diff --git a/Campylobacter_environment_analysis_subset_variables_hum_rain.R b/Campylobacter_environment_analysis_subset_variables_hum_rain.R
deleted file mode 100644
index e688b1240f4215127c14708c9a1c1dbcc4b6ea45..0000000000000000000000000000000000000000
--- a/Campylobacter_environment_analysis_subset_variables_hum_rain.R
+++ /dev/null
@@ -1,567 +0,0 @@
-# The code does look at how the risk of Campylobacter in humans depends on environmental variables. It consider only two variables at a time: Relative humidity and maximum air temeprature
-# It uses original MEDMI data
-
-
-rm(list=ls(all=TRUE)) 
-# 
-library(ISOweek)
-library(lubridate)
-library(ggplot2)
-require(MASS)
-library(scales)
-require(pheno)
-library(timeDate)
-library(pastecs)
-library(stringi)
-library(timeSeries)
-
-
-list.of.packages <- c("xts")
-new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
-if(length(new.packages)) install.packages(new.packages)
-library(xts)
-
-
-
-## Variable file
-
-variable<-"humidity"
-variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-humidity<-variable_df_1[,-c(1,2)]
-#dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y")
-
-dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d")
-dates<-rep(dates_s,times=length(variable_df_1)-2)
-All_PC_s<-names(variable_df_1[1,])
-All_PC_s<-All_PC_s[-c(1,2)]
-All_PC<-rep(All_PC_s,each=length(dates_s))
-
-humidity<-humidity[-c(1,2),]
-names(humidity) <- NULL
-humidity<-unlist(c(humidity))
-#wt<-which(humidity<=0)
-#humidity[wt]<-NA
-
-
-variable<-"max_air_temp"
-variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-max_temp<-variable_df_2[,-c(1,2)]
-max_temp<-max_temp[-c(1,2),]
-names(max_temp) <- NULL
-max_temp<-unlist(c(max_temp))
-#wt<-which(max_temp>=39)
-#max_temp[wt]<-NA
-
-variable<-"min_air_temp"
-variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-min_temp<-variable_df_3[,-c(1,2)]
-min_temp<-min_temp[-c(1,2),]
-names(min_temp) <- NULL
-min_temp<-unlist(c(min_temp))
-
-
-variable<-"rain"
-variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-rain<-variable_df_4[,-c(1,2)]
-rain<-rain[-c(1,2),]
-names(rain) <- NULL
-rain<-unlist(c(rain))
-
-variable<-"wind_speed"
-variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep=""))
-wind<-variable_df_5[,-c(1,2)]
-wind<-wind[-c(1,2),]
-names(wind) <- NULL
-wind<-unlist(c(wind))
-
-
-width<-14
-  width_char<-paste(width)
-
-######################## Catchment areas #################
-
-population_df<-read.csv(paste("../../Data_Base/Catchment_areas/LSOA2011Population_SumByLabs.csv",sep=""))
-colnames(population_df)<-c("PostCode","col2","col3","residents")
-
-
-
-merged_lab_all2<-data.frame(All_PC,dates,humidity,max_temp,min_temp,rain,wind)
-colnames(merged_lab_all2)<-c("PostCode","dates","humidity",  "max_temp", "min_temp","rain","wind")
-merged_lab_all<-merge(merged_lab_all2, population_df,by="PostCode")
-#
-#merged_lab<-data.frame(dates,humidity,max_temp,min_temp)
-merged.data_all<-read.csv("../../Data_Base/OPIE_data_base/OPIE_environment_Campylobacter.csv")
-
-
-merged.data_all[,2]<-as.Date((as.character(merged.data_all[,2])))
-merged.data_all2<-merged.data_all
-merged.data_all<-merge(merged.data_all2, population_df,by="PostCode")
-
-
-
-########################### Weekly average ######################
-
-week_cases<-function(lab_fac){
-  lab<-as.character(lab_fac)
-  merged_sub<-subset(merged.data_all,merged.data_all$PostCode==lab)
-  
-  if (length(merged_sub[,1])!=0){
-    
-    merged_sub2<-merged_sub[order(as.Date(merged_sub$Date, format="%Y-%m-%d")),]
-    
