diff --git a/Codes/Conditional_incidence_and_reconstruction_factors_4_factors.R b/Codes/Conditional_incidence_and_reconstruction_factors_4_factors.R
index a7d4b2934fccc3ceec7555f6edbd40a782fd3a79..47cfd4be244dfbba18ac1ff7fbdf3e7b63049c9f 100644
--- a/Codes/Conditional_incidence_and_reconstruction_factors_4_factors.R
+++ b/Codes/Conditional_incidence_and_reconstruction_factors_4_factors.R
@@ -90,13 +90,20 @@ source("Function_Input_files.R", chdir=TRUE)
 #
 source("Function_Conditional_Incidence_Quantiles.R", chdir=TRUE)
 #Conditional incidence, bins divided in quantiles 
+Conditional_incidence_quantiles_info2<-c()
+
+
 for (quarter in c(1:4)){
 Pars_cond_prev_quantiles<- c(variable_x,variable_y,variable_z,"_Quantiles.csv",by_x,by_y,by_z,quarter)
 Conditional_incidence_quantiles_info<-Conditional_incidence_Quantiles_4_factors(Env_laboratory_data,Env_Pathogen_data,Pars_cond_prev_quantiles)
 
+Conditional_incidence_quantiles_info2<-rbind(Conditional_incidence_quantiles_info2,Conditional_incidence_quantiles_info[[1]])
+
 ## plot Conditional incidence for bins divided in quantiles
-Pars_plot_cond_prev_quantiles <- c(variable_x,variable_y,variable_z,quarter)
-source("Function_Plot_Conditional_Incidence_Quantiles.R", chdir=TRUE)
-Plot_Conditional_incidence_quantiles_4_factors(Conditional_incidence_quantiles_info,Pars_plot_cond_prev_quantiles)
 
 }
+
+Pars_plot_cond_prev_quantiles <- c(variable_x,variable_y,variable_z)
+source("Function_Plot_Conditional_Incidence_Quantiles.R", chdir=TRUE)
+Plot_Conditional_incidence_quantiles_4_factors(Conditional_incidence_quantiles_info2,Pars_plot_cond_prev_quantiles)
+
diff --git a/Codes/Function_Plot_Conditional_Incidence_Quantiles.R b/Codes/Function_Plot_Conditional_Incidence_Quantiles.R
index 8133f4e5fd5b39e7c688f6c2e150491be888a04c..4fb9ba6c617a55c9e11c7988a6370315349b3615 100644
--- a/Codes/Function_Plot_Conditional_Incidence_Quantiles.R
+++ b/Codes/Function_Plot_Conditional_Incidence_Quantiles.R
@@ -15,14 +15,14 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars)
     variable_x<-Pars[1] 
     variable_y<-Pars[2]
     variable_z<-Pars[3]
-      
+    
     # Select the file with relevant information:
     Conditional_incidence_quantiles <- Data_frame_1[[1]]
     
     
     #Conditional_incidence_quantiles<-Conditional_incidence_quantiles[,-1]
     Conditional_incidence_quantiles$incidence<-Conditional_incidence_quantiles$counts/Conditional_incidence_quantiles$residents_tot
-   # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles)
+    # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles)
     #For visual purposes, we are removing cases when the counts were too low resulting in exceptional large incidence
     #Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles, Conditional_incidence_quantiles$counts>100) 
     
@@ -58,8 +58,8 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars)
     
     labelling_char<-c()
     
-   
-        
+    
+    
     ############# 3 variable  from  here 
     if (variable_z=="daylength"){
       
@@ -82,12 +82,12 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars)
         conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
         conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
         Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm
-          
-          
+        
+        
         Conditional_incidence_df$conf_minus<-conf_minus
         Conditional_incidence_df$conf_plus<-conf_plus
         #Conditional_incidence_df<-na.omit(Conditional_incidence_df)
-           
+        
         Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y])
         
