From 043351011dc1c41e3a9a5dae196de02d89ea7b26 Mon Sep 17 00:00:00 2001 From: "Lo Iacono, Giovanni Dr (School of Vet Med.)" <g.loiacono@surrey.ac.uk> Date: Wed, 10 May 2023 14:12:52 +0000 Subject: [PATCH] Delete PAPER_Campylobacter_environment_analysis_subset_variables_hum_max.Rout --- ...ent_analysis_subset_variables_hum_max.Rout | 1002 ----------------- 1 file changed, 1002 deletions(-) delete mode 100644 PAPER_Campylobacter_environment_analysis_subset_variables_hum_max.Rout diff --git a/PAPER_Campylobacter_environment_analysis_subset_variables_hum_max.Rout b/PAPER_Campylobacter_environment_analysis_subset_variables_hum_max.Rout deleted file mode 100644 index 2f5845b..0000000 --- a/PAPER_Campylobacter_environment_analysis_subset_variables_hum_max.Rout +++ /dev/null @@ -1,1002 +0,0 @@ - -R version 3.5.3 (2019-03-11) -- "Great Truth" -Copyright (C) 2019 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - - Natural language support but running in an English locale - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -[Previously saved workspace restored] - -> # The code does look at how the risk of Campylobacter in humans depends on environmental variables. It consider only two variables at a time: Relative humidity and maximum air temeprature -> # It uses original MEDMI data -> -> -> rm(list=ls(all=TRUE)) -> # -> library(ISOweek) -> library(lubridate) - -Attaching package: ‘lubridate’ - -The following object is masked from ‘package:base’: - - date - -> library(ggplot2) -> require(MASS) -Loading required package: MASS -> library(scales) -> require(pheno) -Loading required package: pheno -Loading required package: nlme -Loading required package: SparseM - -Attaching package: ‘SparseM’ - -The following object is masked from ‘package:base’: - - backsolve - -Loading required package: quantreg -> library(timeDate) -> library(pastecs) -> library(stringi) -> library(timeSeries) -> -> -> list.of.packages <- c("xts") -> new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] -> if(length(new.packages)) install.packages(new.packages) -> library(xts) -Loading required package: zoo - -Attaching package: ‘zoo’ - -The following object is masked from ‘package:timeSeries’: - - time<- - -The following objects are masked from ‘package:base’: - - as.Date, as.Date.numeric - - -Attaching package: ‘xts’ - -The following objects are masked from ‘package:pastecs’: - - first, last - -> -> -> -> ## Varaible file -> -> variable<-"humidity" -> variable_df_1<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> humidity<-variable_df_1[,-c(1,2)] -> #dates<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%d/%m/%Y") -> -> dates_s<-as.Date(as.character(variable_df_1[-c(1,2),2]),format="%Y-%m-%d") -> dates<-rep(dates_s,times=length(variable_df_1)-2) -> All_PC_s<-names(variable_df_1[1,]) -> All_PC_s<-All_PC_s[-c(1,2)] -> All_PC<-rep(All_PC_s,each=length(dates_s)) -> -> humidity<-humidity[-c(1,2),] -> names(humidity) <- NULL -> humidity<-unlist(c(humidity)) -> #wt<-which(humidity<=0) -> #humidity[wt]<-NA -> -> -> variable<-"max_air_temp" -> variable_df_2<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> max_temp<-variable_df_2[,-c(1,2)] -> max_temp<-max_temp[-c(1,2),] -> names(max_temp) <- NULL -> max_temp<-unlist(c(max_temp)) -> #wt<-which(max_temp>=39) -> #max_temp[wt]<-NA -> -> variable<-"min_air_temp" -> variable_df_3<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> min_temp<-variable_df_3[,-c(1,2)] -> min_temp<-min_temp[-c(1,2),] -> names(min_temp) <- NULL -> min_temp<-unlist(c(min_temp)) -> -> -> variable<-"rain" -> variable_df_4<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> rain<-variable_df_4[,-c(1,2)] -> rain<-rain[-c(1,2),] -> names(rain) <- NULL -> rain<-unlist(c(rain)) -> -> variable<-"wind_speed" -> variable_df_5<-read.csv(paste("../../Data_Base/OPIE_data_base/",variable,".csv",sep="")) -> wind<-variable_df_5[,-c(1,2)] -> wind<-wind[-c(1,2),] -> names(wind) <- NULL -> wind<-unlist(c(wind)) -> -> -> width<-30 -> width_char<-paste(width) -> -> ######################## include daylength ################## -> -> Coord_laboratory<-read.csv(paste("../../Data_Base/Cases/Lab_PostCodes.csv",sep="")) -> -> lat_long_lab<-data.frame(names(Coord_laboratory),as.numeric(Coord_laboratory[1,]),as.numeric(Coord_laboratory[2,])) -> colnames(lat_long_lab)<-c("PostCode","lat","long") -> PC_df<-data.frame(All_PC,as.Date(dates)) -> colnames(PC_df)<-c("PostCode","Date") -> -> Post_Codes_df<-merge(PC_df,lat_long_lab,by="PostCode") -> -> -> daylength<-function(lat,day_year) -+ { -+ #Latitude measure in degrees -+ P <- asin(.39795*cos(.2163108 + 2*atan(.9671396*tan(.00860*(day_year-186))))) -+ Denom<-cos(lat*pi/180)*cos(P) -+ Numer<-sin(0.8333*pi/180) + sin(lat*pi/180)*sin(P) -+ D<-24-(24/pi)*acos(Numer/Denom) -+ return(D) -+ } -> -> latitude<-Post_Codes_df$lat -> day_of_the_year<-yday(as.Date(Post_Codes_df$Date)) -> -> daylength_int1<-mapply(daylength, latitude, day_of_the_year) -> daylength_df<-data.frame(Post_Codes_df$PostCode,as.Date(Post_Codes_df$Date),daylength_int1) -> colnames(daylength_df)<-c("PostCode","Date","daylength") -> -> -> -> ######################## Catchment areas ################# -> catchment_population_df<-read.csv(paste("../../Data_Base/Catchment_areas/Sum_ByLab_1987_2016.csv",sep="")) -> colnames(catchment_population_df)<-c("PostCode","col2","col3", -+ "residents_1987", -+ "residents_1988", -+ "residents_1989", -+ "residents_1990", -+ "residents_1991", -+ "residents_1992", -+ "residents_1993", -+ "residents_1994", -+ "residents_1995", -+ "residents_1996", -+ "residents_1997", -+ "residents_1998", -+ "residents_1999", -+ "residents_2000", -+ "residents_2001", -+ "residents_2002", -+ "residents_2003", -+ "residents_2004", -+ "residents_2005", -+ "residents_2006", -+ "residents_2007", -+ "residents_2008", -+ "residents_2009", -+ "residents_2010", -+ "residents_2011", -+ "residents_2012", -+ "residents_2013", -+ "residents_2014", -+ "residents_2015", -+ "residents_2016", -+ "residents_2011bis") -> -> diagnostic_laboratory_info_df<-read.csv(paste("../../Data_Base/Catchment_areas/Lab_information.csv",sep="")) -> diagnostic_laboratory_info_df<-diagnostic_laboratory_info_df[,-1] -> -> -> ## This create a database for all laboratories postcode, even if there were zero cases -> diagnostic_laboratory_df2<-data.frame(All_PC,dates,humidity,max_temp,min_temp,rain,wind) -> colnames(diagnostic_laboratory_df2)<-c("PostCode","Date","humidity", "max_temp", "min_temp","rain","wind") -> -> -> ################################### -> -> -> -> starting_year_catchment_population_df<-1987 -> end_year_catchment_population_df<-2016 -> numb_years<-length(seq(starting_year_catchment_population_df:end_year_catchment_population_df)) -> sequence_years<-seq(starting_year_catchment_population_df,end_year_catchment_population_df) -> -> diagnostic_laboratory_df2$year<-year(diagnostic_laboratory_df2$Date) -> -> catchment_population_df2<-catchment_population_df[,-c(1:3,34)] -> -> -> -> catchment_population_df3<-data.frame( -+ rep(catchment_population_df$PostCode,times=numb_years), -+ rep(sequence_years,each=length(unique(catchment_population_df$PostCode))), -+ stack(catchment_population_df2) -+ ) -> colnames(catchment_population_df3)<-c("PostCode","year","residents","ind") -> -> catchment_population_df3$year<-as.factor(catchment_population_df3$year) -> diagnostic_laboratory_df2$year<-as.factor(diagnostic_laboratory_df2$year) -> -> catchment_population_df3$PostCode<-as.factor(catchment_population_df3$PostCode) -> diagnostic_laboratory_df2$PostCode<-as.factor(diagnostic_laboratory_df2$PostCode) -> diagnostic_laboratory_df4<-merge(diagnostic_laboratory_df2, catchment_population_df3,by=c("PostCode","year")) -> -> -> -> daylength_df$PostCode<-as.factor(daylength_df$PostCode) -> daylength_df$Date<-as.factor(daylength_df$Date) -> diagnostic_laboratory_df4$PostCode<-as.factor(diagnostic_laboratory_df4$PostCode) -> diagnostic_laboratory_df4$Date<-as.factor(diagnostic_laboratory_df4$Date) -> -> diagnostic_laboratory_df<-merge(diagnostic_laboratory_df4[,c(1,3:9)], daylength_df,by=c("PostCode","Date")) -> -> -> -> -> ## This create a database for all postocode where there was at least one case -> Campylobacter_cases<-read.csv("../../Data_Base/Cases/Campylobacter_Simulated_Data_final_UK.csv") -> Campylobacter_cases<-Campylobacter_cases[,-1] -> colnames(Campylobacter_cases)<-c("Cases","Adjusted","Spec_Date", "PostCode","Date","Simulation") -> -> Campylobacter_cases$PostCode<-stri_replace_all_fixed(Campylobacter_cases$PostCode, " ", "") -> Campylobacter_cases$Date<-as.Date((as.character(Campylobacter_cases$Date))) -> Campylobacter_cases$year<-as.factor((as.character(year(Campylobacter_cases$Date)))) -> Campylobacter_cases$PostCode<-as.factor(Campylobacter_cases$PostCode) -> -> Campylobacter_cases_df<-merge(Campylobacter_cases, catchment_population_df3,by=c("PostCode","year")) -> -> -> -> ########################### Weekly average ###################### -> -> week_cases<-function(lab_fac){ -+ lab<-as.character(lab_fac) -+ merged_sub<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PostCode==lab) -+ -+ if (length(merged_sub[,1])!=0){ -+ -+ merged_sub2<-merged_sub[order(as.Date(merged_sub$Date, format="%Y-%m-%d")),] -+ -+ ep <- endpoints(as.xts(merged_sub2$Date),'weeks') -+ cum_Cases<-period.apply(merged_sub2$Cases, INDEX=ep, FUN=function(x) sum(na.omit(x,na.rm=TRUE))) -+ -+ -+ -+ PC<-rep(as.character(unique(merged_sub$PostCode)),times=length(ep)-1) -+ merged_weekly<-data.frame(PC,merged_sub$Date[ep],cum_Cases) -+ return(merged_weekly)} -+ } -> -> -> week_PC<-function(lab_fac){ -+ lab<-as.character(lab_fac) -+ merged_lab_sub<-subset(diagnostic_laboratory_df,diagnostic_laboratory_df$PostCode==lab) -+ merged_lab_sub2<-merged_lab_sub[order(as.Date(merged_lab_sub$Date)),] -+ -+ # ep <- endpoints(as.xts(merged_lab_sub2$dates),'weeks') -+ -+ #mean_humidity<-period.apply(merged_lab_sub2$humidity, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) -+ #mean_max_temp<-period.apply(merged_lab_sub2$max_temp, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) -+ #mean_min_temp<-period.apply(merged_lab_sub2$min_temp, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) -+ #mean_rain<-period.apply(merged_lab_sub2$rain, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) -+ #cum_rain<-period.apply(merged_lab_sub2$rain, INDEX=ep, FUN=function(x) sum(na.omit(x,na.rm=TRUE))) -+ #mean_wind<-period.apply(merged_lab_sub2$wind, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) -+ #mean_residents<-period.apply(merged_lab_sub2$residents, INDEX=ep, FUN=function(x) mean(na.omit(x,na.rm=TRUE))) -+ #PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(ep)-1) -+ -+ -+ mean_humidity<-rollmean(merged_lab_sub2$humidity,width) -+ mean_max_temp<-rollmean(merged_lab_sub2$max_temp, width) -+ mean_min_temp<-rollmean(merged_lab_sub2$min_temp, width) -+ mean_rain<-rollmean(merged_lab_sub2$rain, width) -+ cum_rain<-rollsum(merged_lab_sub2$rain, width) -+ mean_wind<-rollmean(merged_lab_sub2$wind,width) -+ mean_residents<-rollmean(merged_lab_sub2$residents, width) -+ -+ PC<-rep(as.character(unique(merged_lab_sub$PostCode)),times=length(mean_residents)) -+ ep<-seq(width,length(mean_residents)+width-1) -+ -+ merged_lab_weekly<-data.frame(PC,dates[ep],mean_humidity,mean_max_temp,mean_min_temp,mean_rain,cum_rain,mean_wind,mean_residents) -+ return(merged_lab_weekly) -+ } -> -> merged_lab_weekly<-c() -> #merged_cases_weekly<-c() -> -> index_PC<-unique(diagnostic_laboratory_df$PostCode) -> for (i in c(1:length(index_PC))){ -+ merged_lab_weekly<-rbind(merged_lab_weekly,lapply(index_PC[i], week_PC)[[1]]) -+ -+ #merged_cases_weekly<-rbind(merged_cases_weekly,lapply(index_PC[i], week_cases)[[1]]) -+ print(100*i/length(index_PC)) -+ } -[1] 0.4694836 -[1] 0.9389671 -[1] 1.408451 -[1] 1.877934 -[1] 2.347418 -[1] 2.816901 -[1] 3.286385 -[1] 3.755869 -[1] 4.225352 -[1] 4.694836 -[1] 5.164319 -[1] 5.633803 -[1] 6.103286 -[1] 6.57277 -[1] 7.042254 -[1] 7.511737 -[1] 7.981221 -[1] 8.450704 -[1] 8.920188 -[1] 9.389671 -[1] 9.859155 -[1] 10.32864 -[1] 10.79812 -[1] 11.26761 -[1] 11.73709 -[1] 12.20657 -[1] 12.67606 -[1] 13.14554 -[1] 13.61502 -[1] 14.08451 -[1] 14.55399 -[1] 15.02347 -[1] 15.49296 -[1] 15.96244 -[1] 16.43192 -[1] 16.90141 -[1] 17.37089 -[1] 17.84038 -[1] 18.30986 -[1] 18.77934 -[1] 19.24883 -[1] 19.71831 -[1] 20.18779 -[1] 20.65728 -[1] 21.12676 -[1] 21.59624 -[1] 22.06573 -[1] 22.53521 -[1] 23.00469 -[1] 23.47418 -[1] 23.94366 -[1] 24.41315 -[1] 24.88263 -[1] 25.35211 -[1] 25.8216 -[1] 26.29108 -[1] 26.76056 -[1] 27.23005 -[1] 27.69953 -[1] 28.16901 -[1] 28.6385 -[1] 29.10798 -[1] 29.57746 -[1] 30.04695 -[1] 30.51643 -[1] 30.98592 -[1] 31.4554 -[1] 31.92488 -[1] 32.39437 -[1] 32.86385 -[1] 33.33333 -[1] 33.80282 -[1] 34.2723 -[1] 34.74178 -[1] 35.21127 -[1] 35.68075 -[1] 36.15023 -[1] 36.61972 -[1] 37.0892 -[1] 37.55869 -[1] 38.02817 -[1] 38.49765 -[1] 38.96714 -[1] 39.43662 -[1] 39.9061 -[1] 40.37559 -[1] 40.84507 -[1] 41.31455 -[1] 41.78404 -[1] 42.25352 -[1] 42.723 -[1] 43.19249 -[1] 43.66197 -[1] 44.13146 -[1] 44.60094 -[1] 45.07042 -[1] 45.53991 -[1] 46.00939 -[1] 46.47887 -[1] 46.94836 -[1] 47.41784 -[1] 47.88732 -[1] 48.35681 -[1] 48.82629 -[1] 49.29577 -[1] 49.76526 -[1] 50.23474 -[1] 50.70423 -[1] 51.17371 -[1] 51.64319 -[1] 52.11268 -[1] 52.58216 -[1] 53.05164 -[1] 53.52113 -[1] 53.99061 -[1] 54.46009 -[1] 54.92958 -[1] 55.39906 -[1] 55.86854 -[1] 56.33803 -[1] 56.80751 -[1] 57.277 -[1] 57.74648 -[1] 58.21596 -[1] 58.68545 -[1] 59.15493 -[1] 59.62441 -[1] 60.0939 -[1] 60.56338 -[1] 61.03286 -[1] 61.50235 -[1] 61.97183 -[1] 62.44131 -[1] 62.9108 -[1] 63.38028 -[1] 63.84977 -[1] 64.31925 -[1] 64.78873 -[1] 65.25822 -[1] 65.7277 -[1] 66.19718 -[1] 66.66667 -[1] 67.13615 -[1] 67.60563 -[1] 68.07512 -[1] 68.5446 -[1] 69.01408 -[1] 69.48357 -[1] 69.95305 -[1] 70.42254 -[1] 70.89202 -[1] 71.3615 -[1] 71.83099 -[1] 72.30047 -[1] 72.76995 -[1] 73.23944 -[1] 73.70892 -[1] 74.1784 -[1] 74.64789 -[1] 75.11737 -[1] 75.58685 -[1] 76.05634 -[1] 76.52582 -[1] 76.99531 -[1] 77.46479 -[1] 77.93427 -[1] 78.40376 -[1] 78.87324 -[1] 79.34272 -[1] 79.81221 -[1] 80.28169 -[1] 80.75117 -[1] 81.22066 -[1] 