-    ep <- endpoints(as.xts(merged_sub2$Date),'weeks')
-    cum_Cases<-period.apply(merged_sub2$Cases, INDEX=ep, FUN=function(x) sum(na.omit(x,na.rm=TRUE)))
-    
-    
-    
-    PC<-rep(as.character(unique(merged_sub$PostCode)),times=length(ep)-1)
-    merged_weekly<-data.frame(PC,merged_sub$Date[ep],cum_Cases)
-    return(merged_weekly)}
-}
-
-
-week_PC<-function(lab_fac){
-  lab<-as.character(lab_fac)
-  merged_lab_sub<-subset(merged_lab_all,merged_lab_all$PostCode==lab)
-  merged_lab_sub2<-merged_lab_sub[order(as.Date(merged_lab_sub$dates, format="%Y-%m-%d")),]
-  
-
-  
-  mean_humidity<-rollmean(merged_lab_sub2$humidity,width)
-  mean_max_temp<-rollmean(merged_lab_sub2$max_temp, width)
-  mean_min_temp<-rollmean(merged_lab_sub2$min_temp, width)
-  mean_rain<-rollmean(merged_lab_sub2$rain, width)
-  cum_rain<-rollsum(merged_lab_sub2$rain, width)
-  mean_wind<-rollmean(merged_lab_sub2$wind,width)
-  mean_residents<-rollmean(merged_lab_sub2$residents, width)
-
-  PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(mean_residents))
-  ep<-seq(width,length(mean_residents)+width-1)
-  
-  merged_lab_weekly<-data.frame(PC,dates[ep],mean_humidity,mean_max_temp,mean_min_temp,mean_rain,cum_rain,mean_wind,mean_residents)
-  return(merged_lab_weekly)
-}
-
-merged_lab_weekly<-c()
-#merged_cases_weekly<-c()
-
-index_PC<-unique(merged_lab_all$PostCode)
-for (i in c(1:length(index_PC))){
-  merged_lab_weekly<-rbind(merged_lab_weekly,lapply(index_PC[i], week_PC)[[1]])
-  
-  #merged_cases_weekly<-rbind(merged_cases_weekly,lapply(index_PC[i], week_cases)[[1]])
-  print(100*i/length(index_PC))
-}
-
-
-
-
-
-
-colnames(merged_lab_weekly)<-c("PostCode","Date","mean_humidity","mean_max_temp","mean_min_temp","mean_rain","cum_rain","mean_wind","mean_residents")
-#write.table(merged_lab_weekly,paste("../../Data_Base/OPIE_data_base/Laboratory_",width_char,"_test.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")
-
-
-merged.data_all$Cases<-1
-merged.data_all_weekly<-merge(merged.data_all, merged_lab_weekly,by=c("PostCode","Date"))
-#merged.data_all_weekly<-merge(merged.data_all_weekly2, merged_cases_weekly,by=c("PostCode","Date"))
-
-
-merged_lab_all<-merged_lab_weekly
-#sort(merged_lab_all)
-merged.data_all<-data.frame(merged.data_all_weekly$PostCode, 
-                            merged.data_all_weekly$Date,
-                            merged.data_all_weekly$Cases,
-                            merged.data_all_weekly$mean_humidity, 
-                            merged.data_all_weekly$mean_max_temp, 
-                            merged.data_all_weekly$mean_min_temp,
-                            merged.data_all_weekly$mean_rain,
-                            merged.data_all_weekly$cum_rain,
-                            merged.data_all_weekly$mean_wind, 
-                            merged.data_all_weekly$mean_residents)
-
-colnames(merged.data_all)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-colnames(merged_lab_all)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents")
-
-merged.data_all<-merged.data_all[order(as.Date(merged.data_all$Date)),]
-
-########################### END Weekly average ######################
-
-
-#PHE_Centre<-merged.data_all$PHE_Centre_Name
-#n_Centre<-length(levels(PHE_Centre))
-#i_centre<-6
-#For Dorset only
-#merged.data_PHE<-subset(merged.data_all,merged.data_all$PHE_Centre_Name==levels(PHE_Centre)[i_centre])
-#merged.data<-subset(merged.data_PHE,year(merged.data_PHE$Date)>=2000 & year(merged.data_PHE$Date)<2016)
-merged.data<-subset(merged.data_all,year(merged.data_all$Date)>=1990 & year(merged.data_all$Date)<=2015)
