diff --git a/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables_quarter.Rout b/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables_quarter.Rout deleted file mode 100644 index 032428c5c48177604c058d50756698f3cef6073a..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables_quarter.Rout +++ /dev/null @@ -1,1232 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> #library(Hmisc) -> -> #list.of.packages <- c("xts") -> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -> #if(length(new.packages)) install.packages(new.packages) -> library(xts) -Loading required package: zoo - -Attaching package: ‘zoo’ - -The following object is masked from ‘package:timeSeries’: - - time<- - -The following objects are masked from ‘package:base’: - - as.Date, as.Date.numeric - - -Attaching package: ‘xts’ - -The following objects are masked from ‘package:pastecs’: - - first, last - -> -> -> -> -> ## Varaible file -> -> variable_int<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> width<-30 -> width_char<-paste(width) -> -> -> -> variable<-"Maximum_air_temperature" -> #variable<-"daylength" -> variable_y<-"Mean_Precipitation" -> variable_x<-"Relative_humidity" -> -> #variable_y<-"Mean_Precipitation" -> #variable<-"daylength" -> #variable<-"Mean_Precipitation" -> #"Maximum_air_temperature", -> #"Minimum_air_temperature", -> #"Mean_wind_speed", -> #"Mean_Precipitation", -> #"Relative_humidity", -> #"daylength" -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -> colnames(Env_laboratory_weekly)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> -> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) -> -> -> quarter_year<-4 -> quarter_year_char<-paste("_",as.character(quarter_year),"-quarter_year",sep="") -> -> if (quarter_year==1){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=1 & month(as.Date(Env_Campylobacter_data_all2$Date))<=3) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=1 & month(as.Date(Env_laboratory_weekly$Date))<=3) -+ } -> -> if (quarter_year==2){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=4 & month(as.Date(Env_Campylobacter_data_all2$Date))<=6) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=4 & month(as.Date(Env_laboratory_weekly$Date))<=6) -+ } -> -> if (quarter_year==3){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=7 & month(as.Date(Env_Campylobacter_data_all2$Date))<=9) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=7 & month(as.Date(Env_laboratory_weekly$Date))<=9) -+ } -> -> if (quarter_year==4){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=10 & month(as.Date(Env_Campylobacter_data_all2$Date))<=12) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=10 & month(as.Date(Env_laboratory_weekly$Date))<=12) -+ } -> -> -> -> ############# Not elegant but it works for the rest -> -> Env_laboratory_weekly_sub<-Env_laboratory_int1 -> Env_Campylobacter_data_all2_sub<-Env_Campylobacter_data_int1 -> -> -> -> -> for (quarter in c(1:4)){ -+ -+ quarter_char<-paste("_",as.character(quarter),"-quarter",sep="") -+ -+ breaks_daylength<-(as.numeric(quantile(na.omit(Env_Campylobacter_data_all2_sub$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE))) -+ breaks_daylength[length(breaks_daylength)]<-ceiling((as.numeric(quantile(na.omit(Env_Campylobacter_data_all2_sub$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE))))[length(breaks_daylength)] -+ -+ breaks_daylength[1]<-floor((as.numeric(quantile(na.omit(Env_Campylobacter_data_all2_sub$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE))))[1] -+ -+ -+ -+ if (quarter==1){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2_sub,Env_Campylobacter_data_all2_sub$daylength<=breaks_daylength[2]) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly_sub,Env_laboratory_weekly_sub$daylength<=breaks_daylength[2]) -+ hours_char<-paste("_",as.character(round(breaks_daylength[2])),"-quarter",sep="") -+ } -+ -+ if (quarter==2){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2_sub,Env_Campylobacter_data_all2_sub$daylength>breaks_daylength[2] & Env_Campylobacter_data_all2_sub$daylength<=breaks_daylength[3]) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly_sub,Env_laboratory_weekly_sub$daylength>breaks_daylength[2] & Env_laboratory_weekly$daylength<=breaks_daylength[3]) -+ hours_char<-paste("_",as.character(round(breaks_daylength[3])),"-quarter",sep="") -+ } -+ -+ if (quarter==3){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2_sub,Env_Campylobacter_data_all2_sub$daylength>breaks_daylength[3] & Env_Campylobacter_data_all2_sub$daylength<=breaks_daylength[4]) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly_sub,Env_laboratory_weekly_sub$daylength>breaks_daylength[3] & Env_laboratory_weekly$daylength<=breaks_daylength[4]) -+ hours_char<-paste("_",as.character(round(breaks_daylength[4])),"-quarter",sep="") -+ } -+ -+ if (quarter==4){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2_sub,Env_Campylobacter_data_all2_sub$daylength>breaks_daylength[4]) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly_sub,Env_laboratory_weekly_sub$daylength>breaks_daylength[4]) -+ hours_char<-paste("_",as.character(round(breaks_daylength[5])),"-quarter",sep="") -+ } -+ -+ -+ -+ -+ ################### include latitude and longitude -+ Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -+ -+ -+ lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -+ colnames(lat_long_lab)<-c("PostCode","lat","long") -+ -+ Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -+ Env_laboratory_int3<-data.frame(Env_laboratory_int2) -+ -+ Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -+ Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) -+ -+ -+ -+ ######################## include daylength ################## -+ -+ PC_df<-data.frame(All_PC,as.Date(dates)) -+ colnames(PC_df)<-c("PostCode","Date") -+ -+ -+ Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") -+ -+ -+ daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -+ -+ latitude<-Post_Codes_df$lat -+ day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) -+ -+ daylength_int1<-mapply(daylength, latitude, day_of_the_year) -+ daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -+ colnames(daylength_df)<-c("lat","day_year","Date","daylength") -+ daylength_df$Date<-as.factor(daylength_df$Date) -+ daylength_df$lat<-as.factor(daylength_df$lat) -+ Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -+ Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) -+ -+ #Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -+ #Env_laboratory<-data.frame(Env_laboratory_int4) -+ Env_laboratory<-data.frame(Env_laboratory_int3) -+ Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -+ Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) -+ -+ -+ #Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -+ #Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -+ Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) -+ -+ -+ -+ -+ -+ ################### Divide the domains of the variables in bins according to quantiles -+ -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ index_x_C<-which (names(Env_Campylobacter_data)==variable_x) -+ -+ index_res_C<-which (names(Env_Campylobacter_data)=="residents") -+ -+ -+ index<-which (names(Env_laboratory)==variable) -+ index_y<-which (names(Env_laboratory)==variable_y) -+ index_x<-which (names(Env_laboratory)==variable_x) -+ index_res<-which (names(Env_laboratory)=="residents") -+ -+ -+ ######################### -+ -+ -+ breaks_z_lab<-function(variable,by_z) -+ { -+ -+ index<-which (names(Env_laboratory)==variable) -+ -+ -+ breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) -+ breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] -+ breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] -+ -+ -+ return(breaks_z) -+ -+ } -+ -+ -+ -+ breaks_z<-function(variable,by_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ -+ breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) -+ -+ breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] -+ breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] -+ -+ -+ return(breaks_z) -+ -+ } -+ -+ -+ -+ -+ breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ -+ index<-which (names(Env_laboratory)==variable) -+ index_y<-which (names(Env_laboratory)==variable_y) -+ -+ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_laboratory_some<-Env_laboratory[ww,] -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)) -+ breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] -+ breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] -+ -+ }else{ -+ -+ breaks_y<-c() -+ } -+ -+ return(breaks_y) -+ } -+ -+ -+ -+ breaks_y<-function(variable,variable_y,by_z,by_y,j_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ -+ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)) -+ breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] -+ breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] -+ -+ }else{ -+ -+ breaks_y<-c() -+ } -+ -+ return(breaks_y) -+ } -+ -+ -+ -+ breaks_x_lab<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y) -+ { -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ -+ -+ index<-which (names(Env_laboratory)==variable) -+ index_y<-which (names(Env_laboratory)==variable_y) -+ index_x<-which (names(Env_laboratory)==variable_x) -+ -+ if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ wt<-(findInterval(Env_laboratory[,index_y],breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_laboratory_some<-Env_laboratory[ww,] -+ -+ -+ breaks_x<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)) -+ breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)] -+ breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1] -+ -+ } else { -+ -+ breaks_x<-c() -+ } } else { -+ -+ breaks_x<-c() -+ -+ } -+ -+ return(breaks_x) -+ } -+ -+ -+ breaks_x<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y) -+ { -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ index_x_C<-which (names(Env_Campylobacter_data)==variable_x) -+ -+ if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ wt<-(findInterval(Env_Campylobacter_data_some[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_some2<-Env_Campylobacter_data_some[ww,] -+ -+ -+ breaks_x<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)) -+ breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)] -+ breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1] -+ -+ } else -+ { breaks_x<-c() -+ } -+ } -+ else { -+ -+ breaks_x<-c() -+ -+ } -+ -+ return(breaks_x) -+ } -+ -+ -+ ################# -+ -+ -+ -+ -+ var_x_loc_df<-data.frame(character(), character(),character(),numeric(),numeric(),numeric()) -+ colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") -+ -+ residents_i_var<-0 -+ residents_universal<-0 -+ #i_var_max<-length(breaks_var) -+ #i_var_min<-1 -+ #i_var_max_x<-length(breaks_var_x) -+ #i_var_min_x<-1 -+ -+ -+ ##################### -+ by_z<-0.25 -+ by_y<-0.25 -+ by_x<-0.1 -+ -+ #i_var_min<-breaks_z(variable,by_z)[1] -+ #i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))] -+ j_z_min<-1 -+ j_z_max<-length(breaks_z(variable,by_z))-1 -+ -+ -+ -+ for (j_z in c(j_z_min:j_z_max)) -+ { -+ -+ if (length(Env_Campylobacter_data[,index_C])!=0){ -+ -+ wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] -+ -+ wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_laboratory_z<-Env_laboratory[ww,] -+ -+ if (length(Env_Campylobacter_data_z[,1])!=0){ -+ if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){ -+ -+ j_y_min<-1 -+ j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1 -+ -+ -+ -+ for (j_y in c(j_y_min:j_y_max)) -+ { -+ -+ wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,] -+ -+ wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_laboratory_y<-Env_laboratory_z[ww,] -+ -+ -+ if (length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))!=0){ -+ -+ j_x_min<-1 -+ j_x_max<- length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))-1 -+ for (j_x in c(j_x_min:j_x_max)) -+ { -+ -+ -+ wt<-(findInterval((Env_Campylobacter_data_y[,index_x_C]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))) -+ ww<-which(wt==j_x) -+ Yt1<-Env_Campylobacter_data_y[ww,c(1:3,index_C,index_y_C,index_x_C,index_res_C)] -+ -+ wt<-(findInterval((Env_laboratory[,index_x]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))) -+ ww<-which(wt==j_x) -+ Y_tot<-Env_laboratory_y[ww,c(1:2,index,index_y,index_x,index_res)] -+ -+ Total_cases<-sum((as.numeric(na.omit(Yt1$Cases)))) -+ residents<-sum((as.numeric(na.omit(Yt1$residents)))) -+ residents_tot<-sum((as.numeric(na.omit(Y_tot$residents)))) -+ -+ data_df<-data.frame( -+ breaks_z(variable,by_z)[j_z], -+ breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y], -+ breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)[j_x], -+ Total_cases, -+ residents, -+ residents_tot) -+ -+ -+ -+ -+ -+ colnames(data_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") -+ var_x_loc_df<-rbind(var_x_loc_df,data_df) -+ print(c(j_x,j_y,j_z, Total_cases)) -+ -+ }}} -+ } -+ -+ -+ }} -+ } -+ -+ write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",variable_x,"_",width_char,hours_char,quarter_year_char,"_Simulated_for_rec_original_MEDMI_quantile.csv",sep="")) -+ } -[1] 1 1 1 641 -[1] 2 1 1 679 -[1] 3 1 1 513 -[1] 4 1 1 494 -[1] 5 1 1 387 -[1] 6 1 1 381 -[1] 7 1 1 355 -[1] 8 1 1 330 -[1] 9 1 1 389 -[1] 10 1 1 553 -[1] 1 2 1 422 -[1] 2 2 1 331 -[1] 3 2 1 285 -[1] 4 2 1 236 -[1] 5 2 1 227 -[1] 6 2 1 438 -[1] 7 2 1 553 -[1] 8 2 1 552 -[1] 9 2 1 752 -[1] 10 2 1 1070 -[1] 1 3 1 372 -[1] 2 3 1 317 -[1] 3 3 1 322 -[1] 4 3 1 494 -[1] 5 3 1 492 -[1] 6 3 1 374 -[1] 7 3 1 465 -[1] 8 3 1 444 -[1] 9 3 1 545 -[1] 10 3 1 1105 -[1] 1 4 1 465 -[1] 2 4 1 931 -[1] 3 4 1 951 -[1] 4 4 1 360 -[1] 5 4 1 279 -[1] 6 4 1 160 -[1] 7 4 1 233 -[1] 8 4 1 156 -[1] 9 4 1 211 -[1] 10 4 1 1218 -[1] 1 1 2 412 -[1] 2 1 2 471 -[1] 3 1 2 594 -[1] 4 1 2 533 -[1] 5 1 2 681 -[1] 6 1 2 590 -[1] 7 1 2 529 -[1] 8 1 2 510 -[1] 9 1 2 403 -[1] 10 1 2 211 -[1] 1 2 2 242 -[1] 2 2 2 624 -[1] 3 2 2 541 -[1] 4 2 2 557 -[1] 5 2 2 541 -[1] 6 2 2 493 -[1] 7 2 2 422 -[1] 8 2 2 541 -[1] 9 2 2 440 -[1] 10 2 2 448 -[1] 1 3 2 168 -[1] 2 3 2 789 -[1] 3 3 2 862 -[1] 4 3 2 730 -[1] 5 3 2 695 -[1] 6 3 2 467 -[1] 7 3 2 345 -[1] 8 3 2 341 -[1] 9 3 2 582 -[1] 10 3 2 334 -[1] 1 4 2 856 -[1] 2 4 2 291 -[1] 3 4 2 431 -[1] 4 4 2 604 -[1] 5 4 2 686 -[1] 6 4 2 604 -[1] 7 4 2 524 -[1] 8 4 2 306 -[1] 9 4 2 240 -[1] 10 4 2 458 -[1] 1 1 3 170 -[1] 2 1 3 413 -[1] 3 1 3 450 -[1] 4 1 3 436 -[1] 5 1 3 403 -[1] 6 1 3 455 -[1] 7 1 3 575 -[1] 8 1 3 602 -[1] 9 1 3 699 -[1] 10 1 3 459 -[1] 1 2 3 465 -[1] 2 2 3 571 -[1] 3 2 3 533 -[1] 4 2 3 489 -[1] 5 2 3 649 -[1] 6 2 3 846 -[1] 7 2 3 690 -[1] 8 2 3 667 -[1] 9 2 3 367 -[1] 10 2 3 81 -[1] 1 3 3 680 -[1] 2 3 3 483 -[1] 3 3 3 450 -[1] 4 3 3 583 -[1] 5 3 3 667 -[1] 6 3 3 781 -[1] 7 3 3 837 -[1] 8 3 3 422 -[1] 9 3 3 175 -[1] 10 3 3 78 -[1] 1 4 3 801 -[1] 2 4 3 221 -[1] 3 4 3 241 -[1] 4 4 3 656 -[1] 5 4 3 632 -[1] 6 4 3 578 -[1] 7 4 3 514 -[1] 8 4 3 402 -[1] 9 4 3 496 -[1] 10 4 3 625 -[1] 1 1 4 1158 -[1] 2 1 4 337 -[1] 3 1 4 453 -[1] 4 1 4 482 -[1] 5 1 4 560 -[1] 6 1 4 406 -[1] 7 1 4 443 -[1] 8 1 4 392 -[1] 9 1 4 404 -[1] 10 1 4 303 -[1] 1 2 4 457 -[1] 2 2 4 409 -[1] 3 2 4 396 -[1] 4 2 4 381 -[1] 5 2 4 228 -[1] 6 2 4 202 -[1] 7 2 4 542 -[1] 8 2 4 943 -[1] 9 2 4 992 -[1] 10 2 4 731 -[1] 1 3 4 120 -[1] 2 3 4 383 -[1] 3 3 4 531 -[1] 4 3 4 403 -[1] 5 3 4 384 -[1] 6 3 4 493 -[1] 7 3 4 635 -[1] 8 3 4 875 -[1] 9 3 4 925 -[1] 10 3 4 615 -[1] 1 4 4 160 -[1] 2 4 4 658 -[1] 3 4 4 428 -[1] 4 4 4 325 -[1] 5 4 4 555 -[1] 6 4 4 619 -[1] 7 4 4 646 -[1] 8 4 4 866 -[1] 9 4 4 728 -[1] 10 4 4 603 -[1] 1 1 1 596 -[1] 2 1 1 361 -[1] 3 1 1 286 -[1] 4 1 1 206 -[1] 5 1 1 283 -[1] 6 1 1 245 -[1] 7 1 1 339 -[1] 8 1 1 792 -[1] 9 1 1 834 -[1] 10 1 1 820 -[1] 1 2 1 573 -[1] 2 2 1 474 -[1] 3 2 1 353 -[1] 4 2 1 445 -[1] 5 2 1 493 -[1] 6 2 1 649 -[1] 7 2 1 512 -[1] 8 2 1 577 -[1] 9 2 1 839 -[1] 10 2 1 379 -[1] 1 3 1 515 -[1] 2 3 1 805 -[1] 3 3 1 1143 -[1] 4 3 1 1005 -[1] 5 3 1 776 -[1] 6 3 1 333 -[1] 7 3 1 165 -[1] 8 3 1 120 -[1] 9 3 1 71 -[1] 10 3 1 73 -[1] 1 4 1 349 -[1] 2 4 1 873 -[1] 3 4 1 872 -[1] 4 4 1 473 -[1] 5 4 1 559 -[1] 6 4 1 834 -[1] 7 4 1 850 -[1] 8 4 1 562 -[1] 9 4 1 212 -[1] 10 4 1 42 -[1] 1 1 2 299 -[1] 2 1 2 297 -[1] 3 1 2 408 -[1] 4 1 2 579 -[1] 5 1 2 551 -[1] 6 1 2 614 -[1] 7 1 2 585 -[1] 8 1 2 481 -[1] 9 1 2 701 -[1] 10 1 2 703 -[1] 1 2 2 454 -[1] 2 2 2 445 -[1] 3 2 2 406 -[1] 4 2 2 407 -[1] 5 2 2 490 -[1] 6 2 2 327 -[1] 7 2 2 300 -[1] 8 2 2 609 -[1] 9 2 2 765 -[1] 10 2 2 751 -[1] 1 3 2 367 -[1] 2 3 2 482 -[1] 3 3 2 219 -[1] 4 3 2 187 -[1] 5 3 2 284 -[1] 6 3 2 533 -[1] 7 3 2 750 -[1] 8 3 2 724 -[1] 9 3 2 697 -[1] 10 3 2 1369 -[1] 1 4 2 390 -[1] 2 4 2 717 -[1] 3 4 2 688 -[1] 4 4 2 792 -[1] 5 4 2 609 -[1] 6 4 2 530 -[1] 7 4 2 416 -[1] 8 4 2 547 -[1] 9 4 2 770 -[1] 10 4 2 693 -[1] 1 1 3 562 -[1] 2 1 3 690 -[1] 3 1 3 669 -[1] 4 1 3 606 -[1] 5 1 3 630 -[1] 6 1 3 682 -[1] 7 1 3 759 -[1] 8 1 3 451 -[1] 9 1 3 135 -[1] 10 1 3 160 -[1] 1 2 3 540 -[1] 2 2 3 536 -[1] 3 2 3 654 -[1] 4 2 3 563 -[1] 5 2 3 535 -[1] 6 2 3 600 -[1] 7 2 3 541 -[1] 8 2 3 452 -[1] 9 2 3 441 -[1] 10 2 3 624 -[1] 1 3 3 213 -[1] 2 3 3 330 -[1] 3 3 3 356 -[1] 4 3 3 463 -[1] 5 3 3 478 -[1] 6 3 3 533 -[1] 7 3 3 980 -[1] 8 3 3 938 -[1] 9 3 3 670 -[1] 10 3 3 431 -[1] 1 4 3 958 -[1] 2 4 3 456 -[1] 3 4 3 469 -[1] 4 4 3 464 -[1] 5 4 3 428 -[1] 6 4 3 476 -[1] 7 4 3 657 -[1] 8 4 3 709 -[1] 9 4 3 657 -[1] 10 4 3 812 -[1] 1 1 4 625 -[1] 2 1 4 847 -[1] 3 1 4 932 -[1] 4 1 4 945 -[1] 5 1 4 664 -[1] 6 1 4 561 -[1] 7 1 4 351 -[1] 8 1 4 307 -[1] 9 1 4 370 -[1] 10 1 4 136 -[1] 1 2 4 657 -[1] 2 2 4 323 -[1] 3 2 4 558 -[1] 4 2 4 619 -[1] 5 2 4 710 -[1] 6 2 4 794 -[1] 7 2 4 695 -[1] 8 2 4 351 -[1] 9 2 4 306 -[1] 10 2 4 457 -[1] 1 3 4 948 -[1] 2 3 4 353 -[1] 3 3 4 186 -[1] 4 3 4 225 -[1] 5 3 4 414 -[1] 6 3 4 749 -[1] 7 3 4 517 -[1] 8 3 4 585 -[1] 9 3 4 803 -[1] 10 3 4 824 -[1] 1 4 4 864 -[1] 2 4 4 373 -[1] 3 4 4 747 -[1] 4 4 4 475 -[1] 5 4 4 526 -[1] 6 4 4 458 -[1] 7 4 4 386 -[1] 8 4 4 413 -[1] 9 4 4 820 -[1] 10 4 4 705 -[1] 1 1 1 831 -[1] 2 1 1 1051 -[1] 3 1 1 733 -[1] 4 1 1 803 -[1] 5 1 1 775 -[1] 6 1 1 593 -[1] 7 1 1 338 -[1] 8 1 1 67 -[1] 9 1 1 84 -[1] 10 1 1 10 -[1] 1 2 1 483 -[1] 2 2 1 715 -[1] 3 2 1 656 -[1] 4 2 1 731 -[1] 5 2 1 580 -[1] 6 2 1 536 -[1] 7 2 1 486 -[1] 8 2 1 225 -[1] 9 2 1 528 -[1] 10 2 1 252 -[1] 1 3 1 413 -[1] 2 3 1 554 -[1] 3 3 1 736 -[1] 4 3 1 953 -[1] 5 3 1 634 -[1] 6 3 1 612 -[1] 7 3 1 558 -[1] 8 3 1 478 -[1] 9 3 1 210 -[1] 10 3 1 255 -[1] 1 4 1 570 -[1] 2 4 1 429 -[1] 3 4 1 511 -[1] 4 4 1 585 -[1] 5 4 1 762 -[1] 6 4 1 879 -[1] 7 4 1 881 -[1] 8 4 1 794 -[1] 9 4 1 462 -[1] 10 4 1 176 -[1] 1 1 2 532 -[1] 2 1 2 453 -[1] 3 1 2 109 -[1] 4 1 2 100 -[1] 5 1 2 180 -[1] 6 1 2 210 -[1] 7 1 2 512 -[1] 8 1 2 1154 -[1] 9 1 2 1434 -[1] 10 1 2 1316 -[1] 1 2 2 216 -[1] 2 2 2 348 -[1] 3 2 2 585 -[1] 4 2 2 566 -[1] 5 2 2 614 -[1] 6 2 2 579 -[1] 7 2 2 610 -[1] 8 2 2 704 -[1] 9 2 2 276 -[1] 10 2 2 1093 -[1] 1 3 2 395 -[1] 2 3 2 568 -[1] 3 3 2 714 -[1] 4 3 2 556 -[1] 5 3 2 659 -[1] 6 3 2 922 -[1] 7 3 2 730 -[1] 8 3 2 334 -[1] 9 3 2 229 -[1] 10 3 2 572 -[1] 1 4 2 1163 -[1] 2 4 2 1181 -[1] 3 4 2 841 -[1] 4 4 2 684 -[1] 5 4 2 759 -[1] 6 4 2 585 -[1] 7 4 2 375 -[1] 8 4 2 375 -[1] 9 4 2 117 -[1] 10 4 2 174 -[1] 1 1 3 646 -[1] 2 1 3 149 -[1] 3 1 3 415 -[1] 4 1 3 327 -[1] 5 1 3 486 -[1] 6 1 3 726 -[1] 7 1 3 998 -[1] 8 1 3 1417 -[1] 9 1 3 746 -[1] 10 1 3 93 -[1] 1 2 3 435 -[1] 2 2 3 680 -[1] 3 2 3 521 -[1] 4 2 3 355 -[1] 5 2 3 264 -[1] 6 2 3 469 -[1] 7 2 3 526 -[1] 8 2 3 516 -[1] 9 2 3 1267 -[1] 10 2 3 906 -[1] 1 3 3 716 -[1] 2 3 3 686 -[1] 3 3 3 752 -[1] 4 3 3 575 -[1] 5 3 3 673 -[1] 6 3 3 696 -[1] 7 3 3 370 -[1] 8 3 3 405 -[1] 9 3 3 738 -[1] 10 3 3 311 -[1] 1 4 3 777 -[1] 2 4 3 514 -[1] 3 4 3 993 -[1] 4 4 3 905 -[1] 5 4 3 581 -[1] 6 4 3 471 -[1] 7 4 3 668 -[1] 8 4 3 515 -[1] 9 4 3 223 -[1] 10 4 3 197 -[1] 1 1 4 126 -[1] 2 1 4 843 -[1] 3 1 4 565 -[1] 4 1 4 905 -[1] 5 1 4 812 -[1] 6 1 4 933 -[1] 7 1 4 867 -[1] 8 1 4 660 -[1] 9 1 4 37 -[1] 10 1 4 0 -[1] 1 2 4 786 -[1] 2 2 4 474 -[1] 3 2 4 489 -[1] 4 2 4 491 -[1] 5 2 4 500 -[1] 6 2 4 486 -[1] 7 2 4 657 -[1] 8 2 4 752 -[1] 9 2 4 538 -[1] 10 2 4 454 -[1] 1 3 4 401 -[1] 2 3 4 168 -[1] 3 3 4 153 -[1] 4 3 4 157 -[1] 5 3 4 228 -[1] 6 3 4 507 -[1] 7 3 4 717 -[1] 8 3 4 1067 -[1] 9 3 4 1431 -[1] 10 3 4 1245 -[1] 1 4 4 21 -[1] 2 4 4 20 -[1] 3 4 4 44 -[1] 4 4 4 50 -[1] 5 4 4 118 -[1] 6 4 4 176 -[1] 7 4 4 499 -[1] 8 4 4 1069 -[1] 9 4 4 1922 -[1] 10 4 4 2351 -[1] 1 1 1 83 -[1] 2 1 1 266 -[1] 3 1 1 169 -[1] 4 1 1 233 -[1] 5 1 1 561 -[1] 6 1 1 524 -[1] 7 1 1 600 -[1] 8 1 1 759 -[1] 9 1 1 1232 -[1] 10 1 1 1574 -[1] 1 2 1 102 -[1] 2 2 1 451 -[1] 3 2 1 559 -[1] 4 2 1 307 -[1] 5 2 1 309 -[1] 6 2 1 337 -[1] 7 2 1 451 -[1] 8 2 1 737 -[1] 9 2 1 947 -[1] 10 2 1 1521 -[1] 1 3 1 948 -[1] 2 3 1 861 -[1] 3 3 1 595 -[1] 4 3 1 607 -[1] 5 3 1 637 -[1] 6 3 1 367 -[1] 7 3 1 529 -[1] 8 3 1 620 -[1] 9 3 1 297 -[1] 10 3 1 77 -[1] 1 4 1 538 -[1] 2 4 1 151 -[1] 3 4 1 327 -[1] 4 4 1 307 -[1] 5 4 1 318 -[1] 6 4 1 396 -[1] 7 4 1 755 -[1] 8 4 1 1027 -[1] 9 4 1 1263 -[1] 10 4 1 831 -[1] 1 1 2 317 -[1] 2 1 2 609 -[1] 3 1 2 659 -[1] 4 1 2 466 -[1] 5 1 2 346 -[1] 6 1 2 440 -[1] 7 1 2 539 -[1] 8 1 2 757 -[1] 9 1 2 1155 -[1] 10 1 2 1082 -[1] 1 2 2 450 -[1] 2 2 2 434 -[1] 3 2 2 208 -[1] 4 2 2 198 -[1] 5 2 2 573 -[1] 6 2 2 824 -[1] 7 2 2 1087 -[1] 8 2 2 1054 -[1] 9 2 2 1030 -[1] 10 2 2 638 -[1] 1 3 2 1119 -[1] 2 3 2 482 -[1] 3 3 2 505 -[1] 4 3 2 414 -[1] 5 3 2 387 -[1] 6 3 2 639 -[1] 7 3 2 870 -[1] 8 3 2 552 -[1] 9 3 2 450 -[1] 10 3 2 278 -[1] 1 4 2 483 -[1] 2 4 2 550 -[1] 3 4 2 629 -[1] 4 4 2 568 -[1] 5 4 2 805 -[1] 6 4 2 900 -[1] 7 4 2 972 -[1] 8 4 2 587 -[1] 9 4 2 392 -[1] 10 4 2 230 -[1] 1 1 3 457 -[1] 2 1 3 721 -[1] 3 1 3 368 -[1] 4 1 3 395 -[1] 5 1 3 528 -[1] 6 1 3 584 -[1] 7 1 3 749 -[1] 8 1 3 1138 -[1] 9 1 3 872 -[1] 10 1 3 249 -[1] 1 2 3 713 -[1] 2 2 3 314 -[1] 3 2 3 268 -[1] 4 2 3 768 -[1] 5 2 3 1044 -[1] 6 2 3 1028 -[1] 7 2 3 794 -[1] 8 2 3 421 -[1] 9 2 3 341 -[1] 10 2 3 196 -[1] 1 3 3 450 -[1] 2 3 3 601 -[1] 3 3 3 734 -[1] 4 3 3 1046 -[1] 5 3 3 958 -[1] 6 3 3 542 -[1] 7 3 3 524 -[1] 8 3 3 415 -[1] 9 3 3 250 -[1] 10 3 3 537 -[1] 1 4 3 576 -[1] 2 4 3 996 -[1] 3 4 3 641 -[1] 4 4 3 634 -[1] 5 4 3 500 -[1] 6 4 3 529 -[1] 7 4 3 566 -[1] 8 4 3 399 -[1] 9 4 3 287 -[1] 10 4 3 1332 -[1] 1 1 4 865 -[1] 2 1 4 444 -[1] 3 1 4 674 -[1] 4 1 4 1021 -[1] 5 1 4 741 -[1] 6 1 4 861 -[1] 7 1 4 884 -[1] 8 1 4 356 -[1] 9 1 4 276 -[1] 10 1 4 143 -[1] 1 2 4 774 -[1] 2 2 4 695 -[1] 3 2 4 831 -[1] 4 2 4 943 -[1] 5 2 4 852 -[1] 6 2 4 792 -[1] 7 2 4 546 -[1] 8 2 4 230 -[1] 9 2 4 104 -[1] 10 2 4 10 -[1] 1 3 4 542 -[1] 2 3 4 799 -[1] 3 3 4 728 -[1] 4 3 4 410 -[1] 5 3 4 559 -[1] 6 3 4 528 -[1] 7 3 4 512 -[1] 8 3 4 559 -[1] 9 3 4 639 -[1] 10 3 4 732 -[1] 1 4 4 277 -[1] 2 4 4 194 -[1] 3 4 4 1117 -[1] 4 4 4 1053 -[1] 5 4 4 871 -[1] 6 4 4 654 -[1] 7 4 4 736 -[1] 8 4 4 705 -[1] 9 4 4 359 -[1] 10 4 4 471 -Warning messages: -1: In Env_laboratory_weekly_sub$daylength > breaks_daylength[2] & Env_laboratory_weekly$daylength <= : - longer object length is not a multiple of shorter object length -2: In Env_laboratory_weekly_sub$daylength > breaks_daylength[3] & Env_laboratory_weekly$daylength <= : - longer object length is not a multiple of shorter object length -> -> proc.time() - user system elapsed -466.305 17.408 483.745 diff --git a/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.R b/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.R deleted file mode 100644 index 3cab5a6ea5ee2db54d574097ae0bf3df8a922348..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.R +++ /dev/null @@ -1,490 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -#library(Hmisc) - -#list.of.packages <- c("xts") -#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -#if(length(new.packages)) install.packages(new.packages) -library(xts) - - - - -## Varaible file - -variable_int<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -width<-30 -width_char<-paste(width) - - - -variable_x<-"Maximum_air_temperature" -variable<-"daylength" -#variable_y<-"Mean_Precipitation" -variable_y<-"Relative_humidity" - -#variable_y<-"Mean_Precipitation" -#variable<-"daylength" -#variable<-"Mean_Precipitation" -#"Maximum_air_temperature", -#"Minimum_air_temperature", -#"Mean_wind_speed", -#"Mean_Precipitation", -#"Relative_humidity", -#"daylength" - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) - -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -colnames(Env_laboratory_weekly)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - - -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) - -quarter<-4 -quarter_char<-paste("_",as.character(quarter),"-quarter",sep="") - -if (quarter==1){ -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=1 & month(as.Date(Env_Campylobacter_data_all2$Date))<=3) -Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=1 & month(as.Date(Env_laboratory_weekly$Date))<=3) -} - -if (quarter==2){ -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=4 & month(as.Date(Env_Campylobacter_data_all2$Date))<=6) -Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=4 & month(as.Date(Env_laboratory_weekly$Date))<=6) -} - -if (quarter==3){ -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=7 & month(as.Date(Env_Campylobacter_data_all2$Date))<=9) -Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=7 & month(as.Date(Env_laboratory_weekly$Date))<=9) -} - -if (quarter==4){ -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=10 & month(as.Date(Env_Campylobacter_data_all2$Date))<=12) -Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=10 & month(as.Date(Env_laboratory_weekly$Date))<=12) -} - - - - -################### include latitude and longitude -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - - -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -colnames(lat_long_lab)<-c("PostCode","lat","long") - -Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -Env_laboratory_int3<-data.frame(Env_laboratory_int2) - -Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) - - - -######################## include daylength ################## - -PC_df<-data.frame(All_PC,as.Date(dates)) -colnames(PC_df)<-c("PostCode","Date") - -if (quarter==1){ -PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=1 & month(as.Date(PC_df$Date))<=3) -} - -if (quarter==2}{ -PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=4 & month(as.Date(PC_df$Date))<=6) -} - -if (quarter==3}{ -PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=7 & month(as.Date(PC_df$Date))<=9) -} - -if (quarter==4}{ -PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=10 & month(as.Date(PC_df$Date))<=12) -} - -Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") - - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Post_Codes_df$lat -day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") -daylength_df$Date<-as.factor(daylength_df$Date) -daylength_df$lat<-as.factor(daylength_df$lat) -Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) - -#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -#Env_laboratory<-data.frame(Env_laboratory_int4) -Env_laboratory<-data.frame(Env_laboratory_int3) -Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) - - -#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) - - - - - -################### Divide the domains of the variables in bins according to quantiles - - -index_C<-which (names(Env_Campylobacter_data)==variable) -index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -index_x_C<-which (names(Env_Campylobacter_data)==variable_x) - -index_res_C<-which (names(Env_Campylobacter_data)=="residents") - - -index<-which (names(Env_laboratory)==variable) -index_y<-which (names(Env_laboratory)==variable_y) -index_x<-which (names(Env_laboratory)==variable_x) -index_res<-which (names(Env_laboratory)=="residents") - - -######################### - - -breaks_z_lab<-function(variable,by_z) -{ - - index<-which (names(Env_laboratory)==variable) - - - breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - - -breaks_z<-function(variable,by_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - - - -breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - index<-which (names(Env_laboratory)==variable) - index_y<-which (names(Env_laboratory)==variable_y) - - - - wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_some<-Env_laboratory[ww,] - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)) - breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] - breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] - - }else{ - - breaks_y<-c() - } - - return(breaks_y) - } - - - -breaks_y<-function(variable,variable_y,by_z,by_y,j_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - - - - wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)) - breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] - breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] - - }else{ - - breaks_y<-c() - } - - return(breaks_y) - } - - - -breaks_x_lab<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y) -{ - index_C<-which (names(Env_Campylobacter_data)==variable) - index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - - - index<-which (names(Env_laboratory)==variable) - index_y<-which (names(Env_laboratory)==variable_y) - index_x<-which (names(Env_laboratory)==variable_x) - - if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){ - - wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - wt<-(findInterval(Env_laboratory[,index_y],breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_laboratory_some<-Env_laboratory[ww,] - - - breaks_x<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)) - breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)] - breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1] - - } else { - - breaks_x<-c() - } } else { - - breaks_x<-c() - - } - - return(breaks_x) - } - - -breaks_x<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y) -{ - index_C<-which (names(Env_Campylobacter_data)==variable) - index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - index_x_C<-which (names(Env_Campylobacter_data)==variable_x) - - if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){ - - wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - wt<-(findInterval(Env_Campylobacter_data_some[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_Campylobacter_data_some2<-Env_Campylobacter_data_some[ww,] - - - breaks_x<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)) - breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)] - breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1] - - } else - { breaks_x<-c() - } - } - else { - - breaks_x<-c() - - } - - return(breaks_x) - } - - -################# - - - - -var_x_loc_df<-data.frame(character(), character(),character(),numeric(),numeric(),numeric()) -colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") - -residents_i_var<-0 -residents_universal<-0 -#i_var_max<-length(breaks_var) -#i_var_min<-1 -#i_var_max_x<-length(breaks_var_x) -#i_var_min_x<-1 - - -##################### -by_z<-0.25 -by_y<-0.25 -by_x<-0.1 - -#i_var_min<-breaks_z(variable,by_z)[1] -#i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))] -j_z_min<-1 -j_z_max<-length(breaks_z(variable,by_z))-1 - - - -for (j_z in c(j_z_min:j_z_max)) -{ - - wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] - - wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_z<-Env_laboratory[ww,] - - if (length(Env_Campylobacter_data_z[,1])!=0){ - if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){ - - j_y_min<-1 - j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1 - - - - for (j_y in c(j_y_min:j_y_max)) - { - - wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,] - - wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_laboratory_y<-Env_laboratory_z[ww,] - - - if (length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))!=0){ - - j_x_min<-1 - j_x_max<- length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))-1 - for (j_x in c(j_x_min:j_x_max)) - { - - - wt<-(findInterval((Env_Campylobacter_data_y[,index_x_C]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))) - ww<-which(wt==j_x) - Yt1<-Env_Campylobacter_data_y[ww,c(1:3,index_C,index_y_C,index_x_C,index_res_C)] - - wt<-(findInterval((Env_laboratory[,index_x]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))) - ww<-which(wt==j_x) - Y_tot<-Env_laboratory_y[ww,c(1:2,index,index_y,index_x,index_res)] - - Total_cases<-sum((as.numeric(na.omit(Yt1$Cases)))) - residents<-sum((as.numeric(na.omit(Yt1$residents)))) - residents_tot<-sum((as.numeric(na.omit(Y_tot$residents)))) - - data_df<-data.frame( - breaks_z(variable,by_z)[j_z], - breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y], - breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)[j_x], - Total_cases, - residents, - residents_tot) - - - - - - colnames(data_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") - var_x_loc_df<-rbind(var_x_loc_df,data_df) - print(c(j_x,j_y,j_z, Total_cases)) - - }}} - } - - - }} - - -write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",variable_x,"_",width_char,quarter_char,"_Simulated_for_rec_original_MEDMI_quantile.csv",sep="")) diff --git a/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.Rout b/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.Rout deleted file mode 100644 index 51b9eb0401f590db2da06ce35ddfb7363f13f540..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_MEDMI_quarters.Rout +++ /dev/null @@ -1,204 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> #library(Hmisc) -> -> #list.of.packages <- c("xts") -> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -> #if(length(new.packages)) install.packages(new.packages) -> library(xts) -Loading required package: zoo - -Attaching package: ‘zoo’ - -The following object is masked from ‘package:timeSeries’: - - time<- - -The following objects are masked from ‘package:base’: - - as.Date, as.Date.numeric - - -Attaching package: ‘xts’ - -The following objects are masked from ‘package:pastecs’: - - first, last - -> -> -> -> -> ## Varaible file -> -> variable_int<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> width<-30 -> width_char<-paste(width) -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable<-"daylength" -> #variable_y<-"Mean_Precipitation" -> variable_y<-"Relative_humidity" -> -> #variable_y<-"Mean_Precipitation" -> #variable<-"daylength" -> #variable<-"Mean_Precipitation" -> #"Maximum_air_temperature", -> #"Minimum_air_temperature", -> #"Mean_wind_speed", -> #"Mean_Precipitation", -> #"Relative_humidity", -> #"daylength" -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -> colnames(Env_laboratory_weekly)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> -> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) -> -> quarter<-4 -> quarter_char<-paste("_",as.character(quarter),"-quarter",sep="") -> -> if (quarter==1){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=1 & month(as.Date(Env_Campylobacter_data_all2$Date))<=3) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=1 & month(as.Date(Env_laboratory_weekly$Date))<=3) -+ } -> -> if (quarter==2){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=4 & month(as.Date(Env_Campylobacter_data_all2$Date))<=6) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=4 & month(as.Date(Env_laboratory_weekly$Date))<=6) -+ } -> -> if (quarter==3){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=7 & month(as.Date(Env_Campylobacter_data_all2$Date))<=9) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=7 & month(as.Date(Env_laboratory_weekly$Date))<=9) -+ } -> -> if (quarter==4){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,month(as.Date(Env_Campylobacter_data_all2$Date))>=10 & month(as.Date(Env_Campylobacter_data_all2$Date))<=12) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,month(as.Date(Env_laboratory_weekly$Date))>=10 & month(as.Date(Env_laboratory_weekly$Date))<=12) -+ } -> -> -> -> -> ################### include latitude and longitude -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> -> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -> Env_laboratory_int3<-data.frame(Env_laboratory_int2) -> -> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -> Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) -> -> -> -> ######################## include daylength ################## -> -> PC_df<-data.frame(All_PC,as.Date(dates)) -> colnames(PC_df)<-c("PostCode","Date") -> -> if (quarter==1){ -+ PC_df<-subset(PC_df,month(as.Date(PC_df$Date))>=1 & month(as.Date(PC_df$Date))<=3) -+ } -> -> if (quarter==2}{ -Error: unexpected '}' in "if (quarter==2}" -Execution halted diff --git a/PAPER_Conditional_probability_quantile_original_one_variable_quantile.R b/PAPER_Conditional_probability_quantile_original_one_variable_quantile.R deleted file mode 100644 index cf23dae1d24848ee25d6f01fc8bb2aafedb8eca5..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_one_variable_quantile.R +++ /dev/null @@ -1,251 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -#library(Hmisc) - -#list.of.packages <- c("xts") -#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -#if(length(new.packages)) install.packages(new.packages) -library(xts) - - - - -## Variable file - -variable_int<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -width<-7 -width_char<-paste(width) - - - -variable<-"Mean_wind_speed" - -#variable<-"Maximum_air_temperature", -#variable_y<-"Mean_Precipitation" -#variable<-"daylength" -#variable<-"Minimum_air_temperature" -#variable<-"Relative_humidity", - -#variable<-"Mean_wind_speed", - -#variable_y<-"Cumul_Precipitation" - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) - -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -colnames(Env_laboratory_weekly)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) - - - -################### include latitude and longitude -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - - -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -colnames(lat_long_lab)<-c("PostCode","lat","long") - -Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -Env_laboratory_int3<-data.frame(Env_laboratory_int2) - -Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) - - - -######################## include daylength ################## - -PC_df<-data.frame(All_PC,as.Date(dates)) -colnames(PC_df)<-c("PostCode","Date") - -Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") - - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Post_Codes_df$lat -day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") -daylength_df$Date<-as.factor(daylength_df$Date) -daylength_df$lat<-as.factor(daylength_df$lat) -Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) - -#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -#Env_laboratory<-data.frame(Env_laboratory_int4) -Env_laboratory<-data.frame(Env_laboratory_int3) -Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) - - -#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) - - - - - -################### Divide the domains of the variables in bins according to quantiles - - -index_C<-which (names(Env_Campylobacter_data)==variable) - - -index<-which (names(Env_laboratory)==variable) - - -######################### - - -breaks_z_lab<-function(variable,by_z) -{ - - index<-which (names(Env_laboratory)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - -breaks_z<-function(variable,by_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - - -################# - - - - -var_x_loc_df<-data.frame(character(),numeric(),numeric(),numeric()) -colnames(var_x_loc_df)<-c(variable,"counts","residents","residents_tot") - -residents_i_var<-0 -residents_universal<-0 -#i_var_max<-length(breaks_var) -#i_var_min<-1 -#i_var_max_x<-length(breaks_var_x) -#i_var_min_x<-1 - - -##################### -by_z<-0.05 - -j_z_min<-1 -j_z_max<-length(breaks_z(variable,by_z))-1 - - - -for (j_z in c(j_z_min:j_z_max)) -{ - - wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] - - wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_z<-Env_laboratory[ww,] - - - - Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_z$Cases)))) - residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_z$residents)))) - residents_tot<-sum((as.numeric(na.omit(Env_laboratory_z$residents)))) - - data_df<-data.frame( - breaks_z(variable,by_z)[j_z], - Total_cases, - residents, - residents_tot) - - - - - - colnames(data_df)<-c(variable,"counts","residents","residents_tot") - var_x_loc_df<-rbind(var_x_loc_df,data_df) - print(c(j_z, Total_cases)) - } - - -write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.R b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.R deleted file mode 100644 index 057e32acef8e219d9a846ecd416739b900526435..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.R +++ /dev/null @@ -1,364 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -#library(Hmisc) - -#list.of.packages <- c("xts") -#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -#if(length(new.packages)) install.packages(new.packages) -library(xts) - - - - -## Varaible file - -variable_int<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -width<-30 -width_char<-paste(width) - - -variable_y<-"Difference_air_temperature" -#variable_y<-"Maximum_air_temperature" -variable<-"daylength" -#variable<-"Relative_humidity" -#variable<-"Mean_Precipitation" -#variable<-"Mean_wind_speed" - -#variable_y<-"Relative_humidity" -#variable_y<-"Mean_Precipitation" -#variable_y<-"Cumul_Precipitation" -#variable_y<-"Mean_wind_speed" -#variable_y<-"daylength" -#variable_y<-"Minimum_air_temperature" -#variable<-"Difference_air_temperature" - -#variable_y<-"Mean_Precipitation" -#variable<-"daylength" -#variable<-"Mean_Precipitation" -#"Maximum_air_temperature", -#"Minimum_air_temperature", -#"Mean_wind_speed", -#"Mean_Precipitation", -#"Relative_humidity", -#"daylength" - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) - -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - -Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -colnames(Env_laboratory_weekly)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - - -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) - - -################### include latitude and longitude -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - - -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -colnames(lat_long_lab)<-c("PostCode","lat","long") - -Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -Env_laboratory_int3<-data.frame(Env_laboratory_int2) - -Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) - - - -######################## include daylength ################## - -PC_df<-data.frame(All_PC,as.Date(dates)) -colnames(PC_df)<-c("PostCode","Date") - -Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") - - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Post_Codes_df$lat -day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") -daylength_df$Date<-as.factor(daylength_df$Date) -daylength_df$lat<-as.factor(daylength_df$lat) -Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) - -#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -#Env_laboratory<-data.frame(Env_laboratory_int4) -Env_laboratory<-data.frame(Env_laboratory_int3) -Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) - - -#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) - - - -Env_Campylobacter_data$Difference_air_temperature<-Env_Campylobacter_data$Maximum_air_temperature-Env_Campylobacter_data$Minimum_air_temperature -Env_laboratory$Difference_air_temperature<-Env_laboratory$Maximum_air_temperature-Env_laboratory$Minimum_air_temperature - - - -################### Divide the domains of the variables in bins according to quantiles - - -index_C<-which (names(Env_Campylobacter_data)==variable) -index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - - -index<-which (names(Env_laboratory)==variable) -index_y<-which (names(Env_laboratory)==variable_y) - - -######################### - - -breaks_z_lab<-function(variable,by_z) -{ - - index<-which (names(Env_laboratory)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - -breaks_z<-function(variable,by_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - -breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - index<-which (names(Env_laboratory)==variable) - index_y<-which (names(Env_laboratory)==variable_y) - - - - wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_some<-Env_laboratory[ww,] - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)) - breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] - breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] - - }else{ - - breaks_y<-c() - } - - return(breaks_y) - } - - - - -breaks_y<-function(variable,variable_y,by_z,by_y,j_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - - - - wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)) - breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] - breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] - - }else{ - - breaks_y<-c() - } - - return(breaks_y) - } - - - -################# - - - - -var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric()) -colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot") - -residents_i_var<-0 -residents_universal<-0 -#i_var_max<-length(breaks_var) -#i_var_min<-1 -#i_var_max_x<-length(breaks_var_x) -#i_var_min_x<-1 - - -##################### -by_z<-0.2 -by_y<-0.05 - - -#i_var_min<-breaks_z(variable,by_z)[1] -#i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))] -j_z_min<-1 -j_z_max<-length(breaks_z(variable,by_z))-1 - - - -for (j_z in c(j_z_min:j_z_max)) -{ - - wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] - - wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_z<-Env_laboratory[ww,] - - if (length(Env_Campylobacter_data_z[,1])!=0){ - if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){ - - j_y_min<-1 - j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1 - - - - for (j_y in c(j_y_min:j_y_max)) - { - - wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,] - - wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_laboratory_y<-Env_laboratory_z[ww,] - - - - - Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases)))) - residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents)))) - residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents)))) - - data_df<-data.frame( - breaks_z(variable,by_z)[j_z], - breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y], - Total_cases, - residents, - residents_tot) - - - - - - colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot") - var_x_loc_df<-rbind(var_x_loc_df,data_df) - print(c(j_y,j_z, Total_cases)) - - } - } - - - }} - - -write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.Rout b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.Rout deleted file mode 100644 index c55b63a8b9f21fdb455144426ff7d32e52258c9d..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI.Rout +++ /dev/null @@ -1,519 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> #library(Hmisc) -> -> #list.of.packages <- c("xts") -> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -> #if(length(new.packages)) install.packages(new.packages) -> library(xts) -Loading required package: zoo - -Attaching package: ‘zoo’ - -The following object is masked from ‘package:timeSeries’: - - time<- - -The following objects are masked from ‘package:base’: - - as.Date, as.Date.numeric - - -Attaching package: ‘xts’ - -The following objects are masked from ‘package:pastecs’: - - first, last - -> -> -> -> -> ## Varaible file -> -> variable_int<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> width<-14 -> width_char<-paste(width) -> -> -> -> #variable_x<-"Maximum_air_temperature" -> #variable<-"daylength" -> #variable_y<-"Relative_humidity" -> -> #variable<-"Mean_Precipitation" -> variable_y<-"Relative_humidity" -> variable<-"Maximum_air_temperature" -> -> #variable_y<-"Mean_Precipitation" -> #variable<-"daylength" -> #variable<-"Mean_Precipitation" -> #"Maximum_air_temperature", -> #"Minimum_air_temperature", -> #"Mean_wind_speed", -> #"Mean_Precipitation", -> #"Relative_humidity", -> #"daylength" -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -> colnames(Env_laboratory_weekly)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> -> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) -> -> -> ################### include latitude and longitude -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> -> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -> Env_laboratory_int3<-data.frame(Env_laboratory_int2) -> -> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -> Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) -> -> -> -> ######################## include daylength ################## -> -> PC_df<-data.frame(All_PC,as.Date(dates)) -> colnames(PC_df)<-c("PostCode","Date") -> -> Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") -> -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Post_Codes_df$lat -> day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> daylength_df$Date<-as.factor(daylength_df$Date) -> daylength_df$lat<-as.factor(daylength_df$lat) -> Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -> Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) -> -> #Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -> #Env_laboratory<-data.frame(Env_laboratory_int4) -> Env_laboratory<-data.frame(Env_laboratory_int3) -> Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -> Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) -> -> -> #Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -> #Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) -> -> -> -> -> -> -> ################### Divide the domains of the variables in bins according to quantiles -> -> -> index_C<-which (names(Env_Campylobacter_data)==variable) -> index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -> -> -> index<-which (names(Env_laboratory)==variable) -> index_y<-which (names(Env_laboratory)==variable_y) -> -> -> ######################### -> -> -> breaks_z_lab<-function(variable,by_z) -+ { -+ -+ index<-which (names(Env_laboratory)==variable) -+ -+ breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) -+ -+ breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] -+ breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] -+ -+ -+ return(breaks_z) -+ -+ } -> -> -> breaks_z<-function(variable,by_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ -+ breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) -+ -+ breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] -+ breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] -+ -+ -+ return(breaks_z) -+ -+ } -> -> -> breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ -+ index<-which (names(Env_laboratory)==variable) -+ index_y<-which (names(Env_laboratory)==variable_y) -+ -+ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_laboratory_some<-Env_laboratory[ww,] -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)) -+ breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] -+ breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] -+ -+ }else{ -+ -+ breaks_y<-c() -+ } -+ -+ return(breaks_y) -+ } -> -> -> -> -> breaks_y<-function(variable,variable_y,by_z,by_y,j_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ -+ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)) -+ breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] -+ breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] -+ -+ }else{ -+ -+ breaks_y<-c() -+ } -+ -+ return(breaks_y) -+ } -> -> -> -> ################# -> -> -> -> -> var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric()) -> colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot") -> -> residents_i_var<-0 -> residents_universal<-0 -> #i_var_max<-length(breaks_var) -> #i_var_min<-1 -> #i_var_max_x<-length(breaks_var_x) -> #i_var_min_x<-1 -> -> -> ##################### -> by_z<-0.2 -> by_y<-0.05 -> -> -> #i_var_min<-breaks_z(variable,by_z)[1] -> #i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))] -> j_z_min<-1 -> j_z_max<-length(breaks_z(variable,by_z))-1 -> -> -> -> for (j_z in c(j_z_min:j_z_max)) -+ { -+ -+ wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] -+ -+ wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_laboratory_z<-Env_laboratory[ww,] -+ -+ if (length(Env_Campylobacter_data_z[,1])!=0){ -+ if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){ -+ -+ j_y_min<-1 -+ j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1 -+ -+ -+ -+ for (j_y in c(j_y_min:j_y_max)) -+ { -+ -+ wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,] -+ -+ wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_laboratory_y<-Env_laboratory_z[ww,] -+ -+ -+ -+ -+ Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases)))) -+ residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents)))) -+ residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents)))) -+ -+ data_df<-data.frame( -+ breaks_z(variable,by_z)[j_z], -+ breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y], -+ Total_cases, -+ residents, -+ residents_tot) -+ -+ -+ -+ -+ -+ colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot") -+ var_x_loc_df<-rbind(var_x_loc_df,data_df) -+ print(c(j_y,j_z, Total_cases)) -+ -+ } -+ } -+ -+ -+ }} -[1] 1 1 16381 -[1] 2 1 16399 -[1] 3 1 16202 -[1] 4 1 16108 -[1] 5 1 15977 -[1] 6 1 16167 -[1] 7 1 16365 -[1] 8 1 15732 -[1] 9 1 15786 -[1] 10 1 16207 -[1] 11 1 16208 -[1] 12 1 16134 -[1] 13 1 16176 -[1] 14 1 16066 -[1] 15 1 15923 -[1] 16 1 16236 -[1] 17 1 16493 -[1] 18 1 16615 -[1] 19 1 16278 -[1] 20 1 16586 -[1] 1 2 18580 -[1] 2 2 17952 -[1] 3 2 17855 -[1] 4 2 18326 -[1] 5 2 18528 -[1] 6 2 18022 -[1] 7 2 17874 -[1] 8 2 17693 -[1] 9 2 17809 -[1] 10 2 17369 -[1] 11 2 17669 -[1] 12 2 17439 -[1] 13 2 17376 -[1] 14 2 17360 -[1] 15 2 17411 -[1] 16 2 17294 -[1] 17 2 17636 -[1] 18 2 17410 -[1] 19 2 16777 -[1] 20 2 17470 -[1] 1 3 21174 -[1] 2 3 20936 -[1] 3 3 20726 -[1] 4 3 20464 -[1] 5 3 20644 -[1] 6 3 21448 -[1] 7 3 21934 -[1] 8 3 21392 -[1] 9 3 21352 -[1] 10 3 21420 -[1] 11 3 21164 -[1] 12 3 21344 -[1] 13 3 20579 -[1] 14 3 19855 -[1] 15 3 19713 -[1] 16 3 20119 -[1] 17 3 19859 -[1] 18 3 19670 -[1] 19 3 18852 -[1] 20 3 19512 -[1] 1 4 21076 -[1] 2 4 21371 -[1] 3 4 21879 -[1] 4 4 21538 -[1] 5 4 20647 -[1] 6 4 21140 -[1] 7 4 21444 -[1] 8 4 20787 -[1] 9 4 20884 -[1] 10 4 20758 -[1] 11 4 21532 -[1] 12 4 21201 -[1] 13 4 21238 -[1] 14 4 21551 -[1] 15 4 21133 -[1] 16 4 21052 -[1] 17 4 21660 -[1] 18 4 21317 -[1] 19 4 21938 -[1] 20 4 20876 -[1] 1 5 19650 -[1] 2 5 20738 -[1] 3 5 20128 -[1] 4 5 20236 -[1] 5 5 20638 -[1] 6 5 20986 -[1] 7 5 20437 -[1] 8 5 20657 -[1] 9 5 20647 -[1] 10 5 20995 -[1] 11 5 20447 -[1] 12 5 21241 -[1] 13 5 20869 -[1] 14 5 20794 -[1] 15 5 20673 -[1] 16 5 20808 -[1] 17 5 20312 -[1] 18 5 20619 -[1] 19 5 21206 -[1] 20 5 21335 -> -> -> write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> -> proc.time() - user system elapsed -261.239 10.356 271.610 diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.R b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.R deleted file mode 100644 index 56e12fca96b98f488f58afd95ca3b52631aff364..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.R +++ /dev/null @@ -1,364 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -#library(Hmisc) - -#list.of.packages <- c("xts") -#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -#if(length(new.packages)) install.packages(new.packages) -library(xts) - - - - -## Varaible file - -variable_int<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -width<-30 -width_char<-paste(width) - - -#variable_y<-"Difference_air_temperature" -variable_y<-"Maximum_air_temperature" -#variable<-"daylength" -variable<-"Relative_humidity" -#variable<-"Mean_Precipitation" -#variable<-"Mean_wind_speed" - -#variable_y<-"Relative_humidity" -#variable_y<-"Mean_Precipitation" -#variable_y<-"Cumul_Precipitation" -#variable_y<-"Mean_wind_speed" -#variable_y<-"daylength" -#variable_y<-"Minimum_air_temperature" -#variable<-"Difference_air_temperature" - -#variable_y<-"Mean_Precipitation" -#variable<-"daylength" -#variable<-"Mean_Precipitation" -#"Maximum_air_temperature", -#"Minimum_air_temperature", -#"Mean_wind_speed", -#"Mean_Precipitation", -#"Relative_humidity", -#"daylength" - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) - -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - -Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -colnames(Env_laboratory_weekly)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - - -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) - - -################### include latitude and longitude -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - - -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -colnames(lat_long_lab)<-c("PostCode","lat","long") - -Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -Env_laboratory_int3<-data.frame(Env_laboratory_int2) - -Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) - - - -######################## include daylength ################## - -PC_df<-data.frame(All_PC,as.Date(dates)) -colnames(PC_df)<-c("PostCode","Date") - -Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") - - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Post_Codes_df$lat -day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") -daylength_df$Date<-as.factor(daylength_df$Date) -daylength_df$lat<-as.factor(daylength_df$lat) -Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) - -#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -#Env_laboratory<-data.frame(Env_laboratory_int4) -Env_laboratory<-data.frame(Env_laboratory_int3) -Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) - - -#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) - - - -Env_Campylobacter_data$Difference_air_temperature<-Env_Campylobacter_data$Maximum_air_temperature-Env_Campylobacter_data$Minimum_air_temperature -Env_laboratory$Difference_air_temperature<-Env_laboratory$Maximum_air_temperature-Env_laboratory$Minimum_air_temperature - - - -################### Divide the domains of the variables in bins according to quantiles - - -index_C<-which (names(Env_Campylobacter_data)==variable) -index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - - -index<-which (names(Env_laboratory)==variable) -index_y<-which (names(Env_laboratory)==variable_y) - - -######################### - - -breaks_z_lab<-function(variable,by_z) -{ - - index<-which (names(Env_laboratory)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - -breaks_z<-function(variable,by_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - -breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - index<-which (names(Env_laboratory)==variable) - index_y<-which (names(Env_laboratory)==variable_y) - - - - wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_some<-Env_laboratory[ww,] - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)) - breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] - breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] - - }else{ - - breaks_y<-c() - } - - return(breaks_y) - } - - - - -breaks_y<-function(variable,variable_y,by_z,by_y,j_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - - - - wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)) - breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] - breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] - - }else{ - - breaks_y<-c() - } - - return(breaks_y) - } - - - -################# - - - - -var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric()) -colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot") - -residents_i_var<-0 -residents_universal<-0 -#i_var_max<-length(breaks_var) -#i_var_min<-1 -#i_var_max_x<-length(breaks_var_x) -#i_var_min_x<-1 - - -##################### -by_z<-0.005 -by_y<-0.005 - - -#i_var_min<-breaks_z(variable,by_z)[1] -#i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))] -j_z_min<-1 -j_z_max<-length(breaks_z(variable,by_z))-1 - - - -for (j_z in c(j_z_min:j_z_max)) -{ - - wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] - - wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_z<-Env_laboratory[ww,] - - if (length(Env_Campylobacter_data_z[,1])!=0){ - if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){ - - j_y_min<-1 - j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1 - - - - for (j_y in c(j_y_min:j_y_max)) - { - - wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,] - - wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_laboratory_y<-Env_laboratory_z[ww,] - - - - - Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases)))) - residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents)))) - residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents)))) - - data_df<-data.frame( - breaks_z(variable,by_z)[j_z], - breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y], - Total_cases, - residents, - residents_tot) - - - - - - colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot") - var_x_loc_df<-rbind(var_x_loc_df,data_df) - print(c(j_y,j_z, Total_cases)) - - } - } - - - }} - - -write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI_high_resolution.csv",sep="")) diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.Rout b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.Rout deleted file mode 100644 index 57e67f1b0467b21f08b440d402054a0cb1016e86..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_high_resolution.Rout +++ /dev/null @@ -1,40427 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> #library(Hmisc) -> -> #list.of.packages <- c("xts") -> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -> #if(length(new.packages)) install.packages(new.packages) -> library(xts) -Loading required package: zoo - -Attaching package: ‘zoo’ - -The following object is masked from ‘package:timeSeries’: - - time<- - -The following objects are masked from ‘package:base’: - - as.Date, as.Date.numeric - - -Attaching package: ‘xts’ - -The following objects are masked from ‘package:pastecs’: - - first, last - -> -> -> -> -> ## Varaible file -> -> variable_int<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> width<-30 -> width_char<-paste(width) -> -> -> #variable_y<-"Difference_air_temperature" -> variable_y<-"Maximum_air_temperature" -> #variable<-"daylength" -> variable<-"Relative_humidity" -> #variable<-"Mean_Precipitation" -> #variable<-"Mean_wind_speed" -> -> #variable_y<-"Relative_humidity" -> #variable_y<-"Mean_Precipitation" -> #variable_y<-"Cumul_Precipitation" -> #variable_y<-"Mean_wind_speed" -> #variable_y<-"daylength" -> #variable_y<-"Minimum_air_temperature" -> #variable<-"Difference_air_temperature" -> -> #variable_y<-"Mean_Precipitation" -> #variable<-"daylength" -> #variable<-"Mean_Precipitation" -> #"Maximum_air_temperature", -> #"Minimum_air_temperature", -> #"Mean_wind_speed", -> #"Mean_Precipitation", -> #"Relative_humidity", -> #"daylength" -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -> colnames(Env_laboratory_weekly)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> -> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) -> -> -> ################### include latitude and longitude -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> -> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -> Env_laboratory_int3<-data.frame(Env_laboratory_int2) -> -> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -> Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) -> -> -> -> ######################## include daylength ################## -> -> PC_df<-data.frame(All_PC,as.Date(dates)) -> colnames(PC_df)<-c("PostCode","Date") -> -> Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") -> -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Post_Codes_df$lat -> day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> daylength_df$Date<-as.factor(daylength_df$Date) -> daylength_df$lat<-as.factor(daylength_df$lat) -> Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -> Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) -> -> #Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -> #Env_laboratory<-data.frame(Env_laboratory_int4) -> Env_laboratory<-data.frame(Env_laboratory_int3) -> Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -> Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) -> -> -> #Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -> #Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) -> -> -> -> Env_Campylobacter_data$Difference_air_temperature<-Env_Campylobacter_data$Maximum_air_temperature-Env_Campylobacter_data$Minimum_air_temperature -> Env_laboratory$Difference_air_temperature<-Env_laboratory$Maximum_air_temperature-Env_laboratory$Minimum_air_temperature -> -> -> -> ################### Divide the domains of the variables in bins according to quantiles -> -> -> index_C<-which (names(Env_Campylobacter_data)==variable) -> index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -> -> -> index<-which (names(Env_laboratory)==variable) -> index_y<-which (names(Env_laboratory)==variable_y) -> -> -> ######################### -> -> -> breaks_z_lab<-function(variable,by_z) -+ { -+ -+ index<-which (names(Env_laboratory)==variable) -+ -+ breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) -+ -+ breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] -+ breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] -+ -+ -+ return(breaks_z) -+ -+ } -> -> -> breaks_z<-function(variable,by_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ -+ breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) -+ -+ breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] -+ breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] -+ -+ -+ return(breaks_z) -+ -+ } -> -> -> breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ -+ index<-which (names(Env_laboratory)==variable) -+ index_y<-which (names(Env_laboratory)==variable_y) -+ -+ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_laboratory_some<-Env_laboratory[ww,] -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)) -+ breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] -+ breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] -+ -+ }else{ -+ -+ breaks_y<-c() -+ } -+ -+ return(breaks_y) -+ } -> -> -> -> -> breaks_y<-function(variable,variable_y,by_z,by_y,j_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ -+ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)) -+ breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] -+ breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] -+ -+ }else{ -+ -+ breaks_y<-c() -+ } -+ -+ return(breaks_y) -+ } -> -> -> -> ################# -> -> -> -> -> var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric()) -> colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot") -> -> residents_i_var<-0 -> residents_universal<-0 -> #i_var_max<-length(breaks_var) -> #i_var_min<-1 -> #i_var_max_x<-length(breaks_var_x) -> #i_var_min_x<-1 -> -> -> ##################### -> by_z<-0.005 -> by_y<-0.005 -> -> -> #i_var_min<-breaks_z(variable,by_z)[1] -> #i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))] -> j_z_min<-1 -> j_z_max<-length(breaks_z(variable,by_z))-1 -> -> -> -> for (j_z in c(j_z_min:j_z_max)) -+ { -+ -+ wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] -+ -+ wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_laboratory_z<-Env_laboratory[ww,] -+ -+ if (length(Env_Campylobacter_data_z[,1])!=0){ -+ if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){ -+ -+ j_y_min<-1 -+ j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1 -+ -+ -+ -+ for (j_y in c(j_y_min:j_y_max)) -+ { -+ -+ wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,] -+ -+ wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_laboratory_y<-Env_laboratory_z[ww,] -+ -+ -+ -+ -+ Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases)))) -+ residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents)))) -+ residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents)))) -+ -+ data_df<-data.frame( -+ breaks_z(variable,by_z)[j_z], -+ breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y], -+ Total_cases, -+ residents, -+ residents_tot) -+ -+ -+ -+ -+ -+ colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot") -+ var_x_loc_df<-rbind(var_x_loc_df,data_df) -+ print(c(j_y,j_z, Total_cases)) -+ -+ } -+ } -+ -+ -+ }} -[1] 1 1 43 -[1] 2 1 65 -[1] 3 1 134 -[1] 4 1 54 -[1] 5 1 53 -[1] 6 1 63 -[1] 7 1 48 -[1] 8 1 51 -[1] 9 1 56 -[1] 10 1 117 -[1] 11 1 59 -[1] 12 1 42 -[1] 13 1 39 -[1] 14 1 38 -[1] 15 1 53 -[1] 16 1 40 -[1] 17 1 79 -[1] 18 1 49 -[1] 19 1 52 -[1] 20 1 43 -[1] 21 1 68 -[1] 22 1 32 -[1] 23 1 43 -[1] 24 1 50 -[1] 25 1 48 -[1] 26 1 46 -[1] 27 1 47 -[1] 28 1 40 -[1] 29 1 32 -[1] 30 1 45 -[1] 31 1 38 -[1] 32 1 63 -[1] 33 1 35 -[1] 34 1 67 -[1] 35 1 30 -[1] 36 1 37 -[1] 37 1 48 -[1] 38 1 43 -[1] 39 1 74 -[1] 40 1 46 -[1] 41 1 51 -[1] 42 1 108 -[1] 43 1 48 -[1] 44 1 32 -[1] 45 1 65 -[1] 46 1 30 -[1] 47 1 67 -[1] 48 1 32 -[1] 49 1 33 -[1] 50 1 50 -[1] 51 1 51 -[1] 52 1 39 -[1] 53 1 48 -[1] 54 1 37 -[1] 55 1 56 -[1] 56 1 53 -[1] 57 1 38 -[1] 58 1 88 -[1] 59 1 88 -[1] 60 1 33 -[1] 61 1 50 -[1] 62 1 64 -[1] 63 1 41 -[1] 64 1 36 -[1] 65 1 41 -[1] 66 1 40 -[1] 67 1 43 -[1] 68 1 45 -[1] 69 1 42 -[1] 70 1 52 -[1] 71 1 35 -[1] 72 1 43 -[1] 73 1 50 -[1] 74 1 69 -[1] 75 1 32 -[1] 76 1 59 -[1] 77 1 41 -[1] 78 1 44 -[1] 79 1 35 -[1] 80 1 62 -[1] 81 1 31 -[1] 82 1 50 -[1] 83 1 57 -[1] 84 1 51 -[1] 85 1 41 -[1] 86 1 44 -[1] 87 1 30 -[1] 88 1 41 -[1] 89 1 69 -[1] 90 1 46 -[1] 91 1 58 -[1] 92 1 42 -[1] 93 1 61 -[1] 94 1 36 -[1] 95 1 44 -[1] 96 1 34 -[1] 97 1 45 -[1] 98 1 44 -[1] 99 1 32 -[1] 100 1 40 -[1] 101 1 33 -[1] 102 1 40 -[1] 103 1 34 -[1] 104 1 39 -[1] 105 1 32 -[1] 106 1 53 -[1] 107 1 50 -[1] 108 1 43 -[1] 109 1 43 -[1] 110 1 30 -[1] 111 1 41 -[1] 112 1 46 -[1] 113 1 33 -[1] 114 1 38 -[1] 115 1 37 -[1] 116 1 44 -[1] 117 1 44 -[1] 118 1 50 -[1] 119 1 54 -[1] 120 1 36 -[1] 121 1 41 -[1] 122 1 66 -[1] 123 1 48 -[1] 124 1 59 -[1] 125 1 57 -[1] 126 1 44 -[1] 127 1 45 -[1] 128 1 35 -[1] 129 1 45 -[1] 130 1 50 -[1] 131 1 42 -[1] 132 1 65 -[1] 133 1 53 -[1] 134 1 52 -[1] 135 1 43 -[1] 136 1 33 -[1] 137 1 57 -[1] 138 1 52 -[1] 139 1 32 -[1] 140 1 47 -[1] 141 1 41 -[1] 142 1 50 -[1] 143 1 37 -[1] 144 1 36 -[1] 145 1 47 -[1] 146 1 44 -[1] 147 1 47 -[1] 148 1 44 -[1] 149 1 35 -[1] 150 1 44 -[1] 151 1 51 -[1] 152 1 39 -[1] 153 1 29 -[1] 154 1 58 -[1] 155 1 42 -[1] 156 1 35 -[1] 157 1 52 -[1] 158 1 36 -[1] 159 1 58 -[1] 160 1 28 -[1] 161 1 68 -[1] 162 1 50 -[1] 163 1 50 -[1] 164 1 44 -[1] 165 1 31 -[1] 166 1 52 -[1] 167 1 33 -[1] 168 1 45 -[1] 169 1 48 -[1] 170 1 59 -[1] 171 1 45 -[1] 172 1 64 -[1] 173 1 45 -[1] 174 1 51 -[1] 175 1 61 -[1] 176 1 34 -[1] 177 1 42 -[1] 178 1 26 -[1] 179 1 50 -[1] 180 1 55 -[1] 181 1 39 -[1] 182 1 36 -[1] 183 1 45 -[1] 184 1 47 -[1] 185 1 38 -[1] 186 1 42 -[1] 187 1 45 -[1] 188 1 51 -[1] 189 1 44 -[1] 190 1 53 -[1] 191 1 39 -[1] 192 1 48 -[1] 193 1 35 -[1] 194 1 46 -[1] 195 1 38 -[1] 196 1 57 -[1] 197 1 39 -[1] 198 1 67 -[1] 199 1 43 -[1] 200 1 36 -[1] 1 2 35 -[1] 2 2 53 -[1] 3 2 50 -[1] 4 2 35 -[1] 5 2 29 -[1] 6 2 55 -[1] 7 2 51 -[1] 8 2 87 -[1] 9 2 47 -[1] 10 2 38 -[1] 11 2 51 -[1] 12 2 50 -[1] 13 2 41 -[1] 14 2 45 -[1] 15 2 52 -[1] 16 2 60 -[1] 17 2 65 -[1] 18 2 39 -[1] 19 2 55 -[1] 20 2 48 -[1] 21 2 47 -[1] 22 2 76 -[1] 23 2 45 -[1] 24 2 76 -[1] 25 2 51 -[1] 26 2 36 -[1] 27 2 35 -[1] 28 2 44 -[1] 29 2 43 -[1] 30 2 35 -[1] 31 2 50 -[1] 32 2 37 -[1] 33 2 55 -[1] 34 2 72 -[1] 35 2 76 -[1] 36 2 28 -[1] 37 2 35 -[1] 38 2 41 -[1] 39 2 56 -[1] 40 2 45 -[1] 41 2 34 -[1] 42 2 45 -[1] 43 2 41 -[1] 44 2 46 -[1] 45 2 49 -[1] 46 2 58 -[1] 47 2 44 -[1] 48 2 49 -[1] 49 2 56 -[1] 50 2 43 -[1] 51 2 36 -[1] 52 2 46 -[1] 53 2 41 -[1] 54 2 64 -[1] 55 2 66 -[1] 56 2 33 -[1] 57 2 36 -[1] 58 2 39 -[1] 59 2 51 -[1] 60 2 60 -[1] 61 2 49 -[1] 62 2 52 -[1] 63 2 73 -[1] 64 2 34 -[1] 65 2 35 -[1] 66 2 48 -[1] 67 2 43 -[1] 68 2 30 -[1] 69 2 42 -[1] 70 2 35 -[1] 71 2 61 -[1] 72 2 50 -[1] 73 2 54 -[1] 74 2 54 -[1] 75 2 57 -[1] 76 2 32 -[1] 77 2 107 -[1] 78 2 49 -[1] 79 2 66 -[1] 80 2 52 -[1] 81 2 55 -[1] 82 2 112 -[1] 83 2 57 -[1] 84 2 51 -[1] 85 2 50 -[1] 86 2 49 -[1] 87 2 36 -[1] 88 2 45 -[1] 89 2 36 -[1] 90 2 55 -[1] 91 2 42 -[1] 92 2 41 -[1] 93 2 70 -[1] 94 2 32 -[1] 95 2 42 -[1] 96 2 60 -[1] 97 2 65 -[1] 98 2 46 -[1] 99 2 57 -[1] 100 2 36 -[1] 101 2 58 -[1] 102 2 44 -[1] 103 2 34 -[1] 104 2 61 -[1] 105 2 32 -[1] 106 2 33 -[1] 107 2 40 -[1] 108 2 45 -[1] 109 2 61 -[1] 110 2 68 -[1] 111 2 33 -[1] 112 2 37 -[1] 113 2 56 -[1] 114 2 57 -[1] 115 2 50 -[1] 116 2 88 -[1] 117 2 87 -[1] 118 2 117 -[1] 119 2 30 -[1] 120 2 27 -[1] 121 2 36 -[1] 122 2 47 -[1] 123 2 40 -[1] 124 2 35 -[1] 125 2 47 -[1] 126 2 64 -[1] 127 2 37 -[1] 128 2 100 -[1] 129 2 35 -[1] 130 2 60 -[1] 131 2 53 -[1] 132 2 35 -[1] 133 2 48 -[1] 134 2 26 -[1] 135 2 78 -[1] 136 2 31 -[1] 137 2 37 -[1] 138 2 43 -[1] 139 2 45 -[1] 140 2 46 -[1] 141 2 88 -[1] 142 2 41 -[1] 143 2 55 -[1] 144 2 64 -[1] 145 2 53 -[1] 146 2 47 -[1] 147 2 64 -[1] 148 2 38 -[1] 149 2 61 -[1] 150 2 32 -[1] 151 2 41 -[1] 152 2 36 -[1] 153 2 51 -[1] 154 2 60 -[1] 155 2 39 -[1] 156 2 32 -[1] 157 2 32 -[1] 158 2 34 -[1] 159 2 43 -[1] 160 2 58 -[1] 161 2 32 -[1] 162 2 29 -[1] 163 2 53 -[1] 164 2 45 -[1] 165 2 58 -[1] 166 2 46 -[1] 167 2 39 -[1] 168 2 41 -[1] 169 2 51 -[1] 170 2 65 -[1] 171 2 61 -[1] 172 2 76 -[1] 173 2 33 -[1] 174 2 39 -[1] 175 2 30 -[1] 176 2 49 -[1] 177 2 42 -[1] 178 2 35 -[1] 179 2 45 -[1] 180 2 46 -[1] 181 2 46 -[1] 182 2 57 -[1] 183 2 51 -[1] 184 2 73 -[1] 185 2 53 -[1] 186 2 54 -[1] 187 2 40 -[1] 188 2 49 -[1] 189 2 36 -[1] 190 2 41 -[1] 191 2 30 -[1] 192 2 55 -[1] 193 2 43 -[1] 194 2 36 -[1] 195 2 43 -[1] 196 2 42 -[1] 197 2 63 -[1] 198 2 37 -[1] 199 2 37 -[1] 200 2 46 -[1] 1 3 50 -[1] 2 3 48 -[1] 3 3 34 -[1] 4 3 45 -[1] 5 3 44 -[1] 6 3 47 -[1] 7 3 62 -[1] 8 3 29 -[1] 9 3 36 -[1] 10 3 49 -[1] 11 3 42 -[1] 12 3 55 -[1] 13 3 37 -[1] 14 3 46 -[1] 15 3 71 -[1] 16 3 40 -[1] 17 3 61 -[1] 18 3 49 -[1] 19 3 34 -[1] 20 3 49 -[1] 21 3 36 -[1] 22 3 45 -[1] 23 3 52 -[1] 24 3 48 -[1] 25 3 83 -[1] 26 3 63 -[1] 27 3 55 -[1] 28 3 31 -[1] 29 3 64 -[1] 30 3 40 -[1] 31 3 53 -[1] 32 3 32 -[1] 33 3 41 -[1] 34 3 61 -[1] 35 3 54 -[1] 36 3 45 -[1] 37 3 62 -[1] 38 3 49 -[1] 39 3 39 -[1] 40 3 46 -[1] 41 3 58 -[1] 42 3 43 -[1] 43 3 36 -[1] 44 3 53 -[1] 45 3 41 -[1] 46 3 38 -[1] 47 3 83 -[1] 48 3 46 -[1] 49 3 59 -[1] 50 3 38 -[1] 51 3 60 -[1] 52 3 48 -[1] 53 3 37 -[1] 54 3 42 -[1] 55 3 57 -[1] 56 3 48 -[1] 57 3 36 -[1] 58 3 54 -[1] 59 3 63 -[1] 60 3 37 -[1] 61 3 43 -[1] 62 3 43 -[1] 63 3 44 -[1] 64 3 44 -[1] 65 3 43 -[1] 66 3 32 -[1] 67 3 50 -[1] 68 3 106 -[1] 69 3 40 -[1] 70 3 54 -[1] 71 3 41 -[1] 72 3 80 -[1] 73 3 57 -[1] 74 3 44 -[1] 75 3 91 -[1] 76 3 67 -[1] 77 3 85 -[1] 78 3 48 -[1] 79 3 53 -[1] 80 3 44 -[1] 81 3 51 -[1] 82 3 46 -[1] 83 3 63 -[1] 84 3 91 -[1] 85 3 89 -[1] 86 3 51 -[1] 87 3 51 -[1] 88 3 86 -[1] 89 3 67 -[1] 90 3 51 -[1] 91 3 66 -[1] 92 3 53 -[1] 93 3 37 -[1] 94 3 52 -[1] 95 3 65 -[1] 96 3 34 -[1] 97 3 57 -[1] 98 3 41 -[1] 99 3 68 -[1] 100 3 54 -[1] 101 3 41 -[1] 102 3 31 -[1] 103 3 45 -[1] 104 3 68 -[1] 105 3 44 -[1] 106 3 52 -[1] 107 3 56 -[1] 108 3 116 -[1] 109 3 47 -[1] 110 3 32 -[1] 111 3 43 -[1] 112 3 58 -[1] 113 3 45 -[1] 114 3 41 -[1] 115 3 42 -[1] 116 3 38 -[1] 117 3 37 -[1] 118 3 43 -[1] 119 3 52 -[1] 120 3 38 -[1] 121 3 93 -[1] 122 3 58 -[1] 123 3 47 -[1] 124 3 69 -[1] 125 3 41 -[1] 126 3 65 -[1] 127 3 42 -[1] 128 3 52 -[1] 129 3 37 -[1] 130 3 60 -[1] 131 3 43 -[1] 132 3 48 -[1] 133 3 45 -[1] 134 3 43 -[1] 135 3 30 -[1] 136 3 47 -[1] 137 3 44 -[1] 138 3 49 -[1] 139 3 32 -[1] 140 3 60 -[1] 141 3 59 -[1] 142 3 41 -[1] 143 3 35 -[1] 144 3 31 -[1] 145 3 52 -[1] 146 3 53 -[1] 147 3 42 -[1] 148 3 46 -[1] 149 3 49 -[1] 150 3 49 -[1] 151 3 80 -[1] 152 3 45 -[1] 153 3 40 -[1] 154 3 36 -[1] 155 3 45 -[1] 156 3 38 -[1] 157 3 49 -[1] 158 3 50 -[1] 159 3 35 -[1] 160 3 42 -[1] 161 3 48 -[1] 162 3 32 -[1] 163 3 32 -[1] 164 3 56 -[1] 165 3 60 -[1] 166 3 44 -[1] 167 3 38 -[1] 168 3 112 -[1] 169 3 48 -[1] 170 3 85 -[1] 171 3 37 -[1] 172 3 40 -[1] 173 3 44 -[1] 174 3 36 -[1] 175 3 63 -[1] 176 3 57 -[1] 177 3 34 -[1] 178 3 69 -[1] 179 3 40 -[1] 180 3 51 -[1] 181 3 61 -[1] 182 3 31 -[1] 183 3 46 -[1] 184 3 57 -[1] 185 3 39 -[1] 186 3 58 -[1] 187 3 39 -[1] 188 3 47 -[1] 189 3 41 -[1] 190 3 40 -[1] 191 3 81 -[1] 192 3 81 -[1] 193 3 47 -[1] 194 3 38 -[1] 195 3 53 -[1] 196 3 42 -[1] 197 3 55 -[1] 198 3 55 -[1] 199 3 45 -[1] 200 3 56 -[1] 1 4 35 -[1] 2 4 39 -[1] 3 4 34 -[1] 4 4 63 -[1] 5 4 48 -[1] 6 4 39 -[1] 7 4 32 -[1] 8 4 43 -[1] 9 4 42 -[1] 10 4 47 -[1] 11 4 64 -[1] 12 4 51 -[1] 13 4 56 -[1] 14 4 40 -[1] 15 4 36 -[1] 16 4 48 -[1] 17 4 41 -[1] 18 4 57 -[1] 19 4 56 -[1] 20 4 75 -[1] 21 4 50 -[1] 22 4 48 -[1] 23 4 53 -[1] 24 4 47 -[1] 25 4 50 -[1] 26 4 71 -[1] 27 4 52 -[1] 28 4 67 -[1] 29 4 46 -[1] 30 4 40 -[1] 31 4 35 -[1] 32 4 37 -[1] 33 4 52 -[1] 34 4 41 -[1] 35 4 55 -[1] 36 4 150 -[1] 37 4 31 -[1] 38 4 37 -[1] 39 4 68 -[1] 40 4 46 -[1] 41 4 33 -[1] 42 4 52 -[1] 43 4 29 -[1] 44 4 54 -[1] 45 4 41 -[1] 46 4 50 -[1] 47 4 58 -[1] 48 4 62 -[1] 49 4 55 -[1] 50 4 54 -[1] 51 4 69 -[1] 52 4 52 -[1] 53 4 91 -[1] 54 4 52 -[1] 55 4 60 -[1] 56 4 63 -[1] 57 4 77 -[1] 58 4 50 -[1] 59 4 69 -[1] 60 4 45 -[1] 61 4 49 -[1] 62 4 53 -[1] 63 4 61 -[1] 64 4 42 -[1] 65 4 41 -[1] 66 4 60 -[1] 67 4 33 -[1] 68 4 83 -[1] 69 4 36 -[1] 70 4 41 -[1] 71 4 72 -[1] 72 4 69 -[1] 73 4 32 -[1] 74 4 39 -[1] 75 4 39 -[1] 76 4 54 -[1] 77 4 38 -[1] 78 4 60 -[1] 79 4 116 -[1] 80 4 38 -[1] 81 4 45 -[1] 82 4 60 -[1] 83 4 63 -[1] 84 4 35 -[1] 85 4 55 -[1] 86 4 32 -[1] 87 4 56 -[1] 88 4 35 -[1] 89 4 56 -[1] 90 4 50 -[1] 91 4 40 -[1] 92 4 46 -[1] 93 4 54 -[1] 94 4 61 -[1] 95 4 39 -[1] 96 4 43 -[1] 97 4 53 -[1] 98 4 36 -[1] 99 4 57 -[1] 100 4 65 -[1] 101 4 53 -[1] 102 4 28 -[1] 103 4 37 -[1] 104 4 50 -[1] 105 4 95 -[1] 106 4 47 -[1] 107 4 63 -[1] 108 4 51 -[1] 109 4 57 -[1] 110 4 68 -[1] 111 4 39 -[1] 112 4 39 -[1] 113 4 69 -[1] 114 4 44 -[1] 115 4 40 -[1] 116 4 67 -[1] 117 4 61 -[1] 118 4 32 -[1] 119 4 49 -[1] 120 4 35 -[1] 121 4 37 -[1] 122 4 39 -[1] 123 4 33 -[1] 124 4 44 -[1] 125 4 49 -[1] 126 4 56 -[1] 127 4 68 -[1] 128 4 51 -[1] 129 4 49 -[1] 130 4 39 -[1] 131 4 48 -[1] 132 4 42 -[1] 133 4 45 -[1] 134 4 47 -[1] 135 4 48 -[1] 136 4 42 -[1] 137 4 46 -[1] 138 4 62 -[1] 139 4 32 -[1] 140 4 54 -[1] 141 4 39 -[1] 142 4 31 -[1] 143 4 50 -[1] 144 4 48 -[1] 145 4 56 -[1] 146 4 41 -[1] 147 4 54 -[1] 148 4 29 -[1] 149 4 38 -[1] 150 4 66 -[1] 151 4 47 -[1] 152 4 48 -[1] 153 4 42 -[1] 154 4 47 -[1] 155 4 60 -[1] 156 4 44 -[1] 157 4 34 -[1] 158 4 63 -[1] 159 4 48 -[1] 160 4 43 -[1] 161 4 32 -[1] 162 4 42 -[1] 163 4 46 -[1] 164 4 47 -[1] 165 4 43 -[1] 166 4 44 -[1] 167 4 54 -[1] 168 4 46 -[1] 169 4 38 -[1] 170 4 43 -[1] 171 4 39 -[1] 172 4 38 -[1] 173 4 49 -[1] 174 4 48 -[1] 175 4 45 -[1] 176 4 78 -[1] 177 4 53 -[1] 178 4 43 -[1] 179 4 44 -[1] 180 4 51 -[1] 181 4 45 -[1] 182 4 97 -[1] 183 4 50 -[1] 184 4 62 -[1] 185 4 39 -[1] 186 4 42 -[1] 187 4 52 -[1] 188 4 59 -[1] 189 4 37 -[1] 190 4 69 -[1] 191 4 64 -[1] 192 4 36 -[1] 193 4 59 -[1] 194 4 50 -[1] 195 4 39 -[1] 196 4 70 -[1] 197 4 39 -[1] 198 4 36 -[1] 199 4 48 -[1] 200 4 60 -[1] 1 5 27 -[1] 2 5 69 -[1] 3 5 37 -[1] 4 5 44 -[1] 5 5 30 -[1] 6 5 43 -[1] 7 5 43 -[1] 8 5 35 -[1] 9 5 54 -[1] 10 5 34 -[1] 11 5 51 -[1] 12 5 35 -[1] 13 5 46 -[1] 14 5 43 -[1] 15 5 94 -[1] 16 5 45 -[1] 17 5 38 -[1] 18 5 67 -[1] 19 5 48 -[1] 20 5 33 -[1] 21 5 41 -[1] 22 5 42 -[1] 23 5 53 -[1] 24 5 36 -[1] 25 5 50 -[1] 26 5 68 -[1] 27 5 43 -[1] 28 5 36 -[1] 29 5 48 -[1] 30 5 55 -[1] 31 5 40 -[1] 32 5 43 -[1] 33 5 42 -[1] 34 5 57 -[1] 35 5 63 -[1] 36 5 55 -[1] 37 5 49 -[1] 38 5 48 -[1] 39 5 54 -[1] 40 5 50 -[1] 41 5 30 -[1] 42 5 96 -[1] 43 5 36 -[1] 44 5 41 -[1] 45 5 54 -[1] 46 5 50 -[1] 47 5 61 -[1] 48 5 64 -[1] 49 5 54 -[1] 50 5 38 -[1] 51 5 53 -[1] 52 5 47 -[1] 53 5 98 -[1] 54 5 59 -[1] 55 5 77 -[1] 56 5 43 -[1] 57 5 92 -[1] 58 5 70 -[1] 59 5 43 -[1] 60 5 62 -[1] 61 5 47 -[1] 62 5 32 -[1] 63 5 50 -[1] 64 5 53 -[1] 65 5 45 -[1] 66 5 52 -[1] 67 5 65 -[1] 68 5 71 -[1] 69 5 53 -[1] 70 5 49 -[1] 71 5 55 -[1] 72 5 55 -[1] 73 5 37 -[1] 74 5 34 -[1] 75 5 48 -[1] 76 5 41 -[1] 77 5 63 -[1] 78 5 64 -[1] 79 5 46 -[1] 80 5 86 -[1] 81 5 69 -[1] 82 5 76 -[1] 83 5 44 -[1] 84 5 45 -[1] 85 5 43 -[1] 86 5 54 -[1] 87 5 79 -[1] 88 5 42 -[1] 89 5 36 -[1] 90 5 78 -[1] 91 5 67 -[1] 92 5 109 -[1] 93 5 39 -[1] 94 5 53 -[1] 95 5 28 -[1] 96 5 65 -[1] 97 5 52 -[1] 98 5 59 -[1] 99 5 32 -[1] 100 5 63 -[1] 101 5 60 -[1] 102 5 67 -[1] 103 5 39 -[1] 104 5 52 -[1] 105 5 37 -[1] 106 5 46 -[1] 107 5 71 -[1] 108 5 32 -[1] 109 5 47 -[1] 110 5 60 -[1] 111 5 71 -[1] 112 5 63 -[1] 113 5 47 -[1] 114 5 77 -[1] 115 5 66 -[1] 116 5 57 -[1] 117 5 46 -[1] 118 5 57 -[1] 119 5 50 -[1] 120 5 37 -[1] 121 5 38 -[1] 122 5 46 -[1] 123 5 67 -[1] 124 5 42 -[1] 125 5 31 -[1] 126 5 57 -[1] 127 5 49 -[1] 128 5 51 -[1] 129 5 54 -[1] 130 5 58 -[1] 131 5 51 -[1] 132 5 40 -[1] 133 5 51 -[1] 134 5 39 -[1] 135 5 29 -[1] 136 5 56 -[1] 137 5 52 -[1] 138 5 33 -[1] 139 5 60 -[1] 140 5 97 -[1] 141 5 45 -[1] 142 5 41 -[1] 143 5 48 -[1] 144 5 34 -[1] 145 5 40 -[1] 146 5 53 -[1] 147 5 33 -[1] 148 5 41 -[1] 149 5 38 -[1] 150 5 58 -[1] 151 5 37 -[1] 152 5 51 -[1] 153 5 38 -[1] 154 5 37 -[1] 155 5 35 -[1] 156 5 60 -[1] 157 5 35 -[1] 158 5 47 -[1] 159 5 42 -[1] 160 5 36 -[1] 161 5 45 -[1] 162 5 43 -[1] 163 5 54 -[1] 164 5 37 -[1] 165 5 33 -[1] 166 5 54 -[1] 167 5 83 -[1] 168 5 39 -[1] 169 5 40 -[1] 170 5 36 -[1] 171 5 63 -[1] 172 5 43 -[1] 173 5 46 -[1] 174 5 34 -[1] 175 5 45 -[1] 176 5 37 -[1] 177 5 38 -[1] 178 5 39 -[1] 179 5 32 -[1] 180 5 49 -[1] 181 5 52 -[1] 182 5 51 -[1] 183 5 39 -[1] 184 5 34 -[1] 185 5 45 -[1] 186 5 68 -[1] 187 5 47 -[1] 188 5 56 -[1] 189 5 63 -[1] 190 5 34 -[1] 191 5 58 -[1] 192 5 103 -[1] 193 5 45 -[1] 194 5 36 -[1] 195 5 92 -[1] 196 5 42 -[1] 197 5 41 -[1] 198 5 61 -[1] 199 5 71 -[1] 200 5 66 -[1] 1 6 35 -[1] 2 6 40 -[1] 3 6 37 -[1] 4 6 53 -[1] 5 6 38 -[1] 6 6 27 -[1] 7 6 62 -[1] 8 6 63 -[1] 9 6 30 -[1] 10 6 41 -[1] 11 6 41 -[1] 12 6 42 -[1] 13 6 51 -[1] 14 6 37 -[1] 15 6 44 -[1] 16 6 33 -[1] 17 6 56 -[1] 18 6 40 -[1] 19 6 33 -[1] 20 6 113 -[1] 21 6 32 -[1] 22 6 52 -[1] 23 6 61 -[1] 24 6 47 -[1] 25 6 54 -[1] 26 6 57 -[1] 27 6 44 -[1] 28 6 49 -[1] 29 6 47 -[1] 30 6 52 -[1] 31 6 55 -[1] 32 6 60 -[1] 33 6 44 -[1] 34 6 55 -[1] 35 6 57 -[1] 36 6 42 -[1] 37 6 47 -[1] 38 6 76 -[1] 39 6 37 -[1] 40 6 40 -[1] 41 6 45 -[1] 42 6 43 -[1] 43 6 51 -[1] 44 6 44 -[1] 45 6 54 -[1] 46 6 57 -[1] 47 6 52 -[1] 48 6 46 -[1] 49 6 56 -[1] 50 6 50 -[1] 51 6 46 -[1] 52 6 65 -[1] 53 6 67 -[1] 54 6 49 -[1] 55 6 60 -[1] 56 6 65 -[1] 57 6 62 -[1] 58 6 37 -[1] 59 6 43 -[1] 60 6 52 -[1] 61 6 42 -[1] 62 6 46 -[1] 63 6 77 -[1] 64 6 47 -[1] 65 6 39 -[1] 66 6 72 -[1] 67 6 39 -[1] 68 6 31 -[1] 69 6 44 -[1] 70 6 53 -[1] 71 6 48 -[1] 72 6 37 -[1] 73 6 41 -[1] 74 6 46 -[1] 75 6 42 -[1] 76 6 65 -[1] 77 6 53 -[1] 78 6 86 -[1] 79 6 92 -[1] 80 6 59 -[1] 81 6 25 -[1] 82 6 102 -[1] 83 6 49 -[1] 84 6 86 -[1] 85 6 67 -[1] 86 6 44 -[1] 87 6 41 -[1] 88 6 42 -[1] 89 6 75 -[1] 90 6 61 -[1] 91 6 54 -[1] 92 6 44 -[1] 93 6 117 -[1] 94 6 44 -[1] 95 6 44 -[1] 96 6 82 -[1] 97 6 89 -[1] 98 6 39 -[1] 99 6 47 -[1] 100 6 58 -[1] 101 6 70 -[1] 102 6 34 -[1] 103 6 49 -[1] 104 6 66 -[1] 105 6 46 -[1] 106 6 30 -[1] 107 6 80 -[1] 108 6 52 -[1] 109 6 51 -[1] 110 6 37 -[1] 111 6 50 -[1] 112 6 69 -[1] 113 6 38 -[1] 114 6 73 -[1] 115 6 49 -[1] 116 6 52 -[1] 117 6 40 -[1] 118 6 57 -[1] 119 6 53 -[1] 120 6 44 -[1] 121 6 46 -[1] 122 6 39 -[1] 123 6 44 -[1] 124 6 39 -[1] 125 6 27 -[1] 126 6 51 -[1] 127 6 58 -[1] 128 6 53 -[1] 129 6 32 -[1] 130 6 72 -[1] 131 6 43 -[1] 132 6 53 -[1] 133 6 56 -[1] 134 6 77 -[1] 135 6 44 -[1] 136 6 40 -[1] 137 6 54 -[1] 138 6 52 -[1] 139 6 49 -[1] 140 6 38 -[1] 141 6 38 -[1] 142 6 42 -[1] 143 6 44 -[1] 144 6 33 -[1] 145 6 50 -[1] 146 6 52 -[1] 147 6 61 -[1] 148 6 49 -[1] 149 6 86 -[1] 150 6 84 -[1] 151 6 38 -[1] 152 6 44 -[1] 153 6 40 -[1] 154 6 79 -[1] 155 6 79 -[1] 156 6 39 -[1] 157 6 48 -[1] 158 6 60 -[1] 159 6 49 -[1] 160 6 62 -[1] 161 6 65 -[1] 162 6 34 -[1] 163 6 51 -[1] 164 6 47 -[1] 165 6 44 -[1] 166 6 67 -[1] 167 6 46 -[1] 168 6 47 -[1] 169 6 68 -[1] 170 6 64 -[1] 171 6 49 -[1] 172 6 43 -[1] 173 6 43 -[1] 174 6 48 -[1] 175 6 75 -[1] 176 6 58 -[1] 177 6 43 -[1] 178 6 44 -[1] 179 6 38 -[1] 180 6 41 -[1] 181 6 59 -[1] 182 6 48 -[1] 183 6 69 -[1] 184 6 49 -[1] 185 6 46 -[1] 186 6 55 -[1] 187 6 34 -[1] 188 6 47 -[1] 189 6 40 -[1] 190 6 66 -[1] 191 6 40 -[1] 192 6 59 -[1] 193 6 48 -[1] 194 6 35 -[1] 195 6 54 -[1] 196 6 52 -[1] 197 6 47 -[1] 198 6 83 -[1] 199 6 40 -[1] 200 6 57 -[1] 1 7 37 -[1] 2 7 49 -[1] 3 7 36 -[1] 4 7 35 -[1] 5 7 56 -[1] 6 7 33 -[1] 7 7 48 -[1] 8 7 41 -[1] 9 7 55 -[1] 10 7 34 -[1] 11 7 47 -[1] 12 7 42 -[1] 13 7 43 -[1] 14 7 62 -[1] 15 7 31 -[1] 16 7 69 -[1] 17 7 35 -[1] 18 7 61 -[1] 19 7 37 -[1] 20 7 54 -[1] 21 7 45 -[1] 22 7 47 -[1] 23 7 53 -[1] 24 7 64 -[1] 25 7 30 -[1] 26 7 49 -[1] 27 7 45 -[1] 28 7 50 -[1] 29 7 29 -[1] 30 7 42 -[1] 31 7 40 -[1] 32 7 56 -[1] 33 7 62 -[1] 34 7 50 -[1] 35 7 65 -[1] 36 7 36 -[1] 37 7 41 -[1] 38 7 47 -[1] 39 7 53 -[1] 40 7 49 -[1] 41 7 50 -[1] 42 7 48 -[1] 43 7 55 -[1] 44 7 33 -[1] 45 7 42 -[1] 46 7 48 -[1] 47 7 39 -[1] 48 7 37 -[1] 49 7 72 -[1] 50 7 57 -[1] 51 7 66 -[1] 52 7 37 -[1] 53 7 25 -[1] 54 7 98 -[1] 55 7 38 -[1] 56 7 52 -[1] 57 7 59 -[1] 58 7 42 -[1] 59 7 54 -[1] 60 7 44 -[1] 61 7 41 -[1] 62 7 41 -[1] 63 7 40 -[1] 64 7 53 -[1] 65 7 37 -[1] 66 7 48 -[1] 67 7 54 -[1] 68 7 39 -[1] 69 7 43 -[1] 70 7 44 -[1] 71 7 35 -[1] 72 7 49 -[1] 73 7 46 -[1] 74 7 44 -[1] 75 7 52 -[1] 76 7 34 -[1] 77 7 98 -[1] 78 7 43 -[1] 79 7 54 -[1] 80 7 47 -[1] 81 7 37 -[1] 82 7 45 -[1] 83 7 53 -[1] 84 7 47 -[1] 85 7 102 -[1] 86 7 35 -[1] 87 7 47 -[1] 88 7 68 -[1] 89 7 46 -[1] 90 7 55 -[1] 91 7 33 -[1] 92 7 52 -[1] 93 7 55 -[1] 94 7 32 -[1] 95 7 48 -[1] 96 7 48 -[1] 97 7 54 -[1] 98 7 63 -[1] 99 7 44 -[1] 100 7 42 -[1] 101 7 34 -[1] 102 7 43 -[1] 103 7 63 -[1] 104 7 47 -[1] 105 7 75 -[1] 106 7 36 -[1] 107 7 72 -[1] 108 7 52 -[1] 109 7 44 -[1] 110 7 71 -[1] 111 7 61 -[1] 112 7 92 -[1] 113 7 43 -[1] 114 7 47 -[1] 115 7 47 -[1] 116 7 36 -[1] 117 7 44 -[1] 118 7 38 -[1] 119 7 55 -[1] 120 7 86 -[1] 121 7 45 -[1] 122 7 47 -[1] 123 7 53 -[1] 124 7 54 -[1] 125 7 38 -[1] 126 7 38 -[1] 127 7 60 -[1] 128 7 60 -[1] 129 7 50 -[1] 130 7 41 -[1] 131 7 65 -[1] 132 7 78 -[1] 133 7 46 -[1] 134 7 45 -[1] 135 7 54 -[1] 136 7 53 -[1] 137 7 49 -[1] 138 7 40 -[1] 139 7 42 -[1] 140 7 60 -[1] 141 7 64 -[1] 142 7 83 -[1] 143 7 47 -[1] 144 7 43 -[1] 145 7 41 -[1] 146 7 53 -[1] 147 7 63 -[1] 148 7 42 -[1] 149 7 52 -[1] 150 7 40 -[1] 151 7 32 -[1] 152 7 44 -[1] 153 7 39 -[1] 154 7 51 -[1] 155 7 37 -[1] 156 7 52 -[1] 157 7 39 -[1] 158 7 43 -[1] 159 7 56 -[1] 160 7 48 -[1] 161 7 38 -[1] 162 7 48 -[1] 163 7 32 -[1] 164 7 35 -[1] 165 7 36 -[1] 166 7 50 -[1] 167 7 57 -[1] 168 7 52 -[1] 169 7 40 -[1] 170 7 52 -[1] 171 7 39 -[1] 172 7 54 -[1] 173 7 36 -[1] 174 7 60 -[1] 175 7 37 -[1] 176 7 51 -[1] 177 7 39 -[1] 178 7 50 -[1] 179 7 45 -[1] 180 7 36 -[1] 181 7 56 -[1] 182 7 39 -[1] 183 7 73 -[1] 184 7 37 -[1] 185 7 50 -[1] 186 7 61 -[1] 187 7 48 -[1] 188 7 39 -[1] 189 7 31 -[1] 190 7 52 -[1] 191 7 48 -[1] 192 7 49 -[1] 193 7 59 -[1] 194 7 54 -[1] 195 7 47 -[1] 196 7 31 -[1] 197 7 63 -[1] 198 7 115 -[1] 199 7 47 -[1] 200 7 51 -[1] 1 8 37 -[1] 2 8 49 -[1] 3 8 34 -[1] 4 8 35 -[1] 5 8 34 -[1] 6 8 33 -[1] 7 8 40 -[1] 8 8 46 -[1] 9 8 38 -[1] 10 8 36 -[1] 11 8 58 -[1] 12 8 35 -[1] 13 8 46 -[1] 14 8 51 -[1] 15 8 47 -[1] 16 8 44 -[1] 17 8 81 -[1] 18 8 33 -[1] 19 8 44 -[1] 20 8 47 -[1] 21 8 44 -[1] 22 8 45 -[1] 23 8 55 -[1] 24 8 54 -[1] 25 8 64 -[1] 26 8 51 -[1] 27 8 53 -[1] 28 8 70 -[1] 29 8 48 -[1] 30 8 42 -[1] 31 8 48 -[1] 32 8 50 -[1] 33 8 32 -[1] 34 8 54 -[1] 35 8 44 -[1] 36 8 55 -[1] 37 8 50 -[1] 38 8 40 -[1] 39 8 49 -[1] 40 8 40 -[1] 41 8 42 -[1] 42 8 71 -[1] 43 8 43 -[1] 44 8 47 -[1] 45 8 47 -[1] 46 8 37 -[1] 47 8 53 -[1] 48 8 39 -[1] 49 8 39 -[1] 50 8 48 -[1] 51 8 41 -[1] 52 8 44 -[1] 53 8 45 -[1] 54 8 35 -[1] 55 8 49 -[1] 56 8 50 -[1] 57 8 47 -[1] 58 8 100 -[1] 59 8 65 -[1] 60 8 33 -[1] 61 8 64 -[1] 62 8 39 -[1] 63 8 49 -[1] 64 8 49 -[1] 65 8 73 -[1] 66 8 41 -[1] 67 8 47 -[1] 68 8 62 -[1] 69 8 36 -[1] 70 8 61 -[1] 71 8 44 -[1] 72 8 61 -[1] 73 8 86 -[1] 74 8 30 -[1] 75 8 49 -[1] 76 8 38 -[1] 77 8 42 -[1] 78 8 37 -[1] 79 8 54 -[1] 80 8 50 -[1] 81 8 60 -[1] 82 8 50 -[1] 83 8 74 -[1] 84 8 79 -[1] 85 8 53 -[1] 86 8 42 -[1] 87 8 34 -[1] 88 8 57 -[1] 89 8 52 -[1] 90 8 69 -[1] 91 8 48 -[1] 92 8 57 -[1] 93 8 40 -[1] 94 8 53 -[1] 95 8 89 -[1] 96 8 34 -[1] 97 8 53 -[1] 98 8 34 -[1] 99 8 46 -[1] 100 8 41 -[1] 101 8 59 -[1] 102 8 49 -[1] 103 8 38 -[1] 104 8 65 -[1] 105 8 66 -[1] 106 8 47 -[1] 107 8 38 -[1] 108 8 70 -[1] 109 8 46 -[1] 110 8 46 -[1] 111 8 35 -[1] 112 8 37 -[1] 113 8 42 -[1] 114 8 38 -[1] 115 8 40 -[1] 116 8 40 -[1] 117 8 66 -[1] 118 8 73 -[1] 119 8 58 -[1] 120 8 50 -[1] 121 8 45 -[1] 122 8 22 -[1] 123 8 148 -[1] 124 8 75 -[1] 125 8 47 -[1] 126 8 79 -[1] 127 8 45 -[1] 128 8 34 -[1] 129 8 52 -[1] 130 8 39 -[1] 131 8 41 -[1] 132 8 48 -[1] 133 8 43 -[1] 134 8 52 -[1] 135 8 48 -[1] 136 8 42 -[1] 137 8 65 -[1] 138 8 50 -[1] 139 8 57 -[1] 140 8 68 -[1] 141 8 32 -[1] 142 8 49 -[1] 143 8 67 -[1] 144 8 56 -[1] 145 8 47 -[1] 146 8 32 -[1] 147 8 36 -[1] 148 8 49 -[1] 149 8 33 -[1] 150 8 29 -[1] 151 8 50 -[1] 152 8 45 -[1] 153 8 50 -[1] 154 8 55 -[1] 155 8 30 -[1] 156 8 42 -[1] 157 8 48 -[1] 158 8 43 -[1] 159 8 36 -[1] 160 8 30 -[1] 161 8 35 -[1] 162 8 36 -[1] 163 8 56 -[1] 164 8 41 -[1] 165 8 49 -[1] 166 8 52 -[1] 167 8 45 -[1] 168 8 46 -[1] 169 8 61 -[1] 170 8 53 -[1] 171 8 76 -[1] 172 8 55 -[1] 173 8 47 -[1] 174 8 41 -[1] 175 8 35 -[1] 176 8 43 -[1] 177 8 67 -[1] 178 8 51 -[1] 179 8 41 -[1] 180 8 51 -[1] 181 8 43 -[1] 182 8 58 -[1] 183 8 37 -[1] 184 8 47 -[1] 185 8 49 -[1] 186 8 54 -[1] 187 8 44 -[1] 188 8 34 -[1] 189 8 41 -[1] 190 8 57 -[1] 191 8 38 -[1] 192 8 45 -[1] 193 8 41 -[1] 194 8 38 -[1] 195 8 39 -[1] 196 8 40 -[1] 197 8 40 -[1] 198 8 38 -[1] 199 8 80 -[1] 200 8 47 -[1] 1 9 55 -[1] 2 9 50 -[1] 3 9 45 -[1] 4 9 32 -[1] 5 9 47 -[1] 6 9 39 -[1] 7 9 47 -[1] 8 9 38 -[1] 9 9 41 -[1] 10 9 40 -[1] 11 9 33 -[1] 12 9 42 -[1] 13 9 53 -[1] 14 9 33 -[1] 15 9 40 -[1] 16 9 97 -[1] 17 9 48 -[1] 18 9 39 -[1] 19 9 36 -[1] 20 9 71 -[1] 21 9 45 -[1] 22 9 48 -[1] 23 9 36 -[1] 24 9 70 -[1] 25 9 83 -[1] 26 9 91 -[1] 27 9 43 -[1] 28 9 107 -[1] 29 9 68 -[1] 30 9 46 -[1] 31 9 61 -[1] 32 9 41 -[1] 33 9 46 -[1] 34 9 45 -[1] 35 9 29 -[1] 36 9 86 -[1] 37 9 52 -[1] 38 9 55 -[1] 39 9 38 -[1] 40 9 51 -[1] 41 9 54 -[1] 42 9 53 -[1] 43 9 55 -[1] 44 9 50 -[1] 45 9 59 -[1] 46 9 45 -[1] 47 9 42 -[1] 48 9 44 -[1] 49 9 35 -[1] 50 9 66 -[1] 51 9 51 -[1] 52 9 63 -[1] 53 9 47 -[1] 54 9 54 -[1] 55 9 56 -[1] 56 9 43 -[1] 57 9 37 -[1] 58 9 101 -[1] 59 9 66 -[1] 60 9 56 -[1] 61 9 41 -[1] 62 9 66 -[1] 63 9 41 -[1] 64 9 56 -[1] 65 9 80 -[1] 66 9 51 -[1] 67 9 59 -[1] 68 9 47 -[1] 69 9 44 -[1] 70 9 57 -[1] 71 9 58 -[1] 72 9 61 -[1] 73 9 47 -[1] 74 9 48 -[1] 75 9 35 -[1] 76 9 114 -[1] 77 9 77 -[1] 78 9 50 -[1] 79 9 53 -[1] 80 9 65 -[1] 81 9 46 -[1] 82 9 62 -[1] 83 9 43 -[1] 84 9 116 -[1] 85 9 48 -[1] 86 9 77 -[1] 87 9 55 -[1] 88 9 39 -[1] 89 9 64 -[1] 90 9 57 -[1] 91 9 38 -[1] 92 9 43 -[1] 93 9 33 -[1] 94 9 44 -[1] 95 9 38 -[1] 96 9 38 -[1] 97 9 51 -[1] 98 9 40 -[1] 99 9 52 -[1] 100 9 42 -[1] 101 9 35 -[1] 102 9 59 -[1] 103 9 40 -[1] 104 9 51 -[1] 105 9 36 -[1] 106 9 47 -[1] 107 9 60 -[1] 108 9 48 -[1] 109 9 81 -[1] 110 9 39 -[1] 111 9 79 -[1] 112 9 40 -[1] 113 9 47 -[1] 114 9 39 -[1] 115 9 76 -[1] 116 9 38 -[1] 117 9 59 -[1] 118 9 49 -[1] 119 9 52 -[1] 120 9 45 -[1] 121 9 34 -[1] 122 9 59 -[1] 123 9 44 -[1] 124 9 41 -[1] 125 9 46 -[1] 126 9 55 -[1] 127 9 38 -[1] 128 9 81 -[1] 129 9 45 -[1] 130 9 46 -[1] 131 9 64 -[1] 132 9 49 -[1] 133 9 51 -[1] 134 9 64 -[1] 135 9 46 -[1] 136 9 52 -[1] 137 9 60 -[1] 138 9 39 -[1] 139 9 38 -[1] 140 9 48 -[1] 141 9 33 -[1] 142 9 61 -[1] 143 9 48 -[1] 144 9 67 -[1] 145 9 32 -[1] 146 9 101 -[1] 147 9 89 -[1] 148 9 54 -[1] 149 9 45 -[1] 150 9 42 -[1] 151 9 47 -[1] 152 9 36 -[1] 153 9 56 -[1] 154 9 55 -[1] 155 9 47 -[1] 156 9 49 -[1] 157 9 42 -[1] 158 9 47 -[1] 159 9 51 -[1] 160 9 54 -[1] 161 9 47 -[1] 162 9 48 -[1] 163 9 61 -[1] 164 9 50 -[1] 165 9 35 -[1] 166 9 54 -[1] 167 9 49 -[1] 168 9 71 -[1] 169 9 52 -[1] 170 9 34 -[1] 171 9 52 -[1] 172 9 45 -[1] 173 9 37 -[1] 174 9 46 -[1] 175 9 71 -[1] 176 9 43 -[1] 177 9 42 -[1] 178 9 45 -[1] 179 9 33 -[1] 180 9 66 -[1] 181 9 45 -[1] 182 9 66 -[1] 183 9 43 -[1] 184 9 63 -[1] 185 9 60 -[1] 186 9 44 -[1] 187 9 59 -[1] 188 9 36 -[1] 189 9 39 -[1] 190 9 35 -[1] 191 9 70 -[1] 192 9 51 -[1] 193 9 57 -[1] 194 9 61 -[1] 195 9 72 -[1] 196 9 60 -[1] 197 9 67 -[1] 198 9 66 -[1] 199 9 39 -[1] 200 9 71 -[1] 1 10 33 -[1] 2 10 39 -[1] 3 10 40 -[1] 4 10 87 -[1] 5 10 42 -[1] 6 10 37 -[1] 7 10 27 -[1] 8 10 54 -[1] 9 10 40 -[1] 10 10 44 -[1] 11 10 42 -[1] 12 10 34 -[1] 13 10 39 -[1] 14 10 34 -[1] 15 10 27 -[1] 16 10 30 -[1] 17 10 56 -[1] 18 10 53 -[1] 19 10 41 -[1] 20 10 33 -[1] 21 10 46 -[1] 22 10 42 -[1] 23 10 65 -[1] 24 10 81 -[1] 25 10 52 -[1] 26 10 46 -[1] 27 10 43 -[1] 28 10 42 -[1] 29 10 62 -[1] 30 10 57 -[1] 31 10 42 -[1] 32 10 27 -[1] 33 10 77 -[1] 34 10 45 -[1] 35 10 87 -[1] 36 10 64 -[1] 37 10 32 -[1] 38 10 64 -[1] 39 10 44 -[1] 40 10 42 -[1] 41 10 49 -[1] 42 10 57 -[1] 43 10 39 -[1] 44 10 54 -[1] 45 10 30 -[1] 46 10 49 -[1] 47 10 34 -[1] 48 10 56 -[1] 49 10 57 -[1] 50 10 45 -[1] 51 10 53 -[1] 52 10 50 -[1] 53 10 43 -[1] 54 10 58 -[1] 55 10 47 -[1] 56 10 51 -[1] 57 10 48 -[1] 58 10 39 -[1] 59 10 46 -[1] 60 10 49 -[1] 61 10 40 -[1] 62 10 66 -[1] 63 10 64 -[1] 64 10 50 -[1] 65 10 37 -[1] 66 10 44 -[1] 67 10 46 -[1] 68 10 47 -[1] 69 10 71 -[1] 70 10 40 -[1] 71 10 59 -[1] 72 10 46 -[1] 73 10 50 -[1] 74 10 64 -[1] 75 10 46 -[1] 76 10 43 -[1] 77 10 68 -[1] 78 10 48 -[1] 79 10 39 -[1] 80 10 57 -[1] 81 10 32 -[1] 82 10 40 -[1] 83 10 50 -[1] 84 10 34 -[1] 85 10 43 -[1] 86 10 78 -[1] 87 10 41 -[1] 88 10 62 -[1] 89 10 87 -[1] 90 10 42 -[1] 91 10 67 -[1] 92 10 30 -[1] 93 10 100 -[1] 94 10 45 -[1] 95 10 56 -[1] 96 10 50 -[1] 97 10 38 -[1] 98 10 49 -[1] 99 10 37 -[1] 100 10 45 -[1] 101 10 60 -[1] 102 10 54 -[1] 103 10 40 -[1] 104 10 70 -[1] 105 10 35 -[1] 106 10 45 -[1] 107 10 41 -[1] 108 10 30 -[1] 109 10 57 -[1] 110 10 39 -[1] 111 10 42 -[1] 112 10 63 -[1] 113 10 57 -[1] 114 10 42 -[1] 115 10 43 -[1] 116 10 64 -[1] 117 10 31 -[1] 118 10 74 -[1] 119 10 37 -[1] 120 10 39 -[1] 121 10 56 -[1] 122 10 36 -[1] 123 10 51 -[1] 124 10 44 -[1] 125 10 60 -[1] 126 10 54 -[1] 127 10 40 -[1] 128 10 52 -[1] 129 10 45 -[1] 130 10 49 -[1] 131 10 34 -[1] 132 10 48 -[1] 133 10 47 -[1] 134 10 35 -[1] 135 10 72 -[1] 136 10 51 -[1] 137 10 53 -[1] 138 10 41 -[1] 139 10 63 -[1] 140 10 61 -[1] 141 10 53 -[1] 142 10 106 -[1] 143 10 55 -[1] 144 10 48 -[1] 145 10 41 -[1] 146 10 41 -[1] 147 10 36 -[1] 148 10 64 -[1] 149 10 40 -[1] 150 10 75 -[1] 151 10 39 -[1] 152 10 73 -[1] 153 10 35 -[1] 154 10 62 -[1] 155 10 49 -[1] 156 10 32 -[1] 157 10 83 -[1] 158 10 28 -[1] 159 10 48 -[1] 160 10 71 -[1] 161 10 50 -[1] 162 10 63 -[1] 163 10 43 -[1] 164 10 59 -[1] 165 10 31 -[1] 166 10 59 -[1] 167 10 49 -[1] 168 10 70 -[1] 169 10 38 -[1] 170 10 60 -[1] 171 10 43 -[1] 172 10 49 -[1] 173 10 48 -[1] 174 10 44 -[1] 175 10 46 -[1] 176 10 48 -[1] 177 10 49 -[1] 178 10 44 -[1] 179 10 78 -[1] 180 10 75 -[1] 181 10 66 -[1] 182 10 45 -[1] 183 10 65 -[1] 184 10 52 -[1] 185 10 40 -[1] 186 10 43 -[1] 187 10 28 -[1] 188 10 55 -[1] 189 10 58 -[1] 190 10 78 -[1] 191 10 45 -[1] 192 10 36 -[1] 193 10 48 -[1] 194 10 32 -[1] 195 10 45 -[1] 196 10 54 -[1] 197 10 41 -[1] 198 10 33 -[1] 199 10 70 -[1] 200 10 43 -[1] 1 11 68 -[1] 2 11 56 -[1] 3 11 48 -[1] 4 11 61 -[1] 5 11 69 -[1] 6 11 68 -[1] 7 11 47 -[1] 8 11 43 -[1] 9 11 52 -[1] 10 11 60 -[1] 11 11 57 -[1] 12 11 80 -[1] 13 11 45 -[1] 14 11 50 -[1] 15 11 64 -[1] 16 11 38 -[1] 17 11 46 -[1] 18 11 35 -[1] 19 11 44 -[1] 20 11 53 -[1] 21 11 32 -[1] 22 11 43 -[1] 23 11 56 -[1] 24 11 35 -[1] 25 11 45 -[1] 26 11 44 -[1] 27 11 43 -[1] 28 11 48 -[1] 29 11 59 -[1] 30 11 30 -[1] 31 11 43 -[1] 32 11 52 -[1] 33 11 45 -[1] 34 11 43 -[1] 35 11 29 -[1] 36 11 60 -[1] 37 11 54 -[1] 38 11 58 -[1] 39 11 54 -[1] 40 11 37 -[1] 41 11 64 -[1] 42 11 46 -[1] 43 11 53 -[1] 44 11 62 -[1] 45 11 82 -[1] 46 11 49 -[1] 47 11 41 -[1] 48 11 67 -[1] 49 11 48 -[1] 50 11 51 -[1] 51 11 42 -[1] 52 11 57 -[1] 53 11 36 -[1] 54 11 63 -[1] 55 11 43 -[1] 56 11 54 -[1] 57 11 37 -[1] 58 11 67 -[1] 59 11 66 -[1] 60 11 37 -[1] 61 11 78 -[1] 62 11 55 -[1] 63 11 43 -[1] 64 11 54 -[1] 65 11 37 -[1] 66 11 60 -[1] 67 11 34 -[1] 68 11 30 -[1] 69 11 91 -[1] 70 11 52 -[1] 71 11 50 -[1] 72 11 96 -[1] 73 11 57 -[1] 74 11 35 -[1] 75 11 43 -[1] 76 11 45 -[1] 77 11 49 -[1] 78 11 40 -[1] 79 11 45 -[1] 80 11 133 -[1] 81 11 41 -[1] 82 11 52 -[1] 83 11 80 -[1] 84 11 46 -[1] 85 11 62 -[1] 86 11 94 -[1] 87 11 75 -[1] 88 11 55 -[1] 89 11 46 -[1] 90 11 44 -[1] 91 11 35 -[1] 92 11 56 -[1] 93 11 38 -[1] 94 11 54 -[1] 95 11 48 -[1] 96 11 41 -[1] 97 11 54 -[1] 98 11 53 -[1] 99 11 54 -[1] 100 11 46 -[1] 101 11 33 -[1] 102 11 47 -[1] 103 11 45 -[1] 104 11 38 -[1] 105 11 38 -[1] 106 11 51 -[1] 107 11 73 -[1] 108 11 55 -[1] 109 11 38 -[1] 110 11 47 -[1] 111 11 38 -[1] 112 11 47 -[1] 113 11 68 -[1] 114 11 47 -[1] 115 11 31 -[1] 116 11 50 -[1] 117 11 35 -[1] 118 11 34 -[1] 119 11 51 -[1] 120 11 45 -[1] 121 11 47 -[1] 122 11 70 -[1] 123 11 54 -[1] 124 11 83 -[1] 125 11 35 -[1] 126 11 58 -[1] 127 11 66 -[1] 128 11 54 -[1] 129 11 49 -[1] 130 11 53 -[1] 131 11 51 -[1] 132 11 38 -[1] 133 11 55 -[1] 134 11 60 -[1] 135 11 45 -[1] 136 11 45 -[1] 137 11 51 -[1] 138 11 61 -[1] 139 11 55 -[1] 140 11 44 -[1] 141 11 52 -[1] 142 11 51 -[1] 143 11 42 -[1] 144 11 70 -[1] 145 11 45 -[1] 146 11 49 -[1] 147 11 40 -[1] 148 11 86 -[1] 149 11 51 -[1] 150 11 64 -[1] 151 11 46 -[1] 152 11 53 -[1] 153 11 33 -[1] 154 11 41 -[1] 155 11 28 -[1] 156 11 43 -[1] 157 11 72 -[1] 158 11 45 -[1] 159 11 46 -[1] 160 11 40 -[1] 161 11 40 -[1] 162 11 38 -[1] 163 11 58 -[1] 164 11 39 -[1] 165 11 41 -[1] 166 11 53 -[1] 167 11 39 -[1] 168 11 43 -[1] 169 11 35 -[1] 170 11 43 -[1] 171 11 56 -[1] 172 11 53 -[1] 173 11 64 -[1] 174 11 40 -[1] 175 11 49 -[1] 176 11 47 -[1] 177 11 50 -[1] 178 11 37 -[1] 179 11 41 -[1] 180 11 45 -[1] 181 11 64 -[1] 182 11 40 -[1] 183 11 60 -[1] 184 11 43 -[1] 185 11 64 -[1] 186 11 68 -[1] 187 11 37 -[1] 188 11 55 -[1] 189 11 44 -[1] 190 11 37 -[1] 191 11 37 -[1] 192 11 45 -[1] 193 11 39 -[1] 194 11 46 -[1] 195 11 42 -[1] 196 11 55 -[1] 197 11 39 -[1] 198 11 47 -[1] 199 11 52 -[1] 200 11 49 -[1] 1 12 30 -[1] 2 12 36 -[1] 3 12 36 -[1] 4 12 61 -[1] 5 12 50 -[1] 6 12 49 -[1] 7 12 72 -[1] 8 12 45 -[1] 9 12 35 -[1] 10 12 61 -[1] 11 12 33 -[1] 12 12 33 -[1] 13 12 39 -[1] 14 12 32 -[1] 15 12 61 -[1] 16 12 28 -[1] 17 12 40 -[1] 18 12 56 -[1] 19 12 38 -[1] 20 12 43 -[1] 21 12 46 -[1] 22 12 43 -[1] 23 12 35 -[1] 24 12 58 -[1] 25 12 42 -[1] 26 12 41 -[1] 27 12 39 -[1] 28 12 29 -[1] 29 12 58 -[1] 30 12 42 -[1] 31 12 67 -[1] 32 12 88 -[1] 33 12 47 -[1] 34 12 62 -[1] 35 12 56 -[1] 36 12 54 -[1] 37 12 90 -[1] 38 12 53 -[1] 39 12 55 -[1] 40 12 66 -[1] 41 12 35 -[1] 42 12 50 -[1] 43 12 32 -[1] 44 12 84 -[1] 45 12 66 -[1] 46 12 49 -[1] 47 12 68 -[1] 48 12 42 -[1] 49 12 41 -[1] 50 12 48 -[1] 51 12 47 -[1] 52 12 41 -[1] 53 12 52 -[1] 54 12 43 -[1] 55 12 36 -[1] 56 12 59 -[1] 57 12 69 -[1] 58 12 56 -[1] 59 12 38 -[1] 60 12 82 -[1] 61 12 63 -[1] 62 12 51 -[1] 63 12 47 -[1] 64 12 58 -[1] 65 12 51 -[1] 66 12 54 -[1] 67 12 43 -[1] 68 12 51 -[1] 69 12 87 -[1] 70 12 82 -[1] 71 12 54 -[1] 72 12 39 -[1] 73 12 60 -[1] 74 12 63 -[1] 75 12 70 -[1] 76 12 42 -[1] 77 12 34 -[1] 78 12 107 -[1] 79 12 47 -[1] 80 12 55 -[1] 81 12 63 -[1] 82 12 58 -[1] 83 12 49 -[1] 84 12 50 -[1] 85 12 64 -[1] 86 12 50 -[1] 87 12 50 -[1] 88 12 34 -[1] 89 12 51 -[1] 90 12 59 -[1] 91 12 42 -[1] 92 12 69 -[1] 93 12 52 -[1] 94 12 61 -[1] 95 12 45 -[1] 96 12 44 -[1] 97 12 45 -[1] 98 12 49 -[1] 99 12 108 -[1] 100 12 38 -[1] 101 12 45 -[1] 102 12 68 -[1] 103 12 38 -[1] 104 12 38 -[1] 105 12 88 -[1] 106 12 58 -[1] 107 12 51 -[1] 108 12 53 -[1] 109 12 48 -[1] 110 12 49 -[1] 111 12 43 -[1] 112 12 48 -[1] 113 12 37 -[1] 114 12 49 -[1] 115 12 62 -[1] 116 12 38 -[1] 117 12 33 -[1] 118 12 49 -[1] 119 12 45 -[1] 120 12 46 -[1] 121 12 58 -[1] 122 12 40 -[1] 123 12 45 -[1] 124 12 45 -[1] 125 12 67 -[1] 126 12 97 -[1] 127 12 90 -[1] 128 12 44 -[1] 129 12 47 -[1] 130 12 44 -[1] 131 12 40 -[1] 132 12 55 -[1] 133 12 45 -[1] 134 12 40 -[1] 135 12 49 -[1] 136 12 31 -[1] 137 12 116 -[1] 138 12 62 -[1] 139 12 45 -[1] 140 12 63 -[1] 141 12 28 -[1] 142 12 41 -[1] 143 12 72 -[1] 144 12 68 -[1] 145 12 45 -[1] 146 12 37 -[1] 147 12 41 -[1] 148 12 72 -[1] 149 12 62 -[1] 150 12 40 -[1] 151 12 48 -[1] 152 12 48 -[1] 153 12 37 -[1] 154 12 61 -[1] 155 12 37 -[1] 156 12 40 -[1] 157 12 29 -[1] 158 12 82 -[1] 159 12 49 -[1] 160 12 48 -[1] 161 12 34 -[1] 162 12 59 -[1] 163 12 63 -[1] 164 12 36 -[1] 165 12 45 -[1] 166 12 35 -[1] 167 12 54 -[1] 168 12 36 -[1] 169 12 47 -[1] 170 12 119 -[1] 171 12 40 -[1] 172 12 49 -[1] 173 12 44 -[1] 174 12 41 -[1] 175 12 63 -[1] 176 12 40 -[1] 177 12 45 -[1] 178 12 34 -[1] 179 12 54 -[1] 180 12 76 -[1] 181 12 44 -[1] 182 12 50 -[1] 183 12 50 -[1] 184 12 56 -[1] 185 12 83 -[1] 186 12 68 -[1] 187 12 44 -[1] 188 12 67 -[1] 189 12 52 -[1] 190 12 39 -[1] 191 12 46 -[1] 192 12 56 -[1] 193 12 56 -[1] 194 12 41 -[1] 195 12 46 -[1] 196 12 30 -[1] 197 12 57 -[1] 198 12 39 -[1] 199 12 54 -[1] 200 12 41 -[1] 1 13 35 -[1] 2 13 44 -[1] 3 13 49 -[1] 4 13 51 -[1] 5 13 40 -[1] 6 13 31 -[1] 7 13 33 -[1] 8 13 38 -[1] 9 13 41 -[1] 10 13 61 -[1] 11 13 44 -[1] 12 13 39 -[1] 13 13 67 -[1] 14 13 40 -[1] 15 13 38 -[1] 16 13 48 -[1] 17 13 39 -[1] 18 13 36 -[1] 19 13 46 -[1] 20 13 81 -[1] 21 13 56 -[1] 22 13 70 -[1] 23 13 46 -[1] 24 13 45 -[1] 25 13 49 -[1] 26 13 57 -[1] 27 13 65 -[1] 28 13 43 -[1] 29 13 33 -[1] 30 13 34 -[1] 31 13 37 -[1] 32 13 64 -[1] 33 13 25 -[1] 34 13 67 -[1] 35 13 48 -[1] 36 13 73 -[1] 37 13 36 -[1] 38 13 45 -[1] 39 13 72 -[1] 40 13 65 -[1] 41 13 44 -[1] 42 13 39 -[1] 43 13 60 -[1] 44 13 36 -[1] 45 13 47 -[1] 46 13 39 -[1] 47 13 50 -[1] 48 13 51 -[1] 49 13 47 -[1] 50 13 70 -[1] 51 13 43 -[1] 52 13 63 -[1] 53 13 34 -[1] 54 13 44 -[1] 55 13 63 -[1] 56 13 39 -[1] 57 13 36 -[1] 58 13 53 -[1] 59 13 41 -[1] 60 13 64 -[1] 61 13 42 -[1] 62 13 35 -[1] 63 13 47 -[1] 64 13 33 -[1] 65 13 44 -[1] 66 13 48 -[1] 67 13 51 -[1] 68 13 71 -[1] 69 13 74 -[1] 70 13 44 -[1] 71 13 65 -[1] 72 13 64 -[1] 73 13 49 -[1] 74 13 49 -[1] 75 13 76 -[1] 76 13 41 -[1] 77 13 44 -[1] 78 13 60 -[1] 79 13 94 -[1] 80 13 46 -[1] 81 13 47 -[1] 82 13 76 -[1] 83 13 36 -[1] 84 13 35 -[1] 85 13 38 -[1] 86 13 50 -[1] 87 13 43 -[1] 88 13 56 -[1] 89 13 68 -[1] 90 13 82 -[1] 91 13 57 -[1] 92 13 69 -[1] 93 13 37 -[1] 94 13 72 -[1] 95 13 39 -[1] 96 13 66 -[1] 97 13 55 -[1] 98 13 43 -[1] 99 13 40 -[1] 100 13 54 -[1] 101 13 52 -[1] 102 13 42 -[1] 103 13 48 -[1] 104 13 44 -[1] 105 13 54 -[1] 106 13 51 -[1] 107 13 43 -[1] 108 13 53 -[1] 109 13 45 -[1] 110 13 64 -[1] 111 13 33 -[1] 112 13 60 -[1] 113 13 69 -[1] 114 13 74 -[1] 115 13 47 -[1] 116 13 36 -[1] 117 13 43 -[1] 118 13 31 -[1] 119 13 54 -[1] 120 13 67 -[1] 121 13 40 -[1] 122 13 47 -[1] 123 13 59 -[1] 124 13 42 -[1] 125 13 56 -[1] 126 13 46 -[1] 127 13 57 -[1] 128 13 49 -[1] 129 13 49 -[1] 130 13 47 -[1] 131 13 41 -[1] 132 13 63 -[1] 133 13 65 -[1] 134 13 35 -[1] 135 13 48 -[1] 136 13 34 -[1] 137 13 51 -[1] 138 13 37 -[1] 139 13 42 -[1] 140 13 41 -[1] 141 13 33 -[1] 142 13 49 -[1] 143 13 66 -[1] 144 13 36 -[1] 145 13 65 -[1] 146 13 40 -[1] 147 13 67 -[1] 148 13 42 -[1] 149 13 39 -[1] 150 13 38 -[1] 151 13 45 -[1] 152 13 39 -[1] 153 13 61 -[1] 154 13 62 -[1] 155 13 51 -[1] 156 13 53 -[1] 157 13 46 -[1] 158 13 65 -[1] 159 13 56 -[1] 160 13 36 -[1] 161 13 58 -[1] 162 13 50 -[1] 163 13 33 -[1] 164 13 62 -[1] 165 13 56 -[1] 166 13 38 -[1] 167 13 59 -[1] 168 13 53 -[1] 169 13 48 -[1] 170 13 69 -[1] 171 13 49 -[1] 172 13 55 -[1] 173 13 59 -[1] 174 13 53 -[1] 175 13 38 -[1] 176 13 71 -[1] 177 13 64 -[1] 178 13 53 -[1] 179 13 53 -[1] 180 13 53 -[1] 181 13 45 -[1] 182 13 41 -[1] 183 13 56 -[1] 184 13 50 -[1] 185 13 54 -[1] 186 13 43 -[1] 187 13 44 -[1] 188 13 68 -[1] 189 13 63 -[1] 190 13 41 -[1] 191 13 48 -[1] 192 13 51 -[1] 193 13 45 -[1] 194 13 40 -[1] 195 13 57 -[1] 196 13 46 -[1] 197 13 49 -[1] 198 13 52 -[1] 199 13 33 -[1] 200 13 55 -[1] 1 14 32 -[1] 2 14 39 -[1] 3 14 68 -[1] 4 14 78 -[1] 5 14 50 -[1] 6 14 53 -[1] 7 14 33 -[1] 8 14 29 -[1] 9 14 34 -[1] 10 14 44 -[1] 11 14 43 -[1] 12 14 40 -[1] 13 14 43 -[1] 14 14 36 -[1] 15 14 43 -[1] 16 14 38 -[1] 17 14 59 -[1] 18 14 35 -[1] 19 14 50 -[1] 20 14 29 -[1] 21 14 114 -[1] 22 14 51 -[1] 23 14 56 -[1] 24 14 55 -[1] 25 14 48 -[1] 26 14 47 -[1] 27 14 52 -[1] 28 14 49 -[1] 29 14 103 -[1] 30 14 50 -[1] 31 14 45 -[1] 32 14 31 -[1] 33 14 38 -[1] 34 14 56 -[1] 35 14 53 -[1] 36 14 37 -[1] 37 14 48 -[1] 38 14 45 -[1] 39 14 68 -[1] 40 14 51 -[1] 41 14 61 -[1] 42 14 58 -[1] 43 14 70 -[1] 44 14 43 -[1] 45 14 76 -[1] 46 14 40 -[1] 47 14 62 -[1] 48 14 34 -[1] 49 14 60 -[1] 50 14 41 -[1] 51 14 47 -[1] 52 14 80 -[1] 53 14 48 -[1] 54 14 62 -[1] 55 14 58 -[1] 56 14 53 -[1] 57 14 38 -[1] 58 14 45 -[1] 59 14 64 -[1] 60 14 70 -[1] 61 14 65 -[1] 62 14 49 -[1] 63 14 31 -[1] 64 14 44 -[1] 65 14 72 -[1] 66 14 55 -[1] 67 14 56 -[1] 68 14 61 -[1] 69 14 69 -[1] 70 14 30 -[1] 71 14 68 -[1] 72 14 47 -[1] 73 14 55 -[1] 74 14 55 -[1] 75 14 34 -[1] 76 14 46 -[1] 77 14 43 -[1] 78 14 55 -[1] 79 14 37 -[1] 80 14 52 -[1] 81 14 60 -[1] 82 14 47 -[1] 83 14 52 -[1] 84 14 83 -[1] 85 14 43 -[1] 86 14 43 -[1] 87 14 46 -[1] 88 14 54 -[1] 89 14 57 -[1] 90 14 41 -[1] 91 14 48 -[1] 92 14 61 -[1] 93 14 50 -[1] 94 14 42 -[1] 95 14 68 -[1] 96 14 54 -[1] 97 14 38 -[1] 98 14 89 -[1] 99 14 33 -[1] 100 14 64 -[1] 101 14 72 -[1] 102 14 51 -[1] 103 14 84 -[1] 104 14 52 -[1] 105 14 36 -[1] 106 14 35 -[1] 107 14 82 -[1] 108 14 43 -[1] 109 14 57 -[1] 110 14 54 -[1] 111 14 49 -[1] 112 14 60 -[1] 113 14 59 -[1] 114 14 36 -[1] 115 14 37 -[1] 116 14 36 -[1] 117 14 31 -[1] 118 14 45 -[1] 119 14 46 -[1] 120 14 44 -[1] 121 14 43 -[1] 122 14 54 -[1] 123 14 37 -[1] 124 14 42 -[1] 125 14 55 -[1] 126 14 44 -[1] 127 14 43 -[1] 128 14 61 -[1] 129 14 46 -[1] 130 14 52 -[1] 131 14 45 -[1] 132 14 47 -[1] 133 14 56 -[1] 134 14 44 -[1] 135 14 79 -[1] 136 14 30 -[1] 137 14 31 -[1] 138 14 50 -[1] 139 14 66 -[1] 140 14 39 -[1] 141 14 153 -[1] 142 14 38 -[1] 143 14 60 -[1] 144 14 60 -[1] 145 14 52 -[1] 146 14 56 -[1] 147 14 58 -[1] 148 14 57 -[1] 149 14 38 -[1] 150 14 81 -[1] 151 14 42 -[1] 152 14 46 -[1] 153 14 59 -[1] 154 14 65 -[1] 155 14 63 -[1] 156 14 40 -[1] 157 14 47 -[1] 158 14 30 -[1] 159 14 29 -[1] 160 14 76 -[1] 161 14 37 -[1] 162 14 40 -[1] 163 14 61 -[1] 164 14 44 -[1] 165 14 46 -[1] 166 14 75 -[1] 167 14 43 -[1] 168 14 47 -[1] 169 14 40 -[1] 170 14 64 -[1] 171 14 45 -[1] 172 14 49 -[1] 173 14 38 -[1] 174 14 46 -[1] 175 14 44 -[1] 176 14 48 -[1] 177 14 39 -[1] 178 14 36 -[1] 179 14 36 -[1] 180 14 49 -[1] 181 14 55 -[1] 182 14 44 -[1] 183 14 39 -[1] 184 14 33 -[1] 185 14 46 -[1] 186 14 37 -[1] 187 14 39 -[1] 188 14 45 -[1] 189 14 43 -[1] 190 14 95 -[1] 191 14 35 -[1] 192 14 37 -[1] 193 14 55 -[1] 194 14 46 -[1] 195 14 46 -[1] 196 14 63 -[1] 197 14 48 -[1] 198 14 32 -[1] 199 14 51 -[1] 200 14 41 -[1] 1 15 41 -[1] 2 15 47 -[1] 3 15 40 -[1] 4 15 37 -[1] 5 15 50 -[1] 6 15 43 -[1] 7 15 44 -[1] 8 15 51 -[1] 9 15 31 -[1] 10 15 35 -[1] 11 15 40 -[1] 12 15 33 -[1] 13 15 43 -[1] 14 15 39 -[1] 15 15 40 -[1] 16 15 37 -[1] 17 15 62 -[1] 18 15 60 -[1] 19 15 60 -[1] 20 15 47 -[1] 21 15 54 -[1] 22 15 69 -[1] 23 15 40 -[1] 24 15 39 -[1] 25 15 73 -[1] 26 15 38 -[1] 27 15 51 -[1] 28 15 35 -[1] 29 15 67 -[1] 30 15 54 -[1] 31 15 60 -[1] 32 15 70 -[1] 33 15 44 -[1] 34 15 62 -[1] 35 15 52 -[1] 36 15 46 -[1] 37 15 41 -[1] 38 15 43 -[1] 39 15 38 -[1] 40 15 43 -[1] 41 15 59 -[1] 42 15 53 -[1] 43 15 53 -[1] 44 15 63 -[1] 45 15 30 -[1] 46 15 67 -[1] 47 15 47 -[1] 48 15 59 -[1] 49 15 74 -[1] 50 15 42 -[1] 51 15 51 -[1] 52 15 57 -[1] 53 15 55 -[1] 54 15 44 -[1] 55 15 60 -[1] 56 15 49 -[1] 57 15 58 -[1] 58 15 35 -[1] 59 15 69 -[1] 60 15 51 -[1] 61 15 58 -[1] 62 15 48 -[1] 63 15 41 -[1] 64 15 42 -[1] 65 15 73 -[1] 66 15 50 -[1] 67 15 46 -[1] 68 15 40 -[1] 69 15 45 -[1] 70 15 66 -[1] 71 15 42 -[1] 72 15 68 -[1] 73 15 75 -[1] 74 15 52 -[1] 75 15 49 -[1] 76 15 36 -[1] 77 15 51 -[1] 78 15 51 -[1] 79 15 45 -[1] 80 15 44 -[1] 81 15 28 -[1] 82 15 39 -[1] 83 15 57 -[1] 84 15 74 -[1] 85 15 41 -[1] 86 15 61 -[1] 87 15 67 -[1] 88 15 59 -[1] 89 15 62 -[1] 90 15 50 -[1] 91 15 58 -[1] 92 15 61 -[1] 93 15 54 -[1] 94 15 59 -[1] 95 15 55 -[1] 96 15 63 -[1] 97 15 71 -[1] 98 15 53 -[1] 99 15 78 -[1] 100 15 42 -[1] 101 15 42 -[1] 102 15 56 -[1] 103 15 51 -[1] 104 15 41 -[1] 105 15 59 -[1] 106 15 32 -[1] 107 15 116 -[1] 108 15 46 -[1] 109 15 48 -[1] 110 15 108 -[1] 111 15 38 -[1] 112 15 57 -[1] 113 15 53 -[1] 114 15 78 -[1] 115 15 57 -[1] 116 15 57 -[1] 117 15 52 -[1] 118 15 92 -[1] 119 15 47 -[1] 120 15 73 -[1] 121 15 43 -[1] 122 15 70 -[1] 123 15 44 -[1] 124 15 45 -[1] 125 15 62 -[1] 126 15 57 -[1] 127 15 35 -[1] 128 15 57 -[1] 129 15 37 -[1] 130 15 51 -[1] 131 15 99 -[1] 132 15 42 -[1] 133 15 62 -[1] 134 15 48 -[1] 135 15 66 -[1] 136 15 33 -[1] 137 15 86 -[1] 138 15 45 -[1] 139 15 29 -[1] 140 15 92 -[1] 141 15 62 -[1] 142 15 39 -[1] 143 15 38 -[1] 144 15 34 -[1] 145 15 91 -[1] 146 15 48 -[1] 147 15 44 -[1] 148 15 21 -[1] 149 15 86 -[1] 150 15 89 -[1] 151 15 86 -[1] 152 15 51 -[1] 153 15 48 -[1] 154 15 51 -[1] 155 15 40 -[1] 156 15 49 -[1] 157 15 38 -[1] 158 15 53 -[1] 159 15 46 -[1] 160 15 36 -[1] 161 15 74 -[1] 162 15 33 -[1] 163 15 29 -[1] 164 15 53 -[1] 165 15 49 -[1] 166 15 38 -[1] 167 15 47 -[1] 168 15 63 -[1] 169 15 56 -[1] 170 15 47 -[1] 171 15 29 -[1] 172 15 50 -[1] 173 15 34 -[1] 174 15 57 -[1] 175 15 43 -[1] 176 15 46 -[1] 177 15 37 -[1] 178 15 90 -[1] 179 15 63 -[1] 180 15 40 -[1] 181 15 49 -[1] 182 15 34 -[1] 183 15 51 -[1] 184 15 61 -[1] 185 15 44 -[1] 186 15 54 -[1] 187 15 40 -[1] 188 15 56 -[1] 189 15 57 -[1] 190 15 48 -[1] 191 15 45 -[1] 192 15 50 -[1] 193 15 49 -[1] 194 15 35 -[1] 195 15 52 -[1] 196 15 46 -[1] 197 15 35 -[1] 198 15 27 -[1] 199 15 64 -[1] 200 15 53 -[1] 1 16 33 -[1] 2 16 41 -[1] 3 16 44 -[1] 4 16 43 -[1] 5 16 38 -[1] 6 16 67 -[1] 7 16 38 -[1] 8 16 41 -[1] 9 16 29 -[1] 10 16 34 -[1] 11 16 44 -[1] 12 16 45 -[1] 13 16 48 -[1] 14 16 38 -[1] 15 16 40 -[1] 16 16 50 -[1] 17 16 44 -[1] 18 16 42 -[1] 19 16 70 -[1] 20 16 43 -[1] 21 16 33 -[1] 22 16 45 -[1] 23 16 48 -[1] 24 16 48 -[1] 25 16 52 -[1] 26 16 63 -[1] 27 16 45 -[1] 28 16 63 -[1] 29 16 62 -[1] 30 16 64 -[1] 31 16 49 -[1] 32 16 36 -[1] 33 16 53 -[1] 34 16 53 -[1] 35 16 40 -[1] 36 16 46 -[1] 37 16 42 -[1] 38 16 38 -[1] 39 16 39 -[1] 40 16 62 -[1] 41 16 74 -[1] 42 16 40 -[1] 43 16 60 -[1] 44 16 82 -[1] 45 16 69 -[1] 46 16 32 -[1] 47 16 65 -[1] 48 16 45 -[1] 49 16 88 -[1] 50 16 26 -[1] 51 16 59 -[1] 52 16 41 -[1] 53 16 44 -[1] 54 16 50 -[1] 55 16 41 -[1] 56 16 30 -[1] 57 16 40 -[1] 58 16 56 -[1] 59 16 48 -[1] 60 16 49 -[1] 61 16 55 -[1] 62 16 45 -[1] 63 16 60 -[1] 64 16 50 -[1] 65 16 75 -[1] 66 16 58 -[1] 67 16 47 -[1] 68 16 53 -[1] 69 16 36 -[1] 70 16 82 -[1] 71 16 42 -[1] 72 16 42 -[1] 73 16 51 -[1] 74 16 49 -[1] 75 16 47 -[1] 76 16 33 -[1] 77 16 61 -[1] 78 16 72 -[1] 79 16 43 -[1] 80 16 46 -[1] 81 16 51 -[1] 82 16 43 -[1] 83 16 54 -[1] 84 16 44 -[1] 85 16 28 -[1] 86 16 62 -[1] 87 16 54 -[1] 88 16 64 -[1] 89 16 41 -[1] 90 16 53 -[1] 91 16 60 -[1] 92 16 62 -[1] 93 16 64 -[1] 94 16 65 -[1] 95 16 39 -[1] 96 16 74 -[1] 97 16 58 -[1] 98 16 60 -[1] 99 16 39 -[1] 100 16 74 -[1] 101 16 37 -[1] 102 16 51 -[1] 103 16 38 -[1] 104 16 71 -[1] 105 16 64 -[1] 106 16 45 -[1] 107 16 65 -[1] 108 16 47 -[1] 109 16 50 -[1] 110 16 42 -[1] 111 16 47 -[1] 112 16 72 -[1] 113 16 68 -[1] 114 16 51 -[1] 115 16 33 -[1] 116 16 75 -[1] 117 16 56 -[1] 118 16 35 -[1] 119 16 38 -[1] 120 16 35 -[1] 121 16 52 -[1] 122 16 39 -[1] 123 16 40 -[1] 124 16 44 -[1] 125 16 42 -[1] 126 16 64 -[1] 127 16 49 -[1] 128 16 38 -[1] 129 16 45 -[1] 130 16 41 -[1] 131 16 44 -[1] 132 16 49 -[1] 133 16 52 -[1] 134 16 52 -[1] 135 16 43 -[1] 136 16 42 -[1] 137 16 45 -[1] 138 16 45 -[1] 139 16 36 -[1] 140 16 38 -[1] 141 16 63 -[1] 142 16 51 -[1] 143 16 113 -[1] 144 16 56 -[1] 145 16 49 -[1] 146 16 30 -[1] 147 16 55 -[1] 148 16 36 -[1] 149 16 65 -[1] 150 16 60 -[1] 151 16 43 -[1] 152 16 67 -[1] 153 16 54 -[1] 154 16 49 -[1] 155 16 42 -[1] 156 16 41 -[1] 157 16 46 -[1] 158 16 32 -[1] 159 16 62 -[1] 160 16 52 -[1] 161 16 36 -[1] 162 16 47 -[1] 163 16 58 -[1] 164 16 49 -[1] 165 16 40 -[1] 166 16 39 -[1] 167 16 59 -[1] 168 16 40 -[1] 169 16 39 -[1] 170 16 41 -[1] 171 16 40 -[1] 172 16 34 -[1] 173 16 40 -[1] 174 16 43 -[1] 175 16 31 -[1] 176 16 51 -[1] 177 16 45 -[1] 178 16 42 -[1] 179 16 37 -[1] 180 16 48 -[1] 181 16 38 -[1] 182 16 59 -[1] 183 16 38 -[1] 184 16 42 -[1] 185 16 48 -[1] 186 16 63 -[1] 187 16 40 -[1] 188 16 48 -[1] 189 16 59 -[1] 190 16 59 -[1] 191 16 46 -[1] 192 16 35 -[1] 193 16 69 -[1] 194 16 45 -[1] 195 16 79 -[1] 196 16 43 -[1] 197 16 57 -[1] 198 16 47 -[1] 199 16 46 -[1] 200 16 45 -[1] 1 17 41 -[1] 2 17 46 -[1] 3 17 36 -[1] 4 17 44 -[1] 5 17 35 -[1] 6 17 32 -[1] 7 17 41 -[1] 8 17 68 -[1] 9 17 63 -[1] 10 17 43 -[1] 11 17 37 -[1] 12 17 37 -[1] 13 17 41 -[1] 14 17 42 -[1] 15 17 41 -[1] 16 17 47 -[1] 17 17 44 -[1] 18 17 36 -[1] 19 17 51 -[1] 20 17 45 -[1] 21 17 50 -[1] 22 17 49 -[1] 23 17 40 -[1] 24 17 51 -[1] 25 17 43 -[1] 26 17 66 -[1] 27 17 51 -[1] 28 17 50 -[1] 29 17 43 -[1] 30 17 44 -[1] 31 17 48 -[1] 32 17 51 -[1] 33 17 27 -[1] 34 17 41 -[1] 35 17 66 -[1] 36 17 39 -[1] 37 17 57 -[1] 38 17 51 -[1] 39 17 57 -[1] 40 17 39 -[1] 41 17 42 -[1] 42 17 31 -[1] 43 17 58 -[1] 44 17 37 -[1] 45 17 57 -[1] 46 17 41 -[1] 47 17 44 -[1] 48 17 71 -[1] 49 17 36 -[1] 50 17 44 -[1] 51 17 63 -[1] 52 17 63 -[1] 53 17 37 -[1] 54 17 51 -[1] 55 17 62 -[1] 56 17 61 -[1] 57 17 44 -[1] 58 17 53 -[1] 59 17 98 -[1] 60 17 39 -[1] 61 17 44 -[1] 62 17 44 -[1] 63 17 59 -[1] 64 17 78 -[1] 65 17 25 -[1] 66 17 71 -[1] 67 17 61 -[1] 68 17 46 -[1] 69 17 44 -[1] 70 17 115 -[1] 71 17 47 -[1] 72 17 96 -[1] 73 17 38 -[1] 74 17 51 -[1] 75 17 56 -[1] 76 17 45 -[1] 77 17 53 -[1] 78 17 37 -[1] 79 17 41 -[1] 80 17 58 -[1] 81 17 46 -[1] 82 17 72 -[1] 83 17 57 -[1] 84 17 89 -[1] 85 17 52 -[1] 86 17 46 -[1] 87 17 41 -[1] 88 17 55 -[1] 89 17 44 -[1] 90 17 51 -[1] 91 17 43 -[1] 92 17 32 -[1] 93 17 47 -[1] 94 17 40 -[1] 95 17 50 -[1] 96 17 43 -[1] 97 17 46 -[1] 98 17 55 -[1] 99 17 36 -[1] 100 17 55 -[1] 101 17 52 -[1] 102 17 38 -[1] 103 17 44 -[1] 104 17 48 -[1] 105 17 52 -[1] 106 17 72 -[1] 107 17 37 -[1] 108 17 71 -[1] 109 17 58 -[1] 110 17 43 -[1] 111 17 38 -[1] 112 17 42 -[1] 113 17 51 -[1] 114 17 138 -[1] 115 17 47 -[1] 116 17 40 -[1] 117 17 39 -[1] 118 17 33 -[1] 119 17 44 -[1] 120 17 79 -[1] 121 17 32 -[1] 122 17 61 -[1] 123 17 52 -[1] 124 17 44 -[1] 125 17 41 -[1] 126 17 66 -[1] 127 17 64 -[1] 128 17 40 -[1] 129 17 52 -[1] 130 17 36 -[1] 131 17 70 -[1] 132 17 44 -[1] 133 17 40 -[1] 134 17 47 -[1] 135 17 37 -[1] 136 17 47 -[1] 137 17 56 -[1] 138 17 62 -[1] 139 17 108 -[1] 140 17 50 -[1] 141 17 52 -[1] 142 17 47 -[1] 143 17 37 -[1] 144 17 55 -[1] 145 17 40 -[1] 146 17 70 -[1] 147 17 37 -[1] 148 17 85 -[1] 149 17 70 -[1] 150 17 64 -[1] 151 17 37 -[1] 152 17 62 -[1] 153 17 41 -[1] 154 17 53 -[1] 155 17 47 -[1] 156 17 34 -[1] 157 17 47 -[1] 158 17 38 -[1] 159 17 31 -[1] 160 17 76 -[1] 161 17 39 -[1] 162 17 44 -[1] 163 17 42 -[1] 164 17 36 -[1] 165 17 46 -[1] 166 17 32 -[1] 167 17 39 -[1] 168 17 39 -[1] 169 17 53 -[1] 170 17 38 -[1] 171 17 35 -[1] 172 17 48 -[1] 173 17 36 -[1] 174 17 53 -[1] 175 17 32 -[1] 176 17 35 -[1] 177 17 39 -[1] 178 17 46 -[1] 179 17 52 -[1] 180 17 35 -[1] 181 17 64 -[1] 182 17 43 -[1] 183 17 53 -[1] 184 17 49 -[1] 185 17 26 -[1] 186 17 62 -[1] 187 17 43 -[1] 188 17 34 -[1] 189 17 39 -[1] 190 17 37 -[1] 191 17 43 -[1] 192 17 47 -[1] 193 17 54 -[1] 194 17 38 -[1] 195 17 37 -[1] 196 17 38 -[1] 197 17 52 -[1] 198 17 44 -[1] 199 17 42 -[1] 200 17 39 -[1] 1 18 35 -[1] 2 18 53 -[1] 3 18 45 -[1] 4 18 40 -[1] 5 18 44 -[1] 6 18 39 -[1] 7 18 58 -[1] 8 18 45 -[1] 9 18 27 -[1] 10 18 43 -[1] 11 18 36 -[1] 12 18 27 -[1] 13 18 43 -[1] 14 18 33 -[1] 15 18 47 -[1] 16 18 36 -[1] 17 18 49 -[1] 18 18 62 -[1] 19 18 40 -[1] 20 18 48 -[1] 21 18 45 -[1] 22 18 42 -[1] 23 18 39 -[1] 24 18 44 -[1] 25 18 36 -[1] 26 18 59 -[1] 27 18 50 -[1] 28 18 57 -[1] 29 18 55 -[1] 30 18 64 -[1] 31 18 86 -[1] 32 18 65 -[1] 33 18 42 -[1] 34 18 50 -[1] 35 18 85 -[1] 36 18 54 -[1] 37 18 47 -[1] 38 18 54 -[1] 39 18 46 -[1] 40 18 36 -[1] 41 18 51 -[1] 42 18 51 -[1] 43 18 51 -[1] 44 18 44 -[1] 45 18 55 -[1] 46 18 52 -[1] 47 18 53 -[1] 48 18 46 -[1] 49 18 38 -[1] 50 18 47 -[1] 51 18 48 -[1] 52 18 54 -[1] 53 18 46 -[1] 54 18 48 -[1] 55 18 45 -[1] 56 18 39 -[1] 57 18 52 -[1] 58 18 51 -[1] 59 18 47 -[1] 60 18 37 -[1] 61 18 44 -[1] 62 18 50 -[1] 63 18 49 -[1] 64 18 38 -[1] 65 18 49 -[1] 66 18 64 -[1] 67 18 65 -[1] 68 18 47 -[1] 69 18 40 -[1] 70 18 93 -[1] 71 18 64 -[1] 72 18 42 -[1] 73 18 55 -[1] 74 18 49 -[1] 75 18 36 -[1] 76 18 63 -[1] 77 18 59 -[1] 78 18 36 -[1] 79 18 55 -[1] 80 18 48 -[1] 81 18 41 -[1] 82 18 64 -[1] 83 18 49 -[1] 84 18 55 -[1] 85 18 55 -[1] 86 18 54 -[1] 87 18 74 -[1] 88 18 47 -[1] 89 18 34 -[1] 90 18 46 -[1] 91 18 44 -[1] 92 18 51 -[1] 93 18 58 -[1] 94 18 43 -[1] 95 18 76 -[1] 96 18 62 -[1] 97 18 51 -[1] 98 18 55 -[1] 99 18 56 -[1] 100 18 46 -[1] 101 18 67 -[1] 102 18 37 -[1] 103 18 39 -[1] 104 18 59 -[1] 105 18 40 -[1] 106 18 42 -[1] 107 18 58 -[1] 108 18 35 -[1] 109 18 60 -[1] 110 18 49 -[1] 111 18 57 -[1] 112 18 60 -[1] 113 18 48 -[1] 114 18 49 -[1] 115 18 39 -[1] 116 18 51 -[1] 117 18 39 -[1] 118 18 52 -[1] 119 18 62 -[1] 120 18 49 -[1] 121 18 38 -[1] 122 18 55 -[1] 123 18 52 -[1] 124 18 38 -[1] 125 18 45 -[1] 126 18 59 -[1] 127 18 37 -[1] 128 18 52 -[1] 129 18 38 -[1] 130 18 77 -[1] 131 18 47 -[1] 132 18 60 -[1] 133 18 29 -[1] 134 18 52 -[1] 135 18 49 -[1] 136 18 38 -[1] 137 18 51 -[1] 138 18 48 -[1] 139 18 47 -[1] 140 18 37 -[1] 141 18 33 -[1] 142 18 96 -[1] 143 18 31 -[1] 144 18 74 -[1] 145 18 35 -[1] 146 18 55 -[1] 147 18 58 -[1] 148 18 48 -[1] 149 18 39 -[1] 150 18 54 -[1] 151 18 68 -[1] 152 18 42 -[1] 153 18 34 -[1] 154 18 42 -[1] 155 18 41 -[1] 156 18 53 -[1] 157 18 44 -[1] 158 18 33 -[1] 159 18 54 -[1] 160 18 48 -[1] 161 18 41 -[1] 162 18 43 -[1] 163 18 54 -[1] 164 18 79 -[1] 165 18 49 -[1] 166 18 46 -[1] 167 18 44 -[1] 168 18 52 -[1] 169 18 32 -[1] 170 18 39 -[1] 171 18 34 -[1] 172 18 39 -[1] 173 18 45 -[1] 174 18 74 -[1] 175 18 29 -[1] 176 18 39 -[1] 177 18 38 -[1] 178 18 41 -[1] 179 18 40 -[1] 180 18 41 -[1] 181 18 56 -[1] 182 18 50 -[1] 183 18 45 -[1] 184 18 45 -[1] 185 18 36 -[1] 186 18 35 -[1] 187 18 43 -[1] 188 18 62 -[1] 189 18 54 -[1] 190 18 39 -[1] 191 18 54 -[1] 192 18 49 -[1] 193 18 46 -[1] 194 18 51 -[1] 195 18 44 -[1] 196 18 47 -[1] 197 18 42 -[1] 198 18 51 -[1] 199 18 32 -[1] 200 18 46 -[1] 1 19 25 -[1] 2 19 37 -[1] 3 19 59 -[1] 4 19 59 -[1] 5 19 57 -[1] 6 19 69 -[1] 7 19 38 -[1] 8 19 30 -[1] 9 19 59 -[1] 10 19 53 -[1] 11 19 46 -[1] 12 19 37 -[1] 13 19 55 -[1] 14 19 40 -[1] 15 19 50 -[1] 16 19 29 -[1] 17 19 35 -[1] 18 19 38 -[1] 19 19 52 -[1] 20 19 62 -[1] 21 19 50 -[1] 22 19 43 -[1] 23 19 57 -[1] 24 19 44 -[1] 25 19 50 -[1] 26 19 68 -[1] 27 19 34 -[1] 28 19 59 -[1] 29 19 66 -[1] 30 19 58 -[1] 31 19 43 -[1] 32 19 62 -[1] 33 19 61 -[1] 34 19 42 -[1] 35 19 54 -[1] 36 19 60 -[1] 37 19 61 -[1] 38 19 41 -[1] 39 19 68 -[1] 40 19 53 -[1] 41 19 47 -[1] 42 19 51 -[1] 43 19 51 -[1] 44 19 47 -[1] 45 19 78 -[1] 46 19 44 -[1] 47 19 46 -[1] 48 19 51 -[1] 49 19 33 -[1] 50 19 55 -[1] 51 19 52 -[1] 52 19 51 -[1] 53 19 46 -[1] 54 19 41 -[1] 55 19 52 -[1] 56 19 57 -[1] 57 19 35 -[1] 58 19 63 -[1] 59 19 54 -[1] 60 19 68 -[1] 61 19 48 -[1] 62 19 65 -[1] 63 19 45 -[1] 64 19 64 -[1] 65 19 39 -[1] 66 19 50 -[1] 67 19 42 -[1] 68 19 63 -[1] 69 19 63 -[1] 70 19 65 -[1] 71 19 51 -[1] 72 19 36 -[1] 73 19 34 -[1] 74 19 45 -[1] 75 19 42 -[1] 76 19 57 -[1] 77 19 41 -[1] 78 19 66 -[1] 79 19 43 -[1] 80 19 41 -[1] 81 19 47 -[1] 82 19 45 -[1] 83 19 48 -[1] 84 19 54 -[1] 85 19 51 -[1] 86 19 53 -[1] 87 19 49 -[1] 88 19 51 -[1] 89 19 79 -[1] 90 19 44 -[1] 91 19 52 -[1] 92 19 46 -[1] 93 19 49 -[1] 94 19 50 -[1] 95 19 45 -[1] 96 19 57 -[1] 97 19 53 -[1] 98 19 73 -[1] 99 19 52 -[1] 100 19 52 -[1] 101 19 42 -[1] 102 19 59 -[1] 103 19 41 -[1] 104 19 49 -[1] 105 19 42 -[1] 106 19 49 -[1] 107 19 48 -[1] 108 19 39 -[1] 109 19 51 -[1] 110 19 58 -[1] 111 19 30 -[1] 112 19 33 -[1] 113 19 54 -[1] 114 19 64 -[1] 115 19 70 -[1] 116 19 42 -[1] 117 19 47 -[1] 118 19 71 -[1] 119 19 38 -[1] 120 19 39 -[1] 121 19 48 -[1] 122 19 43 -[1] 123 19 38 -[1] 124 19 41 -[1] 125 19 67 -[1] 126 19 51 -[1] 127 19 52 -[1] 128 19 44 -[1] 129 19 71 -[1] 130 19 50 -[1] 131 19 43 -[1] 132 19 42 -[1] 133 19 65 -[1] 134 19 37 -[1] 135 19 66 -[1] 136 19 33 -[1] 137 19 66 -[1] 138 19 45 -[1] 139 19 52 -[1] 140 19 41 -[1] 141 19 58 -[1] 142 19 43 -[1] 143 19 46 -[1] 144 19 37 -[1] 145 19 43 -[1] 146 19 60 -[1] 147 19 59 -[1] 148 19 45 -[1] 149 19 52 -[1] 150 19 51 -[1] 151 19 38 -[1] 152 19 49 -[1] 153 19 40 -[1] 154 19 50 -[1] 155 19 39 -[1] 156 19 59 -[1] 157 19 30 -[1] 158 19 44 -[1] 159 19 62 -[1] 160 19 65 -[1] 161 19 72 -[1] 162 19 33 -[1] 163 19 58 -[1] 164 19 48 -[1] 165 19 43 -[1] 166 19 36 -[1] 167 19 45 -[1] 168 19 53 -[1] 169 19 33 -[1] 170 19 46 -[1] 171 19 60 -[1] 172 19 53 -[1] 173 19 40 -[1] 174 19 41 -[1] 175 19 54 -[1] 176 19 33 -[1] 177 19 41 -[1] 178 19 32 -[1] 179 19 40 -[1] 180 19 55 -[1] 181 19 65 -[1] 182 19 46 -[1] 183 19 57 -[1] 184 19 45 -[1] 185 19 34 -[1] 186 19 55 -[1] 187 19 38 -[1] 188 19 50 -[1] 189 19 48 -[1] 190 19 48 -[1] 191 19 59 -[1] 192 19 45 -[1] 193 19 48 -[1] 194 19 50 -[1] 195 19 31 -[1] 196 19 52 -[1] 197 19 37 -[1] 198 19 50 -[1] 199 19 47 -[1] 200 19 41 -[1] 1 20 31 -[1] 2 20 45 -[1] 3 20 56 -[1] 4 20 33 -[1] 5 20 45 -[1] 6 20 42 -[1] 7 20 34 -[1] 8 20 37 -[1] 9 20 53 -[1] 10 20 37 -[1] 11 20 35 -[1] 12 20 49 -[1] 13 20 49 -[1] 14 20 46 -[1] 15 20 39 -[1] 16 20 50 -[1] 17 20 59 -[1] 18 20 51 -[1] 19 20 40 -[1] 20 20 50 -[1] 21 20 57 -[1] 22 20 34 -[1] 23 20 63 -[1] 24 20 57 -[1] 25 20 34 -[1] 26 20 45 -[1] 27 20 49 -[1] 28 20 40 -[1] 29 20 70 -[1] 30 20 71 -[1] 31 20 45 -[1] 32 20 43 -[1] 33 20 60 -[1] 34 20 75 -[1] 35 20 40 -[1] 36 20 53 -[1] 37 20 44 -[1] 38 20 75 -[1] 39 20 44 -[1] 40 20 73 -[1] 41 20 68 -[1] 42 20 75 -[1] 43 20 56 -[1] 44 20 53 -[1] 45 20 46 -[1] 46 20 41 -[1] 47 20 43 -[1] 48 20 44 -[1] 49 20 111 -[1] 50 20 32 -[1] 51 20 51 -[1] 52 20 44 -[1] 53 20 36 -[1] 54 20 54 -[1] 55 20 32 -[1] 56 20 68 -[1] 57 20 34 -[1] 58 20 40 -[1] 59 20 35 -[1] 60 20 49 -[1] 61 20 53 -[1] 62 20 44 -[1] 63 20 58 -[1] 64 20 39 -[1] 65 20 65 -[1] 66 20 49 -[1] 67 20 61 -[1] 68 20 39 -[1] 69 20 34 -[1] 70 20 43 -[1] 71 20 35 -[1] 72 20 78 -[1] 73 20 36 -[1] 74 20 45 -[1] 75 20 42 -[1] 76 20 45 -[1] 77 20 39 -[1] 78 20 47 -[1] 79 20 84 -[1] 80 20 40 -[1] 81 20 47 -[1] 82 20 54 -[1] 83 20 41 -[1] 84 20 27 -[1] 85 20 97 -[1] 86 20 86 -[1] 87 20 55 -[1] 88 20 52 -[1] 89 20 56 -[1] 90 20 49 -[1] 91 20 52 -[1] 92 20 61 -[1] 93 20 45 -[1] 94 20 50 -[1] 95 20 74 -[1] 96 20 49 -[1] 97 20 55 -[1] 98 20 44 -[1] 99 20 49 -[1] 100 20 50 -[1] 101 20 63 -[1] 102 20 39 -[1] 103 20 37 -[1] 104 20 58 -[1] 105 20 82 -[1] 106 20 42 -[1] 107 20 39 -[1] 108 20 34 -[1] 109 20 55 -[1] 110 20 55 -[1] 111 20 45 -[1] 112 20 45 -[1] 113 20 45 -[1] 114 20 44 -[1] 115 20 48 -[1] 116 20 48 -[1] 117 20 57 -[1] 118 20 51 -[1] 119 20 28 -[1] 120 20 75 -[1] 121 20 67 -[1] 122 20 52 -[1] 123 20 58 -[1] 124 20 39 -[1] 125 20 38 -[1] 126 20 40 -[1] 127 20 43 -[1] 128 20 52 -[1] 129 20 36 -[1] 130 20 36 -[1] 131 20 48 -[1] 132 20 53 -[1] 133 20 62 -[1] 134 20 37 -[1] 135 20 63 -[1] 136 20 39 -[1] 137 20 47 -[1] 138 20 72 -[1] 139 20 52 -[1] 140 20 58 -[1] 141 20 59 -[1] 142 20 43 -[1] 143 20 43 -[1] 144 20 44 -[1] 145 20 49 -[1] 146 20 34 -[1] 147 20 32 -[1] 148 20 55 -[1] 149 20 43 -[1] 150 20 33 -[1] 151 20 58 -[1] 152 20 53 -[1] 153 20 32 -[1] 154 20 53 -[1] 155 20 40 -[1] 156 20 49 -[1] 157 20 37 -[1] 158 20 62 -[1] 159 20 67 -[1] 160 20 87 -[1] 161 20 57 -[1] 162 20 33 -[1] 163 20 35 -[1] 164 20 80 -[1] 165 20 41 -[1] 166 20 32 -[1] 167 20 39 -[1] 168 20 44 -[1] 169 20 31 -[1] 170 20 53 -[1] 171 20 30 -[1] 172 20 55 -[1] 173 20 50 -[1] 174 20 40 -[1] 175 20 49 -[1] 176 20 47 -[1] 177 20 53 -[1] 178 20 58 -[1] 179 20 48 -[1] 180 20 47 -[1] 181 20 35 -[1] 182 20 66 -[1] 183 20 47 -[1] 184 20 68 -[1] 185 20 49 -[1] 186 20 35 -[1] 187 20 64 -[1] 188 20 49 -[1] 189 20 44 -[1] 190 20 52 -[1] 191 20 35 -[1] 192 20 41 -[1] 193 20 53 -[1] 194 20 48 -[1] 195 20 37 -[1] 196 20 46 -[1] 197 20 30 -[1] 198 20 47 -[1] 199 20 28 -[1] 200 20 44 -[1] 1 21 33 -[1] 2 21 55 -[1] 3 21 60 -[1] 4 21 49 -[1] 5 21 51 -[1] 6 21 33 -[1] 7 21 42 -[1] 8 21 40 -[1] 9 21 42 -[1] 10 21 47 -[1] 11 21 39 -[1] 12 21 52 -[1] 13 21 57 -[1] 14 21 52 -[1] 15 21 37 -[1] 16 21 56 -[1] 17 21 44 -[1] 18 21 36 -[1] 19 21 63 -[1] 20 21 45 -[1] 21 21 37 -[1] 22 21 65 -[1] 23 21 31 -[1] 24 21 62 -[1] 25 21 70 -[1] 26 21 33 -[1] 27 21 45 -[1] 28 21 46 -[1] 29 21 53 -[1] 30 21 76 -[1] 31 21 52 -[1] 32 21 49 -[1] 33 21 53 -[1] 34 21 56 -[1] 35 21 41 -[1] 36 21 57 -[1] 37 21 36 -[1] 38 21 69 -[1] 39 21 79 -[1] 40 21 65 -[1] 41 21 69 -[1] 42 21 65 -[1] 43 21 67 -[1] 44 21 55 -[1] 45 21 72 -[1] 46 21 33 -[1] 47 21 52 -[1] 48 21 64 -[1] 49 21 85 -[1] 50 21 60 -[1] 51 21 42 -[1] 52 21 43 -[1] 53 21 49 -[1] 54 21 59 -[1] 55 21 62 -[1] 56 21 52 -[1] 57 21 52 -[1] 58 21 52 -[1] 59 21 53 -[1] 60 21 52 -[1] 61 21 47 -[1] 62 21 48 -[1] 63 21 79 -[1] 64 21 40 -[1] 65 21 59 -[1] 66 21 54 -[1] 67 21 48 -[1] 68 21 46 -[1] 69 21 55 -[1] 70 21 51 -[1] 71 21 53 -[1] 72 21 51 -[1] 73 21 45 -[1] 74 21 46 -[1] 75 21 51 -[1] 76 21 58 -[1] 77 21 43 -[1] 78 21 34 -[1] 79 21 41 -[1] 80 21 42 -[1] 81 21 54 -[1] 82 21 43 -[1] 83 21 79 -[1] 84 21 50 -[1] 85 21 57 -[1] 86 21 60 -[1] 87 21 85 -[1] 88 21 49 -[1] 89 21 32 -[1] 90 21 64 -[1] 91 21 87 -[1] 92 21 63 -[1] 93 21 85 -[1] 94 21 52 -[1] 95 21 41 -[1] 96 21 58 -[1] 97 21 39 -[1] 98 21 47 -[1] 99 21 45 -[1] 100 21 49 -[1] 101 21 70 -[1] 102 21 48 -[1] 103 21 82 -[1] 104 21 88 -[1] 105 21 58 -[1] 106 21 42 -[1] 107 21 40 -[1] 108 21 93 -[1] 109 21 33 -[1] 110 21 44 -[1] 111 21 49 -[1] 112 21 39 -[1] 113 21 56 -[1] 114 21 58 -[1] 115 21 44 -[1] 116 21 51 -[1] 117 21 35 -[1] 118 21 33 -[1] 119 21 37 -[1] 120 21 62 -[1] 121 21 50 -[1] 122 21 49 -[1] 123 21 44 -[1] 124 21 61 -[1] 125 21 58 -[1] 126 21 49 -[1] 127 21 37 -[1] 128 21 44 -[1] 129 21 27 -[1] 130 21 31 -[1] 131 21 48 -[1] 132 21 40 -[1] 133 21 41 -[1] 134 21 37 -[1] 135 21 48 -[1] 136 21 59 -[1] 137 21 36 -[1] 138 21 72 -[1] 139 21 60 -[1] 140 21 48 -[1] 141 21 52 -[1] 142 21 43 -[1] 143 21 55 -[1] 144 21 34 -[1] 145 21 49 -[1] 146 21 69 -[1] 147 21 36 -[1] 148 21 52 -[1] 149 21 41 -[1] 150 21 35 -[1] 151 21 52 -[1] 152 21 65 -[1] 153 21 30 -[1] 154 21 33 -[1] 155 21 40 -[1] 156 21 46 -[1] 157 21 65 -[1] 158 21 46 -[1] 159 21 65 -[1] 160 21 52 -[1] 161 21 40 -[1] 162 21 60 -[1] 163 21 54 -[1] 164 21 47 -[1] 165 21 41 -[1] 166 21 45 -[1] 167 21 64 -[1] 168 21 36 -[1] 169 21 38 -[1] 170 21 44 -[1] 171 21 35 -[1] 172 21 44 -[1] 173 21 64 -[1] 174 21 42 -[1] 175 21 48 -[1] 176 21 35 -[1] 177 21 35 -[1] 178 21 47 -[1] 179 21 45 -[1] 180 21 40 -[1] 181 21 63 -[1] 182 21 56 -[1] 183 21 45 -[1] 184 21 67 -[1] 185 21 42 -[1] 186 21 41 -[1] 187 21 54 -[1] 188 21 47 -[1] 189 21 70 -[1] 190 21 48 -[1] 191 21 32 -[1] 192 21 70 -[1] 193 21 41 -[1] 194 21 30 -[1] 195 21 39 -[1] 196 21 41 -[1] 197 21 40 -[1] 198 21 62 -[1] 199 21 49 -[1] 200 21 43 -[1] 1 22 41 -[1] 2 22 29 -[1] 3 22 60 -[1] 4 22 41 -[1] 5 22 58 -[1] 6 22 41 -[1] 7 22 36 -[1] 8 22 43 -[1] 9 22 42 -[1] 10 22 41 -[1] 11 22 44 -[1] 12 22 43 -[1] 13 22 37 -[1] 14 22 70 -[1] 15 22 45 -[1] 16 22 36 -[1] 17 22 67 -[1] 18 22 39 -[1] 19 22 45 -[1] 20 22 67 -[1] 21 22 51 -[1] 22 22 41 -[1] 23 22 37 -[1] 24 22 47 -[1] 25 22 40 -[1] 26 22 44 -[1] 27 22 54 -[1] 28 22 36 -[1] 29 22 113 -[1] 30 22 37 -[1] 31 22 44 -[1] 32 22 49 -[1] 33 22 43 -[1] 34 22 52 -[1] 35 22 67 -[1] 36 22 72 -[1] 37 22 55 -[1] 38 22 40 -[1] 39 22 51 -[1] 40 22 40 -[1] 41 22 46 -[1] 42 22 69 -[1] 43 22 63 -[1] 44 22 61 -[1] 45 22 48 -[1] 46 22 70 -[1] 47 22 48 -[1] 48 22 44 -[1] 49 22 34 -[1] 50 22 42 -[1] 51 22 47 -[1] 52 22 57 -[1] 53 22 41 -[1] 54 22 56 -[1] 55 22 65 -[1] 56 22 43 -[1] 57 22 81 -[1] 58 22 51 -[1] 59 22 35 -[1] 60 22 48 -[1] 61 22 43 -[1] 62 22 60 -[1] 63 22 73 -[1] 64 22 65 -[1] 65 22 60 -[1] 66 22 45 -[1] 67 22 56 -[1] 68 22 69 -[1] 69 22 44 -[1] 70 22 63 -[1] 71 22 57 -[1] 72 22 42 -[1] 73 22 60 -[1] 74 22 69 -[1] 75 22 45 -[1] 76 22 44 -[1] 77 22 42 -[1] 78 22 41 -[1] 79 22 58 -[1] 80 22 41 -[1] 81 22 59 -[1] 82 22 68 -[1] 83 22 38 -[1] 84 22 43 -[1] 85 22 56 -[1] 86 22 43 -[1] 87 22 57 -[1] 88 22 43 -[1] 89 22 49 -[1] 90 22 56 -[1] 91 22 57 -[1] 92 22 51 -[1] 93 22 99 -[1] 94 22 53 -[1] 95 22 55 -[1] 96 22 45 -[1] 97 22 50 -[1] 98 22 110 -[1] 99 22 52 -[1] 100 22 55 -[1] 101 22 48 -[1] 102 22 81 -[1] 103 22 111 -[1] 104 22 37 -[1] 105 22 60 -[1] 106 22 53 -[1] 107 22 46 -[1] 108 22 57 -[1] 109 22 32 -[1] 110 22 69 -[1] 111 22 33 -[1] 112 22 108 -[1] 113 22 49 -[1] 114 22 38 -[1] 115 22 47 -[1] 116 22 48 -[1] 117 22 43 -[1] 118 22 56 -[1] 119 22 59 -[1] 120 22 70 -[1] 121 22 61 -[1] 122 22 57 -[1] 123 22 36 -[1] 124 22 33 -[1] 125 22 30 -[1] 126 22 41 -[1] 127 22 62 -[1] 128 22 33 -[1] 129 22 35 -[1] 130 22 35 -[1] 131 22 42 -[1] 132 22 41 -[1] 133 22 84 -[1] 134 22 40 -[1] 135 22 56 -[1] 136 22 57 -[1] 137 22 55 -[1] 138 22 21 -[1] 139 22 53 -[1] 140 22 53 -[1] 141 22 49 -[1] 142 22 73 -[1] 143 22 46 -[1] 144 22 65 -[1] 145 22 35 -[1] 146 22 44 -[1] 147 22 47 -[1] 148 22 42 -[1] 149 22 58 -[1] 150 22 51 -[1] 151 22 51 -[1] 152 22 42 -[1] 153 22 51 -[1] 154 22 58 -[1] 155 22 43 -[1] 156 22 76 -[1] 157 22 46 -[1] 158 22 51 -[1] 159 22 44 -[1] 160 22 74 -[1] 161 22 38 -[1] 162 22 31 -[1] 163 22 66 -[1] 164 22 51 -[1] 165 22 60 -[1] 166 22 52 -[1] 167 22 47 -[1] 168 22 50 -[1] 169 22 40 -[1] 170 22 60 -[1] 171 22 54 -[1] 172 22 31 -[1] 173 22 37 -[1] 174 22 58 -[1] 175 22 43 -[1] 176 22 42 -[1] 177 22 51 -[1] 178 22 34 -[1] 179 22 44 -[1] 180 22 59 -[1] 181 22 56 -[1] 182 22 41 -[1] 183 22 61 -[1] 184 22 37 -[1] 185 22 28 -[1] 186 22 47 -[1] 187 22 62 -[1] 188 22 47 -[1] 189 22 36 -[1] 190 22 41 -[1] 191 22 37 -[1] 192 22 57 -[1] 193 22 46 -[1] 194 22 59 -[1] 195 22 42 -[1] 196 22 56 -[1] 197 22 45 -[1] 198 22 48 -[1] 199 22 51 -[1] 200 22 47 -[1] 1 23 33 -[1] 2 23 47 -[1] 3 23 46 -[1] 4 23 52 -[1] 5 23 35 -[1] 6 23 45 -[1] 7 23 49 -[1] 8 23 52 -[1] 9 23 35 -[1] 10 23 44 -[1] 11 23 47 -[1] 12 23 44 -[1] 13 23 59 -[1] 14 23 26 -[1] 15 23 38 -[1] 16 23 52 -[1] 17 23 44 -[1] 18 23 26 -[1] 19 23 74 -[1] 20 23 77 -[1] 21 23 59 -[1] 22 23 33 -[1] 23 23 57 -[1] 24 23 40 -[1] 25 23 48 -[1] 26 23 59 -[1] 27 23 48 -[1] 28 23 34 -[1] 29 23 33 -[1] 30 23 37 -[1] 31 23 63 -[1] 32 23 63 -[1] 33 23 55 -[1] 34 23 49 -[1] 35 23 73 -[1] 36 23 41 -[1] 37 23 53 -[1] 38 23 42 -[1] 39 23 44 -[1] 40 23 47 -[1] 41 23 37 -[1] 42 23 32 -[1] 43 23 64 -[1] 44 23 44 -[1] 45 23 35 -[1] 46 23 52 -[1] 47 23 36 -[1] 48 23 43 -[1] 49 23 59 -[1] 50 23 44 -[1] 51 23 38 -[1] 52 23 55 -[1] 53 23 49 -[1] 54 23 42 -[1] 55 23 68 -[1] 56 23 56 -[1] 57 23 63 -[1] 58 23 65 -[1] 59 23 42 -[1] 60 23 52 -[1] 61 23 56 -[1] 62 23 96 -[1] 63 23 54 -[1] 64 23 44 -[1] 65 23 75 -[1] 66 23 37 -[1] 67 23 72 -[1] 68 23 82 -[1] 69 23 39 -[1] 70 23 65 -[1] 71 23 48 -[1] 72 23 45 -[1] 73 23 42 -[1] 74 23 50 -[1] 75 23 55 -[1] 76 23 35 -[1] 77 23 30 -[1] 78 23 46 -[1] 79 23 54 -[1] 80 23 43 -[1] 81 23 47 -[1] 82 23 50 -[1] 83 23 79 -[1] 84 23 47 -[1] 85 23 68 -[1] 86 23 50 -[1] 87 23 72 -[1] 88 23 40 -[1] 89 23 45 -[1] 90 23 68 -[1] 91 23 70 -[1] 92 23 48 -[1] 93 23 87 -[1] 94 23 55 -[1] 95 23 48 -[1] 96 23 63 -[1] 97 23 54 -[1] 98 23 36 -[1] 99 23 51 -[1] 100 23 32 -[1] 101 23 30 -[1] 102 23 48 -[1] 103 23 34 -[1] 104 23 49 -[1] 105 23 58 -[1] 106 23 43 -[1] 107 23 44 -[1] 108 23 51 -[1] 109 23 41 -[1] 110 23 34 -[1] 111 23 75 -[1] 112 23 30 -[1] 113 23 39 -[1] 114 23 60 -[1] 115 23 53 -[1] 116 23 59 -[1] 117 23 36 -[1] 118 23 51 -[1] 119 23 56 -[1] 120 23 37 -[1] 121 23 44 -[1] 122 23 65 -[1] 123 23 41 -[1] 124 23 65 -[1] 125 23 40 -[1] 126 23 74 -[1] 127 23 43 -[1] 128 23 40 -[1] 129 23 43 -[1] 130 23 50 -[1] 131 23 42 -[1] 132 23 33 -[1] 133 23 53 -[1] 134 23 53 -[1] 135 23 47 -[1] 136 23 36 -[1] 137 23 65 -[1] 138 23 45 -[1] 139 23 36 -[1] 140 23 50 -[1] 141 23 63 -[1] 142 23 58 -[1] 143 23 43 -[1] 144 23 43 -[1] 145 23 44 -[1] 146 23 44 -[1] 147 23 52 -[1] 148 23 76 -[1] 149 23 42 -[1] 150 23 63 -[1] 151 23 49 -[1] 152 23 52 -[1] 153 23 59 -[1] 154 23 28 -[1] 155 23 55 -[1] 156 23 35 -[1] 157 23 68 -[1] 158 23 47 -[1] 159 23 52 -[1] 160 23 51 -[1] 161 23 57 -[1] 162 23 61 -[1] 163 23 33 -[1] 164 23 43 -[1] 165 23 63 -[1] 166 23 50 -[1] 167 23 39 -[1] 168 23 52 -[1] 169 23 47 -[1] 170 23 48 -[1] 171 23 39 -[1] 172 23 57 -[1] 173 23 30 -[1] 174 23 59 -[1] 175 23 42 -[1] 176 23 42 -[1] 177 23 49 -[1] 178 23 48 -[1] 179 23 44 -[1] 180 23 49 -[1] 181 23 52 -[1] 182 23 37 -[1] 183 23 47 -[1] 184 23 49 -[1] 185 23 48 -[1] 186 23 62 -[1] 187 23 44 -[1] 188 23 58 -[1] 189 23 39 -[1] 190 23 45 -[1] 191 23 44 -[1] 192 23 66 -[1] 193 23 36 -[1] 194 23 52 -[1] 195 23 33 -[1] 196 23 54 -[1] 197 23 75 -[1] 198 23 31 -[1] 199 23 56 -[1] 200 23 45 -[1] 1 24 30 -[1] 2 24 56 -[1] 3 24 48 -[1] 4 24 38 -[1] 5 24 57 -[1] 6 24 51 -[1] 7 24 38 -[1] 8 24 25 -[1] 9 24 50 -[1] 10 24 36 -[1] 11 24 49 -[1] 12 24 45 -[1] 13 24 54 -[1] 14 24 55 -[1] 15 24 41 -[1] 16 24 62 -[1] 17 24 55 -[1] 18 24 36 -[1] 19 24 47 -[1] 20 24 34 -[1] 21 24 58 -[1] 22 24 45 -[1] 23 24 57 -[1] 24 24 51 -[1] 25 24 51 -[1] 26 24 46 -[1] 27 24 66 -[1] 28 24 33 -[1] 29 24 60 -[1] 30 24 68 -[1] 31 24 51 -[1] 32 24 42 -[1] 33 24 69 -[1] 34 24 45 -[1] 35 24 37 -[1] 36 24 66 -[1] 37 24 77 -[1] 38 24 37 -[1] 39 24 95 -[1] 40 24 59 -[1] 41 24 61 -[1] 42 24 54 -[1] 43 24 45 -[1] 44 24 50 -[1] 45 24 42 -[1] 46 24 50 -[1] 47 24 49 -[1] 48 24 48 -[1] 49 24 46 -[1] 50 24 63 -[1] 51 24 50 -[1] 52 24 55 -[1] 53 24 54 -[1] 54 24 55 -[1] 55 24 43 -[1] 56 24 83 -[1] 57 24 76 -[1] 58 24 37 -[1] 59 24 44 -[1] 60 24 43 -[1] 61 24 40 -[1] 62 24 54 -[1] 63 24 51 -[1] 64 24 46 -[1] 65 24 37 -[1] 66 24 60 -[1] 67 24 53 -[1] 68 24 29 -[1] 69 24 50 -[1] 70 24 37 -[1] 71 24 26 -[1] 72 24 51 -[1] 73 24 53 -[1] 74 24 40 -[1] 75 24 49 -[1] 76 24 43 -[1] 77 24 45 -[1] 78 24 55 -[1] 79 24 43 -[1] 80 24 44 -[1] 81 24 57 -[1] 82 24 37 -[1] 83 24 47 -[1] 84 24 37 -[1] 85 24 51 -[1] 86 24 62 -[1] 87 24 42 -[1] 88 24 40 -[1] 89 24 42 -[1] 90 24 66 -[1] 91 24 51 -[1] 92 24 73 -[1] 93 24 33 -[1] 94 24 56 -[1] 95 24 40 -[1] 96 24 62 -[1] 97 24 40 -[1] 98 24 75 -[1] 99 24 51 -[1] 100 24 33 -[1] 101 24 36 -[1] 102 24 96 -[1] 103 24 47 -[1] 104 24 46 -[1] 105 24 56 -[1] 106 24 35 -[1] 107 24 50 -[1] 108 24 42 -[1] 109 24 48 -[1] 110 24 55 -[1] 111 24 65 -[1] 112 24 51 -[1] 113 24 33 -[1] 114 24 41 -[1] 115 24 45 -[1] 116 24 59 -[1] 117 24 34 -[1] 118 24 45 -[1] 119 24 34 -[1] 120 24 53 -[1] 121 24 63 -[1] 122 24 43 -[1] 123 24 44 -[1] 124 24 36 -[1] 125 24 64 -[1] 126 24 40 -[1] 127 24 52 -[1] 128 24 40 -[1] 129 24 38 -[1] 130 24 45 -[1] 131 24 31 -[1] 132 24 34 -[1] 133 24 37 -[1] 134 24 75 -[1] 135 24 56 -[1] 136 24 37 -[1] 137 24 35 -[1] 138 24 60 -[1] 139 24 62 -[1] 140 24 50 -[1] 141 24 61 -[1] 142 24 49 -[1] 143 24 40 -[1] 144 24 43 -[1] 145 24 51 -[1] 146 24 35 -[1] 147 24 52 -[1] 148 24 39 -[1] 149 24 72 -[1] 150 24 39 -[1] 151 24 58 -[1] 152 24 57 -[1] 153 24 64 -[1] 154 24 56 -[1] 155 24 39 -[1] 156 24 69 -[1] 157 24 40 -[1] 158 24 46 -[1] 159 24 44 -[1] 160 24 31 -[1] 161 24 73 -[1] 162 24 41 -[1] 163 24 61 -[1] 164 24 48 -[1] 165 24 52 -[1] 166 24 42 -[1] 167 24 68 -[1] 168 24 52 -[1] 169 24 45 -[1] 170 24 36 -[1] 171 24 47 -[1] 172 24 45 -[1] 173 24 76 -[1] 174 24 50 -[1] 175 24 45 -[1] 176 24 42 -[1] 177 24 71 -[1] 178 24 52 -[1] 179 24 41 -[1] 180 24 38 -[1] 181 24 47 -[1] 182 24 32 -[1] 183 24 39 -[1] 184 24 53 -[1] 185 24 48 -[1] 186 24 47 -[1] 187 24 42 -[1] 188 24 37 -[1] 189 24 47 -[1] 190 24 62 -[1] 191 24 50 -[1] 192 24 52 -[1] 193 24 36 -[1] 194 24 53 -[1] 195 24 49 -[1] 196 24 51 -[1] 197 24 43 -[1] 198 24 41 -[1] 199 24 50 -[1] 200 24 55 -[1] 1 25 33 -[1] 2 25 47 -[1] 3 25 33 -[1] 4 25 62 -[1] 5 25 86 -[1] 6 25 45 -[1] 7 25 45 -[1] 8 25 38 -[1] 9 25 35 -[1] 10 25 38 -[1] 11 25 31 -[1] 12 25 62 -[1] 13 25 37 -[1] 14 25 57 -[1] 15 25 30 -[1] 16 25 37 -[1] 17 25 65 -[1] 18 25 72 -[1] 19 25 39 -[1] 20 25 84 -[1] 21 25 53 -[1] 22 25 52 -[1] 23 25 46 -[1] 24 25 51 -[1] 25 25 39 -[1] 26 25 54 -[1] 27 25 63 -[1] 28 25 57 -[1] 29 25 44 -[1] 30 25 51 -[1] 31 25 54 -[1] 32 25 38 -[1] 33 25 56 -[1] 34 25 47 -[1] 35 25 39 -[1] 36 25 55 -[1] 37 25 34 -[1] 38 25 47 -[1] 39 25 53 -[1] 40 25 56 -[1] 41 25 106 -[1] 42 25 49 -[1] 43 25 57 -[1] 44 25 61 -[1] 45 25 72 -[1] 46 25 43 -[1] 47 25 43 -[1] 48 25 52 -[1] 49 25 64 -[1] 50 25 61 -[1] 51 25 58 -[1] 52 25 73 -[1] 53 25 56 -[1] 54 25 72 -[1] 55 25 53 -[1] 56 25 81 -[1] 57 25 85 -[1] 58 25 87 -[1] 59 25 47 -[1] 60 25 50 -[1] 61 25 49 -[1] 62 25 48 -[1] 63 25 43 -[1] 64 25 31 -[1] 65 25 48 -[1] 66 25 41 -[1] 67 25 52 -[1] 68 25 49 -[1] 69 25 74 -[1] 70 25 56 -[1] 71 25 97 -[1] 72 25 35 -[1] 73 25 28 -[1] 74 25 34 -[1] 75 25 99 -[1] 76 25 72 -[1] 77 25 43 -[1] 78 25 53 -[1] 79 25 75 -[1] 80 25 56 -[1] 81 25 57 -[1] 82 25 46 -[1] 83 25 40 -[1] 84 25 56 -[1] 85 25 36 -[1] 86 25 47 -[1] 87 25 53 -[1] 88 25 46 -[1] 89 25 46 -[1] 90 25 50 -[1] 91 25 72 -[1] 92 25 48 -[1] 93 25 93 -[1] 94 25 50 -[1] 95 25 44 -[1] 96 25 74 -[1] 97 25 69 -[1] 98 25 62 -[1] 99 25 51 -[1] 100 25 47 -[1] 101 25 50 -[1] 102 25 32 -[1] 103 25 87 -[1] 104 25 56 -[1] 105 25 53 -[1] 106 25 60 -[1] 107 25 50 -[1] 108 25 58 -[1] 109 25 54 -[1] 110 25 39 -[1] 111 25 54 -[1] 112 25 63 -[1] 113 25 41 -[1] 114 25 44 -[1] 115 25 33 -[1] 116 25 50 -[1] 117 25 43 -[1] 118 25 46 -[1] 119 25 47 -[1] 120 25 54 -[1] 121 25 43 -[1] 122 25 53 -[1] 123 25 42 -[1] 124 25 60 -[1] 125 25 123 -[1] 126 25 86 -[1] 127 25 63 -[1] 128 25 61 -[1] 129 25 40 -[1] 130 25 53 -[1] 131 25 31 -[1] 132 25 41 -[1] 133 25 56 -[1] 134 25 32 -[1] 135 25 49 -[1] 136 25 41 -[1] 137 25 48 -[1] 138 25 37 -[1] 139 25 44 -[1] 140 25 45 -[1] 141 25 35 -[1] 142 25 70 -[1] 143 25 61 -[1] 144 25 49 -[1] 145 25 64 -[1] 146 25 56 -[1] 147 25 43 -[1] 148 25 42 -[1] 149 25 43 -[1] 150 25 34 -[1] 151 25 31 -[1] 152 25 57 -[1] 153 25 48 -[1] 154 25 41 -[1] 155 25 82 -[1] 156 25 51 -[1] 157 25 39 -[1] 158 25 50 -[1] 159 25 60 -[1] 160 25 49 -[1] 161 25 46 -[1] 162 25 56 -[1] 163 25 66 -[1] 164 25 63 -[1] 165 25 38 -[1] 166 25 51 -[1] 167 25 47 -[1] 168 25 43 -[1] 169 25 68 -[1] 170 25 40 -[1] 171 25 81 -[1] 172 25 43 -[1] 173 25 60 -[1] 174 25 41 -[1] 175 25 32 -[1] 176 25 91 -[1] 177 25 43 -[1] 178 25 60 -[1] 179 25 43 -[1] 180 25 57 -[1] 181 25 61 -[1] 182 25 51 -[1] 183 25 30 -[1] 184 25 78 -[1] 185 25 56 -[1] 186 25 43 -[1] 187 25 40 -[1] 188 25 30 -[1] 189 25 54 -[1] 190 25 43 -[1] 191 25 41 -[1] 192 25 38 -[1] 193 25 46 -[1] 194 25 78 -[1] 195 25 36 -[1] 196 25 63 -[1] 197 25 91 -[1] 198 25 37 -[1] 199 25 47 -[1] 200 25 48 -[1] 1 26 31 -[1] 2 26 45 -[1] 3 26 40 -[1] 4 26 32 -[1] 5 26 41 -[1] 6 26 53 -[1] 7 26 31 -[1] 8 26 38 -[1] 9 26 33 -[1] 10 26 58 -[1] 11 26 53 -[1] 12 26 72 -[1] 13 26 39 -[1] 14 26 46 -[1] 15 26 60 -[1] 16 26 53 -[1] 17 26 53 -[1] 18 26 51 -[1] 19 26 45 -[1] 20 26 70 -[1] 21 26 50 -[1] 22 26 40 -[1] 23 26 49 -[1] 24 26 51 -[1] 25 26 82 -[1] 26 26 35 -[1] 27 26 40 -[1] 28 26 43 -[1] 29 26 45 -[1] 30 26 38 -[1] 31 26 53 -[1] 32 26 40 -[1] 33 26 100 -[1] 34 26 40 -[1] 35 26 47 -[1] 36 26 38 -[1] 37 26 39 -[1] 38 26 52 -[1] 39 26 39 -[1] 40 26 70 -[1] 41 26 38 -[1] 42 26 40 -[1] 43 26 69 -[1] 44 26 61 -[1] 45 26 75 -[1] 46 26 37 -[1] 47 26 46 -[1] 48 26 58 -[1] 49 26 49 -[1] 50 26 50 -[1] 51 26 61 -[1] 52 26 35 -[1] 53 26 33 -[1] 54 26 43 -[1] 55 26 45 -[1] 56 26 42 -[1] 57 26 57 -[1] 58 26 45 -[1] 59 26 64 -[1] 60 26 61 -[1] 61 26 45 -[1] 62 26 46 -[1] 63 26 51 -[1] 64 26 64 -[1] 65 26 65 -[1] 66 26 50 -[1] 67 26 64 -[1] 68 26 54 -[1] 69 26 48 -[1] 70 26 35 -[1] 71 26 52 -[1] 72 26 45 -[1] 73 26 68 -[1] 74 26 55 -[1] 75 26 53 -[1] 76 26 60 -[1] 77 26 35 -[1] 78 26 45 -[1] 79 26 66 -[1] 80 26 38 -[1] 81 26 61 -[1] 82 26 58 -[1] 83 26 61 -[1] 84 26 45 -[1] 85 26 48 -[1] 86 26 53 -[1] 87 26 45 -[1] 88 26 46 -[1] 89 26 53 -[1] 90 26 43 -[1] 91 26 61 -[1] 92 26 66 -[1] 93 26 58 -[1] 94 26 43 -[1] 95 26 62 -[1] 96 26 38 -[1] 97 26 57 -[1] 98 26 59 -[1] 99 26 61 -[1] 100 26 59 -[1] 101 26 49 -[1] 102 26 36 -[1] 103 26 42 -[1] 104 26 36 -[1] 105 26 68 -[1] 106 26 71 -[1] 107 26 32 -[1] 108 26 72 -[1] 109 26 40 -[1] 110 26 42 -[1] 111 26 48 -[1] 112 26 67 -[1] 113 26 67 -[1] 114 26 48 -[1] 115 26 129 -[1] 116 26 44 -[1] 117 26 63 -[1] 118 26 29 -[1] 119 26 80 -[1] 120 26 52 -[1] 121 26 75 -[1] 122 26 35 -[1] 123 26 54 -[1] 124 26 52 -[1] 125 26 41 -[1] 126 26 63 -[1] 127 26 43 -[1] 128 26 33 -[1] 129 26 58 -[1] 130 26 48 -[1] 131 26 43 -[1] 132 26 50 -[1] 133 26 49 -[1] 134 26 41 -[1] 135 26 56 -[1] 136 26 45 -[1] 137 26 60 -[1] 138 26 42 -[1] 139 26 60 -[1] 140 26 34 -[1] 141 26 42 -[1] 142 26 38 -[1] 143 26 48 -[1] 144 26 43 -[1] 145 26 52 -[1] 146 26 53 -[1] 147 26 38 -[1] 148 26 38 -[1] 149 26 69 -[1] 150 26 33 -[1] 151 26 48 -[1] 152 26 46 -[1] 153 26 47 -[1] 154 26 37 -[1] 155 26 40 -[1] 156 26 85 -[1] 157 26 52 -[1] 158 26 49 -[1] 159 26 79 -[1] 160 26 39 -[1] 161 26 44 -[1] 162 26 26 -[1] 163 26 96 -[1] 164 26 47 -[1] 165 26 33 -[1] 166 26 58 -[1] 167 26 44 -[1] 168 26 40 -[1] 169 26 60 -[1] 170 26 31 -[1] 171 26 44 -[1] 172 26 59 -[1] 173 26 65 -[1] 174 26 64 -[1] 175 26 50 -[1] 176 26 47 -[1] 177 26 40 -[1] 178 26 45 -[1] 179 26 44 -[1] 180 26 57 -[1] 181 26 41 -[1] 182 26 38 -[1] 183 26 63 -[1] 184 26 48 -[1] 185 26 43 -[1] 186 26 41 -[1] 187 26 42 -[1] 188 26 36 -[1] 189 26 40 -[1] 190 26 55 -[1] 191 26 51 -[1] 192 26 66 -[1] 193 26 50 -[1] 194 26 39 -[1] 195 26 45 -[1] 196 26 55 -[1] 197 26 35 -[1] 198 26 36 -[1] 199 26 40 -[1] 200 26 66 -[1] 1 27 35 -[1] 2 27 33 -[1] 3 27 44 -[1] 4 27 38 -[1] 5 27 43 -[1] 6 27 49 -[1] 7 27 54 -[1] 8 27 79 -[1] 9 27 56 -[1] 10 27 31 -[1] 11 27 47 -[1] 12 27 60 -[1] 13 27 53 -[1] 14 27 38 -[1] 15 27 41 -[1] 16 27 65 -[1] 17 27 44 -[1] 18 27 71 -[1] 19 27 64 -[1] 20 27 45 -[1] 21 27 80 -[1] 22 27 35 -[1] 23 27 61 -[1] 24 27 90 -[1] 25 27 47 -[1] 26 27 68 -[1] 27 27 48 -[1] 28 27 81 -[1] 29 27 45 -[1] 30 27 48 -[1] 31 27 49 -[1] 32 27 45 -[1] 33 27 44 -[1] 34 27 70 -[1] 35 27 37 -[1] 36 27 35 -[1] 37 27 68 -[1] 38 27 35 -[1] 39 27 40 -[1] 40 27 54 -[1] 41 27 39 -[1] 42 27 43 -[1] 43 27 54 -[1] 44 27 37 -[1] 45 27 68 -[1] 46 27 80 -[1] 47 27 44 -[1] 48 27 34 -[1] 49 27 55 -[1] 50 27 37 -[1] 51 27 80 -[1] 52 27 42 -[1] 53 27 53 -[1] 54 27 60 -[1] 55 27 63 -[1] 56 27 46 -[1] 57 27 67 -[1] 58 27 69 -[1] 59 27 60 -[1] 60 27 71 -[1] 61 27 45 -[1] 62 27 44 -[1] 63 27 79 -[1] 64 27 64 -[1] 65 27 85 -[1] 66 27 34 -[1] 67 27 62 -[1] 68 27 43 -[1] 69 27 47 -[1] 70 27 53 -[1] 71 27 58 -[1] 72 27 54 -[1] 73 27 47 -[1] 74 27 51 -[1] 75 27 79 -[1] 76 27 74 -[1] 77 27 42 -[1] 78 27 45 -[1] 79 27 56 -[1] 80 27 48 -[1] 81 27 41 -[1] 82 27 50 -[1] 83 27 40 -[1] 84 27 46 -[1] 85 27 82 -[1] 86 27 61 -[1] 87 27 59 -[1] 88 27 38 -[1] 89 27 59 -[1] 90 27 79 -[1] 91 27 64 -[1] 92 27 53 -[1] 93 27 52 -[1] 94 27 101 -[1] 95 27 52 -[1] 96 27 44 -[1] 97 27 61 -[1] 98 27 46 -[1] 99 27 67 -[1] 100 27 57 -[1] 101 27 56 -[1] 102 27 47 -[1] 103 27 47 -[1] 104 27 56 -[1] 105 27 47 -[1] 106 27 32 -[1] 107 27 65 -[1] 108 27 66 -[1] 109 27 41 -[1] 110 27 70 -[1] 111 27 65 -[1] 112 27 53 -[1] 113 27 36 -[1] 114 27 58 -[1] 115 27 49 -[1] 116 27 53 -[1] 117 27 61 -[1] 118 27 60 -[1] 119 27 53 -[1] 120 27 56 -[1] 121 27 57 -[1] 122 27 49 -[1] 123 27 45 -[1] 124 27 48 -[1] 125 27 54 -[1] 126 27 44 -[1] 127 27 51 -[1] 128 27 53 -[1] 129 27 43 -[1] 130 27 66 -[1] 131 27 96 -[1] 132 27 53 -[1] 133 27 44 -[1] 134 27 37 -[1] 135 27 32 -[1] 136 27 45 -[1] 137 27 64 -[1] 138 27 47 -[1] 139 27 47 -[1] 140 27 49 -[1] 141 27 48 -[1] 142 27 48 -[1] 143 27 55 -[1] 144 27 86 -[1] 145 27 51 -[1] 146 27 73 -[1] 147 27 42 -[1] 148 27 63 -[1] 149 27 40 -[1] 150 27 48 -[1] 151 27 44 -[1] 152 27 50 -[1] 153 27 54 -[1] 154 27 39 -[1] 155 27 61 -[1] 156 27 41 -[1] 157 27 41 -[1] 158 27 51 -[1] 159 27 51 -[1] 160 27 33 -[1] 161 27 96 -[1] 162 27 46 -[1] 163 27 68 -[1] 164 27 52 -[1] 165 27 54 -[1] 166 27 42 -[1] 167 27 38 -[1] 168 27 72 -[1] 169 27 50 -[1] 170 27 52 -[1] 171 27 46 -[1] 172 27 44 -[1] 173 27 60 -[1] 174 27 47 -[1] 175 27 41 -[1] 176 27 44 -[1] 177 27 38 -[1] 178 27 49 -[1] 179 27 46 -[1] 180 27 39 -[1] 181 27 37 -[1] 182 27 33 -[1] 183 27 46 -[1] 184 27 57 -[1] 185 27 52 -[1] 186 27 73 -[1] 187 27 60 -[1] 188 27 51 -[1] 189 27 28 -[1] 190 27 47 -[1] 191 27 39 -[1] 192 27 50 -[1] 193 27 48 -[1] 194 27 43 -[1] 195 27 49 -[1] 196 27 54 -[1] 197 27 41 -[1] 198 27 42 -[1] 199 27 33 -[1] 200 27 49 -[1] 1 28 36 -[1] 2 28 44 -[1] 3 28 44 -[1] 4 28 31 -[1] 5 28 61 -[1] 6 28 56 -[1] 7 28 44 -[1] 8 28 37 -[1] 9 28 45 -[1] 10 28 32 -[1] 11 28 44 -[1] 12 28 50 -[1] 13 28 76 -[1] 14 28 51 -[1] 15 28 71 -[1] 16 28 41 -[1] 17 28 43 -[1] 18 28 56 -[1] 19 28 37 -[1] 20 28 67 -[1] 21 28 95 -[1] 22 28 56 -[1] 23 28 38 -[1] 24 28 83 -[1] 25 28 44 -[1] 26 28 47 -[1] 27 28 95 -[1] 28 28 40 -[1] 29 28 115 -[1] 30 28 46 -[1] 31 28 49 -[1] 32 28 66 -[1] 33 28 58 -[1] 34 28 32 -[1] 35 28 50 -[1] 36 28 36 -[1] 37 28 51 -[1] 38 28 39 -[1] 39 28 52 -[1] 40 28 42 -[1] 41 28 69 -[1] 42 28 49 -[1] 43 28 56 -[1] 44 28 48 -[1] 45 28 40 -[1] 46 28 54 -[1] 47 28 40 -[1] 48 28 58 -[1] 49 28 56 -[1] 50 28 48 -[1] 51 28 52 -[1] 52 28 46 -[1] 53 28 70 -[1] 54 28 39 -[1] 55 28 70 -[1] 56 28 81 -[1] 57 28 34 -[1] 58 28 67 -[1] 59 28 53 -[1] 60 28 36 -[1] 61 28 55 -[1] 62 28 64 -[1] 63 28 54 -[1] 64 28 47 -[1] 65 28 47 -[1] 66 28 39 -[1] 67 28 77 -[1] 68 28 72 -[1] 69 28 66 -[1] 70 28 33 -[1] 71 28 46 -[1] 72 28 44 -[1] 73 28 57 -[1] 74 28 54 -[1] 75 28 53 -[1] 76 28 32 -[1] 77 28 48 -[1] 78 28 41 -[1] 79 28 80 -[1] 80 28 42 -[1] 81 28 37 -[1] 82 28 39 -[1] 83 28 66 -[1] 84 28 95 -[1] 85 28 68 -[1] 86 28 51 -[1] 87 28 40 -[1] 88 28 72 -[1] 89 28 50 -[1] 90 28 42 -[1] 91 28 45 -[1] 92 28 39 -[1] 93 28 71 -[1] 94 28 46 -[1] 95 28 62 -[1] 96 28 49 -[1] 97 28 64 -[1] 98 28 44 -[1] 99 28 46 -[1] 100 28 38 -[1] 101 28 65 -[1] 102 28 51 -[1] 103 28 53 -[1] 104 28 37 -[1] 105 28 64 -[1] 106 28 41 -[1] 107 28 47 -[1] 108 28 62 -[1] 109 28 44 -[1] 110 28 63 -[1] 111 28 51 -[1] 112 28 70 -[1] 113 28 61 -[1] 114 28 52 -[1] 115 28 37 -[1] 116 28 44 -[1] 117 28 65 -[1] 118 28 67 -[1] 119 28 32 -[1] 120 28 62 -[1] 121 28 45 -[1] 122 28 47 -[1] 123 28 81 -[1] 124 28 47 -[1] 125 28 54 -[1] 126 28 42 -[1] 127 28 61 -[1] 128 28 70 -[1] 129 28 55 -[1] 130 28 46 -[1] 131 28 75 -[1] 132 28 42 -[1] 133 28 34 -[1] 134 28 36 -[1] 135 28 54 -[1] 136 28 40 -[1] 137 28 53 -[1] 138 28 53 -[1] 139 28 44 -[1] 140 28 42 -[1] 141 28 55 -[1] 142 28 60 -[1] 143 28 50 -[1] 144 28 60 -[1] 145 28 55 -[1] 146 28 47 -[1] 147 28 42 -[1] 148 28 41 -[1] 149 28 46 -[1] 150 28 32 -[1] 151 28 43 -[1] 152 28 37 -[1] 153 28 29 -[1] 154 28 52 -[1] 155 28 44 -[1] 156 28 47 -[1] 157 28 31 -[1] 158 28 83 -[1] 159 28 52 -[1] 160 28 48 -[1] 161 28 42 -[1] 162 28 62 -[1] 163 28 66 -[1] 164 28 38 -[1] 165 28 65 -[1] 166 28 58 -[1] 167 28 86 -[1] 168 28 37 -[1] 169 28 49 -[1] 170 28 58 -[1] 171 28 40 -[1] 172 28 62 -[1] 173 28 52 -[1] 174 28 43 -[1] 175 28 50 -[1] 176 28 56 -[1] 177 28 36 -[1] 178 28 40 -[1] 179 28 58 -[1] 180 28 47 -[1] 181 28 38 -[1] 182 28 42 -[1] 183 28 49 -[1] 184 28 36 -[1] 185 28 70 -[1] 186 28 45 -[1] 187 28 51 -[1] 188 28 42 -[1] 189 28 45 -[1] 190 28 68 -[1] 191 28 31 -[1] 192 28 50 -[1] 193 28 49 -[1] 194 28 85 -[1] 195 28 61 -[1] 196 28 37 -[1] 197 28 41 -[1] 198 28 40 -[1] 199 28 47 -[1] 200 28 57 -[1] 1 29 37 -[1] 2 29 39 -[1] 3 29 33 -[1] 4 29 46 -[1] 5 29 41 -[1] 6 29 32 -[1] 7 29 54 -[1] 8 29 43 -[1] 9 29 33 -[1] 10 29 58 -[1] 11 29 31 -[1] 12 29 32 -[1] 13 29 37 -[1] 14 29 36 -[1] 15 29 57 -[1] 16 29 48 -[1] 17 29 82 -[1] 18 29 35 -[1] 19 29 40 -[1] 20 29 50 -[1] 21 29 36 -[1] 22 29 59 -[1] 23 29 52 -[1] 24 29 39 -[1] 25 29 40 -[1] 26 29 65 -[1] 27 29 48 -[1] 28 29 45 -[1] 29 29 85 -[1] 30 29 56 -[1] 31 29 39 -[1] 32 29 66 -[1] 33 29 39 -[1] 34 29 42 -[1] 35 29 69 -[1] 36 29 55 -[1] 37 29 46 -[1] 38 29 66 -[1] 39 29 43 -[1] 40 29 41 -[1] 41 29 35 -[1] 42 29 63 -[1] 43 29 48 -[1] 44 29 78 -[1] 45 29 42 -[1] 46 29 46 -[1] 47 29 39 -[1] 48 29 44 -[1] 49 29 44 -[1] 50 29 54 -[1] 51 29 65 -[1] 52 29 40 -[1] 53 29 53 -[1] 54 29 64 -[1] 55 29 71 -[1] 56 29 49 -[1] 57 29 50 -[1] 58 29 51 -[1] 59 29 50 -[1] 60 29 71 -[1] 61 29 58 -[1] 62 29 57 -[1] 63 29 84 -[1] 64 29 50 -[1] 65 29 56 -[1] 66 29 56 -[1] 67 29 63 -[1] 68 29 46 -[1] 69 29 55 -[1] 70 29 69 -[1] 71 29 54 -[1] 72 29 48 -[1] 73 29 73 -[1] 74 29 41 -[1] 75 29 40 -[1] 76 29 74 -[1] 77 29 31 -[1] 78 29 55 -[1] 79 29 51 -[1] 80 29 64 -[1] 81 29 50 -[1] 82 29 68 -[1] 83 29 62 -[1] 84 29 65 -[1] 85 29 48 -[1] 86 29 57 -[1] 87 29 82 -[1] 88 29 31 -[1] 89 29 66 -[1] 90 29 73 -[1] 91 29 37 -[1] 92 29 64 -[1] 93 29 50 -[1] 94 29 50 -[1] 95 29 62 -[1] 96 29 62 -[1] 97 29 52 -[1] 98 29 48 -[1] 99 29 63 -[1] 100 29 50 -[1] 101 29 58 -[1] 102 29 41 -[1] 103 29 40 -[1] 104 29 55 -[1] 105 29 46 -[1] 106 29 53 -[1] 107 29 100 -[1] 108 29 56 -[1] 109 29 49 -[1] 110 29 55 -[1] 111 29 44 -[1] 112 29 31 -[1] 113 29 50 -[1] 114 29 48 -[1] 115 29 41 -[1] 116 29 59 -[1] 117 29 65 -[1] 118 29 37 -[1] 119 29 54 -[1] 120 29 48 -[1] 121 29 79 -[1] 122 29 54 -[1] 123 29 39 -[1] 124 29 42 -[1] 125 29 53 -[1] 126 29 35 -[1] 127 29 46 -[1] 128 29 38 -[1] 129 29 35 -[1] 130 29 45 -[1] 131 29 50 -[1] 132 29 36 -[1] 133 29 64 -[1] 134 29 56 -[1] 135 29 57 -[1] 136 29 67 -[1] 137 29 54 -[1] 138 29 50 -[1] 139 29 61 -[1] 140 29 40 -[1] 141 29 37 -[1] 142 29 37 -[1] 143 29 68 -[1] 144 29 40 -[1] 145 29 63 -[1] 146 29 57 -[1] 147 29 38 -[1] 148 29 41 -[1] 149 29 35 -[1] 150 29 53 -[1] 151 29 55 -[1] 152 29 55 -[1] 153 29 40 -[1] 154 29 47 -[1] 155 29 36 -[1] 156 29 43 -[1] 157 29 49 -[1] 158 29 40 -[1] 159 29 51 -[1] 160 29 60 -[1] 161 29 41 -[1] 162 29 62 -[1] 163 29 47 -[1] 164 29 61 -[1] 165 29 46 -[1] 166 29 94 -[1] 167 29 72 -[1] 168 29 54 -[1] 169 29 54 -[1] 170 29 41 -[1] 171 29 68 -[1] 172 29 32 -[1] 173 29 37 -[1] 174 29 60 -[1] 175 29 44 -[1] 176 29 42 -[1] 177 29 41 -[1] 178 29 44 -[1] 179 29 41 -[1] 180 29 33 -[1] 181 29 61 -[1] 182 29 56 -[1] 183 29 42 -[1] 184 29 65 -[1] 185 29 58 -[1] 186 29 51 -[1] 187 29 40 -[1] 188 29 51 -[1] 189 29 42 -[1] 190 29 45 -[1] 191 29 41 -[1] 192 29 33 -[1] 193 29 48 -[1] 194 29 40 -[1] 195 29 81 -[1] 196 29 84 -[1] 197 29 59 -[1] 198 29 77 -[1] 199 29 74 -[1] 200 29 37 -[1] 1 30 31 -[1] 2 30 41 -[1] 3 30 40 -[1] 4 30 35 -[1] 5 30 44 -[1] 6 30 30 -[1] 7 30 53 -[1] 8 30 45 -[1] 9 30 32 -[1] 10 30 41 -[1] 11 30 40 -[1] 12 30 51 -[1] 13 30 45 -[1] 14 30 36 -[1] 15 30 37 -[1] 16 30 49 -[1] 17 30 51 -[1] 18 30 74 -[1] 19 30 48 -[1] 20 30 65 -[1] 21 30 51 -[1] 22 30 63 -[1] 23 30 67 -[1] 24 30 59 -[1] 25 30 56 -[1] 26 30 71 -[1] 27 30 43 -[1] 28 30 84 -[1] 29 30 38 -[1] 30 30 38 -[1] 31 30 36 -[1] 32 30 64 -[1] 33 30 46 -[1] 34 30 36 -[1] 35 30 67 -[1] 36 30 61 -[1] 37 30 60 -[1] 38 30 46 -[1] 39 30 47 -[1] 40 30 40 -[1] 41 30 66 -[1] 42 30 32 -[1] 43 30 52 -[1] 44 30 55 -[1] 45 30 47 -[1] 46 30 38 -[1] 47 30 65 -[1] 48 30 55 -[1] 49 30 69 -[1] 50 30 57 -[1] 51 30 45 -[1] 52 30 55 -[1] 53 30 53 -[1] 54 30 73 -[1] 55 30 57 -[1] 56 30 50 -[1] 57 30 49 -[1] 58 30 39 -[1] 59 30 58 -[1] 60 30 39 -[1] 61 30 66 -[1] 62 30 58 -[1] 63 30 50 -[1] 64 30 42 -[1] 65 30 53 -[1] 66 30 46 -[1] 67 30 55 -[1] 68 30 38 -[1] 69 30 61 -[1] 70 30 47 -[1] 71 30 112 -[1] 72 30 87 -[1] 73 30 66 -[1] 74 30 38 -[1] 75 30 69 -[1] 76 30 51 -[1] 77 30 44 -[1] 78 30 57 -[1] 79 30 42 -[1] 80 30 47 -[1] 81 30 90 -[1] 82 30 49 -[1] 83 30 46 -[1] 84 30 81 -[1] 85 30 91 -[1] 86 30 77 -[1] 87 30 62 -[1] 88 30 39 -[1] 89 30 56 -[1] 90 30 46 -[1] 91 30 75 -[1] 92 30 47 -[1] 93 30 59 -[1] 94 30 46 -[1] 95 30 46 -[1] 96 30 52 -[1] 97 30 47 -[1] 98 30 54 -[1] 99 30 49 -[1] 100 30 48 -[1] 101 30 72 -[1] 102 30 38 -[1] 103 30 64 -[1] 104 30 74 -[1] 105 30 47 -[1] 106 30 59 -[1] 107 30 34 -[1] 108 30 60 -[1] 109 30 37 -[1] 110 30 58 -[1] 111 30 43 -[1] 112 30 39 -[1] 113 30 55 -[1] 114 30 60 -[1] 115 30 55 -[1] 116 30 50 -[1] 117 30 42 -[1] 118 30 64 -[1] 119 30 39 -[1] 120 30 41 -[1] 121 30 59 -[1] 122 30 39 -[1] 123 30 60 -[1] 124 30 33 -[1] 125 30 44 -[1] 126 30 43 -[1] 127 30 61 -[1] 128 30 52 -[1] 129 30 46 -[1] 130 30 41 -[1] 131 30 44 -[1] 132 30 34 -[1] 133 30 55 -[1] 134 30 81 -[1] 135 30 44 -[1] 136 30 32 -[1] 137 30 73 -[1] 138 30 47 -[1] 139 30 75 -[1] 140 30 36 -[1] 141 30 41 -[1] 142 30 42 -[1] 143 30 76 -[1] 144 30 49 -[1] 145 30 56 -[1] 146 30 49 -[1] 147 30 53 -[1] 148 30 50 -[1] 149 30 42 -[1] 150 30 49 -[1] 151 30 43 -[1] 152 30 53 -[1] 153 30 50 -[1] 154 30 42 -[1] 155 30 34 -[1] 156 30 65 -[1] 157 30 51 -[1] 158 30 51 -[1] 159 30 53 -[1] 160 30 60 -[1] 161 30 40 -[1] 162 30 44 -[1] 163 30 48 -[1] 164 30 46 -[1] 165 30 53 -[1] 166 30 58 -[1] 167 30 59 -[1] 168 30 36 -[1] 169 30 63 -[1] 170 30 58 -[1] 171 30 55 -[1] 172 30 37 -[1] 173 30 46 -[1] 174 30 38 -[1] 175 30 95 -[1] 176 30 35 -[1] 177 30 44 -[1] 178 30 43 -[1] 179 30 58 -[1] 180 30 54 -[1] 181 30 39 -[1] 182 30 42 -[1] 183 30 51 -[1] 184 30 57 -[1] 185 30 50 -[1] 186 30 35 -[1] 187 30 46 -[1] 188 30 47 -[1] 189 30 39 -[1] 190 30 54 -[1] 191 30 47 -[1] 192 30 46 -[1] 193 30 58 -[1] 194 30 61 -[1] 195 30 47 -[1] 196 30 32 -[1] 197 30 45 -[1] 198 30 50 -[1] 199 30 42 -[1] 200 30 56 -[1] 1 31 27 -[1] 2 31 35 -[1] 3 31 38 -[1] 4 31 52 -[1] 5 31 55 -[1] 6 31 48 -[1] 7 31 44 -[1] 8 31 34 -[1] 9 31 51 -[1] 10 31 44 -[1] 11 31 26 -[1] 12 31 57 -[1] 13 31 43 -[1] 14 31 41 -[1] 15 31 62 -[1] 16 31 37 -[1] 17 31 46 -[1] 18 31 42 -[1] 19 31 51 -[1] 20 31 47 -[1] 21 31 73 -[1] 22 31 67 -[1] 23 31 43 -[1] 24 31 48 -[1] 25 31 41 -[1] 26 31 64 -[1] 27 31 62 -[1] 28 31 50 -[1] 29 31 43 -[1] 30 31 43 -[1] 31 31 56 -[1] 32 31 49 -[1] 33 31 53 -[1] 34 31 40 -[1] 35 31 61 -[1] 36 31 40 -[1] 37 31 97 -[1] 38 31 47 -[1] 39 31 52 -[1] 40 31 51 -[1] 41 31 46 -[1] 42 31 83 -[1] 43 31 46 -[1] 44 31 69 -[1] 45 31 36 -[1] 46 31 55 -[1] 47 31 63 -[1] 48 31 39 -[1] 49 31 33 -[1] 50 31 49 -[1] 51 31 36 -[1] 52 31 44 -[1] 53 31 43 -[1] 54 31 35 -[1] 55 31 49 -[1] 56 31 55 -[1] 57 31 52 -[1] 58 31 49 -[1] 59 31 50 -[1] 60 31 39 -[1] 61 31 39 -[1] 62 31 85 -[1] 63 31 47 -[1] 64 31 65 -[1] 65 31 74 -[1] 66 31 58 -[1] 67 31 37 -[1] 68 31 142 -[1] 69 31 49 -[1] 70 31 37 -[1] 71 31 84 -[1] 72 31 63 -[1] 73 31 41 -[1] 74 31 60 -[1] 75 31 54 -[1] 76 31 41 -[1] 77 31 65 -[1] 78 31 59 -[1] 79 31 72 -[1] 80 31 35 -[1] 81 31 72 -[1] 82 31 53 -[1] 83 31 56 -[1] 84 31 61 -[1] 85 31 44 -[1] 86 31 65 -[1] 87 31 98 -[1] 88 31 56 -[1] 89 31 62 -[1] 90 31 74 -[1] 91 31 79 -[1] 92 31 43 -[1] 93 31 79 -[1] 94 31 48 -[1] 95 31 42 -[1] 96 31 46 -[1] 97 31 59 -[1] 98 31 53 -[1] 99 31 39 -[1] 100 31 51 -[1] 101 31 56 -[1] 102 31 58 -[1] 103 31 56 -[1] 104 31 43 -[1] 105 31 59 -[1] 106 31 35 -[1] 107 31 50 -[1] 108 31 45 -[1] 109 31 59 -[1] 110 31 52 -[1] 111 31 48 -[1] 112 31 53 -[1] 113 31 39 -[1] 114 31 42 -[1] 115 31 53 -[1] 116 31 50 -[1] 117 31 35 -[1] 118 31 54 -[1] 119 31 43 -[1] 120 31 45 -[1] 121 31 42 -[1] 122 31 53 -[1] 123 31 38 -[1] 124 31 45 -[1] 125 31 41 -[1] 126 31 48 -[1] 127 31 46 -[1] 128 31 45 -[1] 129 31 67 -[1] 130 31 55 -[1] 131 31 42 -[1] 132 31 39 -[1] 133 31 46 -[1] 134 31 41 -[1] 135 31 35 -[1] 136 31 42 -[1] 137 31 52 -[1] 138 31 47 -[1] 139 31 42 -[1] 140 31 37 -[1] 141 31 47 -[1] 142 31 52 -[1] 143 31 34 -[1] 144 31 70 -[1] 145 31 32 -[1] 146 31 45 -[1] 147 31 44 -[1] 148 31 41 -[1] 149 31 45 -[1] 150 31 73 -[1] 151 31 46 -[1] 152 31 46 -[1] 153 31 40 -[1] 154 31 56 -[1] 155 31 42 -[1] 156 31 48 -[1] 157 31 51 -[1] 158 31 61 -[1] 159 31 55 -[1] 160 31 47 -[1] 161 31 58 -[1] 162 31 66 -[1] 163 31 73 -[1] 164 31 61 -[1] 165 31 90 -[1] 166 31 55 -[1] 167 31 39 -[1] 168 31 54 -[1] 169 31 53 -[1] 170 31 44 -[1] 171 31 31 -[1] 172 31 32 -[1] 173 31 36 -[1] 174 31 65 -[1] 175 31 49 -[1] 176 31 43 -[1] 177 31 86 -[1] 178 31 40 -[1] 179 31 54 -[1] 180 31 47 -[1] 181 31 51 -[1] 182 31 75 -[1] 183 31 42 -[1] 184 31 52 -[1] 185 31 33 -[1] 186 31 56 -[1] 187 31 52 -[1] 188 31 52 -[1] 189 31 49 -[1] 190 31 47 -[1] 191 31 44 -[1] 192 31 44 -[1] 193 31 44 -[1] 194 31 51 -[1] 195 31 58 -[1] 196 31 34 -[1] 197 31 41 -[1] 198 31 48 -[1] 199 31 40 -[1] 200 31 50 -[1] 1 32 41 -[1] 2 32 33 -[1] 3 32 36 -[1] 4 32 53 -[1] 5 32 28 -[1] 6 32 36 -[1] 7 32 56 -[1] 8 32 65 -[1] 9 32 44 -[1] 10 32 44 -[1] 11 32 47 -[1] 12 32 49 -[1] 13 32 51 -[1] 14 32 39 -[1] 15 32 36 -[1] 16 32 47 -[1] 17 32 53 -[1] 18 32 39 -[1] 19 32 39 -[1] 20 32 40 -[1] 21 32 48 -[1] 22 32 38 -[1] 23 32 55 -[1] 24 32 53 -[1] 25 32 42 -[1] 26 32 35 -[1] 27 32 54 -[1] 28 32 63 -[1] 29 32 55 -[1] 30 32 54 -[1] 31 32 95 -[1] 32 32 39 -[1] 33 32 42 -[1] 34 32 47 -[1] 35 32 44 -[1] 36 32 83 -[1] 37 32 70 -[1] 38 32 45 -[1] 39 32 62 -[1] 40 32 42 -[1] 41 32 30 -[1] 42 32 72 -[1] 43 32 55 -[1] 44 32 44 -[1] 45 32 50 -[1] 46 32 37 -[1] 47 32 47 -[1] 48 32 50 -[1] 49 32 81 -[1] 50 32 66 -[1] 51 32 59 -[1] 52 32 72 -[1] 53 32 47 -[1] 54 32 39 -[1] 55 32 46 -[1] 56 32 58 -[1] 57 32 56 -[1] 58 32 68 -[1] 59 32 77 -[1] 60 32 39 -[1] 61 32 108 -[1] 62 32 32 -[1] 63 32 41 -[1] 64 32 52 -[1] 65 32 51 -[1] 66 32 34 -[1] 67 32 47 -[1] 68 32 60 -[1] 69 32 100 -[1] 70 32 56 -[1] 71 32 59 -[1] 72 32 58 -[1] 73 32 52 -[1] 74 32 75 -[1] 75 32 58 -[1] 76 32 53 -[1] 77 32 49 -[1] 78 32 42 -[1] 79 32 119 -[1] 80 32 41 -[1] 81 32 54 -[1] 82 32 42 -[1] 83 32 39 -[1] 84 32 47 -[1] 85 32 46 -[1] 86 32 65 -[1] 87 32 53 -[1] 88 32 52 -[1] 89 32 97 -[1] 90 32 47 -[1] 91 32 45 -[1] 92 32 50 -[1] 93 32 74 -[1] 94 32 70 -[1] 95 32 47 -[1] 96 32 52 -[1] 97 32 61 -[1] 98 32 41 -[1] 99 32 65 -[1] 100 32 62 -[1] 101 32 58 -[1] 102 32 59 -[1] 103 32 41 -[1] 104 32 52 -[1] 105 32 41 -[1] 106 32 142 -[1] 107 32 48 -[1] 108 32 53 -[1] 109 32 42 -[1] 110 32 66 -[1] 111 32 58 -[1] 112 32 36 -[1] 113 32 54 -[1] 114 32 39 -[1] 115 32 38 -[1] 116 32 58 -[1] 117 32 69 -[1] 118 32 74 -[1] 119 32 65 -[1] 120 32 52 -[1] 121 32 54 -[1] 122 32 44 -[1] 123 32 31 -[1] 124 32 63 -[1] 125 32 53 -[1] 126 32 46 -[1] 127 32 50 -[1] 128 32 81 -[1] 129 32 46 -[1] 130 32 43 -[1] 131 32 56 -[1] 132 32 53 -[1] 133 32 44 -[1] 134 32 56 -[1] 135 32 32 -[1] 136 32 38 -[1] 137 32 43 -[1] 138 32 75 -[1] 139 32 35 -[1] 140 32 60 -[1] 141 32 34 -[1] 142 32 39 -[1] 143 32 45 -[1] 144 32 57 -[1] 145 32 48 -[1] 146 32 33 -[1] 147 32 40 -[1] 148 32 54 -[1] 149 32 35 -[1] 150 32 41 -[1] 151 32 45 -[1] 152 32 56 -[1] 153 32 62 -[1] 154 32 65 -[1] 155 32 54 -[1] 156 32 37 -[1] 157 32 56 -[1] 158 32 44 -[1] 159 32 53 -[1] 160 32 51 -[1] 161 32 39 -[1] 162 32 36 -[1] 163 32 82 -[1] 164 32 63 -[1] 165 32 78 -[1] 166 32 57 -[1] 167 32 34 -[1] 168 32 64 -[1] 169 32 100 -[1] 170 32 65 -[1] 171 32 78 -[1] 172 32 37 -[1] 173 32 42 -[1] 174 32 43 -[1] 175 32 44 -[1] 176 32 87 -[1] 177 32 39 -[1] 178 32 39 -[1] 179 32 42 -[1] 180 32 66 -[1] 181 32 39 -[1] 182 32 52 -[1] 183 32 37 -[1] 184 32 45 -[1] 185 32 31 -[1] 186 32 44 -[1] 187 32 57 -[1] 188 32 50 -[1] 189 32 34 -[1] 190 32 44 -[1] 191 32 39 -[1] 192 32 36 -[1] 193 32 60 -[1] 194 32 45 -[1] 195 32 64 -[1] 196 32 40 -[1] 197 32 59 -[1] 198 32 36 -[1] 199 32 57 -[1] 200 32 107 -[1] 1 33 37 -[1] 2 33 35 -[1] 3 33 34 -[1] 4 33 51 -[1] 5 33 34 -[1] 6 33 41 -[1] 7 33 50 -[1] 8 33 31 -[1] 9 33 40 -[1] 10 33 37 -[1] 11 33 41 -[1] 12 33 40 -[1] 13 33 29 -[1] 14 33 46 -[1] 15 33 35 -[1] 16 33 34 -[1] 17 33 32 -[1] 18 33 37 -[1] 19 33 45 -[1] 20 33 32 -[1] 21 33 57 -[1] 22 33 41 -[1] 23 33 38 -[1] 24 33 34 -[1] 25 33 35 -[1] 26 33 59 -[1] 27 33 34 -[1] 28 33 49 -[1] 29 33 66 -[1] 30 33 57 -[1] 31 33 42 -[1] 32 33 81 -[1] 33 33 51 -[1] 34 33 47 -[1] 35 33 61 -[1] 36 33 44 -[1] 37 33 45 -[1] 38 33 39 -[1] 39 33 80 -[1] 40 33 45 -[1] 41 33 50 -[1] 42 33 45 -[1] 43 33 51 -[1] 44 33 46 -[1] 45 33 49 -[1] 46 33 30 -[1] 47 33 61 -[1] 48 33 70 -[1] 49 33 39 -[1] 50 33 41 -[1] 51 33 50 -[1] 52 33 57 -[1] 53 33 44 -[1] 54 33 73 -[1] 55 33 44 -[1] 56 33 69 -[1] 57 33 54 -[1] 58 33 46 -[1] 59 33 45 -[1] 60 33 49 -[1] 61 33 59 -[1] 62 33 50 -[1] 63 33 39 -[1] 64 33 46 -[1] 65 33 41 -[1] 66 33 60 -[1] 67 33 41 -[1] 68 33 38 -[1] 69 33 42 -[1] 70 33 55 -[1] 71 33 46 -[1] 72 33 74 -[1] 73 33 61 -[1] 74 33 43 -[1] 75 33 95 -[1] 76 33 61 -[1] 77 33 57 -[1] 78 33 46 -[1] 79 33 50 -[1] 80 33 59 -[1] 81 33 42 -[1] 82 33 82 -[1] 83 33 52 -[1] 84 33 50 -[1] 85 33 48 -[1] 86 33 94 -[1] 87 33 55 -[1] 88 33 67 -[1] 89 33 67 -[1] 90 33 50 -[1] 91 33 63 -[1] 92 33 46 -[1] 93 33 71 -[1] 94 33 64 -[1] 95 33 70 -[1] 96 33 57 -[1] 97 33 47 -[1] 98 33 104 -[1] 99 33 47 -[1] 100 33 66 -[1] 101 33 43 -[1] 102 33 47 -[1] 103 33 94 -[1] 104 33 57 -[1] 105 33 41 -[1] 106 33 58 -[1] 107 33 45 -[1] 108 33 49 -[1] 109 33 39 -[1] 110 33 45 -[1] 111 33 47 -[1] 112 33 46 -[1] 113 33 51 -[1] 114 33 44 -[1] 115 33 65 -[1] 116 33 43 -[1] 117 33 51 -[1] 118 33 69 -[1] 119 33 58 -[1] 120 33 57 -[1] 121 33 75 -[1] 122 33 40 -[1] 123 33 51 -[1] 124 33 39 -[1] 125 33 64 -[1] 126 33 46 -[1] 127 33 57 -[1] 128 33 35 -[1] 129 33 59 -[1] 130 33 72 -[1] 131 33 38 -[1] 132 33 47 -[1] 133 33 49 -[1] 134 33 70 -[1] 135 33 32 -[1] 136 33 42 -[1] 137 33 40 -[1] 138 33 50 -[1] 139 33 50 -[1] 140 33 36 -[1] 141 33 66 -[1] 142 33 88 -[1] 143 33 79 -[1] 144 33 42 -[1] 145 33 65 -[1] 146 33 56 -[1] 147 33 55 -[1] 148 33 58 -[1] 149 33 33 -[1] 150 33 48 -[1] 151 33 37 -[1] 152 33 40 -[1] 153 33 34 -[1] 154 33 72 -[1] 155 33 25 -[1] 156 33 35 -[1] 157 33 35 -[1] 158 33 37 -[1] 159 33 48 -[1] 160 33 45 -[1] 161 33 50 -[1] 162 33 53 -[1] 163 33 52 -[1] 164 33 63 -[1] 165 33 51 -[1] 166 33 38 -[1] 167 33 65 -[1] 168 33 50 -[1] 169 33 41 -[1] 170 33 73 -[1] 171 33 56 -[1] 172 33 42 -[1] 173 33 45 -[1] 174 33 44 -[1] 175 33 39 -[1] 176 33 72 -[1] 177 33 53 -[1] 178 33 53 -[1] 179 33 56 -[1] 180 33 46 -[1] 181 33 81 -[1] 182 33 39 -[1] 183 33 78 -[1] 184 33 34 -[1] 185 33 45 -[1] 186 33 51 -[1] 187 33 37 -[1] 188 33 38 -[1] 189 33 55 -[1] 190 33 40 -[1] 191 33 58 -[1] 192 33 49 -[1] 193 33 51 -[1] 194 33 54 -[1] 195 33 37 -[1] 196 33 52 -[1] 197 33 53 -[1] 198 33 65 -[1] 199 33 71 -[1] 200 33 60 -[1] 1 34 34 -[1] 2 34 44 -[1] 3 34 36 -[1] 4 34 44 -[1] 5 34 62 -[1] 6 34 49 -[1] 7 34 38 -[1] 8 34 35 -[1] 9 34 43 -[1] 10 34 39 -[1] 11 34 48 -[1] 12 34 29 -[1] 13 34 31 -[1] 14 34 30 -[1] 15 34 49 -[1] 16 34 43 -[1] 17 34 60 -[1] 18 34 43 -[1] 19 34 31 -[1] 20 34 60 -[1] 21 34 42 -[1] 22 34 61 -[1] 23 34 45 -[1] 24 34 48 -[1] 25 34 37 -[1] 26 34 54 -[1] 27 34 52 -[1] 28 34 52 -[1] 29 34 43 -[1] 30 34 46 -[1] 31 34 66 -[1] 32 34 37 -[1] 33 34 55 -[1] 34 34 40 -[1] 35 34 65 -[1] 36 34 60 -[1] 37 34 36 -[1] 38 34 59 -[1] 39 34 35 -[1] 40 34 49 -[1] 41 34 44 -[1] 42 34 51 -[1] 43 34 38 -[1] 44 34 48 -[1] 45 34 41 -[1] 46 34 60 -[1] 47 34 55 -[1] 48 34 59 -[1] 49 34 47 -[1] 50 34 68 -[1] 51 34 55 -[1] 52 34 67 -[1] 53 34 62 -[1] 54 34 57 -[1] 55 34 75 -[1] 56 34 52 -[1] 57 34 32 -[1] 58 34 47 -[1] 59 34 43 -[1] 60 34 52 -[1] 61 34 35 -[1] 62 34 48 -[1] 63 34 73 -[1] 64 34 37 -[1] 65 34 50 -[1] 66 34 48 -[1] 67 34 47 -[1] 68 34 76 -[1] 69 34 49 -[1] 70 34 66 -[1] 71 34 64 -[1] 72 34 62 -[1] 73 34 40 -[1] 74 34 37 -[1] 75 34 41 -[1] 76 34 65 -[1] 77 34 56 -[1] 78 34 35 -[1] 79 34 40 -[1] 80 34 48 -[1] 81 34 49 -[1] 82 34 49 -[1] 83 34 50 -[1] 84 34 65 -[1] 85 34 53 -[1] 86 34 52 -[1] 87 34 57 -[1] 88 34 52 -[1] 89 34 63 -[1] 90 34 43 -[1] 91 34 110 -[1] 92 34 54 -[1] 93 34 83 -[1] 94 34 33 -[1] 95 34 26 -[1] 96 34 43 -[1] 97 34 60 -[1] 98 34 85 -[1] 99 34 35 -[1] 100 34 58 -[1] 101 34 77 -[1] 102 34 36 -[1] 103 34 65 -[1] 104 34 70 -[1] 105 34 55 -[1] 106 34 50 -[1] 107 34 41 -[1] 108 34 42 -[1] 109 34 65 -[1] 110 34 67 -[1] 111 34 54 -[1] 112 34 40 -[1] 113 34 42 -[1] 114 34 45 -[1] 115 34 37 -[1] 116 34 93 -[1] 117 34 46 -[1] 118 34 63 -[1] 119 34 49 -[1] 120 34 71 -[1] 121 34 64 -[1] 122 34 38 -[1] 123 34 76 -[1] 124 34 56 -[1] 125 34 61 -[1] 126 34 36 -[1] 127 34 71 -[1] 128 34 60 -[1] 129 34 61 -[1] 130 34 56 -[1] 131 34 39 -[1] 132 34 33 -[1] 133 34 34 -[1] 134 34 71 -[1] 135 34 48 -[1] 136 34 50 -[1] 137 34 37 -[1] 138 34 43 -[1] 139 34 34 -[1] 140 34 47 -[1] 141 34 37 -[1] 142 34 44 -[1] 143 34 48 -[1] 144 34 59 -[1] 145 34 37 -[1] 146 34 44 -[1] 147 34 49 -[1] 148 34 55 -[1] 149 34 42 -[1] 150 34 41 -[1] 151 34 49 -[1] 152 34 40 -[1] 153 34 45 -[1] 154 34 52 -[1] 155 34 43 -[1] 156 34 42 -[1] 157 34 55 -[1] 158 34 32 -[1] 159 34 45 -[1] 160 34 41 -[1] 161 34 76 -[1] 162 34 38 -[1] 163 34 75 -[1] 164 34 40 -[1] 165 34 59 -[1] 166 34 45 -[1] 167 34 33 -[1] 168 34 40 -[1] 169 34 55 -[1] 170 34 41 -[1] 171 34 50 -[1] 172 34 46 -[1] 173 34 82 -[1] 174 34 53 -[1] 175 34 79 -[1] 176 34 54 -[1] 177 34 50 -[1] 178 34 76 -[1] 179 34 38 -[1] 180 34 62 -[1] 181 34 36 -[1] 182 34 57 -[1] 183 34 52 -[1] 184 34 40 -[1] 185 34 65 -[1] 186 34 41 -[1] 187 34 66 -[1] 188 34 51 -[1] 189 34 66 -[1] 190 34 47 -[1] 191 34 48 -[1] 192 34 38 -[1] 193 34 71 -[1] 194 34 57 -[1] 195 34 69 -[1] 196 34 38 -[1] 197 34 53 -[1] 198 34 38 -[1] 199 34 42 -[1] 200 34 50 -[1] 1 35 44 -[1] 2 35 48 -[1] 3 35 42 -[1] 4 35 55 -[1] 5 35 56 -[1] 6 35 48 -[1] 7 35 53 -[1] 8 35 59 -[1] 9 35 60 -[1] 10 35 43 -[1] 11 35 51 -[1] 12 35 66 -[1] 13 35 55 -[1] 14 35 41 -[1] 15 35 35 -[1] 16 35 45 -[1] 17 35 49 -[1] 18 35 32 -[1] 19 35 99 -[1] 20 35 47 -[1] 21 35 62 -[1] 22 35 41 -[1] 23 35 35 -[1] 24 35 49 -[1] 25 35 37 -[1] 26 35 33 -[1] 27 35 39 -[1] 28 35 33 -[1] 29 35 50 -[1] 30 35 38 -[1] 31 35 59 -[1] 32 35 64 -[1] 33 35 47 -[1] 34 35 56 -[1] 35 35 67 -[1] 36 35 61 -[1] 37 35 41 -[1] 38 35 42 -[1] 39 35 45 -[1] 40 35 68 -[1] 41 35 48 -[1] 42 35 25 -[1] 43 35 91 -[1] 44 35 56 -[1] 45 35 43 -[1] 46 35 46 -[1] 47 35 69 -[1] 48 35 54 -[1] 49 35 50 -[1] 50 35 43 -[1] 51 35 32 -[1] 52 35 81 -[1] 53 35 59 -[1] 54 35 42 -[1] 55 35 63 -[1] 56 35 49 -[1] 57 35 44 -[1] 58 35 47 -[1] 59 35 44 -[1] 60 35 62 -[1] 61 35 69 -[1] 62 35 57 -[1] 63 35 37 -[1] 64 35 52 -[1] 65 35 51 -[1] 66 35 54 -[1] 67 35 53 -[1] 68 35 36 -[1] 69 35 53 -[1] 70 35 38 -[1] 71 35 43 -[1] 72 35 55 -[1] 73 35 54 -[1] 74 35 65 -[1] 75 35 43 -[1] 76 35 45 -[1] 77 35 62 -[1] 78 35 49 -[1] 79 35 49 -[1] 80 35 59 -[1] 81 35 39 -[1] 82 35 33 -[1] 83 35 38 -[1] 84 35 56 -[1] 85 35 59 -[1] 86 35 61 -[1] 87 35 88 -[1] 88 35 51 -[1] 89 35 58 -[1] 90 35 47 -[1] 91 35 59 -[1] 92 35 46 -[1] 93 35 65 -[1] 94 35 56 -[1] 95 35 92 -[1] 96 35 44 -[1] 97 35 55 -[1] 98 35 50 -[1] 99 35 40 -[1] 100 35 36 -[1] 101 35 87 -[1] 102 35 94 -[1] 103 35 57 -[1] 104 35 58 -[1] 105 35 47 -[1] 106 35 53 -[1] 107 35 36 -[1] 108 35 66 -[1] 109 35 65 -[1] 110 35 47 -[1] 111 35 49 -[1] 112 35 56 -[1] 113 35 37 -[1] 114 35 50 -[1] 115 35 39 -[1] 116 35 28 -[1] 117 35 111 -[1] 118 35 49 -[1] 119 35 35 -[1] 120 35 57 -[1] 121 35 48 -[1] 122 35 72 -[1] 123 35 44 -[1] 124 35 43 -[1] 125 35 37 -[1] 126 35 50 -[1] 127 35 48 -[1] 128 35 51 -[1] 129 35 41 -[1] 130 35 34 -[1] 131 35 49 -[1] 132 35 42 -[1] 133 35 28 -[1] 134 35 72 -[1] 135 35 42 -[1] 136 35 53 -[1] 137 35 44 -[1] 138 35 38 -[1] 139 35 34 -[1] 140 35 36 -[1] 141 35 43 -[1] 142 35 39 -[1] 143 35 74 -[1] 144 35 46 -[1] 145 35 67 -[1] 146 35 52 -[1] 147 35 69 -[1] 148 35 46 -[1] 149 35 38 -[1] 150 35 45 -[1] 151 35 49 -[1] 152 35 34 -[1] 153 35 50 -[1] 154 35 52 -[1] 155 35 44 -[1] 156 35 61 -[1] 157 35 46 -[1] 158 35 40 -[1] 159 35 80 -[1] 160 35 38 -[1] 161 35 40 -[1] 162 35 53 -[1] 163 35 24 -[1] 164 35 72 -[1] 165 35 84 -[1] 166 35 54 -[1] 167 35 48 -[1] 168 35 55 -[1] 169 35 92 -[1] 170 35 54 -[1] 171 35 39 -[1] 172 35 68 -[1] 173 35 48 -[1] 174 35 59 -[1] 175 35 44 -[1] 176 35 77 -[1] 177 35 57 -[1] 178 35 38 -[1] 179 35 55 -[1] 180 35 38 -[1] 181 35 51 -[1] 182 35 34 -[1] 183 35 53 -[1] 184 35 83 -[1] 185 35 51 -[1] 186 35 59 -[1] 187 35 61 -[1] 188 35 59 -[1] 189 35 74 -[1] 190 35 44 -[1] 191 35 42 -[1] 192 35 42 -[1] 193 35 43 -[1] 194 35 50 -[1] 195 35 42 -[1] 196 35 49 -[1] 197 35 60 -[1] 198 35 49 -[1] 199 35 67 -[1] 200 35 47 -[1] 1 36 27 -[1] 2 36 35 -[1] 3 36 45 -[1] 4 36 73 -[1] 5 36 41 -[1] 6 36 58 -[1] 7 36 35 -[1] 8 36 35 -[1] 9 36 42 -[1] 10 36 50 -[1] 11 36 36 -[1] 12 36 35 -[1] 13 36 66 -[1] 14 36 29 -[1] 15 36 58 -[1] 16 36 35 -[1] 17 36 40 -[1] 18 36 30 -[1] 19 36 60 -[1] 20 36 38 -[1] 21 36 58 -[1] 22 36 41 -[1] 23 36 32 -[1] 24 36 51 -[1] 25 36 48 -[1] 26 36 34 -[1] 27 36 55 -[1] 28 36 43 -[1] 29 36 50 -[1] 30 36 37 -[1] 31 36 29 -[1] 32 36 52 -[1] 33 36 34 -[1] 34 36 48 -[1] 35 36 61 -[1] 36 36 54 -[1] 37 36 74 -[1] 38 36 42 -[1] 39 36 48 -[1] 40 36 45 -[1] 41 36 67 -[1] 42 36 38 -[1] 43 36 59 -[1] 44 36 55 -[1] 45 36 57 -[1] 46 36 48 -[1] 47 36 36 -[1] 48 36 46 -[1] 49 36 80 -[1] 50 36 45 -[1] 51 36 59 -[1] 52 36 52 -[1] 53 36 58 -[1] 54 36 44 -[1] 55 36 55 -[1] 56 36 32 -[1] 57 36 65 -[1] 58 36 42 -[1] 59 36 55 -[1] 60 36 47 -[1] 61 36 44 -[1] 62 36 61 -[1] 63 36 52 -[1] 64 36 75 -[1] 65 36 48 -[1] 66 36 83 -[1] 67 36 50 -[1] 68 36 43 -[1] 69 36 36 -[1] 70 36 43 -[1] 71 36 51 -[1] 72 36 54 -[1] 73 36 46 -[1] 74 36 46 -[1] 75 36 39 -[1] 76 36 69 -[1] 77 36 31 -[1] 78 36 66 -[1] 79 36 51 -[1] 80 36 43 -[1] 81 36 52 -[1] 82 36 59 -[1] 83 36 62 -[1] 84 36 49 -[1] 85 36 38 -[1] 86 36 32 -[1] 87 36 76 -[1] 88 36 55 -[1] 89 36 108 -[1] 90 36 60 -[1] 91 36 47 -[1] 92 36 82 -[1] 93 36 64 -[1] 94 36 69 -[1] 95 36 42 -[1] 96 36 66 -[1] 97 36 48 -[1] 98 36 44 -[1] 99 36 49 -[1] 100 36 34 -[1] 101 36 69 -[1] 102 36 34 -[1] 103 36 61 -[1] 104 36 40 -[1] 105 36 49 -[1] 106 36 83 -[1] 107 36 57 -[1] 108 36 50 -[1] 109 36 39 -[1] 110 36 48 -[1] 111 36 62 -[1] 112 36 49 -[1] 113 36 88 -[1] 114 36 55 -[1] 115 36 50 -[1] 116 36 49 -[1] 117 36 58 -[1] 118 36 51 -[1] 119 36 55 -[1] 120 36 38 -[1] 121 36 37 -[1] 122 36 59 -[1] 123 36 32 -[1] 124 36 87 -[1] 125 36 40 -[1] 126 36 53 -[1] 127 36 48 -[1] 128 36 59 -[1] 129 36 45 -[1] 130 36 58 -[1] 131 36 45 -[1] 132 36 64 -[1] 133 36 53 -[1] 134 36 37 -[1] 135 36 80 -[1] 136 36 51 -[1] 137 36 65 -[1] 138 36 47 -[1] 139 36 44 -[1] 140 36 56 -[1] 141 36 50 -[1] 142 36 46 -[1] 143 36 95 -[1] 144 36 54 -[1] 145 36 58 -[1] 146 36 40 -[1] 147 36 93 -[1] 148 36 36 -[1] 149 36 40 -[1] 150 36 39 -[1] 151 36 57 -[1] 152 36 53 -[1] 153 36 47 -[1] 154 36 43 -[1] 155 36 51 -[1] 156 36 30 -[1] 157 36 63 -[1] 158 36 42 -[1] 159 36 41 -[1] 160 36 48 -[1] 161 36 76 -[1] 162 36 68 -[1] 163 36 70 -[1] 164 36 79 -[1] 165 36 41 -[1] 166 36 57 -[1] 167 36 54 -[1] 168 36 80 -[1] 169 36 80 -[1] 170 36 47 -[1] 171 36 36 -[1] 172 36 35 -[1] 173 36 37 -[1] 174 36 60 -[1] 175 36 39 -[1] 176 36 36 -[1] 177 36 69 -[1] 178 36 45 -[1] 179 36 42 -[1] 180 36 42 -[1] 181 36 47 -[1] 182 36 35 -[1] 183 36 74 -[1] 184 36 43 -[1] 185 36 42 -[1] 186 36 41 -[1] 187 36 56 -[1] 188 36 49 -[1] 189 36 49 -[1] 190 36 53 -[1] 191 36 42 -[1] 192 36 40 -[1] 193 36 55 -[1] 194 36 30 -[1] 195 36 45 -[1] 196 36 60 -[1] 197 36 37 -[1] 198 36 37 -[1] 199 36 43 -[1] 200 36 86 -[1] 1 37 36 -[1] 2 37 42 -[1] 3 37 39 -[1] 4 37 51 -[1] 5 37 28 -[1] 6 37 64 -[1] 7 37 48 -[1] 8 37 51 -[1] 9 37 51 -[1] 10 37 42 -[1] 11 37 58 -[1] 12 37 49 -[1] 13 37 33 -[1] 14 37 32 -[1] 15 37 53 -[1] 16 37 35 -[1] 17 37 38 -[1] 18 37 64 -[1] 19 37 48 -[1] 20 37 46 -[1] 21 37 50 -[1] 22 37 49 -[1] 23 37 45 -[1] 24 37 45 -[1] 25 37 36 -[1] 26 37 38 -[1] 27 37 51 -[1] 28 37 46 -[1] 29 37 42 -[1] 30 37 84 -[1] 31 37 54 -[1] 32 37 57 -[1] 33 37 58 -[1] 34 37 47 -[1] 35 37 42 -[1] 36 37 40 -[1] 37 37 68 -[1] 38 37 62 -[1] 39 37 49 -[1] 40 37 59 -[1] 41 37 72 -[1] 42 37 65 -[1] 43 37 52 -[1] 44 37 44 -[1] 45 37 52 -[1] 46 37 60 -[1] 47 37 46 -[1] 48 37 71 -[1] 49 37 55 -[1] 50 37 39 -[1] 51 37 44 -[1] 52 37 58 -[1] 53 37 49 -[1] 54 37 35 -[1] 55 37 39 -[1] 56 37 66 -[1] 57 37 46 -[1] 58 37 55 -[1] 59 37 40 -[1] 60 37 43 -[1] 61 37 91 -[1] 62 37 66 -[1] 63 37 59 -[1] 64 37 39 -[1] 65 37 66 -[1] 66 37 50 -[1] 67 37 61 -[1] 68 37 60 -[1] 69 37 72 -[1] 70 37 57 -[1] 71 37 123 -[1] 72 37 50 -[1] 73 37 49 -[1] 74 37 51 -[1] 75 37 64 -[1] 76 37 55 -[1] 77 37 75 -[1] 78 37 49 -[1] 79 37 52 -[1] 80 37 42 -[1] 81 37 63 -[1] 82 37 49 -[1] 83 37 41 -[1] 84 37 44 -[1] 85 37 69 -[1] 86 37 52 -[1] 87 37 54 -[1] 88 37 62 -[1] 89 37 63 -[1] 90 37 43 -[1] 91 37 38 -[1] 92 37 90 -[1] 93 37 52 -[1] 94 37 62 -[1] 95 37 41 -[1] 96 37 39 -[1] 97 37 46 -[1] 98 37 71 -[1] 99 37 127 -[1] 100 37 62 -[1] 101 37 42 -[1] 102 37 69 -[1] 103 37 43 -[1] 104 37 62 -[1] 105 37 41 -[1] 106 37 42 -[1] 107 37 67 -[1] 108 37 39 -[1] 109 37 50 -[1] 110 37 55 -[1] 111 37 36 -[1] 112 37 51 -[1] 113 37 31 -[1] 114 37 36 -[1] 115 37 65 -[1] 116 37 35 -[1] 117 37 40 -[1] 118 37 51 -[1] 119 37 55 -[1] 120 37 33 -[1] 121 37 52 -[1] 122 37 51 -[1] 123 37 65 -[1] 124 37 37 -[1] 125 37 36 -[1] 126 37 57 -[1] 127 37 47 -[1] 128 37 46 -[1] 129 37 40 -[1] 130 37 79 -[1] 131 37 57 -[1] 132 37 37 -[1] 133 37 55 -[1] 134 37 57 -[1] 135 37 117 -[1] 136 37 39 -[1] 137 37 47 -[1] 138 37 44 -[1] 139 37 48 -[1] 140 37 49 -[1] 141 37 42 -[1] 142 37 37 -[1] 143 37 55 -[1] 144 37 39 -[1] 145 37 36 -[1] 146 37 64 -[1] 147 37 56 -[1] 148 37 41 -[1] 149 37 97 -[1] 150 37 40 -[1] 151 37 77 -[1] 152 37 47 -[1] 153 37 48 -[1] 154 37 33 -[1] 155 37 57 -[1] 156 37 48 -[1] 157 37 41 -[1] 158 37 48 -[1] 159 37 49 -[1] 160 37 78 -[1] 161 37 57 -[1] 162 37 39 -[1] 163 37 43 -[1] 164 37 76 -[1] 165 37 42 -[1] 166 37 62 -[1] 167 37 76 -[1] 168 37 56 -[1] 169 37 52 -[1] 170 37 47 -[1] 171 37 71 -[1] 172 37 78 -[1] 173 37 37 -[1] 174 37 26 -[1] 175 37 59 -[1] 176 37 34 -[1] 177 37 45 -[1] 178 37 40 -[1] 179 37 69 -[1] 180 37 83 -[1] 181 37 43 -[1] 182 37 47 -[1] 183 37 53 -[1] 184 37 56 -[1] 185 37 45 -[1] 186 37 90 -[1] 187 37 43 -[1] 188 37 50 -[1] 189 37 42 -[1] 190 37 61 -[1] 191 37 38 -[1] 192 37 43 -[1] 193 37 92 -[1] 194 37 47 -[1] 195 37 47 -[1] 196 37 45 -[1] 197 37 34 -[1] 198 37 49 -[1] 199 37 48 -[1] 200 37 75 -[1] 1 38 29 -[1] 2 38 29 -[1] 3 38 33 -[1] 4 38 45 -[1] 5 38 31 -[1] 6 38 39 -[1] 7 38 36 -[1] 8 38 44 -[1] 9 38 53 -[1] 10 38 45 -[1] 11 38 46 -[1] 12 38 40 -[1] 13 38 31 -[1] 14 38 44 -[1] 15 38 52 -[1] 16 38 32 -[1] 17 38 65 -[1] 18 38 58 -[1] 19 38 43 -[1] 20 38 39 -[1] 21 38 37 -[1] 22 38 52 -[1] 23 38 53 -[1] 24 38 56 -[1] 25 38 50 -[1] 26 38 71 -[1] 27 38 49 -[1] 28 38 39 -[1] 29 38 69 -[1] 30 38 59 -[1] 31 38 43 -[1] 32 38 27 -[1] 33 38 93 -[1] 34 38 78 -[1] 35 38 43 -[1] 36 38 64 -[1] 37 38 38 -[1] 38 38 44 -[1] 39 38 47 -[1] 40 38 67 -[1] 41 38 42 -[1] 42 38 39 -[1] 43 38 36 -[1] 44 38 57 -[1] 45 38 40 -[1] 46 38 55 -[1] 47 38 41 -[1] 48 38 38 -[1] 49 38 53 -[1] 50 38 41 -[1] 51 38 43 -[1] 52 38 48 -[1] 53 38 25 -[1] 54 38 58 -[1] 55 38 35 -[1] 56 38 48 -[1] 57 38 42 -[1] 58 38 43 -[1] 59 38 41 -[1] 60 38 42 -[1] 61 38 44 -[1] 62 38 30 -[1] 63 38 116 -[1] 64 38 56 -[1] 65 38 61 -[1] 66 38 41 -[1] 67 38 84 -[1] 68 38 44 -[1] 69 38 48 -[1] 70 38 58 -[1] 71 38 33 -[1] 72 38 87 -[1] 73 38 57 -[1] 74 38 48 -[1] 75 38 54 -[1] 76 38 54 -[1] 77 38 53 -[1] 78 38 37 -[1] 79 38 47 -[1] 80 38 52 -[1] 81 38 63 -[1] 82 38 64 -[1] 83 38 60 -[1] 84 38 43 -[1] 85 38 48 -[1] 86 38 35 -[1] 87 38 49 -[1] 88 38 50 -[1] 89 38 64 -[1] 90 38 33 -[1] 91 38 72 -[1] 92 38 80 -[1] 93 38 47 -[1] 94 38 73 -[1] 95 38 73 -[1] 96 38 55 -[1] 97 38 82 -[1] 98 38 72 -[1] 99 38 67 -[1] 100 38 59 -[1] 101 38 50 -[1] 102 38 37 -[1] 103 38 64 -[1] 104 38 49 -[1] 105 38 42 -[1] 106 38 74 -[1] 107 38 49 -[1] 108 38 37 -[1] 109 38 39 -[1] 110 38 75 -[1] 111 38 59 -[1] 112 38 55 -[1] 113 38 40 -[1] 114 38 49 -[1] 115 38 38 -[1] 116 38 34 -[1] 117 38 80 -[1] 118 38 47 -[1] 119 38 44 -[1] 120 38 127 -[1] 121 38 43 -[1] 122 38 44 -[1] 123 38 60 -[1] 124 38 57 -[1] 125 38 43 -[1] 126 38 74 -[1] 127 38 53 -[1] 128 38 51 -[1] 129 38 35 -[1] 130 38 42 -[1] 131 38 60 -[1] 132 38 64 -[1] 133 38 47 -[1] 134 38 43 -[1] 135 38 46 -[1] 136 38 41 -[1] 137 38 35 -[1] 138 38 60 -[1] 139 38 40 -[1] 140 38 37 -[1] 141 38 44 -[1] 142 38 45 -[1] 143 38 34 -[1] 144 38 71 -[1] 145 38 41 -[1] 146 38 43 -[1] 147 38 86 -[1] 148 38 58 -[1] 149 38 40 -[1] 150 38 41 -[1] 151 38 48 -[1] 152 38 79 -[1] 153 38 61 -[1] 154 38 43 -[1] 155 38 50 -[1] 156 38 45 -[1] 157 38 54 -[1] 158 38 60 -[1] 159 38 44 -[1] 160 38 35 -[1] 161 38 55 -[1] 162 38 44 -[1] 163 38 40 -[1] 164 38 38 -[1] 165 38 40 -[1] 166 38 53 -[1] 167 38 41 -[1] 168 38 44 -[1] 169 38 48 -[1] 170 38 63 -[1] 171 38 53 -[1] 172 38 48 -[1] 173 38 86 -[1] 174 38 45 -[1] 175 38 51 -[1] 176 38 45 -[1] 177 38 51 -[1] 178 38 60 -[1] 179 38 42 -[1] 180 38 41 -[1] 181 38 47 -[1] 182 38 45 -[1] 183 38 79 -[1] 184 38 68 -[1] 185 38 50 -[1] 186 38 36 -[1] 187 38 51 -[1] 188 38 42 -[1] 189 38 69 -[1] 190 38 35 -[1] 191 38 52 -[1] 192 38 62 -[1] 193 38 38 -[1] 194 38 42 -[1] 195 38 41 -[1] 196 38 87 -[1] 197 38 68 -[1] 198 38 70 -[1] 199 38 45 -[1] 200 38 41 -[1] 1 39 39 -[1] 2 39 47 -[1] 3 39 38 -[1] 4 39 35 -[1] 5 39 32 -[1] 6 39 51 -[1] 7 39 46 -[1] 8 39 39 -[1] 9 39 80 -[1] 10 39 39 -[1] 11 39 46 -[1] 12 39 55 -[1] 13 39 47 -[1] 14 39 35 -[1] 15 39 40 -[1] 16 39 38 -[1] 17 39 50 -[1] 18 39 40 -[1] 19 39 48 -[1] 20 39 51 -[1] 21 39 34 -[1] 22 39 35 -[1] 23 39 47 -[1] 24 39 61 -[1] 25 39 57 -[1] 26 39 41 -[1] 27 39 55 -[1] 28 39 65 -[1] 29 39 59 -[1] 30 39 47 -[1] 31 39 55 -[1] 32 39 42 -[1] 33 39 41 -[1] 34 39 71 -[1] 35 39 32 -[1] 36 39 63 -[1] 37 39 42 -[1] 38 39 41 -[1] 39 39 31 -[1] 40 39 76 -[1] 41 39 41 -[1] 42 39 37 -[1] 43 39 55 -[1] 44 39 143 -[1] 45 39 76 -[1] 46 39 42 -[1] 47 39 46 -[1] 48 39 32 -[1] 49 39 49 -[1] 50 39 64 -[1] 51 39 43 -[1] 52 39 45 -[1] 53 39 56 -[1] 54 39 71 -[1] 55 39 34 -[1] 56 39 71 -[1] 57 39 44 -[1] 58 39 46 -[1] 59 39 56 -[1] 60 39 54 -[1] 61 39 55 -[1] 62 39 48 -[1] 63 39 67 -[1] 64 39 40 -[1] 65 39 42 -[1] 66 39 65 -[1] 67 39 48 -[1] 68 39 63 -[1] 69 39 61 -[1] 70 39 54 -[1] 71 39 42 -[1] 72 39 77 -[1] 73 39 57 -[1] 74 39 46 -[1] 75 39 53 -[1] 76 39 57 -[1] 77 39 42 -[1] 78 39 77 -[1] 79 39 30 -[1] 80 39 57 -[1] 81 39 37 -[1] 82 39 48 -[1] 83 39 53 -[1] 84 39 47 -[1] 85 39 48 -[1] 86 39 45 -[1] 87 39 44 -[1] 88 39 60 -[1] 89 39 61 -[1] 90 39 45 -[1] 91 39 50 -[1] 92 39 69 -[1] 93 39 56 -[1] 94 39 43 -[1] 95 39 50 -[1] 96 39 70 -[1] 97 39 41 -[1] 98 39 41 -[1] 99 39 63 -[1] 100 39 40 -[1] 101 39 73 -[1] 102 39 37 -[1] 103 39 42 -[1] 104 39 69 -[1] 105 39 46 -[1] 106 39 63 -[1] 107 39 31 -[1] 108 39 69 -[1] 109 39 45 -[1] 110 39 51 -[1] 111 39 38 -[1] 112 39 47 -[1] 113 39 43 -[1] 114 39 44 -[1] 115 39 40 -[1] 116 39 37 -[1] 117 39 46 -[1] 118 39 74 -[1] 119 39 36 -[1] 120 39 49 -[1] 121 39 66 -[1] 122 39 35 -[1] 123 39 54 -[1] 124 39 35 -[1] 125 39 44 -[1] 126 39 67 -[1] 127 39 34 -[1] 128 39 57 -[1] 129 39 37 -[1] 130 39 50 -[1] 131 39 45 -[1] 132 39 50 -[1] 133 39 49 -[1] 134 39 41 -[1] 135 39 44 -[1] 136 39 51 -[1] 137 39 52 -[1] 138 39 51 -[1] 139 39 36 -[1] 140 39 29 -[1] 141 39 66 -[1] 142 39 51 -[1] 143 39 41 -[1] 144 39 42 -[1] 145 39 71 -[1] 146 39 26 -[1] 147 39 35 -[1] 148 39 46 -[1] 149 39 51 -[1] 150 39 54 -[1] 151 39 43 -[1] 152 39 41 -[1] 153 39 44 -[1] 154 39 59 -[1] 155 39 48 -[1] 156 39 40 -[1] 157 39 47 -[1] 158 39 59 -[1] 159 39 41 -[1] 160 39 48 -[1] 161 39 71 -[1] 162 39 45 -[1] 163 39 66 -[1] 164 39 52 -[1] 165 39 48 -[1] 166 39 59 -[1] 167 39 51 -[1] 168 39 45 -[1] 169 39 67 -[1] 170 39 55 -[1] 171 39 49 -[1] 172 39 45 -[1] 173 39 52 -[1] 174 39 59 -[1] 175 39 70 -[1] 176 39 49 -[1] 177 39 55 -[1] 178 39 50 -[1] 179 39 52 -[1] 180 39 37 -[1] 181 39 71 -[1] 182 39 72 -[1] 183 39 57 -[1] 184 39 49 -[1] 185 39 34 -[1] 186 39 42 -[1] 187 39 65 -[1] 188 39 53 -[1] 189 39 40 -[1] 190 39 47 -[1] 191 39 46 -[1] 192 39 43 -[1] 193 39 55 -[1] 194 39 35 -[1] 195 39 106 -[1] 196 39 38 -[1] 197 39 49 -[1] 198 39 36 -[1] 199 39 44 -[1] 200 39 72 -[1] 1 40 45 -[1] 2 40 33 -[1] 3 40 28 -[1] 4 40 43 -[1] 5 40 36 -[1] 6 40 41 -[1] 7 40 42 -[1] 8 40 45 -[1] 9 40 45 -[1] 10 40 46 -[1] 11 40 47 -[1] 12 40 40 -[1] 13 40 49 -[1] 14 40 30 -[1] 15 40 84 -[1] 16 40 46 -[1] 17 40 64 -[1] 18 40 50 -[1] 19 40 41 -[1] 20 40 40 -[1] 21 40 34 -[1] 22 40 42 -[1] 23 40 46 -[1] 24 40 45 -[1] 25 40 49 -[1] 26 40 48 -[1] 27 40 58 -[1] 28 40 37 -[1] 29 40 35 -[1] 30 40 39 -[1] 31 40 61 -[1] 32 40 51 -[1] 33 40 51 -[1] 34 40 38 -[1] 35 40 67 -[1] 36 40 53 -[1] 37 40 40 -[1] 38 40 58 -[1] 39 40 54 -[1] 40 40 45 -[1] 41 40 59 -[1] 42 40 27 -[1] 43 40 58 -[1] 44 40 44 -[1] 45 40 81 -[1] 46 40 49 -[1] 47 40 46 -[1] 48 40 78 -[1] 49 40 44 -[1] 50 40 48 -[1] 51 40 63 -[1] 52 40 71 -[1] 53 40 54 -[1] 54 40 48 -[1] 55 40 69 -[1] 56 40 79 -[1] 57 40 39 -[1] 58 40 55 -[1] 59 40 46 -[1] 60 40 45 -[1] 61 40 57 -[1] 62 40 35 -[1] 63 40 47 -[1] 64 40 66 -[1] 65 40 62 -[1] 66 40 50 -[1] 67 40 63 -[1] 68 40 45 -[1] 69 40 52 -[1] 70 40 37 -[1] 71 40 39 -[1] 72 40 52 -[1] 73 40 46 -[1] 74 40 71 -[1] 75 40 75 -[1] 76 40 58 -[1] 77 40 67 -[1] 78 40 57 -[1] 79 40 43 -[1] 80 40 65 -[1] 81 40 47 -[1] 82 40 54 -[1] 83 40 57 -[1] 84 40 42 -[1] 85 40 47 -[1] 86 40 55 -[1] 87 40 38 -[1] 88 40 33 -[1] 89 40 34 -[1] 90 40 36 -[1] 91 40 44 -[1] 92 40 36 -[1] 93 40 71 -[1] 94 40 33 -[1] 95 40 44 -[1] 96 40 37 -[1] 97 40 87 -[1] 98 40 67 -[1] 99 40 41 -[1] 100 40 50 -[1] 101 40 71 -[1] 102 40 36 -[1] 103 40 89 -[1] 104 40 43 -[1] 105 40 39 -[1] 106 40 60 -[1] 107 40 79 -[1] 108 40 58 -[1] 109 40 37 -[1] 110 40 40 -[1] 111 40 86 -[1] 112 40 43 -[1] 113 40 63 -[1] 114 40 35 -[1] 115 40 44 -[1] 116 40 40 -[1] 117 40 75 -[1] 118 40 38 -[1] 119 40 49 -[1] 120 40 46 -[1] 121 40 55 -[1] 122 40 39 -[1] 123 40 47 -[1] 124 40 45 -[1] 125 40 29 -[1] 126 40 89 -[1] 127 40 60 -[1] 128 40 48 -[1] 129 40 51 -[1] 130 40 69 -[1] 131 40 41 -[1] 132 40 46 -[1] 133 40 77 -[1] 134 40 48 -[1] 135 40 40 -[1] 136 40 46 -[1] 137 40 37 -[1] 138 40 53 -[1] 139 40 71 -[1] 140 40 55 -[1] 141 40 50 -[1] 142 40 51 -[1] 143 40 46 -[1] 144 40 49 -[1] 145 40 48 -[1] 146 40 53 -[1] 147 40 38 -[1] 148 40 41 -[1] 149 40 38 -[1] 150 40 33 -[1] 151 40 47 -[1] 152 40 35 -[1] 153 40 41 -[1] 154 40 37 -[1] 155 40 43 -[1] 156 40 34 -[1] 157 40 47 -[1] 158 40 49 -[1] 159 40 47 -[1] 160 40 123 -[1] 161 40 32 -[1] 162 40 72 -[1] 163 40 50 -[1] 164 40 42 -[1] 165 40 55 -[1] 166 40 39 -[1] 167 40 58 -[1] 168 40 51 -[1] 169 40 70 -[1] 170 40 48 -[1] 171 40 66 -[1] 172 40 57 -[1] 173 40 70 -[1] 174 40 42 -[1] 175 40 55 -[1] 176 40 51 -[1] 177 40 65 -[1] 178 40 72 -[1] 179 40 43 -[1] 180 40 44 -[1] 181 40 98 -[1] 182 40 48 -[1] 183 40 45 -[1] 184 40 62 -[1] 185 40 71 -[1] 186 40 63 -[1] 187 40 46 -[1] 188 40 31 -[1] 189 40 53 -[1] 190 40 38 -[1] 191 40 45 -[1] 192 40 34 -[1] 193 40 46 -[1] 194 40 57 -[1] 195 40 58 -[1] 196 40 35 -[1] 197 40 30 -[1] 198 40 96 -[1] 199 40 46 -[1] 200 40 59 -[1] 1 41 41 -[1] 2 41 31 -[1] 3 41 42 -[1] 4 41 45 -[1] 5 41 42 -[1] 6 41 41 -[1] 7 41 49 -[1] 8 41 38 -[1] 9 41 35 -[1] 10 41 55 -[1] 11 41 57 -[1] 12 41 33 -[1] 13 41 34 -[1] 14 41 53 -[1] 15 41 37 -[1] 16 41 60 -[1] 17 41 37 -[1] 18 41 49 -[1] 19 41 72 -[1] 20 41 61 -[1] 21 41 40 -[1] 22 41 75 -[1] 23 41 30 -[1] 24 41 43 -[1] 25 41 71 -[1] 26 41 36 -[1] 27 41 50 -[1] 28 41 82 -[1] 29 41 69 -[1] 30 41 51 -[1] 31 41 41 -[1] 32 41 43 -[1] 33 41 50 -[1] 34 41 59 -[1] 35 41 58 -[1] 36 41 36 -[1] 37 41 42 -[1] 38 41 56 -[1] 39 41 52 -[1] 40 41 43 -[1] 41 41 62 -[1] 42 41 40 -[1] 43 41 49 -[1] 44 41 49 -[1] 45 41 73 -[1] 46 41 56 -[1] 47 41 40 -[1] 48 41 45 -[1] 49 41 53 -[1] 50 41 47 -[1] 51 41 41 -[1] 52 41 35 -[1] 53 41 57 -[1] 54 41 46 -[1] 55 41 105 -[1] 56 41 56 -[1] 57 41 79 -[1] 58 41 55 -[1] 59 41 53 -[1] 60 41 50 -[1] 61 41 80 -[1] 62 41 64 -[1] 63 41 40 -[1] 64 41 53 -[1] 65 41 48 -[1] 66 41 57 -[1] 67 41 74 -[1] 68 41 45 -[1] 69 41 69 -[1] 70 41 80 -[1] 71 41 46 -[1] 72 41 52 -[1] 73 41 42 -[1] 74 41 45 -[1] 75 41 48 -[1] 76 41 32 -[1] 77 41 53 -[1] 78 41 57 -[1] 79 41 64 -[1] 80 41 41 -[1] 81 41 52 -[1] 82 41 69 -[1] 83 41 38 -[1] 84 41 61 -[1] 85 41 83 -[1] 86 41 42 -[1] 87 41 58 -[1] 88 41 50 -[1] 89 41 43 -[1] 90 41 47 -[1] 91 41 51 -[1] 92 41 52 -[1] 93 41 54 -[1] 94 41 48 -[1] 95 41 41 -[1] 96 41 52 -[1] 97 41 61 -[1] 98 41 43 -[1] 99 41 81 -[1] 100 41 41 -[1] 101 41 61 -[1] 102 41 40 -[1] 103 41 56 -[1] 104 41 73 -[1] 105 41 40 -[1] 106 41 44 -[1] 107 41 37 -[1] 108 41 50 -[1] 109 41 67 -[1] 110 41 58 -[1] 111 41 42 -[1] 112 41 68 -[1] 113 41 34 -[1] 114 41 62 -[1] 115 41 74 -[1] 116 41 31 -[1] 117 41 80 -[1] 118 41 69 -[1] 119 41 41 -[1] 120 41 56 -[1] 121 41 65 -[1] 122 41 46 -[1] 123 41 54 -[1] 124 41 50 -[1] 125 41 42 -[1] 126 41 66 -[1] 127 41 50 -[1] 128 41 48 -[1] 129 41 35 -[1] 130 41 37 -[1] 131 41 64 -[1] 132 41 48 -[1] 133 41 63 -[1] 134 41 36 -[1] 135 41 45 -[1] 136 41 31 -[1] 137 41 52 -[1] 138 41 40 -[1] 139 41 33 -[1] 140 41 51 -[1] 141 41 50 -[1] 142 41 46 -[1] 143 41 45 -[1] 144 41 39 -[1] 145 41 39 -[1] 146 41 52 -[1] 147 41 64 -[1] 148 41 55 -[1] 149 41 84 -[1] 150 41 57 -[1] 151 41 45 -[1] 152 41 50 -[1] 153 41 39 -[1] 154 41 46 -[1] 155 41 87 -[1] 156 41 99 -[1] 157 41 40 -[1] 158 41 31 -[1] 159 41 34 -[1] 160 41 51 -[1] 161 41 60 -[1] 162 41 49 -[1] 163 41 47 -[1] 164 41 45 -[1] 165 41 36 -[1] 166 41 46 -[1] 167 41 67 -[1] 168 41 44 -[1] 169 41 62 -[1] 170 41 51 -[1] 171 41 31 -[1] 172 41 72 -[1] 173 41 39 -[1] 174 41 36 -[1] 175 41 86 -[1] 176 41 47 -[1] 177 41 58 -[1] 178 41 59 -[1] 179 41 85 -[1] 180 41 71 -[1] 181 41 35 -[1] 182 41 58 -[1] 183 41 55 -[1] 184 41 45 -[1] 185 41 54 -[1] 186 41 64 -[1] 187 41 39 -[1] 188 41 45 -[1] 189 41 31 -[1] 190 41 60 -[1] 191 41 56 -[1] 192 41 47 -[1] 193 41 35 -[1] 194 41 39 -[1] 195 41 46 -[1] 196 41 30 -[1] 197 41 52 -[1] 198 41 37 -[1] 199 41 47 -[1] 200 41 67 -[1] 1 42 33 -[1] 2 42 29 -[1] 3 42 32 -[1] 4 42 27 -[1] 5 42 35 -[1] 6 42 40 -[1] 7 42 35 -[1] 8 42 44 -[1] 9 42 46 -[1] 10 42 51 -[1] 11 42 38 -[1] 12 42 43 -[1] 13 42 58 -[1] 14 42 52 -[1] 15 42 53 -[1] 16 42 43 -[1] 17 42 45 -[1] 18 42 36 -[1] 19 42 36 -[1] 20 42 44 -[1] 21 42 48 -[1] 22 42 53 -[1] 23 42 33 -[1] 24 42 106 -[1] 25 42 54 -[1] 26 42 56 -[1] 27 42 70 -[1] 28 42 58 -[1] 29 42 33 -[1] 30 42 35 -[1] 31 42 70 -[1] 32 42 54 -[1] 33 42 53 -[1] 34 42 51 -[1] 35 42 43 -[1] 36 42 53 -[1] 37 42 39 -[1] 38 42 63 -[1] 39 42 52 -[1] 40 42 38 -[1] 41 42 59 -[1] 42 42 69 -[1] 43 42 38 -[1] 44 42 50 -[1] 45 42 54 -[1] 46 42 43 -[1] 47 42 42 -[1] 48 42 48 -[1] 49 42 49 -[1] 50 42 42 -[1] 51 42 57 -[1] 52 42 44 -[1] 53 42 49 -[1] 54 42 41 -[1] 55 42 50 -[1] 56 42 61 -[1] 57 42 36 -[1] 58 42 41 -[1] 59 42 46 -[1] 60 42 43 -[1] 61 42 73 -[1] 62 42 52 -[1] 63 42 38 -[1] 64 42 49 -[1] 65 42 41 -[1] 66 42 42 -[1] 67 42 59 -[1] 68 42 77 -[1] 69 42 52 -[1] 70 42 46 -[1] 71 42 68 -[1] 72 42 41 -[1] 73 42 97 -[1] 74 42 73 -[1] 75 42 44 -[1] 76 42 43 -[1] 77 42 58 -[1] 78 42 40 -[1] 79 42 74 -[1] 80 42 36 -[1] 81 42 98 -[1] 82 42 51 -[1] 83 42 87 -[1] 84 42 40 -[1] 85 42 41 -[1] 86 42 44 -[1] 87 42 53 -[1] 88 42 89 -[1] 89 42 49 -[1] 90 42 56 -[1] 91 42 61 -[1] 92 42 81 -[1] 93 42 48 -[1] 94 42 78 -[1] 95 42 40 -[1] 96 42 68 -[1] 97 42 51 -[1] 98 42 74 -[1] 99 42 61 -[1] 100 42 53 -[1] 101 42 48 -[1] 102 42 53 -[1] 103 42 69 -[1] 104 42 42 -[1] 105 42 47 -[1] 106 42 38 -[1] 107 42 47 -[1] 108 42 56 -[1] 109 42 60 -[1] 110 42 52 -[1] 111 42 54 -[1] 112 42 67 -[1] 113 42 57 -[1] 114 42 52 -[1] 115 42 59 -[1] 116 42 40 -[1] 117 42 44 -[1] 118 42 89 -[1] 119 42 46 -[1] 120 42 47 -[1] 121 42 37 -[1] 122 42 56 -[1] 123 42 49 -[1] 124 42 50 -[1] 125 42 66 -[1] 126 42 48 -[1] 127 42 51 -[1] 128 42 66 -[1] 129 42 58 -[1] 130 42 69 -[1] 131 42 66 -[1] 132 42 44 -[1] 133 42 69 -[1] 134 42 33 -[1] 135 42 29 -[1] 136 42 46 -[1] 137 42 45 -[1] 138 42 46 -[1] 139 42 47 -[1] 140 42 57 -[1] 141 42 54 -[1] 142 42 50 -[1] 143 42 44 -[1] 144 42 40 -[1] 145 42 35 -[1] 146 42 50 -[1] 147 42 40 -[1] 148 42 63 -[1] 149 42 45 -[1] 150 42 46 -[1] 151 42 41 -[1] 152 42 95 -[1] 153 42 78 -[1] 154 42 58 -[1] 155 42 58 -[1] 156 42 35 -[1] 157 42 45 -[1] 158 42 38 -[1] 159 42 45 -[1] 160 42 58 -[1] 161 42 66 -[1] 162 42 47 -[1] 163 42 49 -[1] 164 42 47 -[1] 165 42 42 -[1] 166 42 43 -[1] 167 42 47 -[1] 168 42 58 -[1] 169 42 40 -[1] 170 42 91 -[1] 171 42 42 -[1] 172 42 59 -[1] 173 42 76 -[1] 174 42 86 -[1] 175 42 58 -[1] 176 42 48 -[1] 177 42 65 -[1] 178 42 59 -[1] 179 42 86 -[1] 180 42 48 -[1] 181 42 96 -[1] 182 42 62 -[1] 183 42 36 -[1] 184 42 33 -[1] 185 42 40 -[1] 186 42 34 -[1] 187 42 59 -[1] 188 42 36 -[1] 189 42 43 -[1] 190 42 46 -[1] 191 42 45 -[1] 192 42 57 -[1] 193 42 43 -[1] 194 42 39 -[1] 195 42 52 -[1] 196 42 38 -[1] 197 42 37 -[1] 198 42 44 -[1] 199 42 33 -[1] 200 42 39 -[1] 1 43 46 -[1] 2 43 44 -[1] 3 43 29 -[1] 4 43 40 -[1] 5 43 54 -[1] 6 43 47 -[1] 7 43 30 -[1] 8 43 29 -[1] 9 43 66 -[1] 10 43 41 -[1] 11 43 49 -[1] 12 43 43 -[1] 13 43 38 -[1] 14 43 32 -[1] 15 43 48 -[1] 16 43 49 -[1] 17 43 64 -[1] 18 43 54 -[1] 19 43 36 -[1] 20 43 39 -[1] 21 43 34 -[1] 22 43 43 -[1] 23 43 72 -[1] 24 43 47 -[1] 25 43 46 -[1] 26 43 53 -[1] 27 43 39 -[1] 28 43 45 -[1] 29 43 85 -[1] 30 43 61 -[1] 31 43 43 -[1] 32 43 37 -[1] 33 43 39 -[1] 34 43 72 -[1] 35 43 41 -[1] 36 43 45 -[1] 37 43 49 -[1] 38 43 55 -[1] 39 43 67 -[1] 40 43 44 -[1] 41 43 41 -[1] 42 43 52 -[1] 43 43 38 -[1] 44 43 51 -[1] 45 43 47 -[1] 46 43 58 -[1] 47 43 58 -[1] 48 43 50 -[1] 49 43 56 -[1] 50 43 57 -[1] 51 43 70 -[1] 52 43 55 -[1] 53 43 48 -[1] 54 43 49 -[1] 55 43 51 -[1] 56 43 47 -[1] 57 43 58 -[1] 58 43 53 -[1] 59 43 57 -[1] 60 43 59 -[1] 61 43 43 -[1] 62 43 44 -[1] 63 43 63 -[1] 64 43 52 -[1] 65 43 39 -[1] 66 43 45 -[1] 67 43 66 -[1] 68 43 51 -[1] 69 43 68 -[1] 70 43 57 -[1] 71 43 63 -[1] 72 43 76 -[1] 73 43 52 -[1] 74 43 38 -[1] 75 43 74 -[1] 76 43 86 -[1] 77 43 62 -[1] 78 43 47 -[1] 79 43 35 -[1] 80 43 55 -[1] 81 43 52 -[1] 82 43 58 -[1] 83 43 49 -[1] 84 43 32 -[1] 85 43 64 -[1] 86 43 49 -[1] 87 43 55 -[1] 88 43 53 -[1] 89 43 43 -[1] 90 43 54 -[1] 91 43 52 -[1] 92 43 51 -[1] 93 43 63 -[1] 94 43 38 -[1] 95 43 38 -[1] 96 43 59 -[1] 97 43 73 -[1] 98 43 70 -[1] 99 43 49 -[1] 100 43 51 -[1] 101 43 65 -[1] 102 43 47 -[1] 103 43 50 -[1] 104 43 33 -[1] 105 43 82 -[1] 106 43 42 -[1] 107 43 37 -[1] 108 43 78 -[1] 109 43 56 -[1] 110 43 51 -[1] 111 43 51 -[1] 112 43 39 -[1] 113 43 46 -[1] 114 43 33 -[1] 115 43 45 -[1] 116 43 54 -[1] 117 43 57 -[1] 118 43 32 -[1] 119 43 56 -[1] 120 43 45 -[1] 121 43 42 -[1] 122 43 49 -[1] 123 43 35 -[1] 124 43 93 -[1] 125 43 58 -[1] 126 43 46 -[1] 127 43 43 -[1] 128 43 35 -[1] 129 43 38 -[1] 130 43 77 -[1] 131 43 63 -[1] 132 43 45 -[1] 133 43 70 -[1] 134 43 42 -[1] 135 43 66 -[1] 136 43 39 -[1] 137 43 35 -[1] 138 43 42 -[1] 139 43 69 -[1] 140 43 38 -[1] 141 43 51 -[1] 142 43 43 -[1] 143 43 54 -[1] 144 43 61 -[1] 145 43 43 -[1] 146 43 61 -[1] 147 43 36 -[1] 148 43 84 -[1] 149 43 41 -[1] 150 43 49 -[1] 151 43 100 -[1] 152 43 56 -[1] 153 43 63 -[1] 154 43 42 -[1] 155 43 45 -[1] 156 43 49 -[1] 157 43 33 -[1] 158 43 48 -[1] 159 43 40 -[1] 160 43 51 -[1] 161 43 60 -[1] 162 43 41 -[1] 163 43 39 -[1] 164 43 36 -[1] 165 43 62 -[1] 166 43 43 -[1] 167 43 59 -[1] 168 43 59 -[1] 169 43 42 -[1] 170 43 47 -[1] 171 43 43 -[1] 172 43 65 -[1] 173 43 45 -[1] 174 43 51 -[1] 175 43 40 -[1] 176 43 55 -[1] 177 43 43 -[1] 178 43 44 -[1] 179 43 40 -[1] 180 43 67 -[1] 181 43 69 -[1] 182 43 36 -[1] 183 43 43 -[1] 184 43 36 -[1] 185 43 61 -[1] 186 43 39 -[1] 187 43 41 -[1] 188 43 44 -[1] 189 43 40 -[1] 190 43 43 -[1] 191 43 38 -[1] 192 43 75 -[1] 193 43 96 -[1] 194 43 49 -[1] 195 43 43 -[1] 196 43 61 -[1] 197 43 59 -[1] 198 43 47 -[1] 199 43 55 -[1] 200 43 65 -[1] 1 44 49 -[1] 2 44 39 -[1] 3 44 37 -[1] 4 44 40 -[1] 5 44 38 -[1] 6 44 48 -[1] 7 44 43 -[1] 8 44 40 -[1] 9 44 35 -[1] 10 44 37 -[1] 11 44 65 -[1] 12 44 36 -[1] 13 44 40 -[1] 14 44 64 -[1] 15 44 54 -[1] 16 44 64 -[1] 17 44 42 -[1] 18 44 50 -[1] 19 44 52 -[1] 20 44 55 -[1] 21 44 35 -[1] 22 44 81 -[1] 23 44 41 -[1] 24 44 47 -[1] 25 44 34 -[1] 26 44 65 -[1] 27 44 49 -[1] 28 44 48 -[1] 29 44 48 -[1] 30 44 32 -[1] 31 44 64 -[1] 32 44 58 -[1] 33 44 52 -[1] 34 44 34 -[1] 35 44 43 -[1] 36 44 45 -[1] 37 44 37 -[1] 38 44 55 -[1] 39 44 42 -[1] 40 44 55 -[1] 41 44 56 -[1] 42 44 67 -[1] 43 44 38 -[1] 44 44 38 -[1] 45 44 62 -[1] 46 44 47 -[1] 47 44 54 -[1] 48 44 50 -[1] 49 44 59 -[1] 50 44 96 -[1] 51 44 39 -[1] 52 44 58 -[1] 53 44 89 -[1] 54 44 68 -[1] 55 44 59 -[1] 56 44 43 -[1] 57 44 43 -[1] 58 44 64 -[1] 59 44 42 -[1] 60 44 55 -[1] 61 44 48 -[1] 62 44 43 -[1] 63 44 42 -[1] 64 44 38 -[1] 65 44 48 -[1] 66 44 72 -[1] 67 44 45 -[1] 68 44 38 -[1] 69 44 45 -[1] 70 44 42 -[1] 71 44 51 -[1] 72 44 39 -[1] 73 44 51 -[1] 74 44 68 -[1] 75 44 99 -[1] 76 44 39 -[1] 77 44 95 -[1] 78 44 42 -[1] 79 44 61 -[1] 80 44 72 -[1] 81 44 40 -[1] 82 44 85 -[1] 83 44 53 -[1] 84 44 45 -[1] 85 44 52 -[1] 86 44 29 -[1] 87 44 99 -[1] 88 44 44 -[1] 89 44 28 -[1] 90 44 52 -[1] 91 44 58 -[1] 92 44 39 -[1] 93 44 36 -[1] 94 44 43 -[1] 95 44 62 -[1] 96 44 30 -[1] 97 44 67 -[1] 98 44 53 -[1] 99 44 53 -[1] 100 44 45 -[1] 101 44 83 -[1] 102 44 77 -[1] 103 44 43 -[1] 104 44 80 -[1] 105 44 55 -[1] 106 44 66 -[1] 107 44 42 -[1] 108 44 51 -[1] 109 44 42 -[1] 110 44 74 -[1] 111 44 66 -[1] 112 44 61 -[1] 113 44 54 -[1] 114 44 55 -[1] 115 44 42 -[1] 116 44 66 -[1] 117 44 36 -[1] 118 44 112 -[1] 119 44 36 -[1] 120 44 99 -[1] 121 44 47 -[1] 122 44 45 -[1] 123 44 50 -[1] 124 44 55 -[1] 125 44 48 -[1] 126 44 57 -[1] 127 44 50 -[1] 128 44 47 -[1] 129 44 54 -[1] 130 44 45 -[1] 131 44 46 -[1] 132 44 43 -[1] 133 44 82 -[1] 134 44 43 -[1] 135 44 26 -[1] 136 44 43 -[1] 137 44 49 -[1] 138 44 37 -[1] 139 44 56 -[1] 140 44 34 -[1] 141 44 46 -[1] 142 44 39 -[1] 143 44 45 -[1] 144 44 43 -[1] 145 44 66 -[1] 146 44 26 -[1] 147 44 50 -[1] 148 44 52 -[1] 149 44 34 -[1] 150 44 49 -[1] 151 44 50 -[1] 152 44 37 -[1] 153 44 69 -[1] 154 44 35 -[1] 155 44 94 -[1] 156 44 62 -[1] 157 44 66 -[1] 158 44 60 -[1] 159 44 60 -[1] 160 44 56 -[1] 161 44 49 -[1] 162 44 38 -[1] 163 44 50 -[1] 164 44 86 -[1] 165 44 40 -[1] 166 44 87 -[1] 167 44 53 -[1] 168 44 58 -[1] 169 44 59 -[1] 170 44 61 -[1] 171 44 45 -[1] 172 44 67 -[1] 173 44 41 -[1] 174 44 35 -[1] 175 44 57 -[1] 176 44 49 -[1] 177 44 67 -[1] 178 44 46 -[1] 179 44 53 -[1] 180 44 78 -[1] 181 44 43 -[1] 182 44 44 -[1] 183 44 91 -[1] 184 44 51 -[1] 185 44 40 -[1] 186 44 39 -[1] 187 44 44 -[1] 188 44 76 -[1] 189 44 73 -[1] 190 44 36 -[1] 191 44 52 -[1] 192 44 40 -[1] 193 44 41 -[1] 194 44 56 -[1] 195 44 39 -[1] 196 44 36 -[1] 197 44 36 -[1] 198 44 38 -[1] 199 44 52 -[1] 200 44 55 -[1] 1 45 32 -[1] 2 45 36 -[1] 3 45 36 -[1] 4 45 39 -[1] 5 45 38 -[1] 6 45 43 -[1] 7 45 32 -[1] 8 45 45 -[1] 9 45 34 -[1] 10 45 56 -[1] 11 45 52 -[1] 12 45 64 -[1] 13 45 45 -[1] 14 45 38 -[1] 15 45 57 -[1] 16 45 33 -[1] 17 45 38 -[1] 18 45 57 -[1] 19 45 40 -[1] 20 45 49 -[1] 21 45 70 -[1] 22 45 43 -[1] 23 45 50 -[1] 24 45 62 -[1] 25 45 37 -[1] 26 45 48 -[1] 27 45 54 -[1] 28 45 52 -[1] 29 45 38 -[1] 30 45 38 -[1] 31 45 49 -[1] 32 45 46 -[1] 33 45 54 -[1] 34 45 64 -[1] 35 45 43 -[1] 36 45 48 -[1] 37 45 44 -[1] 38 45 58 -[1] 39 45 39 -[1] 40 45 47 -[1] 41 45 56 -[1] 42 45 55 -[1] 43 45 48 -[1] 44 45 44 -[1] 45 45 54 -[1] 46 45 47 -[1] 47 45 63 -[1] 48 45 54 -[1] 49 45 51 -[1] 50 45 39 -[1] 51 45 44 -[1] 52 45 54 -[1] 53 45 67 -[1] 54 45 48 -[1] 55 45 101 -[1] 56 45 49 -[1] 57 45 60 -[1] 58 45 55 -[1] 59 45 28 -[1] 60 45 49 -[1] 61 45 71 -[1] 62 45 61 -[1] 63 45 56 -[1] 64 45 69 -[1] 65 45 58 -[1] 66 45 34 -[1] 67 45 91 -[1] 68 45 38 -[1] 69 45 34 -[1] 70 45 83 -[1] 71 45 57 -[1] 72 45 55 -[1] 73 45 79 -[1] 74 45 58 -[1] 75 45 58 -[1] 76 45 99 -[1] 77 45 41 -[1] 78 45 50 -[1] 79 45 63 -[1] 80 45 53 -[1] 81 45 41 -[1] 82 45 38 -[1] 83 45 50 -[1] 84 45 53 -[1] 85 45 45 -[1] 86 45 38 -[1] 87 45 87 -[1] 88 45 82 -[1] 89 45 67 -[1] 90 45 44 -[1] 91 45 45 -[1] 92 45 66 -[1] 93 45 57 -[1] 94 45 40 -[1] 95 45 55 -[1] 96 45 46 -[1] 97 45 51 -[1] 98 45 45 -[1] 99 45 66 -[1] 100 45 50 -[1] 101 45 39 -[1] 102 45 52 -[1] 103 45 41 -[1] 104 45 40 -[1] 105 45 40 -[1] 106 45 41 -[1] 107 45 88 -[1] 108 45 46 -[1] 109 45 57 -[1] 110 45 125 -[1] 111 45 40 -[1] 112 45 39 -[1] 113 45 40 -[1] 114 45 40 -[1] 115 45 125 -[1] 116 45 51 -[1] 117 45 53 -[1] 118 45 46 -[1] 119 45 49 -[1] 120 45 37 -[1] 121 45 62 -[1] 122 45 64 -[1] 123 45 38 -[1] 124 45 52 -[1] 125 45 64 -[1] 126 45 65 -[1] 127 45 53 -[1] 128 45 54 -[1] 129 45 96 -[1] 130 45 47 -[1] 131 45 38 -[1] 132 45 43 -[1] 133 45 46 -[1] 134 45 54 -[1] 135 45 56 -[1] 136 45 30 -[1] 137 45 55 -[1] 138 45 32 -[1] 139 45 51 -[1] 140 45 49 -[1] 141 45 54 -[1] 142 45 70 -[1] 143 45 38 -[1] 144 45 51 -[1] 145 45 35 -[1] 146 45 73 -[1] 147 45 46 -[1] 148 45 47 -[1] 149 45 54 -[1] 150 45 49 -[1] 151 45 33 -[1] 152 45 34 -[1] 153 45 41 -[1] 154 45 41 -[1] 155 45 39 -[1] 156 45 36 -[1] 157 45 66 -[1] 158 45 53 -[1] 159 45 42 -[1] 160 45 54 -[1] 161 45 38 -[1] 162 45 59 -[1] 163 45 50 -[1] 164 45 44 -[1] 165 45 51 -[1] 166 45 52 -[1] 167 45 45 -[1] 168 45 66 -[1] 169 45 67 -[1] 170 45 51 -[1] 171 45 43 -[1] 172 45 45 -[1] 173 45 48 -[1] 174 45 61 -[1] 175 45 37 -[1] 176 45 45 -[1] 177 45 38 -[1] 178 45 34 -[1] 179 45 54 -[1] 180 45 52 -[1] 181 45 71 -[1] 182 45 47 -[1] 183 45 50 -[1] 184 45 32 -[1] 185 45 44 -[1] 186 45 41 -[1] 187 45 64 -[1] 188 45 45 -[1] 189 45 63 -[1] 190 45 57 -[1] 191 45 42 -[1] 192 45 71 -[1] 193 45 35 -[1] 194 45 47 -[1] 195 45 46 -[1] 196 45 31 -[1] 197 45 52 -[1] 198 45 51 -[1] 199 45 62 -[1] 200 45 45 -[1] 1 46 35 -[1] 2 46 36 -[1] 3 46 33 -[1] 4 46 44 -[1] 5 46 41 -[1] 6 46 65 -[1] 7 46 86 -[1] 8 46 38 -[1] 9 46 46 -[1] 10 46 46 -[1] 11 46 28 -[1] 12 46 49 -[1] 13 46 50 -[1] 14 46 37 -[1] 15 46 75 -[1] 16 46 53 -[1] 17 46 60 -[1] 18 46 38 -[1] 19 46 55 -[1] 20 46 47 -[1] 21 46 38 -[1] 22 46 47 -[1] 23 46 51 -[1] 24 46 45 -[1] 25 46 37 -[1] 26 46 55 -[1] 27 46 51 -[1] 28 46 48 -[1] 29 46 41 -[1] 30 46 56 -[1] 31 46 27 -[1] 32 46 120 -[1] 33 46 72 -[1] 34 46 47 -[1] 35 46 61 -[1] 36 46 42 -[1] 37 46 49 -[1] 38 46 39 -[1] 39 46 58 -[1] 40 46 53 -[1] 41 46 62 -[1] 42 46 42 -[1] 43 46 39 -[1] 44 46 45 -[1] 45 46 39 -[1] 46 46 60 -[1] 47 46 49 -[1] 48 46 49 -[1] 49 46 64 -[1] 50 46 54 -[1] 51 46 54 -[1] 52 46 58 -[1] 53 46 68 -[1] 54 46 82 -[1] 55 46 38 -[1] 56 46 48 -[1] 57 46 44 -[1] 58 46 75 -[1] 59 46 82 -[1] 60 46 67 -[1] 61 46 46 -[1] 62 46 70 -[1] 63 46 36 -[1] 64 46 52 -[1] 65 46 44 -[1] 66 46 56 -[1] 67 46 60 -[1] 68 46 39 -[1] 69 46 70 -[1] 70 46 36 -[1] 71 46 79 -[1] 72 46 40 -[1] 73 46 41 -[1] 74 46 42 -[1] 75 46 53 -[1] 76 46 62 -[1] 77 46 76 -[1] 78 46 49 -[1] 79 46 97 -[1] 80 46 42 -[1] 81 46 40 -[1] 82 46 118 -[1] 83 46 32 -[1] 84 46 37 -[1] 85 46 33 -[1] 86 46 47 -[1] 87 46 45 -[1] 88 46 49 -[1] 89 46 53 -[1] 90 46 46 -[1] 91 46 49 -[1] 92 46 39 -[1] 93 46 29 -[1] 94 46 41 -[1] 95 46 46 -[1] 96 46 50 -[1] 97 46 40 -[1] 98 46 43 -[1] 99 46 36 -[1] 100 46 95 -[1] 101 46 85 -[1] 102 46 40 -[1] 103 46 36 -[1] 104 46 33 -[1] 105 46 60 -[1] 106 46 70 -[1] 107 46 49 -[1] 108 46 53 -[1] 109 46 53 -[1] 110 46 83 -[1] 111 46 59 -[1] 112 46 63 -[1] 113 46 60 -[1] 114 46 47 -[1] 115 46 47 -[1] 116 46 40 -[1] 117 46 70 -[1] 118 46 52 -[1] 119 46 41 -[1] 120 46 90 -[1] 121 46 39 -[1] 122 46 39 -[1] 123 46 66 -[1] 124 46 73 -[1] 125 46 65 -[1] 126 46 75 -[1] 127 46 53 -[1] 128 46 64 -[1] 129 46 49 -[1] 130 46 57 -[1] 131 46 40 -[1] 132 46 44 -[1] 133 46 69 -[1] 134 46 60 -[1] 135 46 57 -[1] 136 46 70 -[1] 137 46 78 -[1] 138 46 52 -[1] 139 46 42 -[1] 140 46 55 -[1] 141 46 48 -[1] 142 46 41 -[1] 143 46 53 -[1] 144 46 30 -[1] 145 46 64 -[1] 146 46 52 -[1] 147 46 84 -[1] 148 46 40 -[1] 149 46 69 -[1] 150 46 40 -[1] 151 46 67 -[1] 152 46 35 -[1] 153 46 70 -[1] 154 46 47 -[1] 155 46 51 -[1] 156 46 38 -[1] 157 46 41 -[1] 158 46 36 -[1] 159 46 43 -[1] 160 46 34 -[1] 161 46 48 -[1] 162 46 33 -[1] 163 46 53 -[1] 164 46 70 -[1] 165 46 53 -[1] 166 46 63 -[1] 167 46 36 -[1] 168 46 47 -[1] 169 46 80 -[1] 170 46 33 -[1] 171 46 67 -[1] 172 46 52 -[1] 173 46 62 -[1] 174 46 53 -[1] 175 46 47 -[1] 176 46 68 -[1] 177 46 40 -[1] 178 46 123 -[1] 179 46 64 -[1] 180 46 55 -[1] 181 46 44 -[1] 182 46 48 -[1] 183 46 42 -[1] 184 46 57 -[1] 185 46 34 -[1] 186 46 37 -[1] 187 46 62 -[1] 188 46 54 -[1] 189 46 48 -[1] 190 46 65 -[1] 191 46 45 -[1] 192 46 49 -[1] 193 46 43 -[1] 194 46 54 -[1] 195 46 45 -[1] 196 46 44 -[1] 197 46 45 -[1] 198 46 53 -[1] 199 46 56 -[1] 200 46 45 -[1] 1 47 51 -[1] 2 47 32 -[1] 3 47 31 -[1] 4 47 36 -[1] 5 47 36 -[1] 6 47 42 -[1] 7 47 56 -[1] 8 47 67 -[1] 9 47 33 -[1] 10 47 54 -[1] 11 47 37 -[1] 12 47 50 -[1] 13 47 43 -[1] 14 47 66 -[1] 15 47 46 -[1] 16 47 59 -[1] 17 47 51 -[1] 18 47 39 -[1] 19 47 34 -[1] 20 47 35 -[1] 21 47 38 -[1] 22 47 49 -[1] 23 47 42 -[1] 24 47 43 -[1] 25 47 44 -[1] 26 47 45 -[1] 27 47 41 -[1] 28 47 44 -[1] 29 47 49 -[1] 30 47 51 -[1] 31 47 62 -[1] 32 47 42 -[1] 33 47 47 -[1] 34 47 43 -[1] 35 47 62 -[1] 36 47 68 -[1] 37 47 51 -[1] 38 47 45 -[1] 39 47 66 -[1] 40 47 73 -[1] 41 47 38 -[1] 42 47 63 -[1] 43 47 40 -[1] 44 47 163 -[1] 45 47 38 -[1] 46 47 43 -[1] 47 47 61 -[1] 48 47 50 -[1] 49 47 46 -[1] 50 47 49 -[1] 51 47 59 -[1] 52 47 45 -[1] 53 47 30 -[1] 54 47 55 -[1] 55 47 65 -[1] 56 47 65 -[1] 57 47 65 -[1] 58 47 43 -[1] 59 47 42 -[1] 60 47 51 -[1] 61 47 43 -[1] 62 47 44 -[1] 63 47 28 -[1] 64 47 40 -[1] 65 47 90 -[1] 66 47 62 -[1] 67 47 117 -[1] 68 47 31 -[1] 69 47 59 -[1] 70 47 42 -[1] 71 47 58 -[1] 72 47 48 -[1] 73 47 74 -[1] 74 47 52 -[1] 75 47 60 -[1] 76 47 32 -[1] 77 47 44 -[1] 78 47 62 -[1] 79 47 35 -[1] 80 47 62 -[1] 81 47 45 -[1] 82 47 71 -[1] 83 47 46 -[1] 84 47 69 -[1] 85 47 46 -[1] 86 47 45 -[1] 87 47 44 -[1] 88 47 41 -[1] 89 47 53 -[1] 90 47 104 -[1] 91 47 50 -[1] 92 47 44 -[1] 93 47 58 -[1] 94 47 42 -[1] 95 47 37 -[1] 96 47 36 -[1] 97 47 62 -[1] 98 47 45 -[1] 99 47 94 -[1] 100 47 48 -[1] 101 47 91 -[1] 102 47 43 -[1] 103 47 45 -[1] 104 47 54 -[1] 105 47 53 -[1] 106 47 63 -[1] 107 47 37 -[1] 108 47 38 -[1] 109 47 39 -[1] 110 47 101 -[1] 111 47 90 -[1] 112 47 48 -[1] 113 47 69 -[1] 114 47 72 -[1] 115 47 55 -[1] 116 47 80 -[1] 117 47 48 -[1] 118 47 54 -[1] 119 47 70 -[1] 120 47 51 -[1] 121 47 51 -[1] 122 47 46 -[1] 123 47 46 -[1] 124 47 36 -[1] 125 47 65 -[1] 126 47 52 -[1] 127 47 56 -[1] 128 47 38 -[1] 129 47 47 -[1] 130 47 47 -[1] 131 47 54 -[1] 132 47 45 -[1] 133 47 58 -[1] 134 47 61 -[1] 135 47 44 -[1] 136 47 57 -[1] 137 47 48 -[1] 138 47 71 -[1] 139 47 34 -[1] 140 47 47 -[1] 141 47 35 -[1] 142 47 55 -[1] 143 47 42 -[1] 144 47 40 -[1] 145 47 46 -[1] 146 47 44 -[1] 147 47 44 -[1] 148 47 37 -[1] 149 47 48 -[1] 150 47 57 -[1] 151 47 50 -[1] 152 47 47 -[1] 153 47 55 -[1] 154 47 36 -[1] 155 47 43 -[1] 156 47 65 -[1] 157 47 49 -[1] 158 47 41 -[1] 159 47 85 -[1] 160 47 42 -[1] 161 47 53 -[1] 162 47 42 -[1] 163 47 51 -[1] 164 47 62 -[1] 165 47 52 -[1] 166 47 45 -[1] 167 47 36 -[1] 168 47 76 -[1] 169 47 59 -[1] 170 47 50 -[1] 171 47 48 -[1] 172 47 34 -[1] 173 47 69 -[1] 174 47 44 -[1] 175 47 105 -[1] 176 47 57 -[1] 177 47 45 -[1] 178 47 78 -[1] 179 47 45 -[1] 180 47 56 -[1] 181 47 60 -[1] 182 47 51 -[1] 183 47 57 -[1] 184 47 37 -[1] 185 47 76 -[1] 186 47 46 -[1] 187 47 31 -[1] 188 47 68 -[1] 189 47 40 -[1] 190 47 52 -[1] 191 47 52 -[1] 192 47 46 -[1] 193 47 64 -[1] 194 47 42 -[1] 195 47 45 -[1] 196 47 46 -[1] 197 47 40 -[1] 198 47 51 -[1] 199 47 45 -[1] 200 47 39 -[1] 1 48 45 -[1] 2 48 35 -[1] 3 48 30 -[1] 4 48 31 -[1] 5 48 44 -[1] 6 48 45 -[1] 7 48 31 -[1] 8 48 36 -[1] 9 48 75 -[1] 10 48 50 -[1] 11 48 57 -[1] 12 48 42 -[1] 13 48 49 -[1] 14 48 36 -[1] 15 48 41 -[1] 16 48 32 -[1] 17 48 42 -[1] 18 48 100 -[1] 19 48 36 -[1] 20 48 59 -[1] 21 48 34 -[1] 22 48 34 -[1] 23 48 28 -[1] 24 48 52 -[1] 25 48 88 -[1] 26 48 37 -[1] 27 48 43 -[1] 28 48 46 -[1] 29 48 49 -[1] 30 48 71 -[1] 31 48 54 -[1] 32 48 36 -[1] 33 48 49 -[1] 34 48 45 -[1] 35 48 36 -[1] 36 48 35 -[1] 37 48 46 -[1] 38 48 50 -[1] 39 48 52 -[1] 40 48 54 -[1] 41 48 38 -[1] 42 48 88 -[1] 43 48 62 -[1] 44 48 36 -[1] 45 48 45 -[1] 46 48 88 -[1] 47 48 49 -[1] 48 48 60 -[1] 49 48 77 -[1] 50 48 51 -[1] 51 48 62 -[1] 52 48 88 -[1] 53 48 55 -[1] 54 48 77 -[1] 55 48 37 -[1] 56 48 37 -[1] 57 48 78 -[1] 58 48 39 -[1] 59 48 64 -[1] 60 48 40 -[1] 61 48 33 -[1] 62 48 42 -[1] 63 48 74 -[1] 64 48 52 -[1] 65 48 44 -[1] 66 48 69 -[1] 67 48 49 -[1] 68 48 45 -[1] 69 48 50 -[1] 70 48 85 -[1] 71 48 39 -[1] 72 48 73 -[1] 73 48 55 -[1] 74 48 41 -[1] 75 48 69 -[1] 76 48 49 -[1] 77 48 47 -[1] 78 48 32 -[1] 79 48 53 -[1] 80 48 61 -[1] 81 48 72 -[1] 82 48 43 -[1] 83 48 44 -[1] 84 48 91 -[1] 85 48 43 -[1] 86 48 58 -[1] 87 48 31 -[1] 88 48 63 -[1] 89 48 56 -[1] 90 48 60 -[1] 91 48 55 -[1] 92 48 32 -[1] 93 48 65 -[1] 94 48 47 -[1] 95 48 48 -[1] 96 48 61 -[1] 97 48 50 -[1] 98 48 82 -[1] 99 48 49 -[1] 100 48 54 -[1] 101 48 82 -[1] 102 48 33 -[1] 103 48 44 -[1] 104 48 42 -[1] 105 48 39 -[1] 106 48 50 -[1] 107 48 45 -[1] 108 48 36 -[1] 109 48 73 -[1] 110 48 36 -[1] 111 48 51 -[1] 112 48 65 -[1] 113 48 98 -[1] 114 48 67 -[1] 115 48 50 -[1] 116 48 35 -[1] 117 48 40 -[1] 118 48 93 -[1] 119 48 35 -[1] 120 48 72 -[1] 121 48 60 -[1] 122 48 55 -[1] 123 48 47 -[1] 124 48 65 -[1] 125 48 52 -[1] 126 48 45 -[1] 127 48 49 -[1] 128 48 53 -[1] 129 48 65 -[1] 130 48 63 -[1] 131 48 43 -[1] 132 48 57 -[1] 133 48 46 -[1] 134 48 44 -[1] 135 48 47 -[1] 136 48 72 -[1] 137 48 36 -[1] 138 48 43 -[1] 139 48 62 -[1] 140 48 42 -[1] 141 48 37 -[1] 142 48 56 -[1] 143 48 39 -[1] 144 48 50 -[1] 145 48 42 -[1] 146 48 68 -[1] 147 48 82 -[1] 148 48 34 -[1] 149 48 39 -[1] 150 48 46 -[1] 151 48 48 -[1] 152 48 62 -[1] 153 48 60 -[1] 154 48 46 -[1] 155 48 38 -[1] 156 48 53 -[1] 157 48 28 -[1] 158 48 90 -[1] 159 48 58 -[1] 160 48 89 -[1] 161 48 64 -[1] 162 48 53 -[1] 163 48 57 -[1] 164 48 56 -[1] 165 48 92 -[1] 166 48 50 -[1] 167 48 48 -[1] 168 48 42 -[1] 169 48 67 -[1] 170 48 39 -[1] 171 48 54 -[1] 172 48 51 -[1] 173 48 42 -[1] 174 48 41 -[1] 175 48 66 -[1] 176 48 50 -[1] 177 48 39 -[1] 178 48 35 -[1] 179 48 39 -[1] 180 48 40 -[1] 181 48 60 -[1] 182 48 47 -[1] 183 48 49 -[1] 184 48 42 -[1] 185 48 45 -[1] 186 48 69 -[1] 187 48 46 -[1] 188 48 51 -[1] 189 48 50 -[1] 190 48 41 -[1] 191 48 41 -[1] 192 48 38 -[1] 193 48 84 -[1] 194 48 41 -[1] 195 48 48 -[1] 196 48 59 -[1] 197 48 52 -[1] 198 48 45 -[1] 199 48 67 -[1] 200 48 71 -[1] 1 49 41 -[1] 2 49 57 -[1] 3 49 30 -[1] 4 49 44 -[1] 5 49 45 -[1] 6 49 25 -[1] 7 49 38 -[1] 8 49 34 -[1] 9 49 54 -[1] 10 49 32 -[1] 11 49 55 -[1] 12 49 48 -[1] 13 49 33 -[1] 14 49 44 -[1] 15 49 45 -[1] 16 49 56 -[1] 17 49 31 -[1] 18 49 33 -[1] 19 49 34 -[1] 20 49 37 -[1] 21 49 36 -[1] 22 49 37 -[1] 23 49 51 -[1] 24 49 44 -[1] 25 49 44 -[1] 26 49 29 -[1] 27 49 43 -[1] 28 49 50 -[1] 29 49 41 -[1] 30 49 37 -[1] 31 49 45 -[1] 32 49 49 -[1] 33 49 43 -[1] 34 49 53 -[1] 35 49 36 -[1] 36 49 43 -[1] 37 49 50 -[1] 38 49 55 -[1] 39 49 33 -[1] 40 49 48 -[1] 41 49 52 -[1] 42 49 45 -[1] 43 49 50 -[1] 44 49 45 -[1] 45 49 40 -[1] 46 49 57 -[1] 47 49 52 -[1] 48 49 42 -[1] 49 49 62 -[1] 50 49 45 -[1] 51 49 80 -[1] 52 49 56 -[1] 53 49 95 -[1] 54 49 61 -[1] 55 49 84 -[1] 56 49 46 -[1] 57 49 58 -[1] 58 49 104 -[1] 59 49 65 -[1] 60 49 57 -[1] 61 49 53 -[1] 62 49 41 -[1] 63 49 44 -[1] 64 49 45 -[1] 65 49 73 -[1] 66 49 48 -[1] 67 49 49 -[1] 68 49 96 -[1] 69 49 53 -[1] 70 49 77 -[1] 71 49 33 -[1] 72 49 38 -[1] 73 49 49 -[1] 74 49 33 -[1] 75 49 69 -[1] 76 49 50 -[1] 77 49 46 -[1] 78 49 30 -[1] 79 49 87 -[1] 80 49 41 -[1] 81 49 79 -[1] 82 49 50 -[1] 83 49 55 -[1] 84 49 36 -[1] 85 49 62 -[1] 86 49 45 -[1] 87 49 50 -[1] 88 49 39 -[1] 89 49 32 -[1] 90 49 65 -[1] 91 49 56 -[1] 92 49 41 -[1] 93 49 34 -[1] 94 49 69 -[1] 95 49 87 -[1] 96 49 47 -[1] 97 49 41 -[1] 98 49 63 -[1] 99 49 59 -[1] 100 49 48 -[1] 101 49 51 -[1] 102 49 59 -[1] 103 49 49 -[1] 104 49 84 -[1] 105 49 42 -[1] 106 49 71 -[1] 107 49 34 -[1] 108 49 78 -[1] 109 49 42 -[1] 110 49 85 -[1] 111 49 56 -[1] 112 49 70 -[1] 113 49 41 -[1] 114 49 38 -[1] 115 49 41 -[1] 116 49 56 -[1] 117 49 44 -[1] 118 49 62 -[1] 119 49 50 -[1] 120 49 55 -[1] 121 49 42 -[1] 122 49 57 -[1] 123 49 67 -[1] 124 49 44 -[1] 125 49 39 -[1] 126 49 43 -[1] 127 49 78 -[1] 128 49 76 -[1] 129 49 65 -[1] 130 49 47 -[1] 131 49 84 -[1] 132 49 39 -[1] 133 49 66 -[1] 134 49 55 -[1] 135 49 76 -[1] 136 49 47 -[1] 137 49 34 -[1] 138 49 48 -[1] 139 49 48 -[1] 140 49 45 -[1] 141 49 75 -[1] 142 49 43 -[1] 143 49 29 -[1] 144 49 37 -[1] 145 49 50 -[1] 146 49 62 -[1] 147 49 48 -[1] 148 49 37 -[1] 149 49 41 -[1] 150 49 58 -[1] 151 49 63 -[1] 152 49 40 -[1] 153 49 59 -[1] 154 49 40 -[1] 155 49 39 -[1] 156 49 35 -[1] 157 49 73 -[1] 158 49 43 -[1] 159 49 46 -[1] 160 49 68 -[1] 161 49 65 -[1] 162 49 40 -[1] 163 49 65 -[1] 164 49 39 -[1] 165 49 54 -[1] 166 49 42 -[1] 167 49 90 -[1] 168 49 68 -[1] 169 49 37 -[1] 170 49 75 -[1] 171 49 36 -[1] 172 49 59 -[1] 173 49 49 -[1] 174 49 45 -[1] 175 49 29 -[1] 176 49 40 -[1] 177 49 33 -[1] 178 49 71 -[1] 179 49 57 -[1] 180 49 45 -[1] 181 49 58 -[1] 182 49 49 -[1] 183 49 55 -[1] 184 49 57 -[1] 185 49 36 -[1] 186 49 67 -[1] 187 49 37 -[1] 188 49 44 -[1] 189 49 62 -[1] 190 49 41 -[1] 191 49 48 -[1] 192 49 44 -[1] 193 49 57 -[1] 194 49 52 -[1] 195 49 60 -[1] 196 49 34 -[1] 197 49 57 -[1] 198 49 57 -[1] 199 49 65 -[1] 200 49 80 -[1] 1 50 42 -[1] 2 50 39 -[1] 3 50 39 -[1] 4 50 40 -[1] 5 50 38 -[1] 6 50 45 -[1] 7 50 45 -[1] 8 50 57 -[1] 9 50 28 -[1] 10 50 57 -[1] 11 50 33 -[1] 12 50 42 -[1] 13 50 43 -[1] 14 50 44 -[1] 15 50 63 -[1] 16 50 44 -[1] 17 50 47 -[1] 18 50 39 -[1] 19 50 42 -[1] 20 50 31 -[1] 21 50 48 -[1] 22 50 49 -[1] 23 50 34 -[1] 24 50 37 -[1] 25 50 32 -[1] 26 50 37 -[1] 27 50 28 -[1] 28 50 53 -[1] 29 50 33 -[1] 30 50 48 -[1] 31 50 45 -[1] 32 50 56 -[1] 33 50 37 -[1] 34 50 44 -[1] 35 50 41 -[1] 36 50 45 -[1] 37 50 49 -[1] 38 50 61 -[1] 39 50 47 -[1] 40 50 61 -[1] 41 50 48 -[1] 42 50 65 -[1] 43 50 83 -[1] 44 50 46 -[1] 45 50 64 -[1] 46 50 53 -[1] 47 50 44 -[1] 48 50 90 -[1] 49 50 65 -[1] 50 50 54 -[1] 51 50 112 -[1] 52 50 44 -[1] 53 50 73 -[1] 54 50 42 -[1] 55 50 59 -[1] 56 50 50 -[1] 57 50 50 -[1] 58 50 52 -[1] 59 50 38 -[1] 60 50 51 -[1] 61 50 53 -[1] 62 50 64 -[1] 63 50 52 -[1] 64 50 57 -[1] 65 50 49 -[1] 66 50 63 -[1] 67 50 74 -[1] 68 50 44 -[1] 69 50 29 -[1] 70 50 45 -[1] 71 50 64 -[1] 72 50 78 -[1] 73 50 42 -[1] 74 50 58 -[1] 75 50 49 -[1] 76 50 45 -[1] 77 50 45 -[1] 78 50 89 -[1] 79 50 42 -[1] 80 50 52 -[1] 81 50 45 -[1] 82 50 99 -[1] 83 50 38 -[1] 84 50 67 -[1] 85 50 54 -[1] 86 50 58 -[1] 87 50 25 -[1] 88 50 70 -[1] 89 50 74 -[1] 90 50 39 -[1] 91 50 52 -[1] 92 50 39 -[1] 93 50 46 -[1] 94 50 47 -[1] 95 50 37 -[1] 96 50 59 -[1] 97 50 48 -[1] 98 50 54 -[1] 99 50 52 -[1] 100 50 37 -[1] 101 50 56 -[1] 102 50 86 -[1] 103 50 56 -[1] 104 50 28 -[1] 105 50 55 -[1] 106 50 35 -[1] 107 50 74 -[1] 108 50 100 -[1] 109 50 55 -[1] 110 50 50 -[1] 111 50 83 -[1] 112 50 38 -[1] 113 50 39 -[1] 114 50 53 -[1] 115 50 46 -[1] 116 50 47 -[1] 117 50 44 -[1] 118 50 78 -[1] 119 50 52 -[1] 120 50 46 -[1] 121 50 79 -[1] 122 50 51 -[1] 123 50 50 -[1] 124 50 42 -[1] 125 50 49 -[1] 126 50 48 -[1] 127 50 51 -[1] 128 50 49 -[1] 129 50 39 -[1] 130 50 39 -[1] 131 50 61 -[1] 132 50 67 -[1] 133 50 53 -[1] 134 50 103 -[1] 135 50 42 -[1] 136 50 52 -[1] 137 50 58 -[1] 138 50 67 -[1] 139 50 65 -[1] 140 50 44 -[1] 141 50 43 -[1] 142 50 48 -[1] 143 50 70 -[1] 144 50 78 -[1] 145 50 65 -[1] 146 50 47 -[1] 147 50 63 -[1] 148 50 43 -[1] 149 50 52 -[1] 150 50 49 -[1] 151 50 36 -[1] 152 50 41 -[1] 153 50 48 -[1] 154 50 53 -[1] 155 50 73 -[1] 156 50 44 -[1] 157 50 43 -[1] 158 50 52 -[1] 159 50 42 -[1] 160 50 57 -[1] 161 50 43 -[1] 162 50 41 -[1] 163 50 56 -[1] 164 50 81 -[1] 165 50 53 -[1] 166 50 57 -[1] 167 50 41 -[1] 168 50 39 -[1] 169 50 50 -[1] 170 50 59 -[1] 171 50 60 -[1] 172 50 43 -[1] 173 50 88 -[1] 174 50 44 -[1] 175 50 64 -[1] 176 50 48 -[1] 177 50 53 -[1] 178 50 48 -[1] 179 50 57 -[1] 180 50 77 -[1] 181 50 50 -[1] 182 50 46 -[1] 183 50 66 -[1] 184 50 56 -[1] 185 50 58 -[1] 186 50 47 -[1] 187 50 34 -[1] 188 50 47 -[1] 189 50 50 -[1] 190 50 60 -[1] 191 50 52 -[1] 192 50 42 -[1] 193 50 53 -[1] 194 50 43 -[1] 195 50 64 -[1] 196 50 40 -[1] 197 50 59 -[1] 198 50 36 -[1] 199 50 48 -[1] 200 50 50 -[1] 1 51 45 -[1] 2 51 27 -[1] 3 51 55 -[1] 4 51 38 -[1] 5 51 36 -[1] 6 51 38 -[1] 7 51 33 -[1] 8 51 45 -[1] 9 51 41 -[1] 10 51 48 -[1] 11 51 38 -[1] 12 51 33 -[1] 13 51 37 -[1] 14 51 34 -[1] 15 51 44 -[1] 16 51 40 -[1] 17 51 90 -[1] 18 51 72 -[1] 19 51 41 -[1] 20 51 41 -[1] 21 51 46 -[1] 22 51 55 -[1] 23 51 37 -[1] 24 51 51 -[1] 25 51 37 -[1] 26 51 71 -[1] 27 51 35 -[1] 28 51 40 -[1] 29 51 83 -[1] 30 51 36 -[1] 31 51 51 -[1] 32 51 52 -[1] 33 51 38 -[1] 34 51 59 -[1] 35 51 53 -[1] 36 51 57 -[1] 37 51 30 -[1] 38 51 52 -[1] 39 51 37 -[1] 40 51 35 -[1] 41 51 53 -[1] 42 51 54 -[1] 43 51 43 -[1] 44 51 36 -[1] 45 51 39 -[1] 46 51 92 -[1] 47 51 79 -[1] 48 51 32 -[1] 49 51 53 -[1] 50 51 54 -[1] 51 51 91 -[1] 52 51 42 -[1] 53 51 73 -[1] 54 51 54 -[1] 55 51 53 -[1] 56 51 44 -[1] 57 51 50 -[1] 58 51 60 -[1] 59 51 56 -[1] 60 51 35 -[1] 61 51 75 -[1] 62 51 40 -[1] 63 51 42 -[1] 64 51 45 -[1] 65 51 101 -[1] 66 51 48 -[1] 67 51 61 -[1] 68 51 38 -[1] 69 51 38 -[1] 70 51 44 -[1] 71 51 38 -[1] 72 51 43 -[1] 73 51 44 -[1] 74 51 39 -[1] 75 51 48 -[1] 76 51 42 -[1] 77 51 106 -[1] 78 51 60 -[1] 79 51 75 -[1] 80 51 60 -[1] 81 51 39 -[1] 82 51 50 -[1] 83 51 27 -[1] 84 51 55 -[1] 85 51 35 -[1] 86 51 63 -[1] 87 51 51 -[1] 88 51 47 -[1] 89 51 37 -[1] 90 51 42 -[1] 91 51 44 -[1] 92 51 91 -[1] 93 51 43 -[1] 94 51 64 -[1] 95 51 53 -[1] 96 51 64 -[1] 97 51 69 -[1] 98 51 46 -[1] 99 51 40 -[1] 100 51 52 -[1] 101 51 60 -[1] 102 51 45 -[1] 103 51 45 -[1] 104 51 44 -[1] 105 51 56 -[1] 106 51 39 -[1] 107 51 50 -[1] 108 51 39 -[1] 109 51 39 -[1] 110 51 50 -[1] 111 51 59 -[1] 112 51 40 -[1] 113 51 72 -[1] 114 51 45 -[1] 115 51 43 -[1] 116 51 78 -[1] 117 51 43 -[1] 118 51 45 -[1] 119 51 63 -[1] 120 51 62 -[1] 121 51 42 -[1] 122 51 49 -[1] 123 51 42 -[1] 124 51 60 -[1] 125 51 43 -[1] 126 51 37 -[1] 127 51 74 -[1] 128 51 57 -[1] 129 51 49 -[1] 130 51 62 -[1] 131 51 49 -[1] 132 51 46 -[1] 133 51 36 -[1] 134 51 58 -[1] 135 51 58 -[1] 136 51 45 -[1] 137 51 34 -[1] 138 51 63 -[1] 139 51 36 -[1] 140 51 61 -[1] 141 51 46 -[1] 142 51 81 -[1] 143 51 52 -[1] 144 51 47 -[1] 145 51 51 -[1] 146 51 42 -[1] 147 51 45 -[1] 148 51 47 -[1] 149 51 48 -[1] 150 51 44 -[1] 151 51 55 -[1] 152 51 61 -[1] 153 51 33 -[1] 154 51 61 -[1] 155 51 55 -[1] 156 51 37 -[1] 157 51 46 -[1] 158 51 57 -[1] 159 51 39 -[1] 160 51 47 -[1] 161 51 48 -[1] 162 51 33 -[1] 163 51 52 -[1] 164 51 58 -[1] 165 51 79 -[1] 166 51 50 -[1] 167 51 45 -[1] 168 51 73 -[1] 169 51 50 -[1] 170 51 57 -[1] 171 51 45 -[1] 172 51 70 -[1] 173 51 56 -[1] 174 51 46 -[1] 175 51 67 -[1] 176 51 45 -[1] 177 51 58 -[1] 178 51 63 -[1] 179 51 63 -[1] 180 51 43 -[1] 181 51 53 -[1] 182 51 68 -[1] 183 51 53 -[1] 184 51 47 -[1] 185 51 46 -[1] 186 51 42 -[1] 187 51 54 -[1] 188 51 53 -[1] 189 51 36 -[1] 190 51 43 -[1] 191 51 52 -[1] 192 51 49 -[1] 193 51 37 -[1] 194 51 49 -[1] 195 51 70 -[1] 196 51 56 -[1] 197 51 57 -[1] 198 51 59 -[1] 199 51 38 -[1] 200 51 47 -[1] 1 52 37 -[1] 2 52 35 -[1] 3 52 36 -[1] 4 52 43 -[1] 5 52 46 -[1] 6 52 38 -[1] 7 52 41 -[1] 8 52 57 -[1] 9 52 31 -[1] 10 52 50 -[1] 11 52 47 -[1] 12 52 38 -[1] 13 52 39 -[1] 14 52 41 -[1] 15 52 48 -[1] 16 52 42 -[1] 17 52 68 -[1] 18 52 38 -[1] 19 52 38 -[1] 20 52 42 -[1] 21 52 40 -[1] 22 52 50 -[1] 23 52 54 -[1] 24 52 40 -[1] 25 52 56 -[1] 26 52 25 -[1] 27 52 52 -[1] 28 52 64 -[1] 29 52 47 -[1] 30 52 34 -[1] 31 52 53 -[1] 32 52 42 -[1] 33 52 109 -[1] 34 52 39 -[1] 35 52 64 -[1] 36 52 33 -[1] 37 52 32 -[1] 38 52 71 -[1] 39 52 59 -[1] 40 52 34 -[1] 41 52 41 -[1] 42 52 71 -[1] 43 52 59 -[1] 44 52 49 -[1] 45 52 56 -[1] 46 52 56 -[1] 47 52 63 -[1] 48 52 51 -[1] 49 52 83 -[1] 50 52 59 -[1] 51 52 34 -[1] 52 52 53 -[1] 53 52 42 -[1] 54 52 59 -[1] 55 52 59 -[1] 56 52 42 -[1] 57 52 57 -[1] 58 52 39 -[1] 59 52 106 -[1] 60 52 62 -[1] 61 52 54 -[1] 62 52 62 -[1] 63 52 42 -[1] 64 52 64 -[1] 65 52 77 -[1] 66 52 52 -[1] 67 52 48 -[1] 68 52 62 -[1] 69 52 72 -[1] 70 52 41 -[1] 71 52 133 -[1] 72 52 48 -[1] 73 52 43 -[1] 74 52 54 -[1] 75 52 38 -[1] 76 52 61 -[1] 77 52 53 -[1] 78 52 55 -[1] 79 52 52 -[1] 80 52 73 -[1] 81 52 41 -[1] 82 52 60 -[1] 83 52 62 -[1] 84 52 45 -[1] 85 52 50 -[1] 86 52 55 -[1] 87 52 49 -[1] 88 52 72 -[1] 89 52 41 -[1] 90 52 48 -[1] 91 52 61 -[1] 92 52 53 -[1] 93 52 46 -[1] 94 52 47 -[1] 95 52 45 -[1] 96 52 32 -[1] 97 52 44 -[1] 98 52 43 -[1] 99 52 37 -[1] 100 52 94 -[1] 101 52 43 -[1] 102 52 70 -[1] 103 52 38 -[1] 104 52 57 -[1] 105 52 44 -[1] 106 52 45 -[1] 107 52 49 -[1] 108 52 52 -[1] 109 52 61 -[1] 110 52 74 -[1] 111 52 47 -[1] 112 52 41 -[1] 113 52 62 -[1] 114 52 52 -[1] 115 52 91 -[1] 116 52 49 -[1] 117 52 73 -[1] 118 52 66 -[1] 119 52 39 -[1] 120 52 46 -[1] 121 52 73 -[1] 122 52 74 -[1] 123 52 87 -[1] 124 52 58 -[1] 125 52 63 -[1] 126 52 63 -[1] 127 52 52 -[1] 128 52 46 -[1] 129 52 56 -[1] 130 52 57 -[1] 131 52 29 -[1] 132 52 53 -[1] 133 52 56 -[1] 134 52 71 -[1] 135 52 41 -[1] 136 52 44 -[1] 137 52 63 -[1] 138 52 42 -[1] 139 52 45 -[1] 140 52 54 -[1] 141 52 37 -[1] 142 52 37 -[1] 143 52 40 -[1] 144 52 48 -[1] 145 52 87 -[1] 146 52 39 -[1] 147 52 45 -[1] 148 52 36 -[1] 149 52 49 -[1] 150 52 52 -[1] 151 52 83 -[1] 152 52 49 -[1] 153 52 46 -[1] 154 52 37 -[1] 155 52 56 -[1] 156 52 43 -[1] 157 52 40 -[1] 158 52 38 -[1] 159 52 56 -[1] 160 52 43 -[1] 161 52 64 -[1] 162 52 33 -[1] 163 52 60 -[1] 164 52 54 -[1] 165 52 45 -[1] 166 52 73 -[1] 167 52 56 -[1] 168 52 56 -[1] 169 52 65 -[1] 170 52 33 -[1] 171 52 42 -[1] 172 52 71 -[1] 173 52 62 -[1] 174 52 46 -[1] 175 52 54 -[1] 176 52 58 -[1] 177 52 46 -[1] 178 52 58 -[1] 179 52 44 -[1] 180 52 48 -[1] 181 52 45 -[1] 182 52 56 -[1] 183 52 43 -[1] 184 52 64 -[1] 185 52 55 -[1] 186 52 51 -[1] 187 52 44 -[1] 188 52 39 -[1] 189 52 46 -[1] 190 52 49 -[1] 191 52 53 -[1] 192 52 56 -[1] 193 52 26 -[1] 194 52 63 -[1] 195 52 49 -[1] 196 52 76 -[1] 197 52 40 -[1] 198 52 35 -[1] 199 52 56 -[1] 200 52 68 -[1] 1 53 30 -[1] 2 53 50 -[1] 3 53 38 -[1] 4 53 29 -[1] 5 53 54 -[1] 6 53 41 -[1] 7 53 58 -[1] 8 53 33 -[1] 9 53 36 -[1] 10 53 50 -[1] 11 53 42 -[1] 12 53 28 -[1] 13 53 31 -[1] 14 53 34 -[1] 15 53 53 -[1] 16 53 55 -[1] 17 53 40 -[1] 18 53 38 -[1] 19 53 45 -[1] 20 53 34 -[1] 21 53 28 -[1] 22 53 31 -[1] 23 53 43 -[1] 24 53 47 -[1] 25 53 48 -[1] 26 53 69 -[1] 27 53 38 -[1] 28 53 53 -[1] 29 53 44 -[1] 30 53 47 -[1] 31 53 43 -[1] 32 53 49 -[1] 33 53 41 -[1] 34 53 51 -[1] 35 53 83 -[1] 36 53 37 -[1] 37 53 46 -[1] 38 53 37 -[1] 39 53 46 -[1] 40 53 47 -[1] 41 53 35 -[1] 42 53 69 -[1] 43 53 85 -[1] 44 53 52 -[1] 45 53 63 -[1] 46 53 53 -[1] 47 53 98 -[1] 48 53 53 -[1] 49 53 36 -[1] 50 53 91 -[1] 51 53 43 -[1] 52 53 80 -[1] 53 53 107 -[1] 54 53 36 -[1] 55 53 69 -[1] 56 53 59 -[1] 57 53 62 -[1] 58 53 48 -[1] 59 53 59 -[1] 60 53 57 -[1] 61 53 50 -[1] 62 53 50 -[1] 63 53 45 -[1] 64 53 59 -[1] 65 53 46 -[1] 66 53 47 -[1] 67 53 48 -[1] 68 53 52 -[1] 69 53 37 -[1] 70 53 57 -[1] 71 53 64 -[1] 72 53 59 -[1] 73 53 41 -[1] 74 53 39 -[1] 75 53 96 -[1] 76 53 54 -[1] 77 53 55 -[1] 78 53 70 -[1] 79 53 67 -[1] 80 53 27 -[1] 81 53 62 -[1] 82 53 53 -[1] 83 53 43 -[1] 84 53 51 -[1] 85 53 46 -[1] 86 53 38 -[1] 87 53 48 -[1] 88 53 48 -[1] 89 53 59 -[1] 90 53 60 -[1] 91 53 43 -[1] 92 53 53 -[1] 93 53 47 -[1] 94 53 62 -[1] 95 53 43 -[1] 96 53 53 -[1] 97 53 48 -[1] 98 53 44 -[1] 99 53 61 -[1] 100 53 84 -[1] 101 53 51 -[1] 102 53 67 -[1] 103 53 54 -[1] 104 53 65 -[1] 105 53 60 -[1] 106 53 33 -[1] 107 53 53 -[1] 108 53 52 -[1] 109 53 66 -[1] 110 53 58 -[1] 111 53 51 -[1] 112 53 63 -[1] 113 53 52 -[1] 114 53 38 -[1] 115 53 74 -[1] 116 53 47 -[1] 117 53 74 -[1] 118 53 57 -[1] 119 53 44 -[1] 120 53 39 -[1] 121 53 80 -[1] 122 53 50 -[1] 123 53 55 -[1] 124 53 52 -[1] 125 53 43 -[1] 126 53 54 -[1] 127 53 60 -[1] 128 53 52 -[1] 129 53 40 -[1] 130 53 71 -[1] 131 53 47 -[1] 132 53 61 -[1] 133 53 64 -[1] 134 53 48 -[1] 135 53 41 -[1] 136 53 32 -[1] 137 53 40 -[1] 138 53 65 -[1] 139 53 57 -[1] 140 53 44 -[1] 141 53 52 -[1] 142 53 46 -[1] 143 53 38 -[1] 144 53 55 -[1] 145 53 58 -[1] 146 53 45 -[1] 147 53 50 -[1] 148 53 42 -[1] 149 53 61 -[1] 150 53 44 -[1] 151 53 90 -[1] 152 53 48 -[1] 153 53 58 -[1] 154 53 53 -[1] 155 53 53 -[1] 156 53 52 -[1] 157 53 43 -[1] 158 53 48 -[1] 159 53 35 -[1] 160 53 37 -[1] 161 53 52 -[1] 162 53 51 -[1] 163 53 50 -[1] 164 53 61 -[1] 165 53 43 -[1] 166 53 49 -[1] 167 53 79 -[1] 168 53 35 -[1] 169 53 47 -[1] 170 53 52 -[1] 171 53 31 -[1] 172 53 73 -[1] 173 53 73 -[1] 174 53 43 -[1] 175 53 93 -[1] 176 53 36 -[1] 177 53 81 -[1] 178 53 48 -[1] 179 53 32 -[1] 180 53 73 -[1] 181 53 42 -[1] 182 53 60 -[1] 183 53 56 -[1] 184 53 53 -[1] 185 53 86 -[1] 186 53 53 -[1] 187 53 34 -[1] 188 53 59 -[1] 189 53 40 -[1] 190 53 41 -[1] 191 53 41 -[1] 192 53 64 -[1] 193 53 39 -[1] 194 53 39 -[1] 195 53 63 -[1] 196 53 43 -[1] 197 53 44 -[1] 198 53 59 -[1] 199 53 51 -[1] 200 53 53 -[1] 1 54 39 -[1] 2 54 45 -[1] 3 54 31 -[1] 4 54 40 -[1] 5 54 32 -[1] 6 54 60 -[1] 7 54 33 -[1] 8 54 39 -[1] 9 54 32 -[1] 10 54 43 -[1] 11 54 51 -[1] 12 54 40 -[1] 13 54 51 -[1] 14 54 31 -[1] 15 54 50 -[1] 16 54 37 -[1] 17 54 53 -[1] 18 54 53 -[1] 19 54 29 -[1] 20 54 38 -[1] 21 54 64 -[1] 22 54 36 -[1] 23 54 65 -[1] 24 54 77 -[1] 25 54 37 -[1] 26 54 51 -[1] 27 54 46 -[1] 28 54 31 -[1] 29 54 44 -[1] 30 54 33 -[1] 31 54 76 -[1] 32 54 54 -[1] 33 54 48 -[1] 34 54 46 -[1] 35 54 55 -[1] 36 54 27 -[1] 37 54 65 -[1] 38 54 46 -[1] 39 54 54 -[1] 40 54 39 -[1] 41 54 55 -[1] 42 54 45 -[1] 43 54 39 -[1] 44 54 57 -[1] 45 54 45 -[1] 46 54 89 -[1] 47 54 60 -[1] 48 54 66 -[1] 49 54 49 -[1] 50 54 58 -[1] 51 54 34 -[1] 52 54 38 -[1] 53 54 93 -[1] 54 54 53 -[1] 55 54 75 -[1] 56 54 85 -[1] 57 54 42 -[1] 58 54 65 -[1] 59 54 58 -[1] 60 54 44 -[1] 61 54 50 -[1] 62 54 88 -[1] 63 54 35 -[1] 64 54 74 -[1] 65 54 42 -[1] 66 54 34 -[1] 67 54 102 -[1] 68 54 77 -[1] 69 54 42 -[1] 70 54 56 -[1] 71 54 51 -[1] 72 54 64 -[1] 73 54 53 -[1] 74 54 47 -[1] 75 54 52 -[1] 76 54 37 -[1] 77 54 48 -[1] 78 54 43 -[1] 79 54 53 -[1] 80 54 40 -[1] 81 54 48 -[1] 82 54 63 -[1] 83 54 51 -[1] 84 54 38 -[1] 85 54 67 -[1] 86 54 34 -[1] 87 54 41 -[1] 88 54 50 -[1] 89 54 37 -[1] 90 54 62 -[1] 91 54 75 -[1] 92 54 65 -[1] 93 54 51 -[1] 94 54 44 -[1] 95 54 61 -[1] 96 54 43 -[1] 97 54 43 -[1] 98 54 47 -[1] 99 54 50 -[1] 100 54 41 -[1] 101 54 47 -[1] 102 54 52 -[1] 103 54 47 -[1] 104 54 42 -[1] 105 54 62 -[1] 106 54 55 -[1] 107 54 61 -[1] 108 54 46 -[1] 109 54 35 -[1] 110 54 47 -[1] 111 54 46 -[1] 112 54 57 -[1] 113 54 32 -[1] 114 54 47 -[1] 115 54 45 -[1] 116 54 44 -[1] 117 54 110 -[1] 118 54 49 -[1] 119 54 87 -[1] 120 54 68 -[1] 121 54 69 -[1] 122 54 49 -[1] 123 54 73 -[1] 124 54 52 -[1] 125 54 94 -[1] 126 54 46 -[1] 127 54 51 -[1] 128 54 40 -[1] 129 54 47 -[1] 130 54 55 -[1] 131 54 40 -[1] 132 54 31 -[1] 133 54 44 -[1] 134 54 65 -[1] 135 54 44 -[1] 136 54 41 -[1] 137 54 53 -[1] 138 54 52 -[1] 139 54 45 -[1] 140 54 55 -[1] 141 54 107 -[1] 142 54 45 -[1] 143 54 53 -[1] 144 54 58 -[1] 145 54 63 -[1] 146 54 35 -[1] 147 54 53 -[1] 148 54 52 -[1] 149 54 52 -[1] 150 54 53 -[1] 151 54 72 -[1] 152 54 40 -[1] 153 54 59 -[1] 154 54 58 -[1] 155 54 58 -[1] 156 54 50 -[1] 157 54 51 -[1] 158 54 77 -[1] 159 54 54 -[1] 160 54 58 -[1] 161 54 53 -[1] 162 54 34 -[1] 163 54 45 -[1] 164 54 53 -[1] 165 54 79 -[1] 166 54 49 -[1] 167 54 64 -[1] 168 54 82 -[1] 169 54 64 -[1] 170 54 41 -[1] 171 54 50 -[1] 172 54 39 -[1] 173 54 49 -[1] 174 54 42 -[1] 175 54 32 -[1] 176 54 41 -[1] 177 54 40 -[1] 178 54 41 -[1] 179 54 61 -[1] 180 54 44 -[1] 181 54 65 -[1] 182 54 58 -[1] 183 54 55 -[1] 184 54 41 -[1] 185 54 66 -[1] 186 54 45 -[1] 187 54 45 -[1] 188 54 53 -[1] 189 54 42 -[1] 190 54 70 -[1] 191 54 31 -[1] 192 54 42 -[1] 193 54 63 -[1] 194 54 41 -[1] 195 54 82 -[1] 196 54 49 -[1] 197 54 92 -[1] 198 54 42 -[1] 199 54 48 -[1] 200 54 50 -[1] 1 55 41 -[1] 2 55 45 -[1] 3 55 28 -[1] 4 55 29 -[1] 5 55 59 -[1] 6 55 50 -[1] 7 55 38 -[1] 8 55 45 -[1] 9 55 43 -[1] 10 55 51 -[1] 11 55 48 -[1] 12 55 30 -[1] 13 55 50 -[1] 14 55 45 -[1] 15 55 42 -[1] 16 55 48 -[1] 17 55 31 -[1] 18 55 43 -[1] 19 55 41 -[1] 20 55 55 -[1] 21 55 40 -[1] 22 55 43 -[1] 23 55 46 -[1] 24 55 31 -[1] 25 55 32 -[1] 26 55 41 -[1] 27 55 53 -[1] 28 55 54 -[1] 29 55 47 -[1] 30 55 49 -[1] 31 55 47 -[1] 32 55 68 -[1] 33 55 42 -[1] 34 55 45 -[1] 35 55 37 -[1] 36 55 58 -[1] 37 55 89 -[1] 38 55 196 -[1] 39 55 43 -[1] 40 55 36 -[1] 41 55 65 -[1] 42 55 46 -[1] 43 55 55 -[1] 44 55 34 -[1] 45 55 36 -[1] 46 55 55 -[1] 47 55 59 -[1] 48 55 57 -[1] 49 55 44 -[1] 50 55 71 -[1] 51 55 46 -[1] 52 55 63 -[1] 53 55 68 -[1] 54 55 44 -[1] 55 55 52 -[1] 56 55 48 -[1] 57 55 73 -[1] 58 55 32 -[1] 59 55 33 -[1] 60 55 36 -[1] 61 55 51 -[1] 62 55 67 -[1] 63 55 44 -[1] 64 55 55 -[1] 65 55 62 -[1] 66 55 70 -[1] 67 55 41 -[1] 68 55 65 -[1] 69 55 54 -[1] 70 55 46 -[1] 71 55 67 -[1] 72 55 59 -[1] 73 55 34 -[1] 74 55 59 -[1] 75 55 43 -[1] 76 55 40 -[1] 77 55 67 -[1] 78 55 67 -[1] 79 55 38 -[1] 80 55 61 -[1] 81 55 61 -[1] 82 55 82 -[1] 83 55 37 -[1] 84 55 41 -[1] 85 55 63 -[1] 86 55 33 -[1] 87 55 64 -[1] 88 55 45 -[1] 89 55 37 -[1] 90 55 54 -[1] 91 55 73 -[1] 92 55 38 -[1] 93 55 50 -[1] 94 55 53 -[1] 95 55 59 -[1] 96 55 53 -[1] 97 55 29 -[1] 98 55 88 -[1] 99 55 56 -[1] 100 55 72 -[1] 101 55 73 -[1] 102 55 47 -[1] 103 55 77 -[1] 104 55 69 -[1] 105 55 52 -[1] 106 55 58 -[1] 107 55 44 -[1] 108 55 39 -[1] 109 55 43 -[1] 110 55 39 -[1] 111 55 60 -[1] 112 55 58 -[1] 113 55 54 -[1] 114 55 66 -[1] 115 55 44 -[1] 116 55 65 -[1] 117 55 57 -[1] 118 55 40 -[1] 119 55 30 -[1] 120 55 55 -[1] 121 55 75 -[1] 122 55 42 -[1] 123 55 51 -[1] 124 55 57 -[1] 125 55 34 -[1] 126 55 71 -[1] 127 55 46 -[1] 128 55 49 -[1] 129 55 74 -[1] 130 55 33 -[1] 131 55 47 -[1] 132 55 54 -[1] 133 55 46 -[1] 134 55 45 -[1] 135 55 53 -[1] 136 55 44 -[1] 137 55 44 -[1] 138 55 79 -[1] 139 55 42 -[1] 140 55 54 -[1] 141 55 50 -[1] 142 55 85 -[1] 143 55 38 -[1] 144 55 43 -[1] 145 55 46 -[1] 146 55 34 -[1] 147 55 76 -[1] 148 55 32 -[1] 149 55 111 -[1] 150 55 40 -[1] 151 55 45 -[1] 152 55 47 -[1] 153 55 69 -[1] 154 55 58 -[1] 155 55 62 -[1] 156 55 39 -[1] 157 55 48 -[1] 158 55 77 -[1] 159 55 39 -[1] 160 55 44 -[1] 161 55 34 -[1] 162 55 37 -[1] 163 55 37 -[1] 164 55 44 -[1] 165 55 49 -[1] 166 55 52 -[1] 167 55 41 -[1] 168 55 43 -[1] 169 55 40 -[1] 170 55 51 -[1] 171 55 66 -[1] 172 55 61 -[1] 173 55 37 -[1] 174 55 43 -[1] 175 55 63 -[1] 176 55 73 -[1] 177 55 47 -[1] 178 55 49 -[1] 179 55 54 -[1] 180 55 70 -[1] 181 55 61 -[1] 182 55 47 -[1] 183 55 47 -[1] 184 55 51 -[1] 185 55 64 -[1] 186 55 46 -[1] 187 55 43 -[1] 188 55 66 -[1] 189 55 45 -[1] 190 55 42 -[1] 191 55 39 -[1] 192 55 57 -[1] 193 55 50 -[1] 194 55 32 -[1] 195 55 57 -[1] 196 55 44 -[1] 197 55 35 -[1] 198 55 33 -[1] 199 55 76 -[1] 200 55 45 -[1] 1 56 54 -[1] 2 56 34 -[1] 3 56 42 -[1] 4 56 45 -[1] 5 56 37 -[1] 6 56 39 -[1] 7 56 40 -[1] 8 56 40 -[1] 9 56 37 -[1] 10 56 42 -[1] 11 56 43 -[1] 12 56 24 -[1] 13 56 35 -[1] 14 56 38 -[1] 15 56 39 -[1] 16 56 53 -[1] 17 56 36 -[1] 18 56 37 -[1] 19 56 38 -[1] 20 56 94 -[1] 21 56 41 -[1] 22 56 30 -[1] 23 56 37 -[1] 24 56 49 -[1] 25 56 41 -[1] 26 56 75 -[1] 27 56 70 -[1] 28 56 46 -[1] 29 56 30 -[1] 30 56 40 -[1] 31 56 37 -[1] 32 56 46 -[1] 33 56 52 -[1] 34 56 50 -[1] 35 56 46 -[1] 36 56 54 -[1] 37 56 29 -[1] 38 56 54 -[1] 39 56 81 -[1] 40 56 44 -[1] 41 56 36 -[1] 42 56 67 -[1] 43 56 73 -[1] 44 56 32 -[1] 45 56 39 -[1] 46 56 34 -[1] 47 56 84 -[1] 48 56 50 -[1] 49 56 71 -[1] 50 56 54 -[1] 51 56 41 -[1] 52 56 88 -[1] 53 56 50 -[1] 54 56 56 -[1] 55 56 55 -[1] 56 56 52 -[1] 57 56 55 -[1] 58 56 48 -[1] 59 56 48 -[1] 60 56 67 -[1] 61 56 88 -[1] 62 56 52 -[1] 63 56 55 -[1] 64 56 57 -[1] 65 56 50 -[1] 66 56 42 -[1] 67 56 75 -[1] 68 56 43 -[1] 69 56 52 -[1] 70 56 59 -[1] 71 56 79 -[1] 72 56 83 -[1] 73 56 61 -[1] 74 56 77 -[1] 75 56 48 -[1] 76 56 43 -[1] 77 56 38 -[1] 78 56 51 -[1] 79 56 30 -[1] 80 56 50 -[1] 81 56 35 -[1] 82 56 76 -[1] 83 56 33 -[1] 84 56 49 -[1] 85 56 64 -[1] 86 56 42 -[1] 87 56 38 -[1] 88 56 39 -[1] 89 56 41 -[1] 90 56 56 -[1] 91 56 67 -[1] 92 56 64 -[1] 93 56 51 -[1] 94 56 43 -[1] 95 56 78 -[1] 96 56 35 -[1] 97 56 46 -[1] 98 56 67 -[1] 99 56 32 -[1] 100 56 42 -[1] 101 56 60 -[1] 102 56 50 -[1] 103 56 81 -[1] 104 56 67 -[1] 105 56 49 -[1] 106 56 49 -[1] 107 56 59 -[1] 108 56 71 -[1] 109 56 48 -[1] 110 56 61 -[1] 111 56 43 -[1] 112 56 56 -[1] 113 56 45 -[1] 114 56 58 -[1] 115 56 60 -[1] 116 56 40 -[1] 117 56 76 -[1] 118 56 51 -[1] 119 56 37 -[1] 120 56 65 -[1] 121 56 43 -[1] 122 56 27 -[1] 123 56 66 -[1] 124 56 55 -[1] 125 56 59 -[1] 126 56 59 -[1] 127 56 60 -[1] 128 56 42 -[1] 129 56 44 -[1] 130 56 33 -[1] 131 56 69 -[1] 132 56 43 -[1] 133 56 33 -[1] 134 56 111 -[1] 135 56 38 -[1] 136 56 55 -[1] 137 56 65 -[1] 138 56 48 -[1] 139 56 38 -[1] 140 56 54 -[1] 141 56 55 -[1] 142 56 53 -[1] 143 56 52 -[1] 144 56 55 -[1] 145 56 45 -[1] 146 56 34 -[1] 147 56 62 -[1] 148 56 48 -[1] 149 56 49 -[1] 150 56 46 -[1] 151 56 52 -[1] 152 56 47 -[1] 153 56 55 -[1] 154 56 43 -[1] 155 56 42 -[1] 156 56 75 -[1] 157 56 36 -[1] 158 56 39 -[1] 159 56 42 -[1] 160 56 49 -[1] 161 56 49 -[1] 162 56 98 -[1] 163 56 59 -[1] 164 56 52 -[1] 165 56 45 -[1] 166 56 46 -[1] 167 56 39 -[1] 168 56 43 -[1] 169 56 46 -[1] 170 56 48 -[1] 171 56 59 -[1] 172 56 42 -[1] 173 56 61 -[1] 174 56 43 -[1] 175 56 41 -[1] 176 56 88 -[1] 177 56 38 -[1] 178 56 65 -[1] 179 56 91 -[1] 180 56 62 -[1] 181 56 32 -[1] 182 56 67 -[1] 183 56 70 -[1] 184 56 49 -[1] 185 56 67 -[1] 186 56 44 -[1] 187 56 64 -[1] 188 56 34 -[1] 189 56 73 -[1] 190 56 57 -[1] 191 56 53 -[1] 192 56 48 -[1] 193 56 64 -[1] 194 56 55 -[1] 195 56 42 -[1] 196 56 39 -[1] 197 56 43 -[1] 198 56 41 -[1] 199 56 64 -[1] 200 56 62 -[1] 1 57 35 -[1] 2 57 37 -[1] 3 57 36 -[1] 4 57 43 -[1] 5 57 42 -[1] 6 57 36 -[1] 7 57 37 -[1] 8 57 35 -[1] 9 57 43 -[1] 10 57 37 -[1] 11 57 57 -[1] 12 57 45 -[1] 13 57 37 -[1] 14 57 30 -[1] 15 57 41 -[1] 16 57 32 -[1] 17 57 45 -[1] 18 57 40 -[1] 19 57 54 -[1] 20 57 63 -[1] 21 57 36 -[1] 22 57 40 -[1] 23 57 54 -[1] 24 57 44 -[1] 25 57 41 -[1] 26 57 47 -[1] 27 57 47 -[1] 28 57 34 -[1] 29 57 67 -[1] 30 57 48 -[1] 31 57 38 -[1] 32 57 63 -[1] 33 57 31 -[1] 34 57 63 -[1] 35 57 58 -[1] 36 57 36 -[1] 37 57 59 -[1] 38 57 51 -[1] 39 57 35 -[1] 40 57 72 -[1] 41 57 49 -[1] 42 57 46 -[1] 43 57 63 -[1] 44 57 40 -[1] 45 57 36 -[1] 46 57 103 -[1] 47 57 67 -[1] 48 57 78 -[1] 49 57 48 -[1] 50 57 59 -[1] 51 57 41 -[1] 52 57 40 -[1] 53 57 43 -[1] 54 57 62 -[1] 55 57 59 -[1] 56 57 44 -[1] 57 57 73 -[1] 58 57 40 -[1] 59 57 53 -[1] 60 57 42 -[1] 61 57 54 -[1] 62 57 52 -[1] 63 57 49 -[1] 64 57 55 -[1] 65 57 41 -[1] 66 57 60 -[1] 67 57 59 -[1] 68 57 45 -[1] 69 57 65 -[1] 70 57 90 -[1] 71 57 65 -[1] 72 57 68 -[1] 73 57 34 -[1] 74 57 70 -[1] 75 57 82 -[1] 76 57 75 -[1] 77 57 103 -[1] 78 57 48 -[1] 79 57 46 -[1] 80 57 37 -[1] 81 57 47 -[1] 82 57 42 -[1] 83 57 55 -[1] 84 57 53 -[1] 85 57 58 -[1] 86 57 85 -[1] 87 57 44 -[1] 88 57 70 -[1] 89 57 63 -[1] 90 57 51 -[1] 91 57 68 -[1] 92 57 47 -[1] 93 57 43 -[1] 94 57 86 -[1] 95 57 57 -[1] 96 57 85 -[1] 97 57 80 -[1] 98 57 55 -[1] 99 57 84 -[1] 100 57 40 -[1] 101 57 36 -[1] 102 57 68 -[1] 103 57 46 -[1] 104 57 40 -[1] 105 57 70 -[1] 106 57 61 -[1] 107 57 73 -[1] 108 57 42 -[1] 109 57 40 -[1] 110 57 52 -[1] 111 57 46 -[1] 112 57 72 -[1] 113 57 52 -[1] 114 57 40 -[1] 115 57 55 -[1] 116 57 45 -[1] 117 57 57 -[1] 118 57 55 -[1] 119 57 63 -[1] 120 57 53 -[1] 121 57 36 -[1] 122 57 65 -[1] 123 57 50 -[1] 124 57 77 -[1] 125 57 42 -[1] 126 57 41 -[1] 127 57 45 -[1] 128 57 47 -[1] 129 57 50 -[1] 130 57 105 -[1] 131 57 54 -[1] 132 57 46 -[1] 133 57 40 -[1] 134 57 52 -[1] 135 57 66 -[1] 136 57 46 -[1] 137 57 36 -[1] 138 57 73 -[1] 139 57 51 -[1] 140 57 55 -[1] 141 57 37 -[1] 142 57 53 -[1] 143 57 46 -[1] 144 57 74 -[1] 145 57 52 -[1] 146 57 69 -[1] 147 57 45 -[1] 148 57 44 -[1] 149 57 63 -[1] 150 57 54 -[1] 151 57 47 -[1] 152 57 53 -[1] 153 57 46 -[1] 154 57 43 -[1] 155 57 53 -[1] 156 57 39 -[1] 157 57 55 -[1] 158 57 44 -[1] 159 57 36 -[1] 160 57 45 -[1] 161 57 42 -[1] 162 57 39 -[1] 163 57 62 -[1] 164 57 53 -[1] 165 57 64 -[1] 166 57 34 -[1] 167 57 61 -[1] 168 57 88 -[1] 169 57 73 -[1] 170 57 50 -[1] 171 57 82 -[1] 172 57 45 -[1] 173 57 57 -[1] 174 57 45 -[1] 175 57 45 -[1] 176 57 44 -[1] 177 57 49 -[1] 178 57 45 -[1] 179 57 39 -[1] 180 57 33 -[1] 181 57 45 -[1] 182 57 64 -[1] 183 57 42 -[1] 184 57 40 -[1] 185 57 44 -[1] 186 57 39 -[1] 187 57 74 -[1] 188 57 61 -[1] 189 57 48 -[1] 190 57 72 -[1] 191 57 46 -[1] 192 57 34 -[1] 193 57 49 -[1] 194 57 58 -[1] 195 57 65 -[1] 196 57 30 -[1] 197 57 51 -[1] 198 57 30 -[1] 199 57 43 -[1] 200 57 33 -[1] 1 58 26 -[1] 2 58 60 -[1] 3 58 29 -[1] 4 58 44 -[1] 5 58 32 -[1] 6 58 35 -[1] 7 58 39 -[1] 8 58 50 -[1] 9 58 38 -[1] 10 58 43 -[1] 11 58 43 -[1] 12 58 50 -[1] 13 58 47 -[1] 14 58 36 -[1] 15 58 50 -[1] 16 58 42 -[1] 17 58 40 -[1] 18 58 116 -[1] 19 58 69 -[1] 20 58 40 -[1] 21 58 71 -[1] 22 58 43 -[1] 23 58 46 -[1] 24 58 40 -[1] 25 58 36 -[1] 26 58 39 -[1] 27 58 75 -[1] 28 58 45 -[1] 29 58 45 -[1] 30 58 37 -[1] 31 58 86 -[1] 32 58 52 -[1] 33 58 41 -[1] 34 58 37 -[1] 35 58 44 -[1] 36 58 43 -[1] 37 58 122 -[1] 38 58 51 -[1] 39 58 31 -[1] 40 58 46 -[1] 41 58 46 -[1] 42 58 59 -[1] 43 58 44 -[1] 44 58 76 -[1] 45 58 36 -[1] 46 58 48 -[1] 47 58 64 -[1] 48 58 79 -[1] 49 58 48 -[1] 50 58 51 -[1] 51 58 43 -[1] 52 58 65 -[1] 53 58 44 -[1] 54 58 51 -[1] 55 58 52 -[1] 56 58 38 -[1] 57 58 42 -[1] 58 58 68 -[1] 59 58 41 -[1] 60 58 51 -[1] 61 58 107 -[1] 62 58 51 -[1] 63 58 53 -[1] 64 58 64 -[1] 65 58 32 -[1] 66 58 52 -[1] 67 58 58 -[1] 68 58 34 -[1] 69 58 61 -[1] 70 58 73 -[1] 71 58 84 -[1] 72 58 47 -[1] 73 58 57 -[1] 74 58 59 -[1] 75 58 73 -[1] 76 58 49 -[1] 77 58 48 -[1] 78 58 27 -[1] 79 58 58 -[1] 80 58 45 -[1] 81 58 44 -[1] 82 58 39 -[1] 83 58 45 -[1] 84 58 44 -[1] 85 58 87 -[1] 86 58 44 -[1] 87 58 47 -[1] 88 58 47 -[1] 89 58 48 -[1] 90 58 56 -[1] 91 58 57 -[1] 92 58 37 -[1] 93 58 63 -[1] 94 58 60 -[1] 95 58 52 -[1] 96 58 57 -[1] 97 58 40 -[1] 98 58 68 -[1] 99 58 55 -[1] 100 58 41 -[1] 101 58 55 -[1] 102 58 66 -[1] 103 58 53 -[1] 104 58 35 -[1] 105 58 60 -[1] 106 58 45 -[1] 107 58 42 -[1] 108 58 58 -[1] 109 58 51 -[1] 110 58 65 -[1] 111 58 29 -[1] 112 58 77 -[1] 113 58 59 -[1] 114 58 59 -[1] 115 58 46 -[1] 116 58 31 -[1] 117 58 68 -[1] 118 58 32 -[1] 119 58 90 -[1] 120 58 38 -[1] 121 58 55 -[1] 122 58 51 -[1] 123 58 60 -[1] 124 58 68 -[1] 125 58 41 -[1] 126 58 48 -[1] 127 58 43 -[1] 128 58 29 -[1] 129 58 48 -[1] 130 58 42 -[1] 131 58 61 -[1] 132 58 33 -[1] 133 58 56 -[1] 134 58 59 -[1] 135 58 56 -[1] 136 58 52 -[1] 137 58 101 -[1] 138 58 64 -[1] 139 58 36 -[1] 140 58 67 -[1] 141 58 45 -[1] 142 58 50 -[1] 143 58 52 -[1] 144 58 62 -[1] 145 58 35 -[1] 146 58 43 -[1] 147 58 36 -[1] 148 58 67 -[1] 149 58 53 -[1] 150 58 45 -[1] 151 58 65 -[1] 152 58 35 -[1] 153 58 46 -[1] 154 58 59 -[1] 155 58 41 -[1] 156 58 48 -[1] 157 58 46 -[1] 158 58 57 -[1] 159 58 31 -[1] 160 58 34 -[1] 161 58 55 -[1] 162 58 24 -[1] 163 58 103 -[1] 164 58 47 -[1] 165 58 58 -[1] 166 58 39 -[1] 167 58 42 -[1] 168 58 37 -[1] 169 58 42 -[1] 170 58 51 -[1] 171 58 56 -[1] 172 58 71 -[1] 173 58 51 -[1] 174 58 39 -[1] 175 58 54 -[1] 176 58 37 -[1] 177 58 47 -[1] 178 58 52 -[1] 179 58 51 -[1] 180 58 63 -[1] 181 58 44 -[1] 182 58 62 -[1] 183 58 33 -[1] 184 58 60 -[1] 185 58 58 -[1] 186 58 55 -[1] 187 58 44 -[1] 188 58 42 -[1] 189 58 69 -[1] 190 58 38 -[1] 191 58 44 -[1] 192 58 86 -[1] 193 58 101 -[1] 194 58 52 -[1] 195 58 43 -[1] 196 58 30 -[1] 197 58 32 -[1] 198 58 49 -[1] 199 58 67 -[1] 200 58 33 -[1] 1 59 25 -[1] 2 59 67 -[1] 3 59 30 -[1] 4 59 51 -[1] 5 59 40 -[1] 6 59 41 -[1] 7 59 48 -[1] 8 59 48 -[1] 9 59 43 -[1] 10 59 37 -[1] 11 59 41 -[1] 12 59 38 -[1] 13 59 50 -[1] 14 59 51 -[1] 15 59 35 -[1] 16 59 34 -[1] 17 59 34 -[1] 18 59 42 -[1] 19 59 56 -[1] 20 59 50 -[1] 21 59 44 -[1] 22 59 70 -[1] 23 59 53 -[1] 24 59 48 -[1] 25 59 35 -[1] 26 59 34 -[1] 27 59 41 -[1] 28 59 34 -[1] 29 59 48 -[1] 30 59 33 -[1] 31 59 69 -[1] 32 59 50 -[1] 33 59 50 -[1] 34 59 44 -[1] 35 59 35 -[1] 36 59 40 -[1] 37 59 50 -[1] 38 59 34 -[1] 39 59 67 -[1] 40 59 54 -[1] 41 59 61 -[1] 42 59 50 -[1] 43 59 45 -[1] 44 59 79 -[1] 45 59 57 -[1] 46 59 52 -[1] 47 59 67 -[1] 48 59 58 -[1] 49 59 59 -[1] 50 59 48 -[1] 51 59 38 -[1] 52 59 58 -[1] 53 59 49 -[1] 54 59 80 -[1] 55 59 65 -[1] 56 59 80 -[1] 57 59 54 -[1] 58 59 51 -[1] 59 59 81 -[1] 60 59 49 -[1] 61 59 104 -[1] 62 59 58 -[1] 63 59 57 -[1] 64 59 44 -[1] 65 59 45 -[1] 66 59 56 -[1] 67 59 43 -[1] 68 59 48 -[1] 69 59 34 -[1] 70 59 65 -[1] 71 59 55 -[1] 72 59 52 -[1] 73 59 53 -[1] 74 59 44 -[1] 75 59 55 -[1] 76 59 48 -[1] 77 59 75 -[1] 78 59 49 -[1] 79 59 31 -[1] 80 59 69 -[1] 81 59 48 -[1] 82 59 57 -[1] 83 59 62 -[1] 84 59 64 -[1] 85 59 56 -[1] 86 59 70 -[1] 87 59 49 -[1] 88 59 58 -[1] 89 59 68 -[1] 90 59 65 -[1] 91 59 83 -[1] 92 59 48 -[1] 93 59 47 -[1] 94 59 32 -[1] 95 59 43 -[1] 96 59 49 -[1] 97 59 46 -[1] 98 59 36 -[1] 99 59 99 -[1] 100 59 42 -[1] 101 59 72 -[1] 102 59 50 -[1] 103 59 41 -[1] 104 59 48 -[1] 105 59 50 -[1] 106 59 38 -[1] 107 59 61 -[1] 108 59 55 -[1] 109 59 63 -[1] 110 59 109 -[1] 111 59 48 -[1] 112 59 90 -[1] 113 59 39 -[1] 114 59 76 -[1] 115 59 57 -[1] 116 59 44 -[1] 117 59 51 -[1] 118 59 95 -[1] 119 59 39 -[1] 120 59 61 -[1] 121 59 57 -[1] 122 59 41 -[1] 123 59 52 -[1] 124 59 67 -[1] 125 59 40 -[1] 126 59 43 -[1] 127 59 73 -[1] 128 59 108 -[1] 129 59 30 -[1] 130 59 45 -[1] 131 59 42 -[1] 132 59 41 -[1] 133 59 97 -[1] 134 59 44 -[1] 135 59 36 -[1] 136 59 70 -[1] 137 59 68 -[1] 138 59 27 -[1] 139 59 89 -[1] 140 59 56 -[1] 141 59 65 -[1] 142 59 47 -[1] 143 59 44 -[1] 144 59 40 -[1] 145 59 53 -[1] 146 59 36 -[1] 147 59 50 -[1] 148 59 47 -[1] 149 59 41 -[1] 150 59 41 -[1] 151 59 76 -[1] 152 59 38 -[1] 153 59 137 -[1] 154 59 45 -[1] 155 59 42 -[1] 156 59 37 -[1] 157 59 34 -[1] 158 59 42 -[1] 159 59 66 -[1] 160 59 64 -[1] 161 59 43 -[1] 162 59 49 -[1] 163 59 51 -[1] 164 59 42 -[1] 165 59 68 -[1] 166 59 52 -[1] 167 59 57 -[1] 168 59 51 -[1] 169 59 43 -[1] 170 59 60 -[1] 171 59 46 -[1] 172 59 57 -[1] 173 59 52 -[1] 174 59 51 -[1] 175 59 54 -[1] 176 59 50 -[1] 177 59 60 -[1] 178 59 50 -[1] 179 59 57 -[1] 180 59 50 -[1] 181 59 57 -[1] 182 59 50 -[1] 183 59 54 -[1] 184 59 49 -[1] 185 59 55 -[1] 186 59 37 -[1] 187 59 66 -[1] 188 59 45 -[1] 189 59 58 -[1] 190 59 54 -[1] 191 59 43 -[1] 192 59 50 -[1] 193 59 58 -[1] 194 59 45 -[1] 195 59 76 -[1] 196 59 55 -[1] 197 59 76 -[1] 198 59 64 -[1] 199 59 44 -[1] 200 59 50 -[1] 1 60 35 -[1] 2 60 29 -[1] 3 60 39 -[1] 4 60 52 -[1] 5 60 43 -[1] 6 60 78 -[1] 7 60 34 -[1] 8 60 39 -[1] 9 60 51 -[1] 10 60 38 -[1] 11 60 45 -[1] 12 60 32 -[1] 13 60 57 -[1] 14 60 27 -[1] 15 60 72 -[1] 16 60 38 -[1] 17 60 36 -[1] 18 60 44 -[1] 19 60 80 -[1] 20 60 41 -[1] 21 60 42 -[1] 22 60 31 -[1] 23 60 56 -[1] 24 60 53 -[1] 25 60 55 -[1] 26 60 38 -[1] 27 60 38 -[1] 28 60 35 -[1] 29 60 79 -[1] 30 60 32 -[1] 31 60 45 -[1] 32 60 46 -[1] 33 60 45 -[1] 34 60 41 -[1] 35 60 33 -[1] 36 60 45 -[1] 37 60 59 -[1] 38 60 52 -[1] 39 60 40 -[1] 40 60 48 -[1] 41 60 67 -[1] 42 60 44 -[1] 43 60 41 -[1] 44 60 59 -[1] 45 60 35 -[1] 46 60 99 -[1] 47 60 57 -[1] 48 60 51 -[1] 49 60 50 -[1] 50 60 61 -[1] 51 60 98 -[1] 52 60 73 -[1] 53 60 117 -[1] 54 60 55 -[1] 55 60 66 -[1] 56 60 60 -[1] 57 60 36 -[1] 58 60 51 -[1] 59 60 45 -[1] 60 60 44 -[1] 61 60 36 -[1] 62 60 80 -[1] 63 60 54 -[1] 64 60 47 -[1] 65 60 46 -[1] 66 60 47 -[1] 67 60 39 -[1] 68 60 48 -[1] 69 60 46 -[1] 70 60 64 -[1] 71 60 50 -[1] 72 60 42 -[1] 73 60 59 -[1] 74 60 58 -[1] 75 60 41 -[1] 76 60 48 -[1] 77 60 35 -[1] 78 60 71 -[1] 79 60 47 -[1] 80 60 38 -[1] 81 60 43 -[1] 82 60 36 -[1] 83 60 66 -[1] 84 60 37 -[1] 85 60 77 -[1] 86 60 35 -[1] 87 60 49 -[1] 88 60 40 -[1] 89 60 58 -[1] 90 60 44 -[1] 91 60 43 -[1] 92 60 51 -[1] 93 60 65 -[1] 94 60 48 -[1] 95 60 42 -[1] 96 60 45 -[1] 97 60 54 -[1] 98 60 65 -[1] 99 60 36 -[1] 100 60 63 -[1] 101 60 51 -[1] 102 60 38 -[1] 103 60 64 -[1] 104 60 56 -[1] 105 60 70 -[1] 106 60 53 -[1] 107 60 44 -[1] 108 60 39 -[1] 109 60 78 -[1] 110 60 41 -[1] 111 60 60 -[1] 112 60 67 -[1] 113 60 48 -[1] 114 60 53 -[1] 115 60 34 -[1] 116 60 35 -[1] 117 60 48 -[1] 118 60 61 -[1] 119 60 79 -[1] 120 60 45 -[1] 121 60 52 -[1] 122 60 46 -[1] 123 60 85 -[1] 124 60 54 -[1] 125 60 49 -[1] 126 60 65 -[1] 127 60 36 -[1] 128 60 48 -[1] 129 60 46 -[1] 130 60 60 -[1] 131 60 65 -[1] 132 60 62 -[1] 133 60 73 -[1] 134 60 52 -[1] 135 60 45 -[1] 136 60 36 -[1] 137 60 64 -[1] 138 60 44 -[1] 139 60 50 -[1] 140 60 71 -[1] 141 60 41 -[1] 142 60 47 -[1] 143 60 97 -[1] 144 60 47 -[1] 145 60 55 -[1] 146 60 44 -[1] 147 60 61 -[1] 148 60 42 -[1] 149 60 55 -[1] 150 60 52 -[1] 151 60 67 -[1] 152 60 42 -[1] 153 60 59 -[1] 154 60 71 -[1] 155 60 45 -[1] 156 60 51 -[1] 157 60 59 -[1] 158 60 56 -[1] 159 60 51 -[1] 160 60 57 -[1] 161 60 64 -[1] 162 60 43 -[1] 163 60 65 -[1] 164 60 47 -[1] 165 60 50 -[1] 166 60 56 -[1] 167 60 46 -[1] 168 60 47 -[1] 169 60 61 -[1] 170 60 53 -[1] 171 60 43 -[1] 172 60 49 -[1] 173 60 39 -[1] 174 60 39 -[1] 175 60 41 -[1] 176 60 66 -[1] 177 60 91 -[1] 178 60 64 -[1] 179 60 31 -[1] 180 60 80 -[1] 181 60 40 -[1] 182 60 91 -[1] 183 60 79 -[1] 184 60 50 -[1] 185 60 55 -[1] 186 60 73 -[1] 187 60 52 -[1] 188 60 45 -[1] 189 60 30 -[1] 190 60 69 -[1] 191 60 44 -[1] 192 60 39 -[1] 193 60 64 -[1] 194 60 37 -[1] 195 60 57 -[1] 196 60 32 -[1] 197 60 36 -[1] 198 60 36 -[1] 199 60 54 -[1] 200 60 63 -[1] 1 61 37 -[1] 2 61 32 -[1] 3 61 49 -[1] 4 61 33 -[1] 5 61 34 -[1] 6 61 32 -[1] 7 61 39 -[1] 8 61 46 -[1] 9 61 39 -[1] 10 61 44 -[1] 11 61 48 -[1] 12 61 52 -[1] 13 61 45 -[1] 14 61 40 -[1] 15 61 54 -[1] 16 61 49 -[1] 17 61 41 -[1] 18 61 42 -[1] 19 61 31 -[1] 20 61 33 -[1] 21 61 42 -[1] 22 61 81 -[1] 23 61 44 -[1] 24 61 50 -[1] 25 61 41 -[1] 26 61 39 -[1] 27 61 38 -[1] 28 61 49 -[1] 29 61 41 -[1] 30 61 32 -[1] 31 61 49 -[1] 32 61 39 -[1] 33 61 60 -[1] 34 61 51 -[1] 35 61 55 -[1] 36 61 47 -[1] 37 61 156 -[1] 38 61 48 -[1] 39 61 52 -[1] 40 61 61 -[1] 41 61 32 -[1] 42 61 41 -[1] 43 61 34 -[1] 44 61 59 -[1] 45 61 53 -[1] 46 61 53 -[1] 47 61 51 -[1] 48 61 53 -[1] 49 61 51 -[1] 50 61 40 -[1] 51 61 70 -[1] 52 61 42 -[1] 53 61 37 -[1] 54 61 87 -[1] 55 61 53 -[1] 56 61 49 -[1] 57 61 37 -[1] 58 61 60 -[1] 59 61 49 -[1] 60 61 51 -[1] 61 61 39 -[1] 62 61 79 -[1] 63 61 36 -[1] 64 61 39 -[1] 65 61 61 -[1] 66 61 60 -[1] 67 61 77 -[1] 68 61 70 -[1] 69 61 56 -[1] 70 61 70 -[1] 71 61 44 -[1] 72 61 42 -[1] 73 61 55 -[1] 74 61 52 -[1] 75 61 73 -[1] 76 61 65 -[1] 77 61 52 -[1] 78 61 60 -[1] 79 61 47 -[1] 80 61 39 -[1] 81 61 68 -[1] 82 61 51 -[1] 83 61 50 -[1] 84 61 65 -[1] 85 61 45 -[1] 86 61 36 -[1] 87 61 78 -[1] 88 61 28 -[1] 89 61 51 -[1] 90 61 51 -[1] 91 61 51 -[1] 92 61 57 -[1] 93 61 47 -[1] 94 61 85 -[1] 95 61 45 -[1] 96 61 53 -[1] 97 61 58 -[1] 98 61 57 -[1] 99 61 54 -[1] 100 61 29 -[1] 101 61 66 -[1] 102 61 45 -[1] 103 61 49 -[1] 104 61 44 -[1] 105 61 60 -[1] 106 61 44 -[1] 107 61 38 -[1] 108 61 55 -[1] 109 61 50 -[1] 110 61 83 -[1] 111 61 34 -[1] 112 61 58 -[1] 113 61 60 -[1] 114 61 42 -[1] 115 61 47 -[1] 116 61 66 -[1] 117 61 40 -[1] 118 61 57 -[1] 119 61 55 -[1] 120 61 58 -[1] 121 61 45 -[1] 122 61 54 -[1] 123 61 47 -[1] 124 61 34 -[1] 125 61 61 -[1] 126 61 35 -[1] 127 61 63 -[1] 128 61 74 -[1] 129 61 64 -[1] 130 61 45 -[1] 131 61 58 -[1] 132 61 54 -[1] 133 61 56 -[1] 134 61 60 -[1] 135 61 99 -[1] 136 61 50 -[1] 137 61 39 -[1] 138 61 46 -[1] 139 61 38 -[1] 140 61 66 -[1] 141 61 43 -[1] 142 61 41 -[1] 143 61 35 -[1] 144 61 44 -[1] 145 61 57 -[1] 146 61 47 -[1] 147 61 50 -[1] 148 61 45 -[1] 149 61 54 -[1] 150 61 73 -[1] 151 61 72 -[1] 152 61 95 -[1] 153 61 54 -[1] 154 61 61 -[1] 155 61 37 -[1] 156 61 60 -[1] 157 61 51 -[1] 158 61 80 -[1] 159 61 43 -[1] 160 61 59 -[1] 161 61 52 -[1] 162 61 82 -[1] 163 61 42 -[1] 164 61 56 -[1] 165 61 41 -[1] 166 61 44 -[1] 167 61 55 -[1] 168 61 84 -[1] 169 61 54 -[1] 170 61 43 -[1] 171 61 50 -[1] 172 61 61 -[1] 173 61 53 -[1] 174 61 66 -[1] 175 61 61 -[1] 176 61 44 -[1] 177 61 35 -[1] 178 61 54 -[1] 179 61 55 -[1] 180 61 35 -[1] 181 61 62 -[1] 182 61 50 -[1] 183 61 49 -[1] 184 61 47 -[1] 185 61 64 -[1] 186 61 39 -[1] 187 61 40 -[1] 188 61 34 -[1] 189 61 42 -[1] 190 61 28 -[1] 191 61 83 -[1] 192 61 37 -[1] 193 61 54 -[1] 194 61 68 -[1] 195 61 40 -[1] 196 61 53 -[1] 197 61 65 -[1] 198 61 44 -[1] 199 61 43 -[1] 200 61 43 -[1] 1 62 41 -[1] 2 62 27 -[1] 3 62 42 -[1] 4 62 32 -[1] 5 62 39 -[1] 6 62 49 -[1] 7 62 29 -[1] 8 62 48 -[1] 9 62 35 -[1] 10 62 38 -[1] 11 62 29 -[1] 12 62 34 -[1] 13 62 40 -[1] 14 62 53 -[1] 15 62 57 -[1] 16 62 41 -[1] 17 62 40 -[1] 18 62 64 -[1] 19 62 37 -[1] 20 62 45 -[1] 21 62 34 -[1] 22 62 52 -[1] 23 62 51 -[1] 24 62 69 -[1] 25 62 43 -[1] 26 62 40 -[1] 27 62 26 -[1] 28 62 48 -[1] 29 62 53 -[1] 30 62 41 -[1] 31 62 60 -[1] 32 62 72 -[1] 33 62 65 -[1] 34 62 56 -[1] 35 62 43 -[1] 36 62 55 -[1] 37 62 43 -[1] 38 62 80 -[1] 39 62 61 -[1] 40 62 65 -[1] 41 62 67 -[1] 42 62 38 -[1] 43 62 51 -[1] 44 62 58 -[1] 45 62 48 -[1] 46 62 55 -[1] 47 62 37 -[1] 48 62 40 -[1] 49 62 81 -[1] 50 62 81 -[1] 51 62 39 -[1] 52 62 60 -[1] 53 62 62 -[1] 54 62 65 -[1] 55 62 62 -[1] 56 62 40 -[1] 57 62 116 -[1] 58 62 41 -[1] 59 62 52 -[1] 60 62 44 -[1] 61 62 51 -[1] 62 62 41 -[1] 63 62 46 -[1] 64 62 56 -[1] 65 62 44 -[1] 66 62 48 -[1] 67 62 46 -[1] 68 62 49 -[1] 69 62 48 -[1] 70 62 37 -[1] 71 62 34 -[1] 72 62 49 -[1] 73 62 47 -[1] 74 62 37 -[1] 75 62 82 -[1] 76 62 35 -[1] 77 62 58 -[1] 78 62 43 -[1] 79 62 45 -[1] 80 62 66 -[1] 81 62 50 -[1] 82 62 36 -[1] 83 62 51 -[1] 84 62 52 -[1] 85 62 63 -[1] 86 62 41 -[1] 87 62 53 -[1] 88 62 55 -[1] 89 62 73 -[1] 90 62 45 -[1] 91 62 93 -[1] 92 62 42 -[1] 93 62 39 -[1] 94 62 49 -[1] 95 62 66 -[1] 96 62 51 -[1] 97 62 54 -[1] 98 62 70 -[1] 99 62 46 -[1] 100 62 54 -[1] 101 62 63 -[1] 102 62 50 -[1] 103 62 49 -[1] 104 62 43 -[1] 105 62 54 -[1] 106 62 35 -[1] 107 62 58 -[1] 108 62 63 -[1] 109 62 62 -[1] 110 62 70 -[1] 111 62 78 -[1] 112 62 76 -[1] 113 62 52 -[1] 114 62 51 -[1] 115 62 49 -[1] 116 62 69 -[1] 117 62 64 -[1] 118 62 22 -[1] 119 62 48 -[1] 120 62 41 -[1] 121 62 48 -[1] 122 62 47 -[1] 123 62 71 -[1] 124 62 70 -[1] 125 62 61 -[1] 126 62 43 -[1] 127 62 38 -[1] 128 62 67 -[1] 129 62 53 -[1] 130 62 64 -[1] 131 62 55 -[1] 132 62 52 -[1] 133 62 59 -[1] 134 62 59 -[1] 135 62 46 -[1] 136 62 41 -[1] 137 62 84 -[1] 138 62 51 -[1] 139 62 54 -[1] 140 62 47 -[1] 141 62 40 -[1] 142 62 61 -[1] 143 62 58 -[1] 144 62 43 -[1] 145 62 60 -[1] 146 62 46 -[1] 147 62 68 -[1] 148 62 50 -[1] 149 62 45 -[1] 150 62 30 -[1] 151 62 51 -[1] 152 62 72 -[1] 153 62 53 -[1] 154 62 44 -[1] 155 62 39 -[1] 156 62 36 -[1] 157 62 42 -[1] 158 62 57 -[1] 159 62 45 -[1] 160 62 61 -[1] 161 62 40 -[1] 162 62 39 -[1] 163 62 45 -[1] 164 62 38 -[1] 165 62 53 -[1] 166 62 64 -[1] 167 62 73 -[1] 168 62 45 -[1] 169 62 69 -[1] 170 62 44 -[1] 171 62 73 -[1] 172 62 48 -[1] 173 62 47 -[1] 174 62 33 -[1] 175 62 84 -[1] 176 62 62 -[1] 177 62 53 -[1] 178 62 49 -[1] 179 62 57 -[1] 180 62 43 -[1] 181 62 53 -[1] 182 62 34 -[1] 183 62 71 -[1] 184 62 66 -[1] 185 62 47 -[1] 186 62 55 -[1] 187 62 55 -[1] 188 62 55 -[1] 189 62 53 -[1] 190 62 38 -[1] 191 62 66 -[1] 192 62 40 -[1] 193 62 43 -[1] 194 62 36 -[1] 195 62 33 -[1] 196 62 104 -[1] 197 62 57 -[1] 198 62 68 -[1] 199 62 47 -[1] 200 62 49 -[1] 1 63 36 -[1] 2 63 40 -[1] 3 63 33 -[1] 4 63 60 -[1] 5 63 34 -[1] 6 63 36 -[1] 7 63 39 -[1] 8 63 52 -[1] 9 63 50 -[1] 10 63 45 -[1] 11 63 81 -[1] 12 63 53 -[1] 13 63 51 -[1] 14 63 35 -[1] 15 63 58 -[1] 16 63 30 -[1] 17 63 33 -[1] 18 63 41 -[1] 19 63 37 -[1] 20 63 44 -[1] 21 63 42 -[1] 22 63 109 -[1] 23 63 47 -[1] 24 63 54 -[1] 25 63 34 -[1] 26 63 54 -[1] 27 63 32 -[1] 28 63 48 -[1] 29 63 55 -[1] 30 63 56 -[1] 31 63 99 -[1] 32 63 51 -[1] 33 63 47 -[1] 34 63 87 -[1] 35 63 69 -[1] 36 63 49 -[1] 37 63 47 -[1] 38 63 42 -[1] 39 63 52 -[1] 40 63 82 -[1] 41 63 55 -[1] 42 63 55 -[1] 43 63 41 -[1] 44 63 37 -[1] 45 63 52 -[1] 46 63 56 -[1] 47 63 43 -[1] 48 63 58 -[1] 49 63 55 -[1] 50 63 37 -[1] 51 63 59 -[1] 52 63 56 -[1] 53 63 48 -[1] 54 63 40 -[1] 55 63 49 -[1] 56 63 81 -[1] 57 63 41 -[1] 58 63 102 -[1] 59 63 33 -[1] 60 63 38 -[1] 61 63 61 -[1] 62 63 38 -[1] 63 63 51 -[1] 64 63 54 -[1] 65 63 46 -[1] 66 63 57 -[1] 67 63 68 -[1] 68 63 38 -[1] 69 63 50 -[1] 70 63 45 -[1] 71 63 41 -[1] 72 63 66 -[1] 73 63 36 -[1] 74 63 115 -[1] 75 63 46 -[1] 76 63 75 -[1] 77 63 59 -[1] 78 63 64 -[1] 79 63 49 -[1] 80 63 37 -[1] 81 63 60 -[1] 82 63 49 -[1] 83 63 44 -[1] 84 63 40 -[1] 85 63 49 -[1] 86 63 71 -[1] 87 63 59 -[1] 88 63 51 -[1] 89 63 47 -[1] 90 63 93 -[1] 91 63 37 -[1] 92 63 46 -[1] 93 63 51 -[1] 94 63 46 -[1] 95 63 49 -[1] 96 63 60 -[1] 97 63 55 -[1] 98 63 43 -[1] 99 63 60 -[1] 100 63 73 -[1] 101 63 50 -[1] 102 63 49 -[1] 103 63 66 -[1] 104 63 103 -[1] 105 63 40 -[1] 106 63 93 -[1] 107 63 40 -[1] 108 63 45 -[1] 109 63 70 -[1] 110 63 60 -[1] 111 63 46 -[1] 112 63 49 -[1] 113 63 66 -[1] 114 63 65 -[1] 115 63 61 -[1] 116 63 39 -[1] 117 63 38 -[1] 118 63 43 -[1] 119 63 41 -[1] 120 63 46 -[1] 121 63 59 -[1] 122 63 37 -[1] 123 63 41 -[1] 124 63 50 -[1] 125 63 42 -[1] 126 63 43 -[1] 127 63 36 -[1] 128 63 52 -[1] 129 63 45 -[1] 130 63 57 -[1] 131 63 37 -[1] 132 63 54 -[1] 133 63 55 -[1] 134 63 39 -[1] 135 63 77 -[1] 136 63 66 -[1] 137 63 41 -[1] 138 63 60 -[1] 139 63 52 -[1] 140 63 49 -[1] 141 63 48 -[1] 142 63 35 -[1] 143 63 37 -[1] 144 63 61 -[1] 145 63 62 -[1] 146 63 50 -[1] 147 63 87 -[1] 148 63 44 -[1] 149 63 60 -[1] 150 63 53 -[1] 151 63 39 -[1] 152 63 43 -[1] 153 63 52 -[1] 154 63 50 -[1] 155 63 60 -[1] 156 63 50 -[1] 157 63 46 -[1] 158 63 56 -[1] 159 63 65 -[1] 160 63 61 -[1] 161 63 53 -[1] 162 63 40 -[1] 163 63 31 -[1] 164 63 42 -[1] 165 63 35 -[1] 166 63 62 -[1] 167 63 54 -[1] 168 63 40 -[1] 169 63 44 -[1] 170 63 41 -[1] 171 63 51 -[1] 172 63 56 -[1] 173 63 40 -[1] 174 63 35 -[1] 175 63 66 -[1] 176 63 37 -[1] 177 63 43 -[1] 178 63 40 -[1] 179 63 58 -[1] 180 63 53 -[1] 181 63 39 -[1] 182 63 43 -[1] 183 63 52 -[1] 184 63 45 -[1] 185 63 72 -[1] 186 63 52 -[1] 187 63 38 -[1] 188 63 59 -[1] 189 63 57 -[1] 190 63 62 -[1] 191 63 39 -[1] 192 63 53 -[1] 193 63 63 -[1] 194 63 48 -[1] 195 63 49 -[1] 196 63 48 -[1] 197 63 55 -[1] 198 63 74 -[1] 199 63 55 -[1] 200 63 45 -[1] 1 64 35 -[1] 2 64 37 -[1] 3 64 36 -[1] 4 64 35 -[1] 5 64 44 -[1] 6 64 33 -[1] 7 64 50 -[1] 8 64 37 -[1] 9 64 45 -[1] 10 64 50 -[1] 11 64 30 -[1] 12 64 32 -[1] 13 64 64 -[1] 14 64 56 -[1] 15 64 38 -[1] 16 64 35 -[1] 17 64 57 -[1] 18 64 38 -[1] 19 64 45 -[1] 20 64 34 -[1] 21 64 73 -[1] 22 64 37 -[1] 23 64 62 -[1] 24 64 57 -[1] 25 64 34 -[1] 26 64 62 -[1] 27 64 52 -[1] 28 64 48 -[1] 29 64 33 -[1] 30 64 52 -[1] 31 64 62 -[1] 32 64 75 -[1] 33 64 33 -[1] 34 64 34 -[1] 35 64 37 -[1] 36 64 42 -[1] 37 64 48 -[1] 38 64 44 -[1] 39 64 46 -[1] 40 64 42 -[1] 41 64 78 -[1] 42 64 47 -[1] 43 64 40 -[1] 44 64 46 -[1] 45 64 66 -[1] 46 64 40 -[1] 47 64 87 -[1] 48 64 64 -[1] 49 64 43 -[1] 50 64 65 -[1] 51 64 66 -[1] 52 64 55 -[1] 53 64 62 -[1] 54 64 68 -[1] 55 64 110 -[1] 56 64 57 -[1] 57 64 70 -[1] 58 64 53 -[1] 59 64 61 -[1] 60 64 53 -[1] 61 64 47 -[1] 62 64 35 -[1] 63 64 72 -[1] 64 64 51 -[1] 65 64 58 -[1] 66 64 61 -[1] 67 64 32 -[1] 68 64 47 -[1] 69 64 54 -[1] 70 64 40 -[1] 71 64 60 -[1] 72 64 66 -[1] 73 64 58 -[1] 74 64 45 -[1] 75 64 35 -[1] 76 64 49 -[1] 77 64 46 -[1] 78 64 94 -[1] 79 64 46 -[1] 80 64 59 -[1] 81 64 43 -[1] 82 64 38 -[1] 83 64 62 -[1] 84 64 59 -[1] 85 64 49 -[1] 86 64 44 -[1] 87 64 65 -[1] 88 64 44 -[1] 89 64 81 -[1] 90 64 61 -[1] 91 64 44 -[1] 92 64 62 -[1] 93 64 58 -[1] 94 64 72 -[1] 95 64 54 -[1] 96 64 55 -[1] 97 64 46 -[1] 98 64 37 -[1] 99 64 48 -[1] 100 64 35 -[1] 101 64 59 -[1] 102 64 49 -[1] 103 64 60 -[1] 104 64 48 -[1] 105 64 85 -[1] 106 64 56 -[1] 107 64 63 -[1] 108 64 62 -[1] 109 64 39 -[1] 110 64 52 -[1] 111 64 49 -[1] 112 64 44 -[1] 113 64 42 -[1] 114 64 51 -[1] 115 64 107 -[1] 116 64 42 -[1] 117 64 53 -[1] 118 64 69 -[1] 119 64 29 -[1] 120 64 82 -[1] 121 64 90 -[1] 122 64 47 -[1] 123 64 47 -[1] 124 64 62 -[1] 125 64 89 -[1] 126 64 44 -[1] 127 64 40 -[1] 128 64 57 -[1] 129 64 87 -[1] 130 64 42 -[1] 131 64 48 -[1] 132 64 49 -[1] 133 64 55 -[1] 134 64 41 -[1] 135 64 63 -[1] 136 64 53 -[1] 137 64 53 -[1] 138 64 50 -[1] 139 64 41 -[1] 140 64 45 -[1] 141 64 46 -[1] 142 64 52 -[1] 143 64 45 -[1] 144 64 48 -[1] 145 64 85 -[1] 146 64 43 -[1] 147 64 58 -[1] 148 64 50 -[1] 149 64 52 -[1] 150 64 40 -[1] 151 64 37 -[1] 152 64 46 -[1] 153 64 34 -[1] 154 64 45 -[1] 155 64 37 -[1] 156 64 54 -[1] 157 64 88 -[1] 158 64 72 -[1] 159 64 36 -[1] 160 64 75 -[1] 161 64 46 -[1] 162 64 33 -[1] 163 64 62 -[1] 164 64 57 -[1] 165 64 28 -[1] 166 64 127 -[1] 167 64 63 -[1] 168 64 44 -[1] 169 64 61 -[1] 170 64 72 -[1] 171 64 39 -[1] 172 64 84 -[1] 173 64 41 -[1] 174 64 60 -[1] 175 64 35 -[1] 176 64 55 -[1] 177 64 44 -[1] 178 64 37 -[1] 179 64 40 -[1] 180 64 62 -[1] 181 64 55 -[1] 182 64 55 -[1] 183 64 48 -[1] 184 64 81 -[1] 185 64 48 -[1] 186 64 34 -[1] 187 64 43 -[1] 188 64 43 -[1] 189 64 47 -[1] 190 64 51 -[1] 191 64 68 -[1] 192 64 60 -[1] 193 64 37 -[1] 194 64 60 -[1] 195 64 47 -[1] 196 64 34 -[1] 197 64 61 -[1] 198 64 36 -[1] 199 64 51 -[1] 200 64 37 -[1] 1 65 49 -[1] 2 65 41 -[1] 3 65 36 -[1] 4 65 35 -[1] 5 65 33 -[1] 6 65 44 -[1] 7 65 34 -[1] 8 65 34 -[1] 9 65 39 -[1] 10 65 64 -[1] 11 65 44 -[1] 12 65 46 -[1] 13 65 47 -[1] 14 65 29 -[1] 15 65 58 -[1] 16 65 41 -[1] 17 65 35 -[1] 18 65 48 -[1] 19 65 72 -[1] 20 65 34 -[1] 21 65 77 -[1] 22 65 64 -[1] 23 65 47 -[1] 24 65 59 -[1] 25 65 33 -[1] 26 65 52 -[1] 27 65 44 -[1] 28 65 27 -[1] 29 65 47 -[1] 30 65 39 -[1] 31 65 37 -[1] 32 65 56 -[1] 33 65 40 -[1] 34 65 61 -[1] 35 65 61 -[1] 36 65 51 -[1] 37 65 55 -[1] 38 65 39 -[1] 39 65 53 -[1] 40 65 68 -[1] 41 65 41 -[1] 42 65 38 -[1] 43 65 55 -[1] 44 65 42 -[1] 45 65 77 -[1] 46 65 57 -[1] 47 65 43 -[1] 48 65 50 -[1] 49 65 57 -[1] 50 65 62 -[1] 51 65 54 -[1] 52 65 62 -[1] 53 65 47 -[1] 54 65 58 -[1] 55 65 46 -[1] 56 65 34 -[1] 57 65 55 -[1] 58 65 48 -[1] 59 65 75 -[1] 60 65 35 -[1] 61 65 58 -[1] 62 65 38 -[1] 63 65 61 -[1] 64 65 41 -[1] 65 65 59 -[1] 66 65 74 -[1] 67 65 66 -[1] 68 65 59 -[1] 69 65 42 -[1] 70 65 51 -[1] 71 65 59 -[1] 72 65 59 -[1] 73 65 39 -[1] 74 65 46 -[1] 75 65 88 -[1] 76 65 51 -[1] 77 65 76 -[1] 78 65 37 -[1] 79 65 60 -[1] 80 65 36 -[1] 81 65 41 -[1] 82 65 55 -[1] 83 65 52 -[1] 84 65 51 -[1] 85 65 59 -[1] 86 65 57 -[1] 87 65 64 -[1] 88 65 40 -[1] 89 65 73 -[1] 90 65 49 -[1] 91 65 61 -[1] 92 65 46 -[1] 93 65 62 -[1] 94 65 79 -[1] 95 65 68 -[1] 96 65 51 -[1] 97 65 55 -[1] 98 65 52 -[1] 99 65 43 -[1] 100 65 59 -[1] 101 65 65 -[1] 102 65 39 -[1] 103 65 43 -[1] 104 65 38 -[1] 105 65 45 -[1] 106 65 60 -[1] 107 65 46 -[1] 108 65 103 -[1] 109 65 55 -[1] 110 65 49 -[1] 111 65 42 -[1] 112 65 49 -[1] 113 65 48 -[1] 114 65 52 -[1] 115 65 43 -[1] 116 65 85 -[1] 117 65 57 -[1] 118 65 47 -[1] 119 65 57 -[1] 120 65 39 -[1] 121 65 43 -[1] 122 65 38 -[1] 123 65 45 -[1] 124 65 45 -[1] 125 65 49 -[1] 126 65 43 -[1] 127 65 42 -[1] 128 65 69 -[1] 129 65 43 -[1] 130 65 73 -[1] 131 65 63 -[1] 132 65 40 -[1] 133 65 37 -[1] 134 65 116 -[1] 135 65 49 -[1] 136 65 34 -[1] 137 65 37 -[1] 138 65 30 -[1] 139 65 110 -[1] 140 65 62 -[1] 141 65 58 -[1] 142 65 41 -[1] 143 65 52 -[1] 144 65 38 -[1] 145 65 55 -[1] 146 65 71 -[1] 147 65 50 -[1] 148 65 38 -[1] 149 65 63 -[1] 150 65 37 -[1] 151 65 49 -[1] 152 65 37 -[1] 153 65 65 -[1] 154 65 70 -[1] 155 65 49 -[1] 156 65 64 -[1] 157 65 65 -[1] 158 65 72 -[1] 159 65 31 -[1] 160 65 57 -[1] 161 65 61 -[1] 162 65 36 -[1] 163 65 54 -[1] 164 65 90 -[1] 165 65 73 -[1] 166 65 35 -[1] 167 65 48 -[1] 168 65 40 -[1] 169 65 37 -[1] 170 65 51 -[1] 171 65 42 -[1] 172 65 38 -[1] 173 65 55 -[1] 174 65 38 -[1] 175 65 47 -[1] 176 65 51 -[1] 177 65 47 -[1] 178 65 46 -[1] 179 65 40 -[1] 180 65 51 -[1] 181 65 61 -[1] 182 65 35 -[1] 183 65 39 -[1] 184 65 75 -[1] 185 65 39 -[1] 186 65 51 -[1] 187 65 32 -[1] 188 65 51 -[1] 189 65 68 -[1] 190 65 64 -[1] 191 65 39 -[1] 192 65 51 -[1] 193 65 57 -[1] 194 65 36 -[1] 195 65 43 -[1] 196 65 37 -[1] 197 65 46 -[1] 198 65 74 -[1] 199 65 49 -[1] 200 65 51 -[1] 1 66 37 -[1] 2 66 31 -[1] 3 66 34 -[1] 4 66 42 -[1] 5 66 49 -[1] 6 66 42 -[1] 7 66 55 -[1] 8 66 42 -[1] 9 66 50 -[1] 10 66 33 -[1] 11 66 46 -[1] 12 66 36 -[1] 13 66 34 -[1] 14 66 37 -[1] 15 66 49 -[1] 16 66 57 -[1] 17 66 38 -[1] 18 66 55 -[1] 19 66 32 -[1] 20 66 45 -[1] 21 66 42 -[1] 22 66 45 -[1] 23 66 52 -[1] 24 66 44 -[1] 25 66 46 -[1] 26 66 34 -[1] 27 66 55 -[1] 28 66 43 -[1] 29 66 55 -[1] 30 66 58 -[1] 31 66 88 -[1] 32 66 44 -[1] 33 66 51 -[1] 34 66 41 -[1] 35 66 46 -[1] 36 66 31 -[1] 37 66 50 -[1] 38 66 32 -[1] 39 66 56 -[1] 40 66 58 -[1] 41 66 63 -[1] 42 66 55 -[1] 43 66 60 -[1] 44 66 51 -[1] 45 66 54 -[1] 46 66 58 -[1] 47 66 85 -[1] 48 66 57 -[1] 49 66 94 -[1] 50 66 53 -[1] 51 66 55 -[1] 52 66 66 -[1] 53 66 37 -[1] 54 66 40 -[1] 55 66 41 -[1] 56 66 60 -[1] 57 66 47 -[1] 58 66 50 -[1] 59 66 67 -[1] 60 66 36 -[1] 61 66 58 -[1] 62 66 64 -[1] 63 66 42 -[1] 64 66 59 -[1] 65 66 46 -[1] 66 66 54 -[1] 67 66 55 -[1] 68 66 56 -[1] 69 66 58 -[1] 70 66 87 -[1] 71 66 44 -[1] 72 66 46 -[1] 73 66 28 -[1] 74 66 39 -[1] 75 66 55 -[1] 76 66 84 -[1] 77 66 52 -[1] 78 66 43 -[1] 79 66 55 -[1] 80 66 65 -[1] 81 66 50 -[1] 82 66 71 -[1] 83 66 48 -[1] 84 66 52 -[1] 85 66 46 -[1] 86 66 60 -[1] 87 66 29 -[1] 88 66 71 -[1] 89 66 45 -[1] 90 66 83 -[1] 91 66 51 -[1] 92 66 40 -[1] 93 66 66 -[1] 94 66 42 -[1] 95 66 36 -[1] 96 66 57 -[1] 97 66 35 -[1] 98 66 49 -[1] 99 66 49 -[1] 100 66 47 -[1] 101 66 59 -[1] 102 66 51 -[1] 103 66 48 -[1] 104 66 58 -[1] 105 66 64 -[1] 106 66 57 -[1] 107 66 79 -[1] 108 66 47 -[1] 109 66 49 -[1] 110 66 37 -[1] 111 66 68 -[1] 112 66 56 -[1] 113 66 44 -[1] 114 66 55 -[1] 115 66 52 -[1] 116 66 38 -[1] 117 66 45 -[1] 118 66 54 -[1] 119 66 78 -[1] 120 66 48 -[1] 121 66 55 -[1] 122 66 39 -[1] 123 66 38 -[1] 124 66 43 -[1] 125 66 48 -[1] 126 66 90 -[1] 127 66 44 -[1] 128 66 62 -[1] 129 66 41 -[1] 130 66 47 -[1] 131 66 66 -[1] 132 66 34 -[1] 133 66 42 -[1] 134 66 37 -[1] 135 66 77 -[1] 136 66 39 -[1] 137 66 55 -[1] 138 66 59 -[1] 139 66 44 -[1] 140 66 64 -[1] 141 66 35 -[1] 142 66 42 -[1] 143 66 68 -[1] 144 66 47 -[1] 145 66 53 -[1] 146 66 34 -[1] 147 66 47 -[1] 148 66 51 -[1] 149 66 46 -[1] 150 66 54 -[1] 151 66 39 -[1] 152 66 51 -[1] 153 66 62 -[1] 154 66 73 -[1] 155 66 44 -[1] 156 66 41 -[1] 157 66 90 -[1] 158 66 41 -[1] 159 66 50 -[1] 160 66 55 -[1] 161 66 33 -[1] 162 66 62 -[1] 163 66 30 -[1] 164 66 57 -[1] 165 66 64 -[1] 166 66 43 -[1] 167 66 58 -[1] 168 66 85 -[1] 169 66 42 -[1] 170 66 54 -[1] 171 66 45 -[1] 172 66 42 -[1] 173 66 46 -[1] 174 66 45 -[1] 175 66 44 -[1] 176 66 41 -[1] 177 66 53 -[1] 178 66 70 -[1] 179 66 79 -[1] 180 66 61 -[1] 181 66 52 -[1] 182 66 71 -[1] 183 66 64 -[1] 184 66 56 -[1] 185 66 33 -[1] 186 66 51 -[1] 187 66 50 -[1] 188 66 67 -[1] 189 66 35 -[1] 190 66 90 -[1] 191 66 42 -[1] 192 66 37 -[1] 193 66 34 -[1] 194 66 43 -[1] 195 66 73 -[1] 196 66 48 -[1] 197 66 41 -[1] 198 66 44 -[1] 199 66 99 -[1] 200 66 55 -[1] 1 67 44 -[1] 2 67 37 -[1] 3 67 39 -[1] 4 67 35 -[1] 5 67 37 -[1] 6 67 50 -[1] 7 67 46 -[1] 8 67 55 -[1] 9 67 35 -[1] 10 67 41 -[1] 11 67 41 -[1] 12 67 47 -[1] 13 67 32 -[1] 14 67 46 -[1] 15 67 44 -[1] 16 67 36 -[1] 17 67 54 -[1] 18 67 37 -[1] 19 67 37 -[1] 20 67 38 -[1] 21 67 47 -[1] 22 67 57 -[1] 23 67 33 -[1] 24 67 41 -[1] 25 67 41 -[1] 26 67 41 -[1] 27 67 46 -[1] 28 67 46 -[1] 29 67 58 -[1] 30 67 28 -[1] 31 67 63 -[1] 32 67 38 -[1] 33 67 66 -[1] 34 67 43 -[1] 35 67 54 -[1] 36 67 49 -[1] 37 67 59 -[1] 38 67 39 -[1] 39 67 38 -[1] 40 67 66 -[1] 41 67 39 -[1] 42 67 45 -[1] 43 67 43 -[1] 44 67 40 -[1] 45 67 49 -[1] 46 67 32 -[1] 47 67 43 -[1] 48 67 89 -[1] 49 67 37 -[1] 50 67 58 -[1] 51 67 37 -[1] 52 67 74 -[1] 53 67 65 -[1] 54 67 71 -[1] 55 67 43 -[1] 56 67 47 -[1] 57 67 41 -[1] 58 67 64 -[1] 59 67 67 -[1] 60 67 38 -[1] 61 67 44 -[1] 62 67 46 -[1] 63 67 68 -[1] 64 67 65 -[1] 65 67 66 -[1] 66 67 42 -[1] 67 67 35 -[1] 68 67 59 -[1] 69 67 67 -[1] 70 67 50 -[1] 71 67 42 -[1] 72 67 61 -[1] 73 67 62 -[1] 74 67 47 -[1] 75 67 53 -[1] 76 67 51 -[1] 77 67 54 -[1] 78 67 45 -[1] 79 67 66 -[1] 80 67 44 -[1] 81 67 55 -[1] 82 67 62 -[1] 83 67 43 -[1] 84 67 60 -[1] 85 67 55 -[1] 86 67 77 -[1] 87 67 54 -[1] 88 67 78 -[1] 89 67 61 -[1] 90 67 63 -[1] 91 67 50 -[1] 92 67 105 -[1] 93 67 61 -[1] 94 67 30 -[1] 95 67 43 -[1] 96 67 62 -[1] 97 67 34 -[1] 98 67 50 -[1] 99 67 39 -[1] 100 67 51 -[1] 101 67 63 -[1] 102 67 30 -[1] 103 67 55 -[1] 104 67 92 -[1] 105 67 73 -[1] 106 67 59 -[1] 107 67 82 -[1] 108 67 51 -[1] 109 67 43 -[1] 110 67 40 -[1] 111 67 75 -[1] 112 67 37 -[1] 113 67 80 -[1] 114 67 42 -[1] 115 67 45 -[1] 116 67 52 -[1] 117 67 125 -[1] 118 67 68 -[1] 119 67 37 -[1] 120 67 79 -[1] 121 67 55 -[1] 122 67 80 -[1] 123 67 70 -[1] 124 67 59 -[1] 125 67 46 -[1] 126 67 60 -[1] 127 67 38 -[1] 128 67 38 -[1] 129 67 38 -[1] 130 67 49 -[1] 131 67 63 -[1] 132 67 58 -[1] 133 67 39 -[1] 134 67 47 -[1] 135 67 33 -[1] 136 67 46 -[1] 137 67 71 -[1] 138 67 44 -[1] 139 67 48 -[1] 140 67 80 -[1] 141 67 41 -[1] 142 67 49 -[1] 143 67 79 -[1] 144 67 35 -[1] 145 67 38 -[1] 146 67 50 -[1] 147 67 41 -[1] 148 67 34 -[1] 149 67 46 -[1] 150 67 35 -[1] 151 67 73 -[1] 152 67 67 -[1] 153 67 41 -[1] 154 67 38 -[1] 155 67 56 -[1] 156 67 57 -[1] 157 67 42 -[1] 158 67 87 -[1] 159 67 33 -[1] 160 67 42 -[1] 161 67 48 -[1] 162 67 41 -[1] 163 67 56 -[1] 164 67 94 -[1] 165 67 38 -[1] 166 67 36 -[1] 167 67 55 -[1] 168 67 48 -[1] 169 67 55 -[1] 170 67 43 -[1] 171 67 46 -[1] 172 67 65 -[1] 173 67 56 -[1] 174 67 45 -[1] 175 67 42 -[1] 176 67 50 -[1] 177 67 45 -[1] 178 67 63 -[1] 179 67 46 -[1] 180 67 59 -[1] 181 67 47 -[1] 182 67 43 -[1] 183 67 72 -[1] 184 67 46 -[1] 185 67 45 -[1] 186 67 59 -[1] 187 67 42 -[1] 188 67 49 -[1] 189 67 48 -[1] 190 67 47 -[1] 191 67 58 -[1] 192 67 81 -[1] 193 67 42 -[1] 194 67 67 -[1] 195 67 56 -[1] 196 67 39 -[1] 197 67 37 -[1] 198 67 63 -[1] 199 67 60 -[1] 200 67 47 -[1] 1 68 33 -[1] 2 68 35 -[1] 3 68 50 -[1] 4 68 47 -[1] 5 68 32 -[1] 6 68 51 -[1] 7 68 40 -[1] 8 68 43 -[1] 9 68 40 -[1] 10 68 51 -[1] 11 68 84 -[1] 12 68 34 -[1] 13 68 46 -[1] 14 68 34 -[1] 15 68 41 -[1] 16 68 40 -[1] 17 68 40 -[1] 18 68 42 -[1] 19 68 44 -[1] 20 68 37 -[1] 21 68 52 -[1] 22 68 37 -[1] 23 68 41 -[1] 24 68 55 -[1] 25 68 36 -[1] 26 68 92 -[1] 27 68 39 -[1] 28 68 43 -[1] 29 68 32 -[1] 30 68 45 -[1] 31 68 55 -[1] 32 68 47 -[1] 33 68 72 -[1] 34 68 40 -[1] 35 68 46 -[1] 36 68 55 -[1] 37 68 41 -[1] 38 68 45 -[1] 39 68 63 -[1] 40 68 31 -[1] 41 68 34 -[1] 42 68 63 -[1] 43 68 43 -[1] 44 68 48 -[1] 45 68 35 -[1] 46 68 70 -[1] 47 68 46 -[1] 48 68 80 -[1] 49 68 67 -[1] 50 68 37 -[1] 51 68 45 -[1] 52 68 69 -[1] 53 68 34 -[1] 54 68 85 -[1] 55 68 45 -[1] 56 68 78 -[1] 57 68 61 -[1] 58 68 58 -[1] 59 68 52 -[1] 60 68 47 -[1] 61 68 63 -[1] 62 68 46 -[1] 63 68 55 -[1] 64 68 56 -[1] 65 68 73 -[1] 66 68 60 -[1] 67 68 55 -[1] 68 68 45 -[1] 69 68 39 -[1] 70 68 66 -[1] 71 68 40 -[1] 72 68 69 -[1] 73 68 36 -[1] 74 68 45 -[1] 75 68 70 -[1] 76 68 55 -[1] 77 68 49 -[1] 78 68 35 -[1] 79 68 36 -[1] 80 68 36 -[1] 81 68 41 -[1] 82 68 38 -[1] 83 68 71 -[1] 84 68 45 -[1] 85 68 50 -[1] 86 68 46 -[1] 87 68 95 -[1] 88 68 41 -[1] 89 68 48 -[1] 90 68 87 -[1] 91 68 61 -[1] 92 68 37 -[1] 93 68 57 -[1] 94 68 49 -[1] 95 68 43 -[1] 96 68 54 -[1] 97 68 62 -[1] 98 68 47 -[1] 99 68 55 -[1] 100 68 52 -[1] 101 68 71 -[1] 102 68 51 -[1] 103 68 42 -[1] 104 68 73 -[1] 105 68 61 -[1] 106 68 54 -[1] 107 68 44 -[1] 108 68 61 -[1] 109 68 43 -[1] 110 68 54 -[1] 111 68 57 -[1] 112 68 54 -[1] 113 68 30 -[1] 114 68 58 -[1] 115 68 43 -[1] 116 68 48 -[1] 117 68 60 -[1] 118 68 48 -[1] 119 68 57 -[1] 120 68 59 -[1] 121 68 71 -[1] 122 68 50 -[1] 123 68 62 -[1] 124 68 44 -[1] 125 68 52 -[1] 126 68 76 -[1] 127 68 47 -[1] 128 68 64 -[1] 129 68 53 -[1] 130 68 64 -[1] 131 68 47 -[1] 132 68 39 -[1] 133 68 51 -[1] 134 68 46 -[1] 135 68 44 -[1] 136 68 38 -[1] 137 68 73 -[1] 138 68 35 -[1] 139 68 84 -[1] 140 68 58 -[1] 141 68 31 -[1] 142 68 42 -[1] 143 68 70 -[1] 144 68 35 -[1] 145 68 41 -[1] 146 68 47 -[1] 147 68 45 -[1] 148 68 42 -[1] 149 68 37 -[1] 150 68 25 -[1] 151 68 78 -[1] 152 68 41 -[1] 153 68 38 -[1] 154 68 59 -[1] 155 68 38 -[1] 156 68 67 -[1] 157 68 75 -[1] 158 68 40 -[1] 159 68 38 -[1] 160 68 40 -[1] 161 68 48 -[1] 162 68 84 -[1] 163 68 36 -[1] 164 68 57 -[1] 165 68 42 -[1] 166 68 57 -[1] 167 68 55 -[1] 168 68 48 -[1] 169 68 45 -[1] 170 68 45 -[1] 171 68 35 -[1] 172 68 48 -[1] 173 68 60 -[1] 174 68 51 -[1] 175 68 42 -[1] 176 68 38 -[1] 177 68 46 -[1] 178 68 47 -[1] 179 68 41 -[1] 180 68 47 -[1] 181 68 30 -[1] 182 68 81 -[1] 183 68 71 -[1] 184 68 57 -[1] 185 68 48 -[1] 186 68 39 -[1] 187 68 46 -[1] 188 68 56 -[1] 189 68 46 -[1] 190 68 63 -[1] 191 68 53 -[1] 192 68 39 -[1] 193 68 44 -[1] 194 68 47 -[1] 195 68 63 -[1] 196 68 31 -[1] 197 68 50 -[1] 198 68 46 -[1] 199 68 50 -[1] 200 68 62 -[1] 1 69 43 -[1] 2 69 34 -[1] 3 69 39 -[1] 4 69 73 -[1] 5 69 32 -[1] 6 69 39 -[1] 7 69 39 -[1] 8 69 47 -[1] 9 69 52 -[1] 10 69 33 -[1] 11 69 58 -[1] 12 69 60 -[1] 13 69 55 -[1] 14 69 54 -[1] 15 69 44 -[1] 16 69 47 -[1] 17 69 34 -[1] 18 69 46 -[1] 19 69 32 -[1] 20 69 43 -[1] 21 69 64 -[1] 22 69 68 -[1] 23 69 41 -[1] 24 69 48 -[1] 25 69 63 -[1] 26 69 31 -[1] 27 69 39 -[1] 28 69 32 -[1] 29 69 51 -[1] 30 69 43 -[1] 31 69 48 -[1] 32 69 42 -[1] 33 69 47 -[1] 34 69 30 -[1] 35 69 57 -[1] 36 69 37 -[1] 37 69 32 -[1] 38 69 57 -[1] 39 69 51 -[1] 40 69 47 -[1] 41 69 57 -[1] 42 69 58 -[1] 43 69 47 -[1] 44 69 49 -[1] 45 69 71 -[1] 46 69 48 -[1] 47 69 52 -[1] 48 69 78 -[1] 49 69 70 -[1] 50 69 54 -[1] 51 69 49 -[1] 52 69 61 -[1] 53 69 88 -[1] 54 69 67 -[1] 55 69 38 -[1] 56 69 59 -[1] 57 69 51 -[1] 58 69 44 -[1] 59 69 45 -[1] 60 69 62 -[1] 61 69 44 -[1] 62 69 53 -[1] 63 69 68 -[1] 64 69 41 -[1] 65 69 87 -[1] 66 69 32 -[1] 67 69 37 -[1] 68 69 47 -[1] 69 69 62 -[1] 70 69 53 -[1] 71 69 66 -[1] 72 69 55 -[1] 73 69 44 -[1] 74 69 30 -[1] 75 69 44 -[1] 76 69 53 -[1] 77 69 68 -[1] 78 69 54 -[1] 79 69 47 -[1] 80 69 48 -[1] 81 69 55 -[1] 82 69 42 -[1] 83 69 45 -[1] 84 69 85 -[1] 85 69 48 -[1] 86 69 66 -[1] 87 69 91 -[1] 88 69 73 -[1] 89 69 46 -[1] 90 69 40 -[1] 91 69 46 -[1] 92 69 70 -[1] 93 69 45 -[1] 94 69 50 -[1] 95 69 45 -[1] 96 69 72 -[1] 97 69 33 -[1] 98 69 82 -[1] 99 69 49 -[1] 100 69 53 -[1] 101 69 58 -[1] 102 69 81 -[1] 103 69 39 -[1] 104 69 61 -[1] 105 69 42 -[1] 106 69 66 -[1] 107 69 42 -[1] 108 69 56 -[1] 109 69 54 -[1] 110 69 67 -[1] 111 69 48 -[1] 112 69 72 -[1] 113 69 57 -[1] 114 69 36 -[1] 115 69 42 -[1] 116 69 40 -[1] 117 69 76 -[1] 118 69 41 -[1] 119 69 54 -[1] 120 69 50 -[1] 121 69 59 -[1] 122 69 45 -[1] 123 69 50 -[1] 124 69 37 -[1] 125 69 36 -[1] 126 69 49 -[1] 127 69 61 -[1] 128 69 52 -[1] 129 69 63 -[1] 130 69 43 -[1] 131 69 48 -[1] 132 69 49 -[1] 133 69 53 -[1] 134 69 52 -[1] 135 69 80 -[1] 136 69 51 -[1] 137 69 57 -[1] 138 69 47 -[1] 139 69 69 -[1] 140 69 51 -[1] 141 69 63 -[1] 142 69 42 -[1] 143 69 68 -[1] 144 69 35 -[1] 145 69 69 -[1] 146 69 50 -[1] 147 69 69 -[1] 148 69 58 -[1] 149 69 51 -[1] 150 69 50 -[1] 151 69 59 -[1] 152 69 53 -[1] 153 69 46 -[1] 154 69 45 -[1] 155 69 47 -[1] 156 69 44 -[1] 157 69 64 -[1] 158 69 51 -[1] 159 69 52 -[1] 160 69 39 -[1] 161 69 43 -[1] 162 69 76 -[1] 163 69 31 -[1] 164 69 60 -[1] 165 69 50 -[1] 166 69 38 -[1] 167 69 44 -[1] 168 69 57 -[1] 169 69 44 -[1] 170 69 45 -[1] 171 69 47 -[1] 172 69 48 -[1] 173 69 33 -[1] 174 69 52 -[1] 175 69 50 -[1] 176 69 47 -[1] 177 69 40 -[1] 178 69 38 -[1] 179 69 56 -[1] 180 69 48 -[1] 181 69 44 -[1] 182 69 63 -[1] 183 69 51 -[1] 184 69 45 -[1] 185 69 48 -[1] 186 69 52 -[1] 187 69 45 -[1] 188 69 67 -[1] 189 69 40 -[1] 190 69 53 -[1] 191 69 68 -[1] 192 69 47 -[1] 193 69 56 -[1] 194 69 43 -[1] 195 69 37 -[1] 196 69 40 -[1] 197 69 55 -[1] 198 69 84 -[1] 199 69 55 -[1] 200 69 47 -[1] 1 70 33 -[1] 2 70 33 -[1] 3 70 47 -[1] 4 70 53 -[1] 5 70 56 -[1] 6 70 44 -[1] 7 70 38 -[1] 8 70 36 -[1] 9 70 50 -[1] 10 70 58 -[1] 11 70 73 -[1] 12 70 37 -[1] 13 70 32 -[1] 14 70 44 -[1] 15 70 35 -[1] 16 70 31 -[1] 17 70 44 -[1] 18 70 52 -[1] 19 70 33 -[1] 20 70 29 -[1] 21 70 40 -[1] 22 70 49 -[1] 23 70 50 -[1] 24 70 43 -[1] 25 70 48 -[1] 26 70 27 -[1] 27 70 41 -[1] 28 70 52 -[1] 29 70 49 -[1] 30 70 44 -[1] 31 70 59 -[1] 32 70 46 -[1] 33 70 48 -[1] 34 70 37 -[1] 35 70 53 -[1] 36 70 59 -[1] 37 70 43 -[1] 38 70 76 -[1] 39 70 56 -[1] 40 70 41 -[1] 41 70 50 -[1] 42 70 61 -[1] 43 70 65 -[1] 44 70 46 -[1] 45 70 42 -[1] 46 70 47 -[1] 47 70 71 -[1] 48 70 33 -[1] 49 70 76 -[1] 50 70 64 -[1] 51 70 66 -[1] 52 70 57 -[1] 53 70 41 -[1] 54 70 60 -[1] 55 70 42 -[1] 56 70 47 -[1] 57 70 63 -[1] 58 70 50 -[1] 59 70 53 -[1] 60 70 41 -[1] 61 70 86 -[1] 62 70 74 -[1] 63 70 68 -[1] 64 70 44 -[1] 65 70 28 -[1] 66 70 75 -[1] 67 70 65 -[1] 68 70 50 -[1] 69 70 71 -[1] 70 70 63 -[1] 71 70 42 -[1] 72 70 56 -[1] 73 70 45 -[1] 74 70 51 -[1] 75 70 40 -[1] 76 70 59 -[1] 77 70 40 -[1] 78 70 37 -[1] 79 70 52 -[1] 80 70 67 -[1] 81 70 42 -[1] 82 70 51 -[1] 83 70 59 -[1] 84 70 84 -[1] 85 70 53 -[1] 86 70 62 -[1] 87 70 52 -[1] 88 70 48 -[1] 89 70 53 -[1] 90 70 69 -[1] 91 70 47 -[1] 92 70 77 -[1] 93 70 74 -[1] 94 70 82 -[1] 95 70 43 -[1] 96 70 62 -[1] 97 70 71 -[1] 98 70 69 -[1] 99 70 54 -[1] 100 70 51 -[1] 101 70 40 -[1] 102 70 99 -[1] 103 70 55 -[1] 104 70 68 -[1] 105 70 45 -[1] 106 70 61 -[1] 107 70 56 -[1] 108 70 49 -[1] 109 70 71 -[1] 110 70 54 -[1] 111 70 70 -[1] 112 70 51 -[1] 113 70 41 -[1] 114 70 50 -[1] 115 70 43 -[1] 116 70 55 -[1] 117 70 77 -[1] 118 70 71 -[1] 119 70 39 -[1] 120 70 58 -[1] 121 70 55 -[1] 122 70 40 -[1] 123 70 45 -[1] 124 70 43 -[1] 125 70 76 -[1] 126 70 50 -[1] 127 70 45 -[1] 128 70 37 -[1] 129 70 62 -[1] 130 70 53 -[1] 131 70 52 -[1] 132 70 73 -[1] 133 70 28 -[1] 134 70 58 -[1] 135 70 61 -[1] 136 70 67 -[1] 137 70 61 -[1] 138 70 44 -[1] 139 70 46 -[1] 140 70 57 -[1] 141 70 48 -[1] 142 70 53 -[1] 143 70 89 -[1] 144 70 67 -[1] 145 70 46 -[1] 146 70 47 -[1] 147 70 60 -[1] 148 70 33 -[1] 149 70 38 -[1] 150 70 41 -[1] 151 70 46 -[1] 152 70 46 -[1] 153 70 113 -[1] 154 70 35 -[1] 155 70 44 -[1] 156 70 40 -[1] 157 70 35 -[1] 158 70 51 -[1] 159 70 50 -[1] 160 70 54 -[1] 161 70 44 -[1] 162 70 60 -[1] 163 70 81 -[1] 164 70 52 -[1] 165 70 77 -[1] 166 70 39 -[1] 167 70 50 -[1] 168 70 37 -[1] 169 70 58 -[1] 170 70 43 -[1] 171 70 45 -[1] 172 70 53 -[1] 173 70 54 -[1] 174 70 42 -[1] 175 70 35 -[1] 176 70 48 -[1] 177 70 49 -[1] 178 70 54 -[1] 179 70 49 -[1] 180 70 54 -[1] 181 70 41 -[1] 182 70 39 -[1] 183 70 29 -[1] 184 70 63 -[1] 185 70 42 -[1] 186 70 60 -[1] 187 70 79 -[1] 188 70 81 -[1] 189 70 48 -[1] 190 70 100 -[1] 191 70 47 -[1] 192 70 34 -[1] 193 70 63 -[1] 194 70 40 -[1] 195 70 49 -[1] 196 70 61 -[1] 197 70 52 -[1] 198 70 81 -[1] 199 70 60 -[1] 200 70 59 -[1] 1 71 45 -[1] 2 71 41 -[1] 3 71 28 -[1] 4 71 35 -[1] 5 71 36 -[1] 6 71 31 -[1] 7 71 47 -[1] 8 71 40 -[1] 9 71 45 -[1] 10 71 44 -[1] 11 71 41 -[1] 12 71 52 -[1] 13 71 43 -[1] 14 71 42 -[1] 15 71 41 -[1] 16 71 36 -[1] 17 71 61 -[1] 18 71 60 -[1] 19 71 37 -[1] 20 71 55 -[1] 21 71 35 -[1] 22 71 59 -[1] 23 71 63 -[1] 24 71 39 -[1] 25 71 42 -[1] 26 71 37 -[1] 27 71 30 -[1] 28 71 57 -[1] 29 71 34 -[1] 30 71 56 -[1] 31 71 66 -[1] 32 71 42 -[1] 33 71 49 -[1] 34 71 38 -[1] 35 71 50 -[1] 36 71 56 -[1] 37 71 36 -[1] 38 71 43 -[1] 39 71 38 -[1] 40 71 37 -[1] 41 71 50 -[1] 42 71 53 -[1] 43 71 52 -[1] 44 71 49 -[1] 45 71 42 -[1] 46 71 76 -[1] 47 71 46 -[1] 48 71 44 -[1] 49 71 41 -[1] 50 71 56 -[1] 51 71 69 -[1] 52 71 34 -[1] 53 71 63 -[1] 54 71 42 -[1] 55 71 63 -[1] 56 71 36 -[1] 57 71 43 -[1] 58 71 65 -[1] 59 71 39 -[1] 60 71 48 -[1] 61 71 46 -[1] 62 71 65 -[1] 63 71 76 -[1] 64 71 47 -[1] 65 71 76 -[1] 66 71 39 -[1] 67 71 87 -[1] 68 71 56 -[1] 69 71 43 -[1] 70 71 50 -[1] 71 71 69 -[1] 72 71 60 -[1] 73 71 81 -[1] 74 71 33 -[1] 75 71 88 -[1] 76 71 39 -[1] 77 71 66 -[1] 78 71 54 -[1] 79 71 55 -[1] 80 71 42 -[1] 81 71 43 -[1] 82 71 61 -[1] 83 71 81 -[1] 84 71 50 -[1] 85 71 66 -[1] 86 71 81 -[1] 87 71 57 -[1] 88 71 62 -[1] 89 71 47 -[1] 90 71 56 -[1] 91 71 48 -[1] 92 71 75 -[1] 93 71 49 -[1] 94 71 43 -[1] 95 71 58 -[1] 96 71 59 -[1] 97 71 46 -[1] 98 71 50 -[1] 99 71 59 -[1] 100 71 37 -[1] 101 71 64 -[1] 102 71 50 -[1] 103 71 52 -[1] 104 71 43 -[1] 105 71 92 -[1] 106 71 39 -[1] 107 71 56 -[1] 108 71 50 -[1] 109 71 37 -[1] 110 71 51 -[1] 111 71 42 -[1] 112 71 35 -[1] 113 71 34 -[1] 114 71 68 -[1] 115 71 51 -[1] 116 71 61 -[1] 117 71 35 -[1] 118 71 50 -[1] 119 71 43 -[1] 120 71 47 -[1] 121 71 44 -[1] 122 71 47 -[1] 123 71 53 -[1] 124 71 44 -[1] 125 71 56 -[1] 126 71 38 -[1] 127 71 81 -[1] 128 71 54 -[1] 129 71 59 -[1] 130 71 63 -[1] 131 71 62 -[1] 132 71 57 -[1] 133 71 52 -[1] 134 71 51 -[1] 135 71 57 -[1] 136 71 32 -[1] 137 71 42 -[1] 138 71 55 -[1] 139 71 48 -[1] 140 71 67 -[1] 141 71 53 -[1] 142 71 44 -[1] 143 71 51 -[1] 144 71 49 -[1] 145 71 36 -[1] 146 71 52 -[1] 147 71 47 -[1] 148 71 94 -[1] 149 71 62 -[1] 150 71 36 -[1] 151 71 59 -[1] 152 71 44 -[1] 153 71 48 -[1] 154 71 63 -[1] 155 71 51 -[1] 156 71 54 -[1] 157 71 51 -[1] 158 71 58 -[1] 159 71 53 -[1] 160 71 52 -[1] 161 71 57 -[1] 162 71 36 -[1] 163 71 59 -[1] 164 71 43 -[1] 165 71 53 -[1] 166 71 54 -[1] 167 71 31 -[1] 168 71 71 -[1] 169 71 59 -[1] 170 71 43 -[1] 171 71 50 -[1] 172 71 48 -[1] 173 71 41 -[1] 174 71 48 -[1] 175 71 55 -[1] 176 71 42 -[1] 177 71 58 -[1] 178 71 51 -[1] 179 71 63 -[1] 180 71 56 -[1] 181 71 41 -[1] 182 71 50 -[1] 183 71 44 -[1] 184 71 49 -[1] 185 71 52 -[1] 186 71 45 -[1] 187 71 38 -[1] 188 71 46 -[1] 189 71 87 -[1] 190 71 69 -[1] 191 71 62 -[1] 192 71 41 -[1] 193 71 75 -[1] 194 71 52 -[1] 195 71 46 -[1] 196 71 43 -[1] 197 71 33 -[1] 198 71 49 -[1] 199 71 46 -[1] 200 71 41 -[1] 1 72 39 -[1] 2 72 35 -[1] 3 72 36 -[1] 4 72 35 -[1] 5 72 30 -[1] 6 72 39 -[1] 7 72 24 -[1] 8 72 34 -[1] 9 72 40 -[1] 10 72 42 -[1] 11 72 39 -[1] 12 72 68 -[1] 13 72 42 -[1] 14 72 28 -[1] 15 72 39 -[1] 16 72 50 -[1] 17 72 38 -[1] 18 72 45 -[1] 19 72 31 -[1] 20 72 68 -[1] 21 72 29 -[1] 22 72 43 -[1] 23 72 43 -[1] 24 72 38 -[1] 25 72 48 -[1] 26 72 34 -[1] 27 72 36 -[1] 28 72 53 -[1] 29 72 67 -[1] 30 72 32 -[1] 31 72 60 -[1] 32 72 48 -[1] 33 72 52 -[1] 34 72 37 -[1] 35 72 44 -[1] 36 72 33 -[1] 37 72 59 -[1] 38 72 44 -[1] 39 72 41 -[1] 40 72 64 -[1] 41 72 35 -[1] 42 72 54 -[1] 43 72 97 -[1] 44 72 53 -[1] 45 72 34 -[1] 46 72 59 -[1] 47 72 60 -[1] 48 72 59 -[1] 49 72 132 -[1] 50 72 93 -[1] 51 72 65 -[1] 52 72 36 -[1] 53 72 49 -[1] 54 72 37 -[1] 55 72 58 -[1] 56 72 38 -[1] 57 72 52 -[1] 58 72 46 -[1] 59 72 70 -[1] 60 72 57 -[1] 61 72 40 -[1] 62 72 47 -[1] 63 72 38 -[1] 64 72 65 -[1] 65 72 39 -[1] 66 72 46 -[1] 67 72 57 -[1] 68 72 52 -[1] 69 72 83 -[1] 70 72 31 -[1] 71 72 72 -[1] 72 72 101 -[1] 73 72 35 -[1] 74 72 53 -[1] 75 72 46 -[1] 76 72 49 -[1] 77 72 55 -[1] 78 72 51 -[1] 79 72 47 -[1] 80 72 43 -[1] 81 72 39 -[1] 82 72 71 -[1] 83 72 60 -[1] 84 72 43 -[1] 85 72 72 -[1] 86 72 58 -[1] 87 72 44 -[1] 88 72 64 -[1] 89 72 33 -[1] 90 72 51 -[1] 91 72 40 -[1] 92 72 45 -[1] 93 72 37 -[1] 94 72 46 -[1] 95 72 45 -[1] 96 72 39 -[1] 97 72 72 -[1] 98 72 56 -[1] 99 72 53 -[1] 100 72 46 -[1] 101 72 51 -[1] 102 72 95 -[1] 103 72 76 -[1] 104 72 47 -[1] 105 72 46 -[1] 106 72 94 -[1] 107 72 63 -[1] 108 72 34 -[1] 109 72 59 -[1] 110 72 45 -[1] 111 72 47 -[1] 112 72 43 -[1] 113 72 54 -[1] 114 72 38 -[1] 115 72 74 -[1] 116 72 38 -[1] 117 72 48 -[1] 118 72 45 -[1] 119 72 54 -[1] 120 72 39 -[1] 121 72 49 -[1] 122 72 51 -[1] 123 72 58 -[1] 124 72 43 -[1] 125 72 60 -[1] 126 72 41 -[1] 127 72 62 -[1] 128 72 58 -[1] 129 72 79 -[1] 130 72 46 -[1] 131 72 39 -[1] 132 72 46 -[1] 133 72 35 -[1] 134 72 57 -[1] 135 72 48 -[1] 136 72 49 -[1] 137 72 41 -[1] 138 72 68 -[1] 139 72 67 -[1] 140 72 46 -[1] 141 72 75 -[1] 142 72 58 -[1] 143 72 42 -[1] 144 72 45 -[1] 145 72 65 -[1] 146 72 42 -[1] 147 72 38 -[1] 148 72 52 -[1] 149 72 58 -[1] 150 72 55 -[1] 151 72 45 -[1] 152 72 53 -[1] 153 72 52 -[1] 154 72 69 -[1] 155 72 71 -[1] 156 72 44 -[1] 157 72 60 -[1] 158 72 41 -[1] 159 72 50 -[1] 160 72 45 -[1] 161 72 43 -[1] 162 72 55 -[1] 163 72 59 -[1] 164 72 48 -[1] 165 72 63 -[1] 166 72 42 -[1] 167 72 46 -[1] 168 72 50 -[1] 169 72 33 -[1] 170 72 61 -[1] 171 72 56 -[1] 172 72 65 -[1] 173 72 30 -[1] 174 72 41 -[1] 175 72 53 -[1] 176 72 46 -[1] 177 72 58 -[1] 178 72 41 -[1] 179 72 60 -[1] 180 72 38 -[1] 181 72 66 -[1] 182 72 53 -[1] 183 72 72 -[1] 184 72 36 -[1] 185 72 80 -[1] 186 72 62 -[1] 187 72 51 -[1] 188 72 82 -[1] 189 72 50 -[1] 190 72 34 -[1] 191 72 64 -[1] 192 72 51 -[1] 193 72 51 -[1] 194 72 57 -[1] 195 72 49 -[1] 196 72 39 -[1] 197 72 57 -[1] 198 72 42 -[1] 199 72 52 -[1] 200 72 67 -[1] 1 73 53 -[1] 2 73 33 -[1] 3 73 36 -[1] 4 73 45 -[1] 5 73 32 -[1] 6 73 27 -[1] 7 73 34 -[1] 8 73 39 -[1] 9 73 40 -[1] 10 73 35 -[1] 11 73 41 -[1] 12 73 36 -[1] 13 73 71 -[1] 14 73 47 -[1] 15 73 49 -[1] 16 73 43 -[1] 17 73 55 -[1] 18 73 49 -[1] 19 73 35 -[1] 20 73 44 -[1] 21 73 52 -[1] 22 73 67 -[1] 23 73 37 -[1] 24 73 44 -[1] 25 73 41 -[1] 26 73 31 -[1] 27 73 55 -[1] 28 73 59 -[1] 29 73 54 -[1] 30 73 35 -[1] 31 73 34 -[1] 32 73 44 -[1] 33 73 71 -[1] 34 73 61 -[1] 35 73 35 -[1] 36 73 33 -[1] 37 73 60 -[1] 38 73 49 -[1] 39 73 37 -[1] 40 73 47 -[1] 41 73 51 -[1] 42 73 33 -[1] 43 73 62 -[1] 44 73 49 -[1] 45 73 30 -[1] 46 73 57 -[1] 47 73 63 -[1] 48 73 41 -[1] 49 73 80 -[1] 50 73 35 -[1] 51 73 61 -[1] 52 73 51 -[1] 53 73 37 -[1] 54 73 48 -[1] 55 73 65 -[1] 56 73 52 -[1] 57 73 57 -[1] 58 73 69 -[1] 59 73 49 -[1] 60 73 59 -[1] 61 73 49 -[1] 62 73 97 -[1] 63 73 52 -[1] 64 73 84 -[1] 65 73 89 -[1] 66 73 65 -[1] 67 73 55 -[1] 68 73 76 -[1] 69 73 52 -[1] 70 73 33 -[1] 71 73 42 -[1] 72 73 51 -[1] 73 73 43 -[1] 74 73 45 -[1] 75 73 45 -[1] 76 73 43 -[1] 77 73 45 -[1] 78 73 59 -[1] 79 73 64 -[1] 80 73 68 -[1] 81 73 65 -[1] 82 73 63 -[1] 83 73 52 -[1] 84 73 59 -[1] 85 73 51 -[1] 86 73 42 -[1] 87 73 44 -[1] 88 73 53 -[1] 89 73 53 -[1] 90 73 58 -[1] 91 73 47 -[1] 92 73 54 -[1] 93 73 35 -[1] 94 73 66 -[1] 95 73 41 -[1] 96 73 41 -[1] 97 73 30 -[1] 98 73 45 -[1] 99 73 51 -[1] 100 73 56 -[1] 101 73 59 -[1] 102 73 44 -[1] 103 73 76 -[1] 104 73 87 -[1] 105 73 52 -[1] 106 73 49 -[1] 107 73 79 -[1] 108 73 42 -[1] 109 73 31 -[1] 110 73 45 -[1] 111 73 63 -[1] 112 73 57 -[1] 113 73 59 -[1] 114 73 58 -[1] 115 73 63 -[1] 116 73 46 -[1] 117 73 30 -[1] 118 73 82 -[1] 119 73 42 -[1] 120 73 64 -[1] 121 73 48 -[1] 122 73 63 -[1] 123 73 54 -[1] 124 73 78 -[1] 125 73 71 -[1] 126 73 44 -[1] 127 73 67 -[1] 128 73 57 -[1] 129 73 44 -[1] 130 73 79 -[1] 131 73 54 -[1] 132 73 61 -[1] 133 73 41 -[1] 134 73 53 -[1] 135 73 61 -[1] 136 73 63 -[1] 137 73 49 -[1] 138 73 82 -[1] 139 73 40 -[1] 140 73 71 -[1] 141 73 75 -[1] 142 73 42 -[1] 143 73 46 -[1] 144 73 51 -[1] 145 73 39 -[1] 146 73 55 -[1] 147 73 60 -[1] 148 73 51 -[1] 149 73 56 -[1] 150 73 32 -[1] 151 73 63 -[1] 152 73 56 -[1] 153 73 47 -[1] 154 73 49 -[1] 155 73 49 -[1] 156 73 38 -[1] 157 73 48 -[1] 158 73 58 -[1] 159 73 52 -[1] 160 73 38 -[1] 161 73 93 -[1] 162 73 84 -[1] 163 73 59 -[1] 164 73 65 -[1] 165 73 51 -[1] 166 73 45 -[1] 167 73 41 -[1] 168 73 61 -[1] 169 73 66 -[1] 170 73 45 -[1] 171 73 82 -[1] 172 73 43 -[1] 173 73 49 -[1] 174 73 40 -[1] 175 73 63 -[1] 176 73 58 -[1] 177 73 49 -[1] 178 73 36 -[1] 179 73 63 -[1] 180 73 46 -[1] 181 73 44 -[1] 182 73 62 -[1] 183 73 35 -[1] 184 73 57 -[1] 185 73 53 -[1] 186 73 42 -[1] 187 73 49 -[1] 188 73 41 -[1] 189 73 57 -[1] 190 73 44 -[1] 191 73 34 -[1] 192 73 51 -[1] 193 73 56 -[1] 194 73 71 -[1] 195 73 55 -[1] 196 73 42 -[1] 197 73 57 -[1] 198 73 48 -[1] 199 73 47 -[1] 200 73 51 -[1] 1 74 35 -[1] 2 74 43 -[1] 3 74 30 -[1] 4 74 41 -[1] 5 74 46 -[1] 6 74 30 -[1] 7 74 54 -[1] 8 74 40 -[1] 9 74 58 -[1] 10 74 60 -[1] 11 74 64 -[1] 12 74 30 -[1] 13 74 64 -[1] 14 74 39 -[1] 15 74 63 -[1] 16 74 33 -[1] 17 74 51 -[1] 18 74 42 -[1] 19 74 32 -[1] 20 74 36 -[1] 21 74 33 -[1] 22 74 65 -[1] 23 74 51 -[1] 24 74 64 -[1] 25 74 40 -[1] 26 74 57 -[1] 27 74 43 -[1] 28 74 42 -[1] 29 74 29 -[1] 30 74 46 -[1] 31 74 51 -[1] 32 74 32 -[1] 33 74 46 -[1] 34 74 32 -[1] 35 74 88 -[1] 36 74 61 -[1] 37 74 40 -[1] 38 74 36 -[1] 39 74 41 -[1] 40 74 52 -[1] 41 74 54 -[1] 42 74 37 -[1] 43 74 37 -[1] 44 74 55 -[1] 45 74 52 -[1] 46 74 61 -[1] 47 74 40 -[1] 48 74 40 -[1] 49 74 52 -[1] 50 74 53 -[1] 51 74 45 -[1] 52 74 86 -[1] 53 74 52 -[1] 54 74 63 -[1] 55 74 83 -[1] 56 74 47 -[1] 57 74 82 -[1] 58 74 54 -[1] 59 74 47 -[1] 60 74 59 -[1] 61 74 32 -[1] 62 74 51 -[1] 63 74 70 -[1] 64 74 43 -[1] 65 74 55 -[1] 66 74 39 -[1] 67 74 66 -[1] 68 74 64 -[1] 69 74 58 -[1] 70 74 60 -[1] 71 74 53 -[1] 72 74 72 -[1] 73 74 47 -[1] 74 74 47 -[1] 75 74 67 -[1] 76 74 40 -[1] 77 74 43 -[1] 78 74 57 -[1] 79 74 42 -[1] 80 74 53 -[1] 81 74 48 -[1] 82 74 43 -[1] 83 74 62 -[1] 84 74 41 -[1] 85 74 67 -[1] 86 74 56 -[1] 87 74 35 -[1] 88 74 58 -[1] 89 74 65 -[1] 90 74 67 -[1] 91 74 76 -[1] 92 74 88 -[1] 93 74 57 -[1] 94 74 45 -[1] 95 74 36 -[1] 96 74 70 -[1] 97 74 43 -[1] 98 74 52 -[1] 99 74 46 -[1] 100 74 76 -[1] 101 74 82 -[1] 102 74 55 -[1] 103 74 43 -[1] 104 74 82 -[1] 105 74 41 -[1] 106 74 65 -[1] 107 74 40 -[1] 108 74 39 -[1] 109 74 42 -[1] 110 74 48 -[1] 111 74 57 -[1] 112 74 51 -[1] 113 74 38 -[1] 114 74 51 -[1] 115 74 73 -[1] 116 74 57 -[1] 117 74 54 -[1] 118 74 36 -[1] 119 74 49 -[1] 120 74 37 -[1] 121 74 60 -[1] 122 74 35 -[1] 123 74 102 -[1] 124 74 53 -[1] 125 74 50 -[1] 126 74 62 -[1] 127 74 53 -[1] 128 74 49 -[1] 129 74 48 -[1] 130 74 50 -[1] 131 74 42 -[1] 132 74 57 -[1] 133 74 70 -[1] 134 74 37 -[1] 135 74 75 -[1] 136 74 38 -[1] 137 74 45 -[1] 138 74 73 -[1] 139 74 75 -[1] 140 74 40 -[1] 141 74 45 -[1] 142 74 59 -[1] 143 74 41 -[1] 144 74 40 -[1] 145 74 80 -[1] 146 74 95 -[1] 147 74 43 -[1] 148 74 37 -[1] 149 74 50 -[1] 150 74 50 -[1] 151 74 55 -[1] 152 74 43 -[1] 153 74 58 -[1] 154 74 49 -[1] 155 74 34 -[1] 156 74 43 -[1] 157 74 38 -[1] 158 74 85 -[1] 159 74 54 -[1] 160 74 49 -[1] 161 74 87 -[1] 162 74 66 -[1] 163 74 61 -[1] 164 74 28 -[1] 165 74 49 -[1] 166 74 38 -[1] 167 74 56 -[1] 168 74 55 -[1] 169 74 49 -[1] 170 74 54 -[1] 171 74 57 -[1] 172 74 38 -[1] 173 74 69 -[1] 174 74 43 -[1] 175 74 42 -[1] 176 74 42 -[1] 177 74 38 -[1] 178 74 44 -[1] 179 74 63 -[1] 180 74 47 -[1] 181 74 34 -[1] 182 74 44 -[1] 183 74 67 -[1] 184 74 66 -[1] 185 74 40 -[1] 186 74 42 -[1] 187 74 58 -[1] 188 74 39 -[1] 189 74 58 -[1] 190 74 43 -[1] 191 74 47 -[1] 192 74 54 -[1] 193 74 41 -[1] 194 74 52 -[1] 195 74 61 -[1] 196 74 66 -[1] 197 74 39 -[1] 198 74 43 -[1] 199 74 38 -[1] 200 74 45 -[1] 1 75 39 -[1] 2 75 31 -[1] 3 75 32 -[1] 4 75 39 -[1] 5 75 44 -[1] 6 75 47 -[1] 7 75 40 -[1] 8 75 41 -[1] 9 75 43 -[1] 10 75 45 -[1] 11 75 40 -[1] 12 75 37 -[1] 13 75 45 -[1] 14 75 47 -[1] 15 75 41 -[1] 16 75 38 -[1] 17 75 37 -[1] 18 75 57 -[1] 19 75 33 -[1] 20 75 50 -[1] 21 75 54 -[1] 22 75 61 -[1] 23 75 43 -[1] 24 75 56 -[1] 25 75 57 -[1] 26 75 40 -[1] 27 75 53 -[1] 28 75 54 -[1] 29 75 39 -[1] 30 75 33 -[1] 31 75 52 -[1] 32 75 58 -[1] 33 75 67 -[1] 34 75 40 -[1] 35 75 63 -[1] 36 75 49 -[1] 37 75 40 -[1] 38 75 37 -[1] 39 75 38 -[1] 40 75 49 -[1] 41 75 42 -[1] 42 75 34 -[1] 43 75 57 -[1] 44 75 42 -[1] 45 75 78 -[1] 46 75 48 -[1] 47 75 45 -[1] 48 75 38 -[1] 49 75 49 -[1] 50 75 40 -[1] 51 75 36 -[1] 52 75 71 -[1] 53 75 75 -[1] 54 75 35 -[1] 55 75 76 -[1] 56 75 53 -[1] 57 75 66 -[1] 58 75 55 -[1] 59 75 77 -[1] 60 75 48 -[1] 61 75 47 -[1] 62 75 48 -[1] 63 75 32 -[1] 64 75 44 -[1] 65 75 58 -[1] 66 75 46 -[1] 67 75 35 -[1] 68 75 63 -[1] 69 75 41 -[1] 70 75 104 -[1] 71 75 78 -[1] 72 75 44 -[1] 73 75 40 -[1] 74 75 36 -[1] 75 75 58 -[1] 76 75 79 -[1] 77 75 61 -[1] 78 75 44 -[1] 79 75 53 -[1] 80 75 46 -[1] 81 75 46 -[1] 82 75 49 -[1] 83 75 49 -[1] 84 75 41 -[1] 85 75 60 -[1] 86 75 47 -[1] 87 75 68 -[1] 88 75 50 -[1] 89 75 56 -[1] 90 75 74 -[1] 91 75 48 -[1] 92 75 56 -[1] 93 75 46 -[1] 94 75 37 -[1] 95 75 47 -[1] 96 75 43 -[1] 97 75 81 -[1] 98 75 45 -[1] 99 75 48 -[1] 100 75 40 -[1] 101 75 58 -[1] 102 75 61 -[1] 103 75 49 -[1] 104 75 54 -[1] 105 75 68 -[1] 106 75 62 -[1] 107 75 64 -[1] 108 75 68 -[1] 109 75 45 -[1] 110 75 53 -[1] 111 75 99 -[1] 112 75 56 -[1] 113 75 44 -[1] 114 75 37 -[1] 115 75 59 -[1] 116 75 52 -[1] 117 75 52 -[1] 118 75 63 -[1] 119 75 50 -[1] 120 75 45 -[1] 121 75 37 -[1] 122 75 44 -[1] 123 75 56 -[1] 124 75 43 -[1] 125 75 45 -[1] 126 75 91 -[1] 127 75 41 -[1] 128 75 50 -[1] 129 75 37 -[1] 130 75 39 -[1] 131 75 93 -[1] 132 75 56 -[1] 133 75 42 -[1] 134 75 45 -[1] 135 75 46 -[1] 136 75 61 -[1] 137 75 33 -[1] 138 75 58 -[1] 139 75 50 -[1] 140 75 55 -[1] 141 75 45 -[1] 142 75 38 -[1] 143 75 103 -[1] 144 75 41 -[1] 145 75 61 -[1] 146 75 62 -[1] 147 75 54 -[1] 148 75 36 -[1] 149 75 55 -[1] 150 75 39 -[1] 151 75 40 -[1] 152 75 45 -[1] 153 75 58 -[1] 154 75 65 -[1] 155 75 38 -[1] 156 75 53 -[1] 157 75 44 -[1] 158 75 71 -[1] 159 75 34 -[1] 160 75 45 -[1] 161 75 37 -[1] 162 75 57 -[1] 163 75 44 -[1] 164 75 41 -[1] 165 75 74 -[1] 166 75 33 -[1] 167 75 66 -[1] 168 75 48 -[1] 169 75 58 -[1] 170 75 54 -[1] 171 75 56 -[1] 172 75 33 -[1] 173 75 46 -[1] 174 75 60 -[1] 175 75 44 -[1] 176 75 64 -[1] 177 75 49 -[1] 178 75 35 -[1] 179 75 49 -[1] 180 75 67 -[1] 181 75 29 -[1] 182 75 42 -[1] 183 75 93 -[1] 184 75 58 -[1] 185 75 60 -[1] 186 75 56 -[1] 187 75 48 -[1] 188 75 33 -[1] 189 75 58 -[1] 190 75 52 -[1] 191 75 62 -[1] 192 75 42 -[1] 193 75 59 -[1] 194 75 58 -[1] 195 75 47 -[1] 196 75 44 -[1] 197 75 67 -[1] 198 75 46 -[1] 199 75 92 -[1] 200 75 58 -[1] 1 76 25 -[1] 2 76 35 -[1] 3 76 34 -[1] 4 76 33 -[1] 5 76 34 -[1] 6 76 41 -[1] 7 76 37 -[1] 8 76 52 -[1] 9 76 42 -[1] 10 76 44 -[1] 11 76 70 -[1] 12 76 40 -[1] 13 76 43 -[1] 14 76 65 -[1] 15 76 41 -[1] 16 76 41 -[1] 17 76 64 -[1] 18 76 44 -[1] 19 76 45 -[1] 20 76 34 -[1] 21 76 32 -[1] 22 76 67 -[1] 23 76 64 -[1] 24 76 51 -[1] 25 76 36 -[1] 26 76 55 -[1] 27 76 32 -[1] 28 76 63 -[1] 29 76 68 -[1] 30 76 55 -[1] 31 76 38 -[1] 32 76 40 -[1] 33 76 60 -[1] 34 76 47 -[1] 35 76 49 -[1] 36 76 50 -[1] 37 76 54 -[1] 38 76 41 -[1] 39 76 40 -[1] 40 76 52 -[1] 41 76 59 -[1] 42 76 49 -[1] 43 76 57 -[1] 44 76 52 -[1] 45 76 70 -[1] 46 76 52 -[1] 47 76 50 -[1] 48 76 45 -[1] 49 76 56 -[1] 50 76 46 -[1] 51 76 45 -[1] 52 76 52 -[1] 53 76 47 -[1] 54 76 57 -[1] 55 76 88 -[1] 56 76 39 -[1] 57 76 64 -[1] 58 76 39 -[1] 59 76 54 -[1] 60 76 71 -[1] 61 76 40 -[1] 62 76 39 -[1] 63 76 60 -[1] 64 76 43 -[1] 65 76 63 -[1] 66 76 38 -[1] 67 76 35 -[1] 68 76 48 -[1] 69 76 41 -[1] 70 76 113 -[1] 71 76 54 -[1] 72 76 42 -[1] 73 76 44 -[1] 74 76 84 -[1] 75 76 64 -[1] 76 76 54 -[1] 77 76 49 -[1] 78 76 53 -[1] 79 76 43 -[1] 80 76 70 -[1] 81 76 50 -[1] 82 76 47 -[1] 83 76 41 -[1] 84 76 36 -[1] 85 76 73 -[1] 86 76 42 -[1] 87 76 77 -[1] 88 76 48 -[1] 89 76 49 -[1] 90 76 44 -[1] 91 76 41 -[1] 92 76 39 -[1] 93 76 40 -[1] 94 76 46 -[1] 95 76 64 -[1] 96 76 77 -[1] 97 76 61 -[1] 98 76 83 -[1] 99 76 47 -[1] 100 76 52 -[1] 101 76 80 -[1] 102 76 54 -[1] 103 76 42 -[1] 104 76 74 -[1] 105 76 77 -[1] 106 76 46 -[1] 107 76 33 -[1] 108 76 34 -[1] 109 76 50 -[1] 110 76 64 -[1] 111 76 32 -[1] 112 76 68 -[1] 113 76 66 -[1] 114 76 48 -[1] 115 76 68 -[1] 116 76 50 -[1] 117 76 43 -[1] 118 76 46 -[1] 119 76 48 -[1] 120 76 43 -[1] 121 76 58 -[1] 122 76 50 -[1] 123 76 53 -[1] 124 76 92 -[1] 125 76 74 -[1] 126 76 41 -[1] 127 76 71 -[1] 128 76 57 -[1] 129 76 42 -[1] 130 76 87 -[1] 131 76 52 -[1] 132 76 88 -[1] 133 76 60 -[1] 134 76 46 -[1] 135 76 34 -[1] 136 76 40 -[1] 137 76 48 -[1] 138 76 54 -[1] 139 76 56 -[1] 140 76 53 -[1] 141 76 50 -[1] 142 76 56 -[1] 143 76 46 -[1] 144 76 56 -[1] 145 76 38 -[1] 146 76 60 -[1] 147 76 42 -[1] 148 76 36 -[1] 149 76 48 -[1] 150 76 65 -[1] 151 76 51 -[1] 152 76 37 -[1] 153 76 50 -[1] 154 76 101 -[1] 155 76 47 -[1] 156 76 54 -[1] 157 76 32 -[1] 158 76 59 -[1] 159 76 77 -[1] 160 76 38 -[1] 161 76 67 -[1] 162 76 61 -[1] 163 76 54 -[1] 164 76 42 -[1] 165 76 45 -[1] 166 76 49 -[1] 167 76 50 -[1] 168 76 36 -[1] 169 76 43 -[1] 170 76 69 -[1] 171 76 46 -[1] 172 76 39 -[1] 173 76 57 -[1] 174 76 45 -[1] 175 76 49 -[1] 176 76 37 -[1] 177 76 64 -[1] 178 76 57 -[1] 179 76 35 -[1] 180 76 47 -[1] 181 76 84 -[1] 182 76 53 -[1] 183 76 53 -[1] 184 76 74 -[1] 185 76 66 -[1] 186 76 38 -[1] 187 76 67 -[1] 188 76 39 -[1] 189 76 28 -[1] 190 76 61 -[1] 191 76 35 -[1] 192 76 35 -[1] 193 76 48 -[1] 194 76 35 -[1] 195 76 43 -[1] 196 76 50 -[1] 197 76 58 -[1] 198 76 35 -[1] 199 76 44 -[1] 200 76 47 -[1] 1 77 43 -[1] 2 77 54 -[1] 3 77 34 -[1] 4 77 48 -[1] 5 77 33 -[1] 6 77 42 -[1] 7 77 30 -[1] 8 77 33 -[1] 9 77 42 -[1] 10 77 35 -[1] 11 77 31 -[1] 12 77 32 -[1] 13 77 61 -[1] 14 77 42 -[1] 15 77 43 -[1] 16 77 32 -[1] 17 77 41 -[1] 18 77 37 -[1] 19 77 48 -[1] 20 77 43 -[1] 21 77 35 -[1] 22 77 43 -[1] 23 77 28 -[1] 24 77 53 -[1] 25 77 34 -[1] 26 77 38 -[1] 27 77 39 -[1] 28 77 39 -[1] 29 77 46 -[1] 30 77 52 -[1] 31 77 43 -[1] 32 77 43 -[1] 33 77 36 -[1] 34 77 56 -[1] 35 77 63 -[1] 36 77 45 -[1] 37 77 70 -[1] 38 77 51 -[1] 39 77 55 -[1] 40 77 56 -[1] 41 77 42 -[1] 42 77 54 -[1] 43 77 43 -[1] 44 77 63 -[1] 45 77 57 -[1] 46 77 37 -[1] 47 77 80 -[1] 48 77 33 -[1] 49 77 40 -[1] 50 77 43 -[1] 51 77 57 -[1] 52 77 51 -[1] 53 77 69 -[1] 54 77 57 -[1] 55 77 42 -[1] 56 77 61 -[1] 57 77 77 -[1] 58 77 50 -[1] 59 77 61 -[1] 60 77 47 -[1] 61 77 49 -[1] 62 77 49 -[1] 63 77 45 -[1] 64 77 78 -[1] 65 77 155 -[1] 66 77 63 -[1] 67 77 36 -[1] 68 77 67 -[1] 69 77 42 -[1] 70 77 33 -[1] 71 77 43 -[1] 72 77 54 -[1] 73 77 58 -[1] 74 77 55 -[1] 75 77 55 -[1] 76 77 35 -[1] 77 77 54 -[1] 78 77 58 -[1] 79 77 37 -[1] 80 77 65 -[1] 81 77 39 -[1] 82 77 37 -[1] 83 77 65 -[1] 84 77 63 -[1] 85 77 63 -[1] 86 77 68 -[1] 87 77 61 -[1] 88 77 30 -[1] 89 77 51 -[1] 90 77 60 -[1] 91 77 93 -[1] 92 77 39 -[1] 93 77 49 -[1] 94 77 36 -[1] 95 77 38 -[1] 96 77 34 -[1] 97 77 67 -[1] 98 77 53 -[1] 99 77 44 -[1] 100 77 69 -[1] 101 77 70 -[1] 102 77 47 -[1] 103 77 57 -[1] 104 77 43 -[1] 105 77 35 -[1] 106 77 65 -[1] 107 77 42 -[1] 108 77 44 -[1] 109 77 72 -[1] 110 77 39 -[1] 111 77 81 -[1] 112 77 66 -[1] 113 77 64 -[1] 114 77 37 -[1] 115 77 32 -[1] 116 77 46 -[1] 117 77 56 -[1] 118 77 50 -[1] 119 77 41 -[1] 120 77 60 -[1] 121 77 49 -[1] 122 77 58 -[1] 123 77 47 -[1] 124 77 41 -[1] 125 77 48 -[1] 126 77 47 -[1] 127 77 35 -[1] 128 77 70 -[1] 129 77 48 -[1] 130 77 73 -[1] 131 77 46 -[1] 132 77 33 -[1] 133 77 55 -[1] 134 77 46 -[1] 135 77 47 -[1] 136 77 48 -[1] 137 77 52 -[1] 138 77 51 -[1] 139 77 67 -[1] 140 77 43 -[1] 141 77 30 -[1] 142 77 73 -[1] 143 77 33 -[1] 144 77 51 -[1] 145 77 49 -[1] 146 77 33 -[1] 147 77 37 -[1] 148 77 38 -[1] 149 77 55 -[1] 150 77 60 -[1] 151 77 47 -[1] 152 77 56 -[1] 153 77 45 -[1] 154 77 43 -[1] 155 77 48 -[1] 156 77 35 -[1] 157 77 56 -[1] 158 77 53 -[1] 159 77 36 -[1] 160 77 57 -[1] 161 77 55 -[1] 162 77 38 -[1] 163 77 73 -[1] 164 77 35 -[1] 165 77 61 -[1] 166 77 40 -[1] 167 77 76 -[1] 168 77 58 -[1] 169 77 89 -[1] 170 77 30 -[1] 171 77 49 -[1] 172 77 50 -[1] 173 77 49 -[1] 174 77 47 -[1] 175 77 66 -[1] 176 77 46 -[1] 177 77 36 -[1] 178 77 96 -[1] 179 77 57 -[1] 180 77 50 -[1] 181 77 49 -[1] 182 77 56 -[1] 183 77 47 -[1] 184 77 42 -[1] 185 77 37 -[1] 186 77 47 -[1] 187 77 56 -[1] 188 77 51 -[1] 189 77 74 -[1] 190 77 65 -[1] 191 77 56 -[1] 192 77 47 -[1] 193 77 42 -[1] 194 77 70 -[1] 195 77 43 -[1] 196 77 51 -[1] 197 77 67 -[1] 198 77 54 -[1] 199 77 45 -[1] 200 77 61 -[1] 1 78 39 -[1] 2 78 50 -[1] 3 78 43 -[1] 4 78 32 -[1] 5 78 44 -[1] 6 78 39 -[1] 7 78 41 -[1] 8 78 39 -[1] 9 78 33 -[1] 10 78 46 -[1] 11 78 47 -[1] 12 78 54 -[1] 13 78 39 -[1] 14 78 45 -[1] 15 78 50 -[1] 16 78 42 -[1] 17 78 33 -[1] 18 78 34 -[1] 19 78 45 -[1] 20 78 63 -[1] 21 78 56 -[1] 22 78 38 -[1] 23 78 37 -[1] 24 78 47 -[1] 25 78 65 -[1] 26 78 35 -[1] 27 78 54 -[1] 28 78 32 -[1] 29 78 44 -[1] 30 78 63 -[1] 31 78 48 -[1] 32 78 69 -[1] 33 78 43 -[1] 34 78 63 -[1] 35 78 48 -[1] 36 78 29 -[1] 37 78 30 -[1] 38 78 36 -[1] 39 78 41 -[1] 40 78 33 -[1] 41 78 52 -[1] 42 78 45 -[1] 43 78 39 -[1] 44 78 35 -[1] 45 78 68 -[1] 46 78 44 -[1] 47 78 51 -[1] 48 78 51 -[1] 49 78 41 -[1] 50 78 43 -[1] 51 78 88 -[1] 52 78 51 -[1] 53 78 66 -[1] 54 78 47 -[1] 55 78 75 -[1] 56 78 57 -[1] 57 78 64 -[1] 58 78 53 -[1] 59 78 63 -[1] 60 78 65 -[1] 61 78 63 -[1] 62 78 81 -[1] 63 78 79 -[1] 64 78 51 -[1] 65 78 72 -[1] 66 78 47 -[1] 67 78 65 -[1] 68 78 62 -[1] 69 78 50 -[1] 70 78 63 -[1] 71 78 38 -[1] 72 78 37 -[1] 73 78 52 -[1] 74 78 57 -[1] 75 78 40 -[1] 76 78 33 -[1] 77 78 53 -[1] 78 78 35 -[1] 79 78 49 -[1] 80 78 34 -[1] 81 78 64 -[1] 82 78 77 -[1] 83 78 62 -[1] 84 78 47 -[1] 85 78 60 -[1] 86 78 62 -[1] 87 78 38 -[1] 88 78 44 -[1] 89 78 54 -[1] 90 78 51 -[1] 91 78 58 -[1] 92 78 51 -[1] 93 78 54 -[1] 94 78 111 -[1] 95 78 44 -[1] 96 78 63 -[1] 97 78 73 -[1] 98 78 48 -[1] 99 78 43 -[1] 100 78 44 -[1] 101 78 63 -[1] 102 78 36 -[1] 103 78 45 -[1] 104 78 54 -[1] 105 78 55 -[1] 106 78 51 -[1] 107 78 62 -[1] 108 78 55 -[1] 109 78 50 -[1] 110 78 43 -[1] 111 78 41 -[1] 112 78 36 -[1] 113 78 61 -[1] 114 78 44 -[1] 115 78 58 -[1] 116 78 53 -[1] 117 78 54 -[1] 118 78 46 -[1] 119 78 54 -[1] 120 78 57 -[1] 121 78 54 -[1] 122 78 80 -[1] 123 78 71 -[1] 124 78 57 -[1] 125 78 44 -[1] 126 78 55 -[1] 127 78 65 -[1] 128 78 52 -[1] 129 78 63 -[1] 130 78 61 -[1] 131 78 52 -[1] 132 78 37 -[1] 133 78 45 -[1] 134 78 67 -[1] 135 78 38 -[1] 136 78 56 -[1] 137 78 62 -[1] 138 78 62 -[1] 139 78 67 -[1] 140 78 73 -[1] 141 78 56 -[1] 142 78 41 -[1] 143 78 34 -[1] 144 78 37 -[1] 145 78 69 -[1] 146 78 49 -[1] 147 78 60 -[1] 148 78 37 -[1] 149 78 82 -[1] 150 78 58 -[1] 151 78 47 -[1] 152 78 43 -[1] 153 78 66 -[1] 154 78 49 -[1] 155 78 62 -[1] 156 78 55 -[1] 157 78 28 -[1] 158 78 55 -[1] 159 78 43 -[1] 160 78 56 -[1] 161 78 59 -[1] 162 78 44 -[1] 163 78 51 -[1] 164 78 39 -[1] 165 78 38 -[1] 166 78 44 -[1] 167 78 57 -[1] 168 78 77 -[1] 169 78 59 -[1] 170 78 41 -[1] 171 78 63 -[1] 172 78 55 -[1] 173 78 36 -[1] 174 78 51 -[1] 175 78 44 -[1] 176 78 47 -[1] 177 78 48 -[1] 178 78 47 -[1] 179 78 44 -[1] 180 78 55 -[1] 181 78 36 -[1] 182 78 29 -[1] 183 78 37 -[1] 184 78 42 -[1] 185 78 40 -[1] 186 78 57 -[1] 187 78 70 -[1] 188 78 58 -[1] 189 78 38 -[1] 190 78 51 -[1] 191 78 55 -[1] 192 78 61 -[1] 193 78 46 -[1] 194 78 58 -[1] 195 78 37 -[1] 196 78 37 -[1] 197 78 46 -[1] 198 78 50 -[1] 199 78 53 -[1] 200 78 75 -[1] 1 79 60 -[1] 2 79 38 -[1] 3 79 34 -[1] 4 79 35 -[1] 5 79 28 -[1] 6 79 37 -[1] 7 79 35 -[1] 8 79 46 -[1] 9 79 54 -[1] 10 79 26 -[1] 11 79 46 -[1] 12 79 56 -[1] 13 79 41 -[1] 14 79 48 -[1] 15 79 41 -[1] 16 79 48 -[1] 17 79 34 -[1] 18 79 47 -[1] 19 79 57 -[1] 20 79 61 -[1] 21 79 42 -[1] 22 79 37 -[1] 23 79 32 -[1] 24 79 69 -[1] 25 79 35 -[1] 26 79 95 -[1] 27 79 53 -[1] 28 79 37 -[1] 29 79 55 -[1] 30 79 91 -[1] 31 79 68 -[1] 32 79 70 -[1] 33 79 75 -[1] 34 79 52 -[1] 35 79 53 -[1] 36 79 42 -[1] 37 79 48 -[1] 38 79 44 -[1] 39 79 55 -[1] 40 79 44 -[1] 41 79 56 -[1] 42 79 52 -[1] 43 79 80 -[1] 44 79 56 -[1] 45 79 54 -[1] 46 79 41 -[1] 47 79 59 -[1] 48 79 33 -[1] 49 79 44 -[1] 50 79 49 -[1] 51 79 51 -[1] 52 79 48 -[1] 53 79 42 -[1] 54 79 76 -[1] 55 79 44 -[1] 56 79 56 -[1] 57 79 51 -[1] 58 79 48 -[1] 59 79 85 -[1] 60 79 58 -[1] 61 79 185 -[1] 62 79 40 -[1] 63 79 40 -[1] 64 79 52 -[1] 65 79 48 -[1] 66 79 46 -[1] 67 79 44 -[1] 68 79 65 -[1] 69 79 47 -[1] 70 79 36 -[1] 71 79 82 -[1] 72 79 51 -[1] 73 79 51 -[1] 74 79 55 -[1] 75 79 96 -[1] 76 79 63 -[1] 77 79 54 -[1] 78 79 57 -[1] 79 79 45 -[1] 80 79 52 -[1] 81 79 63 -[1] 82 79 58 -[1] 83 79 47 -[1] 84 79 66 -[1] 85 79 63 -[1] 86 79 45 -[1] 87 79 72 -[1] 88 79 52 -[1] 89 79 47 -[1] 90 79 64 -[1] 91 79 43 -[1] 92 79 61 -[1] 93 79 47 -[1] 94 79 42 -[1] 95 79 48 -[1] 96 79 84 -[1] 97 79 43 -[1] 98 79 58 -[1] 99 79 67 -[1] 100 79 52 -[1] 101 79 43 -[1] 102 79 57 -[1] 103 79 53 -[1] 104 79 54 -[1] 105 79 37 -[1] 106 79 85 -[1] 107 79 52 -[1] 108 79 44 -[1] 109 79 43 -[1] 110 79 71 -[1] 111 79 47 -[1] 112 79 72 -[1] 113 79 49 -[1] 114 79 58 -[1] 115 79 50 -[1] 116 79 67 -[1] 117 79 48 -[1] 118 79 63 -[1] 119 79 41 -[1] 120 79 35 -[1] 121 79 57 -[1] 122 79 49 -[1] 123 79 37 -[1] 124 79 70 -[1] 125 79 55 -[1] 126 79 25 -[1] 127 79 64 -[1] 128 79 42 -[1] 129 79 95 -[1] 130 79 37 -[1] 131 79 69 -[1] 132 79 46 -[1] 133 79 94 -[1] 134 79 47 -[1] 135 79 72 -[1] 136 79 55 -[1] 137 79 64 -[1] 138 79 50 -[1] 139 79 52 -[1] 140 79 42 -[1] 141 79 67 -[1] 142 79 46 -[1] 143 79 55 -[1] 144 79 35 -[1] 145 79 61 -[1] 146 79 88 -[1] 147 79 61 -[1] 148 79 52 -[1] 149 79 45 -[1] 150 79 72 -[1] 151 79 62 -[1] 152 79 53 -[1] 153 79 64 -[1] 154 79 37 -[1] 155 79 47 -[1] 156 79 32 -[1] 157 79 49 -[1] 158 79 41 -[1] 159 79 50 -[1] 160 79 44 -[1] 161 79 57 -[1] 162 79 54 -[1] 163 79 47 -[1] 164 79 45 -[1] 165 79 42 -[1] 166 79 59 -[1] 167 79 40 -[1] 168 79 53 -[1] 169 79 37 -[1] 170 79 78 -[1] 171 79 46 -[1] 172 79 39 -[1] 173 79 73 -[1] 174 79 42 -[1] 175 79 51 -[1] 176 79 29 -[1] 177 79 50 -[1] 178 79 28 -[1] 179 79 39 -[1] 180 79 39 -[1] 181 79 50 -[1] 182 79 34 -[1] 183 79 42 -[1] 184 79 54 -[1] 185 79 50 -[1] 186 79 45 -[1] 187 79 40 -[1] 188 79 41 -[1] 189 79 56 -[1] 190 79 53 -[1] 191 79 48 -[1] 192 79 51 -[1] 193 79 50 -[1] 194 79 44 -[1] 195 79 48 -[1] 196 79 46 -[1] 197 79 53 -[1] 198 79 52 -[1] 199 79 49 -[1] 200 79 49 -[1] 1 80 35 -[1] 2 80 28 -[1] 3 80 32 -[1] 4 80 36 -[1] 5 80 50 -[1] 6 80 31 -[1] 7 80 42 -[1] 8 80 37 -[1] 9 80 33 -[1] 10 80 36 -[1] 11 80 40 -[1] 12 80 41 -[1] 13 80 37 -[1] 14 80 47 -[1] 15 80 38 -[1] 16 80 44 -[1] 17 80 25 -[1] 18 80 125 -[1] 19 80 58 -[1] 20 80 65 -[1] 21 80 49 -[1] 22 80 36 -[1] 23 80 40 -[1] 24 80 45 -[1] 25 80 121 -[1] 26 80 52 -[1] 27 80 43 -[1] 28 80 32 -[1] 29 80 35 -[1] 30 80 36 -[1] 31 80 63 -[1] 32 80 48 -[1] 33 80 45 -[1] 34 80 41 -[1] 35 80 47 -[1] 36 80 50 -[1] 37 80 29 -[1] 38 80 42 -[1] 39 80 35 -[1] 40 80 88 -[1] 41 80 33 -[1] 42 80 53 -[1] 43 80 39 -[1] 44 80 100 -[1] 45 80 45 -[1] 46 80 42 -[1] 47 80 57 -[1] 48 80 65 -[1] 49 80 40 -[1] 50 80 54 -[1] 51 80 72 -[1] 52 80 54 -[1] 53 80 51 -[1] 54 80 68 -[1] 55 80 91 -[1] 56 80 51 -[1] 57 80 38 -[1] 58 80 72 -[1] 59 80 60 -[1] 60 80 56 -[1] 61 80 44 -[1] 62 80 59 -[1] 63 80 47 -[1] 64 80 39 -[1] 65 80 62 -[1] 66 80 42 -[1] 67 80 62 -[1] 68 80 76 -[1] 69 80 34 -[1] 70 80 47 -[1] 71 80 53 -[1] 72 80 39 -[1] 73 80 36 -[1] 74 80 77 -[1] 75 80 53 -[1] 76 80 47 -[1] 77 80 78 -[1] 78 80 73 -[1] 79 80 75 -[1] 80 80 40 -[1] 81 80 69 -[1] 82 80 42 -[1] 83 80 61 -[1] 84 80 71 -[1] 85 80 44 -[1] 86 80 69 -[1] 87 80 44 -[1] 88 80 51 -[1] 89 80 75 -[1] 90 80 54 -[1] 91 80 48 -[1] 92 80 63 -[1] 93 80 57 -[1] 94 80 52 -[1] 95 80 47 -[1] 96 80 51 -[1] 97 80 90 -[1] 98 80 68 -[1] 99 80 55 -[1] 100 80 42 -[1] 101 80 53 -[1] 102 80 35 -[1] 103 80 47 -[1] 104 80 53 -[1] 105 80 75 -[1] 106 80 49 -[1] 107 80 46 -[1] 108 80 81 -[1] 109 80 63 -[1] 110 80 54 -[1] 111 80 55 -[1] 112 80 52 -[1] 113 80 60 -[1] 114 80 33 -[1] 115 80 89 -[1] 116 80 47 -[1] 117 80 74 -[1] 118 80 75 -[1] 119 80 44 -[1] 120 80 60 -[1] 121 80 50 -[1] 122 80 53 -[1] 123 80 46 -[1] 124 80 82 -[1] 125 80 27 -[1] 126 80 56 -[1] 127 80 69 -[1] 128 80 74 -[1] 129 80 39 -[1] 130 80 48 -[1] 131 80 57 -[1] 132 80 50 -[1] 133 80 59 -[1] 134 80 71 -[1] 135 80 48 -[1] 136 80 46 -[1] 137 80 38 -[1] 138 80 41 -[1] 139 80 49 -[1] 140 80 38 -[1] 141 80 65 -[1] 142 80 27 -[1] 143 80 73 -[1] 144 80 42 -[1] 145 80 45 -[1] 146 80 52 -[1] 147 80 45 -[1] 148 80 62 -[1] 149 80 78 -[1] 150 80 40 -[1] 151 80 53 -[1] 152 80 50 -[1] 153 80 49 -[1] 154 80 40 -[1] 155 80 32 -[1] 156 80 41 -[1] 157 80 48 -[1] 158 80 46 -[1] 159 80 56 -[1] 160 80 49 -[1] 161 80 71 -[1] 162 80 45 -[1] 163 80 69 -[1] 164 80 70 -[1] 165 80 53 -[1] 166 80 40 -[1] 167 80 41 -[1] 168 80 87 -[1] 169 80 53 -[1] 170 80 39 -[1] 171 80 39 -[1] 172 80 45 -[1] 173 80 50 -[1] 174 80 38 -[1] 175 80 91 -[1] 176 80 42 -[1] 177 80 57 -[1] 178 80 50 -[1] 179 80 34 -[1] 180 80 44 -[1] 181 80 43 -[1] 182 80 38 -[1] 183 80 50 -[1] 184 80 45 -[1] 185 80 57 -[1] 186 80 30 -[1] 187 80 56 -[1] 188 80 45 -[1] 189 80 50 -[1] 190 80 42 -[1] 191 80 78 -[1] 192 80 48 -[1] 193 80 41 -[1] 194 80 47 -[1] 195 80 44 -[1] 196 80 52 -[1] 197 80 40 -[1] 198 80 79 -[1] 199 80 50 -[1] 200 80 45 -[1] 1 81 43 -[1] 2 81 37 -[1] 3 81 36 -[1] 4 81 31 -[1] 5 81 36 -[1] 6 81 54 -[1] 7 81 37 -[1] 8 81 40 -[1] 9 81 40 -[1] 10 81 32 -[1] 11 81 38 -[1] 12 81 43 -[1] 13 81 37 -[1] 14 81 47 -[1] 15 81 37 -[1] 16 81 51 -[1] 17 81 42 -[1] 18 81 48 -[1] 19 81 46 -[1] 20 81 36 -[1] 21 81 59 -[1] 22 81 36 -[1] 23 81 44 -[1] 24 81 98 -[1] 25 81 54 -[1] 26 81 40 -[1] 27 81 34 -[1] 28 81 39 -[1] 29 81 42 -[1] 30 81 48 -[1] 31 81 45 -[1] 32 81 33 -[1] 33 81 62 -[1] 34 81 60 -[1] 35 81 40 -[1] 36 81 55 -[1] 37 81 53 -[1] 38 81 33 -[1] 39 81 50 -[1] 40 81 47 -[1] 41 81 44 -[1] 42 81 47 -[1] 43 81 40 -[1] 44 81 56 -[1] 45 81 57 -[1] 46 81 98 -[1] 47 81 42 -[1] 48 81 38 -[1] 49 81 43 -[1] 50 81 46 -[1] 51 81 55 -[1] 52 81 35 -[1] 53 81 36 -[1] 54 81 139 -[1] 55 81 54 -[1] 56 81 57 -[1] 57 81 90 -[1] 58 81 67 -[1] 59 81 68 -[1] 60 81 60 -[1] 61 81 39 -[1] 62 81 49 -[1] 63 81 36 -[1] 64 81 47 -[1] 65 81 57 -[1] 66 81 39 -[1] 67 81 50 -[1] 68 81 37 -[1] 69 81 52 -[1] 70 81 58 -[1] 71 81 65 -[1] 72 81 29 -[1] 73 81 54 -[1] 74 81 54 -[1] 75 81 44 -[1] 76 81 70 -[1] 77 81 50 -[1] 78 81 36 -[1] 79 81 51 -[1] 80 81 51 -[1] 81 81 70 -[1] 82 81 38 -[1] 83 81 70 -[1] 84 81 48 -[1] 85 81 39 -[1] 86 81 58 -[1] 87 81 51 -[1] 88 81 50 -[1] 89 81 51 -[1] 90 81 33 -[1] 91 81 50 -[1] 92 81 105 -[1] 93 81 56 -[1] 94 81 43 -[1] 95 81 52 -[1] 96 81 43 -[1] 97 81 40 -[1] 98 81 73 -[1] 99 81 45 -[1] 100 81 62 -[1] 101 81 57 -[1] 102 81 48 -[1] 103 81 67 -[1] 104 81 42 -[1] 105 81 46 -[1] 106 81 36 -[1] 107 81 46 -[1] 108 81 38 -[1] 109 81 47 -[1] 110 81 58 -[1] 111 81 41 -[1] 112 81 65 -[1] 113 81 35 -[1] 114 81 45 -[1] 115 81 45 -[1] 116 81 55 -[1] 117 81 48 -[1] 118 81 65 -[1] 119 81 34 -[1] 120 81 43 -[1] 121 81 40 -[1] 122 81 48 -[1] 123 81 46 -[1] 124 81 66 -[1] 125 81 42 -[1] 126 81 45 -[1] 127 81 37 -[1] 128 81 47 -[1] 129 81 41 -[1] 130 81 50 -[1] 131 81 38 -[1] 132 81 39 -[1] 133 81 64 -[1] 134 81 71 -[1] 135 81 38 -[1] 136 81 69 -[1] 137 81 41 -[1] 138 81 89 -[1] 139 81 42 -[1] 140 81 66 -[1] 141 81 35 -[1] 142 81 56 -[1] 143 81 41 -[1] 144 81 41 -[1] 145 81 47 -[1] 146 81 92 -[1] 147 81 47 -[1] 148 81 63 -[1] 149 81 54 -[1] 150 81 68 -[1] 151 81 42 -[1] 152 81 46 -[1] 153 81 64 -[1] 154 81 118 -[1] 155 81 32 -[1] 156 81 59 -[1] 157 81 43 -[1] 158 81 58 -[1] 159 81 44 -[1] 160 81 37 -[1] 161 81 48 -[1] 162 81 48 -[1] 163 81 59 -[1] 164 81 47 -[1] 165 81 36 -[1] 166 81 38 -[1] 167 81 47 -[1] 168 81 44 -[1] 169 81 38 -[1] 170 81 49 -[1] 171 81 54 -[1] 172 81 49 -[1] 173 81 35 -[1] 174 81 39 -[1] 175 81 49 -[1] 176 81 57 -[1] 177 81 43 -[1] 178 81 76 -[1] 179 81 31 -[1] 180 81 52 -[1] 181 81 37 -[1] 182 81 50 -[1] 183 81 49 -[1] 184 81 45 -[1] 185 81 53 -[1] 186 81 59 -[1] 187 81 63 -[1] 188 81 57 -[1] 189 81 41 -[1] 190 81 69 -[1] 191 81 38 -[1] 192 81 50 -[1] 193 81 45 -[1] 194 81 45 -[1] 195 81 43 -[1] 196 81 80 -[1] 197 81 73 -[1] 198 81 48 -[1] 199 81 54 -[1] 200 81 35 -[1] 1 82 43 -[1] 2 82 37 -[1] 3 82 46 -[1] 4 82 40 -[1] 5 82 49 -[1] 6 82 41 -[1] 7 82 32 -[1] 8 82 43 -[1] 9 82 41 -[1] 10 82 32 -[1] 11 82 37 -[1] 12 82 80 -[1] 13 82 35 -[1] 14 82 30 -[1] 15 82 55 -[1] 16 82 47 -[1] 17 82 36 -[1] 18 82 42 -[1] 19 82 34 -[1] 20 82 49 -[1] 21 82 47 -[1] 22 82 33 -[1] 23 82 37 -[1] 24 82 66 -[1] 25 82 39 -[1] 26 82 46 -[1] 27 82 50 -[1] 28 82 41 -[1] 29 82 45 -[1] 30 82 38 -[1] 31 82 41 -[1] 32 82 60 -[1] 33 82 51 -[1] 34 82 61 -[1] 35 82 40 -[1] 36 82 63 -[1] 37 82 36 -[1] 38 82 31 -[1] 39 82 43 -[1] 40 82 28 -[1] 41 82 59 -[1] 42 82 46 -[1] 43 82 45 -[1] 44 82 53 -[1] 45 82 48 -[1] 46 82 74 -[1] 47 82 51 -[1] 48 82 73 -[1] 49 82 42 -[1] 50 82 41 -[1] 51 82 67 -[1] 52 82 40 -[1] 53 82 71 -[1] 54 82 66 -[1] 55 82 41 -[1] 56 82 48 -[1] 57 82 35 -[1] 58 82 70 -[1] 59 82 45 -[1] 60 82 63 -[1] 61 82 48 -[1] 62 82 36 -[1] 63 82 91 -[1] 64 82 81 -[1] 65 82 68 -[1] 66 82 34 -[1] 67 82 48 -[1] 68 82 66 -[1] 69 82 38 -[1] 70 82 50 -[1] 71 82 48 -[1] 72 82 54 -[1] 73 82 37 -[1] 74 82 52 -[1] 75 82 44 -[1] 76 82 45 -[1] 77 82 40 -[1] 78 82 38 -[1] 79 82 50 -[1] 80 82 55 -[1] 81 82 48 -[1] 82 82 46 -[1] 83 82 49 -[1] 84 82 39 -[1] 85 82 38 -[1] 86 82 39 -[1] 87 82 46 -[1] 88 82 59 -[1] 89 82 49 -[1] 90 82 54 -[1] 91 82 55 -[1] 92 82 66 -[1] 93 82 39 -[1] 94 82 69 -[1] 95 82 57 -[1] 96 82 73 -[1] 97 82 42 -[1] 98 82 81 -[1] 99 82 77 -[1] 100 82 42 -[1] 101 82 70 -[1] 102 82 75 -[1] 103 82 48 -[1] 104 82 49 -[1] 105 82 52 -[1] 106 82 43 -[1] 107 82 52 -[1] 108 82 65 -[1] 109 82 33 -[1] 110 82 54 -[1] 111 82 31 -[1] 112 82 93 -[1] 113 82 33 -[1] 114 82 71 -[1] 115 82 70 -[1] 116 82 53 -[1] 117 82 41 -[1] 118 82 40 -[1] 119 82 59 -[1] 120 82 33 -[1] 121 82 56 -[1] 122 82 32 -[1] 123 82 57 -[1] 124 82 45 -[1] 125 82 84 -[1] 126 82 45 -[1] 127 82 39 -[1] 128 82 56 -[1] 129 82 68 -[1] 130 82 46 -[1] 131 82 56 -[1] 132 82 40 -[1] 133 82 41 -[1] 134 82 70 -[1] 135 82 47 -[1] 136 82 36 -[1] 137 82 93 -[1] 138 82 46 -[1] 139 82 31 -[1] 140 82 61 -[1] 141 82 42 -[1] 142 82 34 -[1] 143 82 53 -[1] 144 82 57 -[1] 145 82 48 -[1] 146 82 51 -[1] 147 82 37 -[1] 148 82 39 -[1] 149 82 35 -[1] 150 82 53 -[1] 151 82 61 -[1] 152 82 46 -[1] 153 82 43 -[1] 154 82 49 -[1] 155 82 28 -[1] 156 82 46 -[1] 157 82 59 -[1] 158 82 60 -[1] 159 82 54 -[1] 160 82 53 -[1] 161 82 62 -[1] 162 82 44 -[1] 163 82 40 -[1] 164 82 72 -[1] 165 82 50 -[1] 166 82 43 -[1] 167 82 55 -[1] 168 82 49 -[1] 169 82 49 -[1] 170 82 47 -[1] 171 82 46 -[1] 172 82 38 -[1] 173 82 59 -[1] 174 82 55 -[1] 175 82 34 -[1] 176 82 56 -[1] 177 82 98 -[1] 178 82 52 -[1] 179 82 39 -[1] 180 82 33 -[1] 181 82 54 -[1] 182 82 37 -[1] 183 82 64 -[1] 184 82 66 -[1] 185 82 55 -[1] 186 82 63 -[1] 187 82 44 -[1] 188 82 55 -[1] 189 82 52 -[1] 190 82 79 -[1] 191 82 51 -[1] 192 82 72 -[1] 193 82 45 -[1] 194 82 40 -[1] 195 82 65 -[1] 196 82 39 -[1] 197 82 72 -[1] 198 82 62 -[1] 199 82 53 -[1] 200 82 49 -[1] 1 83 32 -[1] 2 83 36 -[1] 3 83 32 -[1] 4 83 44 -[1] 5 83 30 -[1] 6 83 40 -[1] 7 83 33 -[1] 8 83 44 -[1] 9 83 49 -[1] 10 83 38 -[1] 11 83 49 -[1] 12 83 40 -[1] 13 83 39 -[1] 14 83 50 -[1] 15 83 28 -[1] 16 83 57 -[1] 17 83 75 -[1] 18 83 49 -[1] 19 83 32 -[1] 20 83 47 -[1] 21 83 39 -[1] 22 83 51 -[1] 23 83 34 -[1] 24 83 60 -[1] 25 83 32 -[1] 26 83 37 -[1] 27 83 38 -[1] 28 83 61 -[1] 29 83 33 -[1] 30 83 47 -[1] 31 83 40 -[1] 32 83 37 -[1] 33 83 60 -[1] 34 83 37 -[1] 35 83 42 -[1] 36 83 47 -[1] 37 83 44 -[1] 38 83 49 -[1] 39 83 55 -[1] 40 83 56 -[1] 41 83 37 -[1] 42 83 50 -[1] 43 83 49 -[1] 44 83 47 -[1] 45 83 44 -[1] 46 83 42 -[1] 47 83 60 -[1] 48 83 47 -[1] 49 83 43 -[1] 50 83 40 -[1] 51 83 50 -[1] 52 83 80 -[1] 53 83 40 -[1] 54 83 46 -[1] 55 83 69 -[1] 56 83 51 -[1] 57 83 60 -[1] 58 83 49 -[1] 59 83 73 -[1] 60 83 42 -[1] 61 83 55 -[1] 62 83 48 -[1] 63 83 69 -[1] 64 83 73 -[1] 65 83 63 -[1] 66 83 53 -[1] 67 83 44 -[1] 68 83 74 -[1] 69 83 40 -[1] 70 83 51 -[1] 71 83 62 -[1] 72 83 32 -[1] 73 83 53 -[1] 74 83 43 -[1] 75 83 44 -[1] 76 83 61 -[1] 77 83 57 -[1] 78 83 34 -[1] 79 83 81 -[1] 80 83 50 -[1] 81 83 55 -[1] 82 83 52 -[1] 83 83 58 -[1] 84 83 52 -[1] 85 83 72 -[1] 86 83 88 -[1] 87 83 61 -[1] 88 83 46 -[1] 89 83 53 -[1] 90 83 62 -[1] 91 83 58 -[1] 92 83 45 -[1] 93 83 74 -[1] 94 83 49 -[1] 95 83 42 -[1] 96 83 59 -[1] 97 83 58 -[1] 98 83 58 -[1] 99 83 63 -[1] 100 83 44 -[1] 101 83 47 -[1] 102 83 51 -[1] 103 83 48 -[1] 104 83 76 -[1] 105 83 67 -[1] 106 83 49 -[1] 107 83 50 -[1] 108 83 94 -[1] 109 83 44 -[1] 110 83 50 -[1] 111 83 41 -[1] 112 83 51 -[1] 113 83 39 -[1] 114 83 58 -[1] 115 83 45 -[1] 116 83 37 -[1] 117 83 45 -[1] 118 83 50 -[1] 119 83 95 -[1] 120 83 55 -[1] 121 83 50 -[1] 122 83 55 -[1] 123 83 43 -[1] 124 83 86 -[1] 125 83 33 -[1] 126 83 50 -[1] 127 83 30 -[1] 128 83 53 -[1] 129 83 42 -[1] 130 83 63 -[1] 131 83 38 -[1] 132 83 29 -[1] 133 83 39 -[1] 134 83 34 -[1] 135 83 72 -[1] 136 83 52 -[1] 137 83 54 -[1] 138 83 48 -[1] 139 83 49 -[1] 140 83 77 -[1] 141 83 35 -[1] 142 83 40 -[1] 143 83 42 -[1] 144 83 60 -[1] 145 83 43 -[1] 146 83 56 -[1] 147 83 40 -[1] 148 83 39 -[1] 149 83 71 -[1] 150 83 49 -[1] 151 83 49 -[1] 152 83 67 -[1] 153 83 60 -[1] 154 83 55 -[1] 155 83 40 -[1] 156 83 71 -[1] 157 83 46 -[1] 158 83 41 -[1] 159 83 45 -[1] 160 83 62 -[1] 161 83 53 -[1] 162 83 32 -[1] 163 83 81 -[1] 164 83 44 -[1] 165 83 53 -[1] 166 83 41 -[1] 167 83 48 -[1] 168 83 41 -[1] 169 83 52 -[1] 170 83 52 -[1] 171 83 33 -[1] 172 83 57 -[1] 173 83 32 -[1] 174 83 43 -[1] 175 83 32 -[1] 176 83 58 -[1] 177 83 80 -[1] 178 83 34 -[1] 179 83 57 -[1] 180 83 68 -[1] 181 83 51 -[1] 182 83 40 -[1] 183 83 47 -[1] 184 83 53 -[1] 185 83 42 -[1] 186 83 47 -[1] 187 83 48 -[1] 188 83 51 -[1] 189 83 40 -[1] 190 83 39 -[1] 191 83 42 -[1] 192 83 42 -[1] 193 83 63 -[1] 194 83 53 -[1] 195 83 55 -[1] 196 83 85 -[1] 197 83 50 -[1] 198 83 35 -[1] 199 83 52 -[1] 200 83 43 -[1] 1 84 33 -[1] 2 84 43 -[1] 3 84 34 -[1] 4 84 49 -[1] 5 84 34 -[1] 6 84 35 -[1] 7 84 48 -[1] 8 84 33 -[1] 9 84 26 -[1] 10 84 43 -[1] 11 84 32 -[1] 12 84 35 -[1] 13 84 59 -[1] 14 84 38 -[1] 15 84 44 -[1] 16 84 59 -[1] 17 84 33 -[1] 18 84 47 -[1] 19 84 25 -[1] 20 84 86 -[1] 21 84 56 -[1] 22 84 30 -[1] 23 84 36 -[1] 24 84 70 -[1] 25 84 21 -[1] 26 84 72 -[1] 27 84 53 -[1] 28 84 33 -[1] 29 84 68 -[1] 30 84 33 -[1] 31 84 58 -[1] 32 84 58 -[1] 33 84 43 -[1] 34 84 95 -[1] 35 84 28 -[1] 36 84 34 -[1] 37 84 62 -[1] 38 84 46 -[1] 39 84 36 -[1] 40 84 53 -[1] 41 84 58 -[1] 42 84 41 -[1] 43 84 51 -[1] 44 84 44 -[1] 45 84 39 -[1] 46 84 50 -[1] 47 84 61 -[1] 48 84 74 -[1] 49 84 45 -[1] 50 84 46 -[1] 51 84 53 -[1] 52 84 56 -[1] 53 84 45 -[1] 54 84 48 -[1] 55 84 45 -[1] 56 84 48 -[1] 57 84 40 -[1] 58 84 75 -[1] 59 84 76 -[1] 60 84 65 -[1] 61 84 75 -[1] 62 84 79 -[1] 63 84 52 -[1] 64 84 36 -[1] 65 84 41 -[1] 66 84 49 -[1] 67 84 47 -[1] 68 84 54 -[1] 69 84 53 -[1] 70 84 41 -[1] 71 84 40 -[1] 72 84 59 -[1] 73 84 54 -[1] 74 84 62 -[1] 75 84 31 -[1] 76 84 55 -[1] 77 84 72 -[1] 78 84 61 -[1] 79 84 42 -[1] 80 84 47 -[1] 81 84 78 -[1] 82 84 47 -[1] 83 84 80 -[1] 84 84 40 -[1] 85 84 50 -[1] 86 84 63 -[1] 87 84 62 -[1] 88 84 49 -[1] 89 84 52 -[1] 90 84 68 -[1] 91 84 65 -[1] 92 84 38 -[1] 93 84 54 -[1] 94 84 46 -[1] 95 84 49 -[1] 96 84 45 -[1] 97 84 67 -[1] 98 84 64 -[1] 99 84 42 -[1] 100 84 75 -[1] 101 84 54 -[1] 102 84 72 -[1] 103 84 47 -[1] 104 84 37 -[1] 105 84 42 -[1] 106 84 36 -[1] 107 84 42 -[1] 108 84 76 -[1] 109 84 52 -[1] 110 84 50 -[1] 111 84 66 -[1] 112 84 64 -[1] 113 84 47 -[1] 114 84 58 -[1] 115 84 59 -[1] 116 84 68 -[1] 117 84 59 -[1] 118 84 56 -[1] 119 84 63 -[1] 120 84 67 -[1] 121 84 51 -[1] 122 84 29 -[1] 123 84 75 -[1] 124 84 63 -[1] 125 84 50 -[1] 126 84 43 -[1] 127 84 50 -[1] 128 84 93 -[1] 129 84 40 -[1] 130 84 39 -[1] 131 84 43 -[1] 132 84 42 -[1] 133 84 45 -[1] 134 84 38 -[1] 135 84 57 -[1] 136 84 31 -[1] 137 84 56 -[1] 138 84 42 -[1] 139 84 65 -[1] 140 84 42 -[1] 141 84 42 -[1] 142 84 59 -[1] 143 84 52 -[1] 144 84 44 -[1] 145 84 50 -[1] 146 84 47 -[1] 147 84 49 -[1] 148 84 40 -[1] 149 84 55 -[1] 150 84 52 -[1] 151 84 61 -[1] 152 84 42 -[1] 153 84 44 -[1] 154 84 86 -[1] 155 84 40 -[1] 156 84 67 -[1] 157 84 50 -[1] 158 84 57 -[1] 159 84 39 -[1] 160 84 50 -[1] 161 84 35 -[1] 162 84 54 -[1] 163 84 43 -[1] 164 84 32 -[1] 165 84 59 -[1] 166 84 58 -[1] 167 84 58 -[1] 168 84 53 -[1] 169 84 49 -[1] 170 84 55 -[1] 171 84 50 -[1] 172 84 41 -[1] 173 84 94 -[1] 174 84 33 -[1] 175 84 52 -[1] 176 84 55 -[1] 177 84 54 -[1] 178 84 58 -[1] 179 84 60 -[1] 180 84 76 -[1] 181 84 45 -[1] 182 84 86 -[1] 183 84 47 -[1] 184 84 49 -[1] 185 84 52 -[1] 186 84 49 -[1] 187 84 40 -[1] 188 84 61 -[1] 189 84 52 -[1] 190 84 54 -[1] 191 84 49 -[1] 192 84 52 -[1] 193 84 41 -[1] 194 84 62 -[1] 195 84 50 -[1] 196 84 62 -[1] 197 84 36 -[1] 198 84 49 -[1] 199 84 39 -[1] 200 84 43 -[1] 1 85 33 -[1] 2 85 39 -[1] 3 85 36 -[1] 4 85 53 -[1] 5 85 74 -[1] 6 85 65 -[1] 7 85 52 -[1] 8 85 33 -[1] 9 85 34 -[1] 10 85 39 -[1] 11 85 39 -[1] 12 85 39 -[1] 13 85 34 -[1] 14 85 42 -[1] 15 85 37 -[1] 16 85 70 -[1] 17 85 41 -[1] 18 85 30 -[1] 19 85 35 -[1] 20 85 45 -[1] 21 85 42 -[1] 22 85 53 -[1] 23 85 30 -[1] 24 85 82 -[1] 25 85 49 -[1] 26 85 53 -[1] 27 85 52 -[1] 28 85 47 -[1] 29 85 47 -[1] 30 85 34 -[1] 31 85 35 -[1] 32 85 38 -[1] 33 85 51 -[1] 34 85 56 -[1] 35 85 55 -[1] 36 85 40 -[1] 37 85 101 -[1] 38 85 37 -[1] 39 85 51 -[1] 40 85 40 -[1] 41 85 65 -[1] 42 85 72 -[1] 43 85 88 -[1] 44 85 37 -[1] 45 85 55 -[1] 46 85 51 -[1] 47 85 51 -[1] 48 85 51 -[1] 49 85 61 -[1] 50 85 64 -[1] 51 85 131 -[1] 52 85 65 -[1] 53 85 76 -[1] 54 85 39 -[1] 55 85 80 -[1] 56 85 46 -[1] 57 85 60 -[1] 58 85 85 -[1] 59 85 73 -[1] 60 85 50 -[1] 61 85 45 -[1] 62 85 35 -[1] 63 85 118 -[1] 64 85 52 -[1] 65 85 50 -[1] 66 85 45 -[1] 67 85 51 -[1] 68 85 72 -[1] 69 85 73 -[1] 70 85 40 -[1] 71 85 59 -[1] 72 85 69 -[1] 73 85 66 -[1] 74 85 46 -[1] 75 85 40 -[1] 76 85 60 -[1] 77 85 69 -[1] 78 85 78 -[1] 79 85 66 -[1] 80 85 45 -[1] 81 85 37 -[1] 82 85 78 -[1] 83 85 88 -[1] 84 85 74 -[1] 85 85 38 -[1] 86 85 51 -[1] 87 85 50 -[1] 88 85 43 -[1] 89 85 58 -[1] 90 85 62 -[1] 91 85 41 -[1] 92 85 77 -[1] 93 85 57 -[1] 94 85 36 -[1] 95 85 69 -[1] 96 85 36 -[1] 97 85 45 -[1] 98 85 44 -[1] 99 85 49 -[1] 100 85 52 -[1] 101 85 45 -[1] 102 85 41 -[1] 103 85 43 -[1] 104 85 85 -[1] 105 85 67 -[1] 106 85 70 -[1] 107 85 48 -[1] 108 85 96 -[1] 109 85 66 -[1] 110 85 57 -[1] 111 85 77 -[1] 112 85 66 -[1] 113 85 34 -[1] 114 85 48 -[1] 115 85 70 -[1] 116 85 54 -[1] 117 85 121 -[1] 118 85 57 -[1] 119 85 48 -[1] 120 85 31 -[1] 121 85 59 -[1] 122 85 50 -[1] 123 85 44 -[1] 124 85 39 -[1] 125 85 39 -[1] 126 85 67 -[1] 127 85 45 -[1] 128 85 52 -[1] 129 85 26 -[1] 130 85 96 -[1] 131 85 53 -[1] 132 85 28 -[1] 133 85 50 -[1] 134 85 42 -[1] 135 85 50 -[1] 136 85 45 -[1] 137 85 35 -[1] 138 85 48 -[1] 139 85 48 -[1] 140 85 80 -[1] 141 85 56 -[1] 142 85 43 -[1] 143 85 90 -[1] 144 85 68 -[1] 145 85 45 -[1] 146 85 77 -[1] 147 85 55 -[1] 148 85 72 -[1] 149 85 42 -[1] 150 85 43 -[1] 151 85 60 -[1] 152 85 46 -[1] 153 85 38 -[1] 154 85 40 -[1] 155 85 52 -[1] 156 85 62 -[1] 157 85 39 -[1] 158 85 52 -[1] 159 85 53 -[1] 160 85 50 -[1] 161 85 48 -[1] 162 85 48 -[1] 163 85 56 -[1] 164 85 32 -[1] 165 85 59 -[1] 166 85 55 -[1] 167 85 43 -[1] 168 85 43 -[1] 169 85 59 -[1] 170 85 46 -[1] 171 85 70 -[1] 172 85 66 -[1] 173 85 43 -[1] 174 85 78 -[1] 175 85 52 -[1] 176 85 43 -[1] 177 85 45 -[1] 178 85 40 -[1] 179 85 43 -[1] 180 85 44 -[1] 181 85 36 -[1] 182 85 98 -[1] 183 85 51 -[1] 184 85 47 -[1] 185 85 48 -[1] 186 85 60 -[1] 187 85 62 -[1] 188 85 53 -[1] 189 85 43 -[1] 190 85 69 -[1] 191 85 75 -[1] 192 85 61 -[1] 193 85 72 -[1] 194 85 63 -[1] 195 85 45 -[1] 196 85 44 -[1] 197 85 97 -[1] 198 85 51 -[1] 199 85 68 -[1] 200 85 41 -[1] 1 86 51 -[1] 2 86 28 -[1] 3 86 41 -[1] 4 86 31 -[1] 5 86 54 -[1] 6 86 45 -[1] 7 86 36 -[1] 8 86 51 -[1] 9 86 35 -[1] 10 86 44 -[1] 11 86 52 -[1] 12 86 41 -[1] 13 86 78 -[1] 14 86 37 -[1] 15 86 37 -[1] 16 86 33 -[1] 17 86 66 -[1] 18 86 34 -[1] 19 86 49 -[1] 20 86 34 -[1] 21 86 33 -[1] 22 86 47 -[1] 23 86 57 -[1] 24 86 98 -[1] 25 86 44 -[1] 26 86 41 -[1] 27 86 75 -[1] 28 86 54 -[1] 29 86 33 -[1] 30 86 42 -[1] 31 86 40 -[1] 32 86 41 -[1] 33 86 75 -[1] 34 86 39 -[1] 35 86 36 -[1] 36 86 58 -[1] 37 86 49 -[1] 38 86 33 -[1] 39 86 46 -[1] 40 86 45 -[1] 41 86 38 -[1] 42 86 56 -[1] 43 86 48 -[1] 44 86 28 -[1] 45 86 39 -[1] 46 86 33 -[1] 47 86 89 -[1] 48 86 61 -[1] 49 86 57 -[1] 50 86 79 -[1] 51 86 46 -[1] 52 86 59 -[1] 53 86 33 -[1] 54 86 42 -[1] 55 86 46 -[1] 56 86 37 -[1] 57 86 63 -[1] 58 86 62 -[1] 59 86 36 -[1] 60 86 57 -[1] 61 86 51 -[1] 62 86 39 -[1] 63 86 46 -[1] 64 86 48 -[1] 65 86 49 -[1] 66 86 46 -[1] 67 86 60 -[1] 68 86 62 -[1] 69 86 48 -[1] 70 86 57 -[1] 71 86 50 -[1] 72 86 53 -[1] 73 86 48 -[1] 74 86 53 -[1] 75 86 40 -[1] 76 86 52 -[1] 77 86 68 -[1] 78 86 57 -[1] 79 86 52 -[1] 80 86 57 -[1] 81 86 54 -[1] 82 86 56 -[1] 83 86 45 -[1] 84 86 58 -[1] 85 86 73 -[1] 86 86 54 -[1] 87 86 62 -[1] 88 86 64 -[1] 89 86 54 -[1] 90 86 84 -[1] 91 86 57 -[1] 92 86 59 -[1] 93 86 38 -[1] 94 86 55 -[1] 95 86 45 -[1] 96 86 40 -[1] 97 86 36 -[1] 98 86 83 -[1] 99 86 43 -[1] 100 86 42 -[1] 101 86 39 -[1] 102 86 49 -[1] 103 86 64 -[1] 104 86 77 -[1] 105 86 64 -[1] 106 86 52 -[1] 107 86 43 -[1] 108 86 51 -[1] 109 86 39 -[1] 110 86 88 -[1] 111 86 91 -[1] 112 86 78 -[1] 113 86 40 -[1] 114 86 65 -[1] 115 86 48 -[1] 116 86 69 -[1] 117 86 47 -[1] 118 86 41 -[1] 119 86 52 -[1] 120 86 47 -[1] 121 86 58 -[1] 122 86 43 -[1] 123 86 55 -[1] 124 86 52 -[1] 125 86 68 -[1] 126 86 61 -[1] 127 86 41 -[1] 128 86 48 -[1] 129 86 65 -[1] 130 86 52 -[1] 131 86 57 -[1] 132 86 42 -[1] 133 86 40 -[1] 134 86 47 -[1] 135 86 45 -[1] 136 86 55 -[1] 137 86 32 -[1] 138 86 75 -[1] 139 86 58 -[1] 140 86 41 -[1] 141 86 61 -[1] 142 86 64 -[1] 143 86 33 -[1] 144 86 48 -[1] 145 86 39 -[1] 146 86 58 -[1] 147 86 31 -[1] 148 86 90 -[1] 149 86 51 -[1] 150 86 41 -[1] 151 86 67 -[1] 152 86 51 -[1] 153 86 49 -[1] 154 86 55 -[1] 155 86 38 -[1] 156 86 51 -[1] 157 86 42 -[1] 158 86 41 -[1] 159 86 69 -[1] 160 86 50 -[1] 161 86 62 -[1] 162 86 65 -[1] 163 86 48 -[1] 164 86 37 -[1] 165 86 45 -[1] 166 86 48 -[1] 167 86 57 -[1] 168 86 43 -[1] 169 86 47 -[1] 170 86 58 -[1] 171 86 42 -[1] 172 86 39 -[1] 173 86 36 -[1] 174 86 53 -[1] 175 86 38 -[1] 176 86 63 -[1] 177 86 54 -[1] 178 86 43 -[1] 179 86 41 -[1] 180 86 35 -[1] 181 86 86 -[1] 182 86 41 -[1] 183 86 58 -[1] 184 86 55 -[1] 185 86 58 -[1] 186 86 56 -[1] 187 86 43 -[1] 188 86 51 -[1] 189 86 50 -[1] 190 86 46 -[1] 191 86 41 -[1] 192 86 41 -[1] 193 86 44 -[1] 194 86 43 -[1] 195 86 47 -[1] 196 86 30 -[1] 197 86 51 -[1] 198 86 39 -[1] 199 86 52 -[1] 200 86 43 -[1] 1 87 43 -[1] 2 87 30 -[1] 3 87 29 -[1] 4 87 53 -[1] 5 87 32 -[1] 6 87 32 -[1] 7 87 45 -[1] 8 87 47 -[1] 9 87 47 -[1] 10 87 31 -[1] 11 87 56 -[1] 12 87 30 -[1] 13 87 65 -[1] 14 87 31 -[1] 15 87 56 -[1] 16 87 31 -[1] 17 87 48 -[1] 18 87 46 -[1] 19 87 49 -[1] 20 87 47 -[1] 21 87 47 -[1] 22 87 44 -[1] 23 87 36 -[1] 24 87 49 -[1] 25 87 37 -[1] 26 87 62 -[1] 27 87 38 -[1] 28 87 41 -[1] 29 87 47 -[1] 30 87 30 -[1] 31 87 53 -[1] 32 87 41 -[1] 33 87 34 -[1] 34 87 41 -[1] 35 87 49 -[1] 36 87 46 -[1] 37 87 44 -[1] 38 87 76 -[1] 39 87 72 -[1] 40 87 30 -[1] 41 87 111 -[1] 42 87 42 -[1] 43 87 45 -[1] 44 87 47 -[1] 45 87 48 -[1] 46 87 28 -[1] 47 87 95 -[1] 48 87 52 -[1] 49 87 51 -[1] 50 87 45 -[1] 51 87 80 -[1] 52 87 48 -[1] 53 87 35 -[1] 54 87 59 -[1] 55 87 71 -[1] 56 87 47 -[1] 57 87 60 -[1] 58 87 74 -[1] 59 87 56 -[1] 60 87 39 -[1] 61 87 54 -[1] 62 87 54 -[1] 63 87 62 -[1] 64 87 53 -[1] 65 87 47 -[1] 66 87 88 -[1] 67 87 38 -[1] 68 87 39 -[1] 69 87 70 -[1] 70 87 62 -[1] 71 87 42 -[1] 72 87 34 -[1] 73 87 42 -[1] 74 87 59 -[1] 75 87 39 -[1] 76 87 36 -[1] 77 87 47 -[1] 78 87 45 -[1] 79 87 45 -[1] 80 87 43 -[1] 81 87 46 -[1] 82 87 47 -[1] 83 87 51 -[1] 84 87 56 -[1] 85 87 80 -[1] 86 87 52 -[1] 87 87 52 -[1] 88 87 54 -[1] 89 87 68 -[1] 90 87 59 -[1] 91 87 88 -[1] 92 87 60 -[1] 93 87 50 -[1] 94 87 94 -[1] 95 87 61 -[1] 96 87 56 -[1] 97 87 40 -[1] 98 87 64 -[1] 99 87 41 -[1] 100 87 45 -[1] 101 87 48 -[1] 102 87 54 -[1] 103 87 63 -[1] 104 87 43 -[1] 105 87 57 -[1] 106 87 36 -[1] 107 87 66 -[1] 108 87 44 -[1] 109 87 52 -[1] 110 87 43 -[1] 111 87 47 -[1] 112 87 74 -[1] 113 87 59 -[1] 114 87 56 -[1] 115 87 40 -[1] 116 87 49 -[1] 117 87 53 -[1] 118 87 46 -[1] 119 87 42 -[1] 120 87 44 -[1] 121 87 80 -[1] 122 87 50 -[1] 123 87 65 -[1] 124 87 33 -[1] 125 87 48 -[1] 126 87 59 -[1] 127 87 40 -[1] 128 87 76 -[1] 129 87 45 -[1] 130 87 51 -[1] 131 87 37 -[1] 132 87 41 -[1] 133 87 50 -[1] 134 87 42 -[1] 135 87 53 -[1] 136 87 44 -[1] 137 87 45 -[1] 138 87 50 -[1] 139 87 36 -[1] 140 87 52 -[1] 141 87 28 -[1] 142 87 73 -[1] 143 87 88 -[1] 144 87 43 -[1] 145 87 29 -[1] 146 87 43 -[1] 147 87 43 -[1] 148 87 45 -[1] 149 87 25 -[1] 150 87 68 -[1] 151 87 41 -[1] 152 87 56 -[1] 153 87 55 -[1] 154 87 43 -[1] 155 87 56 -[1] 156 87 47 -[1] 157 87 47 -[1] 158 87 71 -[1] 159 87 33 -[1] 160 87 61 -[1] 161 87 39 -[1] 162 87 52 -[1] 163 87 60 -[1] 164 87 46 -[1] 165 87 52 -[1] 166 87 66 -[1] 167 87 71 -[1] 168 87 66 -[1] 169 87 61 -[1] 170 87 50 -[1] 171 87 47 -[1] 172 87 73 -[1] 173 87 72 -[1] 174 87 49 -[1] 175 87 52 -[1] 176 87 65 -[1] 177 87 53 -[1] 178 87 40 -[1] 179 87 47 -[1] 180 87 49 -[1] 181 87 33 -[1] 182 87 53 -[1] 183 87 34 -[1] 184 87 59 -[1] 185 87 49 -[1] 186 87 55 -[1] 187 87 54 -[1] 188 87 43 -[1] 189 87 38 -[1] 190 87 68 -[1] 191 87 39 -[1] 192 87 52 -[1] 193 87 55 -[1] 194 87 35 -[1] 195 87 48 -[1] 196 87 39 -[1] 197 87 35 -[1] 198 87 41 -[1] 199 87 95 -[1] 200 87 44 -[1] 1 88 32 -[1] 2 88 44 -[1] 3 88 29 -[1] 4 88 51 -[1] 5 88 39 -[1] 6 88 63 -[1] 7 88 34 -[1] 8 88 27 -[1] 9 88 46 -[1] 10 88 36 -[1] 11 88 41 -[1] 12 88 67 -[1] 13 88 45 -[1] 14 88 46 -[1] 15 88 34 -[1] 16 88 47 -[1] 17 88 55 -[1] 18 88 46 -[1] 19 88 67 -[1] 20 88 39 -[1] 21 88 52 -[1] 22 88 33 -[1] 23 88 42 -[1] 24 88 37 -[1] 25 88 72 -[1] 26 88 39 -[1] 27 88 47 -[1] 28 88 56 -[1] 29 88 48 -[1] 30 88 45 -[1] 31 88 49 -[1] 32 88 41 -[1] 33 88 50 -[1] 34 88 60 -[1] 35 88 71 -[1] 36 88 30 -[1] 37 88 39 -[1] 38 88 47 -[1] 39 88 40 -[1] 40 88 47 -[1] 41 88 49 -[1] 42 88 70 -[1] 43 88 66 -[1] 44 88 43 -[1] 45 88 50 -[1] 46 88 39 -[1] 47 88 65 -[1] 48 88 45 -[1] 49 88 59 -[1] 50 88 62 -[1] 51 88 57 -[1] 52 88 33 -[1] 53 88 50 -[1] 54 88 63 -[1] 55 88 71 -[1] 56 88 47 -[1] 57 88 52 -[1] 58 88 49 -[1] 59 88 52 -[1] 60 88 59 -[1] 61 88 55 -[1] 62 88 66 -[1] 63 88 34 -[1] 64 88 49 -[1] 65 88 49 -[1] 66 88 44 -[1] 67 88 45 -[1] 68 88 53 -[1] 69 88 66 -[1] 70 88 54 -[1] 71 88 42 -[1] 72 88 66 -[1] 73 88 47 -[1] 74 88 45 -[1] 75 88 37 -[1] 76 88 71 -[1] 77 88 42 -[1] 78 88 55 -[1] 79 88 86 -[1] 80 88 59 -[1] 81 88 40 -[1] 82 88 57 -[1] 83 88 30 -[1] 84 88 116 -[1] 85 88 44 -[1] 86 88 74 -[1] 87 88 51 -[1] 88 88 90 -[1] 89 88 70 -[1] 90 88 64 -[1] 91 88 52 -[1] 92 88 42 -[1] 93 88 67 -[1] 94 88 89 -[1] 95 88 41 -[1] 96 88 47 -[1] 97 88 41 -[1] 98 88 91 -[1] 99 88 64 -[1] 100 88 47 -[1] 101 88 55 -[1] 102 88 42 -[1] 103 88 40 -[1] 104 88 40 -[1] 105 88 56 -[1] 106 88 48 -[1] 107 88 47 -[1] 108 88 66 -[1] 109 88 43 -[1] 110 88 54 -[1] 111 88 71 -[1] 112 88 32 -[1] 113 88 67 -[1] 114 88 50 -[1] 115 88 77 -[1] 116 88 59 -[1] 117 88 64 -[1] 118 88 79 -[1] 119 88 61 -[1] 120 88 46 -[1] 121 88 46 -[1] 122 88 57 -[1] 123 88 44 -[1] 124 88 61 -[1] 125 88 33 -[1] 126 88 52 -[1] 127 88 60 -[1] 128 88 40 -[1] 129 88 64 -[1] 130 88 47 -[1] 131 88 56 -[1] 132 88 53 -[1] 133 88 70 -[1] 134 88 73 -[1] 135 88 47 -[1] 136 88 52 -[1] 137 88 50 -[1] 138 88 67 -[1] 139 88 42 -[1] 140 88 50 -[1] 141 88 45 -[1] 142 88 39 -[1] 143 88 43 -[1] 144 88 44 -[1] 145 88 43 -[1] 146 88 56 -[1] 147 88 35 -[1] 148 88 35 -[1] 149 88 95 -[1] 150 88 45 -[1] 151 88 42 -[1] 152 88 48 -[1] 153 88 86 -[1] 154 88 43 -[1] 155 88 39 -[1] 156 88 42 -[1] 157 88 39 -[1] 158 88 45 -[1] 159 88 40 -[1] 160 88 52 -[1] 161 88 53 -[1] 162 88 48 -[1] 163 88 40 -[1] 164 88 50 -[1] 165 88 37 -[1] 166 88 65 -[1] 167 88 37 -[1] 168 88 49 -[1] 169 88 58 -[1] 170 88 33 -[1] 171 88 104 -[1] 172 88 45 -[1] 173 88 37 -[1] 174 88 42 -[1] 175 88 56 -[1] 176 88 64 -[1] 177 88 81 -[1] 178 88 71 -[1] 179 88 41 -[1] 180 88 50 -[1] 181 88 97 -[1] 182 88 49 -[1] 183 88 46 -[1] 184 88 49 -[1] 185 88 40 -[1] 186 88 41 -[1] 187 88 40 -[1] 188 88 40 -[1] 189 88 83 -[1] 190 88 39 -[1] 191 88 53 -[1] 192 88 38 -[1] 193 88 76 -[1] 194 88 52 -[1] 195 88 60 -[1] 196 88 46 -[1] 197 88 35 -[1] 198 88 48 -[1] 199 88 47 -[1] 200 88 45 -[1] 1 89 37 -[1] 2 89 45 -[1] 3 89 46 -[1] 4 89 60 -[1] 5 89 31 -[1] 6 89 43 -[1] 7 89 38 -[1] 8 89 37 -[1] 9 89 42 -[1] 10 89 40 -[1] 11 89 44 -[1] 12 89 32 -[1] 13 89 35 -[1] 14 89 36 -[1] 15 89 45 -[1] 16 89 28 -[1] 17 89 50 -[1] 18 89 39 -[1] 19 89 63 -[1] 20 89 35 -[1] 21 89 54 -[1] 22 89 54 -[1] 23 89 37 -[1] 24 89 51 -[1] 25 89 35 -[1] 26 89 50 -[1] 27 89 43 -[1] 28 89 32 -[1] 29 89 51 -[1] 30 89 55 -[1] 31 89 44 -[1] 32 89 30 -[1] 33 89 44 -[1] 34 89 48 -[1] 35 89 31 -[1] 36 89 27 -[1] 37 89 47 -[1] 38 89 68 -[1] 39 89 35 -[1] 40 89 57 -[1] 41 89 60 -[1] 42 89 55 -[1] 43 89 47 -[1] 44 89 52 -[1] 45 89 56 -[1] 46 89 38 -[1] 47 89 56 -[1] 48 89 38 -[1] 49 89 51 -[1] 50 89 54 -[1] 51 89 60 -[1] 52 89 73 -[1] 53 89 51 -[1] 54 89 51 -[1] 55 89 101 -[1] 56 89 66 -[1] 57 89 34 -[1] 58 89 48 -[1] 59 89 51 -[1] 60 89 56 -[1] 61 89 50 -[1] 62 89 52 -[1] 63 89 47 -[1] 64 89 85 -[1] 65 89 43 -[1] 66 89 77 -[1] 67 89 71 -[1] 68 89 48 -[1] 69 89 37 -[1] 70 89 57 -[1] 71 89 36 -[1] 72 89 45 -[1] 73 89 37 -[1] 74 89 55 -[1] 75 89 46 -[1] 76 89 49 -[1] 77 89 47 -[1] 78 89 46 -[1] 79 89 47 -[1] 80 89 87 -[1] 81 89 45 -[1] 82 89 49 -[1] 83 89 74 -[1] 84 89 57 -[1] 85 89 51 -[1] 86 89 109 -[1] 87 89 70 -[1] 88 89 92 -[1] 89 89 53 -[1] 90 89 51 -[1] 91 89 56 -[1] 92 89 56 -[1] 93 89 44 -[1] 94 89 45 -[1] 95 89 63 -[1] 96 89 74 -[1] 97 89 70 -[1] 98 89 45 -[1] 99 89 39 -[1] 100 89 54 -[1] 101 89 39 -[1] 102 89 49 -[1] 103 89 74 -[1] 104 89 47 -[1] 105 89 86 -[1] 106 89 42 -[1] 107 89 49 -[1] 108 89 49 -[1] 109 89 38 -[1] 110 89 69 -[1] 111 89 46 -[1] 112 89 45 -[1] 113 89 64 -[1] 114 89 59 -[1] 115 89 90 -[1] 116 89 70 -[1] 117 89 54 -[1] 118 89 71 -[1] 119 89 46 -[1] 120 89 54 -[1] 121 89 47 -[1] 122 89 48 -[1] 123 89 58 -[1] 124 89 62 -[1] 125 89 38 -[1] 126 89 47 -[1] 127 89 65 -[1] 128 89 56 -[1] 129 89 31 -[1] 130 89 45 -[1] 131 89 43 -[1] 132 89 49 -[1] 133 89 57 -[1] 134 89 73 -[1] 135 89 51 -[1] 136 89 62 -[1] 137 89 42 -[1] 138 89 45 -[1] 139 89 34 -[1] 140 89 57 -[1] 141 89 54 -[1] 142 89 47 -[1] 143 89 50 -[1] 144 89 56 -[1] 145 89 45 -[1] 146 89 50 -[1] 147 89 79 -[1] 148 89 41 -[1] 149 89 81 -[1] 150 89 29 -[1] 151 89 74 -[1] 152 89 39 -[1] 153 89 33 -[1] 154 89 47 -[1] 155 89 41 -[1] 156 89 41 -[1] 157 89 58 -[1] 158 89 81 -[1] 159 89 65 -[1] 160 89 40 -[1] 161 89 51 -[1] 162 89 38 -[1] 163 89 43 -[1] 164 89 42 -[1] 165 89 47 -[1] 166 89 49 -[1] 167 89 48 -[1] 168 89 51 -[1] 169 89 54 -[1] 170 89 52 -[1] 171 89 55 -[1] 172 89 59 -[1] 173 89 68 -[1] 174 89 33 -[1] 175 89 60 -[1] 176 89 45 -[1] 177 89 41 -[1] 178 89 32 -[1] 179 89 43 -[1] 180 89 32 -[1] 181 89 53 -[1] 182 89 40 -[1] 183 89 51 -[1] 184 89 59 -[1] 185 89 36 -[1] 186 89 63 -[1] 187 89 73 -[1] 188 89 48 -[1] 189 89 32 -[1] 190 89 54 -[1] 191 89 53 -[1] 192 89 62 -[1] 193 89 84 -[1] 194 89 52 -[1] 195 89 50 -[1] 196 89 46 -[1] 197 89 37 -[1] 198 89 61 -[1] 199 89 48 -[1] 200 89 54 -[1] 1 90 33 -[1] 2 90 36 -[1] 3 90 29 -[1] 4 90 61 -[1] 5 90 52 -[1] 6 90 45 -[1] 7 90 33 -[1] 8 90 42 -[1] 9 90 47 -[1] 10 90 34 -[1] 11 90 49 -[1] 12 90 39 -[1] 13 90 40 -[1] 14 90 37 -[1] 15 90 54 -[1] 16 90 65 -[1] 17 90 31 -[1] 18 90 39 -[1] 19 90 71 -[1] 20 90 42 -[1] 21 90 51 -[1] 22 90 64 -[1] 23 90 78 -[1] 24 90 65 -[1] 25 90 41 -[1] 26 90 36 -[1] 27 90 46 -[1] 28 90 53 -[1] 29 90 50 -[1] 30 90 67 -[1] 31 90 40 -[1] 32 90 50 -[1] 33 90 51 -[1] 34 90 49 -[1] 35 90 33 -[1] 36 90 46 -[1] 37 90 45 -[1] 38 90 52 -[1] 39 90 41 -[1] 40 90 38 -[1] 41 90 45 -[1] 42 90 42 -[1] 43 90 45 -[1] 44 90 32 -[1] 45 90 49 -[1] 46 90 44 -[1] 47 90 65 -[1] 48 90 69 -[1] 49 90 60 -[1] 50 90 49 -[1] 51 90 63 -[1] 52 90 66 -[1] 53 90 39 -[1] 54 90 35 -[1] 55 90 46 -[1] 56 90 32 -[1] 57 90 95 -[1] 58 90 42 -[1] 59 90 117 -[1] 60 90 39 -[1] 61 90 40 -[1] 62 90 107 -[1] 63 90 54 -[1] 64 90 43 -[1] 65 90 48 -[1] 66 90 73 -[1] 67 90 50 -[1] 68 90 71 -[1] 69 90 43 -[1] 70 90 56 -[1] 71 90 47 -[1] 72 90 53 -[1] 73 90 42 -[1] 74 90 41 -[1] 75 90 82 -[1] 76 90 47 -[1] 77 90 64 -[1] 78 90 47 -[1] 79 90 40 -[1] 80 90 47 -[1] 81 90 57 -[1] 82 90 55 -[1] 83 90 74 -[1] 84 90 55 -[1] 85 90 48 -[1] 86 90 63 -[1] 87 90 44 -[1] 88 90 92 -[1] 89 90 55 -[1] 90 90 71 -[1] 91 90 38 -[1] 92 90 78 -[1] 93 90 70 -[1] 94 90 70 -[1] 95 90 81 -[1] 96 90 90 -[1] 97 90 47 -[1] 98 90 50 -[1] 99 90 45 -[1] 100 90 33 -[1] 101 90 64 -[1] 102 90 47 -[1] 103 90 37 -[1] 104 90 57 -[1] 105 90 64 -[1] 106 90 49 -[1] 107 90 45 -[1] 108 90 66 -[1] 109 90 64 -[1] 110 90 49 -[1] 111 90 68 -[1] 112 90 45 -[1] 113 90 61 -[1] 114 90 51 -[1] 115 90 48 -[1] 116 90 77 -[1] 117 90 43 -[1] 118 90 41 -[1] 119 90 45 -[1] 120 90 45 -[1] 121 90 51 -[1] 122 90 47 -[1] 123 90 51 -[1] 124 90 62 -[1] 125 90 34 -[1] 126 90 41 -[1] 127 90 73 -[1] 128 90 70 -[1] 129 90 48 -[1] 130 90 58 -[1] 131 90 54 -[1] 132 90 41 -[1] 133 90 42 -[1] 134 90 57 -[1] 135 90 42 -[1] 136 90 51 -[1] 137 90 61 -[1] 138 90 38 -[1] 139 90 41 -[1] 140 90 47 -[1] 141 90 40 -[1] 142 90 40 -[1] 143 90 59 -[1] 144 90 59 -[1] 145 90 45 -[1] 146 90 50 -[1] 147 90 35 -[1] 148 90 54 -[1] 149 90 40 -[1] 150 90 38 -[1] 151 90 58 -[1] 152 90 63 -[1] 153 90 58 -[1] 154 90 38 -[1] 155 90 55 -[1] 156 90 118 -[1] 157 90 37 -[1] 158 90 42 -[1] 159 90 45 -[1] 160 90 56 -[1] 161 90 65 -[1] 162 90 42 -[1] 163 90 43 -[1] 164 90 50 -[1] 165 90 64 -[1] 166 90 50 -[1] 167 90 97 -[1] 168 90 40 -[1] 169 90 48 -[1] 170 90 59 -[1] 171 90 47 -[1] 172 90 71 -[1] 173 90 40 -[1] 174 90 57 -[1] 175 90 72 -[1] 176 90 64 -[1] 177 90 38 -[1] 178 90 48 -[1] 179 90 51 -[1] 180 90 46 -[1] 181 90 47 -[1] 182 90 60 -[1] 183 90 55 -[1] 184 90 44 -[1] 185 90 50 -[1] 186 90 66 -[1] 187 90 46 -[1] 188 90 49 -[1] 189 90 71 -[1] 190 90 66 -[1] 191 90 48 -[1] 192 90 51 -[1] 193 90 38 -[1] 194 90 38 -[1] 195 90 42 -[1] 196 90 87 -[1] 197 90 42 -[1] 198 90 38 -[1] 199 90 51 -[1] 200 90 47 -[1] 1 91 51 -[1] 2 91 45 -[1] 3 91 60 -[1] 4 91 39 -[1] 5 91 60 -[1] 6 91 34 -[1] 7 91 43 -[1] 8 91 31 -[1] 9 91 27 -[1] 10 91 29 -[1] 11 91 38 -[1] 12 91 48 -[1] 13 91 34 -[1] 14 91 70 -[1] 15 91 48 -[1] 16 91 36 -[1] 17 91 42 -[1] 18 91 34 -[1] 19 91 42 -[1] 20 91 46 -[1] 21 91 53 -[1] 22 91 39 -[1] 23 91 30 -[1] 24 91 33 -[1] 25 91 48 -[1] 26 91 51 -[1] 27 91 32 -[1] 28 91 45 -[1] 29 91 67 -[1] 30 91 48 -[1] 31 91 41 -[1] 32 91 68 -[1] 33 91 39 -[1] 34 91 47 -[1] 35 91 38 -[1] 36 91 40 -[1] 37 91 28 -[1] 38 91 43 -[1] 39 91 34 -[1] 40 91 50 -[1] 41 91 44 -[1] 42 91 36 -[1] 43 91 52 -[1] 44 91 33 -[1] 45 91 36 -[1] 46 91 32 -[1] 47 91 41 -[1] 48 91 44 -[1] 49 91 49 -[1] 50 91 44 -[1] 51 91 97 -[1] 52 91 61 -[1] 53 91 35 -[1] 54 91 41 -[1] 55 91 75 -[1] 56 91 57 -[1] 57 91 44 -[1] 58 91 53 -[1] 59 91 57 -[1] 60 91 51 -[1] 61 91 72 -[1] 62 91 46 -[1] 63 91 45 -[1] 64 91 31 -[1] 65 91 64 -[1] 66 91 53 -[1] 67 91 70 -[1] 68 91 57 -[1] 69 91 37 -[1] 70 91 58 -[1] 71 91 56 -[1] 72 91 63 -[1] 73 91 51 -[1] 74 91 52 -[1] 75 91 34 -[1] 76 91 63 -[1] 77 91 75 -[1] 78 91 100 -[1] 79 91 50 -[1] 80 91 67 -[1] 81 91 39 -[1] 82 91 43 -[1] 83 91 47 -[1] 84 91 49 -[1] 85 91 60 -[1] 86 91 57 -[1] 87 91 70 -[1] 88 91 73 -[1] 89 91 54 -[1] 90 91 64 -[1] 91 91 55 -[1] 92 91 64 -[1] 93 91 85 -[1] 94 91 40 -[1] 95 91 43 -[1] 96 91 84 -[1] 97 91 41 -[1] 98 91 65 -[1] 99 91 64 -[1] 100 91 33 -[1] 101 91 47 -[1] 102 91 68 -[1] 103 91 38 -[1] 104 91 85 -[1] 105 91 45 -[1] 106 91 42 -[1] 107 91 79 -[1] 108 91 42 -[1] 109 91 99 -[1] 110 91 43 -[1] 111 91 64 -[1] 112 91 56 -[1] 113 91 67 -[1] 114 91 52 -[1] 115 91 48 -[1] 116 91 48 -[1] 117 91 56 -[1] 118 91 45 -[1] 119 91 45 -[1] 120 91 57 -[1] 121 91 73 -[1] 122 91 47 -[1] 123 91 46 -[1] 124 91 85 -[1] 125 91 36 -[1] 126 91 40 -[1] 127 91 76 -[1] 128 91 47 -[1] 129 91 52 -[1] 130 91 60 -[1] 131 91 38 -[1] 132 91 57 -[1] 133 91 71 -[1] 134 91 75 -[1] 135 91 48 -[1] 136 91 32 -[1] 137 91 99 -[1] 138 91 71 -[1] 139 91 48 -[1] 140 91 45 -[1] 141 91 35 -[1] 142 91 32 -[1] 143 91 81 -[1] 144 91 52 -[1] 145 91 51 -[1] 146 91 49 -[1] 147 91 74 -[1] 148 91 34 -[1] 149 91 51 -[1] 150 91 30 -[1] 151 91 51 -[1] 152 91 60 -[1] 153 91 55 -[1] 154 91 48 -[1] 155 91 40 -[1] 156 91 58 -[1] 157 91 70 -[1] 158 91 49 -[1] 159 91 45 -[1] 160 91 53 -[1] 161 91 82 -[1] 162 91 49 -[1] 163 91 49 -[1] 164 91 55 -[1] 165 91 95 -[1] 166 91 32 -[1] 167 91 51 -[1] 168 91 73 -[1] 169 91 45 -[1] 170 91 66 -[1] 171 91 46 -[1] 172 91 38 -[1] 173 91 63 -[1] 174 91 47 -[1] 175 91 67 -[1] 176 91 52 -[1] 177 91 63 -[1] 178 91 52 -[1] 179 91 37 -[1] 180 91 46 -[1] 181 91 45 -[1] 182 91 65 -[1] 183 91 62 -[1] 184 91 37 -[1] 185 91 36 -[1] 186 91 92 -[1] 187 91 45 -[1] 188 91 37 -[1] 189 91 62 -[1] 190 91 34 -[1] 191 91 51 -[1] 192 91 54 -[1] 193 91 60 -[1] 194 91 53 -[1] 195 91 59 -[1] 196 91 47 -[1] 197 91 45 -[1] 198 91 35 -[1] 199 91 48 -[1] 200 91 47 -[1] 1 92 32 -[1] 2 92 42 -[1] 3 92 41 -[1] 4 92 48 -[1] 5 92 53 -[1] 6 92 38 -[1] 7 92 31 -[1] 8 92 52 -[1] 9 92 40 -[1] 10 92 46 -[1] 11 92 38 -[1] 12 92 36 -[1] 13 92 35 -[1] 14 92 32 -[1] 15 92 41 -[1] 16 92 29 -[1] 17 92 32 -[1] 18 92 44 -[1] 19 92 43 -[1] 20 92 45 -[1] 21 92 50 -[1] 22 92 45 -[1] 23 92 49 -[1] 24 92 56 -[1] 25 92 36 -[1] 26 92 62 -[1] 27 92 43 -[1] 28 92 41 -[1] 29 92 48 -[1] 30 92 43 -[1] 31 92 36 -[1] 32 92 46 -[1] 33 92 43 -[1] 34 92 47 -[1] 35 92 47 -[1] 36 92 36 -[1] 37 92 38 -[1] 38 92 47 -[1] 39 92 46 -[1] 40 92 82 -[1] 41 92 43 -[1] 42 92 72 -[1] 43 92 37 -[1] 44 92 81 -[1] 45 92 67 -[1] 46 92 47 -[1] 47 92 45 -[1] 48 92 78 -[1] 49 92 56 -[1] 50 92 51 -[1] 51 92 57 -[1] 52 92 49 -[1] 53 92 58 -[1] 54 92 40 -[1] 55 92 47 -[1] 56 92 37 -[1] 57 92 42 -[1] 58 92 43 -[1] 59 92 50 -[1] 60 92 63 -[1] 61 92 50 -[1] 62 92 72 -[1] 63 92 65 -[1] 64 92 107 -[1] 65 92 77 -[1] 66 92 63 -[1] 67 92 48 -[1] 68 92 68 -[1] 69 92 79 -[1] 70 92 53 -[1] 71 92 122 -[1] 72 92 41 -[1] 73 92 48 -[1] 74 92 49 -[1] 75 92 42 -[1] 76 92 94 -[1] 77 92 53 -[1] 78 92 56 -[1] 79 92 45 -[1] 80 92 81 -[1] 81 92 47 -[1] 82 92 58 -[1] 83 92 29 -[1] 84 92 51 -[1] 85 92 59 -[1] 86 92 37 -[1] 87 92 39 -[1] 88 92 60 -[1] 89 92 51 -[1] 90 92 59 -[1] 91 92 63 -[1] 92 92 54 -[1] 93 92 46 -[1] 94 92 46 -[1] 95 92 56 -[1] 96 92 70 -[1] 97 92 80 -[1] 98 92 56 -[1] 99 92 75 -[1] 100 92 69 -[1] 101 92 43 -[1] 102 92 54 -[1] 103 92 54 -[1] 104 92 49 -[1] 105 92 36 -[1] 106 92 58 -[1] 107 92 50 -[1] 108 92 46 -[1] 109 92 101 -[1] 110 92 47 -[1] 111 92 89 -[1] 112 92 54 -[1] 113 92 77 -[1] 114 92 87 -[1] 115 92 49 -[1] 116 92 60 -[1] 117 92 47 -[1] 118 92 51 -[1] 119 92 45 -[1] 120 92 58 -[1] 121 92 47 -[1] 122 92 52 -[1] 123 92 42 -[1] 124 92 47 -[1] 125 92 46 -[1] 126 92 42 -[1] 127 92 80 -[1] 128 92 49 -[1] 129 92 36 -[1] 130 92 43 -[1] 131 92 28 -[1] 132 92 59 -[1] 133 92 66 -[1] 134 92 63 -[1] 135 92 56 -[1] 136 92 57 -[1] 137 92 62 -[1] 138 92 46 -[1] 139 92 66 -[1] 140 92 58 -[1] 141 92 96 -[1] 142 92 83 -[1] 143 92 42 -[1] 144 92 92 -[1] 145 92 46 -[1] 146 92 48 -[1] 147 92 67 -[1] 148 92 41 -[1] 149 92 66 -[1] 150 92 31 -[1] 151 92 65 -[1] 152 92 68 -[1] 153 92 42 -[1] 154 92 59 -[1] 155 92 24 -[1] 156 92 73 -[1] 157 92 56 -[1] 158 92 49 -[1] 159 92 59 -[1] 160 92 49 -[1] 161 92 51 -[1] 162 92 49 -[1] 163 92 48 -[1] 164 92 55 -[1] 165 92 46 -[1] 166 92 46 -[1] 167 92 87 -[1] 168 92 56 -[1] 169 92 56 -[1] 170 92 79 -[1] 171 92 52 -[1] 172 92 34 -[1] 173 92 76 -[1] 174 92 45 -[1] 175 92 54 -[1] 176 92 46 -[1] 177 92 39 -[1] 178 92 41 -[1] 179 92 53 -[1] 180 92 45 -[1] 181 92 55 -[1] 182 92 59 -[1] 183 92 38 -[1] 184 92 43 -[1] 185 92 56 -[1] 186 92 59 -[1] 187 92 47 -[1] 188 92 58 -[1] 189 92 68 -[1] 190 92 57 -[1] 191 92 42 -[1] 192 92 53 -[1] 193 92 53 -[1] 194 92 38 -[1] 195 92 53 -[1] 196 92 45 -[1] 197 92 68 -[1] 198 92 54 -[1] 199 92 48 -[1] 200 92 46 -[1] 1 93 55 -[1] 2 93 41 -[1] 3 93 37 -[1] 4 93 38 -[1] 5 93 42 -[1] 6 93 35 -[1] 7 93 48 -[1] 8 93 40 -[1] 9 93 52 -[1] 10 93 36 -[1] 11 93 44 -[1] 12 93 51 -[1] 13 93 40 -[1] 14 93 45 -[1] 15 93 35 -[1] 16 93 35 -[1] 17 93 52 -[1] 18 93 41 -[1] 19 93 52 -[1] 20 93 33 -[1] 21 93 70 -[1] 22 93 48 -[1] 23 93 33 -[1] 24 93 56 -[1] 25 93 46 -[1] 26 93 29 -[1] 27 93 72 -[1] 28 93 52 -[1] 29 93 44 -[1] 30 93 37 -[1] 31 93 71 -[1] 32 93 35 -[1] 33 93 48 -[1] 34 93 39 -[1] 35 93 48 -[1] 36 93 35 -[1] 37 93 39 -[1] 38 93 49 -[1] 39 93 56 -[1] 40 93 40 -[1] 41 93 59 -[1] 42 93 46 -[1] 43 93 42 -[1] 44 93 65 -[1] 45 93 36 -[1] 46 93 46 -[1] 47 93 66 -[1] 48 93 73 -[1] 49 93 49 -[1] 50 93 47 -[1] 51 93 41 -[1] 52 93 85 -[1] 53 93 36 -[1] 54 93 39 -[1] 55 93 89 -[1] 56 93 49 -[1] 57 93 84 -[1] 58 93 40 -[1] 59 93 45 -[1] 60 93 51 -[1] 61 93 46 -[1] 62 93 53 -[1] 63 93 52 -[1] 64 93 48 -[1] 65 93 41 -[1] 66 93 36 -[1] 67 93 103 -[1] 68 93 45 -[1] 69 93 41 -[1] 70 93 48 -[1] 71 93 61 -[1] 72 93 58 -[1] 73 93 58 -[1] 74 93 34 -[1] 75 93 34 -[1] 76 93 60 -[1] 77 93 65 -[1] 78 93 39 -[1] 79 93 40 -[1] 80 93 59 -[1] 81 93 70 -[1] 82 93 59 -[1] 83 93 46 -[1] 84 93 53 -[1] 85 93 53 -[1] 86 93 44 -[1] 87 93 91 -[1] 88 93 65 -[1] 89 93 113 -[1] 90 93 94 -[1] 91 93 60 -[1] 92 93 38 -[1] 93 93 81 -[1] 94 93 92 -[1] 95 93 54 -[1] 96 93 45 -[1] 97 93 55 -[1] 98 93 50 -[1] 99 93 39 -[1] 100 93 35 -[1] 101 93 63 -[1] 102 93 41 -[1] 103 93 56 -[1] 104 93 48 -[1] 105 93 49 -[1] 106 93 34 -[1] 107 93 53 -[1] 108 93 51 -[1] 109 93 66 -[1] 110 93 35 -[1] 111 93 66 -[1] 112 93 49 -[1] 113 93 40 -[1] 114 93 49 -[1] 115 93 72 -[1] 116 93 46 -[1] 117 93 36 -[1] 118 93 24 -[1] 119 93 66 -[1] 120 93 57 -[1] 121 93 48 -[1] 122 93 53 -[1] 123 93 33 -[1] 124 93 39 -[1] 125 93 33 -[1] 126 93 50 -[1] 127 93 48 -[1] 128 93 59 -[1] 129 93 51 -[1] 130 93 60 -[1] 131 93 61 -[1] 132 93 36 -[1] 133 93 51 -[1] 134 93 33 -[1] 135 93 56 -[1] 136 93 62 -[1] 137 93 44 -[1] 138 93 59 -[1] 139 93 59 -[1] 140 93 47 -[1] 141 93 80 -[1] 142 93 43 -[1] 143 93 48 -[1] 144 93 45 -[1] 145 93 44 -[1] 146 93 43 -[1] 147 93 39 -[1] 148 93 46 -[1] 149 93 51 -[1] 150 93 49 -[1] 151 93 58 -[1] 152 93 46 -[1] 153 93 50 -[1] 154 93 38 -[1] 155 93 98 -[1] 156 93 81 -[1] 157 93 42 -[1] 158 93 50 -[1] 159 93 99 -[1] 160 93 51 -[1] 161 93 50 -[1] 162 93 64 -[1] 163 93 79 -[1] 164 93 42 -[1] 165 93 45 -[1] 166 93 40 -[1] 167 93 62 -[1] 168 93 37 -[1] 169 93 37 -[1] 170 93 72 -[1] 171 93 48 -[1] 172 93 42 -[1] 173 93 61 -[1] 174 93 53 -[1] 175 93 34 -[1] 176 93 33 -[1] 177 93 57 -[1] 178 93 52 -[1] 179 93 95 -[1] 180 93 36 -[1] 181 93 62 -[1] 182 93 59 -[1] 183 93 55 -[1] 184 93 42 -[1] 185 93 49 -[1] 186 93 46 -[1] 187 93 57 -[1] 188 93 75 -[1] 189 93 48 -[1] 190 93 61 -[1] 191 93 36 -[1] 192 93 57 -[1] 193 93 56 -[1] 194 93 45 -[1] 195 93 44 -[1] 196 93 42 -[1] 197 93 52 -[1] 198 93 55 -[1] 199 93 54 -[1] 200 93 41 -[1] 1 94 71 -[1] 2 94 37 -[1] 3 94 41 -[1] 4 94 48 -[1] 5 94 32 -[1] 6 94 40 -[1] 7 94 49 -[1] 8 94 52 -[1] 9 94 39 -[1] 10 94 41 -[1] 11 94 43 -[1] 12 94 57 -[1] 13 94 42 -[1] 14 94 28 -[1] 15 94 39 -[1] 16 94 28 -[1] 17 94 37 -[1] 18 94 40 -[1] 19 94 40 -[1] 20 94 48 -[1] 21 94 40 -[1] 22 94 43 -[1] 23 94 48 -[1] 24 94 79 -[1] 25 94 52 -[1] 26 94 43 -[1] 27 94 54 -[1] 28 94 39 -[1] 29 94 37 -[1] 30 94 62 -[1] 31 94 48 -[1] 32 94 65 -[1] 33 94 38 -[1] 34 94 41 -[1] 35 94 65 -[1] 36 94 40 -[1] 37 94 39 -[1] 38 94 61 -[1] 39 94 40 -[1] 40 94 35 -[1] 41 94 98 -[1] 42 94 51 -[1] 43 94 40 -[1] 44 94 30 -[1] 45 94 50 -[1] 46 94 36 -[1] 47 94 45 -[1] 48 94 55 -[1] 49 94 51 -[1] 50 94 61 -[1] 51 94 58 -[1] 52 94 55 -[1] 53 94 43 -[1] 54 94 46 -[1] 55 94 53 -[1] 56 94 57 -[1] 57 94 74 -[1] 58 94 53 -[1] 59 94 39 -[1] 60 94 50 -[1] 61 94 64 -[1] 62 94 40 -[1] 63 94 51 -[1] 64 94 45 -[1] 65 94 62 -[1] 66 94 62 -[1] 67 94 61 -[1] 68 94 56 -[1] 69 94 54 -[1] 70 94 74 -[1] 71 94 84 -[1] 72 94 63 -[1] 73 94 51 -[1] 74 94 53 -[1] 75 94 34 -[1] 76 94 41 -[1] 77 94 116 -[1] 78 94 69 -[1] 79 94 42 -[1] 80 94 72 -[1] 81 94 40 -[1] 82 94 56 -[1] 83 94 41 -[1] 84 94 66 -[1] 85 94 57 -[1] 86 94 45 -[1] 87 94 87 -[1] 88 94 72 -[1] 89 94 62 -[1] 90 94 41 -[1] 91 94 76 -[1] 92 94 65 -[1] 93 94 49 -[1] 94 94 57 -[1] 95 94 48 -[1] 96 94 82 -[1] 97 94 49 -[1] 98 94 44 -[1] 99 94 72 -[1] 100 94 63 -[1] 101 94 43 -[1] 102 94 62 -[1] 103 94 57 -[1] 104 94 46 -[1] 105 94 66 -[1] 106 94 50 -[1] 107 94 42 -[1] 108 94 56 -[1] 109 94 35 -[1] 110 94 55 -[1] 111 94 55 -[1] 112 94 64 -[1] 113 94 78 -[1] 114 94 63 -[1] 115 94 57 -[1] 116 94 60 -[1] 117 94 56 -[1] 118 94 73 -[1] 119 94 45 -[1] 120 94 38 -[1] 121 94 50 -[1] 122 94 51 -[1] 123 94 51 -[1] 124 94 55 -[1] 125 94 47 -[1] 126 94 61 -[1] 127 94 59 -[1] 128 94 47 -[1] 129 94 38 -[1] 130 94 33 -[1] 131 94 45 -[1] 132 94 47 -[1] 133 94 50 -[1] 134 94 60 -[1] 135 94 45 -[1] 136 94 58 -[1] 137 94 61 -[1] 138 94 38 -[1] 139 94 57 -[1] 140 94 50 -[1] 141 94 108 -[1] 142 94 65 -[1] 143 94 63 -[1] 144 94 49 -[1] 145 94 52 -[1] 146 94 50 -[1] 147 94 50 -[1] 148 94 58 -[1] 149 94 48 -[1] 150 94 54 -[1] 151 94 63 -[1] 152 94 65 -[1] 153 94 44 -[1] 154 94 53 -[1] 155 94 31 -[1] 156 94 40 -[1] 157 94 43 -[1] 158 94 36 -[1] 159 94 51 -[1] 160 94 40 -[1] 161 94 39 -[1] 162 94 73 -[1] 163 94 56 -[1] 164 94 45 -[1] 165 94 37 -[1] 166 94 42 -[1] 167 94 34 -[1] 168 94 28 -[1] 169 94 50 -[1] 170 94 73 -[1] 171 94 65 -[1] 172 94 38 -[1] 173 94 62 -[1] 174 94 56 -[1] 175 94 81 -[1] 176 94 76 -[1] 177 94 45 -[1] 178 94 53 -[1] 179 94 58 -[1] 180 94 66 -[1] 181 94 84 -[1] 182 94 63 -[1] 183 94 57 -[1] 184 94 46 -[1] 185 94 51 -[1] 186 94 41 -[1] 187 94 76 -[1] 188 94 55 -[1] 189 94 48 -[1] 190 94 49 -[1] 191 94 75 -[1] 192 94 62 -[1] 193 94 63 -[1] 194 94 42 -[1] 195 94 77 -[1] 196 94 32 -[1] 197 94 47 -[1] 198 94 33 -[1] 199 94 48 -[1] 200 94 43 -[1] 1 95 43 -[1] 2 95 31 -[1] 3 95 28 -[1] 4 95 39 -[1] 5 95 32 -[1] 6 95 34 -[1] 7 95 67 -[1] 8 95 37 -[1] 9 95 52 -[1] 10 95 33 -[1] 11 95 61 -[1] 12 95 32 -[1] 13 95 43 -[1] 14 95 40 -[1] 15 95 37 -[1] 16 95 30 -[1] 17 95 29 -[1] 18 95 29 -[1] 19 95 40 -[1] 20 95 44 -[1] 21 95 41 -[1] 22 95 38 -[1] 23 95 81 -[1] 24 95 47 -[1] 25 95 30 -[1] 26 95 42 -[1] 27 95 53 -[1] 28 95 47 -[1] 29 95 39 -[1] 30 95 50 -[1] 31 95 39 -[1] 32 95 46 -[1] 33 95 45 -[1] 34 95 52 -[1] 35 95 45 -[1] 36 95 50 -[1] 37 95 45 -[1] 38 95 39 -[1] 39 95 37 -[1] 40 95 117 -[1] 41 95 44 -[1] 42 95 61 -[1] 43 95 46 -[1] 44 95 36 -[1] 45 95 46 -[1] 46 95 47 -[1] 47 95 49 -[1] 48 95 50 -[1] 49 95 54 -[1] 50 95 48 -[1] 51 95 44 -[1] 52 95 61 -[1] 53 95 82 -[1] 54 95 34 -[1] 55 95 47 -[1] 56 95 36 -[1] 57 95 43 -[1] 58 95 89 -[1] 59 95 44 -[1] 60 95 49 -[1] 61 95 81 -[1] 62 95 62 -[1] 63 95 56 -[1] 64 95 75 -[1] 65 95 34 -[1] 66 95 63 -[1] 67 95 61 -[1] 68 95 42 -[1] 69 95 41 -[1] 70 95 30 -[1] 71 95 76 -[1] 72 95 79 -[1] 73 95 66 -[1] 74 95 71 -[1] 75 95 45 -[1] 76 95 46 -[1] 77 95 61 -[1] 78 95 41 -[1] 79 95 60 -[1] 80 95 42 -[1] 81 95 43 -[1] 82 95 27 -[1] 83 95 75 -[1] 84 95 34 -[1] 85 95 43 -[1] 86 95 86 -[1] 87 95 48 -[1] 88 95 55 -[1] 89 95 36 -[1] 90 95 49 -[1] 91 95 53 -[1] 92 95 45 -[1] 93 95 55 -[1] 94 95 82 -[1] 95 95 46 -[1] 96 95 32 -[1] 97 95 110 -[1] 98 95 54 -[1] 99 95 54 -[1] 100 95 57 -[1] 101 95 45 -[1] 102 95 60 -[1] 103 95 46 -[1] 104 95 41 -[1] 105 95 51 -[1] 106 95 39 -[1] 107 95 78 -[1] 108 95 41 -[1] 109 95 50 -[1] 110 95 46 -[1] 111 95 45 -[1] 112 95 33 -[1] 113 95 42 -[1] 114 95 36 -[1] 115 95 51 -[1] 116 95 48 -[1] 117 95 44 -[1] 118 95 76 -[1] 119 95 63 -[1] 120 95 30 -[1] 121 95 87 -[1] 122 95 41 -[1] 123 95 58 -[1] 124 95 38 -[1] 125 95 58 -[1] 126 95 61 -[1] 127 95 47 -[1] 128 95 41 -[1] 129 95 35 -[1] 130 95 66 -[1] 131 95 37 -[1] 132 95 40 -[1] 133 95 50 -[1] 134 95 37 -[1] 135 95 50 -[1] 136 95 50 -[1] 137 95 83 -[1] 138 95 34 -[1] 139 95 53 -[1] 140 95 50 -[1] 141 95 46 -[1] 142 95 46 -[1] 143 95 44 -[1] 144 95 46 -[1] 145 95 44 -[1] 146 95 37 -[1] 147 95 56 -[1] 148 95 52 -[1] 149 95 39 -[1] 150 95 45 -[1] 151 95 64 -[1] 152 95 55 -[1] 153 95 50 -[1] 154 95 65 -[1] 155 95 33 -[1] 156 95 58 -[1] 157 95 45 -[1] 158 95 47 -[1] 159 95 94 -[1] 160 95 88 -[1] 161 95 47 -[1] 162 95 36 -[1] 163 95 38 -[1] 164 95 69 -[1] 165 95 51 -[1] 166 95 35 -[1] 167 95 49 -[1] 168 95 44 -[1] 169 95 36 -[1] 170 95 65 -[1] 171 95 65 -[1] 172 95 56 -[1] 173 95 51 -[1] 174 95 51 -[1] 175 95 64 -[1] 176 95 54 -[1] 177 95 61 -[1] 178 95 70 -[1] 179 95 32 -[1] 180 95 73 -[1] 181 95 77 -[1] 182 95 44 -[1] 183 95 43 -[1] 184 95 34 -[1] 185 95 45 -[1] 186 95 50 -[1] 187 95 41 -[1] 188 95 55 -[1] 189 95 49 -[1] 190 95 90 -[1] 191 95 69 -[1] 192 95 52 -[1] 193 95 37 -[1] 194 95 58 -[1] 195 95 55 -[1] 196 95 58 -[1] 197 95 59 -[1] 198 95 37 -[1] 199 95 32 -[1] 200 95 47 -[1] 1 96 44 -[1] 2 96 36 -[1] 3 96 31 -[1] 4 96 31 -[1] 5 96 43 -[1] 6 96 47 -[1] 7 96 42 -[1] 8 96 39 -[1] 9 96 51 -[1] 10 96 32 -[1] 11 96 43 -[1] 12 96 44 -[1] 13 96 49 -[1] 14 96 33 -[1] 15 96 60 -[1] 16 96 41 -[1] 17 96 50 -[1] 18 96 33 -[1] 19 96 63 -[1] 20 96 46 -[1] 21 96 50 -[1] 22 96 33 -[1] 23 96 65 -[1] 24 96 48 -[1] 25 96 33 -[1] 26 96 54 -[1] 27 96 42 -[1] 28 96 57 -[1] 29 96 37 -[1] 30 96 42 -[1] 31 96 40 -[1] 32 96 50 -[1] 33 96 40 -[1] 34 96 45 -[1] 35 96 44 -[1] 36 96 25 -[1] 37 96 71 -[1] 38 96 46 -[1] 39 96 71 -[1] 40 96 49 -[1] 41 96 38 -[1] 42 96 33 -[1] 43 96 40 -[1] 44 96 40 -[1] 45 96 46 -[1] 46 96 57 -[1] 47 96 54 -[1] 48 96 54 -[1] 49 96 61 -[1] 50 96 36 -[1] 51 96 58 -[1] 52 96 59 -[1] 53 96 44 -[1] 54 96 48 -[1] 55 96 44 -[1] 56 96 39 -[1] 57 96 54 -[1] 58 96 61 -[1] 59 96 68 -[1] 60 96 74 -[1] 61 96 45 -[1] 62 96 33 -[1] 63 96 55 -[1] 64 96 59 -[1] 65 96 45 -[1] 66 96 51 -[1] 67 96 42 -[1] 68 96 57 -[1] 69 96 52 -[1] 70 96 69 -[1] 71 96 47 -[1] 72 96 54 -[1] 73 96 52 -[1] 74 96 45 -[1] 75 96 42 -[1] 76 96 47 -[1] 77 96 43 -[1] 78 96 39 -[1] 79 96 50 -[1] 80 96 41 -[1] 81 96 34 -[1] 82 96 60 -[1] 83 96 46 -[1] 84 96 54 -[1] 85 96 44 -[1] 86 96 47 -[1] 87 96 48 -[1] 88 96 53 -[1] 89 96 51 -[1] 90 96 37 -[1] 91 96 112 -[1] 92 96 37 -[1] 93 96 50 -[1] 94 96 68 -[1] 95 96 95 -[1] 96 96 59 -[1] 97 96 62 -[1] 98 96 51 -[1] 99 96 45 -[1] 100 96 74 -[1] 101 96 83 -[1] 102 96 58 -[1] 103 96 51 -[1] 104 96 50 -[1] 105 96 50 -[1] 106 96 46 -[1] 107 96 50 -[1] 108 96 55 -[1] 109 96 78 -[1] 110 96 48 -[1] 111 96 39 -[1] 112 96 64 -[1] 113 96 57 -[1] 114 96 60 -[1] 115 96 40 -[1] 116 96 61 -[1] 117 96 38 -[1] 118 96 48 -[1] 119 96 49 -[1] 120 96 43 -[1] 121 96 66 -[1] 122 96 56 -[1] 123 96 32 -[1] 124 96 33 -[1] 125 96 57 -[1] 126 96 55 -[1] 127 96 33 -[1] 128 96 43 -[1] 129 96 48 -[1] 130 96 50 -[1] 131 96 40 -[1] 132 96 79 -[1] 133 96 43 -[1] 134 96 50 -[1] 135 96 37 -[1] 136 96 43 -[1] 137 96 56 -[1] 138 96 43 -[1] 139 96 53 -[1] 140 96 47 -[1] 141 96 31 -[1] 142 96 43 -[1] 143 96 40 -[1] 144 96 45 -[1] 145 96 46 -[1] 146 96 31 -[1] 147 96 60 -[1] 148 96 39 -[1] 149 96 46 -[1] 150 96 63 -[1] 151 96 61 -[1] 152 96 82 -[1] 153 96 49 -[1] 154 96 41 -[1] 155 96 84 -[1] 156 96 55 -[1] 157 96 36 -[1] 158 96 45 -[1] 159 96 36 -[1] 160 96 49 -[1] 161 96 39 -[1] 162 96 66 -[1] 163 96 41 -[1] 164 96 43 -[1] 165 96 78 -[1] 166 96 56 -[1] 167 96 73 -[1] 168 96 46 -[1] 169 96 38 -[1] 170 96 35 -[1] 171 96 45 -[1] 172 96 39 -[1] 173 96 38 -[1] 174 96 35 -[1] 175 96 37 -[1] 176 96 46 -[1] 177 96 54 -[1] 178 96 46 -[1] 179 96 58 -[1] 180 96 52 -[1] 181 96 77 -[1] 182 96 46 -[1] 183 96 39 -[1] 184 96 38 -[1] 185 96 73 -[1] 186 96 34 -[1] 187 96 66 -[1] 188 96 66 -[1] 189 96 53 -[1] 190 96 93 -[1] 191 96 43 -[1] 192 96 65 -[1] 193 96 63 -[1] 194 96 50 -[1] 195 96 48 -[1] 196 96 53 -[1] 197 96 57 -[1] 198 96 48 -[1] 199 96 43 -[1] 200 96 39 -[1] 1 97 26 -[1] 2 97 32 -[1] 3 97 37 -[1] 4 97 54 -[1] 5 97 27 -[1] 6 97 48 -[1] 7 97 31 -[1] 8 97 46 -[1] 9 97 35 -[1] 10 97 42 -[1] 11 97 53 -[1] 12 97 34 -[1] 13 97 36 -[1] 14 97 51 -[1] 15 97 37 -[1] 16 97 30 -[1] 17 97 43 -[1] 18 97 31 -[1] 19 97 32 -[1] 20 97 42 -[1] 21 97 35 -[1] 22 97 55 -[1] 23 97 60 -[1] 24 97 39 -[1] 25 97 44 -[1] 26 97 44 -[1] 27 97 34 -[1] 28 97 42 -[1] 29 97 56 -[1] 30 97 39 -[1] 31 97 48 -[1] 32 97 51 -[1] 33 97 65 -[1] 34 97 36 -[1] 35 97 45 -[1] 36 97 38 -[1] 37 97 47 -[1] 38 97 40 -[1] 39 97 53 -[1] 40 97 35 -[1] 41 97 44 -[1] 42 97 35 -[1] 43 97 39 -[1] 44 97 76 -[1] 45 97 40 -[1] 46 97 41 -[1] 47 97 38 -[1] 48 97 59 -[1] 49 97 52 -[1] 50 97 53 -[1] 51 97 45 -[1] 52 97 31 -[1] 53 97 100 -[1] 54 97 38 -[1] 55 97 47 -[1] 56 97 65 -[1] 57 97 39 -[1] 58 97 67 -[1] 59 97 43 -[1] 60 97 56 -[1] 61 97 39 -[1] 62 97 39 -[1] 63 97 55 -[1] 64 97 58 -[1] 65 97 45 -[1] 66 97 65 -[1] 67 97 95 -[1] 68 97 39 -[1] 69 97 52 -[1] 70 97 89 -[1] 71 97 49 -[1] 72 97 49 -[1] 73 97 32 -[1] 74 97 44 -[1] 75 97 55 -[1] 76 97 44 -[1] 77 97 88 -[1] 78 97 64 -[1] 79 97 46 -[1] 80 97 54 -[1] 81 97 55 -[1] 82 97 51 -[1] 83 97 40 -[1] 84 97 41 -[1] 85 97 32 -[1] 86 97 40 -[1] 87 97 36 -[1] 88 97 44 -[1] 89 97 40 -[1] 90 97 59 -[1] 91 97 40 -[1] 92 97 66 -[1] 93 97 52 -[1] 94 97 44 -[1] 95 97 39 -[1] 96 97 