         
@@ -95,95 +95,95 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars)
           Conditional_incidence_plot <-  
             ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
           Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,25))
-          }
+        }
         if (variable_x=="Relative_humidity" & variable_y=="Maximum_air_temperature"){
           Conditional_incidence_plot <-  
             ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
           Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100))
-           }
+        }
         if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){
           Conditional_incidence_plot <-  
             ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
           Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,25))
-          }
+        }
         if (variable_x=="Mean_wind_speed" & variable_y=="Maximum_air_temperature"){
           Conditional_incidence_plot <-  
             ggplot(Conditional_incidence_df,aes(x=Mean_wind_speed,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
           Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,15))
           
-          }
+        }
         
-         if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){
+        if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){
           Conditional_incidence_plot <-  
             ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
           Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,25))
-          }
+        }
         if (variable_x=="Mean_Precipitation" & variable_y=="Maximum_air_temperature"){
           Conditional_incidence_plot <-  
             ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(Maximum_air_temperature),fill=factor(Maximum_air_temperature)))
           Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,5))
-          }
+        }
         
         if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){
           Conditional_incidence_plot <-  
             ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
           Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(0,25))
-          }
+        }
+        
         
         
-          
         
         Conditional_incidence_plot  <- Conditional_incidence_plot+theme_bw(20)
         Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_colour_discrete(name  =variable_y_char)
-          
+        
         Conditional_incidence_plot  <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ")
         Conditional_incidence_plot  <- Conditional_incidence_plot+xlab(variable_x_char)
         Conditional_incidence_plot  <- Conditional_incidence_plot+ ggtitle(light_label_char) 
-          
+        
         labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1])))
         n_labelling<-length(labelling)
-         
-          
-          for (j in c(1:(n_labelling-1)))      {
-            
-            labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) )
-            
-          }
-          labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling]))
-          
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_fill_discrete(name  =variable_y_char, labels=labelling_char)          
-         Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none")
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_line(size=1)
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35)
-          
-          Conditional_incidence_plot  <- Conditional_incidence_plot+
-            theme(legend.position= c(0.25,0.75),legend.title =  element_text( size = 11),
-                  legend.text = element_text( size = 10),legend.background = element_blank(),
-                  legend.key=element_rect(colour=NA))
-              
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15))
-          
-          
-          
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15))
-         
-          print(Conditional_incidence_plot)   
-            
-          
-          file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_",
-                           round(unique(Conditional_incidence_quantiles$daylength)[i_light]),"_",time_lag_char,"_quantile.tiff", sep = "")
-          tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default")
-          
-          print(Conditional_incidence_plot)  
+        
+        
+        for (j in c(1:(n_labelling-1)))      {
           
-          dev.off()
+          labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) )
           
+        }
+        labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling]))
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_fill_discrete(name  =variable_y_char, labels=labelling_char)          
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none")
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_line(size=1)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35)
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+
+          theme(legend.position= c(0.25,0.75),legend.title =  element_text( size = 11),
+                legend.text = element_text( size = 10),legend.background = element_blank(),
+                legend.key=element_rect(colour=NA))
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15))
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15))
+        
+        
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15))
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15))
+        
+        print(Conditional_incidence_plot)   
+        
+        
+        file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_",
+                         round(unique(Conditional_incidence_quantiles$daylength)[i_light]),"_",time_lag_char,"_quantile.tiff", sep = "")
+        tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default")
+        
+        print(Conditional_incidence_plot)  
+        
+        dev.off()
+        
       }  
-    
-    
- }
+      
+      
+    }
     
     if (variable_z=="Relative_humidity"){
       
@@ -315,7 +315,7 @@ Plot_Conditional_incidence_quantiles<-function(Data_frame_1, Pars)
       
     }
     
-    })
+  })
 }
 
 
@@ -379,7 +379,224 @@ Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars)
     
