diff --git a/Codes/Conditional_incidence_and_reconstruction_factors_4_factors.R b/Codes/Conditional_incidence_and_reconstruction_factors_4_factors.R index a7d4b2934fccc3ceec7555f6edbd40a782fd3a79..47cfd4be244dfbba18ac1ff7fbdf3e7b63049c9f 100644 --- a/Codes/Conditional_incidence_and_reconstruction_factors_4_factors.R +++ b/Codes/Conditional_incidence_and_reconstruction_factors_4_factors.R @@ -90,13 +90,20 @@ source("Function_Input_files.R", chdir=TRUE) # source("Function_Conditional_Incidence_Quantiles.R", chdir=TRUE) #Conditional incidence, bins divided in quantiles +Conditional_incidence_quantiles_info2<-c() + + for (quarter in c(1:4)){ Pars_cond_prev_quantiles<- c(variable_x,variable_y,variable_z,"_Quantiles.csv",by_x,by_y,by_z,quarter) Conditional_incidence_quantiles_info<-Conditional_incidence_Quantiles_4_factors(Env_laboratory_data,Env_Pathogen_data,Pars_cond_prev_quantiles) +Conditional_incidence_quantiles_info2<-rbind(Conditional_incidence_quantiles_info2,Conditional_incidence_quantiles_info[[1]]) + ## plot Conditional incidence for bins divided in quantiles -Pars_plot_cond_prev_quantiles <- c(variable_x,variable_y,variable_z,quarter) -source("Function_Plot_Conditional_Incidence_Quantiles.R", chdir=TRUE) -Plot_Conditional_incidence_quantiles_4_factors(Conditional_incidence_quantiles_info,Pars_plot_cond_prev_quantiles) } + +Pars_plot_cond_prev_quantiles <- c(variable_x,variable_y,variable_z) +source("Function_Plot_Conditional_Incidence_Quantiles.R", chdir=TRUE) +Plot_Conditional_incidence_quantiles_4_factors(Conditional_incidence_quantiles_info2,Pars_plot_cond_prev_quantiles) + diff --git a/Codes/Function_Plot_Conditional_Incidence_Quantiles.R b/Codes/Function_Plot_Conditional_Incidence_Quantiles.R index 8133f4e5fd5b39e7c688f6c2e150491be888a04c..4fb9ba6c617a55c9e11c7988a6370315349b3615 100644 --- a/Codes/Function_Plot_Conditional_Incidence_Quantiles.R +++ b/Codes/Function_Plot_Conditional_Incidence_Quantiles.R @@ -15,14 +15,14 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars) variable_x<-Pars[1] variable_y<-Pars[2] variable_z<-Pars[3] - + # Select the file with relevant information: Conditional_incidence_quantiles <- Data_frame_1[[1]] #Conditional_incidence_quantiles<-Conditional_incidence_quantiles[,-1] Conditional_incidence_quantiles$incidence<-Conditional_incidence_quantiles$counts/Conditional_incidence_quantiles$residents_tot - # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles) + # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles) #For visual purposes, we are removing cases when the counts were too low resulting in exceptional large incidence #Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles, Conditional_incidence_quantiles$counts>100) @@ -58,8 +58,8 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars) labelling_char<-c() - - + + ############# 3 variable from here if (variable_z=="daylength"){ @@ -82,12 +82,12 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars) conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm - - + + Conditional_incidence_df$conf_minus<-conf_minus Conditional_incidence_df$conf_plus<-conf_plus #Conditional_incidence_df<-na.omit(Conditional_incidence_df) - + Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y]) @@ -95,95 +95,95 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars) Conditional_incidence_plot <- ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,25)) - } + } if (variable_x=="Relative_humidity" & variable_y=="Maximum_air_temperature"){ Conditional_incidence_plot <- ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100)) - } + } if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){ Conditional_incidence_plot <- ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,25)) - } + } if (variable_x=="Mean_wind_speed" & variable_y=="Maximum_air_temperature"){ Conditional_incidence_plot <- ggplot(Conditional_incidence_df,aes(x=Mean_wind_speed,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,15)) - } + } - if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){ + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){ Conditional_incidence_plot <- ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,25)) - } + } if (variable_x=="Mean_Precipitation" & variable_y=="Maximum_air_temperature"){ Conditional_incidence_plot <- ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature))) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,5)) - } + } if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){ Conditional_incidence_plot <- ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,25)) - } + } + - Conditional_incidence_plot <- Conditional_incidence_plot+theme_bw(20) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_colour_discrete(name =variable_y_char) - + Conditional_incidence_plot <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ") Conditional_incidence_plot <- Conditional_incidence_plot+xlab(variable_x_char) Conditional_incidence_plot <- Conditional_incidence_plot+ ggtitle(light_label_char) - + labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1]))) n_labelling<-length(labelling) - - - for (j in c(1:(n_labelling-1))) { - - labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) ) - - } - labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling])) - - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_fill_discrete(name =variable_y_char, labels=labelling_char) - Conditional_incidence_plot <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none") - Conditional_incidence_plot <- Conditional_incidence_plot+ geom_line(size=1) - Conditional_incidence_plot <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35) - - Conditional_incidence_plot <- Conditional_incidence_plot+ - theme(legend.position= c(0.25,0.75),legend.title = element_text( size = 11), - legend.text = element_text( size = 10),legend.background = element_blank(), - legend.key=element_rect(colour=NA)) - - Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15)) - Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15)) - - - - Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15)) - Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15)) - - print(Conditional_incidence_plot) - - - file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_", - round(unique(Conditional_incidence_quantiles$daylength)[i_light]),"_",time_lag_char,"_quantile.tiff", sep = "") - tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default") - - print(Conditional_incidence_plot) + + + for (j in c(1:(n_labelling-1))) { - dev.off() + labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) ) + } + labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling])) + + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_fill_discrete(name =variable_y_char, labels=labelling_char) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none") + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_line(size=1) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35) + + Conditional_incidence_plot <- Conditional_incidence_plot+ + theme(legend.position= c(0.25,0.75),legend.title = element_text( size = 11), + legend.text = element_text( size = 10),legend.background = element_blank(), + legend.key=element_rect(colour=NA)) + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15)) + + + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15)) + + print(Conditional_incidence_plot) + + + file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_", + round(unique(Conditional_incidence_quantiles$daylength)[i_light]),"_",time_lag_char,"_quantile.tiff", sep = "") + tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default") + + print(Conditional_incidence_plot) + + dev.off() + } - - - } + + + } if (variable_z=="Relative_humidity"){ @@ -315,7 +315,7 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars) } - }) + }) } @@ -379,7 +379,224 @@ Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars) ############# variables from here - Conditional_incidence_df<-Conditional_incidence_quantiles + Conditional_incidence_df<-Conditional_incidence_quantiles + + Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] + + conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm + conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm + Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm + + + Conditional_incidence_df$conf_minus<-conf_minus + Conditional_incidence_df$conf_plus<-conf_plus + + Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y]) + + if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(5,25)) + + } + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25)) + } + if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25)) + } + if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25)) + } + if (variable_x=="Relative_humidity" & variable_y=="daylength"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(60,100)) + } + if (variable_x=="Mean_Precipitation" & variable_y=="daylength"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,10)) + } + + if (variable_x=="Minimum_air_temperature" & variable_y=="Relative_humidity"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + } + if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_wind_speed"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + + } + if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_Precipitation"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + + } + if (variable_x=="Minimum_air_temperature" & variable_y=="daylength"){ + Conditional_incidence_plot <- + ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + + } + + Conditional_incidence_plot <- Conditional_incidence_plot+theme_bw(20) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_colour_discrete(name =variable_y_char) + + Conditional_incidence_plot <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ") + Conditional_incidence_plot <- Conditional_incidence_plot+xlab(variable_x_char) + + labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1]))) + n_labelling<-length(labelling) + + + for (j in c(1:(n_labelling-1))) { + + labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) ) + + } + labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling])) + + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_fill_discrete(name =variable_y_char, labels=labelling_char) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none") + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_line(size=1) + Conditional_incidence_plot <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35) + + Conditional_incidence_plot <- Conditional_incidence_plot+ + theme(legend.position= c(0.25,0.75),legend.title = element_text( size = 11), + legend.text = element_text( size = 10),legend.background = element_blank(), + legend.key=element_rect(colour=NA)) + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15)) + + + + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15)) + Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15)) + Conditional_incidence_plot + + + file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",time_lag_char,"_quantile.tiff", sep = "") + tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default") + + print(Conditional_incidence_plot) + + dev.off() + + + + + + }) +} + + + +Plot_Conditional_incidence_quantiles_4_factors<-function(Data_frame_1, Pars) +{ + + with(as.list(c(Data_frame_1, Pars)), { + + # Pars is the list of 3 variables of interest + # Select the variables of study: + + variable_x<-Pars[1] + variable_y<-Pars[2] + variable_z<-Pars[3] + + + # Select the file with relevant information: + Conditional_incidence_quantiles_all <- Data_frame_1 + + #Conditional_incidence_quantiles<-Conditional_incidence_quantiles[,-1] + Conditional_incidence_quantiles_all$incidence<-Conditional_incidence_quantiles_all$counts/Conditional_incidence_quantiles_all$residents_tot + # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles) + #For visual purposes, we are removing cases when the counts were too low resulting in exceptional large incidence + #Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles, Conditional_incidence_quantiles$counts>100) + + + #number_days<-as.Date(last_day)-as.Date(first_day) + #number_days<-as.numeric(number_days) + #number_year<-number_days/365 + + norm<-1/(1e6) + + + + ################### Choose a specific day-length ################### + + + #Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles) + ############################# General variables ########################### + if (variable_x=="Relative_humidity"){variable_x_char<-"Relative humidity (%)"} + if (variable_y=="Relative_humidity"){variable_y_char<-"Relative humidity (%)"} + if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"} + if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"} + if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"} + if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"} + if (variable_x=="Mean_Precipitation"){variable_x_char<-"Mean Rainfall (mm)"} + if (variable_y=="Mean_Precipitation"){variable_y_char<-"Mean Rainfall (mm)"} + if (variable_x=="daylength"){variable_x_char<-"Day-Length (hours)"} + if (variable_y=="daylength"){variable_y_char<-"Day-Length (hours)"} + if (variable_x=="Minimum_air_temperature"){variable_x_char<-expression("Minimum Air Temperature"*~degree*C)} + if (variable_y=="Minimum_air_temperature"){variable_y_char<-expression("Minimum Air Temperature"*~degree*C)} + if (variable_x=="Maximum_air_temperature"){variable_x_char<-expression("Maximum Air Temperature"*~degree*C)} + if (variable_y=="Maximum_air_temperature"){variable_y_char<-expression("Maximum Air Temperature"*~degree*C)} + + + labelling_char<-c() + light_label_char<-c() + z_label_char<-c() + light_label<-c() + + light_label<-round(as.numeric(unique(Conditional_incidence_quantiles_all$daylength)),1) + + + for (i_light in c(1:length(unique(Conditional_incidence_quantiles_all$daylength)))) { + + if (i_light==1){ + light_label_char[i_light]<-paste("Day-length < ",light_label[i_light]," hours",sep="") + } + + if (i_light==length(light_label )){ + light_label_char[i_light]<-paste("Day-length > ",light_label[i_light-1]," hours",sep="") + } + + if (i_light!