diff --git a/Disertationmainfile3.ipynb b/Disertationmainfile3.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..4b34508d004cba385c00e956deedcba505be4e50
--- /dev/null
+++ b/Disertationmainfile3.ipynb
@@ -0,0 +1,7546 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from pyspark import SparkConf\n",
+    "from pyspark import SparkContext\n",
+    "from pyspark.sql import SparkSession\n",
+    "from pyspark.sql.functions import udf\n",
+    "from pyspark.sql.types import IntegerType\n",
+    "from pyspark.sql.types import LongType\n",
+    "from pyspark.sql.types import FloatType\n",
+    "from pyspark.rdd import RDD\n",
+    "from pyspark.sql.types import StringType\n",
+    "from pyspark.sql.functions import col\n",
+    "import pyspark.sql.functions as F\n",
+    "import csv\n",
+    "from datetime import datetime\n",
+    "from functools import reduce\n",
+    "import pandas as pd\n",
+    "import matplotlib.pyplot as plt\n",
+    "# local[*]: run Spark in local-mode(parallel computing) with as many working processors as logical cores on your machine\n",
+    "# If we want Spark to run locally with 'k' worker threads, we can specify as \"local[k]\".\n",
+    "master = \"local[*]\"\n",
+    "# The `appName` field is a name to be shown on the Spark cluster UI page\n",
+    "app_name = \"Big data Analysis of Road Crash Data\"\n",
+    "# Setup configuration parameters for Spark\n",
+    "spark_conf = SparkConf().setMaster(master).setAppName(app_name)\n",
+    "# creating a SparkContext object \n",
+    "spark = SparkSession.builder.config(conf=spark_conf).getOrCreate()\n",
+    "sc = spark.sparkContext\n",
+    "sc.setLogLevel('ERROR')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "Accident_Information_df = spark.read.format('csv')\\\n",
+    "            .option('header',True).option('escape','\"')\\\n",
+    "            .load('/Users/Asfandyar/Downloads/dft-road-casualty-statistics-accident-1979-2020.csv')\n",
+    "# changing the type of column(\"Year'\") to interger type\n",
+    "#Accident_Information_df = Accident_Information_df.withColumn('Year',F.col('Year').cast(IntegerType()))\n",
+    "#Accident_Information_df=Accident_Information_df.filter(Accident_Information_df.Year<2017)\n",
+    "#Accident_Information_df.sort(\"Year\").show(truncate=False)\n",
+    "A2018 = Accident_Information_df\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "|accident_index|accident_year|accident_reference|location_easting_osgr|location_northing_osgr|longitude| latitude|police_force|accident_severity|number_of_vehicles|number_of_casualties|      date|day_of_week| time|local_authority_district|local_authority_ons_district|local_authority_highway|first_road_class|first_road_number|road_type|speed_limit|junction_detail|junction_control|second_road_class|second_road_number|pedestrian_crossing_human_control|pedestrian_crossing_physical_facilities|light_conditions|weather_conditions|road_surface_conditions|special_conditions_at_site|carriageway_hazards|urban_or_rural_area|did_police_officer_attend_scene_of_accident|trunk_road_flag|lsoa_of_accident_location|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "| 200501BS00001|         2005|         01BS00001|               525680|                178240| -0.19117|51.489096|           1|                2|                 1|                   1|04/01/2005|          3|17:42|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|\n",
+      "| 200501BS00002|         2005|         01BS00002|               524170|                181650|-0.211708|51.520075|           1|                3|                 1|                   1|05/01/2005|          4|17:36|                      12|                   E09000020|              E09000020|               4|              450|        3|         30|              6|               2|                5|                 0|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002909|\n",
+      "| 200501BS00003|         2005|         01BS00003|               524520|                182240|-0.206458|51.525301|           1|                3|                 2|                   1|06/01/2005|          5|00:15|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002857|\n",
+      "| 200501BS00004|         2005|         01BS00004|               526900|                177530|-0.173862|51.482442|           1|                3|                 1|                   1|07/01/2005|          6|10:35|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|\n",
+      "| 200501BS00005|         2005|         01BS00005|               528060|                179040|-0.156618|51.495752|           1|                3|                 1|                   1|10/01/2005|          2|21:13|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               7|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002863|\n",
+      "| 200501BS00006|         2005|         01BS00006|               524770|                181160|-0.203238| 51.51554|           1|                3|                 2|                   1|11/01/2005|          3|12:40|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 2|                      2|                         6|                  0|                  1|                                          1|              2|                E01002832|\n",
+      "| 200501BS00007|         2005|         01BS00007|               524220|                180830|-0.211277|51.512695|           1|                3|                 2|                   1|13/01/2005|          5|20:40|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|\n",
+      "| 200501BS00009|         2005|         01BS00009|               525890|                179710|-0.187623| 51.50226|           1|                3|                 1|                   2|14/01/2005|          6|17:35|                      12|                   E09000020|              E09000020|               3|              315|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|\n",
+      "| 200501BS00010|         2005|         01BS00010|               527350|                177650|-0.167342| 51.48342|           1|                3|                 2|                   2|15/01/2005|          7|22:43|                      12|                   E09000020|              E09000020|               3|             3212|        6|         30|              6|               2|                4|               304|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002900|\n",
+      "| 200501BS00011|         2005|         01BS00011|               524550|                180810|-0.206531|51.512443|           1|                3|                 2|                   5|15/01/2005|          7|16:00|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              3|               4|                5|                 0|                                0|                                      8|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|\n",
+      "| 200501BS00012|         2005|         01BS00012|               526240|                178900|-0.182872|51.494902|           1|                3|                 1|                   1|16/01/2005|          1|00:42|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              6|               2|                4|               325|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002835|\n",
+      "| 200501BS00014|         2005|         01BS00014|               526170|                177690|-0.184312|51.484044|           1|                3|                 2|                   1|25/01/2005|          3|20:48|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               2|                3|               308|                                0|                                      5|               4|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002912|\n",
+      "| 200501BS00015|         2005|         01BS00015|               525590|                178520|-0.192366|51.491632|           1|                3|                 1|                   1|11/01/2005|          3|12:55|                      12|                   E09000020|              E09000020|               6|                0|        2|         30|              3|               4|                3|              3220|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|\n",
+      "| 200501BS00016|         2005|         01BS00016|               527990|                178690|-0.157753|51.492622|           1|                3|                 2|                   1|18/01/2005|          3|05:01|                      12|                   E09000020|              E09000020|               3|             3217|        2|         30|              3|               4|                3|              3216|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002902|\n",
+      "| 200501BS00017|         2005|         01BS00017|               526700|                178970|-0.176224|51.495429|           1|                3|                 1|                   2|18/01/2005|          3|11:15|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|\n",
+      "| 200501BS00018|         2005|         01BS00018|               526460|                177460| -0.18022|51.481912|           1|                3|                 1|                   1|18/01/2005|          3|10:50|                      12|                   E09000020|              E09000020|               3|             3217|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|\n",
+      "| 200501BS00019|         2005|         01BS00019|               524680|                179450|-0.205139|51.500191|           1|                2|                 2|                   1|20/01/2005|          5|00:15|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002864|\n",
+      "| 200501BS00020|         2005|         01BS00020|               527000|                179020|-0.171887|51.495811|           1|                3|                 2|                   1|21/01/2005|          6|09:15|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              3|               4|                3|                 4|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|\n",
+      "| 200501BS00021|         2005|         01BS00021|               527810|                178010| -0.16059|51.486552|           1|                3|                 2|                   1|21/01/2005|          6|21:16|                      12|                   E09000020|              E09000020|               4|              302|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002901|\n",
+      "| 200501BS00022|         2005|         01BS00022|               526790|                178980|-0.174925|51.495498|           1|                2|                 1|                   1|08/01/2005|          7|03:00|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "\n",
+    "\n",
+    "A2005=A2018.filter(A2018.accident_year>2004)\n",
+    "A20052020=A2005.filter(A2005.accident_year<2020)\n",
+    "A20052020.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "A2018=A20052020"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from pyspark.sql.functions import col, when\n",
+    "valueWhenTrue1 =\"M\"\n",
+    "valueWhenTrue2 =\"A\"\n",
+    "valueWhenTrue3 = \"A\"\n",
+    "valueWhenTrue4 = \"B\"\n",
+    "valueWhenTrue5 = \"C\"\n",
+    "valueWhenTrue6 = \"U\"\n",
+    "\n",
+    "\n",
+    "A2018=A2018.withColumn(\n",
+    "    \"first_road_class\",\n",
+    "    when(\n",
+    "        col(\"first_road_class\") == 1,\n",
+    "        \"Motorway\"\n",
+    "    ).otherwise(col(\"first_road_class\")),\n",
+    ")\n",
+    "A2018=A2018.withColumn(\n",
+    "    \"first_road_class\",\n",
+    "    when(\n",
+    "        col(\"first_road_class\") == 2,\n",
+    "        \"A\"\n",
+    "    ).otherwise(col(\"first_road_class\")),\n",
+    ")\n",
+    "A2018=A2018.withColumn(\n",
+    "    \"first_road_class\",\n",
+    "    when(\n",
+    "        col(\"first_road_class\") == 3,\n",
+    "        \"A\"\n",
+    "    ).otherwise(col(\"first_road_class\")),\n",
+    ")\n",
+    "A2018=A2018.withColumn(\n",
+    "    \"first_road_class\",\n",
+    "    when(\n",
+    "        col(\"first_road_class\") == 4,\n",
+    "        \"B,C & U\"\n",
+    "    ).otherwise(col(\"first_road_class\")),\n",
+    ")\n",
+    "A2018=A2018.withColumn(\n",
+    "    \"first_road_class\",\n",
+    "    when(\n",
+    "        col(\"first_road_class\") == 5,\n",
+    "        \"B,C & U\"\n",
+    "    ).otherwise(col(\"first_road_class\")),\n",
+    ")\n",
+    "A2018=A2018.withColumn(\n",
+    "    \"first_road_class\",\n",
+    "    when(\n",
+    "        col(\"first_road_class\") == 6,\n",
+    "        \"B,C & U\"\n",
+    "    ).otherwise(col(\"first_road_class\")),\n",
+    ")\n",
+    "\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "|accident_index|accident_year|accident_reference|location_easting_osgr|location_northing_osgr|longitude| latitude|police_force|accident_severity|number_of_vehicles|number_of_casualties|      date|day_of_week| time|local_authority_district|local_authority_ons_district|local_authority_highway|first_road_class|first_road_number|road_type|speed_limit|junction_detail|junction_control|second_road_class|second_road_number|pedestrian_crossing_human_control|pedestrian_crossing_physical_facilities|light_conditions|weather_conditions|road_surface_conditions|special_conditions_at_site|carriageway_hazards|urban_or_rural_area|did_police_officer_attend_scene_of_accident|trunk_road_flag|lsoa_of_accident_location|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "| 200501BS00001|         2005|         01BS00001|               525680|                178240| -0.19117|51.489096|           1|                2|                 1|                   1|04/01/2005|          3|17:42|                      12|                   E09000020|              E09000020|               A|             3218|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|\n",
+      "| 200501BS00002|         2005|         01BS00002|               524170|                181650|-0.211708|51.520075|           1|                3|                 1|                   1|05/01/2005|          4|17:36|                      12|                   E09000020|              E09000020|         B,C & U|              450|        3|         30|              6|               2|                5|                 0|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002909|\n",
+      "| 200501BS00003|         2005|         01BS00003|               524520|                182240|-0.206458|51.525301|           1|                3|                 2|                   1|06/01/2005|          5|00:15|                      12|                   E09000020|              E09000020|         B,C & U|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002857|\n",
+      "| 200501BS00004|         2005|         01BS00004|               526900|                177530|-0.173862|51.482442|           1|                3|                 1|                   1|07/01/2005|          6|10:35|                      12|                   E09000020|              E09000020|               A|             3220|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|\n",
+      "| 200501BS00005|         2005|         01BS00005|               528060|                179040|-0.156618|51.495752|           1|                3|                 1|                   1|10/01/2005|          2|21:13|                      12|                   E09000020|              E09000020|         B,C & U|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               7|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002863|\n",
+      "| 200501BS00006|         2005|         01BS00006|               524770|                181160|-0.203238| 51.51554|           1|                3|                 2|                   1|11/01/2005|          3|12:40|                      12|                   E09000020|              E09000020|         B,C & U|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 2|                      2|                         6|                  0|                  1|                                          1|              2|                E01002832|\n",
+      "| 200501BS00007|         2005|         01BS00007|               524220|                180830|-0.211277|51.512695|           1|                3|                 2|                   1|13/01/2005|          5|20:40|                      12|                   E09000020|              E09000020|         B,C & U|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|\n",
+      "| 200501BS00009|         2005|         01BS00009|               525890|                179710|-0.187623| 51.50226|           1|                3|                 1|                   2|14/01/2005|          6|17:35|                      12|                   E09000020|              E09000020|               A|              315|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|\n",
+      "| 200501BS00010|         2005|         01BS00010|               527350|                177650|-0.167342| 51.48342|           1|                3|                 2|                   2|15/01/2005|          7|22:43|                      12|                   E09000020|              E09000020|               A|             3212|        6|         30|              6|               2|                4|               304|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002900|\n",
+      "| 200501BS00011|         2005|         01BS00011|               524550|                180810|-0.206531|51.512443|           1|                3|                 2|                   5|15/01/2005|          7|16:00|                      12|                   E09000020|              E09000020|         B,C & U|              450|        6|         30|              3|               4|                5|                 0|                                0|                                      8|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|\n",
+      "| 200501BS00012|         2005|         01BS00012|               526240|                178900|-0.182872|51.494902|           1|                3|                 1|                   1|16/01/2005|          1|00:42|                      12|                   E09000020|              E09000020|               A|                4|        6|         30|              6|               2|                4|               325|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002835|\n",
+      "| 200501BS00014|         2005|         01BS00014|               526170|                177690|-0.184312|51.484044|           1|                3|                 2|                   1|25/01/2005|          3|20:48|                      12|                   E09000020|              E09000020|               A|             3220|        6|         30|              6|               2|                3|               308|                                0|                                      5|               4|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002912|\n",
+      "| 200501BS00015|         2005|         01BS00015|               525590|                178520|-0.192366|51.491632|           1|                3|                 1|                   1|11/01/2005|          3|12:55|                      12|                   E09000020|              E09000020|         B,C & U|                0|        2|         30|              3|               4|                3|              3220|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|\n",
+      "| 200501BS00016|         2005|         01BS00016|               527990|                178690|-0.157753|51.492622|           1|                3|                 2|                   1|18/01/2005|          3|05:01|                      12|                   E09000020|              E09000020|               A|             3217|        2|         30|              3|               4|                3|              3216|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002902|\n",
+      "| 200501BS00017|         2005|         01BS00017|               526700|                178970|-0.176224|51.495429|           1|                3|                 1|                   2|18/01/2005|          3|11:15|                      12|                   E09000020|              E09000020|               A|                4|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|\n",
+      "| 200501BS00018|         2005|         01BS00018|               526460|                177460| -0.18022|51.481912|           1|                3|                 1|                   1|18/01/2005|          3|10:50|                      12|                   E09000020|              E09000020|               A|             3217|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|\n",
+      "| 200501BS00019|         2005|         01BS00019|               524680|                179450|-0.205139|51.500191|           1|                2|                 2|                   1|20/01/2005|          5|00:15|                      12|                   E09000020|              E09000020|         B,C & U|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002864|\n",
+      "| 200501BS00020|         2005|         01BS00020|               527000|                179020|-0.171887|51.495811|           1|                3|                 2|                   1|21/01/2005|          6|09:15|                      12|                   E09000020|              E09000020|               A|             3218|        6|         30|              3|               4|                3|                 4|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|\n",
+      "| 200501BS00021|         2005|         01BS00021|               527810|                178010| -0.16059|51.486552|           1|                3|                 2|                   1|21/01/2005|          6|21:16|                      12|                   E09000020|              E09000020|         B,C & U|              302|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002901|\n",
+      "| 200501BS00022|         2005|         01BS00022|               526790|                178980|-0.174925|51.495498|           1|                2|                 1|                   1|08/01/2005|          7|03:00|                      12|                   E09000020|              E09000020|               A|                4|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "A2018.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+----------------+-------------+---------------+\n",
+      "|first_road_class|accident_year|Total accidents|\n",
+      "+----------------+-------------+---------------+\n",
+      "|        Motorway|         2005|           8198|\n",
+      "|         B,C & U|         2005|         101517|\n",
+      "|               A|         2005|          89020|\n",
+      "|               A|         2006|          84509|\n",
+      "|        Motorway|         2006|           7920|\n",
+      "|         B,C & U|         2006|          96732|\n",
+      "|        Motorway|         2007|           7488|\n",
+      "|         B,C & U|         2007|          92823|\n",
+      "|               A|         2007|          81804|\n",
+      "|         B,C & U|         2008|          86503|\n",
+      "|        Motorway|         2008|           6822|\n",
+      "|               A|         2008|          77266|\n",
+      "|        Motorway|         2009|           6172|\n",
+      "|               A|         2009|          74620|\n",
+      "|         B,C & U|         2009|          82762|\n",
+      "|               A|         2010|          70708|\n",
+      "|         B,C & U|         2010|          77640|\n",
+      "|        Motorway|         2010|           6066|\n",
+      "|        Motorway|         2011|           5379|\n",
+      "|         B,C & U|         2011|          75766|\n",
+      "+----------------+-------------+---------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "A2018t_df = A2018.groupby(\"first_road_class\",'accident_year').agg(F.count(A2018.accident_index).alias('Total accidents'))\n",
+    "A2018t_df=A2018t_df.sort(\"accident_year\")\n",
+    "A2018t_df.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+----+---------------+\n",
+      "|road_name|year|Total accidents|\n",
+      "+---------+----+---------------+\n",
+      "|        A|2005|          89020|\n",
+      "| Motorway|2005|           8198|\n",
+      "|  B,C & U|2005|         101517|\n",
+      "|        A|2006|          84509|\n",
+      "|  B,C & U|2006|          96732|\n",
+      "| Motorway|2006|           7920|\n",
+      "|        A|2007|          81804|\n",
+      "| Motorway|2007|           7488|\n",
+      "|  B,C & U|2007|          92823|\n",
+      "| Motorway|2008|           6822|\n",
+      "|        A|2008|          77266|\n",
+      "|  B,C & U|2008|          86503|\n",
+      "|  B,C & U|2009|          82762|\n",
+      "|        A|2009|          74620|\n",
+      "| Motorway|2009|           6172|\n",
+      "|  B,C & U|2010|          77640|\n",
+      "|        A|2010|          70708|\n",
+      "| Motorway|2010|           6066|\n",
+      "|  B,C & U|2011|          75766|\n",
+      "|        A|2011|          70329|\n",
+      "+---------+----+---------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "A2018t_dftt = A2018t_df.withColumnRenamed(\"first_road_class\", \"road_name\")\\\n",
+    "       .withColumnRenamed(\"accident_year\", \"year\")\n",
+    "A2018t_dftt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>Total accidents</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>89020</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>8198</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>101517</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>84509</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>96732</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>7920</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>7488</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>92823</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>81804</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>77266</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>6822</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>86503</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>82762</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>74620</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>6172</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>70708</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>6066</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>77640</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>70329</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>75766</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>5379</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>21</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>5212</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>72790</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>23</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>67569</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>4983</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>64837</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>68840</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>72864</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>28</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>68212</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>29</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>5246</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>30</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>64682</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>31</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>70226</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>32</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>5148</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>33</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>69761</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>34</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>5007</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>61853</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>36</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>4430</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>37</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>56809</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>38</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>68743</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>39</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>4225</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>40</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>53840</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>41</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>64570</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>42</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>52662</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>43</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>61064</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>44</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>3810</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year  Total accidents\n",
+       "0          A  2005            89020\n",
+       "1   Motorway  2005             8198\n",
+       "2    B,C & U  2005           101517\n",
+       "3          A  2006            84509\n",
+       "4    B,C & U  2006            96732\n",
+       "5   Motorway  2006             7920\n",
+       "6   Motorway  2007             7488\n",
+       "7    B,C & U  2007            92823\n",
+       "8          A  2007            81804\n",
+       "9          A  2008            77266\n",
+       "10  Motorway  2008             6822\n",
+       "11   B,C & U  2008            86503\n",
+       "12   B,C & U  2009            82762\n",
+       "13         A  2009            74620\n",
+       "14  Motorway  2009             6172\n",
+       "15         A  2010            70708\n",
+       "16  Motorway  2010             6066\n",
+       "17   B,C & U  2010            77640\n",
+       "18         A  2011            70329\n",
+       "19   B,C & U  2011            75766\n",
+       "20  Motorway  2011             5379\n",
+       "21  Motorway  2012             5212\n",
+       "22   B,C & U  2012            72790\n",
+       "23         A  2012            67569\n",
+       "24  Motorway  2013             4983\n",
+       "25         A  2013            64837\n",
+       "26   B,C & U  2013            68840\n",
+       "27   B,C & U  2014            72864\n",
+       "28         A  2014            68212\n",
+       "29  Motorway  2014             5246\n",
+       "30         A  2015            64682\n",
+       "31   B,C & U  2015            70226\n",
+       "32  Motorway  2015             5148\n",
+       "33   B,C & U  2016            69761\n",
+       "34  Motorway  2016             5007\n",
+       "35         A  2016            61853\n",
+       "36  Motorway  2017             4430\n",
+       "37         A  2017            56809\n",
+       "38   B,C & U  2017            68743\n",
+       "39  Motorway  2018             4225\n",
+       "40         A  2018            53840\n",
+       "41   B,C & U  2018            64570\n",
+       "42         A  2019            52662\n",
+       "43   B,C & U  2019            61064\n",
+       "44  Motorway  2019             3810"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "\n",
+    "A2018t_dftt_df=A2018t_dftt.toPandas()\n",
+    "A2018t_dftt_df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 68,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "362550"
+      ]
+     },
+     "execution_count": 68,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Trafficvolume.count()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 72,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "3310056"
+      ]
+     },
+     "execution_count": 72,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Trafficvolume.count()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+----+--------------+\n",
+      "|road_name|year|Trafficvolume |\n",
+      "+---------+----+--------------+\n",
+      "|B,C & U  |2005|106900000000.0|\n",
+      "|A        |2005|138600000000.0|\n",
+      "|Motorway |2005|60300000000.0 |\n",
+      "|Motorway |2006|61800000000.0 |\n",
+      "|B,C & U  |2006|108100000000.0|\n",
+      "|A        |2006|140500000000.0|\n",
+      "|A        |2007|139700000000.0|\n",
+      "|B,C & U  |2007|111100000000.0|\n",
+      "|Motorway |2007|62500000000.0 |\n",
+      "|B,C & U  |2008|109800000000.0|\n",
+      "|A        |2008|138500000000.0|\n",
+      "|Motorway |2008|62200000000.0 |\n",
+      "|A        |2009|138200000000.0|\n",
+      "|B,C & U  |2009|107300000000.0|\n",
+      "|Motorway |2009|61800000000.0 |\n",
+      "|A        |2010|136400000000.0|\n",
+      "|B,C & U  |2010|105800000000.0|\n",
+      "|Motorway |2010|61000000000.0 |\n",
+      "|Motorway |2011|61800000000.0 |\n",
+      "|A        |2011|137000000000.0|\n",
+      "+---------+----+--------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "Trafficvolume = spark.read.format('csv')\\\n",
+    "            .option('header',True).option('escape','\"')\\\n",
+    "            .load('/Users/Asfandyar/Desktop/disertation/annualtrafficcombined.csv')\n",
+    "# changing the type of column(\"Year'\") to interger type\n",
+    "Trafficvolume = Trafficvolume.withColumn('year',F.col('year').cast(IntegerType()))\n",
+    "Trafficvolume=Trafficvolume.filter(Trafficvolume.year>2004)\n",
+    "Trafficvolume=Trafficvolume.filter(Trafficvolume.year<2020)\n",
+    "Trafficvolume.sort(\"year\").show(truncate=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+----+--------------+\n",
+      "|road_name|year| Trafficvolume|\n",
+      "+---------+----+--------------+\n",
+      "|        A|2005|138600000000.0|\n",
+      "|        A|2006|140500000000.0|\n",
+      "+---------+----+--------------+\n",
+      "only showing top 2 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "Trafficvolume.filter(col(\"road_name\").contains(\"A\")).show(2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+----+--------------+\n",
+      "|road_name|year| Trafficvolume|\n",
+      "+---------+----+--------------+\n",
+      "|  B,C & U|2005|106900000000.0|\n",
+      "|        A|2005|138600000000.0|\n",
+      "| Motorway|2005| 60300000000.0|\n",
+      "| Motorway|2006| 61800000000.0|\n",
+      "|  B,C & U|2006|108100000000.0|\n",
+      "|        A|2006|140500000000.0|\n",
+      "|        A|2007|139700000000.0|\n",
+      "|  B,C & U|2007|111100000000.0|\n",
+      "| Motorway|2007| 62500000000.0|\n",
+      "|  B,C & U|2008|109800000000.0|\n",
+      "|        A|2008|138500000000.0|\n",
+      "| Motorway|2008| 62200000000.0|\n",
+      "|        A|2009|138200000000.0|\n",
+      "|  B,C & U|2009|107300000000.0|\n",
+      "| Motorway|2009| 61800000000.0|\n",
+      "|        A|2010|136400000000.0|\n",
+      "|  B,C & U|2010|105800000000.0|\n",
+      "| Motorway|2010| 61000000000.0|\n",
+      "| Motorway|2011| 61800000000.0|\n",
+      "|        A|2011|137000000000.0|\n",
+      "+---------+----+--------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "TrafficvolumeGrouped=Trafficvolume.select(col(\"road_name\"),col(\"year\"),col(\"Trafficvolume\")).sort(\"year\")\n",
+    "\n",
+    "TrafficvolumeGrouped.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "AnalysisException",
+     "evalue": "cannot resolve '`all_motor_vehicles`' given input columns: [Trafficvolume, road_name, year];\n'Project [regexp_extract(road_name#873, ^[A-Za-z]+(?=), 0) AS road_name#934, regexp_replace(road_name#873, ^[A-Za-z]+_, , 1) AS road_number#935, year#879, 'all_motor_vehicles]\n+- Sort [year#879 ASC NULLS FIRST], true\n   +- Project [road_name#873, year#879, Trafficvolume#875]\n      +- Filter (year#879 < 2020)\n         +- Filter (year#879 > 2004)\n            +- Project [road_name#873, cast(year#874 as int) AS year#879, Trafficvolume#875]\n               +- Relation[road_name#873,year#874,Trafficvolume#875] csv\n",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mAnalysisException\u001b[0m                         Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-46-a3d6758cdfea>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      5\u001b[0m     \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mregexp_replace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"road_name\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"^[A-Za-z]+_\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malias\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"road_number\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      6\u001b[0m     \u001b[0;34m\"year\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m     \u001b[0;34m\"all_motor_vehicles\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      9\u001b[0m )\n",
+      "\u001b[0;32m/usr/local/Cellar/apache-spark/3.1.2/libexec/python/pyspark/sql/dataframe.py\u001b[0m in \u001b[0;36mselect\u001b[0;34m(self, *cols)\u001b[0m\n\u001b[1;32m   1667\u001b[0m         \u001b[0;34m[\u001b[0m\u001b[0mRow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Alice'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mage\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mRow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Bob'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mage\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m15\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1668\u001b[0m         \"\"\"\n\u001b[0;32m-> 1669\u001b[0;31m         \u001b[0mjdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mselect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jcols\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mcols\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1670\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msql_ctx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1671\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/py4j/java_gateway.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m   1303\u001b[0m         \u001b[0manswer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgateway_client\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend_command\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcommand\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1304\u001b[0m         return_value = get_return_value(\n\u001b[0;32m-> 1305\u001b[0;31m             answer, self.gateway_client, self.target_id, self.name)\n\u001b[0m\u001b[1;32m   1306\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1307\u001b[0m         \u001b[0;32mfor\u001b[0m \u001b[0mtemp_arg\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtemp_args\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/usr/local/Cellar/apache-spark/3.1.2/libexec/python/pyspark/sql/utils.py\u001b[0m in \u001b[0;36mdeco\u001b[0;34m(*a, **kw)\u001b[0m\n\u001b[1;32m    115\u001b[0m                 \u001b[0;31m# Hide where the exception came from that shows a non-Pythonic\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    116\u001b[0m                 \u001b[0;31m# JVM exception message.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 117\u001b[0;31m                 \u001b[0;32mraise\u001b[0m \u001b[0mconverted\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    118\u001b[0m             \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    119\u001b[0m                 \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mAnalysisException\u001b[0m: cannot resolve '`all_motor_vehicles`' given input columns: [Trafficvolume, road_name, year];\n'Project [regexp_extract(road_name#873, ^[A-Za-z]+(?=), 0) AS road_name#934, regexp_replace(road_name#873, ^[A-Za-z]+_, , 1) AS road_number#935, year#879, 'all_motor_vehicles]\n+- Sort [year#879 ASC NULLS FIRST], true\n   +- Project [road_name#873, year#879, Trafficvolume#875]\n      +- Filter (year#879 < 2020)\n         +- Filter (year#879 > 2004)\n            +- Project [road_name#873, cast(year#874 as int) AS year#879, Trafficvolume#875]\n               +- Relation[road_name#873,year#874,Trafficvolume#875] csv\n"
+     ]
+    }
+   ],
+   "source": [
+    "import pyspark.sql.functions as f\n",
+    "\n",
+    "TrafficvolumeGroupedupdated=TrafficvolumeGrouped.select(\n",
+    "    f.regexp_extract(\"road_name\", pattern=\"^[A-Za-z]+(?=)\", idx=0).alias('road_name'),\n",
+    "    f.regexp_replace(\"road_name\", \"^[A-Za-z]+_\", \"\").alias(\"road_number\"),\n",
+    "    \"year\",\n",
+    "    \"all_motor_vehicles\"\n",
+    "\n",
+    ")\n",
+    "TrafficvolumeGroupedupdated.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 47,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'TrafficvolumeGroupedupdated' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-47-e36d62617a89>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTrafficvolumeGroupedupdated\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrafficvolumeGroupedupdated\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mselect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"road_name\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"year\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"all_motor_vehicles\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msort\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"year\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0mTrafficvolumeGroupedupdated\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'TrafficvolumeGroupedupdated' is not defined"
+     ]
+    }
+   ],
+   "source": [
+    "TrafficvolumeGroupedupdated=TrafficvolumeGroupedupdated.select(col(\"road_name\"),col(\"year\"),col(\"all_motor_vehicles\")).sort(\"year\")\n",
+    "\n",
+    "TrafficvolumeGroupedupdated.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 77,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+----+------------------+\n",
+      "|road_name|year|all_motor_vehicles|\n",
+      "+---------+----+------------------+\n",
+      "|        A|2005|       7.8689351E7|\n",
+      "|        M|2005|       2.4352716E7|\n",
+      "|        U|2005|         7369477.0|\n",
+      "|        C|2005|         3816208.0|\n",
+      "|        B|2005|         4709562.0|\n",
+      "|        M|2006|       3.0686368E7|\n",
+      "|        A|2006|       7.7760371E7|\n",
+      "|        U|2006|         8209734.0|\n",
+      "|        C|2006|         4186058.0|\n",
+      "|        B|2006|         5203139.0|\n",
+      "|        A|2007|       8.0678016E7|\n",
+      "|        M|2007|       2.7693584E7|\n",
+      "|        U|2007|         7824099.0|\n",
+      "|        B|2007|         5008270.0|\n",
+      "|        C|2007|         3995513.0|\n",
+      "|        M|2008|       2.8008346E7|\n",
+      "|        A|2008|       7.6143383E7|\n",
+      "|        U|2008|       1.0834031E7|\n",
+      "|        B|2008|       1.2802995E7|\n",
+      "|        C|2008|         7579313.0|\n",
+      "+---------+----+------------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "TrafficvolumeGroupedupdated_U = TrafficvolumeGroupedupdated.groupby('road_name','year').agg(F.sum(TrafficvolumeGroupedupdated['all_motor_vehicles']).alias('all_motor_vehicles'))\n",
+    "TrafficvolumeGroupedupdated_U.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>Trafficvolume</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>60300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>138600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>106900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>140500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>108100000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>62500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>139700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>111100000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>62200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>138500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>109800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>138200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>107300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>61000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>136400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>105800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>137000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>105500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>21</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>62400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>135800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>23</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>106400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>63300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>135800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>106600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>64800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>28</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>138500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>29</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>111200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>30</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>66500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>31</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>141000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>32</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>112900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>33</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>67700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>34</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>144900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>115400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>36</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>68700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>37</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>146500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>38</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>117400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>39</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>69000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>40</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>148600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>41</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>116600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>42</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>70500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>43</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>150200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>44</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>117900000000.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year   Trafficvolume\n",
+       "0   Motorway  2005   60300000000.0\n",
+       "1          A  2005  138600000000.0\n",
+       "2    B,C & U  2005  106900000000.0\n",
+       "3   Motorway  2006   61800000000.0\n",
+       "4          A  2006  140500000000.0\n",
+       "5    B,C & U  2006  108100000000.0\n",
+       "6   Motorway  2007   62500000000.0\n",
+       "7          A  2007  139700000000.0\n",
+       "8    B,C & U  2007  111100000000.0\n",
+       "9   Motorway  2008   62200000000.0\n",
+       "10         A  2008  138500000000.0\n",
+       "11   B,C & U  2008  109800000000.0\n",
+       "12  Motorway  2009   61800000000.0\n",
+       "13         A  2009  138200000000.0\n",
+       "14   B,C & U  2009  107300000000.0\n",
+       "15  Motorway  2010   61000000000.0\n",
+       "16         A  2010  136400000000.0\n",
+       "17   B,C & U  2010  105800000000.0\n",
+       "18  Motorway  2011   61800000000.0\n",
+       "19         A  2011  137000000000.0\n",
+       "20   B,C & U  2011  105500000000.0\n",
+       "21  Motorway  2012   62400000000.0\n",
+       "22         A  2012  135800000000.0\n",
+       "23   B,C & U  2012  106400000000.0\n",
+       "24  Motorway  2013   63300000000.0\n",
+       "25         A  2013  135800000000.0\n",
+       "26   B,C & U  2013  106600000000.0\n",
+       "27  Motorway  2014   64800000000.0\n",
+       "28         A  2014  138500000000.0\n",
+       "29   B,C & U  2014  111200000000.0\n",
+       "30  Motorway  2015   66500000000.0\n",
+       "31         A  2015  141000000000.0\n",
+       "32   B,C & U  2015  112900000000.0\n",
+       "33  Motorway  2016   67700000000.0\n",
+       "34         A  2016  144900000000.0\n",
+       "35   B,C & U  2016  115400000000.0\n",
+       "36  Motorway  2017   68700000000.0\n",
+       "37         A  2017  146500000000.0\n",
+       "38   B,C & U  2017  117400000000.0\n",
+       "39  Motorway  2018   69000000000.0\n",
+       "40         A  2018  148600000000.0\n",
+       "41   B,C & U  2018  116600000000.0\n",
+       "42  Motorway  2019   70500000000.0\n",
+       "43         A  2019  150200000000.0\n",
+       "44   B,C & U  2019  117900000000.0"
+      ]
+     },
+     "execution_count": 49,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "TrafficvolumeGroupedupdated_df=TrafficvolumeGrouped.toPandas()\n",
+    "TrafficvolumeGroupedupdated_df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 79,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>year</th>\n",
+       "      <th>M</th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>U</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>2005</td>\n",
+       "      <td>2,186</td>\n",
+       "      <td>29,035</td>\n",
+       "      <td>18,758</td>\n",
+       "      <td>52,480</td>\n",
+       "      <td>138,679</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2006</td>\n",
+       "      <td>2,209</td>\n",
+       "      <td>29,040</td>\n",
+       "      <td>18,652</td>\n",
+       "      <td>52,487</td>\n",
+       "      <td>142,670</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>2007</td>\n",
+       "      <td>2,212</td>\n",
+       "      <td>29,045</td>\n",
+       "      <td>18,806</td>\n",
+       "      <td>52,458</td>\n",
+       "      <td>142,847</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>2008</td>\n",
+       "      <td>2,211</td>\n",
+       "      <td>29,012</td>\n",
+       "      <td>18,741</td>\n",
+       "      <td>52,552</td>\n",
+       "      <td>142,594</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2009</td>\n",
+       "      <td>2,212</td>\n",
+       "      <td>29,061</td>\n",
+       "      <td>18,729</td>\n",
+       "      <td>52,700</td>\n",
+       "      <td>142,384</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>2010</td>\n",
+       "      <td>2,211</td>\n",
+       "      <td>29,022</td>\n",
+       "      <td>18,760</td>\n",
+       "      <td>52,709</td>\n",
+       "      <td>142,275</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>2011</td>\n",
+       "      <td>2,218</td>\n",
+       "      <td>29,039</td>\n",
+       "      <td>18,770</td>\n",
+       "      <td>52,712</td>\n",
+       "      <td>142,265</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>2012</td>\n",
+       "      <td>2,248</td>\n",
+       "      <td>29,044</td>\n",
+       "      <td>18,774</td>\n",
+       "      <td>52,756</td>\n",
+       "      <td>142,551</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>2013</td>\n",
+       "      <td>2,262</td>\n",
+       "      <td>29,049</td>\n",
+       "      <td>18,776</td>\n",
+       "      <td>52,819</td>\n",
+       "      <td>143,273</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>2014</td>\n",
+       "      <td>2,265</td>\n",
+       "      <td>29,071</td>\n",
+       "      <td>18,770</td>\n",
+       "      <td>52,866</td>\n",
+       "      <td>143,549</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>2015</td>\n",
+       "      <td>2,270</td>\n",
+       "      <td>29,065</td>\n",
+       "      <td>18,819</td>\n",
+       "      <td>52,420</td>\n",
+       "      <td>143,305</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>2016</td>\n",
+       "      <td>2,268</td>\n",
+       "      <td>29,090</td>\n",
+       "      <td>18,825</td>\n",
+       "      <td>52,475</td>\n",
+       "      <td>143,911</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>2017</td>\n",
+       "      <td>2,292</td>\n",
+       "      <td>29,140</td>\n",
+       "      <td>18,842</td>\n",
+       "      <td>52,379</td>\n",
+       "      <td>143,305</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>2018</td>\n",
+       "      <td>2,313</td>\n",
+       "      <td>29,440</td>\n",
+       "      <td>18,836</td>\n",
+       "      <td>53,392</td>\n",
+       "      <td>142,715</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>2019</td>\n",
+       "      <td>2,320</td>\n",
+       "      <td>29,489</td>\n",
+       "      <td>18,842</td>\n",
+       "      <td>53,371</td>\n",
+       "      <td>143,965</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "    year      M       A       B       C        U\n",
+       "0   2005  2,186  29,035  18,758  52,480  138,679\n",
+       "1   2006  2,209  29,040  18,652  52,487  142,670\n",
+       "2   2007  2,212  29,045  18,806  52,458  142,847\n",
+       "3   2008  2,211  29,012  18,741  52,552  142,594\n",
+       "4   2009  2,212  29,061  18,729  52,700  142,384\n",
+       "5   2010  2,211  29,022  18,760  52,709  142,275\n",
+       "6   2011  2,218  29,039  18,770  52,712  142,265\n",
+       "7   2012  2,248  29,044  18,774  52,756  142,551\n",
+       "8   2013  2,262  29,049  18,776  52,819  143,273\n",
+       "9   2014  2,265  29,071  18,770  52,866  143,549\n",
+       "10  2015  2,270  29,065  18,819  52,420  143,305\n",
+       "11  2016  2,268  29,090  18,825  52,475  143,911\n",
+       "12  2017  2,292  29,140  18,842  52,379  143,305\n",
+       "13  2018  2,313  29,440  18,836  53,392  142,715\n",
+       "14  2019  2,320  29,489  18,842  53,371  143,965"
+      ]
+     },
+     "execution_count": 79,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import pandas as pd\n",
+    "df = pd.read_csv ('/Users/Asfandyar/Desktop/disertation/diseration_final/Road lengths (miles).csv')\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 80,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>year</th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>link_length_km</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>2005</td>\n",
+       "      <td>M</td>\n",
+       "      <td>2,186</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2006</td>\n",
+       "      <td>M</td>\n",
+       "      <td>2,209</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>2007</td>\n",
+       "      <td>M</td>\n",
+       "      <td>2,212</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>2008</td>\n",
+       "      <td>M</td>\n",
+       "      <td>2,211</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2009</td>\n",
+       "      <td>M</td>\n",
+       "      <td>2,212</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>70</th>\n",
+       "      <td>2015</td>\n",
+       "      <td>U</td>\n",
+       "      <td>143,305</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>71</th>\n",
+       "      <td>2016</td>\n",
+       "      <td>U</td>\n",
+       "      <td>143,911</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>72</th>\n",
+       "      <td>2017</td>\n",
+       "      <td>U</td>\n",
+       "      <td>143,305</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>73</th>\n",
+       "      <td>2018</td>\n",
+       "      <td>U</td>\n",
+       "      <td>142,715</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>74</th>\n",
+       "      <td>2019</td>\n",
+       "      <td>U</td>\n",
+       "      <td>143,965</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>75 rows × 3 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "    year road_name link_length_km\n",
+       "0   2005         M          2,186\n",
+       "1   2006         M          2,209\n",
+       "2   2007         M          2,212\n",
+       "3   2008         M          2,211\n",
+       "4   2009         M          2,212\n",
+       "..   ...       ...            ...\n",
+       "70  2015         U        143,305\n",
+       "71  2016         U        143,911\n",
+       "72  2017         U        143,305\n",
+       "73  2018         U        142,715\n",
+       "74  2019         U        143,965\n",
+       "\n",
+       "[75 rows x 3 columns]"
+      ]
+     },
+     "execution_count": 80,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "roadlenghth=df.melt(id_vars=[\"year\"], \n",
+    "        var_name=\"road_name\", \n",
+    "        value_name=\"link_length_km\")\n",
+    "roadlenghth"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 81,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>all_motor_vehicles</th>\n",
+       "      <th>link_length_km</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>78689351.0</td>\n",
+       "      <td>29,035</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>M</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>24352716.0</td>\n",
+       "      <td>2,186</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>7369477.0</td>\n",
+       "      <td>138,679</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>C</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>3816208.0</td>\n",
+       "      <td>52,480</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>B</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>4709562.0</td>\n",
+       "      <td>18,758</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>70</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>64275975.0</td>\n",
+       "      <td>29,489</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>71</th>\n",
+       "      <td>M</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>25629481.0</td>\n",
+       "      <td>2,320</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>72</th>\n",
+       "      <td>C</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>6641590.0</td>\n",
+       "      <td>53,371</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>73</th>\n",
+       "      <td>U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>7504917.0</td>\n",
+       "      <td>143,965</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>74</th>\n",
+       "      <td>B</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>10353469.0</td>\n",
+       "      <td>18,842</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>75 rows × 4 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year  all_motor_vehicles link_length_km\n",
+       "0          A  2005          78689351.0         29,035\n",
+       "1          M  2005          24352716.0          2,186\n",
+       "2          U  2005           7369477.0        138,679\n",
+       "3          C  2005           3816208.0         52,480\n",
+       "4          B  2005           4709562.0         18,758\n",
+       "..       ...   ...                 ...            ...\n",
+       "70         A  2019          64275975.0         29,489\n",
+       "71         M  2019          25629481.0          2,320\n",
+       "72         C  2019           6641590.0         53,371\n",
+       "73         U  2019           7504917.0        143,965\n",
+       "74         B  2019          10353469.0         18,842\n",
+       "\n",
+       "[75 rows x 4 columns]"
+      ]
+     },
+     "execution_count": 81,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result22=pd.merge(TrafficvolumeGroupedupdated_df, roadlenghth, on=['year','road_name'])\n",
+    "result22"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 82,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "numpy.float64"
+      ]
+     },
+     "execution_count": 82,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result22[\"link_length_km\"]=result22[\"link_length_km\"].str.replace(',','')\n",
+    "result22[\"link_length_km\"] = result22[\"link_length_km\"].astype(float)\n",
+    "type(result22[\"all_motor_vehicles\"][0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 83,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>all_motor_vehicles</th>\n",
+       "      <th>link_length_km</th>\n",
+       "      <th>Trafficvolume</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>78689351.0</td>\n",
+       "      <td>29035.0</td>\n",
+       "      <td>2.284745e+12</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>M</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>24352716.0</td>\n",
+       "      <td>2186.0</td>\n",
+       "      <td>5.323504e+10</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>7369477.0</td>\n",
+       "      <td>138679.0</td>\n",
+       "      <td>1.021992e+12</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>C</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>3816208.0</td>\n",
+       "      <td>52480.0</td>\n",
+       "      <td>2.002746e+11</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>B</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>4709562.0</td>\n",
+       "      <td>18758.0</td>\n",
+       "      <td>8.834196e+10</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>70</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>64275975.0</td>\n",
+       "      <td>29489.0</td>\n",
+       "      <td>1.895434e+12</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>71</th>\n",
+       "      <td>M</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>25629481.0</td>\n",
+       "      <td>2320.0</td>\n",
+       "      <td>5.946040e+10</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>72</th>\n",
+       "      <td>C</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>6641590.0</td>\n",
+       "      <td>53371.0</td>\n",
+       "      <td>3.544683e+11</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>73</th>\n",
+       "      <td>U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>7504917.0</td>\n",
+       "      <td>143965.0</td>\n",
+       "      <td>1.080445e+12</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>74</th>\n",
+       "      <td>B</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>10353469.0</td>\n",
+       "      <td>18842.0</td>\n",
+       "      <td>1.950801e+11</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>75 rows × 5 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year  all_motor_vehicles  link_length_km  Trafficvolume\n",
+       "0          A  2005          78689351.0         29035.0   2.284745e+12\n",
+       "1          M  2005          24352716.0          2186.0   5.323504e+10\n",
+       "2          U  2005           7369477.0        138679.0   1.021992e+12\n",
+       "3          C  2005           3816208.0         52480.0   2.002746e+11\n",
+       "4          B  2005           4709562.0         18758.0   8.834196e+10\n",
+       "..       ...   ...                 ...             ...            ...\n",
+       "70         A  2019          64275975.0         29489.0   1.895434e+12\n",
+       "71         M  2019          25629481.0          2320.0   5.946040e+10\n",
+       "72         C  2019           6641590.0         53371.0   3.544683e+11\n",
+       "73         U  2019           7504917.0        143965.0   1.080445e+12\n",
+       "74         B  2019          10353469.0         18842.0   1.950801e+11\n",
+       "\n",
+       "[75 rows x 5 columns]"
+      ]
+     },
+     "execution_count": 83,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "\n",
+    "result22[\"Trafficvolume\"] = result22[\"all_motor_vehicles\"] * result22[\"link_length_km\"]\n",
+    "result22"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 50,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>Trafficvolume</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>60300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>138600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>106900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>140500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>108100000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>62500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>139700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>111100000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>62200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>138500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>109800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>138200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>107300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>61000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>136400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>105800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>137000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>105500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>21</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>62400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>135800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>23</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>106400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>63300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>135800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>106600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>64800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>28</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>138500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>29</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>111200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>30</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>66500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>31</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>141000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>32</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>112900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>33</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>67700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>34</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>144900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>115400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>36</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>68700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>37</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>146500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>38</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>117400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>39</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>69000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>40</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>148600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>41</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>116600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>42</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>70500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>43</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>150200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>44</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>117900000000.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year   Trafficvolume\n",