     ############# variables  from  here 
     
-        Conditional_incidence_df<-Conditional_incidence_quantiles
+    Conditional_incidence_df<-Conditional_incidence_quantiles
+    
+    Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] 
+    
+    conf_minus<-((Conditional_incidence_df$incidence-1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
+    conf_plus<- ((Conditional_incidence_df$incidence+1.96*sqrt(Conditional_incidence_df$incidence*(1-Conditional_incidence_df$incidence)/Conditional_incidence_df$residents_tot)))/norm
+    Conditional_incidence_df$incidence<-Conditional_incidence_df$incidence/norm
+    
+    
+    Conditional_incidence_df$conf_minus<-conf_minus
+    Conditional_incidence_df$conf_plus<-conf_plus
+    
+    Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y])
+    
+    if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(5,25))
+      
+    }
+    if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25))
+    }
+    if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25))
+    }
+    if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25))
+    }
+    if (variable_x=="Relative_humidity" & variable_y=="daylength"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(daylength),fill=factor(daylength)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(60,100))
+    }
+    if (variable_x=="Mean_Precipitation" & variable_y=="daylength"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(daylength),fill=factor(daylength)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,10))
+    }
+    
+    if (variable_x=="Minimum_air_temperature" & variable_y=="Relative_humidity"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+    }
+    if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_wind_speed"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+      
+    }
+    if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_Precipitation"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+      
+    }
+    if (variable_x=="Minimum_air_temperature" & variable_y=="daylength"){
+      Conditional_incidence_plot <-  
+        ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
+      Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+      
+    }
+    
+    Conditional_incidence_plot  <- Conditional_incidence_plot+theme_bw(20)
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_colour_discrete(name  =variable_y_char)
+    
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ")
+    Conditional_incidence_plot  <- Conditional_incidence_plot+xlab(variable_x_char)
+    
+    labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1])))
+    n_labelling<-length(labelling)
+    
+    
+    for (j in c(1:(n_labelling-1)))      {
+      
+      labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) )
+      
+    }
+    labelling_char[n_labelling]<-paste(">",as.character(labelling[n_labelling]))
+    
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_fill_discrete(name  =variable_y_char, labels=labelling_char)          
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_point(size=3.5)+ guides(colour="none") # guides(colour="none")
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_line(size=1)
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ geom_ribbon(aes(ymin=conf_minus, ymax=conf_plus),alpha=0.35)
+    
+    Conditional_incidence_plot  <- Conditional_incidence_plot+
+      theme(legend.position= c(0.25,0.75),legend.title =  element_text( size = 11),
+            legend.text = element_text( size = 10),legend.background = element_blank(),
+            legend.key=element_rect(colour=NA))
+    
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text( colour="#990000", size=15))
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text( colour="#990000", size=15))
+    
+    
+    
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15))
+    Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15))
+    Conditional_incidence_plot  
+    
+    
+    file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",time_lag_char,"_quantile.tiff", sep = "")
+    tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default")
+    
+    print(Conditional_incidence_plot)  
+    
+    dev.off()
+    
+    
+    
+    
+    
+  })
+}
+
+
+
+Plot_Conditional_incidence_quantiles_4_factors<-function(Data_frame_1, Pars)
+{
+  
+  with(as.list(c(Data_frame_1, Pars)), {