81.69014 -[1] 82.15962 -[1] 82.62911 -[1] 83.09859 -[1] 83.56808 -[1] 84.03756 -[1] 84.50704 -[1] 84.97653 -[1] 85.44601 -[1] 85.91549 -[1] 86.38498 -[1] 86.85446 -[1] 87.32394 -[1] 87.79343 -[1] 88.26291 -[1] 88.73239 -[1] 89.20188 -[1] 89.67136 -[1] 90.14085 -[1] 90.61033 -[1] 91.07981 -[1] 91.5493 -[1] 92.01878 -[1] 92.48826 -[1] 92.95775 -[1] 93.42723 -[1] 93.89671 -[1] 94.3662 -[1] 94.83568 -[1] 95.30516 -[1] 95.77465 -[1] 96.24413 -[1] 96.71362 -[1] 97.1831 -[1] 97.65258 -[1] 98.12207 -[1] 98.59155 -[1] 99.06103 -[1] 99.53052 -[1] 100 -> -> colnames(merged_lab_weekly)<-c("PostCode","Date","mean_humidity","mean_max_temp","mean_min_temp","mean_rain","cum_rain","mean_wind","mean_residents") -> write.table(merged_lab_weekly,paste("../../Data_Base/OPIE_data_base/Laboratory_",width_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> -> Campylobacter_cases_df$Cases<-1#WARNING CHECK THIS -> Campylobacter_cases_df_weekly<-merge(Campylobacter_cases_df, merged_lab_weekly,by=c("PostCode","Date")) -> #Campylobacter_cases_df_weekly<-merge(Campylobacter_cases_df_weekly2, merged_cases_weekly,by=c("PostCode","Date")) -> -> -> diagnostic_laboratory_df<-merged_lab_weekly -> #sort(diagnostic_laboratory_df) -> Campylobacter_cases_df<-data.frame(Campylobacter_cases_df_weekly$PostCode, -+ Campylobacter_cases_df_weekly$Date, -+ Campylobacter_cases_df_weekly$Cases, -+ Campylobacter_cases_df_weekly$mean_humidity, -+ Campylobacter_cases_df_weekly$mean_max_temp, -+ Campylobacter_cases_df_weekly$mean_min_temp, -+ Campylobacter_cases_df_weekly$mean_rain, -+ Campylobacter_cases_df_weekly$cum_rain, -+ Campylobacter_cases_df_weekly$mean_wind, -+ Campylobacter_cases_df_weekly$mean_residents) -> -> colnames(Campylobacter_cases_df)<-c("PostCode","Date","Cases","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -> colnames(diagnostic_laboratory_df)<-c("PostCode","Date","humidity","max_temp","min_temp","rain","cum_rain","wind_speed","residents") -> -> Campylobacter_cases_df<-Campylobacter_cases_df[order(as.Date(Campylobacter_cases_df$Date)),] -> -> ########################### END Weekly average ###################### -> -> -> #PHE_Centre<-Campylobacter_cases_df$PHE_Centre_Name -> #n_Centre<-length(levels(PHE_Centre)) -> #i_centre<-6 -> #For Dorset only -> #merged.data_PHE<-subset(Campylobacter_cases_df,Campylobacter_cases_df$PHE_Centre_Name==levels(PHE_Centre)[i_centre]) -> #merged.data<-subset(merged.data_PHE,year(merged.data_PHE$Date)>=2000 & year(merged.data_PHE$Date)<2016) -> merged.data<-subset(Campylobacter_cases_df,year(Campylobacter_cases_df$Date)>=1990 & year(Campylobacter_cases_df$Date)<2015) -> merged_lab<-subset(diagnostic_laboratory_df,year(diagnostic_laboratory_df$Date)>=1990 & year(diagnostic_laboratory_df$Date)<2015) -> ################### weekly summary -> -> -> ################### -> -> -> delta_hum<-5 -> delta_temp<-1 -> delta_rain<-1 -> delta_cum_rain<-20 -> delta_wind<-2 -> breaks_hum<-seq(max(min(na.omit(merged_lab_weekly$mean_humidity))-10,0),max(na.omit(merged_lab_weekly$mean_humidity))+10,by=delta_hum) #i -> breaks_min_temp<-seq(min(na.omit(merged_lab_weekly$mean_min_temp))-2, max(na.omit(merged_lab_weekly$mean_min_temp))+2,by=delta_temp) -> breaks_max_temp<-seq(min(na.omit(merged_lab_weekly$mean_max_temp))-2, max(na.omit(merged_lab_weekly$mean_max_temp))+2,by=delta_temp) -> breaks_rain<-seq(min(na.omit(merged_lab_weekly$mean_rain))-1, max(na.omit(merged_lab_weekly$mean_rain))+1,by=delta_rain) -> breaks_wind<-seq(max(min(na.omit(merged_lab_weekly$mean_wind))-2,0),max(na.omit(merged_lab_weekly$mean_wind))+2,by=delta_wind) -> #breaks_wind<-seq(max(min(na.omit(wind))-2,0),max(na.omit(wind))+2,by=delta_wind) #WARNING -> breaks_cum_rain<-seq(min(na.omit(merged_lab_weekly$cum_rain))-1, max(na.omit(merged_lab_weekly$cum_rain))+1,by=delta_cum_rain) -> breaks_mean_temp<-seq(min(na.omit(min_temp))-2,max(na.omit(max_temp))+2,by=delta_temp) -> -> -> -> # First find right domain where the values have no NA -> i_hum_min<-min(which(breaks_hum>=min(na.omit(merged.data$humidity)))) -> i_hum_max<-max(which(breaks_hum<=max(na.omit(merged.data$humidity)))) -> -> i_min_temp_min<-max(min(which(breaks_min_temp>=min(na.omit(merged.data$min_temp))))-1,1) -> i_min_temp_max<-max(max(which(breaks_min_temp<=max(na.omit(merged.data$min_temp))))+1,1) -> -> i_max_temp_min<-max(min(which(breaks_max_temp>=min(na.omit(merged.data$max_temp))))-1,1) -> i_max_temp_max<-max(max(which(breaks_max_temp<=max(na.omit(merged.data$max_temp))))+1,1) -> -> i_rain_min<-max(min(which(breaks_rain>=min(na.omit(merged.data$rain))))-1,1) -> i_rain_max<-max(which(breaks_rain<=max(na.omit(merged.data$rain))))+1 -> -> i_cum_rain_min<-max(min(which(breaks_cum_rain>=min(na.omit(merged.data$cum_rain))))-1,1) -> i_cum_rain_max<-max(which(breaks_cum_rain<=max(na.omit(merged.data$cum_rain))))+1 -> -> -> i_wind_min<-max(min(which(breaks_wind>=min(na.omit(merged.data$wind))))-1,1) -> i_wind_max<-max(which(breaks_wind<=max(na.omit(merged.data$wind))))+1 -> -> print(c(i_hum_min,i_min_temp_min ,i_max_temp_min, i_rain_min,i_wind_min)) -[1] 4 5 3 2 2 -> #print(c(i_hum_min,i_hum_max,i_min_temp_min ,i_min_temp_max,i_max_temp_min,i_max_temp_max, i_rain_min,i_rain_max,i_wind_min,i_wind_max)) -> -> -> -> -> -> -> -> ############################# General variables ########################### -> -> -> -> -> -> -> variable_x<-"max_air_temp" -> # -> variable<-"cum_rain" -> #variable<-"rain" -> #variable<-"wind" -> variable<-"humidity" -> var_x_loc_df<-c() -> -> var_x_loc_df<-unname(var_x_loc_df) -> -> if (variable=="max_air_temp"){ -+ -+ breaks_var<-breaks_max_temp -+ i_var_min<-i_max_temp_min -+ i_var_max<-i_max_temp_max -+ merged.data_var<-merged.data$max_temp -+ merged_lab_var<-merged_lab$max_temp -+ } -> if (variable_x=="max_air_temp"){ -+ -+ i_var_x_min<-i_max_temp_min -+ i_var_x_max<-i_max_temp_max -+ breaks_var_x<-breaks_max_temp -+ } -> -> if (variable=="min_air_temp"){ -+ -+ breaks_var<-breaks_min_temp -+ i_var_min<-i_min_temp_min -+ i_var_max<-i_min_temp_max -+ merged.data_var<-merged.data$min_temp -+ merged_lab_var<-merged_lab$min_temp -+ } -> if (variable_x=="min_air_temp"){ -+ -+ i_var_x_min<-i_min_temp_min -+ i_var_x_max<-i_min_temp_max -+ breaks_var_x<-breaks_min_temp -+ } -> -> -> if (variable=="humidity"){ -+ -+ breaks_var<-breaks_hum -+ i_var_min<-i_hum_min -+ i_var_max<-i_hum_max -+ merged.data_var<-merged.data$humidity -+ merged_lab_var<-merged_lab$humidity -+ } -> if (variable_x=="humidity"){ -+ -+ i_var_x_min<-i_hum_min -+ i_var_x_max<-i_hum_max -+ breaks_var_x<-breaks_hum -+ } -> -> -> -> if (variable=="mean_temp"){ -+ -+ breaks_var<-breaks_mean_temp -+ i_var_min<-i_mean_temp_min -+ i_var_max<-i_mean_temp_max -+ merged.data_var<-merged.data$mean_temp -+ merged_lab_var<-merged_lab$mean_temp -+ } -> if (variable_x=="mean_temp"){ -+ -+ i_var_x_min<-i_mean_temp_min -+ i_var_x_max<-i_mean_temp_max -+ breaks_var_x<-breaks_mean_temp -+ } -> -> if (variable=="rain"){ -+ -+ breaks_var<-breaks_rain -+ i_var_min<-i_rain_min -+ i_var_max<-i_rain_max -+ merged.data_var<-merged.data$rain -+ merged_lab_var<-merged_lab$rain -+ } -> if (variable_x=="rain"){ -+ -+ i_var_x_min<-i_rain_min -+ i_var_x_max<-i_rain_max -+ breaks_var_x<-breaks_rain -+ } -> -> if (variable=="cum_rain"){ -+ -+ breaks_var<-breaks_cum_rain -+ i_var_min<-i_cum_rain_min -+ i_var_max<-i_cum_rain_max -+ merged.data_var<-merged.data$cum_rain -+ merged_lab_var<-merged_lab$cum_rain -+ } -> if (variable_x=="cum_rain"){ -+ -+ i_var_x_min<-i_rain_min -+ i_var_x_max<-i_rain_max -+ breaks_var_x<-breaks_cum_rain -+ } -> -> if (variable=="wind"){ -+ -+ breaks_var<-breaks_wind -+ i_var_min<-i_wind_min -+ i_var_max<-i_wind_max -+ merged.data_var<-merged.data$wind -+ merged_lab_var<-merged_lab$wind -+ } -> if (variable_x=="wind"){ -+ -+ i_var_x_min<-i_wind_min -+ i_var_x_max<-i_wind_max -+ breaks_var_x<-breaks_wind -+ } -> -> -> Yt_var_x<-function(i_var) -+ { -+ -+ Yt1<-subset(merged.data,merged.data_var>=breaks_var[i_var] & merged.data_var<breaks_var[i_var+1]) -+ Yt2<-Yt1 -+ #Yt2<-subset(Yt1,Yt1$max_temp>=breaks_max_temp[i_max_temp] & Yt1$max_temp<=breaks_max_temp[i_max_temp+1]) -+ #Yt3<-subset(Yt2,Yt2$rain>=breaks_rain[i_rain] & Yt2$rain<=breaks_rain[i_rain+1]) -+ #Yt4<-subset(Yt3,Yt3$wind>=breaks_wind[i_wind] & Yt3$wind<=breaks_wind[i_wind+1]) -+ #if (length(Yt2[,1])>0){ -+ -+ return(as.list(Yt2)) -+ # return(Yt4) -+ #} else { -+ # Yt2<-NA -+ #return(Yt2) -+ -+ #} -+ -+ } -> -> -> Tot_var_x<-function(i_var) -+ { -+ -+ Yt1<-subset(merged_lab,merged_lab_var>=breaks_var[i_var] & merged_lab_var<breaks_var[i_var+1]) -+ Yt2<-Yt1 -+ #Yt2<-subset(Yt1,Yt1$max_temp>=breaks_max_temp[i_max_temp] & Yt1$max_temp<=breaks_max_temp[i_max_temp+1]) -+ #Yt3<-subset(Yt2,Yt2$rain>=breaks_rain[i_rain] & Yt2$rain<=breaks_rain[i_rain+1]) -+ #Yt4<-subset(Yt3,Yt3$wind>=breaks_wind[i_wind] & Yt3$wind<=breaks_wind[i_wind+1]) -+ #if (length(Yt2[,1])>0){ -+ -+ return(as.list(Yt2)) -+ # return(Yt4) -+ #} else { -+ # Yt2<-NA -+ #return(Yt2) -+ -+ #} -+ -+ } -> var_x_loc_df<-c(0) -> n_seas<-1 -> -> -> #colnames(var_x_loc_df)<-c(variable_x,"prop","prevalence","month",variable,"counts","counts_tot","residents","residents_tot") -> -> for (i_var in c(i_var_min:i_var_max)) -+ { -+ for (i in c(1:n_seas)) -+ { -+ -+ n_months<-12/n_seas -+ #if (is.na(Yt_min_temp(i_hum)$min_temp)==FALSE){ -+ -+ wt<-which(month(Yt_var_x(i_var)$Date)>(i-1)*n_months & month(Yt_var_x(i_var)$Date)<=i*n_months) -+ wt_tot<-which(month(Tot_var_x(i_var)$Date)>(i-1)*n_months & month(Tot_var_x(i_var)$Date)<=i*n_months) -+ -+ if (variable_x=="min_air_temp"){ -+ Campylobacter_var_x<-Yt_var_x(i_var)$min_temp[wt] -+ var_x_tot<-Tot_var_x(i_var)$min_temp[wt_tot] -+ -+ } -+ if (variable_x=="max_air_temp"){ -+ Campylobacter_var_x<-Yt_var_x(i_var)$max_temp[wt] -+ var_x_tot<-Tot_var_x(i_var)$max_temp[wt_tot] -+ -+ } -+ -+ if (variable_x=="mean_temp"){ -+ Campylobacter_var_x<-Yt_var_x(i_var)$mean_temp[wt] -+ var_x_tot<-Tot_var_x(i_var)$mean_temp[wt_tot] -+ -+ } -+ -+ -+ -+ if (variable_x=="humidity"){ -+ Campylobacter_var_x<-Yt_var_x(i_var)$humidity[wt] -+ var_x_tot<-Tot_var_x(i_var)$humidity[wt_tot] -+ -+ } -+ if (variable_x=="wind"){ -+ Campylobacter_var_x<-Yt_var_x(i_var)$wind[wt] -+ var_x_tot<-Tot_var_x(i_var)$wind[wt_tot] -+ -+ } -+ if (variable_x=="rain"){ -+ Campylobacter_var_x<-Yt_var_x(i_var)$rain[wt] -+ var_x_tot<-Tot_var_x(i_var)$rain[wt_tot] -+ -+ } -+ -+ n_var_x_tot<-hist(var_x_tot,breaks=breaks_var_x) -+ n_var_x<-hist((as.numeric(as.character(Campylobacter_var_x))),breaks=breaks_var_x) -+ -+ residents<-rep(0,times=length(n_var_x$counts)) -+ residents_tot<-rep(0,times=length(n_var_x$counts)) -+ -+ wt<-which(n_var_x_tot$counts!