diff --git a/PAPER_Campylobacter_environment_analysis_subset_variables_hum_max.R b/PAPER_Campylobacter_environment_analysis_subset_variables_hum_max.R deleted file mode 100644 index bb82aa466e0a4b3a9dc88ab9f4e9814adba6b477..0000000000000000000000000000000000000000 --- a/PAPER_Campylobacter_environment_analysis_subset_variables_hum_max.R +++ /dev/null @@ -1,725 +0,0 @@ -# The code does look at how the risk of Campylobacter in humans depends on environmental variables. It consider only two variables at a time: Relative humidity and maximum air temeprature -# It uses original MEDMI data - - -rm(list=ls(all=TRUE)) -# -library(ISOweek) -library(lubridate) -library(ggplot2) -require(MASS) -library(scales) -require(pheno) -library(timeDate) -library(pastecs) -library(stringi) -library(timeSeries) - - -list.of.packages <- c("xts") -new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -if(length(new.packages)) install.packages(new.packages) -library(xts) - - - -## Varaible file - -variable<-"humidity" -variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -humidity<-variable_df_1[,-c(1,2)] -#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") - -dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -dates<-rep(dates_s,times=length(variable_df_1)-2) -All_PC_s<-names(variable_df_1[1,]) -All_PC_s<-All_PC_s[-c(1,2)] -All_PC<-rep(All_PC_s,each=length(dates_s)) - -humidity<-humidity[-c(1,2),] -names(humidity) <- NULL -humidity<-unlist(c(humidity)) -#wt<-which(humidity<=0) -#humidity[wt]<-NA - - -variable<-"max_air_temp" -variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -max_temp<-variable_df_2[,-c(1,2)] -max_temp<-max_temp[-c(1,2),] -names(max_temp) <- NULL -max_temp<-unlist(c(max_temp)) -#wt<-which(max_temp>=39) -#max_temp[wt]<-NA - -variable<-"min_air_temp" -variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -min_temp<-variable_df_3[,-c(1,2)] -min_temp<-min_temp[-c(1,2),] -names(min_temp) <- NULL -min_temp<-unlist(c(min_temp)) - - -variable<-"rain" -variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -rain<-variable_df_4[,-c(1,2)] -rain<-rain[-c(1,2),] -names(rain) <- NULL -rain<-unlist(c(rain)) - -variable<-"wind_speed" -variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -wind<-variable_df_5[,-c(1,2)] -wind<-wind[-c(1,2),] -names(wind) <- NULL -wind<-unlist(c(wind)) - - -width<-30 - width_char<-paste(width) - - ######################## include daylength ################## - - Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) - - lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) - colnames(lat_long_lab)<-c("PostCode","lat","long") - PC_df<-data.frame(All_PC,as.Date(dates)) - colnames(PC_df)<-c("PostCode","Date") - - Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") - - - daylength<-function(lat,day_year) - { - #Latitude measure in degrees - P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) - Denom<-cos(lat*pi/180)*cos(P) - Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) - D<-24-(24/pi)*acos(Numer/Denom) - return(D) - } - - latitude<-Post_Codes_df$lat - day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) - - daylength_int1<-mapply(daylength, latitude, day_of_the_year) - daylength_df<-data.frame(Post_Codes_df$PostCode,as.Date(Post_Codes_df$Date),daylength_int1) - colnames(daylength_df)<-c("PostCode","Date","daylength") - - - -######################## Catchment areas ################# - catchment_population_df<-read.csv(paste("../../Data_Base/Catchment_areas/Sum_ByLab_1987_2016.csv",sep="")) - colnames(catchment_population_df)<-c("PostCode","col2","col3", - "residents_1987", - "residents_1988", - "residents_1989", - "residents_1990", - "residents_1991", - "residents_1992", - "residents_1993", - "residents_1994", - "residents_1995", - "residents_1996", - "residents_1997", - "residents_1998", - "residents_1999", - "residents_2000", - "residents_2001", - "residents_2002", - "residents_2003", - "residents_2004", - "residents_2005", - "residents_2006", - "residents_2007", - "residents_2008", - "residents_2009", - "residents_2010", - "residents_2011", - "residents_2012", - "residents_2013", - "residents_2014", - "residents_2015", - "residents_2016", - "residents_2011bis") - - diagnostic_laboratory_info_df<-read.csv(paste("../../Data_Base/Catchment_areas/Lab_information.csv",sep="")) - diagnostic_laboratory_info_df<-diagnostic_laboratory_info_df[,-1] - - - ## This create a database for all laboratories postcode, even if there were zero cases - diagnostic_laboratory_df2<-data.frame(All_PC,dates,humidity,max_temp,min_temp,rain,wind) - colnames(diagnostic_laboratory_df2)<-c("PostCode","Date","humidity", "max_temp", "min_temp","rain","wind") - - - ################################### - - - - starting_year_catchment_population_df<-1987 - end_year_catchment_population_df<-2016 - numb_years<-length(seq(starting_year_catchment_population_df:end_year_catchment_population_df)) - sequence_years<-seq(starting_year_catchment_population_df,end_year_catchment_population_df) - - diagnostic_laboratory_df2$year<-year(diagnostic_laboratory_df2$Date) - - catchment_population_df2<-catchment_population_df[,-c(1:3,34)] - - - - catchment_population_df3<-data.frame( - rep(catchment_population_df$PostCode,times=numb_years), - rep(sequence_years,each=length(unique(catchment_population_df$PostCode))), - stack(catchment_population_df2) - ) - colnames(catchment_population_df3)<-c("PostCode","year","residents","ind") - - catchment_population_df3$year<-as.factor(catchment_population_df3$year) - diagnostic_laboratory_df2$year<-as.factor(diagnostic_laboratory_df2$year) - - catchment_population_df3$PostCode<-as.factor(catchment_population_df3$PostCode) - diagnostic_laboratory_df2$PostCode<-as.factor(diagnostic_laboratory_df2$PostCode) - diagnostic_laboratory_df4<-merge(diagnostic_laboratory_df2, catchment_population_df3,by=c("PostCode","year")) - - - - daylength_df$PostCode<-as.factor(daylength_df$PostCode) - daylength_df$Date<-as.factor(daylength_df$Date) - diagnostic_laboratory_df4$PostCode<-as.factor(diagnostic_laboratory_df4$PostCode) - diagnostic_laboratory_df4$Date<-as.factor(diagnostic_laboratory_df4$Date) - - diagnostic_laboratory_df<-merge(diagnostic_laboratory_df4[,c(1,3:9)], daylength_df,by=c("PostCode","Date")) - - - - - ## This create a database for all postocode where there was at least one case - Campylobacter_cases<-read.csv("../../Data_Base/Cases/Campylobacter_Simulated_Data_final_UK.csv") - Campylobacter_cases<-Campylobacter_cases[,-1] - colnames(Campylobacter_cases)<-c("Cases","Adjusted","Spec_Date", "PostCode","Date","Simulation") - - Campylobacter_cases$PostCode<-stri_replace_all_fixed(Campylobacter_cases$PostCode, " ", "") - Campylobacter_cases$Date<-as.Date((as.character(Campylobacter_cases$Date))) - Campylobacter_cases$year<-as.factor((as.character(year(Campylobacter_cases$Date)))) - Campylobacter_cases$PostCode<-as.factor(Campylobacter_cases$PostCode) - - Campylobacter_cases_df<-merge(Campylobacter_cases, catchment_population_df3,by=c("PostCode","year")) - - - -########################### Weekly average ###################### - -week_cases<-function(lab_fac){ - lab<-as.character(lab_fac) - merged_sub<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PostCode==lab) - - if (length(merged_sub[,1])!