+       "0   Motorway  2005   60300000000.0\n",
+       "1          A  2005  138600000000.0\n",
+       "2    B,C & U  2005  106900000000.0\n",
+       "3   Motorway  2006   61800000000.0\n",
+       "4          A  2006  140500000000.0\n",
+       "5    B,C & U  2006  108100000000.0\n",
+       "6   Motorway  2007   62500000000.0\n",
+       "7          A  2007  139700000000.0\n",
+       "8    B,C & U  2007  111100000000.0\n",
+       "9   Motorway  2008   62200000000.0\n",
+       "10         A  2008  138500000000.0\n",
+       "11   B,C & U  2008  109800000000.0\n",
+       "12  Motorway  2009   61800000000.0\n",
+       "13         A  2009  138200000000.0\n",
+       "14   B,C & U  2009  107300000000.0\n",
+       "15  Motorway  2010   61000000000.0\n",
+       "16         A  2010  136400000000.0\n",
+       "17   B,C & U  2010  105800000000.0\n",
+       "18  Motorway  2011   61800000000.0\n",
+       "19         A  2011  137000000000.0\n",
+       "20   B,C & U  2011  105500000000.0\n",
+       "21  Motorway  2012   62400000000.0\n",
+       "22         A  2012  135800000000.0\n",
+       "23   B,C & U  2012  106400000000.0\n",
+       "24  Motorway  2013   63300000000.0\n",
+       "25         A  2013  135800000000.0\n",
+       "26   B,C & U  2013  106600000000.0\n",
+       "27  Motorway  2014   64800000000.0\n",
+       "28         A  2014  138500000000.0\n",
+       "29   B,C & U  2014  111200000000.0\n",
+       "30  Motorway  2015   66500000000.0\n",
+       "31         A  2015  141000000000.0\n",
+       "32   B,C & U  2015  112900000000.0\n",
+       "33  Motorway  2016   67700000000.0\n",
+       "34         A  2016  144900000000.0\n",
+       "35   B,C & U  2016  115400000000.0\n",
+       "36  Motorway  2017   68700000000.0\n",
+       "37         A  2017  146500000000.0\n",
+       "38   B,C & U  2017  117400000000.0\n",
+       "39  Motorway  2018   69000000000.0\n",
+       "40         A  2018  148600000000.0\n",
+       "41   B,C & U  2018  116600000000.0\n",
+       "42  Motorway  2019   70500000000.0\n",
+       "43         A  2019  150200000000.0\n",
+       "44   B,C & U  2019  117900000000.0"
+      ]
+     },
+     "execution_count": 50,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result22=TrafficvolumeGroupedupdated_df\n",
+    "result22"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 51,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "KeyError",
+     "evalue": "\"['all_motor_vehicles' 'link_length_km'] not found in axis\"",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-51-4d1b0de1ae13>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mresult22\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mresult22\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'all_motor_vehicles'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'link_length_km'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0mresult22\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m   4172\u001b[0m             \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   4173\u001b[0m             \u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minplace\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4174\u001b[0;31m             \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   4175\u001b[0m         )\n\u001b[1;32m   4176\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m   3887\u001b[0m         \u001b[0;32mfor\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32min\u001b[0m \u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   3888\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3889\u001b[0;31m                 \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_drop_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   3890\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   3891\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_drop_axis\u001b[0;34m(self, labels, axis, level, errors)\u001b[0m\n\u001b[1;32m   3921\u001b[0m                 \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   3922\u001b[0m             \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3923\u001b[0;31m                 \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   3924\u001b[0m             \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0maxis_name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mnew_axis\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   3925\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, errors)\u001b[0m\n\u001b[1;32m   5285\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0many\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   5286\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0merrors\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m\"ignore\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5287\u001b[0;31m                 \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"{labels[mask]} not found in axis\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   5288\u001b[0m             \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m~\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   5289\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdelete\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mKeyError\u001b[0m: \"['all_motor_vehicles' 'link_length_km'] not found in axis\""
+     ]
+    }
+   ],
+   "source": [
+    "result22=result22.drop(['all_motor_vehicles', 'link_length_km'], axis=1)\n",
+    "result22"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 85,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>Total accidents</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>60026</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>89020</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>B</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>24991</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>C</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>16500</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>M</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>8198</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>70</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>52662</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>71</th>\n",
+       "      <td>M</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>3810</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>72</th>\n",
+       "      <td>C</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>6067</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>73</th>\n",
+       "      <td>U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>40459</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>74</th>\n",
+       "      <td>B</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>14538</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>75 rows × 3 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year  Total accidents\n",
+       "0          U  2005            60026\n",
+       "1          A  2005            89020\n",
+       "2          B  2005            24991\n",
+       "3          C  2005            16500\n",
+       "4          M  2005             8198\n",
+       "..       ...   ...              ...\n",
+       "70         A  2019            52662\n",
+       "71         M  2019             3810\n",
+       "72         C  2019             6067\n",
+       "73         U  2019            40459\n",
+       "74         B  2019            14538\n",
+       "\n",
+       "[75 rows x 3 columns]"
+      ]
+     },
+     "execution_count": 85,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "A2018t_dftt_df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 54,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "numpy.float64"
+      ]
+     },
+     "execution_count": 54,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result23['Trafficvolume'] = result23['Trafficvolume'].astype(float)\n",
+    "type(result23['Trafficvolume'][0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "numpy.float64"
+      ]
+     },
+     "execution_count": 28,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "type(result23['Trafficvolume'][0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 53,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>Total accidents</th>\n",
+       "      <th>Trafficvolume</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>89020</td>\n",
+       "      <td>138600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>8198</td>\n",
+       "      <td>60300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>101517</td>\n",
+       "      <td>106900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>84509</td>\n",
+       "      <td>140500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>96732</td>\n",
+       "      <td>108100000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>7920</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>7488</td>\n",
+       "      <td>62500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>92823</td>\n",
+       "      <td>111100000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>81804</td>\n",
+       "      <td>139700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>77266</td>\n",
+       "      <td>138500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>6822</td>\n",
+       "      <td>62200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>86503</td>\n",
+       "      <td>109800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>82762</td>\n",
+       "      <td>107300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>74620</td>\n",
+       "      <td>138200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>6172</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>70708</td>\n",
+       "      <td>136400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>6066</td>\n",
+       "      <td>61000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>77640</td>\n",
+       "      <td>105800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>70329</td>\n",
+       "      <td>137000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>75766</td>\n",
+       "      <td>105500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>5379</td>\n",
+       "      <td>61800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>21</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>5212</td>\n",
+       "      <td>62400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>72790</td>\n",
+       "      <td>106400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>23</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>67569</td>\n",
+       "      <td>135800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>4983</td>\n",
+       "      <td>63300000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>64837</td>\n",
+       "      <td>135800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>68840</td>\n",
+       "      <td>106600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>72864</td>\n",
+       "      <td>111200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>28</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>68212</td>\n",
+       "      <td>138500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>29</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>5246</td>\n",
+       "      <td>64800000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>30</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>64682</td>\n",
+       "      <td>141000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>31</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>70226</td>\n",
+       "      <td>112900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>32</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>5148</td>\n",
+       "      <td>66500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>33</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>69761</td>\n",
+       "      <td>115400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>34</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>5007</td>\n",
+       "      <td>67700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>61853</td>\n",
+       "      <td>144900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>36</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>4430</td>\n",
+       "      <td>68700000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>37</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>56809</td>\n",
+       "      <td>146500000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>38</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>68743</td>\n",
+       "      <td>117400000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>39</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>4225</td>\n",
+       "      <td>69000000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>40</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>53840</td>\n",
+       "      <td>148600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>41</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>64570</td>\n",
+       "      <td>116600000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>42</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>52662</td>\n",
+       "      <td>150200000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>43</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>61064</td>\n",
+       "      <td>117900000000.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>44</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>3810</td>\n",
+       "      <td>70500000000.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year  Total accidents   Trafficvolume\n",
+       "0          A  2005            89020  138600000000.0\n",
+       "1   Motorway  2005             8198   60300000000.0\n",
+       "2    B,C & U  2005           101517  106900000000.0\n",
+       "3          A  2006            84509  140500000000.0\n",
+       "4    B,C & U  2006            96732  108100000000.0\n",
+       "5   Motorway  2006             7920   61800000000.0\n",
+       "6   Motorway  2007             7488   62500000000.0\n",
+       "7    B,C & U  2007            92823  111100000000.0\n",
+       "8          A  2007            81804  139700000000.0\n",
+       "9          A  2008            77266  138500000000.0\n",
+       "10  Motorway  2008             6822   62200000000.0\n",
+       "11   B,C & U  2008            86503  109800000000.0\n",
+       "12   B,C & U  2009            82762  107300000000.0\n",
+       "13         A  2009            74620  138200000000.0\n",
+       "14  Motorway  2009             6172   61800000000.0\n",
+       "15         A  2010            70708  136400000000.0\n",
+       "16  Motorway  2010             6066   61000000000.0\n",
+       "17   B,C & U  2010            77640  105800000000.0\n",
+       "18         A  2011            70329  137000000000.0\n",
+       "19   B,C & U  2011            75766  105500000000.0\n",
+       "20  Motorway  2011             5379   61800000000.0\n",
+       "21  Motorway  2012             5212   62400000000.0\n",
+       "22   B,C & U  2012            72790  106400000000.0\n",
+       "23         A  2012            67569  135800000000.0\n",
+       "24  Motorway  2013             4983   63300000000.0\n",
+       "25         A  2013            64837  135800000000.0\n",
+       "26   B,C & U  2013            68840  106600000000.0\n",
+       "27   B,C & U  2014            72864  111200000000.0\n",
+       "28         A  2014            68212  138500000000.0\n",
+       "29  Motorway  2014             5246   64800000000.0\n",
+       "30         A  2015            64682  141000000000.0\n",
+       "31   B,C & U  2015            70226  112900000000.0\n",
+       "32  Motorway  2015             5148   66500000000.0\n",
+       "33   B,C & U  2016            69761  115400000000.0\n",
+       "34  Motorway  2016             5007   67700000000.0\n",
+       "35         A  2016            61853  144900000000.0\n",
+       "36  Motorway  2017             4430   68700000000.0\n",
+       "37         A  2017            56809  146500000000.0\n",
+       "38   B,C & U  2017            68743  117400000000.0\n",
+       "39  Motorway  2018             4225   69000000000.0\n",
+       "40         A  2018            53840  148600000000.0\n",
+       "41   B,C & U  2018            64570  116600000000.0\n",
+       "42         A  2019            52662  150200000000.0\n",
+       "43   B,C & U  2019            61064  117900000000.0\n",
+       "44  Motorway  2019             3810   70500000000.0"
+      ]
+     },
+     "execution_count": 53,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result23=pd.merge(A2018t_dftt_df, result22, on=['year','road_name'])\n",
+    "result23"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 55,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+----+--------------+\n",
+      "|road_name|year| Trafficvolume|\n",
+      "+---------+----+--------------+\n",
+      "| Motorway|2005| 60300000000.0|\n",
+      "|        A|2005|138600000000.0|\n",
+      "|  B,C & U|2005|106900000000.0|\n",
+      "| Motorway|2006| 61800000000.0|\n",
+      "|        A|2006|140500000000.0|\n",
+      "|  B,C & U|2006|108100000000.0|\n",
+      "| Motorway|2007| 62500000000.0|\n",
+      "|        A|2007|139700000000.0|\n",
+      "|  B,C & U|2007|111100000000.0|\n",
+      "| Motorway|2008| 62200000000.0|\n",
+      "|        A|2008|138500000000.0|\n",
+      "|  B,C & U|2008|109800000000.0|\n",
+      "| Motorway|2009| 61800000000.0|\n",
+      "|        A|2009|138200000000.0|\n",
+      "|  B,C & U|2009|107300000000.0|\n",
+      "| Motorway|2010| 61000000000.0|\n",
+      "|        A|2010|136400000000.0|\n",
+      "|  B,C & U|2010|105800000000.0|\n",
+      "| Motorway|2011| 61800000000.0|\n",
+      "|        A|2011|137000000000.0|\n",
+      "+---------+----+--------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "result23_sc=spark.createDataFrame(result22) \n",
+    "result23_sc.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 56,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>Accident Probability</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>6.422799e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>1.359536e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>9.496445e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>6.014875e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>8.948381e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>1.281553e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>1.198080e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>8.354905e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>5.855691e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>5.578773e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>1.096785e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>7.878233e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>7.713141e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>5.399421e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>9.987055e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>5.183871e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>9.944262e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>7.338374e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>5.133504e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>7.181611e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>8.703883e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>21</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>8.352564e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>6.841165e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>23</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>4.975626e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>7.872038e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>4.774448e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>6.457786e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>6.552518e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>28</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>4.925054e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>29</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>8.095679e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>30</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>4.587376e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>31</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>6.220195e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>32</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>7.741353e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>33</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>6.045147e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>34</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>7.395864e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>4.268668e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>36</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>6.448326e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>37</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>3.877747e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>38</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>5.855451e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>39</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>6.123188e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>40</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>3.623149e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>41</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>5.537736e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>42</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>3.506125e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>43</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>5.179304e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>44</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>5.404255e-08</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year  Accident Probability\n",
+       "0          A  2005          6.422799e-07\n",
+       "1   Motorway  2005          1.359536e-07\n",
+       "2    B,C & U  2005          9.496445e-07\n",
+       "3          A  2006          6.014875e-07\n",
+       "4    B,C & U  2006          8.948381e-07\n",
+       "5   Motorway  2006          1.281553e-07\n",
+       "6   Motorway  2007          1.198080e-07\n",
+       "7    B,C & U  2007          8.354905e-07\n",
+       "8          A  2007          5.855691e-07\n",
+       "9          A  2008          5.578773e-07\n",
+       "10  Motorway  2008          1.096785e-07\n",
+       "11   B,C & U  2008          7.878233e-07\n",
+       "12   B,C & U  2009          7.713141e-07\n",
+       "13         A  2009          5.399421e-07\n",
+       "14  Motorway  2009          9.987055e-08\n",
+       "15         A  2010          5.183871e-07\n",
+       "16  Motorway  2010          9.944262e-08\n",
+       "17   B,C & U  2010          7.338374e-07\n",
+       "18         A  2011          5.133504e-07\n",
+       "19   B,C & U  2011          7.181611e-07\n",
+       "20  Motorway  2011          8.703883e-08\n",
+       "21  Motorway  2012          8.352564e-08\n",
+       "22   B,C & U  2012          6.841165e-07\n",
+       "23         A  2012          4.975626e-07\n",
+       "24  Motorway  2013          7.872038e-08\n",
+       "25         A  2013          4.774448e-07\n",
+       "26   B,C & U  2013          6.457786e-07\n",
+       "27   B,C & U  2014          6.552518e-07\n",
+       "28         A  2014          4.925054e-07\n",
+       "29  Motorway  2014          8.095679e-08\n",
+       "30         A  2015          4.587376e-07\n",
+       "31   B,C & U  2015          6.220195e-07\n",
+       "32  Motorway  2015          7.741353e-08\n",
+       "33   B,C & U  2016          6.045147e-07\n",
+       "34  Motorway  2016          7.395864e-08\n",
+       "35         A  2016          4.268668e-07\n",
+       "36  Motorway  2017          6.448326e-08\n",
+       "37         A  2017          3.877747e-07\n",
+       "38   B,C & U  2017          5.855451e-07\n",
+       "39  Motorway  2018          6.123188e-08\n",
+       "40         A  2018          3.623149e-07\n",
+       "41   B,C & U  2018          5.537736e-07\n",
+       "42         A  2019          3.506125e-07\n",
+       "43   B,C & U  2019          5.179304e-07\n",
+       "44  Motorway  2019          5.404255e-08"
+      ]
+     },
+     "execution_count": 56,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "\n",
+    "result23[\"Accident Probability\"] = result23[\"Total accidents\"] / result23[\"Trafficvolume\"]\n",
+    "result23=result23.drop(['Total accidents', 'Trafficvolume'], axis=1)\n",
+    "result23"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+----+--------------------+\n",
+      "|road_name|year|Accident Probability|\n",
+      "+---------+----+--------------------+\n",
+      "|        A|2005|   642.2799422799424|\n",
+      "| Motorway|2005|   135.9535655058043|\n",
+      "|  B,C & U|2005|   949.6445275958839|\n",
+      "|        A|2006|   601.4875444839857|\n",
+      "|  B,C & U|2006|   894.8381128584645|\n",
+      "| Motorway|2006|  128.15533980582524|\n",
+      "| Motorway|2007|             119.808|\n",
+      "|  B,C & U|2007|   835.4905490549055|\n",
+      "|        A|2007|   585.5690765926987|\n",
+      "|        A|2008|   557.8772563176896|\n",
+      "| Motorway|2008|  109.67845659163987|\n",
+      "|  B,C & U|2008|   787.8233151183971|\n",
+      "|  B,C & U|2009|   771.3140726933831|\n",
+      "|        A|2009|   539.9421128798842|\n",
+      "| Motorway|2009|    99.8705501618123|\n",
+      "|        A|2010|   518.3870967741935|\n",
+      "| Motorway|2010|   99.44262295081967|\n",
+      "|  B,C & U|2010|   733.8374291115313|\n",
+      "|        A|2011|   513.3503649635037|\n",
+      "|  B,C & U|2011|   718.1611374407582|\n",
+      "+---------+----+--------------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "#park.conf.set(\"spark.sql.execution.arrow.enabled\",\"true\")\n",
+    "Accidenteeachyearwrtroad=spark.createDataFrame(result23) \n",
+    "Accidenteeachyearwrtroad.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 57,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>Accident Probability</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>642.279942</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>601.487544</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>585.569077</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>557.877256</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>539.942113</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>518.387097</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>513.350365</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>497.562592</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>477.444772</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>492.505415</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>458.737589</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>426.866805</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>387.774744</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>362.314939</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>350.612517</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year  Accident Probability\n",
+       "0          A  2005            642.279942\n",
+       "1          A  2006            601.487544\n",
+       "2          A  2007            585.569077\n",
+       "3          A  2008            557.877256\n",
+       "4          A  2009            539.942113\n",
+       "5          A  2010            518.387097\n",
+       "6          A  2011            513.350365\n",
+       "7          A  2012            497.562592\n",
+       "8          A  2013            477.444772\n",
+       "9          A  2014            492.505415\n",
+       "10         A  2015            458.737589\n",
+       "11         A  2016            426.866805\n",
+       "12         A  2017            387.774744\n",
+       "13         A  2018            362.314939\n",
+       "14         A  2019            350.612517"
+      ]
+     },
+     "execution_count": 57,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "A=Accidenteeachyearwrtroad.filter(Accidenteeachyearwrtroad.road_name.contains(\"A\")).toPandas()\n",
+    "B=Accidenteeachyearwrtroad.filter(Accidenteeachyearwrtroad.road_name.contains(\"B\")).toPandas()\n",
+    "C=Accidenteeachyearwrtroad.filter(Accidenteeachyearwrtroad.road_name.contains(\"C\")).toPandas()\n",
+    "M=Accidenteeachyearwrtroad.filter(Accidenteeachyearwrtroad.road_name.contains(\"M\")).toPandas()\n",
+    "U=Accidenteeachyearwrtroad.filter(Accidenteeachyearwrtroad.road_name.contains(\"U\")).toPandas()\n",
+    "A"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 58,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAHvCAYAAADAeytgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABqdklEQVR4nO3df5xVVb34/9caGAaFUUBB+aWApIhe0bIUvAoaiSVSSmpFedVu1wC7Xrl+Ci7cHFKM7ldNrwkalpi/CvyRphfFlF/hKFpWZJoCioqiIj8ElFGY9f1j7xlnhvlxhjPDnDO8no/Heexz9l5r7/WeX2feZ629VogxIkmSJElSNgpaugGSJEmSpPxncilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJylrblm5APtl///1jnz59WroZkiRJktQi/vjHP66LMXat7ZjJZSP06dOHZ599tqWbIUmSJEktIoSwuq5jDouVJEmSJGXN5FKSJEmSlDWTS0mSJElS1kwuJUmSJElZM7mUJEmSJGXN5FKSJEmSlDWTS0mSJElS1kwuJUmSJElZM7mUJEmSJGWtbUs3QJIkSRKUl5ezYcMGtmzZwrZt2ygvL2/pJqkVa9OmDcXFxXTp0oWioqImOafJpSRJktTCtm/fzuuvv07btm3p0qULe++9NwUFBYQQWrppaoVijHz88ce8//77vPbaaxx00EFNkmCaXEqSJEktbP369RQVFdG9e3cTSjW7EALt2rVj//33B5Kfv+7du2d9Xu+5lCRJklrYpk2b2G+//Uwstdvts88+bN68uUnOZXIpSZIktbDt27fTrl27lm6G9kCFhYXs2LGjSc5lcilJkiTlAHst1RKa8ufO5FKSJEmSlDWTS0mSJElS1kwuJUmSJElZcykSSZIkKQ9cN306m8rKWroZGdu3qIj/mDixyc7Xp08fVq9eXW1fUVER3bp14/jjj2f8+PEMHTq0ya7XHIYNG8aiRYtYsGABw4YN26VzjBkzhrvuuguAP/3pTxxzzDFN2MLsmFzuYaZfPZ2yrQ3/Udq+oy1t22xvsFxBwQ7Ky9s0WK64uIgJE5ruj4skSdKeZlNZGZeXlLR0MzI2tZnaOmLECA488EAANmzYwHPPPcfcuXOZO3cu1157LZdeemmzXDcXbNq0ifvvv7/y9S9/+UtuuOGGFmxRdSaXe5iyrWWUUNJguZI2JZSUXN5wuZKpDB3a8PkWLWq4jCRJktSQiRMnVuv1+/jjj7nkkkuYOXMmEydO5Oyzz6ZXr14t18BmdNddd/Hhhx/Ss2dP1qxZw1133cXVV19NUVFRSzcN8J5LSZIkSXmssLCQa665huLiYj766CPmz5/f0k1qNr/85S8BmDZtGgMGDGD9+vX89re/bdlGVWFyKUmSJCmv7bXXXhx66KEAvP322zsd37p1K9OmTWPQoEF06NCBDh06cPTRR3PVVVfxwQcf1HrOe++9lwsvvJAjjjiCTp060b59e/r378/48eN5/fXX62zLunXruPjii+nVqxdFRUX069ePSZMm1XmdTP3tb3/j2WefpWPHjnz1q1/lggsuAD5JOHOByaUkSZKkvLdp0yYADjjggGr7161bx+DBg5kyZQqvv/46I0aMYMSIEaxevZrJkyczZMgQ1q9fv9P5zj33XObMmUOHDh0YPnw4X/jCFygrK2PGjBl8+tOf5qWXXtqpztq1aznuuOO48cYb+eijjxg1ahRHHHEEN9xwA5///Of56KOPdjm+X/ziFwCcffbZdOjQgW9961u0adOG3//+9/Umu7uTyaUkSZKkvPb888/zyiuv0K5dO0499dRqx8aNG8fy5cs58cQTWbVqFffddx/33Xcfq1atYsiQIfzlL39h/PjxO53zrrvu4p133mHZsmXcc889/O53v+OVV15hypQprFu3jksuuWSnOuPHj2fVqlUMHz6clStXMnfuXH73u9/xj3/8g/Xr11NaWrpL8X388cfccccdAJU9lt27d+e0006jvLyc2bNn79J5m5rJpSRJkqS8tGHDBubNm8dZZ51FeXk51113XbXJfFavXs0999xDQUEBs2bNolOnTpXHOnfuzKxZsygoKGDOnDk79f6dc8457L333tX2tW3bliuuuIIePXowf/58Nm/eXHnstdde4/7776dNmzbcdNNNFBcXVx7r2bMnV1999S7H+eCDD7Ju3Tr69+/PiSeeWLn/wgsvBGD27NnEGHf5/E3F2WIlSZIk5Y2TTz55p31FRUXMmzePESNGVNu/ZMkSYowMHjyYww47bKd6AwcO5LjjjqO0tJTFixczZsyYasdfeuklHnnkEVasWMGWLVsoLy8HYPv27ZSXl7NixYrKdSYXL15MjJHjjz+eQw45ZKdrnXHGGXTq1ImNGzc2OuaK+yrPP//8nc65//77s2rVKhYuXFjr12Z3MrmUJEmSlDcq1rmMMbJ27VoWL17Mtm3bOO+881i6dCn9+/evLLtmzRoA+vbtW+f5+vXrR2lpaWVZSJLHcePGccstt9TbI/j+++9XPn/jjTcavNbBBx/c6OTyzTff5NFHH6WgoIDzzjuv2rHCwkLGjBnD9ddfzy9/+UuTS0mSJEnKVM11Lt966y1GjBjB8uXLGTNmDE899RQhhGp1ar5uyPXXX8+sWbPo0aMH1157LUOGDKFbt26V60kOGTKE0tLS3TIU9bbbbmPHjh0UFRXx9a9/fafj7733HpDMbnvjjTeyzz77NHub6mJyKUmSJClvde/enTlz5nDUUUexbNky7rzzTr75zW8Cyb2OAKtWraqzfsWxirIAc+fOBeDmm29m5MiRO9VZsWLFTvsq6r/66qt1Xmv16tUNRLOzW2+9FYCysjKWLl1aZ7kPP/yQu+++m4suuqjR12gqTugjSZIkKa8NGDCAcePGAVBSUsL27dsBOPHEEwkh8NRTT9W6dMgLL7zA008/TUFBASeddFLl/oqlSXr37r1Tnccee4x33313p/0V1yotLa01mX344YcbPSR2yZIlvPzyy3Ts2JGtW7cSY6z1MWPGDKDl17w0uZQkSZKU9yZPnkxxcTErV67k9ttvB5J7HEePHk15eTkXXXRR5VqYABs3buSiiy6ivLycc845p1oiOWDAAABmzpxZOYkPwMqVK/nud79b6/X79OnDqFGj2LFjB2PHjmXr1q2Vx958800uu+yyRsdUkSyOHj16p5lrqzr33HNp164dy5Yt4/nnn2/0dZqKyaUkSZKkvNe1a9fKBO7KK6+s7L2cOXMmRx55JAsXLqRfv36MHj2a0aNH069fP5YsWcKgQYO48cYbq51r0qRJFBYWcvPNN3P44Yfzta99jVNPPZWBAwfSu3dvhgwZUmsbZsyYQZ8+fZg/fz59+/bl7LPPZtSoURx66KHsu+++DB48OON4tmzZUjk891vf+la9Zbt06cKXvvQloGV7L00uJUmSJLUKEyZM4IADDmDVqlXcdtttAOy///6UlpZyxRVX0LNnT+bNm8e8efPo3bs306ZNY+nSpXTp0qXaeQYPHswzzzzD6aefzqZNm3jggQd44403mDx5Mo8++iiFhYW1Xr9Hjx4sW7aMsWPHUlhYyIMPPsjy5csZN24cjz/+OO3atcs4lt/85jds3bqVnj17ZjQLbEUCescdd/Dxxx9nfJ2m5IQ+kiRJUh7Yt6iIqSUlLd2MjO2bzqzaVOqbKKdCx44dWbt2ba37p0yZwpQpUzK+3qBBg3jooYdqPbZw4cI663Xt2pUZM2ZU3geZab2avv3tb/Ptb3874/JnnXXWbpm9tj4ml5IkSVIe+I+JE1u6CVK9HBYrSZIkScqayaUkSZIkKWsml5IkSZKkrJlcSpIkSZKyZnIpSZIkScqayaUkSZIkKWsml5IkSZKkrLnOpfLS9KunU7a1LKOy23e0pW2b7Q2WKyjYQXl5mwbLFRcXMWGC60xJkiRJVZlcKi+VbS2jhJKMypa0KaGk5PKGy5VMZejQhs+5aFFm15UkSZL2JA6LlSRJkiRlzeRSkiRJkpQ1k0tJkiRJUtZMLiVJkiRJWXNCH0mSJCkPNGa2/FxQ1KGIiZc13Qz7ffr0YfXq1dWvUVREt27dOP744xk/fjxDhw5tsus1h2HDhrFo0SIWLFjAsGHDMqpz/vnnc9ttt+20f6+99qJPnz6cdtppfP/73+fAAw9s4tY2nsmlJEmSlAcaM1t+LijZWtIs5x0xYkRlIrVhwwaee+455s6dy9y5c7n22mu59NJLm+W6LW3QoEEcffTRAMQYefvtt3n66af56U9/yh133MHSpUv51Kc+1aJtNLmUJEmSlDcmTpxYrdfv448/5pJLLmHmzJlMnDiRs88+m169erVcA5vJV77yFUpKSqrt27RpE2eccQZLlizh+9//Pvfff3/LNC7lPZeSJEmS8lZhYSHXXHMNxcXFfPTRR8yfP7+lm7Tb7Lvvvvzwhz8EYOHChS3bGEwuJUmSJOW5vfbai0MPPRSAt99+e6fjW7duZdq0aQwaNIgOHTrQoUMHjj76aK666io++OCDWs957733cuGFF3LEEUfQqVMn2rdvT//+/Rk/fjyvv/56nW1Zt24dF198Mb169aKoqIh+/foxadKkOq+TrYohwh9//HGznL8xHBYrSZIkKe9t2rQJgAMOOKDa/nXr1nHKKaewfPlyOnfuzIgRIwBYsGABkydPZs6cOTzxxBN06dKlWr1zzz2X9u3bM3DgQIYPH05ZWRl//vOfmTFjBnPmzGHp0qWVCW2FtWvXcsIJJ7Bq1Sq6du3KqFGj2LZtGzfccAMLFy4khNDkcS9btgyAww8/vMnP3Vgml5IkSZLy2vPPP88rr7xCu3btOPXUU6sdGzduHMuXL+fEE0/kwQcfpFOnTkAyGdDIkSN58sknGT9+PHfffXe1enfddRcjR45k7733rty3fft2pk6dypVXXskll1zCvHnzqtUZP348q1atYvjw4dx3330UFxcDsGbNGk455RReeumlJok3xsg777zDY489xve//31CCEyc2HQz8+4qh8VKkiRJyksbNmxg3rx5nHXWWZSXl3PddddVm8xn9erV3HPPPRQUFDBr1qzKxBKgc+fOzJo1i4KCAubMmbPTUNdzzjmnWmIJ0LZtW6644gp69OjB/Pnz2bx5c+Wx1157jfvvv582bdpw0003VSaWAD179uTqq6/OKtapU6cSQiCEQEFBAQceeCDf+ta32G+//Zg/fz6jR4/O6vxNwZ5LSZIkSXnj5JNP3mlfUVER8+bNqxzyWmHJkiXEGBk8eDCHHXbYTvUGDhzIcccdR2lpKYsXL2bMmDHVjr/00ks88sgjrFixgi1btlBeXg4kPZjl5eWsWLGCY445BoDFixcTY+T444/nkEMO2elaZ5xxBp06dWLjxo27FHfVpUgA3n//fV566SWef/55xo8fz+23387nPve5XTp3UzG5lCRJkpQ3Kta5jDGydu1aFi9ezLZt2zjvvPNYunQp/fv3ryy7Zs0aAPr27Vvn+fr160dpaWllWUiSx3HjxnHLLbcQY6yz7vvvv1/5/I033mjwWgcffPAuJ5e1LUUCcP/99/PVr36Vk08+mRdeeIGDDjpol87fFBwWK0mSJClvTJw4kdmzZ3Pbbbfx6KOPsmrVKv7pn/6Jd955hzFjxtSaDDZ2Ip3rr7+eWbNm0b17d37961/z2muvsW3bNmKMlT2hQL2J5+5y5pln8uUvf5kPPviAG264oUXbYnIpSZIkKW91796dOXPmUFhYyLJly7jzzjsrj/Xs2ROAVatW1Vm/4lhFWYC5c+cCcPPNN3PuuefSu3dvioqKKo+vWLFip/NU1H/11VfrvNbq1asziKjxKobhvvDCC81y/kyZXEqSJEnKawMGDGDcuHEAlJSUsH37dgBOPPFEQgg89dRTtc7U+sILL/D0009TUFDASSedVLl//fr1APTu3XunOo899hjvvvvuTvsrrlVaWlprMvvwww/v8pDYhqxcuRKAjh07Nsv5M2VyKUmSJCnvTZ48meLiYlauXMntt98OJPc4jh49mvLyci666KLKtTABNm7cyEUXXUR5eTnnnHNOtURywIABAMycObNyEh9Ikrjvfve7tV6/T58+jBo1ih07djB27Fi2bt1aeezNN9/ksssua9J4K9x///088MADAIwaNapZrpEpJ/SRJEmSlPe6du3KZZddxuWXX86VV17Jt771Ldq2bcvMmTN58cUXWbhwIf369WPYsGEALFiwgA0bNjBo0CBuvPHGaueaNGkSjzzyCDfffDMLFizgmGOOYf369SxatIjBgwdz4IEH8uSTT+7UhhkzZvCXv/yF+fPn07dvX4YOHUpZWRlPPPEERx55JIMHD6a0tHSX4vvtb39bbcjt5s2b+cc//sHzzz8PwDe+8Q2+/vWv79K5m4o9l5IkSZJahQkTJnDAAQewatUqbrvtNgD2339/SktLueKKK+jZsyfz5s1j3rx59O7dm2nTprF06VK6dOlS7TyDBw/mmWee4fTTT2fTpk088MADvPHGG0yePJlHH32UwsLCWq/fo0cPli1bxtixYyksLOTBBx9k+fLljBs3jscff5x27drtcmx/+ctfuO222yofv/vd71i/fj0jR47knnvu4c4772z0xEVNzZ5LSZIkKQ8UdSiiZGtJSzcjY0Udihou1Aj1TZRToWPHjqxdu7bW/VOmTGHKlCkZX2/QoEE89NBDtR5buHBhnfW6du3KjBkzmDFjRqPq1WX27NnMnj270fVagsmlJEmSlAcmXjaxpZsg1cthsZIkSZKkrNlzKbWw6VdPp2xrWYPltu9oS9s22xssV1Cwg/LyNhldu7i4iAkT/BRUkiRJ2TO5lFpY2dYySihpsFxJmxJKSi5vuFzJVIYObfh8AIsWZVZOkiRJaojDYiVJkiRJWTO5lCRJkiRlzeRSkiRJkpQ1k0tJkiRJUtZMLiVJkiRJWTO5lCRJkiRlrcWSyxBCrxDCDSGEf4QQPgwhbAshvBxCuCmE0K+eet8IISwJIWwKIWwJITwbQhgfQqg3lhDCaSGE+SGE9SGED0IIfwshTA4hFDV9dJIkSZK0Z2mR5DKEcAywHLgY2Bt4FHgE2Au4CPhLCGFILfVuBO4EjgWWAI8BhwI/A+6pK8EMIXwfmAecAvwJeBjoBlwJLAwh7N2U8UmSJEnSnqalei5vBDoBs4B+McavxBi/AvQFfgl0BGZWrRBCGA2MA9YCR8UYR8YYzwQ+BbwAnAl8r+aFQgjHAtOBD4ATYozDY4xnA/2AxcDxwLRmiFGSJEmS9hi7PbkMIbQHBqcvL48xflxxLH0+JX15VI0exUnp9gcxxper1HkbGJu+nFhL7+VEIAA/iTE+XaXeFuACoBwYF0LolFVgkiRJkrQHa9sC19wBbM/g2luBDyG5PxP4DPARMLdmwRjjohDCGqAnSU/kk2m9dsAX02J31lJvVQihFDgB+BJw1y7EI0mSJDW76dOvo6xsU0s3I2NFRfsyceJ/NNn5+vTpw+rVq2tco4hu3bpx/PHHM378eIYOHdpk12sOw4YNY9GiRSxYsIBhw4Y1uv7y5cuZNWsWCxcu5PXXX2fLli3su+++HH744QwfPpzzzz+fgw8+uOkbnqHdnlzGGD8OITwOjACmhhDGV/RehhAKgSvSor+IMcb0+THp9vkY44d1nPoZkuTyGNLkEjiM5J7O9THGlfXUOyGtZ3IpSZKknFRWtomSkstbuhkZKymZ2iznHTFiBAceeCAAGzZs4LnnnmPu3LnMnTuXa6+9lksvvbRZrtuSPv74Yy699FJmzJhBjJHu3btzwgknsM8++7Bu3TqeeeYZ/vCHP3DVVVfx61//mjPPPLNF2tkSPZeQ3Dv5CPAd4IshhGfT/Z8FOgPXAd+vUr5vuq3+UUV1r9UoW/X5a9SttnqSJEmSctDEiROr9fp9/PHHXHLJJcycOZOJEydy9tln06tXr5ZrYDMYM2YMc+fOpXv37tx0002MGjWq2vHt27dz//3381//9V879e7uTi0yoU+McRUwhGQG117AV9JHT+DvwJKq92KSTPADyVDZumxJt8VNUE+SJElSHigsLOSaa66huLiYjz76iPnz57d0k5rULbfcwty5c+nUqRNLly7dKbEEaNu2LWeffTbPPfdciw4NbqmlSIYAfwP6A18GuqaPr5D0XN4bQvhhS7StphDCv6VraT777rvvtnRzJEmSJNWw1157ceihhwLw9ttv73R869atTJs2jUGDBtGhQwc6dOjA0UcfzVVXXcUHH3xQ6znvvfdeLrzwQo444gg6depE+/bt6d+/P+PHj+f111+vsy3r1q3j4osvplevXhQVFdGvXz8mTZpU53XqE2PkqquuAuCHP/whffvWP9iyY8eOHHPMMfWWaU67fVhsOivrb4EOwJC0F7PCAyGE54G/Av8dQrg7nRm2onexQz2nruil3Fxl367WqxRj/Dnwc4Bjjz021lZGkiRJUsvatCmZ7OiAAw6otn/dunWccsopLF++nM6dOzNixAgAFixYwOTJk5kzZw5PPPEEXbp0qVbv3HPPpX379gwcOJDhw4dTVlbGn//8Z2bMmMGcOXNYunRpZUJbYe3atZxwwgmsWrWKrl27MmrUKLZt28YNN9zAwoULCSE0Kqa//vWvvPLKK4QQOO+88xr7JdntWuKey9NJeimfqJFYAhBjXBFCeBoYlj5eBl5ND9c39VHvdPtqlX0Vzw9qZD1JkiRJeeL555/nlVdeoV27dpx66qnVjo0bN47ly5dz4okn8uCDD9KpUycgmQxo5MiRPPnkk4wfP5677767Wr277rqLkSNHsvfen6yOuH37dqZOncqVV17JJZdcwrx586rVGT9+PKtWrWL48OHcd999FBcnd96tWbOGU045hZdeeqlRcf3xj38EoG/fvuy3336NqtsSWmJYbEWiV988yhvTbcXHB8+l2yNCCHvVUeezNcoCvEiynEmXEMIhddT7XC31JEmSJOW4DRs2MG/ePM466yzKy8u57rrrqk3ms3r1au655x4KCgqYNWtWZWIJ0LlzZ2bNmkVBQQFz5szZaajrOeecUy2xhOTexiuuuIIePXowf/58Nm/+ZPDja6+9xv3330+bNm246aabKhNLgJ49e3L11Vc3Or6K2/K6devW6LotoSV6Lt9Mt58JIRTWmLinYjmSz6QvXwGIMb4eQvgT8GngbOBXNeoMJZkYaC1QWrE/xvhRCGEecBYwBvhRjXr9gMEk62c+3CTRSZIkSWo2J5988k77ioqKmDdvXuWQ1wpLliwhxsjgwYM57LDDdqo3cOBAjjvuOEpLS1m8eDFjxoypdvyll17ikUceYcWKFWzZsoXy8nIg6cEsLy9nxYoVlfc4Ll68mBgjxx9/PIccsnO/1hlnnEGnTp3YuHHjroae81oiuZwHfEDSg/nTEMJ/xhjLAEIIRSTLkPQGNgCPVqn3Y2Au8JMQwpMxxhVpnW7AjLTM9BhjeY3rTQfOBH4QQngkxrgsrdcR+CVJ7+2MGOPGpg5U2tNMv3o6ZVvLGiy3fUdb2rbZ3mC5goIdlJe3abBccXEREyZMzKiNkiQpv1WscxljZO3atSxevJht27Zx3nnnsXTpUvr3719Zds2aNQD1ToTTr18/SktLK8tCkjyOGzeOW265hRjrnnbl/fffr3z+xhtvNHitgw8+uFHJZdeuXQF45513Mq7TknZ7chljfCeEMA74BTAeODPtlYSkx7I7UAZcGGPcVKXePSGEmcBYYHkI4ffAx8DngX1IJgn6WS3XeyaEMBH4CfBkCOEJkmG3Q4FuwNPA5GYIVdrjlG0to4SSBsuVtCnJaBHokpKpDB3a8PkWLWq4jCRJah1qrnP51ltvMWLECJYvX86YMWN46qmndpo4p7ET6Vx//fXMmjWLHj16cO211zJkyBC6detGUVERAEOGDKG0tLTexLMpfOYzyYDOV155hffeey/n77tsqXUubyO51/F2kiGpX0gfH5IknZ+OMf62lnrjSIa3/okkORwBrAAuBkbHGHfUcb3/Ab4ILCC5N/MMYB0wBRgaY2z8vMCSJEmSWlz37t2ZM2cOhYWFLFu2jDvvvLPyWM+ePQFYtWqneUQrVRyrKAswd+5cAG6++WbOPfdcevfuXZlYAqxYsWKn81TUf/XVV+u81urVqzOI6BNHHXUUffr0IcbIr371q4YrtLAWSS4BYox/ijGeF2PsG2Nsnz4OiTH+a4zx7/XUuyvGeEKMcZ8YY4cY42dijDfWMhy2Zr1HYoxfiDF2jjHuFWM8IsY4rWJIriRJkqT8NGDAAMaNGwdASUkJ27cnt9+ceOKJhBB46qmnap2p9YUXXuDpp5+moKCAk046qXL/+vXrAejdu/dOdR577LHKiXaqqrhWaWlprcnsww8/3Oj7LUMITJo0CYAf/ehHvPLKK/WW37JlC88913LzlLZYcilJkiRJTWXy5MkUFxezcuVKbr/9diC5x3H06NGUl5dz0UUXVa6FCbBx40YuuugiysvLOeecc6olkgMGDABg5syZlZP4AKxcuZLvfve7tV6/T58+jBo1ih07djB27Fi2bt1aeezNN9/ksssu26W4vvOd73DmmWeyceNG/vmf/5nf/e53O5XZsWMH999/P5/5zGdYtGjRLl2nKZhcSpIkScp7Xbt2rUzgrrzyysrey5kzZ3LkkUeycOFC+vXrx+jRoxk9ejT9+vVjyZIlDBo0iBtvvLHauSZNmkRhYSE333wzhx9+OF/72tc49dRTGThwIL1792bIkCG1tmHGjBn06dOH+fPn07dvX84++2xGjRrFoYceyr777svgwYMbHVcIgd/85jd897vf5a233mLUqFH07NmTUaNGMWbMGE477TS6du3KWWedxerVq+udUKi5mVxKkiRJahUmTJjAAQccwKpVq7jtttsA2H///SktLeWKK66gZ8+ezJs3j3nz5tG7d2+mTZvG0qVL6dKlS7XzDB48mGeeeYbTTz+dTZs28cADD/DGG28wefJkHn30UQoLC2u9fo8ePVi2bBljx46lsLCQBx98kOXLlzNu3Dgef/xx2rVrt0txFRYWMnPmTJ577jkuvvhiunTpwuLFi5kzZw7PPvssRx55JFdeeSUrVqzgy1/+8i5doym0xFIkkpTzXFZFkpRrior2paRkaks3I2NFRfs26fnqmyinQseOHVm7dm2t+6dMmcKUKVMyvt6gQYN46KGHaj22cOHCOut17dqVGTNmMGPGjJ2O1Vcv0zbdcMMNWZ2jOZlcSlItXFZFkpRrJk78j5ZuglQvh8VKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrLWtqUbIEmSJKlh1147nc2by1q6GRkrLi5iwoSJTXa+Pn36sHr16mr7ioqK6NatG8cffzzjx49n6NChTXa95jBs2DAWLVrEggULGDZsWEZ1KuJuqE7FuW+99VbOP//8JmlvY5lcSpIkSXlg8+Yyhg4taelmZGzRopJmOe+IESM48MADAdiwYQPPPfccc+fOZe7cuVx77bVceumlzXJdNczkUpJaselXT6dsa8Ofcm/f0Za2bbZndM6Cgh2Ul7dpsFxTf2ItSRLAxIkTq/Xgffzxx1xyySXMnDmTiRMncvbZZ9OrV6+Wa+AezORSklqxsq1llFDSYLmSNiWUlFye0TlLSqZm9Ml5c31iLUlSVYWFhVxzzTXccccdbN68mfnz53PhhRe2dLP2SE7oI0mSJCmv7bXXXhx66KEAvP322zsd37p1K9OmTWPQoEF06NCBDh06cPTRR3PVVVfxwQcf1HrOe++9lwsvvJAjjjiCTp060b59e/r378/48eN5/fXX62zLunXruPjii+nVqxdFRUX069ePSZMm1Xmd1sSeS0mSJEl5b9OmTQAccMAB1favW7eOU045heXLl9O5c2dGjBgBwIIFC5g8eTJz5szhiSeeoEuXLtXqnXvuubRv356BAwcyfPhwysrK+POf/8yMGTOYM2cOS5curUxoK6xdu5YTTjiBVatW0bVrV0aNGsW2bdu44YYbWLhwISGEZvwKtDyTS0mSJEl57fnnn+eVV16hXbt2nHrqqdWOjRs3juXLl3PiiSfy4IMP0qlTJyCZDGjkyJE8+eSTjB8/nrvvvrtavbvuuouRI0ey9957V+7bvn07U6dO5corr+SSSy5h3rx51eqMHz+eVatWMXz4cO677z6Ki4sBWLNmDaeccgovvfRSM0SfOxwWK0mSJCkvbdiwgXnz5nHWWWdRXl7OddddV20yn9WrV3PPPfdQUFDArFmzKhNLgM6dOzNr1iwKCgqYM2fOTkNdzznnnGqJJUDbtm254oor6NGjB/Pnz2fz5s2Vx1577TXuv/9+2rRpw0033VSZWAL07NmTq6++uomjzz32XEqSJEnKGyeffPJO+4qKipg3b17lkNcKS5YsIcbI4MGDOeyww3aqN3DgQI477jhKS0tZvHgxY8aMqXb8pZde4pFHHmHFihVs2bKF8vJyIOnBLC8vZ8WKFRxzzDEALF68mBgjxx9/PIcccshO1zrjjDPo1KkTGzdu3NXQc57JpSQpLzT1siouqSJJ+alincsYI2vXrmXx4sVs27aN8847j6VLl9K/f//KsmvWrAGgb9++dZ6vX79+lJaWVpaFJHkcN24ct9xyCzHGOuu+//77lc/feOONBq918MEHNzq5rLhPs752VD3ekvd1mlxKkvJCUy+r4pIqkpSfaq5z+dZbbzFixAiWL1/OmDFjeOqpp3ZKsBqbcF1//fXMmjWLHj16cO211zJkyBC6detGUVERAEOGDKG0tLTBhK8pVAzN3bp1a73ltmzZAkDHjh2bvU118Z5LSZIkSXmre/fuzJkzh8LCQpYtW8add95Zeaxnz54ArFq1qs76FccqygLMnTsXgJtvvplzzz2X3r17VyaWACtWrNjpPBX1X3311TqvtXr16gwiqu6ggw6q85oVYoysXLkSgN69ezf6Gk3F5FKSJElSXhswYADjxo0DoKSkhO3bk9sjTjzxREIIPPXUU7XO1PrCCy/w9NNPU1BQwEknnVS5f/369UDtidpjjz3Gu+++u9P+imuVlpbWmsw+/PDDu3S/ZcU9pvfee2+dZR577DE2bdpEp06dKu8BbQkml5IkSZLy3uTJkykuLmblypXcfvvtQHKP4+jRoykvL+eiiy6qXAsTYOPGjVx00UWUl5dzzjnnVEskBwwYAMDMmTMrJ/EBWLlyJd/97ndrvX6fPn0YNWoUO3bsYOzYsdWGsb755ptcdtlluxTXt7/9bbp06cIf/vAHfvSjH7Fjx45qx1988UXGjh0LwCWXXEJhYeEuXacpmFxKkiRJyntdu3atTOCuvPLKyt7LmTNncuSRR7Jw4UL69evH6NGjGT16NP369WPJkiUMGjSIG2+8sdq5Jk2aRGFhITfffDOHH344X/va1zj11FMZOHAgvXv3ZsiQIbW2YcaMGfTp04f58+fTt29fzj77bEaNGsWhhx7Kvvvuy+DBgxsd13777cfcuXPZZ599uPzyyznooIM488wzGTNmDP/8z//MkUceyapVqzjzzDOZMmVKo8/flEwuJUmSJLUKEyZM4IADDmDVqlXcdtttAOy///6UlpZyxRVX0LNnT+bNm8e8efPo3bs306ZNY+nSpXTp0qXaeQYPHswzzzzD6aefzqZNm3jggQd44403mDx5Mo8++midvYM9evRg2bJljB07lsLCQh588EGWL1/OuHHjePzxx2nXrt0uxXXKKafwt7/9jf/8z/9kv/324/e//z1z585l5cqVjBgxgt/85jfce++9tG3bsvO1ZnT1EMKXgYdjjA3P7S5JkiSpyRUXF+XVDNbFxUUNF2qE+ibKqdCxY0fWrl1b6/4pU6Y0qmdv0KBBPPTQQ7UeW7hwYZ31unbtyowZM5gxY0aj6jWkd+/eXH311btcf3fINLW9H1gXQvg1cEeMcVkztkmSJElSDa65q1zXmGGx+wPjgdIQwoshhP8KIRzUTO2SJEmSJOWRTJPLU4GbgXeAABwKXAGsCiEsDCFcEEIobqY2SpIkSZJyXEbJZYzx9zHGsUAP4CTgeuD1tP6JwC3AGyGEaSGElr2LVJIkSZK02zVqttgYYwTeADaT9GDGdBuAYmAicGOdJ5AkSZIktUoZJZchhPYhhG+GEJ4AVgCTgYpVRh8Hvgr8O0mS+dXmaKgkSZIkKXdlOoT1LWCf9HkANgCzgZtijC9XFAohTAAObsoGSpLU2ky/ejplW8saLLd9R1vatml4FbCCgh2Ul7dpsFxxcZGzTUqSmk2myeW+6XYZMBP4TYxxWy3lriGZVVaSJNWhbGsZJZQ0WK6kTQklJZc3XK5kKkOHNny+fFofT5KUfzJNLm8BZsQY/1xfoRij91tKkiRJ0h4o0wl9CoHv1XYghHBhCOHCpmuSJEmSJCnfZJpc/gtwfh3HbgF+3iStkSRJkiTlpUYtRVJTCOGAiqdN0BZJkiRJUp6q857LEMIlwCU19q2qUaxi8p51TdwuSZIkSVIeqW9Cn05AnyqvQ43XVc1rmuZIkiRJkvJRfcnlq8Ci9PlQIAKLqxyPJOtdPgPc0ByNkyRJkpT4ydXXsm3r5pZuRsbadyjmB5dNaLLz9enTh9WrV1fbV1RURLdu3Tj++OMZP348Q4cObbLrNYdhw4axaNEiFixYwLBhwzKqc/7553PbbbcBcNxxx/HUU0/VWfaWW27hO9/5TuXrGGNW7W2sOpPLGONtwG0AIYTydN/Ju6ldkiRJkqrYtnUzt354bEs3I2MX8GyznHfEiBEceOCBAGzYsIHnnnuOuXPnMnfuXK699louvfTSZrluLnj66ad58cUXGTBgQK3Hb7311t3couoymtAnxlgQY2zT3I2RJEmSpPpMnDiR2bNnM3v2bB544AFWrlzJ2LFjK4+98cYbLdzC5nHssckHC7Nnz671+EsvvcSTTz7JZz/72d3YqurqTC5DCD8MIfx3lef1PnZfkyVJkiQpUVhYyDXXXENxcTEfffQR8+fPb+kmNYuvfOUrdOrUidtvv50dO3bsdLwi6Tz//PN3b8OqqK/nsgS4vMbz+h6SJEmStNvttddeHHrooQC8/fbbOx3funUr06ZNY9CgQXTo0IEOHTpw9NFHc9VVV/HBBx/Ues57772XCy+8kCOOOIJOnTrRvn17+vfvz/jx43n99dfrbMu6deu4+OKL6dWrF0VFRfTr149JkybVeZ1MFRUV8fWvf50333yTxx57rNqx8vJyfvWrX9G5c2e+/OUvZ3WdbNQ3oQ9UX7+yvrUsd++dopIkSU1o+tXTKdta1mC57Tva0rbN9gbLFRTsoLw8szuKiouLmDBhYkZlJdVt06ZNABxwwAHV9q9bt45TTjmF5cuX07lzZ0aMGAHAggULmDx5MnPmzOGJJ56gS5cu1eqde+65tG/fnoEDBzJ8+HDKysr485//zIwZM5gzZw5Lly6tTGgrrF27lhNOOIFVq1bRtWtXRo0axbZt27jhhhtYuHAhIdSXUjXsggsuYObMmdx6662cdtpplfsfe+wx1qxZw/jx4ykqKsrqGtmoL7nsW8dzSZKkVqVsaxkllDRYrqRNCSUlDQ/YKimZytChDZ8PYNGizMpJqtvzzz/PK6+8Qrt27Tj11FOrHRs3bhzLly/nxBNP5MEHH6RTp05AMhnQyJEjefLJJxk/fjx33313tXp33XUXI0eOZO+9967ct337dqZOncqVV17JJZdcwrx51VdkHD9+PKtWrWL48OHcd999FBcXA7BmzRpOOeUUXnrppazi/OxnP8sRRxzBAw88wMaNGytjqZjIpyWHxEI9w2JjjKtjjKurPq/vsfuaLEmSJElJgjhv3jzOOussysvLue666+jVq1fl8dWrV3PPPfdQUFDArFmzKpMxgM6dOzNr1iwKCgqYM2fOTkNdzznnnGqJJUDbtm254oor6NGjB/Pnz2fz5k+Whnnttde4//77adOmDTfddFNlYgnQs2dPrr766iaJ+fzzz6esrKwyGd64cSO//e1vOfLIIysn/WkpdfZchhDOa8yJYoy/yr45kiRJklS3k0/eeXXEoqIi5s2bVznktcKSJUuIMTJ48GAOO+ywneoNHDiQ4447jtLSUhYvXsyYMWOqHX/ppZd45JFHWLFiBVu2bKG8vBxIejDLy8tZsWIFxxxzDACLFy8mxsjxxx/PIYccstO1zjjjDDp16sTGjRt3NXQAvvnNbzJp0iRmz57N2LFjufvuuykrK2vxXkuof1jsbDK/lzICJpeSJO1BMr1PEZr+XkXvU5T2XBXrXMYYWbt2LYsXL2bbtm2cd955LF26lP79+1eWXbNmDQB9+9Z9l1+/fv0oLS2tLAtJ8jhu3DhuueUWYqw7JXr//fcrn1csgVLftQ4++OCsk8sDDzyQ0047jYceeoi///3v3HrrrbRt25ZvfvObWZ23KTRmQh9JkqRKmd6nCE1/r6L3KUp7rokTJzJs2LDK12+99RYjRoxg+fLljBkzhqeeemqniXMaO5HO9ddfz6xZs+jRowfXXnstQ4YMoVu3bpWT5QwZMoTS0tJ6E8/mdMEFF/DQQw/xgx/8gGeeeYZRo0btNJFRS6gvudy5v1k56brp09lUltknx5IkSVJr0r17d+bMmcNRRx3FsmXLuPPOOyt78Xr27AnAqlWr6qxfcayiLMDcuXMBuPnmmxk5cuROdVasWLHTvor6r776ap3XWr26aaaqGTlyJPvttx8PPfQQ0PIT+VSoM7mMMS7anQ3RrttUVsblJSUZlZ2aYTlJkiQpXwwYMIBx48Zx/fXXU1JSwte+9jXatm3LiSeeSAiBp556ipdeemmnpUNeeOEFnn76aQoKCjjppJMq969fvx6A3r1773Stxx57jHfffXen/RXXKi0tZdWqVfTr16/a8YcffjjrIbEV2rVrx7e//W1+8Ytf0Llz51oT4JZQ52yxIYSTQggnVX1e32P3NVmSJEmSqps8eTLFxcWsXLmS22+/HUjucRw9ejTl5eVcdNFFlWthQjLL6kUXXUR5eTnnnHNOtURywIABAMycObNyEh+AlStX8t3vfrfW6/fp04dRo0axY8cOxo4dy9atWyuPvfnmm1x22WVNGu9PfvIT1q1bx8svv0xhYWGTnntX1ZlcAguBJ6o8X1DP44mdq0uSJEnS7tG1a9fKBO7KK69k+/ZkErGZM2dy5JFHsnDhQvr168fo0aMZPXo0/fr1Y8mSJQwaNIgbb7yx2rkmTZpEYWEhN998M4cffjhf+9rXOPXUUxk4cCC9e/dmyJAhtbZhxowZ9OnTh/nz59O3b1/OPvtsRo0axaGHHsq+++7L4MGDm/eL0MLqSy6h+oQ+oYGHJEmSJLWYCRMmcMABB7Bq1Spuu+02APbff39KS0u54oor6NmzJ/PmzWPevHn07t2badOmsXTpUrp06VLtPIMHD+aZZ57h9NNPZ9OmTTzwwAO88cYbTJ48mUcffbTOnsIePXqwbNkyxo4dS2FhIQ8++CDLly9n3LhxPP7447Rr167ZvwYtqb4JfS6o47kkSZKk3ax9h2Iu4NmWbkbG2ncobtLz1TdRToWOHTuydu3aWvdPmTKFKVOmZHy9QYMGVU6YU9PChQvrrNe1a1dmzJjBjBkzGlWvLrNnz2b27NkZl99///1bbBbb+ib0ua2255IkSZJ2vx9cNqGlmyDVq6F1LiuFZHGYbwAnAD2BNcAfgLtjS6XGkiRJkqSckFFyGULoDcwDDq9x6CJgUgjhizHGN5q6cZIkSZKk/JBpz+UMYGAdxwamx0c1SYskSZK0y6ZfPZ2yrWUNltu+oy1t22xvsFxBwQ7Ky9s0WK64uIgJEyZm1EZJrVOmyeUpQATuAn5IMiS2J3AFyVDZz+/KxUMIewHfA84GPgW0A94GngWuizEurVG+ABhLMsHQAGAH8FdgRozx7gau9Y207lFAG+BF4FZgZoyxvL66kiRJ+aJsaxkllDRYrqRNCSUllzdcrmQqQ4c2fL5FixouI6l1yzS53AB0By6OMVasPPpKCGE8SXK5vrEXDiH0BeYD/YG3SNbL3A4cDHwF+AuwtEr5NsB9JD2k76d1i0gS27tCCMfHGC+p41o3AuOAbcDjwMdpvZ8Bnw8hfNUEU5IkSZJ2XabJ5Y3AlSS9fkuq7D+qyvGMhRA6AI8B/YCJwNUxxh1Vju8H7Fej2n+QJJZ/B06JMb6dlv1U2qZ/DyE8EWN8oMa1RpMklmuBk2KML6f7DyBJaM8k6T29vjExSJIkSZI+UWdyGUL4YdWXJMNVHw4h3A+8DvQCziLpdSxq5HWnAIcAP4sx/qTmwRjje8B7VdrSBvh++nJsRWKZln05hPADYDYwGaiWXAKT0u0PKhLLtN7bIYSxwEJgYgjhBnsvJUmS1FJijCQLNEi7T1Mu/FFfz2UJyX2WNX2zxusOwH8DUzO5YAihHfCd9OW1mdQBBgPdgDdijItrOT4XmAV8NoTQM8a4Jr1WL+AzwEdpmWpijItCCBX3jx4PPJlheyRJkqQm06ZNG3bs2EHbthmvFCg1ifLycgoKCprkXA2dJTTikanPkAx5XRNjfCWE8OkQwhUhhJtDCD8KIfxzLXWOSbfP1HbCGOMHwPPpy6Nrqfd8jPHDOtrzTI2ykiRJ0m619957s2XLlpZuhvZAH3zwAXvttVeTnKu+j0b6NskVdvZP6XZNCOFq4D9rHP/vEMJvgW/GGLfWaMvqes77GkliWbXdmdarWlaSJEk5YE9aVmWfffZh3bp1FBcX06ZNw22UmkKMkY0bN9KhQ4cmOV+dyWWMsb6ELBtd0u0xwOeA60hmbX0POIlkzcyvpNt/Sct2TLcVyWZtKj7qKa6yb1frqYVcN306m8oafhORJEmt3560rEpxcTEffvghq1evpkuXLnTs2JE2bdp4D6aaRYyRjz76iPfee4/t27fTuXPnJjlvxoO603slvwQcCrSvpYE/yvBUFUNxC4E7YoyXVjn2YAjhTWAZ8K0Qwo9ijCszbWNzCCH8G/BvAAcddFBLNmWPsKmsjMtLShosNzWDMpIkSfkihEC3bt3YvHkz77//Pu+88w47duxouKK0i9q2bcu+++5Lt27dmuyey4ySyxBCH+AJkjUo65Jpcrm5yvNZNQ/GGJ8NIfwROBYYCqzkk97F+vprK3opq55/V+tVbc/PgZ8DHHvssU03lZIkSZJURQiBffbZh3322aelmyLtkkxT1GlAH7KfzAfglTqe11bmwHT7arqtL7ntXaNsNvUkSZIkSY2QaXJ5MsmyJP+avo4kE/PcB6wguXcyU89Veb5fHWX2T7cVPY9/Srefra1wCGFv4Mhazl/x/IgQQl1TIH22RllJkiRJUiNlmlxWJHt3V9n3d+AioD/wg0wvmK5B+XT68vM1j4cQOgOfTl8+m25LgXeBXiGEk2o57dkk93A+U7HGZXqt10kS03ZpmZrXGgr0Atam15AkSZIk7YJMk8uKHsTtVZ5/mk+SztMaed1p6fa/QgjHVuwMIbQHZgL7An8kTfhijDuA/0mLzQwhdKtS51PA9BrnrerH6fYnIYT+Vep1I5mRFmB6jLG8kTFIkiRJklKZzhb7JknCdwDwAslkO4tJhscCbGrMRWOMvwshXEOyxuWTIYSnSJYi+RzQA1gDfD3GWHUCnZ+SLFVyBvByCOFxkt7K4SSz194QY3yglmvdE0KYCYwFlocQfg98TNJrug/wW5KlUKQm5bIqkiQJMl+vE1rHmp3ac2WaXD4LDAQGk/Qs/hKoeg/jzxt74RjjZSGEJ4GLSda83Bt4DbiWpCfx3Rrld4QQvgKMAy4ARgA7SHo4Z8QY76rnWuNCCH8AxpPMQNsGeDGNY6a9lmoOLqsiSZIg8/U6oXWs2ak9V6bJ5bdJ7q/8OMZYHkLYDIwmuZfx4Rjjrbty8RjjfSSTAmVavpykl7HRPY1p8llnAipJkiRJ2nUZJZfpPY87qry+F7i3uRolSZIkScovmU7oQwihbwhhVgjh7yGETen25yGEvs3ZQEmSJElS7suo5zJd/mMeycQ5Id09ADgMGBNCOC3GuKR5mihJkiRJynWZ9lxeRzKBTwBeB55KtyHd/9PmaJwkSZIkKT9kmlweTrLsyL/HGA+OMQ6JMR4M/Ht6/IhmaZ0kSZIkKS9kmlyuTLeza+yveL2iKRojSZIkScpPmSaXE4FykvUlqzof2A5MasI2SZIkSZLyTJ0T+oQQnqixawNwXQjhP4E3gJ7AQcA64FLgoeZqpCRJkiQpt9U3W+wwkvssqwokCWVvPpk1tmtaVpIkSZK0h6ovuXyNnZNLSXug66ZPZ1NZWUs3Q5IkSTmszuQyxthnN7ZDUg7bVFbG5SUlDZabmkEZSZIktU719VzWKoTQn2Qo7LoY48tN3yRJkiRJuWj61dMp29rwaKbtO9rSts32BssVFOygvLxNRtcuLi5iwoSJGZVVy8g4uQwhfAm4AehTZd+rwCUxRifzkSRJklq5sq1llFDSYLmSNiWUlFzecLmSqQwd2vD5ABYtyqycWk5GS5GEEE4AHiBJLEOVR1/gvvS4JEmSJGkPlWnP5RSgDbAFuIdkKZJewGigGJgMfKk5GihJkiRJyn2ZJpfHkcwc+6UY4x8qdoYQfgksBo5vhrZJkiRJkvJERsNigb3T7fIa+5fXOC5JkiRJ2gNl2nP5KvAp4H9DCFNIhsX2BK5Mj69u+qZJUtNyvU5JkqTmk2lyOZfkvspvpo+qIjCnKRslSc0h0/U6wTU7JUmSGivTYbHTgKVUnym24vFUelySJEmStIfKqOcyxrgthHAyMAYYAewPrAPmA3fEGBteIVWSJEmS1Go1mFyGENoDV5EMf70hxnhbs7dKkiRJkpRXGhwWG2PcBlwE/AfwTnM3SJIkSZKUfzK953Jpuu3TTO2QJEmSJOWxTGeLnQ58BpgbQvhv4G/AtqoFYoyvNXHbJEmSJEl5ItPk8vck91x2IlmWpKbYiHNJkiRJklqZxiSEodlaIUmSJEnKa5kml1ObtRWSpEa5bvp0NpWVtXQzJEnKW9Ovnk7Z1obfS7fvaEvbNg2vvFhQsIPy8jYNlisuLmLChIkZtTHfZLrOpcmlJOWQTWVlXF5S0mC5qRmUkSRpT1S2tYwSShosV9KmhJKSyxsuVzKVoUMbPt+iRQ2XyVeNuk8yhHACcALQE1gDLI0xLq2/liRJdbMXVpKk1iGj5DKE0An4NfCFWo7NB74eY9zYpC2TJO0R7IWVJKl1yHSdy58Bp5JM6lPzcSpwQ7O0TpIkSZKUFzJNLkeRLDfyBPB5YEC6fYIkwfxys7ROkiRJkpQXMr3n8iOgA/C1GOO6dN9LIYTngbXAh83ROEmSJElSfsi05/KudNu9xv4D0u2vmqY5kiRJkqR8lGnP5fPAemBeCOEXwOtAL+DbwFvAP0II51UUjjGabEqSJEnSHiTT5HImyT2XAFNqOX5zlecRezIlSXsgl1WRJO3JGrPOZWi2VkiS1Aq4rIokaU+WaXJ5crO2QpIkqRnYmyxJu09GyWWMcVFzN0SSJKmp2ZssSbtPprPFSpIkSZJUJ5NLSZIkSVLWTC4lSZIkSVkzuZQkSZIkZc3kUpIkSZKUtcasc1kphNAGOAfoCjwRY/xbk7ZKkiS1GJfvkCTtioySyxDCtcC/Aj+NMV4O/Bb4Unr44xDCl2KMTzRPEyVJ0u7k8h2SpF2R6bDYk4AOwPwQQl/gdCCkj3bAxOZpniRJkiQpH2SaXPZJty8Ax6bPrwOGps+ParomSZIkSZLyTabJZYd0uwU4AojAIqA03d+paZslSZIkSconmSaXb6fbq4Bz0+cvkEzoA7C+KRslSZIkScovmSaXj5HcX3kpcBjwSozxJeCf0uMvNkPbJEmSJEl5ItPk8r+AR4GtwPPAt9L9JwGrgd81fdMkSZIkSfkio6VIYozvAl+sZf8UYEpTN0qSJEnVuf6opFyX6TqXrwDlMcZDajn2KyDGGP+lqRsnSZKkhOuPSsp1GSWXwMEkM8TW5pvpMZNLSZIkSdpD1ZlchhD2ocYSIyGE3iQT+1Q4Mt2WN3nLJEmSJEl5o76ey0uBH6bPK3otX62lXATWNGGbJEmSJEl5pqFhsRW9lLHG65pmNk1zJEmSJEn5qL7kcmGV55eTJJhTq+yLwAbgmRjjU03fNEmSJElSvqgzuYwxLgIWAYQQTk52xal1lZckSZIk7bkyXedyWDO3Q5IkSZKUxzJd57IA+Ffgq0BvoKhGkVjbGpiSJEmSpD1Dputc/hi4LH1e26Q+da2BKUmSJEnaA2SaXH6LJKncBvw13ZpQSpIkSZKAzJPLvUmSyeNijMubsT2SJEmSpDxUkGG5B9PtB83VEEmSJElS/sq05/K3wBnAvBDCNcDLwPaqBWKMi5u2aZIkSWptrps+nU1lZS3dDEnNINPk8h6SYbH7ADNqOR4bcS5JkiTtoTaVlXF5SUlGZadmWE5SbmhMQljbLLGSJEmSJGWcXF7QrK2QJEmSJOW1jJLLGONtzdmIEMJVwKT05f+LMV5dR7lvAGOBo4A2wIvArcDMGGN5Pec/DZgAHAu0B1YBdwNXxxgd9C9JkiRJWcp0tlgAQginhhB+HEK4KX19UPrY5fstQwifBb5PA+tmhhBuBO4kSRCXAI8BhwI/A+4JIdQaSwjh+8A84BTgT8DDQDfgSmBhCGHvXW27JEmSJCmRUXIZQmgbQniAJEn7PvCd9NCvgFeA83bl4iGEIuA24G3ggXrKjQbGAWuBo2KMI2OMZwKfAl4AzgS+V0u9Y4HpJEuonBBjHB5jPBvoBywGjgem7UrbJUmSJEmfyLTnciLJUiSB6hP7/Cx9fdYuXv9HwOHAd4FN9ZSrGDL7gxjjyxU7Y4xvkwyTBZhYS+/lxLR9P4kxPl2l3haS+0jLgXEhhE672H5JkiRJEpknl98iGbZ6aY39C9PtkY29cAjhOOA/gbtijL+rp1wv4DPAR8DcmsdjjIuANcCBJD2RFfXaAV9MX95ZS71VQCnQDvhSY9svSZIkSfpEpslln3R7U439m9PtAY25aAihPclw2PXAJQ0UPybdPh9j/LCOMs/UKAtwGLA3sD7GuLIR9SRJkiRJjZTpRDybgc4kE+FUdXKV440xjST5+1qMcV0DZfum29X1lHmtRtmqz1+jbrXVkyRJkiQ1UqY9l0+m27sqdoQQrgF+QzJcdmmmFwwhDAH+A/htjPE3GVTpmG631lNmS7otboJ61YQQ/i2E8GwI4dl333233oZKkiRJ0p4q0+RyGrAdGMInS4b8B0lSth34cSYnCSHsBcwG3ieZ/TXnxRh/HmM8NsZ4bNeuXVu6OZIkSZKUkzJKLtOZVkeRLDsSqjxeAb4SY1yW4fWuIlk+ZEKM8a0M61T0Lnaop0xFL2XV4bm7Wk+SJEmS1EiZ3nNJjPFRoH8I4VNAV2BdjPGlRl7vTJLlP/4lhPAvNY4NSLdjQwgjgRUxxn8FXk33H1zPeXun21er7Kt4flAj60mSJEmSGinj5LJCus7kyw0WrFsBMLSe4/3SR6f09XPp9ogQwl51zBj72RplAV4EPgS6hBAOqWPG2M/VUk+SJEmS1Eh1DosNIaxqxKOupT6qiTH2iTGG2h4kS5MA/L9039FpndeBP5GsR3l2Le0cCvQC1pKsW1lxrY+AeenLMbXU6wcMJlk/8+FM2i9JkiRJql19PZd9atkXSe61rPk61lK2Kf0YmAv8JITwZIxxBUAIoRswIy0zPcZYXqPedJKhuD8IITxScW9oCKEj8EuS5HpGjHFjM7dfkiRJrcx106ezqayspZsh5Yz6ksvFVE8ajwD2J1kb8k2gB8n9jOuBvzZXAwFijPeEEGYCY4HlIYTfAx8Dnwf2AX4L/KyWes+EECYCPwGeDCE8AWwkGZbbDXgamNycbZckSVLrtKmsjMtLShosNzWDMlJrUGdyGWMcVvE8hPBl4B5gbIzx5ir7xwI38EnvYbOJMY4LIfwBGE+SHLYhua/yl8DMWnotK+r9Twjhr8B/ktyb2R5YBfwvcHWM0Y+bJEmSJClLmU7ocxXJENI7a+y/A7gR+BFJ8rnLYoznA+c3UOYu4K5dOPcjwCO71DBJkiRJUoMyWueSZPZWgAkhhLYA6XZCur9vUzdMkiRJkpQ/Mk0u/5JuLwc2hhBeJbl38Yck92X+uakbJkmSJEnKH5kml+OB90lmht2bZCKfvdPXm9LjkiRJkqQ9VEb3XMYY/xhCOIRkGOxgoDvwFrAUuC7GuL75mihJkiRJynWZTuhDmkBOaca2SJIkSZLyVJ3JZQjhJIAY4+KK5/WJMS5uyoZJkiRJkvJHfT2XC4HytMxCkol76hIbOJckSZIkqRVrKCEMdTyXJEmS1EpcN306m8rKWroZynP1JZcX1PFckiRJUiuyqayMy0tKGiw3NYMy2nPVmVzGGG+r7bkkSZIkSTVldJ9kCOFYYCCwMsa4tMr+fwb6AX+PMT7bPE2UJEmSJOW6ggzLXQvcCnSusX8fYDZwTRO2SZIkSZKUZzKd4fXIdLuoxv4l6fafmqY5kiRJkrTrnJyo5WSaXO6VbjsDm6vs71zjuCRJkiS1GCcnajmZDotdnW6vDyHsCxBC2Ae4Pt3/ahO3S5IkSZKURzJNLu8nWedyFPBOCOF14N30dQTua57mSZIkSZLyQabJ5TTgbyQJZiHQM90GYDlwVbO0TpIkSZKUFzK65zLGuCWEMAS4FDgN6ErSc/l/wPUxxq3N10RJkiRJUq7LdEIfYoxbgCvShyRJkiRJlTJKLkMIXwQ+C/wpxvhQlf1nAMcAz8QY5zVPEyVJkiRJuS7TnsupwGeAz9fYvxEoAZ4BTC4lSZIkaQ+V6YQ+h6XbZTX2/zHdDmia5kiSJEmS8lGmyWVhuu1dY/9B6TbjezclSZIkSa1Ppsnly+n2FyGEw0MIbUIIA4FZNY5LkiRJkvZAmSaXd5GsaTmYZL3Lj0jWtxwCRODOZmmdJEmSJCkvZJpcXgs8TpJg1nw8Dvy0WVonSZIkScoLGd0rGWP8OIQwAvgG8EWgK/Au8H/A3THG8uZroiRJkiQp12U8EU+aQN6RPiqFEDqEEL4cY7yrqRsnSZIkScoPmQ6LrSaEsHcI4dwQwn3AO8CvmrZZkiRJkqR8knHPZQihPTASOJdkaOxeFYdIJvWRJEmSJO2h6k0uQwhFwJdIEsrTgb0rDqXbCPwF+HVzNVCSJEmSlPvqTC5DCHeS9FR2rNhV5fAKoD9AjPGYZmudJEmSJCkv1Ndz+XWSnskAbAOeAH6XProAf2321kmSJEmS8kIm91xGkoTy18CjMcYPQgidm7dZkiRJkqR8Ul9yub3K8a+mj7IQwgKS+ywlSZIkSQLqX4qkG/Bt4FFgB8nw2PbAacAPKgqFEC4OIXRrzkZKkiRJknJbnclljHFjjPHWGOMXgQOBfwN+D5RTfXKf64HXm7WVkiRJkqScVl/PZaUY4/oY4y0xxlOB7sBYYAGfJJoZr5cpSZIkSWp9Mkouq4oxrosx3hxj/DzQE/gesKTJWyZJkiRJyhuNTi6rijG+E2O8McY4rInaI0mSJEnKQ1kll5IkSZIkgcmlJEmSJKkJmFxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSsmVxKkiRJkrJmcilJkiRJyprJpSRJkiQpayaXkiRJkqSs7fbkMoRQGEL4fAjhmhDCsyGE90MIH4UQ1oQQ7gkhDGug/jdCCEtCCJtCCFvSc4wPIdQbSwjhtBDC/BDC+hDCByGEv4UQJocQipoyPkmSJEnaE7VEz+VQ4PfABKAnsBi4H1gPjAYWhBB+VFvFEMKNwJ3AscAS4DHgUOBnwD11JZghhO8D84BTgD8BDwPdgCuBhSGEvZsqOEmSJEnaE7VEclkO3AucFGPsHmMcGWM8N8b4T8DXgB3Af4cQTq5aKYQwGhgHrAWOSuudCXwKeAE4E/hezYuFEI4FpgMfACfEGIfHGM8G+pEktscD05opVkmSJEnaI+z25DLG+ESM8asxxiW1HPsNMDt9+c0ahyel2x/EGF+uUudtYGz6cmItvZcTgQD8JMb4dJV6W4ALSJLdcSGETrsWkSRJkiQpFyf0eS7d9qrYEULoBXwG+AiYW7NCjHERsAY4kKQnsqJeO+CL6cs7a6m3CigF2gFfaprmS5IkSdKeJxeTy0+l27eq7Dsm3T4fY/ywjnrP1CgLcBiwN7A+xriyEfUkSZIkSY2QU8llCOFA4Pz05b1VDvVNt6vrqf5ajbJVn79G3WqrJ0mSJElqhJxJLkMIbYE7gH2Bx2OMv6tyuGO63VrPKbak2+ImqCdJkiRJaoScSS6Bm4DPA6+z82Q+LSaE8G/pWprPvvvuuy3dHEmSJEnKSTmRXIYQrge+TbLMyOdjjGtrFKnoXexQz2kqeik3N0G9SjHGn8cYj40xHtu1a9d6TiNJkiRJe64WTy5DCNcA/w68S5JYvlxLsVfT7cH1nKp3jbJVnx/UyHqSJEmSpEZo0eQyhPA/wATgPWB4jPHvdRStWJ7kiBDCXnWU+WyNsgAvAh8CXUIIh9RR73O11JMkSZIkNUKLJZchhOnA/wM2AF+IMf61rrIxxteBP5GsR3l2LecaSrIu5lqSdSsr6n0EzEtfjqmlXj9gMMn6mQ/vaiySJEmStKdrkeQyhHAl8ANgI0limUmv4Y/T7U9CCP2rnKsbMCN9OT3GWF6j3nQgAj8IIXyuSr2OwC9JvgYzYowbdyEUSZIkSRLQdndfMIQwCpicvlwBfC+EUFvRF2OM0ytexBjvCSHMBMYCy0MIvwc+Jplhdh/gt8DPap4kxvhMCGEi8BPgyRDCEyRJ7VCgG/B0lfZIkiRJknbBbk8ugS5Vnh+bPmqziKTXsVKMcVwI4Q/AeJLksA3JfZW/BGbW0mtZUe9/Qgh/Bf6T5N7M9sAq4H+Bq2OMZbsejiRJkiRptyeXMcbZwOws6t8F3LUL9R4BHtnV60qSJEmS6tbiS5FIkiRJkvKfyaUkSZIkKWsml5IkSZKkrJlcSpIkSZKyZnIpSZIkScqayaUkSZIkKWsml5IkSZKkrJlcSpIkSZKyZnIpSZIkScqayaUkSZIkKWsml5IkSZKkrJlcSpIkSZKyZnIpSZIkScqayaUkSZIkKWsml5IkSZKkrJlcSpIkSZKyZnIpSZIkScqayaUkSZIkKWsml5IkSZKkrLVt6QZoz7A9BqZOnZpROUmSJEn5x+RSu0XbELn1w2MbLHfBXs/uhtZIkiRJamoOi5UkSZIkZc2eS6mRHOIrSZIk7czkUmokh/hKkiRJO3NYrCRJkiQpayaXkiRJkqSsOSxW2oN5/6gkSZKaismltAfz/lFJkiQ1FYfFSpIkSZKyZnIpSZIkScqaw2Il5T3vHZUkSWp5JpeS8p73jkqSJLU8h8VKkiRJkrJmcilJkiRJyprDYiUph7Sm+0dbUyySJKlhJpeSlENa0/2jrSkWSZLUMIfFSpIkSZKyZnIpSZIkScqayaUkSZIkKWsml5IkSZKkrDmhjyRJ9ch01tuKspIk7alMLiVJqkems95C7s986/IwkqTmZHIpSdIewuVhcpNJv6TWwuRSkiTlndaUkJn0S2otTC4lSVLeMSHLPa0p4Ze0a0wuJUmSlDUTfkkml5IkSVIV9sJKu8bkUpIkSarCXlhp1xS0dAMkSZIkSfnP5FKSJEmSlDWHxUqSJEmtlPePancyuZQkSZJaqdZ0/6iJcu4zuZQkSZKU81pTotxaec+lJEmSJClr9lxKkiRJ0m6S6fDe9h2K+cFlE3ZDi5qOyaUkSZIk7SYZD+8l/4b3OixWkiRJkpQ1k0tJkiRJUtZMLiVJkiRJWTO5lCRJkiRlzeRSkiRJkpQ1k0tJkiRJUtZMLiVJkiRJWTO5lCRJkiRlzeRSkiRJkpQ1k0tJkiRJUtZMLiVJkiRJWTO5lCRJkiRlzeRSkiRJkpQ1k0tJkiRJUtb2qOQyhPCNEMKSEMKmEMKWEMKzIYTxIYQ96usgSZIkSU1tj0mqQgg3AncCxwJLgMeAQ4GfAfeYYEqSJEnSrtsjEqoQwmhgHLAWOCrGODLGeCbwKeAF4Ezgey3YREmSJEnKa3tEcglMSrc/iDG+XLEzxvg2MDZ9OdHeS0mSJEnaNa0+mQoh9AI+A3wEzK15PMa4CFgDHAgcv3tbJ0mSJEmtQ6tPLoFj0u3zMcYP6yjzTI2ykiRJkqRG2BOSy77pdnU9ZV6rUVaSJEmS1Ah7QnLZMd1urafMlnRb3MxtkSRJkqRWKcQYW7oNzSqE8F/ANODOGOM36ygzDfgv4OcxxotqHPs34N/Sl4cB/2jG5raU/YF1Ld2IJtBa4gBjyVWtJZbWEgcYS65qLbG0ljjAWHJRa4kDjGVPc3CMsWttB9ru7pa0gIpeyQ71lKno3dxc80CM8efAz5u6UbkkhPBsjPHYlm5HtlpLHGAsuaq1xNJa4gBjyVWtJZbWEgcYSy5qLXGAsegTe8Kw2FfT7cH1lOldo6wkSZIkqRH2hOTyuXR7RAhhrzrKfLZGWUmSJElSI7T65DLG+DrwJ6AdcHbN4yGEoUAvYC1QuntblzNay7Df1hIHGEuuai2xtJY4wFhyVWuJpbXEAcaSi1pLHGAsSrX6CX0AQghfBeaSJJAnxhhXpPu7AQuAgcB/xBivb7lWSpIkSVL+2iOSS4AQwgxgLLAN+D3wMfB5YB/gt8BXY4w7WqyBkiRJkpTPYox7zAP4BrAUeJ9k3cs/AuOBgpZuWy1tLSRJfq8Bnk3b/BGwBrgHGJZBrEuATSQz5j6bSazAacB8YD3wAfA3YDJQVEf584HYwKNXPsRSo+7XgEeBd4Ay4E3gMeDb+RBLBt+Tise8XI4jrbMXMDG9xua0nW8C9wFDyZPflbTO3sAk4M8kf4M2A88A3wPa7O5YSCYzGwv8AvgrsD39ubgsw79TdX4N8iWWhurlQxwkt7gMAa4EngQ2kHyA+jbwf8BX8iWWtN4Y4HZgOfBuGssG4A/AxWkceRFLHef6Nz75G/yzfIkFKKH+95Nt+RBHlfptgO8Ci4H30va/DvwO+EquxwL0aeD7UfXxH7kcS5W6nYGrSH73t5L8/7Wa5O/Bsbn+PalStwvwY+AF4EOSv1+LgW819u9FPj5avAE+6vjGwPAqfxTeAh4CfpP+wlXs/1EddW9Mj3+Y1rs//SWMJP+Q1/WL9P20zHaS3t25JMlVJLkfde9a6pyfHl8BzK7j8eV8iCWt1z69Tkz/+DwK3J3+UdhEcv9uzsdSz/diNvAE1d90cjmOfUkSsZhe4xFgTo123kh+xNKlSizrSf7pn5/+XMX0+Wm7MxaSfzhq+0ckkzfPhr4Gp+dDLA3VYzf/Ld6VOID+Vcq9R/J369fAsir7b82HWNJ6fwB2pO36P5K/wYtI/pGs+PkamQ+x1HKeg9Nrlaf1f5ZH35eStNyfqf295eF8iCOtux+f/H68V6WtT6Zt+L9cj4VkLcbavg8Vj4r4tuZ6LGm9g0gSyUjyodJDJEnjCj55r8mHOPqRrD4RSW7HewBYmF47pt+b0Ji/G/n2aPEG+KjjGwOnpL9UJ9Zy7Nwqv2Qn1zg2usov3qeq7D8A+Ht67JJaznksyZvdVuC4Kvs7krypR+CntdQ7v+KXJd9jScv8Oj3+a6BTjWNFwEX5Eks9348Zab23cz0Okk8wI8kogy41jn07PfYxySfNuR7LnPTYYmD/Kvt78smHFnfs5p+vLwPXAd8CDgd+RWZvnpl8De7Jk1jqrcfu//vV6DiAQ4DHST6caFPj2FCSD8oi8JNcjyWt9zlq/P1N9/ci6QmIwG35EEuNcwSSD2K2kPyDGUmSy5z/GUvrlaTlSuo4ni9xFJCMYotp/fY1jheTvL/kfCwNxFmRID+UD7EAd6XlHqbKB7Tp96viZ6+MWnoocyyOp9Nyc2vEcTifJJ3f2dXvaz48WrwBPnbxGwe3pD+gv6ix/9l0/3m11Bla5ResoMaxe9JjP6ylXj+ST5HL2DnhOp8Gkss8imVEWu/P1PgHLd9iqad97UmGZ0Tg3FyPg6SHIgJfr6Od/0iPfymXYwF6kCRj26ny5lbl+LHpOT8AindXLLWUnU1mb55Z/1zmSizZ1svVOGqcY0p6jsdbQSzfSs/xZL7FQjLELpIMgy9Jn/8sX37GaCC5zKM4LkrL/S6Ln8OciKWe+j1J/g5HqnwAmMuxpOeKwOBajrUheX+MwMBcjQMYnJbZCHSu5fhX0+Ov0Yp7L1v9UiSt2HPptlfFjhBCL+AzJEOH5tasEGNcRDI2/UDg+Cr12gFfTF/eWUu9VST/5LcDvtQ0za8mV2K5ON1eH3d9cqdciaUuo4FOJMMyf5sHcZTV08aq1tVzLBdiOZak12J1jPHlWuo9S5L070X938smi2VXNeHPZYvH0kTyIY6d2phpuRyMZXu6behvQ07FEkLoC/wPyZDfnzWyek7FkoVciaPivf7aLM6RK7HU5XySHr/nY4xPN1A2V2Jp6Hc6ptu63u9zIY7Ppts/xhg31HJ8frrtTTJCo1Uyucxfn0q3b1XZd0y6fT7G+GEd9Z6pURbgMJKJRtbHGFc2ol5V/UMIV4YQfh5CuDqE8I0QQsd62l9Vi8cSQmhDMqQHYEkIoVcI4f+FEG5K4xkdQmibD7E04MJ0e0eMsb4/5LkSxyPp9rIQQpeqB0IIFwKHkryhPFvHeSE3Yqn4XagvCa449pl6yjRlLLuqqX4ucyGWppAPcdTWxkzL5UwsIYT9gf+XvnywgeI5E0sIIQC/BNoC345pF0Yj5EwsqU+HEH6Svt9PDyGcmX7o1JAWjyOE0B04kqRXrzSEcGgI4b9DCDeHEH4cQjgt/X41pMVjacD56fYXGZTNlVgq3u+nhBD2rtiZfj/+m+R958EY4zt11M+FOBp6r6+YlBDqf6/Pa5n8s6wcE0I4kE/+cNxb5VDfdLu6nuqv1Shb9flr1K22elWdkD6q2hBC+LcY4z11nTSHYjmE5A8XwD+T3Py9N9W9EEIYFdN1UmvKoVhqFULoA5ycvqzzDSfH4riO5PtxOvBqCKFitueB6eP/SP5ZK6/tpDkUS8WbYb862tmWZKKPmvWqlmnqWHZV1j+XORRLVvIhjvSftH9PX95bT7mciyWEcAbJaIs2QHeS95j2JMPT6uz9y8FYLgaGARNjjC81pmIOxgJwRvqo6o0QwjfTnqCd5FAc/5Ru3yMZpvw/VP9feCLwZAjhzLqSmByKpVYhhKEkk3x9RDLLan1lcymWKSQJ3peA1SGEp0h6MweRvD/eAYyrrWIOxVHvez1Jr2rFBzEt/h7WXOy5zDPpP6F3kMyi+XiM8XdVDld8YrK1nlNsSbfFTVAPkk+IriTp3t+fZMjlYJKZuDoDvwkhjKjthDkWS9VesZ+TzBj36bTM59LXhwMPhxCKap4wx2KpywUkQzOfjTH+tbYCuRZHjHEbyZTw/5Oe5zTgHJJPnt8CFpD8k7CTHIvlaZL7RfYPIYyupc6FfPKGs0/Ng80Uy67K6no5Fssuy6M4ZpD8E/N3kr9tO8nhWAYB/wJ8k2QJgvYkHzj9R4zx49oq5FosIYRDgOkkoyuubmTdnIoFWEmylNLRaZu6koz4WUTyT/P/hRCOqlkpx+LoUmV7LclQyYEkf3dPIZkwagi1DKGEnIulLhUjlB6MMdY5WibXYknbegrJZF37k8wIPZokUV4FLIoxbq5ZL8fiWEAyfPczIYRjazk+tsrznd7rWwuTy/xzE8mb7Oskb7gtKsb4aIzxv2OMz8QY34sxbooxPhVjPIvkD3cByZpEtcmlWKr+LrwOnB5jfC7GuCXG+AzJZD9rSYZhfqOW+rkUy05CCAV88qneL+spmlNxpEOY/kCyFtm/k0xVXkzyAcaLwP9H8g9Nm1qq50ws6Rtixe/BL0II54cQuoYQDgwhjAN+SjLrLSQT/9SUM7E0gdYSS87HEUL4b5LkbBNwTj1D4XMylhjjlTHGQDJT96EkPRv/CvwlhDCwjmo5E0uV4bCFJCMsGnsvf87EAhBjvD3GOD3G+JcY4/sxxnUxxgUxxmEkvUV7k8zwXVMuxVHxXt8W+EOM8RsxxhdijJtjjAuAU0mWjDgphHByLfVzKZadhBD2IZk0Bup/r4cciyWEMIDkNpcRJBN3dSfpsPg8SXI4K4RQW0w5E0d6q8gdJB/kP5AOGe8cQjgo/Xv8/6j/vb5VMLnMIyGE60mmx14LfD7GuLZGkYpPXzrUc5qKT3Gqfvqzq/UaciXJfQ1HhBAOqnogB2Op+vy2GONHVV4TY9xC8gcDPhlaCuRkLLUZTpKYfUgy3fdOcjSO24DjgItijD+LMb6eJvxPkQyd+RtJbOflQSxTSd4E9yVZc/Adkt7XG0l6NSreNNdXrdSMseyqXb5eDsayS/IhjhDCBOBHaVu+GGN8vo5yOR9LjPGjGOPLMcZpJB+SHQz8qua9cTkYy78DJwE/rmu0SF1yMJaG/CjdfiGEUFixMwfjqHqOWTUPxhjfIFkKA3bfe31T+hpJkv8GyXq3tcq1WNLex3tJeinPijHeEWNcm3ZYPAF8gWT5tAuqJv25FkdqLMmEiT1I1tBcTzIs90fp64qfr/W1VW4NvOcyT4QQriF5o3qX5BdopxknSdbPgU/u3apN7xplqz6vlgBmUK9eMcYNIYR3SD596kk6rj1HY6n6/JU66lXsP7BiR47GUpuKYTL3xhg31TyYi3GEEHqSvKF8RLL0RTUxxo9CCPeQDJEdTpKw5WQsaXt3AGNDCDOAUek5tpAsrvwwn3x4sbyiTjPHsqsqztHY72cuxtJo+RBHCOF7JD3lHwIjY4yldZTL+VhqcR/JfdefAfqQ/l3O0VjOTLdfSO+Dq6pPRZkQwpHAlhjjSMjZWBryYrptRzKk8a0cjeOVOp7XVmZ3vdc3pYr3+tn1zEWQi7EcRzI8eVVtf69ijOtDCPNIPlwaDizI0TiIMW4l+b0eTHIrT3eSRPLRGOOCEMKTadHldZ0j35lc5oEQwv8AE0juLRseY/x7HUUrpmE+IoSwVx0zY322RllI3hQ+BLqEEA6pYwbIiimTn6vlWF3tbkPSSwPpp0e5GkuMcXMI4WWS2cb2q6NN++dDLDWFZJbVr6Qvd5rIJ4fjqEhetsYYt1O7jem2S47HUinGuJwabyppD0zFhFiP7aZYdlWjvwY5HEuj5EMcIYTxwP8C24BRse4JVnI+ltrEGGMI4T2S+5W6Aa/kQSyD6znWI31sgvz9vlD9fXNLDsfxD5Ihlh3Inff6JpEOFT+O5J6/W+sok6uxVLzf7/ThdxUb022XHI6jUpokV0uUQwjFJPcsbye5P7N1ijmw2KaPuh8kEwFEkk89jsmg/B/ZtYXh7yXLRdFrqffl9Jzvk9xzktOxVGlfrQsrk0xaEIH/yvVYapT7XnqOFdRYtDeX4yD5pDGmj0PraM+v0+MzcjmWDNpyLlUWht9dsdRSdjaZLXad8dcg12PJtF4+xEFyb3IkSSxH1FMu52Op5xz9SO5V2kEyoUxexgKUpPV/1kq+L5ek53gx1+Pgk/eNG2o5VkjyXhlJ5lfI6Vhq1LkmrfN4HcdzNpYq5/uAOt47SRK1yCeT5uRcHBm05QfpOe7a1XPkw6PFG+Cjnm9Ocs9iJFlc/TMZ1vlqlV+U/lX2dwOeT49dUku9z5K8YW8FPldlf0eSYXsR+GmNOnuTjC3vWMv5Tie5pywCP871WNLj3UnG3EfgghrHLk33byGZrTCnY6lxjufScv+VTz9f6fFn0mN/AA6ocexf0nNG4Fd5EMvBQPda9p9B8mntNuCo3fl9qeU8s8nsn7OMvgb5EEsm9fIhDuA76fdkG8k9lnWVy+lYSIbGfQNoX8uxI0nuT44kQ+VzOpYG6pdQJbnM9VhIepa+ARTV2B9IJl/5ID3Hw7kcR1puEJ98ADaiyv42JBMRRpJ7FqfneixVyheS3JMYgW/UcjzXf77aAWvScvcC+1Q5VkAymVdMv285G0da7jCgcy2/J98muc3nPWr5X6A1PUIatHJMCGEU8ED68lmSX4DavBhjnF6j7gySpG8b8HuSmak+TzKM6LfAV2Mts9aFEL4P/ITkl/cJkiEIQ0l+AZ8GTokxflClfCeSX/BtwJ9IZupqR7Jkx4C02H0k95Ldl8uxVKl3JjCHZMj4X4CX+WRNxTKSN55J+RBLWvcYku/NDuCgGOOb6f6c//lK6xxF8illF5LEfxnJz9wRJD9nkPxsnZUHsZxPMiz5zyQ3928nSSYPS2M7m2RWzN32fQnJbLz3V9l1CMmQsNeovhD1mTHGt2rUbehrcDWfTOefs7FkUK8zyUylORtHCOFokt/zQNJz9HQdbdyXT4bI52osw0h+57emMa0h+b3oQzKcLJD8HfhfPrlPOSdjqU8IoQS4nGRCr/nk+O99+jP2HMnfqj8Bb5LM3H0En6zX9zDJB8s5G0eVut8Drk9fLiNJJo8h6RnfBEwjWQIr52NJ659J8l64kSRx2Vbl2G59v8/ib/EX0nbuRZKAPUNyC8bRJD9j5XwyEWkux1FCMsLtjyT/F7cBjiX5gOZtkg//nquj7a1DS2e3Pmp/kNy0HDN4LKyj/jeAigXnt5L8kI+n4W7/00ju+dpA8kv9PDCZGp9WpmXbAVeQzEj2Kkmv3kck/ww8QDLjV17EUqPeIOA3JLOPfUTyJnonyeLL+RbLDWl7Hs63n68qdbqTLDmyPL3WxyR/2B9Iz5cXsaQ/P3eQfGCxheST/hdIhjJ1b4nvC8k/7Jlcr09jvwb5Eksj6uVsHMCwDOusy4NYuqY/Q4+QvK9sJflgbw1J8vIvJP+snZ/rsTTw96MkLf+zfIiF5P7E/yFJ/F8n+fu1Lf0e/ZpkfcKcj6NG/WHAQyS/Fx+RfOh3c3refIvld+nxG2s5ljexkMx7MZPk3tgPSX73XwPuJvl/M+fjIJkh+h6SiaE+IPlA5i8kv/P7ZvL3Id8f9lxKkiRJkrLmOpeSJEmSpKyZXEqSJEmSsmZyKUmSJEnKmsmlJEmSJClrJpeSJEmSpKyZXEqSJEmSsmZyKUmSJEnKmsmlJEmSJClrJpeSJEmSpKyZXEqStIcJIbRv6TZIklofk0tJkppZCGFWCCGGEDaFEPausv8L6f4YQjgzhFAQQvheCOG5EMIHIYQtIYSFIYThNc53YQhhSQhhbQjhoxDC+yGEpSGEr9YotzA996shhBEhhL+EED4GTttNoUuS9iAml5IkNb+Z6XYfoGoCODrdvgc8DMwG/hc4GtgL6AAMBeaHEM6pUu9U4J+BA4BCoBgYAswNIXyplut3BR4AjgLaZh2NJEm1MLmUJKmZxRj/BCxLX14IEEIoAL6S7vsNcBzwrfT1ZJKEsTuwEAjAT9M6AD8HBgGdSJLLAcDr6bHv1tKEvYH/S893IPBk1kFJklRDiDG2dBskSWr1QgjnA7cCEegP9AQWp4cHA6OASQ2cZmCM8YUQwkDgSuAEYD+gTZUy/4gxDkivuZCk5zMCB8YY32mSYCRJqoU9l5Ik7R6/ATaQ9EJewCdDYl+OMT5FMnS1IV1CCPsCjwJnAt2onlgC1DZZzzsmlpKk5mZyKUnSbhBj/JDknkqAfyFJDgFuT7frqhQ/OsYYqj6AghjjUuB4oFdabjrQIT3+x3ouv60pYpAkqT4ml5Ik7T43kQxR7Q0clD6vSC4fqVLuuhBC/xBCuxDCYSGEicBd6bF2VcptBWIIYQzw6eZtuiRJ9fOeS0mSdqMQwu+Bz6cvl8QYT6py7C7g63VUXRRjHBZC2A94Gehc5VgZSc9nT2B1jLFPer6FJPdcVu6TJKm52HMpSdLuNbPK81/VOPZN4N+B50iGsm4BXiSZHXYyQIzxPeDLwJ/SMs+nr1c0a6slSWqAPZeSJO1GIYSLgRtIEsdeMcZNLdwkSZKahD2XkiTtBiGEi0MIq0gSS4AbTSwlSa1J25ZugCRJe4j9gb7ARuBe4Ict2hpJkpqYw2IlSZIkSVlzWKwkSZIkKWsml5IkSZKkrJlcSpIkSZKyZnIpSZIkScqayaUkSZIkKWsml5IkSZKkrP3/vDl99Yy0brcAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 1080x576 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    " \n",
+    "# set width of bar\n",
+    "barWidth = 0.2\n",
+    "fig = plt.subplots(figsize =(15, 8))\n",
+    " \n",
+    "# set height of bar\n",
+    "#resultGoodsperbillp.plot.bar(x=\"Year\", y=\"Accidents per billion mile\")\n",
+    "IT = A[\"Accident Probability\"]\n",
+    "ECE = B[\"Accident Probability\"]\n",
+    "CAC = C[\"Accident Probability\"]\n",
+    "CSE = M[\"Accident Probability\"]\n",
+    "CAR = U[\"Accident Probability\"]\n",
+    "\n",
+    "# Set position of bar on X axis\n",
+    "br1 = np.arange(len(IT))\n",
+    "br2 = [x + barWidth for x in br1]\n",
+    "br3 = [x + barWidth for x in br2]\n",
+    "br4 = [x + barWidth for x in br3]\n",
+    "br5 = [x + barWidth for x in br4]\n",
+    " \n",
+    "# Make the plot\n",
+    "plt.bar(br1, IT, color ='r', width = barWidth,\n",
+    "        edgecolor ='grey', label ='Road A')\n",
+    "plt.bar(br2, ECE, color ='g', width = barWidth,\n",
+    "        edgecolor ='grey', label ='Road B')\n",
+    "plt.bar(br3, CAC, color ='b', width = barWidth,\n",
+    "        edgecolor ='grey', label ='Road C')\n",
+    "plt.bar(br4, CAR, color ='y', width = barWidth,\n",
+    "        edgecolor ='grey', label ='Road U')\n",
+    "plt.bar(br5, CSE, width = barWidth,\n",
+    "        edgecolor ='grey', label ='Road M')\n",
+    " \n",
+    " \n",
+    "# Adding Xticks\n",
+    "plt.xlabel('year', fontweight ='bold', fontsize = 15)\n",
+    "plt.ylabel('Accidents probability', fontweight ='bold', fontsize = 15)\n",
+    "plt.xticks([r + barWidth for r in range(len(IT))],\n",
+    "        A[\"year\"])\n",
+    " \n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 59,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>year</th>\n",
+       "      <th>Accident Probability</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>6.422799e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>1.359536e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2005</td>\n",
+       "      <td>9.496445e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>6.014875e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>8.948381e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>1.281553e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>1.198080e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>8.354905e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2007</td>\n",