=0) -+ wt2<-which(n_var_x$counts!=0) -+ -+ -+ if (variable_x=="min_air_temp"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var)$min_temp>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var)$min_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var)$min_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$min_temp<=n_var_x$breaks[wt2[j]]+delta_temp) -+ residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) -+ } -+ } -+ -+ } -+ -+ -+ } -+ if (variable_x=="max_air_temp"){ -+ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var)$max_temp>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var)$max_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var)$max_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$max_temp<=n_var_x$breaks[wt2[j]]+delta_temp) -+ residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) -+ } -+ } -+ -+ } -+ -+ } -+ -+ if (variable_x=="mean_temp"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var)$mean_temp>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var)$mean_temp<=n_var_x_tot$breaks[wt[j]]+delta_temp ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var)$mean_temp>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$mean_temp<=n_var_x$breaks[wt2[j]]+delta_temp) -+ residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) -+ } -+ } -+ -+ } -+ } -+ -+ -+ if (variable_x=="humidity"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var)$hum>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var)$hum<=n_var_x_tot$breaks[wt[j]]+delta_hum ) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var)$hum>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$hum<=n_var_x$breaks[wt2[j]]+delta_hum) -+ residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) -+ } -+ } -+ -+ } -+ } -+ if (variable_x=="wind"){ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var)$wind>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var)$wind<=n_var_x_tot$breaks[wt[j]]+delta_wind) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var)$wind>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$wind<=n_var_x$breaks[wt2[j]]+delta_wind) -+ residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) -+ } -+ } -+ -+ } -+ -+ } -+ if (variable_x=="rain"){ -+ -+ if(length(wt)>0){ -+ for (j in c(1:(length(wt)))){ -+ -+ ww<-which(Tot_var_x(i_var)$rain>=n_var_x_tot$breaks[wt[j]] & -+ Tot_var_x(i_var)$rain<=n_var_x_tot$breaks[wt[j]]+delta_rain) -+ residents_tot[wt[j]]<-sum(as.numeric(Tot_var_x(i_var)$residents[ww])) -+ } -+ if(length(wt2)>0){ -+ for (j in c(1:(length(wt2)))){ -+ -+ ww<-which(Yt_var_x(i_var)$rain>=n_var_x$breaks[wt2[j]] & Yt_var_x(i_var)$rain<=n_var_x$breaks[wt2[j]]+delta_rain) -+ residents[wt2[j]]<-sum(Yt_var_x(i_var)$residents[ww]) -+ } -+ } -+ -+ } -+ } -+ -+ -+ # if(length(residents)>0){ -+ data_df<-data.frame(n_var_x$mids,n_var_x$counts/n_var_x_tot$counts,(n_var_x$counts)/(residents_tot),i,breaks_var[i_var],n_var_x$counts,n_var_x_tot$counts,residents,residents_tot) -+ -+ colnames(data_df)<-c(variable_x,"prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot") -+ var_x_loc_df<-rbind(var_x_loc_df,data_df) -+ colnames(var_x_loc_df)<-c(variable_x,"prop","incidence","month",variable,"counts","counts_tot","residents","residents_tot") -+ #} -+ #} -+ -+ -+ } -+ } -> -> -> write.table(var_x_loc_df,paste("../../Data_Base/OPIE_data_base/",variable,"_",variable_x,"_",width_char,"_original_MEDMI.csv",sep=""), col.names = FALSE, sep = ",",eol = "\n") -> -> proc.time() - user system elapsed -346.014 8.211 354.697 -- GitLab