=0){ - - merged_sub2<-merged_sub[order(as.Date(merged_sub$Date, format="%Y-%m-%d")),] - - ep <- endpoints(as.xts(merged_sub2$Date),'weeks') - cum_Cases<-period.apply(merged_sub2$Cases, INDEX=ep, FUN=function(x) sum(na.omit(x,na.rm=TRUE))) - - - - PC<-rep(as.character(unique(merged_sub$PostCode)),times=length(ep)-1) - merged_weekly<-data.frame(PC,merged_sub$Date[ep],cum_Cases) - return(merged_weekly)} -} - - -week_PC<-function(lab_fac){ - lab<-as.character(lab_fac) - merged_lab_sub<-subset(diagnostic_laboratory_df,diagnostic_laboratory_df$PostCode==lab) - merged_lab_sub2<-merged_lab_sub[order(as.Date(merged_lab_sub$Date)),] - -# ep <- endpoints(as.xts(merged_lab_sub2$dates),'weeks') - - #mean_humidity<-period.apply(merged_lab_sub2$humidity, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) - #mean_max_temp<-period.apply(merged_lab_sub2$max_temp, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) - #mean_min_temp<-period.apply(merged_lab_sub2$min_temp, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) - #mean_rain<-period.apply(merged_lab_sub2$rain, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) - #cum_rain<-period.apply(merged_lab_sub2$rain, INDEX=ep, FUN=function(x) sum(na.omit(x,na.rm=TRUE))) - #mean_wind<-period.apply(merged_lab_sub2$wind, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) - #mean_residents<-period.apply(merged_lab_sub2$residents, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) - #PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(ep)-1) - - - mean_humidity<-rollmean(merged_lab_sub2$humidity,width) - mean_max_temp<-rollmean(merged_lab_sub2$max_temp, width) - mean_min_temp<-rollmean(merged_lab_sub2$min_temp, width) - mean_rain<-rollmean(merged_lab_sub2$rain, width) - cum_rain<-rollsum(merged_lab_sub2$rain, width) - mean_wind<-rollmean(merged_lab_sub2$wind,width) - mean_residents<-rollmean(merged_lab_sub2$residents, width) - - PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(mean_residents)) - ep<-seq(width,length(mean_residents)+width-1) - - merged_lab_weekly<-data.frame(PC,dates[ep],mean_humidity,mean_max_temp,mean_min_temp,mean_rain,cum_rain,mean_wind,mean_residents) - return(merged_lab_weekly) -} - -merged_lab_weekly<-c() -#merged_cases_weekly<-c() - -index_PC<-unique(diagnostic_laboratory_df$PostCode) -for (i in c(1:length(index_PC))){ - merged_lab_weekly<-rbind(merged_lab_weekly,lapply(index_PC[i], week_PC)[[1]]) - - #merged_cases_weekly<-rbind(merged_cases_weekly,lapply(index_PC[i], week_cases)[[1]]) - print(100*i/length(index_PC)) -} - -colnames(merged_lab_weekly)<-c("PostCode","Date","mean_humidity","mean_max_temp","mean_min_temp","mean_rain","cum_rain","mean_wind","mean_residents") -write.table(merged_lab_weekly,paste("../../Data_Base/OPIE_data_base/Laboratory_",width_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") - - -Campylobacter_cases_df$Cases<-1#WARNING CHECK THIS -Campylobacter_cases_df_weekly<-merge(Campylobacter_cases_df, merged_lab_weekly,by=c("PostCode","Date")) -#Campylobacter_cases_df_weekly<-merge(Campylobacter_cases_df_weekly2, merged_cases_weekly,by=c("PostCode","Date")) - - -diagnostic_laboratory_df<-merged_lab_weekly -#sort(diagnostic_laboratory_df) -Campylobacter_cases_df<-data.frame(Campylobacter_cases_df_weekly$PostCode, - Campylobacter_cases_df_weekly$Date, - Campylobacter_cases_df_weekly$Cases, - Campylobacter_cases_df_weekly$mean_humidity, - Campylobacter_cases_df_weekly$mean_max_temp, - Campylobacter_cases_df_weekly$mean_min_temp, - Campylobacter_cases_df_weekly$mean_rain, - Campylobacter_cases_df_weekly$cum_rain, - Campylobacter_cases_df_weekly$mean_wind, - Campylobacter_cases_df_weekly$mean_residents) - -colnames(Campylobacter_cases_df)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -colnames(diagnostic_laboratory_df)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") - -Campylobacter_cases_df<-Campylobacter_cases_df[order(as.Date(Campylobacter_cases_df$Date)),] - -########################### END Weekly average ###################### - - -#PHE_Centre<-Campylobacter_cases_df$PHE_Centre_Name -#n_Centre<-length(levels(PHE_Centre)) -#i_centre<-6 -#For Dorset only -#merged.data_PHE<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -#merged.data<-subset(merged.data_PHE,year(merged.data_PHE$Date)>=2000 & year(merged.data_PHE$Date)<2016) -merged.data<-subset(Campylobacter_cases_df,year(Campylobacter_cases_df$Date)>=1990 & year(Campylobacter_cases_df$Date)<2015) -merged_lab<-subset(diagnostic_laboratory_df,year(diagnostic_laboratory_df$Date)>=1990 & year(diagnostic_laboratory_df$Date)<2015) -################### weekly summary - - -################### - - -delta_hum<-5 -delta_temp<-1 -delta_rain<-1 -delta_cum_rain<-20 -delta_wind<-2 -breaks_hum<-seq(max(min(na.omit(merged_lab_weekly$mean_humidity))-10,0),max(na.omit(merged_lab_weekly$mean_humidity))+10,by=delta_hum) #i -breaks_min_temp<-seq(min(na.omit(merged_lab_weekly$mean_min_temp))-2, max(na.omit(merged_lab_weekly$mean_min_temp))+2,by=delta_temp) -breaks_max_temp<-seq(min(na.omit(merged_lab_weekly$mean_max_temp))-2, max(na.omit(merged_lab_weekly$mean_max_temp))+2,by=delta_temp) -breaks_rain<-seq(min(na.omit(merged_lab_weekly$mean_rain))-1, max(na.omit(merged_lab_weekly$mean_rain))+1,by=delta_rain) -breaks_wind<-seq(max(min(na.omit(merged_lab_weekly$mean_wind))-2,0),max(na.omit(merged_lab_weekly$mean_wind))+2,by=delta_wind) -#breaks_wind<-seq(max(min(na.omit(wind))-2,0),max(na.omit(wind))+2,by=delta_wind) #WARNING -breaks_cum_rain<-seq(min(na.omit(merged_lab_weekly$cum_rain))-20, max(na.omit(merged_lab_weekly$cum_rain))+20,by=delta_cum_rain) -breaks_mean_temp<-seq(min(na.omit(min_temp))-2,max(na.omit(max_temp))+2,by=delta_temp) - - - -# First find right domain where the values have no NA -i_hum_min<-min(which(breaks_hum>=min(na.omit(merged.data$humidity)))) -i_hum_max<-max(which(breaks_hum<=max(na.omit(merged.data$humidity)))) - -i_min_temp_min<-max(min(which(breaks_min_temp>=min(na.omit(merged.data$min_temp))))-1,1) -i_min_temp_max<-max(max(which(breaks_min_temp<=max(na.omit(merged.data$min_temp))))+1,1) - -i_max_temp_min<-max(min(which(breaks_max_temp>=min(na.omit(merged.data$max_temp))))-1,1) -i_max_temp_max<-max(max(which(breaks_max_temp<=max(na.omit(merged.data$max_temp))))+1,1) - -i_rain_min<-max(min(which(breaks_rain>=min(na.omit(merged.data$rain))))-1,1) -i_rain_max<-max(which(breaks_rain<=max(na.omit(merged.data$rain))))+1 - -i_cum_rain_min<-max(min(which(breaks_cum_rain>=min(na.omit(merged.data$cum_rain))))-1,1) -i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(merged.data$cum_rain))))+1 - - -i_wind_min<-max(min(which(breaks_wind>=min(na.omit(merged.data$wind))))-1,1) -i_wind_max<-max(which(breaks_wind<=max(na.omit(merged.data$wind))))+1 - -print(c(i_hum_min,i_min_temp_min ,i_max_temp_min, i_rain_min,i_wind_min)) -#print(c(i_hum_min,i_hum_max,i_min_temp_min ,i_min_temp_max,i_max_temp_min,i_max_temp_max, i_rain_min,i_rain_max,i_wind_min,i_wind_max)) - - - - - - - -############################# General variables ########################### - - - - - - -variable_x<-"max_air_temp" -# -variable<-"cum_rain" -#variable<-"rain" -#variable<-"wind" -#variable<-"humidity" -var_x_loc_df<-c() - -var_x_loc_df<-unname(var_x_loc_df) - -if (variable=="max_air_temp"){ - - breaks_var<-breaks_max_temp - i_var_min<-i_max_temp_min - i_var_max<-i_max_temp_max - merged.data_var<-merged.data$max_temp - merged_lab_var<-merged_lab$max_temp -} -if (variable_x=="max_air_temp"){ - - i_var_x_min<-i_max_temp_min - i_var_x_max<-i_max_temp_max - breaks_var_x<-breaks_max_temp -} - -if (variable=="min_air_temp"){ - - breaks_var<-breaks_min_temp - i_var_min<-i_min_temp_min - i_var_max<-i_min_temp_max - merged.data_var<-merged.data$min_temp - merged_lab_var<-merged_lab$min_temp -} -if (variable_x=="min_air_temp"){ - - i_var_x_min<-i_min_temp_min - i_var_x_max<-i_min_temp_max - breaks_var_x<-breaks_min_temp -} - - -if (variable=="humidity"){ - - breaks_var<-breaks_hum - i_var_min<-i_hum_min - i_var_max<-i_hum_max - merged.data_var<-merged.data$humidity - merged_lab_var<-merged_lab$humidity -} -if (variable_x=="humidity"){ - - i_var_x_min<-i_hum_min - i_var_x_max<-i_hum_max - breaks_var_x<-breaks_hum -} - - - -if (variable=="mean_temp"){ - - breaks_var<-breaks_mean_temp - i_var_min<-i_mean_temp_min - i_var_max<-i_mean_temp_max - merged.data_var<-merged.data$mean_temp - merged_lab_var<-merged_lab$mean_temp -} -if (variable_x=="mean_temp"){ - - i_var_x_min<-i_mean_temp_min - i_var_x_max<-i_mean_temp_max - breaks_var_x<-breaks_mean_temp -} - -if (variable=="rain"){ - - breaks_var<-breaks_rain - i_var_min<-i_rain_min - i_var_max<-i_rain_max - merged.data_var<-merged.data$rain - merged_lab_var<-merged_lab$rain -} -if (variable_x=="rain"){ - - i_var_x_min<-i_rain_min - i_var_x_max<-i_rain_max - breaks_var_x<-breaks_rain -} - -if (variable=="cum_rain"){ - - breaks_var<-breaks_cum_rain - i_var_min<-i_cum_rain_min - i_var_max<-i_cum_rain_max - merged.data_var<-merged.data$cum_rain - merged_lab_var<-merged_lab$cum_rain -} -if (variable_x=="cum_rain"){ - - i_var_x_min<-i_rain_min - i_var_x_max<-i_rain_max - breaks_var_x<-breaks_cum_rain -} - -if (variable=="wind"){ - - breaks_var<-breaks_wind - i_var_min<-i_wind_min - i_var_max<-i_wind_max - merged.data_var<-merged.data$wind - merged_lab_var<-merged_lab$wind -} -if (variable_x=="wind"){ - - i_var_x_min<-i_wind_min - i_var_x_max<-i_wind_max - breaks_var_x<-breaks_wind -} - - -Yt_var_x<-function(i_var) -{ - - Yt1<-subset(merged.data,merged.data_var>=breaks_var[i_var] & merged.data_var<breaks_var[i_var+1]) - Yt2<-Yt1 - #Yt2<-subset(Yt1,Yt1$max_temp>=breaks_max_temp[i_max_temp] & Yt1$max_temp<=breaks_max_temp[i_max_temp+1]) - #Yt3<-subset(Yt2,Yt2$rain>=breaks_rain[i_rain] & Yt2$rain<=breaks_rain[i_rain+1]) - #Yt4<-subset(Yt3,Yt3$wind>=breaks_wind[i_wind] & Yt3$wind<=breaks_wind[i_wind+1]) - #if (length(Yt2[,1])>0){ - - return(as.list(Yt2)) - # return(Yt4) - #} else { - # Yt2<-NA - #return(Yt2) - - #} - -} - - -Tot_var_x<-function(i_var) -{ - - Yt1<-subset(merged_lab,merged_lab_var>=breaks_var[i_var] & merged_lab_var<breaks_var[i_var+1]) - Yt2<-Yt1 - #Yt2<-subset(Yt1,Yt1$max_temp>=breaks_max_temp[i_max_temp] & Yt1$max_temp<=breaks_max_temp[i_max_temp+1]) - #Yt3<-subset(Yt2,Yt2$rain>=breaks_rain[i_rain] & Yt2$rain<=breaks_rain[i_rain+1]) - #Yt4<-subset(Yt3,Yt3$wind>=breaks_wind[i_wind] & Yt3$wind<=breaks_wind[i_wind+1]) - #if (length(Yt2[,1])>0){ - - return(as.list(Yt2)) - # return(Yt4) - #} else { - # Yt2<-NA - #return(Yt2) - - #} - -} -var_x_loc_df<-c(0) -n_seas<-1 - - -#colnames(var_x_loc_df)<-c(variable_x,"prop","prevalence","month",variable,"counts","counts_tot","residents","residents_tot") - -for (i_var in c(i_var_min:i_var_max)) -{ - for (i in c(1:n_seas)) - { - - n_months<-12/n_seas - #if (is.na(Yt_min_temp(i_hum)$min_temp)==FALSE){ - - wt<-which(month(Yt_var_x(i_var)$Date)>(i-1)*n_months & month(Yt_var_x(i_var)$Date)<=i*n_months) - wt_tot<-which(month(Tot_var_x(i_var)$Date)>(i-1)*n_months & month(Tot_var_x(i_var)$Date)<=i*n_months) - - if (variable_x=="min_air_temp"){ - Campylobacter_var_x<-Yt_var_x(i_var)$min_temp[wt] - var_x_tot<-Tot_var_x(i_var)$min_temp[wt_tot] - - } - if (variable_x=="max_air_temp"){ - Campylobacter_var_x<-Yt_var_x(i_var)$max_temp[wt] - var_x_tot<-Tot_var_x(i_var)$max_temp[wt_tot] - - } - - if (variable_x=="mean_temp"){ - Campylobacter_var_x<-Yt_var_x(i_var)$mean_temp[wt] - var_x_tot<-Tot_var_x(i_var)$mean_temp[wt_tot] - - } - - - - if (variable_x=="humidity"){ - Campylobacter_var_x<-Yt_var_x(i_var)$humidity[wt] - var_x_tot<-Tot_var_x(i_var)$humidity[wt_tot] - - } - if (variable_x=="wind"){ - Campylobacter_var_x<-Yt_var_x(i_var)$wind[wt] - var_x_tot<-Tot_var_x(i_var)$wind[wt_tot] - - } - if (variable_x=="rain"){ - Campylobacter_var_x<-Yt_var_x(i_var)$rain[wt] - var_x_tot<-Tot_var_x(i_var)$rain[wt_tot] - - } - - n_var_x_tot<-hist(var_x_tot,breaks=breaks_var_x) - n_var_x<-hist((as.numeric(as.character(Campylobacter_var_x))),breaks=breaks_var_x) - - residents<-rep(0,times=length(n_var_x$counts)) - residents_tot<-rep(0,times=length(n_var_x$counts)) - - wt<-which(n_var_x_tot$counts!