55 -[1] 97 97 42 -[1] 98 97 50 -[1] 99 97 45 -[1] 100 97 40 -[1] 101 97 53 -[1] 102 97 83 -[1] 103 97 84 -[1] 104 97 41 -[1] 105 97 42 -[1] 106 97 65 -[1] 107 97 42 -[1] 108 97 58 -[1] 109 97 49 -[1] 110 97 43 -[1] 111 97 38 -[1] 112 97 83 -[1] 113 97 75 -[1] 114 97 64 -[1] 115 97 77 -[1] 116 97 36 -[1] 117 97 45 -[1] 118 97 52 -[1] 119 97 55 -[1] 120 97 53 -[1] 121 97 51 -[1] 122 97 64 -[1] 123 97 62 -[1] 124 97 45 -[1] 125 97 40 -[1] 126 97 40 -[1] 127 97 71 -[1] 128 97 41 -[1] 129 97 28 -[1] 130 97 87 -[1] 131 97 67 -[1] 132 97 49 -[1] 133 97 60 -[1] 134 97 40 -[1] 135 97 69 -[1] 136 97 38 -[1] 137 97 49 -[1] 138 97 38 -[1] 139 97 49 -[1] 140 97 48 -[1] 141 97 38 -[1] 142 97 69 -[1] 143 97 47 -[1] 144 97 55 -[1] 145 97 42 -[1] 146 97 42 -[1] 147 97 41 -[1] 148 97 35 -[1] 149 97 94 -[1] 150 97 45 -[1] 151 97 49 -[1] 152 97 72 -[1] 153 97 48 -[1] 154 97 38 -[1] 155 97 90 -[1] 156 97 30 -[1] 157 97 43 -[1] 158 97 48 -[1] 159 97 57 -[1] 160 97 48 -[1] 161 97 33 -[1] 162 97 29 -[1] 163 97 43 -[1] 164 97 60 -[1] 165 97 40 -[1] 166 97 54 -[1] 167 97 43 -[1] 168 97 62 -[1] 169 97 45 -[1] 170 97 47 -[1] 171 97 50 -[1] 172 97 53 -[1] 173 97 37 -[1] 174 97 34 -[1] 175 97 43 -[1] 176 97 66 -[1] 177 97 43 -[1] 178 97 56 -[1] 179 97 41 -[1] 180 97 58 -[1] 181 97 49 -[1] 182 97 57 -[1] 183 97 42 -[1] 184 97 85 -[1] 185 97 52 -[1] 186 97 47 -[1] 187 97 46 -[1] 188 97 41 -[1] 189 97 57 -[1] 190 97 56 -[1] 191 97 135 -[1] 192 97 46 -[1] 193 97 49 -[1] 194 97 56 -[1] 195 97 36 -[1] 196 97 46 -[1] 197 97 69 -[1] 198 97 45 -[1] 199 97 33 -[1] 200 97 57 -[1] 1 98 35 -[1] 2 98 39 -[1] 3 98 34 -[1] 4 98 40 -[1] 5 98 37 -[1] 6 98 37 -[1] 7 98 38 -[1] 8 98 39 -[1] 9 98 47 -[1] 10 98 34 -[1] 11 98 32 -[1] 12 98 31 -[1] 13 98 43 -[1] 14 98 42 -[1] 15 98 31 -[1] 16 98 32 -[1] 17 98 43 -[1] 18 98 39 -[1] 19 98 28 -[1] 20 98 55 -[1] 21 98 53 -[1] 22 98 36 -[1] 23 98 65 -[1] 24 98 46 -[1] 25 98 47 -[1] 26 98 34 -[1] 27 98 41 -[1] 28 98 38 -[1] 29 98 42 -[1] 30 98 40 -[1] 31 98 35 -[1] 32 98 47 -[1] 33 98 65 -[1] 34 98 41 -[1] 35 98 46 -[1] 36 98 39 -[1] 37 98 45 -[1] 38 98 44 -[1] 39 98 33 -[1] 40 98 60 -[1] 41 98 37 -[1] 42 98 48 -[1] 43 98 41 -[1] 44 98 43 -[1] 45 98 64 -[1] 46 98 47 -[1] 47 98 42 -[1] 48 98 45 -[1] 49 98 38 -[1] 50 98 54 -[1] 51 98 46 -[1] 52 98 59 -[1] 53 98 59 -[1] 54 98 81 -[1] 55 98 35 -[1] 56 98 47 -[1] 57 98 52 -[1] 58 98 42 -[1] 59 98 51 -[1] 60 98 57 -[1] 61 98 58 -[1] 62 98 37 -[1] 63 98 70 -[1] 64 98 53 -[1] 65 98 45 -[1] 66 98 56 -[1] 67 98 51 -[1] 68 98 48 -[1] 69 98 59 -[1] 70 98 55 -[1] 71 98 48 -[1] 72 98 52 -[1] 73 98 48 -[1] 74 98 57 -[1] 75 98 47 -[1] 76 98 48 -[1] 77 98 53 -[1] 78 98 43 -[1] 79 98 47 -[1] 80 98 54 -[1] 81 98 41 -[1] 82 98 52 -[1] 83 98 51 -[1] 84 98 56 -[1] 85 98 61 -[1] 86 98 37 -[1] 87 98 48 -[1] 88 98 41 -[1] 89 98 138 -[1] 90 98 48 -[1] 91 98 56 -[1] 92 98 54 -[1] 93 98 47 -[1] 94 98 54 -[1] 95 98 55 -[1] 96 98 70 -[1] 97 98 41 -[1] 98 98 42 -[1] 99 98 96 -[1] 100 98 56 -[1] 101 98 36 -[1] 102 98 67 -[1] 103 98 44 -[1] 104 98 58 -[1] 105 98 70 -[1] 106 98 44 -[1] 107 98 46 -[1] 108 98 34 -[1] 109 98 66 -[1] 110 98 62 -[1] 111 98 41 -[1] 112 98 52 -[1] 113 98 34 -[1] 114 98 53 -[1] 115 98 52 -[1] 116 98 56 -[1] 117 98 50 -[1] 118 98 39 -[1] 119 98 43 -[1] 120 98 54 -[1] 121 98 38 -[1] 122 98 39 -[1] 123 98 49 -[1] 124 98 39 -[1] 125 98 46 -[1] 126 98 54 -[1] 127 98 39 -[1] 128 98 32 -[1] 129 98 63 -[1] 130 98 61 -[1] 131 98 29 -[1] 132 98 68 -[1] 133 98 46 -[1] 134 98 51 -[1] 135 98 44 -[1] 136 98 41 -[1] 137 98 32 -[1] 138 98 65 -[1] 139 98 40 -[1] 140 98 47 -[1] 141 98 55 -[1] 142 98 65 -[1] 143 98 48 -[1] 144 98 43 -[1] 145 98 34 -[1] 146 98 39 -[1] 147 98 60 -[1] 148 98 55 -[1] 149 98 43 -[1] 150 98 43 -[1] 151 98 48 -[1] 152 98 42 -[1] 153 98 51 -[1] 154 98 39 -[1] 155 98 54 -[1] 156 98 43 -[1] 157 98 72 -[1] 158 98 41 -[1] 159 98 44 -[1] 160 98 48 -[1] 161 98 49 -[1] 162 98 43 -[1] 163 98 58 -[1] 164 98 48 -[1] 165 98 47 -[1] 166 98 44 -[1] 167 98 68 -[1] 168 98 54 -[1] 169 98 39 -[1] 170 98 38 -[1] 171 98 77 -[1] 172 98 39 -[1] 173 98 64 -[1] 174 98 53 -[1] 175 98 38 -[1] 176 98 45 -[1] 177 98 55 -[1] 178 98 52 -[1] 179 98 75 -[1] 180 98 28 -[1] 181 98 62 -[1] 182 98 56 -[1] 183 98 66 -[1] 184 98 86 -[1] 185 98 51 -[1] 186 98 59 -[1] 187 98 60 -[1] 188 98 49 -[1] 189 98 44 -[1] 190 98 52 -[1] 191 98 87 -[1] 192 98 82 -[1] 193 98 60 -[1] 194 98 50 -[1] 195 98 47 -[1] 196 98 48 -[1] 197 98 43 -[1] 198 98 54 -[1] 199 98 48 -[1] 200 98 60 -[1] 1 99 28 -[1] 2 99 44 -[1] 3 99 32 -[1] 4 99 35 -[1] 5 99 44 -[1] 6 99 61 -[1] 7 99 38 -[1] 8 99 28 -[1] 9 99 39 -[1] 10 99 33 -[1] 11 99 45 -[1] 12 99 36 -[1] 13 99 45 -[1] 14 99 38 -[1] 15 99 35 -[1] 16 99 30 -[1] 17 99 30 -[1] 18 99 37 -[1] 19 99 45 -[1] 20 99 36 -[1] 21 99 65 -[1] 22 99 59 -[1] 23 99 37 -[1] 24 99 68 -[1] 25 99 25 -[1] 26 99 68 -[1] 27 99 37 -[1] 28 99 48 -[1] 29 99 48 -[1] 30 99 33 -[1] 31 99 75 -[1] 32 99 55 -[1] 33 99 64 -[1] 34 99 48 -[1] 35 99 43 -[1] 36 99 36 -[1] 37 99 39 -[1] 38 99 41 -[1] 39 99 52 -[1] 40 99 39 -[1] 41 99 44 -[1] 42 99 37 -[1] 43 99 44 -[1] 44 99 51 -[1] 45 99 54 -[1] 46 99 57 -[1] 47 99 48 -[1] 48 99 39 -[1] 49 99 45 -[1] 50 99 45 -[1] 51 99 54 -[1] 52 99 56 -[1] 53 99 44 -[1] 54 99 61 -[1] 55 99 43 -[1] 56 99 53 -[1] 57 99 56 -[1] 58 99 50 -[1] 59 99 95 -[1] 60 99 56 -[1] 61 99 47 -[1] 62 99 51 -[1] 63 99 36 -[1] 64 99 55 -[1] 65 99 50 -[1] 66 99 61 -[1] 67 99 78 -[1] 68 99 70 -[1] 69 99 63 -[1] 70 99 42 -[1] 71 99 44 -[1] 72 99 62 -[1] 73 99 81 -[1] 74 99 50 -[1] 75 99 57 -[1] 76 99 51 -[1] 77 99 88 -[1] 78 99 55 -[1] 79 99 46 -[1] 80 99 63 -[1] 81 99 42 -[1] 82 99 43 -[1] 83 99 49 -[1] 84 99 60 -[1] 85 99 37 -[1] 86 99 53 -[1] 87 99 67 -[1] 88 99 77 -[1] 89 99 46 -[1] 90 99 49 -[1] 91 99 46 -[1] 92 99 58 -[1] 93 99 40 -[1] 94 99 40 -[1] 95 99 61 -[1] 96 99 42 -[1] 97 99 49 -[1] 98 99 104 -[1] 99 99 57 -[1] 100 99 71 -[1] 101 99 54 -[1] 102 99 48 -[1] 103 99 36 -[1] 104 99 54 -[1] 105 99 48 -[1] 106 99 71 -[1] 107 99 64 -[1] 108 99 61 -[1] 109 99 64 -[1] 110 99 40 -[1] 111 99 90 -[1] 112 99 52 -[1] 113 99 76 -[1] 114 99 52 -[1] 115 99 42 -[1] 116 99 68 -[1] 117 99 55 -[1] 118 99 38 -[1] 119 99 57 -[1] 120 99 36 -[1] 121 99 39 -[1] 122 99 61 -[1] 123 99 52 -[1] 124 99 62 -[1] 125 99 40 -[1] 126 99 64 -[1] 127 99 56 -[1] 128 99 37 -[1] 129 99 34 -[1] 130 99 65 -[1] 131 99 63 -[1] 132 99 44 -[1] 133 99 74 -[1] 134 99 51 -[1] 135 99 41 -[1] 136 99 56 -[1] 137 99 44 -[1] 138 99 58 -[1] 139 99 50 -[1] 140 99 48 -[1] 141 99 56 -[1] 142 99 52 -[1] 143 99 60 -[1] 144 99 55 -[1] 145 99 42 -[1] 146 99 37 -[1] 147 99 40 -[1] 148 99 47 -[1] 149 99 46 -[1] 150 99 81 -[1] 151 99 49 -[1] 152 99 44 -[1] 153 99 55 -[1] 154 99 48 -[1] 155 99 42 -[1] 156 99 55 -[1] 157 99 89 -[1] 158 99 50 -[1] 159 99 34 -[1] 160 99 37 -[1] 161 99 63 -[1] 162 99 60 -[1] 163 99 65 -[1] 164 99 53 -[1] 165 99 57 -[1] 166 99 44 -[1] 167 99 37 -[1] 168 99 47 -[1] 169 99 35 -[1] 170 99 37 -[1] 171 99 46 -[1] 172 99 40 -[1] 173 99 82 -[1] 174 99 45 -[1] 175 99 54 -[1] 176 99 46 -[1] 177 99 47 -[1] 178 99 48 -[1] 179 99 75 -[1] 180 99 36 -[1] 181 99 50 -[1] 182 99 56 -[1] 183 99 64 -[1] 184 99 73 -[1] 185 99 34 -[1] 186 99 59 -[1] 187 99 49 -[1] 188 99 60 -[1] 189 99 77 -[1] 190 99 46 -[1] 191 99 36 -[1] 192 99 59 -[1] 193 99 46 -[1] 194 99 59 -[1] 195 99 58 -[1] 196 99 57 -[1] 197 99 37 -[1] 198 99 54 -[1] 199 99 54 -[1] 200 99 50 -[1] 1 100 35 -[1] 2 100 45 -[1] 3 100 27 -[1] 4 100 41 -[1] 5 100 31 -[1] 6 100 35 -[1] 7 100 64 -[1] 8 100 59 -[1] 9 100 35 -[1] 10 100 40 -[1] 11 100 60 -[1] 12 100 55 -[1] 13 100 45 -[1] 14 100 38 -[1] 15 100 33 -[1] 16 100 55 -[1] 17 100 38 -[1] 18 100 35 -[1] 19 100 36 -[1] 20 100 37 -[1] 21 100 34 -[1] 22 100 53 -[1] 23 100 34 -[1] 24 100 45 -[1] 25 100 63 -[1] 26 100 44 -[1] 27 100 40 -[1] 28 100 47 -[1] 29 100 34 -[1] 30 100 74 -[1] 31 100 40 -[1] 32 100 47 -[1] 33 100 52 -[1] 34 100 37 -[1] 35 100 42 -[1] 36 100 37 -[1] 37 100 29 -[1] 38 100 71 -[1] 39 100 31 -[1] 40 100 55 -[1] 41 100 60 -[1] 42 100 47 -[1] 43 100 34 -[1] 44 100 44 -[1] 45 100 43 -[1] 46 100 39 -[1] 47 100 38 -[1] 48 100 46 -[1] 49 100 44 -[1] 50 100 42 -[1] 51 100 37 -[1] 52 100 54 -[1] 53 100 74 -[1] 54 100 48 -[1] 55 100 81 -[1] 56 100 55 -[1] 57 100 43 -[1] 58 100 62 -[1] 59 100 38 -[1] 60 100 60 -[1] 61 100 53 -[1] 62 100 44 -[1] 63 100 69 -[1] 64 100 77 -[1] 65 100 45 -[1] 66 100 94 -[1] 67 100 39 -[1] 68 100 53 -[1] 69 100 53 -[1] 70 100 39 -[1] 71 100 68 -[1] 72 100 62 -[1] 73 100 47 -[1] 74 100 65 -[1] 75 100 47 -[1] 76 100 35 -[1] 77 100 50 -[1] 78 100 87 -[1] 79 100 55 -[1] 80 100 72 -[1] 81 100 41 -[1] 82 100 60 -[1] 83 100 47 -[1] 84 100 46 -[1] 85 100 48 -[1] 86 100 35 -[1] 87 100 43 -[1] 88 100 27 -[1] 89 100 84 -[1] 90 100 45 -[1] 91 100 48 -[1] 92 100 51 -[1] 93 100 54 -[1] 94 100 81 -[1] 95 100 61 -[1] 96 100 70 -[1] 97 100 76 -[1] 98 100 55 -[1] 99 100 55 -[1] 100 100 36 -[1] 101 100 48 -[1] 102 100 54 -[1] 103 100 44 -[1] 104 100 51 -[1] 105 100 47 -[1] 106 100 58 -[1] 107 100 52 -[1] 108 100 55 -[1] 109 100 44 -[1] 110 100 139 -[1] 111 100 59 -[1] 112 100 56 -[1] 113 100 36 -[1] 114 100 61 -[1] 115 100 41 -[1] 116 100 65 -[1] 117 100 57 -[1] 118 100 38 -[1] 119 100 72 -[1] 120 100 37 -[1] 121 100 40 -[1] 122 100 54 -[1] 123 100 57 -[1] 124 100 38 -[1] 125 100 58 -[1] 126 100 52 -[1] 127 100 75 -[1] 128 100 38 -[1] 129 100 37 -[1] 130 100 40 -[1] 131 100 38 -[1] 132 100 56 -[1] 133 100 58 -[1] 134 100 41 -[1] 135 100 50 -[1] 136 100 49 -[1] 137 100 41 -[1] 138 100 43 -[1] 139 100 50 -[1] 140 100 45 -[1] 141 100 62 -[1] 142 100 80 -[1] 143 100 41 -[1] 144 100 49 -[1] 145 100 50 -[1] 146 100 54 -[1] 147 100 57 -[1] 148 100 38 -[1] 149 100 43 -[1] 150 100 52 -[1] 151 100 43 -[1] 152 100 61 -[1] 153 100 53 -[1] 154 100 40 -[1] 155 100 39 -[1] 156 100 44 -[1] 157 100 51 -[1] 158 100 35 -[1] 159 100 40 -[1] 160 100 57 -[1] 161 100 60 -[1] 162 100 51 -[1] 163 100 31 -[1] 164 100 74 -[1] 165 100 31 -[1] 166 100 31 -[1] 167 100 58 -[1] 168 100 54 -[1] 169 100 57 -[1] 170 100 39 -[1] 171 100 76 -[1] 172 100 45 -[1] 173 100 34 -[1] 174 100 87 -[1] 175 100 40 -[1] 176 100 61 -[1] 177 100 43 -[1] 178 100 49 -[1] 179 100 99 -[1] 180 100 57 -[1] 181 100 55 -[1] 182 100 38 -[1] 183 100 31 -[1] 184 100 45 -[1] 185 100 44 -[1] 186 100 39 -[1] 187 100 50 -[1] 188 100 44 -[1] 189 100 55 -[1] 190 100 73 -[1] 191 100 44 -[1] 192 100 63 -[1] 193 100 45 -[1] 194 100 40 -[1] 195 100 49 -[1] 196 100 66 -[1] 197 100 61 -[1] 198 100 53 -[1] 199 100 53 -[1] 200 100 44 -[1] 1 101 43 -[1] 2 101 28 -[1] 3 101 35 -[1] 4 101 31 -[1] 5 101 33 -[1] 6 101 60 -[1] 7 101 28 -[1] 8 101 37 -[1] 9 101 33 -[1] 10 101 40 -[1] 11 101 31 -[1] 12 101 50 -[1] 13 101 49 -[1] 14 101 35 -[1] 15 101 35 -[1] 16 101 55 -[1] 17 101 33 -[1] 18 101 47 -[1] 19 101 34 -[1] 20 101 49 -[1] 21 101 46 -[1] 22 101 49 -[1] 23 101 58 -[1] 24 101 44 -[1] 25 101 53 -[1] 26 101 33 -[1] 27 101 55 -[1] 28 101 28 -[1] 29 101 47 -[1] 30 101 53 -[1] 31 101 75 -[1] 32 101 65 -[1] 33 101 51 -[1] 34 101 45 -[1] 35 101 47 -[1] 36 101 44 -[1] 37 101 35 -[1] 38 101 38 -[1] 39 101 50 -[1] 40 101 56 -[1] 41 101 37 -[1] 42 101 35 -[1] 43 101 32 -[1] 44 101 53 -[1] 45 101 75 -[1] 46 101 44 -[1] 47 101 47 -[1] 48 101 38 -[1] 49 101 40 -[1] 50 101 48 -[1] 51 101 46 -[1] 52 101 41 -[1] 53 101 49 -[1] 54 101 58 -[1] 55 101 51 -[1] 56 101 48 -[1] 57 101 56 -[1] 58 101 38 -[1] 59 101 70 -[1] 60 101 47 -[1] 61 101 71 -[1] 62 101 42 -[1] 63 101 47 -[1] 64 101 75 -[1] 65 101 45 -[1] 66 101 39 -[1] 67 101 110 -[1] 68 101 47 -[1] 69 101 49 -[1] 70 101 48 -[1] 71 101 32 -[1] 72 101 43 -[1] 73 101 52 -[1] 74 101 79 -[1] 75 101 44 -[1] 76 101 53 -[1] 77 101 40 -[1] 78 101 49 -[1] 79 101 59 -[1] 80 101 48 -[1] 81 101 41 -[1] 82 101 56 -[1] 83 101 83 -[1] 84 101 41 -[1] 85 101 63 -[1] 86 101 58 -[1] 87 101 36 -[1] 88 101 56 -[1] 89 101 43 -[1] 90 101 63 -[1] 91 101 50 -[1] 92 101 56 -[1] 93 101 70 -[1] 94 101 54 -[1] 95 101 47 -[1] 96 101 46 -[1] 97 101 61 -[1] 98 101 53 -[1] 99 101 49 -[1] 100 101 54 -[1] 101 101 94 -[1] 102 101 51 -[1] 103 101 72 -[1] 104 101 45 -[1] 105 101 40 -[1] 106 101 56 -[1] 107 101 37 -[1] 108 101 91 -[1] 109 101 90 -[1] 110 101 39 -[1] 111 101 45 -[1] 112 101 29 -[1] 113 101 33 -[1] 114 101 57 -[1] 115 101 59 -[1] 116 101 41 -[1] 117 101 73 -[1] 118 101 54 -[1] 119 101 36 -[1] 120 101 41 -[1] 121 101 31 -[1] 122 101 52 -[1] 123 101 54 -[1] 124 101 49 -[1] 125 101 37 -[1] 126 101 49 -[1] 127 101 70 -[1] 128 101 57 -[1] 129 101 53 -[1] 130 101 65 -[1] 131 101 43 -[1] 132 101 50 -[1] 133 101 71 -[1] 134 101 47 -[1] 135 101 50 -[1] 136 101 47 -[1] 137 101 48 -[1] 138 101 57 -[1] 139 101 38 -[1] 140 101 39 -[1] 141 101 35 -[1] 142 101 56 -[1] 143 101 39 -[1] 144 101 49 -[1] 145 101 41 -[1] 146 101 49 -[1] 147 101 49 -[1] 148 101 78 -[1] 149 101 47 -[1] 150 101 50 -[1] 151 101 42 -[1] 152 101 59 -[1] 153 101 31 -[1] 154 101 48 -[1] 155 101 53 -[1] 156 101 37 -[1] 157 101 55 -[1] 158 101 66 -[1] 159 101 43 -[1] 160 101 60 -[1] 161 101 52 -[1] 162 101 62 -[1] 163 101 40 -[1] 164 101 51 -[1] 165 101 100 -[1] 166 101 33 -[1] 167 101 62 -[1] 168 101 38 -[1] 169 101 55 -[1] 170 101 37 -[1] 171 101 72 -[1] 172 101 41 -[1] 173 101 58 -[1] 174 101 55 -[1] 175 101 46 -[1] 176 101 45 -[1] 177 101 61 -[1] 178 101 38 -[1] 179 101 45 -[1] 180 101 57 -[1] 181 101 52 -[1] 182 101 48 -[1] 183 101 51 -[1] 184 101 41 -[1] 185 101 55 -[1] 186 101 43 -[1] 187 101 35 -[1] 188 101 49 -[1] 189 101 62 -[1] 190 101 37 -[1] 191 101 65 -[1] 192 101 56 -[1] 193 101 37 -[1] 194 101 48 -[1] 195 101 46 -[1] 196 101 72 -[1] 197 101 55 -[1] 198 101 65 -[1] 199 101 53 -[1] 200 101 49 -[1] 1 102 35 -[1] 2 102 38 -[1] 3 102 35 -[1] 4 102 37 -[1] 5 102 43 -[1] 6 102 49 -[1] 7 102 30 -[1] 8 102 36 -[1] 9 102 43 -[1] 10 102 38 -[1] 11 102 39 -[1] 12 102 36 -[1] 13 102 35 -[1] 14 102 34 -[1] 15 102 41 -[1] 16 102 40 -[1] 17 102 57 -[1] 18 102 36 -[1] 19 102 39 -[1] 20 102 39 -[1] 21 102 44 -[1] 22 102 35 -[1] 23 102 48 -[1] 24 102 59 -[1] 25 102 42 -[1] 26 102 45 -[1] 27 102 45 -[1] 28 102 42 -[1] 29 102 55 -[1] 30 102 44 -[1] 31 102 43 -[1] 32 102 42 -[1] 33 102 47 -[1] 34 102 55 -[1] 35 102 32 -[1] 36 102 38 -[1] 37 102 52 -[1] 38 102 76 -[1] 39 102 36 -[1] 40 102 39 -[1] 41 102 42 -[1] 42 102 47 -[1] 43 102 51 -[1] 44 102 88 -[1] 45 102 71 -[1] 46 102 44 -[1] 47 102 57 -[1] 48 102 50 -[1] 49 102 45 -[1] 50 102 28 -[1] 51 102 60 -[1] 52 102 100 -[1] 53 102 54 -[1] 54 102 38 -[1] 55 102 49 -[1] 56 102 37 -[1] 57 102 34 -[1] 58 102 51 -[1] 59 102 55 -[1] 60 102 36 -[1] 61 102 67 -[1] 62 102 43 -[1] 63 102 74 -[1] 64 102 38 -[1] 65 102 45 -[1] 66 102 58 -[1] 67 102 48 -[1] 68 102 55 -[1] 69 102 57 -[1] 70 102 87 -[1] 71 102 42 -[1] 72 102 71 -[1] 73 102 42 -[1] 74 102 48 -[1] 75 102 49 -[1] 76 102 38 -[1] 77 102 216 -[1] 78 102 54 -[1] 79 102 31 -[1] 80 102 56 -[1] 81 102 35 -[1] 82 102 38 -[1] 83 102 61 -[1] 84 102 68 -[1] 85 102 62 -[1] 86 102 64 -[1] 87 102 61 -[1] 88 102 35 -[1] 89 102 55 -[1] 90 102 61 -[1] 91 102 53 -[1] 92 102 45 -[1] 93 102 60 -[1] 94 102 57 -[1] 95 102 37 -[1] 96 102 68 -[1] 97 102 54 -[1] 98 102 57 -[1] 99 102 64 -[1] 100 102 78 -[1] 101 102 48 -[1] 102 102 63 -[1] 103 102 44 -[1] 104 102 63 -[1] 105 102 44 -[1] 106 102 45 -[1] 107 102 56 -[1] 108 102 45 -[1] 109 102 44 -[1] 110 102 58 -[1] 111 102 51 -[1] 112 102 42 -[1] 113 102 58 -[1] 114 102 65 -[1] 115 102 45 -[1] 116 102 60 -[1] 117 102 35 -[1] 118 102 57 -[1] 119 102 51 -[1] 120 102 46 -[1] 121 102 44 -[1] 122 102 67 -[1] 123 102 48 -[1] 124 102 57 -[1] 125 102 54 -[1] 126 102 53 -[1] 127 102 31 -[1] 128 102 50 -[1] 129 102 46 -[1] 130 102 61 -[1] 131 102 47 -[1] 132 102 68 -[1] 133 102 51 -[1] 134 102 37 -[1] 135 102 55 -[1] 136 102 70 -[1] 137 102 56 -[1] 138 102 55 -[1] 139 102 44 -[1] 140 102 37 -[1] 141 102 37 -[1] 142 102 66 -[1] 143 102 39 -[1] 144 102 52 -[1] 145 102 41 -[1] 146 102 54 -[1] 147 102 38 -[1] 148 102 65 -[1] 149 102 49 -[1] 150 102 110 -[1] 151 102 42 -[1] 152 102 45 -[1] 153 102 43 -[1] 154 102 59 -[1] 155 102 39 -[1] 156 102 60 -[1] 157 102 58 -[1] 158 102 58 -[1] 159 102 44 -[1] 160 102 62 -[1] 161 102 51 -[1] 162 102 66 -[1] 163 102 63 -[1] 164 102 46 -[1] 165 102 37 -[1] 166 102 52 -[1] 167 102 35 -[1] 168 102 60 -[1] 169 102 63 -[1] 170 102 67 -[1] 171 102 58 -[1] 172 102 51 -[1] 173 102 52 -[1] 174 102 69 -[1] 175 102 36 -[1] 176 102 99 -[1] 177 102 59 -[1] 178 102 36 -[1] 179 102 45 -[1] 180 102 57 -[1] 181 102 60 -[1] 182 102 64 -[1] 183 102 73 -[1] 184 102 45 -[1] 185 102 48 -[1] 186 102 35 -[1] 187 102 63 -[1] 188 102 72 -[1] 189 102 37 -[1] 190 102 46 -[1] 191 102 39 -[1] 192 102 52 -[1] 193 102 43 -[1] 194 102 56 -[1] 195 102 43 -[1] 196 102 80 -[1] 197 102 37 -[1] 198 102 52 -[1] 199 102 59 -[1] 200 102 53 -[1] 1 103 57 -[1] 2 103 39 -[1] 3 103 28 -[1] 4 103 27 -[1] 5 103 42 -[1] 6 103 43 -[1] 7 103 28 -[1] 8 103 54 -[1] 9 103 90 -[1] 10 103 28 -[1] 11 103 36 -[1] 12 103 39 -[1] 13 103 39 -[1] 14 103 40 -[1] 15 103 33 -[1] 16 103 70 -[1] 17 103 31 -[1] 18 103 37 -[1] 19 103 38 -[1] 20 103 55 -[1] 21 103 32 -[1] 22 103 36 -[1] 23 103 26 -[1] 24 103 46 -[1] 25 103 42 -[1] 26 103 44 -[1] 27 103 60 -[1] 28 103 62 -[1] 29 103 41 -[1] 30 103 32 -[1] 31 103 59 -[1] 32 103 32 -[1] 33 103 45 -[1] 34 103 41 -[1] 35 103 53 -[1] 36 103 50 -[1] 37 103 42 -[1] 38 103 56 -[1] 39 103 53 -[1] 40 103 37 -[1] 41 103 49 -[1] 42 103 56 -[1] 43 103 43 -[1] 44 103 35 -[1] 45 103 41 -[1] 46 103 55 -[1] 47 103 45 -[1] 48 103 37 -[1] 49 103 44 -[1] 50 103 36 -[1] 51 103 47 -[1] 52 103 47 -[1] 53 103 52 -[1] 54 103 49 -[1] 55 103 42 -[1] 56 103 57 -[1] 57 103 64 -[1] 58 103 47 -[1] 59 103 39 -[1] 60 103 42 -[1] 61 103 39 -[1] 62 103 36 -[1] 63 103 57 -[1] 64 103 44 -[1] 65 103 49 -[1] 66 103 48 -[1] 67 103 57 -[1] 68 103 63 -[1] 69 103 47 -[1] 70 103 60 -[1] 71 103 82 -[1] 72 103 46 -[1] 73 103 49 -[1] 74 103 36 -[1] 75 103 99 -[1] 76 103 34 -[1] 77 103 54 -[1] 78 103 30 -[1] 79 103 49 -[1] 80 103 37 -[1] 81 103 76 -[1] 82 103 38 -[1] 83 103 65 -[1] 84 103 69 -[1] 85 103 35 -[1] 86 103 58 -[1] 87 103 37 -[1] 88 103 54 -[1] 89 103 54 -[1] 90 103 54 -[1] 91 103 80 -[1] 92 103 80 -[1] 93 103 48 -[1] 94 103 51 -[1] 95 103 37 -[1] 96 103 101 -[1] 97 103 46 -[1] 98 103 64 -[1] 99 103 55 -[1] 100 103 37 -[1] 101 103 44 -[1] 102 103 89 -[1] 103 103 44 -[1] 104 103 45 -[1] 105 103 60 -[1] 106 103 46 -[1] 107 103 64 -[1] 108 103 70 -[1] 109 103 44 -[1] 110 103 63 -[1] 111 103 62 -[1] 112 103 50 -[1] 113 103 92 -[1] 114 103 44 -[1] 115 103 58 -[1] 116 103 38 -[1] 117 103 50 -[1] 118 103 76 -[1] 119 103 47 -[1] 120 103 43 -[1] 121 103 44 -[1] 122 103 99 -[1] 123 103 37 -[1] 124 103 45 -[1] 125 103 38 -[1] 126 103 101 -[1] 127 103 47 -[1] 128 103 49 -[1] 129 103 49 -[1] 130 103 68 -[1] 131 103 38 -[1] 132 103 73 -[1] 133 103 56 -[1] 134 103 38 -[1] 135 103 57 -[1] 136 103 68 -[1] 137 103 55 -[1] 138 103 68 -[1] 139 103 63 -[1] 140 103 56 -[1] 141 103 39 -[1] 142 103 36 -[1] 143 103 33 -[1] 144 103 32 -[1] 145 103 39 -[1] 146 103 31 -[1] 147 103 50 -[1] 148 103 55 -[1] 149 103 44 -[1] 150 103 60 -[1] 151 103 56 -[1] 152 103 42 -[1] 153 103 60 -[1] 154 103 59 -[1] 155 103 59 -[1] 156 103 46 -[1] 157 103 57 -[1] 158 103 42 -[1] 159 103 45 -[1] 160 103 40 -[1] 161 103 37 -[1] 162 103 60 -[1] 163 103 33 -[1] 164 103 53 -[1] 165 103 72 -[1] 166 103 35 -[1] 167 103 41 -[1] 168 103 55 -[1] 169 103 55 -[1] 170 103 36 -[1] 171 103 40 -[1] 172 103 46 -[1] 173 103 39 -[1] 174 103 35 -[1] 175 103 41 -[1] 176 103 51 -[1] 177 103 46 -[1] 178 103 66 -[1] 179 103 73 -[1] 180 103 73 -[1] 181 103 43 -[1] 182 103 54 -[1] 183 103 34 -[1] 184 103 60 -[1] 185 103 33 -[1] 186 103 67 -[1] 187 103 47 -[1] 188 103 46 -[1] 189 103 43 -[1] 190 103 61 -[1] 191 103 40 -[1] 192 103 59 -[1] 193 103 42 -[1] 194 103 45 -[1] 195 103 59 -[1] 196 103 44 -[1] 197 103 47 -[1] 198 103 44 -[1] 199 103 37 -[1] 200 103 47 -[1] 1 104 35 -[1] 2 104 33 -[1] 3 104 38 -[1] 4 104 35 -[1] 5 104 29 -[1] 6 104 44 -[1] 7 104 40 -[1] 8 104 47 -[1] 9 104 37 -[1] 10 104 52 -[1] 11 104 40 -[1] 12 104 47 -[1] 13 104 27 -[1] 14 104 44 -[1] 15 104 32 -[1] 16 104 39 -[1] 17 104 43 -[1] 18 104 33 -[1] 19 104 56 -[1] 20 104 31 -[1] 21 104 43 -[1] 22 104 44 -[1] 23 104 42 -[1] 24 104 45 -[1] 25 104 44 -[1] 26 104 36 -[1] 27 104 46 -[1] 28 104 36 -[1] 29 104 40 -[1] 30 104 51 -[1] 31 104 61 -[1] 32 104 60 -[1] 33 104 47 -[1] 34 104 43 -[1] 35 104 42 -[1] 36 104 40 -[1] 37 104 53 -[1] 38 104 43 -[1] 39 104 42 -[1] 40 104 52 -[1] 41 104 45 -[1] 42 104 29 -[1] 43 104 33 -[1] 44 104 46 -[1] 45 104 39 -[1] 46 104 36 -[1] 47 104 71 -[1] 48 104 38 -[1] 49 104 39 -[1] 50 104 88 -[1] 51 104 57 -[1] 52 104 56 -[1] 53 104 60 -[1] 54 104 67 -[1] 55 104 40 -[1] 56 104 40 -[1] 57 104 49 -[1] 58 104 75 -[1] 59 104 34 -[1] 60 104 56 -[1] 61 104 60 -[1] 62 104 36 -[1] 63 104 52 -[1] 64 104 59 -[1] 65 104 48 -[1] 66 104 65 -[1] 67 104 52 -[1] 68 104 54 -[1] 69 104 57 -[1] 70 104 33 -[1] 71 104 44 -[1] 72 104 59 -[1] 73 104 68 -[1] 74 104 69 -[1] 75 104 55 -[1] 76 104 54 -[1] 77 104 42 -[1] 78 104 69 -[1] 79 104 61 -[1] 80 104 29 -[1] 81 104 88 -[1] 82 104 40 -[1] 83 104 45 -[1] 84 104 58 -[1] 85 104 55 -[1] 86 104 58 -[1] 87 104 66 -[1] 88 104 78 -[1] 89 104 44 -[1] 90 104 52 -[1] 91 104 52 -[1] 92 104 78 -[1] 93 104 41 -[1] 94 104 54 -[1] 95 104 41 -[1] 96 104 90 -[1] 97 104 47 -[1] 98 104 83 -[1] 99 104 96 -[1] 100 104 51 -[1] 101 104 64 -[1] 102 104 37 -[1] 103 104 47 -[1] 104 104 39 -[1] 105 104 93 -[1] 106 104 56 -[1] 107 104 57 -[1] 108 104 87 -[1] 109 104 45 -[1] 110 104 50 -[1] 111 104 71 -[1] 112 104 42 -[1] 113 104 67 -[1] 114 104 54 -[1] 115 104 45 -[1] 116 104 36 -[1] 117 104 63 -[1] 118 104 49 -[1] 119 104 38 -[1] 120 104 46 -[1] 121 104 67 -[1] 122 104 55 -[1] 123 104 60 -[1] 124 104 34 -[1] 125 104 77 -[1] 126 104 49 -[1] 127 104 51 -[1] 128 104 43 -[1] 129 104 61 -[1] 130 104 48 -[1] 131 104 38 -[1] 132 104 64 -[1] 133 104 34 -[1] 134 104 66 -[1] 135 104 32 -[1] 136 104 65 -[1] 137 104 37 -[1] 138 104 94 -[1] 139 104 37 -[1] 140 104 53 -[1] 141 104 46 -[1] 142 104 61 -[1] 143 104 62 -[1] 144 104 88 -[1] 145 104 63 -[1] 146 104 50 -[1] 147 104 51 -[1] 148 104 55 -[1] 149 104 51 -[1] 150 104 45 -[1] 151 104 103 -[1] 152 104 35 -[1] 153 104 53 -[1] 154 104 44 -[1] 155 104 40 -[1] 156 104 51 -[1] 157 104 45 -[1] 158 104 58 -[1] 159 104 48 -[1] 160 104 47 -[1] 161 104 59 -[1] 162 104 58 -[1] 163 104 42 -[1] 164 104 49 -[1] 165 104 43 -[1] 166 104 54 -[1] 167 104 57 -[1] 168 104 43 -[1] 169 104 44 -[1] 170 104 79 -[1] 171 104 32 -[1] 172 104 52 -[1] 173 104 47 -[1] 174 104 37 -[1] 175 104 62 -[1] 176 104 39 -[1] 177 104 77 -[1] 178 104 37 -[1] 179 104 70 -[1] 180 104 50 -[1] 181 104 43 -[1] 182 104 48 -[1] 183 104 67 -[1] 184 104 29 -[1] 185 104 69 -[1] 186 104 42 -[1] 187 104 62 -[1] 188 104 49 -[1] 189 104 43 -[1] 190 104 51 -[1] 191 104 53 -[1] 192 104 61 -[1] 193 104 42 -[1] 194 104 45 -[1] 195 104 57 -[1] 196 104 53 -[1] 197 104 79 -[1] 198 104 52 -[1] 199 104 45 -[1] 200 104 40 -[1] 1 105 53 -[1] 2 105 43 -[1] 3 105 34 -[1] 4 105 28 -[1] 5 105 37 -[1] 6 105 68 -[1] 7 105 58 -[1] 8 105 36 -[1] 9 105 32 -[1] 10 105 38 -[1] 11 105 60 -[1] 12 105 37 -[1] 13 105 40 -[1] 14 105 30 -[1] 15 105 37 -[1] 16 105 39 -[1] 17 105 44 -[1] 18 105 50 -[1] 19 105 43 -[1] 20 105 30 -[1] 21 105 29 -[1] 22 105 68 -[1] 23 105 35 -[1] 24 105 41 -[1] 25 105 56 -[1] 26 105 33 -[1] 27 105 34 -[1] 28 105 63 -[1] 29 105 34 -[1] 30 105 31 -[1] 31 105 42 -[1] 32 105 49 -[1] 33 105 32 -[1] 34 105 37 -[1] 35 105 41 -[1] 36 105 50 -[1] 37 105 66 -[1] 38 105 35 -[1] 39 105 61 -[1] 40 105 54 -[1] 41 105 63 -[1] 42 105 39 -[1] 43 105 48 -[1] 44 105 56 -[1] 45 105 35 -[1] 46 105 55 -[1] 47 105 50 -[1] 48 105 61 -[1] 49 105 52 -[1] 50 105 44 -[1] 51 105 65 -[1] 52 105 34 -[1] 53 105 44 -[1] 54 105 56 -[1] 55 105 70 -[1] 56 105 52 -[1] 57 105 60 -[1] 58 105 48 -[1] 59 105 42 -[1] 60 105 61 -[1] 61 105 65 -[1] 62 105 46 -[1] 63 105 42 -[1] 64 105 53 -[1] 65 105 47 -[1] 66 105 48 -[1] 67 105 65 -[1] 68 105 32 -[1] 69 105 55 -[1] 70 105 29 -[1] 71 105 60 -[1] 72 105 58 -[1] 73 105 41 -[1] 74 105 79 -[1] 75 105 56 -[1] 76 105 42 -[1] 77 105 57 -[1] 78 105 47 -[1] 79 105 83 -[1] 80 105 60 -[1] 81 105 51 -[1] 82 105 40 -[1] 83 105 35 -[1] 84 105 42 -[1] 85 105 51 -[1] 86 105 60 -[1] 87 105 75 -[1] 88 105 59 -[1] 89 105 37 -[1] 90 105 48 -[1] 91 105 58 -[1] 92 105 61 -[1] 93 105 45 -[1] 94 105 49 -[1] 95 105 48 -[1] 96 105 50 -[1] 97 105 68 -[1] 98 105 56 -[1] 99 105 42 -[1] 100 105 66 -[1] 101 105 59 -[1] 102 105 40 -[1] 103 105 58 -[1] 104 105 54 -[1] 105 105 72 -[1] 106 105 35 -[1] 107 105 58 -[1] 108 105 50 -[1] 109 105 62 -[1] 110 105 47 -[1] 111 105 47 -[1] 112 105 34 -[1] 113 105 46 -[1] 114 105 48 -[1] 115 105 45 -[1] 116 105 94 -[1] 117 105 40 -[1] 118 105 47 -[1] 119 105 50 -[1] 120 105 74 -[1] 121 105 40 -[1] 122 105 84 -[1] 123 105 45 -[1] 124 105 51 -[1] 125 105 38 -[1] 126 105 58 -[1] 127 105 41 -[1] 128 105 52 -[1] 129 105 41 -[1] 130 105 50 -[1] 131 105 33 -[1] 132 105 38 -[1] 133 105 44 -[1] 134 105 63 -[1] 135 105 53 -[1] 136 105 55 -[1] 137 105 56 -[1] 138 105 36 -[1] 139 105 45 -[1] 140 105 41 -[1] 141 105 44 -[1] 142 105 37 -[1] 143 105 56 -[1] 144 105 72 -[1] 145 105 50 -[1] 146 105 44 -[1] 147 105 38 -[1] 148 105 71 -[1] 149 105 50 -[1] 150 105 51 -[1] 151 105 105 -[1] 152 105 38 -[1] 153 105 83 -[1] 154 105 45 -[1] 155 105 41 -[1] 156 105 60 -[1] 157 105 52 -[1] 158 105 29 -[1] 159 105 54 -[1] 160 105 55 -[1] 161 105 40 -[1] 162 105 33 -[1] 163 105 103 -[1] 164 105 51 -[1] 165 105 47 -[1] 166 105 52 -[1] 167 105 73 -[1] 168 105 44 -[1] 169 105 58 -[1] 170 105 43 -[1] 171 105 45 -[1] 172 105 47 -[1] 173 105 69 -[1] 174 105 68 -[1] 175 105 46 -[1] 176 105 43 -[1] 177 105 69 -[1] 178 105 43 -[1] 179 105 52 -[1] 180 105 56 -[1] 181 105 46 -[1] 182 105 89 -[1] 183 105 47 -[1] 184 105 58 -[1] 185 105 67 -[1] 186 105 48 -[1] 187 105 59 -[1] 188 105 45 -[1] 189 105 61 -[1] 190 105 46 -[1] 191 105 57 -[1] 192 105 50 -[1] 193 105 36 -[1] 194 105 61 -[1] 195 105 45 -[1] 196 105 61 -[1] 197 105 44 -[1] 198 105 48 -[1] 199 105 45 -[1] 200 105 47 -[1] 1 106 27 -[1] 2 106 45 -[1] 3 106 34 -[1] 4 106 45 -[1] 5 106 30 -[1] 6 106 37 -[1] 7 106 54 -[1] 8 106 39 -[1] 9 106 37 -[1] 10 106 38 -[1] 11 106 53 -[1] 12 106 40 -[1] 13 106 45 -[1] 14 106 44 -[1] 15 106 31 -[1] 16 106 46 -[1] 17 106 40 -[1] 18 106 42 -[1] 19 106 34 -[1] 20 106 39 -[1] 21 106 32 -[1] 22 106 45 -[1] 23 106 41 -[1] 24 106 50 -[1] 25 106 27 -[1] 26 106 35 -[1] 27 106 54 -[1] 28 106 44 -[1] 29 106 50 -[1] 30 106 49 -[1] 31 106 35 -[1] 32 106 32 -[1] 33 106 51 -[1] 34 106 53 -[1] 35 106 60 -[1] 36 106 53 -[1] 37 106 45 -[1] 38 106 52 -[1] 39 106 44 -[1] 40 106 36 -[1] 41 106 56 -[1] 42 106 40 -[1] 43 106 44 -[1] 44 106 38 -[1] 45 106 62 -[1] 46 106 34 -[1] 47 106 50 -[1] 48 106 52 -[1] 49 106 36 -[1] 50 106 71 -[1] 51 106 53 -[1] 52 106 46 -[1] 53 106 41 -[1] 54 106 48 -[1] 55 106 39 -[1] 56 106 55 -[1] 57 106 44 -[1] 58 106 40 -[1] 59 106 56 -[1] 60 106 48 -[1] 61 106 46 -[1] 62 106 49 -[1] 63 106 54 -[1] 64 106 39 -[1] 65 106 35 -[1] 66 106 34 -[1] 67 106 39 -[1] 68 106 64 -[1] 69 106 51 -[1] 70 106 46 -[1] 71 106 48 -[1] 72 106 58 -[1] 73 106 58 -[1] 74 106 112 -[1] 75 106 48 -[1] 76 106 56 -[1] 77 106 48 -[1] 78 106 39 -[1] 79 106 75 -[1] 80 106 36 -[1] 81 106 82 -[1] 82 106 47 -[1] 83 106 43 -[1] 84 106 48 -[1] 85 106 35 -[1] 86 106 43 -[1] 87 106 50 -[1] 88 106 27 -[1] 89 106 67 -[1] 90 106 66 -[1] 91 106 48 -[1] 92 106 64 -[1] 93 106 46 -[1] 94 106 48 -[1] 95 106 41 -[1] 96 106 60 -[1] 97 106 47 -[1] 98 106 39 -[1] 99 106 54 -[1] 100 106 56 -[1] 101 106 49 -[1] 102 106 49 -[1] 103 106 54 -[1] 104 106 85 -[1] 105 106 41 -[1] 106 106 60 -[1] 107 106 48 -[1] 108 106 50 -[1] 109 106 66 -[1] 110 106 38 -[1] 111 106 67 -[1] 112 106 55 -[1] 113 106 39 -[1] 114 106 40 -[1] 115 106 56 -[1] 116 106 47 -[1] 117 106 60 -[1] 118 106 47 -[1] 119 106 52 -[1] 120 106 71 -[1] 121 106 32 -[1] 122 106 63 -[1] 123 106 40 -[1] 124 106 106 -[1] 125 106 75 -[1] 126 106 43 -[1] 127 106 55 -[1] 128 106 48 -[1] 129 106 33 -[1] 130 106 49 -[1] 131 106 54 -[1] 132 106 55 -[1] 133 106 37 -[1] 134 106 48 -[1] 135 106 47 -[1] 136 106 36 -[1] 137 106 48 -[1] 138 106 51 -[1] 139 106 39 -[1] 140 106 35 -[1] 141 106 46 -[1] 142 106 42 -[1] 143 106 68 -[1] 144 106 45 -[1] 145 106 79 -[1] 146 106 57 -[1] 147 106 38 -[1] 148 106 61 -[1] 149 106 50 -[1] 150 106 71 -[1] 151 106 39 -[1] 152 106 48 -[1] 153 106 69 -[1] 154 106 50 -[1] 155 106 48 -[1] 156 106 57 -[1] 157 106 59 -[1] 158 106 29 -[1] 159 106 54 -[1] 160 106 60 -[1] 161 106 46 -[1] 162 106 61 -[1] 163 106 47 -[1] 164 106 97 -[1] 165 106 51 -[1] 166 106 48 -[1] 167 106 55 -[1] 168 106 38 -[1] 169 106 37 -[1] 170 106 52 -[1] 171 106 40 -[1] 172 106 31 -[1] 173 106 85 -[1] 174 106 73 -[1] 175 106 37 -[1] 176 106 52 -[1] 177 106 46 -[1] 178 106 41 -[1] 179 106 39 -[1] 180 106 52 -[1] 181 106 47 -[1] 182 106 36 -[1] 183 106 58 -[1] 184 106 41 -[1] 185 106 45 -[1] 186 106 41 -[1] 187 106 34 -[1] 188 106 55 -[1] 189 106 59 -[1] 190 106 54 -[1] 191 106 42 -[1] 192 106 42 -[1] 193 106 77 -[1] 194 106 60 -[1] 195 106 70 -[1] 196 106 58 -[1] 197 106 61 -[1] 198 106 68 -[1] 199 106 30 -[1] 200 106 44 -[1] 1 107 29 -[1] 2 107 31 -[1] 3 107 32 -[1] 4 107 40 -[1] 5 107 44 -[1] 6 107 41 -[1] 7 107 47 -[1] 8 107 58 -[1] 9 107 45 -[1] 10 107 44 -[1] 11 107 54 -[1] 12 107 42 -[1] 13 107 34 -[1] 14 107 51 -[1] 15 107 39 -[1] 16 107 42 -[1] 17 107 39 -[1] 18 107 40 -[1] 19 107 79 -[1] 20 107 36 -[1] 21 107 43 -[1] 22 107 29 -[1] 23 107 34 -[1] 24 107 37 -[1] 25 107 38 -[1] 26 107 47 -[1] 27 107 50 -[1] 28 107 57 -[1] 29 107 32 -[1] 30 107 48 -[1] 31 107 37 -[1] 32 107 40 -[1] 33 107 42 -[1] 34 107 33 -[1] 35 107 56 -[1] 36 107 40 -[1] 37 107 101 -[1] 38 107 51 -[1] 39 107 34 -[1] 40 107 35 -[1] 41 107 52 -[1] 42 107 43 -[1] 43 107 48 -[1] 44 107 50 -[1] 45 107 51 -[1] 46 107 53 -[1] 47 107 59 -[1] 48 107 36 -[1] 49 107 53 -[1] 50 107 56 -[1] 51 107 111 -[1] 52 107 49 -[1] 53 107 54 -[1] 54 107 53 -[1] 55 107 59 -[1] 56 107 49 -[1] 57 107 47 -[1] 58 107 33 -[1] 59 107 74 -[1] 60 107 52 -[1] 61 107 47 -[1] 62 107 47 -[1] 63 107 44 -[1] 64 107 44 -[1] 65 107 49 -[1] 66 107 73 -[1] 67 107 57 -[1] 68 107 54 -[1] 69 107 63 -[1] 70 107 62 -[1] 71 107 77 -[1] 72 107 72 -[1] 73 107 91 -[1] 74 107 49 -[1] 75 107 52 -[1] 76 107 43 -[1] 77 107 38 -[1] 78 107 61 -[1] 79 107 52 -[1] 80 107 47 -[1] 81 107 46 -[1] 82 107 39 -[1] 83 107 49 -[1] 84 107 62 -[1] 85 107 66 -[1] 86 107 59 -[1] 87 107 65 -[1] 88 107 51 -[1] 89 107 40 -[1] 90 107 35 -[1] 91 107 53 -[1] 92 107 84 -[1] 93 107 37 -[1] 94 107 94 -[1] 95 107 38 -[1] 96 107 44 -[1] 97 107 68 -[1] 98 107 54 -[1] 99 107 36 -[1] 100 107 61 -[1] 101 107 90 -[1] 102 107 48 -[1] 103 107 58 -[1] 104 107 51 -[1] 105 107 73 -[1] 106 107 57 -[1] 107 107 43 -[1] 108 107 68 -[1] 109 107 37 -[1] 110 107 49 -[1] 111 107 42 -[1] 112 107 37 -[1] 113 107 38 -[1] 114 107 38 -[1] 115 107 61 -[1] 116 107 51 -[1] 117 107 76 -[1] 118 107 43 -[1] 119 107 55 -[1] 120 107 34 -[1] 121 107 73 -[1] 122 107 57 -[1] 123 107 42 -[1] 124 107 58 -[1] 125 107 35 -[1] 126 107 51 -[1] 127 107 52 -[1] 128 107 49 -[1] 129 107 31 -[1] 130 107 62 -[1] 131 107 33 -[1] 132 107 54 -[1] 133 107 48 -[1] 134 107 45 -[1] 135 107 32 -[1] 136 107 53 -[1] 137 107 47 -[1] 138 107 41 -[1] 139 107 39 -[1] 140 107 33 -[1] 141 107 39 -[1] 142 107 54 -[1] 143 107 51 -[1] 144 107 51 -[1] 145 107 48 -[1] 146 107 72 -[1] 147 107 37 -[1] 148 107 51 -[1] 149 107 39 -[1] 150 107 44 -[1] 151 107 52 -[1] 152 107 44 -[1] 153 107 39 -[1] 154 107 35 -[1] 155 107 51 -[1] 156 107 59 -[1] 157 107 40 -[1] 158 107 46 -[1] 159 107 47 -[1] 160 107 49 -[1] 161 107 52 -[1] 162 107 45 -[1] 163 107 72 -[1] 164 107 31 -[1] 165 107 68 -[1] 166 107 49 -[1] 167 107 44 -[1] 168 107 70 -[1] 169 107 47 -[1] 170 107 35 -[1] 171 107 47 -[1] 172 107 50 -[1] 173 107 45 -[1] 174 107 40 -[1] 175 107 59 -[1] 176 107 34 -[1] 177 107 50 -[1] 178 107 47 -[1] 179 107 37 -[1] 180 107 41 -[1] 181 107 41 -[1] 182 107 55 -[1] 183 107 46 -[1] 184 107 35 -[1] 185 107 45 -[1] 186 107 87 -[1] 187 107 49 -[1] 188 107 68 -[1] 189 107 62 -[1] 190 107 65 -[1] 191 107 59 -[1] 192 107 46 -[1] 193 107 49 -[1] 194 107 56 -[1] 195 107 69 -[1] 196 107 34 -[1] 197 107 62 -[1] 198 107 44 -[1] 199 107 52 -[1] 200 107 33 -[1] 1 108 59 -[1] 2 108 37 -[1] 3 108 42 -[1] 4 108 46 -[1] 5 108 35 -[1] 6 108 40 -[1] 7 108 43 -[1] 8 108 33 -[1] 9 108 39 -[1] 10 108 27 -[1] 11 108 50 -[1] 12 108 40 -[1] 13 108 46 -[1] 14 108 37 -[1] 15 108 30 -[1] 16 108 39 -[1] 17 108 41 -[1] 18 108 51 -[1] 19 108 34 -[1] 20 108 55 -[1] 21 108 46 -[1] 22 108 38 -[1] 23 108 42 -[1] 24 108 39 -[1] 25 108 42 -[1] 26 108 60 -[1] 27 108 37 -[1] 28 108 86 -[1] 29 108 41 -[1] 30 108 32 -[1] 31 108 49 -[1] 32 108 48 -[1] 33 108 31 -[1] 34 108 45 -[1] 35 108 49 -[1] 36 108 64 -[1] 37 108 38 -[1] 38 108 34 -[1] 39 108 51 -[1] 40 108 70 -[1] 41 108 45 -[1] 42 108 34 -[1] 43 108 62 -[1] 44 108 54 -[1] 45 108 55 -[1] 46 108 47 -[1] 47 108 45 -[1] 48 108 59 -[1] 49 108 53 -[1] 50 108 46 -[1] 51 108 65 -[1] 52 108 52 -[1] 53 108 43 -[1] 54 108 32 -[1] 55 108 55 -[1] 56 108 45 -[1] 57 108 33 -[1] 58 108 60 -[1] 59 108 43 -[1] 60 108 63 -[1] 61 108 44 -[1] 62 108 49 -[1] 63 108 82 -[1] 64 108 44 -[1] 65 108 55 -[1] 66 108 92 -[1] 67 108 57 -[1] 68 108 40 -[1] 69 108 51 -[1] 70 108 37 -[1] 71 108 35 -[1] 72 108 56 -[1] 73 108 38 -[1] 74 108 70 -[1] 75 108 47 -[1] 76 108 49 -[1] 77 108 69 -[1] 78 108 63 -[1] 79 108 56 -[1] 80 108 51 -[1] 81 108 57 -[1] 82 108 50 -[1] 83 108 62 -[1] 84 108 37 -[1] 85 108 40 -[1] 86 108 57 -[1] 87 108 85 -[1] 88 108 80 -[1] 89 108 41 -[1] 90 108 77 -[1] 91 108 48 -[1] 92 108 42 -[1] 93 108 35 -[1] 94 108 42 -[1] 95 108 69 -[1] 96 108 39 -[1] 97 108 72 -[1] 98 108 55 -[1] 99 108 56 -[1] 100 108 42 -[1] 101 108 51 -[1] 102 108 49 -[1] 103 108 78 -[1] 104 108 63 -[1] 105 108 58 -[1] 106 108 59 -[1] 107 108 33 -[1] 108 108 70 -[1] 109 108 38 -[1] 110 108 49 -[1] 111 108 49 -[1] 112 108 62 -[1] 113 108 53 -[1] 114 108 72 -[1] 115 108 74 -[1] 116 108 47 -[1] 117 108 53 -[1] 118 108 57 -[1] 119 108 58 -[1] 120 108 53 -[1] 121 108 62 -[1] 122 108 33 -[1] 123 108 56 -[1] 124 108 77 -[1] 125 108 50 -[1] 126 108 53 -[1] 127 108 55 -[1] 128 108 38 -[1] 129 108 65 -[1] 130 108 50 -[1] 131 108 57 -[1] 132 108 41 -[1] 133 108 51 -[1] 134 108 60 -[1] 135 108 40 -[1] 136 108 61 -[1] 137 108 58 -[1] 138 108 59 -[1] 139 108 48 -[1] 140 108 55 -[1] 141 108 40 -[1] 142 108 29 -[1] 143 108 69 -[1] 144 108 64 -[1] 145 108 47 -[1] 146 108 66 -[1] 147 108 43 -[1] 148 108 68 -[1] 149 108 55 -[1] 150 108 45 -[1] 151 108 56 -[1] 152 108 43 -[1] 153 108 26 -[1] 154 108 102 -[1] 155 108 55 -[1] 156 108 42 -[1] 157 108 43 -[1] 158 108 38 -[1] 159 108 59 -[1] 160 108 31 -[1] 161 108 55 -[1] 162 108 40 -[1] 163 108 67 -[1] 164 108 38 -[1] 165 108 47 -[1] 166 108 38 -[1] 167 108 38 -[1] 168 108 58 -[1] 169 108 40 -[1] 170 108 51 -[1] 171 108 56 -[1] 172 108 50 -[1] 173 108 73 -[1] 174 108 49 -[1] 175 108 34 -[1] 176 108 48 -[1] 177 108 76 -[1] 178 108 48 -[1] 179 108 62 -[1] 180 108 41 -[1] 181 108 57 -[1] 182 108 50 -[1] 183 108 99 -[1] 184 108 43 -[1] 185 108 49 -[1] 186 108 50 -[1] 187 108 41 -[1] 188 108 58 -[1] 189 108 40 -[1] 190 108 63 -[1] 191 108 33 -[1] 192 108 58 -[1] 193 108 53 -[1] 194 108 58 -[1] 195 108 75 -[1] 196 108 47 -[1] 197 108 68 -[1] 198 108 37 -[1] 199 108 106 -[1] 200 108 41 -[1] 1 109 25 -[1] 2 109 29 -[1] 3 109 29 -[1] 4 109 38 -[1] 5 109 42 -[1] 6 109 33 -[1] 7 109 38 -[1] 8 109 43 -[1] 9 109 44 -[1] 10 109 55 -[1] 11 109 33 -[1] 12 109 40 -[1] 13 109 41 -[1] 14 109 36 -[1] 15 109 61 -[1] 16 109 45 -[1] 17 109 33 -[1] 18 109 56 -[1] 19 109 30 -[1] 20 109 62 -[1] 21 109 75 -[1] 22 109 39 -[1] 23 109 40 -[1] 24 109 39 -[1] 25 109 41 -[1] 26 109 40 -[1] 27 109 57 -[1] 28 109 40 -[1] 29 109 49 -[1] 30 109 33 -[1] 31 109 100 -[1] 32 109 53 -[1] 33 109 59 -[1] 34 109 42 -[1] 35 109 33 -[1] 36 109 38 -[1] 37 109 62 -[1] 38 109 44 -[1] 39 109 64 -[1] 40 109 42 -[1] 41 109 39 -[1] 42 109 52 -[1] 43 109 45 -[1] 44 109 48 -[1] 45 109 35 -[1] 46 109 44 -[1] 47 109 44 -[1] 48 109 36 -[1] 49 109 35 -[1] 50 109 38 -[1] 51 109 35 -[1] 52 109 38 -[1] 53 109 65 -[1] 54 109 50 -[1] 55 109 56 -[1] 56 109 47 -[1] 57 109 35 -[1] 58 109 38 -[1] 59 109 54 -[1] 60 109 49 -[1] 61 109 34 -[1] 62 109 49 -[1] 63 109 59 -[1] 64 109 61 -[1] 65 109 31 -[1] 66 109 44 -[1] 67 109 40 -[1] 68 109 42 -[1] 69 109 66 -[1] 70 109 62 -[1] 71 109 50 -[1] 72 109 49 -[1] 73 109 54 -[1] 74 109 63 -[1] 75 109 68 -[1] 76 109 47 -[1] 77 109 48 -[1] 78 109 72 -[1] 79 109 76 -[1] 80 109 51 -[1] 81 109 42 -[1] 82 109 63 -[1] 83 109 40 -[1] 84 109 48 -[1] 85 109 52 -[1] 86 109 53 -[1] 87 109 55 -[1] 88 109 46 -[1] 89 109 49 -[1] 90 109 75 -[1] 91 109 63 -[1] 92 109 56 -[1] 93 109 69 -[1] 94 109 42 -[1] 95 109 40 -[1] 96 109 40 -[1] 97 109 63 -[1] 98 109 55 -[1] 99 109 55 -[1] 100 109 72 -[1] 101 109 58 -[1] 102 109 39 -[1] 103 109 41 -[1] 104 109 68 -[1] 105 109 60 -[1] 106 109 39 -[1] 107 109 76 -[1] 108 109 49 -[1] 109 109 64 -[1] 110 109 43 -[1] 111 109 38 -[1] 112 109 59 -[1] 113 109 36 -[1] 114 109 47 -[1] 115 109 46 -[1] 116 109 39 -[1] 117 109 58 -[1] 118 109 41 -[1] 119 109 71 -[1] 120 109 32 -[1] 121 109 61 -[1] 122 109 38 -[1] 123 109 43 -[1] 124 109 30 -[1] 125 109 45 -[1] 126 109 53 -[1] 127 109 47 -[1] 128 109 46 -[1] 129 109 43 -[1] 130 109 60 -[1] 131 109 59 -[1] 132 109 48 -[1] 133 109 76 -[1] 134 109 58 -[1] 135 109 48 -[1] 136 109 64 -[1] 137 109 72 -[1] 138 109 44 -[1] 139 109 39 -[1] 140 109 62 -[1] 141 109 52 -[1] 142 109 40 -[1] 143 109 55 -[1] 144 109 54 -[1] 145 109 47 -[1] 146 109 53 -[1] 147 109 39 -[1] 148 109 29 -[1] 149 109 64 -[1] 150 109 56 -[1] 151 109 43 -[1] 152 109 44 -[1] 153 109 76 -[1] 154 109 52 -[1] 155 109 60 -[1] 156 109 77 -[1] 157 109 40 -[1] 158 109 45 -[1] 159 109 56 -[1] 160 109 53 -[1] 161 109 40 -[1] 162 109 51 -[1] 163 109 101 -[1] 164 109 35 -[1] 165 109 38 -[1] 166 109 45 -[1] 167 109 38 -[1] 168 109 39 -[1] 169 109 60 -[1] 170 109 47 -[1] 171 109 44 -[1] 172 109 47 -[1] 173 109 43 -[1] 174 109 41 -[1] 175 109 67 -[1] 176 109 37 -[1] 177 109 53 -[1] 178 109 60 -[1] 179 109 51 -[1] 180 109 48 -[1] 181 109 43 -[1] 182 109 61 -[1] 183 109 54 -[1] 184 109 48 -[1] 185 109 47 -[1] 186 109 47 -[1] 187 109 42 -[1] 188 109 43 -[1] 189 109 71 -[1] 190 109 39 -[1] 191 109 38 -[1] 192 109 69 -[1] 193 109 66 -[1] 194 109 62 -[1] 195 109 44 -[1] 196 109 61 -[1] 197 109 49 -[1] 198 109 44 -[1] 199 109 49 -[1] 200 109 43 -[1] 1 110 41 -[1] 2 110 38 -[1] 3 110 35 -[1] 4 110 35 -[1] 5 110 52 -[1] 6 110 39 -[1] 7 110 46 -[1] 8 110 33 -[1] 9 110 41 -[1] 10 110 48 -[1] 11 110 37 -[1] 12 110 26 -[1] 13 110 57 -[1] 14 110 41 -[1] 15 110 62 -[1] 16 110 32 -[1] 17 110 35 -[1] 18 110 41 -[1] 19 110 54 -[1] 20 110 39 -[1] 21 110 32 -[1] 22 110 43 -[1] 23 110 32 -[1] 24 110 45 -[1] 25 110 37 -[1] 26 110 31 -[1] 27 110 50 -[1] 28 110 36 -[1] 29 110 39 -[1] 30 110 36 -[1] 31 110 39 -[1] 32 110 34 -[1] 33 110 29 -[1] 34 110 50 -[1] 35 110 40 -[1] 36 110 53 -[1] 37 110 69 -[1] 38 110 45 -[1] 39 110 40 -[1] 40 110 71 -[1] 41 110 41 -[1] 42 110 40 -[1] 43 110 37 -[1] 44 110 48 -[1] 45 110 37 -[1] 46 110 48 -[1] 47 110 33 -[1] 48 110 46 -[1] 49 110 45 -[1] 50 110 36 -[1] 51 110 37 -[1] 52 110 51 -[1] 53 110 70 -[1] 54 110 43 -[1] 55 110 32 -[1] 56 110 44 -[1] 57 110 42 -[1] 58 110 48 -[1] 59 110 55 -[1] 60 110 30 -[1] 61 110 57 -[1] 62 110 41 -[1] 63 110 43 -[1] 64 110 45 -[1] 65 110 57 -[1] 66 110 64 -[1] 67 110 51 -[1] 68 110 39 -[1] 69 110 52 -[1] 70 110 39 -[1] 71 110 42 -[1] 72 110 55 -[1] 73 110 66 -[1] 74 110 51 -[1] 75 110 56 -[1] 76 110 57 -[1] 77 110 51 -[1] 78 110 112 -[1] 79 110 83 -[1] 80 110 72 -[1] 81 110 49 -[1] 82 110 54 -[1] 83 110 61 -[1] 84 110 49 -[1] 85 110 59 -[1] 86 110 41 -[1] 87 110 60 -[1] 88 110 51 -[1] 89 110 44 -[1] 90 110 42 -[1] 91 110 35 -[1] 92 110 94 -[1] 93 110 51 -[1] 94 110 38 -[1] 95 110 83 -[1] 96 110 48 -[1] 97 110 51 -[1] 98 110 62 -[1] 99 110 42 -[1] 100 110 47 -[1] 101 110 64 -[1] 102 110 46 -[1] 103 110 46 -[1] 104 110 44 -[1] 105 110 79 -[1] 106 110 47 -[1] 107 110 48 -[1] 108 110 57 -[1] 109 110 59 -[1] 110 110 34 -[1] 111 110 46 -[1] 112 110 33 -[1] 113 110 74 -[1] 114 110 69 -[1] 115 110 36 -[1] 116 110 77 -[1] 117 110 55 -[1] 118 110 53 -[1] 119 110 50 -[1] 120 110 69 -[1] 121 110 54 -[1] 122 110 39 -[1] 123 110 78 -[1] 124 110 67 -[1] 125 110 64 -[1] 126 110 44 -[1] 127 110 50 -[1] 128 110 50 -[1] 129 110 81 -[1] 130 110 54 -[1] 131 110 71 -[1] 132 110 45 -[1] 133 110 70 -[1] 134 110 59 -[1] 135 110 48 -[1] 136 110 49 -[1] 137 110 64 -[1] 138 110 35 -[1] 139 110 72 -[1] 140 110 39 -[1] 141 110 40 -[1] 142 110 42 -[1] 143 110 84 -[1] 144 110 40 -[1] 145 110 53 -[1] 146 110 48 -[1] 147 110 68 -[1] 148 110 53 -[1] 149 110 59 -[1] 150 110 57 -[1] 151 110 46 -[1] 152 110 57 -[1] 153 110 49 -[1] 154 110 70 -[1] 155 110 47 -[1] 156 110 58 -[1] 157 110 56 -[1] 158 110 55 -[1] 159 110 35 -[1] 160 110 47 -[1] 161 110 66 -[1] 162 110 40 -[1] 163 110 33 -[1] 164 110 60 -[1] 165 110 47 -[1] 166 110 32 -[1] 167 110 95 -[1] 168 110 39 -[1] 169 110 38 -[1] 170 110 49 -[1] 171 110 41 -[1] 172 110 45 -[1] 173 110 51 -[1] 174 110 44 -[1] 175 110 56 -[1] 176 110 37 -[1] 177 110 47 -[1] 178 110 62 -[1] 179 110 46 -[1] 180 110 38 -[1] 181 110 45 -[1] 182 110 39 -[1] 183 110 44 -[1] 184 110 43 -[1] 185 110 40 -[1] 186 110 43 -[1] 187 110 41 -[1] 188 110 56 -[1] 189 110 55 -[1] 190 110 32 -[1] 191 110 75 -[1] 192 110 58 -[1] 193 110 73 -[1] 194 110 48 -[1] 195 110 50 -[1] 196 110 51 -[1] 197 110 50 -[1] 198 110 89 -[1] 199 110 39 -[1] 200 110 51 -[1] 1 111 35 -[1] 2 111 26 -[1] 3 111 33 -[1] 4 111 39 -[1] 5 111 32 -[1] 6 111 25 -[1] 7 111 48 -[1] 8 111 45 -[1] 9 111 52 -[1] 10 111 50 -[1] 11 111 46 -[1] 12 111 34 -[1] 13 111 31 -[1] 14 111 33 -[1] 15 111 34 -[1] 16 111 32 -[1] 17 111 32 -[1] 18 111 70 -[1] 19 111 42 -[1] 20 111 36 -[1] 21 111 59 -[1] 22 111 43 -[1] 23 111 32 -[1] 24 111 39 -[1] 25 111 42 -[1] 26 111 31 -[1] 27 111 41 -[1] 28 111 42 -[1] 29 111 37 -[1] 30 111 36 -[1] 31 111 58 -[1] 32 111 57 -[1] 33 111 31 -[1] 34 111 63 -[1] 35 111 54 -[1] 36 111 33 -[1] 37 111 36 -[1] 38 111 52 -[1] 39 111 46 -[1] 40 111 32 -[1] 41 111 37 -[1] 42 111 64 -[1] 43 111 49 -[1] 44 111 38 -[1] 45 111 39 -[1] 46 111 28 -[1] 47 111 69 -[1] 48 111 76 -[1] 49 111 51 -[1] 50 111 52 -[1] 51 111 49 -[1] 52 111 63 -[1] 53 111 30 -[1] 54 111 39 -[1] 55 111 40 -[1] 56 111 51 -[1] 57 111 58 -[1] 58 111 66 -[1] 59 111 29 -[1] 60 111 51 -[1] 61 111 49 -[1] 62 111 79 -[1] 63 111 47 -[1] 64 111 39 -[1] 65 111 51 -[1] 66 111 74 -[1] 67 111 43 -[1] 68 111 45 -[1] 69 111 35 -[1] 70 111 76 -[1] 71 111 56 -[1] 72 111 73 -[1] 73 111 59 -[1] 74 111 66 -[1] 75 111 51 -[1] 76 111 85 -[1] 77 111 55 -[1] 78 111 51 -[1] 79 111 37 -[1] 80 111 53 -[1] 81 111 66 -[1] 82 111 52 -[1] 83 111 49 -[1] 84 111 60 -[1] 85 111 57 -[1] 86 111 41 -[1] 87 111 46 -[1] 88 111 51 -[1] 89 111 54 -[1] 90 111 43 -[1] 91 111 52 -[1] 92 111 77 -[1] 93 111 41 -[1] 94 111 92 -[1] 95 111 56 -[1] 96 111 37 -[1] 97 111 49 -[1] 98 111 60 -[1] 99 111 40 -[1] 100 111 65 -[1] 101 111 52 -[1] 102 111 54 -[1] 103 111 95 -[1] 104 111 51 -[1] 105 111 71 -[1] 106 111 51 -[1] 107 111 62 -[1] 108 111 55 -[1] 109 111 59 -[1] 110 111 36 -[1] 111 111 49 -[1] 112 111 73 -[1] 113 111 41 -[1] 114 111 53 -[1] 115 111 49 -[1] 116 111 33 -[1] 117 111 96 -[1] 118 111 51 -[1] 119 111 42 -[1] 120 111 44 -[1] 121 111 55 -[1] 122 111 39 -[1] 123 111 54 -[1] 124 111 55 -[1] 125 111 46 -[1] 126 111 53 -[1] 127 111 59 -[1] 128 111 54 -[1] 129 111 40 -[1] 130 111 42 -[1] 131 111 70 -[1] 132 111 42 -[1] 133 111 61 -[1] 134 111 31 -[1] 135 111 52 -[1] 136 111 59 -[1] 137 111 55 -[1] 138 111 43 -[1] 139 111 62 -[1] 140 111 52 -[1] 141 111 46 -[1] 142 111 51 -[1] 143 111 33 -[1] 144 111 52 -[1] 145 111 61 -[1] 146 111 114 -[1] 147 111 79 -[1] 148 111 43 -[1] 149 111 57 -[1] 150 111 59 -[1] 151 111 57 -[1] 152 111 47 -[1] 153 111 55 -[1] 154 111 50 -[1] 155 111 45 -[1] 156 111 55 -[1] 157 111 43 -[1] 158 111 129 -[1] 159 111 49 -[1] 160 111 37 -[1] 161 111 46 -[1] 162 111 54 -[1] 163 111 55 -[1] 164 111 74 -[1] 165 111 43 -[1] 166 111 53 -[1] 167 111 45 -[1] 168 111 59 -[1] 169 111 40 -[1] 170 111 46 -[1] 171 111 34 -[1] 172 111 39 -[1] 173 111 52 -[1] 174 111 47 -[1] 175 111 26 -[1] 176 111 65 -[1] 177 111 35 -[1] 178 111 80 -[1] 179 111 41 -[1] 180 111 50 -[1] 181 111 41 -[1] 182 111 42 -[1] 183 111 53 -[1] 184 111 49 -[1] 185 111 50 -[1] 186 111 26 -[1] 187 111 81 -[1] 188 111 50 -[1] 189 111 47 -[1] 190 111 55 -[1] 191 111 32 -[1] 192 111 68 -[1] 193 111 43 -[1] 194 111 59 -[1] 195 111 61 -[1] 196 111 54 -[1] 197 111 54 -[1] 198 111 49 -[1] 199 111 63 -[1] 200 111 49 -[1] 1 112 35 -[1] 2 112 39 -[1] 3 112 31 -[1] 4 112 38 -[1] 5 112 44 -[1] 6 112 35 -[1] 7 112 68 -[1] 8 112 33 -[1] 9 112 32 -[1] 10 112 55 -[1] 11 112 39 -[1] 12 112 49 -[1] 13 112 38 -[1] 14 112 34 -[1] 15 112 28 -[1] 16 112 45 -[1] 17 112 38 -[1] 18 112 43 -[1] 19 112 41 -[1] 20 112 38 -[1] 21 112 32 -[1] 22 112 34 -[1] 23 112 46 -[1] 24 112 32 -[1] 25 112 41 -[1] 26 112 35 -[1] 27 112 36 -[1] 28 112 41 -[1] 29 112 40 -[1] 30 112 36 -[1] 31 112 39 -[1] 32 112 31 -[1] 33 112 34 -[1] 34 112 45 -[1] 35 112 39 -[1] 36 112 40 -[1] 37 112 34 -[1] 38 112 61 -[1] 39 112 35 -[1] 40 112 56 -[1] 41 112 47 -[1] 42 112 33 -[1] 43 112 32 -[1] 44 112 35 -[1] 45 112 52 -[1] 46 112 44 -[1] 47 112 58 -[1] 48 112 40 -[1] 49 112 52 -[1] 50 112 36 -[1] 51 112 79 -[1] 52 112 65 -[1] 53 112 39 -[1] 54 112 44 -[1] 55 112 41 -[1] 56 112 50 -[1] 57 112 65 -[1] 58 112 46 -[1] 59 112 43 -[1] 60 112 44 -[1] 61 112 39 -[1] 62 112 36 -[1] 63 112 59 -[1] 64 112 71 -[1] 65 112 39 -[1] 66 112 63 -[1] 67 112 47 -[1] 68 112 64 -[1] 69 112 57 -[1] 70 112 47 -[1] 71 112 35 -[1] 72 112 49 -[1] 73 112 50 -[1] 74 112 61 -[1] 75 112 95 -[1] 76 112 61 -[1] 77 112 40 -[1] 78 112 61 -[1] 79 112 77 -[1] 80 112 46 -[1] 81 112 30 -[1] 82 112 56 -[1] 83 112 39 -[1] 84 112 52 -[1] 85 112 62 -[1] 86 112 69 -[1] 87 112 54 -[1] 88 112 86 -[1] 89 112 43 -[1] 90 112 57 -[1] 91 112 47 -[1] 92 112 56 -[1] 93 112 50 -[1] 94 112 85 -[1] 95 112 43 -[1] 96 112 76 -[1] 97 112 37 -[1] 98 112 51 -[1] 99 112 34 -[1] 100 112 74 -[1] 101 112 78 -[1] 102 112 70 -[1] 103 112 42 -[1] 104 112 47 -[1] 105 112 50 -[1] 106 112 50 -[1] 107 112 43 -[1] 108 112 29 -[1] 109 112 53 -[1] 110 112 84 -[1] 111 112 63 -[1] 112 112 52 -[1] 113 112 51 -[1] 114 112 56 -[1] 115 112 45 -[1] 116 112 46 -[1] 117 112 87 -[1] 118 112 42 -[1] 119 112 55 -[1] 120 112 44 -[1] 121 112 37 -[1] 122 112 91 -[1] 123 112 52 -[1] 124 112 36 -[1] 125 112 43 -[1] 126 112 70 -[1] 127 112 44 -[1] 128 112 56 -[1] 129 112 102 -[1] 130 112 45 -[1] 131 112 43 -[1] 132 112 46 -[1] 133 112 42 -[1] 134 112 43 -[1] 135 112 57 -[1] 136 112 46 -[1] 137 112 39 -[1] 138 112 56 -[1] 139 112 39 -[1] 140 112 42 -[1] 141 112 37 -[1] 142 112 41 -[1] 143 112 84 -[1] 144 112 42 -[1] 145 112 43 -[1] 146 112 49 -[1] 147 112 54 -[1] 148 112 43 -[1] 149 112 60 -[1] 150 112 39 -[1] 151 112 46 -[1] 152 112 37 -[1] 153 112 52 -[1] 154 112 51 -[1] 155 112 62 -[1] 156 112 47 -[1] 157 112 39 -[1] 158 112 48 -[1] 159 112 29 -[1] 160 112 33 -[1] 161 112 48 -[1] 162 112 85 -[1] 163 112 40 -[1] 164 112 49 -[1] 165 112 38 -[1] 166 112 65 -[1] 167 112 36 -[1] 168 112 47 -[1] 169 112 48 -[1] 170 112 55 -[1] 171 112 60 -[1] 172 112 41 -[1] 173 112 57 -[1] 174 112 126 -[1] 175 112 46 -[1] 176 112 45 -[1] 177 112 54 -[1] 178 112 41 -[1] 179 112 43 -[1] 180 112 50 -[1] 181 112 63 -[1] 182 112 35 -[1] 183 112 38 -[1] 184 112 47 -[1] 185 112 37 -[1] 186 112 48 -[1] 187 112 57 -[1] 188 112 47 -[1] 189 112 49 -[1] 190 112 45 -[1] 191 112 35 -[1] 192 112 62 -[1] 193 112 50 -[1] 194 112 55 -[1] 195 112 73 -[1] 196 112 60 -[1] 197 112 53 -[1] 198 112 47 -[1] 199 112 46 -[1] 200 112 55 -[1] 1 113 41 -[1] 2 113 43 -[1] 3 113 42 -[1] 4 113 43 -[1] 5 113 32 -[1] 6 113 49 -[1] 7 113 40 -[1] 8 113 31 -[1] 9 113 83 -[1] 10 113 42 -[1] 11 113 35 -[1] 12 113 36 -[1] 13 113 41 -[1] 14 113 56 -[1] 15 113 45 -[1] 16 113 37 -[1] 17 113 36 -[1] 18 113 44 -[1] 19 113 39 -[1] 20 113 37 -[1] 21 113 36 -[1] 22 113 30 -[1] 23 113 49 -[1] 24 113 33 -[1] 25 113 30 -[1] 26 113 33 -[1] 27 113 49 -[1] 28 113 36 -[1] 29 113 35 -[1] 30 113 55 -[1] 31 113 50 -[1] 32 113 45 -[1] 33 113 34 -[1] 34 113 42 -[1] 35 113 43 -[1] 36 113 57 -[1] 37 113 47 -[1] 38 113 40 -[1] 39 113 31 -[1] 40 113 36 -[1] 41 113 31 -[1] 42 113 58 -[1] 43 113 54 -[1] 44 113 68 -[1] 45 113 54 -[1] 46 113 32 -[1] 47 113 71 -[1] 48 113 31 -[1] 49 113 52 -[1] 50 113 50 -[1] 51 113 34 -[1] 52 113 40 -[1] 53 113 41 -[1] 54 113 44 -[1] 55 113 59 -[1] 56 113 52 -[1] 57 113 43 -[1] 58 113 71 -[1] 59 113 44 -[1] 60 113 65 -[1] 61 113 60 -[1] 62 113 57 -[1] 63 113 37 -[1] 64 113 49 -[1] 65 113 51 -[1] 66 113 48 -[1] 67 113 43 -[1] 68 113 53 -[1] 69 113 40 -[1] 70 113 59 -[1] 71 113 63 -[1] 72 113 78 -[1] 73 113 37 -[1] 74 113 37 -[1] 75 113 33 -[1] 76 113 50 -[1] 77 113 35 -[1] 78 113 44 -[1] 79 113 41 -[1] 80 113 79 -[1] 81 113 32 -[1] 82 113 40 -[1] 83 113 41 -[1] 84 113 36 -[1] 85 113 60 -[1] 86 113 54 -[1] 87 113 40 -[1] 88 113 51 -[1] 89 113 41 -[1] 90 113 48 -[1] 91 113 50 -[1] 92 113 38 -[1] 93 113 56 -[1] 94 113 41 -[1] 95 113 45 -[1] 96 113 47 -[1] 97 113 56 -[1] 98 113 55 -[1] 99 113 71 -[1] 100 113 42 -[1] 101 113 53 -[1] 102 113 51 -[1] 103 113 29 -[1] 104 113 86 -[1] 105 113 62 -[1] 106 113 43 -[1] 107 113 65 -[1] 108 113 56 -[1] 109 113 59 -[1] 110 113 31 -[1] 111 113 54 -[1] 112 113 36 -[1] 113 113 57 -[1] 114 113 31 -[1] 115 113 62 -[1] 116 113 33 -[1] 117 113 91 -[1] 118 113 60 -[1] 119 113 36 -[1] 120 113 49 -[1] 121 113 84 -[1] 122 113 58 -[1] 123 113 32 -[1] 124 113 33 -[1] 125 113 48 -[1] 126 113 55 -[1] 127 113 40 -[1] 128 113 53 -[1] 129 113 65 -[1] 130 113 58 -[1] 131 113 50 -[1] 132 113 53 -[1] 133 113 66 -[1] 134 113 69 -[1] 135 113 57 -[1] 136 113 36 -[1] 137 113 69 -[1] 138 113 46 -[1] 139 113 63 -[1] 140 113 50 -[1] 141 113 47 -[1] 142 113 80 -[1] 143 113 45 -[1] 144 113 31 -[1] 145 113 70 -[1] 146 113 41 -[1] 147 113 38 -[1] 148 113 39 -[1] 149 113 53 -[1] 150 113 44 -[1] 151 113 41 -[1] 152 113 48 -[1] 153 113 47 -[1] 154 113 36 -[1] 155 113 37 -[1] 156 113 36 -[1] 157 113 55 -[1] 158 113 37 -[1] 159 113 47 -[1] 160 113 44 -[1] 161 113 48 -[1] 162 113 48 -[1] 163 113 39 -[1] 164 113 39 -[1] 165 113 33 -[1] 166 113 60 -[1] 167 113 36 -[1] 168 113 63 -[1] 169 113 42 -[1] 170 113 36 -[1] 171 113 47 -[1] 172 113 50 -[1] 173 113 41 -[1] 174 113 50 -[1] 175 113 54 -[1] 176 113 96 -[1] 177 113 61 -[1] 178 113 36 -[1] 179 113 108 -[1] 180 113 74 -[1] 181 113 48 -[1] 182 113 52 -[1] 183 113 57 -[1] 184 113 75 -[1] 185 113 38 -[1] 186 113 110 -[1] 187 113 42 -[1] 188 113 80 -[1] 189 113 49 -[1] 190 113 37 -[1] 191 113 45 -[1] 192 113 46 -[1] 193 113 43 -[1] 194 113 92 -[1] 195 113 51 -[1] 196 113 79 -[1] 197 113 50 -[1] 198 113 50 -[1] 199 113 34 -[1] 200 113 42 -[1] 1 114 36 -[1] 2 114 42 -[1] 3 114 34 -[1] 4 114 31 -[1] 5 114 41 -[1] 6 114 31 -[1] 7 114 49 -[1] 8 114 47 -[1] 9 114 29 -[1] 10 114 33 -[1] 11 114 36 -[1] 12 114 62 -[1] 13 114 53 -[1] 14 114 32 -[1] 15 114 33 -[1] 16 114 40 -[1] 17 114 33 -[1] 18 114 33 -[1] 19 114 44 -[1] 20 114 53 -[1] 21 114 43 -[1] 22 114 42 -[1] 23 114 26 -[1] 24 114 33 -[1] 25 114 47 -[1] 26 114 30 -[1] 27 114 29 -[1] 28 114 30 -[1] 29 114 34 -[1] 30 114 49 -[1] 31 114 35 -[1] 32 114 35 -[1] 33 114 44 -[1] 34 114 61 -[1] 35 114 34 -[1] 36 114 44 -[1] 37 114 55 -[1] 38 114 29 -[1] 39 114 37 -[1] 40 114 40 -[1] 41 114 31 -[1] 42 114 68 -[1] 43 114 33 -[1] 44 114 30 -[1] 45 114 45 -[1] 46 114 38 -[1] 47 114 55 -[1] 48 114 38 -[1] 49 114 53 -[1] 50 114 44 -[1] 51 114 39 -[1] 52 114 29 -[1] 53 114 98 -[1] 54 114 57 -[1] 55 114 38 -[1] 56 114 37 -[1] 57 114 66 -[1] 58 114 57 -[1] 59 114 57 -[1] 60 114 36 -[1] 61 114 45 -[1] 62 114 45 -[1] 63 114 38 -[1] 64 114 62 -[1] 65 114 48 -[1] 66 114 41 -[1] 67 114 50 -[1] 68 114 63 -[1] 69 114 87 -[1] 70 114 51 -[1] 71 114 81 -[1] 72 114 54 -[1] 73 114 37 -[1] 74 114 42 -[1] 75 114 66 -[1] 76 114 95 -[1] 77 114 94 -[1] 78 114 73 -[1] 79 114 55 -[1] 80 114 58 -[1] 81 114 59 -[1] 82 114 42 -[1] 83 114 60 -[1] 84 114 58 -[1] 85 114 38 -[1] 86 114 45 -[1] 87 114 41 -[1] 88 114 37 -[1] 89 114 44 -[1] 90 114 40 -[1] 91 114 53 -[1] 92 114 48 -[1] 93 114 75 -[1] 94 114 82 -[1] 95 114 56 -[1] 96 114 49 -[1] 97 114 40 -[1] 98 114 65 -[1] 99 114 54 -[1] 100 114 47 -[1] 101 114 83 -[1] 102 114 53 -[1] 103 114 58 -[1] 104 114 50 -[1] 105 114 85 -[1] 106 114 36 -[1] 107 114 61 -[1] 108 114 48 -[1] 109 114 55 -[1] 110 114 42 -[1] 111 114 91 -[1] 112 114 36 -[1] 113 114 74 -[1] 114 114 49 -[1] 115 114 92 -[1] 116 114 44 -[1] 117 114 37 -[1] 118 114 42 -[1] 119 114 71 -[1] 120 114 69 -[1] 121 114 64 -[1] 122 114 49 -[1] 123 114 68 -[1] 124 114 55 -[1] 125 114 44 -[1] 126 114 37 -[1] 127 114 53 -[1] 128 114 48 -[1] 129 114 45 -[1] 130 114 32 -[1] 131 114 54 -[1] 132 114 69 -[1] 133 114 49 -[1] 134 114 36 -[1] 135 114 60 -[1] 136 114 52 -[1] 137 114 46 -[1] 138 114 69 -[1] 139 114 50 -[1] 140 114 40 -[1] 141 114 52 -[1] 142 114 56 -[1] 143 114 47 -[1] 144 114 42 -[1] 145 114 43 -[1] 146 114 44 -[1] 147 114 58 -[1] 148 114 47 -[1] 149 114 91 -[1] 150 114 48 -[1] 151 114 37 -[1] 152 114 50 -[1] 153 114 61 -[1] 154 114 53 -[1] 155 114 88 -[1] 156 114 49 -[1] 157 114 56 -[1] 158 114 55 -[1] 159 114 45 -[1] 160 114 44 -[1] 161 114 43 -[1] 162 114 46 -[1] 163 114 45 -[1] 164 114 47 -[1] 165 114 50 -[1] 166 114 52 -[1] 167 114 46 -[1] 168 114 54 -[1] 169 114 47 -[1] 170 114 76 -[1] 171 114 44 -[1] 172 114 67 -[1] 173 114 44 -[1] 174 114 35 -[1] 175 114 35 -[1] 176 114 44 -[1] 177 114 47 -[1] 178 114 39 -[1] 179 114 54 -[1] 180 114 62 -[1] 181 114 48 -[1] 182 114 86 -[1] 183 114 49 -[1] 184 114 54 -[1] 185 114 49 -[1] 186 114 84 -[1] 187 114 50 -[1] 188 114 41 -[1] 189 114 55 -[1] 190 114 78 -[1] 191 114 61 -[1] 192 114 59 -[1] 193 114 47 -[1] 194 114 59 -[1] 195 114 51 -[1] 196 114 49 -[1] 197 114 50 -[1] 198 114 58 -[1] 199 114 45 -[1] 200 114 47 -[1] 1 115 27 -[1] 2 115 30 -[1] 3 115 44 -[1] 4 115 38 -[1] 5 115 27 -[1] 6 115 68 -[1] 7 115 30 -[1] 8 115 37 -[1] 9 115 29 -[1] 10 115 40 -[1] 11 115 62 -[1] 12 115 35 -[1] 13 115 31 -[1] 14 115 34 -[1] 15 115 41 -[1] 16 115 46 -[1] 17 115 51 -[1] 18 115 50 -[1] 19 115 45 -[1] 20 115 53 -[1] 21 115 51 -[1] 22 115 45 -[1] 23 115 48 -[1] 24 115 51 -[1] 25 115 47 -[1] 26 115 39 -[1] 27 115 53 -[1] 28 115 38 -[1] 29 115 46 -[1] 30 115 40 -[1] 31 115 34 -[1] 32 115 40 -[1] 33 115 34 -[1] 34 115 70 -[1] 35 115 56 -[1] 36 115 33 -[1] 37 115 42 -[1] 38 115 56 -[1] 39 115 35 -[1] 40 115 35 -[1] 41 115 57 -[1] 42 115 89 -[1] 43 115 54 -[1] 44 115 48 -[1] 45 115 39 -[1] 46 115 47 -[1] 47 115 37 -[1] 48 115 61 -[1] 49 115 33 -[1] 50 115 39 -[1] 51 115 56 -[1] 52 115 45 -[1] 53 115 38 -[1] 54 115 43 -[1] 55 115 43 -[1] 56 115 38 -[1] 57 115 62 -[1] 58 115 37 -[1] 59 115 50 -[1] 60 115 77 -[1] 61 115 59 -[1] 62 115 48 -[1] 63 115 47 -[1] 64 115 42 -[1] 65 115 57 -[1] 66 115 72 -[1] 67 115 40 -[1] 68 115 46 -[1] 69 115 46 -[1] 70 115 40 -[1] 71 115 52 -[1] 72 115 46 -[1] 73 115 38 -[1] 74 115 53 -[1] 75 115 54 -[1] 76 115 41 -[1] 77 115 66 -[1] 78 115 55 -[1] 79 115 42 -[1] 80 115 81 -[1] 81 115 37 -[1] 82 115 58 -[1] 83 115 53 -[1] 84 115 60 -[1] 85 115 61 -[1] 86 115 57 -[1] 87 115 50 -[1] 88 115 28 -[1] 89 115 55 -[1] 90 115 47 -[1] 91 115 47 -[1] 92 115 82 -[1] 93 115 63 -[1] 94 115 38 -[1] 95 115 52 -[1] 96 115 43 -[1] 97 115 47 -[1] 98 115 32 -[1] 99 115 86 -[1] 100 115 36 -[1] 101 115 53 -[1] 102 115 56 -[1] 103 115 74 -[1] 104 115 55 -[1] 105 115 47 -[1] 106 115 70 -[1] 107 115 40 -[1] 108 115 42 -[1] 109 115 51 -[1] 110 115 43 -[1] 111 115 75 -[1] 112 115 29 -[1] 113 115 64 -[1] 114 115 50 -[1] 115 115 53 -[1] 116 115 37 -[1] 117 115 45 -[1] 118 115 46 -[1] 119 115 37 -[1] 120 115 96 -[1] 121 115 39 -[1] 122 115 69 -[1] 123 115 39 -[1] 124 115 43 -[1] 125 115 56 -[1] 126 115 41 -[1] 127 115 45 -[1] 128 115 44 -[1] 129 115 43 -[1] 130 115 52 -[1] 131 115 39 -[1] 132 115 62 -[1] 133 115 91 -[1] 134 115 87 -[1] 135 115 45 -[1] 136 115 46 -[1] 137 115 42 -[1] 138 115 56 -[1] 139 115 45 -[1] 140 115 51 -[1] 141 115 50 -[1] 142 115 43 -[1] 143 115 65 -[1] 144 115 62 -[1] 145 115 51 -[1] 146 115 44 -[1] 147 115 41 -[1] 148 115 47 -[1] 149 115 55 -[1] 150 115 45 -[1] 151 115 32 -[1] 152 115 54 -[1] 153 115 44 -[1] 154 115 37 -[1] 155 115 40 -[1] 156 115 50 -[1] 157 115 54 -[1] 158 115 66 -[1] 159 115 47 -[1] 160 115 42 -[1] 161 115 48 -[1] 162 115 39 -[1] 163 115 49 -[1] 164 115 45 -[1] 165 115 34 -[1] 166 115 46 -[1] 167 115 64 -[1] 168 115 53 -[1] 169 115 58 -[1] 170 115 30 -[1] 171 115 44 -[1] 172 115 49 -[1] 173 115 52 -[1] 174 115 65 -[1] 175 115 48 -[1] 176 115 37 -[1] 177 115 43 -[1] 178 115 54 -[1] 179 115 69 -[1] 180 115 30 -[1] 181 115 42 -[1] 182 115 56 -[1] 183 115 56 -[1] 184 115 41 -[1] 185 115 40 -[1] 186 115 49 -[1] 187 115 50 -[1] 188 115 61 -[1] 189 115 35 -[1] 190 115 63 -[1] 191 115 60 -[1] 192 115 40 -[1] 193 115 46 -[1] 194 115 69 -[1] 195 115 65 -[1] 196 115 56 -[1] 197 115 31 -[1] 198 115 69 -[1] 199 115 44 -[1] 200 115 41 -[1] 1 116 38 -[1] 2 116 38 -[1] 3 116 40 -[1] 4 116 36 -[1] 5 116 53 -[1] 6 116 30 -[1] 7 116 31 -[1] 8 116 28 -[1] 9 116 46 -[1] 10 116 52 -[1] 11 116 49 -[1] 12 116 40 -[1] 13 116 35 -[1] 14 116 35 -[1] 15 116 44 -[1] 16 116 48 -[1] 17 116 31 -[1] 18 116 33 -[1] 19 116 54 -[1] 20 116 45 -[1] 21 116 32 -[1] 22 116 31 -[1] 23 116 33 -[1] 24 116 76 -[1] 25 116 50 -[1] 26 116 32 -[1] 27 116 45 -[1] 28 116 33 -[1] 29 116 45 -[1] 30 116 38 -[1] 31 116 46 -[1] 32 116 35 -[1] 33 116 36 -[1] 34 116 46 -[1] 35 116 66 -[1] 36 116 51 -[1] 37 116 44 -[1] 38 116 50 -[1] 39 116 41 -[1] 40 116 51 -[1] 41 116 53 -[1] 42 116 64 -[1] 43 116 35 -[1] 44 116 34 -[1] 45 116 47 -[1] 46 116 51 -[1] 47 116 44 -[1] 48 116 34 -[1] 49 116 62 -[1] 50 116 53 -[1] 51 116 46 -[1] 52 116 60 -[1] 53 116 54 -[1] 54 116 55 -[1] 55 116 44 -[1] 56 116 33 -[1] 57 116 48 -[1] 58 116 58 -[1] 59 116 47 -[1] 60 116 86 -[1] 61 116 71 -[1] 62 116 47 -[1] 63 116 51 -[1] 64 116 48 -[1] 65 116 49 -[1] 66 116 42 -[1] 67 116 62 -[1] 68 116 69 -[1] 69 116 63 -[1] 70 116 51 -[1] 71 116 34 -[1] 72 116 62 -[1] 73 116 47 -[1] 74 116 52 -[1] 75 116 67 -[1] 76 116 61 -[1] 77 116 33 -[1] 78 116 52 -[1] 79 116 83 -[1] 80 116 68 -[1] 81 116 56 -[1] 82 116 47 -[1] 83 116 57 -[1] 84 116 35 -[1] 85 116 58 -[1] 86 116 50 -[1] 87 116 50 -[1] 88 116 44 -[1] 89 116 67 -[1] 90 116 46 -[1] 91 116 46 -[1] 92 116 33 -[1] 93 116 53 -[1] 94 116 34 -[1] 95 116 53 -[1] 96 116 33 -[1] 97 116 57 -[1] 98 116 46 -[1] 99 116 54 -[1] 100 116 55 -[1] 101 116 49 -[1] 102 116 60 -[1] 103 116 36 -[1] 104 116 59 -[1] 105 116 67 -[1] 106 116 74 -[1] 107 116 86 -[1] 108 116 39 -[1] 109 116 51 -[1] 110 116 63 -[1] 111 116 60 -[1] 112 116 46 -[1] 113 116 41 -[1] 114 116 44 -[1] 115 116 152 -[1] 116 116 59 -[1] 117 116 51 -[1] 118 116 47 -[1] 119 116 39 -[1] 120 116 68 -[1] 121 116 38 -[1] 122 116 38 -[1] 123 116 57 -[1] 124 116 41 -[1] 125 116 124 -[1] 126 116 61 -[1] 127 116 91 -[1] 128 116 53 -[1] 129 116 42 -[1] 130 116 42 -[1] 131 116 41 -[1] 132 116 34 -[1] 133 116 51 -[1] 134 116 45 -[1] 135 116 50 -[1] 136 116 39 -[1] 137 116 72 -[1] 138 116 40 -[1] 139 116 39 -[1] 140 116 53 -[1] 141 116 41 -[1] 142 116 45 -[1] 143 116 75 -[1] 144 116 66 -[1] 145 116 55 -[1] 146 116 89 -[1] 147 116 56 -[1] 148 116 49 -[1] 149 116 91 -[1] 150 116 82 -[1] 151 116 65 -[1] 152 116 55 -[1] 153 116 50 -[1] 154 116 59 -[1] 155 116 39 -[1] 156 116 55 -[1] 157 116 39 -[1] 158 116 45 -[1] 159 116 55 -[1] 160 116 35 -[1] 161 116 55 -[1] 162 116 37 -[1] 163 116 54 -[1] 164 116 57 -[1] 165 116 39 -[1] 166 116 44 -[1] 167 116 43 -[1] 168 116 40 -[1] 169 116 47 -[1] 170 116 67 -[1] 171 116 42 -[1] 172 116 49 -[1] 173 116 42 -[1] 174 116 50 -[1] 175 116 53 -[1] 176 116 57 -[1] 177 116 51 -[1] 178 116 48 -[1] 179 116 51 -[1] 180 116 67 -[1] 181 116 54 -[1] 182 116 76 -[1] 183 116 37 -[1] 184 116 49 -[1] 185 116 86 -[1] 186 116 45 -[1] 187 116 39 -[1] 188 116 82 -[1] 189 116 80 -[1] 190 116 57 -[1] 191 116 43 -[1] 192 116 78 -[1] 193 116 41 -[1] 194 116 52 -[1] 195 116 48 -[1] 196 116 70 -[1] 197 116 46 -[1] 198 116 33 -[1] 199 116 75 -[1] 200 116 58 -[1] 1 117 31 -[1] 2 117 32 -[1] 3 117 59 -[1] 4 117 45 -[1] 5 117 35 -[1] 6 117 38 -[1] 7 117 33 -[1] 8 117 33 -[1] 9 117 46 -[1] 10 117 41 -[1] 11 117 54 -[1] 12 117 40 -[1] 13 117 57 -[1] 14 117 25 -[1] 15 117 34 -[1] 16 117 38 -[1] 17 117 47 -[1] 18 117 55 -[1] 19 117 40 -[1] 20 117 42 -[1] 21 117 39 -[1] 22 117 34 -[1] 23 117 49 -[1] 24 117 32 -[1] 25 117 39 -[1] 26 117 35 -[1] 27 117 39 -[1] 28 117 39 -[1] 29 117 60 -[1] 30 117 42 -[1] 31 117 45 -[1] 32 117 36 -[1] 33 117 34 -[1] 34 117 42 -[1] 35 117 48 -[1] 36 117 38 -[1] 37 117 62 -[1] 38 117 46 -[1] 39 117 33 -[1] 40 117 64 -[1] 41 117 32 -[1] 42 117 33 -[1] 43 117 37 -[1] 44 117 28 -[1] 45 117 53 -[1] 46 117 36 -[1] 47 117 33 -[1] 48 117 58 -[1] 49 117 55 -[1] 50 117 47 -[1] 51 117 53 -[1] 52 117 41 -[1] 53 117 98 -[1] 54 117 50 -[1] 55 117 48 -[1] 56 117 32 -[1] 57 117 53 -[1] 58 117 41 -[1] 59 117 27 -[1] 60 117 56 -[1] 61 117 39 -[1] 62 117 42 -[1] 63 117 46 -[1] 64 117 51 -[1] 65 117 56 -[1] 66 117 55 -[1] 67 117 56 -[1] 68 117 52 -[1] 69 117 40 -[1] 70 117 48 -[1] 71 117 47 -[1] 72 117 79 -[1] 73 117 50 -[1] 74 117 48 -[1] 75 117 59 -[1] 76 117 50 -[1] 77 117 54 -[1] 78 117 52 -[1] 79 117 47 -[1] 80 117 46 -[1] 81 117 69 -[1] 82 117 36 -[1] 83 117 45 -[1] 84 117 35 -[1] 85 117 46 -[1] 86 117 45 -[1] 87 117 53 -[1] 88 117 64 -[1] 89 117 49 -[1] 90 117 50 -[1] 91 117 52 -[1] 92 117 32 -[1] 93 117 38 -[1] 94 117 72 -[1] 95 117 49 -[1] 96 117 37 -[1] 97 117 74 -[1] 98 117 46 -[1] 99 117 45 -[1] 100 117 44 -[1] 101 117 53 -[1] 102 117 66 -[1] 103 117 55 -[1] 104 117 46 -[1] 105 117 47 -[1] 106 117 75 -[1] 107 117 27 -[1] 108 117 116 -[1] 109 117 59 -[1] 110 117 48 -[1] 111 117 63 -[1] 112 117 48 -[1] 113 117 71 -[1] 114 117 41 -[1] 115 117 45 -[1] 116 117 42 -[1] 117 117 45 -[1] 118 117 52 -[1] 119 117 46 -[1] 120 117 32 -[1] 121 117 55 -[1] 122 117 43 -[1] 123 117 42 -[1] 124 117 24 -[1] 125 117 81 -[1] 126 117 43 -[1] 127 117 59 -[1] 128 117 73 -[1] 129 117 52 -[1] 130 117 39 -[1] 131 117 42 -[1] 132 117 32 -[1] 133 117 53 -[1] 134 117 40 -[1] 135 117 53 -[1] 136 117 34 -[1] 137 117 43 -[1] 138 117 76 -[1] 139 117 53 -[1] 140 117 57 -[1] 141 117 40 -[1] 142 117 34 -[1] 143 117 68 -[1] 144 117 33 -[1] 145 117 74 -[1] 146 117 38 -[1] 147 117 55 -[1] 148 117 36 -[1] 149 117 58 -[1] 150 117 69 -[1] 151 117 57 -[1] 152 117 55 -[1] 153 117 58 -[1] 154 117 40 -[1] 155 117 51 -[1] 156 117 49 -[1] 157 117 54 -[1] 158 117 46 -[1] 159 117 86 -[1] 160 117 40 -[1] 161 117 55 -[1] 162 117 53 -[1] 163 117 69 -[1] 164 117 71 -[1] 165 117 46 -[1] 166 117 61 -[1] 167 117 53 -[1] 168 117 47 -[1] 169 117 69 -[1] 170 117 53 -[1] 171 117 83 -[1] 172 117 84 -[1] 173 117 63 -[1] 174 117 50 -[1] 175 117 91 -[1] 176 117 51 -[1] 177 117 61 -[1] 178 117 58 -[1] 179 117 46 -[1] 180 117 59 -[1] 181 117 77 -[1] 182 117 60 -[1] 183 117 63 -[1] 184 117 122 -[1] 185 117 58 -[1] 186 117 53 -[1] 187 117 41 -[1] 188 117 83 -[1] 189 117 48 -[1] 190 117 55 -[1] 191 117 54 -[1] 192 117 55 -[1] 193 117 38 -[1] 194 117 51 -[1] 195 117 42 -[1] 196 117 69 -[1] 197 117 45 -[1] 198 117 69 -[1] 199 117 46 -[1] 200 117 33 -[1] 1 118 35 -[1] 2 118 33 -[1] 3 118 25 -[1] 4 118 32 -[1] 5 118 26 -[1] 6 118 31 -[1] 7 118 40 -[1] 8 118 37 -[1] 9 118 41 -[1] 10 118 41 -[1] 11 118 36 -[1] 12 118 48 -[1] 13 118 61 -[1] 14 118 28 -[1] 15 118 51 -[1] 16 118 30 -[1] 17 118 36 -[1] 18 118 30 -[1] 19 118 30 -[1] 20 118 41 -[1] 21 118 34 -[1] 22 118 54 -[1] 23 118 34 -[1] 24 118 48 -[1] 25 118 31 -[1] 26 118 42 -[1] 27 118 42 -[1] 28 118 33 -[1] 29 118 35 -[1] 30 118 49 -[1] 31 118 50 -[1] 32 118 34 -[1] 33 118 43 -[1] 34 118 49 -[1] 35 118 48 -[1] 36 118 41 -[1] 37 118 39 -[1] 38 118 42 -[1] 39 118 34 -[1] 40 118 37 -[1] 41 118 47 -[1] 42 118 54 -[1] 43 118 39 -[1] 44 118 38 -[1] 45 118 40 -[1] 46 118 57 -[1] 47 118 33 -[1] 48 118 50 -[1] 49 118 35 -[1] 50 118 46 -[1] 51 118 47 -[1] 52 118 51 -[1] 53 118 39 -[1] 54 118 53 -[1] 55 118 55 -[1] 56 118 77 -[1] 57 118 42 -[1] 58 118 52 -[1] 59 118 46 -[1] 60 118 34 -[1] 61 118 48 -[1] 62 118 43 -[1] 63 118 36 -[1] 64 118 35 -[1] 65 118 46 -[1] 66 118 59 -[1] 67 118 63 -[1] 68 118 39 -[1] 69 118 88 -[1] 70 118 57 -[1] 71 118 44 -[1] 72 118 53 -[1] 73 118 44 -[1] 74 118 49 -[1] 75 118 38 -[1] 76 118 49 -[1] 77 118 41 -[1] 78 118 58 -[1] 79 118 45 -[1] 80 118 94 -[1] 81 118 35 -[1] 82 118 42 -[1] 83 118 63 -[1] 84 118 62 -[1] 85 118 54 -[1] 86 118 66 -[1] 87 118 55 -[1] 88 118 50 -[1] 89 118 40 -[1] 90 118 58 -[1] 91 118 37 -[1] 92 118 50 -[1] 93 118 85 -[1] 94 118 35 -[1] 95 118 49 -[1] 96 118 38 -[1] 97 118 40 -[1] 98 118 58 -[1] 99 118 48 -[1] 100 118 33 -[1] 101 118 156 -[1] 102 118 61 -[1] 103 118 122 -[1] 104 118 50 -[1] 105 118 51 -[1] 106 118 62 -[1] 107 118 54 -[1] 108 118 76 -[1] 109 118 46 -[1] 110 118 35 -[1] 111 118 67 -[1] 112 118 49 -[1] 113 118 76 -[1] 114 118 36 -[1] 115 118 61 -[1] 116 118 58 -[1] 117 118 57 -[1] 118 118 37 -[1] 119 118 61 -[1] 120 118 38 -[1] 121 118 42 -[1] 122 118 51 -[1] 123 118 68 -[1] 124 118 76 -[1] 125 118 52 -[1] 126 118 52 -[1] 127 118 53 -[1] 128 118 78 -[1] 129 118 57 -[1] 130 118 60 -[1] 131 118 51 -[1] 132 118 54 -[1] 133 118 37 -[1] 134 118 48 -[1] 135 118 55 -[1] 136 118 77 -[1] 137 118 43 -[1] 138 118 60 -[1] 139 118 48 -[1] 140 118 49 -[1] 141 118 37 -[1] 142 118 44 -[1] 143 118 45 -[1] 144 118 36 -[1] 145 118 50 -[1] 146 118 55 -[1] 147 118 81 -[1] 148 118 64 -[1] 149 118 61 -[1] 150 118 77 -[1] 151 118 76 -[1] 152 118 45 -[1] 153 118 65 -[1] 154 118 45 -[1] 155 118 51 -[1] 156 118 38 -[1] 157 118 45 -[1] 158 118 64 -[1] 159 118 84 -[1] 160 118 45 -[1] 161 118 63 -[1] 162 118 67 -[1] 163 118 46 -[1] 164 118 48 -[1] 165 118 62 -[1] 166 118 40 -[1] 167 118 61 -[1] 168 118 45 -[1] 169 118 48 -[1] 170 118 48 -[1] 171 118 56 -[1] 172 118 44 -[1] 173 118 58 -[1] 174 118 53 -[1] 175 118 41 -[1] 176 118 53 -[1] 177 118 44 -[1] 178 118 37 -[1] 179 118 62 -[1] 180 118 61 -[1] 181 118 54 -[1] 182 118 46 -[1] 183 118 53 -[1] 184 118 73 -[1] 185 118 48 -[1] 186 118 37 -[1] 187 118 35 -[1] 188 118 64 -[1] 189 118 40 -[1] 190 118 44 -[1] 191 118 55 -[1] 192 118 56 -[1] 193 118 54 -[1] 194 118 40 -[1] 195 118 52 -[1] 196 118 56 -[1] 197 118 46 -[1] 198 118 38 -[1] 199 118 67 -[1] 200 118 43 -[1] 1 119 39 -[1] 2 119 29 -[1] 3 119 45 -[1] 4 119 30 -[1] 5 119 31 -[1] 6 119 42 -[1] 7 119 27 -[1] 8 119 43 -[1] 9 119 40 -[1] 10 119 50 -[1] 11 119 49 -[1] 12 119 34 -[1] 13 119 45 -[1] 14 119 80 -[1] 15 119 39 -[1] 16 119 32 -[1] 17 119 38 -[1] 18 119 46 -[1] 19 119 40 -[1] 20 119 39 -[1] 21 119 30 -[1] 22 119 35 -[1] 23 119 34 -[1] 24 119 35 -[1] 25 119 38 -[1] 26 119 35 -[1] 27 119 43 -[1] 28 119 44 -[1] 29 119 30 -[1] 30 119 38 -[1] 31 119 49 -[1] 32 119 45 -[1] 33 119 43 -[1] 34 119 37 -[1] 35 119 31 -[1] 36 119 46 -[1] 37 119 40 -[1] 38 119 51 -[1] 39 119 51 -[1] 40 119 48 -[1] 41 119 46 -[1] 42 119 37 -[1] 43 119 47 -[1] 44 119 36 -[1] 45 119 57 -[1] 46 119 40 -[1] 47 119 35 -[1] 48 119 44 -[1] 49 119 44 -[1] 50 119 62 -[1] 51 119 54 -[1] 52 119 35 -[1] 53 119 40 -[1] 54 119 51 -[1] 55 119 60 -[1] 56 119 33 -[1] 57 119 37 -[1] 58 119 40 -[1] 59 119 37 -[1] 60 119 32 -[1] 61 119 53 -[1] 62 119 88 -[1] 63 119 93 -[1] 64 119 44 -[1] 65 119 53 -[1] 66 119 34 -[1] 67 119 55 -[1] 68 119 49 -[1] 69 119 35 -[1] 70 119 58 -[1] 71 119 40 -[1] 72 119 49 -[1] 73 119 40 -[1] 74 119 37 -[1] 75 119 45 -[1] 76 119 52 -[1] 77 119 41 -[1] 78 119 58 -[1] 79 119 56 -[1] 80 119 43 -[1] 81 119 45 -[1] 82 119 51 -[1] 83 119 45 -[1] 84 119 52 -[1] 85 119 44 -[1] 86 119 37 -[1] 87 119 64 -[1] 88 119 40 -[1] 89 119 61 -[1] 90 119 55 -[1] 91 119 78 -[1] 92 119 47 -[1] 93 119 45 -[1] 94 119 33 -[1] 95 119 48 -[1] 96 119 31 -[1] 97 119 64 -[1] 98 119 40 -[1] 99 119 36 -[1] 100 119 57 -[1] 101 119 37 -[1] 102 119 40 -[1] 103 119 68 -[1] 104 119 38 -[1] 105 119 28 -[1] 106 119 71 -[1] 107 119 92 -[1] 108 119 41 -[1] 109 119 42 -[1] 110 119 47 -[1] 111 119 45 -[1] 112 119 62 -[1] 113 119 52 -[1] 114 119 44 -[1] 115 119 60 -[1] 116 119 66 -[1] 117 119 45 -[1] 118 119 39 -[1] 119 119 50 -[1] 120 119 63 -[1] 121 119 39 -[1] 122 119 59 -[1] 123 119 48 -[1] 124 119 56 -[1] 125 119 110 -[1] 126 119 44 -[1] 127 119 49 -[1] 128 119 37 -[1] 129 119 42 -[1] 130 119 54 -[1] 131 119 44 -[1] 132 119 38 -[1] 133 119 67 -[1] 134 119 36 -[1] 135 119 53 -[1] 136 119 122 -[1] 137 119 35 -[1] 138 119 56 -[1] 139 119 71 -[1] 140 119 41 -[1] 141 119 54 -[1] 142 119 52 -[1] 143 119 65 -[1] 144 119 59 -[1] 145 119 37 -[1] 146 119 123 -[1] 147 119 46 -[1] 148 119 30 -[1] 149 119 63 -[1] 150 119 55 -[1] 151 119 43 -[1] 152 119 64 -[1] 153 119 32 -[1] 154 119 63 -[1] 155 119 44 -[1] 156 119 35 -[1] 157 119 45 -[1] 158 119 59 -[1] 159 119 48 -[1] 160 119 58 -[1] 161 119 53 -[1] 162 119 44 -[1] 163 119 47 -[1] 164 119 50 -[1] 165 119 54 -[1] 166 119 51 -[1] 167 119 51 -[1] 168 119 50 -[1] 169 119 41 -[1] 170 119 37 -[1] 171 119 51 -[1] 172 119 47 -[1] 173 119 47 -[1] 174 119 35 -[1] 175 119 70 -[1] 176 119 47 -[1] 177 119 35 -[1] 178 119 32 -[1] 179 119 41 -[1] 180 119 33 -[1] 181 119 56 -[1] 182 119 55 -[1] 183 119 44 -[1] 184 119 43 -[1] 185 119 41 -[1] 186 119 54 -[1] 187 119 49 -[1] 188 119 43 -[1] 189 119 48 -[1] 190 119 47 -[1] 191 119 45 -[1] 192 119 45 -[1] 193 119 40 -[1] 194 119 37 -[1] 195 119 45 -[1] 196 119 36 -[1] 197 119 68 -[1] 198 119 63 -[1] 199 119 42 -[1] 200 119 54 -[1] 1 120 29 -[1] 2 120 39 -[1] 3 120 36 -[1] 4 120 39 -[1] 5 120 35 -[1] 6 120 50 -[1] 7 120 42 -[1] 8 120 29 -[1] 9 120 37 -[1] 10 120 49 -[1] 11 120 56 -[1] 12 120 56 -[1] 13 120 47 -[1] 14 120 44 -[1] 15 120 67 -[1] 16 120 51 -[1] 17 120 42 -[1] 18 120 28 -[1] 19 120 49 -[1] 20 120 29 -[1] 21 120 42 -[1] 22 120 33 -[1] 23 120 38 -[1] 24 120 46 -[1] 25 120 37 -[1] 26 120 29 -[1] 27 120 40 -[1] 28 120 47 -[1] 29 120 30 -[1] 30 120 41 -[1] 31 120 43 -[1] 32 120 27 -[1] 33 120 51 -[1] 34 120 35 -[1] 35 120 35 -[1] 36 120 50 -[1] 37 120 45 -[1] 38 120 38 -[1] 39 120 33 -[1] 40 120 35 -[1] 41 120 40 -[1] 42 120 28 -[1] 43 120 67 -[1] 44 120 44 -[1] 45 120 63 -[1] 46 120 35 -[1] 47 120 30 -[1] 48 120 57 -[1] 49 120 38 -[1] 50 120 35 -[1] 51 120 66 -[1] 52 120 73 -[1] 53 120 45 -[1] 54 120 22 -[1] 55 120 48 -[1] 56 120 84 -[1] 57 120 40 -[1] 58 120 45 -[1] 59 120 55 -[1] 60 120 47 -[1] 61 120 50 -[1] 62 120 50 -[1] 63 120 34 -[1] 64 120 61 -[1] 65 120 51 -[1] 66 120 44 -[1] 67 120 46 -[1] 68 120 53 -[1] 69 120 54 -[1] 70 120 51 -[1] 71 120 39 -[1] 72 120 42 -[1] 73 120 61 -[1] 74 120 46 -[1] 75 120 43 -[1] 76 120 52 -[1] 77 120 81 -[1] 78 120 37 -[1] 79 120 42 -[1] 80 120 37 -[1] 81 120 50 -[1] 82 120 47 -[1] 83 120 38 -[1] 84 120 49 -[1] 85 120 36 -[1] 86 120 99 -[1] 87 120 55 -[1] 88 120 41 -[1] 89 120 58 -[1] 90 120 58 -[1] 91 120 43 -[1] 92 120 37 -[1] 93 120 38 -[1] 94 120 33 -[1] 95 120 51 -[1] 96 120 61 -[1] 97 120 44 -[1] 98 120 51 -[1] 99 120 44 -[1] 100 120 43 -[1] 101 120 45 -[1] 102 120 45 -[1] 103 120 70 -[1] 104 120 31 -[1] 105 120 39 -[1] 106 120 54 -[1] 107 120 66 -[1] 108 120 48 -[1] 109 120 56 -[1] 110 120 70 -[1] 111 120 75 -[1] 112 120 43 -[1] 113 120 79 -[1] 114 120 59 -[1] 115 120 45 -[1] 116 120 37 -[1] 117 120 84 -[1] 118 120 42 -[1] 119 120 53 -[1] 120 120 47 -[1] 121 120 56 -[1] 122 120 69 -[1] 123 120 32 -[1] 124 120 73 -[1] 125 120 68 -[1] 126 120 35 -[1] 127 120 35 -[1] 128 120 68 -[1] 129 120 33 -[1] 130 120 56 -[1] 131 120 65 -[1] 132 120 49 -[1] 133 120 44 -[1] 134 120 48 -[1] 135 120 37 -[1] 136 120 34 -[1] 137 120 34 -[1] 138 120 37 -[1] 139 120 61 -[1] 140 120 40 -[1] 141 120 70 -[1] 142 120 34 -[1] 143 120 48 -[1] 144 120 39 -[1] 145 120 58 -[1] 146 120 53 -[1] 147 120 55 -[1] 148 120 61 -[1] 149 120 55 -[1] 150 120 60 -[1] 151 120 90 -[1] 152 120 48 -[1] 153 120 42 -[1] 154 120 48 -[1] 155 120 46 -[1] 156 120 38 -[1] 157 120 50 -[1] 158 120 78 -[1] 159 120 64 -[1] 160 120 53 -[1] 161 120 62 -[1] 162 120 70 -[1] 163 120 79 -[1] 164 120 53 -[1] 165 120 56 -[1] 166 120 53 -[1] 167 120 48 -[1] 168 120 39 -[1] 169 120 48 -[1] 170 120 47 -[1] 171 120 49 -[1] 172 120 31 -[1] 173 120 56 -[1] 174 120 46 -[1] 175 120 47 -[1] 176 120 35 -[1] 177 120 48 -[1] 178 120 39 -[1] 179 120 38 -[1] 180 120 50 -[1] 181 120 47 -[1] 182 120 46 -[1] 183 120 55 -[1] 184 120 37 -[1] 185 120 39 -[1] 186 120 44 -[1] 187 120 29 -[1] 188 120 37 -[1] 189 120 53 -[1] 190 120 58 -[1] 191 120 42 -[1] 192 120 42 -[1] 193 120 63 -[1] 194 120 33 -[1] 195 120 71 -[1] 196 120 39 -[1] 197 120 45 -[1] 198 120 52 -[1] 199 120 67 -[1] 200 120 63 -[1] 1 121 33 -[1] 2 121 33 -[1] 3 121 40 -[1] 4 121 43 -[1] 5 121 28 -[1] 6 121 37 -[1] 7 121 37 -[1] 8 121 69 -[1] 9 121 28 -[1] 10 121 56 -[1] 11 121 37 -[1] 12 121 36 -[1] 13 121 31 -[1] 14 121 37 -[1] 15 121 46 -[1] 16 121 32 -[1] 17 121 45 -[1] 18 121 30 -[1] 19 121 45 -[1] 20 121 33 -[1] 21 121 35 -[1] 22 121 43 -[1] 23 121 35 -[1] 24 121 57 -[1] 25 121 47 -[1] 26 121 32 -[1] 27 121 49 -[1] 28 121 36 -[1] 29 121 37 -[1] 30 121 44 -[1] 31 121 70 -[1] 32 121 38 -[1] 33 121 34 -[1] 34 121 34 -[1] 35 121 33 -[1] 36 121 37 -[1] 37 121 30 -[1] 38 121 36 -[1] 39 121 29 -[1] 40 121 65 -[1] 41 121 40 -[1] 42 121 42 -[1] 43 121 38 -[1] 44 121 69 -[1] 45 121 54 -[1] 46 121 42 -[1] 47 121 37 -[1] 48 121 35 -[1] 49 121 38 -[1] 50 121 69 -[1] 51 121 60 -[1] 52 121 47 -[1] 53 121 52 -[1] 54 121 40 -[1] 55 121 44 -[1] 56 121 40 -[1] 57 121 67 -[1] 58 121 44 -[1] 59 121 42 -[1] 60 121 57 -[1] 61 121 62 -[1] 62 121 66 -[1] 63 121 32 -[1] 64 121 41 -[1] 65 121 36 -[1] 66 121 35 -[1] 67 121 56 -[1] 68 121 41 -[1] 69 121 44 -[1] 70 121 65 -[1] 71 121 37 -[1] 72 121 40 -[1] 73 121 31 -[1] 74 121 34 -[1] 75 121 36 -[1] 76 121 79 -[1] 77 121 39 -[1] 78 121 39 -[1] 79 121 46 -[1] 80 121 45 -[1] 81 121 36 -[1] 82 121 73 -[1] 83 121 54 -[1] 84 121 59 -[1] 85 121 31 -[1] 86 121 44 -[1] 87 121 55 -[1] 88 121 42 -[1] 89 121 41 -[1] 90 121 36 -[1] 91 121 72 -[1] 92 121 45 -[1] 93 121 45 -[1] 94 121 57 -[1] 95 121 84 -[1] 96 121 33 -[1] 97 121 41 -[1] 98 121 52 -[1] 99 121 35 -[1] 100 121 70 -[1] 101 121 61 -[1] 102 121 73 -[1] 103 121 54 -[1] 104 121 64 -[1] 105 121 53 -[1] 106 121 50 -[1] 107 121 47 -[1] 108 121 67 -[1] 109 121 70 -[1] 110 121 42 -[1] 111 121 74 -[1] 112 121 48 -[1] 113 121 36 -[1] 114 121 38 -[1] 115 121 47 -[1] 116 121 35 -[1] 117 121 36 -[1] 118 121 55 -[1] 119 121 72 -[1] 120 121 42 -[1] 121 121 60 -[1] 122 121 42 -[1] 123 121 40 -[1] 124 121 69 -[1] 125 121 45 -[1] 126 121 55 -[1] 127 121 58 -[1] 128 121 34 -[1] 129 121 45 -[1] 130 121 37 -[1] 131 121 57 -[1] 132 121 44 -[1] 133 121 95 -[1] 134 121 27 -[1] 135 121 102 -[1] 136 121 50 -[1] 137 121 52 -[1] 138 121 53 -[1] 139 121 71 -[1] 140 121 42 -[1] 141 121 43 -[1] 142 121 36 -[1] 143 121 45 -[1] 144 121 33 -[1] 145 121 62 -[1] 146 121 68 -[1] 147 121 61 -[1] 148 121 65 -[1] 149 121 65 -[1] 150 121 27 -[1] 151 121 56 -[1] 152 121 50 -[1] 153 121 41 -[1] 154 121 53 -[1] 155 121 53 -[1] 156 121 72 -[1] 157 121 39 -[1] 158 121 66 -[1] 159 121 54 -[1] 160 121 47 -[1] 161 121 40 -[1] 162 121 52 -[1] 163 121 60 -[1] 164 121 58 -[1] 165 121 43 -[1] 166 121 50 -[1] 167 121 42 -[1] 168 121 65 -[1] 169 121 56 -[1] 170 121 44 -[1] 171 121 56 -[1] 172 121 43 -[1] 173 121 30 -[1] 174 121 63 -[1] 175 121 50 -[1] 176 121 45 -[1] 177 121 57 -[1] 178 121 92 -[1] 179 121 47 -[1] 180 121 44 -[1] 181 121 39 -[1] 182 121 50 -[1] 183 121 43 -[1] 184 121 38 -[1] 185 121 46 -[1] 186 121 60 -[1] 187 121 56 -[1] 188 121 47 -[1] 189 121 74 -[1] 190 121 47 -[1] 191 121 40 -[1] 192 121 47 -[1] 193 121 47 -[1] 194 121 58 -[1] 195 121 43 -[1] 196 121 44 -[1] 197 121 49 -[1] 198 121 33 -[1] 199 121 40 -[1] 200 121 55 -[1] 1 122 45 -[1] 2 122 41 -[1] 3 122 32 -[1] 4 122 29 -[1] 5 122 34 -[1] 6 122 52 -[1] 7 122 31 -[1] 8 122 29 -[1] 9 122 35 -[1] 10 122 40 -[1] 11 122 46 -[1] 12 122 39 -[1] 13 122 39 -[1] 14 122 30 -[1] 15 122 37 -[1] 16 122 34 -[1] 17 122 35 -[1] 18 122 54 -[1] 19 122 31 -[1] 20 122 61 -[1] 21 122 44 -[1] 22 122 51 -[1] 23 122 42 -[1] 24 122 30 -[1] 25 122 45 -[1] 26 122 41 -[1] 27 122 33 -[1] 28 122 34 -[1] 29 122 35 -[1] 30 122 45 -[1] 31 122 40 -[1] 32 122 40 -[1] 33 122 47 -[1] 34 122 39 -[1] 35 122 44 -[1] 36 122 33 -[1] 37 122 43 -[1] 38 122 40 -[1] 39 122 50 -[1] 40 122 54 -[1] 41 122 57 -[1] 42 122 38 -[1] 43 122 52 -[1] 44 122 47 -[1] 45 122 52 -[1] 46 122 44 -[1] 47 122 30 -[1] 48 122 43 -[1] 49 122 48 -[1] 50 122 61 -[1] 51 122 37 -[1] 52 122 47 -[1] 53 122 36 -[1] 54 122 47 -[1] 55 122 61 -[1] 56 122 56 -[1] 57 122 38 -[1] 58 122 48 -[1] 59 122 41 -[1] 60 122 77 -[1] 61 122 47 -[1] 62 122 38 -[1] 63 122 38 -[1] 64 122 29 -[1] 65 122 57 -[1] 66 122 54 -[1] 67 122 34 -[1] 68 122 48 -[1] 69 122 33 -[1] 70 122 67 -[1] 71 122 41 -[1] 72 122 47 -[1] 73 122 36 -[1] 74 122 53 -[1] 75 122 57 -[1] 76 122 54 -[1] 77 122 31 -[1] 78 122 58 -[1] 79 122 47 -[1] 80 122 74 -[1] 81 122 51 -[1] 82 122 52 -[1] 83 122 67 -[1] 84 122 69 -[1] 85 122 52 -[1] 86 122 30 -[1] 87 122 61 -[1] 88 122 47 -[1] 89 122 41 -[1] 90 122 46 -[1] 91 122 34 -[1] 92 122 33 -[1] 93 122 39 -[1] 94 122 58 -[1] 95 122 44 -[1] 96 122 43 -[1] 97 122 53 -[1] 98 122 42 -[1] 99 122 51 -[1] 100 122 80 -[1] 101 122 29 -[1] 102 122 51 -[1] 103 122 70 -[1] 104 122 49 -[1] 105 122 61 -[1] 106 122 39 -[1] 107 122 59 -[1] 108 122 38 -[1] 109 122 62 -[1] 110 122 34 -[1] 111 122 51 -[1] 112 122 38 -[1] 113 122 30 -[1] 114 122 49 -[1] 115 122 39 -[1] 116 122 54 -[1] 117 122 36 -[1] 118 122 76 -[1] 119 122 35 -[1] 120 122 98 -[1] 121 122 63 -[1] 122 122 42 -[1] 123 122 82 -[1] 124 122 36 -[1] 125 122 55 -[1] 126 122 62 -[1] 127 122 44 -[1] 128 122 48 -[1] 129 122 44 -[1] 130 122 37 -[1] 131 122 47 -[1] 132 122 62 -[1] 133 122 49 -[1] 134 122 55 -[1] 135 122 41 -[1] 136 122 56 -[1] 137 122 54 -[1] 138 122 54 -[1] 139 122 39 -[1] 140 122 65 -[1] 141 122 68 -[1] 142 122 41 -[1] 143 122 59 -[1] 144 122 64 -[1] 145 122 68 -[1] 146 122 43 -[1] 147 122 45 -[1] 148 122 76 -[1] 149 122 67 -[1] 150 122 36 -[1] 151 122 61 -[1] 152 122 47 -[1] 153 122 82 -[1] 154 122 73 -[1] 155 122 47 -[1] 156 122 56 -[1] 157 122 56 -[1] 158 122 53 -[1] 159 122 43 -[1] 160 122 44 -[1] 161 122 45 -[1] 162 122 59 -[1] 163 122 34 -[1] 164 122 50 -[1] 165 122 49 -[1] 166 122 46 -[1] 167 122 45 -[1] 168 122 41 -[1] 169 122 52 -[1] 170 122 42 -[1] 171 122 92 -[1] 172 122 38 -[1] 173 122 44 -[1] 174 122 47 -[1] 175 122 52 -[1] 176 122 47 -[1] 177 122 45 -[1] 178 122 51 -[1] 179 122 48 -[1] 180 122 44 -[1] 181 122 37 -[1] 182 122 49 -[1] 183 122 50 -[1] 184 122 57 -[1] 185 122 53 -[1] 186 122 54 -[1] 187 122 41 -[1] 188 122 61 -[1] 189 122 50 -[1] 190 122 62 -[1] 191 122 54 -[1] 192 122 49 -[1] 193 122 37 -[1] 194 122 62 -[1] 195 122 58 -[1] 196 122 53 -[1] 197 122 42 -[1] 198 122 41 -[1] 199 122 49 -[1] 200 122 43 -[1] 1 123 28 -[1] 2 123 44 -[1] 3 123 30 -[1] 4 123 35 -[1] 5 123 33 -[1] 6 123 66 -[1] 7 123 33 -[1] 8 123 45 -[1] 9 123 45 -[1] 10 123 48 -[1] 11 123 36 -[1] 12 123 37 -[1] 13 123 44 -[1] 14 123 34 -[1] 15 123 39 -[1] 16 123 33 -[1] 17 123 42 -[1] 18 123 42 -[1] 19 123 39 -[1] 20 123 41 -[1] 21 123 36 -[1] 22 123 47 -[1] 23 123 38 -[1] 24 123 39 -[1] 25 123 44 -[1] 26 123 49 -[1] 27 123 40 -[1] 28 123 41 -[1] 29 123 29 -[1] 30 123 52 -[1] 31 123 69 -[1] 32 123 40 -[1] 33 123 39 -[1] 34 123 44 -[1] 35 123 33 -[1] 36 123 48 -[1] 37 123 45 -[1] 38 123 35 -[1] 39 123 42 -[1] 40 123 32 -[1] 41 123 39 -[1] 42 123 38 -[1] 43 123 43 -[1] 44 123 41 -[1] 45 123 46 -[1] 46 123 49 -[1] 47 123 36 -[1] 48 123 53 -[1] 49 123 43 -[1] 50 123 50 -[1] 51 123 55 -[1] 52 123 52 -[1] 53 123 61 -[1] 54 123 42 -[1] 55 123 41 -[1] 56 123 51 -[1] 57 123 60 -[1] 58 123 41 -[1] 59 123 53 -[1] 60 123 51 -[1] 61 123 38 -[1] 62 123 46 -[1] 63 123 62 -[1] 64 123 33 -[1] 65 123 43 -[1] 66 123 33 -[1] 67 123 52 -[1] 68 123 42 -[1] 69 123 55 -[1] 70 123 42 -[1] 71 123 51 -[1] 72 123 46 -[1] 73 123 47 -[1] 74 123 57 -[1] 75 123 76 -[1] 76 123 58 -[1] 77 123 47 -[1] 78 123 63 -[1] 79 123 58 -[1] 80 123 29 -[1] 81 123 78 -[1] 82 123 51 -[1] 83 123 41 -[1] 84 123 50 -[1] 85 123 59 -[1] 86 123 54 -[1] 87 123 47 -[1] 88 123 42 -[1] 89 123 43 -[1] 90 123 48 -[1] 91 123 67 -[1] 92 123 38 -[1] 93 123 71 -[1] 94 123 33 -[1] 95 123 32 -[1] 96 123 49 -[1] 97 123 86 -[1] 98 123 34 -[1] 99 123 39 -[1] 100 123 35 -[1] 101 123 72 -[1] 102 123 57 -[1] 103 123 41 -[1] 104 123 40 -[1] 105 123 61 -[1] 106 123 32 -[1] 107 123 41 -[1] 108 123 58 -[1] 109 123 50 -[1] 110 123 62 -[1] 111 123 41 -[1] 112 123 34 -[1] 113 123 64 -[1] 114 123 41 -[1] 115 123 53 -[1] 116 123 62 -[1] 117 123 36 -[1] 118 123 41 -[1] 119 123 57 -[1] 120 123 46 -[1] 121 123 53 -[1] 122 123 36 -[1] 123 123 62 -[1] 124 123 45 -[1] 125 123 50 -[1] 126 123 57 -[1] 127 123 63 -[1] 128 123 52 -[1] 129 123 45 -[1] 130 123 47 -[1] 131 123 38 -[1] 132 123 83 -[1] 133 123 50 -[1] 134 123 43 -[1] 135 123 50 -[1] 136 123 39 -[1] 137 123 41 -[1] 138 123 42 -[1] 139 123 61 -[1] 140 123 52 -[1] 141 123 61 -[1] 142 123 33 -[1] 143 123 78 -[1] 144 123 64 -[1] 145 123 40 -[1] 146 123 52 -[1] 147 123 55 -[1] 148 123 38 -[1] 149 123 38 -[1] 150 123 69 -[1] 151 123 42 -[1] 152 123 63 -[1] 153 123 38 -[1] 154 123 37 -[1] 155 123 55 -[1] 156 123 46 -[1] 157 123 37 -[1] 158 123 64 -[1] 159 123 61 -[1] 160 123 47 -[1] 161 123 60 -[1] 162 123 63 -[1] 163 123 49 -[1] 164 123 74 -[1] 165 123 51 -[1] 166 123 64 -[1] 167 123 42 -[1] 168 123 51 -[1] 169 123 60 -[1] 170 123 65 -[1] 171 123 62 -[1] 172 123 67 -[1] 173 123 38 -[1] 174 123 49 -[1] 175 123 43 -[1] 176 123 49 -[1] 177 123 40 -[1] 178 123 48 -[1] 179 123 59 -[1] 180 123 39 -[1] 181 123 78 -[1] 182 123 46 -[1] 183 123 39 -[1] 184 123 63 -[1] 185 123 36 -[1] 186 123 41 -[1] 187 123 57 -[1] 188 123 44 -[1] 189 123 44 -[1] 190 123 46 -[1] 191 123 49 -[1] 192 123 43 -[1] 193 123 46 -[1] 194 123 69 -[1] 195 123 49 -[1] 196 123 40 -[1] 197 123 43 -[1] 198 123 47 -[1] 199 123 58 -[1] 200 123 43 -[1] 1 124 31 -[1] 2 124 33 -[1] 3 124 35 -[1] 4 124 50 -[1] 5 124 42 -[1] 6 124 36 -[1] 7 124 43 -[1] 8 124 30 -[1] 9 124 36 -[1] 10 124 56 -[1] 11 124 46 -[1] 12 124 41 -[1] 13 124 41 -[1] 14 124 46 -[1] 15 124 36 -[1] 16 124 51 -[1] 17 124 39 -[1] 18 124 35 -[1] 19 124 36 -[1] 20 124 47 -[1] 21 124 46 -[1] 22 124 39 -[1] 23 124 62 -[1] 24 124 48 -[1] 25 124 36 -[1] 26 124 37 -[1] 27 124 38 -[1] 28 124 32 -[1] 29 124 30 -[1] 30 124 32 -[1] 31 124 42 -[1] 32 124 35 -[1] 33 124 30 -[1] 34 124 44 -[1] 35 124 53 -[1] 36 124 33 -[1] 37 124 39 -[1] 38 124 54 -[1] 39 124 62 -[1] 40 124 43 -[1] 41 124 51 -[1] 42 124 32 -[1] 43 124 53 -[1] 44 124 48 -[1] 45 124 38 -[1] 46 124 47 -[1] 47 124 37 -[1] 48 124 32 -[1] 49 124 69 -[1] 50 124 52 -[1] 51 124 37 -[1] 52 124 49 -[1] 53 124 38 -[1] 54 124 38 -[1] 55 124 36 -[1] 56 124 32 -[1] 57 124 57 -[1] 58 124 30 -[1] 59 124 65 -[1] 60 124 25 -[1] 61 124 56 -[1] 62 124 41 -[1] 63 124 36 -[1] 64 124 33 -[1] 65 124 40 -[1] 66 124 53 -[1] 67 124 28 -[1] 68 124 49 -[1] 69 124 44 -[1] 70 124 59 -[1] 71 124 83 -[1] 72 124 46 -[1] 73 124 35 -[1] 74 124 64 -[1] 75 124 47 -[1] 76 124 41 -[1] 77 124 51 -[1] 78 124 44 -[1] 79 124 34 -[1] 80 124 40 -[1] 81 124 49 -[1] 82 124 47 -[1] 83 124 42 -[1] 84 124 51 -[1] 85 124 47 -[1] 86 124 62 -[1] 87 124 40 -[1] 88 124 49 -[1] 89 124 53 -[1] 90 124 38 -[1] 91 124 41 -[1] 92 124 40 -[1] 93 124 51 -[1] 94 124 71 -[1] 95 124 50 -[1] 96 124 38 -[1] 97 124 113 -[1] 98 124 39 -[1] 99 124 54 -[1] 100 124 41 -[1] 101 124 107 -[1] 102 124 38 -[1] 103 124 46 -[1] 104 124 42 -[1] 105 124 66 -[1] 106 124 58 -[1] 107 124 51 -[1] 108 124 59 -[1] 109 124 36 -[1] 110 124 34 -[1] 111 124 45 -[1] 112 124 49 -[1] 113 124 34 -[1] 114 124 42 -[1] 115 124 79 -[1] 116 124 47 -[1] 117 124 61 -[1] 118 124 98 -[1] 119 124 67 -[1] 120 124 92 -[1] 121 124 43 -[1] 122 124 49 -[1] 123 124 66 -[1] 124 124 49 -[1] 125 124 30 -[1] 126 124 39 -[1] 127 124 38 -[1] 128 124 77 -[1] 129 124 54 -[1] 130 124 56 -[1] 131 124 48 -[1] 132 124 42 -[1] 133 124 47 -[1] 134 124 50 -[1] 135 124 47 -[1] 136 124 54 -[1] 137 124 55 -[1] 138 124 62 -[1] 139 124 40 -[1] 140 124 88 -[1] 141 124 46 -[1] 142 124 77 -[1] 143 124 35 -[1] 144 124 56 -[1] 145 124 58 -[1] 146 124 52 -[1] 147 124 50 -[1] 148 124 66 -[1] 149 124 48 -[1] 150 124 47 -[1] 151 124 62 -[1] 152 124 65 -[1] 153 124 37 -[1] 154 124 49 -[1] 155 124 33 -[1] 156 124 62 -[1] 157 124 45 -[1] 158 124 54 -[1] 159 124 35 -[1] 160 124 51 -[1] 161 124 67 -[1] 162 124 41 -[1] 163 124 57 -[1] 164 124 30 -[1] 165 124 43 -[1] 166 124 48 -[1] 167 124 49 -[1] 168 124 104 -[1] 169 124 54 -[1] 170 124 60 -[1] 171 124 30 -[1] 172 124 59 -[1] 173 124 42 -[1] 174 124 53 -[1] 175 124 46 -[1] 176 124 59 -[1] 177 124 45 -[1] 178 124 56 -[1] 179 124 42 -[1] 180 124 47 -[1] 181 124 65 -[1] 182 124 39 -[1] 183 124 64 -[1] 184 124 60 -[1] 185 124 57 -[1] 186 124 54 -[1] 187 124 58 -[1] 188 124 49 -[1] 189 124 49 -[1] 190 124 43 -[1] 191 124 75 -[1] 192 124 37 -[1] 193 124 54 -[1] 194 124 76 -[1] 195 124 48 -[1] 196 124 45 -[1] 197 124 55 -[1] 198 124 37 -[1] 199 124 87 -[1] 200 124 56 -[1] 1 125 55 -[1] 2 125 39 -[1] 3 125 32 -[1] 4 125 34 -[1] 5 125 36 -[1] 6 125 53 -[1] 7 125 44 -[1] 8 125 38 -[1] 9 125 37 -[1] 10 125 86 -[1] 11 125 40 -[1] 12 125 65 -[1] 13 125 58 -[1] 14 125 41 -[1] 15 125 43 -[1] 16 125 44 -[1] 17 125 44 -[1] 18 125 40 -[1] 19 125 42 -[1] 20 125 32 -[1] 21 125 37 -[1] 22 125 40 -[1] 23 125 41 -[1] 24 125 40 -[1] 25 125 42 -[1] 26 125 76 -[1] 27 125 33 -[1] 28 125 54 -[1] 29 125 32 -[1] 30 125 39 -[1] 31 125 39 -[1] 32 125 34 -[1] 33 125 42 -[1] 34 125 42 -[1] 35 125 41 -[1] 36 125 71 -[1] 37 125 65 -[1] 38 125 37 -[1] 39 125 38 -[1] 40 125 48 -[1] 41 125 42 -[1] 42 125 48 -[1] 43 125 39 -[1] 44 125 40 -[1] 45 125 35 -[1] 46 125 44 -[1] 47 125 37 -[1] 48 125 44 -[1] 49 125 37 -[1] 50 125 34 -[1] 51 125 67 -[1] 52 125 35 -[1] 53 125 56 -[1] 54 125 50 -[1] 55 125 91 -[1] 56 125 41 -[1] 57 125 44 -[1] 58 125 45 -[1] 59 125 45 -[1] 60 125 47 -[1] 61 125 46 -[1] 62 125 32 -[1] 63 125 40 -[1] 64 125 54 -[1] 65 125 88 -[1] 66 125 28 -[1] 67 125 51 -[1] 68 125 41 -[1] 69 125 38 -[1] 70 125 53 -[1] 71 125 54 -[1] 72 125 38 -[1] 73 125 40 -[1] 74 125 62 -[1] 75 125 39 -[1] 76 125 40 -[1] 77 125 61 -[1] 78 125 47 -[1] 79 125 78 -[1] 80 125 33 -[1] 81 125 56 -[1] 82 125 42 -[1] 83 125 39 -[1] 84 125 70 -[1] 85 125 46 -[1] 86 125 37 -[1] 87 125 47 -[1] 88 125 45 -[1] 89 125 44 -[1] 90 125 59 -[1] 91 125 58 -[1] 92 125 37 -[1] 93 125 51 -[1] 94 125 48 -[1] 95 125 60 -[1] 96 125 47 -[1] 97 125 43 -[1] 98 125 74 -[1] 99 125 42 -[1] 100 125 47 -[1] 101 125 47 -[1] 102 125 41 -[1] 103 125 36 -[1] 104 125 44 -[1] 105 125 45 -[1] 106 125 44 -[1] 107 125 93 -[1] 108 125 46 -[1] 109 125 92 -[1] 110 125 49 -[1] 111 125 42 -[1] 112 125 56 -[1] 113 125 51 -[1] 114 125 38 -[1] 115 125 44 -[1] 116 125 61 -[1] 117 125 40 -[1] 118 125 55 -[1] 119 125 45 -[1] 120 125 35 -[1] 121 125 36 -[1] 122 125 53 -[1] 123 125 44 -[1] 124 125 59 -[1] 125 125 52 -[1] 126 125 39 -[1] 127 125 51 -[1] 128 125 34 -[1] 129 125 41 -[1] 130 125 46 -[1] 131 125 53 -[1] 132 125 42 -[1] 133 125 39 -[1] 134 125 46 -[1] 135 125 64 -[1] 136 125 51 -[1] 137 125 65 -[1] 138 125 53 -[1] 139 125 42 -[1] 140 125 45 -[1] 141 125 44 -[1] 142 125 80 -[1] 143 125 38 -[1] 144 125 45 -[1] 145 125 57 -[1] 146 125 64 -[1] 147 125 48 -[1] 148 125 54 -[1] 149 125 67 -[1] 150 125 47 -[1] 151 125 42 -[1] 152 125 63 -[1] 153 125 42 -[1] 154 125 28 -[1] 155 125 71 -[1] 156 125 75 -[1] 157 125 45 -[1] 158 125 44 -[1] 159 125 58 -[1] 160 125 43 -[1] 161 125 61 -[1] 162 125 48 -[1] 163 125 50 -[1] 164 125 59 -[1] 165 125 56 -[1] 166 125 42 -[1] 167 125 44 -[1] 168 125 81 -[1] 169 125 26 -[1] 170 125 90 -[1] 171 125 61 -[1] 172 125 62 -[1] 173 125 41 -[1] 174 125 39 -[1] 175 125 44 -[1] 176 125 53 -[1] 177 125 47 -[1] 178 125 64 -[1] 179 125 43 -[1] 180 125 44 -[1] 181 125 56 -[1] 182 125 53 -[1] 183 125 33 -[1] 184 125 65 -[1] 185 125 34 -[1] 186 125 67 -[1] 187 125 52 -[1] 188 125 41 -[1] 189 125 60 -[1] 190 125 43 -[1] 191 125 52 -[1] 192 125 50 -[1] 193 125 48 -[1] 194 125 60 -[1] 195 125 41 -[1] 196 125 58 -[1] 197 125 56 -[1] 198 125 45 -[1] 199 125 38 -[1] 200 125 42 -[1] 1 126 35 -[1] 2 126 37 -[1] 3 126 42 -[1] 4 126 33 -[1] 5 126 38 -[1] 6 126 28 -[1] 7 126 37 -[1] 8 126 33 -[1] 9 126 33 -[1] 10 126 29 -[1] 11 126 46 -[1] 12 126 46 -[1] 13 126 31 -[1] 14 126 49 -[1] 15 126 52 -[1] 16 126 32 -[1] 17 126 39 -[1] 18 126 38 -[1] 19 126 33 -[1] 20 126 33 -[1] 21 126 33 -[1] 22 126 40 -[1] 23 126 48 -[1] 24 126 40 -[1] 25 126 37 -[1] 26 126 73 -[1] 27 126 43 -[1] 28 126 46 -[1] 29 126 37 -[1] 30 126 36 -[1] 31 126 31 -[1] 32 126 48 -[1] 33 126 33 -[1] 34 126 47 -[1] 35 126 40 -[1] 36 126 33 -[1] 37 126 32 -[1] 38 126 41 -[1] 39 126 32 -[1] 40 126 68 -[1] 41 126 43 -[1] 42 126 61 -[1] 43 126 43 -[1] 44 126 49 -[1] 45 126 50 -[1] 46 126 30 -[1] 47 126 30 -[1] 48 126 40 -[1] 49 126 36 -[1] 50 126 38 -[1] 51 126 49 -[1] 52 126 50 -[1] 53 126 33 -[1] 54 126 49 -[1] 55 126 36 -[1] 56 126 47 -[1] 57 126 56 -[1] 58 126 49 -[1] 59 126 38 -[1] 60 126 38 -[1] 61 126 47 -[1] 62 126 75 -[1] 63 126 37 -[1] 64 126 68 -[1] 65 126 31 -[1] 66 126 46 -[1] 67 126 43 -[1] 68 126 39 -[1] 69 126 34 -[1] 70 126 27 -[1] 71 126 44 -[1] 72 126 59 -[1] 73 126 37 -[1] 74 126 48 -[1] 75 126 45 -[1] 76 126 36 -[1] 77 126 49 -[1] 78 126 52 -[1] 79 126 44 -[1] 80 126 39 -[1] 81 126 37 -[1] 82 126 44 -[1] 83 126 39 -[1] 84 126 50 -[1] 85 126 53 -[1] 86 126 37 -[1] 87 126 40 -[1] 88 126 56 -[1] 89 126 45 -[1] 90 126 31 -[1] 91 126 38 -[1] 92 126 41 -[1] 93 126 43 -[1] 94 126 38 -[1] 95 126 37 -[1] 96 126 37 -[1] 97 126 53 -[1] 98 126 53 -[1] 99 126 55 -[1] 100 126 35 -[1] 101 126 61 -[1] 102 126 53 -[1] 103 126 49 -[1] 104 126 41 -[1] 105 126 82 -[1] 106 126 73 -[1] 107 126 81 -[1] 108 126 42 -[1] 109 126 36 -[1] 110 126 42 -[1] 111 126 58 -[1] 112 126 34 -[1] 113 126 41 -[1] 114 126 40 -[1] 115 126 51 -[1] 116 126 66 -[1] 117 126 35 -[1] 118 126 57 -[1] 119 126 32 -[1] 120 126 48 -[1] 121 126 67 -[1] 122 126 39 -[1] 123 126 80 -[1] 124 126 40 -[1] 125 126 53 -[1] 126 126 45 -[1] 127 126 53 -[1] 128 126 78 -[1] 129 126 50 -[1] 130 126 79 -[1] 131 126 41 -[1] 132 126 39 -[1] 133 126 58 -[1] 134 126 55 -[1] 135 126 42 -[1] 136 126 69 -[1] 137 126 62 -[1] 138 126 44 -[1] 139 126 61 -[1] 140 126 54 -[1] 141 126 61 -[1] 142 126 41 -[1] 143 126 52 -[1] 144 126 51 -[1] 145 126 47 -[1] 146 126 62 -[1] 147 126 52 -[1] 148 126 51 -[1] 149 126 39 -[1] 150 126 41 -[1] 151 126 50 -[1] 152 126 61 -[1] 153 126 42 -[1] 154 126 63 -[1] 155 126 49 -[1] 156 126 53 -[1] 157 126 36 -[1] 158 126 84 -[1] 159 126 45 -[1] 160 126 58 -[1] 161 126 31 -[1] 162 126 76 -[1] 163 126 73 -[1] 164 126 60 -[1] 165 126 55 -[1] 166 126 41 -[1] 167 126 52 -[1] 168 126 45 -[1] 169 126 47 -[1] 170 126 59 -[1] 171 126 53 -[1] 172 126 50 -[1] 173 126 63 -[1] 174 126 77 -[1] 175 126 38 -[1] 176 126 56 -[1] 177 126 46 -[1] 178 126 44 -[1] 179 126 45 -[1] 180 126 44 -[1] 181 126 39 -[1] 182 126 40 -[1] 183 126 40 -[1] 184 126 36 -[1] 185 126 52 -[1] 186 126 43 -[1] 187 126 44 -[1] 188 126 51 -[1] 189 126 34 -[1] 190 126 45 -[1] 191 126 38 -[1] 192 126 55 -[1] 193 126 45 -[1] 194 126 58 -[1] 195 126 71 -[1] 196 126 52 -[1] 197 126 44 -[1] 198 126 39 -[1] 199 126 36 -[1] 200 126 90 -[1] 1 127 31 -[1] 2 127 37 -[1] 3 127 26 -[1] 4 127 31 -[1] 5 127 32 -[1] 6 127 51 -[1] 7 127 33 -[1] 8 127 64 -[1] 9 127 33 -[1] 10 127 48 -[1] 11 127 43 -[1] 12 127 46 -[1] 13 127 37 -[1] 14 127 44 -[1] 15 127 45 -[1] 16 127 32 -[1] 17 127 57 -[1] 18 127 58 -[1] 19 127 33 -[1] 20 127 41 -[1] 21 127 30 -[1] 22 127 49 -[1] 23 127 42 -[1] 24 127 41 -[1] 25 127 44 -[1] 26 127 33 -[1] 27 127 77 -[1] 28 127 48 -[1] 29 127 47 -[1] 30 127 30 -[1] 31 127 38 -[1] 32 127 52 -[1] 33 127 56 -[1] 34 127 36 -[1] 35 127 46 -[1] 36 127 55 -[1] 37 127 37 -[1] 38 127 51 -[1] 39 127 44 -[1] 40 127 33 -[1] 41 127 42 -[1] 42 127 31 -[1] 43 127 42 -[1] 44 127 49 -[1] 45 127 38 -[1] 46 127 40 -[1] 47 127 50 -[1] 48 127 44 -[1] 49 127 47 -[1] 50 127 41 -[1] 51 127 40 -[1] 52 127 46 -[1] 53 127 55 -[1] 54 127 42 -[1] 55 127 43 -[1] 56 127 43 -[1] 57 127 50 -[1] 58 127 33 -[1] 59 127 62 -[1] 60 127 43 -[1] 61 127 82 -[1] 62 127 47 -[1] 63 127 42 -[1] 64 127 33 -[1] 65 127 63 -[1] 66 127 53 -[1] 67 127 46 -[1] 68 127 36 -[1] 69 127 83 -[1] 70 127 40 -[1] 71 127 39 -[1] 72 127 85 -[1] 73 127 36 -[1] 74 127 50 -[1] 75 127 51 -[1] 76 127 37 -[1] 77 127 42 -[1] 78 127 55 -[1] 79 127 32 -[1] 80 127 56 -[1] 81 127 53 -[1] 82 127 42 -[1] 83 127 48 -[1] 84 127 34 -[1] 85 127 41 -[1] 86 127 52 -[1] 87 127 65 -[1] 88 127 55 -[1] 89 127 31 -[1] 90 127 48 -[1] 91 127 46 -[1] 92 127 43 -[1] 93 127 48 -[1] 94 127 67 -[1] 95 127 34 -[1] 96 127 37 -[1] 97 127 30 -[1] 98 127 41 -[1] 99 127 56 -[1] 100 127 61 -[1] 101 127 34 -[1] 102 127 37 -[1] 103 127 45 -[1] 104 127 52 -[1] 105 127 37 -[1] 106 127 44 -[1] 107 127 51 -[1] 108 127 44 -[1] 109 127 56 -[1] 110 127 44 -[1] 111 127 54 -[1] 112 127 66 -[1] 113 127 50 -[1] 114 127 56 -[1] 115 127 50 -[1] 116 127 47 -[1] 117 127 60 -[1] 118 127 61 -[1] 119 127 31 -[1] 120 127 100 -[1] 121 127 98 -[1] 122 127 55 -[1] 123 127 33 -[1] 124 127 46 -[1] 125 127 43 -[1] 126 127 45 -[1] 127 127 54 -[1] 128 127 43 -[1] 129 127 52 -[1] 130 127 55 -[1] 131 127 50 -[1] 132 127 35 -[1] 133 127 65 -[1] 134 127 59 -[1] 135 127 45 -[1] 136 127 35 -[1] 137 127 40 -[1] 138 127 45 -[1] 139 127 52 -[1] 140 127 43 -[1] 141 127 45 -[1] 142 127 44 -[1] 143 127 42 -[1] 144 127 43 -[1] 145 127 46 -[1] 146 127 44 -[1] 147 127 53 -[1] 148 127 64 -[1] 149 127 54 -[1] 150 127 47 -[1] 151 127 42 -[1] 152 127 59 -[1] 153 127 48 -[1] 154 127 46 -[1] 155 127 64 -[1] 156 127 40 -[1] 157 127 43 -[1] 158 127 40 -[1] 159 127 62 -[1] 160 127 75 -[1] 161 127 46 -[1] 162 127 44 -[1] 163 127 93 -[1] 164 127 64 -[1] 165 127 71 -[1] 166 127 47 -[1] 167 127 73 -[1] 168 127 53 -[1] 169 127 52 -[1] 170 127 58 -[1] 171 127 48 -[1] 172 127 61 -[1] 173 127 61 -[1] 174 127 63 -[1] 175 127 33 -[1] 176 127 44 -[1] 177 127 39 -[1] 178 127 68 -[1] 179 127 53 -[1] 180 127 51 -[1] 181 127 75 -[1] 182 127 45 -[1] 183 127 47 -[1] 184 127 48 -[1] 185 127 49 -[1] 186 127 53 -[1] 187 127 46 -[1] 188 127 35 -[1] 189 127 80 -[1] 190 127 49 -[1] 191 127 69 -[1] 192 127 60 -[1] 193 127 67 -[1] 194 127 36 -[1] 195 127 38 -[1] 196 127 87 -[1] 197 127 57 -[1] 198 127 54 -[1] 199 127 71 -[1] 200 127 47 -[1] 1 128 28 -[1] 2 128 47 -[1] 3 128 36 -[1] 4 128 50 -[1] 5 128 32 -[1] 6 128 33 -[1] 7 128 26 -[1] 8 128 31 -[1] 9 128 31 -[1] 10 128 30 -[1] 11 128 31 -[1] 12 128 31 -[1] 13 128 46 -[1] 14 128 43 -[1] 15 128 50 -[1] 16 128 55 -[1] 17 128 30 -[1] 18 128 25 -[1] 19 128 38 -[1] 20 128 45 -[1] 21 128 28 -[1] 22 128 56 -[1] 23 128 36 -[1] 24 128 54 -[1] 25 128 37 -[1] 26 128 34 -[1] 27 128 65 -[1] 28 128 36 -[1] 29 128 41 -[1] 30 128 36 -[1] 31 128 31 -[1] 32 128 37 -[1] 33 128 36 -[1] 34 128 31 -[1] 35 128 44 -[1] 36 128 47 -[1] 37 128 32 -[1] 38 128 40 -[1] 39 128 44 -[1] 40 128 25 -[1] 41 128 35 -[1] 42 128 35 -[1] 43 128 33 -[1] 44 128 34 -[1] 45 128 35 -[1] 46 128 52 -[1] 47 128 45 -[1] 48 128 33 -[1] 49 128 62 -[1] 50 128 39 -[1] 51 128 37 -[1] 52 128 37 -[1] 53 128 47 -[1] 54 128 42 -[1] 55 128 36 -[1] 56 128 50 -[1] 57 128 49 -[1] 58 128 52 -[1] 59 128 67 -[1] 60 128 32 -[1] 61 128 38 -[1] 62 128 50 -[1] 63 128 54 -[1] 64 128 45 -[1] 65 128 40 -[1] 66 128 44 -[1] 67 128 59 -[1] 68 128 39 -[1] 69 128 55 -[1] 70 128 38 -[1] 71 128 37 -[1] 72 128 30 -[1] 73 128 34 -[1] 74 128 52 -[1] 75 128 41 -[1] 76 128 50 -[1] 77 128 50 -[1] 78 128 44 -[1] 79 128 52 -[1] 80 128 46 -[1] 81 128 36 -[1] 82 128 46 -[1] 83 128 54 -[1] 84 128 44 -[1] 85 128 51 -[1] 86 128 58 -[1] 87 128 47 -[1] 88 128 39 -[1] 89 128 42 -[1] 90 128 54 -[1] 91 128 49 -[1] 92 128 40 -[1] 93 128 27 -[1] 94 128 125 -[1] 95 128 49 -[1] 96 128 58 -[1] 97 128 36 -[1] 98 128 28 -[1] 99 128 83 -[1] 100 128 55 -[1] 101 128 55 -[1] 102 128 26 -[1] 103 128 41 -[1] 104 128 42 -[1] 105 128 47 -[1] 106 128 35 -[1] 107 128 61 -[1] 108 128 61 -[1] 109 128 41 -[1] 110 128 43 -[1] 111 128 71 -[1] 112 128 52 -[1] 113 128 34 -[1] 114 128 37 -[1] 115 128 74 -[1] 116 128 51 -[1] 117 128 74 -[1] 118 128 55 -[1] 119 128 95 -[1] 120 128 58 -[1] 121 128 63 -[1] 122 128 37 -[1] 123 128 48 -[1] 124 128 55 -[1] 125 128 36 -[1] 126 128 39 -[1] 127 128 62 -[1] 128 128 68 -[1] 129 128 53 -[1] 130 128 54 -[1] 131 128 44 -[1] 132 128 42 -[1] 133 128 45 -[1] 134 128 40 -[1] 135 128 45 -[1] 136 128 50 -[1] 137 128 39 -[1] 138 128 28 -[1] 139 128 38 -[1] 140 128 68 -[1] 141 128 40 -[1] 142 128 44 -[1] 143 128 51 -[1] 144 128 35 -[1] 145 128 38 -[1] 146 128 69 -[1] 147 128 46 -[1] 148 128 49 -[1] 149 128 61 -[1] 150 128 47 -[1] 151 128 45 -[1] 152 128 45 -[1] 153 128 56 -[1] 154 128 84 -[1] 155 128 48 -[1] 156 128 55 -[1] 157 128 30 -[1] 158 128 62 -[1] 159 128 47 -[1] 160 128 55 -[1] 161 128 39 -[1] 162 128 47 -[1] 163 128 64 -[1] 164 128 50 -[1] 165 128 69 -[1] 166 128 52 -[1] 167 128 43 -[1] 168 128 48 -[1] 169 128 33 -[1] 170 128 69 -[1] 171 128 43 -[1] 172 128 43 -[1] 173 128 97 -[1] 174 128 40 -[1] 175 128 48 -[1] 176 128 46 -[1] 177 128 45 -[1] 178 128 54 -[1] 179 128 53 -[1] 180 128 50 -[1] 181 128 50 -[1] 182 128 52 -[1] 183 128 36 -[1] 184 128 46 -[1] 185 128 56 -[1] 186 128 34 -[1] 187 128 36 -[1] 188 128 41 -[1] 189 128 65 -[1] 190 128 82 -[1] 191 128 81 -[1] 192 128 60 -[1] 193 128 49 -[1] 194 128 36 -[1] 195 128 82 -[1] 196 128 43 -[1] 197 128 43 -[1] 198 128 40 -[1] 199 128 51 -[1] 200 128 51 -[1] 1 129 30 -[1] 2 129 60 -[1] 3 129 32 -[1] 4 129 33 -[1] 5 129 40 -[1] 6 129 38 -[1] 7 129 41 -[1] 8 129 39 -[1] 9 129 29 -[1] 10 129 30 -[1] 11 129 41 -[1] 12 129 32 -[1] 13 129 103 -[1] 14 129 38 -[1] 15 129 48 -[1] 16 129 85 -[1] 17 129 49 -[1] 18 129 31 -[1] 19 129 33 -[1] 20 129 44 -[1] 21 129 36 -[1] 22 129 39 -[1] 23 129 28 -[1] 24 129 39 -[1] 25 129 50 -[1] 26 129 31 -[1] 27 129 35 -[1] 28 129 48 -[1] 29 129 33 -[1] 30 129 56 -[1] 31 129 63 -[1] 32 129 34 -[1] 33 129 35 -[1] 34 129 65 -[1] 35 129 36 -[1] 36 129 37 -[1] 37 129 48 -[1] 38 129 38 -[1] 39 129 33 -[1] 40 129 39 -[1] 41 129 33 -[1] 42 129 44 -[1] 43 129 55 -[1] 44 129 42 -[1] 45 129 47 -[1] 46 129 28 -[1] 47 129 45 -[1] 48 129 58 -[1] 49 129 43 -[1] 50 129 42 -[1] 51 129 43 -[1] 52 129 52 -[1] 53 129 49 -[1] 54 129 51 -[1] 55 129 40 -[1] 56 129 45 -[1] 57 129 54 -[1] 58 129 45 -[1] 59 129 39 -[1] 60 129 59 -[1] 61 129 58 -[1] 62 129 32 -[1] 63 129 34 -[1] 64 129 37 -[1] 65 129 52 -[1] 66 129 39 -[1] 67 129 75 -[1] 68 129 37 -[1] 69 129 44 -[1] 70 129 29 -[1] 71 129 48 -[1] 72 129 75 -[1] 73 129 40 -[1] 74 129 41 -[1] 75 129 51 -[1] 76 129 36 -[1] 77 129 47 -[1] 78 129 44 -[1] 79 129 31 -[1] 80 129 60 -[1] 81 129 41 -[1] 82 129 71 -[1] 83 129 56 -[1] 84 129 30 -[1] 85 129 71 -[1] 86 129 47 -[1] 87 129 78 -[1] 88 129 55 -[1] 89 129 52 -[1] 90 129 43 -[1] 91 129 58 -[1] 92 129 37 -[1] 93 129 43 -[1] 94 129 36 -[1] 95 129 42 -[1] 96 129 43 -[1] 97 129 40 -[1] 98 129 37 -[1] 99 129 37 -[1] 100 129 40 -[1] 101 129 41 -[1] 102 129 37 -[1] 103 129 67 -[1] 104 129 40 -[1] 105 129 31 -[1] 106 129 52 -[1] 107 129 28 -[1] 108 129 63 -[1] 109 129 36 -[1] 110 129 44 -[1] 111 129 36 -[1] 112 129 51 -[1] 113 129 44 -[1] 114 129 66 -[1] 115 129 71 -[1] 116 129 63 -[1] 117 129 42 -[1] 118 129 49 -[1] 119 129 60 -[1] 120 129 59 -[1] 121 129 38 -[1] 122 129 37 -[1] 123 129 87 -[1] 124 129 30 -[1] 125 129 46 -[1] 126 129 45 -[1] 127 129 35 -[1] 128 129 33 -[1] 129 129 62 -[1] 130 129 32 -[1] 131 129 45 -[1] 132 129 63 -[1] 133 129 40 -[1] 134 129 41 -[1] 135 129 60 -[1] 136 129 59 -[1] 137 129 38 -[1] 138 129 35 -[1] 139 129 26 -[1] 140 129 64 -[1] 141 129 43 -[1] 142 129 45 -[1] 143 129 38 -[1] 144 129 33 -[1] 145 129 81 -[1] 146 129 32 -[1] 147 129 34 -[1] 148 129 53 -[1] 149 129 55 -[1] 150 129 42 -[1] 151 129 55 -[1] 152 129 47 -[1] 153 129 42 -[1] 154 129 61 -[1] 155 129 54 -[1] 156 129 46 -[1] 157 129 59 -[1] 158 129 47 -[1] 159 129 41 -[1] 160 129 64 -[1] 161 129 45 -[1] 162 129 79 -[1] 163 129 46 -[1] 164 129 41 -[1] 165 129 58 -[1] 166 129 54 -[1] 167 129 37 -[1] 168 129 50 -[1] 169 129 51 -[1] 170 129 77 -[1] 171 129 42 -[1] 172 129 44 -[1] 173 129 83 -[1] 174 129 45 -[1] 175 129 54 -[1] 176 129 37 -[1] 177 129 43 -[1] 178 129 46 -[1] 179 129 41 -[1] 180 129 45 -[1] 181 129 51 -[1] 182 129 53 -[1] 183 129 37 -[1] 184 129 37 -[1] 185 129 53 -[1] 186 129 37 -[1] 187 129 39 -[1] 188 129 44 -[1] 189 129 59 -[1] 190 129 46 -[1] 191 129 56 -[1] 192 129 50 -[1] 193 129 34 -[1] 194 129 43 -[1] 195 129 65 -[1] 196 129 50 -[1] 197 129 43 -[1] 198 129 46 -[1] 199 129 51 -[1] 200 129 43 -[1] 1 130 49 -[1] 2 130 35 -[1] 3 130 34 -[1] 4 130 47 -[1] 5 130 30 -[1] 6 130 27 -[1] 7 130 26 -[1] 8 130 37 -[1] 9 130 34 -[1] 10 130 45 -[1] 11 130 35 -[1] 12 130 42 -[1] 13 130 41 -[1] 14 130 31 -[1] 15 130 35 -[1] 16 130 34 -[1] 17 130 38 -[1] 18 130 51 -[1] 19 130 34 -[1] 20 130 47 -[1] 21 130 35 -[1] 22 130 74 -[1] 23 130 41 -[1] 24 130 31 -[1] 25 130 35 -[1] 26 130 35 -[1] 27 130 31 -[1] 28 130 46 -[1] 29 130 44 -[1] 30 130 33 -[1] 31 130 37 -[1] 32 130 24 -[1] 33 130 61 -[1] 34 130 45 -[1] 35 130 46 -[1] 36 130 39 -[1] 37 130 38 -[1] 38 130 43 -[1] 39 130 32 -[1] 40 130 45 -[1] 41 130 49 -[1] 42 130 76 -[1] 43 130 31 -[1] 44 130 40 -[1] 45 130 40 -[1] 46 130 55 -[1] 47 130 41 -[1] 48 130 35 -[1] 49 130 44 -[1] 50 130 38 -[1] 51 130 44 -[1] 52 130 38 -[1] 53 130 43 -[1] 54 130 36 -[1] 55 130 56 -[1] 56 130 49 -[1] 57 130 32 -[1] 58 130 73 -[1] 59 130 41 -[1] 60 130 38 -[1] 61 130 53 -[1] 62 130 60 -[1] 63 130 43 -[1] 64 130 37 -[1] 65 130 49 -[1] 66 130 56 -[1] 67 130 41 -[1] 68 130 40 -[1] 69 130 58 -[1] 70 130 39 -[1] 71 130 40 -[1] 72 130 41 -[1] 73 130 24 -[1] 74 130 51 -[1] 75 130 46 -[1] 76 130 57 -[1] 77 130 45 -[1] 78 130 46 -[1] 79 130 47 -[1] 80 130 46 -[1] 81 130 39 -[1] 82 130 48 -[1] 83 130 41 -[1] 84 130 77 -[1] 85 130 30 -[1] 86 130 41 -[1] 87 130 34 -[1] 88 130 39 -[1] 89 130 34 -[1] 90 130 44 -[1] 91 130 50 -[1] 92 130 58 -[1] 93 130 50 -[1] 94 130 36 -[1] 95 130 38 -[1] 96 130 54 -[1] 97 130 37 -[1] 98 130 38 -[1] 99 130 50 -[1] 100 130 49 -[1] 101 130 51 -[1] 102 130 41 -[1] 103 130 41 -[1] 104 130 42 -[1] 105 130 35 -[1] 106 130 36 -[1] 107 130 60 -[1] 108 130 49 -[1] 109 130 29 -[1] 110 130 52 -[1] 111 130 59 -[1] 112 130 33 -[1] 113 130 41 -[1] 114 130 35 -[1] 115 130 41 -[1] 116 130 42 -[1] 117 130 38 -[1] 118 130 56 -[1] 119 130 46 -[1] 120 130 65 -[1] 121 130 46 -[1] 122 130 65 -[1] 123 130 36 -[1] 124 130 70 -[1] 125 130 48 -[1] 126 130 59 -[1] 127 130 37 -[1] 128 130 107 -[1] 129 130 43 -[1] 130 130 44 -[1] 131 130 39 -[1] 132 130 40 -[1] 133 130 45 -[1] 134 130 29 -[1] 135 130 36 -[1] 136 130 36 -[1] 137 130 38 -[1] 138 130 57 -[1] 139 130 45 -[1] 140 130 60 -[1] 141 130 35 -[1] 142 130 43 -[1] 143 130 61 -[1] 144 130 54 -[1] 145 130 39 -[1] 146 130 33 -[1] 147 130 41 -[1] 148 130 45 -[1] 149 130 46 -[1] 150 130 49 -[1] 151 130 65 -[1] 152 130 47 -[1] 153 130 34 -[1] 154 130 70 -[1] 155 130 53 -[1] 156 130 53 -[1] 157 130 50 -[1] 158 130 44 -[1] 159 130 53 -[1] 160 130 63 -[1] 161 130 71 -[1] 162 130 50 -[1] 163 130 42 -[1] 164 130 63 -[1] 165 130 73 -[1] 166 130 44 -[1] 167 130 34 -[1] 168 130 62 -[1] 169 130 24 -[1] 170 130 44 -[1] 171 130 56 -[1] 172 130 38 -[1] 173 130 35 -[1] 174 130 60 -[1] 175 130 40 -[1] 176 130 43 -[1] 177 130 53 -[1] 178 130 62 -[1] 179 130 54 -[1] 180 130 101 -[1] 181 130 87 -[1] 182 130 58 -[1] 183 130 34 -[1] 184 130 50 -[1] 185 130 68 -[1] 186 130 51 -[1] 187 130 50 -[1] 188 130 48 -[1] 189 130 57 -[1] 190 130 61 -[1] 191 130 50 -[1] 192 130 63 -[1] 193 130 63 -[1] 194 130 56 -[1] 195 130 39 -[1] 196 130 51 -[1] 197 130 42 -[1] 198 130 46 -[1] 199 130 47 -[1] 200 130 55 -[1] 1 131 42 -[1] 2 131 46 -[1] 3 131 36 -[1] 4 131 33 -[1] 5 131 25 -[1] 6 131 39 -[1] 7 131 48 -[1] 8 131 44 -[1] 9 131 41 -[1] 10 131 25 -[1] 11 131 32 -[1] 12 131 48 -[1] 13 131 33 -[1] 14 131 26 -[1] 15 131 47 -[1] 16 131 48 -[1] 17 131 34 -[1] 18 131 38 -[1] 19 131 54 -[1] 20 131 43 -[1] 21 131 64 -[1] 22 131 33 -[1] 23 131 30 -[1] 24 131 31 -[1] 25 131 28 -[1] 26 131 52 -[1] 27 131 46 -[1] 28 131 53 -[1] 29 131 68 -[1] 30 131 39 -[1] 31 131 54 -[1] 32 131 45 -[1] 33 131 82 -[1] 34 131 42 -[1] 35 131 45 -[1] 36 131 39 -[1] 37 131 36 -[1] 38 131 33 -[1] 39 131 31 -[1] 40 131 54 -[1] 41 131 27 -[1] 42 131 42 -[1] 43 131 44 -[1] 44 131 31 -[1] 45 131 48 -[1] 46 131 71 -[1] 47 131 43 -[1] 48 131 32 -[1] 49 131 49 -[1] 50 131 40 -[1] 51 131 37 -[1] 52 131 30 -[1] 53 131 83 -[1] 54 131 29 -[1] 55 131 33 -[1] 56 131 34 -[1] 57 131 24 -[1] 58 131 59 -[1] 59 131 36 -[1] 60 131 59 -[1] 61 131 40 -[1] 62 131 49 -[1] 63 131 57 -[1] 64 131 42 -[1] 65 131 34 -[1] 66 131 49 -[1] 67 131 53 -[1] 68 131 35 -[1] 69 131 52 -[1] 70 131 52 -[1] 71 131 67 -[1] 72 131 47 -[1] 73 131 40 -[1] 74 131 37 -[1] 75 131 46 -[1] 76 131 61 -[1] 77 131 34 -[1] 78 131 51 -[1] 79 131 41 -[1] 80 131 48 -[1] 81 131 34 -[1] 82 131 35 -[1] 83 131 76 -[1] 84 131 38 -[1] 85 131 35 -[1] 86 131 44 -[1] 87 131 56 -[1] 88 131 39 -[1] 89 131 40 -[1] 90 131 45 -[1] 91 131 88 -[1] 92 131 33 -[1] 93 131 42 -[1] 94 131 49 -[1] 95 131 30 -[1] 96 131 49 -[1] 97 131 36 -[1] 98 131 38 -[1] 99 131 49 -[1] 100 131 39 -[1] 101 131 43 -[1] 102 131 53 -[1] 103 131 34 -[1] 104 131 53 -[1] 105 131 40 -[1] 106 131 37 -[1] 107 131 50 -[1] 108 131 39 -[1] 109 131 53 -[1] 110 131 46 -[1] 111 131 34 -[1] 112 131 41 -[1] 113 131 36 -[1] 114 131 70 -[1] 115 131 54 -[1] 116 131 40 -[1] 117 131 38 -[1] 118 131 80 -[1] 119 131 37 -[1] 120 131 56 -[1] 121 131 60 -[1] 122 131 54 -[1] 123 131 52 -[1] 124 131 36 -[1] 125 131 43 -[1] 126 131 44 -[1] 127 131 52 -[1] 128 131 41 -[1] 129 131 111 -[1] 130 131 34 -[1] 131 131 66 -[1] 132 131 39 -[1] 133 131 35 -[1] 134 131 44 -[1] 135 131 55 -[1] 136 131 57 -[1] 137 131 32 -[1] 138 131 41 -[1] 139 131 64 -[1] 140 131 87 -[1] 141 131 46 -[1] 142 131 61 -[1] 143 131 38 -[1] 144 131 42 -[1] 145 131 64 -[1] 146 131 39 -[1] 147 131 52 -[1] 148 131 34 -[1] 149 131 57 -[1] 150 131 50 -[1] 151 131 38 -[1] 152 131 58 -[1] 153 131 42 -[1] 154 131 65 -[1] 155 131 56 -[1] 156 131 70 -[1] 157 131 54 -[1] 158 131 53 -[1] 159 131 52 -[1] 160 131 36 -[1] 161 131 34 -[1] 162 131 41 -[1] 163 131 37 -[1] 164 131 54 -[1] 165 131 55 -[1] 166 131 46 -[1] 167 131 35 -[1] 168 131 76 -[1] 169 131 59 -[1] 170 131 78 -[1] 171 131 45 -[1] 172 131 138 -[1] 173 131 78 -[1] 174 131 84 -[1] 175 131 37 -[1] 176 131 69 -[1] 177 131 50 -[1] 178 131 36 -[1] 179 131 64 -[1] 180 131 54 -[1] 181 131 44 -[1] 182 131 46 -[1] 183 131 69 -[1] 184 131 31 -[1] 185 131 44 -[1] 186 131 35 -[1] 187 131 36 -[1] 188 131 39 -[1] 189 131 56 -[1] 190 131 77 -[1] 191 131 41 -[1] 192 131 59 -[1] 193 131 46 -[1] 194 131 52 -[1] 195 131 43 -[1] 196 131 69 -[1] 197 131 38 -[1] 198 131 42 -[1] 199 131 40 -[1] 200 131 42 -[1] 1 132 43 -[1] 2 132 35 -[1] 3 132 46 -[1] 4 132 47 -[1] 5 132 32 -[1] 6 132 39 -[1] 7 132 31 -[1] 8 132 46 -[1] 9 132 53 -[1] 10 132 49 -[1] 11 132 39 -[1] 12 132 43 -[1] 13 132 37 -[1] 14 132 34 -[1] 15 132 33 -[1] 16 132 44 -[1] 17 132 45 -[1] 18 132 31 -[1] 19 132 35 -[1] 20 132 58 -[1] 21 132 28 -[1] 22 132 41 -[1] 23 132 35 -[1] 24 132 38 -[1] 25 132 32 -[1] 26 132 29 -[1] 27 132 38 -[1] 28 132 37 -[1] 29 132 71 -[1] 30 132 44 -[1] 31 132 43 -[1] 32 132 30 -[1] 33 132 38 -[1] 34 132 72 -[1] 35 132 32 -[1] 36 132 66 -[1] 37 132 49 -[1] 38 132 29 -[1] 39 132 40 -[1] 40 132 53 -[1] 41 132 28 -[1] 42 132 49 -[1] 43 132 55 -[1] 44 132 42 -[1] 45 132 31 -[1] 46 132 37 -[1] 47 132 40 -[1] 48 132 44 -[1] 49 132 33 -[1] 50 132 52 -[1] 51 132 47 -[1] 52 132 39 -[1] 53 132 36 -[1] 54 132 45 -[1] 55 132 45 -[1] 56 132 37 -[1] 57 132 51 -[1] 58 132 42 -[1] 59 132 39 -[1] 60 132 68 -[1] 61 132 42 -[1] 62 132 56 -[1] 63 132 49 -[1] 64 132 60 -[1] 65 132 45 -[1] 66 132 34 -[1] 67 132 45 -[1] 68 132 53 -[1] 69 132 34 -[1] 70 132 41 -[1] 71 132 62 -[1] 72 132 43 -[1] 73 132 56 -[1] 74 132 35 -[1] 75 132 32 -[1] 76 132 41 -[1] 77 132 57 -[1] 78 132 64 -[1] 79 132 37 -[1] 80 132 34 -[1] 81 132 37 -[1] 82 132 32 -[1] 83 132 39 -[1] 84 132 43 -[1] 85 132 40 -[1] 86 132 69 -[1] 87 132 34 -[1] 88 132 57 -[1] 89 132 46 -[1] 90 132 40 -[1] 91 132 53 -[1] 92 132 45 -[1] 93 132 45 -[1] 94 132 42 -[1] 95 132 39 -[1] 96 132 32 -[1] 97 132 44 -[1] 98 132 43 -[1] 99 132 39 -[1] 100 132 40 -[1] 101 132 33 -[1] 102 132 37 -[1] 103 132 36 -[1] 104 132 46 -[1] 105 132 33 -[1] 106 132 43 -[1] 107 132 45 -[1] 108 132 60 -[1] 109 132 45 -[1] 110 132 31 -[1] 111 132 30 -[1] 112 132 48 -[1] 113 132 30 -[1] 114 132 42 -[1] 115 132 61 -[1] 116 132 39 -[1] 117 132 43 -[1] 118 132 35 -[1] 119 132 48 -[1] 120 132 61 -[1] 121 132 36 -[1] 122 132 53 -[1] 123 132 54 -[1] 124 132 51 -[1] 125 132 72 -[1] 126 132 47 -[1] 127 132 87 -[1] 128 132 40 -[1] 129 132 53 -[1] 130 132 42 -[1] 131 132 37 -[1] 132 132 60 -[1] 133 132 69 -[1] 134 132 47 -[1] 135 132 50 -[1] 136 132 37 -[1] 137 132 56 -[1] 138 132 48 -[1] 139 132 51 -[1] 140 132 39 -[1] 141 132 42 -[1] 142 132 105 -[1] 143 132 35 -[1] 144 132 54 -[1] 145 132 52 -[1] 146 132 64 -[1] 147 132 118 -[1] 148 132 43 -[1] 149 132 102 -[1] 150 132 40 -[1] 151 132 35 -[1] 152 132 42 -[1] 153 132 38 -[1] 154 132 48 -[1] 155 132 50 -[1] 156 132 63 -[1] 157 132 70 -[1] 158 132 57 -[1] 159 132 57 -[1] 160 132 44 -[1] 161 132 82 -[1] 162 132 52 -[1] 163 132 54 -[1] 164 132 43 -[1] 165 132 50 -[1] 166 132 61 -[1] 167 132 48 -[1] 168 132 67 -[1] 169 132 42 -[1] 170 132 52 -[1] 171 132 51 -[1] 172 132 54 -[1] 173 132 55 -[1] 174 132 55 -[1] 175 132 46 -[1] 176 132 43 -[1] 177 132 49 -[1] 178 132 37 -[1] 179 132 45 -[1] 180 132 51 -[1] 181 132 76 -[1] 182 132 76 -[1] 183 132 37 -[1] 184 132 76 -[1] 185 132 36 -[1] 186 132 35 -[1] 187 132 41 -[1] 188 132 61 -[1] 189 132 59 -[1] 190 132 63 -[1] 191 132 47 -[1] 192 132 42 -[1] 193 132 52 -[1] 194 132 39 -[1] 195 132 61 -[1] 196 132 68 -[1] 197 132 45 -[1] 198 132 38 -[1] 199 132 53 -[1] 200 132 43 -[1] 1 133 30 -[1] 2 133 36 -[1] 3 133 34 -[1] 4 133 31 -[1] 5 133 34 -[1] 6 133 28 -[1] 7 133 39 -[1] 8 133 41 -[1] 9 133 29 -[1] 10 133 40 -[1] 11 133 33 -[1] 12 133 34 -[1] 13 133 29 -[1] 14 133 44 -[1] 15 133 31 -[1] 16 133 34 -[1] 17 133 38 -[1] 18 133 39 -[1] 19 133 47 -[1] 20 133 41 -[1] 21 133 36 -[1] 22 133 35 -[1] 23 133 28 -[1] 24 133 33 -[1] 25 133 39 -[1] 26 133 35 -[1] 27 133 43 -[1] 28 133 31 -[1] 29 133 37 -[1] 30 133 42 -[1] 31 133 68 -[1] 32 133 55 -[1] 33 133 57 -[1] 34 133 24 -[1] 35 133 51 -[1] 36 133 38 -[1] 37 133 33 -[1] 38 133 32 -[1] 39 133 46 -[1] 40 133 44 -[1] 41 133 42 -[1] 42 133 41 -[1] 43 133 43 -[1] 44 133 36 -[1] 45 133 40 -[1] 46 133 37 -[1] 47 133 37 -[1] 48 133 45 -[1] 49 133 50 -[1] 50 133 38 -[1] 51 133 31 -[1] 52 133 44 -[1] 53 133 43 -[1] 54 133 52 -[1] 55 133 42 -[1] 56 133 50 -[1] 57 133 46 -[1] 58 133 35 -[1] 59 133 31 -[1] 60 133 63 -[1] 61 133 47 -[1] 62 133 37 -[1] 63 133 34 -[1] 64 133 43 -[1] 65 133 67 -[1] 66 133 46 -[1] 67 133 46 -[1] 68 133 35 -[1] 69 133 39 -[1] 70 133 44 -[1] 71 133 57 -[1] 72 133 47 -[1] 73 133 42 -[1] 74 133 45 -[1] 75 133 38 -[1] 76 133 50 -[1] 77 133 42 -[1] 78 133 46 -[1] 79 133 40 -[1] 80 133 33 -[1] 81 133 36 -[1] 82 133 35 -[1] 83 133 55 -[1] 84 133 34 -[1] 85 133 66 -[1] 86 133 51 -[1] 87 133 43 -[1] 88 133 41 -[1] 89 133 54 -[1] 90 133 37 -[1] 91 133 60 -[1] 92 133 35 -[1] 93 133 44 -[1] 94 133 50 -[1] 95 133 47 -[1] 96 133 45 -[1] 97 133 36 -[1] 98 133 44 -[1] 99 133 47 -[1] 100 133 40 -[1] 101 133 84 -[1] 102 133 57 -[1] 103 133 46 -[1] 104 133 34 -[1] 105 133 48 -[1] 106 133 45 -[1] 107 133 33 -[1] 108 133 44 -[1] 109 133 41 -[1] 110 133 32 -[1] 111 133 44 -[1] 112 133 37 -[1] 113 133 40 -[1] 114 133 50 -[1] 115 133 63 -[1] 116 133 48 -[1] 117 133 36 -[1] 118 133 53 -[1] 119 133 41 -[1] 120 133 27 -[1] 121 133 45 -[1] 122 133 46 -[1] 123 133 72 -[1] 124 133 37 -[1] 125 133 42 -[1] 126 133 32 -[1] 127 133 77 -[1] 128 133 30 -[1] 129 133 99 -[1] 130 133 31 -[1] 131 133 50 -[1] 132 133 37 -[1] 133 133 50 -[1] 134 133 41 -[1] 135 133 46 -[1] 136 133 54 -[1] 137 133 60 -[1] 138 133 60 -[1] 139 133 65 -[1] 140 133 48 -[1] 141 133 86 -[1] 142 133 47 -[1] 143 133 65 -[1] 144 133 33 -[1] 145 133 38 -[1] 146 133 68 -[1] 147 133 41 -[1] 148 133 28 -[1] 149 133 101 -[1] 150 133 34 -[1] 151 133 57 -[1] 152 133 72 -[1] 153 133 55 -[1] 154 133 44 -[1] 155 133 64 -[1] 156 133 40 -[1] 157 133 45 -[1] 158 133 52 -[1] 159 133 45 -[1] 160 133 36 -[1] 161 133 64 -[1] 162 133 61 -[1] 163 133 45 -[1] 164 133 39 -[1] 165 133 86 -[1] 166 133 57 -[1] 167 133 30 -[1] 168 133 60 -[1] 169 133 44 -[1] 170 133 47 -[1] 171 133 75 -[1] 172 133 67 -[1] 173 133 68 -[1] 174 133 46 -[1] 175 133 46 -[1] 176 133 74 -[1] 177 133 73 -[1] 178 133 46 -[1] 179 133 44 -[1] 180 133 44 -[1] 181 133 46 -[1] 182 133 67 -[1] 183 133 54 -[1] 184 133 46 -[1] 185 133 45 -[1] 186 133 50 -[1] 187 133 47 -[1] 188 133 45 -[1] 189 133 48 -[1] 190 133 42 -[1] 191 133 38 -[1] 192 133 51 -[1] 193 133 58 -[1] 194 133 51 -[1] 195 133 43 -[1] 196 133 46 -[1] 197 133 47 -[1] 198 133 51 -[1] 199 133 59 -[1] 200 133 39 -[1] 1 134 35 -[1] 2 134 37 -[1] 3 134 42 -[1] 4 134 29 -[1] 5 134 32 -[1] 6 134 33 -[1] 7 134 36 -[1] 8 134 43 -[1] 9 134 39 -[1] 10 134 29 -[1] 11 134 41 -[1] 12 134 37 -[1] 13 134 39 -[1] 14 134 32 -[1] 15 134 41 -[1] 16 134 34 -[1] 17 134 69 -[1] 18 134 40 -[1] 19 134 27 -[1] 20 134 33 -[1] 21 134 55 -[1] 22 134 38 -[1] 23 134 34 -[1] 24 134 51 -[1] 25 134 42 -[1] 26 134 52 -[1] 27 134 39 -[1] 28 134 39 -[1] 29 134 45 -[1] 30 134 43 -[1] 31 134 52 -[1] 32 134 39 -[1] 33 134 30 -[1] 34 134 56 -[1] 35 134 36 -[1] 36 134 60 -[1] 37 134 26 -[1] 38 134 30 -[1] 39 134 59 -[1] 40 134 44 -[1] 41 134 59 -[1] 42 134 36 -[1] 43 134 38 -[1] 44 134 46 -[1] 45 134 41 -[1] 46 134 45 -[1] 47 134 42 -[1] 48 134 40 -[1] 49 134 37 -[1] 50 134 30 -[1] 51 134 39 -[1] 52 134 53 -[1] 53 134 34 -[1] 54 134 47 -[1] 55 134 54 -[1] 56 134 41 -[1] 57 134 35 -[1] 58 134 71 -[1] 59 134 52 -[1] 60 134 34 -[1] 61 134 51 -[1] 62 134 34 -[1] 63 134 55 -[1] 64 134 28 -[1] 65 134 49 -[1] 66 134 34 -[1] 67 134 53 -[1] 68 134 32 -[1] 69 134 37 -[1] 70 134 64 -[1] 71 134 48 -[1] 72 134 33 -[1] 73 134 61 -[1] 74 134 41 -[1] 75 134 36 -[1] 76 134 43 -[1] 77 134 32 -[1] 78 134 52 -[1] 79 134 62 -[1] 80 134 36 -[1] 81 134 43 -[1] 82 134 31 -[1] 83 134 38 -[1] 84 134 31 -[1] 85 134 35 -[1] 86 134 39 -[1] 87 134 49 -[1] 88 134 37 -[1] 89 134 58 -[1] 90 134 34 -[1] 91 134 52 -[1] 92 134 45 -[1] 93 134 28 -[1] 94 134 62 -[1] 95 134 57 -[1] 96 134 28 -[1] 97 134 42 -[1] 98 134 55 -[1] 99 134 63 -[1] 100 134 36 -[1] 101 134 34 -[1] 102 134 60 -[1] 103 134 42 -[1] 104 134 41 -[1] 105 134 42 -[1] 106 134 61 -[1] 107 134 37 -[1] 108 134 52 -[1] 109 134 35 -[1] 110 134 50 -[1] 111 134 28 -[1] 112 134 35 -[1] 113 134 39 -[1] 114 134 42 -[1] 115 134 31 -[1] 116 134 36 -[1] 117 134 47 -[1] 118 134 44 -[1] 119 134 44 -[1] 120 134 42 -[1] 121 134 36 -[1] 122 134 35 -[1] 123 134 34 -[1] 124 134 51 -[1] 125 134 46 -[1] 126 134 33 -[1] 127 134 42 -[1] 128 134 45 -[1] 129 134 47 -[1] 130 134 51 -[1] 131 134 44 -[1] 132 134 38 -[1] 133 134 47 -[1] 134 134 47 -[1] 135 134 38 -[1] 136 134 53 -[1] 137 134 48 -[1] 138 134 55 -[1] 139 134 49 -[1] 140 134 64 -[1] 141 134 42 -[1] 142 134 54 -[1] 143 134 43 -[1] 144 134 53 -[1] 145 134 37 -[1] 146 134 55 -[1] 147 134 58 -[1] 148 134 46 -[1] 149 134 39 -[1] 150 134 37 -[1] 151 134 56 -[1] 152 134 60 -[1] 153 134 47 -[1] 154 134 40 -[1] 155 134 69 -[1] 156 134 39 -[1] 157 134 48 -[1] 158 134 48 -[1] 159 134 82 -[1] 160 134 46 -[1] 161 134 59 -[1] 162 134 58 -[1] 163 134 68 -[1] 164 134 59 -[1] 165 134 37 -[1] 166 134 52 -[1] 167 134 79 -[1] 168 134 52 -[1] 169 134 57 -[1] 170 134 51 -[1] 171 134 48 -[1] 172 134 63 -[1] 173 