+    
+    # Pars is the list of 3 variables of interest 
+    # Select the variables of study:
+    
+    variable_x<-Pars[1] 
+    variable_y<-Pars[2]
+    variable_z<-Pars[3]
+    
+    
+    # Select the file with relevant information:
+    Conditional_incidence_quantiles_all <- Data_frame_1
+    
+    #Conditional_incidence_quantiles<-Conditional_incidence_quantiles[,-1]
+    Conditional_incidence_quantiles_all$incidence<-Conditional_incidence_quantiles_all$counts/Conditional_incidence_quantiles_all$residents_tot
+    # Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles)
+    #For visual purposes, we are removing cases when the counts were too low resulting in exceptional large incidence
+    #Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles, Conditional_incidence_quantiles$counts>100) 
+    
+    
+    #number_days<-as.Date(last_day)-as.Date(first_day)
+    #number_days<-as.numeric(number_days)
+    #number_year<-number_days/365
+    
+    norm<-1/(1e6)
+    
+    
+    
+    ################### Choose a specific day-length  ###################
+    
+    
+    #Conditional_incidence_quantiles<-na.omit(Conditional_incidence_quantiles)
+    ############################# General variables ###########################
+    if (variable_x=="Relative_humidity"){variable_x_char<-"Relative humidity (%)"}
+    if (variable_y=="Relative_humidity"){variable_y_char<-"Relative humidity (%)"}
+    if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"}
+    if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"}
+    if (variable_x=="Mean_wind_speed"){variable_x_char<-"Mean Wind Speed (knots)"}
+    if (variable_y=="Mean_wind_speed"){variable_y_char<-"Mean Wind Speed (knots)"}
+    if (variable_x=="Mean_Precipitation"){variable_x_char<-"Mean Rainfall (mm)"}
+    if (variable_y=="Mean_Precipitation"){variable_y_char<-"Mean Rainfall (mm)"}
+    if (variable_x=="daylength"){variable_x_char<-"Day-Length (hours)"}
+    if (variable_y=="daylength"){variable_y_char<-"Day-Length (hours)"}
+    if (variable_x=="Minimum_air_temperature"){variable_x_char<-expression("Minimum Air Temperature"*~degree*C)}
+    if (variable_y=="Minimum_air_temperature"){variable_y_char<-expression("Minimum Air Temperature"*~degree*C)}
+    if (variable_x=="Maximum_air_temperature"){variable_x_char<-expression("Maximum Air Temperature"*~degree*C)}
+    if (variable_y=="Maximum_air_temperature"){variable_y_char<-expression("Maximum Air Temperature"*~degree*C)}
+    
+    
+    labelling_char<-c()
+    light_label_char<-c()
+    z_label_char<-c()
+    light_label<-c()
+    
+    light_label<-round(as.numeric(unique(Conditional_incidence_quantiles_all$daylength)),1)
+    
+    
+    for (i_light in c(1:length(unique(Conditional_incidence_quantiles_all$daylength))))      {
+      
+           if (i_light==1){ 
+        light_label_char[i_light]<-paste("Day-length < ",light_label[i_light]," hours",sep="")
+      } 
+      
+      if (i_light==length(light_label )){ 
+        light_label_char[i_light]<-paste("Day-length > ",light_label[i_light-1]," hours",sep="")
+      }
+      
+      if (i_light!=1 && i_light<length(light_label )){ 
+        light_label_char[i_light]<-paste("Day-length ",light_label[i_light-1]," - ",light_label[i_light]," hours",sep="")
+      } 
+
+      }
+    
+    for (i_light in c(1:length(light_label)) ){ 
+      
+      Conditional_incidence_quantiles<-subset(Conditional_incidence_quantiles_all, as.numeric(Conditional_incidence_quantiles_all$daylength)==light_label[i_light])
+      if (variable_z=="Maximum_air_temperature"){
+      
+        z_label<-round(as.numeric(unique(Conditional_incidence_quantiles$Maximum_air_temperature)))
+        for (i_z in c(1:length(unique(Conditional_incidence_quantiles$Maximum_air_temperature))))      {
+          
+          if (i_z<length(z_label)){ 
+            z_label_char[i_z]<-paste("Maximum Air Temperature ",z_label[i_z],"-",z_label[i_z+1]," (\u00B0C)",sep="")
+          } else {
+            z_label_char[i_z]<-paste("Maximum Air Temperature > ",z_label[i_z]," (\u00B0C)",sep="") 
+          }
+          
+        
+     
+        
+        wt<-which(Conditional_incidence_quantiles$Maximum_air_temperature==unique(Conditional_incidence_quantiles$Maximum_air_temperature)[i_z])
+        Conditional_incidence_df<-Conditional_incidence_quantiles[wt,]
         