+       "      <td>5.855691e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>5.578773e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>1.096785e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>7.878233e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>7.713141e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>5.399421e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>9.987055e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>5.183871e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>9.944262e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2010</td>\n",
+       "      <td>7.338374e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>5.133504e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>7.181611e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2011</td>\n",
+       "      <td>8.703883e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>21</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>8.352564e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>6.841165e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>23</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2012</td>\n",
+       "      <td>4.975626e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>7.872038e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>4.774448e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2013</td>\n",
+       "      <td>6.457786e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>6.552518e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>28</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>4.925054e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>29</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2014</td>\n",
+       "      <td>8.095679e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>30</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>4.587376e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>31</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>6.220195e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>32</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2015</td>\n",
+       "      <td>7.741353e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>33</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>6.045147e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>34</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>7.395864e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2016</td>\n",
+       "      <td>4.268668e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>36</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>6.448326e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>37</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>3.877747e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>38</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2017</td>\n",
+       "      <td>5.855451e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>39</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>6.123188e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>40</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>3.623149e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>41</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2018</td>\n",
+       "      <td>5.537736e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>42</th>\n",
+       "      <td>A</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>3.506125e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>43</th>\n",
+       "      <td>B,C &amp; U</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>5.179304e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>44</th>\n",
+       "      <td>Motorway</td>\n",
+       "      <td>2019</td>\n",
+       "      <td>5.404255e-08</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   road_name  year  Accident Probability\n",
+       "0          A  2005          6.422799e-07\n",
+       "1   Motorway  2005          1.359536e-07\n",
+       "2    B,C & U  2005          9.496445e-07\n",
+       "3          A  2006          6.014875e-07\n",
+       "4    B,C & U  2006          8.948381e-07\n",
+       "5   Motorway  2006          1.281553e-07\n",
+       "6   Motorway  2007          1.198080e-07\n",
+       "7    B,C & U  2007          8.354905e-07\n",
+       "8          A  2007          5.855691e-07\n",
+       "9          A  2008          5.578773e-07\n",
+       "10  Motorway  2008          1.096785e-07\n",
+       "11   B,C & U  2008          7.878233e-07\n",
+       "12   B,C & U  2009          7.713141e-07\n",
+       "13         A  2009          5.399421e-07\n",
+       "14  Motorway  2009          9.987055e-08\n",
+       "15         A  2010          5.183871e-07\n",
+       "16  Motorway  2010          9.944262e-08\n",
+       "17   B,C & U  2010          7.338374e-07\n",
+       "18         A  2011          5.133504e-07\n",
+       "19   B,C & U  2011          7.181611e-07\n",
+       "20  Motorway  2011          8.703883e-08\n",
+       "21  Motorway  2012          8.352564e-08\n",
+       "22   B,C & U  2012          6.841165e-07\n",
+       "23         A  2012          4.975626e-07\n",
+       "24  Motorway  2013          7.872038e-08\n",
+       "25         A  2013          4.774448e-07\n",
+       "26   B,C & U  2013          6.457786e-07\n",
+       "27   B,C & U  2014          6.552518e-07\n",
+       "28         A  2014          4.925054e-07\n",
+       "29  Motorway  2014          8.095679e-08\n",
+       "30         A  2015          4.587376e-07\n",
+       "31   B,C & U  2015          6.220195e-07\n",
+       "32  Motorway  2015          7.741353e-08\n",
+       "33   B,C & U  2016          6.045147e-07\n",
+       "34  Motorway  2016          7.395864e-08\n",
+       "35         A  2016          4.268668e-07\n",
+       "36  Motorway  2017          6.448326e-08\n",
+       "37         A  2017          3.877747e-07\n",
+       "38   B,C & U  2017          5.855451e-07\n",
+       "39  Motorway  2018          6.123188e-08\n",
+       "40         A  2018          3.623149e-07\n",
+       "41   B,C & U  2018          5.537736e-07\n",
+       "42         A  2019          3.506125e-07\n",
+       "43   B,C & U  2019          5.179304e-07\n",
+       "44  Motorway  2019          5.404255e-08"
+      ]
+     },
+     "execution_count": 59,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result23"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 411,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "numpy.float64"
+      ]
+     },
+     "execution_count": 411,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "type(result23['Accident Probability'][0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 60,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th>road_name</th>\n",
+       "      <th>A</th>\n",
+       "      <th>B,C &amp; U</th>\n",
+       "      <th>Motorway</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>year</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>2005</th>\n",
+       "      <td>6.422799e-07</td>\n",
+       "      <td>9.496445e-07</td>\n",
+       "      <td>1.359536e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2006</th>\n",
+       "      <td>6.014875e-07</td>\n",
+       "      <td>8.948381e-07</td>\n",
+       "      <td>1.281553e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2007</th>\n",
+       "      <td>5.855691e-07</td>\n",
+       "      <td>8.354905e-07</td>\n",
+       "      <td>1.198080e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2008</th>\n",
+       "      <td>5.578773e-07</td>\n",
+       "      <td>7.878233e-07</td>\n",
+       "      <td>1.096785e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2009</th>\n",
+       "      <td>5.399421e-07</td>\n",
+       "      <td>7.713141e-07</td>\n",
+       "      <td>9.987055e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2010</th>\n",
+       "      <td>5.183871e-07</td>\n",
+       "      <td>7.338374e-07</td>\n",
+       "      <td>9.944262e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2011</th>\n",
+       "      <td>5.133504e-07</td>\n",
+       "      <td>7.181611e-07</td>\n",
+       "      <td>8.703883e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2012</th>\n",
+       "      <td>4.975626e-07</td>\n",
+       "      <td>6.841165e-07</td>\n",
+       "      <td>8.352564e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2013</th>\n",
+       "      <td>4.774448e-07</td>\n",
+       "      <td>6.457786e-07</td>\n",
+       "      <td>7.872038e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2014</th>\n",
+       "      <td>4.925054e-07</td>\n",
+       "      <td>6.552518e-07</td>\n",
+       "      <td>8.095679e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2015</th>\n",
+       "      <td>4.587376e-07</td>\n",
+       "      <td>6.220195e-07</td>\n",
+       "      <td>7.741353e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2016</th>\n",
+       "      <td>4.268668e-07</td>\n",
+       "      <td>6.045147e-07</td>\n",
+       "      <td>7.395864e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2017</th>\n",
+       "      <td>3.877747e-07</td>\n",
+       "      <td>5.855451e-07</td>\n",
+       "      <td>6.448326e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2018</th>\n",
+       "      <td>3.623149e-07</td>\n",
+       "      <td>5.537736e-07</td>\n",
+       "      <td>6.123188e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2019</th>\n",
+       "      <td>3.506125e-07</td>\n",
+       "      <td>5.179304e-07</td>\n",
+       "      <td>5.404255e-08</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "road_name             A       B,C & U      Motorway\n",
+       "year                                               \n",
+       "2005       6.422799e-07  9.496445e-07  1.359536e-07\n",
+       "2006       6.014875e-07  8.948381e-07  1.281553e-07\n",
+       "2007       5.855691e-07  8.354905e-07  1.198080e-07\n",
+       "2008       5.578773e-07  7.878233e-07  1.096785e-07\n",
+       "2009       5.399421e-07  7.713141e-07  9.987055e-08\n",
+       "2010       5.183871e-07  7.338374e-07  9.944262e-08\n",
+       "2011       5.133504e-07  7.181611e-07  8.703883e-08\n",
+       "2012       4.975626e-07  6.841165e-07  8.352564e-08\n",
+       "2013       4.774448e-07  6.457786e-07  7.872038e-08\n",
+       "2014       4.925054e-07  6.552518e-07  8.095679e-08\n",
+       "2015       4.587376e-07  6.220195e-07  7.741353e-08\n",
+       "2016       4.268668e-07  6.045147e-07  7.395864e-08\n",
+       "2017       3.877747e-07  5.855451e-07  6.448326e-08\n",
+       "2018       3.623149e-07  5.537736e-07  6.123188e-08\n",
+       "2019       3.506125e-07  5.179304e-07  5.404255e-08"
+      ]
+     },
+     "execution_count": 60,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result23_opiv=result23.pivot_table('Accident Probability', ['year'], 'road_name')\n",
+    "result23_opiv"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 61,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[6.42279942e-07, 9.49644528e-07, 1.35953566e-07],\n",
+       "       [6.01487544e-07, 8.94838113e-07, 1.28155340e-07],\n",
+       "       [5.85569077e-07, 8.35490549e-07, 1.19808000e-07],\n",
+       "       [5.57877256e-07, 7.87823315e-07, 1.09678457e-07],\n",
+       "       [5.39942113e-07, 7.71314073e-07, 9.98705502e-08],\n",
+       "       [5.18387097e-07, 7.33837429e-07, 9.94426230e-08],\n",
+       "       [5.13350365e-07, 7.18161137e-07, 8.70388350e-08],\n",
+       "       [4.97562592e-07, 6.84116541e-07, 8.35256410e-08],\n",
+       "       [4.77444772e-07, 6.45778612e-07, 7.87203791e-08],\n",
+       "       [4.92505415e-07, 6.55251799e-07, 8.09567901e-08],\n",
+       "       [4.58737589e-07, 6.22019486e-07, 7.74135338e-08],\n",
+       "       [4.26866805e-07, 6.04514731e-07, 7.39586411e-08],\n",
+       "       [3.87774744e-07, 5.85545145e-07, 6.44832606e-08],\n",
+       "       [3.62314939e-07, 5.53773585e-07, 6.12318841e-08],\n",
+       "       [3.50612517e-07, 5.17930450e-07, 5.40425532e-08]])"
+      ]
+     },
+     "execution_count": 61,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dataset_table=result23_opiv \n",
+    "dataset_table.values "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 441,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[3.89627674e-08, 2.82889341e-07, 8.23868845e-08, 1.53996323e-07,\n",
+       "        5.87343321e-08],\n",
+       "       [3.74238123e-08, 2.45504978e-07, 7.56211633e-08, 1.16837963e-07,\n",
+       "        4.80592752e-08],\n",
+       "       [3.49098473e-08, 2.47299145e-07, 7.75155626e-08, 1.22236681e-07,\n",
+       "        4.76750721e-08],\n",
+       "       [3.49766807e-08, 9.07014908e-08, 3.91656652e-08, 1.10162938e-07,\n",
+       "        3.18085466e-08],\n",
+       "       [2.76508300e-08, 1.03867034e-07, 4.20038816e-08, 1.01638522e-07,\n",
+       "        3.08825045e-08],\n",
+       "       [2.70274897e-08, 1.57855282e-07, 8.55270531e-08, 9.78777857e-08,\n",
+       "        1.17858661e-07],\n",
+       "       [3.46589093e-08, 1.56377611e-07, 8.60335990e-08, 9.18201519e-08,\n",
+       "        1.14374627e-07],\n",
+       "       [3.16907830e-08, 1.51974973e-07, 8.25173364e-08, 7.95863994e-08,\n",
+       "        1.09948130e-07],\n",
+       "       [3.09490620e-08, 1.43997560e-07, 7.47498206e-08, 8.18530442e-08,\n",
+       "        1.03895088e-07],\n",
+       "       [4.18316136e-08, 1.51236539e-07, 7.95447618e-08, 7.99038052e-08,\n",
+       "        1.11770804e-07],\n",
+       "       [3.86734202e-08, 1.43694475e-07, 7.02071947e-08, 7.98037131e-08,\n",
+       "        1.14505931e-07],\n",
+       "       [4.41163389e-08, 1.42754547e-07, 6.04474594e-08, 1.33860542e-07,\n",
+       "        1.24629899e-07],\n",
+       "       [2.61999931e-08, 1.25253633e-07, 5.09385949e-08, 8.42046456e-08,\n",
+       "        1.25450231e-07],\n",
+       "       [3.81646556e-08, 8.94260266e-08, 2.27642733e-08, 1.80015380e-07,\n",
+       "        3.46230526e-08],\n",
+       "       [2.77836072e-08, 7.45232485e-08, 1.71157759e-08, 6.40762636e-08,\n",
+       "        3.74465946e-08]])"
+      ]
+     },
+     "execution_count": 441,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dataset_table.values "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 62,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Degree of Freedom:- 1\n"
+     ]
+    }
+   ],
+   "source": [
+    "import seaborn as sns\n",
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "import scipy.stats as stats\n",
+    "\n",
+    "dataset=sns.load_dataset('tips')\n",
+    "dataset_table=pd.crosstab(dataset['sex'],dataset['smoker'])\n",
+    "#Observed Values\n",
+    "Observed_Values = dataset_table.values \n",
+    "val=stats.chi2_contingency(dataset_table)\n",
+    "\n",
+    "Expected_Values=val[3]\n",
+    "Expected_Values\n",
+    "\n",
+    "no_of_rows=len(dataset_table.iloc[0:2,0])\n",
+    "no_of_columns=len(dataset_table.iloc[0,0:2])\n",
+    "ddof=(no_of_rows-1)*(no_of_columns-1)\n",
+    "print(\"Degree of Freedom:-\",ddof)\n",
+    "alpha = 0.05\n",
+    "from scipy.stats import chi2\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 63,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "chi_square=sum([(o-e)**2./e for o,e in zip(Observed_Values,Expected_Values)])\n",
+    "chi_square_statistic=chi_square[0]+chi_square[1]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 64,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[60 97]\n",
+      " [33 54]] [[59.84016393 97.15983607]\n",
+      " [33.15983607 53.84016393]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(Observed_Values,Expected_Values)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 65,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "hi [0.00042693 0.00026294]\n",
+      "hi [0.00077044 0.00047451]\n",
+      "r [0.0006898738224860787, 0.0012449447141415443]\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "0.001934818536627623"
+      ]
+     },
+     "execution_count": 65,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "r=[]\n",
+    "result = [[0,0],\n",
+    "         [0,0]]\n",
+    "for o,e in zip(Observed_Values,Expected_Values):\n",
+    "    a=(o-e)**2./e\n",
+    "    print(\"hi\",a)\n",
+    "    r.append(a[0]+a[1])\n",
+    "print(\"r\",r)\n",
+    "chi_square_statistic=r[0]+r[1]\n",
+    "chi_square_statistic\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 373,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[0.0008538602229130974, 0.00052588742205906]"
+      ]
+     },
+     "execution_count": 373,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result[0]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 470,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([1.85745130e-09, 1.99654903e-08, 4.97591969e-10, 2.08401152e-10,\n",
+       "       2.67803669e-08])"
+      ]
+     },
+     "execution_count": 470,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "r[0]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 66,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0.001934818536627623"
+      ]
+     },
+     "execution_count": 66,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "chi_square_statistic=r[0]+r[1]\n",
+    "chi_square_statistic"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 67,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th>road_name</th>\n",
+       "      <th>A</th>\n",
+       "      <th>B,C &amp; U</th>\n",
+       "      <th>Motorway</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>year</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>2005</th>\n",
+       "      <td>6.422799e-07</td>\n",
+       "      <td>9.496445e-07</td>\n",
+       "      <td>1.359536e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2006</th>\n",
+       "      <td>6.014875e-07</td>\n",
+       "      <td>8.948381e-07</td>\n",
+       "      <td>1.281553e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2007</th>\n",
+       "      <td>5.855691e-07</td>\n",
+       "      <td>8.354905e-07</td>\n",
+       "      <td>1.198080e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2008</th>\n",
+       "      <td>5.578773e-07</td>\n",
+       "      <td>7.878233e-07</td>\n",
+       "      <td>1.096785e-07</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2009</th>\n",
+       "      <td>5.399421e-07</td>\n",
+       "      <td>7.713141e-07</td>\n",
+       "      <td>9.987055e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2010</th>\n",
+       "      <td>5.183871e-07</td>\n",
+       "      <td>7.338374e-07</td>\n",
+       "      <td>9.944262e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2011</th>\n",
+       "      <td>5.133504e-07</td>\n",
+       "      <td>7.181611e-07</td>\n",
+       "      <td>8.703883e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2012</th>\n",
+       "      <td>4.975626e-07</td>\n",
+       "      <td>6.841165e-07</td>\n",
+       "      <td>8.352564e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2013</th>\n",
+       "      <td>4.774448e-07</td>\n",
+       "      <td>6.457786e-07</td>\n",
+       "      <td>7.872038e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2014</th>\n",
+       "      <td>4.925054e-07</td>\n",
+       "      <td>6.552518e-07</td>\n",
+       "      <td>8.095679e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2015</th>\n",
+       "      <td>4.587376e-07</td>\n",
+       "      <td>6.220195e-07</td>\n",
+       "      <td>7.741353e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2016</th>\n",
+       "      <td>4.268668e-07</td>\n",
+       "      <td>6.045147e-07</td>\n",
+       "      <td>7.395864e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2017</th>\n",
+       "      <td>3.877747e-07</td>\n",
+       "      <td>5.855451e-07</td>\n",
+       "      <td>6.448326e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2018</th>\n",
+       "      <td>3.623149e-07</td>\n",
+       "      <td>5.537736e-07</td>\n",
+       "      <td>6.123188e-08</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2019</th>\n",
+       "      <td>3.506125e-07</td>\n",
+       "      <td>5.179304e-07</td>\n",
+       "      <td>5.404255e-08</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "road_name             A       B,C & U      Motorway\n",
+       "year                                               \n",
+       "2005       6.422799e-07  9.496445e-07  1.359536e-07\n",
+       "2006       6.014875e-07  8.948381e-07  1.281553e-07\n",
+       "2007       5.855691e-07  8.354905e-07  1.198080e-07\n",
+       "2008       5.578773e-07  7.878233e-07  1.096785e-07\n",
+       "2009       5.399421e-07  7.713141e-07  9.987055e-08\n",
+       "2010       5.183871e-07  7.338374e-07  9.944262e-08\n",
+       "2011       5.133504e-07  7.181611e-07  8.703883e-08\n",
+       "2012       4.975626e-07  6.841165e-07  8.352564e-08\n",
+       "2013       4.774448e-07  6.457786e-07  7.872038e-08\n",
+       "2014       4.925054e-07  6.552518e-07  8.095679e-08\n",
+       "2015       4.587376e-07  6.220195e-07  7.741353e-08\n",
+       "2016       4.268668e-07  6.045147e-07  7.395864e-08\n",
+       "2017       3.877747e-07  5.855451e-07  6.448326e-08\n",
+       "2018       3.623149e-07  5.537736e-07  6.123188e-08\n",
+       "2019       3.506125e-07  5.179304e-07  5.404255e-08"
+      ]
+     },
+     "execution_count": 67,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result23_opiv"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015,\n",
+       "       2016, 2017, 2018, 2019])"
+      ]
+     },
+     "execution_count": 38,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "years=result23['year'].unique()\n",
+    "years"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 68,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAAKdCAYAAAATP+ehAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAexAAAHsQEGxWGGAACqMUlEQVR4nOzdd3hUZd7G8e+TXoFUEnpv0hVRpKqANOmCveKuumvBXXV1dd21rGUFy7u7llVRUESQIiiKDQQUQUR6h9AhDUhIIe15/ziTSoAkJpmU+3Nd5wpzzjNnfjOZhNzzlGOstYiIiIiIiFQXHu4uQEREREREpDQUYkREREREpFpRiBERERERkWpFIUZERERERKoVhRgRqdKMMUuNMTGlaG+NMdMqrqLqqaJeF2NMM9e5nyxh+1tc7fsX2Nffte+Wsp5Xqp7S/uyKiJSGQoyIlIgxxtsYc8z1h+U/3F1PVWCMqWeMebLgH+QlvJ8tsp02xuwxxrxhjGlYMdXWDK7Xe5S765DyZYy5v2CIFRE5H4UYESmpq4FIYBdwqzHGs5IedxDQtpIeq7TqAX8D+pfhvpuBG13bZOAX4E7gJ2NMWDnVVxVNB/yB78/Tbp+r3dNF9v8NGFX+ZYmb3Q/c4uYaRKQaUYgRkZKaBOwEHgAaAVdVxoNaazOstacr47Eq2VFr7QzX9m9r7TjgP0BD4Laz3ckY42mMCai0KsuZtTbbWpturc05TzvrapdVWbVVZcYYf2OMVxnuF1wR9YiIuFuVDjHGmFbGmNeNMb8aY7KMMZsq8bFjihnykbtdUll1iFQFxpimwEBgGrAYOALccY72VxtjvjbGHDfGpLuGSv3PGBNepF0fY8wCY0yca0jVfmPMh8aYlgXaFDuu3hgz0BizyhiT5rr/O0XPX6T9WGPMMmNMkus+64wxZzwH18/+UmNMG1dtJ40xp4wxnxtjWhVodwuw13XzbwV+P5xRayksdn1t5XqMJ13n7GCMecEYsw84DVzjOu5njPmbMWab63VONMYsNMZcdI7XYYAxZqUxJsUYE2+MmWaMiSzSJtgY85Tr9Y0zxmS4Xpf/M8aEnuPc44wxv7he3yPGmJeNMUFF2pwxJ+Ys5yo0J8a45s24Dt9c8Hey6/gi1+OGFHOu+q7nMOdcj+lq62GMudcYs951viRjzLfGmIFF2q1wvTf8izlHY2NMtjFmepH9A4wxi10/F6eNMVuNMQ+bIr2aue95Y0xTY8xHxph4IBXnw4Oz1Z03r8gY8ztjzAZjTDrwWoE21xtjfnJ971Nc39+JxZzrYtfP0/YCbdcYY249y2O3MsbMc70eycaYJcaYLmertch9m7m+h02Bfqbw/7XNXO85a4zpUMx9fVzvz58L7Mv9+e3iqiPZVddcU+D3SoH2xhgzyRizusBz/cFoyKJIlVfqT3Uq2QXAMOAnnMBVmaFrNOBbZN/zQHvg5zObi9Rot7u+vm+tzf3jbLIxJspae7RgQ+PMl3kc2I3zB9RBoAkwAuePsHhXuzuAN4A44H84gSAKp4eno+v+xTLGDAMWuO77PJAIjAG+OEv7vwNPAN8BfwfSgMHAW8aYVtbaR4rcpSHOcKdPgYeB1sAfgQXGmE6uXoTvcXqlpgLzgLmu+546W90l0Mb1Na7I/g+ALODfrvNvd/3h+zkwwPX1/3Bev7uAFcaYIdba74qcpxswDngXmAFcDNwM9DTG9LDW5tbeEGdo21xgFpDuavs7oLerbWaRcw/HGRb3H+Bt4ArgPqCrMeYKa212GV6PgrbiDL2bDiwH3ixy/A2c/y9uBF4tcuwWwLuY+xRnmuscK4FHgSCcwP6lMeYma+2MAu3ewnnffVDkHDfj/H81LXeHMeY2nPf5OuA54ARwGfBPnO9L0TAR5Hqea3CG0AVTsvfWfUB9V20HgWTX4+f+XG7E+RkwwA3ATGNMC2vtswXOMRrnZ3AOzrC+ujjB+R1jTIS19oUCz6sx8APO0MrXcb5PlwBLgYQS1BuH83pPxfnd8EyRY28A9+B8DyYXue9oIBx4rMj+Rjg/658CD+H8v/17oJcx5kJr7aECbd8FbsL5fZL7fRwDzDPG3GWtfb0Ez0FE3MFaW2U3wKPAv6cBm9xYSyDOfyD/dvfrok1bZW6AJ84fQ18U2NcWsMBfirTt4dr/IxBYzLk8XF8b4vxhvAcIP1s717+XAjEFj+EEnmSgcZE6P3M9/rQC+7sBOcArxTzOa0A20KLAvhjXOa4t0vYR1/5BBfY1c+17spSvqQWW4fwBFg60wPkj7SSQAVzgavekq+1ywLvIOW5zHXuzyP42rtd2R5HX0bq2cUXaP1D0OQA+RR/Ptf8OV9vxxbwGOcDFRdq/4jp2S4F9t7j29S+wr38x7Yp9bYt+f4t8//cDG4vsNzjDIPcA5jzfl8td5/8c8CywPwI4BhwHglz76gApwFfFnGen631kXLejcILzvKI1AA+6HrNfkfe8BZ4rxXsq9zU8DkQVOdYa533+KxBQYH8gTqjJApoV3F/czyROcD9R8L0BvO963FFn+XmJKWH9McDSsxxbiRNwfIvs/xrn90BQMT+/fyrSdnTR9w4w0rXvgWIe81Ocn8fg0vxsa9OmrfK2Kj2czJ5nzDTkdQX/yRizw+Sv8PNABZQzEucXftFP3ERquiE4oePd3B3W2u04n77ebowxBdpe7/r6F2ttStETFfiZHo/T0/kPa238OdoV50KcP3Dft9YeKHCfbODZYtpfj/OH7NvGmPCCG84fKh7AlUXuc9haO7PIvq9cX9tQPvrifNIch9Pr9BbOH8ojrLWbi7R9yZ7Z8zHW9fVvBXdaa3cAH+L84dqpyH12WGuLDqn6N84fprnnwzrzkDIBjDFexlmFLRz41tWkZzHP5ytr7eoi+3I/VR9btHF5c33/3wI6msJDfvvjDM/7n7XWFnffAnLrfMoW6Dmy1sbhvE71cHqYsNYm4fRUXe7qjQDAGNPb9XjvF3i8cYAfTk9MWJH34CJXm8HF1PP8eeotznu2SO8ozkIIHsDz1trUAs8rBXgRJwCOLLI/9/n4G2ehiVCcns66uBbaMMZ4uM69xVo7v8hjvsxv65Us6HUgDCeI5NbVAid0zrT5PYi5kikwjA7AWjsPp5dotKtucHqA0oBZxfxumI8TVC8tp+cgIuWsSoeYEnoF+AfwHs5QgmnA88aY35fz41yH84nSD+V8XpGqbhLOf/SbXGPfWxlnbsgSoCXOcKZcuX/g/3Kec5a0XXFyx7VvKeZY0T/+wRlKArCe/NCQuy1xHatf5D57ijlP7tCY8lo5bB3OPKOBQD+gpbW2jbX2y2La7ihmXwsgwVp7pJhjG11fi84BOOM1s9Zm4ISoVgX3u+YJrMP53h8nP2yB8wdtUcWdOxbndWt1ZvMK8T+cXoVJBfZNcu17pwT3b+H6urGYY8W9pu/i/D96U4F9t+B8uv9egX2578FFnPke3OY6VvQ9GGetPV6Cmos623sFSvi8XH/I/8cYcxhnLk68q9bcUJr7/Y/EGeZW3Pc+nXMMCS2l2Tjvo4Lf1ztwPpwobojgblv8YiBbcIJJhOt2e5wV8A5x5vflbVebot8XEakiqvqcmHNyTdL7A/B7a23uL7KvjbNyz9+MMW+WpDenBI8ThrPM679+67lEqhNjTAOcDwc8gbMtrHEH+Z/QV0W5H9YMx5kUX5yioeVc8zfMOY6VRqK19usStk09f5PyY4y5D+eT9K+Bu4HDOK+dF87iA1XyAzBr7RFjzKfABGPM/TjD4sYAnxbTO1EevsOZM3IT8IxxJvmPB5Zbawv+AZ/7et3hal+cw0Vul/V7/pveK66e1S9xevFew5mTcxznZ2IozvDDSv3+W2vTjTHvAQ+4/t/fB9wK/GKt/S1zVD1whoyNO0eb4j4YEZEqoFqHGPKHgHxiCi89+TXOZNzGwD5XqGlSgvMdKG4IDM6ERm+cIRoitcmtOAHmAZx5MUXdDowxxoRZaxNwPgUegjMPZdk5zpv7aXE3YEMpa8r94/CM1YpwFgMp7rGuAo5Ya8vS83Mu5xueVJF2A+2MMfWttceKHOtYoE1Bxa7whPMp/K4Cu2/GmVswuOAHQcaY9pxdceeOxOm5+vEc9ytvr+MEl+twPmX3pWQT+iH/9boAZ0GZgs54Ta211hjzPvC4MaYX0Bznk/5pRe6b+34/XorgWp4KPq+iH0YUfV6dgO44Q+qeKNjQFFmhDYjFGbpV3PfeD+d9VZLJ/XD+n6U3cCb234HzvYnCmTNWnJbGGN9iemM6AEnkL5yxA2gHrHP9/hKRaqRKfppWCuE4n4rGA5kFttyx67njlHvhjIU939bnLI9zHbDBWltpSzyLuJvrE9nbgQM4k+LnFN1w5gn44owth/w5Y8+a4peeze3FmI3zyf7jppglewuMWS/OL7g+/S4yF8EDZzWponKXuf2nMca7mMeqa4wpuhJhSeWOxT/rssMVKHc1tMcL7nQN9bsOZ3J50YDYxhhT9FPne3DmeswtsC+3Jyrv++D63hX6o7aIgcaYi4vsy101am7Rxr/BKc79en+N8wf5JJw/eGPIHzZ4Prl1PlrwPeiaI3EPztyhb4rcZxquRQlcWwrO+7ugj3EWW3jSFFly2nV+f1Ox13OZj7Pwwp9c4SL3cQOAP+N8vxe4dud+7wv1OLp6ZQstSe4KuAuADsUsSXw/zgprJXXO76trrtd3OK/xXa72Z/tgMRhnNcE8xpjROMPH5hcI5u+7vr5QZG5f7n00lEykCqvuPTGJOP959MZZ0aeo7QCuT77KNATEGNMEZxnMv5SxRpHq6kqcT5annmNC9BKc4Rh3AC9ba9cYY57FCRMbjDEf4oSgRjgTh28FfrXWHjLG3IvzqflmY8y7OCuOReL0mvyL/D+qCrHOEs/34qz0tNoY8zrOcJcxFPNHk7X2Z2PMX3Gu/L7JGDMTp1cpEudT55E4n9DGlObFcZ07wRizC5hojNmNMzE/xVq7sLTnKoP3cZbIvcf1e+pL8pdYNsDvivm+bQSmGWP64nxw0wPnj8IdFB4uOxtnUvmXxrm2SgDOpGqfc9SzDmc4739wVgm70nWfFeT/sVgeVgFXGmMedj2OtdZ+lHvQ1TvyJvmT4v9aggn9uff91jjLh98IfGeMmUf+EsuRwE1FJ5Fba/cYY5YD1+K8TtOLaXPIGPM7nHk5211Do/bg/NHeDue9OwpnVbJyZ63dZYx5BifwrjLGfED+EsudgMestTGu5ttwemsecgWuzTi/B36HEw6LBo2/4vzMfmyM+a/r/pcAV7val/TvjFU4C4U8hfPezAEWFhkd8TrOkt9ROAs1JJ/lXLtxgmhuj1p7nJ+LOFe9ua/LJ8aYt3ACbxdjzHzgKNAAZwGRoTijMESkKnLXsmil3ShmiWWcycE5OKv5VNTjPux6jCbufg20aavMDefTYwv0Ok+73CVWLy2wbyzOcLIknInhu3GG9IQVue/lOHMsEnF6ZvbhXL+k4JLHSylmmVac1Zx+wvmEOw5nknU4Z1+CdzDOEszxOB96HMKZyzMZ8CvQLoZilnrl7Ev+XoyzBGwKJVxS1tXu6xK0e9LVttlZjvu52mx3vX7HgYVAj7M85jSchRhW4sydSHR9/+oXaeuBc32NHa7X9xDO9V9Cir6+BV8XnPkg61z3OYpzvZbgIue+hd+2xHJrnPCc5Dpui3muEa7XIxOILuX73gPnWisbXM8j2fU+GXSO++Q+p0LPq5h2PXEC4lHXe/Aozip/fwVCz/eeP0/dZ7yGxbS5AednJtW1raLIUuKudk2AmTihPA1naebbivveudq3wentSXK9XkuArqV5Hjgh8RPXezKHYt73OIHiqOvYGe/xgj+/QBdXHcmuuuYDrc5yn2txenlOuN43+3GW2f59ab4H2rRpq9wtdw37KsnV1T3UdfMenPG1uRe7WmatjTPGvIbzqdmLOL+cvXF+oQ6w1o4qhxrWA0nW2rMNNRMRkSrEGBOCM1F+sbV2jLvrkfJhnAu87gNirbXdz9ImBic49a/E0kTEDar6cLJIzhxbnHt7AM6nLffifAr5O5zx2qdct4ver9SMMR2Azjir84iISPUwCaeXSldbr1nG4lyz6h/uLkRE3K9K98SIiIiUlDFmIs4fuU8CW621RRcakGrIGDMCZ6Gex3GGCLaxznVoimsbg3piRGqFKtkTM2bMGNusWTN3lyEiItWMp6cn0dHRDBw4sMfkyZP1KV0NUKdOHU6dOkVERASXX345UVFRaZMnTz5r2zp16jTV916kZpk6depca+3YgvuqZE/M5MmT7ZQpU9xdhoiIiIiIuJkxZqq1ttCnF9X9OjEiIiIiIlLLKMSIiIiIiEi1ohAjIiIiIiLVikKMiIiIiIhUKwoxIiIiIiJSrSjEiIiIiIhItVIlrxNTEunp6cTFxbm7DKmBIiIi8PPzc3cZIiIiInIW1TLEpKenExsbS8OGDfH09HR3OVKDZGdnc+jQISIjIxVkRERERKqoajmcLC4uTgFGKoSnpycNGzZUL5+IiIhIFVYtQwygACMVRu8tERERkaqt2oYYERERERGpnRRiRERERESkWlGIERERERGRakUhxo2efPJJjDE0bNiQnJycM45fdtllGGO45ZZbSnzOEydO8OSTT7Jly5ZyrFREREREpOpQiHEzb29v4uPj+f777wvt37dvHz/++CNBQUGlOt+JEyf4+9//rhAjIiIiIjWWQoyb+fj4MGTIEGbOnFlo/0cffcQFF1xAy5Yt3VSZIzs7m8zMTLfWICIiIiJSkEJMFXDttdcyZ86cQmHhww8/5Lrrrjuj7ffff0+vXr3w9/cnPDyc2267jcTERABiYmJo3rw5AOPHj8cYgzGGmJgYABITE7ntttsIDw/H39+fXr16ndED1L9/f4YPH857771H27Zt8fX1Zd26dQQEBPD222/ntXvppZcwxvDvf/87b98bb7xB3bp1yc7OBuD999+nd+/ehIaGEhISQv/+/Vm9enVe+40bN2KM4auvvipUQ3Z2Ng0bNuShhx4qy8spIiIiIjVcjQgx1lpSM7LKtO1PTGH0f1bS+/lvGf2flRxITCnzuay1Zap/xIgRnD59miVLlgCwZcsWNmzYwMSJEwu1W7t2LQMHDiQ4OJjZs2fz/PPPs3DhQoYMGUJ2djbR0dHMnTsXgGeffZYff/yRH3/8kejoaLKzsxkyZAgLFy7k+eefZ/bs2QQFBTFw4EDWrl1b6HF+/vlnXnzxRf7xj3/w+eef07RpU3r27Fko8Cxbtgw/P78z9vXq1SvvOisxMTHcdNNNzJ49mw8//JAmTZrQt29fduzYAUCnTp3o2bMn77zzTqHH/+KLLzh8+DC33XZbmV5PEREREanZvNxdQHlIy8ymwxNf/ubzHDyeRp8Xlpb5/lv+MZgAn9K/pAEBAYwcOZKPPvqIYcOGMXPmTC699NK8XpVczzzzDFFRUSxatAhvb28AGjduzODBg/n8888ZMWIE3bp1A6B169Zccskleff99NNPWb16NV988QWDBw8GYPDgwbRq1Ypnn32WTz75JK9tYmIia9asoXHjxnn7+vbty/vvvw84oXHFihXccccdzJkzJ6/N8uXLufvuu/NuP/HEE3n/zsnJYeDAgaxevZpp06bx7LPPAjBp0iT+8Ic/cPz4cUJCQgB455136NWrF+3atSv1aykiIiIiNV+N6ImpCa699loWLFhAWloaH330Eddee+0ZbZYvX87IkSPzAgzAoEGDqFevHitWrDjn+ZcvX06dOnXyAgw4iwqMGTPmjPt27ty5UIABJ8TExMRw8OBBNm7cSHJyMg899BCxsbFs376dPXv2cPDgQfr27Zt3n61btzJ69Gjq16+Pp6cn3t7ebN++Pa8nBmDixIl4e3vz4YcfAhAfH8/ChQu5/fbbS/CqiYiIiEhtVCN6Yvy9Pdnyj8Hnb1iM6//3E+v2n8i73a1JPT64o2eZ6yirwYMH4+3tzRNPPMHevXu55pprzmhz/Phx6tevf8b++vXr582LOZvjx48TGRlZovsW9xiXXnop3t7eLFu2jOPHj3PhhRfSuHFjOnbsyPfff4+3tzd+fn706NEDgOTkZAYNGkRERARTpkyhadOm+Pn5cccdd5Cenp533sDAQK699lrefvtt7rnnHmbMmIGvr2+xz19EREREBGpIiDHGlGkYF8BbN13E76evJTY5nchgP16/8cIyn+u38Pb2ZuzYsUyZMoUrrrii2CARGhpKbGzsGfuPHTtGaGjoOc9fmvsaY85oFxAQwEUXXcT333/P8ePH83pc+vbty7Jly/Dx8aFnz574+PgA8OOPP3Lw4EEWLVpEly5d8s5z8uRJGjVqVOjckyZN4s0332T9+vW8++67XHPNNaVeWlpEREREao9aP5wsPMiXOXf14vuHLmfOXb0ID/J1Wy133HEHI0aM4L777iv2eO/evZk/fz5ZWVl5+7766itOnDhB7969AfJCRMHejtz7JiUl5S0eAJCVlcW8efPy7ns+uYFl+fLl9OvXD4B+/fqxbNkyvv/++0JDydLS0grVA/DDDz/krZRW0EUXXUTXrl2599572bBhgyb0i4iIiMg51foQU5VcfPHFzJ8/n2HDhhV7/LHHHuPo0aMMHz6czz77jHfeeYfrr7+eiy++mKFDhwIQFRVFvXr1mDlzJitXruTnn38mIyODYcOGcfHFF3PDDTfwzjvv8NlnnzF8+HCOHDnCo48+WqL6+vbty/bt24mNjc0LPn379uXgwYPs3r27UIi55JJLCAoK4p577mHJkiW8++67TJw4kYYNGxZ77kmTJvH999/Ttm1bLrvsstK8bCIiIiJSyyjEnENmdiY7j+9kx/Ed7D25l6ycrPPfqQJdeOGFLFmyhKSkJMaOHcuf//xnhg0bxuLFi/OWNfbw8ODdd99l7969XHHFFfTo0YPDhw/j6enJ559/zrBhw/jzn//M2LFj83pmLrzwwhI9fu/evfH09KRz587UrVsXgMjISNq1a4eXlxeXXnppXtv69esze/ZsYmNjGTlyJC+//DJvvPEGrVq1Kvbco0ePBlAvjIiIiIiclynrtU0q0uTJk+2UKVPOevzAgQNnrJ5VEXYc30Fmdv4FKAO8A2het/k57iFl9c477/C73/2OAwcOEBUV5e5yKu09JiIiIiLnZoyZaq2dXHBfjZjYX1GKBrz0rHRybA4eRh1Y5SUmJoadO3fy1FNPMWHChCoRYERERESkatNf4+fg4+lT6HaOzWHPyT2kZaW5qaKa58knn2TYsGE0bdqUl156yd3liIiIiEg1oBBzDo2DGxPgHYC3pzc+nj54Gk9OZ51mz4k9HEs9Ro7NcXeJ1d60adPIyMhg6dKlxS4rLSIiIiJSlIaTnYOXh1ehOTBZOVkcSTlC0ukk4lPjSc5IpmFQQ/y9/N1YpYiIiIhI7aKemFLw8vCicXBjGgU3wtMjv1cmNjVWvTIiIiIiIpVEIaYM6vrWpVW9VtTxrQNAXGqc5sqIiIiIiFQShZgyKq5XZu+JveqVERERERGpYAoxv1HBXhmLJS41jr0n96pXRkRERESkgijElAMvDy8aBTXK65VJz0pXr4yIiIiISAVRiCknxhj1yoiIiIiIVAKFmHJW1l6ZLl26YIxh+fLllVht6Z04cQJjDNOmTXN3KSIiIiJSSynEVIDcXpmW9VpSx6dwr0x6VvoZ7Tdv3syGDRsA+PDDDyu7XBERERGRakUhpgJ5e3jTKLhwr0xx15X54IMP8PDwYMCAAcyePZvMzMwyPV5amoatiYiIiEjNVzNCjLWQkVK2LTEG/nclvNzJ+Xp8X9nPZe0ZpRXslQn2CT6jV8Zay8yZM7n88suZPHkyCQkJfPHFF+d9ytOmTcMYw48//sjAgQMJDAzkz3/+MwAbN25k8ODBBAYGUrduXcaNG8f+/fsL3f+ll16iR48e1K1bl8jISIYPH86OHTvOeJy33nqLZs2aERAQwBVXXMGuXbvK9j0SERERESknXu4uoFxkpsKzDX77eU7sh1c6l/3+jx4Gn8BiD3l7eNM4uDFJGUkcSTmS1yuzZ/0eYmJieOKJJxg8eDBhYWF8+OGHjBgxokQPed1113HnnXfy6KOPEhAQwIEDB+jbty8tW7ZkxowZpKen89hjj9GvXz82bNhAcHAwAAcPHuQPf/gDTZs2JSkpiddff51evXqxY8cOQkNDAVi0aBF33nknt9xyCxMnTmTt2rWMHz++7K+PiIiIiEg5qBkhpprI7ZUJ8A7gyKkjJGck88EHH+Dr58vQq4fi7e3NuHHjmD59OqdOnSIoKOi85/z973/Pww8/nHd78uTJZGZmsmTJkrww0q1bNzp06MC0adP44x//CMDUqVPz7pOdnc3AgQOJjIxkzpw53HnnnQA8/fTT9OnTh3fffReAwYMHk56ezlNPPVVur4mIiIiISGnVjBDjHeD0gpTF+yPh4Jr82416wE0Lyl5HSZq5emUSUhNYsnAJfa7oQwIJmFTDxGsn8sYbbzBv3jxuvPHG855r2LBhhW4vX76cyy+/PC/AALRr144uXbqwYsWKvBCzatUqHn/8cX755RcSExPz2uYOKcvOzmbt2rW88MILhc4/btw4hRgRERERcauaEWKMOeswrvOaOBNm3QCnjkJQFEyYUfZzlYIxhtXLVpMYn8hVw67i5ImTnDxxkjpN6xAVHcWHH35YohBTv379QrePHz9O165di22XG1b279/PoEGDuOiii3jjjTdo0KABPj4+DBs2jPR0Z/W0uLg4srKyiIyMPOfjiYiIiIhUtpoRYn6LoAi4/Uu3PHTucsp/uvtPZxz7Ou5rjh47SlT9qHOewxhT6HZoaCixsbFntDt27Bht2rQB4IsvvuDUqVPMnTuXevXqAZCVlVWoRyYiIgIvL68zznXs2LHzPzERERERkQpUM1Ynq4ZSU1NZsGABo0aN4rvvvuO7777jq2++4qNFH/HCmy+QlZXFf9/7b7HXlTmX3r17880333D8+PG8fdu3b2fDhg307t0bcJZiNsbg7e2d1+bjjz8mKysr77anpyfdu3dn3rx5hc4/Z86csjxdEREREZFyo54YN1mwYAGnTp3i3nvvpX///nn7rbWczDjJu6+9y4LZC5hw+wQi/CMI9w8/o9elOA888ADvvvsugwYN4rHHHiM9PZ2//vWvNGnShFtuuQWAyy+/HIBbb72V3/3ud2zevJmXXnopr1cm12OPPcbIkSO59dZb81Ynmz59enm9BCIiIiIiZaKeGDf58MMPadKkSaEAA87wsHq+9bjj1jtY//N69u3ZR2xqLHtO7ilRr0zjxo1ZtmwZISEhXH/99dx555106dKFpUuX5i2v3KlTJ6ZNm8batWsZPnw4M2fOZM6cOdStW7fQua6++mpef/11vvnmG0aNGsWSJUuYNWtWub0GIiIiIiJlYWwxF2h0t8mTJ9spU6ac9fiBAwdo3LhxJVbkHtZaTp4+ydGUo2TbbIwxpeqVkbKrLe8xERERkarOGDPVWju54D71xFRhxhjq+dWjZb2WBPsEY60tVa+MiIiIiEhNpBBTDXh7OteVaRjUEA/jQXpWOntO7iEuNY6q2JMmIiIiIlKRFGKqidxemVb1WqlXRkRERERqNYWYaka9MiIiIiJS2ynEVENn65XZe3KvemVEREREpMZTiKnGivbKpGWlqVdGRERERGo8hZhqrmCvTJBPkHplRERERKTGU4ipIbw9vWkS3ES9MiIiIiJS43m5uwApP7m9MoHegRxOOcypjFPEpsaSlJEEQLbNxtvDGYLm5aFvvYiIiIhUT+qJcaMnn3wSY0ze5ufnR/v27XnhhRfIyckp0TliYmK48847adq0Kb6+voSGhjJi2AhWf7maBkEN8lYwS89KJzM7k9TMVA4kHwAgKyuLxx57jMaNGxMUFMSFF17Ixx9/XOL6mzVrxh/+8Idij3Xt2pVbbrmlxOeqTC+//DLGGHeXISIiIiJlpI/j3czf359vv/0WgLS0NL777jseeeQRcnJyeOSRR85531WrVnHVVVcRERHBI488QocOHUhKSuLzzz/nhhtuYPXq1XTo2IGdJ3YWGlKWmZ0JwIsvvsiLL77ICy+8QIcOHVi+fDk//fQT11xzTcU9YRERERGR30ghxs08PDy45JJL8m4PGDCAjRs3Mnfu3HOGmPT0dK655hoaNWrEDz/8QJ06dfKOjRgxgrvuuot69erh7emNn5cfaZlpecczczJJzkhm3rx5jB07lvvvvx+AQYMGlf8TLIXs7GxycnLw9vZ2ax0iIiIiUrVpOFkVFBwcTGZm5jnbzJ49mwMHDvDPf/6zUIDJ1blzZ5o0aQJAk+AmBHgH4OXhhYdxvuX7k/aTbbPZvXt3+T+BEurfvz/Dhw/nvffeo23btvj6+rJ+/XoA3njjjbx9zZo14+mnny40xO7IkSPcdttttGjRAn9/f1q3bs2jjz7K6dOnCz1GUlISN910E8HBwURERPDQQw+RlZVVqc9TRERERMpXjeiJsdaSlpV2/obFSEhL4JHljxCfFk+4fzjP932eUL/QMp3L38u/THMtcv+ozh1O9sknn/Doo4+e8z7Lli3D09OTK6+88rzn9/Lwonnd5gDk2BxiU2NJSEtgyLghPPPIM/zzhX/yl4f+Uuq6y8PPP/9MTEwM//jHPwgJCaFx48a89tpr3Hvvvfzxj39k+PDh/PDDDzz55JOcOHGCf/3rXwDEx8cTGhrKlClTCAkJYceOHTz55JMcOXKEd999N+/8t912G19++SXPPfcczZs35z//+Q8ffvihW56riIiIiJSPGhFi0rLS6Plhz998nsMphxkyd0iZ7//TdT8R4B1QqvukpKScMXxqwoQJ550Pc+jQISIiIvD39y/V43kYD6ICo/A1vmz8ZSONmzXmsUceI7x+OHfcdEelT3hPTExkzZo1NG7cGHCGlP3jH/9g4sSJvPrqq4AzzC0jI4OXXnqJv/zlL4SFhdGpU6e8QANw2WWXERgYyM0338y///1vAgIC2LJlC3PnzuV///sft912GwCDBw+mdevWlfocRURERKR8aTiZm/n7+7NmzRrWrFnDihUreOWVV/jiiy+YNGnSee/7WwLHi0+/yJZ1W1jy4xJuuPMG7p50Nx/M/4CsHKdXaNKkSfTv37/M5y+pzp075wUYgG3bthEfH8/48eMLtZswYQIZGRmsXr0acHrfXn75ZTp06IC/vz/e3t5cf/31ZGVlsWfPHgDWrFmDtZbRo0fnncfT05NRo0ZV+PMSERERkYpTI3pi/L38+em6n8p030lLJrEhfkPe7c7hnXlr0FtlrqO0PDw8uOiii/JuX3bZZWRlZfHggw8yefJkOnbsWOz9GjZsyNdff016ejp+fn6leszMzExeffVVnn76adrWb8tLU17i5PGT3HnDnfjO92VIvyGsXLmS66+//pzn8fLyIjs7u9hj2dnZJZqgX79+/UK3jx8/Xuz+3NuJiYmAs0zyn/70Jx566CEGDBhASEgIa9as4Z577iE9PR1w5s14e3sTEhJyzscUERERkeqlRoQYY0yph3HlevXyV3lg6QPEpcYRERDB1P5Ty3yu8tK+fXsANm/efNYQ079/f95++22++eYbhg0bVqrzx8fHk5KSQnBwMMYYIgIimPHeDEaOGsmdE+/kxjtvZN/+fdxxxx3nPE9ERARHjx4t9tiRI0eIjIw8by1Fe5NCQ535SLGxsYX2Hzt2rNDx2bNnc/XVV/PPf/4zr82WLVsK3Sc6OprMzEyOHz9eKMjknktEREREqqdaP5wszD+M94e8z+Kxi3l/yPuE+Ye5uyQ2bdoEQHh4+FnbjBs3jsaNG/Poo4+SnJx8xvGNGzdy4MCBYu8bGRlJWFgYs2fPztsX7BfMp598SvMWzXntude4/Y+3k+KXQkZ2xllr6NevH0uXLuXkyZOF9i9fvpyEhAT69u17zudZnLZt2xIREVGoNoCPP/4YHx8fLr74YsBZBMHHx6dQmw8++KDQ7R49egAwb968vH3Z2dnMnz+/1HWJiIiISNVRI3piqrOcnBxWrVoFQEZGBmvXruXpp5+mQ4cOhUJA//79iYmJISYmBgA/Pz8+/vhjrrrqKi666CIeeOCBvItdfvnll7z11lv89NNPheab5PL09OSf//wnd955JyNGjOD222/Hx8eH77//nq2bttKgYQM+fu9jrp54NacbnaZBUAPq+tY94zz33Xcfb7/9Nn369OGhhx6iQYMGbNq0ib///e/06dOHgQMHlvr18PT05PHHH+fee+8lMjKSoUOHsmrVKp5//nnuv/9+wsKckDlw4EBeeeUV/u///o82bdowY8YMdu3aVehcHTp0YPTo0dx///2kp6fTrFkz/vOf/5CRcfZgJiIiIiLVgLW2ym0PPPCAPZf9+/ef83h18be//c0CeZuXl5dt3ry5vfvuu+2xY8cKtb3oootsz549zzjHnj177KRJk2zjxo2tt7e3DQkJsYMHD7Zz58497+PPnTvX9uzZ0/r5+dmgoCA7YMAAu2jRIpuQkGBbtGxhW7drbVfuWGk3xW2yB5MO2qzsrDPOsWPHDjt+/HgbFhZmvby8bJMmTez9999vk5KSzvv4/fr1s8OGDSv22H//+1/bunVr6+3tbZs0aWKfeuopm52dnXc8OTnZ3nLLLTYkJMSGhITYSZMm2YULF1rArlmzJq/d8ePH7fXXX28DAwNtWFiYnTx5sn3xxRet89Y/u5ryHhMRERGp7oAptkheMM7+qmXy5Ml2ypQpZz1+4MCBYnsYaqq0tDTq1avH9OnTueaaayrtca21xKXFEZcaB4CPpw+NghuVaQGD6qa2vcdEREREqipjzFRr7eSC+2r9nJjqYM2aNbRo0YJx48ZV6uMaY4gMiKRZ3WZ4eXiRkZ3B3pN7iU+LpyqGXxERERGpHRRiqoG+ffuydetWPDzc8+0K9A6kZb2W1PGpg7WWYynH2J+8n8ycTLfUIyIiIiK1m0KMlIiXhxeNghsRHRSNMYZTGafYfWI3yRlnrowmIiIiIlKRFGKkxIwxhPqF0qJuC3y9fMnOyWZ/0n6OpBwhx+a4uzwRERERqSUUYqTU/Lz8aFG3BaH+zoUnE9MS2XtyL6ezTru5MhERERGpDaptiNHEcvfyMB5EB0bTpE4TPD08Sc9KZ8/JPRxPP17tvzfVvX4RERGRmq5ahhhfX1/S0tLcXYYAwT7BtKzbkkDvQHJsDodPHebgqYNk52S7u7QyS0tLw9fX191liIiIiMhZVMsQExYWRnx8PJmZWh2rKvD29KZpnabUD6yPwZB0OondJ3aTkpni7tJKLTMzk/j4eMLCwtxdioiIiIichZe7CygLT09PIiIiiI2NJSdHE8qrEpNh2HViF6ezTrPerKdRUCMaBjXEGOPu0krEw8ODiIgIPD093V2KiIiIiJxFtQwxAP7+/jRs2NDdZUgxmmQ24dmfnuXT3Z8C0D2yO8/1eY7ooGg3VyYiIiIiNUG1HE4mVVugdyDP9H6G5/o8R6B3IL/E/sLYhWNZErPE3aWJiIiISA2gECMVZliLYcweMZtO4Z1IzkjmwWUP8uQPT5Kameru0kRERESkGlOIkQrVOLgx7w15jzs63YHB8MnOT5j42US2JW5zd2kiIiIiUk0pxEiF8/bw5r7u9/HWoLeI9I9k78m9XPfZdUzfMl3XZBERERGRUlOIkUrTM7onc66eQ//G/cnMyeSFNS9wzzf3kJCW4O7SRERERKQaUYiRShXiF8KrA17lsZ6P4ePhw/JDyxn76Vh+OPSDu0sTERERkWpCIUYqnTGGie0mMnP4TFrVa0VCegK/+/p3vPTzS2Rm6wKmIiIiInJuCjHiNm1C2jBz2EwmtJ0AwLTN07hh8Q3sS9rn5spEREREpCpTiBG38vPy46+X/JVXBrxCXd+6bEnYwviF45m/a74m/YuIiIhIsRRipEq4vMnlfDLiEy6Oupi0rDQeX/k4D3//MMkZye4uTURERESqGIUYqTLqB9bnzYFvcl/3+/A0niyOWcz4heNZH7fe3aWJiIiISBWiECNViqeHJ3d0uoP3hrxHw6CGHDp1iJsX38ybG94kOyfb3eWJiIiISBWgECNVUpeILsweMZuhzYeSbbN5bd1rTPpqEkdTjrq7NBERERFxM4UYqbKCfYJ5rs9zPNP7GQK8AlhzdA1XfXIV/Wf156bFN+kimSIiIiK1lEKMVGnGGK5ueTWzR8wmwCuAbJtNQnoC62LXcfc3d7u7PBERERFxA4UYqRaa1GlCiF9IoX1bErbwyi+vkJqZ6qaqRERERMQdFGKk2ogMiDxj3/82/o/h84azcPdCcmyOG6oSERERkcqmECPVxtT+U+kW2Y1GQY3oGtGVZy57hsbBjYlLi+PRFY9y4+Ib2RS/yd1lioiIiEgF83J3ASIlFeYfxvtD3i+076rmVzF9y3Te3PAmG+I2cO1n1zKy5Ujuv/B+wv3D3VSpiIiIiFQk9cRItebj6cPtnW5n4eiFXN3yagAW7F7A8HnDeXfTu2RkZ7i5QhEREREpbwoxUiNEBkTyTO9n+GDoB3QK70RKZgpT1k5h9ILRLDuwDGutu0sUERERkXKiECM1SueIzswYOoOnL3uacP9w9ifv5w/f/oG7vr6LPSf3uLs8ERERESkHCjFS43gYD0a2Gsmi0Yu4reNteHt4s/LwSsYuGMsLa14gKSPJ3SWKiIiIyG+gECM1VqB3IA9c+ADzR86nf+P+ZNkspm+Zzoh5I5izYw7ZOdnuLlFEREREykAhRmq8JnWa8Nrlr/H6la/Tom4LEtMT+fuPf+faz67ll2O/uLs8ERERESklhRipNS5reBlzrp7DQz0eItg7mK2JW7n5i5t5aNlDHE056u7yRERERKSEFGKkVvH28ObGDjeyaMwixrUZh8GwOGYxI+aN4L/r/0t6Vrq7SxQRERGR81CIkVop1C+Uv136N2YNn0X3yO6kZ6fzn1//w8j5I1kSs0RLMouIiIhUYQoxUqu1D2vPtKum8WLfF4kKjOJwymEeXPYgty+5ne2J291dnoiIiIgUQyFGaj1jDFc1v4pPR33KXV3uwtfTlzVH13DNomt46senOJ5+3N0lioiIiEgBCjEiLv5e/tzd9W4+HfUpg5oOIsfm8PGOjxk2bxgfbP2AzJxMd5coIiIiIlRSiDHGXG2M+ckYk2yMOWKM+dgY06IyHluktBoENeCl/i/xzuB3aBvSluSMZJ5b/RzjPx3Pj4d/dHd5IiIiIrVehYcYY0x/YB6wBRgN3A90AZYYY/wr+vFFyqpHVA9mDZ/F45c8Tj3feuw+uZs7v7qTe7+9lwPJB9xdnoiIiEitVRk9MROBfcBt1tqvrbWzgN8DLYGLKuHxRcrM08OTa9pew6LRi7i+/fV4Gk++O/AdI+eP5JVfXiE1M9XdJYqIiIjUOpURYryBZFt4zdqTrq+mEh5f5Der61uXRy5+hDkj5nBJ9CVk5mTyv43/Y/i84SzcvZAcm+PuEkVERERqjcoIMdOADsaYu40xdV1zYZ4F1gErK+HxRcpNq5BWvDnwTV4Z8AqNghoRlxbHoyse5cbFN7IpfpO7yxMRERGpFSo8xFhrl+PMhXkOOAHsBuoDQ6y12RX9+CLlzRjD5U0uZ/6o+dzX/T78vfzZELeBaz+7lr+u+CvxafHuLlFERESkRquMif29gOnAW8DlwHjX435WdGK/MWawMWZKTExMRZcl8pv5evpyR6c7WDR6ESNajABgwe4FDJ83nHc3vUtGdoabKxQRERGpmSpjONmrwLfW2gettd9Za+cAw4DuwI0FG1prv7TWTm7WrFkllCVSPiIDInm2z7PMGDqDjmEdSclMYcraKYxeMJplB5ZReDqYiIiIiPxWlRFiOgC/FtxhrT0IxOOsUCZSI3SJ6MIHwz7gqcueIswvjP3J+/nDt3/grq/vYs/JPe4uT0RERKTGqIwQsw+n1yWPMaYpEA7EVMLji1QaD+PBqFajWDR6Ebd2vBUvDy9WHl7J2AVjeWHNCyRlJLm7RBEREZFqrzJCzOvAKGPMK8aYK40xE4BFQCzwcSU8vkilC/IJYvKFk5k/cj79GvUjy2Yxfct0RswbwZwdc8jO0ZoWIiIiImXlVQmP8SpwGrgLuB1IBn4ExltrEyrh8UXcpmmdpvzfFf/HikMreGHNC+w9uZe///h3Ptz6IQBpWWlEBEQwtf9UwvzD3FytiIiISPVQ4SHGdZHL112bSK3Uu2Fvekb35KNtH/HfX//LzhM7844dPHWQ6z67jqcue4r2Ye0J9gl2Y6UiIiIiVV9l9MSICODt4c2NHW5kaPOhDJs7jJSslLxjh1MOc/uS2wGn96ZDWAcuCLuADmEdaB/aniCfIHeVLSIiIlLlKMSIVLIw/zDahLZhXey6vH11feoS4B3AkZQj7Evax76kfSzeuxgAgzkz2IS1J9A70F1PQURERMStFGJE3GBq/6k8sPQB4lLjCs2JSUxPZEvCFrYkbGFz/Ga2JG7haMpRYpJiiEmK4fO9nwNOsGlWt1leqLkg7ALahbYjwDvAzc9MREREpOKZqnghvsmTJ9spU6a4uwyRKiEhLcEJNQmb877Gpsae0c5gaFG3hRNqwp1w0zakrYKNiIiIVGvGmKnW2skF96knRqSKC/MPo0+jPvRp1CdvX3xafH6wiXd6bmLTYtl9cje7T+5m4Z6FgHPdmtxgk9tj0za0Lf5e/u56OiIiIiK/mUKMSDUU7h9O30Z96duob96+uNS4/KFoCZvZnLCZ+LR4dp3Yxa4Tu/h096cAeBpPWtRrQYfQwj02fl5+7no6IiIiIqWiECNSQ0QERNAvoB/9GvfL2xebGlt4KFr8ZhLSE9h5fCc7j+9kwe4FgBNsWtZrWWiOTZvQNvh6+rrr6YiIiIiclUKMSA0WGRBJZEAk/Rv3B8Bay7HUY4V6bLYkbCExPZEdx3ew4/gO5u2aB4CX8aJVSKtCq6K1CWmDj6ePG5+RiIiIiEKMSK1ijCEqMIqowCgub3I5kB9sNidszlsRbUv8Fo6fPs62xG1sS9zG3J1zAfDy8KJ1vdZ5c2waBjfkv7/+l4S0hEKrrImIiIhUJK1OJiJnsNZyNOVooRXRtiRs4cTpE+e8X9eIrkwfOr1yihQREZFaQauTiUiJGGOIDoomOiiaK5teCTjB5nDK4fxr2CRsYdWRVVjyPwjZnLCZhbsXclXzq/D28HZX+SIiIlLDebi7ABGpHowxNAxqyMCmA7n/wvt5c9CbdInoUqhNZk4mj654lCGfDOG9ze9xKuOUm6oVERGRmkwhRkTK7OUBL9MtshuNghrRKbwTd3S8gzC/MI6lHuNfP/+LQXMGMWXtlGIvzikiIiJSVpoTIyLl6nT2aRbtXsS0zdOISYoBnAUBhjUfxi0X3EKrkFbuLVBERESqleLmxKgnRkTKla+nL2PbjGXBqAW8OuBVukd2JysniwW7FzD609Hc/fXdrDm6hqr4AYqIiIhUD5rYLyIVwsN4MKDJAAY0GcD6uPW8t/k9vt73NcsPLWf5oeVcEHYBt1xwC1c2vRIvD/0qEhERkZJTT4yIVLguEV2Y0n8Ki0YvYkLbCfh6+rI5YTN//v7PDJ83nA+2fkBqZqq7yxQREZFqQiFGRCpNkzpN+Oslf2XJuCXc1eUu6vnW49CpQzy3+jkGfTKI19a9RnxavLvLFBERkSpOIUZEKl2oXyh3d72bJeOW8FjPx2gc3JiTp0/y5oY3GTxnME/+8CR7T+51d5kiIiJSRSnEiIjb+Hv5M7HdRBaOWsiU/lPoHN6ZjJwMPtn5CSPnj+Teb+9lXew6d5cpIiIiVYxm04qI23l6eDKw6UCubHIlv8T+wrRN01h6cCnfHfiO7w58R5eILtx6wa30b9wfTw9Pd5crIiIibqYQIyJVhjGGC+tfyIX1L2TPiT28t+U9Fu5eyPq49dy/9H6a1mnKTR1u4uqWV+Pn5efuckVERMRNNJxMRKqkFvVa8Pdef2fJuCVM6jSJYJ9g9iXt46lVTzH4k8H8d/1/OZF+wt1lioiIiBsoxIhIlRbuH8693e/l63Ff83CPh2kQ2IDE9ET+8+t/GDhnIM+seoYDyQfcXaaIiIhUIoUYEakWArwDuKHDDXw25jOe7/M87UPbk56dzkfbP2L4vOE8uPRBNsVvcneZIiIiUgkUYkSkWvHy8GJoi6HMGj6Ltwa9xWUNLyPH5rBk3xKu/exabvniFpYdWEaOzXF3qSIiIlJBNLFfRKolYwyXRF/CJdGXsOP4Dt7b/B6f7/mctcfWsvbYWlrUbcEtF9zCsBbD8PH0cXe5IiIiUo7UEyMi1V6bkDY80/sZFo9dzC0X3EKgdyB7Tu7hiR+e4KpPruJ/G/9HUkaSu8sUERGRcqIQIyI1RlRgFA9e9CBfjfuKyRdOJjIgkri0OF755RUGzh7IC2te4MipI+4uU0RERH4jhRgRqXGCfYK5teOtfDHmC57p/Qyt6rUiNSuV6VumM2TuEB7+/mG2JW5zd5kiIiJSRgoxIlJjeXt6c3XLq5l79Vz+e+V/6RnVk2ybzed7P2f8wvFMWjKJHw79gLXW3aWKiIhIKWhiv4jUeMYYejfsTe+GvdmSsIVpm6axZN8SVh1Zxaojq2hZtyVZOVlk2SwiAyKZ2n8qYf5h7i5bREREzkI9MSJSq3QI68AL/V7gszGfcX376/H38mf3yd3sS97HoVOHWBe7jgmLJvDNvm84dOqQemlERESqIFMV/4OePHmynTJlirvLEJFa4OTpkwydO/Ssq5fV8alDu9B2hbbmdZvj5aGObBERkcpgjJlqrZ1ccJ/+FxaRWq2ub11a1mvJuth1eftC/UKJDIhk14ldJGUksfroalYfXZ133NfTl9b1WtMurB3tQ9vTLrQdrUNa4+/l746nICIiUusoxIhIrTe1/1QeWPoAcalxRARE5M2JyczOZNeJXWxL3MbWxK1sS9zG9sTtpGalsilhE5sSNuWdw8N40LxO80LBpl1oO+r61nXjMxMREamZNJxMRKQUcmwOB5IPOKEmYVtewElMTyy2fXRgNO1C84NN+7D21A+ojzGmkisXERGpnjScTETkN/IwHjSt05SmdZpyVbOrALDWEpcW5wSahK15webQqUMcSTnCkZQjfHfgu7xz1POtVyjYtAtrR9Pgpnh6eLrraYmIiFQrCjEiIr+RMYbIgEgiAyLp26hv3v6kjCS2J25nW2J+j82eE3s4cfpE3vLOufy9/Gkd0jq/xya0Pa1CWuHr6euOpyQiIlKlKcSIiFSQOj516BHVgx5RPfL2nc4+za7ju/Lm2GxN3MrO4ztJy0pjQ9wGNsRtyGvrZbxoXq95oTk2bUPbUsenjjuejoiISJWhECMiUol8PX25IPwCLgi/IG9fdk42+5L3FZpjsy1xGydOn2Dn8Z3sPL6TT3d/mte+YVDDQnNs2oW2I8I/QvNsRESk1lCIERFxM08PT1rUbUGLui0Y2mIo4MyzOZZ6rNAcm+2J2zmccphDpw5x6NQhvt7/dd45Qv1CaR/anqZ1mvLD4R/IyM6gfmD9vJXWREREahKFGBGRKsgYQ1RgFFGBUQxoMiBv/8nTJwvNsdmWsI29SXtJTE9k5eGVrDy8Mq/t4ZTD/P7r3zN7xGx3PAUREZEKoxAjIlKN1PWtS8/onvSM7pm3Ly0rjZ3Hd7ItcRtT1k4hJTMl79i2xG3cvPhmJrSdwMCmA/H29HZH2SIiIuXKw90FiIjIb+Pv5U/niM5c0/Ya2oS0OeP4L7G/8PDyh7lyzpW8+surHDl1xA1VioiIlB+FGBGRGmRq/6l0i+xGo6BGdIvsxuzhs7m7y91E+EeQmJ7IWxvf4qq5V3Hvt/fyw6EfyLE57i5ZRESk1Iy11t01nGHy5Ml2ypQp7i5DRKTGyMzJ5Lv93zFr+yxWH12dt79pnaZc0+YaRrYaSV3fum6sUEREpHjGmKnW2skF96knRkSkFvD28GZQs0G8Pfht5o+cz3XtriPIO4h9Sft48ecXuXL2lTyx8gk2J2x2d6kiIiLnpRAjIlLLtKzXkr/0/AvfjP+Gxy95nDYhbUjPTmfernlMXDSR6z67jk93f8rp7NPuLlVERKRYCjEiIrVUgHcA17S9hjkj5vD+kPcZ2nwoXh5ebIzfyGMrHuPK2Vcy5ecpHEg+4O5SRUREClGIERGp5YwxdIvsxvN9n+ercV9xX/f7iA6M5sTpE7y7+V2GzR3GXV/fxbIDy8jOyXZ3uSIiIrpOjIiI5Av3D+eOTndw6wW38v3B75m1fRYrD69kxaEVrDi0goZBDRnfZjyjW48m1C/U3eWKiEgtpRAjIiJn8PTwZECTAQxoMoD9Sfv5ePvHzNs1j0OnDvHyLy/z71//zeBmg5nQdgJdIrpgjHF3ySIiUotoOJmIiJxTkzpN+FOPP/HN+G/4R69/0CGsA5k5mSzas4gbF9/IhEUT+GTHJ6Rmprq7VBERqSUUYkREpET8vPwY3Xo0s4bPYuawmYxsORJfT1+2Jm7lyR+f5MrZV/L86ufZe3Kvu0sVEZEaTiFGRERKrWN4R57u/TRfj/uaP130JxoHNyY5M5kZW2dw9fyrmbRkEt/s+4asnCx3lyoiIjWQ5sSIiEiZ1fOrx80X3MyNHW7kh8M/MGvbLJYdXMaqI6tYdWQVkQGRjG8znrGtxxIREOHuckVEpIZQiBERkd/Mw3jQu2FvejfszaFTh5izYw5zd84lNjWWf//6b95Y/wZXNL2CiW0ncmH9C7UQgIiI/CYaTiYiIuWqYVBD7ut+H1+N+4rn+jxH14iuZNksvoz5klu/vJUxn47ho20fcSrjlLtLFRGRakohRkREKoSPpw/DWgxj+tDpzB4xm3FtxuHv5c+uE7t45qdnuGL2FTy96ml2Ht/p7lJFRKSaUYgREZEK1y60HX+79G98M/4bHrn4EZrVaUZqViqzts9izKdjuOWLW/hi7xdkZme6u1QREakGNCdGREQqTbBPMNe3v57r2l3H6qOrmbV9Ft/u/5a1x9ay9thawv3DGdt6LOPajCMqMMrd5YqISBWlECMiIpXOGEPP6J70jO7JsZRjfLLzE+bsmENcWhxvbHiDtza8RbBPMN6e3jQKasTLA14mzD/M3WWLiEgVoeFkIiLiVvUD63N317v5ctyX/Kvfv+gR1YMccjiZcZL4tHh+jfuVW7+4leycbHeXKiIiVYRCjIiIVAneHt4MbjaYdwa/Q/2A+oWO7U3ay6gFo5i7cy4Z2RluqlBERKoKhRgREalyGgQ1KHTb03gSkxTD3374G0M+GcK0TdO0RLOISC2mECMiIlXO1P5T6RbZjUZBjegW2Y2Foxfyp4v+RGRAJLFpsby09iUGfTKIV395lfi0eHeXKyIilcxYa91dwxkmT55sp0yZ4u4yRESkisnMzmTRnkW8s+kdYpJiAPD19GVUq1HcfMHNNA5u7N4CRUSk3BljplprJxfcp54YERGpNrw9vRndejQLRi3g5QEv0zm8M6ezTzNr+yyGzxvOQ8seYlviNneXKSIiFUwhRkREqh0P48EVTa5gxtAZvDP4HS5reBk5NofFMYsZv3A8v//696w5uoaqONpARER+O10nRkREqi1jDD2ietAjqgfbErfxzqZ3+DLmS1YeWsnKQyvpHN6Z2zrexoAmA/Aw+txORKSm0G90ERGpEdqFtuOFvi+waPQiJrSdgK+nLxviN3D/0vsZOX8k83bOIzM7091liohIOVCIERGRGqVxcGP+eslf+XLsl0zqNIlgn2BikmJ44ocnuGruVby3+T1SMlPcXaaIiPwGCjEiIlIjhfmHcW/3e1kydgkPXvggkf6RxKbG8q+f/8XAOQN59ZdXSUhLcHeZIiJSBgoxIiJSowX5BHFLx1tYPHYxf+/1d5rVaUZyRjJvbXyLwZ8M5plVz3Aw+aC7yxQRkVJQiBERkVrBx9OHMa3HMH/kfKb2n0rHsI6czj7NR9s/Yvi84Tz8/cNsT9zu7jJFRKQEFGJERKRW8fTw5MqmV/LhsA95e9Db9GrQi2ybzed7P2fcwnHc9fVd/Hz0Zy3PLCJShWmJZRERqZWMMVwcfTEXR1/M1oStvLPpHZbsW8KKQytYcWgFnSM6c3vH2+nfuL+WZxYRqWL0W1lERGq99mHtebHfiywatYhr2lyDj4cPG+I2cN939zF6wWjm75qv5ZlFRKoQhRgRERGXxnUa8/ilj/PluC+5o9MdBHsHs+fkHh5f+ThD5g7h/c3vk5qZ6u4y3SI+LZ6bFt/EkE+GcNPim7Sym4i4lamKY34nT55sp0yZ4u4yRESkljuVcYrZO2Yzfct04tLiAKjjU4dr213Lde2vI9Qv1M0VVozUzFSOphzlSMoRjqQc4WjKUWbvmE1iemJem26R3Xh/yPturFJEagtjzFRr7eSC+zQnRkRE5CyCfIK4teOtXN/+ehbuXsi7m99lX9I+3tjwBu9tfo8xrcdw8wU30yCogbtLLbHMnExiU2PzQsrRlKN5W+7tpIyk855ne+J2NsRtoFN4J4wxlVC5iEg+9cSIiIiUUHZONt8e+Ja3N77N5oTNAHgaT65qfhW3dbyNNiFt3FqftZbE9ESOph7l6KmjHE09ypFTR5yvKUc4euoocWlxWM7/f3+wTzBRgVFEB0YTFRDF8kPLOZJy5Ix2bUPack3baxjWYhiB3oEV8bREpJYrridGIUZERKSUrLX8dPQn3tn4Dj8e+TFvf5+Gfbi90+10j+xeIb0TxQ3zOpJyhGMpx5yvqcc4nX36vOfx9vDODyiBUYX+nfu1aCBJSEvggaUPEJcah7+XPy3qtuC7A9+RkZMBQIBXAENbDOWaNtfQPqx9uT93Eam9FGJERETK2eaEzby76V2+2vcVOTYHgK4RXbmt4230a9yvxMszl9cwL4Mh3D/8rAGlfmB9Qv1Cy2XZ6JOnT/Lp7k/5ePvHxCTF5O3vFN6J8W3GM7jZYAK8A37z44hI7aYQIyIiUkH2J+1n2uZpznLMOc5yzE2Dm2KxZNtsQvxC+GO3P5KWmXbmMK+Uo8Sllm2YV3RQNPUD6ucFlfoB9fH29K7op1uItZafj/3M7O2z+Wr/V2TlZDm1egczouUIxrcZT6uQVpVak4jUHAoxIiIiFSwuNY4ZW2fw8faPOZV5qlT3LW6YV+7tsw3zqmoS0hJYsHsBs7fP5uCpg3n7u0d2Z3zb8QxsOhBfT183Vigi1Y1CTGmdioWProeUWAiKggkzICjC3VWJiEg1kJyRzFWfXFVoCJiH8aBjWEfqB9YvFEzKe5hXVZBjc1h1eBWzd8zmuwPfkW2zAajnW4+RLUcyrs04mtVt5t4iRaRa0BLLpTVjDBzd6Pz7eAzMugFu/9KtJYmISPUQ7BNMy3otWRe7Lm9fl4gutebaKh7Gg14Ne9GrYS9iU2OZu3Mun+z8hKMpR3lvy3u8t+U9ekb1ZHzb8Vze+PJKHwInItWbQsy5JMYUvh23DU4ng2+wW8oREZHqZWr/qXkrekUERDC1/1R3l+QWkQGR/L7L75nUaRIrDq3g4x0fs/zgcn46+hM/Hf2JML8wRrcezdjWY2kU3Mjd5YpINaDhZOfy9iA48FPhff4hcOk9cPHvwK+Oe+oSERGp5g6fOswnOz9h7s65xKfFA87Kapc1vIzxbcbTt1FfvDz0WauIaE5M6Z2Kc4aQJR8FD0+w2c6wMgC/enDpH6DnneBX151VioiIVFuZOZksO7CMj7d/XOiaO5EBkYxrPY7RrUcTFRjlxgpFxN0UYn6rnGzY9AksewESdjr7/OrCJffAJb9XmBEREfkN9iftZ87OOczfOZ/jp48Dztyafo36cU3ba+jVoFeNWfhAREpOIaa85GTD5nmw7HmI3+Hs860Ll9zlbP713FqeiIhIdZaRncHX+75m9o7Z/Hzs57z9DYMaMq7NOEa1GkW4f7gbKxSRyqQQU95yw8z3LzqT/sEVZn7vCjMh7q1PRESkmttzYg+zd8xmwe4FJGckA+BlvLi8yeVc0/YaLo66GGOMm6sUkYqkEFNRcnJgy3xnmFncVmefbx3o+Tu45G4ICHVreSIiItVdelY6X8Z8ycc7PmZD3Ia8/c3qNGNcm3GMbDmSen713FegiFQYhZiKlpMDWxc4YSZ2i7PPJ9gJM5feozAjIiJSDrYnbmf2jtks2rOIlMwUAHw8fBjUbBDj24ynW2Q39c6I1CAKMZUlJwe2LYSlz0PsZmefTxBcfKezollgmHvrExERqQFSM1P5fO/nfLz9Y7Ymbs3b36peK8a3Gc/wlsOp46PLIYhUdwoxlS0nB7Ytcnpmjm109vkEwcWT4NI/KsyIiIiUk83xm/l4x8cs3ruYtKw0APw8/RjSfAjXtL2GC8IuUO+MSDWlEOMuOTmw/XNY9hwcdYUZ70C4+A7odS8EaoUVERGR8pCckcyiPYv4ePvH7DqxK29/+9D2jG87nmHNhxHgHeDGCkWktBRi3M1a2L4Ylv4TjromJXoHQA9XmAmKcG99IiIiNYS1ll/jfmX29tl8GfMlGTkZAAR4BRDgFYAxhujAaF69/FXC/DUyQqQqK3WIMcY8B7xtrd1Z0cUVVGNDTC5rYccXsPQ5OPKrs887AC66DS67D4Ii3VqeiIhITXIi/QQLdi9gzo45xCTFFDrm5+nH0BZD6RTeiU7hnWhZryVeHl7uKVREilWWEHMIiAJ+AP4HzLbWplZoldSCEJPLWti5xOmZObzO2eflDz1ud3pmguu7tz4REZEaxFrL5bMvJz4t/qxt/L386RDWIS/UdArvRFRglObTiLhRcSHmfB81NAaGALcCbwKvGmNmAe9aa3+smDJrEWOgzWBoPQh2fuXMmTm0Fn78P1jzv/yemeAod1cqIiJS7RljaBzcuFCIaV63OVc2uZIN8RvYHL+ZU5mnWHtsLWuPrc1rE+4fnh9qIjpxQdgFBPsEu+MpiIhLiefEGGPCgBuBW4BOwDbgHWC6tTa2PIuqNT0xRVkLu75xemYO/ezs8/KDC2+By+6HOtHurE5ERKTaS0hL4IGlDxCXGkdEQART+0/NmxOTY3OIORnDhvgNbIrfxIa4Dew8vpMsm1XoHAZD87rN6Rjekc7hnekU0YnWIa3x9vB2x1MSqfHKZWK/MaYz8CrQ17UrE/gI+JO1Nq48Cq21ISaXtbD7G+c6MwdXO/s8fZ0w0/t+qNPAndWJiIjUGulZ6WxL3MaGOFewid/AoVOHzmjn6+lL+9D2TrCJ6Eyn8E40DGqoYWgi5aDMIcYYUxe4Drgd6AasB94C5gFDgb8Ce621V5RHobU+xOSyFvZ854SZA6ucfZ6+0P0m6P0A1G3o3vpERERqoYS0BDYnbM4LNhvjN5KUkXRGu1C/UDqGd8zrsekY3pG6vnXdULFI9VaWif1XALcBo4AsYCbwlrV2bZF2A4GF1lq/8ihUIaYIa2HvMmc1s/2uqUiePgXCTCP31iciIlKLWWvZl7SPjfEb2Ri/kU3xm9iWuI3MnMwz2jat05RO4Z3ygk3b0Lb4ePq4oWqR6qMsISYH+Amn1+Wjs61MZoxpCjxprb21PApViDkLa2Hv97Dsedi30tnn6QPdbnTCTL3G7q1PREREAMjIzmB74nY2xG/ICzb7kvad0c7bw5t2oe3yg01EZ5oEN9EwNJECyhJiOlprN1V4ZUUoxJTA3uVOz8y+Fc5tD2/odgP0mQz1mri3NhERETnDydMn8+bVbIxzgs3x08fPaFfHp07eSmi54SbUL9QNFYtUDWUJMd8Cd1trtxVzrA3wurX28hI++M3A/UB74BSwBhhjrU0r2lYhphRiVjhhJma5c9vDG7pdD70nQ0hT99YmIiIiZ2Wt5eCpg3kroW2M38jWhK1k5GSc0bZhUMO8ldA6hXciwj+Cv6z4S7GrrInUNGUdTnaJtXZ1MccuAlZZa897WVtjzGPAw8CzwI9AOHAF8JC19lTR9goxZRCz0rnOzN7vndseXtD1OujzIIQ0c2tpIiIiUjKZOZnsOL6DTXGb8oai7T2597z3uyDsAmYOm6lhaFIjlTXE9LTWrinm2L3AI9bac673a4xpC2wCrrbWLi5JoQoxv8G+H50ws2epc9vDCzqMhITdkH4CgqJgwgwIinBnlSIiIlJCyRnJbIrfVGgoWkJ6whntIgMi6RbZjW6R3ega2ZW2IW3x8jjvZ80iVV6JQowx5i/AX1w3A4E0IKfIuXwBL+A/1to/nudBn8MZNtampIUqxJSD/T85YWb3t2ceC28LNy2A4CjQJzYiIiLVirWWaz+7ls0Jm8/Zzt/Ln87hnelWvxvdIrrROaIzQT5BlVSlSPkpaYjpB/QHDPAE8DZwsMi5MoCtOMsqZ5/nQZcCCcA64F6gHs58mMnW2p+Ku49CTDk6sBreGwFZ6WceC4yA6C4Q1dn5Gt3FGXqmYCMiIlKlJaQl8MDSB/LmxPyzzz85fOow62LXsS52Hetj15OcmVzoPh7Gg9b1WtM1sivdIrvRPbI70UHRbnoGIiVXluFkfwP+Z60989K0JX/QbUBD4AjwKJDq+toJaG2tjS3QdjAwePTo0Q/MnTu3rA8pRb09OP9imQBe/pB9GmzRDjbAty5Edy4cbsJbg4dn5dUrIiIiv0mOzWH3id2si13Hr7G/8kvsLxw6deafc/UD6ucNP+sW2Y02IW00BE2qnFKHmHJ60B1Aa6CLtXaDa18oEAO8bK19ouh91BNTzk7Fwawb4NTR/DkxPoEQuwWO/ApHNsCR9c7t7DNXRME7AOpfkN9bE9UZItuDl2+lPxUREREpm7jUuLyeml9jf2Vb4jaybFahNgFeAXSK6ET3yO50jexKl4guBHoHuqliEUdJh5N9Cjxord3p+ve5WGvtyPM86E9AS2tteJH9y4B4a+3YovdRiHGTrAyI3+4Emtxgc3QjZKac2dbD2wky0Z0huqsTbupf4IQjERERqfJSM1PZFL/JCTZx69gQu6HYIWhtQtrQNaJr3qIBGoImla24EFNcf2EwkDt2qA7wW7tqNgMtz3LM7zeeW8qTlw9EdXK2bq59OdmQuMcVbH7NDzfpJ+DoBmdbN8NpazwgrHX+cLToLs65/EPc9IRERETkbAK8A7g4+mIujr4YcIag7TqxK2/42a+xv3Lo1CG2JW5jW+I2Ptr+EQBRgVF0iyg8BM1Tw86lklXGcLIxwCdAN2vtr659YTjDyaZqOFk1ZC2c2O8EmCPr83tuTh0tvn29pq5QU6DXJiiyUksWERGR0otNjc0bfrYudh3bEreRXWRNpwCvADpHdM7rqekc0VlD0KRcuWtOjAewCggFHsNZsvkvOPNkOlprz/jLVyGmmko+6oSZo+vzw82J/cW3DYrK763J7bmp21gro4mIiFRhqZmpbIzfmBds1set51Rm4euWexgP2oa0zeup6RbZjajAKDdVLDVBSefEFGpwHtZaO7UEDxwOTAVGAD7AcuABa+2W4torxNQgqYnOvJqCvTbxOyl2lKJ/SOHlnqO7QGhL8PCo9LJFRETk/LJzstl1YlehBQMOpxw+o11UYFReoOkW2Y3W9VprCJqUWElDTDHr7p6VtdaW+ztQIaaGO30Kjm12LRzgCjax2yAn88y2PkGueTqdIaQ5rP8A0pMgONpZZS0oovLrFxERkbM6lnKMdXGupZ2P/cKO4zvOGIIW6B3oXIgzshst67Xkvc3vkZieSERABFP7TyXMP8xN1UtV5JbhZGWhEFMLZZ2G2K2uYJO7MtomyEo7+33C28Dvvgdv/8qrU0REREolNTOVDfEbCg1BSylu5VOXrhFdmT50eiVWKFVdSVcnE6l8Xr7QoKuz5crOgoRd+cPQfn4bstLzj8fvgBdbQdshcMEYaHWFrl0jIiJSxQR4B3BJ9CVcEn0J4AxB23liZ94QtCUxSwr11GyI38DUtVMZ03oMTes0dVfZUsUVN5ysO7DVWpvm+vc5WWt/Ke+i1BMjxXp7MBxYlX/b06fwxTl960DbodBxDLQY4CwZLSIiIlXaTYtvYl3sumKPdY/szpjWYxjYdCAB3gGVXJlUFaWZE3OJtXa1699nG29m0JwYqUyn4mDWDc5SzkFRMGE6HN8Hm+c5W3KBiYR+daHdcKeHpkU/8PR2X90iIiJyVglpCTyw9AHiUuMI8w9jbOuxfLXvK1YeXkmOdaZqB3oHMrT5UMa0HsMFYRdgtJpprVLSENMPWGutPeX69zlZa5eVb5kKMVIGOTlwcLUr0MwvfM0a/xBoPwIuGA3N+oKnRlGKiIhUdcdSjrFg9wLm7ZzHwVMH8/a3DmnNmFZjGN5iOPX86rmvQKk0mtgvtUNONuxf5QSaLQsgJTb/WEAYtL/aFWh6g5Z3FBERqdJybA4/H/2Zubvm8vW+rzmdfRoAbw9vLm9yOWNajeGSBpfgYXRJhpqqzCHGGNMGuBiIBo4Aa6y12yukShRipBzlZMO+lbBpLmz9FFIT8o8FRkCHkU6gaXKpAo2IiEgVd/L0SRbvXczcnXPZmrg1b390YDSjWo1iVKtRNAhq4MYKpSKUOsQYY4KAN4FrAA8gHfADcoDZwCRr7amznqCMFGKkQmRnQcxy2DwXti6EtOP5x4Ki8gNN4566wKaIiEgVty1xG3N3zmXRnkUkZyQDYDBcEn0JY1qP4fIml+PjqUV+aoKyhJh3gbHAfcAca22yMSYYGA+8DHxirb21vAtViJEKl50Je5Y5Q862LYT0k/nHghvABaOcQNOoB2jyoIiISJWVnpXON/u/Yd7Oefx09Ke8/fV86zG8xXBGtx5Nm5A2bqxQfquyhJgk4GFr7X+LOXY38E9rbd3yLlQhRipVVgbs+c4VaD6D00n5x+o2dvXQjIGG3RVoREREqrADyQeYv2s+83fNJzY1f05sx7COjG49miHNhxDsE+zGCqUsyhJiYoGbrLVfFHPsKmCGtTa8vAtViBG3yToNu75xAs32zyGjwGjJek2c3pkLRkN0VwUaERGRKio7J5sfDv/AvF3z+O7Ad2TlZAHg5+nHoGaDGN1qNBfWv1BLNVcTZQkxzwPtgFG2QEPjfMcXANuttX8u70IVYqRKyEyDXV+7As0XkJmSfyykeX6gieqkQCMiIlJFJaYnsnD3QubtnMfuk7vz9jet05RRrUYxsuVIIgIi3FihnE9JrxNTsIEXcC/OhP6FQCwQCYwAfIFXrbUvlnehCjFS5WSkws4lTqDZ8SVkpeUfC2uVH2giOyjQiIiIVEHWWjbEb2Duzrl8sfcLUrNSAfA0nvRp2IfRrUfTp1EfvD10geyqpqQhJqcU57TW2nJfl1YhRqq0jBTY8YUTaHZ+BVnp+cfC2zphpuMYiGjrvhpFRETkrFIzU/ky5kvm7pzLr3G/5u0P9w/n6pZXM7rVaJrVbea2+qQwXexSpLydTnaGmm2eB7u+guyM/GORHVw9NGMgvJX7ahQREZGz2nNiD/N2zePT3Z+SmJ6Yt797ZHfGtB7DwKYDCfAOcGOFohAjUpHST8L2xa5A8w3kZOYfq98pf9nmsJZuK1FERESKl5mTyfcHvmfurrmsOLSCHOsMTgr0DmRI8yGMaTWGjuEdtRiAG5Q5xBhj/IAWOBe6LMRa+0u5VeiiECPVXtoJZ7nmzfOc5Ztdq6IAEN0FWg10Fg1IP+FcaHPCDAjSpEIREZGq4FjKMRbsXsC8nfM4eOpg3v5W9VoxpvUYhrcYTohfiBsrrF3KsjqZD/Bf4AacSf5n0JwYkfNITYRti1yBZhnY7DPb1GsG499xemy8dHVhERGRqiDH5vDz0Z+Zu2suX+/7mtPZpwHw9vBmQOMBjGk9hkuiL8HTo9z/HJYCyhJingFuAh4CPgDuAVJwQk1L4I/W2s/Lu1CFGKmxUuJh60L44pHCCwLk8vSFBl2hUQ9oeKHztW4jrXgmIiLiZkkZSXy+53Pm7pzL1sStefujA6MZ2Woko1qNomFQQzdWWHOVJcTsAJ4HpgGZQA9r7VrXsfeAVGvtXeVdqEKM1HhvD4YDq/Jv+9Vzgkra8TPbBkVBo4ucQNOohxNyfAIrq1IREREpYlviNubunMuiPYtIzkjO2x/sHYy3pzdNgpvw8oCXCfMPc2OVNUdZQkwqMNhau9z176uttV+7jg0EZlprw8u7UIUYqfFOxcGsG+DU0fw5MYHhkLgHDq7J345uOnP4mfGE+hfkh5pGPZzFAtRbIyIiUqnSs9L5Zv83zNs5j5+O/lToWIPABsy+ejZ1fOq4qbqao7gQU+w8lwKOAPVc/94L9Ae+dt1uU57FidQqQRFw+5dn7g9r6WxdJjq3M1LhyPrCwSb5CBzd4Gw/v+208w+Bhrm9NRc5Q9H861Xa0xEREamN/Lz8GNZiGMNaDGPgnIEcTTmad+xwymGunH0lV7e8muvbX0/zus3dWGnNc74QsxToAywE3gL+ZYxpD2QAo4APK7I4kVrPJwCaXupsuU4eKhBqfoYjvzrD0HZ95Wy5wtvkh5pGPSCiPXie70deREREyiI6MLpQiPHz9CMtK41Z22cxa/ss+jTsww0dbuDS6Eu1THM5ON9wsigg3Fq7yXX7AWAc4A98BfzDWptS3kVpOJlIKWRlwLFNTqDJDTfH957ZzjsQGnbPDzUNL4Lg+pVfr4iISA2UkJbAA0sfIC41joiACKb0m8Luk7uZsWUGyw4uw+L8zd2ybktu6HADw1oMw9/L381VVw+62KVIbZESXzjUHPoFCkw8zFOvSeG5NVGdwMu38usVERGpwfYl7ePDrR8yb9c80rLSAKjrW5fxbcYzse1E6gfqQ8Vz+S0Xu6wLdAKigcPAJmvtyQqpEoUYkXKXkw3xOwoPQ4vdChT5+ff0gajOhYeh1WuiRQNERETKQVJGEvN2zmPmtpkcOnUIAC/jxcBmA7mx/Y10iujk5gqrprKsTuYBPA38ESi4pmsK8H/AX60t7sp9v41CjEglSE+Cw7/kh5qDayA14cx2gZGFQ02DbuAbVPn1ioiI1BDZOdksPbCU6Vuns/bY2rz9nSM6c2P7G7mi6RV4e3i7r8Aqpiwh5iWcAPNPYA5wDKgPjAceAV6z1j5Y3oUqxIi4gbXOXJqCw9COboScrMLtjAdEXuCEmvC2sH4mpJ+EYNdS0UER7qlfRESkGtqasJUZW2eweO9iMnMyAagfUJ9r213LuDbjqOtb180Vul9ZQkwC8IK19vlijv0F+JO1ttyv4qMQI1JFZKa5lnj+Ob/HJung2duHNIcb5zpfNQRNRESkxOLT4vl4+8fM2j6LxPREwFnhbETLEdzQ/gZa1Gvh5grdpywh5gQw3lr7VTHHBgEfW2vrlXOdCjEiVVnS4fxQ89MbkH36zDZ1m0CLvtC8P7ToB0GRlV2liIhItXQ6+zSL9y7mg60fsC1xW97+yxpcxg0dbqBXg154GA83Vlj5yhJi/udqc3sxx94BsNbeVt6FKsSIVBNvD4YDq/Jv+wRDVjq4usPzRHaA5v2cQNP0MvDT1YtFRETOxVrLz8d+ZsaWGXx34Lu8JZqb123O9e2uZ0TLEQR4B7i5yspRohBjjBlT4GYg8CywC5gPxAKRwGigJfCYtfb98i5UIUakmjgVB7NugFNHIcg1J8bbH/b/CHuWwt5lzryagownNLzQCTTN+0Hji7Wss4iIyDkcSD7AzG0zmbtzLimZziUag32CGddmHNe2vZbooGg3V1ixShpickpxTmut9SyP4gpSiBGpQVISIOZ7J9TsWXbmhTi9/KHppfk9NVGdwaPcf62IiIhUe6cyTrFg9wI+2PoBB5IPAOBpPLmiyRXc2OFGukR0wdTAOaklDTFNS3NSa+2+cqitEIUYkRrsxH4nzOT21KTEFT7uVw+a93X11PSHsJZaJEBERKSA7Jxsvj/4PR9s/YCfjv6Ut79jWEdu6HADg5oOwtuz5izRXOaLXVY2hRiRWsJa56Kbe12hJmYlZCQXblOnIbTon99TExzljkpFRESqpO2J2/lg6wd8tuczMnIyAIj0j2Riu4mMazOOEL8QN1f425UpxBinT2oo0BsIBRKB5cBiW0EJSCFGpJbKzoTD6/J7ag6uhuyMwm3C2zqhpkU/aNYb/LR+voiISEJaArN3zGbW9lnEp8UD4Ovpy/AWw7m+/fW0Dmnt5grLriyrk4UAnwM9gRPkX+yyHrAKGGqtPVHehSrEiAgAGanOIgF7lznB5sh6oMDvLOMBDbrl99Q07gnefu6qVkRExO0yszP5IuYLpm+ZztbErXn7L4m+hBs73Ejvhr2r3RLNZQkxbwMjgOsLXivGGDMQmAEstNbeUd6FKsSISLFSEyFmuRNo9i6DhF2Fj3v5OUGmRT8n2ER31SIBIiJSK1lrWRe7jhlbZ/DN/m/Isc7aXU3rNOW6dtcxqtWoarNEc1lCTBzwkLX23WKO3QY8b62NKO9CFWJEpEROHswPNHuWOUs9F+RXF5r1yZ9PE95GiwSIiEitc/jUYWZum8knOz4hOdOZexrsHcyY1mO4tv21NAxq6OYKz60sISYVGGet/byYY0OBOdbaco9wCjEiUmrWQtz2/EATswJOnyzcJjg6P9A07wd1q/YvbRERkfKUmpnKgt0L+HDrh8QkxQDgYTy4vPHl3NDhBrpHdq+SSzSXJcSsBE4CI6y12QX2ewCfAcHW2t7lXahCjIj8ZtlZcOTX/KWc9/8E2acLtwlr7QSa6K6wdhqkxudftDOo3DuZRUREqoQcm8OKQyuYsWUGPx75MW9/+9D2jGo1is/3fk5CWgIRARFM7T+VMP8wN1ZbthDTF1gCHAEW4EzsjwRGAVHAIGvt8vIuVCFGRMpdZhoc+Cn/optHfgV7lmv7+odAm6uc4Wi+dZyveVuB276u2zVoLX4REalddh7fyQdbP2DRnkWcLvphH9AtshvvD3nfDZXlKy7EeJ3rDtba740xvYC/AtcBIThLLK8AnrHW/lJRxYqIlCtvf9fSzP2d22knnCFne5fBz+9CTmZ+27TjsH5mKc4dWEzAqVN88MkLPwWOeflpro6IiLhF65DWPNnrSe7rfh+f7PyE19a9lrcIAEBcatw57u0+Zw0xxhg/4G5gibV2TOWVJCJSCfzrQfvhznZkAxxYlX8spDlceAukn4TTSc7XvK3A7cwUp31mirMlHy5bLZ4+JQg/9c5+zCcoPwSdioVZNzqLHGhonIiIlFCIXwh3dLqDpQeWsj5ufd7+iICq+X/IWUOMtTbdGPM0sLYS6xERqXwTZsCsG0r/h392JpxOhvQTZwacc4Wf0wX2YZ0LeqbEOVtZGI/8gJMSB5mpzv7jMTB9NEz6Frx8ynZuERGpVV4Z8AoPLH2AuNS4vDkxVdE5h5MBvwIdgGUVX4qIiJsERcDtX5b+fp7eEBDqbGWRkwMZyYUDTrEB6BzHcrKcuT3pJ5ytqGMb4dkGENkeojtDVBfna/2O4BtUtrpFRKTGCvMPc/scmJI4X4i5D/jAdb2Yz621qZVQk4hI7eDhkT8kjMalv7+1zoIFBQPOp3+EuG35bYynM9/n6AZnY0buAQhr5Qo2nfMDTqB7V6AREREpifOFmG8BH2AW5F03puByZtZaW7eCahMRkXMxBnwCnK1OtLPv5kVFhsZNd4LO0Q1wZL0z/+foBkg+Agk7nW3TJ/nnrNOoQLBx9drUaaiFB0REpEo5X4h5icKhRUREqrKzDY0LaQrtR+TfPhXrCjQFgk3iHkg66GzbC1zj2D+0SLDpAqEtnZ4kERERNzjfEstPVlIdIiJSmYIiofWVzpYrPQmObnT12riCTexWSEt0XV9naX5b70CI6ugEmtzhaBHttYCAiIhUimJDjDFmIPBHoDlwGPjYWvt2ZRYmIiKVzK8ONLvM2XJlpkPslvxgc2Q9HNvsLCl94Cdny+XhrQUERESkUpwRYowxVwPzgZPAdqAjcKUxprF6ZkREahlvP2jY3dlyZWdBwq4C82zWO/9OP6kFBEREpFIU1xPzCPAdMNJae8oY4wG8BvzJGPMPawtcwlNERGofTy+IbOdsna9x9lkLJ/ZrAQEREakUxYWY9sAN1tpTANbaHNdFL+8CmgJ7K7E+ERGpDoxxFg84YwGBONfiAaVcQCCkGfzyHqSdhOBSXIBURERqheJCTF2g6GWjY11fQ1CIERGRkgqKgFZXOluu0iwgAHAiBv53OYx/zwk4nudbWFNERGq6s/1PUMcYE1pMu6L7sdYmVkhlIiJSM5VkAYF10yE7I//4if3w1gDwCYYmPaHpZdCsN0R31YpoIiK10NlCTDEXGQDgm2L2eZZTLSIiUlsVXUDg2GY4sCr/uF89Z97N6ZOw62tnA/AOgEY9nEDT9DJoeKFzLil/p2Jh1o0FLqSqIX4i4j7FhZhbK70KERGRgibMgFk3FP6DOSDUCTf7VkLMCtj3gzMEbe8yZwPw9IVGF7l6ai5zAo5PoHufS3WVnuS83sc2OcP/Ns2BjBTn2PEYmHU93L7ErSWKSO11Roix1r7njkJERETyBEXA7cUMCoh2LdN8yV2QkwPx212BZiXErISUWOff+1bC94CHFzTo7gSappdB457OcDbJl5MDJ/a5wsqm/NByYt+573foF1j9FnSeoNdURCqdsda6u4YzTJ482U6ZMsXdZYiISHViLSTshn0rnECzbyUkHSrcxng4Szo3dYWappeCf4h76nWHjBQ4tgWObXQFls3OlpFcfPs6DZ0LlkZ1hC2fOktlF+UT5Cy1fdHtTjsRkXJmjJlqrZ1caJ9CjIiI1EjWOr0JuYFm30pnGFQhxvkjvdll0LSXE2wCw91RbfmyFk4eLNC74gotiXuAYv7f9/SBiHYQ1Sk/tNTv6Azhy3UqLn+IX0A4tLkKNswqHGwa94Qed0CHkeDlW+FPU0RqB4UYERGp3U4edObS5M6pKa5nIaJdfqBp1tu5Tk1VlpkOcVsLDAVzfU0/UXz7wMj8kJIbWsJbg6d36R/bWohZDmv+B9s+g5wsZ39AGHS7AS68FUKbl/mpiYiAQoyIiEhhycfye2n2/eAs81xUaEsn1OSugFavceXXCU5gOHWscM/KsU0QvxNs9pntPbwgvC3Uv6BwaAmKrJj6ko/CL+/Dz+9C8mHXTuNcI6jH7dB6EHhoQVMRKT2FGBERkXNJSYD9P+QPQTu6kTOGX9Vrkj+nptllENIcjCnfOrIynEULjm12asjtYUmNL769f6grqHTKDywRbd0zpCs7C3Z8AT+/Dbu/zd9ftzFceAt0v6nigpSI1EilDjHGmD3AaGvt+mKOdQQ+tda2KO9CFWJERKRKSDsB+1c5iwXs+wEO/3pmr0dwA1dPzWXQtLczNKs0oSYlvnBQObYJ4rZDTuaZbY0HhLUqMG/FFVqCo8s/SJWHhN3w8zvw6weQdtzZ5+EN7Uc4c2ea9qqadYtIlVKWEJMDXGKtXV3MsYuBldbaMgyiPTeFGBERqZJOJ8OBn1w9NT/AobVnho3ACNecmt4Q2R6+fcoZBhZUH6540hlqVTC0nDpa/GP51ik8yT6qI0S0B5+ACn+a5S4zDTbPd+bOHPo5f39Ee7joNugyAfzquq08EanaShRijDF+QABggDhgEPBLkXP5AX8ArrfWNi3vQhViRESkWshIhYNr8ufUHFgN2adLf56Q5mcOB6vXpGb2Uhz+1RlqtnEOZKY6+7wDofN4Z5nm6M5uLU9Eqp7iQswZF7sEHgaecP3bAsVcbSzPk+VTmoiISDXkEwAt+jkbQNZpp3cmd07NnqUUnlNjoFEPV1C5wAkt9TuAb7AbineTBl3h6tdg4FPOEs1r3nbm/6yd5myNLnYWAugwCrz93FuriFRZxfXEdAG64vTEvAM8Dewucr8MYKu19teKKEo9MSIiUiO8PdDpncnVuCfcvsR99VRF1jpLXv/8NmxdmL9Ms38odLveGW4WWu7Tb0WkGilRT4xrEv961x0s8Jm19izLoYiIiMhZTfgw/wKRQVEwYYa7K6p6jIHmfZwt+ZizTPPaaZB0EH54zdlaXuFapnkweBY3iEREaptz/iaw1r5XWYWIiIjUOEERcPu5RmVLIcH1od+fofcDsHOJsxDA7m/ytzqN8pdpDq7v7mpFxI08znXQGONvjHnWGLPDGJNqjMkuulVWoSIiIlJLeHpBu6Fw41y4dx30utcZXpZ0EL57GqZ2gNm3wN7lznA0Eal1ztcn+2/gOmAmsAVnLoyIiIhI5QhtAYOeggGPwZb5zkIAB1fD5nnOFt7WGWrWZaKWaRapRc4XYkYAf7LW/l9lFCMiIiJSLG8/J6h0mQhHNjgLAWyY7axstvgh+PpJ6DTOWaa5QVd3VysiFeycw8mAbGBHZRQiIiIiUiLRnWHEK/DgVhjyIkS0c64588v78GY/eOsK+PVD5yKbIlIjnS/E/Be4sTIKERERESkVv7rQ8064exXc8jl0HAse3nDoZ5h/F0xpD18+BglFrxQhItXd+YaTpQJ9jDE/AF8DJ4oct9baqRVRmIiIiEiJGAPNLnO2U7H5yzSfPAA//p+ztRgAPe6ANldpmWaRGuB8P8XPu742AS4p5rgFFGJERESkagiKhL5/KrBM89uw62vY852zBUWBh5cTfOo0dK7dExTh7qpFpJTOd52Y8w03ExEREal6PDyh7RBnS9zr9Mysm+5ceDTXyQMwbSjc9QN4erutVBEpPYUUERERqdlCm8PAv8PkrRAYXvhY/A6YegF89TeI3+We+kSk1M4bYowx3saY3xtj3jbGLDHGtHbtn2CMaV/xJYqIiIiUAy9fCG1VeJ+HF5w6Bitfhv+7EN4dCr/OhIxUt5QoIiVzzhBjjGkBbAdeAFoBVwDBrsN9gYcqtDoRERGR8jRhBjS+BEKaOV/v2wDXTIfWg8B4wL6VMP/38FJbWPQAHPoFrHV31SJSxPkm9r8KxAEX46xMllHg2DLgnxVTloiIiEgFCIqA278svK9uQ+hwNZw85FxfZt37cGI//PyOs9XvBN1vhE7jISDUPXWLSCHnG07WH3jaWhuPsxJZQUeB6IooSkRERKTS1W0I/f4M966HmxZAx3Hg6QvHNsLih+CldjDndtizFHJy3F2tSK12vp6YLMCc5Vh94FT5liMiIiLiZh4e0KK/s6UmwsbZzrVnjm2CTXOcrV5T6HYjdL3OCT8iUqnO1xOzDHjQGFNw3UFrjDHAncA3FVaZiIiIiLsFhELP38HvV8Ck7+Ci28C3DpzYB989DS93hA/Gw5ZPITvT3dWK1Brn64l5GPgB2AJ8ijOk7B6gI9AaZ66MiIiISM1mDDTs7myDnoEtC5zrzuxb6VxUc+cSCIyALhOh200Q0cbdFYvUaOfsibHWbgMuxAky1wLZwHBgF3CxtXZ3hVcoIiIiUpX4BEDXa+HWz+EPa+Gy+yEwElLi4IfX4N894O3BsG4GZKS4u1qRGul8PTFYa/cCN1dCLSIiIiLVS3gr50Kal//V6Y35ZTrs/BIOrHK2xY9AxzHQ/WanF8ecbaqxiJTGeUOMiIiIiJyHpze0G+ZsSUdg/YdOoDm+F355z9kiOziLAXSeAIFh7q5YpFo7I8QYY74tzQmstZeXXzkiIiIi1VydaOjzIFz2gDNnZt10Zw5N7Bb48i/w9d+csNPtRmgxwFkNTURKpbiemCQKXxOmBxAFrAeO4Syt3AU4Aqyp6AJFREREqiUPD2jex9mGvOAs1bxuOhxZD5vnOVvdJtDteuh6PdRr7O6KRaqNM0KMtXZU7r+NMTcBbYF+BSfxG2Na4axWtqASahQRERGp3vzrwcWTnO3Iemeo2YaP4eR+WPpPWPoctLwcut8IbYeCl6+7Kxap0s7Xf/k48HjRVcistbuAv7mOi4iIiEhJRXeBYf+CP22HMW9Bsz6Ahd3fwOxbYEp7+OJRiN3q7kpFqqzzTexvROGhZQVZQJeoFRERESkLb3/ofI2zJe5xlmT+9UNIPgKr/u1sjXpA95vggtHgG+zuikWqjPP1xKwGnjbGtCi403X7KeCniipMREREpNYIbQFXPAH3b4JrZ0G74WA84eAa+PSP8K+2sOAeOLAa7Nk+XxapPc7XE/M74CtguzFmExALRAIdcSb5j6nY8kRERERqEU8vaHuVsyUfg/UzncUAEnY5PTXrZkB4W6dnZtdXkJoAQVEwYQYERbi7epFKc86eGGvtNqAV8EdgHZDj+vpHoJW1VoM1RURERCpCcH3ofT/84We4dTF0uQ68/CF+Oyx7Dg6theMxzkU1Z93g7mpFKtV5L3ZprT0NvO7aRERERKQyGQNNeznbkOdg0yew+GHIzshvc+RX2LscmvV22ovUcLq6koiIiEh14VcXLroNGnQvvD8rHd4bDm8Pgu1faN6M1HhnhBhjTJIx5kLXv5Ndt8+2naz8kkVERERquQkzoPElENIMors6F8v09IWDq2HmBHi9N2ycAznZ7q5UpEIUN5zsJeBIgX8ryouIiIhUJUERcPuXhfdd8TdnWeY1b8OxTfDJ7fDdM3DZ/dBloi6gKTWKsVWwu3Hy5Ml2ypQp7i5DREREpPpJOw6r34JV/3H+DRDcAHr9ES68GXwC3VufSCkZY6ZaaycX3HfOOTHGmGBjTPRZjkUbY4LKs0ARERER+Y38Q6DfQ841ZwY/C8HRkHwYvvwLTO0Iy17MDzci1dT5Jvb/D+eilsX5O/Bm+ZYjIiIiIuXCNwguvQfuWw8jXoGQ5pCWCN89DVM7wVdPONeiEamGzhdi+gKfneXY50C/8i1HRERERMqVly9ceItzvZmxb0PkBZCRDCtfgZc7wWcPwvF97q5SpFTOF2JCgOSzHEsBwsq3HBERERGpEJ5e0Gkc3LUSrp0FjXpA9mlY8z94tRvM+z3EbXd3lSIlcr4Qswe48izHrgBiyrUaEREREalYxkDbq+D2r+DmRdBiANhsWD8T/t0TZt0Ah35xd5Ui51SSOTGTjTEPGWPCAYwx4caYPwMPAG9VdIEiIiIiUgGMgeZ94Kb5MOlbaDccsLB1Ibw1AKaPhpgVunCmVEnFXSemoKlAS+CfwD+NMVkF7vO6tfaliixORERERCpBwwth4gcQuxVWvAwbZ8Pub52tcU/o8yC0HuQEH5Eq4Jw9MdZxD9AOuBtnRbK7gXau/aVmjAkyxhw0xlhjzEVlOYeIiIiIVIDI9jDmDbj3F7jodvD0hQM/wYfXwOu9YeMcyMl2d5Ui5+2JAcBauxPYWU6P+XhJH1dERERE3CCkGQyf4lxv5sd/w8/vwLFN8Mnt8N0zcNn90GWis/KZiBuc72KXE1zzX4o79idjzPjSPJgxph1wD/C30txPRERERNwgOAoGPQX3b4T+jzoX0kzcAwvvhVe6wo//gYwUd1cptdD5JvY/Apw+y7E01/HSeA14HdD6fSIiIiLVRUAo9H8Y7t8Eg5+F4GhIPgxf/gWmdoRlL0LacXdXKbXI+UJMG2DTWY5tcR0vEWPMOKAT8I+S3kdEREREqhDfILj0HrhvPYx4xRl2lpYI3z0NUzvBV3+DU7HurlJqgfOFmHSg/lmORQNZJXkQY0wAMAV41FqbdI52g40xU2JiYkpyWhERERFxBy9fuPAW+MNaGPs2RHaAjGRY+TK83Ak++xOc2O/uKqUGO1+IWQY8YowJLLjTdfshYGkJH+evwDHg3XM1stZ+aa2d3KxZsxKeVkRERETcxtMLOo2D36+Eaz+ChhdBVjqseQte7Qbz7oI4zSKQ8ne+VcIeBX4Edhtj5gCHgQbAOMAHmHi+BzDGNAUeBEYDdY2zvniQ63CQMSbIWnuqbOWLiIiIiNt5eEDbIdDmKohZDstfgj1LYf2HsH4mtB8BfSZDg27urlRqiHOGGGvtNmNMD5zrw4wFwoAE4Cvg79baXSV4jOY4geezYo59B/wEXFKaokVERESkCjIGmvd1toNrYcUU2LYItn7qbC0vhz5/gqa9dOFM+U3Oe70WV1C5vrhjxpjm1tq95znFr8CAIvu6AlOB3wNrzluliIiIiFQvjS6EiR9A7FZYMdW5UObub52tcU/o8yC0HqQwI2VS6otOGmPCgQnAdTg9KJ7nam+tPUGRuTMm/8261lr7S2lrEBEREZFqIrI9jHkT+v8FfngV1s2AAz/Bh9dA/U7Q4zZY/xGcOgZBUTBhBgRFuLtqqeLON7EfcFYXM8Zcb4z5DDiEc70XP+CBiixORERERGqI0OYwfKpz4cxefwSfIDi2ERY94ISa4zFwYBXMKnYAkEghZw0xxhhPY8wwY8wHOCuLvY8zDMwLmGitvdBa+2pZHtRau9Raa6y1P5fl/iIiIiJSTQVHwaCnnTDT/1EwRf4cPbQWvvgL7F0O2SW6mofUQmcMJzPGXIYzVGw8EI4zkX8G8CHOhS8TgKOVWKOIiIiI1DQBodD/Ydj1FRwsMEU6JwtW/cfZ/EOcFc/aDXMWBfAJPPv5pFYpbk7McsDirBw2BVhirc0CMMbUrcTaRERERKSmmzgTZt0Ap45CYIRzEc2YlbBjMaQdd5ZoXj8TvPygRX8n0LQZonkztVxxIWYj0AnoB2QD4caYedba5EqtTERERERqvqAIuP3Lwvu63eAMJTuwCrZ97izTfGIf7PjC2TDOCmfthkLbYRDeyi2li/ucEWKstV2MMR2AG3AuZjkN+K9rUv8inF4aEREREZGK4+kFzXo72+BnIHYLbPvM2Y786gScA6vgqycgvK0TaNoNhwbdnYtvSo1W7BLL1totwKPAowXmyIxzbRa4zxiDtfb7SqtURERERGonY6D+Bc7W7yE4eRC2L3YCTcxyiN8OK7Y716MJioK2VzmBpnlf8PJ1d/VSAYy1JetYMcZ4AoOBa4GRQCCwz1rboryLmjx5sp0yZUp5n1ZEREREapq0E7DrayfQ7PwKMgrMgPAJglZXOIGm9UBnoQCpdowxU621kwvuK/HFLq212cDnwOfGGH9gFE6gERERERFxD/960Gmcs2Wddnpmtn3m9NQkH4EtC5zNwwuaXuYsDNB2KNRr7O7K5TcocU9MZVJPjIiIiIj8Jjk5cGSdax7N5xC3tfDxqM5OoGk3DOp3dIasSZX0m3piRERERESqDQ8PaHihs13xBCTshu2fO4HmwCo4usHZlv4T6jZxBZqh0KSXs6iAVGn6DomIiIhIzRfWEnr90dlS4p2lmrd9Bru/hZP74af/OptfPdcFNodCyyvAN8jdlUsxFGJEREREpHYJDHeuRdPtBshIgd3fOb002xdDWiJs+MjZPH1dF9gc6lxgM7i+uysXF4UYEREREam9fAKh/XBny86CAz+5hp0tguMxsPNLZ+N+aNQjfx5NeGs3F167KcSIiIiIiIDrApuXOdugpyF2K2x3XWDz8Do4uNrZvv4bhLXODzQNL9IFNiuZQoyIiIiISFHGQP0Oztb3z3DykGvI2eewdzkk7ISVLztbYKQz7OzIeshKg+AGMGEGBEW4+UnUXAoxIiIiIiLnU7chXDzJ2dJPOhfW3P658zUlFjZ+nN/2xH54tSu0vxpCW0BYC+draEvwq+O2p1CTKMSIiIj8f3v3HefYWd97/PuTNJKmz+7sbHXHYIzpmGBznVdIuDGQSwvYmBiwaQn4dUMAQwIpBAhJfOkkgGNwaLHjxKYEAgk2gYBppthgY3CLy+56+5Sdnar+3D+eI80ZjaarndnP+/XSS9Lpv9XsHH3nec5zAGA10v2hG2zm/A02b7hUyk3OLZObku64buG6XVv8SGnlULP51Ln36f7m1RBxhBgAAABgrRJJ6fRnStvO8vefKRt8pPSEi6Sxh/w9asYe9C02MyP+8fCPF26razAINqeFgk7w6BxoWklRQIgBAAAA1uuia6XrXy5NHZJ6tte+JiYzIR0NhZryY/SBIOCM+se+nyzcftdgqPWmHHJO9e+Pw4BDiAEAAADWq2dIes1NSy+T7pN2PME/qmUn54easYeksSDsTB0OBZyfLly3c3NVF7XQdTidm+pTX5shxAAAAACtlupdJuCEQs1ouRXnAR9wZsekfWOLB5x53dNCISfCAYcQAwAAALSzVK+04/H+US07VdVF7YG563CmDvmAs39M2n/rwnU7Ny28Bie9Sbr5Ct/qs1i3uDZAiAEAAACiKtUjbX+cf1QrB5xKF7XQdTiTB6XZoz7c1Ao4knR0t7/OZ7luci1AiAEAAAA2oqUCTm66qota0IKz9xbJFeeWmzrUvONdBUIMAAAAcLxJdkvbH+sfYZ961vyhonu2N/e4VijW6gMAAAAA0CYuulY68Rxp0yn++aJrW31ENdESAwAAAMBbyVDRbYCWGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACR0vAQY2YXmtlXzGyfmU2b2e1m9mozs0bvGwAAAMDGk2jCPi6XtFvSWyQNS/ptSVdLOlHSu5uwfwAAAAAbSDNCzPOccyOh9/9tZoOSLjez9zjnSk04BgAAAAAbRMO7k1UFmLKfS+qT1N3o/QMAAADYWFp1Yf95kvY75yZbtH8AAAAAEdX0EGNm50l6qaQP1Jj3LDP70O7du5t9WAAAAAAioqkhxsxOkHS9pG9L+vvq+c65m5xzl59yyinNPCwAAAAAEdK0EGNmA5K+LmlU0ou5oB8AAADAWjRjdDKZWaekr0nql3Suc+5YM/YLAAAAYONpeIgxs4SkGySdKenXnXP7G71PAAAAABtXM1pirpT0XPmbXfaZ2TmheT93zmWbcAwAAAAANohmhJjzg+cP1ph3qqTdTTgGAAAAABtEw0OMc+6URu8DAAAAwPGjVTe7BAAAAIA1IcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiBRCDAAAAIBIIcQAAAAAiJREqw+gnf1095j++PN3aDpX1FBPSh++6Ik6fWuP4jFr9aEBAAAAxy1CzBLecsMd2js2I0kanszqWR/5ruIx02B3UkO9KW3tTWkoeGztTVdeD/WktLUvpa4k/7wAAABAvfEtewkzucKCacWS05HJrI5MZvWrZdbvTsYXBpx5wcc/D3anaN0BAAAAVogQs4RTBrs1MpWrvH/KSQO68uVP0fBkVsOTWR2ZzIRe++fhqayOTGQ1my9qOlfU9OiMdo/OLLmfmEmDPb4FZ8kWnt6UelJ8ZAAAADi+8Y14CVe94il6/TW36chkRlt707rqFU/Rlp6UtvWll1zPOafpXNGHm4mMhqeqgk4o+IxOZ1VyqkzTwaWPqSto3Sl3WZsLPul5LTybu5NKxP24DcOTWV127cI6AAAAgCgixCxhS09KX7js6atez8zUk0qoJ5XQqVu6l1y2UCxpbCanIxPZStiZH3TmWnumc0XN5IraMzqjPcu07pgpuHYnrf1HZzSR8V3j9o7N6qJP3KL3X/gEbetLa6gnpWSCQeoAAAAQHYSYFkvEY9ram9bW3qVbdyRpOluY12VteDIz9zoUgEamfOvOyFRuXne4sgeGp/WiK39YeT/YndTWvrS29aW0rdc/+/fBtL60BkMtOwAAAEArEWIipDuVUHcqoVOWad0plpzGpnOVlpx3/fuv5l2X052Ma6ArqSOTGeWLTqPTOY1O53T3El3ZYqZKV7pKyOmdCzlbg+fNXUnFGKQAAAAADUSI2YDiMatcH/MY9ekLl/XXvLbHOaejM3kdnsjo8ERGRyay/vVkRocn/PU8h4NWnvCobHfuX3zfHXHzLUtLtOps602rrzMhM8IOAAAAVo8QcxxY7NoeM9Pm7qQ2dyd15o6+RdcvlpxGp7NzIafynKm8PzKZ0chUTvmi0/7xWe0fn13ymFKJ2LKtOtv60ozGBgAAgAX4hohlxWNWuW7nsbv6F10uXyxpeDI7L9iEQ8+RiawOT2Y0PpNXtlDS3rGZys1EF9OdjFeCTX9nh25/eFzZQkmD3Um9+/ln6XG7BmjVAQAAOM4QYlA3HfGYdg50audA55LLZfLFeWGn3IXtSKiF58hEVpPZgqZzRT04Mq0HR6bnbWN8Jq+Xf+onkqSeVEInbOrUCZs6tWugUyds6tKu4P0Jm7q0qauDkAMAALCBEGLQdOmOuE7c3KUTN3ctudxUtlC5LufIZEbv/MqvND6br8yPmVRyfrl7Dk3qnkOTNbfT2RH3AacSdLrmQs+mTg31pAg5AAAAEUKIQdvqSSXUM9Sj04Z6JEnX3LJHt+45Wpn/5JM26ZrXPE37x2e17+iM9h2dDV7Pan/w/shkVrP5ov7nyJT+58hUzf2kEjHtGiiHnK4FrTpbe1OMuAYAANBGCDGIjKte8ZQFo6x1JuM6fWuPTt/aU3OdTL6og8cy2nd0RvuPzoaCjg85hyYyyhZKNbuslSXjMe0YSM8LNpXXm7u0rTfFPXQAAACaiBCDyFhslLWlpDviOnVLt05d5N46uUJJh45ltG/chxrfiuNDzv7xWR08llGuWNKe0RntGa09CEE8ZtrRn54fcMrX5Ax0acdAWh2EHAAAgLohxOC4lkzEdNJgl04arH19TqFY0qGJTM1WnP3jszowPqt80VUC0I8fGluwjZhJ2/vSle5quwY61d+Z0A237dNUpqAd/Wl98pKztaUn1ehyAQAANgRCDLCERDwWtK506Wk15hdLTsOT2aprcmbmWnTGZ5UrlHTgWEYHjmX0091HF2zj4LGMzvnbb+msnX3atalTO/t9S87OgXL3tU71dzLCGgAAQBkhBliHeMy0vT+t7f1pnX3KwvmlktPIdDbUTc2HnC/+bJ8y+VJluULJ6Y59x3THvmM199OVjGtXMHz1ruB6nPJgBDsHOrkuBwAAHFcIMUADxUI3Cn3ySZsq0+89NDlvpLUzd/TqTf/7Udp/1HdR2z8+111tZCqnmdzSI6zFY+a7rFWCTVq7BrqCwJPWzoFOdSX57w4AADYGvtUALVBrpLXFronJ5IuVYHNgfK6bWnnawfGMCiVXCT7aXXufm7o6Kq045a5qu0ItO5u7k3RZAwAAkUCIAVpgNSOtpTviOi10v5xq5etyyiEm3JpTDj2T2YKOzuR1dCavX+6fWGQ/sfnhpqr72vZ+RlkDAADtgRADRFz4upynnLyp5jLHZvOVQHPgmH8Oh54jk1ll8iU9ODytB4dr3y8nZtK2vnQl6Owc8AMOfOln+zSRyWtTV1J/8uwztKnLt+jETDKZzOQfweuYBdMkWej13PTQOsttR3PLLbkdBdupWqdseDKry65dWcsYAABoPUIMcBzo7+xQf2eHztzRV3N+tlDUoWOZSqjZPx5uzfHTc4WSDh7L6OCxjG7bs3CUtcMTWb36s7c2upS6KoehYslVpu0dm9X5H/6uLj33FJ021K3Thvx9hrimCACA9sFZGYBSibhOHuzWyYO1bwpaKjmNTucWdFe7/qd7NRsaZa18408XZIKSc3JOcnIqOQXTy6+dXLDtYLJfXn658uv50/269eKcVHQLNzg2ndOHv3nfvGk7+tOVQHPalh4fcLb0aNemTsVjXEsEAEAzEWIALCsWMw31pjTUm9ITTxyoTP/l/mPzRll70okDK77WZ73KgaYShoLAJIXDU2h6jTDk5Bd67T/dql+EhrfeNdCppz9iUA+OTOuhkWmNTecqrVA/uH903nEkEzGdMtjlw81Qj07b0l0JOJu6k035twAA4HhDiAGwZrVGWWsWM1PcJH8lzPp8+pVPXXK0uPGZnB4YntaDw1N6aMRfN/TgyJR2j84oVyjpvsNTuu/wlKTD87a7qatjLtwMdQcBp0cnD3YplYiv+7gBADhemavRlaLVLr/8cvehD32o1YcBAEsqlpwOjM/qgapw89DwtA4cyyy6XsykEzaVW2/mt+Bs70sz1DUAACFm9mHn3OXhabTEAMAaxWOmEzd36cTNXXrGGfPnzeQKeijojvZgVSvOZLagvWMz2js2o5vvG563XmdHfC7chFpxTt3Srd50RxOrAwCgfRFiAKABupIJnbWzX2ft7J833Tmn4amsHhwuB5ypyus9YzOazRd118EJ3XVw4f18hnpTc8Em1IpzwqZO7uEDADiuEGIAoInMTFt709ram9Y5pw3Om5cvlrR3bEYPBd3SfPc033ozMpXV8KR//PihsXnrJWKmkwa7dNqWHm3vT+l7941oOlvQpu6k3vqsM7SjP62uZFydyYS6OuLqTMaVSsTotgYAiCxCDAC0iY54TI8Y6tEjhnokbZs379hsXrtHQuEmCDgPjUwteqPSkemcXnfNbTX3FTPfWtSZjPuA0+Gfw9O6knGlw9OD153B+7nXcXV1zN9WjGGnAQANRIgBgAjo7+zQE04c0BNCQ1xL/j47Bycyldab9914r6ayhcr8RMy0pSelmVxBmXxJuaK/r0/JSVPZwrxl6yndEZsXfMLhpzMZV1cwPR0EoHmBKBlXruj08W/fr2MzeQ31pvR3L32iTh7s5p48AABJhBgAiLRYzLRroFO7Bjp13iO36N9vPzDv3j1PrLp3T75Y0my+qNlcUTO5omZyhdDrombzBf8cnpbz02Yq682tE97WbL5Y2U8mX1Imn6tLjYcmMvqtD94sSepOxtWb7lBvOhE8OirPfTWmlZfrC173pBJKcP3QmgxPZnXZtYsPRQ4AzUSIAYANZLl793TEY+qIx9TXgJHOSiWnTKFYFYJCISkfCkS5cPiZm5bJ++df7BtXvrjwFgDTuaKmc0UdWjjuwYp1JeM1w05f+XWqdhjqC4Widg5CxZJTrlBSrlBStlisvM4VS3OvCyVlq97Pm18sKTtvXlE3/vKQRqZ8MN07NqvnffT7esW5JwetaqHuhOHuhqHuiOkOrsMCUD+EGADYQLb0pOa1vDRTLGbBl9f1n1ou+IcfzmtRevJJA/rkJWdrMlPQZCZfeZ7IFBZMm6yaNhG8zhZ8V7pyYDo8kV3z8XV2xBe0BvXVaCGSpGt/tEcTmYL60x167a+fqlRHbC5I1AgX4ffloJEvLjK/Rvgolppz/7eDxzJ63433rnh5MwUDSySquhjG1dmxcNpi12F1JRdek5VOcB0WcLwhxAAA2k6tFqUtPal1dV/KFUoLQs7EIsFnMjs/AJXnZfI+CM3mffe5I5MrD0LDk1m9/Ut3rvn41yqZiCkVjymZCD3iC1+nas6LV15/8bZ92j8+W9nuUG9Kv/GooUoXw3KXwrlWNj+tHB6dm2tJa4T5gWduNL7qYOTk9M27Dms6V6wEy6196UrLUTgwlQe2YAhzoP0QYgAAbacRLUrJREyDPSkNriMI5YulqlaeGgEoNO1bdx9WJvgSL0mpRExPPWXzwrAQvK8ZJGoGjfjCQFJjnY641a0L1yXnnlwzWC6nWHJBuKm6/qrc3TAIPtPZYH5+fgiq1R2x1nVY5WCp6SUOpsr4TF7v+Mqvll2uI27zAk44MM29TlQFofAIf4kay89tiwErgNUjxAAAsEId8Zg2dye1uTu5ouWru8U9ble/rn3t0xp1eA211mAZj5l6Un5QhXpby3VYn/vhbk2GRuVLJ2J6zM4+zeZL80NSvljpmpcvOuWLvmVOWns3xMUkE7FgqPJgxL4aw5aHW5g6O+IqlZw+f9vDmsoWNNSb0kcuepIeta2H645w3CDEAADQIMsNtID1Wct1WD96cHResHzsrv5Fw1muUAoCzVy4mesyV6jqPhcenKLW8n47s6GQ5NzcfnKFksaVX9O/w8hUTs/6yHeVTMS0oz+tnf2d2jGQ1q6BTu0c6NSOfv96x0BnQ8Ik0Ar8JAMA0CCtHGgBta0mWJa75vWr/qP5OeeULZRCQ5XPbzEKh6Xq4cxnckX9550HNJsvzdtmrlDSntEZ7RmdWXS/femEdobCjX/tg8/OgU5t709zDRAigRADAACOG+0SLM1M6Q5/zcxa7BmdXjCC39+99Ek6MD6rg8cy2j8+q4PHZnVgPKMD47M6MD6riWCwiolDk7rn0OQixyVt7U1pR7+//9S8oDPQqR39ndrSk6TbGlqOEAMAABAxi43gd+LmrkXXmcoWdHB8Ngg45XCTCYLPrA4cyyhXKOnwRFaHJ7K6/eHxmttJJmLa2Z/WjqD1Zi7g0G0NzcNPGAAAQMSspUWpJ5XQI7f16pHbemvOd85pdDo3L9xUt+wcmcwqVyhp9+iMdq+w29rOgfSClh26rWG9CDEAAACQmVXux/T4E2ov41tqMnXttralO6k79x/TbL6o3nSHLn7aSRrqSSldHpmtY2546s7QtHTSDyVO17bjEyEGAAAAK5JMxHTi5q71dVsbzyhXnOu2FjaRKej9N9274uOJx/w9fNIdcXUmY3MBJzQsdbpjfhhKd8wftjpdFZQq6wbPqcTKgtLwZFaXXbv6eylhbQgxAAAAqJvluq2VSr7bmg80s3r7l+7U+Mzc8NKdHXGd+4jByihtmfzcaG2Zqnv4FEtOU9mCpkL3/mmE+SEnVrlRqW8t8uHp+/ePaGQqJ0naOzariz5xi9774sdrsCelLT1J9aQStBrVESEGAAAATROLmYZ6UxrqTenxJwzoH7/30LyR1s7a2adPv/KpS24jXyz5gFMeljoIOpnQ69lc1XNofvmePnPzS/59cMPUTL6kXHFuCOvy+qvxwPC0Lrjqlsr7VCKmLT0pDfYk/XN3Ult6g+egG1953qauDiW4ZmhJhBgAAAC0zFpuCtsRj6kjHlNfuv738CkrFEvKBDc8DbcGzS4IQP75Mz98SAfGM5X1u5NxDfakNDKV1UyuqGyhpP1BN7vlmEmbu5JzgScIPUOh0FOet6Unpc7k2obqjjJCDAAAAFqmXe7dUy0Rj6knHlvxcNG/++RdNYe9lqSZXEGjUzmNTGXnnqdzGp70zyOTWY1O+3ljMzk5J41O5zQ6ndN9h6eW3XdXMl4VbOZaewaDoFOe1t/ZoVgs+t3aCDEAAADAOi0VxrqSCXVtTiw5IEJZoVjS0Zn8vMBTDj0j5dATzBue8kNez+SK2js2o71jiw97XZaImTZXws3Crm0diZg+cfMDOjab146+tD5xydltOUABIQYAAABoE4l4rHLN0HKc8wMbzIWduYAzOp1dMO3YbF6FktORyayOTGaX3f6B8Yxef81t7dlS1uoDAAAAALB6ZqbedId60x06ZUv3ssvnCiWNTYdad0Jd28qB55YHRpQvuso6RyYzS2yxdQgxAAAAwHEgmYhpe39a2/vTiy5zwT/8cN5ocVt7F1+2lRi7DQAAAIAkP1rc2Sdv0kmbO3X2yZtWNFpcK9ASAwAAAEBS+44WV42WGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRQogBAAAAECmEGAAAAACRYs65Vh/DAmb2RUl7Wn0cIServY5nraij/WyUWqij/WyUWqij/WyUWqij/WyUWqij/k52zr04PKEtQ0y7MbMPOecub/VxrBd1tJ+NUgt1tJ+NUgt1tJ+NUgt1tJ+NUgt1NAfdyVbmplYfQJ1QR/vZKLVQR/vZKLVQR/vZKLVQR/vZKLVQRxPQEgMAAAAgUmiJAQAAABAphBgAAAAAkbJhQ4yZXWhmXzGzfWY2bWa3m9mrzcyqlnuNmd1nZhkzu8PMnltjW/1m9ikzGzOzSTP7gpntqFrmXWbmajxeH7VaguViZvZmM7vHzLJmdsjM/jlKdZjZ7kU+E2dm50SljtC2fhHs72Ezu9rMtq61hhbX8qrQz9X9ZvaGdqnDzJJm9j4z+26wHWdmWxbZ59PN7BYzmzWzPWb2tur9tXsdZna2mX3GzO42s5KZfW09x9/iWl5nZt8w/7tqwsx+ZGYviGAdlwbHPhZs614ze4eZpaJUR9U6J5jZ1EqWbcdarEHn91Z8JtbG5/ZVfB4NObe3opbQtup6fm9RHa+yOp/bl+Wc25APSbdI+hdJF0n6LUlXSCpKemdomZdKKkl6j6TflHSVpLykc6q2daOkhyW9RNLzJd0p6XZJidAy75I0I+mcqsfWqNUSLHe1pEOS/q+k3wi2/7Eo1SHpSTU+j5slHamut83ruESSk/S+YH+vknRQ0g+i9rMVzHOSPiLptyX9laSCpD9shzokDUg6KukbQT1O0pYa+ztd0qSkL0l6pqQ3S8pKemvE6nijpPsl/bOk3ZK+tt6fqRbWslf+99bvBj9bnwyWvTRidbxZ/nzywmBbb5c0K+mTUaqjat/Xy59Pll22HWtRg87vrfhM1Mbn9lV8Hg05t7eoloac31tQR0PO7cvW2ciNt/KxyD/yJyUdkxQL3t8r6bqqZX4o6T9D788NPpjzQ9POCD74l4SmvUvS1Aap5ZnBD/LjolxHjX11S5qS9PEo1RH84vhO1bZeFax7YsRquUfSF6u29VFJI5I6Wl1HMK084Mkrtfgv7E/If+lPhqb9rfwv+1SE6oiFXn9H9Q0xza6l1rRvSLozSnUscgx/I/8lOh61OuS/QI1Kestqam6nWtSg83sL6mjrc/tqf7ZC69Tl3N6iz6Qh5/cW1NGQc/tyjw3bncw5N1Jj8s8l9UnqNrPTJD1K0g1Vy/yrpGfaXNP9cySNS/qv0Lbvlf8L8+/U96hra0Etvy//n+rOehx/aF+t/kxeIP/Lbl1N5y2oo0P+F09Y+f26ui81sxYz6wq29Y2qbd0kaVA+CLW6Drngt+8yniPpy865XNW2BhShOpxzpbUe6wq23exaFtvfzhUf9Oq226ifrVpG5X8PrPmc3Yo6zKxD0sckvVO+hrpok89k3VpQR7uf29f6edTl3B7sv9m1NOT83sw6GnluX86GDTGLOE/SfufcpKRHB9PuqVrmbklJSacG7x8t6d4aH+LdoW2UdZrZsJkVzOwuM/v9Oh57tUbWco6ke8zsI2Y2br7P/41m9qj6liCp8Z9J2MWSdjvnfri+Q66pkXV8StKzzewCM+s1s7Mk/bmkrzrn9taziECjaknJ/1LOVi1Tfn/mOo+72lrqWJaZdUs6sca27pH/K9VSP4Nr0ZA6WqTZtZwXbK/eGl6HmSXMrMvMfl3SmyRd6ZzLr/F4F9PoOt4o34XlH9Z8hCvX6FqadX5vZB3tfm5fq0ae26XG1tLM83uj6mj2ub0i0agNtxszO0++/99bgkmbgufxqkWPBs+bQ8tVL1NebnPo/f2S3iafdNPy/6k+aWb9zrkPrOfYqzWhlu3yzYZ3SXqZ/A/030i6yczOdM5l1n70c5pQR3hfg5LOl1TXzyLYdkPrcM5dF3xxvk7+rzaS9M1gn3XVyFqcc0fNbFTSr0n6bGiZc6q2tW7rqGMlBmptyzmXM7OZVW5rSQ2uo6maXYuZXSzp6fLXyNRNM+ows4R8t5+yz8lfK1M3ja7DzHZK+ktJL3TOFW19Y14st69GfyZNOb83oY52P7evZV8NO7cH229oLc06vzeyjmae26sdFyHGzE6Qv7Dw25L+vhH7cM5dWzXpP8wsKekvzOzv6vUXtGbUIt9Cl5D0fOfc4WC/d8n/4rtY0qfXu4Mm1RH2EvlfENfVc6PNqMPMXiTpg/IX331X0knB6xvM7Hn16g7RpM/kSkl/bGbfl/R1Sf9L/q+1km/FWLcW/Gw1xEapQ2p+LWb2ePmLVD/jnPtyHbfblDqccwUze6r8F+azJf2FpM9IurQe229SHR+Q9F/Ouf9u0PYlbZzzO+f2NWvIuV3aOOf3jXJur2XDdyczswH5f9BRSS8O9QEvp83+qlXK6XQstFz1MuXlxmpMD7shWPf0VRzyoppYy1FJvyr/kpMq1zfsk3TWWo+/rEWfycWSfuGc++VajrmWZtRh/s+XV0m62jn3Hufczc65a+T/ivZ/5EcBWbcmfiZXyI/odW0w/V/l+8tLfkSWdalDHSsxXmtbwZearlVuq6Ym1dEUza7FzE4O9vcTSa9byzYW2e6AmliHc+5W59z3nXMfkfQaSZeY2dlr2VZYM+ows3MlXSDpr81sINhnVzC7L+hDv24t/n9St/N7E+to93P7WtT93C417f9Jw8/vTfxMGnpuX8yGDjFm1inpa/If0nOcc+GLp8r9AKv7rz9aUk7Sg6HlzrCFbeGP1sK+hA3T5Fp+tcShpFdz3NVa8ZmY2UnyfxWo219qmljHUPC4vWqZnwfPj1jL8Yc18zNxzs06514maZukxwfPPwlm/6gN6liWc25afijp6m2dId8veF2/F5pVRzM0uxbz9y+4SX6o1RfVsQW81Z/JbcHzur4wN7GOM+T/Ov4z+S9LRyV9PJj3gOrzF/9WfyZ10eQ62v3cvtp91v3cHmy3WbU09PzezM+kkef2pWzYEBP0Kb5B/oKiZzvn9ofnO+celHSfpAurVr1I0rfc3KhDX5dPps8MbftR8uOU/+cyh/FS+b/a3r+2Kir7a3YtX5N0lpltDy33aEknaO5kGoU6yn4veP6XtR57WJPrGJYfWvXJVdt6SvC8O0K1hLc77Jy7MwgEfyjpe8FfBFtdx0p9XdILzI++FN7WuPwQlWvSgjoaptm1mFmP/OeSlPQ7zrmJtR571Xbb4TM5L3he85fvJtdxo/x9J8KP9wbzXih/D4k1a5PPZN3n9xbU0e7n9tWq67ldanotDTu/t+ozqfe5fSU73JAPzd3o7HItvClSKljm9+TvY/FuSc+QH0ElL+ncqm3dKH8jtQslPU/SL7TwJn63Sfoj+QvMXiD/w+MkvTGCtfRKekjSrUEtF8qn9vskdUWljtCyd8j/R4rqz9aH5f8y8m7N3Qxrj6Rfah33JGlRLc+R9Iagjgsk/Zv8F4Gz2qiO5wTH9rFgm68K3j8mtMzp8vcl+EJQyxtVn5tdNruOoWDaBfJ/pb019H7N/9dbVMs3gnVfUb2/iNXxXfmL+J8tfz55h/yQq1+PUh019v9K1e8+Mc3+TBpyfm9BHVE4t6/4Z0t1Pre36DNpyPm9BXU05Ny+bJ2N3HgrH/IJ1i3yOCW03Gsk/Y/8F5BfSHpujW31yw+Dd1T+Lt1flLSzapnr5X85zMon6x9LelkUawmWO1XSv8t/UZuQ9HlJJ0SwjscE278swj9bKUl/Jj/04Yx8UPjcej+PFtXy2/LBZlr+F9yXJZ3ZZnUstq13VS33dPlm8ox897K3K7gpWFTqkD9xLbu/iNSy2L5cxOr4kPyF1uX/Iz+XDzXr/YNFU+uosc4rVb8Q0+zPpCHn91Z8Jmr/c/tK66j7ub1FP1sNOb+3oI6GnNuXe5TvwgkAAAAAkbBhr4kBAAAAsDERYgAAAABECiEGAAAAQKQQYgAAAABECiEGAAAAQKQQYgBgAzGzb5vZ3WaWrDHv82b2sJk918zcIo8ba6zXYWYjZlYK7pJdPf8ZVduYNrM7zeyNZhZfwTF/J1hvwU0Qzex2M/vsKv4J1i04lrc2c58AgNUhxADAxvJ6+XtB/El4opk9W/4mZG+Qv0eE5G9adm7V4001tvksSYOSTHN3ya6lvL0XSbpT0kck/fEqjv2PzKx/FcsDAI5ThBgA2ECcc/dKukLSn5vZaZJkZmn5uy1/xTn35dDiv3TO/ajqcU+NzV4sfwOz2yS9bIndl7d3k6SXy98N/FUrPPSfSErI3xl9wzKzuJl1tPo4ACDqCDEAsPFcIWmPpI8H7/9M0jZJf7jaDZlZt6TnS/qCpM9KepyZPW659ZxzJfk7QC/ofraIYUlXSXqTmfUucTyfNbNfVk0bCLqAvTI0bbeZfczM3hR0oZsM1k2Z2RPN7AdBt7efLFJPwszeZ2bDoXXnHVew3yvN7KCZZc3sNjM7v2qZ75jZ18zsUjO7V/7O2E9Y4b8JAGARhBgA2GCcczlJr5P0bDP7C/muZe9wzu2rWjRuZomqh1Ut80JJ3ZKuk3SDpIJ8y8xKnCzpoVUc+gckdWkNYWsRL5DvCvc6SX8qf9wflXSNpH+UdKGkTkmfN7Pq8+EbJJ0p6VJJb5f0YklXl2cG1xz9l6TnSvpz+aB3l6T/qBGKzpbvVveXkn5H0sN1qg8AjluJVh8AAKD+nHM3m9lnJL1H0s/kv7xX+1GNae+Q9Neh9xdL2i/pZudcycy+JeliM/sz55yrWjduZglJ/fLdyH5NS19DU33Mh8zsakmXm9nfO+emV7ruEl4QhDqZ2TMk/b6k5zjnbgymxSR9VdLjJN0RWi8r6YXOuWKw3KykfzSzdwVd7l4m6YmSnuCcuytY5yYze6T8v+FLQtvaLOmpzjnCCwDUCS0xALBx/b/g+YPlL+NVLpH01KrHp8ozzWyLpPMlXR90D5N8i8xJks6rsb0fScpLGpH0fknvdc5dv8pjfp+kPkmXrXK9Wm4uB5jAfZJKkv67apoknVi17ler/s2+ID+wwa8F78+XH7zgvnBLlnzrzFOrtvULAgwA1BctMQCwceWqnqvd7Zy7dYn1XyJ/nvgPMxsIpn1bvpXiYknfq1r+Ekl3S9oq333rbWZ2c7nVYyWcc/uCFqS3mtnHl11haeNV73OSZquCTfl1umrZI1XHNWFmGUk7gklbJD1JPrRVqw6Mh1d6wACAlSHEAAAWU7725Vs15l1oZn/knAt/ia+EIjP7rqR7JX3QzG6q0fVsKVdIerWkP6gxLyOp+h44m1ax7ZXaGn5jZn3yQedgMGlMfuCC16xgW6upHQCwAnQnAwAsYGYnS3q6/Ihhv1n1eLP8fWOevdj6zrkpSe+U9Bj5wQFWzDm3R/7i+z+RlKqavU/SCWbWE5p2vurveVU36rxAPoz8NHj/TUmnSTrgnLu1+tGA4wEAhNASAwDHr8cG13GEZZxzt2uuFeb9zrkHwwuY2fc1N9rXV5fY/ufkh3d+m6R/W+WxXSE/MthOST8OTf+SpL+S9OlgEICzJL12ldteiZSkL5vZlfI3D32vpC845+4O5v+T/Khn3zGzD8hfWzMg38Us6Zz70wYcEwAgQIgBgOPXZ2pMe0DS6fIB5QfVAUaSnHMFM7tO0h9UtYhUL5c3s7+VdLWZPcM5952VHphz7n4z+xf5m2aGp99lZpfKD1f8FUnflx8p7PaVbnuFPippSNK18t3X/k2hoZ+dc1kz+y1J75IfYnmH/IAGP5d0ZZ2PBQBQxVbXTRkAAAAAWotrYgAAAABECiEGAAAAQKQQYgAAAABECiEGAAAAQKQQYgAAAABECiEGAAAAQKT8f0ElBxaeiKdOAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1000x800 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "import pandas as pd\n",
+    "import matplotlib.pyplot as plt  \n",
+    "\n",
+    "from matplotlib.pyplot import figure\n",
+    "plt.figure(figsize=(20, 16),dpi=50)\n",
+    "plt.rcParams.update({'font.size': 22})\n",
+    "#YEARList  = result23_opiv['year'].tolist()\n",
+    "YEARList=years\n",
+    "M   = result23_opiv ['Motorway'].tolist()\n",
+    "A   = result23_opiv ['A'].tolist()\n",
+    "B = result23_opiv ['B,C & U'].tolist()\n",
+    "\n",
+    "\n",
+    "\n",
+    "plt.plot(YEARList, M,   label = 'Motorway', marker='o', linewidth=3)\n",
+    "plt.plot(YEARList, A,   label = 'A road',  marker='o', linewidth=3)\n",
+    "plt.plot(YEARList, B, label = 'B,C & U road', marker='o', linewidth=3)\n",
+    "\n",
+    "\n",
+    "\n",
+    "plt.xlabel('YEAR Number')\n",
+    "plt.ylabel('Accident Probability')\n",
+    "plt.legend(loc='upper left')\n",
+    "plt.xticks(YEARList)\n",
+    "#plt.yticks([1000, 2000, 4000, 6000, 8000, 10000, 12000, 15000, 18000])\n",
+    "plt.title('Accident Probability over road type')\n",
+    "\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Over the years"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 111,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+----+------------------+\n",
+      "|road_name|year|all_motor_vehicles|\n",
+      "+---------+----+------------------+\n",
+      "|        A|2005|                 8|\n",
+      "|        A|2005|                 3|\n",
+      "|        A|2005|                13|\n",
+      "|        A|2005|                14|\n",
+      "|        A|2005|                11|\n",
+      "|        A|2005|                11|\n",
+      "|        A|2005|                13|\n",
+      "|        A|2005|                13|\n",
+      "|        A|2005|                13|\n",
+      "|        A|2005|                10|\n",
+      "|        A|2005|                17|\n",
+      "|        A|2005|                 4|\n",
+      "|        A|2005|                 5|\n",
+      "|        A|2005|                13|\n",
+      "|        A|2005|                12|\n",
+      "|        A|2005|                 7|\n",
+      "|        A|2005|                16|\n",
+      "|        A|2005|                 7|\n",
+      "|        A|2005|                 9|\n",
+      "|        A|2005|                18|\n",
+      "+---------+----+------------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "TrafficvolumeGroupedupdated.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 116,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>B</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>M</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>U</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>C</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>A</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "  road_name\n",
+       "0         B\n",
+       "1         M\n",
+       "2         U\n",
+       "3         C\n",
+       "4         A"
+      ]
+     },
+     "execution_count": 116,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "road_length_traffic"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 102,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "KeyError",
+     "evalue": "'Trafficvolume'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
+      "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m   2897\u001b[0m             \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2898\u001b[0;31m                 \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2899\u001b[0m             \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
+      "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
+      "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
+      "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
+      "\u001b[0;31mKeyError\u001b[0m: 'Trafficvolume'",
+      "\nThe above exception was the direct cause of the following exception:\n",
+      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-102-20660c43864d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     14\u001b[0m \u001b[0mresult24\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mA2018t_df_notyear_df\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroad_length_traffic\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'road_name'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mresult24\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Accident Probability\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult24\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Total accidents\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mresult24\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Trafficvolume\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     16\u001b[0m \u001b[0mresult24\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mresult24\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Total accidents'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Trafficvolume'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     17\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mresult24\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'road_name'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'Accident Probability'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrot\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Accidents probabilty over road type \"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Orange\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m   2904\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2905\u001b[0m                 \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2906\u001b[0;31m             \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2907\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2908\u001b[0m                 \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m   2898\u001b[0m                 \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2899\u001b[0m             \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2900\u001b[0;31m                 \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2901\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2902\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mtolerance\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mKeyError\u001b[0m: 'Trafficvolume'"
+     ]
+    }
+   ],
+   "source": [
+    "A2018t_df_notyear = A2018.groupby(\"first_road_class\").agg(F.count(A2018.accident_index).alias('Total accidents'))\n",
+    "A2018t_df_notyear = A2018t_df_notyear.withColumnRenamed(\"first_road_class\", \"road_name\")\n",
+    "A2018t_df_notyear_df=A2018t_df_notyear.toPandas()\n",
+    "\n",
+    "\n",
+    "TrafficvolumeGrouped_notyear=TrafficvolumeGroupedupdated.select(col(\"road_name\"),col(\"all_motor_vehicles\"))\n",
+    "TrafficvolumeGrouped_notyear = TrafficvolumeGrouped_notyear.groupby('road_name').agg(F.sum(TrafficvolumeGroupedupdated['all_motor_vehicles']).alias('all_motor_vehicles'))\n",
+    "\n",
+    "TrafficvolumeGrouped_notyear_df=TrafficvolumeGrouped_notyear.toPandas()\n",
+    "\n",
+    "\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 118,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 120,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>road_name</th>\n",
+       "      <th>Total accidents</th>\n",
+       "      <th>Trafficvolume</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>B</td>\n",
+       "      <td>286824</td>\n",
+       "      <td>2.057755e+12</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>M</td>\n",
+       "      <td>86106</td>\n",
+       "      <td>8.846338e+11</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>U</td>\n",
+       "      <td>687752</td>\n",
+       "      <td>1.175274e+13</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>C</td>\n",
+       "      <td>188025</td>\n",
+       "      <td>3.374912e+12</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>A</td>\n",
+       "      <td>1038720</td>\n",
+       "      <td>3.126184e+13</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "  road_name  Total accidents  Trafficvolume\n",
+       "0         B           286824   2.057755e+12\n",
+       "1         M            86106   8.846338e+11\n",
+       "2         U           687752   1.175274e+13\n",
+       "3         C           188025   3.374912e+12\n",
+       "4         A          1038720   3.126184e+13"
+      ]
+     },
+     "execution_count": 120,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "road_length_total = pd.read_csv ('/Users/Asfandyar/Desktop/disertation/diseration_final/road_length.csv')\n",
+    "road_length_traffic=pd.merge(TrafficvolumeGrouped_notyear_df, road_length_total, on=['road_name'])\n",
+    "road_length_traffic[\"link_length_km\"]=road_length_traffic[\"link_length_km\"].str.replace(',','')\n",
+    "road_length_traffic[\"link_length_km\"] = road_length_traffic[\"link_length_km\"].astype(float)\n",
+    "road_length_traffic[\"Trafficvolume\"] = road_length_traffic[\"all_motor_vehicles\"] * road_length_traffic[\"link_length_km\"]\n",
+    "road_length_traffic=road_length_traffic.drop(['all_motor_vehicles', 'link_length_km'], axis=1)\n",
+    "result24=pd.merge(A2018t_df_notyear_df, road_length_traffic, on=['road_name'])\n",
+    "result24"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 122,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAAJ8CAYAAACobfuQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABehklEQVR4nO3deZglVX038O8PBhDZURCjLCoo4AIKKkYUEBUUVEZQeXEbNS8KiPoajagxITEJLlGj4r6hKCpoxA13BXGX4C4Yt0HcEEX2nTnvH1U9c2n69nTN9HQPw+fzPPXUVNWpU+fWrdvT99unTlVrLQAAAAAwU2vNdwMAAAAAuHkRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQA1jBVdWJVtX767/luzzhVdXrfxhNWoo7FfR3Hzl7LmC8j1+2ieTr+diNt2HsF69h7pI7tptjummVeVdUJ/TV4+ny3BYCbN4ESwBqkqjZMsnBk1QFVtfl8teeWzhc3hqiqY/vrZfF8twXGme/gF4DVh0AJYM1ycJINRpbXTXLoPLUFAABYQy2Y7wYAMKue0s9/leSaJDv16948by0ao7W293y3AWZba+30JDXf7QAAWNX0UAJYQ1TV1kn27hdP7KckuX9V3XVeGgUAAKyRBEoAa44nZdnP9ff3U+uXnzyTCqrqzlX12qr6QVX9taquqqpfVtXnqur/TTceU1U9uqo+XFXn9ftdVFU/7AcJf3RV1aTyyx2Uu6q2qaq3V9VvquqaqvptVb2/qu45k9fT17F+VT2vqs6oqgur6tqq+mNVnVpVj5xmvxuNZ9MP2PyWflDla6rqgqr6SFXde4p9F1VVS/LUftVeI+OOTEwnTNpn26p6XVX9qKou79v5+6r6fn8OFk4+zgxe+40GiK6qLarqNVX18/49urA/Dw8ccB52rqp3VtWv+/Nw8aTya1XVk6vqs1X1p/51/KlffuLk62Ca4y7or7n/qapL++lrVfWU5ex3h6p6VlV9cuS6uaKq/req3lFV95jJ8fu6Nqiqf66qn/R1XFRVX6iqA6fZZ9pBuafbJ8k/96u2neJ6Ob0v+/Z++XdVtfZy6n1BX/bq6T670+w/+L2sqiP7Y95QVXdYTv0PHnl9DxtTZt+qOqm6nytXV9UlVfXdqjqmqjYYs8+NBlev7mfAMf21dHG//qAB5+FGA6lX1WFV9cXqfgYsqar/mlR+i6r6j+p+jl5ay36OvqOq7r6cY21fVc+vqs9X9/m/tq/jx1X1XzO5pqrq1lX1T/11O/E5/3xVPWqmr3lMvaf31+mE90xxne5dVVv373+rqmctp871quovfdlXj6yf/B4O/ixOOs7g6wiAGWitmUwmk2kNmJL8NF2A9I2RdV/u1/06SS1n/79Pcl1fftz0vCn22zzJF5ezX0uy6aT9Tu/XnzCmPQ9McumYuq5KcmCSxf3ysWPquNdImXHTu5OsPcW+x/bbFyfZK8nFY/a/OslDJ+27aAbn44SR8nsluXw55S9fgWti75H990ly/pi6lyR5zpg6Rs/DY/pzP7rvxSNlN01yxnJex5eSbDzmWBNlDs+ya3eq6cNTvWd9HX9dzvGvS/K0MftuN1JuYZIfTVPPf87gnG83xfbFmXTNTtpn3HR6X/b+I+v2X877/5OJ87UC184KvZdJbpPk2n77C5dzjLf15X6fZK1J226V5KTlHP+XSXZYzvt48Jj38aAB52LiPfuXJB+Yoq7/Gim7T8b/rGhJrs8UP0f7fTeZwXVw2XTve5LbZdn/BVNNL09ywug1NeA8nD6D9u3dl/1Mv/yt5dT5uJF9d5rNz+LKXkcmk8lkWv407w2Y9ReU3C3Jc9P9Zf7cdL8ktySHzHfbxrR30Qz+c25Jlsx3W00m0+o7JbnvyM+LI0bWP21k/V7T7P+8kXLnpBt3abt0Xyrvmq6H06cyKXRIN+j3t0f2/UC6L8e3S7JFui+/L0ny8wwIlJJsmeQv/fZLkhydZJt+/cK+vouyLDw4doo6thmp4xdJnp7kzkk2S3KPJP+Z5IZ++79Nsf+x/ba/9vX8oD/2Vv3re8rI8X+TZMHIvguSbJhlvcTO7JdHp/X6smslOW+knU9Ocpe+nbdP8qAkL0vyPytwXew98t78uj+Xz0mybX8uD0rys5EyD53mPFySLuD7cZLH9ufhDkke05erJJ8dqesdSe6dLmC4d5J3jWz79Jj2jrZ1SZL/SnL3vo4HZtmX1Jbk5WPq+Fp/vh6aZOd+37skeVSSz/f7Xptklyn23W5SG65J8k9Jtk9y277O74yUecZyzvl2U2xfnEnXbJK1+2viP/pt501xvaw/Uv7HfbkPTfPe32+kHdMGT1Psu1LvZZKP99t+MM0x1k33GW5JXjPF9lP6bdckeXWS3dKF13dM99n7Tb/93CQbTPM+/jbJlUlemu53xNskeUCS7Qecj8UjdbV0IfR9+7p2SvK3fbkdsiwY/kuSI7Ls59ajsyzga0keN8VxNkn38/SF/XU00d67JnlClv2svTjJ7ce8b1/tyyxJ8rrc+PPzuSy7tluGB0rr99fixGt45hTX6dp92UNGyu04TZ2nZYrgKbPwWVzZ68hkMplMy5/mvQGz/oK6Xz6nCmRW10Bpz3R/KRo3TfxH96X5bqvJZFp9pyRvHPmlefOR9Rul+zLVkrxrzL7bZFmPgq9P90t1RkKTfvmYkZ+zz5tmv7UyqYdUpg+Uju+33ZBkzym23y5dr4aJYx87RZlPZNlfnzcd067DR87b30zaduxI/d+b6rykC1bGfmnPDHoCJLnnSB27zPJ1sfdI3TckedAUZbbMsi/KP5pi++h5+FmSTcYc66CRcv8xpsyrRso8eorto/9vv2SK7WtnWdBxbab4Uj2Dc/LBfv/3TbFtu0ltOGyKMrdO8v1++4Xpg8Ex53y7KfZfPM01O3GuFy/nNfy/vtzV01zbb+nLnJ9JvX9mcI5W6r3MjcOEe8zgGLuO+Vwtmeo66cvcMcmf+nIvWM77+MiV/BwtHqnrldOUO7Uvc1WSe02xfdMsC3D/kGTdge1YkC4wbUn+dYrto+d93OfnCyNlTl/B8zGx/6Jpyqw78v5Mec6S/E26HlstyeHLeQ9X5LO4UteRyWQymZY/rYljKP043V8gnpDurxhnzG9zptda+1prbdFUU5JnpftrT9L9NRDgJqpqnSSH9ountdYumtjWWrss3ZecJDmkqtafooojkqyT7pfup7TWrhh3rNba9ZNWPaefn9Fa+69p9lvSWmvTvY4JVbUg3XhQSXJKa+1rU9R3QZJ/n6aOO6e7JS5JjmqtXTym6DvSPRFv3XS3XozzojHn5dR0vQWSrsfCihh94urvVrCOmTiltXbm5JWttT9l2bm8R1XtPk0d/9Rau2TMtr/r539MF4xM5WXpvryNlp/K79IFFpPbekO6MCXprtknTlPHOBOD1T90OeW+3Vo7aYo2XJnkxf3ibdP1fJprJ6YL1NZL8n8mb6yqW2XZz4T3tdaWDKx/Zd/LT6br0ZYs+yxPNrH+J62170/a9tx+fnJr7RNT7dxa+2264DmZ/jr4bGvttGm2D/HXLBvn6kaqasssuxbe0lr74eQy/c+hY/rFrbLsZ9SM9D9/J67JqcacWtTPZ/L5WaVaa9dm2WftSWPG+3pyupDrqiQfmqa6Ff0szuZ1BMAU1rhAqbX2ztbaP7TWTm6t/XK+27OSFqa75eHiJP89v00BVmOPTPfLdLLsF/hR7+vnG6cbA2eyffv514b83KyqndPdkpUk753pfjNwj3S3fiTJx6YpN93PxX3T3f5xTZLvVtWGU01JNkh3K1uSjAtSrknylak29F/Uf94vbjVNe6bzs3RfqJLkvbXqnsg33bkc3TZugO6W7pazm+gHZ57Y7xP9l8mbVtDaNenChqTroTvOJ6cILyfqOCfdORvb1qp6QHUDh/+kH9B4ycQAv0k+3Re7fVVtNE0bpjtfn0/X829sG1al1tqf091WliwLEUYdlK43TJK8Z0jds/Fe9ttO6RcPmzx4d1VtkmVhyvsnbbt1ulvSkuQr4z67/ef3x325e1XVumNe0qfHrF8RX26tXT1m299m2e/Vp4wpk3S3Dk983h80VYGq2q+qPlDdQPKXjw56neRNfbG7Ttpn9H2b7vPz4yT/O037ZtPEH0P/JsnDp9i+qJ9/tLV26TT1DP4sroLrCIAprHGB0orqnx7xD/0THyaeyPGT6p5us+Hya1glnt7PPzDNLzAAE0+9+mum/vL0hXQ9DUbLjrpLP//+wOPeZeTfQ/edznYj/z53XKHW2h+yrBfEZHfr5+sl+XO6gWzHTRNPT9tiTF0Xttaum6a9E19mbj1NmbEm/ZX9kUl+VlXn9k+EenJV3X6a3YeY7lz+McvO5bZjiv15mi99G2dZgPHT5bTjJ/18s6raeEyZsW2dtP0mbe2fFPWNJM9IN4bSRunCxalsMmb9tG3oe3pMBInjzteqNvFl/X59uDvqaf38zNbaLwbWO1vv5URQtHW6QedHHZLus9nSjbs26s7pep8lyVsz/Wf3o325tdKNizOVXy3nNQwxXV2j18HY89b/LJny2qnuyYYnpbut87B0YzKNewLZ5Gt3kyx735b3+TlnOdtnRWvtp0m+1S8+bXRbVT0gyY794vJCzxX5LM72dQTAFARKSarqjukG9ntluv+MvpnuLx6bpeva/PWq2myO27RNkof0i253A6bU/2ya+Ev/15PsVFW7jk7pxuj5al/m4VV1u0nVTHwRvGzg4Ue/QA7ddzqjIf7lyyk7bvt0QcE4txqz/oYZ7j8utFiu1trr0wVb30r3Jftu6W4jel+S31bVJ2eh59JMz+W4XjtXjlk/eZ/lHWf0Whl3rBVqa1U9MckL+sUz0t0OtnO6sHCjfjpgZJfR2w1npQ1z6AvpxllMRnop9b/TTNzO9+4VqHe23suvphtcPLnpbW8Ttxad0Vo7f9K2FfnsJuM/v9Ndt0PN9mdg8jl7UZbdwnhqup8Jd03XA3Xi+j2i3z75FrLZ+Lm5Kkz8DvvoSb9LL+rnizOmB+iIFfkszvZ1BMAUbvGBUt9F+OR0v3Aen2Tb1tp+rbXHpPvr+/vTPXb6dXPctKele3++11r73hwfG7j5ODTd+D9JFyx9b8z0+L7M2rnpOBHjvtwsz0yCgRUx+uVheT1Ex22fqONPrbWa4bT3Srd8JbTWTm2tPSDdgOMHpXsK3U/T/V9wYJJvVdV2K3GImZ7LFQkHR/cZ8p6NO9aKtvVZ/fzrSR7SWvtQa+2c1tqfW2uXt9Yuz7LPy/KsyvO10vrbLSd6djx5ZIyap6S7Zi7P9LdejTMr72U/ZtrEuDeHVNV6ydLAa6LH0o1ud+uNfv4fOeDzu3h5L2wVW5HzNu76/VBrbWH/M+HnrbW/jFy/4wKP2fi5uSp8KF3b1kvX6yr9WH5P6LefMIPx9VbkfN5cryOAm5VbfKCUZP9091h/K8lzW2sT97Wn//ez0g06+cS56qXUh1yL+kW9k4DpTHUL29B9Jm6J2XVgPaO30gzddzqLR/6947hC/a1g4/4KPXFrym378VpuNlprF7bWPt5ae2Fr7e7peiwsSddr9nkrUfV053KrLDuX540rN41L091ymXR/oJnO3fv5RdPcQje2rZO2T27rLv38lGkGor7ncupebhv68GaHMW2YS+9J16Ntq3S/zyTLfn84ZboB9qcxm+/lxJhuo2Mm/Z90v39eneQjU+yzON31ntz4ttrV3eKRf489b/1DByZ6Gy4eWT/xKPtk+gGqx12/l2TZAwKW9/nZaTnbZ00fgp3cLy7q549Nd020dE/CXJ4V+Swuzs3zOgK4WREodeNVJN2AgDf55bP/ZeysdN3ilz7Bp6q26ce4GDodN4M27ZtuDJGrs+yvewA3UlU7JNmjX3zF8v7ymmW3Au1SVaNfSr7Qz/fsn442I/34GL/vF1ck2Brnx1k2ns/Caco9dpptE69prXTjtcyXibGXpnrC0Yy01j6UZYPGrswXwenO5UEj//760Ir7HgYT+z2quicP3kTfS2XiSUzTHefA/ov3VHXslGVjZE2uY71+PuX5rqq1MsVT0caY7nw9LMvGzBp8vqYx6HpprZ2X5Iv94qKq2jPLvlyvyO1us/pe9gOon90vPmnS/FNtiicG9uu+0y8+YfL21dg3syzAOHiacgckmXja5ugTLNcb+fe463eD3PizutSk9226z8/dM2lA7xUwMeD3TH+uTfxxdPf++BPjKX25v4aXZ/Bn8WZ8HQHcrAiUukH7kuTVo0/RmPREjYnQaXTA1nXT/UI7dJrJ4KoTg3F/rLX212lLArdkoyHOTMLnD2fZF57Rfd+a7hHka6V7ytjYwaWn+JLyhn6+d1UdPc1+a01+0tM4/dOJJm6FeVz/JXlyfbdL8tJp6jg3ywYof8Xyxh+qqi1XUS/Uv/Tzv5nm2HeY7uEP/e0hE/v/ZVy5GRh3LrdI8o/94o9ba2etYP0TXxpvn+SfxpQ5Nt0tfUnyjmnqumOSf5i8su+N8Np+8brcdEDnX/fzcY9jf3FmHsrdv6oOm6INt07yin7xz1n2pLPZMPH+bjEuEJjC0jFqkjy///fPW2tfG1N+SJ2z8V5O9FJ6ZFU9ON0wAqPrp/Kafr5nVT1/mnKpqrWravvpysyF1tqfsuxaOLKq7jG5TN9b8pX94h/TPfFtwoVJJnqUPSpTe12mHzT6hH4+3ednNoZwWO7PtVGttW9k2UDg/5xkn/7fM30C4Yp+Fm921xHAzU5rbY2ekpyerkvtIWO2f7bffnq6/4inm/acg/Zumu5xsi3JvvN9/kwm0+o5pRsA+tf9z4ofDdhv4mfi75KsPbL+uf36lu7JTU9O95CCTZNsn65Xx8eTPGdSfesm+fbIviemGx9ly3QDye6e7ovNz5JsOqYtJ0zRzi3TfWlp6XorPTvd06K2SPfX6p+nuy3nr32ZY6eoY5skF4zU8S9Jdktym75td0/XW+LD6XqE7j5p/2P7fRfP8JxO9ToeN3Jujupf14J+WqsvsyjdrSrvTNfravt0t7dtna43w9dG6njUwOtk75F9f92fh6NHzuVB/XszUeahU9Qx0/NQST43Utfb0t2Ctnm6WyLfMbLt02PqGG3rknRffnfu6/jbJJ8ZKfPyKfb/15Ht709y7/79vs/I8X86Uma7SftvN6kN1yR5WbpbZm6TbrDr0ev9Gcs559tNsX1xxl+z9x3Z9z/SfWFfp79e1h5zztZN92W6jUwvnoWfLyv1Xo7Udbt0PVomzmnr27vOcvb74MgxPpbuj3t/k+5n0rbpbvF7ZbrbnI6f5n3ce2XOxfLes0nldkg3dk9LFxAdnmWftUcl+dFIux4/xf7vG9n+2nQ/o27TX/v/Pfn6HfO+fbXfvqSvY6cs+/xMvKcT78PpK3g+Pt3v/4t0w0ZsmGU/12rMPn8/6Rq9OMn60xxj9D1coc/iyl5HJpPJZFr+NO8NWOUvcPmB0sQvRUfNd1v79hzZt+dX4/5TNplMpnShzcQvyS8ZsN8zR/bbb9K2f8iyL37jpudNUedtRn7WTjdtOmm/iX1OGNPWPdON5zJVXVen+4K2ONN80Us39sZPZ9C2lmSXSfsem5UPlNZP8ssxxzuhL7Nohu07bgWuk71H9n9Ikt+OqXtJJoWFQ89DX3bTdE9Xm+51fDnJJmP2nyhz+HKuqQ9nioAl3SPW/2ea/b6W7gvlxPJ2k/bfbmTbwnS3Go6r6zUzOOfbTbF9caa/Zr8+5ninT3Pe/2uk3PVJ7jALP2NW6r2cVNdnJu335hnss2663pMz+Wy8dpr3ce9ZOBfTvmeTyu6TLiwZ19brM8XP0X7frUaONdX0kXS92FuSNqaO22X6n3n/nu6PpNNeU8t5jftNU/+U5ztdmH7tSLm3LucYo+/hCn0WV/Y6MplMJtPyJ7e8db/kJN1fkVcHz+jn72mttXltCbA6G71l7YMD9jsly8ZpudG4R621V6X7i/ibkpyb7vaLK9P9Ffq0dD+f3jO5wtbaX9J9iXpcukdd/z7dF4e/JPlhut4ND8mycZFmpHW37NwjXfD/277O36cbsHaP1tpybzVq3a1v90ry1HS3Q0y07Zok56f7i/2Lk+zQWvvBkPbN8DVcleRB6b7Q/CJdEDbZyelu0XpdugdEnN+376ok/5vuy98DWmsvXsnm/CpdT53Xpwu5rknXU+QTSR7UWnvDNPvOSGvt4nTXwlOSfD5dL43r+/nn0/V827dNMXbOJNemGxvlhUm+n67Xx+VJvpHkqa21J7TWbpji+FckeXCSf0t37q5N14vtO+kGNN87M3+M/F/TjVH2b+lu17kyXVDwxXQ9xf5+hvUM9cgkr04XCly1nLITRh/g8fnW2u9WthGz+F4mN729baqnu00+/rWttWel61X4tnTvwWV9Gy5K8t0kb0wXbrxgXD1zrbX2lXRjFB2X7uff5ek+979K9z7t2lr7rzH7/jFdL7U3pOsxc126z+gZSZ7WWjsky25bHnf8C9L1DD023Tm7Ot3P4i8nWdhaG3ur8Ey11j6XrmfPZ7PsuljePqO3BCbDxvha4c/izfU6Ari5qDU9s6iq09P9Jf9xrbWbPE2kH6DzO1n2H81LWmsXTSqzVbr/sKYbI2A22nqvJD9I98vCdq2181fl8QBYs1XV3km+0i/eqXkk9hqpH6D/f/vFx7fWTpnP9sBUqur9SZ6Y5CettZuMMTWp7HZZNibaPq2101dt6wBYETMd8PFmo6ruk+TNI6smHt36H1W19C8PrbU9+vmSqjoo3V/fn5nksKr6Qbq/EN8q3V+Zdk7yp0w/6ORsmOid9HlhEgAwQ4v6+V/SjXUGq5V+QPKJp7XdpKcrADdPa1yglGTjJPefYv0OU6xLkrTWfltV90sX6Dw+yT37Ov6SbuDa16QbyG+Vqap10/3VJlnBR/0CALcs/ZOu/q5fPKG1du18tgfG+L9Jbp3uVtsT5rcpAMyWNS5Q6rvEzujR1JP2uzrduCFvmu02zfD416Z76hAAwFj97fprJbl9uvGWtkz3Rf2/5rFZcCNVtSDdoNj7pHtCW5K8qx93D4A1wBoXKAEArOH+Kck/T1r3b621385HY2CM6yYt/zE3vW4BuBnzlDcAgJuna9M9De6odI+Dh9XRn5J8NN3TJP88340BYPasEU95u+1tb9u22267+W4GAAAAwBrjf/7nf/7cWttiqm1rxC1v2223Xc4666z5bgYAAADAGqOqzhu3zS1vAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADLJgvhsAAACwJmmt5bLLLsull16aK6+8MjfccMN8Nwm4hVuwYEE22WSTbL755lmwYHaiIIESAADALGmt5U9/+lOuuOKKbL755tlqq62y9tprp6rmu2nALVRrLddee23+8pe/5Pzzz8+2226btdZa+RvW3PIGAAAwSy677LJcccUV2XbbbbPppptmwYIFwiRgXlVV1ltvvdz+9rfPggUL8te//nVW6hUoAQAAzJJLL700m2++edZee+35bgrAjVRVNt1001xxxRWzUp9ACQAAYJZceeWV2XDDDee7GQBTuvWtb52rrrpqVuqacaBUVXerqudW1fur6tyqWlJVraoOmZWWdMf4j77OVlUvmK16AQAA5sINN9ygdxKw2lprrbWyZMmSWalryKDcRyR57qwcdQpVdd8k/5CkJXGTMQAAcLNkzCRgdTWbP5+G3PL24ySvTvKEJNsnOWO2GlFV6yV5b5ILknx8tuoFAAAAYPbNuIdSa+2do8uznLr/a5Kdkjw6ycGzWTEAAAAAs2veB+Wuqvsn+fskJ7XWPjnf7QEAAGBuLFmyJNtss02qKltssUWuu+66eW1PVa1Q54ntttsuVZXFixfPfqPmyKJFi5a+/olpnXXWyVZbbZUDDjggp5566py1Ze+9905V5fTTT1/lxzr99NNTVdl7770H7bd48eJUVbbbbrubbBt3PUyc4xNOOGGF27s6GTKG0qyrqlulu9XtoqzC8ZkAAABWGyfdzMZYOqytsqq/8IUv5Pzzz0+S/PnPf84nPvGJHHywm1ZWxOmnn5599tkne+2110oFMbvsskt23XXXJN1TC3/0ox/ltNNOy2mnnZajjjoqxx9//Ow0mKVOOOGEPO1pT8tTn/rUm1XYNN89lP49yd2SHN1a+/M8twUAAIA59O53vztJcoc73OFGy/PlnHPOyTnnnDOvbZhvBx10UE444YSccMIJOfnkk3POOefkDW94Q5LkTW96U774xS/OcwtXD3e4wx1yzjnn5Etf+tKM9znuuONyzjnnZOHChauwZXNn3gKlqvrbJM9Lcmpr7cPz1Q4AAADm3kUXXZSPf/zjqap86EMfytprr53Pfe5z+f3vfz9vbdpxxx2z4447ztvxV1dHH310HvSgByVJTjnllHluzephnXXWyY477pi73OUuM97n9re/fXbcccdssskmq7Blc2deAqWqWj/JCUkuTXLkCtZxeFWdVVVnXXjhhbPZPAAAAFaxD3zgA7nmmmuy9957Z88998zDH/7w3HDDDXnve9877X7nnHNODj/88Gy//fZZf/31s9lmm+Ve97pXXvCCF+S88867Sfnzzz8/z3/+87Pzzjtngw02yMYbb5yddtopRx55ZH784x/fqOx0Yyidd955ecpTnpLb3e52WX/99bPzzjvnVa96VW644YZp23vdddflrW99ax70oAdls802y61udavssMMOef7zn5+pvsuecMIJqaosWrQol112WV74whfmTne6U9Zbb73c4Q53yBFHHJGLLrroRvvsvffe2WeffZIkZ5xxxo3GQRo6NtA4u++++9LzMGF0rKBTTz01++yzTzbbbLNUVb7//e8vLfeNb3wjBx98cLbaaqusu+662WqrrXLIIYfkW9/61nKP+5WvfCUPfehDs9lmm2XDDTfMnnvumU984hNTlj3vvPNy3HHHZZ999snWW2+d9dZbL5tvvnn22WefnHTSScs91hVXXJFjjjkmd77znbPeeutl6623ztFHH52//OUvNyk73RhK40w1htJ2222Xpz3taUmS9773vTd67xYtWpTLL788m2yySRYsWJDf/va3Y+vebbfdUlU57bTTZtyelTVfPZT+I8kOSZ7fWvvDilTQWnt7a2331truW2yxxey2DgAAgFVq4va2RYsWJcnSL9Xvec97xu7zvve9L7vuumve8Y53pLWWRz3qUdlrr72yZMmSvOY1r8lXvvKVG5X//Oc/n3vc4x553etel0suuST77bdfHv7wh2f99dfP2972tnzkIx+ZUVt/+tOfZvfdd8+JJ56Y9dZbL495zGOy9dZb52Uve1ke//jHj93v0ksvzUMe8pAcccQR+dGPfpT73Oc+OeCAA3L99dfnda97XXbfffexA3lfcskleeADH5h3v/vd2XXXXfPwhz88V155Zd761rfmYQ972I0GMN9///2z3377JUlud7vb5alPferSaf/995/Ra1yeSy+9NEmy3nrr3WTba17zmixcuDBXXnllHvGIR2TPPffMWmt1ccNb3vKWPOhBD8p///d/Z5tttskhhxySbbbZJh/96EfzwAc+MO94xzvGHvNjH/tYHvrQh+ZPf/pTHvGIR2SXXXbJ17/+9TzmMY/Ja1/72puUP/HEE/OSl7wk559/fnbccccsXLgwO++8c84888w88YlPzHOe85yxx7r22muz77775vjjj8897nGPPOpRj8rVV1+d448/Pg94wANywQUXDD1lM3LIIYfkgQ98YJLkLne5y43euz333DMbbrhhnva0p+WGG27I29/+9inr+Na3vpWzzz47d77znWft/Z6J+RqUe2GSJUmeWlVPnbRton/hEVV1YJJftNb+bk5bB5Dc/AbM5MZW4QCiAMDK+d73vpfvf//72WijjXLIIYckSR796Edn8803z89//vOceeaZS2+xmvDd7343z3jGM9Jayzvf+c48/elPv1FvosljH/3mN7/JIYcckssuuywvf/nLc8wxx2TBggU32j7Tu12e/OQn589//nOe/OQn553vfGfWXXfdJMlPfvKT7LPPPmPrOfzww/O1r30thxxySN7+9rdns802S5LccMMNeclLXpJXvepVWbRo0ZSDaJ966ql55CMfmW984xvZcMMNkyS///3vs8cee+Tss8/OySefnCc+8YlJkmOOOSZ77LFHPve5z2XHHXec9YGdr7jiinz+859PkqUDdo9661vfmk996lM54IADbrT+Bz/4wdIQ5+STT87jHve4pds+9KEP5YlPfGKOOuqoPOABD8g97nGPm9T7hje8Ia9+9avzghe8YOm6T37yk3nsYx+bf/iHf8hDH/rQ3Ote91q6bb/99svChQtz97vf/Ub1/PznP8++++6bN77xjXniE5+Y+9///jc51je/+c3c9a53zc9+9rOlY3pddtllWbhwYb70pS/l6KOPzsknn7y8UzXYf/7nf+aEE07I17/+9ey5555TvndHHXVU3vCGN+Sd73xnXvayl2Wddda50fY3v/nNSZIjjjhiaZA3F+ZzUO61kuw1xXS7fvud++Xd56V1AAAArBITvZMe//jH59a3vnWSrufLREAy1eDc//7v/57rr78+L3jBC/KMZzzjJrem7bTTTtlpp52WLr/2ta/NZZddlic84Qn5x3/8xxuFSUmyzTbbZLfddltuW88888ycffbZ2WSTTfLGN75xaZiUJHe/+93zspe9bMr9fvrTn+bDH/5wtt1227zvfe9bGiYlydprr53jjjsu97znPXPGGWfkRz/60U3233DDDfOud71raZiUJH/zN3+TZz/72UkyaDDoFXXllVfm29/+dg488MCcf/752WCDDfJ3f3fT/h5Pe9rTbhImJV0gdP311+fQQw+9UZiUZOm66667Lq9//eunPP7uu+9+ozApSR71qEflsMMOyw033JA3vvGNN9p23/ve9yZhUpLssMMOS9+n6XqlveY1r1kaJiXJRhttlLe+9a1Ze+2189GPfnTpEwnn2g477JD9998/f/jDH/Kxj33sRtv+/Oc/5+STT86tbnWrPP3pT5/Tds1LoNRa2661VlNNSSZumH1hv27X+WgjAAAAs++aa65ZOp7NxG1uEyaWTznllFx++eVL199www35whe+kCRTBhpT+exnPzuo/DhnnHFGkuTAAw+ccjDlJz/5yVPu95nPfGbpfuuvv/5Ntq+11lpLe2F985vfvMn23XbbLVtttdVN1k8MGr6qBi//l3/5l6Vj+GywwQbZY489cvrpp2fLLbfMxz/+8Wy99dY32eexj33slHVNnLuJ2xonmwhApuqhlWRpwDjZxDmfar+rr746H//4x/OP//iPeeYzn5lFixZl0aJFS4Ok//3f/52yzk033TQHHnjgTdZvv/322WOPPbJkyZJ89atfnXLfuXD00UcnWdYbacK73vWuXHPNNTn00EOz+eabz2mbVuktb1V1XLrb2z7WWnvxqjwWAAAAq79TTz01F110UXbYYYelY8dMuPe9751ddtklP/jBD/LhD384z3jGM5J0vTCuvPLKLFiwINtvv/2MjjMxePTKPrVtYiDkO93pTlNu33TTTbPJJpvkkksuudH6X/3qV0mSN73pTXnTm9407TGmumVum222mbLsxhtvnKQLTlaFXXbZZeltbeuss04233zz7LbbbnnUox41ZTCWJNtuu+2U63/3u98lGX/u7nznO9+o3GTj9psYCHvyINXf/OY38/jHP37awasnxoIaV+e4bV//+tenrXdV23///bPDDjvkjDPOyE9/+tPsvPPOWbJkSd761rcm6W6Lm2szDpSq6j5JRqOwnfv5f1TV0j5orbU9RsrcPsnd+jkAAAC3cBO3s11yySXZc889b7L9T3/609JyE4HSuCevTWdF9plNE09/22233aYcH2jUVLdpzeVYOKMOOuigHHvssYP2GRc0TZiL9+LKK6/MwoULc8EFF+QZz3hGjjjiiGy//fbZaKONstZaa+Xzn/989ttvv7R28xxns6ry7Gc/O8997nPz5je/Occff3xOO+20LF68OPe9732XPoVvLg3pobRxkpuOXNU9rQ0AAACmdf755+eLX/xiki44mgiPpvKNb3wjP/vZz3K3u90tt7nNbXLrW986V155ZX75y1/mLne5y3KPtc022+RnP/tZfvazn+WOd7zjCrd5YkydcU9ju/jii2/SOynJ0lvD9tlnn7z61a9e4ePfnN3hDnfIL3/5y/zqV7+a8j2b6MU1Om7RqHHnfGL96H5f/epXc8EFF2S33XbLO9/5zpvs84tf/GLato471rjjzYdFixblpS99aU488cS84hWvWHr723z0TkoGjKHUWjt93LhHk8ZAGt1nUb9+0YDjTOzznwNeBwAAAKu5E044IUuWLMlDHvKQtNbGTo9//OOTLOvNtPbaa+ehD31okkwZFkxlv/32G1R+nL322itJ8qlPfWrK26U+8IEPTLnfIx7xiCTdLX7XX3/9SrVhJiYGC5+LY83UxLl73/veN+X297znPUmSvffee8rt487txPrR/S666KIkmXKMpyRLx+0a5+KLL85pp512k/W//OUv861vfStVlQc/+MHT1rGiZvrebbzxxnnqU5+aSy+9NP/6r/+az33uc7nNbW6TJzzhCaukXcszn095AwAA4Baitbb0kejjBrKeMLH9xBNPXHrr2Etf+tKsvfbaSx+zPtm5556bc889d+ny85///Gy44Yb50Ic+lOOOO25pPRPOP//8/M///M9y2/2gBz0ou+66ay6++OI897nPzXXXXbd02znnnJOXv/zlU+53n/vcJwcddFB+8YtfjB3X569//Wve9ra3zUoINNF75he/+MVqEyo95znPyYIFC/LBD37wJk8nO+WUU3LyySdnnXXWyXOe85wp9//ud7+b173udTdad9ppp+X9739/1l577aVPvEuWjZX15S9/+UbXwZIlS/Kv//qv+frXv77c9v793/99/vCHPyxdvvzyy3PkkUfmhhtuyMKFC8eOa7WyJt67c845Z7lln/3sZ6eq8upXvzpLlizJ05/+9NzqVrdaJe1aHoESAAAAq9zpp5+eX/3qV1l//fVz8MEHT1t2//33zxZbbJE//OEPS3uN3O9+98vb3/72JN3T4Lbffvs8/vGPz0EHHZR73OMe2WmnnfKtb31raR3bbrttTj755Gy44YZ5yUtekm233TYHH3xwDjnkkOy2227Zbrvt8slPfnK57a6qnHjiidl8881zwgknZPvtt8+hhx6a/fffP7vuumse+MAHjh2U+r3vfW/22muvfOxjH8sOO+yQPfbYI4ceemgOOeSQ3Oc+98kWW2yRZz3rWbMSAG277ba5973vnQsuuCD3ute98uQnPzl/93d/N6+32+2yyy55/etfnyVLluSxj31s9thjjzzxiU/M/e9//6W90I4//vjc8573nHL/5zznOXnBC16QXXbZJYcddlj23HPPHHDAAbn++utz3HHHLR08POkCvAMPPDCXXnppdt111zziEY/IoYcemh122CEvf/nL8w//8A/TtvUBD3hANt5449z1rnfNYx7zmDzucY/Lne9853z+85/PXe5yl+UOrL4y9thjj2y11VY5++yzs/vuu+epT31q/u7v/m5pD65RO+64Yx72sIcl6cbZOuKII1ZZu5ZHoAQAAMAqN3H72kEHHZSNNtpo2rILFizIoYceeqP9ku4x82effXYWLVqU6667Lh//+Mfz1a9+NQsWLMgLX/jCPOQhD7lRPY94xCPywx/+MEcddVTWX3/9fPrTn84XvvCFXH311TniiCOWhhrLc4973CNnnXVWnvSkJ+Wqq67KqaeemsWLF+ef//mf8+EPf3jsfhtvvHG+9KUv5X3ve18e/OAH55e//GU++tGP5qtf/WqWLFmSZz7zmfnc5z43az1M/vu//zuPf/zjc9FFF+WDH/xg3vWud+XTn/70rNS9oo488siceeaZWbhwYX7961/n5JNPzuLFi/PYxz42X/va13L44YeP3XfhwoVLb+v69Kc/ne9973v527/923zsYx/LC1/4wpuU/+hHP5pXvOIV2X777XP66afnS1/6Uu5+97vna1/72tJbEMdZd9118+UvfznPfOYz88Mf/jCf+MQnsu666+aoo47Kt771rWy11VYrfS7GWW+99fLZz342BxxwQH7961/n/e9/f971rnfljDPOmLL8RKD0iEc8YuyT8OZC3VxHOB+1++67t7POOmu+mwGsaU6a3yeDsJIOu/n//wbAzc8555yTnXbaab6bAazB7n3ve+f73/9+TjvttOUGZVMZ8nOqqv6ntTblI+T0UAIAAAC4GfjYxz6W73//+9lpp52y//77z2tbFszr0QEAAAAY6y9/+Ute9KIX5aKLLlo6ptirX/3qVM3vHRUCJQAAAIDV1GWXXZZ3vetdWbBgQbbffvu8+MUvzgEHHDDfzRIoAQAAAKyutttuu6yO418bQwkAAACAQQRKAAAAAAwiUAIAAABgEIESAADALFodxzoBSGb355NACQAAYJasvfbaueGGG+a7GQBTWrJkSdZaa3aiIIESAADALLn1rW+dyy+/fL6bATClK6+8Muuvv/6s1CVQAgAAmCUbb7xxLrroIr2UgNVOay0XX3xxNthgg1mpT6AEAAAwSzbaaKNssMEGOe+883LxxRfn+uuvN6YSMK9aa7nmmmvyhz/8Iddff30222yzWal3wazUAgAAQKoqW265ZS677LJceuml+dOf/qS3EjDvFixYkE022SRbbrnlrI2hJFACAACYRVWVjTfeOBtvvPF8NwVglXHLGwAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADDLjQKmq7lZVz62q91fVuVW1pKpaVR0y9KBVtU5V7VtVr6mqs6rq0qq6tqp+V1Ufqaq9h9YJAAAAwNxYMKDsEUmeO0vH3SvJF/p//zHJV5NckWTnJAcnObiqXt5a+6dZOh4AAAAAs2TILW8/TvLqJE9Isn2SM1biuEuSfDTJg1trt2+tHdhae0Jr7Z5JDk1yQ5KXVdU+K3EMAAAAAFaBGfdQaq29c3S5qlb4oK21Lyf58phtH66qhyV5RpInJfnKCh8IAAAAgFm3ug7K/b1+fsd5bQUAAAAAN7G6Bko79PM/zGsrAAAAALiJ1S5QqqqtkizqFz86j00BAAAAYAqrVaBUVQuSvD/JJkm+1Fr75Dw3CQAAAIBJVqtAKclbk+yb5Px0A3KPVVWHV9VZVXXWhRdeOCeNAwAAAGA1CpSq6vXpnuz2xyT7ttb+OF351trbW2u7t9Z232KLLeakjQAAAACsJoFSVb0myXOSXJguTPr5PDcJAAAAgDHmPVCqqlcleX6SvyR5aGvtp/PcJAAAAACmMa+BUlW9IskLk/w1ycNaaz+cz/YAAAAAsHyrNFCqquOq6tyqOm6Kbf+W5EVJLk4XJn1vVbYFAAAAgNmxYKYFq+o+Sd48smrnfv4fVfWCiZWttT1Gytw+yd36+Whdj07y0n7xF0mOrqqpDntua+0VM20jAAAAAKvejAOlJBsnuf8U63dYgeNuPvLv3ftpKmckESgBAAAArEZmHCi11k5PMmU3omn2WZRk0RTrT0hywpC6AAAAAFg9zPtT3gAAAAC4eREoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGmXGgVFV3q6rnVtX7q+rcqlpSVa2qDlmZBlTVYVV1ZlVdUlWXV9VZVXVUVQm7AAAAAFZDCwaUPSLJc2fz4FX1piRHJrk6yZeSXJdk3yTHJ9m3qg5prS2ZzWMCAAAAsHKG9AL6cZJXJ3lCku2TnLEyB66qg9OFSX9Mcq/W2oGttYVJdkhyTpKFSY5emWMAAAAAMPtm3EOptfbO0eWqWtljv7ifv6i19vOR41xQVUckOT3JMVX1Rr2UAAAAAFYf8zJOUVXdMcluSa5Ncsrk7a21M5L8LslWSfaY29YBAAAAMJ35Gvj63v38J621q8aU+e6ksgAAAACsBuYrULpTPz9vmjK/mVQWAAAAgNXAfAVKG/bzK6Ypc3k/32gVtwUAAACAAeYrUFppVXV4VZ1VVWddeOGF890cAAAAgFuM+QqUJnofbTBNmYleTJdNtbG19vbW2u6ttd232GKLWW0cAAAAAOPNV6C0uJ9vO02ZrSeVBQAAAGA1MF+B0vf6+d2rav0xZe47qSwAAAAAq4F5CZRaa+cnOTvJukkeN3l7Ve2V5I5J/pjkm3PbOgAAAACms0oDpao6rqrOrarjptg8se6VVbX9yD5bJnlzv/iK1tqSVdlGAAAAAIZZMNOCVXWfLAt6kmTnfv4fVfWCiZWttT1Gytw+yd36+Y201j5SVW9JckSSH1XVF5Ncl2TfJBsnOTXJ8TNtHwAAAABzY8aBUrqQ5/5TrN9hRQ/eWjuyqr6W5KgkeyVZO8m5Sd6d5C16JwEAAACsfmYcKLXWTk9SQypvrS1Ksmg5ZU5KctKQegEAAACYP/P1lDcAAAAAbqaG3PIGAACsyU4adEMCq5PD2ny3ALiF0UMJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADDI4ECpqg6rqjOr6pKquryqzqqqo6pqRerarKr+o6p+VFVXVNU1VXVeVZ1YVbsOrQ8AAACAVW9QCFRVb0rygSS7JzkzyReS3DXJ8Uk+MiRUqqptknw/yYuTbJXkK0k+meS6JE9K8t2qOnhI+wAAAABY9YYEQAcnOTLJH5Pcq7V2YGttYZIdkpyTZGGSowcc+xVJtklyWpJt+/oOSRdQ/UuSBUneVlXrDKgTAAAAgFVsSA+lF/fzF7XWfj6xsrV2QZIj+sVjBvRS2qef/1tr7cqR+pYkeXmSq5LcJl1gBQAAAMBqYkbhT1XdMcluSa5Ncsrk7a21M5L8Lt2ta3vM8NjXLGd76+d/nmF9AAAAAMyBmfYmunc//0lr7aoxZb47qezyfLaf/2NV3XpiZVVVkpcluXWST7TW/jTD+gAAAACYAwtmWO5O/fy8acr8ZlLZ5fnHdOHTI5OcV1XfStdraZck2yZ5f7oxmwAAAABYjcw0UNqwn18xTZnL+/lGM6mwtfbnqnpIkjcleWqSA0c2/yzJGa21y2bYPgAAAADmyJBBuWdVVe2Y5HtJ9kvy5CS3T7Jpkn3TBVfvqKp3T7P/4VV1VlWddeGFF85BiwEAAABIZh4oTfQ+2mCaMhO9mJbbq6iqFiT5aJLtkzy2tfb+1tofW2uXtNa+nORhSS5I8rSq2meqOlprb2+t7d5a232LLbaY4csAAAAAYGXNNFBa3M+3nabM1pPKTuf+SXZO8uvW2jcnb2ytXZTkM/3iQ2fWRAAAAADmwkwDpe/187tX1fpjytx3UtnpbNPPL5mmzMX9fPMZ1AcAAADAHJlRoNRaOz/J2UnWTfK4yduraq8kd0zyxyQ36XE0hd/38x2ratMxZfbo57+eSRsBAAAAmBtDBuU+rp+/sqq2n1hZVVsmeXO/+IrW2pKRbc+uqnOr6n2T6vpmulBp/STvqqqNR/ZZq6r+MV2gdH26sZYAAAAAWE0smGnB1tpHquotSY5I8qOq+mKS69I9lW3jJKcmOX7SbrdNcrd0PZdG67q2qhYl+XiSxybZq6q+m+SqJLsmuVOSJUme11r75eBXBQAAAMAqM+NAKUlaa0dW1deSHJVkryRrJzk3ybuTvGW0d9IM6vpCVe2S5PlJHpJk73Q9pi5I8qEkr2+tfWtI+wAAAABY9QYFSknSWjspyUkzLHtskmOn2f7zdD2eAAAAALiZGDKGEgAAAAAIlAAAAAAYRqAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwwOlKrqsKo6s6ouqarLq+qsqjqqqlYonKqqtavqWVX11ar6S1VdXVXnV9Unq+pRK1InAAAAAKvOgiGFq+pNSY5McnWSLyW5Lsm+SY5Psm9VHdJaWzKgvtsk+UyS+ya5KMk3k1yRZOskD01yQZJPDmkjAAAAAKvWjAOlqjo4XZj0xyQPbq39vF9/uyRfSbIwydFJXj/D+tZK8ol0YdLrkxzTWrt6ZPtGSbabafsAAAAAmBtDblN7cT9/0USYlCSttQuSHNEvHjPg1rf/m+Rvk3yqtfa80TCpr/ey1tqPBrQPAAAAgDkwo/Cnqu6YZLck1yY5ZfL21toZSX6XZKske8zw2M/u56+dYXkAAAAAVgMzveXt3v38J621q8aU+W6SO/RlvzFdZVV1+yT3SHJDkm9W1V2TPCHJHdONpXRGks+11toM2wcAAADAHJlpoHSnfn7eNGV+M6nsdO7Zz/+S7na5V01qyzFJvlFVC1trf5phGwEAAACYAzMd72jDfn7FNGUu7+cbzaC+zUfmr013G93OSTZO8pAk56QbX+kmt9cBAAAAML+GDMq9Ko67IMnXWmuHtdbO6Qfi/kqShye5KsmDq2qfqSqoqsOr6qyqOuvCCy+co2YDAAAAMNNAaaL30QbTlJnoxXTZDOobLfOOyRtba79N8ul+ccpAqbX29tba7q213bfYYosZHBIAAACA2TDTQGlxP992mjJbTyo7nV+P+fdUZbaaQX0AAAAAzJGZBkrf6+d3r6r1x5S576Sy0/lZlo3HdJsxZW7bzy8fsx0AAACAeTCjQKm1dn6Ss5Osm+Rxk7dX1V5J7pjkj0m+OYP6rkvyqX5x3ynqWyfJg/vFs2bSRgAAAADmxoIBZY9L99S1V1bVN1prv0iSqtoyyZv7Mq9orS2Z2KGqnp3k2Um+01p7yhT1PS7J4VX1qdba5/p91k7yyiR3SfK7JB8b/rIAAADgZuKkmu8WsDIOa/Pdgnkx40CptfaRqnpLkiOS/KiqvpjkunQ9jDZOcmqS4yftdtskd0vXc2lyfT+oqucleX2Sz1TVd5L8Nsm9k9w5ySVJHtdau2rgawIAAABgFZrpGEpJktbakUmemO72t72S7JfkF+l6IR3cWrthYH1vTPKQJKcl2T7Jo9OFXG9Psmtrbbm3zwEAAAAwt4bc8pYkaa2dlOSkGZY9NsmxyylzepLTh7YDAAAAgPkxqIcSAAAAAAiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMsmC+GwAAcBMn1Xy3gBV1WJvvFgAAc0APJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGGRwoVdVhVXVmVV1SVZdX1VlVdVRVrXQ4VVWHV1Xrp+NXtj4AAAAAZt+gEKiq3pTkA0l2T3Jmki8kuWuS45N8ZGVCparaNsl/JmkrWgcAAAAAq96MA6CqOjjJkUn+mORerbUDW2sLk+yQ5JwkC5McvSKNqKpK8q6+Pe9bkToAAAAAmBtDehS9uJ+/qLX284mVrbULkhzRLx6zgr2UnpVk3/4Yi1dgfwAAAADmyIzCn6q6Y5Ldklyb5JTJ21trZyT5XZKtkuwxpAFVdackr0rytXS3zgEAAACwGptpb6J79/OftNauGlPmu5PKLld/q9u7kyxI8ozWmvGTAAAAAFZzC2ZY7k79/LxpyvxmUtmZeHaSvZMc01r73wH7AQAAADBPZtpDacN+fsU0ZS7v5xvNpMKqukuSVyQ5K93T3QAAAAC4GViRAbRX2sitbuuku9XthhWo4/CqOquqzrrwwgtnvY0AAAAATG2mgdJE76MNpikz0YvpshnU95wkD05yXGvthzNsw4201t7eWtu9tbb7FltssSJVAAAAALACZjqG0uJ+vu00ZbaeVHY6C/v5w6pqr0nbtpsoU1X3SHJ5a+3AGdQJAAAAwByYaaD0vX5+96paf8yT3u47qexMPGCabX/TT5cMqA8AAACAVWxGt7y11s5PcnaSdZM8bvL2vpfRHZP8Mck3Z1Df3q21mmpK8i99sTf16zad4WsBAAAAYA4MGZT7uH7+yqrafmJlVW2Z5M394itaa0tGtj27qs6tqvetfFMBAAAAWB3M9Ja3tNY+UlVvSXJEkh9V1ReTXJdk3yQbJzk1yfGTdrttkrul67kEAAAAwBpgxoFSkrTWjqyqryU5KsleSdZOcm6Sdyd5y2jvJAAAAADWTIMCpSRprZ2U5KQZlj02ybED6x+8DwAAAABzZ8gYSgAAAAAgUAIAAABgGIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEWzHcDmIGTar5bwMo4rM13CwAAAGBW6aEEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAggwOlqjqsqs6sqkuq6vKqOquqjqqqGddVVWtV1d9W1b9V1Teq6q9VdV1VXVBVp1XVQUPbBQAAAMDcWDCkcFW9KcmRSa5O8qUk1yXZN8nxSfatqkNaa0tmUNWdk3y9//dFSb6T5K/9+kckeURVnZDk6a21NqSNAAAAAKxaQ3oVHZwuTPpjknu11g5srS1MskOSc5IsTHL0DKtrSb6cLjzasrW2X2vt0Nba/ZLsneSKJIv6CQAAAIDVyJBb3l7cz1/UWvv5xMrW2gVJjugXj5nJrW+ttV+21vZtrX22tXbDpG1nJHlFv/ikAe0DAAAAYA7MKFCqqjsm2S3JtUlOmby9D4F+l2SrJHvMQru+18/vOAt1AQAAADCLZtpD6d79/CettavGlPnupLIrY4d+/odZqAsAAACAWTTTQOlO/fy8acr8ZlLZFVJVt07ynH7xoytTFwAAAACzb6aB0ob9/Ippylzezzda8eYkSd6cLpT6aZK3r2RdAAAAAMyyIYNyr3JV9bIkT01ySZLHt9aumabs4VV1VlWddeGFF85ZGwEAAABu6WYaKE30PtpgmjITvZguW5GGVNXzk/xrf6xHtNZ+Ml351trbW2u7t9Z232KLLVbkkAAAAACsgJkGSov7+bbTlNl6UtkZq6qjk7wmyVVJDmytfXNoHQAAAADMjZkGSt/r53evqvXHlLnvpLIzUlVHJXlDkquTPLq1dsaQ/QEAAACYWzMKlFpr5yc5O8m6SR43eXtV7ZXkjkn+mGTGvYuq6llJjk9yTZKDWmtfnOm+AAAAAMyPIYNyH9fPX1lV20+srKot0z2ZLUle0VpbMrLt2VV1blW9b3JlVfV/+/2uSbKwtfa5wa0HAAAAYM4tmGnB1tpHquotSY5I8qOq+mKS65Lsm2TjJKem62006rZJ7pau59JSVbVrkrclqSS/TvKEqnrCFIf9c2vtBTNtIwAAAACr3owDpSRprR1ZVV9LclSSvZKsneTcJO9O8pbR3knLsWm6MClJduynqZyXRKAEAAAAsBoZFCglSWvtpCQnzbDssUmOnWL96VkWKAEAAABwMzJkDCUAAAAAECgBAAAAMIxACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgAAAAAMIlACAAAAYBCBEgAAAACDCJQAAAAAGESgBAAAAMAgAiUAAAAABhEoAQAAADCIQAkAAACAQQRKAAAAAAwiUAIAAABgEIESAAAAAIMIlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAAAAAgwiUAAAAABhEoAQAAADAIAIlAAAAAAYZHChV1WFVdWZVXVJVl1fVWVV1VFWtUDhVVftX1eer6qKqurKqflxVL62q9VakPgAAAABWrUEhUFW9KckHkuye5MwkX0hy1yTHJ/nI0FCpqv4hyWeSPCTJ2Uk+nWTLJP+W5PSquvWQ+gAAAABY9WYcAFXVwUmOTPLHJPdqrR3YWluYZIck5yRZmOToAfXtnuQVSa5M8sDW2kNba49LcuckX02yR5J/n2l9AAAAAMyNIT2KXtzPX9Ra+/nEytbaBUmO6BePGdBL6ZgkleSVrbVvj9R3eZKnJVmS5Miq2nRAGwEAAABYxWYU/lTVHZPsluTaJKdM3t5aOyPJ75Jsla5n0fLqWzfJI/rFD0xR36+SfDPJukkeOZM2AgAAADA3Ztqb6N79/CettavGlPnupLLTuVuSWye5qLX2y1moDwAAAIA5MtNA6U79/LxpyvxmUtmZ1PebacoMqQ8AAACAOTLTQGnDfn7FNGUu7+cbzUN9AAAAAMyRBfPdgBVVVYcnObxfvLyqfjaf7WGl3DbJn+e7EavME2u+WwDj+OzB/PDZg/mz5n7+fPZYva25n71kTf/8bTtuw0wDpYneQhtMU2ai19Flc1Ffa+3tSd4+g2Oxmquqs1pru893O+CWxmcP5ofPHswfnz+YHz57a6aZ3vK2uJ+PTaaSbD2p7Ezq22aW6gMAAABgjsw0UPpeP797Va0/psx9J5WdzrlJrkqyeVXdZUyZ+w2oDwAAAIA5MqNAqbV2fpKzk6yb5HGTt1fVXknumOSPSb45g/quTfKZfvGJU9R35yQPSHJtkk/PpI3crLl1EeaHzx7MD589mD8+fzA/fPbWQNVam1nBqkOSnJIuNHpQa+0X/fotk3wlyc5Jntdae/3IPs9O8uwk32mtPWVSffdN8u10PZX2aa19p1+/YZJPJdkryX+11v7fSr1CAAAAAGbVTG95S2vtI0nekmSrJD+qqk9W1X8n+Xm6MOnUJMdP2u22Se6WKcZKaq19N8kxSW6d5BtV9fmqOjnJL9OFSd9O8tKhLwgAAACAVWvGgVKStNaOTHeL2tnpQp/9kvwiXS+kg1trNwys71VJHpGuh9N9kzwq3aME/zHJXq21K4fUx81LVa1VVb+pqlZVF1bVOvPdJlhTVdXi/rM2Oi2pqkuq6ttV9fyqWm++2wlrsqp6ZFWdWFW/qKrLq+qaqvptVX26qp5VVRvNdxvh5m7S/3evWE7Z94+UPX2OmghrtKrabuJzNYOyE5+/7eagaawCM77lDWZbVe2X5LMjqw5prX10vtoDa7KqWpzuSZ2fS3frcpIsSPdEzb/t//2tdLcgXz0fbYQ1VT88wMnp/hiXJOeke0DJtenGoLxvunEq/5xk99baefPRTlgTjPx/lyS/T7LNVH/0rqqN0/1/OPHAoTNaa3vPRRthTdaHQ79OktZaLafsRBhxp9ba4lXbMlaFQT2UYJY9vZ//btIysOq8orW2qJ+e1FrbK8nd032R3SPJM+e3ebBmqapNk3w9XZj0zSS7tNZ2bq09trV2aGttz3RDBLwoXai02bw1FtYsZyX5myQPG7P90HRh0nfnrEUAaxiBEvOiqjZP8pgkLd1/6Dck2a+q/mZeGwa3QK21/03ytn5x73lsCqyJjk+yfZLvJHlIa+2Hkwu01i7rhwHYLckFc9w+WFOd0M8Xjdm+KN3vnyfOQVsA1kgCJebLE5Osl+T01trXknw+ydpJnjqvrYJbronb4IxlBrOkqu6S5P/0i89a3u2krbVftNb+sOpbBrcI3053e+lj+p6CS1XV3ZI8IN1t4D5zACtIoMR8mbi97YR+/p5+/rS5bwqQ5H79/Jx5bQWsWQ5M97vWj1pr35vvxsAt0HuS3CrLgt0Ji0a2A7CCBErMuaq6d5Jdk1yW5CP96k8kuSjJDlX1oHlqGtyiVNWC/kkc/5TkSUkuTvLm+W0VrFF26+fGaIH5cWK629oWTayoqrWTPCXd752fmJ9mAawZBErMh4neSSe31q5MktbaNUk+MGk7MPu+MvIo1+vSPYXjX9J1+79/a+3X89o6WLNs0c//NK+tgFuo1tof0z1R+H5VtVO/+uHpBus+qbV27bw1DmANIFBiTlXVekkO6xcndzOeWH5cVW04d62CW5TPJXnvyHRauict7p/kjVV1u3lsGwDMthP6+aJJ8xMCwEoRKDHXDkqyeZKft9a+PrqhH1/iB0k2SPKEuW8a3CK8orW2aGQ6IMmdkrwq3V9tP9ffDgCsvAv7+Zbz2gq4ZftEkr8keXJV3TbdU4Z/1Fr7n/ltFqyx2sQ/qqrGFZq0rY0rx+pNoMRcm7idbZOq+trkKct+6XbbG8yR1tp1SV6c5M9JdknXWwlYeRNfWO87r62AW7D+traTktw+XW/49WIwbliVrhz59wbTlBu9I+XyVdQWVjGBEnOmqrZO8tB+ccskD5xiun2//W/7R7oCc6C1tiTJ4n5xp2mKAjP36SRLktyzfyAFMD9O6OcHJrk+y8btBGbfRUmu6P+9/TTldujnlyf56yptEauMQIm5tCjdNffl1lqNm5Kc3JfXSwnmSFWtlWS7ftFfiWAWtNZ+keTD/eJb+nEEx6qqu1TV7acrAwzXWjs7ydfT3fp2SmvNQPmwirTWbkjy1X7x4GmKHtLPv9r/YZObIYESc6K/R3ZRv3jicopPbH+ysVxg1auqBUmOS3LbdE9+++z8tgjWKM9O8qsk90/y5aq65+QCVbVBVT0/3S1yBsaHVaC1tmdr7battcOWXxpYSf+Zblykv6+qAyZvrKpHJfl/fZn/nOO2MYsWzHcDuMXYO8mdk1yV5KPLKfvZdAOZ3j7JI5N8cpW2DG5ZjqmqRSPLt02ya5I7pLs157mttcVz3yxYM7XWLqqqPdP1vt0zyQ+r6qdJzk1ybbrP3v3SjetyQbpbBQDgZqu19uWqelGSVyb5VFX9JMlP+s1376eW5EWtta/MUzOZBQIl5srE7WunttYum65ga+36qvpQkqP7/QRKMHv2m7R8TZLfJXlfkjd46g3MvtbaH5I8qKoOTPJ/kjwg3eD3C9L9AeWLST6e5KTW2hVjKwKAm4nW2qur6ox0PXX3TPLoftMf0t2Rcnxr7Tvz1T5mR7XmCX0AAAAAzJwxlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADCJQAgAAAGAQgRIAwABVtaiqWlWdMN9tAQCYLwIlAAAAAAYRKAEAAAAwiEAJAAAAgEEESgDAvOvHJGr9v59RVd+uqkv79ZuOlDugqj5TVX+uqmur6vyqem9V7TSm3p2r6l+r6htV9ft+nwur6rSq2n+a9lTfjrOr6qr+eKdW1b1m6fUe27+2Y6vqdlX1tqr6bVVdU1W/rqpXVNWtpthvo6o6vG/LL6rqyqq6vKq+V1Uvrar1xxxv9PwuqqqzquqKqvpjVb2rqrbot92qqv6lqv63qq6uqt9U1b9X1TrTvJb9quoTVXVBf37/UFUfrKp7zsa5AgBWTwIlAGC1UVVvTPL2JNck+VSS/0kyEYQc1697eJKfJPlIkkuSPCXJ2VV1wBRVPj/Jy5JsmuQHST6WZHGSRyT5TFU9f0xT3pTknUnuleQbSb6Q5J5Jvp3kfiv3Km9k63Sv8cAk30xyepItk7woyclTlN8lyduSPCDJ75N8ot/vLkn+LcnpUwVRE6rqlf3+FyX5bLpz+/QkX6yqDZN8KcnR6c7vl5PcJslL0p2Pqep7fV/PI5L8MsmpSf6Q5NAk36mqR87kJAAANz/VWpvvNgAAt3ATvWfSBUQPb619Z9L2Ryb5dJIrkjyytfbVkW0vTPKqft+7ttb+NLJtryTntdYWT6rv/kk+n2T9JHdurf12ZNuj0gU1lyZ52ERbqmrtJK9LF7gkyXtba4tW8PUem+Sf+8V3JjmqtXZtv22nJN9JsmGSPVtrXx/Z745J7prk9NbakpH1myb5YJL9kxzTWnvlpONNnN8LkuzTWjunX79ZukDqbkl+nOTiJAe21i7pt++a5LtJ1k5yp9baeSN1PivJW9KFT4e01s4d2XZQklOSXJ7u/P51+FkCAFZneigBAKuTV00Ok3p/389fPxomJUlr7dVJvpVkkyT/d9K2MyaHSf36byc5Psk6SR4zafPz+vnrRtvSWrshyQvT9QyaLecnec5EmNQf55wkJ/aL+05q929ba18eDZP69RcneU6/eMg0x/uniTCp3++vSd7aL+6c5PCJMKnf/v0kpyWpJHtNrO/DtX/qFx8/Gib1+52arifUpkmeNE17AICbqQXz3QAAgBH/PXlFVS1I8sB+8YQx+70nyR5J9k7y75P23yjJAUl2TbJ5knX7TTv087uOOdb7Jx+ktXZNVZ2S5LnLeyEz9OXW2lVTrJ8IaP5m8oaqqr6ND05yx3S9rKqfkpHXM4XPTrHuF/38vNGwacTPp2jLrklun+QnrbWfjjnWGUmOSnd73hunaRMAcDMkUAIAVifnTbHuNknWS7JkzPYk+VU/v8Poyqp6TJJ3pwuSxtl45N+3ncGxFk9T11C/GbP+0n5+o/GQqup26UK3v52mzo2n2fbbKdZdPs220e2jbblzP7/7yO1042yxnO0AwM2QQAkAWG2M6a1zoyIzrasfb+iD6XrwHNf/e3GSK1prS6rq8HS3ZdXYSla9JcsvciPvTBcmfT3JsekGGr+4tXZdVa2bbjDzsSbfKrcSbVm7n/8uyReXU/bc5WwHAG6GBEoAwOruL+mCkvWSbJdlt2CNmugx87uRdQemC5M+2lp7yRT7bD/Fuj+PHGubdE8um2y7mTR6tlXVBkkemeSGdANnXzypyFSvZ1U5v5//YUUHJgcAbt4Myg0ArNZaa9en65GTJE8ZU2xRPz99ZN3EbW7nZ5KqWi/JwWOO9Y1+8YlT7Lduph/0elXaJN3vbpdNESYlU7R3FfpOuqDv3lU1l0EWALCaECgBADcHr+3nz6uqB45uqKrnpxv4+ZJ0t4RNmLjV6uB+7KGJ8uumGyT6zpnaG/r586tq95H91kryykwap2kOXZDkr0k2rarDRjdU1f5Jnj9XDWmtXZfk5elufTu1qu43uUxVrVtVj66qHeeqXQDA3BEoAQCrvdbap9OFORsm+WpVnV5VJ1XVj5K8JsnVSZ7UWrtgZLdPJPlekq2T/LyqPlFVJyf5dZLDsiw4mnysU5O8PV2PoG9W1Rer6qQk/5vkWUnesipe4/K01m7IsifYfaCqvtGfg28n+UyWhW5z1Z7XJ3ldkrsn+XZV/aCq/ruqPlRVZya5KMnHM0+3CAIAq5ZACQC4WWitHZPkUUm+kOSe6W492yzJiUl2a619alL565PsleRVSf6Q5OFJHpTkq0l2Sxc2jfOsJIcn+XGSPZPsn+ScdD2hvjNrL2qg1tpr0r3ub6ULcg5MN6bSk1prL52H9jw/3Tn+ULr34oB05+q2ST6V7ja8M+e6XQDAqletzfhhKQAAAACghxIAAAAAwwiUAAAAABhkwXw3AADg5qyq/i7dOEszcW5r7RWrsj0AAHPBGEoAACuhqk5I8tQZFj+jtbb3qmsNAMDcECgBAAAAMIgxlAAAAAAYRKAEAAAAwCACJQAAAAAGESgBAAAAMIhACQAAAIBBBEoAAAAADPL/ASoo0CCNeCj/AAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1440x720 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "result24=pd.merge(A2018t_df_notyear_df, road_length_traffic, on=['road_name'])\n",
+    "result24[\"Accident Probability\"] = result24[\"Total accidents\"] / result24[\"Trafficvolume\"]\n",
+    "result24=result24.drop(['Total accidents', 'Trafficvolume'], axis=1)\n",
+    "result24=result24.sort_values('road_name')\n",
+    "ax=result24.plot.bar('road_name','Accident Probability', rot=0,title=\"Accidents probabilty over road type \",figsize=(20, 10),color=\"Orange\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 123,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAAM6CAYAAADXGxlVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACV/klEQVR4nOzdeZgcZbn38e9Nwg5BdpAtQJBVFgEF2RdZBIRIQA4IBPFFAQGPRxH1eA6KR1BURNlEkAiIsgmooOxhR1kVMSBbILIJhC2sIbnfP6o605l093RNZqYzyfdzXX11uuqp6nu6qzvdv37qeSIzkSRJkiRJkto1V6cLkCRJkiRJ0uBioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSZjMRcV5EZHn5bafraSYixpY1jpmJfYwv93Fs31WmTqk7bkd36P6H19WwdS/3sXXdPoY3WO8xq46KiDHlMTi207VIkgY3AyVJmo1ExELAyLpFu0TEYp2qZ07nFzdVERHHlsfL+E7XIjXT6eBXkjTrMFCSpNnLnsCCdbfnAfbpUC2SJEmSZlNDO12AJKlPHVBePw68A6xZLjutYxU1kZlbd7oGqa9l5lggOl2HJElSf7OHkiTNJiJiBWDr8uZ55QXgIxHxgY4UJUmSJGm2ZKAkSbOPT9P1vn5+ecny9v7t7CAiVomIH0XEXyPi5Yh4KyIei4irI+I/W43HFBGfiIgLI+LJcruJEfG3cpDwT0REdGvf46DcEbFiRJwZEU9FxDsR8a+IOD8iPtjO31PuY/6I+GJE3BQRL0TEuxHxXERcHhEfb7HddOPZlAM2n14OqvxORDwfEZdExAYNth0dEQkcWC7aqm7ckdplTLdtVoqIkyLigYiYVNb5TETcXz4GI7vfTxt/+3QDREfEkhHxw4h4pHyOXigfh80qPA5rRcRZEfFE+Ti80q39XBGxf0T8KSL+Xf4d/y5v79f9OGhxv0PLY+6eiHitvNwaEQf0sN1yEfH5iPh93XHzRkT8MyJ+HhHrtHP/5b4WjIj/jYgHy31MjIhrI2LXFtu0HJS71TbA/5aLVmpwvIwt255Z3n46Iob0sN8vl23fbvXabbF95ecyIg4r73NKRCzXw/63rPv7PtakzXYRcUEU7ytvR8SrEXFXRBwTEQs22Wa6wdWjeA84pjyWXimX71HhcZhuIPWI2DciroviPWBqRPy4W/slI+K7UbyPvhZd76M/j4i1e7ivERHxpYi4JorX/7vlPv4eET9u55iKiAUi4n/K47b2Or8mInZr929ust+x5XFac06D43TriFihfP4zIj7fwz7njYiXyrYn1i3v/hxWfi12u5/Kx5EkqQ2Z6cWLFy9eZoML8A+KAOn2umU3lMueAKKH7f8LmFy2b3b5YoPtFgOu62G7BN7Xbbux5fIxTerZDHityb7eAnYFxpe3j22yj3Xr2jS7/AIY0mDbY8v144GtgFeabP82sH23bUe38XiMqWu/FTCph/aTenFMbF23/TbAhCb7ngoc2WQf9Y/D7uVjX7/tK3Vt3wfc1MPfcT0wrMl91docQtex2+hyYaPnrNzHyz3c/2TgoCbbDq9rNxJ4oMV+ftDGYz68wfrxdDtmu23T7DK2bPuRumU79fD8P1h7vHpx7PTquQQWB94t13+lh/v4WdnuGWCubuvmAy7o4f4fA1br4Xncs8nzuEeFx6L2nH0L+FWDff24ru02NH+vSOA9GryPltsu0sZx8Hqr5x1Ymq7/CxpdjgPG1B9TFR6HsW3Ut3XZ9o/l7Tt72Odedduu2ZevxZk9jrx48eLFS8+XjhfQ538QrA4cRfHL/EMUH5ITGNXp2prUO7qN/5wTmNrpWr148TLrXoCN694vDq1bflDd8q1abP/FunbjKMZdGk7xpfIDFD2c/kC30IFi0O8/1237K4ovx0sDS1J8+f068AgVAiVgKeClcv2rwBHAiuXykeX+JtIVHhzbYB8r1u3jUeAzwCrAosA6wA+AKeX67zTY/thy3cvlfv5a3vcy5d93QN39PwUMrdt2KLAQXb3Ebilv11/mLdvOBTxZV+f+wKplncsCWwDfBO7pxXGxdd1z80T5WB4JrFQ+lnsAD9e12b7F4/AqRcD3d+CT5eOwHLB72S6AP9Xt6+fABhQBwwbA2XXrrmxSb32tU4EfA2uX+9iMri+pCRzXZB+3lo/X9sBa5barArsB15Tbvgus12Db4d1qeAf4H2AEsES5z7/UtTm4h8d8eIP14+l2zAJDymPiu+W6JxscL/PXtf972e43LZ77D9fV0TJ4arDtTD2XwBXlur+2uI95KF7DCfywwfqLy3XvACcCG1KE18tTvPaeKtc/BCzY4nn8F/Am8A2Kz4iLA5sCIyo8HuPr9pUUIfTG5b7WBD5atluNrmD4JeBQut63PkFXwJfAXg3uZxGK99OvlMdRrd4PAJ+i6732FWDZJs/bzWWbqcBJTP/6uZquYzupHijNXx6Ltb/hcw2O0yFl21F17dZosc+raBA80QevxZk9jrx48eLFS8+XjhfQ539Q8eGzUSAzqwZKm1P8UtTsUvuP7vpO1+rFi5dZ9wL8tO5D82J1yxem+DKVwNlNtl2Rrh4Ft7X6UE1daFLePqbuffaLLbabi249pGgdKJ1SrpsCbN5g/dIUvRpq931sgza/o+vX5/c1qeuQusft/d3WHVu3//saPS4UwUrTL+200RMA+GDdPtbr4+Ni67p9TwG2aNBmKbq+KD/QYH394/AwsEiT+9qjrt13m7T5fl2bTzRYX///9tcbrB9CV9DxLg2+VLfxmPy63P7cBuuGd6th3wZtFgDuL9e/QBkMNnnMhzfYfnyLY7b2WI/v4W/4z7Ld2y2O7dPLNhPo1vunjcdopp5Lpg8T1mnjPtZv8rqa2ug4KdssD/y7bPflHp7Hj8/k62h83b6+16Ld5WWbt4B1G6x/H10B7rPAPBXrGEoRmCbw7Qbr6x/3Zq+fa+vajO3l41HbfnSLNvPUPT8NHzPg/RQ9thI4pIfnsDevxZk6jrx48eLFS8+X2XEMpb9T/ALxKYpfMW7qbDmtZeatmTm60QX4PMWvPVD8GihJM4iIuYF9yptXZebE2rrMfJ3iSw7AqIiYv8EuDgXmpvjQfUBmvtHsvjLzvW6Ljiyvb8rMH7fYbmpmZqu/oyYihlKMBwVwcWbe2mB/zwP/12Ifq1CcEgdweGa+0qTpzylmxJuH4tSLZr7a5HG5nKK3ABQ9FnqjfsbVp3u5j3ZcnJm3dF+Ymf+m67FcJyI2arGP/8nMV5us+2x5/RxFMNLINym+vNW3b+RpisCie61TKMIUKI7Z/Vrso5naYPXb99Duz5l5QYMa3gS+Vt5cgqLn00A7jyJQmxf4j+4rI2I+ut4Tzs3MqRX3P7PP5e8perRB12u5u9ryBzPz/m7rjiqvL8rM3zXaODP/RRE8Q+vj4E+ZeVWL9VW8TNc4V9OJiKXoOhZOz8y/dW9Tvg8dU95chq73qLaU77+1Y7LRmFOjy+t2Xj/9KjPfpeu19ukm433tTxFyvQX8psXuevta7MvjSJLUwGwXKGXmWZl5dGZelJmPdbqemTSS4pSHV4DfdrYUSbOwj1N8mIauD/D1zi2vh1GMgdPdduX1rVXeNyNiLYpTsgB+2e52bViH4tQPgMtatGv1vrgdxekf7wB3RcRCjS7AghSnsgE0C1LeAW5stKL8ov5IeXOZFvW08jDFFyqAX0b/zcjX6rGsX9dsgO6kOOVsBuXgzLXtfld+mZxxB5nvUIQNUPTQbeb3DcLL2j7GUTxmTWuNiE2jGDj8wXJA46m1AX6BK8tmy0bEwi1qaPV4XUPR869pDf0pM1+kOK0MukKEentQ9IYBOKfKvvviuSzXXVze3Lf74N0RsQhdYcr53dYtQHFKGsCNzV675ev372W7dSNiniZ/0pVNlvfGDZn5dpN1H6Xrc/XFTdpAcepw7fW+RaMGEbFjRPwqioHkJ9UPeg2cWjb7QLdt6p+3Vq+fvwP/bFFfX6r9GPp+YIcG60eX15dm5mst9lP5tdgPx5EkqYHZLlDqrXL2iKPLGR9qM3I8GMXsNgv1vId+8Zny+lctPsBIUm3Wq5dp/OXpWoqeBvVt661aXt9f8X5Xrft31W1bGV7374eaNcrMZ+nqBdHd6uX1vMCLFAPZNrvUZk9bssm+XsjMyS3qrX2ZWaBFm6a6/cr+ceDhiHionBFq/4hYtsXmVbR6LJ+j67FcqUmzF1t86RtGV4Dxjx7qeLC8XjQihjVp07TWbutnqLWcKep24GCKMZQWpggXG1mkyfKWNZQ9PWpBYrPHq7/Vvqx/uAx36x1UXt+SmY9W3G9fPZe1oGgFikHn642ieG0mxbhr9Vah6H0GcAatX7uXlu3mohgXp5HHe/gbqmi1r/rjoOnjVr6XNDx2opjZ8AKK0zr3pRiTqdkMZN2P3UXoet56ev2M62F9n8jMfwB3ljcPql8XEZsCa5Q3ewo9e/Na7OvjSJLUgIESEBHLUwzs9z2K/4zuoPjFY1GKrs23RcSiA1zTisC25U1Pd5PUUPneVPul/zZgzYhYv/5CMUbPzWWbHSJi6W67qX0RfL3i3dd/gay6bSv1If6kHto2W98qKGhmvibLp7S5fbPQokeZeTJFsHUnxZfs1SlOIzoX+FdE/L4Pei61+1g267XzZpPl3bfp6X7qj5Vm99WrWiNiP+DL5c2bKE4HW4siLFy4vOxSt0n96YZ9UsMAupZinEWo66VUfqapnc73i17st6+ey5spBheHGU97q51adFNmTui2rjevXWj++m113FbV16+B7o/ZV+k6hfFyiveED1D0QK0dv4eW67ufQtYX75v9ofYZ9hPdPkuPLq/H06QHaJ3evBb7+jiSJDUwxwdKZRfhiyg+cJ4CrJSZO2bm7hS/vp9PMe30SQNc2kEUz899mXnfAN+3pMFjH4rxf6AIlu5rctm7bDOEGceJaPblpiftBAO9Uf/loaceos3W1/bx78yMNi9bz3TlMyEzL8/MTSkGHN+DYha6f1D8X7ArcGdEDJ+Ju2j3sexNOFi/TZXnrNl99bbWz5fXtwHbZuZvMnNcZr6YmZMycxJdr5ee9OfjNdPK0y1rPTv2rxuj5gCKY2YSrU+9aqZPnstyzLTauDejImJemBZ41XosTXe6W6n+9f/xCq/f8T39Yf2sN49bs+P3N5k5snxPeCQzX6o7fpsFHn3xvtkffkNR27wUva4ox/L7VLl+TBvj6/Xm8Rysx5EkDSpzfKAE7ERxjvWdwFGZWTuvnfLfn6cYdHK/geqlVIZco8ub9k6S1EqjU9iqblM7JWb9ivupP5Wm6ratjK/79xrNGpWngjX7Fbp2asoS5Xgtg0ZmvpCZV2TmVzJzbYoeC1Mpes1+cSZ23eqxXIaux/LJZu1aeI3ilEsofqBpZe3yemKLU+ia1tptffda1yuvL24xEPUHe9h3jzWU4c1qTWoYSOdQ9GhbhuLzDHR9fri41QD7LfTlc1kb061+zKT/oPj8+TZwSYNtxlMc7zD9abWzuvF1/276uJWTDtR6G46vW16byh5aD1Dd7Ph9la4JAnp6/azZw/o+U4ZgF5U3R5fXn6Q4JpJiJsye9Oa1OJ7BeRxJ0qBioFSMVwHFgIAzfPgsP4zdTdEtftoMPhGxYjnGRdXL8W3UtB3FGCJv0/XrniRNJyJWAzYpb57Q0y+vdJ0KtF5E1H8puba83rycHa0t5fgYz5Q3exNsNfN3usbzGdmi3SdbrKv9TXNRjNfSKbWxlxrNcNSWzPwNXYPGzswXwVaP5R51/76t6o7LHga17XaLYubBGZS9VGozMbW6n13LL96N9rEmXWNkdd/HvOV1w8c7IuaiwaxoTbR6vD5G15hZlR+vFiodL5n5JHBdeXN0RGxO15fr3pzu1qfPZTmA+r3lzU93u/5DNpgxsFz2l/Lmp7qvn4XdQVeAsWeLdrsAtdk262ewnLfu382O3wWZ/rU6TbfnrdXrZ226DejdC7UBv9t9X6v9OLpRef+18ZRuKI/hnlR+LQ7i40iSBhUDpWLQPoAT62fR6DajRi10qh+wdR6KD7RVL+0MrlobjPuyzHy5ZUtJc7L6EKed8PlCur7w1G97BsUU5HNRzDLWdHDpBl9SflJebx0RR7TYbq7uMz01U85OVDsVZq/yS3L3/S0NfKPFPh6ia4DyE3oafygiluqnXqgvldfvb3Hfy7Wa/KE8PaS2/UvN2rWh2WO5JPDf5c2/Z+bdvdx/7UvjssD/NGlzLMUpfQA/b7Gv5YGjuy8seyP8qLw5mRkHdH6ivG42HfvXaD+U+0hE7NughgWAE8qbL9I101lfqD2/SzYLBBqYNkYN8KXy349k5q1N2lfZZ188l7VeSh+PiC0phhGoX97ID8vrzSPiSy3aERFDImJEqzYDITP/TdexcFhErNO9Tdlb8nvlzecoZnyreQGo9SjbjcZOovWg0WPK61avn74YwqHH97V6mXk7XQOB/y+wTfnvdmcg7O1rcdAdR5I06GTmbH0BxlJ0qR3VZP2fyvVjKf4jbnXZfADqfR/FdLIJbNfpx8+LFy+z5oViAOgnyveKBypsV3tPfBoYUrf8qHJ5UszctD/FJAXvA0ZQ9Oq4Ajiy2/7mAf5ct+15FOOjLEUxkOxGFF9sHgbe16SWMQ3qXIriS0tS9Fb6AsVsUUtS/Fr9CMVpOS+XbY5tsI8Vgefr9vEtYENg8bK2tSl6S1xI0SN0o27bH1tuO77Nx7TR37FX3WNzePl3DS0vc5VtRlOcqnIWRa+rERSnt61A0Zvh1rp97FbxONm6btsnysfhiLrHco/yuam12b7BPtp9HAK4um5fP6M4BW0xilMif1637som+6ivdSrFl9+1yn18FPhjXZvjGmz/7br15wMblM/3h+ru/x91bYZ32354txreAb5JccrM4hSDXdcf7wf38JgPb7B+PM2P2Y3rtv0uxRf2ucvjZUiTx2weii/TWXf5Wh+8v8zUc1m3r6UperTUHtMs6527h+1+XXcfl1H8uPd+iveklShO8fsexWlOp7R4Hreemceip+esW7vVKMbuSYqA6BC6Xmu7AQ/U1bV3g+3PrVv/I4r3qMXLY/+33Y/fJs/bzeX6qeU+1qTr9VN7TmvPw9hePh5Xlts/SjFsxEJ0va9Fk23+q9sx+gowf4v7qH8Oe/VanNnjyIsXL1689HzpeAH9/gf2HCjVPhQd3ulay3oOK+t5vNl/yl68ePFCEdrUPiR/vcJ2n6vbbsdu646m64tfs8sXG+xz8br32laX93XbrrbNmCa1bk4xnkujfb1N8QVtPC2+6FGMvfGPNmpLYL1u2x7LzAdK8wOPNbm/MWWb0W3Wd3wvjpOt67bfFvhXk31PpVtYWPVxKNu+j2J2tVZ/xw3AIk22r7U5pIdj6kIaBCwUU6zf02K7Wym+UNZuD++2/fC6dSMpTjVstq8ftvGYD2+wfjytj9nbmtzf2BaP+4/r2r0HLNcH7zEz9Vx229cfu213WhvbzEPRe7Kd18aPWjyPW/fBY9HyOevWdhuKsKRZre/R4H203HaZuvtqdLmEohd7AtlkH0vT+j3v/yh+JG15TPXwN+7YYv8NH2+KMP3dunZn9HAf9c9hr16LM3scefHixYuXni+e8lZ8yIHiV+RZwcHl9TmZmR2tRNKsrP6UtV9X2O5iusZpmW7co8z8PsUv4qcCD1GcfvEmxa/QV1G8P53TfYeZ+RLFl6i9KKa6fobii8NLwN8oejdsS9e4SG3J4pSddSiC/3+V+3yGYsDaTTKzx1ONsjj1bV3gQIrTIWq1vQNMoPjF/mvAapn51yr1tfk3vAVsQfGF5lGKIKy7iyhO0TqJYoKICWV9bwH/pPjyt2lmfm0my3mcoqfOyRQh1zsUPUV+B2yRmT9psW1bMvMVimPhAOAail4a75XX11D0fNsuG4yd0827FGOjfAW4n6LXxyTgduDAzPxUZk5pcP9vAFsC36F47N6l6MX2F4oBzbem/WnkX6YYo+w7FKfrvEkRFFxH0VPsv9rcT1UfB06kCAXe6qFtTf0EHtdk5tMzW0QfPpcw4+ltjWZ3637/72bm5yl6Ff6M4jl4vaxhInAX8FOKcOPLzfYz0DLzRooxio6neP+bRPG6f5zieVo/M3/cZNvnKHqp/YSix8xkitfoTcBBmTmKrtOWm93/8xQ9Q4+leMzepngvvgEYmZlNTxVuV2ZeTdGz5090HRc9bVN/SiBUG+Or16/FwXocSdJgEbN7ZhERYyl+yd8rM2eYTaQcoPMvdP1H8/XMnNitzTIU/2G1GiOgL2pdF/grxYeF4Zk5oT/vT5I0e4uIrYEby5srp1Niz5bKAfr/Wd7cOzMv7mQ9UiMRcT6wH/BgZs4wxlS3tsPpGhNtm8wc27/VSZJ6o90BHweNiPgQcFrdotrUrd+NiGm/PGTmJuX11IjYg+LX988B+0bEXyl+IZ6P4lemtYB/03rQyb5Q6510jWGSJElq0+jy+iWKsc6kWUo5IHlttrYZerpKkgan2S5QAoYBH2mwfLUGywDIzH9FxIcpAp29gQ+W+3iJYuDaH1IM5NdvImIeil9toJdT/UqSpDlLOdPVZ8ubYzLz3U7WIzXx/4AFKE61HdPZUiRJfWW2C5TKLrFtTU3dbbu3KcYNObWva2rz/t+lmHVIkiSpqfJ0/bmAZSnGW1qK4ov6jztYljSdiBhKMSj2NhQztAGcXY67J0maDcx2gZIkSdJs7n+A/+227DuZ+a9OFCM1Mbnb7eeY8biVJA1izvImSZI0OL1LMRvc4RTTwUuzon8Dl1LMJvlip4uRJPWd2WKWtyWWWCKHDx/e6TIkSZIkSZJmG/fcc8+Lmblko3WzxSlvw4cP5+677+50GZIkSZIkSbONiHiy2TpPeZMkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiVD22kUEXMDWwIfB7YCPgDMB7wA3AGckpljq9xxRIwBDmzR5OHMXKPKPiVJkiSp06ZOncrLL7/MpEmTePvtt5k6dWqnS5I0hxsyZAgLL7wwiy22GPPOO2+f7LOtQIkiRLq2/PdzwM3AG8BawJ7AnhFxXGb+Ty9quA14tMHyZ3uxL0mSJEnqmPfee48JEyYwdOhQFltsMRZYYAHmmmsuIqLTpUmaQ2UmkydP5rXXXuOpp55ixRVX7JNQqd1AaSpwKXByZt5SvyIiPgX8CvhmRNyYmTdWrOGszBxTcRtJkiRJmuVMnDiReeedl2WXXdYQSdIsISKYZ555WGKJJYDifWrZZZed6f22NYZSZt6QmaO6h0nluguBMeXNT890RZIkSZI0SL366qssvvjihkmSZknDhg3j9ddf75N99dWg3PeV18v30f4kSZIkadB57733mGeeeTpdhiQ1NPfcczNlypQ+2Ve7p7z1ZLXyujfjHm0TEesCCwHPA7cC12amI9dJkiRJGnTsnSRpVtWX708zHShFxDLA6PLmpb3YxQENlv0jIvbJzAd6XZgkSZIkSZL6xUyd8hYRQ4HzgUWA6zPz9xU2vx84kmKmuIWA9wO7An8tl10XEcu1uO9DIuLuiLj7hRde6OVfIEmSJEmSpKpmdgylM4DtgAlUHJA7M3+cmT/NzHGZ+UZmPpuZVwIfBu4ElgK+1mL7MzNzo8zcaMkll5yJP0GSJEmSJElV9PqUt4g4GTgYeA7YLjOf64uCMvPdiDgeuAL4eF/sU5IkSZJmGRcMsjGW9s1+2/XUqVMZPnw4EyZMYIklluCZZ55h7rnn7rf760ltfJnMan/z8OHDefLJJ3niiScYPnx4P1TW/0aPHs0vf/nL6ZYNHTqUxRdfnA033JD/9//+H3vssceA1LL11ltz0003ceONN7L11lv3632NHTuWbbbZhq222oqxY8e2vd348eNZeeWVWWmllRg/fvx065odD7XH+JxzzmH06NF9Un8n9aqHUkT8kOJ0tRcowqRH+rQqeKi8bnrKmyRJkiRpcLv22muZMGECAC+++CK/+93vOlzR4DV27FgiYqYDmPXWW48DDzyQAw88kJEjR7Loooty1VVXMXLkSL7whS/0TbGazpgxY4iIQRcyVQ6UIuL7wJeAl4DtM/MffV4VLF5eT+qHfUuSJEmSZgG/+MUvAFhuueWmu90p48aNY9y4cR2todP22GMPxowZw5gxY7jooosYN24cP/nJTwA49dRTue666zpc4axhueWWY9y4cVx//fVtb3P88cczbtw4Ro4c2Y+VDZxKgVJEnAB8BXgZ+Fhm/q1fqoK9y+u7+mn/kiRJkqQOmjhxIldccQURwW9+8xuGDBnC1VdfzTPPPNOxmtZYYw3WWGONjt3/rOqII45giy22AODiiy/ucDWzhrnnnps11liDVVddte1tll12WdZYYw0WWWSRfqxs4LQdKEXEd4CvAq9QhEn3tbHN8RHxUDkmUv3y9SNi14gY0m350Ij4L4rT6QBOarc+SZIkSdLg8atf/Yp33nmHrbfems0335wddtiBKVOmzDCOT3fjxo3jkEMOYcSIEcw///wsuuiirLvuunz5y1/mySefnKH9hAkT+NKXvsRaa63FggsuyLBhw1hzzTU57LDD+Pvf/z5d24iYNo5Sd08++SQHHHAASy+9NPPPPz9rrbUW3//+95kyZUrLeidPnswZZ5zBFltswaKLLsp8883Haqutxpe+9CUazVhef/rT66+/zle+8hVWXnll5p13XpZbbjkOPfRQJk6cON02W2+9Ndtssw0AN91007S/oy9OgavZaKONpj0ONcOHDyciGD9+PJdffjnbbLMNiy66KBHB/fffP63d7bffzp577skyyyzDPPPMwzLLLMOoUaO48847e7zfG2+8ke23355FF12UhRZaiM0337zpqZFPPvkkxx9/PNtssw0rrLAC8847L4stthjbbLMNF1xwQY/39cYbb3DMMcewyiqrMO+887LCCitwxBFH8NJLL83Qdvz48UREpTGzRo8eTUQwZsyYacuGDx/OQQcdBMAvf/nL6Z670aNHM2nSJBZZZBGGDh3Kv/71r6b73nDDDYkIrrrqqrbrmVltBUoR8QngG+XNR4EjImJMg8sx3TZdFli9vK43HPg98O+IuDYifhURfwKeBH5Qtjk6M6/uxd8kSZIkSZrF1U5vq40bU/tSfc455zTd5txzz2X99dfn5z//OZnJbrvtxlZbbcXUqVP54Q9/yI033jhd+2uuuYZ11lmHk046iVdffZUdd9yRHXbYgfnnn5+f/exnXHLJJW3V+o9//IONNtqI8847j3nnnZfdd9+dFVZYgW9+85vsvffeTbd77bXX2HbbbTn00EN54IEH+NCHPsQuu+zCe++9x0knncRGG200w4DONa+++iqbbbYZv/jFL1h//fXZYYcdePPNNznjjDP42Mc+xuTJk6e13Wmnndhxxx0BWHrppaeNgXTggQey0047tfU39uS1114DYN55551h3Q9/+ENGjhzJm2++yc4778zmm2/OXHMVccPpp5/OFltswW9/+1tWXHFFRo0axYorrsill17KZpttxs9//vOm93nZZZex/fbb8+9//5udd96Z9dZbj9tuu43dd9+dH/3oRzO0P++88/j617/OhAkTWGONNRg5ciRrrbUWt9xyC/vttx9HHnlkg3spvPvuu2y33XaccsoprLPOOuy22268/fbbnHLKKWy66aY8//zzVR+ytowaNYrNNtsMgFVXXXW6527zzTdnoYUW4qCDDmLKlCmceeaZDfdx5513cu+997LKKqv02fPdjnZneVus7t8blZdGbgJOaGN/fwVOBj4MrAVsASTwL+Ac4NTMvKfN2iRJkjQQBtvMVLODfpxdS+qk++67j/vvv5+FF16YUaNGAfCJT3yCxRZbjEceeYRbbrll2ilWNXfddRcHH3wwmclZZ53FZz7zmel6E3Uf++ipp55i1KhRvP766xx33HEcc8wxDB06dLr1jXoINbL//vvz4osvsv/++3PWWWcxzzzzAPDggw+yzTbbNN3PIYccwq233sqoUaM488wzWXTRRQGYMmUKX//61/n+97/P6NGjG84udvnll/Pxj3+c22+/nYUWWgiAZ555hk022YR7772Xiy66iP322w+AY445hk022YSrr76aNdZYY7oeMH3hjTfe4JprrgFg/fXXn2H9GWecwR/+8Ad22WWX6Zb/9a9/nRbiXHTRRey1117T1v3mN79hv/324/DDD2fTTTdlnXXWmWG/P/nJTzjxxBP58pe/PG3Z73//ez75yU9y9NFHs/3227PuuutOW7fjjjsycuRI1l577en288gjj7Dddtvx05/+lP3224+PfOQjM9zXHXfcwQc+8AEefvjhaWN6vf7664wcOZLrr7+eI444gosuuqinh6qyH/zgB4wZM4bbbruNzTffvOFzd/jhh/OTn/yEs846i29+85szzIR42mmnAXDooYdOC/IGQlv3lJljMjPauGzdbbvR5fLR3ZY/kZlfzMyPZuZymTlfZs6fmatl5mcMkyRJkiRp9lXrnbT33nuzwAILAEXPl1pA0mhw7v/7v//jvffe48tf/jIHH3zwDKemrbnmmqy55prTbv/oRz/i9ddf51Of+hT//d//PV2YBLDiiiuy4YYb9ljrLbfcwr333ssiiyzCT3/602lhEsDaa6/NN7/5zYbb/eMf/+DCCy9kpZVW4txzz50WJgEMGTKE448/ng9+8IPcdNNNPPDAAzNsv9BCC3H22WdPC5MA3v/+90+baa3KYNC99eabb/LnP/+ZXXfdlQkTJrDgggvy2c9+doZ2Bx100AxhEhSB0Hvvvcc+++wzXZgETFs2efJkTj755Ib3v9FGG00XJgHstttu7LvvvkyZMoWf/vSn063beOONZwiTAFZbbbVpz1OrXmk//OEPp4VJAAsvvDBnnHEGQ4YM4dJLL502I+FAW2211dhpp5149tlnueyyy6Zb9+KLL3LRRRcx33zz8ZnPfGZA6xq46EqSJEmSNMd75513po1nUzvNraZ2++KLL2bSpK5Jv6dMmcK1114L0DDQaORPf/pTpfbN3HTTTQDsuuuuDQdT3n///Rtu98c//nHadvPPP/8M6+eaa65pvbDuuOOOGdZvuOGGLLPMMjMsrw0a3l+Dl3/rW9+aNobPggsuyCabbMLYsWNZaqmluOKKK1hhhRVm2OaTn/xkw33VHrvaaY3d1QKQRj20gGkBY3e1x7zRdm+//TZXXHEF//3f/83nPvc5Ro8ezejRo6cFSf/85z8b7vN973sfu+666wzLR4wYwSabbMLUqVO5+eabG247EI444gigqzdSzdlnn80777zDPvvsw2KLLdZo037T7ilvkiRJkiTNtMsvv5yJEyey2mqrTRs7pmaDDTZgvfXW469//SsXXnghBx98MFD0wnjzzTcZOnQoI0aMaOt+aoNHz+ysbbWBkFdeeeWG69/3vvexyCKL8Oqrr063/PHHHwfg1FNP5dRTT215H41OmVtxxRUbth02bBhQBCf9Yb311pt2Wtvcc8/NYostxoYbbshuu+3WMBgDWGmllRouf/rpp4Hmj90qq6wyXbvumm1XGwi7+yDVd9xxB3vvvXfLwatrY0E122ezdbfddlvL/fa3nXbaidVWW42bbrqJf/zjH6y11lpMnTqVM844AyhOixtoBkqSJEmSpAFTO53t1VdfZfPNN59h/b///e9p7WqBUrOZ11rpzTZ9qTb724YbbthwfKB6jU7TGsixcOrtscceHHvssZW2aRY01QzEc/Hmm28ycuRInn/+eQ4++GAOPfRQRowYwcILL8xcc83FNddcw4477kjm4BybLiL4whe+wFFHHcVpp53GKaecwlVXXcX48ePZeOONp83CN5AMlCRJkiRJA2LChAlcd911QBEc1cKjRm6//XYefvhhVl99dRZffHEWWGAB3nzzTR577DFWXXXVHu9rxRVX5OGHH+bhhx9m+eWX73XNtTF1ms3G9sorr8zQOwmYdmrYNttsw4knntjr+x/MlltuOR577DEef/zxhs9ZrRdX/bhF9Zo95rXl9dvdfPPNPP/882y44YacddZZM2zz6KOPtqy12X01u79OGD16NN/4xjc477zzOOGEE6ad/taJ3kngGEqSJEmSpAEyZswYpk6dyrbbbktmNr3svffeQFdvpiFDhrD99tsDNAwLGtlxxx0rtW9mq622AuAPf/hDw9OlfvWrXzXcbueddwaKU/zee++9maqhHbXBwgfivtpVe+zOPffchuvPOeccALbeeuuG65s9trXl9dtNnDgRoOEYT8C0cbuaeeWVV7jqqqtmWP7YY49x5513EhFsueWWLffRW+0+d8OGDePAAw/ktdde49vf/jZXX301iy++OJ/61Kf6pa6eGChJkiRJkvpdZk6bEr3ZQNY1tfXnnXfetFPHvvGNbzBkyJBp06x399BDD/HQQw9Nu/2lL32JhRZaiN/85jccf/zx0/ZTM2HCBO65p+cJxrfYYgvWX399XnnlFY466igmT548bd24ceM47rjjGm73oQ99iD322INHH3206bg+L7/8Mj/72c/6JASq9Z559NFHZ5lQ6cgjj2To0KH8+te/nmF2sosvvpiLLrqIueeemyOPPLLh9nfddRcnnXTSdMuuuuoqzj//fIYMGTJtxjvoGivrhhtumO44mDp1Kt/+9re57bbbeqz3v/7rv3j22Wen3Z40aRKHHXYYU6ZMYeTIkU3HtZpZtedu3LhxPbb9whe+QERw4oknMnXqVD7zmc8w33zz9UtdPTFQkiRJkiT1u7Fjx/L4448z//zzs+eee7Zsu9NOO7Hkkkvy7LPPTus18uEPf5gzzzwTKGaDGzFiBHvvvTd77LEH66yzDmuuuSZ33nnntH2stNJKXHTRRSy00EJ8/etfZ6WVVmLPPfdk1KhRbLjhhgwfPpzf//73PdYdEZx33nkstthijBkzhhEjRrDPPvuw0047sf7667PZZps1HZT6l7/8JVtttRWXXXYZq622Gptssgn77LMPo0aN4kMf+hBLLrkkn//85/skAFpppZXYYIMNeP7551l33XXZf//9+exnP9vR0+3WW289Tj75ZKZOnconP/lJNtlkE/bbbz8+8pGPTOuFdsopp/DBD36w4fZHHnkkX/7yl1lvvfXYd9992Xzzzdlll1147733OP7446cNHg5FgLfrrrvy2muvsf7667Pzzjuzzz77sNpqq3Hcccdx9NFHt6x10003ZdiwYXzgAx9g9913Z6+99mKVVVbhmmuuYdVVV+1xYPWZsckmm7DMMstw7733stFGG3HggQfy2c9+dloPrnprrLEGH/vYx4BinK1DDz203+rqiYGSJEmSJKnf1U5f22OPPVh44YVbth06dCj77LPPdNtBMc38vffey+jRo5k8eTJXXHEFN998M0OHDuUrX/kK22677XT72Xnnnfnb3/7G4Ycfzvzzz8+VV17Jtddey9tvv82hhx46LdToyTrrrMPdd9/Npz/9ad566y0uv/xyxo8fz//+7/9y4YUXNt1u2LBhXH/99Zx77rlsueWWPPbYY1x66aXcfPPNTJ06lc997nNcffXVfdbD5Le//S177703EydO5Ne//jVnn302V155ZZ/su7cOO+wwbrnlFkaOHMkTTzzBRRddxPjx4/nkJz/JrbfeyiGHHNJ025EjR047revKK6/kvvvu46Mf/SiXXXYZX/nKV2Zof+mll3LCCScwYsQIxo4dy/XXX8/aa6/NrbfeOu0UxGbmmWcebrjhBj73uc/xt7/9jd/97nfMM888HH744dx5550ss8wyM/1YNDPvvPPypz/9iV122YUnnniC888/n7PPPpubbrqpYftaoLTzzjs3nQlvIMRgHeG83kYbbZR33313p8uQJEmavV3Q2RmT5kj7Dv7P6nOacePGseaaa3a6DEmzsQ022ID777+fq666qsegrJEq71MRcU9mNpxCzh5KkiRJkiRJg8Bll13G/fffz5prrslOO+3U0VqGdvTeJUmSJEmS1NRLL73EV7/6VSZOnDhtTLETTzyRiM72HDZQkiRJkiRJmkW9/vrrnH322QwdOpQRI0bwta99jV122aXTZRkoSZIkSZIkzaqGDx/OrDj+tWMoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkqQ/NimOdSBL07fuTgZIkSZIk9ZEhQ4YwZcqUTpchSQ1NnTqVuebqmyjIQEmSJEmS+sgCCyzApEmTOl2GJDX05ptvMv/88/fJvgyUJEmSJKmPDBs2jIkTJ9pLSdIsJzN55ZVXWHDBBftkfwZKkiRJktRHFl54YRZccEGefPJJXnnlFd577z3HVJLUUZnJO++8w7PPPst7773Hoosu2if7Hdone5EkSZIkEREstdRSvP7667z22mv8+9//treSpI4bOnQoiyyyCEsttVSfjaFkoCRJkiRJfSgiGDZsGMOGDet0KZLUbzzlTZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVtBUoRcTcEbFdRPwwIu6OiNci4t2IeDoiLomIrXtbQETsGxG3RMSrETGp3P/hEWHYJUmSJEmSNAsa2ma7rYBry38/B9wMvAGsBewJ7BkRx2Xm/1S584g4FTgMeBu4HpgMbAecAmwXEaMyc2qVfUqSJEmSJKl/tdsLaCpwKbBlZi6bmbtm5qcy84PAPsAU4JsRsU27dxwRe1KESc8B65b7HAmsBowDRgJHVPhbJEmSJEmSNADaCpQy84bMHJWZtzRYdyEwprz56Qr3/bXy+quZ+Ujd/p4HDi1vHuOpb5IkSZIkSbOWvgpr7iuvl2+ncUQsD2wIvAtc3H19Zt4EPA0sA2zSRzVKkiRJkiSpD/RVoLRaef1sm+03KK8fzMy3mrS5q1tbSZIkSZIkzQJmOlCKiGWA0eXNS9vcbOXy+skWbZ7q1laSJEmSJEmzgJkKlCJiKHA+sAhwfWb+vs1NFyqv32jRZlJ5vXCT+z4kIu6OiLtfeOGFNu9WkiRJkiRJM2tmeyidAWwHTKDagNwzLTPPzMyNMnOjJZdcciDvWpIkSZIkaY7W60ApIk4GDgaeA7bLzOcqbF7rfbRgiza1Xkyv96I8SZIkSZIk9ZNeBUoR8UPgSOAFijDpkYq7GF9er9SizQrd2kqSJEmSJGkWUDlQiojvA18CXgK2z8x/9OJ+7yuv146I+Zu02bhbW0mSJEmSJM0CKgVKEXEC8BXgZeBjmfm33txpZk4A7gXmAfZqcD9bActTnE53R2/uQ5IkSZIkSf2j7UApIr4DfBV4hSJM6rHnUEQcHxEPRcTxDVbXln0vIkbUbbMUcFp584TMnNpujZIkSZIkSep/Q9tpFBGfAL5R3nwUOCIiGjV9KDNPqLu9LLB6eT2dzLwkIk4HDgUeiIjrgMkUs8YNAy4HTmnvz5AkSZIkSdJAaStQAhar+/dG5aWRm4ATmqybQWYeFhG3AocDWwFDgIeAXwCn2ztJkiRJkiRp1tNWoJSZY4AxVXeemaOB0T20uQC4oOq+JUmSJEmS1BmVZ3mTJEmSJEnSnM1ASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiVtB0oRsXpEHBUR50fEQxExNSIyIkb15o4jYky5fbPLQ73