-merged_lab<-subset(merged_lab_all,year(merged_lab_all$Date)>=1990 & year(merged_lab_all$Date)<=2015)
-################### weekly summary
-
-
-###################
-
-delta_hum<-5
-delta_temp<-1
-delta_rain<-1
-delta_wind<-0.5
-breaks_hum<-seq(max(min(na.omit(merged_lab_weekly$mean_humidity))-10,0),max(na.omit(merged_lab_weekly$mean_humidity))+10,by=delta_hum) #i
-breaks_min_temp<-seq(min(na.omit(merged_lab_weekly$mean_min_temp))-2,   max(na.omit(merged_lab_weekly$mean_min_temp))+2,by=delta_temp)
-breaks_max_temp<-seq(min(na.omit(merged_lab_weekly$mean_max_temp))-2,   max(na.omit(merged_lab_weekly$mean_max_temp))+2,by=delta_temp)
-breaks_rain<-seq(min(na.omit(merged_lab_weekly$mean_rain))-1,   max(na.omit(merged_lab_weekly$mean_rain))+1,by=delta_rain)
-breaks_wind<-seq(max(min(na.omit(merged_lab_weekly$mean_wind))-0.5,0),max(na.omit(merged_lab_weekly$mean_wind))+0.5,by=delta_wind)
-#breaks_wind<-seq(max(min(na.omit(wind))-2,0),max(na.omit(wind))+2,by=delta_wind) #WARNING
-breaks_cum_rain<-seq(min(na.omit(merged_lab_weekly$cum_rain))-1,   max(na.omit(merged_lab_weekly$cum_rain))+1,by=delta_rain)
-breaks_mean_temp<-seq(min(na.omit(min_temp))-2,max(na.omit(max_temp))+2,by=delta_temp)
-
-
-
-# First find right domain where the values have no NA
-i_hum_min<-min(which(breaks_hum>=min(na.omit(merged.data$humidity))))
-i_hum_max<-max(which(breaks_hum<=max(na.omit(merged.data$humidity))))
-
-i_min_temp_min<-max(min(which(breaks_min_temp>=min(na.omit(merged.data$min_temp))))-1,1)
-i_min_temp_max<-max(max(which(breaks_min_temp<=max(na.omit(merged.data$min_temp))))+1,1)
-
-i_max_temp_min<-max(min(which(breaks_max_temp>=min(na.omit(merged.data$max_temp))))-1,1)
-i_max_temp_max<-max(max(which(breaks_max_temp<=max(na.omit(merged.data$max_temp))))+1,1)
-
-i_rain_min<-max(min(which(breaks_rain>=min(na.omit(merged.data$rain))))-1,1)
-i_rain_max<-max(which(breaks_rain<=max(na.omit(merged.data$rain))))+1
-
-i_wind_min<-max(min(which(breaks_wind>=min(na.omit(merged.data$wind))))-1,1)
-i_wind_max<-max(which(breaks_wind<=max(na.omit(merged.data$wind))))+1
-
-print(c(i_hum_min,i_min_temp_min ,i_max_temp_min, i_rain_min,i_wind_min))
-#print(c(i_hum_min,i_hum_max,i_min_temp_min ,i_min_temp_max,i_max_temp_min,i_max_temp_max, i_rain_min,i_rain_max,i_wind_min,i_wind_max))
-
-
-
-
-
-
-############################# General variables ###########################
-
-
-
-
-
-
-variable_x<-"max_air_temp"
-#
-variable<-"rain"
-
-
-var_x_loc_df<-c()
-
-
-
-if (variable=="max_air_temp"){
-  
-  breaks_var<-breaks_max_temp
-  i_var_min<-i_max_temp_min
-  i_var_max<-i_max_temp_max
-  merged.data_var<-merged.data$max_temp
-  merged_lab_var<-merged_lab$max_temp
-}
-if (variable_x=="max_air_temp"){
-  
-  i_var_x_min<-i_max_temp_min
-  i_var_x_max<-i_max_temp_max
-  breaks_var_x<-breaks_max_temp
-}
-
-if (variable=="min_air_temp"){
-  
-  breaks_var<-breaks_min_temp
-  i_var_min<-i_min_temp_min
-  i_var_max<-i_min_temp_max
-  merged.data_var<-merged.data$min_temp
-  merged_lab_var<-merged_lab$min_temp
-}
-if (variable_x=="min_air_temp"){
-  
-  i_var_x_min<-i_min_temp_min
-  i_var_x_max<-i_min_temp_max
-  breaks_var_x<-breaks_min_temp
-}
-
-
-if (variable=="humidity"){
-  
-  breaks_var<-breaks_hum
-  i_var_min<-i_hum_min
-  i_var_max<-i_hum_max
-  merged.data_var<-merged.data$humidity
-  merged_lab_var<-merged_lab$humidity
-}
-if (variable_x=="humidity"){
-  
-  i_var_x_min<-i_hum_min
-  i_var_x_max<-i_hum_max
-  breaks_var_x<-breaks_hum
-}
-
-
-
-if (variable=="mean_temp"){
-  