=1 && i_light<length(light_label )){ + light_label_char[i_light]<-paste("Day-length ",light_label[i_light-1]," - ",light_label[i_light]," hours",sep="") + } + + } + + for (i_light in c(1:length(light_label)) ){ + + Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles_all, as.numeric(Conditional_incidence_quantiles_all$daylength)==light_label[i_light]) + if (variable_z=="Maximum_air_temperature"){ + + z_label<-round(as.numeric(unique(Conditional_incidence_quantiles$Maximum_air_temperature))) + for (i_z in c(1:length(unique(Conditional_incidence_quantiles$Maximum_air_temperature)))) { + + if (i_z<length(z_label)){ + z_label_char[i_z]<-paste("Maximum Air Temperature ",z_label[i_z],"-",z_label[i_z+1]," (\u00B0C)",sep="") + } else { + z_label_char[i_z]<-paste("Maximum Air Temperature > ",z_label[i_z]," (\u00B0C)",sep="") + } + + + + + wt<-which(Conditional_incidence_quantiles$Maximum_air_temperature==unique(Conditional_incidence_quantiles$Maximum_air_temperature)[i_z]) + Conditional_incidence_df<-Conditional_incidence_quantiles[wt,] Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] @@ -390,75 +607,45 @@ Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars) Conditional_incidence_df$conf_minus<-conf_minus Conditional_incidence_df$conf_plus<-conf_plus + #Conditional_incidence_df<-na.omit(Conditional_incidence_df) Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y]) - if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){ - Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(5,25)) - - } - if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){ - Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25)) - } - if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){ - Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25)) - } - if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){ - Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25)) - } - if (variable_x=="Relative_humidity" & variable_y=="daylength"){ + + if (variable_x=="Relative_humidity" & variable_y=="Mean_Precipitation"){ Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(daylength),fill=factor(daylength))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(60,100)) + ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100)) } - if (variable_x=="Mean_Precipitation" & variable_y=="daylength"){ + + if (variable_x=="Mean_Precipitation" & variable_y=="Relative_humidity"){ Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(daylength),fill=factor(daylength))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,10)) + ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(60,100))+scale_x_continuous(limits=c(0,5)) } - if (variable_x=="Minimum_air_temperature" & variable_y=="Relative_humidity"){ + if (variable_x=="Relative_humidity" & variable_y=="daylength"){ Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) + ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(daylength),fill=factor(daylength))) + Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100)) } - if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_wind_speed"){ - Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) - - } - if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_Precipitation"){ - Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) - - } - if (variable_x=="Minimum_air_temperature" & variable_y=="daylength"){ - Conditional_incidence_plot <- - ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength))) - Conditional_incidence_plot <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25)) - - } + + Conditional_incidence_plot <- Conditional_incidence_plot+theme_bw(20) Conditional_incidence_plot <- Conditional_incidence_plot+ scale_colour_discrete(name =variable_y_char) Conditional_incidence_plot <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ") Conditional_incidence_plot <- Conditional_incidence_plot+xlab(variable_x_char) + Conditional_incidence_plot <- Conditional_incidence_plot+ ggtitle(z_label_char[i_z]) + + Conditional_incidence_plot <- Conditional_incidence_plot+geom_text(aes(x = 72, y = 4.75, + label = light_label_char[i_light]),colour="black",size=7) + labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1]))) n_labelling<-length(labelling) - for (j in c(1:(n_labelling-1))) { labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) ) @@ -483,10 +670,12 @@ Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars) Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15)) Conditional_incidence_plot <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15)) - Conditional_incidence_plot + + print(Conditional_incidence_plot) - file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",time_lag_char,"_quantile.tiff", sep = "") + file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_daylength_", + z_label[i_z],"_quarter_",i_light,"_",time_lag_char,".tiff", sep = "") tiff(filename = file_name,width = 17.35, height = 17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default") print(Conditional_incidence_plot) @@ -494,12 +683,20 @@ Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars) dev.off() - - + + + + + } + + } + } }) } + +