ZryRJkiRJkvrX0AptDwWO6ocabgMebbD82X64L0mSJEmSJM2kKoHS34ETgbuBe4Czga36oIazMnNMH+xHkiRJkiRJA6DtQCkzz6q/HRF9X40kSZIkSZJmeQ7KLUmSJEmSpEqqnPLWX7aJiHWBhYDngVuBazNzamfLkiRJkiRJUiOzQqB0QINl/4iIfTLzgQGvRpIkSZIkSS118pS3+4EjgbUoeie9H9gV+Gu57LqIWK7ZxhFxSETcHRF3v/DCCwNQriRJkiRJkqCDgVJm/jgzf5qZ4zLzjcx8NjOvBD4M3AksBXytxfZnZuZGmbnRkksuOVBlS5IkSZIkzfFmuUG5M/Nd4Pjy5sc7WYskSZIkSZJmNMsFSqWHyuump7xJkiRJkiSpM2bVQGnx8npSR6uQJEmSJEnSDGbVQGnv8vqujlYhSZIkSZKkGfRroBQRx0fEQxFxfLfl60fErhExpNvyoRHxXxSzvwGc1J/1SZIkSZIkqbqh7TaMiA8Bp9UtWqu8/m5EfLm2MDM3qWuzLLB6eV1vOHAZMDEi7gX+TXGa2weB9wNTgaMz8+p265MkSZIkSdLAaDtQAoYBH2mwfLVe3O9fgZOBD1MEU1sACfwLOAc4NTPv6cV+JUmSJEmS1M/aDpQycywQVXaemaOB0Q2WPwF8scq+JEmSJEmSNGuYVQflliRJkiRJ0izKQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlbQdKEbF6RBwVEedHxEMRMTUiMiJGzUwBEbFvRNwSEa9GxKSIuDsiDo8Iwy5JkiRJkqRZ0NAKbQ8FjurLO4+IU4HDgLeB64HJwHbAKcB2ETEqM6f25X1KkiRJkiRp5lTpBfR34ETgU8AI4KaZueOI2JMiTHoOWDczd83MkcBqwDhgJHDEzNyHJEmSJEmS+l7bPZQy86z62xExs/f9tfL6q5n5SN39PB8RhwJjgWMi4qezdS+lC2b6cVRV+2anK5AkSZIkaVDryDhFEbE8sCHwLnBx9/WZeRPwNLAMsMnAVidJkiRJkqRWOjXw9Qbl9YOZ+VaTNnd1aytJkiRJkqRZQKcCpZXL6ydbtHmqW1tJkiRJkiTNAjoVKC1UXr/Ros2k8nrhRisj4pCIuDsi7n7hhRf6tDhJkiRJkiQ116lAaaZl5pmZuVFmbrTkkkt2uhxJkiRJkqQ5RqcCpVrvowVbtKn1Ynq9n2uRJEmSJElSBZ0KlMaX1yu1aLNCt7aSJEmSJEmaBXQqULqvvF47IuZv0mbjbm0lSZIkSZI0C+hIoJSZE4B7gXmAvbqvj4itgOWB54A7BrY6SZIkSZIktdKvgVJEHB8RD0XE8Q1W15Z9LyJG1G2zFHBaefOEzJzanzVKkiRJkiSpmqHtNoyID9EV9ACsVV5/NyK+XFuYmZvUtVkWWL28nk5mXhIRpwOHAg9ExHXAZGA7YBhwOXBKu/VJkiRJkiRpYLQdKFGEPB9psHy13t55Zh4WEbcChwNbAUOAh4BfAKfbO0mSJEmSJGnW03aglJljgaiy88wcDYzuoc0FwAVV9itJkiRJkqTO6dQsb5IkSZIkSRqkDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVUjlQioh9I+KWiHg1IiZFxN0RcXhEVNpXRBwbEdni8nbV2iRJkiRJktT/hlZpHBGnAocBbwPXA5OB7YBTgO0iYlRmTq1Yw1+B+xssn1xxP5IkSZIkSRoAbQdKEbEnRZj0HLBlZj5SLl8auBEYCRwBnFyxhssz89iK20iSJEmSJKlDqpym9rXy+qu1MAkgM58HDi1vHlP11DdJkiRJkiQNLm2FPxGxPLAh8C5wcff1mXkT8DSwDLBJXxYoSZIkSZKkWUu7p7xtUF4/mJlvNWlzF7Bc2fb2CjV8KCK+BywKTAT+DFyZme9W2IckSZIkSZIGSLuB0srl9ZMt2jzVrW27disv9f4VEZ8uez5JkiRJkiRpFtLueEcLlddvtGgzqbxeuM19PkYxLtP6wCLAksC2wE3A8sBVEbFum/uSJEmSJEnSAGl7lre+lpnnNVh8I3BjRFwC7Al8F9i10fYRcQhwCMCKK67YX2VKkiRJkiSpm3Z7KNV6Hy3Yok2tF9PrvS9nmm+X1x+LiLkbNcjMMzNzo8zcaMkll+yDu5QkSZIkSVI72g2UxpfXK7Vos0K3tjPjofJ6HmCJPtifJEmSJEmS+ki7gdJ95fXaETF/kzYbd2s7Mxav+/ekpq0kSZIkSZI04NoKlDJzAnAvRY+hvbqvj4itKAbSfg64ow/q2ru8fjgz++IUOkmSJEmSJPWRdnsoARxfXn8vIkbUFkbEUsBp5c0TMnNq3bovRMRDEXFu/Y4iYsWI2Dci5u22PCJi/7r7OqlCfZIkSZIkSRoAbc/ylpmXRMTpwKHAAxFxHTAZ2A4YBlwOnNJtsyWA1Sl6LtVbDPgVcEZE3As8AywMrA2sXLY5JTN/VumvkSRJkiRJUr9rO1ACyMzDIuJW4HBgK2AIxQDavwBOr++d1IMJwIkU4y6NAD5M0VvqOeBC4MzMvKFKbZIkSZIkSRoYlQIlgMy8ALigzbbHAsc2WP4ScHTV+5YkSZIkSVLnVRlDSZIkSZIkSTJQkiRJkiRJUjUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlBkqSJEmSJEmqxEBJkiRJkiRJlRgoSZIkSZIkqRIDJUmSJEmSJFVioCRJkiRJkqRKDJQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqGdrpAiRJmi1cEJ2uYM6zb3a6AkmSpDmWPZQkSZIkSZJUiYGSJEmSJEmSKjFQkiRJkiRJUiUGSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpEgMlSZIkSZIkVWKgJEmSJEmSpEoMlCRJkiRJklSJgZIkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVYqAkSZIkSZKkSgyUJEmSJEmSVImBkiRJkiRJkioxUJIkSZIkSVIlQztdgCRJkiTNMi6ITlcw59k3O12BpF6wh5IkSZIkSZIqMVCSJEmSJElSJQZKkiRJkiRJqsRASZIkSZIkSZUYKEmSJEmSJKkSAyVJkiRJkiRVMrTTBUiaAzj97sBz+l1JkiRJ/cgeSpIkSZIkSarEQEmSJEmSJEmVGChJkiRJkiSpksqBUkTsGxG3RMSrETEpIu6OiMMjolfhVETsFBHXRMTEiHgzIv4eEd+IiHl7sz9JkiRJkiT1r0ohUEScCvwK2Ai4BbgW+ABwCnBJ1VApIo4G/ghsC9wLXAksBXwHGBsRC1TZnyRJkiRJkvpf27O8RcSewGHAc8CWmflIuXxp4EZgJHAEcHKb+9sIOAF4E9g2M/9cLl+IIljaEvg/4D/brVGSJEmSJPXAWZgH3mw4C3OVHkVfK6+/WguTADLzeeDQ8uYxFXopHQME8L1amFTubxJwEDAVOCwi3lehRkmSJEmSJPWztsKfiFge2BB4F7i4+/rMvAl4GlgG2KSN/c0D7Fze/FWD/T0O3AHMA3y8nRolSZIkSZI0MNrtTbRBef1gZr7VpM1d3dq2sjqwADAxMx/rg/1JkiRJkiRpgLQbKK1cXj/Zos1T3dq2s7+nWrSpsj9JkiRJkiQNkHYDpYXK6zdatJlUXi/cgf1JkiRJkiRpgLQ9y9usJiIOAQ4pb06KiIc7Wc8caAngxU4X0Sv7OaOB2uZxrjmBx7nmBB7nmhN4nGtO4HE+8FZqtqLdQKnWW2jBFm1qvY5eH4j9ZeaZwJlt3Jf6QUTcnZkbdboOqT95nGtO4HGuOYHHueYEHueaE3icz1raPeVtfHndNJkCVujWtp39rdhH+5MkSZIkSdIAaTdQuq+8Xjsi5m/SZuNubVt5CHgLWCwiVm3S5sMV9idJkiRJkqQB0laglJkTgHuBeYC9uq+PiK2A5YHngDva2N+7wB/Lm/s12N8qwKbAu8CV7dSoAefphpoTeJxrTuBxrjmBx7nmBB7nmhN4nM9CIjPbaxgxCriYIjTaIjMfLZcvBdwIrAV8MTNPrtvmC8AXgL9k5gHd9rcx8GeKnkrbZOZfyuULAX8AtgJ+nJn/OVN/oSRJkiRJkvpUu6e8kZmXAKcDywAPRMTvI+K3wCMUYdLlwCndNlsCWJ0GYyVl5l3AMcACwO0RcU1EXAQ8RhEm/Rn4RtU/SJIkSZIkSf2r3VneAMjMwyLiVuBwitBnCMV4SL8ATs/MqRX39/2I+BvwXxRjMM0HPA78BPhBZr5TZX+SJEmSJEnqf22f8qY5T0Qsmpkvd7oOqT9FxJbAc5n5zx7arQYsm5k3D0xlkqQqIuLzwHmZ+Uana5EkaU5goKSmIuIN4NfAaZl5b6frkfpDREwFzsnMg3to93PgM5k5ZGAqkyRVUb6fvwqcS9Fz/qEOlyTNtIiYYeiQKjLzqb6qRZK6M1BSUxHxNsXMfgn8BTgVuKicpU+aLZRfQMZk5md6aGegJEmzsIi4FNiNYkiHpJg05lTgiqrDMkizivJzSm+/sGVmVhriRJKq8A1GrSwH/D/gc8BHgA8DP4qIs4EzMvPJThYnDbClKGallAa1iHgcuDgzv9pDu+OBvTNz1YGpTJo5mblnRLwf+DzwWWBbYBvgmYj4GfDzzHy+kzVKvfAUjQOller+/Wp5vUjdMj+na7YREfMBGwHvpxh3uaHMPHfAihJgDyW1ISIC2BU4DNgBCGAKcBXF6XBXd7A8qbJy3KSascCfgBOaNB8KrAn8ABiXmR/q3+qk/mWvPM0JImIosCfFZ5ctKL6QTwYuo/jscksHy5N6LSLmAi6iOK6Poxg37NVy3SLAp4H/Bm4FPmXvPA12EfGfwP8Aw3pq62eWgWegpEoiYhWKD2cHAYtSfEB7HDiNYhyaVzpXndSebt3Hg/a6kgdwaGb+rN8KkwZAhUDpfGCvzJx3YCqT+kdErEPx2WU/YKFy8d8pToc7LzPtfapBIyK+Anwb+FBmjmvSZk3gPuB/M/N7A1mf1Jci4jPAWeXNcRQzzL/WrH1mHjQQdamLgZJ6JSLmBb4FHE3Xl/G3gDHAdzLzuQ6VJvUoIsbSddxuBTxP8R9UI+8CTwOXZebv+786qX+1EyiVv3LfD8yVmSs1aycNFuXAxkdTBEs1CbwEfNMfCzRYRMSDwFOZuXMP7f4IrJSZaw1MZVLfi4j7gQ8C+2fmBR0uRw0YKKmSspvtHhQfyLah6LXxMnA78DGKQbxfBnbKzLs6VKbUtnZ7a0iDWTluUs1wYBLwYpPmQ4Gly+uzM/OQ/q1O6j8RsRPFZ5adgbkofvw6H7iW4tSg3Sg+y3w5M0/qVJ1SuyLiTeDyzNy3h3a/BnbPzAUGpjKp70XEW8DdmblFp2tRYwZKaktELAMcQjFI9/spPnz9HTiFsrt4RCxJcc72EcDNmbl1h8qV2hYRWwHPZebDna5F6i9lcFqTFO/hrbwLXAl8NjNf7rfCpH4QEYsCB1NMKrIKxfH+BMXp+WfXn54fERsCNwAvZOaIga9WqiYingPeBkZk5ntN2gwFHgXmy8xlBrI+qS9FxIvA1Zm5X6drUWPO8qaWImJril/2dqc4XqYClwM/zcyx9W0z8wXgqIj4ILDxQNYp9VZm3tTpGqQBsHJ5HRTj3l0CfKVJ23cpvlw3/KIizaoi4sMUn1n2opgFKIDrgJ8Cf8gGv6Jm5j0RcRUwaiBrlWbCNRTjgf08Io7MzNfrV0bEQsDJwAoUvfGkwex2YJ1OF6Hm7KGkpspztNeg+EA2kWJAtFMzc0IP250FHOQo+xpMyp5KXwA2BZYEzs/Mg8t1H6M4xfMnjg+mwS4izgFuycxfdLoWqS/V9cR7AzgXOKXZoMXdtjuLYkbDufqzPqkvlOOB3QMsBrwK/IGiBx4UpzTvCryP4rP7Rpn55MBXKfWNshfp7cAhmfnLTtejGRkoqanyg9lfKX7ZuyAz325zu02BD/ii12AREd+iOF2z/jSgaeMqRcTGwJ3AkZl5agdKlCT1ICIeoTgV/5zMbDoLkDTYRcRawHnABuWi+plroZhUYf/MfHCAS5P6VERsSTEG3tEUvauvBJ6iOGtmBpl588BVJzBQUgsRsXlm3trpOqT+FBG7AVcAE4AvATdTzPo23UDd5ZgF9/U0q4okSdJAiIjNKWarXb5c9DRwU2be0rmqpL5TdnCojf3YU3CRmemQPgPMB1xNGSZpDnEk8A7FzITjACIajld8P+CArRr0IuKGCs0zM7frt2IkSb1Wflb387pmZzfTc5CkDjJQkjSn2xC4s41xNl4ANhuAeqT+tnUbbdr9NVCaJUXEghQ/AgyjyayGnhohSbM2Zw2f9RkoqUcRsRfF7CcfoPkHs8zMVQe0MKlvzE8RFvVksf4uRBog2zRZPhewErALsCfwPeBPA1WU1BciYgTFDFc7UBzTzSR+DtZsICIWoXVw+tTAViRpTuJ/pGoqIuaiGPxsd5r8J4W/Ymvwe5ZiNsOerAU4U4oGvcy8qYcmYyLiMOBHFP8HSINCRCxPMRvQEsAzFJ9zlwLuoOittCTF55U7gMkdKlOaaRGxGHAcRfi/ZIumBqca1CJi/cy8v9N1qDmnR1Urnwf2oJjpbQfgtxT/Ma1O8Qv2r8t23wVW6UB9Ul+4EVg7InZo1iAiPkXRc+PaAatK6qDMPA0YDxzb2UqkSo6hCJOOy8zlgT9S9KDeLDOXBnakmF79XYrPNdKgExGLAn+m+Jy+GPAWxY+7z9WalNdPUUw4Ig1m90bE8xFxYUQcEhF+55zFGCiplf2Bt4GdM/M64HWAzHwkM/+YmfsBnwW+RnE6nDQYnUjxS/XF5X9Ui9dWRMQCEXEA8DPgTeAnHapR6oQHgI92ugipgh0pvkB/q9HKzLy2bPNRiimopcHoq8CqwDnAIhQ9STMzlwMWBj4HTARuzcyVO1al1DfupghO9wJOBx6JiCci4qyI2CcilupseYpMz1RSYxHxCnBPbYafiPgFcCAwNOsOnIj4G/BcZvprnwaliNgHGAPMTddpnFOAIWWT94D9M/OijhQodUBE3AJsmJkLdLoWqR0R8RZwTWbuXt4+GxgNzJeZk+vaXQ0sl5nrdKRQaSZExIMUPfFWzMx3IuIc4IDMHFLXZiPgTuDIssepNGiV44RtDWxXXtYsV9W+jz4IXAdcn5lXDniBczh7KKmVeenqPgtFbyUofg2p9wDFTFnSoJSZvwE2pviVbxJFoDSU4pj/A/BRwyTNScqQ9aPAQ52uRargbeCdutuTyuvuv2BPBOy5ocFqOHB3ZtaO9QSIiGmBUmbeDdwKHDzg1Ul9LDNfzcwrMvPIzFwbeD/FmTS/BP4FrAMcBVzRwTLnWA7SplaeBZauu10Ll9ag+NWjZhmKnh3SoJWZDwCfiogAFqfonfRiZk7pbGVS3yp7mzazEMV7/NrlbU/z1GDyNLBi3e1Hy+tNKQeYL9/jNwBeHdjSpD4zBXit7vYb5fUSwPN1y58Bdh2ooqSBkpnPlb2o5wMWoBiYfr7OVjXnMlBSKw9TzGxVcwdFz42jI2LPzMyI2ALYCri/A/VJfa48nfPFTtch9aPRbbR5Hfh2Zo7p31KkPvUXYFREzJeZbwN/KpefFBFvUPySfSiwGuBpERqsngFWqLs9vrzeELiqbvmaTN9jTxq0ysHotwW2Ly/1g3M/AFxPcdqbBpiBklr5E7BjRGycmXcBN1Cc/rA78ExEPEPRxTAoBkmTBrWIWJvil+wlgQcz83fl8rkoxg57t5P1SX3koBbr3qXo5XFXZr41QPVIfeVKitMgdgUuycxHynGUPktx+jIUn1neBb7RmRKlmXYvsENEDCl7UV9PcVyfEBFPUASnhwHrUXx2lwatiDieIkBan66xTccDv6AIkG7IzBc6UpwAB+VWCxGxBMVsKHdn5sPlstWASymCJICpwGmZeWRnqpRmXkSsSDEo91Z1i3+ZmZ8p1x9CEZrukJnXD3yFkqTeKMeV+SIwimKmoIeA4zPzzlbbSbOqiKiNHbNbbQDiiLgC2I2uQYprtsnMmwe4RKnPRMRUiuP6AeBUioG3H+9sVapnoKReiYjVKT6YPZKZnh6kQasMTu+mGHfjAeAWil/2xtQFSosC/wZONzyVJEmdEhFDKcY4fTUzJ5XLFgROYPrg9NuZeWnHCpX6QERMoeiBlxSne15HV8+kZztZmwoGSpLmaBHxQ+A/ge8BXy/HBptKXaBUtruH4j3zQx0qVepzEbEcsCWwXLnoaeDmzHy6c1VJkiRBRCwCbANsV17WKFclRXBaGztpbGa+1nAn6lcGSmoqIvYAbsxMZ0LRbCsi/klxTvaIckBumgRKFwNbZOYynalU6jsR8T6KruN7A3N1Wz0VuBD4Qma+MrCVSb0XEZcD11L8cj2uw+VIkvpYRCxLMabSdhSDdC9PES5NoRim5aMdLG+OZKCkpsov1VMoBv+rpb+3ZaYzRmi2ERFvAX/IzL3qljUKlH4NfDIz5+1AmVKfiYj5gdsoBmxN4M9AbTyCVYCPUHQvvx/Y3MG5NVjUjbUB8BzFZ5frKcbc+FfHCpP6SUTMQzG7W30v03ucRERzgohYmWKYisOB+Sgmax7Seiv1NWd5UyuXAFsDG5eXrwLvRMTtFOHS9RRJsKmkBrO3gPe10W448Ep/FiINkC9SzJZyO/D/uvfkiIg1gZ8BmwFHUpwOKg0Gu9B1WsS6wKeB/QAi4hG6AqYb7H2nwSwi5gaOpfgivXC31ZMi4qfAtzJz8kDXJvWXiFicoldSrYfSyrVVFD8m3Neh0uZo9lBSjyJiPYoX7fbAFsCC5aoEXgXGAtdl5mkdKVCaCRFxM8WshSvXTu/s3kOpHGfmEeCmzNy5Y8VKfSAi7qMYhH6VZqc0l6fEPQY8lZkbDGB5Up9o8MVjlXJVUpzWeV9mfrhD5Um9Vs5ceBXFsR3As0zfy3RZiuP8OuDjmTmlE3VKfSEidqTrfXxdimM+ytWP0nUWzY2ZObEjRc7hDJRUSTmzxEfo+gVwE2BuYGpm2uNNg05EfB44DbgIOCAz360PlCJiLuBiYI9y/a86V6008yJiEvCnzBzVQ7tLgJ0yc6GBqUzqPxGxIvCF8uKpERq0IuJQijHw/gkclZlXd1u/I/Bj4APA4Zl5xoAXKfWRulOZg+JU5hsoQ6TMnNDJ2lQwAFBVQXHczA3MQ9dgrtF0C2nWdhbFKRF7AxtHxJXl8nUi4nsUQdJqFD3xLuhEgZKk6iJiaYpftmu/bi9H8XllKnB3B0uTZsYBwBvAdo1m5MzMqyNie4oZsA4EDJQ0mP2BcqiVzHyw08VoRvZQUo/KU95qH8g2Bxag+ED2GsWX7FpK7IwqGpQiYmHg5xShUiOXAwdm5usDVpTUTyLifopZUVZudkxHxDCKUyj+lZnrD1x1Uu9FxIIUYz/WPrOsRdcPXg8z/akRzmCrQSkiXqU4Bf8TPbT7HbBVZi4yMJVJmhPZQ0lNlbNabQssQfGB7B3gDro+kN2VmVM7V6HUN8ov1ftExLeAnSnGIBgCTAD+mJkO8qfZycXAccDvIuL/Zeaj9SsjYgTFoNyLAj/qQH1Sb02k67Ptc8Cv6Pple4aeHNIgNTfwZhvt3izbSlK/sYeSmqo7Z/UBipkkrnb6aM1uIuJHwCuZ+e1O1yINhIhYALiTYjD6KeW/n6B4v1+FYmy8IRTv/ZtmZjtfXKSO6/a55RSK3tPjO1qU1MciYhwwjKKX6btN2sxD8b7+WmauOZD1Sf0hItYCjqLohbpcufhp4Ebgp54O1zkGSmoqIl4EFitvvkvRO+k6ih5Kf7F3kmYHETEZ+F1m7tnpWqSBUs6AdTqwJzOOgZfApcChmfnSQNcm9Vb5A8G2wAfrFj9BV8/qGzymNdiV4zt+BbiQ4n36lW7rF6EYtPs/gBMz85gBL1LqQxFxMMUxPTeNx+19l2IA+rMHtDABBkrqQUSsTzGQZW38pAUpvmy8DtyMg6RpkIuICcDtmfmpTtciDbRy5qstmP7Xvlsy86nOVSXNnIhYgq7ZaLel6HkHxWDcf6Nr7MerG+9BmnWVPwjcR/G+/Trwe6bvZbobsDDwL2ADp1LXYBYRHwFuK29eDPyCYoxHKI73zwB7URz/m2fmnwe8yDmcgZLaFhFDgU3p+oD2EerGKsjM5ZptK82qIuIc4GPA8Mx8r9P1SJL6VkSsRFfANBKYF8jMdCxRDUrlWHcXABuVi2pf6Gq9N+4C9s3Mxwa6NqkvRcTFwCeB/8jMi5q02Yuix94lmdlsgh31EwMlVRYRc1P0VtodOASYj+KD2ZCOFib1QtlD4z7gMuCozHyjwyVJkvpIRCxLV0/r7YD3U3zp9nOLBr2I2BzYiul7md6Umbd2riqp70TEs8CTmblJD+3uBFbKzGUHpjLV+MuM2hIRH6LrA9lmwPy1VcDLwNjOVCbNtNHAH4GDgE9ExHXAk0CjAegzM48bwNqkfhMR6wBHUAxwuXy5uDbA5amZ+bcOlSb1WkQMozimawHSGrVV5fWDFKe8XT/gxUl9oH4ykTI4MjzS7Gwx2nu/fhTYoJ9rUQP2UFJTEfE5ig9k21BMHw3FB7K3KM5lrQ1yeW96IGmQqpsVqNEgfzW19f6irdlCRHwR+D7FbG6Njv33gGMy80cDWZc0MyLiDmBDpj+uJ9A1ocj1mfl8h8qT+oSTiWhOUqGH0h0Uw1fYQ2mA2UNJrZxeXk8B/kLXL3q3NZumVBqEvk3X2APSbC8idgN+RBEanVdexperhwOfBvYDToyIRzLz9x0oU+qNjwATKXrZ1SYNebSzJUl97jmK929pTnA7sEdEfDIzf9uoQUTsQfH+33C9+pc9lNRURJxMESCNzczXOl2PJGnmRcQtwEeBT2TmlU3afBz4A3BrZm45kPVJvRURGwD322taszMnE9GcJCI+SjGzeAK/Bn7J9LMaHgD8BzAXsEVm3tGhUudYBkqSJM1BIuJ1ii/dW/TQ7hZg/cxceGAqkyT1xMlENKeJiEOBkylOZ55hNUWPvaMy8/QG69XPPOVNbSunKF0SeCkz/9npeqS+EBFTgDGZeXAP7X4OHOQ005oNTKYYeL4nTwHr9HMtUp+LiLmAnYFNKT63/Dkzf1GuW5JiXMjHMnNK56qUem00TiaiOUhmnh4RtwFHAVvSbVZD4CdOJNI5fjFSSxExFPg6cDiwRLn4l8BnyvX7lesOycy/d6RIaeYErQfk7t5WGuzupb2gaG3gnn6uRepT5ay0vwFWpZxMAZgb+EXZZHvgfGAPwPHBNBgdS9dkIUsA+zRoM20yEcBASYNeGRi1/PFXnWGgpKbKMOkqiml33wPGAWt1a3YbxYCuewIGSpqdLUTRs0Ma7P4PuDYi/jMzT2rUoJwFbh1gh4EsTJoZEbEScC1FD6QrKX65/n63ZlcA72KgpMHLyUQkzTIMlNTKFyh+ybsOODAzny2nWJ8mM8dHxKMUXzq+1YEapX5VnjqxJrAt8K8OlyNVFhHdB9WeApwC/CAiPgVcQDHAJRSzvO0HbAz8BGcS0uDyDYow6QuZeRpAREwXKGXmmxHxV4pjXBp0MvPYTtcgSTUOyq2mIuIeYEVgtcx8pVw2lWK8mc/UtbsC2CAzV+xIoVJF5bhJ027S/i99P8rMr/RDSVK/Kd+3Gx3jtVM4u6+rX56OG6bBIiKeBCZl5tp1yxp9bvkNsF1mLtmBMiVJFUTEMIohVrYD3g/M16RpZuaqA1aYAHsoqbXVgbG1MKmF1ykGvZQGi/qxkJLWYyNNphj07zLgm/1ZlNRPatPtSrO7pYE722gXgLMXStIsLiJWAG4BVqDnsUz9rNMBBkpqJYGpPbYqkuK3+7kWqc9k5ly1fzf69VqanWTm1p2uQRogr1OESj1ZBXixn2uRJM2871KcMXMv8D3gIeC1jlak6RgoqZUngPUiYq7MbBgsRcT8wLoUA3ZLg9G3gPs6XYQkaabdB3w0IpbNzGcbNYiI1YH1cUBuSRoMdgCeA7bJzNc7XYxmNFfPTTQH+x2wPPBfLdocTTEA5hUDUpHUxzLzW5n5u07XIUmaab8AFgB+FRGLd19ZjsNxJsXn37MHuDZJUnXDgDsMk2ZdDsqtpiJiMeABYBngQuCS8vIH4HRgL+BA4ClgXV/oGowiYh7gfcBrmfl23fKFgGOA9YDxwPczc0InapT6S0QsCIyg+MDWcGyCzLx5QIuSZkJEXAqMpDj97SZgV4pTJB6gmLl2UeDCzPyPjhUpSWpLRIwDHsnMT3S6FjVmoKSWIuKDFL2PhtN4JqAJwC6Z+fcBLk3qExFxHPB1YPPMvKNcNhdwN0WYVPuS/QywXma+1JFCpT4UESOAkym6krfqrewsbxpUImIo8B3gCGD+bqsnA6cCR2fmewNdmySpmoj4BsUZMav4GXzWZKCkHkXEfMBBwM4UA1kOoQiS/gicmZlvdLA8aaZExO3A8pm5Yt2yPYGLKX7RPhnYheIX729m5v91pFCpj0TE8hSDWy5BEZQOBZYC7qDorbQkxQ8IdwCTM3ObDpUq9VpELApsw/SfW67LzH93tDBJUtvKHwn+SNGT+qDM/EeHS1I3BkqS5mgR8QzwYGZ+rG7ZucB+wPqZ+UDZY2kC8GxmbtShUqU+ERGnAIcBx2Xm/0bEOcABmTmkXP8xitOanwJ2zMzJnatWktRKRCxLMeYpwNOZ+Uwn65H6UkTcAMwNbEYx+/hT5aXRhFGZmdsNYHnCQEnSHC4i3gYuycxP1y17FJgrM1epW/ZbitPilupAmVKfiYhHgHmAlTNzavdAqWyzKvAgRehkrzxJmsVExOeB/6ToWVrvUeDkzDxt4KuS+lZENJxpvIms/yyjgeG4CJLmdJOBRWo3ImIpilMkzu/W7k1goQGsS+ovywPXZGbtQ9pUgIiYu9YbKTMfi4ibgP8ADJQ0KETElm02fRd4MTMf7c96pP4QEUOAi4A9KMZ5nAo8W65eFlgN+GnZ23RUZk7pRJ1SH/G0+1mcgZKaiojH22z6LvAixSDG52bmvf1XldTn/glsFhHzlbO87Ukxfsyt3dotCzj2hmYHbwPv1N2eVF4vBTxdt3wisPlAFSX1gbHMOIFIUxHxGvBLivHxnKlWg8VRFOM6Pg18E7ggM9+F4ocBYF/gOOATZdsfdahOaaZl5k2drkGtecqbmqrrYpg0mU66wbqpwHcy89h+LE3qMxFxDPBdikD0VuCzFOdqr1QbvLX8NfBF4J7M3L5TtUp9ISL+DkzKzE3K20cAPwY+lZmXlMsCGAcMy8z3d6pWqYqIGEvxY+lHy0Uv0zXWxkrAYhSfW+6kCFCHU8xy+ADw0cx8c2Arlqor38NXBtbNzMeatFmV4rh+IjPXHsj6pL4UEYtl5sQ2234kM//c3zVpeq2mCpZWBn5A8UGs1rV2A4qp1HcHLizX/QjYAvhfil+9vxkRO3egXqk3TgJuBDYCvkgxzfSXu80EtAPFaXE3D3h1Ut/7C7BWOYMnwJ/K65MiYueI+CDF1OqrUQSt0mCxU3n9D+Djmbl4Zm6QmRtm5hIUs9U+WLb5IMUxfnv57yMHvFqpd1YFxjYLk6A4bZnis80qzdpIg8TvImLenhpFxAYUs8FpgNlDSU1FxCeAy4BPZuYVPbTZMzMvj4iPA38A/pCZnxi4aqXeK3tjbA4sDdybmY93W78NsC7wu8x8ogMlSn0mIvYEfgP8R12PpDMpeufVPhQExenMG2fmAx0pVKooIr4DHAGs1u1Hgfo2S1Oc6nxqZn49IlYAHqaY7XPjgatW6p2IeA64MTP/o4d2vwG2zsxlBqYyqe+VZ8xcmpl7tWizNsUpz4tmpkP6DDADJTUVEbdQzHS1WQ/tbqMYVX/z8vaDwGKZuewAlClJmknlaZ1fBEZRnBb0EHB8Zt7ZybqkKsoZDB/MzD16aHc5sE5mjihv3wp8MDMXabWdNCuIiPOBrYBVa2MnNWgzD/AYcEtm7juQ9Ul9KSIuAD4F/CQz/7PB+g8AN1H8KHx4Zp4+wCXO8TzlTa2sC7TTG+MJiu7iNQ9TfCGRJA0CmTklM3+YmZtm5uqZubthkgah5Zl+wPlm3gGWq7s9AejxlAppFvHfFKfnnxcRS3RfGRGLAecC8wFfH+DapL42GrgFODIivli/IiJWBq6nCJO+YpjUGXYJU09W70WbpJhiXZIkaaC8CGwZEfNn5luNGkTE/MCWwEt1ixcFXun/8qQ+cQDF8BIHAB+PiGvp+gF4OMW4jwsA5wEHFGf1T5OZedzAlSrNnMx8NyJ2pxjv7gcRMSEzL42I5SnCpOWAYzPzhx0tdA7mKW9qKiKuA7YBPpOZv2zS5gBgDHB9Zn6sXHY3sFBmrjFQtUqSpDlbRJwGfB64EjgsMyd0W788cBqwC/CzzDysXD4eeCYzP4o0iyvHlGk1A3NNfZvavzMzh/RjeVK/iIiVgDuA91GEqd8BPgB8PzOP6WBpczwDJTUVEVsD11H8B3Qd8GvgSYr/lFYC/gP4WHl7+8wcGxFLAc8AYzLzsx0oW5JUJyJumInNMzO367NipH4UEUtSzGK4EjCZ4stH/eeWTYF5ymUfzswXIuJDFLMZficz/6cjhUsVRMSxdE2gUFlmfqvvqpEGTjmT280UPfCCYnKFIzpblQyU1FJEfBo4HViQGf/zCuAt4NDMPLdsvwJFV9vbM3PcQNYqSZpR+Wt2I/UzujVb7q/ZGlQiYlmKzy270fjYvpLic8vTddsMycwpA1elJKk3ImJH4PfALzPz/3W6HhkoqQ0R8X6K6aS3pGsQy2coEuKzM/NfnapNktRaRGzVYPEewFHAPcD5wPhy+XDg08CGwMnA5Zl5U78XKfWx8vSILZj+c8stmTm+Y0VJklqKiJkJ9zMzHSN6gBkoSZI0B4mILSkGsjym2SCWEfGfwPcpTmc2UJIkSf2uRa/qtmSms9gPMAMlSXO0iDgBOC0zn+p0LdJAiIhrgKUzc70e2v0VeD4zdxiYyiRJ3ZUT4ABclpmv191uS21YCknqDwZKkuZo5S8hU4CrKIKlqztcktSvImIicFVmfrqHducDu2TmogNTmdR3ImJBYAQwjCazYWXmzQNalNQLdbO6rZmZ/6y73RbHwZPUnzzHUD2KiL2AURRTMzb7YJaZueqAFib1jZOA0RQDuO4aEY9RDOh6Tma+0sG6pP4yN8WMVz1ZCT8naJCJiBEU43/tALQ69SHx+NbgcC7F8fpqt9uS1HH2UFJTETEXcAmwO01+3aP4D82ZgDSoRcR8wL7AYcCHKI7rt4FfU/RaureD5Ul9KiJuAzYBdsvMq5q02Rn4A3BHZm4+kPVJvRURywP3AktQDMI9FFgKuIOit9KSFO/vdwCTM3ObDpUqSaooIoYAiwPzNWvjEBYDz0Gr1MrnKWYC+ivFL32/pfggtjqwC8WXbYDvAqt0oD6pT2Tm25n5i8zciOKL9vkUQelngLsi4s6I+HREzNPRQqW+cSLF8X1ZRJwdEdtGxMrlZZuIOAu4vGz7g45VKVV3DEWYdFxmLg/8keIHr80yc2lgR+AJ4F2KzzWSpFlcRHwkIq4GXgeepXgfb3R5vGNFzsHsoaSmIuIOYD1g5cx8PiLOAQ6o74kUEQcBZwE7Zea1HSpV6nMRsRjwWeBzwMoUYepLFMf7qZn5dAfLk2ZKRBwN/B+Nf1gKYCrw35l5woAWJs2EiHgEmIfic8vUJp9bVgUepAid/q9DpUqS2hARmwHXAfOWi14GXmvWPjNXHoi61MVASU1FxCvAPZm5XXn7F8CBwNCsO3Ai4m/Ac84EpNlNRGwOHAHs1W3VO8CPKb5wTxnouqS+EBHrUxzfWwLLl4ufBm6iCE091VODSkS8BVyTmbuXt8+mGCNvvsycXNfuamC5zFynI4VKFUTEijOzvacAaTCLiOuAbYGfA9/MzH93uCR142CEamVe4Lm622+X14sAr9QtfwDYaYBqkvpVOTPQ/sChwDoUvTUmUAzUfS3waYqeS0dT9OL4RmcqlWZOZt4PHNzpOqQ+9DZF4F8zqbxeiiIsrZkIODaYBovx9H4Qbgef12D3YWBcZn6u04WoMd9g1MqzwNJ1t2vh0hrAnXXLl6GYNUgatCJiLYpBuT8NLEwRJN0M/BS4vK4n0j0R8SPgLuAADJQkaVbxNFDfm+PR8npTiklGiIgANqBrxixpVvcUzuqmOVcAf+t0EWrOQEmtPAysVXf7DooX9dERsWdmZkRsAWwF3N+B+qSZFhF7UwRJW1Ac32/9//buPEy2sjz3//feGxEnEGRSkFmGoAmDWwQUMCCDEjUBPc5A1CiiRk0OOT+M/uIxOc4iDnBURCTHEzFKGMQJVAQEGQIoIYAMMm0IyKTMIPs5f6zV0DRdvbv37qrVVf39XFdf1Wutd3XfxdX0rn7qfZ8X+Crw+aq6eLJ7qur6JKcArxtYUEnS0pwL7Jtkpaq6H/hBe/7QJPcAN9DMPn0OcHJHGaUZqaoNus4gdehimskLmqMsKGkqPwD2SLKoqs4DfgJcBrwSuDHJjTy6JOiI7mJKy+Wb7eO1wOHAkVV1xzTuW0yzFE4aOklWBg4CdgWeRe8teKuqNh5YMGn5nEyzZHlv4NtVdUXbR+mtwHfbMaHZ5c3ZpZI09x0GfCPJVu1Sfc0xNuVWT0lWp9li9/yqurw99xzgOzSFJGh6yBxeVe/pJqW0fNpmf58HTqqqJV3nkfotybOBM4Bn0/xxPZUav0OWNGySLATeC+wLrEbzxthHq+oXU90nSZobknyYZjXBh4CTbTQ/t1hQ0jJJshnNC7MrqurWrvNIkqYnyT8DbwAuAD5O8wf2VFvwXjugaJKkZZBkH+BVwBo0SzuPrapTOg0lzYIkM9lNuarKFVgDZkFJkqR5JMnNwMPAZlV1V9d5JEm9JdkN+F/AcVX1sUmuHwXsN3bYPhbw8ao6ZDAppf5IMqPVA1W1oF9ZNDkreJLUSrIFsCmwMj2WAlXVMQMNJc2+lYHvWUySpKGwJ7At8P6JF9qNRfZvDy+g6Xe6Hs0Sz79L8t2qOmtAOaVZZ4Fo7rOgpEck2an99Nyqun/c8bRU1el9iCX1XZIdgC8DW0w1jOYdPwtKGnbXAE/oOoS0vNqZGQUcUlU3t8fTVVX1lj5Fk2bT9sBtVXXmJNfGepj+EHj5WC/IJG8DvgS8BbCgJKlvXPKmR7RTCgvYoqp+Pe54OlyzqqGUZHPgfODJNC+61gY2pNn9bRNga2AhcALwu6o6oKOo0qxI8gHgYGCjqrqt6zzSsurxumW6bDivoZDkWuDSqtpzwvmVgdtp3vDacXyj+bYZ/bXAXVU11Ztl0pySZL1pDCvg7mnuyqw+swCg8U6n+R/03gnH0ij7HzTFpLdX1VeSfA3YsKreAI8sg/s6zVK47buLKc2ajwO7AN9LckBV/WfHeaRlNVbgv2nCsTRK1qB5TT7RImABcPvEXQur6uEkvwJePIB80mz6zXQHJrkb+BnwKVfKdMeCkh5RVbtMdSyNqF1odiv8ymQXq+rSJHsDVwIfpJnZIQ2zH9EseVsE/CrJdcB1wGSzO6qqdh1kOGm6qurrUx1LI6KAVSc5v037eEGP+27H5c0aPpP2MO3hacDewMuSHFxVn+lTJk3BgpJ6aqfSlo1bNeLWBk4ed/wwQJInVtUDAFV1S5KfAX+OBSUNv13Gfb4A2KD9mIyzVDU0krwHuLeqjuw6izSLrgf+OEnqsb1Kdqb5HX1Oj/tWA27pdzhpNk23CXeSpwLPAV4NvBf4RJLTq+r8PsbTJCwoaSp3AucB23WcQ+qnuycc/759fCZN8+Ix9wHrDCKQ1Gcv6TqA1CefAb4PWFDSKDkNeBvwLuDzAEm2BHZvr588+W1sRTP7VBo5VXU3cCFwYZKzaXqdHoRLnwfOgpKmchdwRdchpD67gWaL3TGXtY8vAb4GkOQJNIXV3w42mjT7qupnXWeQ+uS3NK9dpFFyKLA/8Nkk/41m1tGuNBuGnD+xfxJAkkU0M7C/PcCcUieq6qQkl2DPsE5Ma0qZ5q1LgXW7DiH12c+BLdslntC80/cwcGiSA5P8GfAdmv8XJtuyV5I0N5xJ0xtMGhlVdTmwH81M6R2AV9H0jrkJeHOP2w5sH0/tdz5pjriEZnWBBsyCkqbyFeBFSbbtOojUR8cBi2n7ylTVYuCjwMrAF4DjaRr+/Q44pJOEkqTp+J/Aukk+nGQmjV2lOa2qjgU2pln69gHgTcDmbbFpMucD7wN+PJiEkuarPLa3m/RYST4HvJFmm+l/A64da1QsjbIk+wD70jS1vAz4bFVNeytTaa5K8pMZDHeXNw2NJG8GXgS8heb39gnAtTQzOx6nqo4ZXDpJUr8kuRh4UlVt0nWW+caCknpK8vAMhldV2ZNLkua4JEumMaxotu6tqlrY50jSrGh/tsd+dmEpuxT6sy1Jwy/Jy4DvAsdU1f4dx5l3LABoKjOZLu7UckkaDr12eVsArA+8HNiHZmbqDwYVSpoFx7CUIpIkafgleTKwCc3rlb8BltC0qtCAOUNJ0ryW5CLgFOAnwOlVdU+3iaTuJXknzRbsO1bVv3edR5Ikjb4ZrpAZ7+Cq+vSshtG0WFBST0leATxUVd/vOovUL+OWSAD8ATiHponlj4Gzq2pZ/2GThlqSy4ArqurPus4iTUeS44CbquqgrrNIkmZumsvyx9wDnA58qqp+2qdIWgoLSuqprRCfWlV7dJ1F6pckWwC7ArsBOwOrtJeK5h+qM2iKS6dW1a86CSl1IMm/An9aVc/oOos0HUkeAI6vqv/WdRZJ0swlWX8awwq4F7i9qmZSgFIf2ENJU7kduLXrEFI/VdWlwKXAF5IsALalKS7tCuwA7AXsCZDkt1W1dldZpQFbG3hS1yGkGVgMPKHrEJKkZVNV13adQTOzoOsAmtPOBZ7bdQhpUKpqSVWdV1UfrardgHWBTwEP0DSeX6PTgNKAJHktTUH1sq6zSDPwXeDFbbNWSZLUZy55U09JdqJpVPz2qvpq13mkfksS4AU0M5R2A14IrEhTTLoN+IlLKTTskhw1xeWnApsDW7bHb6mqo/seSpoFSVYDzgMup3ntcn3HkSRJGmkWlNRTW1B6DXAg8CPg34BrgfsmG19Vpw8unTQ7kmzGowWkXYCVaQpI9/LY/kkXdRRRmlXTbHh5F/A/3TFFw6Qtlq4O7A08CFxA79ctVVVvGWA8SZJGjgUl9TRu96u0p6b6YamqsieXhs64n/OHgfOBU9uPs6vqoS6zSf2QZL8pLj9I04fmvKqa9M0Daa6a5HXLVKqqFvY5kiRJI80CgKZyOlMXkaRREeDXNEs8f4LFJI2wqvp61xmkPjmg6wCSJM0nzlCSNK8leTfNjm47A6vQFFHvA35OM1Ppx1V1QXcJJUmSJGnusaAkSUCSBcDzaXop7QpsD6xEU2C6A/gpcEpVfbmzkNIsS7IOsBOwTntqMXB6VS3uLpUkSZKGgQUlSZpEkicCOwKvAP4KeCL2CtOISPJ04Is0Gy8smHB5CXAs8K6qunOwySRJkjQsLChpWpI8BdiER3fAehx3edMoaGcqbUczS2k34IXAiu1lm7hq6CV5Es2Szj+hmYF3DnB1e3kjmp//ABcBL7I5t4ZNkmcBrwQ2pffrFnd5kyRpOflOu6aUZBPgMGB3Hv8u9niFP08aUkm25NEC0k7A03j0D5C7gVOAH7cf0rB7L7AVcBbwtqq6dPzFJFsAX6KZofce4OMDzictsyTvBT4GPGH86faxxh0XYEFJkqTl4Awl9ZRkXeACYHXgRpqC0ZrA2TSzldageUF2NvBQVb2ko6jSMktyI7DW2CHwEPAL2obcwDlV9XBH8aRZl+RCYD1go6r6XY8xTweuAq6rqq0HGE9aZkn2AL4P/B74ArALTT+8d9C8btkH2BD4HHCROx5KkrR8pppxIv0PmmLSR6pqXZoXaVVVO1bVWsAewG+AB2lmMEnDaG3gl8BngL2AVatq56r6SFWdZTFJI+g5wE97FZMA2t5JP23HSsPiPTRvdL20qv4euAKgqr5SVX8H/BHwVZqZSWd1llKSpBFhQUlT2QO4HvjwZBer6pR2zA7AwQPMJc2mNapqm6r671X1w6q6t+tAkqRlsgg4v6rOm+xiVT0IHEQzg+n/H2QwSZJGkQUlTWVdminhS9rjJQBJHulLUFVXAT8DXjf4eNLyq6rbus4gDdiVwC5JntZrQJKVaZYLXTmoUNIsWIVHG8xDM4N6bGMRAKrqIZqm9C7TlyRpOVlQ0lTuBx4Yd3x3+7jmhHG30/QkkCTNff8KrAac2G688BjtuX8DVgW+NeBs0vK4lWZXtzG3t48bTBi3Es3PtyRJWg4WlDSVxTSNW8eMvVO9/diJJAG2Bnr24pAkzSmHAv8B7AxcmuSMJMck+XqSM4BLaWZv/Afw2e5iSjN2DbD+uOOLaDZbeO3YiSRr0sy+u3aAuSRJGklu866pnAvsm2Slqrof+EF7/tAk9wA3AAfSNG09uaOMkqQZqKp7k7wEOIJm16sd249HhgDfBg60p5iGzI+BDyRZr6quo3ltcgdwSJJNaV637AM8FTi+s5SSJI2IVFXXGTRHJdkH+Cbwuqr6dnvuy8Bbaf7ggOadvweBRVV1cSdBJUnLJMl6wIuBddpTi4Ezquq6JAuA/arqa50FlGYgyRbA+4FjquqM9twrgf8LPGnc0AuBnarqnsGnlCRpdFhQ0owkWQi8F9iXpgfHZcBHq+oXXeaSJM2OtpD0JuDvgY2qamHHkaTlkmQdYG8efd1yYlU93G0qSZKGnwUlSZLmgSTPAnYH1gJuBn5UVTdOGPN64B+AjWlmoN5cVc8ccFRJkiQNAXsoSZI04pL8NfAxYMVxpx9M8tdV9eUkGwHfAF5AU0i6C/gU8JmBh5UkSdJQcJc39ZTk2UnenGSzKcZs1o5Zd5DZpNmWZJUkByX5P0l+mOTgcdc2TbJ7kidN9TWkuSjJTjQ7uz0RuBu4ALiK5k2lw5O8FPg5sB3wB+AwYOOq+og9ZjRMkuyV5Cdt0/leY/60HfPSQWaTJGkUWVDSVN4DTKcZ69HAQf2NIvVPkj2Bq4HPAa8HdgM2HzdkM+D7wCsGn05abmO/nw8H1qqqRVW1KbAVcCVwAs0yuIuBP66q91XVrZ0klZbPAcDzaXap7eVcYBGw/yACSZI0yuyhpJ6S/JLmZ+SPlzLuYuChqtpmMMmk2ZPkuTR/YKwAfAk4HTgWOLqq/rId8wTgduCkqnp9V1mlZZHkWpqdOTee2Ig4yV40W6vfR9OA++YOIkqzIslVwI1V9eKljDsDeGZVbTKYZJIkjSZnKGkqz6Z593pprgTW63MWqV8OoVkKtG9Vvbuq/nXigKp6iGab6T8ZdDhpFqwJXNhjV6uz28fTLSZpBDwTuH4a464H1u5zFkmSRp4FJU1lJeDBaYx7EHhKn7NI/bILzR/bJy5l3GKaP1akYfNE4I7JLlTVne2n/zWwNFL/PACsMo1xqwCTFVglSdIMWFDSVBYD205j3Db4x4iG1zOY3ky8FQGbcmtUuf5do+BS4EVJehaVkqwMvAj49cBSSZI0olboOoDmtJ8Cb0myf1UdPdmAJPsBGzO95t3SXHQHMJ1dCjcGXBKkYbV2u9vbjK9X1el9yiTNtuOAFwJHJXl9VT0w/mKSFYGjgKcC3+kgnyRJI8Wm3OopyebARTQz2T4JfLWqrm6vbQi8Ffjbdvg2VXVJFzml5ZHkRGAP4LlVdUV7bgmPbcq9CDgH+JeqekNnYaVl0P48L+s/9lVVvvmkoZDkycAFwHOAa4BvAJe1lzcD3ghsQDMrdZuqumfwKSVJGh0WlDSlJG8GjgQWtqf+0D6O/YGxBHhbrxlM0lyXZA/g+zRbpr+mqi4fX1BKshHNtup/BOxcVWd2GFeasSTXsBxL2qpqw9lLI/VXkvWA44GtePzPfWjeKPuLqrpmkLkkSRpFFpS0VEmeD/w9sBvw5Pb0vcCpwD9V1XldZZNmQ5LDgHfT/PFxCbAlTQ+xm4CtaQqon6mqv+35RSRJc0KSAK8A9gTWp/ndfh3wQ+CE8sWvJEmzwoKSpi3JAmB1mhdmt1XVko4jSbMmyTuAD/H4raRvAz5SVZ8bfCpJkiRJmpssKElSqy2abgVsRLPM83rg3Kr6w1T3SZIkSdJ8Y0FJkiRJkiRJM7Kg6wCSJEmSJEkaLm4FLElAknWAlwDPAlbqMayq6iODSyVJkiRJc5NL3iTNa+1uQJ8F3smjszYzYVi156qqFg4unSRJkiTNTc5QkjTf/Xfg3cAS4AfAZcDvO00kSZIkSXOcM5QkzWtJLqXZ1W3Xqjqz6zySJEmSNAwsKEma15LcD5xZVbt1nUWSJEmShoW7vEma7+4Ebuk6hCRpdiTZJMknk5yZ5PIknxh3bbskf5Xk6R1GlCRpJNhDSY9I8qHluN3drzSsfgIs6jqEJGn5JXkL8EVgxfZUAauPG/Jk4AjgIeBrg00nSdJoccmbHpFkCY/uZjVd7n6loZZkY+DfgU9bFJWk4ZVkR+BnwN3AR4DTgXOAo6vqL9sxC4BbgZ9V1Z93lVWSpFHgDCWN9+GuA0gd2JHmXep/SPIy4PvAdTS7vj1OVR0zwGySpOk7mOaNrr2q6myA5LHvkVXVkiQXAlsMPp4kSaPFGUqS5rVJZuZN+UvRmXiSNDcluQW4oqp2HHduCeNmKLXnvgHsXVWrdBBTkqSR4QwlSfPdMSyliCRJGgqrADdMY9xT8TWwJEnLzX9MJc1rVbV/1xkkSbPiFmDDaYzbDFjc5yySJI08C0qaliRbAJsCK9Ojabe9ZSRJUod+Duyb5PlVdf5kA5K8lOb1zJEDTSZJ0giyh5KmlGQH4MtM3bzSXd409Nqdf1ZrD2+vqkmbckuS5qYk2wFn0cw+eitwKvAH2h5KSXYCvgGsBWxbVRd3FlaSpBFgQUk9JdkcOB94Ms0LtLVpppJ/E9gE2BpYCJwA/K6qDugoqrRMkqwGvAt4BfAnwIL20hLgl8CJwOFVdWs3CSVJM5Hkb4BP0vTG+z3NzOrfAQ8Bq9O8Cfb+qvpsVxklSRoVFpTUU5KjgTcDb6+qryT5GvDmsZlI7TK4r9MUnLavqrs6CyvNUJI/B45iimWcPPoHyVur6juDyiZJWnZJ9gL+AVg04dLFwAer6sSBh5IkaQRZUFJPSa4BHqiqzdrjxxSU2nNrAlcC/7uqDu4kqDRDSV4N/AvNjKSLaXZ6Ow+4maa4tCbwApqC6nNpZiy9vqq+1UlgSdKMJXkGzczqhcD1VXVjx5EkSRopFpTUU5L7gZOrap/2+EjgAODJVfXAuHEnAZtX1XO6SSpNX5I1gKtoZta9r6o+v5Txfw18GrgX2KSqbul/SkmSJEma2xYsfYjmsbsnHP++fXzmhPP3Aev0P440K94NPBU4ZGnFJICqOgz4QHvPQX3OJkmSJElDwRlK6inJRcBDVbWoPf4r4AiafjJfa889gWbJG1W1fkdRpWlLch6wAbB2VT08zXtWAP4L+M3Y/w+SpG4lefPy3F9Vx8xWFkmS5qMVug6gOe3nwAFJVq6q3wMnAw8DhyZZCbgBeBuwLs3Ob9Iw2Aj4+XSLSQBV9YckZwE79i+WJGmGjqbZPGFZWVCSJGk5WFDSVI4Ddgd2AU6sqsVJPgp8EPhCOybAncAhXQSUlsFTgGXZkfCu9l5J0txwDMtXUJIkScvBJW+asST7APsCqwGXAZ+tqt90m0qaniQ3ANdW1YxmGyU5E9igqtbtTzJJkiRJGh4WlCTNK0lOAF4GbFxV103znvVpeoV9r6pe2c98kiRJkjQM3OVN0nxzLLAQOCrJiksb3I45iub35bF9ziZJkiRJQ8EZSpLmlSQBzgO2Bs4F3llVF/YYuy3wRWARcBHw/PKXpiTNSUl2mubQB4Fbq+rKfuaRJGnUWVBST0munsHwqqqN+xZGmkVJ1gXOANanaeh6CU1x6eZ2yFrAC4EtaBrPXw/sWFU3DD6tJGk6kixhZk26fw98HfhgVS3LZg2SJM1rFpTUU/vCbGmK5g/uqqqFfY4kzZokqwKHA6/m0eW/438hBlgCfBs4qKpuG2xCSdJMJDmNZgfjHdpTdwDX0fwuX59mM5ECfgGsCWxA8/v/YmCHqrp3sIklSRpuFpTUU9uIeDILaF6YvRx4N/AJ4KtVde2gskmzJclGwN7AtsAa7elbgX8HvltVV3WVTZI0fUlWAk4Fng78bVX9YML1PYBPAncBuwJrA/9MU4D6QFV9bKCBJUkachaUtFySvIpmBseeVXVqx3EkSdI8leQfad7oek5V3dJjzFrAr4EvVtUhSZ4NXA5cUlWLBpdWkqThZ0FJyy3JhcAdVfWnXWeRJEnzU5IraApDr1rKuOOB51bVJu3xmcDzqmqVvoeUJGmELFj6EGmprgC26TqEJEma19YFHpjGuAeAdcYdXw88sS+JJEkaYRaUNBs2ommCKUmS1JVbgZ2SPKnXgPbaTsD4jRZWBe7sbzRJkkaPBSUtsyQLkxxMMzvpl13nkSRJ89pJwFrAt9reSI+RZF3gWJod3k4cd2lz4OqBJJQkaYTYQ0k9JfnJFJefCmxMs5NKAa+qqu8OIpckSdJESdYAzqXZifYh4GzgWprXKesD2wMrtudeUFW/TbINcD7wj1X1oU6CS5I0pCwoqackS6Yx7Crg/6uqb/c7jyRJ0lSSPBM4AvgzIBMuF3AycGBVLR53z8KqenhwKSVJGg0WlNRTkp2nuPwgsLiqrhtUHkmSpOlIsj7wYh5tvn0jcEZVXdNZKEmSRowFJUmSJEmSJM2ITbklSZIkSZI0I271rp6SrAm8BNgSeAawBLgduBg4rapu7TCeJEnS4yRZCXg+8CxgpV7jquqYgYWSJGkEueRNj5NkVeDTwBuBhT2GPQR8HTi4qn43qGySJEm9JHkf8CFg5aWNraper3EkSdI0WFDSYyRZCzgN2JRmd5TbgQuAW2mWSK4ObA2sSrNbyqXALs5WkiRJXUryl8CR7eGlwGXA73uNr6oDBpFLkqRRZUFJj5HkBJqtdq8E3ltV3+sxbm/gUGAj4N+qat/BpZQkSXqsJBcBzwPeVFX/t+M4kiSNPAtKekSS5wG/BK4Cnr+0pWzt0rjzgA2B51XVf/Y/pSRJ0uMluQ84v6pe3HUWSZLmA3d503ivo1nG9v7p9EWqqjuA99MsjXtdn7NJkiRN5R7guq5DSJI0X1hQ0niLgN9V1UkzuOck4E5gu74kkiRJmp6zgOd2HUKSpPnCgpLG2wy4cCY3VLNm8oL2XkmSpK58GNg8yX5dB5EkaT5YoesAmlOeDvx2Ge77Lc3sJkmSpK48BfgMcFSSlwEn0yyBWzLZ4Ko6fYDZJEkaORaUNN5TgHuX4b7723slSZK6chpNL8gA+7YfvRS+DpYkabn4D6nGS0f3SpIkLa/TaQpFkiRpACwoaaK1k+w003v6kkSSJGmaqmqXrjNIkjSfpOmpLEGSJSzHO3tVtXAW40iSJEmSpDnKGUoa7zqcKi5JkiRJkpbCGUqSJEkaOknWaz9dXFUPjzuelqq6rg+xJEmaNywoSZIkaei0S/WXAH9UVb+e4dL9qipn6kuStBz8h1SSJEnDaGyp/kMTjiVJ0gA4Q0mSJEmSJEkzsqDrAJIkSZIkSRouFpQkSZIkSZI0I/ZQkiRJ0khKsg/wKmAN4Abg2Ko6pdNQkiSNCHsoSZIkaegk2Q34X8BxVfWxSa4fBew3dtg+FvDxqjpkMCklSRpdLnmTJEnSMNoT2BY4c+KFJK8B9qcpJF0IfAr4Fk1B6e+S7DC4mJIkjSaXvEmSJGkYbQ/cVlWPKygB72kffwi8vKqWACR5G/Al4C3AWQNJKUnSiHLJmyRJkoZOkmuBS6tqzwnnVwZup5mdtGNV/WLctYXAtcBdVbXFIPNKkjRqXPImSZKkYbQG8NtJzi+ieY17x/hiEkBVPQz8Cli3//EkSRptFpQkSZI0jApYdZLz27SPF/S473bgCX1JJEnSPGJBSZIkScPoeuCPk2TC+Z1pik3n9LhvNeCWfgaTJGk+sKAkSZKkYXQasA7wrrETSbYEdm8PT+5x31bAjf0MJknSfGBBSZIkScPoUOAh4LNJzkxyHM3ObQuB8yf2TwJIsghYGzh3oEklSRpBFpQkSZI0dKrqcmA/4D5gB+BVwNOAm4A397jtwPbx1H7nkyRp1KWqus4gSZIkLZMkawF7A2sC1wEnVNXdPca+k6Yh95FVdc/gUkqSNHosKEmSJEmSJGlGXPImSZIkSZKkGbGgJEmSJEmSpBmxoCRJkiRJkqQZsaAkSZLmlCTXJKkJH/cnuS7Jt5Ls3HXGqSQ5rc28yzLcO9lzX9rHabP+JCRJkpZiha4DSJIk9fBD4L/az1cFtgZeDbw6yfur6tDOkvXPt4HVJ5x7KrBP+/nXJ7nnsr4mkiRJmoS7vEmSpDklyTXA+sBLquq0ceefABwGHAg8CGxcVTd0kXEq7YyhnZmQfzm+3gbAbwCqKsv79SRJkmaDS94kSdJQqKqHgL8B7gJWBHbvNpEkSdL8ZUFJkiQNjaq6D/h1e7jW+GtJnpLkA0l+meSe9uOiJIckefJkXy/JPkmOSnJJkjvbXk1XJvlikmf3ypFk9SRfSHJDkgeSXJ3ko72+Tz8k+XHbQ+m1U4z5dDvmE+POHd2e2z/JVkmOT3JrkvuS/HuSA5byffdIcmKSm5M8mOSmJP+S5Hmz+fwkSdLcZkFJkiQNm1Xax5vHTiRZHTgb+Efg2TT9l35Is3Tun4Czkqw2ydc6FngNcA9wKnAK8ETgncAFSTadeEOStYFzgINoZkqdCFwCvBv4cXtuED7fPr5zsotJngQcACwBjphkyHY0/82eS/O8zwL+BDgqyed6fM3DgB8AewFXAccDNwGvBc5N8rJlfC6SJGnIWFCSJElDI8mWwIY0PZR+NO7S4cDzgDOAjarqL6rqL4CNeLRQ8sVJvuTrgTWr6gVVtW9V/Vn79f+Rpjn2YZPc88X2655K08fp1e19mwGrAdsv/zOdlpOAa4EXJ3nuJNdfR9PM/PtV9ZtJrr8D+DKwWVW9rqp2BXakWVL47onFoSTvAN5DUzx7XlXtUFWvqaptgD+n2ezlG0lWnaXnJ0mS5jALSpIkac5LsmqSvYDjaF6/vHesIXeS9YF9aWbivK2q7hy7r6ruAN7WXnvNxGVsVfWtqrp3wrk/VNUHgRuB3ZM8bVyO9WiKJw8D76iqu8bdtxj429l71lOrqodpCmkw+SylsXOHT3INYDFwcPt1xr7mOcDY7nnvGzufZCHwofbwNVX1mJ3lqup44EvA04E3TvtJSJKkoWVBSZIkzVU/bXv9FHA78D2aJWx7VdX4JVwvBgL8oqoun/hFquo/aZaoLQB2mng9yaZJ3pPkc20/paOTHE0z42YBsMm44TuN+15XTfK9TgLuXKZnu2yOBO4D3jih8LUdsC1wNc0Stcl8u6oemOT8P7ePL0qyQvv5VsAzgUva/56T+Vn7OKgZWpIkqUMrLH2IJElSJ34I/BdNAWdtmmLOSsAxSXasqivbceu0j5Mt6xpzNU2hY2wsbbHkcOCt7ffoZeVxn687je91Lc1Mnb6rqtuTfIPmObyJx89YOqKqlvS4vddzuI5mRtdKwDNoelVt1F7bsi3wTWWN6WSXJEnDzYKSJEmaqz5WVaeNHSR5Jk2R6Xk0vXpeWFXjixtLK3RM9Nc0y+FuBN5P02vplrFZO0nOoilCTVVsmgs+T1NQOhA4PMkzaBqN3w8cNUvfY2H7uJimd9RULlvKdUmSNAIsKEmSpKFQVTcleQ3wK+AFwBuA/0NT5IBHZ9FMZuza4nHnXt0+vr2qvjvJPZtMcm7s/g2m+F7rT3Ft1lXVr5KcDuyUZCfghTSzi46uqtunuHWDHufXo1nqdz9wW3vu+vbxpqraf7lDS5KkoWcPJUmSNDTaZtBjy7r+oV22dgbN7KQXJtl04j1JtgC2o1nGdfq4S6u1j9dPcs9LmXzp1tj32j7J4wpYSV7OgJa7TfD59vFdNLu3weS72o23b5IVJzn/hvbx51X1h/bzc2mKS1snmazQJkmS5hkLSpIkadj8E83W9hsDb6qqa4Hv0Lyu+VKSVcYGJnk6ze5jC4BvVdX44tHY0qwDkywYd8/GwP+e7BtX1TXAiTRLwI5I8pRx9z0L+NTyPrlldDxNYezVwIbAeVV1/lLuWRf42ITnvohm+R/AYWPnq+oh4CM0z/v4JC+Y+MWSrJjkFUk2X54nIkmShoMFJUmSNFSq6rc8Wrj5+3aW0oHAfwC7AFcn+U6S79A0434x8EvgoAlf6qPAQ8DbgUuTfDPJj4D/pCnOnNUjwjuBa4Ddgd8k+dckJwK/Bn4HnD0bz3Mm2plE43e+W9rsJGiKZu8ELk/yL0lOpXnOKwOHtzvWjf8ehwGHAlsC5yT5ZZLj2v9uZ9DsxHcCUy8HlCRJI8KCkiRJGkaf4dHdx/arqltpGmh/kKbP0V7tx/XAB4AdJ/YTqqqzgUXAycAqwCtpZu38E7AHTbHpcarqRpoeTke0Y15B0yj8cGBX4MFZfJ4zcUr7eBtw7DTGnwPsQDNTaw9gR+Bimkbl75rshqp6P7Az8E1gVeDlwJ7A6sB3aZbLnbHMz0CSJA2NPHZzFEmSJA2jJIcC7wU+UVV/N8W4o4H9gAOq6uiBhJMkSSPHGUqSJElDLsmzaWYWPQh8oeM4kiRpHlih6wCSJElaNkk+RrNM76XAU4BPTmg8LkmS1BcWlCRJkvqoXWI2XUdW1ZkzGP9aYD3gJuDjND2kJEmS+s4eSpIkSX2UZCYvtuxrJEmShoIFJUmSJEmSJM2ITbklSZIkSZI0IxaUJEmSJEmSNCMWlCRJkiRJkjQjFpQkSZIkSZI0IxaUJEmSJEmSNCMWlCRJkiRJkjQj/w8uBUJhkzl85gAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1440x720 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "A2018=A2018.withColumn(\n",
+    "    \"Road_Type\",\n",
+    "    when(\n",
+    "        col(\"Road_Type\") == 1,\n",
+    "        \"Roundabout\"\n",
+    "    ).when(\n",
+    "        col(\"Road_Type\") == 2,\n",
+    "        \"One way street\"\n",
+    "    ).when(\n",
+    "        col(\"Road_Type\") == 3,\n",
+    "        \"Dual carriageway\"\n",
+    "    ).when(\n",
+    "        col(\"Road_Type\") == 6,\n",
+    "        \"Single carriageway\"\n",
+    "    ).when(\n",
+    "        col(\"Road_Type\") == 7,\n",
+    "        \"Slip road\"\n",
+    "    ).when(\n",
+    "        col(\"Road_Type\") == 9,\n",
+    "        \"Unknown\"\n",
+    "    ).when(\n",
+    "        col(\"Road_Type\") == 12,\n",
+    "        \"One way street/Slip road\"\n",
+    "    ).when(\n",
+    "        col(\"Road_Type\") == -1,\n",
+    "        \"Data missing or out of range\"\n",
+    "    ).otherwise(col(\"Road_Type\"))\n",
+    ")\n",
+    "dangeorusroadtype = A2018.groupby('Road_Type','first_road_class').agg(F.count(A2018.accident_index).alias('Total accidents'))\n",
+    "dangeorusroadtype_df=dangeorusroadtype.toPandas()\n",
+    "\n",
+    "dangeorusroadtype_df=dangeorusroadtype_df.rename(columns={\"first_road_class\": \"road_name\"})\n",
+    "\n",
+    "result30=pd.merge(dangeorusroadtype_df, road_length_traffic, on=['road_name'])\n",
+    "\n",
+    "result30[\"Accident Probability\"] = result30[\"Total accidents\"] / result30[\"Trafficvolume\"]\n",
+    "result30=result30.drop(['Total accidents', 'Trafficvolume'], axis=1)\n",
+    "result30=result30.drop(['road_name'], axis=1)\n",
+    "result30_df = result30.groupby('Road_Type', sort=False)[\"Accident Probability\"].sum().reset_index(name ='Accident Probability')\n",
+    "result30_df=result30_df.drop(labels=[6],axis=0)\n",
+    "result30_df=result30_df.sort_values('Road_Type')\n",
+    "ax=result30_df.plot.bar('Road_Type','Accident Probability', rot=90,title=\"Accidents probabilty over road type \",figsize=(20, 10),color=\"Orange\")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 171,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "A20188=A2018.withColumn(\"date\",col(\"date\").cast(\"string\"))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 172,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "|accident_index|accident_year|accident_reference|location_easting_osgr|location_northing_osgr|longitude| latitude|police_force|accident_severity|number_of_vehicles|number_of_casualties|      date|day_of_week| time|local_authority_district|local_authority_ons_district|local_authority_highway|first_road_class|first_road_number|road_type|speed_limit|junction_detail|junction_control|second_road_class|second_road_number|pedestrian_crossing_human_control|pedestrian_crossing_physical_facilities|light_conditions|weather_conditions|road_surface_conditions|special_conditions_at_site|carriageway_hazards|urban_or_rural_area|did_police_officer_attend_scene_of_accident|trunk_road_flag|lsoa_of_accident_location|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "| 200501BS00001|         2005|         01BS00001|               525680|                178240| -0.19117|51.489096|           1|                2|                 1|                   1|04/01/2005|          3|17:42|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+\n",
+      "only showing top 1 row\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "A20188.show(1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 177,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "root\n",
+      " |-- Count_point_id: string (nullable = true)\n",
+      " |-- Direction_of_travel: string (nullable = true)\n",
+      " |-- year: integer (nullable = true)\n",
+      " |-- Count_date: string (nullable = true)\n",
+      " |-- hour: string (nullable = true)\n",
+      " |-- Region_id: string (nullable = true)\n",
+      " |-- Region_name: string (nullable = true)\n",
+      " |-- Region_ons_code: string (nullable = true)\n",
+      " |-- Local_authority_id: string (nullable = true)\n",
+      " |-- Local_authority_name: string (nullable = true)\n",
+      " |-- Local_authority_code: string (nullable = true)\n",
+      " |-- Road_name: string (nullable = true)\n",
+      " |-- Road_category: string (nullable = true)\n",
+      " |-- Road_type: string (nullable = true)\n",
+      " |-- Start_junction_road_name: string (nullable = true)\n",
+      " |-- End_junction_road_name: string (nullable = true)\n",
+      " |-- Easting: string (nullable = true)\n",
+      " |-- Northing: string (nullable = true)\n",
+      " |-- Latitude: string (nullable = true)\n",
+      " |-- Longitude: string (nullable = true)\n",
+      " |-- Link_length_km: string (nullable = true)\n",
+      " |-- Link_length_miles: string (nullable = true)\n",
+      " |-- Pedal_cycles: string (nullable = true)\n",
+      " |-- Two_wheeled_motor_vehicles: string (nullable = true)\n",
+      " |-- Cars_and_taxis: string (nullable = true)\n",
+      " |-- Buses_and_coaches: string (nullable = true)\n",
+      " |-- LGVs: string (nullable = true)\n",
+      " |-- HGVs_2_rigid_axle: string (nullable = true)\n",
+      " |-- HGVs_3_rigid_axle: string (nullable = true)\n",
+      " |-- HGVs_4_or_more_rigid_axle: string (nullable = true)\n",
+      " |-- HGVs_3_or_4_articulated_axle: string (nullable = true)\n",
+      " |-- HGVs_5_articulated_axle: string (nullable = true)\n",
+      " |-- HGVs_6_articulated_axle: string (nullable = true)\n",
+      " |-- All_HGVs: string (nullable = true)\n",
+      " |-- All_motor_vehicles: string (nullable = true)\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "Trafficvolume.printSchema()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 183,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+---------+\n",
+      "|accident_index|accident_year|accident_reference|location_easting_osgr|location_northing_osgr|longitude| latitude|police_force|accident_severity|number_of_vehicles|number_of_casualties|      date|day_of_week| time|local_authority_district|local_authority_ons_district|local_authority_highway|first_road_class|first_road_number|road_type|speed_limit|junction_detail|junction_control|second_road_class|second_road_number|pedestrian_crossing_human_control|pedestrian_crossing_physical_facilities|light_conditions|weather_conditions|road_surface_conditions|special_conditions_at_site|carriageway_hazards|urban_or_rural_area|did_police_officer_attend_scene_of_accident|trunk_road_flag|lsoa_of_accident_location|timestamp|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+---------+\n",
+      "| 200501BS00001|         2005|         01BS00001|               525680|                178240| -0.19117|51.489096|           1|                2|                 1|                   1|04/01/2005|          3|17:42|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|     null|\n",
+      "| 200501BS00002|         2005|         01BS00002|               524170|                181650|-0.211708|51.520075|           1|                3|                 1|                   1|05/01/2005|          4|17:36|                      12|                   E09000020|              E09000020|               4|              450|        3|         30|              6|               2|                5|                 0|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002909|     null|\n",
+      "| 200501BS00003|         2005|         01BS00003|               524520|                182240|-0.206458|51.525301|           1|                3|                 2|                   1|06/01/2005|          5|00:15|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002857|     null|\n",
+      "| 200501BS00004|         2005|         01BS00004|               526900|                177530|-0.173862|51.482442|           1|                3|                 1|                   1|07/01/2005|          6|10:35|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|     null|\n",
+      "| 200501BS00005|         2005|         01BS00005|               528060|                179040|-0.156618|51.495752|           1|                3|                 1|                   1|10/01/2005|          2|21:13|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               7|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002863|     null|\n",
+      "| 200501BS00006|         2005|         01BS00006|               524770|                181160|-0.203238| 51.51554|           1|                3|                 2|                   1|11/01/2005|          3|12:40|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 2|                      2|                         6|                  0|                  1|                                          1|              2|                E01002832|     null|\n",
+      "| 200501BS00007|         2005|         01BS00007|               524220|                180830|-0.211277|51.512695|           1|                3|                 2|                   1|13/01/2005|          5|20:40|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|     null|\n",
+      "| 200501BS00009|         2005|         01BS00009|               525890|                179710|-0.187623| 51.50226|           1|                3|                 1|                   2|14/01/2005|          6|17:35|                      12|                   E09000020|              E09000020|               3|              315|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|     null|\n",
+      "| 200501BS00010|         2005|         01BS00010|               527350|                177650|-0.167342| 51.48342|           1|                3|                 2|                   2|15/01/2005|          7|22:43|                      12|                   E09000020|              E09000020|               3|             3212|        6|         30|              6|               2|                4|               304|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002900|     null|\n",
+      "| 200501BS00011|         2005|         01BS00011|               524550|                180810|-0.206531|51.512443|           1|                3|                 2|                   5|15/01/2005|          7|16:00|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              3|               4|                5|                 0|                                0|                                      8|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|     null|\n",
+      "| 200501BS00012|         2005|         01BS00012|               526240|                178900|-0.182872|51.494902|           1|                3|                 1|                   1|16/01/2005|          1|00:42|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              6|               2|                4|               325|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002835|     null|\n",
+      "| 200501BS00014|         2005|         01BS00014|               526170|                177690|-0.184312|51.484044|           1|                3|                 2|                   1|25/01/2005|          3|20:48|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               2|                3|               308|                                0|                                      5|               4|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002912|     null|\n",
+      "| 200501BS00015|         2005|         01BS00015|               525590|                178520|-0.192366|51.491632|           1|                3|                 1|                   1|11/01/2005|          3|12:55|                      12|                   E09000020|              E09000020|               6|                0|        2|         30|              3|               4|                3|              3220|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|     null|\n",
+      "| 200501BS00016|         2005|         01BS00016|               527990|                178690|-0.157753|51.492622|           1|                3|                 2|                   1|18/01/2005|          3|05:01|                      12|                   E09000020|              E09000020|               3|             3217|        2|         30|              3|               4|                3|              3216|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002902|     null|\n",
+      "| 200501BS00017|         2005|         01BS00017|               526700|                178970|-0.176224|51.495429|           1|                3|                 1|                   2|18/01/2005|          3|11:15|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|     null|\n",
+      "| 200501BS00018|         2005|         01BS00018|               526460|                177460| -0.18022|51.481912|           1|                3|                 1|                   1|18/01/2005|          3|10:50|                      12|                   E09000020|              E09000020|               3|             3217|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|     null|\n",
+      "| 200501BS00019|         2005|         01BS00019|               524680|                179450|-0.205139|51.500191|           1|                2|                 2|                   1|20/01/2005|          5|00:15|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002864|     null|\n",
+      "| 200501BS00020|         2005|         01BS00020|               527000|                179020|-0.171887|51.495811|           1|                3|                 2|                   1|21/01/2005|          6|09:15|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              3|               4|                3|                 4|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|     null|\n",
+      "| 200501BS00021|         2005|         01BS00021|               527810|                178010| -0.16059|51.486552|           1|                3|                 2|                   1|21/01/2005|          6|21:16|                      12|                   E09000020|              E09000020|               4|              302|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002901|     null|\n",
+      "| 200501BS00022|         2005|         01BS00022|               526790|                178980|-0.174925|51.495498|           1|                2|                 1|                   1|08/01/2005|          7|03:00|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|     null|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+----------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+---------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "A2018_df2.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 196,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+\n",
+      "|accident_index|accident_year|accident_reference|location_easting_osgr|location_northing_osgr|longitude| latitude|police_force|accident_severity|number_of_vehicles|number_of_casualties|               date|day_of_week| time|local_authority_district|local_authority_ons_district|local_authority_highway|first_road_class|first_road_number|road_type|speed_limit|junction_detail|junction_control|second_road_class|second_road_number|pedestrian_crossing_human_control|pedestrian_crossing_physical_facilities|light_conditions|weather_conditions|road_surface_conditions|special_conditions_at_site|carriageway_hazards|urban_or_rural_area|did_police_officer_attend_scene_of_accident|trunk_road_flag|lsoa_of_accident_location|          timestamp|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+\n",
+      "| 200501BS00001|         2005|         01BS00001|               525680|                178240| -0.19117|51.489096|           1|                2|                 1|                   1|2005-01-04 00:00:00|          3|17:42|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|2005-01-04 00:00:00|\n",
+      "| 200501BS00002|         2005|         01BS00002|               524170|                181650|-0.211708|51.520075|           1|                3|                 1|                   1|2005-01-05 00:00:00|          4|17:36|                      12|                   E09000020|              E09000020|               4|              450|        3|         30|              6|               2|                5|                 0|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002909|2005-01-05 00:00:00|\n",
+      "| 200501BS00003|         2005|         01BS00003|               524520|                182240|-0.206458|51.525301|           1|                3|                 2|                   1|2005-01-06 00:00:00|          5|00:15|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002857|2005-01-06 00:00:00|\n",
+      "| 200501BS00004|         2005|         01BS00004|               526900|                177530|-0.173862|51.482442|           1|                3|                 1|                   1|2005-01-07 00:00:00|          6|10:35|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-07 00:00:00|\n",
+      "| 200501BS00005|         2005|         01BS00005|               528060|                179040|-0.156618|51.495752|           1|                3|                 1|                   1|2005-01-10 00:00:00|          2|21:13|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               7|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002863|2005-01-10 00:00:00|\n",
+      "| 200501BS00006|         2005|         01BS00006|               524770|                181160|-0.203238| 51.51554|           1|                3|                 2|                   1|2005-01-11 00:00:00|          3|12:40|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 2|                      2|                         6|                  0|                  1|                                          1|              2|                E01002832|2005-01-11 00:00:00|\n",
+      "| 200501BS00007|         2005|         01BS00007|               524220|                180830|-0.211277|51.512695|           1|                3|                 2|                   1|2005-01-13 00:00:00|          5|20:40|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|2005-01-13 00:00:00|\n",
+      "| 200501BS00009|         2005|         01BS00009|               525890|                179710|-0.187623| 51.50226|           1|                3|                 1|                   2|2005-01-14 00:00:00|          6|17:35|                      12|                   E09000020|              E09000020|               3|              315|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|2005-01-14 00:00:00|\n",
+      "| 200501BS00010|         2005|         01BS00010|               527350|                177650|-0.167342| 51.48342|           1|                3|                 2|                   2|2005-01-15 00:00:00|          7|22:43|                      12|                   E09000020|              E09000020|               3|             3212|        6|         30|              6|               2|                4|               304|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002900|2005-01-15 00:00:00|\n",
+      "| 200501BS00011|         2005|         01BS00011|               524550|                180810|-0.206531|51.512443|           1|                3|                 2|                   5|2005-01-15 00:00:00|          7|16:00|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              3|               4|                5|                 0|                                0|                                      8|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|2005-01-15 00:00:00|\n",
+      "| 200501BS00012|         2005|         01BS00012|               526240|                178900|-0.182872|51.494902|           1|                3|                 1|                   1|2005-01-16 00:00:00|          1|00:42|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              6|               2|                4|               325|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002835|2005-01-16 00:00:00|\n",
+      "| 200501BS00014|         2005|         01BS00014|               526170|                177690|-0.184312|51.484044|           1|                3|                 2|                   1|2005-01-25 00:00:00|          3|20:48|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               2|                3|               308|                                0|                                      5|               4|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002912|2005-01-25 00:00:00|\n",
+      "| 200501BS00015|         2005|         01BS00015|               525590|                178520|-0.192366|51.491632|           1|                3|                 1|                   1|2005-01-11 00:00:00|          3|12:55|                      12|                   E09000020|              E09000020|               6|                0|        2|         30|              3|               4|                3|              3220|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|2005-01-11 00:00:00|\n",
+      "| 200501BS00016|         2005|         01BS00016|               527990|                178690|-0.157753|51.492622|           1|                3|                 2|                   1|2005-01-18 00:00:00|          3|05:01|                      12|                   E09000020|              E09000020|               3|             3217|        2|         30|              3|               4|                3|              3216|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002902|2005-01-18 00:00:00|\n",
+      "| 200501BS00017|         2005|         01BS00017|               526700|                178970|-0.176224|51.495429|           1|                3|                 1|                   2|2005-01-18 00:00:00|          3|11:15|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-18 00:00:00|\n",
+      "| 200501BS00018|         2005|         01BS00018|               526460|                177460| -0.18022|51.481912|           1|                3|                 1|                   1|2005-01-18 00:00:00|          3|10:50|                      12|                   E09000020|              E09000020|               3|             3217|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-18 00:00:00|\n",
+      "| 200501BS00019|         2005|         01BS00019|               524680|                179450|-0.205139|51.500191|           1|                2|                 2|                   1|2005-01-20 00:00:00|          5|00:15|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002864|2005-01-20 00:00:00|\n",
+      "| 200501BS00020|         2005|         01BS00020|               527000|                179020|-0.171887|51.495811|           1|                3|                 2|                   1|2005-01-21 00:00:00|          6|09:15|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              3|               4|                3|                 4|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-21 00:00:00|\n",
+      "| 200501BS00021|         2005|         01BS00021|               527810|                178010| -0.16059|51.486552|           1|                3|                 2|                   1|2005-01-21 00:00:00|          6|21:16|                      12|                   E09000020|              E09000020|               4|              302|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002901|2005-01-21 00:00:00|\n",
+      "| 200501BS00022|         2005|         01BS00022|               526790|                178980|-0.174925|51.495498|           1|                2|                 1|                   1|2005-01-08 00:00:00|          7|03:00|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-08 00:00:00|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "A2018_df2 = A2018_df2.withColumn('timestamp', F.col('date').cast(\"timestamp\"))\n",
+    "A2018_df2.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 197,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-----+\n",
+      "|accident_index|accident_year|accident_reference|location_easting_osgr|location_northing_osgr|longitude| latitude|police_force|accident_severity|number_of_vehicles|number_of_casualties|               date|day_of_week| time|local_authority_district|local_authority_ons_district|local_authority_highway|first_road_class|first_road_number|road_type|speed_limit|junction_detail|junction_control|second_road_class|second_road_number|pedestrian_crossing_human_control|pedestrian_crossing_physical_facilities|light_conditions|weather_conditions|road_surface_conditions|special_conditions_at_site|carriageway_hazards|urban_or_rural_area|did_police_officer_attend_scene_of_accident|trunk_road_flag|lsoa_of_accident_location|          timestamp|month|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-----+\n",
+      "| 200501BS00001|         2005|         01BS00001|               525680|                178240| -0.19117|51.489096|           1|                2|                 1|                   1|2005-01-04 00:00:00|          3|17:42|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|2005-01-04 00:00:00|    1|\n",
+      "| 200501BS00002|         2005|         01BS00002|               524170|                181650|-0.211708|51.520075|           1|                3|                 1|                   1|2005-01-05 00:00:00|          4|17:36|                      12|                   E09000020|              E09000020|               4|              450|        3|         30|              6|               2|                5|                 0|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002909|2005-01-05 00:00:00|    1|\n",
+      "| 200501BS00003|         2005|         01BS00003|               524520|                182240|-0.206458|51.525301|           1|                3|                 2|                   1|2005-01-06 00:00:00|          5|00:15|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002857|2005-01-06 00:00:00|    1|\n",
+      "| 200501BS00004|         2005|         01BS00004|               526900|                177530|-0.173862|51.482442|           1|                3|                 1|                   1|2005-01-07 00:00:00|          6|10:35|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-07 00:00:00|    1|\n",
+      "| 200501BS00005|         2005|         01BS00005|               528060|                179040|-0.156618|51.495752|           1|                3|                 1|                   1|2005-01-10 00:00:00|          2|21:13|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               7|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002863|2005-01-10 00:00:00|    1|\n",
+      "| 200501BS00006|         2005|         01BS00006|               524770|                181160|-0.203238| 51.51554|           1|                3|                 2|                   1|2005-01-11 00:00:00|          3|12:40|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 2|                      2|                         6|                  0|                  1|                                          1|              2|                E01002832|2005-01-11 00:00:00|    1|\n",
+      "| 200501BS00007|         2005|         01BS00007|               524220|                180830|-0.211277|51.512695|           1|                3|                 2|                   1|2005-01-13 00:00:00|          5|20:40|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|2005-01-13 00:00:00|    1|\n",
+      "| 200501BS00009|         2005|         01BS00009|               525890|                179710|-0.187623| 51.50226|           1|                3|                 1|                   2|2005-01-14 00:00:00|          6|17:35|                      12|                   E09000020|              E09000020|               3|              315|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|2005-01-14 00:00:00|    1|\n",
+      "| 200501BS00010|         2005|         01BS00010|               527350|                177650|-0.167342| 51.48342|           1|                3|                 2|                   2|2005-01-15 00:00:00|          7|22:43|                      12|                   E09000020|              E09000020|               3|             3212|        6|         30|              6|               2|                4|               304|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002900|2005-01-15 00:00:00|    1|\n",
+      "| 200501BS00011|         2005|         01BS00011|               524550|                180810|-0.206531|51.512443|           1|                3|                 2|                   5|2005-01-15 00:00:00|          7|16:00|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              3|               4|                5|                 0|                                0|                                      8|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|2005-01-15 00:00:00|    1|\n",
+      "| 200501BS00012|         2005|         01BS00012|               526240|                178900|-0.182872|51.494902|           1|                3|                 1|                   1|2005-01-16 00:00:00|          1|00:42|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              6|               2|                4|               325|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002835|2005-01-16 00:00:00|    1|\n",
+      "| 200501BS00014|         2005|         01BS00014|               526170|                177690|-0.184312|51.484044|           1|                3|                 2|                   1|2005-01-25 00:00:00|          3|20:48|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               2|                3|               308|                                0|                                      5|               4|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002912|2005-01-25 00:00:00|    1|\n",
+      "| 200501BS00015|         2005|         01BS00015|               525590|                178520|-0.192366|51.491632|           1|                3|                 1|                   1|2005-01-11 00:00:00|          3|12:55|                      12|                   E09000020|              E09000020|               6|                0|        2|         30|              3|               4|                3|              3220|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|2005-01-11 00:00:00|    1|\n",
+      "| 200501BS00016|         2005|         01BS00016|               527990|                178690|-0.157753|51.492622|           1|                3|                 2|                   1|2005-01-18 00:00:00|          3|05:01|                      12|                   E09000020|              E09000020|               3|             3217|        2|         30|              3|               4|                3|              3216|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002902|2005-01-18 00:00:00|    1|\n",
+      "| 200501BS00017|         2005|         01BS00017|               526700|                178970|-0.176224|51.495429|           1|                3|                 1|                   2|2005-01-18 00:00:00|          3|11:15|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-18 00:00:00|    1|\n",
+      "| 200501BS00018|         2005|         01BS00018|               526460|                177460| -0.18022|51.481912|           1|                3|                 1|                   1|2005-01-18 00:00:00|          3|10:50|                      12|                   E09000020|              E09000020|               3|             3217|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-18 00:00:00|    1|\n",
+      "| 200501BS00019|         2005|         01BS00019|               524680|                179450|-0.205139|51.500191|           1|                2|                 2|                   1|2005-01-20 00:00:00|          5|00:15|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002864|2005-01-20 00:00:00|    1|\n",
+      "| 200501BS00020|         2005|         01BS00020|               527000|                179020|-0.171887|51.495811|           1|                3|                 2|                   1|2005-01-21 00:00:00|          6|09:15|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              3|               4|                3|                 4|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-21 00:00:00|    1|\n",
+      "| 200501BS00021|         2005|         01BS00021|               527810|                178010| -0.16059|51.486552|           1|                3|                 2|                   1|2005-01-21 00:00:00|          6|21:16|                      12|                   E09000020|              E09000020|               4|              302|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002901|2005-01-21 00:00:00|    1|\n",
+      "| 200501BS00022|         2005|         01BS00022|               526790|                178980|-0.174925|51.495498|           1|                2|                 1|                   1|2005-01-08 00:00:00|          7|03:00|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-08 00:00:00|    1|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-----+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "from pyspark.sql.functions import *\n",
+    "\n",
+    "#Accident_Information_df\n",
+    "TimeAccident_dfmonth = A2018_df2.withColumn('month',month(A2018_df2.timestamp))\n",
+    "TimeAccident_dfmonth.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 193,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from pyspark.sql import functions as F\n",
+    "A2018_df2=A20188.withColumn(\"date\", to_date(\"date\", \"dd/MM/yyyy\"))\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 198,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-----+\n",
+      "|accident_index|accident_year|accident_reference|location_easting_osgr|location_northing_osgr|longitude| latitude|police_force|accident_severity|number_of_vehicles|number_of_casualties|               date|day_of_week| time|local_authority_district|local_authority_ons_district|local_authority_highway|first_road_class|first_road_number|road_type|speed_limit|junction_detail|junction_control|second_road_class|second_road_number|pedestrian_crossing_human_control|pedestrian_crossing_physical_facilities|light_conditions|weather_conditions|road_surface_conditions|special_conditions_at_site|carriageway_hazards|urban_or_rural_area|did_police_officer_attend_scene_of_accident|trunk_road_flag|lsoa_of_accident_location|          timestamp|month|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-----+\n",
+      "| 200501BS00001|         2005|         01BS00001|               525680|                178240| -0.19117|51.489096|           1|                2|                 1|                   1|2005-01-04 00:00:00|          3|17:42|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|2005-01-04 00:00:00|    1|\n",
+      "| 200501BS00002|         2005|         01BS00002|               524170|                181650|-0.211708|51.520075|           1|                3|                 1|                   1|2005-01-05 00:00:00|          4|17:36|                      12|                   E09000020|              E09000020|               4|              450|        3|         30|              6|               2|                5|                 0|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002909|2005-01-05 00:00:00|    1|\n",
+      "| 200501BS00003|         2005|         01BS00003|               524520|                182240|-0.206458|51.525301|           1|                3|                 2|                   1|2005-01-06 00:00:00|          5|00:15|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002857|2005-01-06 00:00:00|    1|\n",
+      "| 200501BS00004|         2005|         01BS00004|               526900|                177530|-0.173862|51.482442|           1|                3|                 1|                   1|2005-01-07 00:00:00|          6|10:35|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-07 00:00:00|    1|\n",
+      "| 200501BS00005|         2005|         01BS00005|               528060|                179040|-0.156618|51.495752|           1|                3|                 1|                   1|2005-01-10 00:00:00|          2|21:13|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               7|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002863|2005-01-10 00:00:00|    1|\n",
+      "| 200501BS00006|         2005|         01BS00006|               524770|                181160|-0.203238| 51.51554|           1|                3|                 2|                   1|2005-01-11 00:00:00|          3|12:40|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 2|                      2|                         6|                  0|                  1|                                          1|              2|                E01002832|2005-01-11 00:00:00|    1|\n",
+      "| 200501BS00007|         2005|         01BS00007|               524220|                180830|-0.211277|51.512695|           1|                3|                 2|                   1|2005-01-13 00:00:00|          5|20:40|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|2005-01-13 00:00:00|    1|\n",
+      "| 200501BS00009|         2005|         01BS00009|               525890|                179710|-0.187623| 51.50226|           1|                3|                 1|                   2|2005-01-14 00:00:00|          6|17:35|                      12|                   E09000020|              E09000020|               3|              315|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|2005-01-14 00:00:00|    1|\n",
+      "| 200501BS00010|         2005|         01BS00010|               527350|                177650|-0.167342| 51.48342|           1|                3|                 2|                   2|2005-01-15 00:00:00|          7|22:43|                      12|                   E09000020|              E09000020|               3|             3212|        6|         30|              6|               2|                4|               304|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002900|2005-01-15 00:00:00|    1|\n",
+      "| 200501BS00011|         2005|         01BS00011|               524550|                180810|-0.206531|51.512443|           1|                3|                 2|                   5|2005-01-15 00:00:00|          7|16:00|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              3|               4|                5|                 0|                                0|                                      8|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|2005-01-15 00:00:00|    1|\n",
