1]  84 180  43
-[1]  85 180  44
-[1]  86 180  38
-[1]  87 180  45
-[1]  88 180  43
-[1]  89 180  37
-[1]  90 180  36
-[1]  91 180  42
-[1]  92 180  47
-[1]  93 180  39
-[1]  94 180  28
-[1]  95 180  38
-[1]  96 180  53
-[1]  97 180  49
-[1]  98 180  54
-[1]  99 180  34
-[1] 100 180  50
-[1] 101 180  36
-[1] 102 180  35
-[1] 103 180  34
-[1] 104 180  39
-[1] 105 180  39
-[1] 106 180  37
-[1] 107 180  30
-[1] 108 180  37
-[1] 109 180  38
-[1] 110 180  35
-[1] 111 180  31
-[1] 112 180  39
-[1] 113 180  47
-[1] 114 180  44
-[1] 115 180  41
-[1] 116 180  44
-[1] 117 180  31
-[1] 118 180  26
-[1] 119 180  51
-[1] 120 180  31
-[1] 121 180  35
-[1] 122 180  55
-[1] 123 180  43
-[1] 124 180  41
-[1] 125 180  31
-[1] 126 180  54
-[1] 127 180  39
-[1] 128 180  30
-[1] 129 180  61
-[1] 130 180  36
-[1] 131 180  51
-[1] 132 180  42
-[1] 133 180  22
-[1] 134 180  60
-[1] 135 180  50
-[1] 136 180  37
-[1] 137 180  48
-[1] 138 180  43
-[1] 139 180  30
-[1] 140 180  29
-[1] 141 180  32
-[1] 142 180  35
-[1] 143 180  45
-[1] 144 180  29
-[1] 145 180  63
-[1] 146 180  33
-[1] 147 180  49
-[1] 148 180  42
-[1] 149 180  77
-[1] 150 180  38
-[1] 151 180  36
-[1] 152 180  52
-[1] 153 180  29
-[1] 154 180  38
-[1] 155 180  28
-[1] 156 180  63
-[1] 157 180  30
-[1] 158 180  30
-[1] 159 180  70
-[1] 160 180  52
-[1] 161 180  50
-[1] 162 180  40
-[1] 163 180  42
-[1] 164 180  32
-[1] 165 180  41
-[1] 166 180  36
-[1] 167 180  37
-[1] 168 180  47
-[1] 169 180  39
-[1] 170 180  50
-[1] 171 180  42
-[1] 172 180  25
-[1] 173 180  72
-[1] 174 180  43
-[1] 175 180  73
-[1] 176 180  39
-[1] 177 180  36
-[1] 178 180  44
-[1] 179 180  63
-[1] 180 180  40
-[1] 181 180  49
-[1] 182 180  47
-[1] 183 180  51
-[1] 184 180  33
-[1] 185 180  46
-[1] 186 180  42
-[1] 187 180  53
-[1] 188 180  42
-[1] 189 180  55
-[1] 190 180  40
-[1] 191 180  54
-[1] 192 180  42
-[1] 193 180  56
-[1] 194 180  48
-[1] 195 180  53
-[1] 196 180  34
-[1] 197 180  41
-[1] 198 180  49
-[1] 199 180  62
-[1] 200 180  51
-[1]   1 181  31
-[1]   2 181  45
-[1]   3 181  32
-[1]   4 181  34
-[1]   5 181  59
-[1]   6 181  37
-[1]   7 181  27
-[1]   8 181  35
-[1]   9 181  34
-[1]  10 181  50
-[1]  11 181  49
-[1]  12 181  31
-[1]  13 181  57
-[1]  14 181  55
-[1]  15 181  33
-[1]  16 181  64
-[1]  17 181  52
-[1]  18 181  35
-[1]  19 181  29
-[1]  20 181  47
-[1]  21 181  36
-[1]  22 181  35
-[1]  23 181  35
-[1]  24 181  42
-[1]  25 181  46
-[1]  26 181  31
-[1]  27 181  38
-[1]  28 181  39
-[1]  29 181  43
-[1]  30 181  32
-[1]  31 181  37
-[1]  32 181  28
-[1]  33 181  60
-[1]  34 181  40
-[1]  35 181  49
-[1]  36 181  41
-[1]  37 181  47
-[1]  38 181  35
-[1]  39 181  25
-[1]  40 181  34
-[1]  41 181  48
-[1]  42 181  31
-[1]  43 181  35
-[1]  44 181  40
-[1]  45 181  46
-[1]  46 181  42
-[1]  47 181  32
-[1]  48 181  32
-[1]  49 181  35
-[1]  50 181  31
-[1]  51 181  32
-[1]  52 181  44
-[1]  53 181  27
-[1]  54 181  44
-[1]  55 181  42
-[1]  56 181  42
-[1]  57 181  46
-[1]  58 181  73
-[1]  59 181  26
-[1]  60 181  37
-[1]  61 181  27
-[1]  62 181  42
-[1]  63 181  46
-[1]  64 181  63
-[1]  65 181  27
-[1]  66 181  36
-[1]  67 181  43
-[1]  68 181  32
-[1]  69 181  56
-[1]  70 181  39
-[1]  71 181  33
-[1]  72 181  28
-[1]  73 181  46
-[1]  74 181  60
-[1]  75 181  46
-[1]  76 181  51
-[1]  77 181  46
-[1]  78 181  41
-[1]  79 181  41
-[1]  80 181  36
-[1]  81 181  31
-[1]  82 181  44
-[1]  83 181  51
-[1]  84 181  44
-[1]  85 181  35
-[1]  86 181  29
-[1]  87 181  40
-[1]  88 181  32
-[1]  89 181  39
-[1]  90 181  40
-[1]  91 181  41
-[1]  92 181  36
-[1]  93 181  43
-[1]  94 181  39
-[1]  95 181  42
-[1]  96 181  39
-[1]  97 181  48
-[1]  98 181  40
-[1]  99 181  32
-[1] 100 181  50
-[1] 101 181  37
-[1] 102 181  30
-[1] 103 181  34
-[1] 104 181  41
-[1] 105 181  27
-[1] 106 181  47
-[1] 107 181  36
-[1] 108 181  32
-[1] 109 181  41
-[1] 110 181  26
-[1] 111 181  56
-[1] 112 181  40
-[1] 113 181  30
-[1] 114 181  45
-[1] 115 181  31
-[1] 116 181  48
-[1] 117 181  40
-[1] 118 181  35
-[1] 119 181  53
-[1] 120 181  38
-[1] 121 181  49
-[1] 122 181  33
-[1] 123 181  45
-[1] 124 181  51
-[1] 125 181  35
-[1] 126 181  31
-[1] 127 181  42
-[1] 128 181  45
-[1] 129 181  53
-[1] 130 181  50
-[1] 131 181  32
-[1] 132 181  43
-[1] 133 181  54
-[1] 134 181  47
-[1] 135 181  25
-[1] 136 181  76
-[1] 137 181  45
-[1] 138 181  32
-[1] 139 181  53
-[1] 140 181  40
-[1] 141 181  39
-[1] 142 181  51
-[1] 143 181  39
-[1] 144 181  33
-[1] 145 181  39
-[1] 146 181  39
-[1] 147 181  40
-[1] 148 181  61
-[1] 149 181  42
-[1] 150 181  69
-[1] 151 181  42
-[1] 152 181  45
-[1] 153 181  62
-[1] 154 181  46
-[1] 155 181  42
-[1] 156 181  44
-[1] 157 181  39
-[1] 158 181  32
-[1] 159 181  39
-[1] 160 181  36
-[1] 161 181  36
-[1] 162 181  57
-[1] 163 181  37
-[1] 164 181  33
-[1] 165 181  28
-[1] 166 181  45
-[1] 167 181  50
-[1] 168 181  43
-[1] 169 181  32
-[1] 170 181  46
-[1] 171 181  79
-[1] 172 181  33
-[1] 173 181  45
-[1] 174 181  37
-[1] 175 181  42
-[1] 176 181  38
-[1] 177 181  61
-[1] 178 181  30
-[1] 179 181  60
-[1] 180 181  39
-[1] 181 181  63
-[1] 182 181  61
-[1] 183 181  34
-[1] 184 181  48
-[1] 185 181  31
-[1] 186 181  63
-[1] 187 181  42
-[1] 188 181  43
-[1] 189 181  48
-[1] 190 181  35
-[1] 191 181  49
-[1] 192 181  52
-[1] 193 181  62
-[1] 194 181  75
-[1] 195 181  45
-[1] 196 181  46
-[1] 197 181  72
-[1] 198 181  53
-[1] 199 181  44
-[1] 200 181  66
-[1]   1 182  40
-[1]   2 182  54
-[1]   3 182  52
-[1]   4 182  31
-[1]   5 182  30
-[1]   6 182  43
-[1]   7 182  31
-[1]   8 182  45
-[1]   9 182  37
-[1]  10 182  41
-[1]  11 182  30
-[1]  12 182  43
-[1]  13 182  53
-[1]  14 182  40
-[1]  15 182  53
-[1]  16 182  33
-[1]  17 182  42
-[1]  18 182  43
-[1]  19 182  42
-[1]  20 182  37
-[1]  21 182  74
-[1]  22 182  43
-[1]  23 182  32
-[1]  24 182  55
-[1]  25 182  39
-[1]  26 182  33
-[1]  27 182  35
-[1]  28 182  59
-[1]  29 182  35
-[1]  30 182  45
-[1]  31 182  44
-[1]  32 182  47
-[1]  33 182  52
-[1]  34 182  45
-[1]  35 182  28
-[1]  36 182  33
-[1]  37 182  26
-[1]  38 182  56
-[1]  39 182  38
-[1]  40 182  39
-[1]  41 182  50
-[1]  42 182  36
-[1]  43 182  35
-[1]  44 182  36
-[1]  45 182  30
-[1]  46 182  34
-[1]  47 182  52
-[1]  48 182  31
-[1]  49 182  30
-[1]  50 182  42
-[1]  51 182  44
-[1]  52 182  46
-[1]  53 182  31
-[1]  54 182  50
-[1]  55 182  41
-[1]  56 182  30
-[1]  57 182  45
-[1]  58 182  28
-[1]  59 182  55
-[1]  60 182  26
-[1]  61 182  41
-[1]  62 182  46
-[1]  63 182  30
-[1]  64 182  34
-[1]  65 182  38
-[1]  66 182  31
-[1]  67 182  46
-[1]  68 182  39
-[1]  69 182  42
-[1]  70 182  46
-[1]  71 182  50
-[1]  72 182  30
-[1]  73 182  45
-[1]  74 182  41
-[1]  75 182  42
-[1]  76 182  29
-[1]  77 182  40
-[1]  78 182  28
-[1]  79 182  35
-[1]  80 182  47
-[1]  81 182  25
-[1]  82 182  38
-[1]  83 182  40
-[1]  84 182  28
-[1]  85 182  38
-[1]  86 182  40
-[1]  87 182  45
-[1]  88 182  37
-[1]  89 182  51
-[1]  90 182  67
-[1]  91 182  37
-[1]  92 182  38
-[1]  93 182  44
-[1]  94 182  60
-[1]  95 182  34
-[1]  96 182  35
-[1]  97 182  34
-[1]  98 182  39
-[1]  99 182  34
-[1] 100 182  37
-[1] 101 182  33
-[1] 102 182  36
-[1] 103 182  25
-[1] 104 182  30
-[1] 105 182  35
-[1] 106 182  30
-[1] 107 182  43
-[1] 108 182  33
-[1] 109 182  42
-[1] 110 182  33
-[1] 111 182  41
-[1] 112 182  64
-[1] 113 182  32
-[1] 114 182  33
-[1] 115 182  52
-[1] 116 182  27
-[1] 117 182  33
-[1] 118 182  34
-[1] 119 182  39
-[1] 120 182  42
-[1] 121 182  33
-[1] 122 182  38
-[1] 123 182  37
-[1] 124 182  33
-[1] 125 182  42
-[1] 126 182  39
-[1] 127 182  38
-[1] 128 182  35
-[1] 129 182  46
-[1] 130 182  33
-[1] 131 182  31
-[1] 132 182  41
-[1] 133 182  34
-[1] 134 182  36
-[1] 135 182  33
-[1] 136 182  45
-[1] 137 182  42
-[1] 138 182  42
-[1] 139 182  50
-[1] 140 182  41
-[1] 141 182  37
-[1] 142 182  27
-[1] 143 182  36
-[1] 144 182  35
-[1] 145 182  38
-[1] 146 182  49
-[1] 147 182  43
-[1] 148 182  34
-[1] 149 182  37
-[1] 150 182  37
-[1] 151 182  61
-[1] 152 182  51
-[1] 153 182  46
-[1] 154 182  50
-[1] 155 182  39
-[1] 156 182  33
-[1] 157 182  41
-[1] 158 182  43
-[1] 159 182  56
-[1] 160 182  27
-[1] 161 182  41
-[1] 162 182  40
-[1] 163 182  39
-[1] 164 182  44
-[1] 165 182  61
-[1] 166 182  37
-[1] 167 182  43
-[1] 168 182  47
-[1] 169 182  61
-[1] 170 182  36
-[1] 171 182  41
-[1] 172 182  45
-[1] 173 182  36
-[1] 174 182  41
-[1] 175 182  41
-[1] 176 182  42
-[1] 177 182  51
-[1] 178 182  31
-[1] 179 182  50
-[1] 180 182  34
-[1] 181 182  49
-[1] 182 182  36
-[1] 183 182  43
-[1] 184 182  52
-[1] 185 182  44
-[1] 186 182  44
-[1] 187 182  42
-[1] 188 182  41
-[1] 189 182  36
-[1] 190 182  41
-[1] 191 182  46
-[1] 192 182  45
-[1] 193 182  75
-[1] 194 182  57
-[1] 195 182  51
-[1] 196 182  37
-[1] 197 182  37
-[1] 198 182  56
-[1] 199 182  46
-[1] 200 182 124
-[1]   1 183  40
-[1]   2 183  50
-[1]   3 183  34
-[1]   4 183  39
-[1]   5 183  29
-[1]   6 183  32
-[1]   7 183  37
-[1]   8 183  48
-[1]   9 183  49
-[1]  10 183  35
-[1]  11 183  51
-[1]  12 183  41
-[1]  13 183  39
-[1]  14 183  38
-[1]  15 183  39
-[1]  16 183  35
-[1]  17 183  38
-[1]  18 183  32
-[1]  19 183  53
-[1]  20 183  42
-[1]  21 183  26
-[1]  22 183  58
-[1]  23 183  26
-[1]  24 183  53
-[1]  25 183  36
-[1]  26 183  57
-[1]  27 183  53
-[1]  28 183  35
-[1]  29 183  56
-[1]  30 183  44
-[1]  31 183  37
-[1]  32 183  42
-[1]  33 183  35
-[1]  34 183  33
-[1]  35 183  41
-[1]  36 183  40
-[1]  37 183  36
-[1]  38 183  36
-[1]  39 183  33
-[1]  40 183  35
-[1]  41 183  32
-[1]  42 183  49
-[1]  43 183  39
-[1]  44 183  30
-[1]  45 183  41
-[1]  46 183  48
-[1]  47 183  41
-[1]  48 183  36
-[1]  49 183  33
-[1]  50 183  32
-[1]  51 183  51
-[1]  52 183  48
-[1]  53 183  35
-[1]  54 183  27
-[1]  55 183  38
-[1]  56 183  39
-[1]  57 183  31
-[1]  58 183  42
-[1]  59 183  47
-[1]  60 183  34
-[1]  61 183  49
-[1]  62 183  26
-[1]  63 183  56
-[1]  64 183  21
-[1]  65 183 119
-[1]  66 183  30
-[1]  67 183  43
-[1]  68 183  44
-[1]  69 183  42
-[1]  70 183  56
-[1]  71 183  30
-[1]  72 183  37
-[1]  73 183  44
-[1]  74 183  49
-[1]  75 183  34
-[1]  76 183  41
-[1]  77 183  38
-[1]  78 183  47
-[1]  79 183  43
-[1]  80 183  35
-[1]  81 183  44
-[1]  82 183  50
-[1]  83 183  35
-[1]  84 183  47
-[1]  85 183  36
-[1]  86 183  56
-[1]  87 183  64
-[1]  88 183  54
-[1]  89 183  33
-[1]  90 183  40
-[1]  91 183  44
-[1]  92 183  45
-[1]  93 183  36
-[1]  94 183  31
-[1]  95 183  43
-[1]  96 183  28
-[1]  97 183  47
-[1]  98 183  39
-[1]  99 183  42
-[1] 100 183  40
-[1] 101 183  47
-[1] 102 183  46
-[1] 103 183  49
-[1] 104 183  36
-[1] 105 183  36
-[1] 106 183  37
-[1] 107 183  75
-[1] 108 183  45
-[1] 109 183  63
-[1] 110 183  48
-[1] 111 183  46
-[1] 112 183  36
-[1] 113 183  56
-[1] 114 183  30
-[1] 115 183  59
-[1] 116 183  32
-[1] 117 183  33
-[1] 118 183  56
-[1] 119 183  39
-[1] 120 183  45
-[1] 121 183  40
-[1] 122 183  80
-[1] 123 183  42
-[1] 124 183  42
-[1] 125 183  30
-[1] 126 183  40
-[1] 127 183  28
-[1] 128 183  28
-[1] 129 183  67
-[1] 130 183  34
-[1] 131 183  45
-[1] 132 183  36
-[1] 133 183  41
-[1] 134 183  37
-[1] 135 183  37
-[1] 136 183  48
-[1] 137 183  41
-[1] 138 183  38
-[1] 139 183  64
-[1] 140 183  36
-[1] 141 183  39
-[1] 142 183  77
-[1] 143 183  28
-[1] 144 183  33
-[1] 145 183  45
-[1] 146 183  43
-[1] 147 183  52
-[1] 148 183  38
-[1] 149 183  27
-[1] 150 183  24
-[1] 151 183  45
-[1] 152 183  45
-[1] 153 183  36
-[1] 154 183  36
-[1] 155 183  43
-[1] 156 183  41
-[1] 157 183  36
-[1] 158 183  39
-[1] 159 183  55
-[1] 160 183  38
-[1] 161 183  31
-[1] 162 183  41
-[1] 163 183  54
-[1] 164 183  41
-[1] 165 183  54
-[1] 166 183  39
-[1] 167 183  48
-[1] 168 183  61
-[1] 169 183  56
-[1] 170 183  33
-[1] 171 183  52
-[1] 172 183  53
-[1] 173 183  46
-[1] 174 183  36
-[1] 175 183  38
-[1] 176 183  43
-[1] 177 183  41
-[1] 178 183  49
-[1] 179 183  51
-[1] 180 183  42
-[1] 181 183  53
-[1] 182 183  34
-[1] 183 183  55
-[1] 184 183  57
-[1] 185 183  32
-[1] 186 183  67
-[1] 187 183  42
-[1] 188 183  54
-[1] 189 183  32
-[1] 190 183  58
-[1] 191 183  38
-[1] 192 183  57
-[1] 193 183  54
-[1] 194 183  53
-[1] 195 183  66
-[1] 196 183  55
-[1] 197 183  57
-[1] 198 183  60
-[1] 199 183  53
-[1] 200 183  51
-[1]   1 184  39
-[1]   2 184  56
-[1]   3 184  61
-[1]   4 184  38
-[1]   5 184  41
-[1]   6 184  31
-[1]   7 184  40
-[1]   8 184  45
-[1]   9 184  48
-[1]  10 184  30
-[1]  11 184  28
-[1]  12 184  36
-[1]  13 184  43
-[1]  14 184  34
-[1]  15 184  33
-[1]  16 184  42
-[1]  17 184  36
-[1]  18 184  38
-[1]  19 184  36
-[1]  20 184  34
-[1]  21 184  53
-[1]  22 184  26
-[1]  23 184  44
-[1]  24 184  47
-[1]  25 184  35
-[1]  26 184  43
-[1]  27 184  33
-[1]  28 184  39
-[1]  29 184  34
-[1]  30 184  30
-[1]  31 184  32
-[1]  32 184  39
-[1]  33 184  47
-[1]  34 184  37
-[1]  35 184  34
-[1]  36 184  41
-[1]  37 184  42
-[1]  38 184  38
-[1]  39 184  37
-[1]  40 184  35
-[1]  41 184  34
-[1]  42 184  36
-[1]  43 184  50
-[1]  44 184  36
-[1]  45 184  39
-[1]  46 184  41
-[1]  47 184  44
-[1]  48 184  41
-[1]  49 184  48
-[1]  50 184  48
-[1]  51 184  47
-[1]  52 184  29
-[1]  53 184  44
-[1]  54 184  37
-[1]  55 184  34
-[1]  56 184  43
-[1]  57 184  32
-[1]  58 184  35
-[1]  59 184  31
-[1]  60 184  42
-[1]  61 184  45
-[1]  62 184  34
-[1]  63 184  36
-[1]  64 184  33
-[1]  65 184  41
-[1]  66 184  33
-[1]  67 184  40
-[1]  68 184  35
-[1]  69 184  52
-[1]  70 184  31
-[1]  71 184  62
-[1]  72 184  49
-[1]  73 184  62
-[1]  74 184  41
-[1]  75 184  30
-[1]  76 184  47
-[1]  77 184  37
-[1]  78 184  28
-[1]  79 184  55
-[1]  80 184  58
-[1]  81 184  35
-[1]  82 184  31
-[1]  83 184  48
-[1]  84 184  49
-[1]  85 184  32
-[1]  86 184  38
-[1]  87 184  47
-[1]  88 184  33
-[1]  89 184  58
-[1]  90 184  31
-[1]  91 184  41
-[1]  92 184  42
-[1]  93 184  39
-[1]  94 184  44
-[1]  95 184  38
-[1]  96 184  39
-[1]  97 184  37
-[1]  98 184  34
-[1]  99 184  37
-[1] 100 184  36
-[1] 101 184  33
-[1] 102 184  36
-[1] 103 184  27
-[1] 104 184  48
-[1] 105 184  48
-[1] 106 184  48
-[1] 107 184  34
-[1] 108 184  34
-[1] 109 184  32
-[1] 110 184  38
-[1] 111 184  33
-[1] 112 184  46
-[1] 113 184  35
-[1] 114 184  24
-[1] 115 184  41
-[1] 116 184  36
-[1] 117 184  45
-[1] 118 184  49
-[1] 119 184  37
-[1] 120 184  40
-[1] 121 184  32
-[1] 122 184  36
-[1] 123 184  32
-[1] 124 184  43
-[1] 125 184  35
-[1] 126 184  35
-[1] 127 184  35
-[1] 128 184  34
-[1] 129 184  39
-[1] 130 184  34
-[1] 131 184  30
-[1] 132 184  43
-[1] 133 184  32
-[1] 134 184  56
-[1] 135 184  30
-[1] 136 184  49
-[1] 137 184  40
-[1] 138 184  28
-[1] 139 184  38
-[1] 140 184  36
-[1] 141 184  38
-[1] 142 184  35
-[1] 143 184  59
-[1] 144 184  36
-[1] 145 184  36
-[1] 146 184  43
-[1] 147 184  41
-[1] 148 184  32
-[1] 149 184  39
-[1] 150 184  40
-[1] 151 184  41
-[1] 152 184  38
-[1] 153 184  37
-[1] 154 184  38
-[1] 155 184  45
-[1] 156 184  55
-[1] 157 184  47
-[1] 158 184  66
-[1] 159 184  47
-[1] 160 184  36
-[1] 161 184  43
-[1] 162 184  42
-[1] 163 184  39
-[1] 164 184  38
-[1] 165 184  34
-[1] 166 184  48
-[1] 167 184  39
-[1] 168 184  72
-[1] 169 184  27
-[1] 170 184  49
-[1] 171 184  53
-[1] 172 184  58
-[1] 173 184  34
-[1] 174 184  34
-[1] 175 184  34
-[1] 176 184  29
-[1] 177 184  89
-[1] 178 184  69
-[1] 179 184  70
-[1] 180 184  44
-[1] 181 184  45
-[1] 182 184  48
-[1] 183 184  47
-[1] 184 184  41
-[1] 185 184  58
-[1] 186 184  42
-[1] 187 184  44
-[1] 188 184  38
-[1] 189 184  43
-[1] 190 184  56
-[1] 191 184  40
-[1] 192 184  49
-[1] 193 184  50
-[1] 194 184  60
-[1] 195 184  50
-[1] 196 184  57
-[1] 197 184  55
-[1] 198 184  53
-[1] 199 184  55
-[1] 200 184  81
-[1]   1 185  41
-[1]   2 185  35
-[1]   3 185  25
-[1]   4 185  42
-[1]   5 185  35
-[1]   6 185  45
-[1]   7 185  41
-[1]   8 185  39
-[1]   9 185  35
-[1]  10 185  36
-[1]  11 185  25
-[1]  12 185  30
-[1]  13 185  47
-[1]  14 185  32
-[1]  15 185  33
-[1]  16 185  42
-[1]  17 185  51
-[1]  18 185  45
-[1]  19 185  46
-[1]  20 185  37
-[1]  21 185  32
-[1]  22 185  47
-[1]  23 185  37
-[1]  24 185  68
-[1]  25 185  38
-[1]  26 185  37
-[1]  27 185  45
-[1]  28 185  33
-[1]  29 185  46
-[1]  30 185  38
-[1]  31 185  35
-[1]  32 185  31
-[1]  33 185  52
-[1]  34 185  31
-[1]  35 185  49
-[1]  36 185  47
-[1]  37 185  33
-[1]  38 185  51
-[1]  39 185  32
-[1]  40 185  39
-[1]  41 185  30
-[1]  42 185  41
-[1]  43 185  31
-[1]  44 185  27
-[1]  45 185  36
-[1]  46 185  35
-[1]  47 185  52
-[1]  48 185  37
-[1]  49 185  44
-[1]  50 185  38
-[1]  51 185  27
-[1]  52 185  35
-[1]  53 185  34
-[1]  54 185  41
-[1]  55 185  33
-[1]  56 185  47
-[1]  57 185  31
-[1]  58 185  41
-[1]  59 185  33
-[1]  60 185  42
-[1]  61 185  32
-[1]  62 185  33
-[1]  63 185  43
-[1]  64 185  36
-[1]  65 185  30
-[1]  66 185  39
-[1]  67 185  43
-[1]  68 185  32
-[1]  69 185  43
-[1]  70 185  38
-[1]  71 185  36
-[1]  72 185  56
-[1]  73 185  47
-[1]  74 185  34
-[1]  75 185  38
-[1]  76 185  43
-[1]  77 185  30
-[1]  78 185  56
-[1]  79 185  43
-[1]  80 185  31
-[1]  81 185  47
-[1]  82 185  48
-[1]  83 185  35
-[1]  84 185  33
-[1]  85 185  31
-[1]  86 185  48
-[1]  87 185  38
-[1]  88 185  35
-[1]  89 185  54
-[1]  90 185  41
-[1]  91 185  94
-[1]  92 185  37
-[1]  93 185  48
-[1]  94 185  32
-[1]  95 185  34
-[1]  96 185  29
-[1]  97 185  40
-[1]  98 185  39
-[1]  99 185  40
-[1] 100 185  28
-[1] 101 185  37
-[1] 102 185  41
-[1] 103 185  46
-[1] 104 185  33
-[1] 105 185  38
-[1] 106 185  39
-[1] 107 185  48
-[1] 108 185  33
-[1] 109 185  41
-[1] 110 185  34
-[1] 111 185  55
-[1] 112 185  24
-[1] 113 185  39
-[1] 114 185  34
-[1] 115 185  42
-[1] 116 185  51
-[1] 117 185  45
-[1] 118 185  39
-[1] 119 185  30
-[1] 120 185  41
-[1] 121 185  38
-[1] 122 185  53
-[1] 123 185  36
-[1] 124 185  33
-[1] 125 185  39
-[1] 126 185  40
-[1] 127 185  34
-[1] 128 185  43
-[1] 129 185  61
-[1] 130 185  38
-[1] 131 185  41
-[1] 132 185  56
-[1] 133 185  46
-[1] 134 185  46
-[1] 135 185  36
-[1] 136 185  33
-[1] 137 185  40
-[1] 138 185  35
-[1] 139 185  30
-[1] 140 185  43
-[1] 141 185  40
-[1] 142 185  41
-[1] 143 185  29
-[1] 144 185  36
-[1] 145 185  42
-[1] 146 185  53
-[1] 147 185  45
-[1] 148 185  30
-[1] 149 185  46
-[1] 150 185  32
-[1] 151 185  50
-[1] 152 185  31
-[1] 153 185  34
-[1] 154 185  37
-[1] 155 185  30
-[1] 156 185  61
-[1] 157 185  29
-[1] 158 185  42
-[1] 159 185  37
-[1] 160 185  37
-[1] 161 185  56
-[1] 162 185  38
-[1] 163 185  38
-[1] 164 185  44
-[1] 165 185  42
-[1] 166 185  35
-[1] 167 185  48
-[1] 168 185  44
-[1] 169 185  53
-[1] 170 185  35
-[1] 171 185  46
-[1] 172 185  43
-[1] 173 185  86
-[1] 174 185  40
-[1] 175 185  63
-[1] 176 185  39
-[1] 177 185  40
-[1] 178 185  43
-[1] 179 185  41
-[1] 180 185  54
-[1] 181 185  34
-[1] 182 185  42
-[1] 183 185  41
-[1] 184 185  42
-[1] 185 185  34
-[1] 186 185  51
-[1] 187 185  41
-[1] 188 185  42
-[1] 189 185  42
-[1] 190 185  42
-[1] 191 185  75
-[1] 192 185  45
-[1] 193 185  69
-[1] 194 185  39
-[1] 195 185  72
-[1] 196 185  56
-[1] 197 185  45
-[1] 198 185  32
-[1] 199 185  68
-[1] 200 185 120
-[1]   1 186  38
-[1]   2 186  34
-[1]   3 186  27
-[1]   4 186  34
-[1]   5 186  29
-[1]   6 186  46
-[1]   7 186  30
-[1]   8 186  45
-[1]   9 186  55
-[1]  10 186  47
-[1]  11 186  53
-[1]  12 186  39
-[1]  13 186  35
-[1]  14 186  62
-[1]  15 186  39
-[1]  16 186  34
-[1]  17 186  36
-[1]  18 186  72
-[1]  19 186  28
-[1]  20 186  32
-[1]  21 186  61
-[1]  22 186  39
-[1]  23 186  60
-[1]  24 186  39
-[1]  25 186  32
-[1]  26 186  35
-[1]  27 186  37
-[1]  28 186  52
-[1]  29 186  39
-[1]  30 186  30
-[1]  31 186  39
-[1]  32 186  32
-[1]  33 186  47
-[1]  34 186  46
-[1]  35 186  44
-[1]  36 186  42
-[1]  37 186  35
-[1]  38 186  37
-[1]  39 186  39
-[1]  40 186  43
-[1]  41 186  39
-[1]  42 186  45
-[1]  43 186  40
-[1]  44 186  29
-[1]  45 186  35
-[1]  46 186  66
-[1]  47 186  40
-[1]  48 186  36
-[1]  49 186  41
-[1]  50 186  36
-[1]  51 186  26
-[1]  52 186  50
-[1]  53 186  29
-[1]  54 186  34
-[1]  55 186  36
-[1]  56 186  35
-[1]  57 186  34
-[1]  58 186  37
-[1]  59 186  31
-[1]  60 186  44
-[1]  61 186  57
-[1]  62 186  31
-[1]  63 186  46
-[1]  64 186  37
-[1]  65 186  36
-[1]  66 186  48
-[1]  67 186  51
-[1]  68 186  39
-[1]  69 186  43
-[1]  70 186  40
-[1]  71 186  42
-[1]  72 186  39
-[1]  73 186  40
-[1]  74 186  52
-[1]  75 186  51
-[1]  76 186  43
-[1]  77 186  35
-[1]  78 186  47
-[1]  79 186  69
-[1]  80 186  38
-[1]  81 186  43
-[1]  82 186  45
-[1]  83 186  36
-[1]  84 186  69
-[1]  85 186  58
-[1]  86 186  56
-[1]  87 186  36
-[1]  88 186  41
-[1]  89 186  40
-[1]  90 186  33
-[1]  91 186  35
-[1]  92 186  46
-[1]  93 186  69
-[1]  94 186  23
-[1]  95 186  54
-[1]  96 186  34
-[1]  97 186  49
-[1]  98 186  24
-[1]  99 186  63
-[1] 100 186  36
-[1] 101 186  37
-[1] 102 186  45
-[1] 103 186  42
-[1] 104 186  41
-[1] 105 186  40
-[1] 106 186  38
-[1] 107 186  49
-[1] 108 186  45
-[1] 109 186  35
-[1] 110 186  30
-[1] 111 186  33
-[1] 112 186  26
-[1] 113 186  41
-[1] 114 186  41
-[1] 115 186  50
-[1] 116 186  34
-[1] 117 186  49
-[1] 118 186  48
-[1] 119 186  43
-[1] 120 186  38
-[1] 121 186  36
-[1] 122 186  50
-[1] 123 186  39
-[1] 124 186  37
-[1] 125 186  53
-[1] 126 186  43
-[1] 127 186  36
-[1] 128 186  41
-[1] 129 186  51
-[1] 130 186  40
-[1] 131 186  39
-[1] 132 186  36
-[1] 133 186  35
-[1] 134 186  44
-[1] 135 186  45
-[1] 136 186  42
-[1] 137 186  44
-[1] 138 186  44
-[1] 139 186  34
-[1] 140 186  43
-[1] 141 186  34
-[1] 142 186  47
-[1] 143 186  31
-[1] 144 186  34
-[1] 145 186  31
-[1] 146 186  42
-[1] 147 186  42
-[1] 148 186  37
-[1] 149 186  31
-[1] 150 186  40
-[1] 151 186  39
-[1] 152 186  39
-[1] 153 186  44
-[1] 154 186  38
-[1] 155 186  39
-[1] 156 186  43
-[1] 157 186  41
-[1] 158 186  35
-[1] 159 186  40
-[1] 160 186  40
-[1] 161 186  35
-[1] 162 186  34
-[1] 163 186  29
-[1] 164 186  33
-[1] 165 186  46
-[1] 166 186  38
-[1] 167 186  57
-[1] 168 186  39
-[1] 169 186  40
-[1] 170 186  47
-[1] 171 186  45
-[1] 172 186  40
-[1] 173 186  36
-[1] 174 186  55
-[1] 175 186  56
-[1] 176 186  55
-[1] 177 186  75
-[1] 178 186  34
-[1] 179 186  43
-[1] 180 186  40
-[1] 181 186  62
-[1] 182 186  75
-[1] 183 186  41
-[1] 184 186  47
-[1] 185 186  32
-[1] 186 186  40
-[1] 187 186  51
-[1] 188 186  55
-[1] 189 186  48
-[1] 190 186  47
-[1] 191 186  66
-[1] 192 186  42
-[1] 193 186  58
-[1] 194 186  54
-[1] 195 186  47
-[1] 196 186  64
-[1] 197 186  55
-[1] 198 186  46
-[1] 199 186  47
-[1] 200 186  69
-[1]   1 187  35
-[1]   2 187  43
-[1]   3 187  30
-[1]   4 187  73
-[1]   5 187  25
-[1]   6 187  50
-[1]   7 187  58
-[1]   8 187  48
-[1]   9 187  41
-[1]  10 187  53
-[1]  11 187  31
-[1]  12 187  39
-[1]  13 187  58
-[1]  14 187  30
-[1]  15 187  42
-[1]  16 187  37
-[1]  17 187  41
-[1]  18 187  46
-[1]  19 187  33
-[1]  20 187  45
-[1]  21 187  25
-[1]  22 187  38
-[1]  23 187  46
-[1]  24 187  40
-[1]  25 187  37
-[1]  26 187  33
-[1]  27 187  26
-[1]  28 187  35
-[1]  29 187  42
-[1]  30 187  33
-[1]  31 187  51
-[1]  32 187  32
-[1]  33 187  39
-[1]  34 187  34
-[1]  35 187  34
-[1]  36 187  41
-[1]  37 187  40
-[1]  38 187  40
-[1]  39 187  36
-[1]  40 187  36
-[1]  41 187  38
-[1]  42 187  32
-[1]  43 187  36
-[1]  44 187  34
-[1]  45 187  31
-[1]  46 187  51
-[1]  47 187  27
-[1]  48 187  45
-[1]  49 187  30
-[1]  50 187  22
-[1]  51 187  41
-[1]  52 187  60
-[1]  53 187  41
-[1]  54 187  31
-[1]  55 187  39
-[1]  56 187  38
-[1]  57 187  26
-[1]  58 187  33
-[1]  59 187  32
-[1]  60 187  35
-[1]  61 187  38
-[1]  62 187  41
-[1]  63 187  35
-[1]  64 187  44
-[1]  65 187  27
-[1]  66 187  32
-[1]  67 187  43
-[1]  68 187  40
-[1]  69 187  39
-[1]  70 187  44
-[1]  71 187  57
-[1]  72 187  40
-[1]  73 187  43
-[1]  74 187  30
-[1]  75 187  45
-[1]  76 187  45
-[1]  77 187  38
-[1]  78 187  39
-[1]  79 187  37
-[1]  80 187  40
-[1]  81 187  42
-[1]  82 187  38
-[1]  83 187  56
-[1]  84 187  40
-[1]  85 187  55
-[1]  86 187  50
-[1]  87 187  52
-[1]  88 187  62
-[1]  89 187  48
-[1]  90 187  36
-[1]  91 187  36
-[1]  92 187  42
-[1]  93 187  27
-[1]  94 187  50
-[1]  95 187  37
-[1]  96 187  62
-[1]  97 187  26
-[1]  98 187  37
-[1]  99 187  58
-[1] 100 187  35
-[1] 101 187  35
-[1] 102 187  37
-[1] 103 187  45
-[1] 104 187  39
-[1] 105 187  50
-[1] 106 187  53
-[1] 107 187  33
-[1] 108 187  44
-[1] 109 187  43
-[1] 110 187  39
-[1] 111 187  56
-[1] 112 187  45
-[1] 113 187  78
-[1] 114 187  29
-[1] 115 187  40
-[1] 116 187  51
-[1] 117 187  53
-[1] 118 187  37
-[1] 119 187  46
-[1] 120 187  54
-[1] 121 187  45
-[1] 122 187  36
-[1] 123 187  41
-[1] 124 187  56
-[1] 125 187  26
-[1] 126 187  31
-[1] 127 187  42
-[1] 128 187  49
-[1] 129 187  55
-[1] 130 187  43
-[1] 131 187  40
-[1] 132 187  48
-[1] 133 187  45
-[1] 134 187  35
-[1] 135 187  34
-[1] 136 187  26
-[1] 137 187  34
-[1] 138 187  36
-[1] 139 187  35
-[1] 140 187  40
-[1] 141 187  36
-[1] 142 187  39
-[1] 143 187  36
-[1] 144 187  45
-[1] 145 187  43
-[1] 146 187  44
-[1] 147 187  55
-[1] 148 187  43
-[1] 149 187  41
-[1] 150 187  37
-[1] 151 187  46
-[1] 152 187  36
-[1] 153 187  40
-[1] 154 187  31
-[1] 155 187  33
-[1] 156 187  40
-[1] 157 187  39
-[1] 158 187  34
-[1] 159 187  45
-[1] 160 187  39
-[1] 161 187  46
-[1] 162 187  46
-[1] 163 187  31
-[1] 164 187  49
-[1] 165 187  42
-[1] 166 187  37
-[1] 167 187  60
-[1] 168 187  51
-[1] 169 187  36
-[1] 170 187  45
-[1] 171 187  39
-[1] 172 187  35
-[1] 173 187  55
-[1] 174 187  30
-[1] 175 187  65
-[1] 176 187  40
-[1] 177 187  58
-[1] 178 187  42
-[1] 179 187  49
-[1] 180 187  38
-[1] 181 187  39
-[1] 182 187  48
-[1] 183 187  41
-[1] 184 187  40
-[1] 185 187  37
-[1] 186 187  67
-[1] 187 187  37
-[1] 188 187  47
-[1] 189 187  49
-[1] 190 187  36
-[1] 191 187  46
-[1] 192 187  40
-[1] 193 187  47
-[1] 194 187  32
-[1] 195 187  44
-[1] 196 187  29
-[1] 197 187  92
-[1] 198 187  57
-[1] 199 187  35
-[1] 200 187  53
-[1]   1 188  40
-[1]   2 188  39
-[1]   3 188  45
-[1]   4 188  35
-[1]   5 188  47
-[1]   6 188  46
-[1]   7 188  32
-[1]   8 188  37
-[1]   9 188  43
-[1]  10 188  36
-[1]  11 188  43
-[1]  12 188  52
-[1]  13 188  29
-[1]  14 188  38
-[1]  15 188  51
-[1]  16 188  26
-[1]  17 188  59
-[1]  18 188  36
-[1]  19 188  37
-[1]  20 188  30
-[1]  21 188  43
-[1]  22 188  35
-[1]  23 188  31
-[1]  24 188  38
-[1]  25 188  28
-[1]  26 188  33
-[1]  27 188  34
-[1]  28 188  64
-[1]  29 188  37
-[1]  30 188  35
-[1]  31 188  43
-[1]  32 188  42
-[1]  33 188  39
-[1]  34 188  34
-[1]  35 188  43
-[1]  36 188  37
-[1]  37 188  33
-[1]  38 188  46
-[1]  39 188  41
-[1]  40 188  58
-[1]  41 188  42
-[1]  42 188  43
-[1]  43 188  51
-[1]  44 188  38
-[1]  45 188  52
-[1]  46 188  54
-[1]  47 188  36
-[1]  48 188  52
-[1]  49 188  29
-[1]  50 188  54
-[1]  51 188  41
-[1]  52 188  43
-[1]  53 188  22
-[1]  54 188  40
-[1]  55 188  39
-[1]  56 188  45
-[1]  57 188  38
-[1]  58 188  37
-[1]  59 188  43
-[1]  60 188  34
-[1]  61 188  29
-[1]  62 188  36
-[1]  63 188  29
-[1]  64 188  44
-[1]  65 188  31
-[1]  66 188  34
-[1]  67 188  27
-[1]  68 188  33
-[1]  69 188  34
-[1]  70 188  35
-[1]  71 188  28
-[1]  72 188  36
-[1]  73 188  33
-[1]  74 188  31
-[1]  75 188  33
-[1]  76 188  46
-[1]  77 188  29
-[1]  78 188  44
-[1]  79 188  26
-[1]  80 188  45
-[1]  81 188  55
-[1]  82 188  34
-[1]  83 188  42
-[1]  84 188  60
-[1]  85 188  40
-[1]  86 188  33
-[1]  87 188  44
-[1]  88 188  28
-[1]  89 188  53
-[1]  90 188  33
-[1]  91 188  36
-[1]  92 188  40
-[1]  93 188  40
-[1]  94 188  44
-[1]  95 188  33
-[1]  96 188  37
-[1]  97 188  33
-[1]  98 188  39
-[1]  99 188  41
-[1] 100 188  35
-[1] 101 188  35
-[1] 102 188  42
-[1] 103 188  36
-[1] 104 188  57
-[1] 105 188  36
-[1] 106 188  36
-[1] 107 188  33
-[1] 108 188  35
-[1] 109 188  51
-[1] 110 188  59
-[1] 111 188  45
-[1] 112 188  43
-[1] 113 188  39
-[1] 114 188  42
-[1] 115 188  36
-[1] 116 188  45
-[1] 117 188  55
-[1] 118 188  45
-[1] 119 188  50
-[1] 120 188  49
-[1] 121 188  38
-[1] 122 188  45
-[1] 123 188  40
-[1] 124 188  40
-[1] 125 188  39
-[1] 126 188  41
-[1] 127 188  41
-[1] 128 188  42
-[1] 129 188  30
-[1] 130 188  31
-[1] 131 188  31
-[1] 132 188  30
-[1] 133 188  47
-[1] 134 188  39
-[1] 135 188  28
-[1] 136 188  45
-[1] 137 188  29
-[1] 138 188  50
-[1] 139 188  42
-[1] 140 188  41
-[1] 141 188  38
-[1] 142 188  47
-[1] 143 188  35
-[1] 144 188  34
-[1] 145 188  27
-[1] 146 188  46
-[1] 147 188  49
-[1] 148 188  35
-[1] 149 188  48
-[1] 150 188  30
-[1] 151 188  29
-[1] 152 188  42
-[1] 153 188  49
-[1] 154 188  39
-[1] 155 188  54
-[1] 156 188  37
-[1] 157 188  40
-[1] 158 188  43
-[1] 159 188  33
-[1] 160 188  30
-[1] 161 188  30
-[1] 162 188  61
-[1] 163 188  38
-[1] 164 188  35
-[1] 165 188  35
-[1] 166 188  35
-[1] 167 188  32
-[1] 168 188  35
-[1] 169 188  34
-[1] 170 188  49
-[1] 171 188  44
-[1] 172 188  48
-[1] 173 188  43
-[1] 174 188  41
-[1] 175 188  30
-[1] 176 188  38
-[1] 177 188  72
-[1] 178 188  40
-[1] 179 188  35
-[1] 180 188  39
-[1] 181 188  47
-[1] 182 188  43
-[1] 183 188  61
-[1] 184 188  46
-[1] 185 188  77
-[1] 186 188  61
-[1] 187 188  60
-[1] 188 188  56
-[1] 189 188  70
-[1] 190 188  36
-[1] 191 188  74
-[1] 192 188  57
-[1] 193 188  53
-[1] 194 188  56
-[1] 195 188  39
-[1] 196 188  36
-[1] 197 188  52
-[1] 198 188  72
-[1] 199 188  42
-[1] 200 188  67
-[1]   1 189  42
-[1]   2 189  60
-[1]   3 189  42
-[1]   4 189  45
-[1]   5 189  42
-[1]   6 189  43
-[1]   7 189  27
-[1]   8 189  49
-[1]   9 189  42
-[1]  10 189  34
-[1]  11 189  39
-[1]  12 189  34
-[1]  13 189  43
-[1]  14 189  36
-[1]  15 189  29
-[1]  16 189  36
-[1]  17 189  33
-[1]  18 189  63
-[1]  19 189  48
-[1]  20 189  53
-[1]  21 189  42
-[1]  22 189  35
-[1]  23 189  34
-[1]  24 189  45
-[1]  25 189  38
-[1]  26 189  35
-[1]  27 189  37
-[1]  28 189  35
-[1]  29 189  47
-[1]  30 189  34
-[1]  31 189  46
-[1]  32 189  52
-[1]  33 189  57
-[1]  34 189  53
-[1]  35 189  30
-[1]  36 189  31
-[1]  37 189  40
-[1]  38 189  50
-[1]  39 189  52
-[1]  40 189  36
-[1]  41 189  38
-[1]  42 189  36
-[1]  43 189  38
-[1]  44 189  42
-[1]  45 189  42
-[1]  46 189  61
-[1]  47 189  42
-[1]  48 189  39
-[1]  49 189  53
-[1]  50 189  38
-[1]  51 189  49
-[1]  52 189  37
-[1]  53 189  31
-[1]  54 189  78
-[1]  55 189  36
-[1]  56 189  31
-[1]  57 189  43
-[1]  58 189  33
-[1]  59 189  44
-[1]  60 189  30
-[1]  61 189  29
-[1]  62 189  42
-[1]  63 189  43
-[1]  64 189  34
-[1]  65 189  47
-[1]  66 189  40
-[1]  67 189  29
-[1]  68 189  35
-[1]  69 189  36
-[1]  70 189  33
-[1]  71 189  26
-[1]  72 189  56
-[1]  73 189  69
-[1]  74 189  31
-[1]  75 189  34
-[1]  76 189  35
-[1]  77 189  47
-[1]  78 189  48
-[1]  79 189  46
-[1]  80 189  45
-[1]  81 189  27
-[1]  82 189  43
-[1]  83 189  46
-[1]  84 189  47
-[1]  85 189  27
-[1]  86 189  42
-[1]  87 189  32
-[1]  88 189  45
-[1]  89 189  54
-[1]  90 189  48
-[1]  91 189  81
-[1]  92 189  34
-[1]  93 189  44
-[1]  94 189  46
-[1]  95 189  47
-[1]  96 189  34
-[1]  97 189  28
-[1]  98 189  49
-[1]  99 189  48
-[1] 100 189  34
-[1] 101 189  36
-[1] 102 189  35
-[1] 103 189  43
-[1] 104 189  35
-[1] 105 189  53
-[1] 106 189  37
-[1] 107 189  35
-[1] 108 189  38
-[1] 109 189  45
-[1] 110 189  30
-[1] 111 189  45
-[1] 112 189  55
-[1] 113 189  42
-[1] 114 189  44
-[1] 115 189  39
-[1] 116 189  31
-[1] 117 189  48
-[1] 118 189  31
-[1] 119 189  38
-[1] 120 189  30
-[1] 121 189  44
-[1] 122 189  38
-[1] 123 189  38
-[1] 124 189  27
-[1] 125 189  42
-[1] 126 189  38
-[1] 127 189  65
-[1] 128 189  63
-[1] 129 189  25
-[1] 130 189  52
-[1] 131 189  38
-[1] 132 189  49
-[1] 133 189  37
-[1] 134 189  52
-[1] 135 189  28
-[1] 136 189  38
-[1] 137 189  49
-[1] 138 189  54
-[1] 139 189  41
-[1] 140 189  38
-[1] 141 189  40
-[1] 142 189  33
-[1] 143 189  35
-[1] 144 189  46
-[1] 145 189  48
-[1] 146 189  35
-[1] 147 189  29
-[1] 148 189  40
-[1] 149 189  36
-[1] 150 189  35
-[1] 151 189  35
-[1] 152 189  29
-[1] 153 189  33
-[1] 154 189  38
-[1] 155 189  30
-[1] 156 189  37
-[1] 157 189  46
-[1] 158 189  58
-[1] 159 189  43
-[1] 160 189  28
-[1] 161 189  34
-[1] 162 189  38
-[1] 163 189  49
-[1] 164 189  29
-[1] 165 189  64
-[1] 166 189  46
-[1] 167 189  30
-[1] 168 189  60
-[1] 169 189  48
-[1] 170 189  41
-[1] 171 189  32
-[1] 172 189  30
-[1] 173 189  37
-[1] 174 189  45
-[1] 175 189  48
-[1] 176 189  65
-[1] 177 189  46
-[1] 178 189  55
-[1] 179 189  35
-[1] 180 189  37
-[1] 181 189  64
-[1] 182 189  38
-[1] 183 189  37
-[1] 184 189  39
-[1] 185 189  58
-[1] 186 189  46
-[1] 187 189  56
-[1] 188 189  60
-[1] 189 189  52
-[1] 190 189  34
-[1] 191 189  45
-[1] 192 189  33
-[1] 193 189  36
-[1] 194 189  93
-[1] 195 189  57
-[1] 196 189  40
-[1] 197 189  53
-[1] 198 189  60
-[1] 199 189  41
-[1] 200 189  69
-[1]   1 190  45
-[1]   2 190  37
-[1]   3 190  40
-[1]   4 190  43
-[1]   5 190  44
-[1]   6 190  24
-[1]   7 190  31
-[1]   8 190  36
-[1]   9 190  52
-[1]  10 190  31
-[1]  11 190  54
-[1]  12 190  26
-[1]  13 190  41
-[1]  14 190  31
-[1]  15 190  53
-[1]  16 190  47
-[1]  17 190  58
-[1]  18 190  50
-[1]  19 190  30
-[1]  20 190  39
-[1]  21 190  34
-[1]  22 190  33
-[1]  23 190  37
-[1]  24 190  50
-[1]  25 190  46
-[1]  26 190  35
-[1]  27 190  29
-[1]  28 190  32
-[1]  29 190  31
-[1]  30 190  28
-[1]  31 190  37
-[1]  32 190  41
-[1]  33 190  40
-[1]  34 190  39
-[1]  35 190  41
-[1]  36 190  33
-[1]  37 190  45
-[1]  38 190  45
-[1]  39 190  40
-[1]  40 190  38
-[1]  41 190  43
-[1]  42 190  51
-[1]  43 190  37
-[1]  44 190  44
-[1]  45 190  47
-[1]  46 190  42
-[1]  47 190  41
-[1]  48 190  31
-[1]  49 190  50
-[1]  50 190  38
-[1]  51 190  37
-[1]  52 190  47
-[1]  53 190  36
-[1]  54 190  39
-[1]  55 190  29
-[1]  56 190  44
-[1]  57 190  40
-[1]  58 190  38
-[1]  59 190  38
-[1]  60 190  34
-[1]  61 190  34
-[1]  62 190  43
-[1]  63 190  30
-[1]  64 190  45
-[1]  65 190  37
-[1]  66 190  26
-[1]  67 190  33
-[1]  68 190  43
-[1]  69 190  32
-[1]  70 190  47
-[1]  71 190  30
-[1]  72 190  31
-[1]  73 190  27
-[1]  74 190  40
-[1]  75 190  54
-[1]  76 190  37
-[1]  77 190  31
-[1]  78 190  46
-[1]  79 190  33
-[1]  80 190  32
-[1]  81 190  40
-[1]  82 190  41
-[1]  83 190  51
-[1]  84 190  42
-[1]  85 190  39
-[1]  86 190  45
-[1]  87 190  26
-[1]  88 190  43
-[1]  89 190  43
-[1]  90 190  38
-[1]  91 190  38
-[1]  92 190  59
-[1]  93 190  40
-[1]  94 190  38
-[1]  95 190  48
-[1]  96 190  50
-[1]  97 190  43
-[1]  98 190  37
-[1]  99 190  46
-[1] 100 190  33
-[1] 101 190  56
-[1] 102 190  45
-[1] 103 190  36
-[1] 104 190  37
-[1] 105 190  42
-[1] 106 190  52
-[1] 107 190  65
-[1] 108 190  35
-[1] 109 190  61
-[1] 110 190  38
-[1] 111 190  41
-[1] 112 190  30
-[1] 113 190  49
-[1] 114 190  30
-[1] 115 190  40
-[1] 116 190  27
-[1] 117 190  35
-[1] 118 190  43
-[1] 119 190  32
-[1] 120 190  34
-[1] 121 190  49
-[1] 122 190  31
-[1] 123 190  82
-[1] 124 190  53
-[1] 125 190  39
-[1] 126 190  33
-[1] 127 190  71
-[1] 128 190  36
-[1] 129 190  35
-[1] 130 190  43
-[1] 131 190  27
-[1] 132 190  30
-[1] 133 190  59
-[1] 134 190  31
-[1] 135 190  36
-[1] 136 190  33
-[1] 137 190  34
-[1] 138 190  31
-[1] 139 190  47
-[1] 140 190  44
-[1] 141 190  24
-[1] 142 190  32
-[1] 143 190  49
-[1] 144 190  33
-[1] 145 190  29
-[1] 146 190  40
-[1] 147 190  57
-[1] 148 190  33
-[1] 149 190  54
-[1] 150 190  34
-[1] 151 190  35
-[1] 152 190  45
-[1] 153 190  42
-[1] 154 190  43
-[1] 155 190  32
-[1] 156 190  44
-[1] 157 190  47
-[1] 158 190  45
-[1] 159 190  39
-[1] 160 190  42
-[1] 161 190  37
-[1] 162 190  34
-[1] 163 190  43
-[1] 164 190  38
-[1] 165 190  41
-[1] 166 190  48
-[1] 167 190  40
-[1] 168 190  40
-[1] 169 190  46
-[1] 170 190  35
-[1] 171 190  28
-[1] 172 190  34
-[1] 173 190  51
-[1] 174 190  47
-[1] 175 190  44
-[1] 176 190  47
-[1] 177 190  52
-[1] 178 190  65
-[1] 179 190  55
-[1] 180 190  33
-[1] 181 190  37
-[1] 182 190  69
-[1] 183 190  48
-[1] 184 190  50
-[1] 185 190  28
-[1] 186 190  49
-[1] 187 190  48
-[1] 188 190  57
-[1] 189 190  54
-[1] 190 190  51
-[1] 191 190  46
-[1] 192 190  66
-[1] 193 190  38
-[1] 194 190  39
-[1] 195 190  50
-[1] 196 190  64
-[1] 197 190  61
-[1] 198 190  85
-[1] 199 190  55
-[1] 200 190  44
-[1]   1 191  33
-[1]   2 191  35
-[1]   3 191  36
-[1]   4 191  38
-[1]   5 191  55
-[1]   6 191  36
-[1]   7 191  37
-[1]   8 191  43
-[1]   9 191  41
-[1]  10 191  30
-[1]  11 191  52
-[1]  12 191  47
-[1]  13 191  34
-[1]  14 191  39
-[1]  15 191  46
-[1]  16 191  41
-[1]  17 191  31
-[1]  18 191  45
-[1]  19 191  54
-[1]  20 191  35
-[1]  21 191  52
-[1]  22 191  29
-[1]  23 191  32
-[1]  24 191  33
-[1]  25 191  36
-[1]  26 191  45
-[1]  27 191  41
-[1]  28 191  46
-[1]  29 191  53
-[1]  30 191  30
-[1]  31 191  43
-[1]  32 191  29
-[1]  33 191  34
-[1]  34 191  40
-[1]  35 191  38
-[1]  36 191  48
-[1]  37 191  38
-[1]  38 191  43
-[1]  39 191  32
-[1]  40 191  51
-[1]  41 191  29
-[1]  42 191  32
-[1]  43 191  37
-[1]  44 191  52
-[1]  45 191  39
-[1]  46 191  40
-[1]  47 191  35
-[1]  48 191  40
-[1]  49 191  40
-[1]  50 191  45
-[1]  51 191  73
-[1]  52 191  36
-[1]  53 191  72
-[1]  54 191  40
-[1]  55 191  43
-[1]  56 191  36
-[1]  57 191  26
-[1]  58 191  31
-[1]  59 191  39
-[1]  60 191  30
-[1]  61 191  35
-[1]  62 191  36
-[1]  63 191  32
-[1]  64 191  43
-[1]  65 191  30
-[1]  66 191  67
-[1]  67 191  42
-[1]  68 191  36
-[1]  69 191  36
-[1]  70 191  27
-[1]  71 191  40
-[1]  72 191  51
-[1]  73 191  36
-[1]  74 191  33
-[1]  75 191  42
-[1]  76 191  32
-[1]  77 191  48
-[1]  78 191  46
-[1]  79 191  35
-[1]  80 191  29
-[1]  81 191  52
-[1]  82 191  35
-[1]  83 191  40
-[1]  84 191  35
-[1]  85 191  44
-[1]  86 191  41
-[1]  87 191  40
-[1]  88 191  32
-[1]  89 191  42
-[1]  90 191  60
-[1]  91 191  46
-[1]  92 191  29
-[1]  93 191  69
-[1]  94 191  34
-[1]  95 191  45
-[1]  96 191  34
-[1]  97 191  40
-[1]  98 191  35
-[1]  99 191  49
-[1] 100 191  47
-[1] 101 191  40
-[1] 102 191  43
-[1] 103 191  44
-[1] 104 191  45
-[1] 105 191  46
-[1] 106 191  50
-[1] 107 191  45
-[1] 108 191  39
-[1] 109 191  47
-[1] 110 191  40
-[1] 111 191  39
-[1] 112 191  36
-[1] 113 191  41
-[1] 114 191  36
-[1] 115 191  31
-[1] 116 191  48
-[1] 117 191  37
-[1] 118 191  37
-[1] 119 191  42
-[1] 120 191  35
-[1] 121 191  39
-[1] 122 191  44
-[1] 123 191  88
-[1] 124 191  47
-[1] 125 191  40
-[1] 126 191  39
-[1] 127 191  37
-[1] 128 191  27
-[1] 129 191  42
-[1] 130 191  64
-[1] 131 191  43
-[1] 132 191  30
-[1] 133 191  31
-[1] 134 191  41
-[1] 135 191  33
-[1] 136 191  48
-[1] 137 191  35
-[1] 138 191  84
-[1] 139 191  38
-[1] 140 191  30
-[1] 141 191  32
-[1] 142 191  62
-[1] 143 191  45
-[1] 144 191  42
-[1] 145 191  35
-[1] 146 191  44
-[1] 147 191  28
-[1] 148 191  31
-[1] 149 191  41
-[1] 150 191  26
-[1] 151 191  69
-[1] 152 191  55
-[1] 153 191  44
-[1] 154 191  41
-[1] 155 191  44
-[1] 156 191  33
-[1] 157 191  44
-[1] 158 191  65
-[1] 159 191  31
-[1] 160 191  30
-[1] 161 191  38
-[1] 162 191  41
-[1] 163 191  38
-[1] 164 191  47
-[1] 165 191  29
-[1] 166 191  34
-[1] 167 191  53
-[1] 168 191  61
-[1] 169 191  39
-[1] 170 191  46
-[1] 171 191  59
-[1] 172 191  33
-[1] 173 191  35
-[1] 174 191  53
-[1] 175 191  30
-[1] 176 191  31
-[1] 177 191  57
-[1] 178 191  48
-[1] 179 191  51
-[1] 180 191  64
-[1] 181 191  61
-[1] 182 191  54
-[1] 183 191  71
-[1] 184 191  48
-[1] 185 191  33
-[1] 186 191  37
-[1] 187 191  40
-[1] 188 191  29
-[1] 189 191  40
-[1] 190 191  43
-[1] 191 191  32
-[1] 192 191  43
-[1] 193 191  47
-[1] 194 191  34
-[1] 195 191  43
-[1] 196 191  57
-[1] 197 191  61
-[1] 198 191  42
-[1] 199 191  87
-[1] 200 191  48
-[1]   1 192  73
-[1]   2 192  51
-[1]   3 192  39
-[1]   4 192  52
-[1]   5 192  42
-[1]   6 192  41
-[1]   7 192  31
-[1]   8 192  44
-[1]   9 192  33
-[1]  10 192  41
-[1]  11 192  34
-[1]  12 192  50
-[1]  13 192  33
-[1]  14 192  30
-[1]  15 192  49
-[1]  16 192  30
-[1]  17 192  32
-[1]  18 192  51
-[1]  19 192  37
-[1]  20 192  38
-[1]  21 192  34
-[1]  22 192  57
-[1]  23 192  53
-[1]  24 192  34
-[1]  25 192  45
-[1]  26 192  37
-[1]  27 192  31
-[1]  28 192  30
-[1]  29 192  44
-[1]  30 192  47
-[1]  31 192  34
-[1]  32 192  48
-[1]  33 192  32
-[1]  34 192  47
-[1]  35 192  44
-[1]  36 192  40
-[1]  37 192  59
-[1]  38 192  37
-[1]  39 192  42
-[1]  40 192  55
-[1]  41 192  35
-[1]  42 192  55
-[1]  43 192  58
-[1]  44 192  38
-[1]  45 192  39
-[1]  46 192  32
-[1]  47 192  57
-[1]  48 192  53
-[1]  49 192  56
-[1]  50 192  46
-[1]  51 192  49
-[1]  52 192  39
-[1]  53 192  46
-[1]  54 192  35
-[1]  55 192  39
-[1]  56 192  38
-[1]  57 192  34
-[1]  58 192  47
-[1]  59 192  43
-[1]  60 192  30
-[1]  61 192  29
-[1]  62 192  26
-[1]  63 192  35
-[1]  64 192  32
-[1]  65 192  43
-[1]  66 192  28
-[1]  67 192  51
-[1]  68 192  31
-[1]  69 192  38
-[1]  70 192  64
-[1]  71 192  44
-[1]  72 192  46
-[1]  73 192  42
-[1]  74 192  31
-[1]  75 192  36
-[1]  76 192  39
-[1]  77 192  38
-[1]  78 192  31
-[1]  79 192  37
-[1]  80 192  32
-[1]  81 192  41
-[1]  82 192  31
-[1]  83 192  34
-[1]  84 192  51
-[1]  85 192  38
-[1]  86 192  55
-[1]  87 192  26
-[1]  88 192  41
-[1]  89 192  44
-[1]  90 192  35
-[1]  91 192  40
-[1]  92 192  33
-[1]  93 192  65
-[1]  94 192  36
-[1]  95 192  41
-[1]  96 192  48
-[1]  97 192  32
-[1]  98 192  41
-[1]  99 192  55
-[1] 100 192  32
-[1] 101 192  30
-[1] 102 192  46
-[1] 103 192  44
-[1] 104 192  32
-[1] 105 192  43
-[1] 106 192  37
-[1] 107 192  52
-[1] 108 192  33
-[1] 109 192  48
-[1] 110 192  43
-[1] 111 192  39
-[1] 112 192  42
-[1] 113 192  55
-[1] 114 192  40
-[1] 115 192  43
-[1] 116 192  38
-[1] 117 192  35
-[1] 118 192  49
-[1] 119 192  35
-[1] 120 192  42
-[1] 121 192  37
-[1] 122 192  53
-[1] 123 192  46
-[1] 124 192  44
-[1] 125 192  39
-[1] 126 192  49
-[1] 127 192  43
-[1] 128 192  35
-[1] 129 192  31
-[1] 130 192  39
-[1] 131 192  40
-[1] 132 192  54
-[1] 133 192  31
-[1] 134 192  45
-[1] 135 192  32
-[1] 136 192  45
-[1] 137 192  34
-[1] 138 192  47
-[1] 139 192  35
-[1] 140 192  54
-[1] 141 192  44
-[1] 142 192  43
-[1] 143 192  43
-[1] 144 192  50
-[1] 145 192  33
-[1] 146 192  52
-[1] 147 192  45
-[1] 148 192  28
-[1] 149 192  45
-[1] 150 192  51
-[1] 151 192  50
-[1] 152 192  37
-[1] 153 192  46
-[1] 154 192  37
-[1] 155 192  39
-[1] 156 192  39
-[1] 157 192  59
-[1] 158 192  70
-[1] 159 192  34
-[1] 160 192  46
-[1] 161 192  36
-[1] 162 192  39
-[1] 163 192  36
-[1] 164 192  47
-[1] 165 192  33
-[1] 166 192  48
-[1] 167 192  53
-[1] 168 192  34
-[1] 169 192  32
-[1] 170 192  56
-[1] 171 192  38
-[1] 172 192  57
-[1] 173 192  50
-[1] 174 192  53
-[1] 175 192  36
-[1] 176 192  53
-[1] 177 192  36
-[1] 178 192  49
-[1] 179 192  43
-[1] 180 192  38
-[1] 181 192  45
-[1] 182 192  46
-[1] 183 192  37
-[1] 184 192  40
-[1] 185 192  43
-[1] 186 192  50
-[1] 187 192  35
-[1] 188 192  33
-[1] 189 192  44
-[1] 190 192  39
-[1] 191 192  46
-[1] 192 192  63
-[1] 193 192  52
-[1] 194 192  45
-[1] 195 192  47
-[1] 196 192  46
-[1] 197 192  27
-[1] 198 192  46
-[1] 199 192  47
-[1] 200 192  63
-[1]   1 193  39
-[1]   2 193  43
-[1]   3 193  35
-[1]   4 193  46
-[1]   5 193  43
-[1]   6 193  50
-[1]   7 193  45
-[1]   8 193  54
-[1]   9 193  23
-[1]  10 193  49
-[1]  11 193  42
-[1]  12 193  32
-[1]  13 193  33
-[1]  14 193  34
-[1]  15 193  52
-[1]  16 193  39
-[1]  17 193  41
-[1]  18 193  29
-[1]  19 193  33
-[1]  20 193  44
-[1]  21 193  34
-[1]  22 193  36
-[1]  23 193  34
-[1]  24 193  50
-[1]  25 193  44
-[1]  26 193  35
-[1]  27 193  57
-[1]  28 193  50
-[1]  29 193  31
-[1]  30 193  34
-[1]  31 193  35
-[1]  32 193  42
-[1]  33 193  39
-[1]  34 193  34
-[1]  35 193  39
-[1]  36 193  37
-[1]  37 193  57
-[1]  38 193  50
-[1]  39 193  39
-[1]  40 193  46
-[1]  41 193  42
-[1]  42 193  33
-[1]  43 193  47