         Conditional_incidence_df<-Conditional_incidence_df[order(Conditional_incidence_df[variable_y]),] 
         
@@ -390,75 +607,45 @@ Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars)
         
         Conditional_incidence_df$conf_minus<-conf_minus
         Conditional_incidence_df$conf_plus<-conf_plus
+        #Conditional_incidence_df<-na.omit(Conditional_incidence_df)
         
         Conditional_incidence_df[variable_y]<-round(Conditional_incidence_df[variable_y])
         
-        if (variable_x=="Maximum_air_temperature" & variable_y=="Relative_humidity"){
-          Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(5,25))
-          
-          }
-        if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_wind_speed"){
-          Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25))
-          }
-        if (variable_x=="Maximum_air_temperature" & variable_y=="Mean_Precipitation"){
-          Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25))
-          }
-        if (variable_x=="Maximum_air_temperature" & variable_y=="daylength"){
-          Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Maximum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,25))
-          }
-        if (variable_x=="Relative_humidity" & variable_y=="daylength"){
+        
+        if (variable_x=="Relative_humidity" & variable_y=="Mean_Precipitation"){
           Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(daylength),fill=factor(daylength)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(60,100))
+            ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100))
         }
-        if (variable_x=="Mean_Precipitation" & variable_y=="daylength"){
+        
+        if (variable_x=="Mean_Precipitation" & variable_y=="Relative_humidity"){
           Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(daylength),fill=factor(daylength)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(0,10))
+            ggplot(Conditional_incidence_df,aes(x=Mean_Precipitation,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(60,100))+scale_x_continuous(limits=c(0,5))
         }
         
-        if (variable_x=="Minimum_air_temperature" & variable_y=="Relative_humidity"){
+        if (variable_x=="Relative_humidity" & variable_y=="daylength"){
           Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Relative_humidity),fill=factor(Relative_humidity)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
+            ggplot(Conditional_incidence_df,aes(x=Relative_humidity,y=incidence,color=factor(daylength),fill=factor(daylength)))
+          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(0,5))+scale_x_continuous(limits=c(60,100))
         }
-        if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_wind_speed"){
-          Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_wind_speed),fill=factor(Mean_wind_speed)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
-          
-           }
-        if (variable_x=="Minimum_air_temperature" & variable_y=="Mean_Precipitation"){
-          Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(Mean_Precipitation),fill=factor(Mean_Precipitation)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
-          
-          }
-        if (variable_x=="Minimum_air_temperature" & variable_y=="daylength"){
-          Conditional_incidence_plot <-  
-            ggplot(Conditional_incidence_df,aes(x=Minimum_air_temperature,y=incidence,color=factor(daylength),fill=factor(daylength)))
-          Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_y_continuous(limits=c(1,4))+scale_x_continuous(limits=c(-10,25))
-          
-          }
+        
+        
         
         Conditional_incidence_plot  <- Conditional_incidence_plot+theme_bw(20)
         Conditional_incidence_plot  <- Conditional_incidence_plot+ scale_colour_discrete(name  =variable_y_char)
         
         Conditional_incidence_plot  <- Conditional_incidence_plot+ylab("Conditional Incidence of Campylobacter Cases ")
         Conditional_incidence_plot  <- Conditional_incidence_plot+xlab(variable_x_char)
+        Conditional_incidence_plot  <- Conditional_incidence_plot+ ggtitle(z_label_char[i_z]) 
+        
+        Conditional_incidence_plot  <- Conditional_incidence_plot+geom_text(aes(x = 72, y = 4.75,
+                      label = light_label_char[i_light]),colour="black",size=7)
+        
         
         labelling<-c(round(as.numeric(unique(Conditional_incidence_df[variable_y])[,1])))
         n_labelling<-length(labelling)
         
-        
         for (j in c(1:(n_labelling-1)))      {
           
           labelling_char[j]<-paste(as.character(labelling[j]), "-", as.character(labelling[j+1]) )
@@ -483,10 +670,12 @@ Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars)
         
         Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.x =element_text(size=15))
         Conditional_incidence_plot  <- Conditional_incidence_plot+ theme(axis.title.y =element_text(size=15))
-            Conditional_incidence_plot  
+        
+        print(Conditional_incidence_plot)   
         
         
-        file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",time_lag_char,"_quantile.tiff", sep = "")
+        file_name<-paste("../Graphs/Campylobacter_",variable_x,"_",variable_y,"_",variable_z,"_daylength_",
+                         z_label[i_z],"_quarter_",i_light,"_",time_lag_char,".tiff", sep = "")
         tiff(filename = file_name,width = 17.35, height =  17.35, units = "cm", pointsize = 12, res = 1200,compression = "lzw",antialias="default")
         
         print(Conditional_incidence_plot)  
@@ -494,12 +683,20 @@ Plot_Conditional_incidence_quantiles_two_factors<-function(Data_frame_1, Pars)
         dev.off()
         
         
-      
-      
     
+       
+
+       
+         
+        }
+        
+      }  
+    }
   })
 }
 
 
 
 
+
+