-  breaks_var<-breaks_mean_temp
-  i_var_min<-i_mean_temp_min
-  i_var_max<-i_mean_temp_max
-  merged.data_var<-merged.data$mean_temp
-  merged_lab_var<-merged_lab$mean_temp
-}
-if (variable_x=="mean_temp"){
-  
-  i_var_x_min<-i_mean_temp_min
-  i_var_x_max<-i_mean_temp_max
-  breaks_var_x<-breaks_mean_temp
-}
-
-if (variable=="rain"){
-  
-  breaks_var<-breaks_rain
-  i_var_min<-i_rain_min
-  i_var_max<-i_rain_max
-  merged.data_var<-merged.data$rain
-  merged_lab_var<-merged_lab$rain
-}
-if (variable_x=="rain"){
-  
-  i_var_x_min<-i_rain_min
-  i_var_x_max<-i_rain_max
-  breaks_var_x<-breaks_rain
-}
-
-
-
-if (variable=="wind"){
-  
-  breaks_var<-breaks_wind
-  i_var_min<-i_wind_min
-  i_var_max<-i_wind_max
-  merged.data_var<-merged.data$wind
-  merged_lab_var<-merged_lab$wind
-}
-if (variable_x=="wind"){
-  
-  i_var_x_min<-i_wind_min
-  i_var_x_max<-i_wind_max
-  breaks_var_x<-breaks_wind
-}
-
-Yt_var_x<-function(i_var)
-{
-  
-  Yt1<-subset(merged.data,merged.data_var>=breaks_var[i_var] & merged.data_var<breaks_var[i_var+1])
-  Yt2<-Yt1
-  
-  return(as.list(Yt2))
-  
-}
-
-
-Tot_var_x<-function(i_var)
-{
-  
-  Yt1<-subset(merged_lab,merged_lab_var>=breaks_var[i_var] & merged_lab_var<breaks_var[i_var+1])
-  Yt2<-Yt1
-  
-  return(as.list(Yt2))
-  
-}
-var_x_loc_df<-c(0)
-n_seas<-1
-
-
-for (i_var in c(i_var_min:i_var_max))
-{
-  for (i in c(1:n_seas))
-  {
-    
-     n_months<-12/n_seas
-    #if (is.na(Yt_min_temp(i_hum)$min_temp)==FALSE){
-    
-    wt<-which(month(Yt_var_x(i_var)$Date)>(i-1)*n_months & month(Yt_var_x(i_var)$Date)<=i*n_months)
-    wt_tot<-which(month(Tot_var_x(i_var)$Date)>(i-1)*n_months & month(Tot_var_x(i_var)$Date)<=i*n_months)
-    
-    if (variable_x=="min_air_temp"){
-    Campylobacter_var_x<-Yt_var_x(i_var)$min_temp[wt]
-    var_x_tot<-Tot_var_x(i_var)$min_temp[wt_tot]
-    
-    }
-    if (variable_x=="max_air_temp"){
-      Campylobacter_var_x<-Yt_var_x(i_var)$max_temp[wt]
-      var_x_tot<-Tot_var_x(i_var)$max_temp[wt_tot]
-      
-    }
-    
-    if (variable_x=="mean_temp"){
-      Campylobacter_var_x<-Yt_var_x(i_var)$mean_temp[wt]
-      var_x_tot<-Tot_var_x(i_var)$mean_temp[wt_tot]
-      
-    }
-    
-    
-    
-    if (variable_x=="humidity"){
-      Campylobacter_var_x<-Yt_var_x(i_var)$humidity[wt]
-      var_x_tot<-Tot_var_x(i_var)$humidity[wt_tot]
-      
-    }
-    if (variable_x=="wind"){
-      Campylobacter_var_x<-Yt_var_x(i_var)$wind[wt]
-      var_x_tot<-Tot_var_x(i_var)$wind[wt_tot]
-      
-    }
-    if (variable_x=="rain"){
-      Campylobacter_var_x<-Yt_var_x(i_var)$rain[wt]
-      var_x_tot<-Tot_var_x(i_var)$rain[wt_tot]
-      
-    }
-    
-    n_var_x_tot<-hist(var_x_tot,breaks=breaks_var_x)
-    n_var_x<-hist((as.numeric(as.character(Campylobacter_var_x))),breaks=breaks_var_x)
-    
-    residents<-rep(0,times=length(n_var_x$counts))
-    residents_tot<-rep(0,times=length(n_var_x$counts))
-    
-    wt<-which(n_var_x_tot$counts!=0) 
-    wt2<-which(n_var_x$counts!=0)
-    
-    
-    if (variable_x=="min_air_temp"){
-      if(length(wt)>0){
-      for (j in c(1:(length(wt)))){
-        
-        ww<-which(Tot_var_x(i_var)$min_temp>=n_var_x_tot$breaks[wt[j]] & 
-                    Tot_var_x(i_var)$min_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp   )
-        residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww]))
-      }
-      if(length(wt2)>0){
-        for (j in c(1:(length(wt2)))){
-          
-          ww<-which(Yt_var_x(i_var)$min_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$min_temp<=n_var_x$breaks[wt2[j]]+delta_temp)