-[1]  44 193  36
-[1]  45 193  41
-[1]  46 193  38
-[1]  47 193  41
-[1]  48 193  34
-[1]  49 193  46
-[1]  50 193  57
-[1]  51 193  40
-[1]  52 193  38
-[1]  53 193  40
-[1]  54 193  39
-[1]  55 193  38
-[1]  56 193  31
-[1]  57 193  32
-[1]  58 193  40
-[1]  59 193  43
-[1]  60 193  33
-[1]  61 193  35
-[1]  62 193  26
-[1]  63 193  44
-[1]  64 193  45
-[1]  65 193  39
-[1]  66 193  38
-[1]  67 193  25
-[1]  68 193  39
-[1]  69 193  42
-[1]  70 193  31
-[1]  71 193  37
-[1]  72 193  38
-[1]  73 193  32
-[1]  74 193  42
-[1]  75 193  37
-[1]  76 193  39
-[1]  77 193  41
-[1]  78 193  46
-[1]  79 193  30
-[1]  80 193  43
-[1]  81 193  49
-[1]  82 193  38
-[1]  83 193  33
-[1]  84 193  35
-[1]  85 193  44
-[1]  86 193  69
-[1]  87 193  60
-[1]  88 193  34
-[1]  89 193  49
-[1]  90 193  46
-[1]  91 193  41
-[1]  92 193  51
-[1]  93 193  47
-[1]  94 193  46
-[1]  95 193  57
-[1]  96 193  36
-[1]  97 193  38
-[1]  98 193  51
-[1]  99 193  38
-[1] 100 193  41
-[1] 101 193  33
-[1] 102 193  38
-[1] 103 193  33
-[1] 104 193  38
-[1] 105 193  31
-[1] 106 193  43
-[1] 107 193  37
-[1] 108 193  40
-[1] 109 193  47
-[1] 110 193  34
-[1] 111 193  41
-[1] 112 193  52
-[1] 113 193  43
-[1] 114 193  60
-[1] 115 193  37
-[1] 116 193  36
-[1] 117 193  37
-[1] 118 193  33
-[1] 119 193  26
-[1] 120 193  67
-[1] 121 193  32
-[1] 122 193  35
-[1] 123 193  30
-[1] 124 193  39
-[1] 125 193  32
-[1] 126 193  37
-[1] 127 193  44
-[1] 128 193  34
-[1] 129 193  43
-[1] 130 193  40
-[1] 131 193  38
-[1] 132 193  36
-[1] 133 193  53
-[1] 134 193  45
-[1] 135 193  42
-[1] 136 193  45
-[1] 137 193  42
-[1] 138 193  35
-[1] 139 193  39
-[1] 140 193  34
-[1] 141 193  26
-[1] 142 193  42
-[1] 143 193  36
-[1] 144 193  31
-[1] 145 193  36
-[1] 146 193  26
-[1] 147 193  37
-[1] 148 193  46
-[1] 149 193  46
-[1] 150 193  35
-[1] 151 193  39
-[1] 152 193  47
-[1] 153 193  41
-[1] 154 193  74
-[1] 155 193  38
-[1] 156 193  37
-[1] 157 193  38
-[1] 158 193  27
-[1] 159 193  55
-[1] 160 193  34
-[1] 161 193  62
-[1] 162 193  43
-[1] 163 193  36
-[1] 164 193  51
-[1] 165 193  39
-[1] 166 193  36
-[1] 167 193  37
-[1] 168 193  45
-[1] 169 193  32
-[1] 170 193  43
-[1] 171 193  51
-[1] 172 193  46
-[1] 173 193  55
-[1] 174 193  42
-[1] 175 193  60
-[1] 176 193  47
-[1] 177 193  35
-[1] 178 193  44
-[1] 179 193  55
-[1] 180 193  24
-[1] 181 193  51
-[1] 182 193  44
-[1] 183 193  57
-[1] 184 193  43
-[1] 185 193  26
-[1] 186 193  41
-[1] 187 193  32
-[1] 188 193  39
-[1] 189 193  22
-[1] 190 193  57
-[1] 191 193  32
-[1] 192 193  34
-[1] 193 193  45
-[1] 194 193  49
-[1] 195 193  56
-[1] 196 193 140
-[1] 197 193  84
-[1] 198 193  62
-[1] 199 193  43
-[1] 200 193  53
-[1]   1 194  33
-[1]   2 194  39
-[1]   3 194  36
-[1]   4 194  41
-[1]   5 194  35
-[1]   6 194  38
-[1]   7 194  35
-[1]   8 194  54
-[1]   9 194  36
-[1]  10 194  61
-[1]  11 194  32
-[1]  12 194  43
-[1]  13 194  33
-[1]  14 194  46
-[1]  15 194  49
-[1]  16 194  36
-[1]  17 194  43
-[1]  18 194  34
-[1]  19 194  29
-[1]  20 194  40
-[1]  21 194  57
-[1]  22 194  39
-[1]  23 194  32
-[1]  24 194  41
-[1]  25 194  44
-[1]  26 194  35
-[1]  27 194  38
-[1]  28 194  43
-[1]  29 194  43
-[1]  30 194  58
-[1]  31 194  39
-[1]  32 194  48
-[1]  33 194  38
-[1]  34 194  35
-[1]  35 194  43
-[1]  36 194  33
-[1]  37 194  49
-[1]  38 194  60
-[1]  39 194  37
-[1]  40 194  54
-[1]  41 194  32
-[1]  42 194  36
-[1]  43 194  42
-[1]  44 194  47
-[1]  45 194  54
-[1]  46 194  40
-[1]  47 194  59
-[1]  48 194  34
-[1]  49 194  45
-[1]  50 194  48
-[1]  51 194  48
-[1]  52 194  43
-[1]  53 194  42
-[1]  54 194  47
-[1]  55 194  42
-[1]  56 194  42
-[1]  57 194  37
-[1]  58 194  52
-[1]  59 194  44
-[1]  60 194  53
-[1]  61 194  38
-[1]  62 194  33
-[1]  63 194  30
-[1]  64 194  67
-[1]  65 194  35
-[1]  66 194  45
-[1]  67 194  44
-[1]  68 194  36
-[1]  69 194  47
-[1]  70 194  26
-[1]  71 194  45
-[1]  72 194  62
-[1]  73 194  39
-[1]  74 194  32
-[1]  75 194  35
-[1]  76 194  35
-[1]  77 194  28
-[1]  78 194  53
-[1]  79 194  40
-[1]  80 194  32
-[1]  81 194  35
-[1]  82 194  33
-[1]  83 194  31
-[1]  84 194  26
-[1]  85 194  35
-[1]  86 194  34
-[1]  87 194  34
-[1]  88 194  29
-[1]  89 194  51
-[1]  90 194  54
-[1]  91 194  45
-[1]  92 194  32
-[1]  93 194  75
-[1]  94 194  55
-[1]  95 194  52
-[1]  96 194  40
-[1]  97 194  49
-[1]  98 194  41
-[1]  99 194  64
-[1] 100 194  42
-[1] 101 194  59
-[1] 102 194  38
-[1] 103 194  50
-[1] 104 194  30
-[1] 105 194  37
-[1] 106 194  40
-[1] 107 194  49
-[1] 108 194  30
-[1] 109 194  49
-[1] 110 194  41
-[1] 111 194  25
-[1] 112 194  44
-[1] 113 194  38
-[1] 114 194  55
-[1] 115 194  38
-[1] 116 194  53
-[1] 117 194  36
-[1] 118 194  69
-[1] 119 194  34
-[1] 120 194  47
-[1] 121 194  26
-[1] 122 194  55
-[1] 123 194  33
-[1] 124 194  24
-[1] 125 194  54
-[1] 126 194  47
-[1] 127 194  37
-[1] 128 194  33
-[1] 129 194  31
-[1] 130 194  54
-[1] 131 194  52
-[1] 132 194  53
-[1] 133 194  37
-[1] 134 194  37
-[1] 135 194  45
-[1] 136 194  39
-[1] 137 194  47
-[1] 138 194  42
-[1] 139 194  39
-[1] 140 194  35
-[1] 141 194  35
-[1] 142 194  52
-[1] 143 194  44
-[1] 144 194  30
-[1] 145 194  43
-[1] 146 194  32
-[1] 147 194  42
-[1] 148 194  34
-[1] 149 194  48
-[1] 150 194  39
-[1] 151 194  45
-[1] 152 194  37
-[1] 153 194  35
-[1] 154 194  50
-[1] 155 194  40
-[1] 156 194  49
-[1] 157 194  50
-[1] 158 194  34
-[1] 159 194  27
-[1] 160 194  42
-[1] 161 194  59
-[1] 162 194  39
-[1] 163 194  67
-[1] 164 194  41
-[1] 165 194  45
-[1] 166 194  48
-[1] 167 194  57
-[1] 168 194  41
-[1] 169 194  38
-[1] 170 194  30
-[1] 171 194  61
-[1] 172 194  54
-[1] 173 194  40
-[1] 174 194  42
-[1] 175 194  37
-[1] 176 194  27
-[1] 177 194  35
-[1] 178 194  30
-[1] 179 194  46
-[1] 180 194  40
-[1] 181 194  41
-[1] 182 194  41
-[1] 183 194  39
-[1] 184 194  49
-[1] 185 194  35
-[1] 186 194  35
-[1] 187 194  37
-[1] 188 194  36
-[1] 189 194  34
-[1] 190 194  38
-[1] 191 194  37
-[1] 192 194  41
-[1] 193 194  43
-[1] 194 194  39
-[1] 195 194  56
-[1] 196 194  38
-[1] 197 194  42
-[1] 198 194  51
-[1] 199 194  51
-[1] 200 194  65
-[1]   1 195  41
-[1]   2 195  58
-[1]   3 195  37
-[1]   4 195  58
-[1]   5 195  47
-[1]   6 195  44
-[1]   7 195  47
-[1]   8 195  47
-[1]   9 195  34
-[1]  10 195  39
-[1]  11 195  33
-[1]  12 195  42
-[1]  13 195  40
-[1]  14 195  26
-[1]  15 195  48
-[1]  16 195  44
-[1]  17 195  28
-[1]  18 195  37
-[1]  19 195  31
-[1]  20 195  39
-[1]  21 195  42
-[1]  22 195  35
-[1]  23 195  38
-[1]  24 195  37
-[1]  25 195  30
-[1]  26 195  41
-[1]  27 195  49
-[1]  28 195  46
-[1]  29 195  41
-[1]  30 195  32
-[1]  31 195  33
-[1]  32 195  30
-[1]  33 195  35
-[1]  34 195  45
-[1]  35 195  46
-[1]  36 195  39
-[1]  37 195  46
-[1]  38 195  61
-[1]  39 195  38
-[1]  40 195  38
-[1]  41 195  51
-[1]  42 195  41
-[1]  43 195  73
-[1]  44 195  45
-[1]  45 195  50
-[1]  46 195  54
-[1]  47 195  36
-[1]  48 195  63
-[1]  49 195  61
-[1]  50 195  37
-[1]  51 195  54
-[1]  52 195  39
-[1]  53 195  36
-[1]  54 195  33
-[1]  55 195  37
-[1]  56 195  40
-[1]  57 195  32
-[1]  58 195  51
-[1]  59 195  33
-[1]  60 195  28
-[1]  61 195  45
-[1]  62 195  44
-[1]  63 195  40
-[1]  64 195  39
-[1]  65 195  45
-[1]  66 195  40
-[1]  67 195  47
-[1]  68 195  40
-[1]  69 195  51
-[1]  70 195  43
-[1]  71 195  30
-[1]  72 195  41
-[1]  73 195  48
-[1]  74 195  49
-[1]  75 195  36
-[1]  76 195  45
-[1]  77 195  45
-[1]  78 195  36
-[1]  79 195  43
-[1]  80 195  44
-[1]  81 195  41
-[1]  82 195  36
-[1]  83 195  34
-[1]  84 195  34
-[1]  85 195  31
-[1]  86 195  50
-[1]  87 195  36
-[1]  88 195  30
-[1]  89 195  91
-[1]  90 195  40
-[1]  91 195  30
-[1]  92 195  39
-[1]  93 195  52
-[1]  94 195  52
-[1]  95 195  50
-[1]  96 195  38
-[1]  97 195  76
-[1]  98 195  40
-[1]  99 195  30
-[1] 100 195  42
-[1] 101 195  46
-[1] 102 195  37
-[1] 103 195  35
-[1] 104 195  46
-[1] 105 195  38
-[1] 106 195  35
-[1] 107 195  34
-[1] 108 195  59
-[1] 109 195  28
-[1] 110 195  37
-[1] 111 195  40
-[1] 112 195  42
-[1] 113 195  64
-[1] 114 195  31
-[1] 115 195  35
-[1] 116 195  36
-[1] 117 195  32
-[1] 118 195  42
-[1] 119 195  49
-[1] 120 195  29
-[1] 121 195  52
-[1] 122 195  33
-[1] 123 195  46
-[1] 124 195  52
-[1] 125 195  40
-[1] 126 195  44
-[1] 127 195  48
-[1] 128 195  33
-[1] 129 195  53
-[1] 130 195  42
-[1] 131 195  29
-[1] 132 195  30
-[1] 133 195  73
-[1] 134 195  36
-[1] 135 195  35
-[1] 136 195  24
-[1] 137 195  35
-[1] 138 195  45
-[1] 139 195  39
-[1] 140 195  32
-[1] 141 195  35
-[1] 142 195  52
-[1] 143 195  35
-[1] 144 195  33
-[1] 145 195  58
-[1] 146 195  32
-[1] 147 195  32
-[1] 148 195  39
-[1] 149 195  36
-[1] 150 195  53
-[1] 151 195  49
-[1] 152 195  35
-[1] 153 195  27
-[1] 154 195  44
-[1] 155 195  34
-[1] 156 195  31
-[1] 157 195  70
-[1] 158 195  43
-[1] 159 195  48
-[1] 160 195  35
-[1] 161 195  63
-[1] 162 195  52
-[1] 163 195  36
-[1] 164 195  61
-[1] 165 195  42
-[1] 166 195  39
-[1] 167 195  43
-[1] 168 195  30
-[1] 169 195  43
-[1] 170 195  51
-[1] 171 195  57
-[1] 172 195  42
-[1] 173 195  38
-[1] 174 195  49
-[1] 175 195  38
-[1] 176 195  35
-[1] 177 195  47
-[1] 178 195  44
-[1] 179 195  67
-[1] 180 195  50
-[1] 181 195  35
-[1] 182 195  30
-[1] 183 195  41
-[1] 184 195  31
-[1] 185 195  48
-[1] 186 195  34
-[1] 187 195  45
-[1] 188 195  46
-[1] 189 195  41
-[1] 190 195  43
-[1] 191 195  59
-[1] 192 195  46
-[1] 193 195  39
-[1] 194 195  30
-[1] 195 195  52
-[1] 196 195  33
-[1] 197 195  73
-[1] 198 195  46
-[1] 199 195  63
-[1] 200 195  51
-[1]   1 196  63
-[1]   2 196  47
-[1]   3 196  62
-[1]   4 196  37
-[1]   5 196  38
-[1]   6 196  39
-[1]   7 196  36
-[1]   8 196  33
-[1]   9 196  51
-[1]  10 196  34
-[1]  11 196  40
-[1]  12 196  51
-[1]  13 196  36
-[1]  14 196  45
-[1]  15 196  47
-[1]  16 196  29
-[1]  17 196  42
-[1]  18 196  29
-[1]  19 196  33
-[1]  20 196  40
-[1]  21 196  50
-[1]  22 196  44
-[1]  23 196  42
-[1]  24 196  52
-[1]  25 196  30
-[1]  26 196  39
-[1]  27 196  37
-[1]  28 196  36
-[1]  29 196  35
-[1]  30 196  33
-[1]  31 196  46
-[1]  32 196  32
-[1]  33 196  35
-[1]  34 196  39
-[1]  35 196  56
-[1]  36 196  46
-[1]  37 196  53
-[1]  38 196  35
-[1]  39 196  62
-[1]  40 196  39
-[1]  41 196  46
-[1]  42 196  35
-[1]  43 196  35
-[1]  44 196  49
-[1]  45 196  36
-[1]  46 196  56
-[1]  47 196  35
-[1]  48 196  42
-[1]  49 196  43
-[1]  50 196  39
-[1]  51 196  42
-[1]  52 196  33
-[1]  53 196  32
-[1]  54 196  35
-[1]  55 196  58
-[1]  56 196  37
-[1]  57 196  38
-[1]  58 196  35
-[1]  59 196  46
-[1]  60 196  46
-[1]  61 196  59
-[1]  62 196  30
-[1]  63 196  50
-[1]  64 196  58
-[1]  65 196  32
-[1]  66 196  57
-[1]  67 196  53
-[1]  68 196  29
-[1]  69 196  28
-[1]  70 196  41
-[1]  71 196  37
-[1]  72 196  30
-[1]  73 196  38
-[1]  74 196  35
-[1]  75 196  29
-[1]  76 196  41
-[1]  77 196  47
-[1]  78 196  55
-[1]  79 196  43
-[1]  80 196  36
-[1]  81 196  43
-[1]  82 196  49
-[1]  83 196  50
-[1]  84 196  45
-[1]  85 196  30
-[1]  86 196  43
-[1]  87 196  50
-[1]  88 196  49
-[1]  89 196  41
-[1]  90 196  51
-[1]  91 196  45
-[1]  92 196  30
-[1]  93 196  37
-[1]  94 196  41
-[1]  95 196  41
-[1]  96 196  41
-[1]  97 196  62
-[1]  98 196  45
-[1]  99 196  34
-[1] 100 196  40
-[1] 101 196  45
-[1] 102 196  39
-[1] 103 196  32
-[1] 104 196  45
-[1] 105 196  30
-[1] 106 196  43
-[1] 107 196  34
-[1] 108 196  39
-[1] 109 196  38
-[1] 110 196  39
-[1] 111 196  25
-[1] 112 196  44
-[1] 113 196  55
-[1] 114 196  42
-[1] 115 196  39
-[1] 116 196  36
-[1] 117 196  37
-[1] 118 196  47
-[1] 119 196  50
-[1] 120 196  27
-[1] 121 196  58
-[1] 122 196  31
-[1] 123 196  40
-[1] 124 196  47
-[1] 125 196  44
-[1] 126 196  35
-[1] 127 196  45
-[1] 128 196  46
-[1] 129 196  35
-[1] 130 196  50
-[1] 131 196  45
-[1] 132 196  40
-[1] 133 196  37
-[1] 134 196  41
-[1] 135 196  31
-[1] 136 196  72
-[1] 137 196  37
-[1] 138 196  40
-[1] 139 196  36
-[1] 140 196  39
-[1] 141 196  66
-[1] 142 196  51
-[1] 143 196  47
-[1] 144 196  28
-[1] 145 196  27
-[1] 146 196  54
-[1] 147 196  34
-[1] 148 196  38
-[1] 149 196  52
-[1] 150 196  28
-[1] 151 196  86
-[1] 152 196  32
-[1] 153 196  38
-[1] 154 196  37
-[1] 155 196  31
-[1] 156 196  40
-[1] 157 196  36
-[1] 158 196  36
-[1] 159 196  40
-[1] 160 196  46
-[1] 161 196  51
-[1] 162 196  28
-[1] 163 196  49
-[1] 164 196  56
-[1] 165 196  33
-[1] 166 196  38
-[1] 167 196  40
-[1] 168 196  44
-[1] 169 196  40
-[1] 170 196  55
-[1] 171 196  38
-[1] 172 196  29
-[1] 173 196  72
-[1] 174 196  51
-[1] 175 196  27
-[1] 176 196  35
-[1] 177 196  39
-[1] 178 196  51
-[1] 179 196  41
-[1] 180 196  35
-[1] 181 196  48
-[1] 182 196  36
-[1] 183 196  35
-[1] 184 196  41
-[1] 185 196  32
-[1] 186 196  79
-[1] 187 196  36
-[1] 188 196  36
-[1] 189 196  39
-[1] 190 196  46
-[1] 191 196  48
-[1] 192 196  50
-[1] 193 196  37
-[1] 194 196  57
-[1] 195 196  42
-[1] 196 196  32
-[1] 197 196  42
-[1] 198 196  61
-[1] 199 196  41
-[1] 200 196  77
-[1]   1 197  55
-[1]   2 197  37
-[1]   3 197  42
-[1]   4 197  59
-[1]   5 197  58
-[1]   6 197  46
-[1]   7 197  65
-[1]   8 197  37
-[1]   9 197  55
-[1]  10 197  28
-[1]  11 197  35
-[1]  12 197  58
-[1]  13 197  35
-[1]  14 197  38
-[1]  15 197  42
-[1]  16 197  44
-[1]  17 197  48
-[1]  18 197  41
-[1]  19 197  60
-[1]  20 197  34
-[1]  21 197  37
-[1]  22 197  35
-[1]  23 197  34
-[1]  24 197  39
-[1]  25 197  39
-[1]  26 197  26
-[1]  27 197  47
-[1]  28 197  30
-[1]  29 197  46
-[1]  30 197  47
-[1]  31 197  35
-[1]  32 197  57
-[1]  33 197  36
-[1]  34 197  33
-[1]  35 197  40
-[1]  36 197  39
-[1]  37 197  32
-[1]  38 197  29
-[1]  39 197  34
-[1]  40 197  33
-[1]  41 197  59
-[1]  42 197  34
-[1]  43 197  33
-[1]  44 197  35
-[1]  45 197  60
-[1]  46 197  40
-[1]  47 197  37
-[1]  48 197  28
-[1]  49 197  39
-[1]  50 197  61
-[1]  51 197  54
-[1]  52 197  31
-[1]  53 197  32
-[1]  54 197  42
-[1]  55 197  41
-[1]  56 197  53
-[1]  57 197  40
-[1]  58 197  37
-[1]  59 197  37
-[1]  60 197  56
-[1]  61 197  41
-[1]  62 197  29
-[1]  63 197  47
-[1]  64 197  62
-[1]  65 197  29
-[1]  66 197  56
-[1]  67 197  38
-[1]  68 197  41
-[1]  69 197  44
-[1]  70 197  38
-[1]  71 197  34
-[1]  72 197  46
-[1]  73 197  34
-[1]  74 197  37
-[1]  75 197  35
-[1]  76 197  38
-[1]  77 197  35
-[1]  78 197  53
-[1]  79 197  38
-[1]  80 197  36
-[1]  81 197  65
-[1]  82 197  35
-[1]  83 197  40
-[1]  84 197  35
-[1]  85 197  43
-[1]  86 197  32
-[1]  87 197  41
-[1]  88 197  64
-[1]  89 197  33
-[1]  90 197  38
-[1]  91 197  51
-[1]  92 197  61
-[1]  93 197  42
-[1]  94 197  51
-[1]  95 197  48
-[1]  96 197  33
-[1]  97 197  44
-[1]  98 197  51
-[1]  99 197  32
-[1] 100 197  41
-[1] 101 197  43
-[1] 102 197  30
-[1] 103 197  42
-[1] 104 197  33
-[1] 105 197  39
-[1] 106 197  40
-[1] 107 197  27
-[1] 108 197  33
-[1] 109 197  72
-[1] 110 197  61
-[1] 111 197  38
-[1] 112 197  49
-[1] 113 197  34
-[1] 114 197  41
-[1] 115 197  32
-[1] 116 197  43
-[1] 117 197  28
-[1] 118 197  27
-[1] 119 197  45
-[1] 120 197  29
-[1] 121 197  48
-[1] 122 197  27
-[1] 123 197  43
-[1] 124 197  46
-[1] 125 197  52
-[1] 126 197  35
-[1] 127 197  56
-[1] 128 197  43
-[1] 129 197  31
-[1] 130 197  42
-[1] 131 197  33
-[1] 132 197  69
-[1] 133 197  41
-[1] 134 197  48
-[1] 135 197  44
-[1] 136 197  40
-[1] 137 197  55
-[1] 138 197  30
-[1] 139 197  35
-[1] 140 197  38
-[1] 141 197  33
-[1] 142 197  43
-[1] 143 197  39
-[1] 144 197  60
-[1] 145 197  38
-[1] 146 197  39
-[1] 147 197  64
-[1] 148 197  32
-[1] 149 197  43
-[1] 150 197  35
-[1] 151 197  41
-[1] 152 197  50
-[1] 153 197  39
-[1] 154 197  37
-[1] 155 197  48
-[1] 156 197  39
-[1] 157 197  35
-[1] 158 197  40
-[1] 159 197  32
-[1] 160 197  33
-[1] 161 197  40
-[1] 162 197  49
-[1] 163 197  28
-[1] 164 197  49
-[1] 165 197  61
-[1] 166 197  36
-[1] 167 197  34
-[1] 168 197  36
-[1] 169 197  44
-[1] 170 197  59
-[1] 171 197  50
-[1] 172 197  39
-[1] 173 197  66
-[1] 174 197  37
-[1] 175 197  45
-[1] 176 197  44
-[1] 177 197  43
-[1] 178 197  39
-[1] 179 197  63
-[1] 180 197  43
-[1] 181 197  37
-[1] 182 197  31
-[1] 183 197  54
-[1] 184 197  35
-[1] 185 197  40
-[1] 186 197  35
-[1] 187 197  40
-[1] 188 197  41
-[1] 189 197  34
-[1] 190 197  34
-[1] 191 197  28
-[1] 192 197  72
-[1] 193 197  61
-[1] 194 197  38
-[1] 195 197  47
-[1] 196 197  53
-[1] 197 197  72
-[1] 198 197  40
-[1] 199 197  58
-[1] 200 197  70
-[1]   1 198  47
-[1]   2 198  39
-[1]   3 198  40
-[1]   4 198  35
-[1]   5 198  45
-[1]   6 198  54
-[1]   7 198  31
-[1]   8 198  52
-[1]   9 198  58
-[1]  10 198  35
-[1]  11 198  48
-[1]  12 198  57
-[1]  13 198  43
-[1]  14 198  46
-[1]  15 198  37
-[1]  16 198  28
-[1]  17 198  63
-[1]  18 198  38
-[1]  19 198  31
-[1]  20 198  35
-[1]  21 198  32
-[1]  22 198  40
-[1]  23 198  33
-[1]  24 198  33
-[1]  25 198  32
-[1]  26 198  34
-[1]  27 198  49
-[1]  28 198  41
-[1]  29 198  41
-[1]  30 198  36
-[1]  31 198  67
-[1]  32 198  36
-[1]  33 198  41
-[1]  34 198  34
-[1]  35 198  29
-[1]  36 198  42
-[1]  37 198  35
-[1]  38 198  35
-[1]  39 198  44
-[1]  40 198  52
-[1]  41 198  34
-[1]  42 198  42
-[1]  43 198  24
-[1]  44 198  56
-[1]  45 198  41
-[1]  46 198  45
-[1]  47 198  47
-[1]  48 198  49
-[1]  49 198  42
-[1]  50 198  44
-[1]  51 198  44
-[1]  52 198  66
-[1]  53 198  34
-[1]  54 198  34
-[1]  55 198  29
-[1]  56 198  43
-[1]  57 198  38
-[1]  58 198  55
-[1]  59 198  34
-[1]  60 198  39
-[1]  61 198  34
-[1]  62 198  29
-[1]  63 198  34
-[1]  64 198  63
-[1]  65 198  25
-[1]  66 198  39
-[1]  67 198  48
-[1]  68 198  40
-[1]  69 198  39
-[1]  70 198  52
-[1]  71 198  37
-[1]  72 198  38
-[1]  73 198  31
-[1]  74 198  55
-[1]  75 198  40
-[1]  76 198  37
-[1]  77 198  32
-[1]  78 198  38
-[1]  79 198  43
-[1]  80 198  32
-[1]  81 198  40
-[1]  82 198  32
-[1]  83 198  31
-[1]  84 198  28
-[1]  85 198  47
-[1]  86 198  38
-[1]  87 198  39
-[1]  88 198  37
-[1]  89 198  39
-[1]  90 198  49
-[1]  91 198  35
-[1]  92 198  45
-[1]  93 198  48
-[1]  94 198  35
-[1]  95 198  34
-[1]  96 198  41
-[1]  97 198  46
-[1]  98 198  43
-[1]  99 198  70
-[1] 100 198  43
-[1] 101 198  33
-[1] 102 198  30
-[1] 103 198  49
-[1] 104 198  32
-[1] 105 198  48
-[1] 106 198  31
-[1] 107 198  34
-[1] 108 198  33
-[1] 109 198  45
-[1] 110 198  31
-[1] 111 198  33
-[1] 112 198  44
-[1] 113 198  38
-[1] 114 198  77
-[1] 115 198  39
-[1] 116 198  44
-[1] 117 198  52
-[1] 118 198  61
-[1] 119 198  37
-[1] 120 198  34
-[1] 121 198  51
-[1] 122 198  38
-[1] 123 198  37
-[1] 124 198  45
-[1] 125 198  46
-[1] 126 198  40
-[1] 127 198  28
-[1] 128 198  66
-[1] 129 198  50
-[1] 130 198  42
-[1] 131 198  53
-[1] 132 198  49
-[1] 133 198  50
-[1] 134 198  35
-[1] 135 198  28
-[1] 136 198  42
-[1] 137 198  51
-[1] 138 198  37
-[1] 139 198  39
-[1] 140 198  42
-[1] 141 198  51
-[1] 142 198  46
-[1] 143 198  56
-[1] 144 198  39
-[1] 145 198  31
-[1] 146 198  37
-[1] 147 198  38
-[1] 148 198  39
-[1] 149 198  51
-[1] 150 198  42
-[1] 151 198  45
-[1] 152 198  42
-[1] 153 198  32
-[1] 154 198  31
-[1] 155 198  39
-[1] 156 198  41
-[1] 157 198  70
-[1] 158 198  35
-[1] 159 198  61
-[1] 160 198  42
-[1] 161 198  36
-[1] 162 198  43
-[1] 163 198  38
-[1] 164 198  41
-[1] 165 198  52
-[1] 166 198  41
-[1] 167 198  66
-[1] 168 198  51
-[1] 169 198  42
-[1] 170 198  41
-[1] 171 198  34
-[1] 172 198  43
-[1] 173 198  31
-[1] 174 198  40
-[1] 175 198  43
-[1] 176 198  48
-[1] 177 198  37
-[1] 178 198  44
-[1] 179 198  39
-[1] 180 198  62
-[1] 181 198  29
-[1] 182 198  33
-[1] 183 198  40
-[1] 184 198  33
-[1] 185 198  34
-[1] 186 198  53
-[1] 187 198  54
-[1] 188 198  39
-[1] 189 198  48
-[1] 190 198  34
-[1] 191 198  44
-[1] 192 198  40
-[1] 193 198  43
-[1] 194 198  42
-[1] 195 198  75
-[1] 196 198  51
-[1] 197 198  48
-[1] 198 198  45
-[1] 199 198  38
-[1] 200 198  67
-[1]   1 199  43
-[1]   2 199  49
-[1]   3 199  39
-[1]   4 199  42
-[1]   5 199  35
-[1]   6 199  37
-[1]   7 199  55
-[1]   8 199  39
-[1]   9 199  34
-[1]  10 199  42
-[1]  11 199  64
-[1]  12 199  44
-[1]  13 199  42
-[1]  14 199  35
-[1]  15 199  46
-[1]  16 199  46
-[1]  17 199  66
-[1]  18 199  40
-[1]  19 199  31
-[1]  20 199  37
-[1]  21 199  33
-[1]  22 199  56
-[1]  23 199  34
-[1]  24 199  36
-[1]  25 199  30
-[1]  26 199  36
-[1]  27 199  39
-[1]  28 199  48
-[1]  29 199  39
-[1]  30 199  43
-[1]  31 199  44
-[1]  32 199  33
-[1]  33 199  38
-[1]  34 199  40
-[1]  35 199  37
-[1]  36 199  40
-[1]  37 199  53
-[1]  38 199  33
-[1]  39 199  50
-[1]  40 199  35
-[1]  41 199  39
-[1]  42 199  35
-[1]  43 199  70
-[1]  44 199  29
-[1]  45 199  39
-[1]  46 199  35
-[1]  47 199  35
-[1]  48 199  37
-[1]  49 199  48
-[1]  50 199  30
-[1]  51 199  53
-[1]  52 199  38
-[1]  53 199  52
-[1]  54 199  51
-[1]  55 199  40
-[1]  56 199  34
-[1]  57 199  44
-[1]  58 199  42
-[1]  59 199  76
-[1]  60 199  38
-[1]  61 199  41
-[1]  62 199  39
-[1]  63 199  44
-[1]  64 199  44
-[1]  65 199  45
-[1]  66 199  39
-[1]  67 199  42
-[1]  68 199  31
-[1]  69 199  34
-[1]  70 199  40
-[1]  71 199  46
-[1]  72 199  38
-[1]  73 199  45
-[1]  74 199  40
-[1]  75 199  41
-[1]  76 199  38
-[1]  77 199  36
-[1]  78 199  40
-[1]  79 199  38
-[1]  80 199  53
-[1]  81 199  58
-[1]  82 199  51
-[1]  83 199  34
-[1]  84 199  35
-[1]  85 199  33
-[1]  86 199  38
-[1]  87 199  66
-[1]  88 199  62
-[1]  89 199  45
-[1]  90 199  41
-[1]  91 199  43
-[1]  92 199  36
-[1]  93 199  37
-[1]  94 199  47
-[1]  95 199  42
-[1]  96 199  57
-[1]  97 199  46
-[1]  98 199  33
-[1]  99 199  33
-[1] 100 199  44
-[1] 101 199  45
-[1] 102 199  42
-[1] 103 199  39
-[1] 104 199  34
-[1] 105 199  39
-[1] 106 199  31
-[1] 107 199  54
-[1] 108 199  48
-[1] 109 199  34
-[1] 110 199  46
-[1] 111 199  42
-[1] 112 199  62
-[1] 113 199  41
-[1] 114 199  41
-[1] 115 199  32
-[1] 116 199  45
-[1] 117 199  36
-[1] 118 199  34
-[1] 119 199  47
-[1] 120 199  39
-[1] 121 199  39
-[1] 122 199  76
-[1] 123 199  55
-[1] 124 199  39
-[1] 125 199  33
-[1] 126 199  44
-[1] 127 199  46
-[1] 128 199  44
-[1] 129 199  49
-[1] 130 199  57
-[1] 131 199  51
-[1] 132 199  41
-[1] 133 199  47
-[1] 134 199  42
-[1] 135 199  53
-[1] 136 199  47
-[1] 137 199  29
-[1] 138 199  70
-[1] 139 199  43
-[1] 140 199  80
-[1] 141 199  51
-[1] 142 199  41
-[1] 143 199  36
-[1] 144 199  40
-[1] 145 199  55
-[1] 146 199  53
-[1] 147 199  47
-[1] 148 199  36
-[1] 149 199  53
-[1] 150 199  44
-[1] 151 199  53
-[1] 152 199  38
-[1] 153 199  45
-[1] 154 199  33
-[1] 155 199  39
-[1] 156 199  39
-[1] 157 199  39
-[1] 158 199  47
-[1] 159 199  51
-[1] 160 199  45
-[1] 161 199  51
-[1] 162 199  41
-[1] 163 199  30
-[1] 164 199  41
-[1] 165 199  58
-[1] 166 199  48
-[1] 167 199  38
-[1] 168 199  32
-[1] 169 199  73
-[1] 170 199  47
-[1] 171 199  42
-[1] 172 199  39
-[1] 173 199  40
-[1] 174 199  54
-[1] 175 199  34
-[1] 176 199  60
-[1] 177 199  45
-[1] 178 199  35
-[1] 179 199  42
-[1] 180 199  45
-[1] 181 199  49
-[1] 182 199  59
-[1] 183 199  71
-[1] 184 199  56
-[1] 185 199  49
-[1] 186 199  32
-[1] 187 199  44
-[1] 188 199  42
-[1] 189 199  44
-[1] 190 199  55
-[1] 191 199  32
-[1] 192 199  35
-[1] 193 199  45
-[1] 194 199  41
-[1] 195 199  84
-[1] 196 199  40
-[1] 197 199  34
-[1] 198 199  49
-[1] 199 199  67
-[1] 200 199  91
-[1]   1 200  47
-[1]   2 200  49
-[1]   3 200  40
-[1]   4 200  43
-[1]   5 200  44
-[1]   6 200  42
-[1]   7 200  55
-[1]   8 200  36
-[1]   9 200  41
-[1]  10 200  81
-[1]  11 200  49
-[1]  12 200  32
-[1]  13 200  47
-[1]  14 200  46
-[1]  15 200  37
-[1]  16 200  41
-[1]  17 200  60
-[1]  18 200  39
-[1]  19 200  46
-[1]  20 200  59
-[1]  21 200  42
-[1]  22 200  47
-[1]  23 200  50
-[1]  24 200  49
-[1]  25 200  38
-[1]  26 200  41
-[1]  27 200  41
-[1]  28 200  37
-[1]  29 200  57
-[1]  30 200  45
-[1]  31 200  51
-[1]  32 200  56
-[1]  33 200  49
-[1]  34 200  49
-[1]  35 200  38
-[1]  36 200  59
-[1]  37 200  34
-[1]  38 200  40
-[1]  39 200  45
-[1]  40 200  77
-[1]  41 200  39
-[1]  42 200  48
-[1]  43 200  34
-[1]  44 200  39
-[1]  45 200  49
-[1]  46 200  35
-[1]  47 200  44
-[1]  48 200  44
-[1]  49 200  55
-[1]  50 200  33
-[1]  51 200  48
-[1]  52 200  43
-[1]  53 200  35
-[1]  54 200  42
-[1]  55 200  62
-[1]  56 200  60
-[1]  57 200  32
-[1]  58 200  40
-[1]  59 200  41
-[1]  60 200  58
-[1]  61 200  45
-[1]  62 200  46
-[1]  63 200  40
-[1]  64 200  41
-[1]  65 200  45
-[1]  66 200  32
-[1]  67 200  39
-[1]  68 200  35
-[1]  69 200  56
-[1]  70 200  53
-[1]  71 200  40
-[1]  72 200  51
-[1]  73 200  35
-[1]  74 200  36
-[1]  75 200  36
-[1]  76 200  41
-[1]  77 200  34
-[1]  78 200  51
-[1]  79 200  39
-[1]  80 200  34
-[1]  81 200  39
-[1]  82 200  38
-[1]  83 200  49
-[1]  84 200  41
-[1]  85 200  35
-[1]  86 200  50
-[1]  87 200  28
-[1]  88 200  39
-[1]  89 200  32
-[1]  90 200  49
-[1]  91 200  43
-[1]  92 200  32
-[1]  93 200  61
-[1]  94 200  42
-[1]  95 200  59
-[1]  96 200  28
-[1]  97 200  39
-[1]  98 200  50
-[1]  99 200  81
-[1] 100 200  42
-[1] 101 200  39
-[1] 102 200  30
-[1] 103 200  57
-[1] 104 200  43
-[1] 105 200  47
-[1] 106 200  56
-[1] 107 200  34
-[1] 108 200  41
-[1] 109 200  41
-[1] 110 200  36
-[1] 111 200  38
-[1] 112 200  49
-[1] 113 200  43
-[1] 114 200  38
-[1] 115 200  38
-[1] 116 200  45
-[1] 117 200  41
-[1] 118 200  30
-[1] 119 200  46
-[1] 120 200  46
-[1] 121 200  30
-[1] 122 200  32
-[1] 123 200  41
-[1] 124 200  53
-[1] 125 200  29
-[1] 126 200  52
-[1] 127 200  43
-[1] 128 200  39
-[1] 129 200  60
-[1] 130 200  32
-[1] 131 200  47
-[1] 132 200  30
-[1] 133 200  35
-[1] 134 200  35
-[1] 135 200  46
-[1] 136 200  37
-[1] 137 200  41
-[1] 138 200  46
-[1] 139 200  47
-[1] 140 200  48
-[1] 141 200  34
-[1] 142 200  47
-[1] 143 200  44
-[1] 144 200  41
-[1] 145 200  45
-[1] 146 200  48
-[1] 147 200  45
-[1] 148 200  42
-[1] 149 200  47
-[1] 150 200  36
-[1] 151 200  40
-[1] 152 200  48
-[1] 153 200  33
-[1] 154 200  46
-[1] 155 200  36
-[1] 156 200  26
-[1] 157 200  47
-[1] 158 200  43
-[1] 159 200  33
-[1] 160 200  40
-[1] 161 200  49
-[1] 162 200  56
-[1] 163 200  36
-[1] 164 200  32
-[1] 165 200  42
-[1] 166 200  44
-[1] 167 200  39
-[1] 168 200  36
-[1] 169 200  48
-[1] 170 200  66
-[1] 171 200  32
-[1] 172 200  41
-[1] 173 200  72
-[1] 174 200  42
-[1] 175 200  47
-[1] 176 200  39
-[1] 177 200  53
-[1] 178 200  34
-[1] 179 200 105
-[1] 180 200  42
-[1] 181 200  34
-[1] 182 200  48
-[1] 183 200  35
-[1] 184 200  32
-[1] 185 200  50
-[1] 186 200  29
-[1] 187 200  52
-[1] 188 200  51
-[1] 189 200  39
-[1] 190 200  48
-[1] 191 200  38
-[1] 192 200  41
-[1] 193 200  34
-[1] 194 200  32
-[1] 195 200  43
-[1] 196 200  43
-[1] 197 200  47
-[1] 198 200  54
-[1] 199 200  50
-[1] 200 200  50
-> 
-> 
-> write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI_high_resolution.csv",sep=""))
-> 
-> proc.time()
-     user    system   elapsed 
-64449.803    11.724 64470.304 
diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_lab.R b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_lab.R
deleted file mode 100644
index 8eff1fef7eedcbb5c9ab0e28ae1c6654602a317f..0000000000000000000000000000000000000000
--- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_lab.R
+++ /dev/null
@@ -1,358 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-
-# Qnatile calculated over the laboratory cathcments
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-#library(Hmisc)
-
-#list.of.packages <- c("xts")
-#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-#if(length(new.packages)) install.packages(new.packages)
-library(xts)
-
-
-
-
-## Varaible file
-
-variable_int<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-width<-30
-width_char<-paste(width)
-
-
-
-#variable_x<-"Maximum_air_temperature"
-#variable<-"daylength"
-#variable_y<-"Relative_humidity"
-
-#variable<-"Mean_Precipitation"
-variable<-"Relative_humidity"
-variable_y<-"Maximum_air_temperature"
-
-#variable_y<-"Mean_Precipitation"
-#variable<-"daylength"
-#variable<-"Mean_Precipitation"
-#"Maximum_air_temperature",
-#"Minimum_air_temperature",
-#"Mean_wind_speed",
-#"Mean_Precipitation",
-#"Relative_humidity",
-#"daylength"
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-		
-Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-
-
-
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015)
-Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015)
-
-
-################### include latitude and longitude 
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-
-
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))#
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-
-Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-Env_laboratory_int3<-data.frame(Env_laboratory_int2)
-
-Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2)
-
-
-
-######################## include daylength ################## 
-
-PC_df<-data.frame(All_PC,as.Date(dates))
-colnames(PC_df)<-c("PostCode","Date")
-
-Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Post_Codes_df$lat
-day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-daylength_df$Date<-as.factor(daylength_df$Date)
-daylength_df$lat<-as.factor(daylength_df$lat)
-Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date)
-Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat)
-
-#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date"))
-#Env_laboratory<-data.frame(Env_laboratory_int4)
-Env_laboratory<-data.frame(Env_laboratory_int3)
-Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date)
-Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat)
-
-
-#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date"))
-#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4)
-Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3)
-
-
-
-
-
-
-################### Divide the domains of the variables in bins according to quantiles
-
-
-index_C<-which (names(Env_Campylobacter_data)==variable)
-index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-
-
-index<-which (names(Env_laboratory)==variable)
-index_y<-which (names(Env_laboratory)==variable_y)
-
-
-#########################
-
-
-breaks_z_lab<-function(variable,by_z)
-{
-  
-  index<-which (names(Env_laboratory)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-breaks_z<-function(variable,by_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-   
-  breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE))
-  
-  breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)]
-  breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1]
- 
-  
-   return(breaks_z)
-
-}
-
-
-breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  
-  index<-which (names(Env_laboratory)==variable)
-  index_y<-which (names(Env_laboratory)==variable_y)
-
-  
-  
-  wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-  
-  wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_some<-Env_laboratory[ww,]
-  
-  if (length(Env_Campylobacter_data_some[,1])!=0) {
-    
-    breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-    breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-    breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-    
-  }else{
-    
-    breaks_y<-c()
-  }
-  
-  return(breaks_y)
-  }
-    
-
-
-
-breaks_y<-function(variable,variable_y,by_z,by_y,j_z)
-{
-  
-  index_C<-which (names(Env_Campylobacter_data)==variable)
-  index_y_C<-which (names(Env_Campylobacter_data)==variable_y)
-
-  
-  
-  wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,]
-  
-  
-  if (length(Env_Campylobacter_data_some[,1])!=0) {
-    
-    breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE))
-    breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)]
-    breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1]
-    
-  }else{
-    
-    breaks_y<-c()
-  }
-  
-  return(breaks_y)
-  }
-    
-
-
-################# 
-
-
-
-
-var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric())
-colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot")
- 
-residents_i_var<-0
-residents_universal<-0
-#i_var_max<-length(breaks_var)
-#i_var_min<-1
-#i_var_max_x<-length(breaks_var_x)
-#i_var_min_x<-1
-
-
-#####################
-by_z<-0.2
-by_y<-0.05
-
-
-#i_var_min<-breaks_z(variable,by_z)[1]
-#i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))]
-j_z_min<-1
-j_z_max<-length(breaks_z_lab(variable,by_z))-1
-
-
-
-for (j_z in c(j_z_min:j_z_max))
-{
-  
-  wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,]
-    
-  wt<-(findInterval((Env_laboratory[,index]),breaks_z_lab(variable,by_z)))
-  ww<-which(wt==j_z)
-  Env_laboratory_z<-Env_laboratory[ww,]
-  
-  if (length(Env_Campylobacter_data_z[,1])!=0){
-  if (length(breaks_y_lab(variable,variable_y,by_z,by_y,j_z))!=0){
-    
-  j_y_min<-1
-  j_y_max<-length(breaks_y_lab(variable,variable_y,by_z,by_y,j_z))-1
-  
-  
-    
-  for (j_y in c(j_y_min:j_y_max))
-  {
-  
-  wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y_lab(variable,variable_y,by_z,by_y,j_z)))  
-  ww<-which(wt==j_y)
-  Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,]
-  
-  wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y_lab(variable,variable_y,by_z,by_y,j_z)))  
-  ww<-which(wt==j_y)
-  Env_laboratory_y<-Env_laboratory_z[ww,]
-  
-  
-      
-     
-      Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases))))
-      residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents))))
-      residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents))))
-        
-      data_df<-data.frame(
-        breaks_z_lab(variable,by_z)[j_z],
-        breaks_y_lab(variable,variable_y,by_z,by_y,j_z)[j_y],
-        Total_cases,
-        residents,
-        residents_tot)
-      
-	 
-	  
-	  
-	  
-      colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot")
-	 var_x_loc_df<-rbind(var_x_loc_df,data_df) 
-     print(c(j_y,j_z, Total_cases))
-    
-    }
-  }
-    
- 
-       }}
-
-
-write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI_lab.csv",sep=""))
diff --git a/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.R b/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.R
deleted file mode 100644
index 35cf5be77fe7ff47fb9a2d9f8af5bae93617b0e9..0000000000000000000000000000000000000000
--- a/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.R
+++ /dev/null
@@ -1,797 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-#library(Hmisc)
-
-list.of.packages <- c("xts")
-new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-if(length(new.packages)) install.packages(new.packages)
-library(xts)
-
-
-
-width<-30
-width_char<-paste(width)
-
-
-variable_x<-"min_air_temp"
-#variable_y<-"wind"
-variable_y<-"rain"
-#variable_y<-"humidity"
-variable<-"light"
-#variable<-"rain"
-
-#write.table(Env_Campylobacter_data_all2,paste("../DataBase/Cases_Environment/Campylobacter_environment_",width_char,".csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-#colnames(Env_Campylobacter_data_all2)<-c("PostCode","PHE_Centre_Name","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-#colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                     "Maximum_air_temperature",
-                                     "Minimum_air_temperature",
-                                     "Mean_wind_speed",
-                                     "Cumul_Precipitation",
-                                     "Mean_Precipitation",
-                                     "Relative_humidity",
-                                     "daylength",
-                                     "residents")
-
-
-Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-#colnames(Env_laboratory_weekly)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind","residents")
-colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-                                     "Maximum_air_temperature",
-                                     "Minimum_air_temperature",
-                                     "Mean_wind_speed",
-                                     "Cumul_Precipitation",
-                                     "Mean_Precipitation",
-                                     "Relative_humidity",
-                                     "daylength",
-                                     "residents")
-
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#For Dorset only
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-#Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_PHE,year(Env_Campylobacter_data_PHE$Date)>=2001 & year(Env_Campylobacter_data_PHE$Date)<2012)
-
-Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-
-Env_laboratory_int1<-subset(Env_laboratory_weekly,year(Env_laboratory_weekly$Date)>=1990 & year(Env_laboratory_weekly$Date)<=2015)
-################### weekly summary
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-
-#names(Coord_laboratory)
-#as.numeric(Coord_laboratory[1,])
-#as.numeric(Coord_laboratory[2,])
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-
-daylength<-function(lat,day_year)
-   {
-   #Latitude measure in degrees
-    P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-	Denom<-cos(lat*pi/180)*cos(P) 
-	Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-	D<-24-(24/pi)*acos(Numer/Denom)
-   return(D)
-}
-
-latitude<-Env_laboratory_int2$lat
-day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date))
-#var_list<-list(lat,day_year)
-#lapply(var_list,daylength)
-#lapply(Env_laboratory,daylength, Env_laboratory$lat)
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-#daylength_df$lat<-as.factor(daylength_df$lat)
-#daylength_df$Date<-as.factor(daylength_df$Date)
-#Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat)
-#Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date)
-#Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date"))
-
-Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df)
-
-### repeat for the data only ####
-
-latitude<-Env_Campylobacter_data_int2$lat
-day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-#daylength_df$lat<-as.factor(daylength_df$lat)
-#daylength_df$Date<-as.factor(daylength_df$Date)
-#Env_Campylobacter_data_int2$lat<-as.factor(Env_Campylobacter_data_int2$lat)
-#Env_Campylobacter_data_int2$Date<-as.factor(Env_Campylobacter_data_int2$Date)
-
-Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df)
-
-
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-1
-delta_cum_rain<-20
-delta_wind<-2
-delta_light<-1
-breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,   max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp)
-breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2,   max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation))-1,0),   max(na.omit(Env_laboratory$Mean_Precipitation))+1,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory_weekly$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-# First find right domain where the values have no NA
-#i_hum_min<-max(min(which(breaks_hum>=min(na.omit(Env_Campylobacter_data$Relative_humidity)))-1,length(breaks_hum)),1)
-
-#i_min_temp_min<-max(min(min(which(breaks_min_temp>=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))-1,length(breaks_min_temp)),1)
-#i_min_temp_max<-max(max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))+1,1)
-
-#i_max_temp_min<-max(min(min(which(breaks_max_temp>=min(na.omit(Env_Campylobacter_data$max_temp))))-1,length(breaks_max_temp)),1)
-#i_max_temp_max<-max(max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$max_temp))))+1,1)
-
-#i_rain_min<-max(min(min(which(breaks_rain>=min(na.omit(Env_Campylobacter_data$Mean_Precipitation))))-1,length(breaks_rain)),1),1)
-#i_rain_max<-max(min(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation))))+1,1)
-
-#i_cum_rain_min<-max(min(min(which(breaks_cum_rain>=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))-1,length(breaks_cum_rain)),1)
-#i_cum_rain_max<-max(min(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))+1,1)
-
-#i_wind_min<-max(min(min(which(breaks_wind>=min(na.omit(Env_Campylobacter_data$Mean_wind_speed))))-1,length(breaks_wind)),1)
-#i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed))))+1
-
-
-#print(c(i_hum_min,i_min_temp_min ,i_max_temp_min, i_rain_min,i_wind_min))
-#print(c(i_hum_min,i_hum_max,i_min_temp_min ,i_min_temp_max,i_max_temp_min,i_max_temp_max, i_rain_min,i_rain_max,i_wind_min,i_wind_max))
-
-
-
-i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity))))
-i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity))))
-
-i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))
-i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))
-
-i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature))))
-i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature))))
-
-i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation))))
-i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation))))
-
-i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))
-i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))
-
-i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed))))
-i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed))))
-
-
-i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength))))
-i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength))))
-
-############################# General variables ###########################
-
-
-
-
-
-var_x_loc_df<-c()
-
-if (variable=="light"){
-  
-  breaks_var<-breaks_light
-  i_var_min<-i_light_min
-  i_var_max<-i_light_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength
-  Env_laboratory_var<-Env_laboratory$daylength
-}
-
-if (variable_x=="light"){
-
-    i_var_x_min<-i_light_min
-  i_var_x_max<-i_light_max
-  breaks_var_x<-breaks_light
-}
-
-if (variable_y=="light"){
-  
-  i_var_y_min<-i_light_min
-  i_var_y_max<-i_light_max
-  breaks_var_y<-breaks_light
-}
-
-
-if (variable=="max_air_temp"){
-  
-  breaks_var<-breaks_max_temp
-  i_var_min<-i_max_temp_min
-  i_var_max<-i_max_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature
-  Env_laboratory_var<-Env_laboratory$Maximum_air_temperature
-}
-if (variable_x=="max_air_temp"){
-  
-  i_var_x_min<-i_max_temp_min
-  i_var_x_max<-i_max_temp_max
-  breaks_var_x<-breaks_max_temp
-}
-
-if (variable_y=="max_air_temp"){
-  
-  i_var_y_min<-i_max_temp_min
-  i_var_y_max<-i_max_temp_max
-  breaks_var_y<-breaks_max_temp
-}
-
-if (variable=="min_air_temp"){
-  
-  breaks_var<-breaks_min_temp
-  i_var_min<-i_min_temp_min
-  i_var_max<-i_min_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Minimum_air_temperature
-  Env_laboratory_var<-Env_laboratory$Minimum_air_temperature
-}
-if (variable_x=="min_air_temp"){
-  
-  i_var_x_min<-i_min_temp_min
-  i_var_x_max<-i_min_temp_max
-  breaks_var_x<-breaks_min_temp
-}
-
-if (variable_y=="min_air_temp"){
-  
-  i_var_y_min<-i_min_temp_min
-  i_var_y_max<-i_min_temp_max
-  breaks_var_y<-breaks_min_temp
-}
-
-if (variable=="humidity"){
-  
-  breaks_var<-breaks_hum
-  i_var_min<-i_hum_min
-  i_var_max<-i_hum_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity
-  Env_laboratory_var<-Env_laboratory$Relative_humidity
-}
-if (variable_x=="humidity"){
-  
-  i_var_x_min<-i_hum_min
-  i_var_x_max<-i_hum_max
-  breaks_var_x<-breaks_hum
-}
-
-
-if (variable_y=="humidity"){
-  
-  i_var_y_min<-i_hum_min
-  i_var_y_max<-i_hum_max
-  breaks_var_y<-breaks_hum
-}
-
-
-if (variable=="mean_temp"){
-  
-  breaks_var<-breaks_mean_temp
-  i_var_min<-i_mean_temp_min
-  i_var_max<-i_mean_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp
-  Env_laboratory_var<-Env_laboratory$mean_temp
-}
-if (variable_x=="mean_temp"){
-  
-  i_var_x_min<-i_mean_temp_min
-  i_var_x_max<-i_mean_temp_max
-  breaks_var_x<-breaks_mean_temp
-}
-
-
-if (variable_y=="mean_temp"){
-  
-  i_var_y_min<-i_mean_temp_min
-  i_var_y_max<-i_mean_temp_max
-  breaks_var_y<-breaks_mean_temp
-}
-
-
-if (variable=="rain"){
-  
-  breaks_var<-breaks_rain