+      "| 200501BS00012|         2005|         01BS00012|               526240|                178900|-0.182872|51.494902|           1|                3|                 1|                   1|2005-01-16 00:00:00|          1|00:42|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              6|               2|                4|               325|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002835|2005-01-16 00:00:00|    1|\n",
+      "| 200501BS00014|         2005|         01BS00014|               526170|                177690|-0.184312|51.484044|           1|                3|                 2|                   1|2005-01-25 00:00:00|          3|20:48|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               2|                3|               308|                                0|                                      5|               4|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002912|2005-01-25 00:00:00|    1|\n",
+      "| 200501BS00015|         2005|         01BS00015|               525590|                178520|-0.192366|51.491632|           1|                3|                 1|                   1|2005-01-11 00:00:00|          3|12:55|                      12|                   E09000020|              E09000020|               6|                0|        2|         30|              3|               4|                3|              3220|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|2005-01-11 00:00:00|    1|\n",
+      "| 200501BS00016|         2005|         01BS00016|               527990|                178690|-0.157753|51.492622|           1|                3|                 2|                   1|2005-01-18 00:00:00|          3|05:01|                      12|                   E09000020|              E09000020|               3|             3217|        2|         30|              3|               4|                3|              3216|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002902|2005-01-18 00:00:00|    1|\n",
+      "| 200501BS00017|         2005|         01BS00017|               526700|                178970|-0.176224|51.495429|           1|                3|                 1|                   2|2005-01-18 00:00:00|          3|11:15|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-18 00:00:00|    1|\n",
+      "| 200501BS00018|         2005|         01BS00018|               526460|                177460| -0.18022|51.481912|           1|                3|                 1|                   1|2005-01-18 00:00:00|          3|10:50|                      12|                   E09000020|              E09000020|               3|             3217|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-18 00:00:00|    1|\n",
+      "| 200501BS00019|         2005|         01BS00019|               524680|                179450|-0.205139|51.500191|           1|                2|                 2|                   1|2005-01-20 00:00:00|          5|00:15|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002864|2005-01-20 00:00:00|    1|\n",
+      "| 200501BS00020|         2005|         01BS00020|               527000|                179020|-0.171887|51.495811|           1|                3|                 2|                   1|2005-01-21 00:00:00|          6|09:15|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              3|               4|                3|                 4|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-21 00:00:00|    1|\n",
+      "| 200501BS00021|         2005|         01BS00021|               527810|                178010| -0.16059|51.486552|           1|                3|                 2|                   1|2005-01-21 00:00:00|          6|21:16|                      12|                   E09000020|              E09000020|               4|              302|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002901|2005-01-21 00:00:00|    1|\n",
+      "| 200501BS00022|         2005|         01BS00022|               526790|                178980|-0.174925|51.495498|           1|                2|                 1|                   1|2005-01-08 00:00:00|          7|03:00|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-08 00:00:00|    1|\n",
+      "| 200501BS00023|         2005|         01BS00023|               525940|                178680| -0.18727|51.492992|           1|                3|                 1|                   1|2005-01-24 00:00:00|          2|21:45|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          2|              2|                E01002839|2005-01-24 00:00:00|    1|\n",
+      "| 200501BS00024|         2005|         01BS00024|               524700|                180880|-0.204346|51.513039|           1|                3|                 2|                   1|2005-01-24 00:00:00|          2|17:05|                      12|                   E09000020|              E09000020|               4|              415|        6|         30|              3|               4|                5|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          2|              2|                E01002882|2005-01-24 00:00:00|    1|\n",
+      "| 200501BS00025|         2005|         01BS00025|               526930|                177490|-0.173445|51.482076|           1|                3|                 2|                   1|2005-01-24 00:00:00|          2|21:30|                      12|                   E09000020|              E09000020|               3|             3220|        3|         30|              6|               2|                3|              3220|                                0|                                      0|               4|                 1|                      4|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-24 00:00:00|    1|\n",
+      "| 200501BS00028|         2005|         01BS00028|               527290|                178710|-0.167824| 51.49296|           1|                3|                 2|                   1|2005-01-18 00:00:00|          3|17:25|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              6|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          2|              2|                E01002858|2005-01-18 00:00:00|    1|\n",
+      "| 200501BS00029|         2005|         01BS00029|               527380|                179280|-0.166322|51.498062|           1|                3|                 2|                   1|2005-01-29 00:00:00|          7|07:34|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              3|               2|                4|               319|                                0|                                      5|               1|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002819|2005-01-29 00:00:00|    1|\n",
+      "| 200501BS00031|         2005|         01BS00031|               523930|                180330|-0.215629|51.508265|           1|                3|                 1|                   1|2005-01-19 00:00:00|          4|16:35|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01001944|2005-01-19 00:00:00|    1|\n",
+      "| 200501BS00032|         2005|         01BS00032|               524470|                180980|-0.207623|51.513988|           1|                3|                 2|                   1|2005-01-30 00:00:00|          1|20:00|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002874|2005-01-30 00:00:00|    1|\n",
+      "| 200501BS00033|         2005|         01BS00033|               525570|                178190|-0.192771|51.488671|           1|                3|                 2|                   2|2005-01-29 00:00:00|          7|13:15|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               2|                3|              3218|                                0|                                      5|               1|                 2|                      2|                         0|                  0|                  1|                                          2|              2|                E01002849|2005-01-29 00:00:00|    1|\n",
+      "| 200501BS70001|         2005|         01BS70001|               526240|                178900|-0.182872|51.494902|           1|                3|                 2|                   1|2005-02-01 00:00:00|          3|18:20|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              6|               2|                5|                 0|                                0|                                      5|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002835|2005-02-01 00:00:00|    2|\n",
+      "| 200501BS70002|         2005|         01BS70002|               527780|                179160|-0.160606|51.496893|           1|                3|                 2|                   1|2005-02-02 00:00:00|          4|07:25|                      12|                   E09000020|              E09000020|               4|              319|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002863|2005-02-02 00:00:00|    2|\n",
+      "| 200501BS70003|         2005|         01BS70003|               523910|                181390|-0.215545|51.517796|           1|                2|                 2|                   2|2005-02-01 00:00:00|          3|17:30|                      12|                   E09000020|              E09000020|               4|              412|        2|         30|              2|               4|                6|                 0|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002878|2005-02-01 00:00:00|    2|\n",
+      "| 200501BS70004|         2005|         01BS70004|               524870|                181880|-0.201543|51.521988|           1|                3|                 2|                   1|2005-02-03 00:00:00|          5|12:30|                       1|                   E09000033|              E09000033|               3|             4207|        6|         30|              3|               4|                5|                 0|                                0|                                      1|               1|                 9|                      1|                         0|                  0|                  1|                                          2|              2|                E01002854|2005-02-03 00:00:00|    2|\n",
+      "| 200501BS70005|         2005|         01BS70005|               527250|                179170|-0.168234|51.497103|           1|                3|                 2|                   1|2005-02-12 00:00:00|          7|09:55|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              3|               4|                6|                 0|                                0|                                      4|               1|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002819|2005-02-12 00:00:00|    2|\n",
+      "| 200501BS70006|         2005|         01BS70006|               524170|                181640|-0.211712|51.519986|           1|                3|                 2|                   2|2005-02-03 00:00:00|          5|13:00|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              6|               4|                5|                 0|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002909|2005-02-03 00:00:00|    2|\n",
+      "| 200501BS70007|         2005|         01BS70007|               523740|                182030|-0.217769|51.523585|           1|                3|                 4|                   1|2005-02-01 00:00:00|          3|13:02|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002906|2005-02-01 00:00:00|    2|\n",
+      "| 200501BS70008|         2005|         01BS70008|               523770|                181070|-0.217674|51.514951|           1|                3|                 2|                   2|2005-02-03 00:00:00|          5|22:55|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              6|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002880|2005-02-03 00:00:00|    2|\n",
+      "| 200501BS70009|         2005|         01BS70009|               525840|                177020|-0.189301|51.478096|           1|                3|                 2|                   1|2005-02-03 00:00:00|          5|17:30|                      11|                   E09000013|              E09000013|               3|              308|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01001921|2005-02-03 00:00:00|    2|\n",
+      "| 200501BS70010|         2005|         01BS70010|               526940|                177460|-0.173312|51.481804|           1|                3|                 2|                   1|2005-02-06 00:00:00|          1|15:00|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-02-06 00:00:00|    2|\n",
+      "| 200501BS70011|         2005|         01BS70011|               525040|                178620|-0.200249|51.492652|           1|                3|                 2|                   1|2005-02-05 00:00:00|          7|21:25|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              6|               2|                3|              3220|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002848|2005-02-05 00:00:00|    2|\n",
+      "| 200501BS70012|         2005|         01BS70012|               525460|                179520|-0.193882|51.500648|           1|                3|                 2|                   1|2005-02-03 00:00:00|          5|12:41|                      12|                   E09000020|              E09000020|               3|              315|        6|         30|              0|              -1|               -1|                -1|                                0|                                      4|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002816|2005-02-03 00:00:00|    2|\n",
+      "| 200501BS70013|         2005|         01BS70013|               525410|                180490|-0.194258|51.509377|           1|                3|                 1|                   1|2005-02-04 00:00:00|          6|23:35|                      12|                   E09000020|              E09000020|               3|              402|        6|         30|              6|               2|                3|              4204|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002827|2005-02-04 00:00:00|    2|\n",
+      "| 200501BS70014|         2005|         01BS70014|               527570|                177720| -0.16415|51.483999|           1|                3|                 2|                   1|2005-02-07 00:00:00|          2|09:15|                      12|                   E09000020|              E09000020|               4|              302|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002900|2005-02-07 00:00:00|    2|\n",
+      "| 200501BS70016|         2005|         01BS70016|               525200|                180460|-0.197293|51.509154|           1|                3|                 1|                   1|2005-02-12 00:00:00|          7|13:25|                      12|                   E09000020|              E09000020|               3|             4206|        6|         30|              0|              -1|               -1|                -1|                                0|                                      5|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002884|2005-02-12 00:00:00|    2|\n",
+      "| 200501BS70017|         2005|         01BS70017|               526710|                178230|-0.176346|51.488776|           1|                3|                 2|                   1|2005-02-08 00:00:00|          3|20:00|                      12|                   E09000020|              E09000020|               3|              308|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002910|2005-02-08 00:00:00|    2|\n",
+      "| 200501BS70018|         2005|         01BS70018|               525860|                179700|-0.188058|51.502177|           1|                3|                 2|                   1|2005-02-16 00:00:00|          4|08:20|                      12|                   E09000020|              E09000020|               3|              315|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|2005-02-16 00:00:00|    2|\n",
+      "| 200501BS70019|         2005|         01BS70019|               526360|                177790|-0.181542|  51.4849|           1|                3|                 2|                   1|2005-02-07 00:00:00|          2|11:30|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002912|2005-02-07 00:00:00|    2|\n",
+      "| 200501BS70020|         2005|         01BS70020|               527020|                179020|-0.171599|51.495806|           1|                3|                 2|                   1|2005-02-10 00:00:00|          5|18:10|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              3|               4|                3|              3218|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-02-10 00:00:00|    2|\n",
+      "| 200501BS70021|         2005|         01BS70021|               526290|                177800|-0.182546|51.485005|           1|                3|                 1|                   1|2005-02-12 00:00:00|          7|11:33|                      12|                   E09000020|              E09000020|               3|              308|        6|         30|              0|              -1|               -1|                -1|                                0|                                      4|               1|                 1|                      2|                         4|                  2|                  1|                                          1|              2|                E01002912|2005-02-12 00:00:00|    2|\n",
+      "| 200501BS70023|         2005|         01BS70023|               526020|                177850|-0.186415|51.485515|           1|                3|                 2|                   2|2005-02-13 00:00:00|          1|20:05|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002896|2005-02-13 00:00:00|    2|\n",
+      "| 200501BS70025|         2005|         01BS70025|               527270|                178660| -0.16813|51.492515|           1|                3|                 2|                   1|2005-02-01 00:00:00|          3|16:44|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              6|               4|                6|                 0|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002862|2005-02-01 00:00:00|    2|\n",
+      "| 200501BS70027|         2005|         01BS70027|               525190|                180500|-0.197423|51.509515|           1|                3|                 2|                   1|2005-02-17 00:00:00|          5|18:00|                      12|                   E09000020|              E09000020|               3|             4206|        6|         30|              9|               4|                4|               415|                                0|                                      1|               4|                 2|                      2|                         0|                  0|                  1|                                          2|              2|                E01002884|2005-02-17 00:00:00|    2|\n",
+      "| 200501BS70028|         2005|         01BS70028|               527960|                178790|-0.158149|51.493527|           1|                3|                 1|                   1|2005-02-04 00:00:00|          6|10:15|                      12|                   E09000020|              E09000020|               3|             3216|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002859|2005-02-04 00:00:00|    2|\n",
+      "| 200501BS70029|         2005|         01BS70029|               524100|                181830|-0.212653|51.521709|           1|                2|                 1|                   1|2005-02-15 00:00:00|          3|18:15|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002905|2005-02-15 00:00:00|    2|\n",
+      "| 200501BS70030|         2005|         01BS70030|               526360|                177420|-0.181674|51.481575|           1|                3|                 2|                   1|2005-02-16 00:00:00|          4|10:35|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               2|                3|              3217|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002913|2005-02-16 00:00:00|    2|\n",
+      "| 200501BS70031|         2005|         01BS70031|               524600|                181280|-0.205645|51.516656|           1|                3|                 1|                   1|2005-02-18 00:00:00|          6|17:36|                      12|                   E09000020|              E09000020|               4|              412|        6|         30|              6|               2|                6|                 0|                                0|                                      5|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002831|2005-02-18 00:00:00|    2|\n",
+      "| 200501BS70032|         2005|         01BS70032|               525710|                179670|-0.190229|51.501941|           1|                3|                 1|                   1|2005-02-15 00:00:00|          3|16:05|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              3|               4|                3|               315|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|2005-02-15 00:00:00|    2|\n",
+      "| 200501BS70033|         2005|         01BS70033|               526450|                179240|-0.179727|51.497911|           1|                3|                 1|                   1|2005-02-10 00:00:00|          5|13:56|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                5|                 0|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002892|2005-02-10 00:00:00|    2|\n",
+      "| 200501BS70034|         2005|         01BS70034|               524220|                181510|-0.211037|51.518806|           1|                3|                 2|                   1|2005-02-16 00:00:00|          4|14:10|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              6|               4|                6|                 0|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002878|2005-02-16 00:00:00|    2|\n",
+      "| 200501BS70036|         2005|         01BS70036|               525430|                179140|-0.194449| 51.49724|           1|                3|                 2|                   1|2005-02-21 00:00:00|          2|10:10|                      12|                   E09000020|              E09000020|               6|                0|        1|         30|              2|               4|                6|                 0|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          2|              2|                E01002813|2005-02-21 00:00:00|    2|\n",
+      "| 200501BS70037|         2005|         01BS70037|               524430|                180180|-0.208481|51.506807|           1|                3|                 1|                   1|2005-02-20 00:00:00|          1|14:50|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002871|2005-02-20 00:00:00|    2|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-----+\n",
+      "only showing top 60 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "TimeAccident_dfmonth.show(60)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 199,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "TimeAccident_dfmonthly_new=TimeAccident_dfmonth.withColumn(\n",
+    "    \"month\",\n",
+    "    when(\n",
+    "        col(\"month\") == 1,\n",
+    "        \"January\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 2,\n",
+    "        \"Februray\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 3,\n",
+    "        \"March\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 4,\n",
+    "        \"April\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 5,\n",
+    "        \"May\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 6,\n",
+    "        \"June\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 7,\n",
+    "        \"July\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 8,\n",
+    "        \"August\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 9,\n",
+    "        \"September\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 10,\n",
+    "        \"October\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 11,\n",
+    "        \"November\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"month\") == 12,\n",
+    "        \"December\"\n",
+    "    ).otherwise(col(\"month\")),\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 200,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-------+\n",
+      "|accident_index|accident_year|accident_reference|location_easting_osgr|location_northing_osgr|longitude| latitude|police_force|accident_severity|number_of_vehicles|number_of_casualties|               date|day_of_week| time|local_authority_district|local_authority_ons_district|local_authority_highway|first_road_class|first_road_number|road_type|speed_limit|junction_detail|junction_control|second_road_class|second_road_number|pedestrian_crossing_human_control|pedestrian_crossing_physical_facilities|light_conditions|weather_conditions|road_surface_conditions|special_conditions_at_site|carriageway_hazards|urban_or_rural_area|did_police_officer_attend_scene_of_accident|trunk_road_flag|lsoa_of_accident_location|          timestamp|  month|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-------+\n",
+      "| 200501BS00001|         2005|         01BS00001|               525680|                178240| -0.19117|51.489096|           1|                2|                 1|                   1|2005-01-04 00:00:00|          3|17:42|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              0|              -1|               -1|                -1|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|2005-01-04 00:00:00|January|\n",
+      "| 200501BS00002|         2005|         01BS00002|               524170|                181650|-0.211708|51.520075|           1|                3|                 1|                   1|2005-01-05 00:00:00|          4|17:36|                      12|                   E09000020|              E09000020|               4|              450|        3|         30|              6|               2|                5|                 0|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002909|2005-01-05 00:00:00|January|\n",
+      "| 200501BS00003|         2005|         01BS00003|               524520|                182240|-0.206458|51.525301|           1|                3|                 2|                   1|2005-01-06 00:00:00|          5|00:15|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002857|2005-01-06 00:00:00|January|\n",
+      "| 200501BS00004|         2005|         01BS00004|               526900|                177530|-0.173862|51.482442|           1|                3|                 1|                   1|2005-01-07 00:00:00|          6|10:35|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-07 00:00:00|January|\n",
+      "| 200501BS00005|         2005|         01BS00005|               528060|                179040|-0.156618|51.495752|           1|                3|                 1|                   1|2005-01-10 00:00:00|          2|21:13|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               7|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002863|2005-01-10 00:00:00|January|\n",
+      "| 200501BS00006|         2005|         01BS00006|               524770|                181160|-0.203238| 51.51554|           1|                3|                 2|                   1|2005-01-11 00:00:00|          3|12:40|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 2|                      2|                         6|                  0|                  1|                                          1|              2|                E01002832|2005-01-11 00:00:00|January|\n",
+      "| 200501BS00007|         2005|         01BS00007|               524220|                180830|-0.211277|51.512695|           1|                3|                 2|                   1|2005-01-13 00:00:00|          5|20:40|                      12|                   E09000020|              E09000020|               5|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|2005-01-13 00:00:00|January|\n",
+      "| 200501BS00009|         2005|         01BS00009|               525890|                179710|-0.187623| 51.50226|           1|                3|                 1|                   2|2005-01-14 00:00:00|          6|17:35|                      12|                   E09000020|              E09000020|               3|              315|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002889|2005-01-14 00:00:00|January|\n",
+      "| 200501BS00010|         2005|         01BS00010|               527350|                177650|-0.167342| 51.48342|           1|                3|                 2|                   2|2005-01-15 00:00:00|          7|22:43|                      12|                   E09000020|              E09000020|               3|             3212|        6|         30|              6|               2|                4|               304|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002900|2005-01-15 00:00:00|January|\n",
+      "| 200501BS00011|         2005|         01BS00011|               524550|                180810|-0.206531|51.512443|           1|                3|                 2|                   5|2005-01-15 00:00:00|          7|16:00|                      12|                   E09000020|              E09000020|               4|              450|        6|         30|              3|               4|                5|                 0|                                0|                                      8|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002875|2005-01-15 00:00:00|January|\n",
+      "| 200501BS00012|         2005|         01BS00012|               526240|                178900|-0.182872|51.494902|           1|                3|                 1|                   1|2005-01-16 00:00:00|          1|00:42|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              6|               2|                4|               325|                                0|                                      5|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002835|2005-01-16 00:00:00|January|\n",
+      "| 200501BS00014|         2005|         01BS00014|               526170|                177690|-0.184312|51.484044|           1|                3|                 2|                   1|2005-01-25 00:00:00|          3|20:48|                      12|                   E09000020|              E09000020|               3|             3220|        6|         30|              6|               2|                3|               308|                                0|                                      5|               4|                 1|                      2|                         0|                  0|                  1|                                          1|              2|                E01002912|2005-01-25 00:00:00|January|\n",
+      "| 200501BS00015|         2005|         01BS00015|               525590|                178520|-0.192366|51.491632|           1|                3|                 1|                   1|2005-01-11 00:00:00|          3|12:55|                      12|                   E09000020|              E09000020|               6|                0|        2|         30|              3|               4|                3|              3220|                                0|                                      1|               1|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002849|2005-01-11 00:00:00|January|\n",
+      "| 200501BS00016|         2005|         01BS00016|               527990|                178690|-0.157753|51.492622|           1|                3|                 2|                   1|2005-01-18 00:00:00|          3|05:01|                      12|                   E09000020|              E09000020|               3|             3217|        2|         30|              3|               4|                3|              3216|                                0|                                      0|               4|                 2|                      2|                         0|                  0|                  1|                                          1|              2|                E01002902|2005-01-18 00:00:00|January|\n",
+      "| 200501BS00017|         2005|         01BS00017|               526700|                178970|-0.176224|51.495429|           1|                3|                 1|                   2|2005-01-18 00:00:00|          3|11:15|                      12|                   E09000020|              E09000020|               3|                4|        3|         30|              0|              -1|               -1|                -1|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-18 00:00:00|January|\n",
+      "| 200501BS00018|         2005|         01BS00018|               526460|                177460| -0.18022|51.481912|           1|                3|                 1|                   1|2005-01-18 00:00:00|          3|10:50|                      12|                   E09000020|              E09000020|               3|             3217|        6|         30|              3|               4|                6|                 0|                                0|                                      1|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002840|2005-01-18 00:00:00|January|\n",
+      "| 200501BS00019|         2005|         01BS00019|               524680|                179450|-0.205139|51.500191|           1|                2|                 2|                   1|2005-01-20 00:00:00|          5|00:15|                      12|                   E09000020|              E09000020|               6|                0|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002864|2005-01-20 00:00:00|January|\n",
+      "| 200501BS00020|         2005|         01BS00020|               527000|                179020|-0.171887|51.495811|           1|                3|                 2|                   1|2005-01-21 00:00:00|          6|09:15|                      12|                   E09000020|              E09000020|               3|             3218|        6|         30|              3|               4|                3|                 4|                                0|                                      0|               1|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-21 00:00:00|January|\n",
+      "| 200501BS00021|         2005|         01BS00021|               527810|                178010| -0.16059|51.486552|           1|                3|                 2|                   1|2005-01-21 00:00:00|          6|21:16|                      12|                   E09000020|              E09000020|               4|              302|        6|         30|              0|              -1|               -1|                -1|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002901|2005-01-21 00:00:00|January|\n",
+      "| 200501BS00022|         2005|         01BS00022|               526790|                178980|-0.174925|51.495498|           1|                2|                 1|                   1|2005-01-08 00:00:00|          7|03:00|                      12|                   E09000020|              E09000020|               3|                4|        6|         30|              3|               4|                6|                 0|                                0|                                      0|               4|                 1|                      1|                         0|                  0|                  1|                                          1|              2|                E01002821|2005-01-08 00:00:00|January|\n",
+      "+--------------+-------------+------------------+---------------------+----------------------+---------+---------+------------+-----------------+------------------+--------------------+-------------------+-----------+-----+------------------------+----------------------------+-----------------------+----------------+-----------------+---------+-----------+---------------+----------------+-----------------+------------------+---------------------------------+---------------------------------------+----------------+------------------+-----------------------+--------------------------+-------------------+-------------------+-------------------------------------------+---------------+-------------------------+-------------------+-------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "TimeAccident_dfmonthly_new.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 207,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---------+---------------+\n",
+      "|    month|Total accidents|\n",
+      "+---------+---------------+\n",
+      "|     July|         201161|\n",
+      "| November|         209588|\n",
+      "|  January|         184490|\n",
+      "|    March|         182482|\n",
+      "|  October|         205207|\n",
+      "|      May|         193802|\n",
+      "|   August|         186789|\n",
+      "|    April|         175254|\n",
+      "|     June|         194286|\n",
+      "| December|         187478|\n",
+      "| Februray|         170157|\n",
+      "|September|         196733|\n",
+      "+---------+---------------+\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "TimeAccident_dfmonthly_new_df = TimeAccident_dfmonthly_new.groupby('month').agg(F.count(TimeAccident_dfmonthly_new.accident_index).alias('Total accidents'))\n",
+    "#TimeAccident_dfmonthly_new_df=TimeAccident_dfmonthly_new_df.sort(\"month\")\n",
+    "TimeAccident_dfmonthly_new_df.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 281,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>month</th>\n",
+       "      <th>Traffic volume</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>January</td>\n",
+       "      <td>89.566667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Februray</td>\n",
+       "      <td>94.466667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>March</td>\n",
+       "      <td>98.266667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>April</td>\n",
+       "      <td>100.566667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>May</td>\n",
+       "      <td>101.933333</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>June</td>\n",
+       "      <td>103.966667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>July</td>\n",
+       "      <td>104.766667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>August</td>\n",
+       "      <td>104.900000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>September</td>\n",
+       "      <td>104.366667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>October</td>\n",
+       "      <td>103.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>November</td>\n",
+       "      <td>100.133333</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>December</td>\n",
+       "      <td>93.533333</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "        month  Traffic volume\n",
+       "0     January       89.566667\n",
+       "1    Februray       94.466667\n",
+       "2       March       98.266667\n",
+       "3       April      100.566667\n",
+       "4         May      101.933333\n",
+       "5        June      103.966667\n",
+       "6        July      104.766667\n",
+       "7      August      104.900000\n",
+       "8   September      104.366667\n",
+       "9     October      103.200000\n",
+       "10   November      100.133333\n",
+       "11   December       93.533333"
+      ]
+     },
+     "execution_count": 281,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import pandas as pd\n",
+    "month = pd.read_csv ('/Users/Asfandyar/Desktop/disertation/monthly traffic.csv')\n",
+    "month"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 268,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>month</th>\n",
+       "      <th>Total accidents</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>July</td>\n",
+       "      <td>201161</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>November</td>\n",
+       "      <td>209588</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>January</td>\n",
+       "      <td>184490</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>March</td>\n",
+       "      <td>182482</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>October</td>\n",
+       "      <td>205207</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>May</td>\n",
+       "      <td>193802</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>August</td>\n",
+       "      <td>186789</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>April</td>\n",
+       "      <td>175254</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>June</td>\n",
+       "      <td>194286</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>December</td>\n",
+       "      <td>187478</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>Februray</td>\n",
+       "      <td>170157</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>September</td>\n",
+       "      <td>196733</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "        month  Total accidents\n",
+       "0        July           201161\n",
+       "1    November           209588\n",
+       "2     January           184490\n",
+       "3       March           182482\n",
+       "4     October           205207\n",
+       "5         May           193802\n",
+       "6      August           186789\n",
+       "7       April           175254\n",
+       "8        June           194286\n",
+       "9    December           187478\n",
+       "10   Februray           170157\n",
+       "11  September           196733"
+      ]
+     },
+     "execution_count": 268,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "TimeAccident_dfmonthly_new_df_df=TimeAccident_dfmonthly_new_df.toPandas()\n",
+    "TimeAccident_dfmonthly_new_df_df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 388,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>month</th>\n",
+       "      <th>Traffic volume</th>\n",
+       "      <th>Total accidents</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>January</td>\n",
+       "      <td>89.566667</td>\n",
+       "      <td>184490</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Februray</td>\n",
+       "      <td>94.466667</td>\n",
+       "      <td>170157</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>March</td>\n",
+       "      <td>98.266667</td>\n",
+       "      <td>182482</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>April</td>\n",
+       "      <td>100.566667</td>\n",
+       "      <td>175254</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>May</td>\n",
+       "      <td>101.933333</td>\n",
+       "      <td>193802</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>June</td>\n",
+       "      <td>103.966667</td>\n",
+       "      <td>194286</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>July</td>\n",
+       "      <td>104.766667</td>\n",
+       "      <td>201161</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>August</td>\n",
+       "      <td>104.900000</td>\n",
+       "      <td>186789</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>September</td>\n",
+       "      <td>104.366667</td>\n",
+       "      <td>196733</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>October</td>\n",
+       "      <td>103.200000</td>\n",
+       "      <td>205207</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>November</td>\n",
+       "      <td>100.133333</td>\n",
+       "      <td>209588</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>December</td>\n",
+       "      <td>93.533333</td>\n",
+       "      <td>187478</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "        month  Traffic volume  Total accidents\n",
+       "0     January       89.566667           184490\n",
+       "1    Februray       94.466667           170157\n",
+       "2       March       98.266667           182482\n",
+       "3       April      100.566667           175254\n",
+       "4         May      101.933333           193802\n",
+       "5        June      103.966667           194286\n",
+       "6        July      104.766667           201161\n",
+       "7      August      104.900000           186789\n",
+       "8   September      104.366667           196733\n",
+       "9     October      103.200000           205207\n",
+       "10   November      100.133333           209588\n",
+       "11   December       93.533333           187478"
+      ]
+     },
+     "execution_count": 388,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result23=pd.merge(month, TimeAccident_dfmonthly_new_df_df, on=['month'])\n",
+    "result23"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 389,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>month</th>\n",
+       "      <th>Traffic volume</th>\n",
+       "      <th>Total accidents</th>\n",
+       "      <th>Accident Distribution</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>January</td>\n",
+       "      <td>89.566667</td>\n",
+       "      <td>184490</td>\n",
+       "      <td>2059.806476</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Februray</td>\n",
+       "      <td>94.466667</td>\n",
+       "      <td>170157</td>\n",
+       "      <td>1801.238532</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>March</td>\n",
+       "      <td>98.266667</td>\n",
+       "      <td>182482</td>\n",
+       "      <td>1857.008141</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>April</td>\n",
+       "      <td>100.566667</td>\n",
+       "      <td>175254</td>\n",
+       "      <td>1742.664898</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>May</td>\n",
+       "      <td>101.933333</td>\n",
+       "      <td>193802</td>\n",
+       "      <td>1901.262264</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>June</td>\n",
+       "      <td>103.966667</td>\n",
+       "      <td>194286</td>\n",
+       "      <td>1868.733568</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>July</td>\n",
+       "      <td>104.766667</td>\n",
+       "      <td>201161</td>\n",
+       "      <td>1920.085905</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>August</td>\n",
+       "      <td>104.900000</td>\n",
+       "      <td>186789</td>\n",
+       "      <td>1780.638704</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>September</td>\n",
+       "      <td>104.366667</td>\n",
+       "      <td>196733</td>\n",
+       "      <td>1885.017566</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>October</td>\n",
+       "      <td>103.200000</td>\n",
+       "      <td>205207</td>\n",
+       "      <td>1988.439922</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>November</td>\n",
+       "      <td>100.133333</td>\n",
+       "      <td>209588</td>\n",
+       "      <td>2093.089215</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>December</td>\n",
+       "      <td>93.533333</td>\n",
+       "      <td>187478</td>\n",
+       "      <td>2004.397719</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "        month  Traffic volume  Total accidents  Accident Distribution\n",
+       "0     January       89.566667           184490            2059.806476\n",
+       "1    Februray       94.466667           170157            1801.238532\n",
+       "2       March       98.266667           182482            1857.008141\n",
+       "3       April      100.566667           175254            1742.664898\n",
+       "4         May      101.933333           193802            1901.262264\n",
+       "5        June      103.966667           194286            1868.733568\n",
+       "6        July      104.766667           201161            1920.085905\n",
+       "7      August      104.900000           186789            1780.638704\n",
+       "8   September      104.366667           196733            1885.017566\n",
+       "9     October      103.200000           205207            1988.439922\n",
+       "10   November      100.133333           209588            2093.089215\n",
+       "11   December       93.533333           187478            2004.397719"
+      ]
+     },
+     "execution_count": 389,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result23[\"Accident Distribution\"] = result23[\"Total accidents\"] / result23[\"Traffic volume\"]\n",
+    "result23"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 390,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>month</th>\n",
+       "      <th>Accident Distribution</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>January</td>\n",
+       "      <td>2059.806476</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Februray</td>\n",
+       "      <td>1801.238532</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>March</td>\n",
+       "      <td>1857.008141</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>April</td>\n",
+       "      <td>1742.664898</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>May</td>\n",
+       "      <td>1901.262264</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>June</td>\n",
+       "      <td>1868.733568</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>July</td>\n",
+       "      <td>1920.085905</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>August</td>\n",
+       "      <td>1780.638704</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>September</td>\n",
+       "      <td>1885.017566</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>October</td>\n",
+       "      <td>1988.439922</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>November</td>\n",
+       "      <td>2093.089215</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>December</td>\n",
+       "      <td>2004.397719</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "        month  Accident Distribution\n",
+       "0     January            2059.806476\n",
+       "1    Februray            1801.238532\n",
+       "2       March            1857.008141\n",
+       "3       April            1742.664898\n",
+       "4         May            1901.262264\n",
+       "5        June            1868.733568\n",
+       "6        July            1920.085905\n",
+       "7      August            1780.638704\n",
+       "8   September            1885.017566\n",
+       "9     October            1988.439922\n",
+       "10   November            2093.089215\n",
+       "11   December            2004.397719"
+      ]
+     },
+     "execution_count": 390,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "result23=result23.drop(['Total accidents', 'Traffic volume'], axis=1)\n",
+    "result23"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 320,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'T' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-320-94805f1af0e7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mee\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mExpected_Values\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0mee\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'T' is not defined"
+     ]
+    }
+   ],
+   "source": [
+    "ee=Expected_Values.dot(T)\n",
+    "ee"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 285,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKkAAALgCAYAAABfxCQgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACae0lEQVR4nOzdd7wcVf3/8dcnCT30Ki2hSZEe6hchVEEFBGmKICCKUgR+FoqKYkEQCyJVvpSAgAoIQQVEehELHaV96SX0EqoQknx+f8xsstns7i3Zeye5eT0fj33MnZlzZs7O3WzuvvecM5GZSJIkSZIkSVUaVHUDJEmSJEmSJEMqSZIkSZIkVc6QSpIkSZIkSZUzpJIkSZIkSVLlDKkkSZIkSZJUOUMqSZIkSZIkVc6QSpLUcRHxm4jI8nFp1e1pJSJuLNs4ahqO8WR5jKM717KZT0SMKq/jjU327V17PVXQtB6pe93v3WTfNL/e+tOM1l6pp9q970iSqmFIJUnqqIgYCuxYt+mTEbFAVe2Z2fkhrLmI2LQuUBpedXv6S0QMr3vem1bdHqkv+OWBJM24DKkkSZ22EzBX3fqswGcqaoskSZKkGcSQqhsgSRpwPl8uHwfeB1Yut51aWYtayMxNq26DupaZo4BRFTejWzIzqm5Dp/jvQ5Ik9Td7UkmSOiYilgI2LVd/Uz4A1o+ID1fSKEmSJEkzBEMqSVIn7cHk/1vOLx+1ya737M4BImLZiPhFRNwbEa9HxH8j4rGIuDoi/l+7+a0iYvuI+H1EPFXWey0i7isnct8+IqKhfJcTQ0fE0hFxRkQ8HRHvR8SzEXF+RKzWnedTHmOOiDg0Im6KiJcjYlxEvBARoyPiE23qHV2278lyfXhEnFbOt/J+RLwYEZdExFpN6u5dTjS+V7lpZN1cRLXHqIY6wyLihIj4d0S8XbbzuYi4p7wGOzaepwfXYM6I+G5E3F/+bl6OiL9GxHbdqNt24vSImCsiDouI28rf+Qfl8R+IiIsj4ksRMVdd+QRuqDvEE43XpuH4kyZDj4jBEXFARPwtIl4ttx/arGw3ntenIuKasq3/La/NdyNizhbluzWfVKvrVb6OnqjbdEOT18TwuvLd+fcxd0QcGRH/LP+9vlf+W7kgIjZqU2+KOcHK3+F3I+I/EfFORLxRnn/nVsfoiYjYLiIuK1/P70fEK+XxD4iIWZqU/0Rd+zbs4tjDImJiWfZLLcqsExFnRcSj5fN7K4r3ph9HxIJtjt3t1143rsEUv8+I2CoirojifeSdKN5zD4yIQXV1loji/fiR8jX6QkScG8UXEl2db+OIuLB8PbxXvj7+GRFHRDF3YXfbuXEU75UvlL+7JyLipIhYtEndUeXrfli56XtNXuN7tzn36lG8vz9bnmtMeczlunq+kqQOyUwfPnz48OGjIw/gAYpQ6ra6bdeX254Aoov6Xwc+KMu3ehzapN4CwLVd1EtgvoZ6N5bbR7Voz0bAmy2O9V9gW+DJcv3oFsdYva5Mq8fZwOAmdY8u9z8JjATGtqj/HrBlQ929u3E9RtWVHwm83UX5t3v5uli07rXR7PFDiuF8CdzYpP6k59Jk34eA/+vGc12nrk5XZbPhHLXtX6YIt1q+Juu27d2krZNeb8Axbc5/P7Bok/rD68ps2uZ6N71edP06TGB4D/59rAY828XxfkqTf/cUPS5rZTbo4vXxnWl4T5oNuKiLNt4LLNFQbwjwYrn/lC7OcSST/x02vscMAn4OTGxz/peB9Vscu9uvvW5ci/rX37fbtOecsvwI4IUWZcYAS7Y4TwAndHHNnwJW6UY7/x8woc0xGn9vo7o47xT/NuvK3wjsVv4Om9V5DVitt69DHz58+PDR/Yc9qSRJHRER61LMPwWTh/nV/zwc2KRN/UOBn1F8OHyIogfQMsD8wIoU81pdQfFhr77erMBVwBblpguBzYDFgEUoPgB/G3i0h89nEeCPwNwUQdXBFN/OLwp8muLD+XnAvG2OsTTFB8thwGPAvsByFKHaakz+8LoP8P02zZkXuJTiQ9mnKYKZxSiu0ViKD+JnR0T9XJPnl22/oFy/tVyvf3y5bOeg8rnMVbbz88DyZTsXp/i9fRd4uE0bW12DAC6meG0k8EtgVWAh4KPAX4HvUIRkvXE8sALwLnBY3bEXofiQfSBwU3numrmB+h5sH2Hqa9PMURTX4mcU4eOCwFoUH3B7YiTwLeBqimuwUNnuX5btXAW4uLx2nbQKxXOt+QRTP++nunOgsvfP1cASFIHtkRSvmYWBLYG/lUW/AXyzi8NdUNY7CFiW4npsCfyn3H90RKzcom5XTgJ2KX8eDfxPefyPUPweJ1D8Lv9cvpcAkJnjgd+Vq7s2621V53Pl8orMHNuw7yfA18qfz6T4fS9M8e93J4pAciHgTxHxoTbn6NRrD4rX3w8pnt965bFWp3i/A9g7Ij4NXAa8QXH9FqP4XR8KjKd4Xzi+xfGPLMtB8b6zBcVzXp7ivfi/wNLAXyNi/jbt3ITiPfKPTP53smzZ9iyP8dOGOl+meB0/Xa4fy9Sv8fObnGt54Fzgn8DHKN4/liqfx/sU/w/9uk1bJUmdUnVK5sOHDx8+BsaD4sNgUvxBv0Dd9rkpAoQEzmpRd2lgXFnmb8Bcbc4zpGH9CLrRq4CiR0M0bLuRFj1FgJPLfROAjzbZvyjwXN25j25S5o/lvsdo6GFRV2a/uuu2eMO+o+uOf3ez60IRWtXKbNNk/6hy341trs1qdcdYo8Ovi53rjv2tJvsHA9fUlZmqnbTvSfVque+QHrZr07pzDu+ibH2Piv27WXbvJvturNt/Fc17z9X3cNmpYd/wun2btmlDu+vVrWN049/HL8t9E4Gtm+yfFbiFyT2MFmlz/d8CVmpyjCWY/N5xXC9ee2vVneOCFmUOqCtzcMO+der2bdei/pp1ZXZo2DeCyT2ovtqi/jwUoXwCJ0/La68b16P+9Xdai9/Z4+X+DygCywWblPsRk9+z5mnYt2i5vdY7aZYm9T9R145fdNHOM1o8l1+1akO5/0lavC83lBtVd66raPj/pSzztboyU71Offjw4cNHZx/2pJIkTbOyl8FnytUrM/O12r7MfIuiBwPAzhExR5ND7A/MQvGB7vOZ+U6rc2XRw6HeweXypsz8ZZt6EzMz2z2PmrJH0h7l6sWZeWuT471IMWSr1TGWpRgOCHBgTt3DouZ/KT4YzsrkHh/NHN7iuoym6E0FsG6b+u3U98Aa08tjtLJ33XGn6nmRmRMohvT0Vq3tnW53Mw9m5mkdOtbXyufe6CdMfi77dOhcHRURg5n8ex2dmVc3lsnMcUz+tzkbk/89NXNSZj7U5BhjKAJM6N1re99yOY7JPXsaz3EqxXA/gC827LuDIkCCyb2lGtWe12vAlQ37DqYY+vbPzDypxfnfBH5crn62Te+5Tr723qUI9xvbMo6ixyYU/65+kJmvNqlf62E2K0VIV2/PcjsUod8HTc5zJZN7be1Tvp5atfOwFvvOqWvDGi3K9NQhTf5/gSnvLNrb91hJUjcZUkmSOuETFEMxYMqhfjXnlct5gE812V8bqndrZj7W3ZNGxCoUQ9+gGKrRKasyeRjfZW3KXdpm3xYUH1DfB26PiKHNHhRD7Gofktdpcaz3mXKi70kycyLwSLm6WJv2tPMwxRAcgHOjQ3diLD9w1ybP/lOLD4Bk5n8o5pXqjbvL5bERMbIPhsjVawwheuuhzHyw2Y7yGv25XP2fDp2v01Zj8r+Pi1sVysy7KXoRAmzc5nhXtdlXG2Lam9f2R8vljZn5cptyl5TLVSNivoZ9taFh20fEFMNAy2Gyny1XLy5DnnpblsvrW/37L98DHijLLUAxnK2ZTr32AP6RmW+02Ff//jtV+NikTOPvpXbN/y8z72vThtrrZj6K99tm/tEm3K8fetzb9716j2dm0/eg8kuX2uunE+eSJLVhSCVJ6oTPl8vXKeaNanQNxQS89WXr1e6cdE8Pz1t/x6We1m1neN3PU/XwqMnM5ynmbGlmxXI5G/AKxZCmVo/aXfMWbnGsl5v1SKjzbrlsele4rmTmuxTzyEAROD4cEQ9FxP9GxJ5dzJXTzrwUH0KhzXUsNQ1tuuEwip4yy1MME3o+Ii6KiK9GxEfa1uy5xzt0nK6uRW3//BExT4fO2UnD6n5+oGWpwv1N6jR6rs2+aXlt187Z3TYGxdDjehdQDPOag2IOqXqbUczNBA3zHJXhU23fkbT/9397XdVW7wGdeu1B++v937qfn29WIDPryzT2jO3pNa+v06hlO8v3rJpeve9191ylaXqPlSR1nyGVJGmalBPf1oa1/Q1YOSLWrH9Q9Ly4uSzzsSa3Dq99EH+rh6ev/wDf07rt1N8e/e0uyrbaP2+L7e3M3mJ7s2FhzfS6F1FmnkgRlv2D4kP5ihTDn84Dno2IP/Wih1UnrmNbmfkvismfL6MIqxalGDb5K+A/EXFPRGzTm2M38W7XRbqlJ9ei1STuVapvU1fPpfbvst3z6M7ruzev7do5u9vG+joAZOaTFJN/w9RDFmtDAJ9g8kTxNb359w+t3wM69dqDbr6ftBiO2qjx9zLN17xOn7/vVXQuSVIbQ7ouIklSW59h8hwk2zI5sGplMMWHu1/UbXuL4u5JPf1A3p0POr1R/wFraMtS7ffXjvFSZjaGctOlzBwNjI6IhSmGmn2UomfVKhS/140iYu3yg3t3dOI6dikz7wU+HRFzAutTtH0riruDrQFcGRE7ZWa7oZv9qSfXov413q051ej7v+/q29Td59LJELm73qLoydfb611zPsVwxc0iYvHMfC4iZmdyz6oLmsx3V//aP6CD80lN72rXb1qvuSRpJmVPKknStGo2fK+ndR4tl2v28DiP1v3c07rtPFn380qtCpXD4Fr1mKgNz1koInrbq6ISmflyZl6emd/MzI9QzLszkSJIPLQHh3qDyZO6t7yOpZV72s5GmfluZt6Qmcdk5qYUPfhepuj98L1pPX4HdXUtavtfLyfWrnmv7udmNyCoWbzNvk54su7nVbooWxty+WS7Qn2kds7utjGBp5vsv4hiXrj6Oai2Y3JPzvMbK5RzPtUmHV+ucf8A9mS57O41r68jSZIhlSSp9yJiBWCDcvW4zIx2D+AbZdk1ImK1ukPV7uD10fKueN2SmQ8weS6R3oRlrfyHyXNN7dim3Kfb7Ks9p0HAzp1oVC/V5rJqdQetLmXm7yiuCfQgTCp7l9SGQW1b3jVxKuXcUR2ZrL3h/PcDvy1XG9tdP8dXr69NL60UEU2DqvIa1Xoj3taw+zWKIY0wec6zZtoNb+zE867/99E4T9MkEbEGxVxhMHnIXH+qnXNkRCzUplzt3+d/mk3UXW6rzbW3R8Pyjsx8uLFOqfYe8OlWr/0BqHbNPxwRrSZEh8nXfCyT31s6aZrf9yRJ1TCkkiRNi/pg6MJulP89RY+cxrqnU3z4HkRxd7mWk9M2+bD3q3K5aUR8tU29Qd2981t5h7Va74hdIuKjjWXKebW+3eYYDzH5g+1xXc3nFBGLlPN7dVqtN0fL3jURsUQ50XOr/XPU1W92S/p2RpXLJWlyO/ny9vMn9PCYtbpzRcRSXRSr9WJpbHf9el/3PGrmhPLucI0OA5Yofz6nfkc5ef5d5eoezepHxOeADduc93UmDxvs1fMu5yoaVa5+OiK2bCwTEbMw+d/mezS/62dfO6tczsaUw4sniYgvM7kX5v+2OVat/WtGxMbAxxu2N1M75zLAz7p6/4mIdsHjjOJ8JgepJzYL58o54nYoV88u71DaaV2+70mSpk+GVJKkXik/cNV6E/wnM//dVZ3MfBa4pVzdvQwoyMxnmBxgfBS4vbyr3LCImC8ilo+Iz0bE5cABDYc9AfhX+fOvIuI3ETGyDH0Wioh1IuIwirvH9WTY3Q8oeq4MAq6IiIMiYqmIWDgidqToMTAHk4ezNXMA8BKwUPmcvh8RIyJiwbJtH4mIPSLi9xTDjPpiWNCd5XLZiDiwvC5Dykft74CtKCZHPzMiPl1e7/nL5/tJih4htZ4ov208QRf+wOTf+Y8i4hcRsXJELBAR/wNcWZ7/yV48t4WBxyPi8ojYJyJWK6/rohGxYUScA3yyRbsfBWpD6Y6IiA9HxOy1a9OLtvTEkxS9na6IiP8pr8XKEfEL4EdlmVuAS5vUPbtcjgB+HxGrl7+rVSPiOOBc4LFWJy7vila7k+JXI2KNiJizF8/7hxR3fwuKecwOi4hly9f25sB1FHOCAXwvM1/uwbE7IjPvYXLwtGdE/CEi1i+v90rl9Tql3H8P8Os2h7uS4v0AipsJzAKMB37X5vy3Az8pVw8BboiInSJi6YiYNyKWjIjNI+J7EfEg8PNePM3pSma+CHy/XN0cuDYiNitfF8tGxBEU7wkAY5j8eu+02vveDhHxsfJ61973nPxckqZnmenDhw8fPnz0+AGMpOiRkcC3elDvy3X1tm7YdxjFB79s8zi0yTEXBG7sol4C8zXUq9UZ1aKtH6UIMpod6z2KeWmeLNePbnGMlShux95V2xJYo6Hu0eX2J7u4pi2fB0WQ9liL840qy+zdzfYd28vXyqJdXINjKHrmJHBjk/qT2tewfXg3230NMFeT4/64VZ2GcrXte3fjubYsW/97Ao5t0977gUVbHH8QRWDSqu7FwL7NnkfdMfZrU394D/59rAY828W1/xkQTepu2uycTcodTTf+DbSpPxvFnFLt2ngvsEQ3jnVaQ70ru1EnyufQ1ftaApf25PXUi2vR9vfZ7t9aD1/nAfyyi+f6FLBKb9vZjTasSjGPWLNz711XbhQt3ncajvckbd7nffjw4cNH5x72pJIk9Vb9cL2e9K65mMnzhUwxj1RmHk8xoe4pwEPAOxS3Xn+U4oP5vjQMgSrrvQpsBuwCjKaYp2ocxZCP+yh6SGzO5Hl0uiUzb6X4sPO/FB/Gx5XH/h2wQWb+qRvHeAhYHdgL+FNd294HngGuBo4EVsjiLnUdlZn/pbgz2ekU1/G9JsUuopgH6QTgH2W73gf+C/wfxQe5DTPzyF624UVgHYoP6w+WbXgVuB7YMTNbDpvswtPARhSTol9HEca9Q3F9nwX+COwGfCwz32lS/zvAQRTPuRZG9ovyWu5EcQ1epbgmD1I8l3XLa9as3kSKoVLfpHht/5fidX0bsE9m7gJM6OLcZwC7U4QBrzN5CG5Pn8O/Keb6+jZwe9mOcRSvn98CH83Mb2Rmv13XJm18PzN3BT4FXA68QPH+8xpwM8Xvf93MHNONwzUO7ZtqwvQm58/MPJriOp1AEYi9QfE7eqNcP5NifrvPdKMN073yOR9K0ZPud0x+73yDotfrkcBHsphTsK/a8J/y/JdSvOd+0L6GJGl6ERX+3SBJkiRJkiQBzkklSZIkSZKk6YAhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqtyQqhswPVtooYVy+PDhVTdDkiRJkiRpwLjzzjtfycyFG7cbUrUxfPhw7rjjjqqbIUmSJEmSNGBExFPNtjvcT5IkSZIkSZUzpJIkSZIkSVLlDKkkSZIkSZJUOUMqSZIkSZIkVc6QSpIkSZIkSZUzpJIkSZIkSVLlDKkkSZIkSZJUOUMqSZIkSZIkVc6QSpIkSZIkSZUbUnUDJEkayCZOnMjrr7/O22+/zXvvvcfEiROrbpIk9cigQYOYffbZGTp0KPPPPz+DBvk9tySpbxhSSZLUR8aPH88zzzzDkCFDWGCBBZhzzjkZNGgQEVF10ySpWzKTiRMn8u677zJ27FjefPNNllpqKYYM8WOEJKnz/BpEkqQ+8tprrzHbbLOx5JJLMvfcczN48GADKkkzlIhg8ODBzD333Cy55JLMNttsvPbaa1U3S5I0QBlSSZLUR9544w0WXHBBgylJA0JEsOCCC/LGG29U3RRJ0gBlSCVJUh8ZP348s846a9XNkKSOmXXWWRk/fnzVzZAkDVCGVJIk9SF7UUkaSHxPkyT1JUMqSZIkSZIkVc6QSpIkSZIkSZUzpJIkSZIkSVLlhlTdAEmSZmoXzmDzu+yefXboiRMnMnz4cJ555hkWWmghnnvuOWaZZZY+O19XanPvZPbsOQ8fPpynnnqKJ554guHDh/dBy/re3nvvzbnnnjvFtjnmmIN55pmHYcOGMWLECD71qU+x1VZbMWhQ8+88N910U2666SZuuOEGNt10035odWs33ngjm222GSNHjuTGG2+ctP3JJ59kmWWWYdiwYTz55JOVta/eqFGj2Geffdhrr70YNWpU1c2RJKlf2ZNKkiRNF6655hqeeeYZAF555RX++Mc/VtyiGdeNN95IRExzOLTGGmuw1157sddee7Hjjjuy1lprMWbMGE477TS22WYbVlttNe64447ONLqFiBhQk3UPtOcjSVIn2ZNKkiRNF84++2wAllhiCcaMGcPZZ5/NTjvtVFl7HnzwwcrOPb3YYYcdOProo6fafuedd3LEEUdw7bXXMnLkSG644QbWW2+9Kcqcd955vPvuuyy99NL91NrW1ltvPR588EHmnHPOqpvSpR133JENNtiAeeedt+qmSJLU7+xJJUmSKvfaa69x+eWXExH87ne/Y/DgwVx99dU899xzlbVppZVWYqWVVqrs/NOzESNGcPXVV7Pzzjvz7rvvsvvuuzN+/Pgpyiy99NKstNJK00UwNOecc7LSSitNF4FZV+add15WWmklPvShD1XdFEmS+p0hlSRJqtwFF1zA+++/z6abbspHP/pRPvaxjzFhwoSp5kVq9OCDD7Lffvux/PLLM8ccczD//POz+uqr841vfIOnnnpqqvLPPPMMX/va11hllVWYa665mGeeeVh55ZU54IAD+M9//jNF2XbDsp566ik+//nPs+iiizLHHHOwyiqrcPzxxzNhwoS27f3ggw84/fTT2XjjjZl//vmZffbZWWGFFfja177Gyy+/PFX5UaNGERHsvffevPXWW3zzm99kmWWWYbbZZmOJJZZg//3357XXXpuizqabbspmm20GwE033TTpeXRi+F+9QYMGcdpppzH77LPz2GOPMXr06KnaERFTzAEF8N5773Hcccex9tprM3ToUGabbTY+9KEPseGGG/Kd73yH9957D4Cjjz56iutf/zzqt9fKHX300Tz11FPss88+LLnkkgwZMoRDDz0U6N7wx/Hjx3Pcccex8sorM/vss7Pooouy11578fTTT09VtqvjPfnkk0TEFHOSdff51P/Om7ntttvYaaedWGyxxZh11llZbLHF2HnnnfnHP/7RtHz97+HOO+9k++23Z8EFF2T22WdnjTXW4Kyzzmp5TSRJ6m8O95MkSZWrDfWrfTDfZ599uOqqqzjnnHM48sgjm9Y577zz+NKXvsS4ceNYdtll2W677Rg3bhyPPvooP//5z1l11VWn+KD/17/+lV122YU333yTxRdfnK233ppBgwbx+OOP8+tf/5pFFlmEVVddtcu2PvDAA4wcOZJXXnmFpZZaik996lO8/vrrHHXUUfzzn/9sWe/NN9/kk5/8JLfeeivzzjsvI0aMYL755uOuu+7ihBNO4A9/+AM33XRT08nW33jjDTbaaCPGjBnDJptswqqrrsqtt97K6aefzr/+9S/+8Y9/TJpkfptttmH22Wfn6quvZtFFF2WbbbaZdJxO9wxbaKGF2GabbRg9ejTXXHMNO++8c9vyEydO5JOf/CTXX3898847LyNHjmTeeeflxRdf5OGHH+aYY47hoIMOYrHFFmPNNddkr732mhRU7rXXXm2P/cgjj7DWWmsx++yzs9FGGzF+/Hjmm2++bj+X3XbbjT//+c9suummrLHGGtx2222cd955/OUvf+Hmm29mxRVX7Paxmunp82nmtNNO46CDDmLixImsu+66bL755jz66KP84Q9/4LLLLuP000/nS1/6UtO6f/nLX/jFL37BiiuuyMc+9jGefvppbrvtNr74xS8yduxYvv71r0/T85M0g5jRbthS04c3btH0xZBKkiRV6u677+aee+5h7rnnnhRybL/99iywwAI88sgj3HLLLWy88cZT1Ln99tvZd999yUzOPPNMvvCFL0zRG6VxPqmnn36anXfembfeeosf/vCHHHHEEQwZMmSK/c16MjWz55578sorr7Dnnnty5plnMuusswJw//33s9lmm7U8zn777cett97KzjvvzBlnnMH8888PwIQJE/jWt77F8ccfz9577z1VzyOA0aNH84lPfILbbruNoUOHAvDcc8+xwQYbcNddd3HRRRfxuc99DoAjjjiCDTbYgKuvvpqVVlqpz+8Qt8466zB69Gjuv//+LsveeuutXH/99ay99trcfPPNzDXXXJP2ZSa33XYb88wzD1DMh7XDDjtMCnW6eh4XXnghe++9N7/+9a8n/U6666mnnuK///0vd999N6ussgoA48aNY9999+X8889nzz335F//+lePjtmop8+n0b333svBBx8MwEUXXcQuu+wyad/vfvc7Pve5z3HggQey4YYbNg1bf/KTn3DWWWfxhS98YdK22nP7wQ9+wP777z9dDM2UJM3cHO4nSZIqVetFteuuu076kDzbbLNNCl1q++sdc8wxjB8/nm984xvsu+++Uw3LW3nllVl55ZUnrf/iF7/grbfeYrfdduM73/nOFAEVFPMnjRgxosu23nLLLdx1113MO++8nHTSSVOEIR/5yEc46qijmtZ74IEH+P3vf8+wYcM477zzJgVUAIMHD+bYY49ltdVW46abbuLf//73VPWHDh3KWWedNSmgAlh88cU56KCDALjuuuu6bHtfWWihhQB49dVXuyz74osvArDxxhtPEVBBMfxto4026nVQsuCCC/KrX/2qxwFVzVFHHTUpoAKYddZZOemkk5hnnnm4/fbb+dvf/tar43bKr371K8aPH89nPvOZKQIqYNK2Dz74gBNPPLFp/Z122mmKgApgjz32YOWVV+bNN9/s87s0SpLUHYZUkiSpMu+//z4XXnghUAzxq1dbv/jii3n77bcnbZ8wYQLXXHMNAF/84he7dZ6//OUvPSrfyk033QTAtttu2/Tua3vuuWfTelddddWkenPMMcdU+wcNGjSpt9jf//73qfaPGDGCxRZbbKrtteF7VU4wP3HiRKB4Dl1Ze+21GTx4MGeddRannnrqpNCqE7bcckvmnnvuXtffY489pto233zzsd122wE07eHWn2qvvVZzVdUCqFbt3HbbbZtunx5eQ5Ik1RhSSZKkyowePZrXXnuNFVZYgY022miKfWuttRZrrLEG77zzDr///e8nbX/llVd49913GTJkCMsvv3y3zlObRH1a52R69tlnAVhmmWWa7p9vvvmahlePP/44AKeccspUE2bXHqeeeipA0+GCre5KVxsaV5tsvAqvvPIKAAsssECXZZdbbjlOOOEExo0bx4EHHshiiy3Gcsstx5577skll1zS5cTz7QwbNqzXdeebb76W81fV5gir/e6rMmbMGKD1a2/ZZZedolyj6fk1JElSjXNSSZKkytSG8r3xxht89KMfnWr/Sy+9NKncvvvuC9Dyjnvt9KZOJ9XClxEjRnQ5OftHPvKRqbZ1p5dSVe68804AVltttW6V/+pXv8ouu+zC6NGjufXWW7n11ls5//zzOf/881lzzTW56aabJgUnPdGsh1pVar3L+kJvX8vT82tIkqQaQypJklSJZ555hmuvvRYowqhaINXMbbfdxsMPP8yKK67IggsuyJxzzsm7777LY489xnLLLdfluZZeemkefvhhHn74YZZccslet3mJJZYA4Mknn2y6f+zYsbzxxhtTbV9qqaUA2GyzzfjpT3/a6/NPb15++WWuvvpqALbaaqtu11tsscX4yle+wle+8hWgmBR8zz335J577uG4447jxz/+cZ+0t5Xa761ZL7ja77r2uwcmzXtVPwy1Xq3nXictscQSPPbYYzz++ONNX/O13nr17ZQkaUbjVyqSJKkSo0aNYuLEiWy++eZkZsvHrrvuCkzudTV48GC23HJLAM4888xunWvrrbfuUflWRo4cCcCf//xn3nzzzan2X3DBBU3rffzjHweK4Y3jx4+fpjZ0Ry1E6ctzTZw4kQMOOID33nuPD3/4w2y//fa9PtYaa6zBIYccAhSBVb1ZZpkF6NvnAs1/d2+88QZ//vOfAdh0000nba8FQY899hgffPDBVPWuvPLKlufp7fOpvfbOO++8pvvPOeecqdopSdKMxpBKkiT1u8xk1KhRQOvJxmtq+3/zm99MGjb37W9/m8GDB/Ozn/1s0nHqPfTQQzz00EOT1r/2ta8xdOhQfve733HsscdONffRM888M2nYWjsbb7wxa665JmPHjuWQQw6ZIqB48MEH+eEPf9i03tprr80OO+zAo48+yq677tp0fqPXX3+dX//61x0JY2ohyqOPPton4c5dd93F1ltvzSWXXMJcc83FhRdeyODBg7usd/3113PllVdO1aYJEyZMCnYa55aqPZcHH3ywQ61v7gc/+MEU5/jggw845JBDeOONNxgxYsQUw1GHDRvGcsstx9ixY/n5z38+xXFGjx7Nr371q5bn6e3zOfjggxkyZAi//e1vueyyy6bYd/HFF3PRRRcxyyyzcPDBB/fouJIkTU8c7leVC6udG6PXds+qWyBJGgBuvPFGHn/8ceaYYw522mmntmW32WYbFl54YZ5//nmuvPJKtttuO9Zbbz3OOOMMvvzlL7PPPvvwox/9iLXXXptx48bx6KOPcv/993POOedMmih92LBhXHTRRey6665861vf4pRTTmH99dcnInjiiSe45557OOqooxgxYkTbtkQEv/nNbxg5ciSjRo3i+uuvZ8MNN2Ts2LHccMMNbLvtttx5551Nh3ude+65bL/99lx22WVcddVVrLHGGgwfPpzx48fz+OOPc9999zFhwgT22msvhgyZtj/Rhg0bxlprrcXdd9/N6quvzogRI5htttlYccUV+eY3v9nt44wePXrScLcPPviAsWPHct99900K2VZddVXOPfdc1l577W4d77777uP//b//x7zzzsvaa6/Nhz70Id59913++c9/8vzzz7PYYotx+OGHT1Fnxx135IQTTmCLLbZg8803Z+jQocC094qrt/TSSzNixAjWXHNNNt98c+add15uu+02nnnmGRZaaKGmvZeOPfZYdtttN4488kguvvhill12WR555BHuu+8+vvWtb3HMMcc0PVdvn88aa6zBiSeeyEEHHcSnP/1p1l9/fZZbbjkeffRR/vWvfzFo0CBOPvnkbs8NJknS9MiQSpKkKs2k4X9t6N4OO+zA3HPP3bbskCFD+MxnPsNJJ53E2WefzXbbbQfAF77wBdZdd11+8YtfcP3113P55Zcz11xzsfTSS/PNb36TzTfffIrjfPzjH+e+++7j5z//OVdffTVXXHEFs802G0suuST777//pGGFXVl11VW54447+O53v8vVV1/N6NGjGT58ON/73vc47LDDWt5xcJ555uG6667jwgsv5Pzzz+euu+7izjvvZP7552fxxRfny1/+Mp/61KeYffbZu9WOrlx66aUcfvjh3HTTTfz2t79lwoQJjBw5skch1b333jtp+N3ss8/OPPPMwzLLLMN2223HDjvswFZbbdWjiby32247xo4dy80338yjjz7KbbfdxtChQ1l66aX5yle+wv7778/CCy88RZ1jjjmGiOCyyy7j0ksvndR7rZMhVURw0UUXcdxxx/Gb3/yGp556innmmYc99tiDH/7wh5Pu8Fdvl112YbbZZuPYY4/l3nvv5ZFHHmHttdfmqquuYsUVV2wZUk3L8znggANYY401+PnPf87f/vY37rzzThZYYAE+/elP841vfIMNN9xwmq6DJElVi8yZ84/j7lhnnXXyjjvu6JuD25NKkga8Bx98kJVXXrnqZkhSR/neJs3A/Byq6URE3JmZ6zRud04qSZIkSZIkVc6QSpIkSZIkSZUzpJIkSZIkSVLlDKkkSZIkSZJUuW6FVBExS0RsERE/j4g7IuLNiBgXEWMi4pKI2LSL+rtHxC0R8UZEvF0e48CIaHv+iNgmIv4aEa9FxLsR8Z+I+HZEzNZFvfUj4rKIeCki3ouIRyLi+IiYtzvPV5IkSZIkSf2ruz2pRgLXAl8DlgBuBi4DXgN2Am6IiB80qxgRpwAXAOsAtwDXAB8GTgYuaRVURcRhwFXA5sBdwBXAIsCPgBsjYs4W9T4L/A3YAfg/4HJgVuCbwB0RsUg3n7MkSZIkSZL6SXdDqonAH4BNMvNDmbltZu6WmasBnwEmAEdFxGb1lSJiJ+AA4AVg9bLejsAKwIPAjsBXG08WEesAxwHvAhtl5paZuQuwLEVAtgFwTJN6SwJnAQHskJkfzczdgOWA3wPLA7/u5nOWJEmSJElSP+lWSJWZ12fmzpl5S5N9vwdGlat7NOw+slwenpmP1NV5Edi/XD2iSW+qIyiCpp9k5j/r6r0N7EMRmh0QEfM11DsUmAM4NzMvr6s3HtgPeBPYISJWafuEJUnqkMysugmS1DG+p0mS+lKnJk6/u1wuWdtQ9moaAYwDLm6skJk3AWOAxSh6RtXqzQp8vFy9oEm9x4G/Uwzh+0TD7h3a1HsT+FNDOUmS+syQIUMYN25c1c2QpI4ZN24cQ4YMqboZkqQBqlMh1Qrl8vm6bWuVy/sz878t6t3eUBZgRWBO4LXMfKy79SJiHophffX7u3M+SZL6xLzzzsurr75qzwNJA0Jm8uqrrzLvvN6LSJLUN6b5a5CIWAzYu1z9Q92uZcrlU22qP91Qtv7np2mtWb3h5XJs2Wuqu/UkSeoTCyywAM888wzPPvss8803H3POOSeDBg0iIqpumiR1S2YyceJE3n33XcaOHcv48eNZZBHvQyRJ3XbhDPp33+7VfMk6TSFVRAwBzgfmBa7LzD/V7R5aLt9pc4i3y+XcFdabQkTsRzF/FUsvvXSbQ0mS1N6QIUMYNmwYr7/+Oq+//jrPPfccEydOrLpZktQjgwYNYo455mCuueZi/vnnZ9CgTg3GkCRpStPak+p0YAvgGaaeNH2GlJlnAGcArLPOOo7PkCRNk0GDBrHggguy4IILVt0USZIkabrW669BIuJEYF/gBWCLzHyhoUit19JcbQ5T6/30VoX1JEmSJEmSVLFe9aSKiJ8DBwMvUwRUjzQp9mS5HNbmUEs1lK3/ud1Yu2b1anNfzRcR87SYl6pZPUmSJElSf3OuHkkNetyTKiKOB74GvApsmZkPtCh6d7n8SETM0aLMug1lAR4C/gssEBHLTV0FgPUa62XmG0DtboDrTlWjRT1JkiRJkiRVr0chVUQcB3wTeB3YKjPva1U2M58B7gJmBXZpcqyRwJIUwwX/XldvHHBVufq5JvWWBTYExgFXNOy+vE29eYDtytXLWrVbkiRJkiRJ/a/bIVVE/Ag4HBhLEVB1pzfSseXyJxGxfN2xFgFOLVePy8zGWx0dByRweESsV1dvKHB22e5TM3NsQ71fUvTC2isitq+rNwT4NTAPMLpN7y9JkiRJkiRVoFtzUpWBz7fL1UeBr0Y0HT/8UGYeV1vJzEsi4jRgf+DfEXEt8AHFHQHnAUYDJzceJDNvj4gjgJ8At0XE9RTh2EhgEeCfde2pr/dMROwL/AYYHRG3As8BG1DMjfUo8OXuPGdJkiRJkiT1n+5OnL5A3c/rlI9mbqLoBTVJZh5QhkUHUoRMgynmnTobOK1JL6paveMj4j7g6xRzTM0OPA78CvhZZr7fot5vI+Jx4EhgI2B94Bngp8Ax5dxVkiRJkiRJmo50K6TKzFHAqN6eJDMvBC7sRb2/AH/pRb1/Ajv0tJ4kSZIkSZKq0eO7+0mSJEmSJEmdZkglSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyg2pugGSJEmazl0YVbegd3bPqlsgSZJ6wJ5UkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpck6cLknStHBCaUmSJKkj7EklSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcc1JJkiRJknMMSlLl7EklSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcc1JJkqQZi/PGSJIkDUj2pJIkSZIkSVLlDKkkSZIkSZJUOYf7Seo7DsmRJEmSJHWTPakkSZIkSZJUOUMqSZIkSZIkVc6QSpIkSZIkSZUzpJIkSZIkSVLlDKkkSZIkSZJUOUMqSZIkSZIkVc6QSpIkSZIkSZUzpJIkSZIkSVLlDKkkSZIkSZJUOUMqSZIkSZIkVc6QSpIkSZIkSZUzpJIkSZIkSVLlDKkkSZIkSZJUuSFVN0DqNxdG1S3ond2z6hZIkiRJktTn7EklSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIq1+2J0yNiRWAbYF1gHeDDQAC7ZOYlTcpvCtzQzcMPy8yn6+qOAvZqU/7hzFypRTsHAfsD+wArAROA+4BTM/O33WyPJEmSVB1v+CJJmgn15O5++wOH9KD8C8C5bfavB6wMPAY806LM34BHm2x/vlnhiBgMXApsD7wJ/BWYDdgCuDAiNsjMnjwHSZIkSZIk9YOehFT/AX4K3AHcCZwFjGxVODMfAvZutT8iHih/PDszW33lcmZmjupBGw+lCKgeADbPzBfLc60A3AIcHBHXZ+blPTimJEmSJEmS+li3Q6rMPLN+PaL3XZAjYkOKXlQTgFG9PtCUxxwMHFau7l8LqAAy85GIOLw817cBQypJkiRJkqTpSFUTp3+hXP4lM5/r0DE3BBYBns3Mm5vsvxj4AFg3Ipbo0DklSZIkSZLUAT0Z7tcRETEnsFu5elYXxTeLiNWBocCLwK3ANZk5sUnZtcrl7c0OlJnvRsT9wJrlY0zPWi5JkiRJkqS+0u8hFbALMDfwEvDnLsp+vsm2ByLiM5n574bty5TLp9oc72mKgGqZNmUkSZIkSZLUz6oY7lcb6ndeZn7Qosw9wMHAKhS9qBYHtgXuLbdd22TI3tBy+U6bc79dLuduVSAi9ouIOyLijpdffrnNoSRJkiRJktQp/RpSRcTywCbl6tmtymXmLzPzpMx8MDPfycznM/MKYD3gHxRzTx3ZF23MzDMyc53MXGfhhRfui1NIkiRJkiSpQX8P96v1ovp7Zj7Y08qZOS4ijqW4O98nGnbXeknN1eYQtd5Wb/X03JI0Q7iw93derdTuWXULJEmSJFWs33pSRcRgJs8x1dWE6e08VC4bh/s9WS6Htam7VENZSZIkSZIkTQf6c7jf1hTB0tvA76fhOAuWy7cbtt9VLtdtVqm8q+Cq5erd03B+SZIkSZIkdVh/hlT7lsuLMrMxYOqJXcvl7Q3b/w68DCwZEZswtV2AWYDbM3PMNJxfkiRJkiRJHdYvIVVELARsV662HeoXEWtGxLbl8MD67UMi4usUd/0DOKF+f2ZOAI4vV0+LiEXq6q4AHFeuHtO7ZyFJkiRJkqS+0u2J0yNibeDUuk2rlMsfR8Q3ahszc4Mm1fek6MX0UGbe1sWphgOXAa9FxF3ASxRD/FYDFgcmAodl5tVN6p5AcffA7YBHIuK68rxbArMDJ2Xm5V2cX5IkSZIkSf2sJ3f3mwdYv8n2FbpRd59yeXY3yt4LnAisRxGEbQwk8CxwDnBKZt7ZrGJmToiIHYADynNuDUwA7gROzcwLu3F+SZIkSZIk9bNuh1SZeSPQq3ubZ+bqPSj7BHBob85T1p8InFw+JEmSJEmSNAPoz4nTJUmSJEmSpKYMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuUMqSRJkiRJklQ5QypJkiRJkiRVzpBKkiRJkiRJlTOkkiRJkiRJUuW6HVJFxIoRcUhEnB8RD0XExIjIiNi5TZ1RZZlWj4fa1B0UEQdGxB0R8XZEvBERt0TEZ7vR1t3Lsm+Ude8oj2UoJ0mSJEmSNB0a0oOy+wOH9PI8fwMebbL9+WaFI2IwcCmwPfAm8FdgNmAL4MKI2CAzm7YlIk4BDgDeA64DPijrnQxsERE7Z+bEXj4PSZIkSZIk9YGehFT/AX4K3AHcCZwFjOxm3TMzc1QPznUoRUD1ALB5Zr4IEBErALcAB0fE9Zl5eX2liNiJIqB6AdgkMx8pty8K3ADsCHwVOLEHbZEkSZIkSVIf6/bwt8w8MzMPy8yLMvOxvmpQ2YvqsHJ1/1pAVbbhEeDwcvXbTaofWS4PrwVUZb0XKXqCARzhsD9JkiRJkqTpy/QY1mwILAI8m5k3N9l/McUQvnUjYonaxohYEhgBjCvLTCEzbwLGAIsBG/RBuyVJkiRJktRLPRnuNy02i4jVgaHAi8CtwDUt5oZaq1ze3uxAmfluRNwPrFk+xjTUuz8z/9uiHbcDS5Rlb+vhc5AkSZIkSVIf6a+Q6vNNtj0QEZ/JzH83bF+mXD7V5nhPUwRUy9Rt6269+rKSJEmSJEmaDvT1cL97gIOBVSh6US0ObAvcW267tn7IXmlouXynzXHfLpdzd6DeFCJiv4i4IyLuePnll9scSpIkSZIkSZ3SpyFVZv4yM0/KzAcz853MfD4zrwDWA/5BMffUke2P0r8y84zMXCcz11l44YWrbo4kSZIkSdJMoZKJ0zNzHHBsufqJht213k5ztTlErdfUWx2oJ0mSJEmSpIpVeXe/h8pl43C/J8vlsDZ1l2ooOy31JEmSJEmSVLEqQ6oFy+XbDdvvKpfrNqsUEXMCq5ard9ftqv38kYiYo8U5120oK0mSJEmSpOlAlSHVruXy9obtfwdeBpaMiE2a1NsFmAW4PTPH1DZm5jMUAdesZZkpRMRIYEnghfIckiRJkiRJmk70WUgVEWtGxLYRMbhh+5CI+DrFXf8ATqjfn5kTgOPL1dMiYpG6uisAx5WrxzQ5bW2eq59ExPJ19RYBTi1Xj8vMib15TpIkSZIkSeobQ7pbMCLWZnLQA7BKufxxRHyjtjEzNyh/HA5cBrwWEXcBL1EM8VsNWByYCByWmVc3Od0JwCbAdsAjEXEdRe+pLYHZgZMy8/LGSpl5SUScBuwP/DsirgU+ALYA5gFGAyd39zlLkiRJkiSpf3Q7pKIIedZvsn2FFuXvBU4E1qMItDYGEngWOAc4JTPvbFYxMydExA7AAcA+wNbABOBO4NTMvLBVIzPzgIi4FTgQGAkMppik/WzgNHtRSZIkSZIkTX+6HVJl5o1A9KD8E8ChPW/SpPoTKXo99bjnUxlitQyyJEmSJEmSNH2pcuJ0SZIkSZIkCTCkkiRJkiRJ0nTAkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVDlDKkmSJEmSJFXOkEqSJEmSJEmVM6SSJEmSJElS5QypJEmSJEmSVLluh1QRsWJEHBIR50fEQxExMSIyInZuUX6WiNgiIn4eEXdExJsRMS4ixkTEJRGxaZtzjSqP3erxUJu6gyLiwPKcb0fEGxFxS0R8trvPVZIkSZIkSf1rSA/K7g8c0oPyI4Fryp9fAG4G3gFWAXYCdoqIH2bmd9sc42/Ao022P9+scEQMBi4FtgfeBP4KzAZsAVwYERtkZk+egyRJkiRJkvpBT0Kq/wA/Be4A7gTOogiiWpkI/AE4MTNvqd8REbsBFwBHRcQNmXlDi2OcmZmjetDGQykCqgeAzTPzxfJ8KwC3AAdHxPWZeXkPjilJkiRJkqQ+1u2QKjPPrF+PiK7KXw9c32Lf7yNiK2BfYA+gVUjVbWUvqsPK1f1rAVV5vkci4nBgFPBtwJBKkiRJkiRpOlLlxOl3l8slO3S8DYFFgGcz8+Ym+y8GPgDWjYglOnROSZIkSZIkdUBPhvt12grlsun8UqXNImJ1YCjwInArcE1mTmxSdq1yeXuzA2XmuxFxP7Bm+RjTizZLkiRJkiSpD1QSUkXEYsDe5eof2hT9fJNtD0TEZzLz3w3blymXT7U53tMUAdUybcpIkiRJkiSpn/X7cL+IGAKcD8wLXJeZf2pS7B7gYIo7AQ4FFge2Be4tt13bZMje0HL5TpvTv10u527Tvv0i4o6IuOPll1/u4tlIkiRJkiSpE6qYk+p0YAvgGYpJ06eSmb/MzJMy88HMfCczn8/MK4D1gH9QzD11ZF80LjPPyMx1MnOdhRdeuC9OIUmSJEmSpAb9GlJFxIkUd/R7AdgiM1/oSf3MHAccW65+omF3rZfUXG0OUett9VZPzitJkiRJkqS+1W8hVUT8nGII38sUAdUjvTzUQ+Wycbjfk+VyWJu6SzWUlSRJkiRJ0nSgX0KqiDge+BrwKrBlZj4wDYdbsFy+3bD9rnK5bos2zAmsWq7ePQ3nlyRJkiRJUof1eUgVEccB3wReB7bKzPum8ZC7lsvbG7b/naKX1pIRsUmTersAswC3Z+aYaWyDJEmSJEmSOqhPQ6qI+BFwODCWIqDqsgdTRKwZEdtGxOCG7UMi4usUQwYBTqjfn5kTgOPL1dMiYpG6uisAx5Wrx/TmuUiSJEmSJKnvDOluwYhYGzi1btMq5fLHEfGN2sbM3KAsvz3w7XLzo8BXI6LZoR/KzOPq1ocDlwGvRcRdwEsUQ/xWAxYHJgKHZebVTY51ArAJsB3wSERcR9F7aktgduCkzLy8u89ZkiRJkiRJ/aPbIRUwD7B+k+0rtCi/QN3P65SPZm5ici8ngHuBE4H1KIKwjYEEngXOAU7JzDubHSgzJ0TEDsABwD7A1sAE4E7g1My8sEUbJEmSJEmSVKFuh1SZeSPQtCtUi/KjgFE9bVBmPgEc2tN6dfUnAieXD0mSJEmSJM0A+uXufpIkSZIkSVI7hlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMp1O6SKiBUj4pCIOD8iHoqIiRGREbFzN+ruHhG3RMQbEfF2RNwREQdGRNvzR8Q2EfHXiHgtIt6NiP9ExLcjYrYu6q0fEZdFxEsR8V5EPBIRx0fEvN19vpIkSZIkSeo/PelJtT/wS+BzwIpAdKdSRJwCXACsA9wCXAN8GDgZuKRVUBURhwFXAZsDdwFXAIsAPwJujIg5W9T7LPA3YAfg/4DLgVmBbwJ3RMQi3Wm3JEmSJEmS+k9PQqr/AD8FdgOWB27qqkJE7AQcALwArJ6Z22bmjsAKwIPAjsBXm9RbBzgOeBfYKDO3zMxdgGWBm4ENgGOa1FsSOIsiQNshMz+ambsBywG/L9v96x48Z0mSJEmSJPWDbodUmXlmZh6WmRdl5mPdrHZkuTw8Mx+pO9aLFD2zAI5o0pvqCIqg6SeZ+c+6em8D+wATgQMiYr6GeocCcwDnZubldfXGA/sBbwI7RMQq3Wy/JEmSJEmS+kGfTZxe9moaAYwDLm7cn5k3AWOAxSh6RtXqzQp8vFy9oEm9x4G/Uwzh+0TD7h3a1HsT+FNDOUmSJEmSJE0H+vLufmuVy/sz878tytzeUBaK+a7mBF5r02NrqnoRMQ/FsL76/d05nyRJkiRJkirWlyHVMuXyqTZlnm4oW//z07TWrN7wcjm27DXV3XqSJEmSJEmqWF+GVEPL5TttyrxdLueusJ4kSZIkSZIq1pch1QwpIvaLiDsi4o6XX3656uZIkiRJkiTNFPoypKr1WpqrTZla76e3Kqw3hcw8IzPXycx1Fl544TaHkiRJkiRJUqf0ZUj1ZLkc1qbMUg1l639euof1anNfzVdOot7depIkSZIkSapYX4ZUd5fLj0TEHC3KrNtQFuAh4L/AAhGx3NRVAFivsV5mvgHU7ga47lQ1WtSTJEmSJElS9fospMrMZ4C7gFmBXRr3R8RIYEngBeDvdfXGAVeVq59rUm9ZYENgHHBFw+7L29SbB9iuXL2sB09FkiRJkiRJfayvJ04/tlz+JCKWr22MiEWAU8vV4zJzYkO944AEDo+I9erqDQXOpmj3qZk5tqHeLyl6Ye0VEdvX1RsC/BqYBxidmQ9M4/OSJEmSJElSBw3pbsGIWJvJwRLAKuXyxxHxjdrGzNyg7udLIuI0YH/g3xFxLfABsAVlYASc3HiuzLw9Io4AfgLcFhHXA2OBkcAiwD+Bbzep90xE7Av8BhgdEbcCzwEbUMyN9Sjw5e4+Z0mSJEmSJPWPbodUFKHS+k22r9CuUmYeUIZFB1KETIMp5p06GzitSS+qWr3jI+I+4OsUc0zNDjwO/Ar4WWa+36LebyPiceBIYKOyzc8APwWOKeeukiRJkiRJ0nSk2yFVZt4IRG9OkpkXAhf2ot5fgL/0ot4/gR16Wk+SJEmSJEnV6Os5qSRJkiRJkqQuGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTK9WlIFRGbRkR287F0Xb1RXZR9qM05B0XEgRFxR0S8HRFvRMQtEfHZvnyukiRJkiRJ6r0hfXz8F4Bz2+xfD1gZeAx4psn+vwGPNtn+fLODRcRg4FJge+BN4K/AbMAWwIURsUFmHtLt1kuSJEmSJKlf9GlIlZkPAXu32h8RD5Q/np2Z2aTImZk5qgenPJQioHoA2DwzXyzPswJwC3BwRFyfmZf34JiSJEmSJEnqY5XNSRURG1L0opoAjOrA8QYDh5Wr+9cCKoDMfAQ4vFz99rSeS5IkSZIkSZ1V5cTpXyiXf8nM5zpwvA2BRYBnM/PmJvsvBj4A1o2IJTpwPkmSJEmSJHVIX89J1VREzAnsVq6e1aboZhGxOjAUeBG4FbgmMyc2KbtWuby92YEy892IuB9Ys3yM6XnLJUmSJEmS1BcqCamAXYC5gZeAP7cp9/km2x6IiM9k5r8bti9TLp9qc7ynKQKqZdqUkSRJkiRJUj+rarhfbajfeZn5QZP99wAHA6tQ9KJaHNgWuLfcdm2TIXtDy+U7bc77drmcuxdtliRJkiRJUh/p955UEbE8sEm5enazMpn5y4ZN7wBXRMQ1wE3ABsCRwEF90L79gP0All566U4fXpIkSZIkSU1U0ZOq1ovq75n5YE8qZuY44Nhy9RMNu2u9pOZqc4hab6u32pzjjMxcJzPXWXjhhXvSPEmSJEmSJPVSv4ZUETGYyfNMtZswvZ2HymXjcL8ny+WwNnWXaigrSZIkSZKk6UB/96TamiJcehv4fS+PsWC5fLth+13lct1mlco7Cq5art7dy3NLkiRJkiSpD/R3SLVvubwoMxtDpu7atVze3rD978DLwJIRsQlT2wWYBbg9M8f08tySJEmSJEnqA/0WUkXEQsB25WrLoX4RsWZEbFsODazfPiQivk5x1z+AE+r3Z+YE4Phy9bSIWKSu7grAceXqMb1/FpIkSZIkSeoL/Xl3vz0pejI9lJm3tSk3HLgMeC0i7gJeohjitxqwODAROCwzr25S9wSKOwduBzwSEdeV59wSmB04KTMv78zTkSRJkiRJUqf0Z0i1T7k8u4ty9wInAusBqwAbAwk8C5wDnJKZdzarmJkTImIH4IDyfFsDE4A7gVMz88JpfA6SJEmSJEnqA/0WUmXm6t0s9wRw6DScZyJwcvmQJEmSJEnSDKC/J06XJEmSJEmSpmJIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKmdIJUmSJEmSpMoZUkmSJEmSJKlyhlSSJEmSJEmqnCGVJEmSJEmSKtfnIVVEjIqIbPN4qEW9QRFxYETcERFvR8QbEXFLRHy2G+fcvSz7Rln3jvJYhnKSJEmSJEnToSH9eK6/AY822f5844aIGAxcCmwPvAn8FZgN2AK4MCI2yMxDmp0kIk4BDgDeA64DPijrnQxsERE7Z+bEaX86kiRJkiRJ6pT+DKnOzMxR3Sx7KEVA9QCweWa+CBARKwC3AAdHxPWZeXl9pYjYiSKgegHYJDMfKbcvCtwA7Ah8FThxmp+NJEmSJEmSOma6G/5W9qI6rFzdvxZQAZSh0+Hl6rebVD+yXB5eC6jKei8C+5erRzjsT5IkSZIkafoyPYY1GwKLAM9m5s1N9l9MMYRv3YhYorYxIpYERgDjyjJTyMybgDHAYsAGfdBuSZIkSZIk9VJ/DvfbLCJWB4YCLwK3Atc0mR9qrXJ5e7ODZOa7EXE/sGb5GNNQ7/7M/G+LNtwOLFGWva0Xz0GSJEmSJEl9oD9Dqs832fZARHwmM/9dt22ZcvlUm2M9TRFQLVO3rbv16stKkiRJkiRpOtAfw/3uAQ4GVqHoRbU4sC1wb7nt2vphe2UZgHfaHPPtcjl3B+pJkiRJkiSpYn3ekyozf9mw6R3gioi4BriJYn6oI4GD+rot3RER+wH7ASy99NIVt0aSJEmSJGnmUNnE6Zk5Dji2XP1E3a5ab6e52lSv9Zp6qwP1Gtt1Rmauk5nrLLzwwm0OJUmSJEmSpE6p+u5+D5XL+uF+T5bLYW3qLdVQdlrqSZIkSZIkqWJVh1QLlsu367bdVS7XbVYhIuYEVi1X767bVfv5IxExR4vzrdtQVpIkSZIkSdOBqkOqXcvl7XXb/g68DCwZEZs0qbMLMAtwe2aOqW3MzGcoAq5ZyzJTiIiRwJLAC+U5JEmSJEmSNJ3o05AqItaMiG0jYnDD9iER8XWKu/4BnFDbl5kTgOPL1dMiYpG6eisAx5WrxzQ5ZW2Oq59ExPJ19RYBTi1Xj8vMib19TpIkSZIkSeq8vr6733DgMuC1iLgLeIliiN9qwOLAROCwzLy6od4JwCbAdsAjEXEdRe+pLYHZgZMy8/LGk2XmJRFxGrA/8O+IuBb4ANgCmAcYDZzc4ecoSZIkSZKkadTXIdW9wInAesAqwMZAAs8C5wCnZOadjZUyc0JE7AAcAOwDbA1MAO4ETs3MC1udMDMPiIhbgQOBkcBgignazwZOsxeVJEmSJEnS9KdPQ6rMfAI4tJd1J1L0eupxz6cyxGoZZEmSJEmSJGn6UvXE6ZIkSZIkSZIhlSRJkiRJkqpnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqpwhlSRJkiRJkipnSCVJkiRJkqTKGVJJkiRJkiSpcoZUkiRJkiRJqlyfhlQRMUtEbBERP4+IOyLizYgYFxFjIuKSiNi0Rb1REZFtHg+1OeegiDiwPN/bEfFGRNwSEZ/tq+cpSZIkSZKkaTOkj48/Erim/PkF4GbgHWAVYCdgp4j4YWZ+t0X9vwGPNtn+fLPCETEYuBTYHngT+CswG7AFcGFEbJCZh/TyuUiSJEmSJKmP9HVINRH4A3BiZt5SvyMidgMuAI6KiBsy84Ym9c/MzFE9ON+hFAHVA8Dmmfliea4VgFuAgyPi+sy8vMfPRJIkSZIkSX2mT4f7Zeb1mblzY0BV7vs9MKpc3WNaz1X2ojqsXN2/FlCV53oEOLxc/fa0nkuSJEmSJEmdVfXE6XeXyyU7cKwNgUWAZzPz5ib7LwY+ANaNiCU6cD5JkiRJkiR1SF8P9+vKCuWy6RxTwGYRsTowFHgRuBW4JjMnNim7Vrm8vdmBMvPdiLgfWLN8jOllmyVJkiRJktRhlYVUEbEYsHe5+ocWxT7fZNsDEfGZzPx3w/ZlyuVTbU77NEVAtUybMpIkSZIkSepnlQz3i4ghwPnAvMB1mfmnhiL3AAdT3AVwKLA4sC1wb7nt2iZD9oaWy3fanPrtcjl3m7btFxF3RMQdL7/8cjeejSRJkiRJkqZVVXNSnQ5sATxDk0nTM/OXmXlSZj6Yme9k5vOZeQWwHvAPirmnjuyLhmXmGZm5Tmaus/DCC/fFKSRJkiRJktSg30OqiDgR2Bd4AdgiM1/obt3MHAccW65+omF3rZfUXG0OUett9VZ3zylJkiRJkqS+168hVUT8nGIY38sUAdUjvTjMQ+Wycbjfk+VyWJu6SzWUlSRJkiRJ0nSg30KqiDge+BrwKrBlZj7Qy0MtWC7fbth+V7lct8X55wRWLVfv7uW5JUmSJEmS1Af6JaSKiOOAbwKvA1tl5n3TcLhdy+XtDdv/TtFDa8mI2KRJvV2AWYDbM3PMNJxfkiRJkiRJHdbnIVVE/Ag4HBhLEVC17cUUEWtGxLYRMbhh+5CI+DrFcEGAE+r3Z+YE4Phy9bSIWKSu7grAceXqMb19LpIkSZIkSeobQ/ry4BGxPfDtcvVR4KsR0azoQ5lZC5GGA5cBr0XEXcBLFEP8VgMWByYCh2Xm1U2OcwKwCbAd8EhEXEfRe2pLYHbgpMy8vANPTZIkSZIkSR3UpyEVsEDdz+uUj2ZuYnJPp3uBE4H1gFWAjYEEngXOAU7JzDubHSQzJ0TEDsABwD7A1sAE4E7g1My8cFqejCRJkiRJkvpGn4ZUmTkKGNXDOk8Ah07DOScCJ5cPSZIkSZIkzQD67e5+kiRJkiRJUiuGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXKGVJIkSZIkSaqcIZUkSZIkSZIqZ0glSZIkSZKkyhlSSZIkSZIkqXIDNqSKiN0j4paIeCMi3o6IOyLiwIgYsM9ZkiRJkiRpRjUgA5uIOAW4AFgHuAW4BvgwcDJwiUGVJEmSJEnS9GXAhTURsRNwAPACsHpmbpuZOwIrAA8COwJfrbCJkiRJkiRJajDgQirgyHJ5eGY+UtuYmS8C+5erR9ibSpIkSZIkafoxoIKaiFgSGAGMAy5u3J+ZNwFjgMWADfq3dZIkSZIkSWplQIVUwFrl8v7M/G+LMrc3lJUkSZIkSVLFBlpItUy5fKpNmacbykqSJEmSJKlikZlVt6FjIuJbwDHABZm5R4syxwDfAs7IzC832b8fsF+5uiLwcB81ty8tBLxSdSNmMl7z/uc1739e8/7nNe9/XvP+5zXvf17z/uc1739e8/7nNe9/M/I1H5aZCzduHFJFS6ZnmXkGcEbV7ZgWEXFHZq5TdTtmJl7z/uc1739e8/7nNe9/XvP+5zXvf17z/uc1739e8/7nNe9/A/GaD7Thfm+Xy7nalBlaLt/q47ZIkiRJkiSpmwZaSPVkuRzWpsxSDWUlSZIkSZJUsYEWUt1dLj8SEXO0KLNuQ9mBaIYerjiD8pr3P695//Oa9z+vef/zmvc/r3n/85r3P695//Oa9z+vef8bcNd8QE2cDhARdwJrA3tl5nkN+0YCNwIvAEtk5sT+b6EkSZIkSZIaDbSeVADHlsufRMTytY0RsQhwarl6nAGVJEmSJEnS9GPA9aQCiIhTgf2B94BrgQ+ALYB5gNHAzpk5obIGSpIkSZIkaQoDMqQCiIjdgQOB1YDBwEPA2cBpM3ovqoj4B3AycFFmjqu6PZIkSa1ExKAZ/W8vSZLUPwZsSDWQRcREIIFXgbOA0zPzqWpbJUnSjKOcEuDLwIbAwsDlmXlYuW99YA2KL4PGVtbIASIingF+DfxvZr5YdXskSdL0ayDOSTUz+BRwDbAgcDjwaERcHhFbV9ssSZKmfxGxL/Af4OvA/wDLAwvVFZkTOA3Ysf9bNyAtAXwfeCoifhsRH626QTODiDg7Ir7QjXJ7R8TZ/dGmmUVE/CIivlt1O2YWEbF6RKxadTskdYY9qWZgEbEccACwF7AARe+qxyj+sD7Hb38ldWUa/4jOzPxhxxoj9YOI2Ai4CXgb+CFwM/BPYFRmfqEsMwh4BbgpMw2qplH54fEgYHdgKMXfK/+huKHN+Zn5ToXNG7DKnveTXtdtyv0v8IXMHNw/LRv4IuID4I+ZuVPVbZkZlK/1mzNz06rbMjOJiO2BDzLzqqrbooHFkGoAiIjZgc9SBFYjKP74ew/4LXBqZt5VYfMGHOcE00BSN3w4elCtVj79UNM5EXEcxXv201W3ZSCLiMuBTwCbZObfy21TfZiPiOuAJTJzpWpaOvBExNzA3hQ3t1mJ4r3kLeBcijlDH6qudQNPD0KqUcDnMnOWfmnYTKAc4npbZu5WdVtmBhHxGnBlZu5RdVtmJhExAbg2Mx3N00/K1/p/MnOTqtvSlwypBpiIWBc4GPgcxR9/UHxD/IvMvKSyhg0gzglWrYhYElgcmL1Vmcy8uf9aNGOLiO9NS/3M/H6n2jKzK99bJgBXUoRVV1fcpAEpIl4CHsnMjeq2NQupLgC2zcx5K2jmgBcRm1Hc4GZ7YAjF/6s3UnwJdLkTrU+7HoRUtwPDM3Ph/mnZwBcR5wBbUVzX8VW3Z6CLiOuBOTJzw6rbMjOJiJeBv2bm56puy8wiIt6m+D9yQF9zQ6oBJCIWBb4E7AcsWW5+E5iH4o+/fwCfdtLSaRMR21H8Yb0VRW8SP1T2g4j4NHAsxdwx7WRmDumHJkkdFRE/p+hlMj8O3+4zEfE+MLq+h0OLkOpyYMvMnKuCZs40IuJDwBHAV5n85dpzwInAKZn536raNiNqmFtqb+BR4NYWxYcAKwNrA1dk5vZ927qZR0QsDdwNXAYc4pDWvhUROwCXAp/IzL9U3JyZRkRcASyZmWtU3ZaZRUTcA7w40HuvGVINABGxCcVQvx2AWYDxwB+AXwH/ArYDjqL4I+R3mbl7NS0dWJwTrP+UweBlFDd7eAN4nCKAbSozN+unpkkdVQ7f3p3ivWVtHL7dceUwnOczc726bc1CqoeAQZn54QqaOVOIiLUovvT5DMVk9ROAh4CPULz2nwA+npmPVNbIGUz5Wq7p7lDuF4CtM/PffdOqmU853+OHKabjeBW4FngKaBa6Or/jNCpDwW9Q3LH1bIq/GVtdbxxW3xnlZ9DrgS9n5llVt2dmEBHfoJhPc5XMfKLq9vQVQ6oZVEQMBT5PMa/DKhR/hLxIcYvn0zPzhYbyg4F7gcUycyHUMc4J1vci4u/AehRh608z84OKmyT1uYhYj+ID/C4Uw1sTuB3nxJsmEfE7YGdgg8y8o9w2RUgVEVsBVwNnZuZ+lTV2AIqIWSlCqQOAdSn+fnkV+F+K/zOfjYg1gB9QfMl2ZWZuW1V7ZzQRsVftR4oP67dSTE3QzDhgDPAP3086q5vzPTq/Y4eUcyNBeT27KG6P+w4pQ6pdKT6P/pWuw0Gn45hG5Wf6PwBrUPRCHp2Z71fbqs4zpJoBRcSpFHNODaV4M/4XRa+pi9t9eC+7gO/lf4R9xznB+kZEvAM8mJnrVN2Wgab8AwPgX5n5Xt16t/gHR9+LiAWAL1J8Q7wMk+fEO5NiONSYCps3w4mI9YHbKD6cf5Gih8N4ypCq/DdwAbAoMMLeJZ0REctQfJDZh6L3cVAMhzoJ+G2zP7Ij4p/Aipk5Xz82dcCIiCcpAu3Dqm7LzCYijqbrsGQS53ecNuVrvSfXe5m+a83Mo0kY2+53YDjYARHxOMX1Hsbk6/0SrXtpLtdfbeskQ6oZUPmGMA64CDgpM2/vZr29gZGZuU8fNm+m5ZxgfScixlLMlzGgJwmsQt0fGCtn5v/VrXeHf3D0k4j4KMWcPbs07Hof+CXwncyc0FhPzUXE14GfUrzWa+/TbwAfAAtR/AH4tcz8ZVVtHEgi4krgYxRDtsdTzB3zq8y8rYt6ZwF7++WaJE1/IuJGehYOOh3HNGoY0t2VGbaXpiHVDCgivgP8OjNfrrotck6w/lDeCn5O79rSeXV/YOxZDrOprXeLf3D0nYiYC9iTovfJqhTByTMU895dA+xB0RNoTuC4zPx2RU2dIUXEx4GjKYac1fs3cFRm/rHfGzVAlX9UvwScQTElwXPdrLcdsLa9TDovIlYAVgeeqg17lSRN3yJiWE/Kz6h3oDekmgFFxC+AsZn5g6rbMrNyTrD+Vc4P8xdgm8y8pur2SH0pIlahCL73AOameH+5mWJY1Oj6HlMRsRTFPFUfZOZSFTR3hhcRC1IMoxwMPNPdAEXdFxF74Dxq/a68K+4Xge9n5j/rtn+HIqCtDdH5bWbu0f8tnDlExLwUYfjCFKFg2x6EkjSzM6SaAUXEB8AfM3OnqtsyM3JOsL5X3qWl0ReBb1Jc6yuAp4GmXV69a0vvRcQ8FN2D36q6LTObiNiVIpzamOK95b8UcyOd1G5epIj4DfBZh15KqhcRl1IMs1wkM98tt60K3EfR6/sfFHdSnA/YJTMvraipA1IZTp1A8Tdj7f353LobNHyR4gYBn87Mf1TTyoElIkYCBwEbUoSC52fmvuW+rYDNKIYav9D6KOqt8sYYCwLvZ+ZrVbdHMy7/oJ0xvUDxx4Wq8RWKOcFqHx67NScYRU+I7twKWvAkzYecBcUthr/Rpm7ie9u0GEvRM2f9itsxM/pduXwKOJXiznKvd6PeGIphgJJUby3g3lpAVdqD4v/JL2bmeRGxLPAAxZyahlQdUg7XvpHiDlwvAXcAn2go9meKHvg7UASGmgblZPVHMeXf2vU/jwUOp/g/85R+a9hMICI+TzFv5poUcw+eC9TC2B0p5tP8dmY+UVUbB5oyBN+DyYHsdZl5fLnvw8Bw4JbMbHqnxemdH+RmTNcCW0XEkMw0rOp/3wXOyMyXelIpM0cBo/qiQQPQ0/RgXiR11FvAI1U3YiZ1PcWQvj9lZrcnxszMIyhuQ6weiIgNgS2AxYHZWxTL2rfw6r6y53Bvec07Z0GKLx3qjQTeBi4EyMzHI+JWYOV+bttA9w2KgOp84CuZ+W7jhMeZ+UJEPABsXkUDB5Jy/rrvUnxh8zWKL4anuFFRZt4eES8D22JI1TERMYpi/sygeG8Z2lDkYeAzFHdz/Wm/Nm6AiohtKDpLzEdx3ZMifK1ZERgN7A78vp+b1xGGVDOm7wHbA6dHxCGZ+U7VDZqZZOaPqm7DQJeZw6tuw0zsQSbfnVL9KDO3rLoNM4OImI3ij7btapvaFE/AwKTn9p6Gul7zzpmNutd3ORRnTeCmhi85XwA26t+mDXi7AM8BX8rM99uU+z9gg/5p0oB2MMXdbrfJzAcBIpq+td8DLN9/zRrYImIvijl676GYluNuYIo7DWfmAxHxDPBxDKmmWTlk+1KKHOdUikC2MYj6C/Au8Kkm+2YIhlQzpr2Bq4B9gO0j4lqK4SHNuvNlZv6wH9smacb2v8CvI2JEZt5ZdWOkPnA0xRc9bwO/AR4C3qyyQQPQPlU3QAA8T3Fzl5pNKIKrvzWUG4r/BjptWeDqLgIqgPcoerxp2owA/lELqNp4GQPZTvoSRQ/87TJzDLQMB//NlO9F6r1vUbyP71i7C3FETBFEZeYHEXE3RW/OGZIh1YzpaIpvGgNYiKILZaPa/gQMqfpARCxOkVB/GJiH5t/GO2xBM5TMPCsi1gCuiYifAJdR3I2oqz+01UERsTLt31vIzPP6tVEDx27AO8C6mflw1Y0ZiDLz3KrbIABuAvaIiMMovln/IcXfhX9pKLcq8Gw/t22g+4DWw4jrLUURmGvazEERQHVlgb5uyExmNYpwcEwX5cYCi/V9c2YKmwJ31wKqNsZQvLfPkAypZkw/wPl6KhURhwLHAbPUby6XWbfusIUOiIiPU9zZ74eZeUOLMpsD3wGOzcxr+rN9A0lE1HfT/nH5aPXNWHpHuc6KiP8BzqD9/DC19xZDqt5ZHLjBgEozgWMoJuU+tnwEcG39DV/KCXaXBU6vooED2MPAWhExW6sveSJifoqeDnf1a8sGpueBlbpRbhWK0SfqjFnoXsi6CEVwq2m3IMUQv67MShHezpD8cDEDysyjq27DzCwitgZ+QdE1/mcUifaGwJcpxrnvBCwDnEgxRlvTbh9gHeBfbcr8C1iXYjisIVXv9eQOlN6tsoMiYiXgr8CcwG0U3zouQ3HXv+Up7tQ1mGIyzDeqaeWA8DIObdJMIDP/LyI2ophIehGK/ycb54TZAriX4k5z6pxLKL7M/AlwaIsyP6YYanlRP7VpILsB2DsiPpaZf21WICJ2A4ZR/H2uzniaLnrrRMRg4CPAY/3SooHvdbo3d+xyNNw8YEZiSCX13MEUvRi2Ku8Ucg6wYWb+L0BEHAWcTNGDakR1zRxQRlDcRrvlTQIy8+2IuAdYv99aNQBl5qCq2zATO4IioPpyZv5v+d6yTGZ+DiYNATyXYhjghtU1c4Z3JfAJ75DbfyLiuz0o7lyaHZSZ/6G8FXyL/acBp/Vfi2YaJwN7AV+NiHUoJjoGGB4R+1NMrD6SYq6es6pp4oDyU+BzwMUR8U3gD7UdETEnsDPwK4rJpH9VSQsHpquBgyJij8w8v0WZLwMfAqblrq+a7F/A1hGxQmY2vRt3RKwLrA78tl9b1kGR6agxqSci4iXgicxcv1w/B/h8Zg6uKzML8ARwY2buUU1LB46IeBcYnZm7d1HuQmD7zGy8/a003YuIJ4H3M3PFcr3Ze8siwKPA6Zl5WCUNncGV1/BO4ArgEOdb63sRMZHJc2U2qv9DNChCqsFNykkzlIhYAriY4u599XPFUv58J7BDN+bzUTdExGeAURRD0GrXewJFD2SA8cCemWnPtQ6JiCWB/1B8wfYzih6Ed1D0AP8hRRj7LYrJ1T+SmS9V1NQBoxzRcxVFwL1rZj5c/h87KjO/EBHLApdTDG0dmZm3VtjcXrMn1QwsImYHNqPribv9RrKz5gUer1sfBxARc9V6+pR3Vfgbxe9H0+59iuvelXlpuPWtNANZjCI4qZkAUD+nSWa+FBE3ATsChlS98xWKb3+/BGwTEddTDFmY2KSs/4d2xvdbbB9EMfxmU2Bpim/an+mnNkl9qgyf/icitgE+QTH312CK1/hVFF++2VugQzLzdxFxP8X8pFtTfDYaQnH382uBH3jX4s7KzGcjYkeKnmuHl4+kuEHJbhSfTd8Edjag6ozMvDoiTgK+CjxQvuYT2DIi/kkxNcQQ4BczakAF9qSaYUXEThSTXLa7S4XfSPaBiBgD3JOZnyzXj6X4sLh6Zt5fV+5yiiGBc1bT0oEjIm6jGM++dGY2nYsnIuah+MPv/zJz3f5s30AUEbNSzK+2KZPHvo8BbgT+YO+TzouIV4CbMnOncv0XwCHAcpn5ZF25i4BtfW/pnS569dRM6vXg/6F9r/zS7XRgS2BtP8x0RsONMLrijTA0YERxt5cFKULBVzLTLzD7UEQsBvw/4ONMHcb+NDO9e2iHRcRXgO8y9V0TX6W40dQMPazV/4xmQBGxPkU3yokUY01XpbgF6HEUk+tuRdGj5Cy8pXBfeJLim9+aeyg+zHwGOAomDSfZFO8g0imXUnSXPzsidm8MSMpA5WyKCUj/0KS+eqC8w9yFFLfGbvwgvy9wbER8bkb+hmY69SxFb5Kah8rlZsA5MGko8fp071bbaq5Vrx5VJDPfK//gfgL4EbBfxU0aKLwRhmZKZQ+1V6pux8wiM19gck8q9YPMPD0izgDWZMpg8F8DYb5Ne1LNgCLiYuDTFHPvXNE4b0lELETxgWZtim8kZ9iZ/adHEfED4NsUExo/HRFDKcKo+SjGYj9L0QNlKeD4zDyyqrYOFOWkl3cBK1CEhBcw+QP8isAewHCKuXrWbjfButqLiI8A/6SYX+BxiiD8yXL3cIowdjmKyUfXr+89qGkTEadQ3Mlyscx8s5zP5AmKa30kxXvLl4BPAr+rTaguDRQR8Sdgrczszp2L1EtlL5NhFO8l3wdOyczvVduqgcleyf2vvOYjmPJ63+m1lmYchlQzoHK42SuZuUa53mxy3bkpPtxckplfqaalA1N5h62vAedl5i3ltk9R9DyZo67o3cAmBiadERHDgMsovjFofOMKih5tn64fFqWei4g/UMx3dCxwVGZObNg/CPgBxUSYl2bmzv3fyoEpIragGPL09cz8Y7nt+xQ9NOsn2x1L8UHenpoaUCLiKmCzzJy96rbMLCLio8ANFBNK/67q9gwkXfRKToovHuyV3CHlsOGjKeYdnLth99vAr4HvZeZ/+7lpM4Xyi7VNmDIcvNmhfn2r/Lt8wXL11ca/22dUhlQzoIh4H7g8M3ct1/+X4vbCQ+vfeCPiUmBEZg5rfiR1UvnmvC3FPGEPAX90DHxnld/+bg9sQ/EtcFJMeHw1xb8J39CmUTkv0suZuXIX5R4EFs7MhfqnZTOvcg7CnZn83vLLzHyi2lZJnRURH6boMftiZi5XdXtmJuVku5mZG1TdloHCXsn9KyLmoJgcfQOKQHAMU17vJSj+ZvwXsLlBVedExMLASRQ9Bgc17E6KKTsOcq7BzipvyPD/gI8CtS923gNuBU7MzCuralsnOCfVjOl1YLa69bHlckngkbrtCSzST22aaZQTdGdmvlW/vbyLy6+radXAFhEHA+9m5pkUt1W9vOImDWRzUHxQ7MpdwKf6uC0CMvMPONdax0TEd3tQ3Lv7dUBEfL7N7qHASsCeFO8/9ubpf09RTHiszvkBRUDVqlfy95jcK/n7FF9EqPe+BWwI/Bs4JDNvrN8ZESOBE4H1KIbP9+T/AbUQEQsAt1BMxzERuI0pw8ENKF7ba0TEhpn5WgXNHHAi4pcUd/er9dCsvb/MQTE39ZYRcUpmHlxB8zrCnlQzoIi4HRiSmWuV63tRzEH19cw8odw2F8U3N29l5vKVNXYAKu8MdXtmrl91W2YWETEeuCozt6u6LQNdRNwFjM3Mzbsodz0wf+19SJpRdHF3v/o/iry7X4fUXfOWRcrlnyluVT6u71ulmvIW5ktm5rxVt2WgsFdy/4qIR4GFgBUys+mNRcoeP49QTJniZ6MOiIhfAQcB1wFfyczHGvYvC5xGcefWkzPzkP5v5cASEXtT3CzqLeAE4DcUo0qguPnOHhQ9rOYGvpiZ51TQzGlmT6oZ043AIRGxcPlG/GeK7sLHlrcAfRb4PMWb9aWVtXLgeospe6yp771Mcd3V904HTo2IjTLzb80KRMRGFPMOHNSvLRtgyqCvtzIzt+hYY2Yure7uN4hiGPGmFH/onU1xpxxNu/NoHVKNoxiac12r9xz1jYhYkOLfw0oUHzLVOfZK7l9LAH9pFVABZObLEXEDxZQR6owdKP5G36HZHLyZ+XhEfJqi48SOgCHVtDsIGA9smZm3N+x7DPh+RFwJ/A04gPLu0DMaQ6oZ08UUk0evBfw1M1+NiK8DpwLfKMsExR/XR1XSwoHtQSZPCqj+cSuwbtWNmBlk5hkRsRLwl4g4leJOirX5j4YDn6P4T+/EzDy9mlYOGJvSukdPV+wG3UuZ2SqkAiZNvns6xQeZtfulUQNcZu5ddRtmRhHxeJvdQykm2w2KoPDo/mjTTORh4EPdKPch/OKzE16h+ODelfFlWXXGIhRz8La8SVRmvhMRNwGOhuiMVYCbmgRUk2Tm7eU1/5/+a1ZnOdxvAIn/3959h0lWlukf/94MWclBkjIgQUBRBBRBSSJJRFDQRSQLirrGn6yRINe6iDmgsCIM4LKAioAooOQcJYiOCAJDRmFIkgbk/v3xnt5pmq6OVXWmTt2f6+qrp855T/UzNTXV5zznfZ9HWo9StG6guO6xth+tNagGkrQPpfbUm21fV3c8/UDS6yjFLg8HDk6B9M6RNJli/7admx9jNGgJ1DWU6doPjOf4qlZVdECVqLoD+LXt/eqOJ2Iiqs+Ykcyi1JM50PYVXQipb0jaj3LzeJNRZiVfRCkqnZs+kyDpx5TaRysPrRk7aMzClJkmp9r+cDfjaypJfwP+aHuHUcadBrwuTTEmT9I/KJNUdh1l3InAlr26lDhJqogJqNZgfxD4OvArYIbtZ+uNqrmqortvBfahJGBPpxR6HbY7i+3juxdds4zhomZEtod2dokWJP2MMv19Acrd3bOBaZS7kmO5IxwdJOnXwDq2M3N2nEYplD6SF4AnKYV3b2xKK+26SBqpu/MsSs2kfNZ0iKRvA/tSklWtZiX/xPZnawmwQaqlq1dRlg7vb/vPQ/avQamNtDywge2Hux9l80g6jPI+Xs32sDfaqlI0fwWOtH1AN+Nroirhtyawequb9lU39FuA6bZ7cjlxklQR4zTOmSaZWdIGwxQ6HvGDK4WOo1dIWgjYBdiT0gXHwEzKBc002zfUFlyfk3QWsJnt+UcdHC8yhkLpY/F3Sle0o9sQUkRHZRZyd0k6ZpjNiwPbU5LdN/HipODrKeeQZwAzbe/ThTAbT9KClHp2iwKfsX3WkP1bA98CHgc2tz3szeUYO0mvB66glCX4D9vPDdk/N2USxf7Ahr16HpkkVcQ4jXemSWaWTJ6kaYzjgsf2Xp2LJqo7NNsCe9lO2+w2kbQasBewG7Ac5T1/E6Xo5Ym2U0ejS6p/iz8AD2Z5wvhJupCJJ6kWAFamNH8xsLPtNIGJOVpmIXfXJF/vdG2doBYNX+al1D4y8ChlJiyU5OCi1Z+vAJ5Nw5fxazEzeQPgw5SZg7/gxQnZnSi1k48ErurV1SVJUvWgzOSJiDpIWhXYm5JEWRYya60TJM0FbEWZXbU95QTweeAU27vVGFojjLIU7eWUTme7AQsDh9n+UlcCixcZ1Gb7Etub1BxORMxBJO0xmeNtH9euWPpJkoPdN8LM5FarS160vVdf8ySpelBm8kREt1RTud9PSU4NdAkRpeXwSbbTTriDqjobxwLbAQ/ZXrrmkHreGJaiDZzgnQnsZHtW56OK4Ui6DFjL9qJ1x9KLxnFT8zlKx7NrKcuMT+tYUBHRsyRN6oaB7YvaFUu/GO9qkqF6dXVJklQNUi3BWRF4J3AIcITtg+qNKiJ6UdV1aG9gZ+BllAt3Az+ndKI72/ZkanDECCStTplJNTBrTcCltjeuM64mGOWEbxZl+vx5rTpyRfdIOgHYNTfbJmaCsx4MHN+rFzYREdH7kqRqKElvBS4AdrN9Ut3xRLRL1aFlNcpSHA03plfXX9et6sCyB6Uu0qrMfn1vBJYGlunVacO9oGqPPVBE/U2U1/9h4ETK7Ibr64suovskLQDMa/uxumPpVZIOBz5C6TB3IqUz7guU2iUfoOowB3wX2Az4BrAU5fzxxO5H3DySpgBLAC2bMNi+q3sRNZukeYF1KZ38oNx4uC6zYiN6R5JUDSbpKsr63w3qjqVJUhOsHpI2BP4bWGOkYWTN+7hUJ8/bU2ZNbQVMobyOAx3mjrV9g6RLKF1C8tq2UTUD9h2UxNS7KUWj/wWcDUwDzhjauSUiYiwk7QUcBWxs+8oWY94MXALsb/unkjYALgfOtb1l96JtnuqG8UHAWym1BVvJuWIbSJoHOBj4GLDQkN3/BH4AHJLfqRFzviSpGkzSKcA2tod+UMckpCZY90l6DaVWxoKUk+dlgJWAk4BVgHUoyZXTgceyTGHsJD1I6aIlSnLkd5QaSGcMvuuYJFX7Sfoaszv5CZhOee1PsP1gnbE1ySiF0kfyAvAkpVPRjbYn1b0rotskXUv5nThiRy1J5wGL2l63enwd8CrbS3UhzEaStCWlrt1A8ulhSqJkWLZX6kZcTVXdcPstsAXl9+n9wO3V7pUpy+YNnAtsm3IF7SNpMcqMzM0o5zOtZgw63XLbR9IrgU0Y/TU/tHtRtU+y9s22FuUkO9qoVdIpNcE66vOUBNWHbf9E0rHASrZ3hf9bAngcZRngW+oLsyctRTlxuwf4N9uX1xxPP/k85bW/ljJr6qpq+/KSlm910ADbf+hcaI0yjUkUHa38XdJXbB/dhngiuuU1lJs3o3kAePOgx7cDr+1IRP3jUMp11jeB/7L9SM3xNN1+lFnJfwU+afucwTslbUVZ0roFsC9wZLcDbCJJqwAXUW4eD1uCY5DMjGkDSXMDPwQ+xOzXfOhrb2bXkk2SKuYMVTeoQygnJ+fVHE7fcJmWeCdwhKQbgQskTU9NsLbYFLjV9k+G22l7uqTtgNuArwAHdDG2XncPsEL1dbGkCygX9b+0/UydgfWR9aqv8TD5HT5WFzPxk+MFKHfhXwEcJWmm7VPbFllEZz0LvGEM495QjR0wL/BEB+LpJ6+j1EHK+Uh37E6Z+fp22/cO3Wn7HElbAH+h1N5Mkqo9vkWZpXYJ8B3gVkaYMRhtcTAlKfs8ZfZgI1/zLPfrQZJuH2H3yynFGUXpUrR5ZkbUIzXB2kfSM8BvbL+3enw0pbj3grafHTTu18BrbK9aT6S9Z1BNpH0otanmo1zQPwGcTKlJdWWW+7WfpDuZXFvhLA/pEkl7AscAl9ieVAvuiG6RdDqwHaUOz1dbjPky8FXKEu8dqm03Ua4RXtetWJtG0gPA+bY/UHcs/UDSY8BFtrcfZdwZwCa2F+lOZM1Wve4PU869U5i+CyTNABYHNrJ9U93xdEruwvamqaPsn0XJaB9o+4rOhxMtzAC2qTuIhhh6h+Dx6vuylNlrA55mdjeXGINqBuDvgN9VdQU+SCmi/nrKlPgPSboVWLS2IBvK9tS6Y4ixsT1N0r6U/xcRveJAyk2IgyTtQrnxMIOSHF8ReB9l1v0zlLvzSHoVZanfj2qIt0kuJksmu2ke4KkxjHuqGhvtYeDqJKi6amngvCYnqCBJql410t3zWcA/bD/frWCipdQEa597gFcNevyX6vtmlELTA11d3gz8o7uhNUdVM+MHwA8kvYEyu2oXSq0vAEv6HXACcKrtJ2sJNKIet5Oad9FDbN9YLYX/GbA6ZTn8YAIeBHazfUO17WlKYusvxGQcAlwh6VO2v1t3MH1gBvA2SfO2SphImhd4WzU22uMGSj2q6J67ePHy7EbKcr+INhtUE2x/SqY7LZwnSdIRlOV9y9h+vCoqfQfljtgXKEmsfSlF608aKKgek1ed1O1Ief23AOai3Dl7GviV7d1qDC+iayQtAMxr+7G6Y4kYj+q9uxOlE9TAbOP7KLN9fm57LDNQYpwkbQD8L3AvcDblXGXYm5e2j+9iaI0j6evA5yizBfe3/eiQ/YsAR1BuvH3D9ue7HmQDVUnw04CNU16mOyQdAnwMmGq7cbWoBiRJFTFOqQnWfZLeTily+VnbZ1TbDqHcFR74EBPwKLCO7dwl6wBJK1CSVXtQikk7NaoiIiJeStLnKOcpLxttbH6XTk51g/h6ShL2CeDXlJuZppyvvAtYiJIoXMf2zJpCbRxJ/06pa/dD4BxGTsbe1cXQGknSfMD5lMLp+9r+a80hdUSSVD1O0hRKUmT+VmPygdBekkZbwpeaYF0i6b2Uu8OLU5YmfNf2HfVG1R8kbQbsZXv3umOJiIiYk0j6MPDj6uGNlO7DLWc92N6rG3E1maRVgBOZ3S138E1MgGuAD9j+W7djazJJbwWOBkZrWmTbKTXUBpJeBlwBrEFZvtoqMWjbb+9mbO2SJFWPkvRmStb6bZRuXK3kA6HNJK04wu7UBIuIiIjoY5L+DLwaeLfts+uOp59USZPBS1vvpXT+u7S+qJpJ0qaUpazzVpseZuRkbLoST5KkJYHfA2szOwHbSs+ueEiSqgdJ2gg4l9nJqUeY3e3sJfKBEBEREdFfJP1rHMNzU7ONJD0FXGb7HXXHEtEpki4BNgIOBw4bWgss2k/S0ZQu3LdQSqGMNkvzoi6F1lZJUvUgSecCmwM/Ab5i++81h9RXJM0Ebra9cd2xNJWk8ydxeM9ObY2IiGiXMZQneBHbc3Uqln4jaQZwhe1/qzuWfiDpGOBS28eMMm5PSpHvvbsSWMNJegL4i+31646lX0i6n7K0b80mN3LJHZPe9CZguu0P1x1In5oXuLvuIBpuU0otgdGmsQ4nmfeIiOh7rZJOkgSsSOmIewhwhO2DuhlbHzgdeI+keW3PqjuYPrBn9X3EJBVl1s8elJkoMXlPA7fWHUSfWQg4q8kJKkiSqlcJuKnuIPrYbcCSdQfRJ64GTgAeqDuQiIiIJnBZRnEncISkG4ELJE23fVK9kTXKgcA7gOMlfTTd5OYY89Ci81xMyCXAWnUH0WemUxJVjZblfj1I0uXAs7Y3qzuWfiTp/wGHUqZZppNcB0j6GbAjsAClxerZwDTgjBSlj4iIaB9JV1FyVxvUHUtTVMvPFgXeDTwBXMvIHbj26V50zVMtbZ022jI+SdcAU20v1Z3Imk3SmpQbyl+y/b264+kH1ZLVI4G1bf+15nA6JkmqHiTp/cD/AOvZvqHmcPqOpCnAL4HXA58HTrP9bL1RNY+khYBdKFO4N6As45tJee9Py3s/IiJi8iSdAmxju/F357ulSpqMtWxBz3bgqlOVCBywJ2WlQ6sOfnMDawBvBH5je/vORtcfJO0OrA98FLgcOIfWyVhsH9+96JpL0mHA7sBXgHNs31NzSG2XJFWPknQI5QPhQMqH7V01h9Q3JN1OOelYkdn1j/5OWZc9lG2/uluxNZWk1YC9gN2A5Siv+03AscCJth+qMbyIiIieJelPwAq2F6k7lqaQtMd4xts+rlOxNNWQxgBjTQg+AGxl+4+diaq/DJOMHTGxkGTs5PVL19YkqXpQv7w551Tj7JaTu2NtJGkuYCvKHbPtKUXsnwdOsb1bjaFFRET0FElLUAqn7w+cZ3vLmkOKGLNBiUBRCqZfCvy0xfBZwL3AlSlk3z6SpjGOhkW29+pcNP2hX7q2JknVg/rlzTmnkrTieMbbntGpWPpZdXJ9LLAd8JDtpWsOKSIiYo5Rzfxu5eXAEpQL/FnA5rYv70pgEW0m6U7KDcsD6o4lIiYvSaqI6CmSVqfMpNoNWJZygn2p7Y3rjCsiImJOMoabmrMo3bkOtH1FF0LqS5LWAt4CLAX8yfYZ1fa5gLkzsyci4sWyDCwi5niSFmZ2EfU3URJTDwM/pBRRv76+6CIiIuZIK42wbxbwj3TM7RxJr6J0Jt5k0ObjgDOqP38I+LGkLW2f1+XwGkXSfMArgEdsP9FizELAYsADSQx2hqRVKMnYh5vceS46L8vAIiZB0lskfUHSEdXXFyVtWHdcTaBiS0knAvcDPwbWA34L7AwsZ/uTSVBFRES8lO0ZI3zdb/v56nftOyX9su54m0TSksDFwKbAzZRzmKGFvX9O6YL27q4G10yfBO4A1h1hzLrVmI93JaI+IWluSQdKehC4hVIb7POD9u8q6XJJr60tyAaStIqkb0i6VNItkg4ftO/NkvaTtGiNIU5KZlJFTICkVYETKG1XYUhXC0nXArvbvqWG8HqepK8xu5OfgOmU+lMn2H6wztgiIiJ6XXUeszezl85He30BeBXwdeCLti3po4MH2H5E0k3AW+sIsGG2B+62fWGrAbYvlHQPJSn47W4F1mSS5qbcPH47pZHRdGDNIcMuo1wzvZeSsI1JkrQPcASlgRSU688lBw1ZkJIYf45y/dRzkqTqUZLmpdw12AlYDVi4xdB092szSa+k3B17BfA48Gvgzmr3VEoh7/WBiyS9yfZdNYTZ6z5P+cC9ljJV/qpq+/KSlh/tYNt/6FxoERERvUfSgsD7KcmpgVnfAv4BnFRXXA31LsqsnS965ALAtwNv605IjfZq4IYxjPszsHZnQ+krHwe2AM4F9rB9/9BaeLbvlHQbsCWlm2hMgqSNgKOAfwJfolyTXjVk2EXAY5TkbZJU0R2S5gcuYHZtnhGHdz6ivnMoJUF1AvAJ248N3lnVT/o+sDvwVUodpZiY9aqv8TD5bIuIiAD+76Jmb8pS+ZdRzg1NWW52AnC27X/VF2EjvRI4c5QEFZTZJ4t1IZ6mWxyYOYZxMyldLaM9dqPUiH2f7UdHGDcdWKcrETXfAZTP720GGl5IL77ct/2CpOuBNbofXnvkQq43fQZ4M3AWZTbVlykfEvMDqwAfBD4NfMv2V+oKssG2Bu4C9hmu4KjtxyV9CNisGhvjdxfV0smIiIgYH0nLAHsAewGrMvum5Y3A0sAytv+tpvD6wdPAomMYNxV4tJOB9ImHKNdAo1mFvN7ttDpw4SgJKoAnKAXVY/LeAlw9ho6sDzD+G/1zjCSpetNOlGVmu1QJEQPYfo6Sqf6SpEuA30j6k+1M4W6vRYDzR+qIUxUjvZwUw5wQ21PrjiEiIqKXSJpCWd6xN7AVMIWSnJoJ/A9wrO0bqnPEZWoLtD/cDKwraZGhM+4HVOULXk9ZmhOTcxXwbknr275muAGS1qdctP+mq5E1mynF/0ezHPBMh2PpF4sA94xh3Mvp4VxPuvv1plWBq2w/Xj0eKNY9ZWCA7bOBa0gHi064g7FNzV4EmNHhWCIiIiIA7gN+AbyTkpw6G3gfs7vh3lBjbP3mRMpMqqOqOrIvImkuSmmI+YCfdTe0RjqK8p4/TdI7hu6stv2qenhkNwNruDuA11fv52FJWoBSB2x616Jqtr8DK41h3OrAvR2OpWOSpOpNc1HW/w54uvq+6JBxfwPS7rP9jgc2lbR6qwGSXgNsTqn1EBEREdFpA8tp7gE2sf1O27+wPavOoPrU0ZSuZu8Dpkv6frX9tZK+Trlg35Eyi+rEekJsDtvnUBJVywJnS5oh6XfV1wxKwnY54Gjbv60z1oY5A1gB+OwIYw6g3Nw/vSsRNd9lwBsltVzKVyVlVwMu7FZQ7ZYkVW+6j/JBO2Bgyt/QbhVTSV2fTvgGZarwhZL2rwqlAyBpIUkfAc4HzgQOqynGiIiI6C/3UGaTrABcLOn3knatGu5EF1UlIbYFTqHMehhY2bAe8DnKqojTgHePobh6jIHt/Sl1e2dSCtdvUX29knJz/7O2P1xfhI30bUrto8MknSjpPdX2JSVtI+kY4EBKrdkf1RVkw3yH8jl/qqQth85ik7QxcAylKcMPaoivLZTPxd4j6VfABraXrR5vBFxSfW1n+wlJu1DqD1xhe6P6ou19km5vsWsqs5OAj1bfFx20/y7gBduv7khgERERERWVFk/vAPah1Kaaj3Ke8gRwMqUm1ZVVTaoNbU9p+WTRNpLWALYBVqbUCbsbOMv29bUG1lBV+ZP1gBUp7/+7gOtGqiUbEyfpdZRZUlN56eQIUd7v77R9c5dDayxJn6VMmjClTvXCwGPAc8CSlNf9M7a/W1eMk5UkVQ+StB9lPfXmti+stl1Gqfb/POVkZNFq+E62fzXM08QYSRpLQcBWnJPAiIiI6CZJi1G6Pe9NKc4N5YLmVso54lI5P4mmqWaVLF49nGl7MufwMUbVbM29GCYZC/y37SdrDK+RJG0DHAysP2TXH4Gv2D6j60G1UZJUPUjSyyknHHfavrfatjTwU8qHw1zAI8B/2v52bYE2hKQVJ3O87RRPj4iIiFpIegNldtUuzL6AN3AepXbmqbmIbK9qmdOlto8ZZdyewMa29+5KYA0kaXHKcsrtKddHA8ufXgBupNRN+pHth+qJMKJzJC1BWVI8Bbjb9n01h9QWSVI1jKQFKV3lHszdg4iIiIgAqLrM7UiZ8bAF5WLelAY8v7K9W43hNUo1C3/aaMknST8B9s6stomRtCOl/s7ClCVOwxlY8rqP7V92K7Z+IGlR24/WHUc0TwqnN4ztp2zfnwRVRERERAywPcv2yba3ptSPOYjSQn5B4AN1xtbH5qHM+IlxkrQz8HPKzfmbKQXpNwXWANas/nwA8CdKEutkSe+rI9YGu1/SyVWR9OQVukDSfJJeJWmhEcYsVI2Zt5uxtVNmUvUASbtP8NAXgCeBO4Ebk7hqL0mLUOo9vIXS9vk824dX+1ajnABeYvvp2oKMiIiIGIGkzYC9bE/0fDOGGMdMqmuAqbaX6k5kzSBpKeBvlATrp22P2MVM0ieBbwFPAavY/nvno2w+Sc9SEq2mdPn7GXCc7T/XGliDSToA+C/g7QO1qYcZsyllOffnerX0T5JUPaD6RTfZf6i/U4qoHd2GkPqepK0p3RMXpUwvNuVDee9q/7sorYU/YPvkmsKMiIiIiC6o6lAN2BO4Dbi0xfC5KTN+3gj8xvb2nY2uWSR9Ffgy8PmBG8RjOOY/KBf3h9o+qJPx9YuqQcMHgD0oHRWhXBNdC0wD/jfLAdtL0qXACranjjJuBqV+9SZdCazNkqTqAZIuZOJJqgUoXRaWrJ5jZ9untim0viTptcDVlBOMo4CLKa2dpw1KUs0DzAR+bTtT6CMiIiIabEg3aNO6RtJgDwBb2f5jZ6JqpoEZaMAytv81xmPmprzed9ge2hEtJknSGpTk7K7AcpT/A7MoheuPA87Oqp7Jk3Q/cIPtbUYZdxawtu3luxNZe81ddwAxOtubTvY5qu4hxwCfBJKkmpwvAvMBOw6095T0otlStp+TdD2z2z5HRERERHPtVX0X5Zz7Ukrn7eHMAu4FrrQ9qwuxNc3KwGVjTVAB2H5e0uXARp0Lq3/Zng78h6QvUBoz7AW8G9gZ2Am4H1ihvggbY3HKRIjRzASW6HAsHZMkVZ+wPU3SviRp0g6bAtcPJKhGcC/w2s6HExERERF1sn3cwJ8lHUxJQB3X+oiYhJdROvaN1xPVsdEh1Wyp3wG/k7Qw8FXgE8CytQbWHA8Bq4xh3CrAo50NpXNShb+/3E7pbhGTswSlzsBo5qUst4yIiIiIPmF7qu0D6o6jwR6iLPcbrxWrY6ODJC0m6WPAucC/1x1Pw1wFrCep5ZLVat96lPI0PSlJqv6yH7BY3UE0wCOMbbrqq4EHOxxLRERERMzBJC0raf3qa7m642mA64A3SXrVWA+QtCLw5urYaDNJc0naTtLPgfuA71MSJfcAXwNWrzO+BjmKsqT4NEnvGLqz2var6uGR3QysnbLcr4/Yfhp4uu44GuBqYCtJq9q+dbgBVQZ7beB/uxpZRERERMwRJH0E+DRDludIug34nu0f1RJY7zsZeBdwjKRtR6vrJWleSp2wuapjo02qhlJ7UgqmL01JoDwNnAQcC5zndGprG9vnSDoK+DBwtqR7gFuq3atTJlII+Int39YU5qSlu1/EOEnaCjgL+CPwPtu3VB1dptneW9LKwOnAmsAmtlu1H46IiIiIhpE0BTgF2IFywfgCpXA0lNo8c1G6n50B7DSeAuABkgRcA6xDuXn8UdvXtxi7LnAEsD5wA7BekibtIek64A3M7mR5JSUxdbLtx+uKqx9I+hTwJV5aHP0h4L9sf6frQbVRklQREyDpe5Q11gb+BKxFKZR+P+UX5tzAt23/v9qCjIiIiIiuk/QZ4JuUc8OvACcOzPaRNA/wAeBQYHngc7a/XVesvUrSCsAllDpTA+fjVzO71MYrgA2ANShJlLuBjWzf0/1om6m6SX8fcDzlZv1faw6pr1TJ8PWY/X/gLuA628/XGlgbJEkVMUHVFO4DgWWG7HoYONT297sfVURERETUSdLNwErA2rb/1mLMqymz8u+wvVY342sKSYsBPwJ2Znat5cEXtwOz2H4BfMz2w92NsNmq1SW/rzr6RbRNklQRo5C0PXCX7RuG2TcXZZrrysAUyl2aq5uQwY6IiIiI8ZP0NHC+7XeOMu43wOa20w16EqpSG9sB6wJLVZsfohRJP7NVojCi10lahfKef7hJM9lSOD1idKcB04C9h9l3NHCp7WO6GVBEREREzLEeA8ZSk+eJamxMgu3bKd3koiaS3gJsSlnCCmWp64W2r6gtqIaSNDfwReBjwJLV5uOorlUl7Vrt28/2zbUEOUlJUkVMzp7V9ySpIiIiIgLgXGATSfO26jxXdZzbCDi/q5FFtJGkqcD/UOp/wewi6q72XwF80PadXQ+ugaoE1W+BtwPPA9MpzboGuww4AXgv0JNJqrlGHxIRERERERFj9GVgAeAESUsO3SlpcUqx6fkpMyIiek71Pr4AeAvwJHAS8J/V10nVtg2B86v6YTF5Hwe2AM4Dptp+7dABVULwNmDL7obWPplJFRERERER0T67A2dW37eV9HvgjmrfVMrF44KU2Q67Sxp8rG0f2r1QIybsc5TOcr8A9h9amL5KYh0J7FSNTUJ28najNOl6n+1HRxg3ndJxvielcHrEKKr2qtNsv6Qm1Uj7IiIiIqL/VOeHZvbSp1YGjxn4s21P6WB4EW0h6c/AIsDKtp9tMWY+4HbgMdtDl6XFOEn6J6XW13aDtr3kelTSz4D39mpThsykioiIiIiIaJ+vUtXkiWiwqcAZrRJUALaflXQJsH3Xomo2Ay+MYdxywDMdjqVjkqSKGJtlJG08gX3YvrhDMUVERETEHMb2wXXHENEFz1GWrY5mgWpsTN4dwOslzWV72GSVpAWAtSlL/npSklQRY7NV9TWUR9g3sD//zyIiIiIiokmmA5tJWsb2A8MNkLQMsDnwp65G1lxnAF8APgt8o8WYA4DFgNO7FVS75eI5YnR3kSnbERERETFOkhYB1geWAmbYvrzmkCLa5WfA94FzJX3C9vmDd0raDPges5sExOR9G9gLOEzSOpSi9QBLStoG2BnYg3L9+qN6Qpy8FE6PiIiIiIhooyo59R1gV2ZPDDhuoLixpA9Rale9x/aV9UQZMXGS5gZ+D2xCuaF/H2U5moGVgOUpzQAuALa0/a+aQm0USa+jzJKayksnUgi4G3in7Zu7HFrbzFV3ABEREREREU0h6WXAhcCewCPAWby009+ZwCuAHboYWkTb2H4e2Br4JvAkJSn1VuBtwArVtm8C2yZB1T62/wisCXwM+C1l2eVfgfMoywDX7OUEFWQmVURERERERNtIOgg4iLIc6iO2n2rRJv6PwNO231RTqBFtIWl+YF1KogrgXuA62z3bYS7qk5pUERERERER7bMzZenTvrafHWHcX4ENuhNSROdUyajL6o6j6SQtDWwGrAUsAbwAzARuAi6y/VCN4bVNklQRERERERHtszJwzigJKoBnKBeaEXM8SRtP5njbF7crln4jaTHgW8AHgSkthj0n6TjgANuPdS24DkiSKiIiIiIion2eA+Yfw7hXAv/scCwR7XIhE+94bpJ7mBBJr6C89qtRatvNBP4APESpMb4ksA6wGPAhYCNJm/byrKq8USIiIiIiItrnFmAdSfO1mk1VzYx4PeViM6IX/JnxJ6lWAhbsQCz95L+B1YHbgE/Z/u1wgyRtR+kougZwJLBT1yJssySpIiIiIiIi2ucXwGHA14FPtRjzNeDlwCldiiliUmy/dqxjJa1FeY+vWW26pyNBNZyk1wHvAv4GrD/SMj7bZ0q6DLgG2FHSmrb/3KVQ22quugOIiIiIiIhokB9S2sL/u6RLJX2m2j5V0v6Szgf2A/4I/LSuICPaTdIrJR0L3ABsBzwKHEBZqhbjtwtl9tpnxlJnyvYjwGcoywJ36XBsHSN7ostKIyIiIiIiYihJywM/p3TvM+WiceDCS8B1wA62760nwoj2kbQE8CXgI5R6bE8B3wMO7/Ui3nWS9HtgXduLj+MYAQ8D19resmPBdVCW+0VERERERLRRlXzaUNLWwLaUjn9TgLuBs4DTnNkC0eMkLQh8tvpaCPgXpR7SV20/UGdsDbE6cP14DrBtSX+oju1JSVJFRERERER0gO2zgbPrjiOinSTNTZk19SVg6WrzKcCXbf+ttsCaZ1HgHxM47h/A+u0NpXuSpIqIiIiIiOggSe8FdgCWohSRPtn272sNKmICJO0KHELp3Cfgd8AXbI9rxk+MycsoSyfH65nq2J6UwukRERERERETJGkLSVdL+nyL/cdSZpl8ANgS2Bs4W9LXuhhmxKRI2lbSDcDxlOWr1wBvt711ElQdo5qOrVVmUkVEREREREzc1sC6lK5aLyLpfcAe1cM/AOcDrwJ2Av5D0pm2L+9WoBGTcCal+P9TwPeBXwJIeuNYDrb9h86F1mjLSNp4vMd0JJIuSXe/iIiIiIiICZJ0GbCq7aWH2XcpsCFwDvBO2y9U2/cFjgKOtb1PN+ONmAhJLzC7Q+V42XYmyIzTJF9zbE9pYzhdkyRVRERERETEBEmaAUy3vfWQ7QsDMynLbjayfeWgfVOAGcATttfoZrwREyHpTiaXMFmpfdH0h359zZPNjIiIiIiImLilgIuH2b4+pQbwzMEJKgDb/5J0E/C2LsQXMWm2p9YdQ7/p19c8hdMjIiIiIiImzsBiw2wfqNXTqhbPTGCejkQUEdGjkqSKiIiIiIiYuLuBtSUN7aa1CSWBdVWL4xYH/t7JwCIiek2SVBERERERERN3IbA88PGBDZLWArasHv6mxXFvAO7rZGAREb0mSaqIiIiIiIiJ+w7wHPBdSZdKOhW4HJgCXDu0HhWApPUpbeKv7mqkERFzuCSpIiIiIiIiJsj2LcAewNPAhsAOwELA/cDuLQ7bv/p+bqfji4joJbIn3NEwIiIiIiIiAEmvALYDlgbuAk63/c8WYz9KKZp+tO0nuxdlRMScLUmqiIiIiIiIiIioXZb7RURERERERERE7ZKkioiIiIiIiIiI2iVJFREREREjknSwJEs6uO5YIiIiormSpIqIiIjoc1UCKoVKIyIiolZJUkVERERERERERO2SpIqIiIiIiIiIiNolSRURERExCYOXyknaU9K1kp6U9ICkn0paqto3v6RDJP1V0jOS7pL0n5LmafG880j6uKSrJD0u6WlJ0yUdJmmJYcZPrWK5U8VHJd0g6SlJj0g6XdJrhxxz8OBlfgN/l5GW/0l6haSjJN0j6VlJd1QxzT+Z1zEiIiJCdsoPREREREzUoGTO4cCngIuAJ4ANgWWAm4CNgHOANar98wGbAAsCP7G935DnnB84C9gUeAq4oPr+tuo5ZwCb27590DFTgTuqfRcB7wcuBh4D1gdWBB4H1hk4TtIOwA7AHtXTHDc4Dtt7VuMOBg4CjgG2AgRcDiwMvLX6e/za9vZjfNkiIiIiXiJJqoiIiIhJGJSkehDYzPb0avtiwBXA6sDNwKPAdrYfq/a/AbgGmAKsZHvGoOc8HPgc8BdgC9v3VtsXAE4A3gtcafstg46ZSklSUX1/h+2/VfvmA04FtgWOtr3vcH8H22rxdzyYkqQCOBr4mO1Z1b41gKuBlwNvtX3Z6K9aRERExEtluV9EREREexw4kKACsP0IcGT1cE1gv4EEVbX/BuC3lFlJmwxsrxJR+1cPPzGQoKqOeRr4CPBPYANJG7WI5RMDCarquGeBQ6qHb5/Q3664u3ruWYOeezolcTbZ546IiIg+lyRVRERERHucPcy226rvMwYnsAa5tfq+3KBt61JmJd1n+/dDD7D9EPDr6uGmwzzn8y1i+cswP2u8zq8SZZ147oiIiOhzSVJFREREtMc9w2z75wj7Bu8fXHR8+er7HbQ2UItq+WH23W/7+aEbbT9e/XG+EZ53NHe12D7w3CmeHhEREROWJFVEREREG9h+YYTdI+1r+ZQTDGUiP2tOeO6IiIjoc0lSRURERMxZBmpQrTTCmJWHjI2IiIjoeUlSRURERMxZrqMsA1xe0ksKkUtaAnhX9fDCNv3M56rnnrtNzxcRERExbklSRURERMxBqsLkA10Bvydp2YF9kuYHfkwprH6l7cva9GMHZmSt0abni4iIiBi33C2LiIiImPN8BViP0r3vVknnA08DbwOWpRQw37WNP+9XwKeB86qf9U8A2x9q48+IiIiIGFGSVBERERFzGNvPSNoS+AiwG7AZMA9wJ3ACcLjth9v4I79EKdS+I/Ce6mcBJEkVERERXSN7oo1jIiIiIiIiIiIi2iM1qSIiIiIiIiIionZJUkVERERERERERO2SpIqIiIiIiIiIiNolSRUREREREREREbVLkioiIiIiIiIiImqXJFVERERERERERNQuSaqIiIiIiIiIiKhdklQREREREREREVG7JKkiIiIiIiIiIqJ2SVJFRERERERERETt/j+sT8NMaVABEgAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1440x720 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "ax=result23.plot.bar('month','Accident Distribution', rot=90,title=\"Accidents distribution over month \",figsize=(20, 10),color=\"Orange\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 507,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "DataFrame[accident_index: string, accident_year: string, accident_reference: string, location_easting_osgr: string, location_northing_osgr: string, longitude: string, latitude: string, police_force: string, accident_severity: string, number_of_vehicles: string, number_of_casualties: string, date: string, day_of_week: string, time: string, local_authority_district: string, local_authority_ons_district: string, local_authority_highway: string, first_road_class: string, first_road_number: string, road_type: string, speed_limit: string, junction_detail: string, junction_control: string, second_road_class: string, second_road_number: string, pedestrian_crossing_human_control: string, pedestrian_crossing_physical_facilities: string, light_conditions: string, weather_conditions: string, road_surface_conditions: string, special_conditions_at_site: string, carriageway_hazards: string, urban_or_rural_area: string, did_police_officer_attend_scene_of_accident: string, trunk_road_flag: string, lsoa_of_accident_location: string]"
+      ]
+     },
+     "execution_count": 507,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "A2018"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "DataFrame[accident_index: string, accident_year: string, accident_reference: string, location_easting_osgr: string, location_northing_osgr: string, longitude: string, latitude: string, police_force: string, accident_severity: string, number_of_vehicles: string, number_of_casualties: string, date: string, day_of_week: string, time: string, local_authority_district: string, local_authority_ons_district: string, local_authority_highway: string, first_road_class: string, first_road_number: string, road_type: string, speed_limit: string, junction_detail: string, junction_control: string, second_road_class: string, second_road_number: string, pedestrian_crossing_human_control: string, pedestrian_crossing_physical_facilities: string, light_conditions: string, weather_conditions: string, road_surface_conditions: string, special_conditions_at_site: string, carriageway_hazards: string, urban_or_rural_area: string, did_police_officer_attend_scene_of_accident: string, trunk_road_flag: string, lsoa_of_accident_location: string]"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "A2018"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 662,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+-----------------+---------+---------------+\n",
+      "|accident_severity|road_type|Total accidents|\n",
+      "+-----------------+---------+---------------+\n",
+      "|                3|       -1|              1|\n",
+      "|                1|        1|            471|\n",
+      "|                2|        3|          44030|\n",
+      "|                3|        3|         291457|\n",
+      "|                2|        2|           6566|\n",
+      "|                1|        2|            328|\n",
+      "|                2|        6|         262089|\n",
+      "|                3|        1|         136135|\n",
+      "|                1|        3|           5983|\n",
+      "|                3|        2|          42394|\n",
+      "|                3|        6|        1416841|\n",
+      "|                1|        7|            205|\n",
+      "|                2|        1|          14601|\n",
+      "|                1|        6|          22595|\n",
+      "|                3|        9|          16857|\n",
+      "|                2|        7|           2489|\n",
+      "|                1|        9|            116|\n",
+      "|                3|        7|          22311|\n",
+      "|                2|        9|           1958|\n",
+      "+-----------------+---------+---------------+\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "A2018ts_df = TimeAccident_dfmonthly_new.groupby(\"accident_severity\",'road_type').agg(F.count(TimeAccident_dfmonthly_new.accident_index).alias('Total accidents'))\n",
+    "A2018ts_df.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+-----------------+---------+---------------+\n",
+      "|accident_severity|road_type|Total accidents|\n",
+      "+-----------------+---------+---------------+\n",
+      "|                3|       -1|              1|\n",
+      "|                1|        1|            471|\n",
+      "|                2|        3|          44030|\n",
+      "|                3|        3|         291457|\n",
+      "|                2|        2|           6566|\n",
+      "|                1|        2|            328|\n",
+      "|                2|        6|         262089|\n",
+      "|                3|        1|         136135|\n",
+      "|                1|        3|           5983|\n",
+      "|                3|        2|          42394|\n",
+      "|                3|        6|        1416841|\n",
+      "|                1|        7|            205|\n",
+      "|                2|        1|          14601|\n",
+      "|                1|        6|          22595|\n",
+      "|                3|        9|          16857|\n",
+      "|                2|        7|           2489|\n",
+      "|                1|        9|            116|\n",
+      "|                3|        7|          22311|\n",
+      "|                2|        9|           1958|\n",
+      "+-----------------+---------+---------------+\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "A2018ts_df = A2018.groupby(\"accident_severity\",'road_type').agg(F.count(A2018.accident_index).alias('Total accidents'))\n",
+    "A2018ts_df.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "A2018_df=A2018ts_df.toPandas()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>accident_severity</th>\n",
+       "      <th>road_type</th>\n",
+       "      <th>Total accidents</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>3</td>\n",
+       "      <td>-1</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>471</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>44030</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>3</td>\n",
+       "      <td>3</td>\n",
+       "      <td>291457</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2</td>\n",
+       "      <td>2</td>\n",
+       "      <td>6566</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>1</td>\n",
+       "      <td>2</td>\n",
+       "      <td>328</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>2</td>\n",
+       "      <td>6</td>\n",
+       "      <td>262089</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>136135</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>5983</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>3</td>\n",
+       "      <td>2</td>\n",
+       "      <td>42394</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>3</td>\n",
+       "      <td>6</td>\n",
+       "      <td>1416841</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>1</td>\n",
+       "      <td>7</td>\n",
+       "      <td>205</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>14601</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>1</td>\n",
+       "      <td>6</td>\n",
+       "      <td>22595</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>3</td>\n",
+       "      <td>9</td>\n",
+       "      <td>16857</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>2</td>\n",
+       "      <td>7</td>\n",
+       "      <td>2489</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>1</td>\n",
+       "      <td>9</td>\n",
+       "      <td>116</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>3</td>\n",
+       "      <td>7</td>\n",
+       "      <td>22311</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>2</td>\n",
+       "      <td>9</td>\n",
+       "      <td>1958</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   accident_severity road_type  Total accidents\n",
+       "0                  3        -1                1\n",
+       "1                  1         1              471\n",
+       "2                  2         3            44030\n",
+       "3                  3         3           291457\n",
+       "4                  2         2             6566\n",
+       "5                  1         2              328\n",
+       "6                  2         6           262089\n",
+       "7                  3         1           136135\n",
+       "8                  1         3             5983\n",
+       "9                  3         2            42394\n",
+       "10                 3         6          1416841\n",
+       "11                 1         7              205\n",
+       "12                 2         1            14601\n",
+       "13                 1         6            22595\n",
+       "14                 3         9            16857\n",
+       "15                 2         7             2489\n",
+       "16                 1         9              116\n",
+       "17                 3         7            22311\n",
+       "18                 2         9             1958"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "A2018_df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from scipy.stats import spearmanr"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "numpy.int64"
+      ]
+     },
+     "execution_count": 15,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "\n",
+    "A2018_df['accident_severity'] =  A2018_df['accident_severity'].astype(int)\n",
+    "type(A2018_df['accident_severity'][0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from scipy.stats import chi2_contingency\n",
+    "table = [[10, 20, 30],[6,  9,  17]]\n",
+    "stat, p, dof, expected = chi2_contingency(table)\n",
+    "print('stat=%.3f, p=%.3f' % (stat, p))\n",
+    "if p > 0.05:\n",
+    "\tprint('Probably independent')\n",
+    "else:\n",
+    "\tprint('Probably dependent')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "stat=0.607, p=0.002\n",
+      "Probably dependent\n"
+     ]
+    }
+   ],
+   "source": [
+    "from scipy.stats import pearsonr\n",
+    "from scipy.stats import kendalltau\n",
+    "data1 = A2018_df['accident_severity']\n",
+    "data2 = A2018_df['Total accidents']\n",
+    "stat, p = kendalltau(data1, data2)\n",
+    "print('stat=%.3f, p=%.3f' % (stat, p))\n",
+    "if p > 0.05:\n",
+    "\tprint('Probably independent')\n",
+    "else:\n",
+    "\tprint('Probably dependent')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>accident_severity</th>\n",
+       "      <th>road_type</th>\n",
+       "      <th>Total accidents</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>471</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>44030</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>3</td>\n",
+       "      <td>3</td>\n",
+       "      <td>291457</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2</td>\n",
+       "      <td>2</td>\n",
+       "      <td>6566</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>1</td>\n",
+       "      <td>2</td>\n",
+       "      <td>328</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>2</td>\n",
+       "      <td>6</td>\n",
+       "      <td>262089</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>136135</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>5983</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>3</td>\n",
+       "      <td>2</td>\n",
+       "      <td>42394</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>3</td>\n",
+       "      <td>6</td>\n",
+       "      <td>1416841</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>1</td>\n",
+       "      <td>7</td>\n",
+       "      <td>205</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>14601</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>1</td>\n",
+       "      <td>6</td>\n",
+       "      <td>22595</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>3</td>\n",
+       "      <td>9</td>\n",
+       "      <td>16857</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>2</td>\n",
+       "      <td>7</td>\n",
+       "      <td>2489</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>1</td>\n",
+       "      <td>9</td>\n",
+       "      <td>116</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>3</td>\n",
+       "      <td>7</td>\n",
+       "      <td>22311</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>2</td>\n",
+       "      <td>9</td>\n",
+       "      <td>1958</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "    accident_severity road_type  Total accidents\n",
+       "1                   1         1              471\n",
+       "2                   2         3            44030\n",
+       "3                   3         3           291457\n",
+       "4                   2         2             6566\n",
+       "5                   1         2              328\n",
+       "6                   2         6           262089\n",
+       "7                   3         1           136135\n",
+       "8                   1         3             5983\n",
+       "9                   3         2            42394\n",
+       "10                  3         6          1416841\n",
+       "11                  1         7              205\n",
+       "12                  2         1            14601\n",
+       "13                  1         6            22595\n",
+       "14                  3         9            16857\n",
+       "15                  2         7             2489\n",
+       "16                  1         9              116\n",
+       "17                  3         7            22311\n",
+       "18                  2         9             1958"
+      ]
+     },
+     "execution_count": 18,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "A2018_df=A2018_df[A2018_df.road_type != \"-1\"]\n",
+    "A2018_df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df.dropna()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead tr th {\n",
+       "        text-align: left;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead tr:last-of-type th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>accident_severity</th>\n",
+       "      <th>1</th>\n",
+       "      <th>2</th>\n",
+       "      <th>3</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>road_type</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>471</td>\n",
+       "      <td>14601</td>\n",
+       "      <td>136135</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>328</td>\n",
+       "      <td>6566</td>\n",
+       "      <td>42394</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>5983</td>\n",
+       "      <td>44030</td>\n",
+       "      <td>291457</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>22595</td>\n",
+       "      <td>262089</td>\n",
+       "      <td>1416841</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>205</td>\n",
+       "      <td>2489</td>\n",
+       "      <td>22311</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>116</td>\n",
+       "      <td>1958</td>\n",
+       "      <td>16857</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                  Total accidents                 \n",
+       "accident_severity               1       2        3\n",
+       "road_type                                         \n",
+       "1                             471   14601   136135\n",
+       "2                             328    6566    42394\n",
+       "3                            5983   44030   291457\n",
+       "6                           22595  262089  1416841\n",
+       "7                             205    2489    22311\n",
+       "9                             116    1958    16857"
+      ]
+     },
+     "execution_count": 27,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "A2018_dfpiv=A2018_df.pivot(index ='road_type', columns ='accident_severity')\n",
+    "A2018_dfpiv"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "A2018_dfpiv=A2018_dfpiv.dropna()\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Observed Values :-\n",
+      " [[    471   14601  136135]\n",
+      " [    328    6566   42394]\n",
+      " [   5983   44030  291457]\n",
+      " [  22595  262089 1416841]\n",
+      " [    205    2489   22311]\n",
+      " [    116    1958   16857]]\n",
+      "Expected Values :-\n",
+      " [[1.96314350e+03 2.19287320e+04 1.27315124e+05]\n",
+      " [6.39913608e+02 7.14797161e+03 4.15001148e+04]\n",
+      " [4.43335700e+03 4.95215441e+04 2.87515099e+05]\n",
+      " [2.20911581e+04 2.46762952e+05 1.43267089e+06]\n",
+      " [3.24643722e+02 3.62633968e+03 2.10540166e+04]\n",
+      " [2.45784055e+02 2.74546037e+03 1.59397556e+04]]\n",
+      "Degree of Freedom:- 10\n"
+     ]
+    }
+   ],
+   "source": [
+    "A2018_dfpiv=A2018_dfpiv.dropna()\n",
+    "\n",
+    "dataset_table=A2018_dfpiv\n",
+    " \n",
+    "dataset_table.values \n",
+    "Observed_Values = dataset_table.values \n",
+    "print(\"Observed Values :-\\n\",Observed_Values)\n",
+    "import scipy.stats\n",
+    "b=scipy.stats.chi2_contingency(dataset_table)\n",
+    "Expected_Values = b[3]\n",
+    "print(\"Expected Values :-\\n\",Expected_Values)\n",
+    "#Degree of Freedom\n",
+    "no_of_rows=len(dataset_table.iloc[0:6,0])\n",
+    "no_of_columns=len(dataset_table.iloc[0,0:3])\n",
+    "df=(no_of_rows-1)*(no_of_columns-1)\n",
+    "print(\"Degree of Freedom:-\",df)\n",
+    "\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# The method for measuring Chi-Square value for the selected factors"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "r [4193.795574610202, 218.67280881776227, 1204.6776335388686, 1138.2752182581148, 475.84594970392686, 347.1751350618879]\n",
+      "chi-square statistic:- 7578.4423199907615\n",
+      "critical_value: 18.307038053275146\n",
+      "p-value 0.0\n",
+      "Significance level:  0.05\n",
+      "Degree of Freedom:  10\n",
+      "Reject H0,There is a relationship between 2 categorical variables\n"
+     ]
+    }
+   ],
+   "source": [
+    "r=[]\n",
+    "for o,e in zip(Observed_Values,Expected_Values):\n",
+    "    a=(o-e)**2./e\n",
+    "    \n",
+    "    r.append(a[0]+a[1]+a[2])\n",
+    "print(\"r\",r)\n",
+    "chi_square_statistic=0\n",
+    "for i in range(len(r)):\n",
+    "    chi_square_statistic+=r[i]\n",
+    "print(\"chi-square statistic:-\",chi_square_statistic)\n",
+    "alpha = 0.05\n",
+    "from scipy.stats import chi2\n",
+    "critical_value=chi2.ppf(q=1-alpha,df=df)\n",
+    "print('critical_value:',critical_value)\n",
+    "#p-value\n",
+    "p_value=1-chi2.cdf(x=chi_square_statistic,df=df)\n",
+    "print(\"p-value\",p_value)\n",
+    "print('Significance level: ',alpha)\n",
+    "print('Degree of Freedom: ',df)\n",
+    "if chi_square_statistic>=critical_value:\n",
+    "    print(\"Reject H0,There is a relationship between 2 categorical variables\")\n",
+    "else:\n",
+    "    print(\"Retain H0,There is no relationship between 2 categorical variables\")\n",
+    "    "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 624,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
+      "  warnings.warn(msg, FutureWarning)\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEbCAYAAAAFw4laAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5XUlEQVR4nO3deXwU9f348dc7F1cSICSEQIAk3Lcol6KA4n0Wj3rUg1pFRG39ttba37dVay+ttvXWaj1r8cIT0a8HyqHIJcp934SbQCCQO+/fHzORuGSTzWazs8m+n4/HPsad+czseycy7/3MfA5RVYwxxphwivE6AGOMMdHHko8xxpiws+RjjDEm7Cz5GGOMCTtLPsYYY8IuzusAGoPU1FTNysryOgxjjGlUvvnmm72qmlbdNks+AcjKymLhwoVeh2GMMY2KiGz2t81uuxljjAk7Sz7GGGPCzpKPMcaYsLPkY4wxJuws+RhjjAk7Sz7GGGPCzpKPMcaYsLPkY4wxJuws+RhjjAk7G+HAmEZu8rwtXocQca4a3sXrEEwtrOZjjDEm7Cz5GGOMCTtLPsYYY8LOko8xxpiws+RjjDEm7Cz5GGOMCTtLPsYYY8LOko8xxpiws+RjjDEm7Cz5GGOMCTtLPsYYY8LOko8xxpiwi7jkIyJXichsEckXkQIRWSgit4hIULGKSKyITBSRWSKyT0SKRGSriEwVkQtCHb8xxpjaRdSo1iLyBDAJKAKmA6XAWOBxYKyIXKqqFXU4XjvgI2AokAd8DRwGOgOnA7uAqaH8DsYYY2oXMclHRC7BSTw7gVGqutZdnw58AYwDbgMeCfB4McD7OInnEeAuVS2qsj0JyArhVzDGGBOgSLrt9lt3+ZvKxAOgqruAm923d9Xh9tuNwEnAB6p6e9XE4x73kKourW/Qxhhj6i4iko+IZAInACXAm77bVXUmkAt0AEYEeNhb3eU/QhGjMcaY0ImU226D3eVyVS30U2YB0MktO6emg4lIBtAfKAe+FpGewOVAJs6zn5nAx6qqIYjdGGNMHUVK8sl2l5trKFM5V3B2DWUqDXCX+3Bu2f2NH37Xu4A5IjJOVXfXJVBjjDH1FxG33YBEd3m4hjIF7jIpgOOlVFn+A+dWXl8gGTgNWInzPOiYW3yVRGSC28x74Z49ewL4SGOMMYGKlOQTapXfKw74UlWvUtWVbiODL4AzgUJglIicWt0BVPUZVR2iqkPS0tLCFLYxxkSHSEk+lbWaVjWUqawdHQrgeFXLPOu7UVW3AdPct9UmH2OMMQ0nUpLPJnfZtYYynX3K1mSjn/+urkyHAI5njDEmhCIl+XzrLvuJSAs/ZYb6lK3Jao4+P2rnp0yquyzws90YY0wDiYjko6pbgUVAAnCZ73YRGY3TTHonzhA5tR2vFPjAfTu2muPFA6PctwuDi9oYY0ywIiL5uP7qLh8Qke6VK0WkPfCk+/b+qmO7icitIrJKRF72c7wKYIKInFVln1jgAaAbTsfVd0L7NYwxxtQmUvr5oKpTROQpnH45S0XkM44OLJoMvIszwGhVqUAvnBqR7/EWi8jtOOO6fSQi84FtOJ1Uc4B84LIaOrUaY4xpIJFU80FVJwE/wbkFNxo4C1iHM1TOJapaXsfjPYbTr+dDoDtwIU7CfQY4TlVrvYVnjDEm9CKm5lNJVScDkwMsey9wby1lZgAz6hmWMcaYEIqomo8xxpjoYMnHGGNM2FnyMcYYE3aWfIwxxoSdJR9jjDFhZ8nHGGNM2FnyMcYYE3aWfIwxxoSdJR9jjDFhZ8nHGGNM2FnyMcYYE3aWfIwxxoSdJR9jjDFhZ8nHGGNM2FnyMcYYE3aWfIwxxoSdJR9jjDFhZ8nHGGNM2FnyMcYYE3aWfIwxxoSdJR9jjDFhZ8nHGGNM2FnyMcYYE3aWfIwxxoSdJR9jjDFhZ8nHGGNM2FnyMcYYE3aWfIwxxoSdJR9jjDFhZ8nHGGNM2FnyMcYYE3Z1Tj4iYgnLGGNMvQSTSDaLyO9EJD3k0RhjjIkKwSSfTsAfcJLQqyJycohjMsYY08QFk3wGAs8CJcDlwEwRWSwiN4lIq5BGZ4wxpkmqc/JR1WWqOhGnBvQLYDUwAHgSyBWRR0Skd2jDNMYY05QE3XhAVQ+p6mOq2hcYC7wDtARuA5aLyHQRGWcNFIwxxvgKSWJQ1S9U9VKgK/AYIMAYYArOs6E7RKRFKD7LGGNM4xeyWomIDAb+CPzMXVUBrMC5PfcAsFREeoTq84wxxjRe9Uo+IpIgIteKyFxgIXA9UAjcD2Sr6gBgMPABkAP8s57xGmOMaQLigtlJRLKBm4GfAik4t9m+xbnl9qqqFleWVdXFwEUiMg+wZtnGGGPqnnxE5EPgTJxaUxnwJvCoqs6pZddlwJA6R2iMMabJCabmczawG3gGeFpVtwe437vAliA+zxhjTBMTTPK5FnhDVUvqspOqTgWmBvF5xhhjmphgGhxsAbJqKyQiPURkVBDHN8YY08QFk3y+AH4TQLk73bJ1IiJXichsEckXkQIRWSgit4Sis6qITBARdV+P1/d4xhhjghPMBV3cV8iJyBPAf3EaJswGPgV6Ao8DU+qTgESkK/AQoCEI1RhjTD005NA37XH6/ARERC4BJgE7gYGqer6qjgN6ACuBcThD99SZiAjwHM73fTmYYxhjjAmdgBocVPPspkMNz3PigD44zbFX1iGW37rL36jq2sqVqrpLRG4GZgB3ichjqlpRh+MCTMQZf+7nQLs67muMMSbEAm3tNoMf3q46y33VRIB/BXJwEckETsCZpuFN3+2qOlNEcnGG6hkB1NanqOqxs4G/AV/i3L67J9B9jTHGNIxAk88sjiaf0Tj9fFb5KVsC5ALvuM2rAzHYXS5XVX+36hbgJJ/BBJh83Nttz+N8z5+pqjqrjDHGeCmg5KOqYyr/W0QqgI9U9foQxpHtLjfXUKayg2p2DWV83YozuvZdqromiLiMMcY0gGA6mZ6K0ygglBLd5eEayhS4y6RADigi3XAGOF2I08rNGGNMhKhz8lHVmQ0RSChVud0Wj3O7rTyIY0wAJgB06dIltAEaY0yUi5RZRitrNa1qKFNZOzoUwPF+DowC/qqqS4IJSFWfUdUhqjokLS0tmEMYY4zxo9aaj4iU4zQ26Kuqa9z3gVJVDaR2tclddq2hTGefsjUZ5y7PEJHRPtuyKsuISH+gQFXPD+CYxhhjQiSQxOA7okFdmosFWvZbd9lPRFr4afE21KdsIE6sYVtH95Vfh+MZY4wJgVpvu6lqjPta4/M+oFcgQajqVmARkABc5rvdrb1k4jR0+DqA441RVanuBfzBLfaEu65NIDEaY4wJnUh55gPwV3f5gIh0r1wpIu2BJ92391cd3UBEbhWRVSJiQ+YYY0wjEtQ02g1BVaeIyFM403MvFZHPgFKcYXGScSaj8x2JOhXoReibfhtjjGlAwUyjnQC0AQ6qalGV9YnAXcAgnEYBf3NvpwVMVSeJyJfALTgjKcTijKTwPPBUEGO6GWOMiUDB1Hx+D/w/4GTc5y/uVAezcBJPZSODcSIySFX31eXgqjoZmBxg2XuBe+t4/DrvY4wxJrSCeeYzFshV1aoP/scBxwHLgBuAd3Bakk2sb4DGGGOanmCSTxaw2mfdRTh9ga5W1edxWqzt4Gh/G2OMMeZ7wdx2SwF2+aw7CdisqksBVLVCRObh3JozxoTI3oJiFm7KY/n2g2w/UERBcSnb9hfSKiGOlFYJdGrbgi4pLYmPjaSGrMYcK5jkUwq0rnzjNoXOAV7xKXeEo0PiGGOCVFBcxvvfbeetRdtYtGU/qhAbI7RPakZy83j2HylhY/FhjpQ4g4/Exwo905MYmpVC9/aJxNg0IiYCBZN81gAjRaS529rtEpxbbl/6lMvAmffHGBOEIyVlvDRnM0/PXE9+YSm90pO4fWxPTumZSt+MZJrHxwIweZ4z28iR4jK27j/Cqp2HWJqbz/LtB+mQ3Jwz+qbTu0MSNpeViSTBJJ83gb8As9xm0TfgTCD3bmUBEYkFjge+CUGMxkSVigpl8vwtPPzZWvYWFDOmVxq3ndaD47u0qTGBtGwWR68OyfTqkMx5AzJYmpvP56t285+5m8ls24LzBmTQtV1NY/caEz7BJJ9/AmfgzOszBCgHblfVqrWcM3Fuzc2qd4TGVLH9QCGfr9rNN5v3s3nfYQpLK4iPFTJaN6dPRjIn5rRjSFYKsTGN81f+ut0F3PXWEhZu3s+w7BSevvp4hmSl1Pk4cbExDO7SloGZbfh2y36mr9rNv2ZtYEROCmf17UAzt9bU2BSVlrNudwGb9h1mz6FiCorLAGiREEtaYjO6pSXSI93u9jcGoqq1l/Ldyfn5dTKQDixS1Q0+208FBgLvq+rGUATqpSFDhujChQu9DiOqLcvN59Hpa/ls5S4qFNKTm5GTmkhi8ziKyyrI3X+EDXsPowqpic249IRMfnZyNmlJzbwOPSDlFcq/Zq3n4U/X0iIhlrvP78vFx3cK6FZZ5W23mhSXlfPJil3MXb+P1i3iufj4TLq3bzwX6dz9hcxau4eVOw5SVqHExwrtk5qT1DwOwXkututQMSVlFTSLi+GaEV2ZdGp3UloleB16VBORb1R1SLXbgkk+0caSj3eOlJTx52krmTx/C61bxPOT4V0YNziTbmmtjrkw5xeW8uXavbz3XS6frdxFfGwMVwztzE2ju9GxTQuPvkHtdh0s4n9e/4456/dxTv8O3HdR/zolzUCST6Ut+w7z1qJc9hYUM6pnGqf3SY/oWuKmvYf5YvVu1u4uoHl8DIM7t6V/p9Z0TmlBXMwPW/SVVyib9x1mvtsaMLFZHL89pzeXD+1sz7s8Ysmnniz5eGPd7kNMfGUR6/cU8NOTsrn9jB4kN48PaN+New/z1Ix1vL0ol7hY4dZTu3PjqByaxUXW7aYvVu/mjjcWc7ikjPsu7M9lQzLrfKGsS/IBKCmrYNrS7SzYtJ8uKS25fGhn2raMrBpCQXEZHy7dwXdbD9CqWRwnd09leHbK940sajM0qy2/f28ZczfkccGgjjxwyQBaJkTMUJZRo0GSj4h0wnnu0xFo7qeYquofg/qACGLJJ/wWbsrj+hcXkBAXy6NXHMdJ3VODOs62/Uf487SVfLRsJ1ntWvKHi/ozuqf3M9OWlFXw0CereWbWBnp3SOLxqwbTvX1SUMeqa/KptGTbAd75NhcRuHhwJv07ta59pwamqizacoAPl+6gpKyCUT3TGN0zjYS4uvVbump4FyoqlKdmrufvn6xmQGYbXhg/1G7DhVlIk4/7vOdhYBJHR0jw/amm7jpV1cj6qRkESz7hNXfDPq57fj6d2rTgpeuH0Tml5ffbgr3Qrt11iKlLtrO3oITjOrfh3AEZJDbz5pfwvoJiXluwldwDhQzPTuHcARmedQrNO1zCawu2sG1/IcOyUzi3f0adL/ShsregmHe/y2XDnsN0TWnJjwZ3Ij3Z3+/aml01vMv3//3x8p38/NVv6dquJa9NONESUBiFOvncCdwPVAAf44w6fdBfeVX9g79tjYUln/BZsu0AVz4zl4w2LXhtwghSE3/47CPY5ANQVl7BjDV7mLl6D83iYzhvQAbHda65+XKofbtlP+8t3k6sCOMGd4qI2kZZRQWfrdjFrLV7aZ/UjCuGdqFD6+Au+sEor1Bmr93D56t2ExsjnN2/A0OzUurVObZq8gGYs34v419YQK/0JCbfOJykAG/fmvoJdfJZiTOiwVhV9e1Y2iRZ8gmP7QcKufDxr2geH8OUiSdVewGsT/KptOtgEe98m8uWvCN0b5/Ij47r1OC/hotKy3l/8Xa+23qArHat+PGQTNpE2HOWtbsPMWXhNgpLyzmnfwdG5LRr8MS8Je8I73y7jV0Hi+nfMZnzB3YkuUX9E4Nv8gGYvnIXE/7zDWN6pvHMtUMiuqFFU1FT8gmmfp0NzI6WxGPCo6i0nAn/WUhRaTkvjB/aoL+805ObM2FUDhcO6sjWvCM8Mn0Ns9fuobyiYRrfrN19iMc+X8uSbQc4vU97bjglO+ISD0CP9kncNrYH3dISmbpkBy99vYn9h0sa5LMKS8p5f3Eu/5q5nqLSCq4Z0ZWrhncNSeLxZ2yfdO69oC/TV+3mwY99x0Y24RbMTe8D2LA5JsTu+2AFy3IP8tx1Q+iRHtyD97qIEWFETjv6ZCTz3ne5fLRsJ0u25XPBwAy6hGgUgENFpUxbuoMl2/Jp1yqBG0/JifgRBhKbxXHtiV35esM+Plm+i4enr2Fs73RGdk8NSU2hvEJZsCmPz1buorCknBHd2nFmn/SwdXq95sQsVu48xNMz1zMsuy2n9U4Py+eaYwWTfD4HhoY6EBO9Ply6g8nztnDTqBzG9gnvxaB1i3iuGdGVZdsP8sHi7Tw9awO90pM4o2960H2DjhSXMWfDPr5at5eyCuW03u0Z3TOt0Yw0LSKc1M0ZP27qkh383/KdfLN5P2N6pTEws01QSai8Qlm+PZ8vVu9m18FislNbcd6ADE/6X919fl++3XKAX72xmI9+MSqsz7fMUcE88+mGM2bb35tCM+pA2DOfhrOvoJjT/zGTLiktmXLzSbVeoEPxzMef4rJy5q7fx6y1eyksLadneiLDslLomZ5EXACJY++hYhZszmPexjxKyirom5HMmf3SaZ/UuC9uK7Yf5NOVO9l1sJiUVgmc3D2VgZmtA+o3U1Bcxndb9jNn/T4OFJbSrlUCZ/XrQL+OyQ36PKm6Zz5Vrd9TwHmPzubk7qk8e+0Q64TaQGp65hNMzWck8AJwr4icC3wEbMFp/XYMVX05iM8wUeJP01ZSUFzGg5cN8rxm0CwultG92jM8px1z1u9l/sY8Xpm3hWZxMeSkJdI1pSWpic1IbBZLbEwMRWXlHDhSyo78QtbvKWDXwWIEGJDZmjG92tMhyGbCkaZvx2R6ZySxaschvli9m/cXb2fakh10bdeSrNRWpCc3J6lZHPGxMZSWV5BfWMqug0Vs3HeYLfuOoEBWu5acP7AjvTOSImKKh25pifzqjF78+cOVfLh0J+cNzPA6pKgTTM2ngqP9eHD/2y/r52P8mbF6N+NfWMDPx/bgl2f0DGifhqz5+CqvUNbtLmD59nw27D1Mnp+H73ExQla7VvTskMTATq0b9KG511SV7flFLNl2gHW7C9iZX1TtBSBGoGObFvRon0j/Tq3JaB3e22u11XzAaXo/7sk57Mgv5LNfjo7IRiCNXahrPi9TS8IxpjaHi8v433eW0S2tFbec2s3rcKoVGyP06pBErw5OA4gjJWXsKyihsLScsnKlWXwMrZvH07ZVQtQ02xUROrVpQSf3WU1JWQV7C4o5XFJGaZkSHyckN48npVWC5zXZ2sTFxnD/JQO48PGv+MuHK/nbpYO8Dimq1Dn5qOr4BojDRJl/fLqG3AOFTJl4YsSNt+ZPy4Q4WqbY+GBVJcTFRPSgrbXp17E1E0bl8NSM9fxocCdO6hbcME6m7iL7p4lpkjbsKeClOZu4cljnoOaqMSaUfjG2B5ltW3Df1BUN1tfLHKveyUdEuovIiSIS2E17E/Ue+L9VNIuL4X8CfM5jTENqHh/LnWf3ZtXOQ7y9aJvX4USNoJKPiMSJyN0isgtYDXwJ3FVl+09EZI6I9A9RnKaJmL8xj4+X72Li6G6NvgmyaTouGJjBoM5teOiT1RSWlHsdTlSoc/IRkTjgQ+AeoA2wkmNHtf4KGAFcUs/4TBNSUaH8edoKOiQ354ZTcrwOx5jviQi/O68Puw4W8+/ZG2rfwdRbMDWfW4HTgelAlqoeU7tR1U3AOuDMekVnmpQPlu5g8bZ87jirFy0SGkcjAxM9hmalcHa/Djw1cz27DxV5HU6TF0zyuQbYB/xYVXfUUG4l0DmoqEyTU1pewUMfr6ZPRjLjBnfyOhxjqvWbc3pTUlbB45+v8zqUJi+Y5NMLmKeqB2opdwjwfspIExHeWeRMYXDHmT2jpk+MaXyyU1tx2ZBMXpu/lZ35VvtpSMEkH8XPUDo+OgL21zOUllfw2BdrGdCpNaf1bu91OMbUaNKY7lSo8uQMq/00pGCSz0ZgkIj43VdEWgADcW69mSj3zqJctuYVcvvpPWwARxPxOqe0/L72syO/0Otwmqxgks/7QCbwqxrK3Am0Bd4LJijTdFTWegZmWq3HNB63nOrUfp6asd7rUJqsYJLPP4CdwP0iMllELnbXp4rIOSLyPHA3zkjXT4YoTtNIvb1om9V6TKOT2bYllw3pbLWfBlTn5KOqecDZwGbgCuBNnOdA5wEfAOOBbcAFqnooZJGaRqe8Qnnii/UMzGzNqb2s1mMal1tO7YaiPG21nwYR1AgHqroU6AvcgtPhdCWwBqfvz6+Avqq6LFRBmsbp4+U72ZJ3hEljulmtxzQ6mW1b8qPjOvH6wq1+p9MwwQt6bDdVLVLVp1T1AlXtr6p9VPVMVf2nqh4OZZCm8VFVnpm1ga7tWnJG3w5eh2NMUG4anUNRaQUvzdnkdShNTp3HhxeR9sCpQD+gHU6z6zxgCTBTVfeGNELTKH2zeT/fbT3AfRf1s349ptHq3j6J0/uk8/LXm7hpdE5AU4ebwAR8JkWkLfB34GrA39gopSLyEnCnquaHID7TSD0zawNtWsZz6QmZXodiTL1MHJ3DpU/v4o0FWxk/MtvrcJqMgG67iUg6MAe4Didh7cd5vvM6ToODL4ADQAJwA/CViNisTFFq497DfLpyF9eM6Gq/FE2jNyQrhRO6tuXZ2RspKw+kf70JRKDPfJ7BGVZnPXC+qqa6z3euUtUrVPV0VW0HXAhsAPoATzdMyCbSPfflBuJjYrjmxK5eh2JMSEwc3Y3cA4VMW1rTcJamLmpNPiIyALgAJ/EMVdUP/ZVV1Q+AYTijIIwTkb6hCtQ0DnmHS3hz4TbGDe5k8/WYJmNs7/Z0b5/I0zM3oGqznYZCIDWfK3H68fwykOc4qrof+CXOHD9X1i8809i8MnczxWUV3HCK3Rs3TUdMjDBhVA4rdxxk9lprUxUKgSSfoUC+qk6tw3Gn4jwDGh5MUKZxKiot5+WvN3FqrzR6pCd5HY4xIXXRcR1JT27G0zOt02koBJJ8egHf1uWg6tRLF7n7mijx7re57C0o4UabpdQ0Qc3iYrl+ZDZz1u9j6TZrzFtfgSSfNsCeII69x93XRIGKCuXZ2Rvo1zGZE7u18zocYxrElcO7kNgsjmdtqu16CyT5tAKOBHHsIndfEwVmrNnN+j2HmTAqx4bSMU1WcvN4Lh/amWlLd5B7wAYcrY9Akk99riR13ldErhKR2SKSLyIFIrJQRG6paf6gao4RIyInicifRGSOiOwXkVIR2SUiH4rIj+oal6nZM7M2kNG6OecOyPA6FGMa1E9HZgHw4lcbvQ2kkQu0B2AHERlVx2PXeUAvEXkCmIRTa5oOlAJjgceBsSJyqaoG0ssrB/jK/e88YD5Ox9gc4BzgHBF5Ebherd1kvS3dls/cDXn877l9iI8NerhAYxqFzLYtOXdABq/N38rPx/YgqXm81yE1SoEmn7PcV4MRkUtwEs9OYJSqrnXXp+OMoDAOuA14JIDDKfA58CDwqaqWV/mc0cA0nKkfZgEvhO5bRKdnZ28gsVkclw/r7HUoxoTFjadkM3Xxdl5fsJUbrIFNUAL5mbqlnq9A/dZd/qYy8QCo6i7gZvftXYHcflPV9ao6VlX/r2ricbfNBO53315dh/hMNSp7fV85rDPJ9gvQRImBmW0Ylp3CC19tsiF3glRrzUdVsxo6CBHJBE4ASnDGivONYaaI5AKdgBE448zVR2XTcRv1sp5e+HIjAvzUBlw0UebGU3K48eWFfLhsJxcO6uh1OI1OpNygH+wul6uqvyYkC3zK1kcPd2kDNdVDfmEpr87fwnkDM+jYpoXX4RgTVmN7tycntRX/nm1D7gQjUpJP5c/mzTWUqbyFV6+f2CLSEvi5+/at+hwr2r02fwuHS8qtU6mJSjExwvUnZ7NkWz7zN+Z5HU6jEynJJ9Fd1jQDaoG7rO+4LU/iJLAVOKN1V0tEJrjNvBfu2RNMH9umraSsghe+2sSJOe3o36m11+EY44lLjs+kbct4np1tza7rKlKST1iIyO9x5iTKB36sqsX+yqrqM6o6RFWHpKWlhS3GxmLa0u3sPFjEhFFW6zHRq0VCLNeM6Mr0VbvYsKeg9h3M9yIl+VT+1WoaEaGydnQomA8QkV8C97mfdY6qLg/mOAZUlWdnbaRH+0RG97TEbKLbNSdmER8bw3NfWu2nLiIl+WxylzXNPlbZiWRTDWWqJSK34UwBXogzGd7XdT2GOWrO+n2s2HGQG07JJibGhtIx0S0tqRnjjuvElG+2kXe4xOtwGo1IST6VTZ/7iYi/ZlNDfcoGRERuAR7FGTXhQrefj6mHZ2dvIDWxGRcd18nrUIyJCDeckk1xWQWvzK2pzZSpKiKSj6puxZmCIQG4zHe7OypBJs7oBwHXWkRkIs7QPMXAj1T1s5AEHMVW7zzEjNV7uO7ErjSPj/U6HGMiQo/0JMb0SuPlrzdRVFpe+w4mMpKP66/u8gER6V65UkTa47RQA7i/6thuInKriKwSkZd9DyYiN7r7FQPjVPXjhgs9evx79gaax8dw9Yia7pAaE31uPCWHvQUlvPddrtehNAqBju3W4FR1iog8hTOUzlIR+YyjA4smA+/i1GKqSsWZsG5n1ZUichzwL5xRtTcCl4vI5dV87F5VvSOEX6NJ232wiPe+284VwzrTtlWC1+EYE1FO6taOvhnJPDt7I5ed0Nmeh9YiYpIPgKpOEpEvgVuA0UAssAp4HngqwBGtwZnErvIv39t9VWczYMknQM99tZGyigp+drINpWOMLxHhxlHZ/M/ri5m5Zg+n9m7vdUgRLZJuuwGgqpNVdaSqJqtqK1U9QVWfqC7xqOq9qiqqOsZn/Qx3fW2vrHB9r8buYFEpk+du4dwBGXRtZ3MEGlOd8wd2pENyc5vpNAARl3xMZPrv3C0cKi5j4uhuXodiTMSKj41h/Mgs5qzfx/Lt+V6HE9Es+ZhaFZWW89yXGzmlR6oNpWNMLa4c1oVWCbH824bcqZElH1Ortxflsreg2Go9xgSgdYt4fjy0M1MXb2dHvr9B+o0lH1Oj8grlmVnrGZjZmpO6tfM6HGMahetHZlOhyotzNnkdSsSy5GNq9PHynWzad4SJo7shYk1HjQlE55SWnDMgg8lzt5BfWOp1OBHJko/xS1V5asZ6slNbcVa/Dl6HY0yjMmlMNw4Vl/Gy1X6qZcnH+DVn/T6W5uZz4yk5xFqHOWPqpF/H1ozt3Z7nvtrI4eIyr8OJOJZ8jF9PzlhHamIzLj7eBhA1Jhi3nNadA0dKmTxvS+2Fo4wlH1Ot+Rvz+GrdPiaOzrEBRI0J0vFd2jKyezuemb3BBhz1YcnHVOuR6WtITUzgJ8NtAFFj6uPWU3uw51Axbyzc6nUoEcWSjznG0VpPN1okWK3HmPoYkZPCkK5teWrGeqv9VGHJxxzDaj3GhI6IcPvpPdmRX8Sr8+3ZTyVLPuYHrNZjTOiN7N6OETkpPPHFeo6UWMs3sORjqlBV/vHpaqv1GBNiIsIdZ/Zib0ExL82xqbbBko+pYuaaPczdkMctp3a3Wo8xITYkK4UxvdJ4euZ6DhbZqAeWfAwAFRXK/R+tonNKC6v1GNNAfnVGL/ILS3nORry25GMc7y3OZdXOQ9xxZi8S4ux/C2MawoDM1pzdrwPPfbmRPYeKvQ7HU3aVMRSXlfPQx2vo1zGZCwZ29DocY5q0X5/di6LScv752RqvQ/GUJR/DK3O3kHugkLvO6U2MjeFmTIPqlpbI1SO68tr8LazaedDrcDxjySfK5R0u4dHpazm5eyqn9EjzOhxjosLtp/cgqXk8f562ElX1OhxPWPKJcg9+vJqC4jLuvqCv16EYEzXatEzg52N7MHvtXmas3uN1OJ6w5BPFlmw7wGsLtjD+pCx6pid5HY4xUeWaEV3JTm3Fn6atoKSswutwws6ST5SqqFDufm857Vo14xen9/A6HGOiTkJcDL8/vw/r9xzm2dkbvA4n7Cz5RKkpi7bx3dYD/Pac3iQ3j/c6HGOi0mm90zmnfwcenb6WzfsOex1OWFnyiUJ7C4q5/6NVnNC1rU0UZ4zH7rmgH/GxMfzu3WVR1fjAkk8Uuue95RQUlfHXiwcgYk2rjfFSh9bN+fVZvZi9di/vL97udThhY8knykxbsoNpS3fwi9N7WCMDYyLE1SO6MqhzG+6buoJ9BdEx8oElnyiyr6CYu99bxoBOrblpVI7X4RhjXLExwgOXDOBQURl3vb00Km6/WfKJEqrK3e8v52BRKQ9dNoi4WPvTGxNJendI5s6ze/Hpil28vqDpT7ltV6Ao8dqCrUxbsoPbT+9Jrw52u82YSHT9yGxGdm/HH6auYOPept36zZJPFFix/SD3vL+cU3qkMnF0N6/DMcb4ERMjPHTZIBLiYrj99e+adOdTSz5NXEFxGbdMXkTblvH88/LjiLWBQ42JaBmtW3D/xQNYvPUAf/xghdfhNBhLPk2YqnLXW0vYvO8wj14xmNTEZl6HZIwJwDkDMrhpdA7/mbuZV+dv8TqcBmHJpwl7+LO1fLBkB3ec1YvhOe28DscYUwd3ntWbUT3TuPu9ZSzclOd1OCFnyaeJenPhVh6ZvpZLT8jkZnvOY0yjExsjPHbFYDq2acHEVxaxNe+I1yGFlCWfJuirdXv57dtLObl7qo1iYEwj1rplPM9eO4SSsnKufm4euw8WeR1SyFjyaWK+2byfif/5hu7tE3ny6uOJt/48xjRqPdOTePH6Yew5VMw1z83nwJESr0MKCbsyNSELNuVx7XPzaJeYwAs/HWqjVRvTRBzfpS3PXjuEjXsPc90LCzhYVOp1SPVmyaeJmLthH9c9P5/01s15/aYTyWjdwuuQjDEhNLJ7Ko9fNZjluflc/q+5jf4WnCWfJmDakh2Mf2E+Hdu04LUJI0hPbu51SMaYBnBmvw48N34om/cd5uKn5rBhT4HXIQXNkk8jVlGh/OOT1dwyeRH9OrbmtQkjaJ9kiceYpmx0zzRevXEEhSXlXPr018zdsM/rkIJiyaeRyi8sZdJ/F/Ho5+u47IRMJt843DqRGhMlBnVuw5SbT6JNi3iuenYuj3++loqKxjUStiWfRmjWmj2c9c9ZfLpyF787rw9/u3QgzeJivQ7LGBNG2amteP+2kzl/YEce+mQN170wv1E9B7Lk04jkF5byu3eXcu3z80lsHsc7k07ihlNyrB+PMVEqsVkcj1xxHH+9eADzN+Yx9u8zeWnOJsobQS0ozusATO1Kyir477zNPDJ9LfmFpdxwcjZ3nNWL5vFW2zEm2okIVw7rwok57fj9e8u45/3lTPlmG787r09ED6sVcTUfEblKRGaLSL6IFIjIQhG5RUSCilVEzhaRT0QkT0SOiMgyEflfEYn4ByRFpeW8vmALZz08iz9MXUG/jsl8cNvJ/O78vpZ4jDE/kJXaipevH8ZjVw5m18EiLn9mLlc9O5f5GyNzXLiIqvmIyBPAJKAImA6UAmOBx4GxInKpqgY8wYWI3Ak8AJQDM4D9wGjgT8D5IjJWVSNuwKQd+YW8uXAbL3+9ib0FJfTJSOb58UM4tVd7u8VmjPFLRLhgUEdO75PO5PlbeGrGen78r68Z1LkNPxnWhfMHZdAyITIu+xIpc4WLyCXAFGAnMEpV17rr04EvgD7A7ar6SIDHGwLMBwqB01R1nrs+EZgGjAIeVtX/qe1YQ4YM0YULF9b9S9XBnkPFTF+5i3e/y2XexjxU4dReadxwSg4ndWtnScc1eV7THF7ehNZVw7t4HUJEKCxx7p68Mm8L63YXkNQsjrP6d+DMvumM6pnW4HdQROQbVR1S7bYISj4LgROA61T1ZZ9to3FqLjuBToHUfkRkCnAJcI+q3uezLQdYC5QB6ap6oKZjNUTyyTtcwuKtB5i/KY9Za/awfPtBwGnBctFxHfnRcZ3ISm0V0s9sCiz5mEBY8vkhVWXh5v28On8Ln63YxcGiMlrExzI8J4Xh2e0Ylp3CgE6tSYgL7ZOYmpJPRNS/RCQTJ/GUAG/6blfVmSKSC3QCRgBzajleAnCO+/a/1Rxvg4h8DYwEzgUm1+sL1ODAkRLW7znMhj0FbNh7mPW7C1i96xCb9zl3++JihOO7tuXXZ/VidM80+nVMtlqOMSakRIShWSkMzUqhtLyCeRvy+GTFTuas38eM1asA51qUk9aKXh2S6d0hiZ7pSWS1a0lm25a0SAh9DSkikg8w2F0uV9VCP2UW4CSfwdSSfIBeQEsgT1XX13C8ke7xGiT55B4oZOT9n3//Pj5W6JLSkj4dkrliaBeO69yGgZmtadUsUv4MxpimLj42hpN7pHJyj1QA9hYUM39jHsu357NqxyEWbd7P1MXbvy/fNyOZD39xSsjjiJSrXra73FxDmcr7Ldk1lPE9Xk33aOpyvKBkJDfnd+f1ITu1FTlpiXRu24I4m+LAGBNBUhObce6ADM4dkPH9ukNFpazdXcDWvCPExTTMNStSkk+iuzxcQ5nKEfSSwnE8EZkATKgsKyKrA/jcUEsF9nrwuZHMzsmx7Jz4+ImdE19enY+u/jZESvKJOKr6DPCMlzGIyEJ/D+uilZ2TY9k5OZadkx+KxPMRKfeAKmshNTXvqqzNHPLgeMYYY0IoUpLPJnfpt4oGdPYpG8jxampvWZfjGWOMCaFIST7fust+IuJvCs6hPmVrsgqnc2mKiHTzU2ZYHY7nFU9v+0UoOyfHsnNyLDsnPxRx5yOSOpl+AxxP6DqZvgVcTAg6mRpjjAmtSKn5APzVXT4gIt0rV4pIe+BJ9+39VROPiNwqIqtE5AfJqrIsoMBvRGRYlX0SgedxvvuTlniMMSb8Iib5qOoU4CmgA7BURKaKyNs4NZS+wLs4A4xWlYrTofSYZzuqugC4C6ez6Rx3ZOs3gPU4g4vOA/63Yb6NMcaYmkRM8gFQ1UnAT4BFOAniLGAdcCtwiaqW1/F4f8MZZucLnGdGF+C0df8dMDoSR7SG0E8r0ZiJSC8R+YWIvOLWcitEREXkUq9jCzcRiReRsSLyd/f/iYMiUiIiuSIyRUTGeB2jF0TkNhF5Q0RWisg+ESkVkT0i8pmIXC02XhUi8hf3342KyB1exwMR9MzHOGqYViIJeAeo07QSjZ2IPAz8oppNl7m15aghIqcDn7pvdwLf4HSk7gv0d9f/UVXv9iA8z4jINqA9sAzIxTknXYHhgADvARdH07+bqkRkKPA1TmVDgF+r6kPeRhVhNZ9o504rMQnnwjJQVc9X1XFAD2AlMA64zcMQvbAMeBC4HOgOzPQ2HE9VAG/hTDmS4f7/cbmqDgCuwJm36vcicqqnUYbfFUBbVT1eVS9Q1StU9URgALALuAi4ztMIPeJOmvkSznl4z+NwfsCST2T5rbv8TeV8RgCqugu42X17VzTdflPVf6vqnar6Rg2DxEYFVf1cVS9V1dnVbHsdeNF9e3VYA/OYqn6pqscMpaWqy4En3LdnhDeqiHEfzlxoE4F8j2P5gai5iEW6QKaVwLml0AFnWgljfFX2Wcv0NIrIUuYuiz2NwgMiMhz4FTBZVad6HY8vSz6RI9BpJaqWNaaqHu5yh6dRRAgRycb5xQ/wvpexhJuINMe53ZZH9c9MPWcDi0aOUE8rYaKIiHQAxrtv3/IwFM+IyE9xWsnG49T+TsL5gf0XVX3Hy9g88GecbihXqGpEju5tySdyhHpaCRMlRCQOeAVoDUyPxFssYTKSHzYsKAN+D/zDm3C8ISInAbcD77rPAiOS3XYzpvF7Gqc5/lairLFBVap6g6oKTsfyfsDDwL3AXBHp6GFoYeOOjfkicBCn5WzEsuQTOWwaCFNnIvII8DOc5vljVXWnxyF5TlULVXWFqv4apwXpII4dHaWp+gvOs79fqmpEP/uz226RY5O7DNW0EqaJE5G/Az8H9uAknrW17BKNXgQeAi4QkXhVLfU4noY2Dqc/2HUi4tu3qbe7vFlEzgfWqeoNYY2uCks+keMH00r4afFWl2klTBMmIn8DfgnsA05X1RUehxSp9uM8+4kDUnA6WzZ1MTgNL/zJcV9twhKNH3bbLUKo6lacMe0SgMt8t7vTSmTi3F75OrzRmUgiIvcDv8a5sJ6hqks8DimSjcJJPAdwxnVs0lQ1S1WluhdO02twhtcRVT3Ow1At+USYOk8rYaKLiPwJ+A3OxfQMVY3qWrCInCwi57st/ny3jQSec98+V9eBiU3DsttuEURVp4jIUzhD6SwVkc84OrBoMtVPK9GkicjxHE284AyiCfCXqqPzqmqTH/VBRC7k6DQg64Db/AzYvEpV7w9bYN7qDrwAHBCRRTh3BpKAbhz9f2UaTpNrE0Es+UQYVZ0kIl8Ct+Dct43FmRb8eeCpKKz1JOOMTuyrRzXrmrqUKv89xH1VZybOZIrRYCbwR+AUnP8nTsIZuXknTmfbV1T1Xc+iM37ZlArGGGPCzp75GGOMCTtLPsYYY8LOko8xxpiws+RjjDEm7Cz5GGOMCTtLPsYYY8LOko8xxpiws+RjmiQRyRIRFZFNQeyrImId4BoxERnj/h1neB2LqZ4lH2MikIiMdy+eL3odS1NjPy4igw2vY5qqXKAPzth4JvrMx/n7H/E6EFM9Sz6mSXInDVvldRzGG6p6BPv7RzS77WZCQkSGi8iDIrJQRHaJSImIbBeRKSLid8Rpd7//ishmESkWkb3uMf4gIu2qKd9HRJ4RkXUiUigi+0VkiYg8JCJdq5Sr8ZmPiAwQkXdEJE9EDovIIhGpdVZHEWklIneKyAIROejGsFxE7hWRxGrK3+vGca+IpIvIv0Rkm/tdN4rI/SLS3GefTTgjNYMzI6VWeb1YW4x+4u4lIi+557lERA6JyCb3HFziZ5/hIvKaG2+JiOwRkfdF5GSfcr3d2HaLSLyfY8WJyA63XH+fbfU5p11F5AU3xjIRedgtc8wzn8r9qryvel7VXfec+/6uGs7lbW6ZN/yVMQFQVXvZq94v4DOcGSMXA1OBKcBSQN31l1Wzz29xpvxVYBnwGs7w92vddWN8yl8LFLvb1gNv4EwzscxdN75K2Sx33aZqPnc0zu0Yxfl1/CowAygH/uGu12r2ywSWu9t3Ax8D7wHb3XWLgbY++9zrbnsO2IZzO/BNd9/D7rb3ffZ5CPjS3bYOZyroytcNQfxtBgAH3eOtxBnteQrOpIRHgP+rZp9fuX+bCmChG/PX7jkqB270KT/XPf5FfmI4z92+MITn9L9Anlv2TeAd4F63zBi3zIwq+/3IPYfqvqqe1xfdMse52zYCMX6+y0q3zGiv/9015pfnAdirabyAs4H0atZfAJTgTPfcssr6ce4/4EPABdXsNxTI9HlfipPIfoY7InuV7X2APlXeZ1FN8gFa4CQBBf5S9Tg4SakyIajPfgLMcbc9BrTwOeZ/Ki9oPvtVXigVeBZI8In5kLttpM9+46s7XpB/m+fdY/22mm2JwIk+685xy+cCw322jQTy3b9pzyrrb3L3edtPDG+4228N8Tl9oeo5rVJmDD7Jp8q2an9cVNk+2y1zfjXbTnO3LfP631xjf3kegL2a/gvnF6oC51VZ9527bmKAx3jXLX9/gOX9JZ9rOFqjiK1mv7/7ST6VF+SvqeYXMdAK2IWTINtWWV95odxS9eJaZfuT7va7fdaHMvlMc491XIDl57nlz/Gz/Q53+9+rrGsNFOLUTNv5lG8LFLnbUkJ4TvcCSX5irE/y+bFb5sNqtr3lbpvUEP9Woullz3xMyIhIqttE+CER+beIvOg+o6i8x9/TLdcBGIRzUXmp+qP94LixwBnu23/XM8zR7vI1rX5a5f/42e9cd/mWVjOhn6oexrk9FYdTS/P1uaoWVrO+8qF4R/8h19t8d/m0iJwhIs38FRSRVGAYzm26T/wUm+kuT6xcoar5OD8QEoCf+JS/AmgGTFXVvCrr63tOP1PVQ/6+Sz28jVPrO0tEcipXikgn4EKc2qq//09MgKy1mwkJEbkJ53lJyxqKJbvLru5yi58Lsq9U97hlqrou+CgB5xkDOPf0q7PJz/rKi9CDIvJgLZ+RVs26LX7KHnSXzf1sD4UHcWb6HIuTUIpF5DucJPKKqi6tUjbbXSYDZVL9NN2VfL/nCziJ5jrg0Srrr3OXL/qUr+853VzLPkFR1TJxprP/EzARuNPdNAHnmvlyAyW9qGLJx9SbiAwFnsJ5HvNrnAYH24Ajqqoi8hecxgWVVzKt40fUtXxDiHWXM/GfoCpVd1H0bPpzdZodny4iw3GezY3EqbUMB+4UkXtU9T63eOX3rKzJ1GSvz/vPcP7ux4vIAFVdKiK93M/ZCfyfT/n6ntNAfrgE6xng98D1IvJ7nL/fje62Jxvwc6OGJR8TCpfgJJZHVfWharZ393lfWQvoLCItAqj97MNpldVSRLqp6vp6xJrrLrP8bPe3fqu7fFNVn6jH53tGVefhPM9BRBKAq3AaQdwrIq+r6mqOfs9SVR1fx+NXiMh/cH5ojMdpMVd5jP+qapnPLhF7TlV1j4i8jtPC8nKcZ1YZOM+QVngaXBNhz3xMKKS4y62+G0QkjaPPawBQ1Z3AEpznA9fWdnD32cxn7tta++LUovJ5xRXusyRfvs8rKn3kLi+r5+cHqsRdNsgPRFUtUdUXcZpICzDQXZ+L00Q+VUTGBHHoF93lT9wEd7XP+qrCfU4rlYLT96iWco+5y0nuCyCikmRjZsnHhELlQ/Nrq3YKFJEknGa+barZ5w/u8kEROdd3o4gMEZHMKqv+jNO/5A4RGV9N+d4i0juAWKcAO3BqY/dKlYcabufJm/3s9y7wDTBaRJ4WkRTfAiLSQURuPGbP4FTW0PrU90AiMsm9/eW7Pgfo576telvr9+7yFRE5s5r9YkXkNKmm87CqrsFpPp2O86wpE/hGVZdVE9q7hPecVgro3KrqQpzkPBynocp2ar8VaQLldXM7ezX+F05T2i0c7Sj4Nk6Hv304F/rn3G33+ux3N0f7ayzB6ez5Af47mV6P86u1sql0sJ1MT8N5XqA4HQYnA18QWCfTJe72gzj9QSa733cZznOBnT773Fvdd6+yfTzV92Vp5p47xWnx9RJOS7+fBvH3+Y6jHXPfw2n6Pp2jHXZfrWafX+I8w1NgNfC++10/B/ZTQzN5nGcjWuV1aw2xhfycumXG4L+pdeXfeDdOx+Z/A//2c5wrq3yPe7z+t9aUXp4HYK+m8QLaA/8CNrgXta04zxMyarpYACe7SWQ7zq2mPThNg++hSp+QKuUH4LSq2ux+Tp57cf0b0KVKuSz8JB93+yD3Qrwf53nSd5UXU/wkH3dbc+AWnNt3eW7MO9wE8SBwkk/5Gi+U1NCfx43xA5wkXu6vXAB/m/OBp4Fv3fNbjPNj4ROcW17+evIPci/M63CS9SFgjXvebqju7+Pul8zRESSK/ZVrqHPqlhmD/+TTAqc/1wb3s2r6e6e520uADK//nTWll7gn2BhjjA8R+QXwMPCGql7ucThNiiUfY4yphogk44w7lwmMUKe1oAkRa2ptjDFViMivcUblGIWTeN60xBN6VvMxphFxh7+pri+VP/erqs1rUwfuNAyjcZ6PvQv8Sm1Eg5Cz5GNMIyIiWfgfGqg6p6rqjIaJxpjgWfIxxhgTdtbJ1BhjTNhZ8jHGGBN2lnyMMcaEnSUfY4wxYWfJxxhjTNj9f7yqNNK/oHDSAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<Figure size 432x288 with 0 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "sns.distplot(A2018_df['accident_severity']);\n",