134 68 -[1] 174 134 57 -[1] 175 134 42 -[1] 176 134 57 -[1] 177 134 49 -[1] 178 134 68 -[1] 179 134 35 -[1] 180 134 46 -[1] 181 134 79 -[1] 182 134 67 -[1] 183 134 64 -[1] 184 134 39 -[1] 185 134 44 -[1] 186 134 45 -[1] 187 134 48 -[1] 188 134 50 -[1] 189 134 45 -[1] 190 134 36 -[1] 191 134 41 -[1] 192 134 47 -[1] 193 134 75 -[1] 194 134 70 -[1] 195 134 59 -[1] 196 134 64 -[1] 197 134 39 -[1] 198 134 40 -[1] 199 134 52 -[1] 200 134 48 -[1] 1 135 39 -[1] 2 135 31 -[1] 3 135 38 -[1] 4 135 42 -[1] 5 135 42 -[1] 6 135 42 -[1] 7 135 30 -[1] 8 135 41 -[1] 9 135 51 -[1] 10 135 35 -[1] 11 135 39 -[1] 12 135 36 -[1] 13 135 42 -[1] 14 135 32 -[1] 15 135 35 -[1] 16 135 39 -[1] 17 135 50 -[1] 18 135 31 -[1] 19 135 46 -[1] 20 135 37 -[1] 21 135 48 -[1] 22 135 33 -[1] 23 135 31 -[1] 24 135 44 -[1] 25 135 28 -[1] 26 135 35 -[1] 27 135 39 -[1] 28 135 28 -[1] 29 135 33 -[1] 30 135 38 -[1] 31 135 53 -[1] 32 135 35 -[1] 33 135 68 -[1] 34 135 37 -[1] 35 135 38 -[1] 36 135 32 -[1] 37 135 39 -[1] 38 135 45 -[1] 39 135 32 -[1] 40 135 32 -[1] 41 135 48 -[1] 42 135 38 -[1] 43 135 45 -[1] 44 135 27 -[1] 45 135 48 -[1] 46 135 33 -[1] 47 135 56 -[1] 48 135 54 -[1] 49 135 37 -[1] 50 135 59 -[1] 51 135 39 -[1] 52 135 56 -[1] 53 135 40 -[1] 54 135 29 -[1] 55 135 48 -[1] 56 135 39 -[1] 57 135 32 -[1] 58 135 42 -[1] 59 135 46 -[1] 60 135 50 -[1] 61 135 55 -[1] 62 135 29 -[1] 63 135 41 -[1] 64 135 49 -[1] 65 135 45 -[1] 66 135 34 -[1] 67 135 41 -[1] 68 135 52 -[1] 69 135 51 -[1] 70 135 46 -[1] 71 135 44 -[1] 72 135 32 -[1] 73 135 60 -[1] 74 135 50 -[1] 75 135 26 -[1] 76 135 64 -[1] 77 135 35 -[1] 78 135 59 -[1] 79 135 37 -[1] 80 135 40 -[1] 81 135 41 -[1] 82 135 49 -[1] 83 135 43 -[1] 84 135 41 -[1] 85 135 39 -[1] 86 135 36 -[1] 87 135 44 -[1] 88 135 58 -[1] 89 135 69 -[1] 90 135 38 -[1] 91 135 57 -[1] 92 135 28 -[1] 93 135 44 -[1] 94 135 50 -[1] 95 135 45 -[1] 96 135 39 -[1] 97 135 50 -[1] 98 135 64 -[1] 99 135 52 -[1] 100 135 58 -[1] 101 135 53 -[1] 102 135 37 -[1] 103 135 42 -[1] 104 135 44 -[1] 105 135 40 -[1] 106 135 73 -[1] 107 135 52 -[1] 108 135 37 -[1] 109 135 45 -[1] 110 135 40 -[1] 111 135 65 -[1] 112 135 44 -[1] 113 135 37 -[1] 114 135 45 -[1] 115 135 32 -[1] 116 135 85 -[1] 117 135 34 -[1] 118 135 52 -[1] 119 135 34 -[1] 120 135 52 -[1] 121 135 32 -[1] 122 135 67 -[1] 123 135 50 -[1] 124 135 31 -[1] 125 135 54 -[1] 126 135 35 -[1] 127 135 37 -[1] 128 135 54 -[1] 129 135 41 -[1] 130 135 44 -[1] 131 135 56 -[1] 132 135 49 -[1] 133 135 41 -[1] 134 135 53 -[1] 135 135 58 -[1] 136 135 30 -[1] 137 135 57 -[1] 138 135 62 -[1] 139 135 47 -[1] 140 135 57 -[1] 141 135 44 -[1] 142 135 34 -[1] 143 135 58 -[1] 144 135 46 -[1] 145 135 59 -[1] 146 135 48 -[1] 147 135 33 -[1] 148 135 62 -[1] 149 135 45 -[1] 150 135 40 -[1] 151 135 71 -[1] 152 135 43 -[1] 153 135 58 -[1] 154 135 55 -[1] 155 135 40 -[1] 156 135 55 -[1] 157 135 55 -[1] 158 135 51 -[1] 159 135 64 -[1] 160 135 46 -[1] 161 135 43 -[1] 162 135 50 -[1] 163 135 53 -[1] 164 135 77 -[1] 165 135 54 -[1] 166 135 33 -[1] 167 135 94 -[1] 168 135 37 -[1] 169 135 68 -[1] 170 135 45 -[1] 171 135 69 -[1] 172 135 56 -[1] 173 135 43 -[1] 174 135 49 -[1] 175 135 40 -[1] 176 135 44 -[1] 177 135 47 -[1] 178 135 48 -[1] 179 135 57 -[1] 180 135 52 -[1] 181 135 49 -[1] 182 135 56 -[1] 183 135 44 -[1] 184 135 68 -[1] 185 135 36 -[1] 186 135 61 -[1] 187 135 42 -[1] 188 135 41 -[1] 189 135 48 -[1] 190 135 36 -[1] 191 135 63 -[1] 192 135 37 -[1] 193 135 53 -[1] 194 135 40 -[1] 195 135 45 -[1] 196 135 40 -[1] 197 135 51 -[1] 198 135 60 -[1] 199 135 51 -[1] 200 135 47 -[1] 1 136 39 -[1] 2 136 55 -[1] 3 136 42 -[1] 4 136 40 -[1] 5 136 39 -[1] 6 136 23 -[1] 7 136 48 -[1] 8 136 39 -[1] 9 136 52 -[1] 10 136 47 -[1] 11 136 64 -[1] 12 136 39 -[1] 13 136 34 -[1] 14 136 43 -[1] 15 136 79 -[1] 16 136 28 -[1] 17 136 32 -[1] 18 136 36 -[1] 19 136 30 -[1] 20 136 53 -[1] 21 136 32 -[1] 22 136 34 -[1] 23 136 27 -[1] 24 136 45 -[1] 25 136 38 -[1] 26 136 43 -[1] 27 136 36 -[1] 28 136 44 -[1] 29 136 50 -[1] 30 136 56 -[1] 31 136 31 -[1] 32 136 43 -[1] 33 136 53 -[1] 34 136 49 -[1] 35 136 45 -[1] 36 136 37 -[1] 37 136 34 -[1] 38 136 45 -[1] 39 136 34 -[1] 40 136 41 -[1] 41 136 44 -[1] 42 136 31 -[1] 43 136 63 -[1] 44 136 40 -[1] 45 136 51 -[1] 46 136 36 -[1] 47 136 34 -[1] 48 136 39 -[1] 49 136 41 -[1] 50 136 36 -[1] 51 136 42 -[1] 52 136 48 -[1] 53 136 33 -[1] 54 136 38 -[1] 55 136 66 -[1] 56 136 32 -[1] 57 136 45 -[1] 58 136 39 -[1] 59 136 47 -[1] 60 136 28 -[1] 61 136 38 -[1] 62 136 65 -[1] 63 136 32 -[1] 64 136 45 -[1] 65 136 40 -[1] 66 136 31 -[1] 67 136 33 -[1] 68 136 39 -[1] 69 136 46 -[1] 70 136 97 -[1] 71 136 33 -[1] 72 136 48 -[1] 73 136 40 -[1] 74 136 32 -[1] 75 136 53 -[1] 76 136 34 -[1] 77 136 52 -[1] 78 136 53 -[1] 79 136 45 -[1] 80 136 49 -[1] 81 136 31 -[1] 82 136 40 -[1] 83 136 51 -[1] 84 136 43 -[1] 85 136 38 -[1] 86 136 36 -[1] 87 136 85 -[1] 88 136 35 -[1] 89 136 40 -[1] 90 136 46 -[1] 91 136 64 -[1] 92 136 59 -[1] 93 136 42 -[1] 94 136 34 -[1] 95 136 39 -[1] 96 136 54 -[1] 97 136 37 -[1] 98 136 34 -[1] 99 136 37 -[1] 100 136 37 -[1] 101 136 36 -[1] 102 136 31 -[1] 103 136 57 -[1] 104 136 58 -[1] 105 136 54 -[1] 106 136 48 -[1] 107 136 43 -[1] 108 136 73 -[1] 109 136 45 -[1] 110 136 44 -[1] 111 136 31 -[1] 112 136 53 -[1] 113 136 44 -[1] 114 136 48 -[1] 115 136 81 -[1] 116 136 34 -[1] 117 136 44 -[1] 118 136 66 -[1] 119 136 38 -[1] 120 136 41 -[1] 121 136 36 -[1] 122 136 33 -[1] 123 136 70 -[1] 124 136 44 -[1] 125 136 54 -[1] 126 136 52 -[1] 127 136 40 -[1] 128 136 77 -[1] 129 136 33 -[1] 130 136 31 -[1] 131 136 54 -[1] 132 136 30 -[1] 133 136 63 -[1] 134 136 44 -[1] 135 136 47 -[1] 136 136 60 -[1] 137 136 45 -[1] 138 136 47 -[1] 139 136 50 -[1] 140 136 46 -[1] 141 136 37 -[1] 142 136 33 -[1] 143 136 46 -[1] 144 136 51 -[1] 145 136 46 -[1] 146 136 44 -[1] 147 136 42 -[1] 148 136 36 -[1] 149 136 71 -[1] 150 136 41 -[1] 151 136 58 -[1] 152 136 45 -[1] 153 136 56 -[1] 154 136 39 -[1] 155 136 125 -[1] 156 136 43 -[1] 157 136 43 -[1] 158 136 51 -[1] 159 136 45 -[1] 160 136 58 -[1] 161 136 67 -[1] 162 136 46 -[1] 163 136 47 -[1] 164 136 67 -[1] 165 136 72 -[1] 166 136 34 -[1] 167 136 33 -[1] 168 136 89 -[1] 169 136 54 -[1] 170 136 39 -[1] 171 136 35 -[1] 172 136 68 -[1] 173 136 68 -[1] 174 136 65 -[1] 175 136 43 -[1] 176 136 45 -[1] 177 136 43 -[1] 178 136 69 -[1] 179 136 49 -[1] 180 136 82 -[1] 181 136 50 -[1] 182 136 59 -[1] 183 136 40 -[1] 184 136 47 -[1] 185 136 49 -[1] 186 136 59 -[1] 187 136 54 -[1] 188 136 51 -[1] 189 136 33 -[1] 190 136 44 -[1] 191 136 56 -[1] 192 136 53 -[1] 193 136 36 -[1] 194 136 45 -[1] 195 136 39 -[1] 196 136 35 -[1] 197 136 55 -[1] 198 136 73 -[1] 199 136 35 -[1] 200 136 41 -[1] 1 137 33 -[1] 2 137 43 -[1] 3 137 34 -[1] 4 137 33 -[1] 5 137 32 -[1] 6 137 43 -[1] 7 137 40 -[1] 8 137 34 -[1] 9 137 33 -[1] 10 137 50 -[1] 11 137 58 -[1] 12 137 38 -[1] 13 137 37 -[1] 14 137 33 -[1] 15 137 38 -[1] 16 137 40 -[1] 17 137 34 -[1] 18 137 49 -[1] 19 137 43 -[1] 20 137 47 -[1] 21 137 38 -[1] 22 137 51 -[1] 23 137 44 -[1] 24 137 25 -[1] 25 137 40 -[1] 26 137 56 -[1] 27 137 49 -[1] 28 137 33 -[1] 29 137 46 -[1] 30 137 30 -[1] 31 137 31 -[1] 32 137 33 -[1] 33 137 39 -[1] 34 137 30 -[1] 35 137 31 -[1] 36 137 38 -[1] 37 137 51 -[1] 38 137 29 -[1] 39 137 35 -[1] 40 137 41 -[1] 41 137 43 -[1] 42 137 61 -[1] 43 137 44 -[1] 44 137 37 -[1] 45 137 44 -[1] 46 137 31 -[1] 47 137 47 -[1] 48 137 45 -[1] 49 137 29 -[1] 50 137 42 -[1] 51 137 46 -[1] 52 137 42 -[1] 53 137 34 -[1] 54 137 35 -[1] 55 137 43 -[1] 56 137 33 -[1] 57 137 30 -[1] 58 137 29 -[1] 59 137 66 -[1] 60 137 39 -[1] 61 137 37 -[1] 62 137 39 -[1] 63 137 47 -[1] 64 137 51 -[1] 65 137 83 -[1] 66 137 38 -[1] 67 137 41 -[1] 68 137 44 -[1] 69 137 36 -[1] 70 137 55 -[1] 71 137 44 -[1] 72 137 37 -[1] 73 137 36 -[1] 74 137 43 -[1] 75 137 47 -[1] 76 137 38 -[1] 77 137 31 -[1] 78 137 48 -[1] 79 137 49 -[1] 80 137 55 -[1] 81 137 56 -[1] 82 137 45 -[1] 83 137 45 -[1] 84 137 26 -[1] 85 137 52 -[1] 86 137 99 -[1] 87 137 51 -[1] 88 137 32 -[1] 89 137 35 -[1] 90 137 43 -[1] 91 137 50 -[1] 92 137 35 -[1] 93 137 40 -[1] 94 137 49 -[1] 95 137 32 -[1] 96 137 49 -[1] 97 137 40 -[1] 98 137 56 -[1] 99 137 112 -[1] 100 137 51 -[1] 101 137 47 -[1] 102 137 45 -[1] 103 137 45 -[1] 104 137 44 -[1] 105 137 38 -[1] 106 137 49 -[1] 107 137 43 -[1] 108 137 48 -[1] 109 137 45 -[1] 110 137 37 -[1] 111 137 35 -[1] 112 137 34 -[1] 113 137 72 -[1] 114 137 55 -[1] 115 137 48 -[1] 116 137 39 -[1] 117 137 30 -[1] 118 137 39 -[1] 119 137 53 -[1] 120 137 36 -[1] 121 137 43 -[1] 122 137 52 -[1] 123 137 51 -[1] 124 137 38 -[1] 125 137 41 -[1] 126 137 36 -[1] 127 137 67 -[1] 128 137 72 -[1] 129 137 55 -[1] 130 137 71 -[1] 131 137 31 -[1] 132 137 46 -[1] 133 137 32 -[1] 134 137 51 -[1] 135 137 36 -[1] 136 137 47 -[1] 137 137 52 -[1] 138 137 47 -[1] 139 137 52 -[1] 140 137 39 -[1] 141 137 49 -[1] 142 137 49 -[1] 143 137 63 -[1] 144 137 41 -[1] 145 137 57 -[1] 146 137 59 -[1] 147 137 33 -[1] 148 137 55 -[1] 149 137 43 -[1] 150 137 47 -[1] 151 137 28 -[1] 152 137 78 -[1] 153 137 63 -[1] 154 137 47 -[1] 155 137 27 -[1] 156 137 66 -[1] 157 137 58 -[1] 158 137 48 -[1] 159 137 56 -[1] 160 137 42 -[1] 161 137 39 -[1] 162 137 40 -[1] 163 137 51 -[1] 164 137 62 -[1] 165 137 51 -[1] 166 137 59 -[1] 167 137 44 -[1] 168 137 55 -[1] 169 137 74 -[1] 170 137 47 -[1] 171 137 68 -[1] 172 137 46 -[1] 173 137 62 -[1] 174 137 54 -[1] 175 137 48 -[1] 176 137 62 -[1] 177 137 48 -[1] 178 137 47 -[1] 179 137 66 -[1] 180 137 37 -[1] 181 137 60 -[1] 182 137 68 -[1] 183 137 55 -[1] 184 137 59 -[1] 185 137 52 -[1] 186 137 44 -[1] 187 137 47 -[1] 188 137 50 -[1] 189 137 36 -[1] 190 137 67 -[1] 191 137 53 -[1] 192 137 34 -[1] 193 137 90 -[1] 194 137 40 -[1] 195 137 49 -[1] 196 137 28 -[1] 197 137 66 -[1] 198 137 40 -[1] 199 137 110 -[1] 200 137 51 -[1] 1 138 69 -[1] 2 138 43 -[1] 3 138 32 -[1] 4 138 41 -[1] 5 138 28 -[1] 6 138 29 -[1] 7 138 38 -[1] 8 138 37 -[1] 9 138 28 -[1] 10 138 44 -[1] 11 138 40 -[1] 12 138 36 -[1] 13 138 31 -[1] 14 138 28 -[1] 15 138 35 -[1] 16 138 35 -[1] 17 138 46 -[1] 18 138 39 -[1] 19 138 34 -[1] 20 138 40 -[1] 21 138 41 -[1] 22 138 55 -[1] 23 138 44 -[1] 24 138 42 -[1] 25 138 31 -[1] 26 138 47 -[1] 27 138 35 -[1] 28 138 36 -[1] 29 138 45 -[1] 30 138 34 -[1] 31 138 35 -[1] 32 138 33 -[1] 33 138 42 -[1] 34 138 29 -[1] 35 138 36 -[1] 36 138 43 -[1] 37 138 30 -[1] 38 138 33 -[1] 39 138 35 -[1] 40 138 30 -[1] 41 138 39 -[1] 42 138 52 -[1] 43 138 33 -[1] 44 138 34 -[1] 45 138 33 -[1] 46 138 48 -[1] 47 138 63 -[1] 48 138 41 -[1] 49 138 40 -[1] 50 138 36 -[1] 51 138 37 -[1] 52 138 57 -[1] 53 138 34 -[1] 54 138 32 -[1] 55 138 36 -[1] 56 138 48 -[1] 57 138 40 -[1] 58 138 36 -[1] 59 138 46 -[1] 60 138 28 -[1] 61 138 40 -[1] 62 138 56 -[1] 63 138 42 -[1] 64 138 37 -[1] 65 138 46 -[1] 66 138 41 -[1] 67 138 56 -[1] 68 138 51 -[1] 69 138 48 -[1] 70 138 35 -[1] 71 138 37 -[1] 72 138 38 -[1] 73 138 41 -[1] 74 138 38 -[1] 75 138 33 -[1] 76 138 49 -[1] 77 138 34 -[1] 78 138 53 -[1] 79 138 42 -[1] 80 138 39 -[1] 81 138 24 -[1] 82 138 33 -[1] 83 138 38 -[1] 84 138 58 -[1] 85 138 38 -[1] 86 138 36 -[1] 87 138 36 -[1] 88 138 41 -[1] 89 138 55 -[1] 90 138 51 -[1] 91 138 37 -[1] 92 138 45 -[1] 93 138 54 -[1] 94 138 52 -[1] 95 138 56 -[1] 96 138 31 -[1] 97 138 58 -[1] 98 138 51 -[1] 99 138 32 -[1] 100 138 41 -[1] 101 138 39 -[1] 102 138 42 -[1] 103 138 45 -[1] 104 138 48 -[1] 105 138 47 -[1] 106 138 30 -[1] 107 138 55 -[1] 108 138 45 -[1] 109 138 58 -[1] 110 138 44 -[1] 111 138 82 -[1] 112 138 42 -[1] 113 138 30 -[1] 114 138 44 -[1] 115 138 31 -[1] 116 138 61 -[1] 117 138 26 -[1] 118 138 43 -[1] 119 138 39 -[1] 120 138 44 -[1] 121 138 61 -[1] 122 138 56 -[1] 123 138 41 -[1] 124 138 41 -[1] 125 138 39 -[1] 126 138 64 -[1] 127 138 49 -[1] 128 138 51 -[1] 129 138 43 -[1] 130 138 47 -[1] 131 138 39 -[1] 132 138 32 -[1] 133 138 33 -[1] 134 138 68 -[1] 135 138 56 -[1] 136 138 41 -[1] 137 138 39 -[1] 138 138 46 -[1] 139 138 53 -[1] 140 138 57 -[1] 141 138 37 -[1] 142 138 52 -[1] 143 138 38 -[1] 144 138 81 -[1] 145 138 59 -[1] 146 138 77 -[1] 147 138 52 -[1] 148 138 48 -[1] 149 138 43 -[1] 150 138 66 -[1] 151 138 47 -[1] 152 138 43 -[1] 153 138 42 -[1] 154 138 51 -[1] 155 138 46 -[1] 156 138 33 -[1] 157 138 62 -[1] 158 138 40 -[1] 159 138 67 -[1] 160 138 63 -[1] 161 138 34 -[1] 162 138 47 -[1] 163 138 75 -[1] 164 138 34 -[1] 165 138 56 -[1] 166 138 57 -[1] 167 138 52 -[1] 168 138 56 -[1] 169 138 60 -[1] 170 138 77 -[1] 171 138 43 -[1] 172 138 64 -[1] 173 138 44 -[1] 174 138 38 -[1] 175 138 61 -[1] 176 138 67 -[1] 177 138 54 -[1] 178 138 45 -[1] 179 138 40 -[1] 180 138 45 -[1] 181 138 45 -[1] 182 138 55 -[1] 183 138 59 -[1] 184 138 69 -[1] 185 138 41 -[1] 186 138 41 -[1] 187 138 41 -[1] 188 138 58 -[1] 189 138 42 -[1] 190 138 55 -[1] 191 138 46 -[1] 192 138 33 -[1] 193 138 65 -[1] 194 138 69 -[1] 195 138 73 -[1] 196 138 46 -[1] 197 138 48 -[1] 198 138 78 -[1] 199 138 84 -[1] 200 138 44 -[1] 1 139 33 -[1] 2 139 33 -[1] 3 139 35 -[1] 4 139 46 -[1] 5 139 43 -[1] 6 139 38 -[1] 7 139 32 -[1] 8 139 37 -[1] 9 139 30 -[1] 10 139 45 -[1] 11 139 29 -[1] 12 139 50 -[1] 13 139 35 -[1] 14 139 30 -[1] 15 139 44 -[1] 16 139 33 -[1] 17 139 39 -[1] 18 139 36 -[1] 19 139 31 -[1] 20 139 36 -[1] 21 139 41 -[1] 22 139 29 -[1] 23 139 46 -[1] 24 139 31 -[1] 25 139 90 -[1] 26 139 37 -[1] 27 139 36 -[1] 28 139 45 -[1] 29 139 34 -[1] 30 139 42 -[1] 31 139 49 -[1] 32 139 41 -[1] 33 139 46 -[1] 34 139 35 -[1] 35 139 29 -[1] 36 139 40 -[1] 37 139 48 -[1] 38 139 40 -[1] 39 139 38 -[1] 40 139 46 -[1] 41 139 39 -[1] 42 139 28 -[1] 43 139 41 -[1] 44 139 34 -[1] 45 139 33 -[1] 46 139 33 -[1] 47 139 46 -[1] 48 139 36 -[1] 49 139 43 -[1] 50 139 40 -[1] 51 139 35 -[1] 52 139 31 -[1] 53 139 52 -[1] 54 139 31 -[1] 55 139 64 -[1] 56 139 55 -[1] 57 139 50 -[1] 58 139 34 -[1] 59 139 59 -[1] 60 139 39 -[1] 61 139 29 -[1] 62 139 36 -[1] 63 139 45 -[1] 64 139 40 -[1] 65 139 41 -[1] 66 139 42 -[1] 67 139 33 -[1] 68 139 27 -[1] 69 139 39 -[1] 70 139 39 -[1] 71 139 41 -[1] 72 139 34 -[1] 73 139 57 -[1] 74 139 32 -[1] 75 139 60 -[1] 76 139 36 -[1] 77 139 42 -[1] 78 139 59 -[1] 79 139 38 -[1] 80 139 34 -[1] 81 139 51 -[1] 82 139 37 -[1] 83 139 36 -[1] 84 139 35 -[1] 85 139 24 -[1] 86 139 39 -[1] 87 139 57 -[1] 88 139 56 -[1] 89 139 39 -[1] 90 139 48 -[1] 91 139 39 -[1] 92 139 36 -[1] 93 139 60 -[1] 94 139 33 -[1] 95 139 32 -[1] 96 139 41 -[1] 97 139 40 -[1] 98 139 51 -[1] 99 139 48 -[1] 100 139 45 -[1] 101 139 55 -[1] 102 139 46 -[1] 103 139 47 -[1] 104 139 53 -[1] 105 139 47 -[1] 106 139 36 -[1] 107 139 36 -[1] 108 139 37 -[1] 109 139 86 -[1] 110 139 37 -[1] 111 139 34 -[1] 112 139 41 -[1] 113 139 36 -[1] 114 139 57 -[1] 115 139 81 -[1] 116 139 82 -[1] 117 139 43 -[1] 118 139 44 -[1] 119 139 41 -[1] 120 139 31 -[1] 121 139 100 -[1] 122 139 60 -[1] 123 139 61 -[1] 124 139 40 -[1] 125 139 38 -[1] 126 139 61 -[1] 127 139 39 -[1] 128 139 31 -[1] 129 139 30 -[1] 130 139 69 -[1] 131 139 44 -[1] 132 139 37 -[1] 133 139 38 -[1] 134 139 45 -[1] 135 139 43 -[1] 136 139 52 -[1] 137 139 42 -[1] 138 139 35 -[1] 139 139 40 -[1] 140 139 33 -[1] 141 139 63 -[1] 142 139 35 -[1] 143 139 62 -[1] 144 139 37 -[1] 145 139 57 -[1] 146 139 39 -[1] 147 139 66 -[1] 148 139 42 -[1] 149 139 52 -[1] 150 139 42 -[1] 151 139 74 -[1] 152 139 52 -[1] 153 139 36 -[1] 154 139 49 -[1] 155 139 34 -[1] 156 139 38 -[1] 157 139 49 -[1] 158 139 58 -[1] 159 139 75 -[1] 160 139 41 -[1] 161 139 67 -[1] 162 139 62 -[1] 163 139 35 -[1] 164 139 68 -[1] 165 139 39 -[1] 166 139 43 -[1] 167 139 49 -[1] 168 139 67 -[1] 169 139 57 -[1] 170 139 36 -[1] 171 139 60 -[1] 172 139 65 -[1] 173 139 53 -[1] 174 139 76 -[1] 175 139 69 -[1] 176 139 55 -[1] 177 139 43 -[1] 178 139 116 -[1] 179 139 54 -[1] 180 139 57 -[1] 181 139 50 -[1] 182 139 53 -[1] 183 139 47 -[1] 184 139 64 -[1] 185 139 39 -[1] 186 139 60 -[1] 187 139 52 -[1] 188 139 45 -[1] 189 139 43 -[1] 190 139 46 -[1] 191 139 41 -[1] 192 139 52 -[1] 193 139 62 -[1] 194 139 49 -[1] 195 139 83 -[1] 196 139 34 -[1] 197 139 38 -[1] 198 139 47 -[1] 199 139 53 -[1] 200 139 45 -[1] 1 140 35 -[1] 2 140 35 -[1] 3 140 38 -[1] 4 140 38 -[1] 5 140 45 -[1] 6 140 31 -[1] 7 140 49 -[1] 8 140 30 -[1] 9 140 41 -[1] 10 140 34 -[1] 11 140 31 -[1] 12 140 40 -[1] 13 140 33 -[1] 14 140 37 -[1] 15 140 42 -[1] 16 140 33 -[1] 17 140 34 -[1] 18 140 39 -[1] 19 140 30 -[1] 20 140 34 -[1] 21 140 39 -[1] 22 140 37 -[1] 23 140 27 -[1] 24 140 32 -[1] 25 140 31 -[1] 26 140 36 -[1] 27 140 35 -[1] 28 140 33 -[1] 29 140 40 -[1] 30 140 52 -[1] 31 140 39 -[1] 32 140 29 -[1] 33 140 54 -[1] 34 140 47 -[1] 35 140 45 -[1] 36 140 32 -[1] 37 140 29 -[1] 38 140 36 -[1] 39 140 41 -[1] 40 140 38 -[1] 41 140 45 -[1] 42 140 35 -[1] 43 140 34 -[1] 44 140 41 -[1] 45 140 42 -[1] 46 140 45 -[1] 47 140 39 -[1] 48 140 44 -[1] 49 140 45 -[1] 50 140 42 -[1] 51 140 39 -[1] 52 140 38 -[1] 53 140 85 -[1] 54 140 31 -[1] 55 140 25 -[1] 56 140 57 -[1] 57 140 37 -[1] 58 140 35 -[1] 59 140 53 -[1] 60 140 36 -[1] 61 140 28 -[1] 62 140 51 -[1] 63 140 49 -[1] 64 140 36 -[1] 65 140 29 -[1] 66 140 31 -[1] 67 140 66 -[1] 68 140 36 -[1] 69 140 49 -[1] 70 140 33 -[1] 71 140 35 -[1] 72 140 51 -[1] 73 140 47 -[1] 74 140 35 -[1] 75 140 29 -[1] 76 140 30 -[1] 77 140 34 -[1] 78 140 43 -[1] 79 140 49 -[1] 80 140 32 -[1] 81 140 42 -[1] 82 140 36 -[1] 83 140 40 -[1] 84 140 51 -[1] 85 140 44 -[1] 86 140 45 -[1] 87 140 40 -[1] 88 140 47 -[1] 89 140 36 -[1] 90 140 31 -[1] 91 140 47 -[1] 92 140 52 -[1] 93 140 47 -[1] 94 140 37 -[1] 95 140 33 -[1] 96 140 36 -[1] 97 140 61 -[1] 98 140 50 -[1] 99 140 44 -[1] 100 140 47 -[1] 101 140 43 -[1] 102 140 34 -[1] 103 140 51 -[1] 104 140 40 -[1] 105 140 37 -[1] 106 140 40 -[1] 107 140 47 -[1] 108 140 35 -[1] 109 140 48 -[1] 110 140 42 -[1] 111 140 49 -[1] 112 140 41 -[1] 113 140 47 -[1] 114 140 62 -[1] 115 140 36 -[1] 116 140 41 -[1] 117 140 61 -[1] 118 140 40 -[1] 119 140 30 -[1] 120 140 35 -[1] 121 140 35 -[1] 122 140 55 -[1] 123 140 44 -[1] 124 140 55 -[1] 125 140 38 -[1] 126 140 39 -[1] 127 140 50 -[1] 128 140 45 -[1] 129 140 35 -[1] 130 140 32 -[1] 131 140 43 -[1] 132 140 43 -[1] 133 140 52 -[1] 134 140 33 -[1] 135 140 37 -[1] 136 140 52 -[1] 137 140 45 -[1] 138 140 40 -[1] 139 140 46 -[1] 140 140 40 -[1] 141 140 46 -[1] 142 140 62 -[1] 143 140 61 -[1] 144 140 31 -[1] 145 140 72 -[1] 146 140 44 -[1] 147 140 75 -[1] 148 140 67 -[1] 149 140 38 -[1] 150 140 43 -[1] 151 140 77 -[1] 152 140 46 -[1] 153 140 38 -[1] 154 140 52 -[1] 155 140 48 -[1] 156 140 61 -[1] 157 140 78 -[1] 158 140 42 -[1] 159 140 63 -[1] 160 140 37 -[1] 161 140 65 -[1] 162 140 35 -[1] 163 140 69 -[1] 164 140 35 -[1] 165 140 60 -[1] 166 140 28 -[1] 167 140 51 -[1] 168 140 38 -[1] 169 140 58 -[1] 170 140 45 -[1] 171 140 60 -[1] 172 140 49 -[1] 173 140 44 -[1] 174 140 51 -[1] 175 140 46 -[1] 176 140 82 -[1] 177 140 55 -[1] 178 140 42 -[1] 179 140 45 -[1] 180 140 65 -[1] 181 140 45 -[1] 182 140 48 -[1] 183 140 44 -[1] 184 140 65 -[1] 185 140 39 -[1] 186 140 74 -[1] 187 140 74 -[1] 188 140 46 -[1] 189 140 37 -[1] 190 140 60 -[1] 191 140 72 -[1] 192 140 47 -[1] 193 140 50 -[1] 194 140 41 -[1] 195 140 50 -[1] 196 140 62 -[1] 197 140 52 -[1] 198 140 44 -[1] 199 140 71 -[1] 200 140 41 -[1] 1 141 46 -[1] 2 141 34 -[1] 3 141 44 -[1] 4 141 29 -[1] 5 141 44 -[1] 6 141 45 -[1] 7 141 51 -[1] 8 141 58 -[1] 9 141 27 -[1] 10 141 34 -[1] 11 141 41 -[1] 12 141 34 -[1] 13 141 38 -[1] 14 141 58 -[1] 15 141 46 -[1] 16 141 60 -[1] 17 141 41 -[1] 18 141 41 -[1] 19 141 45 -[1] 20 141 59 -[1] 21 141 48 -[1] 22 141 40 -[1] 23 141 36 -[1] 24 141 33 -[1] 25 141 43 -[1] 26 141 32 -[1] 27 141 49 -[1] 28 141 46 -[1] 29 141 33 -[1] 30 141 35 -[1] 31 141 48 -[1] 32 141 51 -[1] 33 141 42 -[1] 34 141 48 -[1] 35 141 55 -[1] 36 141 32 -[1] 37 141 97 -[1] 38 141 49 -[1] 39 141 65 -[1] 40 141 34 -[1] 41 141 45 -[1] 42 141 42 -[1] 43 141 30 -[1] 44 141 31 -[1] 45 141 53 -[1] 46 141 36 -[1] 47 141 63 -[1] 48 141 35 -[1] 49 141 40 -[1] 50 141 45 -[1] 51 141 41 -[1] 52 141 52 -[1] 53 141 38 -[1] 54 141 32 -[1] 55 141 43 -[1] 56 141 31 -[1] 57 141 37 -[1] 58 141 33 -[1] 59 141 42 -[1] 60 141 36 -[1] 61 141 45 -[1] 62 141 35 -[1] 63 141 32 -[1] 64 141 45 -[1] 65 141 29 -[1] 66 141 68 -[1] 67 141 38 -[1] 68 141 36 -[1] 69 141 48 -[1] 70 141 45 -[1] 71 141 40 -[1] 72 141 64 -[1] 73 141 33 -[1] 74 141 44 -[1] 75 141 38 -[1] 76 141 51 -[1] 77 141 37 -[1] 78 141 43 -[1] 79 141 37 -[1] 80 141 61 -[1] 81 141 40 -[1] 82 141 40 -[1] 83 141 47 -[1] 84 141 47 -[1] 85 141 40 -[1] 86 141 32 -[1] 87 141 49 -[1] 88 141 45 -[1] 89 141 38 -[1] 90 141 44 -[1] 91 141 35 -[1] 92 141 36 -[1] 93 141 45 -[1] 94 141 39 -[1] 95 141 58 -[1] 96 141 63 -[1] 97 141 39 -[1] 98 141 56 -[1] 99 141 46 -[1] 100 141 33 -[1] 101 141 30 -[1] 102 141 35 -[1] 103 141 43 -[1] 104 141 42 -[1] 105 141 33 -[1] 106 141 39 -[1] 107 141 39 -[1] 108 141 48 -[1] 109 141 46 -[1] 110 141 75 -[1] 111 141 37 -[1] 112 141 42 -[1] 113 141 47 -[1] 114 141 72 -[1] 115 141 32 -[1] 116 141 53 -[1] 117 141 36 -[1] 118 141 41 -[1] 119 141 44 -[1] 120 141 37 -[1] 121 141 31 -[1] 122 141 40 -[1] 123 141 51 -[1] 124 141 41 -[1] 125 141 30 -[1] 126 141 61 -[1] 127 141 28 -[1] 128 141 51 -[1] 129 141 28 -[1] 130 141 41 -[1] 131 141 35 -[1] 132 141 34 -[1] 133 141 38 -[1] 134 141 40 -[1] 135 141 75 -[1] 136 141 55 -[1] 137 141 81 -[1] 138 141 56 -[1] 139 141 37 -[1] 140 141 56 -[1] 141 141 96 -[1] 142 141 76 -[1] 143 141 32 -[1] 144 141 62 -[1] 145 141 92 -[1] 146 141 62 -[1] 147 141 41 -[1] 148 141 46 -[1] 149 141 49 -[1] 150 141 34 -[1] 151 141 43 -[1] 152 141 41 -[1] 153 141 58 -[1] 154 141 57 -[1] 155 141 42 -[1] 156 141 71 -[1] 157 141 52 -[1] 158 141 43 -[1] 159 141 36 -[1] 160 141 43 -[1] 161 141 39 -[1] 162 141 47 -[1] 163 141 54 -[1] 164 141 40 -[1] 165 141 75 -[1] 166 141 76 -[1] 167 141 35 -[1] 168 141 50 -[1] 169 141 52 -[1] 170 141 56 -[1] 171 141 84 -[1] 172 141 55 -[1] 173 141 47 -[1] 174 141 67 -[1] 175 141 39 -[1] 176 141 66 -[1] 177 141 52 -[1] 178 141 43 -[1] 179 141 36 -[1] 180 141 75 -[1] 181 141 95 -[1] 182 141 59 -[1] 183 141 34 -[1] 184 141 62 -[1] 185 141 60 -[1] 186 141 61 -[1] 187 141 73 -[1] 188 141 56 -[1] 189 141 40 -[1] 190 141 49 -[1] 191 141 56 -[1] 192 141 27 -[1] 193 141 32 -[1] 194 141 69 -[1] 195 141 42 -[1] 196 141 43 -[1] 197 141 43 -[1] 198 141 68 -[1] 199 141 41 -[1] 200 141 67 -[1] 1 142 46 -[1] 2 142 72 -[1] 3 142 40 -[1] 4 142 49 -[1] 5 142 42 -[1] 6 142 41 -[1] 7 142 40 -[1] 8 142 33 -[1] 9 142 39 -[1] 10 142 36 -[1] 11 142 29 -[1] 12 142 30 -[1] 13 142 38 -[1] 14 142 59 -[1] 15 142 41 -[1] 16 142 32 -[1] 17 142 33 -[1] 18 142 34 -[1] 19 142 35 -[1] 20 142 27 -[1] 21 142 40 -[1] 22 142 29 -[1] 23 142 27 -[1] 24 142 45 -[1] 25 142 31 -[1] 26 142 33 -[1] 27 142 42 -[1] 28 142 45 -[1] 29 142 33 -[1] 30 142 31 -[1] 31 142 44 -[1] 32 142 40 -[1] 33 142 54 -[1] 34 142 72 -[1] 35 142 40 -[1] 36 142 51 -[1] 37 142 47 -[1] 38 142 36 -[1] 39 142 72 -[1] 40 142 39 -[1] 41 142 42 -[1] 42 142 48 -[1] 43 142 40 -[1] 44 142 26 -[1] 45 142 37 -[1] 46 142 40 -[1] 47 142 37 -[1] 48 142 36 -[1] 49 142 43 -[1] 50 142 32 -[1] 51 142 37 -[1] 52 142 31 -[1] 53 142 32 -[1] 54 142 41 -[1] 55 142 46 -[1] 56 142 34 -[1] 57 142 41 -[1] 58 142 37 -[1] 59 142 37 -[1] 60 142 47 -[1] 61 142 42 -[1] 62 142 32 -[1] 63 142 29 -[1] 64 142 54 -[1] 65 142 59 -[1] 66 142 36 -[1] 67 142 43 -[1] 68 142 43 -[1] 69 142 32 -[1] 70 142 39 -[1] 71 142 23 -[1] 72 142 37 -[1] 73 142 40 -[1] 74 142 52 -[1] 75 142 48 -[1] 76 142 31 -[1] 77 142 35 -[1] 78 142 39 -[1] 79 142 44 -[1] 80 142 32 -[1] 81 142 31 -[1] 82 142 34 -[1] 83 142 57 -[1] 84 142 30 -[1] 85 142 51 -[1] 86 142 41 -[1] 87 142 56 -[1] 88 142 46 -[1] 89 142 48 -[1] 90 142 36 -[1] 91 142 50 -[1] 92 142 49 -[1] 93 142 31 -[1] 94 142 39 -[1] 95 142 52 -[1] 96 142 29 -[1] 97 142 40 -[1] 98 142 40 -[1] 99 142 43 -[1] 100 142 26 -[1] 101 142 41 -[1] 102 142 31 -[1] 103 142 40 -[1] 104 142 38 -[1] 105 142 65 -[1] 106 142 43 -[1] 107 142 47 -[1] 108 142 49 -[1] 109 142 38 -[1] 110 142 56 -[1] 111 142 37 -[1] 112 142 32 -[1] 113 142 49 -[1] 114 142 30 -[1] 115 142 32 -[1] 116 142 61 -[1] 117 142 41 -[1] 118 142 35 -[1] 119 142 32 -[1] 120 142 30 -[1] 121 142 39 -[1] 122 142 69 -[1] 123 142 42 -[1] 124 142 45 -[1] 125 142 35 -[1] 126 142 44 -[1] 127 142 39 -[1] 128 142 42 -[1] 129 142 55 -[1] 130 142 78 -[1] 131 142 40 -[1] 132 142 45 -[1] 133 142 39 -[1] 134 142 41 -[1] 135 142 40 -[1] 136 142 39 -[1] 137 142 40 -[1] 138 142 44 -[1] 139 142 33 -[1] 140 142 39 -[1] 141 142 105 -[1] 142 142 38 -[1] 143 142 47 -[1] 144 142 38 -[1] 145 142 57 -[1] 146 142 54 -[1] 147 142 49 -[1] 148 142 44 -[1] 149 142 46 -[1] 150 142 37 -[1] 151 142 57 -[1] 152 142 63 -[1] 153 142 38 -[1] 154 142 33 -[1] 155 142 37 -[1] 156 142 46 -[1] 157 142 63 -[1] 158 142 43 -[1] 159 142 46 -[1] 160 142 37 -[1] 161 142 47 -[1] 162 142 63 -[1] 163 142 32 -[1] 164 142 69 -[1] 165 142 55 -[1] 166 142 48 -[1] 167 142 49 -[1] 168 142 61 -[1] 169 142 38 -[1] 170 142 75 -[1] 171 142 57 -[1] 172 142 53 -[1] 173 142 42 -[1] 174 142 51 -[1] 175 142 77 -[1] 176 142 34 -[1] 177 142 43 -[1] 178 142 134 -[1] 179 142 70 -[1] 180 142 56 -[1] 181 142 56 -[1] 182 142 56 -[1] 183 142 76 -[1] 184 142 37 -[1] 185 142 48 -[1] 186 142 60 -[1] 187 142 55 -[1] 188 142 60 -[1] 189 142 50 -[1] 190 142 42 -[1] 191 142 58 -[1] 192 142 53 -[1] 193 142 45 -[1] 194 142 55 -[1] 195 142 38 -[1] 196 142 30 -[1] 197 142 29 -[1] 198 142 42 -[1] 199 142 60 -[1] 200 142 32 -[1] 1 143 38 -[1] 2 143 54 -[1] 3 143 32 -[1] 4 143 39 -[1] 5 143 38 -[1] 6 143 33 -[1] 7 143 38 -[1] 8 143 47 -[1] 9 143 28 -[1] 10 143 29 -[1] 11 143 39 -[1] 12 143 29 -[1] 13 143 33 -[1] 14 143 29 -[1] 15 143 59 -[1] 16 143 36 -[1] 17 143 41 -[1] 18 143 36 -[1] 19 143 27 -[1] 20 143 36 -[1] 21 143 39 -[1] 22 143 35 -[1] 23 143 48 -[1] 24 143 49 -[1] 25 143 27 -[1] 26 143 45 -[1] 27 143 34 -[1] 28 143 39 -[1] 29 143 52 -[1] 30 143 42 -[1] 31 143 49 -[1] 32 143 28 -[1] 33 143 37 -[1] 34 143 57 -[1] 35 143 40 -[1] 36 143 39 -[1] 37 143 34 -[1] 38 143 27 -[1] 39 143 38 -[1] 40 143 79 -[1] 41 143 44 -[1] 42 143 31 -[1] 43 143 39 -[1] 44 143 42 -[1] 45 143 48 -[1] 46 143 38 -[1] 47 143 38 -[1] 48 143 54 -[1] 49 143 32 -[1] 50 143 61 -[1] 51 143 35 -[1] 52 143 45 -[1] 53 143 38 -[1] 54 143 39 -[1] 55 143 36 -[1] 56 143 31 -[1] 57 143 32 -[1] 58 143 27 -[1] 59 143 47 -[1] 60 143 38 -[1] 61 143 41 -[1] 62 143 32 -[1] 63 143 37 -[1] 64 143 51 -[1] 65 143 48 -[1] 66 143 40 -[1] 67 143 47 -[1] 68 143 45 -[1] 69 143 39 -[1] 70 143 42 -[1] 71 143 50 -[1] 72 143 29 -[1] 73 143 54 -[1] 74 143 33 -[1] 75 143 42 -[1] 76 143 43 -[1] 77 143 45 -[1] 78 143 42 -[1] 79 143 36 -[1] 80 143 46 -[1] 81 143 44 -[1] 82 143 34 -[1] 83 143 35 -[1] 84 143 46 -[1] 85 143 30 -[1] 86 143 60 -[1] 87 143 28 -[1] 88 143 57 -[1] 89 143 44 -[1] 90 143 43 -[1] 91 143 36 -[1] 92 143 52 -[1] 93 143 42 -[1] 94 143 51 -[1] 95 143 43 -[1] 96 143 35 -[1] 97 143 53 -[1] 98 143 48 -[1] 99 143 50 -[1] 100 143 34 -[1] 101 143 51 -[1] 102 143 35 -[1] 103 143 41 -[1] 104 143 48 -[1] 105 143 37 -[1] 106 143 43 -[1] 107 143 36 -[1] 108 143 41 -[1] 109 143 35 -[1] 110 143 39 -[1] 111 143 50 -[1] 112 143 44 -[1] 113 143 37 -[1] 114 143 44 -[1] 115 143 44 -[1] 116 143 71 -[1] 117 143 49 -[1] 118 143 46 -[1] 119 143 45 -[1] 120 143 41 -[1] 121 143 34 -[1] 122 143 49 -[1] 123 143 44 -[1] 124 143 40 -[1] 125 143 39 -[1] 126 143 28 -[1] 127 143 52 -[1] 128 143 54 -[1] 129 143 31 -[1] 130 143 40 -[1] 131 143 35 -[1] 132 143 38 -[1] 133 143 39 -[1] 134 143 66 -[1] 135 143 41 -[1] 136 143 55 -[1] 137 143 33 -[1] 138 143 40 -[1] 139 143 42 -[1] 140 143 66 -[1] 141 143 67 -[1] 142 143 48 -[1] 143 143 75 -[1] 144 143 52 -[1] 145 143 44 -[1] 146 143 41 -[1] 147 143 42 -[1] 148 143 68 -[1] 149 143 51 -[1] 150 143 40 -[1] 151 143 53 -[1] 152 143 59 -[1] 153 143 66 -[1] 154 143 62 -[1] 155 143 73 -[1] 156 143 65 -[1] 157 143 29 -[1] 158 143 56 -[1] 159 143 36 -[1] 160 143 53 -[1] 161 143 39 -[1] 162 143 80 -[1] 163 143 37 -[1] 164 143 54 -[1] 165 143 49 -[1] 166 143 44 -[1] 167 143 52 -[1] 168 143 63 -[1] 169 143 49 -[1] 170 143 42 -[1] 171 143 53 -[1] 172 143 67 -[1] 173 143 36 -[1] 174 143 66 -[1] 175 143 38 -[1] 176 143 57 -[1] 177 143 56 -[1] 178 143 42 -[1] 179 143 50 -[1] 180 143 76 -[1] 181 143 44 -[1] 182 143 58 -[1] 183 143 85 -[1] 184 143 41 -[1] 185 143 54 -[1] 186 143 52 -[1] 187 143 49 -[1] 188 143 48 -[1] 189 143 65 -[1] 190 143 45 -[1] 191 143 48 -[1] 192 143 75 -[1] 193 143 49 -[1] 194 143 36 -[1] 195 143 45 -[1] 196 143 46 -[1] 197 143 68 -[1] 198 143 45 -[1] 199 143 59 -[1] 200 143 47 -[1] 1 144 33 -[1] 2 144 35 -[1] 3 144 26 -[1] 4 144 41 -[1] 5 144 36 -[1] 6 144 29 -[1] 7 144 50 -[1] 8 144 43 -[1] 9 144 29 -[1] 10 144 46 -[1] 11 144 33 -[1] 12 144 30 -[1] 13 144 31 -[1] 14 144 38 -[1] 15 144 49 -[1] 16 144 42 -[1] 17 144 41 -[1] 18 144 31 -[1] 19 144 40 -[1] 20 144 35 -[1] 21 144 37 -[1] 22 144 39 -[1] 23 144 41 -[1] 24 144 37 -[1] 25 144 31 -[1] 26 144 50 -[1] 27 144 33 -[1] 28 144 36 -[1] 29 144 37 -[1] 30 144 28 -[1] 31 144 45 -[1] 32 144 40 -[1] 33 144 35 -[1] 34 144 39 -[1] 35 144 56 -[1] 36 144 53 -[1] 37 144 36 -[1] 38 144 45 -[1] 39 144 32 -[1] 40 144 41 -[1] 41 144 43 -[1] 42 144 41 -[1] 43 144 40 -[1] 44 144 36 -[1] 45 144 41 -[1] 46 144 28 -[1] 47 144 30 -[1] 48 144 33 -[1] 49 144 52 -[1] 50 144 39 -[1] 51 144 56 -[1] 52 144 32 -[1] 53 144 32 -[1] 54 144 32 -[1] 55 144 29 -[1] 56 144 51 -[1] 57 144 28 -[1] 58 144 41 -[1] 59 144 43 -[1] 60 144 30 -[1] 61 144 48 -[1] 62 144 63 -[1] 63 144 34 -[1] 64 144 56 -[1] 65 144 38 -[1] 66 144 33 -[1] 67 144 38 -[1] 68 144 55 -[1] 69 144 30 -[1] 70 144 59 -[1] 71 144 50 -[1] 72 144 46 -[1] 73 144 46 -[1] 74 144 74 -[1] 75 144 46 -[1] 76 144 31 -[1] 77 144 37 -[1] 78 144 31 -[1] 79 144 48 -[1] 80 144 30 -[1] 81 144 44 -[1] 82 144 55 -[1] 83 144 55 -[1] 84 144 36 -[1] 85 144 47 -[1] 86 144 39 -[1] 87 144 35 -[1] 88 144 52 -[1] 89 144 30 -[1] 90 144 55 -[1] 91 144 29 -[1] 92 144 58 -[1] 93 144 37 -[1] 94 144 58 -[1] 95 144 40 -[1] 96 144 40 -[1] 97 144 48 -[1] 98 144 38 -[1] 99 144 37 -[1] 100 144 52 -[1] 101 144 43 -[1] 102 144 57 -[1] 103 144 40 -[1] 104 144 39 -[1] 105 144 54 -[1] 106 144 45 -[1] 107 144 47 -[1] 108 144 46 -[1] 109 144 55 -[1] 110 144 25 -[1] 111 144 38 -[1] 112 144 56 -[1] 113 144 46 -[1] 114 144 39 -[1] 115 144 31 -[1] 116 144 91 -[1] 117 144 34 -[1] 118 144 39 -[1] 119 144 64 -[1] 120 144 41 -[1] 121 144 26 -[1] 122 144 53 -[1] 123 144 34 -[1] 124 144 53 -[1] 125 144 38 -[1] 126 144 49 -[1] 127 144 44 -[1] 128 144 65 -[1] 129 144 35 -[1] 130 144 29 -[1] 131 144 45 -[1] 132 144 67 -[1] 133 144 75 -[1] 134 144 38 -[1] 135 144 47 -[1] 136 144 55 -[1] 137 144 42 -[1] 138 144 49 -[1] 139 144 42 -[1] 140 144 42 -[1] 141 144 75 -[1] 142 144 48 -[1] 143 144 51 -[1] 144 144 48 -[1] 145 144 52 -[1] 146 144 43 -[1] 147 144 62 -[1] 148 144 38 -[1] 149 144 50 -[1] 150 144 53 -[1] 151 144 30 -[1] 152 144 104 -[1] 153 144 48 -[1] 154 144 45 -[1] 155 144 82 -[1] 156 144 57 -[1] 157 144 31 -[1] 158 144 66 -[1] 159 144 47 -[1] 160 144 32 -[1] 161 144 37 -[1] 162 144 38 -[1] 163 144 39 -[1] 164 144 54 -[1] 165 144 67 -[1] 166 144 42 -[1] 167 144 43 -[1] 168 144 60 -[1] 169 144 53 -[1] 170 144 54 -[1] 171 144 43 -[1] 172 144 45 -[1] 173 144 66 -[1] 174 144 38 -[1] 175 144 51 -[1] 176 144 61 -[1] 177 144 41 -[1] 178 144 70 -[1] 179 144 44 -[1] 180 144 48 -[1] 181 144 45 -[1] 182 144 48 -[1] 183 144 78 -[1] 184 144 61 -[1] 185 144 61 -[1] 186 144 71 -[1] 187 144 42 -[1] 188 144 50 -[1] 189 144 48 -[1] 190 144 55 -[1] 191 144 64 -[1] 192 144 45 -[1] 193 144 40 -[1] 194 144 44 -[1] 195 144 52 -[1] 196 144 45 -[1] 197 144 76 -[1] 198 144 74 -[1] 199 144 63 -[1] 200 144 95 -[1] 1 145 62 -[1] 2 145 46 -[1] 3 145 34 -[1] 4 145 31 -[1] 5 145 34 -[1] 6 145 28 -[1] 7 145 49 -[1] 8 145 37 -[1] 9 145 43 -[1] 10 145 34 -[1] 11 145 39 -[1] 12 145 48 -[1] 13 145 30 -[1] 14 145 29 -[1] 15 145 45 -[1] 16 145 36 -[1] 17 145 42 -[1] 18 145 33 -[1] 19 145 38 -[1] 20 145 48 -[1] 21 145 28 -[1] 22 145 33 -[1] 23 145 32 -[1] 24 145 51 -[1] 25 145 48 -[1] 26 145 36 -[1] 27 145 40 -[1] 28 145 38 -[1] 29 145 47 -[1] 30 145 40 -[1] 31 145 53 -[1] 32 145 23 -[1] 33 145 36 -[1] 34 145 48 -[1] 35 145 39 -[1] 36 145 42 -[1] 37 145 39 -[1] 38 145 49 -[1] 39 145 32 -[1] 40 145 31 -[1] 41 145 36 -[1] 42 145 32 -[1] 43 145 38 -[1] 44 145 28 -[1] 45 145 53 -[1] 46 145 37 -[1] 47 145 70 -[1] 48 145 31 -[1] 49 145 42 -[1] 50 145 36 -[1] 51 145 34 -[1] 52 145 40 -[1] 53 145 38 -[1] 54 145 35 -[1] 55 145 48 -[1] 56 145 31 -[1] 57 145 43 -[1] 58 145 38 -[1] 59 145 45 -[1] 60 145 31 -[1] 61 145 48 -[1] 62 145 50 -[1] 63 145 31 -[1] 64 145 34 -[1] 65 145 35 -[1] 66 145 25 -[1] 67 145 66 -[1] 68 145 27 -[1] 69 145 48 -[1] 70 145 49 -[1] 71 145 42 -[1] 72 145 43 -[1] 73 145 39 -[1] 74 145 50 -[1] 75 145 42 -[1] 76 145 39 -[1] 77 145 40 -[1] 78 145 48 -[1] 79 145 60 -[1] 80 145 27 -[1] 81 145 50 -[1] 82 145 36 -[1] 83 145 40 -[1] 84 145 45 -[1] 85 145 64 -[1] 86 145 31 -[1] 87 145 61 -[1] 88 145 35 -[1] 89 145 48 -[1] 90 145 51 -[1] 91 145 48 -[1] 92 145 52 -[1] 93 145 54 -[1] 94 145 34 -[1] 95 145 67 -[1] 96 145 46 -[1] 97 145 38 -[1] 98 145 40 -[1] 99 145 40 -[1] 100 145 43 -[1] 101 145 56 -[1] 102 145 50 -[1] 103 145 36 -[1] 104 145 43 -[1] 105 145 49 -[1] 106 145 29 -[1] 107 145 44 -[1] 108 145 34 -[1] 109 145 48 -[1] 110 145 30 -[1] 111 145 44 -[1] 112 145 54 -[1] 113 145 50 -[1] 114 145 33 -[1] 115 145 44 -[1] 116 145 32 -[1] 117 145 30 -[1] 118 145 46 -[1] 119 145 33 -[1] 120 145 41 -[1] 121 145 38 -[1] 122 145 45 -[1] 123 145 39 -[1] 124 145 44 -[1] 125 145 45 -[1] 126 145 38 -[1] 127 145 42 -[1] 128 145 38 -[1] 129 145 47 -[1] 130 145 40 -[1] 131 145 51 -[1] 132 145 29 -[1] 133 145 40 -[1] 134 145 47 -[1] 135 145 44 -[1] 136 145 53 -[1] 137 145 46 -[1] 138 145 41 -[1] 139 145 40 -[1] 140 145 63 -[1] 141 145 49 -[1] 142 145 72 -[1] 143 145 32 -[1] 144 145 51 -[1] 145 145 39 -[1] 146 145 54 -[1] 147 145 51 -[1] 148 145 48 -[1] 149 145 42 -[1] 150 145 73 -[1] 151 145 34 -[1] 152 145 51 -[1] 153 145 44 -[1] 154 145 66 -[1] 155 145 35 -[1] 156 145 56 -[1] 157 145 45 -[1] 158 145 56 -[1] 159 145 47 -[1] 160 145 93 -[1] 161 145 38 -[1] 162 145 51 -[1] 163 145 58 -[1] 164 145 54 -[1] 165 145 47 -[1] 166 145 66 -[1] 167 145 58 -[1] 168 145 62 -[1] 169 145 46 -[1] 170 145 75 -[1] 171 145 82 -[1] 172 145 49 -[1] 173 145 59 -[1] 174 145 90 -[1] 175 145 36 -[1] 176 145 59 -[1] 177 145 45 -[1] 178 145 52 -[1] 179 145 99 -[1] 180 145 86 -[1] 181 145 73 -[1] 182 145 42 -[1] 183 145 54 -[1] 184 145 55 -[1] 185 145 52 -[1] 186 145 45 -[1] 187 145 67 -[1] 188 145 34 -[1] 189 145 44 -[1] 190 145 79 -[1] 191 145 84 -[1] 192 145 65 -[1] 193 145 47 -[1] 194 145 47 -[1] 195 145 55 -[1] 196 145 36 -[1] 197 145 47 -[1] 198 145 77 -[1] 199 145 42 -[1] 200 145 77 -[1] 1 146 37 -[1] 2 146 39 -[1] 3 146 28 -[1] 4 146 27 -[1] 5 146 34 -[1] 6 146 37 -[1] 7 146 30 -[1] 8 146 35 -[1] 9 146 51 -[1] 10 146 46 -[1] 11 146 26 -[1] 12 146 39 -[1] 13 146 39 -[1] 14 146 38 -[1] 15 146 41 -[1] 16 146 48 -[1] 17 146 37 -[1] 18 146 53 -[1] 19 146 33 -[1] 20 146 58 -[1] 21 146 43 -[1] 22 146 36 -[1] 23 146 28 -[1] 24 146 30 -[1] 25 146 51 -[1] 26 146 40 -[1] 27 146 56 -[1] 28 146 48 -[1] 29 146 39 -[1] 30 146 24 -[1] 31 146 37 -[1] 32 146 42 -[1] 33 146 35 -[1] 34 146 29 -[1] 35 146 27 -[1] 36 146 44 -[1] 37 146 37 -[1] 38 146 44 -[1] 39 146 62 -[1] 40 146 50 -[1] 41 146 47 -[1] 42 146 58 -[1] 43 146 62 -[1] 44 146 34 -[1] 45 146 47 -[1] 46 146 44 -[1] 47 146 41 -[1] 48 146 40 -[1] 49 146 37 -[1] 50 146 29 -[1] 51 146 39 -[1] 52 146 39 -[1] 53 146 36 -[1] 54 146 36 -[1] 55 146 43 -[1] 56 146 48 -[1] 57 146 36 -[1] 58 146 27 -[1] 59 146 36 -[1] 60 146 37 -[1] 61 146 35 -[1] 62 146 40 -[1] 63 146 40 -[1] 64 146 31 -[1] 65 146 40 -[1] 66 146 36 -[1] 67 146 36 -[1] 68 146 36 -[1] 69 146 48 -[1] 70 146 42 -[1] 71 146 42 -[1] 72 146 38 -[1] 73 146 39 -[1] 74 146 57 -[1] 75 146 40 -[1] 76 146 33 -[1] 77 146 40 -[1] 78 146 35 -[1] 79 146 34 -[1] 80 146 67 -[1] 81 146 39 -[1] 82 146 35 -[1] 83 146 34 -[1] 84 146 27 -[1] 85 146 66 -[1] 86 146 26 -[1] 87 146 30 -[1] 88 146 42 -[1] 89 146 41 -[1] 90 146 37 -[1] 91 146 32 -[1] 92 146 40 -[1] 93 146 47 -[1] 94 146 36 -[1] 95 146 30 -[1] 96 146 67 -[1] 97 146 65 -[1] 98 146 34 -[1] 99 146 51 -[1] 100 146 20 -[1] 101 146 71 -[1] 102 146 53 -[1] 103 146 38 -[1] 104 146 39 -[1] 105 146 39 -[1] 106 146 44 -[1] 107 146 54 -[1] 108 146 43 -[1] 109 146 74 -[1] 110 146 41 -[1] 111 146 49 -[1] 112 146 64 -[1] 113 146 45 -[1] 114 146 25 -[1] 115 146 40 -[1] 116 146 32 -[1] 117 146 45 -[1] 118 146 35 -[1] 119 146 60 -[1] 120 146 51 -[1] 121 146 40 -[1] 122 146 33 -[1] 123 146 50 -[1] 124 146 25 -[1] 125 146 82 -[1] 126 146 29 -[1] 127 146 35 -[1] 128 146 41 -[1] 129 146 48 -[1] 130 146 31 -[1] 131 146 46 -[1] 132 146 29 -[1] 133 146 51 -[1] 134 146 37 -[1] 135 146 35 -[1] 136 146 51 -[1] 137 146 66 -[1] 138 146 33 -[1] 139 146 60 -[1] 140 146 37 -[1] 141 146 34 -[1] 142 146 30 -[1] 143 146 60 -[1] 144 146 27 -[1] 145 146 69 -[1] 146 146 63 -[1] 147 146 61 -[1] 148 146 50 -[1] 149 146 67 -[1] 150 146 36 -[1] 151 146 34 -[1] 152 146 36 -[1] 153 146 46 -[1] 154 146 35 -[1] 155 146 42 -[1] 156 146 43 -[1] 157 146 48 -[1] 158 146 41 -[1] 159 146 61 -[1] 160 146 46 -[1] 161 146 63 -[1] 162 146 37 -[1] 163 146 55 -[1] 164 146 61 -[1] 165 146 40 -[1] 166 146 75 -[1] 167 146 37 -[1] 168 146 61 -[1] 169 146 48 -[1] 170 146 40 -[1] 171 146 58 -[1] 172 146 62 -[1] 173 146 68 -[1] 174 146 60 -[1] 175 146 49 -[1] 176 146 71 -[1] 177 146 51 -[1] 178 146 51 -[1] 179 146 79 -[1] 180 146 50 -[1] 181 146 57 -[1] 182 146 46 -[1] 183 146 60 -[1] 184 146 59 -[1] 185 146 52 -[1] 186 146 63 -[1] 187 146 40 -[1] 188 146 60 -[1] 189 146 42 -[1] 190 146 86 -[1] 191 146 40 -[1] 192 146 47 -[1] 193 146 29 -[1] 194 146 54 -[1] 195 146 70 -[1] 196 146 43 -[1] 197 146 47 -[1] 198 146 32 -[1] 199 146 106 -[1] 200 146 60 -[1] 1 147 27 -[1] 2 147 35 -[1] 3 147 33 -[1] 4 147 40 -[1] 5 147 32 -[1] 6 147 35 -[1] 7 147 39 -[1] 8 147 51 -[1] 9 147 35 -[1] 10 147 29 -[1] 11 147 31 -[1] 12 147 37 -[1] 13 147 38 -[1] 14 147 37 -[1] 15 147 44 -[1] 16 147 33 -[1] 17 147 64 -[1] 18 147 30 -[1] 19 147 31 -[1] 20 147 50 -[1] 21 147 37 -[1] 22 147 52 -[1] 23 147 42 -[1] 24 147 40 -[1] 25 147 46 -[1] 26 147 49 -[1] 27 147 31 -[1] 28 147 45 -[1] 29 147 32 -[1] 30 147 31 -[1] 31 147 58 -[1] 32 147 36 -[1] 33 147 71 -[1] 34 147 62 -[1] 35 147 34 -[1] 36 147 39 -[1] 37 147 36 -[1] 38 147 53 -[1] 39 147 48 -[1] 40 147 40 -[1] 41 147 34 -[1] 42 147 37 -[1] 43 147 60 -[1] 44 147 42 -[1] 45 147 59 -[1] 46 147 51 -[1] 47 147 57 -[1] 48 147 40 -[1] 49 147 37 -[1] 50 147 30 -[1] 51 147 49 -[1] 52 147 30 -[1] 53 147 43 -[1] 54 147 24 -[1] 55 147 35 -[1] 56 147 29 -[1] 57 147 35 -[1] 58 147 42 -[1] 59 147 28 -[1] 60 147 31 -[1] 61 147 29 -[1] 62 147 74 -[1] 63 147 30 -[1] 64 147 39 -[1] 65 147 38 -[1] 66 147 39 -[1] 67 147 49 -[1] 68 147 38 -[1] 69 147 35 -[1] 70 147 28 -[1] 71 147 43 -[1] 72 147 35 -[1] 73 147 37 -[1] 74 147 58 -[1] 75 147 38 -[1] 76 147 31 -[1] 77 147 42 -[1] 78 147 43 -[1] 79 147 30 -[1] 80 147 69 -[1] 81 147 36 -[1] 82 147 45 -[1] 83 147 36 -[1] 84 147 65 -[1] 85 147 43 -[1] 86 147 42 -[1] 87 147 47 -[1] 88 147 30 -[1] 89 147 51 -[1] 90 147 32 -[1] 91 147 45 -[1] 92 147 35 -[1] 93 147 42 -[1] 94 147 33 -[1] 95 147 60 -[1] 96 147 41 -[1] 97 147 34 -[1] 98 147 56 -[1] 99 147 42 -[1] 100 147 56 -[1] 101 147 43 -[1] 102 147 40 -[1] 103 147 59 -[1] 104 147 28 -[1] 105 147 79 -[1] 106 147 48 -[1] 107 147 73 -[1] 108 147 67 -[1] 109 147 40 -[1] 110 147 32 -[1] 111 147 47 -[1] 112 147 55 -[1] 113 147 40 -[1] 114 147 57 -[1] 115 147 42 -[1] 116 147 51 -[1] 117 147 40 -[1] 118 147 36 -[1] 119 147 49 -[1] 120 147 50 -[1] 121 147 64 -[1] 122 147 45 -[1] 123 147 50 -[1] 124 147 74 -[1] 125 147 49 -[1] 126 147 26 -[1] 127 147 57 -[1] 128 147 37 -[1] 129 147 69 -[1] 130 147 56 -[1] 131 147 64 -[1] 132 147 43 -[1] 133 147 58 -[1] 134 147 37 -[1] 135 147 30 -[1] 136 147 47 -[1] 137 147 69 -[1] 138 147 39 -[1] 139 147 70 -[1] 140 147 30 -[1] 141 147 28 -[1] 142 147 66 -[1] 143 147 44 -[1] 144 147 49 -[1] 145 147 54 -[1] 146 147 56 -[1] 147 147 48 -[1] 148 147 43 -[1] 149 147 51 -[1] 150 147 43 -[1] 151 147 77 -[1] 152 147 92 -[1] 153 147 44 -[1] 154 147 43 -[1] 155 147 42 -[1] 156 147 48 -[1] 157 147 46 -[1] 158 147 50 -[1] 159 147 44 -[1] 160 147 69 -[1] 161 147 46 -[1] 162 147 92 -[1] 163 147 46 -[1] 164 147 31 -[1] 165 147 80 -[1] 166 147 56 -[1] 167 147 71 -[1] 168 147 53 -[1] 169 147 45 -[1] 170 147 72 -[1] 171 147 40 -[1] 172 147 78 -[1] 173 147 58 -[1] 174 147 46 -[1] 175 147 57 -[1] 176 147 52 -[1] 177 147 69 -[1] 178 147 72 -[1] 179 147 68 -[1] 180 147 49 -[1] 181 147 41 -[1] 182 147 66 -[1] 183 147 55 -[1] 184 147 50 -[1] 185 147 63 -[1] 186 147 71 -[1] 187 147 40 -[1] 188 147 51 -[1] 189 147 42 -[1] 190 147 36 -[1] 191 147 114 -[1] 192 147 37 -[1] 193 147 53 -[1] 194 147 41 -[1] 195 147 51 -[1] 196 147 37 -[1] 197 147 54 -[1] 198 147 56 -[1] 199 147 72 -[1] 200 147 72 -[1] 1 148 41 -[1] 2 148 33 -[1] 3 148 46 -[1] 4 148 36 -[1] 5 148 41 -[1] 6 148 38 -[1] 7 148 43 -[1] 8 148 31 -[1] 9 148 26 -[1] 10 148 32 -[1] 11 148 34 -[1] 12 148 26 -[1] 13 148 31 -[1] 14 148 67 -[1] 15 148 39 -[1] 16 148 51 -[1] 17 148 31 -[1] 18 148 60 -[1] 19 148 49 -[1] 20 148 30 -[1] 21 148 49 -[1] 22 148 33 -[1] 23 148 36 -[1] 24 148 39 -[1] 25 148 47 -[1] 26 148 28 -[1] 27 148 37 -[1] 28 148 46 -[1] 29 148 63 -[1] 30 148 28 -[1] 31 148 30 -[1] 32 148 33 -[1] 33 148 36 -[1] 34 148 38 -[1] 35 148 53 -[1] 36 148 33 -[1] 37 148 37 -[1] 38 148 37 -[1] 39 148 42 -[1] 40 148 43 -[1] 41 148 36 -[1] 42 148 28 -[1] 43 148 57 -[1] 44 148 44 -[1] 45 148 37 -[1] 46 148 47 -[1] 47 148 49 -[1] 48 148 50 -[1] 49 148 33 -[1] 50 148 49 -[1] 51 148 50 -[1] 52 148 38 -[1] 53 148 35 -[1] 54 148 30 -[1] 55 148 35 -[1] 56 148 49 -[1] 57 148 38 -[1] 58 148 43 -[1] 59 148 36 -[1] 60 148 49 -[1] 61 148 42 -[1] 62 148 41 -[1] 63 148 39 -[1] 64 148 30 -[1] 65 148 33 -[1] 66 148 37 -[1] 67 148 31 -[1] 68 148 49 -[1] 69 148 40 -[1] 70 148 29 -[1] 71 148 37 -[1] 72 148 30 -[1] 73 148 36 -[1] 74 148 50 -[1] 75 148 29 -[1] 76 148 44 -[1] 77 148 48 -[1] 78 148 30 -[1] 79 148 53 -[1] 80 148 45 -[1] 81 148 35 -[1] 82 148 46 -[1] 83 148 37 -[1] 84 148 33 -[1] 85 148 52 -[1] 86 148 37 -[1] 87 148 50 -[1] 88 148 29 -[1] 89 148 37 -[1] 90 148 49 -[1] 91 148 34 -[1] 92 148 39 -[1] 93 148 49 -[1] 94 148 43 -[1] 95 148 41 -[1] 96 148 39 -[1] 97 148 49 -[1] 98 148 29 -[1] 99 148 44 -[1] 100 148 33 -[1] 101 148 53 -[1] 102 148 38 -[1] 103 148 53 -[1] 104 148 28 -[1] 105 148 53 -[1] 106 148 43 -[1] 107 148 42 -[1] 108 148 35 -[1] 109 148 58 -[1] 110 148 67 -[1] 111 148 32 -[1] 112 148 37 -[1] 113 148 30 -[1] 114 148 43 -[1] 115 148 56 -[1] 116 148 41 -[1] 117 148 38 -[1] 118 148 39 -[1] 119 148 51 -[1] 120 148 28 -[1] 121 148 36 -[1] 122 148 36 -[1] 123 148 62 -[1] 124 148 26 -[1] 125 148 35 -[1] 126 148 41 -[1] 127 148 47 -[1] 128 148 50 -[1] 129 148 30 -[1] 130 148 37 -[1] 131 148 52 -[1] 132 148 51 -[1] 133 148 32 -[1] 134 148 59 -[1] 135 148 51 -[1] 136 148 58 -[1] 137 148 29 -[1] 138 148 49 -[1] 139 148 50 -[1] 140 148 60 -[1] 141 148 34 -[1] 142 148 40 -[1] 143 148 84 -[1] 144 148 41 -[1] 145 148 52 -[1] 146 148 45 -[1] 147 148 63 -[1] 148 148 36 -[1] 149 148 52 -[1] 150 148 37 -[1] 151 148 32 -[1] 152 148 68 -[1] 153 148 51 -[1] 154 148 53 -[1] 155 148 43 -[1] 156 148 44 -[1] 157 148 57 -[1] 158 148 39 -[1] 159 148 36 -[1] 160 148 52 -[1] 161 148 67 -[1] 162 148 37 -[1] 163 148 36 -[1] 164 148 39 -[1] 165 148 43 -[1] 166 148 88 -[1] 167 148 76 -[1] 168 148 51 -[1] 169 148 49 -[1] 170 148 93 -[1] 171 148 43 -[1] 172 148 59 -[1] 173 148 33 -[1] 174 148 59 -[1] 175 148 57 -[1] 176 148 65 -[1] 177 148 35 -[1] 178 148 77 -[1] 179 148 58 -[1] 180 148 70 -[1] 181 148 47 -[1] 182 148 50 -[1] 183 148 42 -[1] 184 148 60 -[1] 185 148 64 -[1] 186 148 55 -[1] 187 148 54 -[1] 188 148 65 -[1] 189 148 46 -[1] 190 148 66 -[1] 191 148 104 -[1] 192 148 38 -[1] 193 148 65 -[1] 194 148 44 -[1] 195 148 47 -[1] 196 148 39 -[1] 197 148 48 -[1] 198 148 40 -[1] 199 148 37 -[1] 200 148 49 -[1] 1 149 49 -[1] 2 149 26 -[1] 3 149 31 -[1] 4 149 39 -[1] 5 149 30 -[1] 6 149 32 -[1] 7 149 59 -[1] 8 149 43 -[1] 9 149 43 -[1] 10 149 40 -[1] 11 149 49 -[1] 12 149 24 -[1] 13 149 34 -[1] 14 149 43 -[1] 15 149 43 -[1] 16 149 34 -[1] 17 149 45 -[1] 18 149 65 -[1] 19 149 34 -[1] 20 149 31 -[1] 21 149 38 -[1] 22 149 33 -[1] 23 149 36 -[1] 24 149 30 -[1] 25 149 29 -[1] 26 149 47 -[1] 27 149 52 -[1] 28 149 28 -[1] 29 149 72 -[1] 30 149 30 -[1] 31 149 37 -[1] 32 149 36 -[1] 33 149 41 -[1] 34 149 43 -[1] 35 149 38 -[1] 36 149 41 -[1] 37 149 46 -[1] 38 149 49 -[1] 39 149 50 -[1] 40 149 43 -[1] 41 149 36 -[1] 42 149 43 -[1] 43 149 27 -[1] 44 149 40 -[1] 45 149 45 -[1] 46 149 42 -[1] 47 149 37 -[1] 48 149 52 -[1] 49 149 37 -[1] 50 149 35 -[1] 51 149 52 -[1] 52 149 49 -[1] 53 149 54 -[1] 54 149 41 -[1] 55 149 30 -[1] 56 149 33 -[1] 57 149 32 -[1] 58 149 40 -[1] 59 149 36 -[1] 60 149 43 -[1] 61 149 38 -[1] 62 149 38 -[1] 63 149 45 -[1] 64 149 39 -[1] 65 149 46 -[1] 66 149 48 -[1] 67 149 42 -[1] 68 149 65 -[1] 69 149 45 -[1] 70 149 41 -[1] 71 149 40 -[1] 72 149 40 -[1] 73 149 28 -[1] 74 149 44 -[1] 75 149 48 -[1] 76 149 35 -[1] 77 149 33 -[1] 78 149 50 -[1] 79 149 41 -[1] 80 149 44 -[1] 81 149 36 -[1] 82 149 32 -[1] 83 149 65 -[1] 84 149 40 -[1] 85 149 45 -[1] 86 149 44 -[1] 87 149 56 -[1] 88 149 33 -[1] 89 149 50 -[1] 90 149 49 -[1] 91 149 33 -[1] 92 149 54 -[1] 93 149 40 -[1] 94 149 49 -[1] 95 149 27 -[1] 96 149 46 -[1] 97 149 39 -[1] 98 149 54 -[1] 99 149 43 -[1] 100 149 26 -[1] 101 149 41 -[1] 102 149 37 -[1] 103 149 32 -[1] 104 149 73 -[1] 105 149 44 -[1] 106 149 46 -[1] 107 149 45 -[1] 108 149 47 -[1] 109 149 33 -[1] 110 149 32 -[1] 111 149 35 -[1] 112 149 36 -[1] 113 149 40 -[1] 114 149 34 -[1] 115 149 54 -[1] 116 149 40 -[1] 117 149 40 -[1] 118 149 50 -[1] 119 149 44 -[1] 120 149 43 -[1] 121 149 44 -[1] 122 149 53 -[1] 123 149 33 -[1] 124 149 50 -[1] 125 149 40 -[1] 126 149 46 -[1] 127 149 52 -[1] 128 149 38 -[1] 129 149 57 -[1] 130 149 33 -[1] 131 149 53 -[1] 132 149 45 -[1] 133 149 55 -[1] 134 149 43 -[1] 135 149 33 -[1] 136 149 45 -[1] 137 149 43 -[1] 138 149 65 -[1] 139 149 29 -[1] 140 149 56 -[1] 141 149 47 -[1] 142 149 54 -[1] 143 149 49 -[1] 144 149 44 -[1] 145 149 51 -[1] 146 149 42 -[1] 147 149 38 -[1] 148 149 61 -[1] 149 149 73 -[1] 150 149 42 -[1] 151 149 42 -[1] 152 149 101 -[1] 153 149 48 -[1] 154 149 38 -[1] 155 149 63 -[1] 156 149 73 -[1] 157 149 40 -[1] 158 149 48 -[1] 159 149 35 -[1] 160 149 35 -[1] 161 149 74 -[1] 162 149 44 -[1] 163 149 41 -[1] 164 149 46 -[1] 165 149 69 -[1] 166 149 34 -[1] 167 149 40 -[1] 168 149 42 -[1] 169 149 49 -[1] 170 149 93 -[1] 171 149 61 -[1] 172 149 71 -[1] 173 149 52 -[1] 174 149 42 -[1] 175 149 53 -[1] 176 149 51 -[1] 177 149 89 -[1] 178 149 43 -[1] 179 149 67 -[1] 180 149 45 -[1] 181 149 43 -[1] 182 149 48 -[1] 183 149 45 -[1] 184 149 51 -[1] 185 149 50 -[1] 186 149 77 -[1] 187 149 40 -[1] 188 149 78 -[1] 189 149 84 -[1] 190 149 46 -[1] 191 149 50 -[1] 192 149 51 -[1] 193 149 51 -[1] 194 149 50 -[1] 195 149 54 -[1] 196 149 37 -[1] 197 149 39 -[1] 198 149 42 -[1] 199 149 55 -[1] 200 149 49 -[1] 1 150 33 -[1] 2 150 39 -[1] 3 150 24 -[1] 4 150 40 -[1] 5 150 33 -[1] 6 150 57 -[1] 7 150 40 -[1] 8 150 33 -[1] 9 150 34 -[1] 10 150 33 -[1] 11 150 52 -[1] 12 150 41 -[1] 13 150 63 -[1] 14 150 38 -[1] 15 150 37 -[1] 16 150 33 -[1] 17 150 31 -[1] 18 150 36 -[1] 19 150 40 -[1] 20 150 27 -[1] 21 150 36 -[1] 22 150 41 -[1] 23 150 46 -[1] 24 150 45 -[1] 25 150 47 -[1] 26 150 42 -[1] 27 150 57 -[1] 28 150 32 -[1] 29 150 31 -[1] 30 150 28 -[1] 31 150 34 -[1] 32 150 52 -[1] 33 150 42 -[1] 34 150 43 -[1] 35 150 52 -[1] 36 150 48 -[1] 37 150 37 -[1] 38 150 49 -[1] 39 150 35 -[1] 40 150 52 -[1] 41 150 45 -[1] 42 150 56 -[1] 43 150 43 -[1] 44 150 37 -[1] 45 150 54 -[1] 46 150 28 -[1] 47 150 34 -[1] 48 150 44 -[1] 49 150 48 -[1] 50 150 53 -[1] 51 150 44 -[1] 52 150 36 -[1] 53 150 39 -[1] 54 150 39 -[1] 55 150 37 -[1] 56 150 30 -[1] 57 150 49 -[1] 58 150 34 -[1] 59 150 31 -[1] 60 150 36 -[1] 61 150 39 -[1] 62 150 49 -[1] 63 150 43 -[1] 64 150 31 -[1] 65 150 33 -[1] 66 150 44 -[1] 67 150 30 -[1] 68 150 38 -[1] 69 150 71 -[1] 70 150 36 -[1] 71 150 43 -[1] 72 150 40 -[1] 73 150 28 -[1] 74 150 52 -[1] 75 150 56 -[1] 76 150 33 -[1] 77 150 51 -[1] 78 150 47 -[1] 79 150 57 -[1] 80 150 43 -[1] 81 150 40 -[1] 82 150 37 -[1] 83 150 42 -[1] 84 150 37 -[1] 85 150 35 -[1] 86 150 38 -[1] 87 150 45 -[1] 88 150 64 -[1] 89 150 59 -[1] 90 150 39 -[1] 91 150 48 -[1] 92 150 47 -[1] 93 150 36 -[1] 94 150 34 -[1] 95 150 37 -[1] 96 150 48 -[1] 97 150 61 -[1] 98 150 40 -[1] 99 150 70 -[1] 100 150 38 -[1] 101 150 35 -[1] 102 150 43 -[1] 103 150 49 -[1] 104 150 49 -[1] 105 150 33 -[1] 106 150 36 -[1] 107 150 41 -[1] 108 150 37 -[1] 109 150 41 -[1] 110 150 44 -[1] 111 150 46 -[1] 112 150 53 -[1] 113 150 64 -[1] 114 150 39 -[1] 115 150 38 -[1] 116 150 89 -[1] 117 150 45 -[1] 118 150 43 -[1] 119 150 48 -[1] 120 150 42 -[1] 121 150 42 -[1] 122 150 38 -[1] 123 150 37 -[1] 124 150 88 -[1] 125 150 42 -[1] 126 150 37 -[1] 127 150 31 -[1] 128 150 52 -[1] 129 150 34 -[1] 130 150 61 -[1] 131 150 43 -[1] 132 150 47 -[1] 133 150 56 -[1] 134 150 37 -[1] 135 150 42 -[1] 136 150 40 -[1] 137 150 39 -[1] 138 150 47 -[1] 139 150 56 -[1] 140 150 59 -[1] 141 150 52 -[1] 142 150 68 -[1] 143 150 43 -[1] 144 150 47 -[1] 145 150 30 -[1] 146 150 55 -[1] 147 150 39 -[1] 148 150 44 -[1] 149 150 48 -[1] 150 150 73 -[1] 151 150 63 -[1] 152 150 56 -[1] 153 150 37 -[1] 154 150 31 -[1] 155 150 51 -[1] 156 150 42 -[1] 157 150 30 -[1] 158 150 40 -[1] 159 150 45 -[1] 160 150 49 -[1] 161 150 43 -[1] 162 150 46 -[1] 163 150 65 -[1] 164 150 58 -[1] 165 150 51 -[1] 166 150 27 -[1] 167 150 124 -[1] 168 150 52 -[1] 169 150 43 -[1] 170 150 51 -[1] 171 150 70 -[1] 172 150 69 -[1] 173 150 48 -[1] 174 150 47 -[1] 175 150 42 -[1] 176 150 40 -[1] 177 150 43 -[1] 178 150 62 -[1] 179 150 50 -[1] 180 150 72 -[1] 181 150 59 -[1] 182 150 36 -[1] 183 150 46 -[1] 184 150 45 -[1] 185 150 39 -[1] 186 150 54 -[1] 187 150 68 -[1] 188 150 50 -[1] 189 150 54 -[1] 190 150 77 -[1] 191 150 47 -[1] 192 150 76 -[1] 193 150 60 -[1] 194 150 63 -[1] 195 150 51 -[1] 196 150 55 -[1] 197 150 56 -[1] 198 150 36 -[1] 199 150 46 -[1] 200 150 56 -[1] 1 151 31 -[1] 2 151 37 -[1] 3 151 32 -[1] 4 151 36 -[1] 5 151 31 -[1] 6 151 40 -[1] 7 151 45 -[1] 8 151 43 -[1] 9 151 46 -[1] 10 151 39 -[1] 11 151 37 -[1] 12 151 24 -[1] 13 151 37 -[1] 14 151 44 -[1] 15 151 59 -[1] 16 151 31 -[1] 17 151 42 -[1] 18 151 32 -[1] 19 151 39 -[1] 20 151 38 -[1] 21 151 29 -[1] 22 151 43 -[1] 23 151 40 -[1] 24 151 27 -[1] 25 151 34 -[1] 26 151 63 -[1] 27 151 42 -[1] 28 151 44 -[1] 29 151 36 -[1] 30 151 37 -[1] 31 151 40 -[1] 32 151 33 -[1] 33 151 64 -[1] 34 151 39 -[1] 35 151 52 -[1] 36 151 48 -[1] 37 151 59 -[1] 38 151 50 -[1] 39 151 33 -[1] 40 151 44 -[1] 41 151 39 -[1] 42 151 51 -[1] 43 151 34 -[1] 44 151 41 -[1] 45 151 38 -[1] 46 151 37 -[1] 47 151 30 -[1] 48 151 34 -[1] 49 151 47 -[1] 50 151 39 -[1] 51 151 33 -[1] 52 151 30 -[1] 53 151 39 -[1] 54 151 40 -[1] 55 151 29 -[1] 56 151 34 -[1] 57 151 65 -[1] 58 151 40 -[1] 59 151 53 -[1] 60 151 31 -[1] 61 151 48 -[1] 62 151 55 -[1] 63 151 40 -[1] 64 151 35 -[1] 65 151 25 -[1] 66 151 36 -[1] 67 151 46 -[1] 68 151 43 -[1] 69 151 36 -[1] 70 151 37 -[1] 71 151 52 -[1] 72 151 35 -[1] 73 151 33 -[1] 74 151 39 -[1] 75 151 52 -[1] 76 151 40 -[1] 77 151 33 -[1] 78 151 42 -[1] 79 151 56 -[1] 80 151 37 -[1] 81 151 32 -[1] 82 151 45 -[1] 83 151 51 -[1] 84 151 47 -[1] 85 151 58 -[1] 86 151 43 -[1] 87 151 38 -[1] 88 151 43 -[1] 89 151 49 -[1] 90 151 48 -[1] 91 151 35 -[1] 92 151 33 -[1] 93 151 37 -[1] 94 151 45 -[1] 95 151 37 -[1] 96 151 35 -[1] 97 151 39 -[1] 98 151 55 -[1] 99 151 43 -[1] 100 151 33 -[1] 101 151 55 -[1] 102 151 42 -[1] 103 151 33 -[1] 104 151 40 -[1] 105 151 52 -[1] 106 151 33 -[1] 107 151 29 -[1] 108 151 44 -[1] 109 151 39 -[1] 110 151 50 -[1] 111 151 43 -[1] 112 151 34 -[1] 113 151 41 -[1] 114 151 34 -[1] 115 151 41 -[1] 116 151 74 -[1] 117 151 61 -[1] 118 151 52 -[1] 119 151 47 -[1] 120 151 40 -[1] 121 151 57 -[1] 122 151 38 -[1] 123 151 34 -[1] 124 151 36 -[1] 125 151 42 -[1] 126 151 36 -[1] 127 151 39 -[1] 128 151 46 -[1] 129 151 47 -[1] 130 151 32 -[1] 131 151 48 -[1] 132 151 64 -[1] 133 151 39 -[1] 134 151 40 -[1] 135 151 37 -[1] 136 151 60 -[1] 137 151 48 -[1] 138 151 59 -[1] 139 151 55 -[1] 140 151 50 -[1] 141 151 40 -[1] 142 151 58 -[1] 143 151 58 -[1] 144 151 27 -[1] 145 151 36 -[1] 146 151 38 -[1] 147 151 69 -[1] 148 151 55 -[1] 149 151 44 -[1] 150 151 52 -[1] 151 151 28 -[1] 152 151 43 -[1] 153 151 56 -[1] 154 151 39 -[1] 155 151 49 -[1] 156 151 101 -[1] 157 151 62 -[1] 158 151 41 -[1] 159 151 40 -[1] 160 151 39 -[1] 161 151 39 -[1] 162 151 39 -[1] 163 151 62 -[1] 164 151 63 -[1] 165 151 32 -[1] 166 151 45 -[1] 167 151 36 -[1] 168 151 55 -[1] 169 151 35 -[1] 170 151 62 -[1] 171 151 45 -[1] 172 151 37 -[1] 173 151 50 -[1] 174 151 40 -[1] 175 151 47 -[1] 176 151 35 -[1] 177 151 48 -[1] 178 151 49 -[1] 179 151 44 -[1] 180 151 45 -[1] 181 151 50 -[1] 182 151 57 -[1] 183 151 39 -[1] 184 151 70 -[1] 185 151 53 -[1] 186 151 92 -[1] 187 151 34 -[1] 188 151 38 -[1] 189 151 41 -[1] 190 151 53 -[1] 191 151 39 -[1] 192 151 40 -[1] 193 151 44 -[1] 194 151 58 -[1] 195 151 62 -[1] 196 151 51 -[1] 197 151 57 -[1] 198 151 58 -[1] 199 151 56 -[1] 200 151 77 -[1] 1 152 31 -[1] 2 152 34 -[1] 3 152 28 -[1] 4 152 52 -[1] 5 152 39 -[1] 6 152 60 -[1] 7 152 40 -[1] 8 152 25 -[1] 9 152 37 -[1] 10 152 80 -[1] 11 152 45 -[1] 12 152 29 -[1] 13 152 41 -[1] 14 152 37 -[1] 15 152 35 -[1] 16 152 39 -[1] 17 152 38 -[1] 18 152 43 -[1] 19 152 42 -[1] 20 152 52 -[1] 21 152 41 -[1] 22 152 31 -[1] 23 152 26 -[1] 24 152 33 -[1] 25 152 64 -[1] 26 152 47 -[1] 27 152 35 -[1] 28 152 34 -[1] 29 152 35 -[1] 30 152 63 -[1] 31 152 46 -[1] 32 152 50 -[1] 33 152 37 -[1] 34 152 41 -[1] 35 152 38 -[1] 36 152 45 -[1] 37 152 26 -[1] 38 152 34 -[1] 39 152 50 -[1] 40 152 38 -[1] 41 152 60 -[1] 42 152 39 -[1] 43 152 37 -[1] 44 152 43 -[1] 45 152 39 -[1] 46 152 49 -[1] 47 152 33 -[1] 48 152 47 -[1] 49 152 28 -[1] 50 152 41 -[1] 51 152 30 -[1] 52 152 44 -[1] 53 152 37 -[1] 54 152 40 -[1] 55 152 96 -[1] 56 152 44 -[1] 57 152 47 -[1] 58 152 24 -[1] 59 152 55 -[1] 60 152 34 -[1] 61 152 53 -[1] 62 152 29 -[1] 63 152 49 -[1] 64 152 50 -[1] 65 152 27 -[1] 66 152 47 -[1] 67 152 33 -[1] 68 152 33 -[1] 69 152 52 -[1] 70 152 35 -[1] 71 152 44 -[1] 72 152 55 -[1] 73 152 62 -[1] 74 152 46 -[1] 75 152 46 -[1] 76 152 28 -[1] 77 152 34 -[1] 78 152 47 -[1] 79 152 43 -[1] 80 152 35 -[1] 81 152 44 -[1] 82 152 37 -[1] 83 152 44 -[1] 84 152 45 -[1] 85 152 53 -[1] 86 152 46 -[1] 87 152 53 -[1] 88 152 34 -[1] 89 152 44 -[1] 90 152 49 -[1] 91 152 63 -[1] 92 152 46 -[1] 93 152 43 -[1] 94 152 39 -[1] 95 152 42 -[1] 96 152 35 -[1] 97 152 48 -[1] 98 152 40 -[1] 99 152 47 -[1] 100 152 40 -[1] 101 152 31 -[1] 102 152 49 -[1] 103 152 53 -[1] 104 152 38 -[1] 105 152 47 -[1] 106 152 44 -[1] 107 152 27 -[1] 108 152 45 -[1] 109 152 39 -[1] 110 152 40 -[1] 111 152 29 -[1] 112 152 41 -[1] 113 152 43 -[1] 114 152 54 -[1] 115 152 35 -[1] 116 152 43 -[1] 117 152 43 -[1] 118 152 32 -[1] 119 152 33 -[1] 120 152 46 -[1] 121 152 43 -[1] 122 152 38 -[1] 123 152 53 -[1] 124 152 49 -[1] 125 152 41 -[1] 126 152 41 -[1] 127 152 51 -[1] 128 152 34 -[1] 129 152 47 -[1] 130 152 45 -[1] 131 152 43 -[1] 132 152 36 -[1] 133 152 43 -[1] 134 152 30 -[1] 135 152 41 -[1] 136 152 42 -[1] 137 152 41 -[1] 138 152 48 -[1] 139 152 43 -[1] 140 152 51 -[1] 141 152 34 -[1] 142 152 41 -[1] 143 152 40 -[1] 144 152 93 -[1] 145 152 62 -[1] 146 152 39 -[1] 147 152 42 -[1] 148 152 43 -[1] 149 152 34 -[1] 150 152 43 -[1] 151 152 64 -[1] 152 152 53 -[1] 153 152 56 -[1] 154 152 37 -[1] 155 152 30 -[1] 156 152 60 -[1] 157 152 40 -[1] 158 152 27 -[1] 159 152 70 -[1] 160 152 37 -[1] 161 152 54 -[1] 162 152 49 -[1] 163 152 58 -[1] 164 152 59 -[1] 165 152 57 -[1] 166 152 26 -[1] 167 152 63 -[1] 168 152 80 -[1] 169 152 59 -[1] 170 152 76 -[1] 171 152 51 -[1] 172 152 37 -[1] 173 152 32 -[1] 174 152 53 -[1] 175 152 38 -[1] 176 152 51 -[1] 177 152 61 -[1] 178 152 43 -[1] 179 152 46 -[1] 180 152 50 -[1] 181 152 51 -[1] 182 152 48 -[1] 183 152 59 -[1] 184 152 46 -[1] 185 152 80 -[1] 186 152 46 -[1] 187 152 64 -[1] 188 152 39 -[1] 189 152 38 -[1] 190 152 53 -[1] 191 152 32 -[1] 192 152 62 -[1] 193 152 54 -[1] 194 152 45 -[1] 195 152 72 -[1] 196 152 40 -[1] 197 152 40 -[1] 198 152 37 -[1] 199 152 67 -[1] 200 152 53 -[1] 1 153 29 -[1] 2 153 31 -[1] 3 153 30 -[1] 4 153 28 -[1] 5 153 43 -[1] 6 153 32 -[1] 7 153 37 -[1] 8 153 33 -[1] 9 153 45 -[1] 10 153 38 -[1] 11 153 37 -[1] 12 153 34 -[1] 13 153 43 -[1] 14 153 36 -[1] 15 153 51 -[1] 16 153 51 -[1] 17 153 40 -[1] 18 153 37 -[1] 19 153 33 -[1] 20 153 38 -[1] 21 153 40 -[1] 22 153 46 -[1] 23 153 31 -[1] 24 153 32 -[1] 25 153 28 -[1] 26 153 36 -[1] 27 153 44 -[1] 28 153 47 -[1] 29 153 35 -[1] 30 153 52 -[1] 31 153 39 -[1] 32 153 27 -[1] 33 153 29 -[1] 34 153 54 -[1] 35 153 30 -[1] 36 153 57 -[1] 37 153 32 -[1] 38 153 40 -[1] 39 153 58 -[1] 40 153 39 -[1] 41 153 33 -[1] 42 153 34 -[1] 43 153 40 -[1] 44 153 30 -[1] 45 153 41 -[1] 46 153 37 -[1] 47 153 45 -[1] 48 153 40 -[1] 49 153 48 -[1] 50 153 41 -[1] 51 153 50 -[1] 52 153 43 -[1] 53 153 55 -[1] 54 153 70 -[1] 55 153 37 -[1] 56 153 34 -[1] 57 153 50 -[1] 58 153 30 -[1] 59 153 31 -[1] 60 153 26 -[1] 61 153 31 -[1] 62 153 30 -[1] 63 153 30 -[1] 64 153 91 -[1] 65 153 30 -[1] 66 153 43 -[1] 67 153 27 -[1] 68 153 33 -[1] 69 153 46 -[1] 70 153 68 -[1] 71 153 45 -[1] 72 153 40 -[1] 73 153 27 -[1] 74 153 45 -[1] 75 153 44 -[1] 76 153 32 -[1] 77 153 31 -[1] 78 153 43 -[1] 79 153 30 -[1] 80 153 31 -[1] 81 153 30 -[1] 82 153 29 -[1] 83 153 36 -[1] 84 153 68 -[1] 85 153 64 -[1] 86 153 48 -[1] 87 153 35 -[1] 88 153 36 -[1] 89 153 33 -[1] 90 153 34 -[1] 91 153 39 -[1] 92 153 40 -[1] 93 153 35 -[1] 94 153 36 -[1] 95 153 31 -[1] 96 153 25 -[1] 97 153 44 -[1] 98 153 53 -[1] 99 153 54 -[1] 100 153 39 -[1] 101 153 33 -[1] 102 153 50 -[1] 103 153 39 -[1] 104 153 48 -[1] 105 153 32 -[1] 106 153 26 -[1] 107 153 45 -[1] 108 153 36 -[1] 109 153 38 -[1] 110 153 35 -[1] 111 153 44 -[1] 112 153 45 -[1] 113 153 30 -[1] 114 153 44 -[1] 115 153 59 -[1] 116 153 41 -[1] 117 153 41 -[1] 118 153 27 -[1] 119 153 39 -[1] 120 153 42 -[1] 121 153 56 -[1] 122 153 46 -[1] 123 153 40 -[1] 124 153 40 -[1] 125 153 27 -[1] 126 153 59 -[1] 127 153 29 -[1] 128 153 57 -[1] 129 153 47 -[1] 130 153 38 -[1] 131 153 39 -[1] 132 153 40 -[1] 133 153 39 -[1] 134 153 44 -[1] 135 153 53 -[1] 136 153 39 -[1] 137 153 48 -[1] 138 153 40 -[1] 139 153 49 -[1] 140 153 47 -[1] 141 153 34 -[1] 142 153 43 -[1] 143 153 37 -[1] 144 153 70 -[1] 145 153 42 -[1] 146 153 41 -[1] 147 153 32 -[1] 148 153 40 -[1] 149 153 50 -[1] 150 153 41 -[1] 151 153 51 -[1] 152 153 37 -[1] 153 153 34 -[1] 154 153 80 -[1] 155 153 40 -[1] 156 153 47 -[1] 157 153 46 -[1] 158 153 32 -[1] 159 153 36 -[1] 160 153 75 -[1] 161 153 39 -[1] 162 153 38 -[1] 163 153 48 -[1] 164 153 56 -[1] 165 153 37 -[1] 166 153 39 -[1] 167 153 58 -[1] 168 153 56 -[1] 169 153 39 -[1] 170 153 60 -[1] 171 153 50 -[1] 172 153 58 -[1] 173 153 43 -[1] 174 153 54 -[1] 175 153 56 -[1] 176 153 39 -[1] 177 153 62 -[1] 178 153 57 -[1] 179 153 37 -[1] 180 153 48 -[1] 181 153 69 -[1] 182 153 50 -[1] 183 153 58 -[1] 184 153 73 -[1] 185 153 29 -[1] 186 153 49 -[1] 187 153 47 -[1] 188 153 104 -[1] 189 153 37 -[1] 190 153 55 -[1] 191 153 71 -[1] 192 153 57 -[1] 193 153 55 -[1] 194 153 39 -[1] 195 153 48 -[1] 196 153 35 -[1] 197 153 47 -[1] 198 153 53 -[1] 199 153 63 -[1] 200 153 43 -[1] 1 154 37 -[1] 2 154 33 -[1] 3 154 36 -[1] 4 154 37 -[1] 5 154 22 -[1] 6 154 55 -[1] 7 154 49 -[1] 8 154 38 -[1] 9 154 40 -[1] 10 154 41 -[1] 11 154 31 -[1] 12 154 36 -[1] 13 154 43 -[1] 14 154 32 -[1] 15 154 45 -[1] 16 154 51 -[1] 17 154 48 -[1] 18 154 38 -[1] 19 154 29 -[1] 20 154 35 -[1] 21 154 44 -[1] 22 154 55 -[1] 23 154 39 -[1] 24 154 33 -[1] 25 154 41 -[1] 26 154 35 -[1] 27 154 48 -[1] 28 154 47 -[1] 29 154 49 -[1] 30 154 29 -[1] 31 154 56 -[1] 32 154 39 -[1] 33 154 36 -[1] 34 154 37 -[1] 35 154 46 -[1] 36 154 40 -[1] 37 154 41 -[1] 38 154 33 -[1] 39 154 32 -[1] 40 154 28 -[1] 41 154 35 -[1] 42 154 44 -[1] 43 154 35 -[1] 44 154 40 -[1] 45 154 29 -[1] 46 154 29 -[1] 47 154 30 -[1] 48 154 40 -[1] 49 154 46 -[1] 50 154 33 -[1] 51 154 44 -[1] 52 154 62 -[1] 53 154 35 -[1] 54 154 46 -[1] 55 154 35 -[1] 56 154 39 -[1] 57 154 45 -[1] 58 154 62 -[1] 59 154 39 -[1] 60 154 73 -[1] 61 154 43 -[1] 62 154 41 -[1] 63 154 32 -[1] 64 154 73 -[1] 65 154 49 -[1] 66 154 44 -[1] 67 154 37 -[1] 68 154 34 -[1] 69 154 51 -[1] 70 154 28 -[1] 71 154 30 -[1] 72 154 47 -[1] 73 154 32 -[1] 74 154 54 -[1] 75 154 39 -[1] 76 154 58 -[1] 77 154 44 -[1] 78 154 57 -[1] 79 154 38 -[1] 80 154 55 -[1] 81 154 41 -[1] 82 154 47 -[1] 83 154 35 -[1] 84 154 39 -[1] 85 154 41 -[1] 86 154 42 -[1] 87 154 42 -[1] 88 154 53 -[1] 89 154 38 -[1] 90 154 53 -[1] 91 154 39 -[1] 92 154 38 -[1] 93 154 44 -[1] 94 154 65 -[1] 95 154 55 -[1] 96 154 51 -[1] 97 154 46 -[1] 98 154 33 -[1] 99 154 32 -[1] 100 154 51 -[1] 101 154 43 -[1] 102 154 42 -[1] 103 154 39 -[1] 104 154 36 -[1] 105 154 37 -[1] 106 154 44 -[1] 107 154 47 -[1] 108 154 34 -[1] 109 154 43 -[1] 110 154 42 -[1] 111 154 47 -[1] 112 154 38 -[1] 113 154 31 -[1] 114 154 37 -[1] 115 154 41 -[1] 116 154 42 -[1] 117 154 36 -[1] 118 154 53 -[1] 119 154 40 -[1] 120 154 59 -[1] 121 154 59 -[1] 122 154 30 -[1] 123 154 59 -[1] 124 154 38 -[1] 125 154 45 -[1] 126 154 48 -[1] 127 154 57 -[1] 128 154 35 -[1] 129 154 42 -[1] 130 154 33 -[1] 131 154 28 -[1] 132 154 40 -[1] 133 154 47 -[1] 134 154 41 -[1] 135 154 50 -[1] 136 154 37 -[1] 137 154 47 -[1] 138 154 35 -[1] 139 154 48 -[1] 140 154 35 -[1] 141 154 64 -[1] 142 154 68 -[1] 143 154 30 -[1] 144 154 45 -[1] 145 154 47 -[1] 146 154 37 -[1] 147 154 38 -[1] 148 154 37 -[1] 149 154 34 -[1] 150 154 44 -[1] 151 154 69 -[1] 152 154 41 -[1] 153 154 46 -[1] 154 154 51 -[1] 155 154 36 -[1] 156 154 43 -[1] 157 154 37 -[1] 158 154 38 -[1] 159 154 45 -[1] 160 154 36 -[1] 161 154 39 -[1] 162 154 44 -[1] 163 154 61 -[1] 164 154 41 -[1] 165 154 58 -[1] 166 154 45 -[1] 167 154 46 -[1] 168 154 91 -[1] 169 154 50 -[1] 170 154 59 -[1] 171 154 56 -[1] 172 154 40 -[1] 173 154 68 -[1] 174 154 48 -[1] 175 154 49 -[1] 176 154 54 -[1] 177 154 38 -[1] 178 154 49 -[1] 179 154 31 -[1] 180 154 106 -[1] 181 154 48 -[1] 182 154 48 -[1] 183 154 42 -[1] 184 154 53 -[1] 185 154 46 -[1] 186 154 41 -[1] 187 154 31 -[1] 188 154 58 -[1] 189 154 34 -[1] 190 154 77 -[1] 191 154 32 -[1] 192 154 71 -[1] 193 154 62 -[1] 194 154 55 -[1] 195 154 49 -[1] 196 154 38 -[1] 197 154 77 -[1] 198 154 43 -[1] 199 154 61 -[1] 200 154 60 -[1] 1 155 27 -[1] 2 155 30 -[1] 3 155 45 -[1] 4 155 35 -[1] 5 155 35 -[1] 6 155 42 -[1] 7 155 36 -[1] 8 155 28 -[1] 9 155 44 -[1] 10 155 28 -[1] 11 155 28 -[1] 12 155 33 -[1] 13 155 51 -[1] 14 155 32 -[1] 15 155 37 -[1] 16 155 41 -[1] 17 155 38 -[1] 18 155 39 -[1] 19 155 43 -[1] 20 155 38 -[1] 21 155 40 -[1] 22 155 59 -[1] 23 155 30 -[1] 24 155 35 -[1] 25 155 36 -[1] 26 155 39 -[1] 27 155 32 -[1] 28 155 41 -[1] 29 155 31 -[1] 30 155 40 -[1] 31 155 38 -[1] 32 155 48 -[1] 33 155 34 -[1] 34 155 39 -[1] 35 155 25 -[1] 36 155 40 -[1] 37 155 54 -[1] 38 155 33 -[1] 39 155 36 -[1] 40 155 53 -[1] 41 155 25 -[1] 42 155 41 -[1] 43 155 34 -[1] 44 155 52 -[1] 45 155 38 -[1] 46 155 45 -[1] 47 155 39 -[1] 48 155 37 -[1] 49 155 36 -[1] 50 155 32 -[1] 51 155 48 -[1] 52 155 48 -[1] 53 155 31 -[1] 54 155 52 -[1] 55 155 40 -[1] 56 155 39 -[1] 57 155 43 -[1] 58 155 36 -[1] 59 155 36 -[1] 60 155 39 -[1] 61 155 39 -[1] 62 155 32 -[1] 63 155 46 -[1] 64 155 48 -[1] 65 155 50 -[1] 66 155 37 -[1] 67 155 42 -[1] 68 155 35 -[1] 69 155 28 -[1] 70 155 43 -[1] 71 155 45 -[1] 72 155 40 -[1] 73 155 43 -[1] 74 155 38 -[1] 75 155 27 -[1] 76 155 39 -[1] 77 155 38 -[1] 78 155 65 -[1] 79 155 28 -[1] 80 155 42 -[1] 81 155 44 -[1] 82 155 33 -[1] 83 155 44 -[1] 84 155 35 -[1] 85 155 48 -[1] 86 155 42 -[1] 87 155 35 -[1] 88 155 38 -[1] 89 155 31 -[1] 90 155 52 -[1] 91 155 37 -[1] 92 155 36 -[1] 93 155 48 -[1] 94 155 33 -[1] 95 155 53 -[1] 96 155 36 -[1] 97 155 61 -[1] 98 155 38 -[1] 99 155 37 -[1] 100 155 50 -[1] 101 155 37 -[1] 102 155 34 -[1] 103 155 36 -[1] 104 155 39 -[1] 105 155 50 -[1] 106 155 32 -[1] 107 155 35 -[1] 108 155 61 -[1] 109 155 48 -[1] 110 155 37 -[1] 111 155 34 -[1] 112 155 43 -[1] 113 155 38 -[1] 114 155 37 -[1] 115 155 48 -[1] 116 155 45 -[1] 117 155 40 -[1] 118 155 33 -[1] 119 155 32 -[1] 120 155 33 -[1] 121 155 45 -[1] 122 155 29 -[1] 123 155 44 -[1] 124 155 35 -[1] 125 155 38 -[1] 126 155 38 -[1] 127 155 39 -[1] 128 155 45 -[1] 129 155 31 -[1] 130 155 48 -[1] 131 155 39 -[1] 132 155 44 -[1] 133 155 40 -[1] 134 155 39 -[1] 135 155 49 -[1] 136 155 30 -[1] 137 155 40 -[1] 138 155 44 -[1] 139 155 59 -[1] 140 155 56 -[1] 141 155 40 -[1] 142 155 33 -[1] 143 155 42 -[1] 144 155 41 -[1] 145 155 56 -[1] 146 155 41 -[1] 147 155 46 -[1] 148 155 38 -[1] 149 155 65 -[1] 150 155 83 -[1] 151 155 27 -[1] 152 155 48 -[1] 153 155 29 -[1] 154 155 55 -[1] 155 155 34 -[1] 156 155 51 -[1] 157 155 42 -[1] 158 155 79 -[1] 159 155 49 -[1] 160 155 40 -[1] 161 155 49 -[1] 162 155 77 -[1] 163 155 44 -[1] 164 155 36 -[1] 165 155 53 -[1] 166 155 36 -[1] 167 155 33 -[1] 168 155 48 -[1] 169 155 45 -[1] 170 155 53 -[1] 171 155 56 -[1] 172 155 46 -[1] 173 155 38 -[1] 174 155 50 -[1] 175 155 46 -[1] 176 155 43 -[1] 177 155 71 -[1] 178 155 42 -[1] 179 155 47 -[1] 180 155 59 -[1] 181 155 70 -[1] 182 155 49 -[1] 183 155 62 -[1] 184 155 58 -[1] 185 155 43 -[1] 186 155 41 -[1] 187 155 36 -[1] 188 155 55 -[1] 189 155 51 -[1] 190 155 52 -[1] 191 155 44 -[1] 192 155 42 -[1] 193 155 49 -[1] 194 155 73 -[1] 195 155 43 -[1] 196 155 43 -[1] 197 155 69 -[1] 198 155 33 -[1] 199 155 51 -[1] 200 155 47 -[1] 1 156 32 -[1] 2 156 48 -[1] 3 156 40 -[1] 4 156 31 -[1] 5 156 30 -[1] 6 156 36 -[1] 7 156 35 -[1] 8 156 37 -[1] 9 156 41 -[1] 10 156 42 -[1] 11 156 39 -[1] 12 156 32 -[1] 13 156 39 -[1] 14 156 29 -[1] 15 156 36 -[1] 16 156 30 -[1] 17 156 37 -[1] 18 156 33 -[1] 19 156 34 -[1] 20 156 41 -[1] 21 156 31 -[1] 22 156 40 -[1] 23 156 37 -[1] 24 156 46 -[1] 25 156 39 -[1] 26 156 37 -[1] 27 156 26 -[1] 28 156 38 -[1] 29 156 29 -[1] 30 156 31 -[1] 31 156 44 -[1] 32 156 36 -[1] 33 156 37 -[1] 34 156 39 -[1] 35 156 36 -[1] 36 156 39 -[1] 37 156 46 -[1] 38 156 35 -[1] 39 156 38 -[1] 40 156 39 -[1] 41 156 34 -[1] 42 156 30 -[1] 43 156 74 -[1] 44 156 46 -[1] 45 156 50 -[1] 46 156 57 -[1] 47 156 39 -[1] 48 156 37 -[1] 49 156 42 -[1] 50 156 45 -[1] 51 156 37 -[1] 52 156 70 -[1] 53 156 51 -[1] 54 156 37 -[1] 55 156 47 -[1] 56 156 37 -[1] 57 156 27 -[1] 58 156 44 -[1] 59 156 56 -[1] 60 156 42 -[1] 61 156 42 -[1] 62 156 50 -[1] 63 156 59 -[1] 64 156 54 -[1] 65 156 38 -[1] 66 156 36 -[1] 67 156 38 -[1] 68 156 43 -[1] 69 156 58 -[1] 70 156 32 -[1] 71 156 45 -[1] 72 156 41 -[1] 73 156 38 -[1] 74 156 36 -[1] 75 156 43 -[1] 76 156 35 -[1] 77 156 33 -[1] 78 156 34 -[1] 79 156 33 -[1] 80 156 36 -[1] 81 156 41 -[1] 82 156 40 -[1] 83 156 35 -[1] 84 156 42 -[1] 85 156 38 -[1] 86 156 42 -[1] 87 156 54 -[1] 88 156 41 -[1] 89 156 39 -[1] 90 156 44 -[1] 91 156 36 -[1] 92 156 31 -[1] 93 156 59 -[1] 94 156 43 -[1] 95 156 54 -[1] 96 156 52 -[1] 97 156 44 -[1] 98 156 36 -[1] 99 156 54 -[1] 100 156 40 -[1] 101 156 48 -[1] 102 156 58 -[1] 103 156 61 -[1] 104 156 40 -[1] 105 156 36 -[1] 106 156 37 -[1] 107 156 62 -[1] 108 156 37 -[1] 109 156 39 -[1] 110 156 28 -[1] 111 156 49 -[1] 112 156 49 -[1] 113 156 64 -[1] 114 156 33 -[1] 115 156 40 -[1] 116 156 40 -[1] 117 156 63 -[1] 118 156 39 -[1] 119 156 59 -[1] 120 156 30 -[1] 121 156 32 -[1] 122 156 42 -[1] 123 156 55 -[1] 124 156 31 -[1] 125 156 27 -[1] 126 156 40 -[1] 127 156 35 -[1] 128 156 36 -[1] 129 156 39 -[1] 130 156 34 -[1] 131 156 57 -[1] 132 156 32 -[1] 133 156 47 -[1] 134 156 40 -[1] 135 156 37 -[1] 136 156 45 -[1] 137 156 36 -[1] 138 156 47 -[1] 139 156 36 -[1] 140 156 71 -[1] 141 156 36 -[1] 142 156 36 -[1] 143 156 46 -[1] 144 156 38 -[1] 145 156 39 -[1] 146 156 40 -[1] 147 156 43 -[1] 148 156 31 -[1] 149 156 47 -[1] 150 156 54 -[1] 151 156 52 -[1] 152 156 44 -[1] 153 156 73 -[1] 154 156 35 -[1] 155 156 41 -[1] 156 156 67 -[1] 157 156 37 -[1] 158 156 36 -[1] 159 156 38 -[1] 160 156 38 -[1] 161 156 42 -[1] 162 156 46 -[1] 163 156 79 -[1] 164 156 45 -[1] 165 156 61 -[1] 166 156 38 -[1] 167 156 51 -[1] 168 156 37 -[1] 169 156 58 -[1] 170 156 27 -[1] 171 156 54 -[1] 172 156 51 -[1] 173 156 41 -[1] 174 156 46 -[1] 175 156 42 -[1] 176 156 47 -[1] 177 156 53 -[1] 178 156 46 -[1] 179 156 32 -[1] 180 156 37 -[1] 181 156 43 -[1] 182 156 36 -[1] 183 156 39 -[1] 184 156 45 -[1] 185 156 31 -[1] 186 156 46 -[1] 187 156 32 -[1] 188 156 51 -[1] 189 156 33 -[1] 190 156 44 -[1] 191 156 42 -[1] 192 156 49 -[1] 193 156 48 -[1] 194 156 53 -[1] 195 156 37 -[1] 196 156 56 -[1] 197 156 50 -[1] 198 156 65 -[1] 199 156 54 -[1] 200 156 44 -[1] 1 157 27 -[1] 2 157 41 -[1] 3 157 25 -[1] 4 157 58 -[1] 5 157 29 -[1] 6 157 29 -[1] 7 157 43 -[1] 8 157 33 -[1] 9 157 57 -[1] 10 157 38 -[1] 11 157 43 -[1] 12 157 36 -[1] 13 157 33 -[1] 14 157 48 -[1] 15 157 35 -[1] 16 157 32 -[1] 17 157 39 -[1] 18 157 38 -[1] 19 157 63 -[1] 20 157 43 -[1] 21 157 36 -[1] 22 157 41 -[1] 23 157 28 -[1] 24 157 36 -[1] 25 157 29 -[1] 26 157 38 -[1] 27 157 54 -[1] 28 157 27 -[1] 29 157 50 -[1] 30 157 32 -[1] 31 157 37 -[1] 32 157 28 -[1] 33 157 31 -[1] 34 157 37 -[1] 35 157 33 -[1] 36 157 34 -[1] 37 157 42 -[1] 38 157 27 -[1] 39 157 36 -[1] 40 157 31 -[1] 41 157 34 -[1] 42 157 35 -[1] 43 157 40 -[1] 44 157 41 -[1] 45 157 40 -[1] 46 157 34 -[1] 47 157 52 -[1] 48 157 62 -[1] 49 157 41 -[1] 50 157 30 -[1] 51 157 31 -[1] 52 157 43 -[1] 53 157 33 -[1] 54 157 34 -[1] 55 157 54 -[1] 56 157 26 -[1] 57 157 48 -[1] 58 157 33 -[1] 59 157 50 -[1] 60 157 50 -[1] 61 157 28 -[1] 62 157 45 -[1] 63 157 25 -[1] 64 157 52 -[1] 65 157 35 -[1] 66 157 32 -[1] 67 157 73 -[1] 68 157 47 -[1] 69 157 32 -[1] 70 157 45 -[1] 71 157 31 -[1] 72 157 51 -[1] 73 157 37 -[1] 74 157 41 -[1] 75 157 24 -[1] 76 157 35 -[1] 77 157 38 -[1] 78 157 31 -[1] 79 157 29 -[1] 80 157 36 -[1] 81 157 36 -[1] 82 157 35 -[1] 83 157 33 -[1] 84 157 35 -[1] 85 157 32 -[1] 86 157 43 -[1] 87 157 42 -[1] 88 157 47 -[1] 89 157 40 -[1] 90 157 55 -[1] 91 157 74 -[1] 92 157 53 -[1] 93 157 31 -[1] 94 157 26 -[1] 95 157 43 -[1] 96 157 39 -[1] 97 157 50 -[1] 98 157 33 -[1] 99 157 38 -[1] 100 157 38 -[1] 101 157 48 -[1] 102 157 34 -[1] 103 157 38 -[1] 104 157 35 -[1] 105 157 40 -[1] 106 157 35 -[1] 107 157 36 -[1] 108 157 48 -[1] 109 157 39 -[1] 110 157 46 -[1] 111 157 38 -[1] 112 157 32 -[1] 113 157 63 -[1] 114 157 42 -[1] 115 157 33 -[1] 116 157 34 -[1] 117 157 29 -[1] 118 157 37 -[1] 119 157 37 -[1] 120 157 40 -[1] 121 157 48 -[1] 122 157 55 -[1] 123 157 43 -[1] 124 157 36 -[1] 125 157 42 -[1] 126 157 49 -[1] 127 157 39 -[1] 128 157 36 -[1] 129 157 55 -[1] 130 157 29 -[1] 131 157 48 -[1] 132 157 46 -[1] 133 157 49 -[1] 134 157 45 -[1] 135 157 56 -[1] 136 157 29 -[1] 137 157 44 -[1] 138 157 62 -[1] 139 157 40 -[1] 140 157 46 -[1] 141 157 44 -[1] 142 157 31 -[1] 143 157 63 -[1] 144 157 38 -[1] 145 157 46 -[1] 146 157 43 -[1] 147 157 57 -[1] 148 157 42 -[1] 149 157 53 -[1] 150 157 56 -[1] 151 157 33 -[1] 152 157 49 -[1] 153 157 42 -[1] 154 157 47 -[1] 155 157 52 -[1] 156 157 27 -[1] 157 157 38 -[1] 158 157 43 -[1] 159 157 44 -[1] 160 157 36 -[1] 161 157 39 -[1] 162 157 39 -[1] 163 157 53 -[1] 164 157 38 -[1] 165 157 31 -[1] 166 157 51 -[1] 167 157 50 -[1] 168 157 37 -[1] 169 157 50 -[1] 170 157 39 -[1] 171 157 36 -[1] 172 157 55 -[1] 173 157 38 -[1] 174 157 75 -[1] 175 157 111 -[1] 176 157 38 -[1] 177 157 47 -[1] 178 157 49 -[1] 179 157 54 -[1] 180 157 52 -[1] 181 157 38 -[1] 182 157 61 -[1] 183 157 66 -[1] 184 157 32 -[1] 185 157 102 -[1] 186 157 71 -[1] 187 157 44 -[1] 188 157 35 -[1] 189 157 56 -[1] 190 157 54 -[1] 191 157 67 -[1] 192 157 44 -[1] 193 157 35 -[1] 194 157 73 -[1] 195 157 68 -[1] 196 157 46 -[1] 197 157 45 -[1] 198 157 45 -[1] 199 157 73 -[1] 200 157 61 -[1] 1 158 29 -[1] 2 158 27 -[1] 3 158 32 -[1] 4 158 32 -[1] 5 158 49 -[1] 6 158 41 -[1] 7 158 28 -[1] 8 158 36 -[1] 9 158 32 -[1] 10 158 35 -[1] 11 158 51 -[1] 12 158 33 -[1] 13 158 33 -[1] 14 158 32 -[1] 15 158 39 -[1] 16 158 31 -[1] 17 158 50 -[1] 18 158 41 -[1] 19 158 26 -[1] 20 158 39 -[1] 21 158 54 -[1] 22 158 37 -[1] 23 158 26 -[1] 24 158 32 -[1] 25 158 42 -[1] 26 158 30 -[1] 27 158 31 -[1] 28 158 34 -[1] 29 158 35 -[1] 30 158 44 -[1] 31 158 39 -[1] 32 158 24 -[1] 33 158 44 -[1] 34 158 37 -[1] 35 158 41 -[1] 36 158 37 -[1] 37 158 38 -[1] 38 158 37 -[1] 39 158 38 -[1] 40 158 45 -[1] 41 158 46 -[1] 42 158 37 -[1] 43 158 31 -[1] 44 158 55 -[1] 45 158 50 -[1] 46 158 50 -[1] 47 158 35 -[1] 48 158 38 -[1] 49 158 34 -[1] 50 158 43 -[1] 51 158 50 -[1] 52 158 64 -[1] 53 158 30 -[1] 54 158 78 -[1] 55 158 79 -[1] 56 158 55 -[1] 57 158 53 -[1] 58 158 42 -[1] 59 158 46 -[1] 60 158 38 -[1] 61 158 53 -[1] 62 158 33 -[1] 63 158 43 -[1] 64 158 32 -[1] 65 158 75 -[1] 66 158 37 -[1] 67 158 40 -[1] 68 158 39 -[1] 69 158 36 -[1] 70 158 55 -[1] 71 158 28 -[1] 72 158 41 -[1] 73 158 44 -[1] 74 158 44 -[1] 75 158 47 -[1] 76 158 42 -[1] 77 158 34 -[1] 78 158 40 -[1] 79 158 35 -[1] 80 158 34 -[1] 81 158 51 -[1] 82 158 34 -[1] 83 158 38 -[1] 84 158 50 -[1] 85 158 34 -[1] 86 158 37 -[1] 87 158 29 -[1] 88 158 48 -[1] 89 158 46 -[1] 90 158 69 -[1] 91 158 36 -[1] 92 158 47 -[1] 93 158 45 -[1] 94 158 56 -[1] 95 158 40 -[1] 96 158 60 -[1] 97 158 38 -[1] 98 158 56 -[1] 99 158 35 -[1] 100 158 38 -[1] 101 158 31 -[1] 102 158 35 -[1] 103 158 54 -[1] 104 158 33 -[1] 105 158 60 -[1] 106 158 43 -[1] 107 158 64 -[1] 108 158 31 -[1] 109 158 41 -[1] 110 158 44 -[1] 111 158 47 -[1] 112 158 39 -[1] 113 158 49 -[1] 114 158 52 -[1] 115 158 44 -[1] 116 158 38 -[1] 117 158 39 -[1] 118 158 52 -[1] 119 158 45 -[1] 120 158 28 -[1] 121 158 43 -[1] 122 158 39 -[1] 123 158 60 -[1] 124 158 61 -[1] 125 158 37 -[1] 126 158 40 -[1] 127 158 49 -[1] 128 158 35 -[1] 129 158 48 -[1] 130 158 32 -[1] 131 158 57 -[1] 132 158 36 -[1] 133 158 40 -[1] 134 158 44 -[1] 135 158 42 -[1] 136 158 45 -[1] 137 158 42 -[1] 138 158 39 -[1] 139 158 37 -[1] 140 158 39 -[1] 141 158 53 -[1] 142 158 35 -[1] 143 158 41 -[1] 144 158 37 -[1] 145 158 45 -[1] 146 158 55 -[1] 147 158 40 -[1] 148 158 43 -[1] 149 158 35 -[1] 150 158 42 -[1] 151 158 32 -[1] 152 158 60 -[1] 153 158 32 -[1] 154 158 36 -[1] 155 158 47 -[1] 156 158 59 -[1] 157 158 42 -[1] 158 158 58 -[1] 159 158 47 -[1] 160 158 39 -[1] 161 158 39 -[1] 162 158 67 -[1] 163 158 51 -[1] 164 158 42 -[1] 165 158 63 -[1] 166 158 35 -[1] 167 158 43 -[1] 168 158 45 -[1] 169 158 38 -[1] 170 158 45 -[1] 171 158 47 -[1] 172 158 58 -[1] 173 158 50 -[1] 174 158 38 -[1] 175 158 55 -[1] 176 158 43 -[1] 177 158 45 -[1] 178 158 32 -[1] 179 158 46 -[1] 180 158 44 -[1] 181 158 40 -[1] 182 158 39 -[1] 183 158 62 -[1] 184 158 64 -[1] 185 158 55 -[1] 186 158 55 -[1] 187 158 55 -[1] 188 158 56 -[1] 189 158 34 -[1] 190 158 37 -[1] 191 158 41 -[1] 192 158 50 -[1] 193 158 56 -[1] 194 158 42 -[1] 195 158 42 -[1] 196 158 47 -[1] 197 158 64 -[1] 198 158 34 -[1] 199 158 45 -[1] 200 158 69 -[1] 1 159 30 -[1] 2 159 44 -[1] 3 159 39 -[1] 4 159 37 -[1] 5 159 37 -[1] 6 159 41 -[1] 7 159 44 -[1] 8 159 33 -[1] 9 159 35 -[1] 10 159 32 -[1] 11 159 27 -[1] 12 159 36 -[1] 13 159 29 -[1] 14 159 36 -[1] 15 159 31 -[1] 16 159 29 -[1] 17 159 38 -[1] 18 159 35 -[1] 19 159 28 -[1] 20 159 43 -[1] 21 159 37 -[1] 22 159 48 -[1] 23 159 42 -[1] 24 159 28 -[1] 25 159 37 -[1] 26 159 35 -[1] 27 159 25 -[1] 28 159 30 -[1] 29 159 35 -[1] 30 159 64 -[1] 31 159 45 -[1] 32 159 40 -[1] 33 159 31 -[1] 34 159 35 -[1] 35 159 26 -[1] 36 159 27 -[1] 37 159 38 -[1] 38 159 31 -[1] 39 159 29 -[1] 40 159 32 -[1] 41 159 43 -[1] 42 159 40 -[1] 43 159 49 -[1] 44 159 42 -[1] 45 159 41 -[1] 46 159 31 -[1] 47 159 46 -[1] 48 159 36 -[1] 49 159 31 -[1] 50 159 36 -[1] 51 159 55 -[1] 52 159 50 -[1] 53 159 39 -[1] 54 159 31 -[1] 55 159 36 -[1] 56 159 32 -[1] 57 159 63 -[1] 58 159 35 -[1] 59 159 41 -[1] 60 159 68 -[1] 61 159 39 -[1] 62 159 36 -[1] 63 159 45 -[1] 64 159 33 -[1] 65 159 42 -[1] 66 159 35 -[1] 67 159 42 -[1] 68 159 41 -[1] 69 159 32 -[1] 70 159 45 -[1] 71 159 38 -[1] 72 159 41 -[1] 73 159 44 -[1] 74 159 53 -[1] 75 159 32 -[1] 76 159 47 -[1] 77 159 37 -[1] 78 159 38 -[1] 79 159 39 -[1] 80 159 27 -[1] 81 159 42 -[1] 82 159 34 -[1] 83 159 39 -[1] 84 159 45 -[1] 85 159 44 -[1] 86 159 43 -[1] 87 159 33 -[1] 88 159 48 -[1] 89 159 44 -[1] 90 159 51 -[1] 91 159 28 -[1] 92 159 27 -[1] 93 159 65 -[1] 94 159 55 -[1] 95 159 48 -[1] 96 159 27 -[1] 97 159 54 -[1] 98 159 62 -[1] 99 159 53 -[1] 100 159 38 -[1] 101 159 39 -[1] 102 159 39 -[1] 103 159 58 -[1] 104 159 37 -[1] 105 159 32 -[1] 106 159 43 -[1] 107 159 32 -[1] 108 159 41 -[1] 109 159 43 -[1] 110 159 41 -[1] 111 159 48 -[1] 112 159 38 -[1] 113 159 37 -[1] 114 159 34 -[1] 115 159 39 -[1] 116 159 38 -[1] 117 159 43 -[1] 118 159 53 -[1] 119 159 38 -[1] 120 159 39 -[1] 121 159 48 -[1] 122 159 41 -[1] 123 159 46 -[1] 124 159 28 -[1] 125 159 39 -[1] 126 159 49 -[1] 127 159 37 -[1] 128 159 35 -[1] 129 159 41 -[1] 130 159 35 -[1] 131 159 31 -[1] 132 159 30 -[1] 133 159 33 -[1] 134 159 99 -[1] 135 159 38 -[1] 136 159 33 -[1] 137 159 43 -[1] 138 159 34 -[1] 139 159 47 -[1] 140 159 52 -[1] 141 159 44 -[1] 142 159 43 -[1] 143 159 35 -[1] 144 159 42 -[1] 145 159 37 -[1] 146 159 40 -[1] 147 159 42 -[1] 148 159 38 -[1] 149 159 46 -[1] 150 159 80 -[1] 151 159 39 -[1] 152 159 41 -[1] 153 159 34 -[1] 154 159 56 -[1] 155 159 38 -[1] 156 159 48 -[1] 157 159 36 -[1] 158 159 57 -[1] 159 159 53 -[1] 160 159 28 -[1] 161 159 61 -[1] 162 159 34 -[1] 163 159 29 -[1] 164 159 58 -[1] 165 159 43 -[1] 166 159 29 -[1] 167 159 50 -[1] 168 159 48 -[1] 169 159 48 -[1] 170 159 40 -[1] 171 159 36 -[1] 172 159 49 -[1] 173 159 32 -[1] 174 159 37 -[1] 175 159 43 -[1] 176 159 41 -[1] 177 159 66 -[1] 178 159 32 -[1] 179 159 55 -[1] 180 159 36 -[1] 181 159 52 -[1] 182 159 50 -[1] 183 159 55 -[1] 184 159 78 -[1] 185 159 44 -[1] 186 159 39 -[1] 187 159 64 -[1] 188 159 48 -[1] 189 159 49 -[1] 190 159 42 -[1] 191 159 64 -[1] 192 159 57 -[1] 193 159 58 -[1] 194 159 73 -[1] 195 159 44 -[1] 196 159 54 -[1] 197 159 57 -[1] 198 159 36 -[1] 199 159 74 -[1] 200 159 56 -[1] 1 160 34 -[1] 2 160 34 -[1] 3 160 26 -[1] 4 160 43 -[1] 5 160 36 -[1] 6 160 49 -[1] 7 160 28 -[1] 8 160 33 -[1] 9 160 46 -[1] 10 160 29 -[1] 11 160 47 -[1] 12 160 34 -[1] 13 160 31 -[1] 14 160 32 -[1] 15 160 35 -[1] 16 160 51 -[1] 17 160 29 -[1] 18 160 35 -[1] 19 160 39 -[1] 20 160 31 -[1] 21 160 40 -[1] 22 160 49 -[1] 23 160 44 -[1] 24 160 36 -[1] 25 160 33 -[1] 26 160 32 -[1] 27 160 35 -[1] 28 160 49 -[1] 29 160 41 -[1] 30 160 36 -[1] 31 160 36 -[1] 32 160 37 -[1] 33 160 39 -[1] 34 160 37 -[1] 35 160 38 -[1] 36 160 46 -[1] 37 160 32 -[1] 38 160 36 -[1] 39 160 34 -[1] 40 160 43 -[1] 41 160 42 -[1] 42 160 51 -[1] 43 160 33 -[1] 44 160 60 -[1] 45 160 33 -[1] 46 160 38 -[1] 47 160 35 -[1] 48 160 29 -[1] 49 160 44 -[1] 50 160 78 -[1] 51 160 39 -[1] 52 160 45 -[1] 53 160 45 -[1] 54 160 49 -[1] 55 160 37 -[1] 56 160 45 -[1] 57 160 40 -[1] 58 160 47 -[1] 59 160 40 -[1] 60 160 39 -[1] 61 160 42 -[1] 62 160 34 -[1] 63 160 33 -[1] 64 160 50 -[1] 65 160 54 -[1] 66 160 34 -[1] 67 160 33 -[1] 68 160 48 -[1] 69 160 46 -[1] 70 160 34 -[1] 71 160 37 -[1] 72 160 47 -[1] 73 160 40 -[1] 74 160 46 -[1] 75 160 36 -[1] 76 160 35 -[1] 77 160 34 -[1] 78 160 49 -[1] 79 160 42 -[1] 80 160 42 -[1] 81 160 45 -[1] 82 160 36 -[1] 83 160 36 -[1] 84 160 35 -[1] 85 160 50 -[1] 86 160 36 -[1] 87 160 35 -[1] 88 160 30 -[1] 89 160 35 -[1] 90 160 50 -[1] 91 160 41 -[1] 92 160 36 -[1] 93 160 43 -[1] 94 160 43 -[1] 95 160 38 -[1] 96 160 33 -[1] 97 160 28 -[1] 98 160 42 -[1] 99 160 43 -[1] 100 160 41 -[1] 101 160 49 -[1] 102 160 40 -[1] 103 160 41 -[1] 104 160 38 -[1] 105 160 33 -[1] 106 160 37 -[1] 107 160 70 -[1] 108 160 36 -[1] 109 160 38 -[1] 110 160 36 -[1] 111 160 52 -[1] 112 160 39 -[1] 113 160 36 -[1] 114 160 36 -[1] 115 160 41 -[1] 116 160 27 -[1] 117 160 48 -[1] 118 160 39 -[1] 119 160 41 -[1] 120 160 36 -[1] 121 160 44 -[1] 122 160 39 -[1] 123 160 41 -[1] 124 160 26 -[1] 125 160 43 -[1] 126 160 44 -[1] 127 160 35 -[1] 128 160 37 -[1] 129 160 58 -[1] 130 160 43 -[1] 131 160 32 -[1] 132 160 39 -[1] 133 160 44 -[1] 134 160 38 -[1] 135 160 37 -[1] 136 160 45 -[1] 137 160 53 -[1] 138 160 52 -[1] 139 160 41 -[1] 140 160 30 -[1] 141 160 49 -[1] 142 160 36 -[1] 143 160 62 -[1] 144 160 32 -[1] 145 160 96 -[1] 146 160 32 -[1] 147 160 51 -[1] 148 160 38 -[1] 149 160 75 -[1] 150 160 41 -[1] 151 160 25 -[1] 152 160 31 -[1] 153 160 53 -[1] 154 160 42 -[1] 155 160 52 -[1] 156 160 49 -[1] 157 160 45 -[1] 158 160 59 -[1] 159 160 55 -[1] 160 160 38 -[1] 161 160 38 -[1] 162 160 42 -[1] 163 160 46 -[1] 164 160 49 -[1] 165 160 56 -[1] 166 160 33 -[1] 167 160 48 -[1] 168 160 40 -[1] 169 160 71 -[1] 170 160 39 -[1] 171 160 72 -[1] 172 160 43 -[1] 173 160 57 -[1] 174 160 30 -[1] 175 160 63 -[1] 176 160 46 -[1] 177 160 45 -[1] 178 160 51 -[1] 179 160 55 -[1] 180 160 39 -[1] 181 160 55 -[1] 182 160 43 -[1] 183 160 45 -[1] 184 160 40 -[1] 185 160 56 -[1] 186 160 119 -[1] 187 160 47 -[1] 188 160 58 -[1] 189 160 86 -[1] 190 160 41 -[1] 191 160 105 -[1] 192 160 56 -[1] 193 160 47 -[1] 194 160 60 -[1] 195 160 37 -[1] 196 160 44 -[1] 197 160 75 -[1] 198 160 50 -[1] 199 160 75 -[1] 200 160 51 -[1] 1 161 37 -[1] 2 161 37 -[1] 3 161 52 -[1] 4 161 55 -[1] 5 161 29 -[1] 6 161 36 -[1] 7 161 34 -[1] 8 161 31 -[1] 9 161 35 -[1] 10 161 34 -[1] 11 161 27 -[1] 12 161 43 -[1] 13 161 40 -[1] 14 161 26 -[1] 15 161 35 -[1] 16 161 34 -[1] 17 161 31 -[1] 18 161 33 -[1] 19 161 29 -[1] 20 161 30 -[1] 21 161 27 -[1] 22 161 32 -[1] 23 161 40 -[1] 24 161 29 -[1] 25 161 40 -[1] 26 161 41 -[1] 27 161 41 -[1] 28 161 25 -[1] 29 161 52 -[1] 30 161 28 -[1] 31 161 35 -[1] 32 161 28 -[1] 33 161 30 -[1] 34 161 31 -[1] 35 161 39 -[1] 36 161 46 -[1] 37 161 42 -[1] 38 161 34 -[1] 39 161 54 -[1] 40 161 39 -[1] 41 161 34 -[1] 42 161 43 -[1] 43 161 37 -[1] 44 161 42 -[1] 45 161 47 -[1] 46 161 40 -[1] 47 161 28 -[1] 48 161 43 -[1] 49 161 31 -[1] 50 161 36 -[1] 51 161 40 -[1] 52 161 52 -[1] 53 161 50 -[1] 54 161 26 -[1] 55 161 59 -[1] 56 161 48 -[1] 57 161 52 -[1] 58 161 36 -[1] 59 161 41 -[1] 60 161 30 -[1] 61 161 33 -[1] 62 161 49 -[1] 63 161 44 -[1] 64 161 84 -[1] 65 161 29 -[1] 66 161 35 -[1] 67 161 42 -[1] 68 161 45 -[1] 69 161 42 -[1] 70 161 37 -[1] 71 161 32 -[1] 72 161 61 -[1] 73 161 49 -[1] 74 161 32 -[1] 75 161 56 -[1] 76 161 35 -[1] 77 161 39 -[1] 78 161 36 -[1] 79 161 30 -[1] 80 161 59 -[1] 81 161 47 -[1] 82 161 40 -[1] 83 161 54 -[1] 84 161 54 -[1] 85 161 38 -[1] 86 161 37 -[1] 87 161 27 -[1] 88 161 38 -[1] 89 161 34 -[1] 90 161 38 -[1] 91 161 35 -[1] 92 161 54 -[1] 93 161 37 -[1] 94 161 45 -[1] 95 161 41 -[1] 96 161 35 -[1] 97 161 42 -[1] 98 161 36 -[1] 99 161 47 -[1] 100 161 26 -[1] 101 161 69 -[1] 102 161 53 -[1] 103 161 46 -[1] 104 161 39 -[1] 105 161 38 -[1] 106 161 32 -[1] 107 161 35 -[1] 108 161 43 -[1] 109 161 31 -[1] 110 161 52 -[1] 111 161 57 -[1] 112 161 34 -[1] 113 161 51 -[1] 114 161 40 -[1] 115 161 34 -[1] 116 161 31 -[1] 117 161 53 -[1] 118 161 41 -[1] 119 161 44 -[1] 120 161 61 -[1] 121 161 35 -[1] 122 161 42 -[1] 123 161 50 -[1] 124 161 34 -[1] 125 161 44 -[1] 126 161 58 -[1] 127 161 31 -[1] 128 161 48 -[1] 129 161 43 -[1] 130 161 40 -[1] 131 161 37 -[1] 132 161 40 -[1] 133 161 52 -[1] 134 161 53 -[1] 135 161 40 -[1] 136 161 33 -[1] 137 161 47 -[1] 138 161 55 -[1] 139 161 44 -[1] 140 161 53 -[1] 141 161 33 -[1] 142 161 53 -[1] 143 161 48 -[1] 144 161 44 -[1] 145 161 30 -[1] 146 161 36 -[1] 147 161 44 -[1] 148 161 69 -[1] 149 161 56 -[1] 150 161 35 -[1] 151 161 32 -[1] 152 161 61 -[1] 153 161 30 -[1] 154 161 41 -[1] 155 161 47 -[1] 156 161 48 -[1] 157 161 56 -[1] 158 161 39 -[1] 159 161 53 -[1] 160 161 45 -[1] 161 161 75 -[1] 162 161 65 -[1] 163 161 43 -[1] 164 161 62 -[1] 165 161 49 -[1] 166 161 68 -[1] 167 161 49 -[1] 168 161 31 -[1] 169 161 33 -[1] 170 161 62 -[1] 171 161 76 -[1] 172 161 74 -[1] 173 161 34 -[1] 174 161 63 -[1] 175 161 35 -[1] 176 161 47 -[1] 177 161 75 -[1] 178 161 54 -[1] 179 161 43 -[1] 180 161 81 -[1] 181 161 61 -[1] 182 161 44 -[1] 183 161 80 -[1] 184 161 52 -[1] 185 161 41 -[1] 186 161 73 -[1] 187 161 42 -[1] 188 161 47 -[1] 189 161 45 -[1] 190 161 53 -[1] 191 161 69 -[1] 192 161 43 -[1] 193 161 73 -[1] 194 161 47 -[1] 195 161 60 -[1] 196 161 52 -[1] 197 161 51 -[1] 198 161 46 -[1] 199 161 60 -[1] 200 161 84 -[1] 1 162 47 -[1] 2 162 32 -[1] 3 162 33 -[1] 4 162 47 -[1] 5 162 42 -[1] 6 162 83 -[1] 7 162 41 -[1] 8 162 60 -[1] 9 162 33 -[1] 10 162 34 -[1] 11 162 37 -[1] 12 162 28 -[1] 13 162 33 -[1] 14 162 27 -[1] 15 162 49 -[1] 16 162 37 -[1] 17 162 35 -[1] 18 162 53 -[1] 19 162 34 -[1] 20 162 51 -[1] 21 162 36 -[1] 22 162 31 -[1] 23 162 34 -[1] 24 162 33 -[1] 25 162 36 -[1] 26 162 41 -[1] 27 162 39 -[1] 28 162 35 -[1] 29 162 44 -[1] 30 162 31 -[1] 31 162 44 -[1] 32 162 34 -[1] 33 162 35 -[1] 34 162 38 -[1] 35 162 53 -[1] 36 162 53 -[1] 37 162 34 -[1] 38 162 37 -[1] 39 162 30 -[1] 40 162 41 -[1] 41 162 74 -[1] 42 162 33 -[1] 43 162 33 -[1] 44 162 26 -[1] 45 162 33 -[1] 46 162 28 -[1] 47 162 25 -[1] 48 162 64 -[1] 49 162 37 -[1] 50 162 26 -[1] 51 162 35 -[1] 52 162 29 -[1] 53 162 50 -[1] 54 162 37 -[1] 55 162 50 -[1] 56 162 28 -[1] 57 162 41 -[1] 58 162 45 -[1] 59 162 43 -[1] 60 162 36 -[1] 61 162 33 -[1] 62 162 43 -[1] 63 162 64 -[1] 64 162 34 -[1] 65 162 30 -[1] 66 162 42 -[1] 67 162 54 -[1] 68 162 33 -[1] 69 162 66 -[1] 70 162 27 -[1] 71 162 44 -[1] 72 162 57 -[1] 73 162 28 -[1] 74 162 31 -[1] 75 162 28 -[1] 76 162 45 -[1] 77 162 32 -[1] 78 162 37 -[1] 79 162 30 -[1] 80 162 47 -[1] 81 162 41 -[1] 82 162 32 -[1] 83 162 37 -[1] 84 162 42 -[1] 85 162 77 -[1] 86 162 41 -[1] 87 162 29 -[1] 88 162 48 -[1] 89 162 32 -[1] 90 162 38 -[1] 91 162 39 -[1] 92 162 33 -[1] 93 162 27 -[1] 94 162 62 -[1] 95 162 48 -[1] 96 162 36 -[1] 97 162 48 -[1] 98 162 40 -[1] 99 162 45 -[1] 100 162 40 -[1] 101 162 31 -[1] 102 162 48 -[1] 103 162 47 -[1] 104 162 64 -[1] 105 162 45 -[1] 106 162 37 -[1] 107 162 56 -[1] 108 162 31 -[1] 109 162 27 -[1] 110 162 42 -[1] 111 162 33 -[1] 112 162 42 -[1] 113 162 41 -[1] 114 162 42 -[1] 115 162 50 -[1] 116 162 45 -[1] 117 162 73 -[1] 118 162 57 -[1] 119 162 34 -[1] 120 162 47 -[1] 121 162 38 -[1] 122 162 32 -[1] 123 162 47 -[1] 124 162 39 -[1] 125 162 42 -[1] 126 162 39 -[1] 127 162 48 -[1] 128 162 37 -[1] 129 162 37 -[1] 130 162 34 -[1] 131 162 67 -[1] 132 162 47 -[1] 133 162 38 -[1] 134 162 31 -[1] 135 162 53 -[1] 136 162 41 -[1] 137 162 73 -[1] 138 162 37 -[1] 139 162 32 -[1] 140 162 37 -[1] 141 162 46 -[1] 142 162 28 -[1] 143 162 40 -[1] 144 162 40 -[1] 145 162 33 -[1] 146 162 38 -[1] 147 162 47 -[1] 148 162 42 -[1] 149 162 35 -[1] 150 162 54 -[1] 151 162 33 -[1] 152 162 39 -[1] 153 162 40 -[1] 154 162 34 -[1] 155 162 83 -[1] 156 162 38 -[1] 157 162 45 -[1] 158 162 62 -[1] 159 162 35 -[1] 160 162 41 -[1] 161 162 38 -[1] 162 162 39 -[1] 163 162 91 -[1] 164 162 50 -[1] 165 162 37 -[1] 166 162 48 -[1] 167 162 48 -[1] 168 162 51 -[1] 169 162 103 -[1] 170 162 43 -[1] 171 162 46 -[1] 172 162 67 -[1] 173 162 43 -[1] 174 162 44 -[1] 175 162 41 -[1] 176 162 50 -[1] 177 162 39 -[1] 178 162 57 -[1] 179 162 52 -[1] 180 162 35 -[1] 181 162 50 -[1] 182 162 42 -[1] 183 162 59 -[1] 184 162 89 -[1] 185 162 46 -[1] 186 162 53 -[1] 187 162 46 -[1] 188 162 39 -[1] 189 162 61 -[1] 190 162 85 -[1] 191 162 49 -[1] 192 162 41 -[1] 193 162 45 -[1] 194 162 46 -[1] 195 162 47 -[1] 196 162 72 -[1] 197 162 51 -[1] 198 162 53 -[1] 199 162 82 -[1] 200 162 67 -[1] 1 163 33 -[1] 2 163 60 -[1] 3 163 45 -[1] 4 163 30 -[1] 5 163 47 -[1] 6 163 31 -[1] 7 163 40 -[1] 8 163 49 -[1] 9 163 28 -[1] 10 163 27 -[1] 11 163 31 -[1] 12 163 40 -[1] 13 163 36 -[1] 14 163 36 -[1] 15 163 50 -[1] 16 163 29 -[1] 17 163 40 -[1] 18 163 56 -[1] 19 163 49 -[1] 20 163 33 -[1] 21 163 32 -[1] 22 163 33 -[1] 23 163 36 -[1] 24 163 45 -[1] 25 163 40 -[1] 26 163 37 -[1] 27 163 46 -[1] 28 163 46 -[1] 29 163 52 -[1] 30 163 35 -[1] 31 163 40 -[1] 32 163 30 -[1] 33 163 32 -[1] 34 163 36 -[1] 35 163 34 -[1] 36 163 51 -[1] 37 163 37 -[1] 38 163 54 -[1] 39 163 52 -[1] 40 163 35 -[1] 41 163 30 -[1] 42 163 47 -[1] 43 163 32 -[1] 44 163 35 -[1] 45 163 27 -[1] 46 163 40 -[1] 47 163 34 -[1] 48 163 71 -[1] 49 163 31 -[1] 50 163 31 -[1] 51 163 57 -[1] 52 163 41 -[1] 53 163 59 -[1] 54 163 44 -[1] 55 163 45 -[1] 56 163 39 -[1] 57 163 36 -[1] 58 163 39 -[1] 59 163 34 -[1] 60 163 39 -[1] 61 163 30 -[1] 62 163 47 -[1] 63 163 34 -[1] 64 163 51 -[1] 65 163 39 -[1] 66 163 52 -[1] 67 163 37 -[1] 68 163 36 -[1] 69 163 37 -[1] 70 163 33 -[1] 71 163 67 -[1] 72 163 47 -[1] 73 163 29 -[1] 74 163 34 -[1] 75 163 43 -[1] 76 163 37 -[1] 77 163 46 -[1] 78 163 52 -[1] 79 163 49 -[1] 80 163 53 -[1] 81 163 40 -[1] 82 163 40 -[1] 83 163 34 -[1] 84 163 39 -[1] 85 163 68 -[1] 86 163 38 -[1] 87 163 39 -[1] 88 163 34 -[1] 89 163 30 -[1] 90 163 33 -[1] 91 163 31 -[1] 92 163 27 -[1] 93 163 36 -[1] 94 163 41 -[1] 95 163 50 -[1] 96 163 35 -[1] 97 163 34 -[1] 98 163 40 -[1] 99 163 47 -[1] 100 163 32 -[1] 101 163 34 -[1] 102 163 38 -[1] 103 163 32 -[1] 104 163 57 -[1] 105 163 61 -[1] 106 163 50 -[1] 107 163 47 -[1] 108 163 34 -[1] 109 163 41 -[1] 110 163 45 -[1] 111 163 49 -[1] 112 163 54 -[1] 113 163 52 -[1] 114 163 53 -[1] 115 163 38 -[1] 116 163 29 -[1] 117 163 28 -[1] 118 163 39 -[1] 119 163 26 -[1] 120 163 34 -[1] 121 163 44 -[1] 122 163 31 -[1] 123 163 34 -[1] 124 163 50 -[1] 125 163 47 -[1] 126 163 46 -[1] 127 163 51 -[1] 128 163 34 -[1] 129 163 37 -[1] 130 163 51 -[1] 131 163 38 -[1] 132 163 43 -[1] 133 163 46 -[1] 134 163 35 -[1] 135 163 48 -[1] 136 163 31 -[1] 137 163 29 -[1] 138 163 42 -[1] 139 163 39 -[1] 140 163 46 -[1] 141 163 31 -[1] 142 163 27 -[1] 143 163 80 -[1] 144 163 45 -[1] 145 163 52 -[1] 146 163 46 -[1] 147 163 38 -[1] 148 163 50 -[1] 149 163 38 -[1] 150 163 38 -[1] 151 163 39 -[1] 152 163 36 -[1] 153 163 36 -[1] 154 163 38 -[1] 155 163 55 -[1] 156 163 42 -[1] 157 163 43 -[1] 158 163 50 -[1] 159 163 41 -[1] 160 163 38 -[1] 161 163 34 -[1] 162 163 41 -[1] 163 163 43 -[1] 164 163 37 -[1] 165 163 32 -[1] 166 163 53 -[1] 167 163 37 -[1] 168 163 64 -[1] 169 163 41 -[1] 170 163 62 -[1] 171 163 56 -[1] 172 163 54 -[1] 173 163 54 -[1] 174 163 31 -[1] 175 163 68 -[1] 176 163 35 -[1] 177 163 75 -[1] 178 163 51 -[1] 179 163 42 -[1] 180 163 51 -[1] 181 163 35 -[1] 182 163 61 -[1] 183 163 41 -[1] 184 163 60 -[1] 185 163 38 -[1] 186 163 43 -[1] 187 163 36 -[1] 188 163 42 -[1] 189 163 65 -[1] 190 163 55 -[1] 191 163 81 -[1] 192 163 38 -[1] 193 163 44 -[1] 194 163 51 -[1] 195 163 63 -[1] 196 163 48 -[1] 197 163 79 -[1] 198 163 60 -[1] 199 163 33 -[1] 200 163 59 -[1] 1 164 43 -[1] 2 164 27 -[1] 3 164 40 -[1] 4 164 37 -[1] 5 164 40 -[1] 6 164 33 -[1] 7 164 26 -[1] 8 164 35 -[1] 9 164 41 -[1] 10 164 26 -[1] 11 164 39 -[1] 12 164 43 -[1] 13 164 38 -[1] 14 164 28 -[1] 15 164 31 -[1] 16 164 34 -[1] 17 164 41 -[1] 18 164 51 -[1] 19 164 34 -[1] 20 164 39 -[1] 21 164 56 -[1] 22 164 47 -[1] 23 164 44 -[1] 24 164 41 -[1] 25 164 36 -[1] 26 164 49 -[1] 27 164 29 -[1] 28 164 33 -[1] 29 164 30 -[1] 30 164 28 -[1] 31 164 29 -[1] 32 164 29 -[1] 33 164 42 -[1] 34 164 29 -[1] 35 164 34 -[1] 36 164 31 -[1] 37 164 37 -[1] 38 164 54 -[1] 39 164 36 -[1] 40 164 47 -[1] 41 164 34 -[1] 42 164 38 -[1] 43 164 28 -[1] 44 164 52 -[1] 45 164 45 -[1] 46 164 31 -[1] 47 164 37 -[1] 48 164 33 -[1] 49 164 31 -[1] 50 164 34 -[1] 51 164 37 -[1] 52 164 36 -[1] 53 164 41 -[1] 54 164 32 -[1] 55 164 43 -[1] 56 164 32 -[1] 57 164 34 -[1] 58 164 46 -[1] 59 164 45 -[1] 60 164 40 -[1] 61 164 29 -[1] 62 164 34 -[1] 63 164 47 -[1] 64 164 42 -[1] 65 164 46 -[1] 66 164 44 -[1] 67 164 36 -[1] 68 164 57 -[1] 69 164 58 -[1] 70 164 41 -[1] 71 164 50 -[1] 72 164 39 -[1] 73 164 34 -[1] 74 164 45 -[1] 75 164 34 -[1] 76 164 41 -[1] 77 164 33 -[1] 78 164 34 -[1] 79 164 38 -[1] 80 164 42 -[1] 81 164 58 -[1] 82 164 37 -[1] 83 164 45 -[1] 84 164 38 -[1] 85 164 36 -[1] 86 164 57 -[1] 87 164 42 -[1] 88 164 38 -[1] 89 164 38 -[1] 90 164 36 -[1] 91 164 34 -[1] 92 164 28 -[1] 93 164 36 -[1] 94 164 35 -[1] 95 164 37 -[1] 96 164 43 -[1] 97 164 53 -[1] 98 164 64 -[1] 99 164 37 -[1] 100 164 30 -[1] 101 164 39 -[1] 102 164 43 -[1] 103 164 40 -[1] 104 164 33 -[1] 105 164 44 -[1] 106 164 28 -[1] 107 164 29 -[1] 108 164 125 -[1] 109 164 59 -[1] 110 164 34 -[1] 111 164 47 -[1] 112 164 38 -[1] 113 164 35 -[1] 114 164 38 -[1] 115 164 36 -[1] 116 164 35 -[1] 117 164 62 -[1] 118 164 38 -[1] 119 164 48 -[1] 120 164 39 -[1] 121 164 34 -[1] 122 164 45 -[1] 123 164 30 -[1] 124 164 37 -[1] 125 164 28 -[1] 126 164 36 -[1] 127 164 35 -[1] 128 164 38 -[1] 129 164 56 -[1] 130 164 52 -[1] 131 164 45 -[1] 132 164 64 -[1] 133 164 47 -[1] 134 164 73 -[1] 135 164 57 -[1] 136 164 49 -[1] 137 164 37 -[1] 138 164 43 -[1] 139 164 34 -[1] 140 164 60 -[1] 141 164 53 -[1] 142 164 47 -[1] 143 164 55 -[1] 144 164 40 -[1] 145 164 55 -[1] 146 164 47 -[1] 147 164 38 -[1] 148 164 58 -[1] 149 164 36 -[1] 150 164 35 -[1] 151 164 43 -[1] 152 164 44 -[1] 153 164 63 -[1] 154 164 45 -[1] 155 164 50 -[1] 156 164 35 -[1] 157 164 42 -[1] 158 164 55 -[1] 159 164 49 -[1] 160 164 90 -[1] 161 164 43 -[1] 162 164 41 -[1] 163 164 38 -[1] 164 164 33 -[1] 165 164 66 -[1] 166 164 52 -[1] 167 164 44 -[1] 168 164 64 -[1] 169 164 58 -[1] 170 164 49 -[1] 171 164 48 -[1] 172 164 43 -[1] 173 164 48 -[1] 174 164 49 -[1] 175 164 64 -[1] 176 164 77 -[1] 177 164 37 -[1] 178 164 44 -[1] 179 164 46 -[1] 180 164 70 -[1] 181 164 38 -[1] 182 164 44 -[1] 183 164 39 -[1] 184 164 73 -[1] 185 164 42 -[1] 186 164 38 -[1] 187 164 53 -[1] 188 164 77 -[1] 189 164 37 -[1] 190 164 54 -[1] 191 164 48 -[1] 192 164 65 -[1] 193 164 63 -[1] 194 164 61 -[1] 195 164 72 -[1] 196 164 46 -[1] 197 164 65 -[1] 198 164 64 -[1] 199 164 59 -[1] 200 164 47 -[1] 1 165 33 -[1] 2 165 27 -[1] 3 165 48 -[1] 4 165 38 -[1] 5 165 59 -[1] 6 165 37 -[1] 7 165 36 -[1] 8 165 49 -[1] 9 165 38 -[1] 10 165 24 -[1] 11 165 29 -[1] 12 165 33 -[1] 13 165 36 -[1] 14 165 41 -[1] 15 165 35 -[1] 16 165 44 -[1] 17 165 29 -[1] 18 165 33 -[1] 19 165 39 -[1] 20 165 36 -[1] 21 165 44 -[1] 22 165 53 -[1] 23 165 58 -[1] 24 165 50 -[1] 25 165 35 -[1] 26 165 32 -[1] 27 165 36 -[1] 28 165 41 -[1] 29 165 45 -[1] 30 165 43 -[1] 31 165 32 -[1] 32 165 26 -[1] 33 165 45 -[1] 34 165 31 -[1] 35 165 46 -[1] 36 165 33 -[1] 37 165 23 -[1] 38 165 39 -[1] 39 165 35 -[1] 40 165 59 -[1] 41 165 32 -[1] 42 165 35 -[1] 43 165 30 -[1] 44 165 49 -[1] 45 165 38 -[1] 46 165 51 -[1] 47 165 28 -[1] 48 165 31 -[1] 49 165 39 -[1] 50 165 36 -[1] 51 165 41 -[1] 52 165 32 -[1] 53 165 40 -[1] 54 165 58 -[1] 55 165 36 -[1] 56 165 33 -[1] 57 165 33 -[1] 58 165 50 -[1] 59 165 32 -[1] 60 165 45 -[1] 61 165 35 -[1] 62 165 37 -[1] 63 165 41 -[1] 64 165 39 -[1] 65 165 58 -[1] 66 165 39 -[1] 67 165 42 -[1] 68 165 41 -[1] 69 165 26 -[1] 70 165 29 -[1] 71 165 38 -[1] 72 165 47 -[1] 73 165 45 -[1] 74 165 30 -[1] 75 165 34 -[1] 76 165 32 -[1] 77 165 34 -[1] 78 165 44 -[1] 79 165 41 -[1] 80 165 58 -[1] 81 165 35 -[1] 82 165 34 -[1] 83 165 33 -[1] 84 165 34 -[1] 85 165 58 -[1] 86 165 70 -[1] 87 165 50 -[1] 88 165 35 -[1] 89 165 40 -[1] 90 165 33 -[1] 91 165 34 -[1] 92 165 41 -[1] 93 165 38 -[1] 94 165 40 -[1] 95 165 41 -[1] 96 165 35 -[1] 97 165 40 -[1] 98 165 33 -[1] 99 165 34 -[1] 100 165 48 -[1] 101 165 67 -[1] 102 165 35 -[1] 103 165 51 -[1] 104 165 36 -[1] 105 165 43 -[1] 106 165 31 -[1] 107 165 52 -[1] 108 165 32 -[1] 109 165 33 -[1] 110 165 56 -[1] 111 165 37 -[1] 112 165 48 -[1] 113 165 29 -[1] 114 165 24 -[1] 115 165 30 -[1] 116 165 42 -[1] 117 165 42 -[1] 118 165 53 -[1] 119 165 39 -[1] 120 165 37 -[1] 121 165 39 -[1] 122 165 53 -[1] 123 165 33 -[1] 124 165 58 -[1] 125 165 42 -[1] 126 165 33 -[1] 127 165 51 -[1] 128 165 32 -[1] 129 165 30 -[1] 130 165 45 -[1] 131 165 65 -[1] 132 165 40 -[1] 133 165 43 -[1] 134 165 48 -[1] 135 165 44 -[1] 136 165 44 -[1] 137 165 46 -[1] 138 165 37 -[1] 139 165 54 -[1] 140 165 42 -[1] 141 165 49 -[1] 142 165 33 -[1] 143 165 38 -[1] 144 165 45 -[1] 145 165 37 -[1] 146 165 51 -[1] 147 165 53 -[1] 148 165 34 -[1] 149 165 46 -[1] 150 165 54 -[1] 151 165 39 -[1] 152 165 66 -[1] 153 165 38 -[1] 154 165 43 -[1] 155 165 38 -[1] 156 165 77 -[1] 157 165 35 -[1] 158 165 44 -[1] 159 165 29 -[1] 160 165 46 -[1] 161 165 31 -[1] 162 165 34 -[1] 163 165 41 -[1] 164 165 32 -[1] 165 165 25 -[1] 166 165 33 -[1] 167 165 54 -[1] 168 165 33 -[1] 169 165 38 -[1] 170 165 38 -[1] 171 165 77 -[1] 172 165 37 -[1] 173 165 47 -[1] 174 165 80 -[1] 175 165 38 -[1] 176 165 47 -[1] 177 165 51 -[1] 178 165 58 -[1] 179 165 94 -[1] 180 165 38 -[1] 181 165 43 -[1] 182 165 45 -[1] 183 165 53 -[1] 184 165 61 -[1] 185 165 41 -[1] 186 165 31 -[1] 187 165 41 -[1] 188 165 50 -[1] 189 165 64 -[1] 190 165 80 -[1] 191 165 61 -[1] 192 165 46 -[1] 193 165 37 -[1] 194 165 43 -[1] 195 165 49 -[1] 196 165 36 -[1] 197 165 34 -[1] 198 165 62 -[1] 199 165 100 -[1] 200 165 67 -[1] 1 166 37 -[1] 2 166 29 -[1] 3 166 42 -[1] 4 166 31 -[1] 5 166 36 -[1] 6 166 54 -[1] 7 166 38 -[1] 8 166 44 -[1] 9 166 37 -[1] 10 166 37 -[1] 11 166 44 -[1] 12 166 48 -[1] 13 166 29 -[1] 14 166 34 -[1] 15 166 37 -[1] 16 166 35 -[1] 17 166 30 -[1] 18 166 41 -[1] 19 166 33 -[1] 20 166 31 -[1] 21 166 46 -[1] 22 166 36 -[1] 23 166 31 -[1] 24 166 25 -[1] 25 166 44 -[1] 26 166 32 -[1] 27 166 30 -[1] 28 166 36 -[1] 29 166 32 -[1] 30 166 34 -[1] 31 166 41 -[1] 32 166 27 -[1] 33 166 41 -[1] 34 166 29 -[1] 35 166 46 -[1] 36 166 33 -[1] 37 166 58 -[1] 38 166 42 -[1] 39 166 57 -[1] 40 166 35 -[1] 41 166 33 -[1] 42 166 40 -[1] 43 166 28 -[1] 44 166 37 -[1] 45 166 33 -[1] 46 166 44 -[1] 47 166 45 -[1] 48 166 36 -[1] 49 166 37 -[1] 50 166 37 -[1] 51 166 36 -[1] 52 166 52 -[1] 53 166 44 -[1] 54 166 42 -[1] 55 166 44 -[1] 56 166 32 -[1] 57 166 44 -[1] 58 166 40 -[1] 59 166 32 -[1] 60 166 35 -[1] 61 166 32 -[1] 62 166 45 -[1] 63 166 59 -[1] 64 166 33 -[1] 65 166 47 -[1] 66 166 48 -[1] 67 166 32 -[1] 68 166 39 -[1] 69 166 29 -[1] 70 166 68 -[1] 71 166 27 -[1] 72 166 33 -[1] 73 166 44 -[1] 74 166 48 -[1] 75 166 47 -[1] 76 166 36 -[1] 77 166 49 -[1] 78 166 37 -[1] 79 166 40 -[1] 80 166 41 -[1] 81 166 35 -[1] 82 166 34 -[1] 83 166 36 -[1] 84 166 39 -[1] 85 166 35 -[1] 86 166 44 -[1] 87 166 39 -[1] 88 166 49 -[1] 89 166 40 -[1] 90 166 51 -[1] 91 166 40 -[1] 92 166 42 -[1] 93 166 45 -[1] 94 166 45 -[1] 95 166 25 -[1] 96 166 46 -[1] 97 166 50 -[1] 98 166 37 -[1] 99 166 43 -[1] 100 166 36 -[1] 101 166 73 -[1] 102 166 43 -[1] 103 166 52 -[1] 104 166 43 -[1] 105 166 40 -[1] 106 166 51 -[1] 107 166 25 -[1] 108 166 44 -[1] 109 166 35 -[1] 110 166 46 -[1] 111 166 36 -[1] 112 166 45 -[1] 113 166 33 -[1] 114 166 33 -[1] 115 166 33 -[1] 116 166 64 -[1] 117 166 29 -[1] 118 166 32 -[1] 119 166 45 -[1] 120 166 48 -[1] 121 166 33 -[1] 122 166 46 -[1] 123 166 35 -[1] 124 166 36 -[1] 125 166 46 -[1] 126 166 45 -[1] 127 166 41 -[1] 128 166 37 -[1] 129 166 38 -[1] 130 166 47 -[1] 131 166 32 -[1] 132 166 69 -[1] 133 166 43 -[1] 134 166 33 -[1] 135 166 46 -[1] 136 166 48 -[1] 137 166 59 -[1] 138 166 52 -[1] 139 166 51 -[1] 140 166 45 -[1] 141 166 50 -[1] 142 166 42 -[1] 143 166 34 -[1] 144 166 56 -[1] 145 166 41 -[1] 146 166 41 -[1] 147 166 54 -[1] 148 166 32 -[1] 149 166 52 -[1] 150 166 51 -[1] 151 166 56 -[1] 152 166 68 -[1] 153 166 46 -[1] 154 166 37 -[1] 155 166 34 -[1] 156 166 55 -[1] 157 166 30 -[1] 158 166 39 -[1] 159 166 38 -[1] 160 166 50 -[1] 161 166 34 -[1] 162 166 48 -[1] 163 166 27 -[1] 164 166 59 -[1] 165 166 37 -[1] 166 166 42 -[1] 167 166 97 -[1] 168 166 50 -[1] 169 166 36 -[1] 170 166 53 -[1] 171 166 30 -[1] 172 166 39 -[1] 173 166 66 -[1] 174 166 39 -[1] 175 166 44 -[1] 176 166 54 -[1] 177 166 43 -[1] 178 166 72 -[1] 179 166 36 -[1] 180 166 51 -[1] 181 166 41 -[1] 182 166 63 -[1] 183 166 48 -[1] 184 166 42 -[1] 185 166 55 -[1] 186 166 48 -[1] 187 166 47 -[1] 188 166 46 -[1] 189 166 50 -[1] 190 166 61 -[1] 191 166 43 -[1] 192 166 49 -[1] 193 166 36 -[1] 194 166 47 -[1] 195 166 59 -[1] 196 166 32 -[1] 197 166 100 -[1] 198 166 59 -[1] 199 166 79 -[1] 200 166 67 -[1] 1 167 29 -[1] 2 167 61 -[1] 3 167 40 -[1] 4 167 31 -[1] 5 167 44 -[1] 6 167 57 -[1] 7 167 36 -[1] 8 167 43 -[1] 9 167 39 -[1] 10 167 50 -[1] 11 167 27 -[1] 12 167 42 -[1] 13 167 35 -[1] 14 167 42 -[1] 15 167 39 -[1] 16 167 63 -[1] 17 167 42 -[1] 18 167 35 -[1] 19 167 34 -[1] 20 167 41 -[1] 21 167 28 -[1] 22 167 31 -[1] 23 167 39 -[1] 24 167 32 -[1] 25 167 31 -[1] 26 167 38 -[1] 27 167 35 -[1] 28 167 32 -[1] 29 167 27 -[1] 30 167 33 -[1] 31 167 41 -[1] 32 167 48 -[1] 33 167 28 -[1] 34 167 67 -[1] 35 167 38 -[1] 36 167 37 -[1] 37 167 35 -[1] 38 167 34 -[1] 39 167 73 -[1] 40 167 42 -[1] 41 167 36 -[1] 42 167 39 -[1] 43 167 41 -[1] 44 167 53 -[1] 45 167 47 -[1] 46 167 36 -[1] 47 167 37 -[1] 48 167 36 -[1] 49 167 28 -[1] 50 167 35 -[1] 51 167 51 -[1] 52 167 38 -[1] 53 167 39 -[1] 54 167 38 -[1] 55 167 39 -[1] 56 167 44 -[1] 57 167 34 -[1] 58 167 38 -[1] 59 167 46 -[1] 60 167 47 -[1] 61 167 30 -[1] 62 167 32 -[1] 63 167 43 -[1] 64 167 41 -[1] 65 167 45 -[1] 66 167 44 -[1] 67 167 35 -[1] 68 167 54 -[1] 69 167 43 -[1] 70 167 44 -[1] 71 167 51 -[1] 72 167 43 -[1] 73 167 40 -[1] 74 167 40 -[1] 75 167 37 -[1] 76 167 43 -[1] 77 167 35 -[1] 78 167 54 -[1] 79 167 35 -[1] 80 167 31 -[1] 81 167 52 -[1] 82 167 38 -[1] 83 167 39 -[1] 84 167 32 -[1] 85 167 47 -[1] 86 167 31 -[1] 87 167 38 -[1] 88 167 37 -[1] 89 167 34 -[1] 90 167 57 -[1] 91 167 38 -[1] 92 167 45 -[1] 93 167 41 -[1] 94 167 30 -[1] 95 167 27 -[1] 96 167 60 -[1] 97 167 48 -[1] 98 167 45 -[1] 99 167 35 -[1] 100 167 34 -[1] 101 167 31 -[1] 102 167 43 -[1] 103 167 28 -[1] 104 167 27 -[1] 105 167 52 -[1] 106 167 57 -[1] 107 167 32 -[1] 108 167 53 -[1] 109 167 47 -[1] 110 167 62 -[1] 111 167 53 -[1] 112 167 38 -[1] 113 167 31 -[1] 114 167 36 -[1] 115 167 37 -[1] 116 167 29 -[1] 117 167 50 -[1] 118 167 41 -[1] 119 167 38 -[1] 120 167 33 -[1] 121 167 48 -[1] 122 167 38 -[1] 123 167 38 -[1] 124 167 40 -[1] 125 167 36 -[1] 126 167 47 -[1] 127 167 37 -[1] 128 167 62 -[1] 129 167 45 -[1] 130 167 37 -[1] 131 167 58 -[1] 132 167 31 -[1] 133 167 30 -[1] 134 167 43 -[1] 135 167 42 -[1] 136 167 54 -[1] 137 167 49 -[1] 138 167 41 -[1] 139 167 34 -[1] 140 167 39 -[1] 141 167 52 -[1] 142 167 41 -[1] 143 167 47 -[1] 144 167 67 -[1] 145 167 54 -[1] 146 167 39 -[1] 147 167 39 -[1] 148 167 54 -[1] 149 167 44 -[1] 150 167 55 -[1] 151 167 38 -[1] 152 167 49 -[1] 153 167 31 -[1] 154 167 42 -[1] 155 167 35 -[1] 156 167 36 -[1] 157 167 33 -[1] 158 167 44 -[1] 159 167 38 -[1] 160 167 39 -[1] 161 167 37 -[1] 162 167 43 -[1] 163 167 62 -[1] 164 167 53 -[1] 165 167 44 -[1] 166 167 33 -[1] 167 167 41 -[1] 168 167 48 -[1] 169 167 42 -[1] 170 167 40 -[1] 171 167 47 -[1] 172 167 38 -[1] 173 167 41 -[1] 174 167 44 -[1] 175 167 46 -[1] 176 167 33 -[1] 177 167 46 -[1] 178 167 42 -[1] 179 167 74 -[1] 180 167 35 -[1] 181 167 46 -[1] 182 167 38 -[1] 183 167 37 -[1] 184 167 32 -[1] 185 167 35 -[1] 186 167 62 -[1] 187 167 44 -[1] 188 167 38 -[1] 189 167 36 -[1] 190 167 60 -[1] 191 167 43 -[1] 192 167 49 -[1] 193 167 41 -[1] 194 167 50 -[1] 195 167 57 -[1] 196 167 38 -[1] 197 167 47 -[1] 198 167 54 -[1] 199 167 52 -[1] 200 167 54 -[1] 1 168 27 -[1] 2 168 31 -[1] 3 168 37 -[1] 4 168 42 -[1] 5 168 44 -[1] 6 168 39 -[1] 7 168 38 -[1] 8 168 51 -[1] 9 168 41 -[1] 10 168 44 -[1] 11 168 29 -[1] 12 168 26 -[1] 13 168 35 -[1] 14 168 33 -[1] 15 168 35 -[1] 16 168 45 -[1] 17 168 29 -[1] 18 168 37 -[1] 19 168 34 -[1] 20 168 33 -[1] 21 168 42 -[1] 22 168 31 -[1] 23 168 45 -[1] 24 168 46 -[1] 25 168 34 -[1] 26 168 50 -[1] 27 168 62 -[1] 28 168 34 -[1] 29 168 37 -[1] 30 168 40 -[1] 31 168 28 -[1] 32 168 35 -[1] 33 168 43 -[1] 34 168 41 -[1] 35 168 44 -[1] 36 168 35 -[1] 37 168 33 -[1] 38 168 54 -[1] 39 168 29 -[1] 40 168 36 -[1] 41 168 40 -[1] 42 168 42 -[1] 43 168 32 -[1] 44 168 28 -[1] 45 168 31 -[1] 46 168 33 -[1] 47 168 48 -[1] 48 168 30 -[1] 49 168 69 -[1] 50 168 33 -[1] 51 168 42 -[1] 52 168 41 -[1] 53 168 33 -[1] 54 168 42 -[1] 55 168 48 -[1] 56 168 39 -[1] 57 168 31 -[1] 58 168 66 -[1] 59 168 34 -[1] 60 168 37 -[1] 61 168 35 -[1] 62 168 35 -[1] 63 168 40 -[1] 64 168 38 -[1] 65 168 43 -[1] 66 168 33 -[1] 67 168 40 -[1] 68 168 32 -[1] 69 168 33 -[1] 70 168 43 -[1] 71 168 24 -[1] 72 168 37 -[1] 73 168 32 -[1] 74 168 39 -[1] 75 168 35 -[1] 76 168 32 -[1] 77 168 45 -[1] 78 168 40 -[1] 79 168 45 -[1] 80 168 50 -[1] 81 168 32 -[1] 82 168 44 -[1] 83 168 48 -[1] 84 168 47 -[1] 85 168 28 -[1] 86 168 30 -[1] 87 168 38 -[1] 88 168 58 -[1] 89 168 36 -[1] 90 168 29 -[1] 91 168 44 -[1] 92 168 33 -[1] 93 168 49 -[1] 94 168 42 -[1] 95 168 57 -[1] 96 168 40 -[1] 97 168 40 -[1] 98 168 47 -[1] 99 168 29 -[1] 100 168 34 -[1] 101 168 41 -[1] 102 168 51 -[1] 103 168 46 -[1] 104 168 45 -[1] 105 168 32 -[1] 106 168 37 -[1] 107 168 38 -[1] 108 168 35 -[1] 109 168 41 -[1] 110 168 31 -[1] 111 168 46 -[1] 112 168 54 -[1] 113 168 39 -[1] 114 168 29 -[1] 115 168 40 -[1] 116 168 36 -[1] 117 168 39 -[1] 118 168 33 -[1] 119 168 28 -[1] 120 168 40 -[1] 121 168 35 -[1] 122 168 47 -[1] 123 168 41 -[1] 124 168 52 -[1] 125 168 48 -[1] 126 168 31 -[1] 127 168 53 -[1] 128 168 78 -[1] 129 168 39 -[1] 130 168 44 -[1] 131 168 55 -[1] 132 168 46 -[1] 133 168 37 -[1] 134 168 28 -[1] 135 168 47 -[1] 136 168 43 -[1] 137 168 44 -[1] 138 168 49 -[1] 139 168 52 -[1] 140 168 41 -[1] 141 168 38 -[1] 142 168 55 -[1] 143 168 35 -[1] 144 168 56 -[1] 145 168 49 -[1] 146 168 47 -[1] 147 168 38 -[1] 148 168 26 -[1] 149 168 64 -[1] 150 168 41 -[1] 151 168 37 -[1] 152 168 51 -[1] 153 168 48 -[1] 154 168 53 -[1] 155 168 32 -[1] 156 168 61 -[1] 157 168 30 -[1] 158 168 41 -[1] 159 168 41 -[1] 160 168 48 -[1] 161 168 35 -[1] 162 168 40 -[1] 163 168 40 -[1] 164 168 46 -[1] 165 168 57 -[1] 166 168 55 -[1] 167 168 45 -[1] 168 168 61 -[1] 169 168 51 -[1] 170 168 38 -[1] 171 168 30 -[1] 172 168 38 -[1] 173 168 51 -[1] 174 168 55 -[1] 175 168 68 -[1] 176 168 50 -[1] 177 168 44 -[1] 178 168 48 -[1] 179 168 48 -[1] 180 168 50 -[1] 181 168 48 -[1] 182 168 66 -[1] 183 168 51 -[1] 184 168 45 -[1] 185 168 46 -[1] 186 168 43 -[1] 187 168 44 -[1] 188 168 28 -[1] 189 168 41 -[1] 190 168 41 -[1] 191 168 51 -[1] 192 168 35 -[1] 193 168 41 -[1] 194 168 43 -[1] 195 168 65 -[1] 196 168 42 -[1] 197 168 54 -[1] 198 168 47 -[1] 199 168 64 -[1] 200 168 74 -[1] 1 169 27 -[1] 2 169 29 -[1] 3 169 32 -[1] 4 169 39 -[1] 5 169 44 -[1] 6 169 41 -[1] 7 169 24 -[1] 8 169 39 -[1] 9 169 31 -[1] 10 169 34 -[1] 11 169 31 -[1] 12 169 32 -[1] 13 169 38 -[1] 14 169 41 -[1] 15 169 39 -[1] 16 169 32 -[1] 17 169 35 -[1] 18 169 41 -[1] 19 169 34 -[1] 20 169 34 -[1] 21 169 35 -[1] 22 169 47 -[1] 23 169 36 -[1] 24 169 31 -[1] 25 169 32 -[1] 26 169 35 -[1] 27 169 43 -[1] 28 169 28 -[1] 29 169 57 -[1] 30 169 32 -[1] 31 169 45 -[1] 32 169 32 -[1] 33 169 33 -[1] 34 169 39 -[1] 35 169 25 -[1] 36 169 50 -[1] 37 169 40 -[1] 38 169 27 -[1] 39 169 42 -[1] 40 169 33 -[1] 41 169 28 -[1] 42 169 45 -[1] 43 169 49 -[1] 44 169 45 -[1] 45 169 31 -[1] 46 169 43 -[1] 47 169 45 -[1] 48 169 38 -[1] 49 169 31 -[1] 50 169 34 -[1] 51 169 43 -[1] 52 169 51 -[1] 53 169 36 -[1] 54 169 39 -[1] 55 169 36 -[1] 56 169 31 -[1] 57 169 57 -[1] 58 169 38 -[1] 59 169 55 -[1] 60 169 30 -[1] 61 169 45 -[1] 62 169 32 -[1] 63 169 39 -[1] 64 169 39 -[1] 65 169 48 -[1] 66 169 46 -[1] 67 169 37 -[1] 68 169 41 -[1] 69 169 40 -[1] 70 169 25 -[1] 71 169 24 -[1] 72 169 41 -[1] 73 169 34 -[1] 74 169 41 -[1] 75 169 32 -[1] 76 169 37 -[1] 77 169 44 -[1] 78 169 37 -[1] 79 169 59 -[1] 80 169 36 -[1] 81 169 47 -[1] 82 169 70 -[1] 83 169 51 -[1] 84 169 55 -[1] 85 169 32 -[1] 86 169 38 -[1] 87 169 32 -[1] 88 169 70 -[1] 89 169 52 -[1] 90 169 37 -[1] 91 169 32 -[1] 92 169 38 -[1] 93 169 58 -[1] 94 169 46 -[1] 95 169 45 -[1] 96 169 43 -[1] 97 169 36 -[1] 98 169 36 -[1] 99 169 57 -[1] 100 169 36 -[1] 101 169 51 -[1] 102 169 31 -[1] 103 169 45 -[1] 104 169 38 -[1] 105 169 66 -[1] 106 169 40 -[1] 107 169 49 -[1] 108 169 38 -[1] 109 169 46 -[1] 110 169 34 -[1] 111 169 55 -[1] 112 169 36 -[1] 113 169 41 -[1] 114 169 32 -[1] 115 169 41 -[1] 116 169 40 -[1] 117 169 39 -[1] 118 169 37 -[1] 119 169 47 -[1] 120 169 52 -[1] 121 169 31 -[1] 122 169 80 -[1] 123 169 48 -[1] 124 169 51 -[1] 125 169 30 -[1] 126 169 97 -[1] 127 169 45 -[1] 128 169 44 -[1] 129 169 44 -[1] 130 169 49 -[1] 131 169 40 -[1] 132 169 51 -[1] 133 169 37 -[1] 134 169 43 -[1] 135 169 46 -[1] 136 169 43 -[1] 137 169 47 -[1] 138 169 43 -[1] 139 169 55 -[1] 140 169 42 -[1] 141 169 49 -[1] 142 169 43 -[1] 143 169 32 -[1] 144 169 61 -[1] 145 169 53 -[1] 146 169 64 -[1] 147 169 49 -[1] 148 169 52 -[1] 149 169 41 -[1] 150 169 34 -[1] 151 169 35 -[1] 152 169 41 -[1] 153 169 44 -[1] 154 169 41 -[1] 155 169 36 -[1] 156 169 37 -[1] 157 169 36 -[1] 158 169 53 -[1] 159 169 45 -[1] 160 169 26 -[1] 161 169 39 -[1] 162 169 41 -[1] 163 169 52 -[1] 164 169 40 -[1] 165 169 55 -[1] 166 169 34 -[1] 167 169 36 -[1] 168 169 58 -[1] 169 169 76 -[1] 170 169 45 -[1] 171 169 35 -[1] 172 169 44 -[1] 173 169 34 -[1] 174 169 32 -[1] 175 169 55 -[1] 176 169 78 -[1] 177 169 56 -[1] 178 169 40 -[1] 179 169 39 -[1] 180 169 42 -[1] 181 169 37 -[1] 182 169 82 -[1] 183 169 32 -[1] 184 169 43 -[1] 185 169 46 -[1] 186 169 55 -[1] 187 169 61 -[1] 188 169 77 -[1] 189 169 27 -[1] 190 169 71 -[1] 191 169 54 -[1] 192 169 43 -[1] 193 169 62 -[1] 194 169 50 -[1] 195 169 47 -[1] 196 169 61 -[1] 197 169 39 -[1] 198 169 51 -[1] 199 169 51 -[1] 200 169 93 -[1] 1 170 35 -[1] 2 170 39 -[1] 3 170 35 -[1] 4 170 36 -[1] 5 170 28 -[1] 6 170 35 -[1] 7 170 34 -[1] 8 170 36 -[1] 9 170 37 -[1] 10 170 39 -[1] 11 170 35 -[1] 12 170 56 -[1] 13 170 36 -[1] 14 170 47 -[1] 15 170 29 -[1] 16 170 25 -[1] 17 170 37 -[1] 18 170 39 -[1] 19 170 33 -[1] 20 170 41 -[1] 21 170 32 -[1] 22 170 32 -[1] 23 170 35 -[1] 24 170 31 -[1] 25 170 56 -[1] 26 170 37 -[1] 27 170 30 -[1] 28 170 28 -[1] 29 170 40 -[1] 30 170 26 -[1] 31 170 37 -[1] 32 170 22 -[1] 33 170 54 -[1] 34 170 37 -[1] 35 170 31 -[1] 36 170 38 -[1] 37 170 51 -[1] 38 170 40 -[1] 39 170 63 -[1] 40 170 53 -[1] 41 170 26 -[1] 42 170 48 -[1] 43 170 31 -[1] 44 170 34 -[1] 45 170 37 -[1] 46 170 35 -[1] 47 170 33 -[1] 48 170 32 -[1] 49 170 34 -[1] 50 170 31 -[1] 51 170 33 -[1] 52 170 28 -[1] 53 170 49 -[1] 54 170 44 -[1] 55 170 55 -[1] 56 170 27 -[1] 57 170 30 -[1] 58 170 49 -[1] 59 170 30 -[1] 60 170 39 -[1] 61 170 56 -[1] 62 170 71 -[1] 63 170 32 -[1] 64 170 39 -[1] 65 170 35 -[1] 66 170 32 -[1] 67 170 61 -[1] 68 170 38 -[1] 69 170 37 -[1] 70 170 29 -[1] 71 170 42 -[1] 72 170 44 -[1] 73 170 40 -[1] 74 170 44 -[1] 75 170 30 -[1] 76 170 37 -[1] 77 170 32 -[1] 78 170 49 -[1] 79 170 36 -[1] 80 170 38 -[1] 81 170 47 -[1] 82 170 27 -[1] 83 170 33 -[1] 84 170 44 -[1] 85 170 29 -[1] 86 170 41 -[1] 87 170 34 -[1] 88 170 32 -[1] 89 170 35 -[1] 90 170 42 -[1] 91 170 43 -[1] 92 170 63 -[1] 93 170 38 -[1] 94 170 53 -[1] 95 170 40 -[1] 96 170 39 -[1] 97 170 38 -[1] 98 170 47 -[1] 99 170 40 -[1] 100 170 48 -[1] 101 170 48 -[1] 102 170 46 -[1] 103 170 60 -[1] 104 170 51 -[1] 105 170 37 -[1] 106 170 34 -[1] 107 170 46 -[1] 108 170 45 -[1] 109 170 36 -[1] 110 170 42 -[1] 111 170 55 -[1] 112 170 48 -[1] 113 170 32 -[1] 114 170 39 -[1] 115 170 38 -[1] 116 170 45 -[1] 117 170 32 -[1] 118 170 43 -[1] 119 170 55 -[1] 120 170 32 -[1] 121 170 37 -[1] 122 170 38 -[1] 123 170 37 -[1] 124 170 42 -[1] 125 170 29 -[1] 126 170 42 -[1] 127 170 37 -[1] 128 170 45 -[1] 129 170 36 -[1] 130 170 55 -[1] 131 170 49 -[1] 132 170 42 -[1] 133 170 61 -[1] 134 170 51 -[1] 135 170 45 -[1] 136 170 43 -[1] 137 170 26 -[1] 138 170 65 -[1] 139 170 53 -[1] 140 170 30 -[1] 141 170 43 -[1] 142 170 39 -[1] 143 170 52 -[1] 144 170 42 -[1] 145 170 31 -[1] 146 170 67 -[1] 147 170 47 -[1] 148 170 44 -[1] 149 170 38 -[1] 150 170 63 -[1] 151 170 44 -[1] 152 170 51 -[1] 153 170 47 -[1] 154 170 43 -[1] 155 170 62 -[1] 156 170 50 -[1] 157 170 37 -[1] 158 170 45 -[1] 159 170 42 -[1] 160 170 45 -[1] 161 170 47 -[1] 162 170 50 -[1] 163 170 39 -[1] 164 170 50 -[1] 165 170 49 -[1] 166 170 57 -[1] 167 170 53 -[1] 168 170 47 -[1] 169 170 40 -[1] 170 170 35 -[1] 171 170 46 -[1] 172 170 54 -[1] 173 170 47 -[1] 174 170 39 -[1] 175 170 47 -[1] 176 170 34 -[1] 177 170 55 -[1] 178 170 47 -[1] 179 170 43 -[1] 180 170 59 -[1] 181 170 45 -[1] 182 170 34 -[1] 183 170 59 -[1] 184 170 61 -[1] 185 170 62 -[1] 186 170 44 -[1] 187 170 34 -[1] 188 170 43 -[1] 189 170 66 -[1] 190 170 47 -[1] 191 170 48 -[1] 192 170 44 -[1] 193 170 55 -[1] 194 170 44 -[1] 195 170 45 -[1] 196 170 58 -[1] 197 170 53 -[1] 198 170 38 -[1] 199 170 38 -[1] 200 170 54 -[1] 1 171 30 -[1] 2 171 30 -[1] 3 171 50 -[1] 4 171 44 -[1] 5 171 38 -[1] 6 171 36 -[1] 7 171 40 -[1] 8 171 51 -[1] 9 171 30 -[1] 10 171 53 -[1] 11 171 55 -[1] 12 171 38 -[1] 13 171 37 -[1] 14 171 43 -[1] 15 171 36 -[1] 16 171 53 -[1] 17 171 28 -[1] 18 171 41 -[1] 19 171 37 -[1] 20 171 32 -[1] 21 171 37 -[1] 22 171 50 -[1] 23 171 40 -[1] 24 171 47 -[1] 25 171 33 -[1] 26 171 58 -[1] 27 171 41 -[1] 28 171 46 -[1] 29 171 31 -[1] 30 171 46 -[1] 31 171 31 -[1] 32 171 49 -[1] 33 171 23 -[1] 34 171 50 -[1] 35 171 56 -[1] 36 171 43 -[1] 37 171 40 -[1] 38 171 47 -[1] 39 171 41 -[1] 40 171 40 -[1] 41 171 45 -[1] 42 171 37 -[1] 43 171 35 -[1] 44 171 35 -[1] 45 171 58 -[1] 46 171 37 -[1] 47 171 29 -[1] 48 171 38 -[1] 49 171 43 -[1] 50 171 37 -[1] 51 171 28 -[1] 52 171 35 -[1] 53 171 32 -[1] 54 171 35 -[1] 55 171 73 -[1] 56 171 44 -[1] 57 171 29 -[1] 58 171 37 -[1] 59 171 36 -[1] 60 171 71 -[1] 61 171 32 -[1] 62 171 39 -[1] 63 171 36 -[1] 64 171 44 -[1] 65 171 35 -[1] 66 171 45 -[1] 67 171 46 -[1] 68 171 31 -[1] 69 171 36 -[1] 70 171 37 -[1] 71 171 29 -[1] 72 171 46 -[1] 73 171 35 -[1] 74 171 47 -[1] 75 171 33 -[1] 76 171 35 -[1] 77 171 53 -[1] 78 171 33 -[1] 79 171 36 -[1] 80 171 55 -[1] 81 171 32 -[1] 82 171 43 -[1] 83 171 35 -[1] 84 171 42 -[1] 85 171 31 -[1] 86 171 40 -[1] 87 171 35 -[1] 88 171 36 -[1] 89 171 45 -[1] 90 171 27 -[1] 91 171 36 -[1] 92 171 48 -[1] 93 171 33 -[1] 94 171 59 -[1] 95 171 36 -[1] 96 171 48 -[1] 97 171 51 -[1] 98 171 35 -[1] 99 171 33 -[1] 100 171 38 -[1] 101 171 37 -[1] 102 171 38 -[1] 103 171 37 -[1] 104 171 28 -[1] 105 171 59 -[1] 106 171 38 -[1] 107 171 47 -[1] 108 171 46 -[1] 109 171 45 -[1] 110 171 51 -[1] 111 171 36 -[1] 112 171 41 -[1] 113 171 48 -[1] 114 171 35 -[1] 115 171 44 -[1] 116 171 47 -[1] 117 171 34 -[1] 118 171 37 -[1] 119 171 39 -[1] 120 171 32 -[1] 121 171 47 -[1] 122 171 38 -[1] 123 171 39 -[1] 124 171 27 -[1] 125 171 32 -[1] 126 171 55 -[1] 127 171 36 -[1] 128 171 45 -[1] 129 171 34 -[1] 130 171 41 -[1] 131 171 35 -[1] 132 171 30 -[1] 133 171 53 -[1] 134 171 50 -[1] 135 171 69 -[1] 136 171 40 -[1] 137 171 51 -[1] 138 171 36 -[1] 139 171 40 -[1] 140 171 37 -[1] 141 171 44 -[1] 142 171 37 -[1] 143 171 43 -[1] 144 171 37 -[1] 145 171 48 -[1] 146 171 41 -[1] 147 171 31 -[1] 148 171 60 -[1] 149 171 37 -[1] 150 171 34 -[1] 151 171 37 -[1] 152 171 62 -[1] 153 171 43 -[1] 154 171 34 -[1] 155 171 40 -[1] 156 171 44 -[1] 157 171 44 -[1] 158 171 39 -[1] 159 171 32 -[1] 160 171 75 -[1] 161 171 36 -[1] 162 171 38 -[1] 163 171 46 -[1] 164 171 32 -[1] 165 171 34 -[1] 166 171 53 -[1] 167 171 55 -[1] 168 171 50 -[1] 169 171 35 -[1] 170 171 43 -[1] 171 171 31 -[1] 172 171 46 -[1] 173 171 46 -[1] 174 171 71 -[1] 175 171 50 -[1] 176 171 57 -[1] 177 171 34 -[1] 178 171 49 -[1] 179 171 67 -[1] 180 171 61 -[1] 181 171 61 -[1] 182 171 42 -[1] 183 171 35 -[1] 184 171 43 -[1] 185 171 81 -[1] 186 171 53 -[1] 187 171 33 -[1] 188 171 56 -[1] 189 171 72 -[1] 190 171 77 -[1] 191 171 60 -[1] 192 171 42 -[1] 193 171 56 -[1] 194 171 36 -[1] 195 171 51 -[1] 196 171 47 -[1] 197 171 46 -[1] 198 171 53 -[1] 199 171 50 -[1] 200 171 53 -[1] 1 172 39 -[1] 2 172 41 -[1] 3 172 42 -[1] 4 172 28 -[1] 5 172 48 -[1] 6 172 50 -[1] 7 172 36 -[1] 8 172 35 -[1] 9 172 41 -[1] 10 172 66 -[1] 11 172 37 -[1] 12 172 40 -[1] 13 172 57 -[1] 14 172 36 -[1] 15 172 33 -[1] 16 172 30 -[1] 17 172 39 -[1] 18 172 32 -[1] 19 172 36 -[1] 20 172 36 -[1] 21 172 36 -[1] 