-  i_var_min<-i_rain_min
-  i_var_max<-i_rain_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation
-  Env_laboratory_var<-Env_laboratory$Mean_Precipitation
-}
-if (variable_x=="rain"){
-  
-  i_var_x_min<-i_rain_min
-  i_var_x_max<-i_rain_max
-  breaks_var_x<-breaks_rain
-}
-
-
-if (variable_y=="rain"){
-  
-  i_var_y_min<-i_rain_min
-  i_var_y_max<-i_rain_max
-  breaks_var_y<-breaks_rain
-}
-
-if (variable=="cum_rain"){
-  
-  breaks_var<-breaks_cum_rain
-  i_var_min<-i_cum_rain_min
-  i_var_max<-i_cum_rain_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation
-  Env_laboratory_var<-Env_laboratory$Cumul_Precipitation
-}
-if (variable_x=="cum_rain"){
-  
-  i_var_x_min<-i_cum_rain_min
-  i_var_x_max<-i_cum_rain_max
-  breaks_var_x<-breaks_cum_rain
-}
-
-if (variable_y=="cum_rain"){
-  
-  i_var_y_min<-i_cum_rain_min
-  i_var_y_max<-i_cum_rain_max
-  breaks_var_y<-breaks_cum_rain
-}
-
-if (variable=="wind"){
-  
-  breaks_var<-breaks_wind
-  i_var_min<-i_wind_min
-  i_var_max<-i_wind_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed
-  Env_laboratory_var<-Env_laboratory$Mean_wind_speed
-}
-if (variable_x=="wind"){
-  
-  i_var_x_min<-i_wind_min
-  i_var_x_max<-i_wind_max
-  breaks_var_x<-breaks_wind
-}
-
-
-if (variable_y=="wind"){
-  
-  i_var_y_min<-i_wind_min
-  i_var_y_max<-i_wind_max
-  breaks_var_y<-breaks_wind
-}
-
-
-Yt_var_x<-function(i_var,i_var_y)
-{
-  
-  if(is.na(breaks_var[i_var+1])==TRUE)
-  {
-  Yt1<-subset(Env_Campylobacter_data,Env_Campylobacter_data_var>=breaks_var[i_var])
-  } else {
-  Yt1<-subset(Env_Campylobacter_data,Env_Campylobacter_data_var>=breaks_var[i_var] & Env_Campylobacter_data_var<breaks_var[i_var+1])
-  }
-  
-  if(variable_y=="humidity"){
-  
-  if(is.na(breaks_hum[i_var_y+1])==TRUE)
-  {
-  Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y])
-  } else {
-  Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y] & Yt1$Relative_humidity<=breaks_hum[i_var_y+1])
-  }
-  }
-  if(variable_y=="wind"){
-  if(is.na(breaks_wind[i_var_y+1])==TRUE)
-  {
-     Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y])
-  } else {
-  Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y] & Yt1$Mean_wind_speed<=breaks_wind[i_var_y+1])
-  }
-  }
-  if(variable_y=="rain"){
-  if(is.na(breaks_rain[i_var_y+1])==TRUE)
-{  
-   Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y])
-  } else {
-  Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y] & Yt1$Mean_Precipitation<=breaks_rain[i_var_y+1])
-  }
- 
-  }
- 
- if(variable_y=="cum_rain"){
-  if(is.na(breaks_cum_rain[i_var_y+1])==TRUE)
-{  
-   Yt2<-subset(Yt1,Yt1$Cumul_Precipitation>=breaks_cum_rain[i_var_y])
-  } else {
-  Yt2<-subset(Yt1,Yt1$Cumul_Precipitation>=breaks_cum_rain[i_var_y] & Yt1$Cumul_Precipitation<=breaks_cum_rain[i_var_y+1])
-  }
- 
-  }
-  
-  return(as.list(Yt2))
-  
-}
-
-
-Tot_var_x<-function(i_var,i_var_y)
-{
-  
-  if(is.na(breaks_var[i_var+1])==TRUE)
-  {
-  Yt1<-subset(Env_laboratory,Env_laboratory_var>=breaks_var[i_var])
-    } else {
-  Yt1<-subset(Env_laboratory,Env_laboratory_var>=breaks_var[i_var] & Env_laboratory_var<breaks_var[i_var+1])
-    }
-  
-  if(variable_y=="humidity"){
-    
-    if(is.na(breaks_hum[i_var_y+1])==TRUE)
-    {
-      Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y])
-    } else {
-      Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y] & Yt1$Relative_humidity<=breaks_hum[i_var_y+1])
-    }
-  }
-  
-  if(variable_y=="wind"){
-    
-	if(is.na(breaks_wind[i_var_y+1])==TRUE)
-    {
-      Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y])
-    } else {
-      Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y] & Yt1$Mean_wind_speed<=breaks_wind[i_var_y+1])
-    }
-	
-  }
-    
-  if(variable_y=="rain"){
-    
-	if(is.na(breaks_rain[i_var_y+1])==TRUE)
-    {
-      Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y])
-    } else {
-      Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y] & Yt1$Mean_Precipitation<=breaks_rain[i_var_y+1])
-    }
-	
-  }
-  
-  
-  return(as.list(Yt2))
-  
-}
-
-
-
-var_x_loc_df<-c(0)
-n_seas<-1
-residents_i_var<-0
-residents_universal<-0
-#i_var_max<-length(breaks_var)
-#i_var_min<-1
-#i_var_max_x<-length(breaks_var_x)
-#i_var_min_x<-1
-
-for (i_var in c(i_var_min:i_var_max))
-{
-  
-  for (i_var_y in c(i_var_y_min:i_var_y_max))
-  {
-    
-    
-  for (i in c(1:n_seas))
-  {
-    
-    n_months<-12/n_seas
-  
-    
-    wt<-which(month(Yt_var_x(i_var,i_var_y )$Date)>(i-1)*n_months & month(Yt_var_x(i_var,i_var_y )$Date)<=i*n_months)
-    wt_tot<-which(month(Tot_var_x(i_var,i_var_y )$Date)>(i-1)*n_months & month(Tot_var_x(i_var,i_var_y )$Date)<=i*n_months)
-    
-    if (variable_x=="min_air_temp"){
-      Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Minimum_air_temperature[wt]
-	  var_x_tot<-Tot_var_x(i_var,i_var_y )$Minimum_air_temperature[wt_tot]
-	  
-	 
-  
-	  
-    }
-    if (variable_x=="max_air_temp"){
-      Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Maximum_air_temperature[wt]
-      var_x_tot<-Tot_var_x(i_var,i_var_y )$Maximum_air_temperature[wt_tot]
-      
-    }
-    
-    if (variable_x=="mean_temp"){
-      Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$mean_temp[wt]
-      var_x_tot<-Tot_var_x(i_var,i_var_y )$mean_temp[wt_tot]
-      
-    }
-    
-    
-    
-    if (variable_x=="humidity"){
-      Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Relative_humidity[wt]
-      var_x_tot<-Tot_var_x(i_var,i_var_y )$Relative_humidity[wt_tot]
-      
-    }
-    if (variable_x=="wind"){
-      Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Mean_wind_speed[wt]
-      var_x_tot<-Tot_var_x(i_var,i_var_y )$Mean_wind_speed[wt_tot]
-      
-    }
-    
-    if (variable_x=="light"){
-      Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$daylength[wt]
-      var_x_tot<-Tot_var_x(i_var,i_var_y )$daylength[wt_tot]
-      
-    }
-    
-    if (variable_x=="rain"){
-      Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Mean_Precipitation[wt]
-      var_x_tot<-Tot_var_x(i_var,i_var_y )$Mean_Precipitation[wt_tot]
-      
-    }
-    if (variable_x=="cum_rain"){
-      Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Cumul_Precipitation[wt]
-      var_x_tot<-Tot_var_x(i_var,i_var_y )$Cumul_Precipitation[wt_tot]
-      
-    }
-    
-		
-    n_var_x_tot<-hist(var_x_tot,breaks=breaks_var_x)
-    n_var_x<-hist((as.numeric(as.character(Campylobacter_var_x))),breaks=breaks_var_x)
-    
-    residents<-rep(0,times=length(breaks_var_x)-1)
-    residents_tot<-rep(0,times=length(breaks_var_x)-1)
-    numb_PC<-rep(0,times=length(breaks_var_x)-1)
-      
-    wt<-which(n_var_x_tot$counts!=0) 
-    wt2<-which(n_var_x$counts!=0)
-    delta_step_tot<-diff(n_var_x_tot$breaks)
-	delta_step<-diff(n_var_x$breaks)  #Actuallly these two are identical, but left as it is for generality
-    
-    if (variable_x=="min_air_temp"){
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-		  
-		  
-          ww<-which(Tot_var_x(i_var,i_var_y)$Minimum_air_temperature>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var,i_var_y)$Minimum_air_temperature<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]   )
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-          numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-          
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var,i_var_y)$Minimum_air_temperature>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Minimum_air_temperature<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-            residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-          }
-        }
-        
-      }
-      
-      
-    }
-	
-	
-    if (variable_x=="max_air_temp"){
-      
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var,i_var_y)$Maximum_air_temperature>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var,i_var_y)$Maximum_air_temperature<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]   )
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-          numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var,i_var_y)$Maximum_air_temperature>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Maximum_air_temperature<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-            residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-          }
-        }
-        
-      }
-      
-    }
-	
-	if (variable_x=="light"){
-	  if(length(wt)>0){
-	    for (j in c(1:(length(wt)))){
-	      
-	      
-	      ww<-which(Tot_var_x(i_var,i_var_y)$daylength>=n_var_x_tot$breaks[wt[j]] & 
-	                  Tot_var_x(i_var,i_var_y)$daylength<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]   )
-	      residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-	      numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-	      
-	    }
-	    if(length(wt2)>0){
-	      for (j in c(1:(length(wt2)))){
-	        
-	        ww<-which(Yt_var_x(i_var,i_var_y)$daylength>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$daylength<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-	        residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-	      }
-	    }
-	    
-	  }
-	  
-	  
-	}
-	
-	
-    
-    if (variable_x=="mean_temp"){
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var,i_var_y)$mean_temp>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var,i_var_y)$mean_temp<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]   )
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-          numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var,i_var_y)$mean_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$mean_temp<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-            residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-          }
-        }
-        
-      }
-    }
-    
-    
-    if (variable_x=="humidity"){
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var,i_var_y)$hum>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var,i_var_y)$hum<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]  )
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-          numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var,i_var_y)$hum>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$hum<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-            residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-          }
-        }
-        
-      }
-    }
-    if (variable_x=="wind"){
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var,i_var_y)$Mean_wind_speed>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var,i_var_y)$Mean_wind_speed<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]])
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-          numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var,i_var_y)$Mean_wind_speed>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Mean_wind_speed<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-            residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-          }
-        }
-        
-      }
-      
-    }
-    if (variable_x=="rain"){
-      
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var,i_var_y)$Mean_Precipitation>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var,i_var_y)$Mean_Precipitation<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]])
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-          numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var,i_var_y)$Mean_Precipitation>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Mean_Precipitation<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-            residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-          }
-        }
-        
-      }
-    }
-    
-    if (variable_x=="cum_rain"){
-      
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var,i_var_y)$Cumul_Precipitation>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var,i_var_y)$Cumul_Precipitation<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]])
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-          numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var,i_var_y)$Cumul_Precipitation>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Cumul_Precipitation<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-            residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-          }
-        }
-        
-      }
-    }
-    
-   
-	
-    data_df<-data.frame(
-	n_var_x$mids,
-	n_var_x$breaks[-length(n_var_x$breaks)],
-	n_var_x$counts/n_var_x_tot$counts,
-	(n_var_x$counts)/(residents_tot),
-	i,
-	breaks_var[i_var],
-	breaks_var_y[i_var_y],
-	n_var_x$counts,
-	n_var_x_tot$counts,
-	residents,
-	residents_tot,
-	numb_PC)
-    
-    
-    colnames(data_df)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-    var_x_loc_df<-rbind(var_x_loc_df,data_df)
-    colnames(var_x_loc_df)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-    #}
-    #}
-    
-    
-  }
-  }
-residents_i_var<-residents_i_var+sum(residents_tot)
-}
-
-residents_universal<residents_universal+sum(residents_i_var)
-residents_i_var
-residents_universal
-
-write.table(var_x_loc_df,paste("../../Data_Base/Cases_Environment/",variable,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
diff --git a/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.Rout b/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.Rout
deleted file mode 100644
index 6bbf6a47b12f1cfad3781bbe5b88098506ab2653..0000000000000000000000000000000000000000
--- a/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.Rout
+++ /dev/null
@@ -1,863 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-> 
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> #library(Hmisc)
-> 
-> list.of.packages <- c("xts")
-> new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-> if(length(new.packages)) install.packages(new.packages)
-> library(xts)
-Loading required package: zoo
-
-Attaching package: ‘zoo’
-
-The following object is masked from ‘package:timeSeries’:
-
-    time<-
-
-The following objects are masked from ‘package:base’:
-
-    as.Date, as.Date.numeric
-
-
-Attaching package: ‘xts’
-
-The following objects are masked from ‘package:pastecs’:
-
-    first, last
-
-> 
-> 
-> 
-> width<-30
-> width_char<-paste(width)
-> 
-> 
-> variable_x<-"min_air_temp"
-> #variable_y<-"wind"
-> variable_y<-"rain"
-> #variable_y<-"humidity"
-> variable<-"light"
-> #variable<-"rain"
-> 
-> #write.table(Env_Campylobacter_data_all2,paste("../DataBase/Cases_Environment/Campylobacter_environment_",width_char,".csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> 
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> #colnames(Env_Campylobacter_data_all2)<-c("PostCode","PHE_Centre_Name","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-> #colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                      "Maximum_air_temperature",
-+                                      "Minimum_air_temperature",
-+                                      "Mean_wind_speed",
-+                                      "Cumul_Precipitation",
-+                                      "Mean_Precipitation",
-+                                      "Relative_humidity",
-+                                      "daylength",
-+                                      "residents")
-> 
-> 
-> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory_weekly<-Env_laboratory_weekly[,-1]
-> #colnames(Env_laboratory_weekly)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind","residents")
-> colnames(Env_laboratory_weekly)<-c("PostCode","Date",
-+                                      "Maximum_air_temperature",
-+                                      "Minimum_air_temperature",
-+                                      "Mean_wind_speed",
-+                                      "Cumul_Precipitation",
-+                                      "Mean_Precipitation",
-+                                      "Relative_humidity",
-+                                      "daylength",
-+                                      "residents")
-> 
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #For Dorset only
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> #Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_PHE,year(Env_Campylobacter_data_PHE$Date)>=2001 & year(Env_Campylobacter_data_PHE$Date)<2012)
-> 
-> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-> 
-> 
-> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(Env_laboratory_weekly$Date)>=1990 & year(Env_laboratory_weekly$Date)<=2015)
-> ################### weekly summary
-> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-> 
-> #names(Coord_laboratory)
-> #as.numeric(Coord_laboratory[1,])
-> #as.numeric(Coord_laboratory[2,])
-> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-> colnames(lat_long_lab)<-c("PostCode","lat","long")
-> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode")
-> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode")
-> 
-> daylength<-function(lat,day_year)
-+    {
-+    #Latitude measure in degrees
-+     P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-+ 	Denom<-cos(lat*pi/180)*cos(P) 
-+ 	Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-+ 	D<-24-(24/pi)*acos(Numer/Denom)
-+    return(D)
-+ }
-> 
-> latitude<-Env_laboratory_int2$lat
-> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date))
-> #var_list<-list(lat,day_year)
-> #lapply(var_list,daylength)
-> #lapply(Env_laboratory,daylength, Env_laboratory$lat)
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> #daylength_df$lat<-as.factor(daylength_df$lat)
-> #daylength_df$Date<-as.factor(daylength_df$Date)
-> #Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat)
-> #Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date)
-> #Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date"))
-> 
-> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df)
-> 
-> ### repeat for the data only ####
-> 
-> latitude<-Env_Campylobacter_data_int2$lat
-> day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date))
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> #daylength_df$lat<-as.factor(daylength_df$lat)
-> #daylength_df$Date<-as.factor(daylength_df$Date)
-> #Env_Campylobacter_data_int2$lat<-as.factor(Env_Campylobacter_data_int2$lat)
-> #Env_Campylobacter_data_int2$Date<-as.factor(Env_Campylobacter_data_int2$Date)
-> 
-> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df)
-> 
-> 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-1
-> delta_cum_rain<-20
-> delta_wind<-2
-> delta_light<-1
-> breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,   max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2,   max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation))-0,0),   max(na.omit(Env_laboratory$Mean_Precipitation))+0,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory_weekly$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-> breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> # First find right domain where the values have no NA
-> #i_hum_min<-max(min(which(breaks_hum>=min(na.omit(Env_Campylobacter_data$Relative_humidity)))-1,length(breaks_hum)),1)
-> 
-> #i_min_temp_min<-max(min(min(which(breaks_min_temp>=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))-1,length(breaks_min_temp)),1)
-> #i_min_temp_max<-max(max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))+1,1)
-> 
-> #i_max_temp_min<-max(min(min(which(breaks_max_temp>=min(na.omit(Env_Campylobacter_data$max_temp))))-1,length(breaks_max_temp)),1)
-> #i_max_temp_max<-max(max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$max_temp))))+1,1)
-> 
-> #i_rain_min<-max(min(min(which(breaks_rain>=min(na.omit(Env_Campylobacter_data$Mean_Precipitation))))-1,length(breaks_rain)),1),1)
-> #i_rain_max<-max(min(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation))))+1,1)
-> 
-> #i_cum_rain_min<-max(min(min(which(breaks_cum_rain>=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))-1,length(breaks_cum_rain)),1)
-> #i_cum_rain_max<-max(min(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))+1,1)
-> 
-> #i_wind_min<-max(min(min(which(breaks_wind>=min(na.omit(Env_Campylobacter_data$Mean_wind_speed))))-1,length(breaks_wind)),1)
-> #i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed))))+1
-> 
-> 
-> #print(c(i_hum_min,i_min_temp_min ,i_max_temp_min, i_rain_min,i_wind_min))
-> #print(c(i_hum_min,i_hum_max,i_min_temp_min ,i_min_temp_max,i_max_temp_min,i_max_temp_max, i_rain_min,i_rain_max,i_wind_min,i_wind_max))
-> 
-> 
-> 
-> i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity))))
-> i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity))))
-> 
-> i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))
-> i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))
-> 
-> i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature))))
-> i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature))))
-> 
-> i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation))))
-> i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation))))
-> 
-> i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))
-> i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))
-> 
-> i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed))))
-> i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed))))
-> 
-> 
-> i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength))))
-> i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength))))
-> 
-> ############################# General variables ###########################
-> 
-> 
-> 
-> 
-> 
-> var_x_loc_df<-c()
-> 
-> if (variable=="light"){
-+   
-+   breaks_var<-breaks_light
-+   i_var_min<-i_light_min
-+   i_var_max<-i_light_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength
-+   Env_laboratory_var<-Env_laboratory$daylength
-+ }
-> 
-> if (variable_x=="light"){
-+ 
-+     i_var_x_min<-i_light_min
-+   i_var_x_max<-i_light_max
-+   breaks_var_x<-breaks_light
-+ }
-> 
-> if (variable_y=="light"){
-+   
-+   i_var_y_min<-i_light_min
-+   i_var_y_max<-i_light_max
-+   breaks_var_y<-breaks_light
-+ }
-> 
-> 
-> if (variable=="max_air_temp"){
-+   
-+   breaks_var<-breaks_max_temp
-+   i_var_min<-i_max_temp_min
-+   i_var_max<-i_max_temp_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature
-+   Env_laboratory_var<-Env_laboratory$Maximum_air_temperature
-+ }
-> if (variable_x=="max_air_temp"){
-+   
-+   i_var_x_min<-i_max_temp_min
-+   i_var_x_max<-i_max_temp_max
-+   breaks_var_x<-breaks_max_temp
-+ }
-> 
-> if (variable_y=="max_air_temp"){
-+   
-+   i_var_y_min<-i_max_temp_min
-+   i_var_y_max<-i_max_temp_max
-+   breaks_var_y<-breaks_max_temp
-+ }
-> 
-> if (variable=="min_air_temp"){
-+   
-+   breaks_var<-breaks_min_temp
-+   i_var_min<-i_min_temp_min
-+   i_var_max<-i_min_temp_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Minimum_air_temperature
-+   Env_laboratory_var<-Env_laboratory$Minimum_air_temperature
-+ }
-> if (variable_x=="min_air_temp"){
-+   
-+   i_var_x_min<-i_min_temp_min
-+   i_var_x_max<-i_min_temp_max
-+   breaks_var_x<-breaks_min_temp
-+ }
-> 
-> if (variable_y=="min_air_temp"){
-+   
-+   i_var_y_min<-i_min_temp_min
-+   i_var_y_max<-i_min_temp_max
-+   breaks_var_y<-breaks_min_temp
-+ }
-> 
-> if (variable=="humidity"){
-+   
-+   breaks_var<-breaks_hum
-+   i_var_min<-i_hum_min
-+   i_var_max<-i_hum_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity
-+   Env_laboratory_var<-Env_laboratory$Relative_humidity
-+ }
-> if (variable_x=="humidity"){
-+   
-+   i_var_x_min<-i_hum_min
-+   i_var_x_max<-i_hum_max
-+   breaks_var_x<-breaks_hum
-+ }
-> 
-> 
-> if (variable_y=="humidity"){
-+   
-+   i_var_y_min<-i_hum_min
-+   i_var_y_max<-i_hum_max
-+   breaks_var_y<-breaks_hum
-+ }
-> 
-> 
-> if (variable=="mean_temp"){
-+   
-+   breaks_var<-breaks_mean_temp
-+   i_var_min<-i_mean_temp_min
-+   i_var_max<-i_mean_temp_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp
-+   Env_laboratory_var<-Env_laboratory$mean_temp
-+ }
-> if (variable_x=="mean_temp"){
-+   
-+   i_var_x_min<-i_mean_temp_min
-+   i_var_x_max<-i_mean_temp_max
-+   breaks_var_x<-breaks_mean_temp
-+ }
-> 
-> 
-> if (variable_y=="mean_temp"){
-+   
-+   i_var_y_min<-i_mean_temp_min
-+   i_var_y_max<-i_mean_temp_max
-+   breaks_var_y<-breaks_mean_temp
-+ }
-> 
-> 
-> if (variable=="rain"){
-+   
-+   breaks_var<-breaks_rain
-+   i_var_min<-i_rain_min
-+   i_var_max<-i_rain_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation
-+   Env_laboratory_var<-Env_laboratory$Mean_Precipitation
-+ }
-> if (variable_x=="rain"){
-+   
-+   i_var_x_min<-i_rain_min
-+   i_var_x_max<-i_rain_max
-+   breaks_var_x<-breaks_rain
-+ }
-> 
-> 
-> if (variable_y=="rain"){
-+   
-+   i_var_y_min<-i_rain_min
-+   i_var_y_max<-i_rain_max
-+   breaks_var_y<-breaks_rain
-+ }
-> 
-> if (variable=="cum_rain"){
-+   
-+   breaks_var<-breaks_cum_rain
-+   i_var_min<-i_cum_rain_min
-+   i_var_max<-i_cum_rain_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation
-+   Env_laboratory_var<-Env_laboratory$Cumul_Precipitation
-+ }
-> if (variable_x=="cum_rain"){
-+   
-+   i_var_x_min<-i_cum_rain_min
-+   i_var_x_max<-i_cum_rain_max
-+   breaks_var_x<-breaks_cum_rain
-+ }
-> 
-> if (variable_y=="cum_rain"){
-+   
-+   i_var_y_min<-i_cum_rain_min
-+   i_var_y_max<-i_cum_rain_max
-+   breaks_var_y<-breaks_cum_rain
-+ }
-> 
-> if (variable=="wind"){
-+   
-+   breaks_var<-breaks_wind
-+   i_var_min<-i_wind_min
-+   i_var_max<-i_wind_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed
-+   Env_laboratory_var<-Env_laboratory$Mean_wind_speed
-+ }
-> if (variable_x=="wind"){
-+   
-+   i_var_x_min<-i_wind_min
-+   i_var_x_max<-i_wind_max
-+   breaks_var_x<-breaks_wind
-+ }
-> 
-> 
-> if (variable_y=="wind"){
-+   
-+   i_var_y_min<-i_wind_min
-+   i_var_y_max<-i_wind_max
-+   breaks_var_y<-breaks_wind
-+ }
-> 
-> 
-> Yt_var_x<-function(i_var,i_var_y)
-+ {
-+   
-+   if(is.na(breaks_var[i_var+1])==TRUE)
-+   {
-+   Yt1<-subset(Env_Campylobacter_data,Env_Campylobacter_data_var>=breaks_var[i_var])
-+   } else {
-+   Yt1<-subset(Env_Campylobacter_data,Env_Campylobacter_data_var>=breaks_var[i_var] & Env_Campylobacter_data_var<breaks_var[i_var+1])
-+   }
-+   
-+   if(variable_y=="humidity"){
-+   
-+   if(is.na(breaks_hum[i_var_y+1])==TRUE)
-+   {
-+   Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y])
-+   } else {
-+   Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y] & Yt1$Relative_humidity<=breaks_hum[i_var_y+1])
-+   }
-+   }
-+   if(variable_y=="wind"){
-+   if(is.na(breaks_wind[i_var_y+1])==TRUE)
-+   {
-+      Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y])
-+   } else {
-+   Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y] & Yt1$Mean_wind_speed<=breaks_wind[i_var_y+1])
-+   }
-+   }
-+   if(variable_y=="rain"){
-+   if(is.na(breaks_rain[i_var_y+1])==TRUE)
-+ {  
-+    Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y])
-+   } else {
-+   Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y] & Yt1$Mean_Precipitation<=breaks_rain[i_var_y+1])
-+   }
-+  
-+   }
-+  
-+  if(variable_y=="cum_rain"){
-+   if(is.na(breaks_cum_rain[i_var_y+1])==TRUE)
-+ {  
-+    Yt2<-subset(Yt1,Yt1$Cumul_Precipitation>=breaks_cum_rain[i_var_y])
-+   } else {
-+   Yt2<-subset(Yt1,Yt1$Cumul_Precipitation>=breaks_cum_rain[i_var_y] & Yt1$Cumul_Precipitation<=breaks_cum_rain[i_var_y+1])
-+   }
-+  
-+   }
-+   
-+   return(as.list(Yt2))
-+   
-+ }
-> 
-> 
-> Tot_var_x<-function(i_var,i_var_y)
-+ {
-+   
-+   if(is.na(breaks_var[i_var+1])==TRUE)
-+   {
-+   Yt1<-subset(Env_laboratory,Env_laboratory_var>=breaks_var[i_var])
-+     } else {
-+   Yt1<-subset(Env_laboratory,Env_laboratory_var>=breaks_var[i_var] & Env_laboratory_var<breaks_var[i_var+1])
-+     }
-+   
-+   if(variable_y=="humidity"){
-+     
-+     if(is.na(breaks_hum[i_var_y+1])==TRUE)
-+     {
-+       Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y])
-+     } else {
-+       Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y] & Yt1$Relative_humidity<=breaks_hum[i_var_y+1])
-+     }
-+   }
-+   
-+   if(variable_y=="wind"){
-+     
-+ 	if(is.na(breaks_wind[i_var_y+1])==TRUE)
-+     {
-+       Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y])
-+     } else {
-+       Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y] & Yt1$Mean_wind_speed<=breaks_wind[i_var_y+1])
-+     }
-+ 	
-+   }
-+     
-+   if(variable_y=="rain"){
-+     
-+ 	if(is.na(breaks_rain[i_var_y+1])==TRUE)
-+     {
-+       Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y])
-+     } else {
-+       Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y] & Yt1$Mean_Precipitation<=breaks_rain[i_var_y+1])
-+     }
-+ 	
-+   }
-+   
-+   
-+   return(as.list(Yt2))
-+   
-+ }
-> 
-> 
-> 
-> var_x_loc_df<-c(0)
-> n_seas<-1
-> residents_i_var<-0
-> residents_universal<-0
-> #i_var_max<-length(breaks_var)
-> #i_var_min<-1
-> #i_var_max_x<-length(breaks_var_x)
-> #i_var_min_x<-1
-> 
-> for (i_var in c(i_var_min:i_var_max))
-+ {
-+   
-+   for (i_var_y in c(i_var_y_min:i_var_y_max))
-+   {
-+     
-+     
-+   for (i in c(1:n_seas))
-+   {
-+     
-+     n_months<-12/n_seas
-+   
-+     
-+     wt<-which(month(Yt_var_x(i_var,i_var_y )$Date)>(i-1)*n_months & month(Yt_var_x(i_var,i_var_y )$Date)<=i*n_months)
-+     wt_tot<-which(month(Tot_var_x(i_var,i_var_y )$Date)>(i-1)*n_months & month(Tot_var_x(i_var,i_var_y )$Date)<=i*n_months)
-+     
-+     if (variable_x=="min_air_temp"){
-+       Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Minimum_air_temperature[wt]
-+ 	  var_x_tot<-Tot_var_x(i_var,i_var_y )$Minimum_air_temperature[wt_tot]
-+ 	  
-+ 	 
-+   
-+ 	  
-+     }
-+     if (variable_x=="max_air_temp"){
-+       Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Maximum_air_temperature[wt]
-+       var_x_tot<-Tot_var_x(i_var,i_var_y )$Maximum_air_temperature[wt_tot]
-+       
-+     }
-+     
-+     if (variable_x=="mean_temp"){
-+       Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$mean_temp[wt]
-+       var_x_tot<-Tot_var_x(i_var,i_var_y )$mean_temp[wt_tot]
-+       
-+     }
-+     
-+     
-+     
-+     if (variable_x=="humidity"){
-+       Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Relative_humidity[wt]
-+       var_x_tot<-Tot_var_x(i_var,i_var_y )$Relative_humidity[wt_tot]
-+       
-+     }
-+     if (variable_x=="wind"){
-+       Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Mean_wind_speed[wt]
-+       var_x_tot<-Tot_var_x(i_var,i_var_y )$Mean_wind_speed[wt_tot]
-+       
-+     }
-+     
-+     if (variable_x=="light"){
-+       Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$daylength[wt]
-+       var_x_tot<-Tot_var_x(i_var,i_var_y )$daylength[wt_tot]
-+       
-+     }
-+     
-+     if (variable_x=="rain"){
-+       Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Mean_Precipitation[wt]
-+       var_x_tot<-Tot_var_x(i_var,i_var_y )$Mean_Precipitation[wt_tot]
-+       
-+     }
-+     if (variable_x=="cum_rain"){
-+       Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Cumul_Precipitation[wt]
-+       var_x_tot<-Tot_var_x(i_var,i_var_y )$Cumul_Precipitation[wt_tot]
-+       
-+     }
-+     
-+ 		
-+     n_var_x_tot<-hist(var_x_tot,breaks=breaks_var_x)
-+     n_var_x<-hist((as.numeric(as.character(Campylobacter_var_x))),breaks=breaks_var_x)
-+     
-+     residents<-rep(0,times=length(breaks_var_x)-1)
-+     residents_tot<-rep(0,times=length(breaks_var_x)-1)
-+     numb_PC<-rep(0,times=length(breaks_var_x)-1)
-+       
-+     wt<-which(n_var_x_tot$counts!=0) 
-+     wt2<-which(n_var_x$counts!=0)
-+     delta_step_tot<-diff(n_var_x_tot$breaks)
-+ 	delta_step<-diff(n_var_x$breaks)  #Actuallly these two are identical, but left as it is for generality
-+     
-+     if (variable_x=="min_air_temp"){
-+       if(length(wt)>0){
-+         for (j in c(1:(length(wt)))){
-+ 		  
-+ 		  
-+           ww<-which(Tot_var_x(i_var,i_var_y)$Minimum_air_temperature>=n_var_x_tot$breaks[wt[j]] & 
-+                       Tot_var_x(i_var,i_var_y)$Minimum_air_temperature<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]   )
-+           residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-+           numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-+           
-+         }
-+         if(length(wt2)>0){
-+           for (j in c(1:(length(wt2)))){
-+             
-+             ww<-which(Yt_var_x(i_var,i_var_y)$Minimum_air_temperature>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Minimum_air_temperature<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-+             residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-+           }
-+         }
-+         
-+       }
-+       
-+       
-+     }
-+ 	
-+ 	
-+     if (variable_x=="max_air_temp"){
-+       
-+       if(length(wt)>0){
-+         for (j in c(1:(length(wt)))){
-+           
-+           ww<-which(Tot_var_x(i_var,i_var_y)$Maximum_air_temperature>=n_var_x_tot$breaks[wt[j]] & 
-+                       Tot_var_x(i_var,i_var_y)$Maximum_air_temperature<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]   )
-+           residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-+           numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-+         }
-+         if(length(wt2)>0){
-+           for (j in c(1:(length(wt2)))){
-+             
-+             ww<-which(Yt_var_x(i_var,i_var_y)$Maximum_air_temperature>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Maximum_air_temperature<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-+             residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-+           }
-+         }
-+         
-+       }
-+       
-+     }
-+ 	
-+ 	if (variable_x=="light"){
-+ 	  if(length(wt)>0){
-+ 	    for (j in c(1:(length(wt)))){
-+ 	      
-+ 	      
-+ 	      ww<-which(Tot_var_x(i_var,i_var_y)$daylength>=n_var_x_tot$breaks[wt[j]] & 
-+ 	                  Tot_var_x(i_var,i_var_y)$daylength<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]   )
-+ 	      residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-+ 	      numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-+ 	      
-+ 	    }
-+ 	    if(length(wt2)>0){
-+ 	      for (j in c(1:(length(wt2)))){
-+ 	        
-+ 	        ww<-which(Yt_var_x(i_var,i_var_y)$daylength>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$daylength<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-+ 	        residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-+ 	      }
-+ 	    }
-+ 	    
-+ 	  }
-+ 	  
-+ 	  
-+ 	}
-+ 	
-+ 	
-+     
-+     if (variable_x=="mean_temp"){
-+       if(length(wt)>0){
-+         for (j in c(1:(length(wt)))){
-+           
-+           ww<-which(Tot_var_x(i_var,i_var_y)$mean_temp>=n_var_x_tot$breaks[wt[j]] & 
-+                       Tot_var_x(i_var,i_var_y)$mean_temp<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]   )
-+           residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-+           numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-+         }
-+         if(length(wt2)>0){
-+           for (j in c(1:(length(wt2)))){
-+             
-+             ww<-which(Yt_var_x(i_var,i_var_y)$mean_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$mean_temp<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-+             residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-+           }
-+         }
-+         
-+       }
-+     }
-+     
-+     
-+     if (variable_x=="humidity"){
-+       if(length(wt)>0){
-+         for (j in c(1:(length(wt)))){
-+           
-+           ww<-which(Tot_var_x(i_var,i_var_y)$hum>=n_var_x_tot$breaks[wt[j]] & 
-+                       Tot_var_x(i_var,i_var_y)$hum<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]  )
-+           residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-+           numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-+         }
-+         if(length(wt2)>0){
-+           for (j in c(1:(length(wt2)))){
-+             
-+             ww<-which(Yt_var_x(i_var,i_var_y)$hum>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$hum<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-+             residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-+           }
-+         }
-+         
-+       }
-+     }
-+     if (variable_x=="wind"){
-+       if(length(wt)>0){
-+         for (j in c(1:(length(wt)))){
-+           
-+           ww<-which(Tot_var_x(i_var,i_var_y)$Mean_wind_speed>=n_var_x_tot$breaks[wt[j]] & 
-+                       Tot_var_x(i_var,i_var_y)$Mean_wind_speed<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]])
-+           residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-+           numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-+         }
-+         if(length(wt2)>0){
-+           for (j in c(1:(length(wt2)))){
-+             
-+             ww<-which(Yt_var_x(i_var,i_var_y)$Mean_wind_speed>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Mean_wind_speed<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-+             residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-+           }
-+         }
-+         
-+       }
-+       
-+     }
-+     if (variable_x=="rain"){
-+       
-+       if(length(wt)>0){
-+         for (j in c(1:(length(wt)))){
-+           
-+           ww<-which(Tot_var_x(i_var,i_var_y)$Mean_Precipitation>=n_var_x_tot$breaks[wt[j]] & 
-+                       Tot_var_x(i_var,i_var_y)$Mean_Precipitation<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]])
-+           residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-+           numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-+         }
-+         if(length(wt2)>0){
-+           for (j in c(1:(length(wt2)))){
-+             
-+             ww<-which(Yt_var_x(i_var,i_var_y)$Mean_Precipitation>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Mean_Precipitation<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-+             residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-+           }
-+         }
-+         
-+       }
-+     }
-+     
-+     if (variable_x=="cum_rain"){
-+       
-+       if(length(wt)>0){
-+         for (j in c(1:(length(wt)))){
-+           
-+           ww<-which(Tot_var_x(i_var,i_var_y)$Cumul_Precipitation>=n_var_x_tot$breaks[wt[j]] & 
-+                       Tot_var_x(i_var,i_var_y)$Cumul_Precipitation<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]])
-+           residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww]))
-+           numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww]))
-+         }
-+         if(length(wt2)>0){
-+           for (j in c(1:(length(wt2)))){
-+             
-+             ww<-which(Yt_var_x(i_var,i_var_y)$Cumul_Precipitation>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Cumul_Precipitation<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]])
-+             residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww]))
-+           }
-+         }
-+         
-+       }
-+     }
-+     
-+    
-+ 	
-+     data_df<-data.frame(
-+ 	n_var_x$mids,
-+ 	n_var_x$breaks[-length(n_var_x$breaks)],
-+ 	n_var_x$counts/n_var_x_tot$counts,
-+ 	(n_var_x$counts)/(residents_tot),
-+ 	i,
-+ 	breaks_var[i_var],
-+ 	breaks_var_y[i_var_y],
-+ 	n_var_x$counts,
-+ 	n_var_x_tot$counts,
-+ 	residents,
-+ 	residents_tot,
-+ 	numb_PC)
-+     
-+     
-+     colnames(data_df)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     var_x_loc_df<-rbind(var_x_loc_df,data_df)
-+     colnames(var_x_loc_df)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     #}
-+     #}
-+     
-+     
-+   }
-+   }
-+ residents_i_var<-residents_i_var+sum(residents_tot)
-+ }
-> 
-> residents_universal<residents_universal+sum(residents_i_var)
-[1] TRUE
-> residents_i_var
-[1] 31294027
-> residents_universal
-[1] 0
-> 
-> write.table(var_x_loc_df,paste("../../Data_Base/Cases_Environment/",variable,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> proc.time()
-   user  system elapsed 
-755.196   9.128 764.397 
diff --git a/PAPER_Pathogen_Linkage_fixed_time_lag.R b/PAPER_Pathogen_Linkage_fixed_time_lag.R
deleted file mode 100644
index 29f4bee2beb3999fe39d57ef8c707a5281a4e664..0000000000000000000000000000000000000000
--- a/PAPER_Pathogen_Linkage_fixed_time_lag.R
+++ /dev/null
@@ -1,328 +0,0 @@
-# The code associates the value of the environmental variables to the Campylobacter cases at the location (diagnostic postcode) and date of occurrence with a chosen time-time_lag
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(xts)
-library(lubridate)
-
-
-## Environmental Variable file. Original MEDMI files
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-variable<-"min_air_temp"
-variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-min_temp<-variable_df_3[,-c(1,2)]
-min_temp<-min_temp[-c(1,2),]
-names(min_temp) <- NULL
-Minimum_air_temperature<-unlist(c(min_temp))
-
-
-variable<-"rain"
-variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-rain<-variable_df_4[,-c(1,2)]
-rain<-rain[-c(1,2),]
-names(rain) <- NULL
-Precipitation<-unlist(c(rain))
-
-variable<-"wind_speed"
-variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-wind<-variable_df_5[,-c(1,2)]
-wind<-wind[-c(1,2),]
-names(wind) <- NULL
-Mean_wind_speed<-unlist(c(wind))
-
-######################## include daylength ##################
-
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-PC_df<-data.frame(All_PC,as.Date(dates))
-colnames(PC_df)<-c("PostCode","Date")
-
-Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Post_Codes_df$lat
-day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-
-
-######################## Catchment areas #################
-
-catchment_population_df<-read.csv(paste("../../Data_Base/Catchment_areas/Sum_ByLab_1987_2016.csv",sep=""))
-colnames(catchment_population_df)<-c("PostCode","col2","col3",
-                                     "residents_1987",
-                                     "residents_1988",
-                                     "residents_1989",
-                                     "residents_1990",
-                                     "residents_1991",
-                                     "residents_1992",
-                                     "residents_1993",
-                                     "residents_1994",
-                                     "residents_1995",
-                                     "residents_1996",
-                                     "residents_1997",
-                                     "residents_1998",
-                                     "residents_1999",
-                                     "residents_2000",
-                                     "residents_2001",
-                                     "residents_2002",
-                                     "residents_2003",
-                                     "residents_2004",
-                                     "residents_2005",
-                                     "residents_2006",
-                                     "residents_2007",
-                                     "residents_2008",
-                                     "residents_2009",
-                                     "residents_2010",
-                                     "residents_2011",
-                                     "residents_2012",
-                                     "residents_2013",
-                                     "residents_2014",
-                                     "residents_2015",
