diff --git a/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables.Rout b/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables.Rout deleted file mode 100644 index 96ca0acf85a83c5d8d293c60c78c6d0a3bfd03e0..0000000000000000000000000000000000000000 --- a/PAPER_Conditional_probability_quantile_original_MEDMI_4_variables.Rout +++ /dev/null @@ -1,713 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables -> #The code uses old MEDMI data (not corrected for altitude) and analysis done on regular division of the range of the environemtal varaibles rather than quantile. -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> #library(Hmisc) -> -> #list.of.packages <- c("xts") -> #new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -> #if(length(new.packages)) install.packages(new.packages) -> library(xts) -Loading required package: zoo - -Attaching package: ‘zoo’ - -The following object is masked from ‘package:timeSeries’: - - time<- - -The following objects are masked from ‘package:base’: - - as.Date, as.Date.numeric - - -Attaching package: ‘xts’ - -The following objects are masked from ‘package:pastecs’: - - first, last - -> -> -> -> -> ## Varaible file -> -> variable_int<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable_int,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> -> width<-30 -> width_char<-paste(width) -> -> -> -> variable_x<-"daylength" -> #variable<-"daylength" -> variable_y<-"Maximum_air_temperature" -> variable<-"Relative_humidity" -> #variable_x<-"Mean_wind_speed" -> -> #variable_y<-"Mean_Precipitation" -> #variable<-"daylength" -> #variable<-"Mean_Precipitation" -> #"Maximum_air_temperature", -> #"Minimum_air_temperature", -> #"Mean_wind_speed", -> #"Mean_Precipitation", -> #"Relative_humidity", -> #"daylength" -> -> -> Env_Campylobacter_data_all2<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Campylobacter_environment_",width_char,"_original_MEDMI.csv",sep="")) -> -> Env_Campylobacter_data_all2<-Env_Campylobacter_data_all2[,-1] -> colnames(Env_Campylobacter_data_all2)<-c("PostCode","Date","Cases", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> Env_laboratory_weekly<-read.csv(paste("../../Data_Base/Cases_Environment/Simulated_Laboratory_",width_char,"_original_MEDMI.csv",sep="")) -> Env_laboratory_weekly<-Env_laboratory_weekly[,-1] -> colnames(Env_laboratory_weekly)<-c("PostCode","Date", -+ "Maximum_air_temperature", -+ "Minimum_air_temperature", -+ "Mean_wind_speed", -+ "Cumul_Precipitation", -+ "Mean_Precipitation", -+ "Relative_humidity", -+ "daylength", -+ "residents") -> -> -> -> -> Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,year(as.Date(Env_Campylobacter_data_all2$Date))>=1990 & year(as.Date(Env_Campylobacter_data_all2$Date))<=2015) -> Env_laboratory_int1<-subset(Env_laboratory_weekly,year(as.Date(Env_laboratory_weekly$Date))>=1990 & year(as.Date(Env_laboratory_weekly$Date))<=2015) -> -> quarter<-1 -> quarter_char<-paste("_",as.character(quarter),"-quarter",sep="") -> -> breaks_daylength<-(as.numeric(quantile(na.omit(Env_Campylobacter_data_int1$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE))) -> breaks_daylength[length(breaks_daylength)]<-ceiling((as.numeric(quantile(na.omit(Env_Campylobacter_data_int1$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE))))[length(breaks_daylength)] -> -> breaks_daylength[1]<-floor((as.numeric(quantile(na.omit(Env_Campylobacter_data_int1$daylength), probs=seq(0,1, by=0.25), na.rm=TRUE))))[1] -> -> -> -> -> -> -> if (quarter==1){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$daylength<=breaks_daylength[2]) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,Env_laboratory_weekly$daylength<=breaks_daylength[2]) -+ hours_char<-as.character(round(breaks_daylength[2])) -+ } -> -> if (quarter==2){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$daylength>breaks_daylength[2] & Env_Campylobacter_data_all2$daylength<=breaks_daylength[3]) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,Env_laboratory_weekly$daylength>breaks_daylength[2] & Env_laboratory_weekly$daylength<=breaks_daylength[3]) -+ hours_char<-as.character(round(breaks_daylength[3])) -+ } -> -> if (quarter==3){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$daylength>breaks_daylength[3] & Env_Campylobacter_data_all2$daylength<=breaks_daylength[4]) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,Env_laboratory_weekly$daylength>breaks_daylength[3] & Env_laboratory_weekly$daylength<=breaks_daylength[4]) -+ hours_char<-as.character(round(breaks_daylength[4])) -+ } -> -> if (quarter==4){ -+ Env_Campylobacter_data_int1<-subset(Env_Campylobacter_data_all2,Env_Campylobacter_data_all2$daylength>breaks_daylength[4]) -+ Env_laboratory_int1<-subset(Env_laboratory_weekly,Env_laboratory_weekly$daylength>breaks_daylength[4]) -+ hours_char<-as.character(round(breaks_daylength[5])) -+ } -> -> -> -> -> ################### include latitude and longitude -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,]))# -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> -> Env_laboratory_int2<-merge(Env_laboratory_int1,lat_long_lab,by="PostCode") -> Env_laboratory_int3<-data.frame(Env_laboratory_int2) -> -> Env_Campylobacter_data_int2<-merge(Env_Campylobacter_data_int1,lat_long_lab,by="PostCode") -> Env_Campylobacter_data_int3<-data.frame(Env_Campylobacter_data_int2) -> -> -> -> ######################## include daylength ################## -> -> PC_df<-data.frame(All_PC,as.Date(dates)) -> colnames(PC_df)<-c("PostCode","Date") -> -> -> Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") -> -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Post_Codes_df$lat -> day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(latitude, day_of_the_year,as.Date(Post_Codes_df$Date),daylength_int1) -> colnames(daylength_df)<-c("lat","day_year","Date","daylength") -> daylength_df$Date<-as.factor(daylength_df$Date) -> daylength_df$lat<-as.factor(daylength_df$lat) -> Env_laboratory_int3$Date<-as.factor(Env_laboratory_int3$Date) -> Env_laboratory_int3$lat<-as.factor(Env_laboratory_int3$lat) -> -> #Env_laboratory_int4<-merge(Env_laboratory_int3,daylength_df,by=c("lat","Date")) -> #Env_laboratory<-data.frame(Env_laboratory_int4) -> Env_laboratory<-data.frame(Env_laboratory_int3) -> Env_Campylobacter_data_int3$Date<-as.factor(Env_Campylobacter_data_int3$Date) -> Env_Campylobacter_data_int3$lat <-as.factor(Env_Campylobacter_data_int3$lat) -> -> -> #Env_Campylobacter_data_int4<-merge(Env_Campylobacter_data_int3,daylength_df,by=c("lat","Date")) -> #Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int4) -> Env_Campylobacter_data<-data.frame(Env_Campylobacter_data_int3) -> -> -> -> -> -> ################### Divide the domains of the variables in bins according to quantiles -> -> -> index_C<-which (names(Env_Campylobacter_data)==variable) -> index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -> index_x_C<-which (names(Env_Campylobacter_data)==variable_x) -> -> index_res_C<-which (names(Env_Campylobacter_data)=="residents") -> -> -> index<-which (names(Env_laboratory)==variable) -> index_y<-which (names(Env_laboratory)==variable_y) -> index_x<-which (names(Env_laboratory)==variable_x) -> index_res<-which (names(Env_laboratory)=="residents") -> -> -> ######################### -> -> -> breaks_z_lab<-function(variable,by_z) -+ { -+ -+ index<-which (names(Env_laboratory)==variable) -+ -+ -+ breaks_z<-as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)) -+ breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] -+ breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory[,index]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] -+ -+ -+ return(breaks_z) -+ -+ } -> -> -> -> breaks_z<-function(variable,by_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ -+ breaks_z<-as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)) -+ -+ breaks_z[length(breaks_z)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[length(breaks_z)] -+ breaks_z[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data[,index_C]), probs=seq(0,1, by=by_z), na.rm=TRUE)))[1] -+ -+ -+ return(breaks_z) -+ -+ } -> -> -> -> -> breaks_y_lab<-function(variable,variable_y,by_z,by_y,j_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ -+ index<-which (names(Env_laboratory)==variable) -+ index_y<-which (names(Env_laboratory)==variable_y) -+ -+ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ wt<-(findInterval(Env_laboratory[,index],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_laboratory_some<-Env_laboratory[ww,] -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ breaks_y<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)) -+ breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] -+ breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_y]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] -+ -+ }else{ -+ -+ breaks_y<-c() -+ } -+ -+ return(breaks_y) -+ } -> -> -> -> breaks_y<-function(variable,variable_y,by_z,by_y,j_z) -+ { -+ -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ -+ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_C],breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ breaks_y<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)) -+ breaks_y[length(breaks_y)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[length(breaks_y)] -+ breaks_y[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some[,index_y_C]), probs=seq(0,1, by=by_y), na.rm=TRUE)))[1] -+ -+ }else{ -+ -+ breaks_y<-c() -+ } -+ -+ return(breaks_y) -+ } -> -> -> -> breaks_x_lab<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y) -+ { -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ -+ -+ index<-which (names(Env_laboratory)==variable) -+ index_y<-which (names(Env_laboratory)==variable_y) -+ index_x<-which (names(Env_laboratory)==variable_x) -+ -+ if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ wt<-(findInterval(Env_laboratory[,index_y],breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_laboratory_some<-Env_laboratory[ww,] -+ -+ -+ breaks_x<-as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)) -+ breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)] -+ breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_laboratory_some[,index_x]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1] -+ -+ } else { -+ -+ breaks_x<-c() -+ } } else { -+ -+ breaks_x<-c() -+ -+ } -+ -+ return(breaks_x) -+ } -> -> -> breaks_x<-function(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y) -+ { -+ index_C<-which (names(Env_Campylobacter_data)==variable) -+ index_y_C<-which (names(Env_Campylobacter_data)==variable_y) -+ index_x_C<-which (names(Env_Campylobacter_data)==variable_x) -+ -+ if(is.na(breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y])=='FALSE'){ -+ -+ wt<-(findInterval(Env_Campylobacter_data[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_some<-Env_Campylobacter_data[ww,] -+ -+ if (length(Env_Campylobacter_data_some[,1])!=0) { -+ -+ wt<-(findInterval(Env_Campylobacter_data_some[,index_y_C],breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_some2<-Env_Campylobacter_data_some[ww,] -+ -+ -+ breaks_x<-as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)) -+ breaks_x[length(breaks_x)]<-ceiling(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[length(breaks_x)] -+ breaks_x[1]<-floor(as.numeric(quantile(na.omit(Env_Campylobacter_data_some2[,index_x_C]), probs=seq(0,1, by=by_x), na.rm=TRUE)))[1] -+ -+ } else -+ { breaks_x<-c() -+ } -+ } -+ else { -+ -+ breaks_x<-c() -+ -+ } -+ -+ return(breaks_x) -+ } -> -> -> ################# -> -> -> -> -> var_x_loc_df<-data.frame(character(), character(),character(),numeric(),numeric(),numeric()) -> colnames(var_x_loc_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") -> -> residents_i_var<-0 -> residents_universal<-0 -> #i_var_max<-length(breaks_var) -> #i_var_min<-1 -> #i_var_max_x<-length(breaks_var_x) -> #i_var_min_x<-1 -> -> -> ##################### -> by_z<-0.25 -> by_y<-0.25 -> by_x<-0.1 -> -> #i_var_min<-breaks_z(variable,by_z)[1] -> #i_var_max<-breaks_z(variable,by_z)[length(breaks_z(variable,by_z))] -> j_z_min<-1 -> j_z_max<-length(breaks_z(variable,by_z))-1 -> -> -> -> for (j_z in c(j_z_min:j_z_max)) -+ { -+ -+ wt<-(findInterval((Env_Campylobacter_data[,index_C]),breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_Campylobacter_data_z<-Env_Campylobacter_data[ww,] -+ -+ wt<-(findInterval((Env_laboratory[,index]),breaks_z(variable,by_z))) -+ ww<-which(wt==j_z) -+ Env_laboratory_z<-Env_laboratory[ww,] -+ -+ if (length(Env_Campylobacter_data_z[,1])!=0){ -+ if (length(breaks_y(variable,variable_y,by_z,by_y,j_z))!=0){ -+ -+ j_y_min<-1 -+ j_y_max<-length(breaks_y(variable,variable_y,by_z,by_y,j_z))-1 -+ -+ -+ -+ for (j_y in c(j_y_min:j_y_max)) -+ { -+ -+ wt<-(findInterval((Env_Campylobacter_data_z[,index_y_C]),breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_Campylobacter_data_y<-Env_Campylobacter_data_z[ww,] -+ -+ wt<-(findInterval((Env_laboratory_z[,index_y]),breaks_y(variable,variable_y,by_z,by_y,j_z))) -+ ww<-which(wt==j_y) -+ Env_laboratory_y<-Env_laboratory_z[ww,] -+ -+ -+ if (length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))!=0){ -+ -+ j_x_min<-1 -+ j_x_max<- length(breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))-1 -+ for (j_x in c(j_x_min:j_x_max)) -+ { -+ -+ -+ wt<-(findInterval((Env_Campylobacter_data_y[,index_x_C]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))) -+ ww<-which(wt==j_x) -+ Yt1<-Env_Campylobacter_data_y[ww,c(1:3,index_C,index_y_C,index_x_C,index_res_C)] -+ -+ wt<-(findInterval((Env_laboratory[,index_x]),breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y))) -+ ww<-which(wt==j_x) -+ Y_tot<-Env_laboratory_y[ww,c(1:2,index,index_y,index_x,index_res)] -+ -+ Total_cases<-sum((as.numeric(na.omit(Yt1$Cases)))) -+ residents<-sum((as.numeric(na.omit(Yt1$residents)))) -+ residents_tot<-sum((as.numeric(na.omit(Y_tot$residents)))) -+ -+ data_df<-data.frame( -+ breaks_z(variable,by_z)[j_z], -+ breaks_y(variable,variable_y,by_z,by_y,j_z)[j_y], -+ breaks_x(variable,variable_y,variable_x,by_z,by_y,by_x,j_z,j_y)[j_x], -+ Total_cases, -+ residents, -+ residents_tot) -+ -+ -+ -+ -+ -+ colnames(data_df)<-c(variable,variable_y,variable_x,"counts","residents","residents_tot") -+ var_x_loc_df<-rbind(var_x_loc_df,data_df) -+ print(c(j_x,j_y,j_z, Total_cases)) -+ -+ }}} -+ } -+ -+ -+ }} -[1] 1 1 1 1064 -[1] 2 1 1 577 -[1] 3 1 1 666 -[1] 4 1 1 1040 -[1] 5 1 1 1142 -[1] 6 1 1 1908 -[1] 7 1 1 3095 -[1] 8 1 1 3122 -[1] 9 1 1 5401 -[1] 10 1 1 7128 -[1] 1 2 1 972 -[1] 2 2 1 1162 -[1] 3 2 1 1138 -[1] 4 2 1 1236 -[1] 5 2 1 1345 -[1] 6 2 1 1647 -[1] 7 2 1 2838 -[1] 8 2 1 4556 -[1] 9 2 1 5122 -[1] 10 2 1 6251 -[1] 1 3 1 546 -[1] 2 3 1 1029 -[1] 3 3 1 1317 -[1] 4 3 1 1434 -[1] 5 3 1 1368 -[1] 6 3 1 1511 -[1] 7 3 1 2429 -[1] 8 3 1 4258 -[1] 9 3 1 6212 -[1] 10 3 1 6036 -[1] 1 4 1 583 -[1] 2 4 1 924 -[1] 3 4 1 1381 -[1] 4 4 1 1748 -[1] 5 4 1 2166 -[1] 6 4 1 2818 -[1] 7 4 1 3349 -[1] 8 4 1 4162 -[1] 9 4 1 4605 -[1] 10 4 1 4829 -[1] 1 1 2 2805 -[1] 2 1 2 2811 -[1] 3 1 2 2238 -[1] 4 1 2 2192 -[1] 5 1 2 2184 -[1] 6 1 2 2473 -[1] 7 1 2 1871 -[1] 8 1 2 2275 -[1] 9 1 2 2927 -[1] 10 1 2 2494 -[1] 1 2 2 2278 -[1] 2 2 2 1901 -[1] 3 2 2 1997 -[1] 4 2 2 1828 -[1] 5 2 2 1534 -[1] 6 2 2 3887 -[1] 7 2 2 4279 -[1] 8 2 2 3363 -[1] 9 2 2 3020 -[1] 10 2 2 1476 -[1] 1 3 2 1982 -[1] 2 3 2 2525 -[1] 3 3 2 2501 -[1] 4 3 2 2431 -[1] 5 3 2 2381 -[1] 6 3 2 3492 -[1] 7 3 2 4241 -[1] 8 3 2 3423 -[1] 9 3 2 2183 -[1] 10 3 2 464 -[1] 1 4 2 2163 -[1] 2 4 2 2214 -[1] 3 4 2 3260 -[1] 4 4 2 3809 -[1] 5 4 2 3482 -[1] 6 4 2 3064 -[1] 7 4 2 2886 -[1] 8 4 2 2295 -[1] 9 4 2 1985 -[1] 10 4 2 1811 -[1] 1 1 3 2036 -[1] 2 1 3 2310 -[1] 3 1 3 2636 -[1] 4 1 3 2704 -[1] 5 1 3 2889 -[1] 6 1 3 2771 -[1] 7 1 3 2501 -[1] 8 1 3 2471 -[1] 9 1 3 2219 -[1] 10 1 3 2837 -[1] 1 2 3 3304 -[1] 2 2 3 3872 -[1] 3 2 3 3600 -[1] 4 2 3 3187 -[1] 5 2 3 3171 -[1] 6 2 3 3000 -[1] 7 2 3 1250 -[1] 8 2 3 1670 -[1] 9 2 3 1061 -[1] 10 2 3 1435 -[1] 1 3 3 4450 -[1] 2 3 3 3521 -[1] 3 3 3 3370 -[1] 4 3 3 2844 -[1] 5 3 3 2559 -[1] 6 3 3 2693 -[1] 7 3 3 2134 -[1] 8 3 3 1003 -[1] 9 3 3 1157 -[1] 10 3 3 1715 -[1] 1 4 3 3517 -[1] 2 4 3 2242 -[1] 3 4 3 2944 -[1] 4 4 3 2524 -[1] 5 4 3 2988 -[1] 6 4 3 2336 -[1] 7 4 3 2505 -[1] 8 4 3 2344 -[1] 9 4 3 2953 -[1] 10 4 3 2954 -[1] 1 1 4 2784 -[1] 2 1 4 2783 -[1] 3 1 4 2913 -[1] 4 1 4 2629 -[1] 5 1 4 2895 -[1] 6 1 4 2777 -[1] 7 1 4 3256 -[1] 8 1 4 3555 -[1] 9 1 4 2018 -[1] 10 1 4 943 -[1] 1 2 4 2603 -[1] 2 2 4 3785 -[1] 3 2 4 3606 -[1] 4 2 4 3612 -[1] 5 2 4 3323 -[1] 6 2 4 2484 -[1] 7 2 4 2889 -[1] 8 2 4 2143 -[1] 9 2 4 1459 -[1] 10 2 4 365 -[1] 1 3 4 2931 -[1] 2 3 4 4489 -[1] 3 3 4 4386 -[1] 4 3 4 5211 -[1] 5 3 4 4429 -[1] 6 3 4 2361 -[1] 7 3 4 514 -[1] 8 3 4 1240 -[1] 9 3 4 985 -[1] 10 3 4 228 -[1] 1 4 4 4817 -[1] 2 4 4 6199 -[1] 3 4 4 5312 -[1] 4 4 4 3519 -[1] 5 4 4 2500 -[1] 6 4 4 1596 -[1] 7 4 4 1211 -[1] 8 4 4 1051 -[1] 9 4 4 980 -[1] 10 4 4 466 -> -> -> write.csv(var_x_loc_df,paste("../../Data_Base/Cases_Environment/Conditional_probability_",variable,"_",variable_y,"_",variable_x,"_",width_char,"_",hours_char,"_Simulated_for_rec_original_MEDMI_quantile.csv",sep="")) -> -> proc.time() - user system elapsed -319.283 9.656 328.960