22 172 29 -[1] 23 172 25 -[1] 24 172 31 -[1] 25 172 47 -[1] 26 172 37 -[1] 27 172 38 -[1] 28 172 35 -[1] 29 172 35 -[1] 30 172 36 -[1] 31 172 35 -[1] 32 172 35 -[1] 33 172 36 -[1] 34 172 42 -[1] 35 172 37 -[1] 36 172 36 -[1] 37 172 40 -[1] 38 172 32 -[1] 39 172 44 -[1] 40 172 32 -[1] 41 172 49 -[1] 42 172 63 -[1] 43 172 36 -[1] 44 172 33 -[1] 45 172 27 -[1] 46 172 46 -[1] 47 172 42 -[1] 48 172 31 -[1] 49 172 35 -[1] 50 172 40 -[1] 51 172 35 -[1] 52 172 32 -[1] 53 172 30 -[1] 54 172 59 -[1] 55 172 41 -[1] 56 172 31 -[1] 57 172 36 -[1] 58 172 37 -[1] 59 172 40 -[1] 60 172 49 -[1] 61 172 26 -[1] 62 172 41 -[1] 63 172 33 -[1] 64 172 56 -[1] 65 172 42 -[1] 66 172 30 -[1] 67 172 38 -[1] 68 172 34 -[1] 69 172 33 -[1] 70 172 40 -[1] 71 172 31 -[1] 72 172 35 -[1] 73 172 40 -[1] 74 172 26 -[1] 75 172 65 -[1] 76 172 39 -[1] 77 172 38 -[1] 78 172 43 -[1] 79 172 26 -[1] 80 172 30 -[1] 81 172 43 -[1] 82 172 27 -[1] 83 172 45 -[1] 84 172 34 -[1] 85 172 45 -[1] 86 172 32 -[1] 87 172 41 -[1] 88 172 52 -[1] 89 172 49 -[1] 90 172 36 -[1] 91 172 32 -[1] 92 172 45 -[1] 93 172 37 -[1] 94 172 40 -[1] 95 172 31 -[1] 96 172 38 -[1] 97 172 45 -[1] 98 172 41 -[1] 99 172 46 -[1] 100 172 32 -[1] 101 172 42 -[1] 102 172 46 -[1] 103 172 41 -[1] 104 172 26 -[1] 105 172 49 -[1] 106 172 42 -[1] 107 172 32 -[1] 108 172 35 -[1] 109 172 27 -[1] 110 172 34 -[1] 111 172 53 -[1] 112 172 37 -[1] 113 172 52 -[1] 114 172 28 -[1] 115 172 54 -[1] 116 172 46 -[1] 117 172 40 -[1] 118 172 36 -[1] 119 172 60 -[1] 120 172 40 -[1] 121 172 39 -[1] 122 172 40 -[1] 123 172 45 -[1] 124 172 34 -[1] 125 172 33 -[1] 126 172 36 -[1] 127 172 73 -[1] 128 172 33 -[1] 129 172 30 -[1] 130 172 60 -[1] 131 172 46 -[1] 132 172 44 -[1] 133 172 33 -[1] 134 172 38 -[1] 135 172 34 -[1] 136 172 39 -[1] 137 172 32 -[1] 138 172 41 -[1] 139 172 33 -[1] 140 172 36 -[1] 141 172 55 -[1] 142 172 34 -[1] 143 172 35 -[1] 144 172 48 -[1] 145 172 39 -[1] 146 172 41 -[1] 147 172 32 -[1] 148 172 47 -[1] 149 172 48 -[1] 150 172 35 -[1] 151 172 51 -[1] 152 172 37 -[1] 153 172 41 -[1] 154 172 45 -[1] 155 172 33 -[1] 156 172 44 -[1] 157 172 46 -[1] 158 172 44 -[1] 159 172 64 -[1] 160 172 48 -[1] 161 172 66 -[1] 162 172 37 -[1] 163 172 38 -[1] 164 172 50 -[1] 165 172 54 -[1] 166 172 38 -[1] 167 172 41 -[1] 168 172 56 -[1] 169 172 36 -[1] 170 172 64 -[1] 171 172 42 -[1] 172 172 35 -[1] 173 172 59 -[1] 174 172 42 -[1] 175 172 41 -[1] 176 172 49 -[1] 177 172 49 -[1] 178 172 61 -[1] 179 172 34 -[1] 180 172 39 -[1] 181 172 43 -[1] 182 172 43 -[1] 183 172 54 -[1] 184 172 51 -[1] 185 172 40 -[1] 186 172 39 -[1] 187 172 64 -[1] 188 172 61 -[1] 189 172 33 -[1] 190 172 110 -[1] 191 172 40 -[1] 192 172 42 -[1] 193 172 76 -[1] 194 172 37 -[1] 195 172 52 -[1] 196 172 46 -[1] 197 172 43 -[1] 198 172 66 -[1] 199 172 47 -[1] 200 172 63 -[1] 1 173 36 -[1] 2 173 30 -[1] 3 173 30 -[1] 4 173 45 -[1] 5 173 25 -[1] 6 173 34 -[1] 7 173 32 -[1] 8 173 43 -[1] 9 173 38 -[1] 10 173 55 -[1] 11 173 27 -[1] 12 173 25 -[1] 13 173 48 -[1] 14 173 38 -[1] 15 173 26 -[1] 16 173 38 -[1] 17 173 34 -[1] 18 173 35 -[1] 19 173 44 -[1] 20 173 31 -[1] 21 173 20 -[1] 22 173 63 -[1] 23 173 42 -[1] 24 173 37 -[1] 25 173 51 -[1] 26 173 28 -[1] 27 173 37 -[1] 28 173 40 -[1] 29 173 49 -[1] 30 173 38 -[1] 31 173 35 -[1] 32 173 33 -[1] 33 173 33 -[1] 34 173 43 -[1] 35 173 44 -[1] 36 173 35 -[1] 37 173 47 -[1] 38 173 43 -[1] 39 173 37 -[1] 40 173 36 -[1] 41 173 35 -[1] 42 173 34 -[1] 43 173 51 -[1] 44 173 27 -[1] 45 173 41 -[1] 46 173 34 -[1] 47 173 36 -[1] 48 173 31 -[1] 49 173 28 -[1] 50 173 40 -[1] 51 173 41 -[1] 52 173 62 -[1] 53 173 41 -[1] 54 173 30 -[1] 55 173 50 -[1] 56 173 46 -[1] 57 173 28 -[1] 58 173 59 -[1] 59 173 39 -[1] 60 173 33 -[1] 61 173 36 -[1] 62 173 34 -[1] 63 173 41 -[1] 64 173 33 -[1] 65 173 34 -[1] 66 173 29 -[1] 67 173 38 -[1] 68 173 32 -[1] 69 173 45 -[1] 70 173 43 -[1] 71 173 37 -[1] 72 173 45 -[1] 73 173 30 -[1] 74 173 42 -[1] 75 173 47 -[1] 76 173 34 -[1] 77 173 33 -[1] 78 173 37 -[1] 79 173 35 -[1] 80 173 46 -[1] 81 173 60 -[1] 82 173 33 -[1] 83 173 30 -[1] 84 173 59 -[1] 85 173 26 -[1] 86 173 28 -[1] 87 173 50 -[1] 88 173 30 -[1] 89 173 43 -[1] 90 173 41 -[1] 91 173 40 -[1] 92 173 39 -[1] 93 173 36 -[1] 94 173 44 -[1] 95 173 38 -[1] 96 173 46 -[1] 97 173 40 -[1] 98 173 47 -[1] 99 173 32 -[1] 100 173 41 -[1] 101 173 55 -[1] 102 173 42 -[1] 103 173 37 -[1] 104 173 38 -[1] 105 173 36 -[1] 106 173 43 -[1] 107 173 37 -[1] 108 173 36 -[1] 109 173 39 -[1] 110 173 33 -[1] 111 173 26 -[1] 112 173 47 -[1] 113 173 34 -[1] 114 173 49 -[1] 115 173 54 -[1] 116 173 45 -[1] 117 173 59 -[1] 118 173 50 -[1] 119 173 51 -[1] 120 173 49 -[1] 121 173 40 -[1] 122 173 40 -[1] 123 173 49 -[1] 124 173 35 -[1] 125 173 36 -[1] 126 173 41 -[1] 127 173 32 -[1] 128 173 45 -[1] 129 173 40 -[1] 130 173 35 -[1] 131 173 37 -[1] 132 173 40 -[1] 133 173 57 -[1] 134 173 30 -[1] 135 173 35 -[1] 136 173 42 -[1] 137 173 35 -[1] 138 173 40 -[1] 139 173 43 -[1] 140 173 40 -[1] 141 173 66 -[1] 142 173 39 -[1] 143 173 29 -[1] 144 173 66 -[1] 145 173 38 -[1] 146 173 52 -[1] 147 173 61 -[1] 148 173 34 -[1] 149 173 35 -[1] 150 173 42 -[1] 151 173 57 -[1] 152 173 66 -[1] 153 173 41 -[1] 154 173 44 -[1] 155 173 55 -[1] 156 173 41 -[1] 157 173 25 -[1] 158 173 39 -[1] 159 173 44 -[1] 160 173 56 -[1] 161 173 42 -[1] 162 173 37 -[1] 163 173 39 -[1] 164 173 36 -[1] 165 173 59 -[1] 166 173 36 -[1] 167 173 33 -[1] 168 173 46 -[1] 169 173 35 -[1] 170 173 47 -[1] 171 173 36 -[1] 172 173 56 -[1] 173 173 45 -[1] 174 173 41 -[1] 175 173 32 -[1] 176 173 63 -[1] 177 173 48 -[1] 178 173 41 -[1] 179 173 47 -[1] 180 173 52 -[1] 181 173 41 -[1] 182 173 49 -[1] 183 173 58 -[1] 184 173 51 -[1] 185 173 62 -[1] 186 173 45 -[1] 187 173 53 -[1] 188 173 54 -[1] 189 173 55 -[1] 190 173 62 -[1] 191 173 33 -[1] 192 173 46 -[1] 193 173 37 -[1] 194 173 54 -[1] 195 173 39 -[1] 196 173 49 -[1] 197 173 46 -[1] 198 173 62 -[1] 199 173 78 -[1] 200 173 70 -[1] 1 174 39 -[1] 2 174 33 -[1] 3 174 50 -[1] 4 174 37 -[1] 5 174 34 -[1] 6 174 43 -[1] 7 174 29 -[1] 8 174 39 -[1] 9 174 41 -[1] 10 174 47 -[1] 11 174 47 -[1] 12 174 32 -[1] 13 174 30 -[1] 14 174 35 -[1] 15 174 35 -[1] 16 174 38 -[1] 17 174 30 -[1] 18 174 55 -[1] 19 174 43 -[1] 20 174 41 -[1] 21 174 30 -[1] 22 174 47 -[1] 23 174 34 -[1] 24 174 47 -[1] 25 174 29 -[1] 26 174 36 -[1] 27 174 26 -[1] 28 174 27 -[1] 29 174 33 -[1] 30 174 50 -[1] 31 174 39 -[1] 32 174 32 -[1] 33 174 40 -[1] 34 174 34 -[1] 35 174 42 -[1] 36 174 32 -[1] 37 174 51 -[1] 38 174 39 -[1] 39 174 38 -[1] 40 174 31 -[1] 41 174 32 -[1] 42 174 47 -[1] 43 174 32 -[1] 44 174 33 -[1] 45 174 34 -[1] 46 174 37 -[1] 47 174 41 -[1] 48 174 32 -[1] 49 174 41 -[1] 50 174 48 -[1] 51 174 34 -[1] 52 174 49 -[1] 53 174 22 -[1] 54 174 61 -[1] 55 174 43 -[1] 56 174 41 -[1] 57 174 48 -[1] 58 174 37 -[1] 59 174 44 -[1] 60 174 35 -[1] 61 174 30 -[1] 62 174 42 -[1] 63 174 35 -[1] 64 174 35 -[1] 65 174 38 -[1] 66 174 47 -[1] 67 174 31 -[1] 68 174 34 -[1] 69 174 45 -[1] 70 174 41 -[1] 71 174 32 -[1] 72 174 30 -[1] 73 174 37 -[1] 74 174 48 -[1] 75 174 65 -[1] 76 174 31 -[1] 77 174 27 -[1] 78 174 46 -[1] 79 174 43 -[1] 80 174 50 -[1] 81 174 49 -[1] 82 174 48 -[1] 83 174 47 -[1] 84 174 30 -[1] 85 174 35 -[1] 86 174 34 -[1] 87 174 41 -[1] 88 174 48 -[1] 89 174 31 -[1] 90 174 32 -[1] 91 174 50 -[1] 92 174 44 -[1] 93 174 33 -[1] 94 174 42 -[1] 95 174 38 -[1] 96 174 29 -[1] 97 174 58 -[1] 98 174 37 -[1] 99 174 50 -[1] 100 174 33 -[1] 101 174 37 -[1] 102 174 38 -[1] 103 174 41 -[1] 104 174 44 -[1] 105 174 28 -[1] 106 174 41 -[1] 107 174 37 -[1] 108 174 29 -[1] 109 174 38 -[1] 110 174 31 -[1] 111 174 42 -[1] 112 174 41 -[1] 113 174 31 -[1] 114 174 33 -[1] 115 174 39 -[1] 116 174 39 -[1] 117 174 52 -[1] 118 174 33 -[1] 119 174 45 -[1] 120 174 32 -[1] 121 174 55 -[1] 122 174 41 -[1] 123 174 44 -[1] 124 174 38 -[1] 125 174 33 -[1] 126 174 24 -[1] 127 174 47 -[1] 128 174 39 -[1] 129 174 61 -[1] 130 174 38 -[1] 131 174 30 -[1] 132 174 71 -[1] 133 174 42 -[1] 134 174 39 -[1] 135 174 44 -[1] 136 174 45 -[1] 137 174 67 -[1] 138 174 42 -[1] 139 174 39 -[1] 140 174 54 -[1] 141 174 35 -[1] 142 174 38 -[1] 143 174 31 -[1] 144 174 38 -[1] 145 174 49 -[1] 146 174 53 -[1] 147 174 40 -[1] 148 174 33 -[1] 149 174 42 -[1] 150 174 46 -[1] 151 174 41 -[1] 152 174 36 -[1] 153 174 55 -[1] 154 174 43 -[1] 155 174 39 -[1] 156 174 32 -[1] 157 174 39 -[1] 158 174 44 -[1] 159 174 33 -[1] 160 174 32 -[1] 161 174 43 -[1] 162 174 34 -[1] 163 174 45 -[1] 164 174 61 -[1] 165 174 50 -[1] 166 174 47 -[1] 167 174 48 -[1] 168 174 41 -[1] 169 174 43 -[1] 170 174 54 -[1] 171 174 43 -[1] 172 174 34 -[1] 173 174 51 -[1] 174 174 40 -[1] 175 174 35 -[1] 176 174 100 -[1] 177 174 41 -[1] 178 174 41 -[1] 179 174 50 -[1] 180 174 48 -[1] 181 174 51 -[1] 182 174 44 -[1] 183 174 47 -[1] 184 174 41 -[1] 185 174 37 -[1] 186 174 78 -[1] 187 174 74 -[1] 188 174 65 -[1] 189 174 62 -[1] 190 174 39 -[1] 191 174 38 -[1] 192 174 54 -[1] 193 174 43 -[1] 194 174 67 -[1] 195 174 37 -[1] 196 174 35 -[1] 197 174 74 -[1] 198 174 48 -[1] 199 174 75 -[1] 200 174 65 -[1] 1 175 32 -[1] 2 175 50 -[1] 3 175 28 -[1] 4 175 30 -[1] 5 175 33 -[1] 6 175 37 -[1] 7 175 32 -[1] 8 175 37 -[1] 9 175 32 -[1] 10 175 33 -[1] 11 175 29 -[1] 12 175 31 -[1] 13 175 29 -[1] 14 175 33 -[1] 15 175 45 -[1] 16 175 28 -[1] 17 175 43 -[1] 18 175 36 -[1] 19 175 33 -[1] 20 175 47 -[1] 21 175 47 -[1] 22 175 38 -[1] 23 175 34 -[1] 24 175 43 -[1] 25 175 40 -[1] 26 175 45 -[1] 27 175 33 -[1] 28 175 40 -[1] 29 175 31 -[1] 30 175 44 -[1] 31 175 37 -[1] 32 175 42 -[1] 33 175 35 -[1] 34 175 50 -[1] 35 175 39 -[1] 36 175 38 -[1] 37 175 42 -[1] 38 175 40 -[1] 39 175 39 -[1] 40 175 44 -[1] 41 175 34 -[1] 42 175 41 -[1] 43 175 30 -[1] 44 175 35 -[1] 45 175 27 -[1] 46 175 34 -[1] 47 175 36 -[1] 48 175 39 -[1] 49 175 45 -[1] 50 175 34 -[1] 51 175 42 -[1] 52 175 39 -[1] 53 175 47 -[1] 54 175 28 -[1] 55 175 48 -[1] 56 175 45 -[1] 57 175 33 -[1] 58 175 45 -[1] 59 175 32 -[1] 60 175 43 -[1] 61 175 28 -[1] 62 175 25 -[1] 63 175 38 -[1] 64 175 47 -[1] 65 175 53 -[1] 66 175 34 -[1] 67 175 45 -[1] 68 175 28 -[1] 69 175 45 -[1] 70 175 25 -[1] 71 175 48 -[1] 72 175 28 -[1] 73 175 24 -[1] 74 175 36 -[1] 75 175 27 -[1] 76 175 76 -[1] 77 175 40 -[1] 78 175 33 -[1] 79 175 46 -[1] 80 175 33 -[1] 81 175 42 -[1] 82 175 43 -[1] 83 175 41 -[1] 84 175 42 -[1] 85 175 43 -[1] 86 175 44 -[1] 87 175 31 -[1] 88 175 32 -[1] 89 175 56 -[1] 90 175 33 -[1] 91 175 67 -[1] 92 175 39 -[1] 93 175 28 -[1] 94 175 27 -[1] 95 175 45 -[1] 96 175 46 -[1] 97 175 37 -[1] 98 175 42 -[1] 99 175 36 -[1] 100 175 30 -[1] 101 175 42 -[1] 102 175 48 -[1] 103 175 45 -[1] 104 175 35 -[1] 105 175 50 -[1] 106 175 46 -[1] 107 175 33 -[1] 108 175 48 -[1] 109 175 37 -[1] 110 175 22 -[1] 111 175 68 -[1] 112 175 36 -[1] 113 175 40 -[1] 114 175 37 -[1] 115 175 42 -[1] 116 175 35 -[1] 117 175 36 -[1] 118 175 30 -[1] 119 175 45 -[1] 120 175 39 -[1] 121 175 45 -[1] 122 175 32 -[1] 123 175 43 -[1] 124 175 42 -[1] 125 175 35 -[1] 126 175 35 -[1] 127 175 54 -[1] 128 175 49 -[1] 129 175 40 -[1] 130 175 36 -[1] 131 175 39 -[1] 132 175 35 -[1] 133 175 36 -[1] 134 175 41 -[1] 135 175 38 -[1] 136 175 41 -[1] 137 175 42 -[1] 138 175 45 -[1] 139 175 39 -[1] 140 175 36 -[1] 141 175 37 -[1] 142 175 45 -[1] 143 175 47 -[1] 144 175 46 -[1] 145 175 46 -[1] 146 175 32 -[1] 147 175 49 -[1] 148 175 43 -[1] 149 175 39 -[1] 150 175 96 -[1] 151 175 36 -[1] 152 175 37 -[1] 153 175 38 -[1] 154 175 51 -[1] 155 175 39 -[1] 156 175 38 -[1] 157 175 35 -[1] 158 175 47 -[1] 159 175 44 -[1] 160 175 37 -[1] 161 175 56 -[1] 162 175 56 -[1] 163 175 43 -[1] 164 175 50 -[1] 165 175 37 -[1] 166 175 37 -[1] 167 175 49 -[1] 168 175 38 -[1] 169 175 48 -[1] 170 175 45 -[1] 171 175 62 -[1] 172 175 53 -[1] 173 175 43 -[1] 174 175 51 -[1] 175 175 54 -[1] 176 175 46 -[1] 177 175 36 -[1] 178 175 53 -[1] 179 175 41 -[1] 180 175 46 -[1] 181 175 41 -[1] 182 175 28 -[1] 183 175 51 -[1] 184 175 39 -[1] 185 175 46 -[1] 186 175 37 -[1] 187 175 40 -[1] 188 175 46 -[1] 189 175 49 -[1] 190 175 53 -[1] 191 175 59 -[1] 192 175 32 -[1] 193 175 41 -[1] 194 175 54 -[1] 195 175 57 -[1] 196 175 60 -[1] 197 175 36 -[1] 198 175 67 -[1] 199 175 85 -[1] 200 175 71 -[1] 1 176 35 -[1] 2 176 30 -[1] 3 176 29 -[1] 4 176 31 -[1] 5 176 35 -[1] 6 176 36 -[1] 7 176 32 -[1] 8 176 52 -[1] 9 176 47 -[1] 10 176 31 -[1] 11 176 41 -[1] 12 176 54 -[1] 13 176 41 -[1] 14 176 50 -[1] 15 176 37 -[1] 16 176 42 -[1] 17 176 61 -[1] 18 176 62 -[1] 19 176 27 -[1] 20 176 37 -[1] 21 176 46 -[1] 22 176 41 -[1] 23 176 30 -[1] 24 176 36 -[1] 25 176 31 -[1] 26 176 41 -[1] 27 176 40 -[1] 28 176 36 -[1] 29 176 57 -[1] 30 176 29 -[1] 31 176 33 -[1] 32 176 32 -[1] 33 176 41 -[1] 34 176 33 -[1] 35 176 36 -[1] 36 176 45 -[1] 37 176 36 -[1] 38 176 27 -[1] 39 176 54 -[1] 40 176 40 -[1] 41 176 47 -[1] 42 176 35 -[1] 43 176 32 -[1] 44 176 33 -[1] 45 176 30 -[1] 46 176 38 -[1] 47 176 34 -[1] 48 176 30 -[1] 49 176 36 -[1] 50 176 41 -[1] 51 176 38 -[1] 52 176 34 -[1] 53 176 38 -[1] 54 176 29 -[1] 55 176 46 -[1] 56 176 35 -[1] 57 176 35 -[1] 58 176 52 -[1] 59 176 31 -[1] 60 176 31 -[1] 61 176 57 -[1] 62 176 27 -[1] 63 176 46 -[1] 64 176 35 -[1] 65 176 45 -[1] 66 176 32 -[1] 67 176 31 -[1] 68 176 47 -[1] 69 176 46 -[1] 70 176 50 -[1] 71 176 43 -[1] 72 176 35 -[1] 73 176 52 -[1] 74 176 33 -[1] 75 176 47 -[1] 76 176 44 -[1] 77 176 28 -[1] 78 176 37 -[1] 79 176 38 -[1] 80 176 43 -[1] 81 176 50 -[1] 82 176 35 -[1] 83 176 28 -[1] 84 176 37 -[1] 85 176 47 -[1] 86 176 30 -[1] 87 176 37 -[1] 88 176 28 -[1] 89 176 35 -[1] 90 176 34 -[1] 91 176 29 -[1] 92 176 30 -[1] 93 176 44 -[1] 94 176 36 -[1] 95 176 32 -[1] 96 176 37 -[1] 97 176 45 -[1] 98 176 49 -[1] 99 176 39 -[1] 100 176 45 -[1] 101 176 47 -[1] 102 176 38 -[1] 103 176 53 -[1] 104 176 27 -[1] 105 176 52 -[1] 106 176 30 -[1] 107 176 37 -[1] 108 176 48 -[1] 109 176 53 -[1] 110 176 58 -[1] 111 176 33 -[1] 112 176 35 -[1] 113 176 39 -[1] 114 176 50 -[1] 115 176 34 -[1] 116 176 41 -[1] 117 176 40 -[1] 118 176 55 -[1] 119 176 43 -[1] 120 176 46 -[1] 121 176 31 -[1] 122 176 40 -[1] 123 176 57 -[1] 124 176 43 -[1] 125 176 40 -[1] 126 176 32 -[1] 127 176 57 -[1] 128 176 45 -[1] 129 176 32 -[1] 130 176 37 -[1] 131 176 52 -[1] 132 176 27 -[1] 133 176 68 -[1] 134 176 35 -[1] 135 176 42 -[1] 136 176 34 -[1] 137 176 56 -[1] 138 176 41 -[1] 139 176 34 -[1] 140 176 40 -[1] 141 176 41 -[1] 142 176 34 -[1] 143 176 65 -[1] 144 176 28 -[1] 145 176 72 -[1] 146 176 52 -[1] 147 176 34 -[1] 148 176 55 -[1] 149 176 68 -[1] 150 176 26 -[1] 151 176 43 -[1] 152 176 42 -[1] 153 176 46 -[1] 154 176 62 -[1] 155 176 33 -[1] 156 176 40 -[1] 157 176 43 -[1] 158 176 42 -[1] 159 176 44 -[1] 160 176 36 -[1] 161 176 58 -[1] 162 176 40 -[1] 163 176 66 -[1] 164 176 48 -[1] 165 176 50 -[1] 166 176 74 -[1] 167 176 57 -[1] 168 176 57 -[1] 169 176 70 -[1] 170 176 56 -[1] 171 176 64 -[1] 172 176 58 -[1] 173 176 47 -[1] 174 176 42 -[1] 175 176 30 -[1] 176 176 70 -[1] 177 176 52 -[1] 178 176 46 -[1] 179 176 49 -[1] 180 176 56 -[1] 181 176 42 -[1] 182 176 66 -[1] 183 176 46 -[1] 184 176 40 -[1] 185 176 31 -[1] 186 176 92 -[1] 187 176 37 -[1] 188 176 41 -[1] 189 176 56 -[1] 190 176 45 -[1] 191 176 61 -[1] 192 176 35 -[1] 193 176 49 -[1] 194 176 63 -[1] 195 176 41 -[1] 196 176 60 -[1] 197 176 49 -[1] 198 176 48 -[1] 199 176 45 -[1] 200 176 73 -[1] 1 177 55 -[1] 2 177 39 -[1] 3 177 29 -[1] 4 177 36 -[1] 5 177 41 -[1] 6 177 40 -[1] 7 177 30 -[1] 8 177 39 -[1] 9 177 49 -[1] 10 177 47 -[1] 11 177 52 -[1] 12 177 32 -[1] 13 177 29 -[1] 14 177 31 -[1] 15 177 33 -[1] 16 177 48 -[1] 17 177 26 -[1] 18 177 45 -[1] 19 177 36 -[1] 20 177 42 -[1] 21 177 51 -[1] 22 177 39 -[1] 23 177 33 -[1] 24 177 46 -[1] 25 177 42 -[1] 26 177 43 -[1] 27 177 47 -[1] 28 177 56 -[1] 29 177 33 -[1] 30 177 54 -[1] 31 177 49 -[1] 32 177 83 -[1] 33 177 35 -[1] 34 177 44 -[1] 35 177 39 -[1] 36 177 36 -[1] 37 177 30 -[1] 38 177 47 -[1] 39 177 37 -[1] 40 177 42 -[1] 41 177 53 -[1] 42 177 28 -[1] 43 177 37 -[1] 44 177 31 -[1] 45 177 58 -[1] 46 177 34 -[1] 47 177 35 -[1] 48 177 33 -[1] 49 177 33 -[1] 50 177 40 -[1] 51 177 34 -[1] 52 177 43 -[1] 53 177 42 -[1] 54 177 67 -[1] 55 177 41 -[1] 56 177 38 -[1] 57 177 35 -[1] 58 177 36 -[1] 59 177 45 -[1] 60 177 27 -[1] 61 177 40 -[1] 62 177 47 -[1] 63 177 34 -[1] 64 177 36 -[1] 65 177 49 -[1] 66 177 53 -[1] 67 177 28 -[1] 68 177 54 -[1] 69 177 31 -[1] 70 177 29 -[1] 71 177 31 -[1] 72 177 69 -[1] 73 177 39 -[1] 74 177 36 -[1] 75 177 68 -[1] 76 177 44 -[1] 77 177 33 -[1] 78 177 35 -[1] 79 177 38 -[1] 80 177 35 -[1] 81 177 73 -[1] 82 177 44 -[1] 83 177 35 -[1] 84 177 52 -[1] 85 177 43 -[1] 86 177 45 -[1] 87 177 35 -[1] 88 177 36 -[1] 89 177 60 -[1] 90 177 38 -[1] 91 177 39 -[1] 92 177 48 -[1] 93 177 38 -[1] 94 177 43 -[1] 95 177 45 -[1] 96 177 41 -[1] 97 177 34 -[1] 98 177 43 -[1] 99 177 28 -[1] 100 177 47 -[1] 101 177 29 -[1] 102 177 36 -[1] 103 177 43 -[1] 104 177 32 -[1] 105 177 35 -[1] 106 177 40 -[1] 107 177 41 -[1] 108 177 35 -[1] 109 177 40 -[1] 110 177 32 -[1] 111 177 36 -[1] 112 177 36 -[1] 113 177 40 -[1] 114 177 33 -[1] 115 177 43 -[1] 116 177 48 -[1] 117 177 35 -[1] 118 177 42 -[1] 119 177 45 -[1] 120 177 46 -[1] 121 177 35 -[1] 122 177 50 -[1] 123 177 35 -[1] 124 177 33 -[1] 125 177 40 -[1] 126 177 35 -[1] 127 177 41 -[1] 128 177 46 -[1] 129 177 34 -[1] 130 177 53 -[1] 131 177 37 -[1] 132 177 27 -[1] 133 177 46 -[1] 134 177 46 -[1] 135 177 37 -[1] 136 177 35 -[1] 137 177 31 -[1] 138 177 33 -[1] 139 177 39 -[1] 140 177 50 -[1] 141 177 41 -[1] 142 177 53 -[1] 143 177 42 -[1] 144 177 41 -[1] 145 177 38 -[1] 146 177 34 -[1] 147 177 66 -[1] 148 177 44 -[1] 149 177 32 -[1] 150 177 65 -[1] 151 177 31 -[1] 152 177 40 -[1] 153 177 37 -[1] 154 177 43 -[1] 155 177 34 -[1] 156 177 53 -[1] 157 177 39 -[1] 158 177 62 -[1] 159 177 42 -[1] 160 177 55 -[1] 161 177 36 -[1] 162 177 34 -[1] 163 177 37 -[1] 164 177 55 -[1] 165 177 58 -[1] 166 177 41 -[1] 167 177 44 -[1] 168 177 45 -[1] 169 177 49 -[1] 170 177 49 -[1] 171 177 34 -[1] 172 177 37 -[1] 173 177 50 -[1] 174 177 67 -[1] 175 177 54 -[1] 176 177 37 -[1] 177 177 49 -[1] 178 177 54 -[1] 179 177 36 -[1] 180 177 39 -[1] 181 177 55 -[1] 182 177 40 -[1] 183 177 35 -[1] 184 177 44 -[1] 185 177 38 -[1] 186 177 56 -[1] 187 177 29 -[1] 188 177 51 -[1] 189 177 47 -[1] 190 177 47 -[1] 191 177 54 -[1] 192 177 44 -[1] 193 177 74 -[1] 194 177 46 -[1] 195 177 43 -[1] 196 177 52 -[1] 197 177 37 -[1] 198 177 48 -[1] 199 177 42 -[1] 200 177 76 -[1] 1 178 37 -[1] 2 178 41 -[1] 3 178 34 -[1] 4 178 34 -[1] 5 178 32 -[1] 6 178 37 -[1] 7 178 34 -[1] 8 178 40 -[1] 9 178 41 -[1] 10 178 48 -[1] 11 178 37 -[1] 12 178 31 -[1] 13 178 26 -[1] 14 178 56 -[1] 15 178 49 -[1] 16 178 43 -[1] 17 178 29 -[1] 18 178 34 -[1] 19 178 27 -[1] 20 178 32 -[1] 21 178 30 -[1] 22 178 37 -[1] 23 178 36 -[1] 24 178 33 -[1] 25 178 41 -[1] 26 178 34 -[1] 27 178 38 -[1] 28 178 31 -[1] 29 178 43 -[1] 30 178 54 -[1] 31 178 45 -[1] 32 178 28 -[1] 33 178 45 -[1] 34 178 51 -[1] 35 178 58 -[1] 36 178 46 -[1] 37 178 31 -[1] 38 178 47 -[1] 39 178 53 -[1] 40 178 28 -[1] 41 178 63 -[1] 42 178 36 -[1] 43 178 61 -[1] 44 178 54 -[1] 45 178 39 -[1] 46 178 33 -[1] 47 178 37 -[1] 48 178 42 -[1] 49 178 42 -[1] 50 178 30 -[1] 51 178 31 -[1] 52 178 32 -[1] 53 178 63 -[1] 54 178 33 -[1] 55 178 43 -[1] 56 178 48 -[1] 57 178 34 -[1] 58 178 39 -[1] 59 178 45 -[1] 60 178 28 -[1] 61 178 29 -[1] 62 178 41 -[1] 63 178 36 -[1] 64 178 49 -[1] 65 178 34 -[1] 66 178 35 -[1] 67 178 32 -[1] 68 178 33 -[1] 69 178 27 -[1] 70 178 37 -[1] 71 178 39 -[1] 72 178 43 -[1] 73 178 35 -[1] 74 178 38 -[1] 75 178 77 -[1] 76 178 46 -[1] 77 178 45 -[1] 78 178 57 -[1] 79 178 30 -[1] 80 178 34 -[1] 81 178 31 -[1] 82 178 33 -[1] 83 178 38 -[1] 84 178 39 -[1] 85 178 45 -[1] 86 178 30 -[1] 87 178 35 -[1] 88 178 32 -[1] 89 178 35 -[1] 90 178 32 -[1] 91 178 66 -[1] 92 178 39 -[1] 93 178 43 -[1] 94 178 27 -[1] 95 178 32 -[1] 96 178 27 -[1] 97 178 43 -[1] 98 178 41 -[1] 99 178 40 -[1] 100 178 59 -[1] 101 178 32 -[1] 102 178 44 -[1] 103 178 33 -[1] 104 178 40 -[1] 105 178 44 -[1] 106 178 46 -[1] 107 178 39 -[1] 108 178 32 -[1] 109 178 44 -[1] 110 178 41 -[1] 111 178 43 -[1] 112 178 30 -[1] 113 178 27 -[1] 114 178 70 -[1] 115 178 45 -[1] 116 178 43 -[1] 117 178 32 -[1] 118 178 33 -[1] 119 178 50 -[1] 120 178 32 -[1] 121 178 35 -[1] 122 178 50 -[1] 123 178 28 -[1] 124 178 42 -[1] 125 178 32 -[1] 126 178 37 -[1] 127 178 36 -[1] 128 178 57 -[1] 129 178 32 -[1] 130 178 36 -[1] 131 178 36 -[1] 132 178 36 -[1] 133 178 51 -[1] 134 178 45 -[1] 135 178 59 -[1] 136 178 43 -[1] 137 178 40 -[1] 138 178 43 -[1] 139 178 29 -[1] 140 178 49 -[1] 141 178 50 -[1] 142 178 43 -[1] 143 178 38 -[1] 144 178 33 -[1] 145 178 40 -[1] 146 178 59 -[1] 147 178 37 -[1] 148 178 54 -[1] 149 178 61 -[1] 150 178 38 -[1] 151 178 34 -[1] 152 178 41 -[1] 153 178 49 -[1] 154 178 31 -[1] 155 178 28 -[1] 156 178 41 -[1] 157 178 38 -[1] 158 178 33 -[1] 159 178 37 -[1] 160 178 58 -[1] 161 178 47 -[1] 162 178 46 -[1] 163 178 45 -[1] 164 178 43 -[1] 165 178 38 -[1] 166 178 29 -[1] 167 178 49 -[1] 168 178 77 -[1] 169 178 49 -[1] 170 178 55 -[1] 171 178 36 -[1] 172 178 45 -[1] 173 178 38 -[1] 174 178 33 -[1] 175 178 49 -[1] 176 178 55 -[1] 177 178 64 -[1] 178 178 49 -[1] 179 178 50 -[1] 180 178 35 -[1] 181 178 48 -[1] 182 178 46 -[1] 183 178 57 -[1] 184 178 68 -[1] 185 178 37 -[1] 186 178 35 -[1] 187 178 74 -[1] 188 178 41 -[1] 189 178 58 -[1] 190 178 43 -[1] 191 178 47 -[1] 192 178 48 -[1] 193 178 37 -[1] 194 178 56 -[1] 195 178 44 -[1] 196 178 42 -[1] 197 178 56 -[1] 198 178 42 -[1] 199 178 61 -[1] 200 178 73 -[1] 1 179 39 -[1] 2 179 33 -[1] 3 179 46 -[1] 4 179 59 -[1] 5 179 30 -[1] 6 179 43 -[1] 7 179 44 -[1] 8 179 33 -[1] 9 179 51 -[1] 10 179 47 -[1] 11 179 34 -[1] 12 179 76 -[1] 13 179 31 -[1] 14 179 50 -[1] 15 179 35 -[1] 16 179 32 -[1] 17 179 37 -[1] 18 179 37 -[1] 19 179 50 -[1] 20 179 35 -[1] 21 179 34 -[1] 22 179 31 -[1] 23 179 36 -[1] 24 179 29 -[1] 25 179 42 -[1] 26 179 33 -[1] 27 179 35 -[1] 28 179 29 -[1] 29 179 36 -[1] 30 179 42 -[1] 31 179 33 -[1] 32 179 34 -[1] 33 179 30 -[1] 34 179 59 -[1] 35 179 41 -[1] 36 179 58 -[1] 37 179 43 -[1] 38 179 47 -[1] 39 179 36 -[1] 40 179 33 -[1] 41 179 52 -[1] 42 179 43 -[1] 43 179 27 -[1] 44 179 40 -[1] 45 179 43 -[1] 46 179 32 -[1] 47 179 43 -[1] 48 179 50 -[1] 49 179 33 -[1] 50 179 36 -[1] 51 179 47 -[1] 52 179 26 -[1] 53 179 41 -[1] 54 179 47 -[1] 55 179 48 -[1] 56 179 67 -[1] 57 179 42 -[1] 58 179 31 -[1] 59 179 41 -[1] 60 179 32 -[1] 61 179 39 -[1] 62 179 30 -[1] 63 179 31 -[1] 64 179 42 -[1] 65 179 43 -[1] 66 179 48 -[1] 67 179 43 -[1] 68 179 49 -[1] 69 179 68 -[1] 70 179 32 -[1] 71 179 41 -[1] 72 179 38 -[1] 73 179 33 -[1] 74 179 38 -[1] 75 179 35 -[1] 76 179 40 -[1] 77 179 36 -[1] 78 179 34 -[1] 79 179 29 -[1] 80 179 31 -[1] 81 179 45 -[1] 82 179 39 -[1] 83 179 51 -[1] 84 179 52 -[1] 85 179 42 -[1] 86 179 48 -[1] 87 179 44 -[1] 88 179 45 -[1] 89 179 43 -[1] 90 179 62 -[1] 91 179 46 -[1] 92 179 45 -[1] 93 179 31 -[1] 94 179 32 -[1] 95 179 35 -[1] 96 179 46 -[1] 97 179 58 -[1] 98 179 42 -[1] 99 179 36 -[1] 100 179 30 -[1] 101 179 29 -[1] 102 179 51 -[1] 103 179 54 -[1] 104 179 39 -[1] 105 179 26 -[1] 106 179 40 -[1] 107 179 33 -[1] 108 179 41 -[1] 109 179 32 -[1] 110 179 39 -[1] 111 179 83 -[1] 112 179 25 -[1] 113 179 42 -[1] 114 179 34 -[1] 115 179 44 -[1] 116 179 33 -[1] 117 179 31 -[1] 118 179 35 -[1] 119 179 48 -[1] 120 179 34 -[1] 121 179 37 -[1] 122 179 40 -[1] 123 179 59 -[1] 124 179 37 -[1] 125 179 35 -[1] 126 179 49 -[1] 127 179 40 -[1] 128 179 37 -[1] 129 179 60 -[1] 130 179 38 -[1] 131 179 49 -[1] 132 179 46 -[1] 133 179 61 -[1] 134 179 51 -[1] 135 179 40 -[1] 136 179 36 -[1] 137 179 33 -[1] 138 179 27 -[1] 139 179 34 -[1] 140 179 33 -[1] 141 179 38 -[1] 142 179 43 -[1] 143 179 36 -[1] 144 179 39 -[1] 145 179 35 -[1] 146 179 50 -[1] 147 179 38 -[1] 148 179 41 -[1] 149 179 34 -[1] 150 179 65 -[1] 151 179 49 -[1] 152 179 43 -[1] 153 179 48 -[1] 154 179 32 -[1] 155 179 40 -[1] 156 179 59 -[1] 157 179 41 -[1] 158 179 40 -[1] 159 179 62 -[1] 160 179 34 -[1] 161 179 61 -[1] 162 179 38 -[1] 163 179 63 -[1] 164 179 38 -[1] 165 179 37 -[1] 166 179 33 -[1] 167 179 48 -[1] 168 179 65 -[1] 169 179 46 -[1] 170 179 28 -[1] 171 179 61 -[1] 172 179 42 -[1] 173 179 43 -[1] 174 179 43 -[1] 175 179 38 -[1] 176 179 57 -[1] 177 179 41 -[1] 178 179 33 -[1] 179 179 40 -[1] 180 179 49 -[1] 181 179 49 -[1] 182 179 38 -[1] 183 179 36 -[1] 184 179 43 -[1] 185 179 42 -[1] 186 179 43 -[1] 187 179 42 -[1] 188 179 47 -[1] 189 179 46 -[1] 190 179 63 -[1] 191 179 44 -[1] 192 179 77 -[1] 193 179 41 -[1] 194 179 48 -[1] 195 179 45 -[1] 196 179 53 -[1] 197 179 44 -[1] 198 179 56 -[1] 199 179 42 -[1] 200 179 68 -[1] 1 180 36 -[1] 2 180 62 -[1] 3 180 32 -[1] 4 180 39 -[1] 5 180 34 -[1] 6 180 39 -[1] 7 180 34 -[1] 8 180 40 -[1] 9 180 40 -[1] 10 180 32 -[1] 11 180 41 -[1] 12 180 28 -[1] 13 180 39 -[1] 14 180 42 -[1] 15 180 37 -[1] 16 180 28 -[1] 17 180 45 -[1] 18 180 35 -[1] 19 180 34 -[1] 20 180 33 -[1] 21 180 40 -[1] 22 180 43 -[1] 23 180 35 -[1] 24 180 40 -[1] 25 180 30 -[1] 26 180 49 -[1] 27 180 40 -[1] 28 180 27 -[1] 29 180 50 -[1] 30 180 35 -[1] 31 180 47 -[1] 32 180 50 -[1] 33 180 61 -[1] 34 180 40 -[1] 35 180 34 -[1] 36 180 42 -[1] 37 180 30 -[1] 38 180 41 -[1] 39 180 28 -[1] 40 180 64 -[1] 41 180 35 -[1] 42 180 46 -[1] 43 180 42 -[1] 44 180 38 -[1] 45 180 45 -[1] 46 180 30 -[1] 47 180 49 -[1] 48 180 23 -[1] 49 180 38 -[1] 50 180 31 -[1] 51 180 37 -[1] 52 180 34 -[1] 53 180 33 -[1] 54 180 44 -[1] 55 180 30 -[1] 56 180 63 -[1] 57 180 35 -[1] 58 180 48 -[1] 59 180 41 -[1] 60 180 44 -[1] 61 180 83 -[1] 62 180 34 -[1] 63 180 37 -[1] 64 180 32 -[1] 65 180 35 -[1] 66 180 26 -[1] 67 180 40 -[1] 68 180 35 -[1] 69 180 47 -[1] 70 180 27 -[1] 71 180 27 -[1] 72 180 34 -[1] 73 180 58 -[1] 74 180 29 -[1] 75 180 35 -[1] 76 180 42 -[1] 77 180 31 -[1] 78 180 40 -[1] 79 180 35 -[1] 80 180 40 -[1] 81 180 33 -[1] 82 180 42 -[1] 83 180 39 -[1] 84 180 43 -[1] 85 180 44 -[1] 86 180 38 -[1] 87 180 45 -[1] 88 180 43 -[1] 89 180 37 -[1] 90 180 36 -[1] 91 180 42 -[1] 92 180 47 -[1] 93 180 39 -[1] 94 180 28 -[1] 95 180 38 -[1] 96 180 53 -[1] 97 180 49 -[1] 98 180 54 -[1] 99 180 34 -[1] 100 180 50 -[1] 101 180 36 -[1] 102 180 35 -[1] 103 180 34 -[1] 104 180 39 -[1] 105 180 39 -[1] 106 180 37 -[1] 107 180 30 -[1] 108 180 37 -[1] 109 180 38 -[1] 110 180 35 -[1] 111 180 31 -[1] 112 180 39 -[1] 113 180 47 -[1] 114 180 44 -[1] 115 180 41 -[1] 116 180 44 -[1] 117 180 31 -[1] 118 180 26 -[1] 119 180 51 -[1] 120 180 31 -[1] 121 180 35 -[1] 122 180 55 -[1] 123 180 43 -[1] 124 180 41 -[1] 125 180 31 -[1] 126 180 54 -[1] 127 180 39 -[1] 128 180 30 -[1] 129 180 61 -[1] 130 180 36 -[1] 131 180 51 -[1] 132 180 42 -[1] 133 180 22 -[1] 134 180 60 -[1] 135 180 50 -[1] 136 180 37 -[1] 137 180 48 -[1] 138 180 43 -[1] 139 180 30 -[1] 140 180 29 -[1] 141 180 32 -[1] 142 180 35 -[1] 143 180 45 -[1] 144 180 29 -[1] 145 180 63 -[1] 146 180 33 -[1] 147 180 49 -[1] 148 180 42 -[1] 149 180 77 -[1] 150 180 38 -[1] 151 180 36 -[1] 152 180 52 -[1] 153 180 29 -[1] 154 180 38 -[1] 155 180 28 -[1] 156 180 63 -[1] 157 180 30 -[1] 158 180 30 -[1] 159 180 70 -[1] 160 180 52 -[1] 161 180 50 -[1] 162 180 40 -[1] 163 180 42 -[1] 164 180 32 -[1] 165 180 41 -[1] 166 180 36 -[1] 167 180 37 -[1] 168 180 47 -[1] 169 180 39 -[1] 170 180 50 -[1] 171 180 42 -[1] 172 180 25 -[1] 173 180 72 -[1] 174 180 43 -[1] 175 180 73 -[1] 176 180 39 -[1] 177 180 36 -[1] 178 180 44 -[1] 179 180 63 -[1] 180 180 40 -[1] 181 180 49 -[1] 182 180 47 -[1] 183 180 51 -[1] 184 180 33 -[1] 185 180 46 -[1] 186 180 42 -[1] 187 180 53 -[1] 188 180 42 -[1] 189 180 55 -[1] 190 180 40 -[1] 191 180 54 -[1] 192 180 42 -[1] 193 180 56 -[1] 194 180 48 -[1] 195 180 53 -[1] 196 180 34 -[1] 197 180 41 -[1] 198 180 49 -[1] 199 180 62 -[1] 200 180 51 -[1] 1 181 31 -[1] 2 181 45 -[1] 3 181 32 -[1] 4 181 34 -[1] 5 181 59 -[1] 6 181 37 -[1] 7 181 27 -[1] 8 181 35 -[1] 9 181 34 -[1] 10 181 50 -[1] 11 181 49 -[1] 12 181 31 -[1] 13 181 57 -[1] 14 181 55 -[1] 15 181 33 -[1] 16 181 64 -[1] 17 181 52 -[1] 18 181 35 -[1] 19 181 29 -[1] 20 181 47 -[1] 21 181 36 -[1] 22 181 35 -[1] 23 181 35 -[1] 24 181 42 -[1] 25 181 46 -[1] 26 181 31 -[1] 27 181 38 -[1] 28 181 39 -[1] 29 181 43 -[1] 30 181 32 -[1] 31 181 37 -[1] 32 181 28 -[1] 33 181 60 -[1] 34 181 40 -[1] 35 181 49 -[1] 36 181 41 -[1] 37 181 47 -[1] 38 181 35 -[1] 39 181 25 -[1] 40 181 34 -[1] 41 181 48 -[1] 42 181 31 -[1] 43 181 35 -[1] 44 181 40 -[1] 45 181 46 -[1] 46 181 42 -[1] 47 181 32 -[1] 48 181 32 -[1] 49 181 35 -[1] 50 181 31 -[1] 51 181 32 -[1] 52 181 44 -[1] 53 181 27 -[1] 54 181 44 -[1] 55 181 42 -[1] 56 181 42 -[1] 57 181 46 -[1] 58 181 73 -[1] 59 181 26 -[1] 60 181 37 -[1] 61 181 27 -[1] 62 181 42 -[1] 63 181 46 -[1] 64 181 63 -[1] 65 181 27 -[1] 66 181 36 -[1] 67 181 43 -[1] 68 181 32 -[1] 69 181 56 -[1] 70 181 39 -[1] 71 181 33 -[1] 72 181 28 -[1] 73 181 46 -[1] 74 181 60 -[1] 75 181 46 -[1] 76 181 51 -[1] 77 181 46 -[1] 78 181 41 -[1] 79 181 41 -[1] 80 181 36 -[1] 81 181 31 -[1] 82 181 44 -[1] 83 181 51 -[1] 84 181 44 -[1] 85 181 35 -[1] 86 181 29 -[1] 87 181 40 -[1] 88 181 32 -[1] 89 181 39 -[1] 90 181 40 -[1] 91 181 41 -[1] 92 181 36 -[1] 93 181 43 -[1] 94 181 39 -[1] 95 181 42 -[1] 96 181 39 -[1] 97 181 48 -[1] 98 181 40 -[1] 99 181 32 -[1] 100 181 50 -[1] 101 181 37 -[1] 102 181 30 -[1] 103 181 34 -[1] 104 181 41 -[1] 105 181 27 -[1] 106 181 47 -[1] 107 181 36 -[1] 108 181 32 -[1] 109 181 41 -[1] 110 181 26 -[1] 111 181 56 -[1] 112 181 40 -[1] 113 181 30 -[1] 114 181 45 -[1] 115 181 31 -[1] 116 181 48 -[1] 117 181 40 -[1] 118 181 35 -[1] 119 181 53 -[1] 120 181 38 -[1] 121 181 49 -[1] 122 181 33 -[1] 123 181 45 -[1] 124 181 51 -[1] 125 181 35 -[1] 126 181 31 -[1] 127 181 42 -[1] 128 181 45 -[1] 129 181 53 -[1] 130 181 50 -[1] 131 181 32 -[1] 132 181 43 -[1] 133 181 54 -[1] 134 181 47 -[1] 135 181 25 -[1] 136 181 76 -[1] 137 181 45 -[1] 138 181 32 -[1] 139 181 53 -[1] 140 181 40 -[1] 141 181 39 -[1] 142 181 51 -[1] 143 181 39 -[1] 144 181 33 -[1] 145 181 39 -[1] 146 181 39 -[1] 147 181 40 -[1] 148 181 61 -[1] 149 181 42 -[1] 150 181 69 -[1] 151 181 42 -[1] 152 181 45 -[1] 153 181 62 -[1] 154 181 46 -[1] 155 181 42 -[1] 156 181 44 -[1] 157 181 39 -[1] 158 181 32 -[1] 159 181 39 -[1] 160 181 36 -[1] 161 181 36 -[1] 162 181 57 -[1] 163 181 37 -[1] 164 181 33 -[1] 165 181 28 -[1] 166 181 45 -[1] 167 181 50 -[1] 168 181 43 -[1] 169 181 32 -[1] 170 181 46 -[1] 171 181 79 -[1] 172 181 33 -[1] 173 181 45 -[1] 174 181 37 -[1] 175 181 42 -[1] 176 181 38 -[1] 177 181 61 -[1] 178 181 30 -[1] 179 181 60 -[1] 180 181 39 -[1] 181 181 63 -[1] 182 181 61 -[1] 183 181 34 -[1] 184 181 48 -[1] 185 181 31 -[1] 186 181 63 -[1] 187 181 42 -[1] 188 181 43 -[1] 189 181 48 -[1] 190 181 35 -[1] 191 181 49 -[1] 192 181 52 -[1] 193 181 62 -[1] 194 181 75 -[1] 195 181 45 -[1] 196 181 46 -[1] 197 181 72 -[1] 198 181 53 -[1] 199 181 44 -[1] 200 181 66 -[1] 1 182 40 -[1] 2 182 54 -[1] 3 182 52 -[1] 4 182 31 -[1] 5 182 30 -[1] 6 182 43 -[1] 7 182 31 -[1] 8 182 45 -[1] 9 182 37 -[1] 10 182 41 -[1] 11 182 30 -[1] 12 182 43 -[1] 13 182 53 -[1] 14 182 40 -[1] 15 182 53 -[1] 16 182 33 -[1] 17 182 42 -[1] 18 182 43 -[1] 19 182 42 -[1] 20 182 37 -[1] 21 182 74 -[1] 22 182 43 -[1] 23 182 32 -[1] 24 182 55 -[1] 25 182 39 -[1] 26 182 33 -[1] 27 182 35 -[1] 28 182 59 -[1] 29 182 35 -[1] 30 182 45 -[1] 31 182 44 -[1] 32 182 47 -[1] 33 182 52 -[1] 34 182 45 -[1] 35 182 28 -[1] 36 182 33 -[1] 37 182 26 -[1] 38 182 56 -[1] 39 182 38 -[1] 40 182 39 -[1] 41 182 50 -[1] 42 182 36 -[1] 43 182 35 -[1] 44 182 36 -[1] 45 182 30 -[1] 46 182 34 -[1] 47 182 52 -[1] 48 182 31 -[1] 49 182 30 -[1] 50 182 42 -[1] 51 182 44 -[1] 52 182 46 -[1] 53 182 31 -[1] 54 182 50 -[1] 55 182 41 -[1] 56 182 30 -[1] 57 182 45 -[1] 58 182 28 -[1] 59 182 55 -[1] 60 182 26 -[1] 61 182 41 -[1] 62 182 46 -[1] 63 182 30 -[1] 64 182 34 -[1] 65 182 38 -[1] 66 182 31 -[1] 67 182 46 -[1] 68 182 39 -[1] 69 182 42 -[1] 70 182 46 -[1] 71 182 50 -[1] 72 182 30 -[1] 73 182 45 -[1] 74 182 41 -[1] 75 182 42 -[1] 76 182 29 -[1] 77 182 40 -[1] 78 182 28 -[1] 79 182 35 -[1] 80 182 47 -[1] 81 182 25 -[1] 82 182 38 -[1] 83 182 40 -[1] 84 182 28 -[1] 85 182 38 -[1] 86 182 40 -[1] 87 182 45 -[1] 88 182 37 -[1] 89 182 51 -[1] 90 182 67 -[1] 91 182 37 -[1] 92 182 38 -[1] 93 182 44 -[1] 94 182 60 -[1] 95 182 34 -[1] 96 182 35 -[1] 97 182 34 -[1] 98 182 39 -[1] 99 182 34 -[1] 100 182 37 -[1] 101 182 33 -[1] 102 182 36 -[1] 103 182 25 -[1] 104 182 30 -[1] 105 182 35 -[1] 106 182 30 -[1] 107 182 43 -[1] 108 182 33 -[1] 109 182 42 -[1] 110 182 33 -[1] 111 182 41 -[1] 112 182 64 -[1] 113 182 32 -[1] 114 182 33 -[1] 115 182 52 -[1] 116 182 27 -[1] 117 182 33 -[1] 118 182 34 -[1] 119 182 39 -[1] 120 182 42 -[1] 121 182 33 -[1] 122 182 38 -[1] 123 182 37 -[1] 124 182 33 -[1] 125 182 42 -[1] 126 182 39 -[1] 127 182 38 -[1] 128 182 35 -[1] 129 182 46 -[1] 130 182 33 -[1] 131 182 31 -[1] 132 182 41 -[1] 133 182 34 -[1] 134 182 36 -[1] 135 182 33 -[1] 136 182 45 -[1] 137 182 42 -[1] 138 182 42 -[1] 139 182 50 -[1] 140 182 41 -[1] 141 182 37 -[1] 142 182 27 -[1] 143 182 36 -[1] 144 182 35 -[1] 145 182 38 -[1] 146 182 49 -[1] 147 182 43 -[1] 148 182 34 -[1] 149 182 37 -[1] 150 182 37 -[1] 151 182 61 -[1] 152 182 51 -[1] 153 182 46 -[1] 154 182 50 -[1] 155 182 39 -[1] 156 182 33 -[1] 157 182 41 -[1] 158 182 43 -[1] 159 182 56 -[1] 160 182 27 -[1] 161 182 41 -[1] 162 182 40 -[1] 163 182 39 -[1] 164 182 44 -[1] 165 182 61 -[1] 166 182 37 -[1] 167 182 43 -[1] 168 182 47 -[1] 169 182 61 -[1] 170 182 36 -[1] 171 182 41 -[1] 172 182 45 -[1] 173 182 36 -[1] 174 182 41 -[1] 175 182 41 -[1] 176 182 42 -[1] 177 182 51 -[1] 178 182 31 -[1] 179 182 50 -[1] 180 182 34 -[1] 181 182 49 -[1] 182 182 36 -[1] 183 182 43 -[1] 184 182 52 -[1] 185 182 44 -[1] 186 182 44 -[1] 187 182 42 -[1] 188 182 41 -[1] 189 182 36 -[1] 190 182 41 -[1] 191 182 46 -[1] 192 182 45 -[1] 193 182 75 -[1] 194 182 57 -[1] 195 182 51 -[1] 196 182 37 -[1] 197 182 37 -[1] 198 182 56 -[1] 199 182 46 -[1] 200 182 124 -[1] 1 183 40 -[1] 2 183 50 -[1] 3 183 34 -[1] 4 183 39 -[1] 5 183 29 -[1] 6 183 32 -[1] 7 183 37 -[1] 8 183 48 -[1] 9 183 49 -[1] 10 183 35 -[1] 11 183 51 -[1] 12 183 41 -[1] 13 183 39 -[1] 14 183 38 -[1] 15 183 39 -[1] 16 183 35 -[1] 17 183 38 -[1] 18 183 32 -[1] 19 183 53 -[1] 20 183 42 -[1] 21 183 26 -[1] 22 183 58 -[1] 23 183 26 -[1] 24 183 53 -[1] 25 183 36 -[1] 26 183 57 -[1] 27 183 53 -[1] 28 183 35 -[1] 29 183 56 -[1] 30 183 44 -[1] 31 183 37 -[1] 32 183 42 -[1] 33 183 35 -[1] 34 183 33 -[1] 35 183 41 -[1] 36 183 40 -[1] 37 183 36 -[1] 38 183 36 -[1] 39 183 33 -[1] 40 183 35 -[1] 41 183 32 -[1] 42 183 49 -[1] 43 183 39 -[1] 44 183 30 -[1] 45 183 41 -[1] 46 183 48 -[1] 47 183 41 -[1] 48 183 36 -[1] 49 183 33 -[1] 50 183 32 -[1] 51 183 51 -[1] 52 183 48 -[1] 53 183 35 -[1] 54 183 27 -[1] 55 183 38 -[1] 56 183 39 -[1] 57 183 31 -[1] 58 183 42 -[1] 59 183 47 -[1] 60 183 34 -[1] 61 183 49 -[1] 62 183 26 -[1] 63 183 56 -[1] 64 183 21 -[1] 65 183 119 -[1] 66 183 30 -[1] 67 183 43 -[1] 68 183 44 -[1] 69 183 42 -[1] 70 183 56 -[1] 71 183 30 -[1] 72 183 37 -[1] 73 183 44 -[1] 74 183 49 -[1] 75 183 34 -[1] 76 183 41 -[1] 77 183 38 -[1] 78 183 47 -[1] 79 183 43 -[1] 80 183 35 -[1] 81 183 44 -[1] 82 183 50 -[1] 83 183 35 -[1] 84 183 47 -[1] 85 183 36 -[1] 86 183 56 -[1] 87 183 64 -[1] 88 183 54 -[1] 89 183 33 -[1] 90 183 40 -[1] 91 183 44 -[1] 92 183 45 -[1] 93 183 36 -[1] 94 183 31 -[1] 95 183 43 -[1] 96 183 28 -[1] 97 183 47 -[1] 98 183 39 -[1] 99 183 42 -[1] 100 183 40 -[1] 101 183 47 -[1] 102 183 46 -[1] 103 183 49 -[1] 104 183 36 -[1] 105 183 36 -[1] 106 183 37 -[1] 107 183 75 -[1] 108 183 45 -[1] 109 183 63 -[1] 110 183 48 -[1] 111 183 46 -[1] 112 183 36 -[1] 113 183 56 -[1] 114 183 30 -[1] 115 183 59 -[1] 116 183 32 -[1] 117 183 33 -[1] 118 183 56 -[1] 119 183 39 -[1] 120 183 45 -[1] 121 183 40 -[1] 122 183 80 -[1] 123 183 42 -[1] 124 183 42 -[1] 125 183 30 -[1] 126 183 40 -[1] 127 183 28 -[1] 128 183 28 -[1] 129 183 67 -[1] 130 183 34 -[1] 131 183 45 -[1] 132 183 36 -[1] 133 183 41 -[1] 134 183 37 -[1] 135 183 37 -[1] 136 183 48 -[1] 137 183 41 -[1] 138 183 38 -[1] 139 183 64 -[1] 140 183 36 -[1] 141 183 39 -[1] 142 183 77 -[1] 143 183 28 -[1] 144 183 33 -[1] 145 183 45 -[1] 146 183 43 -[1] 147 183 52 -[1] 148 183 38 -[1] 149 183 27 -[1] 150 183 24 -[1] 151 183 45 -[1] 152 183 45 -[1] 153 183 36 -[1] 154 183 36 -[1] 155 183 43 -[1] 156 183 41 -[1] 157 183 36 -[1] 158 183 39 -[1] 159 183 55 -[1] 160 183 38 -[1] 161 183 31 -[1] 162 183 41 -[1] 163 183 54 -[1] 164 183 41 -[1] 165 183 54 -[1] 166 183 39 -[1] 167 183 48 -[1] 168 183 61 -[1] 169 183 56 -[1] 170 183 33 -[1] 171 183 52 -[1] 172 183 53 -[1] 173 183 46 -[1] 174 183 36 -[1] 175 183 38 -[1] 176 183 43 -[1] 177 183 41 -[1] 178 183 49 -[1] 179 183 51 -[1] 180 183 42 -[1] 181 183 53 -[1] 182 183 34 -[1] 183 183 55 -[1] 184 183 57 -[1] 185 183 32 -[1] 186 183 67 -[1] 187 183 42 -[1] 188 183 54 -[1] 189 183 32 -[1] 190 183 58 -[1] 191 183 38 -[1] 192 183 57 -[1] 193 183 54 -[1] 194 183 53 -[1] 195 183 66 -[1] 196 183 55 -[1] 197 183 57 -[1] 198 183 60 -[1] 199 183 53 -[1] 200 183 51 -[1] 1 184 39 -[1] 2 184 56 -[1] 3 184 61 -[1] 4 184 38 -[1] 5 184 41 -[1] 6 184 31 -[1] 7 184 40 -[1] 8 184 45 -[1] 9 184 48 -[1] 10 184 30 -[1] 11 184 28 -[1] 12 184 36 -[1] 13 184 43 -[1] 14 184 34 -[1] 15 184 33 -[1] 16 184 42 -[1] 17 184 36 -[1] 18 184 38 -[1] 19 184 36 -[1] 20 184 34 -[1] 21 184 53 -[1] 22 184 26 -[1] 23 184 44 -[1] 24 184 47 -[1] 25 184 35 -[1] 26 184 43 -[1] 27 184 33 -[1] 28 184 39 -[1] 29 184 34 -[1] 30 184 30 -[1] 31 184 32 -[1] 32 184 39 -[1] 33 184 47 -[1] 34 184 37 -[1] 35 184 34 -[1] 36 184 41 -[1] 37 184 42 -[1] 38 184 38 -[1] 39 184 37 -[1] 40 184 35 -[1] 41 184 34 -[1] 42 184 36 -[1] 43 184 50 -[1] 44 184 36 -[1] 45 184 39 -[1] 46 184 41 -[1] 47 184 44 -[1] 48 184 41 -[1] 49 184 48 -[1] 50 184 48 -[1] 51 184 47 -[1] 52 184 29 -[1] 53 184 44 -[1] 54 184 37 -[1] 55 184 34 -[1] 56 184 43 -[1] 57 184 32 -[1] 58 184 35 -[1] 59 184 31 -[1] 60 184 42 -[1] 61 184 45 -[1] 62 184 34 -[1] 63 184 36 -[1] 64 184 33 -[1] 65 184 41 -[1] 66 184 33 -[1] 67 184 40 -[1] 68 184 35 -[1] 69 184 52 -[1] 70 184 31 -[1] 71 184 62 -[1] 72 184 49 -[1] 73 184 62 -[1] 74 184 41 -[1] 75 184 30 -[1] 76 184 47 -[1] 77 184 37 -[1] 78 184 28 -[1] 79 184 55 -[1] 80 184 58 -[1] 81 184 35 -[1] 82 184 31 -[1] 83 184 48 -[1] 84 184 49 -[1] 85 184 32 -[1] 86 184 38 -[1] 87 184 47 -[1] 88 184 33 -[1] 89 184 58 -[1] 90 184 31 -[1] 91 184 41 -[1] 92 184 42 -[1] 93 184 39 -[1] 94 184 44 -[1] 95 184 38 -[1] 96 184 39 -[1] 97 184 37 -[1] 98 184 34 -[1] 99 184 37 -[1] 100 184 36 -[1] 101 184 33 -[1] 102 184 36 -[1] 103 184 27 -[1] 104 184 48 -[1] 105 184 48 -[1] 106 184 48 -[1] 107 184 34 -[1] 108 184 34 -[1] 109 184 32 -[1] 110 184 38 -[1] 111 184 33 -[1] 112 184 46 -[1] 113 184 35 -[1] 114 184 24 -[1] 115 184 41 -[1] 116 184 36 -[1] 117 184 45 -[1] 118 184 49 -[1] 119 184 37 -[1] 120 184 40 -[1] 121 184 32 -[1] 122 184 36 -[1] 123 184 32 -[1] 124 184 43 -[1] 125 184 35 -[1] 126 184 35 -[1] 127 184 35 -[1] 128 184 34 -[1] 129 184 39 -[1] 130 184 34 -[1] 131 184 30 -[1] 132 184 43 -[1] 133 184 32 -[1] 134 184 56 -[1] 135 184 30 -[1] 136 184 49 -[1] 137 184 40 -[1] 138 184 28 -[1] 139 184 38 -[1] 140 184 36 -[1] 141 184 38 -[1] 142 184 35 -[1] 143 184 59 -[1] 144 184 36 -[1] 145 184 36 -[1] 146 184 43 -[1] 147 184 41 -[1] 148 184 32 -[1] 149 184 39 -[1] 150 184 40 -[1] 151 184 41 -[1] 152 184 38 -[1] 153 184 37 -[1] 154 184 38 -[1] 155 184 45 -[1] 156 184 55 -[1] 157 184 47 -[1] 158 184 66 -[1] 159 184 47 -[1] 160 184 36 -[1] 161 184 43 -[1] 162 184 42 -[1] 163 184 39 -[1] 164 184 38 -[1] 165 184 34 -[1] 166 184 48 -[1] 167 184 39 -[1] 168 184 72 -[1] 169 184 27 -[1] 170 184 49 -[1] 171 184 53 -[1] 172 184 58 -[1] 173 184 34 -[1] 174 184 34 -[1] 175 184 34 -[1] 176 184 29 -[1] 177 184 89 -[1] 178 184 69 -[1] 179 184 70 -[1] 180 184 44 -[1] 181 184 45 -[1] 182 184 48 -[1] 183 184 47 -[1] 184 184 41 -[1] 185 184 58 -[1] 186 184 42 -[1] 187 184 44 -[1] 188 184 38 -[1] 189 184 43 -[1] 190 184 56 -[1] 191 184 40 -[1] 192 184 49 -[1] 193 184 50 -[1] 194 184 60 -[1] 195 184 50 -[1] 196 184 57 -[1] 197 184 55 -[1] 198 184 53 -[1] 199 184 55 -[1] 200 184 81 -[1] 1 185 41 -[1] 2 185 35 -[1] 3 185 25 -[1] 4 185 42 -[1] 5 185 35 -[1] 6 185 45 -[1] 7 185 41 -[1] 8 185 39 -[1] 9 185 35 -[1] 10 185 36 -[1] 11 185 25 -[1] 12 185 30 -[1] 13 185 47 -[1] 14 185 32 -[1] 15 185 33 -[1] 16 185 42 -[1] 17 185 51 -[1] 18 185 45 -[1] 19 185 46 -[1] 20 185 37 -[1] 21 185 32 -[1] 22 185 47 -[1] 23 185 37 -[1] 24 185 68 -[1] 25 185 38 -[1] 26 185 37 -[1] 27 185 45 -[1] 28 185 33 -[1] 29 185 46 -[1] 30 185 38 -[1] 31 185 35 -[1] 32 185 31 -[1] 33 185 52 -[1] 34 185 31 -[1] 35 185 49 -[1] 36 185 47 -[1] 37 185 33 -[1] 38 185 51 -[1] 39 185 32 -[1] 40 185 39 -[1] 41 185 30 -[1] 42 185 41 -[1] 43 185 31 -[1] 44 185 27 -[1] 45 185 36 -[1] 46 185 35 -[1] 47 185 52 -[1] 48 185 37 -[1] 49 185 44 -[1] 50 185 38 -[1] 51 185 27 -[1] 52 185 35 -[1] 53 185 34 -[1] 54 185 41 -[1] 55 185 33 -[1] 56 185 47 -[1] 57 185 31 -[1] 58 185 41 -[1] 59 185 33 -[1] 60 185 42 -[1] 61 185 32 -[1] 62 185 33 -[1] 63 185 43 -[1] 64 185 36 -[1] 65 185 30 -[1] 66 185 39 -[1] 67 185 43 -[1] 68 185 32 -[1] 69 185 43 -[1] 70 185 38 -[1] 71 185 36 -[1] 72 185 56 -[1] 73 185 47 -[1] 74 185 34 -[1] 75 185 38 -[1] 76 185 43 -[1] 77 185 30 -[1] 78 185 56 -[1] 79 185 43 -[1] 80 185 31 -[1] 81 185 47 -[1] 82 185 48 -[1] 83 185 35 -[1] 84 185 33 -[1] 85 185 31 -[1] 86 185 48 -[1] 87 185 38 -[1] 88 185 35 -[1] 89 185 54 -[1] 90 185 41 -[1] 91 185 94 -[1] 92 185 37 -[1] 93 185 48 -[1] 94 185 32 -[1] 95 185 34 -[1] 96 185 29 -[1] 97 185 40 -[1] 98 185 39 -[1] 99 185 40 -[1] 100 185 28 -[1] 101 185 37 -[1] 102 185 41 -[1] 103 185 46 -[1] 104 185 33 -[1] 105 185 38 -[1] 106 185 39 -[1] 107 185 48 -[1] 108 185 33 -[1] 109 185 41 -[1] 110 185 34 -[1] 111 185 55 -[1] 112 185 24 -[1] 113 185 39 -[1] 114 185 34 -[1] 115 185 42 -[1] 116 185 51 -[1] 117 185 45 -[1] 118 185 39 -[1] 119 185 30 -[1] 120 185 41 -[1] 121 185 38 -[1] 122 185 53 -[1] 123 185 36 -[1] 124 185 33 -[1] 125 185 39 -[1] 126 185 40 -[1] 127 185 34 -[1] 128 185 43 -[1] 129 185 61 -[1] 130 185 38 -[1] 131 185 41 -[1] 132 185 56 -[1] 133 185 46 -[1] 134 185 46 -[1] 135 185 36 -[1] 136 185 33 -[1] 137 185 40 -[1] 138 185 35 -[1] 139 185 30 -[1] 140 185 43 -[1] 141 185 40 -[1] 142 185 41 -[1] 143 185 29 -[1] 144 185 36 -[1] 145 185 42 -[1] 146 185 53 -[1] 147 185 45 -[1] 148 185 30 -[1] 149 185 46 -[1] 150 185 32 -[1] 151 185 50 -[1] 152 185 31 -[1] 153 185 34 -[1] 154 185 37 -[1] 155 185 30 -[1] 156 185 61 -[1] 157 185 29 -[1] 158 185 42 -[1] 159 185 37 -[1] 160 185 37 -[1] 161 185 56 -[1] 162 185 38 -[1] 163 185 38 -[1] 164 185 44 -[1] 165 185 42 -[1] 166 185 35 -[1] 167 185 48 -[1] 168 185 44 -[1] 169 185 53 -[1] 170 185 35 -[1] 171 185 46 -[1] 172 185 43 -[1] 173 185 86 -[1] 174 185 40 -[1] 175 185 63 -[1] 176 185 39 -[1] 177 185 40 -[1] 178 185 43 -[1] 179 185 41 -[1] 180 185 54 -[1] 181 185 34 -[1] 182 185 42 -[1] 183 185 41 -[1] 184 185 42 -[1] 185 185 34 -[1] 186 185 51 -[1] 187 185 41 -[1] 188 185 42 -[1] 189 185 42 -[1] 190 185 42 -[1] 191 185 75 -[1] 192 185 45 -[1] 193 185 69 -[1] 194 185 39 -[1] 195 185 72 -[1] 196 185 56 -[1] 197 185 45 -[1] 198 185 32 -[1] 199 185 68 -[1] 200 185 120 -[1] 1 186 38 -[1] 2 186 34 -[1] 3 186 27 -[1] 4 186 34 -[1] 5 186 29 -[1] 6 186 46 -[1] 7 186 30 -[1] 8 186 45 -[1] 9 186 55 -[1] 10 186 47 -[1] 11 186 53 -[1] 12 186 39 -[1] 13 186 35 -[1] 14 186 62 -[1] 15 186 39 -[1] 16 186 34 -[1] 17 186 36 -[1] 18 186 72 -[1] 19 186 28 -[1] 20 186 32 -[1] 21 186 61 -[1] 22 186 39 -[1] 23 186 60 -[1] 24 186 39 -[1] 25 186 32 -[1] 26 186 35 -[1] 27 186 37 -[1] 28 186 52 -[1] 29 186 39 -[1] 30 186 30 -[1] 31 186 39 -[1] 32 186 32 -[1] 33 186 47 -[1] 34 186 46 -[1] 35 186 44 -[1] 36 186 42 -[1] 37 186 35 -[1] 38 186 37 -[1] 39 186 39 -[1] 40 186 43 -[1] 41 186 39 -[1] 42 186 45 -[1] 43 186 40 -[1] 44 186 29 -[1] 45 186 35 -[1] 46 186 66 -[1] 47 186 40 -[1] 48 186 36 -[1] 49 186 41 -[1] 50 186 36 -[1] 51 186 26 -[1] 52 186 50 -[1] 53 186 29 -[1] 54 186 34 -[1] 55 186 36 -[1] 56 186 35 -[1] 57 186 34 -[1] 58 186 37 -[1] 59 186 31 -[1] 60 186 44 -[1] 61 186 57 -[1] 62 186 31 -[1] 63 186 46 -[1] 64 186 37 -[1] 65 186 36 -[1] 66 186 48 -[1] 67 186 51 -[1] 68 186 39 -[1] 69 186 43 -[1] 70 186 40 -[1] 71 186 42 -[1] 72 186 39 -[1] 73 186 40 -[1] 74 186 52 -[1] 75 186 51 -[1] 76 186 43 -[1] 77 186 35 -[1] 78 186 47 -[1] 79 186 69 -[1] 80 186 38 -[1] 81 186 43 -[1] 82 186 45 -[1] 83 186 36 -[1] 84 186 69 -[1] 85 186 58 -[1] 86 186 56 -[1] 87 186 36 -[1] 88 186 41 -[1] 89 186 40 -[1] 90 186 33 -[1] 91 186 35 -[1] 92 186 46 -[1] 93 186 69 -[1] 94 186 23 -[1] 95 186 54 -[1] 96 186 34 -[1] 97 186 49 -[1] 98 186 24 -[1] 99 186 63 -[1] 100 186 36 -[1] 101 186 37 -[1] 102 186 45 -[1] 103 186 42 -[1] 104 186 41 -[1] 105 186 40 -[1] 106 186 38 -[1] 107 186 49 -[1] 108 186 45 -[1] 109 186 35 -[1] 110 186 30 -[1] 111 186 33 -[1] 112 186 26 -[1] 113 186 41 -[1] 114 186 41 -[1] 115 186 50 -[1] 116 186 34 -[1] 117 186 49 -[1] 118 186 48 -[1] 119 186 43 -[1] 120 186 38 -[1] 121 186 36 -[1] 122 186 50 -[1] 123 186 39 -[1] 124 186 37 -[1] 125 186 53 -[1] 126 186 43 -[1] 127 186 36 -[1] 128 186 41 -[1] 129 186 51 -[1] 130 186 40 -[1] 131 186 39 -[1] 132 186 36 -[1] 133 186 35 -[1] 134 186 44 -[1] 135 186 45 -[1] 136 186 42 -[1] 137 186 44 -[1] 138 186 44 -[1] 139 186 34 -[1] 140 186 43 -[1] 141 186 34 -[1] 142 186 47 -[1] 143 186 31 -[1] 144 186 34 -[1] 145 186 31 -[1] 146 186 42 -[1] 147 186 42 -[1] 148 186 37 -[1] 149 186 31 -[1] 150 186 40 -[1] 151 186 39 -[1] 152 186 39 -[1] 153 186 44 -[1] 154 186 38 -[1] 155 186 39 -[1] 156 186 43 -[1] 157 186 41 -[1] 158 186 35 -[1] 159 186 40 -[1] 160 186 40 -[1] 161 186 35 -[1] 162 186 34 -[1] 163 186 29 -[1] 164 186 33 -[1] 165 186 46 -[1] 166 186 38 -[1] 167 186 57 -[1] 168 186 39 -[1] 169 186 40 -[1] 170 186 47 -[1] 171 186 45 -[1] 172 186 40 -[1] 173 186 36 -[1] 174 186 55 -[1] 175 186 56 -[1] 176 186 55 -[1] 177 186 75 -[1] 178 186 34 -[1] 179 186 43 -[1] 180 186 40 -[1] 181 186 62 -[1] 182 186 75 -[1] 183 186 41 -[1] 184 186 47 -[1] 185 186 32 -[1] 186 186 40 -[1] 187 186 51 -[1] 188 186 55 -[1] 189 186 48 -[1] 190 186 47 -[1] 191 186 66 -[1] 192 186 42 -[1] 193 186 58 -[1] 194 186 54 -[1] 195 186 47 -[1] 196 186 64 -[1] 197 186 55 -[1] 198 186 46 -[1] 199 186 47 -[1] 200 186 69 -[1] 1 187 35 -[1] 2 187 43 -[1] 3 187 30 -[1] 4 187 73 -[1] 5 187 25 -[1] 6 187 50 -[1] 7 187 58 -[1] 8 187 48 -[1] 9 187 41 -[1] 10 187 53 -[1] 11 187 31 -[1] 12 187 39 -[1] 13 187 58 -[1] 14 187 30 -[1] 15 187 42 -[1] 16 187 37 -[1] 17 187 41 -[1] 18 187 46 -[1] 19 187 33 -[1] 20 187 45 -[1] 21 187 25 -[1] 22 187 38 -[1] 23 187 46 -[1] 24 187 40 -[1] 25 187 37 -[1] 26 187 33 -[1] 27 187 26 -[1] 28 187 35 -[1] 29 187 42 -[1] 30 187 33 -[1] 31 187 51 -[1] 32 187 32 -[1] 33 187 39 -[1] 34 187 34 -[1] 35 187 34 -[1] 36 187 41 -[1] 37 187 40 -[1] 38 187 40 -[1] 39 187 36 -[1] 40 187 36 -[1] 41 187 38 -[1] 42 187 32 -[1] 43 187 36 -[1] 44 187 34 -[1] 45 187 31 -[1] 46 187 51 -[1] 47 187 27 -[1] 48 187 45 -[1] 49 187 30 -[1] 50 187 22 -[1] 51 187 41 -[1] 52 187 60 -[1] 53 187 41 -[1] 54 187 31 -[1] 55 187 39 -[1] 56 187 38 -[1] 57 187 26 -[1] 58 187 33 -[1] 59 187 32 -[1] 60 187 35 -[1] 61 187 38 -[1] 62 187 41 -[1] 63 187 35 -[1] 64 187 44 -[1] 65 187 27 -[1] 66 187 32 -[1] 67 187 43 -[1] 68 187 40 -[1] 69 187 39 -[1] 70 187 44 -[1] 71 187 57 -[1] 72 187 40 -[1] 73 187 43 -[1] 74 187 30 -[1] 75 187 45 -[1] 76 187 45 -[1] 77 187 38 -[1] 78 187 39 -[1] 79 187 37 -[1] 80 187 40 -[1] 81 187 42 -[1] 82 187 38 -[1] 83 187 56 -[1] 84 187 40 -[1] 85 187 55 -[1] 86 187 50 -[1] 87 187 52 -[1] 88 187 62 -[1] 89 187 48 -[1] 90 187 36 -[1] 91 187 36 -[1] 92 187 42 -[1] 93 187 27 -[1] 94 187 50 -[1] 95 187 37 -[1] 96 187 62 -[1] 97 187 26 -[1] 98 187 37 -[1] 99 187 58 -[1] 100 187 35 -[1] 101 187 35 -[1] 102 187 37 -[1] 103 187 45 -[1] 104 187 39 -[1] 105 187 50 -[1] 106 187 53 -[1] 107 187 33 -[1] 108 187 44 -[1] 109 187 43 -[1] 110 187 39 -[1] 111 187 56 -[1] 112 187 45 -[1] 113 187 78 -[1] 114 187 29 -[1] 115 187 40 -[1] 116 187 51 -[1] 117 187 53 -[1] 118 187 37 -[1] 119 187 46 -[1] 120 187 54 -[1] 121 187 45 -[1] 122 187 36 -[1] 123 187 41 -[1] 124 187 56 -[1] 125 187 26 -[1] 126 187 31 -[1] 127 187 42 -[1] 128 187 49 -[1] 129 187 55 -[1] 130 187 43 -[1] 131 187 40 -[1] 132 187 48 -[1] 133 187 45 -[1] 134 187 35 -[1] 135 187 34 -[1] 136 187 26 -[1] 137 187 34 -[1] 138 187 36 -[1] 139 187 35 -[1] 140 187 40 -[1] 141 187 36 -[1] 142 187 39 -[1] 143 187 36 -[1] 144 187 45 -[1] 145 187 43 -[1] 146 187 44 -[1] 147 187 55 -[1] 148 187 43 -[1] 149 187 41 -[1] 150 187 37 -[1] 151 187 46 -[1] 152 187 36 -[1] 153 187 40 -[1] 154 187 31 -[1] 155 187 33 -[1] 156 187 40 -[1] 157 187 39 -[1] 158 187 34 -[1] 159 187 45 -[1] 160 187 39 -[1] 161 187 46 -[1] 162 187 46 -[1] 163 187 31 -[1] 164 187 49 -[1] 165 187 42 -[1] 166 187 37 -[1] 167 187 60 -[1] 168 187 51 -[1] 169 187 36 -[1] 170 187 45 -[1] 171 187 39 -[1] 172 187 35 -[1] 173 187 55 -[1] 174 187 30 -[1] 175 187 65 -[1] 176 187 40 -[1] 177 187 58 -[1] 178 187 42 -[1] 179 187 49 -[1] 180 187 38 -[1] 181 187 39 -[1] 182 187 48 -[1] 183 187 41 -[1] 184 187 40 -[1] 185 187 37 -[1] 186 187 67 -[1] 187 187 37 -[1] 188 187 47 -[1] 189 187 49 -[1] 190 187 36 -[1] 191 187 46 -[1] 192 187 40 -[1] 193 187 47 -[1] 194 187 32 -[1] 195 187 44 -[1] 196 187 29 -[1] 197 187 92 -[1] 198 187 57 -[1] 199 187 35 -[1] 200 187 53 -[1] 1 188 40 -[1] 2 188 39 -[1] 3 188 45 -[1] 4 188 35 -[1] 5 188 47 -[1] 6 188 46 -[1] 7 188 32 -[1] 8 188 37 -[1] 9 188 43 -[1] 10 188 36 -[1] 11 188 43 -[1] 12 188 52 -[1] 13 188 29 -[1] 14 188 38 -[1] 15 188 51 -[1] 16 188 26 -[1] 17 188 59 -[1] 18 188 36 -[1] 19 188 37 -[1] 20 188 30 -[1] 21 188 43 -[1] 22 188 35 -[1] 23 188 31 -[1] 24 188 38 -[1] 25 188 28 -[1] 26 188 33 -[1] 27 188 34 -[1] 28 188 64 -[1] 29 188 37 -[1] 30 188 35 -[1] 31 188 43 -[1] 32 188 42 -[1] 33 188 39 -[1] 34 188 34 -[1] 35 188 43 -[1] 36 188 37 -[1] 37 188 33 -[1] 38 188 46 -[1] 39 188 41 -[1] 40 188 58 -[1] 41 188 42 -[1] 42 188 43 -[1] 43 188 51 -[1] 44 188 38 -[1] 45 188 52 -[1] 46 188 54 -[1] 47 188 36 -[1] 48 188 52 -[1] 49 188 29 -[1] 50 188 54 -[1] 51 188 41 -[1] 52 188 43 -[1] 53 188 22 -[1] 54 188 40 -[1] 55 188 39 -[1] 56 188 45 -[1] 57 188 38 -[1] 58 188 37 -[1] 59 188 43 -[1] 60 188 34 -[1] 61 188 29 -[1] 62 188 36 -[1] 63 188 29 -[1] 64 188 44 -[1] 65 188 31 -[1] 66 188 34 -[1] 67 188 27 -[1] 68 188 33 -[1] 69 188 34 -[1] 70 188 35 -[1] 71 188 28 -[1] 72 188 36 -[1] 73 188 33 -[1] 74 188 31 -[1] 75 188 33 -[1] 76 188 46 -[1] 77 188 29 -[1] 78 188 44 -[1] 79 188 26 -[1] 80 188 45 -[1] 81 188 55 -[1] 82 188 34 -[1] 83 188 42 -[1] 84 188 60 -[1] 85 188 40 -[1] 86 188 33 -[1] 87 188 44 -[1] 88 188 28 -[1] 89 188 53 -[1] 90 188 33 -[1] 91 188 36 -[1] 92 188 40 -[1] 93 188 40 -[1] 94 188 44 -[1] 95 188 33 -[1] 96 188 37 -[1] 97 188 33 -[1] 98 188 39 -[1] 99 188 41 -[1] 100 188 35 -[1] 101 188 35 -[1] 102 188 42 -[1] 103 188 36 -[1] 104 188 57 -[1] 105 188 36 -[1] 106 188 36 -[1] 107 188 33 -[1] 108 188 35 -[1] 109 188 51 -[1] 110 188 59 -[1] 111 188 45 -[1] 112 188 43 -[1] 113 188 39 -[1] 114 188 42 -[1] 115 188 36 -[1] 116 188 45 -[1] 117 188 55 -[1] 118 188 45 -[1] 119 188 50 -[1] 120 188 49 -[1] 121 188 38 -[1] 122 188 45 -[1] 123 188 40 -[1] 124 188 40 -[1] 125 188 39 -[1] 126 188 41 -[1] 127 188 41 -[1] 128 188 42 -[1] 129 188 30 -[1] 130 188 31 -[1] 131 188 31 -[1] 132 188 30 -[1] 133 188 47 -[1] 134 188 39 -[1] 135 188 28 -[1] 136 188 45 -[1] 137 188 29 -[1] 138 188 50 -[1] 139 188 42 -[1] 140 188 41 -[1] 141 188 38 -[1] 142 188 47 -[1] 143 188 35 -[1] 144 188 34 -[1] 145 188 27 -[1] 146 188 46 -[1] 147 188 49 -[1] 148 188 35 -[1] 149 188 48 -[1] 150 188 30 -[1] 151 188 29 -[1] 152 188 42 -[1] 153 188 49 -[1] 154 188 39 -[1] 155 188 54 -[1] 156 188 37 -[1] 157 188 40 -[1] 158 188 43 -[1] 159 188 33 -[1] 160 188 30 -[1] 161 188 30 -[1] 162 188 61 -[1] 163 188 38 -[1] 164 188 35 -[1] 165 188 35 -[1] 166 188 35 -[1] 167 188 32 -[1] 168 188 35 -[1] 169 188 34 -[1] 170 188 49 -[1] 171 188 44 -[1] 172 188 48 -[1] 173 188 43 -[1] 174 188 41 -[1] 175 188 30 -[1] 176 188 38 -[1] 177 188 72 -[1] 178 188 40 -[1] 179 188 35 -[1] 180 188 39 -[1] 181 188 47 -[1] 182 188 43 -[1] 183 188 61 -[1] 184 188 46 -[1] 185 188 77 -[1] 186 188 61 -[1] 187 188 60 -[1] 188 188 56 -[1] 189 188 70 -[1] 190 188 36 -[1] 191 188 74 -[1] 192 188 57 -[1] 193 188 53 -[1] 194 188 56 -[1] 195 188 39 -[1] 196 188 36 -[1] 197 188 52 -[1] 198 188 72 -[1] 199 188 42 -[1] 200 188 67 -[1] 1 189 42 -[1] 2 189 60 -[1] 3 189 42 -[1] 4 189 45 -[1] 5 189 42 -[1] 6 189 43 -[1] 7 189 27 -[1] 8 189 49 -[1] 9 189 42 -[1] 10 189 34 -[1] 11 189 39 -[1] 12 189 34 -[1] 13 189 43 -[1] 14 189 36 -[1] 15 189 29 -[1] 16 189 36 -[1] 17 189 33 -[1] 18 189 63 -[1] 19 189 48 -[1] 20 189 53 -[1] 21 189 42 -[1] 22 189 35 -[1] 23 189 34 -[1] 24 189 45 -[1] 25 189 38 -[1] 26 189 35 -[1] 27 189 37 -[1] 28 189 35 -[1] 29 189 47 -[1] 30 189 34 -[1] 31 189 46 -[1] 32 189 52 -[1] 33 189 57 -[1] 34 189 53 -[1] 35 189 30 -[1] 36 189 31 -[1] 37 189 40 -[1] 38 189 50 -[1] 39 189 52 -[1] 40 189 36 -[1] 41 189 38 -[1] 42 189 36 -[1] 43 189 38 -[1] 44 189 42 -[1] 45 189 42 -[1] 46 189 61 -[1] 47 189 42 -[1] 48 189 39 -[1] 49 189 53 -[1] 50 189 38 -[1] 51 189 49 -[1] 52 189 37 -[1] 53 189 31 -[1] 54 189 78 -[1] 55 189 36 -[1] 56 189 31 -[1] 57 189 43 -[1] 58 189 33 -[1] 59 189 44 -[1] 60 189 30 -[1] 61 189 29 -[1] 62 189 42 -[1] 63 189 43 -[1] 64 189 34 -[1] 65 189 47 -[1] 66 189 40 -[1] 67 189 29 -[1] 68 189 35 -[1] 69 189 36 -[1] 70 189 33 -[1] 71 189 26 -[1] 72 189 56 -[1] 73 189 69 -[1] 74 189 31 -[1] 75 189 34 -[1] 76 189 35 -[1] 77 189 47 -[1] 78 189 48 -[1] 79 189 46 -[1] 80 189 45 -[1] 81 189 27 -[1] 82 189 43 -[1] 83 189 46 -[1] 84 189 47 -[1] 85 189 27 -[1] 86 189 42 -[1] 87 189 32 -[1] 88 189 45 -[1] 89 189 54 -[1] 90 189 48 -[1] 91 189 81 -[1] 92 189 34 -[1] 93 189 44 -[1] 94 189 46 -[1] 95 189 47 -[1] 96 189 34 -[1] 97 189 28 -[1] 98 189 49 -[1] 99 189 48 -[1] 100 189 34 -[1] 101 189 36 -[1] 102 189 35 -[1] 103 189 43 -[1] 104 189 35 -[1] 105 189 53 -[1] 106 189 37 -[1] 107 189 35 -[1] 108 189 38 -[1] 109 189 45 -[1] 110 189 30 -[1] 111 189 45 -[1] 112 189 55 -[1] 113 189 42 -[1] 114 189 44 -[1] 115 189 39 -[1] 116 189 31 -[1] 117 189 48 -[1] 118 189 31 -[1] 119 189 38 -[1] 120 189 30 -[1] 121 189 44 -[1] 122 189 38 -[1] 123 189 38 -[1] 124 189 27 -[1] 125 189 42 -[1] 126 189 38 -[1] 127 189 65 -[1] 128 189 63 -[1] 129 189 25 -[1] 130 189 52 -[1] 131 189 38 -[1] 132 189 49 -[1] 133 189 37 -[1] 134 189 52 -[1] 135 189 28 -[1] 136 189 38 -[1] 137 189 49 -[1] 138 189 54 -[1] 139 189 41 -[1] 140 189 38 -[1] 141 189 40 -[1] 142 189 33 -[1] 143 189 35 -[1] 144 189 46 -[1] 145 189 48 -[1] 146 189 35 -[1] 147 189 29 -[1] 148 189 40 -[1] 149 189 36 -[1] 150 189 35 -[1] 151 189 35 -[1] 152 189 29 -[1] 153 189 33 -[1] 154 189 38 -[1] 155 189 30 -[1] 156 189 37 -[1] 157 189 46 -[1] 158 189 58 -[1] 159 189 43 -[1] 160 189 28 -[1] 161 189 34 -[1] 162 189 38 -[1] 163 189 49 -[1] 164 189 29 -[1] 165 189 64 -[1] 166 189 46 -[1] 167 189 30 -[1] 168 189 60 -[1] 169 189 48 -[1] 170 189 41 -[1] 171 189 32 -[1] 172 189 30 -[1] 173 189 37 -[1] 174 189 45 -[1] 175 189 48 -[1] 176 189 65 -[1] 177 189 46 -[1] 178 189 55 -[1] 179 189 35 -[1] 180 189 37 -[1] 181 189 64 -[1] 182 189 38 -[1] 183 189 37 -[1] 184 189 39 -[1] 185 189 58 -[1] 186 189 46 -[1] 187 189 56 -[1] 188 189 60 -[1] 189 189 52 -[1] 190 189 34 -[1] 191 189 45 -[1] 192 189 33 -[1] 193 189 36 -[1] 194 189 93 -[1] 195 189 57 -[1] 196 189 40 -[1] 197 189 53 -[1] 198 189 60 -[1] 199 189 41 -[1] 200 189 69 -[1] 1 190 45 -[1] 2 190 37 -[1] 3 190 40 -[1] 4 190 43 -[1] 5 190 44 -[1] 6 190 24 -[1] 7 190 31 -[1] 8 190 36 -[1] 9 190 52 -[1] 10 190 31 -[1] 11 190 54 -[1] 12 190 26 -[1] 13 190 41 -[1] 14 190 31 -[1] 15 190 53 -[1] 16 190 47 -[1] 17 190 58 -[1] 18 190 50 -[1] 19 190 30 -[1] 20 190 39 -[1] 21 190 34 -[1] 22 190 33 -[1] 23 190 37 -[1] 24 190 50 -[1] 25 190 46 -[1] 26 190 35 -[1] 27 190 29 -[1] 28 190 32 -[1] 29 190 31 -[1] 30 190 28 -[1] 31 190 37 -[1] 32 190 41 -[1] 33 190 40 -[1] 34 190 39 -[1] 35 190 41 -[1] 36 190 33 -[1] 37 190 45 -[1] 38 190 45 -[1] 39 190 40 -[1] 40 190 38 -[1] 41 190 43 -[1] 42 190 51 -[1] 43 190 37 -[1] 44 190 44 -[1] 45 190 47 -[1] 46 190 42 -[1] 47 190 41 -[1] 48 190 31 -[1] 49 190 50 -[1] 50 190 38 -[1] 51 190 37 -[1] 52 190 47 -[1] 53 190 36 -[1] 54 190 39 -[1] 55 190 29 -[1] 56 190 44 -[1] 57 190 40 -[1] 58 190 38 -[1] 59 190 38 -[1] 60 190 34 -[1] 61 190 34 -[1] 62 190 43 -[1] 63 190 30 -[1] 64 190 45 -[1] 65 190 37 -[1] 66 190 26 -[1] 67 190 33 -[1] 68 190 43 -[1] 69 190 32 -[1] 70 190 47 -[1] 71 190 30 -[1] 72 190 31 -[1] 73 190 27 -[1] 74 190 40 -[1] 75 190 54 -[1] 76 190 37 -[1] 77 190 31 -[1] 78 190 46 -[1] 79 190 33 -[1] 80 190 32 -[1] 81 190 40 -[1] 82 190 41 -[1] 83 190 51 -[1] 84 190 42 -[1] 85 190 39 -[1] 86 190 45 -[1] 87 190 26 -[1] 88 190 43 -[1] 89 190 43 -[1] 90 190 38 -[1] 91 190 38 -[1] 92 190 59 -[1] 93 190 40 -[1] 94 190 38 -[1] 95 190 48 -[1] 96 190 50 -[1] 97 190 43 -[1] 98 190 37 -[1] 99 190 46 -[1] 100 190 33 -[1] 101 190 56 -[1] 102 190 45 -[1] 103 190 36 -[1] 104 190 37 -[1] 105 190 42 -[1] 106 190 52 -[1] 107 190 65 -[1] 108 190 35 -[1] 109 190 61 -[1] 110 190 38 -[1] 111 190 41 -[1] 112 190 30 -[1] 113 190 49 -[1] 114 190 30 -[1] 115 190 40 -[1] 116 190 27 -[1] 117 190 35 -[1] 118 190 43 -[1] 119 190 32 -[1] 120 190 34 -[1] 121 190 49 -[1] 122 190 31 -[1] 123 190 82 -[1] 124 190 53 -[1] 125 190 39 -[1] 126 190 33 -[1] 127 190 71 -[1] 128 190 36 -[1] 129 190 35 -[1] 130 190 43 -[1] 131 190 27 -[1] 132 190 30 -[1] 133 190 59 -[1] 134 190 31 -[1] 135 190 36 -[1] 136 190 33 -[1] 137 190 34 -[1] 138 190 31 -[1] 139 190 47 -[1] 140 190 44 -[1] 141 190 24 -[1] 142 190 32 -[1] 143 190 49 -[1] 144 190 33 -[1] 145 190 29 -[1] 146 190 40 -[1] 147 190 57 -[1] 148 190 33 -[1] 149 190 54 -[1] 150 190 34 -[1] 151 190 35 -[1] 152 190 45 -[1] 153 190 42 -[1] 154 190 43 -[1] 155 190 32 -[1] 156 190 44 -[1] 157 190 47 -[1] 158 190 45 -[1] 159 190 39 -[1] 160 190 42 -[1] 161 190 37 -[1] 162 190 34 -[1] 163 190 43 -[1] 164 190 38 -[1] 165 190 41 -[1] 166 190 48 -[1] 167 190 40 -[1] 168 190 40 -[1] 169 190 46 -[1] 170 190 35 -[1] 171 190 28 -[1] 172 190 34 -[1] 173 190 51 -[1] 174 190 47 -[1] 175 190 44 -[1] 176 190 47 -[1] 177 190 52 -[1] 178 190 65 -[1] 179 190 55 -[1] 180 190 33 -[1] 181 190 37 -[1] 182 190 69 -[1] 183 190 48 -[1] 184 190 50 -[1] 185 190 28 -[1] 186 190 49 -[1] 187 190 48 -[1] 188 190 57 -[1] 189 190 54 -[1] 190 190 51 -[1] 191 190 46 -[1] 192 190 66 -[1] 193 190 38 -[1] 194 190 39 -[1] 195 190 50 -[1] 196 190 64 -[1] 197 190 61 -[1] 198 190 85 -[1] 199 190 55 -[1] 200 190 44 -[1] 1 191 33 -[1] 2 191 35 -[1] 3 191 36 -[1] 4 191 38 -[1] 5 191 55 -[1] 6 191 36 -[1] 7 191 37 -[1] 8 191 43 -[1] 9 191 41 -[1] 10 191 30 -[1] 11 191 52 -[1] 12 191 47 -[1] 13 191 34 -[1] 14 191 39 -[1] 15 191 46 -[1] 16 191 41 -[1] 17 191 31 -[1] 18 191 45 -[1] 19 191 54 -[1] 20 191 35 -[1] 21 191 52 -[1] 22 191 29 -[1] 23 191 32 -[1] 24 191 33 -[1] 25 191 36 -[1] 26 191 45 -[1] 27 191 41 -[1] 28 191 46 -[1] 29 191 53 -[1] 30 191 30 -[1] 31 191 43 -[1] 32 191 29 -[1] 33 191 34 -[1] 34 191 40 -[1] 35 191 38 -[1] 36 191 48 -[1] 37 191 38 -[1] 38 191 43 -[1] 39 191 32 -[1] 40 191 51 -[1] 41 191 29 -[1] 42 191 32 -[1] 43 191 37 -[1] 44 191 52 -[1] 45 191 39 -[1] 46 191 40 -[1] 47 191 35 -[1] 48 191 40 -[1] 49 191 40 -[1] 50 191 45 -[1] 51 191 73 -[1] 52 191 36 -[1] 53 191 72 -[1] 54 191 40 -[1] 55 191 43 -[1] 56 191 36 -[1] 57 191 26 -[1] 58 191 31 -[1] 59 191 39 -[1] 60 191 30 -[1] 61 191 35 -[1] 62 191 36 -[1] 63 191 32 -[1] 64 191 43 -[1] 65 191 30 -[1] 66 191 67 -[1] 67 191 42 -[1] 68 191 36 -[1] 69 191 36 -[1] 70 191 27 -[1] 71 191 40 -[1] 72 191 51 -[1] 73 191 36 -[1] 74 191 33 -[1] 75 191 42 -[1] 76 191 32 -[1] 77 191 48 -[1] 78 191 46 -[1] 79 191 35 -[1] 80 191 29 -[1] 81 191 52 -[1] 82 191 35 -[1] 83 191 40 -[1] 84 191 35 -[1] 85 191 44 -[1] 86 191 41 -[1] 87 191 40 -[1] 88 191 32 -[1] 89 191 42 -[1] 90 191 60 -[1] 91 191 46 -[1] 92 191 29 -[1] 93 191 69 -[1] 94 191 34 -[1] 95 191 45 -[1] 96 191 34 -[1] 97 191 40 -[1] 98 191 35 -[1] 99 191 49 -[1] 100 191 47 -[1] 101 191 40 -[1] 102 191 43 -[1] 103 191 44 -[1] 104 191 45 -[1] 105 191 46 -[1] 106 191 50 -[1] 107 191 45 -[1] 108 191 39 -[1] 109 191 47 -[1] 110 191 40 -[1] 111 191 39 -[1] 112 191 36 -[1] 113 191 41 -[1] 114 191 36 -[1] 115 191 31 -[1] 116 191 48 -[1] 117 191 37 -[1] 118 191 37 -[1] 119 191 42 -[1] 120 191 35 -[1] 121 191 39 -[1] 122 191 44 -[1] 123 191 88 -[1] 124 191 47 -[1] 125 191 40 -[1] 126 191 39 -[1] 127 191 37 -[1] 128 191 27 -[1] 129 191 42 -[1] 130 191 64 -[1] 131 191 43 -[1] 132 191 30 -[1] 133 191 31 -[1] 134 191 41 -[1] 135 191 33 -[1] 136 191 48 -[1] 137 191 35 -[1] 138 191 84 -[1] 139 191 38 -[1] 140 191 30 -[1] 141 191 32 -[1] 142 191 62 -[1] 143 191 45 -[1] 144 191 42 -[1] 145 191 35 -[1] 146 191 44 -[1] 147 191 28 -[1] 148 191 31 -[1] 149 191 41 -[1] 150 191 26 -[1] 151 191 69 -[1] 152 191 55 -[1] 153 191 44 -[1] 154 191 41 -[1] 155 191 44 -[1] 156 191 33 -[1] 157 191 44 -[1] 158 191 65 -[1] 159 191 31 -[1] 160 191 30 -[1] 161 191 38 -[1] 162 191 41 -[1] 163 191 38 -[1] 164 191 47 -[1] 165 191 29 -[1] 166 191 34 -[1] 167 191 53 -[1] 168 191 61 -[1] 169 191 39 -[1] 170 191 46 -[1] 171 191 59 -[1] 172 191 33 -[1] 173 191 35 -[1] 174 191 53 -[1] 175 191 30 -[1] 176 191 31 -[1] 177 191 57 -[1] 178 191 48 -[1] 179 191 51 -[1] 180 191 64 -[1] 181 191 61 -[1] 182 191 54 -[1] 183 191 71 -[1] 184 191 48 -[1] 185 191 33 -[1] 186 191 37 -[1] 187 191 40 -[1] 188 191 29 -[1] 189 191 40 -[1] 190 191 43 -[1] 191 191 32 -[1] 192 191 43 -[1] 193 191 47 -[1] 194 191 34 -[1] 195 191 43 -[1] 196 191 57 -[1] 197 191 61 -[1] 198 191 42 -[1] 199 191 87 -[1] 200 191 48 -[1] 1 192 73 -[1] 2 192 51 -[1] 3 192 39 -[1] 4 192 52 -[1] 5 192 42 -[1] 6 192 41 -[1] 7 192 31 -[1] 8 192 44 -[1] 9 192 33 -[1] 10 192 41 -[1] 11 192 34 -[1] 12 192 50 -[1] 13 192 33 -[1] 14 192 30 -[1] 15 192 49 -[1] 16 192 30 -[1] 17 192 32 -[1] 18 192 51 -[1] 19 192 37 -[1] 20 192 38 -[1] 21 192 34 -[1] 22 192 57 -[1] 23 192 53 -[1] 24 192 34 -[1] 25 192 45 -[1] 26 192 37 -[1] 27 192 31 -[1] 28 192 30 -[1] 29 192 44 -[1] 30 192 47 -[1] 31 192 34 -[1] 32 192 48 -[1] 33 192 32 -[1] 34 192 47 -[1] 35 192 44 -[1] 36 192 40 -[1] 37 192 59 -[1] 38 192 37 -[1] 39 192 42 -[1] 40 192 55 -[1] 41 192 35 -[1] 42 192 55 -[1] 43 192 58 -[1] 44 192 38 -[1] 45 192 39 -[1] 46 192 32 -[1] 47 192 57 -[1] 48 192 53 -[1] 49 192 56 -[1] 50 192 46 -[1] 51 192 49 -[1] 52 192 39 -[1] 53 192 46 -[1] 54 192 35 -[1] 55 192 39 -[1] 56 192 38 -[1] 57 192 34 -[1] 58 192 47 -[1] 59 192 43 -[1] 60 192 30 -[1] 61 192 29 -[1] 62 192 26 -[1] 63 192 35 -[1] 64 192 32 -[1] 65 192 43 -[1] 66 192 28 -[1] 67 192 51 -[1] 68 192 31 -[1] 69 192 38 -[1] 70 192 64 -[1] 71 192 44 -[1] 72 192 46 -[1] 73 192 42 -[1] 74 192 31 -[1] 75 192 36 -[1] 76 192 39 -[1] 77 192 38 -[1] 78 192 31 -[1] 79 192 37 -[1] 80 192 32 -[1] 81 192 41 -[1] 82 192 31 -[1] 83 192 34 -[1] 84 192 51 -[1] 85 192 38 -[1] 86 192 55 -[1] 87 192 26 -[1] 88 192 41 -[1] 89 192 44 -[1] 90 192 35 -[1] 91 192 40 -[1] 92 192 33 -[1] 93 192 65 -[1] 94 192 36 -[1] 95 192 41 -[1] 96 192 48 -[1] 97 192 32 -[1] 98 192 41 -[1] 99 192 55 -[1] 100 192 32 -[1] 101 192 30 -[1] 102 192 46 -[1] 103 192 44 -[1] 104 192 32 -[1] 105 192 43 -[1] 106 192 37 -[1] 107 192 52 -[1] 108 192 33 -[1] 109 192 48 -[1] 110 192 43 -[1] 111 192 39 -[1] 112 192 42 -[1] 113 192 55 -[1] 114 192 40 -[1] 115 192 43 -[1] 116 192 38 -[1] 117 192 35 -[1] 118 192 49 -[1] 119 192 35 -[1] 120 192 42 -[1] 121 192 37 -[1] 122 192 53 -[1] 123 192 46 -[1] 124 192 44 -[1] 125 192 39 -[1] 126 192 49 -[1] 127 192 43 -[1] 128 192 35 -[1] 129 192 31 -[1] 130 192 39 -[1] 131 192 40 -[1] 132 192 54 -[1] 133 192 31 -[1] 134 192 45 -[1] 135 192 32 -[1] 136 192 45 -[1] 137 192 34 -[1] 138 192 47 -[1] 139 192 35 -[1] 140 192 54 -[1] 141 192 44 -[1] 142 192 43 -[1] 143 192 43 -[1] 144 192 50 -[1] 145 192 33 -[1] 146 192 52 -[1] 147 192 45 -[1] 148 192 28 -[1] 149 192 45 -[1] 150 192 51 -[1] 151 192 50 -[1] 152 192 37 -[1] 153 192 46 -[1] 154 192 37 -[1] 155 192 39 -[1] 156 192 39 -[1] 157 192 59 -[1] 158 192 70 -[1] 159 192 34 -[1] 160 192 46 -[1] 161 192 36 -[1] 162 192 39 -[1] 163 192 36 -[1] 164 192 47 -[1] 165 192 33 -[1] 166 192 48 -[1] 167 192 53 -[1] 168 192 34 -[1] 169 192 32 -[1] 170 192 56 -[1] 171 192 38 -[1] 172 192 57 -[1] 173 192 50 -[1] 174 192 53 -[1] 175 192 36 -[1] 176 192 53 -[1] 177 192 36 -[1] 178 192 49 -[1] 179 192 43 -[1] 180 192 38 -[1] 181 192 45 -[1] 182 192 46 -[1] 183 192 37 -[1] 184 192 40 -[1] 185 192 43 -[1] 186 192 50 -[1] 187 192 35 -[1] 188 192 33 -[1] 189 192 44 -[1] 190 192 39 -[1] 191 192 46 -[1] 192 192 63 -[1] 193 192 52 -[1] 194 192 45 -[1] 195 192 47 -[1] 196 192 46 -[1] 197 192 27 -[1] 198 192 46 -[1] 199 192 47 -[1] 200 192 63 -[1] 1 193 39 -[1] 2 193 43 -[1] 3 193 35 -[1] 4 193 46 -[1] 5 193 43 -[1] 6 193 50 -[1] 7 193 45 -[1] 8 193 54 -[1] 9 193 23 -[1] 10 193 49 -[1] 11 193 42 -[1] 12 193 32 -[1] 13 193 33 -[1] 14 193 34 -[1] 15 193 52 -[1] 16 193 39 -[1] 17 193 41 -[1] 18 193 29 -[1] 19 193 33 -[1] 20 193 44 -[1] 21 193 34 -[1] 22 193 36 -[1] 23 193 34 -[1] 24 193 50 -[1] 25 193 44 -[1] 26 193 35 -[1] 27 193 57 -[1] 28 193 50 -[1] 29 193 31 -[1] 30 193 34 -[1] 31 193 35 -[1] 32 193 42 -[1] 33 193 39 -[1] 34 193 34 -[1] 35 193 39 -[1] 36 193 37 -[1] 37 193 57 -[1] 38 193 50 -[1] 39 193 39 -[1] 40 193 46 -[1] 41 193 42 -[1] 42 193 33 -[1] 43 193 47 -[1] 44 193 36 -[1] 45 193 41 -[1] 46 193 38 -[1] 47 193 41 -[1] 48 193 34 -[1] 49 193 46 -[1] 50 193 57 -[1] 51 193 40 -[1] 52 193 38 -[1] 53 193 40 -[1] 54 193 39 -[1] 55 193 38 -[1] 56 193 31 -[1] 57 193 32 -[1] 58 193 40 -[1] 59 193 43 -[1] 60 193 33 -[1] 61 193 35 -[1] 62 193 26 -[1] 63 193 44 -[1] 64 193 45 -[1] 65 193 39 -[1] 66 193 38 -[1] 67 193 25 -[1] 68 193 39 -[1] 69 193 42 -[1] 70 193 31 -[1] 71 193 37 -[1] 72 193 38 -[1] 73 193 32 -[1] 74 193 42 -[1] 75 193 37 -[1] 76 193 39 -[1] 77 193 41 -[1] 78 193 46 -[1] 79 193 30 -[1] 80 193 43 -[1] 81 193 49 -[1] 82 193 38 -[1] 83 193 33 -[1] 84 193 35 -[1] 85 193 44 -[1] 86 193 69 -[1] 87 193 60 -[1] 88 193 34 -[1] 89 193 49 -[1] 90 193 46 -[1] 91 193 41 -[1] 92 193 51 -[1] 93 193 47 -[1] 94 193 46 -[1] 95 193 57 -[1] 96 193 36 -[1] 97 193 38 -[1] 98 193 51 -[1] 99 193 38 -[1] 100 193 41 -[1] 101 193 33 -[1] 102 193 38 -[1] 103 193 33 -[1] 104 193 38 -[1] 105 193 31 -[1] 106 193 43 -[1] 107 193 37 -[1] 108 193 40 -[1] 109 193 47 -[1] 110 193 34 -[1] 111 193 41 -[1] 112 193 52 -[1] 113 193 43 -[1] 114 193 60 -[1] 115 193 37 -[1] 116 193 36 -[1] 117 193 37 -[1] 118 193 33 -[1] 119 193 26 -[1] 120 193 67 -[1] 121 193 32 -[1] 122 193 35 -[1] 123 193 30 -[1] 124 193 39 -[1] 125 193 32 -[1] 126 193 37 -[1] 127 193 44 -[1] 128 193 34 -[1] 129 193 43 -[1] 130 193 40 -[1] 131 193 38 -[1] 132 193 36 -[1] 133 193 53 -[1] 134 193 45 -[1] 135 193 42 -[1] 136 193 45 -[1] 137 193 42 -[1] 138 193 35 -[1] 139 193 39 -[1] 140 193 34 -[1] 141 193 26 -[1] 142 193 42 -[1] 143 193 36 -[1] 144 193 31 -[1] 145 193 36 -[1] 146 193 26 -[1] 147 193 37 -[1] 148 193 46 -[1] 149 193 46 -[1] 150 193 35 -[1] 151 193 39 -[1] 152 193 47 -[1] 153 193 41 -[1] 154 193 74 -[1] 155 193 38 -[1] 156 193 37 -[1] 157 193 38 -[1] 158 193 27 -[1] 159 193 55 -[1] 160 193 34 -[1] 161 193 62 -[1] 162 193 43 -[1] 163 193 36 -[1] 164 193 51 -[1] 165 193 39 -[1] 166 193 36 -[1] 167 193 37 -[1] 168 193 45 -[1] 169 193 32 -[1] 170 193 43 -[1] 171 193 51 -[1] 172 193 46 -[1] 173 193 55 -[1] 174 193 42 -[1] 175 193 60 -[1] 176 193 47 -[1] 177 193 35 -[1] 178 193 44 -[1] 179 193 55 -[1] 180 193 24 -[1] 181 193 51 -[1] 182 193 44 -[1] 183 193 57 -[1] 184 193 43 -[1] 185 193 26 -[1] 186 193 41 -[1] 187 193 32 -[1] 188 193 39 -[1] 189 193 22 -[1] 190 193 57 -[1] 191 193 32 -[1] 192 193 34 -[1] 193 193 45 -[1] 194 193 49 -[1] 195 193 56 -[1] 196 193 140 -[1] 197 193 84 -[1] 198 193 62 -[1] 199 193 43 -[1] 200 193 53 -[1] 1 194 33 -[1] 2 194 39 -[1] 3 194 36 -[1] 4 194 41 -[1] 5 194 35 -[1] 6 194 38 -[1] 7 194 35 -[1] 8 194 54 -[1] 9 194 36 -[1] 10 194 61 -[1] 11 194 32 -[1] 12 194 43 -[1] 13 194 33 -[1] 14 194 46 -[1] 15 194 49 -[1] 16 194 36 -[1] 17 194 43 -[1] 18 194 34 -[1] 19 194 29 -[1] 20 194 40 -[1] 21 194 57 -[1] 22 194 39 -[1] 23 194 32 -[1] 24 194 41 -[1] 25 194 44 -[1] 26 194 35 -[1] 27 194 38 -[1] 28 194 43 -[1] 29 194 43 -[1] 30 194 58 -[1] 31 194 39 -[1] 32 194 48 -[1] 33 194 38 -[1] 34 194 35 -[1] 35 194 43 -[1] 36 194 33 -[1] 37 194 49 -[1] 38 194 60 -[1] 39 194 37 -[1] 40 194 54 -[1] 41 194 32 -[1] 42 194 36 -[1] 43 194 42 -[1] 44 194 47 -[1] 45 194 54 -[1] 46 194 40 -[1] 47 194 59 -[1] 48 194 34 -[1] 49 194 45 -[1] 50 194 48 -[1] 51 194 48 -[1] 52 194 43 -[1] 53 194 42 -[1] 54 194 47 -[1] 55 194 42 -[1] 56 194 42 -[1] 57 194 37 -[1] 58 194 52 -[1] 59 194 44 -[1] 60 194 53 -[1] 61 194 38 -[1] 62 194 33 -[1] 63 194 30 -[1] 64 194 67 -[1] 65 194 35 -[1] 66 194 45 -[1] 67 194 44 -[1] 68 194 36 -[1] 69 194 47 -[1] 70 194 26 -[1] 71 194 45 -[1] 72 194 62 -[1] 73 194 39 -[1] 74 194 32 -[1] 75 194 35 -[1] 76 194 35 -[1] 77 194 28 -[1] 78 194 53 -[1] 79 194 40 -[1] 80 194 32 -[1] 81 194 35 -[1] 82 194 33 -[1] 83 194 31 -[1] 84 194 26 -[1] 85 194 35 -[1] 86 194 34 -[1] 87 194 34 -[1] 88 194 29 -[1] 89 194 51 -[1] 90 194 54 -[1] 91 194 45 -[1] 92 194 32 -[1] 93 194 75 -[1] 94 194 55 -[1] 95 194 52 -[1] 96 194 40 -[1] 97 194 49 -[1] 98 194 41 -[1] 99 194 64 -[1] 100 194 42 -[1] 101 194 59 -[1] 102 194 38 -[1] 103 194 50 -[1] 104 194 30 -[1] 105 194 37 -[1] 106 194 40 -[1] 107 194 49 -[1] 108 194 30 -[1] 109 194 49 -[1] 110 194 41 -[1] 111 194 25 -[1] 112 194 44 -[1] 113 194 38 -[1] 114 194 55 -[1] 115 194 38 -[1] 116 194 53 -[1] 117 194 36 -[1] 118 194 69 -[1] 119 194 34 -[1] 120 194 47 -[1] 121 194 26 -[1] 122 194 55 -[1] 123 194 33 -[1] 124 194 24 -[1] 125 194 54 -[1] 126 194 47 -[1] 127 194 37 -[1] 128 194 33 -[1] 129 194 31 -[1] 130 194 54 -[1] 131 194 52 -[1] 132 194 53 -[1] 133 194 37 -[1] 134 194 37 -[1] 135 194 45 -[1] 136 194 39 -[1] 137 194 47 -[1] 138 194 42 -[1] 139 194 39 -[1] 140 194 35 -[1] 141 194 35 -[1] 142 194 52 -[1] 143 194 44 -[1] 144 194 30 -[1] 145 194 43 -[1] 146 194 32 -[1] 147 194 42 -[1] 148 194 34 -[1] 149 194 48 -[1] 150 194 39 -[1] 151 194 45 -[1] 152 194 37 -[1] 153 194 35 -[1] 154 194 50 -[1] 155 194 40 -[1] 156 194 49 -[1] 157 194 50 -[1] 158 194 34 -[1] 159 194 27 -[1] 160 194 42 -[1] 161 194 59 -[1] 162 194 39 -[1] 163 194 67 -[1] 164 194 41 -[1] 165 194 45 -[1] 166 194 48 -[1] 167 194 57 -[1] 168 194 41 -[1] 169 194 38 -[1] 170 194 30 -[1] 171 194 61 -[1] 172 194 54 -[1] 173 194 40 -[1] 174 194 42 -[1] 175 194 37 -[1] 176 194 27 -[1] 177 194 35 -[1] 178 194 30 -[1] 179 194 46 -[1] 180 194 40 -[1] 181 194 41 -[1] 182 194 41 -[1] 183 194 39 -[1] 184 194 49 -[1] 185 194 35 -[1] 186 194 35 -[1] 187 194 37 -[1] 188 194 36 -[1] 189 194 34 -[1] 190 194 38 -[1] 191 194 37 -[1] 192 194 41 -[1] 193 194 43 -[1] 194 194 39 -[1] 195 194 56 -[1] 196 194 38 -[1] 197 194 42 -[1] 198 194 51 -[1] 199 194 51 -[1] 200 194 65 -[1] 1 195 41 -[1] 2 195 58 -[1] 3 195 37 -[1] 4 195 58 -[1] 5 195 47 -[1] 6 195 44 -[1] 7 195 47 -[1] 8 195 47 -[1] 9 195 34 -[1] 10 195 39 -[1] 11 195 33 -[1] 12 195 42 -[1] 13 195 40 -[1] 14 195 26 -[1] 15 195 48 -[1] 16 195 44 -[1] 17 195 28 -[1] 18 195 37 -[1] 19 195 31 -[1] 20 195 39 -[1] 21 195 42 -[1] 22 195 35 -[1] 23 195 38 -[1] 24 195 37 -[1] 25 195 30 -[1] 26 195 41 -[1] 27 195 49 -[1] 28 195 46 -[1] 29 195 41 -[1] 30 195 32 -[1] 31 195 33 -[1] 32 195 30 -[1] 33 195 35 -[1] 34 195 45 -[1] 35 195 46 -[1] 36 195 39 -[1] 37 195 46 -[1] 38 195 61 -[1] 39 195 38 -[1] 40 195 38 -[1] 41 195 51 -[1] 42 195 41 -[1] 43 195 73 -[1] 44 195 45 -[1] 45 195 50 -[1] 46 195 54 -[1] 47 195 36 -[1] 48 195 63 -[1] 49 195 61 -[1] 50 195 37 -[1] 51 195 54 -[1] 52 195 39 -[1] 53 195 36 -[1] 54 195 33 -[1] 55 195 37 -[1] 56 195 40 -[1] 57 195 32 -[1] 58 195 51 -[1] 59 195 33 -[1] 60 195 28 -[1] 61 195 45 -[1] 62 195 44 -[1] 63 195 40 -[1] 64 195 39 -[1] 65 195 45 -[1] 66 195 40 -[1] 67 195 47 -[1] 68 195 40 -[1] 69 195 51 -[1] 70 195 43 -[1] 71 195 30 -[1] 72 195 41 -[1] 73 195 48 -[1] 74 195 49 -[1] 75 195 36 -[1] 76 195 45 -[1] 77 195 45 -[1] 78 195 36 -[1] 79 195 43 -[1] 80 195 44 -[1] 81 195 41 -[1] 82 195 36 -[1] 83 195 34 -[1] 84 195 34 -[1] 85 195 31 -[1] 86 195 50 -[1] 87 195 36 -[1] 88 195 30 -[1] 89 195 91 -[1] 90 195 40 -[1] 91 195 30 -[1] 92 195 39 -[1] 93 195 52 -[1] 94 195 52 -[1] 95 195 50 -[1] 96 195 38 -[1] 97 195 76 -[1] 98 195 40 -[1] 99 195 30 -[1] 100 195 42 -[1] 101 195 46 -[1] 102 195 37 -[1] 103 195 35 -[1] 104 195 46 -[1] 105 195 38 -[1] 106 195 35 -[1] 107 195 34 -[1] 108 195 59 -[1] 109 195 28 -[1] 110 195 37 -[1] 111 195 40 -[1] 112 195 42 -[1] 113 195 64 -[1] 114 195 31 -[1] 115 195 35 -[1] 116 195 36 -[1] 117 195 32 -[1] 118 195 42 -[1] 119 195 49 -[1] 120 195 29 -[1] 121 195 52 -[1] 122 195 33 -[1] 123 195 46 -[1] 124 195 52 -[1] 125 195 40 -[1] 126 195 44 -[1] 127 195 48 -[1] 128 195 33 -[1] 129 195 53 -[1] 130 195 42 -[1] 131 195 29 -[1] 132 195 30 -[1] 133 195 73 -[1] 134 195 36 -[1] 135 195 35 -[1] 136 195 24 -[1] 137 195 35 -[1] 138 195 45 -[1] 139 195 39 -[1] 140 195 32 -[1] 141 195 35 -[1] 142 195 52 -[1] 143 195 35 -[1] 144 195 33 -[1] 145 195 58 -[1] 146 195 32 -[1] 147 195 32 -[1] 148 195 39 -[1] 149 195 36 -[1] 150 195 53 -[1] 151 195 49 -[1] 152 195 35 -[1] 153 195 27 -[1] 154 195 44 -[1] 155 195 34 -[1] 156 195 31 -[1] 157 195 70 -[1] 158 195 43 -[1] 159 195 48 -[1] 160 195 35 -[1] 161 195 63 -[1] 162 195 52 -[1] 163 195 36 -[1] 164 195 61 -[1] 165 195 42 -[1] 166 195 39 -[1] 167 195 43 -[1] 168 195 30 -[1] 169 195 43 -[1] 170 195 51 -[1] 171 195 57 -[1] 172 195 42 -[1] 173 195 38 -[1] 174 195 49 -[1] 175 195 38 -[1] 176 195 35 -[1] 177 195 47 -[1] 178 195 44 -[1] 179 195 67 -[1] 180 195 50 -[1] 181 195 35 -[1] 182 195 30 -[1] 183 195 41 -[1] 184 195 31 -[1] 185 195 48 -[1] 186 195 34 -[1] 187 195 45 -[1] 188 195 46 -[1] 189 195 41 -[1] 190 195 43 -[1] 191 195 59 -[1] 192 195 46 -[1] 193 195 39 -[1] 194 195 30 -[1] 195 195 52 -[1] 196 195 33 -[1] 197 195 73 -[1] 198 195 46 -[1] 199 195 63 -[1] 200 195 51 -[1] 1 196 63 -[1] 2 196 47 -[1] 3 196 62 -[1] 4 196 37 -[1] 5 196 38 -[1] 6 196 39 -[1] 7 196 36 -[1] 8 196 33 -[1] 9 196 51 -[1] 10 196 34 -[1] 11 196 40 -[1] 12 196 51 -[1] 13 196 36 -[1] 14 196 45 -[1] 15 196 47 -[1] 16 196 29 -[1] 17 196 42 -[1] 18 196 29 -[1] 19 196 33 -[1] 20 196 40 -[1] 21 196 50 -[1] 22 196 44 -[1] 23 196 42 -[1] 24 196 52 -[1] 25 196 30 -[1] 26 196 39 -[1] 27 196 37 -[1] 28 196 36 -[1] 29 196 35 -[1] 30 196 33 -[1] 31 196 46 -[1] 32 196 32 -[1] 33 196 35 -[1] 34 196 39 -[1] 35 196 56 -[1] 36 196 46 -[1] 37 196 53 -[1] 38 196 35 -[1] 39 196 62 -[1] 40 196 39 -[1] 41 196 46 -[1] 42 196 35 -[1] 43 196 35 -[1] 44 196 49 -[1] 45 196 36 -[1] 46 196 56 -[1] 47 196 35 -[1] 48 196 42 -[1] 49 196 43 -[1] 50 196 39 -[1] 51 196 42 -[1] 52 196 33 -[1] 53 196 32 -[1] 54 196 35 -[1] 55 196 58 -[1] 56 196 37 -[1] 57 196 38 -[1] 58 196 35 -[1] 59 196 46 -[1] 60 196 46 -[1] 61 196 59 -[1] 62 196 30 -[1] 63 196 50 -[1] 64 196 58 -[1] 65 196 32 -[1] 66 196 57 -[1] 67 196 53 -[1] 68 196 29 -[1] 69 196 28 -[1] 70 196 41 -[1] 71 196 37 -[1] 72 196 30 -[1] 73 196 38 -[1] 74 196 35 -[1] 75 196 29 -[1] 76 196 41 -[1] 77 196 47 -[1] 78 196 55 -[1] 79 196 43 -[1] 80 196 36 -[1] 81 196 43 -[1] 82 196 49 -[1] 83 196 50 -[1] 84 196 45 -[1] 85 196 30 -[1] 86 196 43 -[1] 87 196 50 -[1] 88 196 49 -[1] 89 196 41 -[1] 90 196 51 -[1] 91 196 45 -[1] 92 196 30 -[1] 93 196 37 -[1] 94 196 41 -[1] 95 196 41 -[1] 96 196 41 -[1] 97 196 62 -[1] 98 196 45 -[1] 99 196 34 -[1] 100 196 40 -[1] 101 196 45 -[1] 102 196 39 -[1] 103 196 32 -[1] 104 196 45 -[1] 105 196 30 -[1] 106 196 43 -[1] 107 196 34 -[1] 108 196 39 -[1] 109 196 38 -[1] 110 196 39 -[1] 111 196 25 -[1] 112 196 44 -[1] 113 196 55 -[1] 114 196 42 -[1] 115 196 39 -[1] 116 196 36 -[1] 117 196 37 -[1] 118 196 47 -[1] 119 196 50 -[1] 120 196 27 -[1] 121 196 58 -[1] 122 196 31 -[1] 123 196 40 -[1] 124 196 47 -[1] 125 196 44 -[1] 126 196 35 -[1] 127 196 45 -[1] 128 196 46 -[1] 129 196 35 -[1] 130 196 50 -[1] 131 196 45 -[1] 132 196 40 -[1] 133 196 37 -[1] 134 196 41 -[1] 135 196 31 -[1] 136 196 72 -[1] 137 196 37 -[1] 138 196 40 -[1] 139 196 36 -[1] 140 196 39 -[1] 141 196 66 -[1] 142 196 51 -[1] 143 196 47 -[1] 144 196 28 -[1] 145 196 27 -[1] 146 196 54 -[1] 147 196 34 -[1] 148 196 38 -[1] 149 196 52 -[1] 150 196 28 -[1] 151 196 86 -[1] 152 196 32 -[1] 153 196 38 -[1] 154 196 37 -[1] 155 196 31 -[1] 156 196 40 -[1] 157 196 36 -[1] 158 196 36 -[1] 159 196 40 -[1] 160 196 46 -[1] 161 196 51 -[1] 162 196 28 -[1] 163 196 49 -[1] 164 196 56 -[1] 165 196 33 -[1] 166 196 38 -[1] 167 196 40 -[1] 168 196 44 -[1] 169 196 40 -[1] 170 196 55 -[1] 171 196 38 -[1] 172 196 29 -[1] 173 196 72 -[1] 174 196 51 -[1] 175 196 27 -[1] 176 196 35 -[1] 177 196 39 -[1] 178 196 51 -[1] 179 196 41 -[1] 180 196 35 -[1] 181 196 48 -[1] 182 196 36 -[1] 183 196 35 -[1] 184 196 41 -[1] 185 196 32 -[1] 186 196 79 -[1] 187 196 36 -[1] 188 196 36 -[1] 189 196 39 -[1] 190 196 46 -[1] 191 196 48 -[1] 192 196 50 -[1] 193 196 37 -[1] 194 196 57 -[1] 195 196 42 -[1] 196 196 32 -[1] 197 196 42 -[1] 198 196 61 -[1] 199 196 41 -[1] 200 196 77 -[1] 1 197 55 -[1] 2 197 37 -[1] 3 197 42 -[1] 4 197 59 -[1] 5 197 58 -[1] 6 197 46 -[1] 7 197 65 -[1] 8 197 37 -[1] 9 197 55 -[1] 10 197 28 -[1] 11 197 35 -[1] 12 197 58 -[1] 13 197 35 -[1] 14 197 38 -[1] 15 197 42 -[1] 16 197 44 -[1] 17 197 48 -[1] 18 197 41 -[1] 19 197 60 -[1] 20 197 34 -[1] 21 197 37 -[1] 22 197 35 -[1] 23 197 34 -[1] 24 197 39 -[1] 25 197 39 -[1] 26 197 26 -[1] 27 197 47 -[1] 28 197 30 -[1] 29 197 46 -[1] 30 197 47 -[1] 31 197 35 -[1] 32 197 57 -[1] 33 197 36 -[1] 34 197 33 -[1] 35 197 40 -[1] 36 197 39 -[1] 37 197 32 -[1] 38 197 29 -[1] 39 197 34 -[1] 40 197 33 -[1] 41 197 59 -[1] 42 197 34 -[1] 43 197 33 -[1] 44 197 35 -[1] 45 197 60 -[1] 46 197 40 -[1] 47 197 37 -[1] 48 197 28 -[1] 49 197 39 -[1] 50 197 61 -[1] 51 197 54 -[1] 52 197 31 -[1] 53 197 32 -[1] 54 197 42 -[1] 55 197 41 -[1] 56 197 53 -[1] 57 197 40 -[1] 58 197 37 -[1] 59 197 37 -[1] 60 197 56 -[1] 61 197 41 -[1] 62 197 29 -[1] 63 197 47 -[1] 64 197 62 -[1] 65 197 29 -[1] 66 197 56 -[1] 67 197 38 -[1] 68 197 41 -[1] 69 197 44 -[1] 70 197 38 -[1] 71 197 34 -[1] 72 197 46 -[1] 73 197 34 -[1] 74 197 37 -[1] 75 197 35 -[1] 76 197 38 -[1] 77 197 35 -[1] 78 197 53 -[1] 79 197 38 -[1] 80 197 36 -[1] 81 197 65 -[1] 82 197 35 -[1] 83 197 40 -[1] 84 197 35 -[1] 85 197 43 -[1] 86 197 32 -[1] 87 197 41 -[1] 88 197 64 -[1] 89 197 33 -[1] 90 197 38 -[1] 91 197 51 -[1] 92 197 61 -[1] 93 197 42 -[1] 94 197 51 -[1] 95 197 48 -[1] 96 197 33 -[1] 97 197 44 -[1] 98 197 51 -[1] 99 197 32 -[1] 100 197 41 -[1] 101 197 43 -[1] 102 197 30 -[1] 103 197 42 -[1] 104 197 33 -[1] 105 197 39 -[1] 106 197 40 -[1] 107 197 27 -[1] 108 197 33 -[1] 109 197 72 -[1] 110 197 61 -[1] 111 197 38 -[1] 112 197 49 -[1] 113 197 34 -[1] 114 197 41 -[1] 115 197 32 -[1] 116 197 43 -[1] 117 197 28 -[1] 118 197 27 -[1] 119 197 45 -[1] 120 197 29 -[1] 121 197 48 -[1] 122 197 27 -[1] 123 197 43 -[1] 124 197 46 -[1] 125 197 52 -[1] 126 197 35 -[1] 127 197 56 -[1] 128 197 43 -[1] 129 197 31 -[1] 130 197 42 -[1] 131 197 33 -[1] 132 197 69 -[1] 133 197 41 -[1] 134 197 48 -[1] 135 197 44 -[1] 136 197 40 -[1] 137 197 55 -[1] 138 197 30 -[1] 139 197 35 -[1] 140 197 38 -[1] 141 197 33 -[1] 142 197 43 -[1] 143 197 39 -[1] 144 197 60 -[1] 145 197 38 -[1] 146 197 39 -[1] 147 197 64 -[1] 148 197 32 -[1] 149 197 43 -[1] 150 197 35 -[1] 151 197 41 -[1] 152 197 50 -[1] 153 197 39 -[1] 154 197 37 -[1] 155 197 48 -[1] 156 197 39 -[1] 157 197 35 -[1] 158 197 40 -[1] 159 197 32 -[1] 160 197 33 -[1] 161 197 40 -[1] 162 197 49 -[1] 163 197 28 -[1] 164 197 49 -[1] 165 197 61 -[1] 166 197 36 -[1] 167 197 34 -[1] 168 197 36 -[1] 169 197 44 -[1] 170 197 59 -[1] 171 197 50 -[1] 172 197 39 -[1] 173 197 66 -[1] 174 197 37 -[1] 175 197 45 -[1] 176 197 44 -[1] 177 197 43 -[1] 178 197 39 -[1] 179 197 63 -[1] 180 197 43 -[1] 181 197 37 -[1] 182 197 31 -[1] 183 197 54 -[1] 184 197 35 -[1] 185 197 40 -[1] 186 197 35 -[1] 187 197 40 -[1] 188 197 41 -[1] 189 197 34 -[1] 190 197 34 -[1] 191 197 28 -[1] 192 197 72 -[1] 193 197 61 -[1] 194 197 38 -[1] 195 197 47 -[1] 196 197 53 -[1] 197 197 72 -[1] 198 197 40 -[1] 199 197 58 -[1] 200 197 70 -[1] 1 198 47 -[1] 2 198 39 -[1] 3 198 40 -[1] 4 198 35 -[1] 5 198 45 -[1] 6 198 54 -[1] 7 198 31 -[1] 8 198 52 -[1] 9 198 58 -[1] 10 198 35 -[1] 11 198 48 -[1] 12 198 57 -[1] 13 198 43 -[1] 14 198 46 -[1] 15 198 37 -[1] 16 198 28 -[1] 17 198 63 -[1] 18 198 38 -[1] 19 198 31 -[1] 20 198 35 -[1] 21 198 32 -[1] 22 198 40 -[1] 23 198 33 -[1] 24 198 33 -[1] 25 198 32 -[1] 26 198 34 -[1] 27 198 49 -[1] 28 198 41 -[1] 29 198 41 -[1] 30 198 36 -[1] 31 198 67 -[1] 32 198 36 -[1] 33 198 41 -[1] 34 198 34 -[1] 35 198 29 -[1] 36 198 42 -[1] 37 198 35 -[1] 38 198 35 -[1] 39 198 44 -[1] 40 198 52 -[1] 41 198 34 -[1] 42 198 42 -[1] 43 198 24 -[1] 44 198 56 -[1] 45 198 41 -[1] 46 198 45 -[1] 47 198 47 -[1] 48 198 49 -[1] 49 198 42 -[1] 50 198 44 -[1] 51 198 44 -[1] 52 198 66 -[1] 53 198 34 -[1] 54 198 34 -[1] 55 198 29 -[1] 56 198 43 -[1] 57 198 38 -[1] 58 198 55 -[1] 59 198 34 -[1] 60 198 39 -[1] 61 198 34 -[1] 62 198 29 -[1] 63 198 34 -[1] 64 198 63 -[1] 65 198 25 -[1] 66 198 39 -[1] 67 198 48 -[1] 68 198 40 -[1] 69 198 39 -[1] 70 198 52 -[1] 71 198 37 -[1] 72 198 38 -[1] 73 198 31 -[1] 74 198 55 -[1] 75 198 40 -[1] 76 198 37 -[1] 77 198 32 -[1] 78 198 38 -[1] 79 198 43 -[1] 80 198 32 -[1] 81 198 40 -[1] 82 198 32 -[1] 83 198 31 -[1] 84 198 28 -[1] 85 198 47 -[1] 86 198 38 -[1] 87 198 39 -[1] 88 198 37 -[1] 89 198 39 -[1] 90 198 49 -[1] 91 198 35 -[1] 92 198 45 -[1] 93 198 48 -[1] 94 198 35 -[1] 95 198 34 -[1] 96 198 41 -[1] 97 198 46 -[1] 98 198 43 -[1] 99 198 70 -[1] 100 198 43 -[1] 101 198 33 -[1] 102 198 30 -[1] 103 198 49 -[1] 104 198 32 -[1] 105 198 48 -[1] 106 198 31 -[1] 107 198 34 -[1] 108 198 33 -[1] 109 198 45 -[1] 110 198 31 -[1] 111 198 33 -[1] 112 198 44 -[1] 113 198 38 -[1] 114 198 77 -[1] 115 198 39 -[1] 116 198 44 -[1] 117 198 52 -[1] 118 198 61 -[1] 119 198 37 -[1] 120 198 34 -[1] 121 198 51 -[1] 122 198 38 -[1] 123 198 37 -[1] 124 198 45 -[1] 125 198 46 -[1] 126 198 40 -[1] 127 198 28 -[1] 128 198 66 -[1] 129 198 50 -[1] 130 198 42 -[1] 131 198 53 -[1] 132 198 49 -[1] 133 198 50 -[1] 134 198 35 -[1] 135 198 28 -[1] 136 198 42 -[1] 137 198 51 -[1] 138 198 37 -[1] 139 198 39 -[1] 140 198 42 -[1] 141 198 51 -[1] 142 198 46 -[1] 143 198 56 -[1] 144 198 39 -[1] 145 198 31 -[1] 146 198 37 -[1] 147 198 38 -[1] 148 198 39 -[1] 149 198 51 -[1] 150 198 42 -[1] 151 198 45 -[1] 152 198 42 -[1] 153 198 32 -[1] 154 198 31 -[1] 155 198 39 -[1] 156 198 41 -[1] 157 198 70 -[1] 158 198 35 -[1] 159 198 61 -[1] 160 198 42 -[1] 161 198 36 -[1] 162 198 43 -[1] 163 198 38 -[1] 164 198 41 -[1] 165 198 52 -[1] 166 198 41 -[1] 167 198 66 -[1] 168 198 51 -[1] 169 198 42 -[1] 170 198 41 -[1] 171 198 34 -[1] 172 198 43 -[1] 173 198 31 -[1] 174 198 40 -[1] 175 198 43 -[1] 176 198 48 -[1] 177 198 37 -[1] 178 198 44 -[1] 179 198 39 -[1] 180 198 62 -[1] 181 198 29 -[1] 182 198 33 -[1] 183 198 40 -[1] 184 198 33 -[1] 185 198 34 -[1] 186 198 53 -[1] 187 198 54 -[1] 188 198 39 -[1] 189 198 48 -[1] 190 198 34 -[1] 191 198 44 -[1] 192 198 40 -[1] 193 198 43 -[1] 194 198 42 -[1] 195 198 75 -[1] 196 198 51 -[1] 197 198 48 -[1] 198 198 45 -[1] 199 198 38 -[1] 200 198 67 -[1] 1 199 43 -[1] 2 199 49 -[1] 3 199 39 -[1] 4 199 42 -[1] 5 199 35 -[1] 6 199 37 -[1] 7 199 55 -[1] 8 199 39 -[1] 9 199 34 -[1] 10 199 42 -[1] 11 199 64 -[1] 12 199 44 -[1] 13 199 42 -[1] 14 199 35 -[1] 15 199 46 -[1] 16 199 46 -[1] 17 199 66 -[1] 18 199 40 -[1] 19 199 31 -[1] 20 199 37 -[1] 21 199 33 -[1] 22 199 56 -[1] 23 199 34 -[1] 24 199 36 -[1] 25 199 30 -[1] 26 199 36 -[1] 27 199 39 -[1] 28 199 48 -[1] 29 199 39 -[1] 30 199 43 -[1] 31 199 44 -[1] 32 199 33 -[1] 33 199 38 -[1] 34 199 40 -[1] 35 199 37 -[1] 36 199 40 -[1] 37 199 53 -[1] 38 199 33 -[1] 39 199 50 -[1] 40 199 35 -[1] 41 199 39 -[1] 42 199 35 -[1] 43 199 70 -[1] 44 199 29 -[1] 45 199 39 -[1] 46 199 35 -[1] 47 199 35 -[1] 48 199 37 -[1] 49 199 48 -[1] 50 199 30 -[1] 51 199 53 -[1] 52 199 38 -[1] 53 199 52 -[1] 54 199 51 -[1] 55 199 40 -[1] 56 199 34 -[1] 57 199 44 -[1] 58 199 42 -[1] 59 199 76 -[1] 60 199 38 -[1] 61 199 41 -[1] 62 199 39 -[1] 63 199 44 -[1] 64 199 44 -[1] 65 199 45 -[1] 66 199 39 -[1] 67 199 42 -[1] 68 199 31 -[1] 69 199 34 -[1] 70 199 40 -[1] 71 199 46 -[1] 72 199 38 -[1] 73 199 45 -[1] 74 199 40 -[1] 75 199 41 -[1] 76 199 38 -[1] 77 199 36 -[1] 78 199 40 -[1] 79 199 38 -[1] 80 199 53 -[1] 81 199 58 -[1] 82 199 51 -[1] 83 199 34 -[1] 84 199 35 -[1] 85 199 33 -[1] 86 199 38 -[1] 87 199 66 -[1] 88 199 62 -[1] 89 199 45 -[1] 90 199 41 -[1] 91 199 43 -[1] 92 199 36 -[1] 93 199 37 -[1] 94 199 47 -[1] 95 199 42 -[1] 96 199 57 -[1] 97 199 46 -[1] 98 199 33 -[1] 99 199 33 -[1] 100 199 44 -[1] 101 199 45 -[1] 102 199 42 -[1] 103 199 39 -[1] 104 199 34 -[1] 105 199 39 -[1] 106 199 31 -[1] 107 199 54 -[1] 108 199 48 -[1] 109 199 34 -[1] 110 199 46 -[1] 111 199 42 -[1] 112 199 62 -[1] 113 199 41 -[1] 114 199 41 -[1] 115 199 32 -[1] 116 199 45 -[1] 117 199 36 -[1] 118 199 34 -[1] 119 199 47 -[1] 120 199 39 -[1] 121 199 39 -[1] 122 199 76 -[1] 123 199 55 -[1] 124 199 39 -[1] 125 199 33 -[1] 126 199 44 -[1] 127 199 46 -[1] 128 199 44 -[1] 129 199 49 -[1] 130 199 57 -[1] 131 199 51 -[1] 132 199 41 -[1] 133 199 47 -[1] 134 199 42 -[1] 135 199 53 -[1] 136 199 47 -[1] 137 199 29 -[1] 138 199 70 -[1] 139 199 43 -[1] 140 199 80 -[1] 141 199 51 -[1] 142 199 41 -[1] 143 199 36 -[1] 144 199 40 -[1] 145 199 55 -[1] 146 199 53 -[1] 147 199 47 -[1] 148 199 36 -[1] 149 199 53 -[1] 150 199 44 -[1] 151 199 53 -[1] 152 199 38 -[1] 153 199 45 -[1] 154 199 33 -[1] 155 199 39 -[1] 156 199 39 -[1] 157 199 39 -[1] 158 199 47 -[1] 159 199 51 -[1] 160 199 45 -[1] 161 199 51 -[1] 162 199 41 -[1] 163 199 30 -[1] 164 199 41 -[1] 165 199 58 -[1] 166 199 48 -[1] 167 199 38 -[1] 168 199 32 -[1] 169 199 73 -[1] 170 199 47 -[1] 171 199 42 -[1] 172 199 39 -[1] 173 199 40 -[1] 174 199 54 -[1] 175 199 34 -[1] 176 199 60 -[1] 177 199 45 -[1] 178 199 35 -[1] 179 199 42 -[1] 180 199 45 -[1] 181 199 49 -[1] 182 199 59 -[1] 183 199 71 -[1] 184 199 56 -[1] 185 199 49 -[1] 186 199 32 -[1] 187 199 44 -[1] 188 199 42 -[1] 189 199 44 -[1] 190 199 55 -[1] 191 199 32 -[1] 192 199 35 -[1] 193 199 45 -[1] 194 199 41 -[1] 195 199 84 -[1] 196 199 40 -[1] 197 199 34 -[1] 198 199 49 -[1] 199 199 67 -[1] 200 199 91 -[1] 1 200 47 -[1] 2 200 49 -[1] 3 200 40 -[1] 4 200 43 -[1] 5 200 44 -[1] 6 200 42 -[1] 7 200 55 -[1] 8 200 36 -[1] 9 200 41 -[1] 10 200 81 -[1] 11 200 49 -[1] 12 200 32 -[1] 13 200 47 -[1] 14 200 46 -[1] 15 200 37 -[1] 16 200 41 -[1] 17 200 60 -[1] 18 200 39 -[1] 19 200 46 -[1] 20 200 59 -[1] 21 200 42 -[1] 22 200 47 -[1] 23 200 50 -[1] 24 200 49 -[1] 25 200 38 -[1] 26 200 41 -[1] 27 200 41 -[1] 28 200 37 -[1] 29 200 57 -[1] 30 200 45 -[1] 31 200 51 -[1] 32 200 56 -[1] 33 200 49 -[1] 34 200 49 -[1] 35 200 38 -[1] 36 200 59 -[1] 37 200 34 -[1] 38 200 40 -[1] 39 200 45 -[1] 40 200 77 -[1] 41 200 39 -[1] 42 200 48 -[1] 43 200 34 -[1] 44 200 39 -[1] 45 200 49 -[1] 46 200 35 -[1] 47 200 44 -[1] 48 200 44 -[1] 49 200 55 -[1] 50 200 33 -[1] 51 200 48 -[1] 52 200 43 -[1] 53 200 35 -[1] 54 200 42 -[1] 55 200 62 -[1] 56 200 60 -[1] 57 200 32 -[1] 58 200 40 -[1] 59 200 41 -[1] 60 200 58 -[1] 61 200 45 -[1] 62 200 46 -[1] 63 200 40 -[1] 64 200 41 -[1] 65 200 45 -[1] 66 200 32 -[1] 67 200 39 -[1] 68 200 35 -[1] 69 200 56 -[1] 70 200 53 -[1] 71 200 40 -[1] 72 200 51 -[1] 73 200 35 -[1] 74 200 36 -[1] 75 200 36 -[1] 76 200 41 -[1] 77 200 34 -[1] 78 200 51 -[1] 79 200 39 -[1] 80 200 34 -[1] 81 200 39 -[1] 82 200 38 -[1] 83 200 49 -[1] 84 200 41 -[1] 85 200 35 -[1] 86 200 50 -[1] 87 200 28 -[1] 88 200 39 -[1] 89 200 32 -[1] 90 200 49 -[1] 91 200 43 -[1] 92 200 32 -[1] 93 200 61 -[1] 94 200 42 -[1] 95 200 59 -[1] 96 200 28 -[1] 97 200 39 -[1] 98 200 50 -[1] 99 200 81 -[1] 100 200 42 -[1] 101 200 39 -[1] 102 200 30 -[1] 103 200 57 -[1] 104 200 43 -[1] 105 200 47 -[1] 106 200 56 -[1] 107 200 34 -[1] 108 200 41 -[1] 109 200 41 -[1] 110 200 36 -[1] 111 200 38 -[1] 112 200 49 -[1] 113 200 43 -[1] 114 200 38 -[1] 115 200 38 -[1] 116 200 45 -[1] 117 200 41 -[1] 118 200 30 -[1] 119 200 46 -[1] 120 200 46 -[1] 121 200 30 -[1] 122 200 32 -[1] 123 200 41 -[1] 124 200 53 -[1] 125 200 29 -[1] 126 200 52 -[1] 127 200 43 -[1] 128 200 39 -[1] 129 200 60 -[1] 130 200 32 -[1] 131 200 47 -[1] 132 200 30 -[1] 133 200 35 -[1] 134 200 35 -[1] 135 200 46 -[1] 136 200 37 -[1] 137 200 41 -[1] 138 200 46 -[1] 139 200 47 -[1] 140 200 48 -[1] 141 200 34 -[1] 142 200 47 -[1] 143 200 44 -[1] 144 200 41 -[1] 145 200 45 -[1] 146 200 48 -[1] 147 200 45 -[1] 148 200 42 -[1] 149 200 47 -[1] 150 200 36 -[1] 151 200 40 -[1] 152 200 48 -[1] 153 200 33 -[1] 154 200 46 -[1] 155 200 36 -[1] 156 200 26 -[1] 157 200 47 -[1] 158 200 43 -[1] 159 200 33 -[1] 160 200 40 -[1] 161 200 49 -[1] 162 200 56 -[1] 163 200 36 -[1] 164 200 32 -[1] 165 200 42 -[1] 166 200 44 -[1] 167 200 39 -[1] 168 200 36 -[1] 169 200 48 -[1] 170 200 66 -[1] 171 200 32 -[1] 172 200 41 -[1] 173 200 72 -[1] 174 200 42 -[1] 175 200 47 -[1] 176 200 39 -[1] 177 200 53 -[1] 178 200 34 -[1] 179 200 105 -[1] 180 200 42 -[1] 181 200 34 -[1] 182 200 48 -[1] 183 200 35 -[1] 184 200 32 -[1] 185 200 50 -[1] 186 200 29 -[1] 187 200 52 -[1] 188 200 51 -[1] 189 200 39 -[1] 190 200 48 -[1] 191 200 38 -[1] 192 200 41 -[1] 193 200 34 -[1] 194 200 32 -[1] 195 200 43 -[1] 196 200 43 -[1] 197 200 47 -[1] 198 200 54 -[1] 199 200 50 -[1] 200 200 50 -> -> -> write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI_high_resolution.csv",sep="")) -> -> proc.time() - user system elapsed -64449.803 11.724 64470.304 diff --git a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_lab.R b/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_lab.R deleted file mode 100644 index 8eff1fef7eedcbb5c9ab0e28ae1c6654602a317f..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_two_variables_MEDMI_lab.R +++ /dev/null @@ -1,358 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -#The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. - -# Qnatile calculated over the laboratory cathcments - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -#library(Hmisc) - -#list.of.packages <- c("xts") -#new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -#if(length(new.packages)) install.packages(new.packages) -library(xts) - - - - -## Varaible file - -variable_int<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -width<-30 -width_char<-paste(width) - - - -#variable_x<-"Maximum_air_temperature" -#variable<-"daylength" -#variable_y<-"Relative_humidity" - -#variable<-"Mean_Precipitation" -variable<-"Relative_humidity" -variable_y<-"Maximum_air_temperature" - -#variable_y<-"Mean_Precipitation" -#variable<-"daylength" -#variable<-"Mean_Precipitation" -#"Maximum_air_temperature", -#"Minimum_air_temperature", -#"Mean_wind_speed", -#"Mean_Precipitation", -#"Relative_humidity", -#"daylength" - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) - -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - -Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -colnames(Env_laboratory_weekly)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - - -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) - - -################### include latitude and longitude -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - - -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -colnames(lat_long_lab)<-c("PostCode","lat","long") - -Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -Env_laboratory_int3<-data.frame(Env_laboratory_int2) - -Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) - - - -######################## include daylength ################## - -PC_df<-data.frame(All_PC,as.Date(dates)) -colnames(PC_df)<-c("PostCode","Date") - -Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") - - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Post_Codes_df$lat -day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") -daylength_df$Date<-as.factor(daylength_df$Date) -daylength_df$lat<-as.factor(daylength_df$lat) -Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) - -#Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -#Env_laboratory<-data.frame(Env_laboratory_int4) -Env_laboratory<-data.frame(Env_laboratory_int3) -Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) - - -#Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -#Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) - - - - - - -################### Divide the domains of the variables in bins according to quantiles - - -index_C<-which (names(Env_Campylobacter_data)==variable) -index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - - -index<-which (names(Env_laboratory)==variable) -index_y<-which (names(Env_laboratory)==variable_y) - - -######################### - - -breaks_z_lab<-function(variable,by_z) -{ - - index<-which (names(Env_laboratory)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - -breaks_z<-function(variable,by_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) - - breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] - breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] - - - return(breaks_z) - -} - - -breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - - index<-which (names(Env_laboratory)==variable) - index_y<-which (names(Env_laboratory)==variable_y) - - - - wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_some<-Env_laboratory[ww,] - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)) - breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] - breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] - - }else{ - - breaks_y<-c() - } - - return(breaks_y) - } - - - - -breaks_y<-function(variable,variable_y,by_z,by_y,j_z) -{ - - index_C<-which (names(Env_Campylobacter_data)==variable) - index_y_C<-which (names(Env_Campylobacter_data)==variable_y) - - - - wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] - - - if (length(Env_Campylobacter_data_some[,1])!=0) { - - breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)) - breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] - breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] - - }else{ - - breaks_y<-c() - } - - return(breaks_y) - } - - - -################# - - - - -var_x_loc_df<-data.frame(character(), character(),numeric(),numeric(),numeric()) -colnames(var_x_loc_df)<-c(variable,variable_y,"counts","residents","residents_tot") - -residents_i_var<-0 -residents_universal<-0 -#i_var_max<-length(breaks_var) -#i_var_min<-1 -#i_var_max_x<-length(breaks_var_x) -#i_var_min_x<-1 - - -##################### -by_z<-0.2 -by_y<-0.05 - - -#i_var_min<-breaks_z(variable,by_z)[1] -#i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))] -j_z_min<-1 -j_z_max<-length(breaks_z_lab(variable,by_z))-1 - - - -for (j_z in c(j_z_min:j_z_max)) -{ - - wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) - ww<-which(wt==j_z) - Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] - - wt<-(findInterval((Env_laboratory[,index]),breaks_z_lab(variable,by_z))) - ww<-which(wt==j_z) - Env_laboratory_z<-Env_laboratory[ww,] - - if (length(Env_Campylobacter_data_z[,1])!=0){ - if (length(breaks_y_lab(variable,variable_y,by_z,by_y,j_z))!=0){ - - j_y_min<-1 - j_y_max<-length(breaks_y_lab(variable,variable_y,by_z,by_y,j_z))-1 - - - - for (j_y in c(j_y_min:j_y_max)) - { - - wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y_lab(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,] - - wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y_lab(variable,variable_y,by_z,by_y,j_z))) - ww<-which(wt==j_y) - Env_laboratory_y<-Env_laboratory_z[ww,] - - - - - Total_cases<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$Cases)))) - residents<-sum((as.numeric(na.omit(Env_Campylobacter_data_y$residents)))) - residents_tot<-sum((as.numeric(na.omit(Env_laboratory_y$residents)))) - - data_df<-data.frame( - breaks_z_lab(variable,by_z)[j_z], - breaks_y_lab(variable,variable_y,by_z,by_y,j_z)[j_y], - Total_cases, - residents, - residents_tot) - - - - - - colnames(data_df)<-c(variable,variable_y,"counts","residents","residents_tot") - var_x_loc_df<-rbind(var_x_loc_df,data_df) - print(c(j_y,j_z, Total_cases)) - - } - } - - - }} - - -write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",width_char,"_Simulated_for_rec_original_MEDMI_lab.csv",sep="")) diff --git a/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.R b/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.R deleted file mode 100644 index 35cf5be77fe7ff47fb9a2d9f8af5bae93617b0e9..0000000000000000000000000000000000000000 --- a/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.R +++ /dev/null @@ -1,797 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. - - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -#library(Hmisc) - -list.of.packages <- c("xts") -new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -if(length(new.packages)) install.packages(new.packages) -library(xts) - - - -width<-30 -width_char<-paste(width) - - -variable_x<-"min_air_temp" -#variable_y<-"wind" -variable_y<-"rain" -#variable_y<-"humidity" -variable<-"light" -#variable<-"rain" - -#write.table(Env_Campylobacter_data_all2,paste("../DataBase/Cases_Environment/Campylobacter_environment_",width_char,".csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) - -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -#colnames(Env_Campylobacter_data_all2)<-c("PostCode","PHE_Centre_Name","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -#colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -#colnames(Env_laboratory_weekly)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind","residents") -colnames(Env_laboratory_weekly)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#For Dorset only -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -#Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_PHE,year(Env_Campylobacter_data_PHE$Date)>=2001 & year(Env_Campylobacter_data_PHE$Date)<2012) - -Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - - -Env_laboratory_int1<-subset(Env_laboratory_weekly,year(Env_laboratory_weekly$Date)>=1990 & year(Env_laboratory_weekly$Date)<=2015) -################### weekly summary -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - -#names(Coord_laboratory) -#as.numeric(Coord_laboratory[1,]) -#as.numeric(Coord_laboratory[2,]) -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -colnames(lat_long_lab)<-c("PostCode","lat","long") -Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") - -daylength<-function(lat,day_year) - { - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Env_laboratory_int2$lat -day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) -#var_list<-list(lat,day_year) -#lapply(var_list,daylength) -#lapply(Env_laboratory,daylength, Env_laboratory$lat) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") - -#daylength_df$lat<-as.factor(daylength_df$lat) -#daylength_df$Date<-as.factor(daylength_df$Date) -#Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat) -#Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date) -#Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date")) - -Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) - -### repeat for the data only #### - -latitude<-Env_Campylobacter_data_int2$lat -day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") - -#daylength_df$lat<-as.factor(daylength_df$lat) -#daylength_df$Date<-as.factor(daylength_df$Date) -#Env_Campylobacter_data_int2$lat<-as.factor(Env_Campylobacter_data_int2$lat) -#Env_Campylobacter_data_int2$Date<-as.factor(Env_Campylobacter_data_int2$Date) - -Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df) - - - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-1 -delta_cum_rain<-20 -delta_wind<-2 -delta_light<-1 -breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp) -breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation))-1,0), max(na.omit(Env_laboratory$Mean_Precipitation))+1,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory_weekly$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light) - -# First find right domain where the values have no NA - - - -# First find right domain where the values have no NA -#i_hum_min<-max(min(which(breaks_hum>=min(na.omit(Env_Campylobacter_data$Relative_humidity)))-1,length(breaks_hum)),1) - -#i_min_temp_min<-max(min(min(which(breaks_min_temp>=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))-1,length(breaks_min_temp)),1) -#i_min_temp_max<-max(max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))+1,1) - -#i_max_temp_min<-max(min(min(which(breaks_max_temp>=min(na.omit(Env_Campylobacter_data$max_temp))))-1,length(breaks_max_temp)),1) -#i_max_temp_max<-max(max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$max_temp))))+1,1) - -#i_rain_min<-max(min(min(which(breaks_rain>=min(na.omit(Env_Campylobacter_data$Mean_Precipitation))))-1,length(breaks_rain)),1),1) -#i_rain_max<-max(min(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation))))+1,1) - -#i_cum_rain_min<-max(min(min(which(breaks_cum_rain>=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))-1,length(breaks_cum_rain)),1) -#i_cum_rain_max<-max(min(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))+1,1) - -#i_wind_min<-max(min(min(which(breaks_wind>=min(na.omit(Env_Campylobacter_data$Mean_wind_speed))))-1,length(breaks_wind)),1) -#i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed))))+1 - - -#print(c(i_hum_min,i_min_temp_min ,i_max_temp_min, i_rain_min,i_wind_min)) -#print(c(i_hum_min,i_hum_max,i_min_temp_min ,i_min_temp_max,i_max_temp_min,i_max_temp_max, i_rain_min,i_rain_max,i_wind_min,i_wind_max)) - - - -i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity)))) -i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity)))) - -i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) -i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) - -i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) -i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) - -i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) -i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) - -i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) -i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) - -i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) -i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) - - -i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength)))) -i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength)))) - -############################# General variables ########################### - - - - - -var_x_loc_df<-c() - -if (variable=="light"){ - - breaks_var<-breaks_light - i_var_min<-i_light_min - i_var_max<-i_light_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength - Env_laboratory_var<-Env_laboratory$daylength -} - -if (variable_x=="light"){ - - i_var_x_min<-i_light_min - i_var_x_max<-i_light_max - breaks_var_x<-breaks_light -} - -if (variable_y=="light"){ - - i_var_y_min<-i_light_min - i_var_y_max<-i_light_max - breaks_var_y<-breaks_light -} - - -if (variable=="max_air_temp"){ - - breaks_var<-breaks_max_temp - i_var_min<-i_max_temp_min - i_var_max<-i_max_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature - Env_laboratory_var<-Env_laboratory$Maximum_air_temperature -} -if (variable_x=="max_air_temp"){ - - i_var_x_min<-i_max_temp_min - i_var_x_max<-i_max_temp_max - breaks_var_x<-breaks_max_temp -} - -if (variable_y=="max_air_temp"){ - - i_var_y_min<-i_max_temp_min - i_var_y_max<-i_max_temp_max - breaks_var_y<-breaks_max_temp -} - -if (variable=="min_air_temp"){ - - breaks_var<-breaks_min_temp - i_var_min<-i_min_temp_min - i_var_max<-i_min_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Minimum_air_temperature - Env_laboratory_var<-Env_laboratory$Minimum_air_temperature -} -if (variable_x=="min_air_temp"){ - - i_var_x_min<-i_min_temp_min - i_var_x_max<-i_min_temp_max - breaks_var_x<-breaks_min_temp -} - -if (variable_y=="min_air_temp"){ - - i_var_y_min<-i_min_temp_min - i_var_y_max<-i_min_temp_max - breaks_var_y<-breaks_min_temp -} - -if (variable=="humidity"){ - - breaks_var<-breaks_hum - i_var_min<-i_hum_min - i_var_max<-i_hum_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity - Env_laboratory_var<-Env_laboratory$Relative_humidity -} -if (variable_x=="humidity"){ - - i_var_x_min<-i_hum_min - i_var_x_max<-i_hum_max - breaks_var_x<-breaks_hum -} - - -if (variable_y=="humidity"){ - - i_var_y_min<-i_hum_min - i_var_y_max<-i_hum_max - breaks_var_y<-breaks_hum -} - - -if (variable=="mean_temp"){ - - breaks_var<-breaks_mean_temp - i_var_min<-i_mean_temp_min - i_var_max<-i_mean_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp - Env_laboratory_var<-Env_laboratory$mean_temp -} -if (variable_x=="mean_temp"){ - - i_var_x_min<-i_mean_temp_min - i_var_x_max<-i_mean_temp_max - breaks_var_x<-breaks_mean_temp -} - - -if (variable_y=="mean_temp"){ - - i_var_y_min<-i_mean_temp_min - i_var_y_max<-i_mean_temp_max - breaks_var_y<-breaks_mean_temp -} - - -if (variable=="rain"){ - - breaks_var<-breaks_rain - i_var_min<-i_rain_min - i_var_max<-i_rain_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation - Env_laboratory_var<-Env_laboratory$Mean_Precipitation -} -if (variable_x=="rain"){ - - i_var_x_min<-i_rain_min - i_var_x_max<-i_rain_max - breaks_var_x<-breaks_rain -} - - -if (variable_y=="rain"){ - - i_var_y_min<-i_rain_min - i_var_y_max<-i_rain_max - breaks_var_y<-breaks_rain -} - -if (variable=="cum_rain"){ - - breaks_var<-breaks_cum_rain - i_var_min<-i_cum_rain_min - i_var_max<-i_cum_rain_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation - Env_laboratory_var<-Env_laboratory$Cumul_Precipitation -} -if (variable_x=="cum_rain"){ - - i_var_x_min<-i_cum_rain_min - i_var_x_max<-i_cum_rain_max - breaks_var_x<-breaks_cum_rain -} - -if (variable_y=="cum_rain"){ - - i_var_y_min<-i_cum_rain_min - i_var_y_max<-i_cum_rain_max - breaks_var_y<-breaks_cum_rain -} - -if (variable=="wind"){ - - breaks_var<-breaks_wind - i_var_min<-i_wind_min - i_var_max<-i_wind_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed - Env_laboratory_var<-Env_laboratory$Mean_wind_speed -} -if (variable_x=="wind"){ - - i_var_x_min<-i_wind_min - i_var_x_max<-i_wind_max - breaks_var_x<-breaks_wind -} - - -if (variable_y=="wind"){ - - i_var_y_min<-i_wind_min - i_var_y_max<-i_wind_max - breaks_var_y<-breaks_wind -} - - -Yt_var_x<-function(i_var,i_var_y) -{ - - if(is.na(breaks_var[i_var+1])==TRUE) - { - Yt1<-subset(Env_Campylobacter_data,Env_Campylobacter_data_var>=breaks_var[i_var]) - } else { - Yt1<-subset(Env_Campylobacter_data,Env_Campylobacter_data_var>=breaks_var[i_var] & Env_Campylobacter_data_var<breaks_var[i_var+1]) - } - - if(variable_y=="humidity"){ - - if(is.na(breaks_hum[i_var_y+1])==TRUE) - { - Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y]) - } else { - Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y] & Yt1$Relative_humidity<=breaks_hum[i_var_y+1]) - } - } - if(variable_y=="wind"){ - if(is.na(breaks_wind[i_var_y+1])==TRUE) - { - Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y]) - } else { - Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y] & Yt1$Mean_wind_speed<=breaks_wind[i_var_y+1]) - } - } - if(variable_y=="rain"){ - if(is.na(breaks_rain[i_var_y+1])==TRUE) -{ - Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y]) - } else { - Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y] & Yt1$Mean_Precipitation<=breaks_rain[i_var_y+1]) - } - - } - - if(variable_y=="cum_rain"){ - if(is.na(breaks_cum_rain[i_var_y+1])==TRUE) -{ - Yt2<-subset(Yt1,Yt1$Cumul_Precipitation>=breaks_cum_rain[i_var_y]) - } else { - Yt2<-subset(Yt1,Yt1$Cumul_Precipitation>=breaks_cum_rain[i_var_y] & Yt1$Cumul_Precipitation<=breaks_cum_rain[i_var_y+1]) - } - - } - - return(as.list(Yt2)) - -} - - -Tot_var_x<-function(i_var,i_var_y) -{ - - if(is.na(breaks_var[i_var+1])==TRUE) - { - Yt1<-subset(Env_laboratory,Env_laboratory_var>=breaks_var[i_var]) - } else { - Yt1<-subset(Env_laboratory,Env_laboratory_var>=breaks_var[i_var] & Env_laboratory_var<breaks_var[i_var+1]) - } - - if(variable_y=="humidity"){ - - if(is.na(breaks_hum[i_var_y+1])==TRUE) - { - Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y]) - } else { - Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y] & Yt1$Relative_humidity<=breaks_hum[i_var_y+1]) - } - } - - if(variable_y=="wind"){ - - if(is.na(breaks_wind[i_var_y+1])==TRUE) - { - Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y]) - } else { - Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y] & Yt1$Mean_wind_speed<=breaks_wind[i_var_y+1]) - } - - } - - if(variable_y=="rain"){ - - if(is.na(breaks_rain[i_var_y+1])==TRUE) - { - Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y]) - } else { - Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y] & Yt1$Mean_Precipitation<=breaks_rain[i_var_y+1]) - } - - } - - - return(as.list(Yt2)) - -} - - - -var_x_loc_df<-c(0) -n_seas<-1 -residents_i_var<-0 -residents_universal<-0 -#i_var_max<-length(breaks_var) -#i_var_min<-1 -#i_var_max_x<-length(breaks_var_x) -#i_var_min_x<-1 - -for (i_var in c(i_var_min:i_var_max)) -{ - - for (i_var_y in c(i_var_y_min:i_var_y_max)) - { - - - for (i in c(1:n_seas)) - { - - n_months<-12/n_seas - - - wt<-which(month(Yt_var_x(i_var,i_var_y )$Date)>(i-1)*n_months & month(Yt_var_x(i_var,i_var_y )$Date)<=i*n_months) - wt_tot<-which(month(Tot_var_x(i_var,i_var_y )$Date)>(i-1)*n_months & month(Tot_var_x(i_var,i_var_y )$Date)<=i*n_months) - - if (variable_x=="min_air_temp"){ - Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Minimum_air_temperature[wt] - var_x_tot<-Tot_var_x(i_var,i_var_y )$Minimum_air_temperature[wt_tot] - - - - - } - if (variable_x=="max_air_temp"){ - Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Maximum_air_temperature[wt] - var_x_tot<-Tot_var_x(i_var,i_var_y )$Maximum_air_temperature[wt_tot] - - } - - if (variable_x=="mean_temp"){ - Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$mean_temp[wt] - var_x_tot<-Tot_var_x(i_var,i_var_y )$mean_temp[wt_tot] - - } - - - - if (variable_x=="humidity"){ - Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Relative_humidity[wt] - var_x_tot<-Tot_var_x(i_var,i_var_y )$Relative_humidity[wt_tot] - - } - if (variable_x=="wind"){ - Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Mean_wind_speed[wt] - var_x_tot<-Tot_var_x(i_var,i_var_y )$Mean_wind_speed[wt_tot] - - } - - if (variable_x=="light"){ - Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$daylength[wt] - var_x_tot<-Tot_var_x(i_var,i_var_y )$daylength[wt_tot] - - } - - if (variable_x=="rain"){ - Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Mean_Precipitation[wt] - var_x_tot<-Tot_var_x(i_var,i_var_y )$Mean_Precipitation[wt_tot] - - } - if (variable_x=="cum_rain"){ - Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Cumul_Precipitation[wt] - var_x_tot<-Tot_var_x(i_var,i_var_y )$Cumul_Precipitation[wt_tot] - - } - - - n_var_x_tot<-hist(var_x_tot,breaks=breaks_var_x) - n_var_x<-hist((as.numeric(as.character(Campylobacter_var_x))),breaks=breaks_var_x) - - residents<-rep(0,times=length(breaks_var_x)-1) - residents_tot<-rep(0,times=length(breaks_var_x)-1) - numb_PC<-rep(0,times=length(breaks_var_x)-1) - - wt<-which(n_var_x_tot$counts!=0) - wt2<-which(n_var_x$counts!