-                                     "residents_2016",
-                                     "residents_2011bis")
-
-diagnostic_laboratory_info_df<-read.csv(paste("../../Data_Base/Catchment_areas/Lab_information.csv",sep=""))
-diagnostic_laboratory_info_df<-diagnostic_laboratory_info_df[,-1]
-
-
-## This create a database for all laboratories postcode, even if there were zero cases
-diagnostic_laboratory_df2<-data.frame(All_PC,dates,
-                                      Maximum_air_temperature,
-                                      Minimum_air_temperature,
-                                      Mean_wind_speed,
-                                      Precipitation,
-                                      Relative_humidity,
-                                      daylength_df$daylength)
-
-colnames(diagnostic_laboratory_df2)<-c("PostCode","dates",
-                                       "Maximum_air_temperature",
-                                       "Minimum_air_temperature",
-                                       "Mean_wind_speed",
-                                       "Precipitation",
-                                       "Relative_humidity",
-                                        "daylength")
-
-
-
-
-
-###################################
-
-starting_year_catchment_population_df<-1987
-end_year_catchment_population_df<-2016
-numb_years<-length(seq(starting_year_catchment_population_df:end_year_catchment_population_df))
-sequence_years<-seq(starting_year_catchment_population_df,end_year_catchment_population_df)
-
-diagnostic_laboratory_df2$year<-year(diagnostic_laboratory_df2$dates)
-
-catchment_population_df2<-catchment_population_df[,-c(1:3,34)]
-
-
-
-catchment_population_df3<-data.frame(
-  rep(catchment_population_df$PostCode,times=numb_years),
-  rep(sequence_years,each=length(unique(catchment_population_df$PostCode))),
-  stack(catchment_population_df2)
-)
-colnames(catchment_population_df3)<-c("PostCode","year","residents","ind")
-
-
-#catchment_population_df3$ind<-unlist(strsplit(as.character(catchment_population_df3$ind), split='_', fixed=TRUE)[seq(1,length(catchment_population_df3$ind))])[2]
-
-catchment_population_df3$year<-as.factor(catchment_population_df3$year)
-diagnostic_laboratory_df2$year<-as.factor(diagnostic_laboratory_df2$year)
-
-diagnostic_laboratory_df<-merge(diagnostic_laboratory_df2, catchment_population_df3,by=c('PostCode','year'))
-#diagnostic_laboratory_df$Date<-diagnostic_laboratory_df$dates
-colnames(diagnostic_laboratory_df)[3]<-c("Date")
-
-
-write.table(diagnostic_laboratory_df,paste("../../Data_Base/OPIE_data_base/Environment_Laboratories_linkage_original_MEDMI.csv",sep=""),sep=',')
-
-
-
-
-
-################ Define the time lag here ###############################
-
-time_lag<-1
-time_lag_char<-paste(time_lag)
-
-## This create a database for all postocode where  there was at least one case
-Campylobacter_cases<-read.csv("../../Data_Base/Cases/Campylobacter_Simulated_Data_final_UK.csv")
-Campylobacter_cases<-Campylobacter_cases[,-1]
-colnames(Campylobacter_cases)<-c("Cases","Adjusted","Spec_Date", "PostCode","Date","Simulation")
-
-Campylobacter_cases$PostCode<-stri_replace_all_fixed(Campylobacter_cases$PostCode, " ", "")  
-Campylobacter_cases$Date<-as.Date((as.character(Campylobacter_cases$Date)))
-Campylobacter_cases$year<-as.factor((as.character(year(Campylobacter_cases$Date))))
-Campylobacter_cases$PostCode<-as.factor(Campylobacter_cases$PostCode)
-
-Campylobacter_cases_df<-merge(Campylobacter_cases, catchment_population_df3,by=c("PostCode","year"))
-
-
-########################### time_lag average ######################
-
-### This function calculate the average values of the environmental variables over a certain time-time_lag
-time_lag_PC<-function(lab_fac){
-  lab<-as.character(lab_fac)
-  merged_lab_sub<-subset(diagnostic_laboratory_df,diagnostic_laboratory_df$PostCode==lab)
-  merged_lab_sub2<-merged_lab_sub[order(as.Date(merged_lab_sub$Date)),]
-  
-  
-  mean_Maximum_air_temperature<-rollmean(merged_lab_sub2$Maximum_air_temperature,time_lag)
-  mean_Minimum_air_temperature<-rollmean(merged_lab_sub2$Minimum_air_temperature,time_lag)
-  mean_Mean_wind_speed<-rollmean(merged_lab_sub2$Mean_wind_speed,time_lag)
-  cum_Precipitation<-rollsum(merged_lab_sub2$Precipitation,time_lag)
-  mean_Precipitation<-rollmean(merged_lab_sub2$Precipitation,time_lag)
-  mean_Relative_humidity<-rollmean(merged_lab_sub2$Relative_humidity,time_lag)
-  mean_daylength<-rollmean(merged_lab_sub2$daylength,time_lag)
-  mean_residents<-round(rollmean(merged_lab_sub2$residents, time_lag)) # 1 This because the number of residetns is 
-  
-  
-  PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(mean_residents))
-  ep<-seq(time_lag,length(mean_residents)+time_lag-1)
-  
-  merged_lab_time_lag<-data.frame(PC,dates[ep],
-                                  mean_Maximum_air_temperature,
-                                  mean_Minimum_air_temperature,
-                                  mean_Mean_wind_speed,
-                                  cum_Precipitation,
-                                  mean_Precipitation,
-                                  mean_Relative_humidity,
-                                  mean_daylength,
-                                  mean_residents)
-  
-  return(merged_lab_time_lag)
-}
-
-### This function calculate the total number of cases on the particular day and location
-cases_all<-function(lab_fac){
-  lab<-as.character(lab_fac)
-  merged.data_sub<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PostCode==lab)
-  merged.data_sub2<-merged.data_sub[order(as.Date(merged.data_sub$Date)),]
-  
-  cases<-(as.data.frame(table(merged.data_sub2$Date)))
-  
-  PC<-rep(as.character(unique(merged.data_sub$PostCode)),times=length(cases[,1]))
-  cases_all<-data.frame(PC,cases)
-  
-  return(cases_all)
-}
-
-merged_lab_time_lag<-c()
-cases_all_df<-c()
-
-index_PC<-unique(diagnostic_laboratory_df$PostCode)
-for (i in c(1:length(index_PC))){
-  merged_lab_time_lag<-rbind(merged_lab_time_lag,lapply(index_PC[i], time_lag_PC)[[1]])
-  cases_all_df<-rbind(cases_all_df,lapply(index_PC[i], cases_all)[[1]])
-  print(100*i/length(index_PC))
-}
-
-
-
-names(merged_lab_time_lag)[c(1,2)]<-c("PostCode","Date")
-
-
-
-colnames(cases_all_df)<-c("PostCode","Date","Cases_all")
-
-Campylobacter_cases_df<-Campylobacter_cases_df[,-3]
-Campylobacter_cases_df_time_lag<-merge(Campylobacter_cases_df, merged_lab_time_lag,by=c("PostCode","Date"))
-Campylobacter_cases_df_time_lag2<-merge(Campylobacter_cases_df_time_lag, cases_all_df,by=c("PostCode","Date"))
-
-
-Campylobacter_cases_df2<-data.frame(Campylobacter_cases_df_time_lag2$PostCode,
-                                    Campylobacter_cases_df_time_lag2$Date,
-                                    Campylobacter_cases_df_time_lag2$Cases,
-                                    Campylobacter_cases_df_time_lag2$mean_Maximum_air_temperature,
-                                    Campylobacter_cases_df_time_lag2$mean_Minimum_air_temperature,
-                                    Campylobacter_cases_df_time_lag2$mean_Mean_wind_speed,
-                                    Campylobacter_cases_df_time_lag2$cum_Precipitation,
-                                    Campylobacter_cases_df_time_lag2$mean_Precipitation,
-                                    Campylobacter_cases_df_time_lag2$mean_Relative_humidity,
-                                    Campylobacter_cases_df_time_lag2$mean_daylength,
-                                    Campylobacter_cases_df_time_lag2$mean_residents)
-
-
-colnames(Campylobacter_cases_df2)<-c("PostCode","Date","Cases",
-                                     "Maximum_air_temperature",
-                                     "Minimum_air_temperature",
-                                     "Mean_wind_speed",
-                                     "Cumul_Precipitation",
-                                     "Mean_Precipitation",
-                                     "Relative_humidity",
-                                     "daylength",
-                                     "residents")
-
-
-Campylobacter_cases_df2<-Campylobacter_cases_df2[order(as.Date(Campylobacter_cases_df2$Date)),]
-
-write.table(merged_lab_time_lag,paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",time_lag_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-write.table(Campylobacter_cases_df2,paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",time_lag_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
-########################### END time_lag average ######################
-
-
-#PHE_Centre<-Campylobacter_cases_df$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-6
-#For Dorset only
-#merged.data_PHE<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-#merged.data<-subset(merged.data_PHE,year(merged.data_PHE$Date)>=2000 & year(merged.data_PHE$Date)<2016)
-#merged.data<-subset(Campylobacter_cases_df2,year(Campylobacter_cases_df2$Date)>=1990 & year(Campylobacter_cases_df2$Date)<2015)
-#merged_lab<-subset(diagnostic_laboratory_df,year(diagnostic_laboratory_df$Date)>=1990 & year(diagnostic_laboratory_df$Date)<2015)
-################### time_lag summary
-
diff --git a/PAPER_Pathogen_Linkage_fixed_time_lag.Rout b/PAPER_Pathogen_Linkage_fixed_time_lag.Rout
deleted file mode 100644
index 2b357d540ad0e9d8050fe775c476750b862c73a4..0000000000000000000000000000000000000000
--- a/PAPER_Pathogen_Linkage_fixed_time_lag.Rout
+++ /dev/null
@@ -1,604 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code associates the value of the environmental variables to the Campylobacter cases at the location (diagnostic postcode) and date of occurrence with a chosen time-time_lag
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(xts)
-Loading required package: zoo
-
-Attaching package: ‘zoo’
-
-The following object is masked from ‘package:timeSeries’:
-
-    time<-
-
-The following objects are masked from ‘package:base’:
-
-    as.Date, as.Date.numeric
-
-
-Attaching package: ‘xts’
-
-The following objects are masked from ‘package:pastecs’:
-
-    first, last
-
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> 
-> 
-> ## Environmental Variable file. Original MEDMI files
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> variable<-"min_air_temp"
-> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> min_temp<-variable_df_3[,-c(1,2)]
-> min_temp<-min_temp[-c(1,2),]
-> names(min_temp) <- NULL
-> Minimum_air_temperature<-unlist(c(min_temp))
-> 
-> 
-> variable<-"rain"
-> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> rain<-variable_df_4[,-c(1,2)]
-> rain<-rain[-c(1,2),]
-> names(rain) <- NULL
-> Precipitation<-unlist(c(rain))
-> 
-> variable<-"wind_speed"
-> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> wind<-variable_df_5[,-c(1,2)]
-> wind<-wind[-c(1,2),]
-> names(wind) <- NULL
-> Mean_wind_speed<-unlist(c(wind))
-> 
-> ######################## include daylength ##################
-> 
-> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-> 
-> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-> colnames(lat_long_lab)<-c("PostCode","lat","long")
-> PC_df<-data.frame(All_PC,as.Date(dates))
-> colnames(PC_df)<-c("PostCode","Date")
-> 
-> Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode")
-> 
-> 
-> daylength<-function(lat,day_year)
-+ {
-+   #Latitude measure in degrees
-+   P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-+   Denom<-cos(lat*pi/180)*cos(P) 
-+   Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-+   D<-24-(24/pi)*acos(Numer/Denom)
-+   return(D)
-+ }
-> 
-> latitude<-Post_Codes_df$lat
-> day_of_the_year<-yday(as.Date(Post_Codes_df$Date))
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> 
-> 
-> ######################## Catchment areas #################
-> 
-> catchment_population_df<-read.csv(paste("../../Data_Base/Catchment_areas/Sum_ByLab_1987_2016.csv",sep=""))
-> colnames(catchment_population_df)<-c("PostCode","col2","col3",
-+                                      "residents_1987",
-+                                      "residents_1988",
-+                                      "residents_1989",
-+                                      "residents_1990",
-+                                      "residents_1991",
-+                                      "residents_1992",
-+                                      "residents_1993",
-+                                      "residents_1994",
-+                                      "residents_1995",
-+                                      "residents_1996",
-+                                      "residents_1997",
-+                                      "residents_1998",
-+                                      "residents_1999",
-+                                      "residents_2000",
-+                                      "residents_2001",
-+                                      "residents_2002",
-+                                      "residents_2003",
-+                                      "residents_2004",
-+                                      "residents_2005",
-+                                      "residents_2006",
-+                                      "residents_2007",
-+                                      "residents_2008",
-+                                      "residents_2009",
-+                                      "residents_2010",
-+                                      "residents_2011",
-+                                      "residents_2012",
-+                                      "residents_2013",
-+                                      "residents_2014",
-+                                      "residents_2015",
-+                                      "residents_2016",
-+                                      "residents_2011bis")
-> 
-> diagnostic_laboratory_info_df<-read.csv(paste("../../Data_Base/Catchment_areas/Lab_information.csv",sep=""))
-> diagnostic_laboratory_info_df<-diagnostic_laboratory_info_df[,-1]
-> 
-> 
-> ## This create a database for all laboratories postcode, even if there were zero cases
-> diagnostic_laboratory_df2<-data.frame(All_PC,dates,
-+                                       Maximum_air_temperature,
-+                                       Minimum_air_temperature,
-+                                       Mean_wind_speed,
-+                                       Precipitation,
-+                                       Relative_humidity,
-+                                       daylength_df$daylength)
-> 
-> colnames(diagnostic_laboratory_df2)<-c("PostCode","dates",
-+                                        "Maximum_air_temperature",
-+                                        "Minimum_air_temperature",
-+                                        "Mean_wind_speed",
-+                                        "Precipitation",
-+                                        "Relative_humidity",
-+                                         "daylength")
-> 
-> 
-> 
-> 
-> 
-> ###################################
-> 
-> starting_year_catchment_population_df<-1987
-> end_year_catchment_population_df<-2016
-> numb_years<-length(seq(starting_year_catchment_population_df:end_year_catchment_population_df))
-> sequence_years<-seq(starting_year_catchment_population_df,end_year_catchment_population_df)
-> 
-> diagnostic_laboratory_df2$year<-year(diagnostic_laboratory_df2$dates)
-> 
-> catchment_population_df2<-catchment_population_df[,-c(1:3,34)]
-> 
-> 
-> 
-> catchment_population_df3<-data.frame(
-+   rep(catchment_population_df$PostCode,times=numb_years),
-+   rep(sequence_years,each=length(unique(catchment_population_df$PostCode))),
-+   stack(catchment_population_df2)
-+ )
-> colnames(catchment_population_df3)<-c("PostCode","year","residents","ind")
-> 
-> 
-> #catchment_population_df3$ind<-unlist(strsplit(as.character(catchment_population_df3$ind), split='_', fixed=TRUE)[seq(1,length(catchment_population_df3$ind))])[2]
-> 
-> catchment_population_df3$year<-as.factor(catchment_population_df3$year)
-> diagnostic_laboratory_df2$year<-as.factor(diagnostic_laboratory_df2$year)
-> 
-> diagnostic_laboratory_df<-merge(diagnostic_laboratory_df2, catchment_population_df3,by=c('PostCode','year'))
-> #diagnostic_laboratory_df$Date<-diagnostic_laboratory_df$dates
-> colnames(diagnostic_laboratory_df)[3]<-c("Date")
-> 
-> 
-> write.table(diagnostic_laboratory_df,paste("../../Data_Base/OPIE_data_base/Environment_Laboratories_linkage_original_MEDMI.csv",sep=""),sep=',')
-> 
-> 
-> 
-> 
-> 
-> ################ Define the time lag here ###############################
-> 
-> time_lag<-1
-> time_lag_char<-paste(time_lag)
-> 
-> ## This create a database for all postocode where  there was at least one case
-> Campylobacter_cases<-read.csv("../../Data_Base/Cases/Campylobacter_Simulated_Data_final_UK.csv")
-> Campylobacter_cases<-Campylobacter_cases[,-1]
-> colnames(Campylobacter_cases)<-c("Cases","Adjusted","Spec_Date", "PostCode","Date","Simulation")
-> 
-> Campylobacter_cases$PostCode<-stri_replace_all_fixed(Campylobacter_cases$PostCode, " ", "")  
-> Campylobacter_cases$Date<-as.Date((as.character(Campylobacter_cases$Date)))
-> Campylobacter_cases$year<-as.factor((as.character(year(Campylobacter_cases$Date))))
-> Campylobacter_cases$PostCode<-as.factor(Campylobacter_cases$PostCode)
-> 
-> Campylobacter_cases_df<-merge(Campylobacter_cases, catchment_population_df3,by=c("PostCode","year"))
-> 
-> 
-> ########################### time_lag average ######################
-> 
-> ### This function calculate the average values of the environmental variables over a certain time-time_lag
-> time_lag_PC<-function(lab_fac){
-+   lab<-as.character(lab_fac)
-+   merged_lab_sub<-subset(diagnostic_laboratory_df,diagnostic_laboratory_df$PostCode==lab)
-+   merged_lab_sub2<-merged_lab_sub[order(as.Date(merged_lab_sub$Date)),]
-+   
-+   
-+   mean_Maximum_air_temperature<-rollmean(merged_lab_sub2$Maximum_air_temperature,time_lag)
-+   mean_Minimum_air_temperature<-rollmean(merged_lab_sub2$Minimum_air_temperature,time_lag)
-+   mean_Mean_wind_speed<-rollmean(merged_lab_sub2$Mean_wind_speed,time_lag)
-+   cum_Precipitation<-rollsum(merged_lab_sub2$Precipitation,time_lag)
-+   mean_Precipitation<-rollmean(merged_lab_sub2$Precipitation,time_lag)
-+   mean_Relative_humidity<-rollmean(merged_lab_sub2$Relative_humidity,time_lag)
-+   mean_daylength<-rollmean(merged_lab_sub2$daylength,time_lag)
-+   mean_residents<-round(rollmean(merged_lab_sub2$residents, time_lag)) # 1 This because the number of residetns is 
-+   
-+   
-+   PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(mean_residents))
-+   ep<-seq(time_lag,length(mean_residents)+time_lag-1)
-+   
-+   merged_lab_time_lag<-data.frame(PC,dates[ep],
-+                                   mean_Maximum_air_temperature,
-+                                   mean_Minimum_air_temperature,
-+                                   mean_Mean_wind_speed,
-+                                   cum_Precipitation,
-+                                   mean_Precipitation,
-+                                   mean_Relative_humidity,
-+                                   mean_daylength,
-+                                   mean_residents)
-+   
-+   return(merged_lab_time_lag)
-+ }
-> 
-> ### This function calculate the total number of cases on the particular day and location
-> cases_all<-function(lab_fac){
-+   lab<-as.character(lab_fac)
-+   merged.data_sub<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PostCode==lab)
-+   merged.data_sub2<-merged.data_sub[order(as.Date(merged.data_sub$Date)),]
-+   
-+   cases<-(as.data.frame(table(merged.data_sub2$Date)))
-+   
-+   PC<-rep(as.character(unique(merged.data_sub$PostCode)),times=length(cases[,1]))
-+   cases_all<-data.frame(PC,cases)
-+   
-+   return(cases_all)
-+ }
-> 
-> merged_lab_time_lag<-c()
-> cases_all_df<-c()
-> 
-> index_PC<-unique(diagnostic_laboratory_df$PostCode)
-> for (i in c(1:length(index_PC))){
-+   merged_lab_time_lag<-rbind(merged_lab_time_lag,lapply(index_PC[i], time_lag_PC)[[1]])
-+   cases_all_df<-rbind(cases_all_df,lapply(index_PC[i], cases_all)[[1]])
-+   print(100*i/length(index_PC))
-+ }
-[1] 0.4694836
-[1] 0.9389671
-[1] 1.408451
-[1] 1.877934
-[1] 2.347418
-[1] 2.816901
-[1] 3.286385
-[1] 3.755869
-[1] 4.225352
-[1] 4.694836
-[1] 5.164319
-[1] 5.633803
-[1] 6.103286
-[1] 6.57277
-[1] 7.042254
-[1] 7.511737
-[1] 7.981221
-[1] 8.450704
-[1] 8.920188
-[1] 9.389671
-[1] 9.859155
-[1] 10.32864
-[1] 10.79812
-[1] 11.26761
-[1] 11.73709
-[1] 12.20657
-[1] 12.67606
-[1] 13.14554
-[1] 13.61502
-[1] 14.08451
-[1] 14.55399
-[1] 15.02347
-[1] 15.49296
-[1] 15.96244
-[1] 16.43192
-[1] 16.90141
-[1] 17.37089
-[1] 17.84038
-[1] 18.30986
-[1] 18.77934
-[1] 19.24883
-[1] 19.71831
-[1] 20.18779
-[1] 20.65728
-[1] 21.12676
-[1] 21.59624
-[1] 22.06573
-[1] 22.53521
-[1] 23.00469
-[1] 23.47418
-[1] 23.94366
-[1] 24.41315
-[1] 24.88263
-[1] 25.35211
-[1] 25.8216
-[1] 26.29108
-[1] 26.76056
-[1] 27.23005
-[1] 27.69953
-[1] 28.16901
-[1] 28.6385
-[1] 29.10798
-[1] 29.57746
-[1] 30.04695
-[1] 30.51643
-[1] 30.98592
-[1] 31.4554
-[1] 31.92488
-[1] 32.39437
-[1] 32.86385
-[1] 33.33333
-[1] 33.80282
-[1] 34.2723
-[1] 34.74178
-[1] 35.21127
-[1] 35.68075
-[1] 36.15023
-[1] 36.61972
-[1] 37.0892
-[1] 37.55869
-[1] 38.02817
-[1] 38.49765
-[1] 38.96714
-[1] 39.43662
-[1] 39.9061
-[1] 40.37559
-[1] 40.84507
-[1] 41.31455
-[1] 41.78404
-[1] 42.25352
-[1] 42.723
-[1] 43.19249
-[1] 43.66197
-[1] 44.13146
-[1] 44.60094
-[1] 45.07042
-[1] 45.53991
-[1] 46.00939
-[1] 46.47887
-[1] 46.94836
-[1] 47.41784
-[1] 47.88732
-[1] 48.35681
-[1] 48.82629
-[1] 49.29577
-[1] 49.76526
-[1] 50.23474
-[1] 50.70423
-[1] 51.17371
-[1] 51.64319
-[1] 52.11268
-[1] 52.58216
-[1] 53.05164
-[1] 53.52113
-[1] 53.99061
-[1] 54.46009
-[1] 54.92958
-[1] 55.39906
-[1] 55.86854
-[1] 56.33803
-[1] 56.80751
-[1] 57.277
-[1] 57.74648
-[1] 58.21596
-[1] 58.68545
-[1] 59.15493
-[1] 59.62441
-[1] 60.0939
-[1] 60.56338
-[1] 61.03286
-[1] 61.50235
-[1] 61.97183
-[1] 62.44131
-[1] 62.9108
-[1] 63.38028
-[1] 63.84977
-[1] 64.31925
-[1] 64.78873
-[1] 65.25822
-[1] 65.7277
-[1] 66.19718
-[1] 66.66667
-[1] 67.13615
-[1] 67.60563
-[1] 68.07512
-[1] 68.5446
-[1] 69.01408
-[1] 69.48357
-[1] 69.95305
-[1] 70.42254
-[1] 70.89202
-[1] 71.3615
-[1] 71.83099
-[1] 72.30047
-[1] 72.76995
-[1] 73.23944
-[1] 73.70892
-[1] 74.1784
-[1] 74.64789
-[1] 75.11737
-[1] 75.58685
-[1] 76.05634
-[1] 76.52582
-[1] 76.99531
-[1] 77.46479
-[1] 77.93427
-[1] 78.40376
-[1] 78.87324
-[1] 79.34272
-[1] 79.81221
-[1] 80.28169
-[1] 80.75117
-[1] 81.22066
-[1] 81.69014
-[1] 82.15962
-[1] 82.62911
-[1] 83.09859
-[1] 83.56808
-[1] 84.03756
-[1] 84.50704
-[1] 84.97653
-[1] 85.44601
-[1] 85.91549
-[1] 86.38498
-[1] 86.85446
-[1] 87.32394
-[1] 87.79343
-[1] 88.26291
-[1] 88.73239
-[1] 89.20188
-[1] 89.67136
-[1] 90.14085
-[1] 90.61033
-[1] 91.07981
-[1] 91.5493
-[1] 92.01878
-[1] 92.48826
-[1] 92.95775
-[1] 93.42723
-[1] 93.89671
-[1] 94.3662
-[1] 94.83568
-[1] 95.30516
-[1] 95.77465
-[1] 96.24413
-[1] 96.71362
-[1] 97.1831
-[1] 97.65258
-[1] 98.12207
-[1] 98.59155
-[1] 99.06103
-[1] 99.53052
-[1] 100
-> 
-> 
-> 
-> names(merged_lab_time_lag)[c(1,2)]<-c("PostCode","Date")
-> 
-> 
-> 
-> colnames(cases_all_df)<-c("PostCode","Date","Cases_all")
-> 
-> Campylobacter_cases_df<-Campylobacter_cases_df[,-3]
-> Campylobacter_cases_df_time_lag<-merge(Campylobacter_cases_df, merged_lab_time_lag,by=c("PostCode","Date"))
-> Campylobacter_cases_df_time_lag2<-merge(Campylobacter_cases_df_time_lag, cases_all_df,by=c("PostCode","Date"))
-> 
-> 
-> Campylobacter_cases_df2<-data.frame(Campylobacter_cases_df_time_lag2$PostCode,
-+                                     Campylobacter_cases_df_time_lag2$Date,
-+                                     Campylobacter_cases_df_time_lag2$Cases,
-+                                     Campylobacter_cases_df_time_lag2$mean_Maximum_air_temperature,
-+                                     Campylobacter_cases_df_time_lag2$mean_Minimum_air_temperature,
-+                                     Campylobacter_cases_df_time_lag2$mean_Mean_wind_speed,
-+                                     Campylobacter_cases_df_time_lag2$cum_Precipitation,
-+                                     Campylobacter_cases_df_time_lag2$mean_Precipitation,
-+                                     Campylobacter_cases_df_time_lag2$mean_Relative_humidity,
-+                                     Campylobacter_cases_df_time_lag2$mean_daylength,
-+                                     Campylobacter_cases_df_time_lag2$mean_residents)
-> 
-> 
-> colnames(Campylobacter_cases_df2)<-c("PostCode","Date","Cases",
-+                                      "Maximum_air_temperature",
-+                                      "Minimum_air_temperature",
-+                                      "Mean_wind_speed",
-+                                      "Cumul_Precipitation",
-+                                      "Mean_Precipitation",
-+                                      "Relative_humidity",
-+                                      "daylength",
-+                                      "residents")
-> 
-> 
-> Campylobacter_cases_df2<-Campylobacter_cases_df2[order(as.Date(Campylobacter_cases_df2$Date)),]
-> 
-> write.table(merged_lab_time_lag,paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",time_lag_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> write.table(Campylobacter_cases_df2,paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",time_lag_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> 
-> ########################### END time_lag average ######################
-> 
-> 
-> #PHE_Centre<-Campylobacter_cases_df$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-6
-> #For Dorset only
-> #merged.data_PHE<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> #merged.data<-subset(merged.data_PHE,year(merged.data_PHE$Date)>=2000 & year(merged.data_PHE$Date)<2016)
-> #merged.data<-subset(Campylobacter_cases_df2,year(Campylobacter_cases_df2$Date)>=1990 & year(Campylobacter_cases_df2$Date)<2015)
-> #merged_lab<-subset(diagnostic_laboratory_df,year(diagnostic_laboratory_df$Date)>=1990 & year(diagnostic_laboratory_df$Date)<2015)
-> ################### time_lag summary
-> 
-> 
-> proc.time()
-   user  system elapsed 
-308.829   6.083 316.116 
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI.Rout
deleted file mode 100644
index ed983fc33d30c79cbebb397b25700b9641d3d467..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI.Rout
+++ /dev/null
@@ -1,546 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-14
-> width_char<-paste(width)
-> 
-> 
-> ## Environmental Variable file. Original MEDMI files
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> variable<-"min_air_temp"
-> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> min_temp<-variable_df_3[,-c(1,2)]
-> min_temp<-min_temp[-c(1,2),]
-> names(min_temp) <- NULL
-> Minimum_air_temperature<-unlist(c(min_temp))
-> 
-> 
-> variable<-"rain"
-> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> rain<-variable_df_4[,-c(1,2)]
-> rain<-rain[-c(1,2),]
-> names(rain) <- NULL
-> Precipitation<-unlist(c(rain))
-> 
-> variable<-"wind_speed"
-> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> wind<-variable_df_5[,-c(1,2)]
-> wind<-wind[-c(1,2),]
-> names(wind) <- NULL
-> Mean_wind_speed<-unlist(c(wind))
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2010)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Minimum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"min_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> #var_x_loc_df<-data.frame(  matrix(ncol = 6, nrow = 500))
-> #colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-> 
-> #norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100
-> #var_x_loc_df$incidence<-var_x_loc_df$incidence/norm
-> #var_x_loc_df<-na.omit(var_x_loc_df)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> 
-> 
-> ################### Divide the domains of the variables in bins 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010)
-+     
-+     x<-variable_df$Relative_humidity
-+     y<-variable_df$Maximum_air_temperature
-+     z<-variable_df$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     #variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates)))
-+     #variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),]
-+     #variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates)))
-+     #variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),]
-+     #variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates)))
-+     #variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),]
-+     
-+     #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity")
-+     #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Maximum_air_temperature")
-+     #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength")
-+     
-+     #variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates)
-+     #variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates)
-+     #variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates)
-+     
-+     #variable_df_dis_int<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates") ) 
-+     
-+     
-+     #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity")
-+     #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Maximum_air_temperature")
-+     #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength")
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-Error in `$<-.data.frame`(`*tmp*`, "Maximum_air_temperature", value = numeric(0)) : 
-  replacement has 0 rows, data has 781
-Calls: $<- -> $<-.data.frame
-Execution halted
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.R
deleted file mode 100644
index 1496656bdad3967025f1fc3e420685198f0b59d3..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.R
+++ /dev/null
@@ -1,306 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# it works for 
-#variable_x<-"Minimum_air_temperature"
-#variable_y<-"Relative_humidity"
-#variable<-"daylength"
-## Change breaks_max etc. for different varialbes
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-
-
-## Environmental Variable file. Original MEDMI files
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-variable<-"min_air_temp"
-variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-min_temp<-variable_df_3[,-c(1,2)]
-min_temp<-min_temp[-c(1,2),]
-names(min_temp) <- NULL
-Minimum_air_temperature<-unlist(c(min_temp))
-
-
-variable<-"rain"
-variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-rain<-variable_df_4[,-c(1,2)]
-rain<-rain[-c(1,2),]
-names(rain) <- NULL
-Precipitation<-unlist(c(rain))
-
-variable<-"wind_speed"
-variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-wind<-variable_df_5[,-c(1,2)]
-wind<-wind[-c(1,2),]
-names(wind) <- NULL
-Mean_wind_speed<-unlist(c(wind))
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2010)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Minimum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"min_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-#var_x_loc_df<-data.frame(  matrix(ncol = 6, nrow = 500))
-#colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-
-#norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100
-#var_x_loc_df$incidence<-var_x_loc_df$incidence/norm
-#var_x_loc_df<-na.omit(var_x_loc_df)
-
-
-
-
-###################
-
-
-
-################### Divide the domains of the variables in bins 
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Minimum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010)
-    
-    x<-variable_df$Relative_humidity
-    y<-variable_df$Minimum_air_temperature
-    z<-variable_df$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Minimum_air_temperature<-(breaks_min_temp[findInterval(y, breaks_min_temp)])###Change here for different varialbes
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Minimum_air_temperature<-(breaks_min_temp[findInterval(var_x_loc_df$Minimum_air_temperature, breaks_min_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    #variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates)))
-    #variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),]
-    #variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates)))
-    #variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),]
-    #variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates)))
-    #variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),]
-    
-    #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity")
-    #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature")
-    #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength")
-    
-    #variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates)
-    #variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates)
-    #variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates)
-    
-    #variable_df_dis_int<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates") ) 
-    
-    
-    #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity")
-    #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature")
-    #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength")
-    
-    ###############
-   # variable_df_dis_int$Minimum_air_temperature<-floor(variable_df_dis_int$Minimum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Minimum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Minimum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
-#time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep=""))
-#time_series<-time_series[,-1]
-#colnames(time_series)<-c("Date","Cases","Lambda","Lab")
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.Rout
deleted file mode 100644
index 822c05e6593d6cbf359a50096901ce2cd8669c7e..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.Rout
+++ /dev/null
@@ -1,551 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # it works for 
-> #variable_x<-"Minimum_air_temperature"
-> #variable_y<-"Relative_humidity"
-> #variable<-"daylength"
-> ## Change breaks_max etc. for different varialbes
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> 
-> 
-> ## Environmental Variable file. Original MEDMI files
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> variable<-"min_air_temp"
-> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> min_temp<-variable_df_3[,-c(1,2)]
-> min_temp<-min_temp[-c(1,2),]
-> names(min_temp) <- NULL
-> Minimum_air_temperature<-unlist(c(min_temp))
-> 
-> 
-> variable<-"rain"
-> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> rain<-variable_df_4[,-c(1,2)]
-> rain<-rain[-c(1,2),]
-> names(rain) <- NULL
-> Precipitation<-unlist(c(rain))
-> 
-> variable<-"wind_speed"
-> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> wind<-variable_df_5[,-c(1,2)]
-> wind<-wind[-c(1,2),]
-> names(wind) <- NULL
-> Mean_wind_speed<-unlist(c(wind))
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2010)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Minimum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"min_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> #var_x_loc_df<-data.frame(  matrix(ncol = 6, nrow = 500))
-> #colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-> 
-> #norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100
-> #var_x_loc_df$incidence<-var_x_loc_df$incidence/norm
-> #var_x_loc_df<-na.omit(var_x_loc_df)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> 
-> 
-> ################### Divide the domains of the variables in bins 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(ceiling(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Minimum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010)
-+     
-+     x<-variable_df$Relative_humidity
-+     y<-variable_df$Minimum_air_temperature
-+     z<-variable_df$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Minimum_air_temperature<-(breaks_min_temp[findInterval(y, breaks_min_temp)])###Change here for different varialbes
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Minimum_air_temperature<-(breaks_min_temp[findInterval(var_x_loc_df$Minimum_air_temperature, breaks_min_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     #variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates)))
-+     #variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),]
-+     #variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates)))
-+     #variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),]
-+     #variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates)))
-+     #variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),]
-+     
-+     #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity")
-+     #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature")
-+     #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength")
-+     
-+     #variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates)
-+     #variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates)
-+     #variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates)
-+     
-+     #variable_df_dis_int<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates") ) 
-+     
-+     
-+     #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity")
-+     #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature")
-+     #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength")
-+     
-+     ###############
-+    # variable_df_dis_int$Minimum_air_temperature<-floor(variable_df_dis_int$Minimum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Minimum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Minimum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-Error in `$<-.data.frame`(`*tmp*`, "Minimum_air_temperature", value = c(1,  : 
-  replacement has 565 rows, data has 568
-Calls: $<- -> $<-.data.frame
-Execution halted
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_hum_light.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_hum_light.R
deleted file mode 100644
index 88562a0eaeddd71b8d2e0601ef6989cace61a5af..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_hum_light.R
+++ /dev/null
@@ -1,280 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-
-
-## Environmental Variable file. Original MEDMI files
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-variable<-"min_air_temp"
-variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-min_temp<-variable_df_3[,-c(1,2)]
-min_temp<-min_temp[-c(1,2),]
-names(min_temp) <- NULL
-Minimum_air_temperature<-unlist(c(min_temp))
-
-
-variable<-"rain"
-variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-rain<-variable_df_4[,-c(1,2)]
-rain<-rain[-c(1,2),]
-names(rain) <- NULL
-Precipitation<-unlist(c(rain))
-
-variable<-"wind_speed"
-variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-wind<-variable_df_5[,-c(1,2)]
-wind<-wind[-c(1,2),]
-names(wind) <- NULL
-Mean_wind_speed<-unlist(c(wind))
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Minimum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"min_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-#var_x_loc_df<-data.frame(  matrix(ncol = 6, nrow = 500))
-#colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-
-#norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100
-#var_x_loc_df$incidence<-var_x_loc_df$incidence/norm
-#var_x_loc_df<-na.omit(var_x_loc_df)
-
-
-
-
-###################
-
-
-
-################### Divide the domains of the variables in bins 
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    
-    x<-variable_df$Relative_humidity
-    y<-variable_df$Maximum_air_temperature
-    z<-variable_df$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
-#time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep=""))
-#time_series<-time_series[,-1]
-#colnames(time_series)<-c("Date","Cases","Lambda","Lab")
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.R
deleted file mode 100644
index 2dfa7eacebf6f87bc501a1a8c080341c43639665..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.R
+++ /dev/null
@@ -1,283 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-
-
-## Environmental Variable file. Original MEDMI files
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-variable<-"min_air_temp"
-variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-min_temp<-variable_df_3[,-c(1,2)]
-min_temp<-min_temp[-c(1,2),]
-names(min_temp) <- NULL
-Minimum_air_temperature<-unlist(c(min_temp))
-
-
-variable<-"rain"
-variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-rain<-variable_df_4[,-c(1,2)]
-rain<-rain[-c(1,2),]
-names(rain) <- NULL
-Precipitation<-unlist(c(rain))
-
-variable<-"wind_speed"
-variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-wind<-variable_df_5[,-c(1,2)]
-wind<-wind[-c(1,2),]
-names(wind) <- NULL
-Mean_wind_speed<-unlist(c(wind))
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Mean_Precipitation"
-variable<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"rain"
-variable_2<-"light"
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-#var_x_loc_df<-data.frame(  matrix(ncol = 6, nrow = 500))
-#colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-
-#norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100
-#var_x_loc_df$incidence<-var_x_loc_df$incidence/norm
-#var_x_loc_df<-na.omit(var_x_loc_df)
-
-
-
-
-###################
-
-
-
-################### Divide the domains of the variables in bins 
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-1
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),-1),   max(na.omit(Env_laboratory$Mean_Precipitation))+1,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Mean_Precipitation,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    
-    x<-variable_df$Mean_Precipitation
-    y<-variable_df$Maximum_air_temperature
-    z<-variable_df$daylength
-       
-    variable_df_dis_int$Mean_Precipitation<-(breaks_rain[findInterval(x, breaks_rain)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-	
-	#breaks_rain2<-floor(breaks_rain)
-	
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Mean_Precipitation<-(breaks_rain[findInterval(var_x_loc_df$Mean_Precipitation, breaks_rain)])##floor(var_x_loc_df$Mean_Precipitation)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Mean_Precipitation","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Mean_Precipitation","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
-#time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep=""))
-#time_series<-time_series[,-1]
-#colnames(time_series)<-c("Date","Cases","Lambda","Lab")
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.Rout
deleted file mode 100644
index 048636d5c5ab7df2e72b24e9b0a7259d7e583ca0..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.Rout
+++ /dev/null
@@ -1,525 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> 
-> 
-> ## Environmental Variable file. Original MEDMI files
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> variable<-"min_air_temp"
-> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> min_temp<-variable_df_3[,-c(1,2)]
-> min_temp<-min_temp[-c(1,2),]
-> names(min_temp) <- NULL
-> Minimum_air_temperature<-unlist(c(min_temp))
-> 
-> 
-> variable<-"rain"
-> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> rain<-variable_df_4[,-c(1,2)]
-> rain<-rain[-c(1,2),]
-> names(rain) <- NULL
-> Precipitation<-unlist(c(rain))
-> 
-> variable<-"wind_speed"
-> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> wind<-variable_df_5[,-c(1,2)]
-> wind<-wind[-c(1,2),]
-> names(wind) <- NULL
-> Mean_wind_speed<-unlist(c(wind))
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Minimum_air_temperature"