=0) - wt2<-which(n_var_x$counts!=0) - - - if (variable_x=="min_air_temp"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var)$min_temp>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var)$min_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var)$min_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$min_temp<=n_var_x$breaks[wt2[j]]+delta_temp) - residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) - } - } - - } - - - } - if (variable_x=="max_air_temp"){ - - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var)$max_temp>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var)$max_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var)$max_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$max_temp<=n_var_x$breaks[wt2[j]]+delta_temp) - residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) - } - } - - } - - } - - if (variable_x=="mean_temp"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var)$mean_temp>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var)$mean_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var)$mean_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$mean_temp<=n_var_x$breaks[wt2[j]]+delta_temp) - residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) - } - } - - } - } - - - if (variable_x=="humidity"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var)$hum>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var)$hum<=n_var_x_tot$breaks[wt[j]]+delta_hum ) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var)$hum>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$hum<=n_var_x$breaks[wt2[j]]+delta_hum) - residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) - } - } - - } - } - if (variable_x=="wind"){ - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var)$wind>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var)$wind<=n_var_x_tot$breaks[wt[j]]+delta_wind) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var)$wind>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$wind<=n_var_x$breaks[wt2[j]]+delta_wind) - residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) - } - } - - } - - } - if (variable_x=="rain"){ - - if(length(wt)>0){ - for (j in c(1:(length(wt)))){ - - ww<-which(Tot_var_x(i_var)$rain>=n_var_x_tot$breaks[wt[j]] & - Tot_var_x(i_var)$rain<=n_var_x_tot$breaks[wt[j]]+delta_rain) - residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) - } - if(length(wt2)>0){ - for (j in c(1:(length(wt2)))){ - - ww<-which(Yt_var_x(i_var)$rain>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$rain<=n_var_x$breaks[wt2[j]]+delta_rain) - residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) - } - } - - } - } - - - # if(length(residents)>0){ - data_df<-data.frame(n_var_x$mids,n_var_x$counts/n_var_x_tot$counts,(n_var_x$counts)/(residents_tot),i,breaks_var[i_var],n_var_x$counts,n_var_x_tot$counts,residents,residents_tot) - - colnames(data_df)<-c(variable_x,"prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot") - var_x_loc_df<-rbind(var_x_loc_df,data_df) - colnames(var_x_loc_df)<-c(variable_x,"prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot") -#} - #} - - - } -} - - -write.table(var_x_loc_df,paste("../../Data_Base/OPIE_data_base/",variable,"_",variable_x,"_",width_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")