=0) - delta_step_tot<-diff(n_var_x_tot$breaks) - delta_step<-diff(n_var_x$breaks) #Actuallly these two are identical, but left as it is for generality - - if (variable_x=="min_air_temp"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - - ww<-which(Tot_var_x(i_var,i_var_y)$Minimum_air_temperature>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var,i_var_y)$Minimum_air_temperature<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) - numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) - - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var,i_var_y)$Minimum_air_temperature>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Minimum_air_temperature<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) - residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) - } - } - - } - - - } - - - if (variable_x=="max_air_temp"){ - - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var,i_var_y)$Maximum_air_temperature>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var,i_var_y)$Maximum_air_temperature<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) - numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var,i_var_y)$Maximum_air_temperature>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Maximum_air_temperature<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) - residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) - } - } - - } - - } - - if (variable_x=="light"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - - ww<-which(Tot_var_x(i_var,i_var_y)$daylength>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var,i_var_y)$daylength<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) - numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) - - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var,i_var_y)$daylength>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$daylength<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) - residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) - } - } - - } - - - } - - - - if (variable_x=="mean_temp"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var,i_var_y)$mean_temp>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var,i_var_y)$mean_temp<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) - numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var,i_var_y)$mean_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$mean_temp<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) - residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) - } - } - - } - } - - - if (variable_x=="humidity"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var,i_var_y)$hum>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var,i_var_y)$hum<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) - numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var,i_var_y)$hum>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$hum<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) - residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) - } - } - - } - } - if (variable_x=="wind"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var,i_var_y)$Mean_wind_speed>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var,i_var_y)$Mean_wind_speed<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) - numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var,i_var_y)$Mean_wind_speed>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Mean_wind_speed<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) - residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) - } - } - - } - - } - if (variable_x=="rain"){ - - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var,i_var_y)$Mean_Precipitation>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var,i_var_y)$Mean_Precipitation<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) - numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var,i_var_y)$Mean_Precipitation>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Mean_Precipitation<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) - residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) - } - } - - } - } - - if (variable_x=="cum_rain"){ - - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var,i_var_y)$Cumul_Precipitation>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var,i_var_y)$Cumul_Precipitation<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) - numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var,i_var_y)$Cumul_Precipitation>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Cumul_Precipitation<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) - residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) - } - } - - } - } - - - - data_df<-data.frame( - n_var_x$mids, - n_var_x$breaks[-length(n_var_x$breaks)], - n_var_x$counts/n_var_x_tot$counts, - (n_var_x$counts)/(residents_tot), - i, - breaks_var[i_var], - breaks_var_y[i_var_y], - n_var_x$counts, - n_var_x_tot$counts, - residents, - residents_tot, - numb_PC) - - - colnames(data_df)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - var_x_loc_df<-rbind(var_x_loc_df,data_df) - colnames(var_x_loc_df)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - #} - #} - - - } - } -residents_i_var<-residents_i_var+sum(residents_tot) -} - -residents_universal<residents_universal+sum(residents_i_var) -residents_i_var -residents_universal - -write.table(var_x_loc_df,paste("../../Data_Base/Cases_Environment/",variable,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") diff --git a/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.Rout b/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.Rout deleted file mode 100644 index 6bbf6a47b12f1cfad3781bbe5b88098506ab2653..0000000000000000000000000000000000000000 --- a/PAPER_Efficient_Simulated_Campylobacter_environment_analysis_subset_3_variables_for_reconstruction.Rout +++ /dev/null @@ -1,863 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. -> -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> #library(Hmisc) -> -> list.of.packages <- c("xts") -> new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -> if(length(new.packages)) install.packages(new.packages) -> library(xts) -Loading required package: zoo - -Attaching package: ‘zoo’ - -The following object is masked from ‘package:timeSeries’: - - time<- - -The following objects are masked from ‘package:base’: - - as.Date, as.Date.numeric - - -Attaching package: ‘xts’ - -The following objects are masked from ‘package:pastecs’: - - first, last - -> -> -> -> width<-30 -> width_char<-paste(width) -> -> -> variable_x<-"min_air_temp" -> #variable_y<-"wind" -> variable_y<-"rain" -> #variable_y<-"humidity" -> variable<-"light" -> #variable<-"rain" -> -> #write.table(Env_Campylobacter_data_all2,paste("../DataBase/Cases_Environment/Campylobacter_environment_",width_char,".csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> #colnames(Env_Campylobacter_data_all2)<-c("PostCode","PHE_Centre_Name","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -> #colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -> #colnames(Env_laboratory_weekly)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind","residents") -> colnames(Env_laboratory_weekly)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #For Dorset only -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> #Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_PHE,year(Env_Campylobacter_data_PHE$Date)>=2001 & year(Env_Campylobacter_data_PHE$Date)<2012) -> -> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> -> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(Env_laboratory_weekly$Date)>=1990 & year(Env_laboratory_weekly$Date)<=2015) -> ################### weekly summary -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> #names(Coord_laboratory) -> #as.numeric(Coord_laboratory[1,]) -> #as.numeric(Coord_laboratory[2,]) -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Env_laboratory_int2$lat -> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) -> #var_list<-list(lat,day_year) -> #lapply(var_list,daylength) -> #lapply(Env_laboratory,daylength, Env_laboratory$lat) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> #daylength_df$lat<-as.factor(daylength_df$lat) -> #daylength_df$Date<-as.factor(daylength_df$Date) -> #Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat) -> #Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date) -> #Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date")) -> -> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) -> -> ### repeat for the data only #### -> -> latitude<-Env_Campylobacter_data_int2$lat -> day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> #daylength_df$lat<-as.factor(daylength_df$lat) -> #daylength_df$Date<-as.factor(daylength_df$Date) -> #Env_Campylobacter_data_int2$lat<-as.factor(Env_Campylobacter_data_int2$lat) -> #Env_Campylobacter_data_int2$Date<-as.factor(Env_Campylobacter_data_int2$Date) -> -> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df) -> -> -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-1 -> delta_cum_rain<-20 -> delta_wind<-2 -> delta_light<-1 -> breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp) -> breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation))-0,0), max(na.omit(Env_laboratory$Mean_Precipitation))+0,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory_weekly$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -> breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> # First find right domain where the values have no NA -> #i_hum_min<-max(min(which(breaks_hum>=min(na.omit(Env_Campylobacter_data$Relative_humidity)))-1,length(breaks_hum)),1) -> -> #i_min_temp_min<-max(min(min(which(breaks_min_temp>=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))-1,length(breaks_min_temp)),1) -> #i_min_temp_max<-max(max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature))))+1,1) -> -> #i_max_temp_min<-max(min(min(which(breaks_max_temp>=min(na.omit(Env_Campylobacter_data$max_temp))))-1,length(breaks_max_temp)),1) -> #i_max_temp_max<-max(max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$max_temp))))+1,1) -> -> #i_rain_min<-max(min(min(which(breaks_rain>=min(na.omit(Env_Campylobacter_data$Mean_Precipitation))))-1,length(breaks_rain)),1),1) -> #i_rain_max<-max(min(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation))))+1,1) -> -> #i_cum_rain_min<-max(min(min(which(breaks_cum_rain>=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))-1,length(breaks_cum_rain)),1) -> #i_cum_rain_max<-max(min(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation))))+1,1) -> -> #i_wind_min<-max(min(min(which(breaks_wind>=min(na.omit(Env_Campylobacter_data$Mean_wind_speed))))-1,length(breaks_wind)),1) -> #i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed))))+1 -> -> -> #print(c(i_hum_min,i_min_temp_min ,i_max_temp_min, i_rain_min,i_wind_min)) -> #print(c(i_hum_min,i_hum_max,i_min_temp_min ,i_min_temp_max,i_max_temp_min,i_max_temp_max, i_rain_min,i_rain_max,i_wind_min,i_wind_max)) -> -> -> -> i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity)))) -> i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity)))) -> -> i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) -> i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) -> -> i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) -> i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) -> -> i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) -> i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) -> -> i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) -> i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) -> -> i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) -> i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) -> -> -> i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength)))) -> i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength)))) -> -> ############################# General variables ########################### -> -> -> -> -> -> var_x_loc_df<-c() -> -> if (variable=="light"){ -+ -+ breaks_var<-breaks_light -+ i_var_min<-i_light_min -+ i_var_max<-i_light_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength -+ Env_laboratory_var<-Env_laboratory$daylength -+ } -> -> if (variable_x=="light"){ -+ -+ i_var_x_min<-i_light_min -+ i_var_x_max<-i_light_max -+ breaks_var_x<-breaks_light -+ } -> -> if (variable_y=="light"){ -+ -+ i_var_y_min<-i_light_min -+ i_var_y_max<-i_light_max -+ breaks_var_y<-breaks_light -+ } -> -> -> if (variable=="max_air_temp"){ -+ -+ breaks_var<-breaks_max_temp -+ i_var_min<-i_max_temp_min -+ i_var_max<-i_max_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature -+ Env_laboratory_var<-Env_laboratory$Maximum_air_temperature -+ } -> if (variable_x=="max_air_temp"){ -+ -+ i_var_x_min<-i_max_temp_min -+ i_var_x_max<-i_max_temp_max -+ breaks_var_x<-breaks_max_temp -+ } -> -> if (variable_y=="max_air_temp"){ -+ -+ i_var_y_min<-i_max_temp_min -+ i_var_y_max<-i_max_temp_max -+ breaks_var_y<-breaks_max_temp -+ } -> -> if (variable=="min_air_temp"){ -+ -+ breaks_var<-breaks_min_temp -+ i_var_min<-i_min_temp_min -+ i_var_max<-i_min_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Minimum_air_temperature -+ Env_laboratory_var<-Env_laboratory$Minimum_air_temperature -+ } -> if (variable_x=="min_air_temp"){ -+ -+ i_var_x_min<-i_min_temp_min -+ i_var_x_max<-i_min_temp_max -+ breaks_var_x<-breaks_min_temp -+ } -> -> if (variable_y=="min_air_temp"){ -+ -+ i_var_y_min<-i_min_temp_min -+ i_var_y_max<-i_min_temp_max -+ breaks_var_y<-breaks_min_temp -+ } -> -> if (variable=="humidity"){ -+ -+ breaks_var<-breaks_hum -+ i_var_min<-i_hum_min -+ i_var_max<-i_hum_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity -+ Env_laboratory_var<-Env_laboratory$Relative_humidity -+ } -> if (variable_x=="humidity"){ -+ -+ i_var_x_min<-i_hum_min -+ i_var_x_max<-i_hum_max -+ breaks_var_x<-breaks_hum -+ } -> -> -> if (variable_y=="humidity"){ -+ -+ i_var_y_min<-i_hum_min -+ i_var_y_max<-i_hum_max -+ breaks_var_y<-breaks_hum -+ } -> -> -> if (variable=="mean_temp"){ -+ -+ breaks_var<-breaks_mean_temp -+ i_var_min<-i_mean_temp_min -+ i_var_max<-i_mean_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp -+ Env_laboratory_var<-Env_laboratory$mean_temp -+ } -> if (variable_x=="mean_temp"){ -+ -+ i_var_x_min<-i_mean_temp_min -+ i_var_x_max<-i_mean_temp_max -+ breaks_var_x<-breaks_mean_temp -+ } -> -> -> if (variable_y=="mean_temp"){ -+ -+ i_var_y_min<-i_mean_temp_min -+ i_var_y_max<-i_mean_temp_max -+ breaks_var_y<-breaks_mean_temp -+ } -> -> -> if (variable=="rain"){ -+ -+ breaks_var<-breaks_rain -+ i_var_min<-i_rain_min -+ i_var_max<-i_rain_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation -+ Env_laboratory_var<-Env_laboratory$Mean_Precipitation -+ } -> if (variable_x=="rain"){ -+ -+ i_var_x_min<-i_rain_min -+ i_var_x_max<-i_rain_max -+ breaks_var_x<-breaks_rain -+ } -> -> -> if (variable_y=="rain"){ -+ -+ i_var_y_min<-i_rain_min -+ i_var_y_max<-i_rain_max -+ breaks_var_y<-breaks_rain -+ } -> -> if (variable=="cum_rain"){ -+ -+ breaks_var<-breaks_cum_rain -+ i_var_min<-i_cum_rain_min -+ i_var_max<-i_cum_rain_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation -+ Env_laboratory_var<-Env_laboratory$Cumul_Precipitation -+ } -> if (variable_x=="cum_rain"){ -+ -+ i_var_x_min<-i_cum_rain_min -+ i_var_x_max<-i_cum_rain_max -+ breaks_var_x<-breaks_cum_rain -+ } -> -> if (variable_y=="cum_rain"){ -+ -+ i_var_y_min<-i_cum_rain_min -+ i_var_y_max<-i_cum_rain_max -+ breaks_var_y<-breaks_cum_rain -+ } -> -> if (variable=="wind"){ -+ -+ breaks_var<-breaks_wind -+ i_var_min<-i_wind_min -+ i_var_max<-i_wind_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed -+ Env_laboratory_var<-Env_laboratory$Mean_wind_speed -+ } -> if (variable_x=="wind"){ -+ -+ i_var_x_min<-i_wind_min -+ i_var_x_max<-i_wind_max -+ breaks_var_x<-breaks_wind -+ } -> -> -> if (variable_y=="wind"){ -+ -+ i_var_y_min<-i_wind_min -+ i_var_y_max<-i_wind_max -+ breaks_var_y<-breaks_wind -+ } -> -> -> Yt_var_x<-function(i_var,i_var_y) -+ { -+ -+ if(is.na(breaks_var[i_var+1])==TRUE) -+ { -+ Yt1<-subset(Env_Campylobacter_data,Env_Campylobacter_data_var>=breaks_var[i_var]) -+ } else { -+ Yt1<-subset(Env_Campylobacter_data,Env_Campylobacter_data_var>=breaks_var[i_var] & Env_Campylobacter_data_var<breaks_var[i_var+1]) -+ } -+ -+ if(variable_y=="humidity"){ -+ -+ if(is.na(breaks_hum[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y] & Yt1$Relative_humidity<=breaks_hum[i_var_y+1]) -+ } -+ } -+ if(variable_y=="wind"){ -+ if(is.na(breaks_wind[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y] & Yt1$Mean_wind_speed<=breaks_wind[i_var_y+1]) -+ } -+ } -+ if(variable_y=="rain"){ -+ if(is.na(breaks_rain[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y] & Yt1$Mean_Precipitation<=breaks_rain[i_var_y+1]) -+ } -+ -+ } -+ -+ if(variable_y=="cum_rain"){ -+ if(is.na(breaks_cum_rain[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Cumul_Precipitation>=breaks_cum_rain[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Cumul_Precipitation>=breaks_cum_rain[i_var_y] & Yt1$Cumul_Precipitation<=breaks_cum_rain[i_var_y+1]) -+ } -+ -+ } -+ -+ return(as.list(Yt2)) -+ -+ } -> -> -> Tot_var_x<-function(i_var,i_var_y) -+ { -+ -+ if(is.na(breaks_var[i_var+1])==TRUE) -+ { -+ Yt1<-subset(Env_laboratory,Env_laboratory_var>=breaks_var[i_var]) -+ } else { -+ Yt1<-subset(Env_laboratory,Env_laboratory_var>=breaks_var[i_var] & Env_laboratory_var<breaks_var[i_var+1]) -+ } -+ -+ if(variable_y=="humidity"){ -+ -+ if(is.na(breaks_hum[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_hum[i_var_y] & Yt1$Relative_humidity<=breaks_hum[i_var_y+1]) -+ } -+ } -+ -+ if(variable_y=="wind"){ -+ -+ if(is.na(breaks_wind[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Mean_wind_speed>=breaks_wind[i_var_y] & Yt1$Mean_wind_speed<=breaks_wind[i_var_y+1]) -+ } -+ -+ } -+ -+ if(variable_y=="rain"){ -+ -+ if(is.na(breaks_rain[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Mean_Precipitation>=breaks_rain[i_var_y] & Yt1$Mean_Precipitation<=breaks_rain[i_var_y+1]) -+ } -+ -+ } -+ -+ -+ return(as.list(Yt2)) -+ -+ } -> -> -> -> var_x_loc_df<-c(0) -> n_seas<-1 -> residents_i_var<-0 -> residents_universal<-0 -> #i_var_max<-length(breaks_var) -> #i_var_min<-1 -> #i_var_max_x<-length(breaks_var_x) -> #i_var_min_x<-1 -> -> for (i_var in c(i_var_min:i_var_max)) -+ { -+ -+ for (i_var_y in c(i_var_y_min:i_var_y_max)) -+ { -+ -+ -+ for (i in c(1:n_seas)) -+ { -+ -+ n_months<-12/n_seas -+ -+ -+ wt<-which(month(Yt_var_x(i_var,i_var_y )$Date)>(i-1)*n_months & month(Yt_var_x(i_var,i_var_y )$Date)<=i*n_months) -+ wt_tot<-which(month(Tot_var_x(i_var,i_var_y )$Date)>(i-1)*n_months & month(Tot_var_x(i_var,i_var_y )$Date)<=i*n_months) -+ -+ if (variable_x=="min_air_temp"){ -+ Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Minimum_air_temperature[wt] -+ var_x_tot<-Tot_var_x(i_var,i_var_y )$Minimum_air_temperature[wt_tot] -+ -+ -+ -+ -+ } -+ if (variable_x=="max_air_temp"){ -+ Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Maximum_air_temperature[wt] -+ var_x_tot<-Tot_var_x(i_var,i_var_y )$Maximum_air_temperature[wt_tot] -+ -+ } -+ -+ if (variable_x=="mean_temp"){ -+ Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$mean_temp[wt] -+ var_x_tot<-Tot_var_x(i_var,i_var_y )$mean_temp[wt_tot] -+ -+ } -+ -+ -+ -+ if (variable_x=="humidity"){ -+ Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Relative_humidity[wt] -+ var_x_tot<-Tot_var_x(i_var,i_var_y )$Relative_humidity[wt_tot] -+ -+ } -+ if (variable_x=="wind"){ -+ Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Mean_wind_speed[wt] -+ var_x_tot<-Tot_var_x(i_var,i_var_y )$Mean_wind_speed[wt_tot] -+ -+ } -+ -+ if (variable_x=="light"){ -+ Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$daylength[wt] -+ var_x_tot<-Tot_var_x(i_var,i_var_y )$daylength[wt_tot] -+ -+ } -+ -+ if (variable_x=="rain"){ -+ Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Mean_Precipitation[wt] -+ var_x_tot<-Tot_var_x(i_var,i_var_y )$Mean_Precipitation[wt_tot] -+ -+ } -+ if (variable_x=="cum_rain"){ -+ Campylobacter_var_x<-Yt_var_x(i_var,i_var_y )$Cumul_Precipitation[wt] -+ var_x_tot<-Tot_var_x(i_var,i_var_y )$Cumul_Precipitation[wt_tot] -+ -+ } -+ -+ -+ n_var_x_tot<-hist(var_x_tot,breaks=breaks_var_x) -+ n_var_x<-hist((as.numeric(as.character(Campylobacter_var_x))),breaks=breaks_var_x) -+ -+ residents<-rep(0,times=length(breaks_var_x)-1) -+ residents_tot<-rep(0,times=length(breaks_var_x)-1) -+ numb_PC<-rep(0,times=length(breaks_var_x)-1) -+ -+ wt<-which(n_var_x_tot$counts!=0) -+ wt2<-which(n_var_x$counts!=0) -+ delta_step_tot<-diff(n_var_x_tot$breaks) -+ delta_step<-diff(n_var_x$breaks) #Actuallly these two are identical, but left as it is for generality -+ -+ if (variable_x=="min_air_temp"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ -+ ww<-which(Tot_var_x(i_var,i_var_y)$Minimum_air_temperature>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var,i_var_y)$Minimum_air_temperature<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) -+ numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) -+ -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var,i_var_y)$Minimum_air_temperature>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Minimum_air_temperature<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) -+ residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) -+ } -+ } -+ -+ } -+ -+ -+ } -+ -+ -+ if (variable_x=="max_air_temp"){ -+ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var,i_var_y)$Maximum_air_temperature>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var,i_var_y)$Maximum_air_temperature<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) -+ numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var,i_var_y)$Maximum_air_temperature>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Maximum_air_temperature<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) -+ residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) -+ } -+ } -+ -+ } -+ -+ } -+ -+ if (variable_x=="light"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ -+ ww<-which(Tot_var_x(i_var,i_var_y)$daylength>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var,i_var_y)$daylength<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) -+ numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) -+ -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var,i_var_y)$daylength>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$daylength<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) -+ residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) -+ } -+ } -+ -+ } -+ -+ -+ } -+ -+ -+ -+ if (variable_x=="mean_temp"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var,i_var_y)$mean_temp>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var,i_var_y)$mean_temp<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) -+ numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var,i_var_y)$mean_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$mean_temp<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) -+ residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) -+ } -+ } -+ -+ } -+ } -+ -+ -+ if (variable_x=="humidity"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var,i_var_y)$hum>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var,i_var_y)$hum<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]] ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) -+ numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var,i_var_y)$hum>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$hum<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) -+ residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) -+ } -+ } -+ -+ } -+ } -+ if (variable_x=="wind"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var,i_var_y)$Mean_wind_speed>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var,i_var_y)$Mean_wind_speed<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) -+ numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var,i_var_y)$Mean_wind_speed>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Mean_wind_speed<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) -+ residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) -+ } -+ } -+ -+ } -+ -+ } -+ if (variable_x=="rain"){ -+ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var,i_var_y)$Mean_Precipitation>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var,i_var_y)$Mean_Precipitation<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) -+ numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var,i_var_y)$Mean_Precipitation>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Mean_Precipitation<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) -+ residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) -+ } -+ } -+ -+ } -+ } -+ -+ if (variable_x=="cum_rain"){ -+ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var,i_var_y)$Cumul_Precipitation>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var,i_var_y)$Cumul_Precipitation<=n_var_x_tot$breaks[wt[j]]+delta_step_tot[wt[j]]) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var,i_var_y)$residents[ww])) -+ numb_PC[wt[j]]<-length(unique(Tot_var_x(i_var,i_var_y)$PostCode[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var,i_var_y)$Cumul_Precipitation>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var,i_var_y)$Cumul_Precipitation<=n_var_x$breaks[wt2[j]]+delta_step[wt2[j]]) -+ residents[wt2[j]]<-sum(as.numeric(Yt_var_x(i_var,i_var_y)$residents[ww])) -+ } -+ } -+ -+ } -+ } -+ -+ -+ -+ data_df<-data.frame( -+ n_var_x$mids, -+ n_var_x$breaks[-length(n_var_x$breaks)], -+ n_var_x$counts/n_var_x_tot$counts, -+ (n_var_x$counts)/(residents_tot), -+ i, -+ breaks_var[i_var], -+ breaks_var_y[i_var_y], -+ n_var_x$counts, -+ n_var_x_tot$counts, -+ residents, -+ residents_tot, -+ numb_PC) -+ -+ -+ colnames(data_df)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -+ var_x_loc_df<-rbind(var_x_loc_df,data_df) -+ colnames(var_x_loc_df)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -+ #} -+ #} -+ -+ -+ } -+ } -+ residents_i_var<-residents_i_var+sum(residents_tot) -+ } -> -> residents_universal<residents_universal+sum(residents_i_var) -[1] TRUE -> residents_i_var -[1] 31294027 -> residents_universal -[1] 0 -> -> write.table(var_x_loc_df,paste("../../Data_Base/Cases_Environment/",variable,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> proc.time() - user system elapsed -755.196 9.128 764.397 diff --git a/PAPER_Pathogen_Linkage_fixed_time_lag.R b/PAPER_Pathogen_Linkage_fixed_time_lag.R deleted file mode 100644 index 29f4bee2beb3999fe39d57ef8c707a5281a4e664..0000000000000000000000000000000000000000 --- a/PAPER_Pathogen_Linkage_fixed_time_lag.R +++ /dev/null @@ -1,328 +0,0 @@ -# The code associates the value of the environmental variables to the Campylobacter cases at the location (diagnostic postcode) and date of occurrence with a chosen time-time_lag - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(xts) -library(lubridate) - - -## Environmental Variable file. Original MEDMI files - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - -variable<-"min_air_temp" -variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -min_temp<-variable_df_3[,-c(1,2)] -min_temp<-min_temp[-c(1,2),] -names(min_temp) <- NULL -Minimum_air_temperature<-unlist(c(min_temp)) - - -variable<-"rain" -variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -rain<-variable_df_4[,-c(1,2)] -rain<-rain[-c(1,2),] -names(rain) <- NULL -Precipitation<-unlist(c(rain)) - -variable<-"wind_speed" -variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -wind<-variable_df_5[,-c(1,2)] -wind<-wind[-c(1,2),] -names(wind) <- NULL -Mean_wind_speed<-unlist(c(wind)) - -######################## include daylength ################## - -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -colnames(lat_long_lab)<-c("PostCode","lat","long") -PC_df<-data.frame(All_PC,as.Date(dates)) -colnames(PC_df)<-c("PostCode","Date") - -Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") - - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Post_Codes_df$lat -day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") - - - -######################## Catchment areas ################# - -catchment_population_df<-read.csv(paste("../../Data_Base/Catchment_areas/Sum_ByLab_1987_2016.csv",sep="")) -colnames(catchment_population_df)<-c("PostCode","col2","col3", - "residents_1987", - "residents_1988", - "residents_1989", - "residents_1990", - "residents_1991", - "residents_1992", - "residents_1993", - "residents_1994", - "residents_1995", - "residents_1996", - "residents_1997", - "residents_1998", - "residents_1999", - "residents_2000", - "residents_2001", - "residents_2002", - "residents_2003", - "residents_2004", - "residents_2005", - "residents_2006", - "residents_2007", - "residents_2008", - "residents_2009", - "residents_2010", - "residents_2011", - "residents_2012", - "residents_2013", - "residents_2014", - "residents_2015", - "residents_2016", - "residents_2011bis") - -diagnostic_laboratory_info_df<-read.csv(paste("../../Data_Base/Catchment_areas/Lab_information.csv",sep="")) -diagnostic_laboratory_info_df<-diagnostic_laboratory_info_df[,-1] - - -## This create a database for all laboratories postcode, even if there were zero cases -diagnostic_laboratory_df2<-data.frame(All_PC,dates, - Maximum_air_temperature, - Minimum_air_temperature, - Mean_wind_speed, - Precipitation, - Relative_humidity, - daylength_df$daylength) - -colnames(diagnostic_laboratory_df2)<-c("PostCode","dates", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Precipitation", - "Relative_humidity", - "daylength") - - - - - -################################### - -starting_year_catchment_population_df<-1987 -end_year_catchment_population_df<-2016 -numb_years<-length(seq(starting_year_catchment_population_df:end_year_catchment_population_df)) -sequence_years<-seq(starting_year_catchment_population_df,end_year_catchment_population_df) - -diagnostic_laboratory_df2$year<-year(diagnostic_laboratory_df2$dates) - -catchment_population_df2<-catchment_population_df[,-c(1:3,34)] - - - -catchment_population_df3<-data.frame( - rep(catchment_population_df$PostCode,times=numb_years), - rep(sequence_years,each=length(unique(catchment_population_df$PostCode))), - stack(catchment_population_df2) -) -colnames(catchment_population_df3)<-c("PostCode","year","residents","ind") - - -#catchment_population_df3$ind<-unlist(strsplit(as.character(catchment_population_df3$ind), split='_', fixed=TRUE)[seq(1,length(catchment_population_df3$ind))])[2] - -catchment_population_df3$year<-as.factor(catchment_population_df3$year) -diagnostic_laboratory_df2$year<-as.factor(diagnostic_laboratory_df2$year) - -diagnostic_laboratory_df<-merge(diagnostic_laboratory_df2, catchment_population_df3,by=c('PostCode','year')) -#diagnostic_laboratory_df$Date<-diagnostic_laboratory_df$dates -colnames(diagnostic_laboratory_df)[3]<-c("Date") - - -write.table(diagnostic_laboratory_df,paste("../../Data_Base/OPIE_data_base/Environment_Laboratories_linkage_original_MEDMI.csv",sep=""),sep=',') - - - - - -################ Define the time lag here ############################### - -time_lag<-1 -time_lag_char<-paste(time_lag) - -## This create a database for all postocode where there was at least one case -Campylobacter_cases<-read.csv("../../Data_Base/Cases/Campylobacter_Simulated_Data_final_UK.csv") -Campylobacter_cases<-Campylobacter_cases[,-1] -colnames(Campylobacter_cases)<-c("Cases","Adjusted","Spec_Date", "PostCode","Date","Simulation") - -Campylobacter_cases$PostCode<-stri_replace_all_fixed(Campylobacter_cases$PostCode, " ", "") -Campylobacter_cases$Date<-as.Date((as.character(Campylobacter_cases$Date))) -Campylobacter_cases$year<-as.factor((as.character(year(Campylobacter_cases$Date)))) -Campylobacter_cases$PostCode<-as.factor(Campylobacter_cases$PostCode) - -Campylobacter_cases_df<-merge(Campylobacter_cases, catchment_population_df3,by=c("PostCode","year")) - - -########################### time_lag average ###################### - -### This function calculate the average values of the environmental variables over a certain time-time_lag -time_lag_PC<-function(lab_fac){ - lab<-as.character(lab_fac) - merged_lab_sub<-subset(diagnostic_laboratory_df,diagnostic_laboratory_df$PostCode==lab) - merged_lab_sub2<-merged_lab_sub[order(as.Date(merged_lab_sub$Date)),] - - - mean_Maximum_air_temperature<-rollmean(merged_lab_sub2$Maximum_air_temperature,time_lag) - mean_Minimum_air_temperature<-rollmean(merged_lab_sub2$Minimum_air_temperature,time_lag) - mean_Mean_wind_speed<-rollmean(merged_lab_sub2$Mean_wind_speed,time_lag) - cum_Precipitation<-rollsum(merged_lab_sub2$Precipitation,time_lag) - mean_Precipitation<-rollmean(merged_lab_sub2$Precipitation,time_lag) - mean_Relative_humidity<-rollmean(merged_lab_sub2$Relative_humidity,time_lag) - mean_daylength<-rollmean(merged_lab_sub2$daylength,time_lag) - mean_residents<-round(rollmean(merged_lab_sub2$residents, time_lag)) # 1 This because the number of residetns is - - - PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(mean_residents)) - ep<-seq(time_lag,length(mean_residents)+time_lag-1) - - merged_lab_time_lag<-data.frame(PC,dates[ep], - mean_Maximum_air_temperature, - mean_Minimum_air_temperature, - mean_Mean_wind_speed, - cum_Precipitation, - mean_Precipitation, - mean_Relative_humidity, - mean_daylength, - mean_residents) - - return(merged_lab_time_lag) -} - -### This function calculate the total number of cases on the particular day and location -cases_all<-function(lab_fac){ - lab<-as.character(lab_fac) - merged.data_sub<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PostCode==lab) - merged.data_sub2<-merged.data_sub[order(as.Date(merged.data_sub$Date)),] - - cases<-(as.data.frame(table(merged.data_sub2$Date))) - - PC<-rep(as.character(unique(merged.data_sub$PostCode)),times=length(cases[,1])) - cases_all<-data.frame(PC,cases) - - return(cases_all) -} - -merged_lab_time_lag<-c() -cases_all_df<-c() - -index_PC<-unique(diagnostic_laboratory_df$PostCode) -for (i in c(1:length(index_PC))){ - merged_lab_time_lag<-rbind(merged_lab_time_lag,lapply(index_PC[i], time_lag_PC)[[1]]) - cases_all_df<-rbind(cases_all_df,lapply(index_PC[i], cases_all)[[1]]) - print(100*i/length(index_PC)) -} - - - -names(merged_lab_time_lag)[c(1,2)]<-c("PostCode","Date") - - - -colnames(cases_all_df)<-c("PostCode","Date","Cases_all") - -Campylobacter_cases_df<-Campylobacter_cases_df[,-3] -Campylobacter_cases_df_time_lag<-merge(Campylobacter_cases_df, merged_lab_time_lag,by=c("PostCode","Date")) -Campylobacter_cases_df_time_lag2<-merge(Campylobacter_cases_df_time_lag, cases_all_df,by=c("PostCode","Date")) - - -Campylobacter_cases_df2<-data.frame(Campylobacter_cases_df_time_lag2$PostCode, - Campylobacter_cases_df_time_lag2$Date, - Campylobacter_cases_df_time_lag2$Cases, - Campylobacter_cases_df_time_lag2$mean_Maximum_air_temperature, - Campylobacter_cases_df_time_lag2$mean_Minimum_air_temperature, - Campylobacter_cases_df_time_lag2$mean_Mean_wind_speed, - Campylobacter_cases_df_time_lag2$cum_Precipitation, - Campylobacter_cases_df_time_lag2$mean_Precipitation, - Campylobacter_cases_df_time_lag2$mean_Relative_humidity, - Campylobacter_cases_df_time_lag2$mean_daylength, - Campylobacter_cases_df_time_lag2$mean_residents) - - -colnames(Campylobacter_cases_df2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -Campylobacter_cases_df2<-Campylobacter_cases_df2[order(as.Date(Campylobacter_cases_df2$Date)),] - -write.table(merged_lab_time_lag,paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",time_lag_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - -write.table(Campylobacter_cases_df2,paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",time_lag_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - -########################### END time_lag average ###################### - - -#PHE_Centre<-Campylobacter_cases_df$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-6 -#For Dorset only -#merged.data_PHE<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -#merged.data<-subset(merged.data_PHE,year(merged.data_PHE$Date)>=2000 & year(merged.data_PHE$Date)<2016) -#merged.data<-subset(Campylobacter_cases_df2,year(Campylobacter_cases_df2$Date)>=1990 & year(Campylobacter_cases_df2$Date)<2015) -#merged_lab<-subset(diagnostic_laboratory_df,year(diagnostic_laboratory_df$Date)>=1990 & year(diagnostic_laboratory_df$Date)<2015) -################### time_lag summary - diff --git a/PAPER_Pathogen_Linkage_fixed_time_lag.Rout b/PAPER_Pathogen_Linkage_fixed_time_lag.Rout deleted file mode 100644 index 2b357d540ad0e9d8050fe775c476750b862c73a4..0000000000000000000000000000000000000000 --- a/PAPER_Pathogen_Linkage_fixed_time_lag.Rout +++ /dev/null @@ -1,604 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code associates the value of the environmental variables to the Campylobacter cases at the location (diagnostic postcode) and date of occurrence with a chosen time-time_lag -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(xts) -Loading required package: zoo - -Attaching package: ‘zoo’ - -The following object is masked from ‘package:timeSeries’: - - time<- - -The following objects are masked from ‘package:base’: - - as.Date, as.Date.numeric - - -Attaching package: ‘xts’ - -The following objects are masked from ‘package:pastecs’: - - first, last - -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> -> -> ## Environmental Variable file. Original MEDMI files -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> variable<-"min_air_temp" -> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> min_temp<-variable_df_3[,-c(1,2)] -> min_temp<-min_temp[-c(1,2),] -> names(min_temp) <- NULL -> Minimum_air_temperature<-unlist(c(min_temp)) -> -> -> variable<-"rain" -> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> rain<-variable_df_4[,-c(1,2)] -> rain<-rain[-c(1,2),] -> names(rain) <- NULL -> Precipitation<-unlist(c(rain)) -> -> variable<-"wind_speed" -> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> wind<-variable_df_5[,-c(1,2)] -> wind<-wind[-c(1,2),] -> names(wind) <- NULL -> Mean_wind_speed<-unlist(c(wind)) -> -> ######################## include daylength ################## -> -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> PC_df<-data.frame(All_PC,as.Date(dates)) -> colnames(PC_df)<-c("PostCode","Date") -> -> Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") -> -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Post_Codes_df$lat -> day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> -> -> ######################## Catchment areas ################# -> -> catchment_population_df<-read.csv(paste("../../Data_Base/Catchment_areas/Sum_ByLab_1987_2016.csv",sep="")) -> colnames(catchment_population_df)<-c("PostCode","col2","col3", -+ "residents_1987", -+ "residents_1988", -+ "residents_1989", -+ "residents_1990", -+ "residents_1991", -+ "residents_1992", -+ "residents_1993", -+ "residents_1994", -+ "residents_1995", -+ "residents_1996", -+ "residents_1997", -+ "residents_1998", -+ "residents_1999", -+ "residents_2000", -+ "residents_2001", -+ "residents_2002", -+ "residents_2003", -+ "residents_2004", -+ "residents_2005", -+ "residents_2006", -+ "residents_2007", -+ "residents_2008", -+ "residents_2009", -+ "residents_2010", -+ "residents_2011", -+ "residents_2012", -+ "residents_2013", -+ "residents_2014", -+ "residents_2015", -+ "residents_2016", -+ "residents_2011bis") -> -> diagnostic_laboratory_info_df<-read.csv(paste("../../Data_Base/Catchment_areas/Lab_information.csv",sep="")) -> diagnostic_laboratory_info_df<-diagnostic_laboratory_info_df[,-1] -> -> -> ## This create a database for all laboratories postcode, even if there were zero cases -> diagnostic_laboratory_df2<-data.frame(All_PC,dates, -+ Maximum_air_temperature, -+ Minimum_air_temperature, -+ Mean_wind_speed, -+ Precipitation, -+ Relative_humidity, -+ daylength_df$daylength) -> -> colnames(diagnostic_laboratory_df2)<-c("PostCode","dates", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Precipitation", -+ "Relative_humidity", -+ "daylength") -> -> -> -> -> -> ################################### -> -> starting_year_catchment_population_df<-1987 -> end_year_catchment_population_df<-2016 -> numb_years<-length(seq(starting_year_catchment_population_df:end_year_catchment_population_df)) -> sequence_years<-seq(starting_year_catchment_population_df,end_year_catchment_population_df) -> -> diagnostic_laboratory_df2$year<-year(diagnostic_laboratory_df2$dates) -> -> catchment_population_df2<-catchment_population_df[,-c(1:3,34)] -> -> -> -> catchment_population_df3<-data.frame( -+ rep(catchment_population_df$PostCode,times=numb_years), -+ rep(sequence_years,each=length(unique(catchment_population_df$PostCode))), -+ stack(catchment_population_df2) -+ ) -> colnames(catchment_population_df3)<-c("PostCode","year","residents","ind") -> -> -> #catchment_population_df3$ind<-unlist(strsplit(as.character(catchment_population_df3$ind), split='_', fixed=TRUE)[seq(1,length(catchment_population_df3$ind))])[2] -> -> catchment_population_df3$year<-as.factor(catchment_population_df3$year) -> diagnostic_laboratory_df2$year<-as.factor(diagnostic_laboratory_df2$year) -> -> diagnostic_laboratory_df<-merge(diagnostic_laboratory_df2, catchment_population_df3,by=c('PostCode','year')) -> #diagnostic_laboratory_df$Date<-diagnostic_laboratory_df$dates -> colnames(diagnostic_laboratory_df)[3]<-c("Date") -> -> -> write.table(diagnostic_laboratory_df,paste("../../Data_Base/OPIE_data_base/Environment_Laboratories_linkage_original_MEDMI.csv",sep=""),sep=',') -> -> -> -> -> -> ################ Define the time lag here ############################### -> -> time_lag<-1 -> time_lag_char<-paste(time_lag) -> -> ## This create a database for all postocode where there was at least one case -> Campylobacter_cases<-read.csv("../../Data_Base/Cases/Campylobacter_Simulated_Data_final_UK.csv") -> Campylobacter_cases<-Campylobacter_cases[,-1] -> colnames(Campylobacter_cases)<-c("Cases","Adjusted","Spec_Date", "PostCode","Date","Simulation") -> -> Campylobacter_cases$PostCode<-stri_replace_all_fixed(Campylobacter_cases$PostCode, " ", "") -> Campylobacter_cases$Date<-as.Date((as.character(Campylobacter_cases$Date))) -> Campylobacter_cases$year<-as.factor((as.character(year(Campylobacter_cases$Date)))) -> Campylobacter_cases$PostCode<-as.factor(Campylobacter_cases$PostCode) -> -> Campylobacter_cases_df<-merge(Campylobacter_cases, catchment_population_df3,by=c("PostCode","year")) -> -> -> ########################### time_lag average ###################### -> -> ### This function calculate the average values of the environmental variables over a certain time-time_lag -> time_lag_PC<-function(lab_fac){ -+ lab<-as.character(lab_fac) -+ merged_lab_sub<-subset(diagnostic_laboratory_df,diagnostic_laboratory_df$PostCode==lab) -+ merged_lab_sub2<-merged_lab_sub[order(as.Date(merged_lab_sub$Date)),] -+ -+ -+ mean_Maximum_air_temperature<-rollmean(merged_lab_sub2$Maximum_air_temperature,time_lag) -+ mean_Minimum_air_temperature<-rollmean(merged_lab_sub2$Minimum_air_temperature,time_lag) -+ mean_Mean_wind_speed<-rollmean(merged_lab_sub2$Mean_wind_speed,time_lag) -+ cum_Precipitation<-rollsum(merged_lab_sub2$Precipitation,time_lag) -+ mean_Precipitation<-rollmean(merged_lab_sub2$Precipitation,time_lag) -+ mean_Relative_humidity<-rollmean(merged_lab_sub2$Relative_humidity,time_lag) -+ mean_daylength<-rollmean(merged_lab_sub2$daylength,time_lag) -+ mean_residents<-round(rollmean(merged_lab_sub2$residents, time_lag)) # 1 This because the number of residetns is -+ -+ -+ PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(mean_residents)) -+ ep<-seq(time_lag,length(mean_residents)+time_lag-1) -+ -+ merged_lab_time_lag<-data.frame(PC,dates[ep], -+ mean_Maximum_air_temperature, -+ mean_Minimum_air_temperature, -+ mean_Mean_wind_speed, -+ cum_Precipitation, -+ mean_Precipitation, -+ mean_Relative_humidity, -+ mean_daylength, -+ mean_residents) -+ -+ return(merged_lab_time_lag) -+ } -> -> ### This function calculate the total number of cases on the particular day and location -> cases_all<-function(lab_fac){ -+ lab<-as.character(lab_fac) -+ merged.data_sub<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PostCode==lab) -+ merged.data_sub2<-merged.data_sub[order(as.Date(merged.data_sub$Date)),] -+ -+ cases<-(as.data.frame(table(merged.data_sub2$Date))) -+ -+ PC<-rep(as.character(unique(merged.data_sub$PostCode)),times=length(cases[,1])) -+ cases_all<-data.frame(PC,cases) -+ -+ return(cases_all) -+ } -> -> merged_lab_time_lag<-c() -> cases_all_df<-c() -> -> index_PC<-unique(diagnostic_laboratory_df$PostCode) -> for (i in c(1:length(index_PC))){ -+ merged_lab_time_lag<-rbind(merged_lab_time_lag,lapply(index_PC[i], time_lag_PC)[[1]]) -+ cases_all_df<-rbind(cases_all_df,lapply(index_PC[i], cases_all)[[1]]) -+ print(100*i/length(index_PC)) -+ } -[1] 0.4694836 -[1] 0.9389671 -[1] 1.408451 -[1] 1.877934 -[1] 2.347418 -[1] 2.816901 -[1] 3.286385 -[1] 3.755869 -[1] 4.225352 -[1] 4.694836 -[1] 5.164319 -[1] 5.633803 -[1] 6.103286 -[1] 6.57277 -[1] 7.042254 -[1] 7.511737 -[1] 7.981221 -[1] 8.450704 -[1] 8.920188 -[1] 9.389671 -[1] 9.859155 -[1] 10.32864 -[1] 10.79812 -[1] 11.26761 -[1] 11.73709 -[1] 12.20657 -[1] 12.67606 -[1] 13.14554 -[1] 13.61502 -[1] 14.08451 -[1] 14.55399 -[1] 15.02347 -[1] 15.49296 -[1] 15.96244 -[1] 16.43192 -[1] 16.90141 -[1] 17.37089 -[1] 17.84038 -[1] 18.30986 -[1] 18.77934 -[1] 19.24883 -[1] 19.71831 -[1] 20.18779 -[1] 20.65728 -[1] 21.12676 -[1] 21.59624 -[1] 22.06573 -[1] 22.53521 -[1] 23.00469 -[1] 23.47418 -[1] 23.94366 -[1] 24.41315 -[1] 24.88263 -[1] 25.35211 -[1] 25.8216 -[1] 26.29108 -[1] 26.76056 -[1] 27.23005 -[1] 27.69953 -[1] 28.16901 -[1] 28.6385 -[1] 29.10798 -[1] 29.57746 -[1] 30.04695 -[1] 30.51643 -[1] 30.98592 -[1] 31.4554 -[1] 31.92488 -[1] 32.39437 -[1] 32.86385 -[1] 33.33333 -[1] 33.80282 -[1] 34.2723 -[1] 34.74178 -[1] 35.21127 -[1] 35.68075 -[1] 36.15023 -[1] 36.61972 -[1] 37.0892 -[1] 37.55869 -[1] 38.02817 -[1] 38.49765 -[1] 38.96714 -[1] 39.43662 -[1] 39.9061 -[1] 40.37559 -[1] 40.84507 -[1] 41.31455 -[1] 41.78404 -[1] 42.25352 -[1] 42.723 -[1] 43.19249 -[1] 43.66197 -[1] 44.13146 -[1] 44.60094 -[1] 45.07042 -[1] 45.53991 -[1] 46.00939 -[1] 46.47887 -[1] 46.94836 -[1] 47.41784 -[1] 47.88732 -[1] 48.35681 -[1] 48.82629 -[1] 49.29577 -[1] 49.76526 -[1] 50.23474 -[1] 50.70423 -[1] 51.17371 -[1] 51.64319 -[1] 52.11268 -[1] 52.58216 -[1] 53.05164 -[1] 53.52113 -[1] 53.99061 -[1] 54.46009 -[1] 54.92958 -[1] 55.39906 -[1] 55.86854 -[1] 56.33803 -[1] 56.80751 -[1] 57.277 -[1] 57.74648 -[1] 58.21596 -[1] 58.68545 -[1] 59.15493 -[1] 59.62441 -[1] 60.0939 -[1] 60.56338 -[1] 61.03286 -[1] 61.50235 -[1] 61.97183 -[1] 62.44131 -[1] 62.9108 -[1] 63.38028 -[1] 63.84977 -[1] 64.31925 -[1] 64.78873 -[1] 65.25822 -[1] 65.7277 -[1] 66.19718 -[1] 66.66667 -[1] 67.13615 -[1] 67.60563 -[1] 68.07512 -[1] 68.5446 -[1] 69.01408 -[1] 69.48357 -[1] 69.95305 -[1] 70.42254 -[1] 70.89202 -[1] 71.3615 -[1] 71.83099 -[1] 72.30047 -[1] 72.76995 -[1] 73.23944 -[1] 73.70892 -[1] 74.1784 -[1] 74.64789 -[1] 75.11737 -[1] 75.58685 -[1] 76.05634 -[1] 76.52582 -[1] 76.99531 -[1] 77.46479 -[1] 77.93427 -[1] 78.40376 -[1] 78.87324 -[1] 79.34272 -[1] 79.81221 -[1] 80.28169 -[1] 80.75117 -[1] 81.22066 -[1] 81.69014 -[1] 82.15962 -[1] 82.62911 -[1] 83.09859 -[1] 83.56808 -[1] 84.03756 -[1] 84.50704 -[1] 84.97653 -[1] 85.44601 -[1] 85.91549 -[1] 86.38498 -[1] 86.85446 -[1] 87.32394 -[1] 87.79343 -[1] 88.26291 -[1] 88.73239 -[1] 89.20188 -[1] 89.67136 -[1] 90.14085 -[1] 90.61033 -[1] 91.07981 -[1] 91.5493 -[1] 92.01878 -[1] 92.48826 -[1] 92.95775 -[1] 93.42723 -[1] 93.89671 -[1] 94.3662 -[1] 94.83568 -[1] 95.30516 -[1] 95.77465 -[1] 96.24413 -[1] 96.71362 -[1] 97.1831 -[1] 97.65258 -[1] 98.12207 -[1] 98.59155 -[1] 99.06103 -[1] 99.53052 -[1] 100 -> -> -> -> names(merged_lab_time_lag)[c(1,2)]<-c("PostCode","Date") -> -> -> -> colnames(cases_all_df)<-c("PostCode","Date","Cases_all") -> -> Campylobacter_cases_df<-Campylobacter_cases_df[,-3] -> Campylobacter_cases_df_time_lag<-merge(Campylobacter_cases_df, merged_lab_time_lag,by=c("PostCode","Date")) -> Campylobacter_cases_df_time_lag2<-merge(Campylobacter_cases_df_time_lag, cases_all_df,by=c("PostCode","Date")) -> -> -> Campylobacter_cases_df2<-data.frame(Campylobacter_cases_df_time_lag2$PostCode, -+ Campylobacter_cases_df_time_lag2$Date, -+ Campylobacter_cases_df_time_lag2$Cases, -+ Campylobacter_cases_df_time_lag2$mean_Maximum_air_temperature, -+ Campylobacter_cases_df_time_lag2$mean_Minimum_air_temperature, -+ Campylobacter_cases_df_time_lag2$mean_Mean_wind_speed, -+ Campylobacter_cases_df_time_lag2$cum_Precipitation, -+ Campylobacter_cases_df_time_lag2$mean_Precipitation, -+ Campylobacter_cases_df_time_lag2$mean_Relative_humidity, -+ Campylobacter_cases_df_time_lag2$mean_daylength, -+ Campylobacter_cases_df_time_lag2$mean_residents) -> -> -> colnames(Campylobacter_cases_df2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> Campylobacter_cases_df2<-Campylobacter_cases_df2[order(as.Date(Campylobacter_cases_df2$Date)),] -> -> write.table(merged_lab_time_lag,paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",time_lag_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> write.table(Campylobacter_cases_df2,paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",time_lag_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> -> ########################### END time_lag average ###################### -> -> -> #PHE_Centre<-Campylobacter_cases_df$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-6 -> #For Dorset only -> #merged.data_PHE<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> #merged.data<-subset(merged.data_PHE,year(merged.data_PHE$Date)>=2000 & year(merged.data_PHE$Date)<2016) -> #merged.data<-subset(Campylobacter_cases_df2,year(Campylobacter_cases_df2$Date)>=1990 & year(Campylobacter_cases_df2$Date)<2015) -> #merged_lab<-subset(diagnostic_laboratory_df,year(diagnostic_laboratory_df$Date)>=1990 & year(diagnostic_laboratory_df$Date)<2015) -> ################### time_lag summary -> -> -> proc.time() - user system elapsed -308.829 6.083 316.116 diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI.Rout deleted file mode 100644 index ed983fc33d30c79cbebb397b25700b9641d3d467..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI.Rout +++ /dev/null @@ -1,546 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-14 -> width_char<-paste(width) -> -> -> ## Environmental Variable file. Original MEDMI files -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> variable<-"min_air_temp" -> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> min_temp<-variable_df_3[,-c(1,2)] -> min_temp<-min_temp[-c(1,2),] -> names(min_temp) <- NULL -> Minimum_air_temperature<-unlist(c(min_temp)) -> -> -> variable<-"rain" -> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> rain<-variable_df_4[,-c(1,2)] -> rain<-rain[-c(1,2),] -> names(rain) <- NULL -> Precipitation<-unlist(c(rain)) -> -> variable<-"wind_speed" -> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> wind<-variable_df_5[,-c(1,2)] -> wind<-wind[-c(1,2),] -> names(wind) <- NULL -> Mean_wind_speed<-unlist(c(wind)) -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2010) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Minimum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"min_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> #var_x_loc_df<-data.frame( matrix(ncol = 6, nrow = 500)) -> #colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") -> -> #norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100 -> #var_x_loc_df$incidence<-var_x_loc_df$incidence/norm -> #var_x_loc_df<-na.omit(var_x_loc_df) -> -> -> -> -> ################### -> -> -> -> ################### Divide the domains of the variables in bins -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010) -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Maximum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ #variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates))) -+ #variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),] -+ #variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates))) -+ #variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),] -+ #variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates))) -+ #variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),] -+ -+ #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity") -+ #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Maximum_air_temperature") -+ #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength") -+ -+ #variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates) -+ #variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates) -+ #variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates) -+ -+ #variable_df_dis_int<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates") ) -+ -+ -+ #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity") -+ #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Maximum_air_temperature") -+ #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength") -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -Error in `$<-.data.frame`(`*tmp*`, "Maximum_air_temperature", value = numeric(0)) : - replacement has 0 rows, data has 781 -Calls: $<- -> $<-.data.frame -Execution halted diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.R deleted file mode 100644 index 1496656bdad3967025f1fc3e420685198f0b59d3..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.R +++ /dev/null @@ -1,306 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# it works for -#variable_x<-"Minimum_air_temperature" -#variable_y<-"Relative_humidity" -#variable<-"daylength" -## Change breaks_max etc. for different varialbes - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) - - -## Environmental Variable file. Original MEDMI files - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - -variable<-"min_air_temp" -variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -min_temp<-variable_df_3[,-c(1,2)] -min_temp<-min_temp[-c(1,2),] -names(min_temp) <- NULL -Minimum_air_temperature<-unlist(c(min_temp)) - - -variable<-"rain" -variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -rain<-variable_df_4[,-c(1,2)] -rain<-rain[-c(1,2),] -names(rain) <- NULL -Precipitation<-unlist(c(rain)) - -variable<-"wind_speed" -variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -wind<-variable_df_5[,-c(1,2)] -wind<-wind[-c(1,2),] -names(wind) <- NULL -Mean_wind_speed<-unlist(c(wind)) - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2010) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Minimum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"min_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - -#var_x_loc_df<-data.frame( matrix(ncol = 6, nrow = 500)) -#colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") - -#norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100 -#var_x_loc_df$incidence<-var_x_loc_df$incidence/norm -#var_x_loc_df<-na.omit(var_x_loc_df) - - - - -################### - - - -################### Divide the domains of the variables in bins - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Minimum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010) - - x<-variable_df$Relative_humidity - y<-variable_df$Minimum_air_temperature - z<-variable_df$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Minimum_air_temperature<-(breaks_min_temp[findInterval(y, breaks_min_temp)])###Change here for different varialbes - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Minimum_air_temperature<-(breaks_min_temp[findInterval(var_x_loc_df$Minimum_air_temperature, breaks_min_temp)])##floor(var_x_loc_df$breaks) - - - #variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates))) - #variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),] - #variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates))) - #variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),] - #variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates))) - #variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),] - - #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity") - #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature") - #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength") - - #variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates) - #variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates) - #variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates) - - #variable_df_dis_int<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates") ) - - - #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity") - #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature") - #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength") - - ############### - # variable_df_dis_int$Minimum_air_temperature<-floor(variable_df_dis_int$Minimum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Minimum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Minimum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - -#time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep="")) -#time_series<-time_series[,-1] -#colnames(time_series)<-c("Date","Cases","Lambda","Lab") diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.Rout deleted file mode 100644 index 822c05e6593d6cbf359a50096901ce2cd8669c7e..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI2.Rout +++ /dev/null @@ -1,551 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # it works for -> #variable_x<-"Minimum_air_temperature" -> #variable_y<-"Relative_humidity" -> #variable<-"daylength" -> ## Change breaks_max etc. for different varialbes -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> -> -> ## Environmental Variable file. Original MEDMI files -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> variable<-"min_air_temp" -> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> min_temp<-variable_df_3[,-c(1,2)] -> min_temp<-min_temp[-c(1,2),] -> names(min_temp) <- NULL -> Minimum_air_temperature<-unlist(c(min_temp)) -> -> -> variable<-"rain" -> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> rain<-variable_df_4[,-c(1,2)] -> rain<-rain[-c(1,2),] -> names(rain) <- NULL -> Precipitation<-unlist(c(rain)) -> -> variable<-"wind_speed" -> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> wind<-variable_df_5[,-c(1,2)] -> wind<-wind[-c(1,2),] -> names(wind) <- NULL -> Mean_wind_speed<-unlist(c(wind)) -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2010) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Minimum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"min_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> #var_x_loc_df<-data.frame( matrix(ncol = 6, nrow = 500)) -> #colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") -> -> #norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100 -> #var_x_loc_df$incidence<-var_x_loc_df$incidence/norm -> #var_x_loc_df<-na.omit(var_x_loc_df) -> -> -> -> -> ################### -> -> -> -> ################### Divide the domains of the variables in bins -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(ceiling(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Minimum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010) -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Minimum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Minimum_air_temperature<-(breaks_min_temp[findInterval(y, breaks_min_temp)])###Change here for different varialbes -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Minimum_air_temperature<-(breaks_min_temp[findInterval(var_x_loc_df$Minimum_air_temperature, breaks_min_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ #variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates))) -+ #variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),] -+ #variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates))) -+ #variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),] -+ #variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates))) -+ #variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),] -+ -+ #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity") -+ #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature") -+ #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength") -+ -+ #variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates) -+ #variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates) -+ #variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates) -+ -+ #variable_df_dis_int<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates") ) -+ -+ -+ #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity") -+ #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature") -+ #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength") -+ -+ ############### -+ # variable_df_dis_int$Minimum_air_temperature<-floor(variable_df_dis_int$Minimum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Minimum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Minimum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -Error in `$<-.data.frame`(`*tmp*`, "Minimum_air_temperature", value = c(1, : - replacement has 565 rows, data has 568 -Calls: $<- -> $<-.data.frame -Execution halted diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_hum_light.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_hum_light.R deleted file mode 100644 index 88562a0eaeddd71b8d2e0601ef6989cace61a5af..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_hum_light.R +++ /dev/null @@ -1,280 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) - - -## Environmental Variable file. Original MEDMI files - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - -variable<-"min_air_temp" -variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -min_temp<-variable_df_3[,-c(1,2)] -min_temp<-min_temp[-c(1,2),] -names(min_temp) <- NULL -Minimum_air_temperature<-unlist(c(min_temp)) - - -variable<-"rain" -variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -rain<-variable_df_4[,-c(1,2)] -rain<-rain[-c(1,2),] -names(rain) <- NULL -Precipitation<-unlist(c(rain)) - -variable<-"wind_speed" -variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -wind<-variable_df_5[,-c(1,2)] -wind<-wind[-c(1,2),] -names(wind) <- NULL -Mean_wind_speed<-unlist(c(wind)) - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Minimum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"min_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - -#var_x_loc_df<-data.frame( matrix(ncol = 6, nrow = 500)) -#colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") - -#norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100 -#var_x_loc_df$incidence<-var_x_loc_df$incidence/norm -#var_x_loc_df<-na.omit(var_x_loc_df) - - - - -################### - - - -################### Divide the domains of the variables in bins - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - - x<-variable_df$Relative_humidity - y<-variable_df$Maximum_air_temperature - z<-variable_df$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - -#time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep="")) -#time_series<-time_series[,-1] -#colnames(time_series)<-c("Date","Cases","Lambda","Lab") diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.R deleted file mode 100644 index 2dfa7eacebf6f87bc501a1a8c080341c43639665..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.R +++ /dev/null @@ -1,283 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) - - -## Environmental Variable file. Original MEDMI files - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - -variable<-"min_air_temp" -variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -min_temp<-variable_df_3[,-c(1,2)] -min_temp<-min_temp[-c(1,2),] -names(min_temp) <- NULL -Minimum_air_temperature<-unlist(c(min_temp)) - - -variable<-"rain" -variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -rain<-variable_df_4[,-c(1,2)] -rain<-rain[-c(1,2),] -names(rain) <- NULL -Precipitation<-unlist(c(rain)) - -variable<-"wind_speed" -variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -wind<-variable_df_5[,-c(1,2)] -wind<-wind[-c(1,2),] -names(wind) <- NULL -Mean_wind_speed<-unlist(c(wind)) - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Mean_Precipitation" -variable<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"rain" -variable_2<-"light" - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - -#var_x_loc_df<-data.frame( matrix(ncol = 6, nrow = 500)) -#colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") - -#norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100 -#var_x_loc_df$incidence<-var_x_loc_df$incidence/norm -#var_x_loc_df<-na.omit(var_x_loc_df) - - - - -################### - - - -################### Divide the domains of the variables in bins - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-1 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),-1), max(na.omit(Env_laboratory$Mean_Precipitation))+1,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Mean_Precipitation,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - - x<-variable_df$Mean_Precipitation - y<-variable_df$Maximum_air_temperature - z<-variable_df$daylength - - variable_df_dis_int$Mean_Precipitation<-(breaks_rain[findInterval(x, breaks_rain)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - #breaks_rain2<-floor(breaks_rain) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Mean_Precipitation<-(breaks_rain[findInterval(var_x_loc_df$Mean_Precipitation, breaks_rain)])##floor(var_x_loc_df$Mean_Precipitation) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Mean_Precipitation","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Mean_Precipitation","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - -#time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep="")) -#time_series<-time_series[,-1] -#colnames(time_series)<-c("Date","Cases","Lambda","Lab") diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.Rout deleted file mode 100644 index 048636d5c5ab7df2e72b24e9b0a7259d7e583ca0..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_max_rain_light.Rout +++ /dev/null @@ -1,525 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> -> -> ## Environmental Variable file. Original MEDMI files -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> variable<-"min_air_temp" -> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> min_temp<-variable_df_3[,-c(1,2)] -> min_temp<-min_temp[-c(1,2),] -> names(min_temp) <- NULL -> Minimum_air_temperature<-unlist(c(min_temp)) -> -> -> variable<-"rain" -> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> rain<-variable_df_4[,-c(1,2)] -> rain<-rain[-c(1,2),] -> names(rain) <- NULL -> Precipitation<-unlist(c(rain)) -> -> variable<-"wind_speed" -> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> wind<-variable_df_5[,-c(1,2)] -> wind<-wind[-c(1,2),] -> names(wind) <- NULL -> Mean_wind_speed<-unlist(c(wind)) -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Minimum_air_temperature" -> variable_y<-"Mean_Precipitation" -> variable<-"daylength" -> -> variable_x2<-"min_air_temp" -> variable_y2<-"rain" -> variable_2<-"light" -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> #var_x_loc_df<-data.frame( matrix(ncol = 6, nrow = 500)) -> #colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") -> -> #norm<-1#-sum(na.omit(var_x_loc_df$incidence))/100 -> #var_x_loc_df$incidence<-var_x_loc_df$incidence/norm -> #var_x_loc_df<-na.omit(var_x_loc_df) -> -> -> -> -> ################### -> -> -> -> ################### Divide the domains of the variables in bins -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Mean_Precipitation,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) -+ -+ x<-variable_df$Mean_Precipitation -+ y<-variable_df$Maximum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_dis_int$Mean_Precipitation<-(breaks_rain[findInterval(x, breaks_rain)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Mean_Precipitation<-(breaks_rain[findInterval(var_x_loc_df$Mean_Precipitation, breaks_rain)])##floor(var_x_loc_df$Mean_Precipitation) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Mean_Precipitation","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Mean_Precipitation","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -Error in `$<-.data.frame`(`*tmp*`, "Mean_Precipitation", value = c(0.1665106777, : - replacement has 670 rows, data has 779 -Calls: $<- -> $<-.data.frame -Execution halted diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_min_hum_light.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_min_hum_light.R deleted file mode 100644 index 01e0bc1c86977d07fd4f2e441d67f855698f53e0..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_fixed_lag_original_MEDMI_min_hum_light.R +++ /dev/null @@ -1,297 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) - - -## Environmental Variable file. Original MEDMI files - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - -variable<-"min_air_temp" -variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -min_temp<-variable_df_3[,-c(1,2)] -min_temp<-min_temp[-c(1,2),] -names(min_temp) <- NULL -Minimum_air_temperature<-unlist(c(min_temp)) - - -variable<-"rain" -variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -rain<-variable_df_4[,-c(1,2)] -rain<-rain[-c(1,2),] -names(rain) <- NULL -Precipitation<-unlist(c(rain)) - -variable<-"wind_speed" -variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -wind<-variable_df_5[,-c(1,2)] -wind<-wind[-c(1,2),] -names(wind) <- NULL -Mean_wind_speed<-unlist(c(wind)) - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Minimum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"min_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - -### THis to avoid spurios cases with only one exceptional Campylobacter case -w_spurious<-which(var_x_loc_df_all$counts==1) -var_x_loc_df_all[w_spurious,]<-NA - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - - - -################### - - - -################### Divide the domains of the variables in bins - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Minimum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - - x<-variable_df$Relative_humidity - y<-variable_df$Minimum_air_temperature - z<-variable_df$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Minimum_air_temperature<-(breaks_min_temp[findInterval(y, breaks_min_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Minimum_air_temperature<-(breaks_min_temp[findInterval(var_x_loc_df$Minimum_air_temperature, breaks_min_temp)])##floor(var_x_loc_df$breaks) - - - #variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates))) - #variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),] - #variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates))) - #variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),] - #variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates))) - #variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),] - - #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity") - #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature") - #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength") - - #variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates) - #variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates) - #variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates) - - #variable_df_dis_int<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates") ) - - - #variable_df_3_dis<-merge(variable_df_x_dis,var_x_loc_df, by="Relative_humidity") - #variable_df_4_dis<-merge(variable_df_y_dis,var_x_loc_df, by="Minimum_air_temperature") - #variable_df_5_dis<-merge(variable_df_z_dis,var_x_loc_df, by="daylength") - - ############### - # variable_df_dis_int$Minimum_air_temperature<-floor(variable_df_dis_int$Minimum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Minimum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Minimum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - -#time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep="")) -#time_series<-time_series[,-1] -#colnames(time_series)<-c("Date","Cases","Lambda","Lab") diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.R deleted file mode 100644 index 76bb1e1bdc41c31435b91b5130d55187c1171ca7..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.R +++ /dev/null @@ -1,335 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# this to calculate delay - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-7 -width_char<-paste(width) -n_seas<-1 - - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable_z<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_z2<-"light" - - - -## Varaible file - -## Varaible file - -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "") -coefficients_temp<-read.csv(file_name) - -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "") -coefficients_hum<-read.csv(file_name) - -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "") -coefficients_light<-read.csv(file_name) - - -#colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) - -dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day") -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010) - - - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -#wt<-c(0) -#for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -#wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -#print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -#} - - -#Env_laboratory_PHE<-Env_laboratory[wt[-1],] -Env_laboratory_PHE<-Env_laboratory -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - -################### Include daylength -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -colnames(lat_long_lab)<-c("PostCode","lat","long") -Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode") -#Env_Lyme_data_int2<-merge(Env_Lyme_data_all2,lat_long_lab,by="PostCode") - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Env_laboratory_int2$lat -day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) -#var_list<-list(lat,day_year) -#lapply(var_list,daylength) -#lapply(Env_laboratory,daylength, Env_laboratory$lat) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") - -#daylength_df$lat<-as.factor(daylength_df$lat) -#daylength_df$Date<-as.factor(daylength_df$Date) -#Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat) -#Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date) -#Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date")) - -Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) - -### repeat for the data only #### - -#latitude<-Env_Lyme_data_int2$lat -#day_of_the_year<-yday(as.Date(Env_Lyme_data_int2$Date)) - -#daylength_int1<-mapply(daylength, latitude, day_of_the_year) -#daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Lyme_data_int2$Date),daylength_int1) -#colnames(daylength_df)<-c("lat","day_year","Date","daylength") - -#Env_Lyme_data<-data.frame(Env_Lyme_data_int2,daylength_df) - - -######################################## - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - -################### - -delta_light<-1 -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum)) #i -breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp)) -breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)) -breaks_light<-floor(seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light)) - -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) - - - - -time_series<-c() - -for (i in c(1: length(All_PC_s))){ - #for (i in c(1: 15)){ - - - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - if (length(variable_df[,1])!=0){ - - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010) - - - - ##########include time here and then average according to coefficients up to the time weighted.mean - x<-c() - y<-c() - z<-c() - - for (k in c(min(year(variable_df$Date)):max(year(variable_df$Date))) ){ - - var_year<-subset(variable_df,year(variable_df$Date)==k ) - xx<-c() - yy<-c() - zz<-c() - - wt<-0 - for (n_coeff in (1:16)){ - wt<-wt+unlist(coefficients_temp)[[n_coeff]]*week(var_year$Date)^(n_coeff-1) - } - wt_temp<-wt/sum(wt) - - wt<-0 - for (n_coeff in (1:16)){ - wt<-wt+unlist(coefficients_hum)[[n_coeff]]*week(var_year$Date)^(n_coeff-1) - } - wt_hum<-wt/sum(wt) - - wt<-0 - for (n_coeff in (1:16)){ - wt<-wt+unlist(coefficients_light)[[n_coeff]]*week(var_year$Date)^(n_coeff-1) - - } - wt_light<-wt/sum(wt) - - - - end_time<-yday(var_year$Date) - for (k2 in c(1:max(end_time)) ){ - yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[1:k2], wt[1:k2]) - xx[k2] <- weighted.mean( var_year$Relative_humidity[1:k2], wt[1:k2]) - zz[k2] <- weighted.mean( var_year$daylength[1:k2], wt[1:k2]) - } - - x<-c(x,xx) - y<-c(y,yy) - z<-c(z,zz) - } - - # seq(min(as.Date(variable_df$Date)), max(as.Date(variable_df$Date)), by = "day") - - # breaks_hum[findInterval(x, breaks_hum)] - # breaks_Maximum_air_temperature[findInterval(y, breaks_Maximum_air_temperature)] - - - - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)]) - - #variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$max_temp) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,17:19,21:25)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable_z, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - - - - - #variable_df0<-merge(variable_df_1_dis, variable_df_2_dis, by="dates") - #variable_df1<-merge(variable_df0, variable_df_3_dis, by="dates") - #variable_df_dis<-merge(variable_df1,var_x_loc_df, by=c("Maximum_air_temperature","Relative_humidity","daylength")) - - - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - - - -} - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_multiple_delays.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.Rout deleted file mode 100644 index 4439d70a08e5e157b743e14f14c8047f3595b11f..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays.Rout +++ /dev/null @@ -1,592 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # this to calculate delay -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-7 -> width_char<-paste(width) -> n_seas<-1 -> -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable_z<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_z2<-"light" -> -> -> -> ## Varaible file -> -> ## Varaible file -> -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "") -> coefficients_temp<-read.csv(file_name) -> -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "") -> coefficients_hum<-read.csv(file_name) -> -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "") -> coefficients_light<-read.csv(file_name) -> -> -> #colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) -> -> dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day") -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010) -> -> -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> #wt<-c(0) -> #for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -> #wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -> #print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -> #} -> -> -> #Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> Env_laboratory_PHE<-Env_laboratory -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> ################### Include daylength -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode") -> #Env_Lyme_data_int2<-merge(Env_Lyme_data_all2,lat_long_lab,by="PostCode") -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Env_laboratory_int2$lat -> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) -> #var_list<-list(lat,day_year) -> #lapply(var_list,daylength) -> #lapply(Env_laboratory,daylength, Env_laboratory$lat) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> #daylength_df$lat<-as.factor(daylength_df$lat) -> #daylength_df$Date<-as.factor(daylength_df$Date) -> #Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat) -> #Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date) -> #Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date")) -> -> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) -> -> ### repeat for the data only #### -> -> #latitude<-Env_Lyme_data_int2$lat -> #day_of_the_year<-yday(as.Date(Env_Lyme_data_int2$Date)) -> -> #daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> #daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Lyme_data_int2$Date),daylength_int1) -> #colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> #Env_Lyme_data<-data.frame(Env_Lyme_data_int2,daylength_df) -> -> -> ######################################## -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> ################### -> -> delta_light<-1 -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum)) #i -> breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp)) -> breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)) -> breaks_light<-floor(seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light)) -> -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -> -> -> -> -> time_series<-c() -> -> for (i in c(1: length(All_PC_s))){ -+ #for (i in c(1: 15)){ -+ -+ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ if (length(variable_df[,1])!=0){ -+ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010) -+ -+ -+ -+ ##########include time here and then average according to coefficients up to the time weighted.mean -+ x<-c() -+ y<-c() -+ z<-c() -+ -+ for (k in c(min(year(variable_df$Date)):max(year(variable_df$Date))) ){ -+ -+ var_year<-subset(variable_df,year(variable_df$Date)==k ) -+ xx<-c() -+ yy<-c() -+ zz<-c() -+ -+ wt<-0 -+ for (n_coeff in (1:16)){ -+ wt<-wt+unlist(coefficients_temp)[[n_coeff]]*week(var_year$Date)^(n_coeff-1) -+ } -+ wt_temp<-wt/sum(wt) -+ -+ wt<-0 -+ for (n_coeff in (1:16)){ -+ wt<-wt+unlist(coefficients_hum)[[n_coeff]]*week(var_year$Date)^(n_coeff-1) -+ } -+ wt_hum<-wt/sum(wt) -+ -+ wt<-0 -+ for (n_coeff in (1:16)){ -+ wt<-wt+unlist(coefficients_light)[[n_coeff]]*week(var_year$Date)^(n_coeff-1) -+ -+ } -+ wt_light<-wt/sum(wt) -+ -+ -+ -+ end_time<-yday(var_year$Date) -+ for (k2 in c(1:max(end_time)) ){ -+ yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[1:k2], wt[1:k2]) -+ xx[k2] <- weighted.mean( var_year$Relative_humidity[1:k2], wt[1:k2]) -+ zz[k2] <- weighted.mean( var_year$daylength[1:k2], wt[1:k2]) -+ } -+ -+ x<-c(x,xx) -+ y<-c(y,yy) -+ z<-c(z,zz) -+ } -+ -+ # seq(min(as.Date(variable_df$Date)), max(as.Date(variable_df$Date)), by = "day") -+ -+ # breaks_hum[findInterval(x, breaks_hum)] -+ # breaks_Maximum_air_temperature[findInterval(y, breaks_Maximum_air_temperature)] -+ -+ -+ -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)]) -+ -+ #variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$max_temp) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,17:19,21:25)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable_z, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ -+ -+ -+ -+ #variable_df0<-merge(variable_df_1_dis, variable_df_2_dis, by="dates") -+ #variable_df1<-merge(variable_df0, variable_df_3_dis, by="dates") -+ #variable_df_dis<-merge(variable_df1,var_x_loc_df, by=c("Maximum_air_temperature","Relative_humidity","daylength")) -+ -+ -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ -+ -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> -> -> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_multiple_delays.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> proc.time() - user system elapsed -622.747 9.640 632.453 diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.R b/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.R deleted file mode 100644 index 82ed8a967d8db2c8edae0277cca4185e74c162a6..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.R +++ /dev/null @@ -1,383 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# this to calculate delay - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-1 -width_char<-paste(width) -n_seas<-1 - - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable_z<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_z2<-"light" - - - -## Varaible file - -## Varaible file - -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "") -coefficients_temp<-read.csv(file_name) - -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "") -coefficients_hum<-read.csv(file_name) - -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "") -coefficients_light<-read.csv(file_name) - - -#colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) - -dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day") -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010) - - - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -#wt<-c(0) -#for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -#wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -#print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -#} - - -#Env_laboratory_PHE<-Env_laboratory[wt[-1],] -Env_laboratory_PHE<-Env_laboratory -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - -################### Include daylength -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -colnames(lat_long_lab)<-c("PostCode","lat","long") -Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode") -#Env_Lyme_data_int2<-merge(Env_Lyme_data_all2,lat_long_lab,by="PostCode") - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Env_laboratory_int2$lat -day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) -#var_list<-list(lat,day_year) -#lapply(var_list,daylength) -#lapply(Env_laboratory,daylength, Env_laboratory$lat) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") - -#daylength_df$lat<-as.factor(daylength_df$lat) -#daylength_df$Date<-as.factor(daylength_df$Date) -#Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat) -#Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date) -#Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date")) - -Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) - -### repeat for the data only #### - -#latitude<-Env_Lyme_data_int2$lat -#day_of_the_year<-yday(as.Date(Env_Lyme_data_int2$Date)) - -#daylength_int1<-mapply(daylength, latitude, day_of_the_year) -#daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Lyme_data_int2$Date),daylength_int1) -#colnames(daylength_df)<-c("lat","day_year","Date","daylength") - -#Env_Lyme_data<-data.frame(Env_Lyme_data_int2,daylength_df) - - -######################################## - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - -################### - - -delta_light<-1 -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum)) #i -breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp)) -breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)) -breaks_light<-floor(seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light)) - -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) - - - - -time_series<-c() - -for (i in c(1: length(All_PC_s))){ - #for (i in c(1: 15)){ - - - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - if (length(variable_df[,1])!=0){ - - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010) - - - - ##########include time here and then average according to coefficients up to the time weighted.mean - x<-c() - y<-c() - z<-c() - - for (k in c(min(year(variable_df$Date)):max(year(variable_df$Date))) ){ - - var_year<-subset(variable_df,year(variable_df$Date)==k ) - xx<-c() - yy<-c() - zz<-c() - - #difference<-c(rep(0,times=166),rep(24,times=length(week(var_year$Date))-166)) - #This 152 correspond to firs of June when dip in the data for coefficients in light, hum, and temperature - - #week_year<-week(var_year$Date)-difference+1 - - week_year<-week(var_year$Date) - - wt<-0 - for (n_coeff in (1:16)){ - wt<-wt+unlist(coefficients_temp)[[n_coeff]]*week_year^(n_coeff-1) - } - wt_temp<-wt/sum(wt) - - wt<-0 - for (n_coeff in (1:16)){ - wt<-wt+unlist(coefficients_hum)[[n_coeff]]*week_year^(n_coeff-1) - } - wt_hum<-wt/sum(wt) - - wt<-0 - for (n_coeff in (1:16)){ - wt<-wt+unlist(coefficients_light)[[n_coeff]]*week_year^(n_coeff-1) - } - - - end_time<-yday(var_year$Date) - mid_time<-166 - for (k2 in c(1:mid_time) ){ - yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[1:k2], wt[1:k2]/(sum( wt[1:k2] ))) - xx[k2] <- weighted.mean( var_year$Relative_humidity[1:k2], wt[1:k2]/(sum( wt[1:k2] ))) - zz[k2] <- weighted.mean( var_year$daylength[1:k2],wt[1:k2]/(sum( wt[1:k2] ))) - } - - for (k2 in c((mid_time+1):max(end_time)) ){ - yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[mid_time:k2],wt[mid_time:k2]/(sum( wt[mid_time:k2] ))) - xx[k2] <- weighted.mean( var_year$Relative_humidity[mid_time:k2], wt[mid_time:k2]/(sum( wt[mid_time:k2] ))) - zz[k2] <- weighted.mean( var_year$daylength[mid_time:k2], wt[mid_time:k2]/(sum( wt[mid_time:k2] ))) - } - - - - x<-c(x,xx) - y<-c(y,yy) - z<-c(z,zz) - } - - # seq(min(as.Date(variable_df$Date)), max(as.Date(variable_df$Date)), by = "day") - - # breaks_hum[findInterval(x, breaks_hum)] - # breaks_Maximum_air_temperature[findInterval(y, breaks_Maximum_air_temperature)] - - - w_error<-which(findInterval(x, breaks_hum)==0) - if(length(w_error)!=0){ - min_x_error<- min(x[-w_error]) - x[w_error]<-min_x_error} - - - w_error2<-which(findInterval(y, breaks_max_temp)==0) - if(length(w_error2)!=0){ - min_y_error<- min(y[-w_error2]) - y[w_error2]<-min_y_error} - - w_error3<-which(findInterval(z, breaks_light)==0) - if(length(w_error3)!=0){ - min_z_error<- min(z[-w_error3]) - z[w_error3]<-min_z_error} - - w_error4<-which(findInterval(x, breaks_hum)>max(breaks_hum)) - if(length(w_error4)!=0){ - max_x_error<- max(x[-w_error4]) - x[w_error4]<-max_x_error} - - - w_error5<-which(findInterval(y, breaks_max_temp)>max(breaks_max_temp)) - if(length(w_error5)!=0){ - max_y_error<- max(y[-w_error5]) - y[w_error5]<-max_y_error} - - - w_error6<-which(findInterval(z, breaks_light)>max(breaks_light)) - if(length(w_error6)!=0){ - max_z_error<- max(z[-w_error6]) - z[w_error6]<-max_z_error} - - - - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)]) - - #variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$max_temp) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,17:19,21:25)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable_z, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - - - - - #variable_df0<-merge(variable_df_1_dis, variable_df_2_dis, by="dates") - #variable_df1<-merge(variable_df0, variable_df_3_dis, by="dates") - #variable_df_dis<-merge(variable_df1,var_x_loc_df, by=c("Maximum_air_temperature","Relative_humidity","daylength")) - - - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - - - -} - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_multiple_delays_half_year.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") diff --git a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.Rout b/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.Rout deleted file mode 100644 index 50ce75236f2ff8d0b10bd3fb61718e09a1b25a23..0000000000000000000000000000000000000000 --- a/PAPER_Reconstruct_Simulated_Campylobacter_environment_light_hum_max_for_rec_multiple_delays_half_year.Rout +++ /dev/null @@ -1,640 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # this to calculate delay -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-1 -> width_char<-paste(width) -> n_seas<-1 -> -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable_z<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_z2<-"light" -> -> -> -> ## Varaible file -> -> ## Varaible file -> -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "") -> coefficients_temp<-read.csv(file_name) -> -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "") -> coefficients_hum<-read.csv(file_name) -> -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "") -> coefficients_light<-read.csv(file_name) -> -> -> #colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) -> -> dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day") -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010) -> -> -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> #wt<-c(0) -> #for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -> #wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -> #print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -> #} -> -> -> #Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> Env_laboratory_PHE<-Env_laboratory -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> ################### Include daylength -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode") -> #Env_Lyme_data_int2<-merge(Env_Lyme_data_all2,lat_long_lab,by="PostCode") -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Env_laboratory_int2$lat -> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) -> #var_list<-list(lat,day_year) -> #lapply(var_list,daylength) -> #lapply(Env_laboratory,daylength, Env_laboratory$lat) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> #daylength_df$lat<-as.factor(daylength_df$lat) -> #daylength_df$Date<-as.factor(daylength_df$Date) -> #Env_laboratory_int2$lat<-as.factor(Env_laboratory_int2$lat) -> #Env_laboratory_int2$Date<-as.factor(Env_laboratory_int2$Date) -> #Env_laboratory<-merge(Env_laboratory_int2,daylength_df,by=c("lat","Date")) -> -> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) -> -> ### repeat for the data only #### -> -> #latitude<-Env_Lyme_data_int2$lat -> #day_of_the_year<-yday(as.Date(Env_Lyme_data_int2$Date)) -> -> #daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> #daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Lyme_data_int2$Date),daylength_int1) -> #colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> #Env_Lyme_data<-data.frame(Env_Lyme_data_int2,daylength_df) -> -> -> ######################################## -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> ################### -> -> -> delta_light<-1 -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum)) #i -> breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp)) -> breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp)) -> breaks_light<-floor(seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light)) -> -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -> -> -> -> -> time_series<-c() -> -> for (i in c(1: length(All_PC_s))){ -+ #for (i in c(1: 15)){ -+ -+ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ if (length(variable_df[,1])!=0){ -+ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<2010) -+ -+ -+ -+ ##########include time here and then average according to coefficients up to the time weighted.mean -+ x<-c() -+ y<-c() -+ z<-c() -+ -+ for (k in c(min(year(variable_df$Date)):max(year(variable_df$Date))) ){ -+ -+ var_year<-subset(variable_df,year(variable_df$Date)==k ) -+ xx<-c() -+ yy<-c() -+ zz<-c() -+ -+ #difference<-c(rep(0,times=166),rep(24,times=length(week(var_year$Date))-166)) -+ #This 152 correspond to firs of June when dip in the data for coefficients in light, hum, and temperature -+ -+ #week_year<-week(var_year$Date)-difference+1 -+ -+ week_year<-week(var_year$Date) -+ -+ wt<-0 -+ for (n_coeff in (1:16)){ -+ wt<-wt+unlist(coefficients_temp)[[n_coeff]]*week_year^(n_coeff-1) -+ } -+ wt_temp<-wt/sum(wt) -+ -+ wt<-0 -+ for (n_coeff in (1:16)){ -+ wt<-wt+unlist(coefficients_hum)[[n_coeff]]*week_year^(n_coeff-1) -+ } -+ wt_hum<-wt/sum(wt) -+ -+ wt<-0 -+ for (n_coeff in (1:16)){ -+ wt<-wt+unlist(coefficients_light)[[n_coeff]]*week_year^(n_coeff-1) -+ } -+ -+ -+ end_time<-yday(var_year$Date) -+ mid_time<-166 -+ for (k2 in c(1:mid_time) ){ -+ yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[1:k2], wt[1:k2]/(sum( wt[1:k2] ))) -+ xx[k2] <- weighted.mean( var_year$Relative_humidity[1:k2], wt[1:k2]/(sum( wt[1:k2] ))) -+ zz[k2] <- weighted.mean( var_year$daylength[1:k2],wt[1:k2]/(sum( wt[1:k2] ))) -+ } -+ -+ for (k2 in c((mid_time+1):max(end_time)) ){ -+ yy[k2] <- weighted.mean( var_year$Maximum_air_temperature[mid_time:k2],wt[mid_time:k2]/(sum( wt[mid_time:k2] ))) -+ xx[k2] <- weighted.mean( var_year$Relative_humidity[mid_time:k2], wt[mid_time:k2]/(sum( wt[mid_time:k2] ))) -+ zz[k2] <- weighted.mean( var_year$daylength[mid_time:k2], wt[mid_time:k2]/(sum( wt[mid_time:k2] ))) -+ } -+ -+ -+ -+ x<-c(x,xx) -+ y<-c(y,yy) -+ z<-c(z,zz) -+ } -+ -+ # seq(min(as.Date(variable_df$Date)), max(as.Date(variable_df$Date)), by = "day") -+ -+ # breaks_hum[findInterval(x, breaks_hum)] -+ # breaks_Maximum_air_temperature[findInterval(y, breaks_Maximum_air_temperature)] -+ -+ -+ w_error<-which(findInterval(x, breaks_hum)==0) -+ if(length(w_error)!=0){ -+ min_x_error<- min(x[-w_error]) -+ x[w_error]<-min_x_error} -+ -+ -+ w_error2<-which(findInterval(y, breaks_max_temp)==0) -+ if(length(w_error2)!=0){ -+ min_y_error<- min(y[-w_error2]) -+ y[w_error2]<-min_y_error} -+ -+ w_error3<-which(findInterval(z, breaks_light)==0) -+ if(length(w_error3)!=0){ -+ min_z_error<- min(z[-w_error3]) -+ z[w_error3]<-min_z_error} -+ -+ w_error4<-which(findInterval(x, breaks_hum)>max(breaks_hum)) -+ if(length(w_error4)!=0){ -+ max_x_error<- max(x[-w_error4]) -+ x[w_error4]<-max_x_error} -+ -+ -+ w_error5<-which(findInterval(y, breaks_max_temp)>max(breaks_max_temp)) -+ if(length(w_error5)!=0){ -+ max_y_error<- max(y[-w_error5]) -+ y[w_error5]<-max_y_error} -+ -+ -+ w_error6<-which(findInterval(z, breaks_light)>max(breaks_light)) -+ if(length(w_error6)!=0){ -+ max_z_error<- max(z[-w_error6]) -+ z[w_error6]<-max_z_error} -+ -+ -+ -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)]) -+ -+ #variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$max_temp) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,17:19,21:25)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable_z, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ -+ -+ -+ -+ #variable_df0<-merge(variable_df_1_dis, variable_df_2_dis, by="dates") -+ #variable_df1<-merge(variable_df0, variable_df_3_dis, by="dates") -+ #variable_df_dis<-merge(variable_df1,var_x_loc_df, by=c("Maximum_air_temperature","Relative_humidity","daylength")) -+ -+ -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ -+ -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> -> -> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_Simulated_for_rec_multiple_delays_half_year.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> proc.time() - user system elapsed -402.808 6.412 409.246 diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.R deleted file mode 100644 index ea7a5bca7ac311f87423fbce385be003f6faea9c..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.R +++ /dev/null @@ -1,235 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# Here we assume constant and uniform humidity - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) -const_PHE<-"_Av_Glous_Wilt" # Post_Code= BA13NG - -## Environmental Variable file. Original MEDMI files - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -#All_PC_s<-names(variable_df_1[1,]) -#All_PC_s<-All_PC_s[-c(1,2)] -#All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - - - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - -Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PostCode=="BA13NG") - -Env_Campylobacter_data<-subset(Env_Campylobacter_data_PHE,year(Env_Campylobacter_data_PHE$Date)>=1990 & year(Env_Campylobacter_data_PHE$Date)<=2015) - -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - - - - - -Env_Campylobacter_data$PostCode<-as.factor(Env_Campylobacter_data$PostCode) -Env_laboratory$PostCode<-as.factor(Env_laboratory$PostCode) -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - - -Env_laboratory_PHE<-Env_laboratory[wt[-1],] - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-20 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - -i_w<-which(All_PC_s=="BA13NG") - -time_series<-c() -for (i in c(i_w: i_w)){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - - x<-variable_df$Relative_humidity - y<-variable_df$Maximum_air_temperature - z<-variable_df$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_PHE,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.Rout deleted file mode 100644 index c275a354e6ae2205c032882a61073a21c2567744..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_PHE_centre.Rout +++ /dev/null @@ -1,498 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # Here we assume constant and uniform humidity -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> const_PHE<-"_Av_Glous_Wilt" # Post_Code= BA13NG -> -> ## Environmental Variable file. Original MEDMI files -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PostCode=="BA13NG") -> -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_PHE,year(Env_Campylobacter_data_PHE$Date)>=1990 & year(Env_Campylobacter_data_PHE$Date)<=2015) -> -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> Env_laboratory<-subset(Env_laboratory,Env_laboratory$PostCode=="BA13NG") -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> -> -> -> -> -> -> #wt<-c(0) -> #for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -> #wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -> #print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -> #} -> -> -> Env_laboratory_PHE<-Env_laboratory #[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> time_series<-c() -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Maximum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> -> -> -> -> -> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,"_",const_PHE,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> -> #time_series<-read.csv(paste("../../Data_Base/OPIE_data_base/Time_series_",variable,"_",variable_x,".csv",sep="")) -> #time_series<-time_series[,-1] -> #colnames(time_series)<-c("Date","Cases","Lambda","Lab") -> -> -> -> proc.time() - user system elapsed - 92.078 1.671 93.745 diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.R deleted file mode 100644 index de96d6f9d65a09fa61de1c8f70cd27ecd2defbc5..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.R +++ /dev/null @@ -1,250 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# Here we assume constant and uniform humidity - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) -const_hum<-"_const_daylength_9" -## Varaible file - - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - - - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() - - - -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - variable_df$daylength<-9 #Here I impose constant and uniform relative humidity - - x<-variable_df$Relative_humidity - y<-variable_df$Maximum_air_temperature - z<-variable_df$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.Rout deleted file mode 100644 index 158b702b695340267804a364fd52d38fe2d7c6a0..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_daylength.Rout +++ /dev/null @@ -1,713 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # Here we assume constant and uniform humidity -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> const_hum<-"_const_daylength_9" -> ## Varaible file -> -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> -> -> -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) -+ variable_df$daylength<-9 #Here I impose constant and uniform relative humidity -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Maximum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> -> -> -> -> -> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> -> -> proc.time() - user system elapsed -185.642 1.687 187.328 diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.R deleted file mode 100644 index 36ad68bec228e13c560d68efbb5bd9ab28f75914..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.R +++ /dev/null @@ -1,251 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# Here we assume constant and uniform humidity and temperature - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) -const_hum<-"_const_temp_14_hum_75" -## Varaible file - - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - - - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() - - - -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - variable_df_dis_int$Relative_humidity<-75 #Here I impose constant and uniform relative humidity - variable_df_dis_int$Maximum_air_temperature<-14 #Here I impose constant and uniform relative humidity - - x<-variable_df_dis_int$Relative_humidity - y<-variable_df_dis_int$Maximum_air_temperature - z<-variable_df_dis_int$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.Rout deleted file mode 100644 index 8cb48a11641e80ec868bbffd03250af181051f67..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_daylength.Rout +++ /dev/null @@ -1,714 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # Here we assume constant and uniform humidity and temperature -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> const_hum<-"_const_temp_14_hum_70" -> ## Varaible file -> -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> -> -> -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) -+ variable_df_dis_int$Relative_humidity<-75 #Here I impose constant and uniform relative humidity -+ variable_df_dis_int$Maximum_air_temperature<-14 #Here I impose constant and uniform relative humidity -+ -+ x<-variable_df_dis_int$Relative_humidity -+ y<-variable_df_dis_int$Maximum_air_temperature -+ z<-variable_df_dis_int$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> -> -> -> -> -> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> -> -> proc.time() - user system elapsed -198.167 1.800 199.976 diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.R deleted file mode 100644 index cd636efae22e6660956dfbd6b4038120cae848f1..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.R +++ /dev/null @@ -1,252 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# Here we assume constant and uniform humidity - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) -const_hum<-"_const_temp_14_daylenght_9" -## Varaible file - - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - - - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() - - - -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - variable_df_dis_int$daylength<-9 #Here I impose constant and uniform relative humidity - variable_df_dis_int$Maximum_air_temperature<-14 - - - x<-variable_df_dis_int$Relative_humidity - y<-variable_df_dis_int$Maximum_air_temperature - z<-variable_df_dis_int$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.Rout deleted file mode 100644 index 76fdc89217f4e2dee5ff194fcac28688378db7dc..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_humidity.Rout +++ /dev/null @@ -1,715 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # Here we assume constant and uniform humidity -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> const_hum<-"_const_temp_14_daylenght_9" -> ## Varaible file -> -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> -> -> -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) -+ variable_df_dis_int$daylength<-9 #Here I impose constant and uniform relative humidity -+ variable_df_dis_int$Maximum_air_temperature<-14 -+ -+ -+ x<-variable_df_dis_int$Relative_humidity -+ y<-variable_df_dis_int$Maximum_air_temperature -+ z<-variable_df_dis_int$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> -> -> -> -> -> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> -> -> proc.time() - user system elapsed -214.802 1.858 216.796 diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.R deleted file mode 100644 index d0abb206c0bc6072125e89b7c0bfc0c36b4b8c0b..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.R +++ /dev/null @@ -1,251 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# Here we assume constant and uniform humidity - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) -const_hum<-"_const_hum_75_daylenght_9" -## Varaible file - - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - - - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() - - - -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - variable_df_dis_int$Relative_humidity<-75 #Here I impose constant and uniform relative humidity - variable_df_dis_int$daylength<-9 - - x<-variable_df_dis_int$Relative_humidity - y<-variable_df_dis_int$Maximum_air_temperature - z<-variable_df_dis_int$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.Rout deleted file mode 100644 index 2c1380962d5eaf8c1368ce8625bb50bdcd1de1ef..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_except_temperature.Rout +++ /dev/null @@ -1,498 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # Here we assume constant and uniform humidity -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> const_hum<-"_const_hum_70_daylenght_9" -> ## Varaible file -> -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> -> -> -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) -+ variable_df$Relative_humidity<-70 #Here I impose constant and uniform relative humidity -+ variable_df$daylength<-9 -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Maximum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -Error in data.frame(variable_df_dis$Date, comp_cases, comp_cases2, comp_cases3, : - arguments imply differing number of rows: 0, 1 -Execution halted diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.R deleted file mode 100644 index a9c5b85c25bd2225339ee76abc9712a9c2472265..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.R +++ /dev/null @@ -1,250 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# Here we assume constant and uniform humidity - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) -const_hum<-"_const_hum_70" -## Varaible file - - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - - - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() - - - -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - variable_df$Relative_humidity<-70 #Here I impose constant and uniform relative humidity - - x<-variable_df$Relative_humidity - y<-variable_df$Maximum_air_temperature - z<-variable_df$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.Rout deleted file mode 100644 index 3c3dca2700ca2c4da278a04c4aee23610a9c492c..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_humidity.Rout +++ /dev/null @@ -1,713 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # Here we assume constant and uniform humidity -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> const_hum<-"_const_hum_70" -> ## Varaible file -> -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> -> -> -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) -+ variable_df$Relative_humidity<-70 #Here I impose constant and uniform relative humidity -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Maximum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> -> -> -> -> -> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> -> -> proc.time() - user system elapsed -192.048 1.958 194.004 diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.R b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.R deleted file mode 100644 index 716ea9c789fa3c1d81506a5efb6df741614e33d5..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.R +++ /dev/null @@ -1,250 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# Here we assume constant and uniform humidity - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-30 -width_char<-paste(width) -const_hum<-"_const_temp_14" -## Varaible file - - - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -Relative_humidity<-unlist(c(humidity)) - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -Maximum_air_temperature<-unlist(c(max_temp)) - - - -######################## Read Linked Data from file ################## - - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -#PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -#Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - -#####This is required to identy all PostCodes in England and Wales ######## -dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_2<-"light" - - - - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) - -#Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -#Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) - -wt<-c(0) -for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -} - -### I this was I can select those postcodes labs wher Campylobacter cases occur -Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - - - -######################## - - - - - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 -delta_light<-1 -breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) - -# First find right domain where the values have no NA - - - - -time_series<-c() - - - -for (i in c(1: length(All_PC_s))){ - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) - if (length(na.omit(variable_df_check)[,1])!=0){ - - variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) - variable_df$Maximum_air_temperature<-14 #Here I impose constant and uniform relative humidity - - x<-variable_df$Relative_humidity - y<-variable_df$Maximum_air_temperature - z<-variable_df$daylength - - variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - - var_x_loc_df<-var_x_loc_df_all2 - var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) - var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) - var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) - - - - ############### - # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) - variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) - - variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] - colnames(variable_df_dis)<-c(variable_y, variable_x,variable, - "PostCode","Date", - "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") - variable_df_dis<-na.omit(variable_df_dis) - #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) - - #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here - #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") - - - lambda<-variable_df_dis$incidence - lambda2<-variable_df_dis$prop - lambda3<-variable_df_dis$counts - - #library(Hmisc) - #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") - - #day<-seq(1:length(variable_df_dis$dates)) - #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 - - #comp_cases<-unlist(lapply(day,cases)) - - - comp_cases<-lambda*All_residents_lab$tot[i] - comp_cases2<-lambda2 - comp_cases3<-lambda3*All_residents_lab$tot[i] - comp_cases4<-variable_df_dis$Numb_Lab[i] - - time_series_1<- - data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) - colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") - time_series<-rbind(time_series,time_series_1)} - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - -} - - - - - - -write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - diff --git a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.Rout b/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.Rout deleted file mode 100644 index b93cc5b09d0ab73ddb0a47dc9ddfe66fdfd87b76..0000000000000000000000000000000000000000 --- a/Paper_Reconstruct_Campylobacter_environment_light_hum_max_for_rec_constant_temperature.Rout +++ /dev/null @@ -1,713 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # Here we assume constant and uniform humidity -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-30 -> width_char<-paste(width) -> const_hum<-"_const_temp_14" -> ## Varaible file -> -> -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> Relative_humidity<-unlist(c(humidity)) -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> Maximum_air_temperature<-unlist(c(max_temp)) -> -> -> -> ######################## Read Linked Data from file ################## -> -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> #PHE_Centre<-Env_Campylobacter_data_all2$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-which(levels(PHE_Centre)=='Devon Cornwall and Somerset') -> #Env_Campylobacter_data_PHE<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> #####This is required to identy all PostCodes in England and Wales ######## -> dates_s<-subset(dates_s, year(dates_s)>=1990 & year(dates_s)<=2015) -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_2<-"light" -> -> -> -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> -> #Env_laboratory$PostCode<-as.character(Env_laboratory$PostCode) -> #Env_Campylobacter_data$PostCode<-as.character(Env_Campylobacter_data$PostCode) -> -> wt<-c(0) -> for (i in c(1:length(levels(Env_Campylobacter_data$PostCode)) )){ -+ wt<-c(wt,which(Env_laboratory$PostCode==levels(Env_Campylobacter_data$PostCode)[i])) -+ print(c(100*i/length(levels(Env_Campylobacter_data$PostCode)),levels(Env_Campylobacter_data$PostCode)[i]) ) -+ } -[1] "0.485436893203884" "AL74HQ" -[1] "0.970873786407767" "B152TG" -[1] "1.45631067961165" "B187QH" -[1] "1.94174757281553" "B46NH" -[1] "2.42718446601942" "B714HJ" -[1] "2.9126213592233" "B757RR" -[1] "3.39805825242718" "B95SS" -[1] "3.88349514563107" "B987UB" -[1] "4.36893203883495" "BA13NG" -[1] "4.85436893203883" "BA214AT" -[1] "5.33980582524272" "BB102PQ" -[1] "5.8252427184466" "BB23HH" -[1] "6.31067961165049" "BB23LR" -[1] "6.79611650485437" "BD206TD" -[1] "7.28155339805825" "BD96RJ" -[1] "7.76699029126214" "BH152JB" -[1] "8.25242718446602" "BH77DW" -[1] "8.7378640776699" "BL40JR" -[1] "9.22330097087379" "BL96PG" -[1] "9.70873786407767" "BN112DH" -[1] "10.1941747572816" "BN212UD" -[1] "10.6796116504854" "BN25BE" -[1] "11.1650485436893" "BR68ND" -[1] "11.6504854368932" "BS105NB" -[1] "12.1359223300971" "BS161LE" -[1] "12.621359223301" "BS234TQ" -[1] "13.1067961165049" "BS28EL" -[1] "13.5922330097087" "CA27HY" -[1] "14.0776699029126" "CA288JG" -[1] "14.5631067961165" "CB22QQ" -[1] "15.0485436893204" "CB38RE" -[1] "15.5339805825243" "CF311RQ" -[1] "16.0194174757282" "CF479DT" -[1] "16.504854368932" "CF728XR" -[1] "16.9902912621359" "CF82WW" -[1] "17.4757281553398" "CH21UL" -[1] "17.9611650485437" "CM201XQ" -[1] "18.4466019417476" "CM20YX" -[1] "18.9320388349515" "CO45JR" -[1] "19.4174757281553" "CR77YE" -[1] "19.9029126213592" "CT94AN" -[1] "20.3883495145631" "CV107DJ" -[1] "20.873786407767" "CV14FH" -[1] "21.3592233009709" "CV345BW" -[1] "21.8446601941748" "CW14QJ" -[1] "22.3300970873786" "DA146LT" -[1] "22.8155339805825" "DA28DA" -[1] "23.3009708737864" "DE12QY" -[1] "23.7864077669903" "DE130RB" -[1] "24.2718446601942" "DE223NE" -[1] "24.7572815533981" "DH15TW" -[1] "25.2427184466019" "DL146AD" -[1] "25.7281553398058" "DL36HX" -[1] "26.2135922330097" "DN171RS" -[1] "26.6990291262136" "DN25LT" -[1] "27.1844660194175" "DN332BA" -[1] "27.6699029126214" "DT12JY" -[1] "28.1553398058252" "DY12HQ" -[1] "28.6407766990291" "E111NR" -[1] "29.126213592233" "E11BB" -[1] "29.6116504854369" "E96SR" -[1] "30.0970873786408" "EN53DJ" -[1] "30.5825242718447" "EX25AD" -[1] "31.0679611650485" "EX314JB" -[1] "31.5533980582524" "FY38NR" -[1] "32.0388349514563" "GL13NN" -[1] "32.5242718446602" "GL537AN" -[1] "33.0097087378641" "GU167UJ" -[1] "33.495145631068" "HA13UJ" -[1] "33.9805825242718" "HD33EA" -[1] "34.4660194174757" "HG27SX" -[1] "34.9514563106796" "HP112TT" -[1] "35.4368932038835" "HP218AL" -[1] "35.9223300970874" "HP24AD" -[1] "36.4077669902913" "HR12ER" -[1] "36.8932038834951" "HU32JZ" -[1] "37.378640776699" "IG119LX" -[1] "37.8640776699029" "IP332QZ" -[1] "38.3495145631068" "IP45PD" -[1] "38.8349514563107" "KT160PZ" -[1] "39.3203883495146" "KT198PB" -[1] "39.8058252427184" "KT27QB" -[1] "40.2912621359223" "L122AP" -[1] "40.7766990291262" "L355DR" -[1] "41.2621359223301" "L634JY" -[1] "41.747572815534" "L78XP" -[1] "42.2330097087379" "L97AL" -[1] "42.7184466019417" "LA144LF" -[1] "43.2038834951456" "LA14RP" -[1] "43.6893203883495" "LA97RG" -[1] "44.1747572815534" "LE15WW" -[1] "44.6601941747573" "LL137TP" -[1] "45.1456310679612" "LL185UJ" -[1] "45.6310679611651" "LL572TP" -[1] "46.1165048543689" "LN25QY" -[1] "46.6019417475728" "LS157TR" -[1] "47.0873786407767" "LS29JT" -[1] "47.5728155339806" "LS97TF" -[1] "48.0582524271845" "LU40EP" -[1] "48.5436893203884" "M208LR" -[1] "49.0291262135922" "M415SL" -[1] "49.5145631067961" "M68WH" -[1] "50" "M85RB" -[1] "50.4854368932039" "M97AA" -[1] "50.9708737864078" "ME169QQ" -[1] "51.4563106796116" "ME207NJ" -[1] "51.9417475728155" "ME75NY" -[1] "52.4271844660194" "MK429DJ" -[1] "52.9126213592233" "MK65LD" -[1] "53.3980582524272" "N181QX" -[1] "53.8834951456311" "N195NF" -[1] "54.3689320388349" "NE298NH" -[1] "54.8543689320388" "NE340PL" -[1] "55.3398058252427" "NE46BE" -[1] "55.8252427184466" "NE77DN" -[1] "56.3106796116505" "NE96SX" -[1] "56.7961165048544" "NG174JL" -[1] "57.2815533980583" "NG318DG" -[1] "57.7669902912621" "NG72UH" -[1] "58.252427184466" "NN15BD" -[1] "58.7378640776699" "NN168UZ" -[1] "59.2233009708738" "NP77EG" -[1] "59.7087378640777" "NP92UB" -[1] "60.1941747572816" "NR23TX" -[1] "60.6796116504854" "NR316LA" -[1] "61.1650485436893" "NW107NS" -[1] "61.6504854368932" "NW32QG" -[1] "62.1359223300971" "NW95HT" -[1] "62.621359223301" "OL129QB" -[1] "63.1067961165049" "OL12JH" -[1] "63.5922330097087" "OL69RW" -[1] "64.0776699029126" "OX39DU" -[1] "64.5631067961165" "PE188NT" -[1] "65.0485436893204" "PE219QS" -[1] "65.5339805825243" "PE304ET" -[1] "66.0194174757282" "PE36DA" -[1] "66.504854368932" "PL68DH" -[1] "66.9902912621359" "PO194SE" -[1] "67.4757281553398" "PO305TG" -[1] "67.9611650485437" "PO36AQ" -[1] "68.4466019417476" "PR29HT" -[1] "68.9320388349515" "PR86PN" -[1] "69.4174757281553" "RG15AN" -[1] "69.9029126213592" "RG249NA" -[1] "70.3883495145631" "RH117DH" -[1] "70.873786407767" "RM30BE" -[1] "71.3592233009709" "RM70AG" -[1] "71.8446601941748" "S445BL" -[1] "72.3300970873786" "S57BQ" -[1] "72.8155339805825" "S602UD" -[1] "73.3009708737864" "S752EP" -[1] "73.7864077669903" "S810BD" -[1] "74.2718446601942" "SA28QA" -[1] "74.7572815533981" "SA312AF" -[1] "75.2427184466019" "SA612PZ" -[1] "75.7281553398058" "SE136LH" -[1] "76.2135922330097" "SE17EH" -[1] "76.6990291262136" "SE184QH" -[1] "77.1844660194175" "SE59RS" -[1] "77.6699029126214" "SG14AB" -[1] "78.1553398058252" "SK103BL" -[1] "78.6407766990291" "SK27JE" -[1] "79.126213592233" "SL24HL" -[1] "79.6116504854369" "SM51AA" -[1] "80.0970873786408" "SN36BB" -[1] "80.5825242718447" "SO166YD" -[1] "81.0679611650485" "SO226ZB" -[1] "81.5533980582524" "SP28BJ" -[1] "82.0388349514563" "SR47TP" -[1] "82.5242718446602" "SS00RY" -[1] "83.0097087378641" "SS165NL" -[1] "83.495145631068" "ST163SA" -[1] "83.9805825242718" "ST47PX" -[1] "84.4660194174757" "SW109NH" -[1] "84.9514563106796" "SW170QT" -[1] "85.4368932038835" "SW36JJ" -[1] "85.9223300970874" "SW36NP" -[1] "86.4077669902913" "SY231ER" -[1] "86.8932038834951" "SY38XQ" -[1] "87.378640776699" "TA15DB" -[1] "87.8640776699029" "TN240LZ" -[1] "88.3495145631068" "TQ27AA" -[1] "88.8349514563107" "TR13LQ" -[1] "89.3203883495146" "TS198PE" -[1] "89.8058252427184" "TS249AH" -[1] "90.2912621359223" "TS43BW" -[1] "90.7766990291262" "TW76AF" -[1] "91.2621359223301" "UB13HW" -[1] "91.747572815534" "UB83NN" -[1] "92.2330097087379" "UB96JH" -[1] "92.7184466019417" "W120NN" -[1] "93.2038834951456" "W21NY" -[1] "93.6893203883495" "W68RF" -[1] "94.1747572815534" "WA51QG" -[1] "94.6601941747573" "WC1E6DB" -[1] "95.1456310679612" "WC1N3JH" -[1] "95.631067961165" "WD18HB" -[1] "96.1165048543689" "WF134HS" -[1] "96.6019417475728" "WF14DG" -[1] "97.0873786407767" "WF81PL" -[1] "97.5728155339806" "WN12NN" -[1] "98.0582524271845" "WR13AS" -[1] "98.5436893203884" "WS29PS" -[1] "99.0291262135922" "WV100QP" -[1] "99.5145631067961" "YO126QL" -[1] "100" "YO318HE" -> -> ### I this was I can select those postcodes labs wher Campylobacter cases occur -> Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> -> -> -> ######################## -> -> -> -> -> -> All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> All_residents<-sum(All_residents_lab$tot) -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> -> -> ################### -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> delta_light<-1 -> breaks_hum<-seq(max(min(floor(na.omit(Env_laboratory$Relative_humidity)))-10,0),max(floor(na.omit(Env_laboratory$Relative_humidity)))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(floor(na.omit(Env_laboratory$Minimum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Minimum_air_temperature)))+2,by=delta_temp) -> breaks_max_temp<-seq(min(floor(na.omit(Env_laboratory$Maximum_air_temperature)))-2, max(floor(na.omit(Env_laboratory$Maximum_air_temperature)))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_light<-seq(max(min(floor(na.omit(Env_laboratory$daylength)))-1,0),max(floor(na.omit(Env_laboratory$daylength)))+1,by=delta_light) -> -> # First find right domain where the values have no NA -> -> -> -> -> time_series<-c() -> -> -> -> for (i in c(1: length(All_PC_s))){ -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ variable_df_check<-data.frame(variable_df$daylength,variable_df$Relative_humidity,variable_df$Maximum_air_temperature) -+ if (length(na.omit(variable_df_check)[,1])!