-          residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww])
-        }
-      }
-        
-      }
-      
-      
-    }
-    if (variable_x=="max_air_temp"){
-     
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var)$max_temp>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var)$max_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp   )
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var)$max_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$max_temp<=n_var_x$breaks[wt2[j]]+delta_temp)
-            residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww])
-          }
-        }
-        
-      }
-    
-    }
-    
-    if (variable_x=="mean_temp"){
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var)$mean_temp>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var)$mean_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp   )
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var)$mean_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$mean_temp<=n_var_x$breaks[wt2[j]]+delta_temp)
-            residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww])
-          }
-        }
-        
-      }
-    }
-    
-    
-    if (variable_x=="humidity"){
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var)$hum>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var)$hum<=n_var_x_tot$breaks[wt[j]]+delta_hum  )
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var)$hum>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$hum<=n_var_x$breaks[wt2[j]]+delta_hum)
-            residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww])
-          }
-        }
-        
-      }
-    }
-    if (variable_x=="wind"){
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var)$wind>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var)$wind<=n_var_x_tot$breaks[wt[j]]+delta_wind)
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var)$wind>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$wind<=n_var_x$breaks[wt2[j]]+delta_wind)
-            residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww])
-          }
-        }
-        
-      }
-      
-    }
-    if (variable_x=="rain"){
-      
-      if(length(wt)>0){
-        for (j in c(1:(length(wt)))){
-          
-          ww<-which(Tot_var_x(i_var)$rain>=n_var_x_tot$breaks[wt[j]] & 
-                      Tot_var_x(i_var)$rain<=n_var_x_tot$breaks[wt[j]]+delta_rain)
-          residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww]))
-        }
-        if(length(wt2)>0){
-          for (j in c(1:(length(wt2)))){
-            
-            ww<-which(Yt_var_x(i_var)$rain>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$rain<=n_var_x$breaks[wt2[j]]+delta_rain)
-            residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww])
-          }
-        }
-        
-      }
-    }
-    
-    
- #   if(length(residents)>0){
-    data_df<-data.frame(n_var_x$mids,n_var_x$counts/n_var_x_tot$counts,(n_var_x$counts)/(residents_tot),i,breaks_var[i_var],n_var_x$counts,n_var_x_tot$counts,residents,residents_tot)
-    
-    colnames(data_df)<-c(variable_x,"prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot")
-    var_x_loc_df<-rbind(var_x_loc_df,data_df)
-    colnames(var_x_loc_df)<-c(variable_x,"prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot")
-#}
-    #}
-    
-    
-  }
-}
-
-
-write.table(var_x_loc_df,paste("../../Data_Base/OPIE_data_base/",variable,"_",variable_x,"_",width_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n")