-> variable_y<-"Mean_Precipitation"
-> variable<-"daylength"
-> 
-> variable_x2<-"min_air_temp"
-> variable_y2<-"rain"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> #var_x_loc_df<-data.frame(  matrix(ncol = 6, nrow = 500))
-> #colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot")
-> 
-> #norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100
-> #var_x_loc_df$incidence<-var_x_loc_df$incidence/norm
-> #var_x_loc_df<-na.omit(var_x_loc_df)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> 
-> 
-> ################### Divide the domains of the variables in bins 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Mean_Precipitation,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-+     
-+     x<-variable_df$Mean_Precipitation
-+     y<-variable_df$Maximum_air_temperature
-+     z<-variable_df$daylength
-+        
-+     variable_df_dis_int$Mean_Precipitation<-(breaks_rain[findInterval(x, breaks_rain)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Mean_Precipitation<-(breaks_rain[findInterval(var_x_loc_df$Mean_Precipitation, breaks_rain)])##floor(var_x_loc_df$Mean_Precipitation)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Mean_Precipitation","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Mean_Precipitation","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-Error in `$<-.data.frame`(`*tmp*`, "Mean_Precipitation", value = c(0.1665106777,  : 
-  replacement has 670 rows, data has 779
-Calls: $<- -> $<-.data.frame
-Execution halted
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_min_hum_light.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_min_hum_light.R
deleted file mode 100644
index 01e0bc1c86977d07fd4f2e441d67f855698f53e0..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_min_hum_light.R
+++ /dev/null
@@ -1,297 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-
-
-## Environmental Variable file. Original MEDMI files
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-variable<-"min_air_temp"
-variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-min_temp<-variable_df_3[,-c(1,2)]
-min_temp<-min_temp[-c(1,2),]
-names(min_temp) <- NULL
-Minimum_air_temperature<-unlist(c(min_temp))
-
-
-variable<-"rain"
-variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-rain<-variable_df_4[,-c(1,2)]
-rain<-rain[-c(1,2),]
-names(rain) <- NULL
-Precipitation<-unlist(c(rain))
-
-variable<-"wind_speed"
-variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-wind<-variable_df_5[,-c(1,2)]
-wind<-wind[-c(1,2),]
-names(wind) <- NULL
-Mean_wind_speed<-unlist(c(wind))
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Minimum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"min_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-
-### THis to avoid spurios cases with only one exceptional Campylobacter case 
-w_spurious<-which(var_x_loc_df_all$counts==1)
-var_x_loc_df_all[w_spurious,]<-NA                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-
-
-###################
-
-
-
-################### Divide the domains of the variables in bins 
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Minimum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    
-    x<-variable_df$Relative_humidity
-    y<-variable_df$Minimum_air_temperature
-    z<-variable_df$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Minimum_air_temperature<-(breaks_min_temp[findInterval(y, breaks_min_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Minimum_air_temperature<-(breaks_min_temp[findInterval(var_x_loc_df$Minimum_air_temperature, breaks_min_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    #variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates)))
-    #variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),]
-    #variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates)))
-    #variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),]
-    #variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates)))
-    #variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),]
-    
-    #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity")
-    #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature")
-    #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength")
-    
-    #variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates)
-    #variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates)
-    #variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates)
-    
-    #variable_df_dis_int<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates") ) 
-    
-    
-    #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity")
-    #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature")
-    #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength")
-    
-    ###############
-   # variable_df_dis_int$Minimum_air_temperature<-floor(variable_df_dis_int$Minimum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Minimum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Minimum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
-#time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep=""))
-#time_series<-time_series[,-1]
-#colnames(time_series)<-c("Date","Cases","Lambda","Lab")
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.R
deleted file mode 100644
index 76bb1e1bdc41c31435b91b5130d55187c1171ca7..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.R
+++ /dev/null
@@ -1,335 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# this to calculate delay
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-7
-width_char<-paste(width)
-n_seas<-1
-
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable_z<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_z2<-"light"
-
-
-
-## Varaible file
-
-## Varaible file
-
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "")
-coefficients_temp<-read.csv(file_name)
-
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "")
-coefficients_hum<-read.csv(file_name)
-
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "")
-coefficients_light<-read.csv(file_name)
-
-
-#colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-
-dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day")
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010)
-
-
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-#wt<-c(0)
-#for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-#wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-#print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-#}
-
-
-#Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-Env_laboratory_PHE<-Env_laboratory
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-################### Include daylength
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode")
-#Env_Lyme_data_int2<-merge(Env_Lyme_data_all2,lat_long_lab,by="PostCode")
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Env_laboratory_int2$lat
-day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date))
-#var_list<-list(lat,day_year)
-#lapply(var_list,daylength)
-#lapply(Env_laboratory,daylength, Env_laboratory$lat)
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-#daylength_df$lat<-as.factor(daylength_df$lat)
-#daylength_df$Date<-as.factor(daylength_df$Date)
-#Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat)
-#Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date)
-#Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date"))
-
-Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df)
-
-### repeat for the data only ####
-
-#latitude<-Env_Lyme_data_int2$lat
-#day_of_the_year<-yday(as.Date(Env_Lyme_data_int2$Date))
-
-#daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-#daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Lyme_data_int2$Date),daylength_int1)
-#colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-#Env_Lyme_data<-data.frame(Env_Lyme_data_int2,daylength_df)
-
-
-########################################
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-   
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-###################
-
-delta_light<-1
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum)) #i
-breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,   max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp))
-breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2,   max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp))
-breaks_light<-floor(seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light))
-
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-
-
-  
-
-time_series<-c()
-
-for (i in c(1: length(All_PC_s))){
-  #for (i in c(1: 15)){
-  
-   
-    
-    variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-    if (length(variable_df[,1])!=0){
-      
-      
-      variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010)
-      
-      
-      
-      ##########include time here and then average according to coefficients up to the time weighted.mean
-      x<-c()
-      y<-c()
-      z<-c()
-      
-      for (k in c(min(year(variable_df$Date)):max(year(variable_df$Date))) ){
-        
-        var_year<-subset(variable_df,year(variable_df$Date)==k )
-        xx<-c()
-        yy<-c()
-        zz<-c()
-        
-        wt<-0
-        for (n_coeff in (1:16)){
-          wt<-wt+unlist(coefficients_temp)[[n_coeff]]*week(var_year$Date)^(n_coeff-1)
-        }
-        wt_temp<-wt/sum(wt)
-        
-        wt<-0
-        for (n_coeff in (1:16)){
-          wt<-wt+unlist(coefficients_hum)[[n_coeff]]*week(var_year$Date)^(n_coeff-1)
-        }
-        wt_hum<-wt/sum(wt)
-        
-        wt<-0
-        for (n_coeff in (1:16)){
-          wt<-wt+unlist(coefficients_light)[[n_coeff]]*week(var_year$Date)^(n_coeff-1)
-          
-        }
-        wt_light<-wt/sum(wt)
-        
-        
-        
-        end_time<-yday(var_year$Date)
-        for (k2 in c(1:max(end_time)) ){
-          yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[1:k2], wt[1:k2])
-          xx[k2] <- weighted.mean( var_year$Relative_humidity[1:k2], wt[1:k2])
-          zz[k2] <- weighted.mean( var_year$daylength[1:k2], wt[1:k2])
-        } 
-        
-        x<-c(x,xx)
-        y<-c(y,yy)
-        z<-c(z,zz)
-      }
-      
-      # seq(min(as.Date(variable_df$Date)), max(as.Date(variable_df$Date)), by = "day")
-      
-      # breaks_hum[findInterval(x, breaks_hum)]
-      #  breaks_Maximum_air_temperature[findInterval(y, breaks_Maximum_air_temperature)]
-      
-      
-      
-      
-      variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-      variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-      variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-      
-      
-      
-      var_x_loc_df<-var_x_loc_df_all2
-      var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)  
-      var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-      var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)]) 
-      
-      #variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$max_temp)
-      variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,17:19,21:25)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable_z,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-	 
-      
-      
-      
-      #variable_df0<-merge(variable_df_1_dis, variable_df_2_dis, by="dates")
-      #variable_df1<-merge(variable_df0, variable_df_3_dis, by="dates")
-      #variable_df_dis<-merge(variable_df1,var_x_loc_df,   by=c("Maximum_air_temperature","Relative_humidity","daylength"))
-      
-      
-      
-      #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-      #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-      
-      
-      lambda<-variable_df_dis$incidence
-      lambda2<-variable_df_dis$prop 
-      lambda3<-variable_df_dis$counts
-      
-      #library(Hmisc)
-      #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-      
-      #day<-seq(1:length(variable_df_dis$dates))
-      #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-      
-      #comp_cases<-unlist(lapply(day,cases))
-      
-      
-	  comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-  
-  
-}
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_multiple_delays.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.Rout
deleted file mode 100644
index 4439d70a08e5e157b743e14f14c8047f3595b11f..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.Rout
+++ /dev/null
@@ -1,592 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # this to calculate delay
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-7
-> width_char<-paste(width)
-> n_seas<-1
-> 
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable_z<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_z2<-"light"
-> 
-> 
-> 
-> ## Varaible file
-> 
-> ## Varaible file
-> 
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "")
-> coefficients_temp<-read.csv(file_name)
-> 
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "")
-> coefficients_hum<-read.csv(file_name)
-> 
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "")
-> coefficients_light<-read.csv(file_name)
-> 
-> 
-> #colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-> 
-> dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day")
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010)
-> 
-> 
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> #wt<-c(0)
-> #for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-> #wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-> #print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-> #}
-> 
-> 
-> #Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> Env_laboratory_PHE<-Env_laboratory
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> ################### Include daylength
-> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-> colnames(lat_long_lab)<-c("PostCode","lat","long")
-> Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode")
-> #Env_Lyme_data_int2<-merge(Env_Lyme_data_all2,lat_long_lab,by="PostCode")
-> 
-> daylength<-function(lat,day_year)
-+ {
-+   #Latitude measure in degrees
-+   P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-+   Denom<-cos(lat*pi/180)*cos(P) 
-+   Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-+   D<-24-(24/pi)*acos(Numer/Denom)
-+   return(D)
-+ }
-> 
-> latitude<-Env_laboratory_int2$lat
-> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date))
-> #var_list<-list(lat,day_year)
-> #lapply(var_list,daylength)
-> #lapply(Env_laboratory,daylength, Env_laboratory$lat)
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> #daylength_df$lat<-as.factor(daylength_df$lat)
-> #daylength_df$Date<-as.factor(daylength_df$Date)
-> #Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat)
-> #Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date)
-> #Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date"))
-> 
-> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df)
-> 
-> ### repeat for the data only ####
-> 
-> #latitude<-Env_Lyme_data_int2$lat
-> #day_of_the_year<-yday(as.Date(Env_Lyme_data_int2$Date))
-> 
-> #daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> #daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Lyme_data_int2$Date),daylength_int1)
-> #colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> #Env_Lyme_data<-data.frame(Env_Lyme_data_int2,daylength_df)
-> 
-> 
-> ########################################
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
->    
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> ###################
-> 
-> delta_light<-1
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum)) #i
-> breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,   max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp))
-> breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2,   max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp))
-> breaks_light<-floor(seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light))
-> 
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-> 
-> 
->   
-> 
-> time_series<-c()
-> 
-> for (i in c(1: length(All_PC_s))){
-+   #for (i in c(1: 15)){
-+   
-+    
-+     
-+     variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+     if (length(variable_df[,1])!=0){
-+       
-+       
-+       variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010)
-+       
-+       
-+       
-+       ##########include time here and then average according to coefficients up to the time weighted.mean
-+       x<-c()
-+       y<-c()
-+       z<-c()
-+       
-+       for (k in c(min(year(variable_df$Date)):max(year(variable_df$Date))) ){
-+         
-+         var_year<-subset(variable_df,year(variable_df$Date)==k )
-+         xx<-c()
-+         yy<-c()
-+         zz<-c()
-+         
-+         wt<-0
-+         for (n_coeff in (1:16)){
-+           wt<-wt+unlist(coefficients_temp)[[n_coeff]]*week(var_year$Date)^(n_coeff-1)
-+         }
-+         wt_temp<-wt/sum(wt)
-+         
-+         wt<-0
-+         for (n_coeff in (1:16)){
-+           wt<-wt+unlist(coefficients_hum)[[n_coeff]]*week(var_year$Date)^(n_coeff-1)
-+         }
-+         wt_hum<-wt/sum(wt)
-+         
-+         wt<-0
-+         for (n_coeff in (1:16)){
-+           wt<-wt+unlist(coefficients_light)[[n_coeff]]*week(var_year$Date)^(n_coeff-1)
-+           
-+         }
-+         wt_light<-wt/sum(wt)
-+         
-+         
-+         
-+         end_time<-yday(var_year$Date)
-+         for (k2 in c(1:max(end_time)) ){
-+           yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[1:k2], wt[1:k2])
-+           xx[k2] <- weighted.mean( var_year$Relative_humidity[1:k2], wt[1:k2])
-+           zz[k2] <- weighted.mean( var_year$daylength[1:k2], wt[1:k2])
-+         } 
-+         
-+         x<-c(x,xx)
-+         y<-c(y,yy)
-+         z<-c(z,zz)
-+       }
-+       
-+       # seq(min(as.Date(variable_df$Date)), max(as.Date(variable_df$Date)), by = "day")
-+       
-+       # breaks_hum[findInterval(x, breaks_hum)]
-+       #  breaks_Maximum_air_temperature[findInterval(y, breaks_Maximum_air_temperature)]
-+       
-+       
-+       
-+       
-+       variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+       variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+       variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+       
-+       
-+       
-+       var_x_loc_df<-var_x_loc_df_all2
-+       var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)  
-+       var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+       var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)]) 
-+       
-+       #variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$max_temp)
-+       variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,17:19,21:25)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable_z,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+ 	 
-+       
-+       
-+       
-+       #variable_df0<-merge(variable_df_1_dis, variable_df_2_dis, by="dates")
-+       #variable_df1<-merge(variable_df0, variable_df_3_dis, by="dates")
-+       #variable_df_dis<-merge(variable_df1,var_x_loc_df,   by=c("Maximum_air_temperature","Relative_humidity","daylength"))
-+       
-+       
-+       
-+       #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+       #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+       
-+       
-+       lambda<-variable_df_dis$incidence
-+       lambda2<-variable_df_dis$prop 
-+       lambda3<-variable_df_dis$counts
-+       
-+       #library(Hmisc)
-+       #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+       
-+       #day<-seq(1:length(variable_df_dis$dates))
-+       #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+       
-+       #comp_cases<-unlist(lapply(day,cases))
-+       
-+       
-+ 	  comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+   
-+   
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> 
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_multiple_delays.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> proc.time()
-   user  system elapsed 
-622.747   9.640 632.453 
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.R
deleted file mode 100644
index 82ed8a967d8db2c8edae0277cca4185e74c162a6..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.R
+++ /dev/null
@@ -1,383 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# this to calculate delay
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-1
-width_char<-paste(width)
-n_seas<-1
-
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable_z<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_z2<-"light"
-
-
-
-## Varaible file
-
-## Varaible file
-
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "")
-coefficients_temp<-read.csv(file_name)
-
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "")
-coefficients_hum<-read.csv(file_name)
-
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "")
-coefficients_light<-read.csv(file_name)
-
-
-#colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-
-dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day")
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010)
-
-
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-#wt<-c(0)
-#for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-#wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-#print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-#}
-
-
-#Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-Env_laboratory_PHE<-Env_laboratory
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-################### Include daylength
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode")
-#Env_Lyme_data_int2<-merge(Env_Lyme_data_all2,lat_long_lab,by="PostCode")
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Env_laboratory_int2$lat
-day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date))
-#var_list<-list(lat,day_year)
-#lapply(var_list,daylength)
-#lapply(Env_laboratory,daylength, Env_laboratory$lat)
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-#daylength_df$lat<-as.factor(daylength_df$lat)
-#daylength_df$Date<-as.factor(daylength_df$Date)
-#Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat)
-#Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date)
-#Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date"))
-
-Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df)
-
-### repeat for the data only ####
-
-#latitude<-Env_Lyme_data_int2$lat
-#day_of_the_year<-yday(as.Date(Env_Lyme_data_int2$Date))
-
-#daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-#daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Lyme_data_int2$Date),daylength_int1)
-#colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-#Env_Lyme_data<-data.frame(Env_Lyme_data_int2,daylength_df)
-
-
-########################################
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-   
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-###################
-
-
-delta_light<-1
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum)) #i
-breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,   max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp))
-breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2,   max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp))
-breaks_light<-floor(seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light))
-
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-
-
-  
-
-time_series<-c()
-
-for (i in c(1: length(All_PC_s))){
-  #for (i in c(1: 15)){
-  
-   
-    
-    variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-    if (length(variable_df[,1])!=0){
-      
-      
-      variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010)
-      
-      
-      
-      ##########include time here and then average according to coefficients up to the time weighted.mean
-      x<-c()
-      y<-c()
-      z<-c()
-      
-      for (k in c(min(year(variable_df$Date)):max(year(variable_df$Date))) ){
-        
-        var_year<-subset(variable_df,year(variable_df$Date)==k )
-        xx<-c()
-        yy<-c()
-        zz<-c()
-        
-		#difference<-c(rep(0,times=166),rep(24,times=length(week(var_year$Date))-166))
-		#This 152 correspond to firs of June when dip in the data for coefficients in light, hum, and temperature
-		
-		#week_year<-week(var_year$Date)-difference+1
-		
-		week_year<-week(var_year$Date)
-		
-        wt<-0
-        for (n_coeff in (1:16)){
-          wt<-wt+unlist(coefficients_temp)[[n_coeff]]*week_year^(n_coeff-1)
-        }
-        wt_temp<-wt/sum(wt)
-        
-        wt<-0
-        for (n_coeff in (1:16)){
-          wt<-wt+unlist(coefficients_hum)[[n_coeff]]*week_year^(n_coeff-1)
-        }
-        wt_hum<-wt/sum(wt)
-        
-        wt<-0
-        for (n_coeff in (1:16)){
-          wt<-wt+unlist(coefficients_light)[[n_coeff]]*week_year^(n_coeff-1)
-          }
-        
-        
-        end_time<-yday(var_year$Date)
-		mid_time<-166
-        for (k2 in c(1:mid_time) ){
-          yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[1:k2], wt[1:k2]/(sum( wt[1:k2]  ))) 
-          xx[k2] <- weighted.mean( var_year$Relative_humidity[1:k2], wt[1:k2]/(sum( wt[1:k2]  ))) 
-          zz[k2] <- weighted.mean( var_year$daylength[1:k2],wt[1:k2]/(sum( wt[1:k2]  ))) 
-        } 
-		
-        for (k2 in c((mid_time+1):max(end_time)) ){
-          yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[mid_time:k2],wt[mid_time:k2]/(sum( wt[mid_time:k2]  ))) 
-          xx[k2] <- weighted.mean( var_year$Relative_humidity[mid_time:k2], wt[mid_time:k2]/(sum( wt[mid_time:k2]  ))) 
-          zz[k2] <- weighted.mean( var_year$daylength[mid_time:k2], wt[mid_time:k2]/(sum( wt[mid_time:k2]  ))) 
-        } 
-		
-		
-		
-        x<-c(x,xx)
-        y<-c(y,yy)
-        z<-c(z,zz)
-      }
-      
-      # seq(min(as.Date(variable_df$Date)), max(as.Date(variable_df$Date)), by = "day")
-      
-      # breaks_hum[findInterval(x, breaks_hum)]
-      #  breaks_Maximum_air_temperature[findInterval(y, breaks_Maximum_air_temperature)]
-      
-      
-      w_error<-which(findInterval(x, breaks_hum)==0)
-	  if(length(w_error)!=0){
-	  min_x_error<- min(x[-w_error])
-	  x[w_error]<-min_x_error}
-	  
-	  
-	  w_error2<-which(findInterval(y, breaks_max_temp)==0)
-      if(length(w_error2)!=0){
-	  min_y_error<- min(y[-w_error2])
-	  y[w_error2]<-min_y_error}
-	  
-	  w_error3<-which(findInterval(z, breaks_light)==0)
-      if(length(w_error3)!=0){
-	  min_z_error<- min(z[-w_error3])
-	  z[w_error3]<-min_z_error}  
-	  
-	  w_error4<-which(findInterval(x, breaks_hum)>max(breaks_hum))
-	  if(length(w_error4)!=0){
-	  max_x_error<- max(x[-w_error4])
-	  x[w_error4]<-max_x_error}
-	  
-	  
-	  w_error5<-which(findInterval(y, breaks_max_temp)>max(breaks_max_temp))
-      if(length(w_error5)!=0){
-	  max_y_error<- max(y[-w_error5])
-	  y[w_error5]<-max_y_error}
-	  
-	  
-	  w_error6<-which(findInterval(z, breaks_light)>max(breaks_light))
-      if(length(w_error6)!=0){
-	  max_z_error<- max(z[-w_error6])
-	  z[w_error6]<-max_z_error}
-	  
-	  
-	  
-	  
-      variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-      variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-      variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-      
-      
-      
-      var_x_loc_df<-var_x_loc_df_all2
-      var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)  
-      var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-      var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)]) 
-      
-      #variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$max_temp)
-      variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,17:19,21:25)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable_z,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-	 
-      
-      
-      
-      #variable_df0<-merge(variable_df_1_dis, variable_df_2_dis, by="dates")
-      #variable_df1<-merge(variable_df0, variable_df_3_dis, by="dates")
-      #variable_df_dis<-merge(variable_df1,var_x_loc_df,   by=c("Maximum_air_temperature","Relative_humidity","daylength"))
-      
-      
-      
-      #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-      #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-      
-      
-      lambda<-variable_df_dis$incidence
-      lambda2<-variable_df_dis$prop 
-      lambda3<-variable_df_dis$counts
-      
-      #library(Hmisc)
-      #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-      
-      #day<-seq(1:length(variable_df_dis$dates))
-      #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-      
-      #comp_cases<-unlist(lapply(day,cases))
-      
-      
-	  comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-  
-  
-}
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_multiple_delays_half_year.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.Rout
deleted file mode 100644
index 50ce75236f2ff8d0b10bd3fb61718e09a1b25a23..0000000000000000000000000000000000000000
--- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.Rout
+++ /dev/null
@@ -1,640 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # this to calculate delay
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-1
-> width_char<-paste(width)
-> n_seas<-1
-> 
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable_z<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_z2<-"light"
-> 
-> 
-> 
-> ## Varaible file
-> 
-> ## Varaible file
-> 
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "")
-> coefficients_temp<-read.csv(file_name)
-> 
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "")
-> coefficients_hum<-read.csv(file_name)
-> 
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "")
-> coefficients_light<-read.csv(file_name)
-> 
-> 
-> #colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-> 
-> dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day")
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010)
-> 
-> 
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> #wt<-c(0)
-> #for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-> #wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-> #print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-> #}
-> 
-> 
-> #Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> Env_laboratory_PHE<-Env_laboratory
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> ################### Include daylength
-> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-> colnames(lat_long_lab)<-c("PostCode","lat","long")
-> Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode")
-> #Env_Lyme_data_int2<-merge(Env_Lyme_data_all2,lat_long_lab,by="PostCode")
-> 
-> daylength<-function(lat,day_year)
-+ {
-+   #Latitude measure in degrees
-+   P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-+   Denom<-cos(lat*pi/180)*cos(P) 
-+   Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-+   D<-24-(24/pi)*acos(Numer/Denom)
-+   return(D)
-+ }
-> 
-> latitude<-Env_laboratory_int2$lat
-> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date))
-> #var_list<-list(lat,day_year)
-> #lapply(var_list,daylength)
-> #lapply(Env_laboratory,daylength, Env_laboratory$lat)
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> #daylength_df$lat<-as.factor(daylength_df$lat)
-> #daylength_df$Date<-as.factor(daylength_df$Date)
-> #Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat)
-> #Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date)
-> #Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date"))
-> 
-> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df)
-> 
-> ### repeat for the data only ####
-> 
-> #latitude<-Env_Lyme_data_int2$lat
-> #day_of_the_year<-yday(as.Date(Env_Lyme_data_int2$Date))
-> 
-> #daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> #daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Lyme_data_int2$Date),daylength_int1)
-> #colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> #Env_Lyme_data<-data.frame(Env_Lyme_data_int2,daylength_df)
-> 
-> 
-> ########################################
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
->    
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> ###################
-> 
-> 
-> delta_light<-1
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum)) #i
-> breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,   max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp))
-> breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2,   max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp))
-> breaks_light<-floor(seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light))
-> 
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-> 
-> 
->   
-> 
-> time_series<-c()
-> 
-> for (i in c(1: length(All_PC_s))){
-+   #for (i in c(1: 15)){
-+   
-+    
-+     
-+     variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+     if (length(variable_df[,1])!=0){
-+       
-+       
-+       variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010)
-+       
-+       
-+       
-+       ##########include time here and then average according to coefficients up to the time weighted.mean
-+       x<-c()
-+       y<-c()
-+       z<-c()
-+       
-+       for (k in c(min(year(variable_df$Date)):max(year(variable_df$Date))) ){
-+         
-+         var_year<-subset(variable_df,year(variable_df$Date)==k )
-+         xx<-c()
-+         yy<-c()
-+         zz<-c()
-+         
-+ 		#difference<-c(rep(0,times=166),rep(24,times=length(week(var_year$Date))-166))
-+ 		#This 152 correspond to firs of June when dip in the data for coefficients in light, hum, and temperature
-+ 		
-+ 		#week_year<-week(var_year$Date)-difference+1
-+ 		
-+ 		week_year<-week(var_year$Date)
-+ 		
-+         wt<-0
-+         for (n_coeff in (1:16)){
-+           wt<-wt+unlist(coefficients_temp)[[n_coeff]]*week_year^(n_coeff-1)
-+         }
-+         wt_temp<-wt/sum(wt)
-+         
-+         wt<-0
-+         for (n_coeff in (1:16)){
-+           wt<-wt+unlist(coefficients_hum)[[n_coeff]]*week_year^(n_coeff-1)
-+         }
-+         wt_hum<-wt/sum(wt)
-+         
-+         wt<-0
-+         for (n_coeff in (1:16)){
-+           wt<-wt+unlist(coefficients_light)[[n_coeff]]*week_year^(n_coeff-1)
-+           }
-+         
-+         
-+         end_time<-yday(var_year$Date)
-+ 		mid_time<-166
-+         for (k2 in c(1:mid_time) ){
-+           yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[1:k2], wt[1:k2]/(sum( wt[1:k2]  ))) 
-+           xx[k2] <- weighted.mean( var_year$Relative_humidity[1:k2], wt[1:k2]/(sum( wt[1:k2]  ))) 
-+           zz[k2] <- weighted.mean( var_year$daylength[1:k2],wt[1:k2]/(sum( wt[1:k2]  ))) 
-+         } 
-+ 		
-+         for (k2 in c((mid_time+1):max(end_time)) ){
-+           yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[mid_time:k2],wt[mid_time:k2]/(sum( wt[mid_time:k2]  ))) 
-+           xx[k2] <- weighted.mean( var_year$Relative_humidity[mid_time:k2], wt[mid_time:k2]/(sum( wt[mid_time:k2]  ))) 
-+           zz[k2] <- weighted.mean( var_year$daylength[mid_time:k2], wt[mid_time:k2]/(sum( wt[mid_time:k2]  ))) 
-+         } 
-+ 		
-+ 		
-+ 		
-+         x<-c(x,xx)
-+         y<-c(y,yy)
-+         z<-c(z,zz)
-+       }
-+       
-+       # seq(min(as.Date(variable_df$Date)), max(as.Date(variable_df$Date)), by = "day")
-+       
-+       # breaks_hum[findInterval(x, breaks_hum)]
-+       #  breaks_Maximum_air_temperature[findInterval(y, breaks_Maximum_air_temperature)]
-+       
-+       
-+       w_error<-which(findInterval(x, breaks_hum)==0)
-+ 	  if(length(w_error)!=0){
-+ 	  min_x_error<- min(x[-w_error])
-+ 	  x[w_error]<-min_x_error}
-+ 	  
-+ 	  
-+ 	  w_error2<-which(findInterval(y, breaks_max_temp)==0)
-+       if(length(w_error2)!=0){
-+ 	  min_y_error<- min(y[-w_error2])
-+ 	  y[w_error2]<-min_y_error}
-+ 	  
-+ 	  w_error3<-which(findInterval(z, breaks_light)==0)
-+       if(length(w_error3)!=0){
-+ 	  min_z_error<- min(z[-w_error3])
-+ 	  z[w_error3]<-min_z_error}  
-+ 	  
-+ 	  w_error4<-which(findInterval(x, breaks_hum)>max(breaks_hum))
-+ 	  if(length(w_error4)!=0){
-+ 	  max_x_error<- max(x[-w_error4])
-+ 	  x[w_error4]<-max_x_error}
-+ 	  
-+ 	  
-+ 	  w_error5<-which(findInterval(y, breaks_max_temp)>max(breaks_max_temp))
-+       if(length(w_error5)!=0){
-+ 	  max_y_error<- max(y[-w_error5])
-+ 	  y[w_error5]<-max_y_error}
-+ 	  
-+ 	  
-+ 	  w_error6<-which(findInterval(z, breaks_light)>max(breaks_light))
-+       if(length(w_error6)!=0){
-+ 	  max_z_error<- max(z[-w_error6])
-+ 	  z[w_error6]<-max_z_error}
-+ 	  
-+ 	  
-+ 	  
-+ 	  
-+       variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+       variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+       variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+       
-+       
-+       
-+       var_x_loc_df<-var_x_loc_df_all2
-+       var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)  
-+       var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+       var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)]) 
-+       
-+       #variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$max_temp)
-+       variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,17:19,21:25)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable_z,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+ 	 
-+       
-+       
-+       
-+       #variable_df0<-merge(variable_df_1_dis, variable_df_2_dis, by="dates")
-+       #variable_df1<-merge(variable_df0, variable_df_3_dis, by="dates")
-+       #variable_df_dis<-merge(variable_df1,var_x_loc_df,   by=c("Maximum_air_temperature","Relative_humidity","daylength"))
-+       
-+       
-+       
-+       #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+       #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+       
-+       
-+       lambda<-variable_df_dis$incidence
-+       lambda2<-variable_df_dis$prop 
-+       lambda3<-variable_df_dis$counts
-+       
-+       #library(Hmisc)
-+       #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+       
-+       #day<-seq(1:length(variable_df_dis$dates))
-+       #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+       
-+       #comp_cases<-unlist(lapply(day,cases))
-+       
-+       
-+ 	  comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+   
-+   
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> 
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_multiple_delays_half_year.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> proc.time()
-   user  system elapsed 
-402.808   6.412 409.246 
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.R
deleted file mode 100644
index ea7a5bca7ac311f87423fbce385be003f6faea9c..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.R
+++ /dev/null
@@ -1,235 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# Here we assume constant and uniform humidity
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-const_PHE<-"_Av_Glous_Wilt" # Post_Code= BA13NG
-
-## Environmental Variable file. Original MEDMI files
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-#All_PC_s<-names(variable_df_1[1,])
-#All_PC_s<-All_PC_s[-c(1,2)]
-#All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-										 
-								
-
-Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PostCode=="BA13NG")
-
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_PHE,year(Env_Campylobacter_data_PHE$Date)>=1990 & year(Env_Campylobacter_data_PHE$Date)<=2015)
-
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-								   
-								   
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-
-
-
-
-Env_Campylobacter_data$PostCode<-as.factor(Env_Campylobacter_data$PostCode)  
-Env_laboratory$PostCode<-as.factor(Env_laboratory$PostCode)
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-20
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-i_w<-which(All_PC_s=="BA13NG")
-
-time_series<-c()
-for (i in c(i_w: i_w)){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    
-    x<-variable_df$Relative_humidity
-    y<-variable_df$Maximum_air_temperature
-    z<-variable_df$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_PHE,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.Rout
deleted file mode 100644
index c275a354e6ae2205c032882a61073a21c2567744..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.Rout
+++ /dev/null
@@ -1,498 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # Here we assume constant and uniform humidity
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> const_PHE<-"_Av_Glous_Wilt" # Post_Code= BA13NG
-> 
-> ## Environmental Variable file. Original MEDMI files
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> 
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 										 
-> 								
-> 
-> Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PostCode=="BA13NG")
-> 
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_PHE,year(Env_Campylobacter_data_PHE$Date)>=1990 & year(Env_Campylobacter_data_PHE$Date)<=2015)
-> 
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 								   
-> 								   
-> Env_laboratory<-subset(Env_laboratory,Env_laboratory$PostCode=="BA13NG")
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> 
-> 
-> 
-> 
-> 
-> 
-> #wt<-c(0)
-> #for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-> #wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-> #print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-> #}
-> 
-> 
-> Env_laboratory_PHE<-Env_laboratory  #[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> time_series<-c()
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-+     
-+     x<-variable_df$Relative_humidity
-+     y<-variable_df$Maximum_air_temperature
-+     z<-variable_df$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> 
-> 
-> 
-> 
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_",const_PHE,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> 
-> #time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep=""))
-> #time_series<-time_series[,-1]
-> #colnames(time_series)<-c("Date","Cases","Lambda","Lab")
-> 
-> 
-> 
-> proc.time()
-   user  system elapsed 
- 92.078   1.671  93.745 
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.R
deleted file mode 100644
index de96d6f9d65a09fa61de1c8f70cd27ecd2defbc5..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.R
+++ /dev/null
@@ -1,250 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# Here we assume constant and uniform humidity
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-const_hum<-"_const_daylength_9"
-## Varaible file
-
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-
-
-
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    variable_df$daylength<-9 #Here I impose constant and uniform relative humidity
-	
-    x<-variable_df$Relative_humidity
-    y<-variable_df$Maximum_air_temperature
-    z<-variable_df$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.Rout
deleted file mode 100644
index 158b702b695340267804a364fd52d38fe2d7c6a0..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.Rout
+++ /dev/null
@@ -1,713 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # Here we assume constant and uniform humidity
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> const_hum<-"_const_daylength_9"
-> ## Varaible file
-> 
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> 
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> 
-> 
-> 
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-+     variable_df$daylength<-9 #Here I impose constant and uniform relative humidity
-+ 	
-+     x<-variable_df$Relative_humidity