+    "fig = plt.figure()\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 511,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<AxesSubplot:>"
+      ]
+     },
+     "execution_count": 511,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAIaCAYAAADMT13yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABKCElEQVR4nO3de7htVV3/8fcnBEQBFRU1boIYCWZyOYhaop5MMTROgCaKoBYFaFZewMwib4Doz0wUJQXvppCAhRdUbiKIXNQQOUaQcMAORFzkcD2yv78/5tyyXKy19lpn7c1ZZ/F++cxn7DXnGGOOtY/PY/vbd3xHqgpJkiRJkqRp8murewGSJEmSJEnzzYCHJEmSJEmaOgY8JEmSJEnS1DHgIUmSJEmSpo4BD0mSJEmSNHUMeEiSJEmSpKljwEOSJEmSpCmRZJskr0/ymSRLk8wkqSR7rY75kuyT5NtJbkmyIsmFSQ5OMjAekeQFSU5LcmOS25P8KMlbk6w77NofNGxHSZIkSZI08Q4EXj8J8yX5EHAQcCfwLWAlsBg4GlicZK+qmukx7s3AkcA9wJnATcCuwDuB3ZMsrqrb53q/GR6SJEmSJE2PHwFHAS8FtgbOWh3zJdmTJtixHHhKVe1eVUuAJwKXAUuA1/UYtxNwBHA78Myq+r2q2hvYCjgb2AV41zBrMMNDkiRJkqQpUVUf6/ycZHXN95a2PaSqLu+Y77okB9Jkbhya5INdWR6HAgGOrKrzO8atSPIq4HLgoCT/UFU3D1qAGR6SJEmSJGneJNkU2BG4Gzih+3lVnQVcCzyWJmNjdtw6wG7tx8/2GHclcB6wDvDCudZhwEOSJEmSJM2n7dv20qq6o0+fC7r6AmwDPAS4saquGGFcTwY8JEmSJEnSfNqyba8a0Ofqrr6dP19Nf73G9WTAQ5IkSZIkzaf12/a2AX1WtO0G8zCup4kpWnrBJktqda9BkiRJkrQwFl170njVMyfcyhuuXNC/add59BP+DDig49axVXXsQr5zTTcxAQ9JkiRJktRbG9xYUwIcs1kYDx3QZzab49Z5GNeTAQ9JkiRJksY1c8/qXsEk+WnbbjGgz2ZdfTt/3nzEcT1Zw0OSJEmSJM2n77ftdknW69NnUVdfgKXAHcBGSZ7QZ9zOPcb1ZMBDkiRJkqRx1czCXmuQqloGXAysA+zd/TzJrsCmwHLgvI5xdwNfbT++vMe4rYCnA3cDp861DgMekiRJkiQ9gCU5PMnSJIfP47Szcx2ZZOuOd20MfLj9eETVfaI5RwAFHJJk545x6wPH0cQxPlxVN8+1AGt4SJIkSZI0rpnJyMJIsgP3BhQAtm3bdyd54+zNqtqlo8/jgG3adj7mo6pOTHIMcCBwSZJvAiuBxcCGwMnA0d3vq6oLkhwKHAmcm+R04GZgV2Bj4HzgrX2+/q8w4CFJkiRJ0vTYEHhaj/tPvL/nq6qDkpwDHEwTsFiLpk7HccAxPbI7Zse9J8l/AG+gqfXxYOBK4J+A91bVXcMsPFULelTw0C7YZMlkLESSJEmSNO8WXXtSVvcaFtLdP7t0Qf+mXefXt5vq399CsIaHJEmSJEmaOm5pkSRJkiRpXBNSw0P3MsNDkiRJkiRNHTM8JEmSJEkaV+/6m1qNDHhIkiRJkjSumXtW9wrUxS0tkiRJkiRp6pjhIUmSJEnSuNzSMnHM8JAkSZIkSVPHDA9JkiRJksblsbQTxwwPSZIkSZI0dczwkCRJkiRpTGUNj4ljhockSZIkSZo6ZnhIkiRJkjQua3hMHDM8JEmSJEnS1DHDQ5IkSZKkcVnDY+KY4SFJkiRJkqaOGR6SJEmSJI1r5p7VvQJ1McNDkiRJkiRNHTM8JEmSJEkalzU8Jo4ZHpIkSZIkaeqY4SFJkiRJ0rhmzPCYNGZ4SJIkSZKkqWOGhyRJkiRJ47KGx8Qxw0OSJEmSJE0dMzwkSZIkSRqXNTwmjgEPSZIkSZLGVHXP6l6CurilRZIkSZIkTR0zPCRJkiRJGpdFSyeOGR6SJEmSJGnqmOEhSZIkSdK4LFo6cczwkCRJkiRJU8cMD0mSJEmSxmUNj4ljhockSZIkSZo6ZnhIkiRJkjSumXtW9wrUxQwPSZIkSZI0dczwkCRJkiRpXNbwmDhmeEiSJEmSpKljhockSZIkSeOaMcNj0pjhIUmSJEmSpo4ZHpIkSZIkjcsaHhPHDA9JkiRJkjR1zPCQJEmSJGlc1vCYOGZ4SJIkSZKkqWOGhyRJkiRJ4zLDY+KY4SFJkiRJ0pRIsk2S1yf5TJKlSWaSVJK9xpx3nyTfTnJLkhVJLkxycJL7xBWSPL595zDXs7rGHjZH/zuHXbMZHpIkSZIkjanqntW9hFkHAq+fzwmTfAg4CLgT+BawElgMHA0sTrJX1a8cU7MC+OSAKbcFFgG3Ahf16fND4Ac97q8cdt0GPCRJkiRJGtfkbGn5EXAUcCFNMOHjwK6rOlmSPWmCHcuBZ1XV5e39xwBnAEuA1wEfmB1TVTcA+w+Y8yvtj/9SVbf16XZyVR22qusGAx6SJEmSJE2NqvpY5+ck4075lrY9ZDbY0b7nuiQHAmcChyb5YFeWR09JNgGe3378+LiLG8SAhyRJkiRJ45r7b/01TpJNgR2Bu4ETup9X1VlJrgU2AXYBzh1i2v1p6oleWlXnz99q78uAhyRJkiRJ6mX7tr20qu7o0+cCmoDH9gwf8IC5szt2SHIk8AjgRuB84NSqunuIdwAGPCRJkiRJGt/k1PCYT1u27VUD+lzd1bevJLsCW9NkjHx6ju4vaq9O1yR5RVWdNde7wGNpJUmSJElSb+u3bb/CotCcyAKwwRDzvbptv9wWNu3lCpq6IU8FHgY8GngucBawKfCVJE8Z4l1meEiSJEmSNLYFruGR5ADggI5bx1bVsQv60nmUZENgr/bjcf36VVWvzI8zgDOSnAjsCbwb2H2udxrwkCRJkiRpwrXBjfs7wDGbvfHQAX1ms0BunWOuPwYeAlwDfH0V1/N2moDH85KsXVUrB3U24CFJkiRJ0rims4bHT9t2iwF9Nuvq28/sdpZPDHN8bR9L23Yd4FHA/wzqbA0PSZIkSZLUy/fbdrsk6/Xps6ir730k2RZ4GlDA8WOs55EdP6/o26tlwEOSJEmSpHHVzMJeq+MrVS0DLqbJqNi7+3l76sqmwHLgvAFTvaZtz6iqK8dY0kva9idVNdcWGgMekiRJkiQ9kCU5PMnSJIf3eDx778gkW3eM2Rj4cPvxiH7bVJKsDbyi/fjxOdaxeZJ9kqzbdT9J9u1Yy/sHf6OGNTwkSZIkSRrXhNTwSLID9wYiALZt23cneePszarapaPP44Bt2vZXVNWJSY4BDgQuSfJNYCWwGNgQOBk4esCSdgc2Bm4GvjTH8jcCPgt8JMnFwM9ojrvdDtiy7XN0VX10jnkAAx6SJEmSJE2TDWnqZXR74qpOWFUHJTkHOBjYFViLpoDoccAxcxQhnS1W+rmqunOOVy0DjqKpC7I1sDPNzpTlwBdojuI9fdh1G/CQJEmSJGlcE5LhUVVnAhlxzP7A/nP0+RzwuVVYz4tG6Pt/wJtHfUc/1vCQJEmSJElTxwwPSZIkSZLGtZpOUlF/ZnhIkiRJkqSpY4aHJEmSJEnjmpAaHrqXGR6SJEmSJGnqmOEhSZIkSdK4rOExcczwkCRJkiRJU8cMD0mSJEmSxmUNj4ljwEOSJEmSpHG5pWXiuKVFkiRJkiRNHTM8JEmSJEkal1taJo4ZHpIkSZIkaeqY4SFJkiRJ0rjM8Jg4ZnhIkiRJkqSpY4aHJEmSJEnjqlrdK1AXMzwkSZIkSdLUMcNDkiRJkqRxWcNj4pjhIUmSJEmSpo4ZHpIkSZIkjcsMj4ljhockSZIkSZo6ZnhIkiRJkjSuMsNj0pjhIUmSJEmSpo4ZHpIkSZIkjcsaHhPHDA9JkiRJkjR1zPCQJEmSJGlcVat7BepihockSZIkSZo6ZnhIkiRJkjQua3hMHDM8JEmSJEnS1DHDQ5IkSZKkcZnhMXEMeEiSJEmSNK4y4DFp3NIiSZIkSZKmjhkekiRJkiSNqWY8lnbSmOEhSZIkSZKmjhkekiRJkiSNy6KlE8cMD0mSJEmSNHXM8JAkSZIkaVye0jJxzPCQJEmSJElTxwwPSZIkSZLG5SktE8cMD0mSJEmSNHXM8JAkSZIkaVye0jJxzPCQJEmSJElTxwwPSZIkSZLGZYbHxDHDQ5IkSZIkTR0zPCRJkiRJGld5SsukMcNDkiRJkiRNHQMekiRJkiSNa2ZmYa8hJdkmyeuTfCbJ0iQzSSrJXuN8vST7JPl2kluSrEhyYZKDk/SMKyQ5rH1vv+vO+XxfL25pkSRJkiRpehwIvH4+J0zyIeAg4E7gW8BKYDFwNLA4yV5V1S8q80PgBz3ur1yg9/2SAQ9JkiRJksY1MzE1PH4EHAVcCFwEfBzYdVUnS7InTfBhOfCsqrq8vf8Y4AxgCfA64AN9pji5qg67H9/3S25pkSRJkiRpSlTVx6rqzVX1xaq6Yh6mfEvbHjIbfGjfcx1NNgnAoaNsNbm/3mfAQ5IkSZKkcdXMwl6rQZJNgR2Bu4ETup9X1VnAtcBjgV0m7X1uaZEkSZIkaVyTs6VlPm3ftpdW1R19+lwAbNL2PbfH8x2SHAk8ArgROB84taruXqD3/ZIBD0mSJEmS1MuWbXvVgD5Xd/Xt9qL26nRNkle0GRvz/b5fckuLJEmSJEljqpmZBb2SHNAezTp7HXA/fK312/a2AX1WtO0GXfevoKnH8VTgYcCjgecCZwGbAl9J8pR5fN99mOEhSZIkSdKEq6pjgWNX9zqGVVWf7nH7DOCMJCcCewLvBnZfqDWY4SFJkiRJ0rhmamGv1WM2m+KhA/rMZmXcOsK8b2/b5yVZe6HeZ8BDkiRJkiT18tO23WJAn826+g5jaduuAzxqod7nlhZJkiRJksa1mo6OXWDfb9vtkqzX5+SURV19h/HIjp9XdPw8r+8zw0OSJEmSJN1HVS0DLqbJxNi7+3mSXWkKkC4Hzhth6pe07U+q6pdbU+b7fQY8JEmSJEka1xpcwyPJ4UmWJjm8x+PZe0cm2bpjzMbAh9uPR1Tdm+KSZPMk+yRZt+s9SbJvx5zvn4/39eOWFkmSJEmSpkSSHbg3MACwbdu+O8kbZ29W1S4dfR4HbNO2v6KqTkxyDHAgcEmSbwIrgcXAhsDJwNFdwzYCPgt8JMnFwM9ojpHdDtiy7XN0VX10nt7XkwEPSZIkSZLGNTMxNTw2BJ7W4/4TV3XCqjooyTnAwcCuwFo0hUePA47pkW2xDDiKpt7G1sDONDtMlgNfAI6tqtPn8X09GfCQJEmSJGlKVNWZQEYcsz+w/xx9Pgd8bsj5/g948yhrGOd9/RjwkCRJkiRpXAtcZ0Ojs2ipJEmSJEmaOmZ4SJIkSZI0ruHKSuh+ZIaHJEmSJEmaOmZ4SJIkSZI0Lmt4TBwzPCRJkiRJ0tQxw0OSJEmSpDHVjDU8Jo0ZHpIkSZIkaeqY4SFJkiRJ0ris4TFxDHhIkiRJkjQuAx4Txy0tkiRJkiRp6pjhIUmSJEnSuMqipZPGDA9JkiRJkjR1zPCQJEmSJGlc1vCYOGZ4SJIkSZKkqWOGhyRJkiRJYyozPCaOGR6SJEmSJGnqmOEhSZIkSdK4zPCYOGZ4SJIkSZKkqWOGhyRJkiRJ45qZWd0rUBczPCRJkiRJ0tQxw0OSJEmSpHFZw2PimOEhSZIkSZKmjhkekiRJkiSNywyPiWOGhyRJkiRJmjpmeEiSJEmSNKYqMzwmjRkekiRJkiRp6pjhIUmSJEnSuKzhMXHM8JAkSZIkSVPHDA9JkiRJksZlhsfEMcNDkiRJkiRNHTM8JEmSJEkaU5nhMXHmJeCRZH1gG2BZVV0/H3NKkiRJkrTGMOAxcYbe0pLkOUk+nGT7rvv7A9cB3wOuTfLO+V2iJEmSJEnSaEap4fEnwKuBn87eSLIlcCywHnBte/stSRbP1wIlSZIkSZp4Mwt8aWSjBDx2Bn5YVTd13NuXZlvMIVW1OfB0oICD5m+JkiRJkiRJoxmlhsejgf/ouvdc4E7gaICqujDJucBvz8/yJEmSJEmafBYtnTyjZHg8BFg5+yHJrwE7Ad+rqjs6+i0DHjc/y5MkSZIkSRrdKBke1wNbd3zehSYI8p2ufusCdyBJkiRJ0gOFGR4TZ5QMj/OA7ZO8JMmGwFtp6nV8o6vfk4CfzdP6JEmSJEmSRjZKhsdRwIuBz7efA1xcVWfOdkiyKU3A4xPztD5JkiRJkiafJ6lMnKEzPKrqe8DuwFnAZTRBjT/o6vZS4Bbum/UhSZIkSZJ0vxklw4Oq+gYDghlV9T7gfeMuSpIkSZKkNYmntEyeoTM8krwyyTOG6LdLkleOtyxJkiRJkqRVN0rR0k8AfzJEv9cAx6/SaiRJkiRJWhPNLPA1pCTbJHl9ks8kWZpkJkkl2Wucr5dknyTfTnJLkhVJLkxycJL7xBWS/FqSZyR5Z5Jzk9yUZGWS65J8JckeA95zWLveftedw655pC0tQ8oCzClJkiRJkuZ2IPD6+ZwwyYeAg4A7gW8BK4HFwNHA4iR7VVVnWGYr4DvtzzcC3wNuau/vBuyW5BPAq6uq316gHwI/6HF/5bDrXoiAx6bAigWYV5IkSZKkiTRBNTx+RHPK6oXARcDHgV1XdbIke9IEO5YDz6qqy9v7jwHOAJYArwM+0DGsgNPbdXyjqu7pmG9X4FRgf+Bs+u8QObmqDlvVdcMcAY8etTi2HlCf40E0R9IuBi4YZ1GSJEmSJGl0VfWxzs/J2Jsw3tK2h8wGO9r3XJfkQOBM4NAkH5zN8qiqK2hiA73Wd1aSI4B3AK9gAUtizJXh8QmayMysZ7ZXP6HZXfTe8ZYlSZIkSdIaZIQ6G2uKJJsCOwJ3Ayd0P2+DF9cCmwC7AOcOOfX323bT+VhnP3MFPD7FvQGP/YAruHcfTre7gWuBU6rqh/OzPEmSJEmStJps37aXVtUdffpcQBPw2J7hAx5PbNv/GdBnhyRHAo+gqQNyPnBqVd095DsGBzyqav/Zn5PsB5xTVa8ednJJkiRJkh4IagozPIAt2/aqAX2u7uo7UJKHAH/RfvzXAV1f1F6drknyiqo6a5h3jXIs7ZbAm0boL0mSJEmS5kGSA9qjYGevA+6H167ftrcN6DN7aMkGQ875YZr4wo+BY3s8v4KmbshTgYcBjwaeC5xFswXmK0meMsyLhj6lpaoGRXQkSZIkSXrgWuAMj6o6lt4BgjVGkrfRlMu4BXhJVd3V3aeqPt1j6BnAGUlOBPYE3g3sPtf7Rj6WNsmDgZ2AXwce3K9fVX1q1LklSZIkSVoTTemWltnsjYcO6DObBXLroImS/DXw9nbO3arq0lVYz9tpAh7PS7J2Va0c1HmkgEeSvwL+DthwiO4GPCRJkiRJWnP9tG23GNBns66+95HkdcD7gDuA3avqvFVcz9K2XQd4FIOLng4f8Ejy6naBAJe1L/r5KixQkiRJkqTpMp0ZHrPHx26XZL0+J7Us6ur7K5IcDPwTcCfw4mELjvbxyI6fV/Tt1Rolw+MvaI6o3beqPjfqqiRJkiRJ0pqjqpYluRjYAdibrp0cSXalKSS6HLhP1kaSPweOBu4C9qiqb465pJe07U+qauAWGhjtlJZtgHMNdkiSJEmS9KtqZmGvhZTk8CRLkxze4/HsvSOTbN0xZmOaE1cAjqj61VUm+dP2+V3Akqr6+hDr2DzJPknW7bqfJPt2rOX9w3yvUTI8buPe83UlSZIkSdKESbID9wYiALZt23cneePszarapaPP42iSHB7XPV9VnZjkGOBA4JIk3wRWAotp6nueTJPF0bmGpwIfBQL8N/DSJC/tsdwbquqNHZ83Aj4LfKTNLPkZzXG329EcZQtwdFV9tN/37zRKwONc4Mkj9JckSZIk6QFhgk5p2RB4Wo/7T1zVCavqoCTnAAcDuwJr0dT1PA44pju7A3g4TbAD4Dfbq5ergM6AxzLgKJq6IFsDO9PsTFkOfAE4tqpOH3bdqarhOiY70gQ9DqiqTw77gmFdsMmS4RYiSZIkSVrjLLr2pMzda811/eJdF/Rv2o2/ddZU//4WwigZHg8F/h9wXJIXAqfSbHHpGceqqrPHX54kSZIkSZNvgjI81Bol4HEmzSktAfZqr35qxLklSZIkSZLmzShBibNpAhmSJEmSJKlTueNk0gwd8KiqZy/gOiRJkiRJkuaN204kSZIkSRqTNTwmzyoHPJKsAzwSuKuqbpy/JUmSJEmSJI3n10YdkOSVSS4AbgOuAd7b8WxJks8l2XIe1yhJkiRJ0kSrmSzopdGNFPBI8gngeGBH4A6aE1s6/QT4Ywaf4CJJkiRJkrSghg54JNkPeCXwQ2An4GHdfarqx8AyYLf5WqAkSZIkSZOuZhb20uhGqeHxp8CtwIuq6lqApGdazSXAtuMvTZIkSZIkadWMEvD4LeC7s8GOAW4GHrvKK5IkSZIkaQ1TZZ2NSTNKDY+1gRVD9NsYWLlqy5EkSZIkSRrfKBkeVwNPHtQhyVrAdsAV4yxKkiRJkqQ1iXU2Js8oGR5fB7ZO8ooBff4MeBxw6lirkiRJkiRpDeKxtJNnlAyPo4D9gOOSbAuc2N5/cJInAXsDfwP8H/DBeV2lJEmSJEnSCIbO8Kiqa4AlNHU8DgEuAAp4KfAj4DDgTmCvqrp+3lcqSZIkSdKEqlrYS6MbZUsLVXUGzZGz7wUuBe4A7qap2fFB4MlVddZ8L1KSJEmSJGkUo2xpAaCqltNkeBwy/8uRJEmSJGnNY52NyTNShockSZIkSdKaYOQMD0mSJEmS9KvM8Jg8fQMeSU4fY96qqsVjjJckSZIkSVplgzI8nt3n/mx92O7wVed9a8hKkiRJkh4wPEll8gwKeDynx709gNcDFwGfAX7a3n888ApgR+ADwMnztD5JkiRJkqSR9Q14dB8vm+RZwGuBN1XV+3oM+UCSvwLegwEPSZIkSdIDiDU8Js8op7T8LfDjPsEOAKrq/cCPgbeOuzBJkiRJkqRVNcopLTsBXxmi3yXAH6zaciRJkiRJWvNUmeExaUbJ8Fgb2GKIflvgcbeSJEmSJGk1GiXg8R/AM5K8sF+HJLsBzwB+OO7CJEmSJElaU9TMwl4a3SgBj6Nojpw9KcnHkzw3yZbt9ZwkH+PeYqXvne+FSpIkSZIkDWvorSdVdXKSQ4F3Afu3V6cAM8Bbq+rkeVqfJEmSJEkTb8YaHhNnlAwPquo9wCLgE8CVwN3t9d/A8cDOVXXEPK9RkiRJkiRpJCMXF62qHwCvmf+lSJIkSZK0ZvKUlskzUoaHJEmSJEnSmsDjYyVJkiRJGlPNmOExafoGPJIcBxTwN1V1Xft5WFVVbnuRJEmSJD0gVK3uFajboAyP/WkCHkcC13HfU1kGKazzIUmSJEmSVpNBAY9Xte3/dH2WJEmSJEkd3NIyefoGPKrqk4M+S5IkSZIkTSqLlkqSJEmSNKYZj6WdOEMfS5tk3SSbJ9lgQJ8N2j7rzM/yJEmSJEmSRjd0wAN4PfDfwI4D+uzY9nntOIuSJEmSJGlNUpUFvTS6UQIeLwaWVdWZ/Tq0z64B/nC8ZUmSJEmSJK26UWp4PAH4wRD9fgw8ZZVWI0mSJEnSGqhqda9A3UbJ8NgIuHGIfjcCj1y15UiSJEmSJI1vlIDHDcDWQ/TbGrh5lVYjSZIkSdIaaKayoNewkmyT5PVJPpNkaZKZJJVkr3G+X5J9knw7yS1JViS5MMnBSQbGFZK8IMlpSW5McnuSHyV5a5J15xj3tCQnJbk+yZ1JLk/yniQPG3bNowQ8zgd2SrJowIIWATsB3xthXkmSJEmSND8OBP4ReDmwDTB2xdMkHwI+S/P3/reBbwC/ARwNnNgv6JHkzcBXgecCFwOnAhsD7wTOTPKQPuNeBnwH2AP4T+AUYB3gTcCFSTYeZt2jBDw+SvOLOjnJ83os6HnASe3Hj4wwryRJkiRJa7QJOqXlR8BRwEtpdmCcNc73SrIncBCwHHhKVe1eVUuAJwKXAUuA1/UYtxNwBHA78Myq+r2q2hvYCjgb2AV4V49xmwIfp4k/7FFVv1NVL6WpK/qF9jt9dJi1Dx3wqKqvt5M+DvhakqvatJTTklwFfA34deBjVfWVYeeVJEmSJEnzo6o+VlVvrqovVtUV8zDlW9r2kKq6vOM919FkkwAc2iPL41CaoMWRVXV+x7gVwKuAGeCgJA/vGveXwHrAJ6vqlI5xvwAOAH4O7JFk27kWPkqGB1V1IPDXNIVJNwN+r702A/4PeENV/dkoc0qSJEmStKarWthrdWizLXYE7gZO6H5eVWcB1wKPpcnYmB23DrBb+/GzPcZdCZxHs03lhV2P9xgw7ufAv3X162ukgEf7gn+k+TJPB/6YJk3m6cCvV9X7R51PkiRJkiRNpO3b9tKquqNPnwu6+kJTO+QhwI0DskzuMy7JhjRbVzqfD/O+nh40V4dequoemiKm58/VV5IkSZKkaTfKSSprkC3b9qoBfa7u6tv589X012vc49v25jabY9hxPY2c4TGfkhzQHmVz4Um3/XR1LkWSJEmSpInV+fdzex1wP7x2/ba9bUCfFW27wWoc19PQAY8kr01yT5LdB/TZve0zVB2Pqjq2qnaqqp2WPPTxwy5FkiRJkqSJstCntHT+/dxex67u7zzpRsnw2AO4nubc3H6+Avwv8EdjrEmSJEmSJK1+s9kUDx3QZzYr49bVOK6nUWp4/Cbwo6r+9WGraibJJcCTRphXkiRJkqQ12pTW8Php224xoM9mXX07f958xHGztUIenmTDPnU8eo3raZQMj0cD1w3R73pg4xHmlSRJkiRJk+f7bbtdkvX69FnU1RdgKXAHsFGSJ9x3CAA7d4+rqluA2VNdFt1nRJ9x/YwS8LiZwdGZWZtybxqKJEmSJElTrxb4Wh2qahlwMbAOsHf38yS70sQAlgPndYy7G/hq+/HlPcZtBTwduJv7ls04ZcC4DYEXtR9Pmmv9owQ8LgZ2SfLEfh3aZ09niEiLJEmSJEnTYqayoNdCSnJ4kqVJDu/xePbekUm27hizMfDh9uMRVTXTNe4ImljNIUl27hi3PnAcTTziw1V1c9e4f6TJDtkvyYs7xj0I+CiwIXByVf14ru81SsDjeJqaH6ck+c3uh0m2AU4G1mr7SpIkSZKk+1GSHZJ8d/YCdmgfvbvrfqfHAdu07a+oqhOBY4DHApck+bckXwIuB7aliQMc3WPcBcChwEOAc5OcluSLNFtWdgXOB97aY9wy4DU0wZKTk5yd5F+A/wL+uG2HOhl26KKlVfXFJC+nSR+5JMl5NPtyoPnFPIMm2HFqVX1u2HklSZIkSVrT1eQULd0QeFqP+313a8ylqg5Kcg5wME2wYi2aeMBxwDE9sjtmx70nyX8Ab6CpyfFg4Ergn4D3VtVdfcZ9PsmVwFuAZ7bfZxlwFPCuttbHnDLg0JX7dk7Wbl/w5zR7eDqtBD4CvKndrzOSCzZZsrq2JUmSJEmSFtiia0+amIjAQvjOY/da0L9pn7n8xKn+/S2EUY6lpapWAn+Z5F3Ac2mOpingauD0qvrf+V+iJEmSJEmTrWeKg1arkQIes9rAxhfmeS2SJEmSJEnzYpUCHpIkSZIk6V6FO04mzSoFPJI8FNiaphhKz3/Vqjp7jHVJkiRJkiStspECHu2Zux8Afp/BR9rWqHNLkiRJkrSmmvEYjokzdFAiyabAucCjgJ+1YzcGzqPJ9ng0TaDjPJoTWyRJkiRJklaLQVka3Q6lCXa8o6o2Bb4KVFU9s6oeAzwf+G/gbpoMEEmSJEmSHhBmyIJeGt0oAY/nA8uAf+j1sKq+0fZ5BvDm8ZcmSZIkSZK0akYJeGwK/KCqZo8XngFIsvZsh6q6AjgLeNm8rVCSJEmSpAlXZEEvjW6UgMedwF0dn1e07cZd/W4EthxnUZIkSZIkSeMYJeBxLbB5x+f/atunz95IEmB74JbxlyZJkiRJ0pphZoEvjW6Uo2O/B+yV5MFVdSfwtfb++5PcBlwDHAg8ETh1fpcpSZIkSZI0vFEyPE4F1gN2B6iqy4GPA5sA/w78APhzmiNp3zqvq5QkSZIkaYJZw2PyDJ3hUVX/CqzddftA4CfAXsBGwFLg8Kq6ZN5WKEmSJEmSNKJRtrTcR1XdA7yvvSRJkiRJekCyzsbkGWVLiyRJkiRJ0hphrAwPSZIkSZJkhsckMuAhSZIkSdKYLCw6edzSIkmSJEmSpo4ZHpIkSZIkjWnGBI+JY4aHJEmSJEmaOmZ4SJIkSZI0phlreEwcMzwkSZIkSdLUMcNDkiRJkqQx1epegO6jb8AjyXFjzFtV9ZoxxkuSJEmSJK2yQRke+48xbwEGPCRJkiRJDwgzq3sBuo9BAY9X3W+rkCRJkiRJmkd9Ax5V9cn7cyGSJEmSJK2pZuIpLZPGU1okSZIkSdLU8ZQWSZIkSZLG5Cktk2fkgEeSBwPPAX4D2BDolbdTVfWOMdcmSZIkSZK0SkYKeCTZE/gIsNGgbjTBLQMekiRJkqQHBE9pmTxDBzySPA34F5p/x88DTwZ+CzgC2Bp4HvAw4OPANfO+UkmSJEmSpCGNkuHxRpoip3tU1alJjgd+q6reCpDkUcDxwAuBHeZ9pZIkSZIkTagZD2mZOKOc0vIM4EdVdWqvh1V1A7APsC7wD/OwNkmSJEmSpFUySobHo4DvdHz+BUCS9arqDoCqujXJ2cBu87dESZIkSZIm20zP8zy0Oo2S4XETTfbGrJvbdtOufgVsPMaaJEmSJEmSxjJKwGMZsHnH5x/RnMiy++yNJA8Ffge4dl5WJ0mSJEnSGqAW+NLoRtnScibw+iSPrqr/Bf4duB04PMljaU5meSXN1pcvzfdCJUmSJEmaVBYtnTyjBDxOAJ4KbA+cVlX/l+QNwIdpTnCBJuNjGfC2+VykJEmSJEnSKIYOeFTV94Dndd37aJKLgD2BjYClwPFVdfN8LlKSJEmSpEk2s7oXoPsYJcOjp6q6ELhwHtYiSZIkSZI0L4YuWprk75K8eIh+L0ryd+MtS5IkSZKkNYdFSyfPKKe0HAbsMUS/FwN/vyqLkSRJkiRJmg+jBDyGtRYGoCRJkiRJDyAzWdhrVEn2SfLtJLckWZHkwiQHJxk5DpBkoySHJ7ksyR1JbkpydpJ9+/R/fJIa8npW19jD5uh/57DrHruGRw9PAH6+APNKkiRJkqQ5JPkQcBBwJ/AtYCWwGDgaWJxkr6oaqs5qkq2A04EtgOuA04CHAU8DfjfJYuBVVdWZ+LAC+OSAabcFFgG3Ahf16fND4Ac97q8cZt0wR8CjRy2Opw6oz/Eg4EnA7wBnDrsASZIkSZLWdJNySkuSPWmCHcuBZ1XV5e39xwBnAEuA1wEfGHLKz9MEO04E9quq29v5ngR8FdgP+A7wz7MDquoGYP8Ba/xK++O/VNVtfbqdXFWHDbnGnubK8DiMZnvKbALNU9trkNuBt4+zKEmSJEmStEre0raHzAY7AKrquiQH0iQoHJrkg3NleSR5OrAzcAtwwGywo53vsiRvBE4A3pbkY11ZHv3m3AR4fvvx4yN8r5HNFfB4O/cGPP6OJp3klD597wauBb5eVdfN1wIlSZIkSZp0k5DhkWRTYEeav89P6H5eVWcluRbYBNgFOHeOKRe17UVVdVOP56e17WY0gZHzh1jm/jT1RC+tqmH6r7KBAY/O9JF2K8sPquofFnJBkiRJkiRplWzftpdW1R19+lxAE/DYnrkDHuu37Q19nt9KE1xZhybQMmzAA+bO7tghyZHAI4Ab27lPraq7h3gHMELR0qpaiBNdJEmSJEla49UqnKSyALZs26sG9Lm6q+8g17ftVn2eb0oT7BhqviS7AlvTBEk+PUf3F7VXp2uSvKKqzprrXTDGsbRpPKq9DIZIkiRJkrRAkhzQHi07ex3Qo9tsRka/QqDQnKACsMEQrz2DpszFjkl26vH8wI6fNxxivle37Zfbwqa9XEFTh+SpNKfBPBp4LnAWTYDlK0meMsS7Rj+WNsnzgDfSnMby4Pb2nUm+Dbyvqr4x6pySJEmSJK3JFrqGR1UdCxy7wK/pfucVST4D7AuckuS1NEVPN6A5neVNNMfErs0cv4IkGwJ7tR+PG/DOXpkfZwBnJDkR2BN4N7D7XOsfKTMjyT8AXwOeB6xHE+mp9uffB76W5LBR5pQkSZIkSfNiNnvjoQP6zGaB3DrknAcCJwO/DnyJpp7GVTSHnHwJOLXtd+Mc8/wx8BDgGuDrQ7672+yJsM9LsvZcnYfO8EjyAuBtNMfOfpAmIvPT9vHjaVJTXktzHM15VbWqX0CSJEmSpDXKJJzSwr1/o28xoM9mXX0HqqrbgCXtEbUvAB5HE9z4elWdkWS28Oklc0w1u53lE3MdhzvA0rZdB3gU8D+DOo+ypeV1wD3AC6vq7K5nlwNvSfJV4PS2rwEPSZIkSZLuP99v2+2SrNfnpJZFXX2HUlXnAed13kuyAU2tjV/QbDvpKcm2wNNodogcP8p7uzyy4+cVfXu1RtnSsjPwnR7Bjl9qn32b5otIkiRJkvSAUAt8DbWGqmXAxTQZEHt3P29PSdkUWE5X8GIVHURT4uKEqrpuQL/XtO0ZVXXlGO97Sdv+pKrm3JIzSsBjA5q9NnP5GcNVe5UkSZIkSfPr8LY9MsnWszeTbAx8uP14ROe2kiSvTbI0yae6J0uyTZJHdN1LktcA76DZ3vKGfotpa228ov348UELT7J5kn2SrNvjfft2fLf3D5pn1ihbWq4Hhjn65cnA/44wryRJkiRJa7SZrO4VNKrqxCTH0BQbvSTJN2lOUllMc3TsycDRXcMeBWxDk/nR7WXA3yS5CFgGrAXsBGwOXAfsVlWDamnsDmwM3ExT5HSQjYDPAh9JcjH3JlRsB2zZ9jm6qj46xzzAaAGPM4GXJ3l9VX2gV4ckrwN+C+h1jIwkSZIkSVNpQoqWAlBVByU5BzgY2JUmSLGU5vCRY0YsGno6TWLDjsBv09T2vJKmFsf7q+qWOcbPFiv9XFXdOUffZcBRNHVGtqYprfFrNIGYLwDHVtXpwy48Vb13AyU5Djinqo5rP28LXESzF+gc4FPAf9NsJ9oKeCXwO8BdwE5V9eNhFwFwwSZLht2WJEmSJElawyy69qQJyYFYGO/f/BUL+jftX139man+/S2EQRke+7ftcQBV9eMkL6XJ3vhdmuBGp9Cc47vvqMEOSZIkSZLWZJOU4aHGKFtaqKovJ/kN4ADgWcAm7aNrgbOAf56jMqskSZIkSdKCGyngAdAGNN6xAGuRJEmSJGmNZI2GyTPKsbSSJEmSJElrhJEzPCRJkiRJ0q+alGNpda+5Ah57JXn2KsxbVfWEVRgnSZIkSZI0trkCHuu316jcviRJkiRJesDwlJbJM1fA42vAkffHQiRJkiRJkubLXAGP5VV11v2yEkmSJEmS1lBuc5g8ntIiSZIkSZKmjqe0SJIkSZI0phlzPCaOGR6SJEmSJGnqmOEhSZIkSdKYPKVl8vQNeFSV2R+SJEmSJGmNZIaHJEmSJEljsoLH5DGLQ5IkSZIkTR0zPCRJkiRJGpM1PCaPGR6SJEmSJGnqmOEhSZIkSdKYZrK6V6BuBjwkSZIkSRrTjGVLJ45bWiRJkiRJ0tQxw0OSJEmSpDGZ3zF5zPCQJEmSJElTxwwPSZIkSZLG5LG0k8cMD0mSJEmSNHXM8JAkSZIkaUye0jJ5zPCQJEmSJElTxwwPSZIkSZLGZH7H5DHDQ5IkSZIkTR0zPCRJkiRJGpOntEweMzwkSZIkSdLUMcNDkiRJkqQxeUrL5DHDQ5IkSZIkTR0zPCRJkiRJGpP5HZPHDA9JkiRJkjR1zPCQJEmSJGlMntIyeczwkCRJkiRJU8cMD0mSJEmSxlRW8Zg4ZnhIkiRJkqSpY4aHJEmSJEljsobH5DHDQ5IkSZIkTR0zPCRJkiRJGtOMNTwmjgEPSZIkSZLGZLhj8rilRZIkSZIkTR0DHpIkSZIkjWmGWtBrVEn2SfLtJLckWZHkwiQHJxk5DpBkoySHJ7ksyR1JbkpydpJ9B4w5LEkNuO5c6PW7pUWSJEmSpCmS5EPAQcCdwLeAlcBi4GhgcZK9qmqog2WSbAWcDmwBXAecBjwMeBrwu0kWA6+qqn5RmR8CP+hxf+VCr9+AhyRJkiRJY5qUY2mT7EkTLFgOPKuqLm/vPwY4A1gCvA74wJBTfp4m2HEisF9V3d7O9yTgq8B+wHeAf+4z/uSqOmx1rN8tLZIkSZIkTY+3tO0hs8ECgKq6Djiw/XjoMFtDkjwd2Bm4BThgNtjRzncZ8Mb249uSZD4Wzzyu34CHJEmSJEljqgX+zzCSbArsCNwNnHCfNVadBVwLPBbYZYgpF7XtRVV1U4/np7XtZjSBkbHM9/oNeEiSJEmSNB22b9tLq+qOPn0u6Oo7yPpte0Of57fSBCegCVT0skOSI5Mcm+SIJEuSrNOn77yu3xoekiRJkiSNaUJqeGzZtlcN6HN1V99Brm/brfo83xSYDV70m+9F7dXpmiSvaDM2Os3r+s3wkCRJkiRpwiU5oD2adfY6oEe32YyM2wZMtaJtNxjitWcABeyYZKcezw/s+HnDrmdX0NTjeCrNqS6PBp4LnEUTKPlKkqd0jZnX9ZvhIUmSJEnSmIats7HK81cdCxy7oC+57zuvSPIZYF/glCSvBc6kCTbsB7yJ5sjYtelKcqmqT/eY8gzgjCQnAnsC7wZ2X6j1G/CQJEmSJGk6zGY/PHRAn9ksiluHnPNAmgDHHsCXup59kWZLyx7AjUPOB/B2moDH85KsXVUr2/vzun4DHpIkSZIkjWlCanj8tG23GNBns66+A1XVbcCS9ojaFwCPowlufL2qzkhybtv1khHWubRt1wEeBfxP15rmZf0GPCRJkiRJmg7fb9vtkqzX56STRV19h1JV5wHndd5LsgFNjY5f0GxXGdYjO35e0fHzvK7foqWSJEmSJI1ppmpBr2FU1TLgYprMib27nyfZlaZg6HK6gher6CBgPeCEqrpuhHEvadufVNUvt6bM9/oNeEiSJEmSND0Ob9sjk2w9ezPJxsCH249HVNVMx7PXJlma5FPdkyXZJskjuu4lyWuAd9Bsb3lD1/PNk+yTZN0e4/btWOP752P9/bilRZIkSZKkMS3sGS3Dq6oTkxxDU2z0kiTfpDlJZTHN0bEnA0d3DXsUsA1N5kS3lwF/k+QiYBmwFrATsDlwHbBbVf1P15iNgM8CH0lyMfAzmsKn2wFbtn2OrqqPztP6ezLgIUmSJEnSFKmqg5KcAxwM7EoTpFgKHAccM0x2RIfTgScDOwK/DdwDXAkcD7y/qm7pMWYZcBRNvY2tgZ1pdpgsB74AHFtVpy/0+lND7gVaaBdssmQyFiJJkiRJmneLrj0pq3sNC2mfLRb2b9rPXTXdv7+FYA0PSZIkSZI0ddzSIkmSJEnSmGpiqnholgEPSZIkSZLGNEpRDN0/3NIiSZIkSZKmjhkekiRJkiSNacYtLRPHDA9JkiRJkjR1zPCQJEmSJGlMFi2dPGZ4SJIkSZKkqWOGhyRJkiRJY/KUlsljhockSZIkSZo6ZnhIkiRJkjSmKmt4TBozPCRJkiRJ0tQxw0OSJEmSpDHNeErLxDHDQ5IkSZIkTR0zPCRJkiRJGpOntEweMzwkSZIkSdLUMcNDkiRJkqQxlTU8Jo4ZHpIkSZIkaeqY4SFJkiRJ0pg8pWXymOEhSZIkSZKmjhkekiRJkiSNqcoMj0ljhockSZIkSZo6ZnhIkiRJkjSmmdW9AN2HAQ9JkiRJksbksbSTxy0tkiRJkiRp6pjhIUmSJEnSmDyWdvKY4SFJkiRJkqaOGR6SJEmSJI3JY2knjxkekiRJkiRp6pjhIUmSJEnSmKzhMXnM8JAkSZIkSVPHDA9JkiRJksZUZnhMHDM8JEmSJEnS1DHDQ5IkSZKkMc14SsvEMcNDkiRJkiRNHTM8JEmSJEkak/kdk8cMD0mSJEmSNHXM8JAkSZIkaUwz5nhMHDM8JEmSJEnS1DHDQ5IkSZKkMZnhMXnM8JAkSZIkSVPHDA9JkiRJksZUZYbHpDHDQ5IkSZIkTR0zPCRJkiRJGpM1PCaPGR6SJEmSJI2pFvg/o0qyT5JvJ7klyYokFyY5OMnIcYAkGyU5PMllSe5IclOSs5Ps26f/ryV5RpJ3Jjm37b8yyXVJvpJkjwHvOixJDbjuHHbdZnhIkiRJkjRFknwIOAi4E/gWsBJYDBwNLE6yV1XNDDnXVsDpwBbAdcBpwMOApwG/m2Qx8Kr61SImWwHfaX++EfgecFN7fzdgtySfAF5d/Yuf/BD4QY/7K4dZNxjwkCRJkiRpbJNStDTJnjTBjuXAs6rq8vb+Y4AzgCXA64APDDnl52mCHScC+1XV7e18TwK+CuxHE9z4544xRRMkOQr4RlXd07G+XYFTgf2Bs4Hj+7z35Ko6bMg19uSWFkmSJEmSpsdb2vaQ2WAHQFVdBxzYfjx0mK0tSZ4O7AzcAhwwG+xo57sMeGP78W1J0vHsiqpaXFVf6wx2tM/OAo5oP75itK82GgMekiRJkiSNaYZa0GsYSTYFdgTuBk7oft4GG64FHgvsMsSUi9r2oqq6qcfz09p2M5rAyLC+37abjjBmZG5pkSRJkiRpOmzftpdW1R19+lwAbNL2PXeO+dZv2xv6PL+VJriyDk2g5fwh1/nEtv2fAX12SHIk8AiaOiDnA6dW1d1DvsOAhyRJkiRJ45qQGh5btu1VA/pc3dV3kOvbdqs+zzelCXYMOx9JHgL8RfvxXwd0fVF7dbomySvaTJU5uaVFkiRJkqTpMJuRcduAPivadoMh5juDpgDpjkl26vH8wI6fNxxiPoAP0wRHfgwc2+P5FTR1SJ5KcxrMo4HnAmfRBFi+kuQpw7zIgIckSZIkSWNa6BoeSQ5IcmHHdcBCf6equgL4DBDglCRLkjwiyeZJ3ga8iXuPiZ3zmNt2zH40RVBfUlV39Xjnp6vqiKr6YVX9vKpuqKozqurZNBkhDwHePcz63dIiSZIkSdKEq6pj6Z0R0Wk2e+OhA/rMZoHcOuSrD6TJBtkD+FLXsy/SbGnZg6bORl9J/hp4e7vG3arq0iHf3+ntwJ7A85KsXVUrB3U24CFJkiRJ0phqyJNUFthP23aLAX026+o7UFXdBixpj6h9AfA4muDG16vqjCSzhU8v6TdHktcB7wPuAHavqvOGeXcPS9t2HeBRDC56asBDkiRJkqQpMXvc63ZJ1utzUsuirr5DaYMUvxKoSLIBTa2NX9DU+7iPJAcD/wTcCbx42IKjfTyy4+cVfXu1rOEhSZIkSdKYZqoW9BpGVS0DLqbJgNi7+3mSXWkKfy6nK3ixig4C1gNOqKrrerzvz4GjgbuAParqm2O+7yVt+5OqmnNLjgEPSZIkSZKmx+Fte2SSrWdvJtmY5oQUgCOqaqbj2WuTLE3yqe7JkmyT5BFd95LkNcA7aLa3vKHHuD9t33cXsKSqvj7XwttiqPskWbfH+/bt+G7vn2sucEuLJEmSJEljm5AaHlTViUmOoSk2ekmSb9KcpLKY5ujYk2myLjo9CtiGJvOj28uAv0lyEbAMWAvYCdgcuI6mAOmv1NJI8lTgozSnu/w38NIkL+0x9w1V9caOzxsBnwU+kuRi4Gc0BVO3oznKFuDoqvroHL8GwICHJEmSJElTpaoOSnIOcDCwK02QYilwHHBMZ3bHEE4HngzsCPw2cA9wJXA88P6quqXHmIfTBDsAfrO9erkK6Ax4LAOOoqkzsjWwM83OlOXAF4Bjq+r0YReeGnIv0EK7YJMlk7EQSZIkSdK8W3TtSZm715rrSRvvvKB/0152/fem+ve3EKzhIUmSJEmSpo5bWiRJkiRJGtOk1PDQvczwkCRJkiRJU8cMD0mSJEmSxjQzIfUxdS8zPCRJkiRJ0tQxw0OSJEmSpDFZw2PyGPCQJEmSJGlMbmmZPG5pkSRJkiRJU8cMD0mSJEmSxuSWlsljhockSZIkSZo6ZnhIkiRJkjSmqpnVvQR1McNDkiRJkiRNHTM8JEmSJEka04w1PCaOGR6SJEmSJGnqmOEhSZIkSdKYqszwmDRmeEiSJEmSpKljhockSZIkSWOyhsfkMcNDkiRJkiRNHTM8JEmSJEkakzU8Jo8ZHpIkSZIkaeqY4SFJkiRJ0phmzPCYOGZ4SJIkSZKkqWOGhyRJkiRJYypPaZk4ZnhIkiRJkqSpY4aHJEmSJElj8pSWyWOGhyRJkiRJmjpmeEiSJEmSNKYZa3hMHAMekiRJkiSNyS0tk8ctLZIkSZIkaeqY4SFJkiRJ0phmzPCYOGZ4SJIkSZKkqWOGhyRJkiRJY7KGx+Qxw0OSJEmSJE0dMzwkSZIkSRqTx9JOHjM8JEmSJEnS1DHDQ5IkSZKkMVnDY/KY4SFJkiRJkqaOGR6SJEmSJI1pxgyPiWOGhyRJkiRJmjpmeEiSJEmSNKbylJaJY4aHJEmSJEmaOmZ4SJIkSZI0Jmt4TB4zPCRJkiRJ0tQxw0OSJEmSpDGVGR4TxwwPSZIkSZKmTJJ9knw7yS1JViS5MMnBSUaOAyTZKMnhSS5LckeSm5KcnWTfIca+IMlpSW5McnuSHyV5a5J15xj3tCQnJbk+yZ1JLk/yniQPG3bdBjwkSZIkSRpTLfB/RpHkQ8BngZ2AbwPfAH4DOBo4cZSgR5KtgIuBQ4FHAKcBPwQWAZ9K8okk6TP2zcBXgee2c5wKbAy8EzgzyUP6jHsZ8B1gD+A/gVOAdYA3ARcm2XiYtRvwkCRJkiRpSiTZEzgIWA48pap2r6olwBOBy4AlwOtGmPLzwBbAicBWVfWHVfVsYAfgKmA/4E96rGMn4AjgduCZVfV7VbU3sBVwNrAL8K4e4zYFPg4E2KOqfqeqXgo8AfgCsDXw0WEWbsBDkiRJkqQxVdWCXiN4S9seUlWXd6zvOuDA9uOhw2R5JHk6sDNwC3BAVd3eMd9lwBvbj2/rkeVxKE3Q4siqOr9j3ArgVcAMcFCSh3eN+0tgPeCTVXVKx7hfAAcAPwf2SLLtXOs34CFJkiRJ0pgmIeDRZkfsCNwNnNBjjWcB1wKPpcmwmMuitr2oqm7q8fy0tt2MJjAyu451gN3aj5/tsY4rgfNotqm8sOvxHgPG/Rz4t65+fRnwkCRJkiRpOmzftpdW1R19+lzQ1XeQ9dv2hj7Pb6UJrkATaJm1DfAQ4MaqumLYdSTZkGbrSufzOcf147G0kiRJkiSNaUIOpd2yba8a0Ofqrr6DXN+2W/V5vilNlkb3fLM/X01/vdbx+La9uc3mGHZcT2Z4SJIkSZI0HWYzMm4b0GdF224wxHxn0MRydmyLkHY7sOPnDedhHfO6/onJ8Fh07Uk9j7GRJGlaJTmgqo5d3euQJEnj+8Xd1y7o37RJDqAp2jnr2IX+vyOq6ooknwH2BU5J8lrgTJpgw340x8SuBNamKUI6USYm4CFJ0gPQAYABD0mSNKc2uDHX/90wm/3w0AF9ZrMobh3y1QfSBDj2AL7U9eyLNFta9gBunId1zOv6DXhIkiRJkjQdftq2Wwzos1lX34Gq6jZgSXtE7QuAx9EEN75eVWckObftekmPdWw+4jpma488PMmGfep4DL1+Ax6SJEmSJE2H77ftdknW63NSy6KuvkOpqvNojpL9pSQbAE8FfkFT72PWUuAOYKMkT+hzUsvsMba/XEdV3ZLkCpqTWhYB3xpmXD8WLZUkafVxO4skSZo3VbUMuJhmm8ne3c+T7EpzsspyuoIXq+ggYD3ghKq6rmMddwNfbT++vMc6tgKeTnOk7aldj08ZMG5D4EXtx5PmWpwBD0mSVhMLlkqSpAVweNsemWTr2ZtJNgY+3H48oqpmOp69NsnSJJ/qnizJNkke0XUvSV4DvINme8sbeqzjCJoTXg5JsnPH2PWB42jiER+uqpu7xv0jTXbIfkle3DHuQcBHaU6DObmqftz/V9COqZqQ04IlSZIkSdLYknyYptjoncA3aU5SWUwbLAD2qqp7OvofBvw9cFZVPbtrrsOAvwEuApYBawE70dTnuA7Yrap6bi9J8mbgSOAe4HTgZmBXYGPgfOC5VXV7j3EvAz5NExQ5B/gZsAtNbZL/Ap5ZVdfP9Xsww0OSNJIktQrXJ1b3ugGS7D9J6xnHqn6XJM9ux525MCuTJEmrW1UdRLMl5GKaAMPzaQIFrwX27Ax2DOF04MvAY4Hdgd+nCVz8A7BNv2BHu473ALvR1PdYRLMd5Qbgb4FdewU72nGfB57ZvvdJwBKaOiFHATsNE+wAi5ZKkkb3yR73HkvzP6S3ASf2eH7OKC/o+P8y/ENVHTbi+rQGaAM1+wGvqqpPrN7VSJI0farqc8Dnhux7GHBYn2dnA2ePsY6vAV9bhXHn0xx3u8oMeEiSRlJV+3ffS/JsmoDHDb2ea0GcBHwXuGV1L0SSJGkSGfCQJGkNVFW3YLBDkiSpL2t4SJIWXJLtknwqybIkdyW5IclXkuzWo2/RbGcB+PuuWiCHdfR7WpKjklyY5Lokdyf5WZITk+wyz+vfM8lxSS5NcnOSO5P8V5IPJdlswLgkeUmSrya5vl3jtUm+leR1fcY8P8mX2u9yd5LlSb6T5JAk63X0G1jDI8ke7bgVSW5K8o32KLq5vutmST6Q5CdJ7kjy83ae/ZOkR/8z23U8O8mOSb6c5P/a39EP2wrunf0f3/4b79feOr7r33j/jr47Jzmh/Z2tTHJL+3v/XJLnzvVdJEnSA5sZHpKkBdUeJ/ZFYF3gUuDbNOe/Px/YLck7q+ptHUM+CTwV+G3gh8APOp51/vwu4NntnN8D7gK2AfYE9kjysqo6YZ6+xhdoqpz/mKbS+brtGg8CXpLkmVX1n50DkqwDnAC8mKYy+XeBq4HHAE8Gngt8sKN/aI6K+/P21oXAWcBGNMW6jmjX8dO5FttRER3gXOAq4Ldoio59cMC459BslXkYTWGzrwHr01RFP75d8yv7DH8B8NfAT4DTaCq3PwP4WJKHV9X72n4raP6Nfwd4AvCd9l2z/qtdy/OAU4G1ge+3/dam+e/OXsDP2+8jSZLUkwEPSdKCSfJYmiPF1gXeUFX/r+PZs2n+oP3bJOdU1dehqRHSZnL8Ns0Z64f1mf69wMur6rqud74I+FfgI0lO7Vf9e0T7AP/eOVeas+D/nqbK+AdoKpB3eg9NsOM/gT+sqqUdY9cC/qCr/+tpgh3XAXtU1Xc7+gd4DnDTXAtNsj3wbppK5n9UVf/W8exN7bp6jXscze9tfWB/4FPVnl3fZrF8Gdg3yel9ioweArymqo7rmPMVNP/+f5fkmKq6vapuAPZvM1OeAHysz3xvoQlw7NNWau9c6yOBxw/+TUiSpAc6t7RIkhbSn9Kc9/6dzmAHQFWdyb3ZBm8cdeKq+lp3sKO9/280mRUb0QQJxlZVX+wOnFTVL9rMlJ8Bv59kg9lnSTYGDgRmaIIOS7vG3lNVX+7o/yDgre3H/TuDHW3/qqrT27odc3ktsBbw2c5gRzvPUcBFfcb9JfAI4H1V9cnZYEc7bhnNvyVAz604wL92BjvacZ8BLqP578BOQ6y902Pa9qvdD6rq/6qq3/eQJEkCzPCQJC2s2ZoRvY6yBTiOJjPgd5KsNeKZ8CR5FM158E8GHs69/7v25Lb9DZoskrEl+Q2abRtb02RBzP4/DR7U/rw1zdYLaLZ+rEMT6Ll0iOl3Ah4FXNMe3TaO2d/5Z/o8/wywY4/7L2zbftuALqLZjvLUJA+uqju7nv97n3FLabbk/Hqf5/18D9gW+FySdwHfHfW/H5Ik6YHNgIckaSFt0rb/3ef5T2myIB4MPBK4ftiJk/wZ8P+AhwzotuGw8w14z4Noamv8CXCfop193rVF2y7t1bGH2f4/GW11PW3atoN+571s1bYX9KhN2u2RwLVd967u0/fnbfvguSbt8haabU27tdftSS6kqdvx6aq6csT5JEnSA4wBD0nS/aHm7jK8JIuAY2jqVLwJ+DfgGuD2qqok76b5g3nOv9yH8Hqa7Rw/oynKeS5wfVXd1a7lXODpXe8a9fvO6+9nFa3VtrMFWge5q8e9mflcTFUtT7ITTWHa5wHPBJ4GPIum7sufdW+hkSRJ6mTAQ5K0kK4FfpMme+BbPZ4/nmY7yJ3AjSPMuydNgOGfquq9PZ5vPdoyB9q7bf+sqnpt2+j1rtlsh22GfMeo/Qe5lub3/Xjgih7PH99n3DKa7/KOIbfhLLiqmqHJ6DgdIMlDaWqUHAF8KMmJVfXzAVNIkqQHMIuWSpIW0llt2+8o01e17TlV9YuO+3e3bb/A/EZtu6z7QZJH02QEzJdB73oe8OgeY04HVgLPSPKkId5xEXADsGmS56/qQluzv/OX93ne7/5scdC9+zyfb3P9G99HVd1WVUfSZPM8mPkJEEmSpCllwEOStJD+GbiVpijpX3Q+SPIs7j3x431d42brQ/QLFszWxnhlkvU75tyAphDqw8dYc793HZjkl/+7meQJwEd6Daiq69tnvwb8a1vwlI6xa7XH5872Xwkc3n48PsnOXf2T5DlJHjbEej9Es71k3yQv7HyQ5K/of1rKUTT1Nv4mycFt7ZJfkWS7JH80xBqGMfDfOMkb2+Nwu+/vBDyO5jveJwglSZI0yy0tkqQF09Zh2JemLsQHkvwJ8COaEzt+lyYg8M4eJ5N8Hbgd+KMkZ9NszbgH+HJ7nOvxNMeo7gBcmeQcmi0uz6LJHDgOePU8fY3DaU5n+TPgOUm+T5P1sStwHrAceEaPcW8CnkBz+smlSc6jyUzYGPittu2s+/F+mj/+/wT4blug87/ad20LbAZsCQw8mraqLkryt8C7gX9va4xc1b5zO+CfgL/oMW5Zkj2AE4GjgbcmuZSmkOzD2/Gb0fxbfmnQGoZ0CvB3wF8meTLN76aA46rqXOBvgaOSXEZztO1d7fufQfPfmyOqavk8rEOSJE0pMzwkSQuqqk6hySr4DM3pHnvR/PF8GvAHVfW2HmOW0xw3eybwFGA/4DU0AQ6q6qZ2zmNpjkr9g/bzl9o+8/b/+a+q84BFNMfbPgz4Q5qTUN4FPJ9m60qvcXcBLwL2Bc6mOSp3L5qaJv8BHNzVv6rqT9sxX6GptbEXzUklVwFvpgmuDLPmw2nqnHwX2J7md/m/NFt9Thow7gyaoMi7aQIdu7TzbAdcSVMI9q3DrGGINf4AeClwAU0Q49U0/8az2TAH0xxnPAM8B1hCc+rPvwHPr6q3zMc6JEnS9ErVJBSGlyRJkiRJmj9meEiSJEmSpKljwEOSJEmSJE0dAx6SJEmSJGnqGPCQJEmSJElTx4CHJEmSJEmaOgY8JEmSJEnS1DHgIUmSJEmSpo4BD0mSJEmSNHUMeEiSJEmSpKljwEOSJEmSJE2d/w+XUfVdw2a3NAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1440x648 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "corr =  A2018_df.corr()\n",
+    "plt.subplots(figsize=(20,9))\n",
+    "sns.heatmap(corr)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+-----------------+------------+-----------------------+-----------------+----------------------+--------------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+---------------------+-----------------------+-------------------------+-------------+-------------+------------------+------------------+---------------+--------------+------------------+-----------------+---------------------+--------------+\n",
+      "|accident_index|accident_year|accident_reference|vehicle_reference|vehicle_type|towing_and_articulation|vehicle_manoeuvre|vehicle_direction_from|vehicle_direction_to|vehicle_location_restricted_lane|junction_location|skidding_and_overturning|hit_object_in_carriageway|vehicle_leaving_carriageway|hit_object_off_carriageway|first_point_of_impact|vehicle_left_hand_drive|journey_purpose_of_driver|sex_of_driver|age_of_driver|age_band_of_driver|engine_capacity_cc|propulsion_code|age_of_vehicle|generic_make_model|driver_imd_decile|driver_home_area_type|lsoa_of_driver|\n",
+      "+--------------+-------------+------------------+-----------------+------------+-----------------------+-----------------+----------------------+--------------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+---------------------+-----------------------+-------------------------+-------------+-------------+------------------+------------------+---------------+--------------+------------------+-----------------+---------------------+--------------+\n",
+      "| 200501BS00001|         2005|         01BS00001|                1|           9|                      0|               18|                     6|                   2|                               0|                0|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            2|           74|                10|                -1|             -1|            -1|                -1|               -1|                    1|     E01001924|\n",
+      "| 200501BS00002|         2005|         01BS00002|                1|          11|                      0|                4|                     5|                   1|                               0|                3|                       0|                        0|                          0|                         0|                    4|                      1|                        1|            1|           42|                 7|              8268|              2|             3|                -1|               -1|                   -1|            -1|\n",
+      "| 200501BS00003|         2005|         01BS00003|                1|          11|                      0|               17|                     7|                   5|                               0|                0|                       0|                        4|                          0|                         0|                    4|                      1|                        1|            1|           35|                 6|              8300|              2|             5|                -1|               -1|                    1|     E01000638|\n",
+      "| 200501BS00003|         2005|         01BS00003|                2|           9|                      0|                2|                     0|                   0|                               0|                0|                       0|                        0|                          0|                         0|                    3|                      1|                       15|            1|           62|                 9|              1762|              1|             6|                -1|               -1|                    1|     E01000605|\n",
+      "| 200501BS00004|         2005|         01BS00004|                1|           9|                      0|               18|                     8|                   4|                               0|                0|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            2|           49|                 8|              1769|              1|             4|                -1|               -1|                    1|     E01002842|\n",
+      "| 200501BS00005|         2005|         01BS00005|                1|           3|                      0|               18|                     1|                   5|                               0|                0|                       1|                       10|                          0|                         0|                    1|                      1|                       15|            1|           49|                 8|                85|              1|            10|                -1|               -1|                   -1|            -1|\n",
+      "| 200501BS00006|         2005|         01BS00006|                1|           9|                      0|                5|                     4|                   8|                               0|                0|                       0|                        0|                          0|                         0|                    0|                      1|                       15|            1|           51|                 8|              2976|              1|             1|                -1|               -1|                    1|     E01002833|\n",
+      "| 200501BS00006|         2005|         01BS00006|                2|           3|                      0|               18|                     4|                   8|                               0|                0|                       0|                        0|                          0|                         0|                    0|                      1|                       15|            2|           30|                 6|               124|              1|             2|                -1|               -1|                    1|     E01004315|\n",
+      "| 200501BS00007|         2005|         01BS00007|                1|           3|                      0|               18|                     8|                   4|                               0|                1|                       0|                        4|                          0|                         0|                    1|                      1|                       15|            1|           31|                 6|                -1|             -1|            -1|                -1|               -1|                   -1|            -1|\n",
+      "| 200501BS00007|         2005|         01BS00007|                2|           9|                      0|                2|                     0|                   0|                               0|                1|                       0|                        0|                          0|                         0|                    2|                      1|                       15|            1|           41|                 7|              4266|              1|             4|                -1|               -1|                    1|     E01002875|\n",
+      "| 200501BS00009|         2005|         01BS00009|                1|           9|                      0|               18|                     3|                   7|                               0|                0|                       0|                        0|                          1|                         0|                    1|                      1|                       15|            1|           68|                10|              5343|              1|            16|                -1|               -1|                    1|     E01001871|\n",
+      "| 200501BS00010|         2005|         01BS00010|                1|           9|                      0|               18|                     7|                   3|                               0|                8|                       0|                        0|                          0|                         0|                    2|                      1|                       15|            1|           35|                 6|              1998|              1|            13|                -1|               -1|                    1|     E01003229|\n",
+      "| 200501BS00010|         2005|         01BS00010|                2|           9|                      0|                9|                     3|                   8|                               0|                8|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            2|           48|                 8|                -1|             -1|            -1|                -1|               -1|                    1|     E01002913|\n",
+      "| 200501BS00011|         2005|         01BS00011|                1|          11|                      0|                9|                     2|                   8|                               0|                8|                       0|                        0|                          0|                         0|                    0|                      1|                        1|            1|           42|                 7|              8268|              2|             2|                -1|               -1|                    1|     E01000861|\n",
+      "| 200501BS00011|         2005|         01BS00011|                2|          90|                      0|               18|                     4|                   8|                               0|                8|                       0|                        0|                          0|                         0|                    0|                      1|                       15|            3|           -1|                -1|                -1|             -1|            -1|                -1|               -1|                   -1|            -1|\n",
+      "| 200501BS00012|         2005|         01BS00012|                1|           9|                      0|               18|                     3|                   7|                               0|                8|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            1|           34|                 6|              1988|              1|             6|                -1|               -1|                    1|     E01003829|\n",
+      "| 200501BS00014|         2005|         01BS00014|                1|           9|                      0|                9|                     6|                   4|                               0|                8|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            2|           19|                 4|              1124|              1|             8|                -1|               -1|                    1|     E01001377|\n",
+      "| 200501BS00014|         2005|         01BS00014|                2|           3|                      0|               18|                     2|                   6|                               0|                8|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            2|           20|                 4|               124|              1|             1|                -1|               -1|                   -1|            -1|\n",
+      "| 200501BS00015|         2005|         01BS00015|                1|           9|                      0|                9|                     8|                   6|                               0|                3|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            2|           47|                 8|              1360|              1|             2|                -1|               -1|                    1|     E01002848|\n",
+      "| 200501BS00016|         2005|         01BS00016|                1|           9|                      0|               18|                     7|                   3|                               0|                8|                       0|                        7|                          7|                         1|                    1|                      1|                       15|            1|           34|                 6|               698|              1|             2|                -1|               -1|                    1|     E01024185|\n",
+      "+--------------+-------------+------------------+-----------------+------------+-----------------------+-----------------+----------------------+--------------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+---------------------+-----------------------+-------------------------+-------------+-------------+------------------+------------------+---------------+--------------+------------------+-----------------+---------------------+--------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "from pyspark.sql.functions import concat, col, lit\n",
+    "\n",
+    "\n",
+    "V20052014 = spark.read.format('csv')\\\n",
+    "            .option('header',True).option('escape','\"')\\\n",
+    "            .load('/Users/Asfandyar/Downloads/dft-road-casualty-statistics-vehicle-1979-2021.csv')\n",
+    "V20052014=V20052014.filter(V20052014.accident_year>2004)\n",
+    "V20052014=V20052014.filter(V20052014.accident_year<2020)\n",
+    "V20052014.show()\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from pyspark.sql.functions import col, when\n",
+    "valueWhenTrue1 =\"Pedal cycle\"\n",
+    "valueWhenTrue2 =\"Motorcycle\"\n",
+    "valueWhenTrue3 = \"Motorcycle\"\n",
+    "valueWhenTrue4 = \"Motorcycle\"\n",
+    "valueWhenTrue5 = \"Motorcycle\"\n",
+    "valueWhenTrue8 = \"Car\"\n",
+    "valueWhenTrue9 =\"Car\"\n",
+    "valueWhenTrue10 =\"Bus\"\n",
+    "valueWhenTrue11 =\"Bus\"\n",
+    "valueWhenTrue16 =\"Ridden horse\"\n",
+    "valueWhenTrue17 =\"Agricultural vehicle\"\n",
+    "valueWhenTrue18 =\"Bus\"\n",
+    "valueWhenTrue19 =\"Goods\"\n",
+    "valueWhenTrue20 =\"Goods\"\n",
+    "valueWhenTrue21 =\"Goods\"\n",
+    "valueWhenTrue22 =\"Motorcycle\"\n",
+    "valueWhenTrue23 =\"Motorcycle\"\n",
+    "valueWhenTrue90 =\"Other vehicle\"\n",
+    "valueWhenTrue97 =\"Motorcycle\"\n",
+    "valueWhenTrue98 =\"Goods\"\n",
+    "valueWhenTrueo1 =\"Data missing or out of range\"\n",
+    "#C2017 = C2017df.withColumn(\"Vehicle_Type\", when(df.gender == \"M\",\"Male\")\n",
+    "#                                 .when(df.gender == \"F\",\"Female\")\n",
+    "#                                 .when(df.gender.isNull() ,\"\")\n",
+    "#                                 .otherwise(df.gender))\n",
+    "V20052014=V20052014.withColumn(\n",
+    "    \"vehicle_type\",\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 1,\n",
+    "        \"Pedal cycle\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 2,\n",
+    "        valueWhenTrue2\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 3,\n",
+    "        valueWhenTrue3\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 4,\n",
+    "        valueWhenTrue4\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 5,\n",
+    "        valueWhenTrue5\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 8,\n",
+    "        valueWhenTrue8\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 9,\n",
+    "        valueWhenTrue9\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 10,\n",
+    "        valueWhenTrue10\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 11,\n",
+    "        valueWhenTrue11\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 16,\n",
+    "        valueWhenTrue16\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 17,\n",
+    "        valueWhenTrue17\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 18,\n",
+    "        valueWhenTrue18\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 19,\n",
+    "        valueWhenTrue19\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 20,\n",
+    "        valueWhenTrue20\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 21,\n",
+    "        valueWhenTrue21\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 22,\n",
+    "        valueWhenTrue22\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 23,\n",
+    "        valueWhenTrue23\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 90,\n",
+    "        valueWhenTrue90\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 97,\n",
+    "        valueWhenTrue97\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == 98,\n",
+    "        valueWhenTrue98\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"vehicle_type\") == -1,\n",
+    "        valueWhenTrueo1\n",
+    "    ).otherwise(col(\"vehicle_type\"))\n",
+    ")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-----------------+\n",
+      "|accident_index|accident_severity|\n",
+      "+--------------+-----------------+\n",
+      "| 200501BS00001|                2|\n",
+      "| 200501BS00002|                3|\n",
+      "| 200501BS00003|                3|\n",
+      "| 200501BS00004|                3|\n",
+      "| 200501BS00005|                3|\n",
+      "| 200501BS00006|                3|\n",
+      "| 200501BS00007|                3|\n",
+      "| 200501BS00009|                3|\n",
+      "| 200501BS00010|                3|\n",
+      "| 200501BS00011|                3|\n",
+      "| 200501BS00012|                3|\n",
+      "| 200501BS00014|                3|\n",
+      "| 200501BS00015|                3|\n",
+      "| 200501BS00016|                3|\n",
+      "| 200501BS00017|                3|\n",
+      "| 200501BS00018|                3|\n",
+      "| 200501BS00019|                2|\n",
+      "| 200501BS00020|                3|\n",
+      "| 200501BS00021|                3|\n",
+      "| 200501BS00022|                2|\n",
+      "+--------------+-----------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "accidentindex=A2018.select('accident_index','accident_severity')\n",
+    "accidentindex.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "V20052014vech_dff=V20052014vech_dff.withColumn(\n",
+    "    \"age_band_of_driver\",\n",
+    "    when(\n",
+    "        col(\"age_band_of_driver\") == 1,\n",
+    "        \"Upto 20Y\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"age_band_of_driver\") == 2,\n",
+    "        \"Upto 20Y\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"age_band_of_driver\") == 3,\n",
+    "        \"Upto 20Y\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"age_band_of_driver\") == 4,\n",
+    "        \"Upto 20Y\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"age_band_of_driver\") == 5,\n",
+    "        \"20Y to 40Y\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"age_band_of_driver\") == 6,\n",
+    "        \"20Y to 40Y\"\n",
+    "    ).\n",
+    "    when(\n",
+    "        col(\"age_band_of_driver\") == 7,\n",
+    "        \"20Y to 40Y\"\n",
+    "    ).when(\n",
+    "        col(\"age_band_of_driver\") == 8,\n",
+    "        \"40Y to 70Y\"\n",
+    "    ).when(\n",
+    "        col(\"age_band_of_driver\") == 9,\n",
+    "        \"40Y to 70Y\"\n",
+    "    ).when(\n",
+    "        col(\"age_band_of_driver\") == 10,\n",
+    "        \"40Y to 70Y\"\n",
+    "    ).when(\n",
+    "        col(\"age_band_of_driver\") == 11,\n",
+    "        \"Over 70\"\n",
+    "    ).when(\n",
+    "        col(\"age_band_of_driver\") == -1,\n",
+    "        \"Data missing or out of range\"\n",
+    "    ).otherwise(col(\"age_band_of_driver\")),\n",
+    ")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------+-------------+------------------+-----------------+------------+-----------------------+-----------------+----------------------+--------------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+---------------------+-----------------------+-------------------------+-------------+-------------+------------------+------------------+---------------+--------------+------------------+-----------------+---------------------+--------------+-----------------+\n",
+      "|accident_index|accident_year|accident_reference|vehicle_reference|vehicle_type|towing_and_articulation|vehicle_manoeuvre|vehicle_direction_from|vehicle_direction_to|vehicle_location_restricted_lane|junction_location|skidding_and_overturning|hit_object_in_carriageway|vehicle_leaving_carriageway|hit_object_off_carriageway|first_point_of_impact|vehicle_left_hand_drive|journey_purpose_of_driver|sex_of_driver|age_of_driver|age_band_of_driver|engine_capacity_cc|propulsion_code|age_of_vehicle|generic_make_model|driver_imd_decile|driver_home_area_type|lsoa_of_driver|accident_severity|\n",
+      "+--------------+-------------+------------------+-----------------+------------+-----------------------+-----------------+----------------------+--------------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+---------------------+-----------------------+-------------------------+-------------+-------------+------------------+------------------+---------------+--------------+------------------+-----------------+---------------------+--------------+-----------------+\n",
+      "| 200501BS70192|         2005|         01BS70192|                1|       Goods|                      0|               18|                     1|                   5|                               0|                0|                       0|                        0|                          0|                         0|                    3|                      1|                       15|            1|           29|                 6|              1896|              2|             8|                -1|               -1|                    1|     E01003039|                3|\n",
+      "| 200501BS70192|         2005|         01BS70192|                2|       Goods|                      0|                2|                     0|                   0|                               0|                0|                       0|                        0|                          0|                         0|                    0|                      1|                       15|            1|           51|                 8|              2299|              2|             7|                -1|               -1|                    2|     E01015586|                3|\n",
+      "| 200501BS70293|         2005|         01BS70293|                1|         Car|                      0|                9|                     6|                   4|                               0|                2|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            1|           45|                 7|              1999|              1|             0|                -1|               -1|                    1|     E01001623|                3|\n",
+      "| 200501BS70739|         2005|         01BS70739|                1|  Motorcycle|                      0|                4|                     6|                   2|                               0|                1|                       0|                        0|                          0|                         0|                    2|                      1|                       15|            1|           27|                 6|               645|              1|             0|                -1|               -1|                    1|     E01002535|                3|\n",
+      "| 200501BS70739|         2005|         01BS70739|                2|         Car|                      0|               18|                     6|                   2|                               0|                1|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            1|           -1|                -1|              1598|              1|             3|                -1|               -1|                    1|     E01004520|                3|\n",
+      "| 200501CP00077|         2005|         01CP00077|                1|         Car|                      0|               10|                     3|                   1|                               0|                1|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            1|           75|                10|              2946|              1|             6|                -1|               -1|                    1|     E01015889|                3|\n",
+      "| 200501CP00077|         2005|         01CP00077|                2| Pedal cycle|                      0|               10|                     3|                   1|                               0|                1|                       0|                        0|                          0|                         0|                    2|                      1|                       15|            1|           36|                 7|                -1|             -1|            -1|                -1|               -1|                   -1|            -1|                3|\n",
+      "| 200501CP00182|         2005|         01CP00182|                1|         Car|                      0|                9|                     1|                   7|                               0|                8|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            3|           -1|                -1|              1896|              2|             3|                -1|               -1|                   -1|            -1|                3|\n",
+      "| 200501CP00197|         2005|         01CP00197|                1|         Car|                      0|                6|                     7|                   7|                               0|                2|                       0|                        0|                          0|                         0|                    3|                      1|                       15|            1|           67|                10|              1240|              1|             1|                -1|               -1|                    1|     E01000206|                3|\n",
+      "| 200501CP00197|         2005|         01CP00197|                2|  Motorcycle|                      0|               14|                     7|                   3|                               0|                2|                       0|                        0|                          0|                         0|                    4|                      1|                       15|            1|           35|                 6|               498|              1|            10|                -1|               -1|                   -1|            -1|                3|\n",
+      "| 200501CP00212|         2005|         01CP00212|                1|         Car|                      0|                9|                     8|                   6|                               0|                8|                       0|                        0|                          0|                         0|                    4|                      1|                       15|            1|           52|                 8|              2664|              2|             5|                -1|               -1|                    1|     E01004416|                3|\n",
+      "| 200501CP00212|         2005|         01CP00212|                2| Pedal cycle|                      0|               18|                     4|                   8|                               0|                8|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            2|           30|                 6|                -1|             -1|            -1|                -1|               -1|                    1|     E01021326|                3|\n",
+      "| 200501CW10269|         2005|         01CW10269|                1|         Car|                      0|               17|                     8|                   5|                               0|                0|                       0|                        0|                          0|                         0|                    3|                      1|                        1|            1|           -1|                -1|                -1|             -1|            -1|                -1|               -1|                    1|     E01004290|                2|\n",
+      "| 200501CW10359|         2005|         01CW10359|                1|         Car|                      0|               18|                     5|                   1|                               0|                0|                       0|                        0|                          0|                         0|                    4|                      1|                       15|            3|           -1|                -1|                -1|             -1|            -1|                -1|               -1|                   -1|            -1|                3|\n",
+      "| 200501CW10368|         2005|         01CW10368|                1|         Car|                      0|                4|                     7|                   3|                               0|                1|                       0|                        0|                          0|                         0|                    2|                      1|                       15|            2|           23|                 5|              1149|              1|             2|                -1|               -1|                    1|     E01017959|                3|\n",
+      "| 200501CW10368|         2005|         01CW10368|                2|         Car|                      0|                4|                     7|                   3|                               0|                1|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            1|           51|                 8|              1994|              1|             9|                -1|               -1|                    1|     E01023819|                3|\n",
+      "| 200501CW10403|         2005|         01CW10403|                1|         Car|                      0|                9|                     8|                   6|                               0|                8|                       0|                        0|                          0|                         0|                    4|                      1|                       15|            1|           27|                 6|              1389|              1|            13|                -1|               -1|                    1|     E01023720|                3|\n",
+      "| 200501CW10403|         2005|         01CW10403|                2|         Car|                      0|               18|                     4|                   8|                               0|                8|                       0|                        0|                          0|                         0|                    1|                      1|                       15|            1|           36|                 7|                -1|             -1|            -1|                -1|               -1|                    1|     E01004673|                3|\n",
+      "| 200501CW10495|         2005|         01CW10495|                1|         Car|                      0|                6|                     2|                   2|                               0|                0|                       0|                        0|                          0|                         0|                    3|                      1|                       15|            1|           44|                 7|              1390|              1|             9|                -1|               -1|                    1|     E01000549|                3|\n",
+      "| 200501CW10495|         2005|         01CW10495|                2|         Car|                      0|               18|                     2|                   6|                               0|                0|                       0|                        0|                          0|                         0|                    1|                      2|                       15|            1|           28|                 6|                -1|             -1|            -1|                -1|               -1|                    1|     E01004650|                3|\n",
+      "+--------------+-------------+------------------+-----------------+------------+-----------------------+-----------------+----------------------+--------------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+---------------------+-----------------------+-------------------------+-------------+-------------+------------------+------------------+---------------+--------------+------------------+-----------------+---------------------+--------------+-----------------+\n",
+      "only showing top 20 rows\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "V20052014vech_dff = V20052014.join(accidentindex, on=['Accident_Index'])\n",
+    "\n",
+    "V20052014vech_dff.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+--------------------+-----------------+---------------+\n",
+      "|  age_band_of_driver|accident_severity|Total accidents|\n",
+      "+--------------------+-----------------+---------------+\n",
+      "|Data missing or o...|                1|           2463|\n",
+      "|             Over 70|                1|           2525|\n",
+      "|            Upto 20Y|                1|           4731|\n",
+      "|             Over 70|                2|          17507|\n",
+      "|          40Y to 70Y|                1|          17654|\n",
+      "|          20Y to 40Y|                1|          25536|\n",
+      "|Data missing or o...|                2|          48337|\n",
+      "|            Upto 20Y|                2|          60174|\n",
+      "|             Over 70|                3|          76450|\n",
+      "|          40Y to 70Y|                2|         166391|\n",
+      "|          20Y to 40Y|                2|         270225|\n",
+      "|            Upto 20Y|                3|         351830|\n",
+      "|Data missing or o...|                3|         425600|\n",
+      "|          40Y to 70Y|                3|         931310|\n",
+      "|          20Y to 40Y|                3|        1795753|\n",
+      "+--------------------+-----------------+---------------+\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "Age_df = V20052014vech_dff.groupby('age_band_of_driver','accident_severity').agg(F.count(V20052014vech_dff.accident_index).alias('Total accidents')).sort(\"Total accidents\")\n",
+    "Age_df.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "Age_df_df=Age_df.toPandas()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead tr th {\n",
+       "        text-align: left;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead tr:last-of-type th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>accident_severity</th>\n",
+       "      <th>1</th>\n",
+       "      <th>2</th>\n",
+       "      <th>3</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>age_band_of_driver</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>20Y to 40Y</th>\n",
+       "      <td>25536</td>\n",
+       "      <td>270225</td>\n",
+       "      <td>1795753</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>40Y to 70Y</th>\n",
+       "      <td>17654</td>\n",
+       "      <td>166391</td>\n",
+       "      <td>931310</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Data missing or out of range</th>\n",
+       "      <td>2463</td>\n",
+       "      <td>48337</td>\n",
+       "      <td>425600</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Over 70</th>\n",
+       "      <td>2525</td>\n",
+       "      <td>17507</td>\n",
+       "      <td>76450</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Upto 20Y</th>\n",
+       "      <td>4731</td>\n",
+       "      <td>60174</td>\n",
+       "      <td>351830</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                             Total accidents                 \n",
+       "accident_severity                          1       2        3\n",
+       "age_band_of_driver                                           \n",
+       "20Y to 40Y                             25536  270225  1795753\n",
+       "40Y to 70Y                             17654  166391   931310\n",
+       "Data missing or out of range            2463   48337   425600\n",
+       "Over 70                                 2525   17507    76450\n",
+       "Upto 20Y                                4731   60174   351830"
+      ]
+     },
+     "execution_count": 27,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Age_df_df=Age_df_df.dropna()\n",
+    "A2018_dfpiv=Age_df_df.pivot(index ='age_band_of_driver', columns ='accident_severity')\n",
+    "A2018_dfpiv"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "size    1   2   3   4  5  6\n",
+      "sex                        \n",
+      "Male    1  98  24  28  4  2\n",
+      "Female  3  58  14   9  1  2\n"
+     ]
+    }
+   ],
+   "source": [
+    "import seaborn as sns\n",
+    "dataset=sns.load_dataset('tips')\n",
+    "dataset_table=pd.crosstab(dataset['sex'],dataset['size'])\n",
+    "print(dataset_table)"
+   ]
+  }
+ ],
+ "metadata": {
+  "interpreter": {
+   "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
+  },
+  "kernelspec": {
+   "display_name": "Python 3.9.7 64-bit",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.7"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}