=0){ -+ -+ variable_df_dis_int<-subset(variable_df,year(variable_df$Date)>=1990 & year(variable_df$Date)<=2015) -+ variable_df$Maximum_air_temperature<-14 #Here I impose constant and uniform relative humidity -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Maximum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_dis_int$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_dis_int$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_dis_int$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ var_x_loc_df$Relative_humidity<-(breaks_hum[findInterval(var_x_loc_df$Relative_humidity, breaks_hum)])##floor(var_x_loc_df$Relative_humidity) -+ var_x_loc_df$daylength<-(breaks_light[findInterval(var_x_loc_df$daylength, breaks_light)])##floor(var_x_loc_df$light) -+ var_x_loc_df$Maximum_air_temperature<-(breaks_max_temp[findInterval(var_x_loc_df$Maximum_air_temperature, breaks_max_temp)])##floor(var_x_loc_df$breaks) -+ -+ -+ -+ ############### -+ # variable_df_dis_int$Maximum_air_temperature<-floor(variable_df_dis_int$Maximum_air_temperature) -+ variable_df_dis<-merge(variable_df_dis_int,var_x_loc_df, by=c("Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ variable_df_dis<-variable_df_dis[,c(1:5,11:13,15,16,17:19)] -+ colnames(variable_df_dis)<-c(variable_y, variable_x,variable, -+ "PostCode","Date", -+ "breaks","prop","incidence","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ variable_df_dis<-na.omit(variable_df_dis) -+ #variable_df_dis<-merge(variable_df_dis_int,variable_df_5_dis, by=c("dates","Relative_humidity","Maximum_air_temperature","daylength") ) -+ -+ #variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ #variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ #variable_df_dis<-variable_df_dis[,c(1:3,5:12)]################from here -+ #colnames(variable_df_dis)<-c("dates",variable, variable_y,variable_x,"prop","incidence","month","counts","counts_tot","residents","residents_tot","Numb_Lab") -+ -+ -+ lambda<-variable_df_dis$incidence -+ lambda2<-variable_df_dis$prop -+ lambda3<-variable_df_dis$counts -+ -+ #library(Hmisc) -+ #plot(as.Date(as.character(variable_df_dis$dates)),lambda,type="l") -+ -+ #day<-seq(1:length(variable_df_dis$dates)) -+ #day<-day(variable_df_dis$dates)+yearDays(variable_df_dis$dates)*(year(variable_df_dis$dates)-year(variable_df_dis$dates[1])+1)+1 -+ -+ #comp_cases<-unlist(lapply(day,cases)) -+ -+ -+ comp_cases<-lambda*All_residents_lab$tot[i] -+ comp_cases2<-lambda2 -+ comp_cases3<-lambda3*All_residents_lab$tot[i] -+ comp_cases4<-variable_df_dis$Numb_Lab[i] -+ -+ time_series_1<- -+ data.frame(variable_df_dis$Date,comp_cases,comp_cases2,comp_cases3,comp_cases4,lambda, rep(All_PC_s[i],times=length(variable_df_dis$Date))) -+ colnames(time_series_1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab") -+ time_series<-rbind(time_series,time_series_1)} -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> -> -> -> -> -> write.table(time_series,paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,"_",width_char,const_hum,"_Simulated_for_reconstriction_uniform_separation_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> -> -> proc.time() - user system elapsed -195.104 1.845 196.951 diff --git a/Paper_Taylor_Campylobacter_environment_hum_max_for_rec_delay_original.R b/Paper_Taylor_Campylobacter_environment_hum_max_for_rec_delay_original.R deleted file mode 100644 index 3fe04f43e05bb6df31fd7ff134c244a10be320e7..0000000000000000000000000000000000000000 --- a/Paper_Taylor_Campylobacter_environment_hum_max_for_rec_delay_original.R +++ /dev/null @@ -1,482 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# this to calculate delay - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-60 -width_char<-paste(width) -n_seas<-1 - -variable_x<-"max_air_temp" -variable_y<-"humidity" -variable_z<-"light" - - - -## Variable files - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) - -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] - -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -#colnames(Env_Campylobacter_data_all2)<-c("PostCode","PHE_Centre_Name","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -#colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory_weekly[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - - -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<2010) - -dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2010-01-31"), by = "day") -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2010) - -Env_laboratory_PHE<-Env_laboratory -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above - -All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -All_residents<-sum(All_residents_lab$tot) - - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable,"_",variable_x,"_",width_char,"_n_seas_",n_seas,"_for_rec.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -names(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot","Numb_Lab") - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - -################### - -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-10 -delta_wind<-2 -breaks_hum<-floor(seq(max(min(na.omit(Env_laboratory$humidity))-10,0),max(na.omit(Env_laboratory$humidity))+10,by=delta_hum)) #i -breaks_min_temp<-floor(seq(min(na.omit(Env_laboratory$min_temp))-2, max(na.omit(Env_laboratory$min_temp))+2,by=delta_temp)) -breaks_max_temp<-floor(seq(min(na.omit(Env_laboratory$max_temp))-2, max(na.omit(Env_laboratory$max_temp))+2,by=delta_temp)) - -breaks_rain<-seq(max(min(na.omit(Env_laboratory$rain)),0), max(na.omit(Env_laboratory$rain))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$wind))-2,0),max(na.omit(Env_laboratory$wind))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$cum_rain)),0), max(na.omit(Env_laboratory$cum_rain))+2,by=delta_cum_rain) -breaks_mean_temp<-seq(min(na.omit(Env_laboratory$min_temp))-2,max(na.omit(Env_laboratory$max_temp))+2,by=delta_temp) - - - - -i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$humidity)))) -i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$humidity)))) - -i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$min_temp)))) -i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$min_temp)))) - -i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$max_temp)))) -i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$max_temp)))) - -i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$rain)))) -i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$rain)))) - -i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$cum_rain)))) -i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$cum_rain)))) - -i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$wind)))) -i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$wind)))) - - - - - -if (variable=="max_air_temp"){ - - breaks_var<-breaks_max_temp - i_var_min<-i_max_temp_min - i_var_max<-i_max_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$max_temp - Env_laboratory_var<-Env_laboratory$max_temp -} -if (variable_x=="max_air_temp"){ - - i_var_x_min<-i_max_temp_min - i_var_x_max<-i_max_temp_max - breaks_var_x<-breaks_max_temp -} - -if (variable=="min_air_temp"){ - - breaks_var<-breaks_min_temp - i_var_min<-i_min_temp_min - i_var_max<-i_min_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$min_temp - Env_laboratory_var<-Env_laboratory$min_temp -} -if (variable_x=="min_air_temp"){ - - i_var_x_min<-i_min_temp_min - i_var_x_max<-i_min_temp_max - breaks_var_x<-breaks_min_temp -} - - -if (variable=="humidity"){ - - breaks_var<-breaks_hum - i_var_min<-i_hum_min - i_var_max<-i_hum_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$humidity - Env_laboratory_var<-Env_laboratory$humidity -} -if (variable_x=="humidity"){ - - i_var_x_min<-i_hum_min - i_var_x_max<-i_hum_max - breaks_var_x<-breaks_hum -} - - - -if (variable=="mean_temp"){ - - breaks_var<-breaks_mean_temp - i_var_min<-i_mean_temp_min - i_var_max<-i_mean_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp - Env_laboratory_var<-Env_laboratory$mean_temp -} -if (variable_x=="mean_temp"){ - - i_var_x_min<-i_mean_temp_min - i_var_x_max<-i_mean_temp_max - breaks_var_x<-breaks_mean_temp -} - -if (variable=="rain"){ - - breaks_var<-breaks_rain - i_var_min<-i_rain_min - i_var_max<-i_rain_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$rain - Env_laboratory_var<-Env_laboratory$rain -} -if (variable_x=="rain"){ - - i_var_x_min<-i_rain_min - i_var_x_max<-i_rain_max - breaks_var_x<-breaks_rain -} - - -if (variable=="cum_rain"){ - - breaks_var<-breaks_cum_rain - i_var_min<-i_cum_rain_min - i_var_max<-i_cum_rain_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$cum_rain - Env_laboratory_var<-Env_laboratory$cum_rain -} -if (variable_x=="cum_rain"){ - - i_var_x_min<-i_cum_rain_min - i_var_x_max<-i_cum_rain_max - breaks_var_x<-breaks_cum_rain -} - - - -if (variable=="wind"){ - - breaks_var<-breaks_wind - i_var_min<-i_wind_min - i_var_max<-i_wind_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$wind - Env_laboratory_var<-Env_laboratory$wind -} -if (variable_x=="wind"){ - - i_var_x_min<-i_wind_min - i_var_x_max<-i_wind_max - breaks_var_x<-breaks_wind -} - - - -D_eta_var_x<-function(i_var,i_var_x) -{ - - -var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab - - if(is.na(breaks_var[i_var+1])==TRUE) - { - Yt1<-subset(var_x_loc_df,var_x_loc_df$humidity>=breaks_var[i_var]) - } else { - Yt1<-subset(var_x_loc_df,var_x_loc_df$humidity>=breaks_var[i_var] & var_x_loc_df$humidity<breaks_var[i_var+1]) - } - - - if(is.na(breaks_var_x[i_var_x+1])==TRUE) - { - Yt2<-subset(Yt1,Yt1$max_air_temp>=breaks_var_x[i_var_x]) - } else { - Yt2<-subset(Yt1,Yt1$max_air_temp>=breaks_var_x[i_var_x] & Yt1$max_air_temp<breaks_var_x[i_var_x+1]) - } - - - if(is.na(breaks_var_x[i_var_x+2])==TRUE) - { - Yt3<-subset(Yt1,Yt1$max_air_temp>=breaks_var_x[i_var_x+1]) - } else { - Yt3<-subset(Yt1,Yt1$max_air_temp>=breaks_var_x[i_var_x+1] & Yt1$max_air_temp<breaks_var_x[i_var_x+2]) - } - - if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ - D_eta_D_x<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) - } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ - D_eta_D_x<- 0.5*mean(Yt3$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ - D_eta_D_x<- 0.5*mean(Yt2$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ - D_eta_D_x<-NA - } - - return(D_eta_D_x) - } - - - -D_eta_var<-function(i_var,i_var_x) -{ - - -var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab - - if(is.na(breaks_var_x[i_var_x+1])==TRUE) - { - Yt1<-subset(var_x_loc_df,var_x_loc_df$max_air_temp>=breaks_var_x[i_var_x]) - } else { - Yt1<-subset(var_x_loc_df,var_x_loc_df$max_air_temp>=breaks_var_x[i_var_x] & var_x_loc_df$max_air_temp<breaks_var_x[i_var_x+1]) - } - - if(is.na(breaks_var[i_var+1])==TRUE) - { - Yt2<-subset( Yt1, Yt1$humidity>=breaks_var[i_var]) - } else { - Yt2<-subset( Yt1, Yt1$humidity>=breaks_var[i_var] & Yt1$humidity<breaks_var[i_var+1]) - } - -if(is.na(breaks_var[i_var+2])==TRUE) -{ - Yt3<-subset( Yt1, Yt1$humidity>=breaks_var[i_var+1]) -} else { - Yt3<-subset( Yt1, Yt1$humidity>=breaks_var[i_var+1] & Yt1$humidity<breaks_var[i_var+2]) -} - - - - if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ - D_eta_D_v<- mean(Yt3$eta- Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) - } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ - D_eta_D_v<- 0.5*mean(Yt3$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ - D_eta_D_v<- 0.5*mean(Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ - D_eta_D_v<-NA - } - - return(D_eta_D_v) - } - - - - - -df_all<-c() -#i_var<-seq(i_var_min,i_var_max) -#i_var_x<-seq(i_var_x_min,i_var_x_max) - - for (j in c(1: n_seas)){ - -var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j) - -for (i_var in c(seq(i_var_min,i_var_max))){ -for (i_var_x in c(seq(i_var_x_min,i_var_x_max))){ - - - -#df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x)))) -#df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x)))) - -df1<-data.frame(breaks_hum[i_var],breaks_max_temp[i_var_x],D_eta_var_x(i_var,i_var_x),D_eta_var(i_var,i_var_x),j ) -colnames(df1)<-c("humidity","max_air_temp","D_eta_D_max_temp","D_eta_D_hum","month") -df_all<-rbind(df_all,df1) -#mapply(D_eta_var_x,i_var, MoreArgs =list(i_var_x)) -} - -} -} - - -time_series<-c() - -for (i in c(1: length(All_PC_s))){ - #for (i in c(1: 15)){ - - - - for (j in c(1: n_seas)){ - - n_months<-12/n_seas - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i] & month(Env_laboratory$Date)>(j-1)*n_months & month(Env_laboratory$Date)<=(j)*n_months) - if (length(variable_df[,1])!=0){ - - - -Delta_T<-diff(variable_df$max_temp) -Delta_RH<-diff(variable_df$humidity) -Delta_var<-data.frame(variable_df$Date[-1],Delta_T,Delta_RH) -colnames(Delta_var)<-c("dates","diff_max_temp","diff_humidity") - -x<-variable_df$humidity -y<-variable_df$max_temp - -variable_df_1_dis<-data.frame(variable_df$Date,variable_df$humidity) -variable_df_2_dis<-data.frame(variable_df$Date,variable_df$max_temp) -colnames(variable_df_1_dis)<-c("dates","humidity") -colnames(variable_df_2_dis)<-c("dates","max_air_temp") - - variable_df_1_dis$dates<-as.Date(as.character((variable_df_1_dis$dates))) - variable_df_2_dis$dates<-as.Date(as.character((variable_df_2_dis$dates))) - - variable_df_1_dis<-subset(variable_df_1_dis,year(variable_df_1_dis$dates)>=2001 & year(variable_df_1_dis$dates)<2012) - variable_df_2_dis<-subset(variable_df_2_dis,year(variable_df_2_dis$dates)>=2001 & year(variable_df_2_dis$dates)<2012) - - - variable_df_1_dis$humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_2_dis$max_air_temp<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - - - -# var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j) -# var_x_loc_df$humidity<-floor(var_x_loc_df$humidity) -# var_x_loc_df$max_air_temp<-floor(var_x_loc_df$breaks) - df<-subset(df_all,df_all$month==j) - - variable_df_3_dis<-merge(variable_df_1_dis,df, by="humidity") - - #colnames(var_x_loc_df)[1]<-"max_air_temp_mids" - #colnames(var_x_loc_df)[2]<-"max_air_temp" - - variable_df_4_dis<-merge(variable_df_2_dis,df, by="max_air_temp") - - variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates))) - variable_df_3_dis<-variable_df_3_dis[order(variable_df_3_dis$dates),] - variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates))) - variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),] - - variable_df_3_dis$dates<-as.factor(variable_df_3_dis$dates) - variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates) - variable_df_dis<-merge(variable_df_3_dis,variable_df_4_dis, by=c("dates","max_air_temp","humidity") ) - - variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - variable_df_dis$dates<-as.factor(variable_df_dis$dates) - Delta_var$dates<-as.factor(Delta_var$dates) - variable_df_Taylor<-merge(variable_df_dis,Delta_var, by=c("dates")) - - variable_df_Taylor<-variable_df_Taylor[,c(1:6,10:11)] - colnames(variable_df_Taylor)<-c("dates","month",variable, variable_x,"D_eta_D_max_temp","D_eta_D_hum","diff_max_temp","diff_humidity") - - - lambda_temp<-variable_df_Taylor$D_eta_D_max_temp*variable_df_Taylor$diff_max_temp - lambda_hum<-variable_df_Taylor$D_eta_D_hum*variable_df_Taylor$diff_humidity - - - - - time_series_1<- - data.frame(variable_df_Taylor$dates,lambda_temp,lambda_hum, rep(All_PC_s[i],times=length(variable_df_Taylor$dates)), - variable_df_Taylor$D_eta_D_max_temp,variable_df_Taylor$diff_max_temp, - variable_df_Taylor$D_eta_D_hum,variable_df_Taylor$diff_humidity, - rep(j,times=length(variable_df_Taylor$dates))) - colnames(time_series_1)<-c("Date","Contr_temp","Contr_hum","Lab","seas","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum") - time_series<-rbind(time_series,time_series_1) - } - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - } -} - -#time_series1<-subset(time_series,time_series$Lab=="B152TG") -#time_series1$Date<-as.Date(as.character(time_series1$Date)) -#time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date)))) -#time_series1<-subset(time_series1,time_series1$year=="2005") - -#time_series1<-na.omit(time_series1) -##temp_contr<-cumsum(time_series1$Contr_temp) -#temp_hum<-cumsum(time_series1$Contr_hum) -# -#df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum) -#colnames(df2)<-c("Date","contr","humidity") -#temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp)) -#time_series<-na.omit(time_series) -#time_series$temp_contr<-cumsum(time_series$Contr_temp) -#time_series$temp_hum<-cumsum(time_series$Contr_hum) -#time_series$yday<-yday(time_series$Date) -#time_series$week<-week(time_series$Date) -#time_series$month<-month(time_series$Date) -#time_series$Lab<-as.factor(time_series$Lab) - -#time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp)) -#time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp)) - -#time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp)) -#time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum)) - -#time_series_lab<-ddply(time_series,~month,summarise,tot=mean(Contr_temp)) -#time_series_lab2<-ddply(time_series,~month,summarise,tot=mean(Contr_hum)) -#time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum)) - -write.table(time_series,paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable,"_",variable_x,width_char,"_n_seas_",n_seas,".csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") diff --git a/Paper_plot_Simulated_Reconstruct_3_var.R b/Paper_plot_Simulated_Reconstruct_3_var.R deleted file mode 100644 index 93d2e9baaee6df5ee1092dc1da5444d9e6022bac..0000000000000000000000000000000000000000 --- a/Paper_plot_Simulated_Reconstruct_3_var.R +++ /dev/null @@ -1,374 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. - - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(zoo) -library(plyr) - - -width<-14 -width_char<-paste(width) -#situation<-"_const_hum_70" -situation<-"_Av_Glous_Wilt" -#situation<-"" - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -humidity<-unlist(c(humidity)) - - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -max_temp<-unlist(c(max_temp)) - - - - - - -variable_x<-"max_air_temp" -variable_y<-"humidity" -variable<-"light" -#variable<-"rain" -n_seas<-1 - - -#Env_laboratory<-read.csv(paste("../DataBase/Cases_Environment/Laboratory_",width_char,".csv",sep="")) -#Env_laboratory<-Env_laboratory[,-1] -#colnames(Env_laboratory)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind","residents") -#Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<2015) - - -######################## Catchment areas ################# - -population_df<-read.csv(paste("../../Data_Base/Catchment_areas/LSOA2011Population_SumByLabs.csv",sep="")) -colnames(population_df)<-c("Lab","col2","col3","residents_Lab") - - -#var_x_loc_df<-read.csv(paste("../DataBase/Cases_Environment/",variable,"_",variable_x,"_",width_char,"_n_seas",n_seas,".csv",sep="")) -#var_x_loc_df<-var_x_loc_df[,-1] -#names(var_x_loc_df)<-c(variable_x,"breaks","prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot") - - -#norm<-sum(na.omit(var_x_loc_df$incidence)) -#var_x_loc_df$incidence<-100*var_x_loc_df$incidence/norm -#var_x_loc_df<-na.omit(var_x_loc_df) - - - - - -real_cases_all<-read.csv("../../Data_Base/Cases/Campylobacter_Simulated_Data_final_UK.csv") -real_cases_all<-real_cases_all[,-1] -colnames(real_cases_all)<-c("Count","Adjusted","Spec_Date", "POSTCODE","Date","Simulation") - -real_cases<-ddply(real_cases_all,~Date,summarise,mean=sum(Count)) -colnames(real_cases)<-c("Date","Cases") - - -#real_cases_all$Date<-as.Date(as.character(real_cases_all$Date),format="%d/%m/%Y") -#real_cases<-real_cases_all[-c(1:13),] - -real_cases<-subset(real_cases,year(real_cases$Date)>=1990 & year(real_cases$Date)<2010) - - - -time_series1<-read.csv(paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,width_char,"_n_seas_",n_seas,"_Simulated_for_rec_test.csv",sep="")) -#time_series1<-read.csv(paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_y,"_",variable_x,"_",width_char,"_n_seas",n_seas,"_Simulated_for_rec_multiple_delays.csv",sep="")) - -#time_series1<-read.csv(paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_y,"_",variable_x,"_",width_char,"_n_seas",n_seas,"for_rec_multiple_delays.csv",sep="")) -#time_series1<-read.csv(paste("../../Data_Base/Cases/Time_series_",variable,"_",variable_x,"_",variable_y,width_char,"_n_seas_",n_seas,"for_rec",situation,".csv",sep="")) - - -time_series1<-time_series1[,-1] -colnames(time_series1)<-c("Date","Cases","Cases2","Cases3","Cases4","Lambda","Lab","seas") -time_series1$Date<-as.Date(as.character(time_series1$Date)) - -time_series<-merge(population_df,time_series1,by="Lab") -#time_series$Cases4<-time_series$Lambda*time_series$residents_Lab - - -time_series<-subset(time_series,year(time_series$Date)>=1990 & year(time_series$Date)<2010) -time_series<-na.omit(time_series) - - -##############Entire Timeseries ################# -time_series$Cases5<-time_series$Cases*time_series$Cases4 -time_series$Date<-as.Date(as.character(time_series$Date)) -time_series<-time_series[order(time_series$Date),] -library(zoo) -#time_series$Cases<-sum(time_series$Cases) - -time_series$Date<-as.factor(time_series$Date) -ts_roll_mean<-rollmean(time_series$Cases5,7,align = "right") -#ts_roll_mean<-rollmean(time_series$Depleted,7) -time_series<-time_series[-c(1:6),] -time_series$rolling_mean<-ts_roll_mean - -time_series_mean<-ddply(time_series,~Date,summarise,mean=mean(rolling_mean)) -#time_series_mean<-ddply(time_series,~week(time_series$Date),summarise,mean=mean(Cases5)) - -time_series_mean[,1]<-as.Date(as.character(time_series_mean[,1])) -time_series_quantile<-ddply(time_series,~Date, function (x) quantile(x$Cases5, c(.25,.5,.75))) -time_series_summary<-data.frame(time_series_mean,time_series_quantile[,-1],rep("Model",times=length(time_series_mean[,1]))) -colnames(time_series_summary)<-c("Date","Mean","f_quant","median","s_quant","source") - -real_cases_summary<-data.frame(as.Date(real_cases$Date),as.numeric(real_cases$Cases), - rep("NA",times=length(real_cases[,1])), - rep("NA",times=length(real_cases[,1])), - rep("NA",times=length(real_cases[,1])), - rep("Cases",times=length(real_cases[,1]))) -colnames(real_cases_summary)<-c("Date","Mean","f_quant","median","s_quant","source") - -#time_series_mean<-ddply(time_series,~Date,summarise,mean=mean(rolling_mean),sd=sd(rolling_mean)) -#time_series_mean[,1]<-as.Date(as.character(time_series_mean[,1])) -#time_series_quantile<-ddply(time_series,~Date, function (x) quantile(x$rolling_mean, c(.25,.5,.75))) -#time_series_summary<-cbind(time_series_mean,time_series_quantile[,-1]) - -#end_point<-365 -#end_point<-5*365 -#plot(time_series_mean$Date[1:5000],time_series_mean$mean[1:5000]/sum(time_series_mean$mean[1:5000]),type="l") -#lines(as.Date(as.character(real_cases$Date[1:5000]),format="%d/%m/%Y"),as.numeric(real_cases$Cases[1:5000])/(sum(as.numeric(real_cases$Cases[1:5000]))),col="red",lwd = 2) -#time_series_summary<-time_series_summary[c(1:end_point),] -#real_cases_summary<-real_cases_summary[c(1:end_point),] - - -time_series_summary[,c(2:5)]<-time_series_summary[,c(2:5)] -real_cases_summary$Mean<-real_cases_summary$Mean - -#time_series_all<-rbind(time_series_summary[c(1:end_point),c(1,2,6)],real_cases_summary[c(1:end_point),c(1,2,6)]) -time_series_all<-rbind(time_series_summary[,c(1,2,6)],real_cases_summary[,c(1,2,6)]) - - -pal<-wes_palette("Cavalcanti") -time_series_plot<-ggplot(time_series_all,aes(x=Date,y=Mean,colour=source)) -#time_series_plot<-time_series_plot+scale_color_brewer(palette=pal) -#time_series_plot<-time_series_plot+geom_line(data=real_cases_summary) -time_series_plot<-time_series_plot+geom_line(size=0.75) -#time_series_plot<-time_series_plot+scale_color_manual(values=c( "#E69F00", "#56B4E9")) -time_series_plot<-time_series_plot+scale_color_manual(values=wes_palette(n=2, name="Cavalcanti")) - -time_series_plot<-time_series_plot+ xlab("Date")+ ylab("Campylobacter Cases")+scale_y_continuous(limit=c(0,600)) -#time_series_plot<-time_series_plot+ scale_x_date(breaks=c( -# as.Date("2000-01-01"), -# as.Date("2001-01-01"), -# as.Date("2002-01-01"), -# as.Date("2003-01-01"), -# as.Date("2004-01-01"), -# as.Date("2005-01-01"), -# as.Date("2006-01-01"), -# as.Date("2007-01-01"), -# as.Date("2008-01-01"), -# as.Date("2009-01-01"), -# as.Date("2010-01-01"), - # as.Date("2011-01-01"), - # as.Date("2012-01-01")#, - #as.Date("2013-01-01"), - #as.Date("2014-01-01"), - #as.Date("2015-01-01"), - #as.Date("2016-01-01") -#), -#labels=c("2000","2001","2002","2003","2004","2005","2006","2007","2008","2009","2010","2011","2012","2013","2014","2015","2016") -#labels=c("2000","2001","2002","2003","2004","2005","2006","2007","2008","2009","2010","2011","2012") -#) - - -time_series_plot<-time_series_plot+ - theme(legend.position= c(0.125,0.85),legend.title = element_blank(), - legend.text = element_text( size = 10),legend.background = element_blank(), - legend.key=element_rect(colour=NA,fill=NA)) - -#scale_fill_discrete(name="Humidity ") -time_series_plot<-time_series_plot+ theme(axis.title.x =element_text( colour="#990000", size=13)) -time_series_plot<-time_series_plot+ theme(axis.title.y =element_text( colour="#990000", size=13)) - - - -time_series_plot<-time_series_plot+ theme(axis.title.x =element_text(size=13)) -time_series_plot<-time_series_plot+ theme(axis.title.y =element_text(size=13)) - time_series_plot - -#file_name_pdf<-paste("../Graphs//time_series_plot_",variable_x,"_",variable,"n_seas",n_seas,"_multiple_delays.pdf", sep = "") - - - - -############## normalized ################# - - -time_series_summary[,c(2:5)]<-time_series_summary[,c(2:5)]/sum(time_series_summary$Mean) -real_cases_summary$Mean<-real_cases_summary$Mean/sum(real_cases_summary$Mean) -time_series_all2<-rbind(time_series_summary[,c(1,2,6)],real_cases_summary[,c(1,2,6)]) - - -pal<-wes_palette("Cavalcanti") -time_series_plot2<-ggplot(time_series_all2,aes(x=Date,y=Mean,colour=source)) -#time_series_plot<-time_series_plot+scale_color_brewer(palette=pal) -#time_series_plot<-time_series_plot+geom_line(data=real_cases_summary) -time_series_plot2<-time_series_plot2+geom_line(size=0.75) -#time_series_plot<-time_series_plot+scale_color_manual(values=c( "#E69F00", "#56B4E9")) -time_series_plot2<-time_series_plot2+scale_color_manual(values=wes_palette(n=2, name="Cavalcanti")) - -time_series_plot2<-time_series_plot2+ xlab("Date")+ ylab("Campylobacter Cases (Normalized)")+scale_y_continuous(limit=c(0,4e-4)) - -time_series_plot2<-time_series_plot2+ - theme(legend.position= c(0.125,0.85),legend.title = element_blank(), - legend.text = element_text( size = 10),legend.background = element_blank(), - legend.key=element_rect(colour=NA,fill=NA)) - -#scale_fill_discrete(name="Humidity ") -time_series_plot2<-time_series_plot2+ theme(axis.title.x =element_text( colour="#990000", size=13)) -time_series_plot2<-time_series_plot2+ theme(axis.title.y =element_text( colour="#990000", size=13)) - - - -time_series_plot2<-time_series_plot2+ theme(axis.title.x =element_text(size=13)) -time_series_plot2<-time_series_plot2+ theme(axis.title.y =element_text(size=13)) -time_series_plot2 - -############## Average per day of the year ################# -time_series$yday<-as.factor(yday(time_series$Date)) - -#time_series$year<-as.factor(year(time_series$Date)) -#time_series_total<-ddply(time_series,~year,function (x) x$Cases/sum(x$Cases)) - -#time_series$Cases4<-time_series$Cases4/sum(time_series$Cases4) -time_series_average1<-ddply(time_series,~yday,summarise,mean=mean(Cases5)) -time_series_quantile1<-ddply(time_series,~yday, function (x) quantile(x$Cases5, c(.25,.5,.75))) -time_series_average2<-cbind(time_series_average1,time_series_quantile1[,-1]) -time_series_average<- - data.frame(time_series_average2[,1],time_series_average2[,c(2:5)]/sum(time_series_average2$mean)) - -#real_cases$norm<-(real_cases$Cases/sum(real_cases$Cases)) -real_cases$yday<-as.factor(yday(as.Date(as.character(real_cases$Date)))) -real_cases_average1<-ddply(real_cases,~yday,summarise,mean=mean(Cases)) -real_cases_quantile1<-ddply(real_cases,~yday,function (x) quantile(x$Cases, c(.25,.5,.75))) -real_cases_average2<-cbind(real_cases_average1,real_cases_quantile1[,-1]) -real_cases_average<- - data.frame(real_cases_average2[,1],real_cases_average2[,c(2:5)]/sum(real_cases_average2$mean)) - - -df1<-data.frame(real_cases_average,rep("Cases",times=length(real_cases_average[,1]))) -colnames(df1)<-c("Day","Mean","f_quant","median","s_quant","source") -df2<-data.frame(time_series_average,rep("Model",times=length(time_series_average[,1]))) -colnames(df2)<-c("Day","Mean","f_quant","median","s_quant","source") - -average_data<-rbind(df1,df2) -average_data$Day<-as.numeric(average_data$Day) - -yearly_average<-ggplot(average_data,aes(x=Day,y=Mean,colour=source)) - -yearly_average<-yearly_average+geom_line(size=2) -yearly_average <-yearly_average+ geom_ribbon(aes(ymin=f_quant, ymax=s_quant,fill=source),alpha=0.15) -yearly_average<-yearly_average+ xlab("Day of the Year")+ ylab("Campylobacter Cases (Normalized)") - - -#yearly_average<-yearly_average+ scale_y_continuous(limit=c(0,0.05)) - - -month_2014<-month.abb[unique(month(as.Date(average_data$Day, origin = "2014-01-01")))] - -tick_pos<-yday(as.Date(as.character( - c("2014-01-01","2014-02-01","2014-03-01","2014-04-01","2014-05-01","2014-06-01", - "2014-07-01","2014-08-01","2014-09-01","2014-10-01","2014-11-01","2014-12-01") -))) - -yearly_average <-yearly_average+scale_x_continuous(breaks = tick_pos, labels = month_2014) -yearly_average<-yearly_average+ - theme(legend.position= c(0.125,0.75),legend.title = element_text( size = 10), - legend.text = element_text( size = 10),legend.background = element_blank(), - legend.key=element_rect(colour=NA,fill=NA)) - -#scale_fill_discrete(name="Humidity ") - -yearly_average<-yearly_average+ theme(axis.title.x =element_text( colour="#990000", size=13)) -yearly_average<-yearly_average+ theme(axis.title.y =element_text( colour="#990000", size=13)) - - - -yearly_average<-yearly_average+ theme(axis.title.x =element_text(size=13)) -yearly_average<-yearly_average+ theme(axis.title.y =element_text(size=13)) -yearly_average - - - - - -file_name_pdf<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_multiple_delays_Simulated.pdf", sep = "") -#file_name_pdf<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_Simulated.pdf", sep = "") -#file_name_pdf<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"n_seas",n_seas,"_",width_char,situation,".pdf", sep = "") - -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -yearly_average - -dev.off() - - -#file_name<-paste("../Graphs/yearly_average_",variable_x,"_",variable,"n_seas",n_seas,"_multiple_delays.tiff", sep = "") -file_name<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_multiple_delays_Simulated.tiff", sep = "") -#file_name<-paste("../../Graphs/yearly_average_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_Simulated.tiff", sep = "") - -tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 9, res = 600,compression = "lzw",antialias="default") -yearly_average - -dev.off() - -file_name_pdf<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_multiple_delays_Simulated.pdf", sep = "") -#file_name_pdf<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_Simulated.pdf", sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -time_series_plot2 - -dev.off() - - -#file_name<-paste("../Graphs/time_series_plot_",variable_x,"_",variable,"n_seas",n_seas,"_multiple_delays.tiff", sep = "") -file_name<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_multiple_delays_Simulated.tiff", sep = "") -#file_name<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"_",width_char,"_Simulated.tiff", sep = "") -tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 9, res = 600,compression = "lzw",antialias="default") -time_series_plot2 - -dev.off() - -#file_name_pdf<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"n_seas",n_seas,"_",width_char,situation,"_norm.pdf", sep = "") -#pdf(file = file_name_pdf,width = 6.94, height = 6.5) -#time_series_plot2 - -#dev.off() - - -#file_name<-paste("../Graphs/time_series_plot_",variable_x,"_",variable,"n_seas",n_seas,"_multiple_delays.tiff", sep = "") -#file_name<-paste("../../Graphs/time_series_plot_",variable_x,"_",variable_y,"_",variable,"n_seas",n_seas,"_",width_char,situation,"_norm.tiff", sep = "") - -#tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 9, res = 600,compression = "lzw",antialias="default") -time_series_plot2 - -#dev.off() \ No newline at end of file diff --git a/Paper_time_lag.R b/Paper_time_lag.R deleted file mode 100644 index 5454e27ce93584cd63b9ff171f03a1654b562850..0000000000000000000000000000000000000000 --- a/Paper_time_lag.R +++ /dev/null @@ -1,368 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# this to calculate delay - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-14 -width_char<-paste(width) -n_seas<-1 - -variable_x<-"max_air_temp" -#variable_x<-"humidity" -#variable<-"humidity" - -variable<-"humidity" -#variable<-"max_temp" - - -time_series<-read.csv(paste("../DataBase/Cases/Taylor_contribution_Time_series_",variable,"_",variable_x,width_char,"_n_seas",n_seas,".csv",sep="")) - -time_series<-na.omit(time_series) -time_series<-time_series[,-1] -colnames(time_series)<-c("Date","Contr_temp","Contr_hum","Lab","seas") - -time_series$temp_contr<-cumsum(time_series$Contr_temp) -time_series$temp_hum<-cumsum(time_series$Contr_hum) -time_series$yday<-yday(time_series$Date) -time_series$week<-week(time_series$Date) -time_series$month<-month(time_series$Date) -time_series$Lab<-as.factor(time_series$Lab) - -time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp)) - -time_series_lab<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp)) -time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_hum)) - -time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp)) -time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum)) - - - -#time_series_lab_temp<-ddply(time_series,~month,summarise, -# N = length(Contr_temp), -# mean = mean(Contr_temp), -# sd = sd(Contr_temp), -# se = sd / sqrt(N) -# ) -#time_series_lab2<-ddply(time_series,~month,summarise) -#time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum)) - - -#plot(time_series_lab2,type="l") -#plot(time_series_lab,type="l") - - - - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(Contr_temp))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("week")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -#monthly_summary<-monthly_summary+model$fitted.values -#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week))) -monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 10,raw = TRUE),se=TRUE, aes(group=1)) -onthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1)) -monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 3)) - -#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - -model<-lm(formula=abs(time_series$Contr_temp) ~ poly(time_series$week, 10,raw = TRUE)) -file_name<-paste("../DataBase/Cases/Campylobacter_coefficients_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp_week.csv",sep = "") -write.table(as.numeric(model$coefficients),file_name,sep=",") - -#wt<-0 -#for (n_coeff in (1:11)){ -# wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1) -#} -#wt_temp<-wt/sum(wt) - - - - - - - -file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp_week.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=Contr_temp)) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature")+xlab("Month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3)) - -monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - - - - -file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_temp.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_temp.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=Contr_hum)) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Humidity")+xlab("Month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) - -#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3)) - -monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - - - - -file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_hum.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_hum.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - - - - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(Contr_temp))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("Month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -#monthly_summary<-monthly_summary+model$fitted.values -#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=FALSE, color="black", aes(group=x)) - -monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 3)) - -#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - - - - -file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_temp.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(Contr_hum))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) - -monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 2.)) - -monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - - - - -file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(Contr_hum))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Week")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) - - - -monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 10,raw = TRUE),se=TRUE, aes(group=1)) - -monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 3)) - -#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - -model<-lm(formula=abs(time_series$Contr_temp) ~ poly(time_series$week, 10,raw = TRUE)) -file_name<-paste("../DataBase/Cases/Campylobacter_coefficients_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum_week.csv",sep = "") -write.table(as.numeric(model$coefficients),file_name,sep=",") - - - - -file_name_tiff<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum_week.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../Graphs/Campylobacter_delay_effect_",variable_x,"_",variable,"_n_seas_",n_seas,"_",width_char,"_abs_hum_week.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - -time_series1<-subset(time_series,time_series$Lab=="B152TG") -time_series1$Date<-as.Date(as.character(time_series1$Date)) -time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date)))) -time_series1<-subset(time_series1,time_series1$year=="2005") - -time_series1<-na.omit(time_series1) -temp_contr<-cumsum(time_series1$Contr_temp) -temp_hum<-cumsum(time_series1$Contr_hum) - -df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum) -colnames(df2)<-c("Date","contr","humidity") -#temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp)) diff --git a/Paper_time_lag_3_var_Simulated.R b/Paper_time_lag_3_var_Simulated.R deleted file mode 100644 index f945a36e724b1fbf73837a85ad46ad017a562df0..0000000000000000000000000000000000000000 --- a/Paper_time_lag_3_var_Simulated.R +++ /dev/null @@ -1,470 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# this to calculate delay - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -width<-1 -width_char<-paste(width) -n_seas<-1 - - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable_z<-"daylength" -# -#variable_x2<-"max_air_temp" -#variable_y2<-"humidity" -#variable_z2<-"light" - - - - -time_series<-read.csv( - paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep="")) - -time_series<-na.omit(time_series) -time_series<-time_series[,-1] -colnames(time_series)<-c("Date","Contr_temp","Contr_hum","Contr_light", - "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light") - -time_series$temp_contr<-(time_series$Contr_temp) -time_series$hum_contr<-(time_series$Contr_hum) -time_series$light_contr<-(time_series$Contr_light) - -time_series$yday<-yday(time_series$Date) -time_series$week<-week(time_series$Date) -time_series$month<-month(time_series$Date) -time_series$Lab<-as.factor(time_series$Lab) - -#time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp)) -#time_series_lab<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp)) -#time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_hum)) - -#time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp)) -#time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum)) -#time_series_lab3<-ddply(time_series,~week,summarise,tot=mean(Contr_light)) - - -#time_series_lab_temp<-ddply(time_series,~month,summarise, -# N = length(Contr_temp), -# mean = mean(Contr_temp), -# sd = sd(Contr_temp), -# se = sd / sqrt(N) -# ) -#time_series_lab2<-ddply(time_series,~month,summarise) -#time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum)) - - -#plot(time_series_lab2,type="l") -#plot(time_series_lab,type="l") - - - - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(temp_contr))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("week")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -#monthly_summary<-monthly_summary+model$fitted.values -#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week))) -monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1)) -onthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1)) -monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 50)) - -#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - -model<-lm(formula=abs(time_series$temp_contr) ~ poly(time_series$week, 15,raw = FALSE)) -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "") -write.table(as.numeric(model$coefficients),file_name,sep=",") - - -file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=temp_contr)) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature")+xlab("Month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3)) - -monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - - - - -file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_temp.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_temp.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=hum_contr)) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Humidity")+xlab("Month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) - -#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3)) - -monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - - - - -file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_hum.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_hum.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - - - - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(temp_contr))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("Month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -#monthly_summary<-monthly_summary+model$fitted.values -#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=FALSE, color="black", aes(group=x)) - -monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 50)) - -monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - - - - -file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_temp.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_temp.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(hum_contr))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) - -monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(0., 50)) - -monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - - - - -file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(hum_contr))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Week")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) - - - -monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1)) - -monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(0., 50)) - -#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - -model<-lm(formula=abs(time_series$hum_contr) ~ poly(time_series$week, 15,raw = FALSE)) -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "") -write.table(as.numeric(model$coefficients),file_name,sep=",") - - - - -file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum_week.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum_week.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - -monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(light_contr))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of daylength (Absolute values)")+xlab("week")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -#monthly_summary<-monthly_summary+model$fitted.values -#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week))) -monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1)) -#monthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1)) -#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 0)) - -#monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - -model<-lm(formula=abs(time_series$light_contr) ~ poly(time_series$week, 15,raw = FALSE)) -file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "") -write.table(as.numeric(model$coefficients),file_name,sep=",") - -#wt<-0 -#for (n_coeff in (1:11)){ -# wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1) -#} -#wt_temp<-wt/sum(wt) - - - - - - - -file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light_week.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light_week.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - - -monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(light_contr))) -monthly_summary<-monthly_summary+theme_bw(20) -monthly_summary<-monthly_summary+ - geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) - -monthly_summary<-monthly_summary+ - theme(axis.title.x =element_text(face="bold", size=13))+ - theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of daylength (Absolute values)")+xlab("month")+ - theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), - axis.text.y=element_text(size=12))+ - scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ - guides(fill=FALSE)#+ geom_jitter() -#monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Araw=pr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -#monthly_summary<-monthly_summary+model$fitted.values -#monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week))) -monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1)) -monthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1)) -#monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 0.2)) - -monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) - -monthly_summary - -#model<-lm(formula=abs(time_series$light_contr) ~ poly(time_series$week, 15,raw = FALSE)) -#file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_month.csv",sep = "") -#write.table(as.numeric(model$coefficients),file_name,sep=",") - -#wt<-0 -#for (n_coeff in (1:11)){ -# wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1) -#} -#wt_temp<-wt/sum(wt) - - - - - - - -file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light.tiff",sep = "") -tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, - compression = "lzw",antialias="default") - -monthly_summary - -dev.off() - - - -file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light.pdf",sep = "") -pdf(file = file_name_pdf,width = 6.94, height = 6.5) -monthly_summary -dev.off() - - - - - - diff --git a/Paper_time_lag_3_var_Simulated.Rout b/Paper_time_lag_3_var_Simulated.Rout deleted file mode 100644 index 08e63d33006dd5002254f8960ac7f99d9c376add..0000000000000000000000000000000000000000 --- a/Paper_time_lag_3_var_Simulated.Rout +++ /dev/null @@ -1,565 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # this to calculate delay -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> width<-1 -> width_char<-paste(width) -> n_seas<-1 -> -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable_z<-"daylength" -> # -> #variable_x2<-"max_air_temp" -> #variable_y2<-"humidity" -> #variable_z2<-"light" -> -> -> -> -> time_series<-read.csv( -+ paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep="")) -> -> time_series<-na.omit(time_series) -> time_series<-time_series[,-1] -> colnames(time_series)<-c("Date","Contr_temp","Contr_hum","Contr_light", -+ "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light") -> -> time_series$temp_contr<-(time_series$Contr_temp) -> time_series$hum_contr<-(time_series$Contr_hum) -> time_series$light_contr<-(time_series$Contr_light) -> -> time_series$yday<-yday(time_series$Date) -> time_series$week<-week(time_series$Date) -> time_series$month<-month(time_series$Date) -> time_series$Lab<-as.factor(time_series$Lab) -> -> #time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp)) -> #time_series_lab<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp)) -> #time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_hum)) -> -> #time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp)) -> #time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum)) -> #time_series_lab3<-ddply(time_series,~week,summarise,tot=mean(Contr_light)) -> -> -> #time_series_lab_temp<-ddply(time_series,~month,summarise, -> # N = length(Contr_temp), -> # mean = mean(Contr_temp), -> # sd = sd(Contr_temp), -> # se = sd / sqrt(N) -> # ) -> #time_series_lab2<-ddply(time_series,~month,summarise) -> #time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum)) -> -> -> #plot(time_series_lab2,type="l") -> #plot(time_series_lab,type="l") -> -> -> -> -> -> -> -> -> monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(temp_contr))) -> monthly_summary<-monthly_summary+theme_bw(20) -> monthly_summary<-monthly_summary+ -+ geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) -> -> monthly_summary<-monthly_summary+ -+ theme(axis.title.x =element_text(face="bold", size=13))+ -+ theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("week")+ -+ theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), -+ axis.text.y=element_text(size=12))+ -+ scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ -+ guides(fill=FALSE)#+ geom_jitter() -> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -> #monthly_summary<-monthly_summary+model$fitted.values -> #monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week))) -> monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1)) -> onthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1)) -> monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 50)) -> -> #monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) -> -> monthly_summary -> -> model<-lm(formula=abs(time_series$temp_contr) ~ poly(time_series$week, 15,raw = FALSE)) -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.csv",sep = "") -> write.table(as.numeric(model$coefficients),file_name,sep=",") -> -> -> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp_week.tiff",sep = "") -> tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, -+ compression = "lzw",antialias="default") -> -> monthly_summary -> -> dev.off() -pdf - 2 -> -> -> -> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_temp.pdf",sep = "") -> pdf(file = file_name_pdf,width = 6.94, height = 6.5) -> monthly_summary -> dev.off() -pdf - 2 -> -> -> -> -> -> -> -> -> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=temp_contr)) -> monthly_summary<-monthly_summary+theme_bw(20) -> monthly_summary<-monthly_summary+ -+ geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray")) -> -> monthly_summary<-monthly_summary+ -+ theme(axis.title.x =element_text(face="bold", size=13))+ -+ theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature")+xlab("Month")+ -+ theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), -+ axis.text.y=element_text(size=12))+ -+ scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ -+ guides(fill=FALSE)#+ geom_jitter() -> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -> #monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3)) -> -> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) -> -> monthly_summary -> -> -> -> -> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_temp.tiff",sep = "") -> tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, -+ compression = "lzw",antialias="default") -> -> monthly_summary -> -> dev.off() -pdf - 2 -> -> -> -> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_temp.pdf",sep = "") -> pdf(file = file_name_pdf,width = 6.94, height = 6.5) -> monthly_summary -> dev.off() -pdf - 2 -> -> -> -> -> -> -> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=hum_contr)) -> monthly_summary<-monthly_summary+theme_bw(20) -> monthly_summary<-monthly_summary+ -+ geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = 2,notch = FALSE,aes(fill = "gray")) -> -> monthly_summary<-monthly_summary+ -+ theme(axis.title.x =element_text(face="bold", size=13))+ -+ theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Humidity")+xlab("Month")+ -+ theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), -+ axis.text.y=element_text(size=12))+ -+ scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ -+ guides(fill=FALSE)#+ geom_jitter() -> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -> -> #monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0.3, 0.3)) -> -> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) -> -> monthly_summary -> -> -> -> -> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_hum.tiff",sep = "") -> tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, -+ compression = "lzw",antialias="default") -> -> monthly_summary -> -> dev.off() -pdf - 2 -> -> -> -> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_hum.pdf",sep = "") -> pdf(file = file_name_pdf,width = 6.94, height = 6.5) -> monthly_summary -> dev.off() -pdf - 2 -> -> -> -> -> -> -> -> -> -> -> -> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(temp_contr))) -> monthly_summary<-monthly_summary+theme_bw(20) -> monthly_summary<-monthly_summary+ -+ geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) -> -> monthly_summary<-monthly_summary+ -+ theme(axis.title.x =element_text(face="bold", size=13))+ -+ theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Temperature (Absolute values)")+xlab("Month")+ -+ theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), -+ axis.text.y=element_text(size=12))+ -+ scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ -+ guides(fill=FALSE)#+ geom_jitter() -> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -> #monthly_summary<-monthly_summary+model$fitted.values -> #monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=FALSE, color="black", aes(group=x)) -> -> monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 50)) -> -> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) -> -> monthly_summary -> -> -> -> -> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_temp.tiff",sep = "") -> tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, -+ compression = "lzw",antialias="default") -> -> monthly_summary -> -> dev.off() -pdf - 2 -> -> -> -> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_temp.pdf",sep = "") -> pdf(file = file_name_pdf,width = 6.94, height = 6.5) -> monthly_summary -> dev.off() -pdf - 2 -> -> -> -> -> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(hum_contr))) -> monthly_summary<-monthly_summary+theme_bw(20) -> monthly_summary<-monthly_summary+ -+ geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) -> -> monthly_summary<-monthly_summary+ -+ theme(axis.title.x =element_text(face="bold", size=13))+ -+ theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Month")+ -+ theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), -+ axis.text.y=element_text(size=12))+ -+ scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ -+ guides(fill=FALSE)#+ geom_jitter() -> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -> -> monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(0., 50)) -> -> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) -> -> monthly_summary -> -> -> -> -> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum.tiff",sep = "") -> tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, -+ compression = "lzw",antialias="default") -> -> monthly_summary -> -> dev.off() -pdf - 2 -> -> -> -> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum.pdf",sep = "") -> pdf(file = file_name_pdf,width = 6.94, height = 6.5) -> monthly_summary -> dev.off() -pdf - 2 -> -> -> -> -> monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(hum_contr))) -> monthly_summary<-monthly_summary+theme_bw(20) -> monthly_summary<-monthly_summary+ -+ geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) -> -> monthly_summary<-monthly_summary+ -+ theme(axis.title.x =element_text(face="bold", size=13))+ -+ theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of Relative Humidity (Absolute values)")+xlab("Week")+ -+ theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), -+ axis.text.y=element_text(size=12))+ -+ scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ -+ guides(fill=FALSE)#+ geom_jitter() -> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -> -> -> -> monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1)) -> -> monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(0., 50)) -> -> #monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) -> -> monthly_summary -> -> model<-lm(formula=abs(time_series$hum_contr) ~ poly(time_series$week, 15,raw = FALSE)) -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_hum_week.csv",sep = "") -> write.table(as.numeric(model$coefficients),file_name,sep=",") -> -> -> -> -> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum_week.tiff",sep = "") -> tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, -+ compression = "lzw",antialias="default") -> -> monthly_summary -> -> dev.off() -pdf - 2 -> -> -> -> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_hum_week.pdf",sep = "") -> pdf(file = file_name_pdf,width = 6.94, height = 6.5) -> monthly_summary -> dev.off() -pdf - 2 -> -> -> -> monthly_summary <- ggplot(time_series,aes(x=factor(week),y=abs(light_contr))) -> monthly_summary<-monthly_summary+theme_bw(20) -> monthly_summary<-monthly_summary+ -+ geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) -> -> monthly_summary<-monthly_summary+ -+ theme(axis.title.x =element_text(face="bold", size=13))+ -+ theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of daylength (Absolute values)")+xlab("week")+ -+ theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), -+ axis.text.y=element_text(size=12))+ -+ scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ -+ guides(fill=FALSE)#+ geom_jitter() -> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Apr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -> #monthly_summary<-monthly_summary+model$fitted.values -> #monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week))) -> monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1)) -> #monthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1)) -> #monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 0)) -> -> #monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) -> -> monthly_summary -> -> model<-lm(formula=abs(time_series$light_contr) ~ poly(time_series$week, 15,raw = FALSE)) -> file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_week.csv",sep = "") -> write.table(as.numeric(model$coefficients),file_name,sep=",") -> -> #wt<-0 -> #for (n_coeff in (1:11)){ -> # wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1) -> #} -> #wt_temp<-wt/sum(wt) -> -> -> -> -> -> -> -> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light_week.tiff",sep = "") -> tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, -+ compression = "lzw",antialias="default") -> -> monthly_summary -> -> dev.off() -pdf - 2 -> -> -> -> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light_week.pdf",sep = "") -> pdf(file = file_name_pdf,width = 6.94, height = 6.5) -> monthly_summary -> dev.off() -pdf - 2 -> -> -> -> -> -> monthly_summary <- ggplot(time_series,aes(x=factor(month),y=abs(light_contr))) -> monthly_summary<-monthly_summary+theme_bw(20) -> monthly_summary<-monthly_summary+ -+ geom_boxplot(stat = "boxplot", position = "dodge", outlier.colour = "#990000", outlier.size = NA,notch = FALSE,aes(fill = "gray")) -> -> monthly_summary<-monthly_summary+ -+ theme(axis.title.x =element_text(face="bold", size=13))+ -+ theme(axis.title.y =element_text(face="bold", size=13))+ylab("Contribution of daylength (Absolute values)")+xlab("month")+ -+ theme(axis.text.x=element_text(angle=25, hjust=0.8, vjust=1, size=9), -+ axis.text.y=element_text(size=12))+ -+ scale_fill_manual(name = "", values = c("bisque"),labels = " ")+ -+ guides(fill=FALSE)#+ geom_jitter() -> #monthly_summary<-monthly_summary+scale_x_discrete(label= c("Mon","Tue","Mar","Araw=pr","May","Jun","Jul","Ago","Sep","Oct","Nov","Dec")) #+scale_y_continuous(breaks= c(0,1,3,6,9,12)) -> #monthly_summary<-monthly_summary+model$fitted.values -> #monthly_summary<-monthly_summary+ geom_smooth(method = "lm", formula=y ~ poly(x, 10),se=TRUE, color="black", aes(group=factor(week))) -> monthly_summary<-monthly_summary+ geom_smooth(method = "lm",formula=y ~ poly(x, 15,raw = FALSE),se=TRUE, aes(group=1)) -> monthly_summary<-monthly_summary+ geom_smooth(method = "auto",se=TRUE, aes(group=1)) -> #monthly_summary<-monthly_summary+ coord_cartesian(ylim = c(-0., 0.2)) -> -> monthly_summary<-monthly_summary+scale_x_discrete(label=c("January", "February","March","April","May","June","July","August","September","October","November","December")) -> -> monthly_summary -`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")' -Warning message: -Computation failed in `stat_smooth()`: -'degree' must be less than number of unique points -> -> #model<-lm(formula=abs(time_series$light_contr) ~ poly(time_series$week, 15,raw = FALSE)) -> #file_name<-paste("../../Data_Base/Cases/Simulated_Campylobacter_coefficients_delay_effect_",variable_z,"_",variable_y,"_",variable_x,"_",width_char,"_abs_light_month.csv",sep = "") -> #write.table(as.numeric(model$coefficients),file_name,sep=",") -> -> #wt<-0 -> #for (n_coeff in (1:11)){ -> # wt<-wt+unlist(model$coefficients)[[n_coeff]]*seq(1:53)^(n_coeff-1) -> #} -> #wt_temp<-wt/sum(wt) -> -> -> -> -> -> -> -> file_name_tiff<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light.tiff",sep = "") -> tiff(file_name_tiff, width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 600, -+ compression = "lzw",antialias="default") -> -> monthly_summary -`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")' -Warning message: -Computation failed in `stat_smooth()`: -'degree' must be less than number of unique points -> -> dev.off() -pdf - 2 -> -> -> -> file_name_pdf<-paste("../../Graphs/Simulated_Campylobacter_delay_effect_",variable_x,"_",variable_y,"_",variable_z,"_",width_char,"_abs_light.pdf",sep = "") -> pdf(file = file_name_pdf,width = 6.94, height = 6.5) -> monthly_summary -`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")' -Warning message: -Computation failed in `stat_smooth()`: -'degree' must be less than number of unique points -> dev.off() -pdf - 2 -> -> -> -> -> -> -> -> proc.time() - user system elapsed -500.055 27.379 527.660 diff --git a/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.R b/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.R deleted file mode 100644 index d69b64da7bbfb4708e7224e68490a28cfb157b7f..0000000000000000000000000000000000000000 --- a/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.R +++ /dev/null @@ -1,716 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables -# this to calculate delay - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) -library(wesanderson) -library(plyr) - -n_seas<-1 -width<-1 -width_char<-paste(width) -## Varaible file - - -variable_x<-"Maximum_air_temperature" -variable_y<-"Relative_humidity" -variable_z<-"daylength" - -variable_x2<-"max_air_temp" -variable_y2<-"humidity" -variable_z2<-"light" - - -## Varaible file - - - -Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) - -dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2015-12-31"), by = "day") -All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -All_PC<-rep(All_PC_s,each=length(dates_s)) - - - -Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -Env_laboratory<-Env_laboratory[,-1] -colnames(Env_laboratory)<-c("PostCode","Date", - "Maximum_air_temperature", - "Minimum_air_temperature", - "Mean_wind_speed", - "Cumul_Precipitation", - "Mean_Precipitation", - "Relative_humidity", - "daylength", - "residents") - -Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -Env_laboratory$Date<-as.Date(Env_laboratory$Date) - - - -#Env_laboratory_PHE<-Env_laboratory[wt[-1],] -##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -Env_laboratory_PHE<-Env_laboratory -#All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -#All_residents<-sum(All_residents_lab$tot) - -######################## include daylength ################## - -Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - - -lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -colnames(lat_long_lab)<-c("PostCode","lat","long") -Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode") -Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data,lat_long_lab,by="PostCode") -#Env_laboratory_int2<-Env_laboratory_int2[,-c(16,17)] -#names(Env_laboratory_int2)[10]<-"lat" -#names(Env_laboratory_int2)[11]<-"long" -#names(Env_laboratory_int2)[14]<-"Date2" - -daylength<-function(lat,day_year) -{ - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) -} - -latitude<-Env_laboratory_int2$lat -day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") - - -Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) - -### repeat for the data only #### - -latitude<-Env_Campylobacter_data_int2$lat -day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date)) - -daylength_int1<-mapply(daylength, latitude, day_of_the_year) -daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1) -colnames(daylength_df)<-c("lat","day_year","Date","daylength") - -#daylength_df$lat<-as.factor(daylength_df$lat) -#daylength_df$Date<-as.factor(daylength_df$Date) -#Env_Lyme_data_int2$lat<-as.factor(Env_Lyme_data_int2$lat) -#Env_Lyme_data_int2$Date<-as.factor(Env_Lyme_data_int2$Date) - -Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df) - - - - -######################## - - - - - - - -var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -var_x_loc_df_all<-var_x_loc_df_all[,-1] -colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") - -var_x_loc_df_all2<-na.omit(var_x_loc_df_all) - - -################### - - -delta_light<-1 -delta_hum<-5 -delta_temp<-1 -delta_rain<-2 -delta_cum_rain<-2 -delta_wind<-1 - -breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp) -breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light) - - -i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity)))) -i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity)))) - -i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) -i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) - -i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) -i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) - -i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) -i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) - -i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) -i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) - -i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) -i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) - - -i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength)))) -i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength)))) - -############## from here '################### - - -if (variable_z=="Maximum_air_temperature"){ - - breaks_var<-breaks_max_temp - i_var_min<-i_max_temp_min - i_var_max<-i_max_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature - Env_laboratory_var<-Env_laboratory$Maximum_air_temperature -} -if (variable_x=="Maximum_air_temperature"){ - - i_var_x_min<-i_max_temp_min - i_var_x_max<-i_max_temp_max - breaks_var_x<-breaks_max_temp -} - -if (variable_y=="Maximum_air_temperature"){ - - i_var_y_min<-i_max_temp_min - i_var_y_max<-i_max_temp_max - breaks_var_y<-breaks_max_temp -} - -if (variable_z=="Minimum_air_temperature"){ - - breaks_var<-breaks_min_temp - i_var_min<-i_min_temp_min - i_var_max<-i_min_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$min_temp - Env_laboratory_var<-Env_laboratory$min_temp -} -if (variable_x=="Minimum_air_temperature"){ - - i_var_x_min<-i_min_temp_min - i_var_x_max<-i_min_temp_max - breaks_var_x<-breaks_min_temp -} - -if (variable_y=="Minimum_air_temperature"){ - - i_var_y_min<-i_min_temp_min - i_var_y_max<-i_min_temp_max - breaks_var_y<-breaks_min_temp -} - -if (variable_z=="Relative_humidity"){ - - breaks_var<-breaks_hum - i_var_min<-i_hum_min - i_var_max<-i_hum_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity - Env_laboratory_var<-Env_laboratory$Relative_humidity -} -if (variable_x=="Relative_humidity"){ - - i_var_x_min<-i_hum_min - i_var_x_max<-i_hum_max - breaks_var_x<-breaks_hum -} - -if (variable_y=="Relative_humidity"){ - - i_var_y_min<-i_hum_min - i_var_y_max<-i_hum_max - breaks_var_y<-breaks_hum -} - - -if (variable_z=="mean_temp"){ - - breaks_var<-breaks_mean_temp - i_var_min<-i_mean_temp_min - i_var_max<-i_mean_temp_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp - Env_laboratory_var<-Env_laboratory$mean_temp -} -if (variable_x=="mean_temp"){ - - i_var_x_min<-i_mean_temp_min - i_var_x_max<-i_mean_temp_max - breaks_var_x<-breaks_mean_temp -} - -if (variable_y=="mean_temp"){ - - i_var_y_min<-i_mean_temp_min - i_var_y_max<-i_mean_temp_max - breaks_var_y<-breaks_mean_temp -} - -if (variable_z=="Mean_Precipitation"){ - - breaks_var<-breaks_rain - i_var_min<-i_rain_min - i_var_max<-i_rain_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation - Env_laboratory_var<-Env_laboratory$Mean_Precipitation -} -if (variable_x=="Mean_Precipitation"){ - - i_var_x_min<-i_rain_min - i_var_x_max<-i_rain_max - breaks_var_x<-breaks_rain -} - -if (variable_y=="Mean_Precipitation"){ - - i_var_y_min<-i_rain_min - i_var_y_max<-i_rain_max - breaks_var_y<-breaks_rain -} - -if (variable_z=="Cumul_Precipitation"){ - - breaks_var<-breaks_cum_rain - i_var_min<-i_cum_rain_min - i_var_max<-i_cum_rain_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation - Env_laboratory_var<-Env_laboratory$Cumul_Precipitation -} -if (variable_x=="Cumul_Precipitation"){ - - i_var_x_min<-i_cum_rain_min - i_var_x_max<-i_cum_rain_max - breaks_var_x<-breaks_cum_rain -} - -if (variable_y=="Cumul_Precipitation"){ - - i_var_y_min<-i_cum_rain_min - i_var_y_max<-i_cum_rain_max - breaks_var_y<-breaks_cum_rain -} - - -if (variable_z=="Mean_wind_speed"){ - - breaks_var<-breaks_wind - i_var_min<-i_wind_min - i_var_max<-i_wind_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed - Env_laboratory_var<-Env_laboratory$Mean_wind_speed -} -if (variable_x=="Mean_wind_speed"){ - - i_var_x_min<-i_wind_min - i_var_x_max<-i_wind_max - breaks_var_x<-breaks_wind -} - -if (variable_y=="Mean_wind_speed"){ - - i_var_y_min<-i_wind_min - i_var_y_max<-i_wind_max - breaks_var_y<-breaks_wind -} - - - - -if (variable_z=="daylength"){ - - breaks_var<-breaks_light - i_var_min<-i_light_min - i_var_max<-i_light_max - Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength - Env_laboratory_var<-Env_laboratory$daylength -} -if (variable_x=="daylength"){ - - i_var_x_min<-i_light_min - i_var_x_max<-i_light_max - breaks_var_x<-breaks_light -} - -if (variable_y=="daylength"){ - - i_var_y_min<-i_light_min - i_var_y_max<-i_light_max - breaks_var_y<-breaks_light -} - - - - -D_eta_var_x<-function(i_var,i_var_y,i_var_x) -{ - - - - -#var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab -var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab #All_residents_lab[,2] this change by postcode only - -if(is.na(breaks_var[i_var+1])==TRUE) -{ - Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var]) -} else { - Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1]) -} - - -if(is.na(breaks_var_y[i_var_y+1])==TRUE) -{ - Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y]) -} else { - Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1]) -} - - - - if(is.na(breaks_var_x[i_var_x+1])==TRUE) - { - Yt2<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x]) - } else { - Yt2<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x] & Yt1$Maximum_air_temperature<breaks_var_x[i_var_x+1]) - } - - - if(is.na(breaks_var_x[i_var_x+2])==TRUE) - { - Yt3<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x+1]) - } else { - Yt3<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x+1] & Yt1$Maximum_air_temperature<breaks_var_x[i_var_x+2]) - } - - if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ - D_eta_D_x<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) - } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ - D_eta_D_x<- 0.5*mean(Yt3$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ - D_eta_D_x<- 0.5*mean(Yt2$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ - D_eta_D_x<-NA - } - - return(D_eta_D_x) - } - - - - -D_eta_var_y<-function(i_var,i_var_y,i_var_x) -{ - - - #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab - var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab - - - if(is.na(breaks_var[i_var+1])==TRUE) - { - Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var]) - } else { - Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1]) - } - - - if(is.na(breaks_var_x[i_var_x+1])==TRUE) - { - Yt1<-subset(Yt0,Yt0$Maximum_air_temperature>=breaks_var_x[i_var_x]) - } else { - Yt1<-subset(Yt0,Yt0$Maximum_air_temperature>=breaks_var_x[i_var_x] & Yt0$Maximum_air_temperature<breaks_var_x[i_var_x+1]) - } - - - - if(is.na(breaks_var_y[i_var_y+1])==TRUE) - { - Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y]) - } else { - Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y] & Yt1$Relative_humidity<breaks_var_y[i_var_y+1]) - } - - - if(is.na(breaks_var_y[i_var_y+2])==TRUE) - { - Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1]) - } else { - Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1] & Yt1$Relative_humidity<breaks_var_y[i_var_y+2]) - } - - if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ - D_eta_D_y<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) - } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ - D_eta_D_y<- 0.5*mean(Yt3$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ - D_eta_D_y<- 0.5*mean(Yt2$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ - D_eta_D_y<-NA - } - - return(D_eta_D_y) -} - - - - -D_eta_var<-function(i_var,i_var_y,i_var_x) -{ - - -#var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab -var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab - - if(is.na(breaks_var_x[i_var_x+1])==TRUE) - { - Yt0<-subset(var_x_loc_df,var_x_loc_df$Maximum_air_temperature>=breaks_var_x[i_var_x]) - } else { - Yt0<-subset(var_x_loc_df,var_x_loc_df$Maximum_air_temperature>=breaks_var_x[i_var_x] & var_x_loc_df$Maximum_air_temperature<breaks_var_x[i_var_x+1]) - } - -if(is.na(breaks_var_y[i_var_y+1])==TRUE) -{ - Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y]) -} else { - Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1]) -} - - - if(is.na(breaks_var[i_var+1])==TRUE) - { - Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var]) - } else { - Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var] & Yt1$daylength<breaks_var[i_var+1]) - } - -if(is.na(breaks_var[i_var+2])==TRUE) -{ - Yt3<-subset( Yt1, Yt1$daylength>=breaks_var[i_var+1]) -} else { - Yt3<-subset( Yt1, Yt1$Relative_humiditylight>=breaks_var[i_var+1] & Yt1$daylength<breaks_var[i_var+2]) -} - - - - if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ - D_eta_D_v<- mean(Yt3$eta- Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) - } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ - D_eta_D_v<- 0.5*mean(Yt3$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ - D_eta_D_v<- 0.5*mean(Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) - } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ - D_eta_D_v<-NA - } - - return(D_eta_D_v) - } - - - - - -df_all_1<-c() -#i_var<-seq(i_var_min,i_var_max) -#i_var_x<-seq(i_var_x_min,i_var_x_max) - - for (j in c(1: length(All_PC_s))){ - -var_x_loc_df<-var_x_loc_df_all2 - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[j]) - -All_residents_lab<-ddply(variable_df,~PostCode,summarise,tot=mean(residents)) -for (i_var in c(seq(i_var_min,i_var_max))){ -for (i_var_y in c(seq(i_var_y_min,i_var_y_max))){ - for (i_var_x in c(seq(i_var_x_min,i_var_x_max))){ - - -#df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x)))) -#df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x)))) - -df1<-data.frame(breaks_light[i_var],breaks_hum[i_var_y],breaks_max_temp[i_var_x],D_eta_var_x(i_var,i_var_y,i_var_x),D_eta_var_y(i_var,i_var_y,i_var_x),D_eta_var(i_var,i_var_y,i_var_x),All_PC_s[j] ) -colnames(df1)<-c("daylength","Relative_humidity","Maximum_air_temperature","D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light","PostCode") -df_all_1<-rbind(df_all_1,df1) -#mapply(D_eta_var_x,i_var, MoreArgs =list(i_var_x)) -} -} - -} -} - -#df_all<-ddply(df_all_1,~PostCode,summarise,tot=mean()) -df_all<-df_all_1 - -time_series<-c() - -for (i in c(1: length(All_PC_s))){ - #for (i in c(1: 15)){ - - - - #for (j in c(1: n_seas)){ - - # n_months<-12/n_seas - - variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) - if (length(variable_df[,1])!=0){ - - - -Delta_T<-diff(variable_df$Maximum_air_temperature) -Delta_RH<-diff(variable_df$Relative_humidity) -Delta_L<-diff(variable_df$daylength) -Delta_var<-data.frame(variable_df$Date[-1],Delta_T,Delta_RH,Delta_L) -colnames(Delta_var)<-c("dates","diff_max_temp","diff_humidity","diff_light") - -x<-variable_df$Relative_humidity -y<-variable_df$Maximum_air_temperature -z<-variable_df$daylength - -variable_df_1_dis<-data.frame(variable_df$Date,variable_df$Relative_humidity) -variable_df_2_dis<-data.frame(variable_df$Date,variable_df$Maximum_air_temperature) -variable_df_3_dis<-data.frame(variable_df$Date,variable_df$daylength) - -colnames(variable_df_1_dis)<-c("dates","Relative_humidity") -colnames(variable_df_2_dis)<-c("dates","Maximum_air_temperature") -colnames(variable_df_3_dis)<-c("dates","daylength") - - variable_df_1_dis$dates<-as.Date(as.character((variable_df_1_dis$dates))) - variable_df_2_dis$dates<-as.Date(as.character((variable_df_2_dis$dates))) - variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates))) - - variable_df_1_dis<-subset(variable_df_1_dis,year(variable_df_1_dis$dates)>=1990 & year(variable_df_1_dis$dates)<=2015) - variable_df_2_dis<-subset(variable_df_2_dis,year(variable_df_2_dis$dates)>=1990 & year(variable_df_2_dis$dates)<=2015) - variable_df_3_dis<-subset(variable_df_3_dis,year(variable_df_3_dis$dates)>=1990 & year(variable_df_3_dis$dates)<=2015) - - variable_df_1_dis$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) - variable_df_2_dis$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) - variable_df_3_dis$daylength<-(breaks_light[findInterval(z, breaks_light)]) - - -# var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j) -# var_x_loc_df$Relative_humidity<-floor(var_x_loc_df$Relative_humidity) -# var_x_loc_df$Maximum_air_temperature<-floor(var_x_loc_df$breaks) - #df<-subset(df_all,df_all$month==j) - df<-subset(df_all,df_all$PostCode==All_PC_s[i]) - - variable_df_4_dis<-merge(variable_df_1_dis,df, by="Relative_humidity") - variable_df_5_dis<-merge(variable_df_2_dis,df, by="Maximum_air_temperature") - variable_df_6_dis<-merge(variable_df_3_dis,df, by="daylength") - - - - variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates))) - variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),] - variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates))) - variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),] - variable_df_6_dis$dates<-as.Date(as.character((variable_df_6_dis$dates))) - variable_df_6_dis<-variable_df_6_dis[order(variable_df_6_dis$dates),] - - - variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates) - variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates) - variable_df_6_dis$dates<-as.factor(variable_df_6_dis$dates) - - variable_df_dis0<-merge(variable_df_4_dis,variable_df_5_dis, by=c("dates","Maximum_air_temperature","Relative_humidity","daylength") ) - variable_df_dis<-merge(variable_df_dis0,variable_df_6_dis, by=c("dates","Maximum_air_temperature","Relative_humidity","daylength")) - - variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) - variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] - variable_df_dis$dates<-as.factor(variable_df_dis$dates) - Delta_var$dates<-as.factor(Delta_var$dates) - variable_df_Taylor<-merge(variable_df_dis,Delta_var, by=c("dates")) - - variable_df_Taylor<-variable_df_Taylor[,c(1:7,17:19)] - colnames(variable_df_Taylor)<-c("dates",variable_x, variable_y, variable_z,"D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light", - "diff_max_temp","diff_humidity","diff_light") - - - lambda_temp<-variable_df_Taylor$D_eta_D_max_temp*variable_df_Taylor$diff_max_temp - lambda_hum<-variable_df_Taylor$D_eta_D_hum*variable_df_Taylor$diff_humidity - lambda_light<-variable_df_Taylor$D_eta_D_light*variable_df_Taylor$diff_light - - - - time_series_1<- - data.frame(variable_df_Taylor$dates, - lambda_temp,lambda_hum,lambda_light, - rep(All_PC_s[i],times=length(variable_df_Taylor$dates)), - variable_df_Taylor$D_eta_D_max_temp,variable_df_Taylor$diff_max_temp, - variable_df_Taylor$D_eta_D_hum,variable_df_Taylor$diff_humidity, - variable_df_Taylor$D_eta_D_light,variable_df_Taylor$diff_light) - colnames(time_series_1)<-c("Date","Contr_temp","Contr_hum","Contr_light", - "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light") - time_series<-rbind(time_series,time_series_1) - - #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) - print(100*c(i/length(All_PC_s) )) - #print(" ") - #print(lambda) - } -} - -#time_series1<-subset(time_series,time_series$Lab=="B152TG") -#time_series1$Date<-as.Date(as.character(time_series1$Date)) -#time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date)))) -#time_series1<-subset(time_series1,time_series1$year=="2005") - -#time_series1<-na.omit(time_series1) -##temp_contr<-cumsum(time_series1$Contr_temp) -#temp_hum<-cumsum(time_series1$Contr_hum) -# -#df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum) -#colnames(df2)<-c("Date","contr","humidity") -#temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp)) -#time_series<-na.omit(time_series) -#time_series$temp_contr<-cumsum(time_series$Contr_temp) -#time_series$temp_hum<-cumsum(time_series$Contr_hum) -#time_series$yday<-yday(time_series$Date) -#time_series$week<-week(time_series$Date) -#time_series$month<-month(time_series$Date) -#time_series$Lab<-as.factor(time_series$Lab) - -#time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp)) -#time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp)) - -#time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp)) -#time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum)) - -#time_series_lab<-ddply(time_series,~month,summarise,tot=mean(Contr_temp)) -#time_series_lab2<-ddply(time_series,~month,summarise,tot=mean(Contr_hum)) -#time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum)) - -write.table(time_series,paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") diff --git a/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.Rout b/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.Rout deleted file mode 100644 index a1c9fcba1bdd224f9096f1c1056e5fdef09a6b68..0000000000000000000000000000000000000000 --- a/Taylor_Simulated_Campylobacter_environment_light_hum_max_for_rec_delay_original_modified.Rout +++ /dev/null @@ -1,979 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> # this to calculate delay -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> library(wesanderson) -> library(plyr) - -Attaching package: ‘plyr’ - -The following object is masked from ‘package:lubridate’: - - here - -> -> n_seas<-1 -> width<-1 -> width_char<-paste(width) -> ## Varaible file -> -> -> variable_x<-"Maximum_air_temperature" -> variable_y<-"Relative_humidity" -> variable_z<-"daylength" -> -> variable_x2<-"max_air_temp" -> variable_y2<-"humidity" -> variable_z2<-"light" -> -> -> ## Varaible file -> -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_Campylobacter_data<-subset(Env_Campylobacter_data_all2,year(Env_Campylobacter_data_all2$Date)>=1990 & year(Env_Campylobacter_data_all2$Date)<=2015) -> -> dates_s<- dates_s<- seq(as.Date("1990-01-01"), as.Date("2015-12-31"), by = "day") -> All_PC_s<-levels(as.factor(Env_Campylobacter_data$PostCode)) -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> -> Env_laboratory<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory<-Env_laboratory[,-1] -> colnames(Env_laboratory)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory<-subset(Env_laboratory,year(Env_laboratory$Date)>=1990 & year(Env_laboratory$Date)<=2015) -> Env_laboratory$Date<-as.Date(Env_laboratory$Date) -> -> -> -> #Env_laboratory_PHE<-Env_laboratory[wt[-1],] -> ##Env_laboratory_PHE<-merge(Env_laboratory,Env_Campylobacter_data,by='PostCode',all=T) not sure why this is not working, so loop above -> Env_laboratory_PHE<-Env_laboratory -> #All_residents_lab<-ddply(Env_laboratory_PHE,~PostCode,summarise,tot=mean(residents)) -> #All_residents<-sum(All_residents_lab$tot) -> -> ######################## include daylength ################## -> -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> Env_laboratory_int2<-merge(Env_laboratory,lat_long_lab,by="PostCode") -> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data,lat_long_lab,by="PostCode") -> #Env_laboratory_int2<-Env_laboratory_int2[,-c(16,17)] -> #names(Env_laboratory_int2)[10]<-"lat" -> #names(Env_laboratory_int2)[11]<-"long" -> #names(Env_laboratory_int2)[14]<-"Date2" -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Env_laboratory_int2$lat -> day_of_the_year<-yday(as.Date(Env_laboratory_int2$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_laboratory_int2$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> -> Env_laboratory<-data.frame(Env_laboratory_int2,daylength_df) -> -> ### repeat for the data only #### -> -> latitude<-Env_Campylobacter_data_int2$lat -> day_of_the_year<-yday(as.Date(Env_Campylobacter_data_int2$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Env_Campylobacter_data_int2$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> -> #daylength_df$lat<-as.factor(daylength_df$lat) -> #daylength_df$Date<-as.factor(daylength_df$Date) -> #Env_Lyme_data_int2$lat<-as.factor(Env_Lyme_data_int2$lat) -> #Env_Lyme_data_int2$Date<-as.factor(Env_Lyme_data_int2$Date) -> -> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int2,daylength_df) -> -> -> -> -> ######################## -> -> -> -> -> -> -> -> var_x_loc_df_all<-read.csv(paste("../../Data_Base/Cases_Environment/",variable_z2,"_",variable_y2,"_",variable_x2,"_",width_char,"_Simulated_for_rec_original_MEDMI.csv",sep="")) -> var_x_loc_df_all<-var_x_loc_df_all[,-1] -> colnames(var_x_loc_df_all)<-c(variable_x,"breaks","prop","incidence","month",variable_z,variable_y,"counts","counts_tot","residents","residents_tot","Numb_Lab") -> -> var_x_loc_df_all2<-na.omit(var_x_loc_df_all) -> -> -> ################### -> -> -> delta_light<-1 -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-2 -> delta_cum_rain<-2 -> delta_wind<-1 -> -> breaks_hum<-seq(max(min(na.omit(Env_laboratory$Relative_humidity))-10,0),max(na.omit(Env_laboratory$Relative_humidity))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2, max(na.omit(Env_laboratory$Minimum_air_temperature))+2,by=delta_temp) -> breaks_max_temp<-seq(min(na.omit(Env_laboratory$Maximum_air_temperature))-2, max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -> breaks_rain<-seq(max(min(na.omit(Env_laboratory$Mean_Precipitation)),0), max(na.omit(Env_laboratory$Mean_Precipitation))+2,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(Env_laboratory$Mean_wind_speed))-2,0),max(na.omit(Env_laboratory$Mean_wind_speed))+2,by=delta_wind) -> breaks_cum_rain<-seq(max(min(na.omit(Env_laboratory$Cumul_Precipitation)),0), max(na.omit(Env_laboratory$Cumul_Precipitation))+2,by=delta_cum_rain) -> breaks_mean_temp<-seq(min(na.omit(Env_laboratory$Minimum_air_temperature))-2,max(na.omit(Env_laboratory$Maximum_air_temperature))+2,by=delta_temp) -> breaks_light<-seq(max(min(na.omit(Env_laboratory$daylength))-1,0),max(na.omit(Env_laboratory$daylength))+1,by=delta_light) -> -> -> i_hum_min<-max(which(breaks_hum<=min(na.omit(Env_Campylobacter_data$Relative_humidity)))) -> i_hum_max<-max(which(breaks_hum<=max(na.omit(Env_Campylobacter_data$Relative_humidity)))) -> -> i_min_temp_min<-max(which(breaks_min_temp<=min(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) -> i_min_temp_max<-max(which(breaks_min_temp<=max(na.omit(Env_Campylobacter_data$Minimum_air_temperature)))) -> -> i_max_temp_min<-max(which(breaks_max_temp<=min(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) -> i_max_temp_max<-max(which(breaks_max_temp<=max(na.omit(Env_Campylobacter_data$Maximum_air_temperature)))) -> -> i_rain_min<-max(which(breaks_rain<=min(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) -Warning message: -In max(which(breaks_rain <= min(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) : - no non-missing arguments to max; returning -Inf -> i_rain_max<-max(which(breaks_rain<=max(na.omit(Env_Campylobacter_data$Mean_Precipitation)))) -> -> i_cum_rain_min<-max(which(breaks_cum_rain<=min(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) -Warning message: -In max(which(breaks_cum_rain <= min(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) : - no non-missing arguments to max; returning -Inf -> i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(Env_Campylobacter_data$Cumul_Precipitation)))) -> -> i_wind_min<-max(which(breaks_wind<=min(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) -> i_wind_max<-max(which(breaks_wind<=max(na.omit(Env_Campylobacter_data$Mean_wind_speed)))) -> -> -> i_light_min<-max(which(breaks_light<=min(na.omit(Env_Campylobacter_data$daylength)))) -> i_light_max<-max(which(breaks_light<=max(na.omit(Env_Campylobacter_data$daylength)))) -> -> ############## from here '################### -> -> -> if (variable_z=="Maximum_air_temperature"){ -+ -+ breaks_var<-breaks_max_temp -+ i_var_min<-i_max_temp_min -+ i_var_max<-i_max_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Maximum_air_temperature -+ Env_laboratory_var<-Env_laboratory$Maximum_air_temperature -+ } -> if (variable_x=="Maximum_air_temperature"){ -+ -+ i_var_x_min<-i_max_temp_min -+ i_var_x_max<-i_max_temp_max -+ breaks_var_x<-breaks_max_temp -+ } -> -> if (variable_y=="Maximum_air_temperature"){ -+ -+ i_var_y_min<-i_max_temp_min -+ i_var_y_max<-i_max_temp_max -+ breaks_var_y<-breaks_max_temp -+ } -> -> if (variable_z=="Minimum_air_temperature"){ -+ -+ breaks_var<-breaks_min_temp -+ i_var_min<-i_min_temp_min -+ i_var_max<-i_min_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$min_temp -+ Env_laboratory_var<-Env_laboratory$min_temp -+ } -> if (variable_x=="Minimum_air_temperature"){ -+ -+ i_var_x_min<-i_min_temp_min -+ i_var_x_max<-i_min_temp_max -+ breaks_var_x<-breaks_min_temp -+ } -> -> if (variable_y=="Minimum_air_temperature"){ -+ -+ i_var_y_min<-i_min_temp_min -+ i_var_y_max<-i_min_temp_max -+ breaks_var_y<-breaks_min_temp -+ } -> -> if (variable_z=="Relative_humidity"){ -+ -+ breaks_var<-breaks_hum -+ i_var_min<-i_hum_min -+ i_var_max<-i_hum_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Relative_humidity -+ Env_laboratory_var<-Env_laboratory$Relative_humidity -+ } -> if (variable_x=="Relative_humidity"){ -+ -+ i_var_x_min<-i_hum_min -+ i_var_x_max<-i_hum_max -+ breaks_var_x<-breaks_hum -+ } -> -> if (variable_y=="Relative_humidity"){ -+ -+ i_var_y_min<-i_hum_min -+ i_var_y_max<-i_hum_max -+ breaks_var_y<-breaks_hum -+ } -> -> -> if (variable_z=="mean_temp"){ -+ -+ breaks_var<-breaks_mean_temp -+ i_var_min<-i_mean_temp_min -+ i_var_max<-i_mean_temp_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$mean_temp -+ Env_laboratory_var<-Env_laboratory$mean_temp -+ } -> if (variable_x=="mean_temp"){ -+ -+ i_var_x_min<-i_mean_temp_min -+ i_var_x_max<-i_mean_temp_max -+ breaks_var_x<-breaks_mean_temp -+ } -> -> if (variable_y=="mean_temp"){ -+ -+ i_var_y_min<-i_mean_temp_min -+ i_var_y_max<-i_mean_temp_max -+ breaks_var_y<-breaks_mean_temp -+ } -> -> if (variable_z=="Mean_Precipitation"){ -+ -+ breaks_var<-breaks_rain -+ i_var_min<-i_rain_min -+ i_var_max<-i_rain_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_Precipitation -+ Env_laboratory_var<-Env_laboratory$Mean_Precipitation -+ } -> if (variable_x=="Mean_Precipitation"){ -+ -+ i_var_x_min<-i_rain_min -+ i_var_x_max<-i_rain_max -+ breaks_var_x<-breaks_rain -+ } -> -> if (variable_y=="Mean_Precipitation"){ -+ -+ i_var_y_min<-i_rain_min -+ i_var_y_max<-i_rain_max -+ breaks_var_y<-breaks_rain -+ } -> -> if (variable_z=="Cumul_Precipitation"){ -+ -+ breaks_var<-breaks_cum_rain -+ i_var_min<-i_cum_rain_min -+ i_var_max<-i_cum_rain_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Cumul_Precipitation -+ Env_laboratory_var<-Env_laboratory$Cumul_Precipitation -+ } -> if (variable_x=="Cumul_Precipitation"){ -+ -+ i_var_x_min<-i_cum_rain_min -+ i_var_x_max<-i_cum_rain_max -+ breaks_var_x<-breaks_cum_rain -+ } -> -> if (variable_y=="Cumul_Precipitation"){ -+ -+ i_var_y_min<-i_cum_rain_min -+ i_var_y_max<-i_cum_rain_max -+ breaks_var_y<-breaks_cum_rain -+ } -> -> -> if (variable_z=="Mean_wind_speed"){ -+ -+ breaks_var<-breaks_wind -+ i_var_min<-i_wind_min -+ i_var_max<-i_wind_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$Mean_wind_speed -+ Env_laboratory_var<-Env_laboratory$Mean_wind_speed -+ } -> if (variable_x=="Mean_wind_speed"){ -+ -+ i_var_x_min<-i_wind_min -+ i_var_x_max<-i_wind_max -+ breaks_var_x<-breaks_wind -+ } -> -> if (variable_y=="Mean_wind_speed"){ -+ -+ i_var_y_min<-i_wind_min -+ i_var_y_max<-i_wind_max -+ breaks_var_y<-breaks_wind -+ } -> -> -> -> -> if (variable_z=="daylength"){ -+ -+ breaks_var<-breaks_light -+ i_var_min<-i_light_min -+ i_var_max<-i_light_max -+ Env_Campylobacter_data_var<-Env_Campylobacter_data$daylength -+ Env_laboratory_var<-Env_laboratory$daylength -+ } -> if (variable_x=="daylength"){ -+ -+ i_var_x_min<-i_light_min -+ i_var_x_max<-i_light_max -+ breaks_var_x<-breaks_light -+ } -> -> if (variable_y=="daylength"){ -+ -+ i_var_y_min<-i_light_min -+ i_var_y_max<-i_light_max -+ breaks_var_y<-breaks_light -+ } -> -> -> -> -> D_eta_var_x<-function(i_var,i_var_y,i_var_x) -+ { -+ -+ -+ -+ -+ #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab -+ var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab #All_residents_lab[,2] this change by postcode only -+ -+ if(is.na(breaks_var[i_var+1])==TRUE) -+ { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var]) -+ } else { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1]) -+ } -+ -+ -+ if(is.na(breaks_var_y[i_var_y+1])==TRUE) -+ { -+ Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y]) -+ } else { -+ Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1]) -+ } -+ -+ -+ -+ if(is.na(breaks_var_x[i_var_x+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x] & Yt1$Maximum_air_temperature<breaks_var_x[i_var_x+1]) -+ } -+ -+ -+ if(is.na(breaks_var_x[i_var_x+2])==TRUE) -+ { -+ Yt3<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x+1]) -+ } else { -+ Yt3<-subset(Yt1,Yt1$Maximum_air_temperature>=breaks_var_x[i_var_x+1] & Yt1$Maximum_air_temperature<breaks_var_x[i_var_x+2]) -+ } -+ -+ if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ -+ D_eta_D_x<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) -+ } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ -+ D_eta_D_x<- 0.5*mean(Yt3$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ -+ D_eta_D_x<- 0.5*mean(Yt2$eta)/(breaks_var_x[i_var_x+1]-breaks_var_x[i_var_x]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ -+ D_eta_D_x<-NA -+ } -+ -+ return(D_eta_D_x) -+ } -> -> -> -> -> D_eta_var_y<-function(i_var,i_var_y,i_var_x) -+ { -+ -+ -+ #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab -+ var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab -+ -+ -+ if(is.na(breaks_var[i_var+1])==TRUE) -+ { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var]) -+ } else { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$daylength>=breaks_var[i_var] & var_x_loc_df$daylength<breaks_var[i_var+1]) -+ } -+ -+ -+ if(is.na(breaks_var_x[i_var_x+1])==TRUE) -+ { -+ Yt1<-subset(Yt0,Yt0$Maximum_air_temperature>=breaks_var_x[i_var_x]) -+ } else { -+ Yt1<-subset(Yt0,Yt0$Maximum_air_temperature>=breaks_var_x[i_var_x] & Yt0$Maximum_air_temperature<breaks_var_x[i_var_x+1]) -+ } -+ -+ -+ -+ if(is.na(breaks_var_y[i_var_y+1])==TRUE) -+ { -+ Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y]) -+ } else { -+ Yt2<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y] & Yt1$Relative_humidity<breaks_var_y[i_var_y+1]) -+ } -+ -+ -+ if(is.na(breaks_var_y[i_var_y+2])==TRUE) -+ { -+ Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1]) -+ } else { -+ Yt3<-subset(Yt1,Yt1$Relative_humidity>=breaks_var_y[i_var_y+1] & Yt1$Relative_humidity<breaks_var_y[i_var_y+2]) -+ } -+ -+ if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ -+ D_eta_D_y<- (mean(Yt3$eta- Yt2$eta))/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) -+ } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ -+ D_eta_D_y<- 0.5*mean(Yt3$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ -+ D_eta_D_y<- 0.5*mean(Yt2$eta)/(breaks_var_y[i_var_y+1]-breaks_var_y[i_var_y]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ -+ D_eta_D_y<-NA -+ } -+ -+ return(D_eta_D_y) -+ } -> -> -> -> -> D_eta_var<-function(i_var,i_var_y,i_var_x) -+ { -+ -+ -+ #var_x_loc_df$eta<-var_x_loc_df$prop*var_x_loc_df$Numb_Lab -+ var_x_loc_df$eta<-var_x_loc_df$incidence*All_residents_lab[,2]*var_x_loc_df$Numb_Lab -+ -+ if(is.na(breaks_var_x[i_var_x+1])==TRUE) -+ { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$Maximum_air_temperature>=breaks_var_x[i_var_x]) -+ } else { -+ Yt0<-subset(var_x_loc_df,var_x_loc_df$Maximum_air_temperature>=breaks_var_x[i_var_x] & var_x_loc_df$Maximum_air_temperature<breaks_var_x[i_var_x+1]) -+ } -+ -+ if(is.na(breaks_var_y[i_var_y+1])==TRUE) -+ { -+ Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y]) -+ } else { -+ Yt1<-subset(Yt0,Yt0$Relative_humidity>=breaks_var_y[i_var_y] & Yt0$Relative_humidity<breaks_var_y[i_var_y+1]) -+ } -+ -+ -+ if(is.na(breaks_var[i_var+1])==TRUE) -+ { -+ Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var]) -+ } else { -+ Yt2<-subset( Yt1, Yt1$daylength>=breaks_var[i_var] & Yt1$daylength<breaks_var[i_var+1]) -+ } -+ -+ if(is.na(breaks_var[i_var+2])==TRUE) -+ { -+ Yt3<-subset( Yt1, Yt1$daylength>=breaks_var[i_var+1]) -+ } else { -+ Yt3<-subset( Yt1, Yt1$Relative_humiditylight>=breaks_var[i_var+1] & Yt1$daylength<breaks_var[i_var+2]) -+ } -+ -+ -+ -+ if(length(Yt3[,1])!=0 & length(Yt2[,1])!=0){ -+ D_eta_D_v<- mean(Yt3$eta- Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) -+ } else if (length(Yt3[,1])!=0 & length(Yt2[,1])==0){ -+ D_eta_D_v<- 0.5*mean(Yt3$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])!=0){ -+ D_eta_D_v<- 0.5*mean(Yt2$eta)/(breaks_var[i_var+1]-breaks_var[i_var]) -+ } else if (length(Yt3[,1])==0 & length(Yt2[,1])==0){ -+ D_eta_D_v<-NA -+ } -+ -+ return(D_eta_D_v) -+ } -> -> -> -> -> -> df_all_1<-c() -> #i_var<-seq(i_var_min,i_var_max) -> #i_var_x<-seq(i_var_x_min,i_var_x_max) -> -> for (j in c(1: length(All_PC_s))){ -+ -+ var_x_loc_df<-var_x_loc_df_all2 -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[j]) -+ -+ All_residents_lab<-ddply(variable_df,~PostCode,summarise,tot=mean(residents)) -+ for (i_var in c(seq(i_var_min,i_var_max))){ -+ for (i_var_y in c(seq(i_var_y_min,i_var_y_max))){ -+ for (i_var_x in c(seq(i_var_x_min,i_var_x_max))){ -+ -+ -+ #df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x)))) -+ #df1<-data.frame(i_var,i_var_x,t(unlist(lapply(i_var,D_eta_var_x,i_var_x=i_var_x)))) -+ -+ df1<-data.frame(breaks_light[i_var],breaks_hum[i_var_y],breaks_max_temp[i_var_x],D_eta_var_x(i_var,i_var_y,i_var_x),D_eta_var_y(i_var,i_var_y,i_var_x),D_eta_var(i_var,i_var_y,i_var_x),All_PC_s[j] ) -+ colnames(df1)<-c("daylength","Relative_humidity","Maximum_air_temperature","D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light","PostCode") -+ df_all_1<-rbind(df_all_1,df1) -+ #mapply(D_eta_var_x,i_var, MoreArgs =list(i_var_x)) -+ } -+ } -+ -+ } -+ } -> -> #df_all<-ddply(df_all_1,~PostCode,summarise,tot=mean()) -> df_all<-df_all_1 -> -> time_series<-c() -> -> for (i in c(1: length(All_PC_s))){ -+ #for (i in c(1: 15)){ -+ -+ -+ -+ #for (j in c(1: n_seas)){ -+ -+ # n_months<-12/n_seas -+ -+ variable_df<-subset(Env_laboratory,Env_laboratory$PostCode==All_PC_s[i]) -+ if (length(variable_df[,1])!=0){ -+ -+ -+ -+ Delta_T<-diff(variable_df$Maximum_air_temperature) -+ Delta_RH<-diff(variable_df$Relative_humidity) -+ Delta_L<-diff(variable_df$daylength) -+ Delta_var<-data.frame(variable_df$Date[-1],Delta_T,Delta_RH,Delta_L) -+ colnames(Delta_var)<-c("dates","diff_max_temp","diff_humidity","diff_light") -+ -+ x<-variable_df$Relative_humidity -+ y<-variable_df$Maximum_air_temperature -+ z<-variable_df$daylength -+ -+ variable_df_1_dis<-data.frame(variable_df$Date,variable_df$Relative_humidity) -+ variable_df_2_dis<-data.frame(variable_df$Date,variable_df$Maximum_air_temperature) -+ variable_df_3_dis<-data.frame(variable_df$Date,variable_df$daylength) -+ -+ colnames(variable_df_1_dis)<-c("dates","Relative_humidity") -+ colnames(variable_df_2_dis)<-c("dates","Maximum_air_temperature") -+ colnames(variable_df_3_dis)<-c("dates","daylength") -+ -+ variable_df_1_dis$dates<-as.Date(as.character((variable_df_1_dis$dates))) -+ variable_df_2_dis$dates<-as.Date(as.character((variable_df_2_dis$dates))) -+ variable_df_3_dis$dates<-as.Date(as.character((variable_df_3_dis$dates))) -+ -+ variable_df_1_dis<-subset(variable_df_1_dis,year(variable_df_1_dis$dates)>=1990 & year(variable_df_1_dis$dates)<=2015) -+ variable_df_2_dis<-subset(variable_df_2_dis,year(variable_df_2_dis$dates)>=1990 & year(variable_df_2_dis$dates)<=2015) -+ variable_df_3_dis<-subset(variable_df_3_dis,year(variable_df_3_dis$dates)>=1990 & year(variable_df_3_dis$dates)<=2015) -+ -+ variable_df_1_dis$Relative_humidity<-(breaks_hum[findInterval(x, breaks_hum)]) -+ variable_df_2_dis$Maximum_air_temperature<-(breaks_max_temp[findInterval(y, breaks_max_temp)]) -+ variable_df_3_dis$daylength<-(breaks_light[findInterval(z, breaks_light)]) -+ -+ -+ # var_x_loc_df<-subset(var_x_loc_df_all2,var_x_loc_df_all2$month==j) -+ # var_x_loc_df$Relative_humidity<-floor(var_x_loc_df$Relative_humidity) -+ # var_x_loc_df$Maximum_air_temperature<-floor(var_x_loc_df$breaks) -+ #df<-subset(df_all,df_all$month==j) -+ df<-subset(df_all,df_all$PostCode==All_PC_s[i]) -+ -+ variable_df_4_dis<-merge(variable_df_1_dis,df, by="Relative_humidity") -+ variable_df_5_dis<-merge(variable_df_2_dis,df, by="Maximum_air_temperature") -+ variable_df_6_dis<-merge(variable_df_3_dis,df, by="daylength") -+ -+ -+ -+ variable_df_4_dis$dates<-as.Date(as.character((variable_df_4_dis$dates))) -+ variable_df_4_dis<-variable_df_4_dis[order(variable_df_4_dis$dates),] -+ variable_df_5_dis$dates<-as.Date(as.character((variable_df_5_dis$dates))) -+ variable_df_5_dis<-variable_df_5_dis[order(variable_df_5_dis$dates),] -+ variable_df_6_dis$dates<-as.Date(as.character((variable_df_6_dis$dates))) -+ variable_df_6_dis<-variable_df_6_dis[order(variable_df_6_dis$dates),] -+ -+ -+ variable_df_4_dis$dates<-as.factor(variable_df_4_dis$dates) -+ variable_df_5_dis$dates<-as.factor(variable_df_5_dis$dates) -+ variable_df_6_dis$dates<-as.factor(variable_df_6_dis$dates) -+ -+ variable_df_dis0<-merge(variable_df_4_dis,variable_df_5_dis, by=c("dates","Maximum_air_temperature","Relative_humidity","daylength") ) -+ variable_df_dis<-merge(variable_df_dis0,variable_df_6_dis, by=c("dates","Maximum_air_temperature","Relative_humidity","daylength")) -+ -+ variable_df_dis$dates<-as.Date(as.character((variable_df_dis$dates))) -+ variable_df_dis<-variable_df_dis[order(variable_df_dis$dates),] -+ variable_df_dis$dates<-as.factor(variable_df_dis$dates) -+ Delta_var$dates<-as.factor(Delta_var$dates) -+ variable_df_Taylor<-merge(variable_df_dis,Delta_var, by=c("dates")) -+ -+ variable_df_Taylor<-variable_df_Taylor[,c(1:7,17:19)] -+ colnames(variable_df_Taylor)<-c("dates",variable_x, variable_y, variable_z,"D_eta_D_max_temp","D_eta_D_hum","D_eta_D_light", -+ "diff_max_temp","diff_humidity","diff_light") -+ -+ -+ lambda_temp<-variable_df_Taylor$D_eta_D_max_temp*variable_df_Taylor$diff_max_temp -+ lambda_hum<-variable_df_Taylor$D_eta_D_hum*variable_df_Taylor$diff_humidity -+ lambda_light<-variable_df_Taylor$D_eta_D_light*variable_df_Taylor$diff_light -+ -+ -+ -+ time_series_1<- -+ data.frame(variable_df_Taylor$dates, -+ lambda_temp,lambda_hum,lambda_light, -+ rep(All_PC_s[i],times=length(variable_df_Taylor$dates)), -+ variable_df_Taylor$D_eta_D_max_temp,variable_df_Taylor$diff_max_temp, -+ variable_df_Taylor$D_eta_D_hum,variable_df_Taylor$diff_humidity, -+ variable_df_Taylor$D_eta_D_light,variable_df_Taylor$diff_light) -+ colnames(time_series_1)<-c("Date","Contr_temp","Contr_hum","Contr_light", -+ "Lab","delta_eta_temp","delta_temp","delta_eta_hum","delta_hum","delta_eta_light","delta_light") -+ time_series<-rbind(time_series,time_series_1) -+ -+ #print(100*c(i/length(All_PC_s),comp_cases,comp_cases2,comp_cases3,lambda )) -+ print(100*c(i/length(All_PC_s) )) -+ #print(" ") -+ #print(lambda) -+ } -+ } -[1] 0.4854369 -[1] 0.9708738 -[1] 1.456311 -[1] 1.941748 -[1] 2.427184 -[1] 2.912621 -[1] 3.398058 -[1] 3.883495 -[1] 4.368932 -[1] 4.854369 -[1] 5.339806 -[1] 5.825243 -[1] 6.31068 -[1] 6.796117 -[1] 7.281553 -[1] 7.76699 -[1] 8.252427 -[1] 8.737864 -[1] 9.223301 -[1] 9.708738 -[1] 10.19417 -[1] 10.67961 -[1] 11.16505 -[1] 11.65049 -[1] 12.13592 -[1] 12.62136 -[1] 13.1068 -[1] 13.59223 -[1] 14.07767 -[1] 14.56311 -[1] 15.04854 -[1] 15.53398 -[1] 16.01942 -[1] 16.50485 -[1] 16.99029 -[1] 17.47573 -[1] 17.96117 -[1] 18.4466 -[1] 18.93204 -[1] 19.41748 -[1] 19.90291 -[1] 20.38835 -[1] 20.87379 -[1] 21.35922 -[1] 21.84466 -[1] 22.3301 -[1] 22.81553 -[1] 23.30097 -[1] 23.78641 -[1] 24.27184 -[1] 24.75728 -[1] 25.24272 -[1] 25.72816 -[1] 26.21359 -[1] 26.69903 -[1] 27.18447 -[1] 27.6699 -[1] 28.15534 -[1] 28.64078 -[1] 29.12621 -[1] 29.61165 -[1] 30.09709 -[1] 30.58252 -[1] 31.06796 -[1] 31.5534 -[1] 32.03883 -[1] 32.52427 -[1] 33.00971 -[1] 33.49515 -[1] 33.98058 -[1] 34.46602 -[1] 34.95146 -[1] 35.43689 -[1] 35.92233 -[1] 36.40777 -[1] 36.8932 -[1] 37.37864 -[1] 37.86408 -[1] 38.34951 -[1] 38.83495 -[1] 39.32039 -[1] 39.80583 -[1] 40.29126 -[1] 40.7767 -[1] 41.26214 -[1] 41.74757 -[1] 42.23301 -[1] 42.71845 -[1] 43.20388 -[1] 43.68932 -[1] 44.17476 -[1] 44.66019 -[1] 45.14563 -[1] 45.63107 -[1] 46.1165 -[1] 46.60194 -[1] 47.08738 -[1] 47.57282 -[1] 48.05825 -[1] 48.54369 -[1] 49.02913 -[1] 49.51456 -[1] 50 -[1] 50.48544 -[1] 50.97087 -[1] 51.45631 -[1] 51.94175 -[1] 52.42718 -[1] 52.91262 -[1] 53.39806 -[1] 53.8835 -[1] 54.36893 -[1] 54.85437 -[1] 55.33981 -[1] 55.82524 -[1] 56.31068 -[1] 56.79612 -[1] 57.28155 -[1] 57.76699 -[1] 58.25243 -[1] 58.73786 -[1] 59.2233 -[1] 59.70874 -[1] 60.19417 -[1] 60.67961 -[1] 61.16505 -[1] 61.65049 -[1] 62.13592 -[1] 62.62136 -[1] 63.1068 -[1] 63.59223 -[1] 64.07767 -[1] 64.56311 -[1] 65.04854 -[1] 65.53398 -[1] 66.01942 -[1] 66.50485 -[1] 66.99029 -[1] 67.47573 -[1] 67.96117 -[1] 68.4466 -[1] 68.93204 -[1] 69.41748 -[1] 69.90291 -[1] 70.38835 -[1] 70.87379 -[1] 71.35922 -[1] 71.84466 -[1] 72.3301 -[1] 72.81553 -[1] 73.30097 -[1] 73.78641 -[1] 74.27184 -[1] 74.75728 -[1] 75.24272 -[1] 75.72816 -[1] 76.21359 -[1] 76.69903 -[1] 77.18447 -[1] 77.6699 -[1] 78.15534 -[1] 78.64078 -[1] 79.12621 -[1] 79.61165 -[1] 80.09709 -[1] 80.58252 -[1] 81.06796 -[1] 81.5534 -[1] 82.03883 -[1] 82.52427 -[1] 83.00971 -[1] 83.49515 -[1] 83.98058 -[1] 84.46602 -[1] 84.95146 -[1] 85.43689 -[1] 85.92233 -[1] 86.40777 -[1] 86.8932 -[1] 87.37864 -[1] 87.86408 -[1] 88.34951 -[1] 88.83495 -[1] 89.32039 -[1] 89.80583 -[1] 90.29126 -[1] 90.7767 -[1] 91.26214 -[1] 91.74757 -[1] 92.23301 -[1] 92.71845 -[1] 93.20388 -[1] 93.68932 -[1] 94.17476 -[1] 94.66019 -[1] 95.14563 -[1] 95.63107 -[1] 96.1165 -[1] 96.60194 -[1] 97.08738 -[1] 97.57282 -[1] 98.05825 -[1] 98.54369 -[1] 99.02913 -[1] 99.51456 -[1] 100 -> -> #time_series1<-subset(time_series,time_series$Lab=="B152TG") -> #time_series1$Date<-as.Date(as.character(time_series1$Date)) -> #time_series1$year<-as.factor(year(as.Date(as.character(time_series1$Date)))) -> #time_series1<-subset(time_series1,time_series1$year=="2005") -> -> #time_series1<-na.omit(time_series1) -> ##temp_contr<-cumsum(time_series1$Contr_temp) -> #temp_hum<-cumsum(time_series1$Contr_hum) -> # -> #df2<-data.frame(as.Date(as.character(time_series1$Date)),temp_contr,temp_hum) -> #colnames(df2)<-c("Date","contr","humidity") -> #temp_contr<-ddply(time_series1,~year,summarise,Cum_Cases=cumsum(Contr_temp)) -> #time_series<-na.omit(time_series) -> #time_series$temp_contr<-cumsum(time_series$Contr_temp) -> #time_series$temp_hum<-cumsum(time_series$Contr_hum) -> #time_series$yday<-yday(time_series$Date) -> #time_series$week<-week(time_series$Date) -> #time_series$month<-month(time_series$Date) -> #time_series$Lab<-as.factor(time_series$Lab) -> -> #time_series_lab<-ddply(time_series,~Date,summarise,tot=mean(Contr_temp)) -> #time_series_lab2<-ddply(time_series,~yday,summarise,tot=mean(Contr_temp)) -> -> #time_series_lab<-ddply(time_series,~week,summarise,tot=mean(Contr_temp)) -> #time_series_lab2<-ddply(time_series,~week,summarise,tot=mean(Contr_hum)) -> -> #time_series_lab<-ddply(time_series,~month,summarise,tot=mean(Contr_temp)) -> #time_series_lab2<-ddply(time_series,~month,summarise,tot=mean(Contr_hum)) -> #time_series_lab2<-ddply(time_series,~Date,summarise,tot=mean(Contr_hum)) -> -> write.table(time_series,paste("../../Data_Base/Cases/Taylor_contribution_Time_series_",variable_z,"_",variable_y,"_",variable_x,width_char,"_Simulated_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> proc.time() - user system elapsed -193723.047 4481.237 198225.164