-+     y<-variable_df$Maximum_air_temperature
-+     z<-variable_df$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> 
-> 
-> 
-> 
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> 
-> 
-> proc.time()
-   user  system elapsed 
-185.642   1.687 187.328 
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.R
deleted file mode 100644
index 36ad68bec228e13c560d68efbb5bd9ab28f75914..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.R
+++ /dev/null
@@ -1,251 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# Here we assume constant and uniform humidity and temperature
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-const_hum<-"_const_temp_14_hum_75"
-## Varaible file
-
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-
-
-
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    variable_df_dis_int$Relative_humidity<-75 #Here I impose constant and uniform relative humidity
-    variable_df_dis_int$Maximum_air_temperature<-14 #Here I impose constant and uniform relative humidity
-	
-    x<-variable_df_dis_int$Relative_humidity
-    y<-variable_df_dis_int$Maximum_air_temperature
-    z<-variable_df_dis_int$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.Rout
deleted file mode 100644
index 8cb48a11641e80ec868bbffd03250af181051f67..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.Rout
+++ /dev/null
@@ -1,714 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # Here we assume constant and uniform humidity and temperature
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> const_hum<-"_const_temp_14_hum_70"
-> ## Varaible file
-> 
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> 
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> 
-> 
-> 
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-+     variable_df_dis_int$Relative_humidity<-75 #Here I impose constant and uniform relative humidity
-+     variable_df_dis_int$Maximum_air_temperature<-14 #Here I impose constant and uniform relative humidity
-+ 	
-+     x<-variable_df_dis_int$Relative_humidity
-+     y<-variable_df_dis_int$Maximum_air_temperature
-+     z<-variable_df_dis_int$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> 
-> 
-> 
-> 
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> 
-> 
-> proc.time()
-   user  system elapsed 
-198.167   1.800 199.976 
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.R
deleted file mode 100644
index cd636efae22e6660956dfbd6b4038120cae848f1..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.R
+++ /dev/null
@@ -1,252 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# Here we assume constant and uniform humidity
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-const_hum<-"_const_temp_14_daylenght_9"
-## Varaible file
-
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-
-
-
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    variable_df_dis_int$daylength<-9 #Here I impose constant and uniform relative humidity
-	variable_df_dis_int$Maximum_air_temperature<-14
-	
-	
-    x<-variable_df_dis_int$Relative_humidity
-    y<-variable_df_dis_int$Maximum_air_temperature
-    z<-variable_df_dis_int$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.Rout
deleted file mode 100644
index 76fdc89217f4e2dee5ff194fcac28688378db7dc..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.Rout
+++ /dev/null
@@ -1,715 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # Here we assume constant and uniform humidity
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> const_hum<-"_const_temp_14_daylenght_9"
-> ## Varaible file
-> 
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> 
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> 
-> 
-> 
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-+     variable_df_dis_int$daylength<-9 #Here I impose constant and uniform relative humidity
-+ 	variable_df_dis_int$Maximum_air_temperature<-14
-+ 	
-+ 	
-+     x<-variable_df_dis_int$Relative_humidity
-+     y<-variable_df_dis_int$Maximum_air_temperature
-+     z<-variable_df_dis_int$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> 
-> 
-> 
-> 
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> 
-> 
-> proc.time()
-   user  system elapsed 
-214.802   1.858 216.796 
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.R
deleted file mode 100644
index d0abb206c0bc6072125e89b7c0bfc0c36b4b8c0b..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.R
+++ /dev/null
@@ -1,251 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# Here we assume constant and uniform humidity
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-const_hum<-"_const_hum_75_daylenght_9"
-## Varaible file
-
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-
-
-
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    variable_df_dis_int$Relative_humidity<-75 #Here I impose constant and uniform relative humidity
-	variable_df_dis_int$daylength<-9 
-	
-    x<-variable_df_dis_int$Relative_humidity
-    y<-variable_df_dis_int$Maximum_air_temperature
-    z<-variable_df_dis_int$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.Rout
deleted file mode 100644
index 2c1380962d5eaf8c1368ce8625bb50bdcd1de1ef..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.Rout
+++ /dev/null
@@ -1,498 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # Here we assume constant and uniform humidity
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> const_hum<-"_const_hum_70_daylenght_9"
-> ## Varaible file
-> 
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> 
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> 
-> 
-> 
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-+     variable_df$Relative_humidity<-70 #Here I impose constant and uniform relative humidity
-+ 	variable_df$daylength<-9 
-+ 	
-+     x<-variable_df$Relative_humidity
-+     y<-variable_df$Maximum_air_temperature
-+     z<-variable_df$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-Error in data.frame(variable_df_dis$Date, comp_cases, comp_cases2, comp_cases3,  : 
-  arguments imply differing number of rows: 0, 1
-Execution halted
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.R
deleted file mode 100644
index a9c5b85c25bd2225339ee76abc9712a9c2472265..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.R
+++ /dev/null
@@ -1,250 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# Here we assume constant and uniform humidity
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-const_hum<-"_const_hum_70"
-## Varaible file
-
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-
-
-
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    variable_df$Relative_humidity<-70 #Here I impose constant and uniform relative humidity
-	
-    x<-variable_df$Relative_humidity
-    y<-variable_df$Maximum_air_temperature
-    z<-variable_df$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.Rout
deleted file mode 100644
index 3c3dca2700ca2c4da278a04c4aee23610a9c492c..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.Rout
+++ /dev/null
@@ -1,713 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # Here we assume constant and uniform humidity
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> const_hum<-"_const_hum_70"
-> ## Varaible file
-> 
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> 
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> 
-> 
-> 
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-+     variable_df$Relative_humidity<-70 #Here I impose constant and uniform relative humidity
-+ 	
-+     x<-variable_df$Relative_humidity
-+     y<-variable_df$Maximum_air_temperature
-+     z<-variable_df$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> 
-> 
-> 
-> 
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> 
-> 
-> proc.time()
-   user  system elapsed 
-192.048   1.958 194.004 
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.R
deleted file mode 100644
index 716ea9c789fa3c1d81506a5efb6df741614e33d5..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.R
+++ /dev/null
@@ -1,250 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# Here we assume constant and uniform humidity
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-30
-width_char<-paste(width)
-const_hum<-"_const_temp_14"
-## Varaible file
-
-
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-Relative_humidity<-unlist(c(humidity))
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-Maximum_air_temperature<-unlist(c(max_temp))
-
-
-
-######################## Read Linked Data from file  ##################
-
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                         "Maximum_air_temperature",
-                                         "Minimum_air_temperature",
-                                         "Mean_wind_speed",
-                                         "Cumul_Precipitation",
-                                         "Mean_Precipitation",
-                                         "Relative_humidity",
-                                         "daylength",
-                                         "residents")
-
-
-#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-#####This is required to identy all PostCodes in England and Wales ########
-dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_2<-"light"
-
-
-
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                   "Maximum_air_temperature",
-                                   "Minimum_air_temperature",
-                                   "Mean_wind_speed",
-                                   "Cumul_Precipitation",
-                                   "Mean_Precipitation",
-                                   "Relative_humidity",
-                                   "daylength",
-                                   "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-
-#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-
-wt<-c(0)
-for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-}
-
-### I  this was I can select those postcodes labs wher Campylobacter cases occur
-Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-
-
-########################
-
-
-
-
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-delta_light<-1
-breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-
-# First find right domain where the values have no NA
-
-
-
-
-time_series<-c()
-
-
-
-for (i in c(1: length(All_PC_s))){
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-  if (length(na.omit(variable_df_check)[,1])!=0){
-    
-    variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-    variable_df$Maximum_air_temperature<-14 #Here I impose constant and uniform relative humidity
-	
-    x<-variable_df$Relative_humidity
-    y<-variable_df$Maximum_air_temperature
-    z<-variable_df$daylength
-       
-    variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-    variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-    variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-    
-        
-    var_x_loc_df<-var_x_loc_df_all2
-    var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-    var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-    var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-    
-    
-    
-    ###############
-   # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-    variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-    colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-                                 "PostCode","Date",
-                                 "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    variable_df_dis<-na.omit(variable_df_dis)
-    #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-    
-    #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-    #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-    #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-    #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-    
-    
-    lambda<-variable_df_dis$incidence
-    lambda2<-variable_df_dis$prop 
-    lambda3<-variable_df_dis$counts
-    
-    #library(Hmisc)
-    #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-    
-    #day<-seq(1:length(variable_df_dis$dates))
-    #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-    
-    #comp_cases<-unlist(lapply(day,cases))
-    
-    
-    comp_cases<-lambda*All_residents_lab$tot[i]
-    comp_cases2<-lambda2
-    comp_cases3<-lambda3*All_residents_lab$tot[i]
-    comp_cases4<-variable_df_dis$Numb_Lab[i]
-    
-    time_series_1<-
-      data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-    colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-    time_series<-rbind(time_series,time_series_1)}
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  
-}
-
-
-
-
-
-
-write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.Rout
deleted file mode 100644
index b93cc5b09d0ab73ddb0a47dc9ddfe66fdfd87b76..0000000000000000000000000000000000000000
--- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.Rout
+++ /dev/null
@@ -1,713 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # Here we assume constant and uniform humidity
-> 
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-30
-> width_char<-paste(width)
-> const_hum<-"_const_temp_14"
-> ## Varaible file
-> 
-> 
-> 
-> variable<-"humidity"
-> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> humidity<-variable_df_1[,-c(1,2)]
-> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-> 
-> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-> dates<-rep(dates_s,times=length(variable_df_1)-2)
-> All_PC_s<-names(variable_df_1[1,])
-> All_PC_s<-All_PC_s[-c(1,2)]
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> humidity<-humidity[-c(1,2),]
-> names(humidity) <- NULL
-> Relative_humidity<-unlist(c(humidity))
-> 
-> variable<-"max_air_temp"
-> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-> max_temp<-variable_df_2[,-c(1,2)]
-> max_temp<-max_temp[-c(1,2),]
-> names(max_temp) <- NULL
-> Maximum_air_temperature<-unlist(c(max_temp))
-> 
-> 
-> 
-> ######################## Read Linked Data from file  ##################
-> 
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                          "Maximum_air_temperature",
-+                                          "Minimum_air_temperature",
-+                                          "Mean_wind_speed",
-+                                          "Cumul_Precipitation",
-+                                          "Mean_Precipitation",
-+                                          "Relative_humidity",
-+                                          "daylength",
-+                                          "residents")
-> 
-> 
-> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name
-> #n_Centre<-length(levels(PHE_Centre))
-> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset')
-> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-> 
-> #####This is required to identy all PostCodes in England and Wales ########
-> dates_s<-subset(dates_s, year(dates_s)>=1990 &  year(dates_s)<=2015)
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_2<-"light"
-> 
-> 
-> 
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                    "Maximum_air_temperature",
-+                                    "Minimum_air_temperature",
-+                                    "Mean_wind_speed",
-+                                    "Cumul_Precipitation",
-+                                    "Mean_Precipitation",
-+                                    "Relative_humidity",
-+                                    "daylength",
-+                                    "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> 
-> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode)
-> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode)
-> 
-> wt<-c(0)
-> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){
-+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i]))
-+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) )
-+ }
-[1] "0.485436893203884" "AL74HQ"           
-[1] "0.970873786407767" "B152TG"           
-[1] "1.45631067961165" "B187QH"          
-[1] "1.94174757281553" "B46NH"           
-[1] "2.42718446601942" "B714HJ"          
-[1] "2.9126213592233" "B757RR"         
-[1] "3.39805825242718" "B95SS"           
-[1] "3.88349514563107" "B987UB"          
-[1] "4.36893203883495" "BA13NG"          
-[1] "4.85436893203883" "BA214AT"         
-[1] "5.33980582524272" "BB102PQ"         
-[1] "5.8252427184466" "BB23HH"         
-[1] "6.31067961165049" "BB23LR"          
-[1] "6.79611650485437" "BD206TD"         
-[1] "7.28155339805825" "BD96RJ"          
-[1] "7.76699029126214" "BH152JB"         
-[1] "8.25242718446602" "BH77DW"          
-[1] "8.7378640776699" "BL40JR"         
-[1] "9.22330097087379" "BL96PG"          
-[1] "9.70873786407767" "BN112DH"         
-[1] "10.1941747572816" "BN212UD"         
-[1] "10.6796116504854" "BN25BE"          
-[1] "11.1650485436893" "BR68ND"          
-[1] "11.6504854368932" "BS105NB"         
-[1] "12.1359223300971" "BS161LE"         
-[1] "12.621359223301" "BS234TQ"        
-[1] "13.1067961165049" "BS28EL"          
-[1] "13.5922330097087" "CA27HY"          
-[1] "14.0776699029126" "CA288JG"         
-[1] "14.5631067961165" "CB22QQ"          
-[1] "15.0485436893204" "CB38RE"          
-[1] "15.5339805825243" "CF311RQ"         
-[1] "16.0194174757282" "CF479DT"         
-[1] "16.504854368932" "CF728XR"        
-[1] "16.9902912621359" "CF82WW"          
-[1] "17.4757281553398" "CH21UL"          
-[1] "17.9611650485437" "CM201XQ"         
-[1] "18.4466019417476" "CM20YX"          
-[1] "18.9320388349515" "CO45JR"          
-[1] "19.4174757281553" "CR77YE"          
-[1] "19.9029126213592" "CT94AN"          
-[1] "20.3883495145631" "CV107DJ"         
-[1] "20.873786407767" "CV14FH"         
-[1] "21.3592233009709" "CV345BW"         
-[1] "21.8446601941748" "CW14QJ"          
-[1] "22.3300970873786" "DA146LT"         
-[1] "22.8155339805825" "DA28DA"          
-[1] "23.3009708737864" "DE12QY"          
-[1] "23.7864077669903" "DE130RB"         
-[1] "24.2718446601942" "DE223NE"         
-[1] "24.7572815533981" "DH15TW"          
-[1] "25.2427184466019" "DL146AD"         
-[1] "25.7281553398058" "DL36HX"          
-[1] "26.2135922330097" "DN171RS"         
-[1] "26.6990291262136" "DN25LT"          
-[1] "27.1844660194175" "DN332BA"         
-[1] "27.6699029126214" "DT12JY"          
-[1] "28.1553398058252" "DY12HQ"          
-[1] "28.6407766990291" "E111NR"          
-[1] "29.126213592233" "E11BB"          
-[1] "29.6116504854369" "E96SR"           
-[1] "30.0970873786408" "EN53DJ"          
-[1] "30.5825242718447" "EX25AD"          
-[1] "31.0679611650485" "EX314JB"         
-[1] "31.5533980582524" "FY38NR"          
-[1] "32.0388349514563" "GL13NN"          
-[1] "32.5242718446602" "GL537AN"         
-[1] "33.0097087378641" "GU167UJ"         
-[1] "33.495145631068" "HA13UJ"         
-[1] "33.9805825242718" "HD33EA"          
-[1] "34.4660194174757" "HG27SX"          
-[1] "34.9514563106796" "HP112TT"         
-[1] "35.4368932038835" "HP218AL"         
-[1] "35.9223300970874" "HP24AD"          
-[1] "36.4077669902913" "HR12ER"          
-[1] "36.8932038834951" "HU32JZ"          
-[1] "37.378640776699" "IG119LX"        
-[1] "37.8640776699029" "IP332QZ"         
-[1] "38.3495145631068" "IP45PD"          
-[1] "38.8349514563107" "KT160PZ"         
-[1] "39.3203883495146" "KT198PB"         
-[1] "39.8058252427184" "KT27QB"          
-[1] "40.2912621359223" "L122AP"          
-[1] "40.7766990291262" "L355DR"          
-[1] "41.2621359223301" "L634JY"          
-[1] "41.747572815534" "L78XP"          
-[1] "42.2330097087379" "L97AL"           
-[1] "42.7184466019417" "LA144LF"         
-[1] "43.2038834951456" "LA14RP"          
-[1] "43.6893203883495" "LA97RG"          
-[1] "44.1747572815534" "LE15WW"          
-[1] "44.6601941747573" "LL137TP"         
-[1] "45.1456310679612" "LL185UJ"         
-[1] "45.6310679611651" "LL572TP"         
-[1] "46.1165048543689" "LN25QY"          
-[1] "46.6019417475728" "LS157TR"         
-[1] "47.0873786407767" "LS29JT"          
-[1] "47.5728155339806" "LS97TF"          
-[1] "48.0582524271845" "LU40EP"          
-[1] "48.5436893203884" "M208LR"          
-[1] "49.0291262135922" "M415SL"          
-[1] "49.5145631067961" "M68WH"           
-[1] "50"    "M85RB"
-[1] "50.4854368932039" "M97AA"           
-[1] "50.9708737864078" "ME169QQ"         
-[1] "51.4563106796116" "ME207NJ"         
-[1] "51.9417475728155" "ME75NY"          
-[1] "52.4271844660194" "MK429DJ"         
-[1] "52.9126213592233" "MK65LD"          
-[1] "53.3980582524272" "N181QX"          
-[1] "53.8834951456311" "N195NF"          
-[1] "54.3689320388349" "NE298NH"         
-[1] "54.8543689320388" "NE340PL"         
-[1] "55.3398058252427" "NE46BE"          
-[1] "55.8252427184466" "NE77DN"          
-[1] "56.3106796116505" "NE96SX"          
-[1] "56.7961165048544" "NG174JL"         
-[1] "57.2815533980583" "NG318DG"         
-[1] "57.7669902912621" "NG72UH"          
-[1] "58.252427184466" "NN15BD"         
-[1] "58.7378640776699" "NN168UZ"         
-[1] "59.2233009708738" "NP77EG"          
-[1] "59.7087378640777" "NP92UB"          
-[1] "60.1941747572816" "NR23TX"          
-[1] "60.6796116504854" "NR316LA"         
-[1] "61.1650485436893" "NW107NS"         
-[1] "61.6504854368932" "NW32QG"          
-[1] "62.1359223300971" "NW95HT"          
-[1] "62.621359223301" "OL129QB"        
-[1] "63.1067961165049" "OL12JH"          
-[1] "63.5922330097087" "OL69RW"          
-[1] "64.0776699029126" "OX39DU"          
-[1] "64.5631067961165" "PE188NT"         
-[1] "65.0485436893204" "PE219QS"         
-[1] "65.5339805825243" "PE304ET"         
-[1] "66.0194174757282" "PE36DA"          
-[1] "66.504854368932" "PL68DH"         
-[1] "66.9902912621359" "PO194SE"         
-[1] "67.4757281553398" "PO305TG"         
-[1] "67.9611650485437" "PO36AQ"          
-[1] "68.4466019417476" "PR29HT"          
-[1] "68.9320388349515" "PR86PN"          
-[1] "69.4174757281553" "RG15AN"          
-[1] "69.9029126213592" "RG249NA"         
-[1] "70.3883495145631" "RH117DH"         
-[1] "70.873786407767" "RM30BE"         
-[1] "71.3592233009709" "RM70AG"          
-[1] "71.8446601941748" "S445BL"          
-[1] "72.3300970873786" "S57BQ"           
-[1] "72.8155339805825" "S602UD"          
-[1] "73.3009708737864" "S752EP"          
-[1] "73.7864077669903" "S810BD"          
-[1] "74.2718446601942" "SA28QA"          
-[1] "74.7572815533981" "SA312AF"         
-[1] "75.2427184466019" "SA612PZ"         
-[1] "75.7281553398058" "SE136LH"         
-[1] "76.2135922330097" "SE17EH"          
-[1] "76.6990291262136" "SE184QH"         
-[1] "77.1844660194175" "SE59RS"          
-[1] "77.6699029126214" "SG14AB"          
-[1] "78.1553398058252" "SK103BL"         
-[1] "78.6407766990291" "SK27JE"          
-[1] "79.126213592233" "SL24HL"         
-[1] "79.6116504854369" "SM51AA"          
-[1] "80.0970873786408" "SN36BB"          
-[1] "80.5825242718447" "SO166YD"         
-[1] "81.0679611650485" "SO226ZB"         
-[1] "81.5533980582524" "SP28BJ"          
-[1] "82.0388349514563" "SR47TP"          
-[1] "82.5242718446602" "SS00RY"          
-[1] "83.0097087378641" "SS165NL"         
-[1] "83.495145631068" "ST163SA"        
-[1] "83.9805825242718" "ST47PX"          
-[1] "84.4660194174757" "SW109NH"         
-[1] "84.9514563106796" "SW170QT"         
-[1] "85.4368932038835" "SW36JJ"          
-[1] "85.9223300970874" "SW36NP"          
-[1] "86.4077669902913" "SY231ER"         
-[1] "86.8932038834951" "SY38XQ"          
-[1] "87.378640776699" "TA15DB"         
-[1] "87.8640776699029" "TN240LZ"         
-[1] "88.3495145631068" "TQ27AA"          
-[1] "88.8349514563107" "TR13LQ"          
-[1] "89.3203883495146" "TS198PE"         
-[1] "89.8058252427184" "TS249AH"         
-[1] "90.2912621359223" "TS43BW"          
-[1] "90.7766990291262" "TW76AF"          
-[1] "91.2621359223301" "UB13HW"          
-[1] "91.747572815534" "UB83NN"         
-[1] "92.2330097087379" "UB96JH"          
-[1] "92.7184466019417" "W120NN"          
-[1] "93.2038834951456" "W21NY"           
-[1] "93.6893203883495" "W68RF"           
-[1] "94.1747572815534" "WA51QG"          
-[1] "94.6601941747573" "WC1E6DB"         
-[1] "95.1456310679612" "WC1N3JH"         
-[1] "95.631067961165" "WD18HB"         
-[1] "96.1165048543689" "WF134HS"         
-[1] "96.6019417475728" "WF14DG"          
-[1] "97.0873786407767" "WF81PL"          
-[1] "97.5728155339806" "WN12NN"          
-[1] "98.0582524271845" "WR13AS"          
-[1] "98.5436893203884" "WS29PS"          
-[1] "99.0291262135922" "WV100QP"         
-[1] "99.5145631067961" "YO126QL"         
-[1] "100"     "YO318HE"
-> 
-> ### I  this was I can select those postcodes labs wher Campylobacter cases occur
-> Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> 
-> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> All_residents<-sum(All_residents_lab$tot)
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> 
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> 
-> 
-> ###################
-> 
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> delta_light<-1
-> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2,   max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light)
-> 
-> # First find right domain where the values have no NA
-> 
-> 
-> 
-> 
-> time_series<-c()
-> 
-> 
-> 
-> for (i in c(1: length(All_PC_s))){
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature)
-+   if (length(na.omit(variable_df_check)[,1])!=0){
-+     
-+     variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015)
-+     variable_df$Maximum_air_temperature<-14 #Here I impose constant and uniform relative humidity
-+ 	
-+     x<-variable_df$Relative_humidity
-+     y<-variable_df$Maximum_air_temperature
-+     z<-variable_df$daylength
-+        
-+     variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+     variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+     variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+     
-+         
-+     var_x_loc_df<-var_x_loc_df_all2
-+     var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity)
-+     var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light)
-+     var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks)
-+     
-+     
-+     
-+     ###############
-+    # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature)
-+     variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)]
-+     colnames(variable_df_dis)<-c(variable_y, variable_x,variable,
-+                                  "PostCode","Date",
-+                                  "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     variable_df_dis<-na.omit(variable_df_dis)
-+     #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) 
-+     
-+     #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+     #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+     #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here
-+     #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab")
-+     
-+     
-+     lambda<-variable_df_dis$incidence
-+     lambda2<-variable_df_dis$prop 
-+     lambda3<-variable_df_dis$counts
-+     
-+     #library(Hmisc)
-+     #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l")
-+     
-+     #day<-seq(1:length(variable_df_dis$dates))
-+     #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1
-+     
-+     #comp_cases<-unlist(lapply(day,cases))
-+     
-+     
-+     comp_cases<-lambda*All_residents_lab$tot[i]
-+     comp_cases2<-lambda2
-+     comp_cases3<-lambda3*All_residents_lab$tot[i]
-+     comp_cases4<-variable_df_dis$Numb_Lab[i]
-+     
-+     time_series_1<-
-+       data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date)))
-+     colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab")
-+     time_series<-rbind(time_series,time_series_1)}
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> 
-> 
-> 
-> 
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> 
-> 
-> proc.time()
-   user  system elapsed 
-195.104   1.845 196.951 
diff --git a/Paper_Taylor_Campylobacter_environment_hum_max_for_rec_delay_original.R b/Paper_Taylor_Campylobacter_environment_hum_max_for_rec_delay_original.R
deleted file mode 100644
index 3fe04f43e05bb6df31fd7ff134c244a10be320e7..0000000000000000000000000000000000000000
--- a/Paper_Taylor_Campylobacter_environment_hum_max_for_rec_delay_original.R
+++ /dev/null
@@ -1,482 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# this to calculate delay
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-60
-width_char<-paste(width)
-n_seas<-1
-
-variable_x<-"max_air_temp"
-variable_y<-"humidity"
-variable_z<-"light"
-
-
-
-## Variable files
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-#colnames(Env_Campylobacter_data_all2)<-c("PostCode","PHE_Centre_Name","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-#colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                     "Maximum_air_temperature",
-                                     "Minimum_air_temperature",
-                                     "Mean_wind_speed",
-                                     "Cumul_Precipitation",
-                                     "Mean_Precipitation",
-                                     "Relative_humidity",
-                                     "daylength",
-                                     "residents")
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory_weekly[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                     "Maximum_air_temperature",
-                                     "Minimum_air_temperature",
-                                     "Mean_wind_speed",
-                                     "Cumul_Precipitation",
-                                     "Mean_Precipitation",
-                                     "Relative_humidity",
-                                     "daylength",
-                                     "residents")
-
-
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010)
-
-dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day")
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010)
-
-Env_laboratory_PHE<-Env_laboratory
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-
-All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-All_residents<-sum(All_residents_lab$tot)
-
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable,"_",variable_x,"_",width_char,"_n_seas_",n_seas,"_for_rec.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-names(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-10
-delta_wind<-2
-breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$humidity))-10,0),max(na.omit(Env_laboratory$humidity))+10,by=delta_hum)) #i
-breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$min_temp))-2,   max(na.omit(Env_laboratory$min_temp))+2,by=delta_temp))
-breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$max_temp))-2,   max(na.omit(Env_laboratory$max_temp))+2,by=delta_temp))
-
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$rain)),0),   max(na.omit(Env_laboratory$rain))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$wind))-2,0),max(na.omit(Env_laboratory$wind))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$cum_rain)),0),   max(na.omit(Env_laboratory$cum_rain))+2,by=delta_cum_rain)
-breaks_mean_temp<-seq(min(na.omit(Env_laboratory$min_temp))-2,max(na.omit(Env_laboratory$max_temp))+2,by=delta_temp)
-
-
-
-
-i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$humidity))))
-i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$humidity))))
-
-i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$min_temp))))
-i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$min_temp))))
-
-i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$max_temp))))
-i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$max_temp))))
-
-i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$rain))))
-i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$rain))))
-
-i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$cum_rain))))
-i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$cum_rain))))
-
-i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$wind))))
-i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$wind))))
-
-
-
-  
-
-if (variable=="max_air_temp"){
-  
-  breaks_var<-breaks_max_temp
-  i_var_min<-i_max_temp_min
-  i_var_max<-i_max_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$max_temp
-  Env_laboratory_var<-Env_laboratory$max_temp
-}
-if (variable_x=="max_air_temp"){
-  
-  i_var_x_min<-i_max_temp_min
-  i_var_x_max<-i_max_temp_max
-  breaks_var_x<-breaks_max_temp
-}
-
-if (variable=="min_air_temp"){
-  
-  breaks_var<-breaks_min_temp
-  i_var_min<-i_min_temp_min
-  i_var_max<-i_min_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$min_temp
-  Env_laboratory_var<-Env_laboratory$min_temp
-}
-if (variable_x=="min_air_temp"){
-  
-  i_var_x_min<-i_min_temp_min
-  i_var_x_max<-i_min_temp_max
-  breaks_var_x<-breaks_min_temp
-}
-
-
-if (variable=="humidity"){
-  
-  breaks_var<-breaks_hum
-  i_var_min<-i_hum_min
-  i_var_max<-i_hum_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$humidity
-  Env_laboratory_var<-Env_laboratory$humidity
-}
-if (variable_x=="humidity"){
-  
-  i_var_x_min<-i_hum_min
-  i_var_x_max<-i_hum_max
-  breaks_var_x<-breaks_hum
-}
-
-
-
-if (variable=="mean_temp"){
-  
-  breaks_var<-breaks_mean_temp
-  i_var_min<-i_mean_temp_min
-  i_var_max<-i_mean_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp
-  Env_laboratory_var<-Env_laboratory$mean_temp
-}
-if (variable_x=="mean_temp"){
-  
-  i_var_x_min<-i_mean_temp_min
-  i_var_x_max<-i_mean_temp_max
-  breaks_var_x<-breaks_mean_temp
-}
-
-if (variable=="rain"){
-  
-  breaks_var<-breaks_rain
-  i_var_min<-i_rain_min
-  i_var_max<-i_rain_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$rain
-  Env_laboratory_var<-Env_laboratory$rain
-}
-if (variable_x=="rain"){
-  
-  i_var_x_min<-i_rain_min
-  i_var_x_max<-i_rain_max
-  breaks_var_x<-breaks_rain
-}
-
-
-if (variable=="cum_rain"){
-  
-  breaks_var<-breaks_cum_rain
-  i_var_min<-i_cum_rain_min
-  i_var_max<-i_cum_rain_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$cum_rain
-  Env_laboratory_var<-Env_laboratory$cum_rain
-}
-if (variable_x=="cum_rain"){
-  
-  i_var_x_min<-i_cum_rain_min
-  i_var_x_max<-i_cum_rain_max
-  breaks_var_x<-breaks_cum_rain
-}
-
-
-
-if (variable=="wind"){
-  
-  breaks_var<-breaks_wind
-  i_var_min<-i_wind_min
-  i_var_max<-i_wind_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$wind
-  Env_laboratory_var<-Env_laboratory$wind
-}
-if (variable_x=="wind"){
-  
-  i_var_x_min<-i_wind_min
-  i_var_x_max<-i_wind_max
-  breaks_var_x<-breaks_wind
-}
-
-
-
-D_eta_var_x<-function(i_var,i_var_x)
-{
-
-
-var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab
-
-  if(is.na(breaks_var[i_var+1])==TRUE)
-  {
-  Yt1<-subset(var_x_loc_df,var_x_loc_df$humidity>=breaks_var[i_var])
-  } else {
-  Yt1<-subset(var_x_loc_df,var_x_loc_df$humidity>=breaks_var[i_var] & var_x_loc_df$humidity<breaks_var[i_var+1])
-  }
-  
-  
-  if(is.na(breaks_var_x[i_var_x+1])==TRUE)
-  {
-  Yt2<-subset(Yt1,Yt1$max_air_temp>=breaks_var_x[i_var_x])
-  } else {
-  Yt2<-subset(Yt1,Yt1$max_air_temp>=breaks_var_x[i_var_x] & Yt1$max_air_temp<breaks_var_x[i_var_x+1])
-  }
-  
-  
-  if(is.na(breaks_var_x[i_var_x+2])==TRUE)
-  {
-  Yt3<-subset(Yt1,Yt1$max_air_temp>=breaks_var_x[i_var_x+1])
-  } else {
-  Yt3<-subset(Yt1,Yt1$max_air_temp>=breaks_var_x[i_var_x+1] & Yt1$max_air_temp<breaks_var_x[i_var_x+2])
-  }
-  
-  if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){
-  D_eta_D_x<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-  } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){
-  D_eta_D_x<- 0.5*mean(Yt3$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){
-  D_eta_D_x<- 0.5*mean(Yt2$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){
-  D_eta_D_x<-NA
- }
-  
-  return(D_eta_D_x)
-  }
-  
-  
-  
-D_eta_var<-function(i_var,i_var_x)
-{
-
-
-var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab
-
-  if(is.na(breaks_var_x[i_var_x+1])==TRUE)
-  {
-  Yt1<-subset(var_x_loc_df,var_x_loc_df$max_air_temp>=breaks_var_x[i_var_x])
-  } else {
-  Yt1<-subset(var_x_loc_df,var_x_loc_df$max_air_temp>=breaks_var_x[i_var_x] & var_x_loc_df$max_air_temp<breaks_var_x[i_var_x+1])
-  }
-  
-  if(is.na(breaks_var[i_var+1])==TRUE)
-  {
-  Yt2<-subset( Yt1, Yt1$humidity>=breaks_var[i_var])
-  } else {
-  Yt2<-subset( Yt1, Yt1$humidity>=breaks_var[i_var] &  Yt1$humidity<breaks_var[i_var+1])
-  }
-  
-if(is.na(breaks_var[i_var+2])==TRUE)
-{
-  Yt3<-subset( Yt1, Yt1$humidity>=breaks_var[i_var+1])
-} else {
-  Yt3<-subset( Yt1, Yt1$humidity>=breaks_var[i_var+1] &  Yt1$humidity<breaks_var[i_var+2])
-}
-
-  
-  
-  if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){
-  D_eta_D_v<- mean(Yt3$eta- Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-  }  else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){
-  D_eta_D_v<- 0.5*mean(Yt3$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){
-  D_eta_D_v<- 0.5*mean(Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){
-  D_eta_D_v<-NA
-  }
-
-  return(D_eta_D_v)
-  }
-
-  
-  
-  
-
-df_all<-c()
-#i_var<-seq(i_var_min,i_var_max)
-#i_var_x<-seq(i_var_x_min,i_var_x_max)
-
- for (j in c(1: n_seas)){
-
-var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j)
- 
-for (i_var in c(seq(i_var_min,i_var_max))){
-for (i_var_x in c(seq(i_var_x_min,i_var_x_max))){
-
- 
-
-#df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x))))
-#df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x))))
-
-df1<-data.frame(breaks_hum[i_var],breaks_max_temp[i_var_x],D_eta_var_x(i_var,i_var_x),D_eta_var(i_var,i_var_x),j )
-colnames(df1)<-c("humidity","max_air_temp","D_eta_D_max_temp","D_eta_D_hum","month")
-df_all<-rbind(df_all,df1)
-#mapply(D_eta_var_x,i_var, MoreArgs =list(i_var_x))
-}
-
-}
-}
-
-
-time_series<-c()
-
-for (i in c(1: length(All_PC_s))){
-  #for (i in c(1: 15)){
-  
-  
-
-  for (j in c(1: n_seas)){
-  
-    n_months<-12/n_seas
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i] &  month(Env_laboratory$Date)>(j-1)*n_months &  month(Env_laboratory$Date)<=(j)*n_months)
-  if (length(variable_df[,1])!=0){
-  
-  
-  
-Delta_T<-diff(variable_df$max_temp)
-Delta_RH<-diff(variable_df$humidity)
-Delta_var<-data.frame(variable_df$Date[-1],Delta_T,Delta_RH)
-colnames(Delta_var)<-c("dates","diff_max_temp","diff_humidity")
-
-x<-variable_df$humidity
-y<-variable_df$max_temp
-  
-variable_df_1_dis<-data.frame(variable_df$Date,variable_df$humidity)
-variable_df_2_dis<-data.frame(variable_df$Date,variable_df$max_temp)
-colnames(variable_df_1_dis)<-c("dates","humidity")
-colnames(variable_df_2_dis)<-c("dates","max_air_temp")
-  
-  variable_df_1_dis$dates<-as.Date(as.character((variable_df_1_dis$dates)))
-  variable_df_2_dis$dates<-as.Date(as.character((variable_df_2_dis$dates)))
-  
-  variable_df_1_dis<-subset(variable_df_1_dis,year(variable_df_1_dis$dates)>=2001 & year(variable_df_1_dis$dates)<2012)
-  variable_df_2_dis<-subset(variable_df_2_dis,year(variable_df_2_dis$dates)>=2001 & year(variable_df_2_dis$dates)<2012)
-  
-  
-  variable_df_1_dis$humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-  variable_df_2_dis$max_air_temp<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
- 
- 
- 
-# var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j)
-#  var_x_loc_df$humidity<-floor(var_x_loc_df$humidity)
-#  var_x_loc_df$max_air_temp<-floor(var_x_loc_df$breaks)
-  df<-subset(df_all,df_all$month==j)
-  
-  variable_df_3_dis<-merge(variable_df_1_dis,df, by="humidity")
-  
-  #colnames(var_x_loc_df)[1]<-"max_air_temp_mids"
-  #colnames(var_x_loc_df)[2]<-"max_air_temp"
-  
-  variable_df_4_dis<-merge(variable_df_2_dis,df, by="max_air_temp")
-  
-  variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates)))
-  variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),]
-  variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates)))
-  variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),]
-  
-  variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates)
-  variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates)
-  variable_df_dis<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates","max_air_temp","humidity") ) 
-
-  variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-  variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-  variable_df_dis$dates<-as.factor(variable_df_dis$dates)
-  Delta_var$dates<-as.factor(Delta_var$dates)
-  variable_df_Taylor<-merge(variable_df_dis,Delta_var, by=c("dates"))
-  
-  variable_df_Taylor<-variable_df_Taylor[,c(1:6,10:11)]
-  colnames(variable_df_Taylor)<-c("dates","month",variable, variable_x,"D_eta_D_max_temp","D_eta_D_hum","diff_max_temp","diff_humidity")
-  
-  
-  lambda_temp<-variable_df_Taylor$D_eta_D_max_temp*variable_df_Taylor$diff_max_temp
-  lambda_hum<-variable_df_Taylor$D_eta_D_hum*variable_df_Taylor$diff_humidity
-  
-  
- 
-  
-  time_series_1<-
-    data.frame(variable_df_Taylor$dates,lambda_temp,lambda_hum, rep(All_PC_s[i],times=length(variable_df_Taylor$dates)),
-	variable_df_Taylor$D_eta_D_max_temp,variable_df_Taylor$diff_max_temp,
-	variable_df_Taylor$D_eta_D_hum,variable_df_Taylor$diff_humidity,
-	rep(j,times=length(variable_df_Taylor$dates)))
-  colnames(time_series_1)<-c("Date","Contr_temp","Contr_hum","Lab","seas","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum")
-  time_series<-rbind(time_series,time_series_1)
-  }
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  }
-}
-
-#time_series1<-subset(time_series,time_series$Lab=="B152TG")
-#time_series1$Date<-as.Date(as.character(time_series1$Date))
-#time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date))))
-#time_series1<-subset(time_series1,time_series1$year=="2005")
-
-#time_series1<-na.omit(time_series1)
-##temp_contr<-cumsum(time_series1$Contr_temp)
-#temp_hum<-cumsum(time_series1$Contr_hum)
-#
-#df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum)
-#colnames(df2)<-c("Date","contr","humidity")
-#temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp))
-#time_series<-na.omit(time_series)
-#time_series$temp_contr<-cumsum(time_series$Contr_temp)
-#time_series$temp_hum<-cumsum(time_series$Contr_hum)
-#time_series$yday<-yday(time_series$Date)
-#time_series$week<-week(time_series$Date)
-#time_series$month<-month(time_series$Date)
-#time_series$Lab<-as.factor(time_series$Lab)
-
-#time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp))
-#time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp))
-
-#time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp))
-#time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum))
-
-#time_series_lab<-ddply(time_series,~month,summarise,tot=mean(Contr_temp))
-#time_series_lab2<-ddply(time_series,~month,summarise,tot=mean(Contr_hum))
-#time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum))
-
-write.table(time_series,paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable,"_",variable_x,width_char,"_n_seas_",n_seas,".csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
diff --git a/Paper_plot_Simulated_Reconstruct_3_var.R b/Paper_plot_Simulated_Reconstruct_3_var.R
deleted file mode 100644
index 93d2e9baaee6df5ee1092dc1da5444d9e6022bac..0000000000000000000000000000000000000000
--- a/Paper_plot_Simulated_Reconstruct_3_var.R
+++ /dev/null
@@ -1,374 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile.
-
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(zoo)
-library(plyr)
-
-
-width<-14
-width_char<-paste(width)
-#situation<-"_const_hum_70"
-situation<-"_Av_Glous_Wilt"
-#situation<-""
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-humidity<-unlist(c(humidity))
-
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-max_temp<-unlist(c(max_temp))
-
-
-
-
-
-
-variable_x<-"max_air_temp"
-variable_y<-"humidity"
-variable<-"light"
-#variable<-"rain"
-n_seas<-1
-
-
-#Env_laboratory<-read.csv(paste("../DataBase/Cases_Environment/Laboratory_",width_char,".csv",sep=""))
-#Env_laboratory<-Env_laboratory[,-1]
-#colnames(Env_laboratory)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind","residents")
-#Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2015)
-
-
-######################## Catchment areas #################
-
-population_df<-read.csv(paste("../../Data_Base/Catchment_areas/LSOA2011Population_SumByLabs.csv",sep=""))
-colnames(population_df)<-c("Lab","col2","col3","residents_Lab")
-
-
-#var_x_loc_df<-read.csv(paste("../DataBase/Cases_Environment/",variable,"_",variable_x,"_",width_char,"_n_seas",n_seas,".csv",sep=""))
-#var_x_loc_df<-var_x_loc_df[,-1]
-#names(var_x_loc_df)<-c(variable_x,"breaks","prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot")
-
-
-#norm<-sum(na.omit(var_x_loc_df$incidence))
-#var_x_loc_df$incidence<-100*var_x_loc_df$incidence/norm
-#var_x_loc_df<-na.omit(var_x_loc_df)
-
-
-
-
-
-real_cases_all<-read.csv("../../Data_Base/Cases/Campylobacter_Simulated_Data_final_UK.csv")
-real_cases_all<-real_cases_all[,-1]
-colnames(real_cases_all)<-c("Count","Adjusted","Spec_Date", "POSTCODE","Date","Simulation")
-
-real_cases<-ddply(real_cases_all,~Date,summarise,mean=sum(Count))
-colnames(real_cases)<-c("Date","Cases")
-
-
-#real_cases_all$Date<-as.Date(as.character(real_cases_all$Date),format="%d/%m/%Y")
-#real_cases<-real_cases_all[-c(1:13),]
-
-real_cases<-subset(real_cases,year(real_cases$Date)>=1990 & year(real_cases$Date)<2010)
-
-
-
-time_series1<-read.csv(paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,width_char,"_n_seas_",n_seas,"_Simulated_for_rec_test.csv",sep=""))
-#time_series1<-read.csv(paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_y,"_",variable_x,"_",width_char,"_n_seas",n_seas,"_Simulated_for_rec_multiple_delays.csv",sep=""))
-
-#time_series1<-read.csv(paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_y,"_",variable_x,"_",width_char,"_n_seas",n_seas,"for_rec_multiple_delays.csv",sep=""))
-#time_series1<-read.csv(paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,width_char,"_n_seas_",n_seas,"for_rec",situation,".csv",sep=""))
-                   
-
-time_series1<-time_series1[,-1]
-colnames(time_series1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab","seas")
-time_series1$Date<-as.Date(as.character(time_series1$Date))
-
-time_series<-merge(population_df,time_series1,by="Lab")
-#time_series$Cases4<-time_series$Lambda*time_series$residents_Lab
-
-
-time_series<-subset(time_series,year(time_series$Date)>=1990 & year(time_series$Date)<2010)
-time_series<-na.omit(time_series)
-
-
-##############Entire Timeseries #################
-time_series$Cases5<-time_series$Cases*time_series$Cases4
-time_series$Date<-as.Date(as.character(time_series$Date))
-time_series<-time_series[order(time_series$Date),]
-library(zoo)
-#time_series$Cases<-sum(time_series$Cases)
-
-time_series$Date<-as.factor(time_series$Date)
-ts_roll_mean<-rollmean(time_series$Cases5,7,align = "right")
-#ts_roll_mean<-rollmean(time_series$Depleted,7)
-time_series<-time_series[-c(1:6),]
-time_series$rolling_mean<-ts_roll_mean
-
-time_series_mean<-ddply(time_series,~Date,summarise,mean=mean(rolling_mean))
-#time_series_mean<-ddply(time_series,~week(time_series$Date),summarise,mean=mean(Cases5))
-
-time_series_mean[,1]<-as.Date(as.character(time_series_mean[,1]))
-time_series_quantile<-ddply(time_series,~Date, function (x) quantile(x$Cases5, c(.25,.5,.75)))
-time_series_summary<-data.frame(time_series_mean,time_series_quantile[,-1],rep("Model",times=length(time_series_mean[,1])))
-colnames(time_series_summary)<-c("Date","Mean","f_quant","median","s_quant","source")
-                           
-real_cases_summary<-data.frame(as.Date(real_cases$Date),as.numeric(real_cases$Cases),
-                          rep("NA",times=length(real_cases[,1])),
-                          rep("NA",times=length(real_cases[,1])),
-                          rep("NA",times=length(real_cases[,1])),
-                          rep("Cases",times=length(real_cases[,1])))
-colnames(real_cases_summary)<-c("Date","Mean","f_quant","median","s_quant","source")              
-
-#time_series_mean<-ddply(time_series,~Date,summarise,mean=mean(rolling_mean),sd=sd(rolling_mean))
-#time_series_mean[,1]<-as.Date(as.character(time_series_mean[,1]))
-#time_series_quantile<-ddply(time_series,~Date, function (x) quantile(x$rolling_mean, c(.25,.5,.75)))
-#time_series_summary<-cbind(time_series_mean,time_series_quantile[,-1])
-
-#end_point<-365
-#end_point<-5*365
-#plot(time_series_mean$Date[1:5000],time_series_mean$mean[1:5000]/sum(time_series_mean$mean[1:5000]),type="l")
-#lines(as.Date(as.character(real_cases$Date[1:5000]),format="%d/%m/%Y"),as.numeric(real_cases$Cases[1:5000])/(sum(as.numeric(real_cases$Cases[1:5000]))),col="red",lwd = 2)
-#time_series_summary<-time_series_summary[c(1:end_point),]
-#real_cases_summary<-real_cases_summary[c(1:end_point),]
-
-
-time_series_summary[,c(2:5)]<-time_series_summary[,c(2:5)]
-real_cases_summary$Mean<-real_cases_summary$Mean
-
-#time_series_all<-rbind(time_series_summary[c(1:end_point),c(1,2,6)],real_cases_summary[c(1:end_point),c(1,2,6)])
-time_series_all<-rbind(time_series_summary[,c(1,2,6)],real_cases_summary[,c(1,2,6)])
-
-
-pal<-wes_palette("Cavalcanti")
-time_series_plot<-ggplot(time_series_all,aes(x=Date,y=Mean,colour=source))
-#time_series_plot<-time_series_plot+scale_color_brewer(palette=pal)
-#time_series_plot<-time_series_plot+geom_line(data=real_cases_summary)
-time_series_plot<-time_series_plot+geom_line(size=0.75)
-#time_series_plot<-time_series_plot+scale_color_manual(values=c( "#E69F00", "#56B4E9"))
-time_series_plot<-time_series_plot+scale_color_manual(values=wes_palette(n=2, name="Cavalcanti"))
-
-time_series_plot<-time_series_plot+   xlab("Date")+   ylab("Campylobacter Cases")+scale_y_continuous(limit=c(0,600))
-#time_series_plot<-time_series_plot+ scale_x_date(breaks=c(
-#  as.Date("2000-01-01"),
-#  as.Date("2001-01-01"),
-#  as.Date("2002-01-01"),
-#  as.Date("2003-01-01"),
-#  as.Date("2004-01-01"),
-#  as.Date("2005-01-01"),
-#  as.Date("2006-01-01"),
-#  as.Date("2007-01-01"),
-#  as.Date("2008-01-01"),
-#  as.Date("2009-01-01"),
-#  as.Date("2010-01-01"),
- # as.Date("2011-01-01"),
- # as.Date("2012-01-01")#,
-  #as.Date("2013-01-01"),
-  #as.Date("2014-01-01"),
-  #as.Date("2015-01-01"),
-  #as.Date("2016-01-01")
-#),
-#labels=c("2000","2001","2002","2003","2004","2005","2006","2007","2008","2009","2010","2011","2012","2013","2014","2015","2016")
-#labels=c("2000","2001","2002","2003","2004","2005","2006","2007","2008","2009","2010","2011","2012")
-#)
-
-
-time_series_plot<-time_series_plot+
-  theme(legend.position= c(0.125,0.85),legend.title =  element_blank(),
-        legend.text = element_text( size = 10),legend.background = element_blank(),
-        legend.key=element_rect(colour=NA,fill=NA))
-
-#scale_fill_discrete(name="Humidity ")
-time_series_plot<-time_series_plot+ theme(axis.title.x =element_text( colour="#990000", size=13))
-time_series_plot<-time_series_plot+ theme(axis.title.y =element_text( colour="#990000", size=13))
-
-
-
-time_series_plot<-time_series_plot+ theme(axis.title.x =element_text(size=13))
-time_series_plot<-time_series_plot+ theme(axis.title.y =element_text(size=13))
-  time_series_plot
-
-#file_name_pdf<-paste("../Graphs//time_series_plot_",variable_x,"_",variable,"n_seas",n_seas,"_multiple_delays.pdf", sep = "")
-
-
-
-
-############## normalized #################
-
-
-time_series_summary[,c(2:5)]<-time_series_summary[,c(2:5)]/sum(time_series_summary$Mean)
-real_cases_summary$Mean<-real_cases_summary$Mean/sum(real_cases_summary$Mean)
-time_series_all2<-rbind(time_series_summary[,c(1,2,6)],real_cases_summary[,c(1,2,6)])
-
-
-pal<-wes_palette("Cavalcanti")
-time_series_plot2<-ggplot(time_series_all2,aes(x=Date,y=Mean,colour=source))
-#time_series_plot<-time_series_plot+scale_color_brewer(palette=pal)
-#time_series_plot<-time_series_plot+geom_line(data=real_cases_summary)
-time_series_plot2<-time_series_plot2+geom_line(size=0.75)
-#time_series_plot<-time_series_plot+scale_color_manual(values=c( "#E69F00", "#56B4E9"))
-time_series_plot2<-time_series_plot2+scale_color_manual(values=wes_palette(n=2, name="Cavalcanti"))
-
-time_series_plot2<-time_series_plot2+   xlab("Date")+   ylab("Campylobacter Cases (Normalized)")+scale_y_continuous(limit=c(0,4e-4))
-
-time_series_plot2<-time_series_plot2+
-  theme(legend.position= c(0.125,0.85),legend.title =  element_blank(),
-        legend.text = element_text( size = 10),legend.background = element_blank(),
-        legend.key=element_rect(colour=NA,fill=NA))
-
-#scale_fill_discrete(name="Humidity ")
-time_series_plot2<-time_series_plot2+ theme(axis.title.x =element_text( colour="#990000", size=13))
-time_series_plot2<-time_series_plot2+ theme(axis.title.y =element_text( colour="#990000", size=13))
-
-
-
-time_series_plot2<-time_series_plot2+ theme(axis.title.x =element_text(size=13))
-time_series_plot2<-time_series_plot2+ theme(axis.title.y =element_text(size=13))
-time_series_plot2
-
-############## Average per day of the year #################
-time_series$yday<-as.factor(yday(time_series$Date))
-
-#time_series$year<-as.factor(year(time_series$Date))
-#time_series_total<-ddply(time_series,~year,function (x) x$Cases/sum(x$Cases))
-
-#time_series$Cases4<-time_series$Cases4/sum(time_series$Cases4)
-time_series_average1<-ddply(time_series,~yday,summarise,mean=mean(Cases5))
-time_series_quantile1<-ddply(time_series,~yday, function (x) quantile(x$Cases5, c(.25,.5,.75)))
-time_series_average2<-cbind(time_series_average1,time_series_quantile1[,-1])
-time_series_average<-
-  data.frame(time_series_average2[,1],time_series_average2[,c(2:5)]/sum(time_series_average2$mean))
-
-#real_cases$norm<-(real_cases$Cases/sum(real_cases$Cases))
-real_cases$yday<-as.factor(yday(as.Date(as.character(real_cases$Date))))
-real_cases_average1<-ddply(real_cases,~yday,summarise,mean=mean(Cases))
-real_cases_quantile1<-ddply(real_cases,~yday,function (x) quantile(x$Cases, c(.25,.5,.75)))
-real_cases_average2<-cbind(real_cases_average1,real_cases_quantile1[,-1])
-real_cases_average<-
-  data.frame(real_cases_average2[,1],real_cases_average2[,c(2:5)]/sum(real_cases_average2$mean))
-  
-
-df1<-data.frame(real_cases_average,rep("Cases",times=length(real_cases_average[,1])))
-colnames(df1)<-c("Day","Mean","f_quant","median","s_quant","source")
-df2<-data.frame(time_series_average,rep("Model",times=length(time_series_average[,1])))
-colnames(df2)<-c("Day","Mean","f_quant","median","s_quant","source")
-
-average_data<-rbind(df1,df2)
-average_data$Day<-as.numeric(average_data$Day)
-
-yearly_average<-ggplot(average_data,aes(x=Day,y=Mean,colour=source))
-
-yearly_average<-yearly_average+geom_line(size=2)
-yearly_average <-yearly_average+ geom_ribbon(aes(ymin=f_quant, ymax=s_quant,fill=source),alpha=0.15) 
-yearly_average<-yearly_average+   xlab("Day of the Year")+   ylab("Campylobacter Cases (Normalized)")
-
-
-#yearly_average<-yearly_average+ scale_y_continuous(limit=c(0,0.05))
-  
-  
-month_2014<-month.abb[unique(month(as.Date(average_data$Day, origin = "2014-01-01")))]
-
-tick_pos<-yday(as.Date(as.character(
-  c("2014-01-01","2014-02-01","2014-03-01","2014-04-01","2014-05-01","2014-06-01",
-    "2014-07-01","2014-08-01","2014-09-01","2014-10-01","2014-11-01","2014-12-01")
-)))
-
-yearly_average <-yearly_average+scale_x_continuous(breaks = tick_pos, labels = month_2014)
-yearly_average<-yearly_average+
-  theme(legend.position= c(0.125,0.75),legend.title =  element_text( size = 10),
-        legend.text = element_text( size = 10),legend.background = element_blank(),
-        legend.key=element_rect(colour=NA,fill=NA))
-
-#scale_fill_discrete(name="Humidity ")
-
-yearly_average<-yearly_average+ theme(axis.title.x =element_text( colour="#990000", size=13))
-yearly_average<-yearly_average+ theme(axis.title.y =element_text( colour="#990000", size=13))
-
-
-
-yearly_average<-yearly_average+ theme(axis.title.x =element_text(size=13))
-yearly_average<-yearly_average+ theme(axis.title.y =element_text(size=13))
-yearly_average
-
-
-
-
-
-file_name_pdf<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_multiple_delays_Simulated.pdf", sep = "")
-#file_name_pdf<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_Simulated.pdf", sep = "")
-#file_name_pdf<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"n_seas",n_seas,"_",width_char,situation,".pdf", sep = "")
-
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-yearly_average
-
-dev.off()
-
-
-#file_name<-paste("../Graphs/yearly_average_",variable_x,"_",variable,"n_seas",n_seas,"_multiple_delays.tiff", sep = "")
-file_name<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_multiple_delays_Simulated.tiff", sep = "")
-#file_name<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_Simulated.tiff", sep = "")
-
-tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 9, res = 600,compression = "lzw",antialias="default")
-yearly_average
-
-dev.off()
-
-file_name_pdf<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_multiple_delays_Simulated.pdf", sep = "")
-#file_name_pdf<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_Simulated.pdf", sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-time_series_plot2
-
-dev.off()
-
-
-#file_name<-paste("../Graphs/time_series_plot_",variable_x,"_",variable,"n_seas",n_seas,"_multiple_delays.tiff", sep = "")
-file_name<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_multiple_delays_Simulated.tiff", sep = "")
-#file_name<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_Simulated.tiff", sep = "")
-tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 9, res = 600,compression = "lzw",antialias="default")
-time_series_plot2
-
-dev.off()
-
-#file_name_pdf<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"n_seas",n_seas,"_",width_char,situation,"_norm.pdf", sep = "")
-#pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-#time_series_plot2
-
-#dev.off()
-
-
-#file_name<-paste("../Graphs/time_series_plot_",variable_x,"_",variable,"n_seas",n_seas,"_multiple_delays.tiff", sep = "")
-#file_name<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"n_seas",n_seas,"_",width_char,situation,"_norm.tiff", sep = "")
-
-#tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 9, res = 600,compression = "lzw",antialias="default")
-time_series_plot2
-
-#dev.off()
\ No newline at end of file
diff --git a/Paper_time_lag.R b/Paper_time_lag.R
deleted file mode 100644
index 5454e27ce93584cd63b9ff171f03a1654b562850..0000000000000000000000000000000000000000
--- a/Paper_time_lag.R
+++ /dev/null
@@ -1,368 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# this to calculate delay
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-14
-width_char<-paste(width)
-n_seas<-1
-
-variable_x<-"max_air_temp"
-#variable_x<-"humidity"
-#variable<-"humidity"
-
-variable<-"humidity"
-#variable<-"max_temp"
-
-
-time_series<-read.csv(paste("../DataBase/Cases/Taylor_contribution_Time_series_",variable,"_",variable_x,width_char,"_n_seas",n_seas,".csv",sep=""))
-
-time_series<-na.omit(time_series)
-time_series<-time_series[,-1]
-colnames(time_series)<-c("Date","Contr_temp","Contr_hum","Lab","seas")
-
-time_series$temp_contr<-cumsum(time_series$Contr_temp)
-time_series$temp_hum<-cumsum(time_series$Contr_hum)
-time_series$yday<-yday(time_series$Date)
-time_series$week<-week(time_series$Date)
-time_series$month<-month(time_series$Date)
-time_series$Lab<-as.factor(time_series$Lab)
-
-time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp))
-
-time_series_lab<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp))
-time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_hum))
-
-time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp))
-time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum))
-
-
-
-#time_series_lab_temp<-ddply(time_series,~month,summarise,
-#                       N    = length(Contr_temp),
-#                       mean = mean(Contr_temp),
-#                       sd   = sd(Contr_temp),
-#                       se   = sd / sqrt(N)
-#                       )
-#time_series_lab2<-ddply(time_series,~month,summarise)
-#time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum))
-
-
-#plot(time_series_lab2,type="l")
-#plot(time_series_lab,type="l")
-
-
-
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(Contr_temp)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("week")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-#monthly_summary<-monthly_summary+model$fitted.values
-#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week)))
-monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 10,raw = TRUE),se=TRUE, aes(group=1))
-onthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1))
-monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 3))
-
-#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-model<-lm(formula=abs(time_series$Contr_temp) ~ poly(time_series$week, 10,raw = TRUE))
-file_name<-paste("../DataBase/Cases/Campylobacter_coefficients_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp_week.csv",sep = "")
-write.table(as.numeric(model$coefficients),file_name,sep=",")
-
-#wt<-0
-#for (n_coeff in (1:11)){
-#  wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1)
-#}
-#wt_temp<-wt/sum(wt)
-
-
-  
-  
-
-  
-
-file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp_week.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=Contr_temp))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature")+xlab("Month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3))
-
-monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-
-
-
-file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_temp.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_temp.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=Contr_hum))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Humidity")+xlab("Month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-
-#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3))
-
-monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-
-
-
-file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_hum.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_hum.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-
-
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(Contr_temp)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("Month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-#monthly_summary<-monthly_summary+model$fitted.values
-#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=FALSE, color="black", aes(group=x))
-
-monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 3))
-
-#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-
-
-
-file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(Contr_hum)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-
-monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 2.))
-
-monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-
-
-
-file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(Contr_hum)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Week")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-
-
-
-monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 10,raw = TRUE),se=TRUE, aes(group=1))
-
-monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 3))
-
-#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-model<-lm(formula=abs(time_series$Contr_temp) ~ poly(time_series$week, 10,raw = TRUE))
-file_name<-paste("../DataBase/Cases/Campylobacter_coefficients_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum_week.csv",sep = "")
-write.table(as.numeric(model$coefficients),file_name,sep=",")
-
-
-
-
-file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum_week.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum_week.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-time_series1<-subset(time_series,time_series$Lab=="B152TG")
-time_series1$Date<-as.Date(as.character(time_series1$Date))
-time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date))))
-time_series1<-subset(time_series1,time_series1$year=="2005")
-
-time_series1<-na.omit(time_series1)
-temp_contr<-cumsum(time_series1$Contr_temp)
-temp_hum<-cumsum(time_series1$Contr_hum)
-
-df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum)
-colnames(df2)<-c("Date","contr","humidity")
-#temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp))
diff --git a/Paper_time_lag_3_var_Simulated.R b/Paper_time_lag_3_var_Simulated.R
deleted file mode 100644
index f945a36e724b1fbf73837a85ad46ad017a562df0..0000000000000000000000000000000000000000
--- a/Paper_time_lag_3_var_Simulated.R
+++ /dev/null
@@ -1,470 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# this to calculate delay
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-width<-1
-width_char<-paste(width)
-n_seas<-1
-
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable_z<-"daylength"
-#
-#variable_x2<-"max_air_temp"
-#variable_y2<-"humidity"
-#variable_z2<-"light"
-
-
-                 
-
-time_series<-read.csv(
-  paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep=""))
-                               
-time_series<-na.omit(time_series)
-time_series<-time_series[,-1]
-colnames(time_series)<-c("Date","Contr_temp","Contr_hum","Contr_light",
-                         "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light")
-
-time_series$temp_contr<-(time_series$Contr_temp)
-time_series$hum_contr<-(time_series$Contr_hum)
-time_series$light_contr<-(time_series$Contr_light)
-
-time_series$yday<-yday(time_series$Date)
-time_series$week<-week(time_series$Date)
-time_series$month<-month(time_series$Date)
-time_series$Lab<-as.factor(time_series$Lab)
-
-#time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp))
-#time_series_lab<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp))
-#time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_hum))
-
-#time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp))
-#time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum))
-#time_series_lab3<-ddply(time_series,~week,summarise,tot=mean(Contr_light))
-
-
-#time_series_lab_temp<-ddply(time_series,~month,summarise,
-#                       N    = length(Contr_temp),
-#                       mean = mean(Contr_temp),
-#                       sd   = sd(Contr_temp),
-#                       se   = sd / sqrt(N)
-#                       )
-#time_series_lab2<-ddply(time_series,~month,summarise)
-#time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum))
-
-
-#plot(time_series_lab2,type="l")
-#plot(time_series_lab,type="l")
-
-
-
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(temp_contr)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("week")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-#monthly_summary<-monthly_summary+model$fitted.values
-#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week)))
-monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1))
-onthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1))
-monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 50))
-
-#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-model<-lm(formula=abs(time_series$temp_contr) ~ poly(time_series$week, 15,raw = FALSE))
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "")
-write.table(as.numeric(model$coefficients),file_name,sep=",")
-
-
-file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=temp_contr))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature")+xlab("Month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3))
-
-monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-
-
-
-file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_temp.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_temp.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=hum_contr))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Humidity")+xlab("Month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-
-#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3))
-
-monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-
-
-
-file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_hum.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_hum.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-
-
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(temp_contr)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("Month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-#monthly_summary<-monthly_summary+model$fitted.values
-#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=FALSE, color="black", aes(group=x))
-
-monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 50))
-
-monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-
-
-
-file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_temp.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_temp.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(hum_contr)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-
-monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(0., 50))
-
-monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-
-
-
-file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(hum_contr)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Week")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-
-
-
-monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1))
-
-monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(0., 50))
-
-#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-model<-lm(formula=abs(time_series$hum_contr) ~ poly(time_series$week, 15,raw = FALSE))
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "")
-write.table(as.numeric(model$coefficients),file_name,sep=",")
-
-
-
-
-file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum_week.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum_week.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(light_contr)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of daylength (Absolute values)")+xlab("week")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-#monthly_summary<-monthly_summary+model$fitted.values
-#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week)))
-monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1))
-#monthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1))
-#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 0))
-
-#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-model<-lm(formula=abs(time_series$light_contr) ~ poly(time_series$week, 15,raw = FALSE))
-file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "")
-write.table(as.numeric(model$coefficients),file_name,sep=",")
-
-#wt<-0
-#for (n_coeff in (1:11)){
-#  wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1)
-#}
-#wt_temp<-wt/sum(wt)
-
-
-
-
-
-
-
-file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light_week.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light_week.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-
-monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(light_contr)))
-monthly_summary<-monthly_summary+theme_bw(20)
-monthly_summary<-monthly_summary+
-  geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-
-monthly_summary<-monthly_summary+
-  theme(axis.title.x =element_text(face="bold",  size=13))+
-  theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of daylength (Absolute values)")+xlab("month")+
-  theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-        axis.text.y=element_text(size=12))+
-  scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-  guides(fill=FALSE)#+ geom_jitter()
-#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Araw=pr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-#monthly_summary<-monthly_summary+model$fitted.values
-#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week)))
-monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1))
-monthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1))
-#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 0.2))
-
-monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-
-monthly_summary
-
-#model<-lm(formula=abs(time_series$light_contr) ~ poly(time_series$week, 15,raw = FALSE))
-#file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_month.csv",sep = "")
-#write.table(as.numeric(model$coefficients),file_name,sep=",")
-
-#wt<-0
-#for (n_coeff in (1:11)){
-#  wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1)
-#}
-#wt_temp<-wt/sum(wt)
-
-
-
-
-
-
-
-file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light.tiff",sep = "")
-tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-     compression = "lzw",antialias="default")
-
-monthly_summary
-
-dev.off()
-
-
-
-file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light.pdf",sep = "")
-pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-monthly_summary
-dev.off()
-
-
-
-
-
-
diff --git a/Paper_time_lag_3_var_Simulated.Rout b/Paper_time_lag_3_var_Simulated.Rout
deleted file mode 100644
index 08e63d33006dd5002254f8960ac7f99d9c376add..0000000000000000000000000000000000000000
--- a/Paper_time_lag_3_var_Simulated.Rout
+++ /dev/null
@@ -1,565 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # this to calculate delay
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> width<-1
-> width_char<-paste(width)
-> n_seas<-1
-> 
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable_z<-"daylength"
-> #
-> #variable_x2<-"max_air_temp"
-> #variable_y2<-"humidity"
-> #variable_z2<-"light"
-> 
-> 
->                  
-> 
-> time_series<-read.csv(
-+   paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep=""))
->                                
-> time_series<-na.omit(time_series)
-> time_series<-time_series[,-1]
-> colnames(time_series)<-c("Date","Contr_temp","Contr_hum","Contr_light",
-+                          "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light")
-> 
-> time_series$temp_contr<-(time_series$Contr_temp)
-> time_series$hum_contr<-(time_series$Contr_hum)
-> time_series$light_contr<-(time_series$Contr_light)
-> 
-> time_series$yday<-yday(time_series$Date)
-> time_series$week<-week(time_series$Date)
-> time_series$month<-month(time_series$Date)
-> time_series$Lab<-as.factor(time_series$Lab)
-> 
-> #time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp))
-> #time_series_lab<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp))
-> #time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_hum))
-> 
-> #time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp))
-> #time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum))
-> #time_series_lab3<-ddply(time_series,~week,summarise,tot=mean(Contr_light))
-> 
-> 
-> #time_series_lab_temp<-ddply(time_series,~month,summarise,
-> #                       N    = length(Contr_temp),
-> #                       mean = mean(Contr_temp),
-> #                       sd   = sd(Contr_temp),
-> #                       se   = sd / sqrt(N)
-> #                       )
-> #time_series_lab2<-ddply(time_series,~month,summarise)
-> #time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum))
-> 
-> 
-> #plot(time_series_lab2,type="l")
-> #plot(time_series_lab,type="l")
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(temp_contr)))
-> monthly_summary<-monthly_summary+theme_bw(20)
-> monthly_summary<-monthly_summary+
-+   geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-> 
-> monthly_summary<-monthly_summary+
-+   theme(axis.title.x =element_text(face="bold",  size=13))+
-+   theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("week")+
-+   theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-+         axis.text.y=element_text(size=12))+
-+   scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-+   guides(fill=FALSE)#+ geom_jitter()
-> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-> #monthly_summary<-monthly_summary+model$fitted.values
-> #monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week)))
-> monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1))
-> onthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1))
-> monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 50))
-> 
-> #monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-> 
-> monthly_summary
-> 
-> model<-lm(formula=abs(time_series$temp_contr) ~ poly(time_series$week, 15,raw = FALSE))
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "")
-> write.table(as.numeric(model$coefficients),file_name,sep=",")
-> 
-> 
-> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.tiff",sep = "")
-> tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-+      compression = "lzw",antialias="default")
-> 
-> monthly_summary
-> 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp.pdf",sep = "")
-> pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-> monthly_summary
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=temp_contr))
-> monthly_summary<-monthly_summary+theme_bw(20)
-> monthly_summary<-monthly_summary+
-+   geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray"))
-> 
-> monthly_summary<-monthly_summary+
-+   theme(axis.title.x =element_text(face="bold",  size=13))+
-+   theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature")+xlab("Month")+
-+   theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-+         axis.text.y=element_text(size=12))+
-+   scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-+   guides(fill=FALSE)#+ geom_jitter()
-> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-> #monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3))
-> 
-> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-> 
-> monthly_summary
-> 
-> 
-> 
-> 
-> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_temp.tiff",sep = "")
-> tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-+      compression = "lzw",antialias="default")
-> 
-> monthly_summary
-> 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_temp.pdf",sep = "")
-> pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-> monthly_summary
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> 
-> 
-> 
-> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=hum_contr))
-> monthly_summary<-monthly_summary+theme_bw(20)
-> monthly_summary<-monthly_summary+
-+   geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray"))
-> 
-> monthly_summary<-monthly_summary+
-+   theme(axis.title.x =element_text(face="bold",  size=13))+
-+   theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Humidity")+xlab("Month")+
-+   theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-+         axis.text.y=element_text(size=12))+
-+   scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-+   guides(fill=FALSE)#+ geom_jitter()
-> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-> 
-> #monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3))
-> 
-> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-> 
-> monthly_summary
-> 
-> 
-> 
-> 
-> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_hum.tiff",sep = "")
-> tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-+      compression = "lzw",antialias="default")
-> 
-> monthly_summary
-> 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_hum.pdf",sep = "")
-> pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-> monthly_summary
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(temp_contr)))
-> monthly_summary<-monthly_summary+theme_bw(20)
-> monthly_summary<-monthly_summary+
-+   geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-> 
-> monthly_summary<-monthly_summary+
-+   theme(axis.title.x =element_text(face="bold",  size=13))+
-+   theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("Month")+
-+   theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-+         axis.text.y=element_text(size=12))+
-+   scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-+   guides(fill=FALSE)#+ geom_jitter()
-> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-> #monthly_summary<-monthly_summary+model$fitted.values
-> #monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=FALSE, color="black", aes(group=x))
-> 
-> monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 50))
-> 
-> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-> 
-> monthly_summary
-> 
-> 
-> 
-> 
-> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_temp.tiff",sep = "")
-> tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-+      compression = "lzw",antialias="default")
-> 
-> monthly_summary
-> 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_temp.pdf",sep = "")
-> pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-> monthly_summary
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> 
-> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(hum_contr)))
-> monthly_summary<-monthly_summary+theme_bw(20)
-> monthly_summary<-monthly_summary+
-+   geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-> 
-> monthly_summary<-monthly_summary+
-+   theme(axis.title.x =element_text(face="bold",  size=13))+
-+   theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Month")+
-+   theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-+         axis.text.y=element_text(size=12))+
-+   scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-+   guides(fill=FALSE)#+ geom_jitter()
-> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-> 
-> monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(0., 50))
-> 
-> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-> 
-> monthly_summary
-> 
-> 
-> 
-> 
-> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum.tiff",sep = "")
-> tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-+      compression = "lzw",antialias="default")
-> 
-> monthly_summary
-> 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum.pdf",sep = "")
-> pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-> monthly_summary
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> 
-> monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(hum_contr)))
-> monthly_summary<-monthly_summary+theme_bw(20)
-> monthly_summary<-monthly_summary+
-+   geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-> 
-> monthly_summary<-monthly_summary+
-+   theme(axis.title.x =element_text(face="bold",  size=13))+
-+   theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Week")+
-+   theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-+         axis.text.y=element_text(size=12))+
-+   scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-+   guides(fill=FALSE)#+ geom_jitter()
-> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-> 
-> 
-> 
-> monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1))
-> 
-> monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(0., 50))
-> 
-> #monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-> 
-> monthly_summary
-> 
-> model<-lm(formula=abs(time_series$hum_contr) ~ poly(time_series$week, 15,raw = FALSE))
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "")
-> write.table(as.numeric(model$coefficients),file_name,sep=",")
-> 
-> 
-> 
-> 
-> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum_week.tiff",sep = "")
-> tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-+      compression = "lzw",antialias="default")
-> 
-> monthly_summary
-> 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum_week.pdf",sep = "")
-> pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-> monthly_summary
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(light_contr)))
-> monthly_summary<-monthly_summary+theme_bw(20)
-> monthly_summary<-monthly_summary+
-+   geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-> 
-> monthly_summary<-monthly_summary+
-+   theme(axis.title.x =element_text(face="bold",  size=13))+
-+   theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of daylength (Absolute values)")+xlab("week")+
-+   theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-+         axis.text.y=element_text(size=12))+
-+   scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-+   guides(fill=FALSE)#+ geom_jitter()
-> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-> #monthly_summary<-monthly_summary+model$fitted.values
-> #monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week)))
-> monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1))
-> #monthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1))
-> #monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 0))
-> 
-> #monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-> 
-> monthly_summary
-> 
-> model<-lm(formula=abs(time_series$light_contr) ~ poly(time_series$week, 15,raw = FALSE))
-> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "")
-> write.table(as.numeric(model$coefficients),file_name,sep=",")
-> 
-> #wt<-0
-> #for (n_coeff in (1:11)){
-> #  wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1)
-> #}
-> #wt_temp<-wt/sum(wt)
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light_week.tiff",sep = "")
-> tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-+      compression = "lzw",antialias="default")
-> 
-> monthly_summary
-> 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light_week.pdf",sep = "")
-> pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-> monthly_summary
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> 
-> 
-> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(light_contr)))
-> monthly_summary<-monthly_summary+theme_bw(20)
-> monthly_summary<-monthly_summary+
-+   geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray"))
-> 
-> monthly_summary<-monthly_summary+
-+   theme(axis.title.x =element_text(face="bold",  size=13))+
-+   theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of daylength (Absolute values)")+xlab("month")+
-+   theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9),
-+         axis.text.y=element_text(size=12))+
-+   scale_fill_manual(name = "", values = c("bisque"),labels = " ")+
-+   guides(fill=FALSE)#+ geom_jitter()
-> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Araw=pr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12))
-> #monthly_summary<-monthly_summary+model$fitted.values
-> #monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week)))
-> monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1))
-> monthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1))
-> #monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 0.2))
-> 
-> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) 
-> 
-> monthly_summary
-`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
-Warning message:
-Computation failed in `stat_smooth()`:
-'degree' must be less than number of unique points 
-> 
-> #model<-lm(formula=abs(time_series$light_contr) ~ poly(time_series$week, 15,raw = FALSE))
-> #file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_month.csv",sep = "")
-> #write.table(as.numeric(model$coefficients),file_name,sep=",")
-> 
-> #wt<-0
-> #for (n_coeff in (1:11)){
-> #  wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1)
-> #}
-> #wt_temp<-wt/sum(wt)
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light.tiff",sep = "")
-> tiff(file_name_tiff, width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 600,
-+      compression = "lzw",antialias="default")
-> 
-> monthly_summary
-`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
-Warning message:
-Computation failed in `stat_smooth()`:
-'degree' must be less than number of unique points 
-> 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light.pdf",sep = "")
-> pdf(file = file_name_pdf,width = 6.94, height = 6.5)
-> monthly_summary
-`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
-Warning message:
-Computation failed in `stat_smooth()`:
-'degree' must be less than number of unique points 
-> dev.off()
-pdf 
-  2 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> proc.time()
-   user  system elapsed 
-500.055  27.379 527.660 
diff --git a/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.R b/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.R
deleted file mode 100644
index d69b64da7bbfb4708e7224e68490a28cfb157b7f..0000000000000000000000000000000000000000
--- a/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.R
+++ /dev/null
@@ -1,716 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables
-# this to calculate delay
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-library(wesanderson)
-library(plyr)
-
-n_seas<-1
-width<-1
-width_char<-paste(width)
-## Varaible file
-
-
-variable_x<-"Maximum_air_temperature"
-variable_y<-"Relative_humidity"
-variable_z<-"daylength"
-
-variable_x2<-"max_air_temp"
-variable_y2<-"humidity"
-variable_z2<-"light"
-
-
-## Varaible file
-
-
-
-Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-                                     "Maximum_air_temperature",
-                                     "Minimum_air_temperature",
-                                     "Mean_wind_speed",
-                                     "Cumul_Precipitation",
-                                     "Mean_Precipitation",
-                                     "Relative_humidity",
-                                     "daylength",
-                                     "residents")
-
-Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-
-dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2015-12-31"), by = "day")
-All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-
-
-Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-Env_laboratory<-Env_laboratory[,-1]
-colnames(Env_laboratory)<-c("PostCode","Date",
-                                     "Maximum_air_temperature",
-                                     "Minimum_air_temperature",
-                                     "Mean_wind_speed",
-                                     "Cumul_Precipitation",
-                                     "Mean_Precipitation",
-                                     "Relative_humidity",
-                                     "daylength",
-                                     "residents")
-
-Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-Env_laboratory$Date<-as.Date(Env_laboratory$Date)
-
-
-
-#Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-Env_laboratory_PHE<-Env_laboratory
-#All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-#All_residents<-sum(All_residents_lab$tot)
-
-######################## include daylength ##################
-
-Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-
-
-lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-colnames(lat_long_lab)<-c("PostCode","lat","long")
-Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode")
-Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data,lat_long_lab,by="PostCode")
-#Env_laboratory_int2<-Env_laboratory_int2[,-c(16,17)]
-#names(Env_laboratory_int2)[10]<-"lat"
-#names(Env_laboratory_int2)[11]<-"long"
-#names(Env_laboratory_int2)[14]<-"Date2"
-
-daylength<-function(lat,day_year)
-{
-  #Latitude measure in degrees
-  P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-  Denom<-cos(lat*pi/180)*cos(P) 
-  Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-  D<-24-(24/pi)*acos(Numer/Denom)
-  return(D)
-}
-
-latitude<-Env_laboratory_int2$lat
-day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-
-Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df)
-
-### repeat for the data only ####
-
-latitude<-Env_Campylobacter_data_int2$lat
-day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date))
-
-daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1)
-colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-
-#daylength_df$lat<-as.factor(daylength_df$lat)
-#daylength_df$Date<-as.factor(daylength_df$Date)
-#Env_Lyme_data_int2$lat<-as.factor(Env_Lyme_data_int2$lat)
-#Env_Lyme_data_int2$Date<-as.factor(Env_Lyme_data_int2$Date)
-
-Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df)
-
-
-
-
-########################
-
-
-
-
-
-
-
-var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-var_x_loc_df_all<-var_x_loc_df_all[,-1]
-colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
-                            
-var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-
-
-###################
-
-
-delta_light<-1
-delta_hum<-5
-delta_temp<-1
-delta_rain<-2
-delta_cum_rain<-2
-delta_wind<-1
-
-breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,   max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp)
-breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2,   max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light)
-
-
-i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity))))
-i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity))))
-
-i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))
-i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))
-
-i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature))))
-i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature))))
-
-i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation))))
-i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation))))
-
-i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))
-i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))
-
-i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed))))
-i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed))))
-
-
-i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength))))
-i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength))))
-
-############## from here '###################
-
-
-if (variable_z=="Maximum_air_temperature"){
-  
-  breaks_var<-breaks_max_temp
-  i_var_min<-i_max_temp_min
-  i_var_max<-i_max_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature
-  Env_laboratory_var<-Env_laboratory$Maximum_air_temperature
-}
-if (variable_x=="Maximum_air_temperature"){
-  
-  i_var_x_min<-i_max_temp_min
-  i_var_x_max<-i_max_temp_max
-  breaks_var_x<-breaks_max_temp
-}
-
-if (variable_y=="Maximum_air_temperature"){
-  
-  i_var_y_min<-i_max_temp_min
-  i_var_y_max<-i_max_temp_max
-  breaks_var_y<-breaks_max_temp
-}
-
-if (variable_z=="Minimum_air_temperature"){
-  
-  breaks_var<-breaks_min_temp
-  i_var_min<-i_min_temp_min
-  i_var_max<-i_min_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$min_temp
-  Env_laboratory_var<-Env_laboratory$min_temp
-}
-if (variable_x=="Minimum_air_temperature"){
-  
-  i_var_x_min<-i_min_temp_min
-  i_var_x_max<-i_min_temp_max
-  breaks_var_x<-breaks_min_temp
-}
-
-if (variable_y=="Minimum_air_temperature"){
-  
-  i_var_y_min<-i_min_temp_min
-  i_var_y_max<-i_min_temp_max
-  breaks_var_y<-breaks_min_temp
-}
-
-if (variable_z=="Relative_humidity"){
-  
-  breaks_var<-breaks_hum
-  i_var_min<-i_hum_min
-  i_var_max<-i_hum_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity
-  Env_laboratory_var<-Env_laboratory$Relative_humidity
-}
-if (variable_x=="Relative_humidity"){
-  
-  i_var_x_min<-i_hum_min
-  i_var_x_max<-i_hum_max
-  breaks_var_x<-breaks_hum
-}
-
-if (variable_y=="Relative_humidity"){
-  
-  i_var_y_min<-i_hum_min
-  i_var_y_max<-i_hum_max
-  breaks_var_y<-breaks_hum
-}
-
-
-if (variable_z=="mean_temp"){
-  
-  breaks_var<-breaks_mean_temp
-  i_var_min<-i_mean_temp_min
-  i_var_max<-i_mean_temp_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp
-  Env_laboratory_var<-Env_laboratory$mean_temp
-}
-if (variable_x=="mean_temp"){
-  
-  i_var_x_min<-i_mean_temp_min
-  i_var_x_max<-i_mean_temp_max
-  breaks_var_x<-breaks_mean_temp
-}
-
-if (variable_y=="mean_temp"){
-  
-  i_var_y_min<-i_mean_temp_min
-  i_var_y_max<-i_mean_temp_max
-  breaks_var_y<-breaks_mean_temp
-}
-
-if (variable_z=="Mean_Precipitation"){
-  
-  breaks_var<-breaks_rain
-  i_var_min<-i_rain_min
-  i_var_max<-i_rain_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation
-  Env_laboratory_var<-Env_laboratory$Mean_Precipitation
-}
-if (variable_x=="Mean_Precipitation"){
-  
-  i_var_x_min<-i_rain_min
-  i_var_x_max<-i_rain_max
-  breaks_var_x<-breaks_rain
-}
-
-if (variable_y=="Mean_Precipitation"){
-  
-  i_var_y_min<-i_rain_min
-  i_var_y_max<-i_rain_max
-  breaks_var_y<-breaks_rain
-}
-
-if (variable_z=="Cumul_Precipitation"){
-  
-  breaks_var<-breaks_cum_rain
-  i_var_min<-i_cum_rain_min
-  i_var_max<-i_cum_rain_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation
-  Env_laboratory_var<-Env_laboratory$Cumul_Precipitation
-}
-if (variable_x=="Cumul_Precipitation"){
-  
-  i_var_x_min<-i_cum_rain_min
-  i_var_x_max<-i_cum_rain_max
-  breaks_var_x<-breaks_cum_rain
-}
-
-if (variable_y=="Cumul_Precipitation"){
-  
-  i_var_y_min<-i_cum_rain_min
-  i_var_y_max<-i_cum_rain_max
-  breaks_var_y<-breaks_cum_rain
-}
-
-
-if (variable_z=="Mean_wind_speed"){
-  
-  breaks_var<-breaks_wind
-  i_var_min<-i_wind_min
-  i_var_max<-i_wind_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed
-  Env_laboratory_var<-Env_laboratory$Mean_wind_speed
-}
-if (variable_x=="Mean_wind_speed"){
-  
-  i_var_x_min<-i_wind_min
-  i_var_x_max<-i_wind_max
-  breaks_var_x<-breaks_wind
-}
-
-if (variable_y=="Mean_wind_speed"){
-  
-  i_var_y_min<-i_wind_min
-  i_var_y_max<-i_wind_max
-  breaks_var_y<-breaks_wind
-}
-
-
-
-
-if (variable_z=="daylength"){
-  
-  breaks_var<-breaks_light
-  i_var_min<-i_light_min
-  i_var_max<-i_light_max
-  Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength
-  Env_laboratory_var<-Env_laboratory$daylength
-}
-if (variable_x=="daylength"){
-  
-  i_var_x_min<-i_light_min
-  i_var_x_max<-i_light_max
-  breaks_var_x<-breaks_light
-}
-
-if (variable_y=="daylength"){
-  
-  i_var_y_min<-i_light_min
-  i_var_y_max<-i_light_max
-  breaks_var_y<-breaks_light
-}
-
-
-
-
-D_eta_var_x<-function(i_var,i_var_y,i_var_x)
-{
-
-
-
-
-#var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab
-var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab #All_residents_lab[,2] this change by postcode only
-
-if(is.na(breaks_var[i_var+1])==TRUE)
-{
-  Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var])
-} else {
-  Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1])
-}
-
-
-if(is.na(breaks_var_y[i_var_y+1])==TRUE)
-{
-  Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y])
-} else {
-  Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1])
-}
-
-
-  
-  if(is.na(breaks_var_x[i_var_x+1])==TRUE)
-  {
-  Yt2<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x])
-  } else {
-  Yt2<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x] & Yt1$Maximum_air_temperature<breaks_var_x[i_var_x+1])
-  }
-  
-  
-  if(is.na(breaks_var_x[i_var_x+2])==TRUE)
-  {
-  Yt3<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x+1])
-  } else {
-  Yt3<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x+1] & Yt1$Maximum_air_temperature<breaks_var_x[i_var_x+2])
-  }
-  
-  if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){
-  D_eta_D_x<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-  } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){
-  D_eta_D_x<- 0.5*mean(Yt3$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){
-  D_eta_D_x<- 0.5*mean(Yt2$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){
-  D_eta_D_x<-NA
- }
-  
-  return(D_eta_D_x)
-  }
-  
-  
-  
-
-D_eta_var_y<-function(i_var,i_var_y,i_var_x)
-{
-  
-  
-  #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab
-  var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab
-
-  
-  if(is.na(breaks_var[i_var+1])==TRUE)
-  {
-    Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var])
-  } else {
-    Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1])
-  }
-  
-  
-  if(is.na(breaks_var_x[i_var_x+1])==TRUE)
-  {
-    Yt1<-subset(Yt0,Yt0$Maximum_air_temperature>=breaks_var_x[i_var_x])
-  } else {
-    Yt1<-subset(Yt0,Yt0$Maximum_air_temperature>=breaks_var_x[i_var_x] & Yt0$Maximum_air_temperature<breaks_var_x[i_var_x+1])
-  }
-  
-  
-  
-  if(is.na(breaks_var_y[i_var_y+1])==TRUE)
-  {
-    Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y])
-  } else {
-    Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y] & Yt1$Relative_humidity<breaks_var_y[i_var_y+1])
-  }
-  
-  
-  if(is.na(breaks_var_y[i_var_y+2])==TRUE)
-  {
-    Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1])
-  } else {
-    Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1] & Yt1$Relative_humidity<breaks_var_y[i_var_y+2])
-  }
-  
-  if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){
-    D_eta_D_y<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y])
-  } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){
-    D_eta_D_y<- 0.5*mean(Yt3$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){
-    D_eta_D_y<- 0.5*mean(Yt2$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){
-    D_eta_D_y<-NA
-  }
-  
-  return(D_eta_D_y)
-}
-
-
-
-
-D_eta_var<-function(i_var,i_var_y,i_var_x)
-{
-
-
-#var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab
-var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab
-
-  if(is.na(breaks_var_x[i_var_x+1])==TRUE)
-  {
-  Yt0<-subset(var_x_loc_df,var_x_loc_df$Maximum_air_temperature>=breaks_var_x[i_var_x])
-  } else {
-  Yt0<-subset(var_x_loc_df,var_x_loc_df$Maximum_air_temperature>=breaks_var_x[i_var_x] & var_x_loc_df$Maximum_air_temperature<breaks_var_x[i_var_x+1])
-  }
-
-if(is.na(breaks_var_y[i_var_y+1])==TRUE)
-{
-  Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y])
-} else {
-  Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1])
-}
-
-  
-  if(is.na(breaks_var[i_var+1])==TRUE)
-  {
-  Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var])
-  } else {
-  Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var] &  Yt1$daylength<breaks_var[i_var+1])
-  }
-  
-if(is.na(breaks_var[i_var+2])==TRUE)
-{
-  Yt3<-subset( Yt1, Yt1$daylength>=breaks_var[i_var+1])
-} else {
-  Yt3<-subset( Yt1, Yt1$Relative_humiditylight>=breaks_var[i_var+1] &  Yt1$daylength<breaks_var[i_var+2])
-}
-
-  
-  
-  if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){
-  D_eta_D_v<- mean(Yt3$eta- Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-  }  else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){
-  D_eta_D_v<- 0.5*mean(Yt3$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){
-  D_eta_D_v<- 0.5*mean(Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-  } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){
-  D_eta_D_v<-NA
-  }
-
-  return(D_eta_D_v)
-  }
-
-  
-  
-  
-
-df_all_1<-c()
-#i_var<-seq(i_var_min,i_var_max)
-#i_var_x<-seq(i_var_x_min,i_var_x_max)
-
- for (j in c(1: length(All_PC_s))){
-
-var_x_loc_df<-var_x_loc_df_all2
- variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[j])
-  
-All_residents_lab<-ddply(variable_df,~PostCode,summarise,tot=mean(residents))
-for (i_var in c(seq(i_var_min,i_var_max))){
-for (i_var_y in c(seq(i_var_y_min,i_var_y_max))){
-  for (i_var_x in c(seq(i_var_x_min,i_var_x_max))){
- 
-
-#df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x))))
-#df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x))))
-
-df1<-data.frame(breaks_light[i_var],breaks_hum[i_var_y],breaks_max_temp[i_var_x],D_eta_var_x(i_var,i_var_y,i_var_x),D_eta_var_y(i_var,i_var_y,i_var_x),D_eta_var(i_var,i_var_y,i_var_x),All_PC_s[j] )
-colnames(df1)<-c("daylength","Relative_humidity","Maximum_air_temperature","D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light","PostCode")
-df_all_1<-rbind(df_all_1,df1)
-#mapply(D_eta_var_x,i_var, MoreArgs =list(i_var_x))
-}
-}
-
-}
-}
-
-#df_all<-ddply(df_all_1,~PostCode,summarise,tot=mean())  
-df_all<-df_all_1
-
-time_series<-c()
-
-for (i in c(1: length(All_PC_s))){
-  #for (i in c(1: 15)){
-  
-  
-
-  #for (j in c(1: n_seas)){
-  
-   # n_months<-12/n_seas
-    
-  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-  if (length(variable_df[,1])!=0){
-  
-  
-  
-Delta_T<-diff(variable_df$Maximum_air_temperature)
-Delta_RH<-diff(variable_df$Relative_humidity)
-Delta_L<-diff(variable_df$daylength)
-Delta_var<-data.frame(variable_df$Date[-1],Delta_T,Delta_RH,Delta_L)
-colnames(Delta_var)<-c("dates","diff_max_temp","diff_humidity","diff_light")
-
-x<-variable_df$Relative_humidity
-y<-variable_df$Maximum_air_temperature
-z<-variable_df$daylength
-  
-variable_df_1_dis<-data.frame(variable_df$Date,variable_df$Relative_humidity)
-variable_df_2_dis<-data.frame(variable_df$Date,variable_df$Maximum_air_temperature)
-variable_df_3_dis<-data.frame(variable_df$Date,variable_df$daylength)
-
-colnames(variable_df_1_dis)<-c("dates","Relative_humidity")
-colnames(variable_df_2_dis)<-c("dates","Maximum_air_temperature")
-colnames(variable_df_3_dis)<-c("dates","daylength")
-
-  variable_df_1_dis$dates<-as.Date(as.character((variable_df_1_dis$dates)))
-  variable_df_2_dis$dates<-as.Date(as.character((variable_df_2_dis$dates)))
-  variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates)))
-  
-  variable_df_1_dis<-subset(variable_df_1_dis,year(variable_df_1_dis$dates)>=1990 & year(variable_df_1_dis$dates)<=2015)
-  variable_df_2_dis<-subset(variable_df_2_dis,year(variable_df_2_dis$dates)>=1990 & year(variable_df_2_dis$dates)<=2015)
-  variable_df_3_dis<-subset(variable_df_3_dis,year(variable_df_3_dis$dates)>=1990 & year(variable_df_3_dis$dates)<=2015)
-  
-  variable_df_1_dis$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-  variable_df_2_dis$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-  variable_df_3_dis$daylength<-(breaks_light[findInterval(z, breaks_light)])
- 
- 
-# var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j)
-#  var_x_loc_df$Relative_humidity<-floor(var_x_loc_df$Relative_humidity)
-#  var_x_loc_df$Maximum_air_temperature<-floor(var_x_loc_df$breaks)
-  #df<-subset(df_all,df_all$month==j)
-  df<-subset(df_all,df_all$PostCode==All_PC_s[i])
-  
-  variable_df_4_dis<-merge(variable_df_1_dis,df, by="Relative_humidity")
-  variable_df_5_dis<-merge(variable_df_2_dis,df, by="Maximum_air_temperature")
-  variable_df_6_dis<-merge(variable_df_3_dis,df, by="daylength")
-  
-  
-  
-  variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates)))
-  variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),]
-  variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates)))
-  variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),]
-  variable_df_6_dis$dates<-as.Date(as.character((variable_df_6_dis$dates)))
-  variable_df_6_dis<-variable_df_6_dis[order(variable_df_6_dis$dates),]
-  
-  
-  variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates)
-  variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates)
-  variable_df_6_dis$dates<-as.factor(variable_df_6_dis$dates)
-  
-  variable_df_dis0<-merge(variable_df_4_dis,variable_df_5_dis, by=c("dates","Maximum_air_temperature","Relative_humidity","daylength") ) 
-  variable_df_dis<-merge(variable_df_dis0,variable_df_6_dis, by=c("dates","Maximum_air_temperature","Relative_humidity","daylength"))
-    
-  variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-  variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-  variable_df_dis$dates<-as.factor(variable_df_dis$dates)
-  Delta_var$dates<-as.factor(Delta_var$dates)
-  variable_df_Taylor<-merge(variable_df_dis,Delta_var, by=c("dates"))
-  
-  variable_df_Taylor<-variable_df_Taylor[,c(1:7,17:19)]
-  colnames(variable_df_Taylor)<-c("dates",variable_x, variable_y, variable_z,"D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light",
-                                  "diff_max_temp","diff_humidity","diff_light")
-  
-  
-  lambda_temp<-variable_df_Taylor$D_eta_D_max_temp*variable_df_Taylor$diff_max_temp
-  lambda_hum<-variable_df_Taylor$D_eta_D_hum*variable_df_Taylor$diff_humidity
-  lambda_light<-variable_df_Taylor$D_eta_D_light*variable_df_Taylor$diff_light
-  
- 
-  
-  time_series_1<-
-    data.frame(variable_df_Taylor$dates,
-               lambda_temp,lambda_hum,lambda_light, 
-               rep(All_PC_s[i],times=length(variable_df_Taylor$dates)),
-	variable_df_Taylor$D_eta_D_max_temp,variable_df_Taylor$diff_max_temp,
-	variable_df_Taylor$D_eta_D_hum,variable_df_Taylor$diff_humidity,
-	variable_df_Taylor$D_eta_D_light,variable_df_Taylor$diff_light)
-  colnames(time_series_1)<-c("Date","Contr_temp","Contr_hum","Contr_light",
-                             "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light")
-  time_series<-rbind(time_series,time_series_1)
-  
-  #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-  print(100*c(i/length(All_PC_s) ))
-  #print("  ")
-  #print(lambda)
-  }
-}
-
-#time_series1<-subset(time_series,time_series$Lab=="B152TG")
-#time_series1$Date<-as.Date(as.character(time_series1$Date))
-#time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date))))
-#time_series1<-subset(time_series1,time_series1$year=="2005")
-
-#time_series1<-na.omit(time_series1)
-##temp_contr<-cumsum(time_series1$Contr_temp)
-#temp_hum<-cumsum(time_series1$Contr_hum)
-#
-#df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum)
-#colnames(df2)<-c("Date","contr","humidity")
-#temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp))
-#time_series<-na.omit(time_series)
-#time_series$temp_contr<-cumsum(time_series$Contr_temp)
-#time_series$temp_hum<-cumsum(time_series$Contr_hum)
-#time_series$yday<-yday(time_series$Date)
-#time_series$week<-week(time_series$Date)
-#time_series$month<-month(time_series$Date)
-#time_series$Lab<-as.factor(time_series$Lab)
-
-#time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp))
-#time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp))
-
-#time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp))
-#time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum))
-
-#time_series_lab<-ddply(time_series,~month,summarise,tot=mean(Contr_temp))
-#time_series_lab2<-ddply(time_series,~month,summarise,tot=mean(Contr_hum))
-#time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum))
-
-write.table(time_series,paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
diff --git a/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.Rout b/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.Rout
deleted file mode 100644
index a1c9fcba1bdd224f9096f1c1056e5fdef09a6b68..0000000000000000000000000000000000000000
--- a/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.Rout
+++ /dev/null
@@ -1,979 +0,0 @@
-
-R version 3.5.3 (2019-03-11) -- "Great Truth"
-Copyright (C) 2019 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-  Natural language support but running in an English locale
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-[Previously saved workspace restored]
-
-> # The code does look at how the risk of Campylobacter in humans depends on environmental variables
-> # this to calculate delay
-> 
-> rm(list=ls(all=TRUE)) 
-> # 
-> library(ISOweek)
-> library(lubridate)
-
-Attaching package: ‘lubridate’
-
-The following object is masked from ‘package:base’:
-
-    date
-
-> library(ggplot2)
-> require(MASS)
-Loading required package: MASS
-> library(scales)
-> require(pheno)
-Loading required package: pheno
-Loading required package: nlme
-Loading required package: SparseM
-
-Attaching package: ‘SparseM’
-
-The following object is masked from ‘package:base’:
-
-    backsolve
-
-Loading required package: quantreg
-> library(timeDate)
-> library(pastecs)
-> library(stringi)
-> library(timeSeries)
-> library(wesanderson)
-> library(plyr)
-
-Attaching package: ‘plyr’
-
-The following object is masked from ‘package:lubridate’:
-
-    here
-
-> 
-> n_seas<-1
-> width<-1
-> width_char<-paste(width)
-> ## Varaible file
-> 
-> 
-> variable_x<-"Maximum_air_temperature"
-> variable_y<-"Relative_humidity"
-> variable_z<-"daylength"
-> 
-> variable_x2<-"max_air_temp"
-> variable_y2<-"humidity"
-> variable_z2<-"light"
-> 
-> 
-> ## Varaible file
-> 
-> 
-> 
-> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1]
-> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases",
-+                                      "Maximum_air_temperature",
-+                                      "Minimum_air_temperature",
-+                                      "Mean_wind_speed",
-+                                      "Cumul_Precipitation",
-+                                      "Mean_Precipitation",
-+                                      "Relative_humidity",
-+                                      "daylength",
-+                                      "residents")
-> 
-> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015)
-> 
-> dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2015-12-31"), by = "day")
-> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode))
-> All_PC<-rep(All_PC_s,each=length(dates_s))
-> 
-> 
-> 
-> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep=""))
-> Env_laboratory<-Env_laboratory[,-1]
-> colnames(Env_laboratory)<-c("PostCode","Date",
-+                                      "Maximum_air_temperature",
-+                                      "Minimum_air_temperature",
-+                                      "Mean_wind_speed",
-+                                      "Cumul_Precipitation",
-+                                      "Mean_Precipitation",
-+                                      "Relative_humidity",
-+                                      "daylength",
-+                                      "residents")
-> 
-> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015)
-> Env_laboratory$Date<-as.Date(Env_laboratory$Date)
-> 
-> 
-> 
-> #Env_laboratory_PHE<-Env_laboratory[wt[-1],]
-> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above
-> Env_laboratory_PHE<-Env_laboratory
-> #All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents))
-> #All_residents<-sum(All_residents_lab$tot)
-> 
-> ######################## include daylength ##################
-> 
-> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep=""))
-> 
-> 
-> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))
-> colnames(lat_long_lab)<-c("PostCode","lat","long")
-> Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode")
-> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data,lat_long_lab,by="PostCode")
-> #Env_laboratory_int2<-Env_laboratory_int2[,-c(16,17)]
-> #names(Env_laboratory_int2)[10]<-"lat"
-> #names(Env_laboratory_int2)[11]<-"long"
-> #names(Env_laboratory_int2)[14]<-"Date2"
-> 
-> daylength<-function(lat,day_year)
-+ {
-+   #Latitude measure in degrees
-+   P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186)))))
-+   Denom<-cos(lat*pi/180)*cos(P) 
-+   Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P)
-+   D<-24-(24/pi)*acos(Numer/Denom)
-+   return(D)
-+ }
-> 
-> latitude<-Env_laboratory_int2$lat
-> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date))
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> 
-> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df)
-> 
-> ### repeat for the data only ####
-> 
-> latitude<-Env_Campylobacter_data_int2$lat
-> day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date))
-> 
-> daylength_int1<-mapply(daylength, latitude, day_of_the_year)
-> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1)
-> colnames(daylength_df)<-c("lat","day_year","Date","daylength")
-> 
-> #daylength_df$lat<-as.factor(daylength_df$lat)
-> #daylength_df$Date<-as.factor(daylength_df$Date)
-> #Env_Lyme_data_int2$lat<-as.factor(Env_Lyme_data_int2$lat)
-> #Env_Lyme_data_int2$Date<-as.factor(Env_Lyme_data_int2$Date)
-> 
-> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df)
-> 
-> 
-> 
-> 
-> ########################
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""))
-> var_x_loc_df_all<-var_x_loc_df_all[,-1]
-> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab")
->                             
-> var_x_loc_df_all2<-na.omit(var_x_loc_df_all)
-> 
-> 
-> ###################
-> 
-> 
-> delta_light<-1
-> delta_hum<-5
-> delta_temp<-1
-> delta_rain<-2
-> delta_cum_rain<-2
-> delta_wind<-1
-> 
-> breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i
-> breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,   max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp)
-> breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2,   max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0),   max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain)
-> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind)
-> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0),   max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain)
-> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)
-> breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light)
-> 
-> 
-> i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity))))
-> i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity))))
-> 
-> i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))
-> i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))
-> 
-> i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature))))
-> i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature))))
-> 
-> i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation))))
-Warning message:
-In max(which(breaks_rain <= min(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) :
-  no non-missing arguments to max; returning -Inf
-> i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation))))
-> 
-> i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))
-Warning message:
-In max(which(breaks_cum_rain <= min(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) :
-  no non-missing arguments to max; returning -Inf
-> i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))
-> 
-> i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed))))
-> i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed))))
-> 
-> 
-> i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength))))
-> i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength))))
-> 
-> ############## from here '###################
-> 
-> 
-> if (variable_z=="Maximum_air_temperature"){
-+   
-+   breaks_var<-breaks_max_temp
-+   i_var_min<-i_max_temp_min
-+   i_var_max<-i_max_temp_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature
-+   Env_laboratory_var<-Env_laboratory$Maximum_air_temperature
-+ }
-> if (variable_x=="Maximum_air_temperature"){
-+   
-+   i_var_x_min<-i_max_temp_min
-+   i_var_x_max<-i_max_temp_max
-+   breaks_var_x<-breaks_max_temp
-+ }
-> 
-> if (variable_y=="Maximum_air_temperature"){
-+   
-+   i_var_y_min<-i_max_temp_min
-+   i_var_y_max<-i_max_temp_max
-+   breaks_var_y<-breaks_max_temp
-+ }
-> 
-> if (variable_z=="Minimum_air_temperature"){
-+   
-+   breaks_var<-breaks_min_temp
-+   i_var_min<-i_min_temp_min
-+   i_var_max<-i_min_temp_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$min_temp
-+   Env_laboratory_var<-Env_laboratory$min_temp
-+ }
-> if (variable_x=="Minimum_air_temperature"){
-+   
-+   i_var_x_min<-i_min_temp_min
-+   i_var_x_max<-i_min_temp_max
-+   breaks_var_x<-breaks_min_temp
-+ }
-> 
-> if (variable_y=="Minimum_air_temperature"){
-+   
-+   i_var_y_min<-i_min_temp_min
-+   i_var_y_max<-i_min_temp_max
-+   breaks_var_y<-breaks_min_temp
-+ }
-> 
-> if (variable_z=="Relative_humidity"){
-+   
-+   breaks_var<-breaks_hum
-+   i_var_min<-i_hum_min
-+   i_var_max<-i_hum_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity
-+   Env_laboratory_var<-Env_laboratory$Relative_humidity
-+ }
-> if (variable_x=="Relative_humidity"){
-+   
-+   i_var_x_min<-i_hum_min
-+   i_var_x_max<-i_hum_max
-+   breaks_var_x<-breaks_hum
-+ }
-> 
-> if (variable_y=="Relative_humidity"){
-+   
-+   i_var_y_min<-i_hum_min
-+   i_var_y_max<-i_hum_max
-+   breaks_var_y<-breaks_hum
-+ }
-> 
-> 
-> if (variable_z=="mean_temp"){
-+   
-+   breaks_var<-breaks_mean_temp
-+   i_var_min<-i_mean_temp_min
-+   i_var_max<-i_mean_temp_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp
-+   Env_laboratory_var<-Env_laboratory$mean_temp
-+ }
-> if (variable_x=="mean_temp"){
-+   
-+   i_var_x_min<-i_mean_temp_min
-+   i_var_x_max<-i_mean_temp_max
-+   breaks_var_x<-breaks_mean_temp
-+ }
-> 
-> if (variable_y=="mean_temp"){
-+   
-+   i_var_y_min<-i_mean_temp_min
-+   i_var_y_max<-i_mean_temp_max
-+   breaks_var_y<-breaks_mean_temp
-+ }
-> 
-> if (variable_z=="Mean_Precipitation"){
-+   
-+   breaks_var<-breaks_rain
-+   i_var_min<-i_rain_min
-+   i_var_max<-i_rain_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation
-+   Env_laboratory_var<-Env_laboratory$Mean_Precipitation
-+ }
-> if (variable_x=="Mean_Precipitation"){
-+   
-+   i_var_x_min<-i_rain_min
-+   i_var_x_max<-i_rain_max
-+   breaks_var_x<-breaks_rain
-+ }
-> 
-> if (variable_y=="Mean_Precipitation"){
-+   
-+   i_var_y_min<-i_rain_min
-+   i_var_y_max<-i_rain_max
-+   breaks_var_y<-breaks_rain
-+ }
-> 
-> if (variable_z=="Cumul_Precipitation"){
-+   
-+   breaks_var<-breaks_cum_rain
-+   i_var_min<-i_cum_rain_min
-+   i_var_max<-i_cum_rain_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation
-+   Env_laboratory_var<-Env_laboratory$Cumul_Precipitation
-+ }
-> if (variable_x=="Cumul_Precipitation"){
-+   
-+   i_var_x_min<-i_cum_rain_min
-+   i_var_x_max<-i_cum_rain_max
-+   breaks_var_x<-breaks_cum_rain
-+ }
-> 
-> if (variable_y=="Cumul_Precipitation"){
-+   
-+   i_var_y_min<-i_cum_rain_min
-+   i_var_y_max<-i_cum_rain_max
-+   breaks_var_y<-breaks_cum_rain
-+ }
-> 
-> 
-> if (variable_z=="Mean_wind_speed"){
-+   
-+   breaks_var<-breaks_wind
-+   i_var_min<-i_wind_min
-+   i_var_max<-i_wind_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed
-+   Env_laboratory_var<-Env_laboratory$Mean_wind_speed
-+ }
-> if (variable_x=="Mean_wind_speed"){
-+   
-+   i_var_x_min<-i_wind_min
-+   i_var_x_max<-i_wind_max
-+   breaks_var_x<-breaks_wind
-+ }
-> 
-> if (variable_y=="Mean_wind_speed"){
-+   
-+   i_var_y_min<-i_wind_min
-+   i_var_y_max<-i_wind_max
-+   breaks_var_y<-breaks_wind
-+ }
-> 
-> 
-> 
-> 
-> if (variable_z=="daylength"){
-+   
-+   breaks_var<-breaks_light
-+   i_var_min<-i_light_min
-+   i_var_max<-i_light_max
-+   Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength
-+   Env_laboratory_var<-Env_laboratory$daylength
-+ }
-> if (variable_x=="daylength"){
-+   
-+   i_var_x_min<-i_light_min
-+   i_var_x_max<-i_light_max
-+   breaks_var_x<-breaks_light
-+ }
-> 
-> if (variable_y=="daylength"){
-+   
-+   i_var_y_min<-i_light_min
-+   i_var_y_max<-i_light_max
-+   breaks_var_y<-breaks_light
-+ }
-> 
-> 
-> 
-> 
-> D_eta_var_x<-function(i_var,i_var_y,i_var_x)
-+ {
-+ 
-+ 
-+ 
-+ 
-+ #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab
-+ var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab #All_residents_lab[,2] this change by postcode only
-+ 
-+ if(is.na(breaks_var[i_var+1])==TRUE)
-+ {
-+   Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var])
-+ } else {
-+   Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1])
-+ }
-+ 
-+ 
-+ if(is.na(breaks_var_y[i_var_y+1])==TRUE)
-+ {
-+   Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y])
-+ } else {
-+   Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1])
-+ }
-+ 
-+ 
-+   
-+   if(is.na(breaks_var_x[i_var_x+1])==TRUE)
-+   {
-+   Yt2<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x])
-+   } else {
-+   Yt2<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x] & Yt1$Maximum_air_temperature<breaks_var_x[i_var_x+1])
-+   }
-+   
-+   
-+   if(is.na(breaks_var_x[i_var_x+2])==TRUE)
-+   {
-+   Yt3<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x+1])
-+   } else {
-+   Yt3<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x+1] & Yt1$Maximum_air_temperature<breaks_var_x[i_var_x+2])
-+   }
-+   
-+   if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){
-+   D_eta_D_x<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-+   } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){
-+   D_eta_D_x<- 0.5*mean(Yt3$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-+   } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){
-+   D_eta_D_x<- 0.5*mean(Yt2$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x])
-+   } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){
-+   D_eta_D_x<-NA
-+  }
-+   
-+   return(D_eta_D_x)
-+   }
->   
->   
->   
-> 
-> D_eta_var_y<-function(i_var,i_var_y,i_var_x)
-+ {
-+   
-+   
-+   #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab
-+   var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab
-+ 
-+   
-+   if(is.na(breaks_var[i_var+1])==TRUE)
-+   {
-+     Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var])
-+   } else {
-+     Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1])
-+   }
-+   
-+   
-+   if(is.na(breaks_var_x[i_var_x+1])==TRUE)
-+   {
-+     Yt1<-subset(Yt0,Yt0$Maximum_air_temperature>=breaks_var_x[i_var_x])
-+   } else {
-+     Yt1<-subset(Yt0,Yt0$Maximum_air_temperature>=breaks_var_x[i_var_x] & Yt0$Maximum_air_temperature<breaks_var_x[i_var_x+1])
-+   }
-+   
-+   
-+   
-+   if(is.na(breaks_var_y[i_var_y+1])==TRUE)
-+   {
-+     Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y])
-+   } else {
-+     Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y] & Yt1$Relative_humidity<breaks_var_y[i_var_y+1])
-+   }
-+   
-+   
-+   if(is.na(breaks_var_y[i_var_y+2])==TRUE)
-+   {
-+     Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1])
-+   } else {
-+     Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1] & Yt1$Relative_humidity<breaks_var_y[i_var_y+2])
-+   }
-+   
-+   if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){
-+     D_eta_D_y<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y])
-+   } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){
-+     D_eta_D_y<- 0.5*mean(Yt3$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y])
-+   } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){
-+     D_eta_D_y<- 0.5*mean(Yt2$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y])
-+   } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){
-+     D_eta_D_y<-NA
-+   }
-+   
-+   return(D_eta_D_y)
-+ }
-> 
-> 
-> 
-> 
-> D_eta_var<-function(i_var,i_var_y,i_var_x)
-+ {
-+ 
-+ 
-+ #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab
-+ var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab
-+ 
-+   if(is.na(breaks_var_x[i_var_x+1])==TRUE)
-+   {
-+   Yt0<-subset(var_x_loc_df,var_x_loc_df$Maximum_air_temperature>=breaks_var_x[i_var_x])
-+   } else {
-+   Yt0<-subset(var_x_loc_df,var_x_loc_df$Maximum_air_temperature>=breaks_var_x[i_var_x] & var_x_loc_df$Maximum_air_temperature<breaks_var_x[i_var_x+1])
-+   }
-+ 
-+ if(is.na(breaks_var_y[i_var_y+1])==TRUE)
-+ {
-+   Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y])
-+ } else {
-+   Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1])
-+ }
-+ 
-+   
-+   if(is.na(breaks_var[i_var+1])==TRUE)
-+   {
-+   Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var])
-+   } else {
-+   Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var] &  Yt1$daylength<breaks_var[i_var+1])
-+   }
-+   
-+ if(is.na(breaks_var[i_var+2])==TRUE)
-+ {
-+   Yt3<-subset( Yt1, Yt1$daylength>=breaks_var[i_var+1])
-+ } else {
-+   Yt3<-subset( Yt1, Yt1$Relative_humiditylight>=breaks_var[i_var+1] &  Yt1$daylength<breaks_var[i_var+2])
-+ }
-+ 
-+   
-+   
-+   if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){
-+   D_eta_D_v<- mean(Yt3$eta- Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-+   }  else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){
-+   D_eta_D_v<- 0.5*mean(Yt3$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-+   } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){
-+   D_eta_D_v<- 0.5*mean(Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var])
-+   } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){
-+   D_eta_D_v<-NA
-+   }
-+ 
-+   return(D_eta_D_v)
-+   }
-> 
->   
->   
->   
-> 
-> df_all_1<-c()
-> #i_var<-seq(i_var_min,i_var_max)
-> #i_var_x<-seq(i_var_x_min,i_var_x_max)
-> 
->  for (j in c(1: length(All_PC_s))){
-+ 
-+ var_x_loc_df<-var_x_loc_df_all2
-+  variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[j])
-+   
-+ All_residents_lab<-ddply(variable_df,~PostCode,summarise,tot=mean(residents))
-+ for (i_var in c(seq(i_var_min,i_var_max))){
-+ for (i_var_y in c(seq(i_var_y_min,i_var_y_max))){
-+   for (i_var_x in c(seq(i_var_x_min,i_var_x_max))){
-+  
-+ 
-+ #df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x))))
-+ #df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x))))
-+ 
-+ df1<-data.frame(breaks_light[i_var],breaks_hum[i_var_y],breaks_max_temp[i_var_x],D_eta_var_x(i_var,i_var_y,i_var_x),D_eta_var_y(i_var,i_var_y,i_var_x),D_eta_var(i_var,i_var_y,i_var_x),All_PC_s[j] )
-+ colnames(df1)<-c("daylength","Relative_humidity","Maximum_air_temperature","D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light","PostCode")
-+ df_all_1<-rbind(df_all_1,df1)
-+ #mapply(D_eta_var_x,i_var, MoreArgs =list(i_var_x))
-+ }
-+ }
-+ 
-+ }
-+ }
-> 
-> #df_all<-ddply(df_all_1,~PostCode,summarise,tot=mean())  
-> df_all<-df_all_1
-> 
-> time_series<-c()
-> 
-> for (i in c(1: length(All_PC_s))){
-+   #for (i in c(1: 15)){
-+   
-+   
-+ 
-+   #for (j in c(1: n_seas)){
-+   
-+    # n_months<-12/n_seas
-+     
-+   variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i])
-+   if (length(variable_df[,1])!=0){
-+   
-+   
-+   
-+ Delta_T<-diff(variable_df$Maximum_air_temperature)
-+ Delta_RH<-diff(variable_df$Relative_humidity)
-+ Delta_L<-diff(variable_df$daylength)
-+ Delta_var<-data.frame(variable_df$Date[-1],Delta_T,Delta_RH,Delta_L)
-+ colnames(Delta_var)<-c("dates","diff_max_temp","diff_humidity","diff_light")
-+ 
-+ x<-variable_df$Relative_humidity
-+ y<-variable_df$Maximum_air_temperature
-+ z<-variable_df$daylength
-+   
-+ variable_df_1_dis<-data.frame(variable_df$Date,variable_df$Relative_humidity)
-+ variable_df_2_dis<-data.frame(variable_df$Date,variable_df$Maximum_air_temperature)
-+ variable_df_3_dis<-data.frame(variable_df$Date,variable_df$daylength)
-+ 
-+ colnames(variable_df_1_dis)<-c("dates","Relative_humidity")
-+ colnames(variable_df_2_dis)<-c("dates","Maximum_air_temperature")
-+ colnames(variable_df_3_dis)<-c("dates","daylength")
-+ 
-+   variable_df_1_dis$dates<-as.Date(as.character((variable_df_1_dis$dates)))
-+   variable_df_2_dis$dates<-as.Date(as.character((variable_df_2_dis$dates)))
-+   variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates)))
-+   
-+   variable_df_1_dis<-subset(variable_df_1_dis,year(variable_df_1_dis$dates)>=1990 & year(variable_df_1_dis$dates)<=2015)
-+   variable_df_2_dis<-subset(variable_df_2_dis,year(variable_df_2_dis$dates)>=1990 & year(variable_df_2_dis$dates)<=2015)
-+   variable_df_3_dis<-subset(variable_df_3_dis,year(variable_df_3_dis$dates)>=1990 & year(variable_df_3_dis$dates)<=2015)
-+   
-+   variable_df_1_dis$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)])
-+   variable_df_2_dis$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)])
-+   variable_df_3_dis$daylength<-(breaks_light[findInterval(z, breaks_light)])
-+  
-+  
-+ # var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j)
-+ #  var_x_loc_df$Relative_humidity<-floor(var_x_loc_df$Relative_humidity)
-+ #  var_x_loc_df$Maximum_air_temperature<-floor(var_x_loc_df$breaks)
-+   #df<-subset(df_all,df_all$month==j)
-+   df<-subset(df_all,df_all$PostCode==All_PC_s[i])
-+   
-+   variable_df_4_dis<-merge(variable_df_1_dis,df, by="Relative_humidity")
-+   variable_df_5_dis<-merge(variable_df_2_dis,df, by="Maximum_air_temperature")
-+   variable_df_6_dis<-merge(variable_df_3_dis,df, by="daylength")
-+   
-+   
-+   
-+   variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates)))
-+   variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),]
-+   variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates)))
-+   variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),]
-+   variable_df_6_dis$dates<-as.Date(as.character((variable_df_6_dis$dates)))
-+   variable_df_6_dis<-variable_df_6_dis[order(variable_df_6_dis$dates),]
-+   
-+   
-+   variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates)
-+   variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates)
-+   variable_df_6_dis$dates<-as.factor(variable_df_6_dis$dates)
-+   
-+   variable_df_dis0<-merge(variable_df_4_dis,variable_df_5_dis, by=c("dates","Maximum_air_temperature","Relative_humidity","daylength") ) 
-+   variable_df_dis<-merge(variable_df_dis0,variable_df_6_dis, by=c("dates","Maximum_air_temperature","Relative_humidity","daylength"))
-+     
-+   variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates)))
-+   variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),]
-+   variable_df_dis$dates<-as.factor(variable_df_dis$dates)
-+   Delta_var$dates<-as.factor(Delta_var$dates)
-+   variable_df_Taylor<-merge(variable_df_dis,Delta_var, by=c("dates"))
-+   
-+   variable_df_Taylor<-variable_df_Taylor[,c(1:7,17:19)]
-+   colnames(variable_df_Taylor)<-c("dates",variable_x, variable_y, variable_z,"D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light",
-+                                   "diff_max_temp","diff_humidity","diff_light")
-+   
-+   
-+   lambda_temp<-variable_df_Taylor$D_eta_D_max_temp*variable_df_Taylor$diff_max_temp
-+   lambda_hum<-variable_df_Taylor$D_eta_D_hum*variable_df_Taylor$diff_humidity
-+   lambda_light<-variable_df_Taylor$D_eta_D_light*variable_df_Taylor$diff_light
-+   
-+  
-+   
-+   time_series_1<-
-+     data.frame(variable_df_Taylor$dates,
-+                lambda_temp,lambda_hum,lambda_light, 
-+                rep(All_PC_s[i],times=length(variable_df_Taylor$dates)),
-+ 	variable_df_Taylor$D_eta_D_max_temp,variable_df_Taylor$diff_max_temp,
-+ 	variable_df_Taylor$D_eta_D_hum,variable_df_Taylor$diff_humidity,
-+ 	variable_df_Taylor$D_eta_D_light,variable_df_Taylor$diff_light)
-+   colnames(time_series_1)<-c("Date","Contr_temp","Contr_hum","Contr_light",
-+                              "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light")
-+   time_series<-rbind(time_series,time_series_1)
-+   
-+   #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda ))
-+   print(100*c(i/length(All_PC_s) ))
-+   #print("  ")
-+   #print(lambda)
-+   }
-+ }
-[1] 0.4854369
-[1] 0.9708738
-[1] 1.456311
-[1] 1.941748
-[1] 2.427184
-[1] 2.912621
-[1] 3.398058
-[1] 3.883495
-[1] 4.368932
-[1] 4.854369
-[1] 5.339806
-[1] 5.825243
-[1] 6.31068
-[1] 6.796117
-[1] 7.281553
-[1] 7.76699
-[1] 8.252427
-[1] 8.737864
-[1] 9.223301
-[1] 9.708738
-[1] 10.19417
-[1] 10.67961
-[1] 11.16505
-[1] 11.65049
-[1] 12.13592
-[1] 12.62136
-[1] 13.1068
-[1] 13.59223
-[1] 14.07767
-[1] 14.56311
-[1] 15.04854
-[1] 15.53398
-[1] 16.01942
-[1] 16.50485
-[1] 16.99029
-[1] 17.47573
-[1] 17.96117
-[1] 18.4466
-[1] 18.93204
-[1] 19.41748
-[1] 19.90291
-[1] 20.38835
-[1] 20.87379
-[1] 21.35922
-[1] 21.84466
-[1] 22.3301
-[1] 22.81553
-[1] 23.30097
-[1] 23.78641
-[1] 24.27184
-[1] 24.75728
-[1] 25.24272
-[1] 25.72816
-[1] 26.21359
-[1] 26.69903
-[1] 27.18447
-[1] 27.6699
-[1] 28.15534
-[1] 28.64078
-[1] 29.12621
-[1] 29.61165
-[1] 30.09709
-[1] 30.58252
-[1] 31.06796
-[1] 31.5534
-[1] 32.03883
-[1] 32.52427
-[1] 33.00971
-[1] 33.49515
-[1] 33.98058
-[1] 34.46602
-[1] 34.95146
-[1] 35.43689
-[1] 35.92233
-[1] 36.40777
-[1] 36.8932
-[1] 37.37864
-[1] 37.86408
-[1] 38.34951
-[1] 38.83495
-[1] 39.32039
-[1] 39.80583
-[1] 40.29126
-[1] 40.7767
-[1] 41.26214
-[1] 41.74757
-[1] 42.23301
-[1] 42.71845
-[1] 43.20388
-[1] 43.68932
-[1] 44.17476
-[1] 44.66019
-[1] 45.14563
-[1] 45.63107
-[1] 46.1165
-[1] 46.60194
-[1] 47.08738
-[1] 47.57282
-[1] 48.05825
-[1] 48.54369
-[1] 49.02913
-[1] 49.51456
-[1] 50
-[1] 50.48544
-[1] 50.97087
-[1] 51.45631
-[1] 51.94175
-[1] 52.42718
-[1] 52.91262
-[1] 53.39806
-[1] 53.8835
-[1] 54.36893
-[1] 54.85437
-[1] 55.33981
-[1] 55.82524
-[1] 56.31068
-[1] 56.79612
-[1] 57.28155
-[1] 57.76699
-[1] 58.25243
-[1] 58.73786
-[1] 59.2233
-[1] 59.70874
-[1] 60.19417
-[1] 60.67961
-[1] 61.16505
-[1] 61.65049
-[1] 62.13592
-[1] 62.62136
-[1] 63.1068
-[1] 63.59223
-[1] 64.07767
-[1] 64.56311
-[1] 65.04854
-[1] 65.53398
-[1] 66.01942
-[1] 66.50485
-[1] 66.99029
-[1] 67.47573
-[1] 67.96117
-[1] 68.4466
-[1] 68.93204
-[1] 69.41748
-[1] 69.90291
-[1] 70.38835
-[1] 70.87379
-[1] 71.35922
-[1] 71.84466
-[1] 72.3301
-[1] 72.81553
-[1] 73.30097
-[1] 73.78641
-[1] 74.27184
-[1] 74.75728
-[1] 75.24272
-[1] 75.72816
-[1] 76.21359
-[1] 76.69903
-[1] 77.18447
-[1] 77.6699
-[1] 78.15534
-[1] 78.64078
-[1] 79.12621
-[1] 79.61165
-[1] 80.09709
-[1] 80.58252
-[1] 81.06796
-[1] 81.5534
-[1] 82.03883
-[1] 82.52427
-[1] 83.00971
-[1] 83.49515
-[1] 83.98058
-[1] 84.46602
-[1] 84.95146
-[1] 85.43689
-[1] 85.92233
-[1] 86.40777
-[1] 86.8932
-[1] 87.37864
-[1] 87.86408
-[1] 88.34951
-[1] 88.83495
-[1] 89.32039
-[1] 89.80583
-[1] 90.29126
-[1] 90.7767
-[1] 91.26214
-[1] 91.74757
-[1] 92.23301
-[1] 92.71845
-[1] 93.20388
-[1] 93.68932
-[1] 94.17476
-[1] 94.66019
-[1] 95.14563
-[1] 95.63107
-[1] 96.1165
-[1] 96.60194
-[1] 97.08738
-[1] 97.57282
-[1] 98.05825
-[1] 98.54369
-[1] 99.02913
-[1] 99.51456
-[1] 100
-> 
-> #time_series1<-subset(time_series,time_series$Lab=="B152TG")
-> #time_series1$Date<-as.Date(as.character(time_series1$Date))
-> #time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date))))
-> #time_series1<-subset(time_series1,time_series1$year=="2005")
-> 
-> #time_series1<-na.omit(time_series1)
-> ##temp_contr<-cumsum(time_series1$Contr_temp)
-> #temp_hum<-cumsum(time_series1$Contr_hum)
-> #
-> #df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum)
-> #colnames(df2)<-c("Date","contr","humidity")
-> #temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp))
-> #time_series<-na.omit(time_series)
-> #time_series$temp_contr<-cumsum(time_series$Contr_temp)
-> #time_series$temp_hum<-cumsum(time_series$Contr_hum)
-> #time_series$yday<-yday(time_series$Date)
-> #time_series$week<-week(time_series$Date)
-> #time_series$month<-month(time_series$Date)
-> #time_series$Lab<-as.factor(time_series$Lab)
-> 
-> #time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp))
-> #time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp))
-> 
-> #time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp))
-> #time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum))
-> 
-> #time_series_lab<-ddply(time_series,~month,summarise,tot=mean(Contr_temp))
-> #time_series_lab2<-ddply(time_series,~month,summarise,tot=mean(Contr_hum))
-> #time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum))
-> 
-> write.table(time_series,paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-> 
-> proc.time()
-      user     system    elapsed 
-193723.047   4481.237 198225.164